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Notations

Dim Units

l Length of the rod/robot R m

X ∈ [0, l] Reference length parameter R m

r(X) Position R3 m

R(X) Orientation R3×3

g(X) = (R, r)(X) Cross-sectional frame homogeneous transform. R4×4

F(X) = (r, bX , bY , bZ)(X) Cross-sectional frame

Fs = (O, ex, ey, ez) Inertial frame

(EX , EY , EZ) Canonical (numerical) base of R3

EX = (1, 0, 0)T

EY = (0, 1, 0)T

EZ = (0, 0, 1)T

•0 Initial value or prior to deformation

•′, •′′ First and second derivative wrt. X

Γ(X) Linear rate of change (shear & extension) R3

K(X) Angular rate of change (bending & torsion) R3 m−1

ξ = (KT ,ΓT )T Space-rate twist R6 (m−1,−)

ε = ξ − ξ0 Strain R6 (m−1,−)

c(X), C(X) Stress (bending & torsion) R3 Nm

n(X), N(X) Stress (shear & extension) R3 N

Λ(X) =
(
C(X)T , N(X)T

)T
Stress (wrench) R6 (Nm,N)

c̄(X), C̄(X) Total external distributed couples R3 Nm/m

n̄(X), N̄(X) Total external distributed forces R3 N/m

F̄ (X) =
(
C̄(X)T , N̄(X)T

)T
Total external distributed wrench R6 (Nm/m,N/m)

c+, C+ External tip couples R3 Nm

n+, N+ External tip forces R3 N

F+ =
(
CT

+ , N
T
+

)T
External tip wrench R6 (Nm,N)

Hang(X),Hlin(X) Angular and linear stiffness matrices R3×3 N, Nm2

H(X) Hookean stiffness matrix R6×6 (N,Nm2)

Kεε Generalized stiffness Rk×k *

* The units of these quantities depend on the choice of the shape functions.
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Dim Units

E Young’s modulus R Pa

G Shear modulus R Pa

ν Poisson’s ratio R
ag Gravitational acceleration field R3 N/kg

µ Equivalent density R kg/m3

A Cross-sectional area R m2

I Cross-sectional inertia moment R m4

•a active components, allowed by the model

•c constrained components, restricted by the model

na number of active components R
B selection matrix for active components Rna×6

B̄ selection matrix for active components R(6−na)×6

m Number of tendons R
•i Related to the ith element (tube, tendon, rod)

Chap.3: Related to the ith tendon (i = 1 ..m)
Chap.4: Related to the ith tube/neutral line (i = 1 .. 2)

li Length of the ith element (tube, tendon, rod) R m
Chap.3: Length of the ith tendon R m
Chap.4: Length of the ith neutral line R m

Di(X) Chap.3: Cross-sectional frame position of the ith tendon R3 m
Chap.4: Offset of the ith neutral line R+ m

D(X) Distance between neutral lines R+ m

ri(X) = r +RDi Inertial frame tendon position R3 m

ti = r′i/‖r′i‖ Tangent to the path of the ith tendon R
JtiKj Tendon slope discontinuity step R

τi Tension in the ith tendon R N

τ = (τ1 .. τm)
T

Vector of tensions Rm N

T+ Push/pull force applied at the inner tube base R N

a Translation of the inner tube at the baseplate R m

θ Rotation of the inner tube at the baseplate R m

L Matrix of actuation Rk×m *

* The units of these quantities depend on the choice of the shape functions.
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Dim Units

Rt Tendon offset R m

Rb Backbone radius R m

ρ
i

Inner radius of the ith tube R m

ρi Outer radius of the ith tube R m

d = 2ρ1 Robot outer diameter R m

γi = αi − ρi Notch depth of the ith tube R m

hi Notch height of the ith tube R m

ci Inter-notch height of the ith tube R m

Bi Body of the ith tube R m

M Centerline of the robot and tubes R m

Ni Neutral line of the ith tube R m

βi =
dDi

dXi
Tilt of the neutral line of the ith tube R m

•̃ Face-to-face operator/pull-back function R m

h = dX̃2/dX1 Tangent pull-back function R m

•ext Relative to external loads (not tendons)

n̄ext(X) External distributed forces (not tendons) R3 N/m

c̄ext(X) External distributed couples (not tendons) R3 Nm/m

•rod Relative to rod elastics

•act Relative to actuation by the tendons

n̄act(X) Distributed forces applied by the tendons R3 N/m

c̄act(X) Distributed couples applied by the tendons R3 Nm/m

n̄i(X) Distributed forces applied to the ith tendon R3 N/m

Λact(X) Stress of actuation R6 (Nm,N)

k Number of shape functions R
Φ(X) = (Φ1 ..Φk)

T
Shape functions R6×k *

q = (q1 .. qk)
T

Generalized strain coordinates Rk *

δW Virtual work R J

δζ Absolute variation of the configuration R6 (m−1,−)

δξ = δε Relative variation or strain variation R6 (m−1,−)

δq Variation of the generalized strain coordinates Rk *

δli Variation of the length of the ith tendon R m

Qext Generalized external forces Rk *

Qrod Generalized restoring forces Rk *

Qact Generalized forces of actuation Rk *

* The units of these quantities depend on the choice of the shape functions.
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Dim Units

•? Guessed value for an unknown BC

Res Residual vector

J(q) = ∂Res/∂q Jacobian matrix of the residual Rk×k *

•j Related to the jth segment

χ Number of segments R
lj Length of the jth segment R m

* The units of these quantities depend on the choice of the shape functions.
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List of Abbreviations

BC Boundary Condition

BVP Boundary Value Problem

CAAR Concentric Agonist-Antagonist Robot

CAMI Computer Aided Medical Interventions

CE Conformité Européenne (French for “European conformity”)

CTCR Concentric Tube Continuum Robot

DoF Degree of Freedom

FDA Food And Drug Administration

FDM Fused Deposition Modeling

FEM Finite Element Method

GIC General Intermediate Constraint

MBCR Multi-Backbone Continuum Robots

NTCR Notched Tube Continuum Robot

ODE Ordinary Differential Equation

PCR Parallel Continuum Robot

PDE Partial Differential Equation

PLA Polylactic Acid

TACR Tendon Actuated Continuum Robot

TBVP Tangent Boundary Value Problem

17





Introduction

Robots for improving clinical outcomes

Medical robotics is, since roughly 40 years, a continuously flourishing field that combines the ad-

vances in robotics and healthcare to provide improved patient outcomes and enhance the delivery

of medical services. The integration of robotics into healthcare has led to significant advances in

surgical procedures, enabling minimally invasive procedures with enhanced navigation, dexterity,

sensing, and safety. Surgical robots have gained widespread acceptance, with an estimated 4000

robots being employed daily in worldwide medical procedures [Fiorini et al. 2022]. Research teams

are studying the clinical benefit with an expanding literature. Since 1998, over 29 000 peer-reviewed

studies have been published on da Vinci surgery alone [Haidegger et al. 2022]. Regardless, many

challenges remain and there is still work to be done to further improve quality of care.

Today, most robots used in clinic are rigid-link robots, characterized with mechanical rigidity

and limited degrees-of-freedom. For certain applications, there might be a mismatch between

the robots and the soft human tissues. Hence, in recent years, there has been a growing trend

towards the development of robots that are designed to interact with the human body in a more

compliant manner and offer increased dexterity to the clinicians. Moreover, to further reduce

surgical invasiveness, a search has started for ways to access the body through natural orifices (see

Figure I.1). This has led to the advent of continuum robots in the medical robotics field.

Figure I.1: Example of an endoluminal surgical procedure,

here in bariatric surgery with access through the throat. Im-

age adapted from: https://consultqd.clevelandclinic.org

19

https://consultqd.clevelandclinic.org/


Continuum robots and new challenges

Continuum robots are composed of elastic materials such that their body bends continuously when

actuated, providing infinite degrees of freedom. Such degrees of freedom give continuum robots

the ability to conform to the shape of lumens of the human anatomy and access regions that are

difficult to reach with traditional robots. In many cases, continuum robots can be scaled down to

very small sizes, yet further opening the range of possible applications. Additionally, the compliance

of continuum robots make them especially suited for safe interactions in medical applications.

While continuum robots commit to be an answer to the shortcomings of rigid-link robots, this

emerging type of robots present a series of new challenges to the community. First, structurally,

due to their flexible nature and depending on their architecture, continuum robots can be subject to

a number of physical phenomenons that limit their performances (elastic instabilities, insufficient

payload, backlash etc.). Second, in order to deploy continuum robots, precise models that link

actuation variables to the full robot shape are required. In this second challenge, the modeling of

continuum robots is drastically different from the modeling of rigid-link robots by the fact that

no discrete joints can be identified. The elasticity of the constituting materials must be taken into

account, along with interaction forces from the environment.

To answer these challenges, the continuum robotics community is continuously developing

novel robot structures and hence new models. The multidisciplinary nature of continuum robots favors

new and unconventional scientific approaches. A prime illustration is the symbiosis that arose

between continuum mechanics and robotics in the quest for capturing their unique behavior.

In particular, the over 100 years old Cosserat rod theory has found a leading application with the

geometrically exact modeling of long, slender continuum robots. Since their first occurrence in the

continuum robotics community in the late 2000s, Cosserat rod models have imposed themselves as

the gold standard in the field. Such models were initially derived through a Newtonian approach,

by isolating the robot constituents and considering their interactions (Newton’s Laws of motion).

Despite its success, the Newtonian approach may be arriving at its limits and face difficulties to fully

capture the behavior of newborn continuum robot structures that are increasingly complex. On that

account, another approach for deriving Cosserat rod models, based on a Lagrangian viewpoint, has

recently gained interest from the community. This alternative approach considers the system as a

whole and derives the robot models through a canonical application of the principle of virtual work.

By considering the system in its entirety, this approach promises to provide a more comprehensive

understanding of the behavior of continuum robots, and may open the door to the development

of even more advanced and capable robots in the future.

In a more general way, models of continuum robots are the first building block of many as-

pects of their implementation and use. Models are evidently used for control but also for design

optimization, path planning, feedback, and the analysis of their stability, compliance, manipulability

etc. The more precise and capable continuum robot models are, the more advantageously they can

be exploited for these various tasks.

Objectives of this thesis

The main objective of this thesis is to contribute to the development of innovative continuum

robots to answer the current challenges (improved payload, enhanced downscalability, elastic in-

stabilities, backlash). As stated above, these emerging continuum robot structures require new

model considerations and developments to further promote their technological transfer to medical

applications.

20



Scientific contributions and structure of the document

Driven by the desire to contribute to medical care, this dissertation addresses the above detailed

objectives as follows:

• In chapter 1, continuum robots are re-contextualized and the structure of some prevalent

types is analyzed, leading to the identification of a promising emerging type of continuum

robots, namely concentric agonist-antagonist robots (CAARs). These robots, at the inter-

section between three standard continuum robot types, are put forward for their assets. The

potential added value of CAARs in medical applications is highlighted. Currently, the avail-

able models for CAARs are geometry based models that are not capable of modeling the

interactions of the robot with its environment. The following chapters will contribute to the

development of a mechanical model that meets this requirement.

• To this end, in chapter 2, the Cosserat rod theory with its complex network of interrelated

elements is rederived in a unique mathematical framework. All the ingredients for modeling

continuum robots through either the Newtonian or Lagrangian approach are laid out in a

single structured picture as a strong basis for modeling various types of continuum robots.

• To gain further insight as to the similarities and differences between the Newtonian and

Lagrangian modeling approaches, chapter 3 presents the case study of the modeling of

tendon actuated continuum robots (TACRs). The two approaches are derived side-by-side,

which allows an in-depth and objective analysis of both.

• It is this in-depth comprehension that enabled the development of a new planar model for

CAARs, which is presented in chapter 4. This geometrically exact model is derived through

a canonical application of the Lagrangian approach by considering the unique mechanics of

CAARs.

• The derived model is subsequently validated in chapter 5 through an extensive set of experi-

ments and corresponding simulations involving versatile CAAR designs and external loading.

Additionally, chapter 5 details the design of 3D CAAR designs and experimentally assesses

their capabilities.

• Themanuscript ends with a terse summary of the developments and an in depth discussion of

perspectives for future work. Perspectives include considerations for upgrading the maturity

of the developed prototypes and numerous model extensions that will enable to further

transfer CAARs to clinical applications.

This document is the result of the research projects funded by grants ANR-11-LABX-0004-

01 (CAMI Labex) and ANR-19-P3IA-0003 (3IA MIAI@Grenoble Alpes) within the context of a

collaboration between the TIMC Laboratory in Grenoble, France, and the ICube Laboratory in

Strasbourg, France, both part of the computer aided medical interventions (CAMI) Laboratory of

Excellence (LABEX) network. Another, unforeseen, collaboration with Frédéric Boyer and Vin-

cent Lebastard from the LS2N Laboratory in Nantes, France, within the ANR COSSEROOTS

project, emerged during the second half of this thesis. The contributions of the external collabo-

rators will be detailed at the end of the corresponding chapters.
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1
Continuum Robots

1.1 Foreword

The purpose of this chapter is to explain in more details what continuum robots are. To define

continuum robots, their history is presented briefly, starting over from pioneer industrial robots. It

will cover different types of existing continuum robots and position concentric agonist-antagonist

robots (CAARs) with respect to other types of continuum robots. The exposed perspectives will

provide the rationale behind the choice for studying CAARs. The chapter also provides a literature

review of research related to CAARs over recent years. Finally, the medical applications in which

continuum robots are investigated are discussed and the potential of CAARs in these applications

is analyzed.

1.2 Definition and Origin

Today, the presence of robots in our society is ubiquitous. They can be found in many fields like

industry, healthcare, and agriculture just to name a few. The vast majority of these robots are rigid-

link robots (see Figure 1.1a). They are the first and best known type of robots. Rigid-link robots

consist of a finite number of joints with rigid links in between. As such, their main characteristics

are that they are rigid and can be very precise.

When the number of joints of traditional rigid-link robots increases, they fall under the cat-

egory of hyper-redundant robots (see Figure 1.1b) [Hong et al. 2020, Feng et al. 2021, Sartoretti

et al. 2021]. Hyper-redundant robots have many more degrees of freedom than their task space

and thus allow to control the shape of the robot in addition to the position of its end effector.

When hyper-redundant robots feature a great number of links, it is possible to approach curvilin-

ear paths. The tensor arm displayed in Figure 1.2 is considered as one of the ancestors of continuum

robots [Anderson 1967].

Going one step further in this direction, as the number of joints approaches infinity or, said

differently, when no more distinct joints can be observed, a new category of robots is found: con-

tinuum robots (see Figure 1.1c). A continuum robot is an elastic structure that bends continuously

when actuated.
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(a) (b) (c)

Figure 1.1: Examples from three categories of robots (inspired by [Burgner-Kahrs et al. 2015]).

(a) A rigid-link robot: an industrial robot from Kuka Robotics Corp. (b) A hyper-redundant robot:

a modular snake-robot from the Biorobotics Lab of Carnegie Mellon University. (c) A continuum

robot: a steerable catheter developed by Hansen Medical [Camarillo et al. 2008].

Figure 1.2: The Tensor Arm presented in [Anderson 1967]. Featuring many joints, this hyper-

redundant robot can approach continuously curving shapes.
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Table 1.1: Advantages and environment characteristics of continuum robots

Advantages of continuum robots Environment constraints

• structural compliance • confined spaces

• ease of miniaturization • obstacle avoidance

• enhanced dexterity • safe and soft interaction

• curvilinear paths • unstructured environments

Robotics research has greatly sought inspiration in nature [Rus and Tolley 2015]. This is why

it is interesting to make an analogy between the above described robots and animal structures. In

this analogy, rigid-link robots can be compared to skeletal structures where the rigid-links replace

the bones between the joints. In the same way, hyper-redundant robots can be compared to snakes

that have numerous vertebrae, enabling them to conform their body to curved shapes [Gautreau

et al. 2022]. The first biologically inspired hyper-redundant robots were probably those investigated

by Hirose et al. in the 1970s [Hirose 1987]. Finally, completely removing the vertebrae, continuum

robots can be compared to elephant trunks [Yang et al. 2006], octopus arms [Renda et al. 2012], or

squid tentacles [Kim et al. 2013].

From the definition above, it is clear that continuum robots are very different from rigid-link

robots. They can conform to curvilinear paths and are inherently compliant. In addition, their

designs often offer ease of miniaturization and enhanced dexterity. These advantages enable them

to have potentially safe and soft interactions with unstructured environments [Graule et al. 2022]

and to evolve in confined spaces or avoid obstacles [Torres et al. 2014, Torres et al. 2015]. The

advantages of continuum robots over rigid-link robots and the characteristics of the environments

they are suited for are summarized in Table 1.1. For each advantage in the left column, it is possible

to connect some or all of the environment constraints in the right column and vice versa.

Rigid-link robots are known for their rigidity, precision, and suitability to highly structured en-

vironments. As continuum robots have new advantages, it is evident that the environments they

are best suited for also differ. This opens possibilities for applications that have not previously been

approachable with robots [Cieślak and Morecki 1999]. Such applications include undersea appli-

cations, nuclear decontamination, nuclear reactor repair, inspection of unstructured environments,

and search and rescue [Wolf et al. 2003]. More recently, but today also most notably, continuum

robots have found their way into many medical applications [Burgner-Kahrs et al. 2015, Dupont et

al. 2022]. Indeed, looking at the right column of Table 1.1, the environments of medical application

are characterized by all four constraints: (i) minimally invasive surgery and endoluminal procedures

require evolving in confined spaces; (ii) during these procedures, it is often crucial to avoid bones,

organs, or sensitive structures; (iii) the surrounding and operated tissue and structures are soft and

fragile; and finally (iv) it is clear that the human body is a highly unstructured environment from a

robotics point of view.

The next section dives into more details about various continuum robots, providing some ex-

amples, to help position CAARs among these different types. Section 1.4 gives a more formal

definition of the CAAR concept and provides a brief literature review on the topic. Further, sec-

tion 1.5 will present some recent medical applications in continuum robotics and the potential of

CAARs in these applications will be highlighted.
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1.3 Different Types of Continuum Robots

Many types of continuum robots exist. The first major distinction that can be made between these

numerous types regards the actuation of the robots. Some robots have their actuators distributed

within their active part. This type of actuation is called intrinsic actuation. Other robots rely on

actuators located at the proximal end of the robots, conveying movement through a mechanical

transmission. This second type of robots fall under the extrinsic actuation category.

1.3.1 Intrinsically Actuated Continuum Robots

Intrinsic actuation in continuum robots can be achieved by embedding active materials as shape-

memory alloys [Szewczyk et al. 2001, Szewczyk et al. 2011, Shao et al. 2020], shape-memory poly-

mers [Mattmann et al. 2022], or electroactive polymers [Chikhaoui et al. 2016a, Chikhaoui et al.

2016b, Bartkowski et al. 2022]. Such embedded actuators enable to construct very small manipu-

lators without the need for bulky actuation units.

Another possibility is to use fluidic actuation systems. This type of robots feature one or several

chambers distributed radially and along the length of the robots. The chambers extend when

actuated, defining the curvature of the robot. Fluidic actuated continuum robots can further be

categorized in hydraulic actuated robots [Ikuta et al. 2006, Nguyen et al. 2022a] and pneumatic

actuated robots [Falco et al. 2017, Zhang et al. 2021a, Eugster et al. 2022, Fang et al. 2022, Hu et al.

2022, Treratanakulchai et al. 2022]. Generally, pneumatic actuated continuum robots are softer

than their hydraulic counterpart.

Instead of making use of distinct bellows, some fluidic robots are composed of one single

pouch that prolapses when it is pressurized [Hawkes et al. 2017, Abrar et al. 2021, Exarchos et al.

2022]. Some such eversion robots are capable of sensing [Bryant et al. 2022] or mapping their

position while navigating [Watson and Morimoto 2020]. A last actuation possibility that falls under

the fluidic systems is the use of a water jet at the tip of the robots. The tip is subject to a point

force and couple, deforming the whole shape of the robot [Campisano et al. 2020, Campisano et al.

2021].

A completely different strategy is to include permanent magnets [Lin et al. 2021] or ferromag-

netic materials [Gan et al. 2020] into manipulators to enable controlling them with an external elec-

tromagnetic field [Nelson et al. 2022]. While the electromagnetic field is external to the robots, they

are here categorized as intrinsically actuated robots because, according to the definition in [Burgner-

Kahrs et al. 2015], the final conversion of power to the mechanical energy domain occurs in the

active part. Often, it is convenient to manufacture the core or backbone of electromagnetically

actuated continuum robots with elastomeric polymers which are electromagnetically transparent.

Applying selective magnetization profiles allows actuating the robot according to a desired target

shape [Lloyd et al. 2022].

Three more notable intrinsic actuation systems are the use of McKibben muscles [McMahan

et al. 2006, Maloisel et al. 2021] or super-coiled polymers [Tsabedze et al. 2020, Yang et al. 2020,

Sun and Zhao 2022] and the use of embedded micro-motors [Noonan et al. 2011].

Overall, the common benefits of intrinsically actuated continuum robots are a reduced footprint

and the fact that they address problems like friction, hysteresis, and elastic instabilities sometimes

encountered in the extrinsically actuated types. On the downside, their fabrication can be more

complex, and it is difficult to construct smaller diameter robots that exhibit a high output force

range.
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(a)

(b)

(c)

Figure 1.3: Concentric tube continuum robots. (a) A concentric tube robot next to a da Vinci Pro-

GraspTM laparoscopic forceps (8mm) from [Gilbert et al. 2016b]. (b) Actuator space input move-

ment of the tubes of a CTCR. Adapted from [Webster et al. 2009a]. (c) Elastic interaction of

precurved tubes in a CTCR. Each elastic tube has a different precurvature. When the tubes are as-

sembled, the resultant shape (green) is somewhere in between the individual initial precurvatures.

Adapted from [Dupont et al. 2010].

1.3.2 Extrisically Actuated Continuum Robots

Extrinsically actuated continuum robots often require a larger external footprint but can be an

answer to the limitations encountered with intrinsic actuation. As this thesis primarily deals with

extrinsically actuated continuum robots, the following sections will dive into some standard types of

such robots with more details. Concentric tube continuum robots (CTCRs), tendon actuated con-

tinuum robots (TACRs), and multi-backbone continuum robots (MBCRs) are presented, including

an analysis of their systems. Building upon these standard robots, the category of hybrid continuum

robot designs is presented with some examples. All these perspectives will enable position CAARs

with respect to their counterparts.

Concentric tube continuum robots

CTCRs are composed of multiple, precurved elastic tubes arranged concentrically, i.e. telescoping

(see Figure 1.3a). The tubes can be rotated and translated with respect to one another (see Fig-

ure 1.3b) and the bending comes from the precurvature of the tubes. In a given configuration, the

tubes interact elastically to determine the shape of the robot (see Figure 1.3c) [Sears and Dupont

2006]. CTCRs are a highly miniaturizable type of continuum robots thanks to the fact that they

consist of a single backbone [Li et al. 2017]. Also, their most interesting advantage is that, compared

to other continuum robots, they have the best lumen diameter over robot diameter ratio.

One of the major drawbacks of CTCRs is that they can be subject to undesirable elastic insta-

bilities. Due to the torsional twisting associated with rotating curved tubes, elastic energy builds

up in the system and can suddenly be released when, for a given actuation input, multiple minimal

energy configurations exist. Several studies reported ways of model based predicting instabilities

or providing design constraints for preventing such phenomenons [Peyron et al. 2019]. Another

approach is to reduce the ratio of flexural rigidity to torsional rigidity of the tubes. Such tubes can

be obtained through anisotropic patterning of the tubes [Kim et al. 2014a, Lee et al. 2015, Luo et al.

2018] or by using multi-layer helical tubes [Azimian et al. 2014]. Recently, transverse anisotropic

patterning has also been investigated and likewise allowed stabilization of CTCRs while preserving

overall robot stiffness [Rucker et al. 2022b]. Extensive reviews of CTCR can be found in [Gilbert

et al. 2016b, Mahoney et al. 2018].
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Figure 1.4: A tendon actuated continuum robot (the METABot (Magnetically Extensible TACR))

presented in [Amanov et al. 2021].

Tendon actuated continuum robots

TACRs consist of a central elastic backbone that is pulled upon by tendons (i.e. cables) attached

at its end. The tendons are generally routed through holes in disks, distributed along the length

of the backbone (see Figure 1.4). When a tendon is pulled, the backbone bends continuously. By

attaching tendons at different angles around the backbone and combining their actuation, a 3D

workspace can be reached. To obtain multiple segments with different bending, sets of tendons

can be attached at intermediate lengths along the backbone [Pogue et al. 2022]. Converging tendon

routing allows obtaining a variable curvature and reduce overall deflection when the robot is subject

to tip loads [Wang et al. 2021, Xu et al. 2021, Yuan et al. 2021]. Tendons can also be routed helically

around the backbone to obtain more complex shapes [Liu and Alambeigi 2022]. Compared to

CTCRs, this type of continuum robots has the advantage to reach a larger range of curvatures.

However, they often require tedious assembly and can experience backlash.

TACRs are definitively the most studied and widespread type of continuum robots. Many

variations have been explored. In particular, several TACR designs that do not comprise a back-

bone have been explored. The backbone can be replaced with springs [Hu et al. 2019b, Zhang et al.

2021c], pneumatic chambers [Jones et al. 2004], rolling joints [Kim et al. 2014b], hinge joints [Kong

et al. 2022], or notched tubes [Francis et al. 2018, Alambeigi et al. 2020, Zeng et al. 2021]. Regard-

ing this last category, using a single tendon located opposite to the remaining backbone limits the

bending to one side but enables scaling down the manipulators to less than 0.5mm [Swaney et al.

2016, Jeong et al. 2020].

Multi-backbone continuum robots

MBCRs feature multiple backbones and can thus be regarded as parallel robots. The rods are

attached at their distal end and are either routed through disks along a backbone or left free in

space.

The first type, also called push-pull robots, very much resembles TACR but with the main dif-

ferences that tendons can only be pulled whereas rods can also be pushed and that the rods will not

form line segments between routing points but bend continuously (see Figure 1.5a) [Simaan et al.

2004, Zhang et al. 2019a]. Advantages include backlash elimination, enhanced down-scalability,

and increased payload. In these robots, the central backbone carrying the disks can thus be distin-

guished from the secondary backbones that serve for actuation.
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(a) (b) (c)

Figure 1.5: Multi-backbone continuum robots. (a) The push-pull actuator developed in [Simaan

et al. 2009]. (b) The parallel continuum robot presented in [Bryson and Rucker 2014]. (c) The

parallel continuum robot studied in [Orekhov et al. 2017].

The type where the rods are left in free-space between the base of the robot and its end are

called parallel continuum robots (PCRs) (see Figure 1.5b) [Bryson and Rucker 2014, Black et al.

2018]. By attaching the rods in different configurations at the base and the end of the robot,

interesting movements can be created. However, the robot diameter increases when it is actuated

and the reachable workspace is limited by the fact that large deflections are transmitted to single

rods instead of the whole system. To solve this issue, routing disks can be added to PCRs [Orekhov

et al. 2017, Wang and Zhang 2021]. The difference with push-pull robots described above is that

the rods do not necessarily run parallel and that individual rotation of the rods is used in addition

to the push-pull motion (see Figure 1.5c).

Note that, for this dissertation, the concept of PCRs is limited to the multi-backbone case in the

sense that the multiple parallel elements are supposed to be rods or tubes. Beyond the scope of this

document, other research activities explore PCRs where each chain can be any type of continuum

robot [Huang et al. 2022, Russo et al. 2022, Lilge and Burgner-Kahrs 2023].

Hybrid continuum robots

With the ambition to combine the advantages of the standard continuum robots described above,

the community has seen the development of continuum robots with hybrid structures mixing two

or three of the standard types. Figure 1.6 schematically summarizes how the strengths of each

standard type plug into the various combinations. Examples include: the METABot [Nguyen and

Burgner-Kahrs 2015, Amanov et al. 2021], a TACR but with extensible segments thanks to multiple

concentrically arranged backbones that canmove axially like CTCR and to loose magnetic disks (see

Figure 1.6d); the manipulator developed by the authors of [Amanov et al. 2017] that concentrically

arranges two tendon actuated segments, letting the distal segment slide on the proximal segment,

enabling true follow-the-leader motion (see Figure 1.6a); the interlaced continuum robot developed

in [Kang et al. 2016] that combines multi-backbone designs and concentrically arranged tubes (see

Figure 1.6 (f)); a robot nesting a distal tendon actuated segment in a CTCR [Wu et al. 2017] (see Fig-

ure 1.6b); a TACR with segments that can extend thanks to additional cables and sliding backbone

segments [Zhang et al. 2018] (see Figure 1.6c); a MBCR that utilizes a sliding concentric tube to

modify its configuration and stiffness independently of the end effector pose [Zhao et al. 2020] (see

Figure 1.6 (g)); the robot developed by the authors of [Gu et al. 2019] where a TACR is traversed by

two MBCRs (see Figure 1.6 (h)); and the concentric agonist-antagonist robot [Oliver-Butler et al.

2017] (see Figure 1.7). Section 1.4 is devoted to the description of CAARs and an analysis of the

literature covering the topic.

29



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Tendon actuated

continuum robots

Concentric tube

continuum robots
Multi-backbone

continuum robots

+ large range of curvatures

− tedious assembly

− fixed length

− backlash

+ highly miniaturizable

+ lumen dia./robot dia.

− elastic instabilities

− workspace defined by

the

precurvature of the tubes

+ reduced backlash

+ improved payload

− complex modeling

Figure 1.6: Hybrid continuum robots at the crossing of standard continuum robot types. Top left,

the hybrid designs (a), (b), (c), and (d) combine TACRs and CTCRs. Bottom, the hybrid designs (f)

and (g) combine MBCRs and CTCRs. Right, the hybrid design (h) combines MBCRs and TACRs.

In the middle, CAARs (e) are a combination of all three standard continuum robot types TACRs,

MBCRs, and CTCRs. (a), (b), (c), (d), (f), (g), and (h) are adapted respectively from [Amanov

et al. 2017], [Wu et al. 2017], [Zhang et al. 2018], [Nguyen and Burgner-Kahrs 2015], [Kang et al.

2016], [Zhao et al. 2020], and [Gu et al. 2019].
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State-of-the-art hybrid continuum robots have shown to effectively combine several advantages

of the robots they are based on. Follow-the-leader motion or the increase of the payload of robots

while preserving an interesting ratio of lumen diameter over outer diameter are two examples of

capabilities of hybrid continuum robots over their standard counterparts. Combining structures

may however also bring in some drawbacks as, for instance, the fact that hybrid continuum robots

often require more effort on the modeling side.

1.3.3 Other Notable Continuum Robot Features

Remarkably, some continuum robots try to take advantage of both intrinsic and extrinsic actua-

tion by combining them. Some notable examples include the CTCR made out of electro-active

polymers investigated by the authors of [Chikhaoui et al. 2018]; the concentric tube robot intro-

duced by the authors of [Peyron et al. 2022] that features a magnetically steerable inner tube; the

hybrid magnetically- and tendon actuated continuum robot proposed by the authors of [Zhang et

al. 2021b]. Other examples of magnetically steerable hybrid intrinsic-extrinsic actuated continuum

robots can be found in the review by the authors of [Yang et al. 2023] that focuses on magnetic

continuum robots for medical applications.

Parallel to the actuation system, the specifics of continuum robots have led to the development

of interesting features, some of which are detailed below.

First, as continuum robots are compliant, it naturally comes to mind that the compliance

presents both advantages and disadvantages, sometimes within a single application. This obser-

vation has led to the development of systems that enable to vary the stiffness of the manipulators

or even lock their shape in certain configurations. Granular jamming [Wei et al. 2022, Wockenfuß

et al. 2022] or layer jamming [Li et al. 2021, Clark and Rojas 2022] consists in locking together

particles or flaps by compacting them together in a vacuum chamber such that friction prevents

further motion [Langer et al. 2018]. The authors of [Moses et al. 2013] propose some additional

jamming methods utilizing electro-rheological, phase transition, or magneto-rheological fluids.

Globally, the jamming approach may suffer from leaks and needs continuous energy supply to

function. To circumvent these issues, the stiffening of continuum robots can also be achieved with

pure mechanisms. To completely block certain parts of continuum robots, the authors of [Zhong

et al. 2020, Lin et al. 2022a] use bi-stable mechanisms while the authors of [Wang et al. 2022a] use

vertebrae that can lock together.

A different objective for variable stiffness robots is to enable continuously varying stiffness

without completely locking the shapes. Such stiffness control has been studied in [Kim et al. 2019]

through specific alignment of patterned tubes. The authors of [Misra and Sung 2022] investigate

the use of springs made out of tunable stiffness polymers, while in [Chen et al. 2022] shape-memory

alloy rods are used.

Continuum robots being hyper-redundant in the sense that their shapes have infinite degrees

of freedom (DoF), another feature that naturally comes to mind is the ability to sense their own

shape. This path has been investigated in [Li et al. 2022, Orekhov et al. 2023] and [Yin et al. 2022]

where shape sensing is achieved, respectively, with extra passive tendons and embedded ultrasound

transducers. In [AlBeladi et al. 2021], shape sensing is achieved through vision while in [Huang et al.

2022], a model based approach is proposed. In the ’proprioception’ sensing domain, force sensing

is also an active field of continuum robotics research [Aloi et al. 2022, Cangan et al. 2022, Lin et al.

2022c, Wooten and Walker 2022].
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Figure 1.7: Composition and working principle of a CAAR. Two asymmetrically notched tubes

are arranged concentrically and attached at their tip. To actuate the CAAR the tubes are translated

axially at their base. (a) The outer tube, in its undeformed configuration (b) The inner tube, in

its undeformed configuration. (c) The tubes assembled forming the CAAR in its undeformed

configuration. (d) Example of an actuated configuration of the CAAR where the axial translation

of the inner tube a > 0.

1.4 Concentric Agonist Antagonist Robots

1.4.1 Definition and Principle

CAARs are continuum robots that consist of concentric tubes attached at their distal ends. The

tubes have an asymmetric geometry that offset their bending plane from the tube centerlines. The

tubes can be translated axially at their base to induce a bending movement by the difference in

length of the offset neutral lines (see Figure 1.7).

Looking at Figure 1.6, this type of robots can be seen as a hybrid type of continuum robots,

between CTCRs where tubes are arranged concentrically and TACRs or MBCRs where the offset

neutral lines (i.e. neutral axis) of the tubes can be compared to secondary backbones fixed at the

distal extremity of the robots. Like CTCRs, CAARs can be constructed at very small scales, are

easy to assemble, and take advantage of the interesting lumen diameter over robot diameter ratio.

But where CTCRs curvatures are defined by the precurvature of the tubes and are subject to elastic

instabilities, CAARs can bend over a large range of curvatures, like TACRs and MBCRs, and do

not rely on counter rotation of the tubes, thus such instabilities. Moreover, as for MBCRs, the

actuation of CAARs is transmitted through solid material, leading to an increased payload with

respect to their TACRs counterpart. One can see how this type of robots is a perfect example of a

hybrid structure that combines strengths of the robots it is based on. It is exactly this analysis that

has led to an interest in investigating and enhancing these robots, which is the main objective of

this dissertation.
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(a) (b) (c)

Figure 1.8: CAAR design variations. (a) Shifting the orientations of the notches 180° midway

creates an ‘S’-shape. (b) By varying the notch depth of the notches in the tubes, variable curvature

can be achieved. (c) Precurving the tubes increases the maximum reachable curvature while still

allowing the tubes to be actuated to a straight position. (a), (b), and (c) are adapted from [Oliver-

Butler et al. 2017].

1.4.2 State-of-the-art CAARs

This section gives an overview of the scientific literature devoted to CAARs. A thorough search

of the relevant work yielded only seven occurrences of CAARs in the literature. The concept was

first introduced in [Oliver-Butler et al. 2017] and a first constant curvature model was derived. The

same year, the topic is studied in a master thesis [Ponten 2017]. The following year, a small scale

manipulator was constructed and utilized in an endoscope as a preliminary step towards medical

applications [Rox et al. 2018]. Specifically, the prototype was designed for use in bronchoscopy.

In 2019, a patent was released [Riojas et al. 2019]. In 2020, K. Oliver-Butler published her PhD

dissertation [Oliver-Butler 2021], which is currently under embargo. More recently, the same team

published a journal paper with an extension of the initial constant curvature model to a piecewise

constant curvaturemodel [Oliver-Butler et al. 2022]. In these references, the CAAR general concept

is described, as well as some possible design variations.

The first model that was developed is a constant curvature geometry basedmodel [Oliver-Butler

et al. 2017]. It relates the tube axial displacement actuation variable with the in-plane end effector

angle or, equivalently, the curvature of the robot. With this initial model, it is thus not possible to

model CAARs with design variations, such as CAARs with variable curvatures (see Figure 1.8).

The second model that was developed extends the first constant curvature model to a piece-

wise constant curvature model [Oliver-Butler et al. 2022]. It takes the individual geometry of each

notch into account. With the input of elementary beam mechanics, it enables to relate a force or

displacement actuation variable to the shape of the robot. The modeling of CAARs with variable

notches is possible as long as the neutral lines of the robots lie in-plane and opposite to each other.

The piecewise constant curvature model also served as a building block for the implementation

of a CAAR design algorithm. Starting at the input from a desired target shape, the algorithm

uses the model to determine robot parameters (depth and height of the notches) such that, when

actuated, the robot fits the target shape.

For both models, the main limitation is that they are based on geometry, which does not al-

low taking external efforts into account. This is a crucial shortcoming that prevents the use of

CAARs beyond free-space swaying, i.e. in interaction with an actual environment. Moreover, the
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constant curvature method relies on very restrictive hypotheses, which are hampering precision of

the models (maximum reported errors are above 18% of the length of the manipulator).

All six references discussed above are from the University of Tennessee, Knoxville, USA. One

outside reference is to be found in the literature [Gulotta et al. 2020]. It is a master thesis project

that explored an integrated and application-oriented design of CAARs.

1.5 Continuum Robots for Medical Applications

Without the aim of being exhaustive, this section scans medical applications of continuum robots.

The idea is rather to provide an overview and to point out the suitability of continuum robots to

medical applications linking with the inherent advantages of such robots, identified in section 1.2.

Further, perspectives for the propitious use of CAARs in some of these applications are discussed.

Continuum robots in vessels and the heart

The inherent compliance of continuum robots make them particularly suited for endoluminal navi-

gation inside the vessels of the circulatory system. Several vascular applications have been assessed.

In [Jayender et al. 2008], the authors are interested in the treatment of angioplasty with a shape-

memory alloy actuated active catheter and conduct a preliminary study on a test bed. Devices have

also been developed for insertion reaching up to the heart [Back et al. 2017, Jeong et al. 2020, Lis et

al. 2022] for interventions like atrial fibrillation treatment [Sheng et al. 2018] or ablation tasks [Yip

et al. 2017]. These devices are mainly TACRs and have been evaluated in studies ranging from

anatomical phantoms to cadaver studies. Of course, the applications are not restricted to blood

vessels only, other circulatory systems are concerned. Even, navigation inside the ducts of the

breast has been considered and assessed with a hybrid fluidic TACR on an anatomical phantom

for early cancer detection [Berthet-Rayne et al. 2021]. The authors of [Kim et al. 2022] provide a

review of endoluminal robots.

Most of these robots can bend their tip in only a single direction through the attachment of a

single tendon (strings can only transmit tension). Some of them are actually made out of notched

tubes. By adding a second tube to form a CAAR, bending can be extended in the opposite direc-

tions. This would remove the need for turning the devices 180◦ during the procedures and could

thus make the interventions less traumatic and reduce their duration.

Small scale continuum robots within confined spaces of the body

Different structural characteristics of continuum robots enable to scale them down, often far be-

low the sizes that can be reached with traditional rigid-link robots. These millimeter to micrometer

scale robots open opportunities for treatments in highly confined spaces that were previously not

reachable. In the field of neurosurgery, telerobotic CTCRs and TACRs have been developed for

access through the nose and assessed on phantoms [Burgner et al. 2014, Hu et al. 2019a]. Other

devices plan to access directly through the skull, as the TACR developed in [Chitalia et al. 2021].

This last device dedicated to the treatment of pediatric hydrocephalus cases measures less than

2mm in diameter. The authors conduct a robot control experiment evaluating their model and a

reachability study of the device in simulation. Other fields where small scale continuum robots can

outperform rigid-link robots include arthroscopy [Dario et al. 2000] and ophthalmic surgery [Ior-

dachita et al. 2022]. Indeed, ophthalmic surgery is certainly a medical application that requires very
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small scale robots. The multi-arm CTCR developed by the authors of [Mitros et al. 2020] and in-

cluded in a study on high-fidelity phantoms features 3.5mm diameter tubes to work around the eye
for optic nerve sheath fenestration. The TACR developed in [Jinno and Iordachita 2022], designed

for intraocular microsurgery and tested on an eye model measures less than 1mm in diameter.

To fabricate such small robots (or wrists), some authors make use of notched tubes. In fact,

it is the same technique, described in section 1.3.2, that is used for creating miniaturized tendon

actuated wrists [York et al. 2015] that is also used to fabricate CAARs. Thus, CAARs have the

potential to be fabricated at these scales while increasing the precision of the discussed devices.

Conforming to curvilinear paths for natural orifice transluminal endoscopic surgery

Natural orifice transluminal endoscopic surgery is yet another medical field that has attracted many

continuum robot applications. The suitability is largely due to the ability of continuum robots to

follow the tortuous paths within the human body, where rigid-link robots are less adequate. To

access the lungs through the natural airways, researchers seek to fit TACR shapes to the branches of

a bronchi anatomical phantom [Ai et al. 2021] and conduct simulation studies in order to optimize

the reachable lung volume in [Fried et al. 2021]. Devices that allow endobronchial intervention

have also been developed, as the electrospinning TACR evaluated on anatomical phantoms in [Wu

et al. 2021] and the CTCR assessed on ex vivo ovine plucks in [Gafford et al. 2019]. Currently, two

commercial bronchoscopy robots are food and drug administration (FDA) approved: The Ion

system of Intuitive Surgical, Inc. and the Monarch platform of Auris Health, Inc.

Gastrointestinal applications include colonoscopy [Chen et al. 2007], where the challenge is

to find a balance between the flexibility needed for insertion over long pathways and the rigidity

required for tissue manipulation. The authors of [Ahmed and Gilbert 2022] investigate an original

colonoscope that can anchor to the walls of the lumen. They conducted early stage experimental

test in free-space. Further applications include gastric cancer screening [Campisano et al. 2017, Ma

et al. 2021] and trans-vaginal diagnostic peritoneoscopy [Noonan et al. 2011]. While the devices

proposed in [Campisano et al. 2017, Ma et al. 2021] are water jet continuum robots assessed on an

experimental bench and a phantom, the TACR presented in [Noonan et al. 2011] is at the stage of

porcine model studies.

Another area of great potential use is in ear, nose, and throat procedures. Such systems include

the multi-arm TACR and multi-arm CTCR, respectively developed by the authors of [Berthet-

Rayne et al. 2018a] and [Yu et al. 2016] for tumor resection in the nasopharyngeal cavity and eval-

uated in teleoperation on experimental benches. Another team developed a TACR for trans-nasal

diagnosis of middle ear disease and conduct cadaver studies [Gafford et al. 2020]. The authors

of [Nguyen et al. 2022b] design a hybrid CTCR TACR for cholesteatoma laser surgery. They

study the behavior of the robot in a phantom and demonstrate the removal procedure with real

cholesteatoma tissues. The TACR described in [Yoon et al. 2013] is devoted to maxillary sinus

surgery. Several MBCRs have been developed for trans-oral surgery [Simaan et al. 2004, Simaan

et al. 2009, Gu et al. 2019]. Simaan et al. evaluate their dual-arm MBCR through teleoperation ex-

periments on a test bench, while Gu et al. have gone through cadaver studies. Noteworthy in this

field of applications, is the Flex Robotic System of Medrobotics Corporation that gained FDA and

European conformity (CE) approval for trans-oral procedures in 2014 (and colorectal procedures

in 2016).

Urology procedures fall even well under the category of natural orifice transluminal endo-

scopic surgery, where miniaturized continuum robots have been implemented for applications as

ureterorenoscopy [Schlenk et al. 2022] or trans-urethral laser prostate surgery [Hendrick et al. 2015].
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Both systems are assessed with clinicians on a test bench with either a phantom or cadaver tissues.

Often, the insertion of robots over long pathways introduces some undesired kinematic cou-

pling between the followed tortuous path and the position of the actuated tip. This is not the case

for CTCRs, but the long pathways introduce extra friction and material to build up elastic energy,

increasing the above discussed instabilities. One major advantage of CAARs is that they combine

the advantage of CTCRs while not being subject to the same instabilities. Indeed, over their passive

non-notched insertion part, the tube neutral lines of CAARs coincide. It is only in the active distal

part that they are offset from the center. The authors of [Gafford et al. 2023] present a pre-clinical

study with ex vivo porcine trials exploiting this property for interventional endoscopy applications.

Moreover, as for CTCRs, the open lumen of CAARs can be used to insert tools [Oliver-Butler et al.

2017] or other CAARs to create multi-segment CAARs and increase the total number of DoF.

Enhanced dexterity and reachability

Due to their straight instruments, rigid-link robots as the da Vinci system are unable to provide

the surgeon with intuitive DoF. Continuum robots that can bend inside the laparoscopic cavity are

an answer to this limitation. The authors of [Ma et al. 2022] study a multi-segment TACR in an

anatomical phantom. Moreover, with the additional DoF, continuum robots also enable the access

of multiple instruments through a single port. The authors of [Ding et al. 2013, Xu et al. 2015]

propose a single port access multi-arm MBCR and conduct free-space and loaded experiments,

as well as dexterity evaluation through manipulation tasks on a surgical training bench. Even for

single instrument procedures, curving manipulators are able to reach much larger workspaces while

entering the surgical site through a single port. This enhanced reachability is particularly useful when

not many ports are available, as in the removal of osteolysis formed behind the acetabular shell of

primary total hip arthroplasties [Kutzer et al. 2011]. In [Sefati et al. 2022], a TACR is assessed on

a printed osteolysis phantom based on segmented medical images and subsequently on cadaver

studies. Enhanced reachability is also useful when the access needs to traverse delicate tissues, as

in neurosurgery. As an example, the authors of [Leibrandt et al. 2017] present a workspace and

dexterity analysis in simulation where a CTCR is constrained to pass through specified locations.

Another potential use for such robots with improved dexterity, as compared to traditional rigid

needles, is in navigating through tissue to reach abscesses for per-cutaneous abscess drainage, as

explored in a laboratory environment in [Girerd and Morimoto 2021].

Clearly, there is promising potential for CAARs in single-port or multi-port laparoscopic pro-

cedures. Indeed, by varying the mechanical properties of the notched tubes along their length,

the behavior of a CAAR can be modified. By changing the orientation of the notches along the

tubes, they will bend in different directions corresponding to the notch orientations. This enables

to create the typical ‘S’-shapes that are useful for single-port access. By varying the notch depth

along the length, it is possible to achieve variable curvature along the length of the robot. This last

feature even allows designing patient specific robots that are able to reach a particular workspace

from a particular access point and cavity constraints, as studied with CTCRs in [Lin et al. 2022b].

Examples of both of these alternatives can be seen in Figures 1.8a and 1.8b, respectively.

Another strategy for increasing the maximum reachable curvature of CAARs consists in pre-

curving the robot, as proposed in [Remirez andWebster 2016] for MBCRs. The straight configura-

tion of the tubes is then reached through actuation. In a setup where this precurved CAAR is used

together with the axial rotation of the whole CAAR, the overall reachable workspace is increased.

An example of a precurved CAAR is shown in Figure 1.8c.
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Magnetic resonance imaging compatible robots

An additional advantage of continuum robots over rigid-link robots is the fact that their active ef-

fector can easily be made out of magnetic resonance compatible materials [Su et al. 2022]. Often,

the actuation of magnetic resonance compatible robots is achieved through shape-memory alloy

actuation [Ding et al. 2021]. In [Kim et al. 2018, Shao et al. 2020], a shape-memory alloy actu-

ated continuum robot is successfully manipulated in a gelatin phantom during magnetic resonance

imaging. Noteworthy is the fact that all extrinsically actuated structures also offer potential for

magnetic resonance compatible manipulators, as long as the actuation unit is kept far enough from

the active part of the robot.

As regards CAARs, notched tubes can be fabricated with additive manufacturing techniques.

The tubes are printed as a single part directly with cutout notches. Beyond the low cost and short

fabrication period, additive manufacturing techniques mostly employ materials that are electromag-

netic and magnetic resonance imaging compatible.

To conclude this section on medical applications, it is worth noting that the mentioned studies

are only a tip of an immense iceberg of applications. Several review papers treat specific areas of

applications or types of robots. The review by the authors of [Alfalahi et al. 2020] zooms in on

CTCRs for general medical applications, while the authors of [Cianchetti et al. 2018, Kwok et al.

2022] concentrate on soft robots. In the more general reviews [Troccaz et al. 2019, Taylor et al.

2022] on surgical robotics in the broader sense, continuum robots are put in perspective with their

rigid counterpart. Finally, the review by the authors of [Dupont et al. 2022] proposes a point of

view considering the slenderness ratio of continuum robots. Indeed, the length to diameter ratio

of a surgical manipulator plays an important role with respect to the targeted application.

1.6 Conclusion

In this chapter, the differences between rigid-link robots and continuum robots were highlighted.

Their inherent advantages make them very suited for medical applications. Categorizing around

these specific characteristics, some medical applications are presented. Different types of contin-

uum robots however offer different assets. In order to push the capabilities of continuum robots

and to improve their integration in medical applications, hybrid structures have been developed.

These structures thrive at combining the advantages of the standard continuum robots they are

based on. CAARs are at the intersection between the three main types of standard, extrinsically

actuated continuum robots. Some challenges that arise from the combination of structures for

CAARs will be addressed through this manuscript. Moreover, while the literature on this topic is

limited and the community has not had the opportunity to step back on the subject, other challenges

will be identified and discussed in the ‘Future Work’ section page 142.

CAARs are a promising new type of continuum robots, but current studies only explored ge-

ometry based models, hampering the development of their full potential. This thesis analyzes, with

a particular care, multiple aspects of CAARs down to the smallest details. It aims at providing the

community with a better understanding of these up-and-coming systems. Ultimately, it derives a

2D general mechanical model for CAARs. Compared to the state-of-the-art models that are based

on strong simplifying approximations, the proposed geometrically exact model can take external

loads into account. Models with the same capabilities have been described for different types of

PCRs. However, as will be discussed in sections 4.2.2 and 4.2.3, they are inadequate for CAARs

and a whole new model needs to be derived.
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The 2D CAAR model presented in chapter 4 is a strong foundation for future developments

and advancements, as it is well suited for extension to 3D modeling. By expanding upon the 2D

mechanical model, the community will be able to achieve greater capabilities with CAARs. In

section 5.4, varying the angle of the notches along tubes or introducing rotation and torsion of the

tubes/robot produces CAARs with 3D shapes. All these 3D features increase the dexterity and

reachability of CAARs.

Before diving intomodeling CAARs, the next chapter presents general modeling considerations

for standard continuum robots. This first step, along with the case study on TACRs in chapter 3,

will provide the necessary degree of understanding on the topic of continuum robot modeling for

the derivation of a mechanical model of CAARs specifically.

Contributions of this chapter

1. CAARs are put in perspective with other types of continuum robots.

2. A literature review on CAARs is reported.

3. The potential for CAARs in medical applications is analyzed.
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2
Methodology: General Modeling

Framework for Continuum Robots

2.1 Foreword

As for all types of robots, the use of continuum robots requires modeling their kinematics and

dynamics. Indeed, control [Renda et al. 2022, Rucker et al. 2022a], design optimization [Berthet-

Rayne et al. 2018b, Hwang and Kwon 2019, Cheong et al. 2021], stability analysis [Till 2019],

passivity analysis [Mochiyama 2005, Roozing et al. 2020] etc. are all robot related tasks that might

require a model of the robot in the first place. The challenge is that modeling continuum robots is

generally more complex than rigid-link robots where the robot pose can be geometrically defined

by the joint angles and the link lengths with a good accuracy. Contrarily, the continuously curving

shapes and the inherent compliance of continuum robots requires consideration of elasticity.

The first models that resemble the current continuum robot models are the ones that modeled

hyper-redundant systems with a continuous approximation [Chirikjian 1994, Chirikjian and Burdick

1995]. Ever since, models for continuously curving robots have evolved [Chikhaoui and Rosa

2022]. The most precise models for continuum robot modeling are based on the Cosserat rod

theory [Sadati et al. 2017, Chikhaoui et al. 2019]. As this thesis deals with such models, the purpose

of this chapter is to explain didactically and methodically all aspects of Cosserat rod modeling.

Nevertheless, other interesting modeling strategies exist. Indeed, when Cosserat rod models

become very complex and sometimes computationally ineffective, simpler types of models can be

useful. To put Cosserat rod modeling in perspective with these other modeling strategies, sec-

tion 2.2 briefly introduces continuum robot modeling means in general. Following this general

foreword on continuum robot modeling, section 2.3 re-derives the Cosserat rod theory in a way

that it is as general as possible. The chapter ends with section 2.4 presenting a brief analysis of

Cosserat rod models of the literature, explaining how one can use such models for various types

of continuum robots.

2.2 Different Continuum Robot Modeling Strategies

Today, the continuous models for continuum robots can be classified in two main categories: (i)

the models that assume the robot can be approximated by general continuous curves in space, these

models are called geometry based models or kinematic frameworks and (ii) the exact models that
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see the robot as a nonlinear problem of elasticity with boundary conditions, these models are called

mechanical models .

2.2.1 Geometry Based Models

Geometry based models have the advantage to lead to analytical formulations, which makes them

suitable for easy real-time inverse kinematics and control [Gravagne et al. 2003, Neppalli et al.

2009, Kazemipour et al. 2022]. On the downside, these models are less precise, are subject to

error propagation, and cannot take external efforts into account. Also, torsion is neglected while

it often plays a significant role in continuum robots. Geometry based models can further be sub-

categorized in constant curvature models and variable curvature models.

The constant curvature approach divides the robot in a finite number of curved links and ap-

proximates each link by a constant curvature arc [Gravagne and Walker 2000b, Jones and Walker

2006b, Webster et al. 2009b]. For each type of robot, the mapping from robot actuator variables

to so-called “arc parameters”(curvature, angle of the bending plane, and arc length) is specific. But

once the arc parameters are found, the pose of the robot can geometrically be derived, very much

like rigid-link robots. The authors of [Webster and Jones 2010] present a very comprehensive

review on constant curvature models for different types of continuum robots. This modeling ap-

proach is often applied to TACRs, computing the geometrical relationship between arc parameters

and tendon displacements (and more recently tendon tensions [Gonthina et al. 2020]). Further,

to achieve more complex shapes or model multi-segment manipulators, it is possible to divide the

robot into multiple parts modeling each with a distinct constant curvature arc. This method is

called the piecewise constant curvature approach [Mahl et al. 2013].

To even better fit models to tortuous robot shapes, the variable curvature approach describes

the robot as a function that is integrated along the robot length. Functions that have been used

to model continuum robots include clothoid curves [Webster and Jones 2010] and more recently

polynomial curves [Santina and Rus 2020, Stella et al. 2022], Euler curves [Gonthina et al. 2019,

Rao et al. 2021a, Rao et al. 2022], Bezier curves [Wang and Blumenschein 2022], or Pythagorean

hodograph curves [Bezawada et al. 2022]. Instead of using a single function, another possibility

is to use multiple functions (for example, Bessel functions or wavelets). In this case, the shape

is approximated through a modal approach [Chirikjian and Burdick 1994, Gravagne and Walker

2000a]. The variable curvature approach was found to more precisely match the shape of robots

than the constant curvature approach, while still maintaining analytical (though more complex)

formulations. However, it requires more effort or even the use of sensors on the robots to map

the robot actuator variables to the curve parameters.

2.2.2 Mechanical Models

Mechanical models take the elastic behavior of the constitutive materials of the robots into account

and solve the problem over boundary conditions that can involve external loading of the structures.

Such models take their roots in the continuum mechanics community and full 3D mechanical

models. In fact 3D mechanical models are very well suited to the modeling of soft robots [Bieze et

al. 2018], where the cross-sections deform and often nonlinear constitutive relationships reign [Shiva

et al. 2019, Marechal et al. 2021]. On the other hand, with continuum robots one can make a set of

assumptions that simplify the problem. Generally, continuummanipulators, and especially medical

ones, are used within a small strain regime (90-degree bending). This means that one stays within
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the linear elastic regime and the cross-sections can be assumed to not undergo deformation. As a

result, 1D beam theories are more popular, in the literature, for their modeling.

Linear mechanical beam models or non-geometrically exact beam models

Most linear mechanical models for continuum robots employ the Euler-Bernoulli [Camarillo et al.

2008, Webster et al. 2009a, Liu and Alambeigi 2021] or Timoshenko [Fattahi and Spinello 2013,

Wenlong et al. 2013] beam theories that are geometrically linear and can model only small rotations

of the beam cross-sections.

Multiple approaches for solving these models exist. As an example, one can mention the finite

element modeling (FEM) approach, where all matrices and vectors are expressed in a common

global basis and then assembled by identifying shared nodal coordinates [Gravagne and Walker

2002, Bosman et al. 2015, Gallardo et al. 2021, Vanneste et al. 2022]. A major difference between

FEM and the other mechanical modeling approaches is that it uses absolute coordinates related to

a global inertial reference frame (attached to space), in contrast to the deformation based param-

eterization that uses relative coordinates related to the material. A consequence of the absolute

pose parameterization is that when kinematic constraints are introduced (in the form of Lagrange

multipliers) between the different constituents of continuum robots, the numerical conditioning

is deteriorated [Adagolodjo et al. 2021]. Furthermore, absolute coordinates can be an obstacle

for control purposes [Boyer et al. 2021]. Nevertheless, the FEM approach has virtues of its own.

Among others, it has the advantage to ease the interaction with other elements from the environ-

ment that would be modeled with FEM as well. Also the fact that it uses global coordinates can

be an advantage for these interactions more generally and can ease the consideration of friction

between the manipulator and its environment [Zhang et al. 2019b]. Furthermore, while the FEM

mathematical formulation might seem a priori less suited to 1D media [Wiese et al. 2022], the au-

thors of [Adagolodjo et al. 2021] have shown that it can be used efficiently by assembling finite

beam elements in series, which in global coordinates yields a tridiagonal band matrix that is solved

with linear complexity. With an efficient numerical implementation, such systems can be solved at

high rates.

Besides the linear beam theories, other models are based on an equivalent spring-mass

model [Yekutieli et al. 2005, Zheng et al. 2012, Schultz et al. 2022] that needs extensive tuning

of parameters, cannot reproduce the majority of actuation principles, and is computationally ex-

pensive. The pseudo-rigid body representation [Rao et al. 2021b] is similar to the spring-mass

model, but in this case the continuum robot is modeled as a series of rigid links as in the reduced

order model approach of [Sadati et al. 2019, Sadati et al. 2020, Sadati et al. 2022]. One more possi-

bility is to use an energy minimization criterion, as in the research activities of Simaan et al. [Simaan

2005, Xu and Simaan 2008].

Geometrically exact beam models

Most of the mechanical models for continuum robots model their rods or tubes as Cosserat

rods [Trivedi et al. 2008, Dupont et al. 2010, Rucker et al. 2010a]. The geometrically exact theory

was applied to various continuum manipulators as CTCRs [Lock et al. 2010, Rucker et al. 2010b],

TACRs [Rucker and Webster 2011b, Oliver-Butler et al. 2019], and MBCRs [Orekhov et al. 2017,

Wang et al. 2019]. Over the past years, Cosserat rod models have been studied extensively for

modeling the statics and dynamics of continuum robot [Mahvash and Dupont 2011, Renda et al.

2014, Janabi-Sharifi et al. 2021, Briot and Boyer 2023].
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To apply the Cosserat rod theory to continuum robots, multiple approaches have been used [Ar-

manini et al. 2023]. The great majority of the research groups use a Newtonian approach to for-

mulate an explicit boundary value problem (BVP). The BVP is set up by isolating subsystems,

using Newton’s second law to balance the interaction forces between them. Most of the time, the

BVP is solved with a shooting method. This means that one need to find the unknown boundary

conditions that, after ‘shooting’ to the other side of the problem, satisfy the other boundary con-

dition. Typically, the ‘shooting’ (i.e. the integration of the ordinary differential equations (ODEs)

of the BVPs) is achieved with iterative methods (for example the Runge–Kutta methods), spatially

sweeping the rods or tubes.

Lately, another approach was proposed based on a Lagrangian viewpoint [Renda et al. 2020,

Boyer et al. 2021, Renda et al. 2021]. In essence, the Lagrangian approach is based on two key

ingredients: first the concept of configuration space, second a variational principle that allows

the static or dynamic balance on this space to be derived [Goldstein et al. 2001]. It enables the

application of efficient numerical approximation methods based on variational formulations, both

in statics and in dynamics [Zienkiewicz et al. 2005].

Lastly, one can mention the FEM approach again, as it has recently been used to solve Cosserat

rod models of continuum robots [Adagolodjo et al. 2021]. This is not a trivial problem. Indeed,

taking a step back, the research communities using FEM generally use theories or linear geo-

metric models in R3, while for modeling the geometrically exact Cosserat rod theory one needs

R6 [Ibrahimbegović and Mikdad 1998, Boyer and Primault 2004]. To the extent of this thesis

knowledge, Juan Carlo Simo is the father of this field of research [Simo and Vu-Quoc 1988] which

is today continued by only few research teams as the the authors of [Cardona and Geradin 1988,

Sonneville et al. 2014] in Belgium, and those of [Harsch et al. 2023] in Germany. While the po-

tential of geometrically exact FEM is undoubtedly promising, it is important to acknowledge that

the research on employing finite element Cosserat rod modeling for continuum robots is relatively

new. Since this topic extends beyond the scope of the current manuscript, the remainder of this

document will focus on the Newtonian and Lagrangian approaches.

2.2.3 Data-driven Modeling Strategies

A few less well known, yet recently blooming, modeling approaches cannot be categorized in the

two preceding sections. With the advantage to remove the need for complex mathematical mod-

eling, learning based approaches have proven to be able to account for the behavior of certain

continuum robots. Different network architectures for mapping the position of the tip of contin-

uum robots have been investigated as feed-forward neural networks [Giorelli et al. 2015a, Giorelli

et al. 2015b, Grassmann et al. 2018, Grassmann and Burgner-Kahrs 2019], recurrent neural net-

works [Thuruthel et al. 2019], radial basis function neural network [Zhang et al. 2022], or combining

a neural network with a constant curvature model [Jiang et al. 2017]. Building on these results, neu-

ral networks have also been used to model the entire shape of continuum robots [Kuntz et al. 2020,

Liang et al. 2021] and to enable sensing [Ha et al. 2022]. A drawback of using neural networks is that

the insight between the manipulator designs and dynamics is completely lost. As such, it becomes

difficult to develop optimal design strategies or identify the sources of modeling errors.

Another drawback of deep learning based approaches is that they require great amounts of

data [Grassmann et al. 2022] and often long and computationally heavy training or initialization

phases [Chikhaoui and Burgner-Kahrs 2018]. This observation has lead to the development of

learningmethods that functionwith smaller amounts of data, asGaussian Process Regression [Wang

et al. 2022c] or locally weighted projection regression [Fagogenis et al. 2016]. The authors of [Yip
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et al. 2017, Li et al. 2018] construct the Jacobian matrix by experimentally measuring the actuation

space to task space relationships. An advantage of these computationally lighter methods is that

they can also be trained online.

The main obstacle with data driven approaches in general is that it is challenging to acquire

data that (i) are complete and representative of the considered workspace and (ii) unbiased [Ha

et al. 2017]. Further, while learning based approaches can be precise in free-space, it is often more

challenging to model robots in unstructured environments, which are the environments continuum

robots are best suited to operate in. Also, for a given data approach, generalization to a new device

may be challenging.

2.3 General Cosserat Rod Theory

The Cosserat rod theory is established by the brothers Eugène and François Cosserat in 1907
[Cosserat and Cosserat 1907, Cosserat and Cosserat 1909]. A modernized summary can be found

in Stuart Antman’s book on nonlinear problems of elasticity, published in 1995 [Antman 1995].

Cosserat rod theory is a one-dimensional theory of continuous media used to describe slender

bodies subject to finite deformations. In contrast to vibration theory or strength of materials,

Cosserat rod theory is geometrically exact in the sense that it is not based on any approximation of

small displacements or slopes.

Since 2008, it has been used to model continuum robots with a Newtonian point of view. The

majority of this research was carried out by research teams belonging to the robotics community.

More recently, since 2019, the same theory has been used by researchers from the soft robots and

bio-robotics communities to model continuum robots but from a Lagrangian point of view. These

different viewpoints can offer certain advantages, depending on the problems to solve and to what

end the models are used.

One of the motivations of this methodology chapter is to clearly expose all the ingredients

coming from the Cosserat rod theory that are necessary for modeling continuum robots with either

the Newtonian or the Lagrangian approaches. The major part of these ingredients are common to

both approaches. Yet, as the approaches are coming from different communities and do not share a

common set of notations or mathematical framework (see appendix A), the different communities

fail to recognize the similarities between them. This section aims at re-deriving the Cosserat rod

theory in a unique mathematical framework that will be used throughout the manuscript for both

approaches. But also, at exhaustively integrating the different aspects of the theory that can be

found in the literature [Simo 1985, Simo and Vu-Quoc 1986, Simo and Vu-Quoc 1988, Antman

1995, Cao and Tucker 2008]. The different constituent ingredients (corresponding to sections 2.3.1

to 2.3.5) are summarized in Figure 2.1. Section 2.3.6 discusses various useful formulation of the

Cosserat BVPs.

2.3.1 Differential Geometry

The first building block in the Cosserat rod theory consists in describing a rod in space through

parametric differential equations. Let us consider a single rod in space, of length l. The ambient
space is equipped with a fixed inertial frameFs = (O, ex, ey, ez). The model of the rod is obtained
by a continuous stacking of rigid cross-sections labeled by a continuous index. A convenient choice

for this reference parameter is the arc length along the rod, noted X ∈ [0, l]. It is counted from
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Figure 2.1: Synthesis of the ingredients constituting the Cosserat rod model and it various forms.

The three main ingredients on the top row are assembled to formulate the Cosserat rod model, in

the middle. The bottom rank schematizes the various forms of the boundary value problem (BVP)

with their inputs and outputs. The corresponding section (Section 2.3.x) and equation ((2.xx))

numbers are provided.
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one end of the rod to the other in a reference stress-less configuration. To each cross-section, a

frame is attached whose origin coincides with the cross-section center of mass.

The position and orientation of rigid cross-sections are described, respectively, by an arc length

parameterized curve in space r : X ∈ [0, l] 7→ r(X) ∈ R3, and another in the Lie group of

rotations R : X ∈ [0, l] 7→ R(X) ∈ SO(3). SO(3) is the special orthogonal group in three
dimensions,

SO(3) = {A ∈ R3×3|ATA = I and det(A) = 1} . (2.1)

R and r are continuous functions along the arc-length parameterX thus, the rod is parameterized

on an infinite-dimension configuration space.

Together, r and R define a field of homogeneous transformation that describes the entire rod

g : X ∈ [0, l] 7→ g(X) =

(
R(X) r(X)
01×3 1

)
∈ SE(3). (2.2)

SE(3) is the special Euclidean group in three dimensions. The matrix g(X) represents the position
and orientation of the X-cross-section of the Cosserat rod or the pose of the X−‘cross-sectional
frame’ in the inertial frame. The cross-sectional frame is also denotedF(X) = (r, bX , bY , bZ)(X)
(see Figure 2.2).

X = l

reference configuration

g0(X)
bX

bZ
bY X = l

distributed loads

point loads

deformed configuration

R(X)

bX

bZ
cross-sectional

frame F(X)

bY

X

X = 0

inertial frame Fs ey

ez

ex

r(X)

g(X)

Figure 2.2: Definitions of the variables, frames, and transformations of a Cosserat rod. The

light and dark yellow lines represent a rod from X = 0 to X = l in its reference and deformed
configurations respectively. All quantities related to the reference configuration are noted with a •0
superscript. The dash-dot lines represent the centerline of the rod along which the reference length

parameter X evolves (solid line arrow). Some rod sections are represented (in green) to each of

which a cross-sectional frame is attached (in red). The transformation g(X) = (R, r)(X) shows
the link between the inertial frame (in blue) and the cross-sectional frame.
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The introduced terms ‘cross-sectional frames’ and ‘inertial frame’, will be used throughout this

manuscript. The term ‘cross-sectional frames’ refers to the mobile frames attached to the cross-

sections of a rod. Equivalent terms from the literature include ‘body frame’ (referring to rigid

body-transformations) and ‘material frame’ (referring to the frame attached to the material of a

continuous medium). Correspondingly, the reference frame is named the ‘inertial frame’ and is

sometimes referred to as the ‘fixed frame’ or ‘spatial frame’. The cross-sectional frames are oriented

such that bX is the unit normal vector to the cross-section, tangent to the curve of the rod r(X)and
oriented towards increasing X (see Figure 2.2).

It is convenient for future developments to align bY and bZ of each cross-sectional frame

with the principal axes of the cross-sections to form an orthonormal basis. Other conventions

are the Frenet-Serret convention [Bertails-Descoubes et al. 2018, Diezinger et al. 2022] or Bishop

frames [Bishop 1975, Khadem et al. 2020]. Further, as this thesis primarily deals with manipulators,

we assume the considered rods to be clamped with their proximal end coinciding with the inertial

frame, i.e. g(0) = 14×4.

A distinction is made between the reference or stress-less configuration of a rod noted with a

•0 superscript, and the other possible configurations, without the subscript (see Figure 2.2).
The space-variations of position and orientation along the length of the rod are modeled by

the linear and angular rates of change, respectively (see Figure 2.3). In the cross-sectional frame,

these two rates are defined by the two fields Γ and K of R3 such that

r′ = RΓ , R′ = RK̂ , (2.3)

where the •′ symbol denotes differentiation1 with respect to X , and the •̂ symbol defines a

bijective mapping from R3 to so(3) as follows. If W = (W1,W2,W3)
T is a vector of R3, then

Ŵ denotes the skew-symmetric matrix of R3×3 such that

Ŵ =

 0 −W3 W2

W3 0 −W1

−W2 W1 0

 . (2.4)

The reciprocal is denoted •∨ such that (Ŵ )∨ = W . Similarly, if W = (W1,W2,W3)
T and

V = (V1, V2, V3)
T are two vectors of R3, with ω = (W T , V T )T a vector of R6, then ω̂ denotes a

bijective mapping from R6 to se(3) defined by the matrix of R4×4 as

ω̂ =

(
Ŵ V
01×3 0

)
, (2.5)

where Ŵ is the skew-symmetric matrix associated toW ∈ R3 [Murray 1994]. so(3), respectively
se(3), are the Lie algebra of Lie groups SO(3) and SE(3). Interestingly, according to the definition
in R3, one has the property

ŴV = W × V . (2.6)

1Special care is required when integrating the right expression of equation (2.3). Using a naïve discrete integration

scheme

R(t+∆t) +R(t)

∆t
= R(t)Ω̂(t)

R(t+∆t) = R(t) [13×3 + Ω̂(t)∆t]︸ ︷︷ ︸
>1

,

one can see that the unity of the rotation matrix is not preserved [Rucker 2011]. One easy fix is to integrate over

quaternions instead of rotation matrices but other solutions exist [Rucker 2018].
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g(X)

bX
bZ

bY

Γ

K

kinematic variables

Figure 2.3: Differential geometry parameterization of the deformation of a Cosserat rod. The

light and dark yellow lines represent a Cosserat rod. The dash-dot lines represent the centerline of

the rod along which the reference length parameter X evolves (solid line arrow). The kinematic

variables Γ and K define the space-variation of the cross-sectional frame.

Note that all vector fields in R3 can be expressed either in the inertial frame or in the cross-

sectional frames, which can sometimes lead to confusion. To avoid ambiguity, this manuscript

adopts the convention of Juan Carlos Simo: a vector of R3 is noted with a lowercase letter (prefer-

ably latin) when expressed in inertial frame, and uppercase, when expressed in cross-sectional frame.

The only exception to this rule is the position vector field r, which is always expressed in the inertial
frame, R being used for the orientation. Vector fields in R6 are not concerned by this rule, since

they represent vectors in the Lie algebra se(3), denoted with Greek letters as it is usually the case
in geometric mechanics on SE(3) [Simo 1985, Marsden et al. 1999, Marsden and Ratiu 1999].

When combined, the fields of linear and angular space-rate Γ and K , define a unique field of
twist ξ such that

g′ = gξ̂ (2.7)

is equivalent to the two relations of equation (2.3).

At this point, the configuration space of a rod clamped in a fixed basis can be defined in two

possible ways, either directly through the knowledge of the pose field g(X) ∀X ∈ [0, l], with
g(0) = 14×4,

C(g) = {g : X ∈ [0, l] 7→ g(X) ∈ SE(3)} . (2.8)

Alternatively, the configuration can be reconstructed when the field of stains ξ(X) is given by
integrating equation (2.7) from X = 0 to X = l, with g(0) = 14×4,

C(ξ, g(0)) =
{
ξ : X ∈ [0, l] 7→ ξ(X) ∈ R6

}
. (2.9)

In the second formulation, C is a (functional) linear space, since SE(3) in equation (2.8) is now
replaced by the vector space R6. In other words, in equation (2.8), g exists in a non-commutative
Lie group (i.e. a nonlinear manifold) where linear operations of interpolation or functional super-

imposition cannot directly be applied. Conversely, this alternate definition has the advantage to be

linear with respect to the input ξ. The linearity enables to apply usual procedures of linear reduc-
tion as for example the Ritz reduction [Ritz 1909, MacDonald 1933]. Specifically, projecting the

input of the configuration on a finite number of shape functions reduces the configuration from

an infinite-dimensional space to a finite-dimensional one. The Lagrangian approach detailed in

section 2.5.2 exploits this feature.

47



Xp−n(Xp)
−c(Xp)

Xd

n(Xd)

c(Xd)
c̄(X), n̄(X)

proximal side

distal side

Figure 2.4: Free body diagram of a piece of rod. The yellow line represents an arbitrary finite

piece of a rod from Xp to Xd. The dash-dot line represents the centerline of the rod along which

the reference length parameter X evolves. The rod is at static equilibrium between the external

forces n̄(X) and couples c̄(X), and its internal restoring forces n(X) and couples c(X).

2.3.2 Equilibrium Equations

At equilibrium, a rod as described in the previous section, is shaped by Newton’s balance of forces

between its internal forces n(X) and couples c(X), the effect of some external force n̄ and couple c̄
density fields defined over ]0, l[, and some tip force n+ and couple c+. Let us consider an arbitrary
section of a rod as pictured in Figure 2.4 to derive the equations expressing this equilibrium. Note

that this manuscript adopts the conventions of continuum mechanics. When n(X) and c(X) are
transmitted across the X-cross-section, if X is oriented positively from the proximal to the distal

end of the rod, n(X) and c(X) are counted positively when exerted by the distal piece of rod
(i.e. after arc-length X) onto the proximal piece (i.e. before arc-length X). This first convention

is in contrast to the convention of rigid multi-body dynamics where the inter-body wrenches are

counted positively when applied from the basis to the tip. In this derivation, all variables are

expressed in the inertial frame.

The rod section betweenXp andXd, with 0 < Xp < Xd < l, is subject to the following loads:

• at the distal side, the material of (Xd, l] exerts a resultant contact force ndist(Xd)
and a resultant contact couple r(Xd)× ndist(Xd) + cdist(Xd)

• at the proximal side, the material of [0, Xp) exerts a resultant contact force −nprox(Xp)
and a resultant contact couple −r(Xp)× nprox(Xp)− cprox(Xp)

• the resultant of all other forces is captured by

∫ Xd

Xp

n̄(X) dX

• the resultant of all other couples is captured by

∫ Xd

Xp

[r(X)× n̄(X) + c̄(X)] dX .

At equilibrium, the sum of all forces and the sum of all couples equal zero

ndist(Xd)− nprox(Xp) +

∫ Xd

Xp

n̄(X) dX = 03×1 , (2.10)

cdist(Xd)− cprox(Xp) + r(Xd)× ndist(Xd)− r(Xp)× nprox(Xp)

+

∫ Xd

Xp

[r(X)× n̄(X) + c̄(X)] dX = 03×1 .
(2.11)
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Thanks to the continuity of the functions n and c, the subscripts prox and dist can be omit-

ted [Antman 1995]. Differentiating equations (2.10) and (2.11) with respect toX yields the classical

differential equations for a Cosserat rod defined over X∈]0, l[

n′(X) + n̄(X) = 03×1 , (2.12)

c′(X) + r′(X)× n(X) + c̄(X) = 03×1 . (2.13)

Equation (2.13) is obtained by substituting equation (2.12) in equation (2.11) after differentiation.

Reminding that the rods considered in this thesis are assumed to be clamped at X = 0, these
two sets of ODEs (equations (2.12) and (2.13)) need to be supplemented by the boundary condi-

tions (BCs)

r(0) = 03×1 , R(0) = 13×3 , n(l) = n+ , c(l) = c+ , (2.14)

where n+ and c+ are the external tip force and couple respectively.

2.3.3 Constitutive Relationships

The relation that exists between deformation of an object and the internal forces and couples that

this deformation generates is governed by constitutive relationships. More precisely, the kinematic

variables, Γ and K , are related to material strain. Γ is related to shear (Γy and Γz) and extension

(Γx), whileK is related to bending (Ky andKz) and torsion (Kx). Going yet one step further, the

two strain fields of the rod, related to shear and extension, and bending and torsion, respectively,

are defined, in the small strain regime, as Γ − Γ0 and K −K0. It is important to note that even

small amounts of local strain can result in significant displacement when experienced over long

spans.

Different possible linear or nonlinear constitutive relationships can be used to relate these strain

fields to the internal forces and couples. In the scope of the present research and consistently with

the small strain regime, continuum robots are used in the elastic range of their materials. In this

case, a linear elastic relation holds:

n = RHlin

(
Γ− Γ0

)
, c = RHang

(
K −K0

)
, (2.15)

where, ∀X ∈ [0, l],Hlin(X) andHang(X) are the arc length parameterized stiffness matrices for
shear and extension, and bending and torsion, respectively.
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If the bY and bZ of each cross-sectional frame are, in the reference configuration g
0(X), aligned

with the principal axis of the cross-sections, the stiffness matrices are defined as

Hlin(X) =

EA(X) 0 0
0 GA(X) 0
0 0 GA(X)

 (2.16)

and

Hang(X) =

GIX(X) 0 0
0 EIY (X) 0
0 0 EIZ(X)

 , (2.17)

where A is the area of the cross section, E is Young’s modulus, G = E(1 + ν)/2 is the shear
modulus, IY and IZ are, respectively, the second inertia moments along bY and bZ , and IX =
IY + IZ is the polar moment of inertia about bX .

With such linear elastic relationships, the elastic energy U stored in the rod is given by

U =

∫ l

0

1

2
(Γ− Γ0)THlin(Γ− Γ0) +

1

2
(K −K0)THang(K −K0) dX (2.18)

Similarly to the twist form of equation (2.7), equation (2.15) can be rewritten as

Λ = Hε = H
(
ξ − ξ0

)
, (2.19)

where ε = ξ−ξ0 =
((
K −K0

)T
,
(
Γ− Γ0

)T)T
is theR6 field of strain,Λ is theR6 field of stress

wrench, and H = diag (Hang,Hlin) is the R6×6 Hookean stiffness matrix. The corresponding

expression for elastic energy is, concisely

U =

∫ l

0

1

2
εTHε dX . (2.20)

The elastic energy can further be used to solve rod problem by looking for the minimal energy

configuration. This approach can be used to model CTCRs [Rucker et al. 2010a] or other types of

continuum robots [Boyer et al. 2022b].

2.3.4 A Cross-Sectional Frame Formulation

While the above derivations hold in the inertial frame, a version of them that holds in the cross-

sectional frame attached to the material can derived. Both formulations are equivalent but can

be better suited to particular use cases. For example, in Newtonian approach the inertial frame

formulation can be used to directly sum the efforts of different elements of a structure [Orekhov

et al. 2017, Black et al. 2018] while Lagrangian approach mostly uses the more compact cross-

sectional frame expressions because no interaction forces between system elements appear in the

final model formulations [Boyer et al. 2021].

To derive the cross-sectional frame version of the equilibrium equations (2.12) and (2.13), all the

vectors of the above formulation are shifted from the inertial frame to the mobile cross-sectional

ones, using the notation conventions r′ = RΓ, n = RN , c = RC , n̄ = RN̄ , and c̄ = RC̄ , as
follows:

(RN)′ +RN̄ = 03×1 ,

(RC)′ + (RΓ)× (RN) +RC̄ = 03×1 .
(2.21)
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Then, via composition rules of derivatives along with the relation R′ = RK̂

RN ′ +RK̂N +RN̄ = 03×1 ,

RC ′ +RK̂C + (RΓ)× (RN) +RC̄ = 03×1 .
(2.22)

Owing to the definition of the hat operator (see equation (2.6))

R (N ′ +K ×N) +RN̄ = 03×1 ,

R (C ′ +K × C) +R (Γ×N) +RC̄ = 03×1 ,
(2.23)

which, being true for any R, provides

N ′ +K ×N + N̄ = 03×1 ,

C ′ +K × C + Γ×N + C̄ = 03×1 .
(2.24)

Once supplemented with the BCs

r(0) = 03×1 , N(l) = R(l)Tn+ ,

R(0) = 13×3 , C(l) = R(l)T c+ ,
(2.25)

which are deduced from their inertial frame version of equation (2.14), equation (2.24) stands for

the ODEs of a Cosserat rod in the cross-sectional frame.

Following the convention used in [Lynch and Park 2017], all pairs of angular and linear vectors

gather in R6 vectors (
C
N

)′
+

(
K × C + Γ×N

K ×N

)
+

(
C̄
N̄

)
=

(
03×1

03×1

)
. (2.26)

Let us introduce the notations F̄ =
(
C̄T , N̄T

)T
for the R6 field of external loads and F+ =(

CT
+, N

T
+

)T
, with C+ = R(l)T c+ and N+ = R(l)Tn+ for the wrench of external tip loads. The

R6 field of stress wrench can be detailed as Λ =
(
CT , NT

)T
. These notations enable to rewrite

the two ODEs of equation (2.26) in the more compact (geometric) form as a balance of wrenches

expressed in the cross-sectional frame

Λ′ − adTξ Λ + F̄ = 06×1 , (2.27)

where the adjoint map ad is a standard notation of geometric mechanics on the Lie group SE(3)
defined as follows. For any field of twist

ω =

(
W
V

)
(2.28)

adω maps from R6 to R6×6 as the matrix

adω =

(
Ŵ 03×3

V̂ Ŵ

)
. (2.29)

Throughout this dissertation, adω will be used to take into account the contribution of derivative
of the cross-sectional frame as it moves along a rod centerline with a twist ω when deriving a vector
in the inertial frame.

Finally, the ODEs of equation (2.27) need to be complemented with the BCs

g(0) = 14×4 , Λ(l) = F+ . (2.30)
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2.3.5 Degenerate Cosserat Rod Models

In the above developments, all six fields of strain were assumed to be ‘active’. In many circum-

stances, some of these internal DoF are negligible. In such circumstances, it may be interesting

to remove the negligible strain fields to simplify the model and boost the computation speed at

the implementation level. Removing undesirable internal DoF from the full internal kinematics is

achieved by partitioning ξ as
ξ = Bξa + B̄ξc , (2.31)

where for any na ≤ 6, ξa is the na × 1 vector field of the strains allowed by the model and ξc is
the (6−na)× 1 vector field of restricted strains, while B and B̄ are two complementary selection

matrices of 1’s and 0’s such thatBTB = 1na×na ,B
T B̄ = 0na×(6−na) and B̄

T B̄ = 1(6−na)×(6−na).

The subscript •a stands for allowed and the subscript •c stands for constrained.
It is easy to understand that the allowed strains are unknowns of the rod problem and are gov-

erned by the rod kinematics (equations (2.7) and (2.27)). Less straightforward is the comprehension

of restricted strains. Choosing to restrict some fields means that, for these fields, the constitutive

equations no longer hold in the model and the internal forces and couples are replaced by virtual

internal forces and couples, in charge of imposing the internal constraints B̄T ξ = ξc.

To grasp a better understanding of this radical change, let us look at the counterpart of equa-

tion (2.31) on the stresses that writes

Λ = BΛa + B̄Λc . (2.32)

Here the fields of allowed stresses Λa is simply governed by the constitutive relationships (equa-

tion (2.19)) in their reduced form

Λa = Ha

(
ξa − ξ0a

)
, (2.33)

with Ha = BTHB the reduced matrix of Hooke coefficients and ξ0a = BT ξ0 the value of ξa
in the reference configuration. Contrarily, the fields of constrained stresses Λc no longer abide

any constitutive relationships Λc 6= B̄THB̄
(
ξc − ξ0c

)
but rather equal any value that satisfies the

corresponding equilibrium equations

Λ′
c − B̄TadTξ Λc + B̄T F̄ = 0(6−na)×1 . (2.34)

From a Lagrangian point of view, Λc can be seen as a set of Lagrange multipliers that impose the

internal constraints.

A popular choice of constrained fields is the case of Kirchhoff rods. In this theory, the shear

and extension components are supposed to be negligible compared to the ones for bending and

torsion [Kirchhoff 1859, O’Reilly 2017, Gazzola et al. 2018]. With this assumption, the selection

matrices are

B =

(
13×3

03×3

)
, B̄ =

(
03×3

13×3

)
, (2.35)

and thus, for an initially straight rod, the fields of strain become

ξa = (KX , KY , KZ)
T , ξc = (1, 0, 0)T . (2.36)

The popularity of this model simplification comes from the fact that continuum robots often have

very stiff elastic properties for shear and extension, compared to bending and torsion. Multiple

sources from the literature have shown to obtain satisfying results with Kirchhoff models [Dupont

et al. 2010, Rucker et al. 2010a, Wu et al. 2022].
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Apart from Kirchhoff rods, other examples of restrictions include a rod limited to in-plane

bending (as in the model derived in chapter 4) or a rod with very high torsional stiffness as in [Az-

imian et al. 2014].

2.3.6 Reshaping the Cosserat Model as a BVP

Whether in the Newtonian approach or in the Lagrangian approach, the notion of BVP plays an

essential role in the modeling of continuum robots. In short, a BVP is a system of ODEs whose

solutions must satisfy BCs that partially determine the state variables at the boundaries. In the

present context, such a system can be set in state space form

x′ = f(x) , h−(x(0)) = 0 , h+(x(l)) = 0 , (2.37)

where x is the vector of state variables, while the two functions h± of the state vector x, atX = 0
and l, fix the BCs at the two ends of the rod. Based on this definition, it is straightforward to show
that inverting equation (2.15) to remove the space-rates from equation (2.3), gathering the resulting

equations with equations (2.12) and (2.13) and the BCs equation (2.14) yields a closed formulation

describing the statics of an elastic rod
r
R
n
c


′

=


R
(
H−1

linR
Tn+ Γ0

)
R
(
H−1

angR
T c+K0

)∧
−n̄

−r′ × n− c̄

 ,

r(0) = 03×1 , R(0) = 13×3 , n(l) = n+ , c(l) = c+ .

(2.38)

Equation (2.38) defines a BVP in the explicit state form as in equation (2.37), with x = (r, R, c, n)
being the state variables. Alternatively, using the constitutive relationships (equation (2.15)) to

remove the internal forces and couples in equations (2.12) and (2.13), leads to the system
r
R
Γ
K


′

=


RΓ

RK̂

Γ0′ −H−1
lin

[(
K̂Hlin +H′

lin

) (
Γ− Γ0

)
+RT n̄

]
K0′ −H−1

ang

[(
K̂Hang +H′

ang

) (
K −K0

)
+ Γ̂Hlin

(
Γ− Γ0

)
+RT c̄

]
 ,

r(0) = 03×1 , Γ(l) = Γ0 +H−1
linR(l)

Tn+ ,

R(0) = 13×3 , K(l) = K0 +H−1
angR(l)

T c+ ,

(2.39)

which is again in the form of equation (2.37), with x = (r, R,Γ, K). Note that the closed formula-
tions in equations (2.38) and (2.39) are equivalent and only differ by the choice of the state variables

(stress or strain). For this reason, they are named, respectively, the stress-form and strain-form of

the BVP. Alternative equivalent formulations of the same two forms can be obtained by changing

the frames of expression (inertial or cross-sectional), or by gathering linear and angular components

into poses, twists, and wrenches. For instance, the BVP equation (2.39) can be rewritten with (g, ξ)
as state variables as(

g
ξ

)′
=

(
gξ̂

ξ0
′
+H−1

(
adTξ H

(
ξ − ξ0

)
− F̄ −H′ (ξ − ξ0

))) ,
g(0) = 14×4 , ξ(l) = ξ0 +H−1F+ .

(2.40)
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The BVPs equations (2.38) to (2.40) are forward kineto-static BVPs, since they allow computing

themotion variables, here the pose field g, from the knowledge of the force variables, here wrenches
F̄ and F+. Reciprocally, one can define the inverse kineto-static BVP of a Cosserat rod as(

g
Λ

)′
=

(
gξ̂

adTξ Λ− F̄

)
,

g(0) = 14×4 , Λ(l) = F+ ,

(2.41)

which allows computing the stress Λ from the knowledge of the strain ε = ξ − ξ0. Note that in
both cases, (F̄ , F+) are imposed (possibly g-dependent) external wrenches.

2.4 The Cosserat Rod Theory Applied to Continuum Robots

The single rod model described above is only a building block in continuum robot models. Usually,

it needs to be extended or coupled to other models to account for the unique structural and actu-

ation designs that continuum robots possess. This can lead to very sophisticated models, tailored

to each specific case. The objective of this section is not to re-derive the full model for all types

of robots. It is rather to provide insight by pointing to the particularities and assumptions of each

case as keys to understand how to obtain the full robot model from the single rod case.

2.4.1 Modeling Tendon Actuated Continuum Robots

In a TACR model with m tendons, each tendon i = 1 ..m is considered separately as a string

but evolves alongside the backbone (see Figure 1.4 page 28). Their position ri can thus directly
be related to the backbone through the position of the routing holes in the cross-sectional frame

Di(X) (assuming the routing holes have tight tolerances and the spacer disks are closely spaced):

ri(X) = r(X) +R(X)Di(X) (2.42)

The backbone sees the efforts applied by the tendons as an added external force distribution

or as added internal stresses, but in either case the final model of the robot is composed of only a

single set of the Cosserat rod equations.

By neglecting friction, the tangent tension τi in the tendons is constant along their length. This
is a key aspect of the TACR model derivation that allows writing the contribution of the tendons

as function of only the tension.

Once the contribution of the tendons are integrated in the equations governing the backbone,

the BVP of the backbone is solved like in the case of a single rod. This model was first derived

through the Newtonian approach in [Rucker and Webster 2011b] and later, from a Lagrangian

point of view, in [Renda et al. 2020, Boyer et al. 2021].

2.4.2 Modeling Concentric Tube Continuum Robots

Modeling CTCRs (see Figure 1.3 page 27) composed of m tubes will require one geometrical de-

scription gi(X) = (Ri, ri)(X) andKi(X) for each tube i = 1 ..m and corresponding constitutive

relationships. As the tubes have one free end and only very little effort is exerted axially, the sim-

plifying Kirchhoff rod assumption can be used (see section 2.3.5), thus, removing the need for

individual shear and extension rates of change.
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Let us first look at the geometric constraints. Because the tubes are arranged concentrically,

their centerlines coincide with the centerline of the robot for every X ∈ [0, l]:

ri(X) = r(X) , ∀i = 1 ..m , (2.43)

which drastically simplifies the derivation.

Regarding the rotation matrices however, only the bX -axes coincide and the tubes can rotate
relative to each other. Taking, arbitrarily, a first tube, i = 1, as reference, the angle of the other
tubes θi(s) relative to this tube can be written such that:

Ri(X) = R1(X)RX,θi(X) , ∀i = 2 ..m , (2.44)

where RX,θi(X) = eÊXθi(X), with EX = (1, 0, 0)T , is a rotation about bX . In this document,
(EX , EY , EZ) will denote the canonical (numerical) base of R3, i.e. EX = (1, 0, 0)T , EY =
(0, 1, 0)T , and EZ = (0, 0, 1)T .

Using this relation, it is possible to further relate the angular rates of changeKi(X). Finally, the
equilibrium equations of the whole system need to be derived similarly to equations (2.12) and (2.13)

but summing the internal forces and couples of all tubes. This model was derived simultaneously

in [Dupont et al. 2010] and [Rucker et al. 2010a] in 2010. In 2021, The authors of [Renda et al.

2021] proposed a similar model derived through a Lagrangian point of view.

2.4.3 Modeling Parallel Continuum Robots

Modeling unconstrained parallel continuum robots

In the case of an (unconstrained) PCR (see Figure 1.5b page 29), the rods are completely indepen-

dent and evolve according to their own set of governing equations. The rods are only linked at

their basis through the holes of the baseplate and at their ends by what is called the endplate. The

baseplate is clamped such that it defines the position and orientation of the rods at their intersec-

tion with it. The endplate needs to be at static equilibrium and thus additionally requires the sum

of the forces and the sum of the couples applied by the rods and the backbone to equal zero.

The rods are integrated separately starting from initial conditions on one side of the robot,

such that the constraints that link the rods as a system on the opposite boundary of the problem

are satisfied.

These model equations are easier to derive from the single rod case but finding a solution to the

problem requires more effort. The exact initial conditions for all rods need to be found such that

all constraints are satisfied. This leads to problems with high dimension state vectors. An inverse

kinematic approach solving the problem was published in [Bryson and Rucker 2014, Orekhov et al.

2016]. This approach was then further developed, enabling force sensing capabilities [Black 2017,

Black et al. 2018].

Modeling constrained parallel continuum robots

Disks can be added to unconstrained PCRs limiting issues seen in section 1.3.2 (see Figure 1.5c

page 29). These disks define routing holes for the individual rods called general intermediate con-

straints (GICs). ‘Intermediate constraints’ means they constrain the rods to pass through points

between the baseplate and the endplate of the PCR. And ‘general’ means the defined routing paths

can be any general curve in space. The disks that divide the robot in sections are fixed on an elastic
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backbone. The backbone ensures the spacing between the disks but has a very low bending and

torsional stiffness.

Adding GICs to the PCR model adds a lot of constraints to the problem. At each disk, the

internal forces and couples of the entering and exiting rods contribute to the sum of forces and

couples on the disks respectively and need to equal zero. As the rods are allowed to slide through

the routing holes, this means they cannot transmit forces perpendicular to the disks. The same

holds for couples around bX (i.e. perpendicular to the disks). These efforts must thus not be

added in the sums of efforts on the disks but transmitted to the next section of the corresponding

rods to maintain the continuity (except for the backbone that is rigidly fixed to the disks). In

the other directions (bY and bZ ) however, the internal forces and couples of the rods experience
discontinuities as they pass the disks.

This complex problem can be solved with intricate BVPs as was proposed in [Orekhov et al.

2017]. While the authors report successful inverse kinematics computations, many unknowns need

to be solved and this complexity makes the model less suited for real-time applications.

Modeling push-pull actuated continuum robots

Push-pull actuated robots (see Figure 1.5a page 29) can be seen as an even more constrained case

of the constrained PCRs described in the previous section. They have mainly been explored by

Simaan et al. [Xu and Simaan 2010].

Like PCR with GICs, push-pull robots consist of multiple rods. But, while the rods of PCRs

could all run different paths, the rods of push-pull actuated robots run parallel and all follow the

same path as the backbone with a constant offset. This is possible thanks to the reduced spacing

of the routing disks and the constant position of the routing holes. A consequence of this design

is that, unloaded, the bending will always occur in-plane. This is a fundamental consequence on

which the whole model of this type of robots is based [Xu and Simaan 2006]. The drawback is that

it does not allow modeling out-of-plane bending that could occur under external loads.

A notable result of the models of these robots is that, in this bending plane, the end effector

angle λend depends only on the actuation and is independent of the shape of the robot. The robot
presented in [Simaan et al. 2009] has three rods equally spaced around a backbone at a distance D
of this backbone. The rods are of initial length l in the undeformed configuration. Each rod i can
translate axially at its base by a quantity noted ai which changes the length of the rod above the
baseplate (l−ai) in the deformed configuration. The central backbone, however, remains of fixed
length l even in the deformed configuration.

As the robot lies in a plane and that all rods are parallel to each other and to the backbone,

the projection of each rod on this plane is a curve that is also parallel to the backbone. The offset

of these projected curves with the backbone is noted ∆i and relates the radius of curvature of the

backbone r(X) with the radius of curvature of the rods ri(Xi)

r(X) = ri(Xi) + ∆i i = 1, 2, 3 . (2.45)

56



Using equation (2.45) yields the following result for the length li of the i
th rod above the baseplate

l − ai =

∫
dXi =

∫
(dXi − dX + dX)

l − ai = l +

λend∫
0

(ri(X)− r(X)) dλ

l − ai = l −∆iλend .

ai = ∆iλend .

(2.46)

2.5 Formulating Cosserat Rod Models

Twomain approaches exist for formulating the Cosserat rod models derived above, the Newtonian

approach and the Lagrangian approach.

2.5.1 Newtonian Approach

In the Newtonian approach, a BVP is set up for each specific problem by isolating subsystems,

usingNewton’s second law to balance the interaction forces between them. In some cases, algebraic

manipulations are necessary to obtain a BVP in the explicit form. Solving the BVP then consists

in finding the exact proximal BCs such that the distal BCs match. A residual is defined as the

difference between the distal values of the state variables obtained for some guessed proximal BCs

and the distal BCs imposed by the system. Most of the time, the task of finding the unknown

proximal BCs is fulfilled with a shooting method [Press et al. 2007].

Obtaining the distal values of the state variables from the guessed initial conditions necessarily

goes through an integration process of the ODEs of the BVP. This can be achieved by a variety of

numerical methods but systematically requires the discretization of the spaces of the rods. Thus,

the chosen numerical method or the discretization operation may have an impact on the calculated

residual, but interestingly, it does not influence the state space of the problem. The drawback is

that, through this spatial discretization, the robustness of the mechanical principles is lost. Indeed,

while the balance of the intermediate (X ∈ ]0, l[) interaction forces between the various elements
of the considered system must be taken into account during the integration of the general BVP,

such interactions are invisible at the distal BC at X = l where the residual is defined.

Usually the more subsystems (rods) are involved in a robot architecture, the higher dimension

the residual is. This is a beneficial correlation in the sense that no information is lost in the residual

when system complexity increases. For systems involving many rods and/or links between the

rods the high dimension residuals may however become an obstacle for numerical solvers.

2.5.2 Lagrangian Approach

In the Lagrangian approach, the starting point is always a basic mechanical principle (variational

principle). In statics, the principle of virtual work holds. After having clearly defined the system,

each contribution to the virtual work balance needs to be calculated.

Further, the problem goes through two successive reduction steps. In a first reduction step, the

kinematics of the structure (or its constraints) define a minimal set of parameters or active strain

fields to fully describe the problem. This can partially be achieved by referring to section 2.3.5.
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Once the minimal set of active strain fields is defined, the second reduction step consists in pro-

jecting the continuous strain fields onto a finite set of shape functions, moving the considered

problem from an infinite-dimensional space to a finite-dimensional one. The configuration of the

system is now parameterized by a finite set of generalized coordinates.

In mechanics, the variational principles hold in any definition of the configuration space. Thus,

applying the second reduction step to each contribution to the virtual work balance produces a static

balance in the form of generalized force vectors Q. For a given input of generalized coordinates
q, the static balance defines, through the generalized force vectors, a residual that has the same
dimension as the input. The advantage is that the reduced form of the problem resembles that of

classical rigid series manipulators [Walker and Orin 1982]. In a sense, generalized strain coordinates

are analogous to joint coordinates, which is particularly useful for control purposes. In fact this is

why the symbols q and Q are used for the generalized strain coordinates, and the corresponding

generalized forces, respectively. This choice is inherited from the standards of Lagrangian mechan-

ics [Goldstein et al. 2001]. In the context of continuum robotics, this choice reflects the fact that

the strain coordinates of a continuum robot are the distributed counterpart of the localized joint

coordinates of a rigid-link robot.

Another advantage of the Lagrangian approach is that it can be applied systematically to a

wide variety of systems (closed loops, lumped joints etc.) without having to redefine the vector of

residuals for each specific case. Defining residuals may be delicate as soon as one deviates from

the single-stranded manipulators.

2.6 Conclusion

This chapter derived the kineto-static model of a Cosserat rod. It is the starting point of any

continuum robot Cosserat rod model. While Cosserat rod models from the literature solved with

the Newtonian or Lagrangian approaches can sometimes look completely different, they are, in

fact, based on the same foundations presented here. This chapter continuously presented the

correspondence between the notations making use of two R3 vectors popular in the Newtonian

approach and the geometrical mechanics notations with R6 vectors, present in the literature on the

Lagrangian approach (see appendix A for a side-by-side comparison of notation conventions).

More importantly, this chapter presented the two equivalent formulations of the configuration

of a Cosserat rod in the chosen framework. While the formulation of equation (2.8) is used in the

Newtonian approach that continuously integrates it, the linear formulation of equation (2.9) is used

in the Lagrangian approach to enable a projection on a functional basis. Several BVP formulations

are presented. Although these formulations are equivalent, they enable using considerably different

algorithms that are useful in either the Newtonian or Lagrangian approaches.

The strategies for adequately manipulating and arranging the Cosserat rod theory for modeling

standard continuum robots were exposed. At this point, one can observe that CAARs have points

in common with almost all the continuum robots that were discussed. The expression for the

routing paths of the tendons in a TACR resemble the relative position of the neutral lines of the

tubes with respect to the center of the tubes. Also, the tubes are arranged concentrically as in

CTCRs. In CAARs however, the sliding motion of the tubes forbid directly reusing the relations

from these two models. Further, as discussed in section 2.4.3, the offset neutral lines of CAARs

should be considered as separate rods but the GIC model for PCRs is inapplicable due to the

continuity of the CAAR structure. Lastly, the result of equation (2.46), the foundation of the
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models for push-pull actuated continuum robots does not hold for CAARs because the neutral

lines are not constrained to run parallel to the centerline.

Hence, a whole new model for CAARs must be reinvented. This is a task that needs an in

depth comprehension of the available modeling approaches. To grasp this deeper understanding

of Cosserat rod modeling of continuum robots, the next chapter presents a side by side derivation

of the Cosserat rod model for TACRs with both the Newtonian and Lagrangian approaches. It

will allow to comfortably settle in with both approaches, giving the necessary keys for diving into

the derivation of the CAAR model in chapter 4.

Contributions of this chapter

1. Cosserat rod modeling for continuum robots is put in perspective with the other

state-of-the-art modeling approaches for continuum robots.

2. The various elements necessary for the implementation of both the Lagrangian

and Newtonian approaches are, for the first time, derived in a common mathe-

matical framework.

3. Many different aspects of Cosserat rodmodeling required for modeling different

types of continuum robots (see chapters 3 and 4) are brought together in a single

structured picture, including the discussion of the Newtonian and Lagrangian

formulations, the two main approaches in the community.

4. An analysis of Cosserat rod models of the literature, explaining how one can use

such models for various types of continuum robots, is carried out.

The framework presented in this chapter has benefited from the input of Frédéric Boyer and

Vincent Lebastard form the LS2N laboratory in Nantes, France. They helped in the quest of

unwinding the Cosserat rod theory, especially regarding the Lagrangian mechanics viewpoint.
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3
Modeling Tendon Actuated Continuum

Robots from Different Perspectives:

A Case Study

3.1 Foreword

The purpose of this chapter is to analyze the Newtonian and the Lagrangian approaches, applied to

an example use-case, in order to clarify the similarities and differences between them and objectively

compare the strengths and weaknesses of each.

While the modeling approaches developed in this chapter have been previously published, the

effort of side-by-side derivation of the two approaches is a necessary step to grasp all the subtleties

that link or separate them. It is this profound understanding that enabled the derivation of the new

model for CAARs, presented in the next chapter.

The two approaches, coming from different communities, do not share a common set of no-

tations or mathematical framework, which does not ease the comparison (see appendix A). This

chapter provides an exhaustive derivation of both approaches using the mathematical framework

proposed in chapter 2. While the two approaches were previously published, the present deriva-

tions provide new contributions to both. Further, a mathematical proof of equivalence between

the two approaches is provided backed by an extensive set of simulations that allows the discussion

of the approach performances.

While the contents have been revised for inclusion in this manuscript, a major part of this

chapter was published in the following peer-reviewed journal article:

Matthias Tummers, Vincent Lebastard, Frédéric Boyer, Jocelyne Troccaz, Benoît Rosa,

and M. Taha Chikhaoui (Jun. 2023). “Cosserat Rod Modeling of Continuum Robots

fromNewtonian and Lagrangian Perspectives”. In: IEEE Transactions on Robotics, 39.3,

pp. 2360–2378, https://hal.science/hal-03935561.
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Figure 3.1: Synthesis of the steps in both approaches side by side. The corresponding steps meet

horizontally across the columns. The blue and red areas are relative to the Newtonian and the

Lagrangian approaches, respectively. The yellow area is common to both (see chapter 2). The

corresponding equation numbers are provided for each step.

3.2 Common Considerations

The main steps of each of the approaches presented in sections 3.3 and 3.4 are synthesized in

Figure 3.1 to help follow through the developments and highlight the correspondence of the steps

between approaches.

Both approaches assume the same set of model simplifications. The tendons are inextensible,

have negligible inertia, experience no friction, and are routed through continuous routing paths

rather than through discrete disks. These are all reasonable assumptions for small curvatures and a

large amount of routing disks, but may introduce significant discrepancies when this is not the case.

Also, in addition to the assumption of material linear elasticity (see equation (2.15)), the considered

robots have constant material properties along their length (i.e.H′ = 06×6).
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3.3 Newtonian Model of TACRs

In the Newtonian approach, the model is deduced from Newton’s laws, i.e. by isolating the back-

bone and each of the tendons separately, and by using the action-reaction principle to remove the

interaction forces between them. To detail this process, let us first remark that, in a TACR, the

backbone of the robot can be modeled by the BVP of equation (2.39). Sections 3.3.1 and 3.3.2

describe how this BVP is complemented with a model of tendon actuation.

3.3.1 Model of Tendon Actuation

To introduce the model of tendon actuation in equation (2.39), the distributed loads are spelled out

as

n̄ = n̄ext + n̄act , c̄ = c̄ext + c̄act , (3.1)

where n̄ext and c̄extmodel the external loads applied by the environment such as gravity or contacts,
while n̄act and c̄act stand for those applied by the tendons. Invoking the action-reaction principle,
the distributed force exerted by each tendon i onto the backbone is equal to the opposite of the
distributed force exerted by the backbone on this tendon, noted n̄i. Therefore, summing these
contributions provides the distributed force of them tendons on the backbone

n̄act =

m∑
i=1

−n̄i . (3.2)

As a tendon cannot transmit any couples, the distributed moment of the tendons exerted on the

backbone c̄act is equal to only the sum of the cross products of each moment arm with each force

c̄act =

m∑
i=1

(ri − r)× (−n̄i) = −
m∑
i=1

di × n̄i , (3.3)

where ri = r + RDi is the position of the i-th tendon expressed in the inertial frame, Di(X) =
(0, Di,Y , Di,Z)

T (X) the position of the i-th tendon expressed in theX-cross-sectional frame, and
di = RDi (see Figure 3.2).

Modeling a tendon as an inextensible degenerate Cosserat rod, with no angular inertia, one can

derive the expression for n̄i, by applying the linear static balance equations (2.12) and (2.13) with
its internal forces ni, to each tendon individually

n̄i + n′i = 03×1 . (3.4)

Again, as a perfectly flexible string cannot support internal couples or shear forces but only a

constant tension τi tangent to its path, the field of internal forces along each tendon i reads

ni = τiti , (3.5)

with ti = r′i/‖r′i‖ the unit tangent vector to the path of the tendon. Now, considering that the
tension is constant (τ ′i = 03×1), equation (3.4) provides the expression of the external forces of

each tendon

n̄i = −n′i = −τit′i . (3.6)
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i-th tendon

ti = r′i/‖r
′
i‖
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Spacer disks top view

Figure 3.2: Side view of a TACR and top view of a spacer disk. The manipulator is embedded

in the inertial frame at its base. The routing channels in the spacer disks (grey) define the routings

of the tendons (green) around the backbone (yellow). The position of each tendon ri is related to
the position of the backbone r through the offset Di in the cross-sectional frame. For any cross-

section defined by a given arc length along the backbone X the slope of the routing of the i-th
tendon at this cross-section is given by ti = r′i/‖r′i‖. By applying a tension τi to a tendon, the
manipulator deforms.
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3.3.2 Forward Kineto-Static BVP of a TACR

Substituting equations (3.1) to (3.3) and (3.6) into equation (2.38), provides the static balance of a

TACR actuated by a set ofm tendons in stress-form


r
R
n
c


′

=



R
(
H−1

linR
Tn+ Γ0

)
R
(
H−1

angR
T c+K0

)∧
−

m∑
i=1

τit
′
i − n̄ext

−r′ × n−
m∑
i=1

di × (τit
′
i)− c̄ext


,

(r, R)(0) = (03×1, 13×3) , (n, c)(l) = (n+, c+) .

(3.7)

To get a BVP in the usual form of equation (2.37), the forces exerted by the tendons n̄i = −τit′i
need to be expressed in terms of the state-variables x = (r, R, n, c). To achieve this elimination, it
is convenient to shift from the stress-form of equation (2.38) to the strain-form of equation (2.39).

This requires first to express the internal elastic and external tendon forces and couples in terms

of the backbone strains. While it was shown in section 2.3.6 that one can use the constitutive law

to rewrite the internal elastic forces and couples, rewriting the external tendon forces and couples

requires a few algebraic manipulations.

Following the methodology presented in [Rucker 2011], rearranging and subsequently deriving

equation (3.5) provides the two relations

r′i =
1

τi
‖r′i‖ni , r′′i =

1

τi

(
(‖r′i‖)

′
ni + ‖r′i‖n′i

)
. (3.8)

Taking the cross product of these two results one finds

r′′i × r′i =
‖r′i‖

2

τ 2i
(n′i × ni) (3.9)

and taking once more the cross product of r′i and equation (3.9)

r′i × (r′′i × r′i) =
‖r′i‖

3

τ 3i
(ni × (n′i × ni)) . (3.10)

Considering the vector triple product identity a× (b× c) = b (ac)− c (ab) and writing the cross
products in skew-symmetric matrix notation (equation (2.6)) yields

n̄i = −τit′i = −τi
(

r′i
‖r′i‖

) ′
= τi

r̂′i
2

‖r′i‖
3 r

′′
i . (3.11)

Next, one needs to expand the first and second derivatives of ri. Expressing these quantities
in cross-sectional frame coordinates allows a more concise writing, as follows:

r′i = RΓi = R
(
K̂Di +D′

i + Γ
)
,

r′′i = R
(
Γ′
i + K̂Γi

)
,

(3.12)
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where Γi = RT r′i. Now, introducing equation (3.12) in equation (3.11) and the result in equa-
tions (3.2), (3.3), and (3.6) yields

n̄act = R (a+ AΓ′ +GK ′) ,

c̄act = R (b+BΓ′ +HK ′) ,
(3.13)

where

Ai = −τi
Γ̂i

2

‖Γi‖3
, A =

m∑
i=1

Ai ,

Bi = D̂iAi , B =

m∑
i=1

Bi ,

G = −
m∑
i=1

AiD̂i = BT , H = −
m∑
i=1

BiD̂i ,

ai = Ai

(
K̂Γi + K̂D′

i +D′′
i

)
, a =

m∑
i=1

ai ,

bi = D̂iai , b =

m∑
i=1

bi .

(3.14)

Finally, substituting equation (3.13) into equation (2.39) and rearranging the obtained expressions,

yields the ODEs governing the statics of a TACR in the explicit strain-form
r
R
Γ
K


′

=


RΓ

RK̂(
Hlin + A G

B Hang +H

)−1(
c
d

)
 , (3.15)

with

c = HlinΓ
0′ − K̂Hlin

(
Γ− Γ0

)
−RT n̄ext − a ,

d = HangK
0′ − K̂Hang

(
K −K0

)
− Γ̂Hlin

(
Γ− Γ0

)
−RT c̄ext − b .

(3.16)

Note that all the quantities A, B, G, H , a, and b depend on Γi = RT r′i = Γ +K ×Di +D′
i.

This set of ODEs needs to be supplemented with the BCs of equation (2.39), where the values

of n+ and c+ are the forces and moments generated by the attachment of each tendon at the

boundary. These are equal to the opposite of the internal force of each tendon and the cross

product of each moment arm with this force, respectively, yielding

n+ =

m∑
i=1

−ni(l) = −
m∑
i=1

τiti ,

c+ =

m∑
i=1

di × (−ni(l)) = −
m∑
i=1

di × τiti .

(3.17)

Finally, with these detailed BCs, equation (3.15) defines the same BVP as obtained in [Rucker

and Webster 2011b]. This BVP is the forward kineto-static BVP of a TACR, “forward” because its

resolution provides outputs in motion (here strains), from inputs in force (here tendon tensions).
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Figure 3.3: Example of a set of shape functions Φ for decomposing the strain field ε. Here, the
first five Legendre Polynomials are shown.

3.4 Lagrangian Model of TACRs

In this section, the Lagrangian model of a TACR is derived from the principle of virtual work,

starting from zero, i.e. calculating individually each contribution to the virtual work balance. In

other words, to improve the intelligibility of the approach, TACR modeling is brought back to the

canonical Lagrangian methodology. Note that this choice contrasts with recent publications on the

topic, where the Lagrangian model is obtained either by projection of Cosserat partial differential

equations (PDEs) with Jacobian matrices [Renda et al. 2020, Renda et al. 2021], or by feeding a

continuous Newton-Euler inverse algorithm with specific inputs [Boyer et al. 2021].

Adopting this canonical viewpoint, Lagrangian modeling is achieved in two steps. In a first

(kinematic) step (section 3.4.1), the Lagrangian approach consists of a reduction of the infinite-

dimensional configuration space from section 2.3.1 into a finite-dimensional configuration space.

In a second step (sections 3.4.2 and 3.4.3), this kinematic reduction is introduced in the principle of

virtual work. As this principle holds in any definition of the configuration space, it allows shifting

the static balance of section 2.3.2, from the infinite-dimensional configuration space equation (2.9),

to the finite-dimensional configuration space. This two-step process finally produces the reduced

kineto-static model of a TACR.

3.4.1 Strain Based Reduction

The purpose of the reduction is to shift the previously introduced continuous model to a finite-

dimensional model in terms of a vector of generalized strain coordinates q, similar to the joint
coordinates of a rigid manipulator [Spinelli and Katzschmann 2022]. According to the Ritz ap-

proach [Ritz 1909, MacDonald 1933], the strain field ε = ξ − ξ0 is decomposed on a functional
basis of strain functions as

ε = Φ(X)q , (3.18)

where q is a Rk vector of generalized strain coordinates and Φ is a R6×k matrix of shape functions

whose choice is fixed by the user. A popular choice of shape functions are Legendre polynomials
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(see Figure 3.3). As a result, any configuration of the rod can be reconstructed in the inertial frame

by integrating the ODE

g′ = g
(
Φq + ξ0

)∧
(3.19)

from X = 0 where g(0) = 14×4, to X = l. The purpose of the next two sections is to derive the
static balance of a TACR in terms of the vector of generalized strain coordinates q of its backbone,
i.e. on the finite-dimensional configuration (vector) space Rk. Some necessary preliminary devel-

opments are detailed in section 3.4.2. In section 3.4.3, it is shown that the reduced model takes the

usual matrix form of Lagrangian mechanics.

3.4.2 Principle of Virtual Work and Variations

Principle of virtual work

The variational principle of Lagrangian mechanics that holds in statics is the principle of virtual

work. It considers the system in its static equilibrium where the external loads balance the internal

restoring forces (stress)

δWext + δWint = 0 , (3.20)

where δWext and δWint stand, respectively, for the work of external and internal forces along any

virtual displacement (or variation) of the configuration, compatible with the geometric BCs and the

parameterization used to describe the system.

Variations on the system

In the case of TACRs, the system considered is the backbone and the part of the tendons contained

inside the robot. Since the tendons have negligible inertia and elasticity, only the backbone needs

to be considered in the configuration of the system. Thus, any field of kinematically compatible

virtual displacement along the robot can be defined by a small perturbation of g noted δg, with
δg(0) = 04×4. As for equation (2.7), this field of transformation perturbations is entirely described

by a field of twist noted δζ and defined by

δg = gδζ̂ , with: δζ(0) = 06×1 . (3.21)

The condition at X = 0 is imposed by the compatibility of variations δg with the geometric BC
g(0) = 14×4. When applied to the backbone, such virtual displacements generate variations of its

strain field δε = δ(ξ − ξ0) = δξ.

Relation between δξ and δζ

These relative variations δξ are related to the absolute ones δζ as follows. Since variations δ do not
affect the label (i.e. arc-length parameter) X , the variation and X-derivation are exchangeable, i.e.

δ(g′) = (δg)′ . (3.22)

Introducing in equation (3.22) the definitions g′ = gξ̂ and δg = gδζ̂ of equations (2.7) and (3.21),
respectively, yields

δ
(
gξ̂
)
=
(
gδζ̂
)′

⇔ δgξ̂ + gδξ̂ = g′δζ̂ + g
(
δζ̂
)′
. (3.23)
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Using the same definitions, once more, leads to

g
(
δζ̂ ξ̂ + δξ̂

)
= g

(
ξ̂δζ̂ +

(
δζ̂
)′)

, (3.24)

which, holding for any g, yields

δξ̂ =
(
δζ̂
)′

+ ξ̂δζ̂ − δζ̂ ξ̂ =
(
δζ̂
)′

+ [ ξ̂, δζ̂ ] , (3.25)

where [•, •] denotes the usual commutator of matrices. Finally, using the anti-hat (•∨) operation,
one can show that [ ξ̂, δζ̂ ]

∨
= adξδζ which provides the commutation relation

δζ ′ = δξ − adξδζ (3.26)

that relates the relative variations δξ to the absolute variations δζ .

Second version of the relation between δξ and δζ

For subsequent developments, it is useful to rewrite equation (3.26) in an alternate form with an-

other standard notation of geometric mechanics, namely the adjoint map Ad. In general, Adg is
used to pass a twist from one frame to another, the two being separated by a pose g. For any
homogeneous transformation g,

g =

(
R r

01×3 1

)
, (3.27)

Adg maps from SE(3) to R6×6 as the matrix

Adg =

(
R 03×3

r̂R R

)
. (3.28)

Now injecting adξ = Ad−1
g Ad′g in the equation (3.26), the alternate form of the commutation

relation reads

Adgδζ
′ + Ad′gδζ = Ad′gδξ . (3.29)

Relation between δε and δq

The expression of the strain variations δε in terms of variations on the generalized coordinates δq
is obtained by applying the variation to equation (3.18)

δξ = δε = Φδq . (3.30)

Relation between δζ and δq

Finally, using equation (3.30), the expression of any virtual displacements δζ in terms of variations
on the generalized coordinates δq arises from the integration of equation (3.29) over [0, X] with
the initial condition δζ(0) = 06×6 (consequence of g(0) = 14×4)

δζ(X) = Ad−1
g(X)

∫ X

0

Adg(Y )δξ(Y ) dY =

[
Ad−1

g(X)

∫ X

0

Adg(Y )Φ dY

]
δq = Jζ(X)δq ,

(3.31)

where Jζ(X) defines the Jacobian matrix, which maps any variation δq to δζ(X). In other words,
equation (3.31) is the expression of any virtual displacement δζ that is compatible with the internal
kinematics and the geometric BCs.
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Variation of the length of the tendons

Similarly to the strain variations δε that act on the backbone, the tendons experience variations on
their length δli. Rigorously, δli is the variation of length of the part of tendon i contained in the
robot. Applying the variation on the expression of the length of a tendon

li =

∫ l

0

‖r′i‖ dX =

∫ l

0

(r′Ti r
′
i)
1/2 dX (3.32)

leads to

δli =

∫ l

0

δ ‖r′i‖ dX =

∫ l

0

δr′Ti r
′
i

‖r′i‖
dX . (3.33)

In order to rewrite the last term of equation (3.33), the definitions r′i = RΓi and δr
′
i = δ(RΓi) are

inserted in the product δr′Ti r
′
i

δr′Ti r
′
i = (δRΓi +RδΓi)

T (RΓi) = (RT δRΓi)
TΓi + δΓT

i Γi . (3.34)

Further, since R ∈ SO(3), there always exists a vector δψ ∈ R3 such that RT δR = δψ̂. As a
result

δr′Ti r
′
i

‖r′i‖
=

(δψ × Γi)
TΓi + δΓT

i Γi

‖Γi‖
=
δΓT

i Γi

‖Γi‖
. (3.35)

Finally, introducing the expression Γi = Γ + K × Di + D′
i into equation (3.35) and the result

of this substitution into equation (3.33) provides, after factorization of δε = (δKT , δΓT )T , the
relation

δli =

∫ l

0

1

‖Γi‖
(
ΓT
i ,Γ

T
i

)( D̂T
i 03×3

03×3 13×3

)
δε dX =

∫ l

0

J̄liδε dX , (3.36)

where the Jacobian (continuum) operator J̄li is introduced, with Γi = RT r′i = Γ+K ×Di +D′
i,

and Di = RTdi, the vector of the components of the radial position of the tendon i in the cross-
sectional frame of the backbone.

3.4.3 Reduced Static Balance

Based on the developments of the previous section, one can now develop the balance of virtual

works (equation (3.20)) and apply the kinematic reduction in order to obtain the reduced static

balance. The virtual work of internal elastic stress reads

δWint = −
∫ l

0

δεTHε dX . (3.37)

Using equation (3.30) allows writing equation (3.37) as

δWint =

∫ l

0

δqTΦTHε dX = δqTQrod = δqTKεεq , (3.38)

with the Rk vector of generalized restoring forces

Qrod =

∫ l

0

ΦTHε dX =

(∫ l

0

ΦTHΦ dX

)
q = Kεεq , (3.39)

and Kεε the Rk×k matrix of generalized stiffness.
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Figure 3.4: Models of tendon actuation for the Newtonian and Lagrangian approaches.

As regards the work of external forces, it can be detailed as the sum

δWext = δW̃ext + δWact =

(∫ l

0

δζT F̄ dX + δζ(l)TF+

)
+

(
m∑
i=1

δli τi

)
, (3.40)

where δW̃ext stands for the virtual work of external gravity and contact forces, while δWact is the

virtual work of tensions exerted on the tendons. Introducing equation (3.36) in the second term

of equation (3.40), and exploiting the fact that τ ′i = 03×1, allows rewriting the virtual work of

actuation in the form

δWact =

m∑
i=1

∫ l

0

δεT J̄T
li τi dX =

∫ l

0

δεT

(
m∑
i=1

J̄T
li τi

)
dX . (3.41)

This last equation shows that the effect of tendons naturally appears as stress (and not forces in

contrast to the Newtonian approach) since they work along strain variations δε (and not along
configuration variations, i.e. virtual displacements δζ) (see Figure 3.4). Based on this remark, the
field of actuation stress Λact is defined as

δWact =

∫ l

0

δεTΛact dX ⇒ Λact =

(
m∑
i=1

τiJ̄
T
li

)
=

m∑
i=1

1

‖Γi‖

(
Di × Γi

Γi

)
τi , (3.42)

which can be integrated to the constitutive law equation (2.19) yielding the more general active-

passive law

Λ = Λact +Hε . (3.43)

Again, using equation (3.30) in equation (3.41) allows writing

δWact = −
∫ l

0

δqTΦTΛact dX = δqTQact , (3.44)
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with the Rk vector of generalized forces of actuation

Qact = −
∫ l

0

ΦTΛact dX = −
m∑
i=1

[∫ l

0

ΦT

‖Γi‖

(
Di × Γi

Γi

)
dX

]
τi = L(q)τ . (3.45)

Applying the reduction to the first term δW̃ext of equation (3.40) yields

δW̃ext = −
∫ l

0

δqTJT
ζ F̄ dX − δqTJζ(l)

TF+ ,= δqTQext , (3.46)

where one recognizes the mapping Jζ between the variations δq and δζ(X) defined in equa-
tion (3.31), with the Rk vector of generalized external forces

Qext = −
∫ l

0

JT
ζ F̄ dX − Jζ(l)

TF+ . (3.47)

Looking back at the balance of virtual works of equation (3.20), it now reads

δqTQext + δqTKεεq = δqTQact . (3.48)

Equation (3.48), being true for any δq, provides the static balance of generalized forces

Qext +Kεεq = Qact . (3.49)

In equation (3.49), the generalized external forces Qext (equation (3.47)) are computed with

Jacobian matrices, as in [Renda et al. 2020, Renda et al. 2021], according to a matrix projective pro-

cess, often called Kane’s method in the mechanical literature [Kane and Levinson 1985]. There is

however, a more convenient method, as in [Boyer et al. 2021], where the generalized external forces

are computed through the field of internal stress Λ that balances the imposed external wrenches

F̄ and F+ when the backbone is in the configuration C(ξ, g(0)). With this field of internal stress,
the vector of generalized external forces takes the form

Qext = −
∫ l

0

ΦTΛ dX . (3.50)

In equation (3.50), Λ is simply the solution of the inverse kineto-static BVP of a TACR introduced
in equation (2.41) (

g
Λ

)′
=

(
gξ̂

adTξ Λ− F̄

)
,

g(0) = 14×4 , Λ(l) = F+ .

(remember: (2.41))

The equivalence between the external forces in equation (3.47) and internal stress in equa-

tion (3.50) is obtained by starting with the relation Ad′g = Adg adξ . Rearranging this equation
leads to

adTξ = −AdTg Ad−T ′
g . (3.51)

Then, introducing this relation in equation (2.27), one can integrate it, and obtain the balance of

wrenches

Λ(X) = AdTg(X)

∫ l

X

Ad−T
g(Y )F̄ (Y ) dY + AdTg(X)Ad

−T
g(l)F+ . (3.52)

72



Projecting this balance on the strain basis (pre-multiplying byΦT and integrating the products over

[0, l]), and using by-part integrations, yields the desired equality between equations (3.47) and (3.50)

−
∫ l

0

ΦTΛ dX = −
∫ l

0

JT
ζ F̄ dX − Jζ(l)

TF+ . (3.53)

Although the two expressions for Qext in equation (3.53) are equivalent, choosing one or the

other to calculate the generalized external forces, leads to fundamentally different algorithms. In

section 3.6.2, this second approach will be addressed, yet with new numerical methods (compared

to [Boyer et al. 2021]).

3.5 Equivalence of the Two Models of Tendon Actuation

Before Lagrangian reduction, the two approaches only differ by the model of tendon actuation (see

Figure 3.1). Indeed, in the Newtonian approach, the model of tendon actuation arises from the

action-reaction principle and the tendon loads are modeled as external wrenches. Conversely, the

Lagrangian approach naturally deduces its model of tendon actuation (equation (3.42)) through the

principle of virtual works including them as internal wrenches (see Figure 3.4).

The objectives of this section are twofold. First, in order to establish more direct relations

between the Newtonian and the Lagrangian approaches, this section shows how the Lagrangian

model of tendon actuation can be alternatively deduced from the continuous formulation on which

the Newtonian approach is based (and deduced fromNewtonian mechanics). The second objective

is to demonstrate the equivalence between including the tendon loads as external wrenches, as in

equation (3.1), and including them as internal wrenches (i.e. stress), as they appear in equation (3.43).

Let us first reconsider equation (3.1)

n̄ = n̄ext + n̄act , c̄ = c̄ext + c̄act , (remember: (3.1))

and recall that, in the Newtonian approach (see section 3.3), the action of the tendons is modeled

as external forces n̄act and couples c̄act. Both are integrated in the wrench of external distributed
loads F̄ applied along the backbone as follows:

F̄ =

(
C̄
N̄

)
=

(
C̄ext

N̄ext

)
+

(
C̄act

N̄act

)
=

(
RT c̄ext
RT n̄ext

)
+

(
RT c̄act
RT n̄act

)
=

(
RT c̄ext
RT n̄ext

)
+

m∑
i=1

(
Di × (RT t′i)

RT t′i

)
τi .

(3.54)

Whereas in the Lagrangian approach (see section 3.4), the same actions are modeled by the wrench

of stress Λact across the backbone whose expression is defined by equation (3.42),

Λact =

(
m∑
i=1

τiJ̄
T
li

)
=

m∑
i=1

1

‖Γi‖

(
Di × Γi

Γi

)
τi . (remember: (3.42))

Using RΓi = r′i, ti = r′i/‖r′i‖, and di = RDi, the stresses Λact can be expressed in the inertial

frame as (
cact
nact

)
=

(
RCact

RNact

)
=

m∑
i=1

(
di × ti
ti

)
τi . (3.55)
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To demonstrate the equivalence of both approaches, the first step is to reconsider the BVP of

equation (2.38) 
r
R
n
c


′

=


R
(
H−1

linR
Tn+ Γ0

)
R
(
H−1

angR
T c+K0

)∧
−n̄

−r′ × n− c̄

 ,

r(0) = 03×1 , R(0) = 13×3 , n(l) = n+ , c(l) = c+ .

(remember: (2.38))

on which the Newtonian approach is based. But, in contrast to section 3.3.2, the action of tendons

is no more modeled as a field of external forces and couples defined by equations (3.2), (3.3), and

(3.6),

n̄act =

m∑
i=1

−n̄i , c̄act =

m∑
i=1

(ri − r)× (−n̄i) = −
m∑
i=1

di × n̄i , n̄i = −n′i = −τit′i .

(remember: (3.2), (3.3), and (3.6))

but as the field of stress wrench across the backbone (equation (3.55)). This change of view point

means that, in equation (2.38), c̄act and n̄act are removed from the model of external loads (equa-

tion (3.1)), to be replaced by internal forces and couples across the backbone nact and cact. These
internal forces superimpose to its usual elastic forces and couples, now noted nrod and crod, to
form the full field of internal couples and forces along the robot considered as a stress-actuated

backbone

c = crod + cact , n = nrod + nact . (3.56)

crod and nrod are still governed by the constitutive law (2.15), while nact and cact are given by
(3.55), that are rewritten as

nact =

m∑
i=1

ni =

m∑
i=1

τiti , cact =

m∑
i=1

di × ni =

m∑
i=1

di × (τiti). (3.57)

Note that once expressed in the cross-sectional frames, these two relations do define the active

constitutive law of equation (3.43), which takes the detailed form

Λ = Λact +Hε =
(
RT cact
RTnact

)
+

(
Hang

(
K −K0

)
Hlin

(
Γ− Γ0

) ) , (3.58)

where, in this case, the loads of the tendons are directly the sum of the internal loads of the tendons.

Instead, in the Newtonian approach the loads of the tendons were equal to the sum of the opposite

(action-reaction) of the external loads as seen by the tendons as in equations (3.2) and (3.3).

As announced, substituting equations (3.56) and (3.57) in the stress balance of equation (2.38),

produces

(
nrod +

m∑
i=1

τiti

)′

+ n̄ext = 03×1 ,(
crod +

m∑
i=1

di × (τiti)

)′

+ r′ ×

(
nrod +

m∑
i=1

τiti

)
+ c̄ext = 03×1 .

(3.59)
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Which, once rearranged with the usual composition rules of derivatives and using di = ri − r and
τ ′i = 03×1, yields

n′rod +

m∑
i=1

τit
′
i + n̄ext = 03×1 ,

c′rod + r′ × nrod +

m∑
i=1

di × (τit
′
i) +

m∑
i=1

(r′ + d′i)× (τiti) + c̄ext = 03×1 .

(3.60)

Finally, using the relations r′ + d′i = r′i = ‖r′i‖ ti and ti × ti = 03×1, leads to

n′rod +

m∑
i=1

τit
′
i + n̄ext = 03×1 ,

c′rod + r′ × nrod +

m∑
i=1

di × (τit
′
i) + c̄ext = 03×1

(3.61)

that are the two stress balances of equation (3.7)


r
R
n
c


′

=



R
(
H−1

linR
Tn+ Γ0

)
R
(
H−1

angR
T c+K0

)∧
−

m∑
i=1

τit
′
i − n̄ext

−r′ × n−
m∑
i=1

di × (τit
′
i)− c̄ext


,

(r, R)(0) = (03×1, 13×3) , (n, c)(l) = (n+, c+) ,

(remember: (3.7))

which lead to the static balance in strain-form equation (3.15) of the Newtonian approach. There-

fore, modeling the effect of tendons as external loads as in the Newtonian approach or as internal

stress as in the Lagrangian approach leads to equivalent continuous models1.

3.6 Numerical Implementation

Sections 3.6.1 and 3.6.2 deal with the numerical implementation of the Newtonian and Lagrangian

approaches, respectively. They both start with the case of a single-segment TACR and then extend

the resolution to the multi-segment case.

3.6.1 Numerical Implementation of the Newtonian Approach

In the Newtonian approach, the simulation of a TACR is achieved by solving the forward kineto-

static BVP of equation (3.15). Although this can be done by different numerical methods (finite

differences, shooting, spectral methods ...), this chapter adopts the shooting method, since it is

largely dominant in the community.

1In more details, the BVP equation (3.15) with the BCs of equation (2.39) of the Newtonian approach is equivalent

to the closed continuous formulation equations (2.41), (3.42), and (3.43) exploited by the Lagrangian approach.
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Newtonian resolution of a single-segment TACR

Solving the forward statics BVP equation (3.15) with the shooting method consists in finding the

unknown proximal BCs on the space rates Γ(0) and K(0) such that the known distal BCs Γ(l)
and K(l), defined by equation (2.39), are fulfilled, for any imposed vector of tendon tensions
τ = (τ1 .. τm)

T
(see bottom left area of Figure 3.1). This search is achieved iteratively by applying

a root finding algorithm to the residual vector

Res(Γ?(0), K?(0)) =

(
Γ(l)− Γ?(l)
K(l)−K?(l)

)
, (3.62)

where Γ?(l) andK?(l) are the distal values of Γ andK obtained by forward integrating the ODEs

of equation (3.15) with the guessed values (Γ?, K?)(0) from X = 0 to X = l.

This process proposes to iterate over the values of Γ(0) and K(0) but the relations of equa-
tion (2.15) allow to equivalently iterate overN(0) and C(0) or any combination of these variables.
Changing the state variables can be of interest, for instance, when the rod is very stiff for shear

and extension, which may cause convergence issues. When computing the residual vector at each

iteration, the kinematic ODE R′ = RK̂ is integrated using quaternions, which ensures that R
remains in SO(3). Note also that other methods based on Magnus expansions in SO(3) × R3 or

SE(3) can be used [Orekhov and Simaan 2020, Renda et al. 2020].

Choosing the initial guess is a crucial step that may determine the outcome of the implemented

algorithm. When the initial guess is too far from the solution, the root finding algorithm may

converge to a local minimum or fail to converge due to gradients that lead to infeasible points.

Nonetheless, finding a good initial guess may be a tricky task. A solution to address this issue is

to start from a vector of zeros. If the TACR is subject to small loads, the solution will be close to

zero and the solver will likely converge. If, on the contrary, the TACR is subject to higher loads,

the strategy consists in dividing the total load of the problem in a number of increasing loading

steps such that the first step can be solved starting with the zero vector (see Figure 3.5). Then,

the subsequent steps are solved for, using the previous solution as input for the following guess.

Another advantage of specifying the loading history is that the final solution can be controlled in the

case of multiple possible solutions for a given load [Bretl and McCarthy 2013, Bretl and McCarthy

2014].

Newtonian resolution of a multi-segment TACR

In a multi-segment robot, the poses as well as the internal forces and couples propagate from one

segment to the next. Consequently, their values at the distal end of the first segment are used as

inputs for the ODEs of the second segment and so on, until the most distal segment, where the

BCs are evaluated. The implementation of multi-segment robots is thus straightforward based on

the single-segment case and does not increase the size of the state vector of the problem.

One particular case that has not previously been reported in the literature, deserves a special

focus: when a tendon undergoes a slope discontinuity. The tension applied to such a tendon will

create a force, acting at the location of the discontinuity, which needs to be taken into account in

the implementation. This happens for instance in a multi-segment TACR where a tendon is routed

following a convergent routing path in the distal segment but runs parallel to the backbone in the

proximal segments (see Figure 3.6 and Figure 3.7 – Scenario 3.7.5.). Practically, for a tendon i
undergoing a slope discontinuity between the segments j and j+1, the shift in routing orientation
is equal to

JtiKj = lim
ε→0

(
ti(X

+
j )− ti(X

−
j )
)
, (3.63)
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Figure 3.5: Proceeding in steps towards the final solution, reusing the output (proximal BCs) of

the previous step as input for the next step and gradually increasing the actuation tension.

where X±
j = Xj ± ε, Xj is the arc length abscissa of the backbone cross-section to which is

attached the disk connecting segments j and j+1, and JfKj denotes the jump of any field f when
crossing the junction between segments j and j + 1. ti = r′i/‖r′i‖ denotes the unit tangent vector
to the i-th tendon (see Figure 3.6). Applying Newton’s laws to the tendon at the junction point,
provides the jump of force and couple transmitted to the backbone by a tendon i subject to a slope
discontinuity at junction j

JnKj = τi JtiKj , JcKj = di × JnKj . (3.64)

Note that equation (3.64) is no more than a discrete version of equation (3.6). Equation (3.64) will

need to be added to the static balance equation (3.17) while forward integrating the BVP equa-

tion (3.15), each time a tendon slope discontinuity is encountered. The slope discontinuity JtiKj
can be obtained with the relation JΓi/ ‖Γi‖Kj = RT JtiKj . Hence, equation (3.64) is rewritten in
its cross-sectional frame version

JNKj = τi

s
Γi

‖Γi‖

{

j

, JCKj = Di × JNKj , (3.65)

where Γ±
i is computed similarly to equation (3.12), with

Γi(X
±
j ) = Γ(X±

j ) + K̂(X±
j )Di(Xj) +D′

i(X
±
j ) . (3.66)

In practice, this calculation is achieved by using the following jump relations on the space-rates:(
Γ
K

)
+

=

(
Γ
K

)
−
+

(
Hlin + A G

B Hang +H

)−1

−

s(
c
d

){

j

, (3.67)

where the expressions of A, G, B, H , c, and d are again given by equations (3.14) and (3.16),
except that the continuous X-derivatives D′

i and D
′′
i are replaced by their jumps JDiKj = 03×1

and JD′
iKj 6= 03×1, respectively. Owing to the continuity of poses, all other quantities are evaluated

equivalently at X = X−
j or X = X+

j . The necessary contribution of this term can be observed
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Figure 3.6: Side view of a multi-segment TACR featuring a tendon slope discontinuity. The

tendons are routed parallel in the j-th segment and convergently in the (j+1)-th segment introducing

a discontinuity at the tendon routing between segments (at arc length Xj).

in an example simulation in Figure 3.10 and in an online available video2 where the Newtonian

approach is shown to fail without the slope discontinuity compensation term.

Finally, using equation (3.67) from segment to segment while piece-wise integrating the ODEs

of equation (3.15) from X = 0 to l, allows calculating the residual vector of equation (3.62) in the
general case with possible tendon slope discontinuities between segments.

3.6.2 Numerical Implementation of the Lagrangian Approach

Following the standard numerical techniques of the Lagrangian approach, the quasi-static simula-

tion of a TACR is performed here by solving the implicit system of non-linear algebraic equations

defined in equation (3.49). Note that this is more straightforward than the approach in [Boyer

et al. 2021], where the resolution is performed by the explicit time integration of an overdamped

equivalent system.

Lagrangian resolution of a single-segment TACR

In the Lagrangian approach, the numerical resolution of the static problem consists in calculating

the vector of generalized strain coordinates q = (q1 .. qk)
T
that fulfills the reduced static balance

equation (3.49), for any imposed vector of tendon tensions τ = (τ1 .. τm)
T
(see bottom right area

of Figure 3.1). Since this balance defines a set of algebraic nonlinear equations, one can apply any

root finding algorithm to solve for the vector of residuals Res that takes the generic form

Res(q, τ) = 0k×1 , with: Res(q, τ) = Qext +Kεεq −Qact . (3.68)

2Video available at: https://youtu.be/W1E-oA42OOM.
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It is of common use in nonlinear structural statics (and dynamics) to useNewton-Raphson’smethod,

which allows updating the q-vector at each step of a loop, iteratively reducing the residual, according
to the linear relation

q+ = q − J−1(q)Res(q, τ) , (3.69)

where J(q) = ∂Res
∂q denotes theRk×k Jacobian matrix of the residual vector, and q+ is the updated

value of q. Therefore, applying this method requires to calculate the vector of residuals Res and
its Jacobian matrix J .

To numerically compute the residual vector Res from any q-vector, the expressions of equa-
tions (3.39), (3.45), and (3.47) are added to the inverse BVP equation (2.41) through the state

variable

y(X) = −
∫ l

X

ΦT (Λact − Λ +HΦq) dY (3.70)

such that y(0) = Res. The state variables (g,Λ, y) are then governed by the augmented inverse
BVP, which is fed with ξ = ξ0 + Φq, and readsgΛ

y

′

=

 g
(
ξ0 + Φq

)∧
adT(ξ0+Φq)Λ− F̄

ΦT (Λact − Λ +HΦq)

 ,

g(0) = 14×4 , Λ(l) = F+ , y(l) = 0k×1 ,

(3.71)

where Λact is a function of q and τ , given by equation (3.42), while F̄ depends on the context. For

instance, if the robot is only subject to gravity, F̄ =
(
01×3, R

TaTg Aµ
)T
, with ag the acceleration

gravity field expressed in the inertial frame, A the area of the robot section, and µ its density.

Note that, similarly to the inverse kineto-static BVP of equation (2.41), equation (3.71) pos-

sesses interesting properties that make its resolution straightforward compared to that of the for-

ward BVP equation (3.15). In particular, it can be solved with two decoupled passes (i.e. without

resorting to the shooting algorithm), with standard explicit space integrators. One can first inte-

grate forward (from X = 0 to l), the ODE in g, and then integrate backward (from X = l to
0) the two other ODEs in Λ and y producing Res(q) = y(0). This method has been proposed
and interpreted as a Newton-Euler computed torque algorithm in [Boyer et al. 2021], similar to

those developed for rigid multi-body systems [Featherstone 2007]. In this chapter, a further prop-

erty of the inverse BVP is exploited. Since the q-vector is an imposed input, equation (3.71) is
linear with respect to the state variables (g,Λ, y). As a result, one can apply a spectral collocation
method [Hussaini et al. 1989] and replace the previous explicit ODE integrations by the resolution

of some linear algebraic systems with respect to the vector of the state variables on a Chebyshev

grid [Trefethen 2000].

In the continuum robotics community, Jacobian matrices are often calculated numerically. This

chapter proposes a more accurate calculation of J , based on the exact linearization of the resid-
ual vector. To this end, the BVP of equation (3.71) is linearized with respect to its input q by
propagating the differential consequences of a variation ∆q as∆ζ

∆Λ
∆y

′

=

 −ad(ξ0+Φq)∆ζ + Φ∆q
adTΦ∆qΛ + adT(ξ0+Φq)∆Λ−∆F̄

ΦT (∆Λact −∆Λ+HΦ∆q)

 ,

∆ζ(0) = 06×1 , ∆Λ(l) = ∆F+ , ∆y(l) = 0k×1 ,

(3.72)

where∆ζ is the differential of g in se(3) defined by∆ζ =
(
g−1g

)∨
, while∆Λact,∆F̄ , and∆F+

are the differentials of the model of actuation stress and external forces, respectively. Note here

79



that, the variation ∆ being only generated by the variation of the configuration ∆q, the variation
of the actuation ∆τ = 0m×1 in ∆Λact. Moreover, the dependence of Λact on q is very weak

3

and may be neglected in the calculation of the Jacobian. Thus, ∆Λact is set to 06×1 when solving

equation (3.72).

The BVP of equation (3.72) defines the augmented inverse tangent boundary value problem

(TBVP) of the robot. The full BVP obtained by gathering equations (3.71) and (3.72) is linear, and

can, once again, be solved with a spectral method applied forward and backward, as for the BVP.

Now, by virtue of the linear identity ∆y(0) = ∆Res = J(q)∆q, applying the unit input vector
∆q = δα to equation (3.72), where δα is a Rk vector of zeros, except the entry α, which is equal
to 1, equation (3.72) yields the column α of J . Hence, repeating the process for α = 1 .. k allows
the Jacobian to be filled column by column.

Lagrangian resolution of a multi-segment TACR

The Lagrangian model of a multi-segment TACR is simply obtained by applying the principle of

virtual work to the system defined by the serial connection of the χ segments. All segments are
subject to the external forces applied by the environment (e.g. gravity), those exerted by the tendons

across the basis, as well as the restoring internal forces. Such a virtual work balance takes the generic

form
χ∑

j=1

δW̃ext,j + δWact,j + δWint,j = 0 , (3.73)

with j the index of segments and where each of the three contributions can be defined and detailed
as in the single-segment case of equation (3.40). In particular, applying the same strain reduction

segment by segment provides the vector of generalized strain coordinates of the entire robot q =
(q(1) .. q(χ))

T . The subscript •(j) denotes a generalized vector or matrix, related to the segment j.
Introducing these reduced virtual works in equation (3.73) allows writing, for any δq,

δqT (Qext +Kεεq −Qact) = 0k×1 , (3.74)

where Kεε = diag(Kεε,(1) .. Kεε,(χ)), Qext = (Qext,(1) .. Qext,(χ))
T , and Qact = (Qact,(1) ..

Qact,(χ))
T . In other words, the multi-segment TACR model is simply obtained by appending the

matrices and vectors of each segment one after another.

To numerically solve this multi-segment model, the above single-segment method can be ex-

tended by considering a BVP of the form of equation (3.71) for each of the segments, and its

associated TBVP equation (3.72). Using normalized arc-length variables along each segment, these

χ BVPs and TBVPs, are now connected through their BCs (or connectivity conditions) as follows:

gj(1) = gj+1(0) , Λj(1) = Λj+1(0) , (3.75)

∆ζj(1) = ∆ζj+1(0) , ∆Λj(1) = ∆Λj+1(0) . (3.76)

Note that, as it is usually the case in Lagrangian mechanics, the above relations introduce no jumps

on the stress. Indeed, the inter-segment forces of equation (3.64) are considered as internal forces

of the multi-segment system that do not work in any virtual displacement field compatible with

the inter-segment connections. Finally, the multi-segment solution is obtained by solving equa-

tion (3.69) applied to the whole structure. The Jacobian and the residual are computed, as in the

single-segment case, by forward and backward integrations of equations (3.71) and (3.72), and start-

ing from g1(0) = 14×4 and Λχ(1) = F+, respectively.

3The dependence of Λact has been observed in preliminary simulations to be negligible for the convergence of the

algorithm.
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Table 3.1: Geometry and Material parameters of the simulated robot.

Parameter Name Parameter Symbol Value

Backbone radius Rb 0.4mm

Backbone length (3.7.1 to 3.7.3) l 242mm

Backbone length (3.7.4 and 3.7.5) l = lj × 3 300mm

Tendon offset Rt 8mm

Gravity constant ‖ag‖ 9.81N/kg

Robot equivalent density5 µ = 0.47N/m

‖ag‖π(Rb)
2 95 · 103kg/m3

Young’s modulus E 210GPa

Poisson’s ratio ν 0.3125

3.7 Performance Comparison

The objective of this section is to compare the behavior of both approaches whenmodeling various

TACRs. This section proceeds through the comparison of five example scenarios of increasing

complexity and that are representative of the TACRs studied in the literature and numerous other

configuration possibilities. The robots and their routings are represented in Figure 3.7 and 3D

views are shown in an online available video4. To confront our simulations with results from the

literature, the modeled TACR corresponds to the one presented in [Rucker and Webster 2011b],

but with various tendon routings. Its geometry and material parameters are given in Table 3.1.

In all scenarios, the robot is oriented with its base pointing upwards, opposite to the action of

gravity. The associated code can be found at: https://github.com/TIMClab-CAMI/Cosserat-

Rod-Modeling-of-Tendon-Actuated-Continuum-Robots.

Both approaches also involve some numerical parameters. For the Newtonian approach, all the

ODEs are integrated using the Runge-Kutta Dormand–Prince method with Matlab 2022a ode45
function. The relative error tolerance parameter, 'ResTol', and absolute error tolerance parame-
ter, 'AbsTol', are both specified to 10−8. The global BVP equation (3.15) is solved using Matlab

2022a fsolve function with the Levenberg-Marquardt algorithm with all parameters set to default
values. For the Lagrangian approach, the ODEs are integrated using a spectral method over a

Chebyshev grid of 10 nodes. The strain distributions are projected on Legendre polynomials of

orders 5 for torsion; 7 for bending in both directions; and 3 for extension and shearing in both

directions. Summing all polynomial orders results in a total of 28 shape functions. Finally, the

residual of the BVP equation (3.71) is brought to < 10−8 with Newton-Raphson’s method6.

When running simulations, particularly in the case of high loads, the algorithms may fail to

converge if the actuation load is applied as a single step. Progressively increasing the tension in the

tendons and iteratively building upon the previous solutionsmay solve this problem (see Figure 3.5).

This method will be used when required for some of the simulated cases and will be referred to as

the number of needed loading steps.

4Video available at: https://youtu.be/W1E-oA42OOM.
5The equivalent density is the density applied to the backbone capturing the weight of the backbone itself, disks,

and tendons. The value of the robot self-weight is from [Rucker and Webster 2011b].
6The algorithm parameters were chosen empirically during preliminary simulations such that the simulation results

had converged for each approach.
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Figure 3.7: Left, front view (bY pointing upwards) of the different routings corresponding to

the investigated scenarios. Right, top view of the robot routing disks, with the tendon offset Rt.

The top views of the first three scenarios are superimposed. The numbers next to the tendons

correspond to their index in each scenario. For details on each specific routing, please refer to the

corresponding section.

For each scenario, the simulations are analyzed by pair (Newtonian and Lagrangian approaches)

and the position and orientation of the tip are compared in Table 3.2. This table also displays the

main characteristics of the simulated robots. As none of the codes for either approach were fully

optimized, the computation times of the simulations are not provided. Information regarding

which approach is more efficient for which case is discussed in section 3.8. Sections 3.7.1 to 3.7.5

give detailed information on the scenarios and analyze the results.

3.7.1 Single-Segment Parallel Routing

The first scenario starts with a simple case: a single-segment TACR with 3 tendons routed parallel

around the backbone at 120◦ (Rt = 8mm, see Figure 3.7 – Scenario 3.7.1). 216 simulations are run

with each approach corresponding to the possible combinations of the integer values of tension

between 0 and 5N for each tendon. Figure 3.8a shows a sample of 20 pairs of the 432 simulations.

One can see how both approaches render the same robot shape.

For this scenario, depending on the load combination in the tendons, all cases in both methods

could be solved with only 1 loading step, except 3 cases (1.39%) with the Newtonian approach that

required 2 loading steps.

3.7.2 Single-Segment Convergent Routing

In this scenario, the parallel routing from the TACR above is changed to a convergent routing.

Examples of existing physical robots with this kind of routing can be found in [Laschi et al. 2012,
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Table 3.2: Synthesis of results for the five simulated scenarios.

Scenario* 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5

Robot characteristics

Type of routing Parallel Convergent Helical Parallel Convergent

Number of segments 1 1 1 3 3

Robot length [mm] 242 242 242 300 300

Tip position difference** [mm]

Median value 5.43 · 10−4 9.40 · 10−3 1.42 · 10−1 3.42 · 10−1 6.93 · 10−2

Lower bound 95% confidence interval 2.41 · 10−9 8.77 · 10−15 4.48 · 10−3 1.00 · 10−5 1.11 · 10−2

Upper bound 95% confidence interval 3.13 · 10−3 2.32 · 10−2 7.21 · 10−1 1.29 2.76 · 10−1

Tip orientation difference** [◦]

Median value 3.26 · 10−4 1.10 · 10−3 1.99 · 10−1 5.56 · 10−2 1.32 · 10−2

Lower bound 95% confidence interval 1.03 · 10−7 5.42 · 10−8 8.09 · 10−3 3.39 · 10−7 2.78 · 10−3

Upper bound 95% confidence interval 1.65 · 10−3 3.20 · 10−3 5.74 · 10−1 2.14 · 10−1 4.74 · 10−2

* The labels of the scenarios correspond to the subsections in section 3.7.

** Differences between the results that are obtained with both approaches.

Oliver-Butler et al. 2019]. In this case, 2 tendons are routed at opposite positions of the robot,

linearly convergent towards its end, starting at offset Rt = 8mm at the proximal end of the robot

and ending coincident with the backbone at its tip (see Figure 3.7 – Scenario 3.7.2). The cross-

sectional frame position of the tendons now depends on the reference length parameter X as

follows:

Di(X) = (0,±Rt(1−X/l), 0)T . (3.77)

Simulations are run for all combinations of tendon tensions over the integer values between

0 and 8N. The maximum tension is higher than in section 3.7.1 in order to operate the robot

over a comparable workspace. With the two-tendon robot described, these combinations yield 162

simulations. Figure 3.8b displays a sample of 20 pairs of these simulations. As in the previous case,

one can see how both approaches render the same robot shapes. The values for the differences

between tip positions and orientations between the two approaches are similar to those for the

previous scenario (see Table 3.2). As for the previous scenario, a majority of cases of this scenario

could be solved with 1 loading step. 6.17% of the cases with the Newtonian approach required 2

loading steps.

3.7.3 Single-Segment Helical Routing

In this scenario, the routing is set to 2 helically routed tendons in a full turn around the length of

the backbone, lying opposite to each other (see Figure 3.7 – Scenario 3.7.3). As such, the cross-

sectional frame position of the tendon i is equal to

Di(X) = Rt

(
0, cos

(
2π

l
X + iπ

)
, sin

(
2π

l
X + iπ

))T

, (3.78)

with Rt = 8mm.

The simulation results for tendon tensions varying over the integer values between 1 and 10N

for each tendon independently for both approaches are shown in Figure 3.8c. The tension range
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(a)

(b) (c)

Figure 3.8: A sample of 20 random pairs of the simulation results for single-segment TACRs

with (a) parallel routing, (b) convergent routing, and (c) helical routing. The geometry and material

parameters of the simulated robot are given in Table 3.1. Full and dashed lines represent simulations

obtained using the Newtonian approach and the Lagrangian approach, respectively.

is increased compared to the previous scenarios in order to cover a comparable workspace with

the studied routing. Similar existing physical robots of the literature can be found in [Rucker and

Webster 2011b, Starke et al. 2017]. The differences in position and orientation between the two

approaches are still several orders of magnitudes lower than the length of the robot (see Table 3.2).

For this batch of simulations, all cases of both approaches were solved with a single loading step.

3.7.4 Multi-Segment Parallel Routing

As the implementation of multi-segment TACRs considerably varies from one approach to the

other (see sections 3.6.1 and 3.6.2), it is interesting to compare simulation results withmulti-segment

TACRs as well. This section starts with a multi-segment TACR scenario involving no routing

path discontinuities. The next section follows up with a scenario that does involve routing path

discontinuities defined in equation (3.63).

The multi-segment TACR studied is a three-segment robot with 3 parallel routed tendons per

segment at 120◦ around the backbone. Tendons (1,2,3) terminate in the first segment, tendons

(4,5,6) in the second segment, and tendons (7,8,9) in the third segment (see Figure 3.7 – Sce-

nario 3.7.4). The robot geometry and material parameters are the same as for the previous robots,

except for the length of the segments, shortening them to lj = 100mm for a total robot length of

l = 3lj = 300mm. Indeed, a too slender robot [Dupont et al. 2022] is subject to instabilities [Li

and Rahn 2002] and for some tendon load combinations, multiple solutions (i.e. configurations)
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(a) (b)

Figure 3.9: A Sample of 20 random pairs of the simulation results for the three-segment TACRs

with (a) parallel routing and (b) convergent routing. The geometry and material parameters of the

simulated robot are given in Table 3.1. Full and dashed lines represent simulations obtained using

the Newtonian approach and the Lagrangian approach, respectively.

would be possible [Bretl and McCarthy 2014]. This simulation scenario can be compared to the

physical multi-segment TACR examples of the literature [Jones and Walker 2006a, Gonthina et al.

2020, Amanov et al. 2021].

505 tendon tension combinations that cover the workspace are simulated with integer values of

tendon tensions varying from 0 to 5N. Figure 3.9a displays a sample of 20 pairs of these total 1010

simulations. The robot shapes with both approaches superimpose and the differences between the

two approaches in position and orientation of the tip remain very small (0.43% of the robot length)

(see Table 3.2). In this scenario, 1.58% of the cases required 2 loading steps with the Newtonian

approach. All other cases were solved with 1 loading step.

3.7.5 Multi-Segment Convergent Routing

Here, the same robot as in the previous scenario is simulated, but with 2 convergent tendons per

segment. The tendons are only routed convergent in their terminating segment and are routed

parallel to the backbone elsewhere. With the same value for Rt = 8mm as for the other cases, the

routing paths are defined by

Di,j(X) = (−1)iRt ϕj(X) (0, cos (ϑj) , sin (ϑj))
T , (3.79)

with

ϕj(X) =


1 for X < (j − 1) lj

1− X−(j−1)lj
lj

for (j − 1) lj ≤ X ≤ j lj

0 for X > j lj ,

(3.80)

where Di,j(X), stands for the routing path of tendon i = 1 .. 6 that ends in segment j = 1 .. 3
and ϑj = (j − 1) 2π/3. As such, the pair of tendons of each segment run on opposite sides of the
backbone. The tendons of the first segment are aligned with the bXbY -plane. For the following
segments, the tendons are shifted 120◦ counterclockwise with respect to the previous segment (see

Figure 3.7 – Scenario 3.7.5).

Figure 3.9b displays a sample of the 686 simulations, corresponding to 343 actuation com-

binations covering the workspace with integer values of tendon tensions ranging from 0 to 4N.
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(a) (b)

Figure 3.10: Demonstration of necessity of the tendon slope discontinuity compensation term.

The blue and red representations of the TACR correspond to the Newtonian and Lagrangian ap-

proaches respectively. The displayed configuration is a randomly sampled configuration from the

set of simulations described in section 3.7.5. Left the state-of-the-art Newtonian models (without

compensation term) fail to match the real robot shape that is correctly modeled by the Lagrangian

approach. Right, including the tendon slope discontinuity compensation term restores proper be-

havior for the Newtonian approach.

The differences in position and orientation of the tip are reported in the last column of Table 3.2.

For this batch of simulations, all cases of both approaches were solved with a single loading step.

Building upon a design featuring convergent routings, as presented in [Oliver-Butler et al. 2019],

this scenario, with multiple such segments, involves tendon slope discontinuities between the seg-

ments. Still, the values are similar to those of other scenarios. In Figure 3.10 and in an online

available video7 an example in shown which the Newtonian approach fails without the slope dis-

continuity compensation term introduced in section 3.6.1. In some cases, the discrepancies can go

up to 50% of the length of the robots.

3.8 Discussion on theTwoMechanicalModelingApproaches

for the TACR Case

In terms of mathematical modeling, the Newtonian approach makes use of Newton’s action-

reaction principle and gathers ad hoc equations to form the global BVP of the problem. The main

challenge consists in reshaping the BVP, in order to find an explicit form suited for solving with

a shooting method. This challenge is addressed through complex algebraic manipulations [Rucker

and Webster 2011b]. On the other hand, the philosophy of Lagrangian mechanics is to consider

the system as a whole, removing the need for isolating subsystems and making them interact. The

difficulty here resides in reducing the infinite-dimensional problem to a finite-dimensional problem

7Video available at: https://youtu.be/W1E-oA42OOM.
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in both the spaces of kinematics and statics, the latter involving evolved calculus [Boyer et al. 2021].

Numerically, the results from section 3.7 show that both approaches produce almost identical

results. All tip position differences are comprised between 0 and 1.29mm, which is 8.00% of the

robot diameters and stays within 0.43% of the robot lengths. These discrepancies are negligible

compared to the modeling errors that are reported in studies that involve experimental setups,

which go over 7% of the robot lengths [Starke et al. 2017].

The Lagrangian approach proposes a reduction of the problem that can be adapted for each

particular system. Shape functions that determine the size of the residual must be specified to

represent the strains in the various segments of the modeled robot. A great variety of choices

are available, and it may be challenging to find the strain basis that is best suited to a particular

problem while keeping the computational cost low. Including the routing schemes of the tendons

as shape functions was proven to be an efficient choice [Renda et al. 2020], but complex interactions

between the robot and its environment will however require including higher dimension generic

shape functions. Moreover, when modeling multi-segment robots, a number of shape functions

must be added for every new segment. Thus, the combination of high dimension shape functions

and multiple segments may lead to excessively long residual vectors. The benefit of this reduction

is that the variational principles are transferred to the numerical implementation, which are proven

to be numerically robust. As such, for virtually any given number of DoF, the problem remains

well conditioned and can be solved with Newton-Raphson’s method, even for very high actuation

and external loads. In our simulations, the benefit of preserving the variational principles through

the reduction is demonstrated by the fact that all simulations could be solved with a single loading

step.

The Newtonian approach is the easiest to implement, particularly for those not familiar with

Lagrangian mechanics. Its infinite configuration space removes the need for determining shape

functions. The consequence is that the robustness of the mechanical principles is lost at the im-

plementation. Therefore, the approach is particularly dependent on the initial guess that is fed

to the solver. This approach is thus well suited for problems where an approximation of the so-

lution is known (which is seldom the case) or for problems whose solution is close to zero. In

other words, the method is efficient for solving non-complex cases with small deformations, but

increasing the problem complexity or modeling high strains requires proceeding in steps, which is

computationally costly. In the Newtonian approach, multi-segment robots require more complex

action-reaction considerations (see section 3.6.1). Moreover, increasing the number of segments

entangles the problem without providing more DoF to the state vector or the residual, and there-

fore makes the convergence less certain for this kind of robots. On the other hand, the constant

residual size goes together with an approximately linear relation between the number of segments

and the computational cost. Besides, in this approach, computing the Jacobian matrix of the resid-

ual vector is complicated and using finite differences to estimate the gradient is less efficient and

may lead to inaccuracies.

The above discussed reduction, influencing the size of the residual of the problem in the La-

grangian approach, must not be confused with the spatial discretization. Both approaches require

to numerically integrate the PDEs along the backbones, requiring to discretize the backbones over

a number of nodes or integration points. Increasing the number of these integration points con-

tributes to the accuracy of the simulations but also increases the computational cost, meaning an

equilibrium must be found. On this point, note that the spectral integration benefits from an expo-

nential convergence, compared to the polynomial convergence of the conventional Runge-Kutta

integrators [Trefethen 2000]. This enhanced convergence enables to integrate over a reduced num-

ber of integration points with the Lagrangian approach (typically 10 to 20).
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3.9 Conclusion

The following conclusions result from the whole processes used to model and simulate the pre-

sented scenarios and more generally from the acquired experience with these processes. Apart

from the numerical implementations presented in this chapter, other numerical methods can be

used. For instance, the BVP of the Newtonian approach can be solved with finite differences or

spectral methods, while the authors of [Renda et al. 2020, Boyer et al. 2021, Renda et al. 2021]

present different numerical methods for the Lagrangian approach. In what follows, the derivation

of the Newtonian approach solved with a shooting method is compared to the derivation of the

Lagrangian approach solved with Newton-Raphson’s method.

Overall, the Newtonian approach is more efficient for two types of problems: (i) problems that

include one or only a few segments and involving low tendon tensions, and (ii) problems solved

iteratively with a known close solution, as can be the case in robot control. Indeed, starting from

a close solution favors the convergence, especially for complex structures. These more complex

structures with many segments and tendons, and problems involving large deformations for which

the solution is completely unknown have a better chance of convergence with the Lagrangian ap-

proach.

As for the Newtonian approach, the Lagrangian approach is more efficient when solving prob-

lems iteratively. And even more so, considering the fact that establishing the generalized stiffness

matrix Kεε, the most costly operation, is a constant function of the shape functions Φ and, there-

fore, is computed only once.

This chapter allowed to highlight the similarities between the Newtonian and Lagrangian ap-

proaches, which was previously a strenuous task due to their different frameworks and community

backgrounds [Rucker and Webster 2011b, Boyer et al. 2021]. In comparison with the derivations

from the literature, substantial additional material was formulated in the present derivation of the

Lagrangian approach, improving its intelligibility. Also, a missing piece in the literature related to

the implementation of tendon slope discontinuities with the Newtonian approach is added [Rucker

and Webster 2011b, Neumann and Burgner-Kahrs 2016, Starke et al. 2017].

With the gained insight on Cosserat rod modeling for continuum robots, and in particular the

deep understanding of the Newtonian and Lagrangian approaches, the next chapter dives into the

derivation of a whole new model, namely, a Cosserat rod model for CAARs.

88



Contributions of this chapter

1. The Newtonian and Lagrangian approaches that are currently dominant in the

robotics community are presented in a single structured picture. The approaches

that did not previously share a common set of notations are here derived using

the unified framework of chapter 2.

2. In the case of the Newtonian approach, beyond the works of the literature, the

case of a multi-segment TACR with slope discontinuities in the tendon routings

between segments is addressed.

3. The derivation of the Lagrangian approach is renewed by a more in-depth

derivation of the model through a canonical application of the principle of vir-

tual work.

4. A mathematical proof of equivalence between the two approaches is provided,

this mathematical proof is backed by an extensive set of simulations.

5. In the numerical implementation of the Lagrangian approach, the latest work of

the literature performs the numerical resolution through explicit time integration

of an overdamped equivalent system. In contrast, here, the dedicated section in-

troduces a linearization of the nonlinear static balance equations, which enables

using computationally efficient methods (e.g. Newton-Raphson’s method).

6. In the numerical implementation of the Lagrangian approach, efficient spectral

methods are used to calculate the residual vector and the Jacobian matrix thanks

to the use of the inverse kineto-static BVP, and its tangent BVP.

The extensive discussions and confrontations of viewpoints during Matthias Tummers’ (MT)

thesis have led to the insight that is reflected in the presented derivations. The draft of the Newto-

nian and Lagrangian approaches (sections 3.3 and 3.4) were respectively written byMT and Frédéric

Boyer (FB). Both sections have then gone through numerous iterations of all collaborators. The

mathematical equivalence was written jointly by FB and MT. Vincent Lebastard produced the first

building blocks of the numerical implementation of the Lagrangian approach. MT completed the

implementation with missing elements and implemented the Newtonian approach. The results of

section 3.6.1 were initially proposed and implemented by MT, FB helped for the mathematical for-

malization. The interpretation of the results and the discussion comparing both approaches was

first drafted by MT.
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4
Modeling Concentric Agonist-Antagonist

Robots

4.1 Foreword

From chapter 1 it became clear that a mechanical model for CAARs is a major missing piece in

the continuum robotics community. Such a model will allow to deploy CAARs for numerous

applications (discussed in section 1.5) by enabling taking into account interactions with the envi-

ronment and optimizing designs for specific applications or even patients. This chapter derives

such a mechanical model. To further put the presented model in perspective, this chapter starts

with section 4.2 that presents and discusses the existing CAAR models and other related models

from the literature. Sections 4.3 to 4.6 present the new mechanical model for CAARs. Section 4.3

introduces the adopted mechanical modeling approach. Section 4.4 develops the necessary prelim-

inaries regarding the geometrical and mechanical properties of CAARs. Then, section 4.5 derives a

kineto-static model for CAARs based on the Cosserat rod theory. At last, section 4.6 implements a

Lagrangian mechanics reduction of the system, leading to a generalized static balance formulation,

and describes an efficient algorithm for numerically solving it. Finally, section 4.7 discusses the

prospects and limitations of the proposed model and concludes the chapter.

While the contents have been revised for inclusion in this manuscript, a major part of this

chapter and the corresponding part of the following chapter was submitted to a peer-reviewed

journal in the following article (currently in review):

Matthias Tummers, Frédéric Boyer, Vincent Lebastard, Alexis Offermann, Jocelyne

Troccaz, Benoît Rosa, and M. Taha Chikhaoui (2023). “Planar Continuum Concentric

Agonist-Antagonist Robots: A Cosserat Rod Model”. In review.

4.2 State of the Art Models

Two CAARs models are currently to be found in the literature. Both of these CAAR models are

2D geometry based models, (as opposed to the mechanical model that is derived in this chapter).

They are presented in section 4.2.1. Besides, as the structure of CAARs closely resembles PCRs,

another natural first step consists in analyzing those models to verify their potential applicability to

CAARs. This analysis is carried out in section 4.2.2.
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4.2.1 Constant Curvature CAAR Models

The constant curvature model for CAARs is the first model proposed in [Oliver-Butler et al. 2017],

when CAARs were initially introduced. It functions as follows. When a CAAR is actuated, the

length of the offset neutral lines (i.e. neutral axes1) of the tubes above the baseplate changes (see

Figure 1.7d page 32). The constant curvature model uses arc geometry while looking at a notch

of the system to resolve the difference in length of the neutral lines at this notch. Multiplying this

result with the number of notches yields the model for the whole robot. Indeed, the model relates

axial displacement at the base of the tubes to the angle of the tip of the tubes while assuming the

robot shape to be an in-plane constant curvature arc between its base and its tip.

Due to the constant curvature assumption, this model is limited to regularly notched CAARs

(i.e. with parallel neutral lines). Using simple beammechanics, the actuation push or pull force is ap-

proximated for a given configuration of the robot. The underling model being purely geometrical,

it can however not take external forces into account.

Subsequently, based on the first model, a piecewise constant curvature model was developed.

It models each notch with a constant curvature arc but considers each notch individually [Oliver-

Butler et al. 2022]. Computing the moment generated by the bending in each notch and stating that

the tension in the robot is constant yields the model of the whole robot. In this model again, the

tension is the result of beam mechanics with very strong simplifying approximations (see section

II.A of [Oliver-Butler et al. 2022]).

This second model captures the variable curvature shape of variably notched CAARs in 2D

for a given input tension or axial displacement at the base of the robot. Although this model has

to make use of the tension to link the curvature of the multiple different notches, the underlying

model is, again, purely geometrical. Modeling external forces is thus not possible with this second

model either. Moreover these models can not be extended to further include friction, to model the

dynamics of CAARs, or to consider nonlinear material behaviors.

4.2.2 Related Cosserat Rod Models of Other Continuum Robots

Sections 2.4.1 to 2.4.3 show that the modeling of CAARs is closest to the modeling of MBCRs and

especially the kind of MBCRs where the rods are constrained relatively to each other (i.e. PCRs

with GICs). Indeed, the offset neutral lines of CAARs can be seen as individual backbones, but

constrained around the center of the tubes that are arranged concentrically. As in MBCRs, the

consequence of this constraint is the transmission of efforts from one rod to the others and vice

versa.

Two such PCRs have been modeled with mechanical models over the recent years. Both elab-

orate a Cosserat rod model taking into account the interaction of the rods at constraint points that

are the disks of the robots.

The PCR with GIC studied in [Orekhov et al. 2017] consists of a number of rods embedded

together at their distal extremity and constrained at intermediate constraint points by disks, car-

ried on a central backbone (see Figure 4.1a). In each section, between two successive disks, the

individual rods evolve freely in space. To model this robot, the strategy is to model each section

individually. The sections are linked by the static balance between them. The internal efforts and

1The neutral axis is an axis in the cross section of a beam along which there are no longitudinal stresses or strains

when the beam deforms.
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(a) (b) (c)

(d) (e)

Figure 4.1: (a) The PCR with GICs studied in [Orekhov et al. 2017]. (b) The eccentric tube robot

presented in [Wang et al. 2022b]. (c) The eccentric tube robot developed in [Mitros et al. 2022b].

(d) The PCR with GICs featuring many disks and parallel backbones in [Chen et al. 2021]. (e) The

Push-pull robot developed in [Xu and Simaan 2008]
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pose of the rods propagate to the next section. Two problems arise in such approach. The inter-

action of the rods at the disks induces discontinuities in their internal efforts. Thus, the internal

efforts of each rod exiting each disk is a priori unknown. Also, as the rods can evolve freely in space

between the disks, the length of each rod in each section is unknown. To address these problems,

the authors formulate a general BVP to solve for all internal efforts. The BVP is solved using a

shooting method to iterate over a guess for all these unknowns. Simultaneously, for each rod at

each section of each of these iterations, secondary BVPs are solved to find the lengths of the rods

in the sections. This method introduces 6nr +6+nd(4nr +6) unknowns for the internal efforts,
where nr is the number of rods and nd the number of disks. For a robot with six rods and four
disks this goes up to 162 unknowns to guess for only the outer shooting algorithm, i.e. without

counting the unknown lengths of each rod in each section (nd nr = 24).

The eccentric tube robot, first presented in [Wang et al. 2019], consists of only two tubes that

are also constrained by intermediate disks, carried on a central backbone (see Figure 4.1b). Here,

however, the rods are not fixed at their extremity. More recently, an evolution of the robot was

presented in [Wang et al. 2022b] where the rods are replaced by CTCRs. The model derived in

this work is similar to the one described above, except for the free ends of the rods and for the

fact that the interactions of the tubes with the disks are considered to be point forces. In the initial

publication [Wang et al. 2019], the authors describe their implementation as follows. A global BVP

solves for the sliding of the rods (the length of the rod sections) and the interaction forces. And

three individual BVPs solve for the two tubes and the backbone at each iteration of the global

BVP. In these iterations it is noted that the BVPs of the tubes should be solved before solving

the backbone as the latter needs tube orientations as inputs. In this model implementation also,

the nested BVPs and the high dimension parameter spaces lead to complex numerical issues. Two

years later, the authors describe a slightly different implementation [Wang et al. 2022b]. Here they

guess for all unknowns at once and integrate the two tubes and the backbone simultaneously but

independently. As the used numerical methods are very sensitive to the initial guess, the authors

suggest to iteratively solve close configurations by taking small steps, starting from a known solu-

tion (see Figure 3.5 page 77). They divide the residual of the shooting function into three parts and

affect weights to the different parts. The weights are hand selected and subsequently tuned em-

pirically. They solve the problem over an additional, constrained parameter space for the variables

representing the sliding of the rods such that the disks are not allowed to make contact.

A similar model for a robot with multiple eccentric CTCRs constrained by disks (see Fig-

ure 4.1c) is the model derived in [Mitros et al. 2022b]. Unfortunately, the presented model does not

propose solutions to simplify the problem and the numerical resolution is mentionned in a rather

concise manner.

Another recent work of interest, modeling a PCR with the Cosserat theory of rods, is the study

conducted by the authors of [Chen et al. 2021] (see Figure 4.1d). Two major assumptions make this

model quite different, however. First, the rods are assumed to run parallel to the backbone at all

times. This is possible by using a theoretically infinite number of spacer disks and parallel routing

paths. Of course, in the physical robot, the actual number of disks used, introduces discrepancies to

some extent. Secondly, the rods are assumed to not undergo torsion. This is possible by actuating

the robot in a sole push-pull manner, by only permitting external efforts that lie in the robot bending

plane, and by considering that, with the previous assumption, the rods run parallel to the backbone.

These two assumptions allow to derive relations between the arc lengths of the different rods at a

given section of the robot. Further, this considerably reduces the size of the parameter spaces of

the problem. With all these assumptions however, this PCR model tends to be closer to the model

of the push-pull robot developed in [Xu and Simaan 2006, Xu and Simaan 2010] (see Figure 4.1e).
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4.2.3 Discussion

Currently the models from the literature devoted to CAARs are 2D geometry based models. While

one of the models is capable of capturing CAARs with in-plane variable curvature shapes, the

models are incapable of modeling CAARs in interaction with their environment.

Regarding the discussed PCR models, despite their intricacy and the numerical complications,

auspicious results were reported. The major difference with CAARs however, is that the interaction

constraints of the multiple rods operate at distinct locations instead of continuously, as it is the case

with the concentricity constraint of CAARs.

From these two statements, it is clear that the continuum robotics community would greatly

benefit from a mechanical model for CAARs and that a whole new model needs to be derived from

square one.

4.3 CAAR Mechanical Modeling Approach

The three following sections derive a mechanical model for CAARs through the Lagrangian ap-

proach. Based on the previous analysis, the choice for the Lagrangian approach over theNewtonian

approach can be explained as follows.

Each of the presented state of the art PCRmodels is derived through aNewtonian approach. In

each of the models, this choice brings in numerous interaction forces to consider between the rods

at the GIC points. Depending on the model assumptions and the resolution method, each or part

of these interaction forces translates into unknowns of the problem to solve for. The consequence

of high dimension parameter spaces is that the numerical resolution of the problem becomes a chal-

lenging task. Moreover, with such tangled problems with complex numerical resolution methods,

it becomes difficult to unwind the intricacy and to capture insight on the behavior of the robot.

In the case of CAARs, because the constraints are continuous (concentricity constraints) and

should be verified at each integration step, following a similar approach leads to infinitely high pa-

rameter spaces. Adopting the Lagrangian approach removes the need for isolating the subsystems

and hence, does not require considering the interaction forces.

The first step to derive the model is to express the geometrical parameters and mechanical

properties of notched tubes as continuous functions along their length. Subsequently, a redundant

Cosserat model is formulated based on the classical ingredients of the Cosserat rod theory and ad-

ditional elements specific to CAARs. Then, following the Lagrangian methodology, the kinematics

of the CAAR system is parameterized to a minimal set of parameters compatible with the con-

straints. A Rayleigh-Ritz reduction is operated, projecting the internal and external loads to vectors

of generalized forces. Finally, the generalized forces are used to express the static balance of the

system, providing the residual of the problem. This final formulation is called the reduced model.

Figure 4.2 presents a flowchart synthesizing the different steps leading to the reduced model, to

help follow through the developments.

4.4 Geometrical Parameters and Mechanical Properties

CAARs consist of concentric tubes attached at their distal ends, hereafter called the tip. The tubes

have an asymmetric geometry that offsets their neutral bending axis form the tube centerlines (see

Figure 4.3a to Figure 4.3c). The tubes can be translated axially at their base to induce a movement
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Figure 4.3: Composition and working principle of a CAAR. (a) The outer tube 1 in its reference

configuration (b) The inner tube 2 in its reference configuration. (c) The tubes assembled forming

the CAAR in its reference configuration. (d) Example of an actuated configuration of the CAAR

where a > 0.

by the difference in length and position of the offset neutral lines (see Figure 4.3d). In the following,

the index of the outer tube is 1 and index of the inner tube is 2. Quantities that are related to tube

1 are labeled with a subscript •1 and those related to tube 2 with a subscript •2. The subscript
•i will be used for generic expressions2. As for the previous chapters, the symbols and notations
are summarized in the ‘Notations’ preamble page 13. Due to limitations in the representation of

mathematical symbols, there is a slight overlap in notation between this chapter and the previous

one. Wherever this occurs, it is clearly specified in the ‘Notations’ preamble.

The next section derives a kineto-static model for CAARs. This model approximates the two

tubes as Cosserat rods whose cross-sectional parameters vary continuously along their axis. As is

the case in the theory of rods, these design parameters consist of the areaA, the centroids, and the
moments of inertia IX,Y,Z of the non-symmetric cross-sections of each of the tubes. The remainder

of this section is devoted to the expression of all these parameters. Whenever derivations apply to

both the inner and the outer tubes, the tube subscripts i = 1, 2 will be omitted for clarity.

4.4.1 Neutral Line and Cross-Sectional Area of Notched Tubes

Asymmetrically cutting notches out of plain tubes offsets the neutral line of each tube towards the

thin remaining backbone. The geometrical parameters of such notches are displayed in Figure 4.4.

By cutting regular notches, the neutral lines are parallel to the centerline of the tubes and the robot

shape approximates a constant curvature when actuated in free-space. By varying the geometry

of the notches along a tube, it is possible to obtain neutral lines with varying offset from the

tube centerline. Figure 4.5 schematizes such tubes with convergent and divergent neutral lines.

2In chapter 3, the subscript •i is related to the i-th tendon instead of to the i-th tube. This should however not
bring in any confusion as CAARs do not feature tendons and TACRs are not composed of multiple tubes.
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Figure 4.5: Varying the notch depth along the tubes varies the position of the offset neutral line.

(a) and (b) tubes with convergent neutral lines. The notch depth decreases towards the tip of the

tubes. (c) and (d) tubes with divergent neutral lines. The notch depth increases towards the tip of

the tubes.
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Prototypes with such variable neutral lines are capable of achieving variable curvature shapes such

as the CAAR presented in Figure 1.8b page 33.

Let ρ and ρ denote the outer and inner radius of a tube. Following the methodology presented

in [York et al. 2015, Swaney et al. 2016], the first step is to compute the areasA andA of the pieces

of full disk of radius ρ and ρ above Y = α (see Figure 4.4), as well as the offsets of their centroids

D and D, with respect to the CAAR centerline

A =
ρ2(φ− sin(φ))

2
, A =

ρ2(φ− sin(φ))

2
, (4.1)

D =
4ρ sin3(12φ)

3(φ− sin(φ))
, D =

4ρ sin3(12φ)

3(φ− sin(φ))
, (4.2)

where the notations

φ = 2 cos−1(α/ρ) , φ = 2 cos−1(α/ρ) (4.3)

were introduced, with α = γ − ρ and γ the depth of the notches as shown in Figure 4.4. Then,
using two such pieces of full disk, one of positive, the other with negative area, the cross-sectional

area of the notched tube is

A =

∫∫
dY dZ = A−A , (4.4)

while the offset of its centroid is

D =
1

A

∫∫
Y dY dZ =

DA−DA
A−A

. (4.5)

In this implementation, extra attention must be paid to check whether the notches reach deeper

than the opposing inner wall of the tube (γ > ρ + ρ). In this case A = 0 and the offset is simply

D = D.

4.4.2 Cross-Sectional Inertia and Stiffness of Notched Tubes

The stiffness of the tubes depends on the second area moments of their cross-sections. Assuming

that the deformation essentially operates in the notched parts of the tubes, these moments are

computed at these locations only. Indeed, for a set of springs linked in series, the compliance (i.e.

the inverse of the stiffness) is additive. This means that the parts of the tubes between the notches

which are virtually infinitely rigid do not contribute to the general stiffness of the whole notched

tube. Following algebraic manipulations, the cross-sectional second area moments about bX , bY ,
and bZ read

IX = IY + IZ , (4.6)

IY =

∫∫
Z2 dY dZ =

ρ4

48
ΨY (ρ)−

ρ4

48
ΨY (ρ) , (4.7)

IZ =

∫∫
Y 2 dY dZ =

ρ4

16
ΨZ(ρ)−

ρ4

16
ΨZ(ρ)−AD2 , (4.8)

with

ΨY (ρ) = 6π − 12 sin−1

(
α

ρ

)
− 8 sin

(
2 sin−1

(
α

ρ

))
− sin

(
4 sin−1

(
α

ρ

))
, (4.9)

ΨZ(ρ) = 2π − 4 sin−1

(
α

ρ

)
+ sin

(
4 sin−1

(
α

ρ

))
. (4.10)
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Figure 4.6: Varying bending inertia along the length of tubes with a convergent neutral line (see

Figure 4.5a and Figure 4.5b). The blue marks indicate the inertia as calculated by equation (4.8)

at each of the notches for the tubes of a robot with the following parameters (all units are mm):

ρ1 = 4.5; ρ
1
= 3.7; ρ2 = 3.2; ρ

2
= 2.4; h = 5; c = 5; l = 150; γ1(0) = 8.20; γ1(l) = 7.20;

γ2(0) = 5.60; and γ2(l) = 4.95. γi(0) and γi(l) are respectively, the initial and final depth of
the notches varying linearly from the bottom to the tip of the tubes. The green and red lines

are the interpolations of the calculated inertia for any X-cross-section of the tubes. The inertia
for the inner tube I2(X2) is also defined for X < 0 (or equivalently X2 > l1) in the reference
(straight) configuration because this non-notched part can be slid inside the outer tube. The colors

correspond to the colors of the tubes across Figures 4.3 to 4.8.

Referring to section 2.3.3 and assuming that the material is homogeneous, the calculated inertias

allow to model the stiffness of a tube with the reduced Hooke matrix

H = diag
(
GIX ,EIY ,EIZ ,EA,GA,GA

)
, (4.11)

with E Young’s modulus, G = E(1 + ν)/2 the shear modulus, and ν Poisson’s ratio.

4.4.3 From Notched Tubes to Continuous Material Properties

Reintroducing the tube indices (i = 1 for the outer tube and i = 2 for the inner tube) into
the notations, let us note that the above expressions of cross-sectional parameters Ai, Di and

IX,i, IY,i, IZ,i depend on the considered notch along the i-th tube through the design parameters
γi, hi, and ci. In the rest of this chapter, the tubes are modeled as continuous one-dimensional
media of (non-symmetric) cross-sections labeled by a material abscissa Xi. Defining Xi as the

arc-length of the neutral line of tube i in its reference configuration, the discrete values of Ai,

Di and IX,i, IY,i, IZ,i computed at each notch with the above formulas, need to be changed into
continuous functions of Xi ∈ [0, li]. This is achieved by polynomial interpolation and illustrated
by Figure 4.6, in the case of IZ,i, and for tubes with convergent neutral lines (see Figure 4.5a and
Figure 4.5b). In the next section, a kineto-static model of a CAAR able to deform in the exey-
plane is proposed. This model will depend on the neutral line offset functions D1 and D2 of the

two tubes 1 and 2, their cross-section area functionsA1,A2 (gravity is a-priori not neglected), and

their second inertia moments about bZ only. For the sake of concision, these inertias will be noted
IZ,1 = I1 and IZ,2 = I2.
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4.5 Cosserat Rod Modeling Applied to CAARs

The present model considers a CAAR subject to planar deformations. The tubes define two ma-

terial bodies denoted B1 and B2. The ambient space is equipped with a fixed reference frame

Fs = (O, ex, ey, ez) called the inertial frame, located at the base of B1 that is clamped in the

baseplate. The baseplate is defined as the eyez-plane. Each of the tubes is modeled as a single
Cosserat rod thanks to the above approximation process of its cross-sectional parameters. Let us

first recall that in Cosserat’s theory, a beam is considered as a continuous stack of rigid material

cross-sections, along a reference material line drawn along the largest dimension of its reference

(unstressed) configuration. By adjusting the definitions of this reference line and the cross-sections,

it is possible to accommodate Cosserat’s theory for modeling CAARs.

4.5.1 Material Parameterization of the Rods

In this section, the CAAR is considered only in its reference (straight) configuration (or material

space), in which its centerline notedM is assumed to be rectilinear3 (see Figure 4.7). The reference

material line of each tube i is defined as the line of its cross-section centroids, or “neutral line”,
notedNi. Each of the cross-sections of Bi is labeled by a Lagrangian continuous indexXi ∈ [0, li]
that is naturally defined as the arc length along Ni of total length li oriented from the base to the

tip for tube 1, and from the tip to the base for tube 2, as indicated in Figures 4.3 and 4.7. It is

important to note here that, although the geometry of the bodies Bi appears to be straight at rest,

Ni is in general not parallel toM and may even be curved. To easily grasp the consequences of the

concentricity of the two tubes, it is convenient to choose the material cross-sections of the tubes

as orthogonal toM (in the reference configuration). Note that this choice differs from common

practice in rod theory where, in general, the geometric centerline and the neutral line of a rod

coincide. In the next section, the Cosserat model will naturally accommodate for this choice, by

declaring a shear offset field (consequence of design) along each tube.

4.5.2 Parameterization of the Deformation of the Tubes

Once the material reference lines and cross-sections are defined, the procedure of section 2.3.1

is applied but, in this case, once for each neutral line. Thus, the equations are rewritten with a

subscript •i.

A moving cross-sectional frame Fi(Xi) = (ri, bX,i, bY,i, bZ,i)(Xi) is attached to each cross-
section, whose origin ri(Xi) is located along Ni, while bX,i(Xi) is the unit normal vector to the
cross-section, oriented towards increasing Xi, and (bY,i, bZ,i)(Xi) completes bX,i to form an or-

thonormal basis according to the schematic of Figure 4.7. For all Xi ∈ [0, li], the pose of Fi(Xi)
with respect to Fs is parameterized by a homogeneous transformation gi(Xi) ∈ SE(2) ⊂ SE(3)
as

gi =

(
Ri(Xi) ri(Xi)
01×4 1

)
, ri =

rX,i(Xi)
rY,i(Xi)
rZ,i(Xi)

 . (4.12)

3The extension of the model to CAARs that have precurved reference configuration is straightforward but not

presented here for better readability. In the case of precurved CAARs, the precurvature is captured by a reference

twist component ξ0a (cf. computation of εi = ξa,i − ξ0a,i in equation (4.44)).
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Figure 4.7: Parameterization of the reference (straight) configuration of a CAAR with non-parallel

neutral (centroid) lines. Left, lateral view. Right, top view.

The internal deformation of each tube is defined by the field of twists in se(2) ⊂ se(3) ∼= R6

ξi =

(
g−1
i

∂gi
∂Xi

)∨
, (4.13)

where ξi = (KT
i ,Γ

T
i )

T , withKi = (KX,i, KY,i, KZ,i)
T and Γi = (ΓX,i,ΓY,i,ΓZ,i)

T , respectively

the angular and linear rates of change.

According to section 2.3.5, ξi is partitioned as

ξi = B̄iξc,i +Biξa,i , (4.14)

whereBi and B̄i are two selection matrices associated to tube i. In all the following developments,
the tubes of the CAAR are modeled as two Kirchhoff rods moving in the exey-plane. The selection
matrices are therefore

B1 = B2 = (0, 0, 1, 0, 0, 0)T , B̄1 = B̄2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


T

, (4.15)

that ensure that the allowed components of the spatial twists are

ξa,1(X1) = KZ,1(X1) , ξa,2(X2) = KZ,2(X2) . (4.16)

Once the selection matrices are established, the next step is to determine the value of ξci in equa-
tion (4.14). With B̄i defined by equation (4.15), ξci is composed of five components ξci = ξ0ci =
(K0

X,i, K
0
Y,i,Γ

0
X,i,Γ

0
Y,i,Γ

0
Z,i), (i = 1, 2). To determine the values of these components, the first

step is to note that, since the deformation holds in a plane normal to bZ , Γ
0
Z,i = K0

X,i = K0
Y,i = 0.

Second, as Kirchhoff rods are inextensible, Γ0
X,i = 1. Finally, with the definition of the material

cross-sections and neutral lines (see section 4.5.1), Γ0
Y,i measures the angle between the unit tangent

toNi atXi, and the unit normal to theXi cross-section, respectively defined by dri/dXi and bX,i.
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In the terms of Cosserat rod theory, Γ0
Y,i stands for an independent shear component that can be

identified by a small angle βi(Xi) measuring the slope of the profile of Ni along the CAAR cen-

terlineM (as sketched in Figure 4.7). In accordance with Kirchhoff’s theory, these shear offsets

are not DoF of the CAAR and do not store any internal energy, but instead, are fixed by design

through the relationships

βi(Xi) =
dDi

dXi
(Xi) , (4.17)

which are deduced from simple geometric considerations applied to Figure 4.7, withXi ∈ [0, li] 7→
Di(Xi) ∈ R+, the function defining the oriented distance fromM to Ni along the second unit

vector bY,i of Fi(Xi). Gathering all the ingredients, the expression of ξci , in the partition of
equation (4.14) writes

ξc,i(Xi) = ξ0c,i(Xi) = (0, 0, 1, βi(Xi), 0)
T = (0, 0,Γ0T

i )T , (4.18)

with βi (i = 1, 2) defined by equation (4.17).

4.5.3 Geometric Assumptions of the Model

The tubes are slender bodies, i.e. |d/l| ' ε where d = 2ρ1 is the diameter and l = l1 the length
of the outer tube, both being typical characteristic values of the CAAR, and ε is a small positive
number. Moreover, the Cosserat rod model assumes finite deformations and small strains. First,

this means that |KZ,id| is a small quantity compared to unity. Second, since the tilt βi(Xi) of the
neutral lines along the CAAR is captured by the shear component of the model, these tilts must

be small as well. Third, the translation of the portion of tube 2 below the baseplate, noted a in
Figure 4.3, characterizes the retraction of tube 2 and is also a small quantity compared to l (typically
the displacement actuation a is of the order of the diameter d of the CAAR). All these assumptions
that are compatible with the operating principle of a CAAR, can be summarized as follows:

|KZ,id| ' ε ,

∣∣∣∣dDi

dXi

∣∣∣∣ = |βi| ' ε ,
∣∣∣a
l

∣∣∣ ' ε . (4.19)

According to Cosserat’s model, the next section derives a model for CAARs consistent to first

order approximation with respect to ε. In practice, this means that any quantity of the order of ε2

and higher orders is ignored in the developments. A more general summary of the assumptions of

the present model is given in Table 4.1.

As a first illustration of the use of these assumptions, let us consider the CAAR in its refer-

ence (straight) configuration. If X ∈ [0, l] denotes the length along its rectilinear central lineM,

measured from its base to its tip (see Figure 4.7), then dX = ± cos(βi)dXi ' ±(1 − β2
i /2)dXi

(positive if i = 1, negative if i = 2) and thus, when considering only the first order of ε,

X ' X1 ' l1 −X2 , ∀(X1, X2) ∈ [0, l1]× [0, l2 − a0] , (4.20)

where a0 is the length of the portion of the inner tube below the baseplate when the CAAR is at
rest. As will be made clear in the next section, this correspondence between the two tube labels no

longer holds once the CAAR deforms. To address this challenge, section 4.5.5 derives a so-called

face-to-face function that relates the labels of the tubes in any configuration.

103



Table 4.1: Summary of the assumptions of the CAAR model.

1. The considered CAARs are slender robots, i.e. |d/l| � 1.

2. The robots deform in the small strain regime. As a consequence |KZ,iD| � 1.

3. The model considers ideal sliding of the tubes (concentricity and guiding con-

straints), i.e. without friction.

4. The bending of notched tubes is assumed to operate essentially in the notched

parts.

5. The neutral lines of the notched tubes are assumed to be continuous material

lines and the mechanical properties of the tubes are continuous functions along

the length of the tubes.

6. The tubes are made out of homogeneous material.

7. The tubes are modeled as in-plane bending Kirchhoff rods. Thus, in the model,

the tubes undergo no shearing, torsion, or extension/compression and the

bending occurs in-plane through a single component KZ,i.

8. The tilt of the neutral lines is supposed to be small, i.e. |dDi/dXi| = |βi| � 1.

9. The maximum translation actuation of the tubes is of the order of the diameter

of the robot, thus |a/l| � 1.

10. There is sufficient clearance between the tubes such that the notched outer tube

parts can bend unhampered around plain inner tube parts and vice-versa.

4.5.4 Kinematic Constraints

When tube 2 is pulled (a > 0) or pushed (a < 0) through the baseplate (i.e. the eyez-plane)
defined in Figures 4.3 and 4.4, it slides into tube 1. Thus, the CAAR is subject to internal and

external sliding contacts. These contacts are all considered ideal, i.e. friction-less, and can therefore

be fully modeled by kinematic constraints. To capture these constraints, it is convenient to define

a function X̃2( · ) : X1 ∈ [0, l1] → [0, X̃2(0)], named face-to-face function since it gives the
label X̃2(X1) of the cross-section of tube 2 co-planar with that of the X1-cross-section of tube 1.

Denoting X̃0
2 ( · ) the particular value of this function in the reference (straight) configuration of

Figure 4.7, one can see from equation (4.20) that X̃0
2 (X1) = l1 − X1 along [0, l1]. However, as

soon as the CAAR bends, the two tubes slide relative to each other, and a deformation-dependent

shift appears between the initially coincident sections X1 and X2 = l1 − X1 on the reference

configuration (see Figure 4.8). As will be detailed hereafter, this axial displacement brings first

order terms with respect to ε in the kinematic model of the CAAR, and consistently with the order
of approximation of the model, one must consider X̃2(X1) 6= X̃0

2 (X1) = l1−X1 in any deformed

CAAR configuration. Throughout this chapter, any function f2( · ) related to tube 2, and defined
on [0, l2], is associated to its pull-back function f̃2( · ) = f2 ◦ X̃2( · ) defined on [0, l1] by

f2(X̃2(X1)) = f̃2(X1) . (4.21)

With this relabeling operation and the definition of the material cross-sections along the two tubes,

it is henceforth possible to model the concentricity of the two tubes above the baseplate, i.e.

∀(X1, X2) ∈ [0, l1] × [0, X̃2(0)]. The two cross-sections facing each other on each of the two
tubes are forced to evolve in the same plane, i.e. forced by the (ideal) point geometric constraints.

Introducing the notation D(X1) = D1(X1) + D̃2(X1), the positions of the two cross-sections
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are related by the constraint

∀X1 ∈ [0, l1] : r̃2(X1) = r1(X1)−D(X1)R1(X1)EY , (4.22)

while the coplanarity of the two coincident cross-sections X1 of tube 1 and X̃2(X1) of tube 2
constrains their orientations as

∀X1 ∈ [0, l1] : R̃2(X1) = R1(X1)RZ,π , (4.23)

where RZ,π = exp(ÊZπ) stands for a rotation of +π in the plane of the deformation, and re-
flects the opposite orientation of the neutral linesNi of the two tubes. Gathering equations (4.22)

and (4.23) yields the concentricity constraints

∀X1 ∈ [0, l1] : g2(X̃2(X1)) = g1(X1)g1,2(X1) , (4.24)

where g1,2(X1) is the relative transformation between the X1-cross-sectional frame of tube 1 and

the X̃2(X1)-cross-sectional frame of tube 2, which, referring to Figure 4.7, takes the detailed form

g1,2(X1) =

(
RZ,π −D(X1)EY

01×3 1

)
. (4.25)

Similarly, the effect of the rigid tubular guide (see Figure 4.3d) on the part of tube 2 below the

baseplate can be modeled by another set of (ideal) point-wise geometric guiding constraints defined

∀X2 ∈ [X̃2(0), l2], by

rY,2(X2) = rZ,2(X2) = 0 , R2(X2) = 13×3 . (4.26)

4.5.5 Derivation of the Face-to-Face Function X̃2( · )

To derive the expression of the face-to-face function X̃2( · ), it is necessary to introduce the fol-
lowing key relationship, tangent to the pull-back function of equation (4.21),

h(X1)

(
df2
dX2

)∼
=

df̃2
dX1

, with: h =

(
dX̃2

dX1

)
(X1) , (4.27)

which allows transforming theX2-derivative of any function f2( · ) originally defined on [0, X̃2(0)],
into aX1-derivative on [0, l1]. The detailed expression of this tangent pull-back function is obtained
as follows. Differentiating equation (4.22) with respect to X1 and using equation (4.27) with f2 =
r2 gives

h

(
dr2
dX2

)∼
=

dr1
dX1

−R1

(
dD

dX1
EY +DK1 × EY

)
. (4.28)

Further, using equation (4.23) in equation (4.28) and rearranging yields

hRZ,πR̃
T
2

(
dr2
dX2

)∼
= RT

1

dr1
dX1

−
(
dD

dX1
EY −DKZ,1EX

)
, (4.29)

in which Γi, the translational component of equation (4.13), is given by

Γi = RT
i

(
dri
dXi

)
. (4.30)

105



Hence, one can rewrite equation (4.29) as

hRZ,πΓ̃2 = Γ1 −
(
dD

dX1
EY −DKZ,1EX

)
. (4.31)

From equation (4.18), Γ1 and Γ2 can be decomposed as

Γi = Γ0
i = (1, βi(Xi), 0)

T = EX + βi(Xi)EY . (4.32)

Introducing the detailed expressions of equation (4.32) into equation (4.31) and projecting the result

onto EX gives

h = −(1 +D(X1)KZ,1) , (4.33)

where the minus sign comes from RZ,π in equation (4.31).

Observing that in this expression,D(X1) = D1(X1)+D̃2(X1), with D̃2(X1) = D2(X̃2(X1)),
the relation is a priori implicit4. However, consistently with the assumptions of section 4.5.3, its

leading order approximation is explicit. Indeed, D̃2(X1) = D2(X̃2(X1)) can be expanded as

D2(X̃
0
2 (X1)) +

(
dD2

dX2

)
(X̃0

2 (X1))∆X̃2 +O((∆X̃2)
2) , (4.34)

where∆X̃2 = X̃2(X1)− X̃0
2 (X1) stands for the variation ofX2 seen by theX1-cross-section of

tube 1, when tube 2 slides inside tube 1 in a deformed configuration of the CAAR (see Figure 4.8).

Consistently with the assumptions of section 4.5.3,
∣∣KZ,1∆X̃2

∣∣ ' |KZ,1a| ' ε, and the linear

term in ∆X̃2 is of order ε
2 and is thus negligible in equation (4.33). Therefore, reminding that

X̃0
2 (X1) = l1 −X1 ∀X1 ∈ [0, l1], one can replace equation (4.33) by

h = −(1 +KZ,1(D1(X1) +D2(l1 −X1))) , (4.35)

which is consistent with the first order approximation. For the sake of concision, the remainder of

this chapter maintains the notation of equation (4.33) in which D(X1) is computed as D(X1) =
D1(X1) +D2(l1 −X1).

Finally, by integrating equation (4.33) along tube 1 starting from X1 = l1 where X̃2(l1) = 0,
the face-to-face function X̃2( · ) is defined by the path integral

X̃2(X1) = −
∫ l1

X1

h(Y ) dY =

∫ l1

X1

(1 +KZ,1D) dY , (4.36)

which in the general case, must be calculated numerically.

4.5.6 Kineto-Static Model of a CAAR

This section presents a model for CAARs that reflects the static balance between internal restoring

forces and external forces that are assumed to be comprised of gravity, the actuation push-pull

force applied at the base (X2 = l2) of tube 2, and a possible external wrench, applied at the tip of
the CAAR. Based on the above parameterization, in the (quasi)static regime, the deformations of

4In details, X̃2( · ) is solution of an ODE.
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X̃2

D
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r2 =
1

KZ,2

N2

N1

dλ

bX,1
bY,1

X1
dX1
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= −dX̃2
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Figure 4.8: Left, visualization of the cross-section label shift due to the sliding between tubes.

Bottom left, reference (straight) configuration. Top left, deformed configuration. Right, geometric

picture for regular notches. In this example, the distance D between the neutral lines of the two

tubes is constant along the robot. Simple geometrical considerations on the osculating circles of

radii r1 and r2 tangent to, respectively, the neutral linesN1 andN2 allow to intuitively find the two

key relations of equations (4.33) and (4.51).
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the material bodies of the tubes B1 and B2 are governed by their kineto-static model defined by

the set of Cosserat’s ODEs which hold for i = 1, 2

dgi
dXi

= giξ̂i ,

dΛi

dXi
= adTξiΛi − F̄i ,

(4.37)

The first ODEs of equation (4.37) stand for a continuous geometric model of the tubes, while

second ODEs of equation (4.37) represent their static wrench balances (all expressed in the cross-

sectional frames), with Λi ∈ se(2)? ⊂ se(3)? ∼= R6 the wrench of stress transmitted across the

Xi-cross-section, and F̄i ∈ se(2)? ⊂ se(3)? ∼= R6, the density of external wrench exerted by

the environment along Bi. These ODEs are supplemented with the boundary and connectivity

conditions. For B1, the BC at its base X1 = 0 is

g1(0) = 14×4 . (4.38)

For B2, the BC at X2 = l2 is

Λ2(l2) = F+,2 = (0, 0, 0, T+, 0, 0)
T , (4.39)

whereT+ represents the vertical actuation push-pull force applied to the end of tube 2 (i.e.X2 = l2).
At X1 = l1 and X2 = 0 the tubes are clamped, which translates into the connectivity condition
on transformations

g2(0) = g1(l1)g1,2(l1) , (4.40)

where g1,2(l1) is given by equation (4.25) in which D(l1) = (D1 + D̃2)(l1) = D1(l1) + D2(0).
And similarly, the connectivity condition on wrenches reads

Λ1(l1) = Ad−T
g1,2(l1)

Λ2(0) + Ad−T
g1,sF+ , (4.41)

where F+ = (01×3, (R
T
1 (l1)f+)

T )T is the wrench of a possible external concentrated force f+,
expressed in the inertial frame and imposed at the tip of the CAAR, while g−1

1,s is the pose of the

tip cross-sectional frame of tube 1 with respect to a frame (defined in the inertial frame) located at

the application point of the force. In the case of CAARs, the external wrench density F̄i can be

detailed as follows:

F̄i = F̄ext,i + F̄c,i . (4.42)

F̄ext,i models the effect of all distributed external forces applied to the CAAR except those due to

contacts. In the present model, the distributed external forces are restricted to gravitational forces

which take the detailed form

F̄ext,i(Xi) = (01×3, (µiAi)(Xi)(R
T
i (Xi)ag)

T )T , (4.43)

where (µiAi)( · ) is the mass density per unit of length of tube i, while ag is the uniform gravita-

tional acceleration field expressed in the inertial frame Fs. The second component F̄c,i of equa-

tion (4.42) stands for a field of contact wrenches whose components play the role of Lagrange

multipliers in charge of forcing the concentricity constraints of equation (4.24) and the guiding of

B2 below the baseplate of equation (4.26). Considering an ideal system without friction, the two

tubes are subject to reaction wrenches obeying the action-reaction principle (i.e. F̄c,1 = −F̄c,2).

To fully close the formulation defined by equations (4.24), (4.26), and (4.37) to (4.43), it needs

to be supplemented by the constitutive relation (see sections 2.3.3 and 2.3.5)

BT
i Λi = Ha,iεi , (4.44)
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where εi = ξa,i − ξ0a,i defines the strain field along Bi, with ξ
0
a,i the value of equation (4.13) in the

reference configuration of Bi, and Ha,i = BT
i HiBi its reduced Hooke’s tensor, with Hi defined

for each tube by equation (4.11). In the case of Kirchhoff rods, straight at rest and subject to planar

deformations, the strain along tube i εi = ξa,i = KZ,i and the bending stiffness Ha,i(Xi) =
(EiIi)(Xi). Finally, the inertia along tube i Ii = IZ,i is defined by equation (4.8).

4.6 Lagrangian Reduction and Implementation

Because the pose fields gi( · ) can be entirely reconstructed
5 from the knowledge of ξa,i( · ), the

set of equations (4.37) to (4.44) with the constraints of equations (4.24) and (4.26) define a closed

formulation of a CAAR kineto-static model on the configuration space C = C1 × C2, with: Ci =
{ξa,i( · ) : X1 ∈ [0, li] 7→ ξa,i(Xi) ∈ Rna}, i.e. on a non-minimal configuration space (with more
dimensions than DoF). This parametric redundancy is a consequence of the presence of constraints

of equations (4.24) and (4.26) and their associated Lagrange multipliers (4.42) in the formulation.

This redundant formulation is called the constrained formulation.

The idea of the reduction is to re-parameterize the fields ξa,i( · ) by a reduced (finite) set of
generalized coordinates q ∈ Rn. Using a standard Lagrangian process, the expected static model

will take the conventional matrix form

Qint(q) +Qext(q) = 0 , (4.45)

where Qint and Qext denote generalized internal and external force vectors, respectively. The

balance of equation (4.45), that is called the reduced model, will be derived by applying the principle

of virtual work. Since all constraints are assumed to be ideal, the reaction forces they generate do

not work in any virtual displacement field compatible with them, and Qint (respectively Qext) will

consist only of the elastic restoring forces (respectively of the generalized forces imposed by the

environment, i.e. the gravity, push-pull, and tip forces along with a potential wrench imposed at

the tip of the CAAR).

Technically, this reduction process is performed in two stages. The first stage is completed

at a continuous level. It consists in removing the concentricity and guiding constraints of equa-

tions (4.24) and (4.26) from the above formulation, as well as the associated internal reaction

wrenches F̄c,i. This first stage produces a minimal continuous unconstrained formulation. In

the second stage, the strain based reduction process discussed in section 2.3.1 is applied to the

unconstrained formulation, producing the expected reduced model defined by equation (4.45).

4.6.1 First Reduction Stage

Starting from the constrained formulation above, the first stage is performed in two steps. The

first step consists in removing the guiding constraints of equation (4.26). The second step consists

in removing the concentricity constraints of equation (4.24).

First step: removing the guiding constraints

This can be simply achieved by considering the part of tube 2 above the baseplate only. In other

words, the CAAR is modeled by isolating the material system contained in a control volume above

5Indeed, introducing ξa,i( · ) into equation (4.14) allows to integrate forward equation (4.37) from Xi = 0 to
Xi = li.
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the baseplate. Hence, tube 2 is subject to the BCs

Λ2(X̃2(0)) = Λ̃2(0) = F+,2 = (0, 0, 0, T+, 0, 0)
T . (4.46)

Such simplification which is entirely justified in the present quasi-static conditions. This has been

recently shown in the wider context of the dynamics of sliding Kirchhoff rods [Boyer et al. 2022a].

This simplification changes the configuration space C2 into C̃2 = {ξ̃a,2( · ) : X1 ∈ [0, l1] 7→
ξ̃a,2(X1) = ξa,2(X̃2(X1)) ∈ Rna}, i.e. the deformation of tube 2 is now parameterized by the
field ξ̃2( · ) function of X1 which is a non-material (sliding) variable for tube 2. In summary, this

first step consists in re-expressing all the relations of equations (4.13) to (4.18) and (4.22) to (4.26)

related to tube 2, in terms of X1 instead of X2 and to restrict them to the part of the tube that is

above the baseplate. Technically, this relabeling process is achieved with the pull-back functions

of equations (4.21) and (4.27).

Second step: removing the concentricity constraints

Once through the first relabeling step, the concentricity constraints of equation (4.24) can be re-

moved. This is done by explicitly parameterizing ξ̃a,2 in terms of ξa,1 thanks to the differential
consequences of the concentricity constraints of equation (4.24). At the end of this second step,

the deformation of the CAAR is entirely parameterized by ξa,1( · ) and its configuration space is
defined by the configuration space C1 only. In other words, the configuration space of the CAAR
is reduced to the configuration space of tube 1, which thus plays the role of the reference tube.

Application of the first reduction stage: reduced continuous model

The first equation that needs to be considered is the continuous kinematic model of equation (4.37)

for i = 2. In order to satisfy the concentricity constraints of the tubes, it is replaced by the X1-

derivative of equation (4.24), in which X2 is replaced by X1. Following algebraic manipulations,

one finds
dg̃2
dX1

= g̃2
(
Adg2,1ξ1 + ξ2/1

)∧
(4.47)

that introduces the relative twists between the two tubes

ξ2/1 =

(
g−1
1,2

dg1,2
dX1

)∨
=

(
03×1

(dD/dX1)EY

)
. (4.48)

Based on this first result, one can calculate the pull-back function ξ̃2( · ). To that end, equa-
tion (4.27) is used with f2( · ) = g2( · ) in the definition (4.13) of ξ2. Then, using equation (4.47)
gives

ξ̃2 = h−1(Adg2,1ξ1 + ξ2/1) . (4.49)

Going into further details, using equation (4.48) and

Adg2,1 =

(
RZ,π 03×3

−DÊYRZ,π RZ,π

)
, (4.50)

in equation (4.49) and pre-multiplying (projecting) with B2 = (0, 0, 1, 0, 0, 0)T provides the rela-
tion between the curvature fields of the two planar neutral lines

ξ̃a,2 = h−1ξa,1 ⇒ K̃Z,2 =
−KZ,1

1 +KZ,1D
. (4.51)
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Note that when the two neutral lines are parallel, i.e. (dD/dX1) = 0, this relation can be directly
deduced from the simple geometric consideration r1 = r2 + D, with r1 and r2 the radii of the
osculating circles tangent to, respectively, the neutral lines N1 and N2, as sketched in Figure 4.8.

Concerning the balance of stress, let us first recall that the reaction wrenches F̄c,i in equation (4.42),

associated to the concentricity and guiding constraints of equations (4.24) and (4.26), can now be

ignored since they will not contribute to the virtual work balance. Thus, it is sufficient to replace ξ2
by ξ̃2 given by equation (4.49), and apply equation (4.27) to f2( · ) = Λ2( · ), to change the stress
balance of tube 2 into

dΛ̃2

dX1
− adT(Adg2,1ξ1+ξ2/1)

Λ̃2 + h ˜̄Fext,2 = 06×1 , (4.52)

where ˜̄Fext,2(X1) now denotes the density of external (gravitational) wrenches applied on tube 2
per unit of X2, at X1 along tube 1. Reconsidering equation (4.43) yields

˜̄Fext,2 = (01×3, µ2Ã2(R̃
T
2 ag)

T )T . (4.53)

The constitutive relation of equation (4.44) remains unchanged for tube 1, while for tube 2, equa-

tion (4.44) turns into

BT
2 Λ̃2 = H̃a,2ε̃2 = E2Ĩ2ε̃2 . (4.54)

Finally, note that for tube 1, it is sufficient to remove F̄c,1 in its stress balance, while in the con-

nectivity conditions of equations (4.40) and (4.41), only Λ2(0) changes into Λ̃2(l1).

At the end of this first reduction stage, the constrained (redundant) formulation defined by

equations (4.24), (4.26), and (4.37) to (4.44) is replaced by aminimal (continuous) unconstrained for-

mulation defined for tube 2 by equations (4.47) and (4.52) to (4.54) with the BCs of equations (4.40)

and (4.46), while for tube 1, nothing has changed, except that the concentricity constraints and their

associated Lagrange multipliers F̄c,1 have been removed. This continuous unconstrained formula-

tion represents the CAAR model on the C1 configuration space of its reference tube.

4.6.2 Second Reduction Stage

The second reduction stage consists in parameterizing C1 on a functional truncated basis of strain
functions of tube 1. This is similar to the process described in section 3.4.1 for TACRs, but in this

case, the reduction is applied to tube 1. And since the present model is a reduced Kirchhoff model,

only the allowed strains are considered.

Thus, the allowed strain fields ξa,1( · ) are decomposed on a truncated basis of k Ritz functions
Φ = (Φ1,Φ2, . . . ,Φk) as

ξa,1(X1) = KZ,1(X1) = Φ(X1)q , (4.55)

where q = (q1, q2, . . . , qk)
T stands for the set of generalized coordinates of the expected final

model defined by equation (4.45).

As for the TACRmodel, the final form of the model is obtained through a canonical application

of the principle of virtual work, which takes the form of the following equilibrium, valid for any

variation of the configuration (virtual displacement field) compatible with the kinematics of the

CAAR,

δWint + δWext = 0 . (4.56)
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In this balance, δWint and δWext, denote the virtual work of internal and external forces, respec-

tively, which both take the generic form

δW =

∫ l1

0

δεT1 Λa,1 dX1 +

∫ X̃2(0)

0

δεT2 Λa,2 dX2 , (4.57)

whereΛa,i = BT
i Λi stands for−Ha,iεi in the case of δWint, and for the allowed stress that balance

the external gravitational, actuation push-pull, and tip forces, in the case of δWext. When applying

equation (4.56), the variations δε1 = δξa,1 = δKZ,1 and δε2 = δξa,2 = δKZ,2 are compatible with

the concentricity constraints of equation (4.51), i.e. they are related by

δK̃Z,2 =
−δKZ,1

(1 +KZ,1D)2
. (4.58)

Finally, the virtual work principle being invariant with respect to any kinematic transformation and

the balance of equation (4.56) holding for any variation, the generalized force vectorQ generated by
a given stress state of the CAAR, can be deduced from equation (4.57). Equations (4.51) and (4.58),

as well as the relabeling of equation (4.27), and the Ritz reduction of equation (4.55) ofKZ,1 need

to be injected in equation (4.57) that is identified with

δW = δqTQ(q) . (4.59)

Applying this process and rearranging yields

Q =

∫ l1

0

ΦT

(
CZ,1 −

C̃Z,2

(1 +DΦq)

)
dX1 , (4.60)

which allows converting any pair of stress fields (Λa,1, Λ̃a,2)( · ) = (CZ,1, C̃Z,2)( · ) transmitted
across the two tubes, into the corresponding generalized force vector Q applied to the CAAR.

For the generalized vector of internal forces, using equations (4.51) and (4.55) and the fact that

εi = KZ,i yields

CZ,1 = −Ha,1ε1 = −E1I1Φq

C̃Z,2 = −H̃a,2ε̃2 =
E2Ĩ2Φq

(1 +DΦq)
,

(4.61)

which, once introduced in equation (4.60), provides the detailed expression for Qint

Qint(q) = −
∫ l1

0

ΦT

(
E1I1 +

E2Ĩ2
(1 +DΦq)2

)
Φq dX1 . (4.62)

Finally, to practically compute Qint and Qext, a computed torque style algorithm is applied. This

algorithm is detailed in the next section.

4.6.3 Algorithm for Computing Qint and Qext

While Qint(q) can be directly calculated for any q with the explicit expression of equation (4.62),
as long as Ĩ2 is known, the calculation ofQext(q) requires more attention. This essential difference
is explained by the fact that Qint is directly generated by a field of stress wrench (governed by the

constitutive relation of equation (4.44)), while in contrast, the external gravity, push-pull, and tip
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forces are primarily defined as wrenches of forces F̄ext,i, F+,2, and F+. A natural way to calculate

Qext(q) is to first convert F̄ext,i, F+,2 and F+ into stress fields Λa,1 = CZ,1 and Λ̃a,2 = C̃Z,2,

and then to introduce these torque fields into equation (4.60). This conversion is achieved with an

inverse (computed torque) algorithm, proposed in [Boyer et al. 2006, Boyer et al. 2021], adapted

to the statics of CAARs. This inverse static algorithm is structured in two passes. The first one

is a forward kinematic pass that computes, for a given q, the pose field of the two tubes from the

base X1 = 0 of tube 1, to the intersection of tube 2 with the baseplate X̃2(0). The second pass
is a backward pass that calculates the stress generated by the external forces along the structure,

starting from the intersection of tube 2 with the baseplate, and ending at the base of tube 1. In a last

step, these two stress fields are used in equation (4.60) to computeQext. Finally, this algorithm also

produces Qint through equation (4.62), which needs the numerical integration of the face-to-face

function of equation (4.36). It is summarized as follows.

� Inputs of the algorithm:

ξ1 = B1Φ(X1)q + B̄1ξc,1 . (4.63)

� Forward kinematics (1st pass):

Initial conditions: g1(0) = 14×4 . (4.64)

Integrate from X1 = 0 to l1
dg1
dX1

= g1ξ̂1 . (4.65)

Initial conditions:

X̃2(l1) = 0 , g̃2(l1) = g1(l1)g1,2(l1) . (4.66)

Integrate from X1 = l1 to 0

dX̃2

dX1
= h = −(1 +DΦq) , (4.67)

dg̃2
dX1

= g̃2
(
Adg2,1ξ1 + ξ2/1

)∧
. (4.68)

Store (g1, X̃2, g̃2)( · ) . (4.69)

� Backward statics (2nd pass):

Initial conditions:

Λ̃2(0) = (01×3, T+E
T
1 )

T . (4.70)

Integrate from X1 = 0 to X1 = l1

dΛ̃2

dX1
= adT(Adg2,1ξ1+ξ2/1)

Λ̃2 − h ˜̄Fext,2 . (4.71)

Initial conditions:

Λ1(l1) = Ad−T
g1,2(l1)

Λ̃2(l1) + Ad−T
g1,sF+ (4.72)

Integrate from X1 = l1 to 0

dΛ1

dX1
= adTξ1Λ1 − F̄ext,1 . (4.73)

Store (Λ̃2,Λ1)( · ) . (4.74)
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� Calculation of the outputs of the algorithm:

Compute:

Qext =

∫ l1

0

ΦT

(
BT

1 Λ1 −
BT

2 Λ̃2

(1 +DΦq)

)
dX1 (4.75)

Qint = −
∫ l1

0

ΦT

(
E1I1 +

E2Ĩ2
(1 +DΦq)2

)
Φ dX1 q . (4.76)

The spectral integration [Hussaini et al. 1989] of Qint is performed by first computing X̃2 in each

X1 of the Chebyshev grid [Trefethen 2000] from equation (4.67), and then by computing the corre-

sponding values of I2, i.e. Ĩ2(X1), through the interpolation process of section 4.4. This algorithm
is summarized in Figure 4.9 where the equation numbers of the corresponding definitions are given.

Ultimately, this algorithm defines a numerical input-output map that producesQext(q) andQint(q)
from q, T+, and F+.

4.6.4 Quasi-Static Simulation of a CAAR

The simulation of the quasi-static evolution of a CAAR is based on the reduced Lagrangian model

defined by equation (4.45), where Qint(q) and Qext(q) are computed by the above algorithm.
This model consists of a set of nonlinear algebraic equations (static equilibrium in the generalized

coordinate space q), which can be set into the standard conventional form

Res(q) = Qint(q) +Qext(q) = 0 , (4.77)

withRes(q), the residual vector of the system. This system can be solved with respect to q at each
step of load (T+, F+) with standard root-finding algorithms (e.g. Newton-Raphson, Levenberg-
Marquardt). In the next chapter, this approach is applied to different robot designs. The iterative

search for the roots of equation (4.77) is performed with Matlab 2022a fsolve function with the
Levenberg-Marquardt algorithm, all parameters being set to defaults. The Jacobian matrices of

the residual vector (∂Res/∂q)(q) are numerically approximated by finite differences. The spatial
integrations of the above computed torque algorithm are performed with a spectral method [Tre-

fethen 2000]. To conclude this section, remind that this algorithm needs to be fed with the design

parameters of the CAAR, which are defined ∀X1 ∈ [0, l1], ∀X2 ∈ [0, l2], by

D(X1) = D1(X1) +D2(l1 −X1) ,

A1(X1) , A2(X2) , I1(X1) , I2(X2) ,
(4.78)

i.e. from top to bottom and from left to right, the lateral offset field between the neutral lines, the

fields of area and inertia, all being interpolated along the two tubes by the process described in

section 4.4.
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Figure 4.9: Schematic of the two passes of the inverse static algorithm. For both passes, the

integration starts at the circled bullet with the corresponding initial condition and follows through

the arrows from one tube to the other. The dotted lines show the associated differential equations.

The light grey lines link the quantities that are necessary for the implementation of the algorithm

to the corresponding equation numbers of this chapter.

4.7 Conclusion

In this chapter, the need for a novel mechanical model for CAARs was highlighted. Such a model

based on Cosserat rod theory was introduced. Contrarily to state-of-the-art models, the present

mechanical model allows taking external wrenches into consideration, as well as variable notch

designs. The model should, in the course of time, enable the use of CAARs in various applications,

especially in medical and surgical contexts (see section 1.5).

A few physical phenomenons remain unmodeled in the proposed approach. Examples include

the clearance between tubes, the effect of static friction between tubes that may introduce a hys-

teresis effect, and the effects of transverse shear deformation and extension.

Further, it is worth noting that the model proposed in this chapter is, as a first step and as the

first CAAR mechanical model in the literature, restricted to planar robots and to the (quasi) static

case. The formulation of the model is however generic enough to allow its extension to full 3D

shapes and to dynamic behavior, with the aim of using such models for 3D design optimization,

sensing, or control applications.
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Of course, before any further use of the model, it should be validated experimentally. In the

next chapter, experiments are carried out with various CAAR designs in order to validate the de-

veloped model. The prototypes are used in various configurations and under external loading.

Contributions of this chapter

1. The potential of state-of-the-art models of continuum robots that are closely

related to CAARs is evaluated. This interpretation is followed by a discussion

concluding with the need for a novel CAARs mechanical model.

2. A first in-plane mechanical model for CAARs is formulated. The model is ca-

pable of taking external forces from the environment into account and to model

CAARs with ‘general’ variable neutral lines.

3. This contribution includes the production of an algorithm for numerically solv-

ing the proposed model.

4. Beyond the main contribution (2.), an in depth analysis of the kinematics of

CAARs is carried out, providing the community with deeper knowledge and

new tools to understand and investigate CAARs.

Regarding the last three contributions, the input for the external collaborators was the follow-

ing: the know-how regarding the Lagrangian approach was mainly provided by Frédéric Boyer and

Vincent Lebastard. The knowledge of the CAAR system was mainly provided by Matthias Tum-

mers’ thesis. The present model was established through numerous iterations with continuous

inputs from all contributors.
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5
Experimental Validation of the 2D CAAR

Model and Analysis of 3D CAARs

5.1 Foreword

This chapter is devoted to experiments carried out with CAARs. The objectives of these experi-

ments are twofold. The first one is to validate the model developed in chapter 4 through experi-

ments. The second one is to investigate new ways of constructing and actuating CAARs leading to

CAARs in 3D.

Prior to the exposition of the results, section 5.2 describes the materials of the experimental

setup. The description includes the design and references of the materials, as well as the data

acquisition apparatus and processing. Then, for the first objective, in order to validate the different

capabilities of the model, section 5.3 presents an extensive set of experiments that can be divided

in three groups. The first group, the most basic tests, concerns regularly notched CAARs in free-

space. The second group includes tests with external tip forces applied to the prototypes in various

actuated configurations and is intended for validating the model capabilities of taking into account

external forces. The third group concerns CAARs with variable notches and thus variable neutral

lines, for validating the ‘general neutral lines’ aspect of the model.

For the second objective, section 5.4.1 describes possible ways to bring the neutral lines of

CAARs out of the plane they were previously restricted to. Section 5.4.1 also details the design of

the experimentally tested prototypes. Then, section 5.4.2 presents experiments demonstrating the

capabilities of such 3D CAARs. Section 5.4.3 concludes on CAARs in 3D by discussing the results

and their perspectives for future (medical) applications.

5.2 Experimental Setup

This section is devoted to the designed robot with all its apparatus. It covers the design and mate-

rials of the actuation unit as well as the data acquisition devices and the software that controls the

system.
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5.2.1 Actuation Unit

The actuation unit displayed in Figure 5.1 was designed for the actuation of continuum robots that

are made out of concentric tubes (up to four tubes). It is thus capable of actuating CAARs, but also

CTCRs. It is composed of a fixed frame and four actuation carriages or stages. The carriages are

translated with EC-max22 brushless 12W Maxon motors via a PTGSG-10X2-01-R IGUS 2mm

pitch lead screw. To ensure position and orientation precision, the carriages are guided with two

µm precision linear guides. Each stage carries an additional EC-max22 brushless 12W Maxon

motor linked to a hollow shaft through precision timing belts. Cable chains securely convey the

cables from the moving carriages to the fixed frame. The hollow shafts are guided on the carriages

with two angular bearings to enable precise rotation while transmitting axial forces. The shafts are

provided with a hexagonal imprint for the fixture of the tubes such that precise axial and angular

positioning is ensured. The through-holes of the shafts allow to pass tubes concentrically through

one another. Aside from the off-the-shelf parts, the 3D printed parts of the actuation unit were

printed with polylactic acid (PLA) using a Raise3D Pro2 printer which has a 10µm precision.

All motors are equipped with MR 2048 CPTMaxon encoders and controlled with a DMC-4040

Galil control board, which enable an actuation precision below 1µm for translation and below

0.1◦ for rotation. The software of the robot was implemented with MatLab 2022a. It consists of
a Matlab application that allows to translate or to rotate individually each of the shafts, but also to

launch batches of specific workspace sweeping with data acquisition. All data acquisition apparatus

(see section 5.2.2) are integrated in the application to ease the experimental workflow. Besides the

display of all motor translation and rotation values, this integration also allows a graphical preview

of an approximated robot shape based on the sensor positions in the workspace.

In the case of the present dissertation, the basis of the two tubes of the CAARs are attached to

the upper two carriages of the actuation unit (see Figure 5.1). The outer tube remained clamped in

the baseplate at all times and only one stage was used to actuate the inner tube with respect to the

fixed outer tube.

All the CAAR tubes are 3D printed with PLA using the same Raise3D Pro2 printer in exactly

the same position and orientation on the printing bed to limit printing variability. For an in-depth

discussion on 3D printing CAAR tubes, please refer to appendix B.

5.2.2 Data Acquisition

End-effector pose feedback, as well as visual feedback was used to assess the performance of the

studied CAARs.

Electromagnetic sensors

The setup is equipped with two 6 DoF electromagnetic sensors (Aurora, NDI). One reference 6

DoF sensor is attached to the baseplate of the actuation unit in a purpose-designed slot at a known

position and orientation with respect to the inertial frame Fs (as defined in Figures 4.3 and 4.4).

The transformation between the inertial frame Fs and the reference sensor fame FRS is noted gRS .

The other miniaturized 6 DoF sensor is attached to the tip of the prototypes, or more precisely,

in a purposely designed slot on a rigid extension of the tip (see Figure 5.2). As the tip sensor is

fixed manually for each series of tests, it first requires a calibration step to find the transformation

gTS, tip between the pose of the sensor and the pose of the physical tip of the robot g(l) as defined
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1. CAAR

2. Tip electromagnetic sensor

3. Camera

4. Nylon thread

5. Idler deflection pulleys

6. Reference electromagnetic

sensor

7. Baseplate

8. Translation stages

9. Calibration weight

10. Hexagonal indentation

11. Through-hole

12. Timing belt for rotation

13. Motorized timing pulley

Figure 5.1: The multi-stage actuation unit with a mounted 6mm diameter CAAR prototype used

for experimental validation. For the experiments presented in this dissertation, only one stage was

used to actuate the inner tube with respect to the fixed outer tube. A nylon thread is attached at

the tip of the robot and routed around the right idler pulley to a calibrated weight, applying a tip

force to the robot. The hexagonal indentation allows fixing the tubes in translation and rotation.

The carriages are provisioned with a through-hole for the tubes of the other carriages. Rotation of

the tubes is achieved thanks to the visible timing belt and motorized timing pulley.
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Figure 5.2: Exploded and assembled views of the tip of the prototypes.

in the model (see Figure 5.3). In the reference configuration

g(l) = g0(l) =

(
13×3 lEX

01×3 1

)
, (5.1)

with l the length of the robot. The calibration procedure was the following. After the CAAR is
fixed in its straight undeformed configuration on the actuation unit and the tip sensor is fastened

manually on the robot, a measure of the reference sensor pose gAU, RS and tip sensor pose gAU, TS in
the aurora reference frame FAU is recorded. Then, rearranging transformations yields the desired

calibrated transformation

gTS, tip = g−1
AU, TS gAU, RS g−1

RS g0(l) . (5.2)

gTS, tip is stored for the tests that follow, until the tube pair is changed for another one.

Now that gTS, tip is known, the measures of the pose of the tip of the robot in the inertial frame
for any configuration g(l) 6= g0(l) are obtained with

g(l) = gRS g−1
AU, RS gAU, TS gTS, tip . (5.3)

Data from the Aurora electromagnetic sensors tend to be relatively noisy, especially when the

sensors are fixed on an actuation unit featuring many metallic parts and motors driven by electric

current. To palliate to the signal variability, the following measures were applied.

1. The tip of the robot was designed to be clear from metallic parts. Nylon screws were used

to fasten the tip sensor or nylon thread for applying external tip forces (see Figure 5.2).

2. The reference sensor, mounted on the baseplate, was moved away from the actuation unit

with a strut to limit the possible interference with the metallic parts and electronics.

3. Preliminary investigations showed that the exact position and orientation of Aurora elec-

tromagnetic sensors can play a significant role in the precision of the acquired data. The

reference sensor was placed in a specific position that was found to yield best results (the

lowest possible estimated error as estimated by the NDI Tool Tracker software from the

NDI ToolBox) while staying within a ‘mountable’ distance of the baseplate.

4. Each acquired data point is an averaged value of 20 sensor signal samples. The orientations

were averaged taking the mean of unit quaternions after ensuring that all quaternions were

consistent with each other (i.e. no inverted quaternions were found).
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tip sensor frame: FTS
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cross-sectional frame:

F = g(l)
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= g0(l)
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gAU, RS

gAU, TS

gTS, tip

Figure 5.3: Representation of the frames involved in the sensor calibration and data acquisition

procedures. The homogeneous transformations gx, y allow to pass from one frame Fx to another

Fy . When moving from the inertial frame Fs, the subscript •s is omitted.

The result of this process was assessed visually to be satisfying by comparing with the computer

vision data (see next section). Moreover, the repeatability could be assessed thanks to a set of 248

measures of robot poses with 4 different prototypes and external loading covering the workspace

that were repeated three times (each robot design, actuation value, and loading condition) for a

total of 744 measurements. The 95% confidence interval for the repeatability is found in the range

[0, 2.53]mm, with a median at 0.6mm, suggesting an excellent repeatability between experiments
with the same conditions. The 95% confidence interval for accuracy of the Aurora measurement

apparatus is specified by the manufacturer to be [0, 0.88]mm.
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(a) (b) (c)

Figure 5.4: Example of the computer vision data processing with a camera snapshot of a CAAR.

(a) The initial image where straight object lines are distorted by the camera lens. (b) The undis-

torted image where straight object lines appear straight but in perspective. (c) Image of the robot

workspace warped on the bending plane.

Computer vision

The setup also includes a Renkforce RF-WC-150 Full HD camera used to qualitatively verify the

shapes of the robots. No quantitative measures were performed on the images. All the images that

appear in section 5.3 are reprojected onto the robot bending plane. To achieve such reprojection,

the first step is to calibrate the intrinsic parameters of the camera. A series of 150 images of a

checkerboard in a variety of positions were recorded in the field of view. The OpenCV library

implementation of the calibration algorithm presented in [Zhang 2000] was used to compute the

intrinsic parameters of the camera.

Next, to compute the extrinsic parameters of the camera, a series of object points from a camera

image must be linked to their 3D positions in the experiment. To this end, a dedicated part with

numerous 3D features in the workspace was printed and fixed to the baseplate of the actuation

unit. On these features, a series of 44 object points were identified in both a camera snapshot and

the 3D space of the experiment. In the image, the points were clicked manually by zooming in to

pixel level. The 3D positions in the inertial frame Fs are known by design of the dedicated part. In

order to cover a larger portion of the field of view of the camera, some easily identifiable features

(e.g. the centers of the idler deflection pulleys) from the actuation unit were also included. Feeding

the list of 2D and corresponding 3D points to the algorithm presented in [Gao et al. 2003] enables

to solve the perspective-three-point problem and yields the extrinsic parameters of the camera. As

for the intrinsic calibration, the OpenCV library implementation of this algorithm was used.

With these parameters set, the OpenCV library was used once more to compute warping pa-

rameters for warping the camera images on the plane of robot deformation (exey-plane). Finally,
the warping parameters are used to warp all the acquired images of the experiment test. By re-

projecting points with the calculated intrinsic and extrinsic parameters, the maximum error of this

procedure was estimated to be less than 1mm in the workspace. Of course, only the images of

section 5.3 with 2D CAARs are considered. Indeed, such warping procedure is not valid for the

robots treated in section 5.4 that curve out-of-plane.
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Table 5.1: Geometrical and mechanical parameters of the 2D prototypes.

Robot design ρ1 ρ
1

ρ2 ρ
2

γ1 γ2 amax

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

R1 (regular) 3.0 2.0 1.5 0.5 5.0 2.0 7

R2 (regular) 5.5 4.5 4.0 3.0 10.0 7.0 7

R3 (convergent) 4.5 3.7 3.2 2.4 8.20 — 7.20* 5.60 — 4.95* 11

R4 (divergent) 4.5 3.7 3.2 2.4 7.20 — 8.20* 4.95 — 5.60* 11

* Values of the initial (γ0) and final (γl) depth of the notches varying linearly (cf. section 5.3.5).

5.3 2D CAARs

This section and section 5.4 are devoted to the CAAR prototypes that were experimentally tested

during this thesis. This first section only treats the in-plane-bending CAARs (or 2D CAARs), while

section 5.4 generalizes to CAARs in 3D. Both sections detail the design of the corresponding ma-

nipulators and the experimental results. Each of the tested prototypes is identified with a symbol

Rk, with k = 1 .. 4 for section 5.3 and k = 5 .. 6 for section 5.4. This section then uses the exper-
imental results to validate the model presented in chapter 4, while the purpose of the experimental

results of section 5.4 is to demonstrate the capabilities of the designed robots.

Two different regularly notched CAAR designs, R1 and R2, with outer diameters of respec-

tively 6 and 11mm, and two variably notched prototypes,R3 andR4, respectively, with convergent

and divergent neutral lines, are studied. All prototypes are 150mm long. The height h of all notches
and the distance c between all notches is 5mm. A summary of all the geometrical parameters of
the robots is provided in Table 5.1 (see Figure 4.4 page 98 for the graphical definition of the pa-

rameters). The prototypes are used in various configurations and under external loading.

5.3.1 Experimental Protocol

In the free-space experiments, all prototypes defined in Table 5.1 (cf. sections 5.3.3 and 5.3.5 for

more details) were actuated by alternating 1mm steps a ∈ {0,±1mm,±2mm, . . . ,±amax}.
amax was determined once for, respectively, the regularly and the variably notched CAARs such

as to cover a representative workspace, i.e. bending angle of approximately 90◦. In the case of the

regularly notched CAARs (R1 and R2 detailed in section 5.3.3), this value was determined by the

CAAR with smallest diameter and is amax,reg = 7mm. In the case of the variably notched CAARs

(R3 and R4 detailed in section 5.3.5), amax,var = 14mm. While alternating positive and nega-

tive actuation, the home position (a = 0) is systematically measured and compared to the initial
position in order to detect potential plastic deformations that might occur during bending.

The loaded experiments were carried out over 5 fixed actuation values (a ∈ {0,±3,±6}mm).
Calibration weights of 20 g were attached to the tip and routed through idler deflection pulleys

located symmetrically in the bending plane at both sides of the robot, yielding two possible external

loads to be applied to each configuration (thread and weight visible on the right side of the actuation

unit in Figure 5.1).

All the experiments (each robot design, actuation value, and loading condition) were repeated

three times. In the following results, for each test, the mean tip position across repetitions is used.

The mean across repetitions is an additional step based on the mean of 20 signal samples (see
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Table 5.2: Calibrated model parameters.

Robot design fD [−] E [GPa]

R1 (regular) 1.27 5.39

R2 (regular) 1.27 5.39

R3 (convergent) 1.32 5.39

R4 (divergent) 1.06 5.39

measure 4. in electromagnetic sensors data collection procedure detailed in section 5.2.2). Two

outliers were found in one set of experiments compared to the two other repetitions of the same

case (designR1 in free-space at a = {−7,−6}mm). After analysis, it was found that a motor stall
of the actuation was the source of the problem, and those two data points were removed from the

subsequent data analysis (i.e. only two repetitions were considered for these two configurations).

Further, as discussed in section 5.3.6, the highest actuation values of the experiments were

found to translate to an internal load in simulations that goes beyond the model critical load τcrit.
Therefore, the subsequent model validation restricts the more exhaustive experiment set to actua-

tion values up to amax = 11mm.

5.3.2 Model Calibration

3D printing allows designing a variety of CAAR designs. There is, however, inherent variability due

to the printing process used, which may impact the tube diameters, notch depth, etc. It is therefore

necessary to calibrate the model. Two model parameters were calibrated: the distance between

the neutral lines and the Young modulus. The distance between the neutral lines Dsimulation =
fD ×Dtheoretical was calibrated once for the two regularly notched prototypes (R1 and R2) and

then once for each of the two designs with variable notches (R3 and R4). The minimization

criterion was the sum of squares of the tip error for all free-space configurations in the actuation

spaces aj described in section 5.3.1

fD = argmin
fD

∑
k,j

∥∥rl,sim(fD,Rk, aj)− rl,exp(Rk, aj)
∥∥2 . (5.4)

Other quantities in the model, such as the bending stiffness, depend on the distance between

the neutral lines. In the present simulations, the distance between the neutral lines was calibrated

after the computation of these other quantities such that all other quantities remained unaffected.

Also, the abrupt step in the inertia of the inner tube at X̃0
2 (0) (see Figure 4.6 page 100) was found

to slow down the convergence of the root-finding algorithms. Preliminary simulations allowed to

identify a smaller value for I2(X2 > l1) that is yet sufficiently large for the reduction to have a
negligible impact on the results.

Once the calibrated value for distance between the neutral lines was determined, Young’s mod-

ulus E was calibrated in a similar way with the loaded experiments. The value of fD remained

unchanged.

E = argmin
E

∑
k,j,f+

‖rl,sim(E,Rk, aj , f+) − rl,exp(Rk, aj , f+)‖2 , (5.5)

where f+ stands for the tip external loading conditions. Both calibrated values are given in Ta-

ble 5.2.
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Figure 5.5: Boxplots of the tip position error between experimental results and simulations for all

tests. The first three groups are cases in free-space.

5.3.3 Regularly Notched CAARs

Two different regularly notched CAAR designs (R1 andR2) with outer diameters of respectively 6

and 11mm were studied. The geometrical parameters are given in Table 5.1, referring to Figure 4.4

page 98 for the notations. The two robots exhibit different workspaces when actuated over the

same range of actuation values in free-space which is intended for validating the model on robots

with different mechanical properties. Actuating the two robot designs over the 14 actuation val-

ues {0,±1,±2, . . . ,±7} mm yields 28 simulation to experiment comparisons. Figure 5.6 shows

sample experiment to simulation comparisons for one of the two robots over the whole workspace

(the one with the larger workspace). The tip errors between the simulation and experimental results

for both regularly notched robots are reported in Figures 5.5 and 5.6. This error captures both the

error of the model and the error of the electromagnetic sensors data.

5.3.4 Externally Loaded CAARs

External tip forces are applied both to the right and to the left to each configuration obtained at the

actuation values {0,±3,±6} mm for both robots from the previous section (R1 and R2). With

the exact location of the idler deflection pulleys rply known, the experimentally applied tip loads
are calculated as follows. The position of the application of the tip force on the robot is located at

the nylon thread attachment point. In the inertial frame, this position is calculated as

rf+ = r1(l1)−R1(l1)EY (D1(l1)± ρ1) , (5.6)

plus or minus sign for tip forces respectively to the right or left. Further, from the geometry of the

system (see Figure 5.7) and again with plus or minus sign for tip forces respectively to the right or

left, the applied tip force is computed as

f+ = ±agm (sin(ς), cos(ς), 0)T , (5.7)
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Figure 5.6: Top, snapshots of the experiments and simulation results for the regularly notched

prototypes, here with prototype R1. The colored lines represent for each case the neutral line of

tube 1 and 2, respectively, with corresponding colors. The blue marks are the tip electromagnetic

sensor data. The purple marks are the simulated robot tips. Bottom, tip error as function of the

actuation for both regularly notched prototypes.

126



r1(l1)
rf+

f+
external

force

N = cos−1

(
EY

T
(
rf+ − rply

)∥∥rf+ − rply
∥∥

)

F = sin−1

(
ρply∥∥rf+ − rply

∥∥
)

ς = N−F

ρply

weight

rply
ex

ey

ρ1 −D1

ρ1

D1

Figure 5.7: Schematic of an external force applied to the left at the tip of a CAAR prototype that

is directed towards a pulley at a known position rply and radius ρply . The force vector anchors at
rf+ located on the outer diameter of the robot in the same cross-section as the end of the neutral
line of the outer tube r1(l1).

wherem is the mass of the calibrated weight and ς is the result of

ς = cos−1

(
EY

T
(
rf+ − rply

)∥∥rf+ − rply
∥∥

)
± sin−1

(
ρply∥∥rf+ − rply

∥∥
)
, (5.8)

with ρply the radius of the pulleys and the output of inverse trigonometric functions restricted
between −π/2 and π/2. As detailed in section 4.6.3, F+ = (01×3, (R

T
1 (l1)f+)

T )T is input in the
model during the backward integration of the wrenches from tube 2 to tube 1.

Comparing, by pairs from left to right, the shaded shapes on the background with the ones

on the foreground in Figure 5.8, one can see how the prototypes are deflected when applying

forces in comparison to the tests in free-space. The deflection imposed tip displacements between

[9.36, 31.20]mmacross all loaded tests compared to free-space tests with same robots and actuation
values. The mean deflections for robots R1 and R2 were respectively 22.19mm (14.79%) and

10.93mm (7.29% of robot length).

For both robots, a total 20 simulation to experiment comparisons are carried out. Examples

of comparisons between the experimental and simulation results are presented in the snapshots of

Figure 5.8 for robot R1. The tip errors between the simulation and experimental results for all

loaded experiments are reported in Figures 5.5 and 5.8.
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Figure 5.8: Top, snapshots of the experiments and simulation results for loaded tests with the reg-

ularly notched prototypes, here with prototype R1. The snapshots are split (right/left tip forces,

identified by the blue arrow) over two plots to prevent overlapping. The shaded shapes on the

background correspond to the free-space shapes at identical actuation (match left to right by pairs).

The colored lines represent for each case the neutral line of tube 1 and 2, respectively, with corre-

sponding colors. The blue marks are the tip electromagnetic sensor data. The purple marks are the

simulated robot tips. Bottom, tip error as function of the actuation for all loaded tests with both

regularly notched prototypes.
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5.3.5 CAARs with Variable Neutral Lines

To validate the model with CAARs that have variable neutral lines, two additional prototypes,

R3 and R4, respectively, with convergent and divergent neutral lines are assessed. To obtain

convergent or divergent neutral lines, the depth of the notches decreases, respectively increases,

from the bottom to the tip of the robot

γ(X) = γ0 +

(
γl − γ0

l

)
X , (5.9)

where γ0 and γl are, respectively, the initial and final notch depths given as the first and second
values for γ in Table 5.1. The comparisons between the experimental and simulation results are
presented in Figures 5.9 and 5.10 for prototypes with convergent and divergent neutral lines re-

spectively. The tip errors for the comparison between the simulations and the experimental data

for both designs are reported in Figures 5.5, 5.9, and 5.10.

5.3.6 Discussion on the Model Validation

An extensive experimental validation was carried out on four different 3D-printed CAAR designs

(different dimensions and notch geometries), with and without external forces applied on the tip

of the robot. Results show that the CAAR model derived in chapter 4 has a good performance,

with mean and median tip errors of 1.47% and 1.06% of the robot length, respectively, over all

experiments. It is capable of capturing general CAARs subject to external loads while the tip errors

stay below 6.33% of the robots’ length in free-space and 6.57% for the loaded cases. Figure 5.5

provides a graphical summary of the tip error statistics. Overall, in 94.6% of the experiments,

the tip error was below 5% of the robot length, including experiments under external loading.

In the experimental procedure, the CAARs were actuated with alternative positive and negative

displacements of tube 2, followed by a measurement in the unactuated reference configuration.

Only limited plastic deformation of the prototypes was observed (< 2mm tip displacement in all

cases), which confirms that the basic hypothesis on the use of the materials in their elastic range

was not violated.

High actuation cases were discarded from the results as mentioned in section 5.3.1. Indeed,

the application of a pushing force at the base of the inner tube is countered by a reaction force

at its opposite end, from the outer tube. This force is opposed to the former and charges the

inner tube into compression. Conversely, the application of a pulling force on the inner tube

exerts a pair of opposing compressing forces at the ends of the outer tube. Therefore, due to its

operating principle, the CAAR can buckle beyond a certain critical load which can be approximated

by calculating Euler’s critical load for a pin ended rod

τcrit '
EIπ2

l2
, (5.10)

where I = max (I1 + I2).
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Figure 5.9: Top, snapshots of the experiments and simulation results for the convergent neutral

line prototypes (R3). The snapshots are split (odd/even translation actuation values) over two

plots to prevent overlapping. The colored lines represent for each case the neutral line of tube 1

and 2, respectively, with corresponding colors. The blue marks are the tip electromagnetic sensor

data. The purple marks are the simulated robot tips. Bottom, tip error as function of the actuation.
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Figure 5.10: Top, snapshots of the experiments and simulation results for the divergent neutral

line prototypes (R4). The snapshots are split (odd/even translation actuation values) over two

plots to prevent overlapping. The colored lines represent for each case the neutral line of tube 1

and 2, respectively, with corresponding colors. The blue marks are the tip electromagnetic sensor

data. The purple marks are the simulated robot tips. Bottom, tip error as function of the actuation.

131



-15 -10 -5 0 5 10 15

actuation a [mm]

-10

-8

-6

-4

-2

0

2

4

6

8

10

a
x
ia

l l
o

a
d

 [
N

]

-
crit

crit

convergent

divergent

Figure 5.11: Axial load in the variable neutral line prototypes. The absolute value of the load

increases with increasing actuation translation. Beyond |a| > 11mm the axial load was found to

exceed Euler’s critical load of the rods composing the CAAR. The shaded area around the critical

load value indicate uncertainty regarding the computed value, considering the uncertainty on the

geometry due to printing imperfections.

Applying this approximation to the studied robots, the critical load is as indicated in Figure 5.11

(dashed line). First, note that themodel accuracy decreases when approaching the theoretical critical

load, i.e. when approaching an actuation of approximately ±9mm for the convergent R3 and

divergent R4 designs. Indeed, in the experiments, several factors may impact the exact value of

the critical load. For example, considering printing imperfections, varying the notch depth by

100µm for the two designsR3 andR4, the theoretical value of the critical load varies as indicated

by the shaded areas in Figure 5.11. Second, above this critical value, the equilibrium configurations

calculated with themodel were found to jump abruptly to another family of solutions. Furthermore,

in some cases, the algorithm may not converge or converge very slowly. This explains why these

pathological cases cannot be included in the simulation analysis.

One interesting observation is that the model correctly models the characteristic asymmetry of

the bending of CAARs that is due to the difference between pushing and pulling the inner tube.

When pushing (actuated to the left in our experiments) the inner tube of a CAAR inside the outer

tube, the inserted rigid tube part virtually translates the active basis of the robot by preventing

motion in the rigidified portion. Thus, for symmetrical actuation values, the configurations to the

left side are translated towards positive ex compared to the configurations on the right side. In the
model this asymmetry is captured when computing I2 for X2 > l1 (see Figure 4.6 page 100).

The CAAR model proposed in this thesis also provides the full shape of the robots, in the

present experimental validation however, only the tip errors were quantified. The robot shapes

were qualitatively (i.e. visually) analyzed using the camera embedded in the setup, revealing that the

maximum error along the robot is generally at the tip—which is coherent with previously validated

models based on Cosserat rod theory. Nevertheless, full analysis of the obtained shapes will need

to be carried out in future work, especially for designs capable of out-of-plane motion. Indeed, the

configurations of the 3D CAARs presented in the next section can clearly not be assessed through

their tip positions only. The tortuous, helical or ‘S’-shaped, curves of 3D CAARs are ever more

complex.
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Table 5.3: Geometrical parameters of the helically notched prototypes.

Robot design ρ1 ρ
1

ρ2 ρ
2

γ1 γ2 amax

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

R5 (regular - 0◦ rev.) 3.6 2.8 2.3 1.5 6.4 3.8 7

R6 (helical - 180◦ rev.) 3.6 2.8 2.3 1.5 6.4 3.8 7

R7 (helical - 360◦ rev.) 3.6 2.8 2.3 1.5 6.4 3.8 7

5.4 3D CAARs

This section treats CAARs that can deform in 3D. First the design of such CAARs will be detailed.

In this dissertation, two ways for deforming CAARs in 3D were explored and are presented in

section 5.4.1. Then section 5.4.2 presents experimental results obtained with the constructed 3D

prototypes. The results are discussed in section 5.4.3 where the potential of such 3D CAARs is

analyzed.

5.4.1 Design of 3D CAARs

The main idea for deforming CAARs in 3D is to bring the neutral lines of the CAARs, that were

previously assumed to evolve in the exey-plane (see Figure 4.3 page 97), out of this plane.

CAARs with 3D neutral lines

A first strategy that was investigated to bring the neutral lines of CAARs out of the exey-plane is by
orienting the notches of the tubes with angles that are not aligned with the exey-plane. To avoid
brisk discontinuities in the position of the neutral lines, a natural first choice is to continuously

vary the angle of the notches along the length of the tubes. Evidently, these helically notched

tubes yield neutral lines in the from of helices. Figures 5.12a and 5.12b (respectively Figures 5.12d

and 5.12e) show notched tubes with continuously varying notch angles with a 180◦ (respectively

360◦) counterclockwise turn along the length of the tubes when looking from the tip to the base

of the robots. Of course, a broad range of other design possibilities can be imagined.

These possibilities become even more diverse when assembling two notched tubes to form

a CAAR. Some ideas among others are to combine tubes with different notch revolution angles,

tubes with counterclockwise and clockwise notch revolution angles, a helically notched tube with a

regularly notched tube, and tubes that simultaneously vary depth and angle of the notches. The only

preliminary design guideline that can be formulated is to avoid to create CAARs with superimposed

neutral lines as this would prevent any translation motion of the tubes.

Because this thesis takes place in a world where the counterclockwise notch turns do not make

the clock tick backwards, only two of the infinite imaginable designs were further investigated. In

order to start with a simple case study, the two investigated designs are a CAAR composed of two

180◦ counterclockwise notch revolution angles (R6) and a CAAR composed of two 360
◦ counter-

clockwise notch revolution angles (R7) (see Figures 5.12c and 5.12f, respectively). In both designs,

the helices of the neutral lines lie on opposite sides of the center of the tubes. The other geometrical

parameters of the helically notched CAARs are identical to those of an additional regularly notched
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Figure 5.12: Helically notched CAAR prototypes, the dimensions are summarized in Table 5.3.

(a) to (c), prototypeR6 with notches in a half turn (180
◦) counter-clockwise around the axis. (d) to

(f), prototype R7 with notches in a full turn (360
◦) counter-clockwise around the axis. (a) and (d)

are the outer tubes. (b) and (e) are the inner tubes. (c) and (f) are the assembled robots. The paths

of the neutral lines of the tubes are represented in the inertial frame with the colors from chapter 4

(the axial orientation of the renderings and plots does not correspond for better visualization).
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Figure 5.13: Sectional view of a CAAR at the baseplate (fixed ezey-plane) as represented in Fig-
ure 4.3. The clearer parts show where the notches are cut out of the tubes, offsetting the neutral

line (dash-dot lines). Left, with no rotation actuation (θ = 0), the neutral lines lie opposite to each
other, corresponding to in-plane bending. Right, introducing rotation actuation brings the neutral

lines out-of-plane. θ is defined positively as rotating the inner tube clockwise with respect to the
outer tube when looking from the tip of the robot to the baseplate.

prototype (R5) that will be used as reference for comparison. The geometrical parameters of all

three prototypes are summarized in Table 5.3.

CAARs with rotation actuation

A second investigated strategy for bringing the neutral lines out of the exey-plane is to rotate one
of the tubes at its base, relative to the other tube. In Figure 5.13, one can see how the neutral line

of the inner tube moves out of the exey-plane thanks to the actuation in rotation θ. Along with the
translation a, defined in Figure 4.3 page 97, the angle θ is a second actuation variable, defined as the
relative rotation of the inner tube with respect to the outer tube, positive when turning clockwise

looking from the tip of the robot to the baseplate. Recently, a similar actuation strategy has been

studied in [Uppalapati and Krishnan 2020] where pneumatic chambers can be rotated, yielding

helical robot shapes.

This actuation strategy can be applied to any CAAR design, it only requires to provide the

base of the tubes with a fastening system that allows secure transmission of an axial actuation

couple. While one could imagine actuating in rotation tubes with variable neutral line positions,

this dissertation investigates rotation actuation with regularly notched CAARs. Indeed, as a first

step, in order to evaluate the contribution of the rotation actuation without the influence of other

parameters. The tested prototypes correspond to robotR5 in Table 5.3.
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(a) (b)

Figure 5.14: Photos of helically notched robots of 7.2mm in diameter, actuated in translation.

Left, the 180◦ helically notched prototypeR6 actuated at a = −7mm exhibiting a twisting shape.

Right, the 360◦ helically notched prototypeR7 actuated at a = −7mm exhibiting pure translation
of the tip.

5.4.2 Experimental Results

CAARs with 3D neutral lines

The regularly notched prototypeR5 and the two helically notched prototypesR6 andR7 are actu-

ated in translation by alternating incremental 1mm steps a ∈ {0,±1mm,±2mm, . . . ,±amax}.
Consistently with regularly notched prototype experiments of section 5.3.3, amax was set to

amax,reg = 7mm. As for the 2D experiments, while alternating positive and negative actuation,

the reference configuration (home position, a = 0) is systematically measured and compared to the
initial position in order to detect potential plastic deformations that might occur during bending.

One example configurations for both helically notched prototypes is pictured in Figure 5.14.

Figure 5.15 shows the workspace of the two helically notched prototypes R6 and R7 com-

pared to the workspace of the regularly notched prototypeR5. One can see that the 180
◦ helically

notched prototypeR6 bends out of the plane. During bending, the tip orientation pivots towards

the bending direction (see Figure 5.15d), which is a similar behavior as for R5. Also, an axial ro-

tation (torsion) of the tip is introduced (especially visible in Figure 5.15b). In fact, this torsion,

measured at the tip, is propagated through the whole CAAR body, creating a novel twisting shape

(see Figure 5.14a).

The workspace of the 360◦ helically notched prototype R7 indicates yet a different behavior.

In this case, the tip moves in a plane that is perpendicular to the bending plane (exey-plane) of the
regularly notched prototype R5. Interestingly, the orientation of the tip of R7 does not change

during the sweeping of the workspace. In other words, the tip translates almost parallel to ez , with
a slight drop towards the boundaries of the workspace. In Figure 5.14b, displaying an example

of an actuated robot shape, one can see how the robot conforms to an ‘S’-shape during such tip

translation.
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Figure 5.15: Workspace of helically notched CAARs actuated in translation, compared to the

workspace of a regularly notched prototypeR5 (blue). For each plotted data point, three lines are

drawn from the measured tip position, representing the measured tip frame orientation. Red, the

180◦ helically notched prototypeR6. Yellow, the 180
◦ helically notched prototypeR7. (a), (b), (c),

and (d) are respectively perspective, top, front, and side views of the robots workspace, the inertial

frame is provided in each. The grey vertical line in the plots represents the robot in undeformed

(straight) configuration.
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CAARs with rotation actuation

Introducing rotation as a second actuation variable changes the possible tip trajectories of CAARs

from curves to surfaces. The workspace that is obtained by actuating the regularly notched proto-

type R5 both in translation and rotation is shown in Figure 5.16. The translation actuation range

and stepping is the same as for the other experiments, i.e. a ∈ {0,±1mm,±2mm, . . . ,±amax}
with amax = 7mm. The rotation actuation space was set to θ ∈ {0,±30◦,±60◦, . . . ,±θmax}
with θmax = 180◦ such as not to break the prototypes. The maximum rotation angle was deter-

mined experimentally after breaking multiple prototypes with a rotation angle beyond 180◦. The

fracture limit of the prototypes is function of the printing material (PLA) but also of the 3D printing

procedure which makes the prototypes relatively fragile. The workspace is characterized by two

opposite quadrants of a dome surface. With increasing rotation actuation, the CAAR deforms in a

twisting helical shape, also reducing the reach of the bending.

5.4.3 Discussion of 3D CAARs Experimental Results

The experiments of section 5.4.2 show that the investigated 3D CAARs can move out of the

exey-plane of 2D CAARs reported in the literature. While a 3D workspace could also be achieved

by rotating the whole CAAR (i.e. the two tubes at once) three interesting characteristics of the 3D

CAARs approach can be noted.

1. By introducing rotation actuation or arranging notches helically along the tubes, complex 3D

shapes can be achieved. These new shapes enable to reach new possible tip orientations and

to reach specific points or a workspace through new robot paths. Conversely, when rotating

the whole CAAR, the bending plane rotates, but the bending in this plane does not change.

2. Second, by orienting notches with a varying angle along the robot length, such complex 3D

shapes can be achieved with only translation actuation which is a major advantage for the

simplicity of fabrication and control of actuation units and for making such actuation units

less bulky.

3. Translation of the tip can be achieved while maintaining its orientation constant.

From these observations, real added value of 3D CAARs for medical applications can be iden-

tified. Indeed, to better match the dexterity of a real surgeons’ hand with a robot that can navigate

to a surgical site through minimally invasive pathways, the medical robotics community is contin-

uously thriving at improving the dexterity of developed devices. In the present case, 3D CAARs

demonstrated an increased dexterity compared to 2D CAARs (see number 1. above). Also avoid-

ing obstacles is an active field of research in medical robotics to be able to reach targets while

avoiding bones or delicate tissues. The new complex shapes to which 3D CAARs can conform

open up new perspectives regarding obstacle avoidance and path-planning. Finally, the translation

with constant orientation of the tip of 3D CAARs is a promising feature for single port surgical

procedures where it is necessary to deport the tool tips from the access port axis.
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(a)

(b) (c)

Figure 5.16: Workspace of a regularly notched CAAR (R5) when actuating both in translation

and rotation. For each plotted data point, three lines are drawn from the measured tip position,

representing the measured tip frame orientation. (a), (b), and (c) are respectively perspective, front,

and top views of the robots workspace, the inertial frame is provided in each. The blue vertical line

in the plots represents the robot in undeformed (straight) configuration.
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5.5 Conclusion

This chapter presented the development of a versatile actuation unit with integrated tip position

and orientation electromagnetic sensors and computer vision. Also, precise application of external

punctual forces is possible. The actuation unit can accommodate CAAR or CTCR prototypes with

up to four tubes and precisely actuate each tube in both rotation and translation. For example,

it can serve as an actuation unit for actuating a two-segment CAARs similar to the one studied

in [Oliver-Butler et al. 2022]. The presented setup is subsequently used to validate the multiple

aspects of the CAARs mechanical model presented in chapter 4.

To this end, various CAAR prototypes were designed, including CAARs with variable neutral

lines. The experimental validation on four different robot designs shows very satisfactory accuracy

with a tip error of 1.47% of the robot length and testify that the model accurately captures the

studied CAARmotion. Yet, including the unmodeled phenomenons discussed in section 4.7 might

further improve the model accuracy.

Beyond the planar model validation, CAARs were also designed with out-of-plane neutral lines.

While the literature on CAARs only reports in-plane-bending CAARs, the new type of CAARs

introduced in section 5.4.1 are able to deform in 3D. Pushing the concept of 3D CAARs even

further, adding rotation of the tubes as a new actuation variable is investigated. Again, auspicious

experimental results were reported with interesting 3D shapes. Through reasoning and evaluation

of the reported shapes, real potential for 3D CAARs in various medical applications is identified.

Future work regarding the maturity of the prototypes and the extension of the CAARs mechanical

model to the 3D case is discussed hereafter, in the Conclusions and Perspectives.

Contributions of this chapter

1. The model presented in chapter 4 is validated through an extensive set of ex-

periments with various CAAR designs with and without external loading.

2. It is shown through experiments that various strategies allow to extend the

CAAR concept to 3D.

3. The capabilities of 3D CAAR prototypes are analyzed.

While the CAAR model presented in the previous chapter was derived in collaboration with

the LS2N Laboratory in Nantes, France, the experiments were carried out in whole at the TIMC

Laboratory as part of Matthias Tummers’ (MT) thesis. The actuation unit presented in section 5.2.1

was designed by MT and assembled by Alexis Offermann, a research engineer of the CAMI team,

with the help of MT. Concerning CAARs in 3D, the results of section 5.4 have benefited of the

input of Lèna De Thomasis who was a second year engineer student at GrenobleINP, Industrial

Engineering, during her three-month project in the CAMI team. All experiments up to section 5.4

were carried out by MT. In section 5.4, the original idea of extending the workspace and dexterity

of CAARs to 3D came fromMT. Lèna De Thomasis carried out the experimental results presented

in section 5.4.2. Her internship was co-supervised by M. Taha Chikhaoui and MT.
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Summary, Perspectives, and

Conclusion

Summary of the Contributions

In this dissertation, the design and modeling of a novel continuum robot structure has been in-

vestigated. First, in chapter 1, CAARs have been identified as a promising new type of continuum

robot and their potential for medical applications has been analyzed. In order to deploy CAARs

and control their shape or tip position, a precise mechanical model was yet to be derived.

Past years in the continuum robotics community have seen the development of geometrically

exact models for standard types of continuum robots in 2010 for CTCRs, in 2011 for TACRs,

in 2014 for PCRs, and in 2017 for PCRs with GICs. For the recent hybrid continuum robot

structures are more complex than the standard types, it has been six years since the community has

not witnessed the development of new such models. In this dissertation, a new geometrically exact

model for CAARs is derived based on Cosserat rod theory.

To accomplish this challenging objective, it was necessary to unwind the many tangled aspects

of the Cosserat rod theory. Two major modeling approaches for modeling continuum robots

with such theory were identified: the Newtonian approach and the Lagrangian approach. The

first step was to flatten out the two approaches in order to gain a deep understanding of Cosserat

rod modeling from these different view points. In chapter 2 all features necessary for modeling

continuum robots through one or the other approach were exposed in a single structured picture.

Chapter 3 presents a side-by-side derivation of Cosserat rod modeling applied to the use-case of

TACRs. While Cosserat rod models of this type of continuum robots were previously published,

the dedicated analysis in this thesis allowed to provide additional contributions to both (see end of

chapter 3 page 89).

Based on these strong foundations, chapter 4 derives a mechanical model for CAARs. Com-

pared to existing state-of-the-art models, the proposed model is capable of taking into account in-

teractions between CAARs and their environment. Moreover, the new geometrically exact model

is not based on geometrical simplifications as the constant curvature assumption for the state of

the art models.

The model is validated in chapter 5 through a thorough and extensive set of experiments using

various 3D-printed CAAR designs, in free-space and with external forces applied at the robot tip

(see Figure C.1). Results show that the model has a good performance with mean and median tip

errors of 1.47% and 1.06% of the robot length, respectively, over all experiments. Overall, in 94.6%
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Figure C.1: Geometrically exact modeling of various CAAR designs with possibly varying notches

and possibly under external loads. From left to right: (1) a 6mm diameter regularly notched CAAR;

(2) a 9mm diameter CAAR with increasing notch depth towards the tip; (3) a 6mm diameter

regularly notched CAAR under external tip force to the left (blue arrow); (4) a 11mm diameter

regularly notched CAAR; (5) a 6mm diameter regularly notched CAAR under external tip force to

the right (blue arrow); and (6) a 9mm diameter CAAR with decreasing notch depth towards the

tip. The blue marks are the experimental data, the purple marks are the simulated robot tips. The

colored lines represent the neutral lines of the tubes.

of the experiments, the tip error was below 5% of the robot length, including experiments under

external loading. These results compare well with prior Cosserat rod models for continuum robots

(CTCR: 1.5% to 3%; TACR: 1.7%; PCR: 2.83%; PCR with GIC: 8%1). Moreover, a mean tip error

of 1.47% in open-loop control is an acceptable error for many clinical applications. For applications

in fields like neurology or ophthalmology that requiring even more precision, the control loop will

need to be closed, but the benefits of a model that takes into account external loads remains.

Chapter 5 was also the occasion to present promising perspectives for CAARs able to deform

in 3D. The increased dexterity and complex shapes offer undeniable advantages for future medical

applications. Ultimately, all the contributions of this dissertation fall within the general long-term

objective of improving therapeutic yields and clinicians’ comfort in the healthcare sector.

Future Work

Considering notched tubes and CAAR locking

While this thesis has focused on the advantages and potential of CAARs, there are still some open

questions related to these structures that need to be further investigated. Using notched tubes

as elements to construct continuum robots is not an inconsequential alternative. In the present

dissertation, the experimental validation evinced that 3D printing enables easy manufacturing of

notched tubes with various designs. 3D printing is however subject to imperfections, which can

lead to large errors in key dimensions. For example, in simulation, increasing the notch depth

by 100µm for design R1 in chapter 5 leads to a tip error up to 4.1mm in the workspace with

respect to the nominal model results. In order to compensate for such effects, a calibration of

1These values correspond the mean tip error with respect to the nominal manipulator length for all (free-

space/loaded) experiments of the corresponding communications, except for PCRs where only free-space experiments

are reported and for PCRs with GICs, where only an estimated maximum tip error is reported.
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the parameter D (see section 5.3.2), was performed. This calibration procedure, albeit relatively

simple, adds a layer of complexity to the model and may be questionable in clinical applications.

The use of precision manufacturing andmeasurement devices in future work, potentially using laser

manufacturing for notching Nitinol tubes following a process similar to the one described in [York

et al. 2015], may remove the need for such a calibration.

Nitinol is indeed a popular material for the fabrication of continuum robots for its biomedical

compatibility, its super-elastic properties and the fact that they can be easily purchased off-the-

shelf in the form of thin walled tubes. It is however necessary to pay special attention to the

mechanical properties of such tubes. Nitinol can be subject to phase shifting between its austenite

and martensite states, which both exhibit different mechanical properties [Šittner et al. 2014]. Laser

cutting notches out of stock tubes may locally change the mechanical properties due to heating of

the material. This undesirable effect can be limited with the use of femtosecond lasers [Chitalia

et al. 2020], but it is not a trivial issue, regardless.

Some recent studies started looking into on the complex mechanics of notched Nitinol

tubes [Wenlong et al. 2013, Yu et al. 2018]. The most advanced model, considering individual

notch deflection and friction in a notched tube continuum robot (NTCR), is the model described

in [Pacheco et al. 2021]. It takes into account the individual geometry of the notches and friction

that operates along the robot length. Also, the authors carry out a study of the impact of phase

transformations of Nitinol on the robot behavior. A similar analysis is carried out in [Chitalia et

al. 2021]. In this case, a NTCR is proposed for pediatric neurosurgery and a specific strategy is

included in the control algorithm to compensate for the hysteresis that arises due to the phase

transformations of Nitinol when actuating the robot. The authors of [Legrand et al. 2021] explore

the large deformation case of NTCRs and feed their model with an equivalent Young’s modulus

that accounts for the super-elastic behavior. These results were obtained for NTCRs that are made

out of a single notched tube and are actuated by a tendon instead of push-pull motion of multiple

tubes. Nevertheless, such results are of interest for CAARs as well.

Clearly, the mechanical properties of notches are not the only challenge. It is difficult to imag-

ine a clinical robot prototype with apparent cutout notches. First, this could harm tissues during

operation, but also, it introduces great amounts of friction. Even worse, introducing rotation ac-

tuation, CAARs can be subject to locking of the tubes due to notches of the inner tube getting

stuck with the notches of the outer tube. One solution to improve surface quality and reduce

friction and locking is to provide the tubes with silicon coating as in [Amanov et al. 2017]. As a

side remark, the buckling phenomenons discussed in section 5.3.6 are, in the experiments, partially

captured by the clearances and the dry friction between the two tubes, which delays buckling (vir-

tually increases the critical load value). Reducing the clearances, smoothening the printing surface

quality, and lubricating the tubes could narrow down the observed discrepancies between model

and experiments.

Another interesting research path to circumvent all these notched tubes considerations is the

design of tubes with offset neutral lines that do not feature notches. This could be achieved by

printing tubes with multi-material printers. Loaded with materials of different stiffnesses and spec-

ifying a material gradient in the tubes to be printed, the obtained parts would be plain tubes at first

sight, but with effective offset neutral lines. The same could be achieved by printing tubes with

recently developed anisotropic pattering techniques [Vanneste et al. 2020]. Another idea is to print

tubes whose inner and outer cylindrical surface are not concentric, yielding a thin tube wall on one

side and a thicker tube wall on the other. With these specific meso-structured tubes, one can even

imagine, for a longer-term perspective, to print tubes out of other materials as Nitinol or glass. The

latter is currently being used by research teams to print miniaturized needles [Zanaty et al. 2019].
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Countless possibilities with 3D CAARs

As exposed in section 5.4.1, the design space of 3D CAARs has barely been explored. This thesis

assessed the combination of two helically notched tubes with 180 or 360◦ counterclockwise notch

revolution. It might be interesting to invert the revolution angle of the notches for one of the tubes

or to combine tubes with different notch revolution angles.

Constructing CAARs with multiple tubes could also add a third dimension to the workspace.

The neutral lines of CAARs actually behaving as the multiple rods of PCRs, there is no theoretical

limitation in restricting their number to two. Adding a third notched tube with its neutral line

out-of-plane could naturally add a DoF to the system.

These perspectives on 3D shapes also open up new possibilities regarding design optimization

for (patient) specific anatomical constraints. Algorithms could be used similar to those developed

in previous work on design optimization for CTCRs [Anor et al. 2011, Mitros et al. 2022a] and

TACRs [Rox et al. 2022] . Yet, a 3D CAAR mechanical model is required in the first place.

3D CAAR mechanical model

Indeed, to further deploy 3D CAARs, the next step is to extend the model presented in chapter 4

to the 3D case. While this extension is not per se straightforward, the planar model was derived

in a generic way, specifically for this purpose. The general derivation flow of the 2D model can be

taken over. The kinematic constraints need to be extended to the 3D case. For the concentricity

constraint (equation (4.24)) this means that the link between the two neutral lines is no more merely

a translation of a neutral line offset, but must include the rotation of the neutral lines around the

centerline of the tubes. The face-to-face functions (equation (4.21)) and the kinematic reduction

(equations (4.47) and (4.51)) must be revised accordingly. Additional strain fields will have to be

‘activated’ in the partition of equation (4.14) to take into account the new deformations. From

there, starting over from the principle of virtual work should enable to derive the reduced static

balance for 3D CAARs.

Besides, adding stretch and transverse shear fields to the model could contribute to capturing

buckling phenomenons described in section 5.3.6. Indeed, the hyperstatic stresses observed in the

pathological cases would be transferred to the new modes.

Recently, the authors of [Adagolodjo et al. 2021] achieved to solve a coupled Discrete Cosserat

Model and FEM through the use of global and reduced coordinates. This approach that uses

Lagrange multipliers might be an interesting alternative to the Cosserat model derived in this dis-

sertation. Concerning the 3D case of the model, it would enable a short-cut to the above described

extension procedure in the way that the expressions of the kinematic reduction would not have to

be derived. Indeed, in this approach, only the constraints of the structure need to be considered.

Other CAAR mechanical model extensions

Using the open lumen of a first CAAR to pass another CAAR segment of smaller diameter allows

creating multi-segment CAARs [Oliver-Butler et al. 2022]. If one considers the possibility of trans-

lating one CAAR segment with respect to the other, the outer CAAR segment is traversed either

by plain tubes or portions of the inner CAAR segment. In either case, some coupling between the

mechanics of the two tubes occurs. The presented mechanical model being capable of taking exter-

nal loads into account is suited for modeling these interactions but clearly defining the interactions

as functions of the actuation parameters of the robots is subject to future work.
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Another valuable model extension is to consider what happens below the baseplate. In the

presented experiments, the tubes were attached to the actuation unit with the basis of their active

parts close to the actuation unit. In clinical applications, it is however likely that the actuation of

the tubes will be transferred over longer portions of plain tubes and the mechanical deformation

in these actuation linkages may become significant. Including these developments in the CAAR

model would help close the gap with future the medical applications. As this challenge is a shared

one between CAARs, CTCRs [Peyron et al. 2019] and other continuum robots that are actuated

over considerable transmission lengths, one should also investigate how to transfer research con-

tributions from one type to the others.

In continuum robots consisting of concentric tubes as CTCRs and CAARs, there is a necessary

clearance between tubes. As for many concentric tube robot models [Rucker and Webster 2008,

Dupont et al. 2010], our model assumes that the clearance between tubes is just enough to permit

their relative movement while keeping their tangents coincident. As shown in [Ha et al. 2019]

for CTCRs, modeling the clearance allows incorporating friction between tubes, which can be

considered to improve the model accuracy. It remains however an open problem to incorporate

such phenomenons in a Lagrangian Cosserat rod formulation in the context of CAARs.

While the herein derived model is limited to statics, consistent with the nominal regime of

continuum robots in the context of medical applications, the use of CAARs in other fields as the

industry may benefit from a model taking dynamics into account. The formulation presented in

this thesis can be extended to include the dynamics of the system in a similar way as in [Boyer et al.

2021, Boyer et al. 2022a]. Moreover, a dynamic model would enable to study the elastic stability.

During this thesis, no stability issues were observed with CAAR prototypes, nevertheless ex-

haustivity cannot be claimed. Elastic instability is a known phenomenon for certain continuum

robots as TACRs [Li and Rahn 2002], PCRs [Briot and Goldsztejn 2022, Zaccaria et al. 2022],

or CTCRs [Peyron et al. 2019]. While fixing the ends of the tubes of CAARs should avoid the

particular instabilities know for CTCRs, other yet undiscovered instabilities may be lurking in the

dark. Instabilities can be predicted with modeling and avoided through design, by restraining the

workspace or the actuation history. In fact, this is directly in link with the simulation observations

where the equilibrium configurations jump to another family of solutions (see section 5.5). Indeed,

bifurcation analysis [Gilbert et al. 2016a] might enable to characterize this other family of solutions.

Future work, which can use the mechanical model presented in this thesis as computational tools,

should include an elastic stability analysis for CAARs to ensure their safe use.

Finally, during this dissertation, the numerical implementation was not optimized for the sake of

time. Regarding standard types of continuum robots, the community has seen the development of

efficient real time implementations of their correspondingmechanical models [Till et al. 2015, Till et

al. 2019]. In the current state of the model, the simulation of an actuated configuration of a CAAR

is typically of the order of 1 s which is similar to the computation times that were observed before

optimization for the other types of continuum robots. This is why it is reasonable to expect that

translating the previously implemented strategies to the present CAAR mechanical model should

enable to run the model at real-time speeds required for control. One point of attention however,

is that the computation times were found to increase when the internal load approached the critical

load value. This will have to be taken into account, for example by defining multi-objective control

laws that avoid high loads or by implementing other above-discussed solutions/extensions. Finally,

once implemented in a control loop, further optimizing the computational speed can be achieved

with specific methods for computing Jacobians as described in [Rucker and Webster 2011a].
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General Conclusion

Minimally invasive or endoluminal surgery is preferred over open surgery for its benefits of reducing

infection risks and adverse effects, faster recovery (thus shorter hospital stays), and reducing costs.

The current surgical robots are mainly rigid-link robots and are not able to reproduce the dexterity

and reach of open procedures within a minimally invasive system. To overcome these limitations,

the medical robotics community developed continuum robots characterized by infinite degrees

of freedom, allowing them to navigate complex paths into the anatomy and provide the required

dexterity. Currently, challenges inherent to the structure of standard continuum robots remain

unanswered.

By implementing the discussed propositions for fabricating CAARs with a higher maturity,

such robots have the potential to outperform standard types of continuum robots for medical

applications. Of course, it is still a long way from the experiment bench presented in this thesis to

the operating room. Modeling CAARs and their interactions in their environment with precision is

certainly an essential brick for further controlling them in applications. Further, prototypes will also

have to be assessed on phantoms and subsequently cadaver or animal studies prior to evaluating

a high-fidelity prototype through clinical trials. Putting clinicians in the loop at early stages of the

development is critical for efficiently integrating the operating workflow [Patesson et al. 2018].

The contributions presented in this thesis bring us one step closer to the goal of deploying con-

tinuum robots for medical applications for which they are well suited: vascular applications, heart

surgery, neurosurgery, ophthalmology, ear-nose-and-throat surgery, arthroscopy, bronchoscopy,

gastrointestinal surgery, and urology. A recent example where CAARs are pre-clinically assessed

in ex vivo porcine trials for the minimally-invasive removal of early-stage gastrointestinal neoplasia

manifestly testifies of the exposed potential [Gafford et al. 2023]. At the end of the day, the same

goal remains: to improve patient outcomes in technically challenging interventional procedures.
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Appendix





A
Comparison of the Notation Conventions

of the Literature for TACRs

When the Newtonian approach and the Lagrangian approach first occurred in the literature, two

different systems of notations were recognizable. This appendix aims at bringing some insight

between the two systems and provides a dictionary between the approaches for the case of TACRs.

The symbols in the Newtonian approach were chosen to match as closely as possible both the

notation proposed by S. S. Antman [Antman 1995] and the existing literature on the modeling of

continuum robots [Rucker et al. 2010a]. On the other hand, the Lagrangian approach privileged

notations from geometric mechanics [Marsden and Ratiu 1999] and its applications to rigid multi-

body systems and continuous media, including fluid mechanics [Boyer et al. 2010]. This choice

also eases the application of developments on manipulators to other contexts as eel-like robots. A

dictionary of the two systems of notations is presented in Table A.1.

Table A.1 highlights some key differences that can be summarized as follows. In the Newto-

nian approach, vector fields are mostly expressed in R3 whereas the Lagrangian approach makes

extensive use of wrenches and twists, expressed inR6. In the literature on theNewtonian approach,

these R3 vectors are represented by bold symbols to differentiate them from scalars and matrices.

As many developments of the Lagrangian approach are conducted in other (vector) spaces than

R3, this practice is not applicable in this context. In both approaches, all vector fields in R3 can be

expressed either in the inertial frame or in the cross-sectional frames, which can sometimes lead to

confusion.

Another difference concerns the partial derivation with respect to the rod arc length variable

in its reference (stress-less) configuration. It is denoted •̇ in the Newtonian approach and •′ in
the Lagrangian approach. In the Lagrangian approach, densities of external forces, couples, and

wrenches per unit arc length are distinguished from the ordinary forces, couples, and wrenches by

an overbar (e.g. n̄ or F̄ in Table A.1).
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Table A.1: Comparison of the notation conventions of the literature for TACRs.

Newtonian approach Lagrangian approach Dimensions Units

Reference length parameter s ∈ [0, l] X ∈ [0, l] R m

Position p(s) r(X) R3 m

Orientation R(s), (z-axis aligned) R(X), (X-axis aligned) R3×3

Cross-sectional frame g(s) = (p, R)(s) g(X) = (R, r)(X) R4×4

Linear rate of change (shear & extension) v(s) Γ(X) R3

Angular rate of change (bending & torsion) u(s) K(X) R3 m−1

Space-rate twist - ξ = (KT ,ΓT )T R6 (m−1,−)

Initial value or prior to deformation* •∗ •0
Total length of the robot l l R m

Strain - ε = ξ − ξ0 R6 (m−1,−)

Related to the ith tendon •i •i
Number of tendons n m R
Length of the ith tendon li li R m

Related to the jth segment •j •j
Number of segments m χ R
Length of the jth segment lj lj R m

Cross-sectional frame position of the ith tendon ri(s) = [xi(s) yi(s) 0]
T Di(X) = (0, Di,Y , Di,Z)(X) R3 m

Inertial frame tendon position pi(s) = p+Rri ri(X) = r +RDi R3 m

Tangent to the path of the ith tendon ṗi/‖ṗi‖ ti = r′i/‖r′i‖ R
Tension in the ith tendon τi τi R N

Vector of tensions - τ = (τ1 .. τm)
T Rm N

Stress (bending & torsion) m(s) C(X) R3 Nm

Stress (shear & extension) n(s) N(X) R3 N

Stress (wrench) - Λ(X) =
(
C(X)T , N(X)T

)T R6 (Nm,N)

Angular and linear stiffness matrices Kbt(s), Kse(s) Hang(X),Hlin(X) R3×3 N, Nm2

Hookean stiffness matrix or H(X) = diag(Hang(X),Hlin(X)) R6×6 (N,Nm2)

Generalized stiffness - Kεε Rk×k **

Total external distributed couples l(s) c̄(X), C̄(X) R3 Nm/m

Total external distributed forces f(s) n̄(X), N̄(X) R3 N/m

Total external distributed wrench - F̄ (X) =
(
C̄(X)T , N̄(X)T

)T R6 (Nm/m,N/m)

External tip couples - c+, C+ R3 Nm

External tip forces - n+, N+ R3 N

External tip wrench - F+ =
(
CT

+, N
T
+

)T R6 (Nm,N)

Relative to external loads (not tendons) - •ext
External distributed forces (not tendons) f e(s) n̄ext(X) R3 N/m

External distributed couples (not tendons) le(s) c̄ext(X) R3 Nm/m

Relative to rod elastics - •rod
Relative to actuation by the tendons - •act
Distributed forces applied by the tendons f t(s) n̄act(X) R3 N/m

Distributed couples applied by the tendons lt(s) c̄act(X) R3 Nm/m

Distributed forces applied to the ith tendon f i(s) n̄i(X) R3 N/m

Stress of actuation - Λact(X) R6 (Nm,N)

Generalized external forces - Qext Rk **

Generalized restoring forces - Qrod Rk **

Generalized forces of actuation - Qact Rk **

Matrix of actuation - L Rk×m **

Number of shape functions - k R
Shape functions - Φ(X) = (Φ1 ..Φk)

T R6×k **

Generalized strain coordinates - q = (q1 .. qk)
T Rk **

First and second derivative wrt. s or X •̇, •̈ •′, •′′

Residual vector - Res

* The subscript •o sometimes encountered in the literature on the Lagrangian approach is here replaced with a subscript •0 to prevent confusion.
** The units of these quantities depend on the choice of the shape functions.
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B
3D Printing CAARs

While Nitinol stock tubes are a popular choice for the fabrication of continuum robots [Gilbert

and Webster 2016] and have been used for fabricating CAARs [Oliver-Butler et al. 2022], CAARs

are more often fabricated through additive manufacturing also known as 3D printing techniques.

3D printing offers numerous advantages as

• enabling fast production of specific prototypes;

• being cost-effective;

• the possibility to design patient specific manipulators;

• getting along stringent electromagnetic and magnetic resonance compatibility constraints;

• allowing to achieve designs that are not ‘machinable’ with standard techniques.

Additive manufacturing can even be used to directly produce sterile devices on-site with FDA/CE

approved materials, matching the demand in the course of the workflow.

3D printing CAAR prototypes is however not straightforward. During this thesis, many parts

and prototypes were printed. The aim of this appendix is to drop a note on the gained insight.

Among the various 3D printing techniques that exist, the one that was used for the CAARs pre-

sented in chapter 5 is called fused deposition modeling (FDM). It fuses material that is fed through

the heated printing nozzle and deposits the material on a calculated path, layer by layer. The con-

tours of the parts to be printed should be laid out through continuous paths, but the interior of the

volumes can be filled with any pattern and density. Standard FDM printers typically allow to print

tubes with smallest wall thickness of approximately 0.6mm. Due to the effects of gravity, printing
overhanging material is generally not possible without ‘supporting’ material, to be removed once

the parts are printed. ‘Supports’ can only be omitted when the overhanging angle is small (generally

<45◦) or the overhanging material is bridging two closely placed features, but this will inevitably

affect the nominal dimensions of the part. For example, a cylinder with a sufficiently small diam-

eter (typically <15mm) could be printed horizontally, but, the bigger this cylinder, the more its

upper part will sag. Printing the cylinder vertically enhances the trueness of the part. In addition

to precision and dimensional trueness, the printing orientation of a part has a significant impact on

its mechanical properties [Chacón et al. 2017]. Hence, printing orientation is a major concern and

will influence the printing strategies detailed below.

To print CAARs with FDM, different alternatives must be considered. The two tubes of the

CAAR can be printed as a single part with the ends directly fixed or as two separate tubes that

will need to be subsequently attached. For the former option, it was found that the best printing

orientation is vertical. Indeed, the notches of the two tubes facing each other, laying the CAAR

151



horizontally would require to support the remaining backbone of at least one of the tubes which

conflicts with the fact that the tubes are assembled concentrically and the clearances between them

should remain free of any material. Printing CAARs vertically also requires adding support in the

notches, but this material can be removed post printing as it can be accessed with forceps from

both sides of the tubes. The main concern with printing CAARs vertically is that the plastic fibers

are laid out in on paths in the cross-sections, but that the continuity between cross-sections is lost

between printing layers. This considerably weakens the resistance of the prototypes to traction and

bending because the layers can be pulled apart.

To circumvent this issue, the two tubes of a CAAR can also be printed as separate parts hori-

zontally. This is the option that was for all prototypes presented in chapter 5. In this case, the plastic

fibers are laid out axially, thus increasing the axial and bending resistance while preserving similar

rigidity. Prototypes with in-plane neutral lines should be printed with their remaining backbone

facing down, such that no support is needed between the notches. The tubes must be provided

with a slot or attachment system in order to securely fix their tips together. On the downside,

printing the tubes (i.e. cylinders) horizontally affects the circularity of the plain tube parts. Because

the inner tube needs to slide unhampered through the outer tube, it is important to ensure suffi-

cient clearance to compensate for the slight sagging of the cylinders, especially for larger diameters.

When printing helically notched tubes, some portions of the tubes may require supporting the re-

maining backbone. The support material must then be carefully removed, paying attention to the

quality of the inner surface of the tube, prior to the assembly of the tubes.

An interesting option with FDM is the use of soluble support material. Once the part is printed

and removed from the print bed it is immersed in water or more aggressive liquid, depending on

the type of soluble material, such that only the desired features remain. The drawback is that

extra equipment is needed. First, to obtain proper cleaning results, it is recommended to use a

dedicated immersion tank, preferably with integrated heating and liquid flow. Second, soluble

support materials being very sensitive to ambient humidity, the material spools should be stored

in boxes with controlled atmosphere and should be changed every few weeks. This makes the

technology less applicable to small scale laboratory prototyping.

In this thesis, Poly-jet printing has been tested as an alternative to FDM for producing CAARs.

In this technology, a liquid resin material is laid out in thin layers and selectively cured with an

ultraviolet lamp. Incurable liquid is laid out in the void as support and needs to be removed in

a tank. This printing technique offers the possibility to mix resins of different rigidity and hence

to fine-tune the output rigidity of the part. Additionally, it offers higher resolution than standard

FDM and could allow to print tubes with thinner walls. Tubes should however not feature narrow

lumens over long plain tube sections, hindering the removal of the support liquid. Indeed, extended

cleaning times eventually corrode the part itself, leading to bad precision and increased risk of

failure. While the tested prototypes showed good mechanical properties and smoother surface

finish, the tests with Poly-jet printing were not pursued for being not as easily accessible as FDM

at the TIMC laboratory.

Regardless of the chosen printing technique, every additive manufacturing method involves

process parameters. The precise tuning of these parameters is beyond the scope of the present

manuscript, but is surely of interest for future work. For example, with FDM, the nozzle tem-

perature is known to impact Young’s modulus of the printed material. Also, the feeding rate or

print-head speed can determine the surface quality. On the one hand, better mastering these param-

eters should limit the necessity to fall back on model parameter calibration procedures as described

in section 5.3.2. On the other hand, rigorously studying the impact of printer parameters on the

behavior of CAARs may enable to purposely tweak them for specific needs. In the same sense, it
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should be noted that, printing such delicate parts as notched tubes, requires a thorough calibration

of the printer.

Future work should also include the investigation of post-processing of the surface of the tubes

in order to reduce friction and analyze the possibility to directly embed sensors with a method

similar to the one reported in [Meisel et al. 2014]. Additive manufacturing is a vast field of research

with far-reaching possibilities, where many open questions remain. For further reading on 3D

printing of continuum robots for medical applications, refer to [Amanov et al. 2015, Morimoto

and Okamura 2016, Desai et al. 2019].
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Cosserat Rod Modeling of Continuum Robots:

Application to Concentric Agonist-Antagonist Robots

Abstract:

Since roughly 40 years, medical robotics combines advancements in robotics and healthcare to
improve patient outcomes. Today, most clinical robots are rigid-link robots with limited degrees-
of-freedom. Yet recently, there has been a growing trend towards the development of more
compliant robots that offer increased dexterity and can access the body through natural orifices.
This has led to the advent of continuum robots in the medical robotics field, which are composed
of elastic materials and provide infinite degrees of freedom.

This dissertation investigates the design and modeling of a novel continuum robot structure
called concentric agonist-antagonist robot (CAAR), showing great potential for medical applica-
tions. In order to deploy CAARs, a precise mechanical model was yet to be derived. This thesis
proposes such a model based on the Cosserat rod theory. The derived model is experimentally
validated with various CAAR prototypes, in free-space and with applied external forces.

Keywords:

Continuum robots, Mechanical modeling, Concentric push-pull robots, Medical robotics,
Cosserat rod, Tendon-actuated continuum robots

Modélisation de Robots Continus par la Théorie de Cosserat :

Application aux Robots Concentriques Agonistes-Antagonistes

Résumé :

Depuis une quarantaine d’années, la robotique médicale associe la robotique et les soins de
santé au bénéfice du patient. Aujourd’hui, la plupart des robots cliniques sont rigides et ont des
degrés de liberté limités. Pourtant, on observe depuis peu une tendance au développement
de robots plus souples offrant plus de dextérité et pouvant accéder au corps par des orifices
naturels. Cela a conduit à l’avènement de robots continus dans le domaine de la robotique
médicale, qui sont composés de matériaux élastiques et offrent une infinté de degrés de liberté.

Cette thèse étudie la conception et la modélisation d’une nouvelle structure de robots continus,
appelée robot concentrique agoniste-antagoniste (RCAA), ayant du potentiel pour les applica-
tions médicales. Afin de développer les RCAA, un modèle mécanique précis manquait. Cette
thèse propose un tel modèle basé sur la théorie de Cosserat. Le modèle est validé expérimen-
talement sur différents prototypes, avec et sans forces externes.

Mots-clefs :

Robots continus, Modélisation mécanique, Robots concentriques agonistes-antagonistes,
Robotique médicale, Théorie Cosserat, Robots continus actionnés par câbles
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