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Résumé étendu en français

Ces dernières années ont vu l’essor de procédés de fabrication et de traitement de pièces mé-
talliques qui mettent en jeu d’une part des transformations de phase se déroulant dans des con-
ditions extrêmes (par ex. la fabrication additive [1] ou la fusion sélective[2]), d’autre part des
matériaux multiples dont l’assemblage peut s’avérer problématique. Parmi les phénomènes
dont la compréhension freine l’avancée de ces procédés, les transformations de phase fig-
urent en première place, puisque c’est la fusion, la solidification et les transformations de
phase à l’état solide successives qui génèrent les microstructures, la composition des zones
d’assemblage, et donc leurs propriétés. En effet, ces transformations qui sont habituellement
contrôlées par la diffusion des éléments d’alliage, se déroulent dans des situations extrêmes.
Lorsque les compositions des matériaux en contact sont très différentes et que l’histoire ther-
mique est très rapide, les interfaces entre phases (solide/liquide et/ou solide/solide) sont le
plus souvent hors équilibre. À l’heure actuelle, il est difficile de comprendre leur comporte-
ment, bien que ce soit essentiel pour étudier la formation des microstructures. Cela tient à
la difficulté d’une part de concevoir et réaliser des expériences contrôlées, d’autre part de
développer des modèles pertinents.

Dans ce travail, nous avons combiné différentes techniques complémentaires, tant ex-
périmentales que de modélisation et de simulation, pour étudier ces interfaces lors des trans-
formations de phase contrôlées par diffusion.
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Expériences de fusion solutale
L’expérience menée par Dutta et Rettenmayr [3] constitue une référence dans les études de
fusion solutale. Cependant, elle présente des limites, notamment des effets de convection sig-
nificatifs dus à la taille de l’échantillon, la présence d’un léger gradient de température et un
traitement simplifié des alliages. Des recherches ultérieures ont mis en évidence l’importance
de la densité de la solution liquide et des gradients thermiques sur la fusion, soulignant la
nécessité de concevoir de nouvelles expériences pour étudier la fusion solutale. Celles-ci
devront minimiser l’impact de la convection, mieux contrôler la composition et mesurer en
temps réel la vitesse du front de fusion, afin d’améliorer la compréhension de ce processus.

Une nouvelle étude menée par Deillon et al. [4] a proposé une méthode pour étudier
la fusion solutale sans convection, en utilisant un système Cu-Ni. Ils ont conçu un système
réduit pour minimiser les effets de convection, en utilisant des échantillons de petits cylindres
concentriques chauffés à des températures de 1115 °C et 1145 °C. La position de l’interface
a été suivie en temps réel par microscopie confocale. Les résultats ont révélé que l’interface
solide-liquide était hors équilibre pendant toute la durée du processus de fusion solutale. Une
analyse post-mortem a indiqué que la dissolution du Ni n’était pas toujours homogène et que
des effets de convection persistaient le long de l’axe vertical de l’échantillon.

Face à ces résultats inattendus, une nouvelle approche faisant appel à la radiographie à
rayons X a été proposée dans cette thèse. Cette méthode permet une analyse volumique de
l’échantillon pendant la fusion. Pour minimiser les effets de convection, des échantillons
minces ont été sélectionnés pour cette étude. Le système Au-Ag a été choisi pour cette
expérience en raison de la similarité de son diagramme de phase avec celui du système Cu-Ni,
et de la différence notable de densité entre l’or et l’argent, qui se traduit par un bon contraste
en niveaux de gris sur les images, permettant de distinguer clairement les deux matériaux.
Les échantillons d’Ag et d’Au sont constitués de feuilles de 50 µm d’épaisseur. L’Ag est
découpé en forme de disque et est placé au milieu de la feuille d’Au dans une cavité de la
même taille, de manière à ce que l’argent liquide reste confiné par l’échantillon d’Au lorsque
l’ensemble est chauffé à 1000 °C.
Les expériences ont été réalisées au Centre allemand pour l’aéronautique et l’astronautique
(DLR) à Cologne dans l’équipe du professeur Kargl, en utilisant un four isotherme chauffé
par résistance. Le thermocouple est placé dans la paroi du four afin d’éviter toute interférence
avec le faisceau X incident. Le temps d’acquisition est de 1 FPS (1 image par seconde) avec
une résolution d’image de 4×4µm2 par pixel.
L’analyse d’images a été effectuée à l’aide du logiciel ImageJ pour suivre le mouvement de
l’interface et le changement de composition à partir des images en niveaux de gris (Figure 1).
Le suivi du mouvement de l’interface est réalisé par binarisation des images. Les intensités
en niveaux de gris sont converties en concentrations grâce à la loi de Beer-Lambert:

I = I0 exp
(
−d ∑

i
xi µm,i ρi(T )

)
D(E)

où I0 est l’intensité initiale du faisceau incident en unités arbitraires, d (cm) l’épaisseur de
l’échantillon, et D(E) une correction reflétant l’efficacité quantique du détecteur. Chaque élé-
ment i de l’alliage est caractérisé par sa concentration xi, sa densité ρi(T ) (gcm−3) dépendant
de la température, et son coefficient d’absorption massique µm,i (cm2 g−1).
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Figure 1 – Image en niveau de gris de l’échantillon Au-Ag lors d’une expérience de fusion solutale (le
disque d’Ag est en phase liquide au centre de la feuille d’Au restant en phase solide).

Le profil de concentration d’Ag à 300 s est représenté sur la figure 2 à proximité de
l’interface. Ce résultat a été obtenu en exploitant les niveaux de gris extraits d’un segment
linéaire traversant les deux phases, avec l’interface solide-liquide au centre. Les niveaux de
gris ont ensuite été convertis en concentrations via l’équation de Beer-Lambert.

L’analyse des profils de concentration du système Au-Ag révèle une situation similaire à
celle observée dans le système Cu-Ni. En effet, l’interface est constamment en déséquilibre
durant tout le processus de fusion solutale. Les analyses post-mortem des profils de concen-
tration réalisées grâce à la technique EDX ont montré que l’Ag solidifié contient en moyenne
30% massique d’or dans toute la zone de liquide solidifié, ce qui est inférieur à la composition
du liquidus, estimée à 34,5 % massique d’or à 1000 °C.
La figure 3 montre deux gradients distincts sur le profil de concentration. Ce phénomène
pourrait révéler l’existence d’une interface où le coefficient de diffusion change lors de la
transition entre les phases. Notamment, on observe un gradient beaucoup plus fort dans la
phase solide sur la droite, traduisant une interdiffusion plus faible de l’argent et de l’or dans
cette phase.
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Figure 2 – Profils de concentration en Ag à proximité de l’interface solide-liquide Au-Ag à 300 s, vers
la fin de la fusion solutale. Les lignes pointillées rouges représentent la composition du liquidus (ligne
supérieure) et du solidus (ligne inférieure).

Figure 3 – Profil de concentration post-mortem dans la région interfaciale Au-Ag montrant deux
pentes distinctes à l’interface.
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Modèle thermodynamique
Nous avons introduit un nouveau modèle basé sur la thermodynamique des processus ir-
réversibles. Ce modèle réussit à reproduire qualitativement les comportements observés lors
des expériences de fusion solutale des systèmes Cu-Ni et Au-Ag.
Le développement de ce modèle repose sur l’application du deuxième principe de la thermo-
dynamique. En examinant le cas de l’échange d’éléments d’alliage entre une phase liquide
et une phase solide dans un mélange binaire de deux espèces A et B, le taux de production
d’entropie peut être exprimé comme suit [5] :

T ṡirr = IA(µ
s
A−µ

l
A)+ IB(µ

s
B−µ

l
B)

Les flux de matière sont supposés dépendre linéairement des forces motrices impliquées,
donnant lieu aux expressions suivantes :

IA = LAA ∆µA +LAB ∆µB

IB = LBA ∆µA +LBB ∆µB

Pour assurer le respect du deuxième principe de la thermodynamique, à savoir une produc-
tion d’entropie positive, la forme quadratique des coefficients cinétiques doit être définie et
positive. De plus, les relations de réciprocité d’Onsager entre les termes croisés permettent
d’établir les conditions d’existence des paramètres cinétiques [6]:

LAB = LBA

Lii ≥ 0

LAA×LBB ≥ L2
AB

En adjoignant aux expressions de flux interfaciaux, le bilan de soluté à l’interface, il est pos-
sible de déterminer l’évolution temporelle des concentrations et de la vitesse de l’interface.
Les équations sont ensuite adimensionnées pour faire apparaître les nombres adimensionnels
contrôlant le processus. Il s’agit essentiellement de rapports entre les temps caractéristiques
de différents phénomènes qui interviennent, à savoir la migration de l’interface, les transferts
élémentaires à travers elle, et la diffusion des espèces chimiques en volume.
En raison des difficultés rencontrées pour mesurer les paramètres cinétiques Li j, le prob-
lème a été simplifié en faisant l’hypothèse que les mobilités dépendent des concentrations à
l’interface de manière simple. Ainsi, dans le cas de la fusion solutale, une dépendance avec
la concentration du solide a été considérée, contrairement à l’hypothèse habituelle pour les
interfaces solide-liquide où la diffusion dépend uniquement du côté liquide.

La figure 4 illustre l’évolution au cours du temps des concentrations à l’interface du
liquide (en rouge) et du solide (en noir) dans le système Cu-Ni. Les concentrations initiales
du solide et du liquide sont respectivement cl

Cu = 1 et cs
Cu = 0. Les lignes en pointillés

représentent les concentrations à l’équilibre vers lesquels le système tend aux temps longs en
condition isotherme.
Un nombre de Péclet négatif (rapportant la vitesse de l’interface à la vitesse de diffusion
du Cu dans le liqude) indique un processus de dissolution. Le liquide est initialement du
cuivre pur, puis sa concentration diminue en dessous de la valeur d’équilibre à mesure que la
transformation progresse. Avec le temps, les concentrations du solide et du liquide convergent
et se stabilisent aux compositions d’équilibre.
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Aux temps longs, l’interface cesse de se déplacer (le nombre de Péclet est nul, voir la Fig-
ure 5) alors que les concentrations à l’interface sont encore loin de l’équilibre. Le modèle
reproduit ainsi qualitativement le comportement général observé lors des expériences de fu-
sion solutale des systèmes Cu-Ni et Au-Ag.

Figure 4 – Concentration en Cu du liquide (rouge) et du solide (noir) en fonction du paramètre adi-
mensionnel α proportionnel à

√
t.

Figure 5 – Nombre de Péclet en fonction du paramètre adimensionnel α .6



Dynamique moléculaire

La simulation en dynamique moléculaire se révèle extrêmement utile pour accéder à des
mesures de certains paramètres à l’interface qui seraient impossibles à obtenir expérimen-
talement. Dans le but de déterminer les paramètres cinétiques du modèle thermodynamique,
une simulation de fusion solutale en dynamique moléculaire a été réalisée sur une structure
solide-liquide, avec le Ni à l’état solide et le Cu à l’état liquide.

Le logiciel LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) a
été utilisé pour toutes les simulations en dynamique moléculaire. Une boîte de simulation
quasi-2D solide-liquide contenant environ 400000 atomes a été préparée en joignant une
structure solide de Ni pur et une structure liquide de Cu pur. Les deux structures ont ensuite
été portées à une température de 1400 K et une pression de 0 bars avec l’ensemble NPT
pendant 100 ns avec un pas de temps de 1 fs, durant lesquels le processus de fusion solutale a
été observé.

Les paramètres nécessaires pour le modèle thermodynamique de Lesoult ont été extraits
de cette simulation, à savoir la vitesse de l’interface, la concentration à l’interface du côté
liquide, les potentiels chimiques et le flux de Ni passant en phase liquide.
La vitesse d’interface est déterminée à partir de l’évolution de position d’interface en fonc-
tion du temps. Cette dernière a été déterminée à l’aide de la méthode PTM (Polyhedral
Template Matching) mise en œuvre dans le logiciel de visualisation et d’analyse de données
Ovito. La méthode PTM utilise des modèles atomiques tridimensionnels, appelés templates,
qui représentent différentes structures cristallines possibles. La structure qui correspond le
mieux à un atome et à ses voisins est celle qui minimise le RMSD (Root Mean Square De-
viation). Cette technique a permis de délimiter et de positionner l’interface solide-liquide et
d’en extraire les paramètres pertinents pour le modèle thermodynamique, telle que la vitesse
d’interface et la concentration d’interface, illustrées sur la figure 7 et 8.

Figure 6 – Système étudié par dynamique moléculaire : Ni CFC (rouge) en contact avec Cu liquide
(bleu) à 1100 °C.
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Figure 7 – Évolution de la vitesse d’interface lors de la fusion solutale du nickel dans le cuivre à
1115 °C prédite par dynamique moléculaire.

Figure 8 – Évolution au cours du temps de la concentration en Ni à l’interface du côté liquide, pendant
la fusion solutale du Ni dans le Cu simulée par dynamique moléculaire.
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Figure 9 – Évolution des mobilités d’interface LNiNi (bleu) et LCuCu (orange) déduites d’une analyse
des simulations de dynamique moléculaire.

Il n’existe pas de méthode directe pour obtenir le potentiel chimique en utilisant LAMMPS.
La méthode la plus efficace pour déterminer le potentiel chimique en fonction de la concen-
tration du soluté est l’intégration thermodynamique en utilisant la méthode atom/Swap, qui
simule un comportement d’ensemble semi-grand canonique SGCMC. En imposant une dif-
férence de potentiel chimique donnée, la concentration se stabilise à une valeur d’équilibre
correspondant à cette différence. Les courbes de potentiel chimique sont ajustées puis inté-
grées pour obtenir les courbes d’énergie de Gibbs pour la phase solide et la phase liquide.
Enfin, nous avons mis en œuvre un modèle à interface mobile contrôlée par la diffusion
des éléments d’alliage dans le liquide. La calibration, puis la confrontation de résultats de ce
modèle avec les évolutions prédites par la dynamique moléculaire nous ont permis de déduire
le flux de Ni se dissolvant dans le liquide lors de la fusion solutale.

Une fois tous les paramètres nécessaires pour le modèle de Lesoult obtenus, deux scénar-
ios ont été considérés pour l’estimation des paramètres d’Onsager. Dans le premier scénario,
le terme croisé LNiCu est négligé, ce qui mène à un problème car les conditions d’Onsager
imposent que les paramètres cinétiques soient positifs alors que LCuCu est négatif dans ce
cas. Dans le second scénario, les termes croisés sont conservés en considérant le cas limite
où L2

NiCu = LNiNi×LCuCu. Les paramètres Li j trouvés sont tous deux positifs et respectent
les conditions d’Onsager, comme le montre la Figure 9. Les valeurs obtenues sont bien
plus grandes que celles déduites de l’analyse des expériences de Deillon et coll. [4] à l’aide
du modèle de Lesoult au chapitre précédent. Néanmoins, les paramètres utilisés dans l’étude
préliminaires du modèle de Lesoult sont probablement trop éloignés de ceux nécessaires pour
juger de la pertinence des mobilités interfaciales extraites de calculs de DM. Notamment, il
semble important de prendre en compte un contraste important entre les mobilités diagonales
du Ni et Cu, avec LCuCu� LNiNi. Outre ce contraste, les calculs de DM ont montré qu’il est
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indispensable de prendre en compte les mobilités croisées, contrairement à ce que les cal-
culs thermo-cinétiques suggéraient. Enfin, la prise en compte de la diffusion du Cu dans le
Ni solide semble être un facteur important à prendre en compte, malheureusement hors de
portée de calculs de DM.

Conclusion

Dans ce travail de thèse, nous avons étudié de manière approndie le phénomène de fusion
solutale, en combinant études expérimentale, modélisation thermo-cinétique et simulations
par dynamique moléculaire.
Nous avons retrouvé l’asymétrie intrinsèque entre la solidification et la fusion, remettant en
question l’idée que la fusion est simplement l’inverse de la solidification. Contrairement à la
solidification, la fusion présente des caractéristiques uniques, avec une interface restant hors
équilibre sur des temps bien plus longs que ce qui est observé en solidification à des vitesses
comparables.
Un nouveau modèle thermo-cinétique a été proposé pour reproduire ce comportement hors
équilibre, montrant sa capacité à prédire l’évolution des concentrations d’interface sugérée
par les expériences.
Enfin, les simulations de dynamique moléculaire se sont révélées un outil précieux pour
étudier la fusion solutale de manière fine. En effet, elles nous ont permis de reproduire les
premiers instants du processus et d’obtenir des valeurs de mobilités interfaciales, impossible
à déterminer autrement.

Notre travail présente des perspectives ambitieuses pour réconcilier les mesures expéri-
mentales, les résultats préliminaires du modèle thermo-cinétique de Lesoult et les simulations
de dynamique moléculaire.

Tout d’abord, on peut envisager des expériences complémentaires pour étayer les ré-
sultats, d’une part sur le système Ni-Cu pour lequel il est possible de faire des calculs à
l’échelle atomique grâce aux potentiels interatomiques empiriques, et d’autre part sur le sys-
tème Au-Ag. Pour cela, on pourrait réaliser des expériences de radiographie à rayons X au
synchrotron pour de meilleures résolutions en temps et en espace. À cet effet, il faudrait
reprendre le principe du dispositif mince pour éviter les effets parasites de la convection et
l’améliorer pour supprimer toute variation d’épaisseur. Des maintiens plus longs suivis de
trempes seraient également nécessaires pour mesurer des profils de diffusion dans le solide
et obtenir les diffusivités dans cette phase. Enfin, on pourrait envisager de réaliser des ex-
périences à des températures différentes pour modifier l’espèce majoritaire dans le liquide à
l’interface et voir quelle en est la conséquence sur le processus et sa cinétique.

Ensuite, il faudrait reprendre le modèle thermo-cinétique de Lesoult en le couplant au
modèle de diffusion 1D pour s’affranchir des estimations grossières des termes de diffusion
en volume. Il serait également utile d’intégrer la diffusion dans le solide, ainsi que les poten-
tiels chimiques obtenus par intégration thermodynamique pour se placer dans les conditions
les plus proches possibles des calculs de DM. On pourrait ainsi refaire des calculs utilisant
les mobilités extraites de la DM, en tenant compte en particulier de leur fort contraste. Enfin,
il paraît important d’étudier de manière extensive l’importance des mobilités croisées.

Enfin, on pourrait penser à réitérer l’analyse des calculs de DM pour extraire des mo-
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bilités interfaciales dans le cas des autres boîtes investiguées dans le présent travail, et voir
comment les mobilités interfaciales dépendent des diffusivités effectives en volume. La réal-
isation de simulations de dynamique moléculaire Ab initio sur le potentiel Ag-Au pour con-
firmer les résultats de DM sur le système Cu-Ni et les comparer aux expériences réalisées
dans le cadre de cette thèse constituerait également une perspective intéressante.
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Introduction

In recent years, additive manufacturing (AM) has been recognized as a promising approach
for creating metallic components. Generally, AM processes utilize a precise blend of molten
metallic powder, arranged layer by layer, allowing their subsequent solidification to form the
final product in a near net shape. Consequently, the resulting microstructures and correspond-
ing mechanical properties are heavily influenced by both the melting of the powder and the
solidification of the added layers.

The range of materials utilized in transportation sectors, such as the automotive and aero-
nautical industries, has expanded significantly over recent decades. This is to leverage their
individual benefits and capitalize on potential synergies. However, while integrating similar
materials is well managed, the assembly of dissimilar materials presents an ongoing chal-
lenge, particularly when industrializing novel material combinations.

Among the different phenomena that should be better understood for improving the pro-
cesses mentioned above, phase transformations are the main issue since the microstructures,
the composition and the resulting mechanical properties are resulting from melting, solidifi-
cation and solid state transformations. Indeed, these transformations that are usually diffusion
controlled are occuring under extreme conditions. Hence, when the compositions of materials
that come into contact are very different or when temperature history is very rapid, the in-
terfaces between the different phases (liquid/solid and/or solid/solid) are most often strongly
out-of-equilibrium.

The characteristics of a cast material are inherently tied to the microstructure develop-
ment during the process of solidification, irrespective of the preceding phase of melting. Due
to this understanding, there has been a limited emphasis placed on experimental or theoretical
research into the thermodynamics and kinetics of melting. Traditionally, melting is regarded
simply as inverse solidification.

However, in a myriad of technical applications, melting and solidification can occur con-
currently. For instance, within the ’mushy zone’, an intermediate region where the material
is neither completely solid nor liquid,local remelting of partially solidified structures is a
common occurrence. This phenomenon can also be observed during the process of joining
dissimilar metals and alloys. The simultaneous occurrence of melting and solidification plays
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a crucial role in shaping the final properties of the material, influencing its structure, integrity,
and performance.

Historically, due to the perception of melting as the inverse process of solidification, both
phase transformations have been treated with symmetry. The theoretical frameworks devel-
oped for understanding solidification have been analogously adapted for the study of melting.
While this may provide adequate explanations for situations with low transformation rates,
where local equilibrium at the interface holds and nucleation phenomena are negligible, it
fails to address complexities arising from differences in the conditions required for solidifi-
cation and melting.

Solidification invariably involves a degree of undercooling below the equilibrium melt-
ing temperature, which is an effect hard to circumvent. Conversely, for melting to occur,
considerable experimental effort is required to induce superheating, whereby a metal is com-
pelled to remain in a solid state above its natural melting point. Achieving superheating is
even more challenging due to the lack of a nucleation barrier for liquid phases and the pre-
melting effects that arise from the lower coordination number of surface atoms, which are
less thermally stable. These factors contribute to the formation of thin liquid layers below the
equilibrium melting temperature, further depressing the melting point.

Numerous aspects of asymmetry that separates melting from solidification were pointed
out by Rettenmayr in his work [7, 8]. Pre-conditions for the migration of a solid-liquid
interface are contingent on the direction of phase transformation. During the melting phase,
atoms crossing the interface, that can be either rough or smooth, will invariably accommodate
in the liquid phase. However, the same is not universally true for the process of solidification.
In solidification, the interface is always rough, and atoms may encounter unfavorable sites
and be repelled.

Furthermore, the dynamics of the melt structure diverge significantly from those of solidi-
fication. The higher diffusivity of the liquid phase contributes to its role as the rate-controlling
phase for both melting and solidification, primarily due to its ability to accommodate any
amount of solute rejected during the process of solidification. By contrast, during melting,
the release of solute from the solid to balance the solute depletion in the newly formed liquid
is unattainable.

Solute distribution at the solid-liquid interface plays a major role in controlling the rates
of both solidification and melting processes, particularly when thermal effects are insignif-
icant and when either the solid or liquid phase is not at the equilibrium composition at the
interface. Melting, under these conditions, is often referred to as solutal melting. A common
experimental configuration for solutal melting involves positioning a solid in contact with a
solute-enriched liquid. The liquid’s composition exceeds the equilibrium within its corre-
sponding single-phase domain. Consequently, the dissolution of the solid occurs in an effort
to guide the interface towards achieving equilibrium.

In the context of isothermal solidification, solute enrichment at the interface ensues as the
solid forms with lower solute content. The surplus solute is absorbed by the liquid, halting
solidification once the liquid reaches equilibrium at the interface. To resume the process,
solute needs to be transported away from the interface. During solutal melting, the interface
undergoes solute depletion and solute needs to be transported from the solid to the interface.
However, due to the lower diffusivity of the solid and its usual solute depletion, this process
is nearly impossible to achieve.

13



Unlike solidification, solutal melting of a solid with steep concentration gradients can
lead to a considerable deviation of the interface from equilibrium, allowing for a broad spec-
trum of potential interfacial concentrations. When a solid with a low solute content dissolves,
off-equilibrium interfacial concentrations may be sustained over extended periods, even at ve-
locities lower than those projected by analogous rapid solidification theory [9]. This raises
pertinent questions regarding the time span required to regain an equilibrium state.

Currently, the behavior of such interfaces is not thoroughly understood, despite its critical
role in microstructure formation. This lack of understanding can be attributed to the difficul-
ties inherent in designing and executing controlled experiments for these situations, coupled
with the challenges in developing relevant theoretical models.

To address some of these scientific challenges presented by the processes outlined above,
and to illuminate the nature of strongly out-of-equilibrium interfaces during diffusion-controlled
phase transformations, this PhD research will adopt a multi-faceted approach. This research
will encompass solutal melting experiments of binary systems, utilizing X-ray radiography
for in-situ analysis of the process, and employing post-mortem characterization to discern
chemical profiles across the interfaces. Furthermore, the development of a novel model based
on irreversible thermodynamics will be pursued, with input data derived from molecular dy-
namics calculations. This integrated method aims to bring fresh insights into the complex
and dynamic behaviors of out-of-equilibrium phase transformations, ultimately contributing
to a more comprehensive understanding of the solutal melting process.
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CHAPTER 1

Solutal melting experiment

1.1 Introduction

Melting processes have gained more attention since they have a direct impact on the proper-
ties of some large technical castings. An example can be direct-chill castings of aluminium
where remelting can lead to inverse segregation and surface exudation [10]. Local remelting
due to thermosolutal convection at the root of the secondary dendrite arms where they are
generally thinner leads to detachment of dendrite arms and leading thus to dendrite fragmen-
tation, which in turn is responsible for the columnar-to-equiaxed transition in most casting
processes [11, 12] and freckle formation in directionally solidified nickel-base superalloys
[13] or Sn-Bi alloys [14]. Thus, the importance of melting could no longer be ignored due to
its undeniable influence on the solidified structures and its predominant effects on the newly
developed processes such as additive manufacturing. In the latter case, each layer is partly
remelted any time a new layer is build. This has led to an increasing interest for further devel-
oping the theoretical aspects of melting for both academic research purposes and industrial
applications.

Solutal melting stands as one of the least understood melting process due to the difficulty
of properly investigating diffusion at the scale of the interface, in addtions to the complex
nature of the convection effects that can hardly be avoided in experiments. Some of the most
popular solutal melting studies are presented in [15, 3, 16], where solid and liquid metals of
composition both in their respective one-phase field in the phase diagram (non equilibirium
state) were put into contact with one another (see illustration in figure 1.1). The interface
velocity was deduced from the experiments.

In the dissolution experiment described in [15], Rettenmayr et al. reported a surprising
result where low composition at a formerly melting interface was measured. The reliability
of the measurement was however criticized in [17] due to: (i) the difficulty in determining the
interface position precisely and (ii) in the averaging effects of the electron-matter interaction
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Figure 1.1 – Illustration of a fictitious solutal melting configuration at a set temperature T . The left
side represents a phase diagram where the initial concentrations of solid and liquid are labeled as
C0,s and C0,l . A typical concentration profile for this situation is depicted in the right sketch, where, as
the melting front advances in the direction of the solid phase, the concentration profile is expected to
transition from the profile represented in the thin black line to the profile corresponding to equilibrium
concentrations at the interface C∗l and C∗s represented by the thick black line.

volume of the energy dispersive X-ray spectroscopy (EDX) measurements. In addition, some
diffusion may have occurred during the quench, inducing a bias in the analyzed results. In
[16] the possibility of a composition of liquid near the interface below the equilibrium value
of the solid, lying inside the one-phase field domain was raised by Rettenmayr et al. The
authors assert from their EDX chemical measurements of concentrations in the solid at the
position of a formerly remelting interface that even at low interface velocity, local thermody-
namic equilibrium is not achieved in case of supersaturation in the liquid or solid depletion in
the solid. The authors simulated the solid dissolution by 2-D numerical calculations by first
assuming an equilibrium concentration, and found that the calculated velocity of melting was
50% of the observed velocity. The experimental front velocity results were well reproduced
if non-equilibrium effects at the interface were assumed, i.e. by considering the solid phase
interfacial compositions were different than those of the wide-spread use of local equilibrium
assumption.

Hillert and Argen however argued in a subsequent discussion [18] that equilibrium is
reached when diffusivity in the solid is high enough to form a pronounced concentration gra-
dient in the solid phase, with the peak concentration at the equilibrium value. For this gradient
to exist, the criterion D/v > d must be satisfied with d the distance between atoms and D the
diffusion coefficient of the solid, and judging by the measured velocity from the experiment,
they concluded that a deviation from local equilibrium was unlikely as local equilibrium con-
ditions were well established. Then Hillert and Rettenmayr in [9] as a reply to the discussion
in [18] assumed a case of an equilibrium concentration at the liquid in contact with a solute
depleted solid, and stated that melting is still expected to occur despite a supposedly available
driving force for solidification due to different diffusivity in the two phases and enforces the
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Figure 1.2 – Fictitious experiment presented by Rettenmayr and Hillert [9] where an initial liquid of
ceq

l and a solid of c0
s depicted by the black squares are brought into contact. The intermediate stages

are represented by circles, and the final ones by gray squares.

asymmetry aspects between solidification and melting which is usually treated incorrectly
as inverse solidification. Under these conditions, they arrive at the conclusion from solute
balance calculation requirement that the interface concentration of the solid must be below
the solidus value, and that the liquid at the interface must be below the liquidus composition
inside the solid+liquid two-phase domain. This latter assertion was qualitatively confirmed
in [17] from simulations based on thermodynamic extremal principle where the liquid phase
at the interface can indeed move into the two-phase region for the case of high interface
mobilities in the early stages of the transformation. A fictitious experiment is sketched by
Rettenmayr and Hillert in figure 1.2 that summarizes solutal melting stages. The interface
starts moving in the direction of melting in the early stages with an out-of-equilibrium inter-
face concentration. Solidification stage begins when the interface is stable, and the system
reaches local equilibrium when global equilibrium is attained.

The interface is therefore by no means limited by the concentrations in the range within
the equilibrium values during melting as opposed to solidification. The wide variety of pos-
sible thermodynamic conditions at the interface cause the equilibrium to be lost more easily
during melting. The melting/dissolution process is usually approached qualitatively since no
consistent thermodynamic description has been worked-out in the literature. It was shown
in [3, 19] that convection is a prominent mechanism controlling the melting rate. It can be
either thermal due to temperature gradient or solutal due to density difference. An attempt
to suppress the convection effects, solutal melting experiments are presented in the following
section in the aim of gaining a better understanding of diffusion controlled dissolution.

17



1.2 Experimental study of solutal melting

Dutta and Rettenmayr’s experiment has always been a reference for solutal melting studies.
In their investigation on the kinetics of solute-driven remelting of what they assumed to be
pure Al [3], they used a graphite sheet to isolate the liquid from the solid phase, allowing
the experiment to start only when the graphite sheet was removed. This design provided
better control over the initial conditions of the experiment. Additionally, the presence of
intermetallics in the system enabled the researchers to visually track the melting front from
post-mortem examinations.

However, the experiment had some drawbacks. The large sample size led to significant
convection effects, which could affect the measured velocities. Moreover, the authors treated
the Al-Fe and Al-Mg systems as binary alloys, despite their non-binary nature. The melting
front velocity was determined through post-mortem measurements, which only provided an
average value. Due to the presence of an Ar gas stream, a slight temperature gradient from
the bottom to the top of the sample was observed, leading to variations in the melting front
velocities across the sample height.

Interestingly, despite the temperature decrease from the bottom to the top of the sample,
the melting front velocity was higher at the top. This phenomenon was attributed to gravity-
induced segregation of Mg toward the top of the liquid, leading to thermosolutal convection
due to the density difference between Mg and Al. Consequently, the variation in remelting
velocity across the height of the sample was primarily driven by the change in supersaturation
resulting from the segregation of Mg.

As previously established by Fang and Hellawell, who studied the influence of liquid
solution density on the melting regime of crystals [19], the density of the liquid phase played
a crucial role in determining the melting regime of the crystals. When a crystal was melted in
a low-density liquid, the melting front was smooth, exhibiting a "diffusional melting" regime
where heat was transported by diffusion through the liquid. Conversely, when the crystal
was melted in a high-density liquid, the melting front was rough, displaying a "convective
melting" regime in which heat was primarily transported by convection due to the density
gradients in the liquid phase.

Further exploring the effects of thermal gradients on the dissolution process, Rajesh et al.
investigated the dissolution process of GaSb into InSb melt [20]. They observed that when a
small thermal gradient was applied to the sample, convection was induced in the liquid melt
due to the density differences caused by the temperature difference, resulting in enhanced
mass transfer and faster dissolution. They noted that even minor thermal gradients could lead
to significant convective flow, which in turn affects the kinetics of melting and mass transfer
rates.

In the light of the drawbacks observed in the aforementioned studies, it becomes imper-
ative to design new experiments that compensate for these shortcomings while investigating
solutal melting processes. The new experiments should aim to minimize the impact of con-
vection, better control the system’s composition, and provide real-time measurements of the
melting front velocity. This would pave the way for a more comprehensive understanding of
solutal melting and its underlying mechanisms.
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1.3 Experimental study of Deillon et al.

Leveraging the insights gathered from the previous studies, a novel approach was developed
to investigate solutal melting in a convection-free environment, ensuring that the kinetics
were solely diffusion-controlled. This new approach, which focused on the Cu-Ni system,
was carried out by L. Deillon et al. using laser scanning confocal microscopy.

1.3.1 Experimental set-up

In-situ experiments of solutal melting on the Cu-Ni system using laser scanning confocal mi-
croscopy were carried out by L.Deillon et al. [4] to characterize a tentative convection-free
solutal melting, in which only diffusion-controlled kinetics are involved. To minimize gravity
induced convection effects, they designed a system small enough to reduce their impact. Ni
and Cu, which are adjacent in the periodic table, have similar densities and exhibit complete
miscibility, as shown in the phase diagram in figure 1.3. The sample consists of two concen-
tric cylinders cut into 1.5 mm thick slices using a precision saw. The inner one made of pur
Cu has diameter of 2 mm and is fitted inside a hollow cylinder of pure Ni with an internal
diameter of 2 mm and an outer diameter of 5 mm, as shown in figure 1.4.

Figure 1.3 – Cu-Ni binary phase diagram [21].
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Figure 1.4 – Cu-Ni sample set-up.

The discs were placed in an alumina crucible, and heated from the sides and underneath
to deliver the most possible homogeneous temperature, mitigating convection induced by
thermal gradients. The experiments were conducted at 1115 °C and 1145 °C. The heating
rate was 150 ℃/min up to 1055 ℃ (below the Cu melting point), followed by a temperature
stabilization period of 3 min, then 100 ℃/min up to the aimed temperature. The confocal
laser scanning microscope, with a spacial resolution of 0.62 µm and an acquisition frequency
of 0.64 FPS (frame per second), enabled real-time tracking of interface velocity. Subsequent
to the experiments, a post-mortem analysis was conducted using a scanning electron micro-
scope (SEM) combined with energy dispersive X-ray spectroscopy (EDX) measurements on
a vertical section of the sample along its diameter to verify whether the dissolution occured
homogeneously throughout the height of the sample.

1.3.2 Results and discussion
During the experiment, three primary reactions took place: Cu melting, Ni dissolution, and
resolidification during a 1-hour holding period. A solid layer, 20 µm thick, persisted above the
melting Cu as a result of solid-state diffusion during heating, leading to a localized increase
in the liquidus temperature. The complete melting of Cu is taken as the starting point for
tracking the interface.

Dissolution velocities as function of time for both temperatures were plotted in figure
1.5. The velocities from experimental data were compared to the velocities calculated from
mass balance by finite difference modeling, assuming equilibrium at the interface with zero
diffusion in the solid phase:

v(cs− cl) = js− jl (1.1)

with cs = 0 and cl = ce
l the composition of the solid and liquid, and js = 0 and jl their

respective fluxes. The calculated velocities were observed to be lower than the experimental
results, with the exception of the initial stage, and this discrepancy was more pronounced at
higher temperatures. The dissolution started immediately after the liquid came into contact
with the solid Ni during the heating step before reaching constant temperature, leading to an
increase in velocity as the concentration gradient increases between the initial composition
and the equilibrium point. The slight delay between the experimental data and the simulation
can be attributed to the presence of the diffusion layer. Velocities initially increased for 20-
30 seconds, reaching a peak of 0.6-0.8 µms−1 at 1115 °C and 4.8 µms−1 at 1145 °C, before
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Figure 1.5 – Experimental and simulated dissolution velocity as function of time at 1115 °C (left) and
1145 °C (right) [4]. Two experimental results are presented at 1115 °C to ensure reproducibility.

beginning to decline. The dissolution process at both temperatures lasted for approximately
3 minutes and was followed by solidification during the temperature holding phase.

Post-mortem observation on the vertical section of the sample using an optical micro-
graph revealed that for the sample held at 1115 °C the Ni was dissolved homogeneously over
the entire sample height, which rules out significant convection effects given the straight in-
terface. On the other hand, the interface held at 1145 °C exhibited greater dissolution in the
upper portion of the sample. Considering the increased density of the liquid at higher Ni
content, solutal convection could potentially account for the curved interface, as the greater
dissolution in the upper region might be due to a lower Ni content in the liquid. Furthermore,
the authors also suggested the possibility of a solutal Marangoni effect, in which the liquid is
drawn towards the interface as a result of the increased surface tension caused by the enriched
liquid.

The expected dissolved thickness was calculated by simple Cu solute balance, assuming
no diffusion in the solid:

∆r = r0

(√
ρ0

l
ρe

l ce
l
−1

)
(1.2)

with r0 the initial radius, ce
l equilibrium concentration, ρ0

l and ρe
l the densities of the pure

liquid Cu and saturated liquid respectively.
For both temperatures, the experimentally observed dissolved thickness was significantly
larger than the predictions from mass balance calculations. The dissolved thickness as func-
tion of time is reported in figure 1.7. At 1115 °C the experiment was repeated twice for the
sake of reproducibility , which is why two curves are displayed in the left plot. The calculated
thickness that should be dissolved based on equation 1.2 and accounting for an uncertainty
of ±15°C, ranged between 9 and 31 µm, which is lower than the experimental values of 40-
50 µm. At 1145 °C the discrepancy was even more pronounced, with a calculated thickness
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Figure 1.6 – Post-mortem optical micrograph image of the sample cross-section held at 1115 °C (left)
and 1145 °C (right) [4].

Figure 1.7 – Experimental and calculated thickness dissolved as function of time at 1115 °C (left) and
1145 °C (right) [4].

of 31-58 µm with ±15°C uncertainty, while the experimental value reached 180 µm.
The EDX measurement revealed that the average concentration over the entire liquid area
were found to be out-of-equilibrium, with 92.5 at.% at 1115 °C, and 81.7% at 1145 °C (versus
95.6 at.% and 89.8 at.% liquidus composition respectively), which still remains difficult to
explain.

In light of the findings and limitations observed in the Cu-Ni experiment conducted by
Deillon et al., an alternative solutal melting experiment will be introduced in the following
section. This new approach aims to address and minimize some of the challenges encountered
in the previous study, such as the formation of a diffusion layer during heating that hinders
dissolution, concentration profiles derived from post-mortem analysis after a rapid cooling
step, and results potentially influenced by thermal or solutal convection. By employing a
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different investigation method and focusing on a different system, this alternative experiment
seeks to validate the findings of the Cu-Ni study and confirm that the results are not exclusive
to that particular methodology and sample set-up.

1.4 Experimental study of solutal melting

1.4.1 Experimental set-up
Following the unexpected and unprecedented behaviour revealed in the Cu-Ni solutal melt-
ing experiment where the interface is strongly out-of-equilibrium, a different experimental
method is required in order to verify the reproducibility of these findings. X-ray radiography
can address some of the problems faced in the previous Cu-Ni. In contrast to confocal mi-
croscopy, which only provides superficial information, X-ray radiography performs volume
analysis of the sample by transmitting X-rays through it and collecting gray-level images
from the detector on the opposite side during the process of solutal melting. This method
requires working with samples thin enough to allow X-ray transmission, which in turn elimi-
nates completely the convection effects observed in the Cu-Ni case. Additionally, the samples
must exhibit a high enough contrast to distinguish between the two materials and phases. The
contrast is associated with the materials’ densities and absorption coefficients, meaning that
a significant difference in X-ray absorption is necessary to discern variations in gray-levels.
The differences in gray-levels can then be assigned to the material composition, allowing for
in-situ monitoring of concentration profile evolution over time.

To identify a suitable system for the X-ray radiography experiment that can be compared
with the Cu-Ni system, several binary phase diagrams were examined using different criteria.
The primary criterion was to find a binary system with properties similar to those of the Cu-
Ni system. The system is required to have a similar phase diagram in a portion or the entire
range of temperatures, featuring only one liquid phase and one solid phase with a minimum
solubility of 10% to ensure that both solid and liquid are out of equilibrium during the initial
phase of solutal melting. The two elements should display a significant mass absorption
contrast using X-ray radiography. Temperature ranges were chosen from 400 to 1000 ℃ to
ensure that the diffusion is high enough. The 1000 ℃ limit is due to the furnace’s limited
capacity to ramp up any higher temperatures. Heavy elements that might act as a beam stop
were excluded, as well as harmful elements such as Cd. Elements like Al that might form
oxide layers at the interface which hinder diffusion and act as a barrier between solid and
liquid were also excluded.

The system which corresponds best to the above mentioned criteria is the Au-Ag system.
Its phase diagram, presented in figure 1.8 closely resembles the Cu-Ni system where both
elements are totally miscible. The Ag melting point is 961 ℃. Although the temperature
is at the upper end of the range that the furnace is able to handle, it can nevertheless still
adequately perform the experiment. Furthermore, Ag and Au are directly above one another
in the periodic table, suggesting that a noticeable mass absorption contrast could be expected
in X-Ray radiography due to their density differences.

The Au and Ag foils are 50 µm thick with a purity of 99.95% for Au and 99.9% for Ag.
The Ag foil is cut into a 3 mm diameter disc, and disposed in the center of a hollow Au foil
as presented in figure 1.9 in a way that when the sample is heated up above Ag melting point,
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Figure 1.8 – Au-Ag binary phase diagram [22].

the liquid Ag remains contained within the the gold foil.
The experiment was realized at the Institute of Materials Physics in Space at the Ger-

man Aerospace Center (DLR e. V.) in Cologne, Germany using the XRISE-PF facility [23]
processing the sample in an isothermal furnace insert. The furnace was designed to deliver
homogenous temperature distribution inside the sample and was initially developed to study
equiaxed microstructure evolution and grain interaction [24]. The furnace body consists of
boron nitride, an outer shell, and a piston. The boron nitride piston applies variable pressure
on the sample by adapting the rods length that hold the furnace between two metal plates, to
ensure uniform thickness at its molten state. The meander shaped graphite heater is 150 µm
thick, wrapped around the furnace body to deliver heat uniformly. For temperature control,
a thermocouple with a diameter of 0.5 mm situated inside the furnace wall is used, with its
tip positioned at the height of the sample plane. Having the thermocouple inside the furnace
wall avoids interference with both the X-ray beam path and the temperature field inside the
sample. But as a result, the thermocouple is closer to the heater, which means that measured
temperatures are higher than that of the sample. The furnace is wrapped in six sheets of 1.25
mm alumina paper at the sides, and graphite foam on top and bottom for heat insulation. This
heat insulation allows the furnace to operate at 700 ℃ for several hours, and withstand short-
term experiments up to 1100 ℃. For ground experiments, the furnace is water-cooled inside
an aluminum cartridge, which can be vacuumed down to 10−3 mbar. The sample diameter is
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Figure 1.9 – Ag foil (gray) in the center of Au foil (yellow).

restricted to 18 mm and is positioned in the center of the furnace between the furnace body
and the piston. To prevent direct contact between the liquid sample and the furnace environe-
ment, the sample is sandwiched between two 150 µm thin graphite foils that present good
heat transfer to the sample. As schematic of the operating furnace is shown in figure 1.10.
The X-ray beam passes through holes on the insulation material and furnace mounting then
encouters, in top of the sample, 6 mm of boron nitride and two graphite foils. The boron
nitride and graphite foils are transparent enough to leave the image quality undisturbed.

The X-ray source consists of a 5 µm thin tungsten layer on an aluminum target that
generates a Bremsstrahlung spectrum with a Kα-line at around 69 keV. The X-ray source
delivers a maximum acceleration voltage of 100 kV and an electron beam current of 200 µA.
The voltage value determines the energy of the electrons hitting the target, and consequently
the energy and the produced photons. The electron beam current determines the number of
electrons hitting the target and the amount of photons produced by the tube. The higher the
energy of the photons the less they interact with the sample, leading to a bright image and
lower contrast. Additionally, an increase in operating power results in a larger spot size,
which compromises the spatial resolution. Also, a sufficient photon quantity is needed for
good signal to noise ratio. Therefore, an optimal value of the voltage and electron current is
necessary for a good image quality. These parameters vary depending on the nature of the el-
ements and the sample thickness. The operating source parameters for the Au-Ag experiment
are 70 kV acceleration voltage and 134 µA electron beam current. A compromise between the
spatial resolution and the field of view size is achieved by setting the proper source-to-sample
and sample-to-detector distance. Due to the furnace geometry requirements, the source-to-
detector distance is 150 mm and the source-to-sample distance is 66 mm. A cone-shaped
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Figure 1.10 – Sketch of the X-ray imaging system showing the X-ray source to sample and to detector
distance [24].

polychromatic X-ray beam goes through the sample and is collected by a detector which fea-
tures a digital camera with a 24 mm × 36 mm active array CCD sensor and a structured CsI
scintillator. These settings result in a sample magnification of 2.3 on the detector, a field of
view of 10.5 mm, and an effective pixel size of 4 µm × 4 µm.
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Figure 1.11 – Raw X-Ray image of a Au-Ag sample.

The resulting gray-level image is shown in figure 1.11. The Ag disc appears brighter due to
lower absorption coefficient as compared to Au. The structured patterns correspond to the
scintillator structure that are visible due to the chosen current and voltage parameters for this
particular experiment. The Au-Ag solutal melting experiment was performed at 1000 ℃ with
an image acquisition frequency of 1 FPS. Prior to ramping up the temperature, the furnace
environment is vacuumed to at least 10−5 mbar using a secondary vacuum pump. The heating
process goes through several steps before reaching the target temperature:

• Heating from room temperature to 300 °C in 16.6 min. This slow heating is chosen so
that sufficient time is given to the pump to evacuate the various gases that evaporates
as the temperature increases.

• Steady heating from 300 to 900 °C in 18.3 min. This corresponds to the furnace’s
maximum heating rate that ensures that the expected temperature calculated from the
delivered power matches the furnace temperature measured by the thermocouple.

• Holding at 900 °C for 5 min to achieve thermal equilibrium since a minor lag sub-
sists between the simulated temperature calculated from the delivered power and the
real temperature measured by the thermocouple that might also be different from the
sample’s temperature since the thermocouple is positioned inside the furnace wall.

• Heating from 900 to 1000 °C in 6 min, with Ag melting occurring around the 4-minute
mark at 966 °C, which is closely aligned with the the 961 °C melting point of pure Ag.
The rapid heating rate of 16.6 °C/min also plays a role in delaying the onset of melting
to higher temperatures.
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• Holding at the target temperature of 1000 ℃ for 5 minutes, during which solutal melt-
ing is observed, followed by a free cooling process. This process took roughly 2 hours
for the furnace to cool down to room temperature, featuring non-linear initial cooling
rates.

The camera starts recording at around 950 ℃, prior to the melting point of Ag, up until
the Ag solidifies during the free cooling step. The choice of operating at 1000 ℃ is to ensure
both solid and liquid phases out-of-equilibrium during the dissolution process.

1.5 Data analysis

1.5.1 Image analysis
All image analysis were performed using ImageJ software to track the interface motion and
composition changes from the gray-level images. The brightness and contrast were further
enhanced to emphasize visually the contrast difference between the solid and liquid, making
it easier to locate the interface. An example is presented in figure 1.12.

Figure 1.12 – Gray level image of a Au-Ag sample after brightness and contrast adjustments, with Ag
being at liquid state. The yellow line represents the segment where the gray-level values were collected
for plotting the concentration profile.
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In the figure, some hexagons are visible and correspond to the detector patterns that tam-
per with the gray-level values of the images. One possible solution to get rid of the patterns
was to substract a reference image of the detector from the sample images. However, this
resulted in a very deteriorated image and the patterns were not entirely removed. Therefore,
the images were kept unchanged and the gray-level measurements for calculating the con-
centration profiles were collected from a segment positioned in way that it did not cross the
detector patterns as shown in figure 1.12. The width of the segment was set to 12 pixels, to
get an averaged gray-level intensity at any given position. In addition to the detector patterns,
another issue arouse that also interferes with the gray-level intensity. As it can be noticed
from both figure 1.11 and 1.12, small gray-level variations are observed in the Ag sample
before and after melting. These variations originate from an imperfect contact between the
Ag and Au foil, leading a slightly deformed Ag foil as observed in figure 1.9, leading to small
thickness variations in the sample post-melting which can be wrongly interpreted as a con-
centration variation since the gray-level intensity depends on both the nature of the element
and its thickness.

The major problem that was encountered during the experiments was due to an imperfect
contact with the graphite the shrinking of the Ag liquid phase right after melting due to
wetting on the graphite substrate enclosing the Ag-Au sample. A particularly catastrophic
example is shown in figure 1.13. The liquid Ag wets the graphite foils leading to an imperfect
solid-liquid contact as the liquid phase thickness increase due to wetting, leading to strongly
inhomogeneous grey level in the liquid phase. From all the experiment performed, only those
leading to limited variation of gray-level after melting (see figure 1.12) were analyzed in this
work.

1.5.2 Interface tracking

Tracking the interface motion is achieved through image binarization by choosing a threshold
that results in a contour coinciding with the interface position after binarization. ImageJ has
several implemented binarization methods for converting gray-level images into black and
white [25]. Among the available methods, the Mean method, which uses the mean gray-
levels as a threshold, provided the most suitable result that aligns well with the interface
position. The interface is located after image binarization at the position where the ratio of
black and white pixels (0 and 1 ratio) is closest to 50%. Figure 1.14 shows a zoom-in of a
portion of the Ag-Au interfacial region before and after binarization. The segment where the
binary values are collected is oriented to point towards the center of the Ag disc since the
interface advances radially. The interface position is monitored using this procedure on the
entire stack of images. By doing so, the interface position evolution over time can be plotted,
and the interfacial velocity is extracted from the slope.

One can see from figure 1.14 that the interface position is determined with an uncertainty
ranging from 3 to 4 pixels in average. Knowing that each pixel is a 4 µm×4 µm square, this
leads to an uncertainty of 4-12 µm on the interface position which is moderate considering
that the dissolution is over a hundred microns as will be shown later on in the following
section. Another consequence of the low image resolution is having a concentration averaged
over 4 µm, which can be problematic in the vicinity of the interface where the concentration
gradients are important.
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Figure 1.13 – Raw image of Au-Ag sample after melting, showing the liquid Ag retracted into itself
leading to imperfect solid-liquid contact.

Figure 1.15 – Image of Au-Ag at the end of solutal melting, obtained by subtracting the first image
taken right after the melting of Ag. The white area defines the distance traveled by the interface.
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Figure 1.14 – Zoom-in at the interfacial region before (right) and after (left) binarization. The yellow
segment is used to measure the gray-level for concentration calculations in the left image, and for
interface position determination.

Binarization method turned out to be more efficient for tracking the interface and measur-
ing its velocity. An alternative method could also be employed to observe the interface dis-
placement, based on the image subtraction function available in ImageJ. This latter method
relies on subtracting the stack of images by the first image where dissolution begins. The
differences and changes of the images relative to the first image are highlighted using this
method and the front displacement can thus be observed, defined by the white ring in figure
1.15 as it expands throughout time during dissolution. The radial expansion of the liquid at
the expense of the solid phase is put in evidence, and the interface keeps its circular shape dur-
ing the whole process. Using this method, the total interface displacement can be estimated
by measuring the thickness of the white ring. Tracking the interface displacement however is
not easily done, mainly due to the fact that differences between the first few images from the
early stage of melting and the initial image are not very much pronounced, making it hard to
define the boundaries of the white ring corresponding to the liquid front.

1.5.3 Composition determination

The concentrations can be derived from the gray-level values using Beer-Lambert’s law, link-
ing the concentration to the transmitted intensity that’s attenuated as the X-rays pass through
matter due to absorption or scattering, which depends on the material properties, the nature
of the radiation, and the detector characteristics. The Beer-Lambert law for a monochro-
matic radiation connecting the gray-level intensity I to the concentration is expressed as the
following:

I = I0 exp(−µ d) (1.3)
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with I0 the initial intensity of incident beam in arbitrary units, ranging from 0 to 255, reflect-
ing the gray-level value. µ (cm−1) is the mass absorption coefficient, and d (cm) the sample
thickness.
The linear mass absorption can also be written as:

µ = µm ρ (1.4)

µ (cm2 g−1) is the mass absorption coefficient, ρ is the material density (gcm−3).
This latter quantity is assumed to depend on the concentration of the elements following a
simple mixture rule for a binary mixture:

µm ρ = xA µm,A ρA +(1− xA)µm,B ρB (1.5)

where xA is the concentration of the element A.
For a polychromatic X-ray source the intensity depends on the photon energy E (keV), the
element fraction Xi, and the temperature T(K). Equation 1.3 becomes:

I = I0 exp

(
−d

n

∑
i=1

xi µm,i ρi(T )

)
D(E) (1.6)

where D(E) is a correction reflecting the quantum efficiency of the detector, proportional
to exp(µ(E)dsc), where µ(E) is the linear absorption coefficient of the scintillator material
and dsc is the scintillator thickness. The scintillator presents a monotonic behaviour at X-ray
energies above 17 keV and the intensity are assumed to be the same for each pixel due to
the integral nature of the recorded intensities [26]. D(E) is therefore neglected. The final
Beer-lambert expression is given by the following equation:

I = I0 exp
[
−d
(
xAg µm,Ag ρAg +(1− xAg)µm,Au ρAu

)]
(1.7)

From equation 1.7 the concentration is calculated as follow:

xAg =
1/d ln(I/I0)+µm,Au ρAu

µm,Au ρAu−µm,Ag ρAg
(1.8)

Determining the composition in binary alloys in the case of a polychromatic light is not
straight forward, mainly due to mass attenuation coefficient in Beer-Lambert’s law of pure
elements that are unknown since they vary as function of the photon energy. To overcome
this problem, the mass absorption coefficients are callibrated from the gray-level value of the
pure element taken separately. Since the gray intensities, the densities, and the concentrations
are known, the mass absorptions can be deducted from equation 1.7.
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1.6 Results and discussion

1.6.1 Interface position and velocity

Figure 1.16 – Au-Ag interface position as function on time

The interface position was monitored using the binarization method as showcased in figure
1.14. The resulting interface position profile is plotted in figure 1.16. Since the recording
started just prior to the melting of solid Ag, the initial position remains at zero for the first few
seconds. After melting of the solid pure Ag, the interface starts moving in the direction of the
solid Au for a duration of 150 s before stabilizing at a fixed position. This stage corresponds
to solutal melting. Upon completion of the melting phase, solidification ensues, resulting in
the interface position gradually shifting in the opposite direction during the final stage of the
experiment. This movement was also directly observable in the gray-level images. Since
isothermal solidification is driven only by diffusion in the solid phase, it is much slower than
the solutal melting stage.

The interface velocity is derived from the slope of the position curve and is shown in
Figure 1.16. Initially, the velocity is 0 when the interface remains motionless, and then it
increases monotonically. This gradual velocity increase might be explained by the fact that
right after melting at 961 ℃, the liquidus composition is 100% Ag. The temperature takes
approximately a minute and half to reach the aimed temperature of 1000 ℃. As the temper-
ature rises, the liquidus point changes accordingly and is further away from the composition
of pure Ag. The supersaturation (given by the gap between the liquidus and the initial liq-
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uid composition of Ag) increases, increasing thus the available driving force, which might
explain the velocity increase.

Figure 1.17 – Interface velocity as function of time.

The velocity peaks when the sample reaches 1000 ℃, and then, as more Au is dissolved, less
driving force is available, causing the interface velocity to slow down. A small resolidification
is observed at around 240 secondes, indicated by the negative value of the velocity.
This sample was examined post-mortem using a Scanning Electron Microscope (SEM). The
post-mortem Au-Ag micrography is shown in figure 1.18. Two concentric circles can be
noticed in the Ag sample. The inner circle, with a measured diameter of 3 mm, corresponds
to the initial Ag sample size, and the outer circle represents the dissolved thickness. The
dissolved thickness is given by the difference between the outer and inner circle, and is found
to be 173 µm.
The dissolved thickness was determined using the subtraction method by measuring the thick-
ness of the white ring shown in figure 1.15, and was found to be equal to 170 µm, which agrees
surprisingly well with the SEM measurement.
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Figure 1.18 – Backscattered eletrons image of a post-mortem Au-Ag sample: The central region,
formerly liquid Ag, appears darker, while the surrounding pure gold material exhibits a brighter
appearance. The two distinct ring-shaped interfaces represent the thickness of material dissolved.

1.6.2 Interface composition evolution
Few assumptions regarding the parameters involved in equation 1.7 were made to calculate
the concentration. The gray-levels are considered constant with respect to temperature, as
temperature changes during the heating stage did not result in a noticeable change in gray-
level values. The thickness of the Ag sample is also assumed to be constant before and after
melting, and during the whole dissolution process.
The density of the solid phase is estimated using the following equation [27]:

ρ
s(Texp) = ρ

s(25°C) [1−3α (Texp−25)] (1.9)

α being the linear thermal expansion coefficient at 25 ℃. The liquid density is given by:

ρ
l(Texp) = ρM−η (TM−Texp) (1.10)

where ρM is the density at the melting temperature TM, and η is the volumetric thermal
expansion of the liquid phase. The values of densities and thermal expansion coefficients at
1000 ℃ were taken from [28, 29] and are reported in table 1.1.

The X-ray source being polychromatic, the only way to extract the mass absorption co-
efficient of a given phase is by measuring the gray-level intensity of a known composition,
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El. η

(gcm−3 K−1)
α × 10−6

(K−1)
ρs(25℃)
(gcm−3)

ρ l(TM)
(gcm−3)

ρs(1000°C)
(gcm−3)

ρ l(1000°C)
(gcm−3)

Ag −9.78×10−4 18.9 10.5 9.32 10.31 9.28
Au −12.7×10−4 14.2 19.32 17.2 18.51 17.28

Table 1.1 – Values of volumetric thermal expansions, thermal expansion coefficients, and densities of
Ag and Au [28, 29].

then using Beer-Lambert’s equation to calculate the specific mass absorption. The value of
µm is assumed to be solely related to the wavelength passing across the material. µs

m,Au is the
easiest to extract since the gray-level intensity at 1000 °C can be measured directly from the
images, and the sample composition is known. µ l

m,Ag is calculated by measuring the gray-
level intensity directly on the Ag melt. Initially, right after melting, the liquid Ag is at pure
state xAg = 1 and xAu = 1− xAg = 0, equation 1.7 becomes:

Il = I0 exp
(
−µ

l
m,Ag ρ

l
Ag d

)
(1.11)

The value of I0 can be determined by measuring the gray-level of the detector after removing
the sample. d is taken as 50µm and is assumed to be constant. Knowing all the parameters,
µ l

m,Ag can easily be estimated:

µ
l
m,Ag =−

1
ρ l

Ag d
ln(I/I0) (1.12)

µs
m,Au is calculated in the same manner. However, equation 1.7 is valid for a single phase, and

in order to calculate the concentration in the liquid phase, both µ l
m,Ag and µ l

m,Au are required
(respectively µs

m,Ag and µs
m,Au for the solid phase). The value of µ l

m,Au is unknown since it
requires measuring liquid Au gray intensity. To circumvent this issue, the ratio µ l

m,Ag/µs
m,Ag

was calculated from equation 1.7 using the intensities around the melting point at 961 °C
before and after the melting of Ag:

µ l
m,Ag

µs
m,Ag

=
ln(Il/I0)

ln(Is/I0)
×

ρs
Ag

ρ l
Ag

(1.13)

At 960 °C the measured parameters are ρs
Ag = 9.943gcm−3, ρ l

Ag = 9.296gmL−1, d = 50µm,
I0 = 214.745, Is = 82.252, and Il = 84.065. The intensity ratio in equation (1.13) is calculated
as:

ln(Il/I0)

ln(Is/I0)
= 0.98 (1.14)

The change in intensity before and after phase transformation is negligible and can there-
fore be disregarded in the ratio 1.13. The mass absorption coefficient is found to be inversely
proportional to the density ratio. As a first approximation, it can be considered that:

µ l
m,Ag

µs
m,Ag

≈
ρs

Ag

ρ l
Ag

(1.15)
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El. µ l
m

(cm2 g−1)
µs

m
(cm2 g−1)

I0 ρs(1000°C)
(gcm−3)

ρ l(1000°C)
(gcm−3)

Ag 7.961 7.166 214.745 10.31 9.28
Au 11.153 10.412 214.745 18.51 17.28

Table 1.2 – Values of mass absorption coefficients and densities at 1000 °C of Ag and Au.

Both µs
Ag and µ l

Au can then be calculated from the densities at 1000 °C. All the parameters for
calculating and plotting the concentration profile are therefore known, and given in Table 1.2.

Plots of Ag concentration profiles with respect to position are shown in figure 1.19 for
two different times, 80 and 300s. The red dashed lines represent the equilibrium solidus and
liquidus. The vertical blue span and horizontal orange span respectively represent the inter-
facial region (deduced from the image analysis) and its corresponding concentration range.
While the associated uncertainty seems quite large, the differences between equilibrium and
measured values are also large enough to be considered as significant.

On the left side of concentration profiles for the two times, near the zero position, lies
liquid Ag with an Ag concentration approaching 90%. It is actually close to 100% farther in
the liquid, which has not been captured here due to the interface tracking approach described
previously. At positions further along the horizontal axis is solid Au with an Ag concentration
close to but not 0. This gives another hint on the uncertainty associated with the conversion
of greyscale values into concentration, on the order of a few wt%. On the profile captured
at 80 seconds, the concentration values near the zero position are above the equilibrium con-
centrations marked by the red dashed lines, with a liquidus of 65.5 wt% Ag and a solidus
of 64.5 wt% Ag, as derived from the Ag-Au phase diagram. The interface is located some-
where between 220 µm and 258 µm. The first thing to note is that the liquid and solid phase
in the interfacial region are significantly out-of-equilibrium. Both the solid and liquid phase
concentrations are located in the one-phase domain of the solid beneath the solidus value,
reproducing thus the same behaviour reported in the Cu-Ni solutal melting experiment by
Deillon et al. The peak discernible at 300 µm stems from a small local gray-level variation of
unknown origin (but most probably a local thickness variation) and is not representative of
diffusion or Ag content.

The concentration profile in the lower graph is plotted at 300 s, at the end of the exper-
iment. The liquid concentration between 0 and 120 µm is closer to the equilibrium value,
but still has not reached equilibrium. The liquid phase expanded at the expense of the solid
Au, with the solid-liquid interface now located between 270 µm and 315 µm. As with the
first profile, the concentration near the interface remains strongly out-of-equilibrium. The
interface stopped its motion after 160 s, giving enough time for the dissolved Au to diffuse
into the liquid phase and bring the liquid far from the interface slightly closer to equilibrium.
However, the liquid in the interfacial region, which is usually expected to be at equilibrium
state, remains far from the liquidus and is closer to the solid composition of pure Au. This
liquid region, characterized by a concentration beneath the liquidus and solidus values, ex-
tends approximately over 140 µm. This suggests that, the dissolved Au remained confined in
the interfacial region during the whole process of solutal melting.
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Figure 1.19 – Concentration profiles in the vicinity of the solid-liquid Au-Ag interface at: 80s after the
beginning of solutal melting (upper image), 300s towards the end of solutal melting (lower image).
The red dashed lines represent the liquidus (upper line) and solidus (lower line) composition. The
blue span represent the interface region and the orange span correspond to the associated interface
compositions.
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Figure 1.20 – Post-mortem concentration profile at Au-Ag interfacial region: the top image shows the
microstructure and the green arrow where the profile was measured.

In order to compare the values obtained with in-situ measurements as well as to get more
data, post-mortem concentration profiles using EDX presented in figure 1.20 were charac-
terized at different interfacial regions. It has to be kept in mind that the area that was liquid
during in-situ experiment has experienced solidification - with associated microstructure for-
mation and microsegregations. The profiles revealed that the solidified Ag has an average
composition of 70 wt% Ag in the entire solidified liquid area, above the liquidus composition
value of 65.5 wt% Ag at 1000 ℃. This finding is consistent with observations made for the
Cu-Ni system, where both the interface and the bulk solidified liquid were found in a non-
equilibrium state. Note that the cooling from 1000 ℃ to solidus temperature was achieved in
nearly 1 minute, and equilibrium might have shifted during this step. However, this still does
not explain the measured concentration values in the liquid area, particularly at the interfacial
region.

The diffuse nature of the interface concentration profile extends roughly over the same
distance as measured with X-ray radiography. In the figure, the red segment in the micrograph
positioned at the interface with its tip at the solid Au front, corresponds to the red portion in
the concentration curve and reveals that the interface is at non-equilibrium concentration.
The profile also indicates that the Au rich solid phase is at non-zero concentration at the
interfacial region and diffusion towards the solid phase might have occured due to the fact
that the concentration gradient starting from the interface position (given by the tip of the red
portion of the curve) extends over 50 to 60 µm inside the solid Au before reaching 100 wt%
Au.

The same conclusion was drawn from figure 1.21 when measuring at a different region
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Figure 1.21 – Post-mortem concentration profile at Au-Ag interfacial region in a different area than
figure 1.20 : again, the top image shows the microstructure and the green arrow where the profile was
measured.

of the interface. The average concentration in the entire solidified liquid is lower than the
liquidus value at 1000 ℃, and the interface exhibits a significant deviation from equilibrium.
All the concentration profiles measured show the same solidified liquid concentration, and
diffusion profiles in the solid phase.

The in-situ concentration profile measured at the five-minute mark of the solutal melt-
ing process is superimposed with the post-mortem measurement shown in Figure 1.22. The
experiment involved a cooling phase from 1000 ℃ to room temperature, spanning approxi-
mately two hours, with a crucial minute where the liquid was actively cooling down before
reaching the solidus temperature and solidifying. It’s reasonable to expect minor diffusion
during this interval, as is evident in the concentration gradients near what used to be the inter-
face prior to solidification. Nevertheless, the in-situ and post-mortem concentration profiles
show remarkably similar values, lending credence to the in-situ methodology employed for
monitoring concentration profiles using gray-level values. This convergence in the data un-
derscores the validity of using gray-level values as a reliable tool for real-time concentration
tracking.

Figure 1.23 shows again a concentration profile obtained post-mortem by EDS measure-
ments. It displays two distinct slopes in the concentration profile, which suggests a sudden
change in diffusive properties. This change may indicate the presence of an interface where
the diffusion coefficient shifts when transitioning between phases, with a much steeper gradi-
ent in the solid phase on the right side due to lower diffusion. The solid phase concentration
profile was reproduced using simple 1-D diffusion equation for a semi-infinite media given
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Figure 1.22 – Comparison of post-mortem concentration profile (depicted in blue) and in-situ profile
at the five-minute mark (depicted in black). The red dashed lines illustrate the positions of the solidus
and liquidus.

by:

c− c1

c0− c1
= erf

(
x

2
√

Dt

)
(1.16)

with c0 the initial concentration, c1 the interface concentration maintained constant.
The initial concentration of the Au is c0 = 0, and the interface concentration is chosen to best
reproduces the profile. The diffusion coefficient of Ag in solid Au is calculated at 1000 ℃
from [30] using Arrhenius equation:

DAg = D0 exp
(
− EA

RT

)
(1.17)

where the constant D0 = 0.072 m2 s−1, the activation energy EA = 40.20 kcalmol−1. The
Ag diffusion coefficient in the solid phase is estimated to be D = 9.76910−13 m2 s−1. The
duration was set to t = 300s because, as shown in figure 1.16, dissolution slows down sig-
nificantly around 300 s. After this point, trans-interface diffusion occurs for the remainder
of the experiment, lasting another 300s. The interface concentration for the solid phase that
best fits the curve was found to be CS = 46wt% Ag (see figure 1.24). The solid interface is
thus substantially lower than the solidus composition, which confirms the observations made
from the gray-level concentration profiles where the solid is far from equilibrium throughout
the entire experiment.
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Figure 1.23 – Post-mortem concentration profile at Au-Ag interfacial region showing two distinct
slopes at the interface.

On the other hand, accurately reproducing the concentration profile on the liquid side was
not possible due to the fact that solidification has modified too deeply the concentration profile
in post-mortem. If using the in-situ measurement and trying to apply the same analysis as in
the solid phase, liquid diffusion is too rapid to allow the establishment of a gradient, and a flat
concentration profile is obtained when using the liquid diffusion coefficient (D = 2.83710−9

m2 s−1 [31, 32]). Solid state diffusion after solidification was also dismissed since it requires
times that far exceed the duration accorded for the experiment and cooling step to obtain a
reasonable fit.

However, in order to have some insights into the liquid concentration, the theoretical
maximum dissolved thickness can be used. Mass balance calculation similar to equation
1.2 can be employed to deduce the dissolved thickness when knowing the bulk composition
change and assuming zero solid diffusion. Equation 1.2 is:

∆r = r0

(√
ρ0

l /
(
ρ

f
l c f

l

)
−1
)

(1.18)

With ρ
f

l and c f
l the density and concentration of the saturated liquid - i.e. the equilibrium

concentration. With the density values taken from table 1.2 assumed to vary linearly with
concentration, and the equilibrium liquidus concentration of 65.5 wt% Ag, and an initial
radius of 1.5 mm, a theoretical value of 127 µm is found at 1000 ℃ for the Au-Ag system.
The local dissolved thickness measured from the SEM image in figure 1.21 was found to be
173 µm, which is exactly equal to the one found from figure1.18 by measuring the diameter
difference. However, the dissolved thickness measured from a restricted area of the interface
taken from figure 1.20 was found to be between 242 µm and 279 µm, depending on which
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Figure 1.24 – Post-mortem concentration profile at Au-Ag solid region with the 0 position correspond-
ing the interface position.

portion it was measured from and where the limit was set since the interface is not perfectly
circular. The minimum value of 173 µm will be kept for the discussion as it was obtained from
two different methods (SEM and image substraction), having in mind that it could be larger. It
is important to note that an uncertainty of 10 °C on the temperature (inducing a modification
of the liquid concentration) would lead to a change of calculated thickness of ≈ 10µm. As
for the Ag disk initial diameter, a error of 100 µm on measurement of the diameter would
induce an change < 5 µm on the calculated thickness. It has to be mentioned that such gap
or overlapping of the Ag foil would have been seen on X-Ray images such as in figure 1.11.
Again this result is comparable as the one obtained by Deillon et al. [4], with an experimental
dissolved thickness which is larger than the theoretical one assuming the saturated liquid is at
equilibrium. In the present case, the difference is however less pronounced with a difference
of 25% between experiment and calculated while it was greater than 50% for the study of
Deillon et al., indicating that some convection could have amplified the phenomena.

Reaching a calculated value of dissolved thickness of 170 µm would require the saturated
liquid to have an average concentration c f

l = 60 wt.% Ag. While it does not provide informa-
tion on the composition at the interface, this result indicates as for the solid concentration at
the interface that the liquid composition is substantially lower than the solidus composition,
and by far in the single phase domain of the equilibrium phase diagram.
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1.7 Conclusion
The investigation of solutal melting behavior in the Ag-Au system has successfully identified
similarities with the Cu-Ni system previously studied by Deillon et al. [4]. A remarkable
element of the comparison between these two studies is that the results obtained are similar
with completely different experimental systems and setups.

In this work, an innovative X-ray radiography technique was used to study the solutal
melting process with the Au-Ag system. The novel X-ray radiography technique, in par-
ticular, has resolved convection issues and enabled a more precise investigation of solutal
melting. As a powerful tool for future studies, it facilitates real-time monitoring of concen-
tration profile evolution and the study of solutal melting across various alloy systems. The
data analysis was conducted using image analysis, interface tracking, and composition deter-
mination to understand the solutal melting behavior.

The dissolution process in both systems followed three key steps: a steady increase in ve-
locity due to temperature increase, diffusion-controlled dissolution with decreasing velocity,
and resolidification during the holding period. The measured interfacial velocities in both sys-
tems were of the same order of magnitude, and both exhibited out-of-equilibrium conditions
at the solid-liquid interface, with concentration values deviating from their respective equilib-
rium states. Concentration profiles obtained from in-situ experiments and post-mortem EDX
measurements revealed the non-equilibrium state of both the interface and the bulk solidified
liquid. In particular, we have shown that the solid composition close to the interface was
around 46 wt% Ag (64.5 wt% Ag at equilibrium), and the liquid composition was below 60
wt% Ag (65.5 wt% Ag at equilibrium). These observations emphasize the need to consider
such deviations when studying solutal melting processes. The surprising results obtained on
the Cu-Ni system by Deillon et al. [4] were reproduced here for the Au-Ag system, with an
experimental set-up which overcomes convection.

Overall, this investigation has made significant contributions to the understanding of solu-
tal melting behavior in binary systems such as Ag-Au and Cu-Ni, providing valuable insights
into the complex, non-equilibrium processes governing solutal melting. Further investiga-
tions with improved experimental designs and methodologies can help validate and expand
upon these findings, leading to a more comprehensive understanding of solutal melting in
various alloy systems. There is indeed room for improvement in other aspects of the ex-
perimental design, such as improved sample preparation and enhanced resolution techniques
like synchrotron-based experiments, which could offer more accurate interfacial position and
composition measurements.
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CHAPTER 2

Thermodynamic model

The distinction between the solidification of metal alloys and solutal melting processes, in
terms of achieving local thermodynamic equilibrium at the solid-liquid interface, remains a
puzzling topic. Indeed, while the former appears to attain equilibrium very fast, the latter
does not, highlighting an asymmetry that necessitates a comprehensive exploration of the
governing dynamics of these processes. The objective of this chapter is dedicated to such
an exploration using a sharp interface thermodynamic model proposed long time ago, and
rediscovered several times.
In diffusion-controlled phase transformations, the local conditions at the interface signifi-
cantly modulate the kinetics of the transformation. Consequently, this chapter provides an
overview of the prevalent models employed to delineate these conditions. The goal is to pave
the way for a more detailed comprehension of the observed asymmetry between solidification
and dissolution processes.

The chapter begins with an introduction to the concept of thermodynamic equilibrium and
its significance within the context of solid-liquid interfaces. The discourse expands to encom-
pass out-of-equilibrium thermodynamics, a core component of the chapter, which provides
the necessary theoretical background for understanding the observed phenomena. Hillert
model for solute trapping and solutal melting is then discussed in depth, elucidating its im-
plications and limitations.
The culmination of this chapter is the introduction of a novel thermodynamic model, designed
to predict the kinetics of diffusive phase transformations. This innovative model, while firmly
grounded in the fundamental principles of thermodynamics, integrates novel perspectives on
the effects of solutal melting on the local conditions at the solid-liquid interface. Importantly,
it demonstrates the ability to reproduce some of the behaviors observed in the experimental
results detailed in the previous chapter.
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2.1 Local equilibrium
When the diffusion-controlled phase transformations proceed under normal conditions (cast-
ing for solidification, high temperature precipitation for solid state phase transformations. . . ),
one can reasonably consider that the interfaces are at local equilibrium. In the case of binary
alloys, the concentrations at the interface are given by the phase diagram, while in multicom-
ponent alloys, the local equilibrium tie-line, called operative in the dedicated literature [33],
still lies on the two-phase field boundaries in the phase diagram but is selected from the
interfacial solute balance.

In the case of a binary alloy, all that is required is to impose the usual equilibrium condi-
tions obtained by Gibbs energy minimization [34] at fixed pressure and temperature. In the
context of a two-phase system with α and β phases, the Gibbs energy minimization method
under the constraint of fixed global composition leads to the equality of the chemical poten-
tials for each component A and B between α and β :

µ
α
A = µ

β

A (2.1)

µ
α
B = µ

β

B (2.2)

where the chemical potentials are defined as follows:

µ
φ

i =
∂G

∂nφ

i

∣∣∣∣∣
p,T,nφ

j,i

(2.3)

with i ∈ {A,B} and φ ∈ {α,β}, and where nφ

i is the number of moles of the element i in the
phase φ .
In the case where the molar Gibbs energy Gφ

m of phase φ depends on the concentration cφ

i =

nφ

i /∑ j nφ

j , it is more convenient to express the chemical potentials in the following way:

µ
φ

A = Gφ
m− cB

∂Gφ
m

∂cB
(2.4)

µ
φ

B = Gφ
m +(1− cB)

∂Gφ
m

∂cB
(2.5)

The expressions in equations (2.4) and (2.5) are sufficient to graphically determine the
thermodynamic equilibrium between the two phases in a binary alloy at fixed temperature
and pressure. The equilibrium is represented when the molar Gibbs energy curves of two
distinct phases are linked by a shared tangent, as illustrated in figure 2.1. The equilibrium
concentrations can then be graphically extracted at the tangent points of each curve. Any
departure from this equilibrium state will manifest as separate tangents for each coexisting
phase’s respective energy curve, which can then be contrasted with the common tangent.
This visual representation offers an intuitive means to discern and understand the state of
equilibrium in binary alloy systems.
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Figure 2.1 – Graphical construct for determining the equilibrium between phases α and β in a binary
alloy at constant pressure and temperature.

2.2 Classical irreversible thermodynamics

In contrast to the local equilibrium conditions discussed previously, which focuses on static or
quasi-static processes, classical irreversible thermodynamics acknowledges the presence of
driving forces and fluxes that lead to changes in the system state. The driving forces can arise
from factors such as temperature gradients, concentration gradients, or external influences,
which bring the system away from its equilibrium state. Using classical irreversible thermo-
dynamics [35, 36], one can explore the dynamic interplay between thermodynamic forces and
kinetic processes, leading to the emergence of new phases, the evolution of microstructures,
and the change of the material properties.

Rapid solidification, in contrast to solutal melting, has long been the topic of several
studies since the precursor work of Baker and Cahn [37] (see, for example [38, 39]). To
explain the dependence of interface concentrations on solidification rate, numerous models
have been proposed that rely predominantly on a thermodynamic description of the interface,
as opposed to atomic scale descriptions that do not depend on average mesoscopic quantities
[40]. Within the realm of thermodynamic models, two major approaches stand out, as Hillert
elucidated in his comprehensive review [41], which also inspired the thermodynamic model
presented later in this chapter.
The first approach considers that the interface possesses a certain width, spanning a few
atomic layers, as might suggest the analysis of atomic-scale simulations [40, 42] or observa-
tions of related interfaces at the solid state. Assuming homogeneous and constant properties
of the interface within that width, a Gibbs energy description can be attributed to the interface
that can be represented by an independent curve in the same Gm(c) diagram as in figure 2.1.
If these properties vary continuously in a thick interface, the description falls into phase field
models that takes into account a variety of out-of-equilibrium phenomena (see [43]).
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The second approach, more prevalent in the literature, considers the interface as a surface
that separates two phases, usually referred to as “sharp”interface. This approach simplifies
the description of some interfaces, such as solid-liquid, which are less likely to be influenced
by segregation of impurities or elastic deformations. Thus, it eliminates the necessity of com-
plex interfaces while still delivering relevant and realistic outcomes. This approach forms the
foundation for the two thermodynamic models to be introduced and analysed in the ensuing
sections; the first one proposed by Hillert and the second inspired by the work of Lesoult. The
baseline formulations of thermodynamics of irreversible processes, from which both models
were derived, will be detailed in the forthcoming sections.

2.2.1 Entropy production rate
The derivation proposed by Callen [44] (see also Onsager [6] and Prigogine [35]) is followed.
The entropy of a system S(X0,X1, . . .) is a homogeneous first order function of the extensive
parameters Xi. Differentiating the entropy S(X0,X1, . . .) with respect to time gives:

dS
dt

= ∑
i

∂S
∂Xi

dXi

dt
(2.6)

Equivalently, it can be expressed as:

Ṡ = ∑
i

Fi
dXi

dt
(2.7)

As suggested by Callen [44], by analogy with (2.7) it seems reasonable to consider that the
entropy current densities are:

js = ∑
i

Fi ji (2.8)

where ji is the flux density of the extensive quantity Xi and Fi = ∂S/∂Xi its associated inten-
sive parameter, that plays the role of a driving force for the flux.
In local form, the balance of entropy per unit volume reads

ṡirr =
∂ s
∂ t

+∇· js ≥ 0 (2.9)

where the rate of entropy production ṡirr is the sum of the local variation and of the entropy
entering or leaving the region per unit of volume js.
Considering the local version of (2.6):

∂ s
∂ t

= ∑
i

Fi
∂xi

∂ t
(2.10)

Taking the divergence of (2.8):

∇· js = ∇ ·
(

∑
i

Fi ji

)
= ∑

i
∇Fi · ji +∑

i
Fi ∇· ji (2.11)
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Then, substituting (2.10) and (2.11) into (2.9) gives:

ṡirr = ∑
i

Fi
∂xi

∂ t
+∑

i
∇Fi · ji +∑

i
Fi ∇· ji ≥ 0 (2.12)

Assuming that the extensive parameters are conserved, their balance equations are:

∂xi

∂ t
+∇· ji = 0 (2.13)

Using (2.13) into (2.12), the following is obtained:

ṡirr = ∑
i

∇Fi · ji ≥ 0 (2.14)

Thus, the entropy production rate for continuous systems corresponds to the product of the
gradient of entropy-representation intensive parameters and their associated flux. The expres-
sion of the entropy production vanishes at equilibrium state when there are no thermodynamic
forces available. It is important to note that the entropy production is always positive, thereby
conditioning the directionality of the associated fluxes.
When the entropy production rate is positive, it implies that the system is undergoing irre-
versible processes [36] or is out of equilibrium. The sign of the fluxes, on the other hand,
depends on the specific system and on the thermodynamic forces acting upon it. The fluxes
can be positive or negative, indicating the direction of the flow or transport of certain quanti-
ties (such as mass, energy, or particles) within the system. The sign of the fluxes is directly
related to the driving forces present in the system.

2.2.2 Linear constitutive laws
For purely resistive systems, each of the local fluxes are assumed to depend on all the instan-
taneous local thermodynamic forces of the system. Considering that equilibrium requires the
fluxes in the entropy production (2.14) to vanish in the absence of thermodynamic forces, the
expression of these fluxes can then be expanded as [44]:

ji = ∑
j

Li j Fj +∑
j
∑
k

Li jkFjFk + . . . (2.15)

where Li j =
∂ ji
∂Fj

and Li jk =
∂ 2 ji

∂FjδFk
.

The Li j parameters are called kinetic parameters and are function of the local intensives pa-
rameters. For small deviations from equilibrium, where the thermodynamic forces are small
enough that all the quadratic and higher order terms in (2.15) can be neglected, equation
(2.15) simplifies to:

ji = ∑
j

Li jFj (2.16)

This equation lays the groundwork for irreversible thermodynamics of linearized processes
and will be a critical component in the formulation of the models below.
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2.2.3 Solute fluxes in binary systems
The case of mass transport at the interface between a liquid and solid phase in a binary
mixture composed of two species A and B will be considered, where temperature variations
across the interface are negligible along with the hydrodynamic and elastic phenomena. Ac-
cording to equation (2.14), the entropy production rate at the interface is given by [5]:

T ṡirr = IA
(
µ

s
A−µ

l
A
)
+ IB

(
µ

s
B−µ

l
B
)

(2.17)

where all quantities are at the interface, with T the temperature, µ
φ

i the chemical potential of
species i in phase φ ∈ l,s, and Ii the flux density of i ∈A,B. In analogy with equation (2.14),
Ii is identified as the local flux density and ∆µi = µs

i −µ l
i the associated thermodynamic force.

Considering that the linear regime is a good first approximation even for highly out-of equi-
librium processes, the fluxes are linear functions of the thermodynamic forces [45]:

IA = LAA ∆µA +LAB ∆µB (2.18)
IB = LBA ∆µA +LBB ∆µB (2.19)

where Ii are the same independent fluxes intervening in the entropy production (2.17), and
∆µi = µs

i − µ l
i . Li j are called phenomenological coefficients, kinetic parameters or Onsager

mobilities.

Introducing the expression of the local fluxes Ii in the entropy production rate (2.17), quadratic
forms of the thermodynamic forces are obtained:

T ṡirr = ∑
i j

∆µi Li j ∆µ j (2.20)

In order to ensure a positive entropy production ṡirr ≥ 0 in accordance with the second princi-
ple of thermodynamics, the kinetic coefficients matrix must be positive definite. This implies
that all the diagonal elements of the matrix are positive (meaning that diffusion of an ele-
ment i in presence of some gradient of i only takes place only in the direction of decreasing
chemical potential), whereas the off-diagonal elements must satisfy a condition of the form:

LAALBB ≥
1
4
(
LAB +LBA

)2 (2.21)

Moreover, from considerations of statistical thermodynamics, Onsager establishes a reci-
procity relation between the cross terms, resulting in the following conditions for the kinetic
parameters [6]:

Lii ≥ 0 (2.22)
LAB = LBA (2.23)

LAA×LBB ≥ L2
AB (2.24)

From equations (2.18) and (2.19) and using mass balance equations, it is possible to determine
the time evolution of all local thermodynamic state variables at the interface.
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2.3 Hillert model
Baker and Cahn [46] have developed a sharp interface model grounded in irreversible ther-
modynamics, with special emphasis on solidification. They explored the precipitation of a
solid phase, denoted as α , from a supersaturated liquid with a given composition xl . Using a
tangent-to-tangent construct in the Gibbs energy plot, they have defined the range of thermo-
dynamically possible interface concentrations in the solid, given by the area bordered by the
vertical lines stretching from xα

1 to xα
3 in figure 2.2. The concentration in the solid that would

give the higher driving force corresponds to xα
2

Upon solidification, a liquid layer at concentration xl is assumed to transform into a solid
layer at concentration xs by adjusting its composition by diffusion in the liquid phase while
considering that diffusion in the solid phase is negligible (x stands for the molar fraction
of species B). The Gibbs energy will decrease by ∆Gtot (counted positively by convention)
during the whole process:

∆Gtot = (1− xs)
(
µ

l
A−µ

s
A
)
+ xs (

µ
l
B−µ

s
B
)

(2.25)

In fact, Baker and Cahn’s model is quite similar to what Hillert [47] has introduced early for
trying to unify the description of the different transformations observed in Fe-C steels, from
diffusion-controlled to martensitic. He described the transformation by assuming two inde-
pendent processes: the first one involving a diffusionless transformation by simple interface
migration; the second one allowing the solute to migrate back into the parent phase by some
so-called trans-interface diffusion. Hillert later reformulated equation (2.25) as follows [41]:

∆Gtot = (1− xl)
(
µ

l
A−µ

s
A
)
+ xl (

µ
l
B−µ

s
B
)
+(xl− xs)

(
µ

l
A−µ

s
A−µ

l
B +µ

s
B
)

(2.26)

The first two terms and the last term in the above equation are identified as:

∆Gm = (1− xl)
(
µ

l
A−µ

s
A
)
+ xl (

µ
l
B−µ

s
B
)

(2.27)

∆Gt = (xl− xs)
(
µ

l
A−µ

s
A−µ

l
B +µ

s
B
)

(2.28)

∆Gm is called the interface migration driving force which is used to overcome the resistance
to interface displacement at constant concentration, such as friction and pressure stemming
from interfacial energy. ∆Gt is the change in Gibbs energy following the diffusion of elements
A and B across the interface to adjust the composition from xl to xs by diffusing back the
quantity (xl− xs) of solute element.
The combination of the two processes is illustrated by the molar Gibbs energy construct in
the diagram in figure 2.3. The total driving force for solidification is given by the tangent-to-
curve representation, which is the distance, at position xα , between the curve of the solid α

phase and the tangent line to the liquid curve at concentration xl . ∆Gm is defined graphically
by taking the tangent to the curve of solid α at concentration xα , and plotting its parallel at
position xl on the liquid curve. ∆Gm is then given by the distance from this parallel (repre-
sented by the dashed line) to the tangent at the liquid curve at xα . Finally, ∆Gt is deduced by
subtracting ∆Gm from ∆Gtot, as illustrated in figure 2.3.
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Figure 2.2 – Molar Gibbs energy diagram giving the possible concentration range in solid α precipi-
tating from some liquid at composition xl [48].

Figure 2.3 – Gibbs energy diagram showing the decomposition of the driving force into the migration
and trans-interface diffusion contributions [49].

The flux of atoms incorporated in the solid that causes the interface to migrate with a velocity
v is given by [41]:

Im =
v

vm
= IA + IB (2.29)

where v is the interface velocity, vm is the molar volume which is assumed to be equal and
constant in both phases for the sake of simplicity. IA and IB are the fluxes of the individual
species, coupled to the differences in their chemical potentials between the two phases via
equation (2.18) and (2.19).
A and B atoms exchange across the interface to regulate the concentration in both phases via
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the trans-interface diffusion, assumed to be independent of the driving force for the migration
process, at the following rate:

It = (xl− xs) Im = (xl− xs)
v

vm
= jl− js (2.30)

where jl and js are the diffusion current densities inside the liquid and solid phases respec-
tively. The last equality in (2.30) is the usual solute balance at a moving interface exhibiting
solute partitioning.
The solute atoms that are not incorporated in the solid layer at the interface, are evacuated
by diffusion inside both phases. The trans-interface diffusion flux It is thus the difference
between the fluxes in the two adjacent phases. In the case of steady-state growth where there
is no gradient in the solid phase, It is equal to the flux in the liquid bulk jl at the interface.

The driving forces for migration are usually considered to feature a linear dependency on
its corresponding flux, assuming that higher order terms have a negligible influence on the
kinetic of the system:

Im =
M
vm

∆Gm (2.31)

where M is the interface mobility.
Buchmann and Rettenmayr [49, 50, 51] have proposed to relate the mobility to the maximum
crystallisation velocity v0, usually assumed to be of the order of magnitude of the sound
velocity in metals,

M =
v0

RT
(2.32)

The driving force for exchanging A and B across the interface is independent of the migration
process and is given by the difference ∆(µA−µB). Using (2.28) the trans-interface diffusion
is given by:

It =
1

vm
L∆
(
µA−µB

)
=

1
vm

L
∆Gt

xl− xs (2.33)

with L a kinetic coefficient, defined in [49, 50] as:

L =
vD

RT
(2.34)

where vD is the diffusion velocity given by the ratio of the interdiffusion coefficient Di inside
the interface and the interface width a,

vD =
Di

a
(2.35)

Combining (2.29) with (2.31), and (2.30) with (2.33) gives the solid/liquid interface velocity
with respect to the driving forces:

v = vm Im = M ∆Gm (2.36)

v =
vm

xl− xs It = L
∆Gt

(xl− xs)2 (2.37)
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Injecting the expressions of the driving forces ∆Gm and ∆Gt in (2.36) and (2.37) gives the
final system of equations to solve:

v = M
[
(1− xl)∆µA + xl

∆µB
]

(2.38)

v = L
∆µA−∆µB

xl− xs (2.39)

This system of equations can be solved for a given velocity and kinetic parameters M and L
to get the concentrations (xl,xs) at the interface.

Specific constructs of the driving force can be performed depending on the values of the pair
concentrations (xl,xs). Two extreme cases are illustrated in figure 2.4 for the case of melting
(S→ L).
The first case corresponds to two tangents that are parallel. Therefore, the totality of the
driving force is dissipated through interface migration and the interface velocity is maximum.
Although there is some trans-interface diffusion to adjust the partitioning between the solid
and liquid, the process does not consume any driving force due to the compensation of one
chemical potential jump by the other one (∆µA = ∆µB).
The second scenario is having the tangent of the liquid G-curve intersecting the solid G-curve
at the solid concentration xs. Here, the entirety of the driving force is consumed by solute
redistribution, rendering ∆Gm = 0, which in turn leads to an infinitely slow velocity.
Interestingly, in both these extreme cases where ∆Gm or ∆Gt are null, the velocity does not
mirror this zero value, as (2.38) or (2.38) might suggest. Trans-interface and migration fluxes
subsist, but they do not require any energy expenditure in one or the other case.

Hillert graphical interpretation of the driving force in the context of solidification, as de-
tailed in [41], is not without shortcomings. In particular, it does not remain valid throughout
the spectrum of potential solid concentrations.
In fact, examining a case where the solidified concentration lies between xα

1 and xα
2 , as de-

picted in figure 2.2, it becomes apparent that the graphical construct becomes untenable be-
cause it would require ∆Gt < 0 when ∆Gm > 0. Hillert model does not address this particular
case, suggesting that some of the model’s underpinning assumptions may not apply to such
scenarios. This gap underscores the need for further exploration and refinement of the model
to accommodate a broader range of solid concentrations.

In his work, Cahn [52] elucidates the scenario in which an infinitesimal quantity of a
material with composition xi is transferred from a phase with composition xl to another phase
with composition xs. Under such circumstances, the modification in Gibbs energy, as repre-
sented by equation (2.25), is revised accordingly:

∆Gtot = (1− xi)
(
µ

l
A−µ

s
A
)
+ xi (

µ
l
B−µ

s
B
)

(2.40)
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Figure 2.4 – Schematic diagram of two extreme cases of melting where all the driving force is dissi-
pated by either migration or trans-interface diffusion [50].

Figure 2.5 – Schematic diagram for obtaining the free energy change when transferring material of
composition Cr from a phase α at concentration Cα to β at concentration Cβ [52].
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The tangent-to-curve principle in Hillert model evolves into a tangent-to-tangent rule (refer
to Figure 2.5) when xi does not align with the precipitated phase, and into a curve-to-curve
rule when the transformation is diffusionless.
Until now, it has been assumed that during solidification, the composition change from xl to
xs was mainly driven by diffusion in the liquid phase, and that the diffusion flux in the solid
was zero such that the solid precipitated with a constant composition. Negligible flux in the
solid can be due to either very slow diffusion or vanishing concentration gradients. In this
case, the interface composition xi was considered equal to the solid composition xs. However,
this simplification does not hold for non-steady-state transformations (or when a gradient is
present in the product phase), such as melting, as both the parent and the product phases can
alter the interface composition through diffusion ( js , 0) [7].
Consequently, the driving force for melting is adjusted to account for the intermediate com-
position xi as follows [7, 48] (be aware that now ∆Gtot > 0 for melting):

∆Gtot = (1− xs)
(
µ

s
A−µ

l
A
)
+ xs (

µ
s
B−µ

l
B
)
+(xs− xi)

(
µ

s
A−µ

l
A−µ

s
B +µ

l
B
)

(2.41)

The quantity xs− xi is determined, considering the solute balance, as function of the ratio
between the fluxes in the two adjacent phases [53, 48]:

xs− xi =
xs− xl

1− jl/ js (2.42)

As inferred from equation (2.42), if diffusion in the growing phase (liquid in this context) is
neglected, xi becomes the concentration of the growing phase. Hence, the transferred quantity
xi is function of the concentration at the interface and the fluxes of both phases [51]:

xi =
xs jl− xl js

jl− js (2.43)

Now, the driving force for migration is dependent on the interfacial concentration xs of solid,
while the driving force for trans-interface diffusion depends on both xs and xi:

∆Gm = (1− xs)
(
µ

s
A−µ

l
A
)
+ xs (

µ
s
B−µ

l
B
)

(2.44)

∆Gt = (xs− xi)
(
µ

s
A−µ

l
A−µ

s
B +µ

l
B
)

(2.45)

Unfortunately, the new expressions of migration and trans-interface fluxes were not ex-
plicitly laid out in Rettenmayr papers. To establish the relationship between the fluxes and
driving forces, one could follow the same procedure or assumptions that were used to derive
the linear dependence of interfacial fluxes on their corresponding driving forces (Eqs. (2.18)
and (2.19)). Starting from equation (2.17), the entropy production rate can be written as a
function of the migration and trans-interface fluxes and driving forces, and from there, the
expressions for the fluxes can be deduced:

T ṡirr = IA ∆µA + IB ∆µB

=
[
(1− xs)v+ js

B
]

∆µA +
[
xs v− js

B
]

∆µB

= v
[
xs

∆µB +(1− xs)∆µA
]
+ js

B
(
∆µA−∆µB

) (2.46)
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Figure 2.6 – Qualitative representation of a transferred layer of composition X i to the liquid phase
L [48].

Figure 2.7 – Representation of solutal melting as presented by Hillert and Rettenmayr in [48], where
concentrations of both phases lie in their respective one-phase field, Xα and XL. As opposed to
solidification, Hillert decomposition is thus constructed at an intermediate concentration X i of the
parent phase rather than the growing phase.
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Now, ∆µ = µs−µ l , as opposed to solidification. Moreover, in (2.46) xs ∆µB +(1− xs)∆µA
is the driving force for migration as defined in equation (2.27) associated to the migration
flux which is the velocity v. Consequently, js

B and ∆µA−∆µB can be identified as the trans-
interface flux and driving force respectively.
In the formalism of irreversible thermodynamics, the fluxes depend linearly on the driving
forces:

Im = v = M
[
xs

∆µB +(1− xs)∆µA
]

(2.47)

It = js
B = L

(
∆µA−∆µB

)
(2.48)

which are the same equations defined earlier in (2.31) and (2.33).
The trans-interface flux is then given by:

It = js = v(xs− xl)+ jl = vxs− (vxl− jl) = vxs− IB (2.49)

The interface velocity v is given by the mass balance equation:

v =
jl
B− js

B
xl− xs (2.50)

so that substituting this expression into the interfacial flux of B atoms IB yields:

IB = vxl− jl = xs v− js
B =

xs

xl− xs ( jl
B− js

B)− js
B =

xs jl
B− xl js

B
xl− xs (2.51)

From the definition of xi in (2.43), the following expression is obtained:

IB = vxi (2.52)

Substituting equation (2.52) into (2.49) gives:

It = vxs− vxi = v(xs− xi) = Im (xs− xi) (2.53)

Finally, the system of equation that relates the interface velocity to the interfacial concentra-
tions in the case of melting can be obtained by combining (2.53) with (2.48) and (2.47):

v = M
[
xs

∆µB +(1− xs)∆µA
]

(2.54)

v =
It

xs− xi = L
∆µA−∆µB

xs− xi (2.55)

Contrary to the simplified scenario of solidification presented in Hillert model, where diffu-
sion in the solid phase is overlooked, the present context requires consideration of diffusion
in both adjoining phases in order to accurately determine the concentration of the transferred
solute quantity, xi.
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2.3.1 Results and discussion
To investigate the outcomes of the Hillert model, the Cu-Ni system studied by Deillon et al.
[4] for solidification was considered. For that purpose, the CalPhaD expressions and data
of the Gibbs energies of solid and liquid phases were taken from [54]. The resulting phase
diagram is illustrated in figure 2.8, where the liquidus is plotted in red and the solidus in black.
The melting temperatures for copper and nickel are Tm(Cu) = 1086°C and Tm(Ni) = 1455°C
respectively.
The Gibbs energy curves at T = 1115°C are plotted in Figure 2.9. The dashed line represents
the common tangent intersecting both G-curves at the equilibrium concentrations, xs

eq = 0.907
for the solid phase and xl

eq = 0.930 for the liquid phase, close to the pure Cu border.
The parameters entering M and L, as given by equations (2.32) and (2.34), were drawn from
the study by Buchmann and Rettenmayr [50], which was applied to the Cu-Ni system: val-
ues v0 = 1000m/s and the interface width a = 0.6nm were taken. To emphasize the non-
equilibrium interfacial behavior for illustrative purposes, it was assumed that the diffusion
coefficient at the interface Di is the interdiffusion coefficient in solid. The parameters of the
Arrhenius law were sourced from [55] (D0

s = 1.4×10−4 m2/s and Q = 228.2kJ/mol) which
gives at 1115 °C Ds = 3.614×10−13 m2 s−1.

Figure 2.8 – Cu-Ni diagram as calculated from the CalPhad expressions and data in [54].
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Figure 2.9 – Gibbs energy curves (in Jmol−1) of liquid (red) and solid (black) in the Cu – Ni system at
T = 1115°C. The red and black points are the liquidus and solidus concentrations respectively.

Figure 2.10 – Hillert construct of the driving force for solidification at v = 0.7µm/s in the binary
Cu-Ni system at T = 1115°C. The curves are Gm− xdGm/dx(xs) (in Jmol−1).60



For a specified velocity, the system of equations (2.38) and (2.39) can be solved using the
fsolve function from the Scipy library. The resulting Hillert construct is illustrated in figure
2.10 for a fixed velocity v = 0.7µm/s, and the following values of the mobilities: M = 8.66×
10−2 molJ−1 ms−1 and L = 5.22× 10−8 molJ−1 ms−1. To make reading of the construct
easier, the tangent line to the solid G curve has been subtracted from the Gibbs energies, i.e.,
the curves are Gm− xdGm/dx(xs), where the slope is evaluated at the concentration in the
solid xs. Therefore, the tangent to the G curve of solid is the thick black horizontal dashed
line. The thin horizontal black dashed line is the parallel line passing through the tangent
point to the liquid G curve. The distance between both horizontal lines is the driving force
for migration ∆Gm. In the present example, this contribution is small with respect to the
driving force for trans-interface diffusion ∆Gt.

The evolution of the interfacial concentrations as a function of the imposed interface ve-
locity is shown in figure 2.11. Concentrations start at the equilibrium ones at v = 0. Rapidly,
the concentrations of both phases deviate from equilibrium inside the two-phase domain, as
interface velocity increases: the concentrations of both sides of the interface get closer to
each other and the solute partitioning decreases drastically (xs/xl → 1). For v ≥ 0.1m/s, xs

and xl are very close and evolve jointly, decreasing progressively with increasing velocity.
When the interface velocity exceeds about 3.8 m/s, the concentrations of solid and liquid are
almost the same and fall outside the two-phase domain to penetrate into the solid phase field
(Figure 2.11 bottom). It is worth stressing that this can be achieved for very large interface
velocities, on the order of 1 m/s, for the selected parameters and for the particular system
investigated.

If qualitatively somehow similar trends are reported by Buchmann and Rettenmayr [50], such
as the non-monotonic evolution of the interfacial concentrations with v, these authors seem
not to have achieved the high velocity regime where the solid and liquid concentrations pene-
trate into the one-phase field. This is likely to be due to the differences in the Gibbs energies
associated with our different binary alloys.
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Figure 2.11 – Solid and liquid concentrations in Cu as function of the interface velocity (top: zoom in
the lowest velocities range) for M = 8.66×10−2 molJ−1 ms−1 and L = 5.2195×10−8 molJ−1 ms−1.
The two horizontal lines represent the equilibrium compositions.
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The evolutions of the concentrations with respect to the kinetic parameters M and L are
plotted in figures 2.13 and 2.12 for a fixed interface velocity (v = 0.7µms−1). Given a fixed
velocity, according to equations (2.38) and (2.39), small values of L (respectively, M) imply
a high diffusion driving force ∆Gt (respectively migration driving force ∆Gm).

In the case illustrated in figure 2.12, when L is very large, ∆Gt tends to zero. According to
the definition of ∆Gt in (2.28), it implies that ∆µA−∆µB → 0, meaning that both G-curve
tangents become parallel. For reasonable values of M (i.e. excluding the extreme case where
∆Gm→ ∞), the concentrations tend towards the equilibrium values where both curves share
the same tangent. On the other hand, small values of L imply that ∆Gt is large, indicating that
the tangents are non parallel and the concentrations can only deviate from equilibrium: very
small L favors non partitioning transformations because the process of atom redistribution
across the interface is too slow.

In the second case illustrated in figure 2.13, when M is large, the interface migration driving
force ∆Gm is small, and the concentrations approach equilibrium. Here, the liquid concentra-
tion lies in the two phase domain, which corresponds to the construct shown in figure 2.4 for
the case of melting, where ∆Gm = 0 and the entire driving force is dissipated through trans-
interface diffusion (at the largest xl

max). On the contrary, small values of M lead to very large
values of ∆Gm that is expended on friction and surface energy, with ∆Gm is largest when both
concentrations lie in the solid one-phase domain.

In figure 2.13 and 2.12 it is worth noting that L and M influence the evolution of the interfacial
concentrations in very different ways. L influences mainly partitioning, as expected from
usual solute drag theory (e.g. [56]): as trans-interface diffusion becomes slower with small
L, the two concentrations tend to collapse in the middle of the equilibrium two-phase field
toward the TO line (given by the intersection of the G curves). On the contrary, mobility M for
interface migration significantly impacts the solid and liquid concentrations in a different way.
When small, the interface migration is the limiting process and the interfacial concentrations
strongly deviate from equilibrium into the one-phase domain of solid. For the particular
system and velocity selected, it seems that the order of magnitude of M should be smaller
than L to influence significantly the interfacial concentrations.
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Figure 2.12 – Dependency of the solid and liquid concentrations in Cu with mobility L (in
molJ−1 ms−1) at v = 10−3 µms−1 and M = v0/(RT ) = 8.66×10−2 molJ−1 ms−1.

Figure 2.13 – Dependency of the solid and liquid concentrations in Cu with mobility M (in
molJ−1 ms−1) at v = 10−7µms−1 and L = Di/(aRT ) = 5.2195×10−8 molJ−1 ms−1.
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These two effects can be observed directly on the concentration versus velocity curves.
Taking the curve in figure 2.11 as a reference, an increase in M results in the interface concen-
trations remaining within the two-phase domain as shown in figure 2.14. When increasing the
L parameter, the concentration partitioning is amplified, as illustrated in figure 2.15. Thus, M
determines the domain in which interface concentrations lie, while L governs the concentra-
tion partitioning between the solid and liquid phases.

This model predicts interfacial compositions based on instantaneous velocity and the
values of the kinetic parameters L and M. However, the model validity has not been really
supported by experimental results, and the practical use of such arbitrary driving force de-
composition remains unclear*. The direction of transformation must be known beforehand,
precluding the model ability to predict the type of transformation (i.e. melting or solidifica-
tion). Furthermore, considering that migration and redistribution of solute as two independent
processes does not offer better insights into the processes occurring at the interface. In par-
ticular, as will be discussed at the end of this chapter, this choice is arbitrary and restrict the
interfacial behaviors that can be described.

*with this respect, it is interesting to note that Hillert himself has recognize the arbitrariness of such a
decomposition in [41].
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Figure 2.14 – Solid and liquid concentrations in Cu as function of the interface velocity for L =
5.22× 10−8 molms−1 J−1 and M = 3.47molms−1 J−1, 40 times larger than in the reference case in
figure 2.11.

Figure 2.15 – Solid and liquid concentrations in Cu as function of the interface velocity for M =
0.0866molmJ−1 s−1 and L = 5.22×10−6 molmJ−1 s−1, 100 times higher than in the reference case
in figure 2.11.
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2.4 Lesoult model
A new approach for handling non-equilibrium interfaces is proposed, which does not rely
on Hillert arbitrary decomposition of the driving force into two independent processes. The
downside of Hillert model is the requirement for knowing beforehand the direction of the
transformation (S → L or L → S), which determines the system to be solved. The model
proposed here does not impose this prior knowledge. Instead, it allows the system to evolve
freely from its initial conditions, compliant with the second law of thermodynamics.
Picking up from Lesoult calculations in [57] with simplified notations and assumptions, e.g.
equal molar volumes between solid and liquid, the interfacial fluxes of A and B are redefined
as:

IA =
[
(1− cs)vs + js

A
]
·ns =−

[
(1− cl)vl + jl

A
]
·nl (2.56)

IB =
[
cs vs + js

B
]
·ns =−

[
cl vl + jl

B
]
·nl (2.57)

where ns = −nl are the unit vectors normal to the interface, pointing respectively into the
solid and the liquid, and where vφ is the mean velocity of atoms (A and B) in phase φ The
following convention is adopted: v = vs ·ns =−vl ·nl (v > 0 for solidification). To differen-
tiate the Lesoult model from the Hillert one, the solute molar fractions of B is denoted as c
rather than x (concentration of A is 1− c).

From the postulate of linearity of fluxes with the driving forces (chemical potentials) in equa-
tion (2.18) and (2.19):

(1− cs)v+ js
A ·ns = LAA ∆µA +LAB ∆µB (2.58)

cl v−Jl
B ·nl = LBA ∆µA +LBB ∆µB (2.59)

(cl− cs)v =
(
jl
B− js

B
)
·nl (2.60)

Equation (2.60) is the solute balance. When vacancies in the solid are neglected, it is found
that js

A =−Js
B and:

(1− cs)v+ js
B ·nl = LAA ∆µA +LAB ∆µB (2.61)

cs v− js
B ·nl = LBA ∆µA +LBB ∆µB (2.62)

(cl− cs)v =
(
jl
B− js

B
)
·nl (2.63)

where ∆µ = µ l−µs whatever the direction of the transformation (contrary to Hillert model
where the conventions must be changed).

Next, simple expressions of the jumps in the chemical potentials are sought to be substi-
tuted into equations (2.61) and (2.62).
For simplicity, the interaction terms in the CalPhaD description of the Gibbs energies have
been neglected, assuming that the solid and liquid phases can be described reasonably well
by ideal solutions. Hence:

µ
φ

i = µ
φ0
i +RT ln

(
cφ

i
)

(2.64)

for i ∈ {A,B} and φ ∈ {l,s}, and where µ
φ0
i is the chemical potential of reference.

At equilibrium, all chemical potentials between coexisting phases are equal so that:

µ
l0
i +RT ln

(
cl eq

i
)
= µ

s0
i +RT ln

(
cseq

i
)

(2.65)

µ
l0
i −µ

s0
i = RT ln

(
cseq

i /cl eq
i
)
= RT ln

(
keq

i
)

(2.66)68



with cφ eq the equilibrium concentration of phase φ , and keq
i = cseq

i /cl eq
i the equilibrium par-

tition coefficient.
The final expression of the jump in chemical potential is derived. For any couple of concen-
trations (cs

i ,c
l
i), one has:

∆µi = RT ln
(
keq

i cl
i/cs

i
)

(2.67)

The next step consists in assessing the fluxes in the bulk in equations (2.61)-(2.63). With
ideal solutions, the expressions of the fluxes in terms of the gradient of chemical potentials
reduce simply to the 1st Fick’s law. Introducing characteristic diffusion lengths δ φ to express
the concentration gradients, the following is obtained:

Jφ

B =−Dφ

B
cφ −〈cφ 〉

δ φ
(2.68)

where 〈cφ 〉 is the concentration in phase φ away from the interface.

Finally, the kinetic coefficients Li j can be related to some kind of interfacial diffusion
coefficients D?

i j characterizing the atom transfer at the interface with units easier to interpret:

Li j =
D?

i j

aRT
(2.69)

where a is the interface width.

Using the definitions in equations (2.68) and (2.69), and normalizing (2.61) and (2.62)
by the rate of diffusion of B atoms in the liquid Dl

B/δ l gives the final system of equations to
solve:

(1− cs)Pe+ γ
(
〈cs〉− cs)= α ∆µ̃A + ε ∆µ̃B (2.70)

cs Pe− γ
(
〈cs〉− cs)= ε ∆µ̃A +β ∆µ̃B (2.71)

(cl− cs)Pe =
(
cl−〈cl〉

)
+ γ
(
cs−〈cs〉

)
(2.72)

where Pe = vδ l/DL
B is the Péclet number and ∆µ̃i = ln

(
keq

i cl
i/cs

i
)

is the non-dimensional
chemical potential jumps of species i. α , β and ε are the non-dimensional interfacial kinetic
coefficients, defined as follows:

α =
D?

AA

Dl
B

δ
′
l (2.73)

β =
D?

BB

Dl
B

δ
′
l (2.74)

ε =
D?

AB

Dl
B

δ
′
l (2.75)

where δ ′l = δl/a is the non-dimensional diffusion length in bulk liquid. The last non-dimensional
parameter is the ratio between the characteristic diffusion times in solid and liquid:

γ =
Ds

B
δs

δl

Dl
B

(2.76)
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2.4.1 Implementation and parameters
Rather than finding the zero of the full nonlinear system, the interfacial solute balance (2.72)
is inserted into (2.71) and (2.70). The resulting system of 2 nonlinear equations with the 2
unknowns (cs,cl) is then solved using a minimization method with the fmin function from
the scipy.optimize module. For that purpose, the squares of equations (2.71) and (2.70)
are summed, and the global minimum is searched by mapping the entire (cs,cl) space with
some specified grid as initial guess for the Nelder-Mead simplex method called by fmin.
Since the kinetic parameters are unknown due to the difficulty of measuring D?

i j (or Li j), the
problem is simplified by assuming that α , β , and ε are simple functions of the interfacial
concentrations. These parameters are also assumed to vary with a quantity α? that mimics
time evolution since they are all proportional to δl (see equations (2.73)–(2.75)) that can be
reasonably assumed to vary as

√
t:

α = α
? f (cl,cs) (2.77)

β = α
? g(cl,cs) (2.78)

ε = λ
√

αβ (2.79)

with λ ≤ 1 to fulfill the condition (2.24) of positive definiteness of interfacial mobilities.

Different concentration dependencies can be considered. Unlike the usual assumption for
solid-liquid interfaces where diffusion depends solely on the liquid side, here, for solutal
melting, a simple linear dependency on solid concentration is considered:

f (cl,cs) = 1− cs (2.80)

g(cl,cs) = cs (2.81)

With these functions ε varies as
√

cs(1− cs).

2.4.2 Results and discussion

Figure 2.16 represents a qualitative time evolution (i.e. versus α? ∝ δ ′l ∝
√

t in logarithmic
scale) of the interfacial concentration of Cu in liquid in red and in solid in black. The dotted
lines represent the equilibrium concentrations. Analogously to solutal melting experiment
of [4], the Cu-Ni system is chosen with T = 1115°C, and the initial concentrations of solid
and liquid are cl = 1 and cs = 0 respectively. Three values of λ have been tested: 0, 0.5 and
1 from light to dark color. γ , accounting for the asymmetrical diffusion time scale between
solid and liquid and is set to 0.2.

The negative value of the Péclet number in figure 2.17 indicates that a dissolution process
is predicted. The liquid starts from a pure composition. During the first transient stage
(α? ≤ 0.02), |Pe| decreases linearly with α? and the liquid concentration drops below the
solidus concentration, while the solid remains pure Ni. In a second stage, for α? ∈ [0.02;4]
the amplitude of the Péclet number decreases faster and tends to 0. The liquid concentration
remains around 85% of Cu (with a very small increase). Solid concentration continues to
increase but is still below 75% of Cu.
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Figure 2.16 – Concentration of Cu in liquid (red) and in solid (black) as function of the non-
dimensional parameter α? varying as

√
t. The lightest curve corresponds to no cross-mobility λ = 0,

while the darkest corresponds to the largest possible cross-mobility λ = 1 (Eq. 2.79).

Figure 2.17 – Péclet number as function of the non-dimensional parameter α?. The lightest curve
corresponds to no cross-mobility λ = 0, while the darkest corresponds to the largest possible cross-
mobility λ = 1 (Eq. 2.79).
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In a third stage, the interface velocity is very small and tends very slowly to 0 (not visible
in figure 2.17). Interfacial concentrations also increase slowly together and achieve their
equilibrium values for α? > 4000. For α? > 3, Pe becomes slightly positive (not visible on
the scale of Figure 2.17), indicating that the system solidifies back. It is worth noting that
such a phenomenon has been observed at the end of solutal melting experiments in both Cu-
Ni and Au-Ag systems [4].
These calculations would suggest that the solutal melting experiments where both solid and
liquid interface concentrations are located in the one-phase domain would correspond to the
second transient stage for α? ∈ [0.02;4]. Considering the definition of this nondimensional
parameter

α
? =

D?
NiNi

Dl
Cu
× δl

a

and assuming that δl =
√

Dl
Cut, the following expression for D?

NiNi can be provided::

D?
NiNi = aα

?

√
Dl

Cu
t

(2.82)

It must be stressed that α? ∝
√

t for D?
NiNi to be constant. Moreover, β is set to scale directly

as α? (Eq. (2.78)) so that the estimation of D?
NiNi holds also for D?

CuCu if one neglect the
dependencies with respect to concentrations. Considering that

• the kinetics at t ≈ 30s in figure 1.5 would correspond to α? = 0.2,
• the order of magnitude found in the literature for the intrinsic diffusivity of Ni in Ni-Cu

liquid around 1100 °C is Dl
Cu ≈ 10−9 m2 s−1, e.g. [58],

• the interface width is about a = 0.6nm,

An interfacial diffusion coefficient D?
NiNi of approximately 6.93× 10−16 m2 s−1 was ob-

tained (corresponding to LNiNi ≈ 10−10 molmJ−1 s−1 ≈ 9.66× 10−5 ÅeV−1 ns−1), which
is three orders of magnitude lower than the intrinsic diffusivity of Cu in Cu-Ni solid around
1100 °C [59, 60]. Nonetheless, using the definition of the Péclet number which takes a value
around −0.5 for α? ≈ 0.2, considering the very low value of D?

NiNi gives a dissolution rate of
about −2.88 µms−1, in agreement with the experiments of [4] (Fig. 1.5).
If one considers that α? ≈ 0.2 corresponds to much shorter times, such as 100 ns (the typical
time reached in our molecular dynamics simulations in §3), the interfacial diffusivity is still
two orders of magnitude (around 10−11 m2 s−1) lower than that of a liquid (and the dissolu-
tion rate much too large, of the order of 5 cms−1).
Finally, the three different curves in Figures 2.16 and 2.17 show that the cross-term ε delays
the process only slightly and does not drastically change the picture.
The same calculations were repeated for different dependencies of the mobilities with the
concentration, with results presented in Figures 2.18 and 2.19. The lightest curve depends
only on cl , as Lesoult suggested [57],

f (cs,cl) = 1− cl

g(cs,cl) = cl
(2.83)

while the darkest depends solely on cs.

72



Figure 2.18 – Evolution of the interfacial concentrations for different dependencies of the mobilities
with concentrations: on cl (clearest), cs (darkest), arithmetic Eqs. (2.84) and geometric averages
Eqs. (2.85) (intermediate transparencies).

Figure 2.19 – Evolution of the Péclet number for different dependencies of the mobilities with con-
centrations: on cl (clearest), cs (darkest), arithmetic Eqs. (2.84) and geometric averages Eqs. (2.85)
(intermediate transparencies).
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The remaining curves rely on different averages, such as arithmetic:

f (cs,cl) = 1− cs + cl

2

g(cs,cl) =
cs + cl

2

(2.84)

or quadratic:

f (cs,cl) =
√
(1− cs)(1− cl)

g(cs,cl) =
√

cs cl
(2.85)

While the evolutions of the concentration profiles remain similar (cs seems to extend slightly
the non-equilibrium regime), the differences emerged in the Péclet number. Indeed, when
the mobilities depend on cs, Ni dissolves in Cu (Pe < 0) as previously; on the contrary,
when the mobilities depend on cl , one observes only solidification (Pe > 0), in complete
contradiction to the experiments. Taking into account two different averages, Eqs. (2.84) and
(2.85) between cs and cl slow down the entire process with Pe remaining moderate. Still, the
direction of the transformation, whether dissolution or solidification, differs and depends on
the weight attributed to either solid and liquid. Thus, the concentration dependence of the
mobilities is critical in determining the direction of transformation.

Finally, the influence of the ratio γ between the diffusion rate of Cu in solid Ds
Cu/δs and

in liquid Dl
Cu/δl was investigated. For that purpose, calculations with different values of

γ ∈ {0.1; 0.25; 0.3; 0.5; 1}† was performed. The evolutions of the concentrations and Péclet
are plotted in Figures 2.20 and 2.21 respectively, the largest γ the darkest. It is clear that
changing γ has a strong influence on the process. The largest γ (i.e. when Cu diffuses rapidly
in Ni solid) the longest the non-equilibrium regime: the liquid concentration at the interface
dives more deeply in the solid phase field for a longer duration, and the solid concentration
only starts to increase for α? > 0.2. On the contrary, for the lowest γ , the behavior is very
different. Indeed, the liquid concentration remains in the liquid phase field and the solid
concentration increases rapidly (α? ≤ 0.1) to penetrate also in the liquid phase field. It seems
that there is a critical ratio (in between γ = 0.1 and the reference case at γ = 0.2) above
which the two interfacial concentrations dive into the solid one phase field. The evolution of
the Péclet number is relatively unaffected: All values cause the process to start with a fast
dissolution stage (Pe< 0). Nonetheless, the smaller γ leads to a faster decay of the dissolution
rate (almost finished for α? > 0.1), and for γ = 1 a larger overshoot of Pe in the solidification
domain is observed. These results suggest that bulk diffusion in both phases significantly
influences the shape of the concentration profile at the interface.

†The reference case discussed previously was for γ = 0.2
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Figure 2.20 – Influence of γ ∈ {0.1; 0.25; 0.3; 0.4; 1} (lightest to darkest) on the evolution of the
interfacial concentrations.
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Figure 2.21 – Influence of γ ∈ {0.1; 0.25; 0.3; 0.4; 1} (lightest to darkest) on the evolution of the Péclet
number.
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Although the predictions of Lesoult model shown above seem appealing, it has been
found that the interfacial diffusivities should be much smaller than their bulk counterparts to
comply with the experiments [4]. Therefore, the case of solidification using the values of the
reference case of solutal melting has been examined. It must be emphasized again that the
equations to solve remain the same regardless of the direction of the transformation, contrary
to the Hillert and Rettenmayr formulation.
Similar to the reference solutal melting calculation, α = α?, f (cs,cl) and β = α?,g(cs,cl)
have been considered. A significant off-diagonal term with λ = 0.9 has been selected, and
a small ratio γ = 0.1 has been chosen. The initial concentrations of Cu cs and cl were set at
their equilibrium values at 1150 °C, which is higher than the holding temperature of 1115 °C.
According to the phase diagram in Fig. 2.8, cs and cl starts at values below the solidus, as
shown also in Figure 2.22 where the horizontal dashed lines define the boundaries of the two
phase field. As expected, this initial condition induces the solidification of the system, as
clearly shown by the positive values of the Péclet number in Figure 2.23. During the entire
process (α? ≤ 104), the interfacial concentrations are out of equilibrium. They are starting
to increase towards their equilibrium values around α? ≈ 102. Using the same values of
interfacial diffusivities/mobilities as those found to agree with solutal melting experiments,
the interface would remain out of equilibrium for more than 7.5× 106 s. This is obviously
not the usual time scales for the initial transient regime in solidification processes. If one
considers that this time scale should be smaller than 0.1 s (which gives solidification rates
O(1µms−1)), one obtains D?

NiNi = 6× 10−12 m2 s−1, four orders of magnitude larger than
for solutal melting. The reason for the discrepancy has remained puzzling, and no arguments
have been found that can reconcile the parameters compliant with solutal melting on the one
hand and solidification on the other hand.

Surprisingly, neither the concentration profiles nor the Péclet number is affected by the
concentration dependence of the kinetic parameters in the case of solidification. Unlike the
configuration that leads to solutal melting, Pe in this configuration remains unchanged for
all the functions mentioned previously f (cs,cl) and g(cs,cl). The controlling parameter is
γ , which represents the ratio of the diffusion coefficients of solid and liquid. A high value
of γ indicates a more significant diffusion in the solid phase, delaying the transformation,
while a low γ value suggests greater diffusion in the growing phase, leading to an accelerated
transformation.
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Figure 2.22 – Evolution of the solid and liquid concentrations at the interface during solidification.

Figure 2.23 – Pe evolution of solid and liquid phase during solidification.
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2.5 Mapping Hillert and Lesoult formulations
Although the use of the Lesoult model was motivated by the flaws and unnecessary assump-
tions of the Hillert model, it is shown in this last section that an equivalence between them
can be established.
Starting from the same assumptions, the entropy production rate is written as:

T ṡirr = Im A m + ItA t = IA∆µA + IB∆µB ≥ 0 (2.86)

where the affinities A t and A m have been introduced, associated to the migration and trans-
interface fluxes Im and It respectively.
As stated in equation 2.46, the entropy production rate can be expressed in terms of liquid
fluxes and concentrations as follows:

T ṡirr = ImA m + ItA t = v
[
xl

∆µB +(1− xl)∆µA
]
+ jl

B (∆µA−∆µB) (2.87)

By simple analogy, and using (2.57) and (2.87), the following equations are found:

Im = v = IA + IB

It = jl
B =−IB + xl

B v = xl IA− (1− xl) IB
(2.88)

In (2.87), the affinities associated with migration and trans-interface diffusion can be identi-
fied:

A m = xl
∆µB +(1− xl)∆µA

A t = ∆µA−∆µB
(2.89)

In Hillert model, the affinities are related to the Gibbs energies as follows: A m = ∆Gm and
A t = ∆Gt/(xl− xs).
Using (2.88) and (2.89), the reciprocal expressions of the flux and driving forces for each
species can be obtained:

IA = (1− xl) Im + It (2.90)

IB = xl Im− It (2.91)

∆µA = A m + xl A t (2.92)

∆µB = A m− (1− xl)A t (2.93)

Now, the general expressions relating the flux and forces for the migration and trans-interface
diffusion processes is introduced:

Im = Lmm A m +Lmt A
t (2.94)

It = Ltm A m +Ltt A
t (2.95)

These equations are the same as equations (2.36) and (2.37) defined by Hillert, with the only
difference in the cross terms not being neglected in the present case.
The Onsager conditions on the kinetic parameters impose the following constraints:

Lmt = Ltm (2.96)
Lmm, Ltt ≥ 0 (2.97)

Lmm×Ltt ≥ L2
mt (2.98)
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By combining the expressions (2.88), (2.18) and (2.19), the migration flux can be written as
follows:

Im = IA + IB = (LAA +LBA)∆µA +(LBB +LAB)∆µB (2.99)

The chemical potentials can be replaced by their expressions (2.90) and (2.91) with respect
to the affinities :

Im =
[
LAA +2LBA +LBB

]
A m +

[
xlLAA− (1−2xl)LAB− (1− xl)LBB

]
A t (2.100)

Using the same procedure for the trans-interface flux, the following expression is obtained:

It =
[
xlLAA− (1−2xl)LAB− (1− xl)LBB

]
A m

+
[
(xl)2LAA−2xl(1− xl)LAB− (1− xl)2LBB

]
A t (2.101)

Thus, by simple analogy, the relation between the kinetic parameters of both models is found:

Lmm = LAA +2LBA +LBB

Ltt = (xl)2 LAA−2xl(1− xl)LAB− (1− xl)2 LBB

Lmt = xl LAA− (1−2xl)LAB− (1− xl)LBB

(2.102)

The reciprocal formulation is given as follows:

LAA = (1− xl)2 Lmm + 2(1− xl)Lmt + Ltt

LBB = (xl)2 Lmm − 2xl Lmt − Ltt

LAB = xl(1− xl)Lmm − (1−2xl)Lmt − Ltt

(2.103)

Upon revisiting Hillert model (Eqs. (2.36) and (2.37)), the fluxes are replaced with their
respective definitions provided in equations (2.94) and (2.95):

v = Im = Lmm A m +Lmt A
t (2.104)

v =
It

xl− xs =
1

xl− xs

(
Lmt A

m +Ltt A
t) (2.105)

Hillert model can now be expressed as a function of the kinetic parameters from Lesoult
model, and it has been checked that solving equations (2.104) and (2.105) yields the same re-
sult as the Lesoult initial formulation. It is worth emphasizing that Hillert original equations,
as defined in [41], emerge when the cross terms Lmt = Ltm are neglected.
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2.6 Conclusion
This investigation has shed light on the dynamic mechanisms underpinning phase transforma-
tions in metal alloys, highlighting the importance of accurate thermodynamic modeling. The
work has demonstrated the shortcomings of existing models such as the Hillert one, which,
despite providing a valuable framework for understanding phase transformations, presents
limitations, as it does not fully account for all possible scenarios, especially when the solidi-
fied concentration falls within a certain range. The assumption that the interface composition
equals the solid composition is challenged in cases of nonsteady-state transformations, re-
quiring a revision of the Gibbs energy decomposition and the equations involving the model
depending on the direction of the transformation. The model’s practical application is thus
somewhat limited due to its requirement for prior knowledge of the transformation direction,
which restricts its predictive capabilities. Moreover, the decomposition of the driving force
into two independent processes seems also very restrictive

In response to the limitations of the Hillert model, the Lesoult model has been used as
a more flexible alternative. The strength of this model lies in its approach to manage non-
equilibrium interfaces. Notably, it does not require a predefined direction of transformation,
offering a more unified view of interface migration during phase transformations. The model
has reproduced qualitatively the peculiar behavior observed in solutal melting experiments
in both Cu-Ni and Au-Ag systems, where the interface concentrations seem to penetrate into
the solid phase field.
Moreover, the crucial role of the kinetic parameters, also known as Onsager parameters, in
these models has been highlighted. These parameters, which dictate the relationship between
fluxes and driving forces in irreversible thermodynamic processes, are key to a comprehen-
sive understanding of phase transformations. Interestingly, the analysis has confirmed the
equivalence between Hillert and Lesoult models, providing a deeper understanding of how
kinetic parameters influence these models. In particular, this has shed light on the unneces-
sary removal of kinetic cross terms in the dominant use of Hillert model.
Yet, the accuracy and predictive capabilities of these models hinge on the precise estimation
of the kinetic parameters. Indeed, a crude estimate of these parameters suggests that very
small mobilities would be necessary for recovering the experimental time scales, in contra-
diction with the predictions of solidification.

To address these issues, the upcoming investigation will use molecular dynamics sim-
ulations to estimate these parameters and subsequently feed them into the thermodynamic
model.
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CHAPTER 3

Molecular dynamics

3.1 Molecular dynamics overview

The concept of molecular dynamics (MD) as a numerical simulation method was first pro-
posed in the late 1950s by Alder and Wainwright, who studied the phase transition of a
hard-sphere system which relies on perfect elastic collisions of particles [61]. Later, in 1964,
Rahman made a significant stride forward by using MD with continuous potential (Lennard-
Jones) to simulate liquid argon, and calculated physical properties such as the coefficient of
self-diffusion, which were found to agree well with experimental measurements [62]. Rah-
man’s work became widely known for integrating the equations of motion with the finite
difference method, which involved a step-by-step integration process to approximate molec-
ular trajectories.

In a typical MD simulation, the trajectories of atoms and molecules are determined by
numerically solving Newton’s equations of motion for a system of interacting particles. The
forces between all pairs of atoms are calculated from a well-defined set of interaction po-
tentials, and then each atom is moved accordingly. The prerequisites for these simulations
include an ergodicity of positions and velocities of the atoms in the system and a description
of the interatomic potentials or molecular mechanics force fields for calculating each parti-
cle’s forces and potential energies. Once the forces and the atom masses are known, their
accelerations can be computed. The positions, velocities, and accelerations are enough to
determine the time evolution of the system. By knowing the state of the system, all the other
information such as temperature, pressure and potential/kinetic energies can be calculated us-
ing statistical analysis functions at specified intervals for accessing information, such as for
instance, interfacial interactions or detailed information about individual atoms, which are
usually inaccessible in real experiments.

However, although very attractive because it accounts for the discrete nature of matter,
MD simulations have limitations. They cannot realistically portray macro scale bodies due to

81



constraints on size and time scales. Despite there being no upper limit on both time and length
scales, simulating bulk matter on relevant time scale is difficult because of computational
capacity limitations. Periodic boundary conditions (PBCs) try to circumvent this issue by
simulating bulk matter through replicating the simulation cell throughout space, forming an
infinite lattice by translation in all three Cartesian directions. Each particle that leaves or
enters the simulation cell on one side, an image of the particle enters or leaves through the
opposite side. This property leads to conservation of the number of particles, energies, and
momentums, and removes surface effects. Nonetheless, PBC do not alleviate the problem of
time scale that is achievable with the current computational resources.

3.1.1 Verlet algorithm
The computation of new positions and velocities of particles in MD simulations relies on
solving numerically Newton’s second law of motion:

mi ai = Fi (3.1)

mi
∂ 2ri

∂ t2 =−∂U
∂ ri

(3.2)

Where Fi is the resulting force applied to atom i, mi and ai its mass and acceleration, ri its
position at time t and U the potential energy function.
The most commonly used integration scheme for the equation of motion is the Velocity-Verlet
method 3.2. It calculates the position at t +∆t using the position, velocity, and acceleration
at time t:

r(t +∆t) = r(t)+ v(t)∆t +
1
2

a(t)(∆t)2 (3.3)

With the position r(t +∆t) known, the new forces acting on the particle and hence the accel-
eration at a(t +∆t) can be calculated. The new velocity is calculated in two steps, first at half
the time step t + 1

2∆t then at t +∆t:

v(t +
1
2

∆t) = v(t)+
1
2

∆t a(t) (3.4)

v(t +∆t) = v(t +
1
2

∆t)+
1
2

∆t a(t +∆t) (3.5)

Knowing the position, velocity and acceleration is sufficient to describe the configuration of
the system at time t +∆t, and to compute the next configuration through repeating the same
process.

3.1.2 Ensembles in molecular dynamics
Ensuring MD simulations consistency with experimental data of real systems requires an
accurate representation of the governing thermodynamic properties. MD make use of vari-
ous statistical mechanical ensembles with fixed microscopic parameters that corresponds to
the thermodynamic independent variables (extensive and intensive parameters) derived from
the fundamental equations of thermodynamics. A statistical ensemble is an abstraction that
considers all the virtual copies of a system, each of which is accessible to the real system
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with equal probability. A thermodynamic ensemble is a statistical ensemble in statistical
equilibrium, which strives to derive the properties and interactions between the particles that
constitute the system, bridging the gap between macroscopic properties and microscopic be-
havior.
MD simulations may be run in a number of different thermodynamic ensembles depending
on the purpose of the study. Different macroscopic constraints lead to different types of en-
sembles with particular statistical characteristics. In the following sections, a rapid overview
of the main ensembles used in MD simulations is given.

Microcanonical ensemble (NVE)

The microcanonical ensemble is the default ensemble that is usually employed in MD to
simulate a purely dynamical behavior with no external influence by merely solving Newton’s
equation of motion, as described earlier. This ensemble mimics a completely isolated system
where the number of particles (N), the system volume and the total energy are conserved. The
system cannot exchange heat with the exterior, which is why it is usually used to simulate
adiabatic processes where only exchange of potential and kinetic energy is allowed within
the system, while the total sum of these energies being conserved.

Canonical ensemble (NVT)

The canonical ensemble describes a system in thermal equilibrium with a large heat bath at
a fixed temperature. Unlike the microcanonical ensemble, the energy of the system is not
precisely known, but the temperature (T ), the volume, and the number of particles are spec-
ified. Experiments usually control the temperature instead of the energy, making the canon-
ical ensemble typically favored over the microcanonical ensemble when measuring physical
properties. The temperature control is achieved by applying a thermostat that modifies the
Newtonian MD scheme by modulating the kinetic energies and forces acting on a particle.
Several thermostats are available for this purpose, this includes velocity rescaling, Berendsen
thermostat [63], Nosé-Hoover thermostat [64][65], Andersen thermostat [66] and Langevin
dynamics [67]. Despite the fact that all the mentioned thermostats succeed in maintaining
temperature control, not all of them lead to a behavior that corresponds to a real ensemble.
For instance, the velocity scaling technique adjusts the instantaneous temperature by scaling
all velocities. This method sets the system at the specified temperature, but does not allow
proper temperature fluctuations and doesn’t correspond to any ensemble. Thus, not every
thermostat is valid when it comes to simulating a proper canonical ensemble behavior, and
depending on the investigated physical properties, choosing the correct thermostating method
becomes crucial.
The most popular thermostats for mimicking a canonical distribution are the Langevin, An-
dersen, and Nosé-Hoover. Generally, thermostats are grouped in two categories: stochas-
tic thermostats and deterministic thermostats. Berendsen and Langevin, for instance, are
stochastic thermostats because some randomness is involved in generating the appropriate
velocities to maintain the set temperature. In the case of Andersen, to mimic particle col-
lision with a heat bath, some particles are randomly selected with a given probability; then
random velocities are attributed to these particles according to the Maxwell-Boltzmann distri-
bution of velocities, which results in a velocity consistent with the desired temperature since
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the temperature is related to the average kinetic energy via the equation:

Ec =
〈3

2
N kB T

〉
(3.6)

where kB is the Boltzmann constant, and the brackets 〈·〉 denote the thermodynamic expecta-
tion value in the equilibrium state.

The kinetic energy of the selected particles propagates to the surrounding particles, and the
process is refreshed at a given frequency as the system starts to deviate from the set temper-
ature. The Langevin thermostat modifies the force acting on a particle by adding a frictional
or drag term in addition to a random force representing some thermal motion generated using
the Wiener process in random number theory. Both Andersen and Langevin lead to canoni-
cal distribution, but the fact that momentum transfer is lost during the process of temperature
control allows a particle to have a completely different velocity from one time step to another.
This implies that some of the measured kinetic parameters, such as diffusion coefficients, are
erroneous, which is why, depending on the investigated physical parameters, not every ther-
mostat is viable.
Nosé-Hoover on the other hand is a deterministic and time-reversible thermostat and most
popular for canonical sampling. It is based on the extended Lagrangian formalism, meaning
that it does not deal with random forces or velocities, which makes it ideal for simulating
diffusion coefficients. The basic idea is to include a non-Newtonian term to the force by
introducing a fictitious dynamical variable, symbolizing friction, to maintain the total kinetic
energy constant [68]:

dva

dt
=

Fa

m
−ζ (t)va ∀a (3.7)

dζ

dt
=

1
Q

[
∑
a

ma|va|2− (N +1)kbT
]

(3.8)

where ζ is the thermodynamic friction coefficient, and Q determines the coupling strength of
the thermostat usually regarded as "mass".
The Nosé-Hoover method shares similarities with the Berendsen approach, but has an in-
tegral feedback in rescaling the velocity by knowing the derivative of ζ instead of a direct
feedback, as seen in Berendsen. The gradual increase in the ζ value initiates a growing heat
flow, leading to a smooth temperature increase / decrease, which allows for kinetic energy
fluctuations.
The selection of the correct coupling factor Q is crucial as it dictates the rate at which the
thermostat rescales the temperature. It is important to note that the more a system is sub-
jected to external interferences, the less realistically it behaves. An inappropriate choice of
the coupling parameter could result in a non-canonical distribution.
Finally, the coupling should be small enough to facilitate thermal fluctuations and maintain
a proper canonical distribution. However, too small a coupling may prevent the system from
returning to equilibrium and may induce exaggerated temperature fluctuations around the
equilibrium value. Thus, balancing is the key to ensure accurate and reliable results.
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Isothermal-Isobaric ensemble (NPT)

In the isothermal-isobaric ensemble, both the temperature T and the pressure p are fixed.
The NPT ensemble is much closer to laboratory conditions since the majority of chemical
reactions are carried out under controlled temperature and pressure. NPT is also valuable
for estimating the Gibbs free energies and coexistence curves in mixed phase systems. Just
like for the case of the canonical ensemble, temperature control is performed using the same
thermostats presented earlier, with an additional feature to exert control over the pressure of
the system by means of a barostat.
The barostat modifies the system pressure by rescaling the volume of the simulation box,
and consequently the positions of the atoms, so that it matches the target pressure value. In
molecular dynamics, the pressure is obtained using the virial equation, which connects the
pressure with volume and forces acting on the particles [69]:

p =
NkbT

V
+

1
dV

〈
∑ri j ·Fi j

〉
(3.9)

with d the dimension of the system. Here, the first term, related to the kinetic energy, de-
scribes the pressure of an ideal gas. The second term, called virial, is related to the potential
energy and relies on the sum over all pairs of particles i and j of the forces between them
times their distance.
The most common barostats include Berendsen, Andersen, Nosé-Hoover, Martyna-Tuckerman-
Tibias-Klein (MTTK), Langevin piston, and Parrinello-Rahman barostats. Careful consider-
ations are necessary when combining a barostat with various thermostats. Depending on the
goals, certain combinations may not be suitable. The Berendsen thermostat for example is
very efficient in equilibrating the system. However, due to low pressure fluctuation, this baro-
stat fails to correctly sample the isothermal-isobaric statistical ensemble.
The Parrinello-Rahman barostat, MTTK barostat, and the Nosé-Hoover barostat are all based
on the Andersen barostat, which includes an additional degree of freedom analogous to a
piston. This piston is endowed with a fictitious mass that represents the strength of the cou-
pling, which adjusts the simulation cell volume to balance internal and external pressure.
Strong coupling delays the equilibration process and leads to lower fluctuations in properties,
because the system can only equilibrate by relaxing to different configurations. In contrast,
weak coupling offers poor control but faster system equilibration. Depending on the pressure
tensor, the shape of the simulation box may also change. Thus, the choice of barostat and the
appropriate coupling strength must align with the simulation objectives.

Grand-canonical ensemble (µV T )

In the grand-canonical ensemble, both the energy and particle number are allowed to change.
Instead, the temperature and chemical potential are specified. This ensemble emulates an
open system in thermal and chemical equilibrium with a reservoir, with which energy and
particle exchange is possible. µV T can be viewed as an ensemble of canonical ensembles
with different particle numbers N. The weighted sum over N of these canonical ensembles
constitutes the grand-canonical ensemble. This ensemble is particularly useful when simu-
lating systems with fixed shapes but the energy and particle number can fluctuate, such as
adsorption phenomena or electrons in a conductor.
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Isoenthalpic–isobaric ensemble (NPH)

The Isoenthalpic–Isobaric Ensemble, analogous to the Microcanonical Ensemble (NVE), in-
troduces the volume as a degree of freedom. Thus, the system’s enthalpy, given by H =
E+ pV , remains constant while the pressure is maintained fixed without any temperature con-
trol. This ensemble is especially practical for systems involving phase transitions in solids.

While the ensembles presented are commonly employed in MD simulations, other vari-
ants may be utilized depending on specific applications such as the NST ensemble, which
stands for constant particles, constant temperature, and constant stress. The NST ensemble
is an extension of the NPT ensemble, useful for studying stress-strain relationships. Another
example is the semi-grand canonical ensemble, which is similar to the grand canonical en-
semble, where the chemical potential; volume and temperature are fixed. The difference lies
on the fact that the number of particles is also a fixed quantity, but the composition of the
system is allowed to change.

3.1.3 EAM potential

The dynamical evolution of a system hinges on the forces acting on each of its particles.
These forces are derived from the potential energy, calculated from interatomic potential
functions describing the particle interactions. It is crucial to note that only interactions within
a defined cut-off distance are calculated. Interactions beyond this range are either disre-
garded due to their negligible contribution or approximated via continuum or reciprocal space
method, depending on the nature of the interaction. Therefore, the predicted properties of the
system are only as good as the accuracy of the underlying interatomic potential.
The Embedded Atom Method (EAM) is a semiempirical approach widely used to calculate
the total energy of metal and metal alloy interactions. EAM has its roots in the density func-
tional theory, which expresses the energy of a system by a functional of its electronic density.
The EAM gives an approximation of this functional by assuming that the potential energy of
a particle is on one part determined by a contribution from a pair potential and that the other
part is determined by the electron density of the host system in which the particle is placed
(embedded).
The particle or atom energy in the embedded atom method proposed by Daw and Baskes [70]
is given by:

Ei =
1
2 ∑

j
φ(ri j)+F(ρi) (3.10)

with

ρi = ∑
j

ρ(ri j) (3.11)

where ri j is the distance between atom i and j, φ is the pair potential function, ρ(r) is the
electronic density as function of the distance from the atom, ρi is the electronic density of
the host system with atom i removed, and F(ρ) is the embedding function that represents the
energy required to place the atom i into the electron cloud. The sum over j of the neighboring
atoms for calculating ρ(ri j) and φ(ri j) are limited by the range of the cutoff distance.
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The total energy of a system of N particles is thus:

Etot =
N

∑
i

Ei (3.12)

For a pure element system, three functions must be specified: the pair-wise interaction φ ,
the electronic density contribution function ρ , and the embedding function F . For an alloy
consisting of more than one type of atom, equation 3.10 is rewritten as:

Ei =
1
2 ∑

j
φtit j(ri j)+Fi(ρi) (3.13)

where ti defines the type of atom. Thus, for a binary alloy A-B, seven functions are required to
calculate the EAM energy: three pairwise interactions (φAA(r), φAB(r), φBB(r)), two electron
cloud contribution functions (ρA(r), ρB(r)), two embedding functions (FA(ρ), FA(ρ)).

3.2 Structure identification methods

3.2.1 Available methods

A wide variety of structure analysis methods have been developed to classify local atomic
arrangements in large-scale atomistic simulations of solids. These methods assign distinctive
colors to particles based on user-specified criteria for visualization purposes, to define the
boundaries between distinct phases, map the contours of the interfaces, or to quantify the
occurrence of different crystalline phases and defects in a simulation. The core purpose of
these methods is to analyze the local environment of each atom or particle and allocate a local
structural type that closely resembles an idealized one (HCP, BCC, FCC, etc.) by gauging
the degree of fit.
The first method is the energy filtering, which uses the potential energy of an atom as a cri-
terion to decide whether it forms a perfect lattice with its neighbors by comparing it to a
threshold value. Atoms with higher energy, indicating a crystal defect, are considered if they
exceed the threshold that usually corresponds to that of a perfect lattice, while those with
lower values are deemed crystalline. The second method uses a centrosymmetry parameter
[71] that quantifies the local loss of centrosymmetry at an atomic site of a given lattice, dis-
tinguishing the structure apart from other structures like crystal defect where the local bond
symmetry is broken. The third method is the bond order analysis, where near neighbor bonds
of a central atom are projected onto a unit sphere. Local bond order parameters, known as
Steinhardt order parameters [72], are defined based the projected vectors, which take charac-
teristic values for each crystal structure.
The three aforementioned methods assess the similarity of a specific atomic arrangement to
a particular reference structure. However, there are other more sophisticated techniques that
allow to uniquely identify and assign a structure type to each atom in the system among the
available reference structures based on a discrete signature that is calculated from the atom
positions.
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Common neighbor analysis

Referred to as CNA [73], this method computes a characteristic signature from the topology
of bonds connecting surrounding neighbor atoms to the central one.Two atoms are deemed
neighbors or bonded if they fall within a cutoff radius. A set of three indices are computed
in order to assign the local structure of the atom: the number of neighbors common to the
central atom and its bonded neighbor, the number of bonds between these common neigh-
bors, the number of bonds in the longest continuous chain of bonds connecting the common
neighbors. These indices are computed for each neighbor bonds of the central atom, yielding
a set of indices triplets which are then compared with a set of reference signatures to assign a
structural type to the central atom.

Bond angle analysis

This method [74] was developed to distinguish fcc, hcp, bcc, and other relatively close-packed
structures. The bond angle cosines formed by bond vectors of the central atom and its neigh-
bors (the number of neighbors is determined by a cutoff radius, proportional to the average
distance of the six nearest neighbors) are measured to obtain an eight-bin histogram that is
then further evaluated using a set of heuristic decision rules to determine the most likely
structure type.

Voronoi analysis

This approach utilizes a geometric method [75] based on an analysis of the shapes of the
Voronoi polyhedron enclosing an atom , which reflects the characteristic arrangement of near
neighbors, thereby enabling the structure to be characterized. The Voronoi polyhedron is
defined as a minimal polyhedron with planar faces that bisect at right angles the lines joining
an atom to its neighbors. The number of faces corresponds to the geometric coordination
number of the atom of interest, which is further used as a compact signature by enumerating
the number of polygonal facets having three, four, and so on vertices, yielding a vector of
four integers which identifies the structure type.

Adaptive common neighbor analysis

The a-CNA is a simple extension of the standard CNA method, adding the ability to analyze
multi-phase systems. In multi-phase systems, determining a global cutoff radius that suits all
phases is not straightforward, leading to the need for an individualized cutoff radius for each
atom, taking into account the reference structure it corresponds to. Firstly, the neighbors are
generated for all contemplated reference structures, based on their maximum requirement,
and then sorted by distance. To verify whether the local coordination structure matches a
certain structure, the neighbor list is reduced to the number relevant to this particular struc-
ture. The mean distance of these closest neighbors results in a local cut-off radius that is
atom-specific and utilized only for matching with the reference structure. This is then used to
ascertain the bonding between the nearest neighbors and compute the usual CNA signature.
If the signature fails to align with the chosen structure, the algorithm rewinds the process,
testing the subsequent candidate structure.
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Neighbor distance analysis

In order to determine which structure a given atom belongs to, its nearest-neighbor vectors
are first identified and arranged on the basis of their distance from the central atom. This is
compared to a benchmark coordination structure characterized by the list of bond vectors,
which is also ordered similarly. Factors such as thermal displacements or elastic distortions
of the crystal might interfere with matching the actual neighbor bonds with their counter-
parts in the reference pattern, resulting in bond length perturbations. In that regard, a local
hydrostatic scale factor that links the lattice constant of the reference structure to that of the
actual crystal is computed. This factor depends on various elements, including hydrostatic
stress, temperature, and chemical composition. Alongside δmax, defined as the maximum
admissible displacement of an atom from its equilibrium position specified by the user, it fa-
cilitates a one-to-one mapping between the reference vectors and the actual neighbor vectors
to determine the type of structure. Further discussion of the method can be found in [76].

Many other computational analysis methods have been developed, spanning from simple
local order parameter (LOP) [77] that differentiate crystalline from liquid phases, to enhanced
versions of existing methods such as interval CNA (i-CNA) [78], and even more complex
ones like 3D-CNN [79], which utilize machine learning techniques for automated analysis
of atomic configurations in MD simulations. Most common techniques try to match a local
structure to an idealized counterpart based on the degree of fit. The PTM method, available
in the Ovito visualization software, is chosen for characterizing the Cu-Ni solid-liquid due to
its simplicity, robustness, high temperature accuracy, and computational effectiveness. This
method is detailed in the subsequent subsection.

3.2.2 Polyhedral Template Matching method
The polyhedral template matching (PTM) method was developed to overcome the various
challenges encountered in the previously mentioned methods. The Common Neighbor Anal-
ysis (CNA) often contains inherent errors due to difficulties in identifying a universally ap-
plicable cutoff parameter in systems with multiple phases, and it can introduce noise in the
analysis due to thermal vibrations and fluctuations in local density. A-CNA is able to auto-
matically pick a cutoff distance individually for each atom. Although it is the most popular
method at present, but just like CNA, it still suffers from noise introduced by thermal vibra-
tions, causing bonds to be broken or formed. This was noted by Fukuya and Shibuta [79]
during the identification of solid and liquid atoms. They found that many atoms in solid area
were incorrectly assigned as liquid due to significant thermal vibration at the melting point
using a-CNA. In contrast, PTM performed better at correctly identifying the structure, given
it was designed specifically to handle the issue of thermal vibrations. Similarly, Ueno and
Shibuta [80] demonstrated a comparison between a-CNA and PTM for detecting the BCC
configuration in a solid-liquid system of pure Fe at the melting point. Due to thermal vibra-
tions, only 55% of the atoms were assigned as BCC in the solid region compared to 92% using
PTM. These findings show that PTM is reliable even at high temperatures near the melting
point, and it yields results comparable to more advanced techniques such as 3D-CNN [79],
albeit at a significantly lower computational cost. One limitation of PTM is the necessity for
a suitable root-mean-square deviation (RMSD) cutoff parameter, which must be manually
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Figure 3.1 – Convex hulls of the nearest neighbors of five different structures. The table shows the
number of neighbor atoms required for each structure [81].

Figure 3.2 – Structure detection using Polyhedral Template Matching method (PTM).

established via trial and error for each system.
Although the Voronoi method is more robust to thermal vibrations compared to a-CNA, it
has been rarely utilized for simulations of crystalline materials because of the challenge of
differentiating between highly symmetric crystalline packings such as FCC and HCP struc-
tures. PTM adopts a similar approach to Voronoi, where the convex hull formed by the set
of neighboring atoms serves to characterize the local structure around an atom. This con-
vex hull is then represented in a planar graph form, which is used to classify the structure
[81]. PTM considers a fixed number of neighboring atoms around the central atom, making
it less sensitive to thermal fluctuations since it does not rely on the concept of bonds between
these atoms. Given a set of reference templates corresponding to the positions of well-known
structures (the convex hulls of such structures are shown in Figure 3.1), the template that best
matches an atom and its neighbors, thus defining its structure, is the one that minimizes the
RMSD.
The chosen RMSD cutoff parameter for the PTM in the current Cu-Ni system is set to 0.155,
consistent with the parameter used by Ueno and Shibuta in [80]. The PTM method is imple-
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mented in OVITO software, which also facilitates the visualization of the atomic structure as
demonstrated in Figure 3.2. The gray atoms correspond to the liquid phase, while the green
atoms represent the solid FCC structure. Examining this structure facilitates the identifica-
tion and tracking of the boundaries between these phases, allowing the extraction of interface
shape, observing structural changes, or isolating a specific phase to reduce computational
costs during data processing.

3.3 Melting temperature

3.3.1 Melting temperature determination methods
Numerous methodologies have been developed to efficiently determine melting temperatures
using MD simulations. The melting point and solidus-liquidus temperatures in the MD sim-
ulation tend to deviate from the experimental value, mainly due to the difficulty of relating
directly the interatomic potentials to the properties [80]. Phillpot et al. [82] characterized two
types of melting in their MD calculations for silicon. The first is thermal melting, a heteroge-
neous process initiated from a surface or interface, which relies on the free energies of the two
phases. The melting temperature is reduced in this case because the interface can reduce the
nucleation energy barrier between the solid and liquid phases. The second type, mechanical
melting, is a homogeneous process instigated by elastic or phonon instability, independent of
temperature, usually occurring when a perfect crystal in a periodic cell undergoes melting.
It seems inappropriate to heat up a crystalline bulk phase in a simulation box with periodic
boundary conditions and hope that the melting temperature coincides with the jump in en-
ergy or volume, or when disorder/diffusion is observed, which is why the interpretation of
the melting point in the MD simulation is complex.

There are multiple strategies for computing melting points (Tm) using MD simulations.
The Lindemann criterion proposes that melting occurs when the thermal vibration of atoms
becomes so intense that adjacent atoms collide, reaching the limit of stability, typically iden-
tified when the Mean Squared Displacement (MSD) surpasses a certain threshold. The ther-
modynamic integration method [83, 84] calculates the Gibbs free energies for both the solid
and liquid phases as functions of temperature or pressure. The melting temperature at a spe-
cific pressure is determined by the intersection of these two curves.
Another approach for determining the melting point is to continuously heat or cool a solid or
liquid phase, and take note of the temperature at which a volume jump is observed, indicative
of a phase transformation. The barrier of free energy to the formation of a solid–liquid inter-
face in perfect crystalline solids leads to some hysteresis, caused by superheating of the solid
in simulations of melting, and supercooling of the liquid in simulations of freezing. During
melting, the volume of the system changes abruptly when heated to a temperature T+ > Tm.
In solidification, the homologous crystallization temperature T− is lower than Tm when cool-
ing from a liquid to a crystalline structure. To assess the melting point, the hysteresis method
is established [83, 84, 85]: Tm = T++T−−

√
T+T−

The melting point can be lowered by introducing a heterogeneous interface or a defect,
thereby reducing the nucleation free energy barrier between solid and liquid. This gives
rise to the defect-induced melting and the two-phase co-existence methods in determining
Tm. The melting point using the defect induced melting method is determined through NPT
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simulations as a function of temperature and void count. The voids are introduced by re-
moving particles from the solid structure, which then form solid–liquid interfaces by creating
localized pockets of liquid-like structures near the voids. Increasing the proportion of voids
reduces Tm by lowering or even eliminating the energy barrier for a sufficient proportion,
where Tm hits a plateau extending over a limited proportion of voids, typically about 5–10%
of the total number of particles [83]. The distribution of voids in the simulation cell does not
affect the melting-point predictions.
The two-phase co-existence method is selected for calculating Tm due to its simplicity and
relative precision. There are several ways for achieving equilibrium with this method. The
first approach uses the NPT or NVT ensembles at different temperatures in the solid-liquid
configuration. For both cases, if the set temperature is different from Tm, the system melts
or solidifies completely with sufficient run time. The stress anisotropy problem may occur
using the NVT ensemble due to the high interfacial contact stress between the solid and liquid
phases [85]. Tm can also be found by monitoring the solid-liquid interface velocity as func-
tion of temperature and extrapolating to the temperature corresponding to zero motion [86].
Another approach is relaxing the solid-liquid system using the NVE [77] or NPH ensemble
[87, 88, 89, 90]. Working with an NPH ensemble avoids the stress anisotropy problem when
using a constant volume with the NVE ensemble, since the components of the stress tensor
can be adjusted to match the set pressure.

3.3.2 Melting temperature using the NPH ensemble
For all our MD calculations, we have used the EAM potential of [91] for the Ni-Cu system.
To check its relevance for our investigations, we first estimated how well its predictions are
in terms of the melting temperature of the pure elements. When these calculations are carried
out, we also identify the best methods for determining these temperatures.
The procedure was initiated with a solid-liquid coexisting structure of pure Cu. The structure
was equilibrated at varying temperatures ranging from 1200 K to 1300 K at 0 pressure, then
the thermostat was turned off to allow the system to relax in a NPH ensemble for a duration
of 1 ns. Since the system can evolve without temperature control, if the initial temperature
is lower than Tm, solidification occurs along with a release of latent heat, causing the system
temperature to rise until it reaches the melting point, at which the interface stops moving.
Conversely, if the system temperature is higher than Tm, melting occurs, and the temperature
decreases due to latent heat absorption. Figure 3.3 illustrates both scenarios, with starting
temperature either lower or higher than Tm. The temperature at which the system stabilizes is
interpreted as the melting point for the given EAM potential. The melting point for Cu was
found to be Tm ≈ 1278.9K, which closely aligns with the reported melting point Tm = 1278K
in [91].
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Figure 3.3 – Temperature evolution towards the melting temperature of Pure Cu using the NPH en-
semble starting from different initial temperatures.

3.4 Equilibrium concentrations

3.4.1 Methodologies
Determining the solidus and liquidus temperatures of binary systems is a little more involved.
Therefore, several methods have been tested to estimate the equilibrium concentrations at the
given simulation temperature. One such method is a variant of the previously described
moving interface method, called the compositional moving interface (CMI) [92]. In the CMI
method, the solid and liquid have different compositions, and equilibrium is determined when
the solid and liquid phases coexist. The procedure for calculating the liquidus composition
for a binary alloy A-B is summarized below:

1. A pure liquid structure of the end member A is created at a temperature Ti, chosen
between the melting temperatures of both end members T A

m < Ti < T B
m .

2. A solid structure of a test composition xi of the A-B mixture is prepared in a separate
simulation at the same temperature Ti.

3. Both structures are assembled in a single solid-liquid simulation supercell and the MD
simulation is conducted. The liquid consumes the solid and the entire structure melts
in this given energy system where Ti is higher than the liquidus temperature.

4. The procedure is repeated by lowering Ti until the limit where both phases coexist,
meaning that the system is now in the two phase regime.

To calculate the solidus point, the inverse process is applied. This process involves raising
the temperature Ti of the system, where the solid is now the pure end member B and the
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Figure 3.4 – Illustration of the CMI method on a Cu–Ni type binary system. The tempera-
ture/composition where both liquid and solid can coexist is marked by a filled pink circle signifying
that liquidus has been reached [92].

liquid is a composition mixture xi. The system undergoes solidification until an equilibrium
temperature Ti is reached where both phases coexist. However, this method led to a liquidus
composition of 25% Ni and a solidus composition of 24% Ni. These results are erroneous
since the solidus composition cannot be lower than the liquidus according to the Cu-Ni phase
diagram.

The second approach used to calculate the equilibrium involves the semi-grand canonical
Monte Carlo (SGCMC) [90, 89]. The semi-grand canonical ensemble is used for mixtures,
where the number of atoms or particles is fixed but the composition or atoms types are al-
lowed to interchange. This method aims to determine the Gibbs free energy curves of each
phase, then extract the solidus and liquidus compositions defined by the contact points of the
common tangent line. We have conducted SGCMC simulation using the atom/swap technique
in LAMMPS. The process begins with a 20× 20× 20 Å

3
structure, which is equilibrated at

1400 K for 10 ps with the NPT ensemble. An equilibrium concentration is obtained by im-
posing a given chemical potential difference ∆µ = µNi−µCu between the two kinds of atoms
for the case of a binary system using SGCMC. The imposed chemical potentials vary from
0.72 to 0.98 eV per atom with a step of 0.02 eV per atom.
The ∆µ vs Ni concentration curve for a given phase φ is fitted with a sub-regular solution
model [93]:

∆µ
φ = kbT ln

(
1− cφ

Cu

cφ

Cu

)
+

p

∑
i=0

Ai

(
cφ

Cu

)i
(3.14)

where cCu the Cu concentration, Ai the polynomial coefficients to be fitted (p = 5) in order to
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obtain the Gibbs free energy (per atom) of a given phase φ :

Gφ (cCu)−µ
φ0
Ni (T ) = kbT

[
cCu ln(cCu)+(1− cCu) ln(1− cCu)

]
+

p

∑
i=0

Ai

i+1
ci+1

Cu (3.15)

where µ
φ0
Ni is the chemical potential of reference of pure Ni.

Nevertheless, challenges were encountered in implementing this method. First, it proved dif-
ficult to replicate the precise ∆µ versus concentration values reported in the study by Ueno
and Shibuta [90] for the Cr-Fe system using the SGCMC atom/swap technique in LAMMPS.
Additionally, a crucial limitation of the SGCMC method is its focus on a single phase, disre-
garding the dynamics of the heterointerface. As a more efficient alternative exists for calculat-
ing the concentration profile without the drawbacks and intricacies of the atom/swap method,
it was deemed unsuitable for determining the solidus and liquidus. However, the method will
demonstrate its utility in a subsequent section for extracting the chemical potential (§3.7.2).

3.4.2 Solute partitioning method
The solidus and liquidus composition can directly be estimated with the solute partitioning
method [94], by monitoring the evolution of solute composition at the solid–liquid interface
during the solidification process. A solid structure of size 21× 21× 100Å, with a uniform
concentration of 27% Ni along the longest direction z is prepared with the NPT ensemble for
15 ps at 1400 K (1127 °C). The concentration of 27% was chosen because it resides within

Figure 3.5 – Evolution of the Ni concentration profiles and appearance of solute partitioning at the
interface during solidification.
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Figure 3.6 – Solute partitioning using the atom/swap technique.

the two phase domain, where both solid and liquid coexist. The liquid is prepared by first
heating a duplicate of the previous solid structure at 5000 K for 1 ps with the NVT ensemble
in order to break the structure, followed by an equilibration step with the NPT ensemble at
1400 K for 10 ps. Both structures are assembled in a single simulation. After an energy mini-
mization step, the solid-liquid structure is allowed to relax with the NPT ensemble at 1400 K
for 30 ns.
Since both solid and liquid have the same composition of 27%, the initial concentration pro-
file is flat. As solidification proceeds, the newly solidified region exhibits a higher solute
concentration, whereas the liquid region at the interface is depleted. Therefore, solute par-
titioning is observed at both interfaces as shown in Figure 3.5. The different lines represent
plots of the concentration profiles at different and evenly spaced intervals of the solidification
process, going from lighter to darker lines‡. As solidification carries on, the Ni content in
both solid and liquid phases at the interfacial region converges and stabilizes at some equilib-
rium values. These are interpreted as the solidus and liquidus compositions. The solidus and
liquidus compositions at 1400 K are estimated to be 29% and 25%, respectively.

Solute partitioning can also be achieved using the atom/swap technique in LAMMPS.
Unlike the SGMC, the atom/swap routine does not change the overall composition. Instead,
it swaps atoms of one type with atoms of another type according to a Monte Carlo probability
at a specified temperature. The temperature is utilized in the Metropolis criterion to dictate

‡The post-treatment for estimating the concentrations does not handle properly the periodic boundary condi-
tions, but without any consequence on the quantification of partitioning at the interface. This comment applies
also to the post-treatment of the atom/swap technique in Figure 3.6.
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swap probabilities, and a two-phase system with thermodynamically correct partitioning is
achieved after sufficient swap attempts. The atom/swap technique was executed on a solid-
liquid simulation cell similar to the previous one, with 27% initial Ni composition. Five atom
swapping was attempted for every atom at each time step, for a total of 230000 time steps.
The resulting concentration profile is shown in Figure 3.6. Solute partitioning is observed at
the interface with concentrations more or less close to the ones measured in Figure 3.5. How-
ever, the correct equilibrium concentrations are harder to read from such profile as compared
to the previous method, and a much longer run time is required in order to obtain a somewhat
cleaner concentration profile to extract the solidus and liquidus temperatures. Despite the
atom/swap method contributions, the initial method, which is based on running an MD sim-
ulation, remains the superior approach. This is due to the method ability to generate clearer
profiles and incorporate the system dynamics introduced by the presence of an interface, in
comparison to a Monte-Carlo simulation.

3.5 Diffusion coefficients

3.5.1 Calculation methods
The self diffusivities (tracer in the case of alloys) are typically evaluated using two methods
derived from MD trajectories. The first is the Einstein equation, which associates the dif-
fusion coefficient with the long-term behavior of the mean-square displacement (MSD) per
atom. The diffusion coefficient corresponding to a given bin located at position x is deter-
mined from the limiting slope of the MSD vs time plot via the following equation:

D(x) =
1

2d
lim
t→∞

d
dt

〈∣∣r j(t)− r j(0)
∣∣2〉

x
(3.16)

where d is the system dimensionality, r j(t) is the position of particle j at time t inside the bin
centered at x, and the term in brackets is the ensemble averaged MSD given by:〈∣∣r j(t)− r j(0)

∣∣2〉
x
=

1
N

N

∑
i=1

∣∣r j(t)− r j(0)
∣∣2 (3.17)

The second method relies on the formulation of the auto-correlation function of the ve-
locity, defined as [40]:

Z(t) =
1
d

〈
u j(t) ·u j(0)

〉
(3.18)

where u j is the velocity vector of atom j.
The diffusion coefficient is then calculated by integrating Z(t) over time, according to the
Green-Kubo relation:

D =
∫

∞

0
Z(t)dt (3.19)
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Figure 3.7 – MSD of Ni atoms in a homogeneous box of 15% Ni content.

3.5.2 Homogeneous liquid box against two-phase box

The presence of a solid-liquid interface changes the dynamics of diffusion and breaks the
symmetry of the liquid by introducing anisotropy of the diffusion coefficient. The MSD
method for estimating the diffusivities is most effective for homogeneous systems where the
diffusion behavior of each element does not depend on time and location within the sim-
ulation cell (in the steady state regime). Studies usually calculate the self diffusivities as
function of the position normal to the interface, going from the solid layers towards the liquid
bulk [77, 95]. The diffusivities for the solid layers are generally negligible. Starting from the
solid-liquid interface, the diffusivity monotonically increases to the liquid bulk value over a
few Å from the interface.

Figure 3.7 shows the shape of the MSD of Ni atoms in a homogeneous Cu-Ni liquid with
15% Ni content, considering 4 Å bins. Figure 3.8 shows plots of several MSDs at different
positions from the interface inside the liquid phase during solutal melting. The plots are
distanced equally by 2 Å which corresponds to the period of the density peaks of the two-
phase Cu-Ni system at 1400 K. The first point to note is that, unlike in the homogeneous
case, diffusion in a two-phase system depends on the position relative to the interface, which
hinders the motion of the atoms in its vicinity. The presence of vacancies left by the diffusing
solid atoms towards the liquid phase and the layering of the liquid at the interface causes the
MSD to increase gradually the further away from the solid layers. Because the interface is
abrupt, it is also possible that measuring the MSD in a position where some of the atoms
belong to the solid phase and others to the liquid phase would lead to an averaged MSD that
spreads over the interface width, causing the MSD to increase as the proportion of the liquid
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Figure 3.8 – MSD of Ni atoms in a Cu-Ni simulation box with coexisting solid and liquid at different
position from the interface in the liquid.

increases until it reaches the bulk value.
Another factor that adds up and affects the MSD slope is the presence of a concentration
gradient at the interface during the solutal melting of two asymmetrical materials. Self diffu-
sivities of Ni in Cu-Ni liquid alloys with a size of 15×15×15Å

3
with different Ni content

were measured at 1400 K in the following alloys:

• for 5 % Ni, DNi = 3.22×10−5 cm2 s−1

• for 15 % Ni, DNi = 3.07×10−5 cm2 s−1

• for 30 % Ni, DNi = 2.85×10−5 cm2 s−1

• for 40 % Ni, DNi = 2.76×10−5 cm2 s−1.

The self diffusivity of Ni decreases slightly with increasing Ni concentration. There are
several other factors that influence the value of D in MD, such as pressure tensors, choice of
thermostat etc. The most subtle and least understood is the effect of the shape and size of the
simulation box due to periodic boundary conditions, which will be discussed in details later
on.

In the presence of an interface, the diffusivity varies from one region to another, neces-
sitating careful consideration of the position of the atoms relative to the region of interest. If
the MSD becomes linear at times long enough for the particles to leave the region of interest,
the measured diffusivity would be averaged over all regions. Additionally, for such nonuni-
form systems, the free diffusion equation, from which the Einstein relation is derived, will no
longer hold. According to Liu, Harder and Berne [96], the Smoluchowski equation should be
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used near the interface. They propose a method for determining the diffusivity tensor for con-
fined fluids or systems containing interfaces using a dual simulation technique. The gist of
the method is to perform MD simulation with virtual absorbing boundaries around the region
of interest and to perform a sequence of Langevin dynamics with different values of friction
coefficient which is related to the diffusivity in the direction perpendicular to the interface.
The optimal value for the diffusivity is selected based on the friction coefficient that yields
the closest match between the survival probability obtained from Langevin dynamics and that
obtained from MD simulation.
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3.6 Solutal melting

3.6.1 Simulation setup
The solutal melting process necessitates an out-of-equilibrium solid-liquid interface at a set
temperature. In this regard, a solid-liquid simulation box is prepared by having a pure Ni
solid structure in contact with a pure Cu slab at liquid state. To characterize dynamic aspects,
such as interface displacement and diffusivities, along the normal direction of the interface, a
quasi-2D structure containing approximately 400000 atoms is selected as the first reference
simulation. This choice is inspired by the work of Ueno and Shibuta [80][79].

A Ni FCC crystal of 105216 atoms (225.3×482.2×10.5Å
3
) is prepared at T = 1400K

with the canonical ensemble (NVT) for 15 ps. The liquid structure is prepared by annealing
an FCC crystal of 196608 Cu atoms (483.5×483.5×11.3Å

3
) at T = 5000K for 1 ps to en-

sure complete melting of the structure. After the melting process, the structure is equilibrated
at T = 1400K under 0 bar with the isothermal-isobaric ensemble (NPT) for a duration of
10 ps. This step enables volume expansion. Finally, both the Ni solid and Cu liquid slabs are
connected along the [001] direction, creating an assembly where the liquid is sandwiched be-
tween two solid slabs. The composite structure undergoes an energy minimization process to
alleviate issues related to unexpected atom proximity at the interface. This process is allowed
to proceed for a maximum of 100 time steps, after which an ordered structure emerges on the
liquid side, in the vicinity of the interface.
Following the relaxation of the structure, a simulation is initiated using the NPT ensemble un-
der 0 bar and at 1400 K. This simulation runs for a duration of 100 ns with a time step of 1 fs.
The timescales for thermostating and barostating are set at 0.1 and 1 ps, respectively. The
utilization of the NPT ensemble allows volume adjustments during the dissolution process,
which results in a minor volume increase as the structure undergoes melting.

Figure 3.9 – Quasi-two-dimensional solid-liquid system of pure Ni FCC crystal connected to the liquid
by a (001) plane.
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3.6.2 Results

3.6.2.1 Reference simulation

Density profile

The local density is calculated by partitioning the simulation cell into uniformly sized slices
or bins, aligned parallel to the interface. The fine-scale density profile of an atom i is given
by [95, 97, 98]:

pi(x) =
〈Ni〉x
Ayz ∆x

(3.20)

with ∆x = 0.045Å the bin thickness, Ayz the surface of yz planes, and 〈Ni〉x denotes the
number of atoms i inside the bin centered at x.
Figure 3.10 shows the fine-scale density profile in the vicinity of the interface. The density
profile demonstrates periodic oscillations of peaks, which are indicative of the long-range
crystalline order aligned with the atomic planes. As the profile crosses the interfacial region,
there is a noticeable decay in the crystalline density oscillations, a result of the loss of or-
dered structure in the liquid phase. The persistence of the periodic structure beyond the solid
is attributed to the layering of the liquid in contact with the solid, as demonstrated by the
oscillation visible in the density profile of the liquid phase, where the liquid inherits the solid
structure on a few atomic layers [98, 77].
This effect has also been observed in experimental studies [99], where they found that the
layering is related to density variations in the liquid perpendicular to the solid-liquid inter-

Figure 3.10 – Density profile of Ni (blue) and Cu (red) along the x direction in the vicinity of the
interface.
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face. When the bulk periodicity of the crystalline phase is close to the mean nearest-neighbor
distance of the bulk liquid, the periodicity of the ordered liquid layers mimics the periodicity
of the bulk crystal. However, when the crystalline periodicity is significantly larger than the
mean nearest-neighbor distance in the bulk liquid, the distance between liquid layers reduces
to the nearest-neighbor distance of the bulk liquid.
The Figure also shows that there is close to no diffusion of Cu in the solid phase except on
the very first atomic layer of the solid, where a very small peak of Cu is observed. The over-
lapping of the density peaks of Ni and Cu near the interface means that some of Ni atoms
have been substituted by Cu atoms, leading to a decrease of the Ni density peak.
A noticeable enlargement of density peaks on the liquid side and expansion of interlayer
distances can be observed. This phenomenon has been reported in [77] for the Cu-Ni sys-
tem using a different EAM potential [100]. They found that the interlayer distances in the
liquid side depend on the orientation of the underlying solid, where a significant expansion
is noted for the [100] direction, while remaining the same as those in the bulk solid for the
(110) and (111) interfaces. This phenomenon has also been reported in other systems such
as aluminum [101] and hard-sphere systems [102]. However, it is essential to note that not
all systems exhibit this behavior, exemplified by the Cu-Al system [98].

Interface position

Several methods exist for determining the interface position, and in this context, three have
been implemented. Each method yielded similar results for the position of the interface.
The first one relies on determining the interfacial excess of any thermodynamic quantity by
defining a Gibbs dividing surface that separates solid from liquid. Assuming zero interfacial
excess of Ni atoms, the position of the dividing surface can be determined by solving the
equation:

ΓNi =
NNi

Ayz
−Ls

ρ
s
Ni− (L−Ls)ρ

l
Ni = 0 (3.21)

NNi is the total number of Ni atoms, L is the total length of the simulation box along the x
direction, Ls the length of the solid slab along x, ρs

Ni and ρ l
Ni the density of Ni in the solid and

liquid respectively.
The interface position is then given by [95]:

Ls =
(NNi/Ayz−Lρ l

Ni)

ρs
Ni−ρ l

Ni
(3.22)

One limitation arises with this method due to the need for updating the solid and liquid lengths
as the dissolution proceeds. Otherwise, the measured interface position would deviate from
the real position.
The second method consists of determining the local structure of the atoms using the PTM
method. The position of the interface is determined by extracting the position of the jump in
the structure distribution at 50%.
The final method employed is the most practical and easy to implement, as it simply involves
applying a Gaussian filter to the density profiles and identifying the inflection point, which
corresponds to the position of the interface.
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Figure 3.11 – Interface position vs. time: the red horizontal lines represent the spacing between
adjacent atomic planes.

Several other methodologies have been developed to determine the position of the interface,
but have not been tested in the present work. One such method, typically used for face-
centered cubic (FCC) structures, which parallels the PTM method, involves assigning each
atom a solid-liquid order parameter φ [103]. This is done by calculating the deviation of a
neighboring atom from the ideal FCC positions of the crystal in the given orientation (rfcc).
The summation of the deviations over the 12 nearest neighbors, φ = 1

2 ∑i |ri− rfcc|2, serves
as an order parameter assigned to the central atom. The value φ = 0.7 was chosen in [103] to
locate the interface where φ undergoes a significant change.

Interface velocity

The interface velocity can be determined by the slope of the time evolution curve of the
interface position (Figure 3.11), which is fitted using a 3rd order polynomial function:

x? = 226−0.2147 t +1.1065×10−3 t2−3.5167×10−6 t3 (3.23)

with x? in Å and t in ns.
The highest velocity values are measured at the beginning of the melting process (≈ 2cms−1)
when the interface is strongly out of equilibrium. As the concentration on the liquid side in-
creases as a result of solid phase dissolution, there is a corresponding decrease in the interface
velocity. The observed velocities are significantly higher than those found in experimental
studies, which are typically of the order of µm. Due to the limitations of molecular dynamics
(MD) simulations, which include constraints on time scales and system sizes, it is currently
impossible to achieve the temporal overlap required for precise quantitative comparisons with
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Figure 3.12 – Interface velocity during solutal melting.

experiments. Small MD simulation systems have concentration gradients at the interface that
far exceed those of a real system, where the diffuse interface spans a few nm. This discrep-
ancy may account for the substantially higher velocities measured by MD.
Although the values of the velocity (O(2000) µms−1) are three order of magnitude larger
than the measurements of Deillon et al. [4] (O(2) µms−1), it is worth stressing that they
are significantly lower compared to the reported velocities in thermal solidification and melt-
ing of pure elements. In these cases, the velocities can reach values ranging from a few
dozen to several hundred ms−1 [40, 86, 42, 104, 105]. At first sight, this difference could
appear as surprising when the deviations from equilibrium of our interface were compared
with those obtained during rapid solidification. But, as already mentioned and discussed in
§2, the asymmetry of situations between solutal melting and solidification is likely to rely on
the role played by diffusion in the solid phase, which is the slowest process setting the typical
time scale of the interface motion.

Concentration profiles

The concentration profiles are determined in a manner similar to the density profiles. This
involves dividing the simulation box into equal slices along the x-direction and then counting
the number of atoms of a given type in each slice, normalized by the total number of atoms
in that slice.
Figure 3.13 shows the concentration profiles at different times during solutal melting after
smoothing the curves using a gaussian filter. Throughout the entire simulation, the inter-
face concentrations are far from the equilibrium values, represented by the red dashed lines
(solidus 29%, liquidus 25%). The solid side concentration remains at 100% Ni, given the lack
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Figure 3.13 – Evolution of concentration profiles of Ni during solutal melting.

Figure 3.14 – Evolution of the concentration profiles of Ni during the first 20 ns of solutal melting.
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of diffusion on this side, as observed in the density profile in Figure 3.10. The liquid con-
centration, on the other hand, increases quickly in the vicinity of the interface during the first
5 ns as shown in Figure 3.14. Then, it slowly increases as it reaches values close to 10%, and
the interfacial concentration increases by roughly 1% each 20 ns. After 20 ns, the Ni atoms
start to reach the central zone of the liquid region: the two interfaces start to interact and the
concentration gradients between the interfacial region and the center gradually decrease.

3.6.3 Influence of size and shape of the simulation box
This section examines the impact of the size and shape of the simulation box on the interfacial
velocities. Four simulation boxes, as depicted in Figure 3.15, are selected for this purpose:

• the first is a quasi-2D box with 400000 atoms,

• the second possesses the same atom count and x-axis length as the first but features a
square interface section,

• the third also maintains the same x-axis length and square interface section but is
needle-shaped with 24000 atoms,

• and the final box houses a broad square interface with 1.4 million atoms.

Comparison of the plotted interface positions across all cases in Figure 3.16 reveals distinct
interface displacements for each, suggesting a correlation between the system size and the
interface velocity. The larger the simulation box (in terms of the number of atoms), the faster
the interface migration.
The shape of the simulation box also appears to affect the velocity of the interface, as evi-
denced by the differences between the blue and orange curves. Although the two boxes share
the same number of atoms, the two boxes demonstrate distinct velocities owing to their differ-
ing shapes. These differences in interface velocities are very likely related to the differences
in diffusivities across the simulation boxes. Previous research has indicated that the strong
dependence of the diffusivities on the size of the simulation box for both pure and multicom-
ponent mixtures is a consequence of the periodic boundary conditions, which has been shown
to slow down the diffusivity for cubic isotropic boxes [106]. The long-range nature of hy-
drodynamic interactions of particles or molecules with their own periodic images introduces
finite-size effects, leading to erroneous measurements of dynamical properties, such as self
diffusivities [107, 108, 106, 109, 110, 111, 112], activity coefficients [113], thermal and ionic
conductivities [114] [115]. Whereas properties such as the viscosity seem to be unaffected
by the system size [109, 116, 117].

One could consider performing simulations without periodic boundary conditions to
avoid the finite-size effects by introducing hard walls, for instance. However, such a modi-
fication does not only remove these effects but would also add other unwanted effects such
as fluid-wall interactions, which are less controlled and understood. The finite-size effect
can only be eliminated by having a sufficiently large system, which is computationally not
feasible. Even the most advanced computational systems capable of handling systems with
millions or even billions of atoms cannot directly simulate the behavior of systems as large as
experimental samples. This limitation necessitates the use of periodic boundary conditions
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Figure 3.15 – Solid-liquid Cu-Ni simulation boxes of different sizes and shapes.

Figure 3.16 – Dependence of the interface velocity with the size of the simulation box.

in calculations. Mitigating these effects is typically achieved by employing relatively large
system sizes, a large cutoff radius in interaction potentials, or applying analytical corrections
for the parameters of interest.

The MSD is often used to estimate diffusivities. It is also widely used to estimate the
melting temperatures of materials using Lindemann criterion which states that the system
melts when the MSD exceeds a given fraction of the average particles distance. Robbins et
al. [118] used the MSD to study the effect of a finite-size system on thermal fluctuations and
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its impact on melting temperatures Tm for solid structures. They found that MSD increases
with increasing number of atoms N and scales as N−1/3 in FCC structures (although the op-
posite was observed in the BCC structure, suggesting that this correlation depends on the
interaction potentials). For small N, the structure could be easily superheated above Tm, but
as N increases, the MSD increases and the structure becomes unstable and melts. This obser-
vation implies that it is essential to correct diffusivities computed from MD simulations due
to finite-size effects and the fact that the number of particles used in typical MD simulations
is in orders of magnitude lower than in the thermodynamic limit.
Dünweg and Kremer [106] studied the brownian motion of a polymer chain in solvent. They
found that the long range of the hydrodynamic interaction induces a large effect of finite
box size on the diffusivities of both the chain and solvent particles as they interact with an
infinite number of periodic images. The finite-size corrections were found to be inversely
proportional to the linear box dimensions. Yeh and Hummer [109] also made the same ob-
servation for water system, where the diffusion coefficients increase strongly as the system
size increases, and finite-size analytical corrections scaling as N−1/3.
For a cubic MD box denoted by a linear size L, the self diffusivity D∞

self in an infinite system
is obtained by a correction scaling as 1/L as demonstrated first by Dünweg and Kremer and
confirmed later on by Yeh and Hummer:

D∞
self = DMD

self +
kbT ξ

6πη L
(3.24)

with DMD
self calculated from MD, T the temperature, η the shear viscosity computed in MD

simulations, and ξ = 2.84 for a cubic lattice.
If viscosity is not known, the apparent self diffusivities DMD

self can be calculated for different
system sizes. D∞

self can then be estimated from the intercept of a linear fit of DMD
self with respect

to 1/L, which corresponds to an extrapolation to infinite system size. For a spherical particle
of radius R relatively large (R > L/2), an additional correction may be incorporated into
equation 3.24 to consider the particle size in a cubic simulation cell [109]:

D∞
self = DMD

self +
kbT

6πη L

(
ξ − 4πR2

3L2

)
(3.25)

For multicomponent mixtures, it is shown that the diagonal elements of the diffusivity
matrix depend on the system size following equation 3.24, while the off diagonal elements
do not depend on the system size [112]. For rectangular anisotropic boxes, the diffusivity
along the shorter dimension Dx is always higher than that along the longer dimension Dz
[119, 120, 121, 122].
A. Botan et al. [121] studied the asymmetry of diffusivities by taking an elongated simulation
cell with equal side lengths (Lx = Ly , Lz). They observed the evolution of the components
of the diffusivity tensor Dx, Dy and Dz for fixed values of Lx = Ly as a function of the per-
pendicular dimension Lz. They found that while the x and y components were equal, Dx and
Dy differed from Dz, reflecting the symmetry of the simulation cell. In particular, they ob-
served that Dx, Dy, and Dz did not adhere to the simple scaling outlined by equation 3.24 for
the isotropic case. The components could decrease or increase, either simultaneously or in
opposite directions, depending on the size and aspect ratio. They could even exceed the value
of D∞

self for an infinite system, whereas hydrodynamic effects can only reduce the diffusivity
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for the isotropic case.
Kikugawa et al. [120] also examined the effect of system size and shape on diffusion by
choosing rod-shaped rectangular boxes with fixed side lengths (Lx = Ly = 10.94) and varying
the length in the z direction Lz (ranging from 10.95 for cubic to 54.71). This is only possible
by increasing the number of atoms along that direction, ranging from 1000 to 5000 atoms.
Their findings suggested that as the number of atoms increased, Dx and Dy increased more
or less linearly with increasing Lz, while diffusion in the z direction did not exhibit any vis-
ible change. Moreover, in systems over 3000 atoms, Dx and Dy exceeded D∞

self predicted by
equation 3.24.

In the context of anisotropic simulation boxes, the correction becomes dependent on di-
rection. Vögele and Hummer [123] were able to provide explicit corrections based on hydro-
dynamic theory to the diagonal components of the diffusivity tensor for the case of elongated
and flat boxes with similar shapes to the ones presented in Figure 3.15.
For rectangular elongated boxes Lx = Ly� Lz, they arrived to similar conclusions as Kiku-
gawa et al. The diffusivity components normal to the long axis, Dxx = Dyy, increase linearly
with the increasing box asymmetry Lz/Lx, while the diffusivity correction in the z direction
of the long axis has no diverging component and scales almost similarly as the isotropic case:

Dxx = Dyy ≈ D∞ +
kbT

6πη Lx

(
π

2
Lz

Lx
−χxx

)
(3.26)

Dzz ≈ D∞− kbT
6πη Lx

χzz (3.27)

where the coefficients χxx and χzz are determined by numerical fits.
For flat rectangular simulation boxes, Lx = Ly� Lz, the diffusivity in all directions increases
logarithmically with the ratio of width to height, and both the in-plane (Dxx = Dyy) and the
out-of-plane diffusion coefficients (Dzz) are predicted to diverge with increasing asymmetry
Lx/Lz:

Dxx = Dyy ≈ D∞ +
kbT

6πη Lz

(
3
2

ln
(

Lx

Lz

)
−ξxx

)
(3.28)

Dzz ≈ D∞ +
kbT

6πη Lz

(
3ln
(

Lx

Lz

)
−ξzz

)
(3.29)

where the coefficients ξxx and ξzz are also determined by numerical fits.
Inspection of the above equations reveals that the hydrodynamic theory predicts that all diag-
onal components (except Dzz in elongated boxes (eq.3.27)) diverge as Lz→ ∞ for elongated
boxes and Lx→ ∞ for flat boxes.
Vögele and Hummer also noted that the linear divergence of DMD

self in elongated boxes, the
logarithmic divergence for flat boxes, and the convergence of 1/L in cubic boxes all reflect
a close analogy to electrostatics. In 1D, 2D, and 3D systems, Coulomb interactions depend
linearly, logarithmically, and inversely on distance, respectively. According to the authors,
for the elongated and flat systems, the periodic replicates of particles can be seen as forming
infinite sheets and lines that move “collectively”.
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The above phenomenological descriptions, derived from hydrodynamic theory, appear
to manifest themselves in the solid-liquid interfaces as demonstrated in Figure 3.11. Both
the system shape and size influence the interface velocities and, subsequently, the diffusiv-
ities. Figure 3.17 represents concentration profiles of the four simulation cells taken at the
same time t. Figure 3.18 presents the concentrations for the same interface displacement. In
both illustrations, larger simulation boxes produce more pronounced concentration gradients
leading to a higher interfacial velocity with the increasing number of atoms.
For the needle and square section boxes, where there is only an increase in the xy surface
(interface surface), the square section exhibits a higher interface velocity and concentration
gradient. At a first approximation, this can be seen as increased diffusivity, which seems to
be consistent with equation 3.27 for elongated boxes. A similar observation is made for the
simulation box with 1.4 million atoms, which displays an even higher velocity and concentra-
tion gradient due to the large side length Lx, thus increasing the diffusivity in the z direction
as per equation 3.27.
Regarding the square section and the quasi-2D boxes, no specific conclusion can be drawn on
why the square section exhibits higher interface velocity, except that modifying the interface
shape by changing the Lx/Ly ratio affects diffusion in the normal direction. The most notable
change in diffusion dynamics would occur in the direction of the shorter side of the quasi-2D
cell.
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Figure 3.17 – Concentration profiles taken at the same instant for simulation boxes of different sizes
and shapes.

Figure 3.18 – Concentration profiles taken at the same displacement of the interface for simulation
boxes of different sizes and shapes.
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3.6.4 Dissolution process in the vicinity of the interface
A closer examination of the solid-liquid interface, which provides insight into the dissolution
process, was conducted by capturing several snapshots of the xy plane at a specific instant
during the dissolution process. Snapshots correspond to the positions at the center of the
peaks on the density profiles in the interface region, as represented in Figure 3.19.

These snapshots were extracted from the simulation box containing 1.4 million atoms
depicted in Figure 3.15, given its extensive xy surface area. In the upper images, green indi-
cates atoms in a solid structure, while blue signifies atoms in a disordered or liquid structure.
The lower images use color coding based on particle type, with blue and red corresponding
to Cu and Ni atoms, respectively. The snapshots are situated at layers where a transition from
the solid to liquid phase can be observed. On the right side, the atoms are predominantly in
an ordered configuration, and this order is gradually lost as the bulk liquid is approached on
the left side.
The first image corresponds to a fraction of 75% solid structure. Going further on the right
side, the layers are 100% solid. But as has been illustrated previously from the concentration
and density profiles (Fig. 3.10), there is no diffusion in the solid phase, which implies that all
the atoms are Ni atoms only. In the first image, the structure is primarily solid (25% liquid)

Figure 3.19 – Snapshots of atomic planes at different positions in the vicinity of the interface.
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and some of the free sites vacated by outgoing Ni atoms are occupied by Cu atoms, adopting
a local fcc arrangement. The same behavior was observed on the Ni-Al system [124], where
Al atoms (from pure liquid Al) occupied the vacancies created by the outgoing Ni atoms. In
the second image, the structure is half solid and half liquid. This position can be considered
as the interface position, since the same criterion was used to determine the interface posi-
tion using the PTM method, defined by having 50% solid and 50% liquid. The concentration
of Ni at this position is still far from the equilibrium values (25% solidus, 29% liquidus).
The same observation is made for the third image, with a 82% liquid fraction and 38% Ni
content. The atoms start losing their local organization gradually as the in-plane Cu content
increases by substitution of Ni atoms, until the in-plane concentration hits a value where the
solid structure is no longer stable and melts completely.

A noteworthy observation is that the profiles are almost stationary in the frame moving
with the migrating interface, on the time scale investigated, except at the interface boundary
on the liquid side. In that case, it is almost equivalent to analyze the behavior of the interface
with respect to position or to time. Hence, selecting a specific instant t during simulation and
examining snapshots at different positions is equivalent to fixing the position in a solid layer
near the interface and observing how it evolves over time as the interface passes through this
solid layer, causing it to melt. The same procedure was applied to the square section box
containing 400000 atoms, as shown in Figure 3.15. Since the displacement of the interface
is slower compared to the bigger simulation cell, the snapshot of the interface at 50% solid
and 50% liquid revealed that the concentration of Ni was between the solidus and the liq-
uidus value, suggesting that the interface could be at or close to equilibrium due to the lower
interface velocity.
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3.7 From Molecular Dynamics to Lesoult Model

Having provided an overview of the MD facet of solid-liquid interfaces, this chapter proceeds
to the final segment of this study: combining the MD simulation results with Lesoult thermo-
dynamic model. This integration involves utilizing kinetic and thermodynamic parameters
derived from the MD simulations at the interface and incorporating these parameters into
the Lesoult thermodynamic model. Subsequently, predictions are made based on the model
regarding Onsager parameters and the resulting concentration profiles.

3.7.1 Interfacial concentrations
The evolution of the interfacial concentration on the liquid side is determined from the con-
centration profiles. To achieve accurate results, ten successive concentration profiles, cap-
tured at very close temporal intervals, are selected such that their concentration values ex-
hibit minimal differences. The profiles are smoothed by applying a Gaussian filter and the
resulting smoothed profiles are then averaged to obtain the mean concentration profile. This
method helps to remove some of the fluctuations and helps to identify the general trend of
concentration over a short time frame. The final result of this process is demonstrated in
Figure 3.20.

The interfacial concentration on the liquid side is identified at the position where the
concentration profile exhibits a drastic increase in the interfacial region. This point can be
pinpointed by calculating the gradient of the concentration profile and then selecting the
position at which the absolute value of the gradient begins to rapidly increase at the interface.
The aforementioned procedure is reiterated for multiple points within the 0 to 100 ns range,
enabling the extraction of the liquid concentration at the interface as a function of time.

Figure 3.20 – Concentration profile of Ni from the Gaussian filtered concentration snapshot at 100 ns.

115



Figure 3.21 – Time evolution of the concentration at the interface on the liquid side during solutal
melting.

Subsequently, the derived profile is fitted using a simple power law (at)b with a = 6097s−1

and b = 0.3. This fitting will be used subsequently in the thermodynamic model to describe
the evolution of concentration over time as presented in Figure 3.21.

3.7.2 Chemical potentials
The most efficient technique to determine the chemical potential as a function of the solute
concentration is thermodynamic integration using the atom/swap method. This method simu-
lates a semi-grand canonical ensemble SGCMC behavior, as elucidated in a previous section
on equilibrium concentration determination. By incorporating the insights from Ueno and
Shibuta [90], the atom/swap method provides a means to estimate the chemical potential us-
ing equation (3.14), and the Gibbs energy curve can be obtained using equation (3.15).
A chemical potential difference is imposed. The composition of the structure starts to change
to accommodate the difference in chemical potential imposed between the first and second
element ∆µ = µNi− µCu. Monte Carlo swaps are attempted 5000 times every 1000 calcu-
lation steps. MD simulation is conducted simultaneously using the NPT ensemble to relax
the structure, so that the volume accommodates to the newly obtained composition. After
sufficient run time (in this case, 30 ps), the concentration stabilizes at a certain value. This
concentration value is then recorded for the specific chemical potential difference.
The procedure is repeated by varying the imposed chemical potential differences, which en-
ables the generation of a plot showing the chemical potential difference as a function of the
concentration. The resulting curves for both the solid phase and the liquid phase are illus-
trated in Figure 3.22.
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Figure 3.22 – Chemical potential difference between Ni and Cu for the liquid (red) and solid (black)
phases.

Figure 3.23 – Gibbs free energies of solid and liquid obtained after integration of the ∆µ in Fig. 3.22
and adjustment of µ l0

Ni.
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Figure 3.24 – Chemical potentials of Cu and Ni in solid and liquid with respect to concentration in
Cu.

power i 0 1 2 3 4 5

liquid 0.994 -0.72 2.53 -6.33 7.06 -2.93
solid 1.019 -0.716 2.11 -4.65 4.79 -1.87

Table 3.1 – Polynomial coefficients describing the excess contributions to the chemical potential dif-
ferences between Ni and Cu in each phase (Fig. 3.22).

The obtained chemical potential curves are then fitted using equation (3.14), Tab. 3.1. The
fitted parameters are used to calculate the integral of this equation, which equates to the
Gibbs energy up to some integration constant (e.g. the chemical potential of pure Ni), as
given by equation (3.15). It is sufficient to determine one constant, considering the other as a
reference (e.g. µs0

Ni = 0). For that purpose, the best value of µNil0 (corresponding to shifting
vertically the G curve of liquid with respect to the G curve of solid) that gives the common
tangent with the equilibrium concentrations the closest to the experimental phase diagram at
1115 °C was sought. It was found that with µs0

Ni = 1.672× 10−2 eV/atom, the equilibrium
concentrations are cs

Cu = 0.707 and cl
Cu = 0.794 (cs

Ni = 0.293 and cl
Ni = 0.206). It can be

seen that the concentration of liquid is 4.4% lower than what was found at 1127 °C with the
solute partitioning method in §3.4.2. The resulting Gibbs energy curves for the solid and
liquid phases are plotted as a function of the Cu concentration in Figure 3.23.
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The chemical potentials of Cu and Ni in each phases can be obtained as a function of the
concentration in Cu, using their definitions:

µi = G+
(
δi j− c j

) ∂G
∂c j

c j (3.30)

with δi j the Kronecker function.
They are plotted in Figure 3.24, and will be used subsequently to feed Lesoult model.

3.7.3 Moving interface model
Next, the 1D numerical resolution of the moving boundary problem controlled by solute
diffusion in the liquid have been implemented, aiming to accurately simulate the progression
of the interface considering the interface concentrations obtained from the MD simulations
(Fig. 3.21) as input.
On the basis of the results of the MD simulations, diffusion of Cu in solid can be neglected
such that the solid is considered to be pure Ni. Hence, Fick law is solved only in liquid:

∂c
∂ t

= D
∂ 2c
∂x2 (3.31)

where c is the concentration of Ni in liquid, and where it has been assumed that the intrinsic
diffusivity of Ni in liquid D is constant in the range of variation of Ni observed in the MD
simulations.

The diffusion equation is supplied with the following boundary conditions.

• First, on the right side at x=L (with L the system size) in the middle of liquid, Neumann
with zero flux is imposed to account for the symmetry of the problem: ∂c/∂x|x=L = 0.

• At the interface x = x?(t), the interfacial solute balance reads (solid is for x < x?):(
1− cl?)dx?

dt
= D

∂c
∂x

∣∣∣∣? (3.32)

where ? denotes quantities estimated at the interface. Concentration cl? and velocity
dx?/dt are taken from the MD simulations, figures 3.21 and 3.12 respectively.

Equations (3.31) and (3.32) are discretized in time with a first order implicit Euler scheme.
Then, to ensure solute conservation, they are discretized in space according to the finite vol-
ume method with fluxes computed at the sides of the control volume (surrounding a given
grid node, see Figure 3.25) with first order approximations:

Ji+1/2 · ex =−D
∂c
∂x

∣∣∣∣
i+1/2

≈ Si+1/2 D
ci+1− ci

∆x
(3.33)

for the right side of volume i with surface Si+1/2, and where ∆x is the distance between two
neighboring volumes.
At each time step, the resulting linear system is inverted using Thomas algorithm (or TDMA
for tri-diagonal matrix); and the position of the interface is updated according to equa-
tion (3.12). Although the interface is rarely located in the center of the control volumes,
the volume j where the interface is located is classified as interfacial and receives a particular
treatment.
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• There is no flux on its left side (J j−1/2 = 0), assuming that diffusion of Cu in solid
(pure Ni) is not operative on the time scale of MD simulations.

• The concentration c j is set equal to cl? given by MD (using its fit by a simple power
law, see §3.7.1). Hence, the expression (3.33) becomes

J j+1/2 · ex ≈ S j+1/2 D
c j+1− cl?

∆x
(3.34)

keeping the distance between the grid nodes ∆x rather than using x j+1−x? for simplic-
ity.

• The status (and treatment) of the control volumes is changed when the interface moves
from one volume to its neighbor.

• Using the balance equation (3.32) at the interface is easier than if the Lesoult model
had to be solved at each time step to determine the interfacial concentrations and the
velocity.

The initial length of the liquid zone is 25.2 nm, and the size of the control volumes (or the
distance between neighboring nodes) corresponds to the lattice parameter of solid Cu, ≈
3.6Å. As such, the total number of control volumes in the liquid is 70. Additionally, a small
number of solid layers are taken into consideration, equivalent at least to the number of layers
that transition to the liquid phase during the total time considered.
The first attempts have been made considering the impurity diffusion coefficients found in
§3.5.2. It appears that the values around 3×10−5 cm2 s−1 give too fast dissolution rates with
respect to the MD simulations. As shown in Figures 3.25 and 3.26, the best value has been
found to be slightly smaller, i.e. 2.3× 10−5 cm2 s−1. The small difference may be due to

Figure 3.25 – Profiles of Ni in liquid after 100 ns: 1D finite volume (orange) and MD (blue). Control
volumes are represented as white and blue vertical slabs.
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Figure 3.26 – Interface displacement during the dissolution process: MD (blue) vs. 1D diffusion
model (orange).

differences in the shapes and sizes of the simulation box, or to the fact that D in (3.31) is
the intrinsic diffusivity that contains a thermodynamic factor (∂ µ/∂c). Finally, as expected
with the moderate variations of the concentration of Ni in the liquid, considering a constant
diffusivity seems to be valid.

As already mentioned, the agreement between the 1D diffusion calculations and the MD
simulations is particularly appealing: the profiles are in very good agreement (Fig. 3.25) as
well as the interface displacement (Fig. 3.26). This adds further support to our estimation of
the interfacial concentration in the liquid in §3.7.1.
The next step involves estimating all the quantities that enter the interfacial equations in
Lesoult model. Extracting the density of flux of Ni in the liquid at the interface JNi · ex is
straightforward. As shown in Fig. 3.27 (blue dots), it features small oscillations that can be
explained by its linear approximation using ∆x (the gradient of concentration is successively
underestimated and overestimated when x? > x j and x? < x j). Nevertheless, the flux density
can be fitted very well by K/

√
t with K =

√
D/2cl?. Considering the approximate expres-

sion in Lesoult model (Eq. (2.68)), our fit amounts to choose 〈cl〉 ≈ 0 and δ =
√

2Dt, which
is consistent with the diffusion length in a 1D problem (it is worth noting that [125] came to
a similar conclusion in the Ni-Al system).
Finally, to compute the evolution of the chemical potential jumps ∆µCu and ∆µNi, one can
first insert the evolution of the interfacial concentration in the liquid cl? in the expressions of
the chemical potentials (Fig. 3.24). However, some value cs? < 1 must be assumed to avoid
the divergence of the chemical potential of Cu in the solid. A parametric study has shown
that cs?

Cu = 10−4 ensures that the solutions seem physically consistent and that the solutions
do not change drastically for larger concentrations of Cu.
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Figure 3.27 – Density of flux of Ni entering the liquid at the interface: 1D diffusion model (blue) fitted
with a law scaling as 1/

√
t (orange).

3.7.4 Interfacial Onsager mobilities
Let us recall the equations of the interfacial fluxes of Lesoult model (Eqs (2.56)-(2.59)),
specialized for the Cu-Ni system (A = Cu and B = Ni), and expressed in terms of the quantities
extracted from the MD simulations (i.e. with Jl

Ni):

(1− cl
Ni)v+Jl

Ni · ex = LCuCu ∆µCu +LCuNi ∆µNi (3.35)

cl
Niv−Jl

Ni · ex = LNiCu ∆µCu +LNiNi ∆µNi (3.36)

All the terms in the above equations having been extracted from the MD simulations, the
Onsager mobilities can be obtained by solving the system. However, it is worth noting that
the system contains two equations but three unknowns (LNiNi, LCuCu, and LNiCu = LCuNi). As
previously discussed in §2.2.3, to ensure positive entropy production, the matrix of mobilities
must be defined as positive so that the equations remain consistent with the second principle
of thermodynamics, see Eq. (2.24).
To reduce the number of unknown parameters, two limit cases have been considered.

• First, the cross terms are neglected, i.e. LNiCu = 0.
• Second, the cross terms were assumed to take their upper bound value, i.e.
(LNiCu)

2 = LNiNi LCuCu.

In the first case, the system reduces to:

LCuCu =
ICu

∆µCu
(3.37)

LNiNi =
INi

∆µNi
(3.38)

122



Figure 3.28 – Interfacial Onsager mobilities LNiNi (blue) and LCuCu (orange), neglecting the cross
terms.

where the interfacial fluxes are:

ICu = (1− cl
Ni)v+Jl

Ni · ex (3.39)

INi = cl
Niv−Jl

Ni · ex (3.40)

The result is shown in Figure 3.28. The Onsager conditions stipulate that both LCuCu and
LNiNi must be positive. However, it is found that while LNiNi is positive, LCuCu exhibits
negative values. This surprising result suggests that the role of the cross-terms in the model
is more significant than initially anticipated (in particular in §2.4). Hence, it is inferred that
these cross terms should not be ignored in the study of such processes, despite our partial
conclusion that the cross terms did not play a significant role in the Lesoult model (Figs. 2.16
and 2.17). The reason for this discrepancy may lie in our choice of equivalent diagonal
interfacial mobilities for Ni and Cu.

In the second case, it is also possible to express explicitly the Onsager coefficients as follows:

LCuCu =
(ICu)

2

P

LNiNi =
(INi)

2

P

(3.41)

with P = ICu∆µCu + INi∆µNi

The resulting curves are depicted in Figure 3.29: both LNiNi and LCuCu remain positive at
any time. Additionally, these kinetic parameters do not retain a constant value but exhibit
evolution as the dissolution process unfolds. This dynamic behavior of the kinetic parameters
suggests a complex interplay of factors that may influence the dissolution process. At first
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Figure 3.29 – Interfacial Onsager mobilities LNiNi (blue) and LCuCu (orange) accounting for the upper
bound of the cross terms.

sight, it seems that the mobilities would depend on the concentration in a nonmonotonic way.
But a rapid analysis of the expressions (3.41) shows that the shape of the evolutions depends
much on the different contributions entering the interfacial fluxes INiNi and ICuCu, as well as
how accurately the chemical potential jumps are evaluated. To illustrate this point, the two
contributions to ICuCu have been plotted in Figure 3.30: when the contribution of the interface
movement is obviously negative for dissolution (cCuv < 0), it is balanced with the diffusion
flux within the liquid, which is positive (JNi · ex = −JCu · ex > 0). Both are decreasing in
absolute value, so that the sum can change sign depending on their respective relaxation times
(they both must tend to zero at t→∞). Although our extraction of these terms from MD using
the 1D model has been as accurate as possible, it appears that slight modifications of the fits
can change the balance to remove the incursion of ICu in the negative region. If the evolution
curves are sensitive to our extraction procedure, the order of magnitude of the mobilities is
much less sensitive to it, from a preliminary parametric study (due to time limitations, this
study could not be pursued to cover the full spectrum of values of the different parameters
entering the Lesoult model).

Considering the order of magnitude of the interfacial mobilities (averaged over 100 ns),
the following results were obtained:

• LNiNi ≈ 1.1Åns−1 eV−1, or 1.2×10−6 mmolJ−1 s−1,

• LCuCu ≈ 9.1×10−3 Åns−1 eV−1, or 9.4×10−9 mmolJ−1 s−1.

• LNiCu ≈ 0.1 Åns−1 eV−1, or 7.2×10−13 mmolJ−1 s−1.

It is worth noting that the cross-term LNiCu is significant with respect to mobility LCuCu. One
can compute the equivalent interfacial diffusivities using Eq. (2.69) that are easier to compare
with the bulk diffusivities:
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Figure 3.30 – Contributions to the interfacial flux of Cu, Eq. (3.39).

• D?
NiNi ≈ 8×10−12 m2 s−1,

• D?
CuCu ≈ 6.5×10−14 m2 s−1,

• D?
NiCu ≈ 7.25×10−13 m2 s−1.

Let us compare these values with preliminary estimations with the Lesoult model in
§2.4. For solutal melting, based on the time scale deduced from the experiments of Deillon et
al. [4], it was found that D?

NiNi should be about 8×10−16 m2 s−1, i.e. 4 orders of magnitude
smaller than with MD. If LCuCu is considered, the ratio decreases to 2 orders of magnitude.
This discrepancy could have been anticipated with the time evolution of the interfacial con-
centration in Ni in liquid predicted by MD (Fig. 3.21). Indeed, cl?

Ni ≈ 0.1 (cl?
Cu ≈ 0.9) would

correspond to α ≈ 0.02 in the calculations of §2.4.2 (Fig. 2.16). Hence, using Eq. (2.82)
with t = 100ns gives D?

NiNi ≈ 2× 10−12 m2 s−1, of the same order as the values obtained
above. However, computing the velocity using the value of the corresponding Péclet number
(Pe≈−2) gives v≈−30cms−1 a dissolution rate that is far too large.
The last mismatch between the concentration and dissolution rate when considering MD and
the Lesoult curves in Figs. 2.16 and 2.17 gives a clue on what may be the origin of the
disagreement. First, the calculations with the Lesoult model were performed considering in-
terfacial (diagonal) mobilities for Ni and Cu of the same order of magnitude (equal when not
accounting for any dependence on the concentrations), when the ratio obtained by MD is two
orders of magnitude, with D?

CuCu significantly small (and much smaller than the diffusivity
in bulk liquid). Second, in line with the first point, it has been shown in §2.4.2 that diffu-
sion of Cu in solid Ni can significantly change the evolution of the interfacial concentrations
(Fig. 2.20). Although it is not obvious why diffusion of Cu in bulk solid should be of com-
parable to diffusion in bulk liquid, one must question the relevance of the parameters used
in the preliminary calculations with Lesoult model. To conclude, the present results do not
invalidate Lesoult model, but point out the necessity to handle in a more comprehensive and
systematic way the different contributions to the dissolution process.
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3.8 Conclusion
Molecular dynamics (MD) simulations successfully replicated solutal melting, revealing chal-
lenges in accurately determining quantities characterizing the S/L equilibrium, and beyond,
in monitoring their evolutions during solutal melting. Different techniques, found in the lit-
erature, have been used and tested such as the two-phase coexistence method combined with
the NPH ensemble, the solute partitioning method and thermodynamic integration to find the
equilibrium concentrations and chemical potentials; and the Polyhedral Template Matching
(PTM) method for finding efficiently the solid-liquid interface. Crucially, we have demon-
strated the significant impact of the simulation system size and shape on the results, especially
in terms of the interface velocities and concentration profiles during solutal melting. A direct
correlation was established between the system size in terms of the number of atoms and
the interface velocity, emphasizing the dependence of interfacial motion on diffusion in the
liquid. A thorough literature review has suggested that diffusion in the liquid is modified by
the shape and size of the simulation box.
The dissolution process at the interface was also highlighted, where it was shown that the
dissolution of a solid layer happens gradually. The vacancies left by outgoing Ni are occu-
pied by Cu atoms and adopt the local structure. As the Cu content starts to increase, the solid
layer starts to lose its ordered structure and melts away. Nevertheless, we have not been able
to correlate these observations with any particular process that would explain fast or slow
effective transfer of atoms across the solid/liquid interface.

The emphasis was placed on the extraction of pivotal kinetic and thermodynamic param-
eters, which will be incorporated into the Lesoult thermokinetic model. For that purpose, we
have implemented a 1D moving boundary model in which interface migration is controlled
by diffusion in the bulk liquid. Feeding this model with the interfacial concentrations mea-
sured in the MD simulations, we have been able to recover the dissolution rate of the MD
simulation, and to extract the flux of Ni in the liquid at the interface. Knowing all quantities
entering the expressions of the interfacial fluxes in Lesoult model, we have determined the
evolution of the interfacial mobilities on the time scale of the MD simulations. Unfortunately,
the values obtained by such an analysis do not agree with the preliminary estimated in §2.4.
We suspect some strong assumptions on the parameters in the preliminary predictions of the
Lesoult model to be the cause of the disagreement. In particular, the role of the ratio between
the diagonal interfacial mobilities and of the diffusivity in bulk solid is worth to be further
investigated.

Despite this quite negative conclusion, we believe that the methodology implemented in
this chapter is worth following to gain new understanding of the puzzling experiments of
solutal melting.
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General conclusion

The present work provides an exploration into the intricacies of solutal melting, using dif-
ferent tools at different scales, such as dedicated experiments, thermo-kinetic modeling, and
Molecular Dynamics simulations. It delves into the interfacial mechanisms driving this com-
plex process, particularly within Ag-Au and Cu-Ni alloy systems.

One of the salient revelations is the inherent asymmetry between solidification and melt-
ing. The conventional belief of viewing melting as the inverse of solidification is ques-
tioned. Observations from solutal melting experiments indicate that, unlike solidification,
where the solid forms at equilibrium concentration by rejecting excess solute into liquid,
melting exhibits unique characteristics. In the process of melting, the interface remains out-
of-equilibrium throughout, in relation with a slow diffusion in the solid. The consequence
of this phenomenon is that the excess solute diffusing into the first few layers of the solid
phase cannot be diffused quickly enough into the deeper layers. As a result, as the liquid
front continues to advance, these layers undergo further melting, maintaining the solid-liquid
interface in a perpetually out-of-equilibrium state.

To capture this out-of-equilibrium behavior, a novel thermodynamic model was pro-
posed based on the original work of Lesoult. This model demonstrated its proficiency in
predicting interface concentrations, mirroring qualitatively the conditions observed in the
experiments. This modeling approach, an alternative to Hillert model commonly used for
diffusion-controlled transformations, brings a new perspective on non-equilibrium interfaces.
This model distinctly deviates from traditional frameworks by not mandating a predefined di-
rection of transformation, thereby offering a dynamic perspective on phase transformations.

Molecular Dynamics (MD) simulations emerged as a crucial tool in this research, afford-
ing another dimension to the study of solutal melting. These simulations were instrumental in
successfully replicating the process of solutal melting at the atomic scale, thereby contribut-
ing significantly to the robustness of the study. During this endeavor, the research encountered
numerous challenges, all of which provided opportunities for continuous refinement of the
MD methodology for our particular topics. Among these challenges were the identification
and application of accurate methods for calculating equilibrium concentrations and chemical
potentials, for establishing the position of the interface, and for handling unexpected phe-
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nomena that emerged during the simulation process. Of these, the effect of the liquid phase
layering in proximity to the interface, along with the impact of the size and shape of the
simulation cell on key kinetic parameters, was particularly notable. Delving deeper into the
interfacial behavior, the research provided substantial insights into the dissolution process
that occurs at the interface. This unveiled the sequential nature of the transformation of the
solid layer. As Ni atoms vacated their positions, these vacancies were subsequently occupied
by Cu atoms, which adapted to the local atomic structure. As the concentration of Cu in-
creased, the solid layer progressively lost its ordered structure, resulting in melting.
Next, the MD simulations have been analyzed by means of a 1D model where the migration
of the interface is controlled by diffusion in bulk liquid. Feeding this model with the time
evolution of the interfacial concentration measured in the MD simulations, we have been able
to reproduce the dissolution rate, and to extract the flux of Ni in the liquid at the interface.
Having all the quantities entering Lesoult model, we have been able to quantify the interfa-
cial mobility matrix, assuming either that the cross terms vanish or that they are taking their
upper bound values. As a major outcome, we have found that the cross-terms are necessary to
ensure that the mobility for Cu be positive. When comparing the values from MD, they seem
not to agree with the preliminary estimates using Lesoult model fitted on the experimental
time scale. Hence, explaining quantitatively the solutal melting experiments remains an open
challenge.

Our work presents ambitious prospects to reconcile experimental measurements, prelim-
inary results from the thermo-kinetic model by Lesoult, and molecular dynamics simulations.

First and foremost, we can consider conducting additional experiments to substantiate
the results. This involves, on the one hand, the Ni-Cu system, for which it is possible to per-
form calculations at the atomic scale using empirical interatomic potentials, and on the other
hand, the Au-Ag system. For this purpose, X-ray radiography experiments at the synchrotron
facility could be performed to achieve better time and spatial resolutions. To this end, we
would need to revisit the principle of the thin-film setup to avoid convection-related artifacts
and enhance it to eliminate thickness variations. Prolonged holding followed by quenching
would also be necessary to measure diffusion profiles in the solid and determine diffusivities
in this phase. Finally, it may be conceivable to carry out experiments at different temperatures
to alter the dominant species in the liquid at the interface and observe the consequences on
the process and its kinetics.

Next, revisiting the Lesoult thermo-kinetic model would require coupling it with a 1D
diffusion model to overcome rough estimates of volume diffusion terms. It would also be
valuable to incorporate solid-state diffusion and the chemical potentials obtained through
thermodynamic integration to be as closely aligned as possible with molecular dynamics
(MD) calculations. This would enable us to rerun calculations using mobilities extracted
from MD, particularly accounting for their strong contrasts. Finally, it appears crucial to
extensively investigate the significance of cross-mobilities.

Lastly, it might be worthwhile to repeat the analysis of MD calculations to extract inter-
facial mobilities for the other systems explored in this study and understand how interfacial
mobilities depend on effective volume diffusivities. The use of Ab initio molecular dynam-
ics simulations on the Ag-Au potential to corroborate MD results on the Cu-Ni system and
compare them to experiments conducted within the scope of this thesis would also present an
interesting prospect.
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