
HAL Id: tel-04576896
https://theses.hal.science/tel-04576896

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convex Optimization for Discrete Graphical Models
Valentin Durante

To cite this version:
Valentin Durante. Convex Optimization for Discrete Graphical Models. Discrete Mathematics
[cs.DM]. Université Paul Sabatier - Toulouse III, 2023. English. �NNT : 2023TOU30323�. �tel-
04576896�

https://theses.hal.science/tel-04576896
https://hal.archives-ouvertes.fr








i

À mon grand-père,
À mes parents,





iii

Acknowledgments

Ce manuscrit est non seulement l’aboutissement de 3 ans de travail mais aussi
l’aboutissement de tout mon parcours académique et humain jusqu’à mon arrivée
dans l’équipe MIAT à l’INRAE de Toulouse. Le moment est donc venu de remercier
toutes les personnes qui ont eu une inuence sur cette belle partie de ma vie et qui
ont rendu ce travail possible.

Tout d’abord, je tiens à remercier mes deux directeurs de thèse Thomas Schiex et
George Katsirelos. Thomas et George ont toujours apporté un regard bienvaillant
sur mon travail et m’ont également laissé beaucoup de libertés pour explorer les
pistes qui me plaisaient. J’ai beaucoup gagné en maturité scientique à leur côté et
les réunions hebdomadaires du mercredi risque de me manquer. Thomas et George
forment un super duo et ils ont même ni par me rendre un peu geek sur les bords!

Thank you to all the jury members: Renata Sotirov, Paul Swoboda, Amélie
Lambert, Clément Royer, Martin Cooper and Edouard Pauwels. Thank you for the
insightful feedbacks and for the interesting discussions we had about my work.

Thank you to my two thesis committee members: Angelika Wiegele and Jean
Bernard Lasserre. Thank you Angelika for giving me the opportunity to come to
Klagenfurt.

À partir de maintenant, je vais essayer de suivre un ordre chronologique. Merci
à tous mes amis qui me connaissent déjà depuis tout petit: Sam, Bilal, Liam, Tifenn
et Quentin avec qui j’ai toujours autant de plaisir à discuter et à faire une descente
du parc à chien à l’occasion. Merci aussi à toute l’équipe qui me suit depuis le lycée:
Quentin, Hugo, Lucas, Arthur, Matthieu, Thomas, Léo et Thibaut. Très content de
voir que tout le monde a trouvé sa voie et j’attends toujours la semaine de vacances
en été avec autant d’impatience. J’aimerai également remercier ceux que je côtoie
depuis la prépa et l’école d’ingénieur: Martin, Théo, Victor, Mathis, Pierre, Adrien
et Isma.

Merci aux personnes qui m’ont inspiré à poursuivre cette voie scientique. En
particulier mes professeurs de mathématiques Jérôme Borel pour l’enthousiasme
qu’il m’a apporté à faire des maths et également Michel Carré pour la rigueur.
Je veux aussi remercier Serge Gratton qui m’a permis de rentrer en contact avec
Thomas.

Le moment est venu de remercier toute l’équipe du laboratoire MIAT. J’ai reçu
un acceuil chalereux dès le début de mon stage et je tiens à remercier toutes les per-
sonnes du secrétariat et en particulier Fabienne qui font en sorte que tout roule cor-
rectement dans le labo. Merci au directeur du labo Sylvain, merci pour tes précieux
conseils malgrès le fait que j’ai suivi la voie du doctorat (peut-être par pur esprit de
contradiction?). Évidemment je veux remercier tous les docteurs et futurs docteurs
avec qui j’ai eu l’honneur de partager mon bureau: Manon, Paul, Marianne, Loïc
et Vincent. Merci à Lise qui m’a fait conance (peut-être par totale inconscience)
pour prendre soin du cactus de l’unité. Un grand merci à tous les joueurs de tarot et
ceux avec qui nous avons fait de belles sorties au baraka: Prasanna, Julien, encore
Julien, Samuel (promis un jour je viendrai faire de l’escalade), Philippe, Benjamin,



iv

Raphael, Paul, Jean, Khaoula (bonne chance pour ta soutenance), Aurélie, Joan,
Bessam, et malheureusement, je risque d’en oublier quelques-uns. Pour certains
d’entre vous j’espère que l’on se retrouvera rapidement sur les terrains de volley.
Thank you to all the PhD students I have met during my staying at Klagenfurt,
I had a really good time there. Merci à Joséphine, même si elle déteste perdre au
tarot et qu’elle me trouvait un peu lent à vélo, ça m’a fait plaisir de discuter avec
toi sur les derniers mois de thèse (j’attends encore ta super idée de start-up). Merci
beaucoup à Hanna d’être toujours aussi sympa et de bonne humeur, trop forte en art
créatif merci au passage de m’avoir oert une règle pour mon anniversaire (j’espère
aussi que l’on croisera bientôt les gants). Et enn merci à mon Duo de thèse, Pierre,
avec qui je suis très content d’avoir pu partager cette expérience de plus de trois
ans. Pierre c’est en quelque sorte le maître de jeu de l’unité. J’espère que l’on aura
encore l’occasion de se croiser par la suite.

Last but not least, j’aimerais remercier tous les membres de ma famille. Tout
d’abord mes parents qui m’ont toujours soutenu et ont eu conance en moi. Merci
d’avoir été là pendant ce long parcours qui ne fait au nal que commencer. Merci à
mon petit frère Arthur qui n’a pas pu résister à l’envie de me suivre à l’INRAE même
si tu fais de la biologie. J’aimerai remercier mes grands-parents et en particulier mon
grand-père, Christian, qui a été une grande source d’inspiration pour moi tout au
long de ma vie.



Contents

List of Acronyms ix

Introduction 1

1 Background 5
1.1 Discrete Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Notation, denitions . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Queries and exact optimization . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Optimization over graphical models . . . . . . . . . . . . . . . 10
1.2.2 Connections with Max Cut . . . . . . . . . . . . . . . . . . . 11
1.2.3 Integer linear programming . . . . . . . . . . . . . . . . . . . 13
1.2.4 Quadratic optimization . . . . . . . . . . . . . . . . . . . . . 14

1.3 Exact algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Branch and bound . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Bounding procedures with linear relaxations . . . . . . . . . . . . . . 18
1.4.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Sherali-Adams hierarchy . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Local polytope, duality and local consistencies . . . . . . . . 21

1.5 Bounding procedures with semidenite relaxations . . . . . . . . . . 22
1.5.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.2 MAP inference as constrained binary quadratic problem . . . 31
1.5.3 Log-encoding of the discrete variables . . . . . . . . . . . . . 34
1.5.4 Moment-SOS hierarchy . . . . . . . . . . . . . . . . . . . . . 37
1.5.5 First and second order methods . . . . . . . . . . . . . . . . . 38
1.5.6 Low-rank methods . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6 Integer solutions with rounding . . . . . . . . . . . . . . . . . . . . . 46

2 Coordinate vs block coordinate descent methods 49
2.1 LR-LAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.1 Gangster constraints . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.2 Dual feasible points . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 LR-BCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.1 From sparsity to block optimization . . . . . . . . . . . . . . 58
2.2.2 Optimization on the unit-sphere through trigonometry . . . . 61
2.2.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 69
2.2.4 Strong duality and optimality . . . . . . . . . . . . . . . . . . 69
2.2.5 Descent property . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2.6 Producing an integer primal solution . . . . . . . . . . . . . . 74

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



vi Contents

2.3.1 Description of solvers . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.2 Random instances . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.3 Sparse problems . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3.4 Real world problems . . . . . . . . . . . . . . . . . . . . . . . 81

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.4.1 Update rule for the cost matrix . . . . . . . . . . . . . . . . . 85
2.4.2 On proving convergence of LR-BCD . . . . . . . . . . . . . . 87
2.4.3 Strengthening the LR-BCD formulation . . . . . . . . . . . . 89

3 Tighter bounds through constraints 93
3.1 A better representation of the feasible set . . . . . . . . . . . . . . . 94
3.2 Resolution with ADMM . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.1 Primal ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.2 Recovering an integer solution . . . . . . . . . . . . . . . . . . 101
3.2.3 Constraint set projectors . . . . . . . . . . . . . . . . . . . . . 101

3.3 Global constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.1 CPU-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.2 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.3 Results on protein instances . . . . . . . . . . . . . . . . . . . 107
3.4.4 Faster projection onto the semidenite cone . . . . . . . . . . 108

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Solving MaxCut exactly with low rank SDP bounds 111
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Related work and our contributions . . . . . . . . . . . . . . . . . . . 113
4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1 Semidenite relaxations for MaxCut . . . . . . . . . . . . . . 114
4.3.2 Other exact solvers based on semidenite programming . . . 116

4.4 Bounding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.1 Combining the mixing method with the proximal bundle method118
4.4.2 Safe upper bounds . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Branch and cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.1 Bounding routine . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.2 Branching rules . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.3 Problem reformulation and warm start . . . . . . . . . . . . . 122

4.6 Biased hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Conclusion 135



Contents vii

Appendices 139

A MixCut parameters 141

B Exactly-one and diagonal projections 143

C French summary 145

Bibliography 159





List of Acronyms

The following abbreviations are used in this manuscript:

AI Articial Intelligence
ADMM Alternating Direction Method of Multipliers
B&B Branch And Bound
CFN Cost Function Network
CP Constraint Programming
CSP Constraint Satisfaction Problem
CPD Computational Protein Design
DNN Doubly Non-Negative program
DL Deep Learning
ER Erdős–Rényi
ILP Integer Linear Programming
IPM Interior Point Methods
GM Graphical Model
LP Linear Programming
MAP Maximum A Posteriori
MRF Markov Random Field
QCQP Quadratically Constrained Quadratic Program
SAT Boolean SATisability Problem
SDP Semidenite Programming
WCSP Weighted Constraint Satisfaction Problem





Notation

In this section, we recall the notation and conventions that are commonly used
in linear programming [Dantzig, 1963] and semidenite programming [Wolkowicz
et al., 2012]. These notations are used throughout the entire manuscript.

1. Sets

• [n] sequence of integers from 1 to n.

• Rn the n dimensional Euclidean space.

• Rm×n the space of (m× n) real matrices.

• Sn the space of (n× n) real symmetric matrices.

• Sn
+ := X  Sn : X ⪰ 0 the convex cone of (n × n) symmetric positive

semidenite matrices.

2. Vectors

• x a vector.

• x⊤ the transpose of vector x.

• xi the i-th component of vector x.

• x⊤y the inner product of two vectors.

• ∥x∥ the Euclidean norm of vector x.

• ei the i-th vector of the canonical basis of Rn.

• 1n  Rn the vector of all ones.

• 0n the zero vector in Rn.

3. Matrices

• X a matrix.

• X⊤ the transpose of matrix X.

• Xk the k-th row vector of matrix X.

• In the identity matrix in Rn×n.

• 0m×n the zero matrix in Rm×n.

• Eij element of the canonical basis of Rm×n.

• A = Diag(x) diagonal matrix with entries Aii = xi, x  Rn.

• x = diag(A) the vector of Rn made of the diagonal entries of A.

• Ai the i-th matrix in a set of matrices Aii∈I .
• A−1 the inverse of the square matrix A.

• A+ the Moore-Penrose inverse of A  Rm×n.
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• A⪰0 the projection of A  Sn onto the positive semidenite cone.

The notations for the matrix rows and the matrix indices overlap, but it should
be clear from the context which object we are referring to.

4. Operations

• Tr()

Tr(X) =

n

i=1

Xii,

the trace of a (n× n) square matrix.

• ⟨, ⟩

⟨X,Y ⟩ = Tr(X⊤Y ) =

m

i=1

n

j=1

XijYij ,

the standard inner product on two (m× n) real matrices.

5. Operators on matrices

• A : Sn → Rm a linear operator.

Ai(X) = ⟨Ai, X⟩, i = 1,    ,m

• A∗ : Rm → Sn the adjoint of A.

A∗(y) =
m

i=1

yiAi

6. Functions
Let f : U ⊂ Rn → R.

• f(x) gradient of f at x  Rn.

• 2f(x) Hessian of f at x  Rn.

We now introduce the notations for discrete graphical models [Koller and Fried-
man, 2009, Cooper et al., 2020]. Some notations may overlap with previously dened
objects, but the context clearly indicates which object we are referring to.

1. Variables

• xi a discrete variable. Variables can be assigned values from their nite
domain.

• Di domain of a variable xi.

• di size of the domain Di.

• a, b, c, g, r    actual values.

2. Sequences
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• X, Y, Z    a sequence of variables.

• v, w    a sequence of values.

• DX the domain of a sequence of variables, the Cartesian product of the
domains of all variables in X.

• vX an element of DX which denes an assignment for all the variables in
X.

3. Operators

• vX [Y ] the projection of vX on Y ⊆ X: the sequence of values that the
variables in Y take in vX .





Introduction

Practically solving combinatorial problems has been a challenge for many decades.
In principle, these problems can be found everywhere. They are at the heart of cer-
tain disciplines of AI, such as automated reasoning. The computer learns “how to
reason” given a set of rules specied by the programmer. These rules are guided by
formal logic. This paradigm has been successfully used to formally prove mathemat-
ical conjectures that had remained open for decades [Heule et al., 2016, Brakensiek
et al., 2022].

In this thesis, our work focuses on a framework that can be seen as an extension
of the Constraint Satisfaction Problem (CSP). For these problems, we have to deal
with three kind of objects: variables, discrete domains and constraints. Variables
are associated with discrete domains from which they take their values. Constraints
describe requirements over a set of one or multiple variables. For example, a con-
straint may prohibit a particular combination of values. Then our goal is to ask
the following question: can we nd an assignment of all the variables which fullls
all the constraints? With these ingredients we can model a large range of problems
going from radio frequency assignment [Koster, 1999] to the well known Sudoku.
The constraints are considered as hard constraints. If at least one of the constraints
is violated, then the answer to the question for that particular assignment is false.

Our framework, graphical models (GM), have a couple of properties that make
them interesting to study. GMs have the three same ingredients as CSP but the
constraints are replaced by “soft” constraints. These constraints are integer or real
valued functions which take a nite set of non-negative values. The value returned
by a constraint for a particular assignment of the variables corresponds to a vio-
lation, or a cost that we have to pay if we choose this assignment. A GM denes
a joint function over all the variables which gives the total cost for all the con-
straints. Then, a natural query on graphical models is to nd an assignment that
minimizes the joint function. The special feature of this joint function is that it
can be described as combination of “small” functions which makes it interesting for
optimization purposes.

The combinatorial aspect of these problems makes them hard to solve. Indeed
the number of combinations to ask the queries is exponential in the number of vari-
ables. One idea to overcome this issue is to dive into the continuous world. Finite
domains are now replaced by continuous ones, giving us access to the whole con-
tinuous optimization toolbox. This transformation only provides an approximation
of the original problem. However, it gives some information that can help us to
solve the problem exactly. In this thesis we decided to approximate combinato-
rial problems with Semidenite Programming (SDP). SDP is a sub-class of convex
optimization where the variables are matrices.

Our main motivation is to explore the eciency of these methods to approximate
the optimum of the joint function dened by a GM. In this regard, we usually have
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to make a trade-o between the quality of the approximation and the eort spent
to solve it. In general, working with matrices is costly in terms of memory and
number of operations. However, we will see that there exists methods to handle
them eciently.

Organisation of the manuscript

This thesis is organized in 4 chapters.

The background, Chapter 1, is an introduction to Graphical Models (GM). We
give a short study of the theoretical aspects and queries on graphical models. In
particular, we are interested in an optimization query which asks to minimize a
certain joint function dened by the GM. This task is NP-Complete. We give
an overview of the dierent theoretical and practical tools that were developed to
practically solve it.

Chapter 2 presents two new relaxations for the Maximum A Posteriori (MAP)
problem on pairwise discrete graphical models. The original combinatorial problem
is relaxed into two semidenite programs, which we solve by using ecient low-rank
methods. The rst solver is based on the mixing method, a low-rank solver dedicated
to diagonally constrained SDPs. For the second relaxation, we developed a dedicated
low-rank solver that performs block coordinate descent steps. To make a coordinate
descent step, we have to solve an optimization problem on the unit sphere. We show
that we can solve it eciently by using trigonometry and the Newton algorithm.
We compare our two methods with state-of-the-art solvers for the MAP problem.
Among other things, we demonstrate the quality of SDP solutions for certain types
of problem. There is also evidence that our second method has good scalability
properties. Finally, we applied it to two real-world use cases: genome assembly
and computational protein design. The work of this chapter was published at the
International Conference on Machine Learning (ICML) [Durante et al., 2022].

In Chapter 3, we explore a new set of constraints to tighten the SDP relaxation
of the MAP problem. To keep a good trade-o between the eort spent and the
quality of the solution, we decided to use a rst-order method to approximately
solve the relaxation. This method also allows for computing a safe dual bound. We
show some results against the previous low-rank solvers.

In Chapter 4, we are interested in solving MaxCut to optimality which is a
central combinatorial problem in graph theory. Solving MaxCut is relevant in the
context of this thesis since it shares tight links with the MAP problem on discrete
GM. We propose a new SDP solver based on one of the low-rank methods we used
in the second chapter. We show how this method can be incorporated into a branch
and cut algorithm. This work is the result of a collaboration begun while visiting
the Klagenfurt Mathematical Institute. It will be submitted to a journal before the
end of the year.
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6 Chapter 1. Background

1.1 Discrete Graphical Models

Graphical models (GM) dene a mathematical framework to concisely describe a
multivariate function using a certain kind of factorization. Our study is restricted
to functions of discrete variables. A large number of problems in Computer Science,
Logic, Constraint Satisfaction/Programming, Machine Learning, Statistical Physics
and Articial Intelligence can be modeled using graphical models. A GM is dened
by a set of variables and a nite set of small functions which are combined together
into a joint multivariate function. The small functions usually involve few variables
or can be represented in a compact way using a dedicated language.

For example, graphical models with binary functions and Boolean variables are
used in automated reasoning. Small functions are dened by disjunction of variables
or their negation. Those functions called clauses are in turn combined with conjunc-
tion to dene the Conjunctive Normal Form. This framework is useful for describing
logical properties such as the logical circuits built into computer hardware. We can
consider dierent queries on this type of graphical model, such as the SAT problem,
which seeks to show the existence of an assignment that satises the conjunctive
Boolean formula. If we instead consider Boolean functions over sets of variables
with nite domains, combined with conjunction, we obtain a constraint network
(CN). Finding an assignment of the variables that optimizes the joint function is
referred to as the Constraint Satisfaction Problem (CSP). Given the size of the in-
put, in the worst case there is no known polynomial-time algorithm to solve these
problems. SAT was the rst known NP-complete problem [Cook, 2023], meaning
that any problem in NP can be reduced to it using polynomial-time reductions.

Small functions can also be described as real-valued tensors. Combined with
addition or multiplication, we can model a discrete probability distribution as it is
done with Bayesian Networks (BNs). After normalization, Markov Random Fields
(MRFs) also dene a joint distribution over discrete variables [Koller and Friedman,
2009, Bishop and Nasrabadi, 2006].

To summarize, the general denition of graphical models covers a variety of
well-studied frameworks, including constraint networks [Rossi et al., 2006], proposi-
tional logic [Biere et al., 2009], generalized additive independence models [Bacchus
and Grove, 2013], weighted propositional logic, Markov Random Fields [Kinder-
mann and Snell, 1980, Koller and Friedman, 2009], Bayesian networks [Koller and
Friedman, 2009] (MRFs with normalized tensors describing conditional probabilities,
organized according to direct acyclic graphs), Possibilistic and Fuzzy Constraint
Networks [Dubois et al., 1993].

1.1.1 Notation, denitions

We now give the formal denition of a discrete graphical model [Cooper et al., 2020].

Denition 1. Graphical model. A discrete graphical model M = ⟨X,Φ⟩ with co-
domain B and a combination operator ⊕ is dened by:

• a sequence of n variables X, each with an associated nite domain.
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• A set of functions (or potentials) Φ. Each function θS  Φ is a function from
DS → B. S is called the scope of the function and S its arity.

M denes a joint function:

ΘM : DX → B

v →


θS∈Φ
θS(v[S])

Together with the co-domain B, the operator ⊕ denes a so-called valuation
structure.

Denition 2. Valuation structure. The pair (B,⊕) is a valuation structure if:

• the co-domain B is totally ordered by ⪯, and contains a minimum ⊥ and a
maximum element ⊤

• The operator ⊕ is commutative: ∀a, b  B, a⊕ b = b⊕ a

• The operator ⊕ is associative: ∀a, b, c  B, (a⊕ b)⊕ c = a⊕ (b⊕ c)

• The operator ⊕ is monotone: ∀a, b, c  B, (a ⪯ b =⇒ (a⊕ c) ⪯ (b⊕ c))

• The minimum element ⊥ is neutral for ⊕: ∀a  B, a⊕⊥ = a

• The maximum element ⊤ is absorbing for ⊕: ∀a  B, a⊕⊤ = ⊤
In this thesis, our work is focused mainly on additive graphical models also

called Cost Function Networks (CFNs) [Dechter, 2022, Cooper et al., 2020]. The
co-domain B is the set of non-negative integers bounded by ⊤  N  +∞. The
operator ⊕ is dened by the bounded addition a+⊤ b = min(⊤, a+ b).

Denition 3. Cost function network. A cost function network (CFN) is a graphical
model C = ⟨X,C⟩ with:

• a set X = (x1,    , xn) of n discrete variables. Each variable xi takes its values
in domain Di

• A set C of cost functions. A cost function cS  C maps tuples of DS to the
co-domain 0,    ,⊤

C denes a joint function:

CC : DX → 0,    ,⊤
v →



cS∈C

⊤
cS(v[S]) (1.1)

Due to their expressivity, CFNs can be used to model many types of graphical
models. Cost functions with values in 0,    ,⊤ are soft constraints. For a partic-
ular cS  C and a sequence v  DX , the value cS(v[S]) can be seen as a violation of
the constraint. The maximum element ⊤ encodes forbidden tuples, that is, partial
assignments with cost ⊤ are forbidden. When a cost function takes its values in
0,⊤ it is a hard constraint.
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Function representation A graphical model denes a joint function as a combi-
nation of simple functions. These functions are simple because they involve a small
number of variables. Since variables have nite domains, each function can be rep-
resented as a multi-dimensional table also called a tensor. For a function θS  Φ,
this representation allows to map any sequence of values vS  DS to an element
of the co-domain. To store the information, O(dS) space is needed where d is the
maximum domain size for the variables in S.

Throughout the manuscript, we restrict our study to pairwise graphical models,
i.e., the small functions all have an arity of at most 2. We then have a natural
representation of the functions using vectors and matrices with values in the co-
domain B. When they contain a small number of values dierent from the minimum
element ⊥, one can use sparse structures to compactly store the information.

Another important class is that of stochastic graphical models for which the co-
domain is the real interval [0,+∞]. In this case, the operator ⊕ is the multiplication
and the functions describe non-normalized marginal probabilities over subset of
variables.

Denition 4. Markov Random Field. A Markov Random Field (MRF) [Koller and
Friedman, 2009] is a graphical model M = ⟨X,Φ⟩ with:

• a set X = (x1,    , xn) of discrete random variables. Each random variable xi
takes its values in domain Di.

• A set Φ of potentials. A potential θS  Φ maps tuples of DS to the co-domain
[0,+∞].

M denes a joint function:

ΘM : DX → [0,+∞]

v →


θS∈Φ
θS(v[S]) (1.2)

Graph representation A pairwise graphical model can be represented as a graph,
hence the terminology. For a graphical model M = ⟨X,Φ⟩ we have a corresponding
graph G = (V,E) with a vertex for each variable. For a function θS  Φ with scope
S = (xi, xj) we have an edge e  E with endpoints xi and xj :

V = X, E = (xi, xj)  S = (xi, xj), θS  Φ

Discrete MRFs and CFNs are closely related. One can use logarithmic or expo-
nential transformations to transform one into the other and vice versa. However,
there exist some disparities:

• The valuation structure of CFNs is dened over (possibly bounded) non-
negative integers while MRFs use non-negative real numbers.
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x1

x2

x3

x4

x5

Figure 1.1: Graph representation of a pairwise graphical model M = ⟨X,Φ⟩ with 5

variables X = x1, x2, x3, x4, x5 and 5 functions Φ = θ12, θ23, θ14, θ34, θ45.

• CFNs have the ability to encode hard constraints with the maximum element
⊤  N  +∞. For the case ⊤ = +∞, MRFs mimic these constraints by
using zero potentials. Whether it is allowed or not, the introduction of zero
potentials has led to the development of dierent algorithms.

For completeness, we give the two transformations. A CFN C = ⟨X,C⟩ can
be transformed into a MRF M = ⟨X,Φ⟩ using exponentiation. The sum operator
becomes a multiplication and the costs of ⊤ are mapped to zero potentials.

Φ =


cS  C

θS : vS → exp (cS(vS))



Conversely, a MRF M = ⟨X,Φ⟩ can be expressed as a CFN C = ⟨X,C⟩ with a
logarithmic transformation. Note that a CFN uses integer costs, so the probabilities
are shifted and rounded up to a certain precision.

C =


θS  Φ

cS : vS →  log (θS(vS))× 10m



with m a precision parameter. Zero potentials are mapped to the maximum element
⊤.

1.2 Queries and exact optimization

In the rst section, we presented discrete graphical models, a powerful framework
that can express many dierent problems. Queries over graphical models ask one to
compute simple information on the joint function such as its minimum or its mean
value. Those queries cover a broad range of applications in Articial Intelligence or
Computer Science, for example.
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1.2.1 Optimization over graphical models

One usual query over an MRF is to nd the most probable assignment also called
maximum a posteriori (MAP). A probability distribution can be recovered from
the joint function by computing a normalization constant also called the partition
function.

Denition 5. Partition function. The partition function Z of a Markov Random
Field M = ⟨X,Φ⟩ is dened as the sum of the potentials over all possible assignment
v  DX :

Z =


v∈DS



θS∈Φ
θS(v[S])

Computing the partition function is also a query on the MRF which is known
to be #P-complete [Valiant, 1979]. We can then dene the probability distribution
associated with the MRF:

pM : DX → [0, 1]

vX → PM(v) = 1
Z



θS∈Φ
θS(v[S])

Denition 6. Maximum A Posteriori. The Maximum A Posteriori (MAP) problem
on a Markov Random Field M = ⟨X,Φ⟩ consists in nding an assignment v  DX

with maximum probability:

max
v∈DX

P (v) =
1

Z



θS∈Φ
θS(v[S])

Note that for optimization purposes the partition function is not relevant and
one can directly work with the non-normalized joint distribution. There exists an
equivalent query on CFNs, namely, the weighted constraint satisfaction problem.

Denition 7. Weighted constraint satisfaction problem. The Weighted Constraint
Satisfaction Problem (WCSP) on a CFN C = ⟨X,C⟩ consists in nding an assign-
ment v  DX with a minimum cost:

min
v∈DX

CC(v) =


cS∈C

⊤
cS(v)

Due to the monotonicity of the logarithm and the exponential, the transforma-
tions presented above essentially show that MAP and WCSP are the same prob-
lem. As a result, the two terms are used interchangeably in the remainder of the
manuscript.

Example 1. Let us consider a CNF C = ⟨X,C⟩ with:

• X = (x1, x2, x3)

• D1 = a, b, c, D2 = a, b, D3 = a, b
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• C = c∅, c1, c12, c23

The function c∅ with empty scope denes a constant term for the CFN. Since all
functions have nonnegative costs, c∅ is a natural lower bound for the optimal value
of the WCSP on C.

In this example, we describe the cost functions as tensors and we set the maxi-
mum element ⊤ = +∞:

c∅ = 4

c1
a 0

b 2

c 1

c12 a b

a +∞ 3

b 0 2

c 1 0

c23 a b

a +∞ 0

b 0 +∞

The weighted constraint satisfaction problem asks to nd the assignment of all
variables that minimizes the joint function:

min
v∈DX

CC(v) = c∅ + c1(v1) + c12(v12) + c23(v23)

Note that the partial assignments (x1 = a, x2 = a), (x2 = a, x3 = a) and (x2 =

b, x3 = b) are forbidden since they all give a cost of +∞. One can see that the
unique solution of the WCSP is given by v∗ = (c, b, a) and the corresponding optimal
cost is CC(v∗) = 5. For this small example, the solution can be found by complete
enumeration.

1.2.2 Connections with Max Cut

MaxCut is a central problem in combinatorial optimization, it is one of the 21 Karp’s
NP-complete problems [Karp, 2010]. Given a weighted graph, it aims to nd a par-
tition of the vertices into two disjoint sets such that the sum of the edges between
the sets is maximized. It gained a lot of attention in the past decades due to its
broad range of applications in physics and computer science. It is sometimes inter-
esting to reduce other combinatorial problems to this one, given the large number
of algorithms that have been developed in recent years. In this section, we want to
highlight the fact that MaxCut and the WCSP share tight links.

Notations Let G = (V,E) be an undirected graph with n = V  vertices and
m = E edges. We denote by we the weight of an edge e  E. We call a cut of
the graph G a partitioning of its vertices into two disjoint subsets V = (S, T ). We
denote by (S : T ) := (xi, xj)  E  xi  S, xj  T the crossing edges. With each
cut, we associate a weight that corresponds to the weighted sum of the crossing
edges

w(S, T ) =


e∈(S:T )

we

Denition 8. MaxCut. The MaxCut problem aims to nd a partition of the vertices
V = (S∗, T ∗) such that the weighted sum w(S∗, T ∗) is maximized.
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Example 2. Let us consider a graph G = (V,E) with

• V = x1, x2, x3, x4, x5.

• E = (x1, x2), (x1, x4), (x2, x3), (x3, x4), (x3, x5)

x1

x2 x3

x4

x5

4

2

2

5

3

Figure 1.2: Representation of G with edge weights w12 = 4, w14 = 2, w23 = 2,
w34 = 5 and w35 = 3.

The unique solution of MaxCut is given by the partition V = (S∗, T ∗) with
S∗ = x1, x3, T ∗ = x2, x4, x5 and value w(S∗, T ∗) = 16.

x1

x2 x3

x4

x5

4

2

2

5

3

Figure 1.3: Unique solution of MaxCut on G, vertices in T ∗ and S∗ are drawn in
red and blue respectively.

Cost function networks have the ability to model MaxCut. It suces to consider
a CFN C = ⟨X,C⟩ with X = V and cost functions C := cij  (xi, xj)  E. X

contains Boolean variables that give the side of the cut and the cost functions are
given by

cij a b

a wij 0

b 0 wij

Then MaxCut is equivalent to the weighted constraint satisfaction problem on C. We
have seen that MaxCut can be modeled as a WCSP. The opposite transformation is
introduced later in the manuscript. Consequently, the arsenal of optimization tools
for CFNs can be used to solve MaxCut and vice versa.



1.2. Queries and exact optimization 13

1.2.3 Integer linear programming

In this section, we show that the pairwise WCSP can be reduced to an integer linear
program. For simplicity, we consider the maximum element ⊤ = +∞. An integer
linear program (ILP) is an optimization problem over integer variables with a linear
objective function and linear constraints.

Denition 9. Standard integer linear program. Let c  Rn, A  Rm×n and a
variable x  Rn, an integer linear program in standard form is given by the following
minimization problem:

min c⊤x

s.t Ax = b

x ⩾ 0

x  Zn

(ILP)

Modeling the WCSP as an ILP Let us consider a CFN C = ⟨X,C⟩ with
X = n variables,

• for each variable xi  X with domain Di we consider a set of Boolean decision
variables yiq  0, 1 where q  Di enumerates all possible assignments of xi.
With these notations, yiq = 1 if and only if xi = q.

• For each binary cost function cij  C we introduce a set of Boolean decision
variables ziq,jr  0, 1 where (q, r)  Di × Dj enumerates all possible as-
signments of the pair (xi, xj). With these notations, ziq,jr = 1 if and only if
(xi, xj) = (q, r).

We consider that for each variable xi  X there exists a (potentially zero) unary
cost function ci  C. The WCSP objective can be rewritten as:

min


ci∈C, q∈Di

ci(q)yiq +


cij∈C
q∈Di, r∈Dj

cij(q, r)ziq,jr

Let d =


cS∈C
DS  and let w  0, 1d be the vector of stacked decision variables.

The WCSP is equivalent to an ILP over the set of feasible w’s.

Feasible set for the WCSP First, we introduced the decision variables and the
linear objective function to model the WSCP as an equivalent ILP. However, not all
sequences of 0, 1d variables correspond to valid assignment of the original CFN.
We need to introduce some constraints to make the model exact.

• For each variable, we need to ensure that only one value is assigned:


q∈Di

yiq = 1, i = 1,    , n
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• Binary assignments have to be consistent with the variables involved, these
are called marginal consistency constraints:



r∈Dj

ziq,jr = yir, cij  C, q  Di



q∈Di

ziq,jr = yjr, cij  C, r  Dj 

Finally, the WCSP is equivalent to the following ILP in 0, 1-variables:

min


ci∈C, q∈Di

ci(q)yiq +


cij∈C
q∈Di, r∈Dj

cij(q, r)ziq,jr

s.t


q∈Di

yiq = 1, i = 1,    , n



r∈Dj

ziq,jr = yiq, cij  C, q  Di



q∈Di

ziq,jr = yjr, cij  C, r  Dj

yia, ziq,jr  0, 1

(1.3)

Without loss or generality, let us consider that each variable xi  X has the same
domain size e and the cardinality of the set of binary cost functions is f . Then, the
above optimization problem has ne + fe2 variables and n + 2fe constraints. Note
that the third and fourth set of constraints ensure that



(q,r)∈Di×Dj

ziq,jr = 1, cij  C,

that is, for each binary cost function, only one pair is assigned. Solving a linear
integer program is itself NP-Hard, hence this transformation does not overcome the
hardness of the original WCSP. However, a lot of work has focused on solving these
problems in practice. For a given instance of WCSP, ILP solvers may be more
ecient than solvers dedicated to WCSP, and vice versa.

1.2.4 Quadratic optimization

Due to their intrinsic linear constraints, ILPs are not suitable for expressing binary
cost functions. A set of auxiliary variables must be introduced and made consistent
with the original ones, which leads to new constraints. To overcome this issue,
one can compactly reformulate the WCSP using Boolean quadratic optimization.
Boolean quadratic optimization asks to optimize a polynomial of degree at most 2
over a (possibly constrained) set of Boolean variables.
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Modeling the WCSP with quadratic optimization Let us consider a CFN
C = ⟨X,C⟩ with X  = n variables, using the same notations as above, the WCSP
is equivalent to the following Boolean quadratic optimization problem:

min


ci∈C, q∈Di

ci(q)yiq +


cij∈C
q∈Di, r∈Dj

cij(q, r)yiqyjr

s.t


q∈Di

yiq = 1, i = 1,    , n

yia  0, 1

(1.4)

Compared to (1.3) this problem has only ne variables and n constraints. Since
the cost functions take their values in 0,    ,⊤ the degree 2 polynomial only has
positive coecients, thus, it is called a posiform [Boros and Hammer, 2002]. Once
again, solving (1.4) is NP-Hard but we show later that using quadratic optimization
is a rst step to transform the WCSP into an equivalent MaxCut problem.

1.3 Exact algorithms

1.3.1 Dynamic programming

Non-serial dynamic programming [Bertele and Brioschi, 1973], also known as Vari-
able Elimination (V-E) [Koller and Friedman, 2009] is an exact method for inference
in discrete graphical models. It is based on sequential reductions of the graphical
model by introducing new cost functions called messages [Cooper et al., 2020]. More
precisely, let us consider a CFN C = ⟨X,C⟩ for which we have to solve the WCSP.
Let T be the neighbors of variable xi  X in the graph of the problem and let Cxi be
the set of functions cS such that xi ⊂ S. We can remove variable xi from the graph
by combining all the functions in Cxi . This new function is dened over the set
T  xi. By eliminating variable xi from its scope, we obtain an equivalent inference
problem with one variable less.

• Combination: let cS , cS′  C, the combination of cS and cS′ is a new cost
function with scope S  S ′:

cSS′ := (cS + cS′)(v) = cS(v[S]) + cS′(v[S′])

• Elimination: let cS  C and xi  X such that xi  S. We denote by T the set
S \ xi, variable xi can be eliminated from cS resulting in a new cost function
with scope T :

cT (u) := min
v∈Di

cS(u  v)

This sequence of operations has exponential time and space complexity O(dT +1)

with d the maximum domain size for the subset of variables T  xi.
This procedure is sequentially applied until all variables are eliminated. It results

in a unique cost function with empty scope c∅. The value of c∅ is the value of the
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solution to the optimization query. For certain type of graphs, like trees, variable
elimination can be applied eciently. However, in the general case, the algorithm
is sensitive to the elimination ordering.

Example 3. Let us consider a CFN C = ⟨X,C⟩ with:
• X = x1, x2, x3.

• D1 = a, b, D2 = a, b, D3 = a, b.

• C = c1, c12, c23,
and graph representation:

x1

x2

x3

We describe the cost functions as tensors:

c1
a 1

b 3

c12 a b

a 1 1

b 2 0

c23 a b

a 0 1

b 1 2

Our query is to solve the WCSP on C. To do so, we show how variable elimination
works on this simple problem. The elimination order for our example is x1 →
x2 → x3. First we eliminate variable x1 using the procedure described above. The
neighborhood of x1 is T = x2 and Cx1 = c1, c12. First we combine the two
functions c1 and c12 resulting in the new function or message:

m12 a b

a 2 2

b 5 3

Then we eliminate variable x1 to obtain the equivalent WCSP:

x2 x3

m2

a 2

b 2

c23 a b

a 0 1

b 1 2

The sequential elimination of x2 and x3 leads to the cost function with empty scope:

m23 a b

a 2 3

b 3 4

→
m3

a 2

b 3

→ c∅ = 2

Which gives the optimal cost of the optimization problem.
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1.3.2 Branch and bound

A basic approach to answer the minimization query (WCSP/MAP) on a discrete
graphical model is based on tree-search over the space of all possible assignments. If
all variables are assigned, we can compute the joint function and nd the optimum by
comparing the dierent values. The root node corresponds to the original graphical
model with space state DX . For a certain node, the space state can be split into
two subsets. If we consider a variable xi  X with domain size di > 1 we reduce
the optimization query to two sub-problems, one for which xi takes value j  Di

and one for which value j is forbidden. The algorithm exhaustively explores the
branches of the binary search tree. Along the search, the algorithm maintains a
global upper bound to keep track of the best known solution. In general, feasible
assignments are calculated early in the tree by calls to heuristics. This procedure
helps for computing possibly good upper bounds. At each node of the tree, bounding
procedures allow for computing local lower bounds over the partially assigned space
state. For minimization query, it is then possible to prune sub-trees if the local
lower bound is strictly greater than the current best known solution. If it is lower
than the global upper bound, the node is added to a list of open nodes. The way
the tree is explored depends on the order used to arrange the sub-problems.

Breadth-First Search Nodes are stored in a rst in, rst out (FIFO) queue. All
nodes present at a certain depth are explored before moving to a lower depth of the
tree. This data structure allows for nding an optimal solution that is closest to the
root of the tree. However, if a good quality solution is not found early during the
search, the algorithm will not benet from pruning. This can lead to a potentially
large number of open nodes and therefore a large memory footprint.

Depth-First Search When the structure is a stack, nodes are processed in a last
in, rst out (LIFO) order corresponding to a depth-rst search. If two subproblems
are created as a result of a branching decision, they are added to the top of the
stack. This strategy has low memory requirements but can get stuck on arbitrarily
long bad paths until it nds a path that leads to an optimal solution.

Best-First Search One can also use a priority queue based on dierent policies.
A fairly common strategy, called Best-First Search, consists of sorting the nodes
based on their lower bounds. Compared to Depth-First Search, Best-First Search is
not tied to exploring a single path of the tree. While it usually needs more memory,
good solutions are found earlier in the tree.

When a leaf node is reached, it is evaluated and the global upper bound can
be updated. In practice, the overall algorithm heavily depends on the quality of
the bounding procedure in order to eliminate larger parts of the search tree. The
eciency is also sensitive to the branching rules, i.e., the choice of variable, and
the choice of value to branch on. The algorithm nds a candidate solution when it
reaches a leaf node for which the value of the lower bound equals the value of the
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global upper bound. An optimality proof is returned, and the algorithm terminates
globally when the list of remaining open nodes is all pruned.

In most cases, Branch and Bound is the method of choice to solve WCSPs
exactly. As a central part of the algorithm, our work mainly focused on the bounding
procedure. One of the motivations of this thesis was to nd a good compromise
between the quality of the bounds and the computational eciency of the methods.
In the next sections, we present bounding procedures that are commonly used in
the literature to solve combinatorial problems. Some of them are tailored to the
special structure of the CFNs/MRFs.

1.4 Bounding procedures with linear relaxations

In Section 1.2.3 we showed that the WCSP can be cast as an equivalent integer
linear program. One way to solve this problem is to use a continuous relaxation.
The integrality constraints on the decision variables (yi  0, 1) are relaxed. The
optimization problem becomes a so-called linear program (LP) [Dantzig, 1963]. This
section covers a variety of methods related to linear programming in order to approx-
imately solve the ILP (1.3) introduced previously. The reader can refer to [Kannan
et al., 2019] for a recent study of this subject.

1.4.1 Denitions

Before introducing linear programming, we recall the notion of relaxation and why
it is useful for our bounding procedure.

Denition 10. Relaxation. An optimization problem R : zR := minfR(x)  x 
T ⊆ Rn is a relaxation of P : zP := minf(x)  x  X ⊆ Rn if

• X ⊆ T .

• fR(x) ⩽ f(x), ∀x  X.

Usually one can obtain a relaxation of P : zP := minf(x)  x  X ⊆ Rn by
weakening or removing constraints in the search space X.

Proposition 1.4.1. If R is a relaxation of P then zR ⩽ zP .

This proposition is straightforward considering the two assumptions in Denition
10. The optimal value of the relaxed problem zR gives a lower bound on the optimal
value of the original problem which can in turn be used for the bounding procedure.
The idea behind a relaxation is to transform the original problem into a problem
easier to solve. A question that attracted a lot of research is the tightness of the
gap between the two solutions zP  zR.

Let Rn be the n-dimensional Euclidean space, linear programming (LP) asks to
optimize a linear function over the intersection of Rn and a set of linear constraints.
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Denition 11. Standard linear program. Let c  Rn, A  Rm×n and a variable
x  Rn, a linear program in standard form is given by the following minimization
problem:

min c⊤x

s.t Ax = b

x ⩾ 0

(LP)

The last constraint is a component-wise inequality: xi ⩾ 0, i = 1,    , n. The
feasible set of (LP) is a polyhedron P , if P is bounded, it is called a polytope. This
problem is referred as the primal problem and x is called the primal variable.

Example 4. Relaxation of the ILP (1.3). The LP relaxation of (1.3) is obtained by
removing the integrality constraints:

min


ci∈C, q∈Di

ci(q)yiq +


cij∈C
q∈Di, r∈Dj

cij(q, r)ziq,jr

s.t


q∈Di

yiq = 1, i = 1,    , n



r∈Dj

ziq,jr = yiq, cij  C, q  Di



q∈Di

ziq,jr = yjr, cij  C, r  Dj

yia, ziq,jr ⩾ 0

(1.5)

This LP relaxation is known in the graphical model literature as the local poly-
tope. Note that this relaxation is no longer an exact reformulation of the WCSP,
indeed, it can have fractional solutions.

Denition 12. Local polytope [Schlesinger, 1976, Koster, 1999, Werner, 2007]. Let
us consider a GM M = ⟨X,Φ⟩, the local polytope is the polytope dened by the LP
relaxation (1.5). We denote by L(M) the local polytope associated with M.

Duality From the primal problem (LP) we can derive another LP called the dual
problem. Using the same notations as in Denition 11, the dual is given by the
following maximization problem:

max b⊤y

s.t A⊤y ⩽ c
(LP-Dual)

The weak duality theorem [Dantzig, 1963] states that for any feasible point of (LP-
Dual), b⊤y is a lower bound on the optimal value of (LP). There exists a stronger
version of this theorem summarized below.

Theorem 1.4.2. Duality theorem [Dantzig, 1963]. If both (LP) and (LP-Dual)
have a feasible solution, then both have an optimal solution, and if x∗ is an optimal
solution of (LP) and y∗ is an optimal solution of (LP-Dual), then

c⊤x∗ = b⊤y∗
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Example 5. Dual of the local polytope. For simplicity, we consider a pairwise CFN
C = ⟨X,C⟩ with X = n variables. The dual of (1.5) is given by the maximization
problem:

max

n

i=1

λi

s.t ci(q) λi +


(S∈C)(i∈S)
Si (q) ⩾ 0, i = 1,    , n, ∀q  Di

cS(t)


i∈S
Si (ti) ⩾ 0, ∀S  C such that S > 1, ∀t  DS 

(1.6)

Solving a linear program To solve LPs, Dantzig [1963] introduced the simplex
method which is regarded as one of the rst numerical optimization method over
constrained sets. Assuming that (LP) has a solution, this solution is necessarily
located at a vertex of the polyhedron P . The simplex algorithm iterates through
vertices to nd the one with minimal objective cost. In theory, this algorithm can
be quite slow because P can have an exponential number of vertices. This method is
still embedded in state-of-the-art LP solvers like CPLEX or GUROBI [Cplex, 2009,
Gurobi Optimization, LLC, 2023]. Subsequently, researchers developed interior-
point methods [Dikin, 1967, Karmarkar, 1984], a polynomial-time algorithm for
solving LPs. The solution is found by following a path in the interior of the feasible
set P . In practice, the simplex method is sometimes preferred because it can be
warm-started. This gives a non-negligible advantage when the structure of the
solution is approximately known or when it is used in a branch and bound algorithm.

1.4.2 Sherali-Adams hierarchy

Let us consider a graphical model M = ⟨X,Φ⟩, we denote by F ⊆ 0, 1n the
feasible set of the ILP (1.3). For our optimization purpose, it is interesting to
know if the local polytope L(M) gives a tight representation of F . For example, if
L(M) = conv(F ) then the LP relaxation is exact, where conv(F ) is the convex hull
of the set F , see Denition 20. A general method for rening the LP relaxation is
to introduce new constraints called cuts.

Denition 13. Valid inequality. Let us consider a polyhedron P, an inequality
a⊤x ⩽ b is valid for P if it is valid for all x  P.

Intuitively, an inequality is valid if it does not exclude any element of the feasible
set P . These inequalities can be found by exploiting the combinatorial structure
of the underlying problem. The aim is then to nd cuts that are valid for F and
that reduce the search space L(M). A celebrated class of cuts for linear program
relaxations are the Gomory-Chvátal cuts [Balas et al., 1996]. In 1990, Sherali and
Adams [Sherali and Adams, 1990] presented a hierarchy of continuous relaxations
to approximate the feasible set of 0, 1-linear programs such as (1.3). Let t 
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1,    , ne. Valid inequalities for F are obtained by multiplying the inequality
constraints in L(M) by the products

f(I, J) =


i∈I
yi


j∈J
(1 yj) (1.7)

with I, J disjoint subsets of 1,    , ne such that I  J  = t. To this set of con-
straints, we add the inequalities f(I, J) ⩾ 0 with I, J disjoint subsets of 1,    , ne
such that I  J  = min(t+1, ne). After linearization of the polynomials, we obtain
a sequence of nested outer relaxations indexed by t:

F = Lne(M) ⊆    ⊆ Lt+1(M) ⊆ Lt(M) ⊆    ⊆ L(M)

Note that for t = ne the relaxation is exact. Linearization of the polynomials
introduces a huge number of variables. As a result, this method becomes numerically
impractical when we move to higher levels of the hierarchy.

1.4.3 Local polytope, duality and local consistencies

Instead of using general-purpose LP solvers for solving (1.5), research has explored
specialized methods to better exploit the structural properties of graphical models.
A rst idea to approximate the solution of the local polytope is to switch to the dual
problem 1.6). As early as the 1970s, Schlesinger worked on the local polytope and
its dual for a particular graphical model with a lattice structure [Schlesinger, 1976].
It has been shown that the dual shares close links with the structure of the graphical
model itself: an optimal dual solution can be interpreted as a way to transform a
GM into an equivalent GM with maximum nullary potential θ∅ using so-called CFN
equivalence-preserving transformations (EPTs), or MRF reparametrizations.

Denition 14. Equivalent graphical models [Cooper et al., 2020]. Two graphical
models M = ⟨X,Φ⟩ and M′ = ⟨X,Φ′⟩, with the same variables and valuation
structure, are equivalent i they dene the same joint function: ∀v  DX , ΘM(v) =

ΘM′(v).

Such a dual-optimal-solution-based transformation has also been called Optimal
Soft Arc Consistency enforcing (OSAC [Cooper et al., 2007]). Despite the recent
advances in LP solving, exact LP solvers remain too slow for many practical in-
stances. Later, Prusa and Werner [2013] proved that solving the dual to optimality
is not easier than solving any LP, which brought LP and MAP even closer together.
This result partially justies why the approaches that worked are inexact.

Cooper et al. [2010] present dierent classes of properties that can be enforced
to obtain weaker lower bounds for the MAP problem. Informally, these consisten-
cies are enforced through a sequence of operations, which aim to increase the value
of the nullary potential θ∅ without necessarily reaching dual-optimality while pre-
serving equivalence and non-negativity, hence increasing the lower bound [Schiex,
2000]. Virtual Arc Consistency (VAC) [Cooper et al., 2008]) and message passing
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algorithms such as TRW-S [Kolmogorov, 2005] can be seen as xed-point algorithms
converging towards a feasible point of the dual of the local polytope (1.6). TRW-S
performs block-coordinate ascent on the dual variables until a xed point is reached.
Instead, VAC aims to increase the lower bound θ∅ by planning sequences of EPTs
until a xed point is reached. These sequences are found by enforcing arc consis-
tency, a polynomial time proof technique from constraint programming [Rossi et al.,
2006]. Without loss of generality for a GM with f binary potentials and maximum
domain size e, each iteration has linear complexity O(fe2) in the size of the problem
for both algorithms. Note that the xed points of VAC and TRW-S share the same
properties. The reader is referred to [Wang and Koller, 2013] for a broader study of
message-passing algorithms.

1.5 Bounding procedures with semidenite relaxations

In this section, we give an introduction to the rich eld of semidenite programming
(SDP). Semidenite programming is a class of convex optimization problem for
which one has to optimize a linear function over the intersection of the semidenite
cone and a set of linear constraints. In the early 1990s, SDP gained a lot of attention
due to its wide application in combinatorial optimization or operations research
among others. For example, the spectrahedron dened by the SDP constraints was
shown to be much tighter than LP approaches to approximate the feasible set of
some discrete NP-Hard problems. This section is organized in three parts:

1. Denitions 1.5.1: theoretical aspects of semidenite programming.

2. MAP inference as constrained quadratic problem 1.5.2, Moment-SOS hierar-
chy 1.5.4: applications, how it is linked to our problems of interest.

3. First and second-order methods 1.5.5, Low-rank methods 1.5.6: algorithms,
state-of-the-art methods to eciently solve semidenite programs.

1.5.1 Denitions

Semidenite programming is interesting from a practical point of view because of
its wide application in many use cases, and also as a theory, since it brings together
notions from dierent elds such as linear algebra, and continuous and convex anal-
ysis. Compared with linear programming where one has to optimize over a subset
of Rn, semidenite programming is a matrix optimization problem. As a central
element of the SDP theory, it is then useful to recall some standard results on the
set of real matrices. Let Rn×n be the space of real matrices of size (n× n). Rn×n is
an Euclidean space equipped with the inner product

A,B  Rn×n, ⟨A,B⟩ = Tr(A⊤B) =

n

i,j

AijBij
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We denote by ∥∥F the norm induced by the inner product, also referred to as the
Frobenius norm

∥A∥F = ⟨A,A⟩ 12 =


n

i,j=1

Aij 2

Due to its Euclidean structure, the convex analysis results on Rn can be extended
to the space of (n × n) real matrices. In particular, for semidenite programming,
we are interested in the Rn×n subspace of symmetric matrices. A matrix A  Rn×n

is symmetric if A⊤ = A. There exists a fundamental theorem that characterizes the
set of symmetric matrices and their associated linear mapping.

Theorem 1.5.1. Spectral theorem for matrices.
Let A  Sn, there exists a matrix U such that UU⊤ = U⊤U = In and a diagonal
matrix D with real coecients such that

A = UDU⊤

D is a diagonal matrix containing the eigenvalues of A

Dii = λi, i = 1,    , n,

the columns Ui of U are the corresponding eigenvectors of A

AUi = λiUi

A matrix U  Rn×n such that UU⊤ = U⊤U = In is called a unitary matrix.
From its denition, the family of row or column vectors of U is an orthonormal basis
of Rn.

Positive denite matrices In semidenite programming, the matrix variables
are constrained to be positive semidenite. We can draw a parallel with the nonneg-
ative orthant constraint in linear programming. More generally, this constraint is a
special case of a broader class known as cone constraints [Boyd and Vandenberghe,
2004]. Positive deniteness (respectively positive semideniteness) is a central no-
tion in the SDP theory. We now give three equivalent denitions for real matrices.

Denition 15. Let A  Sn. A is said to be positive denite if x⊤Ax > 0 for all
non-zero x  Rn.

A positive denite ⇐⇒ x⊤Ax > 0, x  Rn \ 0

Let A  Sn, A is said to be positive semidenite if x⊤Ax ⩾ 0 for all x  Rn.

A positive semidenite ⇐⇒ x⊤Ax ⩾ 0, x  Rn

Denition 16. Eigenvalues.
Let A  Sn, A is said to be positive denite (respectively positive semidenite) if
and only if all of its eigenvalues are positive (respectively non-negative).
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From the spectral theorem, since A is symmetric, its eigenvalues are necessarily
real values.

Denition 17. Decomposition.
Let A  Sn, A is said to be positive semidenite if and only if there exists a real
matrix B such that

A = B⊤B

A is positive denite if and only if there exists such a decomposition with the addi-
tional constraint that B is invertible.

There exists a more general version of the last denition with matrices of rank
r.

Denition 18. Fixed rank decomposition.
Let A  Sn, A is positive semidenite with rank r if and only if there exists a full
rank (r × n) matrix B such that

A = B⊤B

This last denition will be a central idea used in the low-rank section. Indeed,
for certain types of SDPs, such as those with few constraints, there exist theorems
that give the existence of low-rank solutions.

Convex analysis Optimization problems arise naturally in many places. For ex-
ample, the search for stable 3D conformations of proteins can be cast into a discrete
optimization problem. However, depending on the nature of the problem and its size
e.g., its number of variables or constraints, it can quickly become intractable. For
some special subclasses of optimization problems like linear programming or least-
square minimization, ecient methods are known to recover the optimum even for
problems with more than thousands of variables.

During the second half of the 20th century, convex optimization gained a lot
of attention. Indeed, using convex analysis, deterministic conditions can be de-
rived to check for optimality. Usually, convex optimization methods aim to produce
sequences converging towards points satisfying those conditions. Semidenite pro-
gramming falls in the class of convex optimization. In the next section, we recall
some standard convex analysis results that are used throughout the manuscript.

Convex sets

Denition 19. Convex set.
Let E be a vector space over real numbers, a set C ⊆ E is convex if for every x, y  C

the line segment connecting x and y lies in C. Formally,

∀(x, y)  C2, ∀λ  [0, 1], λx+ (1 λ)y  C
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Figure 1.4: Example of convex and non-convex sets. Left, a simple convex set.
Right, a non-convex set since the line segment connecting the two points of the set
has elements not contained in the set.

Denition 20. Convex combination and convex hull.
A convex combination of the points x1,    , xn is a combination of the form

λ1x1 +   + λnxn 
n

i=1

λi = 1, λi ⩾ 0, i = 1,    , n

The convex hull of a set C ⊆ E is the set dened by all the convex combinations
of elements of C, denoted conv C.

conv C := λ1x1 +   + λnxn  xi  C,

n

i=1

λi = 1, λi ⩾ 0, i = 1,    , n

From its denition, the convex hull is a convex set, which is also the smallest
convex set containing C.

Denition 21. Cones.
Let E be a vector space over real numbers, a set C ⊆ E is a cone if for every x  C

and for every non-negative scalar λ, λx  C.

A set C is a convex cone if it is convex and a cone. Now it is interesting to see
that the set Sn

+ of positive semidenite matrices is a convex cone of Rn×n. Using the
spectral theorem, it is straightforward to check that for X  Sn

+, λ ⩾ 0, λX  Sn
+.

Moreover with the rst denition of positive semideniteness, for X,Y  Sn
+, x 

Rn,λ  [0, 1]

x⊤(λX + (1 λ)Y )x = λx⊤Xx+ (1 λ)x⊤Y x ⩾ 0

Since Sn
+ is a convex cone, it denes a partial ordering ⪯ on Rn×n. For X,Y  Rn×n

X ⪯ Y ⇐⇒ Y X  Sn
+

As a convex subset of Rn×n, we can dene the projection onto the cone of positive
semidenite matrices Sn

+.
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Theorem 1.5.2. Projection onto Sn
+ [Boyd and Vandenberghe, 2004].

Let PSn
+
(X0) be the Euclidean projection of a matrix X0 into the convex cone Sn

+.

PSn
+
(X0) =

n

i=1

max0,λiUiU
⊤
i

where X0 =

n

i=1

λiUiU
⊤
i is the spectral decomposition of X0.

This latter result will be useful for projective optimization methods such as
projected gradients or augmented Lagrangian. The projection basically amounts to
removing the negative eigenvalues in the spectral decomposition of the symmetric
matrix.

Convex functions

Denition 22. Convex functions.
Let E be a vector space over real numbers, a function f : C → R is convex if C is
convex and for all x, y  C, λ  [0, 1]

f(λx+ (1 λ)y) ⩽ λf(x) + (1 λ)f(y)

A function f is strictly convex if the inequality above holds strictly for x ̸= y and
0 < λ < 1. A function f is concave (respectively strictly concave) if f is convex
(respectively strictly convex).

Intuitively, a function is convex over a convex set C if for all points x and y in
C, the image of the mean of x and y is smaller than the mean of the images.

(y, f(y))

(x, f(x))

f(λx+ (1 λ)y)

λf(x) + (1 λ)f(y)

Figure 1.5: Example of a simple convex function. The image f(λx + (1  λ)y) is
always below the segment dened by the points (x, (f(x)) and (y, f(y)) which is
called a cord of f .

First and second order conditions

For dierentiable and twice dierentiable functions there exist necessary and su-
cient conditions to check for convexity. In practice, those conditions are fundamental
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for convex optimization. Let f be a dierentiable function, that is, the gradient f

exists for each point in the domain of f , f is convex if and only if

f(y) ⩾ f(x) +f(x)⊤(y  x) (1.8)

for every x, y in the domain of f . Intuitively, f is above its tangents at every point.

Figure 1.6: Example of a simple convex function. The tangent at each point is a
global linear underestimator of the function.

Interestingly, for a point x such that f(x) = 0, using the equation (1.8), for
all y in the domain of f , f(y) ⩾ f(x). It means that f(x) is a global lower bound
on f . In the convex settings, rst-order optimization algorithms aim to converge
towards points satisfying f(x) = 0. Those points are called critical points of f .
If the inequality is strict for x ̸= y then the function is strictly convex. Note that
for convex functions, critical points are not necessarily unique while strict convexity
gives uniqueness of the global minimizer.

Now, let f be a twice dierentiable function, that is, the Hessian 2f exists at
each point of the domain of f , f is convex if and only if

2f(x) ⪰ 0

for every x in the domain of f . In other words, the Hessian is positive semidenite.

Semidenite programming We now introduce the concept of semidenite pro-
gramming. Semidenite programming (SDP) asks to optimize a linear function over
the intersection of the semidenite cone and an ane space dened by a set of linear
constraints [Wolkowicz et al., 2012]. Semidenite programming can be seen as an
extension of linear programming where the nonnegative orthant is replaced by the
convex cone of positive semidenite matrices Sn

+. Due to their similarities, some of
the optimization methods used in linear programming were extended to semidenite
programs.

Example 6. Let us consider a linear program in its normal form
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min c⊤x

s.t Ax ⩽ b

x ⩾ 0

(LP)

where x, c, b  Rn and A  Rm×n is the matrix of constraints. If we consider
the matrix X = Diag(x) then the constraint x ⩾ 0 is equivalent to the positive
semideniteness of X. In the same way, if we introduce the matrices

Ai =



ai1

. . .
ain


 C =



c1

. . .
cn




then the linear program (LP) is equivalent to the following semidenite program

min ⟨C,X⟩
s.t ⟨Ai, X⟩ ⩽ bi i = 1,    ,m

Xij = 0 i, j = 1,    , n, i ̸= j

X ⪰ 0

Although LPs can easily be written as SDPs, it’s generally not a good idea to
perform this transformation, as optimization methods for SDPs are generally more
computationally intensive.

Duality

As in the case of linear programming, duality theory also applies to semidenite
programming. However all the results from LP do not necessarily hold for the SDP
case. We now derive some usual SDP duality results. We consider a generic SDP in
its standard form

min ⟨C,X⟩
s.t ⟨Ai, X⟩ = bi i = 1,    ,m

X ⪰ 0

(SDP)

This problem is usually referred to as the primal problem and the variable X ⪰ 0 is
called the primal variable. The Lagrangian for the minimization problem (SDP) is

L(X,µ, S) = ⟨C,X⟩+
m

i=1

µi(bi  ⟨Ai, X⟩) ⟨X,S⟩

where S ⪰ 0 is the dual variable for the conic constraint X ⪯ 0. The corresponding
dual function is then given by

g(S, µ) = min
X

L(X,µ, S) =




µ⊤b if C 

m

i=1

µiAi  S = 0

+∞ otherwise
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The dual problem is
max
µ

µ⊤b

s.t
m

i=1

µiAi + S = C

S ⪰ 0

(SDPD)

Proposition 1.5.3. Weak duality.
Let p∗ be the optimal value of (SDP) and d∗ be the optimal value of (SDPD). Weak
duality states that

p∗ ⩾ d∗

Moreover, for every primal-dual feasible pair (X, (µ, S))

⟨C,X⟩ ⩾ µ⊤b

Before going through the proof of this theorem, we introduce a useful lemma
which is a well-known result for positive semidenite matrices.

Lemma 1.5.4. Let X be a (n× n) symmetric matrix, X is positive semidenite if
and only if for all Y  Sn

+, ⟨X,Y ⟩ ⩾ 0.

Proof. ⇐= By contrapositive statement, if X is not positive semidenite, there
exists y  Rn such that y⊤Xy = ⟨X, yy⊤⟩ < 0. But Y = yy⊤ is positive semidenite
thus there exists a matrix Y  Sn

+ such that ⟨X,Y ⟩ < 0.
=⇒ Let X  Sn

+, by the spectral theorem, there exists a unitary matrix U  Rn×n

such that X = UDU⊤. D is the diagonal matrix containing the eigenvalues of
X which are all nonnegative since X ⪰ 0. Let Y  Sn

+ and Ŷ = U⊤Y U , i.e.,
Y = UŶ U⊤. Ŷ is positive semidenite, indeed, for v  Rn

v⊤Ŷ v = v⊤U⊤Y Uv = (Uv)⊤Y (Uv) ⩾ 0

Then we have
⟨X,Y ⟩ = Tr(UDU⊤Y ) = Tr(UDU⊤UŶ U⊤)

= Tr(UDŶ U⊤) = Tr(DŶ ) =

n

i=1

DiiŶii

Since Ŷ is positive semidenite, its diagonale entries are nonnegative hence

n

i=1

DiiŶii ⩾ 0

which completes the proof.

The proof of the weak duality proposition follows naturally from the lemma.
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Proof. Suppose that X and (µ, S) are primal and dual feasible, we have

⟨X,C⟩ = ⟨X,

m

i=1

µiAi + S⟩

=

m

i=1

µi⟨X,Ai⟩+ ⟨X,S⟩ = µ⊤b+ ⟨X,S⟩

From Lemma 1.5.4, ⟨X,S⟩ ⩾ 0 which gives the desired result

⟨X,C⟩ ⩾ µ⊤b

Proposition 1.5.5. Strong duality [Vandenberghe and Boyd, 1996].
We have p∗ = d∗ if either of the following conditons holds

1. The primal problem (SDP) is strictly feasible, i.e., there exists a X with X ≻ 0

and ⟨Ai, X⟩ = bi, i = 1,    ,m.

2. The dual problem (SDPD) is stricly feasible, i.e., there exists a µ with C 
m

i=1

µiAi ≻ 0.

If both conditions hold, the optimal sets of the two problems are nonempty.

For a proof of this theorem, see [Nesterov and Nemirovskii, 1994, Chapter 4.2].
Those two conditions are referred to as Slater’s condition for the primal and dual
problem respectively. The dual problem gives relevant information on the optimal
value of the primal problem (SDP). Indeed, we showed that any dual feasible point
(µ, S) produces a lower bound on the original problem with guarantees. These
certicates are crucial in exact optimization methods such as branch-and-bound.
Moreover, duality is symmetric, one can show using classic linear algebra arguments
that (SDP) is also the dual problem of (SDPD).Thus, when strong duality holds, it
is sometimes convenient to switch from one formulation to the other. However, it is
important to notice that, compared with linear programming, strong duality does
not always holds, even for small problems.

In the remainder of the manuscript, we mainly use semidenite programs in the
standard form. We now give the two forms with their duals. Let C, (Ai)i=1,,m  Sn.

min ⟨C,X⟩
s.t ⟨Ai, X⟩ = bi i = 1,    ,m

X ⪰ 0,

with its dual:

max

m

i=1

biyi

s.t
m

i=1

Aiyi + S = C

S ⪰ 0
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Equivalently, SDP can be formulated using the linear operator A.

min ⟨C,X⟩
s.t A(X) = b

X ⪰ 0,

with its dual:
max b⊤y

s.t A∗(y) + S = C

S ⪰ 0

1.5.2 MAP inference as constrained binary quadratic problem

As we saw previously, MAP inference on pairwise discrete graphical models can be
transformed into a linear programming problem. However, for binary potentials, one
has to introduce a variable for each pair within the scope of the function. This leads
to a quadratic number of variables. Due to their innate ability to deal with quadratic
terms, binary quadratic formulations are well suited to express the pairwise MAP
problem in a more compact way.

We consider a discrete pairwise GM M = ⟨X,Φ⟩ with X  = n variables and
its associated graph G = (V,E). Each variable xi  X can take di possible values,

we note d =

n

i=1

di the total number of values. We recall that the GM M denes a

joint function ΘM over X as
ΘM =



θS∈Φ
θS 

The goal of the Maximum A Posteriori (MAP) problem is to nd an assignment
v of all the variables which minimizes the joint function [Cooper et al., 2020]

argmin
v∈DX

ΘM (v) =


θS∈Φ
θS(v[S]) (MAP)

Using the associated graph, we can rewrite (MAP) as

argmin
v∈DX

ΘM (v) =


xi∈X
θi(xi) +



(xi,xj)∈E
θij(xi, xj)

In order to obtain a quadratic reformulation, we rewrite each variable xi  X as
a boolean vector bi  0, 1di . This encoding is usually referred to as 1-hot or
direct encoding of the variable xi. The jth element of bi will take value 1 when
variable xi = j and value 0 otherwise. Usually, for general arities, potentials are
represented as tensors. For unary and binary potentials we can naturally represent
them as real vectors and matrices respectively. We denote by ci xi  X and
Qij  (xi, xj)  E the corresponding vectors and matrices. The value of θij(xi, xj)
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is b⊤i Qijbj and the value of θi(xi) is then c⊤i bi. We now introduce the stacked vector
b⊤ = [b⊤1 ,    , b

⊤
n ]  0, 1d, the joint function becomes

ΘM (b) = b⊤Qb+ c⊤b

Where c⊤ = [c⊤1 ,    , c
⊤
n ] is the stacked vector of all unary costs and Q is the (d×d)-

block matrix which contains all the binary cost matrices, i.e., Q has block Qij if
(xi, xj)  E and 0di×dj otherwise.

When optimizing over b instead of v, one must enforce the fact that only one

element of every Boolean vector bi is set to 1, i.e., that ∀xi  X,

di

j=1

(bi)j = 1.

This set of constraints can be gathered in a linear constraint Ab = 1n where A is a
Boolean matrix of size (n× d) with

A⊤
i = [0⊤d1 · · · 0⊤di−1

1⊤di 0
⊤
di+1

· · · 0⊤dn ], i = 1,    , n (1.9)

In the rest of the manuscript, this constraint will be referred to as the “exactly-
one” constraint. Finally, minimizing the joint function ΘM becomes equivalent to
solving the following constrained quadratic program

min
b∈0,1d

b⊤Qb+ c⊤b

s.t Ab = 1n

(1.10)

Since the binary quadratic constrained problem (1.10) is NP-Hard in general,
numerous methods were proposed to approximately solve it. One idea is to relax
the integrality constraint x  0, 1d into the box constraint x  [0, 1]d

min
b∈[0,1]d

b⊤Qb+ c⊤b

s.t Ab = 1n

(1.11)

The idea is then to use continuous optimization methods in order to solve the
relaxed problem or its dual. Unfortunately, if the cost matrix Q is not positive
semidenite, (1.11) falls in the class of non-convex problems. There exist methods
in order to relax (1.10) as convex quadratic problems using the equality b2i = bi
which always holds for binary variables. In [Hammer and Rubin, 1970] the authors
showed that it is possible to introduce a shifting of the cost matrix with a real
parameter  such that Q+Id is positive semidenite and the two functions f(b) =
b⊤Qb and g(b) = b⊤(Q + Id)b  1⊤n b coincide on 0, 1d. Another simple idea
from [Billionnet, 2007] is to reformulate the non-convex products xixj as the convex
or concave functions 1

2((xi+xj)
2xixj) or 1

2((xi+xj)
2+xi+xj). While being

easy to implement, these reformulations can lead to poor continuous relaxations.
In the literature, two convex relaxations are commonly known to produce tight

bounds for quadratically constrained quadratic programming (QCQP). The rst
one is based on semidenite programming and the second one is the reformulation
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linearization technique (RLT) [Anstreicher, 2009, Sherali and Adams, 2013]. If we
consider a quadratically constrained quadratic program of the form:

min x⊤Q0x+ c⊤0 x

s.t x⊤Qix+ c⊤i x ⩽ bi, i  I
x⊤Qix+ c⊤i x = bi, i  E
l ⩽ x ⩽ u

(QCQP)

For which (1.11) is a special case, the idea is to replace variable products xixj by
a new variable Xij . For the SDP relaxation, the change of variable X = xx⊤ is
used. This introduces the new cone constraint X  xx⊤ ⪰ 0 which is known to be
equivalent to

X̄ :=


1 x⊤

x X


⪰ 0

We can then rewrite (QCQP) as

min ⟨Q̄0, X̄⟩
s.t ⟨Q̄i, X̄⟩ ⩽ bi, i  I
⟨Q̄i, X̄⟩ = bi, i  E
l ⩽ x ⩽ u, X̄ ⪰ 0

(1.12)

with

Q̄i =


0 1

2c
⊤
i

1
2ci Qi



This relaxation has shown good approximation results for some problems of interest,
see [Luo et al., 2010] for an extensive study.

For the RLT relaxation, the idea is to use products of bound constraints on the
variable x to create new valid inequalities for (QCQP). Indeed, let us consider the
two variables li ⩽ xi ⩽ ui and lj ⩽ xj ⩽ uj and the new variable Xij = xixj . If we
multiply the bound constraints regarding xi with the bound constraints regarding
xj we can obtain the four following valid inequalities

Xij  lixj  ljxi ⩾ lilj
Xij  uixj  ujxi ⩾ uiuj
Xij  lixj  ujxi ⩽ liuj
Xij  ljxi  uixj ⩽ ljui

If we add the symmetry constraint to the new variable X = xx⊤, the two last
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constraints become redundant. Thus, we can also rewrite (QCQP) as

min ⟨Q0, X⟩+ c⊤0 x

s.t ⟨Qi, X⟩+ c⊤i x ⩽ bi, i  I
⟨Qi, X⟩+ c⊤i x = bi, i  E
X  lx⊤  xl⊤ ⩾ ll⊤

X  ux⊤  xu⊤ ⩾ uu⊤

X  lx⊤  xu⊤ ⩽ lu⊤

l ⩽ x ⩽ u, X = X⊤

(1.13)

Due to the symmetry of X, this problem can be seen as a linear program with
n(n + 3)2 variables and m + n(2n + 3) constraints. The additional constraints
obtained in RLT can be used to further constrained the SDP relaxation. For recent
advances in solving QCQP, the reader is referred to the work of Elloumi Sourour
and Amélie Lambert [Elloumi and Lambert, 2019].

1.5.3 Log-encoding of the discrete variables

When using 1-hot encoding the size of the quadratic problem reformulation is given
by the sum d of the domain size of every discrete variable. Scalability is always a
critical issue when using optimization methods, which is why a signicant resolution
time can be spent pre-processing the problem. The pre-processing steps aim to
reduce the problem size by nding symmetries or using smart variable eliminations
for example. Naturally, the question arises as to whether there is a more concise
way of representing the MAP problem than using 1-hot encoding.

To this end, we have explored a method derived from constraint programming
called log-encoding [Walsh, 2000]. The idea is to nd a mapping between two NP-
Hard problems, namely constraint satisfaction problems (CSPs) and propositional
satisability (SAT). On the one hand, propositional satisability are problems with
Boolean variables and non-binary constraints. On the other hand, constraint sat-
isfaction problems generally have binary constraints on variables with non-Boolean
domains. Log-encoding allows for representing nite non-Boolean domains as a
set of Boolean variables. With this encoding, CSPs for which weighted constraint
satisfaction problems (WCSPs) are a generalization, can be mapped to SAT.

Let us consider a GM variable xi  X with domain size di. We associate a
Boolean variable bj which is assigned to 1 if the jth bit of xi is set. We need at most
log2(di) variables to fully represent the domain of xi. Note that if the domain
size di is not a power of 2, we can add additional constraints on the bj ’s to prohibit
the remaining values at the top of the domain. Moreover, it is not necessary to
enforce the “exactly-one” constraint as in (1.10) since it is implicitly satised by the
log-encoding. Without loss of generality, let us consider a GM M = ⟨X,Φ⟩, such
that each variable xi  X has the same domain size l and such that log2(l) =
log2(l). To represent all the variables using log-encoding, we need nlog2(l) Boolean
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variables while nl Boolean variables are needed using the direct 1-hot encoding. One
can see that we benet asymptotically from the log-encoding representation, but we
already have gains for domains of moderate size.

Variables are concisely represented using this new encoding, now we need to
check whether it is also the case for the constraints, and therefore for the objective
function to be minimized. To do so, we introduce some notions of pseudo-Boolean
optimization. Let V = 1, 2,    , n, we denote by B = 0, 1 and Bn the set of
Boolean vectors of size n. Mappings f : Bn → R such that f is given explicitly
by an algebraic expression are called pseudo-Boolean functions. Let us consider a
Boolean vector b = (b1,    , bn)  Bn. For a variable bi  B, since values 0 and 1

are symmetric, it is convenient to introduce the complement b̄i = 1 bi and the set
of literals L = b1, b̄1,    , bn, b̄n. In [Boros and Hammer, 2002] the authors have
shown that all pseudo-Boolean functions can be uniquely represented as multi-linear
polynomials of the form

f(b1,    , bn) =


S⊆V

cS


j∈S
bj (1.14)

The degree of f is the largest subset S ⊆ V such that cS ̸= 0. The size of f is
the total number of variable occurrences in it

size(f) =


S:cS ̸=0

S

Finally, pseudo-Boolean functions can be represented as posiforms over the set of
literals

f(b1,    , bn) =


T⊆L

aT


u∈T
u (1.15)

where aT ⩾ 0. Now, we go back to our original problem of representing GM poten-
tials. Let us rst consider a unary potential θi  Φ. Considering all non zero costs,
θi has a trivial posiform representation. Indeed, for a variable xi with domain size
di we can compute the unary cost

θi(xi) =


cj ̸=0

cjbin(j)

Where bin(j) is the bit representation of value j  [di] using log2(di) Boolean
variables.

Example 7. Log encoding of a unary potential.

xi θi(xi)

0 0
1 4
2 1
3 0
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In this case, we have a variable with domain size 4 and a corresponding unary
potential. To represent the domain of xi we introduce l = 2 Boolean variables b0
and b1 as well as their complements b̄0 and b̄1. The posiform for θi is then

θi(xi) = 4b0b̄1 + b̄0b1

Working on this posiform, b̄0 and b̄1 can be replaced by 1 b0 and 1 b1 to obtain a
polynomial in the variables b0 and b1. By doing so, the polynomial can possibly have
non-positive coecients. Note that as long as the unary potential is not identically
equal to zero, the degree of the polynomial is log2(di).

Following the same ideas, for a binary potential θij with scope (xi, xj), consid-
ering all non zero costs, the posiform is given by

θij(xi, xj) =


Qkl ̸=0

Qklbin(k)bin(l)

Where bin(k) and bin(l) are the bit representation of value k  [di] and l  [dj ]

using log2(di) and log2(dj) Boolean variables respectively.

Example 8. Log encoding of a binary potential.

xi xj θi(xi, xj)

0 0 2
0 1 0
0 2 0
0 3 0
1 0 0
1 1 1
1 2 0
1 3 0
2 0 0
2 1 0
2 2 3
2 3 0
3 0 0
3 1 0
3 2 0
3 3 4

In order to represent the domains of xi and xj we introduce four Boolean vari-
ables as well as their complements, L = b0, b̄0, b1, b̄1, b2, b̄2, b3, b̄3. The posiform
for θij is given by

θij(xi, xj) = 2b̄0b̄1b̄2b̄3 + b0b2b̄1b̄3 + 3b1b3b̄0b̄2 + 4b0b1b2b3

As in the previous case, it is easy to see that if the binary potential is not identically
equal to zero, its degree is log2(di)× log2(dj).
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Optimizing over general pseudo-Boolean functions of degree higher than two is
a hard task even for small problems. However, there exists a procedure to reduce
any problem to a quadratic optimization problem. The generic algorithm is shown
in Algorithm 1. The overall idea relies on the fact that quadratic terms can be
linearized. Indeed, we can replace a quadratic term with a new variable by adding a
certain penalization to the objective function with a large penalty coecient. The
downside of this procedure is the introduction of a potentially large number of new
variables.

Algorithm 1 ReduceMin(f)
input: A pseudo-Boolean function f given by its multi-linear polynomial form
(1.14).
initialization: Set M = 1 + 2



S⊆V

cS , m = n, and fn = f .

while There exists a subset S∗ ⊆ V for which S∗ > 2 and cS∗ ̸= 0 do
1 Choose two elements i and j from S∗ and update
ci,j = ci,j +M ,
set ci,m+1 = cj,m+1 = 2M and
cm+1 = 3M and
for all subsets S ⊇ i, j with cS ̸= 0 dene c(S\i,j)m+1 = cS and set
cS = 0.
2 Dene fm+1(b1,    , bm+1) =



S⊆V

cS


k∈S
bk, and set m = m+ 1.

end while
output: Set g = fm.

Theorem 1.5.6. [Rosenberg, 1975].
ReduceMin(f) terminates in polynomial time in the size of f , and produces a pseudo-
Boolean function g in m variables, the size of which is polynomially bounded in
size(f), and such that

min
y∈Bn

g(y) = min
x∈Bn

f(x)

For a proof of this theorem see [Boros and Hammer, 2002, Chapter 4.4]. As
suggested by the algorithm, the reduction is not unique. Finding the sequence
of operations that minimizes the number of new variables m is an NP-hard prob-
lem [Boros and Hammer, 2002]. Thus, for unary and binary potentials, log-encoding
followed by reduction to quadratic functions does not necessarily lead to a more con-
cise formulation of the MAP problem, and even if it does, it is not computationally
easy to nd it.

1.5.4 Moment-SOS hierarchy

In the last section, we showed that we can write the MAP inference problem as
a binary quadratic problem. It is also known that MAP inference on pairwise



38 Chapter 1. Background

discrete graphical models can be transformed into an LP over the so-called marginal
polytope [Wainwright et al., 2008]. We denote by M(M) the marginal polytope
associated with the pairwise graphical model M. Solving this LP is intractable in
general due to an exponential number of constraints. To overcome this issue, the
standard LP relaxation over the local polytope, see Denition 12, was introduced.
We denote by L(M) the local polytope associated with M, L(M) form a convex
polyhedral outer bound on M(M). Now a question naturally arises: Can we get a
tighter approximation of M(M) using SDP relaxations and how do they compare
with the local polytope formulation.

Without loss of generality, let us consider a GM M with n discrete variables
with domain size r and let d = nr. Let G be its associated graph. For an even
integer m we denote by


d−1
⩽m


the set of subsets of 0,    , d  1 with size less

than m. We introduce the real random vector X indexed by

d−1
⩽m


with X∅ =

1. Finally, we dene the moment matrix M(X) indexed by the two sets S, T 
0,    , d  1, S, T  ⩽ m

2 with entries M(X)S,T = XS∆T where S∆T is the
symmetric dierence of the two sets S and T . Enforcing positive semideniteness of
the moment matrix M(X) with parameter m is equivalent to enforcing the pseudo
marginals on hyperedges of G of size m

2 [Wainwright et al., 2008]. Those sets dene
a sequence of outer bounds on the marginal polytope M(G) also known as Lasserre
sequence of relaxations [Lasserre, 2002, Laurent, 2003]. In [Erdogdu et al., 2017]
the authors used a partial Sum-of-Square lifting with terms of degree m = 4 on
pairwise graphical models with Boolean variables. The moment-SOS hierarchy has
found recent practical applications for approximately solving discrete optimization
problems like MaxCut or Max2Sat [Sinjorgo and Sotirov, 2023, Campos et al., 2022,
Wang et al., 2022]. It is done by partially lifting the relaxation to higher orders of
the hierarchy.

1.5.5 First and second order methods

We now give an overview of the rst and second-order methods used to solve SDPs.
The modern primal-dual interior point algorithm was proposed by Karmarkar in
1984 to solve linear programs [Karmarkar, 1984]. It was later extended to more
general non-linear convex programs. These methods are useful in practice, as they
enable us to obtain solutions with desired accuracy in polynomial time. The exten-
sion to non-linear convex programs have been made possible by the study of a new
type of convex functions called self-concordant functions [Nesterov and Nemirovskii,
1994]. Basically, Nesterov and Nemirovsky derived a new class of convex functions
that can be eciently minimized by Newton’s method. A self-concordant function
is a function such that its third derivative is bounded by a constant and a term that
depends on the norm dened by its Hessian.

In the 1990’s it was successfully applied to the growing eld of semidenite
programming and it became the method of choice compared to the slower ellipsoid
method. Modern SDP solvers (MOSEK [ApS, 2022], SDPT3 [Tütüncü et al., 2003])
still use sophisticated versions of the algorithm for its polynomial-time guarantees
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and robustness. The primal-dual interior point algorithm is based on the strict
feasibility of the primal (SDP) and dual (SDPD) problems.

Assumption 1.5.7. There exists a primal-dual pair (X, (µ, S)) of (SDP) and (SDPD)
such that

X ≻ 0, ⟨Ai, X⟩ = bi, i = 1,    ,m, C 
m

i=1

µiAi ≻ 0

We also assume that the linear equations ⟨Ai, X⟩ = bi, i = 1,    ,m are linearly
independent.

Starting from a strictly feasible point, the algorithm follows a central path
scheme. To remain in the interior of the feasible set along the iterations, the objec-
tive function is augmented with a so-called barrier term. Self-concordant barriers
are a subclass of self-concordant functions. For a nonempty bounded closed con-
vex set, a self-concordant barrier is a self-concordant function that varies slowly in
the interior of the set and quickly tends to innity as we approach the boundaries.
For semidenite programming, a self-concordant barrier for the cone Sn

+ is given
by [Nesterov et al., 2018]

F (X) = ln det(X) = 
n

i=1

lnλi

with λi  i = 1,    , n the set of eigenvalues of X. Then, we can introduce the
barrier problem parameterized by a positive barrier parameter

min f(X, t) = ⟨C,X⟩  tF (X)

s.t ⟨Ai, X⟩ = bi i = 1,    ,m

X ≻ 0

(SDPB(t))

Since the objective function is strictly convex there exists a unique solution X∗
t .

Knowing that the derivative for the barrier function is F (X) = X−1, we can
derive the Karush-Kuhn-Tucker (KKT) conditions for (SDPB(t)):





⟨Ai, X⟩ = bi i = 1,    ,m

X ≻ 0

C  tX−1 =

m

i=1

µiAi

We then dene S = tX−1 or equivalently SX = tIn. The system of equations
becomes 




⟨Ai, X⟩ = bi i = 1,    ,m

X ≻ 0

C 
m

i=1

µiAi = S S ≻ 0

SX  tIn = 0

(KKT)
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Any feasible solution X and (µ, S) to (KKT) is a feasible solution for the primal
problem (SDPB(t)) and its dual. Moreover, under Assumption 1.5.7 and constraint
qualication, the solution is unique. For a given barrier parameter t > 0, the third
and fourth equations give information on the current duality gap

⟨C,X⟩  µ⊤b = ⟨S,X⟩ = nt

We dene
X∗(t) = argmin

X∈domf
f(X, t) (1.16)

This trajectory is called the central path associated with the optimization problem.
Let X∗ be the solution of (SDP), it is known that X∗(t) → X∗ as t → 0. The
idea is then to solve a sequence of problems with t → 0 while staying close to
this trajectory. Starting from a feasible primal-dual point v = (X,µ, S), Newton’s
method is applied to f(, t) in order to nd a promising search direction. Multiple
methods were introduced to eciently compute this search direction see [Todd,
1999], however, we restrict our study to a straightforward strategy. Let us assume
that X̄ is a feasible solution to (SDPB(t)), the second order approximation of f(, t)
at X̄ is given by:

f(X, t) = f(X̄, t) +

C  X̄−1, X  X̄


+

1

2
t

X̄−1(X  X̄), X̄−1(X  X̄)




If we dene ∆ = X  X̄, a descent direction can by computed as the solution of the
following convex optimization problem

min
∆


C  X̄−1,∆


+

1

2
t

X̄−1∆X̄−1,∆



s.t ⟨Ai,∆⟩ = 0 i = 1,    ,m
(1.17)

Since it is convex, KKT conditions are necessary and sucient and a solution to
(1.17) can be found using the following system of linear equations

C  X̄−1 + tX̄−1∆X̄−1 =

m

i=1

µiAi

⟨Ai,∆⟩ = 0, i = 1,    ,m

(1.18)

With variables ∆  Rn×n and µ  Rm. We get

∆ =
1

t
X̄


m

i=1

µiAi + X̄−1  C


X̄

m

j=1

µi⟨Ai, XAjX⟩ = ⟨Ai, X(C  X̄−1)X⟩, i = 1,    ,m

(1.19)

The complexity of a Newton step and thus the eciency of the overall method
depends on the number of operations needed to solve the linear system (1.19).
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In [Nesterov et al., 2018] the authors showed that it does not exceed O(n2(m+n)m)

operations. This estimation can be reduced if the constraint matrices Ai have some
structural properties. To solve the second equation, one has to compute and store
the matrices XAjX, j = 1,    ,m. While the matrices Aj are generally sparse, the
product can become dense and it leads to memory issues for moderately to highly
constrained problems. Finally, for a given parameter t, the Newton step gives a new
point closer to the central path. The algorithm then iteratively reduces the value of
t and repeats the procedure described above.

Interior point methods quickly show their limitations for solving constrained
large-scale problems. Indeed if the number of constraints is of order O(n2), the over-
all time complexity for solving the SDP is O(n6). As a result, they have shown little
practical interest in solving discrete problem relaxations. However, they continue to
serve as a baseline for their robustness and ability to produce high-quality solutions.
To overcome those issues, alternative approaches were proposed to solve SDPs. Re-
searchers began to explore algorithms based on rst-order information. Although
they oer theoretically weaker guarantees, they are better suited to handle sparse
structures of the data. For example, the state of the art solvers [Rendl et al., 2010,
Gusmeroli et al., 2022], which solve SDP relaxations for MaxCut within branch-and-
cut, use the so-called bundle method. It is an extension of the sub-gradient method
for non-smooth convex problems. On rst glance, using interior point methods is
ne because relaxations of discrete problems are often sparse and highly structured.
But these solvers introduce many cuts that break these properties, so the interior
point method is no longer able to handle the relaxation. Therefore, additional cuts
are dualised and a call to an interior point solver is only used for a simple SDP with
diagonal constraints.

We now present two rst-order methods that were used in the literature for
solving dierent MAP SDP relaxations.

Augmented Lagrangian The rst one is based on an augmented Lagrangian
technique. The simple idea behind augmented Lagrangian methods is to add a
penalty term to the Lagrangian in order to smooth the dual function. Optimization
then becomes simpler and robust methods can be applied to optimize the corre-
sponding dual function. In [Wang et al., 2016], the authors derive an SDP relaxation
of the MAP problem for which the positive semidenite variable is constrained to
have a xed trace, i.e,

min ⟨C,X⟩
s.t ⟨Ai, X⟩ = bi i = 1,    , k

⟨Ai, X⟩ = bj j = k + 1,    ,m

Tr(X) = η

X ⪰ 0,

(1.20)

with C the symmetric matrix containing the binary and unary potentials of a given
GM and some η  N. The augmenting term is based on a theoretical result over the
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following set:
Ω(η) := X  Sn

+  Tr(X) = η

It is known [Wang et al., 2013] that for X  Ω(η), ∥X∥F ⩽ η, and equality holds if
and only if rank(X) = 1. This constraint is added as a penalty term in the objective
function of the MAP SDP relaxation

min ⟨C,X⟩+ σ(∥X∥2F  η2)

s.t ⟨Ai, X⟩ = bi i = 1,    , k

⟨Ai, X⟩ = bj i = k + 1,    ,m

X ⪰ 0

(1.21)

with a penalty parameter σ > 0. To get an ecient bounding procedure for the
MAP problem, [Wang et al., 2016] propose to solve the dual problem of (1.21)
which does not involve an SDP but only a convex optimization problem in Rm. The
dual function is continuously dierentiable but not necessarily twice dierentiable
so they use a quasi-Newton method called L-BFGS-B [Zhu et al., 1997] to maximize
it. Note that at some point, a projection into the SDP cone is involved, and thus
the computation of a set of positive eigenvalues. This operation is computationally
intensive and generally costs O(n3).

Alternating Direction Method of Multipliers The Alternating Direction Method
of Multipliers (ADMM) works on convex problems with decomposable objective
functions. First we give a generic presentation of the method and then we present
some recent extensions to SDPs. For a broader study of the algorithm, see [Boyd
et al., 2011]. The aim of ADMM is to solve problems of the form

min f(x) + g(z)

s.t Ax+Bz = c
(1.22)

with f and g two convex functions. Note that any convex optimization problem

min f(x)

s.t x  C
(1.23)

can be cast into the form (1.22). Indeed if we consider g to be the indicator function
for the constraint set C, (1.23) is equivalent to

min f(x) + g(z)

s.t x z = 0
(1.24)

We then introduce a Lagrangian that penalizes the linear constraint between the
two variables. The augmented Lagrangian is given by

Lρ(x, z, y) = f(x) + g(z) + y⊤(Ax+Bz  c) +
ρ

2
∥Ax+Bz  c∥2 (1.25)
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The algorithm is based on a 2-blocks optimization of Lρ and an update of the dual
variable. The primal and dual variables are sequentially updated while the others
are kept xed:

xk+1 := argmin
x

Lρ(x, z
k, yk)

zk+1 := argmin
z

Lρ(x
k+1, z, yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1  c)

(1.26)

In [Wen et al., 2010], the authors proposed a variation of ADMM applied to the
augmented Lagrangian of the dual SDP (SDPD)

Lρ(X,µ, S) = µ⊤b+


X,

m

i=1

µiAi + S  C


+

1

2ρ


m

i=1

µiAi + S  C



2

F

(1.27)

The optimization steps now read

µk+1 := argmin
µ

Lρ(X
k, µ, Sk) (1.28)

Sk+1 := argmin
S⪰0

Lρ(X
k, µk+1, S) (1.29)

Xk+1 := Xk +

m
i=1 µ

k+1
i Ai + Sk+1  C

ρ
 (1.30)

The same method was later applied in [Huang et al., 2014] for the MAP problem.
Note that in the two papers, the authors are considering extensions of ADMM with
more than 2 blocks of optimization (1.26). It was recently shown [Chen et al., 2016]
that ADMM extended to multi-block optimization problems is not necessarily con-
vergent. These multi-block problems often arise when dealing with discrete problem
relaxations. Indeed one has to introduce dierent kinds of linear constraints to make
the relaxation tighter. However, it is possible to recover convergence for problems
with "orthogonal" constraints. It means that the constraint operators apply on
non-overlapping entries of the variables. In this particular case, the algorithm can
be shown to be equivalent to the original 2-blocks ADMM.

A bottleneck of this method when applied to SDPs is the optimization step
(1.29). It is equivalent to the following convex optimization problem

min
S∈Sn

+

∥S  U∥2F (1.31)

for a particular symmetric matrix U depending on the xed variables. It corresponds
to the projection of U onto the semidenite cone Sn

+. Using theorem 1.5.2, there
exists a unique solution that can be expressed using the spectral decomposition U.
Computing the full spectrum of a symmetric matrix in Rn×n with direct methods
has complexity O(n3). Both papers [Wen et al., 2010, Huang et al., 2014] try to
overcome this issue by computing partial eigendecomposition with iterative methods
such as the Lanczos algorithm [Cullum andWilloughby, 2002]. More recently, people
started to look at a low-rank decomposition of S to get rid of the cone constraint
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in (1.29) [Cerulli et al., 2021]. This decomposition was also applied to the primal
variable X in [Zhao et al., 2022, Chen and Goulart, 2023]. This idea of decomposing
a positive semidenite matrix into a product of low-rank matrices is not new, we
discuss it in the next section.

1.5.6 Low-rank methods

We now give an overview of the low-rank methods used to solve SDPs. We have
already seen that interior point solvers quickly reach their limits for large constrained
problems. In early 2000, Burer and Monteiro [2003, 2005] introduced a new way to
solve SDPs through a change of variable. In the light of denition 18, a positive
semidenite matrix X with rank r can be factored as the product X = V V ⊤ with
V  Rn×r. Applying this change of variable to the standard SDP (SDP) we get the
following optimization problem

min ⟨C, V V ⊤⟩
s.t ⟨Ai, V V ⊤⟩ = bi i = 1,    ,m

V  Rn×r

(BM-SDP)

At this point, we can make two observations on (BM-SDP). On the one hand, the
cone constraint was removed and the number of variables has changed from n2 to nr.
On the other hand the problem is no longer convex and thus convex optimization
methods cannot be directly applied anymore. An important question is the choice
of the rank for the factorization. Barvinok [1995] and Pataki [1998] independently
proved the following theorem:

Theorem 1.5.8. There exists an optimum X∗ of (SDP) with rank r such that
r(r+1)

2 ⩽ m, with m the number of constraints.

A natural choice for the rank of V is r = 


2(m+ 1). Until recently, the
question of whether the optimal solution of (SDP) could be recovered from the
non-convex problem (BM-SDP) was open. Using Riemannian analysis, the pa-
per [Boumal et al., 2020] gives deterministic guarantees on the rank r and the
constraints of (SDP) so (BM-SDP) does not have any spurious second-order crit-
ical points. It was also shown that the bound r ⩾


2(m+ 1) is tight [Wald-

spurger and Waters, 2020]. The article [Frostig et al., 2014] was one of the rst
to exploit low-rank relaxations for MAP-MRF inference. They restrict their study
to pairwise graphical models with Boolean variables. Using the same transforma-
tions as in Subsection 1.5.2, the MAP inference task in this case is equivalent to
minx∈0,1n x⊤Qx. After the change of variable y = 2x  1n the problem is equiv-
alent to miny∈−1,1n y⊤Qy. Note that this last problem is similar to MaxCut for
which we already have the standard SDP relaxation

min ⟨Q,X⟩
diag(X) = 1n

X ⪰ 0

(1.32)
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Instead of solving (1.32) they propose to solve the low-rank relaxation

min
V ∈Rn×r

⟨Q, V V ⊤⟩

∥Vi∥ = 1 i = 1,    , n
(1.33)

They eciently solve this last problem by either a projected gradient descent or
a simple coordinate descent method. The coordinate descent method consists in
optimizing the objective function regarding the row vector Vi while the others are
being xed. This method was later studied in [Wang et al., 2017] where the authors
provide global convergence results under certain assumptions. The paper [Hu and
Carlone, 2019] deals with more general graphical models, i.e., each variable can take
K possible states. However, the binary potentials considered are the following

θij(xi, xj) =


0 if xi = xj

ij otherwise

The resulting graphical model is known as the Potts Model [Potts, 1952]. The case
of the k-class Potts model with Boolean variables was studied in [Pabbaraju et al.,
2020] using the mixing method introduced in [Wang et al., 2017]. Since variables
are non-Boolean, the MAP estimation problem is equivalent to (1.10). They derive
the two following SDP relaxations

min
X∈R(d+1)×(d+1)

⟨Q,X⟩

s.t ⟨Ui, X⟩ = 2K, ∀i = 1,    , n

diag(X) = 1d+1

X ⪰ 0

(DARS)

with matrix Ui =


0d×d Ai

A⊤
i 0


and Ai as dened in (1.9).

min
Z∈R(d+1)×K

⟨Q,Z⟩

s.t diag([Z]tl) = 1d+1

[Z]br = IK

Z ⪰ 0

(FUSES)

Where [Z]tl is the (d + 1) × (d + 1) top left corner of Z and [Z]br is the K × K

bottom right corner of Z. Both relaxations are solved using Burer and Monteiro
factorization. For (DARS) the method is a mix of dual ascent and Riemannian
Staircase presented in [Boumal et al., 2016]. For (FUSES), since the additional
linear constraints on Z are no longer needed, the Reimannian Staircase can be
directly applied.
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1.6 Integer solutions with rounding

So far, we have analyzed continuous relaxations for computing lower bounds. As
a reminder, these bounds play a crucial role in the branch-and-bound algorithm.
In this section, we focus on heuristics to compute feasible integer solutions for the
original problem.

Approximation ratio for MaxCut Let us consider a weighted graphG = ⟨V,E⟩
with V  = n vertices. We have shown that the basic low-rank SDP relaxation for
MaxCut is given by:

min ⟨Q,X⟩
diag(X) = 1n

X ⪰ 0

(1.34)

In 1995, Goemans and Williamson [Goemans and Williamson, 1995] presented
their celebrated 087856 approximation ratio for MaxCut on graphs with non-negative
weights. They have shown that by solving the problem (1.34) we can build an in-
teger solution with expected value 087856 times the optimum. The method can be
quickly explained as follows:

• let X∗  Rn×n be a solution of (1.34). Using a partial Cholesky factorization,
compute X∗ = V ∗⊤V ∗ for some full rank matrix V ∗  Rm×n.

• Draw a random vector r uniformly distributed on the unit sphere in Rm.

• Build x  1, 1n with xi = sgn(r⊤V ∗
i ), i = 1,    , n.

After using the rounding heuristic, one can apply a local search to improve the
solution x. A usual method consists of sequentially ipping the signs of x until a
better solution cannot be found. The pseudo-code for this heuristic is presented
in algorithm 2. For our SDP relaxation, we extend this scheme for non-Boolean
variables, the method is further explored in Chapter 2. While the theoretical ap-
proximation ratio does not apply in our case, we found out that this simple heuristic
is still able to nd good quality solutions, sometimes better than specialized meth-
ods. We provide some empirical results in Chapter 2.
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Algorithm 2 1-OPT search
x  1, 1n, changed := true, f := evaluate(x)
while changed do
changed = false
for i = 1,    , n do
xi ← xi
if evaluate(x) < f then
f = evaluate(x), changed = true

else
xi ← xi

end if
end for

end while
return x, f
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In this chapter, we present two methods for the 0/1 constrained quadratic re-
formulation of the MAP problem on pairwise discrete graphical models. The rst
method is based on the idea that one can reformulate a 0/1 quadratic problem with
linear constraints as a pure MaxCut problem using constraint penalization. We
then present a new dedicated method that avoids the introduction of large penalty
coecients to model the problem. Both discrete optimization problems are relaxed
by means of low-rank semidenite programs. Compared to what has been done in
the literature, both low-rank approaches can be applied to discrete graphical models
with an arbitrary number of states and arbitrary binary potentials. The goal un-
derlying those two methods is to compute tight bounds on the discrete optimization
problem using SDP relaxations while getting closer to the computational eciency
of linear methods. We aim to bridge the gap between the two paradigms to tackle
large-scale problems that are out of reach for current solvers. Both methods are then
compared to state-of-the-art solvers on a pool of crafted and real-world problems.
This chapter is organized in four parts:

• LR-LAS 2.1: we present our rst low-rank SDP method for the MAP problem
on discrete MRFs. The binary quadratic formulation (1.10) is reduced to a
pure MaxCut problem using Lasserre’s penalization result [Lasserre, 2016].
Then we solve the basic SDP relaxation of the MaxCut problem with the
mixing method [Wang et al., 2017].

• LR-BCD 2.2: we introduce a new SDP formulation as well as a dedicated
block-coordinate descent algorithm which takes advantage of the structural
properties of our problem. We derive some theoretical properties of this new
low-rank SDP algorithm.

• Experiments 2.3: our two methods are tested against state-of-the-art message
passing and LP solvers on a range of random and real-world instances. Some
parameters are discussed, such has the rank of the low-rank relaxation.

• Discussion 2.4: nally, we discuss some features and additional theoretical
properties of LR-BCD.

2.1 LR-LAS

Approximation techniques for MaxCut based on semidenite programming have
been extensively studied since the seminal work of Goemans and Williamson [1995].
Compared to linear programming approaches they often provide much tighter bounds
on a variety of combinatorial optimization problems. However, SDP has found lim-
ited application in MAP/WCSP. The main reason lies in the fact that the Goemans
and Williamson’s SDP relaxation of MaxCut, a specialization of MAP with binary
variables, requires cubic complexity for usual interior point solvers. The algorithm
doesn’t scale well and becomes impractical except on small very hard problems. For
this reason, approximate LP methods are usually preferred because they achieve a
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better trade o between tightness and computational cost.

The suitability of SDP for MAP and other applications has improved with the
non-convex low-rank Burer-Monteiro approach. They exploit the results of Barvinok
[1995] and Pataki [1998] who showed that the rank of solutions of SDP problems is
bounded by O(

√
m) with m the number of constraints. This approach uses a low-

rank factorization X = V V ⊤ of the semidenite matrix X in the SDP relaxation of
these combinatorial problems. It has since been observed that, in practice, the rank
of the solution is often lower, with some software using a constant O(1) rank.

Let us write the constrained quadratic 0/1 formulation of the MAP/MRF prob-
lem. We consider a pairwise GM M = ⟨X,Φ⟩ with associated graph (X,E). Each
variable xi  X can take di possible states, we note d =

n
i=1 di the total number

of states and s1 = 1, si = si−1 + di−1, i = 2,    , n the indices of the domains in the
stacked vector. Using the 1-hot encoding introduced previously in Subsection 1.5.2,
the MAP problem is equivalent to the following quadratic optimization problem:

min
b∈0,1d

b⊤Qb+ c⊤b

s.t Ab = 1n

(2.1)

Where A  Rn×d encodes the exactly-one constraint for each GM variable:

A⊤
i = [0⊤d1 · · · 0⊤di−1

1⊤di 0
⊤
di+1

· · · 0⊤dn ], i = 1,    , n

To obtain a pure MaxCut problem, we use the -1/1 change of variable y = 2b 1d.
We introduce new vectors and matrices R = Q4, e = (c + Q1d)2, F = A2 and
u = 1n  A1d2. Problem (2.1) is now equivalent to:

min
y∈−1,1d

y⊤Ry + e⊤y

s.t Fy = u
(2.2)

Here, the initial exactly-one constraint
sk+dk−1

i=sk

bi = 1 becomes 2F⊤
i y = 2 di with

Fi  Rd, 2F⊤
i = [0⊤d1 · · · 0⊤di−1

1⊤di 0
⊤
di+1

· · · 0⊤dn ]. This change of variables creates a
constant term in the objective function. Indeed for the quadratic part, we have

y⊤Ry =
1

4
(2y  1d)

⊤Q(2y  1d) = y⊤Qy  y⊤Q1d + 1⊤d Q1d

This constant term can be safely ignored for optimization purposes. In this formu-
lation, the matrix R has the same exact sparsity as Q.

In order to get an unconstrained quadratic program, we must remove the linear
constraints in (2.2). A usual approach to do this is to penalize the linear constraints
with a penalty ρ that must be appropriately chosen [Lasserre, 2016]. This reduces
the problem to a pure MaxCut problem on which the Burer-Monteiro approach can
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be directly applied and solved using ecient row-by-row updates [Wang et al., 2017].
The problem becomes:

min
y∈−1,1d

y⊤Ry + y⊤e+ (2ρ+ 1)∥Fy  u∥2 (2.3)

As soon as ρ ⩾ maxy⊤Ry + y⊤e : y  1, 1d, the solution of (2.3) and
(2.2) are the same [Lasserre, 2016]. One can note at this point that if any potential
function in the GM at hand contains potentials of large amplitude, ρ will need to
take a large value to ensure the above property.

We next homogenize the problem by converting linear terms to quadratic terms.
We introduce the extended vector z⊤ = [y⊤ 1]  1, 1d+1 and reformulate (2.3)
in terms of z. Then, (2.3) equivalently asks to minimize z⊤Bz where z  1, 1d+1

and B is the symmetric matrix:

B :=




(2ρ+ 1)F⊤F +R 1
2(e

⊤  2(2ρ+ 1)u⊤F )⊤

1
2(e

⊤  2(2ρ+ 1)u⊤F ) (2ρ+ 1)u⊤u


 (2.4)

The usual SDP relaxation of the MaxCut problem can then be written using
the new rank 1 matrix variable X = zz⊤  R(d+1)×(d+1). Dropping the rank-1
constraint, the SDP relaxation is:

min
X
⟨B,X⟩ : X ⪰ 0; Xii = 1, i = 1,    , d+ 1 (2.5)

Burer and Monteiro [2003] introduced the idea of using a low-rank factorization of
X to solve the SDP (2.5). This factorization was motivated by a proof by Barvinok
[1995] and Pataki [1998] of the following theorem:

Theorem 2.1.1. [Barvinok, 1995, Pataki, 1998] There exists an optimum X∗ of
(2.5) with rank r such that r(r+1)

2 ⩽ m, with m the number of constraints.

Every positive semi-denite matrix of rank r can be factorized as a product of
two rank-r matrices: X = V V ⊤, V  R(d+1)×r. Then, (2.5) becomes:

min
V ∈R(d+1)×r

⟨B, V V ⊤⟩ s.t ∥Vi∥ = 1, i = 1,    , d+ 1 (2.6)

With Vi  Rr the row vector i of V . The norm constraints on the rows are inherited
from the diagonal constraints of the original problem. If we consider the factorization
X = V V ⊤, the entries of matrix X are Xij = V ⊤

i Vj . Thus Xii = 1 implies that
V ⊤
i Vi = ∥Vi∥2 = 1, hence the norm constraints. The low-rank reformulation of

the problem reduces the number of variables from (d + 1)2 to r(d + 1) and the
semi-denite constraint X ⪰ 0 now becomes implicit as V V ⊤ is always positive
semi-denite. Several approaches exploit this idea. To solve (2.6) we use the mixing
method [Wang et al., 2017]. It consists in ecient O(r(d+1)) cyclic updates of the
row vectors Vi, all other row vectors being xed:

Vi = 
gi
∥gi∥

, gi =

d+1

j=1

BijVj ∀i = 1,    , d+ 1



2.1. LR-LAS 53

Algorithm 3 Mixing method
Initialize Vi randomly on the unit sphere
while not converged yet do
for i = 1,    , d+ 1 do
gi := V Ci

Vi :=  gi
∥gi∥

end for
end while

The pseudo-code for the mixing method is given in Algorithm 3.
The mixing method is known to recover the optimum of the convex SDP (2.5)

with random initialization as long as the rank of V satises the bound provided in
(2.1.1) i.e., r >


2(d+ 1). One issue with using the mixing method in the presence

of dualized constraints generated by Lasserre’s approach is that the row-by-row
updates are sensitive to the magnitude of the penalty parameter ρ. As we observed
previously, ρ may be large if the input GM has large terms. The large value of ρ
will create large coecients in the objective matrix B. If we consider a particular

gi =

d+1

j=1

BijVj

the sum will be dominated by a few terms with high magnitude, see Figure 2.1.
The update will promote descent in the direction of the rows corresponding to these
terms, possibly slowing down convergence.

Bi1V1

Bi2V2

Bi3V3

gi

Figure 2.1: Predominant direction: Bi2 ≫ Bi1 and Bi2 ≫ Bi3.

2.1.1 Gangster constraints

A feasible solution of (2.1) always satises the so-called gangster constraint [Zhao
et al., 1998]. This constraint was introduced to tighten numerous discrete optimiza-
tion relaxations. It species that the o-diagonal entries of the matrix bkb

⊤
k must
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be all zeros. If we consider the Boolean vector bk that corresponds to the variable
xk  X, then bikb

j
k = 0, ∀i ̸= j, since at least one of the two terms is equal to

zero. It is interesting to notice that if the solution to (2.6) nullies the quadratic
penalty term induced by the Lasserre penalization, it will also satisfy this gangster
constraint.

Lemma 2.1.2. If Tr(PV V ⊤) = 0, where P =


F⊤F F⊤u
u⊤F u⊤u


, then V satises

the gangster constraint.

Before going through the proof, we describe how the gangster constraint can be
formulated in our SDP. First, if we consider the Boolean vector bk that corresponds
to the variable xk  X, the goal of the gangster constraint is to ensure that the
o-diagonal entries of the matrix bkb

⊤
k are all zeros. To ensure that bk will satisfy

the gangster constraint, we can use the following matrix Hk  Rdk×dk

Hk =




0 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1

1 · · · 1 0




Thus, for each k = 1,    , n, we must have, b⊤k Hkbk = 0 or equivalently Tr(Hkbkb
⊤
k ) =

0. If we think in terms of the concatenated vector b  Rd we must have Tr(Hbb⊤) = 0

with

H =




H1 0 0

0
. . . 0

0 0 Hn


 , H  Rd×d

Now, doing the -1/1 change of variable y = 2b 1d,

b⊤Hb = 0 ⇐⇒ y⊤Gy + y⊤q + r = 0

with G = 1
4H, q = 1

2H1d, r = 1
41

⊤
d H1d. Using the augmented vector z⊤ = [y⊤ 1] 

1, 1d+1:

Tr(Rzz⊤) = 0 with R =


G 1

2q
1
2q

⊤ r


 R(d+1)×(d+1)

Then we can use the usual relaxation and the usual low-rank factorization:

X = zz⊤  R(d+1)×(d+1), Tr(RX) = 0

X = V V ⊤, Tr(RV V ⊤) = 0

Proof of Lemma 2.1.2. We want to prove the following implication which charac-
terizes the solutions of the low-rank problem (2.5):

Tr(PV V ⊤) = 0 ⇒ V satises the gangster constraint, with P =


F⊤F F⊤u
u⊤F u⊤u


⪰ 0
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We can factorize the matrix P , P = S⊤S with S =

F u


 Rn×(d+1). Thus,

tr(PV V ⊤) = 0 becomes:

Tr(S⊤SV V ⊤) = 0 ⇐⇒ Tr(V ⊤S⊤SV ) = 0

Tr((SV )⊤SV ) = 0

∥SV ∥2F = 0

SV = 0

One can see that this last equality is equivalent to the exactly-one constraint as in
the BCD formulation. Now we will prove that

Tr(PV V ⊤) = 0⇒ Tr(RV V ⊤) = 0

with R =


G 1

2q
1
2q

⊤ r


 R(d+1)×(d+1) the gangster constraint matrix. We will

rewrite P = M + R with M a matrix we will describe later. The objective is to
show that:

Tr(PV V ⊤) = 0⇒ Tr(MV V ⊤) = 0

Thus, given the result above:

Tr(PV V ⊤) = 0⇒ Tr((M +R)V V ⊤) = 0

Tr(MV V ⊤) + Tr(RV V ⊤) = 0

Tr(RV V ⊤) = 0

First,

M = P R =


D F⊤u 1

2q

u⊤F  1
2q

⊤ u⊤u r



With D = 1
4 Diag(1d)  Rd×d. For i = 1, , d

(F⊤u 1

2
q)i =

di
4
 1

2
 1

4
(di  1) = 1

4

and

u⊤u r =

n

i=1

(1 di
2
)2  1

4

n

i=1

di(di  1)

= n d+
d

4
= n 3

4
d

Next, Tr(MV V ⊤) =


i



j

MijV
⊤
i Vj with





Mij =
1
4 , i = j, i, j = 1, , d

Mij = 1
4 , i = d+ 1, j = 1, , d

Mij = 1
4 , j = d+ 1, i = 1, , d

Mij = n 3
4d, i = j = d+ 1

Mij = 0 otherwise
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Thus,

Tr(MV V ⊤) =
d

i=1

Mii∥Vi∥2 + 2

d

j=1

Md+1,jV
⊤
j Vd+1 + n 3

4
d

=
1

4
d+ n 3

4
d 1

2

d

j=1

V ⊤
d+1Vj

We showed that Tr(PV V ⊤) = 0 ⇒ V satises the exactly-one constraint. We can
simplify the last term:

d

j=1

V ⊤
d+1Vj =

n

j=1

(2 dj)

Finally,

Tr(MV V ⊤) =
1

4
d+ n 3

4
d 1

2

n

j=1

(2 dj)

=
1

4
d+ n 3

4
d n+

1

2
d = 0

We can now conclude that Tr(PV V ⊤) = 0⇒ Tr(MV V ⊤)+Tr(RV V ⊤) = Tr(RV V ⊤) =
0, so V satises the gangster constraint.

2.1.2 Dual feasible points

Within a branch and bound scheme, for the bounding procedure we are interested in
computing bounds with guarantees. Since the mixing method works on the primal
problem, we cannot directly use the returned value as a safe bound. We now give
some hints on how to compute a good dual feasible solution given information on
the primal iterates. The proposed method is inexpensive and does not require dual
SDP resolution. First we recall the primal and dual problems :

minimize
V ∈R(d+1)×r

f(V ) := ⟨B, V V ⊤⟩, s.t Vi = 1 (2.7)

maximize
λ∈Rd+1

D(λ) := 1⊤d+1λ, s.t B +Diag(λ) ⪰ 0 (2.8)

Let V ∗ be the solution for the primal problem (2.7) and let λ∗  Rd+1 be the
vector

λ∗
i = ∥V ∗⊤Bi∥, i = 1,    , d+ 1,

with Bi  Rd+1 the i-th row vectors of B. In [Wang et al., 2017], the authors
show that (V ∗,λ∗) is a primal-dual feasible pair that closes the duality gap, i.e.,
⟨B, V ∗V ∗⊤⟩ = 1⊤d+1λ

∗.
We now introduce the function:

h : Rd+1×r → Rr

V → ∥V ⊤Bi∥
(2.9)
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The application g(V ) : V → V ⊤Bi is linear thus Lipschitz on the nite space
R(d+1)×r and the 2-norm is also Lipschitz on Rr. As a composition of two Lipschitz
functions, h is Lipschitz and using the Cauchy-Schwarz inequality, one can derive
the following inequality:

∥V ⊤Bi∥  ∥V ∗⊤Bi∥
 ⩽ ∥V ⊤Bi  V ∗⊤Bi∥ ⩽ ∥Bi∥∥V ⊤  V ∗⊤∥F  (2.10)

At this point, if we compute a point V close enough to the optimum V ∗, ∥V ∗⊤
V ⊤∥F ⩽ 

∥Bi∥2 , we have:

λ∗
i  λi =

∥V ⊤Bi∥  ∥V ∗⊤Bi∥
 ⩽ ∥V ⊤Bi  V ∗⊤Bi∥ ⩽ ∥Bi∥∥V ⊤  V ∗⊤∥F ⩽ 

(2.11)
To conclude, if we are able to compute a primal iterate as close as we want from

the primal solution, we can compute a point λ  Rd+1 as close as we want from the
dual optimum λ∗.

The question that remains is whether the point λ  Rd+1 with

λi = ∥V ⊤Bi∥, i = 1,    , d+ 1,

is dual feasible, that is, B +Diag(λ) ⪰ 0. We denote by

K := max ∥V ⊤Bi∥, i = 1,    , d+ 1,

using the result in (2.11) for V  R(d+1)×r such that ∥V ∗⊤  V ⊤∥F ⩽ 
K , we have

λ∗
i  λi ⩽ , i = 1,    , d+ 1

Now we can consider the new point λ′ = λ+ 1d+1 which we rewrite:

λ′ = λ λ∗ + λ∗ + 1d+1.

We have

B +Diag(λ′) = B +Diag(λ∗) +Diag(λ λ∗ + 1d+1)

Since λ∗ is dual feasible, we already know that B +Diag(λ∗) ⪰ 0. Next, since

λ∗
i  λi ⩽ , i = 1,    , d+ 1

λi  λ∗
i +  ⩾ 0, i = 1,    , d+ 1

Thus, Diag(λ  λ∗ + 1d+1) ⪰ 0 and we can conclude that B + Diag(λ′) ⪰ 0. We
found a dual feasible point λ′ with a dual objective value 1⊤d+1λ

′ arbitrarily close
to the dual optimum as we show next.
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Bounding the dual value Thanks to the result above, we can bound the dual
value for λ′. Indeed, since

 ⩽ λi  λ∗
i ⩽  for all i = 1, , d+ 1

We have

0 ⩽ λi  λ∗
i +  ⩽ 2

0 ⩾ (λi  λ∗
i + ) ⩾ 2

1⊤d+1(λ λ∗ + 1d+1) ⩾ 2(d+ 1)

Let d∗ be the optimal value for the dual problem (2.8), we have

d∗ ⩾ 1⊤d+1λ
′ = 1⊤d+1λ

∗  1⊤d+1(λ λ∗ + 1d+1) ⩾ d∗  2(d+ 1), (2.12)

and we get the following bounds

d∗ ⩾ 1⊤d+1λ
′ ⩾ d∗  2(d+ 1) (2.13)

With the right term converging to 0 when  → 0.

2.2 LR-BCD

2.2.1 From sparsity to block optimization

For the MAP/MRF problem, the objective matrix in the 0/1 quadratic formulation
enjoys some structural properties. The goal of this section is to show how we can
use those sparsity patterns to extend the coordinate descent method to a block
coordinate descent method. First, let us write again the constrained quadratic 0/1
formulation of the MAP/MRF problem. We consider a pairwise GM M = ⟨X,Φ⟩
with n discrete variables and associated graph (X,E). Each variable xi  X can take
di possible states, we note d =

n
i=1 di the total number of states and s1 = 1, si =

si−1 + di−1, i = 2,    , n the indices of the domains in the stacked vector. Using the
1-hot encoding introduced previously, the MAP/MRF problem is equivalent to the
following quadratic optimization problem:

min
b∈0,1d

b⊤Qb+ c⊤b

s.t Ab = 1n

(2.14)

The objective matrix Q stores the information for the binary potentials while vector
c contains the stacked unary potentials. When two variables (xi, xj)  X2 are
independent, i.e., there exists no binary potential that applies to the two variables,
then the corresponding block in the objective matrix Q is a zero-block of size di×dj .
There is a relation between the original problem sparsity and the sparsity of the
objective matrix. We can distinguish between two types of sparsity:
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1. Potential sparsity: Whenever a potential contains a small amount of non-zero
entries, the corresponding block in Q will be sparse. This can be the case for
attractive or repulsive potentials used in Potts models. Namely, the potential
θij between variables xi and xj will take positive or negative values whenever
xi = xj and 0 otherwise. This results in a block matrix with only non-zero
entries on the diagonal in Q.

2. Terms sparsity: If the GM M has only a small number of potentials then
matrix Q will be sparse by blocks.

Such information is heavily used in modern SDP solvers. Indeed sparsity can
lead to computational and storage gains: the problem can be formulated in a more
compact way and some specialized solvers use specic forms of sparsity to speed
up the resolution. Now, if we consider the pairwise GM M , by construction, there
is no binary potential θS  Φ such that S = xi, xi, i  [n]. There is no binary
potential that links a GM variable to itself. From this observation, one can see that
the objective matrix Q has a zero block-diagonal structure. This central idea allows
us to consider block-coordinate descent instead of the coordinate descent previously
used in the mixing method.

Q =




0d1×d1

0d2×d2

. . .

0dn×dn




We now go back to the optimization problem (2.14). We use the same transfor-
mation as in the previous section, see (2.2). First we do a change of variable and
then a homogenization to get the following constrained -1/1 quadratic problem:

min
z∈−1,1d+1

z⊤Rz

s.t F⊤
i z = 2 di, ∀i = 1,    , n

(2.15)

In this formulation, matrix R has the same exact sparsity as Q, meaning that R

still has the zero block-diagonal property. This time we do not dualize the linear
constraints to write (2.15) as an equivalent MaxCut problem. Using the rank one
matrix variable X = zz⊤ and dropping the rank one constraint we get the following
SDP relaxation:

min
X∈R(d+1)×(d+1)

⟨R,X⟩

s.t ⟨Ui, X⟩ = 2 di, ∀i = 1,    , n

diag(X) = 1d+1

X ⪰ 0

(2.16)

With matrix

Ui =


0d×d Fi

F⊤
i 0


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Once again we use the low-rank factorization X = V V ⊤ to transform (2.16) into
the non convex optimization problem:

min
V ∈R(d+1)×r

⟨R, V V ⊤⟩

s.t ⟨Ui, V V ⊤⟩ = 2 di, ∀i = 1,    , n

∥Vi∥ = 1, ∀i = 1,    , d+ 1

(2.17)

We now focus on the rows of the low-rank matrix V . We denote f(V ) = ⟨R, V V ⊤⟩
as the objective function of the optimization problem. The objective function with
respect to the rows Vi of V is:

f(V ) =

d+1

i=1

V ⊤
i

d+1

j=1

RijVj

As in the previous section, we note gi =

d+1

j=1

RijVj . In the mixing method, the

idea was to minimize f regarding a row Vi of V while xing all the other rows
Vj , j = 1,    , d+ 1, j ̸= i.


0



0



0


0







R =

d1

d2

dn


V ⊤
1·




V ⊤
d1+1
·




·

V ⊤
d



V ⊤
d+1







V =

d1

d2

dn

1

For each discrete variable, if we consider the set of rows that corresponds to its
domain, the unit vectors are now independent in the objective function. Without
loss of generality for the rst discrete variable x1  X, if we look at the rst d1 rows
of V which correspond to the d1 values of xi, in the objective function we have by
construction Rij = 0 for (i, j)  [1, d1]

2. It means that there are no monomials with
terms V ⊤

i Vj , (i, j)  [1, d1]
2 in the objective function. This observation is the same

for all variables. Thus, for a particular row Vi which belongs to the set of rows that

correspond to the domain of a variable, the vector gi =
d+1

j=1

RijVj does not contain

any row of that block. We can draw an elegant bridge between the discrete problem
and this low-rank relaxation. For a discrete variable, we will now optimize over the
whole domain of the variable instead of considering each value within the domain
independently. Instead of doing row-by-row updates, for a given GM variable xk,
we simultaneously optimize all the rows of V that correspond to xk while keeping
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all other rows xed. To simultaneously update all these rows, we have to solve:

min
Vi,sk⩽i<sk+1

sk+dk−1

i=sk

V ⊤
i gi s.t.





V ⊤
d+1(

sk+dk−1

j=sk

Vj) = 2 dk

∥Vi∥ = 1, sk ≤ i < sk+1

(2.18)

This problem is more dicult to solve than the simple row update of the Mixing
method. We now give some low-level implementation details of our method called
LR-BCD : Low Rank Block Coordinate Descent. First, the rank chosen for the
low-rank factorization X = V V ⊤ diers from the rank previously used in the LR-
LAS method. Compared to the LR-LAS formulation, the SDP formulation (2.16)
has n additional equality constraints. Thus the rank r is updated as follows r =




2(n+ d+ 1) to meet the result of the Barvinok and Pataki theorem. This rank
is the default rank used in the LR-BCD implementation. Later on, we will discuss
other choices of ranks for the factorization and its eect on the method. The generic
algorithm is shown in Algorithm 4.

Algorithm 4 LR-BCD for MAP/MRF
Initialize Vi randomly on the unit sphere
while not converged yet do
for i = 1,    , n do
for j = si,    , si+1  1 do
gi := V Ci

end for
Vsi ,    , Vsi+1

:= solve (2.18)
end for

end while

The method consists in cyclic updates of blocks of rows (Vk), k  [si, si+1] all
other row vectors being xed. The last row vector Vd+1 of V  R(d+1)×r that was
added due to homogenization lifting in (2.15) is never updated during the procedure.
This choice will be discussed in the following sections.

2.2.2 Optimization on the unit-sphere through trigonometry

At each step of the LR-BCD algorithm, we have to solve the following optimization
problem on the unit sphere:

min
Vi,sk⩽i⩽sk+1

sk+dk−1

i=sk

V ⊤
i gi s.t.





V ⊤
d+1(

sk+dk−1

j=sk

Vj) = 2 dk

∥Vi∥ = 1, sk ≤ i < sk+1

(2.19)

In the following, we make the assumption that the vectors gi and Vd+1 are never
colinear. By the second constraint, every solution row vector Vi must lie in the
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unit spherical manifold. This second constraint makes the problem non-convex.
However, the next proposition allows us to implicitly include this constraint in a
new formulation using geometric reasoning on a 2-dimensional subspace of Rr.

O

Vd+1

gi
gi+1

ϕi

Figure 2.2: 2-dimensional subspace generated by Vd+1 and the gi’s.

Theorem 2.2.1. At the optimum of (2.19), every optimized vector Vi lies in the
2-dimensional subspace generated by gi and Vd+1.

Proof. Let u = Vd+1, we denote by Pi the 2-dimensional subspace generated by gi
and u, i.e., Pi := vec(gi, u) and P⊥

i the orthogonal complement of Pi in Rr. Let V ∗
i

be the vector Vi in an optimum of the problem above and assume that V ∗
i does not

lie in Pi. Let Bi := u, v the orthonormal basis of Pi such that gi has a positive
coordinate over v, let Ci := c0,    , cr−3 an orthonormal basis of P⊥

i . Then, Vi

can be written as

Vi = u+ v +

r−3

i=0

ici

with at least one coecient i ̸= 0. Since, when  > 0, changing the sign of 
improves the criteria without changing the status of the “exactly-one” and norm-1
constraints, we must have  < 0. Let

′ = 

2 +

r−3

i=0

2i

and
V ∗
i
′ = u+ ′v
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O

Vd+1

gi

Vi

ϕi

ψi

Figure 2.3: Optimizing Vi on the 2-dimensional subspace generated by Vd+1 and gi.

If we now consider a solution where V ∗
i has been replaced by V ∗

i
′, the “exactly-one”

constraint is still satised because the scalar product of V ∗
i
′ and u is unchanged.

The norm-1 constraint is still satised as ∥V ∗
i
′∥2= 2 + 2 +

r−3

i=0

2i = 1. Then, the

new solution improves the criteria given that  ′ <  < 0 and that g⊤i v > 0.

Given that Vi lies on the unit sphere and the 2-dimensional subspace generated
by gi and Vd+1, it is therefore entirely dened by the angle it makes with Vd+1.
With vectors on the sphere, the problem above can be rewritten using trigonometric
functions, omitting the di norm-1 constraints which are implicitly satised. Let ϕi

be the xed angle between gi and Vd+1 and let ψi be the angle between Vi and Vd+1

in this same plane. Problem (2.19) can be written as follows:

min
ψi∈[0,π]

sk+dk−1

i=sk

∥gi∥ cos(ϕi + ψi) s.t
sk+dk−1

i=sk

cos(ψi) = 2 dk (2.20)

To deal with the remaining exactly-one constraint, we introduce the Lagrangian
using multiplier λ  R:

L(Ψ,λ) =

sk+dk−1

i=sk

∥gi∥ cos(ϕi + ψi) + λ(

sk+dk−1

i=sk

cos(ψi) + dk  2) (2.21)

Theorem 2.2.2. The Lagrange dual function of the block optimization problem
(2.20) is given by:

h(λ) = min
Ψ

L(Ψ,λ) = 
sk+dk−1

i=sk

∥gi + λVd+1∥+ (dk  2)λ
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Proof. The partial derivatives of L are

∂L

∂ψi
= ∥gi∥ sin(ϕi + ψi) λ sin(ψi)

which must all be equal to zero at the optimum. We use the fact that the sum of
sinusoids with the same period and dierent phases is also a sinusoid:

A sin(ωt+ϕ)+B sin(ωt) =


A2 +B2 + 2AB cos(ϕ) sin


ωt+ arctan


A sin(ϕ)

A cos(ϕ) +B



We have:

∥gi∥ sin(ϕi+ψi)λ sin(ψi) =

∥gi∥2 + λ2 + 2λ∥gi∥ cos(ϕi) sin


ψi + arctan

 ∥gi∥ sin(ϕi)

∥gi∥ cos(ϕi) + λ



which implies that

ψi + arctan

 ∥gi∥ sin(ϕi)

∥gi∥ cos(ϕi) + λ


= 0 or ψi + arctan

 ∥gi∥ sin(ϕi)

∥gi∥ cos(ϕi) + λ


= π

We take
ψi = π  arctan

 ∥gi∥ sin(ϕi)

∥gi∥ cos(ϕi) + λ


,

this choice is motivated later on in the primal feasibility therorem 2.2.6. By trigono-
metric identities, noting i =

∥gi∥ sin(ϕi)
∥gi∥ cos(ϕi)+λ , we have:

cos(ψi) =  cos(arctan(i)) = 
1

1 + 2i

Developing and simplifying (1+ 2i ) and plugging the result back above, we get:

cos(ψi) = 
∥gi∥ cos(ϕi) + λ

∥gi + λVd+1∥

Similarly, one can derive:

cos(ϕi + ψi) = 
∥gi∥+ λ cos(ϕi)

∥gi + λVd+1∥

Plugging this back into the Lagrangian, we get:

L(λ,Ψ) =

sk+dk−1

i=sk


∥gi∥

∥gi∥+ λ cos(ϕi)

∥gi + λVd+1∥


+ λ




sk+dk−1

i=sk


∥gi∥ cos(ϕi) + λ

∥gi + λVd+1∥


+ dk  2




= 
sk+dk−1

i=sk

∥gi + λVd+1∥+ λ(dk  2)
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So the dual problem is to nd λ that maximizes

h(λ) := 
sk+dk−1

i=sk

(∥gi + λVd+1∥) + λ(dk  2)

The rst derivative of h is:

h′(λ) = 
sk+dk−1

i=sk


g⊤i Vd+1 + λ

∥gi + λVd+1∥


+ (dk  2)

and the second derivative:

h′′(λ) = 
sk+dk−1

i=sk

∥gi∥2  (g⊤i Vd+1)
2

∥gi + λVd+1∥3


One can see that h′′(λ) < 0 whenever gi and Vd+1 are not colinear which proves
that h is strictly concave and guarantees the uniqueness of the optimum. Being
strictly concave, we just have to nd λ∗ such that h′(λ∗) = 0.

We could not exhibit a closed form of the maximizer λ∗. However, the function
f = h can be optimized using the Newton algorithm.

Theorem 2.2.3. The second derivative of f is Lipschitz on R and is strictly positive
whenever the gi’s and Vd+1 are not colinear.

Proof. We need to show that the second derivative of f is Lipschitz on R. In order
to prove this, we will show that the derivative of f ′′ is bounded on R. Let u = Vd+1,
the rst and second derivative of f are

f ′(λ) =
sk+dk−1

i=sk

g⊤i u+ λ

∥gi + u∥ + 2 dk

and

f ′′(λ) =
sk+dk−1

i=sk

∥gi∥2  (g⊤i u)
2

∥gi + λu∥3

respectively.
We denote by

fi(λ) =
∥gi∥2  (g⊤i u)

2

∥gi + λu∥3
each term in the sum of the second derivative. We will show that the derivative of
each fi is bounded on R.

f ′
i(λ) = 

3(∥gi∥2  (g⊤i u)
2)(g⊤i u+ λ)

∥gi + λu∥5

= 3(∥gi∥2  (g⊤i u)
2)(g⊤i u)

∥gi + λu∥5  3(∥gi∥2  (g⊤i u)
2)λ

∥gi + λu∥5
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Using the assumption that gi and u are not colinear there exists ki > 0 such that
∥gi + λu∥5 ⩾ ki > 0. Thus, we have :


3(∥gi∥2  (g⊤i u)

2)(g⊤i u)
∥gi + λu∥5

 ⩽
3(∥gi∥2  (g⊤i u)

2)(g⊤i u)
ki

Now we need to show that the second term is also bounded. Let ai = 3(∥gi∥2 
(g⊤i u)

2), we can rewrite the absolute value of the second term as :


aiλ

∥gi + λu∥5
 = ai

(λ2)
1
2

(∥gi∥2 + 2g⊤i uλ+ λ2)
5
2

= ai


λ2

(∥gi∥2 + 2g⊤i uλ+ λ2)5

 1
2

If we consider the function :

l(λ) =
λ2

(∥gi∥2 + 2g⊤i uλ+ λ2)5

We know that l is a continuous function on R. Moreover, we have:

l(λ) ∼
λ→±∞

λ2

λ10 = 1
λ8 →

λ→±∞
0

We can conclude that l is a continuous function with nite limits at ±∞ thus it is
bounded. So, we have the result that there exists M  R∗

+ such that the second
term is bounded by ai

√
M .

To reach quadratic convergence with the Newton method, one has to nd a
starting point λ0 which is close enough to the solution λ∗. Thankfully, we were
able to derive a relaxation of the BCD problem (2.19) which produced good-quality
solutions. Instead of working with each row separately, we introduce the stacked
vector V ⊤ = [V ⊤

sk
  V ⊤

sk+dk−1]  R(dk×r). The norm constraints on the rows are then
relaxed to ∥V ∥22 = dk. We now have to solve the following optimization problem:

min
V ∈R(dk×r)

V ⊤g s.t V ⊤U = 2 dk, ∥V ∥22 = dk, (2.22)

where g⊤ = [g⊤sk    g
⊤
sk+dk−1]  R(dk×r) and U⊤ = [V ⊤

d+1   V
⊤
d+1]  R(dk×r). Once

again this problem is non-convex due to the norm constraint but it is possible to
derive a closed-form solution as stated in the following proposition.

Proposition 2.2.4. Let us dene p = 4 4
dk

and q = ∥g∥2 1
dk
(U⊤g)2. The solution

to (2.22) is given by V ∗ = U + g with

 =  1

dk
(U⊤g + dk  2),  = 


p

q

Let us rst introduce a lemma that will be useful for the proof of this theorem.
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Lemma 2.2.5. The solution V ∗ to (2.22) must lie in the subspace vec(U, g).

Proof. Let us consider the sets

P1 : y  R(dk×r)  U⊤y = 2 dk, D1 : y  R(dk×r)  ∥y∥2 = 2 dk

For y  P1, we have y = y0 + z with y0 a particular solution to the linear equation
U⊤y0 = 2 dk and z a vector such that U⊤z = 0. For y0, we take

y0 =
(2 dk)

∥U∥2 U

which gives us the desired result

U⊤y0 =
(2 dk)

∥U∥2 U⊤U = 2 dk

The objective function is now equal to

g⊤y =
(2 dk)

∥U∥2 U⊤g + z⊤g

The rst term is constant for all y in the feasible set P1  D1. We now check the
value of the second term. Let ΠP1 be the projector onto the hyperplane orthogonal
to U . We can write the dot product

z⊤g = z⊤(g  ΠP1(g) + ΠP1(g)) = z⊤ΠP1(g) since z⊤(g  ΠP1(g)) = 0

Thus we only worry about the value of the dot product z⊤ΠP1(g) which is minimal
in the direction ΠP1(g). Since ΠP1(g) lies in the space generated by U and g we
proved that the solution to (2.22) must lie in vec(U, g).
Let us consider V  vec(U, g) e.g V = U + g for some ,  R. The rst
constraint gives

 =  1

dk
(U⊤g + dk  2)

By developing the squared norm we have

2


1

dk
(U⊤g)2  2

dk
(U⊤g)2 + ∥g∥2


+

(dk  2)2

dk
= dk

2


∥g∥2  1

dk
(U⊤g)2


= dk 

(dk  2)2

dk

2


∥g∥2  1

dk
(U⊤g)2


= 4 4

dk

Using the Cauchy-Schwartz inequality we know that ∥g∥2 1
dk
(U⊤g)2 > 0 whenever

U and g are not colinear. Thus using the notation p = 4 4
dk

 = 


p


with  = ∥g∥2  1

dk
(U⊤g)2

One can see that the objective value is smaller for  = 


p
 which gives us the

result.
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Let V ∗ = [(V ∗
sk
)⊤,    , (V ∗

sk+dk−1)
⊤ be the solution to (2.22). We can use the

stationarity condition of the initial problem (2.19) to compute an initial dual point
λ0. Without loss of generality, we can consider one of the equality:

∂L(Ψ,λ)

∂ψi
= ∥gi∥ sin(ϕi + ψi) λ sin(ψi) = 0, i  [sk, sk + dk  1]

Which gives

λ =
∥gi∥ sin(ϕi + ψi)

sin(ψi)

Then we have to compute the angles between the relaxed solution V ∗
i and the

problem vectors Vd+1 and gi. Namely, we have:

ϕi + ψi = arccos


g⊤i V

∗
i

∥gi∥∥V ∗
i ∥



ψi = arccos


V ⊤
d+1V

∗
i

∥Vd+1∥∥V ∗
i ∥



And thus one can compute a starting dual point λ0 for the Newton method. Em-
pirically we found out that this candidate is close to the optimal solution and op-
timization methods like the Newton method or BFGS are able to converge to the
maximizer of the dual Lagrange function within very few iterations (< 10).

Computing the solution vectors Using Theorem 2.2.1, we know that at the
optimum of (2.19), there exist i,i  R such that Vi = iVd+1 + igi. After
computing the optimal dual multiplier λ∗, we can compute the angles ψ∗

i between
Vi and Vd+1 with the relation

ψ∗
i = π  arctan

 ∥gi∥ sin(ϕi)

∥gi∥ cos(ϕi) + λ∗




In order to determine i and i, we solve the following system of equations:


v⊤i gi = ig

⊤
i Vd+1 + igi2

v⊤i Vd+1 = i + ig
⊤
i Vd+1

 gi cos(ϕi + ψ∗
i ) = ig

⊤
i Vd+1 + igi2

cos(ψ∗
i ) = i + ig

⊤
i Vd+1


i = cos(ψ∗

i )  ig
⊤
i Vd+1

∥gi∥ cos(ϕi + ψ∗
i ) = (cos(ψ∗

i ) ig
⊤
i Vd+1)g

⊤
i Vd+1 + i∥gi∥2


i = cos(ψ∗

i )  ig
⊤
i Vd+1

∥gi∥ cos(ϕi + ψ∗
i )  cos(ψ∗

i )g
⊤
i Vd+1 = i(∥gi∥2  (g⊤i Vd+1)

2)
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Using the Cauchy-Schwarz inequality we know that ∥gi∥2 > (g⊤i Vd+1)
2 whenever

Vd+1 and gi are not colinear, thus we can simplify the second equation:




i = cos(ψ∗
i ) ig

⊤
i Vd+1

i =
∥gi∥ cos(ϕi+ψ∗

i )−cos(ψ∗
i )g

⊤
i Vd+1

∥gi∥2−(g⊤i Vd+1)2

(2.23)

Finally, we have completely determined the vectors Vi.

2.2.3 Computational complexity

Using a low-rank transformation, we are able to reduce a large-scale semi-denite
program to a sequence of optimization problems on R. In the previous section,
we showed some properties of those optimization problems which allows us to use
ecient second-order methods such as the Newton method. For our use case, the
update rule for the Newton method is:

λj+1 = λj  [2f(λj)]−1f(λj)

and the rst and second derivative of f are:

f ′(λ) =
sk+dk−1

i=sk

g⊤i Vd+1 + λ

∥gi + λVd+1∥
 (dk  2)

f ′′(λ) =
sk+dk−1

i=sk

∥gi∥2  (g⊤i Vd+1)
2

∥gi + λVd+1∥3

Given that all the vectors we are dealing with have size r, by pre-computing the dot
products with the gi’s, computing the rst derivative requires O(dkr) operations.
For the second derivative, we can pre-compute the numerators ∥gi∥2  (g⊤i Vd+1)

2

and the evaluation of the second derivative is again O(dkr). Overall, one update
step of the Newton method will require only O(dkr) operations, which is also what
a single round of row-by-row updates over the dk rows associated with xk would
require. The BCD updates however benet from the ecient Newton updates. In
practice, we observe that only a few iterations of the Newton method are needed in
our experiments.

2.2.4 Strong duality and optimality

The block optimization problem (2.20) is not necessarily convex, that is, KKT con-
ditions are not sucient to prove optimality. However, for our problem, it is possible
to show that the primal-dual pair (Ψ∗,λ∗) closes the duality gap, yielding optimality.

Theorem 2.2.6. At the optimum, Ψ∗ = (ψ∗
sk
,    ,ψ∗

sk+dk−1) is primal feasible:

sk+dk−1

i=sk

cos(ψ∗
i ) = 2 dk
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Proof. Using the proof of Theorem 2.2.2, we showed that at the optimum we have:

cos(ψ∗
i ) = 

g⊤i Vd+1 + λ∗

∥gi + λ∗Vd+1∥
, i = sk,    , sk + dk  1

The rst order optimality condition for the dual Lagrangian gives us:

h′(λ∗) = 0 = 
sk+dk−1

i=sk


g⊤i Vd+1 + λ∗

∥gi + λ∗Vd+1∥


+ (dk  2),

which directly gives the desired result:

sk+dk−1

i=sk

cos(ψ∗
i ) = 2 dk (2.24)

Using this theorem, we can now state our main result for optimality.

Theorem 2.2.7. The primal-dual pair (Ψ∗,λ∗) is a feasible pair that closes the
duality gap.

Proof. We denote by f(Ψ) :=

sk+dk−1

i=sk

∥gi∥ cos(ϕi+ψi) the primal objective, Theorem

2.2.6 ensures feasibility of Ψ∗ at the optimum. By a simple transformation, we have:

f(Ψ∗) =
sk+dk−1

i=sk

∥gi∥ cos(ϕi + ψ∗
i )

=

sk+dk−1

i=sk

∥gi∥ cos(ϕi + ψ∗
i ) + λ∗




sk+dk−1

i=sk

cos(ψ∗
i ) + dk  2




= h(λ∗)

2.2.5 Descent property

In the last section, we showed that we can derive a relaxation of the MAP/MRF
problem using the following non-convex optimization problem:

min
V ∈R(d+1)×r

⟨R, V V ⊤⟩

s.t ⟨Ui, V V ⊤⟩ = 2 di, ∀i = 1,    , n

∥Vi∥ = 1, ∀i = 1,    , d+ 1

(2.25)

All along the LR-BCD procedure, the last row of the low-rank matrix V is never
updated. We recall that this row corresponds to the extra variable that was added
to the quadratic model for the homogenization of the linear part. If Vd+1 remains
xed, we have the following property:
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Theorem 2.2.8. The block coordinate descent with xed last row Vd+1 is strictly
decreasing.

Before proving this theorem, we need an intermediate result. Once we have
computed the optimal angles ψ′

is we can compute the corresponding V ′
i s. Indeed

since each Vi lies in the plane generated by gi and Vd+1 we can write it as a linear
combination of gi and Vd+1 : Vi = iVd+1 + igi.

Remark At the optimum ψ∗
i = π  arctan


∥gi∥ sin(ϕi)

∥gi∥ cos(ϕi)+λ∗


̸= 0 and so is i.

Lemma 2.2.9. Equality of the coecient ratios.
For each block k  [1, n] corresponding to a WCSP variable, the ratios i

i
, i 

[sk, sk + dk  1] are equal.

Without loss of generality, we will work on the rst block corresponding to the
rst WCSP variable.

First reminder Using the stationarity condition of (2.20), at the optimum the
solution Ψ∗ = (ψ∗

1 ,    ,ψ
∗
d1
) must verify:

∂L
∂ψ∗

i
= ∥gi∥ sin(ϕi + ψ∗

i ) λ sin(ψ∗
i ) = 0, ∀i  [1, d1]

So we have the result that at the optimum, the values λ∗ =
−∥gi∥ sin(ϕi+ψ∗

i )
sin(ψ∗

i )
are the

same for all the variables.

Second reminder ∀i  [1, d1]:




i = cos(ψ∗
i ) ig

⊤
i Vd+1

i =
∥gi∥ cos(ϕi+ψ∗

i )−cos(ψ∗
i )g

⊤
i Vd+1

∥gi∥2−(g⊤i Vd+1)2

Proof of Lemma 2.2.9.
i

i
=

cos(ψ∗
i )

i
 g⊤i Vd+1

=
cos(ψ∗

i )(∥gi∥2  (g⊤i Vd+1)
2)

∥gi∥ cos(ϕi + ψ∗
i ) cos(ψ∗

i )g
⊤
i Vd+1

 g⊤i Vd+1

=
cos(ψ∗

i )∥gi∥2  cos(ψ∗
i )(g

⊤
i Vd+1)

2  g⊤i Vd+1∥gi∥ cos(ϕi + ψ∗
i ) + cos(ψ∗

i )(g
⊤
i Vd+1)

2

∥gi∥ cos(ϕi + ψ∗
i ) cos(ψ∗

i )g
⊤
i Vd+1

=
cos(ψ∗

i )∥gi∥2  g⊤i Vd+1∥gi∥ cos(ϕi + ψ∗
i )

∥gi∥ cos(ϕi + ψ∗
i ) cos(ψ∗

i )g
⊤
i Vd+1



Now let us work with the denominator:

∥gi∥ cos(ϕi + ψ∗
i ) cos(ψ∗

i )g
⊤
i Vd+1 = ∥gi∥ cos(ϕi + ψ∗

i ) cos(ψ∗
i ) cos(ϕi)∥gi∥
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= ∥gi∥(cos(ϕi + ψ∗
i ) cos(ψ∗

i )cos(ϕi))

= ∥gi∥sin(ϕi) sin(ψ
∗
i )

Then we transform the numerator as follows:

cos(ψ∗
i )∥gi∥2  g⊤i Vd+1∥gi∥ cos(ϕi + ψ∗

i ) = cos(ψ∗
i )∥gi∥2  ∥gi∥2 cos(ϕi) cos(ϕi + ψ∗

i )

= ∥gi∥2(cos(ψ∗
i ) cos(ϕi) cos(ϕi + ψ∗

i ))

= ∥gi∥2(cos(ψ∗
i ) cos(ϕi)(cos(ϕi) cos(ψ

∗
i ) sin(ϕi) sin(ψ

∗
i ))

= ∥gi∥2(cos(ψ∗
i ) cos(ϕi)

2 cos(ψ∗
i ) + cos(ϕi) sin(ϕi) sin(ψ

∗
i ))

Then using cos(x)2 = 1 sin(x)2:

= ∥gi∥2(cos(ψ∗
i ) (1 sin(ϕi)

2) cos(ψ∗
i ) + cos(ϕi) sin(ϕi) sin(ψ

∗
i ))

= ∥gi∥2 sin(ϕi)(sin(ϕi) cos(ψ
∗
i ) + cos(ϕi) sin(ψ

∗
i ))

Then using sin(x+ y) = sin(x) cos(y) + cos(x) sin(y):

= ∥gi∥2 sin(ϕi)sin(ϕi + ψ∗
i )

To conclude we have:

i

i
=
∥gi∥2 sin(ϕi) sin(ϕi + ψ∗

i )

∥gi∥ sin(ϕi) sin(ψ∗
i )

=
∥gi∥ sin(ϕi + ψ∗

i )

sin(ψ∗
i )



Which is exactly the Lagrange multiplier which is constant for each variable within
the block.

Proof of Theorem 2.2.8. Let us show that the objective dierence before and after
a BCD update is always positive. For a given row Vi the objective dierence before
and after the update is:

f(Vi) f(V̂i) = g⊤i (Vi  V̂i)

with
V̂i = iVd+1 + igi

the newly updated row. We then have

gi =
1

i
(V̂i  iVd+1)

g⊤i (Vi  V̂i) =
1

i
(V̂i  iVd+1)

⊤(Vi  V̂i)

=
1

i


(V̂i

⊤
Vi  1) i(Vi  V̂i)

⊤Vd+1




The rst term can be simplied as follows:

1

i
(V̂i

⊤
Vi  1) =  1

2i
∥Vi  V̂i∥2
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Moreover:

i =
∥gi∥ cos(ϕi + ψi) cos(ψi)g

⊤
i Vd+1

∥gi∥2  (g⊤i Vd+1)2

Using the Cauchy-Schwartz inequality, we already know that ∥gi∥2(g⊤i Vd+1)
2 > 0.

Next we will rewrite the numerator:

∥gi∥ cos(ϕi + ψi) cos(ψi)g
⊤
i Vd+1 = ∥gi∥(cos(ϕi + ψi) cos(ψi) cos(ϕi))

= ∥gi∥ sin(ϕi) sin(ψi)

Since ϕi ]0,π[ and ψi ]0,π[ the sinus are positive so we can conclude that i < 0.
If we sum up for all the rows within the block:

sk+dk−1

i=sk

1

i
(V̂i

⊤
Vi  1) = 

sk+dk−1

i=sk

1

2i
∥Vi  V̂i∥2 > 0

We proved that the rst term is positive, let us now check the second terms. For a
particular optimization block, we showed that the terms i

i
are constant. We denote

by K this constant term, then if we sum up for all the block:


sk+dk−1

i=sk

i

i
(Vi  V̂i)

⊤Vd+1 = K
sk+dk−1

i=sk

(Vi  V̂i)
⊤Vd+1

= K




sk+dk−1

i=sk

V ⊤
i Vd+1 

sk+dk−1

i=sk

V̂i
⊤
Vd+1


 ,

using primal feasibility of the V ′
i s and V̂i

′
s:

= K (2 dk  (2 dk)) = 0

Thus, the second term is equal to 0 so we proved that

sk+dk−1

i=sk

f(Vi) f(V̂i) > 0

Stopping criteria Using the xed row assumption, we proved that both function
values and low-rank iterates converge towards a unique limit point. For this reason,
we use these two pieces of information to compute the stopping criterion for LR-
BCD. We work with relative stopping criteria so that we are not dependent on
problems that may have dierent weightings. Let  be a given tolerance specied
by the user, LR-BCD stops whenever one of these two conditions is met:

• function criterion:

(f(V k) f(V k+1))(1 + f(V k)) < 
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• Iterate criterion:
∥V k  V k+1∥F (1 + ∥V k∥F ) < 

With V k the low-rank matrix at iteration k. Note that since LR-BCD is decreasing,
f(V k)  f(V k+1) is always positive. The user also have the choice to stop the
method earlier by using the it parameter which controls the maximum number of
iterations.

2.2.6 Producing an integer primal solution

To produce a primal integer solution from the optimal solution of the low-rank re-
laxation, we use a slightly modied version of the Goemans and Williamson round-
ing scheme presented in Section 1.6. Indeed, for LR-LAS and LR-BCD, the inte-
ger solution must satisfy the exactly-one constraint. Let Vr be a normalized vec-
tor sampled from a Gaussian distribution. We assign each variable to the value
xk =


argmaxsk⩽i⩽sk+1

V T
i Vr


 sk. The integer solution obtained is then submit-

ted to a simple greedy search where, for every variable, the best improving change
of state (if any) is applied. This is done on every variable repeatedly until a local
minimum is reached. For LR-BCD and LR-LAS, we repeat this process with several
random vectors and we return the best integer solution found. The total number of
roundings can be controlled by the user with the parameter -nbR.

2.3 Experiments

In this section, we discuss the experimental results of our two methods against
state-of-the-art message passing and LP solvers on a variety of crafted and real-
world instances. We also explore a key parameter for the eciency of both low-rank
methods, namely the rank used for the relaxation.

2.3.1 Description of solvers

We implemented the row-by-row updates with dualized exactly-one constraint (LR-
LAS) as well as the BCD update method (LR-BCD) in C++ with the Eigen3
[Guennebaud et al., 2010] linear algebra library. The code is available online at ht
tps://github.com/ValDurante/LR-BCD. We use rank r = 

√
2(d + 1) by

default for LR-LAS and r = 
√
2(n+ d+ 1) for LR-BCD. This corresponds to the

number of constraints for the two SDP formulations thus satisfying the Barvinok
and Pataki requirement. We also tried variants with xed lower ranks. For LR-
LAS, the penalty coecient ρ is set as the sum of the maximum of all the binary
and unary functions. Thus, it satises the theoretical assumption of the Lasserre
dualization result, but it may be larger than needed, leading to slower convergence.
They are compared with exact LP (local polytope) bounds and message-passing
MAP/MRF algorithms Min-Sum and TRW-S. The LP bounds are computed using
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CPLEX 20.1.0.0. We used Open-GM2 [Kappes et al., 2015], an ecient C++ MIT-
licensed library, in release 3.3.7, available at https://github.com/opengm for
Min-Sum and TRW-S. For Min-Sum we used the following parameters: maximum
number of iterations of 100, minimal message distance of 001, and damping of 08.
For TRW-S: maximum number of iterations of 100, 000, tolerance 10−5 and TABLE
mode. Min-Sum provides only upper bounds.

Overall, we therefore compare ve solvers: LR-LAS and LR-BCD (parameterized
by their rank), LP, Min-Sum and TRW-S. We also considered using ECOS interior
point method available in CVXPY [Agrawal et al., 2018], but preliminary tests
showed that it ran several orders of magnitude slower than the Mixing Method
on small problems with 120 binary variables from the BiqMac library available at
http://biqmac.uni-klu.ac.at/biqmaclib.html.

All experiments were run on a single thread on a server equipped with a Xeon®Gold
6248R CPU@3.00GHz and 1TB of RAM running Debian Linux 4.19.98-1.

2.3.2 Random instances

Following [Park et al., 2019], we rst used random pairwise MAP problems. The
pairwise potentials are sampled uniformly from [0, s] with s = 5. The unary poten-
tials are sampled uniformly from [0, 1] using xed precision numbers with 9 digits
precision. The magnitude of s controls the importance of the pairwise couplings
which are the source of NP-hardness. Empirically, we found that solution time and
quality were insensitive to the value of s except for very low s (where coupling eects
become negligible). We generate random problems varying the number of variables
from 100 to 1000 for the largest instances. All variables have the same number of
states ranging from 3 to 10. All the random problems have complete graphs. For
all gures presented in this section, for each point, the results are averaged over 10
instances. We observed that the standard deviations of the measures were very low
on the 10 generated samples and we therefore do not report it.

2.3.2.1 CPU-time

We present in Figure 2.4 a summary of the CPU-time performance of all solvers
on problems of increasing size (100 to 1000 MRF variables) and increasing number
of states (and therefore increasing size d). TRW-S is clearly the most ecient
algorithm here, often one order of magnitude faster than LR-BCD. LR-LAS instead,
is considerably slower than LR-BCD, often by more than two orders of magnitude.
On instances of 300 MRF variables and more than 3 states (d > 900), it times out.
The CPLEX-based exact local polytope solver is even worse. It times-out on 100

variables instances with 7 states.

2.3.2.2 Bounds

Figure 2.5 shows normalized upper and lower bounds on the same families of in-
stances. Considering upper bounds, message-passing algorithms show slightly infe-
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Figure 2.4: Cpu-time for all solvers on problems of increasing size (100, 300, 500,
and 1000 variables) as a function of the problem size (number of states × number
of variables).

Figure 2.5: Normalized upper and lower bounds for all solvers on problems of in-
creasing size (100, 300, 500, and 1000 variables) as a function of the number of states
(domain size). The best integer primal solution value is taken as a reference.
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rior performance compared to other solvers. The most important dierences appear
in the lower bounds, where LP only slightly improves over TRW-S and where LR-
LAS and LR-BCD really stand out. Thanks to its implicit enforcing of the gangster
constraints, LR-LAS oers slightly improved lower bounds, but this extra tightness
comes at an extreme computational cost. It is interesting to notice that for LR-
BCD, the optimality gap decreases as the ratio of (number of variables)/(number
of states) increases. This means that for a xed number of states, increasing the
number of variables will make the LR-BCD bounds more precise.

2.3.2.3 Very low-rank relaxations

Figure 2.6: Comparison of the best integer solution as a function of time for TRW-S
and LR-BCD (left) and TRW-S and LR-LAS (right) on a 100 variables instance
with ve states. Note the dierent time scales.

One interesting feature of Burer-Monteiro style methods is the ability to con-
trol their eciency through the rank r. As far as integer solutions are concerned,
it is perfectly ne to use low or very low ranks, below the theoretical limits of



2(d+ 1) and 


2(n+ d+ 1). Indeed, rounding will still provide a feasible in-
teger solution. To compare the ability of TRW-S, LR-LAS and LR-BCD to quickly
provide an interesting integer solution, we ran all three algorithms with increasing
time-outs and measured the cost of the integer solution produced as a function of
time. Because LR-LAS times-out on all but the smallest instances, we tested this on
a 100 variables, 5 states instance (we observed very consistent behavior among all
samples from a given family of instances). This is illustrated in Figure 2.6. TRW-S
is extremely fast and immediately produces its best possible integer solution. Sur-
prisingly, LR-LAS and LR-BCD are able to produce a better integer solution, even
from the rst iteration. This integer solution also improves in quality as the number
of iterations grows.

The eect of strong rank reduction is dierent between LR-LAS and LR-BCD.
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For best performance, LR-BCD is best used with a large rank: it reaches its best
solution after less than 25 iterations (0.2 seconds). Instead, LR-LAS may benet
from an intermediate rank, where it produces a comparable solution well before
convergence. With the highest rank, the quality of the integer solutions produced
by LR-LAS improves very slowly. This could be explained by the fact that the
primal relaxed solutions that LR-LAS computes do not exactly satisfy the exactly-
one constraints of each MRF variable until the very end.

2.3.2.4 Empirical convergence results

Figure 2.7: Relative error with a high-quality solution vs. cpu-time (left) and num-
ber of iterations (whole matrix update, right) using dierent ranks for the relaxation.
The experiment was made on a 500 variables, three states instance (d = 1500) and
is representative of the behavior on all instances.

In this section, we empirically study the convergence of LR-BCD and the eect of
the rank r on the value of the optimized criteria with increasing cpu-time and number
of iterations. For an instance with 500 variables and three states, we computed a
tight solution of (2.16) using Mosek [ApS, 2022]. Figure 2.7 shows the relative error
of the solutions produced by LR-BCD compared to Mosek solution as a function of
cpu-time. We observe that, even when the rank is high, LR-BCD converges very
quickly to solutions with very low tolerance, a tolerance of 10−3 being reached in
less than 05 seconds. As the rank decreases, the convergence to a certain precision
accelerates without any loss in precision, until a very low rank is reached where the
quality of the solution cannot be pushed to tight tolerance. On the right, we also plot
the relative error against the number of BCD iterations. Each iteration corresponds
to an entire update of the low-rank matrix V . As the rank reduces, the number of
iterations grows to the point where faster iterations are almost compensated by the
increased number of iterations. In comparison, the industrial solver Mosek, with
default settings, took 111 seconds to solve this relatively small instance.

Figure 2.8 shows the relative error of Mosek and LR-BCD compared to Mosek so-
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lution as a function of the time. Mosek was run with default settings and nb_threads =

10 threads. For LR-BCD we set the rank to be the quotient of 


2(n+ d+ 1)2.
Since Mosek uses multi-threading, we used the wallclock-time for Mosek and the
cpu-time for LR-BCD. As a comparison, LR-BCD achieves a speed-up of ∼ 102 to
reach a relative error of 10−5. At the end, the total cpu-time was 27.57 seconds for
LR-BCD and 2448.79 seconds for Mosek.

Figure 2.8: Relative error with a high-quality solution vs. time for LR-BCD and
Mosek on a 1000 variables, three states instance (d = 3000).

2.3.2.5 Relaxing the LR-LAS penalty parameter

Let us recall the original 0/1 constrained quadratic reformulation of the MAP prob-
lem on pairwise discrete graphical models:

min
b∈0,1d

b⊤Qb+ c⊤b

s.t Ab = 1n

and its penalized -1/1 counterpart using the Lasserre transformation:

min
y∈−1,1d

y⊤Ry + y⊤e+ (2ρ+ 1)∥Fy  u∥2

As soon as ρ ⩾ maxy⊤Ry+y⊤e : y  1, 1d, the solution of the two problems
are the same [Lasserre, 2016]. In the original paper, the author suggests computing
the scalars:

r1e,R = mine⊤y + ⟨X,R⟩ :

1 y⊤

y X


⪰ 0; Xii = 1, i = 1,    , d
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r2e,R = maxe⊤y + ⟨X,R⟩ :

1 y⊤

y X


⪰ 0; Xii = 1, i = 1,    , d

and set
ρ := max

i=1,2
rie,R

which clearly satises the constraint above. However, we experimentally found
that introducing coecients with a relatively high magnitude compared to other
coecients in the cost matrix can drastically reduce the convergence speed of the
mixing method. To obtain better eciency and scalability with LR-LAS, one can
try dierent settings for the penalty parameter ρ. We tried dierent versions of
LR-LAS by incrementally decreasing the penalty parameter below the theoretical
bound introduced above. To ensure that the modied version is still a relaxation of
the original problem, we use the following proposition [Gilbert, 2021]:

Proposition 2.3.1. Penalization monotony
Let Xs be a non-empty set, f and p : Xs → R two functions, r  R and Θr := f+rp.
If r1 < r2 are two reals and if x̄ri  argminΘri(x) : x  Xs (i = 1, 2), then:

1. p(x̄r1) ⩾ p(x̄r2),

2. f(x̄r1) ⩽ f(x̄r2) if r1 ⩾ 0,

3. Θ(x̄r1) ⩽ Θ(x̄r2) if p(x̄r2) ⩾ 0.

The last item gives the desired property since the penalty function is the squared
2-norm in Rd which is always positive. However, decreasing the penalty parameter
ρ also makes the relaxation less tight. In Figure 2.9 we show the eect of ρ on the
running time and solution quality of LR-LAS. Each data point corresponds to the
average over 10 runs of LR-LAS with a xed penalty parameter. The results are
compared with the outputs of LR-BCD which do not depend on ρ.

We observe that, even by decreasing the penalty parameter, LR-LAS is domi-
nated by LR-BCD in terms of cpu performance. The solution quality of LR-LAS
remains better than the one of LR-BCD until a certain value of ρ after which it
quickly deteriorates.

2.3.3 Sparse problems

Until this point, all the experiments were run on dense MAP/MRF instances, that
is, the graph corresponding to the GM M is complete. We also decided to explore
sparse problems for which message-passing algorithms are usually the methods of
choice. We generated Erdős–Rényi graphs with various probability parameters p.
Each edge in the graph, or equivalently binary potential, is included with proba-
bility p, independently from every other edge. As in the previous experiments, the
corresponding binary potentials are sampled uniformly from [0, s] with s = 5. In
Figure 2.10 we show the gap between the values of LR-BCD and LR-LAS primal so-
lutions and the values of the integer solutions given by the Goemans and Williamson
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Figure 2.9: Cpu-time vs penalty parameter (left) and solution value vs penalty pa-
rameter (right). The experiment was made on a 100 variables, three states instance
(d = 300).

heuristic. One can see the clear limitation of LR-BCD on these instances. As the
probability p decreases and the number of states increases, the quality of the LR-
BCD solutions becomes worse. As a reminder, for the MAP/MRF problem with
positive costs, we can always bound the optimal value with the trivial lower bound
lb = 0. At a certain point, the relaxation solution yields negative values, making it
useless for a branch and bound scheme.

2.3.4 Real world problems

Genome assembly We applied the same algorithms to a problem occurring in
the context of genome sequencing and more precisely at the genome assembly step.
In this case study, biologists are interested in sequencing the DNA of a sh that
has undergone genomic duplications. Under the pressure of evolutive forces and
breeding, some animal and plant species can undergo whole genome duplication
(WGD), an event where the genome is duplicated in two identical copies. As time
passes, neutral and benecial mutations accumulate in these copies, which can slowly
drift away.

For genome sequencing, DNA is extracted and cut into pieces that are read at
their extremities, resulting in a set of short DNA sequences called reads. Because
DNA sequencing is generally not totally reliable, standard methods repeat this pro-
cess to get a very large set of reads, for a total amount of data that on average covers
the genome several times. Strongly overlapping reads are then merged into larger
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Figure 2.10: Optimality gap vs Domain size on ER-instances with varying proba-
bility parameter p. The experiments were made on instances with 100 variables and
domain sizes varying from 3 to 10.

regions called contigs. These contigs are in turn used to reconstruct the genome.
For our problem, we work on a sh species that has undergone two WGD in the
course of its evolution. Each duplication creates two copies which we denote as D1

and D2 respectively. Copies create “false” overlaps between regions which hinder
the assembly process, leading to the creation of chimeric assemblies where a region
from one copy is merged with a region from another copy. This is especially true for
recent whole genome duplications, which have not yet drifted because of evolution.

Our objective is to identify the copies resulting from a duplication in a given
set of contigs. Fortunately, contigs contain information that can help us. Indeed,
the genome contains specic regions (gene encoding regions) which should be still
visible in both copies. These regions are known and can be identied in each contig.
If two given contigs share a sucient number of them, this is a strong indication
that these two regions come from dierent regions. We can now model our problem:

• We consider a set C of n contigs.

• Each contig i  C has a set Ti of indices corresponding to the identied regions.

• For each pair of contigs (i, j)  C2 we associate a weight wij = Ti  Tj .

If we consider a pair of contigs (i, j)  C2, if Ti  Tj  is large, this indicates that
these contigs must belong to dierent copies. We can now introduce the weighted
graph G = ⟨X,E⟩ with X = C, E = (i, j)  (i, j)  C2, wij ̸= 0 and each
edge (i, j)  E has weight wij . Reconstructing the two copies resulting from one
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duplication can be modeled by a MaxCut problem instance on G, where each side
of the cut corresponds to one of the two copies. The solution to this problem can
be approximated using the basic MaxCut relaxation.

In practice, dealing with a single duplication in the context of a genome that
has undergone two duplications is already very satisfactory, as the most recent
duplication is the one that raises the most issues because the two induced copies are
highly similar. If needed, the problem of directly dealing with two duplications can
be modeled using a graphical model M = ⟨X,Φ⟩. X is a set of n discrete variables
corresponding to the n contigs. Each variable has domain size di = 4 (the number
of copies). Using the notations dened above, for each pair of contigs (i, j)  C2

such that wij ̸= 0 we introduce a binary potential:

θij 1 2 3 4

1 wij 0 0 0

2 0 wij 0 0

3 0 0 wij 0

4 0 0 0 wij

Then our problem reduces naturally to the MAP problem on M. Our sh
instance has 8, 574 variables having 4 states (34, 296 Boolean variables) and 80, 763

binary potentials. It has been made available in the Cost Function Library1, in
the real/fish category. On this instance,TRW-S provides a lower bound of 0 and
an integer solution with cost 127, 878 in 0069 seconds. The LP bound is also 0

with a running time of 8004 seconds. Min-Sum provides an integer solution of cost
479, 924 in 0270 seconds (and seems stuck there, with no improvement with more
iterations). LR-BCD produces a bound of 102, 900 and an integer solution of cost
122, 694, reducing the optimality gap from 100% (TRW-S) to 16.1% (LR-BCD).
LR-BCD took 686 minutes to process this instance, while LR-LAS did not nish
after several hours.

Computational protein design Proteins are one of the key components of all
living organisms. Computational protein design (CPD) aims to conceive new pro-
teins with properties that can be useful for a wide range of applications. For the past
30 years, CPD has been a hot topic at the interface between biology and computer
science. The function of a protein is tightly related to its 3D structure. Formally, a
protein is a sequence of smaller blocks called amino acids which folds into a certain
3D shape. Recently, Deep learning methods were successfully applied to the prob-
lem of predicting this nal fold [Jumper et al., 2021]. Given a sequence of amino
acids, the deep neural network tries to estimate the 3D conformation of the protein.

A team in our lab is instead interested in the inverse problem. They try to nd
sequences of amino acids (or residues) that fold into a certain conformation. To do
so, Marianne Defresne, a PhD student at INRAE under the supervision of Thomas

1https://forgemia.inra.fr/thomas.schiex/cost-function-library/-/tree/master/real
/fish
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Schiex and Sophie Barbe, explored a method that combines automated reasoning
(based on discrete optimization) and deep learning. CPD can be cast into a discrete
energy minimization problem. If we only consider physics interactions between pairs
of amino acids, this problem can in turn be modeled as a MAP problem on a pairwise
GM.

The idea proposed by Marianne is to rst train a neural network on existing
protein structures to predict the GM mentioned above. The joint function dened
by the GM is called Ee [Defresne et al., 2023]. Once Ee is learned, it is used
for protein design. In other words, Ee replaces traditional energy functions for
design [Pavlovicz et al., 2020]. The optimization of Ee can be modeled as follows:

• We consider a protein backbone with a set R of n residues.

• Each residue i  R denes a variable with a domain containing the possible
20 canonical amino acids.

• For each pair (i, j) of residues in the backbone, we have a binary potential θij
learned by the neural net. Every potential has a size of 20× 20.

Then the minimization of Ee naturally reduces to a MAP problem on the pairwise
GM M = ⟨X,Φ⟩, with X = R and Φ = θij  (i, j)  [n]2, i < j. In their work,
Defresne et al. rst minimized Ee with the exact solver toulbar2 [Hurley et al.,
2016]. However, for large proteins (n > 100), solving the instance optimally becomes
a hard task for toulbar2. Therefore, they started to use approximate methods. The
rst idea is to call toulbar2 with a limited number of backtracks. For example, the
solver is stopped after reaching the rst leaf node. A second idea is to use our low-
rank solver LR-BCD with multiple calls to the rounding and greedy local search.
The best solution returned is kept. For the largest proteins, LR-BCD is run with a
limited number of iterations.

To assess the quality of the overall protein design method, the sequence returned
by toulbar2 or LR-BCD is compared to the native sequence. The comparison is made
using the Native Sequence Recovery rate (NSR), i.e., the percentage of similarity
between the two sequences. Note that a designed sequence with an NSR between
30 and 40% is already considered as satisfactory. Figure 2.11 shows the comparison
of the two methods on proteins with less than n = 150 residues.

One can see that the results returned by toulbar2 and LR-BCD are similar.
However, LR-BCD is much faster even when toulbar2 is set to use 0 backtrack as
shown in Figure 2.12. As a result, LR-BCD was chosen as the default solver for
in silico validation. The authors used it to optimize proteins with up to n = 1500

residues (d = 1500× 20 = 30000).
We thank Marianne Defresne and her co-authors for sharing their results.

2.4 Discussion

In this section, we discuss open questions and further improvements regarding our
low-rank solver.
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Figure 2.11: Similarity to the native sequence (NSR) of sequences designed with
toulbar2 or LR-BCD.

Figure 2.12: Comparison between LR-BCD and toulbar2 with no backtrack. Left:
inference time on each instance. Right: NSR on each instance.

2.4.1 Update rule for the cost matrix

The starting point of our study is the resolution of a combinatorial problem. A usual
method to solve such a problem is to use a branch and bound algorithm introduced
in subsection 1.3.2. Now we discuss how to eciently reformulate the problem after
a branching decision. Let us consider a pairwise graphical model M = ⟨X,Φ⟩. In
the following, we distinguish between two cases:

• The penalized formulation, corresponding to the LR-LAS solver.

• The constrained formulation, corresponding to the LR-BCD solver.

These two formulations have dierent cost matrices, which must be taken into ac-
count when reformulating the problem. Let us consider a variable xi  X and a
value a  Di, branching on variable xi and value a creates two new subproblems:

1. A subproblem where xi is assigned to value a  Di.

2. A subproblem where value a  Di is forbidden or removed from the domain.
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Constrained formulation In this case, we work with the matrixR  R(d+1)×(d+1)

introduced in the formulation (2.16). We consider that the branching decision is
xi = a or value a is removed from the domain Di. We denote by j the row/column
index corresponding to variable xi and value a in the objective cost matrix R. We
denote by Rj and Cj the j-th row and column of R and r, c  Rd+1 the last row and
column of R.

1. Remove value a from Di: if we remove value a from the domain of xi then the
matrix R is updated as follows:

r ← r  2Rj

c← c 2Cj

R← R \ Rj  Cj  Rd,

where R\Rj Cj corresponds to matrix R with row and column j removed.
The exactly-one constraint corresponding to variable xi becomes:

⟨Ui, X⟩ = 2 (di  1) = 3 di

2. Assign xi = a: the matrix R is updated as follows:

r ← r  2Rsi  · · · 2Rj−1 Rj  2Rj+1  · · · 2Rsi+di−1

c← c 2Csi  · · · 2Cj−1  Cj  2Cj+1  · · · 2Csi+di−1

R← R \
 si+di−1

l=si

Rl 
si+di−1

l=si

Cl


 R(d+1−di)×(d+1−di)

In this case the exactly-one constraint corresponding to variable xi can be
removed.

Note that when we remove a value from a domain, the size of the problem is reduced
by one. It is reduced by di if we assign variable xi.

Penalized formulation In this case we work with the penalized objective matrix:

B :=




(2ρ+ 1)F⊤F +R 1
2(e

⊤  2(2ρ+ 1)u⊤F )⊤

1
2(e

⊤  2(2ρ+ 1)u⊤F ) (2ρ+ 1)u⊤u


 

The update steps for matrix R are the same as previously. However, since we
use a penalization of the exactly-one constraint, new terms appear in the objective
matrix. We recall that F  Rn×(d+1) and u  Rn are the left and right-hand side
of the exactly-one constraint. Thus, when we remove a value from a domain, the
matrix F and the vector u need to be updated.
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1. Remove value a from Di: for matrix F it is straightforward to see that remov-
ing value a is equivalent to removing column j of F . For the right-hand side
u,

ui ←
3 di

2


At the end, we have the update:

(F⊤u)i ← (F⊤u)i +
1

4

u⊤u← u⊤u+
1

4
(5 2di)

2. Assign xi = a: in this case, row i of F and entry i of u are removed and the
bottom right term of B is updated as follows:

u⊤u← u⊤u 1

4
(2 di)

2

2.4.2 On proving convergence of LR-BCD

Theoretically proving the global convergence of LR-BCD to the solution of (2.16)
is still an open question. We saw that in practice it can quickly converge to a
solution with a small relative error compared to interior point solutions. However, for
completeness, it would be interesting to show the global convergence of the method,
or conversely, nd pathological instances for which LR-BCD fails to converge. In
this section, we give some hints towards a convergence proof.

Convergence of the iterates A rst step to show convergence of LR-BCD is to
show convergence of the sequence of iterates V ii∈N generated by the algorithm.
In this regard, we introduce a lemma that allows us to show the convergence of the
sequence of function values.

Lemma 2.4.1. Convergence of the sequence f(V )ii∈N. Let us consider the low-
rank relaxation introduced previously:

min
V ∈R(d+1)×r

f(V ) := ⟨R, V V ⊤⟩

s.t ⟨Ui, V V ⊤⟩ = 2 di, ∀i = 1,    , n

∥Vi∥ = 1, ∀i = 1,    , d+ 1

(2.26)

Proof. Due to the norm constraint, it is straightforward to show that the constraint
set of (2.26) is a compact set of R(d+1)×r. Since f is continuous on a compact set it is
bounded. We showed in Theorem 2.2.8 that the sequence f(V )ii∈N generated by
LR-BCD is decreasing. Since it is decreasing and bounded, the sequence converges.
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In the proof of Theorem 2.2.8 we showed that the objective dierence before and
after an update of a row Vi is equal to

f(Vi) f(V̂i) = 
1

2i
∥Vi  V̂i∥2

with i < 0. Summing up the dierences from 1 to d, an overall update gives

f(V ) f(V̂ ) =

d

i=1

 1

2i
∥Vi  V̂i∥2

Finally, lemma 2.4.1 ensures convergence of f(V )ii∈N. Due to the compactness
of the feasible set (2.26), the sequence of iterates V ii∈N has at least one cluster
point which is a xed point for the mapping we present below.

LR-BCD mapping A second step to show convergence of LR-BCD is to write
the low-rank matrix update as a corresponding matrix mapping. We denote by

M : R(d+1)×r → R(d+1)×r

the mapping of LR-BCD, i.e., V̂ = M(V ). Since LR-BCD converges to a unique
limit point V̄ , it must be a xed point for the mapping V̄ = M(V̄ ). We now
write the mapping in matrix form. Using Theorem 2.2.1, we know that there exist
i,i  R such that V̂i = iVd+1 + igi with

gi =


j<sk

Rij V̂j +


j⩾sk+1

RijVj 

We can write the update on the whole matrix as follows:

V̂ = D


LV̂ + L⊤V


+DKV (2.27)

With:

• L⊤  R(d+1)×(d+1) the upper triangular part of the objective matrix R.

• L  R(d+1)×(d+1) the lower triangular part of R.

• D  R(d+1)×(d+1) the diagonal matrix with entries (i)i.

• D  R(d+1)×(d+1) the diagonal matrix with entries (i)i.

• K =



0    0 1
... 0

...
...

0    0 1


  R(d+1)×(d+1).
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Note that we x d+1 = 0 and d+1 = 1 since Vd+1 = Vd+1 + 0gd+1. The idea is
now to regroup the updated terms:

V̂ = DLV̂ +DL
⊤V +DKV

(Id+1 DL)V̂ = (DL
⊤ +DK)V

Since L is lower triangular, matrix Id+1 DL is nonsingular and we can write the
mapping as follows:

M(V ) = V̂ = (Id+1 DL)
−1(DL

⊤ +DK)V (2.28)

We can now characterize the xed point of the mapping (2.28):

M(V̄ ) = V̄ ⇐⇒ (D(L+ L⊤) +DK  Id+1)V̂ = 0,

or equivalently:
(DR+DK  Id+1)V̄ = 0 (2.29)

Let us consider the Moore-Penrose inverse of the matrix D :

D+
 =




1
1

. . .
1

d+1

0




,

we can write the last equation as:

(D+
 DR+D+

 DK D+
 )V̄ = 0 (2.30)

Finally, we hope that this characterization will help us to further analyze the con-
vergence properties of LR-BCD. In particular, it would be interesting to see if these
points correspond to rst-order critical points.

2.4.3 Strengthening the LR-BCD formulation

Along the experiments, we realized that the LR-BCD formulation was loose on
certain kind of instances, especially on the sparse problems. As we already seen for
LR-BCD, extending coordinate descent to general constraints is not straightforward.
We were able to include the exactly-one constraints, but it’s not clear whether it is
possible to do the same with other types of constraints. Let us consider a pairwise

GM M = ⟨X,Φ⟩ with X = n variables and d =

n

i=1

di. We recall that LR-BCD

works on the following SDP relaxation:

min
X∈R(d+1)×(d+1)

⟨R,X⟩

s.t ⟨Ui, X⟩ = 2 di, ∀i = 1,    , n

diag(X) = 1d+1

X ⪰ 0

(2.31)



90 Chapter 2. Coordinate vs block coordinate descent methods

On some Erdős–Rényi instances, we saw that the solution of (2.31) was negative.
To overcome this issue, we can introduce a new set of constraints that we call the
positivity constraints. These constraints are presented in detail later in the Subsec-
tion 3.1. Basically it means that for any pair of indices (k, l)  [d]2 corresponding
to a non-zero binary cost in the objective matrix R, the variable X must enforce:

Xkl +Xkd+1 +Xd+1l ⩾ 1 (2.32)

These constraints are also referred to as triangular inequalities and will be later used
in Chapter 4.

At this point, our idea is to nd a method to strengthen the LR-BCD formula-
tion while keeping the eciency and scalability of LR-BCD. To do so, we thought
about partial Lagrangian methods where additional constraints can be dualized. We
denote by C the constraint set of (2.31) and A : Sd+1 → Rm the linear operator
for the constraints (2.32). We would like to use LR-BCD to solve the strengthened
relaxation:

min
X∈R(d+1)×(d+1)

⟨R,X⟩

s.t ⟨Ui, X⟩ = 2 di, ∀i = 1,    , n

A(X) ⩽ 1m

diag(X) = 1d+1

X ⪰ 0

(2.33)

We now introduce the partial Lagrangian where we only dualize the positivity
constraints:

L(X,λ) = ⟨R,X⟩+ λ⊤(A(X) 1m), (2.34)

with λ  Rm
+ . Let p∗ be the optimal value of the primal problem (2.33). By

weak duality, we always have that

p∗ ⩾ max
λ⩾0

min
X∈C

λ⊤1m + ⟨R +A∗(λ), X⟩

= max
λ⩾0

λ⊤1m +min
X∈C

⟨R +A∗(λ), X⟩

If strong duality holds the inequality is an equality. Let

f(λ) := λ⊤1m +min
X∈C

⟨R +A∗(λ), X⟩

The goal is to maximize f with regard to the variable λ  Rm
+ . To do so, since

f is concave but nonsmooth, we can use nonsmooth optimization methods like
subgradient methods or the bundle method. An evaluation of the function and a
subgradient at a certain point λ  Rm

+ are given by

f(λ) = λ⊤1m + ⟨R +A∗(λ), X∗⟩
∂f(λ) = 1m +A(X∗)

(2.35)
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With
X∗ = argmin

X
⟨R +A∗(λ), X⟩, s.t X  C (2.36)

We can then solve the minimization problem using LR-BCD and the maximization
problem using the bundle method. The bundle method, used in combination with
a low-rank solver, is discussed later in Chapter 4.
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In the last chapter, we introduced two dedicated methods to solve two dierent
relaxations of the MAP problem on discrete graphical models. We have seen that
for certain kind of instances, the relaxation solved by LR-BCD can be loose. Some-
times, the solution of the SDP relaxation has a negative value, which is of no use
since we know that the optimal value of the MAP problem is always non-negative.
In this chapter, we overcome this issue by introducing new constraints for our SDP
relaxation. An idea to obtain a tighter relaxation is to better approximate the fea-
sible set of the MAP problem. Adding new constraints to our formulation comes
at a certain cost, in this chapter we have chosen to trade eciency for tightness of
the bounds. Since it is unclear whether we can generalize LR-BCD to handle other
constraints than the exactly-one constraint, we decided to explore other methods to
solve the SDP relaxation. Since we are now introducing a potentially large number
of constraints to represent our feasible set, interior point methods are computation-
ally too expensive for the relaxation we are considering. Instead, we focused on
rst-order methods, in particular the Alternating Direction Method of Multipliers
(ADMM). In general, these methods can take many iterations to converge to the
exact optimum. However, they are very eective at returning good approximate so-
lutions in a relatively short time compared to interior point methods. This chapter
is organized in 4 parts:

• A better representation of the feasible set 3.1: we present the new constraints
that we have decided to add to our relaxation. These constraints enjoy some
properties that are useful for the resolution with ADMM.

• Resolution with ADMM 3.2: we solve the new SDP relaxation of the MAP
problem with a variant of ADMM.

• Global constraints 3.3: we discuss the addition of global constraints, which
may be interesting for modeling certain problems.

• Results 3.4: we compare ADMM with LR-LAS and LR-BCD on a set of
crafted and real-world problems. For some of the instances we also include a
comparison with the exact solver toulbar2. We also discuss the eciency of
iterative methods for computing the projection onto the semidenite cone.

3.1 A better representation of the feasible set

Let us consider a pairwise GM M = ⟨X,Φ⟩ with X = n discrete variables. Each

discrete variable xi  X has domain size di. We note d =

n

i=1

di the total number

of values. Let b  0, 1d be the stacked vector which represents the 1-hot or direct
encoding of the variables, b⊤ = [b⊤1    b⊤i    b⊤n ], and s1 = 1, si = si−1 + di−1, i =

2,    , n the indices of the domains in the stacked vector. To avoid any confusion
with the variable indices, we use a superscript to denote the entry j of the vector
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bi : bji . Using the results of Subsection 1.5.2, we have seen that the MAP problem
on M can be cast as the following constrained binary quadratic problem:

min
b∈0,1d

b⊤Qb+ c⊤b

s.t Ab = 1n,
(3.1)

with Q and c the matrix and vector representations of the binary and unary po-
tentials. We recall that the linear constraint Ab = 1n encodes the exactly-one
constraints for each discrete variable. For LR-BCD and LR-LAS we used a change
of variables to transform (3.1) into an equivalent quadratic problem in 1, 1 vari-
ables. For LR-LAS this was convenient because we could reduce it to a pure Max-
Cut problem. For LR-BCD we were able to handle the resulting diagonal con-
straint eciently. This time we focus on the 0, 1 formulation. To derive the
basic SDP relaxation of (3.1), we homogenize the problem with the extended vec-
tor y⊤ = [b⊤1]  0, 1d+1. For the exactly-one constraints we use the symmetric
matrices

Ui =


0d×d Fi

F⊤
i 0


 R(d+1)×(d+1), i = 1,    , n,

with Fi  Rd, 2F⊤
i = [0⊤d1 · · · 0⊤di−1

1⊤di 0
⊤
di+1

· · · 0⊤dn ]. Let

B =


Q 1

2c
1
2c

⊤ 0


,

the constrained binary quadratic problem is equivalent to:

min
y∈0,1d+1

y⊤By

s.t y⊤Uiy = 1, i = 1,    , n
(3.2)

Using the trace property, we reformulate the problem as:

min
y∈0,1d+1

Tr(Byy⊤)

s.t Tr(Uiyy
⊤) = 1, i = 1,    , n,

(3.3)

We now introduce the rank one positive semidenite matrix

Y = yy⊤ =


bb⊤ b

b⊤ 1


,

by dropping the rank one constraint we obtain the semidenite relaxation:

min ⟨B, Y ⟩
s.t ⟨Ui, Y ⟩ = 1, i = 1,    , n

Y ⪰ 0

(3.4)

This relaxation equivalent to the ones solved by LR-LAS and LR-BCD.
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Diagonal constraints From the equality Y = yy⊤ =


bb⊤ b

b⊤ 1


, we can directly

add a new set of constraints. Indeed, for (i, j)  [d]2, (bb⊤)ij = bibj . Since the bi
′
s

are 0, 1 variables, bi2 = bi. Thus for the diagonal entries of bb⊤, we have:

(bb⊤)ii = bi
2
= bi, i = 1,    , d

We can now introduce the corresponding symmetric constraint matrices:

Di =


Eii 1

2ei
1

2e
⊤
i 0


 R(d+1)×(d+1)

Matrix Y is now constrained by this new set of diagonal constraints:

⟨Di, Y ⟩ = 0, i = 1,    , d (3.5)

Due to homogenization, the bottom right entry of matrix Y is also constrained to be
equal to 1, Yd+1d+1 = 1. These constraints are equivalent to the diagonal constraints
in the 1, 1 formulation.

Gangster constraints Because of the combinatorial structure of our problem, we
can enforce some entries of the matrix Y to be equal to 0. Without loss of generality,
let us consider the 1-hot or direct encoding of the rst variable b1  0, 1d1 . Because
of the exactly-one constraint, only one entry of the vector b1 must be equal to 0.
This means that

bi1 × bj1 = 0, i ̸= j, (i, j)  [d1]
2,

since one of the two terms necessarily equals 0. All o-diagonal entries of the matrix
b1b

⊤
1  Rd1×d1 must be equal to 0. This result can be extended to all variables and

thus, to all diagonal blocks of the matrix bb⊤  Rd×d.

bb⊤ =






. . . 0

0
. . .




. . . 

. . . 0

0
. . .







(3.6)

These constraints are known as gangster constraints and have been studied for many
SDP relaxations of combinatorial problems [Zhao et al., 1998, Wolkowicz and Zhao,
1999]. We now dene the index set:

J :=

n

i=1


(i, j)  [si, si + di  1]2, i ̸= j


, (3.7)
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and the corresponding gangster operator:

GJ : Sd+1 → Sd+1

Y → (GJ (Y ))ij :=


Yij if (i, j) or (j, i)  J
0 otherwise

(3.8)

This operator is used to tighten our original relaxation (3.4).

Positivity constraint The joint function dened by the graphical model M is
always non-negative, i.e., it can always be bounded below with the trivial lower
bound lb = 0. To be informative, it is important that the solution of our SDP relax-
ation remains non-negative. To ensure this property, we can constrain some entries

of the matrix Y to be non-negative. Let Y = yy⊤ =


bb⊤ b

b⊤ 1


, for any binary po-

tential, θij  Φ, θi(xi, xj) ⩾ 0. Let Qij  Rdi×dj be the matrix representation of the
binary potential θij , bi  Rdi and bj  Rdj the 1-hot encoding of variables xi and xj
respectively. Then it must hold that b⊤i Qijbj ⩾ 0 or equivalently, Tr(Qijbjb

⊤
i ) ⩾ 0.

Then we can enforce the block bjb
⊤
i  Rdi×dj to be non-negative and we can extend

this result for all the following blocks:

bjb
⊤
i ⩾ 0, (i, j)  [n]2, θij  Φ (3.9)

Note that blocks for which θij ̸ Φ do not need to ensure this property, in fact they
do not appear in the objective function since the corresponding entries in B are
equal to 0. Now let ci  Rdi be the vector representation of the unary potential
θi  Φ, it must also hold that c⊤i bi ⩾ 0. However, we do not need to ensure that
bi ⩾ 0 since it is already implicitly satised by the diagonal constraints (3.1) and
the positive semideniteness of Y :

Y ⪰ 0 =⇒ Yii = Yi(d+1) = Y(d+1)i ⩾ 0

Now, if we gather all these constraints, we have the following SDP relaxation for
the MAP problem:

min ⟨B, Y ⟩
s.t ⟨Ui, Y ⟩ = 1, i = 1,    , n

⟨Di, Y ⟩ = 0, i = 1,    , d

GJ (Y ) = 0

Y[ij] ⩾ 0, θij  Φ

Y(d+1)(d+1) = 1

Y ⪰ 0,

(3.10)

where Y[ij] is the block matrix corresponding to the sub-matrix bib
⊤
j . These con-

straints can be extended to 1, 1 variables for the LR-BCD formulation (2.16).
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Indeed, let us consider the change of variable for the Boolean vector x = 2b  1d.
For (i, j)  [n]2, θij  Φ:

bib
⊤
j ⩾ 0 ⇐⇒ 1

4
(xi + 1di)(xj + 1dj )

⊤ ⩾ 0

xix
⊤
j + xi1

⊤
dj

+ 1dix
⊤
j ⩾ 1di1⊤dj 

If we consider the matrix variable for the LR-BCD formulation X =


xx⊤ x

x⊤ 1


, it

means that for any pair of indices (k, l)  [d]2 corresponding to a non-zero binary
cost in the objective matrix we have

Xkl +Xk(d+1) +X(d+1)l ⩾ 1 (3.11)

Example 9. Tightness of the bound on a small pairwise graphical model. In this
example we discuss the relevance of the dierent constraints on a small MAP in-
stance from the Cost Function Library1. We used the queens-5-5-4 instance from the
crafted/coloring benchmark. This instance has 100 variables with domain size 4

and Φ = 185 potentials. The SDP relaxations with the dierent constraint sets
were solved using Mosek. The optimal value for this instance is p∗ = 12. For the
basic SDP relaxation, we include the exactly-one, the diagonal and the bottom right
constraints.

Optimal value Basic Gangster Positivity

5.44 ✓

8.12 ✓ ✓ ✓

Table 3.1: Optimal value of the SDP relaxation for dierent set of constraints.

In this section, we have introduced new valid constraints to tighten up our
SDP relaxation of the MAP problem on pairwise GM. These constraints have an
important property, apart from the diagonal and the exactly-one constraints, they
do not apply to the same entries of the matrix Y . This is an important feature
for the eciency of the SDP method we have chosen, as the projections can be
performed simultaneously.

3.2 Resolution with ADMM

We remind the reader that a brief introduction to ADMM in the context of SDPs was
presented in Subsection 1.5.5. Unlike interior point methods, rst-order methods are
usually better at taking into account the structural properties of the problem [Wen
et al., 2010]. Our SDP relaxation (3.10) has the additional constraint that some
entries of the matrix Y must be non-negative. These SDPs are often referred to as
Doubly Non-Negative programs (DNN) [Cerulli et al., 2021]. First, we tried to nd
an ecient method to solve these problems.

1https://forgemia.inra.fr/thomas.schiex/cost-function-library
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3.2.1 Primal ADMM

During my one-month stay at Klagenfurt, the optimization team suggested the
ADMMmethod presented in [de Meijer et al., 2023]. We like to call it primal ADMM
because it splits the primal variable and the augmented Lagrangian is optimized with
respect to the block of primal variables. We decided to use this method to solve
the relaxation (3.10). We denote by C the constraint set of (3.10) without the cone
constraint. We reformulate our original SDP as the equivalent problem:

min
Y,R

⟨B, Y ⟩

s.t Y  C
R ⪰ 0

Y = R

(3.12)

The augmented Lagrangian with respect to the equality constraint is given as follows:

Lσ(Y,R, Z) = ⟨B, Y ⟩+ ⟨Z, Y R⟩+ σ

2
∥Y R∥2F , (3.13)

with Z the dual variable for the equality constraint and σ the penalty parameter.
Then, ADMM performs a sequential optimization of the augmented Lagrangian with
respect to the variables Y and R followed by an update of the dual variable Z:

Rp+1 = argmin
R⪰0

Lσp(R, Y p, Zp) (a)

Y p+1 = argmin
Y ∈C

Lσp(Rp+1, Y, Zp) (b)

Zp+1 = Zp + σp(Y p+1 Rp+1), (c)

with Rp, Y p and Zp the variables at iteration p  N, σp the penalty parameter
at iteration p and  


0, 1+

√
5

2


a given stepsize. The two steps (a) and (b) are

essentially projections onto the semidenite cone and the convex set C. For the two
minimization problems, the linear terms can be combined together with the squared
norms:

(a) Rp+1 = argmin
R⪰0

⟨Zp, Y p R⟩+ σp

2
∥Y p R∥2F

= argmin
R⪰0

σp

2


∥Y p R∥2F +

2

σp
⟨Zp, Y p R⟩+ 1

(σp)2
∥Zp∥2F



= argmin
R⪰0



Y p +

1

σp
Zp


R


2

F

=


Y p +

1

σp
Zp



⪰0



(3.14)
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Similarly for the second step:

(b) Y p+1 = argmin
Y ∈C

⟨B + Zp, Y ⟩+ σp

2
∥Y Rp+1∥2F

= argmin
Y ∈C

Y 

Rp+1  1

σp
(B + Zp)


2

F

= PC


Rp+1  1

σp
(B + Zp)


,

(3.15)

with PC the orthogonal projection onto the feasible set C.

Stopping criteria and stepsize For both the stopping criteria and the stepsize,
we used the ones suggested by [de Meijer et al., 2023]. Given a certain tolerance
ADMM, ADMM is stopped when

max

∥Y p Rp∥F
1 + ∥Y p∥F

, σp ∥Y p+1  Y p∥F
1 + ∥Zp∥F


< ADMM (3.16)

Note that these two terms are strictly equivalent to the primal and dual residuals
introduced in the original ADMM [Boyd et al., 2011]. As for the step size σp, it can
either be xed or be updated along the iterations. We have found that an adaptive
stepsize can greatly improve CPU time on the instances we have tested.

Dual feasible solution Compared with the two low-rank solvers, ADMM allows
for computing bounds with guarantees. At the end of the ADMM procedure, we can
compute a dual feasible point using the solution returned by the algorithm. This
result was introduced in the paper [Li et al., 2021] and used in [de Meijer et al.,
2023]. Let L(Y,R, Z) := L0(Y,R, Z) be the Lagrangian for our problem (3.12), the
Lagrangian dual is given by

g(Y,R, Z) := max
Z∈Sd+1

min
Y ∈C, R⪰0

L(Y,R, Z)

= max
Z∈Sd+1


min
Y ∈C

⟨B + Z, Y ⟩+min
R⪰0

⟨Z,R⟩


= max
Z∈Sd+1


min
Y ∈C

⟨B + Z, Y ⟩  Tr(R)λmax(Z)


,

(3.17)

with λmax(Z) the maximum eigenvalue of Z. The last step follows from the Rayleigh
Principle. Therefore, for any feasible Z  Sd+1, the solution to

min
Y ∈C

⟨B + Z, Y ⟩  Tr(R)λmax(Z) (3.18)

yields a valid lower bound for the primal problem (3.12). This problem turns out to
be an LP that can be eciently solved. For the experiments, we used Mosek [ApS,
2022] to solve it.
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3.2.2 Recovering an integer solution

For this work, we are also interested in heuristics to nd good feasible integer solu-
tions. We can not apply a method similar to the Goemans and Williamson heuris-
tic. Instead, we directly use the entries of the approximate solution of (3.10). Let

Y ∗ =


W ∗ b∗

(b∗)⊤ 1


be the solution returned by ADMM where W ∗ is the top-left

submatrix of Y ∗ of size (d×d). We use the vector b∗  Rd to compute our integer so-
lution. We assign each GM variable to the value xk =


argmaxsk⩽i⩽sk+1

(b∗)i

sk.

This rounding heuristic is followed by a greedy search as the one we have presented
for LR-BCD and LR-LAS, see Subsection 2.2.6.

3.2.3 Constraint set projectors

The goal of this subsection is to derive the projectors onto the dierent feasible sets
dened by the constraints. These projections are needed for the step (b) of the
ADMM algorithm. It is clear that all the feasible sets are nonempty closed convex
subsets of R(d+1)×(d+1). Thus, by the Hilbert projection theorem [Rudin, 1991], we
have existence and uniqueness of the projections.

Exactly-one projection Without loss of generality, let us consider the rst
exactly-one constraint, i.e., we focus on the rst d1 entries of the vector b. Let

M =


bb⊤ b

b⊤ 1


, we aim to nd the unique solution to the minimization problem:

minY ∥Y M∥2F
s.t ⟨U1, Y ⟩ = 1

(3.19)

If M is already feasible, then we have the trivial solution Y = M . Otherwise we
work only with the constrained entries of Y . In fact, we can set the others to the
corresponding entries of M. We rewrite the optimization problem (3.19):

min
Y

2

d1

i=1

(Yi(d+1) Mi(d+1))
2

s.t
d1

i=1

Yi(d+1) = 1,

(3.20)

with the associated Lagrangian:

L(λ, Y ) = 2

d1

i=1

(Yi(d+1) Mi(d+1))
2 + λ(

d1

i=1

Yi(d+1)  1) (3.21)

Since the problem is convex, KKT conditions are necessary and sucient for
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optimality. Therefore, we have to solve the following system of equations:




∂L
∂Yi(d+1)

(λ, Y ) = 4(Yi(d+1) Mi(d+1)) + λ = 0, i = 1,    , d1
d1

i=1

Yi(d+1) = 1
(3.22)

From the stationnarity conditions, we get:

Yi(d+1) Mi(d+1) = 
λ

4
⇐⇒ Yi(d+1) = Mi(d+1) 

λ

4


Plugging it back in the constraint:

d1

i=1


Mi(d+1) 

λ

4


= 1

λ =
4

d1

 d1

i=1

Mi(d+1)  1



We can already see that λ is related to the violation of the exactly-one constraint
for the entries of the matrix M . Finally, since 4(Yi(d+1) Mi(d+1)) + λ = 0:

Yi(d+1) Mi(d+1) +
1

d1

 d1

i=1

Mi(d+1)  1

= 0

Yi(d+1) = Mi(d+1) 
1

d1

 d1

i=1

Mi(d+1)  1



(3.23)

Intuitively, we see that the projection of M onto the feasible set is equivalent to
removing 1

d1
times the exactly one violation of all corresponding entries. Let  be

the exactly-one constraint violation, the distance from the solution ∥Y ∗ M∥F is
equal to

√
2√
d1

.

Diagonal projection As mentioned before, the diagonal constraints and the
exactly-one constraints are the only constraints that share overlapping entries of the

matrix Y . First, we focus only on the diagonal constraints. Let M =


bb⊤ b

b⊤ 1


,

We aim to nd the unique solution to the minimization problem:

min
Y

∥Y M∥2F
s.t ⟨Di, Y ⟩ = 0

(3.24)

In the same way as for the exactly-one constraint, if M is already feasible, we have
the trivial solution Y = M . Otherwise, we rewrite the optimization problem (3.24):

min
Y

2(Yi(d+1) Mi(d+1))
2 + (Yii Mii)

2

s.t Yi(d+1) = Yii,
(3.25)
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Or equivalently,

min f(Yid+1) := 2(Yi(d+1) Mi(d+1))
2 + (Yi(d+1) Mii)

2 (3.26)

At the optimum, the solution must satisfy f ′(Yi(d+1)) = 0, i.e.,

6Yi(d+1)  4Mi(d+1)  2Mii = 0

Yi(d+1) =
2

3
Mi(d+1) +

1

2
Mii

(3.27)

However, for computational eciency, the exactly-one and diagonal constraints can
be performed simultaneously. Without loss of generality, let us consider the rst
exactly-one constraint, the solution to the following optimization problem:

min
Y

∥Y M∥2F
s.t ⟨U1, Y ⟩ = 1

⟨Di, Y ⟩ = 0, i = 1,    d1,

(3.28)

is given by:

Yi(d+1) =
2

3
Mi(d+1) +

1

3
Mii 

1

d1


d1

i=1


2

3
Mi(d+1) +

1

3
Mii


 1


, i = 1,    , d1

(3.29)
See Appendix B for a complete proof of this result.

Gangster and positivity projections These two projections are easily com-
puted by either:

• Applying the gangster operator to the matrix Y to set the corresponding
entries to 0.

• Setting the negative entries within the blocks Y[ij], θij  Φ to 0.

Projection onto the semidenite cone This step is the most computationally
intensive of the whole ADMM algorithm. Let us consider a symmetric matrix M 
Sn, by theorem 1.5.2, the projection of M onto the semidenite cone is given by:

M⪰0 =

d+1

i=1

max0,λiuiu⊤i , (3.30)

where M =

d+1

i=1

λiuiu
⊤
i is the spectral decomposition of M . Without any additional

assumptions on the structure of the matrix M , computing the set of eigenvalues and
eigenvectors is cubic in the size of the matrix O((d+ 1)3). For our implementation,
we used the Eigen3 [Guennebaud et al., 2010] linear algebra library. The imple-
mentation of their eigenvalue solver is based on a symmetric QR algorithm [Golub
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and Van Loan, 2013]. They claim that the computational cost is about 9d3 when
eigenvalues and eigenvectors are required. This can quickly become a barrier to
scalability.

It is possible to reduce the total number of operations. Indeed, for the projec-
tion onto the semidenite cone, we are only interested in computing the positive
eigenpairs of M . Depending on the proportion of positive or negative eigenvalues, it
is more ecient to compute only one of the two subsets. If we compute the negative
eigenpairs, we can recover the projection by applying the simple operation:

M⪰0 = M M⪯0, (3.31)

with

M⪯0 =

d+1

i=1

min0,λiuiu⊤i  (3.32)

When only a subset of eigenpairs is required, one can use iterative methods. The two
papers [Goulart et al., 2020, Rontsis et al., 2022] explore approximate methods for
the projection onto the semidenite cone. In the context of ADMM, it is known that
the algorithm still converges when the projection errors are summable, i.e., when
the sum of the projection errors over all the ADMM iterations is bounded [Eckstein
and Bertsekas, 1992]. The rst paper gives sharp bounds on the projection errors so
the ADMM algorithm maintains its convergence properties. Based on these results,
the second paper provides an ecient iterative method to approximately compute
a subset of eigenpairs. It relies on a block Krylov method [Knyazev, 2001] with a
O((d+1)2m) per-iteration cost where m is the number of computed eigenpairs. The
authors suggest that this method is preferable when ADMM converges to a solution
with a small proportion of negative or positive eigenpairs. Otherwise, the usual QR
algorithm is more ecient in terms of number of operations.

We have presented the projections onto the dierent feasible sets for our SDP
relaxation (3.10). For the constraint set C, considering that the exactly-one and
diagonal constraints can be performed simultaneously, all constraints apply to non-
overlapping entries of the primal matrix Y . In the end we have a closed form
solution for the projection into C so the second step of the ADMM algorithm (b)
can be computed eciently.

3.3 Global constraints

Some of the problems encountered in graphical models include global constraints,
i.e., a constraint involving all or an unbounded number of variables. Let us consider
a discrete pairwise GM M = ⟨X,Φ⟩ with X  = n variables. We use the same
notations as in Section 3.1.

All dierent We denote by dmax the maximum domain size dmax := max
i∈[n]

di. To

satisfy the all dierent constraint, we must enforce all variables of the collection X
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to take distinct values. The constraint can be extended to subsets of variables. To
enforce this global constraint, we need dmax linear constraints. Let Ai  0, 1d
be the boolean vector which take value 1 at position i for each variable within the
stacked vector b and 0 otherwise. To enforce the fact that at most one variable will
take value i we can use the linear constraint AT

i b ⩽ 1. Thus we can encode the all
dierent constraint as

AT
i b ⩽ 1, i = 0,    , dmax

k-values Using the same notations, to satisfy the k-values constraint, the variables
of the collection X must take at most k distinct values. To do so, we will use the
vectors Ai again. We introduce dmax new Boolean variables yi  0, 1. The fact
that a value i is used by one of the variables can be encoded by the constraint

AT
i x

n
⩽ yi

Indeed, the fraction AT
i x
n is always upper bounded by 1. It is upper bounded by

0 if and only if none of the variables takes value i. We can then add the k-values
constraint by enforcing the linear constraint

dmax

i=1

yi ⩽ k

Finally we relax the Boolean constraint on variables yi by using the quadratic con-
straint

y2i = yi, i = 1,    , dmax

3.4 Results

In this subsection, we compared the three SDP methods on GMs with Erdős–Rényi
(ER) graphs. The GMs were generated using the same method as in Subsec-
tion 2.3.3. We also compared our results with the latest version of the exact solver
toulbar2 available at https://github.com/toulbar2/toulbar2. Toulbar2 was run
with default parameters and a time limit of 1 hour. For all gures presented in this
section, for each point, results are averaged over 10 instances. We observed that
the standard deviations of the measures were very low on the 10 generated samples
and we therefore do not report them. This section bears witness to the trade-o
between method eciency and the quality of the bounds.

The two solvers [Huang et al., 2014, Wang et al., 2016] introduced in the back-
ground section also use SDP relaxations to tackle the MAP problem on pairwise
discrete GMs. However, we could not nd an implementation of these two methods,
so we could not compare them with our solvers. These two solvers use constraint
sets that are similar to the one we used in our relaxation (3.10).

All experiments were run on a single thread on a server equipped with a Xeon®Gold
6248R CPU@3.00GHz and 1TB of RAM running Debian Linux 4.19.98-1.
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3.4.1 CPU-time

First, we compared the CPU times of the three SDP solvers on ER instances with
dierent probability parameters and sizes. The exact solver toulbar2 was able to nd
the optimum for some of the smallest instances with probability parameter p = 01

and reached the time limit for all other instances. Therefore, we have not reported
the time results for toulbar2. Note that the CPU time for ADMM also includes the
time to solve the LP for the dual feasible point. However, in all the experiments
we have done, this time is negligible, being less than 1% of the total CPU time.
Figure 3.1 shows that the low-rank solvers are faster than ADMM, from one order
of magnitude for LR-LAS to two order of magnitude for LR-BCD. We also found
that ADMM tends to be faster as the instance density increases, which is not the
case for the low-rank methods.

Figure 3.1: Cpu-time for the three SDP solvers on Erdős–Rényi instances with
varying edge probability as a function of the problem size (number of states ×
number of variables).

3.4.2 Bounds

We now focus on the bounds returned by the four solvers. As mentioned earlier,
ADMM has the advantage of returning dual bounds with guarantees, which is not the
case for LR-BCD and LR-LAS. We recall that by using rounding and greedy search
heuristics, we can produce integer feasible solutions for the three SDP methods.
These integer solutions serve as upper bounds for our experiments. Note that when
the exact solver toulbar2 reached the time limit, we used the global lower bound
and the best integer solution found so far. Figure 3.2 shows the normalized upper
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and lower bounds on ER instances with dierent edge probabilities and domain
sizes. All considered instances have n = 100 discrete variables. While being much
faster than the other methods, the lower bounds returned by LR-BCD collapse as
the domain sizes increase. The bounds are also loose for instances with a small edge
probability, being all negatives for p = 01. ADMM has the strongest lower bounds
among the four solvers. This clearly shows the benet of adding new constraints
compared to the LR-BCD and LR-LAS formulations. Overall, the integer solutions
are fairly similar between the 4 methods. Note that for certain instances with
p = 01, toulbar2 was able to nd the optimum within the 1 hour time limit. This
means that for SDP solvers, the integer solution computed by the heuristics may be
close to the true optimum.

Figure 3.2: Normalized upper and lower bounds for all four solvers on Erdős–Rényi
instances with varying edge probability as a function of domain size. The best
integer primal solution value is taken as a reference. All considered instances have
n = 100 discrete variables.

3.4.3 Results on protein instances

In this subsection, we tried our implementation of ADMM on small proteins from
Marianne Defresne’s benchmark, see Paragraph 2.3.4. These instances are dense,
the GMs considered have a non-zero binary potential for each pair of variables. We
denote by n the size of the matrix and by m the total number of constraints in the
SDP relaxation. The optimality gap is computed by using the integer solution and
the dual lower bound returned by the algorithm. We denote by fint the value of the
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Instance n m Cpu (sec) Optimality gap (%)

1a32 1701 2890086 5733.68 13.45
1aal 1141 1299658 1200.30 10.02
1aaz 1741 3027688 6261.98 15.09
1ail 1401 1960071 2814.56 11.35
1b6q 1101 1210056 1197.88 9.80
1b35 1141 1299658 1150.23 12.26
1bcc 1321 1742467 2120.37 10.88
1bct 1381 1904470 2351.06 12.87
1beo 1961 3841699 12091.91 16.56
1bf0 1201 1440061 1626.74 8.49
1bha 1361 1849669 3240.10 5.83
1bun 1221 1488462 1535.25 10.54
1cxz 1721 2958487 6143.69 16.85
1cyu 1961 3841699 12021.10 15.51
1d0d 1221 1488462 1581.34 9.15
1d1r 1661 2755684 5554.83 12.17
1d2d 1121 1254457 1414.42 10.05

Table 3.2: ADMM results on small protein instances.

integer solution and lb the dual lower bound,

Optimality gap =
fint  lb
fint

× 100

The results are given in Table 3.4.3. Even on the smallest instances, the commercial
solver Mosek ran out of memory. For both LR-LAS and LR-BCD, we reported
negative lower bounds on these instances.

3.4.4 Faster projection onto the semidenite cone

After a certain number of iterations, if we nd that either the proportion of pos-
itive or negative eigenvalues is relatively small, we switch to a partial eigenvalue
solver. To this end, we used Spectra https://spectralib.org/doc/, a header-
only library built on top of Eigen. Spectra is an eigen solver inspired by the soft-
ware ARPACK [Lehoucq et al., 1998] written in FORTRAN. ARPACK stands for
ARnoldi PACKage and relies on the Implicitly Restarted Arnoldi Method pro-
posed in [Lehoucq and Sorensen, 1996]. We recall that the Arnoldi method has
a O((d + 1)2m) per-iteration cost where m is the number of computed eigenpairs.
Figure 3.3 compares the Cpu times of two implementations:

• rst implementation: at each ADMM iteration, compute the full eigen decom-
position with a direct solver.

• Second implementation: if the proportion of positive or negative eigenvalues
is less than a specied threshold, switch to a partial eigen decomposition.

The rst experiment was run on a ER instance with edge probability p = 01. We
set the threshold to 15% of the matrix size. In Figure 3.3, we can clearly see when
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the second method switches from full to partial eigen decomposition. In the end,
the second implementation was 54 times faster to reach the same solution.

As we already discussed in Subsection 3.2.3, using an iterative eigen solver may
not be a good option when the number of eigenpairs to compute is large. For
another ER instance we pushed the threshold to 25%, the results are presented in
Figure 3.4. This time, the second implementation was 36 times slower to reach the
same solution.

Finally, it might be interesting to use an iterative eigenvalue solver if the consid-
ered SDP has a low-rank solution. Indeed, the null space of the matrix is then large
and there is a small number of non-zero eigenvalues to compute. These low-rank
solutions appear, for example, in the SDP relaxation of MaxCut.

Figure 3.3: Function values against Cpu time (sec) on a Erdős–Rényi instance with
edge probability p = 01. The instance has n = 300 variables with domain sizes 3

(d = 900). The time axis is on a logarithmic scale.

3.5 Discussion

In this chapter, we tried to trade eciency for quality of the bounds by reinforcing
the relaxation we considered in Chapter 2. By adding the gangster and positivity
constraints, the bounds are now much tighter on a variety of dierent problems.
Since the number of constraints can become quite large, interior point methods
are not suitable for dealing with these SDP relaxations [Wiegele and Zhao, 2022].
Therefore, we used an ADMM algorithm which can eciently handle our set of
constraints. However, ADMM is still limited by calls to eigen solvers for projections
onto the semidenite cone. As shown in the experiments with the protein problems,
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Figure 3.4: Function values against Cpu time (sec) on a Erdős–Rényi instance with
edge probability p = 01. The instance has n = 100 variables with domain sizes 5

(d = 500). The time axis is on a logarithmic scale.

instances with d > 1000 become hard for ADMM.We discussed the usage of iterative
eigen solvers to accelerate the projections but it is not suited for all kind of instances.
Finally, we hope to combine low-rank methods with ADMM to get the best of both
worlds.
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This work is a joint work with Jan Schwiddessen. Jan is a PhD student whom
I met during my stay at the Mathematical Institute of Klagenfurt. We were both
interested in low-rank methods for solving SDPs. After some discussion, Jan pro-
posed the idea of developing a new solver and the journey began. It was a great
pleasure to collaborate with him on this project, and we plan to submit a paper
before the end of this year.

In this chapter, we are now interested in solving combinatorial problems to
optimality. We present MixCut an exact solver for MaxCut based on semidenite
programming. It uses a branch-and-cut approach with hypermetric inequalities
to strengthen the basic MaxCut relaxation. The bounding procedure is eciently
carried out by a low-rank SDP algorithm, the mixing method [Wang et al., 2017].
We propose a set of new branching decisions based on information from both primal
and dual solutions as well as a new heuristic to compute good integer solutions.
Experimentally, we show that our method is able to reach a better trade-o between
the tightness of the bounds and the total number of explored nodes in the search
tree. We demonstrate our results against state-of-the-art algorithms by means of
an in-depth study on dense MaxCut instances from the BiqMac library [Wiegele,
2007].

4.1 Introduction

MaxCut is a central problem in combinatorial optimization. Given a weighted graph,
it aims to nd a partition of the vertices into two disjoint sets such that the sum
of the edges between the sets is maximized. It gained a lot of attention in the past
decades due to its broad range of applications in physics and computer science. In
the previous chapters, we saw that MAP inference on discrete GMs can be reduced
to a pure MaxCut problem by means of Lasserre’s exact penalization [Lasserre,
2016]. MaxCut is known to be NP-hard [Karp, 2010], and researchers have tried
various methods to solve it. These include algorithms based on LP relaxations,
which are more ecient on sparse problems. Goemans and Williamson [1995] gave a
celebrated 0.87856 approximation ratio for graphs with nonnegative weights using an
SDP relaxation. Nowadays, for dense instances, the best-performing solvers almost
all use semidenite relaxations. Even though those methods showed great results,
solving MaxCut to optimality is still challenging even for problems of moderate size.
Although not covered in depth in the manuscript, heuristics have been developed
to nd good solutions for large-scale problems [Benlic and Hao, 2013]. Recently,
MaxCut has seen a resurgence of interest with quantum computers and the Quantum
Approximate Optimization Algorithm (QAOA) [Farhi et al., 2014, Guerreschi and
Matsuura, 2019].
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4.2 Related work and our contributions

In the early 2000s, Burer and Monteiro introduced the idea of using a low-rank fac-
torization to solve semidenite programs [Burer and Monteiro, 2003]. This method
quickly showed great experimental results. Indeed, it has made it possible to approx-
imately solve large-scale structured SDPs several orders of magnitude faster than
the usual primal-dual interior-point methods. The factorization signicantly reduces
the number of variables and the cone constraint is implicitly satised. However, it
comes at the cost of losing convexity. Recently, Boumal et al. [Boumal et al., 2016]
showed that non-convexity is not an issue as long as some assumptions are satised.
Several methods were developed to eciently solve those low-rank problems. For
example, we can cite the Riemannian trust-region method (RTR) [Absil et al., 2007],
or the mixing method [Wang et al., 2017] which is a coordinate descent algorithm.
Goemans and Williamson showed that MaxCut has a natural rank-1 SDP relaxation
for which they derived the approximation ratio. In addition to high eciency, this
motivated us to use a low-rank method for our solver’s bounding procedure.

Due to its large number of applications in dierent elds, MaxCut is regarded as
a central problem in combinatorial optimization. One line of work is to nd strong
relaxations in order to obtain the best possible approximation of the problem. Such
relaxations can be derived from the moment-SOS hierarchy [Lasserre, 2001]. While
oering strong convergence guarantees towards the optimizer of MaxCut, going to
higher orders of the hierarchy is usually too computationally expensive. Recent
works overcome this issue by using partial lifting to higher orders to obtain tight
bounds on MaxCut [Wang et al., 2022, Campos et al., 2022]. Together with LP-
based methods, they perform well on sparse instances. For example, the recent LP
solver McSparse [Charfreitag et al., 2022] starts to show its limitations for graphs
with a density greater than 10%.

SDP solvers have shown their superiority on dense problems. Tighter bounds are
typically provided, making the branch and bound procedure more ecient. The top
performing solvers all include hypermetric inequalities [Deza and Laurent, 2010].
BiqMac [Rendl et al., 2010] and BiqCrunch [Krislock et al., 2017] use triangular
inequalities while BiqBin [Gusmeroli et al., 2022] and MADAM [Hrga and Povh,
2021] add pentagonal and heptagonal inequalities. These solvers essentially dier in
the method used to solve the SDP relaxation at each node. Basically, there is always
a trade-o between the quality of the bounding procedure and the time spent to
solve the underlying optimization problem. In this respect, we have explored low-
rank methods that can nd good-quality solutions orders of magnitude faster than
the usual primal-dual interior point methods.

The main contribution of our work is the introduction of the exact solver MixCut
for solving MaxCut. It is based on the mixing method, a recent coordinate ascent
method introduced in [Wang et al., 2017]. This chapter is organized in six parts:

• Background 4.3: we present the basic SDP relaxation for the MaxCut prob-
lem. Additionally, we incorporate a subset of hypermetric inequalities, namely
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triangular inequalities, to strengthen the basic relaxation. Then, we introduce
the current state-of-the-art solvers based on SDP approaches.

• Bounding procedure 4.4: we combine the mixing method with a proximal bun-
dle approach to eciently solve the strengthened SDP relaxation of MaxCut.

• Branch and cut 4.5: we develop a new branch and cut algorithm for MaxCut
that exploits, among other things, new branching decisions, warm-starting and
cut updates.

• Biased hyperplane 4.6: we propose a rounding procedure inspired by the
renowned Goemans and Williamson approach. This procedure rounds the low-
rank solution of the primal problem into feasible solutions, eectively yielding
a valid lower bound for the optimal value of the MaxCut problem.

• Implementation 4.7: we discuss some of the implementation details regarding
our solver.

• Experiments 4.8: we test MixCut against BiqCrunch, BiqBin and MADAM
on several MaxCut instances from the BiqMac library. We carried out ex-
periments on dense and sparse problems to demonstrate the exibility of our
solver in handling dierent types of instances.

4.3 Background

In this section we give a quick overview of the usual SDP relaxations for MaxCut.
In addition, we introduce a low-rank, non-convex relaxation that can be solved
eciently using a coordinate descent algorithm. We then present the existing exact
SDP solvers with their dierent features.

4.3.1 Semidenite relaxations for MaxCut

In this subsection, we use the notations introduced in Subsection 1.2.2. Let G =

(V,E) be a weighted undirected graph with n = V  vertices and m = E edges. Let
A  Sn be the adjacency matrix of G, i.e., Aij = wij if (i, j)  E and 0 otherwise.
We also dene the Laplacian of G

L = Diag(A1n) A

It is straightforward to show that MaxCut is equivalent to the following binary
quadratic optimization problem:

maximize x⊤Lx

subject to x  1, 1n
(4.1)

Although being NP-Hard, SDP-based methods have been successfully applied to
solve MaxCut instances up to moderate sizes. However, scalability is still an issue
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even for modern state-of-the-art solvers. To derive the basic SDP relaxation of (4.1)
we can use the trace property to reformulate the problem as

maximize Tr(Lxx⊤)

subject to x  1, 1n
(4.2)

We now introduce the rank one positive semidenite matrix X = xx⊤. Since
x is a 1, 1n-vector we have the following constraint on the diagonal of X,
diag(X) = 1n. Finally, by dropping the rank one constraint, we obtain the semidef-
inite relaxation:

maximize ⟨L,X⟩
subject to diag(X) = 1n

X ⪰ 0

(MCBASIC)

Dierent algorithms have been developed to tackle diagonally constrained SDPs.
BiqBin uses a primal-dual interior point method tailored to this kind of problems.
Low-rank approaches also perform very well and can surprisingly scale to large
instances [Wang et al., 2017, Yurtsever et al., 2021] up to a size of n = 107. These
methods work on a low-rank reformulation of (MCBASIC). The positive semidenite
matrix X can be factorized as a product of two rank-k matrices: X = V ⊤V, V 
Rk×n. Then, (MCBASIC) becomes:

max
V ∈Rk×n

⟨L, V ⊤V ⟩ s.t ∥Vi∥ = 1, i = 1,    , n, (MCLR)

with Vi  Rk the i-th column vector of V . The norm constraints on the columns
are inherited from the diagonal constraints of the original problem. As mentioned
in Chapter 2, Xii = 1 implies that V T

i Vi = ∥Vi∥2 = 1, hence the norm constraints.
The low-rank reformulation reduces the number of variables from n2 to kn and the
semi-denite constraint X ⪰ 0 now becomes implicit as V ⊤V is always positive
semi-denite. While we have considerably reduced the number of variables, the
problem (MCLR) is no longer convex. However, we have already seen that there
are deterministic guarantees for which the solution of (MCBASIC) can be recovered
from the low-rank problem [Boumal et al., 2020].

A stronger relaxation Unfortunately, the basic SDP relaxation may be too loose
for medium and large instances. As a result, the number of nodes within the branch
and bound scheme increases sharply with the size of the problem, and the overall
algorithm does not scale well. To overcome this issue, we strengthen the basic SDP
relaxation by adding valid cuts to the formulation. Various categories of cuts have
been considered in the literature for the MaxCut problem. In this work, we are
interested in hypermetric inequalities [Deza and Laurent, 2010]. These inequalities
can be derived from the so-called gap inequalities [Laurent and Poljak, 1996] given
by:

⟨bb⊤, X⟩ ⩾ B, (4.3)
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with b  Zn and B := min

b⊤x : x  1, 1n


. Hypermetric inequalities are

inequalities for which the right hand side B = 1 and b  B := b  Zn :


bi odd.
by setting only three entries of b to be either 1 or 1 we can derive the so called
triangular inequalities:

Xij +Xik +Xjk ⩾ 1
Xij Xik Xjk ⩾ 1
Xij +Xik Xjk ⩾ 1
Xij Xik +Xjk ⩾ 1,

(4.4)

for distinct i, j, k  [n]. Intuitively, a cut can only pass through either 0 or 2 edges
for a cycle of length 3 in the graph. There exists 4


n
3


such inequalities which are

embedded in the linear operator A(X) ⩽ b. This allows us to derive a strengthened
relaxation:

maximize ⟨L,X⟩
subject to diag(X) = 1n

A(X) ⩽ b

X ⪰ 0

(MCTRI)

Note that each triangular inequality involves only three entries of the matrix
X. As a result, A(X) can be computed eciently in O(m) operations with m the
number of triangular inequalities considered.

4.3.2 Other exact solvers based on semidenite programming

In this section, we provide a brief summary of other exact solvers used to address
the MaxCut problem. As mentioned earlier, semidenite programming proves to
be the most eective approach for solving general MaxCut instances, employed by
the top-performing solvers such as BiqMac [Rendl et al., 2010], BiqCrunch [Krislock
et al., 2017], BiqBin [Gusmeroli et al., 2022] and MADAM [Hrga and Povh, 2021].

4.3.2.1 BiqMac and BiqBin

BiqMac and BiqBin are two SDP-based solvers using partial Lagrangian methods.
BiqBin was originally designed to handle more general problems, namely binary
quadratic problems with linear constraints. These problems are reduced to MaxCut
instances using the exact penalization developed by Lasserre [Lasserre, 2016]. This
transformation was further studied in [Gusmeroli and Wiegele, 2022]. Both solvers
use hypermetric inequalities to tighten the basic MaxCut relaxation. Since the
number of constraints can become quite large, dual-primal interior point solvers are
limited to small instances. The idea behind BiqMac is to dualize only triangular
inequalities. An upper bound is obtained by minimizing the following partial dual
function

g(y) = y⊤1n + max
diag(X) = 1n

X⪰0

⟨LA∗(y), X⟩, (4.5)
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with y the non negative dual variable. This nonsmooth optimization problem is
solved with the bundle method. In order to compute subgradients and function
evaluations, one has to solve the inner maximization problem. This can be done
eciently by interior point solvers adapted to diagonally constrained SDPs. Com-
pared to BiqMac, BiqBin uses pentagonal and heptagonal inequalities to strengthen
the relaxation. In addition, the latter solver features a parallelized branch and
bound for improved scaling.

4.3.2.2 BiqCrunch

BiqCrunch works with an augmented Lagrangian version of (MCTRI) with only
triangular inequalities. The augmenting term is based on a theoretical result over
the following set:

Ω(n) := X  Sn
+  Tr(X) = n

It is known that for X  Ω(n), ∥X∥F ⩽ n, and equality holds if and only if
rank(X) = 1. The new problem with penalty parameter  is

maximize ⟨L,X⟩+ 

2
(∥X∥2F  n2)

subject to diag(X) = 1n

A(X) ⩽ b

X ⪰ 0

(4.6)

Using projection onto the semidenite cone, the dual minimization problem can
be simplied to

minimize
1

2
∥[LDiag(y)A∗(z)]⪰0∥2F + 1⊤n y + b⊤z +



2
n2

subject to y, z ⩾ 0
(4.7)

Note that this problem is no longer a SDP. In [Malick and Roupin, 2013] the authors
state that the dual function is convex and dierentiable thus, it can be eciently
minimized using rst order methods such as L-BFGS-B [Zhu et al., 1997]. Tighter
bounds are obtained by sequentially decreasing the penalty parameter .

4.3.2.3 MADAM

MADAM is a parallel SDP solver using the alternating direction method of multi-
pliers (ADMM) for the bounding procedure. ADMM is applied to solve a slightly
modied version of (MCTRI). The authors introduce a slack variable for the in-
equality constraints

maximize ⟨L,X⟩
subject to diag(X) = 1n

A(X) + s = b

X ⪰ 0, s ⩾ 0

(4.8)
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Solvers
SDP relaxation

Resolution Parallelization
Triangular Pentagonal Heptagonal

BiqMac ✓ Bundle and IPM
BiqCrunch ✓ L-BFGS-B
BiqBin ✓ ✓ ✓ Bundle and IPM ✓

Madam ✓ ✓ ✓ ADMM ✓

Table 4.1: SDP solvers with their main features.

Due to the special structure of the MaxCut relaxation (4.8), they are able to
prove convergence of the multi-block ADMM [Hrga and Povh, 2021]. The formula-
tion includes triangular, pentagonal and heptagonal inequalities. The algorithm can
be warm-started during the cutting plane scheme. At each cutting plane iteration,
inactive inequalities are removed from the model and the values of the remaining
variables are stored to provide a new starting point for the next iteration. As far as
we know, MADAM is the best existing exact solver on the BiqMac library instances
[Hrga and Povh, 2021].

The solvers with their dierent features are summarized in Table 4.3.2.3.

4.4 Bounding procedure

The bounding procedure is an important feature of the branch and cut framework.
More subtrees can be pruned in the search space by computing tight bounds. How-
ever, computing such bounds can become too computationally intensive, making the
algorithm inecient compared to other cheaper methods. Although SDP methods
provide tight bounds, they are more demanding than LP-based methods in terms of
memory requirements and number of operations. Even for rst order methods like
ADMM, the computational complexity is at least O(n3). This has changed with
the introduction of the low-rank mixing method which consists of ecient O(n2k)

updates of the matrix V with k ≪ n.

4.4.1 Combining the mixing method with the proximal bundle
method

While being ecient on diagonally constrained SDPs, the mixing method is not able
to handle general constraints such as hypermetric inequalities. It is then impossible
to directly use it in our branch and cut framework. In the following, we make the
implicit assumption that (MCTRI) is strictly feasible, i.e., strong duality holds. To
include the inequalities, we use a method similar to the one used in BiqMac [Rendl
et al., 2010] and BiqBin [Gusmeroli et al., 2022]. We use a partial Lagrangian
approach and only dualize the ane constraints A(X) ≤ b. The partial Lagrangian
is given by

L(X, y) = ⟨L,X⟩  y⊤(A(X) b) = b⊤y + ⟨LA∗(y), X⟩,
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where y  Rm
+ are the dual variables corresponding to the constraints A(X) ⩽ b.

The dual function is

f(y) = max
X∈E

L(X, y) = b⊤y +max
X∈E

⟨LA∗(y), X⟩,

where
E := X  Rn×n : diag(X) = 1n, X ⪰ 0

denotes the so-called elliptope. By weak duality, we have opt(MCTRI) ≤ f(y) for all
y  Rm

+ . In order to compute a good upper bound on the optimal value of (MCTRI),
we approximately solve the dual problem

min
y≥0

f(y) = min
y≥0


b⊤y +max

X∈E
⟨LA∗(y), X⟩


 (4.9)

Since the dual fonction f is convex but nonsmooth we use the bundle method, a
rst order method based on subgradient information. It is straightfoward to verify
that an evaluation of the function and a subgradient at certain point y  Rm

+ are
given by

f(y) = b⊤y + ⟨LA∗(y), X∗⟩
∂f(y) = bA(X∗),

(4.10)

with
X∗ := argmax

X
⟨LA∗(y), X⟩, s.t X  E  (4.11)

The advantage of our solver over BiqBin and BiqMac is that we solve (4.11) e-
ciently using the mixing method. Note that at each iteration, the mixing method
always returns a primal feasible point, Xk = V k⊤V k  E  Even if (4.11) is solved ap-
proximately, the solution still provides a valid subgradient and the bundle algorithm
converges.

4.4.2 Safe upper bounds

When working with the branch and cut paradigm, it is important that the bounding
procedure returns bounds with guarantees. Indeed, if this is not the case, we can
potentially prune parts of the tree where the solution lies, and the branch and cut
algorithm will not be exact. The mixing method is essentially a primal method, i.e.,
we cannot directly use the returned value as a safe upper bound. The dual problem
for (MCBASIC) is

minimize 1⊤n µ

subject to Diag(µ) L ⪰ 0
(MCDBASIC)

Let p∗ be the optimal value of (MCBASIC), by weak duality we know that for any
dual feasible point

p∗ ⩽ 1⊤n µ
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Let V ∗ be the solution for the primal problem (MCLR) and let µ∗  Rn be the
vector

µ∗
i = ∥V ∗Li∥, i = 1,    , n,

with Li  Rn the column vectors of L. In [Wang et al., 2017], the authors show that
(V ∗, µ∗) is a primal-dual feasible pair that closes the duality gap, i.e., ⟨L, V ∗⊤V ∗⟩ =
e⊤µ∗. This result is interesting because it allows us to compute a dual feasible point
by using only the primal solution of the low-rank problem and the upper bound
is exact. However, it holds only if we are able to compute the exact solution of
(MCLR). Since the mixing method returns an approximate solution V̂ , the vector
µ̂i = ∥V̂ Li∥2 is not always dual feasible. In order to tackle this issue, we compute
the dual slack matrix S = Diag(µ̂)L. If S is already positive semidenite, nothing
has to be done and 1⊤n µ̂ gives us the desired upper bound. If this is not the case,
we apply the following oset

S ← S  λmin(S)In

which makes the matrix S positive semidenite. The new point

µ̂i ← µ̂i  λmin(S), i = 1,    , n

is now dual feasible. Note that this transformation deteriorates the dual objective
value by the quantity nλmin(S). Let p∗TRI be the optimal value of (MCTRI), by
weak duality, for any feasible y, we have

p∗TRI ⩽ b⊤y +max
X∈E

⟨LA∗(y), X⟩ (4.12)

We can then compute a safe upper bound using the result presented above

p∗TRI ⩽ b⊤y +max
X∈E

⟨LA∗(y), X⟩ ⩽ b⊤y + 1⊤n µ̂ (4.13)

4.5 Branch and cut

Branch and cut is a method that has been widely used to solve combinatorial prob-
lems [Mitchell, 2002]. It is an exact algorithm that combines a cutting plane method
with a branch and bound algorithm. The goal of the cutting plane method is to bet-
ter approximate the feasible set of the integer problem by adding valid inequalities.
In our solver it consists in solving a sequence of SDP relaxations with additional
triangular inequalities. Overall, the solver has a better performance than the use of
branch and bound alone with the basic MaxCut relaxation. In particular, we have
better scalability because we can prune far more nodes.

4.5.1 Bounding routine

For our tree exploration, we use a best-rst search (BFS) strategy. Nodes are sorted
in a priority queue based on their upper bound. Nodes with the largest upper bound
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are explored rst. Since it is a maximization problem, nodes with an upper bound
smaller than the global lower bound can be pruned. Each subproblem is evaluated
using a cutting plane algorithm. First, we separate the triangular inequalities by
complete enumeration and the most violated cuts are added to the SDP formulation.
Then, we eciently solve the relaxation with the method we described in 4.4.1. At
the end of each cutting plane iteration, we check if the node can be pruned. If it
is not the case, we remove the cuts that are almost inactive and we start another
cutting plane iteration until a stopping criterion is satised. Almost inactive cuts
are cuts for which the dual multiplier is close to 0, the tolerance to remove them is
controlled by a parameter of our solver. At the end of the cutting plane algorithm,
if the node cannot be pruned, we compute the safe upper bound (4.13). The generic
algorithm is shown in Algorithm 5.

Algorithm 5 MixCut bounding procedure
Initialize bundle method by computing the solution of (MCBASIC)
if node not prunable then
Call to primal heuristic (4.6)

end if
while not done do
Remove inactive cuts and add most violated ones
Compute new gradient and function evaluation (4.10)
Call to bundle method to solve (4.9)
if node not prunable then
Call to primal heuristic (4.6)

end if
end while
if node not prunable then
Compute safe bound (4.13)

end if

4.5.2 Branching rules

Besides the bounding procedure, branching rules are one of the main features of
the branch and cut algorithm. In our case, we branch on edges of the graph. For
a particular edge, we divide the search space in two, depending on whether the
vertices are on the same or opposite sides of the cut. In order to choose which edge
to branch on, we use the following rules:

• First vertex: we choose the rst vertex of the edge based on dual information.
Considering equation (4.13), at the end of the bounding procedure, we have
two vectors of dual variables. A rst vector µ̂  Rn which corresponds to
the diagonal constraint diag(X) = 1n and second vector y  Rm for the
hypermetric inequalities. We merge these two vectors into a single vector
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ν  Rn with the following transformation:

νi = µ̂i + w1



cut[j] applies
on row Xi

yj , i = 1,    , n (4.14)

with w1 a constant weight and cut[j] the j-th triangular inequality in our list
of cuts. Then we keep the vertex with highest dual value:

k = argmax
i=1,,n

νi

A motivation for this choice is the fact that

µ̂i = ∥V Li∥  λmin(S), i = 1,    , n,

which means that the vertex with the maximum dual variable µ̂i is the one that
concentrates the most weights in the column vector Li. This vertex should
have a greater inuence on the cut than other vertices.

• Second vertex: for the second vertex, we also use the primal solution. We are
looking at entries Xki such that Xki is not too close to 1. Intuitively, when
the entry Xki is close to one, it means that vertices k and i are likely to be
on the same side of the cut. The second vertex is chosen as follows:

l = argmax
i=1,,n

(νk + νi)× (1 + w2Xki15), (4.15)

with w2 a constant weight.

At the end of the procedure, we branch on the edge (k, l). This creates two new
subproblems with size reduced by one. Those subproblems are added to a priority
queue following a best rst strategy, that is, nodes with the highest upper bound
are evaluated rst.

4.5.3 Problem reformulation and warm start

We now discuss how to reformulate the MaxCut problem (4.1) after a branching
decision. As mentioned in the last paragraph, we branch on edges of the graph.
Without loss of generality, let us consider that we branch on the edge (n1, n)  E.
Whether we set xn−1 = xn or xn−1 ̸= xn, the entries of X = xx⊤ must satisfy
Xk(n−1) = Xkn or Xk(n−1) ̸= Xkn for k = 1,   n. This allows us to reformulate the
problem with one variable less. Let L  Rn×n be the Laplacian matrix of the graph:

L =




L̄ c1 c2
c⊤1  

c⊤2  


 , (4.16)

with L̄  R(n−2)×(n−2), c1, c2  Rn−2 and ,,   R. For xn−1 = xn:

LS =


L̄ c1 + c2

c⊤1 + c⊤2 + 2 + 


 R(n−1)×(n−1) (4.17)



4.5. Branch and cut 123

For xn−1 ̸= xn:

LO =


L̄ c1  c2

c⊤1  c⊤2  2 + 


 R(n−1)×(n−1) (4.18)

In our implementation, the branching history is stored at each node of the branch
and bound tree. The corresponding Laplacian matrix is built when the node is
evaluated. These transformations were already presented in [Mitchell, 2001] for a
slightly modied MaxCut SDP relaxation.

Warm starting the cutting plane algorithm In order to reduce the number
of cutting plane iterations at each node, active cuts from the parent node are passed
down to the child nodes. Without loss of generality, let us consider that we branch
on the edge (j, k)  E. Any triangular inequality sharing an index with the edge
(j, k) will be aected by the branching decision. For completeness, we give the
reformulation of the constraint for the four types of triangle inequalities. Let us
consider a triangular inequality with indices (i, j, k), for compactness, we only use
the submatrix with indices (i, j, k) to represent the constraints. Matrices with the
index S correspond to the branching decision xj = xk, for xj ̸= xk we use the index
O. The transformations are basically the same as for the Laplacian matrix. We add
or subtract row and column k to row and column j and then we remove them. This
results in a constraint matrix with a size reduced by one.

• Xij +Xik +Xjk ⩾ 1:

A1 =
1

2



0 1 1

1 0 1

1 1 0


 , (4.19)

A1S =


0 1

1 1


, A1O =


0 0

0 1


 (4.20)

• Xij Xik Xjk ⩾ 1:

A2 =
1

2




0 1 1
1 0 1
1 1 0


 , (4.21)

A2S =


0 0

0 1


, A2O =


0 1

1 1


 (4.22)

• Xij +Xik Xjk ⩾ 1:

A3 =
1

2




0 1 1

1 0 1
1 1 0


 , (4.23)

A3S =


0 0

0 1


, A3O =


0 1
1 1


 (4.24)
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• Xij Xik +Xjk ⩾ 1:

A4 =
1

2




0 1 1
1 0 1

1 1 0


 , (4.25)

A4S =


0 1
1 1


, A4O =


0 0

0 1


 (4.26)

At the end, the reformulation for the child nodes give a new set of 3 constraints:

• Xjj ⩾ 1.

• 2Xij +Xjj ⩾ 1.

• 2Xij +Xjj ⩾ 1.

The rst constraint is implicitly satised by the diagonal constraint on X. The last
two constraints can be simplied to a bound constraint on the entry Xij of X:

1 ⩾ Xij ⩾ 1

However, this constraint is also implicitly satised by the two constraints diag(X) =

1n and X ⪰ 0. Indeed, let us consider the two vectors u1 = ei+ ej and u2 = ei ej ,

u⊤1 Xu1 = Xii +Xjj + 2Xij ⩾ 0 =⇒ Xij ⩾ 1

u⊤2 Xu2 = Xii +Xjj  2Xij ⩾ 0 =⇒ 1 ⩾ Xij 

Since the inequalities are redundant, they are not passed down to the child nodes.
Experimentally, we noticed that a large proportion of the active cuts at the parent
node are also active at the child nodes. This has motivated us to warm start the
cutting plane algorithm with the active cuts of the parent node.

4.6 Biased hyperplane

In order to nd good integer solutions, we use the random hyperplane rounding
proposed by Goemans and Williamson. Those feasible solutions are generated at
each node using the low rank solution V of (MCTRI). We draw a random vector
r on the unit sphere and compute the dot products with the columns of V . The
sign of the dot product r⊤Vi gives the side of the cut for the entries of the resulting
vector v. This rst step is followed by a local search (1-OPT) that ips the sign
of each entry until the solution can no longer be improved. We generate multiple
random vectors and repeat the scheme described above.

Intuitively, columns of V colinear with the random vector r have a high chance of
being xed to either 1 or 1. For vectors close to the cutting hyperplane the result
is unsure. Therefore, vectors for which the absolute value of the dot product r⊤Vi

is small are good candidates to apply the 1-OPT. Now, a question naturally arises,
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can we heuristically nd a “good” vector that will give us better integer solutions
in general? If we bias the vector selection, we lose the theoretical approximation
guarantee of Goemans and Williamson. However, we have observed some gains in
practice.

Following our intuition, we want to nd a vector that will maximize the absolute
values of the dot products with the columns of V . We can estimate such vector by
solving the maximization problem:

max
r∈Rk

∥V ⊤r∥, s.t ∥r∥ = 1 (4.27)

The optimal value of (4.27) is well known since it is the spectral norm of the matrix
V ⊤  Rn×k, that is:

∥V ⊤∥2 = max∥V ⊤r∥ : ∥r∥ = 1 =


λmax(V V ⊤)

The optimum is attained for the normalized eigenvector corresponding to the maxi-
mum eigenvalue of V V ⊤  Rk×k. This eigenvector can be eciently computed using
iterative methods such as the Power Iteration method [Golub and Van Loan, 2013].
For a (k × k) matrix, the cost of an iteration of this method is O(k2). An example
of the biased hyperplan idea is given in Figure 4.6.

Experimentally, we have found that the solver with the biased hyperplane heuris-
tic is more stable than the one with the random heuristic. This means that the
solution is usually found higher up in the tree, regardless of the seed.

O

V1

V2

V3

V4

Hr

Hbiased

Figure 4.1: Random (Hr) and biased (Hbiased) hyperplanes on a small example.

4.7 Implementation

Stopping criteria The mixing method is a primal rst order method, it is very
ecient at nding good quality solutions, but it can take a long time to reach the
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optimum. Wang et al. showed that the mixing method has a linear convergence rate
to the global optimum whenever the solution is close enough [Wang et al., 2017]. For
our solver, we decided to use four stopping criteria. These criteria use information
from the objective function values and the primal iterates. Let ∆ = f k+1  fk ⩾ 0

be the objective dierence before and after a complete mixing method iteration and
V k be the primal iterate at iteration k:

• ∆ < ∆abs
.

• ∆(1 + fk) < ∆rel
.

• ∥V k+1  V k∥F < Vabs
.

• ∥V k+1  V k∥F (1 + ∥V k∥F ) < Vrel
.

We use absolute and relative measures. In the latter case, the stopping criterion
is less sensitive to the magnitude of the entries of the Laplacian matrix. Experi-
mentally, we have found that we can recover a good solution of (4.11) within a few
iterations of the mixing method. We achieve a good trade-o between quality of the
bounds and time spent with stopping criteria of order 10−2.

Cuts For our branch and cut algorithm, cuts are stored in a C-style array. For-
mally, a cut is a C-struct where we store the following information:

double value value of the violation
double y dual multiplier
int i rst index
int j second index
int k third index
int type one of the four types of triangular inequalities
bool inherited cut inherited from the parent node or not

To handle the separation step eciently, we use two standard C++ libraries.
To store the most violated inequalities, we use a priority queue based on constraint
violation. The cuts are stored in ascending order, i.e., the least violated cut is at
the top of the queue. Since we only add a limited number of inequalities at each
iteration of the cutting plane algorithm, this allows us to easily keep track of the
least violated cut. Indeed the priority queue gives a constant time access to the top
element.

After the separation, we use an unordered_set from the boost C++ library ht
tps://www.boost.org/ to add the most violated cuts to our set of cuts. This data
structure is a hash table which has, on average, constant time complexity to access
the data. This implementation can be easily extended to other inequalities such as
pentagonal and heptagonal inequalities.

Parameters A parameter le is provided to the user to run the solver. If the
parameters are not provided or are commented out, they are set to their default
values. The various parameters are listed in Appendix A.
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Solvers
SDP relaxation

Resolution Parallelization
Triangular Pentagonal Heptagonal

MixCut ✓ Bundle and mixing method
BiqCrunch ✓ L-BFGS-B
BiqBin ✓ ✓ ✓ Bundle and IPM ✓

Madam ✓ ✓ ✓ ADMM ✓

Table 4.2: SDP solvers with their main features.

4.8 Experiments

Solvers Our solver is compared with three state of the art MaxCut solvers: BiqCrunch [Kris-
lock et al., 2017], BiqBin [Gusmeroli et al., 2022] and Madam [Hrga and Povh,
2021]. After a discussion with the authors of these solvers, we did not include
BiqMac [Rendl et al., 2010] in the experiments as it has been surpassed by BiqBin,
which uses the same approach. We recall that our solver and BiqCrunch only include
triangular inequalities, while BiqBin and Madam add pentagonal and heptagonal
inequalities to their formulations. To ensure a fair comparison, we used the serial
versions of BiqBin and Madam. All solvers are implemented in C and we run them
using default parameters. For Madam, we used the penalty parameter suggested by
the authors [Hrga and Povh, 2021]. The solvers and their main features are listed
in Table 4.8.

All experiments were run on a single thread on a server equipped with a Xeon®Gold
6248R CPU@3.00GHz and 1TB of RAM running Debian Linux 4.19.98-1.

Instances For our experiments, we used dense MaxCut instances from the BiqMac
library [Wiegele, 2007]. We focused on medium sized instances with n = 100 nodes.
A short description of the instances is given bellow:

• g05_100∗: unweighted graphs with edge probability 12.

• pm1d_100∗: weighted graphs with edge weights chosen uniformly from 1, 0, 1
and density 099.

• wd_100∗: graphs with integer edge weights chosen from [10, 10] and density
d = 05, 09.

• pwd_100∗: graphs with integer edge weights chosen from [0, 10] and density
d = 05, 09.

Solving the root node relaxation First, we compare the four solvers for solv-
ing the root node relaxation on two dierent instances. Figure 4.2 shows the results
on the pw05_100.0 instance. We evaluate the bound quality against the cpu time.
Each data point corresponds to the value of the upper bound after a cutting plane
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iteration. As expected, the bounds returned by BiqBin and Madam, which use pen-
tagonal and heptagonal inequalities, cannot be reached by BiqCrunch and MixCut.
The benecial property of our solver is its ability to return a good quality solution
in a relatively short time compared to other solvers. The results are also relevant
for the instance g05_100.1 as shown in Figure 4.3.

Figure 4.2: Upper bounds against Cpu (sec) at the root node of the pw05_100.0
instance.

Results on the dense BiqMac instances We now present the overall results on
the dense instances of the BiqMac library. All solvers are set to solve the instances
to optimality. We are interested in two pieces of information, the CPU time and
the total number of branch and bound nodes. The results are shown in Tables 4.3,
4.4, 4.6 and 4.5. In terms of CPU time, MixCut outperforms the previous baseline
on every type of instance. It is 5× to 10× faster than the serial version of Madam.
The eciency of MixCut, BiqCrunch, BiqBin and Madam to solve dense instances
is shown in the cactus plot of Figure 4.4. A cactus plot shows how many problems
can be solved in a given time. For each method separately it consists in

• Solving each problem pi, noting time ti.

• Sorting the ti in increasing order.

• Plotting the point (t1, 1), (t1 + t2, 2) and in general (
k

i ti, k).

In the end, a point (x, y) for a solver means that if we set the timeout to y, it will
prove optimality for x instances.
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Figure 4.3: Upper bounds against Cpu (sec) at the root node of the g05_100.1
instance.

Figure 4.4: Number of dense instances solved by each solver as time passes. The
time axis is on a logarithmic scale.
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MixCut has the highest number of branch and bound nodes among the four
solvers. For these medium sized instances we achieve a better trade-o between the
quality of the bounds and the size of the explored tree. The bounds are less tight
in our case since we only include triangular inequalities. While the mixing method
is not suited to solve SDPs to a high precision, it excels at nding good quality
solutions in a really short amount of time. As a result, we are able to prune fewer
nodes, but the amount of time we spend at each node is drastically reduced. For
SDP based methods, the computational complexity of the bounding procedure is
often a bottleneck.

Problem
BiqCrunch BiqBin - serial MADAM - serial MixCut

Time Nodes Time Nodes Time Nodes Time Nodes

g05_100.0 253.89 325 107.48 99 88.09 195 14.20 743
g05_100.1 1447.89 1779 554.74 465 522.70 863 66.06 3615
g05_100.2 92.26 97 33.03 29 36.99 55 4.19 193
g05_100.3 454.63 659 195.09 209 127.56 389 24.39 1253
g05_100.4 31.85 31 12.43 7 12.85 11 2.05 87
g05_100.5 103.74 93 30.42 19 24.48 25 4.77 219
g05_100.6 99.20 99 36.37 25 43.01 33 5.42 245
g05_100.7 212.91 205 86.21 65 84.37 85 9.27 453
g05_100.8 143.52 165 60.57 41 48.29 79 7.22 361
g05_100.9 169.25 237 61.87 57 52.47 155 8.02 393

Table 4.3: CPU times (s) and B&B nodes to solve “g05” problems.

Problem
BiqCrunch BiqBin - serial MADAM - serial MixCut

Time Nodes Time Nodes Time Nodes Time Nodes

pm1d_100.0 581.78 643 221.99 231 117.49 267 19.72 1013
pm1d_100.1 1041.60 1107 346.44 411 229.42 425 38.57 2167
pm1d_100.2 816.22 929 254.11 367 156.53 319 29.05 1589
pm1d_100.3 242.89 227 56.74 63 42.45 71 8.09 399
pm1d_100.4 589.04 619 199.17 289 130.30 277 21.95 1191
pm1d_100.5 165.20 157 77.74 45 44.42 61 6.90 347
pm1d_100.6 143.09 133 46.58 33 34.30 41 5.59 277
pm1d_100.7 87.43 65 31.83 13 33.49 17 3.59 167
pm1d_100.8 46.71 41 20.42 9 14.48 15 2.08 91
pm1d_100.9 225.98 239 93.99 59 45.27 79 8.82 461

Table 4.4: CPU times (s) and B&B nodes to solve “pm” problems.

Result on sparse BiqMac instances We also compared the solvers on the sparse
MaxCut instances of the BiqMac library. Once again we focused on instances with
n = 100 nodes. A short description of the instances is given bellow:

• pm1s_100.*: weighted graphs with edge weights chosen uniformly from 1, 0, 1
and density 01.
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Problem
BiqCrunch BiqBin - serial MADAM - serial MixCut

Time Nodes Time Nodes Time Nodes Time Nodes

w05_100.0 354.92 369 96.58 139 78.46 149 10.55 507
w05_100.1 105.44 91 44.63 37 39.88 29 4.40 199
w05_100.2 70.79 61 34.81 15 32.36 15 3.03 135
w05_100.3 255.61 267 102.12 81 85.60 69 9.83 463
w05_100.4 431.33 423 146.65 131 120.45 145 15.81 761
w05_100.5 364.58 337 146.83 107 112.10 135 15.17 729
w05_100.6 132.98 119 38.80 19 25.81 33 4.09 177
w05_100.7 50.10 37 20.95 9 23.66 9 2.72 107
w05_100.8 360.93 369 145.79 137 95.72 185 14.34 653
w05_100.9 40.29 29 26.83 9 37.77 15 2.08 89

w09_100.0 253.50 229 91.23 69 76.69 91 10.42 505
w09_100.1 1549.04 1395 484.83 577 505.20 567 50.67 2727
w09_100.2 594.82 559 167.49 247 128.79 233 19.47 991
w09_100.3 852.80 855 205.05 233 186.41 463 27.66 1407
w09_100.4 360.15 301 133.62 103 109.18 133 12.59 625
w09_100.5 11.51 7 5.19 1 5.56 1 1.00 33
w09_100.6 76.00 49 22.30 9 34.03 13 2.47 117
w09_100.7 186.86 165 76.13 69 50.12 55 6.86 327
w09_100.8 131.96 95 70.95 33 70.94 35 4.62 207
w09_100.9 284.46 283 91.10 75 77.21 115 10.36 487

Table 4.5: CPU times (s) and B&B nodes to solve “w” problems.

Problem
BiqCrunch BiqBin - serial MADAM - serial MixCut

Time Nodes Time Nodes Time Nodes Time Nodes

pw05_100.0 865.32 1013 255.79 403 208.51 383 30.76 1567
pw05_100.1 301.84 353 94.75 105 84.28 103 10.26 501
pw05_100.2 347.32 387 131.55 119 88.57 149 14.01 637
pw05_100.3 81.43 83 25.18 15 21.32 29 3.93 191
pw05_100.4 409.96 393 155.39 117 90.00 191 16.57 827
pw05_100.5 106.67 103 35.03 29 24.26 33 4.76 213
pw05_100.6 706.84 729 220.62 223 178.79 195 25.59 1247
pw05_100.7 187.14 171 73.49 31 54.64 39 7.00 331
pw05_100.8 59.81 39 17.50 7 47.46 13 2.65 111
pw05_100.9 228.22 237 68.37 47 57.18 59 8.34 441

pw09_100.0 347.90 341 119.11 101 99.56 139 16.83 809
pw09_100.1 520.71 545 178.75 205 128.10 227 21.02 995
pw09_100.2 145.29 139 55.14 47 45.11 57 7.81 361
pw09_100.3 130.77 115 40.31 29 34.17 19 5.22 245
pw09_100.4 261.37 267 85.42 69 53.34 77 10.09 469
pw09_100.5 379.24 319 142.95 85 112.16 87 15.77 745
pw09_100.6 193.28 223 77.75 91 54.10 109 10.38 469
pw09_100.7 580.26 571 164.95 157 138.99 201 27.44 1317
pw09_100.8 217.10 177 90.01 43 75.31 57 9.60 457
pw09_100.9 159.83 133 56.87 25 61.07 35 7.43 335

Table 4.6: CPU times (s) and B&B nodes to solve “pw” problems.
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• wd_100.*: graphs with integer edge weights chosen from [10, 10] and density
d = 01.

• pwd_100.*: graphs with integer edge weights chosen from [0, 10] and density
d = 01.

We also did a comparison with the recent LP-based method presented in [Charfreitag
et al., 2023]. The source code for this solver is publicly available at https://gith
ub.com/CharJon/ScientificMaxcutSolver. For instances with density d = 01,
the LP-based solver is slower than the SDP approaches. The number of branch
and bound nodes is higher than the other methods. As the results of the paper
suggest [Charfreitag et al., 2023], it shines on sparser instances where SDP solvers
are much less ecient. Results for the LP solver are given in Table 4.9. MixCut is
also faster than the other SDP solvers on sparse instances. The results are shown
in Tables 4.7 and 4.8. Overall, the time dierences between the solvers tend to
be closer than for the dense instances. For the easiest pw01 and w01 problems,
BiqCrunch is competitive with BiqBin and Madam. For solvers including pentagonal
and heptagonal inequalities, sparse instances are usually solved at the root node.
However, even when problems are solved at the root, the trade-o using the mixing
method is still in our favour. The eciency of MixCut, BiqCrunch, BiqBin and
Madam to solve sparse instances is shown in the cactus plot of Figure 4.5.

Figure 4.5: Number of sparse instances solved by each solver as time passes. The
time axis is on a logarithmic scale.
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Problem
BiqCrunch BiqBin - serial MADAM - serial MixCut

Time Nodes Time Nodes Time Nodes Time Nodes

pm1s_100.0 3.02 3 1.61 1 1.60 1 0.54 17
pm1s_100.1 31.91 31 13.46 9 11.85 31 1.68 67
pm1s_100.2 3.38 3 1.00 1 1.01 1 0.39 11
pm1s_100.3 42.96 45 12.01 7 12.13 23 1.46 61
pm1s_100.4 21.60 21 4.90 1 6.55 7 0.99 37
pm1s_100.5 5.59 7 1.24 1 0.99 1 0.38 15
pm1s_100.6 22.07 25 10.64 3 5.62 11 0.97 33
pm1s_100.7 0.60 1 0.42 1 0.37 1 0.12 1
pm1s_100.8 1.35 1 0.86 1 0.86 1 0.32 9
pm1s_100.9 1.67 1 1.13 1 2.10 1 0.36 13

Table 4.7: CPU times (s) and B&B nodes to solve sparse “pm” problems.

Problem
BiqCrunch BiqBin - serial MADAM - serial MixCut

Time Nodes Time Nodes Time Nodes Time Nodes

w01_100.0 1.79 1 1.50 1 1.52 1 0.48 15
w01_100.1 1.69 1 1.86 1 5.59 3 0.63 19
w01_100.2 40.24 33 10.49 7 8.59 17 1.59 59
w01_100.3 5.03 3 2.42 1 8.15 5 0.69 21
w01_100.4 0.90 1 0.80 1 0.62 1 0.33 9
w01_100.5 3.80 3 1.67 1 1.92 1 0.59 17
w01_100.6 0.91 1 0.94 1 1.24 3 0.38 11
w01_100.7 11.37 5 2.15 1 2.53 1 0.64 21
w01_100.8 0.81 1 0.56 1 4.14 1 0.20 3
w01_100.9 1.14 1 1.15 1 0.92 1 0.44 11

pw01_100.0 9.90 7 2.25 1 3.28 1 0.79 23
pw01_100.1 24.55 15 4.70 1 15.10 7 1.30 49
pw01_100.2 9.39 7 3.14 1 4.97 5 0.83 29
pw01_100.3 18.96 15 5.29 1 5.49 9 1.23 41
pw01_100.4 0.97 1 1.17 1 1.21 1 0.33 9
pw01_100.5 1.21 1 1.20 1 1.53 1 0.38 11
pw01_100.6 7.95 7 2.74 1 4.34 1 0.78 27
pw01_100.7 12.62 7 3.31 1 5.78 1 1.13 41
pw01_100.8 0.73 1 0.73 1 0.58 1 0.24 5
pw01_100.9 57.33 43 13.08 7 16.41 15 2.44 97

Table 4.8: CPU times (s) and B&B nodes to solve sparse “pw” and “w” problems.

Problems
SMS MixCut

Time Nodes Time Nodes

min avg. max min avg. max min avg. max min avg. max

pm1s_100 9.34 25.45 46.64 37 240 559 0.12 0.72 1.68 1 27 67
w01_100 5.52 9.63 23.59 1 55 319 0.2 0.60 1.59 3 19 59
pw01_100 9.08 18.33 28.22 13 129 295 0.24 0.95 2.44 5 34 97

Table 4.9: CPU times (s) and B&B nodes to solve sparse MaxCut instances with
the LP-based solver Scientic MaxCut Solver (SMS) and MixCut.
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4.9 Discussion

To further improve our solver, there are several strategies we would like to explore.
First, with respect to cuts, only triangular inequalities are included. For larger
instances, the relaxation may not be tight enough and many nodes will not be
pruned. As a result, the number of open nodes in the branch-and-bound tree quickly
increases and the search space becomes too large to eciently prove optimality.
This can also lead to memory issues since we are storing information at each node.
To tighten the relaxation and improve the bounding procedure, we are interested
in adding other hypermetric inequalities. Following the work done in BiqBin and
Madam, we saw that the two solvers provide better bounds by including pentagonal
and heptagonal inequalities. Separation of triangular inequalities can be done by
complete enumeration in O(n3), for the other two types there are a total of 16


n
5



and 64

n
7


inequalities respectively. To keep our solver ecient, a next step is to

nd a good heuristic for separating promising violated pentagonal and heptagonal
inequalities. Note that in BiqBin and Madam this is done by approximately solving
a Quadratic Assignment Problem (QAP) with simulated annealing.

A natural idea to extend our solver is to use parallelization for the branch-and-
bound scheme. This method is already exploited in many exact solvers such as
BiqBin and Madam.



Conclusion

In this thesis we explored dierent methods to approximate the solution of the
MAP problem on pairwise discrete graphical models. Practically solving combina-
torial problems is a major challenge in many elds. In the background chapter,
we introduced graphical models, a framework which covers a variety of applications
from constraint programming to computational protein design. Our main motiva-
tion was to design an optimization method which oers a good trade-o between
eciency and quality. By eciency, we mean the ability to scale to large problems.
By quality, we mean the ability to give a tight approximation of the discrete solution.

In Chapter 2 we introduced two continuous relaxations of the MAP problem
on discrete pairwise graphical problems. For the rst relaxation we were driven
by the recent advances in solving MaxCut. We used an exact reduction to Max-
Cut proposed by Lasserre. Instead of using the usual interior point methods to
solve the SDP relaxation of MaxCut, we used a low-rank method based on coordi-
nate descent. However we realized that this method was not suited to handle the
large entries introduced by the penalization. To overcome this issue, we proposed
a second relaxation as well as a new low-rank SDP method. Our method relies on
block coordinate descent. To perform a block coordinate descent step, we solve an
optimization problem on the unit sphere with the Newton method.

We were able to derive some properties of our algorithm. LR-BCD is always
decreasing and it converges toward a unique limit point. We also have the advan-
tage that at each iteration, the low rank matrix is always primal feasible, i.e., it
always satises all the constraints. Experimentally, we compared LR-BCD to the
commercial interior point solver Mosek and we found out that it quickly converges to
the global optimum of the SDP problem. We even reached a speed-up of two order
of magnitudes to converge to a good quality solution and we showed the ability of
LR-BCD to scale to large instances. In order to nd feasible integer solutions, we
also slightly modied the Goemans and Williamson heuristic. Followed by a sim-
ple local search, we were able to produce strong solutions, sometimes better than
specialized algorithms. Because of its dierent qualities, LR-BCD was used in dif-
ferent projects. In particular, it was added to a deep learning pipeline developed by
Marianne Defresne for computational protein design.

During the experiments we realized that for certain instances our relaxation was
not tight enough. We decided to add more constraints to have a better representa-
tion of the feasible set of the combinatorial problem. Since it was not clear whether
LR-BCD could be extended to handle more general constraints we decided to use
a dierent method to solve the corresponding SDP relaxation. This method was
suggested by the optimization team at the Klagenfurt mathematics laboratory dur-
ing my 1 month staying at the institute. It is a variant of the alternating direction
method of multipliers, a rst-order method that has shown good results for solving
SDPs.
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While in Klagenfurt, I also started a collaboration with Jan Schwiddessen, a
PhD student under the supervision of Angelika Wiegele. This collaboration led to
the work of the last chapter. This time, we were interested in solving combinatorial
problems to optimality. We proposed a new exact MaxCut solver based on a low
rank SDP method. We use a branch and cut algorithm with a bounding proce-
dure that is eciently performed by a combination of the mixing method and the
proximal bundle method. For our solver, we developed new branching decisions
and a derandomized version of the Goemans and Williamson rouding procedure.
We demonstrate the superiority of our solver over existing methods on a variety of
MaxCut instances from the BiqMac library.

Perspectives

Future work on LR-BCD The central optimization algorithm presented in this
thesis can be extended in multiple directions. First, it would be interesting to derive
more convergence properties for LR-BCD, e.g., convergence to the global optimum.
At the end of Chapter 2, we characterized the xed points of the algorithm. Similar
to what was done in the mixing method paper, a starting point for the convergence
proof would be to analyze the Jacobian of the LR-BCD mapping. However it is not
an easy task since we do not have a closed form solution for the block optimization
problems.

Next, if we want to use LR-BCD in a branch and bound algorithm, we need to
compute bounds with guarantees. For now, LR-BCD is a primal algorithm, so the
returned value does not give a certicate for the lower bound. We aim to nd an
ecient method to recover a dual feasible point. In the Chapter 4, we saw that
we can produce a dual feasible point for a particular SDP relaxation of MaxCut by
using the primal solution returned by the mixing method. Ideally, we would like to
have a similar method for LR-BCD.

Another direction is to improve the tightness of the relaxation solved by LR-
BCD. Since the MAP relaxation solved by LR-BCD is not always tight, we would
like to extend LR-BCD to handle more constraints. A natural way is to use a
combination of LR-BCD and the bundle method. For example, we could add the
positivity constraints to avoid negative solutions. In the 1, 1 setting, these
constraints are similar to hypermetric inequalities. These constraints can be dualized
as in the MixCut chapter and we would use LR-BCD to solve the inner SDP with
the exactly-one constraint.

We also thought about combining ADMM with low-rank methods. Indeed, the
low-rank factorization would allow us to get rid of the projections onto the semidef-
inite cone. While the problem becomes non-convex, researchers began to derive
convergence properties for ADMM in non-convex settings [Wang et al., 2018]. Re-
cently, Chen et al. [Chen and Goulart, 2023] proposed a Burer-Monteiro ADMM to
solve the basic MaxCut SDP relaxation. However this method is limited to diago-
nally constrained SDPs and the extension to general constraints seems to be a hard
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problem.

Boosting LR-BCD with parallelization Finally, regarding LR-BCD, we thought
about a preprocessing step to accelerate the algorithm. The idea is to use paral-
lelization to solve multiple block optimization problems at the same time. Once
again, this result relies on the structure of the MAP problem. If we consider a
pairwise GM with associated graph G = (X,E), vertices that do not share an edge
can be updated in parallel. Indeed, in the SDP relaxation we presented, the two
corresponding variables share a zero block in the objective matrix. In this case,
therefore, the update of one variable has no eect on the update of the other vari-
able. Independent variables can be detected by applying a coloring algorithm on
the graph G. For the coloring problem, there exists an ecient heuristic called
DSATUR with complexity O(n2) where n is the number of vertices. At the end,
variables with the same colors can be updated in parallel. The number of parallel
blocks corresponds to the number of colors returned by the heuristic. Then, this
preprocessing step would be more ecient on sparse instances where the chromatic
number of the graph is more likely to be small.

LR-BCD will soon be integrated in the exact solver toulbar2 [Hurley et al., 2016]
as a preprocessing step. The operations within LR-BCD are not too complex, e.g.,
matrix-vector products, matrix-matrix products. We implemented our own linear
algebra routines to avoid additional dependencies in toulbar2.

Improvement of the MixCut solver Regarding the MixCut solver we are devel-
oping with Jan Schwiddessen, we plan to add pentagonal and heptagonal inequalities
to our relaxation. This work is the subject of Jan’s forthcoming visit to Toulouse.
Once completed, our work will be submitted to a journal, hopefully before the end
of the year.
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Appendix A

MixCut parameters

A.1 MixCut parameters

type parameter usage

int seed seed for the random number generator

int problem_type 0: Maxcut
1: QUBO in −1, 1 variables
2: QUBO in 0, 1 variables

int objective_is_integer 0: objective can take non-integer values
1: objective takes integer values only

int objective_sense 0: minimization problem
1: maximization problem

double X_abs_lower_bound only branch on Xij if Xij  ⩾ X_abs_lower_bound

double branching_X_abs_weight impact of Xij  for branching decision

int early_branching 0: no early branching
1: early branching

int min_iter minimum number of iterations of the Mixing Method

double tol_V_rel_early stopping tolerance if early branching is used

double tol_delta_abs stop Mixing Method when ∆ < tol_delta_abs

double tol_delta_rel stop Mixing Method when ∆(1 + fval) < tol_delta_rel

double tol_V_abs stop Mixing Method when ∥Vnew − Vold∥F < tol_V_abs

double tol_V_rel stop Mixing Method when ∥Vnew − Vold∥F (1 + ∥Vold∥F ) < tol_V_rel

int primal_heuristics 0: no primal heuristics
1: GW heuristic is applied once per subproblem
2: GW heuristic is applied more often for smaller subproblems
3: GW heuristic is applied k times (k is the rank for the factorization)
4: GW heuristic is applied n times (n is the size of the subproblem)

int good_hyperplane 0: no "good"/biased hyperplane
1: the rst hyperplane in GW heuristic always is a "good"/biased one

int local_search try to improve every primal feasible solution found by GW via local search
0: no local search
1: one-opt local search
2: one-opt and two-opt local search

int variable_xing 0: no variable xing
1: variable xing





Appendix B

Exactly-one and diagonal
projections

B.1 Exactly-one and diagonal projections

Without loss of generality, let us consider the rst exactly-one constraint, i.e., we

focus on the rst d1 entries of the vector b. Let M =


bb⊤ b

b⊤ 1


, We aim to nd the

unique solution to the minimization problem:

min
Y

∥Y M∥2F
s.t ⟨U1, Y ⟩ = 1

⟨Di, Y ⟩ = 0, i = 1,    , d1

(B.1)

If M is already feasible, then we have the trivial solution Y = M . We rewrite the
optimization problem (B.1):

min
Y

2

d1

i=1

(Yid+1 Mid+1)
2 +

d1

i=1

(Yii Mii)
2
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d1
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Yid+1 = Yii, i = 1,    , d1,

(B.2)

or equivalently:

min
Y

2

d1
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2 +

d1
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(Yid+1 Mii)
2

s.t
d1

i=1

Yid+1 = 1

(B.3)

The associated Lagrangian is:

L(λ, Y ) = 2

d1

i=1

(Yid+1 Mid+1)
2 +

d1

i=1

(Yid+1 Mii)
2 + λ(

d1

i=1

Yid+1  1) (B.4)
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Since the problem is convex, KKT conditions are necessary and sucient for
optimality. Therefore, we have to solve the following system of equations:




∂L
∂Yid+1

(λ, Y ) = 4(Yid+1 Mid+1) + 2(Yid+1 Mii) + λ = 0, i = 1,    , d1
d1

i=1

Yid+1 = 1

(B.5)
From the stationnarity conditions, we get:
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2
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3
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Plugging it back in the constraint:
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Finally we get:
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French summary

C.1 Introduction

La résolution pratique de problèmes combinatoires est un dé depuis de nombreuses
décennies. En principe, ces problèmes sont omniprésents. Ils sont au cœur de
certaines disciplines de l’intelligence articielle, comme le raisonnement automa-
tique. L’ordinateur apprend "comment raisonner" à partir d’un ensemble de règles
spéciées par le programmeur. Ces règles sont guidées par la logique formelle. Ce
paradigme a été utilisé avec succès pour prouver formellement des conjectures math-
ématiques qui étaient restées ouvertes pendant des décennies [Heule et al., 2016,
Brakensiek et al., 2022].

Dans cette thèse, notre travail se concentre sur un cadre qui peut être considéré
comme une extension du problème de satisfaction de contraintes (CSP). Pour ces
problèmes, nous devons traiter trois types d’objets : les variables, les domaines
discrets et les contraintes. Les variables sont associées à des domaines discrets
dans lesquels elles prennent leurs valeurs. Les contraintes décrivent des exigences
sur un ensemble d’une ou plusieurs variables. Par exemple, une contrainte peut
interdire une combinaison particulière de valeurs. Notre objectif est alors de poser
la question suivante : pouvons-nous trouver une aectation de toutes les variables
qui satisfasse toutes les contraintes ? Avec ces ingrédients, nous pouvons modéliser
un large éventail de problèmes allant de l’assignation de fréquences radio [Koster,
1999] au célèbre Sudoku. Les contraintes sont considérées comme des contraintes
dures. Si au moins une des contraintes est violée, la réponse à la question pour cette
aectation particulière est fausse.

Notre cadre, les modèles graphiques (GM), possède quelques propriétés qui les
rendent intéressants à étudier. Les GM sont dénis par les trois mêmes ingrédients
que les CSP, mais les contraintes sont remplacées par des contraintes "douces". Ces
contraintes sont des fonctions à valeur entière ou réelle qui prennent un ensemble
ni de valeurs non négatives. La valeur retournée par une telle contrainte pour une
aectation particulière des variables correspond à une violation, ou à un coût que
nous devons payer si nous choisissons cette aectation. Un GM dénit une fonction
jointe sur l’ensemble des variables qui donne le coût total de toutes les contraintes.
Une question naturelle sur les modèles graphiques consiste à trouver une aectation
des variables qui minimise la fonction jointe. La particularité de cette fonction jointe
est qu’elle peut être décrite comme une combinaison de "petites" fonction, ce qui la
rend intéressante à des ns d’optimisation.

L’aspect combinatoire de ces problèmes les rend diciles à résoudre. En eet, le
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nombre de combinaisons possibles pour évaluer les questions d’intérêt est exponen-
tiel dans le nombre de variables. Une idée pour surmonter ce problème est de plonger
dans le monde continu. Les domaines nis sont maintenant remplacés par des do-
maines continus, ce qui nous donne accès à toute la boîte à outils de l’optimisation
continue, et notamment, à des algorithmes de résolution en temps polynomial. Cette
transformation ne fournit qu’une approximation du problème original. Cependant,
elle fournit certaines informations qui peuvent nous aider à résoudre le problème
exactement. Dans cette thèse, nous avons décidé d’approximer les problèmes combi-
natoires avec la programmation semi-dénie (SDP). La programmation semi-dénie
est une sous-classe de l’optimisation convexe où les variables sont des matrices.

Notre principale motivation est d’explorer l’ecacité de ces méthodes pour ap-
procher l’optimum de la fonction conjointe dénie par un GM. A cet égard, nous
avons généralement un compromis entre la qualité de l’approximation et l’eort con-
sacré à sa résolution. pour la résoudre. En général, travailler avec des matrices est
coûteux en termes de mémoire et de nombre d’opérations. nombre d’opérations.
Cependant, nous verrons qu’il existe des méthodes pour les traiter ecacement. les
manipuler ecacement.

C.2 Organisation du manuscrit

Cette thèse est organisée en 4 chapitres.
Le Chapitre 1 est une introduction aux modèles graphiques (GM). Nous donnons

une brève étude des aspects théoriques et des requêtes sur les modèles graphiques.
En particulier, nous nous intéressons à une requête d’optimisation qui correspond
à minimiser la fonction jointe dénie par le GM. Ce problème d’optimisation est
NP-Complet. Nous donnons un aperçu des diérents outils théoriques et pratiques
qui ont été développés pour résoudre ce problème en pratique.

Le Chapitre 2 présente deux nouvelles relaxations pour le problème du Maximum
A Posteriori (MAP) sur les modèles graphiques discrets binaires. Le problème com-
binatoire original est relaché en deux programmes semi-dénis, que nous résolvons
en utilisant des méthodes ecaces de rang faible. Le premier solveur est basé sur
la mixing method, une méthode de rang faible dédiée aux SDP à contraintes diag-
onales. Pour la deuxième relaxation, nous avons développé un solveur qui eectue
des étapes de descente en coordonnées par bloc. Pour réaliser une étape descente
en coordonnées, nous devons résoudre un problème d’optimisation sur la sphère
unité. Nous montrons que nous pouvons résoudre ce problème ecacement en util-
isant, entre autres, des notions de trigonométrie et l’algorithme de Newton. Nous
comparons nos deux méthodes avec des solveurs de pointe pour le problème MAP.
Nous démontrons la qualité des solutions SDP pour certains types de problèmes.
Nous démontrons également que notre deuxième méthode a de bonnes propriétés
de scalabilité. Enn, nous avons appliqué cette méthode à deux cas d’utilisation
réels : l’assemblage de génomes et la conception computationnelle de protéines. Le
travail de ce chapitre a été publié à la Conférence internationale sur l’apprentissage
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automatique (ICML) [Durante et al., 2022].
Dans le Chapitre 3, nous explorons un nouvel ensemble de contraintes pour

renforcer la relaxation SDP du problème MAP. Pour maintenir un bon compromis
entre le coût de calcul et la qualité de la solution, nous avons décidé d’utiliser une
méthode du premier ordre pour résoudre approximativement la relaxation. Cette
méthode permet également de calculer une borne duale avec garantie. Nous com-
parons les résultats de cette méthode avec les deux solveurs de rang faible présentés
précédemment.

Dans le Chapitre 4, nous nous intéressons à la résolution optimale de MaxCut,
qui est un problème combinatoire central en théorie des graphes. La résolution de
MaxCut est pertinente dans le contexte de cette thèse puisqu’il partage des liens
étroits avec le problème MAP sur les GM discrets. Nous proposons un nouveau
solveur SDP basé sur l’une des méthodes de rang faible que nous avons utilisées dans
le deuxième chapitre. Nous montrons comment cette méthode peut être incorporée
dans un algorithme de branch and cut. Ce travail est le résultat d’une collaboration
commencée lors d’une visite à l’Institut Mathématique de Klagenfurt. Il sera soumis
dans un journal avant la n de l’année.

C.3 Modèles graphiques discrets

Les modèles graphiques (GM) dénissent un cadre mathématique permettant
de décrire de manière concise une fonction multivariée à l’aide d’un certain type de
factorisation. Notre étude se limite aux fonctions de variables discrètes. Un grand
nombre de problèmes en informatique, Logique, Programmation par contraintes,
Apprentissage automatique, Physique statistique et Intelligence articielle peuvent
être modélisés à l’aide de modèles graphiques. Un GM est déni par un ensemble
de variables et un ensemble ni de petites fonctions qui sont combinées ensemble en
une fonction multivariée jointe. Les petites fonctions impliquent généralement peu
de variables ou peuvent être représentées de manière concise à l’aide d’un langage
spécique.

Par exemple, les modèles graphiques avec des fonctions binaires et des variables
booléennes sont utilisés dans le raisonnement automatisé. Les petites fonctions sont
dénies par une disjonction de variables ou de leur négation. Ces fonctions, appelées
clauses, sont à leur tour combinées avec l’opérateur de conjonction pour dénir la
forme normale conjonctive. Ce cadre est utile pour décrire des propriétés logiques
telles que les circuits logiques intégrés dans le matériel informatique. Nous pouvons
envisager diérentes requêtes sur ce type de modèle graphique, comme le problème
SAT, qui cherche à démontrer l’existence d’une aectation satisfaisant la formule
booléenne conjonctive. Si nous considérons plutôt des fonctions booléennes sur
des ensembles de variables avec des domaines nis, combinées avec la conjonction,
nous obtenons un réseau de contraintes (CN). La recherche d’une aectation des
variables qui optimise la fonction conjointe est appelée problème de satisfaction de
contraintes (CSP). Compte tenu de la taille des données d’entrée, il n’existe pas,
dans le pire des cas, d’algorithme connu en temps polynomial pour résoudre ces
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problèmes. SAT est le premier problème NP-complet connu [Cook, 2023], ce qui
signie que tout problème NP peut y être réduit à l’aide de réductions en temps
polynomial.

Les petites fonctions peuvent également être décrites comme des tenseurs de
valeurs réelles. Combinées avec l’addition ou la multiplication, nous pouvons mod-
éliser une distribution de probabilités discrète comme cela est fait avec les réseaux
bayésiens (BN). Après normalisation, les champs aléatoires de Markov (MRF) dénis-
sent également une distribution jointe sur des variables discrètes [Koller and Fried-
man, 2009, Bishop and Nasrabadi, 2006].

En résumé, la dénition générale des modèles graphiques couvre une variété
de cadres bien étudiés, y compris les réseaux de contraintes [Rossi et al., 2006],
la logique propositionnelle [Biere et al., 2009], les modèles d’indépendance addi-
tive généralisée [Bacchus and Grove, 2013], la logique propositionnelle pondérée, les
champs aléatoires de Markov [Kindermann and Snell, 1980, Koller and Friedman,
2009], les réseaux bayésiens [Koller and Friedman, 2009] (MRF avec des tenseurs
normalisés décrivant des probabilités conditionnelles, organisés selon des graphes
acycliques directs), réseaux de contraintes possibilistes et oues [Dubois et al., 1993].
C.3.1 Notations, dénitions

Nous donnons maintenant la dénition formelle des modèles graphiques dis-
crets [Cooper et al., 2020].
Denition 23. Modèle graphique. Un modèle graphique discret M = ⟨X,Φ⟩ avec
un co-domaine B et un opérateur de combinaison ⊕ est déni par:

• Un ensemble X de n variables, chaque variable est associée à un domaine
discret.

• Un ensemble de fonctions (ou potentiels) Φ. Chaque fonction θS  Φ est une
fonction de DS → B. S est appelé le scope de la fonction et S est son arité.

M dénit une fonction jointe:

ΘM : DX → B

v →


θS∈Φ
θS(v[S])

Dans cette thèse, notre travail se concentre principalement sur les modèles
graphiques additifs également appelés Réseaux de Fonctions de Coûts (CFNs) [Dechter,
2022, Cooper et al., 2020]. Le co-domaine B est l’ensemble des entiers positifs
borné par ⊤  N  +∞. L’opérateur ⊕ est déni par l’addition bornée a+⊤ b =

min(⊤, a+ b).

Denition 24. Réseau de Fonctions de Coûts. Un réseau de fonctions de coûts
(CFN) est un modèle graphique C = ⟨X,C⟩ avec:

• Un ensemble X = (x1,    , xn) de n variables discrètes. Chaque variable xi
prend ses valeurs dans le domaine Di
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• Un ensemble C de fonctions de coûts. Une fonction cS  C associe à chaque
tuple de DS un élément du co-domaine 0,    ,⊤

C dénit une fonction jointe:

CC : DX → 0,    ,⊤
v →



cS∈C

⊤
cS(v[S]) (C.1)

En raison de leur expressivité, les CFN peuvent être utilisés pour modéliser de
nombreux types de modèles graphiques. Les fonctions de coûts dont les valeurs sont
comprises dans 0,    ,⊤ sont des contraintes souples. Pour un cS  C particulier
et une séquence v  DX , la valeur cS(v[S]) peut être considérée comme une violation
de la contrainte. L’élément maximum ⊤ encode les tuples interdits, c’est-à-dire que
les aectations partielles avec un coût ⊤ sont interdites. Lorsqu’une fonction de
coûts prend ses valeurs dans 0,⊤, il s’agit d’une contrainte dure.

Tout au long du manuscrit, nous limitons notre étude aux modèles graphiques
binaires, i.e., les petites fonctions ont toutes une arité d’au plus 2. Nous disposons
alors d’une représentation naturelle des fonctions à l’aide de vecteurs et de matrices
dont les valeurs se trouvent dans le co-domaine B. Lorsqu’ils contiennent un petit
nombre de valeurs diérentes de l’élément minimal ⊥, on peut utiliser des structures
éparses pour stocker l’information de manière concise.

Une autre classe importante est celle des modèles graphiques stochastiques pour
lesquels le co-domaine est l’intervalle réel [0,+∞]. Dans ce cas, l’opérateur ⊕ est la
multiplication et les fonctions décrivent des probabilités marginales non normalisées
sur un sous-ensemble de variables.

Denition 25. Champs de Markov Aléatoires. Un champ de Markov aléatoire
(MRF) [Koller and Friedman, 2009] est un modèle graphique M = ⟨X,Φ⟩ avec:

• Un ensemble X = (x1,    , xn) de variables aléatoires discrètes. Chaque vari-
able aléatoire xi prend ses valeurs dans le domaine Di.

• Un ensemble Φ de potentiels. Un potentiel θS  Φ associe à chaque tuple de
DS un élément du co-domain [0,+∞].

M dénit une fonction jointe:

ΘM : DX → [0,+∞]

v →


θS∈Φ
θS(v[S]) (C.2)

C.4 Requêtes et optimisation exacte

Dans la première section, nous avons présenté les modèles graphiques discrets,
un cadre puissant qui permet d’exprimer de nombreux problèmes diérents. Les
requêtes sur les modèles graphiques demandent de calculer des informations simples
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sur la fonction jointe, telles que son minimum ou sa valeur moyenne. Ces requêtes
couvrent un large éventail d’applications en intelligence articielle ou en informa-
tique, par exemple.
C.4.1 Optimisation sur les modèles graphiques

Une requête habituelle sur les MRF consiste à trouver l’aectation la plus prob-
able, également appelée Maximum À Posteriori (MAP). Une distribution de prob-
abilité peut être récupérée à partir de la fonction jointe en calculant une constante
de normalisation également appelée fonction de partition.
Denition 26. Fonction de partition. La fonction de partition Z d’un champ
de Markov aléatoire M = ⟨X,Φ⟩ est dénie comme la somme des potentiels sur
l’ensemble de toutes les aectations v  DX :

Z =


v∈DS



θS∈Φ
θS(v[S])

Calculer la fonction de partition est également une requête sur les MRF. Cette
requête est #P-complete [Valiant, 1979]. Par la suite, nous pouvons dénir la dis-
tribution de probabilité associée au MRF:

pM : DX → [0, 1]

vX → PM(v) = 1
Z



θS∈Φ
θS(v[S])

Denition 27. Maximum À Posteriori. Le problème du Maximum À Posteriori
(MAP) sur un champ de Markov aléatoire M = ⟨X,Φ⟩ consiste à trouver une
aectation v  DX avec la probabilité maximale:

max
v∈DX

P (v) =
1

Z



θS∈Φ
θS(v[S])

Il convient de noter qu’à des ns d’optimisation, la fonction de partition n’est
pas pertinente et que l’on peut directement travailler avec la distribution jointe non
normalisée. Il existe une requête équivalente sur les CFN, à savoir le problème de
satisfaction de contraintes pondérées.

Denition 28. Problème de Satisfaction de Contraintes Pondérées. Le Problème
de Satisfaction de Contraints Pondérées (WCSP) sur un CFN C = ⟨X,C⟩ consiste
à trouver une aectation v  DX avec un coût minimal:

min
v∈DX

CC(v) =


cS∈C

⊤
cS(v)

C.5 Méthode de descente en coordonnées vs descente
par bloc

Dans ce chapitre, nous présentons deux méthodes pour la reformulation quadra-
tique 0/1 avec contraintes du problème MAP sur des modèles graphiques discrets
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binaires. La première méthode est basée sur l’idée que l’on peut reformuler un prob-
lème quadratique 0/1 avec des contraintes linéaires comme un problème MaxCut en
utilisant une pénalisation des contraintes. Nous présentons ensuite une nouvelle
méthode dédiée qui évite l’introduction de coecients de pénalité importants pour
modéliser le problème. Les deux problèmes d’optimisation discrets sont relachés
au moyen de programmes semi-dénis de rang faible. Par rapport à ce qui a été
fait dans la littérature, les deux approches de rang faible peuvent être appliquées
à des modèles graphiques discrets avec un nombre arbitraire d’états et des poten-
tiels binaires arbitraires. L’objectif sous-jacent à ces deux méthodes est de calculer
des bornes fortes sur le problème d’optimisation discret en utilisant des relaxations
SDP tout en se rapprochant de l’ecacité de calcul des méthodes de programmation
linéaire. Les deux méthodes sont ensuite comparées à des solveurs de pointe sur un
ensemble de problèmes aléatoires et réels. Ce chapitre est organisé en quatre parties
:

• LR-LAS 2.1 : nous présentons notre première méthode SDP de rang faible pour
le problème MAP sur les MRF discrets. La formulation quadratique binaire
est réduite à un problème MaxCut en utilisant le résultat de pénalisation de
Lasserre [Lasserre, 2016]. Nous résolvons ensuite la relaxation SDP de base
du problème MaxCut à l’aide de la mixing method [Wang et al., 2017].

• LR-BCD 2.2 : nous introduisons une nouvelle formulation SDP ainsi qu’un
algorithme de descente par blocs de coordonnées dédié qui tire parti des pro-
priétés structurelles de notre problème. Nous démontrons certaines propriétés
théoriques de ce nouvel algorithme SDP de rang faible.

• Expériences 2.3 : nous comparons nos deux méthodes par rapport à des
solveurs de pointe basés sur la programmation linéaire et sur des méthodes de
message passing. Pour les expériences, nous considérons des problèmes aléa-
toires ainsi que des problèmes tirés d’applications réelles. Certains paramètres
sont discutés, comme le rang de la relaxation de rang faible.

• Discussion 2.4 : enn, nous discutons de certaines caractéristiques et propriétés
théoriques supplémentaires de LR-BCD.

Les techniques d’approximation pour MaxCut basées sur la programmation
semi-dénie ont été largement étudiées depuis le travail fondateur de [Goemans
and Williamson, 1995]. Comparées aux approches de programmation linéaire, elles
fournissent souvent des bornes beaucoup plus fortes pour une variété de problèmes
d’optimisation combinatoire. Cependant, l’utilisation des SDP reste limitée pour les
problèmes MAP/WCSP. La raison principale réside dans le fait que les algorithmes
de résolution usuels pour les SDPs, les méthodes de point intérieur, nécessitent une
complexité cubique dans la taille du problème. Ainsi, ces méthodes ne passent pas
à l’échelle et sont essentiellement utilisées pour de petits problèmes très diciles.
Pour cette raison, les méthodes LP approximatives sont généralement préférées car
elles permettent un meilleur compromis entre la qualité des bornes et le coût de
calcul.
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L’utilisation de la programmation semi-dénie pour le problème MAP et d’autres
applications s’est améliorée grâce à l’introduction d’une approche de rang faible, non
convexe, par Burer et Monteiro. Cette approche exploite les résultats de [Barvinok,
1995] et [Pataki, 1998] qui ont montré que tout problème SDP possède une solution
de rang O(

√
m) avec m le nombre de contraintes. Cette méthode utilise une fac-

torisation de rang faible X = V V ⊤ de la matrice semi-dénie X dans la relaxation
SDP de ces problèmes combinatoires. En pratique, il a été observé depuis que le
rang de la solution est souvent inférieur et certains logiciels utilise un rang constant
de O(1) pour la factorisation.

C.6 Renforcer les bornes avec de nouvelles contraintes

Dans le chapitre précédent, nous avons introduit deux méthodes dédiées à la réso-
lution de deux relaxations diérentes du problème MAP sur des modèles graphiques
discrets. Nous avons vu que pour certains types d’instances, la relaxation résolue
par LR-BCD peut être faible. Parfois, la solution de la relaxation SDP a une valeur
négative, ce qui n’est pas utile puisque nous savons que la valeur optimale du prob-
lème MAP est toujours au moins positive. Dans ce chapitre, nous résolvons ce prob-
lème en introduisant de nouvelles contraintes pour notre relaxation SDP. Une idée
naturelle pour obtenir une relaxation plus forte est de mieux caractériser l’ensemble
réalisable du problème MAP. L’ajout de nouvelles contraintes à notre formulation a
un certain coût. Dans ce chapitre, nous avons choisi de favoriser la qualité des bornes
à l’ecacité de calcul. Comme il n’est pas certain que nous puissions généraliser
LR-BCD pour traiter d’autres contraintes que la contrainte "exactement un", nous
avons décidé d’explorer d’autres méthodes pour résoudre la relaxation SDP. Comme
nous introduisons maintenant un nombre potentiellement important de contraintes
pour représenter notre ensemble réalisable, les méthodes de points intérieurs sont
trop coûteuses en termes de calcul pour la relaxation que nous considérons. Nous
nous sommes donc concentrés sur les méthodes du premier ordre, en particulier la
méthode des directions alternées (ADMM). En général, ces méthodes peuvent né-
cessiter de nombreuses itérations pour converger vers l’optimum exact. Cependant,
elles sont très ecaces pour obtenir de bonnes solutions approximatives en un temps
relativement court par rapport aux méthodes de points intérieurs. Ce chapitre est
organisé en 4 parties :

• Une meilleure représentation de l’ensemble réalisable 3.1 : nous présentons les
nouvelles contraintes que nous avons décidé d’ajouter à notre relaxation. Ces
contraintes bénécient de certaines propriétés qui sont utiles pour la résolution
avec ADMM.

• Résolution avec ADMM 3.2 : nous résolvons la nouvelle relaxation SDP du
problème MAP avec une variante d’ADMM.

• Contraintes globales 3.3 : nous discutons de l’ajout de contraintes globales,
qui peuvent être intéressantes pour modéliser certains problèmes.
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• Résultats 3.4 : nous comparons ADMM avec LR-LAS et LR-BCD sur un
ensemble de problèmes aléatoires et réels. Pour certains cas, nous incluons
également une comparaison avec le solveur exact toulbar2. Nous discutons
également de l’ecacité des méthodes itératives pour calculer la projection
sur le cône semi-déni.

C.6.1 Discussion

Dans ce chapitre, nous avons essayé de favoriser la qualité des bornes par rap-
port à l’ecacité de calcul en renforçant la relaxation que nous avons considérée
au chapitre 2. En ajoutant les contraintes gangster et de positivité, les bornes sont
maintenant beaucoup plus fortes sur une variété de problèmes. Comme le nombre
de contraintes peut devenir très important, les méthodes de points intérieurs ne con-
viennent pas pour traiter ces relaxations SDP [Wiegele and Zhao, 2022]. Nous avons
donc utilisé un algorithme ADMM qui peut traiter ecacement notre ensemble de
contraintes. Cependant, ADMM est toujours limité par des appels à un algorithme
de calcul de valeurs et vecteurs propres pour les projections sur le cône semi-déni.
Comme le montrent les expériences avec les problèmes de protéines, les instances de
taille d > 1000 deviennent diciles pour ADMM. Nous avons discuté de l’utilisation
de méthodes itératives pour le calcul de vecteurs et valeurs propres an d’accélérer
les projections, mais cela ne convient pas à tous les types d’instances. Finalement,
nous espérons combiner les méthodes de rang faible avec ADMM pour obtenir le
meilleur des deux mondes.

C.7 Résolution de MaxCut avec des bornes SDP de rang
faible

Ce travail est réalisé en collaboration avec Jan Schwiddessen. Jan est un étudiant
en doctorat que j’ai rencontré pendant mon séjour à l’Institut mathématique de
Klagenfurt. Nous nous intéressions tous deux aux méthodes de résolution SDP
de rang faible. Après quelques discussions, Jan a proposé l’idée de développer un
nouveau solveur et l’aventure a commencé. Ce fut un grand plaisir de collaborer
avec lui sur ce projet, et nous prévoyons de soumettre un article avant la n de cette
année.

Dans ce chapitre, nous nous intéressons maintenant à la résolution exacte de
problèmes combinatoires. Nous présentons MixCut un solveur exact pour le problème
MaxCut basé sur la programmation semi-dénie. Il utilise une approche branch-
and-cut avec des inégalités hypermétriques pour renforcer la relaxation de base de
MaxCut. La procédure de bornage est ecacement réalisée par un algorithme SDP
de rang faible, la mixing method [Wang et al., 2017]. Nous proposons un ensemble
de nouvelles décisions de branchement basées sur des informations provenant des so-
lutions primales et duales, ainsi qu’une nouvelle heuristique pour calculer de bonnes
solutions entières. Expérimentalement, nous montrons que notre méthode est ca-
pable d’atteindre un meilleur compromis entre la qualité des bornes et le nombre
total de nœuds explorés dans l’arbre de recherche. Nous comparons nos résultats
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à un ensemble d’algorithmes de pointe grâce à une étude approfondie des instances
MaxCut denses de la bibliothèque BiqMac [Wiegele, 2007].
C.7.1 Introduction

MaxCut est un problème central de l’optimisation combinatoire. Étant donné un
graphe pondéré, il vise à trouver une partition des sommets en deux ensembles dis-
joints de sorte que la somme des poids des arêtes entre les ensembles soit maximisée.
Il a fait l’objet d’une grande attention au cours des dernières décennies en raison de
son large éventail d’applications en physique et en informatique. Dans les chapitres
précédents, nous avons vu que l’inférence MAP sur les GM discrets peut être réduite
à un problème MaxCut au moyen de la pénalisation exacte de Lasserre [Lasserre,
2016]. MaxCut est connu pour être NP-Dicile [Karp, 2010], et les chercheurs ont
essayé plusieurs méthodes pour le résoudre, notamment des algorithmes basés sur
des relaxations LP, qui sont ecaces pour les problèmes peu denses. [Goemans and
Williamson, 1995] ont démontré le célèbre ratio d’approximation de 0,87856 pour les
graphes avec des poids non négatifs en utilisant une relaxation SDP. Aujourd’hui,
pour les instances denses, les solveurs les plus performants utilisent presque tous des
relaxations semi-dénies. Même si ces méthodes ont donné d’excellents résultats,
la résolution optimale de MaxCut reste un dé, même pour des problèmes de taille
modérée. Bien qu’elles ne soient pas traitées en profondeur dans le manuscrit, des
heuristiques ont été développées pour trouver de bonnes solutions pour les prob-
lèmes à grande échelle [Benlic and Hao, 2013]. Récemment, MaxCut a connu un
regain d’intérêt avec les ordinateurs quantiques et l’algorithme d’optimisation ap-
proximative quantique (QAOA) [Farhi et al., 2014, Guerreschi and Matsuura, 2019].
C.7.2 Discussion

Pour améliorer encore notre solveur, nous aimerions explorer plusieurs stratégies.
Tout d’abord, en ce qui concerne les contraintes, seules les inégalités triangulaires
sont incluses. Pour les instances plus grandes, la relaxation peut ne pas être as-
sez forte, par conséquent, le nombre de nœuds ouverts dans l’arbre de recherche
augmente rapidement et l’espace de recherche devient trop grand pour prouver ef-
cacement l’optimalité. Cela peut également entraîner des problèmes de mémoire
puisque nous stockons des informations à chaque nœud. An de renforcer la re-
laxation et d’améliorer la procédure de bornage, nous souhaitons ajouter d’autres
inégalités hypermétriques. Suite au travail eectué dans BiqBin et Madam, nous
avons vu que les deux solveurs fournissent de meilleures bornes en incluant des iné-
galités pentagonales et heptagonales. La séparation des inégalités triangulaires peut
être eectuée par énumération complète en O(n3), pour les deux autres types il y a
un total de 16


n
5


et 64


n
7


inégalités respectivement. Pour que notre solveur reste

ecace, l’étape suivante consiste à trouver une bonne heuristique pour séparer les
inégalités pentagonales et heptagonales violées. Dans le cas de BiqBin et Madam,
cela est fait en résolvant approximativement un problème d’aectation quadratique
(QAP) avec un recuit simulé.

Une idée naturelle pour àméliorer les performances de notre solveur est d’utiliser
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la parallélisation pour l’algorithme de branch-and-cut. Cette méthode est déjà ex-
ploitée dans de nombreux solveurs exacts tels que BiqBin et Madam.

C.8 Conclusion

Dans cette thèse, nous avons exploré diérentes méthodes pour approximer la
solution du problème MAP sur des modèles graphiques discrets binaires. La réso-
lution pratique de problèmes combinatoires est un dé majeur dans de nombreux
domaines. Dans le chapitre sur l’état de l’art, nous avons présenté les modèles
graphiques, un cadre qui couvre une variété d’applications allant de la programma-
tion par contraintes à la conception computationnelle de protéines. Notre principale
motivation était de concevoir une méthode d’optimisation qui ore un bon compro-
mis entre ecacité et qualité. Par ecacité, nous entendons la capacité à s’adapter
à des problèmes de grande taille. Par qualité, nous entendons la capacité à donner
une approximation précise de la solution discrète.

Dans le chapitre 2, nous avons introduit deux relaxations continues du problème
MAP sur les modèles graphiques discrets binaires. Pour la première relaxation,
nous avons été guidés par les progrès récents de la résolution du problème MaxCut.
Nous avons utilisé une réduction exacte du problème MAP vers MaxCut proposée
par Lasserre. Plutôt que d’utiliser les méthodes habituelles de points intérieurs
pour résoudre la relaxation SDP de MaxCut, nous avons utilisé une méthode de
rang faible basée sur une descente en coordonnées. Cependant, nous avons réalisé
que cette méthode n’était pas adaptée pour traiter les grands facteurs introduits
par la pénalisation. Pour résoudre ce problème, nous avons proposé une deuxième
relaxation ainsi qu’une nouvelle méthode SDP de rang faible. Notre méthode repose
sur une descente par blocs de coordonnées. Pour eectuer une étape de descente
par bloc de coordonnées, nous résolvons un problème d’optimisation sur la sphère
unité à l’aide de la méthode de Newton.

Nous avons démontré quelques propriétés de notre algorithme. LR-BCD est tou-
jours décroissant et les points d’adhérence de la suite des itérés sont des points xes
pour la méthode. Nous avons également montré qu’à chaque itération, la matrice
de rang faible appartient toujours à l’ensemble réalisable, i.e., elle satisfait toujours
toutes les contraintes. Expérimentalement, nous avons comparé LR-BCD au solveur
commercial Mosek basé sur une méthode de points intérieurs. Nous avons constaté
que LR-BCD convergeait rapidement vers l’optimum global du problème SDP. Sur
certaines instances, nous obtenons une accélération de deux ordres de grandeur pour
converger vers une solution de bonne qualité. An de trouver des solutions entières
réalisables, nous avons également légèrement modié l’heuristique de Goemans et
Williamson. En utilisant une simple recherche locale, nous avons pu produire de très
bonnes solutions, parfois meilleures que celles des algorithmes spécialisés. En raison
de ses diérentes qualités, LR-BCD a été utilisé dans diérents projets. En partic-
ulier, il a été ajouté à un pipeline d’apprentissage profond développé par Marianne
Defresne pour la conception computationnelle de protéines.

Cependant, au cours des expériences, nous nous sommes rendu compte que
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pour certains problèmes notre relaxation n’était pas assez forte. Nous avons décidé
d’ajouter des contraintes supplémentaires an d’obtenir une meilleure représentation
de l’ensemble réalisable du problème combinatoire. Comme il n’était pas certain que
LR-BCD puisse être étendu pour traiter des contraintes plus générales, nous avons
décidé d’utiliser une méthode diérente pour résoudre la relaxation SDP correspon-
dante. Cette méthode a été suggérée par l’équipe d’optimisation du laboratoire de
mathématiques de Klagenfurt pendant mon séjour d’un mois à l’institut. Il s’agit
d’une variante de la méthode des multiplicateurs alternés, une méthode du premier
ordre qui donne de bons résultats pour la résolution des SDP.

Pendant mon séjour à Klagenfurt, j’ai également entamé une collaboration avec
Jan Schwiddessen, étudiant en doctorat sous la direction d’Angelika Wiegele. Cette
collaboration a donné lieu au travail du dernier chapitre. Nous nous sommes in-
téressés à la résolution exacte de problèmes combinatoires. Nous avons proposé un
nouveau solveur MaxCut exact basé sur une méthode SDP de rang faible. Nous
utilisons un algorithme de branch-and-cut avec une procédure de bornage qui est
ecacement réalisée grâce à la combinaison de la mixing et de la bundle method.
Pour notre solveur, nous avons développé de nouvelles décisions de branchement
ainsi qu’une version non aléatoire de l’heuristique de Goemans et Williamson. Nous
démontrons la supériorité de notre solveur par rapport aux méthodes existantes sur
une variété d’instances MaxCut de la bibliothèque BiqMac.

C.9 Perspectives

Travaux futurs sur LR-BCD L’algorithme d’optimisation central présenté dans
cette thèse peut être amélioré suivant plusieurs directions. Tout d’abord, il serait
intéressant de dériver d’autres propriétés de convergence pour LR-BCD, e.g., la
convergence vers l’optimum global. À la n du chapitre 2, nous avons caractérisé
les points xes de l’algorithme. Comme dans l’article de la mixing method, un
point de départ pour la preuve de convergence consisterait à analyser le jacobien de
l’application qui représente la méthode LR-BCD. Cependant, ce n’est pas une tâche
facile car nous n’avons pas de solution analytique pour les problèmes d’optimisation
par blocs.

Ensuite, si nous voulons utiliser LR-BCD dans un algorithme branch-and-bound,
nous devons calculer des bornes avec des garanties. Pour l’instant, LR-BCD est un
algorithme primal, de telle sorte que la valeur renvoyée ne donne pas de certication
sur la valeur de la borne inférieure. Notre objectif est de trouver une méthode
ecace pour obtenir une solution réalisable du problème dual. Dans le chapitre 4,
nous avons vu que nous pouvons produire une solution réalisable duale pour une
relaxation SDP particulière de MaxCut en utilisant la solution primale renvoyée par
la mixing method. Idéalement, nous aimerions disposer d’une méthode similaire
pour LR-BCD.

Une autre direction consiste à améliorer la qualité de la relaxation résolue par
LR-BCD. Puisque la relaxation MAP résolue par LR-BCD n’est pas toujours forte,
nous aimerions étendre LR-BCD pour traiter plus de contraintes. Un moyen naturel
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est d’utiliser une combinaison de LR-BCD et de la bundle method. Par exemple,
nous pourrions ajouter des contraintes de positivité pour éviter les solutions néga-
tives. Dans le cadre de problèmes avec des variables 1, 1, ces contraintes sont
similaires aux inégalités hypermétriques. Ces contraintes peuvent être dualisées
comme dans le chapitre sur le solveur MixCut et nous utiliserions LR-BCD pour
résoudre un SDP avec la contrainte "exactement un".

Nous avons également pensé à combiner ADMM avec des méthodes de rang
faible. En eet, la factorisation de rang faible nous permettrait de nous débarrasser
des projections sur le cône semi-déni. Les chercheurs ont commencé à dériver
des propriétés de convergence pour ADMM dans des contextes non-convexes [Wang
et al., 2018]. Récemment, Chen et al. [Chen and Goulart, 2023] ont proposé une
combinaison de l’agorithme ADMM avec la factorisation de Burer-Monteiro pour
résoudre la relaxation SDP de base du problème MaxCut. Cependant, cette méthode
est limitée aux SDP à contraintes diagonales et l’extension aux contraintes générales
semble être un problème dicile.

Accélération de LR-BCD grâce à la parallelisation Enn, en ce qui con-
cerne le LR-BCD, nous avons pensé à une étape de prétraitement pour accélérer
l’algorithme. L’idée est d’utiliser la parallélisation pour résoudre plusieurs prob-
lèmes d’optimisation par blocs en même temps. Une fois de plus, ce résultat repose
sur la structure du problème MAP. Si nous considérons un GM binaire avec un
graphe associé G = (X,E), les sommets qui ne partagent pas une arête peuvent être
mis à jour en parallèle. En eet, dans la relaxation SDP que nous avons présentée,
les deux variables correspondantes partagent un bloc zéro dans la matrice objective.
Dans ce cas, la mise à jour d’une variable n’a donc aucun eet sur la mise à jour de
l’autre variable. Les variables indépendantes peuvent être détectées en appliquant
un algorithme de coloration sur le graphe G. Pour le problème de coloration, il
existe une heuristique ecace appelée DSATUR avec une complexité O(n2) où n

est le nombre de sommets. A la n, les variables ayant les mêmes couleurs peuvent
être mises à jour en parallèle. Le nombre de blocs parallèles correspond au nombre
de couleurs retournées par l’heuristique. Cette étape de prétraitement serait donc
plus ecace sur des instances peu denses où le nombre chromatique du graphe a
plus de chance d’être petit.

LR-BCD sera bientôt intégré dans le solveur exact toulbar2 [Hurley et al., 2016]
en tant qu’étape de prétraitement. Les opérations au sein de LR-BCD ne sont
pas trop complexes, e.g., produits matrice-vecteur, produits matrice-matrice. Nous
avons implémenté nos propres routines d’algèbre linéaire pour éviter des dépen-
dances supplémentaires dans toulbar2.

Amélioration du solveur MixCut En ce qui concerne le solveur MixCut que
nous développons avec Jan Schwiddessen, nous prévoyons d’ajouter des inégalités
pentagonales et heptagonales à notre relaxation. Une fois terminé, notre travail sera
soumis à un journal, si possible avant la n de l’année.
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