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Abstract

The discovery of slow slip events at plate boundaries in the 2000s was made possible
by the continuous monitoring of ground deformation by geodetic networks and
constituted a change of paradigm for the understanding of the earthquake cycle
and of the mechanics of the fault interface. Twenty years later, the characterization
of the full slip spectrum and the understanding of the link between slow slip and
associated seismological signals are still hindered by our capacity to detect, in a
systematic manner, all the slow slip events, including the smallest ones. In this Ph.D.
thesis, we enforce a multidisciplinary approach to join geophysics and deep learning.
By taking advantage of the explosion of large-scale data sets, the number of deep
learning applications has experienced enormous growth in geosciences in recent
years. While most of the works focus on seismological data, geodetic measurements
are still poorly explored, and the applications of deep learning to the identification
of slow slip events in the Global Navigation Satellite System (GNSS) data are still
arduous, mainly because of the difficulty in dealing with the fragmented availability
of catalogues and the challenges related to the spatiotemporal complexity of the
noise. Here, we develop deep learning methods to detect and characterize slow
slip events in non-post-processed GNSS data. We first benchmark the distillation
of spatial and temporal features in GNSS data at best, and the development of
deep learning strategies targeted to leverage them. We develop SSEdetector, an
attentive convolutional deep-learning method to detect slow slip events in real
GNSS data in Cascadia, which proves effective in revealing patterns of slow-slip-
event-induced displacement with a multi-station approach. Finally, we address the
problem of denoising GNSS time series as a preliminary step towards slow slip event
characterization. We present SSEdenoiser, a spatiotemporal graph-based attentive
denoiser that learns the latent characteristics of GNSS noise to reveal slow slip event
displacement with sub-millimeter precision.
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Abstract (français)

La surveillance régulière de la déformation du sol par les réseaux géodésiques
a permis la découverte de glissements lents aux frontières de plaques dans les
années 2000. Cela a changé la façon dont nous comprenons le cycle sismique et la
mécanique de l’interface des failles. Vingt ans plus tard, notre capacité à détecter
systématiquement tous les événements de glissement lent, y compris les plus petits,
reste un obstacle à la caractérisation du spectre complet de glissement et à la
compréhension du lien entre le glissement lent et les signaux sismologiques associés.
Dans cette thèse de doctorat, nous utilisons une approche multidisciplinaire pour
joindre la géophysique et l’apprentissage profond. Au cours des dernières années, le
nombre d’applications d’apprentissage profond a augmenté considérablement dans
les géosciences en tirant parti de la disponibilité de grandes quantités de données.
Alors que la plupart des travaux se concentrent sur les données sismologiques, les
mesures géodésiques sont encore peu explorées et les applications d’apprentissage
profond pour identifier les glissements lents dans les données GNSS sont encore
ardues à mettre en place, principalement en raison de la difficulté à traiter la
disponibilité fragmentaire des catalogues et des défis liés à la complexité spatio-
temporelle du bruit. Ici, nous développons des méthodes d’apprentissage profond
pour détecter et caractériser les glissements lents dans les données GNSS (Global
Navigation Satellite System) brutes (non post-traitées). Nous commençons par
évaluer l’obtention des caractéristiques spatiales et temporelles des données GNSS et
créons des stratégies d’apprentissage profond pour les exploiter. Nous développons
SSEdetector, une méthode d’apprentissage profond basée sur des réseaux convolutifs
et des mécanismes d’auto-attention, pour détecter les glissements lents dans les
données GNSS réelles aux Cascades. Avec une approche multi-station, il se révèle
efficace pour identifier le déplacement induit par les glissements lents à la surface.
Enfin, comme étape préliminaire à la caractérisation des glissements lents, nous
abordons le problème du débruitage des séries temporelles GNSS. Nous présentons
SSEdenoiser, un débruiteur basé sur des réseaux de neurones graphiques spatio-
temporels avec un mécanisme d’attention qui apprend les caractéristiques latentes
du bruit GNSS pour révéler les déplacements dus aux glissements lents avec une
précision submillimétrique.
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General introduction 1
From the perspective of the geological phenomena occurring at the human time
scale, earthquakes are among the most harmful processes. Our planet has witnessed
some of the most destructive earthquakes during the past years, most of which
occurred in subduction zones, i.e., where two tectonic plates meet and slide, one
beneath the other. Subduction (megathrust) earthquakes have been among the
deadliest events, causing tens of thousands of fatalities (Lay, 2015), such as the
2004 Mw 9.4 Sumatra (Ammon et al., 2005), 2010 Mw 8.8 Maule (Delouis et al.,
2010), 2011 Mw 9.0 Tohoku (Suzuki et al., 2011) earthquakes. Thus, it is essential
to understand the processes leading to stress release at subduction zones.

At the beginning of the 2000s, the continuous monitoring of ground displacement
with the Global Navigation Satellite System (GNSS) empowered the discovery of
slow slip events (SSEs) in many subduction zones, such as Cascadia (North America)
(Dragert et al., 2001b; Rogers & Dragert, 2003a), Nankai (Japan) (Obara et al.,
2004; Ozawa et al., 2001), New Zealand (Douglas et al., 2005; Wallace & Beavan,
2010), Mexico (Kostoglodov et al., 2003; Lowry et al., 2001a). Like earthquakes,
slow slip events also contribute to releasing stress on the fault, through a slow slip
on the subduction interface lasting a couple of days to a couple of months, yet
without generating seismic waves. For this reason, geodetic data (e.g., here GNSS
position time series) yields the sole access to their identification. Moreover, slow slip
events are often accompanied by a diversity of seismic signals, such as non-volcanic
tremors (Dragert et al., 2004; Obara, 2002), low-frequency earthquakes1 (LFEs)
(Beroza & Ide, 2011) and seismic swarms2 (Hirose et al., 2014), revealing latent
relationships between seismic and aseismic phenomena. Most intriguingly, they
can induce frictional instabilities of close asperities and influence the nucleation of
earthquakes. Even though aseismic slip has been geodetically observed before large
earthquakes (Radiguet et al., 2016; Socquet et al., 2017), the question still persists
whether slow slip events may be responsible for promoting the conditions leading to
the nucleation of megathrust earthquakes.

1Tremors and LFEs are weakly-emergent micro-seismicity or micro-seismicity with low-frequency
content (1-10 Hz).

2Seismic swarms are seismic sequences in which there are no clear mainshock-aftershock patterns.
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There are still several unanswered questions that need to be addressed. Are slow
slip events happening everywhere? When they are not detected, is that due to a
limit of detection? If not present, why are there regions where slow slip events do
not occur? What is the relationship between slow slip events and the accompanying
seismicity? Is there any causal link? What is the mechanics of slow slip events? In
what they differ from regular earthquakes? What are the conditions that promote
slow slip? Systematic and complete mapping of slow slip events is key to addressing
these questions. SSE catalogues in given areas would allow for inter- and intra-event
analyses and extraction of scaling laws. Obtaining scaling laws is essential to better
understand the physics of slow slip events, as this can provide insights into the
mechanics of fault slip, its geometry and kinematic, and similarities with regular
earthquakes, towards a better comprehension of the underlying conditions that
promote the nucleation, growth, and propagation of slow slip (Bletery et al., 2017;
Gomberg et al., 2016b), also related to the frictional properties of the subduction
interface, such as differences in stress conditions (C. Scholz, 1968; Tan et al., 2019)
and fault roughness (Goebel et al., 2017; Pétrélis et al., 2023).

The major barrier impeding our ability to find answers to our questions lies in the
difficulty of revealing slow slip events in the geodetic measurements. The signature
of aseismic transients of deformation in GNSS time series is, for most of the events,
hidden in the noise (Frank, 2016; Rousset et al., 2017b). Without sophisticated
techniques to unveil the tiniest occurrences, our ability to comprehensively analyze
the seismic spectrum and understand the relationship between seismic and aseismic
phenomena, at both short and large space and time scales, remains fragmentary.

The primary objective of this thesis is to employ a comprehensive multidisciplinary
approach and leverage advanced deep-learning methodologies, coupled with realistic
physical simulations, to systematically map and analyze slow slip events occurring
in subduction zones. Numerous geophysical investigations concentrate on individual
events or specific tectonic regions, by visual examination of the data and specialized
modeling techniques with specific calibration of the parameters (e.g. Bletery &
Nocquet, 2020; Ozawa et al., 2013; Wallace, 2020). Another research direction
focuses on systematically characterizing slow slip events with the dual purpose of
constructing event catalogues for inter-event comparison and extraction of scaling
laws, as well as enhancing the signal-to-noise ratio to detect and characterize events
that are at the limit of detection capabilities (e.g. Frank & Brodsky, 2019; Ide,
Beroza, et al., 2007a; Michel, Gualandi, & Avouac, 2019a). We align with the latter
approach and our primary objective is to address the observational gap concerning
small slow slip events with the help of deep learning techniques, in order to shed
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light on the behaviour of slow slip events and their relationships with the seismic
rupture and the underlying processes leading their nucleation and propagation.

The application of deep learning methods in seismology has experienced significant
growth in recent years, leveraging the availability of large data sets. However,
the majority of studies in this field have primarily focused on seismic data (e.g.
Münchmeyer et al., 2021; Zhu & Beroza, 2019). Despite being a valuable source
of information, GNSS data is still little used. The principal obstacle preventing
consistent extraction of slow-slip-driven displacement in GNSS time series is the
ensemble of perturbations affecting the measures of the position, e.g., orbit compu-
tation errors, atmospheric perturbations, seasonal variations, and tectonic signals.
Most of them are hard to model and can have a significant impact on the GNSS
precision. All approaches, at present, attempt to model those contributions to first
clean the data. Yet, this process can introduce biases and artifacts. This is why
in this manuscript we investigate how to identify slow slip events from raw (non-
post-processed) GNSS time series. In addition, we focus on analyzing geophysical
networks with a multi-station approach instead of classical single-station analysis,
since slow slip events produce spatially-coherent signals that need to be captured
by multi-station strategies. To the best of our knowledge, this is the first time that
multi-station deep-learning methods are employed for slow slip event identification
with GNSS data. Although this presents a challenge, it allows us to maintain the
integrity of the raw data and shift the ability to extract small signals buried in the
noise to the methodology itself. Also, the scarcity of SSE catalogues represents a
complication for deep learning, which we solve by developing a strategy to generate
physics-based synthetic data to train advanced deep learning models.

Deep learning reveals promising to tackle this problem, because it can capture com-
plex patterns in the GNSS data, typical of slow slip events. Also, it can autonomously
extract relevant features from raw data, which is essential, since the spatiotemporal
features associated with slow slip events are still poorly understood to have them
as an a priori knowledge base. However, using existing methods is not adequate in
our case, due to the challenge of working with multivariate data (e.g., spatial and
temporal dimensions, multiple components), thereby requiring the development of
tailored methodologies, which must effectively deal with noisy GNSS measurements
as well as missing data and uneven spatial coverage of GNSS stations.

With the developed approaches, we are now able to automatically process continuous
GNSS data in order to detect, localize and retrieve the displacement produced by
slow slip events by effectively dealing with the pervasive presence of geodetic
noise, sparse GNSS measurements and missing data to extract millimeter-scale
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displacement that was buried in the noise so far. Our original contributions hold
potential interest for a broader audience beyond the geophysical domain, as they
serve as a foundation for building models in custom applications, that encompass
areas such as sensor-network time series analysis, building realistic data sets for
end-to-end learning and the development of physic-based deep learning models.

This manuscript is organized as follows. Chapter 2 presents the multidisciplinary
background needed for the rest of the manuscript. First, we provide an overview of
the seismic cycle and slow slip events, by describing their observation, implications
on the seismic cycle, and associated detection methods. Following, machine-learning
and deep-learning background is provided, as well as a bibliography on their appli-
cations in solid earth sciences. Each of the models used in the manuscript has been
explained to provide the reader with short context and easier comprehension.

In chapter 3, we describe earthquake characterization by means of deep learning in
GNSS time series, as our pioneering work towards slow slip event analysis. In this
chapter, we discuss different strategies to leverage GNSS data to make it effectively
work with deep learning, as well as developing deep learning methods targeted to
each GNSS-based data representation. We develop a training database of synthetic
earthquakes and we test the performance of the trained deep-learning models against
real earthquakes from Honshu, Japan.

In chapter 4, we present our deep-learning-based method to detect slow slip events
in real GNSS time series in Cascadia in 2007-2022. We develop SSEgenerator, a
method to generate realistic GNSS time series containing synthetic slow slip signals,
and SSEdetector, an attentive multi-station deep-learning model trained to identify
the signature of transients of aseismic deformation.

In chapter 5, we first discuss slow slip event characterization with spatiotemporal
deep-learning methods. In the second part, we address the problem of slow slip
characterization by first denoising the GNSS data by developing more complex
methods capable to learn the spatiotemporal structure of the GNSS noise in order to
effectively output clean real GNSS data in Cascadia in 2007-2022. Based on clean
data, we further characterize the retrieved events and we provide preliminary scaling
laws, in the direction of a systematic characterization and better understanding of
slow slip events.

Finally, in chapter 6, we draw general conclusions and provide further perspec-
tives.
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Background 2
2.1 Subduction zones and seismic cycle

The Earth’s surface is divided into 14 main tectonic plates. The mantle convection
induces the relative movement of plates between each other of a few centimeters per
year (convergence rate). Plates can meet at their boundaries (plate margins) in three
main mechanisms. Plates can collide or approach in convergent margins (as in the
case of the subduction), depart at divergent margins or they slide between each other
at transform boundaries. In convergent margins, two continental plates can collide
(orogenesis). Alternatively, as shown in Figure 2.1, in the case of an oceanic and
a continental plate (or two oceanic plates), the denser (subducting plate) plunges
below the other (overriding plate). This phenomenon is called subduction.

Fig. 2.1.: Illustration of the Cascadia subduction zone, after (Kan et al., 2023). Here, the
Juan de Fuca plate subducts beneath the North American plate. The S-wave
velocity Vs from the model of Kan et al., 2023 is shown by the heatmap.

7



The subduction interface (where the two plates are stuck together) is subject to
stress accumulation. This stress is suddenly released by earthquakes. Subduction
zones are thus areas where intense seismic activity concentrates. Because of that, the
largest and the most violent earthquakes have been observed in subduction zones,
producing large-scale deformation and harm (Lay, 2015), such as major earthquakes
in the last decade: 2004 Mw 9.4 Sumatra (Ammon et al., 2005; Chlieh et al., 2008;
Ishii et al., 2005; Vigny et al., 2005), 2010 Mw 8.8 Maule (Delouis et al., 2010;
Y.-n. N. Lin et al., 2013; Lorito et al., 2011; Moreno et al., 2010; Vigny et al., 2011),
2011 Mw 9.0 Tohoku (Asano et al., 2011; Lay, 2018; Ozawa et al., 2012; Simons
et al., 2011; Sun et al., 2014; Suzuki et al., 2011) earthquakes.

Fig. 2.2.: Slip behavior along the subduction interface, after (Behr & Bürgmann, 2021).

Subduction zones are highly dynamic geological regions on the Earth’s surface. Yet,
the mechanisms of deformation at the scale of the subduction still need to be fully
understood, as well as their role in the seismic cycle. In the 1660s, laboratory exper-
iments highlighted that rocks usually do not slide smoothly, but they rather exhibit
an unsteady behaviour, probably due to frictional variations along the surface (Brace
& Byerlee, 1966). During the sliding (loading phase), frictional stress increases
(stick), which is abruptly released (failure) when it reaches a critical value (slip).
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This simple model (stick-slip) has thus been used to explain how earthquakes occur
and behave: during the stick phase, corresponding to the interseismic phase, the
fault interface is loaded and frictional stress increases, to be released during the slip
phase, which can be identified as the co-seismic phase. However, the slip on the fault
interface is not uniform, as shown in Figure 2.2. The subduction stability (proneness
to earthquakes) varies as a function of depth and temperature. At shallow depths,
the stable creep seems to be associated with the presence of unconsolidated granular
material (C. H. Scholz, 1998) and low pressure. Sediment consolidation as well as
changes in the properties of the minerals might explain the transition zone between
the stable creep zone and the unstable seismogenic zone (Marone & Saffer, 2007).
In the seismogenic zone, rocks exhibit a transition from brittle to ductile behaviour,
also subject to higher pressure with respect to the shallower brittle zone. At the
same time, the interactions between fluids and asperities1 along the subduction
interface, as well as frictional variations, make the seismogenic zone a complex and
still partially understood area. At higher depths, because of the high pressure and
temperature conditions, the rocks tend to exhibit plastic behaviour, and quasi-stable
creep is found. However, complex phenomena, belonging to the family of (quasi-)
aseismic events, can occur until the purely stable slip region is found.

The frictional properties of the subduction interface exhibit a cyclic behaviour: stress
is accumulated over a certain amount of time, during which the static friction
coefficient grows. When the static friction exceeds a certain threshold, that is when
the ratio between the shear stress and the normal stress exceeds a limit value,
earthquakes can nucleate, which usually corresponds to a velocity weakening regime:
the dynamic friction coefficient decreases with the amount of slip, which means that,
once an earthquake starts, it will have a rapid and unbounded propagation. Since
the frictional resistance decreases during the propagation, this is equivalent to a
positive-feedback system that boosts the earthquake rupture. After the earthquake,
new stress can build up again (fault healing), to be released with the next earthquake.
The way stress accumulates and drops suggests a cyclic behaviour. However, this
has not to be interpreted as a mechanism having a well-defined periodicity.

The aforementioned behaviour can be explained by the Elastic Rebound theory
(Lawson & Reid, 1908). During the stress accumulation phase, plates elastically
deform and, when an earthquake occurs, the stored energy is elastically released. In
its original formulation, the elastic rebound theory explained the seismic cycle as a
two-stage recurring process, consisting of an interseismic phase and a co-seismic phase.
Starting from the late 1990s, the deployment of Global Navigation Satellite System

1An asperity is an area on an active fault with increased friction (locked) (Lay & Kanamori, 1981).
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(GNSS) networks initiated the continuous monitoring of ground displacement,
significantly contributing to modern geodesy.

Interseismic phase The interseismic phase is the longest phase of the seismic cycle,
which can last from decades to centuries up to millennia (McCaffrey, 2007). During
this phase, the subduction interface is locked and subject to stress loading, which
results in elastic deformation of the overriding plate, which moves landwards, as
seen from GNSS measurements.

Co-seismic phase The co-seismic phase corresponds to the sudden release of stress,
which builds up during the interseismic phase and can last from a few seconds to a
few minutes. This is accommodated through the elastic deformation of the overriding
plate in the opposite direction with respect to the interseismic phase, i.e., towards
the trench.

The co-seismic phase has been largely studied because of the high seismic hazard
associated with large earthquakes and also because it can help better understand
the mechanical properties of the seismogenic zone. However, the use of Global
Navigation Satellite System (GNSS) data has resulted in a change of paradigm for
the study of the interseismic phase as well as for the discovery of other phenomena
that enriched the spectrum of signals associated with the seismic cycle.

Post-seismic phase One of the first discoveries made possible by geodesy is the
post-seismic phase, which was not present in the original elastic rebound theory.
Heki et al., 1997 observed what they call a silent fault slip following the 1994
Mw 7.6 Sanriku-Haruka-Oki earthquake. Interestingly, the post-seismic deformation
following the earthquake can help in rethinking the seismic cycle with respect
to its original formulation. In fact, on one hand, the post-seismic phase further
accommodates the deformation after a strong and sudden stress drop (relaxation),
but it also corresponds to further moment release, which can have the same order of
magnitude as the co-seismically-released moment, with a duration from days to years.
The post-seismic relaxation can be described by three main phenomena: afterslip,
viscoelastic relaxation, poroelastic rebound. The afterslip is mainly associated with an
aseismic slip on the region surrounding the seismic rupture and is associated with the
first phase of the post-seismic relaxation phenomenon. The viscoelastic relaxation is
associated with the mantle and the way it responds to the co-seismic solicitation.
It can last from years to several decades and can have a large-scale spatiotemporal
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evolution. The poroelastic rebound is linked to pore fluid re-equilibration after the
co-seismic stress changes.

2.2 The discovery of slow slip events and their
implications for the seismic cycle

Fig. 2.3.: Worldwide occurrence of slow slip events and associated seismicity, from Obara,
2020. For each fault system, several phenomena can be observed and mea-
sured, such as slow slip events (“SSE”) tremors and low-frequency earth-
quakes (“Tremor”), very low-frequency earthquakes (“VLF”), major earthquakes
(“MegaEQ”) and seismic swarms (“Swarm”). “Everything!” indicates that SSEs,
tremors, LFEs and VLFEs are observed. The ocean floor age is represented in
colors (Müller et al., 2008). “SAF” corresponds to the San Andreas Fault and
“Alpine F.” to the Alpine Fault in New Zealand. “N.-C. Chile” and “S. Chile” stay
for North-Central Chile and South Chile.

The first observations of transient slip were captured by creepmeters and strain-
meters, such as the post-seismic phase of the 1987 Superstition Hills earthquake
(Bilham, 1989) and the slow earthquake sequence in December 1992 on the San
Andreas Fault (Linde et al., 1996). Also, there is a reference to a “fault creep event”
in 1975 by King et al., 1975, although the data should be interpreted with caution.
A few years later, thanks to GNSS measurements, this family of slow transient events
has been identified in subduction zones worldwide, such as Cascadia (Brudzinski &

2.2 The discovery of slow slip events and their implications for the seismic
cycle
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Allen, 2007; Dragert et al., 2001b; Kao et al., 2009; Miller et al., 2002; Rogers &
Dragert, 2003a), Nankai (Hirose et al., 1999; Hirose et al., 2023; Miyazaki et al.,
2003; Obara et al., 2004; Ozawa et al., 2001), New Zealand (Douglas et al., 2005;
McCaffrey et al., 2008; Wallace & Beavan, 2010), Mexico (Kostoglodov et al., 2003;
Larson et al., 2004; Lowry et al., 2001a; Radiguet et al., 2011; Radiguet et al.,
2012b; Vergnolle et al., 2010), Ecuador-Peru (Vaca et al., 2018; Vallée et al., 2013;
Villegas-Lanza et al., 2016), Boso Peninsula (Fukuda, 2018), Alaska (Peterson &
Christensen, 2009), and Costa Rica (Jiang et al., 2012), as shown in Figure 2.3. The
most commonly accepted nomenclature for these events is slow slip events (SSEs), to
denote its transient and episodic nature (see Figure 2.4 for an example).

Fig. 2.4.: GNSS time series showing the 1999 Cascadia slow slip event, after (Dragert et al.,
2001b). The event can be clearly identified by the reversal of surface motion
in the time series. (a) shows the raw time series, (b) is obtained by a 5-day
smoothing and (c) shows a zoom on the transient.

Slow slip events occur most probably on the subduction interface (e.g. Brown et al.,
2009; Dragert et al., 2001b; La Rocca et al., 2009; Obara et al., 2004; Shelly, 2010;
Shelly, Beroza, Zhang, et al., 2006) and have the same mechanism as earthquakes,
that is shear slip on faults. However, unlike them, they last from a few days to months
or years (Beroza & Ide, 2011; Ide, Beroza, et al., 2007a; Peng & Gomberg, 2010).
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Since they are slowly slipping, they do not radiate detectable seismic waves (Beroza
& Ide, 2011). For this reason, the exploration of SSEs can be exclusively pursued
through geodesy-based approaches (e.g., GNSS, InSAR) and the examination of
any accompanying seismological signals. Slow slip events are often associated
with non-volcanic tremors (episodic tremor and slip, ETS) (Bartlow et al., 2011;
Bartlow et al., 2014; Dragert et al., 2004; Ide, Shelly, et al., 2007; Obara, 2002;
Schwartz & Rokosky, 2007a; Wech & Bartlow, 2014), low-frequency earthquakes
(LFEs) (Beroza & Ide, 2011; Frank, 2016; Ide, Beroza, et al., 2007a; Shelly, Beroza,
Ide, & Nakamula, 2006) and seismic swarms (seismic sequences with no prevailing
mainshock) (Hirose et al., 2014; Lohman & McGuire, 2007; Segall et al., 2006),
suggesting that most of them occur below the seismogenic zone. Non-volcanic
tremors were observed for the first time in 2002 by Obara, 2002. They are low-
amplitude seismic signals with frequencies between 1 and 10 Hz. Tremors can be
seen as a persistent, continuous signal, propagated by S-wave velocity, yet without
clear P- and S-wave arrivals. They are usually relocated through cross-correlation
techniques. Obara, 2002 determines that the observed tremors should lie at about
30 km depth, at the base of the seismogenic zone, and postulates that they could
have been generated by fluid generated by the slab dehydration. Shelly, Beroza,
Ide, and Nakamula, 2006 observed low-frequency signals (1-10 Hz) buried into the
non-volcanic tremor signals, suggesting that tremors can be seen as the superposition
of many LFEs.

Slow slip events revolutionized our understanding of plate motion. As seen in the
previous section, the seismic cycle was thought of as a rather simple process where
plates accumulate stress during the interseismic phase and release it during the co-
seismic rupture. Geodesy, as well as more sensitive instruments, helped to shed light
onto the interseismic and post-seismic phases, providing evidence of intertwined
relationships between earthquakes and slow transients, as well as the associated
seismological signals. While the interseismic period was considered a sill phase
in between two major earthquakes, Frank, 2016; Jolivet and Frank, 2020; Jolivet
et al., 2013; Linde et al., 1996; Melnick et al., 2017; Michel, Gualandi, and Avouac,
2019a; Obara and Kato, 2016; Rousset et al., 2017b; Rousset et al., 2016 showed
that the interseismic loading is not constant over space and time, but is modulated
by aseismic transients of deformation. However, the main challenge associated with
the identification of slow slip events lies indeed in their detection in the geodetic
data, since the slow slip signal goes unnoticed in the GNSS noise (Frank, 2016;
Rousset et al., 2017b).

Slow slip events are characterized by a slip instability that propagates along a fault,
whether spontaneous or not. As opposed to regular earthquakes, slow slip may be

2.2 The discovery of slow slip events and their implications for the seismic
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thought of as being associated with a velocity-strengthening regime: once aseismic
slip starts, the friction coefficient grows over time, thus the motion will rapidly arrest.
However, the mechanics and governing factors of slow slip events are still poorly
understood, as are their possible similarities with regular earthquakes. Hence, it is
not to be excluded that slow slip events may be the spontaneous weakening of the
fault zone, which cannot occur in velocity-strengthening materials. For this reason,
slow slip implies velocity weakening to allow for the nucleation of an instability.
Although the link between seismic and aseismic processes is still unclear, slow slip
events can have magnitudes similar to regular earthquakes: they thus contribute
equally to the seismic cycle. Slow slip events can be used as a proxy for the frictional
state of active faults and are responsible for stress redistribution, affecting the
stability of nearby asperities, and influencing or inhibiting the earthquake nucleation
depending on the stress conditions and frictional state (Behr & Bürgmann, 2021;
Rousset, 2019; Weng & Ampuero, 2022). In fact, several lines of evidence suggest
that the nucleation, propagation, and arrest of the seismic rupture is moderated by
slow slip events (e.g. Avouac, 2015; Bürgmann, 2018; Jolivet & Frank, 2020; Obara
& Kato, 2016). An acceleration of the moment release before large earthquakes has
been observed in geodetic data, suggesting that slow slip may trigger the nucleation
of large earthquakes (Mavrommatis et al., 2014; Radiguet et al., 2016; Schurr
et al., 2014; Socquet et al., 2017). Yet, geodetic observations remain rare. An
acceleration of the background seismicity (Marsan et al., 2017; Marsan et al., 2013),
as well as changes in the seismicity rate (Bouchon et al., 2013; Bouchon et al.,
2016), have been associated with aseismic slip, yet the question remains whether
aseismic slip may be the driving mechanism of gradual fault weakening prior to
large earthquakes (Bowman & King, 2001), or whether a cascade of failures might
trigger the mainshock (Dodge et al., 1996).

2.2.1 SSE characteristics: what is known so far?

As presented in the previous section, slow slip events occur over a few days to a
few years and, although they do not radiate seismic waves, are often associated
with seismicity. For example, in Nankai, slow slip events have been observed to
last 1 day (Sekine et al., 2010) (short-term) as well as 5 years (Obara, 2011) (long-
term). In Cascadia, SSEs are mostly episodic (short-term) and last about 20 days
and are accompanied by non-volcanic tremors (Rogers & Dragert, 2003a), that are
often used as a proxy for slow slip events (Wech et al., 2009). Also, SSEs occur
periodically. Short-term SSEs in Cascadia seem to have a recurrence interval of
about 9 months (Aguiar et al., 2009; Brudzinski & Allen, 2007), while, in Nankai,
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short-term SSEs have recurrence intervals spanning from 70 to 200 days (Obara
et al., 2010; Sekine et al., 2010) and long-term SSEs seem to be recurring every 10
years (Obara, 2011).

A slow slip event can be modeled as a semicircular crack that first grows updip and
downdip until bounded by the transition from rate-weakening to rate-strengthening
regions. Then, it propagates along strike (Dal Zilio et al., 2020). The rupture velocity
on the interface is not homogeneous, that is from 1 and 10 km/day (Dal Zilio et al.,
2020; Schwartz & Rokosky, 2007a). On the surface, the displacement associated
with the slow slip is between a few millimeters to a few centimeters (major SSEs).
Thus, the use of GNSS time series is essential to reveal the deformation associated
with small slow slip events, since the millimetric precision of GNSS positioning.

Obara, 2002 observed that SSE occurrence is related to the movement of fluid gener-
ated by slab dehydration. The hypothesis is that fluids may reduce the normal stress
on the interface, thus promoting fault shear slip. For example, Hawthorne and Rubin,
2013 observed that small stress perturbations, e.g., tidal stressing, may modulate
SSE recurrence. These stress perturbations may be driven by heterogeneities on the
fault surface. Also, a high Poisson’s ratio (Vp/Vs), that is the ratio between p-wave
and s-wave velocities, has been observed in subduction zones near the slab interface
at 30-50 km depth (see Figure 2.1) (Audet et al., 2009; Kan et al., 2023; Shelly
et al., 2007). Shelly et al., 2007 find clusters of LFEs in high Vp/Vs zones, suggesting
that they can be used as a proxy for slow slip manifestation. In fact, several pieces of
evidence suggest that a hydrologic control might be one of the factors driving slow
slip occurrence (Beroza & Ide, 2011; Frank, Shapiro, et al., 2015; Shelly, Beroza,
Ide, & Nakamula, 2006).

Ide, Beroza, et al., 2007a grouped both seismic and geodetic observations to classify
the novel slip mode of SSEs compared to fast (regular) earthquakes. They also group
LFEs and SSEs as belonging to the same fault shearing mechanism. On top of the
cubic moment-duration scaling law M0 ∼ T 3 typical of fast earthquakes (Kanamori
& Anderson, 1975), they suggest that the moment-duration scaling law is typically
linear M0 ∼ T . Other works also suggest that the exponent for the duration may
range from 1 to 2 (e.g. H. Gao et al., 2012; Liu, 2014). Peng and Gomberg, 2010
questioned the fast and slow earthquakes subdivision and suggested that natural
phenomena rather share a continuum of slip modes. They also complement the
original data set from Ide, Beroza, et al., 2007a with additional geodetic observations,
such as afterslip or landslides, suggesting that the gap between slow and fast slip
modes in the original formulation may be due to current observation ability. Gomberg
et al., 2016b suggest that a single model of slip can reconcile the observations of fast
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and slow earthquakes, from bounded to unbounded growth styles as a function of
the slip area. More recent observations suggest a cubic scaling law for SSEs, such as
Michel, Gualandi, and Avouac, 2019b in Cascadia, Takagi et al., 2019 in Nankai, and
Frank and Brodsky, 2019 in Mexico, providing further evidence that earthquakes
and slow slip events may be more similar than we think. In this direction, Dal Zilio
et al., 2020 point out that, even though such observations follow a cubic scaling law,
SSE may likely not be associated with magnitude-invariant average rupture velocity
and stress drop, as in the case of regular earthquakes. Thus, the same scaling law
can arise from different physical properties, which have to be further studied.

2.2.2 SSE detection methods

As seen in section 2.2, the difficulty in identifying slow slip events in geodetic time
series is related to the signal amplitude with respect to the noise. Rousset et al.,
2017b use template matching to correlate GNSS time series with synthetic SSE tem-
plates obtained from the expected theoretical displacement (Okada, 1985). In order
to have robust detection, they compute a weighted average of the correlation with
the expected theoretical displacement to emphasize SSE displacement at stations
that are supposed to record higher signal amplitude. With their method, they detect
28 slow slip events of magnitude between 6.3 and 7.2 in 2005-2014 in the Guerrero
segment of the Mexican subduction zone.

Nishimura, 2014, 2021; Nishimura et al., 2013 use the Akaike Information Criterion
(AIC) to detect short-term SSEs in the Japanese subduction zone. They first remove
common modes from the GNSS time series via spatial filtering. They use a 180-day
sliding window to compute the AIC difference between the data and two possible
models: (1) either a straight line (2) or a Heaviside function centered in the window.
They select the best model, e.g., the model corresponding to the lowest value of
AIC. They detect 133 slow slip events of magnitude between 5.5 and 6.3 in Nankai
from 1996 to 2012, 130 events of magnitude between 5.8 and 6.8 along the Ryukyu
trench (Japan) from 1997 to 2014, and 176 events of magnitude between 5.3 and 7
in the Kanto and Tokai regions (Japan) from 1994 to 2020.

Michel, Gualandi, and Avouac, 2019a, 2019b use the variational Bayesian Inde-
pendent Component Analysis (vbICA) to first decompose the GNSS time series into
Independent components. They correct the time series for all signals that do not
correspond to slow slip events. They compute the slip deficit induced by slow slip
and the long-term slip deficit related to the coupling, by focusing on periods of
negative slip deficit rate. They consider having a detection when the slip deficit rate
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is less than 40 mm/year. They detect 40 slow slip events in Cascadia from 2007 to
2017 of magnitude from 5.3 to 6.8.

2.3 Seismo-tectonic context

In this manuscript, we mostly focus on the detection and characterization of slow
slip events along the Cascadia subduction zone, which we present in section 2.3.1.
In chapter 3, we also address the problem of earthquake characterization in Honshu,
North Japan, which we briefly present in section 2.3.2.

2.3.1 Cascadia subduction zone

The Cascadia subduction zone is located in North America. The subduction margin
extends for about 1100 km, from Vancouver Island (Nootka Fault) to north California
(Mendocino triple junction), as shown in Figure 2.5. Cascadia is a case of warm
and young (< 10 Ma) subduction margins. Here, the Juan de Fuca plate subducts
beneath the North American plate with a convergence rate between 30 and 40 km
per year (DeMets & Dixon, 1999; Hyndman et al., 1997; McCaffrey, 2007). Over
the past ∼ 10,000 years, the Cascadia margins have experienced several megathrust
earthquakes, as inferred from turbidite sediments and coastal geological evidence
(Goldfinger et al., 2017; Goldfinger et al., 2012), with magnitudes up to 9 (Leonard
et al., 2010). In 1700, the last Mw 9 Cascadia megathrust earthquake occurred,
which produced tsunami waves, recorded in Japan (Satake et al., 2003). At the
present time, the sole seismologically active zones are the northern and southern
segments (see Figure 2.5) (K. Wang & Tréhu, 2016). According to Obana et al.,
2015, the absence of interplate seismic activity may indicate that the megathrust
has fully healed and locked since the 1700 event, suggesting a relatively lower level
of structural heterogeneity, such as subducting seamounts.

Episodic slow slip events have been observed along the margins of the Cascadia
subduction zones, most of them accompanied by non-volcanic tremors, LFEs and
VLFEs (Calvert et al., 2020; Chaudhuri & Ghosh, 2022; Ghosh et al., 2015; Rogers
& Dragert, 2003a; Wech et al., 2009). Calvert et al., 2020 show that in many
subduction zones, such as Cascadia, a layer of anomalously low seismic wave
velocities has been observed near the episodic-tremor-and-slip area, suggesting that
high pore-fluid pressure may weaken the megathrust (see Figure 2.1 and the detail
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Fig. 2.5.: Tectonic setting of the Cascadia subduction zone, from McKenzie et al., 2022.
Seismicity from 1976 to 2021 is shown (Mw > 3). The MORVEL (Mid-Ocean
Ridge VELocity) Juan de Fuca-North America plate motions are shown (DeMets
et al., 2010). Mw > 5 earthquakes are shown with their focal mechanism
and are color-coded by depth (USGS and GCMT earthquake catalogs). Green
transparent onshore points show tremor locations from 2016 to 2021 from the
Pacific Northwest Seismic Network (PNSN). 10 km slab contours (Hayes et al.,
2018) are shown as thin black lines.
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of the fluid-saturated oceanic crust) (Calvert et al., 2020; Frank, Shapiro, et al.,
2015; Kan et al., 2023).

The ETS zone in the subduction presents an along-dip segmentation of slip and it
disconnected from the seismogenic zone, acting as a buffer zone that isolates the
seismogenic and the SSE zone, and temperature and lithological constraints might
explain the existence of two separate zones of unstable frictional sliding (X. Gao &
Wang, 2017; Michel, Gualandi, & Avouac, 2019a). Michel, Gualandi, and Avouac,
2019a find that the locking zone is closer to the coastline, at depths between 10 and
30 km, where the slab is supposed to be creeping. Also, the absence of seismicity
in this zone suggests that the interseismic loading has not yet compensated for
the stress drop due to the 1700 megathrust earthquake and also that interplate
seismicity may penetrate at depths deeper than the locked zone.

2.3.2 Tectonic context of Honshu, North Japan

At the intersection of the Japan archipelago, four tectonic plates converge: the
North American plate (NAM), the Pacific plate (PAC), the Philippine Sea plate (PHS),
and the Eurasia plate (EUR), as shown in Figure 2.6 (EUR is not present in the
figure). The PAC plate subducts beneath the NAM plate along the Japan Trench with
a convergence rate of 76 mm/yr. The PHS plate subducts beneath the NAM plate
along the Sagami Trough at 26 mm/yr. Along the Nankai Trough, the PHS plate
subducts beneath the EUR plate at 56 mm/yr, and the EUR plate subducts beneath
the NAM plate along the Japan Sea Margin at 22 mm/yr. The plate convergence
rates are taken from Marill et al., 2021.

The PAC/NAM and PHS/NAM have hosted the greatest earthquakes in Japan, such
as the 1994 Mw 7.7 Sanriku earthquake (A. Ito et al., 2004), the 2003 Mw 8 Tokachi
earthquake (Yamanaka & Kikuchi, 2003) and the 2011 Mw 9 Tohoku earthquake
(Hooper et al., 2013) as for the Japan Trench, and 1703 Mw 8.2 and 1923 Mw 7.9
Kanto earthquakes (Komori et al., 2017; Shishikura, 2014) and the 1946 Mw 8.4
Nankai earthquake (Baba et al., 2002) as for the Sagami Trough.

In chapter 3, we focus on the Japan Trench. The PAC/NAM subduction is colder
and older (130-140 Ma, from Müller et al., 2008) than the Cascadia subduction
zone (see section 2.3.1). It presents along-strike structural heterogeneity and a
complex segmentation of slip, different than the along-dip segmentation of the
Nankai Tough and the Cascadia subduction zone, where ETS is found. In the Japan
Trench, no regular SSEs are observed, which do not seem to be correlated with any
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Fig. 2.6.: Tectonic setting of the Honshu island, from Marill et al., 2021. The colored stars
represent historically and instrumentally recorded great earthquakes (Mw > 7.7)
as well as major aftershocks (rupture areas are also indicated by the same color
as the corresponding stars) (Hooper et al., 2013; A. Ito et al., 2004; Komori et al.,
2017; Shishikura, 2014; Yamanaka & Kikuchi, 2003). The light blue circle near
the Boso peninsula shows the Boso SSE rupture area (Fukuda, 2018), and the
one at 38°N 143°E represents the 2008 SSE (Y. Ito et al., 2013). The green circles
show the 2000 Miyakejima (Cattania et al., 2017) and the 1998 Iwate volcanic
unrest (Miura et al., 2000). Plate motions are deduced from Nishimura et al.,
2007 Euler’s poles.
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seismological signals. While there are a few observations of SSEs in the Northern
and Southern parts of the Japan trench, the central segment presents a lack of
observations, probably due to less pore fluid (Nishikawa et al., 2019).

2.4 Fundamentals of machine learning

When we talk about Machine learning, we refer to mathematical and statistical
methods employed to “learn” specific patterns from data to solve a specific problem.
In this manuscript, we will refer to machine learning (and deep learning, in the
following sections) models to indicate supervised learning methods, which are one
of the learning strategies. In supervised learning, the data is considered to be a set
of pairs {xi, yi}, where xi is an input sample and yi is the corresponding desired
output. A simple high-level description is provided by the following equation:

yi = fΘ(xi) (2.1)

where the function fΘ(·) is the representation of a specific model. The subscript Θ
represents the parameters of the model. A machine learning model takes a set of
inputs xi and optimizes (learns) the model parameters Θ to build a hidden function
fΘ that (ideally) maps each input to the corresponding output. In most machine
learning methods, the training can be thought of as an iterative process where the
parameters Θ are optimized according to some loss or error metrics (e.g., mean
squared error), as described in the following pseudo-code:

1 function training (x, y, N) {
2 f_theta = f_0
3 for iteration in 1, ..., N {
4 y_pred = f_theta (x)
5 error = E(y, y_pred )
6 f_theta = update_parameters (f_theta , error)
7 }
8 }

Listing 2.1: High-level supervised training procedure.

where N is the number of iterations, E is the chosen error metric (also called
loss function) and the function update_parameters updates the model parameters
Θ according to the error (misfit) at the current iteration. A large number of ma-
chine learning models are optimized according to versions of the gradient descent
algorithm. In this case, the parameters are updated as:
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Θt ← Θt−1 − η∇E(Θt−1) (2.2)

where t and t− 1 indicate the current and the previous iterations and η > 0 is the
step size or learning rate.

In addition to the parameters Θ, a model usually also has hyperparameters. While
parameters Θ are optimized during training, hyperparameters are linked to the
structure of the function f and the algorithm configuration. For instance, the
learning rate η, the number of iterations N and the general form or architecture
of f are hyperparameters and they need to be adjusted in order to have the best
performance. They are usually optimized through an experimental process called
hyperparameter tuning.

Once the best hyperparameters and parameters Θ∗ are selected, the predictions are
computed as:

ŷ = fΘ∗(x). (2.3)

To be noted, testing and assessing the performance of the trained model on the
samples used for training the model can lead to a biased estimate since the model
parameters have been optimized on this data specifically. Yet, testing on training
data does not tell anything about the generalization ability of the model, i.e., the
ability to perform reasonably well over unseen data. The same logic applies to
the hyperparameter tuning, which should be performed on a separate data set for
the tuned model to generalize better over new data. For these reasons, the data is
usually split into three independent sets:

• training data. The data that is used during the training phase. It is used
to compute the training error or misfit E, serving to iteratively optimize the
model’s parameters Θ.

• validation data. The data that is used to tune the model’s hyperparameters.

• test data. The data that is used to assess the performance of the trained model
during the inference phase.
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Fig. 2.7.: Example of a subset of the iris data set. Each point represents the abstraction
of an iris sample, as a function of two features: the petal length (x-axis) and
the sepal length (y-axis). Blue and orange points represent two different types
(classes) of sample: versicolor and viriginica, respectively.

2.4.1 A real-world problem addressed by machine learning

In 1936, R. Fisher introduced the iris flower data set. This data set consists of 50
samples of three different species of iris flower. For each flower, four structural
properties were collected: length and width of petals and sepals. These four prop-
erties are commonly called features. Features represent an abstract representation
of the problem of interest and are supposed to contain all the relevant information
to address the task under consideration. Each sample can thus be represented as a
point in a vector space, that we call feature space. In our case, each flower is a point
in a four-dimensional space. For simplicity, suppose that we only retain two features,
the petal length and the sepal length, as shown in Figure 2.7. We also assume here
that we only have two species (classes) in the data set: versicolor and virginica.

Suppose that we want to train a machine learning model to classify the iris species.
Such a model will receive some pairs (xp, xs) in input, where xp and xs are the petal
and sepal lengths, respectively, and will have a binary output ŷ, either “versicolor” or

2.4 Fundamentals of machine learning 23



“virginica”. We can encode these categorical output variables into numerical values,
such as 0 (for versicolor) and 1 (for virginica). We can use a simple model (also
called logistic regression) to discriminate between the two classes. The model first
computes a hypothesis z on the input data:

z = Θ · x = θ0 + θ1xp + θ2xs (2.4)

and then computes a prediction ŷ as:

ŷ = fΘ(x) = σ(z) = 1
1 + e−z

(2.5)

where Θ · x indicates the scalar product between Θ and x and σ is the sigmoid
function. The model has thus three parameters (θ0, θ1, θ2) that will be optimized
during the training by minimizing a specific loss function.

Suppose that, after the training, the parameters Θ∗ = (θ∗
0, θ∗

1, θ∗
2) have been opti-

mized to the values (−15.29, 3.75,−0.48). The hypothesis z∗ = Θ∗x = 0 corresponds
to a straight line in the feature space that acts as a decision boundary (corresponding
to ŷ = 1

2):

θ∗
0 + θ∗

1xp + θ∗
2xs = 0 (2.6)

as shown in Figure 2.8. When z∗ > 0, the model will classify a sample as virginica,
versicolor otherwise. In this case, a new iris having a petal length of 5 cm will be
classified as virginica if the sepal length xs > − θ1

θ2
xp − θ0

θ2
= 7.1 cm.

In general, a machine learning model fΘ(·) is fed some input features and outputs
one or more variables corresponding to the predicted output. For this reason,
(supervised) machine learning can be resumed as “learning from examples”. Two
types of machine learning problems exist:

• classification: the target is a discrete variable (e.g., 0, 1, ..., n) which is not
ordered, as in the case of iris species classification;

• regression: the target is a continuous variable, e.g., the estimation of the total
size of the plant, or the altitude at which the plant was found, etc.
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Fig. 2.8.: Example of linear classification of two iris species using equation 2.5 as the
decision rule. Each point represents an iris sample as a function of the petal
length (x-axis) and the sepal length (y-axis). Blue and orange points represent
two different classes. The dashed straight line indicates the decision boundary
(equation 2.8 and the blue and orange regions indicate when a sample will be
classified as versicolor and virginica, respectively.

On top of deep learning models, which will be developed later, many other machine
learning methods have been found to be performing well when features can be seen
as a list of variables (such as in the Iris dataset): we can note, in particular, random
forests (Breiman, 2001) and gradient boosted trees, e.g., XGBoost (Chen & Guestrin,
2016).

2.4.2 Machine learning in geosciences

Machine learning has recently gained popularity in geosciences thanks to successful
applications, notably in seismology and earthquake engineering. Among them,
Zou et al., 2021 use attributes (features) extracted from seismic data to infer the
subsurface porosity. In the frame of earthquake engineering and hazard assessment,
Mangalathu et al., 2020 compare several machine learning methods to assess the
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spatial extent and the severity of building damage, Y. Zhang et al., 2018 assess the
post-earthquake building structural safety using sequential ground motions, and
Ghimire et al., 2022 focuses on post-seismic damage on urban/regional scale after
the 2015 Mw 7.8 Gorkha Nepal earthquake.

In seismology, Hibert et al., 2017 use the random forest method to automatically
classify rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise
volcano. Soubestre et al., 2018 use a network-based method for detecting and
classifying seismovolcanic tremors by exploiting the daily array covariance matrix.
Li et al., 2018 use the feature extracted from earthquake and noise waveforms by a
Generative Adversarial Network (GAN) to train a random forest model targeted to
seismic wave discrimination. P. Shi et al., 2021 apply unsupervised machine learning
techniques to better understand the evolution of seismic wavefield properties, from
wavefield features and covariance matrix analysis. Aden-Antoniów et al., 2022 use
an adaptable random forest model for the declustering of earthquake catalogues.
Rouet-Leduc et al., 2019 use the random forest model applied to seismic recordings
to infer the GNSS displacement rate throughout the slow slip cycle and Hulbert et al.,
2020 use gradient-boosted trees to infer slow slip timing from statistical features
extracted from seismic waveforms.

In the frame of laboratory earthquakes, Rouet-Leduc et al., 2017 use the random
forest model to predict the time before a failure by using acoustic emissions, Bolton
et al., 2019 use unsupervised machine learning to identify patterns in the acoustic
signals and precursors to labquakes. Rouet-Leduc et al., 2018 use gradient-boosted
trees to estimate the fault friction from continuous seismic signals. Hulbert et
al., 2019 use the same method to predict the timing and duration of laboratory
earthquakes. Asim et al., 2017 test several machine learning models, such as
tree-based methods and random forest, to predict the earthquake magnitude.

2.5 Towards deep learning: neural networks

many problems have complex data as input, that are not easily convertible to a
list of features: we can think of an input being a sequence (of text, of time points
such as a time series), or an image. The deep learning family of methods has the
advantage to incorporate feature extraction in the model: this is what made them
very effective.

The linear model y = fΘ(x) = Θ ·x presented in the previous sections can be thought
of as the building block of more sophisticated models, typically called (artificial)
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neural networks. Neural networks owe their name to biological neural networks
because of their complex structure, which resembles the interconnections between
biological neurons.

Fig. 2.9.: Example of artificial neuron, from (S. Haykin, 1998).

An artificial neuron is a (generally nonlinear) processing unit and its structure is
presented in Figure 2.9. A neuron basically performs a logistic regression: a linear
combination of the inputs followed by a nonlinear activation function φ, e.g., a
sigmoid function:

y = fΘ(x) = φ

(
n∑

i=1
θixi + θ0

)
(2.7)

where n is the input size. Equation 2.7 can be made more compact by transform-
ing the input x = (x1, x2, ..., xn) into (1, x1, x2, ..., xn) such that the bias can be
embedded in the scalar product:

y = fΘ(x) = φ

(
n∑

i=0
θixi

)
(2.8)

The activation function can be, in principle, any differentiable nonlinear function.
If φ is chosen as a sigmoid, this is equivalent to equation 2.5. The weights Θ, as
before, represent the model parameters and are optimized during training.
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Fig. 2.10.: Example of multi-layer perceptron, edited after (De Castro, 2006).

In neural networks, neurons are connected to each other, as shown in Figure 2.10,
showing an example of a neural network with one hidden layer2. In this case, the
model structure fΘ(·) consists of an input layer, a hidden layer and an output layer
and is described by:

yk = fΘ(x) = φ

 m∑
j=0

θk,j φ

(
n∑

i=0
θj,ixi

) (2.9)

where n is the number of inputs and m is the number of neurons in the hidden
layer.

As seen in Figure 2.8, a single neuron can express the decision boundary for classifica-
tion3 as a hyperplane. When combining multiple layers (e.g., more hidden neurons),
as in equation 2.9, the decision boundary can become more complex (intuitively, the
composition of several hyperplanes can result in a nonlinear shape), which can help
better separating the different classes. In the case of the iris classification, a curve
could have helped to better separate the two classes instead of a straight line.

2We refer to a layer as a group of neurons.
3Here we talk about classification, yet the same states for regression tasks (e.g., nonlinear function

approximation).
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A remarkable theoretical result achieved for neural networks is known as universal
approximation theorem, whose informal definition is provided below.

Theorem ∀ε > 0, f(x), ∃ a neural network fΘ(x) such that

∥f(x)− fΘ∥∞ < ε. (2.10)

The universal approximation theorem, however, states that a neural network exists
that solves any task. Yet, nothing is said about how difficult it might be to train, nor
what are its hyperparameters and how to optimize them (e.g., number of hidden
neurons). Also, a deeper neural network, i.e., with more hidden layers may be easier
to train and lead to better performance.

For many years, 3-layer neural networks (also called multilayer perceptrons, MLP)
have been used, with limited emphasis on deeper architectures. Reconsidering deep
networks, with proper structural modifications, led to deep learning.

2.6 Fundamentals of deep learning

The universal approximation theorem, as seen in the previous section, does not
provide any guarantee that a “shallow” network would achieve better performance
than a deeper one with different hyperparameter configurations. Also, the way
those models work assumes the presence of features previously extracted from data
(feature engineering). During the training phase, they can reproject the data onto
a (typically) higher-dimensional space, hence why the universal approximation
theorem, yet they cannot enrich nor learn a new representation for that data. Also,
the choice of features is one of the most important tasks and the selection of the
right one is not trivial. In fact, the feature selection is usually delegated to experts in
the specific domain. Once specialists have selected a good set of features, machine
learning experts can rely on those to build specific models. However, this process
could need to be reiterated because of domain-related caveats that need to be taken
into account.

One of the breakthroughs empowered by deep learning is the possibility to build
models that are trained on raw data, instead of features obtained from it. In this
way, these models can extract knowledge from the data and, most intriguingly, they
can distillate the best features according to the data itself and the learning task
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(representation learning). This has been enabled by the availability of large data
sets, making deep learning one of the state-of-the-art frameworks for statistical
learning.

2.6.1 Convolutional Neural Networks

One of the most employed deep learning models today is Convolutional Neural
Networks (CNNs), which make use of convolution as the main operation. This form
of deep learning is particularly relevant for large but ordered input data, such as
images or time series. Given two real discrete signals x(n) and y(n), with n ∈ Z,
their discrete convolution is defined as:

(x ∗ y)(n) =
∞∑

u=−∞
x(u)y(n− u) (2.11)

Suppose to have a one-dimensional kernel K(m) having values in a finite domain
m ∈ (−M, ...,−1, 0, 1, ..., M). The size of the kernel is 2M + 1 and is assumed odd
for convenience. The convolution between x and K can be rewritten as:

(x ∗K)(n) =
M∑

m=−M

K(m)x(n−m) (2.12)

where the commutative property was applied.

The idea behind this is to slide the kernel on the signal and cross-correlate4 the two,
with the kernel values (weights) being learned during training.

One of the strengths of deep learning, enforced by convolutional networks, is the
weight sharing: the convolution weights are shared for all the input values, as
shown in Figure 2.11 (top). This results in fewer computations with respect to a
fully-connected (equivalent to an MLP, see the previous section and Figure 2.10)
configuration, as shown in Figure 2.11 (bottom). This is also motivated by the
arrangement of neurons in the visual cortex of mammals, which inspires CNNs.

A given set of N different kernels
{

Ki(n)
}N

i=1
can be convoluted with the inputs

x(m) to obtain a set of signals
{

hi(n)
}N

i=1
=
{

(x ∗Ki)(n)
}N

i=1
. The signals hi(m)

are typically called feature maps and can be further transformed by an activation
function, as:

4Cross-correlation becomes a convolution when one of the two signals is not flipped.
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Fig. 2.11.: Example of weight-sharing, after (Goodfellow et al., 2016). (top) a neural
network with weight sharing, (bottom) a fully-connected neural network.

hi(m) = fKi(m) = φ ((x ∗Ki)(n)) = φ

 M∑
m=−M

Ki(m)x(n−m)

 . (2.13)

Although equation 2.13 is quite similar5 to equation 2.8, there is a substantial
difference between a fully-connected layer and a convolutional layer. Since a neuron
is connected to all the previous neurons in a fully-connected configuration, the
number of parameters (weights) to be learned increases quadratically with the
input (or hidden-layer) size. In convolutional networks, the number of learnable
parameters is proportional to (2M + 1)N , that is the kernel size multiplied by
the number of feature maps. Since the filter size is usually small, the number of
parameters depends mostly on the number of features computed in a layer. This
also tells us that, contrary to fully-connected networks, convolutional networks can
process inputs of arbitrary dimensions, to parity of parameters: this makes CNN
flexible to many types of data (e.g., satellite images or seismic recordings).

The convolution is a local operation. However, a sequence of more convolutional
layers can increase the receptive field, as shown in Figure 2.12. As a result,

5We tried to be consistent with equation 2.3. It should be noted that the parameter vector Θ is now
replaced with the kernel weights Ki for the i-th feature map.
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Fig. 2.12.: Example of the receptive field in a CNN, after (Goodfellow et al., 2016).

deeper convolutional networks can leverage long-range information. Also, because
the convolution filters are learned, a convolutional network can extract low-level
information first (e.g., edges, corners, as in the case of images, or peaks, spectral
information in the case of 1D signals), all the way to more complex and abstract
characteristics (e.g. object parts, shapes, textures as for images, or temporal-spectral
relationships, events, as for 1D signals) as the depth of the network increases. For
this reason, CNNs are also called feature extractors or feature detectors.

Convolutional networks make extensive use of pooling operations, which are novel
components introduced in deep learning. The idea of pooling is to replace a local
neighborhood of the input (or hidden representations) with summary statistics
(Goodfellow et al., 2016), such as max-pooling or average-pooling. A pooling
kernel slides onto the data and outputs the maximum or the average value at a
certain location. With a kernel of size 2, the output will have half the length of the
input. This can be seen as a downsampling operation, which can result in improved
computational efficiency since the network will have half the samples to process in
the next layer. Thanks to downsampling, convolutional neural networks can capture
multi-scale features, since the result of convolutions made with a kernel of a given
size applied to smaller inputs can be seen as the same as sliding a bigger filter to the
original input. With pooling, the filter size can remain smaller, with the advantage
of having a larger receptive field, thus improving feature extraction by computing
features at both local and global scales. Moreover, pooling kernels do not have any
trainable parameters, therefore they do not add any complexity to the network.
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2.6.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a class of deep learning models specifically
designed to analyze sequential data, i.e., data in which samples are ordered in time.
For example, the value of a time-varying signal x(t) at time t is generally dependent
on (possibly all) the previous samples:

x(t) = f(x(t− 1), x(t− 2), ...). (2.14)

A typical example of a sequence is text. In sentences, the semantics associated with a
given word is dependent on the previous words. Hence, to understand the meaning
of a sentence, it is usually necessary to read it entirely.

In order to model this desired behaviour, RNNs introduce the idea of state h(t),
which is an intrinsic variable of the RNN system and can be thought of as a “memory”
about past information. The idea behind this is that the sequence is parsed and, for
each sample, the internal state of the system is updated:

h(t) = f (h(t− 1), x(t); Θ) . (2.15)

This equation can be thought of as the update rule of the internal state of an RNN,
based on the current input and the previous state, which is conditioned on past
inputs and past state values. The basic RNN structure (or “cell”) can be given by a
simple linear update and the output for the k-th neuron can be written according to
the following (simplified) equation (Goodfellow et al., 2016):

yk(t) = φ1 (woφ2(whhk(t− 1) + wixk(t)) (2.16)

where φ1 and φ2 are nonlinear activation functions, wo, wh, wi are learnable weights
associated with hidden-output, hidden-hidden and input-hidden connections, re-
spectively.

No details will be provided here about how to train recurrent networks. However, it
should be noted that the kind of linear state update (hk(t) = whhk(t− 1)) provided
in equation 2.16 can raise some stability issues, especially for long sequences,
where the network parameter update process can be harmed by unstable gradient
propagation. Because of this, modern recurrent architectures integrate a gating
mechanism to modulate the flow of information: long short-term memory (LSTM)
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and gated recurrent units (GRU). Here, the GRU architecture will be presented,
which is simpler than LSTM and will be used in the following chapters.

2.6.2.1. Gated Recurrent Units

The idea of gated RNNs such as LSTMs or GRUs is that the network can select how
much information to retain in the state, how much to discard, and how much to
propagate to the next stage. As a simple analogy, the working mechanism of such
RNNs is similar to water, which can flow or be shut off by means of faucets during
its flow. These faucets, or gates, are learned during the training, which means that
the network can learn how to adaptively filter out information.

The GRU is equipped with two types of gates: an update gate u(t) and a reset gate
r(t), defined as:

u(t) = σ (Wux(t) + Uuh(t− 1)) (2.17)

r(t) = σ (Wrx(t) + Urh(t− 1)) (2.18)

where σ is the sigmoid function, and Wu, Uu, Wr, Ur are learnable weight matrices.
A candidate hidden state can be defined, which is the hidden state subject to the reset
gate, as:

h̃(t) = tanh (Whx(t) + Uh (r(t)⊙ h(t− 1))) (2.19)

where ⊙ represents the Hadamard (or element-wise) product, and Wh, Uh are
learnable weight matrices. Finally, the update rule for the hidden state, subject to
both gates, is defined as:

h(t) = u(t)⊙ h(t− 1) + (1− u(t))⊙ h̃(t). (2.20)

With this rule, the state is updated both by propagating a fraction of the previous
state and by conditioning the previous state with current inputs and the previous
state. The network learns how to find a balance between the two gates, which
simultaneously controls how much to forget about the previous state and how to
update the decision on the current state. The idea is that the network can learn
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Fig. 2.13.: Example of self-attention, after (Chollet, 2021).

to create paths between the input sequence and the state update, where only the
most relevant information is forwarded and retained, enabling the model to capture
long-term dependencies in the data more effectively.

2.6.3 Transformer neural networks

Recurrent neural networks can be effective at modeling sequences, such as time
series or text. However, when the sequence is long, some issues arise, which are
not fully addressed by LSTMs or GRUs. For example, when modeling a long text
sequence, we may wonder whether scanning the entire sentence is useful to detect
long-term dependencies between words. In fact, a word at the end of the sentence
may only be related to the context provided at the beginning of the sentence.
Transformers introduced the concept of self-attention, which resulted in a change
of paradigm with respect to previous sequence modeling methods, significantly
outperforming them in most of the scenarios. The idea behind self-attention is that
not every word in a sentence equally contributes to the global semantics: a score
could be assigned to each word to discriminate between what is important and what
can be neglected, i.e., to know what is the most relevant context associated with
it. Figure 2.13 schematically explains this idea. In the sentence “the train left the
station on time”, the context associated with the word “station” can be almost fully
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captured only by the words “train” and “left” (regardless of the word “station” itself).
This is done by relying on three main ingredients:

• query: a specific element that we want to obtain information about, e.g., the
word “station” in our example;

• key: keys are associated with every word (often called tokens) in the sentence
and encode their features;

• value: as the keys, they encode features associated with the tokens, but they
focus on their meaning.

The intuition behind this mechanism can be explained as a lookup table, which is a
table that relates some (key, value) pairs. Given a question (the query) related to
the word that we are investigating, we obtain its representation (key) to access the
table, to find its value. As it can be inferred from Figure 2.13, this table is somehow
built upon the similarities between the words, that is the sentence with itself (hence
the name self-attention). First, the (scaled) similarities between the queries and keys
are computed:

S = QKT

√
dk

(2.21)

where dk is the key (as well as the query) dimension, and Q, K are matrices
representing the query and the key, respectively. Then, the attention weights α are
computed:

α = softmax(S) (2.22)

where the softmax operation is applied along the query sequence dimension, such
that:

softmax(Si,j) = eSi,j∑
j eSi,j

. (2.23)

Finally, the output of the self-attention layer is the linear combination of the values,
weighted by the attention coefficients:

y = αV (2.24)
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where V is a matrix representing the value.

The Q, K, V matrices are obtained from the input through a linear projection:

Q = Wqx

K = Wkx

V = Wvx

(2.25)

where Wq, Wk, Wv are learnable matrices. This allows rewriting the output of the
self-attention layer as a function of the inputs:

y = fW (x) = softmax

(
(Wqx) · (Wkx)T

√
dk

)
· (Wvx) (2.26)

Thanks to the three learned projections Wq, Wk, Wv, the self-attention mechanism
can learn what are the relationships in the data and, most importantly, learn how
to distinguish the most relevant ones from the rest, which translates in assigning a
higher weight to the former and penalizing the latter.

A Transformer layer is then followed by further projections and normalizations,
which we will not discuss here. The reader can refer to the complete Transformer
architecture in (Vaswani et al., 2017).

By construction, the self-attention mechanism is permutation invariant, which means
that it focuses on the content of tokens rather than their position in the sequence.
However, the sequential structure of the data should be enforced. To address
that, positional encoding is typically adopted (Vaswani et al., 2017). The idea is to
leverage some ancillary information on the position p = (p0, p1, ..., pk) and to define
an encoding E which maps each position to a vector. Hence, the encoded positions
are added to the inputs:

x′ = x + E(p). (2.27)

2.6.4 Graph neural networks

Convolutional neural networks are powerful models, able to extract information from
the data from both local and global scales. Yet, in order for CNNs to be employed,
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the input data needs to be structured. Since CNNs are based on the idea of sliding
a filter onto the data, this means that all data points must be arranged as a uniform
grid (e.g., images). However, in some applications, the input data is not structured on
a regular grid: for example, in the case of a network of sensors (e.g., meteorological
or ground motion measurements). In the scope of this manuscript, a GNSS network
is employed. In principle, it is not possible to perform 2D convolutions on GNSS data,
since, unlike interferograms, GNSS stations are sparse and not equally spaced. To try
to mitigate this issue, (shared) 1-dimensional CNNs can be used (convolution in the
time domain) on each station separately. Another solution is to spatially interpolate
the data to create gridded maps (or image time series) where the 2-dimensional
convolution is possible, as we detail in section 3.2.2.3. However, those techniques
are domain-dependent and thus do not adapt to all types of data. Also, they can
be computationally expensive and may suffer from data contamination (e.g., in the
case of GNSS interpolation on a regular grid, artifacts can be introduced and noise
can be enhanced by the interpolation). To solve this issue, graph neural networks
(GNNs) extend the convolution operation on data that is not structured as a regular
grid, which can be modeled as graphs.

2.6.4.1. Graphs

A graph is a mathematical data structure fully described by a pair of sets (V, E)
called vertices or nodes and edges. Given a set of nodes V = (v1, v2, ..., vn), the
edges are defined as connections between two nodes: E ⊆

{
(u, v) | (u, v) ∈ [V]2

}
,

where [V]2 represents the family of unordered-2-element subsets of V. For example,
if V = {1, 2, 3}, [V]2 = {(1, 2), (1, 3), (2, 3)}. Two nodes connected by an edge are
called adjacent or neighbours. Such a graph is called undirected since the relationships
between nodes don’t have a direction, that is there is no “source” and “destination”:
the edge (u, v) is equal to the edge (v, u). For the rest of the chapter, we will talk
about undirected graphs only.

Figure 2.14 shows an example of an undirected graph, containing 5 nodes and 6
edges, with V = {A, B, C, D, E}, E = {(A, B), (A, C), (B, B), (B, C), (C, D), (D, E)}.
The edge (B, B) is called a self-loop.

A graph can be fully described by its adjacency matrix. The adjacency matrix is a
square matrix A ∈ RN×N , where N is the number of nodes. A is symmetric in the
case of undirected graphs. Each element of A is such that Ai,j is 0 or 1 depending
on if the edge (i, j) exists. If a weight is associated with each edge (weighted graph),
then Ai,j = ei,j . Edge weights ei,j can be thought of as a measure of the strength of
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Fig. 2.14.: Example an undirected graph.

the connection between two nodes, depending on the specific application. In the
example of Figure 2.14, the (unweighted) adjacency matrix is:

A =

A B C D E



A 0 1 1 0 0
B 1 1 1 0 0
C 0 0 1 0 1
D 1 1 0 1 0
E 0 0 0 1 0

(2.28)

2.6.4.2. Graph neural networks

Graph neural networks (GNNs) extend the convolution operation on graphs, which
can be thought of as a generalization of structured data, e.g., images. GNNs gener-
alize the convolution operation via message passing. The idea of message passing
is that the features of the nodes are updated by taking into account the features of
neighbouring nodes, as:

yu = update(xu, aggregate
v∈N (u)

(message(xu, xv, eu,v))) (2.29)

where N (u) indicates the neighbourhood of the node u, i.e., its adjacent nodes. The
message(·) function indicates how the features associated with the nodes u and v

are combined (by taking into account a possible edge weight eu,v). The aggregate(·)
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function is permutation-invariant and aggregates the aforementioned messages to
a new aggregated representation that captures the collective information from the
neighborhood. The update(·) function is responsible for updating the features of
each node based on the aggregated messages received from neighboring nodes.

Many GNN layers have been developed after message passing with specific charac-
teristics. Here, we focus on the Graph Convolutional Network (GCN). The key idea
behind graph convolution is to use the graph structure to define a local receptive
field for each node, similar to how convolutional layers operate on regular grids (e.g.,
image-like data). Graph convolution involves aggregating features from neighboring
nodes, applying a learnable transformation, and updating the node’s representation,
as:

y = fW (X) = AXW (2.30)

where A is the adjacency matrix, X the input features and W a learnable weight
matrix. The matrix multiplication AX performs neighborhood selection: for a given
node in the column of X, the multiplication with the respective row of the adjacency
matrix, containing its neighbours, computes the sum of the node features and all its
neighbours. By further multiplying by W, the model can learn the best connections
as well as (typically) expand the data dimensionality, allowing for more complex
data representations.

The adjacency matrix A has the property that the matrix Ak, obtained by raising A to
the power k, contains 0 everywhere except when two nodes u and v are reachable in
k hops, i.e. if a path of length k exists between them. This means that, by increasing
the number of GCN layers, it is possible to increase the receptive field of a node.

In practice, the adjacency matrix (see equation 2.30) is normalized for better
numerical stability, but this will not be discussed here.

2.6.5 Spatial-temporal graph neural networks

Graph neural networks are usually used with univariate features, for example, a list
of characteristics for each node. However, many applications are multi-variate. In
the case of this Ph.D. thesis, we work with three-dimension input data, that can be
thought of as a tensor of shape (station, time, component). Standard graph neural
networks can still be used in this context, e.g., by applying a GNN to stations and
components, yet without taking the time dimension into account. Spatial-temporal
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graph convolutional networks (STGCN) have been developed to extend classical
GNNs to spatiotemporal data. The key idea is that spatial (GNN-like) and temporal
modules (CNNs, RNNs, etc.) are intertwined to perform joint spatial and temporal
analysis. We give further details in section 5.2.1.

2.6.6 Deep learning in solid earth sciences

The number of deep learning applications in seismology is rapidly growing (Mousavi
& Beroza, 2022), probably thanks to the flexibility of deep learning in analyzing
large-scale data sets as well as extracting meaningful features from raw data, as
seen in the previous sections. Here we review some of the recent advances in deep
learning applied to solid earth sciences. For a more complete overview, the reader
can refer to (Bergen et al., 2019; Kong et al., 2019a; Mousavi & Beroza, 2022,
2023).

Most of the works in seismology make use of convolutional neural networks to
analyze continuous seismic waveforms to address several tasks such as earthquake
detection and phase selection. Zhu and Beroza, 2019 use a deep learning approach
based on CNNs to pick the arrival times of both P and S waves in seismic data.
Mousavi et al., 2020a also focus on P- and S-wave picking by combining convolu-
tional, recurrent, and transformer neural networks. For further examination, please
refer to (Münchmeyer et al., 2022). Ross, Yue, et al., 2019 use recurrent neural
networks to build a deep learning method for phase association. Another direction
is earthquake source parameter estimation, e.g., Münchmeyer et al., 2020; Saad
et al., 2020. Münchmeyer et al., 2021 use a CNN- and transformer-based neural
network for the location and magnitude estimation from real-time seismic wave-
forms. van den Ende and Ampuero, 2020 also focus on earthquake location and
magnitude estimation with a simple graph neural network using a max(·) operation
to aggregate features at each station. X. Zhang et al., 2022 use a graph neural
network with a convolutional neural network to extract temporal features prior to
the GNN module.

Some notable work is carried out in geodesy as well. Anantrasirichai et al., 2018 use
a CNN-based network to detect volcano deformation using synthetic data and Rouet-
Leduc et al., 2021a use a CNN-based autoencoder to denoise SAR interferograms to
recover deformation associated with slow slip events. Rouet-Leduc et al., 2020 use a
convolutional neural network trained on spectrograms to detect tremor activity as a
proxy for slow slip. In the frame of denoising, Zhu et al., 2019 used a convolutional
autoencoder to denoise and decompose seismic signals based on spectrograms.
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Thomas et al., 2023 developed a method based on (Zhu et al., 2019) to denoise
high-rate-GNSS time series.
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Seismic source
characterization from GNSS
data using deep learning

3

This chapter is based on the article published in the Journal of Geophysical Research
(JGR): Solid Earth as:

Costantino, G. and Giffard-Roisin, S. and Marsan, D. and Marill, L. and
Radiguet, M. and Dalla Mura, M. and Janex, G. and Socquet, A. (2023).
Seismic Source Characterization From GNSS Data Using Deep Learning,
Journal of Geophysical Research: Solid Earth, 128(4), e2022JB024930,
https://doi.org/10.1029/2022JB024930.

In this chapter, we present a deep learning approach to identify and characterize
earthquakes on- and off-shore Honshu (Japan) with the GEONET GNSS network.
We propose three data representations and corresponding deep-learning models
to tackle this problem. In addition to time series, we rearrange GNSS data into
images and image time series, to capture the spatial and spatiotemporal variability,
respectively. We show that our preferred model, ITS, based on a transformer neural
network, can detect earthquakes in GNSS data down to magnitude 6 in real data.
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Abstract The detection of deformation in GNSS time series associated with (a)seismic
events down to a low magnitude is still a challenging issue. The presence of a con-
siderable amount of noise in the data makes it difficult to reveal patterns of small
ground deformation. Traditional analyses and methodologies are able to effectively
retrieve the deformation associated with medium to large-magnitude events. How-
ever, the automatic detection and characterization of such events is still a complex
task, because traditionally–employed methods often separate the time series analysis
from the source characterization. Here we propose a first end-to-end framework to
characterize seismic sources using geodetic data by means of deep learning, which
can be an efficient alternative to the traditional workflow, possibly overcoming its
performance. We exploit three different geodetic data representations in order to
leverage the intrinsic spatiotemporal structure of the GNSS noise and the target
signal associated with (slow) earthquake deformation. We employ time series, im-
ages and image time series to account for the temporal, spatial and spatiotemporal
domains, respectively. Thereafter, we design and develop a specific deep-learning
model for each data set. We analyze the performance of the tested models both on
synthetic and real data from North Japan, showing that image time series of geodetic
deformation can be an effective data representation to embed the spatiotemporal
evolution, with the associated deep learning method outperforming the other two.
Therefore, jointly accounting for the spatial and temporal evolution may be the key
to effectively detecting and characterizing fast or slow earthquakes.

Plain language summary The continuous monitoring of ground displacement with
Global Navigation Satellite System (GNSS) allowed, at the beginning of the 2000s,
the discovery of slow earthquakes – a transient slow slippage of tectonic faults that
releases stress without generating seismic waves. Nevertheless, the detection of
small events is still a challenge, because they are hidden in the noise. Most of the
methods which are traditionally employed are able to extract the deformation down
to a certain signal–to–noise level. However, one can ask if deep learning can be
a more efficient and powerful alternative. To this end, we address the problem
by using deep learning, as it stands as a powerful way to automatize and possibly
overcome traditional methods. We use and compare three data representations, that
is time series, images and image time series of deformation, which account for the
temporal, spatial and spatiotemporal variability, respectively. We train our methods
on synthetic data since real data sets are still not enough to be effectively employed
with deep learning, and we test on synthetic and real data as well, claiming that
image time series and its associated deep learning model may be more effective
towards the study of the slow deformation.
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3.1 Introduction

Global Navigation Satellite System (GNSS) is one of the reference sources of in-
formation in geodesy. Geodetic data can help analyze the ground displacement
with millimeter precision as well as monitor its evolution through time (Blewitt
et al., 2018). Such data is commonly used to monitor the ground displacement as a
response to environmental (e.g., tides, snowpacks or hydrology), tectonic or seismic
forcing, and to characterize the mechanical response of the Earth to these forcings.
Notably, GNSS data has been widely used to study the deformation associated with
the different phases of the earthquake cycle. This leads to a better understanding
of the loading of faults between earthquakes, of the seismic ruptures studied with
either static or kinematic approaches, and of the processes driving the post-seismic
relaxation (Bock & Melgar, 2016; Bürgmann, 2018, and references therein). In this
study, we address the problem of seismic source characterization using deep learning
from raw GNSS position time series. Seismic source characterization consists of the
inversion of the location, magnitude, depth (and focal mechanism when possible) of
seismic events. This is usually performed by employing seismic recordings because
the data has a high signal-to-noise ratio (SNR) and contains the information needed
to estimate the earthquake parameters (Dziewonski et al., 1981). Thus, catalogues
having low magnitudes of completeness can be obtained. Thus, catalogues having
low magnitudes of completeness can be obtained. Because they directly measure
the ground displacement associated with seismic events (and not the acceleration or
the velocity) and because they do not saturate in the near-field (unlike velocime-
ters), GNSS data provides interesting measurements in near-field that complement
seismic data to constrain the earthquake source. Therefore, several studies carried
out the source parameter characterization with GNSS data. They usually focus on
one particular event or tectonic area, involving visual inspection of the data and
dedicated modelling methods with a fine-tuning of the parameters (Blewitt et al.,
2009; Feng et al., 2015; Guo et al., 2015; J.-T. Lin et al., 2019; Page et al., 2009;
Riquelme et al., 2016; Weston et al., 2012). Indeed, GNSS data presents several
challenges associated with a lower SNR than seismological records. In other words,
GNSS data has an intrinsic detection threshold, meaning that the signature of a
seismic event (or any phenomena producing ground displacement) can be perceived
in GNSS time series down to a certain magnitude, which is much higher than the
completeness magnitude of catalogues obtained from seismic recordings. This makes
it difficult to automatically estimate the seismic source parameters based on the
ground displacement recorded on the surface. Here, we want to explore the effec-
tiveness of deep learning methods to automatically characterize the seismic source.
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To this end, as the static deformation associated with regular earthquakes can be
approximated with a similar simple dislocation model (Okada, 1985), we use GNSS
data to characterize the static deformation signature of earthquakes. Catalogues
listing the source of all Mw earthquakes are made available by the routine analysis
of seismic recordings by seismological agencies, allowing for a benchmark with real
GNSS data against an independent ground truth.

Machine learning and deep learning methodologies have recently been successfully
applied to geosciences. In seismology, they have been used to address topics such
as earthquake detection and phase selection resulting in seismic catalogues of
unprecedented density (Kong et al., 2019a; Mousavi et al., 2020a; Ross, Yue, et al.,
2019; Seydoux et al., 2020; Zhu & Beroza, 2019; Zhu et al., 2019), earthquake
early warning (Münchmeyer et al., 2021; Saad et al., 2020; X. Zhang et al., 2021),
prediction of ground deformation (Kong et al., 2019a; Mousavi et al., 2020a),
earthquake magnitude estimation (Mousavi & Beroza, 2020; Münchmeyer et al.,
2020; Saad et al., 2020). However, machine learning techniques applied to the
analysis of geodetic time series are less numerous. Relevant applications in the frame
of the analysis of the slow slip events have been presented by B. He et al., 2020;
Hulbert et al., 2019; Hulbert et al., 2020; Rouet-Leduc et al., 2019; Rouet-Leduc
et al., 2020, with notable applications to InSAR data by Anantrasirichai et al., 2019;
Rouet-Leduc et al., 2021a. As we can remark from the literature, seismic recordings
are still the main source of information for the analysis of surface ground movements,
linked to either slow or regular earthquakes. Thus, this is another motivation to
explore the potential of machine learning to analyse GNSS times series. We want
to explore and test recent developments in machine learning applied to time series
or image analysis, to be able to mine the geodetic data and characterize the events
with a physics-based approach.

In this paper, we address the problem of the fast seismic source characterization, i.e.,
estimating the location and magnitude of a "regular" seismic event, based on deep
learning applied to GNSS position time series. To the best of our knowledge, this is
the first attempt at using machine learning–based techniques in such a direction. We
solve our problem as a regression in the framework of supervised learning, meaning
that the input data used during the training are labelled. The data ground truth
comes from seismic catalogues, serving as a benchmark for our analyses. We explore
three different ways to represent GNSS data (time series, images, image time series)
taking into account both the spatial coherency and the temporal variability of GNSS
data. We associate a customized deep learning model to each data representation
either by re-adapting already existing methods or by designing it afresh. Training
and testing of the different methods are first made on synthetics. The performance

46 Chapter 3 Seismic source characterization from GNSS data using deep
learning



of our methods is then evaluated against real GNSS data using an independent
benchmark coming from actual earthquake catalogues. The strengths and the pitfalls
of the presented methods are discussed by envisioning some possible strategies to
improve the results.

3.2 Methods

3.2.1 Background work and positioning

3.2.1.1. Machine learning and deep learning methods for the seismic source
characterization

In the frame of the source characterization, deep learning has proven to be par-
ticularly effective, as demonstrated by van den Ende and Ampuero, 2020 and
Münchmeyer et al., 2021, among the most recent works. As pointed out, a multi-
station approach may more effectively locate the seismic source, in spite of other
approaches using single-station waveforms, as Mousavi and Beroza, 2020. Yet, com-
bining observations from multiple stations is indeed a non-trivial task. van den Ende
and Ampuero, 2020 explicitly inject the location of each seismic station in form
of latitude and longitude coordinates, while Münchmeyer et al., 2021 employ a
sinusoidal embedding (i.e., the position is encoded through sinusoidal functions
(Vaswani et al., 2017)) for the station locations, outperforming already existing
methods and showing promising results in terms of earthquake early warning and
source characterization. Nevertheless, as a general remark, no straightforward
guideline is available to effectively take both the temporal and the network geometry
into account at the same time. Exploiting the spatial distribution is indeed a key
problem which we are willing to address in this work.

3.2.1.2. Followed approach

An overview of the proposed methodology is shown in Figure 3.1. The employed
pipeline consists of a training and an inference phase. During the training process,
a model is provided with data to learn from. In the case of supervised learning, a
couple ⟨ input, desired output ⟩ is presented to the model, which learns by mini-
mizing a certain error metric between the estimated output and the desired output,
which serves as a reference. We use the epicenter position (fault centroid) and the
magnitude of the event as a target output for the characterization, with GNSS data
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Fig. 3.1.: Schema of the proposed workflow, summarizing the training and the inference
phases. A given deep learning model is trained by providing an input and a
desired output. Here we use GNSS data as input and a triple consisting of (fault
centroid latitude, fault centroid longitude, magnitude) as desired output for each
event. During the training process, the model will learn a nonlinear function
to map GNSS inputs to an approximation of its position and magnitude. Once
trained, this model can be used to perform tests on new, independent data. Here
we train on synthetic data and we test both on synthetic and real data.
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as input. In the inference phase, the trained model is used to make predictions
on new data. We will test our methods both against synthetic and real data. We
provide new input data to the trained model and we compare the outcomes with the
reference outputs, i.e., the epicenter position and the event magnitude associated
with this new input data. Training our models with supervised learning applied to
earthquakes allows us to benefit from a benchmark coming from real earthquake
catalogs. Here we do not estimate the hypocentral depth. When adding depth as
a fourth parameter, the training process becomes less constrained, resulting in a
degradation of the performance on the location and magnitude resolution. In the
case of a thrust earthquake located on the subduction interface, the depth can be
inferred from the earthquake position, knowing the geometry of the slab. Yet, in the
case of a variable focal mechanism, the depth estimation is more complicated. In-
deed, the typical wavelength of the surface deformation generated by an earthquake
not only depends on the hypocenter depth but also on the focal mechanism (e.g.,
thrust generating a wider deformation field than strike-slip), making the depth more
difficult to assess. In general, the more the parameters, the more the trade-off. This
is why we decided to assess the location and magnitude only.

We make use of synthetic data to train and validate our deep learning models and
we test on synthetic and real data afterwards. Japan is probably one of the best-
instrumented regions in the world, with GNSS data among the cleanest and the
densest ones. Yet, we did not train our models with real data for the following two
main reasons.

1. GNSS data suffers from the presence of data gaps and missing stations. They
can be associated with station inactivity (e.g., electricity blackouts) or to incon-
sistent daily measurements, for example, due to large earthquakes. Moreover,
the number of GNSS stations may evolve over time, due to the installation of
new receivers or the temporary unavailability of certain ones. It can moreover
make it hard to collect regular and well-formatted subsets of data to train on.
This drastically reduces the number of exploitable training samples, which is
indeed a key issue when training deep learning models (LeCun et al., 2015).

2. Real data is not uniformly distributed in terms of source parameters, most
notably position and magnitude. Since we are dealing with subduction events,
most of the actual epicenters will be located on the subduction interface.
This can constitute a limitation since a deep learning model trained on such
a configuration might not generalize well for events that would be located
inshore or sufficiently far from the training area. In addition, the magnitude
distribution follows the Gutenberg–Richter scaling law (Gutenberg, 1956). As
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a consequence, the deep learning methods would be biased because of the
small magnitude events, which will be more numerous, thus possibly resulting
in worse performance on the larger ones. To this end, we generate synthetic
ruptures whose source parameters are assumed to be random variables drawn
from a uniform distribution.

By employing synthetic data, it is possible to generate as many samples as needed,
overcoming the lack of data and exploiting the features of deep models. Nonetheless,
the resemblance between the synthetic data and the real one plays a critical role,
since it will have an impact on how well the deep learning model will perform
on real data: we need to generate ultra-realistic time series. To this end, we add
realistic noise computed from actual GNSS data, as it will be detailed in section
3.2.2.

3.2.2 Generation and representation of synthetic data

We generate synthetic data samples as the sum of a modeled displacement signal
and a realistic noise sample. We rely on three data representations both for synthetic
and for real samples and we associate each of them with a different deep-learning
model. More formally, the synthetic data set is represented as a set of N couples
{xn, Θn}Nn=1, with Θ a set of source parameters (epicenter position, magnitude, focal
mechanism, etc.) and x being the data following an additive model:

x = s + ε (3.1)

with s the synthetic signal (cf. section 3.2.2.1) and ε the noise term (cf. section
3.2.2.2).

3.2.2.1. Synthetic displacement

We obtain the synthetic displacement signals s by relying on Okada’s dislocation
model (Okada, 1985). The model input parameters are generated as follows.
Earthquake hypocentral positions (longitude, latitude, depth) are assumed to be
uniformly distributed random variables, with longitude x ∼ U(139◦, 146◦), latitude
y ∼ U(35◦, 41◦) and depth d ∼ U(2 km, 100 km). Event magnitudes are generated
as m ∼ U(5.8, 8.5) and static moments M0 are computed accordingly, as (Hanks &
Kanamori, 1979):
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M0 = 101.5m+9.1 N ·m (3.2)

Fault azimuth direction ϕS (strike), dip angle δ and slip angle λ (rake) are con-
strained to a thrust focal mechanism, by allowing for a certain variability of fault slip
combinations: ϕS ∼ U(160◦, 240◦), δ ∼ U(20◦, 30◦), λ ∼ U(75◦, 100◦). Static stress
drop ∆σ is assumed to be a lognormal random variable with an average value of
3MPa and a standard deviation of ±30 MPa. A circular crack is assumed with radius
R computed as (Aki & Richards, 2002):

R =
( 7

16
M0
∆σ

)1/3
(3.3)

which can be used to approximate a rectangular dislocation, having length L and
width W , by imposing the equality of the surfaces:

πR2 = L ·W (3.4)

The fault aspect ratio is assumed such that the fault length L and width W satisfy:
W = L/2, with L computed as L =

√
2πR. It should be noticed that the dislocation

surface does not change as a function of the aspect ratio between L and W . The
average slip ū is also derived for a circular crack and it is computed as (Aki &
Richards, 2002):

ū = 16
7π

∆σ

µ
R (3.5)

with µ the shear modulus, assumed equal to 30 GPa.

Okada’s dislocation model is applied to each one of this set of earthquake sources
to compute the predicted synthetic displacement at each of the 300 GNSS stations
in Honshu from the GNSS Earth Observation Network System in Japan (GEONET).
Hence, the theoretical deformation field at all station locations in Honshu is obtained
for each dislocation setting. Here, we decide to generate uniformly distributed
epicenters having a thrust focal mechanism, instead of having them located on
the subduction interface. Moreover, although we randomly generate events in a
3D space, we do not let them have a random focal mechanism. This choice is
motivated by two reasons: (1) allowing for a complete variety of focal mechanisms
would dramatically increase the size of the training database, (2) we can effectively
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assess the performance of the methods in locating the events, since no a priori has
been made on the location, allowing us to more objectively test the performance
of the models. This also allows the model to characterize events offset from the
subduction interface (which is important when testing on real data, since the number
of characterizable events is limited and includes both thrust subduction events and
thrust crustal events, as we see in Figure 3.10).

It is worth remarking that the input of the deep learning models is driven by synthetic
dislocations and the outputs are expressed in terms of point sources (cf. section
3.2.1.2 and Figure 3.1). Here we estimate the magnitude of seismic events and
their location, assumed as the position of the fault centroid. This does not represent
an issue, since the approximation of the rupture as a dislocation in the synthetic
database takes into account an extended fault, that allows a satisfactory first-order
fit also for shallow sources beneath the GNSS network. Therefore, our approach
should be able to characterize earthquakes even at shallow depths.

Finally, we also choose to fix the aspect ratio of the synthetic dislocations. Deep
learning models are able to generalize the samples presented during the training
phase through nonlinear combinations of the features computed within the net-
work. Therefore, the combination of those features acts as if the aspect ratio was
variable. Moreover, we are facing a problem that is naturally under-constrained:
simplifying the choice of the parameters is a good trade-off between complexity and
generalization ability on the training set.

3.2.2.2. Realistic noise computation

Noise in GNSS time series constitutes one of the most critical issues, as it is spatially
and temporally correlated (Dong et al., 2002; Ji & Herring, 2013). Here we define
noise as everything which is not the signal of interest, being the co-seismic signal
offsets. At first approximation, its spectrum can be represented as a white noise
at the lowest frequencies, and a colored noise having a 1/fκ decay starting from
a certain corner frequency, with the spectral index κ being usually fitted from the
highest frequencies of the periodogram (Mao et al., 1999; Williams et al., 2004;
J. Zhang et al., 1997). The spatial distribution of such a noise is not random. On
one hand, some common patterns must be found among near stations, therefore
it can be helpful to discriminate noise from other types of signals. On the other
hand, making this type of analysis is difficult, because of the unpredictability of
those spatial patterns as well as the intrinsic difficulty in handling such topological
consistency in a consistent manner.
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Fig. 3.2.: Schema of the artificial noise time series generation. Only 3 (notably stations
3032, 3033 and 3034) of the 300 GEONET GNSS stations are shown for better
visualization (N-S component). (1) Raw GNSS time series are scanned through
the quadratic trajectory model from (Marill et al., 2021). (2) Residual GNSS
time series are obtained by subtracting the trajectory model obtained at the
previous step. (3) A principal component analysis is performed in the spatial
domain: 300 principal component time series are obtained by rotating the original
data through a spatial matrix, whose columns are the eigenvectors of maximum–
variance spatial directions. (4) The Fourier transform is applied to the principal
components. (5) The phase of the spectra is randomized (cf. section 3.2.2.2)
and the randomized principal components are obtained via the inverse Fourier
transform. (6) Finally, the artificial noise time series are obtained by projecting
the randomized principal components back to the original space, via the transpose
of the spatial matrix.
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Realistic perturbations, i.e., noise, are needed to mimic real displacement data. Here
we rely on realistic noise samples computed from real GNSS time series by following
an existing approach for surrogate data generation (Prichard & Theiler, 1994;
Schreiber & Schmitz, 1996). By removing known signals (e.g. earthquakes, post-
seismic relaxation, SSEs, jumps associated with antenna changes etc) from GNSS
time series from a quadratic trajectory model (Marill et al., 2021), we obtain GNSS
residual time series in the period 1997-2011 that contain the noise that we want to
reproduce. Then, a Principal Component Analysis (PCA) is performed on 100–days
windows, by taking into consideration all the stations at the same time. Afterwards,
a Fourier Transform (FT) is applied and the phase spectrum is randomized by picking
a new phase φ ∼ U(0, 2π). The same shuffling sequence is adopted for the whole
network in order to preserve the spatial coherency between stations. After this
process, an Inverse FT and an Inverse PCA (reconstruction by multiplication of each
principal component by the corresponding transposed eigenvector) are performed.
As a result, the transformed noise samples ε will have, on average, the same spatial
covariance. Moreover, we can build new noise samples by randomizing the phase,
since the Power Spectral Density (PSD) of the transformed samples and the actual
ones will be asymptotically equivalent. A schema of the artificial noise generation is
given in Figure 3.2.

3.2.2.3. GNSS data representations

We build three data types: time series, images and image time series. The raw data
comes in the form of position time series. Then, we derive differential images to
take the spatial information into account, and position image time series to take
advantage of both the time and space patterns. A schematic view is provided in
Figure 3.3. It might not be crucial to use time series (or image time series) to
estimate co-seismic displacements. Nevertheless, the temporal information can help
the method to better learn the noise structure in the time series, and therefore
contribute to a better estimate of the co-seismic offset without having to preprocess
the geodetic time series, which is one of the goals of automated methods.

Here we do not consider the vertical component of GNSS data because (1) it is
noisier compared to the horizontal components and (2) we do not estimate the focal
mechanism, for which the vertical displacement would be required.

Time series. We build synthetic position time series by considering a noise window
of 100 days (cf. section 3.2.2.2). We add a Heaviside step to simulate the co-seismic
displacement (Bevis & Brown, 2014), with the onset time (cf. tc in Figure 3.3) being
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Fig. 3.3.: Outline of the three employed data representations. Each arrangement is designed
for a specific deep learning model (cf. Figure 3.4 with corresponding colors). The
data–arrangement procedure is shared between synthetic and real data, except
for time series, which are directly available from GNSS recordings. (time series)
is associated with the TS model. Synthetic position time series are built by adding
a modeled signal (cf. section 3.2.2.1) to a realistic noise time series (cf. section
3.2.2.2) by imposing the time of the co-seismic offset to be at the center of the
window (cf. section 3.2.2.3). (differential images) is associated with the IMG
model. Differential images of ground deformation are built by differentiating the
GNSS displacement on the day following and the day preceding the co-seismic
time. Then, the differential deformation field is interpolated in space for each
direction. (image time series) is associated with the ITS model. Image time series
are the 3D-equivalent of position time series. A total of 15 days of deformation is
collected, by selecting the week before and the week after the co-seismic offset
(included). For each day, spatial interpolation is performed by employing the
same method as for differential images to produce a couple of images (N-S, E-W)
representing a frame in the whole time series.
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at the center of the window. The step amplitude for each station depends on the
modeled displacement (cf. section 3.2.2.1). More formally, the time series structure
is represented by a tensor X ∈ RL×T ×D, with L the number of stations and T the
number of time steps, the location (latitude, longitude) of the station being given by
S ∈ RL×D. D represents the number of components. In this study, D = 2 (N–S and
E–W).

Differential images. Images of interpolated deformation field are computed as
follows. By assuming the co-seismic onset at time tc, we consider the difference
between the displacement at time tc + 1 day and tc − 1 day, namely the differential
co-seismic displacement field for each station in the GNSS network. We interpolate
the deformation field in space as follows. We first employ a median anti-aliasing
filter with a grid spacing of 25 arc minutes (≈ 45 km), then we interpolate the points
in space by using adjustable tension continuous curvature splines (with tension
factor T = 0.25) (Smith & Wessel, 1990). The resulting image dimensions are
76× 36× 2 pixels. Afterwards, we mask the sea by forcing to zero all the offshore
pixels, in order not to extrapolate offshore, which may degrade the performance of
the deep learning methods. Mathematically, the differential images are obtained by
rasterizing for a given time step tc an image as a tensor D ∈ RI×J×2 being I × J the
resolution of the image D and D(S(k)) = X(k, tc + 1)−X(k, tc − 1) with S(k) the
position (latitude, longitude) of the k-th station and tc the time of the co-seismic
offset. The value of I and J , as well as the content of the pixels D(S(k)), for k ̸∈ S,
have been described before. The chosen image resolution (76 × 36) corresponds
to a grid spacing of 5 arc minutes (about 9.3 km), which we found to be a good
compromise between the deep learning network size and complexity (each pixel
corresponds to a "neuron" of the deep network) and to the ability to capture small
displacement variations in the spatial domain (a too small grid spacing would also
introduce aliasing and higher noise variability into the image). Also, we chose to
use adjustable tension continuous curvature splines (Smith & Wessel, 1990) because
the obtained displacement fields are better suited to interpolate data from physical
models (e.g., Okada’s dislocation model) with respect to conventional bilinear or
bicubic interpolation.

Image time series. Image time series are built from position time series by in-
terpolating the position information at each frame with the same approach em-
ployed for the differential images. We consider 15 days of data, with the first 7
frames corresponding to the week before the co-seismic displacement, the cen-
tral frame corresponding to the co-seismic offset, and the remaining 7 days cor-
responding to the week after the co-seismic. Each frame of the image time se-
ries has dimensions 76 × 36 × 2 pixels. Formally, an image time series is repre-
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sented by tensor T ∈ RM×I×J×2, with M the length of the image time series and
T(ti, S(k)) = X(k, tc + i), i ∈ (−⌊M

2 ⌋, ..., 0, ..., ⌊M
2 ⌋).

In all three representations, we consider that the co-seismic offset time tc is known.

3.2.3 Employed deep learning methods

We developed a deep learning method specifically designed for the characteristics of
each chosen data representation. We designed three methods by adapting different
state-of-the-art methods that were not originally designed for geodetic data, in order
to best address our specific problem. A graphical outline of the methods is provided
in Figure 3.4.

3.2.3.1. Time–series based CNN (TS)

Time series can be effectively processed by Convolutional Neural Networks (CNNs),
extracting succinct information coming from temporal domain, as reviewed by
Bergen et al., 2019; Kong et al., 2019a. Here we rely on the architecture proposed
by van den Ende and Ampuero, 2020, originally proposed for seismic data. A visual
summary of the model is outlined in the first box of Figure 3.4. Their model has
been selected as a potential candidate as it presents several interesting features that
can be leveraged also when dealing with geodetic data. The first portion of their
network consists of three convolutional blocks with an increasing number of feature
maps. In each block, three convolutional layers are used for the feature extraction,
followed by a max–pooling layer, employed for subsampling the data. Afterwards,
the coordinates of every station associated with an input waveform are injected into
the model, as taking into account the location of seismic stations can improve the
performance, which is the key characteristic of the model. The max–reduce strategy
helps in aggregating the features related to the stations, in order to select the feature
from the station corresponding to the most relevant contribution for the prediction.
We adapt their model as follows. In order to further mitigate the vanishing gradient
problem, the rectified linear unit (ReLu) (Agarap, 2018) activation function has
been chosen for the hidden layers. The injected horizontal coordinates (latitude,
longitude) of GNSS stations are previously scaled in [0, 1]. The original model is also
equipped with weights associated with the waveforms accounting for inactivity or
missing data from a station. We set them to 1 as the GNSS network in Japan is quite
dense and all the stations in synthetic data were assumed to be functioning. Yet, it
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Fig. 3.4.: The three reference deep learning methods designed in this work. Shaded cyan
rectangles represent existing state-of-the-art models. Such models have been
slightly modified or adapted, where specified (cf. section 3.2.3). Further details,
such as dropout layers, stride and activation functions, have not been depicted to
facilitate the reading. Arrows represent the layers operating between the input
(left) and the produced output (right). (TS) The network progressively computes
features from convolutions and downsamplings in the time dimension. The lati-
tude and longitude information is then injected. The resulting 2D–array is finally
expanded and the contribution coming from the most informative GNSS station
is taken (max–reduce operation in yellow). Model readapted from van den Ende
and Ampuero, 2020. (IMG) is inspired to the MobileNetV2 architecture (Sandler
et al., 2018). The input two-channel image is processed with convolutions and
downsamplings by employing bottleneck layers (cf. section 3.2.3.2) with and
without residual connections (orange and yellow arrows, respectively). (ITS) The
first part of the network exploits the feature extractor of IMG to compute spatial
features for each frame, which are packed in a 2D–array. Then, a positional
embedding enforces time sequencing and prepares the intermediate–level data
for the sequential analysis performed by the Transformer (self–attention as in
Mousavi et al., 2020a)

.
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can represent a further useful development, as it will make the model more flexible
when testing on actual data as well as testing against other regions.

3.2.3.2. Image–based CNN (IMG)

We use a 2D CNN to analyze and extract features from interpolated deformation
images. They are an effective solution to leverage the spatial coherency and covari-
ance of data structured as images (LeCun et al., 2015) and have become one of the
reference architectures for image-based tasks (Goodfellow et al., 2016), also with
relevant applications in the geosciences (Anantrasirichai et al., 2019; Rouet-Leduc
et al., 2020).

A scheme of the architecture is provided in the second box of Figure 3.4. Here
we rely on the architecture of MobileNetV2 (Sandler et al., 2018) as the feature
extractor. This particular architecture has been chosen as it is lighter (in terms
of the number of parameters) with respect to other state-of-art models, such as
the VGG family (Simonyan & Zisserman, 2014). Yet, it presents some interesting
features, such as the linear bottleneck layers and the depth-wise convolutions. The
architecture presents a first convolutional layer followed by seven bottleneck layers.
These layers perform an efficient convolution by relying on point-wise and depth-
wise convolutions, presenting residual connections when there is not any stride
in the convolutions. We use a global average pooling strategy after the feature
extractor.

3.2.3.3. Image time series–based Transformer (ITS)

Image time series–based approaches are required to account for both the spatial
and the temporal variability in the input data. Deep sequence models such as LSTM
(Long-Short Term Memory) or GRU (Gated Recurrent Unit) have been successfully
used in geosciences to exploit the sequential behaviour of the data (Bergen et al.,
2019; Q. Wang et al., 2017), as well as Transformers, which have overcome the
former becoming the reference methods in the state–of–art (Mousavi et al., 2020a;
Münchmeyer et al., 2021; Vaswani et al., 2017). We tested both the LSTM and the
Transformer approaches and we chose the latter, whose complexity is justified by its
better ability to constrain the spatiotemporal evolution.

The ITS architecture is presented in the third box of Figure 3.4. Here we design a
relatively simple model to validate to consider both spatial and temporal features
jointly, which can serve as a baseline to add more complexity in the future. We
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first use a feature extractor to compress the input data dimensionality to obtain a
reduced representation. We use the same architecture of the IMG feature extractor
and we distribute it in time, i.e., we use the same feature extractor for each frame of
the image time series. As a result, we obtain a feature vector for each frame of the
image time series. Afterwards, we stack all the feature vectors in one matrix to be
exploited by the Transformer layer, as shown in the third box of fig 3.4. Since the
self–attention is, in general, order agnostic, we apply a Positional Embedding layer
to ensure that the relative position of the frame information is correctly enforced
(Chollet, 2021). We chose not to have a fixed mapping, therefore the embedding
weights are learnt during the training phase. After the embedding layer, we use a
Transformer equipped with additive self–attention, as in (Mousavi et al., 2020a).
For simplicity, we use only one global self-attention. According to our preliminary
tests, the performance is not considerably increasing when adding a second level of
attention, possibly because our model is still too simple to benefit from a hierarchical
attention structure. After the self–attention, we apply another dropout (dropout
rate 0.5) layer (cf. section 3.2.3.1) followed by a one-dimensional Global Max
Pooling. As a final remark, we train the model by enforcing the feature extractor to
evolve from weights already learnt by IMG. Therefore, we apply a sort of fine-tuning
which may be beneficial for the self–attention to reach some acceptable parameter
configurations in the early stage of the training already.

3.2.4 Implementation and training details

We enforced the mean squared error (squared L2 norm) as loss function, i.e., the
objective function which is minimized during the training, defined as follows:

L(y, ŷ) = 1
N

1
d

N∑
i=1

d∑
j=1

(yi,j − ŷi,j)2 (3.6)

where y ∈ RN×d and ŷ ∈ RN×d represent the ground truth and the predicted
output, respectively, with N being the number of observations and d the number
of dimensions. Notably, d = 3, being latitude, longitude and magnitude the output
variables. Hence, the loss function jointly minimizes the error on both position and
magnitude. Since the ranges of the output variables are not comparable, they are
first scaled in (0, 1). Thanks to this transformation, the high–range variables do not
prevail on the others, possibly masking small variations on low–magnitude variables.
As a result, the loss minimization turns out to be more regular and effective.
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All three models have been provided with a last fully–connected layer with three
outputs and a linear activation function (linear combination). Since the output
variables are uniformly distributed, such an activation function would not squash the
predictions in the boundaries of the output range, possibly making the model more
flexible when predicting patterns laying outside of the ranges used in the training
process. Thereafter, we enforce a dropout regularization (Srivastava et al., 2014) in
this final layer (dropout rate 0.5) at training time, which helps prevent the models
from overfitting the training data, in addition to the dropout regularization which
may already be enforced throughout the previous layers.

We performed the training of the three models by adopting a mini-batch stochastic
gradient learning (Bottou et al., 2018) with a batch size of 128 samples and the
ADAM method (Kingma & Ba, 2014) for the optimization. The learning rate was
chosen according to a grid–search optimization and the best value was found at
0.001. We initialize all the network weights with an orthogonal initializer (Saxe
et al., 2013) for TS and with a uniform Xavier initializer (Glorot & Bengio, 2010)
for IMG and ITS.

We employ twenty thousand synthetic samples that we divide it into training, valida-
tion and test sets with proportions of 60%, 20% and 20% respectively. We used the
training and validation sets for the training phase. When the loss on the validation
set is not decreasing anymore in a certain number of training steps, the training
is terminated and the model’s weights are loaded with the ones associated with
the best loss value. Moreover, the validation set has been employed to tune the
hyperparameters of the models (such as the learning rate, the best architecture, etc.)
in order to prevent any overfitting. The test set is used for the final inference and for
the performance analysis.

The code was implemented in Python using the Tensorflow (Abadi et al., 2016)
library as well as the higher–level package Keras (Chollet et al., 2015). The training
was run on NVIDIA Tesla V100 Graphics Processing Units (GPUs).

3.3 Results on synthetic data and discussion

We first evaluate the performance of the three models on a synthetic test set, inde-
pendent of the training and validation ones. In order to concretely compare the
three methods, the synthetic and real data sets under consideration are the same for
all the models and differ only in their input representation.
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Tab. 3.1.: Position and magnitude error of the tested methods (median ± median absolute
deviation) on the synthetic test set.

Model Position error (km) Magnitude error
TS 116.53± 67.58 0.25± 0.12

IMG 64.35± 44.84 0.11± 0.07
ITS 52.65± 32.34 0.08± 0.05

Table 3.1 shows the position and magnitude error in terms of median and median
absolute deviation for the three models with respect to the synthetic test set.

The position error is assumed as the Euclidean distance and is computed for each
sample as:

Ei
p =

√(
Xi − X̂i

)2
+
(
Yi − Ŷi

)2
(3.7)

where Xi and Yi represent the actual fault centroid longitude and latitude and X̂i

and Ŷi the predicted fault centroid longitude and latitude, respectively. We adopt a
Mean Absolute Error (MAE) for the magnitude, which is computed for each sample
as:

Ei
m = |mi − m̂i| (3.8)

where mi and m̂i are the actual and predicted magnitude, respectively. Then, the
total position and magnitude errors are computed by averaging Ei

p and Ei
m.

The quantitative results evidence that the ITS method outperforms the other two, in
terms of median error, both in location (52.65 km) and in magnitude (0.08), with a
lower median absolute deviation in position (32.34 km) and magnitude (0.05).

3.3.1 Analysis of the performance

Figure 3.5 shows the prediction of the three models on the synthetic test set, color-
coded by the actual magnitude of the test events. The performance of all the models
depends on the magnitude, which is closely related to the SNR. As we can observe
in the third row, low magnitudes tend to be overestimated by all models, likely
because of an intrinsic resolution threshold preventing the models from achieving
good performance when the SNR is not sufficiently high. For the lower magnitude
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Fig. 3.5.: Comparison of the performance of the tested models at inference time. TS,
IMG and ITS models are shown on columns respectively. For each row, latitude,
longitude and magnitude predictions are reported, respectively. Each point of the
scatter plots represents a test sample, whose magnitude is indicated by the color
bar, and it is illustrated as a function of both its actual and predicted value. Black
dashed lines represent the ideal prediction, while solid black lines represent the
rolling median.
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events (blue points), also the localization ability is poor, as the predictions of the
three models do not follow, in general, the ideal prediction line. This behaviour may
thus be linked to an intrinsic limitation of data information.

The solid black lines in the plots show the rolling median on the scatter plot com-
puted on 150 samples, providing the general trend of the predictions. The median
prediction of IMG and ITS models better follows the perfect prediction line, with
respect to the TS model. Also, the median prediction of ITS is more precise than the
IMG model also for magnitudes in the range (6.2, 7). The trend of the magnitude
prediction for TS deviates from the ideal prediction line both for small and for
large magnitudes, presenting a median saturation around Mw 6.3 and an offset
for Mw > 6.4, respectively (cf. black solid lines). The sharp saturation for low
magnitudes could be due to the employed network architecture as well as to spe-
cific features associated with the type of data. The magnitude prediction for the
image–based methods, i.e., IMG and ITS, better adhere to the ideal prediction line,
with a progressively smaller error variance at larger magnitudes, in line with the
SNR improvement. As for the magnitude resolution, ITS is the method associated
with smaller error variances and with a better median trend. Also, in the case of
the ITS model, the median prediction trend can be used to individuate a tentative
magnitude threshold value, that is the value under which the magnitude prediction
is significantly degraded, corresponding to the magnitude at which the perfect pre-
diction line significantly deviates from the rolling median (cf. dashed and solid lines
in Figure 3.5). We can derive a resolution limit for the ITS model: M IT S

w = 6.2.

From the latitude and longitude prediction, i.e., the localization performance, we
can observe that the models do not treat similarly the low and high magnitudes.
Notably, for magnitudes smaller than the SNR limit, TS assigns them an average
position (i.e., near 38 for the latitude and 143.5 for the longitude). This behaviour is
clearly indicated by the horizontally–clustered blue points. This pattern is indeed
coherent with the choice of the quadratic loss function used to train the model. In
fact, at first order, the best guess is represented by the mean value of the output
range subject to the posterior distribution (S. S. Haykin, 2008; Moon & Stirling,
2000). We can derive that, when the SNR is below a certain resolution threshold,
the model associates low–magnitude events to average coordinates, which likely
minimize the average error. For higher magnitudes, the TS latitude predictions are
more clustered around the ideal prediction line. Yet, a tendency towards the mean
values is still present, because TS predicts the longitude of high–magnitude events
either in the proximity of the GNSS network (longitudes less than ∼ 142) or in
far-field (longitudes higher than ∼ 144). Conversely, image-based methods (IMG
and ITS) characterize low–magnitude events as having a random position in the
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region of interest (cf. scattered blue points), while being able to precisely constrain
higher-magnitude events, with predictions tightly clustered around the ideal line.
The median prediction lines for IMG and ITS are more stable with respect to TS
and significantly bend only at the highest longitudes (i.e., for earthquakes located
offshore close to the trench, far from the measurement network located inland
Japan), that is the models have the tendency to underpredict the longitude. This is a
feature that is a known bias when we study offshore earthquakes with geodesy, and
this is due to the geometry of the measurement network. If the displacement was
evenly sampled spatially, the bias would disappear.

3.3.2 Spatial variability of the location error

Figure 3.6 shows the location error as a function of the ground truth spatial coor-
dinates. The plot has been computed by interpolating the location error for each
test data sample onto a grid, corresponding to the area of interest. This smoothed
heatmap indicates the amount and the distribution of location errors all over the
tested region, for different magnitude ranges. This type of representation can help
assess the physical consistency of the tested models, as well as reveal systematic
biases in the error pattern for test events as a function of the magnitude and their
relative position with respect to the GNSS network.

The heatmaps of the first two lines, corresponding to the magnitude ranges (5.8, 6.3)
and (6.3, 6.8), show how the three methods handle the characterization of low–
magnitude events (cf. 3.3). The ITS model is able to better resolve small magnitude
events in the near field (i.e., in the proximity of the GNSS network). When the
magnitude increases, the error amplitude of IMG and ITS decreases, affecting only
the points which are far from the network (eastwards). For high magnitudes, TS
tends to localize many events in far field, with a higher average error with respect
to IMG and ITS.

The error pattern for the image–based methods is more physically consistent. The
most reasonable explanation is that image-based models can better capture spatial
information by extracting spatial features which are essential for the characterization.
As a general comment, we do not see any clear bias and the error patterns exhibit
correct behaviour, since, as the magnitude increases, the highest errors are pushed
towards the far field. For low magnitudes, the maximum error associated with the TS
is about 200 km less than the other models: the bias in the TS predictions correctly
minimizes the average error, yet without providing any discriminant ability to the
model. By increasing the magnitude, errors become smaller and smaller, with the

3.3 Results on synthetic data and discussion 65



Fig. 3.6.: Comparison of the location error of the tested models, reported in the columns.
Each subplot shows the location error associated with the test samples, inter-
polated on a grid whose corresponding spatial coordinates are indicated along
the axes. Magenta data points represent the position of GNSS stations in Japan.
The heatmap depicts the distribution of the error in position committed by the
tested models, for different magnitude ranges, in rows. Arrows show the average
direction of position error for patches of 1× 1 arc degree. The arrows have the
same scale throughout all the subplots, making a comparison possible among
different models.
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events contributing to the largest errors being distributed on the eastern (offshore)
side, in favor of ITS, which is associated with the most reasonable error pattern.

The roughness of the spatial error distribution observed in Figure 3.6 may be due to
the noise realization or to the source parameters of the tested events. In general,
each deep learning model is associated with a characterization limit, depending on
the magnitude, location and depth, at first order. Because of this threshold, small-
magnitude deep events are not well characterized, regardless of their location with
respect to the GNSS network (cf. Figures 3.5 and 3.9). Since the event magnitude
and location in the evaluation set are uniformly distributed, poorly characterized
samples are equally spread in the tested area, making the spatial interpolation
non-smooth.

3.3.3 Influence of the distance from the GNSS network on the
predictions

Figure 3.7 shows the dependency of errors of events based on the relative position
with respect to the GNSS network. Each scatter plot represents the error as a
function of the distance to the nearest GNSS station. Such a distance is computed
from the coordinate of a hypocenter as the 3D Euclidean norm, in order not to take
into account the Earth curvature. This kind of representation is effective in revealing
patterns of the position and magnitude errors as a function of both distance, on the
x-axis, and magnitude, in color code. We identify three regions, according to the
relative distance to the nearest station: being d the distance to the nearest station,
we will refer to near, intermediate and far-field when d ≤ 0.5◦ (≈ 55 km), 0.5◦ (≈
55 km) ≤ d ≤ 3◦ (≈ 334 km) and d ≥ 3◦ (≈ 334 km), respectively (see dashed
lines in Figure 3.7). The solid lines correspond to the median for several magnitude
ranges (cf. Figure 3.6).

The TS model is associated with higher position errors for events located both
in near and intermediate field, while image-based methods can correctly locate a
larger number of high and even low-magnitude events. TS is also associated with
higher magnitude errors for high magnitude events, clustered around a value of 0.4,
showing that not even the events occurring in the proximity of the GNSS stations are
well retrieved. Conversely, image-based methods are more accurate in the magnitude
estimation, with a less biased error pattern. The median curves of errors increase
with the distance, both for the magnitude and the position estimation. This may not
happen in correspondence with the smallest and largest magnitude bins because the
models have rather a random behaviour at small magnitudes or because the error at
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Fig. 3.7.: Comparison of errors as a function of the distance to the nearest GNSS station.
The deep learning models are shown in columns, while the rows indicate position
and magnitude errors, respectively. Each scatter plot depicts errors as a function
of the Euclidean distance to the nearest GNSS station, expressed in arc degrees.
Each data point, representing the position error and the absolute magnitude
error between the test samples and the model predictions, is color-coded by the
actual magnitude of the event. Solid lines represent the median of subsets of the
data points, filtered by magnitude ranges as indicated in the legend in the top
right. Vertical dashed lines discriminate among near, intermediate and far field,
respectively.
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Tab. 3.2.: Magnitude thresholds of ITS estimated against the synthetic test set.

depth ≤ 30 km 30 km < depth ≤ 60 km 60 km < depth ≤ 100 km
near field 6 6.2 6.5

interm. field 6.8 6.8 7
far field 7.5 7.5 7.8
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Fig. 3.8.: Position error, computed for each test sample, as a function of the magnitude
(x-axis), the depth range (columns), and the distance range (cf. Figure 3.7) with
respect to the GNSS network (rows) for ITS. The orange solid line represents the
result of a median smoothing by employing a kernel size of 15 points.

high magnitudes does not depend on the distance to the GNSS network anymore.
Since the depth has been taken into account when computing the distance to the
nearest GNSS station, the offset in the large magnitude prediction associated with
TS (cf. Figure 3.5) affects very shallow and near events, leading to the conclusion
that image-based data representation can bring more exploitable information about
the deformation field. Therefore, more low–magnitude events are captured.

3.3.4 Magnitude threshold estimation from ITS localization error

Since we will test the deep learning models on real data (cf. section 3.4), we define
here a criterion to assess whether a characterization coming from a learning model
is reliable. Figure 3.8 shows the position error for the ITS method, computed for
each test sample, as a function of the magnitude, with each subplot corresponding
to a different range of hypocenter–station distances and hypocentral depths. The
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general idea is to get an estimation of the magnitude limit (the magnitude down
to which the models provide acceptable estimations) for different settings, i.e., for
different values of depth and distance to the GNSS network. Based on the magnitude
limit, the event location and depth, we assign it a hard threshold (characterizable,
non–characterizable) that can be used, when testing on real data, to filter out all
those events which would necessarily be incorrectly characterized. We draw those
measures from the method which best performed on synthetic data, namely ITS,
and we will use them for all three methods.

As discussed in previous sections, as the depth increases, the magnitude detection
limit also increases. For near field events having a depth d ≤ 30 km, we can set a
magnitude threshold at Mw 6, by selecting a limit where the error is reasonably low
with respect to the general trend. As for intermediate and far field, it is harder to
assign a magnitude threshold value, as the interplay between magnitude, distance
and depth is generally nonlinear. However, a general tendency can be still observed.
The estimated thresholds are be above Mw 6.8 and 7.5 for intermediate and far
fields, respectively. The values for every chosen combination of depth and distances
are resumed in Table 3.2 and will be used in section 3.4 when testing the deep
learning models on real data. We should also consider that, to parity of depth range,
the relative distance between the event and the GNSS network strongly affects the
probability of correct retrieval, making the magnitude threshold larger and larger.
This poses some limitations in the characterization of deep and far offshore events,
with only large magnitude earthquakes being characterizable in those conditions.

3.3.5 Interplay between depth and magnitude in the magnitude
resolution

Figure 3.9 shows the cumulative histograms of the difference between the actual and
predicted magnitude as a function of the distance ranges to the GNSS network (rows)
for the three deep learning models (columns), color-coded by (actual) magnitude
ranges (see Figure 3.6). The residuals of the TS predictions are not centered around
zero for any magnitude subsets. For low magnitudes (blue bin), the actual magnitude
is overpredicted for a non-negligible fraction of the test samples, which corresponds
to the sharp lower limit for the TS magnitude estimation and to the bias in the
location estimation (see Figure 3.5). As the magnitude increases, the residuals
become positive and an underestimation of the magnitude is observed. When the
events are located farther with respect to the GNSS network, the trend does not
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lines individuate the zero.

change, which means that the TS model cannot take advantage of the GNSS network
to ameliorate the prediction even for events located in near field.

The residuals of the IMG and ITS models are generally centered around zero. Low-
magnitude events (blue bins) are overestimated and are more dispersed with respect
to TS. For magnitudes greater than 6.4, IMG and ITS behave almost the same in
near and intermediate field. In far field, ITS performs better in the magnitude range
(6.4, 8.5), being able to well retrieve the events that are underestimated by IMG (see
the median prediction line for IMG compared to ITS in Figure 3.5). Those events
could likely be the deepest ones. In fact, IMG underestimates their magnitude, which
affects also the localization performance, especially the longitude estimation (cf.
Figure 3.5 and 3.6). ITS shows a better performance on those events, suggesting
that it may have better constrained the trade-off between depth and magnitude
in far field. The TS model does not well resolve the ambiguities coming from the
interplay between magnitude, position and depth. Thus, arranging the GNSS data
into differential images and image time series might help better estimate deeper and
deeper events to parity of location and magnitude, without any prior on the depth
itself.
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3.3.6 Testing of the models on data affected by a post-seismic signal

The data that we use to train the deep learning models does not contain any post-
seismic signal following the co-seismic rupture. Nevertheless, we test the models
on real data, which is affected by the post-seismic relaxation signals. Therefore,
we generate a synthetic test set made of noise, co-seismic signals and post-seismic
signals. We model the post-seismic signals ps(t) at each station s as:

ps(t) = H log10

(
1 + t− tc

τ

)
(3.9)

where tc is the time of the earthquake (co-seismic). The amplitude H is assumed as
a uniform random variable:

H ∼ U(0.5c, 1.5c) (3.10)

where c is the amplitude of the synthetic co-seismic displacement at the station s.
The relaxation time is assumed as a uniform random variable as well:

τ ∼ U(1, 50) days. (3.11)

The results are shown in Figures S1 – S5. The performance of the models degrades
when testing (without retraining) on data having a quite strong post-seismic signal
following the co-seismic offset. The magnitude and latitude predictions do not
significantly differ from the ones in Figure 3.5, while the longitude estimation is
degraded, for all the models. This result is not surprising, since the data is different
from the training one and since the longitude was already a difficult parameter
to retrieve, notably for events occurring offshore. In fact, the time series and the
image time series may vary significantly, while differential images contain a larger
co-seismic displacement value for small values of τ .

3.4 Application to real GNSS data

After testing the models and extracting some statistics on synthetic data, we use
the trained models to make further inference on real data. For each catalogued
earthquake, we run our processing pipeline (details in section 3.4.1) to obtain
the estimated fault centroid location and magnitude, which we compare with the
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catalogued ones, in order to analyze the performance of the tested deep learning
models in presence of raw noisy GNSS data.

3.4.1 Data processing

The seismic catalogue selection for real events in Japan has been conducted as
follows. The F-Net catalogue from NIED (cf. https://www.fnet.bosai.go.jp) has been
exploited and events ranging from 1998 to 2021 have been selected according to the
studied range of characteristics (epicentral position, hypocentral depth, magnitude,
see section 3.2.2.1) for a total of 174 events. Magnitudes have been allowed to
exceed the 8.5 limit in order to further test the models on high-magnitude events,
even though it is out of the training range. Since our approach can deal with
only one event per day, if more than one event is recorded in the same date, only
the maximum magnitude event is kept and therefore estimated. Also, consecutive
events have been discarded in order to provide the correct static offset values to the
IMG model. All events in 2011 have been removed except the Tohoku event (11
March 2011). Indeed, the earthquake and subsequent tsunami damaged several
GPS stations, and the time series of the remaining ones are dominated by a strong
post-seismic relaxation effect making GNSS time series difficult to interpolate and
interpret on an automated manner. The magnitude of the Tohoku-Oki earthquake
was estimated by NIED as Mw 8.7. However, Lay, 2018 shown that its actual value is
rather 9.1. For this reason, we replaced the catalogued magnitude with the correct
value. After this pre-processing, 84 events are present in the catalogue.

Two GNSS data sets have been collected: the data processed in double difference
at ISTerre (Institut des Sciences de la Terre) that range from 1998 to 2019 (gnss-
products, 2019; Marill et al., 2021) and the data processed in PPP at NGL (Nevada
Geodetic Laboratory) (Blewitt et al., 2018) that range from 2009 to 2021. We
performed outlier detection and removal by processing the data with the hampel
filter (Pearson et al., 2016) with a window length n = 3. Thereafter, we extracted,
for each date in the seismic catalogue, a window of 100 days, centered onto the
co-seismic offset (cf. section 3.2.2). We considered a 100–day stack of time series as
valid if at least 60% of the stations are present (i.e., ∼ 180) and if at least the 70% of
the median number of data points in the 100–day window (i.e., 70) is not undefined
(i.e., less than 30% of data gaps). The remaining data gaps are filled as follows.
After centering the time window on the co-seismic offset date, we compute the linear
trend in the first and the second half. Thanks to this procedure, an approximation
is provided for the small data gaps and also a first order reconstruction of the co-
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Tab. 3.3.: Position and magnitude error of the tested methods on the characterizable events
belonging to the real data sets (median ± median absolute deviation) having
thrust focal mechanism (cf. green events in Figure 3.10). These results should
be taken carefully, since they have been obtained on a very limited number of
samples, notably 5 for ISTerre/DD and 3 for NGL/PPP.

ISTerre/DD NGL/PPP
Model Position error (km) Magnitude error Position error (km) Magnitude error

TS 137.61± 75.78 0.47± 0.09 175.51± 32.62 0.11± 0.08
IMG 52.47± 21.82 0.13± 0.09 140.98± 61.49 0.63± 0.17
ITS 76.73± 21.62 0.25± 0.14 101.92± 10.04 0.45± 0.16

seismic offset when that information may be missing. Finally, the data is detrended,
i.e., the linear trend is subtracted for every 100–day stack.

After the previous processing, the ISTerre/DD and the NGL/PPP data sets contain
69 and 51 labelled time series. We used the magnitude thresholds obtained for ITS
(cf. Table 3.2) to differentiate the theoretically-characterizable events from the rest,
as shown in Figure 3.10, that is if magnitude, depth and position of the events are
such that they satisfy the experimentally–derived relationships detailed in Table
3.2. We found 8 (3 of which are thrust subduction events and 3 are thrust crustal
events) and 5 (2 of which are thrust subduction events and one is a thrust crustal
event) characterizable events for ISTerre/DD and NGL/PPP data sets, respectively.
The data is further rearranged into differential images and image time series and
the performance of the three deep learning methods is evaluated. Since the deep
learning models have been trained to assign a point source (expressed in terms
of synthetic fault centroid) to finite fault dislocations, the latitude and longitude
of the catalogued epicenters cannot be used as a benchmark. Thus, we use the
coordinates of the centroid for each of the real characterizable events from the
Global Centroid-Moment-Tensor (CMT) catalogue (https://www.globalcmt.org/)
(Dziewonski et al., 1981; Ekström et al., 2012).

3.4.2 Results and discussion

The quantitative results are shown in Table 3.3, while Figure 3.11 shows the per-
formance of the tested methods on the two real data sets. The displacement fields
associated with all the characterizable events in the ISTerre/DD dataset are repre-
sented in Figure 3.12.
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Fig. 3.10.: Seismic catalogue associated with the ISTerre/DD and NGL/PPP data sets, re-
spectively. ISTerre/DD data set contains 69 events ranging from 1998 to 2019,
while NGL/PPP set contains 51 events ranging from 2009 to 2021. Focal mecha-
nisms are shown for each event and their size is proportional to the magnitude,
according to the legend at the top left. Based on the "characterizability" thresh-
olds from Table 3.2, focal mechanisms are colored as follows: green indicates
the characterizable events having a thrust focal mechanism, blue for the charac-
terizable events having any focal mechanism but thrust, while red indicates all
the events that cannot be characterized.
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Fig. 3.11.: Actual vs predicted plot on real data from ISTerre/DD and NGL/PPP data sets.
Each subplot shows the real vs predicted comparison for the estimated parameters
(fault centroid latitude, fault centroid longitude and magnitude in each row) for
each of the three methods (TS, IMG and ITS in each column). For each scatter
plot, circles and squares represent predictions associated with the ISTerre/DD
and NGL/PPP data sets, respectively. Filled markers represent events having a
trust focal mechanism, while empty markers indicate any other focal mechanism.
The solid dashed line shows the line of perfect prediction. The data points are
color-coded according to the time of occurrence.
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Fig. 3.12.: Displacement fields associated with the eight events of the ISTerre/DD data
set. The deformation fields have been computed by subtracting the deformation
at day tc + 1 and tc − 1. In each subplot, the focal mechanism from the NIED
catalogue is shown as well as the magnitude and depth (in each title) with the
yellow, brown and blue points representing the predictions for TS, IMG and ITS,
respectively.

3.4 Application to real GNSS data 77



From the numerical results listed in Table 3.3, associated with the "characterizable"
events having a thrust focal mechanism, it is hard to assess the best method because
they have been obtained on an insufficient number of samples. The IMG model
performs better on the ISTerre/DD data set in terms of median prediction error, with
time–series–based models (i.e., TS and ITS) being more accurate on the NGL/PPP
data set on magnitude and location accuracy, respectively. All the models have a
larger error associated with the NGL/PPP dataset, probably because of the Precise
Point Positioning solution, which is slightly noisier with respect to the DD approach,
which has been used in the noise generation phase. From these results, it seems that
analyzing longer time periods (time–series–based approaches) may help reduce the
error on noisier data. However, Figure 3.11 shows that, on average, the predictions
of the image–based models, i.e., IMG and ITS, are less scattered with respect to the
perfect prediction line and have less variability. Thus, their performance is globally
more accurate than the TS model on both data sets, in line with the results obtained
on synthetic data (cf. section 3.3). The presence of a larger amount of location
and magnitude error in the case of TS may be probably linked to data gaps and
missing stations in the real data, which worsen its resemblance to synthetic data.
This also can introduce potential artifacts via the interpolation in the time domain,
thus deteriorating the performance of TS, notably for the Tohoku earthquake (11
March 2011) in the NGL/PPP data set, where the co-seismic offset may have been
masked. As a result, image-based models can better deal with data gaps thanks to
spatial interpolation. Hence, the amount and continuity of the data play an essential
role in the final prediction accuracy, which is mitigated by the image and image
time series representations. Since the models have been trained on a synthetic
data set obtained from a DD approach, we will focus on the ISTerre/DD data set
henceforward, which also has more data samples to analyze.

The events in Figure 3.11 have been marked with a full-colored symbol if their
rupture has a thrust focal mechanism (ϕS = 200± 40◦, δ = 35± 30◦, λ = 90± 45◦).
Differentiating thrust and non–thrust events is interesting to assess if the shape of
the associated deformation field plays a key role in the characterization performed
by image-based models, given that the model was trained on thrust events only. The
results shown in Figure 3.11 seem to suggest that the shape of the displacement field
might be a relevant feature in the characterization of the location and the magnitude
for IMG and ITS, since their predictions seem to depend on the nature of the focal
mechanism. However, all the models have been trained on a data set made of events
having thrust focal mechanisms, thus they might not be able to generalize well in a
setting that is different from the training one.

78 Chapter 3 Seismic source characterization from GNSS data using deep
learning



Interestingly, IMG and ITS models seem to be complementary on some events, as
shown in Figure 3.12 (d), (g) and (h). The ITS model is unable to separate the
source of displacement in the 19 July 2008 event (Figure 3.12 (d)) because of
an outlier in the displacement field, whose influence is better mitigated by the
differential approach used for IMG (cf. Figure S6 – S8). On the contrary, ITS can
more effectively retrieve the 21 November 2016 event (3.12 (g)), likely thanks to the
spatiotemporal approach (cf. Figure S9 – S14), while IMG is less well performing.
This seems to suggest that the two different image-based data representations
carry some particular characteristics coming from the network geometry and the
spatiotemporal variability of the data.

We also notice that the outlier displacement value north of the epicenter of the 19
July 2008 event (cf. Figure 3.12 (d)) is actually an artifact introduced by the linear
interpolation performed on the time series in presence of a large data gap. Therefore,
either a more efficient method should be set up for the missing data interpolation,
or artifacts should be taken into account in the training database. Accounting for the
data gaps is not a trivial task and future developments should focus on this aspect,
since, as we saw, the larger the data gaps, the harder the characterization.

It is worth mentioning the performance of the models on the Tohoku event (11
March 2011, Mw = 9.1), which is estimated as a Mw ∼ 8.5 event by IMG and ITS,
and as a Mw ∼ 9 event by TS on the NGL/PPP data set and as a Mw ∼ 6.8 event on
the ISTerre/DD data set. Although these results may suggest that TS might perform
well on patterns whose magnitude has never been presented to the network before,
they also should be taken carefully since we cannot assess the robustness of the
methods in case of testing against data having different characteristics.

In this study, we generate uniformly distributed events to train the deep learning
models, yet we set the focal mechanism to be a thrust. We motivate this mainly
by claiming that we are interested in characterizing thrust subduction events and
thrust crustal events as well. However, one may ask how the models trained on a
variety of focal mechanisms would perform on real data, with respect to the ones
trained on thrust events. Results on synthetic data are presented in Figures S15 –
S19 and show that the models trained on all focal mechanisms have slightly lower
performances and more variability than the models trained on thrust only. This can
easily be explained by the variety of synthetic signals to be learned by the model.
Since information about the focal mechanism itself is not given to the model (only
magnitude and location are given), the model does not learn that those differences
exist, and, as a consequence, it cannot discriminate between a signal from a thrust of
a strike-slip event, even though both earthquakes generate a different deformation
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field at the surface. When tested on real data (Figure S20), we can see that the
models trained on all focal mechanisms can generalize slightly better on non-thrust
events. However, their performance on thrust (subduction or crustal) events is worse
than the models trained on thrust events. We therefore chose to restrict our case
study and the core of the discussion to a simpler case with a single focal mechanism
only (thrust events).

3.5 Conclusions

We studied and developed an end–to–end framework for the seismic source charac-
terization with GNSS data. We constructed three deep learning methods associated
with three data representations: time series, differential images and image time
series. We train our methods on synthetic data generated to be subduction events
compliant with actual events occurring in the Japan subduction zone. We tested the
methods both on synthetic and real GNSS data, and we studied the performance and
the sensitivity of the three methods, evidencing their strengths and their limits.

Image-based methods outperform time series–based methods on synthetic data,
possibly because their associated data representations better exploit the topology
of the GNSS network. The wavelength of the deformation is seemingly better
constrained with images with respect to time series, the longitudinal extent of the
deformation being more difficult to characterize by means of the temporal evolution
only. Results on synthetic data clearly evidence a detection threshold associated
with GNSS data, which is linked to the SNR, and also dependent on the depth and
position of events. This allows us to partition the output space by identifying regions
in which the source characterization can be performed with confidence.

The performance on real data sets is globally consistent with the results obtained on
synthetic data, although it is hard to draw robust statistics due to the small amount
of testing data. Image-based methods, i.e., IMG and ITS, qualitatively outperform the
TS approach in both real data sets, being able to retrieve the source parameters of
most of the tested events, with IMG effective in characterizing most of them. The ITS
model shows that the proposed spatiotemporal approach is crucial in resolving the
location and magnitude of some of the real events where IMG had poor performance.
This result confirms that accounting for the pre- and post-event noise level can lead
ITS to a better estimate of the co-seismic offset. However, the noise characterization
needs to be improved, in order to better account for outliers in GNSS time series,
data gaps and, possibly, common modes. By improving the simulation of the realistic

80 Chapter 3 Seismic source characterization from GNSS data using deep
learning



noise, we can produce more and more real–looking synthetic data, possibly having
better results on the characterization and a lower SNR threshold. Also, we might
expect that the performance on real data would improve if we generated a more
realistic synthetic data set that contains also a post-seismic signal in addition to the
co-seismic offset, as shown in section 3.3.6. Nonetheless, the results on real data are
promising and could potentially also lead to an effective analysis of slow deformation,
which would benefit from the present work as well as from the potential refinements
that we have listed before.
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Slow slip detection with deep
learning in multi-station raw
geodetic time series validated
against tremors in Cascadia

4

This chapter is based on the article in review at Nature Communications Earth and
Environment as:

Costantino, G. and Giffard-Roisin, S. and Radiguet, M. and Dalla Mura,
M. and Marsan, D. and Socquet, A. (2023). Slow slip detection with deep
learning in multi-station raw geodetic time series validated against tremors in
Cascadia, in review.

The reader will find the methods at the end of the chapter, according to the paper’s
structure.

In this chapter, we present SSEgenerator and SSEdetector, a deep learning-based
approach to detect slow slip events in GNSS time series in the Cascadia subduction
zone. SSEgenerator is used to generate the training database, made of synthetic
GNSS time series. These time series contain synthetic noise, and a subset of them
also include synthetic slow slip events. In real GNSS data from 2007 to 2023, our
method detects 78 slow slip events which correlate well with tremor episodes. The
87% of previously detected SSEs are retrieved and a fraction of new detections may
be associated with new, previously undetected, events.

83



Abstract Slow slip events (SSEs) originate from a slow slippage on faults that lasts
from a few days to years. A systematic and complete mapping of SSEs is key to
characterizing the slip spectrum and understanding its link with coeval seismological
signals. Yet, SSE catalogues are sparse and usually remain limited to the largest
events, because the deformation transients are often concealed in the noise of the
geodetic data. Here we present a multi-station deep learning SSE detector applied
blindly to multiple raw (non-post-processed) geodetic time series. Its power lies
in an ultra-realistic synthetic training set, and in the combination of convolutional
and attention-based neural networks. Applied to real data in Cascadia over the
period 2007-2022, it detects 78 SSEs, that compare well to existing independent
benchmarks: 87.5% of previously catalogued SSEs are retrieved, each detection
falling within a peak of tremor activity. Our method also provides useful proxies on
the SSE duration and may help illuminate relationships between tremor chatter and
the nucleation of the slow rupture. We find an average day-long time lag between
the slow deformation and the tremor chatter both at a global- and local-temporal
scale, suggesting that slow slip may drive the rupture of nearby small asperities.

4.1 Introduction

Slow slip events (SSEs) generate episodic deformation that lasts from a few days
to years (Behr & Bürgmann, 2021). Like earthquakes, they originate from slip on
faults but, unlike them, do not radiate energetic seismic waves. In the mid-1990s,
Global Navigation Satellite System (GNSS) networks started to continuously monitor
the ground displacement, providing evidence that SSEs are a major mechanism
responsible for the release of stress in plate boundaries, as a complement to seismic
rupture (Dragert et al., 2001a; Ide, Beroza, et al., 2007b; Lowry et al., 2001b;
Mousavi et al., 2020b; Schwartz & Rokosky, 2007b). This constituted a change of
paradigm for the understanding of the earthquake cycle and of the mechanics of the
fault interface. Twenty years later, the characterization of the full slip spectrum and
the understanding of the link between slow slip and the associated seismological
signals are hindered by our capacity to detect slow slip events in a systematic manner,
more particularly those of low magnitude (typically lower than Mw 6), even though
a systematic and complete mapping of SSEs on faults is key for understanding the
complex physical interactions between slow aseismic slip and earthquakes. Indeed,
the small deformation transients associated with an SSE are often concealed in
the noise (Frank, Radiguet, et al., 2015; Rousset et al., 2017a), making it difficult
to precisely characterize the slip spectrum and provide fruitful insights into the
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fault mechanics (Gomberg et al., 2016a; Hawthorne & Bartlow, 2018; Ide, Beroza,
et al., 2007b). Studies dealing with the detection and analysis of SSEs often rely
on dedicated signal analysis, involving visual inspection of the data, data selection,
denoising, filtering, geodetic expertise, dedicated modeling methods with a fine-
tuning of the parameters, and also often complementary data such as catalogues of
tremor or low-frequency earthquakes (LFEs) (Bartlow et al., 2011; Frank & Brodsky,
2019; Frank, Radiguet, et al., 2015; Michel, Gualandi, & Avouac, 2019; Radiguet
et al., 2012a). Tremors and LFEs are LFEs are weakly emergent micro-seismicity, or
micro-seismicity with low frequency content often accompanying SSEs in certain
subduction zones (Obara, 2002; Rogers & Dragert, 2003b).

The development of in-situ geophysical monitoring generates nowadays huge data
sets, and machine learning techniques have been largely assimilated and used by
the seismological community to improve earthquake detection and characterization
(Kong et al., 2019b; Mousavi et al., 2020b; Woollam et al., 2022; Zhu & Beroza,
2019), generating catalogs with unprecedented high quality (Ross, Trugman, et al.,
2019; Tan et al., 2021) and knowledge shifts (Ross et al., 2020; Tan & Marsan,
2020). However, up to now, such techniques could not be successfully applied to the
analysis of geodetic data and slow slip event detection because of two main reasons:
(1) too few true labels exist to train machine learning-based methods, which we
tackle by generating a realistic synthetic training data set, (2) the signal-to-noise
ratio is extremely low in geodetic data (Costantino et al., 2023b; Rouet-Leduc et al.,
2021b), meaning that we are at the limit of detection capacity. One possibility is to
first pre-process the data to remove undesired signals such as seasonal variations,
common modes, post-seismic relaxation signals (via denoising, filtering, trajectory
modeling or independent-component-analysis-based inversion), but this is at the
cost of possibly corrupting the data. Trajectory models are often used to subtract
the contribution due to seasonal variations in the GNSS time series. Yet, this
can lead, in some cases, to poor noise characterization since seasonal variations
can have different amplitudes in the whole time series and a signal shape that
is not necessarily fully reproduced by a simple sum of sine and cosine functions.
This approach can thus introduce some spurious transient signals which could
be erroneously modeled as slow slip events. Another possibility would be to use
independent-component-analysis-based methods to extract the seasonal variations.
However, the extracted components might contain some useful signals as well as
some noise characteristics which would not be removed (e.g., specific harmonics
or spatiotemporal patterns). Hence, the main motivation of this work is that we do
not want to model any GNSS-constitutive signals, but use the non-post-processed
GNSS time series as they are, by relying on a deep learning model which should
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be able to learn the noise signature, and therefore separate the noise from the
relevant information (here, slow slip events). In order to develop an end-to-end
model (which does not require any manual intermediate step) capable of dealing
with non-post-processed geodetic measurements, it is necessary, on one hand, to
set up advanced methods to generate realistic noise, taking into account the spatial
correlation between stations as well as the large number of data gaps present in
the GNSS time series. On the other hand, it involves developing a specific deep
learning model able to treat multiple stations simultaneously, using a relevant spatial
stacking of the signals (driven by our physics-based knowledge of the slow slip
events) in addition to a temporal analysis. We address these two major drawbacks
in our new approach and present SSEgenerator and SSEdetector, an end-to-end
deep learning-based detector, combining the spatiotemporal generation of synthetic
GNSS time series containing modeled slow deformation (SSEgenerator), and a
Convolutional Neural Network (CNN) and a Transformer neural network with an
attention mechanism (SSEdetector), that proves effective in detecting slow slip
events in raw GNSS position time series from a large geodetic network containing
more than 100 stations, both on synthetic and on real data.

Overall strategy

In this study, we build two tools: (1) SSEgenerator, which generates synthetic
GNSS time series incorporating both realistic noise and the deformation signal
due to synthetic slow slip events along the Cascadia subduction zone, and (2)
SSEdetector, which detects slow slip events in GNSS time series by means of deep
learning techniques. The overall strategy is to train SSEdetector to reveal the
presence of a slow slip event in a fixed-size temporal window, here 60 days, and
to apply the detection procedure on real GNSS data with a window sliding over
time. We first create 60,000 samples of synthetic GNSS position time series using
SSEgenerator, which are then fed to SSEdetector for the training process. Half of the
training samples contain only noise, with the remaining half containing an SSE of
various sizes and depths along the subduction interface. Thanks to this procedure,
SSEdetector can evaluate the probability of whether or not an SSE is occurring in
the window, yet it does not allow it to determine its position on the fault. It is
important to note that the detection is also linked to the GNSS network in Cascadia.
On real data, the detection is applied to each time step and provides the probability
of occurrence of a slow slip event over time. We first apply this strategy to synthetic
data to evaluate the detection power of the method. Then, we apply SSEdetector on
real GNSS time series and compare our results with the SSE catalog from Michel et
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Fig. 4.1.: Schematic architecture of SSEgenerator and SSEdetector. (a) Overview of the
synthetic data generation (SSEgenerator). In the matrix, each row represents the
detrended GNSS position time series for a given station, color-coded by the value
of the position. The 135 GNSS stations considered in this study are here shown
sorted by latitude. The synthetic static displacement model (cf. (b) panel), due
to a Mw 6.5 event, at each station is convolved to a sigmoid to model the SSE
transient, and is added to the ultra-realistic artificial noise to build synthetic GNSS
time series. (b) Location of the GNSS stations of MAGNET network used in this
study (red triangles). An example of synthetic dislocation is represented by the
black rectangle, with arrows showing the modeled static displacement field. The
heatmap indicates the locations of the synthetic ruptures considered in this study,
color-coded by the slab depth. The dashed black contour represents the tremor
locations from the PNSN catalog. (c) High-level representation of the architecture
of SSEdetector. The input GNSS time series are first convolved in the time domain.
Then, the Transformer computes similarities between samples of each station,
learning self-attention weights to discriminate between the relevant parts of the
signals (here, slow slip transients) and the rest (e.g., background noise) and a
probability value is provided depending on whether slow deformation has been
found in the data.

al. (2019), who used a different signal processing technique, and with the tremor
rate.

4.2 Results

4.2.1 SSEgenerator: construction of the synthetic dataset

We choose the Cascadia subduction zone as the target region because (1) a link
between slow deformation and tremor activity has been assessed (Rogers & Dragert,
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2003b) and a high-quality tremor catalog is available (Wech, 2010); (2) a preliminary
catalog of SSEs has recently been proposed during the period 2007-2017 with
conventional methods (Michel, Gualandi, & Avouac, 2019). This proposed catalog
will be used for comparison and baseline for our results, which are expected to
provide a more comprehensive catalog that will better show the link between slow
deformation and tremors.

To overcome the scarcity of catalogued SSEs, we train SSEdetector on synthetic
data, consisting of simulated sets of geodetic time series for the full station network.
Each group of signals (60 days and 135 stations) is considered a single input unit.
In order to be able to detect SSEs in real raw time series, several characteristics
need to be present in these synthetics. First, they must contain a wide range of
realistic background signals at the level of the GNSS network, i.e. spatially and
temporally-correlated realistic noise time series. On the other hand, while a subset
of the samples (negative samples) will only consist of background noise, another
subset must also include an SSE signal. Here, we use a training database containing
half positive and half negative samples. For this, we modeled SSEs signals that are
realistic enough compared to real transients of aseismic deformation. Finally, the
synthetics should also carry realistic missing data recordings, as many GNSS stations
have data gaps in practice.

First, we thus generate realistic synthetic time series, that reproduce the spatial and
temporal correlated noise of the data acquired by the GNSS network, based on the
method developed by Costantino et al. (Costantino et al., 2023b). This database
of 60,000 synthetic time series is derived from real geodetic time series (details in
section SSEgenerator: Generation of realistic noise time series). We select data in
the periods 2007-2014 and 2018-2022 as sources for the noise generation, while
we keep data in the period 2014-2017 as an independent test data set (details in
section SSEgenerator: data selection).

In order to create the positive samples (time series containing an SSE), we model
30,000 dislocations (approximated as a point source) distributed along the Cascadia
subduction interface (see Figure 4.1(b)) following the slab2 geometry (Hayes et al.,
2018) (detailed procedure in section SSEgenerator: Modeling of synthetic slow slip
events). The focal mechanism of the synthetic ruptures approximates a thrust, with
rake angle following a uniform distribution (from 75 to 100°) and strike and dip
defined by the geometry of the slab. The magnitude of the synthetic SSEs is drawn
from a uniform probability distribution (from Mw 6 to 7). Their depths follow the
slab geometry and are taken from 0 to 60 km, with further variability of ±10 km.
Such a variability on the depth allows us to better generalize over different slab
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models and, most importantly, on their fitting to real GNSS data. We further assign
each event a stress drop modeled from published scaling laws (H. Gao et al., 2012).
We use the Okada dislocation model (Okada, 1985) to compute static displacements
at each real GNSS station. We model synthetic SSE signals as sigmoidal-shaped
transients, with duration following a uniform distribution (from 10 to 30 days).
Eventually, we compute a database of 30,000 synthetic SSE transients, where the
SSE signal is added to the positive samples (placed in the middle of the 60-day
window).

The synthetic data set is thus made of 60,000 samples and labels, equally split
into pure noise (labeled as 0) and signal (labeled as 1) with different nuances of
signal-to-noise ratio, resulting both from different station noise levels and differences
in magnitude and location, so that the deep learning method effectively learns to
detect a variety of slow deformation transients from the background noise. The data
set is further split into three independent training (60%), validation (20%) and test
(20%) sets, with the latter being used after the training phase only.

4.2.2 SSEdetector: high-level architecture

SSEdetector is a deep neural network made of a CNN (LeCun et al., 2015) and a
Transformer network (Vaswani et al., 2017) that are sequentially connected (detailed
structure in section SSEdetector: Detailed architecture). We constructed the CNN to
be a deep spatial-temporal encoder, that behaves as feature extractor. The structure
of the encoder is a deep cascade of 1-dimensional temporal convolutional block
sequences and spatial pooling layers. The depth of the feature extractor guarantees:
(1) a high expressive power, i.e., detailed low-level spatiotemporal features, (2)
robustness to data gaps, since their propagation is kept limited to the first layers
thanks to a cascade of pooling operators, and (3) limited overfit of the model on the
station patterns, thanks to the spatial pooling operation. The decisive component
of our architecture is the Transformer network, placed right after the deep CNN
encoder. The role of the Transformer is to apply a temporal self-attention mechanism
to the features computed by the CNN. As humans, we instinctively focus just on
particular fragments of data when looking for any specific patterns. We wanted
to replicate such a behavior in our methodology, leading to a network able to
enhance crucial portions of the data and neglect the irrelevant ones. This is done by
assigning a weight to the data, with those weights being learnt by finding significant
connections between data samples and by relying on a priori knowledge of the labels,
i.e., whether there is a SSE or not. As a result, our Transformer has learnt (1) to
precisely identify the timing of the aseismic deformation transients in the geodetic
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time series and (2) to focus on it by assigning a weight close to zero to the rest of the
time window. We further guide the process of finding slow deformation transients
through a specific supervised-learning classification process. First, the disclosed
outputs of the Transformer are averaged and passed through a sigmoid activation
function. The output values are a detection probability lying in the (0,1) range
and can be further interpreted as a confidence measure of the method. Second, we
train SSEdetector by minimizing the binary cross-entropy loss between the target
and the predicted labels (details in section Training details). The combination of
the two strategies allows SSEdetector to be successfully applied in a real context
because (1) we can run our detector on 1-day-shift windows of real data and collect
an output value for each day used to build a temporal probability curve, (2) thanks
to the Transformer neural network, such a curve will be smooth and the value of
probability will gradually increase in time as SSEdetector identifies slow deformation
in the geodetic data.

4.2.3 Application to the synthetic test set: detection threshold

We test SSEdetector against unseen synthetic samples and we analyze the results
quantitatively. We build a synthetic test data set from GNSS data in the period 2018-
2022 to limit the influence of data gaps (details in Method). We generate events
down to magnitude 5.5 to better constrain the detection limit at low magnitudes.
First, the probability p output by SSEdetector for each test sample must be classified
(i.e., either “noise” or “SSE”). We compute the ROC (receiving operating character-
istic) curve as a function of the magnitude, with magnitudes higher than a given
threshold, as shown in Figure 4.2(a). The curves represent the false positive rate
(FPR, the probability of an actual negative being incorrectly classified as positive) as
a function of the true positive rate (TPR, the probability that an actual positive will
test positive). They are obtained by selecting the (positive) events whose magnitude
is higher than a set of “limit” magnitudes with increments of 0.2. The negative
sample set is the same for all the curves, so that each curve describes the increment
of discriminative SSE power with respect to the noise Each point of the curve is
computed with a different detection threshold pθ, such that a sample is classified
as SSE when p > pθ. Three threshold choices (0.4, 0.5, 0.6) are marked in Figure
4.2(a). As shown in the figure, the higher the magnitude, the higher the number of
true positives. When the threshold is high (e.g., 0.6) the model is more conservative:
the false positive rate decreases, yet as well as the number of true positives. On
the contrary, when the threshold is lower (e.g., 0.4), more events can be correctly
detected, at the cost of introducing more false positives. In this study, we choose
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Fig. 4.2.: Performance of SSEdetector on synthetic data. (a) ROC (receiver operating
characteristic) curve as a function of the magnitude greater than an incremental
magnitude threshold (see lower legend), shown as different colors. The AUC (area
under the curve) is shown in the legend for each curve (an AUC of 1 is associated
with the perfect detector). For each curve, a detection threshold equal to 0.4,
0.5, and 0.6 is marked (see upper legend). (b) The blue curve represents the
true positive rate (probability that an actual positive will test positive), computed
on synthetic data, as a function of the magnitude. (c) Map showing the spatial
distribution of the magnitude threshold for reliable detection, computed, for each
spatial bin, as the minimum magnitude corresponding to a true positive rate value
of 0.7.
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pθ = 0.5 to have a trade-off between the ability to reveal potentially small SSEs (less
false negatives, thus more true positives) and the introduction of false positives.
This threshold will be used both for further analyses on synthetic data and for the
detection of slow slip events in real data.

We obtain a further measure of the sensitivity of our model by computing the true
positive rate as a function of the magnitude, as shown in Figure 4.2(b). On a global
scale, the sensitivity is increasing with the signal-to-noise ratio (SNR), which also
shows that it exists an SNR threshold limit for any SSE detection. This threshold is
mainly linked to the magnitude of the event, rather than the moment rate. Thus,
the ability of SSE detection is mostly influenced by the signal-to-noise ratio rather
than the event duration (cf. Supplementary Figure 1). We compute the sensitivity
as a function of the spatial coordinates of the SSE, by deriving a synthetic proxy
as the magnitude threshold under which the TPR is smaller than 0.7 on a spatial
neighborhood of approximately 50 km. We can see from Figure 4.2(c) that the
detection power is related to the density of stations in the GNSS network, as well
as to the distance between the rupture and the nearest station, and the rupture
depth. When the density of GNSS stations is not high enough, our resolution power
decreases as well as the reliability of the prediction. In those cases, we can only
detect high-magnitude SSEs. This is also the case on the eastern side of the targeted
region where the SSE sources are deeper because of the slab geometry (Figure
4.1(b)), even in locations where the density of stations is higher. In this case, the
magnitude threshold increases because these events are more difficult to detect.

4.2.4 Continuous SSE detection in Cascadia from raw geodetic
data during 2007-2022

4.2.4.1. Overall characteristics of the detected events

In order to evaluate how SSEdetector performs on real continuous data, we applied
it to the raw GNSS time series in Cascadia for the period 2007-2022. SSEdetector
scans the data with a 60-day sliding window (1-day stride), providing a probability of
detection for the central day in each window. Figure 4.3(a) shows the probability of
slow slip event detection (in blue) together with the tremor activity over the period
2007-2022 (in grey). We consider having a reliable detection when the probability
value exceeds 0.5. We find 78 slow slip events over the period 2007-2022, with
durations ranging from 2 to 79 days. We find 55 slow slip events in the period
2007-2017, to be compared with the 40 detections of the catalog of Michel et al.
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Fig. 4.3.: Overview of the performance of SSEdetector on real raw GNSS time series.
The blue curves show the probability of detecting a slow slip event (output by
SSEdetector) in 60-day sliding windows centered on a given date. Grey bars
represent the number of tremors per day, smoothed (gaussian smoothing, σ = 2
days) in the grey curve. Red horizontal segments represent the known events
catalogued by (Michel, Gualandi, & Avouac, 2019). The (a) panel shows the
global performance of SSEdetector over 2007-2022. The red arrow indicates the
time window analyzed by Michel et al., while the green arrows describe the two
periods from which the synthetic training samples have been derived. The grey
rectangle indicates the period which was not covered by the PNSN catalog. In
this period, data from Ide, 2012 (Ide, 2012) has been used. The (b), (c) and
(d) panels show zooms on 2016-2017, 2019-2021 and 2017 (January to July),
respectively.

Tab. 4.1.: Comparison of the number detections from SSEdetector with respect to
the catalog from Michel et al. (Michel, Gualandi, & Avouac, 2019). We
distinguish detections in 2007-2017 (the same period analyzed by Michel et al.),
and in 2017-2022. We further discriminate, in 2007-2017, between events in
common with Michel et al., and new events in the same period.

Period Method
Michel et al. SSEdetector

2007-2017
Common with Michel et al. 40 35

Not detected by Michel et al. 0 20
2017-2022 0 23
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(Michel, Gualandi, & Avouac, 2019) (Table 4.1). We detect 35 of the 40 (87.5%)
catalogued SSEs. Three of the missed SSEs have a magnitude smaller than 5.5, one
of them has a magnitude of 5.86. The remaining one has a magnitude of 6.03. We
show their location in Supplementary Figure 2, superimposed on the magnitude
threshold map derived for SSEdetector (see Figure 4.2(b)). Given their location,
the five missed events have magnitudes that are below the magnitude resolution
limit (from 6 to 6.7, see Supplementary Figure 2). The remaining 20 events may
be associated with new undetected SSEs. We also find 23 new events in the period
2017-2022, which was not covered by Michel et al. (Michel, Gualandi, & Avouac,
2019). We fixed the detection threshold to its default value of 0.5, i.e., the model
detects an event with a 50% confidence. Yet, this threshold can be modified to
meet specific needs: if high-confidence detections are required, the threshold can be
raised; conversely, it can be lowered to capture more events with lower confidence.
Interestingly, the two SSEs from Michel et al. with magnitude 5.86 and 6.03, which
were missed with a 0.5 probability threshold, can be retrieved when lowering it to
0.4, as shown in Supplementary Figure 18.

We also analyze the shape of the static displacement field in correspondence with
the detected SSEs (cf. Supplementary Figure 3). We compute the static displace-
ment field by taking the median displacement over three days and subtracting the
displacement value at each station corresponding to the dates of the SSE. We find
a good accordance with independent studies (Bletery & Nocquet, 2020; Itoh et al.,
2022b; Michel, Gualandi, & Avouac, 2019). Moreover, many of the events found
after 2018, as well as the new events detected in the period analyzed by Michel et
al., have a displacement field suggesting that they are correct detections.

4.2.4.2. Analysis of the SSE durations

The shape of the probability curve gives insights into how SSEdetector reveals slow
slip events from raw geodetic data. The probability curve in correspondence with an
event has a bell shape: it grows until a maximum value, then it smoothly decreases
when the model does not see any displacement associated with slow deformation
in the data anymore. We use this property of the probability curve to extract a
proxy on the detected SSE duration, based on the time span associated with the
probability curve exceeding 0.5. We present the duration distribution in Figure 4.4
as well as a summary in Table 4.1. We detect most of the SSEs found by Michel et
al., but we also find many more events, not only in the 2018-2022 period which
was not investigated by Michel et al., but also within the 2007-2017 time window
that they analyzed, suggesting that our method is more sensitive. We find potential
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Fig. 4.4.: Distribution of the detected SSEs and comparison with the independent
catalogue from Michel et al. (Michel, Gualandi, & Avouac, 2019). (a)
Cumulative histogram of SSEdetector inferred durations. Blue bars represent
the 35 catalogued events by Michel et al. (Michel, Gualandi, & Avouac, 2019)
that have been successfully retrieved. Orange bars show the 20 additional events
that have been discovered within the time window analyzed by Michel et al.,
while green ones represent the 23 events found in the time period 2017-2022,
not covered by the catalog of Michel et al. (b) Event durations from Michel et
al.’s catalogue with respect to the durations obtained by SSEdetector. Events
are color-coded by the overlap percentage (details in section Overlap percentage
calculation). The black rectangle represents an example of a large event found
by Michel et al. (Michel, Gualandi, & Avouac, 2019), that is split into three
sub-events by SSEdetector.
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slow slip events at all scales of durations (from 2 to 79 days). Michel et al. hardly
detect SSEs that last less than 15 days, probably due to temporal data smoothing
(Michel, Gualandi, & Avouac, 2019), while we retrieve shorter events (less than 10
days) since we use raw time series, meaning that our method has a better temporal
resolution. In Figure 4.4 (b), we show a comparison between the SSE durations
of Michel et al.’s (Michel, Gualandi, & Avouac, 2019) catalogued events and ours.
This plot is made by considering all the combinations between events in our catalog
and in the Michel et al. one. Each horizontal alignment represents an event in our
catalogue that is split into sub-events in the Michel et al. catalog, while vertical
alignments show events in the Michel et al. catalog corresponding to sub-events in
our catalog. We find that the durations are in good accordance for a large number
of events, for which the overlap is often higher than 70%, both for small- and
large-magnitude ones. We can also identify, from figure 4.4(b), that some events
are separated in one method while identified as one single SSE in the other: this is
the case for the 55 day-long event from Michel et al. (Michel, Gualandi, & Avouac,
2019), that was paired with 3 SSEdetector sub-events (see Figure 4.3(d) and the
rectangle in Figure 4.4(b)). The majority of the points located off the identity line
(the diagonal) are thus sub-events for which the grouping differs in the two catalogs.
As more points are below the diagonal than above, we can see that SSEdetector
tends to separate the detections more. We interpret this as a possible increase in
the detection precision, yet a validation with an independent acquisition data set
is needed, since the separation into sub-events strongly depends on the threshold
applied to the detection probability to define a slow slip event (0.5 in this study).
Also, a few points above the diagonal represent events that were split into sub-events
by Michel et al., which our model tends to detect as a single event. This separation
is also related to the choice of the threshold.

4.2.4.3. Validation against tremors

In order to have an independent validation, we compare our results with tremor
activity from the Pacific Northwest Seismic Network (PNSN) catalog (Wech, 2010)
between 2009-2022 and Ide’s catalogue (Ide, 2012) catalog between 2006-2009,
shown in grey in Figure 4.3. We show the location of the tremors in our catalogues
with the dashed black contour in Figure 4.1(b). From a qualitative point of view, we
can see that the detection probability curve seems to align well with the number of
tremors per day, throughout the whole period. This is also true for the 20 possible
new detected events that were not present in previous catalogs, for example during
the period after 2017 (see Figure 4.3(c)), but also in 2016-2017, where we detect
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Fig. 4.5.: Validation of SSEdetector performance against tremor activity in 2010-2022.
(a) Global-scale cross-correlation between the full-length SSEdetector output
probability and the number of tremors per day, as a function of the time shift
between the two curves. (b) Local-scale maximum value of cross-correlation for
each SSE and tremor windows, centered on the SSE duration, as a function of
the SSE duration, color-coded by the associated time lag between tremor and
SSE (positive lag means deformation precedes tremor). Events having a zero-lag
cross-correlation (correlation coefficient) lower than 0.4 are marked with an
empty point. (c) Histogram of the time lags computed in the (b) panel. (d) SSE
durations as a function of the tremor durations for the events in the (b) panel
which have a correlation greater than 0.4. The solid black line represents the
identity line, while the dashed grey line is the maximum tremor duration that can
be attained for a given SSE duration, that is SSE duration + 14 days (see section
“Computation of local- and global-scale correlations”).
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7 possible events that were not previously catalogued (see Figure 4.3(b)). The
excellent similarity between tremors and our detections is quantitatively assessed
by computing the cross-correlation between the probability curve and the number
of tremors per day, the latter smoothed with a gaussian filter (σ = 1.5 days), as
a function of the time shift between the two curves (Figure 4.5(a)). The interval
2007-2010 has been excluded from Figure 4.5(a) in order to consider the period
covered by the PNSN catalog only. The maximum correlation value is around 0.58
and is obtained for a time shift between 1 and 2 days. This shows that, at a global
scale, the probability peaks are coeval with the peaks of tremor activity.

We also make a further comparison at the local scale for each individual detected
SSE. In Figure 4.5(b) we observe that most of the individual detected SSEs show a
correlation larger than 0.4 with the coeval peak of tremor. SSE and tremor signals
are offset by about 2 days on average (see Figure 4.5(c)). This result, obtained on
windows of month-long scale, seems consistent with the decade-long correlation
shown in Figure 4.5(a), suggesting that the found large-scale trend is also true at a
smaller scale. This may suggest that the slow deformation, for which the detection
probability is a proxy, precedes the tremor chatter by a few days, with potential
implications on the nucleation of the slow rupture.

We compare the tremor peak duration (see details in section “Calculation of tremor
durations”) to the SSE duration in Figure 4.5(d) for all the events that have been also
considered in Figure 4.5(b). The figure shows a correspondence between slow slip
duration and coeval tremor activity duration: most of the events are associated with
a peak of tremor activity of close duration. This is true also for large events, up to
80 days. This finding gives an insight that our deep learning-based method, blindly
applied to raw geodetic time series, achieves reliable results. Yet, this result should
be taken with caution, since it is strongly dependent on the choice of the window of
observation (see sections “Calculation of tremor durations” and “Computation of
local- and global-scale correlations” for further details).

4.2.5 Validity of the duration proxy against temporal smoothing: the
March 2017 slow slip event

We test the first-order effectiveness of the duration proxy computation to assess any
potential temporal smoothing effects. We focus on the Mw 6.7 slow slip event that
occurred on March 2017. We rely both on the measured time series and on the
kinematic model of the slip evolution by Itoh et al. (Itoh et al., 2022b). Figure 4.6 (a)
shows the displacement field output by Itoh et al.’s model and its temporal evolution
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Fig. 4.6.: Temporal smoothing analysis on a synthetic model of the March 2017 slow
slip event. (a) Model of the static displacement associated with the March 2017
slow slip event by Itoh et al. (Itoh et al., 2022b) (black arrows). The red triangles
represent the 135 stations used in this study and the points show the tremor
location from March 1 to April 30, 2017, color-coded by date of occurrence. (b)
Matrix showing the temporal evolution of Itoh et al.’s model. Each row represents
the detrended E-W GNSS position time series for a given station, color-coded by
the position value. (c) Detrended E-W synthetic time series (sum of the Itoh et al.’s
model and a realization of artificial noise output by SSEgenerator, color-coded by
position value. (d) Moment rate function associated with the slip evolution of the
model by Itoh et al. (e) The blue curve represents the daily probability output by
SSEdetector from the synthetic time series shown in the (c) panel. The red curve
shows the probability curve associated with the prediction of SSEdetector on the
March 2017 slow slip event on real GNSS data (see also Figure 4.3(d)).
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is shown in Figure 4.6 (b). We use SSEgenerator to build a random noise time series,
to which we add the modeled displacement time series to build a synthetic time
series reproducing the March 2017 SSE, as shown in Figure 4.6 (c). Figure 4.6 (e)
shows the probability curve output by SSEdetector on the synthetic time series (in
blue), to be also compared to the prediction associated with the same event in real
GNSS data (in red, see also Figure 4.3 (d)). By the analysis of the probability curve,
we estimate a duration of 28 days, comparable with the duration inferred by Itoh et
al. (Itoh et al., 2022b) (30 days). A 3-day time shift is found between the probability
curve and the slip evolution, represented by moment rate function in Figure 4.6 (d),
which can be imputed to the specific realization of synthetic noise. When comparing
the probability curve associated with the same event as computed from real data
(red curve in 4.6 (e)), we find a better resemblance, consistent also with the catalog
from Michel et al. (see Figure 4.3 (d)), which demonstrates that SSEdetector does
not suffer from any first-order temporal smoothing issues.

4.2.6 Robustness of SSEdetector to variations in the source
characteristics

We perform an extensive study to test how SSEdetector performs on SSEs that exhibit
characteristics in the source parameters that differ from the synthetic data set used
for the training. We train SSEdetector on synthetic dislocations with fixed aspect
ratios and shapes. However, SSEs in Cascadia generally have aspect ratios between
3 and 13 and exhibit heterogeneous slip along strike with pulse-like propagation
(Michel, Gualandi, & Avouac, 2019; Schmidt & Gao, 2010). We create a synthetic
test sample containing three slow slip events that propagate in space and time, to
simulate a real large SSE that lasts 60 days and propagates southwards, as shown
in Supplementary Figure 19. The detection probability and the associated duration
proxy suggest that the probability curve can still be used to retrieve SSEs that last
longer than 30 days. Thanks to its multi-station approach, our method detects slices
of slow slip events through time and space (station dimension), regardless of the
training configuration. This can be seen as a stage in which some building blocks
are provided to the model, that combines them during the testing phase to detect
events having different shapes and sizes. For this reason, SSEdetector can be used
to generalize, at first order, over more complex events in real data without the
need to build a complex train data set, which should also account for realistic event
propagation mechanisms, yet difficult to model.
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We also test the generalization ability of SSEdetector over shorter (less than 10
days) events. We build a synthetic sample of a 3-day slow slip event. As shown in
Supplementary Figure 20, SSEdetector is able to correctly detect it, with an inferred
duration of 4 days, suggesting that it has learned what is the first-order temporal
signature of the signals of interest, being able to detect them also at shorter scales.

SSEdetector is applied to real data by following a sliding-window strategy. In real
data, two events could be found in the same window, most likely one in the northern
and the other in the southern part. For this, we build two synthetic tests, the first
test with two 20-day-long events that do not occur at the same time, and the second
one with two 20-day-long synchronous events. Supplementary Figures 20 and 21
show the results for both cases, which suggest that SSEdetector can generalize well
also when there are two events in the same window, also corroborating the results
found on real data.

4.2.7 Sensitivity study

We analyze the sensitivity of SSEdetector with respect to the number of stations.
We construct an alternative test selecting 352 GNSS stations (see Supplementary
Figure 5), which is the number of stations used by Michel et al. (Michel, Gualandi,
& Avouac, 2019). The 217 extra stations have larger percentages of missing data
compared to the initial 135 stations (cf. Supplementary Figure 4). We train and
test SSEdetector with 352 time series and we report the results in Supplementary
Figures 6-7. We observe that the results are similar, with an excellent alignment
with tremors and similar correlation and lag values, although with this setting the
detection power slightly decreases, probably due to a larger number of missing data,
suggesting that there is a tradeoff between the number of GNSS stations and the
number of missing data.

We also test the ability of SSEdetector to identify SSEs in a sub-region only (even if
it is trained with a large-scale network. For that, we test SSEdetector (trained on
135 stations), without re-training, on a subset of the GNSS network, situated in the
northern part of Cascadia. To this end, we replace with zeros all the data associated
with stations located at latitudes lower than 47 degrees (see Supplementary Figure
8). Similarly, we find that SSEdetector retrieves all the events which were found by
Michel et al. (Michel, Gualandi, & Avouac, 2019) and the correlation with tremors
that occur in this sub-region is still high, with a global-scale cross-correlation of 0.5
(cf. Supplementary Figures 9-10). This means that the model is robust against long
periods of missing data and, thanks to the spatial pooling strategy, can generalize

4.2 Results 101



over different settings of stations and obtain some information on the localization.
We found similar results for SSEs in the southern part, with a lower correlation with
tremors, probably because of the higher noise level in south Cascadia, as shown in
Supplementary Figures 16-17.

Finally, we test SSEdetector against other possible deep learning models that could
be used for detection. We report in Supplementary Figures 11-12 the results ob-
tained by replacing the one-dimensional convolutional layers with two-dimensional
convolutions on time series sorted by latitude (as shown in Figure 4.1(a)). This
type of architecture was used in studies having similar multi-station time-series data
(Licciardi et al., 2022). We observe that the results on real data are not satisfactory
because of too high a rate of false detections and a lower temporal resolution than
SSEdetector (in other words, short SSEs are not retrieved). This suggests that our
specific model architecture, handling in different ways the time dimension and the
station dimension, might be more suited to multi-station time-series data sets.

4.2.8 Discussion

In this study, we use a multi-station approach that proves efficient in detecting slow
slip events in raw GNSS time series even in presence of SSE migrations (Bletery
& Nocquet, 2020; Itoh et al., 2022b; Michel, Gualandi, & Avouac, 2019). Thanks
to SSEdetector, we are able to detect 87 slow slip events with durations from 2
to 79 days, with an average limit magnitude of about 6.4 in north Cascadia and
6.2 in south Cascadia computed on the synthetic test set (see Figure 4.2(b)). The
magnitude of the smallest detected SSE in common with Michel et al. is 5.42, with
a corresponding duration of 8.5 days. One current limitation of this approach is
that the location information is not directly inferred. In this direction, some efforts
should be made in developing a method for characterizing slow slip events after the
detection in order to have information on the location, but also on the magnitude,
of the slow rupture.

We apply our methodology to the Cascadia subduction zone because it is the area
where independent benchmarks exist and it is thus possible to validate a new method.
However, the applicability of SSEgenerator and SSEdetector to other subduction
zones is possible. The current approach is, however, region-specific. In fact, the
characteristics of the targeted zone affect the structure of the synthetic data, thus a
method trained on a specific region could have poor performance if tested on another
one without retraining. This problem can be addressed by generating multiple data
sets associated with different regions and combining them for the training. Also,
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we focus on the Cascadia subduction zone, where not much regular seismicity
occurs, making it a prototypical test zone when looking for slow earthquakes. When
addressing other regions, such as Japan, for example, the influence of earthquakes
or post-seismic relaxation signals could make the problem more complex. This
extension goes beyond the scope of this study, yet we think that it will be essential to
tackle this issue in order to use deep learning approaches for the detection of SSEs
in any region.

4.3 Conclusions

We developed a powerful pipeline, consisting of a realistic synthetic GNSS time-series
generation, SSEgenerator, and a deep-learning classification model, SSEdetector,
aimed to detect slow slip events from a series of raw GNSS time series measured
by a station network. We built a new catalog of slow slip events in the Cascadia
subduction zone by means of SSEdetector. We found 78 slow slip events from 2007
to 2022, 35 of which are in good accordance with the existing catalog (Michel,
Gualandi, & Avouac, 2019). The detected SSEs have durations that range between a
few days to a few months. The detection probability curve correlates well with the
occurrence of tremor episodes, even in time periods where we found new events.
The duration of our SSEs, for the 35 known events, as well as for the 43 new
detections, are found to be similar to the coeval tremor duration. The comparison
between tremors and SSEs also shows that, both at a local and a global temporal
scale, the slow deformation may precede the tremor chatter by a few days, with
potential implications on the link between a slow slip that could drive the rupture of
nearby small seismic asperities. This is the first successful attempt to detect SSEs
from raw GNSS time series, and we hope that this preliminary study will lead to the
detection of SSEs in other active regions of the world.

4.4 Methods

4.4.1 SSEgenerator: data selection

We consider the 550 stations in the Cascadia subduction zone, belonging to the
MAGNET GNSS network, and we select data from 2007 to 2022. We train SSEde-
tector with synthetic data whose source was affected by different noise and data
gap patterns. We divide the data into three periods: 2007-2014, 2014-2018, and
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2018-2022. In order to create a more diverse training set, data in the period 2007-
2014 and 2018-2022 has been chosen as a source for synthetic data generation.
The period 2014-2018 was left aside and used as an independent validation set for
performance assessment on real data. Nonetheless, since synthetic data is performed
by applying a methodology based on randomization (SSEgenerator), a test on the
whole sequence 2007-2022 is possible without overfitting.

For the two periods 2007-2014 and 2018-2022, we sort the GNSS stations by the
total number of missing data points and we choose the 135 stations affected by fewer
data gaps as the final subset for our study. We make sure that stations having too
high a noise do not appear in this subset. We select 135 stations since it represents a
good compromise between the presence of data and the longest data gap sequence
in a 60-day window. However, we also train and test SSEdetector on 352 stations
(the same number used in the study by Michel et al. (Michel, Gualandi, & Avouac,
2019)) to compare with a setting equivalent to the one from Michel et al. (Michel,
Gualandi, & Avouac, 2019). We briefly discuss the results in the section “Sensitivity
study”.

4.4.2 SSEgenerator: Generation of realistic noise time series

Raw GNSS data is first detrended at each of the 135 stations, i.e. the linear trend
is removed, where the slope and the intercept are computed, for each station,
without taking into account the data gaps, i.e., for each station the mean over time
is calculated without considering the missing data points, and is removed from
the series. Only the linear trend is removed from the data, without accounting
for seasonal variations, common modes, or co- and post-seismic relaxation signals,
which we want to keep to have a richer noise representation. We remove the linear
trend for each station to avoid biases in our noise generation strategy, since the
variability due to the linear trend would be captured as a principal component thus
introducing spurious piece-wise linear signals in the realistic noise. We build a
matrix containing all station time series X ∈ RNt×Ns , where Nt is the temporal
length of the input time series and Ns is the number of stations. In this study, we
use 2 components (N-S and E-W) and we apply the following procedure for each
component independently. Each column of X contains a detrended time series.
We proceed as follows. The X matrix is then re-projected in another vector space
through a Principal Component Analysis (PCA), as follows. First, the data is centered.
The mean vector is computed µ ∈ RNs , such that µi is the mean of the i-th time
series. The centered matrix is considered X̃ = X− µ, and is decomposed through
Singular Value Decomposition (SVD) to obtain the matrix of right singular vectors V,
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which is the rotation matrix containing the spatial variability of the original vector
space. We further rotate the data by means of this spatial matrix to obtain spatially-
uncorrelated time series X̂ = X̃V. Then, we produce X̂R, a randomized version of
X̂, by applying the iteratively-refined amplitude-adjusted Fourier transform (AAFT)
method (Schreiber & Schmitz, 2000), having globally the same power spectrum and
amplitude distribution of the input data. The number of AAFT iterations has been set
to 5 based on preliminary tests. The surrogate time series are then back-projected
in the original vector space to obtain XR = X̂RVT + µ. We further enrich the
randomized time series XR by imprinting the real pattern of missing data for 70
% of the synthetic data. We shuffle the data gaps before imprinting them to the
data, assigning a station a data-gap sequence belonging to another station, such that
SSEdetector can better generalize over unseen test data for the same station, which
necessarily would have a different pattern of data gaps. We leave the remaining
30% of the data as it is. We prefer not to use any interpolation method to avoid to
introduce new values in the data. Thus, we set all the missing data points to zero,
which is a neutral value with respect to the trend of the data and the convolution
operations performed by SSEdetector.

After this process, we generate sub-windows of noise time series as follows. Given
the window length WL, a uniformly distributed random variable is generated s ∼
U(−WL

2 , WL
2 ) and the data is circularly shifted, in time, by the amount s. Then,

⌊ Nt
WL
⌋ contiguous (non-overlapping) windows are obtained. The circular shift is

needed in order to prevent SSEdetector from learning a fixed temporal pattern of
data gaps. Finally, by knowing the desired number N of noise windows to compute,
the surrogate generation {XR}i can be repeated ⌈ N

⌊Nt/WL⌋⌉ times. In our study, we
generate N = 60, 000 synthetic samples, by calling the surrogate data generation
1,429 times and extracting 42 non-overlapping noise windows from each randomized
time series.

4.4.3 SSEgenerator: Modeling of synthetic slow slip events

We first generate synthetic displacements at all the 135 selected stations using
Okada’s dislocation model (Okada, 1985). We draw random locations (fault cen-
troids), strike and dip angles using the slab2 model (Hayes et al., 2018) following
the subduction geometry within the area of interest (see Figure 4.1(b)). We let
the rake angle be a uniform random variable from 75 to 100 degrees, in order to
have a variability around 90 degrees (thrust focal mechanism). For each (latitude,
longitude) couple, we extract the corresponding depth from the slab and we add
further variability, modeled as a uniformly distributed random variable from -10 to
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10 km. We allow for this variability if the depth is at least 15 km, to prevent the
ruptures from reaching the surface. We associate each rupture with a magnitude
Mw, uniformly generated in the range (6, 7), and we compute the equivalent mo-
ment as M0 = 101.5Mw+9.1. As for the SSE geometry, we rely on the circular crack
approximation (Lay & Wallace, 1995) to compute the SSE radius as:

R =
( 7

16
M0
∆σ

)1/3
(4.1)

where ∆σ is the static stress drop. We compute the average slip on the fault as:

ū = 16
7π

∆σ

µ
R (4.2)

where µ is the shear modulus. We assume µ = 30 GPa. By imposing that the surface
of the crack must equal a rectangular dislocation of length L and width W , we
obtain L =

√
2πR. We assume that W = L/2. Finally, we model the stress drop as

a lognormally-distributed random variable. We assume the average stress drop to
be ∆σ = 0.05 MPa for the Cascadia subduction zone (H. Gao et al., 2012). We also
assume that the coefficient of variation cV , namely the ratio between the standard
deviation and the mean, is equal to 10. Hence, we generate the static stress drop
as ∆σ ∼ Lognormal(µN , σ2

N ), where µN and σN are the mean and the standard
deviation of the underlying normal distribution, respectively, that we derive as:

σN =
√

ln (c2
V + 1) (4.3)

and

µN = ln (∆σ)− σ2
N /2. (4.4)

We thus obtain the (horizontal) synthetic displacement vector Ds = (DN−S
s , DE−W

s )
at each station s. We model the temporal evolution of slow slip events as a logistic
function. Let D be the E-W displacement for simplicity. In this case, we model an
SSE signal at a station s as:

ds(t) = D

1 + e−β(t−t0) (4.5)
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where β is a parameter associated with the growth rate of the curve and t0 is the
time corresponding to the inflection point of the logistic function. We assume t0 = 30
days, so that the signal is centered in the 60-day window. We derive the parameter
β as a function of the slow slip event duration T . We can rewrite the duration as
T = tmax − tmin, where tmax is the time corresponding to the post-SSE value of
the signal (i.e., D), while tmin is associated to the pre-SSE displacement (i.e., 0).
Since these values are only asymptotically reached, we introduce a threshold γ, such
that tmax and tmin are associated with ds(D − γD) and ds(γD), respectively. We
choose γ = 0.01. By rewriting the duration as T = tmax − tmin and solving for β, we
obtain:

β = 2
T

ln
(1

γ
− 1

)
. (4.6)

Finally, we generate slow slip events having uniform duration T between 10 and 30
days. We take half of the noise samples (30,000) and we create a positive sample
(i.e., time series containing a slow slip event) as XR + d(t), where d(t) is a matrix
containing all the modeled time series ds(t) for each station. We let XR contain
missing data. Therefore, we do not add the signal ds(t) where data should not be
present.

4.4.4 SSEdetector: Detailed architecture

SSEdetector is a deep neural network obtained by the combination of a convolutional
and a Transformer neural network. The full architecture is shown in Supplementary
Figure 13. The model takes input GNSS time series, which can be grouped as a matrix
of shape (Ns, Nt, Nc), where Ns, Nt, Nc are the number of stations, window length
and number of components, respectively. In this study, Ns = 135, Nt = 60 days and
Nc = 2 (N-S, E-W). The basic unit of this CNN is a Convolutional Block. It is made of
a sequence of a one-dimensional convolutional layer in the temporal (Nt) dimension,
which computes Nf feature maps by employing a 1× 5 kernel, followed by a Batch
Normalization (Ioffe & Szegedy, 2015) and a ReLu activation function (Agarap,
2018). We will refer to this unit as ConvBlock(Nf ) for the rest of the paragraph (see
Supplementary Figure 13). We alternate convolutional operations in the temporal
dimension with pooling operations in the station dimension (max-pooling with a
kernel of 3) and we replicate this structure as long as the spatial (station) dimension
is reduced to 1. To this end, we create a sequence of 3 ConvBlock(·) + max-pooling.
As an example, the number of stations after the first pooling layer is reduced from
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135 to 45. At each ConvBlock(·), we multiply by 4 the number of computed feature
maps Nf . At the end of the CNN, the computed features have shape (Nt, Nfinal

f ),
with Nfinal

f = 256.

This feature matrix is given as input to a Transformer neural network. We first use a
Positional Embedding to encode the temporal sequence. We do not impose any kind
of pre-computed embedding, but we use a learnable matrix of shape (Nt, Nfinal

f ).
The learnt embeddings are added to the feature matrix (i.e., the output of the CNN).
The embedded inputs are then fed to a Transformer neural network (Vaswani et al.,
2017), whose architecture is detailed in Supplementary Figure 14. Here, the global
(additive) self-attention of the embedded CNN features is computed as:

ηt1,t2 = Wa tanh
(
W T

1 ht1 + W T
2 ht2 + bh

)
+ ba , (4.7)

at1,t2 = softmax (ηt1,t2) = eηt1,t2∑
t2 eηt1,t2

, (4.8)

ct1 =
∑
t2

at1,t2 · ht2 , (4.9)

where W represents a learnable weight matrix and b a bias vector. The matrices
ht1 and ht2 are the hidden-state representations at time t1 and t2, respectively. The
matrix at1,t2 contains the attention scores for the time steps t1 and t2. Here, a context
vector is computed as the weighted sum of the hidden-state representations by the
attention scores. The context vector contains the importance at a given time step
based on all the features in the window. The contextual information is then added
to the Transformer inputs. Then, a position-wise Feed-Forward layer (with a dropout
rate of 0.1) is employed to add further non-linearity. After the Transformer network,
a Global Average Pooling in the temporal dimension (Nt) is employed to gather the
transformed features and to output a vector summarizing the temporal information.
A Dropout is then added as a form of regularization to reduce overfitting (Srivastava
et al., 2014), with dropout rate δ = 0.2. In the end, we use a fully-connected layer
with one output, with a sigmoid activation function to express the probability of SSE
detection.
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4.4.5 Training details

We perform a mini-batch training (Bottou et al., 2018) (batch size of 128 samples)
by minimizing the binary cross-entropy (BCE) loss between the target labels y and
the predictions ŷ (a probability estimate):

BCE(y, ŷ) = −y ln(ŷ)− (1− y) ln(1− ŷ). (4.10)

The BCE loss is commonly used for binary classification problems (detection is a
binary classification). We use the ADAM method for the optimization (Kingma &
Ba, 2014) with a learning rate λ = 10−3 which has been experimentally chosen. We
schedule the learning rate such that it is reduced during training iterations and we
stop the training when the validation loss did not improve for 50 consecutive epochs.
We initialized the weights of SSEdetector with a uniform He initializer (K. He et al.,
2015). We implemented the code of SSEdetector in Python using the Tensorflow
and Keras libraries (Abadi et al., 2016; Chollet et al., 2015). We run the training on
NVIDIA Tesla A100 Graphics Processing Units (GPUs). The training of SSEdetector
takes less than 2 hours. The inference on the whole 15-year sequence (2007-2022)
takes a few seconds.

4.4.6 Calculation of tremor durations

We compute the durations of tremor bursts using the notion of topographic promi-
nence, explained in the following. We rely on the software implementation from
the SciPy Python library (Virtanen et al., 2020). Given a peak in the curve, the
topographic prominence is informally defined as the minimum elevation that needs
to be descended to start reaching a higher peak. The procedure is graphically
detailed in Supplementary Figure 15. We first search for peaks in the number of
tremors per day by comparison with neighboring values. In order to avoid too many
spurious local maxima, we smooth the number of tremors per day with a gaussian
filter (σ = 1.5 days). For each detected SSE, we search for peaks of tremors in a
window given by the SSE duration ±3 days. For each peak of tremors that is found,
the corresponding width is computed as follows. The topographic prominence is
computed by placing a horizontal line at the peak height h (the value of the tremor
curve corresponding to the peak). An interval is defined, corresponding to the points
where the line crosses either the signal bounds or the signal at the slope towards
a higher peak. In this interval, the minimum values of the signal on each side are
computed, representing the bases of the peak. The topographic prominence p of
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the peak is then defined as the height between the peak and its highest base value.
Then, the local height of the peak is computed as hL = h − α · p. We set α = 0.7
in order to focus on the main tremor pulses, discarding further noise in the curve.
From the local height, another horizontal line is considered and the peak width
is computed as the intersection point of the line with either a slope, the vertical
position of the bases or the signal bounds, on both sides. Finally, the total width of
a tremor pulse in an SSE window is computed by considering the earliest starting
point on the left side and the latest ending point on the right side. It must be noticed
that, the derivation of the tremor duration depends on the window length. In fact,
the inferred tremor duration can saturate to a maximum value equal to the length of
the window. For this reason, we added in Figure 4.5(c) a dashed line corresponding
to the window length (SSE duration + 14 days) (see section “Computation of local-
and global-scale correlations”).

4.4.7 Computation of local- and global-scale correlations

We compute the time-lagged cross-correlation between the SSE probability and the
number of tremors per day (Fig. 4.5(a) and (b)). We smooth the number of tremors
per day with a gaussian filter (σ = 1.5 days). We consider a lag between -7 and 7
days, with a 1-day stride.

In the case of Fig. 4.5(a), we compute the global correlation coefficient by consid-
ering the whole time sequence (2010-2022). As for Fig. 4.5(b), we make a local
analysis. For each detected SSE, we first extract SSE and tremor slices from intervals
centered on the SSE dates [tstart

SSE − ∆t, tend
SSE + ∆t], where ∆t = 30 days. We first

compute the cross-correlation between the two curves to filter out detected SSEs
whose similarity with tremors is not statistically significant, i.e., if their correlation
coefficient is lower than 0.4. We build Fig. 4.5(b) after this process.

We compute Fig. 4.5(d) by comparing the SSE and tremor durations for all the
events that had a cross-correlation higher than 0.4. For those, we infer the tremor
duration, using the method explained in section “Calculation of tremor durations”
on the daily tremor rate cut from an interval [tstart

SSE −∆t′, tend
SSE + ∆t′], with ∆t′ = 7

days.
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4.4.8 Overlap percentage calculation

In Figure 4.4 (b) we color-code the SSE durations by the overlap percentage between
a pair of events, which we compute as the difference between the earliest end and
the latest start, divided by the sum of the event lengths. Let E1 and E2 be two events
with start and end dates given by (tstart

1 , tend
1 ) and (tstart

2 , tend
2 ) and with durations

given by D1 = tend
1 − tstart

1 and D2 = tend
2 − tstart

2 , respectively. We compute their
overlap π as:

π = max(0, min(tend
1 , tend

2 )−max(tstart
1 , tstart

2 ))
D1 + D2

(4.11)
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Characterization of slow slip
events from GNSS data with
deep learning

5

This chapter resumes the last part of the Ph.D. research, focused on slow slip event
characterization. The first part (section 5.2) is based on a published IGARSS (Inter-
national Geoscience and Remote Sensing Symposium) proceedings paper:

Costantino, G. and Giffard-Roisin, S. and Dalla Mura, M. and Socquet,
A. (2023). Characterization of slow slip events from GNSS data with deep
learning.

Section 5.3 is a recent and unpublished work at the date of the manuscript submis-
sion.

In this chapter, we discuss slow slip event characterization in GNSS data. In section
5.2, we follow the approach presented in chapter 3 to detect slow slip events
contained in the middle of a sliding window. In section 5.3, we address the problem
of SSE characterization by first denoising the GNSS time series. The latter approach
gives the best results, with accurate performance on real GNSS data in the Cascadia
subduction zone. Our method is capable of tracking and retrieving also small
amounts of displacement, which correlate spatially and temporally with tremor
propagation and can be used as the basis for SSE characterization. We manually
select slow slip events to build a tentative SSE catalogue and we perform a static
inversion of the source parameters associated with the displacement of each event,
providing preliminary scaling laws for the detected events.
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5.1 General overview

In this chapter, we discuss the problem of slow slip event characterization, that is
the estimation of the SSE source parameters (at first order, magnitude estimation
and localization). In chapter 3, we solve the problem of earthquake characterization
in GNSS data by employing windows of GNSS time series centered on the co-seismic
date. In section 5.2, we will discuss how slow slip event characterization can be
made by following the same approach. We first address the problem with synthetic
data. Then, we attempt to characterize them in real GNSS data, by relying on the
events identified by SSEdetector.

The problem of SSE characterization can also be addressed from another perspective.
Slow slip event (or earthquake) characterization is usually performed through an
inversion of the source parameters. If we used ideal time series, i.e., noiseless data,
this inversion could be easily carried out. However, the presence of noise makes
the problem way harder, introducing the necessity of pre-processing the data (e.g.,
removing undesired signals such as common modes, seasonal signals, post-seismic
relaxation signals, via trajectory models or independent-component-analysis-based
methods) in order for the inversion to converge. Deep learning techniques can be
used to generalize and make this technique more robust, as shown in the previous
chapters, yet the noise still hinders the applicability of deep learning techniques as
well. In the second part of this chapter we explore a complementary strategy: we
aim at denoising the GNSS time series, such that any method can be used on the
denoised time series afterwards, either “classical” or deep learning approaches. We
will discuss GNSS time series denoising in section 5.3.

5.2 Characterization of slow slip events source
parameters from raw GNSS time series with deep
learning

This section is mostly based on our published IGARSS paper.

5.2.1 Introduction

The stress that accumulates on faults due to tectonic plate motion can be released
seismically and aseismically. The aseismic part of this stress release occurs during
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Slow Slip Events (SSEs), that last from days to years and do not radiate seismic
waves. SSEs are monitored with dense GNSS networks that record the deformation
induced at the surface of the Earth. Precise identification of slow slip events is key
to better understanding the mechanics of active faults and to better describing the
role of aseismic slip in the seismic cycle. Yet, the detection and characterization of
SSEs of various sizes from existing GNSS networks is still a challenge, and extensive
SSEs catalogs remain sparse and incomplete.

The difficulty in revealing low-magnitude events is related to their detection in the
geodetic data, which contains large spatiotemporal perturbations and a low signal-
to-noise ratio, making slow slip event detection hard to automatize. Traditionally
employed methods either focus on specific events, identified visually with a high
signal-to-noise ratio (e.g., (Radiguet et al., 2016)), use time series decomposition
approaches such as Independent Component Analysis Inversion Methods (ICAIM)
(e.g., (Michel, Gualandi, & Avouac, 2019b)); or, for small events, geodetic template
matching (e.g., (Okada et al., 2022; Rousset et al., 2017b)). On the other hand, deep
learning methods have been successfully applied in other geoscience applications
such as earthquake detection and phase picking (Mousavi et al., 2020a; Zhu &
Beroza, 2019), earthquake location and magnitude estimation from seismic data
(Münchmeyer et al., 2021) and geodetic data (GNSS) (Costantino et al., 2023b), as
well as application to slow earthquakes (Rouet-Leduc et al., 2019), volcano seismic
signals (Lara et al., 2020; Malfante et al., 2018). Yet, no spatiotemporal methods
have been developed to address the characterization of slow earthquakes using
multi-station GNSS data. Thus, our work is mainly motivated by the necessity to
explicitly account for spatial information, which can lead to better performance with
respect to time-series-based methods (Costantino et al., 2023b).

Here we aim to develop and compare the performance of deep-learning-based meth-
ods for the characterization of SSEs in raw GNSS data with a multi-station approach.
One way is to use 2D Convolutional Neural Networks (CNN), specifically developed
for image-like data. With this method, two-dimensional convolutions (time and
station dimension) can model both local- and large-scale spatial relationships be-
tween stations, but no explicit information coming from the spatial geometry of
the GNSS network is enforced. To this end, spatiotemporal Graph Neural Network
(STGNN) methods (Yu et al., 2017) can learn these relationships, with the potential
of outperforming the 2D-CNN approach. However, developing such models is not
trivial and requires setting up explicit joint processing of the information in the
temporal and spatial domains. Classical graph-based approaches rely on message
passing to propagate the information between neighbouring nodes. Time-varying
features can be handled by using a Recurrent Neural Network (RNN) cell as an
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Fig. 5.1.: Schematic representation of the three developed deep learning models: (a)
Time-series-attention-based Convolutional Neural Network for characterization
(TSACNN), (b) matrix-based CNN (MCNN), (c) spatial-temporal attention-based
graph-recurrent neural network (STAGRNN).

aggregation function, e.g., long short-term memory (LSTM) or gated recurrent unit
(GRU), but extending this mechanism to multivariate time series analysis is not
straightforward, since GNSS measurements usually have more than one dimension
(here, we use North-South and East-West components). Spatial-temporal approaches
have thus been developed to jointly rely on multiple sensor measurements and
multiple components. They can be classified in RNN-based and attention-based
methods, and are capable of dealing with 3D data (here, [stations, time, directions]).
The first family of approaches uses RNNs to extract temporal features (Bai et al.,
2020), while the second focuses on attention mechanisms in the time and/or space
dimension (L. Shi et al., 2019). Also, most of the spatial-temporal methods consider
that the graph connectivity (adjacency matrix) is available beforehand. Most of the
previous works compute the adjacency matrix based on distance metrics (e.g., traffic
forecasting) (Yu et al., 2017) or prior information on the nodes (e.g., skeleton-based
action recognition) (L. Shi et al., 2019). However, relying on pre-computed con-
nectivity might not be the optimal choice, since additional edges could be learned
from the data, and superfluous connections could also be removed. Moreover, graph
connectivity is not always available, as in our case, and computing a satisfactory
adjacency matrix is challenging since it would require connecting nodes within a
homogeneous mesh as well as allowing for edges linking nodes that are far away
depending on the data characteristics. Hence, we allow for the adjacency matrix
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Fig. 5.2.: Comparison of actual and predicted values for latitude, longitude and magnitude.
For each subplot, the curves represent the running average of the predicted
variable over bins of 200 actual samples.

to be learned during the training, by following the same approach as (Bai et al.,
2020).

5.2.2 Methods

We develop a deep learning method for SSE characterization, based on a graph-based
Recurrent Neural Network with spatial-temporal attention, represented in Figure
5.1(c). We consider each GNSS station as a node in a graph and the edges between
nodes as relationships between stations. We first extract time-dependent features
by means of a 1D CNN made of three convolutional blocks (as for TSACNN) with
filter sizes [3, 7, 11] and output feature maps [8, 16, 32]. The Adaptive Graph
Convolutional Recurrent Network (AGCRN) (Bai et al., 2020) is used to learn the
adjacency matrix (the graph’s edges) as well as the temporal relationships in the
GNSS data for each neighbouring node. A Transformer Neural Network is used to
further extract spatial-temporal features with a stack of two self-attention modules
(for both space and time embedding). Attention pooling is used first in the temporal
and the spatial dimension and a linear layer is used for the output. We will refer
to this model as spatial-temporal attention-based graph-recurrent neural network
(STAGRNN).

We compare STAGRNN with two further deep-learning methods. The first one is
based on time series, which we refer to as time-series-attention-based Convolu-
tional Neural Network (TSACNN), as shown in Figure 5.1(a). This model has been
readapted from a detection method previously developed by the authors (Costantino
et al., 2023a) and is made of 1D convolutional layers (1x5 kernel) equipped with
batch normalization and ReLu activation and interleaved with max-pooling opera-
tions (3x1 kernel) in the station dimension. We group three convolutional layers as

5.2 Characterization of slow slip events source parameters from raw GNSS
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a. b. c.

Fig. 5.3.: Example of the predictions of TSACNN, MCNN and STAGRNN. For each subfigure,
arrows show the static displacement field associated with the tested SSE. Points
represent the location of the tested and predicted SSEs (see legend). The actual
and predicted magnitude for each model is shown in the legend of each subplot.

a convolutional block and we insert a max-pooling after each block. The number of
feature maps computed for each block is [8, 32, 128, 256]. A max-reduce operation
is performed at the end of the convolutional encoder to eliminate the station dimen-
sion. A Transformer, equipped with a time-wise learnable positional embedding is
used to apply temporal attention. A 1D global average pooling is used afterward
in the temporal dimension and a linear layer with three regression outputs (linear
activation). The second method is a 2D-CNN working on GNSS data arranged as
a matrix (stations × time), where each row of the matrix represents a GNSS time
series for a given station, as shown in Figure 5.1(b). The stations are sorted by
latitude. We use the MobileNetV2 model as the backbone of the CNN encoder. A 2D
global average pooling is used after the 2D-CNN and a linear output layer is used as
before. We refer to it as matrix-based CNN (MCNN).

5.2.3 Results

Tab. 5.1.: Position and magnitude error (mean ± standard deviation) on the synthetic test
set.

Model Position error (km) Magnitude error
TSACNN 159.53± 144.36 0.15± 0.12
MCNN 78.78± 134.07 0.12± 0.07

STAGRNN 76.07± 113.49 0.10± 0.10

We train and test our models on synthetic data, because of the paucity of catalogued
slow slip events. We choose the Cascadia subduction zone as the target region since
it is a well-studied tectonic context and also because complementary data (such as
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catalogues or tremor recordings) can be used as an independent validation. We build
a synthetic database by generating randomly distributed SSEs along the Cascadia
subduction following the approach already developed by the authors (Costantino
et al., 2023a; Costantino et al., 2023b). The resulting training and evaluation sets
are made of 60,000 synthetic GNSS time series obtained by adding synthetic slow
slip time series (modeled as sigmoidal-shaped transients) to realistic noise time
series computed as in Costantino et al., 2023a. We split the synthetic data set into
80% training set, 10% validation set and 10% test set. We train the four models by
using the ADAM optimizer with a learning rate of 0.001 and mean squared error as
the loss function.

A summary of the performance of the methods is reported in Table 5.1 and Figures
5.2 and 5.3. We compute the position error as the geodesic distance between the
actual and predicted epicenter, and the magnitude error as the mean absolute error
between the actual and predicted magnitude. TSACNN shows a fair performance
in the magnitude estimation, suggesting that the magnitude information can be
well recovered from time series. However, MCNN and STAGRNN seem to better
constrain the spatial extent of the deformation, possibly improving the magnitude
prediction. There are minor differences between MCNN and STAGRNN in terms of
mean prediction: the STAGRNN method performs better than MCNN in latitude and
low-magnitude estimation, but has lower precision at higher magnitudes. However,
thanks to the graph-based approach, the STAGRNN method has the potential to be
more flexible on real data, to better deal with data gaps and a variable set of stations.
Also, it could be more easily transferred to different regions, which makes it more
promising in the direction of testing on real data.

5.3 Denoising GNSS time series with deep learning:
towards spatiotemporal slow slip characterization

5.3.1 Motivations

When dealing with GNSS time series analysis, scientists often pre-process the data
in order to mitigate the noise contribution. When looking for SSEs, GNSS noise
can be seen as a combination of several signals such as (1) common mode errors,
due to perturbations of the GPS reference frame, likely associated with orbit and
positioning errors (Wdowinski et al., 1997; Williams et al., 2004), (2) seasonal
signals, mainly due to seasonal changes in atmospheric conditions, hydrological

5.3 Denoising GNSS time series with deep learning: towards spatiotempo-
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effects, tides and snowpacks, (3) tectonic effects such as co-seismic signals, due to
earthquakes, or post-seismic signals, associated with the ground relaxation follow-
ing earthquake occurrence. Most studies use trajectory models (Bedford & Bevis,
2018; Marill et al., 2021) to subtract the contribution linked to seasonal variations
or post-seismic relaxation in the GNSS time series. Yet, this can, in some cases,
fail to constrain the noise. For example, seasonal variations can have different
amplitudes in the whole time series and a signal shape that is not necessarily fully
reproduced by a simple sum of sine and cosine functions. Moreover, the time series
can be poorly fitted (or overfitted) by the trajectory model, leading to a biased
estimate of the tectonic signals, notably of the displacement associated with slow
slip events. This approach can thus introduce some spurious transient signals which
could be erroneously modeled as slow slip events. Another solution would be to
use independent-component-analysis-based methods (Michel, Gualandi, & Avouac,
2019a) to extract the seasonal variations. However, the extracted components might
contain some signals of interest as well as some noise characteristics which could
not be removed (e.g., specific harmonics or spatiotemporal patterns). Hence, the
main motivation driving the approach used in this Ph.D. thesis is that we do not
want to model any GNSS-constitutive signals, but use the GNSS time series as they
are. Here, we want to investigate whether slow slip event characterization can be
improved by first denoising GNSS time series as an intermediate step. The idea
is that denoising can be seen as a more general procedure, which could isolate
the aforementioned noise components and remove them more effectively. While
recent works have shown promising results in denoising single GNSS time series in
high-rate GNSS data (Thomas et al., 2023), we believe that jointly denoising all the
GNSS time series would considerably improve the results as it would add a crucial
spatial constrain. Deep learning models trained to solve this task can extract and
leverage features that are general enough to approximate the joint influence of the
single noise components.

Here, we rely on a part of the architecture of the spatial-temporal attention-based
graph-recurrent neural network (STAGRNN) method (cf. section 5.2) developed
to address the problem of SSE characterization and we develop SSEdenoiser, a
graph-based attentive deep learning model trained to uncover slow deformation
patterns in GNSS position time series by denoising them. We train SSEdenoiser on a
refined version of the synthetic database introduced in chapter 4 (see sections 4.2.1,
4.4.2 and 4.4.3), output by SSEgeneratorV2, an improved version of SSEgenera-
tor ((Costantino et al., 2023a)), targeted to generate more complex and realistic
synthetic time series (see Figure 5.4).
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5.3.2 SSEgeneratorV2: the training database

In chapter 4, we introduced SSEgenerator and described the main idea behind
our synthetic spatiotemporal signal generation. However, albeit suited for first-
order SSE detection, some limitations need to be solved to successfully address SSE
denoising. First, we assume that the SSE does not necessarily occur in the middle
of the temporal window considered, but that the SSE date is a uniform random
variable drawn from 0 to 60 days (we use the same window length as in chapter 4).
By allowing for the date to span the whole data window, we can expect the model
to detect transients of slow deformation at any date. This way, when testing on real
data, the SSE-driven displacement can be tracked at any time and not only when
the event is positioned in the middle of the sliding window.

In the previous version of SSEgenerator, only one synthetic dislocation per sample
was allowed. Although we proved in chapter 4 that our model can generalize well
for the detection task, this would limit the ability of the deep learning model to
denoise full-length time windows. In particular, we want to generalize over complex
scenarios, including propagating slow slip events or slow slip events with a variable
amount of slip. Here, we impose, for each window, a variable number of synthetic
dislocations per window between 0 and 3, with independent source parameters1.
The final database contains 25% of each setting (0 dislocations, 1 dislocation, 2
dislocations, 3 dislocations). The combination of variable number of dislocations
and variable SSE initiation times makes the deep learning model suited to detect
slow slip events that last longer than the training ones with higher precision with
respect to SSEdetector.

Moreover, as for SSEdetector, we allow for the presence of negative samples (no
synthetic dislocations in 25% of the samples). When addressing denoising, this is
key for learning the noise structure at best, since the model is taught to output a
zero-displacement, thus focusing on extracting an enhanced representation of the
input noise. This can be used to better denoise the positive samples.

Finally, we also improve the synthetic noise generation. In SSEgenerator, the period
2014-2017 was not considered when computing the realistic noise, in order to leave
it aside to test against potential overfitting. In section 4.2.4, we demonstrate that

1As we do in chapter 4, we generate synthetic dislocations (Okada, 1985) with randomly chosen
locations along the Cascadia subduction zone. We uniformly generate the SSE zones within a band
along the subduction between 20 and 40 km depth, with ±10 km variability, in order not to rely
on the specific slab model and thus to better generalize over real data. We generate dislocations
with a fixed aspect ratio (0.5), with magnitudes uniformly drawn between 6 and 7 and stress
drop modeled from published scaling laws (H. Gao et al., 2012). The SSE signals are assumed as
sigmoids and can have a duration between 10 and 30 days.
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Fig. 5.4.: Overview of the architecture of SSEdenoiser.

this procedure does not produce any overfitting on real data, hence here we generate
synthetic noise using time series from 2007 to 2022 in order to have longer time
series, and thus a more robust PCA and spectrum estimate.

5.3.3 SSEdenoiser: architecture

The architecture of SSEdenoiser is mostly adapted from the STAGRNN model pre-
sented in section 5.2 and is shown in Figure 5.4. The two core components are
the Adaptive Graph Convolutional Recurrent Network (AGCRN) (Bai et al., 2020)
followed by a spatiotemporal Transformer neural network. We removed the CNN
component prior to the AGCRN since it was associated with lower accuracy on the
validation data.

5.3.4 Results on synthetic data: learned station connectivity

Our multi-station approach unlocks concrete access to spatial and temporal relation-
ships between GNSS stations. During training, SSEdenoiser learns what stations
(vertices of the graph) should be connected and how strong their connections should
be: this information is synthesized in the adjacency matrix, which gives the edge
strength of the graph network. In Figure 5.5, we show the learned adjacency
matrix, with nodes sorted by latitudes (each pixel represents a relationship be-
tween two stations). The matrix is symmetric, meaning that the learned graph
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Fig. 5.5.: Graph adjacency matrix learned during training, obtained from the STAGRNN
module. Nodes (stations) are sorted by latitude.

structure is undirected (see section 2.6.4.1). The number of edges in the graph
is N + N(N−1)

2 = 20100 including self-loops2. From Figure 5.5, we can see that
SSEdenoiser has learned to connect nodes that are mostly spatially close to each
other (near the diagonal). Yet it also allows for long-range connections, which
are weaker (e.g., they are assigned a lower edge strength). This suggests that the
method could generally rely on information available within a neighborhood and
then compare information coming from different sub-networks.

In Figure 5.7(a), we show a qualitative histogram of the edge strengths. We compute
the edge strength histogram of all stations separately and we combine all the
histograms together. This is not a proper edge strength histogram, but it gives
information on potential patterns of the edge distribution. We see a partitioning
of edge strengths into four main clusters. The first corresponds to edge strengths
less than 0.008, which can be thought of as weak background connections that
allow for a minimum amount of information flow. There is a total of 19026 weak
connections.We find 1074 connections of strength higher than 0.008 (194 of which
are self-loops). They can be grouped in three clusters centered around 0.01, 0.014,
and > 0.016, corresponding to stronger connections.

In order to visualize the backbone of the graph structure, we further filter the
adjacency matrix by selecting edge strength values in the interval (0.008, 0.0234).
We found 878 connections (excluding self-connections on the diagonal) to which we
will refer in the following as “strong connections”. We show this filtered adjacency

2This is equivalent to a clique, that is a graph where each node is connected to every node
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Fig. 5.6.: Qualitative histogram of edge strength. The histogram is obtained by grouping
the histograms computed on each row separately, e.g., each node with respect to
its neighbouring connections.

matrix in Figure 5.7 (a), and we also represent their spatial distribution in terms
of connections between GNSS stations in Figure 5.7 (b). We first see that the
connections between stations are such that the azimuthal coverage is as high as
possible between neighbouring stations. Also, the method has learned how to
produce a mesh connecting all the stations that are located on top of the slow slip
area used in the training phase (between 20 and 40 km depth). Stations located
further inland (longitude < 122°) do not have a strong edge weight, suggesting that
they are not informative for slow slip detection given that the synthetic slow slip
events in the training database are located in a band between 20 and 40 km depth.
Also, stronger edges connect stations that are more sparsely distributed in the SSE
area. In fact, when the network is dense in SSE areas, there is no need for such a
high weight because the information is already included in the signal coming from
many nearby stations. This is interesting because the vertices locations (stations)
are not given to the model: it has inferred their relevance from the data and learned
to connect stations that are distant to each other when the density is not sufficient
for effective information flow, possibly thanks to the spatiotemporal transformer
module.

Figure 5.8 shows the GNSS stations used in this work, color-coded by the value of the
adjacency matrix diagonal. This indicates the strength of the self-loop connections
for each station, which can be thought of as a measure of the learned station’s
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Fig. 5.7.: Strong connections learned by SSEdenoiser. (a) Graph adjacency matrix filtered
by retaining node connections with edge strength between 0.008 and 0.0234.
Nodes (stations) are sorted by latitude. (b) Map view of the graph obtained by
selecting the strongest connections (cf. (a)).
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relevance (or importance). We can see that the importance of further inland stations
is low compared to stations that are located in correspondence with the SSE area
(band between 20 and 40 km depth). The highest values of importance are assigned
to stations located in Vancouver Island and at latitudes between 42.5° and 45.2°,
probably linked to a learned trade-off between slow slip occurrence and availability
of GNSS stations. This is a proxy of the distance to the SSE source area combined
with the local density of stations.

5.3.5 Denoising of real GNSS time series in Cascadia in 2007-2022

We test SSEdenoiser on real non-post-processed GNSS time series from 2007 to
2022. We take 60-day windows of data and apply SSEdenoiser on each of them,
by sliding the windows with a stride of 1 day and collecting the resulting denoised
GNSS time series3. We compute the temporal derivative of the data in each window
to obtain the displacement rate and we keep the 20 days in the middle of the window
to exclude potential border effects. We sum all these 20-day overlapping windows
together in time (each day sample corresponds to the sum of all the windows that
slide at that date). Then, we divide each sample by the number of windows that were
summed together. With this procedure, we obtain the daily average displacement
rate.

Figure 5.9 (a) shows the obtained denoised GNSS time series of daily (E-W) dis-
placement rate (only displacement rates larger than 0.01 mm/day are shown) at all
stations in matrix form, over the period 2007-2022. In Figure 5.9 (b) we show the
results from Michel, Gualandi, and Avouac, 2019a to ease the comparison. We see
that the retrieved displacement rate has a coherent spatiotemporal distribution. It
occurs by bursts that are clustered in latitude and time. The largest slow slip events
are associated with large displacement rates (see Figures 5.10, 5.11, 5.12, 5.13),
such as the 2011.5 or the 2016 slow slip events. The retrieved surface displacements
are a proxy of the slip on the subduction interface. This lets us compare our detec-
tions with Michel et al.’s. We find 36 potential events in 2007-2017, compared to
the 40 Michel et al.’s events. In the same period, we find 17 additional events, 5
of which are small and might be associated with a lower detection threshold. In
2018-2022, not analyzed by Michel et al., we find 24 events (see also Figure 5.13).
However, we manually select these events have been manually chosen, thus they
have to be further analyzed and identified with more objective methods.

3In practice, non-overlapping sliding windows can be used (stride of 60 days). Here, we prefer relying
on multiple denoising outputs (stride of 1 day) to provide a better estimate of the displacement by
averaging the contributions coming from all the possible sliding windows.
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(a)

(b)

Fig. 5.9.: (a) Denoised displacement rate (E-W component) as a function of time. The
displacement rate computed from the output of SSEdenoiser is shown for each
GNSS station, sorted as a function of the latitude. Tremor recordings are also
shown. We use the catalogue from Ide, 2012 until August 5, 2009, and the tremor
catalogue from PNSN afterwards. (b) Occurrence of slow slip events as a function
of time, from Michel, Gualandi, and Avouac, 2019a, between 2007 and 2017.
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Fig. 5.10.: Zoom of Figure 5.9 (a) in 2010-2013. A clear correlation between tremor
occurrence and a larger displacement rate is visible. Migrating events are also
successfully retrieved.

Fig. 5.11.: Zoom of Figure 5.9 (a) in 2013-2016. Again, a nice correlation with tremor
occurrence is visible. In 2014 all stations are activated, probably due to a
transient increased noise in the times series.
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Fig. 5.12.: Zoom of Figure 5.9 (a) in 2016-2018. Again, a nice correlation with tremor
occurrence is visible, migrating or complex events seem correctly retrieved.
Some episodes of increased large-scale noise (unmodeled common mode?)
generate coherent displacement rates over the whole network.

Fig. 5.13.: Zoom of Figure 5.9 (a) in 2019-2022.

130 Chapter 5 Characterization of slow slip events from GNSS data with deep
learning



Also, we found that SSEdenoiser is also able to constrain slow slip occurring in south
Cascadia, which is more difficult than the northern area because of the higher noise
level. We can see that the denoised displacement rates have a good correlation
with the spatiotemporal distribution of tremors (shown in black in the figures).
As in the case of SSEdetector (see chapter 4), SSEdenoiser is blindly trained on
GNSS time series, without incorporating any information from tremors in the model:
this means that our method achieves reliable results as tremors are expected to be
correlated with SSEs and associated displacements. The displacement distribution
follows the tremor propagation in space and time, both for large and smaller
slow slip events, and for complex events as well, suggesting that SSEdenoiser has
effectively learned what is the noise structure to retrieve concealed slow deformation
at any scale. This also suggests that the retrieved sub-millimeter-scale displacement
rate is not randomly distributed in space and time, but has a pattern similar to
larger events, thus it might be associated with actual slow deformation which
was undetectable so far. This needs to be further validated by comparing all the
detections with the existing catalogs such as Michel, Gualandi, and Avouac, 2019b,
but it is likely that our deep-learning method could detect slow slip events that were,
so far, below the detection threshold. In fact, by learning hidden noise patterns,
SSEdenoiser can effectively lower the detection threshold on geodetic data, providing
new perspectives for the understanding of slow slip events.

We compute the cumulative displacement due to slow slip at each GNSS station, by
calculating the integral in the time domain over the whole 2007-2022 period, as
shown in Figure 5.14. We find that the cumulative surface displacement retrieved
by SSEdenoiser is consistent with the cumulative slip at the interface found by
independent studies (Bartlow, 2020; Michel, Gualandi, & Avouac, 2019a, 2019b).

In Figure 5.15, we focus on the large slow slip event that occurred from December to
March 2016 to analyze the spatiotemporal surface displacement evolution compared
with tremor episodes (visible at the beginning of Figure 5.12). We analyze snapshots
of 9 days from December 17th to March 16th. We associate each subplot to a
9-day time span and, for each subplot, we show the tremors occurring in that time
span as well as the 9-day cumulative displacement in the same time span. We
find that SSEdenoiser can track the daily SSE propagation in space and time by
precisely identifying the three major SSE propagations (one for each row), as also
shown in Figure 5.12. The slow slip event started in the north and propagated
southwards until meeting another rupture that started southwards and propagates
northwards. SSEdenoiser is able to track the spatiotemporal slip evolution by
retrieving sub-millimeter displacement in the raw GNSS time series. Since both

5.3 Denoising GNSS time series with deep learning: towards spatiotempo-
ral slow slip characterization

131



39°N

42.15°N

45.3°N

48.45°N

129.3°W 126.6°W 123.9°W 121.2°W

10

20

30

40

50

Cum
ulative horizontal displacem

ent [m
m

]

Fig. 5.14.: Cumulative horizontal displacement over 2007-2022 at the GNSS stations used
in this study.
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Fig. 5.15.: Spatiotemporal evolution of the displacement rate associated with the 2016 slow
slip event. Each subplot shows a 9-day time period (indicated in the subplot
title). For each snapshot, the cumulative horizontal displacement computed
in the 9-day time period is shown at GNSS stations (only stations where a
displacement larger than 0.08 mm is shown). Tremors are shown together with
the surface displacement for each snapshot.
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Fig. 5.16.: Example of denoised time series (ALBH station). Blue points represent the
detrended GNSS time series for the ALBH stations in 2007-2022. The orange
curve represents the denoised time series output by SSEdenoiser. The red curve
shows the time series predicted by the model from Michel, Gualandi, and Avouac,
2019a, processed with a running average filter of 30 days.

latitude and longitude are well retrieved, it indicates that our spatiotemporal graph
representation is particularly relevant to this problem.

We further compare the detection power of SSEdenoising and its ability to disclose
slow deformation below the GNSS detection threshold. We select the ALBH station
(located on Vancouver Island) and we compute the integral of the displacement
rate time series to obtain a time series showing the (detrended and denoised)
displacement induced by slow slip events. We show it in Figure 5.16 (orange curve),
while the blue dots represent the raw (detrended) data. We compare it with the
time series predicted by the independent-component-analysis-based model from
Michel, Gualandi, and Avouac, 2019a (red curve, only available between 2007
and 2017), for which we plot the running average computed on 30 days. The
retrieved displacement does not seem to suffer from biases such as common modes
or fortnightly signals (with an 8-day or 14-day period) (Abraha et al., 2017), which
affect PPP (precise point positioning)-derived GNSS time series (used in this work).
The displacement time series obtained by SSEdenoiser is, at first order, consistent
with Michel et al.’s and accurately reproduces the data variability: we can see that
all the curves align well both in terms of SSE duration and amplitude at first order.
Also, it has the potential to better deal with several noise components which may
affect Michel et al.’s model. Yet, this needs further validation. For the events that
occurred in 2009.5, 2011.5, 2013, and 2017, the displacement is not well estimated
with respect to Michel et al.’s model.We provide further analyses in the following
sections. Also, the inter-SSE trend seems to be underestimated and a change in the
trend is observed after 2019. This should be a point of attention. However, the
trend of the denoised time series cannot be compared with the real trend, since

134 Chapter 5 Characterization of slow slip events from GNSS data with deep
learning



it is obtained by computing the cumulative sum over the displacement rate time
series. Thus, the loading mechanisms of the real and denoised time series are not
comparable.

5.3.6 Static inversion of denoised displacements to retrieve simple
source parameters for the 2013 and 2016 SSEs

Here we show an example of slow slip event characterization carried out from
the denoised displacement output by SSEdenoiser. We use static inversion of the
Okada dislocation model (Okada, 1985) to retrieve the source parameters of two
well-known SSE: the 2013 (Bletery & Nocquet, 2020) and the 2017 (Itoh et al.,
2022a) Cascadia slow slip events. This is a proof-of-concept and a first step towards a
systematic characterization of all the potential slow slip events found by SSEdenoiser.
We model the surface displacement as associated with a rectangular dislocation.
We invert for the dislocation centroid position, depth, dislocation length and width,
average slip, and focal mechanism. We force the depth, strike, and dip to follow
the subduction interface, by using the values of the slab2 model at the location of
the inverted dislocation centroid (Hayes et al., 2018). We show the static inversion
results in Figure 5.17. For the 2013 event (Figure 5.17 (a)), we obtain the following
parameters: centroid position 49.1°N 124.5°W, depth of 39 km, fault length and
width of 489 km and 87 km, respectively, average slip on the interface 11.5 mm,
and strike, dip, and rake angles of 311°, 10°, and 80°, respectively. For the 2017
event (Figure 5.17 (b)), we obtain a centroid position of 48.7°N 124°W, depth of
39 km, fault length and width of 304 km and 71 km, respectively, average slip on
the interface of 14.5 mm, and strike, dip, and rake angles of 311°, 10°, and 80°. We
remark, for both events, a good fit between the denoised data and the displacement
modeled with the best parameters.

We compute the moment for both events as M0 = µ A ū, where µ is the shear
modulus, assumed equal to 30 GPa, A is the fault area, computed as L ·W and ū

is the average slip on the interface. Then, we compute the magnitude as Mw =
2
3 log10(M0−9.1) (Hanks & Kanamori, 1979). We obtain a magnitude estimate of 6.7
and 6.58 for the 2013 and 2017 events, respectively. Both magnitude estimates are
coherent with the results obtained by Bletery and Nocquet, 2020 (Mw 6.6) and Itoh
et al., 2022a (Mw 6.5). These results show that the denoised time series obtained
from SSEdenoiser do not underestimate the static SSE slip value and moment,
suggesting that the example provided in Figure 5.16 might reproduce the correct
slow-slip displacement amplitude. However, further analyses have to be done to
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Fig. 5.17.: Results of the static inversion from denoised GNSS data. Panel (a) and (b) show
the results for the events that occurred in 2013 and 2017, respectively. For
both events, the best-fitting dislocation on the subduction interface is plotted as
well as the data (black arrows) and the Okada Okada, 1985 model predictions
associated with the best parameters resulting from the inversion (red arrows).
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Fig. 5.18.: Manual selection of slow slip events from denoised GNSS time series. The
denoised displacement rate output by SSEdenoiser is shown by colored points.
Rectangles are associated with a manual picking of slow slip events based on
spatial and temporal distribution of the surface displacement rate.

assess whether the denoised time series reproduce the correct displacement at all
magnitude scales.

5.3.7 Characterization of all identified slow slip events in Cascadia
and preliminary scaling laws

We manually select slow slip events based on their distribution in latitude and
time (see Figure 5.9 (a)) to obtain a tentative catalogue of SSE dates, as we show
in Figure 5.18. We select the SSE dates and zones based on the stations that
recorded a displacement rate higher than 0.01 mm/day that is coherent with tremor
occurrence. We exclude time periods where the displacement is contaminated by
noise (predictions at all latitudes) even though the displacement rate distribution
would suggest a slow slip event. For each event, we compute their duration as the
difference between the final and initial date. We perform a static inversion for every
slow slip event and we compute the moment M0 and the fault area A, by following
the same approach as in section 5.3.6 and discarding four events for which the
inversion did not converge. Our final catalogue consists of 49 events.

In Figure 5.19 we show three tentative scaling laws to globally characterize SSEs
in Cascadia. In Figure 5.19 (a), we show the logarithmic relationship between the
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Fig. 5.19.: Tentative scaling laws for Cascadia slow slip events in 2007-2022. (a) Logarith-
mic relationship between moment and duration of slow slip events, compared
with a cubic scaling law (M0 ∼ T 3) (blue dashed line). (b) Comparison with the
scaling model proposed by Ide, Shelly, et al., 2007. (c) Logarithmic relationship
between moment and fault slip area, compared with a 1 KPa stress drop isoline
(green line). (d) Logarithmic relationship between moment and fault length
L. The blue line corresponds to a cubic scaling law that Gomberg et al., 2016b
associate with slow earthquakes (M0 ∼ L3), while the red line is associated with
a quadratic scaling law (M0 ∼ L2) (closer to fast earthquake behaviour).
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moment and the SSE duration (in seconds). We find that the trend of our detections
generally follows a cubic scaling law (M0 ∼ T 3). This result is consistent with
previous studies (Frank & Brodsky, 2019; Michel, Gualandi, & Avouac, 2019b),
yet this is not in agreement with the originally proposed scaling laws (Gomberg
et al., 2016b; Ide, Beroza, et al., 2007a; Peng & Gomberg, 2010). However, it
must be noted that the manual selection of the events in our catalogue may be
affected by non-objective duration biases. Thus, the cubic scaling law should not
be overinterpreted, since low-magnitude events might have been associated with
a duration higher than the corresponding tremor episode, which is often seen as
a proxy of slow slip (e.g. Wech et al., 2009). In this case, our duration of small-
magnitude events is overestimated and would rather imply a linear scaling law, as
proposed by Ide, Beroza, et al., 2007a.

Our results show that the slow slip duration is comparable with the tremor duration
for most of the events. Yet, smaller events seem to be associated with a higher
duration. If the duration estimate is correct, it might suggest that spatial and
temporal relationships between slow slip and tremor rather depend on the event
magnitude, at first order, and on the rupture size. Also, the detected events in Figure
5.9 (a) seem to suggest that there is a difference in the relative timing between slow
slip event initiation and tremor episode, with slow slip preceding tremor episodes.
Yet, the causal relationship between SSE and tremor duration is still debated. On
one hand, the increase in tremor activity could trigger the slow rupture. Conversely,
slow slip may be triggering tremors. Providing evidence for the second argument
with GNSS data is still challenging, given the difficulty in precisely and objectively
resolving the slow slip duration because of the noise threshold. Our results seem to
show that, our denoising technique has the potential to better resolve the slow slip
initiation, providing new opportunities in the analysis of slow slip nucleation and
the causal relationships with the associated seismological signals.

Figure 5.19 (c) shows the relationship between moment and fault area. We find that
our detections follow a scaling law M0 ∼ A3/2, as proposed by H. Gao et al., 2012;
Gomberg et al., 2016b; Ide, Beroza, et al., 2007a; Schmidt and Gao, 2010. However,
while they observe an alignment along a stress drop isoline of 10 KPa in Cascadia,
we find an average stress drop of 1 KPa for events with Mw > 6 (green dashed line).
This difference in stress drop might be associated with the fact that our inversion
tends to generate dislocations with larger areas to fit the surface displacement.
Moreover, we plot the relationship between moment and fault length in Figure 5.19
(d). Gomberg et al., 2016b propose M0 ∼ L3 as a possible scaling law associated
with slow slip events (blue dashed line). We find that our catalogue rather follows
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Fig. 5.20.: Interevent time distribution for the SSEs in our catalogue. Each point shows a
slow slip event as a function of its date of occurrence and the temporal distance
between the previous slow slip event. We filter out events having magnitudes
less than 6. Blue points are associated with slow slip events in the northern
part of Cascadia (latitudes > 46°) and orange points with events in the south
(latitudes < 44°). The horizontal dashed line corresponds to an interevent
time of 10 months, corresponding to previous findings (Aguiar et al., 2009;
Brudzinski & Allen, 2007)

a M0 ∼ L2 scaling law, usually associated with fast ruptures. This difference may
suggest that our inversion tends to overestimate the fault length.

In Figure 5.20, we compute the interevent time between slow slip events in the north
(blue points, latitudes > 46°) and in the south (orange, latitudes < 44°). We perform
this analysis only on events with magnitudes higher than 6, to be more conservative,
since the duration of smaller events is likely to be less well constrained. Each point
represents an event as a function of the date of occurrence and the distance in time
with respect to the previous event in the same latitude range. We find that slow
slip events occur in North Cascadia with a recurrence interval of about 10 months
(horizontal dashed line in Figure 5.20), as previously suggested by Aguiar et al.,
2009; Brudzinski and Allen, 2007. The behavior in the north is at the first order
compatible with a periodic behavior, while in the south the behavior is more chaotic.
However, the scarcity of events, especially in 2014-2022 in the South, does not allow
for further robust interpretations.

Our results show that our SSE catalogue can be resumed by tentative scaling laws.
However, the event selection has been manually performed and the static inversion
has not been properly tuned by taking into account specific characteristics for each
event. As a consequence, our results are likely to be biased by this non-accurate
parameter selection and do not have to be over-interpreted. However, the overall
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features of our results suggest that, in spite of parameter tuning, deep learning can
effectively denoise GNSS time series, leading to the construction of SSE catalogues
that may help shed light on possible scaling relationships of slow slip events.

5.4 Conclusions

In section 5.2, we compare three deep-learning methodologies applied to slow slip
characterization from synthetic GNSS data and we develop three associated methods:
TSACNN, a 1D-CNN based on time series data, MCNN, a 2D-CNN working on images
and STAGRNN, a spatial-temporal GNN approach. Our results show that encoding
the spatial information is critical when dealing with multi-station GNSS approaches.
As a result, the MCNN and STAGRNN show superior performance to TSACNN, with
STAGRNN showing promising flexibility on real data, where graph-based techniques
can easily exploit variable spatial configurations, thus being applicable to different
tectonic contexts.

In section 5.3, we pose the problem of SSE characterization from the perspective of
GNSS time series denoising. We build a synthetic database, based on an improved
version of SSEgenerator (see section 4.2.1). We first analyze the characteristics of
SSEdenoiser by looking at the learned adjacency matrix. We find that SSEdenoiser
learns to connect stations based on the region where SSEs are located in the training
samples and to the density of GNSS stations. When tested on real data, SSEdenoiser
proves effective in isolating the displacement related to slow slip events, with
remarkable spatial and temporal correlation with tremors, which are not given
as input to the method. The obtained denoised time series are then validated
by performing a static inversion of well-known events that occurred in 2013 and
2017: the estimated magnitudes are coherent with previous studies, suggesting that
SSEdenoiser can effectively track and isolate the contribution due to slow slip events
in raw GNSS time series. Yet, more robust analyses are needed to assess whether
the precision of the method does not decrease with the magnitude.

We manually select slow slip events to build an SSE catalogue from 2007 to 2022.
We invert for the SSE source parameters and we build tentative scaling laws. We find
that our detections seem to follow a cubic M0-T scaling law, and the moment-area
observations follow 1 KPa stress drop isoline. Previous works proposed a linear
M0-T scaling law and an average stress drop of 10 KPa. Our slow slip events seem
to share features that are peculiar to fast earthquakes, as also pointed out by some
recent works (Dal Zilio et al., 2020; Frank & Brodsky, 2019; Michel, Gualandi, &
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Avouac, 2019b). However, our results are still preliminary and the duration of our
events has to be more objectively chosen. Also, the inversion parameters do not
have been thoroughly tuned, which may explain the difference with respect to some
previous studies. We also compute the inter-event time for our events. We find a
recurrence time of 10 months in the north (latitudes > 46°) and no clear periodicity
in the south (latitudes < 44°) for our events, as previously suggested by Aguiar et al.,
2009; Brudzinski and Allen, 2007.
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General conclusion and
further perspectives

6

6.1 Overall conclusions

In this interdisciplinary thesis, at the intersection of geophysics and deep learning,
we developed deep-learning approaches to leverage GNSS data for earthquake char-
acterization, the identification and characterization of slow slip events and denoising
of GNSS time series as an intermediate step towards slow slip event characterization.
In this section, we will first show the difficulties in developing deep learning methods
to work with GNSS data and we will then describe the contributions associated with
this Ph.D. thesis, where we not only prove that advanced deep learning methods
can successfully apply to GNSS data analysis and slow slip event detection, but also
that we are able to extract scaling laws from the deep-learning characterized events
(effectively trough denoising of GNSS time series), towards a better understanding
of slow slip events.

6.1.1 Challenges in the use of deep learning with GNSS data

GNSS data is difficult to manage with deep learning. First, GNSS time series can
be seen as a sampling of the spatial and temporal information. Each time series,
recorded at a GNSS station, contains the position of that station along the time
dimension. Typically, the spatial distribution of GNSS stations is not homogeneous.
For this reason, the GNSS coverage does not allow for a complete mapping of
the ground displacement, but several zones will remain uncovered, resulting in a
sparse sampling. Since GNSS stations are not evenly distributed in space, “classic”
deep learning methods, such as convolutional neural networks (CNNs), originally
developed for image-like data, cannot be directly applied in our case, since the data
is not formatted as a regular grid. For example, when dealing with seismic data,
single-station CNN-based methods have proven effective in addressing most of the
problems raised by the seismological community, such as P- and S-wave picking for
earthquake detection. In our case, we demonstrate, in sections 3.3 and 3.4.2, that
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CNN-based methods working on time series have some limitations that cannot be
fully solved even by injecting the position of the GNSS stations, as a strategy to
make the model aware of the spatial sparsity. For this, we proposed an alternative
approach, consisting of creating images (and image time series) by interpolating
the GNSS time series in the spatial domain. Thanks to this strategy, we show that
the performance of deep learning models applied to earthquake characterization
increases (see sections 3.3 and 3.4.2). However, the need for spatial information
is task-dependent. When addressing slow slip event detection, in chapter 4, we
show that temporal detection methods have less need for spatial consistency, and
using spatial pooling has proven effective in isolating the stations recording the
highest-amplitude signals. When addressing the slow slip event characterization
and GNSS time series denoising in chapter 5, we show that more complex spatial
encoding is needed when looking at the displacement associated with small slow
slip events, which drives the need for graph-based approaches.

The second major difficulty in the use of GNSS data with deep learning lies in
developing methods that have to deal with multivariate measurements. A typical
GNSS data sample has the shape (stations, time steps, components). Most of
the deep learning methods that are commonly employed separate the different
data dimensions, under the hypothesis that each or some of the dimensions are
independent. For example, in the case of SSEdetector (see chapter 4), we train a
1D-CNN model on the time steps and the N-S and E-W components and we apply
spatial pooling on the station dimension. The CNN model learns shared weights
among the station dimension, without fully accounting for the station information,
even though the spatial pooling discards irrelevant stations. When dealing with slow
slip event characterization, this method does not achieve a satisfactory performance.
For this reason, we developed graph-neural-network (GNN)-based approaches (see
chapter 5) to account for the full 3D information.

6.1.2 Difficulties in addressing slow slip analysis with deep learning

The first challenge in applying deep learning to SSE detection and characterization
is the scarcity of catalogued events. This does not allow for proper training of deep
learning models, because too few labeled events would be available. Moreover, the
spatiotemporal complexity of the geodetic noise is such that most of the slow slip
events are buried in the noise. Because of the high amplitude of the geodetic noise,
there is a detection threshold, usually around Mw 6, hindering SSE detection. This
means that almost all slow slip events with magnitude Mw < 6 are still systematically
undetected. We address the first issue and try also to lower the detection threshold
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by training our deep learning models on synthetic data. In chapter 3, 4 and 5 we
present our physics-based method to build synthetic GNSS data, that has evolved,
during the years, to generate a better and better synthetic data representation.

6.1.3 Overall contributions

In chapter 3, we first benchmark deep learning methods for earthquake character-
ization as a first step towards slow slip event detection and characterization. We
associate each model with a different data configuration to evaluate the relevance of
temporal, spatial, and spatiotemporal data analysis. We first show that time-series-
based approaches without powerful spatial encoding lead to biased estimates of the
earthquake position (see sections 6.1.1, 3.3 and 3.11). Image and image time series
representations can lead to a better estimate of the earthquake source parameters
down to magnitude 6, when associated with the proper deep learning approach.
However, building image time series is computationally expensive, especially when
longer time series (as in the case of slow slip events) are needed.

In chapter 4, we presented SSEgenerator and SSEdetector, our deep-learning-based
model to generate a synthetic SSE database and to detect slow slip events in both
synthetic and real data. In the development of SSEdetector, we found that spatial
(station) pooling yields a good trade-off between temporal detection and the neces-
sity for spatial encoding. With our method, we detect 78 potential slow slip events
in Cascadia in 2007-2022: 87% of the events from Michel, Gualandi, and Avouac,
2019b are retrieved, each detection falling within a peak of tremor activity. Since
the model is trained without this seismological counterpart, we use the correlation
with tremor episodes to assess the reliability of the model.

In chapter 5, we first develop and compare temporal and spatiotemporal deep
learning models to address slow slip event characterization, demonstrating that
spatial-temporal graph neural networks have the potential to perform reliable slow
slip characterization as well as providing flexibility in different tectonic contexts. In
fact, graph neural network are capable of learning relationships between the GNSS
stations as well as better taking into account their density and spatial distribution.
However, such methods do not yield satisfactory results in the estimation of the slow
slip souce parameters, since the detection threshold magnitude is still high.

In the second part of chapter 5, we address the problem of the denoising of GNSS
time series. Our idea is that the major limitation preventing us to make systematic
and effective slow slip identification is the too-high level of noise in the GNSS time
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series. If this noise would be attenuated or, ideally, removed, SSE characterization
would be carried out more effectively. With this objective in mind, we developed
SSEdenoiser, a spatiotemporal attentive graph neural network, trained to recover
the slow slip event signature in GNSS time data by learning how to separate it from
the noise. Our proof of concept showed effectiveness in denoising GNSS data in
Cascadia in 2007-2022, revealing slow slip events that prove remarkable alignment
with the spatiotemporal tremor distribution as well as previously studied slow slip
events.

In the last part of chapter 5, we further leverage our idea and we build a preliminary
SSE catalogue, by manually selecting events from the denoised time series. We
perform a static inversion of all the events to characterize their source parameters
and to build preliminary scaling laws with our events. Our preliminary results
showed that our detected events follow a cubic moment-duration scaling law and
have an average stress drop of 1 KPa. The interevent time between SSEs with
magnitude Mw > 6 is 10 months, consistent with previous studies.

6.1.4 Scientific potential

This work has shown that deep learning approaches can be applied to the detection
and characterization of slow slip events in raw GNSS time series by (1) building
realistic synthetic data to reproduce the variability of the geodetic noise and gen-
erate simulations of artificial slow slip events (or earthquakes) based on physical
models and (2) by developing advanced deep learning methods trained to reveal
the spatiotemporal signature of the events that we are looking for.

This approach has the potential to help geoscientists analyze geodetic data towards
a better characterization of the underlying physical processes. By automatically
extracting meaningful features from the data, deep learning has the added value of
dealing with large data sets in an automatic manner, performing data assimilation to
distill relevant information that can be made more accessible to experts. Moreover,
our approach can be extended to other domains, especially in applications where it
is necessary to analyze multivariate data jointly with physical models.

When discussing slow slip event characterization through denoising of the GNSS
time series, we show that our deep learning model has learned an adjacency matrix
from the data, i.e., the optimal connections between GNSS stations in order to
perform data denoising at best. We found that these connections arise from a
learned trade-off between the local density of stations and the distance from the
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area where slow slip events occur. This has the potential to ameliorate the GNSS
geometry for a given task, by relying on optimal and essential connections and by
discarding stations that revealed less useful during training, possibly removing noisy
observations and optimizing the training procedure.

6.1.5 Limitations of the current work

Our approach used to detect and characterize slow slip events has some limitations,
that we will briefly discuss here. First, SSEdetector does not allow for the localization
of the detected events and it cannot distinguish two events occurring in the same
window. We address these limitations in the development of the SSE characteri-
zation methods (in chapter 5), yet two events occurring in the same observation
window cannot be detected separately. In fact, this is a major issue arising from the
architecture of the deep learning models that we develop for the characterization. In
fact, these models are trained to provide an estimate of the location and magnitude
of a slow slip event occurring in the middle of the observation window, and allowing
for more complex outputs (e.g., a variable number of outputs per window) is hard
to accomplish. This could be made with sequence-to-sequence models (e.g., RNNs,
Transformers), yet it is not guaranteed that the performance in the characterization
would increase.

We address this last issue with SSEdenoiser. We take advantage of the GNN frame-
work to make the model recognize multiple events in the same window (in our case,
up to three). Since our output becomes a (denoised) displacement field, recognizing
multiple events becomes more straightforward, because this information would be
encoded in the displacement. SSEdenoiser proves effective in solving the task of
denoising GNSS time series up to sub-millimeter precision and we make use of these
denoised time series to perform slow slip characterization through static inversion of
the selected events. However, it should be noted that our results are still preliminary
and our duration estimate is still rough (manually selected) and will need to be
computed with more objective methods. Also, we use tremors to help in the event
selection process, which may also bias our analysis.

6.2 Further perspectives

Our work opens several perspectives in the direction of the development of more
complex deep-learning methods as well as new research trails that can be pursued.
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First, the denoising of GNSS time series showed great potential as an aid for slow
slip detection and characterization. In fact, simultaneously event detection and
characterization is not an easy task to accomplish with deep learning, because
classification (detection) and regression (characterization) tasks can hardly be
mixed. SSEdenoiser solves this technical issue since the two tasks can be performed
after the denoising step. For the detection, clustering methods could be used, such
as ST-DBSCAN (Birant & Kut, 2007), to perform more objective event selection than
manual selection. Slow slip event characterization could be still performed by classic
static inversion methods. Alternatively, deep learning methods could also be used for
this task, which would be simpler than the ones developed here, since the geodetic
noise would not be present anymore. For this, either spatiotemporal deep learning
methods could be used, working with denoised time series as input, or we can think
of even simpler methods, dealing with the static displacement information only.

Once a robust method for event selection and characterization has been set up, our
method can be applied to other subduction zones. In the direction of systematic
SSE detection and characterization, the application of our method to other regions
is one of the very next steps. However, this is not just a matter of generating the
correct synthetic data targeted to the specific region: it can require further analyses.
For example, the application of our method to the Japanese subduction zone would
not probably work because of the intense seismic activity that would affect the time
series. In this case, earthquakes and the associated post-seismic relaxation signals
would prevent SSEgenerator from generating the correct synthetic noise time series.
For this, more work is needed to refine the way in which synthetic data is built.
Moreover, other regions, like the Mexican or the Chilean subduction zones are not
as well instrumented as Japan. Here, an improved method to deal with long periods
of missing data could be required as well as dealing with possible gaps in the GNSS
coverage, as in the case of the Mexican subduction. Our GNN-based method could
learn how to deal with a very sparse GNSS coverage, yet there is no guarantee that
the method would obtain satisfactory results without structural modifications.

Finally, the possibility of facing a very sparse and heterogeneous GNSS network
can also be seen as the chance to integrate multiple data sets to complement the
missing information and to improve the detection and characterization. However,
it is not trivial to use different data types at once, e.g., GNSS, seismic data, InSAR,
strainmeters, tiltmeters, pressure gouges, etc. This poses some issues from the
technical point of view, because the development of hybrid deep learning methods is
challenging, but also from the viewpoint of data preparation, since each type of data
has its own difficulties and it is not obvious to extract information from all of them
(e.g., extracting slow slip signals from strainmeter data). However, this direction
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is quite promising and, albeit extremely challenging, could result in a paradigm
shift towards the use of heterogeneous data sets. In fact, the detection threshold in
GNSS data for slow slip event detection can be significantly lowered by integrating,
for example, strainmeter and pressure data, making small slow slip events more
accessible.
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Fig. A.1.: Comparison of the performance of the deep learning models on a synthetic data
set with post-seismic signals following the co-seismic offset. TS, IMG and ITS
models are shown on columns respectively. For each row, latitude, longitude and
magnitude predictions are reported, respectively. Each point of the scatter plots
represents a test sample, whose magnitude is indicated by the color bar, and it
is illustrated as a function of both its actual and predicted value. Black dashed
lines represent the ideal prediction, while solid black lines represent the rolling
median.
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Fig. A.2.: Comparison of the location error of the deep learning models on a synthetic data
set with post-seismic signals following the co-seismic offset. Each subplot shows
the location error associated with the test samples, interpolated on a grid whose
corresponding spatial coordinates are indicated along the axes. Magenta data
points represent the position of GNSS stations in Japan. The heatmap depicts the
distribution of the error in position committed by the tested models, for different
magnitude ranges, in rows. Arrows show the average direction of position error
for patches of 1× 1 arc degree. The arrows have the same scale throughout all
the subplots, making a comparison possible among different models.
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Fig. A.3.: Comparison of errors as a function of the distance to the nearest GNSS station on
a synthetic data set with post-seismic signals following the co-seismic offset. The
deep learning models are shown in columns, while the rows indicate position
and magnitude errors, respectively. Each scatter plot depicts errors as a function
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right. Vertical dashed lines discriminate among near, intermediate and far field,
respectively.
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Fig. A.4.: Position error, computed for each test sample on a synthetic data set with post-
seismic signals following the co-seismic offset, as a function of the magnitude
(x-axis), the depth range (columns) and the distance range (cf. Figure 3.7) with
respect to the GNSS network (rows) for ITS. The orange solid line represents the
result of a median smoothing by employing a kernel size of 15 points.

Fig. A.5.: Stacked histograms of the magnitude difference M true
w −Mpred

w for the three
models (columns) on a synthetic data set with post-seismic signals following the
co-seismic offset, as a function of the distance range (cf. Figure 3.7) with respect
to the GNSS network (rows) and for different magnitude ranges (color). Vertical
lines individuate the zero.

163



139.5 140.0 140.5 141.0 141.5
longitude

35

36

37

38

39

40

41

la
tit

ud
e

N-S

139.5 140.0 140.5 141.0 141.5
longitude

E-W

3

2

1

0

1

2

3

Interpolated displacem
ent [m

m
]

19 July 2008, Mw 6.9, depth: 35.0 km

Fig. A.6.: Differential images associated with the 19 July 2008 for the ISTerre/DD data set.
The deformation value has been saturated over ±3 mm.
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Fig. A.7.: Image time series (N-S component) associated with the 19 July 2008 for the
ISTerre/DD data set. The deformation value has been saturated over ±3 mm.
Each frame is associated with the day written below (e.g., tc − 2, where tc is the
time associated with the coseismic offset).
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Fig. A.8.: Image time series (E-W component) associated with the 19 July 2008 for the
ISTerre/DD data set. The deformation value has been saturated over ±3 mm.
Each frame is associated with the day written below (e.g., tc − 2, where tc is the
time associated with the coseismic offset).
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Fig. A.9.: Image time series (N-S component) associated with the 21 November 2016 for
the ISTerre/DD data set. The deformation value has been saturated over ±3 mm.
Each frame is associated with the day written below (e.g., tc − 2, where tc is the
time associated with the coseismic offset).
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Fig. A.10.: Image time series (E-W component) associated with the 21 November 2016 for
the ISTerre/DD data set. The deformation value has been saturated over ±3
mm. Each frame is associated with the day written below (e.g., tc − 2, where tc

is the time associated with the coseismic offset).
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Fig. A.11.: Image time series (N-S component) associated with the 21 November 2016 for
the NGL/PPP data set. The deformation value has been saturated over ±3 mm.
Each frame is associated with the day written below (e.g., tc − 2, where tc is the
time associated with the coseismic offset).
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Fig. A.12.: Image time series (E-W component) associated with the 21 November 2016 for
the NGL/PPP data set. The deformation value has been saturated over ±3 mm.
Each frame is associated with the day written below (e.g., tc − 2, where tc is the
time associated with the coseismic offset).
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Fig. A.13.: Differential images associated with the 21 November 2016 for the ISTerre/DD
data set. The deformation value has been saturated over ±3 mm.
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Fig. A.14.: Differential images associated with the 21 November 2016 for the NGL/PPP
data set. The deformation value has been saturated over ±3 mm.
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Fig. A.15.: Comparison of the performance of the deep learning models trained on a
synthetic data set with all focal mechanisms. TS, IMG and ITS models are
shown on columns respectively. For each row, latitude, longitude and magnitude
predictions are reported, respectively. Each point of the scatter plots represents
a test sample, whose magnitude is indicated by the color bar, and it is illustrated
as a function of both its actual and predicted value. Black dashed lines represent
the ideal prediction, while solid black lines represent the rolling median.
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Fig. A.16.: Comparison of the location error of the deep learning models trained on a syn-
thetic data set with all focal mechanisms. Each subplot shows the location error
associated with the test samples, interpolated on a grid whose corresponding
spatial coordinates are indicated along the axes. Magenta data points represent
the position of GNSS stations in Japan. The heatmap depicts the distribution of
the error in position committed by the tested models, for different magnitude
ranges, in rows. Arrows show the average direction of position error for patches
of 1× 1 arc degree. The arrows have the same scale throughout all the subplots,
making a comparison possible among different models.
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Fig. A.17.: Comparison of errors as a function of the distance to the nearest GNSS station
of the models trained on a synthetic data set with all focal mechanisms. The
deep learning models are shown in columns, while the rows indicate position
and magnitude errors, respectively. Each scatter plot depicts errors as a function
of the Euclidean distance to the nearest GNSS station, expressed in arc degrees.
Each data point, representing the position error and the absolute magnitude
error between the test samples and the model predictions, is color-coded by the
actual magnitude of the event. Solid lines represent the median of subsets of
the data points, filtered by magnitude ranges as indicated in the legend in the
top right. Vertical dashed lines discriminate among near, intermediate and far
field, respectively.
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Fig. A.18.: Position error, computed for each test sample, as a function of the magnitude
(x-axis), the depth range (columns) and the distance range (cf. Figure 3.7) with
respect to the GNSS network (rows) for ITS, trained on a synthetic data set with
all focal mechanisms. The orange solid line represents the result of a median
smoothing by employing a kernel size of 15 points.
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Fig. A.19.: Stacked histograms of the magnitude difference M true
w −Mpred

w for the three
models (columns) trained on a synthetic data set with all focal mechanisms, as a
function of the distance range (cf. Figure 3.7) with respect to the GNSS network
(rows) and for different magnitude ranges (color). Vertical lines individuate the
zero.
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Fig. A.20.: Actual vs predicted plot on real data from ISTerre/DD and NGL/PPP data sets
for the models trained on a synthetic data set with all focal mechanisms. Each
subplot shows the real vs predicted comparison for the estimated parameters
(fault centroid latitude, fault centroid longitude and magnitude in each row) for
each of the three methods (TS, IMG and ITS in each column). For each scatter
plot, circles and squares represent predictions associated with the ISTerre/DD
and NGL/PPP data sets, respectively. Filled markers represent events having a
trust focal mechanism, while empty markers indicate any other focal mechanism.
The solid dashed line shows the line of perfect prediction. The data points are
color-coded according to the time of occurrence.
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Fig. B.1.: (Complementary) performance of SSEdetector on synthetic data. The curves
represent the true positive rate as a function of the SSE duration for magnitude
ranges, as shown in the legend.
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#26, Mw 5.37
(2011)

#64, Mw 5.49 (2017)

#12, Mw 5.38 (2008)

Fig. B.2.: Detail of the 5 missed events in the Michel et al. catalogue. The map
shows each missed event from the Michel et al. catalogue, detailed with the
occurrence date, location and magnitude estimated by Michel et al. The points
are superimposed on the magnitude threshold map (see. Figure 2(b)).
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a. b. c.

d. e. f.

Fig. B.3.: Displacement field associated with some of the detected SSEs. (a) Estimated
SSE period: from 13 September to 20 October 2013. This event has been studied
by Bletery & Nocquet, 2020 and is also present in the Michel et al. catalog (#41).
(b) Estimated SSE period: from 13 December 2015 to 1 March 2016. This event
is also present in the Michel et al. catalog (#54 & 55). (c) Estimated SSE period:
from 10 March to 17 April 2017. This event is has been studied by Itoh et al.,
2022 and is also present in the Michel et al. catalog (#59). The following events
could likely be new detections: (d) from 21 June to 26 July 2018, (e) from 30
September to 21 November 2020, (f) from 23 November to 2 December 2021.
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Sensitivity study: train and test with 352 stations
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Fig. B.4.: GNSS data in (2007, 2014), sorted by the number of data gaps. Each row
of the matrix corresponds to a GNSS station and is color-coded by the position
value on the detrended time series. Two of the y-axis labels have been marked in
red to show the range of stations used in the 135- and 352-station subsets. Black
entries in the matrix represent data gaps.
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Fig. B.5.: Location of the 352 best stations used in the sensitivity study. Triangles
show the location of the GNSS stations. The dashed black contour represents the
tremor locations from the PNSN catalog.
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a.

b.

c.

d.

Fig. B.6.: Performance of SSEdetector on real raw GNSS time series, consisting of 352
GNSS stations (cf. Methods). For a detailed explanation of the figure, refer to
Figure 3 in the main text. The red curve in the (b), (c) and (d) panels shows the
probability curve of (the preferred) SSEdetector (see Figure 3), with the blue
curve associated with SSEdetector trained on 352 stations.
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a. b.

d.c.

Fig. B.7.: Validation of SSEdetector performance against tremor activity in 2010-
2022, from 352 GNSS stations. For a detailed explanation of the figure, refer
to Figure 5 in the main text. The maximum global correlation value is 0.47
(compared to 0.58 obtained for the set of 135 stations), with a global lag value
of 1 day (compared to 2 days for the 135-station subset). At a local scale, the
lag distribution seems to be bimodal, with a lag of around 4 days (deformation
before tremors) and 3 days (tremors before deformation), compared to the 2-day
time lag of SSEdetector (see Figure 5c).
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Sensitivity study: test with a subset of GNSS
stations in the northern part of Cascadia
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Fig. B.8.: Location of the subset of GNSS stations in North Cascadia. Red triangles
show the location of the GNSS stations that have been used in the sensitivity
study, while empty triangles show the stations that have been removed. The
dashed black contour represents the tremor locations from the PNSN catalog
corresponding to latitudes higher than 47 degrees that have been considered in
the analysis.
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b.
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d.

Fig. B.9.: Performance of SSEdetector on real raw GNSS time series, on a subset of
stations in north Cascadia (cf. Methods). For a detailed explanation of the
figure, refer to Figure 3 in the main text.
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a. b.

d.c.

Fig. B.10.: Validation of SSEdetector performance against tremor activity in 2010-
2022, from a subset of GNSS stations in north Cascadia. For a detailed
explanation of the figure, refer to Figure 5 in the main text. The maximum
global correlation value is 0.52 (compared to 0.58 obtained for the whole set
of 135 stations), with the same global lag value of 2 days. At a local scale, we
found an average lag of 2 days (deformation precedes tremors), although it is
less clear-cut than in Figure 5.
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Sensitivity study: train and test with a 2D-CNN

a.

b.

c.

d.

Fig. B.11.: Performance of a 2D-CNN on real raw GNSS time series (cf. section "Sensi-
tivity study"). For a detailed explanation of the figure, refer to Figure 3 in the
main text. The red curve in the (b), (c) and (d) panels shows the probability
curve of (the preferred) SSEdetector (see Figure 3), with the blue curve associ-
ated with the 2D-CNN.
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a. b.
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Fig. B.12.: Validation of the performance of a 2D-CNN against tremor activity in 2010-
2022.. For a detailed explanation of the figure, refer to Figure 5 in the main
text. The maximum global correlation value is very low, therefore the results
cannot be analyzed in detail.
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Methods: architecture of SSEdetector
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Fig. B.13.: Detailed architecture of SSEdetector.
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Fig. B.14.: The transformer layer architecture.
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Methods: computation of tremor duration
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Fig. B.15.: The tremor duration calculation procedure.
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Further sensitivity study: test with a subset of
GNSS stations in the southern part of Cascadia

a.

b.

c.

d.

Fig. B.16.: Performance of SSEdetector on real raw GNSS time series, on a subset of
stations in south Cascadia (empty triangles in Supplementary Figure 8).
For a detailed explanation of the figure, refer to Figure 3 in the main text.
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a. b.

d.c.

Fig. B.17.: Validation of SSEdetector performance against tremor activity in 2010-
2022, from a subset of GNSS stations in south Cascadia (empty triangles
in Supplementary Figure 8). For a detailed explanation of the figure, refer
to Figure 5 in the main text. The maximum global correlation value is 0.33
(compared to 0.58 obtained for the whole set of 135 stations), with the same
global lag value of 2 days. At a local scale, we found an average lag of 2 days
(deformation precedes tremors), although the statistical significance is lower
than the preferred model.
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Further sensitivity study: test with a detection
threshold of 0.4

a.

b.

c.

d.

Fig. B.18.: Performance of SSEdetector on raw GNSS time series with a detection
threshold of 0.4. For a detailed explanation of the figure, refer to Figure 3 in
the main text.

193



Analysis of SSEdetector’s robustness to variation in
the source parameters

b.

c.

a.

d.

Fig. B.19.: Performance of SSEdetector on a synthetic test case, containing three
20-day SSEs simulating a propagating 60-day event. (a) map showing
the (total) displacement field associated with the event (black arrows). (b)
modeled time series for the synthetic event. Each row of the matrix represents
the displacement at each station, color-coded by GNSS position value. (c)
Synthetic time series built by adding the synthetic SSE, in the (b) panel, to the
synthetic noise, produced by SSEgenerator. Each row of the matrix represents
the detrended position time series, color-coded by position. (d) Probability of
detection output by SSEdetector from the synthetic test time series. The blue
band represents the inferred proxy of duration (probability exceeding 0.5).
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b.

c.

a.

d.

Fig. B.20.: Performance of SSEdetector on a synthetic test case, containing a 3-day
SSE. (a) map showing the displacement field associated with the event (black
arrows). (b) modeled time series for the synthetic event. Each row of the matrix
represents the displacement at each station, color-coded by GNSS position
value. (c) Synthetic time series built by adding the synthetic SSE, in the (b)
panel, to the synthetic noise, produced by SSEgenerator. Each row of the matrix
represents the detrended position time series, color-coded by position. (d)
Probability of detection output by SSEdetector from the synthetic test time
series. The blue band represents the inferred proxy of duration (probability
exceeding 0.5).
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b.

c.

a.

d.

Fig. B.21.: Performance of SSEdetector on a synthetic test case, containing two 20-day
SSEs in the same window. (a) map showing the (total) displacement field
associated with the events (black arrows). (b) modeled time series for the
synthetic events. Each row of the matrix represents the displacement at each
station, color-coded by GNSS position value. (c) Synthetic time series built by
adding the synthetic SSEs, in the (b) panel, to the synthetic noise, produced
by SSEgenerator. Each row of the matrix represents the detrended position
time series, color-coded by position. (d) Probability of detection output by
SSEdetector from the synthetic test time series. The blue band represents the
inferred proxy of duration (probability exceeding 0.5).
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b.

c.

a.

d.

Fig. B.22.: Performance of SSEdetector on a synthetic test case, containing two 20-day
SSEs in the same window occurring at the same time. (a) map showing
the (total) displacement field associated with the events (black arrows). (b)
modeled time series for the synthetic events. Each row of the matrix represents
the displacement at each station, color-coded by GNSS position value. (c)
Synthetic time series built by adding the synthetic SSEs, in the (b) panel, to the
synthetic noise, produced by SSEgenerator. Each row of the matrix represents
the detrended position time series, color-coded by position. (d) Probability of
detection output by SSEdetector from the synthetic test time series. The blue
band represents the inferred proxy of duration (probability exceeding 0.5).
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