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solutions d’équations différentielles stochastiques
avec une dérive singuliére ou méme distribution-
nelle et un bruit brownien (fractionnaire) additif.
Dans le cas brownien fractionnaire, |'existence et
I'unicité sont démontrées pour un ensemble de dé-
rives plus grand que ce qui était connu aupara-
vant, en utilisant 3 la fois les intégrales de Young
non linéaires et le lemme de la couturiére sto-
chastique (Stochastic Sewing Lemma) récemment
découvert. De plus, pour tout temps positif, on
montre que la loi de la solution a une densité et
on étudie sa régularité.
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ture plutét déterministe. Cela conduit naturelle-
ment 3 la notion d'unicité "trajectoire par trajec-
toire" qui est conceptuellement plus forte que les
notions habituelles d'unicité pour les équations dif-
férentielles stochastiques. Dans le cas brownien,
['unicité "trajectoire par trajectoire" est démon-
trée pour une classe de dérives singuliéres, éten-
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bornées. En outre, des contre-exemples sont four-
nis, montrant que |'unicité "trajectoire par trajec-
toire" est effectivement plus forte que les notions
habituelles d'unicité. En particulier, cela implique
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tiques dont les solutions ne sont pas adaptées.

Title : Stochastic differential equations with singular drift and (fractional) Brownian noise
Keywords : Stochastic Analysis, singular SDEs, fractional Brownian Motion, local time

Abstract : Existence and uniqueness of solutions
to stochastic differential equations with singular
or even distributional drift and additive (fractio-
nal) Brownian noise are studied. In the fractional
Brownian case existence and uniqueness is proven
for a larger class of drifts compared to the previous
literature, making use of both nonlinear Young in-
tegrals and the recently introduced Stochastic Se-
wing Lemma. Moreover, for any positive time, the
law of the solution is shown to have a density and
its regularity is investigated.

Some of the techniques involved are of a ra-

ther deterministic nature. This naturally leads to
the notion of “path-by-path” uniqueness which
is conceptually stronger than the usual notions
of uniqueness to stochastic differential equations.
In the Brownian case, path-by-path uniqueness
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I.1 Version francaise

Imaginons que l'on veuille modéliser le mouvement de particules dans un fluide. Cela dépend &
la, fois du mouvement intrinséque (diffusion) des particules et d’une dérive due & la vitesse du
fluide environnant. Ce qui semble étre un probléme d’EDP peut en réalité étre directement lié a la
théorie des probabilités, en particulier & la théorie des équations différentielles stochastiques (EDS).
Comme le mouvement Brownien peut modéliser le mouvement intrinséque aléatoire de la particule,
la littérature classique sur les EDS permet d’étudier de tels phénoménes pour une dérive réguliére.
Cependant, il est clair que cela n’est pas suffisant pour couvrir tous les cas physiquement pertinents,
car la vitesse du fluide peut étre singuliére en certains points de l'espace, par exemple en présence
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de tourbillons dans les écoulements turbulents (pour plus de détails sur de telles diffusions avec une
dérive singuliére, voir par exemple [90]). Une question naturelle se pose alors :

Quelle irrégularité peut avoir la dérive, tout en maintenant le caractére bien posé

de 'EDS correspondante ? (Q)

La réponse habituelle (qui peut étre assez surprenante & premiére vue!) est la suivante : si le
bruit est trés irrégulier (c’est-a-dire qu’il oscille beaucoup), le caractére bien posé peut étre garanti
méme pour des dérives trés singuliéres - un phénoméne souvent appelé "régularisation par le bruit"
(voir e.g. [42, 48]). En particulier, le caractére bien posé est obtenu pour des équations qui seraient
extrémement mal posées sans la présence de bruit.

Grace au théoréme de Donsker, I’exemple le plus courant de bruit est le mouvement Brownien.
Cependant, dans diverses situations, les accroissements futurs peuvent dépendre du comportement
du passé. Le mouvement Brownien fractionnaire est un processus gaussien simple qui autorise
des corrélations entre les différents accroisesements temporels, et il est donc souvent utilisé pour
modéliser de telles situations, dites avec "mémoire".

Tout au long de la thése, 'objectif principal est de répondre a la question (Q), en considérant
soit un bruit Brownien fractionnaire, soit un bruit Brownien.

I.1.1 Régularisation par le bruit - une perspective EDO

Cette section fournit une motivation et des explications informelles sur le phénoméne de régulari-
sation par le bruit. Pour des idées similaires et une compréhension plus approfondie, voir [42, 48].
Considérons une équation différentielle ordinaire (EDO) autonome de la forme

Le célébre théoréme de Picard-Lindelof affirme qu’il suffit que b soit lipschitzienne afin d’obtenir
une solution unique a 'équation ci-dessus pour une condition initiale donnée zy € R Pour des
fonctions non lipschitziennes b, I'unicité peut étre perdue, comme le montrent les deux exemples
suivants.

Exemple 1 : En prenant d = 1, b(-) = 2sgn(-)y/| - | et une condition initiale 2o = 0, toute
fonction de I’ensemble non dénombrable suivant

{(t — t0)*Lizty: to > 0}

résout le probléme de Cauchy ci-dessus. Cependant, cette sorte de "division" en différentes solutions
ne peut se produire qu'en 0 (en lespace). Pour des conditions initiales xg # 0, 'équation est
localement bien posée.

Exemple 2 : La situation peut étre encore pire lorsque b est discontinue. Prenons d = 1 et

b(x) =

0 pour x € Q,
1 pour z € R\ Q.

Pour une condition initiale rationnelle xg, & la fois x; = zg et xy = x¢ + ¢ résolvent le probléme de
Cauchy correspondant. Pour une condition initiale irrationnelle zg, x; = x¢ + t est une solution.
De plus, z; = x9 + (¢ — xo) A t est une solution pour tout rationnel ¢ > x. Nous constatons dans
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ces deux exemples unidimensionnels que les points o b s’annule et n’est pas lipschitzienne posent
probléme. Soit v : [0,00) — R une fonction donnée fortement oscillante avec 79 = 0. Lorsque
Iéquation (I.1.1) est perturbée par ~, écrite sous forme d’équation intégrale, elle prend la forme

t
T = T + / b(xs)ds + . (L.1.2)
0

On pourrait espérer que v empéche 'apparition d’une "division" comme dans les exemples ci-dessus,
car les oscillations du "bruit" v pourraient empécher que la solution reste sur les points critiques
ou b s’annule. Pour renforcer 'intuition de cet argument informel, on peut réécrire I’équation apreés
avoir posé £ = x — vy, par

t
i = x0 + / b(Zs + s)ds. (1.1.3)
0

Si l'on sait a priori que Z oscille moins vite que ~y, alors sur un petit intervalle de temps [u, v],

v

/uv b(Zs + 7s)ds ~ / b(Z + 7s)ds. (1.1.4)

u

Donc, de maniére informelle, pour de petits intervalles de temps, on peut considérer que I est
constant. Ainsi, pour étudier (I.1.2) et l'effet de régularisation de v, on peut examiner l'opérateur
de moyennisation, défini par

T7: (t,2) — /t b(z + v, )dr, (I.1.5)
0

avec ’espoir de retrouver la continuité lipschitzienne en espace de T7b, tout en conservant la régu-
larité e-Holder en temps. Ainsi, pour des intervalles de temps suffisamment petits [s, t], et pour
deux solutions z, g,

t t
31— 3= = )l = | [ 00 a0 = [ o+

Q

/: b(Zs + yr)dr — /: b(7s + %«)dr)

= |T70(t,Zs) — T7b(s,Zs) — (T7b(t,ys) — T7b(s,7s))

S (6= 8)%|2s — 9sl-

Dans certaines situations, cela suffit pour garantir 'unicité en étudiant un espace qui inclut toutes
les solutions (voir par exemple [34]) ou en faisant appel & lexistence d’un flot (voir [101] ou le
Chapitre V). En général, cette condition permet de garantir 'existence d’une solution a (I.1.3) et
donc & (1.1.2) via un schéma d’Euler (voir la Section I11.3.2).

L’idée générale a garder en mémoire est que méme si b présente des discontinuités ou des singu-
larités, cela ne devrait pas avoir une grande influence sur la function T7b, car les oscillations rapides
de v empéchent z + v de passer beaucoup de temps autour de ces discontinuités/singularités. Cette
idée est un théme récurrent tout au long de la thése, permettant d’analyser I'effet de régularisation
de v et de définir une notion de solution & (I.1.2), y compris lorsque b est une distribution.

Il est important de noter que dans tous les arguments (heuristiques) ci-dessus, aucune technique
probabiliste n’est requise, ce qui conduit naturellement & des notions d’existence et d’unicité des
solutions de nature déterministe, méme si v est échantillonné & partir de la loi d’un processus
stochastique (voir la Section 1.1.4).
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I.1.2 Régularisation par le bruit - une perspective EDS

Cette section offre une bréve revue de littérature dans le cas ol v est échantillonné & partir de la loi
d’un mouvement Brownien (fractionnaire). Classiquement, cela est fait dans le sens des EDS avec les
concepts courants d’existence et d’unicité des solutions adaptées (faibles/fortes) et d’unicité parmi
elles (soit en loi, soit trajectorielle). Cette section se concentre sur ces notions classiques. Pour des
résultats plus récents fondés sur une approche trajectoire par trajectoire, nous renvoyons le lecteur
a la Section 1.2.3. Pour une comparaison de ces concepts, voir le Chapitre VI et la Section V.B.

Afin d’introduire 'EDS qui nous intéresse, rappelons d’abord la définition d’'un mouvement
Brownien fractionnaire.

Mouvement Brownien fractionnaire. Le mouvement Brownien fractionnaire (mBf) de paramétre
de Hurst H € (0, 1) est le processus gaussien centré (B;):>o de covariance
1

= (32H+t2H— \t—s|2H),Vs,t>O.

E[BsBy] = 5

La définition s’étend immédiatement & d dimensions en considérant d mouvements Browniens frac-
tionnaires indépendants de paramétre de Hurst H. Le cas H = 1/2 coincide avec la définition
d’un mouvement Brownien ; H € (1/2,1) conduit & des accroissements positivement corrélés ainsi
qu’a une mémoire longue et H < 1/2 conduit 4 des accroissements négativement corrélés et a des
trajectoires trés irréguliéres. Ces corrélations entre les accroissements font du mouvement Brownien
fractionnaire un exemple intéressant de processus stochastique pour décrire des phénoménes réels
(par exemple en finance, voir [17, 31, 56]). De plus, en utilisant le théoréme de continuité de Kol-
mogorov, il est facile de voir que pour tout « € (0, H), il existe une version du processus qui est
a-Holder continue. Ce n’est pas le cas pour & = H. En fait, pour presque chaque trajectoire, il n’y a
pas de points de continuité H-Holder, ce qui fait du mBf un exemple de processus (fortement) oscil-
lant. Par conséquent, pour de petites valeurs de H, il devrait y avoir un fort effet de régularisation
du mBf en raison de cette nature oscillante, de par les intuitions esquissées dans la Section I1.1.1.
Ainsi, tout au long de cette thése, nous considérons H < 1/2, ce qui permet de prendre en compte
des dérives distributionnelles. Un lien rigoureux entre le mBf et le mouvement Brownien via une
formule de représentation intégrale est établi dans la Section II.A.2.

EDS étudiées. Considérons 'EDS

t
Xt:Xo—s—/ b(s, Xo)ds + B, € [0,T], (1.1.6)
0

oa T > 0 est un temps déterministe fixé, b: [0,7] x R? — R est mesurable et B est un mouvement
Brownien fractionnaire d-dimensionnel. Dans la suite, une revue de littérature succincte sur (1.1.6)
est présentée, en se concentrant spécifiquement sur les conditions sur b pour assurer le caractére
bien posé de I'équation. Certains cas particuliers de (1.1.6) sont considérés (par exemple une dérive
unidimensionnelle, autonome). Cependant, & ce stade, pour simplifier, nous choisissons de négliger
cela.

Cas Brownien. Si B est un mouvement Brownien unidimensionnel et b est une fonction mesurable
bornée, il est montré dans [116] qu’il existe une solution forte & (I.1.6) et que I'unicité trajectorielle
est aussi vérifiée. Cela est réalisé par la transformation de Zvonkin ; une transformation déterministe
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découlant de la solution d’une EDP bien choisie, afin de supprimer le terme de dérive irréguliére.
Cette idée est réutilisée dans [110] pour étendre le résultat au cas multidimensionnel. Krylov et
Rockner [68] ont étendu ces résultats, dans le cas d’un bruit additif, & des dérives b non bornées
satisfaisant la condition d’intégrabilité

T a : 9 2 d
(/ (/ |b(r,m)|pd:v)7’dr> " <00, (p,q)€ (2,00)° avec = + — < 1. (I1.1.7)
0 Rd q p

L’existence de solutions faibles et 'unicité trajectorielle sont démontrées séparément ce qui donne
également I'existence de solutions fortes par le principe de Yamada-Watanabe (voir [113]). L’existence
de solutions faibles est prouvée de maniére classique (voir par exemple [90, Chapitre 1, Section 4])
en supprimant le terme de dérive via une transformation de Girsanov. Cela est également possible
pour un coefficient de diffusion non constant (voir [115]).

Cas du mouvement Brownien fractionnaire. Comme le mouvement Brownien fractionnaire
n’est ni un processus de Markov ni une semimartingale pour H # 1/2, les techniques EDP men-
tionnées ci-dessus et le calcul stochastique classique ne sont pas disponibles, il faut donc trouver
d’autres idées. Néanmoins, une transformation de Girsanov est toujours possible (voir [35]). Dans ce
paragraphe, nous esquissons briévement la chronologie détaillée des résultats, pour une présentation
des résultats, voir la Section III.A.

Une premiére tentative en ce sens est due & Nualart et Ouknine [83, 84|, qui montrent I'existence
et I'unicité pour certaines dérives non Lipschitziennes. Cela est fait en utilisant d’abord la trans-
formation de Girsanov pour obtenir une existence et une unicité faible et 'observation que dans ce
cas, ces deux propriétés sont suffisantes pour obtenir également une unicité trajectorielle. Dans un
travail fondateur, Catellier et Gubinelli [24] prouvent le caractére bien-posé (au sens trajectoire par
trajectoire, voir la Section 1.2.3) pour des dérives distributionnelles indépendantes du temps b € C?
pour B € R avec B > 1 —1/(2H). Lorsque 8 < 0, C? est un espace de Holder généralisé contenant
des distributions. Cela est réalisé par une étude approfondie de opérateur de moyennisation as-
socié & chaque trajectoire du mouvement Brownien fractionnaire, en appliquant la transformation
de Girsanov et en reformulant ’équation comme une équation intégrale de Young non linéaire (voir
la Section I1.3). Dans le Chapitre II, différents résultats sur 'existence et I'unicité sont présentés
pour des classes de dérives distributionnelles qui ne sont pas couvertes dans |24]. En particulier,
I’existence d’une solution faible est prouvée pour b € C? avec 8 > 1/2 — 1/(2H) et l'unicité tra-
jectorielle est démontrée pour § = 1 — 1/(2H) lorsque b est une mesure. En termes d’existence
de solutions faibles, ces résultats sont affinés pour une dérive & valeurs dans les mesures dans le
Chapitre III. Depuis mon travail, dans des cas spécifiques, c’est-a-dire lorsque b satisfait une certaine
condition d’intégrabilité ou est une mesure finie, des résultats plus fins one été obtenus dans [20],
qui améliore davantage 1'unicité et I'existence.

Dans [32], les auteurs adoptent une approche basée sur la formule de Clark-Ocone pour étudier
les dérives aléatoires dépendant du temps. Dans [49], les auteurs étendent le résultat principal
de [24] aux dérives distributionnelles dépendant du temps avec une singularité dans le temps, en
récupérant le régime sous-critique complet en termes de régularité spatiale, pour des cas particuliers
d’ intégrabilité en temps.

A ce stade, mentionnons que tout au long de cette thése, nous ne considérons pas de bruit
multiplicatif. Cela simplifie les choses, car il n’y a pas d’ambiguité dans la définition d’une intégrale
par rapport au bruit. Sinon, il faudrait aborder cette question, par exemple en supposant une



8 I. INTRODUCTION

régularité suffisante de la diffusion et du mouvement Brownien fractionnaire pour les interpréter
comme une intégrale de Young ou une intégrale rugueuse. Ainsi, le bruit multiplicatif est délicat dans
le sens o1 un bruit plus rugueux, d’une part aide & régulariser ’équation, d’autre part complique la
définition du terme intégral. Nous mentionnons seulement une sélection de travaux : Dans [33], le
caractére bien-posé des équations intégrales de Young et des équations intégrales rugueuses avec une
dérive irréguliére est démontrée. Les auteurs dans [80] affaiblissent les hypothéses sur la régularité
du terme de diffusion via une extension du lemme de la couturiére stochastique, en considérant
I’équation comme une équation intégrale de Young.

Une autre question intéressante qui n’est pas abordée dans cette thése est celle de la limite de
bruit nul : remplacer B; dans (I.1.6) par B; et faire tendre ¢ vers zéro. Dans le cas ou il n’y a
pas d’unicité pour 'équation non perturbée, quelle solution récupérerons-nous & la limite 7 Dans le
cas Brownien, cette question a été résolue dans [10] pour une classe de dérives positives, cependant
dans le cas du mouvement Brownien fractionnaire, cette question semble encore trés ouverte. Pour
une présentation plus détaillée de ce sujet, voir [42, Section 1.4].

Mouvement Brownien (fractionnaire) biaisé. De nombreuses situations physiques impliquent
des phénomeénes de diffusion dans des milieux hétérogenes (voir [74] pour des références décrivant
ces phénoménes en physique, mais aussi en biologie, en finance, etc.). Le mouvement Brownien bi-
aisé (mouvement Brownien “partiellement réfléchi”) est un objet probabiliste qui permet de décrire
ce comportement.

Le mouvement Brownien biaisé a été introduit pour la premiére fois dans [66] avec 'idée suiv-
ante. On considére un mouvement Brownien et chaque fois qu’il atteint 'axe des abscisses, une
variable aléatoire de Bernoulli indépendante est introduite. Avec une probabilité 1, le mouvement
Brownien est “poussé dans R.”, avec une probabilité 1 —1, le mouvement Brownien est “poussé dans
R_". Lorsque = 1, on retrouve un mouvement Brownien réfléchi. Un tel processus peut également
étre construit via une approximation par des marches aléatoires biaisées (voir [74]). Notons qu’en
dehors de 0, le processus ci-dessus se comporte comme un mouvement Brownien. Comme cela avait
été suggéré dans [66], Walsh [111] a prouvé que le mouvement Brownien biaisé définit un processus
de diffusion et a donné deux motivations principales pour I'étude de cet objet. Premiérement, il
permet de modéliser le comportement d’une particule qui se déplace entre deux milieux différents.
Deuxiémement, il fournit un exemple d’objet avec un temps local discontinu en espace di au com-
portement en 0. Bien que le mouvement Brownien réfléchi partage cette propriété, ce n’est pas un
exemple trés satisfaisant car le codomaine naturel pour le mouvement Brownien réfléchi est [0, 00),
contrairement au mouvement Brownien biasé qui évalue dans tout R Pour plus de détails et di-
verses constructions du mouvement Brownien biaisé, voir [74]. De plus, il existe un lien clair entre
le mouvement Brownien biaisé et le type d’équations qui nous intéressent, clarifié ci-dessous.

Pour le bruit Brownien et la dérive autonome b = dg, il est connu qu’il existe une unique solution
forte a I’équation (I.1.6) donnée par le mouvement Brownien réfléchi (voir e.g. [73]). Ainsi, le Dirac
en zéro peut étre interprété comme la force exacte nécessaire pour réfléchir la solution le long de I'axe
des abscisses. De plus, on peut donner un sens & l'intégrale formelle fo 0o(X,)dr en Dinterprétant
comme le temps local de X en 0. Cette idée a été exploitée dans [63] (avec une généralisation
ultérieure dans [73]) & une dérive sous forme de temps local correspondant formellement & b = ady,
pour a € [—1,1]. La solution & une telle équation est le mouvement Brownien biaisé introduit
ci-dessus avec le parameétre n = (a + 1)/2. De plus, [63, 73| montrent qu’il n’existe pas de solution
pour a € R avec |a| > 1.
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Ayant a lesprit 'intuition selon laquelle un bruit plus rugueux devrait conduire & un effet de
régularisation plus important, il est naturel de chercher & étendre le résultat ci-dessus au bruit
Brownien fractionnaire avec H < 1/2. Cependant, a la fois [63] et [73]| reposent sur la formule d’It6
et donc des idées similaires ne se transposent pas simplement dans le cas du mouvement Brownien
fractionnaire. Néanmoins, pour d = 1 et b = ady avec a € R, 'existence et 'unicité de cette équation
ont été établies pour H < 1/4 par Catellier and Gubinelli [24] en utilisant des intégrales non linéaires
de Young. Cependant, pour d = 1, un écart par rapport au cas du mouvement Brownien (H = 1/2),
avec un caractére bien-posé pour |a| < 1 prouvée dans 73], subsiste. L’un des objectifs de notre
travail était de combler en partie cet écart.

Chronologiquement, une premiére étape dans cette direction pour 'existence et 'unicité peut
étre trouvée dans [LA4] grace & une approche basée sur les intégrales de Young non linéaires et une
approche de couture stochastique (voir le Chapitre 1I). Finalement, en termes d’existence faible en
dimension 1, cet écart a été complétement comblé dans [LA2| (voir le Chapitre III). Simultanément
a |[LA2|, dans [20] les auteurs ont obtenu le méme résultat en dimension 1. De plus, ils ont prouvé un
résultat plus fort pour la dimension d > 1 et ont également partiellement comblé I’écart d’unicité, en
étendant le résultat de [LA4] dans le cas particulier ou b est une mesure finie. Néanmoins, combler
complétement 1’écart en termes d’unicité reste une question ouverte.

Il convient de mentionner a ce stade que la plupart des résultats ci-dessus sont des cas particuliers
de résultats plus généraux concernant les dérives sous forme de mesures ou méme des distributions
plus générales. Afin de rendre la présentation plus claire & ce stade, nous avons choisi de mettre en
évidence les différents résultats en considérant b = §y. Pour un résumé plus détaillé de la littérature
pour (I.1.6) dans le cas du mouvement Brownien fractionnaire ainsi que des références a des travaux
connexes, nous renvoyons le lecteur & la Section I11.A.

I.1.3 A propos des solutions trajectoire par trajectoire et des solutions
adaptées

Le caractére bien posé de (I.1.2) est actuellement un domaine de recherche trés actif. A partir des
travaux fondateurs de Davie [34] et Catellier-Gubinelli [24], il y a eu un intérét croissant pour le
probléme, voir [23, 33, 49, 50, 62, 101|. Un résultat typique de ces articles est que lorsque v est une
trajectoire d'un processus stochastique irrégulier (comme le mouvement Brownien fractionnaire),
alors pour presque chaque trajectoire de ce type, (I.1.2) a une solution unique, une propriété connue
sous le terme d’unicité trajectoire par trajectoire. De maniére générale, la régularité nécessaire pour
le champ vectoriel est inversement proportionnelle & la rugosité du processus stochastique a partir
duquel 7 est échantillonné. Dans une autre direction, lorsque les coefficients sont suffisamment
réguliers pour que la théorie des chemins rugueux de Lyons puisse étre appliquée, 'unicité dans
I’équation différentielle stochastique correspondante implique alors I'unicité trajectoire par trajec-
toire. Cela est di au fait que la base stochastique n’est utilisée que pour construire un relévement
de chemin rugueux de v et analyse des chemins rugueux de Lyons [79] est applicable pour toute
trajectoire fixe de relévement.

D’un point de vue pratique, 'unicité trajectoire par trajectoire est la plus pertinente dans les
situations ot seuls quelques échantillons du signal peuvent étre observés. Récemment, ce type
d’unicité a été largement étudié & la fois pour les EDS et les EDPS, voir les références dans le
paragraphe précédent et [15, 21, 24, 42,91, 92, 101|. D’un point de vue théorique, I'unicité trajectoire
par trajectoire est plus forte que 'unicité trajectorielle plus classique (I'unicité trajectorielle permet
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d’identifier deux solutions adaptées & (I.1.6) tandis que l'unicité trajectoire par trajectoire permet
d’identifier toutes les solutions). En particulier, 'unicité trajectoire par trajectoire pour (I.1.6) avec
une condition initiale Yy(w) = x ne garantit pas (conceptuellement) I'unicité pour 'EDO suivante
dirigée par B(w)

t
Y, =Y, —I—/ b(r,Y;)dr + By(w), t€[0,T], (I.1.8)
0

pour un w donné. La question de savoir si des exemples d’EDS existent pour lesquels les concepts
d’unicité ci-dessus ne coincident pas a été abordée dans [42, page 12] et [1, page 3]. De tels exemples
d’EDS pilotées par le mouvement Brownien pour lesquelles 'unicité trajectorielle est vérifiée mais
pas 'unicité trajectoire par trajectoire, sont donnés dans [103, LA1| (pour plus de détails, voir
le Chapitre VI). L’idée générale est que si les solutions sont autorisées & “prendre en compte le
comportement futur” du mouvement Brownien, elles peuvent décider du “bon comportement” au
moment présent. En faisant cela, les zones critiques au-deld desquelles une solution ne peut pas
étre prolongée peuvent étre évitées, mais le charactére adapté est perdue. Par conséquent, cela
n’est pas possible si on se limite aux solutions adaptées. Pour une discussion plus detaillée et une
comparaison des différents concepts, nous renvoyons le lecteur au Chapitre V et au Chapitre VI.
Nous rappelons tout de méme rapidement les résultats de référence. Comme mentionné dans la
Section [.2.2, I'unicité trajectorielle pour les EDS avec dérive singuliére b satisfaisant la condition
de Krylov-Rockner (1.1.7) a été démontrée dans [68]. L’unicité trajectoire par trajectoire a été
démontrée dans [34] pour les dérives mesurables et bornées b. La démonstration dans [34] ne
repose pas sur les résultats précédents concernant 1'unicité trajectoire par trajectoire, mais établit
plutot Punicité trajectoire par trajectoire de maniére relativement autonome (et technique). Le
méme résultat est (4 quelques améliorations mineures prés) retrouvé par Shaposhnikov [101], mais
avec une démonstration plus simple qui utilise 'existence d’un flot régulier (et donc aussi 'unicité
trajectorielle).

La contribution de ce travail concernant I'unicité trajectoire par trajectoire est double, tous les
résultats ne concernant que le cas Brownien :

(a) Construction de contre-exemples unidimensionnels pour lesquels les notions d’unicité trajec-
torielle et d’unicité trajectoire par trajectoire ne coincident pas (voir le Chapitre VT).

b) Réponse & la question ouverte de 'unicité trajectoire par trajectoire pour les EDS dirigées par
g
un mouvement Brownien sous la condition de Krylov-Réckner (voir le Chapitre V).

Notons qu’en (b), il est clair que des contre-exemples comme ceux en (a) ne peuvent pas étre
construits pour des dérives b satisfaisant la condition de Krylov-Réckner. Au lieu de cela, les
contre-exemples mentionnés en (a) reposent sur des EDS bien connues avec une dérive encore plus
singuliére, comme 'EDS du processus de Bessel et 'EDS du pont de Bessel.

L’idée principale de la démonstration de (b) est similaire & celle de [101], c’est-a-dire comparer,
pour toute réalisation du mouvement Brownien, toute solution de I'équation intégrale déterministe
4 la solution donnée par 'unique flot de solutions de 'EDS correspondante. Néanmoins, au niveau
technique, des idées différentes sont nécessaires. En particulier, comme b n’est pas bornée, pour
une solution Y de (I.1.8), [, b(r,Y,)dr n’est pas nécessairement lipschitzienne. A la place, nous
travaillons dans I'espace des fonctions & variation finie. De plus, nous démontrons que pour presque
toutes les trajectoires Browniennes, un flot de solutions existe. Enfin, nous utilisons I'inégalité de
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John-Nirenberg quantitative récemment obtenue (voir [71]) pour assurer une régularité suffisante
de Vopérateur d’approximation T2b introduit dans la Section I.1.1.

I.1.4 Comment définir et obtenir des solutions pour une dérive
distributionnelle

Pour étudier (I.1.2) avec une dérive b distributionnelle, il n’est pas clair a priori comment interpréter
Iintégrale du membre de droite de I’équation et donc comment définir une solution. Pour y parvenir
deux idées peuvent étre de

(a) définir une solution x de maniére & ce que l'intégrale puisse étre identifice comme la limite
de la suite fo b™(xs)ds pour toute suite b™ convergeant vers b dans un espace de distributions
choisi de maniére appropriée.

(b) faire directement appel aux oscillations de +, via les intégrales de Young non linéaires.

La plupart du temps, nous considérons que « est échantillonnée selon la loi d’'un mouvement Brown-
ien fractionnaire afin d’avoir & notre disposition des outils tels que le non-déterminisme local et
Pexistence d'un temps local (régulier). Cependant, notons que le schéma de construction d’une
solution au sens de (b) est de nature déterministe. Dans la plupart des cas, (a) et (b) conduisent
a une définition équivalente d’une solution (voir le théoréme 11.2.15). Néanmoins, la maniére “na-
turelle” d’obtenir une solution correspondant & 1'une ou I'autre des notions différe. Nous présentons
briévement les idées générales. (a) : L’outil principal de cette approche est 'utilisation du lemme
de la couturiére stochastique, récemment introduit par Lé [70]. Tout comme le lemme de couturiére
habituel (déterministe), le lemme de la couturiére stochastique permet d’approcher un processus a
deux paramétres par un processus a un parameétre et vice versa. Cela permet de trouver des bornes
a priori de la solution par une approximation similaire & celle de (I.1.4) (voir la Section 1.1.5).

Ayant des estimations a priori en main, nous passons par un argument de tension-stabilité pour
obtenir I'existence de solutions faibles. Encore une fois, par le lemme de la couturiére stochastique,
I'unicité trajectorielle peut étre démontrée et finalement un argument de type Yamade-Watanabe
conduit & D'existence d’une unique solution forte.

(b) : Soit f € Cb( ) et rappelons opérateur de moyennisation 77 associé au chemin ~ défini
par T¢ f(z) := [ f(z + ~r)dr. Alors pour t > 0, une suite de partitions ({t} }o<i<n)nen de [0, 1] et
T = x — 7, nous avons formellement que

N-1 N,

[ st 3 [ sty i
i=0 ‘%
N-1

t

1=

Pour I'instant, la derniére expression n’est qu’'une définition formelle car la convergence de la
somme de type Riemann n’est pas claire. Si la convergence est vérifiée, le dernier terme est une
intégrale de Young non linéaire. De la régularité pour T7 f et T suffisent pour que cet objet soit
bien défini, permettant une certaine compensation entre les deux. Pour « oscillant suffisamment
rapidement, il est possible d’étendre 'opérateur de moyennisation & des distributions f. Cela est
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assez intuitif car 'opérateur de moyennisation peut étre écrit comme une convolution avec le temps
local de v (voir la Section 11.2.3). Ainsi, si v a un temps local suffisamment régulier (ce qui est le cas
pour les processus qui oscillent suffisamment rapidement), il compensera la faible régularité de f.
Pour plus de détails, voir la Section I1.4.1. Les intégrales de Young non linéaires dans des espaces
de Hoélder ont été utilisées dans |24, 50] pour étudier des équations comme (1.1.2). Pour une revue
détaillée des intégrales de Young non linéaires et des équations intégrales de Young non linéaires, voir
[47]. Dans certaines situations, il est utile de travailler dans des espaces de functions & p-variation
finie plutét que dans des espaces de Holder. Par exemple, si T est connu pour étre monotone et donc
a variation finie, ce degré de régularité (en termes de variation) permet de diminuer les hypothéses
de régularité sur 77 f afin que Uintégrale de Young non linéaire soit bien définie. Une application
naturelle de cela se présente lorsque 'on considére (I1.1.2) avec une dérive positive b, puisque nous
savons a priori que toute solution de I’équation intégrale de Young correspondante sera croissante
et donc & variation finie. La preuve de Pexistence est ensuite effectuée par un schéma d’Euler, en
recherchant une solution dans l'espace des fonctions & variation finie (voir la Section I1.3.2).

Notons que 'approche qui consiste & définir 'opérateur de moyennisation comme une convolution
avec un temps local est moins claire dans le cas d’une dérive dépendant du temps. Néanmoins, le
lemme de la couturiére stochastique fonctionne toujours bien. Cela a été exploré récemment dans
[49].

Enfin, il convient de souligner que ces deux constructions coincident pour des solutions réguliéres
(voir le théoréme 11.2.15), et méme dans des cas non triviaux oul la dérive est singuliére.

I.1.5 Comment appliquer le lemme de la couturiére stochastique

Dans cette section, nous présentons un calcul simplifié¢ pour illustrer comment définir et estimer la
régularité de Ay = fg f(By)dr pour f € LP(R) et p € [1,00). Dans les sections suivantes, des calculs

similaires seront effectués pour des distributions f et pour fg f(X,)dr, ou X peut étre décomposé
en X = B+ ¢ avec ¢ oscillant plus lentement que B.

Pour appliquer le lemme de la couturiére stochastique, nous introduisons le processus a deux
parameétres

t
Agy = Es/ f(By)dr,

ot E*[] est utilisé pour désigner E[-|F*].

Afin d’estimer A, ;, nous utilisons la propriété de non-déterminisme local du mouvement Brown-
ien fractionnaire (dont on déduit que Var(B, — E*[B,]) = C(r — 5)*) et une estimation du noyau
de la chaleur :

t t
B2 / J(B)dr| < / Ef(E°B, + B, — E*B,)dr
S St
- / (Gcropen * F(E*B,)|dr

t
</ 19¢r—s)2m * fll Lo wydr

< C|f Loyt —5)' 77,
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2
ou gi(x) := \/%me_ 2%

En utilisant le lemme de la couturiére stochastique, on peut conclure que, pour tout m > 2, il
existe une constante C' > 0 telle que

< OISl oyt — s) 1P,

/S 1B,

Lm ()

En utilisant la méme idée, on peut estimer | ; f(By + ¢s)dr pour un processus ¢. Si ¢ oscille

plus lentement que B, cela donnera également une estimation de fst f(B, + ¢, )dr pour |t — s| petit.
Cela conduira & des estimations a priori, qui sont essentielles pour construire une solution a (I.1.6).

I1.1.6 Densité de la solution et équations de McKean-VlIasov

Les idées des sections précédentes conduisent & des conditions sur la dérive b dans (I.1.6) afin
d’obtenir Pexistence et 'unicité d’une solution. Cependant, les schémas de preuve ne permettent
pas d’en déduire directement des propriétés de la loi d’une telle solution. Pour le mouvement
Brownien fractionnaire, des résultats sur la décroissance gaussienne de la densité sont disponibles
pour une dérive qui est au moins une fonction mesurable (voir par exemple [16, 76]). De plus,
des résultats sur la régularité de la loi de la solution pour une dérive dans un espace de Besov
existent & la fois pour des dérives avec une régularité positive [85] et des dérives avec une régularité
possiblement négative [51]. Dans ce dernier cas, la motivation de I'étude de la régularité de la
densité est de donner des conditions sur la dérive afin d’obtenir le caractére bien posé d’'une EDS
avec une dérive dépendant de la loi de la solution. En particulier, nous pouvons espérer affaiblir les
hypothéses sur b de maniére a ce que I'équation de McKean-Vlasov suivante avec un bruit Brownien
fractionnaire soit bien posée :

t
Xt = XU —|—/ bs * /Ls(Xs)dS + Bt, LOZ(Xt) = Ht. (119)
0

On peut s’attendre a ce que ’équation (I.1.9) soit bien posée pour b avec une régularité inférieure a
celle que nous demandons pour b dans I'équation (I.1.6). L’idée est que by * ug sera plus régulier que
bs lui-méme, si us appartient & un espace de Besov avec une régularité positive. Dans la littérature
actuelle, les conditions sur b assurant le caractére bien-posé de I'équation (I.1.6) et celles sur b
assurant le caractére bien-posé de équation (1.1.9) sont identiques (voir [51]).

Soit b tel quune solution forte unique X de (1.1.6) existe. Alors nos contributions au Chapitre IV
sur la densité de la loi de X peuvent étre résumées comme suit :

e Pour tout ¢ > 0, la loi de X; est absolument continue par rapport a la mesure de Lebesgue et
la densité fi(-) se trouve dans un espace de Besov de régularité positive. De plus, une dérive
plus réguliére b donne directement plus de régularité a la densité.

e En tant que fonction sur [0, 7] x R, f jouit d’une certaine intégrabilité en temps tout en étant
considérée dans un espace de Besov de régularité positive en espace.

e Pour b satisfaisant des hypothéses de régularité légérement plus fortes que les points ci-dessus,
on peut démontrer & la fois par le lemme de la couturiére stochastique et le calcul de Malliavin
que pour tout ¢ > 0, il existe des bornes supérieures gaussiennes pour la densité fi(-).
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De plus, dans la Section IV.4.3, nous esquissons comment construire une solution forte a (I1.1.9)
pour b avec une régularité inférieure & celle que nous demandons pour b dans I'équation (I.1.6).
Cela est basé sur les intuitions présentées précédemment dans cette section et les résultats ci-dessus
sur les densités. La preuve rigoureuse est laissée au travail en cours [LAJ|.

I1.1.7 Structure et résumé des principaux résultats

Dans le Chapitre I, Pexistence et 'unicité de (I.1.6) sont démontrées pour une dérive a valeurs dans
un espace de Besov. L’existence est démontrée via deux approches différentes. Premiérement, pour
une dérive positive, en utilisant une approche plutét déterministe qui réécrit I’équation comme une
équation intégrale non linéaire de type Young et en utilise des propriétés fines du temps local du
mouvement Brownien fractionnaire. Deuxiémement, pour une dérive générale, en utilisant le lemme
de la couturiére stochastique. Une adaptation récente du lemme de la couturiére stochastique permet
également d’obtenir I'unicité dans des cas qui n’ont pas été considérés dans Galeati et Gubinelli
[50]. Tout le chapitre est basé sur un travail commun avec mes directeurs de thése A. Richard et
E. Tanré [LA4].

Dans le Chapitre III, des techniques similaires impliquant le lemme de la couturiére stochastique
comme dans le Chapitre 11 sont utilisées, mais uniquement pour I’existence de solutions faibles dans
le cas d’une dérive positive. Le résultat principal de ce chapitre couvre le régime sous-critique
complet en dimension 1. Le chapitre est basé sur [LA2]. Simultanément & [LLA2], la pré-publication
[20] est parue, comprenant un résultat sur 'existence faible pour le régime sous-critique complet
dans n’importe quelle dimension. Cependant, le résultat principal du Chapitre III fournit une
preuve simple. De plus, la Section III.A donne un examen détaillé de la littérature sur (1.1.6), en
comparant notamment les conditions sur b pour obtenir I'existence et 'unicité des solutions.

Le Chapitre IV est basé sur un travail en cours avec mes directeurs de thése. Par conséquent,
nous nous attendons & ce que certains résultats de ce chapitre soient affinés. Cependant, & notre
connaissance, les résultats sont nouveaux car les propriétés de la densité de la loi de la solution
des EDS avec une dérive distributionnelle n’ont pas été approfondies jusqu’a présent. Le chapitre
comprend des résultats sur les queues de type gaussien par le calcul de Malliavin et sur la régularité
de la densité. De plus, on présente de potentielles applications de ces résultats & une EDS avec une
dérive dépendante de la loi de la solution — ’équation de McKean-Vlasov. Encore une fois, tous ces
résultats font intervenir des techniques de couture stochastique.

Dans le Chapitre V, l'unicité trajectorielle de (I.1.6) pour un bruit Brownien est démontrée
sous la condition de Krylov-Rockner (1.1.7). En particulier, cela étend les résultats principaux de
[34, 101] en permettant une plus grande classe de dérives. Le schéma de preuve est similaire & [101],
mais des résultats différents sont nécessaires d’un point de vue technique, notamment 'inégalité de
John-Nirenberg récemment introduite [71]. Par ailleurs, la complétude forte est démontrée, c’est-
d-dire que pour presque chaque trajectoire du mouvement Brownien, la famille de solutions avec
différentes données initiales forme un semi-flot continu pour tous les temps positifs. Tout le chapitre
est basé sur un travail commun avec Khoa Lé et Chengcheng Ling [LA3|.

Dans le Chapitre VI, des dérives unidimensionnelles b sont construites de telle maniére que
I'unicité trajectorielle (c’est-a-dire I'unicité classique parmi les solutions adaptées) de (I.1.6) soit
satisfaite, mais 'unicité trajectoire par trajectoire ne I'est pas. De tels contre-exemples étaient
connus auparavant uniquement en dimension d > 1. En particulier, nous construisons des solutions
(trajectoire par trajectoire) d’EDS qui ne sont pas adaptées. Le chapitre est basé sur [LA1].
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L’Annexe A.1 contient un bref résumé de la définition et de quelques propriétés utiles des espaces
de Besov (similaire a [LA4, Annexe A]). Dans ’Annexe A.2 (basée sur [LA4, Annexe C]), différentes
versions du lemme de la couturiére stochastique sont rappelées.
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I.2 English version

Imagine we want to model the movement of particles in a fluid. This is both determined by the
intrinsic movement (diffusion) of the particles and by a drift due to the velocity of the surrounding
fluid. What looks like a PDE-problem at first sight can actually be directly related to probability
theory, in particular to the theory of Stochastic Differential Equations (SDEs). As the Brownian
motion can model the random intrinsic movement of the particle, the classical literature on SDEs
allows to study such phenomena for “nice” drift. However it is clear that this is not sufficient to cover
all physically relevant cases since the speed of the fluid might be singular at some points in space,
for example with the presence of vortices in turbulent flows (for more details on such diffusions with
singular drift see for example the monograph of Portenko [90]). A natural question arises:

How “bad” can the drift be, while maintaining well-posedness of the corresponding SDE?  (Q)

The usual answer (which might be quite surprising at first sight!) is the following: If the noise
is very rough (i.e. oscillating a lot), well-posedness can be guaranteed even for very singular drifts
— a phenomenon often referred to as “regularization by noise” (see also [42, 48]). In particular,
well-posedness holds for equations that would be extremely ill-posed without the presence of noise.

Due to Donsker’s theorem, the most common example of noise is Brownian motion. However, in
various situations, future increments might depend on the behavior of the past. Fractional Brownian
motion is the simple Gaussian process that allows for correlations between different time-increments
and is therefore often used to model such situations with “memory”.

Throughout the thesis the guiding aim is to answer Question (Q), considering either fractional
Brownian noise or Brownian noise.

I[.2.1 Regularization by noise - an ODFE perspective

This section gives some motivation and hand-waving explanations for the regularization by noise
phenomenon. For similar ideas and deeper insight, see [42, 48].
Let us consider an autonomous ODE of the form

The well-known Picard-Lindel6f theorem gives the sufficient condition of b being Lipschitz continu-
ous, in order to get a unique solution to the above equation for a specified initial condition zg € R
For non-Lipschitz functions b, uniqueness can be lost as the following two examples show.

Example 1: Considering d = 1, b(-) = 2sgn(-)y/| - | and initial condition z¢ = 0, any function
in the uncountable set

{(t —t0)*Lizty: to > 0}

solves the above initial value problem. Nevertheless, this kind of “splitting” into different solutions
can only occur at 0 (in space). For initial conditions g # 0, the equation is locally well-posed.

Example 2: Even more can go wrong when considering b to be discontinuous. To see this, let
d=1 and

b() {0 for x € Q,

1for z e R\ Q.
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For a rational initial condition xg, both z; = xg and x; = zg + ¢ solve the corresponding initial
value problem. For an irrational initial condition zg, x; = xg + t is a solution. Furthermore
xy = x0+ (¢ — zp) At is a solution for any rational ¢ > xg.

We see in both of the above one-dimensional examples that the points on which b vanishes and
is not smooth pose a problem. Let 7 : [0,00) — R be some given highly oscillating function with
Yo = 0. When (1.2.1) is perturbed by ~, written as an integral equation, it takes the form

t
Ty = T + / b(xs)ds + . (L.2.2)
0

One could hope that ~ prevents the occurrence of “splitting” like in the examples above as the
oscillations of the “noise” «v might prevent the solution from staying at the critical points on which
b vanishes. To strengthen the intuition of this hand-waving argument, one can rewrite the equation
after setting £ =z — ~, by

t
e = z0 + / b(is + 7s)ds. (1.2.3)
0

If it is known a priori that & oscillates slower than v, then for a small time interval [u, v],

v

/uv b(Ts + vs)ds ~ / b(Zy + vs)ds. (1.2.4)

u

So heuristically, for small time intervals, £ can be considered to be constant. Hence, in order to
study (I1.2.2) and the regularization effect of v, one can look at the so-called averaging operator

T7: (t,z) — /t b(z + ,)dr, (I.2.5)
0

with the hope of recovering Lipschitz continuity in space of T7b, while jointly keeping e-Holder
regularity in time, so that, for small enough time intervals [s,¢], and two solutions Z, 7,

t t
31— &= e = )l = | [ 00+ a0)dr = [+

Q

/: b(Zs + 7y )dr — /: b(7s + %«)dr)

= |T70(t,Zs) — T7b(s,Zs) — (T7b(t,gs) — T7b(s,7s))

S (t—s)%|@s — Tl

In certain situations this is sufficient to obtain uniqueness by investigating a space that includes all
solutions (see e.g. Davie [34]) or by making use of existence of a flow map (see Shaposhnikov [101]
or Chapter V). In general however, this condition suffices to guarantee existence of a solution to
(I.2.3) and therefore to (I1.2.2) via an Euler scheme (see Section I11.3.2).

The very rough idea to have in mind is that even if b has some discontinuities or singularities,
this should not have a big influence on the mapping (1.2.5) as the fast oscillations of v prevent z + -y
from spending a “long amount of time” in or around these discontinuities/singularities. This idea is
a recurrent theme throughout the thesis, allowing to analyze the regularization effect of v and to
define a notion of a solution to (I.2.2) for merely distributional b.

Note that in all the (vague) arguments above no probability is required, eventually leading to a
notion of existence and uniqueness of solutions that is of a deterministic flavor, even if v is sampled
from the law of a stochastic process (see Section 1.2.4).
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1.2.2  Regularization by noise - an SDE perspective

This section gives a brief overview of the literature in the case where ~ from the previous section
is sampled from the law of a (fractional) Brownian motion. Classically this is done in the sense of
SDEs with the common concepts of existence and uniqueness of adapted (weak/strong) solutions and
uniqueness among them (either in law or pathwise). This section focuses on these classical notions.
For more recent results based on a path-by-path approach, we refer the reader to Section 1.2.3. For
a comparison of these concepts see Chapter VI and Section V.B.

In order to introduce the SDE we are interested in, we first recall the definition of a fractional
Brownian motion.

Fractional Brownian motion. The fractional Brownian motion (fBm) with Hurst parameter
H € (0,1) is a centered Gaussian process (B;);>0 with covariance

E[B,B,] = % (27 4+ 20 |t — s2H) Vs,t > 0.
The definition immediately extends to arbitrary dimension d, by considering d independent frac-
tional Brownian motions with Hurst parameter H. The case H = 1/2 coincides with the definition
of a Brownian motion; H € (1/2,1) leads to positively correlated increments as well as long mem-
ory and H < 1/2 leads to negatively correlated increments and very rough sample paths. These
correlations between increments make the fractional Brownian motion an interesting example of
a stochastic process to describe real-world phenomena (for example in finance, see [17, 31, 56]).
Furthermore, using Kolmogorov’s continuity theorem, it is easy to see that for any o € (0, H) there
exists a version of the process which is a-Hélder continuous. However, this is not the case for « = H.
In fact, for almost every trajectory, there are no points of H-Holder continuity, which makes the
fBm an example of a (highly) oscillating process. Therefore for small values of H, there should be a
large regularization effect of the fBm by the intuitions sketched in Section 1.2.1. Hence, throughout
the thesis we consider H < 1/2 which will allow to consider distributional drifts. For a clear link
between fBm and Brownian motion via an integral representation formula, see Section I1.A.2.

SDE of interest. Consider the SDE

t
X, = X, +/ b(s, X,)ds + By, te0,T], (1.2.6)
0

where T > 0 is a fixed deterministic time, b: [0, 7] x R? — R? is measurable and B is a d-dimensional
fractional Brownian motion. In the following an overview of the literature on (1.2.6) is presented,
specifically focused on the conditions on b to ensure well-posedness. Sometimes particular cases
of (1.2.6) are actually considered (e.g. one-dimensional, time-independent drift). However at this
point, for simplicity, we choose to disregard this.

Brownian case. For B being a one-dimensional Brownian motion and b a measurable bounded
function, it was shown by Zvonkin [116] that there exists a pathwise unique strong solution to
(I.2.6). This is achieved by the so-called Zvonkin transformation; a deterministic transformation
arising from the solution of a well-chosen PDE, in order to remove the irregular drift term. This idea
is reused in [110] to extend the result to the multidimensional case. Both [116] and [110] allow for
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multiplicative noise as well. Krylov and Rockner [68] extended these results in the case of additive
noise to unbounded drifts b fulfilling the integrability condition

T q 1 9 d
(/ (/ |b(7“,x)|pdx)zdr> ! < oo, (p,q)€(2,00)% with = 4 = < 1. (1.2.7)
0 Rd q P

This is done by separately showing existence of weak solutions and pathwise uniqueness, which addi-
tionally gives existence of strong solutions by the Yamada- Watanabe principle (see [113]). Existence
of weak solutions is proven in a classical way (see e.g. [90, Chapter 1, Section 4|) by removing the
drift term via a Girsanov transform. This is also possible for nonconstant diffusion coefficient (see
[115]).

Fractional Brownian case. As fractional Brownian motion is neither a Markov process nor a
semimartingale for H # 1/2, PDE techniques like the one mentioned above and classical stochastic
calculus are not available and one has to come up with other ideas. Nevertheless a Girsanov
transform is still available (see [35]). In this paragraph we briefly sketch the chronology of results;
for a presentation of the state of the art results, see Section IIL.A.

A first attempt in this direction is due to Nualart and Ouknine [83, 84|, who prove existence
and uniqueness for some non-Lipschitz drifts. This is done by using the Girsanov transform in
order to obtain weak existence and uniqueness in law and the observation that in this case these
two properties are sufficient to also obtain pathwise uniqueness. In a seminal work by Catellier
and Gubinelli [24] the authors prove well-posedness (in a path-by-path sense, see Section 1.2.3)
for time-independent distributional drifts b € C® for f € R with 8 > 1 — 1/(2H), where C? for
B < 0 is a generalized Holder space containing distributions. This is done by a careful study of
the averaging operator associated to each path of the fractional Brownian motion, applying the
Girsanov transform and reformulating the equation as a nonlinear Young integral equation (see
Section II.3). In Chapter II different results on both existence and uniqueness are presented for
classes of distributional drifts that are not covered in [24]. In particular, existence of a weak solution
is proven for b € C# with 3 > 1/2 — 1/(2H) and pathwise uniqueness is shown for 3 = 1 — 1/(2H)
for b being a measure. In terms of existence of weak solutions, these results are refined for measure-
valued drift in Chapter III. In specific cases, i.e. for b fulfilling a certain integrability condition or
being a finite measure, the results of Chapter II and Chapter III are refined in the recent work [20],
which is further improving in terms of uniqueness and existence.

In [32] the authors take an approach via the Clark-Ocone formula to investigate random time-
dependent drifts. In [49] the authors extend the main result in [24] to time-dependent distributional
drifts with a singularity in time, recovering the full subcritical regime in terms of spatial regularity,
for particular cases of time-integrability.

At this point, let us mention that throughout this thesis we do not consider multiplicative
noise. This simplifies matters, as there is no ambiguity in the definition of an integral. Otherwise,
one has to address this issue, for example by assuming enough regularity of the diffusion and
the fractional Brownian motion to be interpreted as a Young integral or a rough integral. Hence
multiplicative noise is delicate in the sense that on one hand rougher noise is helping to regularize
the equation, whereas on the other hand rougher noise complicates the definition of the integral
term. We only mention a selection of works: In [33] well-posedness for Young integral equations and
rough integral equations with irregular drift is shown. The authors in [80] decrease the assumptions
on the regularity of the diffusion term via an extension of the stochastic sewing lemma, considering
the equation as a Young integral equation.
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Another interesting question that is not addressed in this thesis is the one of the so-called zero-
noise limit: replace B; in (I.2.6) by eB; and let £ go to zero. In case that there is no uniqueness to
the unperturbed equation, which solution will we recover in the limit? In the Brownian case, this
question was answered in [10] for a class of positive drifts, however in the fractional Brownian case
this question still seems to be very much open. For a more detailed presentation of this topic see
[42, Section 1.4].

Skew (fractional) Brownian motion. Many physical situations involve diffusion phenomena
in heterogeneous media (see [74] for references describing these phenomena in physics, but also in
biology, finance, etc.). The so-called skew Brownian motion (“partially reflected” Brownian motion)
is a probabilistic object that allows to describe this behaviour.

Skew Brownian motion was first introduced in [66] with the following simple idea: One considers
a Brownian motion and whenever it hits the z-axis, an independent Bernoulli random variable is
introduced. With probabily n the Brownian motion is “pushed into R,”, with probability 1 — n
the Brownian motion is “pushed into R_”. When setting 7 = 1 one recovers a reflected Brownian
motion. Such a process can also be constructed via an approximation with skewed random walks
(see [74]). Note that outside of 0 the above process behaves like a Brownian motion. Even though
already suggested in [66], Walsh [111] proved that the skew Brownian motion defines a diffusion
process and gave two main motivations for the study of this object. First, it allows to model a
particle’s behavior when moving in between two different media. Secondly, it gives an example of
an object with a discontinuous local time in space due to the behavior at 0. Even though reflected
Brownian motion shares this property considered as a mapping to the codomain R, it is a rather
unsatisfying example as the natural codomain for the reflected Brownian motion is [0,00). For
more details and various constructions of the skew Brownian motion see [74]. Moreover, there is a
clear link between skew Brownian motion and the kind of equations we are interested in, which is
described below.

For Brownian noise and the time-independent drift b = §g, it is known that there exists a unique
strong solution to (I1.2.6) which is given by the reflected Brownian motion (see e.g. [73]). Hence the
Dirac in zero can be identified as the precise force that is needed to reflect the solution along the
z-axis. One can make sense of the formal integral [;do(X,)dr by interpreting it as the local time
of X at 0. This idea was exploited in [63] (with further generalization in [73]) to a local time drift
formally corresponding to b = ady, for a € [—1,1]. The solution to such an equation is the skew
Brownian motion introduced above with parameter n = (a + 1)/2. Moreover, |63, 73| show that no
solution exists for a € R with |a| > 1.

Having the intuition in mind that rougher noise should lead to a higher effect of regularization,
it is natural to try to extend the above result to fractional Brownian noise with H < 1/2. Note
however that both [63] and [73] rely on It6’s formula and therefore similar ideas cannot directly
be used in the fractional Brownian case. Nevertheless, for d = 1 and b = ady with a € R, the
well-posedness of this equation was established for H < 1/4 by Catellier and Gubinelli [24] using
nonlinear Young integrals. Yet, for d = 1, a gap to the Brownian case (H = 1/2), with well
posedness for |a| < 1 proven in [73], remains. One of the aims of our work was to close this gap.

Chronologically, a first step in this direction for existence and uniqueness can be found in [LA4]
by both a nonlinear Young integral approach and a stochastic sewing approach (see Chapter II).
Eventually, in terms of weak existence in dimension one this gap was fully closed in [LA2| (see
Chapter IIT). Simultaneously to [LLA2], in [20] the authors recovered the same result in dimension 1.
Additionally, they prove a stronger result for dimension d > 1 and they also partially close the gap
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of uniqueness, extending the results from [LA4] (in the particular case where b is a finite measure).
Nevertheless fully closing the gap in terms of uniqueness remains an open question.

It should be mentioned at this point that most of the results above are special cases of more
general results considering measure-valued drifts or more general distributional drifts. In order to
keep the presentation cleaner at this point, we chose to highlight the different results by considering
b = dp. For a more detailed summary of the literature for (I1.2.6) in the fractional Brownian motion
case as well as references to related works, we refer the reader to Section ITI.A.

1.2.3 About path-by-path solutions and adapted solutions

As mentioned in the previous section, well-posedness for (1.2.2) has been a very active field of
investigation recently. Starting from the seminal works of Davie [34] and Catellier—Gubinelli [24],
there has been an increasing interest in the problem, see |23, 33, 49, 50, 62, 101]. A typical result of
these articles is that when ~ is a sample path of an irregular stochastic process (such as fractional
Brownian motion), then for almost every such sample path, (I1.2.2) has a unique solution, a property
known by the terminology path-by-path uniqueness. Generally speaking the necessary regularity for
the vector field is inversely proportional to the roughness of the stochastic process from which
is sampled. In a different direction, when the coefficients are sufficiently regular so that Lyons’
rough path theory can be applied, then uniqueness of the corresponding rough differential equation
implies path-by-path uniqueness. This is because the stochastic basis is only used to construct a
rough path lift of the driving signal and Lyons’ rough path analysis [79] is applicable for any fixed
trajectory of the lift.

From a practical perspective, path-by-path uniqueness is most relevant in situations where
only a handful of samples of the signal can be observed. Recently this kind of uniqueness has
been heavily investigated both for SDEs and SPDEs, see references in the previous paragraph and
[15, 21, 24, 42, 91, 92, 101]. Theoretically, “path-by-path uniqueness” is stronger than “pathwise
uniqueness” (pathwise uniqueness allows to identify two adapted solutions to (1.2.6) whereas path-
by-path uniqueness allows to identify “all” solutions). In particular pathwise uniqueness for (I1.2.6)
(conceptutally) does not provide uniqueness for the B(w)-driven ODE

t
V=Yoo [ b Yodr+ Biw), te 0.1, (1.2.8)
0

for a given w. The question whether examples of SDEs actually exist for which the above concepts of
uniqueness do not coincide was raised in [42, page 12] and [1, page 3]. Such examples of SDEs driven
by Brownian motion for which pathwise uniqueness holds but not path-by-path uniqueness are given
in [103, LA1] (for details see Chapter VI). The rough idea is that if solutions are allowed to “look into
the future behaviour” of the Brownian path, they can decide for the “right behaviour” at the current
moment. By doing this, critical areas after which a solution cannot be extended, can be avoided,
however adaptedness is lost. Hence this is not possible if restricting to adapted solutions. For
further discussion and a comparison of the different concepts we refer the reader to Chapter V and
Chapter VI. Nevertheless we quickly recall the benchmark results here. As mentioned in Section 1.2.2
pathwise uniqueness for SDEs with singular drift b fulfilling the Krylov-Rockner condition (I1.2.7)
was shown in [68]. Path-by-path uniqueness was shown in [34] for measurable and bounded drifts
b. The proof in [34] does not rely on the previous results on pathwise uniqueness, but instead
establishes path-by-path uniqueness in a rather self-contained (technical) way. The same result is
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(up to minor improvements) recovered by Shaposhnikov [101], but with a simpler proof that makes
use of the existence of a regular flow (and therefore also of pathwise uniqueness).

The contribution of this work regarding path-by-path uniqueness is twofold, with all results
considering the Brownian case:

(a) Construction of one-dimensional counterexamples as mentioned above for which the notions
of pathwise and path-by-path uniqueness do not coincide (see Chapter VI).

(b) Answering the open question of path-by-path uniqueness for SDEs driven by a Brownian
motion under Krylov-Réckner condition (see Chapter V).

Note that by giving a positive answer to (b), it is clear that counterexamples like the ones
in (a) cannot be constructed for drifts b fulfilling the Krylov-Réckner condition. Instead, the
counterexamples mentioned in (a) rely on well-known SDEs with even more singular drift, like
Bessel SDE and Bessel bridge SDE.

The main idea of the proof of (b) is similar to [101], i.e. comparing, for any realization of the
Brownian motion, any solution of the now deterministic integral equation to the solution given by
the unique solution-flow of the corresponding SDE. Nevertheless on the technical level different
ideas are needed. In particular, as b is not bounded, for a solution Y to (1.2.8), [, b(r,Y;)dr is not
necessarily Lipschitz continuous. Instead we work in the space of functions with finite 1-variation.
Also, we prove that for a.e. Brownian path a solution-flow exists. Finally, we use the recently
obtained quantitative John-Nirenberg inequality (see [71]) to ensure sufficient regularity of the
averaging operator TPb introduced in Section 1.2.1.

1.2.4 How to define and obtain solutions for distributional drift

In case of considering (I1.2.2) for distributional drift b, it is a priori not clear how to interpret the
integral on the right hand side of the equation and therefore how to define a solution. Two ideas
are

(a) to define a solution z in a way such that the integral can be identified with the limit of
the sequence fo b"(xs)ds for any sequence b" converging to b in a properly chosen space of
distributions.

(b) to directly make use of the oscillations of 7, via so-called nonlinear Young integrals.

Throughout most of the thesis we consider v to be sampled according to the law of a fractional
Brownian motion in order to have tools available such as local nondeterminism and existence of a
(regular) local time. However, note that the scheme of constructing a solution in the sense of (b) is
of a deterministic nature. In most cases, (a) and (b) lead to an equivalent definition of a solution
(see Theorem 11.2.15). Nevertheless, the “natural” way to obtain a solution corresponding to either
of the notions differs. We briefly present the rough ideas and leave the rigorous arguments to later
sections.

(a): The main tool for this approach is the use of the stochasic sewing lemma, recently introduced
by Lé [70]. Similar to the usual (deterministic) sewing lemma, the stochastic sewing lemma allows
to approximate a two-parameter process by a one-parameter process and vice versa. This allows to
find a priori bounds of the solution by a similar approximation as in (1.2.4) (see Section 1.2.5).
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Having a priori estimates at hand, we go through a tightness-stability argument to obtain
existence of weak solutions. Again via stochastic sewing, pathwise uniqueness can be shown and
eventually a Yamade-Watanabe kind of argument leads to existence of a unique strong solution.

(b): Let f E Cp(R) and recall the averaging operator 77 associated to the path 7 defined by
1Y f(z) := [y f(z + vr)dr. Then for t > 0, a sequence of partitions ({t)'}o<i<n)nen of [0,¢] and
T = x — v, we formally have that

/f:mﬁ—’yr )dr = hm Z/ f(@yn + yp)dr

t
= lgnoo Z <T7+lf fL'tN) —T;:Nf(fﬁtiv)> “— 77/0' TJTf(-iT)

For now the last expression is only a formal definition as convergence of the Riemann-type sum
is not clear. If convergence holds, the last term is a so-called nonlinear Young integral. A sufficient
condition for this object to be well-defined requires a certain regularity of 7' f(-) and 7., allowing
for some compensation between the two. For v oscillating sufficiently fast, it is possible to extend
the averaging operator to distributional f. This is rather intuitive as the averaging operator can
be written as a convolution with the local time of v (see Section I1.2.3). Hence, if v has a smooth
enough local time (which is the case for processes that oscillate sufficiently fast), it will compensate
the low regularity of f. For further details see Section I1.4.1. Nonlinear Young integrals with
regularity measured in Holder spaces have been used in |24, 50] to investigate equations like (1.2.2).
For a detailed review of nonlinear Young integrals and nonlinear Young integral equations, see [47].
In some situations it is useful to work in p-variation spaces instead of Hélder spaces, for example
if Z is known to be nondecreasing and therefore of finite 1-variation as this amount of smoothness
(in terms of variation) allows to lower the regularity assumptions on 77 f in order for the nonlinear
Young integral to be well-defined. An application thereof naturally arises when considering (I1.2.2)
with nonnegative drift b, since we know a priori that any solution to the corresponding nonlinear
Young integral equation will be nondecreasing and therefore of finite 1-variation. The proof of
existence is then carried out by an Euler scheme, looking for a solution in the space of functions of
finite 1-variation (see Section I11.3.2).

Note that the approach of defining the averaging operator as a convolution with a local time is
less clear in the case of time-dependent drift. Nevertheless stochastic sewing still works well. This
has been explored recently in [49].

Finally, it should be pointed out that both of the above constructions of solutions coincide for
solutions that are sufficiently regular (see Theorem I1.2.15), even in nontrivial cases where the drift
is singular.

1.2.5 How to use stochastic sewing

In this section we make a toy calculation on how to define and estimate the regularity of A; =
fo y)dr for f € LP(R ) and p € [1,00). In later sections, such calculations will be made for
dlstrlbutlonal f and fo r)dr, where X can be decomposed into X = B + ¢ for ¢ oscillating
slower than B.
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In order to apply stochastic sewing, we introduce the two-parameter process

t
Agy = IES/ f(B,)dr,

where E°[-] is used to denote E[-|F*]. We expect A to approximate small increments of the one-
parameter process A. Under certain conditions on the increments of A (which are weaker than
the ones of the usual sewing lemma), stochastic sewing allows to deduce estimates on the distance
between A; — A and Ag;, and therefore transfer estimates of the two-parameter process A to
increments of 4. The former can be estimated, using the local nondeterminism property of fractional
Brownian motion (which implies Var(B, —E*[B,]) = C(r — 5)?/) and a heat kernel estimate, in the
following way:

t t
\ES/ f(By)dr| </ |E*f(E*B, + B, — E*B,.)|dr
S St
— [ gty + FE B, dr

t
</ |9c(r—s)2m * fllLeomydr
< Ol flloy(t — 8)' /2,

2

x
where gi(z) := ﬁeff. Then using stochastic sewing one can conclude that, for any m > 2, there

exists C' > 0 such that

< O flloey(t — ).

/S 1(B,)dr

Lm(Q)

By the same idea as above one can estimate fst f(B,+¢s)dr for some process ¢. If ¢ is oscillating

slower than B, this will also give an estimate of fst f(B, + ¢, )dr for |t — s| small. This will lead to
a priori estimates, which are crucial to construct a solution to (1.2.6).

1.2.6 Density of the solution and McKean-Vlasov equations

The ideas of the previous sections lead to conditions on the drift b in (1.2.6) in order to get existence
and uniqueness of a solution. However, the schemes of proof do not allow to directly infer properties
of the law of such a solution. For fractional Brownian noise, results on Gaussian-like tails of the
density are available for a drift that is at least a measurable function (see e.g. [16, 76]). Moreover,
results on the regularity of the law of the solution for Besov-valued drift exist both for drifts with
positive regularity [85] and general Besov-valued drift [51]. In the latter, the motivation to study
the regularity of the density is to give conditions on the drift in order to get well-posedness to an
SDE with distribution-dependent drift. In particular, we can hope to loosen the assumptions on b
such that the following McKean-Vlasov Equation with fractional Brownian noise is well-posed:

t
Xt = XU +/ bs * IU,S(XS)dS + Bt7 Law(Xt) = M. (129)
0
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Equation (I.2.9) can be expected to be well-posed for b with lower regularity than what we ask
for b in Equation (I.2.6). The idea is that bs * us will be more regular than by itself, if ug lives
in a Besov space with positive regularity. In the current literature however, the conditions on b
for well-posedness for Equation (I.2.6) are the same as the conditions on b for well-posedness to
Equation (1.2.9) (see [51]).

Let b be such that a unique strong solution X to (I.2.6) exists. Then our contributions in
Chapter 1V on the density of the law of X can be summarized as follows:

e For any t > 0, the law of X; is absolutely continuous w.r.t. Lebesgue measure and the density
ft(+) lies in a Besov space of positive regularity. Moreover, a smoother drift b directly gives
more smoothness of the density.

e As a function on [0,7] x R, f enjoys a certain time integrability while still considering it to
be in a Besov space of positive regularity in space.

e For b fulfilling slightly stronger regularity assumptions than in the points above, it can be
proven by using both stochastic sewing and Malliavin calculus that for any ¢t > 0, there exist
Gaussian upper bounds for the density f;(-).

Additionally, in Section IV.4.3, we sketch how to construct a strong solution to (1.2.9) for b of
lower regularity than what we ask for b in Equation (I.2.6). This is based on the intuitions presented
earlier in this section and the above results on densities. The rigorous proof is left to the ongoing
work [LAB5].

1.2.7 Structure and overview of the main results

In Chapter II. existence and uniqueness to (1.2.6) is proven for Besov space-valued drift b. Existence
is shown via two different approaches. First, for a nonnegative drift, via a rather deterministic
approach rewriting the equation as a nonlinear Young integral equation and using fine properties
of the local time of fractional Brownian motion. Secondly, for a general drift, by making use of
the stochastic sewing lemma. A recent adaptation of the stochastic sewing lemma also leads to
uniqueness in cases that were not considered in Galeati and Gubinelli [50]. The entire chapter is
based on joint work with my advisors A. Richard and E. Tanré [LA4|.

In Chapter III, similar techniques involving stochastic sewing as in Chapter II are used, however
purely focused on existence of weak solutions in the case of nonnegative drift. The main result
therein is covering the full subritical regime in dimension 1. The chapter is based on [LA2|. Si-
multaneously to [LA2], the preprint [20] appeared, including a result on weak existence for the full
subcritical regime in any dimension. However, the main result in Chapter III provides a simple
proof. Moreover, Section III.A gives a detailed review of the literature on (1.2.6), in particular
comparing the conditions on b to obtain existence and uniqueness of solutions.

Chapter IV is based on ongoing work with my advisors. Hence, we expect that some results
therein will be refined. However, to the best of our knowledge the results are still new as properties
of the density of the law of the solution to SDEs with distributional drift have not been investigated
in depth so far. The chapter includes results on Gaussian-like tails via Malliavin calculus and on
regularity of the density. Also, a brief outlook is given to explain how these results could be applied
to an SDE with distribution-dependent drift — the McKean-Vlasov equation. Again, all of these
results involve stochastic sewing techniques.
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In Chapter V, path-by-path uniqueness to (1.2.6) for Brownian noise is shown under the Krylov-
Rockner condition (1.2.7). In particular, this is extending the main results in [34, 101] by allowing for
a larger class of drifts. The scheme of proof is similar to [101], however on a technical level different
results are needed, including the recently introduced quantitative John-Nirenberg inequality [71].
As a byproduct, strong completeness is proven, i.e. for almost every Brownian trajectory the family
of solutions with different initial data forms a continuous semiflow for all nonnegative times. The
whole chapter is based on joint work with Khoa Lé and Chengcheng Ling [LA3|.

In Chapter VI, one-dimensional drifts b are constructed such that pathwise uniqueness (i.e.
classical uniqueness among adapted solutions) to (1.2.6) holds but path-by-path uniqueness does
not. Such counterexamples were previously known only in dimension d > 1. In particular we
construct (path-by-path) solutions to SDEs that are not adapted. The chapter is based on |[LA1]|.

Appendix A.1 contains a brief summary on the definition and some useful properties of Besov
spaces (similar to [LA4, Appendix A]). In Appendix A.2 (based on [LA4, Appendix C] different
versions of the stochastic sewing lemma are recalled.
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1.2.8 Notations and definitions.

Various notations. Throughout the thesis, we use the following notations and conventions:
e Constants C' might vary from line to line.
We write H S G if H < CG for some universal positive constant C.
For p € [1,00], p’ € [1,00] is such that 1/p+1/p = 1.
For z = (21, ,2q4) € R, let |z] = S0, |24
For topological spaces X,Y we denote the set of continuous functions from X to Y by Cx(Y).
For a topological space X, we denote the Borel sets of X by Z(X).
For a Banach space F, the ball of radius R > 0 is denoted by D := {z € E : ||z|| < R}.
Let s < t be two real numbers and Il = (s =ty < t; < --- < t, = t) be a partition of [s, t].
We denote [IT| = sup,_; ... ,(t; —t;—1) the mesh of II.
For s,t € R with s < t, we denote A,y = {(u,v) : s <u< v <t}
For any function f defined on [s,], we denote fu, . := fu — fu for (u,v) € A y.
For any function g defined on A,y and s <7 < w < v < t, we denote 09y uw = Grv—Gru—Gu,v-
For a probability space © and p € [1, 00|, the norm on LP(Q2) is denoted by || - || L.
We denote by (By):>0 a fractional Brownian motion with Hurst parameter H < 1/2.
The filtration (F;)i=0 is denoted by F.
The filtration generated by a process (Z;)i>o is denoted by FZ.
All filtrations are assumed to fulfill the usual conditions.
Let F be a filtration. We call (W});>0 a F-Brownian motion if (W;);>0 is a Brownian motion
adapted to F and for 0 < s < ¢, Wy — W; is independent of F;. For such a filtration, the
conditional expectation E[- | Fs] is denoted by E®[-].
e For a o-algebra F, a filtration F and a stopping time 7 we define the stopping time o-algebra
by Fr ={AeF:An{r <t} € F, Vt > 0}.
e For 0 < s < t, define Li([s, t]) to be the space of all measurable functions f : [s,t] x R? — R
such that

[ Flls s, == (/: (/Rd \f(r,a:)lpdx)zdrﬁ < 00

for p,q € [1,00) and with obvious modification when p or ¢ is infinity. We abbreviate L} =
L}(R). By abuse of notation we also denote by IL3([s, ¢]) the space of R%-valued functions such
that the expression above is finite.

||
2t . For a tempered

Gaussian semigroup. For any ¢t > 0 and 2 € R?, let gi(z) :=
distribution ¢, let

_ 1
(2nt)d/2 €

Gip(x) := (gt * @) (). (1.2.10)

The occupation time formula. Let 7> 0, w : [0,7] — R be a measurable function and let A
denote the Lebesgue measure on R. For A € #([0,71]), let pa be the occupation measure defined
by pa(A) == A{t € A: w € A}) for A € B(R). If ppg < A, then there exists a measurable
map ¢ : A(]0,T]) x R — Ry such that for A € #([0,T]), pa(dx) = £(A,z)A(dx). For any bounded
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measurable function f, the occupation time formula reads (see [57] for more details)

/f(wT)dr:/f(x)E(A,x)d:c. (1.2.11)
A R

We define a local time L : [0,7] x R — R by L(z) := £([0,t],z). By (1.2.11), it comes that for any
bounded measurable f and ¢ € [0, 7],

t
/ f(w,)dr = / f(x) Ly(x) dz. (1.2.12)
0 R
Note that if w: [0,7] — K C R for some compact K, then L;(-) vanishes on K€ for all ¢ € [0,T].

Finite variations spaces. Letp € [1,00) and (F, || ||) be a Banach space. Define the p-variation
seminorm of a function z : [s,t] — F' as

1
N-1 P
elep ) = s <Z uxmiﬂn%) ,
=0

i

where the supremum runs over all partitions {#;}Y,, N € N, of [s,t]. We denote by Cﬁ“}?r(F) the
set of continuous functions with finite p-variation.

If F' is just a Fréchet space, we say that a function mapping from [s, ] to F' has finite p-variation
if its p-variation is finite with respect to any continuous seminorm and we also use the notation

CPV(F). If F = R%, we use the alleviate notations CZ ™" and [x]gp-var.
[S7t] [Svt] C[s,t]

Control functions. A continuous function s : A, 4 — [0, 00) is a control function if, for s < r <
u<v<t,

s(r,u) + 2(u,v) < 2(r,v), (1.2.13)

and s(r,r) = 0 for all r € [s,#]. A typical example of a control function is [2]fpvar . (see [45,

[s,1]
Prop. 5.8]).
We call a measurable function A\: Aj, 4 x  — R a random control if there exists a set Q' of
full measure such that for w € @', A\(-,w) is a control.

(F)

Besov and Hélder spaces.

Definition I.2.1. For s € R and 1 < p, g < oo, we denote the nonhomogeneous Besov space with
these parameters by B; . For a precise definition, see Appendix A.1.

Besides, for a bounded smooth domain Z C R?, we denote by B, ,(T) the space of all distributions
u on T for which there exists v € B, , such that u = v|; (see [109, Def. 1, p.192]).

If ¢ = oo, we write Bj instead of B, .. We have the following important embeddings between
Besov spaces.

Remark 1.2.2. Let s e R, 1 < p; < pa<ooand 1< ¢q < g <oo. From [11, Prop. 2.71], the space

—1 —1 -1 —1
S : . S_d(pl —Py ) . : s 8—d(p1 —DP2 )
Bm,(n continuously embeds into By, 4, , which we write as Bm,tn — Bps.go .
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Remark 1.2.3. Let Z be a bounded smooth domain. Let p1,p2,q1,¢2 € [1,00] and —o0 < s9 < 81 <
oo. If 81 —d/p1 > s2 — d/pa, then from [109, Th. p.196] we have B,! . (Z) — B;2 ,,(T).

For s € Ry \ N and p = ¢ = oo, Besov spaces coincide with Holder spaces (see [11, p.99]). We
now give a definition of Hélder spaces in space domain for s € (0, 1].

Definition 1.2.4. Let E, F' be Banach spaces, U C E and § € (0, 1].

e We denote the supremum norm of f € Cy(F) by | flc,r) = sup,ep |f(2)|r. When U and
F are clear from the context, we might also denote || f|leo = || fllc, (F)-

e The Holder space C(BJ(F) is the collection of all f € Cy(F') such that || f]|.s (F) 18 finite, where
U

. 1f(z) = fW)lr
= + with = sup .
Hchg(F) [f](,’g(F) HfHCU(F) [f]cg(p) wtyel Hw—yH%

If U = E, we alleviate the notations and write || f||cs(r) and [fles(py. Similarly, if F' =R or
if I is clear from the context, we write || f||,s and [f],s. Finally, if U = F' =R we just write
U U

ch.

e The space Cg 1oc(F') of locally Holder continuous functions is the collection of all f € Cp(F')
such that HfH’CB (F) is finite for all R > 0.

Dr

Remark 1.2.5. In some results, we assume that the drift is a (nonnegative) measure in some Bg .
This is equivalent to the assumption that b is a nonnegative distribution in Bg . Indeed, thanks to
[108, Exercise 22.5], any nonnegative distribution is given by a Radon measure (i.e. a locally finite,
complete measure fulfilling regularity conditions). Throughout the thesis we only deal with such
measures and just write measure instead of specifying the Radon property every time.






Existence and uniqueness for
one-dimensional equations with
distributional drift and fractional noise

Contents

II.1  Imtroduction . . . . . . . . . . . . . .

II.2 Mainresults . . . . . . . . . .

I1.2.1 Definitions of solution . . . . . . . . . . . . . . .

I1.2.2 Existence and uniqueness results . . . . . . . . . . .. ... ... ... ..

I1.2.3 Reformulation as a nonlinear Young equation . .. ... ... .......

I1.2.4 Organization of the proofs . . . . . ... ... ... ... .. ......

II.3  Nonlinear Young integrals and nonlinear Young equations in CP¥®" . . . . . ..

I1.3.1 Construction of nonlinear Young integrals and properties . . . . . . . . ..

I1.3.2 Solving nonlinear Young equations . . . . . . ... . ... . ... .....

1I.4  Existence of weak solutions with nonnegative drift via nonlinear Young integrals

I1.4.1 Definition and properties of the averaging operator . . . . .. .. ... ..

I1.4.2 Path-by-path solutions: Existence and comparison of solutions . . . . . . .

I1.4.3 Joint regularity of the local time of the fractional Brownian motion . . . .

II.4.4 Existence of a weak solution . . . . . . . . . . . . .. ... ... . ...

II.5  Regularity of weak solutions . . . . ... ... ... ... .. ... ... ...,

II.6 - Uniqueness . . . . . . . . o i i i e e e e e

I1.6.1 Uniqueness: Proof of Proposition I1.6.1 . . . . . .. .. ... ... .....

I1.6.2 Intermediate regularity results: Proofs of Lemma I1.6.3 and Lemma 11.6.4

II.7  Existence of weak and strong solutions . . . . .. .. ... ... .. .......

I1L.7.1 A priori estimates . . . . . . . . . . . ..
I1.7.2 Tightness and stability . . . . ... ... ... ... ... .. ......
I1.7.3 Approximation by smooth drifts . . . . . .. .. ... ... ... ..., .

I1.7.4 Existence of strong solutions . . . . . . . .. .. ... ... ... ...

ILLA Properties of fBm . . . . . . . . . . ..

II.A.1 Operator linking Brownian motion and fBm . . . . .. ... ... ... ..

31



32 II. EXISTENCE AND UNIQUENESS TO EQUATIONS WITH DISTRIBUTIONAL DRIFT

I1.A.2 Local nondeterminism of fBm and proof of Lemma I1.5.1 . . . . . ... .. 71
II.LB  Regularising properties of the fBm . . . . . . .. .. ... ... o 0oL 74

II.1 Introduction

In this chapter, which is entirely based on [LA4], we are interested in the well-posedness of the
one-dimensional equation

dX, = b(X,)dt + dB;, (I1.1.1)

when b is a distribution in some Besov space and (By);> is a fractional Brownian motion of Hurst
parameter H. We will explain in which sense this equation can be solved when b is a genuine
distribution. This equation encompasses at least two classes of equations which have frequently
been studied in the literature. Even though a part of the following literature was already mentioned
in Section 1.2.2, we give a more detailed review here.

First, when B is the standard Brownian motion, let us mention the early work of Vereten-
nikov [110] for bounded measurable drifts, then the more general LP — L9 criterion of Krylov and
Rockner [68] for which the authors proved strong existence and uniqueness (both works allowing for
time inhomogeneous drifts in dimension d > 1). Flandoli, Russo and Wolf [43] developed a weak
well-posedness theory while Bass and Chen [13] proved existence and uniqueness of strong solutions
with the drift being the distributional derivative of a y-Hélder function for v > 1/2. Then Davie [34]
provided conditions for path-by-path existence and uniqueness, which is a stronger form of unique-
ness, for time inhomogeneous bounded measurable drift. Using rough path methods, Delarue and
Diel [36] proved weak existence and uniqueness in dimension 1 when the drift is the distributional
derivative of a y-Holder function for v > 1/3. In higher dimension, Flandoli, Issoglio and Russo [44]
identified a class of SDEs with distributional drifts in Bessel spaces such that there exists a solution
that is unique in law. In addition, when the drift is random, another well-posedness result is given
by Duboscq and Réveillac [38]. We also point out the work [63], with extensions in [73] on an SDE
involving the local time at O of the solution, which formally corresponds to a drift b = ady, for
some a € [—1, 1] and Jp being the Dirac distribution. This setting corresponds to the so-called skew
Brownian motion, see [74] for more details and various constructions.

This leads to a second class of interesting problems, namely solving Equation (I1.1.1) when b is
a distribution and B is a fractional Brownian motion with sufficiently small Hurst parameter H. A
first attempt in this direction seems to be due to Nualart and Ouknine [83], who proved existence
and uniqueness for some non-Lipschitz drifts. When b = ady with a € R, the well-posedness
of this equation was established for H < 1/4 by Catellier and Gubinelli [24] (who also consider
multidimensional drifts in negative Holder spaces) and independently for H < 1/6 in [2, 9] with
extensions to dimension d > 1 in the three papers [2, 9, 24]. The solution is generally referred
to as skew fractional Brownian motion. We observe a gap between the one-dimensional Brownian
case (H = 1/2), with well posedness for |a| < 1 proven in [73], and the aforementioned result for
fractional Brownian motion with H smaller than 1/4. The intent of this chapter is to partially close
this gap. Note also that the case a = 1 corresponds to reflection above 0 in the Brownian case. The
well-posedness of reflected equations was established even for multiplicative rough noises in case X
is one-dimensional [37, 96|, while uniqueness might fail as soon as the dimension is greater than 2
(see [54]).
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Finally, let us mention that regularization by noise was also investigated for other types of noise,
for instance a-stable noises [27], regular noises [58] and other classes of rough processes [61, 62].
Recently, the regularization phenomenon was studied for SDEs with multiplicative noise (whether
fractional Brownian motion [33], or more general rough paths [23]).

In this chapter, the drift b is in some Besov space Bg,oo (denoted Bg hereafter). The solutions
we consider are stochastic processes of the form

X; = Xo + K + By, (11.1.2)

where K} is the limit in probability of fot b"(X) ds for any sequence (b™) of smooth approximations
of b (in line with [8, 13]). Roughly, when such a solution exists and X and B are adapted to the
filtration of the underlying probability space, we call it a weak solution. When X is adapted to the
natural filtration of B, it is called a strong solution. We refer to Definition I1.2.4 for more details.

Our first main result, Theorem I1.2.5, gives conditions on 5, p and H that ensure the existence
of a weak solution to (II.1.1) when b is a measure. In particular when b = ady, for a € R, we obtain
the existence of weak solutions to (I1.1.1) for any H < v/2 — 1. In the standard Brownian case,

1
Theorem I1.2.5 provides weak solutions when the drift is in B *. This space contains functions
which, to the best of our knowledge, are not covered by the existing literature (see Remark 11.2.7).
To prove Theorem I1.2.5, we consider another approach to study Equation (II.1.1) which is
via nonlinear Young integrals as introduced in [24], extending Young’s theory of integration [114].
Consider the more general equation

dX; = b(X,) dt + dZ,, (11.1.3)

where Z is a continuous stochastic process. The idea is to define path-by-path solutions to (I11.1.3),
that is, to solve this equation for a fixed realization of the noise (Z;(w)):. In order to do this one
rewrites the equation as a random ODE: dY; = b(Y; + Z;)dt, with Y; = X; — Z; and studies the
regularity of the averaging operator TZb : y — f(f b(y + Zs)ds. In some interesting cases, TZb is
more regular than b itself, which permits to have solutions of the form Y; = Yy + fg TZb(Ys), where
the integral is a so-called nonlinear Young integral. We refer to [47] for a review of nonlinear Young
integrals in the Holder setting and also to the recent work [50].

In Theorem I1.2.15 we give conditions such that solutions w.r.t. the probabilistic approach
via approximation of the drift and w.r.t. the approach via nonlinear Young integral theory are
equivalent (i.e. weak solutions coincide). Therefore, in order to show existence of a weak solution
to Equation (II.1.1), it is sufficient to construct a solution to the corresponding nonlinear Young
integral equation that is additionally adapted to a small enough filtration.

To do so, we construct nonlinear Young integrals in the p-variation setting (instead of Hoélder).
In our one-dimensional setting this allows us to exploit the nonnegativity of b to get existence of
solutions to (I1.1.3) under some milder conditions on the regularity of b. To obtain the regularity
of the averaging operator, we proceed similarly to Harang and Perkowski [62] by rewriting it as a
convolution between b and the local time of Z. We are then able to deduce the Holder regularity of
the averaging operator from the Besov regularity of the local time of Z (see Lemma 11.4.4). These
two ingredients permit to construct path-by-path solutions by convergence of the Fuler scheme
associated to the equation, see Theorem 11.2.14.

Alternatively, if the local time of Z has some probabilistic properties, as in the case Z = B, we are
able to show that the averaging operator has a certain tightness property, see Lemma 11.4.11. This
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permits to prove that the sequence of (random) Euler schemes which approximate the nonlinear
Young solution is compact in the space of continuous adapted stochastic processes, from which
adaptedness of X is deduced.

Our second main result, Theorem I1.2.10, states pathwise uniqueness of weak solutions in a class
of processes which have some Hélder regularity. The main condition is that b is in Bg with g and p
satisfying 8 — % >1- ﬁ As with the Yamada-Watanabe Theorem, weak existence and pathwise
uniqueness also lead here, under the same conditions on 3, p and H, to the existence of a strong
solution. Moreover, when b is a measure, any strong solution is proven to have sufficient Holder
regularity, thus ensuring pathwise uniqueness. For instance, we get strong existence and pathwise
uniqueness to (I1.1.1) when b = ady for a € R and any H < 1/4. This extends the previously known
condition H < 1/4 from [24, 50] to H = 1/4.

To prove this theorem, we follow the recent approach of Athreya et al. [8]. In this paper,
the authors proved the strong well-posedness of the one-dimensional stochastic heat equation with
Besov drift by a tightness-stability argument. The main regularity estimates are obtained via the
recent and powerful stochastic sewing Lemma introduced by Lé [70]. To adapt this argument to our
setting, we control the H6élder norm of the conditional expectation of z +— fst f(xz+ By) dr in terms of
the Besov norm of f (see Lemma I1.7.1). One difficulty that arises here is the non-Markovian nature
of B, which we could compensate by using a slightly adapted version of the local nondeterminism
property of the fractional Brownian motion.

In the development of the proof of Theorem I1.2.10, we obtain that weak solutions to (IT.1.1)
are limits of strong solutions to (II.1.1) with b replaced by a smooth bounded drift ", where the
sequence (b™) converges to b in Besov norm. This result is detailed in Theorem I1.2.8 and can be of
independent interest in view of numerical applications.

Lastly, let us mention that all techniques and results involving stochastic sewing in this chapter
can be generalized to d dimensions in a straightforward way (see [59]).

Structure of the chapter. In Section II.2, the main definitions and results are stated as well
as the organization of the proofs. In Section I1.3, we develop the construction of nonlinear Young
integrals in p-variation (Theorem I1.3.1) and use it to find solutions to nonlinear Young integral equa-
tions with nonnegative (or nonpositive) drifts, see Theorem I1.3.4. Then in Section I1.4, we prove
successively Theorem 11.2.15 (relation between different notions of solution) and Theorem 11.2.14
(existence of path-by-path solutions) which then permit to conclude with the proof of Theorem I1.2.5
about the existence of weak solutions. The regularity of weak solutions is studied in Section IL.5.
The uniqueness part of Theorem I1.2.10 is proven in Section I1.6. The tightness-stability argument
which leads to the existence of strong solutions is in Section I1.7.

Other relevant sections are: Section II.A.2 including the local nondeterminism property of the
fBm and the proof of the important regularity estimates of the conditional expectation of the
fBm (Lemma I1.5.1); Section II.B as it includes several Holder bounds on the integrals of fBm;
Appendix A.1 recalling some useful results on Besov spaces and Appendix A.2 containing different
versions of the stochastic sewing lemma.
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11.2 Main results

I1.2.1 Definitions of solution
We define here weak and strong solutions to (IL.1.1).

Definition I1.2.1. Let § € R, p € [1,00]. We say that (fy)nen converges to f in Bg_ as n — oo if
SUPpeN ||anBg < oo and

/ : .
VB <B, Im |fa = fllge =0.

Remark 11.2.2. For any [ € 857 there exists a sequence (fy,), of bounded smooth functions con-
verging to f in the sense of Definition 11.2.1: e.g. f, := G1 f, where G is the Gaussian semigroup

introduced in (1.2.10). This can be seen to hold true by applying Lemmas A.1.7 and A.1.9.

We recall here a link between fractional Brownian motion and Brownian motion. For each
H € (0, %), there exist operators A and A, where both can be given in terms of fractional integrals
and derivatives (see (II.A.1) and [87, Th. 11]), such that

if B is a fractional Brownian motion, W = A(B) is a Brownian motion, (I1.2.1)

if W is a Brownian motion, B = A(W) is a fractional Brownian motion. (I1.2.2)

Besides, B and W generate the same filtration.
We give here the definition of an F-fractional Brownian motion, for a given filtration F.

Definition I1.2.3. Let F be a filtration. We say that B is an F-fractional Brownian motion if
W = A(B) is an F-Brownian motion.

Definition I1.2.4. Let B € R, p € [1,00], b € By, T > 0 and X, € R.
o Weak solution: We call a couple ((X¢)iepo,1], (Bt)ieo,r]) defined on some filtered probability
space (Q, F,F,P) a weak solution to (II.1.1) on [0, 7], with initial condition Xy, if

— Bis a F-fBm;
— X is adapted to F;
— there exists a process (Ki);c[o,7] such that, a.s.,

Xi=Xo+ K+ B;forallt e [0, T]7 (1123)
— for every sequence (b"),cn of smooth bounded functions converging to b in Bg ~, we have
that .
sup / b (X, )dr — K =5 0. (I1.2.4)
tefo,7] 1J0 n—o0

If the couple is clear from the context, we simply say that (Xt)te[o,T] is a weak solution.

e Pathwise uniqueness: As in the classical literature on SDEs, we say that pathwise uniqueness
holds if for any two solutions (X, B) and (Y, B) defined on the same filtered probability space
with the same fBm B and same initial condition Xy € R, X and Y are indistinguishable.

e Strong solution: A weak solution (X, B) such that X is FP-adapted is called a strong solution.
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I1.2.2 Existence and uniqueness results

Theorem I1.2.5. Lel f € R, p € [1,00] and H € (0, %] Let b € Bg be a measure. Assume that
one of the following conditions holds:

(i)H}%andB>1+%—ﬁ;

(i) H< % and B >2H —1;

“ae l
(iii) p € [2,00] and B > —57 + 1.
Then,
(a) there exists a weak solution X to (II.1.1) such that the convergence in (11.2.4) holds a.s.

(b) Additionally, X — B € CfB,T]<Lm> for any k€ (0,1+ H(B — %) AO]\ {1} and m > 2.

Corollary I1.2.6. For any finite measure b, there exists a weak solution to (11.1.1) for H < v/2—1.
If b = ady, for some a € R, we call it an a-skew fractional Brownian motion.

Remark 11.2.7. In the Brownian motion case (H = 1/2), we obtain existence of a weak solution in
new cases. For instance, consider, for € > 0,

b(x) = |~ a(a),

where a is a smooth, compactly supported, nonnegative function equal to 1 on [—1,1]. We have

1 i
that b € Bf+ (see [11, Prop. 2.21] for similar computations), and the space Bf+ is covered by

Assumption (i) of Theorem IL.2.5. Since b is neither in J,>, LP(R) nor in C‘§+, we cannot directly
apply results from [68] or [36].

The following theorem gives, as Theorem I1.2.5 does, conditions on the drift and the Hurst
parameter such that (II.1.1) has a weak solution. Note that this time, there is no nonnegativity
assumption on b. Even in the case of considering b to be a measure, none of the two theorems
is stronger than the other. However, if b is a finite measure, Theorem I1.2.5 allows for a wider
range of Hurst parameters to get existence of weak solutions to (II.1.1). Moreover, even though

Theorem II1.2.5(iii) is fully covered by (I1.2.5), it still adds value as it gives a.s. convergence in
(I1.2.4).

Theorem I11.2.8. Let e R, pe[l,x], b€ 65 and Xog € R. Let (b")nen be a sequence of smooth

bounded functions converging to b in Bg_. Let X™ be the unique strong solution to (1L.1.1) with
drift b". Assume

1 1 1
——> -+ . 11.2.5
b=0>smts (I1.2.5)
Then, there exists a subsequence (ny)gen such that (X" )gen converges in law w.r.t. || - | to a

process X which is a weak solution to (I1.1.1) with drift b. Furthermore, X — B € Cho T](Lm) for
any K € (O,I—i—H(ﬁ—%)/\O]\{l} and m = 2.
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Remark 11.2.9. Without loss of generality, the previous theorem can directly be formulated for
Hoélder spaces by fixing p = oo, using the embedding from Remark 1.2.2. However, this is not
the case for Theorem I1.2.10 below. Hence we keep working in general Besov spaces for a better
comparison of the results.

Under slightly stronger assumptions than (I1.2.5), the following theorem states strong existence
and pathwise uniqueness. In particular, it implies that under this stronger condition, convergence in
probability of the approximation scheme in Theorem I1.2.8 holds without passing to a subsequence.

Theorem 11.2.10. Let H < 1/2, e R, pe[l,x], b€ Bg and Xg € R. Assume

1 1 1
Then,
1
a) there exists a strong solution X to (11.1.1) such that X — B € C2+H L™) for any m = 2;
[0,7]

ly+H
(b) pathwise uniqueness holds in the class of all solutions X such that X — B € C[%J;] (L?);
(c) for any sequence (b"™)nen of smooth bounded functions converging to b in Bg_, the correspond-
ing sequence of strong solutions (X™),en to (IL1.1) with drift b converges in probability to
1
the unique strong solution for which X — B € C[%}?(L%. In particular X is independent of
the chosen sequence of approximations.

(d) if b is a measure, there exists a pathwise unique strong solution to (I1.1.1).

Remark 11.2.11. e For b being a finite measure (hence in BY), Theorem I1.2.10 gives existence
of a unique strong solution to (IL.1.1) for H < 1/4 and Theorem I1.2.8 gives existence of a
weak solution to (II.1.1) for H < 1/3.

Such a finite measure b is also in B_'. In this space, the existence of a unique strong solution
was shown in [51] for H < 1/4 (elaborating on the path-by-path result of [24]). Hence in this
case, Theorem I1.2.10 extends this result to H = 1/4.

e In the Brownian motion case, Theorem I1.2.8 gives existence of weak solutions for b € Bg
when 8 — 1/p > —1/2. In this regime strong existence and pathwise uniqueness are already
known by [13].

e Note that H = 1/2 is excluded from Theorem I1.2.10. Strong existence and uniqueness result
are already known under our assumptions (see [68]).

The following diagrams display for which Besov-valued distributions b we have well-posedness for
Equation (II.1.1). The black-hatched area and the turquoise area correspond to the result obtained
in Theorem I1.2.5. The graphics visualize that the weak solution constructed in Theorem II.2.5 is a
solution that, in some cases, does not arise from the weak solution constructed in Theorem I1.2.8.
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Figure 2: Existence (and uniqueness) for variable H

I1.2.3 Reformulation as a nonlinear Young equation

Let w € Cjg 7). Rewriting Equation (I1.1.3) with Z = w and X; = X; — w, we formally obtain
t
X =Xo+ / b(X, + w,)dr. (I1.2.7)
0
For a bounded measurable function b, we define the averaging operator 7% by

T,"b(x) == /Ot b(x + w,)dr, for (t,x) € [0,T] x R. (I1.2.8)
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Assuming that w has a local time L and using the occupation time formula (I.2.12), it comes that

T5b(z) = /t b(x + w,) dr = /Rb(:zr +2)Lsy(2)dz = b* Lgy(), Vo € R, (I1.2.9)

where L ;(x) = Ls(—x). This operator and its connection to the local time was already considered
in [24]. In view of the expression of T"b as a convolution, one can expect that for w with a
sufficiently regular local time, the definition of T%b will extend to b with lower regularity (we will
consider suitable Besov spaces, see Section 11.4). This idea was exploited in [62], in the case of
noises with infinitely differentiable local times.

Using (I1.2.7), we get that for b continuous and bounded, X € Cjo, 7] and a sequence of partitions
{tP1 N of [0,t] with mesh size converging to 0,

Np—1

t
/b(X +w,) dr = lim Z/ b(Xen + wy) dr
0 n—0o0 tn

= lim E 7 4n bX"
n—o0 2’1+1

t
= /0 TYb(X,), (11.2.10)

where the final equality is only formal at this point. We give a rigorous definition of this integral in
Section I1.3 and call it a nonlinear Young integral. This also suggests to rewrite Equation (I1.1.3)
as a nonlinear Young integral equation. Thus we give another definition of a solution to (11.1.3) and
(I1.1.1). Combining the theory of nonlinear Young integrals from Section I1.3 and the extension
of the averaging operator applied to distributions (see Section 11.4) will give sense to the following
definition.

Definition I1.2.12. Let Z be a stochastic process. We call X : 2 — Cj 7 a path-by-path solution
to (IL.1.3) if there exists a null-set A, n € (0,1] and p,q > 1 such that 1/p+n/q > 1 and for any

w¢ N, T?w beCf’O‘?}r(C") X(w)—Z(w) € C[%?]r and

Xi(w) = Xo + /Ot szr(w)b(X,,(w) — Zr(w)) + Z(w), for all t € [0,T]. (I1.2.11)

The assumption involving 7 € (0,1] and p,q > 1 is simply the (sufficient) condition formulated
in Theorem I1.3.1 that ensures the existence of the nonlinear Young integral. Note that in the above
definition no measurability or adaptedness of X is required.

Theorem I1.2.14 gives conditions on the local time of the process Z such that there exists a
path-by-path solution to (II.1.3). These conditions will be needed multiple times thoughout the
chapter, hence we give them here.

Assumption I1.2.13. Let v,n € (0,1),8 € R and p € [1,00]. Let b € Bg and w € Cjo ) with local
time L.

(I) There exists p € [1,00] with 1/p+1/p > 1 and L € C],...(B; Brntd/pl/p- 1)

017185

(1) There exists p € [1,00] with 1/p+1/p <1 and L € C[o T](B~ By,
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Theorem 11.2.14. Letvy,n € (0,1) withy+n > 1. Letb € 135 be a measure with f € R, p € [1, 00].
Let Z : Q2 — Cio1) be a continuous stochastic process with a local time L? : Qx[0,T] xR — R.
Assume that there ezists a null-set N such that for any w ¢ N, L?(w) satisfies (I) or (II). Then
there exists a path-by-path solution to Equation (11.1.3).

Recall that Theorem I1.2.14 does not imply existence of a measurable /adapted solution. However
in the case of fBm, using properties of its local time, additionally adaptedness of the path-by-path
solution can be proven (see Theorem I11.2.5).

The following theorem provides a comparison between solutions constructed by approximation
with a smooth drift and solutions in the nonlinear Young sense. More precisely, it shows that being
a solution to (I1.1.3) (i.e. for a noise Z) in the sense of Definition I1.2.12 implies being a solution in
the sense of Definition 11.2.4. Under some regularity restrictions, the reverse implication holds as
well. We rephrase (11.2.3) and (I1.2.4) (without specifying the mode of convergence yet) for a noise
Z instead of B:

X, = Xo+ K, + Z for all t € [0,T]; (I1.2.12)
t
sup / b (X, )dr — Ki| — 0 (11.2.13)
tefo,7] 1J0 n—00

for every sequence (b"),en of smooth bounded functions converging to b in Bg .

Theorem I1.2.15. Let v,n € (0,1) and ¢ > 1 withvy+n/q>1, Xo e R, pe[l,00], BER, b€ 85
and X : Q= Cpo.1). Let Z : Q — Cjg 1 be a conlinuous stochastic process and LZ :Qx[0,T]xR — R
its local time. Assume that there exists a null-set N such that for any w ¢ N, L?(w) satisfies (I)
or (II).
(a) Assume that X is a path-by-path solution to (11.1.3) and that X — Z € CEIO'f’Ta]T. Then for any
sequence of smooth bounded functions (b")nen that converges to b in Bgf, X (w)—Z(w)—Xo =
K. (w) = [, TdZT(w)b(XT(w) — Z(w)) is the uniform limit of [, b™(X,(w))dr for allw ¢ N (i.e.
(I1.2.13) holds on the set of full measure N€).

(b) Assume that there evists a process K : Q — Cjo ) such that (11.2.12) and (11.2.13) hold, where
the convergence in (11.2.13) is in probability. Assume further that a.s., X (w) — Z(w) € CH 7.

(0,77
Then X is a path-by-path solution to (11.1.3).

Remark 11.2.16. In particular, statement (a) implies that if X is an F-adapted path-by-path solution,
it is a weak solution. Moreover, for the weak solution constructed in Theorem I1.2.5, the convergence
in (I1.2.4) holds on a set of full measure instead of convergence in probability.

I1.2.4 Organization of the proofs

In Section I1.3, we construct nonlinear Young integrals in p-variation via a classical sewing argu-
ment. In particular, we establish existence of solutions to a nonlinear Young integral equation with
monotone drift under milder regularity constraints than in the non-monotone case.

Then we rigorously rewrite Equation (II.1.1) as a nonlinear Young integral equation. The
existence of a solution to the more general Equation (I1.1.3), when Z has a sufficiently regular
local time, is stated in Theorem I1.2.14 and proven in Section 11.4.2. We then establish that a
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solution to (II.1.1) in this nonlinear Young sense is also a solution in the sense of Definition I1.2.4
(see Theorem I1.2.15, which is proven in Section 11.4.2). For instance, when applied to the case
of a fractional Brownian noise (after investigating the regularity properties of its local time), these
theorems imply the existence of path-by-path solutions. However, in Theorem I1.2.5(a) one wants
to prove the existence of solutions that are adapted to the filtration F of the underlying filtered
probability space. Theorems I1.2.14 and 11.2.15 cannot be applied directly and a modified approach
is developed using the tightness of the averaging operator of the fBm (Lemma II.4.11) and the
continuity of the operator A transforming a fBm to a Bm, see (I1.2.1) and Lemma II.A.1. These
arguments are given in Section 11.4.4 and lead to the proof of Theorem I1.2.5(a).

In Section I1.5, we use some new regularity estimates on conditional expectations of the fBm
(Lemma I1.5.1) and the stochastic sewing Lemma with random control (see Lemma A.2.2) to es-
tablish that any weak solution X satisfies X — B € C[j (L™) for any x € (0,1+H(B— ;17) A0\ {1}

and m > 2 when b is a measure in Bg . This proves Theorem I1.2.5(b) and Theorem I1.2.10(d).

In Section II.6, in order to establish pathwise uniqueness of weak solutions to (IT.1.1) (see
Proposition 11.6.1), we adapt an approach developed recently for the stochastic heat equation with
distributional drift, see [8]. This requires several regularity estimates on solutions which are derived
from the crucial regularity Lemma II1.B.1 and the stochastic sewing Lemma with critical exponent
(Theorem 4.5 in [8]). The proof of Lemma II.B.1 relies on the stochastic sewing Lemma and the
aforementioned regularity estimates on conditional expectations of the fBm (Lemma I1.5.1).

Theorem I1.2.8 is proven in Section I1.7 by an approximation of the drift with smooth bounded
functions. The corresponding sequence of strong solutions will be shown to be tight and furthermore
reveal a stability property, such that we can identify the limit as a solution to (II.1.1), where
continuity of the operator linking fBm to Brownian motion (see Lemma II.A.1) is needed to prove
adaptedness. This works thanks to a priori regularity estimates of solutions, see Lemma 11.7.2 and
Lemma I1.7.3.

Strong existence will follow by a Yamada-Watanabe type argument, using Gyongy-Krylov’s
lemma (|60, Lem. 1.1]) and requires the uniqueness result Proposition 11.6.1. The proofs of Theo-
rems I11.2.8 and I1.2.10 are then completed in Section I1.7.3.

I1.3 Nonlinear Young integrals and nonlinear Young
equations in CPv¥"

I1.3.1 Construction of nonlinear Young integrals and properties

Throughout this subsection, F¥ and F' denote arbitrary Banach spaces. Theorem II.3.1 provides
conditions for the existence of a nonlinear Young integral in terms of p-variations (rather than
Holder continuity as in [24, Th. 2.4] and [47]).

Theorem I1.3.1. Let n € (0,1] and p,q € [1,00) such that 0 := 1/p+n/qg > 1. Let A €
C%"%T(C%’ZOC(F)) and x € CEI()_f’T‘l]T(E). Then for (s,t) € A and any sequence of partitions (I1,,)n
of [s,t] with lim,, [IT,| = 0, the sum Y ;1 Ay, 1., (%,) converges. Besides, the limit is independent
of the sequence of partitions (Il,),. We denote it by fst Agr(xy) and call it the nonlinear Young
integral with respect to A and x.
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In addition, there exists C(0) > 0 such that for (s,t) € Ajg ) and R > 0 with ||z|e < R, one
has

Proof. We apply the sewing lemma [46, Theorem 2.2 and Remark 2.3| formulated with controls.
Let 0 <u<v<w<T. Then, for R > 0 such that ||z]« < R,

g C(e) [A]CP U‘”‘(C ){ ]CE] v(]lr (1131)
F t

/ ) — Ayl

‘Au,w(xu) - Au,v(xu) - Av,w(xv)‘ = ’Av,w(xu) — A, w(wv)’

[Av w]cn [ ]Zq var
Dpr [u,w]

N

< [Alerarey, Hle }Cﬁfiﬁ’

which gives the result as the last expression in the above defines a control raised to the power 6 by
[45, Exercise 1.9]. O

As a corollary we obtain the following result.

Corollary I1.3.2. Let T > 0. Let p,q € [1,00) and n € (0,1] with 6 := 1/p+n/q > 1. Let

T € CEJ w}r and A € Cﬁ) %T(C”) If a sequence A™ converges to A in Cﬁ) zéfl]T(C”) then

t
sup / (A" — A)gr(xr)| — 0.
tefo,7] 1J/o n—o0
Proof. By (I1.3.1), we have
t t
[ = D] <] [ (A" = Aanlar) = (A" = Aoaloo)| + (A" = Ao
0 0
< CO)[A" — A]cp va]r(m)[ ]CEIO?]T + [A" A]C[%\;ejr(c,n)
Taking the supremum over all ¢ € [0, 7] and letting n go to co gives the result. O
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The next lemma establishes the sensitivity in the variable of the nonlinear Young integral.

See [47, Th. 2.7] for its counterpart in the Holder setting.

Lemma I1.3.3. Let n € (0,1] and p,q € [1,00) with 6 :=1/p+n/q> 1. Let A € CfE)UTa{(Cg 1oe(E)),
T,y € Cﬁ)g?{(E). We denote R = Max(||z||o, ||Ylloc)- Then, for § € (¢(1 — %),n) and (s,t) € Ajo,1),

one has
t t
/ Adr(SUT) _/ Adr(yr)

[s,t] [s,t] [s,t]

+llAselley Nz —yll%. (11.3.2)

J )
< COWMIerrrey  (I@lerer + lerr) Iz =yl
F
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Proof. For (u,w) € A7y, let

Fu,w = (Au,w(xu) - Au,w(yu))

Again, we aim to apply the sewing lemma. For any z € C[qo‘?]r( ), let sz, (u, w)? := [A], ere ey, y[2]2avar

[u,w]

Furthermore, let

X -1 99 -3
s w0 = () + s, 0) 1 ([ ey )
By [45, Exercise 1.9] and by definition of a control, we get that s, s, s, + 5, and 3 are control
functions.
Note that, for v € [u, w],

||Fu,w - Fu,v - UwHF < HAU w(xv) - Av w(xu)HF + ||Av,w(yv) - Av,w(yu)HF
<A ]C[’;er ey )([ ]CEI var + [y]clq V:j]l)
< (ot (u, w) + s2y(u, w))g.

Furthermore, we also have that

||FU,w —Dyp — Fv,wHF HAv,w(xv) — Ay w(yv)”F + ||Av,w($u) - Av,UJ(?/U)HF

2[Aleparen Hllz = ylg

[vw

VAS/A

It clearly holds true that a A b < aéb'~¢ for a,b > 0 and ¢ € [0,1]. Hence, for £ = 6/n € (0,1), it
comes

. 541 n(1-2)
Hru,w - Fu,v - 1—‘v,w”F < C%(u, w)q+p Hx - yHOO .

Applying the sewing lemma and the inequality
IPuwlle < [Auwlley lle = yll%

gives (11.3.2). O

I1.3.2 Solving nonlinear Young equations

We are now ready to state a result of existence of solutions to nonlinear Young integral equations
with a positive drift. From now on we will work with real-valued functions and vector fields. The
proof resembles the one in the Holder setting, see [47, Th. 3.2]. However, there is one crucial step
where the p-variation permits to take into account the nonnegative drift and which then allows to
assume milder regularity conditions than in the Holder setting.

Theorem I1.3.4. Let n € (0,1] and p > 1 with 1/p+n > 1. Let A € C%%T(C”) with As¢(y) =0
for all y € R and all (s,t) € Ay ). Then for any xo € R, there erists a solution x € C[IO %9]7" to the
nonlinear Young equation

t
T = To +/ Agr(zy), Vt €[0,T7. (I1.3.3)
0
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Proof Without loss of generality, let 7= 1. Let 8 := 1/p+n. Forn € Nand 0 < k < n, let
L= k/n, Ty := xo and define recursively

'/’Uk-i'l - '/’Uk + Atk7 k+1 ('/’UZ)
We embed (77)7_, into Cjg1; by setting
xy =xo+ Z t antp (T (),
0<k<|nt|
which we write as follows
t N
o =aot [ A e Y ([ Awlal) - Anted)) (1L3.4)
0 o<k<|nt] \"%
Denote the sum in (I1.3.4) by ¢}". Let us introduce the control function
%
— n
o ot) o= (Mleppienlop )

Then using (I1.3.1) and the superadditivity property (1.2.13) of a control,

LR
wil=| ¥ (/ Adr<xz§>—Adr<xﬁ>>

0<k< | nt]
< C(0) Z (gt Aty
0<k<nt

<O0)#'(0.) max (A )Y (IL3.5)

Let 0 < s<u<T=1. Wenotei=|ns| and i + 7 = |nu]. We assume that 7 > 0 as the case
J =0 is simpler. Then

Vs +

t’l”—ﬂ—l n n
<|[7 Aulaty) - Auta)

<

/SmlAdr( s) — Adar(x7)

A, (@2) = Asap,, (@)

J UNER g n n
Z Agr (xtﬁ ) — Agr (]Zr)
mn i+k

k=1 itk

_l’_

)

so by the estimate (I1.3.1) it comes

el < C(8) <%"(S,u)9 + [A]Cmatrn e ]> . (IL3.6)
i+1

[t7,en

We now look for a bound on the 1-variation norm of ™. Due to the non-negativity assumption on
A, z" is non-decreasing. Hence

[l'n]cl-_var = |xf;1 t? | = |At?,t7+l(fli%)\ < [A]Cﬁlat% n -
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Then in view of (I1.3.4), (IL.3.6) and applying (I1.3.1) to [* Ag(2'), we get

(2" e1ver < C(6) <(|As,u(:cg)| + 5" (s,1)") + <%"(s,u)6 + [A) (Cn)>> .

[s,u] [tn tn 1]

Let now £ > 0 and choose n such that [A]C'[‘;’lat% e < gl/+m) for all 4 = 0,...,n — 1. Then one
i 41
obtains

[.an]cl—var < 20(6) [A]Cpfvar(cyl) —+ [A]Cpfvar(cn)[fﬂn]gl_var +e].
u] [s.u]

[s,u] [s, [s,u]

Using that a7 <14 a for a > 0 and 7 € [0, 1], it follows that

[2"]czove < 20(0) ([Algps o (1 + ["]opwr) +) -

[s,u] [s,u]
Hence, for s < u such that 2C (9)[A]Cfa—va]r(cn) < 1, this leads to
[Alcrvareny + €

X 1-var g 20(6) [s,u] s
[#"Jet s 1 —2C(0)[Alepvareny

(11.3.7)

which gives both uniform boundedness and equicontinuity. In view of Equation (I1.3.5), the uniform
boundedness of [:U”]C[ldvt?r combined with the continuity of [A]cfgvt‘]“(cn) give that ¢™ converges to 0
uniformly on [0, 1]. By the Arzela-Ascoli Theorem, we deduce that ™ converges uniformly along a

subsequence to some non-decreasing = € Cjg,1). Without loss of generality, we still denote by z™ this
subsequence. Then using the uniform boundedness of [xn]c[ldvﬁr and the uniform convergence of ="

to x, one gets from Lemma I1.3.3 that for any t,

t

Adr(a}?) njo ; Adr(xr).

Hence, passing to the limit in (I1.3.4), we finally obtain that x solves (I1.3.3). O

Remark 11.3.5. Theorem 11.3.4 extends to mappings A which are only locally Holder in space, giving
existence possibly up to a blow-up time. Its proof can be done using typical localization arguments.

Since we are interested in differential equations perturbed by noise, it is natural to look for an
extension of Theorem I1.3.4 in case A is random, and to look for a measurable solution. Therefore
we conclude this section with an extension of Theorem I1.3.4 for random A . We omit the proof as
it is similar to the first part of the proof of Theorem I1.2.5 which is presented in Section 11.4.4 (i.e.
showing tightness and then using Skorokhod’s representation Theorem to pass to an almost sure
limit).

Corollary I11.3.6. Let n € (0,1] and p > 1 with 1/p+n > 1. Let A: Q — Cf) ”a{(C’?) be a random
variable such that almost surely, Asi(y) > 0 for all y € R and (s,t) € A ). Furthermore, assume
that for any X\ > 0,

Hm P(Q5,) = 1, where Qs :={w: sup [A]cprarieny < A} (I1.3.8)
6—0 ’ ’ t—s|<6 [s,t]
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Then for any Yy € R, there exists a probability space (Q,S,P), a measurable map A which satisfies

Law(A) = Law(A) and a measurable map Y : Q — C[lo'gil]” such that almost surely,

t
Yt=Y0+/ Aq(Yy), Yt €[0,T].
0

I1.4 Existence of weak solutions with nonnegative
drift via nonlinear Young integrals

We prove Theorem I1.2.5, Corollary 11.2.6, Theorem 11.2.14 and Theorem I1.2.15 in this section.
First, we extend the averaging operator defined in (I1.2.8) to distributions b in Besov spaces. Ob-
taining some Holder regularity properties for this object allows to prove Theorem I1.2.15, which
states roughly that solutions to (II.1.1) in the sense of Definition I1.2.4 are equivalent to solutions
in the sense of Definition I1.2.12. Hence, we then only consider solutions in the sense of Defini-
tion I11.2.12.

The remaining subsections are dedicated to the proof of Theorem I1.2.5, using some fine results
on the joint regularity in time and space of the local time of fractional Brownian motion and the
results on nonlinear Young equations from Section IL.3.

I1.4.1 Definition and properties of the averaging operator

In this section we give the definition of the averaging operator T for distributional b and w € Cg 1,
extending the construction of Section I1.2.3. Note that this was already done in a very general setup
in [50, Section 3.1]. We take a less general approach by directly mollifying b, which is in line with
the definition in [50] by Lemma 3.9 therein.

Definition I1.4.1. Let w € Cjg 7). Let 8 € R and p € [1,00], b € Bg. The averaging operator is
defined by

T°b(x) := nh_}rr;o T (x),

if the limit exists for any sequence (b™) of smooth bounded functions converging to b in Bg ~ and is
independent of the choice of the sequence.

Lemma I1.4.2. Consider 3,5 € R with §—§ € (0,1], v € (0,1], p € [1,00), b € By and w € Cpy 7y.
Assume that w has a local time L € C[’(Y) 7] (B;’B). For the above choice of b and w, T™b is well-defined
in CY(CP) for any p € (0,8 — f3).

Remark 11.4.3. Recall from [11, Prop. 2.76] that for n € R, p,p’,¢,¢ € [1,00] with 1/p+1/p' =1
and 1/g +1/¢' = 1, there is a continuous bilinear functional (-,-) : Bj 4 x B, — R extending the
L? inner product.

Proof of Lemma IT.4.2. Let ¢ = 8 — (. After an embedding of Besov spaces (see Remark 1.2.2), we

know that b € 8575/2 and L € CEB 7] (B;Bl*g/z). Let (b")nen be any sequence of smooth bounded
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functions converging to b in Bg ~. By the convolutional representation (I1.2.9) and Remark 11.4.3,
we have that

T (z) = (0", Le(- — ).
Using the continuity of the bilinear functional (-,-), we get, for n,m € N,

WpN (. _ wpm/ . _ n__gm
T2 ) = T Olle € Ol g5 " = 87l e
Therefore TYb" forms a Cauchy sequence and is uniformly convergent. Hence, T%b is well defined
and is easily seen to be independent of the approximating sequence.
Let p € (0,8 — ). In order to show that T"b actually has the required regularity, we have to
check that
TYb(y) — T2 b(x TYb(x
(0,71 sA£t,T#Y |t - S|’Y|.%' - y|p s#t X |t - 8’7
T"b(y) — Tb
+ sup s T00) = T%b(a)|
t xFty |J) - y‘p
is finite. Fix s £t and x # y. For any n € N,

[ Tseb(z) = Tpb(y)] < 2| Ts3b() = Tpb™ ()lloo + [T53b" () — T530" (y)]-

(11.4.1)

+ supsup [T,°b(x)
t T

Choosing n = n(s,t,z,y) large enough, we have
IT2b() = T (Moo < [t = sl —y|7~7.

Moreover, using continuity of the bilinear form, an embedding of Besov spaces and Lemma A.1.8(b),
we have, fore=8-8—p > 0,

T80 (2) = T ()] < Cl gp-er2 | Lo = 2) = Laal- = 9) g
P
< Clt = sl = g1l 12, 5
p/

As the other terms in (I1.4.1) can be controlled similarly, the result follows. O

Lemma I1.4.4. Let p,p € [1,00|, B E€R, n,7v € (0,1) and b € Bg. Assume that the local time L of
w satisfies Assumption I1.2.13 (I) or (II). Then, for any ¢ € (0,n), T%b € C[Y),T] (C"=%). Moreover,
for any bounded open interval T that contains the (compact) support of L, there exists a constant
C1 such that:
e If (1) holds, then [wa]C%’T](CW—E) < CIHbHBg [L]C&J’T](B;la—ﬂ+n+1/19+1/ﬁ—1) and
T8l ey < CrlbllgglLlly gssnsiimsnson;

e If (II) holds, then [wa]%,m(c”_g) < CIHb”Bg [L] and

C%,T](Bgﬁ"'”])
w _ < _
||T bHC[“(/)YT](cn X CIHleggHLHC&),T](BﬁﬁJr")'

Remark 11.4.5. In particular Lemma I1.4.4 shows the following: Assume (I) or (II) holds for v,n €
(0,1) with vy +n > 1. Then T"b € C[Y),T} (CM) for 7 € (0,n) with v+ 7 > 1.

Proof. The proof follows along the same lines as Lemma I1.4.2, making use of several Besov embed-
dings, including B];B+"H/p+1/p71(1) — B;ﬂl+"_€(I) (see Remark 1.2.3). O
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I1.4.2 Path-by-path solutions: Existence and comparison of solutions

In this section we prove Theorem 11.2.14 on the existence of path-by-path solutions to Equation
(I1.1.3) and Theorem I1.2.15 on the comparison of solutions.

Proof of Theorem I1.2.14. The idea of the proof is to identify a set of full measure on which T4b
is sufficiently regular and has nonnegative increments. Then, for w in this set, we can apply the
(deterministic) theory of nonlinear Young integral equations developed in Section I1.3. In particular,
for any such w, we use Theorem I1.3.4 to pick a solution. As the proof of Theorem I1.3.4 is non-
constructive (it relies on Arzela-Ascoli’s Theorem), the axiom of choice is needed to pick a solution
simultaneously for all such w. For w outside of this full-measure set, we can define the solution to be
identically 0. Note that this construction is indeed done in a path-by-path sense so that the solution
solves (II.1.3) on a set of full measure. However, a priori there is no reason why the constructed
solution should be adapted.
Let 0 < s < t. Provided that

T?b € Cozy(CT) for ,77 € (0,1) with v +7 > 1 and (IL.4.2)
TZb(z) >0 forallz € R (I1.4.3)

hold a.s., using C[Woﬂ (c™ c C[lo/gi]var(cﬁ), Theorem 11.3.4 will give a solution.
Under the assumptions of Theorem I1.2.14, Lemma I1.4.4 ensures that (I1.4.2) holds. To see that

(I1.4.3) holds, let ¢ € (0,n) and 6 := n — . Both under Assumption 11.2.13 (I) or (II), we have that
Lit € B;/jlﬂs and LSZJS € B;6+25/3 by the Besov embeddings in Remark 1.2.2 and Remark 1.2.3. By

Remark II.2.2, the sequence of nonnegative function ¢} := Gl/anZ,t(‘ — x) converges to Lit(~ — )

o BB+26/3)-

N . Hence

tim L7, — 2) = 62l 5 < C | EZ( = ) = g5 -ears = . (11.4.4)
v/, p’

Then we get, for any sequence of nonnegative smooth bounded functions b™ converging to b in Bg o,
TZb(x) = lim TZ0™(x)
’ m—»o0 ?

o . m
= fim T (0, én),

where the first line holds true by definition and the second line by the continuity of (-, -) and (I1.4.4).

The inequality (11.4.3) now follows from the fact that (0™, ¢7) > 0, for any n,m and =. O

Proof of Theorem II.2.15. (a): Let € € (0,n) such that v+ (n —¢)/q > 1. As Assumption 11.2.13
(I) or (II) is fulfilled, we know by Lemma I1.4.4 that T%b € C%T} (C"%) on N€ (which we do not
mention in the rest of the proof, although all equalities and convergences happen on this set). Then,
by the definition of the nonlinear Young integral of T4b" in Theorem I1.3.1, we get that Equality

(I1.2.10) does hold for b™:

t t
/ b(X,)dr —/ TZ0"(X, — Z,). (11.4.5)
0 0
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By Lemma I1.4.4, we get that T2b" converges to T%b in C[VO’T] (C"=%). Hence, by Corollary 11.3.2,
we obtain that

— 0.
n—oo

t t
sup ‘/ b”(X,,)dr—/ TZ0(X, — Z,)
te0,7]' JO 0

Therefore the convergence in the statement holds for Ky := fg TdZT,b(XT — 7).
(b): By (11.2.13), we know that for some subsequence (ny)ken,

t
sup ‘/ bk (X, )dr — Kt‘ — 0 a.s.
tel0,7] ' JO

We have again that (I1.4.5) holds true and we deduce that

t
sup ‘ / T2y (X, — Z,) — Kt) 5 0as.
tefo, 1] Jo

By Lemma I1.4.4 and Corollary 11.3.2 , we get that almost surely, K; = fg TdZTb(XT — Z,) for all
t € [0,7T]. Equation (11.2.11) now follows from (11.2.12). O

I1.4.3 Joint regularity of the local time of the fractional Brownian motion

In the rest of this section, L denotes the local time of a one-dimensional fBm B and T'? denotes
the averaging operator associated to it, as constructed in Section I1.4.1.

First, we recall Theorem 3.1 from [64]. This result is stated in [64] for a compact hypercube with
side length equal to one. By dilatation, the result also holds for an arbitrary large hyperrectangle.

Theorem I1.4.6 (Th. 3.1 in [64]). Consider the rectangle R = [mg, M| x [my, My] for some
my < My and my < M,. LetY : R? — R be a continuous stochastic process. Suppose that for
775 > 07 a>1 and all (‘rhyl)’ (anyQ) S R;

E[|Y (z2,92) — Y(z2,91) — Y (21, 92) + Y (21, 91)[*] < K| — 21" |y2 — g ['T7.

Then for every 1,69 with 0 < g1 < v and 0 < eqax < B, there exists a random variable p with
E[p*] < K and a constant C = C(R) > 0 such that almost surely,

Y (22,52) — V(22,91) — Y (21,52) + YV (21, 91)| < Cplag — a1 [/ yg — g1 |P/0752,
for all (x1,y1), (z2,y2) € R.

Remark 11.4.7. Let T'> 0 and n € N. By Lemma 8.12 in [112], for any n > 1 there exists a constant
C > 0 such that for any (z,y) € R?, (s,t) € Ajgq) and 0 < 3 < (1/(2H) —1/2) A 1, the local time
L of a one-dimensional fBm fulfills

E[|Ls(y) — Lsp(z)["] < C |t — [ 0HUHD) | 28, (I1.4.6)

Lemma I1.4.8. Let 0 < 8 < (1/(2H) —1/2) A1l and 0 <~y < 1 — H(1+ 3). Then, almost surely,
Le CR) T (CP). Additionally for any n € N there exists a random variable p with E[p"] < oo such
that for any M >0, (s,t) € Ajo) and x,y with |z|,|y| < M, there exists a constant Cpr > 0 such

that
|Lot(2) — Lo (y)| < Cuplt — sz — yl”. (IL.4.7)
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Proof. Note that by [57, Th. 26.1] we can assume L to be jointly continuous in (¢, z). Then choosing
n large enough in (I11.4.6) and by Theorem I1.4.6, there exists a random variable p with finite n-th
moment such that, a.s., for (s,t) € A7) and z,y with [z, [y| < M,

|Lsa() = Loa ()| < Curplt — 57|z — yl”.

As Lisa.s. compactly supported, after exhausting [0, T| xR with an increasing sequence of compacts

[—M;, M;], it follows that L € C%’T} (CP) as. O

Note that Lemma I11.4.8 does not give differentiability in space for the local time of a fBm, even
in case of a small Hurst parameter. It is also possible to get time-space Sobolev regularity of L by
following the methodology of [62], and in particular to obtain differentiability for small enough H.
This is used in proving Theorem I1.2.5 under Assumption (iii).

Remark 11.4.9. With the same parameters as in the previous lemma, if b € Bg for 8 € (-B,1-7)
and p € [1,00], then Lemma I1.4.4 and Lemma A.1.10 imply that TBb € C] ..(C°TP~%) almost

- (0,7
surely, for any ¢ € (0,5 + ).

I1.4.4 FExistence of a weak solution

We first show in Proposition 11.4.10 that the assumptions of Theorem I1.2.5 imply that either
Assumption (I) or Assumption (II) holds. In particular, we get existence of a path-by-path solution
by Theorem I1.2.14. Then we observe, by “randomizing” the Euler scheme, that it is actually possible
to construct a weak solution (i.e. adapted solution).

Proposition 11.4.10. Let B,p,b be as in Theorem I1.2.5.

(a) Assume that (i) or (ii) from Theorem IL.2.5 holds. Then, a.s., L satisfies Assumption I1.2.13
(1I) for v,n € (0,1) withy+n>1,0< —-F+n <1 and p = co.

(b) Assume that (iii) from Theorem I1.2.5 holds. Then, a.s., L satisfies Assumption 11.2.153 (1)
for v,m € (0,1) withy+n>1,n< (55 +B—1/2) and p = 2.

Hence, by Theorem II.2.14, whenever one of the conditions (i)-(i1i) from Theorem II1.2.5 holds,
there exists a path-by-path solution to (11.1.3).

Proof of Proposition II.4.10. Tt is used multiple times throughout the proof that we can also con-

sider b to be in Bg for any B<p by an embedding.

(a): Assume that (i) holds. W.lLo.g. assume that 8 € (1+ Z — 2 2 — 1), In view of
Lemma I1.4.8 and the assumption H > 3, L € C%,T] (C=P*M) for n € Rsuch that 0 < —8+n < 5757—3

. . ~ _ 1 1

and 0 <y < 1-H(1-p+n). Thus Assumption (II) is fulfilled for p = co. Choose n = S+ 557 —5—¢
and vy = 1 — H(% —e+ ﬁ) — &. Then for small enough ¢ one gets v € (0,1), n € (0V 5,1) and
y+n>1

Assume that (ii) holds. W.l.o.g. assume that 8 € (2H — 1,0) . In view of Lemma I1.4.8 and

the assumption H < %, we have that L € CEB 7] (C=B*m) for € R such that 0 < —3 47 < 1 and
0<y<1—H(—pB+mn). Thus Assumption (II) is fulfilled for p = co. Choose n =+ 1 —¢ and
v=1—H(2—¢)—e. Then again, one gets v € (0,1),n € (0V 3,1) and v+n > 1 for small enough
€.
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(b): Assume that (iii) holds. By Theorem 3.1 in [62|, we know that L € C['(YLT}(BS"Q) almost

surely for A < ﬁ —1/2and 0 < v < 1— H(\A+1/2) . Hence, after a Besov space embedding
(see Remark 1.2.3), Assumption (II) is fulfilled for p = 2, 0 < n < (55 —1/2+ B) A 1 and
0<y<(l—H(p—pB+1/2)) Al The assumption 3 > 1 — 5L ensures that we can choose 1 and v
such that n +~v > 1. O

To construct weak solutions, we will proceed with an approximation by an Euler scheme, sim-
ilarly to the proof of Theorem I1.3.4. Although this time, we need the following lemma, which
gives tightness and is a crucial step in showing adaptedness by an argument using Skorokhod’s
representation Theorem.

Lemma I1.4.11. Assume that one of the assumptions (i)-(iii) in Theorem II.2.5 holds. Then there
exist v, € (0,1) with v+ 17 > 1 such that for any A > 0,

lim P(Q5) = 1, where Q ;:{; TBH 1 ver, - )\}.
lim P(€25,1) where Q55 := (w |t§lsl|25[ ]CE!,Z] iy <

Proof. In view of Proposition 11.4.10, L satisfies either Assumption I1.2.13 (I) or (II) for some
~v,m € (0,1) such that v+ n > 1. Hence by Lemma I1.4.4, there exists 77 < n such that 7+~v > 1
and TBb € C&),T} (cm.

For M > 0, define LM := 1q,, L, where Q; = {w : supyepo,r] | Bt| < M}. Then,

P 37/\)<P<{w:67 sup [TPb]

[t—s|<d fs,11(€7) > A} n QM) + P(Qfy), (I1.4.8)

B B _
as [T b]cﬁs/gafvar(c,;l) < ‘t — S|’Y[T b}ci,ys,t](cn)'
We will distinguish two cases, depending on whether (i) or (ii) is satisfied (first case), or (iii) is
satisfied (second case).
First case. Assume that (i) or (ii) in Theorem I1.2.5 holds true. Then by Proposition 11.4.10(a),

L e C’RO 7] (C=P*+1) with 0 < —8 +n < 1 and by Lemma 11.4.8 E[[LM]Z, (C*ﬂ*'l)] is finite for any
’ [s,t]

m > 1. Moreover, by Lemma I1.4.4, we have on €, that [TBb}c[vO () < Cup[L]ey (€ 5+); where

[0,
Ch depends on M (but not on the realization w). Hence, we can bound the right hand side of

(I1.4.8) from above by

.S M c
Vm > 1, ]P’({w ) ‘til'gaCM[L ]C[Ws’t](c—6+n) > A}) + P(25)

< C]n\/})\_mém’YE[[L]\/]]ZE“(’)’T](C—ﬁ+n)] + P(Q%y)-

< C(m, M) XN"™6™ + P(Q5,). (I1.4.9)

Let € > 0. By Fernique’s theorem, ||B|/» has exponential moments and we can choose M such
that P(Q,) < /2. Then 6 can be chosen such that the other term in (I1.4.9) can also be controlled
by /2.

!Actually in [62] they use a Bessel space instead of B3 5, but by Proposition 2.(iii) on page 47 and the Theorem
on page 88 in [109], this is equivalent.
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Second case. Now assume that (iii) in Theorem I1.2.5 holds. By Proposition 11.4.10(b), L satisfies
Assumption I1.2.13 (I) with v < (1— H(—=B+n+1/2))Al, p=2and n < (55 —1/2+ ) Al. In
view of Lemma I1.4.4 and an embedding of Besov spaces (see Remark 1.2.2), we have that on Q,y,

o Bzs ")

for some constant C; > 0 that depends on M but not on the realization w. Next, we use the chain
of inequalities on page 12 in [62] setting A’ therein equal to —F+n+1/2+¢. To check the condition
N < 1/(2H) appearing in [62], note that —8+n+1/2+¢ < 1/(2H) for € small enough. Hence, we
get for any m > 2 and some € > 0,

E[|1L%\|g2_5+,7] <Clu— v’m(l—H(—ﬁ+n+1/2+a)) <Clu— U‘m(’H-é)'

An application of Kolmogorov’s continuity theorem for Banach-valued stochastic processes (see [105,
Th. 4.3.2]) gives that E[[LM]™ is finite. Using (11.4.10), we deduce as in the first case

oY (B£2ﬁ+77)]
(see (11.4.9)) that

[0,7]

P(25,) < C(m, M)A"™0™7 + P(QY),

for a constant C(m, M) only depending on m and M. We can make the right-hand side arbitrarily
small by choosing M large enough and § small enough. O

Proof of Theorem I1.2.5. Proof of (a): By Proposition 11.4.10, Assumption 11.2.13 (I) or (IT) is
fulfilled and thus there are some v € (0,1) and p € [1,00] such that L € C&T] (Bg) a.s., for some
&, with its precise value given in Assumption I1.2.13 (I) or (II). Besides it follows by Remark I11.4.5
that TPb € C7(C") for some 7j € (0, 1) such that v + 7 > 1.

W.lo.g. let T'= 1. First, we use the Euler scheme as in the proof of Theorem I1.3.4 in order
to construct a measurable solution. Let X" be the random counterpart of 2™ in the proof of
Theorem 11.3.4 for A = TPb, p = 1/y and 0 := v + 7. Let v > 0. The computations done in
the proof of Theorem I1.3.4 hold for almost every w € Q until equation (II.3.7). Choose A € (0,1)
such that 2AC(#) < 1 for C(6) as in (I1.3.7). Let ¢ such that P(Qs,) > 1 — v, which is possible
by Lemma I1.4.11. Then one can choose N = N(§) large enough so that for any n > N and any

w € Q(;,)”

[TBb]C[l/'y]—var(Cﬁ) + )\
[Xn]cl—var < 20(9) >t B
[s,t] 1 — 20(9) [T b]c[ls/’;y]—var(cﬁ)
2 .
< 20(9)@, V(S,t) S A[071] with |t — S’ < (5

It follows that we can choose M sufficiently large so that for any n > NV,
P X [[oo > M) <P(Q50 N {[[ X" oo > M}) + P(25,) < v

Therefore the sequence (Law(X"™)),en is tight in the space of continuous functions. Hence, along

some subsequence that we do not relabel, (X", B, L) converges in law in Cjo 1) X Co, 1] X CE(/J,T] (Bg) to
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some (X, B, L). By Skorokhod’s representation Theorem, there exists a sequence (Y, B”, LB"), oy
with Law(Y™, B, LB") = Law(X™, B, L) for all n € N, such that (Y, B, L"), cn converges a.s.
to some (Y, 3, f/) To get that L is the local time of B, observe that for any bounded measurable
function f,

1= P({w Vit € [0, 77, /Ot f(B,)dr = /Rf(x)Lt(x)dac})
- 1@»({@ vt € (0,7, /Otf(BT)dr - /Rf(x)f}t(x)d:v}). (IL.4.11)

As the local time of a fBm is characterised by the occupation time formula, we deduce that L is the
local time of B. By (I1.3.5), we have that for TPb(x) = (b, LP(- — 1)),

t
‘X{‘ - X —/ TEb(x™)| 225 0.
0 n—oo
Hence for T5"b(z) = (b, LB" (- — z)),
t . P
vr-xo- [ 1| 2o
0 n—oo

and therefore a.s. along a subsequence, which we do not relabel. Hence, using that Lec] ](Bg),

A [0,T
we get by Remark 11.4.5 and Lemma I1.3.3 that for T2b(x) = (b, L(- — z)),
t .
Y = Xp +/ TEb(Y,), for all t € [0,T] a.s.
0

In order for Y to be a weak solution, it remains to show that Y is adapted to a filtration )
such that B is an F-fBm. First note that by construction X" is adapted to FB. Hence, Y™ is FB"
measurable as

Law(Y™, B" LP") = Law(X", B, L).

Therefore B" is an F"-fBm for 77 := (Y, B, s € [0,t]). By definition this implies that, for
s <t, W — W = A(B"); — A(B"), is independent of F7. After passing to the limit and using
Lemma, I1.A.1 we infer that W, — W, = A(B); — A(B), is independent of F, := o(Y;, B,,r € [0, s]).
Hence, B = A(W) is an F-fBm and therefore (Y, B) is a weak solution as Y is clearly F-adapted.
Proof of (b): this proof will be presented at the end of Section II.5 as it follows from the
stochastic sewing arguments developed in the next section. O

Proof of Corollary I1.2.6. Any finite measure lies in BY (see Remark A.1.4). Hence, if b is a measure,
we can choose = 0 in Theorem I1.2.5. For H < 1/3 condition (i) therein is clearly fulfilled and
condition (ii) is fulfilled if H? 4 2H — 1 < 0, giving existence of a weak solution for H < v/2—1. [

I1.5 Regularity of weak solutions

We first state Lemma I1.5.1 which establishes various regularity estimates on the conditional expec-
tation of fractional Brownian motion. It is an extension to the fBm of [8, Lemma C.4| (which was
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for standard Brownian motion). It is used several times in the remainder of this chapter and its
proof is postponed to Section IT1.A.2. Tn particular, the proof of Lemma I1.5.1(d) relies on a variant
of local nondeterminism of the fBm, see Lemma II.A.2. Note that Lemma II.5.1(a) was already
stated and proven in Proposition 3.6(iii) of [18].

Lemma I1.5.1. Let (Q,F,F,P) be a filtered probability space and B be an F-fBm. Let v < 0 and
pe[l,o0). Letd €N, (t1,t2) € Ajgq) and f: R x R — R be a bounded measurable function and
Z be an Fy, -measurable R -valued random variable. Assume that ||f(-,Z)|lcr < oo almost surely.
Then there exists a constant C > 0 such that

(a) EN[f(B,,B)] = [z 9,2  (x) f(E"[By,] — 2,E) dx, alternatively also written E"'[f(By,,Z)] =
t1,to
Gaf ) F(EN[B,], 2), where g is the Gaussian density and G is the Gaussian semigroup intro-
1.t2
duced in (1.2.10) and o7 ;, := Var(B;, — E"[By,]);

(b) [E"[f (B, D) < C|If (2 (b2 — t2) 7O/,
(¢) |f(Be,,E) — E1 (B, )l < CIIFC e llnz (b2 — t1)H.

Furthermore, for n € [1,p], there exists a constant C > 0 such that for any t in the interval (t1,t2),

N ~ ~ 1 1-2H
(d) |[E"[f(Bry, E)lllLe < OIS ENIgy llin(tz = OV (E —t1) 2P (t2 —t1) 2

Remark 11.5.2. In this section we assume that b € Bg for p € [1,00] and f € R with 8 —1/p >
—1/(2H). Note that this condition allows negative values of 3 for any H < 1. In the proofs of this
section, we consider the case 5 < 0 and p > m for some m > 2. Indeed, it is always possible to
come back to these cases in the following way: If 5 > 0, p € [1,00] and m > 2, there exist 5 < 0,
p > m fulfilling § — 1/p > —1/(2H) such that Bg — Bg. This can be seen using the embeddings

(l_1 .
Bg — Bg Gy (see Remark 1.2.2) and By, — B, for s > 3.

The following proposition ensures smoothness of X — B for any solution X of (II.1.1).

Proposition II.5.3. Let 5 € R, p € [1,00] with 0> —1/p > —1/(2H). Suppose that b € Bg is a

measure. Then every weak solution X to (IL.1.1) fulfills X — B € C[l()+ﬁ(6_1/p)(Lm), for any m > 2.

Thus if X is a solution to (II.1.1) with b a finite measure, we deduce that X — B € C[l(fﬁ(Lm), for

any m > 2. It will imply Theorem I1.2.5(b) and is the main step in the proof of Theorem 11.2.10(d).

Proof of Proposition 11.5.3. Let X be a weak solution to (II.1.1) and m > 2. W.Lo.g. we assume
that Xy = 0. We choose a sequence (b*)ren of smooth nonnegative bounded functions converging
to b in Bgi with kuHBﬁ < ||bll g5 for all k. For k € N and t € [0,77, let

p P

t t
K ::/ bk(XT)dr:/ V(B + K,) dr.
0 0

By Definition 11.2.4 of a weak solution, we know that K* converges in probability to K with
respect to || - |loc on [0,77]. Hence it also converges almost surely, up to passing to a subsequence
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(without loss of generality, we do not relabel K* and assume it converges a.s.). By nonnegativity
of v¥, K* is monotone for all k, and therefore K is monotone as well. For any (s,t) € Aoy, let

t
Al;t ::/ V¥ (B, + K) dr.

We now want to apply the stochastic sewing Lemma with random controls (see Lemma A.2.2)
for K*¥ = A*. In order to see that all conditions of this theorem are fulfilled (i.e. (A.2.2) and
(A.2.4)), we will show the following for a constant C that is independent of k£ and for any u € (s, ),

(i) A5 lzm < Clbll o (t — 5)t+HE1/p);

(i) |E“[0AF

s,u,t

| < C|Ibll gs | Ku — K| (t — uw)HO-p=D+1,
P

(iii) Identifying K* with the limit of Zf\;”(fl fll’t‘iﬁ,w+1 along any sequence of partitions II,, = {t?}f\;’b
of [0, t] with mesh converging to 0.
Notice that (i) gives (A.2.2) for n = m and that 1 + H(8 — 1/p) > 1/2. Furthermore, (ii) gives
condition (A.2.4) foray = H(f—1/p—1)+1> 0, 81 = 1 and (s, t) := K; — K, which is a random
control function by monotonicity of K.

Assume, for the moment, that (i)-(ii)-(iii) hold true. Then by Lemma A.2.2, there exists a
process D* such that

[IE — KF — A%, < Cllblgs (Ko — Ko (6 — )TG-1p-041 4 ph (IL5.1)
with || D% || pm < CHbHBg(t — 5)1HHB=1/P) Hence, by (i),
||K£c o KfHLm < CHbHBgHKt _ KsHLm(t o S)H(ﬁ—l/p—l)-I-l + C”ang (t _ S)H_H(ﬁ_l/p)-

Hence, after letting & go to oo in the previous inequality, we obtain that for (s,t) € Ao, 7] such that
Obll g5 (t — ) F=HP=DH <172,
D

1Kt = Killm < Clbll s (8 — ) HHE=P),
P
After covering [0, 7] with a finite number of small enough intervals, we obtain the result.
Let us now verify (i)-(ii)-(iii).
Proof of (i): By Lemma I1.B.1 applied to Z = K, f(z,2) = b*(z + z) and n = m, we have
1A ez < CIHIB*C + K)o | o (8 — 5) O,
Using Lemma A.1.8(a), we thus get

145,

1 < O g (2 — ) 1D

< Olbll g5 (t ~ s)1TH(B=1/p) (IL.5.2)
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Proof of (ii): By Lemma IL1.5.1(a) applied to E = (K, K,) and f(z, (21,22)) = b*(z + 21) —
b (z + x2), we get

u,r

t t
UE“[(SA’;M]:’/ ]E“[b"‘(Br+K5)—bk(BTJrKu)]dr‘ g/ Gz B¥[ler | Ky — K|dr,

where we recall o2, = Var(B, — E“[B,]). From (ILA.4), we have that o, = C(u —r)?". Apply
now Lemma A.1.7(d), which is possible as § — 1/p < 0, and then use that 8 —1/p > —1/2H to
ensure integrability. This gives

t
E(5%, 1 < C [ = al OO0 g K Ko

< Clbll g | Ko — Kl (t = wyH(B=1/p=1)+1

Proof of (iii): For a sequence II,, = {t?}f\fo of partitions of [0,¢] with mesh size going to 0, we
have

Np—1

|Kl{€_ Z Atn :L+1 Z/ |bk +K ) _bk(B +Kt")‘d7‘
i=0

<X / 16 e Ky — Kopldr
Z ¥l (£ — )| K, — Ko

< Hb’“HmIHn\(Kt — K)o) n%o 0.

We conclude this section with the proof of Theorem I1.2.5(b).

Proof of Theorem 11.2.5(b). 1t is a direct consequence of Proposition 11.5.3. More precisely, in order
to apply Proposition 11.5.3, we check that § —1/p > —1/(2H) holds in all cases (i)-(iii). In case (i)
holds, the assumption § —1 > —1/(2H) 4+ H/2 and p > 1 yields f —1/p > —1/(2H). In case (ii)
holds, then 8 —1/p > 2H — 2 and 2H — 2 > —1/(2H) for H < 1/3. Finally, in case (iii) the result
follows from p > 1. O

II.6 Uniqueness

In this section we state and prove Proposition 11.6.1, which gives pathwise uniqueness to (II.1.1)
among all weak solutions X fulfilling X — B € C[1 / 2j]LH(LQ) This is a crucial step towards the proof
of the uniqueness part in Theorem 11.2.10. Note that we do not assume anymore that b is a measure.
The scheme of proof of Proposition I1.6.1, which is briefly described in Section 11.2.4, is inspired by
the proof of Proposition 2.1 in [34] and closely follows the steps of the proof of Proposition 3.6 in
[8]. More precisely, we establish that if two solutions X and Y are such that X — B and Y — B
are (% + H)-Holder continuous, then their difference Z satisfies inequality (I1.6.9), and since any
continuous function which satisfies such an inequality must be 0, the uniqueness follows. The most



11.6. Uniqueness a7

technical part is to establish (I1.6.9). This relies on variations of the stochastic sewing Lemma and
results based thereon in Sections I1.6.1, 11.6.2.

Even when it is not explicitly written, we assume in the whole section that H < 1/2.

In the rest of the chapter we need the following definition. Let 0 < s <t¢. Let ¢ : [s,t] x Q@ — R
be a stochastic process. For a € (0, 1] and m,n € [1, 00|, define

B [J4by — ™5 ||
w m,n) +— Sup . 1161
[ ]c[s ) o o u)e ( )

where the conditional expectation is taken w.r.t. the filtration the space is equipped with. By the
tower property and Jensen’s inequality for conditional expectation, we know that, for 1 < m < n < oo,

Wl m) = Wlea @wmm) < [Wlea  wmny < [Pleg

[s,t [s, [s,t

Proposition 11.6.1. Let H < 1/2. Let B € R, p € [1,00] such that (11.2.6) holds. Let b € Bg, and
(Xt)tep,r) and (Yi)ico,r) be two weak solutions to (IL.1.1) in the sense of Definition 1I.2.4 with the
same initial condition Xo, both being defined on the same probability space and adapted to the same

filtration F. Suppose that (X — B) and (Y — B) are in C[O/;TH(LZ) Further assume that

[X - B] 1/24+H

[(JT

(L2:) < o0 a.s. (11.6.3)

Then X and Y are indistinguishable.

Remark 11.6.2. In the above proposition, note that condition (I1.2.6) allows negative values of 3

for any H < % In the proofs in this section, we will thus only consider the case § < 0 and

p = 2. Indeed, it is always possible to come back to these cases in the following way: If 3 > 0 and
€ [1,0¢], there exist § < 0, p > 2 fulfilling (I1.2.6) such that Bﬁ — Bﬂ This can be seen using
1
the embeddings BB — B? G5 (see Remark 1.2.2) and B, — B; for s > s.
I1.6.1 Uniqueness: Proof of Proposition I1.6.1

For the proof of Proposition 11.6.1, which is detailed at the end of this subsection, we will use
Lemma 11.6.3, Lemma [1.6.4 and Lemma 11.6.5. From now on, assume w.lL.o.g. that Xo = 0. Let
K:=X-Band K=Y -B. Let Z:=X-Y =K —K.

Lemma I1.6.3. Let the assumptions of Proposition 11.6.1 hold. Let (b"),en be a sequence of smooth
bounded functions converging to b in Bg_ with sup,, [|b"(| g5 < [|bll g5 Then for any (s,t) € Ao 1,
P P

there exist random variables TX & and T;:(t such that

t t _
/b”( Kydr 25 vd TsKt and /b”( Kydr 25 7K, (I1.6.4)

n—oo ’
Moreover, there exists C > 0 such that, for any (s,t) € Ay gy, we have that
ITE - TE||2 < Ollbll gol| Zsll 2 (¢ — )7 and (I1.6.5)

IT5 — TE 2 < Clbl g (2 — )2+, (IL6.6)
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The proof of this lemma is moved to Section 11.6.2.
For (S,t) S A[O,T]7 let
Ry = (Ky - Ky = TS) - (K, - K, - TY).

It is now necessary to estimate the regularity of this remainder term. The proof of the following
lemma, which heavily relies on stochastic sewing, is moved to Section 11.6.2.

Lemma 11.6.4. Let the assumptions of Proposition 11.6.1 hold. There exists 6 > 0 such that for
any o € (1/2,1), there exists C > 0 for which the following holds: for all (u,v) € A7), we have

12y = Zull 2 < CliRlleg, | 22y = u)!/2to (11.6.7)
+ClZlle,, v](LQ)’ log||Zllc,, ;)| (v —u) + Cl[Zlle,, ,,z2) (v — u)t/?,
|Rusllze < € (12lley, 22 + 1 Rlles o)) (0 = w) 2+ (116.8)
+ClZlle,, , (12| 1og HZHC[M](B)\ (v —w).
One can now deduce a regularity estimate on Z alone.

Lemma I1.6.5. Let the assumptions of Proposition I1.6.1 hold. Let for T e (0,T) such that
|z ||C[ (2) < 1/e, there exist C > 0 and | > 0 such that for any (s,t) € Ay gy with t —s <1, we
have

120~ Zolliz < ClZlle,, 1)t — )2 + ClZ N,y 12108 | Zlley, yuo) | (E—9). (IL6.9)

Proof. Consider ¢ as in Lemma I1.6.4 and assume w.l.o.g. that § < 2H. By assumption on X and
Y and by (I1.6.6) we know that ”RH61/2+H(L2) < oo. Let (s,t) € Ay 7. After dividing both sides of
[0,T7] ’

Equation (I1.6.8) by (v — u)/2%9/2 and taking the supremum over all (u,v) € A4, We obtain for
a=1/2+ /2 that
IRz, 22y < C (12l yz) + 1 Blles, z2)) (¢ = 5)°/2 (IL6.10)
O Zle, 108 | 2, ] ¢ — 9272
In the above we used that

sup || Z]lc

r2)1og | Zlle,, ;)| < 121, 22108 | Zlley, , (2]
(u,v)EA[s 4]

[u,v](

as f(x) = xlog(1/x) is increasing on [0,1/e] and HZHC[s.t](LQ) < 1/e by assumption. Using 6 < 2H,
we have that HRHCa (1) S S C||R| 17210 0y < 00. Let 1 € (0,T) be such that C1%2 < 1/2 for C as
[0,77]
n (11.6.10). For t — s < [, we have

(L?)

7” HCD‘ [(L2) = CHZHC”] r2y(t — 3)6/2
t CHZHC[S,t](LQ)| log ”Z||C[s,t](L2)| (t— 5)1/2_5/2_

Plugging this into (I11.6.7) for u = s and v = ¢ finishes the proof. O
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Proof of Proposition I1.6.1. Let T := sup{t € [0,T] : supy<,<; | Zs||2 < 1/e}. We show in the next
paragraph that Z is indistinguishable from 0 on [0, T}. Note that this implies that 7' = T": Indeed,
by definition of T and continuity of Z : [0,T] — L?, | Z7| 2 = 1/eif T < T. This would contradict
Z being indistinguishable from 0 on [0, T |. Hence, we get that Z is actually indistinguishable from
0 on [0,T].

Assume that || Z;]| .2 is not identically 0 on [0, T]. Choose kg € N such that 2% < SUD, ¢ [0 7] 1 Z¢| 2
For k > ko let ty, := inf{t : || Z;||z2 = 27%}. We have that || Z;||;2 < 27 for t <ty and || Z;, || 12 = 27F
as t — ||Z¢||r2 is continuous by (I1.6.9). For [ as in Lemma I1.6.5, choose a € (0,1) such that
Cal'/? < 1/4 for C as in (I1.6.9). As the sequence t;, is strictly decreasing we can choose M such
that tx, — txr1 < a for k > M. Therefore by (I1.6.9) we have, for k > M, that

27D <1 Zy, = Zip e < 270D 4 027 Rk log(2) (t — thra)

and therefore
1

<t~ I1.6.11
IClog@)k <t~ e ( )

which leads to a contradiction as the sequence tj is strictly decreasing and the left hand side of
(I1.6.11) is diverging when summing over k > M. Hence, ||Z;||2 is identically 0 on [0,7]. Now

using that Z € c[lo/%“’(L?), we get that E[|Z, — Z,|?] < ”Z”?/HH(M |t —s|'T2H for any s,t € [0, 7).
’ [0,7)

Hence by Kolmogorov’s continuity theorem, Z is a.s. continuous and is therefore indistinguishable

from 0. O

I1.6.2 Intermediate regularity results: Proofs of Lemma I1.6.3 and
Lemma 11.6.4

The proofs of Lemma I1.6.3 and Lemma I1.6.4 rely on several results about the regularity of
fst f(By,Z)dr in terms of t — s and of the Besov norm of the random mapping f(-, Z), for = an Fs-
measurable random variable. These regularity results are stated and proven in Section I1.B, and are
derived from two main ingredients: the stochastic sewing Lemma (Lemma A.2.1) and Lemma I1.5.1.

We now turn to the proofs of Lemmas 11.6.3 and 11.6.4.

Proof of Lemma I1.6.3. Recall that we assumed 8 < 0 at the beginning of this section (Remark
11.6.2). Let g’ € (—%,ﬂ) and (s,t) € A . Let k,1 € N. Applying the crucial regularity
Lemma I1.B.1 for £ = K, and f(z,7) = b*(z + 2) — b!(z + ), we get that

using Lemma A.1.8(a) in the last inequality. Hence, ( fsf V¥ (B, + K)dr)key is a Cauchy sequence
in L2, so it converges to some Tfi The same holds for the sequence with K being replaced by K.

<O+ K =Y+ K

B

t t
/ v (B, + K)dr —/ b'(B, + Ks)dr .
s s L

L

k l
g CHb —b HB;EI’
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Using Fatou’s Lemma and Corollary 11.B.2, for A € [0, 1] we obtain

/b” »+ Ky) dr—/b" -+ Ky)dr

< Csup 6" gsl| Ks — K| 72(t — 5)HHEAD)
n P

||TK Tt||L2 hmlnf

L2

< CHbHBgHKS — K| (t — ) /2HHAH
using that 5 —1/p > —1/(2H) + 1. Setting A\ = 1 gives (I1.6.5) and setting A = 0 gives (I11.6.6). [

Proof of Lemma II.6.4. Let (b*)ren be a sequence of smooth bounded functions converging to b in
Bg_ with supy, ku||Ba < [|bll gs- Fix (u,v) € Ajg ). For (s,t) € Ay, let
P P

t
Ak, ;:/ (#(B, + Ko) — 5B, + ) dr,

Ak = /t (b’“(Br +K,) — b5(B, + f@) dr. (1L.6.12)

Then, for 6 € (s,1),
t ~ ~
sk, = / ((Br + Ko) = 05(By + Ko) = V- (By + ) + W(By + Ky) ) (IL.6.13)
0

We now verify the conditions of the stochastic sewing Lemma with critical exponents, as stated
in [8, Th. 4.5]. To show that the conditions of this theorem hold (i.e. (A.2.1) and (A.2.2) with
az = ff2 = 0 and m = n = 2 in the current paper, and (4.11) from |8|), we verify that there exists
C > 0 independent of s,¢,u,v and 6 such that for any k € N,

(i) NE6AE, ll2 < C(t — ),
(i) 10480 ,llz2 < (HZHcM] 2) + [ Rlleg, | L2)> (t— )12
(ifi) [E*0AL )2 < CllZlley, 22 (t = 5) + CllRllen | 12)(t — )25

(iv) Identifying A*, as given in (I1.6.12), with the limit of ZN" ! A,’fn e along any sequence of
partitions II,, = {t?}f-i"o of [u,t] with mesh converging to 0.

Assume for the moment that the above properties hold. Then applying Theorem 4.5 in 8], we
lAF— AL — ALl
H

get that for any (s,t) € Ay, ),
d £ 5]
B s
1Zlle,, ,y(22)

(
+C (HZHC (L2 T HRHca L2)> (t—s)Y/*0 4 CHRHca (L2)(t — )/t

<C (12l o) + 1 Blles, 1 ) (£ = )12+
+ 12l )08 1Z e, , a2 (£ = 9) (IL6.14)

CHZHC (L) <1+ log
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By Definition I1.2.4 and Lemma I1.6.3, we have the following convergence in probability:
lim AF—A% — Ak = 7, — 7, — (TK — TK) = R,,.
k—00 ’ ’ ’

Hence and letting k& go to oo in (I11.6.14) and using Fatou’s Lemma, we get (11.6.8) by choosing
(s,t) = (u,v). Putting together (I1.6.8) and (I1.6.5), we get (I11.6.7).

Proof of (i): Recall that we consider times 0 < u < s <0<t <v <T. Let fi :RxR* - R
and fo : R x R?2 = R be defined by

fi(z, (1,9, m3,24)) = b (2 + 21) — (2 + m2) + 0" (2 + w3) — b (2 + 24),
fg(z, (1’1,%’2)) = bk(z + .%'1) — bk<2 + xg),
and consider the Fyp-measurable random vectors Z; and =9 given by:
El = (K&Ksa K@ + Ks - KSa KO)
Eg = (K@,K@ + KS - KS).

We can rewrite the integrand on the right hand side of (11.6.13) as fi(By,Z1) + fo(B,,Z2). Hence
using Lemma, I1.5.1(b), we get that for A € [0, 1],

’ES(SA’;,&,H = ‘ESE%AQ@A
t
< C/e {(7" — )T EIIATUDIES | £ B g1 (IL6.15)
+(r— H)H(ﬁfl—l/p)Es”]%(.’ EQ)HBg_l}dr_
Apply Lemma A.1.8(c) first, then Jensen’s inequality for conditional expectation to get that
B f1( Bl go1-n < C0F|| o | K — KM E°| K — K|
P P
< Obll gs 1K — K[| K — K *)Y?

< CHbHBE |Zs|>\ [K]C[l()/j;]'—H(LZOO)(e _ 5)1/2+H'

Hence,
B2 Z0)agr-alle < COlggIZIG, o By ey (= )24 (IL6.16)

By Lemma A.1.8(b), we have that E*| fa(-, B2)|z6-1 < C||0F|| 3sE%|Zg — Zs|. Therefore using the
P D

contraction property of conditional expectation and (11.6.2), we get that
B o Bl g1 2 < bl 120 — Zllz2 (IL6.17)
- 1/2+H
< C||b||8§ <[K]C[lo/,2TTH(L2’°°) + [K]C[10<;J]rH(L2)> (t—s) . (11.6.18)
After putting A = 0 in (I1.6.15) and using inequalities (I1.6.16) and (11.6.18), we get
[E*0AL |

t
2 _ g\l/2+H _ p\H(B-1-1/p)
< C bl (1Kl ey + Rl ) (£ =92 [ 0) ar.

[0,T7]
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Now using that 3 —1/p > —1/(2H) + 1, we obtain that for some C depending only on T', [[b] 45,
P

% -
[ ]C[lo/,QTTH(LQ’OO) and[ ]C[lo/i"TH(LQ)

IBS6AL g ]l < C(t — )+

Proof of (ii): We use Corollary IL.B.3 with f = bF, v = 3, € > 0 small enough to ensure that

0>0>—-1/QH)+14+e, A= =1, Ao =¢, k1 = K, ko = Ky, k3 = Kg and kg = K.
Hence, we get

16 A < CJbllgs B[ Kp — K2 oo | Ko — Kol 2 (t — ) FHE71/P7179) (I1.6.19)

+ C|bllgs 1 Zo — Zs|| 2 (t — 0)FHE1=1/P),
p

We have || Zy — Zs|| 12 < || Rs,ll 12 + HT&KG — T§9HL2. Thus by Lemma I1.6.3,
1Zo = Zs[| L2 < | Rlleg, , (22)(0 = )% + Clbll o | Zs 2 (0 — s)'2. (11.6.20)
It follows directly from the definitions that

IE*[|Kg — K*) 2L < C(6 = )/ *H (K] 1o

[0,7] (L220)
and that || K, — K||;2 < ”Z”C[u ,(£2)- Plugging the last three inequalities into (I1.6.19) we get that

1645 64122 < CHbHBg[K]ZE/zTH(LMH ley, (2 (t = )~ HHAEZ/IFE/2

+Olbllgg | Blleg, 22 (t = 5) T HHE=1=1/p)
+ O Z ey o) (¢ — /24O,
After using that 5 — 1/p > —1/(2H) + 1, we obtain that for some C' depending only on T, ”bHij
and [K]C[lo/jj]»H(Lzoo) and some § > 0,
184500122 < C (12lle,, 2 + IRl o)) (£ — )2+,
Proof of (iii): We use (I1.6.15) with A\ = 1, (I1.6.16), (I1.6.17) and (I1.6.20) to obtain that
IE°5AL g 4llz2 < CllZlley, 22 (= 5) + Cl[Rlice  z2(t = s)t/2 e

That (iv) holds can be shown by similar arguments as for (iii) in the proof of Proposition I11.5.3.
]

I1.7 Existence of weak and strong solutions

In this section we prove Theorem I1.2.8 and Theorem I1.2.10. As in Section I1.6, recall that b is not
assumed to be a measure.
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In the proofs, we assume that p € [m,o0] and § < 0 for some m > 2. As explained in
Remarks 11.5.2 and 11.6.2, it is not a restriction as we can always reduce to this case under our
assumptions.

The scheme of proof is the following: we use a sequence of smooth approximations of the drift
(b™)nen that converges in Bg ~ to b. We prove that the sequence (X"™),en of solutions associated
to b" is tight and that each limit point is a weak solution to (II.1.1). To prove the existence
of a strong solution (which is in some sense a Yamada-Watanabe result), we rely on a classical
argument of Krylov [60], a new result on the continuity of fractional operators (Lemma II.A.1) and
the aforementionned construction of weak solutions.

On the technical level, we follow the approach of [8] which is based on applications of the
stochastic sewing Lemma. However there are noticeable differences due to the non-Markovian
character of the fBm. In particular we state immediately below:

e Lemma I1.7.1, which is a crucial estimate on the regularity of the integrals of the fBm, relying
on fine properties of the fBm (notably Lemma I1.5.1) and stochastic sewing, and which will
be used in Section II.7.1 to establish a priori estimates on the solutions;

e Lemma II.A.1, which will be used in Section I1.7.3 to prove that solutions are adapted.

Lemma I1.7.1. Let (¢t);c01) be a stochastic process adapted to F. Let m € [2,00), n € [m,oq],

p € [n,00] and v < 0 such that (y—1/p)H > —1/2. Let a € (0,1) such that H(y—1/p—1)+a > 0.
There exists a constant C' > 0 such that for any f € C;°(R) N By and any (s,t) € A1) we have

i

where we recall that the seminorm [1#}@? (L) is defined in (11.6.1).

<C t — g\ TH(O=1/p)
<Clflg e -

+ Cllfllgy[¥les , (mmy(t — ) IHHO=1-1/p)tar

[s,t]

t m1/m
/f(Br—i-lbr)dr }

A similar regularization result was proposed in [18, Lemma 4.7| for functions of positive reg-
ularity. There, the deterministic sewing lemma is used instead of the stochastic sewing Lemma,
hence the conditional expectation does not appear. Note that due to an embedding argument, it
would be no restriction here to work in Hélder spaces, yet we directly work in Besov spaces to stay
consistent.

The proof of Lemma I1.7.1 is postponed to Section II.B.

I1.7.1 A priori estimates

Before starting the main proofs of existence of solutions, we need a priori estimates on solutions.
These estimates are established for drifts in C;°(R) N Bg and therefore the solution is unique and
strong. Note that the following lemma looks similar to Proposition 11.5.3. However we work here
within the assumptions of Theorem I1.2.8, that is with a drift that may not be a measure and
B —1/p > 1/2 —1/(2H) (recall that Proposition II.5.3 allows the milder condition 8 — 1/p >
—1/(2H).



64 II. EXISTENCE AND UNIQUENESS TO EQUATIONS WITH DISTRIBUTIONAL DRIFT

Lemma I1.7.2. Let m € [2,00). There exists C > 0, such that, for any b € C;°(R) ﬁBg with
f—1/p>1/2—1/(2H), one has

H(1/p—pB)

_ B < TFH(B-1/p)~H | ( 2) e
X = Bleyo-sio ey < C 00y (1+ 1S <o (tem).

where X is the strong solution to (11.1.1) with drift b, and we recall that the seminorm HC[“ (L)
was defined in (11.6.1).

Another difference with Proposition I1.5.3 is that we obtain here an estimate on the seminorm
[']Cloqtq{-l(ﬁ—l/p)([/m’m), which is stronger (see (I1.6.2)) than the seminorm [-]0[1;;{(;371/;,)@7”) used in

Proposition IL.5.3.

Proof. Note that it is sufficient to show the first inequality in (I1.7.2) as the second one follows
immediately from 1+ H(8 —1/p) — H > H(1/p — ) > 0. Without loss of generality, we assume
that Xo = 0 and denote K = X — B. Then [K]C[% £ (L) is finite for any a € (0, 1] as

t
K, — K| = /b(BT—i—KT)dr < [Blloolt — s1.

We will apply Lemma I1.7.1 with n = oo, « =1+ H( — 1/p) and considering b € Bfgl/p after an
embedding. Remark that « > o — H > 1/2 — H/2 > 0 and since we assume ( < 0 in the whole
section, o € (0,1). In addition, H(8 —1/p) > H/2—1/2> —1/2 and H(f—1/p—1)+a > 0. So,
the assumptions of Lemma I1.7.1 are fulfilled. Then we get

B[ Ky — K™ ™ | oo
< Olbllgs—1/p ((t — 5) PP 4 [Klea (pmoe)(t — s)1+H(ﬂ—1/p)+a—H)

[s,t]

= Cl[bll g5 (¢t = ) IO (14 [K]eq |

L (et — s)a*H) : (11.7.3)

Choose | = (4C|[b]| z#)*/ =) s0 that C|[b]| ;61" < 1/2. Let u € [0,7]. After dividing both sides
p P
in (IL.7.3) by (t — s)"*H(B=1/P) and taking the supremum over (s,t) € Ay, (uti)nT] We get

(K] g1 1517 ey < (Cl0llgg + 172K cn o o))

[w, (u+1)AT) w,(u+1)AT]

and therefore

(] 16617 ey < 20 g (IL7.4)

[u,(u+1)AT]

If I > T, then (I1.7.2) follows immediately from (I1.7.4). Hence, assume | < 7. In order to obtain
(I1.7.2) we will iteratively apply inequality (I.7.4). Let (s,t) € Ajg p) be arbitrary. Let N = [T'/]
and define the sequence (s;)Y_, by s, = s+k(t—s)/N. Using the triangle inequality, that 7, C F

k—1
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for k > 1, the contraction property of conditional expectation and (I1.7.4) we get

N
S5 — K[ ™™ e < D IES (1K s, — Koy ™Y 1o
k=1

N
< S ES Ky, — Ko, ™Y 1
k=1

N
< Ollollgs D (s — spg) TP
k=1
N sy g\ 1HH(B=1/p)
<Chlg Y ()
k=1

< CHbHBgNH(l/p—ﬁ) (t — ) HH(B=1/p),

Using N <1+ % < 2% C’Hb|| , we get

H(1/p-5) e
bl N7 < Clbl ol

and therefore (11.7.2). O

Lemma IL.7.3. Let b,h € C;°(R) N Bg where 8 — 1/p > 1/2 — 1/(2H). Let X be the strong
solution to (I1.1.1) with drift b. Let 6 € (0,1 + H(B — 1/p)). Then there exists a constant C > 0
which is independent of Xo, b and h, and a nonnegative random variable Z which satisfies E[Z] <

CHh”Bg(l + ||bHZ£) such that
t
/ h(X,)dr

Proof. Let Al := fo ,)dr. We apply Lemma I1.7.1 to establish an upper bound for ||A} — A | pm,
with the parameters n =m, v = (< 0) and a =1+ H(8 — 1/p). Hence, we get

< Zt—s)’. (I1.7.5)

IAf = ALz < Cllhllgs (1+ [X = Bleg , (zm)(t — 8) O, (IL7.6)
By (I1.6.2) and Lemma I1.7.2 we know that

[X = Blea  wm) < X = Bleg | (zmeey SC(1+ Hb||1235)-

0,7

Since for any m there exists a constant C' such that (I1.7.6) holds, the result follows from Kol-
mogorov’s continuity criterion. O

I1.7.2 Tightness and stability

In Proposition 11.7.4 we show that if (b"),cn approximates b, the solution X" to (II.1.1) with
drift b converges weakly (up to taking a subsequence). Proposition I1.7.6 states that the limit in
probability of such a sequence (X™),en is a solution to the original equation with drift b.
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Proposition I1.7.4. Let (b"),en be a sequence of smooth bounded functions converging to b in Bgi
where b € B{f for 5—1/p>1/2—1/(2H). For n € N, let X" be the strong solution to (11.1.1) with
initial condition Xo and drift b"™. Then there exists a subsequence (ng)ren such that (X™, B)ren
converges weakly in the space [C[O,T}]Q.

Proof. Let K" := [7b™(X")dr. For M > 0, let
An = {f € Cory = F(0) =0, [F(t) = f(s)| < M(t — ) O (s, 1) € Ay}

By Arzela-Ascoli’s Theorem, Ajps is compact in Cjg 7). Applying Lemma IL1.7.2 and Markov’s
inequality, we get

P(K™ ¢ Ay) <P(3(s,t) € Ay 1 [KYy| > M(t— ) HHE=1/P)

<
< C (14 sup Hb”HlQS,,;) ML
neN p
Hence, the sequence (K")nen is tight in Cig7). So (K", B)pen is tight in [C[[)’T]}Q. Thus by
Prokhorov’s Theorem, there exists a subsequence (ny)ren such that (K™ B)gen converges weakly
in the space [C[07T]]2, and so does (X" B)pen.
L]

Remark 11.7.5. The previous proposition can be generalised to any pair of sequences of approxi-
mations (X17 X2"), oy of strong solution to (I.1.1) with two sequences (b7),en and (b%),en of
smooth approximations of b.

Proposition I11.7.6. Let (I;k)keN be a sequence of smooth bounded functions converging to b in Bg_
where b € 85 for B—1/p>1/2—1/(2H). Let B* have the same law as B. We consider X* the
strong solution to (IL.1.1) for B = BY | initial condition Xy and drift b5, We assume that there
exist stochastic processes X, B : [0,T] — R such that (X*, B¥).en converges to (X, B) on [C[O’T}]Q
in probability. Then X fulfills (11.2.3) and (11.2.4) from Definition I1.2.4 and for any m € [2,c0),
there exists C > 0 such that

[X — Bl 1+1(s-1/p)

ey < C (L4 sup 16¥]1%5) < oo (I1.7.7)
(0,77 keN p

Proof. We again assume here w.lo.g. that Xo = 0 and let K := X — B, so that (IL2.3) is
automatically verified. Let now (b"),cn be any sequence of smooth bounded functions converging
to b in Bg_. In order to verify that K and X fulfill (IL.2.4) from Definition I1.2.4, we have to show

that

t
/ (X, )dr — K,
0

lim sup
=00 te(0,T]

= 0 in probability. (I1.7.8)
By the triangle inequality we have that for k,n € N and ¢ € [0,T],

/tb"(f(r)dr—/tb”()?f)dr /tb"(X,’f)dr—/tsz(X,’f)dr

0 0 0 0

t
/ bn(Xr)dr_Kt < +
0

t~ ~ ~
- / W (XF)dr — K,
0

=: A1 + Ay + As. (H.7.9)
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Now we will show that all summands on the right hand side of (I1.7.9) converge to 0 uniformly on
[0, 7] in probability as n — oo, choosing k = k(n) accordingly.
First we bound A;. Notice that

/Otb”(Xr)dr—/ b (XFVdr

<5l / X, — XHdr

< [o"ller T sup |X; — XF|.
te[0,T]

For any £ > 0, we can choose an increasing sequence (k(n)),en such that

- ~ k(n 1
IP’(||b"HC1 T sup | X — XFO)| > g) <=, VneN.
t€[0,7 n

Hence, we get that

lim sup = 0 in probability.

N0 40,1

/tb”( )dr—/otb”(f(ff("))dr

Now, let us bound As. Let 8’ < 8 with 8’ —1/p > —1/(2H) + 1/2. By Lemma 11.7.3 applied to
XF* h =0b"—b* and B’ instead of 3, we know that there exists a random variable Zn 1 such that

E[Zn ] < C 11" =¥l g (1 + ||bk|yBB,)

C (||b™ = b|| oo + [|B" — bl ) (1 + sup ||bm\|85,) (I1.7.10)

B

for C independent of k,n and that we have

t t
/b”(Xff)dr—/ v XF)dr
0 0

Using Markov’s inequality and (I1.7.10) we obtain that

P sup
te[0,7

sup < Znip(14+7T).

te[0,T]

t
/b”Xkdr— bF(X))dr
0

> s> e 'E[Z,1 ] (1+T)

<Ce 1+ (" - bll o + 165 — bl] gor) (1 + sup ||bm”85’)
D

Choosing k = k(n) as before we get

t N t _
/ o (XE)dr — / o) (X R0y

0 0

lim sup = 0 in probability.

=0 40,17

To bound the last summand As, recall that XF = fg b*(XF¥)dr + BF. Hence, we get that

< sup (|Xf = Xi| +|Bf — Bil).
te[0,7

t~ ~ ~
/ VH(XF)dr — K,
0

sup
te[0,7)
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Since by assumption (X*, B¥).cn converges to (X, B) on [C[O,T]]2 in probability, we get that

lim sup
=90 4e[0,T]

t_ - ~
/ pr(n) (Xff(”))dr — K| = 0 in probability
0

and therefore (I1.7.8) holds true.
It remains to show that (II.7.7) holds true. By Lemma I1.7.2, we know that there exists some
C > 0 such that for any (s,t) € A7),

IS [|(XF — BE) = (X = BOI™Y ™|l < C (14 sup [07]25) (¢ — s) THE-VP 0 (117.11)
meN p
Recall that fot b¥(X*)dr converges to K, on Cjo,7] in probability by assumption. Also, sup,, ey 16| 58
p
is finite and therefore get (11.7.7) by applying Fatou’s Lemma to (I1.7.11). O

I1.7.3 Approximation by smooth drifts

Proof of Theorem I1.2.8. Instead of constructing a single weak solution, we will construct a couple
(Y'!,Y?). This does not change the nature of the proof, but it will be extremely useful in the proof
of Theorem I1.2.10 when we will seek to construct a strong solution, via a Gyéngy-Krylov argument.

Let (b})nen, (b5)nen be sequences of smooth bounded functions converging to b in Bg_. By
Proposition I1.7.4 and Remark I1.7.5, there exists a subsequence (n)ren so that (X 5™ X2 B)icy
converges weakly in [C[07T}]3. Without loss of generality, we assume that (X1 X2" B), .y con-
verges weakly. By the Skorokhod representation Theorem, there exists a sequence of random vari-
ables (Y17 Y2n, B”)neN defined on a common probability space (Q, F, P), such that

Law (Y1, V2" B") = Law(X'", X?™ B), Vn € N, (I1.7.12)

and (Y17, Y2 B") converges a.s. to some (Y'!, Y2 B) in [Clom]?. As X*™ solves the SDE (IL.1.1)
with drift b7, we know by (I1.7.12) that Y™ also solves (IT.1.1) with drift b and B™ instead of B.
As X% is a strong solution, we have that X*" is adapted to FZ. Hence by (I1.7.12), we know that
Y™ is adapted to F5" as the conditional laws of Y and X" agree and therefore they are strong
solutions to (IL.1.1) with B" instead of B.

By Proposition IL.7.6, we know that Y! and Y? fulfill (11.2.3) and (11.2.4) from Definition 11.2.4
with B instead of B and they are both adapted with respect to the filtration F defined by Fp =

oY), Y2 B, s €[0,1]).

Following the same arguments as in the proof of Theorem I1.2.5, after passing to the limit, we
know that B is an F-fBm and Y! and Y'! are weak solutions adapted to I.

Lastly, (I.7.7) gives that

N

v B}Cllo+g<ﬁ—1/p>(Lm,w) <oo, 1=12, (11.7.13)
and thus Y — B and Y2 — B belong to C[l(;rﬁ(ﬁ 1/1))( m., .
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I1.7.4 Existence of strong solutions

In order to prove strong existence, we follow a Yamada-Watanabe argument: this is done here
by combining the construction of weak solutions from the previous proof, the uniqueness result
Proposition 11.6.1 and Gydngy-Krylov’s result.

Lemma II.7.7. Let H < 1/2, p € [1,00] and 8 such that § > —1/(2H) + 1 and f — 1/p >
—1/(2H) + 1. Let b € Bg, and (b")nen be a sequence of smooth bounded functions converging to b
m Bg_. For n € N, consider X™ the strong solution to (IL.1.1) with drift b™ and initial condition
Xo € R. Then there exists an FP-adapted process X : [0,T] x Q — R such that

. n _ P .
(i) supyepo,m | X3 — X 20

(ii) [X = Bl 1 j2em
[0,7]

(L2:50) < 0 a.s.
Proof. Let (X?),cn and (X¥(), cn be two arbitrary subsequences of (X")nen. From the pre-
vious proof, we know that there exists a filtered probability space (Q F.F P) an F-fBm B and
a pair (Y',Y?) of weak solutions to (I1.1.1) adapted to F. By tightness (Proposition I1.7.4 and
Remark I1.7.5), we also have that there exist subsequences ¢(n) and (n) such that (X®() X ()
converges weakly to (Y1, Y?) on [C[O,T]]2 for n — oo.

Combining (I1.7.13), (I1.6.2) and that by assumption 1 + H(8 — 1/p) > 1/2 4+ H, we get that

[Yi — B}cl/z-u{ < [Yi — B]C1/2+H

<oo, 1=1,2.
o L3 [0,7) ’ ’

(L2:)

By Proposition I1.6.1, this gives Y! = Y2 a.s. Hence by Lemma 1.1 in [60], we get that there exists
X such that X™ converges in probability to X on Cjp 7). Notice that X™ is adapted to FB, for any
n € N, as they are strong solutions to (II.1.1). So X is adapted to the same filtration. Lastly, (ii)
follows from (IL.7.7). O

Proof of Theorem 11.2.10. (a) Let X be the process constructed in Lemma I1.7.7. Proposition I11.7.6
yields that X is a strong solution to (II.1.1) fulfilling (I1.7.7) for any m > 2. Since 8 — 1/p >

1—1/(2H), we get that [X — B] 1+H(L : < oo for any m > 2.
Co.m

(b) Let (Y1, B) and (Y2, B) be weak solutions defined on the same probability space, with

Y! -~ Band Y? - B in C[lo/ ?FJ]FH(LQ) On this probability space, let X be a strong solution which
satisfies (11.6.3) with the same fBm B. Since X is also a weak solution adapted to F, it follows from
Proposition I1.6.1 that X = Y* for i = 1, 2.

(¢c) By Lemma I1.7.7 the sequence of strong solutions corresponding to an approximation se-

quence of the drift b converges in probability to a strong solution X to (I.1.1) such that

[X — B] 1/24+H < Q0. (11714)

[0 T] (L222)

The limit X is the same for any approximation sequence as uniqueness in the class of solutions
fulfilling (I1.7.14) holds by (b).
(d) Observe that if b is a measure, then we know by applying Proposition 11.5.3 and using

—1/p>1—1/(2H) that any solution X to (IL.1.1) verifies X — B € c[lo/ﬁ T(L2). Hence by the

previous uniqueness statement, X is the pathwise unique solution to (II.1.1). O
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II.A Properties of fBm

II.LA.1 Operator linking Brownian motion and fBm

In Lemma I1.A.1 we prove a continuity property of the operator A introduced in (I1.2.1). This is
crucial in order to show adaptedness in the proof of I11.2.5(a) and Theorem 11.3.4. The explicit form
of the operator A is:

A =TIH-127 2= 121 (IL.A.1)

where the operators 1" and T" are defined as follows:
~ t
VheR, (I"f)(t) :=t"f(t) - h/ "L (s)ds,
0

Vh>0, (T'f)(t) = F(lh)/o (t — s)"\f(s)ds.

Lemma I1.A.1. Let H < 1/2. The operator A defined in (ILA.1) continuously maps the space
(Clo |+ lloo) to itself.

Proof. The operator A is linear, therefore it is sufficient to show that it is bounded. For f € Cjop
and t € [0,T], we have by (II.A.1) that

ﬁH_l/Ql-l/Q—Hﬁl/Q_Hf(t) = 24: fz(t%

=1

where

t
Fle) = 12 s [ (= gy

L H-1/201 o -1 L ijeew V2 H g g
folt) = 20 /2 = W) s [(=p 7 [ f () dzdy
Filt) = (/2= M) [ 7902 [ (s ) 2 2 gy
_ e L tSHfS/Z Cts—oy-12=H 1 eH
flt) = (/2= B s [ 470 [y | f(r)drdyds

We have, after doing a change of variables of the form £ = y/t, uniformly on [0, 7], that
If1(t)] < CtHA/QHfHOO /Oltl/QHtl/ZHt(l _ 2)71/27HZ1/27Hd2 < C'Tl/szHfHoo;
| f2(8)] < CET12| £l oo /Ut(t —y) Y 2 gy < OTYPH| floos
RO < Ol [ 7792612005 < CT21

t S
F1(8)] < Cllfllso / $H1=3/2 / (s — ) 2 H Y 2 Hgyas < oTV2H | £ .
0 0
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Hence, the operator is bounded. It remains to prove that A(f) is a bounded continuous function.
For f1, we perform the change of variables z = y/t and it comes

fl(t) _ t1/2HF(1/21£’) /1(1 B 2)71/27Hzl/27Hf(tZ)dZ
- 0

By the dominated convergence theorem, this is a continuous function. We proceed similarly for fs.
As for i = 3,4, we have

fi(t):/o gi(s)ds

for functions g; that are integrable on [0, 7], which implies the continuity of f3 and fy. O

I1.A.2 Local nondeterminism of fBm and proof of Lemma I1.5.1

The goal of this section is to prove Lemma I1.5.1. As an intermediate step, we obtain first the
following lemma, which is a local nondeterminism property for the fractional Brownian motion.

Lemma II.A.2. Let (Bi)i>0 be an F-fractional Brownian motion with H < 1/2. There ezists C > 0
such that for any 0 < s <u <t,

E [(E“[By] — E*[By])?] = C(u — s)(t — s)*" 1.

Note that in the above the conditional expectation is taken as usual with respect to F and not
with respect to the filtration generated by B.

Proof. The case H = 1/2 is trivial, so we assume H < 1/2. Recall that the process W = A(B),
where A is the operator given in (I1.2.1), is an F-Brownian motion. Moreover, by Theorem 11 in
[87], it satisfies

t
By :/ Ky (t,r)dW,, (IT.A.2)
0
where, for some dy > 0,

" H-1/2 t
Kp(t,r) =du [(r) (t—r) 12 4 (1/2 - H)Tl/ZH/ 3125 — T)Hl/zdz] .

Therefore

E[(E"[B] - E'[B.))?] =E

(e |/ t Kutt.rjaw,| -5 | [ K, r)dWT]>2]

(I K,m)dwﬂ
/ KHtr

u — s)mlnre[s u]KH(t ’l“) (H.A.3)

=E
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Notice that by the change of variables zZ = z/r,

t
/ ZH—3/2(Z _ T)H—I/Zdz = r2H=13,(t/r),
for Bu(r) =[] FH=3/2(z — 1)H-1/24%. Hence,

" H-1/2
Kp(t,r) = du [(T) (t—r)"12 4+ (1/2- H)rHl/QBH(t/r)] :

Using that

/t/r H=3/2(, _ 1yH=1/2q,
1

/‘t/T 2H— 2dZ
1
2H—1
1_(t
T 1- 2H < (r) )
and subadditivity of  — x® for o € (0,1) we get, for 0 < r < t, that
H-1/2 2H-1
1 t a2 V2 H g [t
dHKH(t 1) = <r> (t—r) + 172HT 1 .
1/2— H N 1-2H
S H 12 ( (T 1/2—H, H—1/2 (T
> (- <<t) - ! (t)
1/2— H rN1-2H
S H 12 ( (T 1/2 H _ ,1/2-Hy H-1/2 (T
> (- <(t> r ! (t)
1/2-H 1/2—H 1-2H
(t—r)=1/2 ((Z) + (:) +(z) -1

(= )11,

=

N = N

where the last line holds true as x + 2~ > 2 for # > 0. Plugging this into (IL.A.3) we get that
E [(E"[B)] = E°[Bi))?] > (u — s)min,efs ) K (t, )
> dzq(u —5)(t— )21,
0

Proof of Lemma II.5.1. Proof of (a): Notice that By, — E"[B,] is Gaussian with zero mean and
variance afm. Furthermore, it is independent of F%,, which can be seen using the integral repre-
sentation (see (II.A.2)). Hence, we have

E"[f(Bty, 2)] = E"[f (B, — E" [By,] + E" [By,], 2)]
=G,2 f(Etl [Bt2]7 E)

Tt ,t
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Proof of (b): By the local nondeterminism property of fBm (see Lemma 7.1 in [89]), there exists
C > 0 such that

o7 4, = Clta — t1)*". (I1.A.4)

To see that (b) holds true we use (a), Lemma A.1.7(a), the embedding B) — BLYP and (ILA.4)
to get that

E [ (Bey, DN < OIS E) g 0 < ClF Byt — 1) MO0,
Proof of (c): First notice that for fixed x € R, t > 0 and ¢ : R — R with ||¢||c1 < oo,
|6(x) = Geo(@)] < Cllgller V. (ILA.5)
To see that (c) holds true note that due to (a), (II.A.5) and Cauchy-Schwarz’s inequality we get
E(|f(Bi, E) = E" [f(Bu, BN = E|f (B1, Z) = Gz f(E"[By,], E)]]
< E[|f(Bty, E) — F(E"[B,], E)[] + E[|f (E"[Bi], E) — Goz  f(E"[By,],=)|]

Tt1.tg

<SE[If(,E)ller|Be, — E* [Byll + CE[If (-, E)ler] o1, 2
S CIFCEMer 2tz — )™,
where the last line holds true by (IT.A.4) and as
(B, = E"[By,)llz2 < 1Bez = Buyllz2 + 1 Bey — B [Byy] |2 < 2(t2 — t1)"

by Jensen’s inequality for conditional expectations.
Proof of (d): In order to prove (d) we first state the following inequality, for some C' > 0: for
any 1 <t < to,

62 - = Var(E'[By,] — E"[By]) = C(f — t1)(ta — t1) "' T2H. (I1.A.6)

t17t,t2

The above inequality holds true by Lemma ILA.2. Notice that Ef[B;,] — E'[By,] is Gaussian with

mean zero and variance &tQ Pt and it is independent of F;,. Using this, (a) and Hoélder’s inequality

forg=p/n>1and ¢ =q/(q—1), we get

B [[E'(f(Be, DI =EY (G, F(E[Bi). B

/ g2 (2)|Goz FENBy] + 2, E)[ dz
ilftz

t,to
< Hg&fl it HLq’(R)H (Ga§t2f(Etl[Bt2] + E))
= HG&t? ity 50HL¢Z’(R)”GU?’t f('vE)HZp(R)-

Using Lemma A.1.7(a), (L.A.4), (IL.A.6) and that [|6]|,, 1417z < 00 for w > 1, we get

[Goz . tollw sy Gz, FCEEncey < CILEC Dl Mol o, 77,

ttg t1,t,t2

<O f(, E)H%g HéOHB*,"/p (ta — t)H’Yn(t - tl)*n/@p) (tg — tl)n(leH)/(Qp)'
q
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Hence,

E" |[E'[f(Bu 2))I"]
<O f(, E)H%; ||50||Bfln/p(t2 — f)H"m(E — tl)—n/(2p) (ts — tl)"(l_QH)/@p)- (IL.A.7)
q

After taking expectations in (II.A.7) and raising both sides to the power 1/n, we obtain (d). O

II.B Regularising properties of the fBm

In this section we state and prove some results that are crucial in the current chapter, Chapter I1T and
Chapter IV. The statements and their proofs, that heavily rely on stochastic sewing, are extensions
to fBm of Lemma 6.1, its corollaries and Lemma 5.2 in [8].

Lemma IL.B.1. Let v € (—1/(2H),0), m € [2,00), n € [m, 0], p € [n,00] and e € N. Then there
exists a constant C' > 0 such that for any 0 < S < T, any Fg-measurable random variable = in R®
and any bounded measurable function f: R x R® — R fulfilling

(i) E[If(E)G] < oo;
(ii) E[1£(~ Dl | < oo,
we have for any t € [S,T) that

m~1/m
= |

/S F(B.Z)dr

<O E)sy i (= 8)HHO=P), (TL.B.1)
n

Proof. In order to show (I1.B.1), we will apply Lemma A.2.1. For S < s <t < T, let

. t
A = / f(By,E)dr and Ay :=E° {/ f(Br, E)dr] :
S S

Notice that we have E*[0 A, ] = 0, so (A.2.1) trivially holds.
In order to establish inequality (A.2.2), we show that

16 A utllzn < Tolu— S)702(t — s)1/2+e2 (11.B.2)

holds true for some o € [0,1/2) and 2 > 0, which is sufficient by the tower property and conditional
Jensen’s inequality. For u = (s+t)/2 we have by Minkowski’s integral inequality, Jensen’s inequality
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for conditional expectation and Lemma I1.5.1(d) that

E*® [/utf(Br,E)dr] E* [/utf(Br,E)dr}

t
</ (IE*f(Br, E)lln + 1B f(Br, E)| L) dr

16 A sl < '

l

Ln Ln

u
t
< 2/ ||]Euf(BT,E)||LndT
u

t I 1 1-2H
<C/ G EN syl (r = u) ™ (w = 5) "2 (r = 5) 2 dr

t
<C / e
_H
< CUIFCE) gl (6 — w) 1w — 8)75,

where the penultimate inequality holds true as » — S < 2(u — S). Hence, we have (I1.B.2) for
g9 =1/24+ Hy>0and ay = H/p < 1/2.

Let t € [S,T]. Let (Ilx)ken be a sequence of partitions of [S,¢] with mesh size converging to
zero. For each k, denote 11 = {tf}fvz’“o. By Lemma IL.5.1(c) we have that

[1]

H~ -
il (r — )7 (w — §) "5 dr

tf«l»l k
e = Apg Nl < / If (Br E) — BN f(B,E)|rdr

<CIFC D erllze (¢ = 8) k[ — 0.

Hence (A.2.3) holds true.
Applying Lemma A.2.1, we get

IETlAe — As[™]/" | »

< Aselln + CHILFCS

[1]

1
t 2
Mgl ([0 ar) " - sy8
S
< N Asillon + CHIFCDgy llon (¢ — §)HHO=),

Applying Minkowski’s integral inequality and Lemma I1.5.1(b), we get that

t
|Asilln = HES/S 7(B, Z)dr]

n

t
< | 1B D)o

t
<© [ 176Dl - = )70 ar
< CFGEsyllen (€= S)IHHG=1/p),
Hence

IEST AL — As ™™ n < CIFCE gy llon (8= S)HHHO=P),
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Corollary I1.B.2. Let v € (—1/(2H),0), m € [2,00) and p € [m,00]. Let X\ € [0,1] and assume
that v > —1/(2H) + . There ezists C > 0 such that for any f € CP(R)NB), any 0 < s <t < T
and any Fs-measurable random variables k1,ko € L™, one has

| [ - 5w

< Ollfllgllmy = ezl gm (= ) HHOAZP), (IL.B.3)

Proof. We aim to apply Lemma II.B.1 for the function (z,(x1,22)) — f(z+21) — f(2 + z2) with
m =n and = = (K1, K2). By Lemma A.1.8(b) and Jensen’s inequality, we have that

HFC+r1) = £+ )l gyallom < Cllfllsglllrn = 2N
< Cllfllgyllwr — w2l|Zm-
Moreover
1FC+r1) = F(+ m2)ller < 2[[fller < oo
Therefore all assumptions of Lemma I1.B.1 are fulfilled and the result follows. O

Corollary II.B.3. Let v € (—1/(2H),0), m € [2,00) and p € [m,00]. Let A\, A1, 2 € (0,1] and
assume that v > —1/(2H)+ X and v > —1/(2H) + A1 + Aa. There exists a constant C > 0 such that
for any f € C°(R)N By, any 0 < s <u <t < T, any Fs-measurable random variables k1, kg € L™
and any F,-measurable random variables k3, k4 € L™, we have that

| / (F(By + k1) = (Br 4 2) = f(Br + ) + [(B, + ra))dr
< OlIf gz N (Im1 = ma™ ™12 llm1 = mal| 7t (8 — w) HHO =22 1/p)
+ Clfllgylls1 — kg — ks + kallfm (£ — w) HHOAZLP), (11.B.4)
Proof. Let h: R x R* — R be defined by
h:(z,(x1,22,23,24)) = f(z+x1) — f(z+2x2) — f(z+23) + f(2+ 23 + 22 — 7).
and g : R x R* — R by
g: (2, (1,22, 3, 24)) — f(z+x4) — f(2+ 23+ 22 — 7).

Let E = (K1, k2, K3, k4). Hence the integrand on the left hand side of (I1.B.4) is h(B;,Z) + g(By, Z).
The proof will consist in applying Lemma I1.B.1 to the integral of h, and Corollary I11.B.2 to the
integral of g. By Lemma A.1.8(c), we have

1A C 2N gy xS Il 11 — ro[M 1 — g (ILB.5)

Using that k1 — ko is Fs-measurable, by the tower property, Jensen’s inequality for conditional
expectation and (11.B.5), we get that

Bl n e < Il [Ir1 = wal ™M E*[li1 — g™

B;/—XI—XQ
< If s [Iin = ol ] |[E*[lir = ™)

<N Fllsglln = mall Tt 1B [y — rg ™)™ 72

oo
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Furthermore

1R(E)ller < 41 fller-

Hence, we get the result by applying Lemma I1.B.1 for S = u to the integral of A and Corollary 11.B.2
to the integral of g. O

As another consequence of the stochastic sewing Lemma, we finally prove Lemma I1.7.1.

Proof of Lemma IL7.1. We assume that W]C[a y(Lmny < 00, otherwise (I1.7.1) trivially holds. For

(8,t) € A[s,t}v let

t t
Agpi= / f(Br +1bs)dr and A; := / f(Br + 1y)dr. (I1.B.6)

In the following, we check the necessary conditions in order to apply Lemma A.2.1. In order to
show that (A.2.1) and (A.2.2) hold true with ag = 52 = 0,61 = H(y—1/p—1)+ a > 0 and
€9 =1/2+ H(y—1/p) > 0, we show that there exists a constant C' > 0 independent of s,t,5 and ¢
such that

() 1E6A; o ill v < Ol fllsglles , (1) (F — 8)+HO—1=Vpr4e

s,t

(i) [E[10Az g™ ™ |n < Cllfllgy (F = 5) =1,

(iii) If (i) and (ii) are verified, then (A.2.3) gives the convergence in probability of 25\72"0_1 Ak g

17141
along any sequence of partitions IT; = {tf}fvjo of [s,#] with mesh converging to 0. We will
show that the limit is the process A given in (I1.B.6).

Assume for now that (i), (ii) and (iii) hold. Applying Lemma A.2.1, we obtain that
|| <O fllgy(F — )+

m71/m
Il

t
[ f(By + 1y)dr

+Clfllsg[Wles , wmm (E = §)HHG=1-1/p)ta
+ B[ Ag g

In (ILB.8) we will see that [|[E*[|Az;|™]"/™(|zn < C|f||gy (£ = 5)'+#O71/P). Then, choosing (3, ) =
(s,t) we get (11.7.1).

We now check that the conditions (i), (ii) and (iii) actually hold.

Proof of (i): For s < § < u <t < t, we have

t
0A; 7= / F(Br 4+ 13) — f(By 4 1y)dr.

Hence, by the tower property of conditional expectation and Fubini’s Theorem, we get

[E*0A; 7| =

s

E? / EY[f(B, + ) — (B, + du)ldr|.
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Now using Lemma II1.5.1(b) with the F,-measurable variable = = (¢3,,), Lemma A.1.8(b) for
a =1 and again Fubini’s Lemma, we obtain that

E® / fE“[f(BT + ) — f(B, + wu)]dr\

i
SET [+ ts) = F(+ )| gy (r —w) O P
u E ~
< Cllfllsy / E¥[|thy — 5] (r — w)TO—1=1/P) g,

u

Hence we get

HWMMﬂm<mw@/W§%—%mmuwm%H@w. (ILB.7)
u
By the conditional Jensen’s inequality, we have
IE*[[¢pu — ¥5]||2n < W]cg’t](mm)(u -3~
Combining this with Equation (II.B.7), we get
B A5, ill i < Cll g Wl (o) (F — 8)+HG=1-1 e

Proof of (ii): Note that by Jensen’s inequality for conditional expectation, tower property and
Lemma II.B.1 we have that

- 1/n - 1/n
B A5 17 2 = (BLEE A7) " < (B[ Ag 7))

1/n
< C|lfllg; (E— §)HHG=1/P), (ILB.8)
After similarly controlling ||E3[\A§7u|m]1/m\|m and ||I[:?13[\,Almdm]1/m||Ln7 we get

1645 o, i1 ™ |e < C|fllgy (F = 3) O,

The proof of (iii) can be done by similar arguments as for (iii) in the proof of Proposition 11.5.3. O
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II1.1 Main result and proof

This chapter is based on [LA2]. In the previous chapter, we proved in Theorem I1.2.8 the existence
of a weak solution to (II.1.1) using the stochastic sewing lemma. In this chapter, we will use a
refined approach, however working with the d-dimensional equation

dX; = b(X,)dt + dB;, (I11.1.1)

where each component of b is assumed to be measure-valued.

The overall scheme of proof, via a tightness-stability argument is similar to Section I1.7. However
the nonnegativity of the drift allows to make use of the stochastic sewing lemma with random
controls (see Lemma A.2.2). Throughout this chapter we work under the following assumption:

Assumption II1.1.1. Consider (b, ) such that b is a measure with

1
be B2 for B eR with § > ~oq (I11.1.2)

Our main result reads as follows:

Theorem II1.1.2. Let (b,[) satisfy Assumption III.1.1. Then there exists a weak solution to
Equation (I11.1.1) in the sense of Definition II.2.4.

Note that, even though Assumption II1.1.1 refines the conditions in Theorem II.2.5(i)-(iii), The-
orem II1.1.2 still gives a slightly different statement as Theorem I1.2.5 since it gives a.s. convergence
in (I1.2.4).

Combining the fact that finite measures are in BY (see Remark A.1.4) and Theorem I11.1.2, we
get the following:

79



80 III. EXISTENCE OF WEAK SOLUTIONS VIA STOCHASTIC SEWING

Theorem II1.1.3. Let b be a finite R%-valued measure and H < 1/(2d). Then there exists a weak
solution to (I11.1.1).

The remainder of the section is dedicated to proving Theorem II1.1.2. This will be done by
regularizing the drift, considering the sequence of strong solutions to the corresponding approxi-
mated equations and proceeding via a tightness-stability argument. In order to do so we state two
a priori estimates in Lemma II1.1.4, quantifying the regularization effect of any solution. First,
recall Lemma I1.B.1 since it captures the regularization effect of the fBm. The lemma immediately
transfers to the d-dimensional setting (for a proof see [59, Lemma 3.4]).

Intuitively the regularization effect of any solution X will be similar to the one of a fBm, since
it is expected to have a similar oscillatory behaviour. This is because X — B is expected to be more
regular than B. For another perspective on this, note that any solution X has a jointly continuous
local time by [20, Theorem 2.16|, where the authors make use of the fact that X — B is of finite
variation.

Lemma II1.1.4. (a) Let § < 0. Let m € N. Then there exists a constant C > 0 such that for
any b such that (b, 8) satisfies Assumption II1.1.1 and (s,t) € Ay 7}, any weak solution X to
(II1.1.1) fulfills

—HB

[ < Cbllgs, (14 D570 ) (¢ = )19, (ITL.1.3)

||Xs,t - Bs,t

where by assumption W}{Bﬁ_l) € (0,00).

(b) Let 8 < 0 and m € N. Let § € (0,1 + HpB). Then there exists a constant C > 0 and there
erists a nonnegative random variable Z such that for ¢, h € C°(R%,R%) NBL, such that (6, 8)
and (h, B) satisfy Assumption II1.1.1,

/S t h(X,)dr

where X is the unique strong solution to (II1.1.1) with drift ¢. Moreover,

< Zt—s)°, (I11.1.4)

I Ty
1Z]lm < Cllhllgs. (1 + 1161155 ) (T11.1.5)

Proof of Lemma II1.1.4. (a): The proof is almost identical to Proposition I1.5.3. Therein we use
nonnegativity of the drift in order to obtain an increasing process for d = 1. The same can be done
here for dimension d > 1 obtaining a process that is increasing in each component and therefore we
omit most details (for a similar argument see the proof of (b)).

The proof of Proposition 11.5.3 gives existence of a constant C > 0 such that for (5,t) € Ajom
fulfilling C|[b[|zs (¢ — 5)'+##~D < 1/2 and K = X — B,

1K, — Kol < Clbllgs (¢ — )72, (ITL.1.6)

~ 1 ~
Choose | = (3C||b]| z5 ) T0=P-1 so that C[b] 4s B < 1/2. Tet u € [0,T]. Tn particular,
by (IIL1.6),

[K] 1vmp

[u,(u4+1)AT]

(moey < Clbllgs - (IT1.1.7)
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If I > T, then (IIL.1.3) follows from (III.1.7). Hence, we assume [ < 7. To obtain (III.1.3), we will
iteratively apply inequality (TIT.1.7). Let (s,t) € Ajg ) be arbitrary. Let N = [T/I] and let the
sequence (sy)i_, be defined by s, = s + k(t — s)/N. By triangle inequality and (IIL.1.7), we get

N
1K~ Killpm < 3 1K, — Koy [l
k=1

N
< Cbllgs D (sx — sp-1) 7
k=1
~ N +_ g\ 1B
< Cllbllgs Y <N>
k=1

< Cbllys N7H2 (1 — )15,

Using N <1+ T <2 < Cllbll 55 R , it follows that

—HpB

[bll g N=HP < C bl g [1Bl] 55

and therefore (I11.1.3).

(b): By nonnegativity of ¢, K = X — B is monotone in each component. In particular (v, w) —
|K,, — K| defines a random control as the choice of norm on R? gives superadditivity (see list of
notations). For (s,t) € Ay gy let

t
Agy :_/ h(B, + K,) dr.

We apply Lemma A.2.2 for K" = A defined by K" = fo »)dr. In order to see that all
conditions are fulfilled, we prove the following for u € [s,t] and some constant C' > 0 independent
of s,t and u:

(i) [[Asellm < Cllhllge (€ — s)1+HB,
(i) [E*[6As sl < Cllh] o | Ko — K| (t — u)HE-DFL,

(iii) SNt Agpan, L% K] along any sequence of partitions IT, = {t?}7 of [0,¢] with mesh
converging to 0.

Notice that 1 + HS > 1/2 and hence (i) gives (A.2.2). Furthermore, (ii) gives (A.2.1) for a; =
HB-1)+1>1/2—H >0, =1and \(s,t) = |K; — K.

Assume, for the moment, that (i)-(ii)-(iii) hold true. Then by Lemma A.2.2, there exists a
process D such that

K} — KT — Agy| < Cllhllgs | Ko~ Kol(t — )P0 4 Dy, (IIL.L.8)
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with || Dy |lzm < C||h]lzs (t—s)*TH5. Hence, by (i) and Lemma IT1.1.4(a) and as H(8—1)+1> 0

1K} = K2 pm < Clhllgs 15 = Kllpm (8 = )"0 4 Clhl gs (= )"+

1+ -
< Cllhllgs (14 19l ™) — )1

The result now follows from Kolmogorov’s continuity theorem after choosing m large enough,
which is no restriction as (I11.1.5) then also holds true for any smaller choice of m.

Let us now verify (i)-(ii)-(iii).

Proof of (i): By the d-dimensional version of Lemma II.B.1 applied to = = K, and f(z,2) =
h(z + x), we have

HAs,tHLm < CHHh( + KS)HBEQ‘

ot — s)1HIB,

Using that ||h(- + Ks)l|zs = [|hllgs (see [8, Lemma A.2] for d = 1, which easily generalizes to
d > 1), we thus get

[Astllm < Cllhllgs (- s)1 P, (111.1.9)

Proof of (ii): From the local nondeterminism property of fractional Brownian motion (see |89,
Lemma 7.1]), we have that
o, > C(t—s)*H, (I11.1.10)

S

where

021y = Var(B; — E°[By]).

Then by |59, Lemma 3.3] applied to = = (K, K,,) and f(z, (z1,22)) = h(z + x1) — h(z + z2),
we obtain

t
B0 Al = | [ BB, + Ko) = BB, + K.)Jdr
t
- | / Goz B(E'[B,] + Ky) — Gz h(E'[B,] + K, )dr
:
</ 1Goz hler| Ko — Kodr

We now use [8, Lemma A.3 (iv)] which again easily generalizes to d > 1. Note that it can be
used as we can assume w.l.o.g. that 5 < 0. Hence

6o ller < Ol (2, )02
The above, (I11.1.10) and using that H (5 — 1) > —1 to ensure integrability gives

t
B < C [ I = al" D g | — Kol

< C|hllgs [ Ko — K| (t = u) =D
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Proof of (iii): For a sequence II,, = {t?}ﬁ”o of partitions of [0,¢] with mesh size going to 0, we
have

el t,
K= D Anar, | <2 /t BB+ Ky) = h(B, + Ko dr
=0 i i

24
<y / \hller| Ky — Kpnldr
i

<D Ibller (t41 = ) Ky, — K|
i

n—oo

< hlex My || Ky — Kol — 0 a.s.
O

Below we state the two propositions that ensure tightness and stability of the approximation
scheme. The proofs are similar to the ones of Proposition 11.7.4 and Proposition I1.7.6. The only
differences are allowing for d > 1 instead of d = 1 and that Assumption III.1.1 is weaker than the
corresponding assumption therein. The latter is due to the crucial Lemma III1.1.4(b) being stated
under Assumption II1.1.1. For the reader’s convenience we prove both statements.

Proposition III.1.5 (Tightness). Assume (b, 3) fulfills Assumption ITL.1.1. Let (b™)nen be a se-

quence of smooth bounded functions converging to b in Bfg. Forn € N, let X™ be the strong solution
to (II1.1.1) with initial condition xo and drift b". Then there exists a subsequence (ng)gen such that
(X" B)ren converges weakly in the space [C[O,T]]2'

Proposition II1.1.6 (Stability). Assume (b,3) fulfills Assumption IIL.1.1. Let (b¥)ren be a se-
quence of smooth bounded functions converging to b in BES. Let B* have the same law as B and
assume all B* are defined on the same filtered probability space. We consider X* to be the unique
strong solution to (II1.1.1) for B = B, initial condition xo and drift b, We assume that there
exist stochastic processes X, B : [0,T] — R% such that (X*, B¥) ey converges to (X, B) on [Clo.m]?
in probability. Then X fulfills (11.2.3) and (I1.2.4) from Definition II.2.4.

Proof of Proposition II1.1.5. Assume w.l.o.g. f < 0. Let K" := fg b (X )dr. For M > 0, let
Av = {f € Comy = F(0) =0, |f(t) = f(s)| < M(t — )7, ¥(s,1) € Ay}

By Arzela-Ascoli’s Theorem, Aps is compact in Cjg ). Applying Lemma II1.1.4(a) and Markov’s
inequality we get

P(K™ ¢ Ay) <P(3(s,t) € Apgy : |Ky| > M(t—s)'HH7P)
n 1+1+;I€{/36—1) —1
< Csup (140" 5 )M~

neN

Hence, the sequence (K")nen is tight in Cjg7). So (K", B)pen is tight in [C[O’T}]Q. Thus by
Prokhorov’s Theorem, there exists a subsequence (ny)ren such that (K™, B)gen converges weakly
in the space [Cjo7]?, and so does (X", B)jen. O
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Proof of Proposition I11.1.6. Assume w.l.o.g. that 5 < 0 and Xg = 0. Let K := X — B, so that
(I1.2.3) is verified. Let now (b™),en be any sequence of smooth bounded functions converging to b
in B2, In order to verify that K and X fulfill (I1.2.4) from Definition I1.2.4, we have to show that

t
/ b" (X, )dr — K| = 0 in probability. (TT1.1.11)
0

lim sup
=00 te(0,T]

By the triangle inequality we have that for k,n € N and ¢ € [0, 7],
t t t
/ V(X )dr — K| < / b X, )dr — / b (XFVdr| + / b (XFYdr — / v XF)dr
0 0 0 0 0

t
+ / VH(XE)dr — K| =: A) + Ay + As. (I11.1.12)
0

~X

We show that all summands on the right hand side of (II1.1.12) converge to 0 uniformly on [0, 7]
in probability as n — oo, choosing k = k(n) accordingly.

A1: Notice that
/b”( )dr—/ b (XFVdr
0 0

< 9l / X, - XH|dr

<|"ller T sup |X; — XF|.
te[0,T]

The result follows as for any £ > 0, by assumption, we can choose a sequence (k(n)),en such that

- ~ k(n 1
]P’(|]b"HC1T sup | X; — XFOV| > 5) <>, VneN.
t€[0,T] n

As: Let # € (—1/(2H),3). By Lemma IIL.1.4(b) applied to X*, h = b — b* and § instead of
B, we know that there exists a random variable Z,, ;. such that

—HpB'

b senit TEE—D
E[Z, 1 < C|b" — kaBgc,(l + ||kaB§;1+H(6 1))

,HB’

- P T—
C (1[0 = bll gor + 116" = bl gor) (1 + sup o™ o), (II1.1.13)
for C independent of k,n and that we have
sup / b (XF)d / V(XEYdr| < Zpx(1+T).
t€[0,T]

Using Markov’s inequality and (III1.1.13) we obtain that

t t
P| sup /b"(Xf)dr—/ v XE)dr
te[0, 7] 1J0

0

> 6) <e 'E[Znk] (14 7T)

,HB’

i YT TEEGE =D
<O A+ T) (10" = bll gor + 16" = bl gor) (1 + sup 6™ """ 0).
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Choosing k = k(n) as before gives the convergence.
A3z: Recall that X} = fot V¥ (XF)dr + BF. Hence, we get that

< sup (IXF - X| + |BF — By).
t€[0,T]

sup

t ~ ~ ~
/ V(XMdr — K,
tefo,T] [Jo

Since by assumption (X*, B¥).cn converges to (X, B) on [C[O,T]]2 in probability, we get the result.
O

Proof of Theorem II1.1.2. Let (b"™),en be a sequence of smooth bounded functions converging to b
in B By Proposition I11.1.5, there exists a subsequence (ny)ren such that (X" B)gen converges
weakly in [C[07T}]2. W.lo.g., we assume that (X", B),en converges weakly. By the Skorokhod
representation Theorem, there exists a sequence of random variables (Y”,E”)neN defined on a
common probability space (Q, F, 15), such that

Law (Y™ B") = Law(X", B), Vn € N, (I11.1.14)

and (Y, B") converges a.s. to some (Y, B) in [Cior)?. As X™ solves the SDE (II1.1.1) with drift
b", we know by (I11.1.14) that Y™ also solves (ITL.1.1) with drift 4" and B™ instead of B. Since X"
is a strong solution, we have that X" is adapted to FZ. Hence by (II1.1.14), we know that Y™ is
adapted to FB" as the conditional laws of Y and X" agree and therefore Y is a strong solution
to (IIL.1.1) with B" instead of B.

By Proposition II1.1.6, we know that Y fulfills (I1.2.3) and (I1.2.4) from Definition I1.2.4 with
B instead of B. Clearly Y is adapted to the filtration F defined by F; := o(Ys, Bs, s € [0,1]). By
(I1.2.2) and (II1.2.1), we have

B" = A(W") a.s. and (I11.1.15)

w" = A(B") a.s., (I11.1.16)
where W™ is a sequence of Brownian motions with FB" = FV", By definition of a Brownian
motion with respect to a filtration, for (s,t) € A7), W' — W' is independent of FV" = ]-'f’m =
o(Y, B, r € [0,s]). By (IIL1.15), (IIL.1.16), Lemma ILA.1 and the a.s.-convergence of B", we
know that W™ converges a.s. uniformly on [0,7] to a Bm W such that B = A(W). Moreover B
and W generate the same filtration. Hence, we deduce that W; — Wy is independent of F¢ and so
W is an F-Bm. Therefore, Bis a F-fBm and Y is adapted to F. Hence Y is a weak solution. O

III.A°  Summary of the literature

The following Theorem gives an overview of the developments for Equation (I1.1.1) with H # 1/2.
In (a) as well as partly in (b) and (d) a nonlinear Young integral approach was followed. To ensure
readability, some results do not represent the full scope of the actual results proven. Below we
partly also allow for time-dependent drift b.

Theorem IILA.1. (a) [2{, Theorem 1.9] combined with [51, Theorem 3.13]: Let b € B for
B >1—1/(2H). Then there exists a strong solution to (I11.1.1) and path-by-path uniqueness
holds (i.e. uniqueness to the integral equation for almost every realization of the noise, giving
a stronger notion of uniqueness than the classical notion of pathwise uniqueness)
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(b) Theorem I1.2.8, Theorem I1.2.10 and Corollary I1.2.6: Let d = 1. For H < /2 — 1, there
exists a weak solution for a finite measure b. Additionally there exists a weak solution for
be B for B> 1/2—1/(2H). Pathwise uniqueness and strong ezistence is shown for b € 85
for B € R and p € [1,00] with

1

1 1
- — andf—->1— —.
f>l=gpgamdf-2 2H

(c) [59, Theorem 2.3]: Generalization of the latter two results in (b) to d dimensions; i.e. there
exists a weak solution for b € B, with B >1/2—1/(2H) and pathwise uniqueness and strong
existence holds for b € Bg with

1 1
1— — —d/pz1— —.
8> 5 and —d/p 5

(d) [49, Theorem 1.4]: Strong existence, path-by-path uniqueness, Malliavin differentiability and
existence of a flow for time-dependent drift b € Lq([O,T},BgO) for g € (1,2 and B > 1 —
1/(Hq'). Additionally weak ezistence for b € L1([0,T],B%) for q € (2, 0] and

18 shown.

(e) [20, Theorem 2.11 and Theorem 2.14]: For a finite measure b: Existence of a weak solution
for H < 1/(1 4 d) for any d € N; pathwise uniqueness and existence of a strong solution for
H < (v13-3)/2 and d = 1.

(f) Theorem II1.1.2: Let d € N. Ezistence of a weak solution for nonnegative b € IB%EO with B >
—1/(2H). In particular, existence of a weak solution for a finite measure b and H < 1/(2d).

Remark TI1.A.2. In particular, (f) can be seen as an extension of the existence result in (b) and as
a slightly weaker result than (e) for a finite measure b.

Finally let us mention that also similar equations were investigated, such as the case of local
time drift [2, 9], distribution-dependent drift [51], multiplicative fractional noise [33], Lévy noise
[67], “infinitely regularizing" noises [62], regular noise [58|, generic noises [50] and equations with
reflection or additional perturbation [55].
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IV.1 Introduction

We are interested in the properties of the law of SDEs driven by an R%valued fractional Brownian
motion with a distributional, time-dependent drift:

t
X, = X, +/ b(s, X,)ds + By, te[0,T]. (IV.1.1)
0

We consider drifts b € L([0,T), B5,) with parameters satisfying:

HG(O,%), q€(172]7 1- <B<O (A)

Hq'

87



88 IV. PROPERTIES OF THE DENSITY OF A SOLUTION

Recall that, for time-independent drift b, the above condition on the spatial regularity of b coincides
with the one required for well-posedness of (IV.1.1), given in Chapter II. However, even for b €
L2([0, T ],Bg ), (A) is not asking for more spatial regularity. The choice of condition (A) is due
to the recent work of Galeati and Gerencsér [49] which is extending the well-posedness results in
Chapter II to time-dependent drifts.

Since we obtain both Gaussian tails of the density as well as regularity properties, we briefly
summarize the related literature in the fractional Brownian case.

Gaussian tails. Let us first mention the following related literature for smooth drifts. Besala
et al. [16] obtained Gaussian bounds for additive one-dimensional drifts with H € (0,1) as well as
for multiplicative noise if a Doss-Sussman-type transformation is possible. Also, results in higher
dimensions for H > 1/2 are given. For H > 1/4, Baudoin et al. [14] showed existence of a strictly
positive density together with Gaussian-like bounds, considering the case of multiplicative noise
H > 1/4, interpreting the equation as a rough integral equation.

Li et al. |76] obtained Gaussian upper and lower bounds for the density of the law of (IV.1.1)
under mild conditions on the drift b, while considering additive noise. Namely, the condition for
H > 1/2 is that b € C#(RY) with 8 > 1 — 1/(2H). This seems optimal as it coincides with the
assumption that ensures strong existence and path-by-path uniqueness, see [24]. For H < 1/2, they
ask that b is merely a measurable function with linear growth. The first goal of this chapter is to
obtain Gaussian upper bounds under relaxed assumptions on b when H < 1/2. In that case, we can
hope to have Gaussian bounds under the assumption that b € B (R?) with 8 > 1—1/(2H). We will
not reach such a large class of drifts, but we will obtain Gaussian upper bounds for 8 > 2—1/(2H),
which is more general than what has been obtained in [76], at least for H < 1/4. We believe
the condition 5 > 2 — 1/(2H) is not optimal and the approach we chose with Malliavin calculus
might be responsible for such non-optimality. This gap might be filled using a mix of the density
representation from [76] and the stochastic sewing techniques with singularities that we introduce
in Section 1V.3.2. We plan to investigate this in future research.

Regularity of the density. Olivera and Tudor [85] proved, for any ¢ > 0, existence of a density
of the solution to (IV.1.1) in a Besov space of positive regularity if the drift b is Holder continuous.
In [51] distributional drifts were considered and regularity of the density was proven, while keeping
track of its integrability as ¢ — 0.

Our main contribution in this direction is generalizing the method of [85] to distributional drifts
and improving the regularity of the density observed in [51].

McKean-Vlasov Equations. Due to their connection with interacting particle systems, SDEs
with Brownian noise and distribution-dependent drift have been thoroughly investigated after being
introduced by McKean [81], see for example [53, 107]. These kinds of equations were also recently
considered in a rough path-setting in [12, 22, 30]. The case of distributional drift for fractional
Brownian noise was first considered in [51]. However, following the intuitions built in Section 1.2.6,
for equations with convolutional-type drift the results in [51] can be expected to be improved (for
such a result in the Brownian setting, see [26]). We sketch an argument for existence of a strong
solution to such an equation in Section IV.4.3, making use of our results on the regularity of densities
mentioned in the previous paragraph. The rigorous proof is left to the ongoing work [LAB5|.
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IV.1.1 Notations and definitions

We introduce some notations and definitions, in particular to clarify the interpretation of (IV.1.1)
for distributional drift.

Notations.
e For g € [1,00], let LI([0,T],C°) == Nyen L9([0, T],CF).
e We denote by U(-) a nondecreasing function defined from R, to R, which can change from
line to line.

Definition IV.1.1. Let 8 € Rand p,q € [1,00]. We say that (f™),en converges to fin L9([0,T], Bgo_)

as n — oo if sup,,cy anHL‘[?O’T]BEO < oo and

/ . n __ , =
v < B Hm = Fllp s =0 (IV.1.2)

Lemma IV.1.2. Let f € R, q € [1,00]. For any f € L([0,T], BEO), there exists a sequence (f™)pen,
with f* € LY([0,T],Cp°), such that (f")nen converges to f in the sense of Definition IV.1.1.

Proof. We assume ¢ < oo as ¢ = oo can be proven by similar (easier) arguments. Let f'(-) =
Ly>1,G1fe(-). That f* € L%[0,T],C;°) holds by standard heat kernels estimates, and that

sup,, [|[f"]l,a zs < oo follows directly from Lemma A.1.7(c). Now we check that (IV.1.2) holds
[0, ]
true. Let 5/ < . Using dominated convergence and Lemma A.1.7(b), we obtain that

T

. n_ q _ n_ q

Jim [} f fHL?O,T]Bfé nlggo/o L7 = Fell gt
1

1 T
_ 1 " q . q
= tim ([T Ut [1G i Rl d) o

n

O]

Control functions. We recall two properties that will often be used throughout this chapter.
For g € [1,00), E a Banach space and ¢ € L4([0,T], E), the mapping (s,t) — ||<b||‘zq  is a control
[s,t]

function. If 5, ..., s, are control functions and ay, ..., a, are such that > ;" a; > 1, then I
is also a control function (see e.g. [45, Exercise 1.9]).

Definition of a solution. In this chapter we interpret (IV.1.1) as a nonlinear Young integral
equation. Throughout the chapter, Assumption (A) always holds. Then, by [49, Section 5|, there
is strong existence and pathwise uniqueness to Equation (IV.1.1) interpreted as a nonlinear Young
integral equation. In particular for any approximation sequence b" of the drift b in the sense of
Definition IV.1.1, the corresponding sequence of solutions X™ converges weakly to the unique strong
solution X to (IV.1.1) (see [49, Theorem 3.2]).
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IV.2 Main results

IV.2.1 Existence of a density and Gaussian bound

We start with a result in dimension one that requires one more degree of regularity than for the mere
well-posedness of (IV.1.1) that comes from Assumption (A). As mentioned in the introduction, we
do not claim that this requirement is optimal. In the next results, we will also have existence of a
density but precisely under Assumption (A).

Theorem IV.2.1. Let H < 1/2, §>2—1/(2H) and b € LOO([O,T],BgO(R)). Then the pathwise
unique strong solution to Equation (IV.1.1) with drift b has a density p(t,-) for any t € (0,T] and
there exists C,C > 0 such that, for any t € (0,7,

p(t,x) < Ct H exp{—Ct™ 2 (x — 29)?}, Vz eR. (Iv.2.1)
Moreover, p(t,-) is a-Hélder continuous for any o < 1/2.

Section IV.3 is dedicated to the proof of this result.

In [76], a similar upper bound is obtained, as well as a lower bound. Their result holds in any
dimension but is restricted to functions with linear growth, while here we can deal with distributions
when H is small enough. Based on the decomposition used in the proof, we could also expect a
lower bound, but this is left for future research.

IV.2.2 Results on existence and regularity of the density

The first result below establishes existence and regularity of a density for fixed time ¢t > 0. Then, in
Theorem IV.2.4, the behaviour of the density as ¢ — 0 is investigated by proving certain integrability
in time. In particular, Theorem IV.2.4 can be seen as an extension of [51, Proposition 3.20]. Note
that, in contrast to Theorem IV.2.2, keeping track of the singularity around ¢t = 0, does not allow
to deduce a higher amount of smoothness for regular drift b compared to distributional drift b. The
proofs can be found in Section IV.4.

Theorem IV.2.2. Let be L4 ([O,T], B&(Rd)) with q and B satisfying Assumption (A). Let X be
the pathwise unique strong solution to (IV.1.1) with drift b. Then, for fized t > 0 and
1
1

n<pf-1+ e’
the law of Xy admits a density w.r.t Lebesgue measure that is in B?(Rd).
Remark 1V.2.3. This result is consistent with the literature on drifts in Besov spaces with positive
regularity, see [85, Theorem 1| which gives exactly the same result when 8 > 0 and g = oc.

We now consider the integrability in time of the density, which comes with a lower regularity in
space.

Theorem IV.2.4. Let b € L4 ([O,T],B&(Rd)) with q and [ satisfying Assumption (A). Let X

be the pathwise unique strong solution to (IV.1.1) with drift b. Let A € (0,1] and let ¢ € (1,00],
p € [1,00], B € R which satisfy the condition

1 1 -1 -~ d
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Then there exist constants C,n > 0 such that for any (s,t) € ANAR

d

+H (P-4 S+ HH(BHB—4-A
1£(X.) 5 <C ((t 7O L1y HbHZ?O T]B&)Hb”ziﬁ ﬂBé’o(t — gy Tt » )) 7

[
L, 4

where L(X.) denotes the law of X.. In particular, if ¢ > ﬁ, one can choose A = m € (0,1]
to minimize left-hand side in (IV.2.2). Then one gets the condition

1 1 1 -1 ~ d
Sl (N S - ~Z<o. IvV.2.
max{q'(HHﬁ H>2H} g0 (1v.23)
.. oo~ 1
Then under condition (IV.2.3) and if ¢ > TTHE

L(X) € L7 ([0, 7], B;").
Similarly for ¢ = 1, one can choose \ = m and obtain that

£(X.) € L}([0,T), BY/ ==y,
Remark TV.2.5. Assume that (A) holds, then the following holds true for any & > 0:
| pl/(2H)-d—

e choosing ¢ = oo and p = 1, we have that £(X.) € L, 7B ’

e choosing ¢ = oo and p = oo, we have that £(X.) € L[107T]Bi/(2H)75;

e choosing § =2 and p =1 gives L(X.) € L[207T]Béé(QH)*l/@(HHB))*d*E.

e choosing § = 2 and p = oo gives L(X.) € L[207T]Bi/(ZH)fl/(Q(HHm)*E.

IV.3 Gaussian tails of the density of the solution

IV.3.1 General decomposition of the density

For any H € (0, 1), the fractional Brownian motion has the following Wiener integral representation:
t

B, :/ Ku(t,s)dW,, t>0, (IV.3.1)
0

where the kernel Ky is given by

Vs>t>0, Ky(t,s) =0,
H-1
Vit >s>0, Ky(t,s) =cg {(t(t‘s)) P (H - %)SE_H fst uH_%(u - s)H_% du} ,

and

[ 2HTE/2-H) \?
e = <F(H+ 1T 2H)> . (IV.3.2)
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By a simple change of variable the following inequality holds true for H < 1/2:
IKp(t,s)| < C ((t —s)~G—H) s—<%—H>) . (IV.3.3)

Based on the representation (IV.3.1), it was proven in [83] that a Girsanov transform holds for the
fBm. This transform involves the operator Kﬁl, which is the inverse of the operator with kernel
K defined on L?([0,T]) (see [83] for a definition using fractional operators). For H < 1/2 and any
absolutely continuous function h, Kﬁl reads

st ~3

Ki'h(s) =

\%

)/(s—u)_(HJr%)u%_Hh'(u)du, s> 0. (IV.3.4)
0

ri-H

Let T > 0. Denote by (Q,H,P) the classical Wiener space, that is Q = C([0,T],R), H =
H'([0,T]) the Sobolev space of square integrable functions with square integrable derivatives, and
P the standard Gaussian measure on ). On this space, the Malliavin derivative D of a smooth
random variable F' = f(Wy,,..., W, ), for some smooth function f and times 0 <t < ... <¢, < T,
is the process (DsF)c(o,r) defined by

D = Y00 W W) L (o)
k=1

For p > 1, the domain of D in LP(f2) is the Malliavin-Sobolev space D', For more details we refer
e.g. to [82]. If B has the representation (IV.3.1), then one has

D.B, = Kg(t,s), s,tel0,T].

We first consider the solution X to Equation (IV.1.1) with a smooth drift b € L>°([0, 77, C;°(R)).
We will apply the Girsanov transform to X as established in [83, Theorem 2|: there exists a new
probability measure P under which X; — Xj is an FB-fractional Brownian motion. This measure P
is characterised by its Radon-Nikodym derivative & with respect to P, i.e. & = %‘ 7 given by

t t
& = exp (/ M dW, — ;/ M? ds) , (IV.3.5)
0 0

where

t ~ ¢
Wy =W, + / Ky ( / b(r,zo + By) dr) (s)ds and B;= / Ku(t,s)dW,
0 0 0
are respectively a standard Brownian motion and a fractional Brownian motion under P, and
M, = Ky' </ b(v, zg + Bﬁdv) (t). (IV.3.6)
0

In addition, the Malliavin derivatives of & and M; will be needed: in view of the previous equations,
they read

t t
D&y = & <Msﬂ[0’t](s) + / Dy M., dW, — / M., DM, du> (IV.3.7)
0 0
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and
D M; = Kl}l </0 Ky (v,s)V (v, 20 + Bv) dv) (t). (IV.3.8)

In Eq. (43) of [16], a formula for the density p(¢,x) was given:

p(t,l‘) :pl(t,$) —pz(t,$), (IVSQ)

where for z > x,

- & By
D1 (t’ 1‘) =E []l{xo-i-ét?x} 20 |
( . )) (IV.3.10)
~ D.ft, KH t, . LQ[O,t]
The symmetric case x < xg is obtained by replacing 1 (ot Bi>a) by 1 (wo+Bi<a) in the above expres-

sions.

IV.3.2 Stochastic sewing with a singularity

Before proving the main result of this section, Theorem IV.2.1, we state and prove a couple of
regularising properties of the fractional Brownian motion derived from the stochastic sewing lemma.

Lemma IV.3.1. Letr € [0,T), m € [2,00), n € [m,00] and v € (1—-1/(2H),0). Then there exists
C > 0 such that for any measurable function g defined on [r, T] with |g(-)| < go (T — )~ /2+H) for
some go > 0, any f € L>=([0,T], B%)N L“([O,T},C?(Rd)) and any (s,t) € Ay 11,

Lemma IV.3.2. Let r € [0,T), k € (0,1/2), m € [2,00), n € [m,o0] and v € (—1/(2H),0). Then
there exists C' > 0 such that for any measurable function g defined on [r,T] with |g(-)| < go(-—7)7"
Jor some go > 0, any f € L([0,T], B%) N L>®([0,T],C;°(RY)) and any (s,t) € Ap. 1y,

We only prove Lemma IV.3.1 as Lemma IV.3.2 follows along similar arguments.

ES[

t mi1l/m 1 _
[ asearya]" " < Colflig -0 ava)

/Stg(v)f(v, x + By) dv‘m} l/mH

ES[

<Ol s (- ) (1V.3.12)

Proof. Let 6 > 0. We will show (IV.3.11) for (s,t) € A, 75 with a constant C' on the right-hand
side of (IV.3.11) that does not depend on ¢§. Letting 6 go to zero then gives the statement for
(s,t) € [r,T). Then by continuity the statement also holds for (s,t) € [r,T].

We aim to apply Theorem A.2.1 on the interval [r, T — 0]. Let

¢
Agy =E° [/ g(v) f(v,x 4+ By)dv

A = /tg(v)f(v, x + By)dv.
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Clearly (A.2.1) is fulfilled as E*[§As 4] = 0 for u € [s,].
To verify (A.2.2), after applying Minkowski’s inequality, Lemma I1.5.1(b) and Hoélder’s inequal-
ity, we obtain that for any € € (0,1/2),

t
| Astllon < ‘Es/ g(v)f(v,x + By)dv

Ln

/!g ME® f(v, 2 + By)||ndv
<0 [ =y I (0 - 9

t
<Ol (T =775 [ =)0 )T

<C ”fHLf?ﬂBgo (T —6— t)*%ﬁ(t _ S)1+H(7—1)75
Hence, after choosing e small enough, we have (A.2.2) for ag = 0, 72 = 1/2 — ¢ and 5 = 1/2 +
H(y—1)—&e>0.

Lastly, we verify that (A.2.3) holds. Let I} = {tk} be a sequence of partitions of [r,¢] with
mesh size going to zero. Then, Lemma I1.5.1(c) and Holder s inequality,

HAt Z Atfvtzﬂ

< Z / T =)y D) f (o2 + B,) — B f(v,0 4+ B,)| v

i
< oo+ Z / @ (o — 1) o
: tl.“

e, e

—H) (¢ — )11 — 0.
k—00
Therefore, by Theorem A.2.1, we have that

B[4 = Al ™™l < Asellzn + CllF e, s, (¢ = )2 7O

<Ol fllzes, g (t = )2 707D,

IV.3.3 Proof of the Gaussian upper bound on the density

We now aim to prove Theorem IV.2.1. The proof relies on the decomposition of the density given in
Equations (TV.3.9)-(IV.3.10) and carefully bounding the moments of the terms appearing therein.
The latter is done by the quantification of the regularization effect of fBm for integrals with an
additional time singularity established in Section 1V.3.2 and by borrowing a result on exponential
moments of such integrals without the additional time singularity (see [51, Proposition 3.8]). This
is first done for smooth bounded drifts. As all bounds will be given in terms of the Besov norm of
the drift, it is possible to pass to the limit eventually.
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Lemma IV.3.3. Let 3> 2 —1/(2H). There exists C > 0 and a nondecreasing function ¥ : R —
Ry such that, for B € L>=([0,T], B2, (R)) N L>([0,T],C;°(R)) and for t € (0,T], the unique strong
solution to Equation (IV.1.1) with drift B has a density p(t,-) fulfilling

p(t,x) < ‘l’(H,BHL[OSt]BgO)t*H exp{—Ct 2 (x — x0)?}, VzeR.

Furthermore, p(t,-) is a-Hélder continuous for any o < 1/2.

In order to prove Lemma IV.3.3 and ultimately Theorem IV.2.1 we first state and prove the
following lemma.

Lemma IV.3.4. Let > 1—1/(2H) and 8 € L>([0,T], B%L(R)) N L=([0,T],C°(R)). Then for
any N € N and t € [0,T], there exists a non-decreasing function ¥ : Ry — Ry such that

~ - t 5 N t
E[¢N] :E[exp {N/O M, dW, — 2/0 Mzds}] < W18l 52):

Proof. Assume that 8 < 0. This is no loss of generality after applying a Besov space embedding.
Let ¢t € [0,T]. By the Cauchy-Schwarz inequality, we have that

_ t B t
E{exp{N/O Mdes—];]/O MgdsH
gl@[exp{m/ot/vtsdm—N2/OtM§dsH5E[exp{(N—1)N/0tM§ds}]5. (IV.3.13)

We show that the second factor in the last line above is finite. Hence, Novikov’s condition is
fulfilled so the first factor is equal to 1. We know from [50, Lemma 4.17| that we can bound the
L? norm of a process of the form K[_JIY (such as M) by a Holder norm of Y. In this context, for
1+ HB > B >1/2+ H, this reads precisely as follows:

t . _ 2
/ M§ ds < [/ B(v,xo + By) dv 5
0 0 ¢

(0]

Note that the right-hand side in the above can be chosen to be the seminorm since the function

vanishes at 0. Furthermore, by |51, Proposition 3.8| (using that 8 < 0), the right-hand side has

exponential moments which can be bounded by the quantity V(||B|| ;- g5 )- O
(0,¢] 7

Proof of Lemma IV.3.3. Throughout the proof we assume without loss of generality that 3 —1 < 0
in order to be able to apply the stochastic sewing results from the previous section. We will bound
successively p; and py from (IV.3.10). In this proof, we adopt the notation || - |/;, to denote
the LP(Q,P) norm. By Hoélder’s inequality, Lemma IV.3.4 and using that for z > zq there is
P(zo + By > 2) < exp{—Ct~2 (2 — )%}, we obtain

By
7f2H

OTCEORS [ PR PA 1 PN P

< \IJ(HBHLFOOt]BgO)t_H eXp{_ét_2H($ — 1‘0)2}.
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Now to bound py, let m € (1,2). By Hélder’s inequality, we have

paltz) < Cr2 1 (D&, Kp(t, )2

{zo+Be=a} || 0,4]
< O exp{~Ct=2 (0 — 20)*} (D&, K (1, )> 2]l
It remains to control the last factor in the above expression by Ct¥. By the Cauchy-Schwarz
inequality,
|o& Kt | < |IDgls, | 1K e,
_JH
- 1081 .

using (IV.3.1) to get that
1Kot )2, | = EIB2) = 2.
Choose n > 1 such that 1/n+1/2 = 1/m. From Equation (IV.3.7) and Hélder’s inequality, there is

D¢l 2 Mm\@h&thmoh

[0,]

» HL2
L2

t
oo+ W Mo D6 )
0,4] L 0 L[o,t] L

=1 [|&ll g (S1 + S2 + S3). (IV.3.14)

Applying Lemma IV.3.4, we have that [|§[[z, < Y([|B];~ z5)-
[0,¢]7°°
We will bound S1, Se and Ss separately. First, from (IV.3.4), Lemma IV.3.1 and a Besov space

embedding,
HK; (/Oﬁ(s,xo + Bs)ds> )

c(/ot

< O\ HH(B-2)

2
Lo || 72

-

N

2 2
du)
L2

/ H-3 g3 —Hy, s)*(l+H),8(s zo + Bs)ds
0

HBHL‘[’at]Bng

< Ctl-i—H(,B—Q)

As for Sy, we get from Minkowski’s integral inequality and Itd’s isometry that

VAN
ﬁ
O\;‘_

&=h

T

=

¥

N
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3
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/AN
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While bounding Sy, we will prove that for any p € [2,00) and any r < u, there is
IDeMullzp < ClIB | oo po—1 ((u — )3 4 M%—H)) (u — )2 TH(B=2), (IV.3.15)
[0,u] 7>

We do the proof for p = 2, but it works the same for any p. From (IV.3.8), we get

Sgg/ot/ou]ﬁ <KH1 (A'KH(U,T>3'(v,xO+Bv)dU> (u)>2
:/Ot/ouzﬁz[(/TUUH—%%—H(U—v)—<H+§>KH(u,r)g'(v,;nO+Bv)dv>2] drdu.  (IV.3.16)

Recall from (IV.3.3) that Ky (v,7) = Kg1(v,7) + Kga(v,r) with |[Kg1(v,7)| < (v —r)~(1/27H)
and | K o(v,r)| < r~(/27H) Decompose the expectation in (IV.3.16) as follows:

drdu

H/ “apz H (g — o) D Ky (0, 7) ﬁ/(”’xo—i_BU)dv‘ L?

Pt H(y - ) T Ky (v,7) B' (v, 20 + By) deiQ

+H/ “hodH o) D Ky (0,7) B (0,0 + By do|
=11+ I+ I3.
For I} we apply Lemma IV.3.1 with s = (u+7)/2, t = T = u and g(v) = (v/u)"/?>~H(u
0)"HHY2 K (v, 7). Since g(v) < (u—v)~HAY2) (y — ¢)=0/2=H) when v € ((u +7)/2,u), we get

for go = (u — r)~(/2=H) that

L < CHﬁ/HLf&]ngl (u— T)H(/B_l).

For Iy we apply Lemma IV.3.2 with s = r, t = (u+1r)/2, Kk = 1/2 — H and the same g¢. Since
g() < (u—r)~HH/2) (y — )= A2=H) when v € (r, (u+7)/2), we get for go = (u — )~ H+1/2) that

-[2 < CH/B/HLOO g1 (u _ T)H(ﬂfl)‘
[0,u] =
As for I3, we have similarly by applying Lemma IV.3.1 that

1 1 _
I3 < CHﬂ,HL[OSJ ]Bgo—l 7’_(2 H) (u — T)2+H(B 2).

Hence

[t e o) Ry (0,1) B 00+ B o]

< CHﬁ/HLnggl ((u — r)H_% + T—(%—m) (u — T)%+H(ﬁ_2)7
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which proves (IV.3.15). Plugging this back into (IV.3.16), we obtain by Lemma A.1.6 that
Sy < CHHHEV G| o poa
[0,1]

H(B—
gCtlJr (8 1)||IBHL‘[>O°t]B§o

Now for S5, we proceed with an argument similar to what was done for S7 and S. First, recall
(IV.3.14) and (IV.3.6), and apply the Cauchy-Schwarz inequality to get that

S5 < (/075/\/11’4‘@11)é </Ot(D./\/lu)2du)é
L2
K </0ﬁ(v,xo + Bv)dv> ) (/Ot(D.Mu)Zdu>é

Applying the Cauchy-Schwarz inequality again and Minkowski’s integral inequality, it comes

ol (s arn)ol |, |(f frosuran)

By (IV.3.4) and Lemma IV.3.1 (as in bounding 5;),

i ([ )

By Minkowski’s integral inequality and (IV.3.15), we have

// (DM, drdu)* | <// M) drdu>é l

2
<Clp HLOOBB ! </ / A=) (I_QH)(U — T)IHHW_Q) drdu)

1+H(B—1)
X CHB HLF(?,t]BgO_l 3 .

2
L[0

N

L2
[0,] L[QO,t] 2

[~/4 Z4

1+H(B
<Ot HBHLOO Bﬁ

T4 2
LAHILY, 4

Hence

s SO, g 200D <CYBIS gy 242100

where we used Lemma A.1.6 in the final inequality. O

Proof of Theorem IV.2.1. Let (b")nen be a sequence of functions in L°°([0,T7,C;°) converging to
b in L>([0,T],B5). By stability (see [49, Theorem 3.2]), we know that the strong solution X"
to (IV.1.1) with drift b” converges in law to the unique strong solution X to (IV.1.1) with drift b.
We know from Lemma IV.3.3 that (IV.2.1) holds for the density p"(¢,-) corresponding to X", with
constants that can be chosen independently of n.
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We aim to apply the Arzeld-Ascoli Theorem, which will give that along some subsequence,
(p")nen converges uniformly on compacts to some function p. We know by Lemma IV.3.3 that
(p")nen is uniformly bounded. Next we check that (p™),en is uniformly globally Hélder continuous
and therefore uniformly equicontinuous. W.lLo.g. let xg < Z < z (the case of arbitrary z, z follows
by similar arguments). Let m € (1,2). Then for all n € N we have by the same arguments as in the
proof of Lemma IV.3.3 that

p"(t, ) — p"(t,2)| < |pT(t, ) — py' (¢, T)| + |py(t, ) — p5 (¢, T)]

~ & By - (D&, K (t, )20y
S E |\ Yarbreon o || T|B | Moot Becls) 120
SCU(B"| pooye )t P(By € [7,2))/™
< CU(|Bl| g )t~ H 0 — M (IV.3.17)

Hence by Arzela-Ascoli, we have uniform convergence on compacts along some subsequence
of (p")nen. For notational simplicity we do not relabel the subsequence. In particular (p™),en
converges pointwise to some p, which fulfills the Gaussian bound (IV.2.1). Hence we can apply the
dominated convergence theorem and obtain, for any f € Cy(R), that

/an(ta x)f(x)de — [ p(t,x)f(x)dx.

n—oo R

By the weak convergence of (X[")nen to Xy, we can identify p(¢,-) as the density of X;. As p(t,-)
is the pointwise limit of a sequence of functions fulfilling (IV.2.1), with a uniform constant on the
right-hand side, p(t,-) fulfills (IV.2.1) as well. Also it is a-Holder continuous for any a < 1/2 by
(IV.3.17) after choosing m € (1,2) close to 2. O

IV.4 Existence of density for the solution of the SDE
and its Besov regularity

In this section we prove that under Assumption (A), any strong solution X to (IV.1.1) has a density
which lies in a Besov space with positive regularity (Theorem IV.2.2) and track its integrability in
time (Theorem IV.2.4).

IV.4.1 Existence of density and its regularity at fixed time t > 0

The proof of Theorem IV.2.2 mainly relies on Romito’s Lemma that we recall below in Lemma IV.4.2
(for a proof see [98, Lemma A.1]). It gives a condition on a random variable that allows to deduce
existence of a density with a certain regularity. To formulate Lemma IV.4.2, we need the following
definition.

Definition IV.4.1. Let h € R? and f: R? — R. We define Al f: R? - R by
(ALHC) = f(-+h) = f()
Iteratively we define AP f: R? — R for n € N* by
(ARNE) = (ahag )0 = S0 (1) 1+ )

J=0
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Lemma IV.4.2 (Romito’s Lemma [98]). Let Z be an R%-valued random variable. Assume there
exist 5,6,C > 0 and an integer m > 1 with § < s < m such that, for every ¢ € C°(R?) and h € R?
with |h| < 1,

[E1876(2)])| < ClRl I8 es.

Then Z has a density f w.r.t. Lebesque measure and there exists a constant C > 0 independent of
Z such that || f|| zs—s < C(1 + C).
1

We aim to apply Lemma IV.4.2 to X;, but to get a nice upper bound, we introduce an approx-
imation scheme Y* as follows. Let ¢ € (0,7]. For € > 0, consider the following process defined on

[0, ¢]:
ve {X for s <t —e¢,,
’ X(t—eyvo + Bs — B(g—eyvo for s > (t —¢) V0.
In order to apply Lemma IV.4.2, we look at the following quantity:
E[ARS(X0)] = E[ARS(YY)] + (E[AR (X)) - EAT'¢(YY)]) = E1 + Ea. (IV.4.1)

The idea is to choose € depending on h in an optimal way, so that E; 4+ E5 is minimized. The
scheme of the proof of the following lemma is similar to [85, Proposition 1], but we will additionally
make use of regularising properties of the fBm, due to stochastic sewing.

Lemma IV.4.3. Let 8 € L1([0,T], B2, (R)) N LA([0,T1,Cp°(R)) with parameters fulfilling (A). Let
X be the strong solution to (IV.1.1) with drift 3. Let § € (0,1], m € N*, h € R? with |h| < 1 and
¢ € CO(RY). Then, we have for any € > 0 that

h m 1
IO < CHBl oo ol (i )+ ol )@

where we recall that ¥ : Ry — R denotes some non-decreasing function.

Proof. We use (IV.4.1) and bound E; and E, separately.

Bounding F;. Note that, by (IV.3.1),

Yy = X—epvo + Bt — B—e)vo
t

(t—e)VvOo
_X(t—E)VO+/ (KH(t,S)—KH((t—g)VO,S))dWS+/( ) KH(t,S)dWS
0 t—e)VO0

= Z; 1 I},

where Z; = X(;_oyvo + fo(tfg)vo(KH(t, s) = Kg((t—¢)V0,s))dW; is F;_.)-measurable and I} is
Gaussian and independent of F(;_.),o. By the tower property we have that

By = E[A]6(Z; + )
= B[ECV(ARG(Z + I7)]

{ / ATG(ZE + ) g (tEWOYt(x)da:}

[ (75 + ) A 2 mwy

(t—e)VO,t
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where ¢ is the Gaussian density with variance 0(2 = Var(I;). Hence

t—e)VO,t
0] < 10l A%h005_ oy

As in [98] (see two lines after Equation (2.7)),

m
I
m
HA*th(Qt—e)vo,t”Ll(Rd) <0 ( Var([f) )
Now observe that Var(I7) = E ’Bt — E¢=oV0[By] ’2 and by the local nondeterminism property of the

fBm (see [89, Lemma, 7.1]), there exists C > 0 such that Var(If) = C (t — (t — ) v 0)* = C(tre)2H.
Hence

m Bl ™
HA_th?tfs)\/O,tHLI(Rd) <C <(t A S)H :

Bounding F>. By the Hélder regularity of ¢, we have for n > 2,

n} E/n'

t
Bal < Cllolesk 1~ YEF] < Clolel]| [ Al X du
0V (t—e)

Now apply [49, Lemma 2.4] (which is possible since 3 is smooth in the space variable) to get

Bal < CUBI 5, g liblles (2 A )/,

We now proceed with the proof of Theorem 1V.2.2.

Proof of Theorem IV.2.2. Let b € L9([0,T],C?). Let (b")nen be a sequence converging to b in
L9(]0,T],C5~) such that b™ € LI([0,T],C>®) for all n € N. For n € N, let X™ be the strong solution
to (IV.1.1) with drift b". By the stability estimate [49, Theorem 3.2] we know that X converges
weakly to the unique strong solution to (IV.1.1). Denote ( = 1/¢'+ Hf. Let h be such that |h| < 1,
then by Lemma IV.4.3, we obtain

B EIARG(X)]| = 1] lim [E[ARG(X)]

-5 6¢ ‘h|m_8
<O+ Wbl gy, )6l (rh\ (tAe) +(W)Hm)
<CU+U(bllse eo)llles (1rI-oe 4 I 1A

jo.11¢ (tA1)Hm — gHm

Choosing ¢ = ]h!5<+mmH, we get

|h’m—5

méC___
B IEIAT(XT))] < Clles (W“’”H Taan

2
+ yh\m%) .
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To apply Lemma 1V.4.2, we want the exponents in the right-hand side of the previous inequality to

be nonnegative, hence it suffices to impose s < ECT;CLH. As we want to maximize s — d to obtain the

best regularity for the law of Xy, this comes to finding the supremum of the function g defined by

5
g(m,d) = 5{?—52]—[ — 4.

Letting m — oo in the above and choosing § = 1 yields that we can have s — § positive and close
to 8 —1+1/(Hq). O

IV.4.2 Joint time integrability and space regularity of the density

In this section, we prove Theorem 1V.2.4 via a duality argument. We first prove the following lemma
via stochastic sewing formulated with controls (see Lemma A.2.3).

Lemma IV.4.4. Assume (A) holds. Let X € (0,1] and let § € (1,00], p € [1,00], B € R which
satisfy condition (IV.2.2). Then there exist constants C,n > 0 such that for the unique strong

solution X to (IV.1.1), any f € Lq([O,T],Bg) N LI([0,T),C°(RY)) and any (s,t) € Ajo15

| [ s 5],

1 2_d A 1 2_d
”fHLf‘s,z]BS <( ) 1+ HLFO,T]Bé’o)H HLﬁM]BgO( )
Proof. Let K = X — B. For (u,v) € A7y, let

Ayy = / f(r, Ky, + B,)dr.

In order to verify the conditions from Lemma A.2.3, we will show that:
(a)

u)%"!‘H(B—%)‘

[Awollm S N (v—

i g?

[u,v] P

(b) For some > 0 and all £ € [u, ],

A S HH(B—5-A A1/q/+H
HEuéAuvfw”L’” 5 (1 i HbHZ? ]BB )HbHL([Z ]Bﬁ ”fHL‘i B3 (U - u)q 5 )(U - U) (/d+ ﬁ)-
0,7~ 0]l 7]

(w0155

(c) for any v € [0,T], the convergence in probability of e Aepen, | to Jo f(r,X,)dr along
any sequence of partitions |II"| of [0,v] with mesh going to 0.

In the above, (a) implies that condition (A.2.7) is fulfilled: Indeed, if ¢ < 2, ”fHLq g 1S @

[u,0] 7P

control function to the power 1/¢ which is greater than 1/2, and 1/¢§ + H(8 — d/p) > 0 (using
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B—d/p>—1/(HF)). Now if ¢ > 2, we have that ||f||Lq & (v — u)"/?2=1 is a control function to

[w,v]®p
the power 1/2, and there remains (v —u)"/4- 12+ +HB=d/D)  with 1/G—1/2+1/§ +H(B—d/p) =
1/2+ H(B —d/p) > 0 (using B — d/p > —1/2H).

As for (b), it gives condition (A.2.8): Indeed, first note that by (IV.2.2) and (A) the power of
(v — u) is strictly positive. Also, given the properties of control functions recalled at the beginning
of this chapter, we have that the right-hand side of the equation in (b) is a control function if

- d
THAH(G =5 =)+ M5 > 1,

which is fulfilled as by assumption

B8 — A1 == —=7). (IV.4.2)

Hence given that (a), (b) and (c) are satisfied, the result follows after applying Lemma A.2.3.

Proof of (a). Lemma IV.A.1 for S = u directly gives (a) (note that the constant therein is
independent of 5).

Proof of (b). Denoting f(r, ) = f(r, Ku+-)— f(r, K¢+-), Lemma TL5.1(b) gives for any A € (0, 1]
that

B Aweullin < [ B [EU G Kt B — s Kt B ar

v B s
< [ 1B 1Lyl (e — 5 i
3 P
Hence, we obtain using Lemma A.1.8(b) that

JE"6 A gl < I Ke — Kol /5 (r — &) E=N) | f(r, )| s
p

To apply Holder’s inequality in the last upper bound, we need ¢H (5 — d/p — A) > —1, which is
implied by our assumption (IV.2.2). Hence by Holder’s inequality,
L+H(B—-2-N)

IE*5Augollin S 1y oo =)
w,v]T P

|| Ke — Ky ] | Lm. (IV.4.3)

Now by [49, Lemma 2.4], there exist constants C,n > 0 such that for all (s,¢) € [0,T7,

Kl om < C(1+ HbH s Wolzg ma (= s)M/IHHP, (IV.4.4)
B
Combining this with Jensen’s inequality and (IV.4.3), we get

IE“5 Ay .ol

~

A L+HB-2-) N1/q+H
S e ey Ey P CRnL =50 — VT H),
0,7~ u,v] T u,v]" P
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Using Lemma I1.5.1(c) and (IV.4.4), we get that there exists 6 > 0 and a control

Proof of (c). i
s such that for any sequence of partitions II" = {¢!'}; of [0, v] with mesh going to zero

t’ln-‘rl
< Z/ \f(r Ky + By) — f(r. Kun + B,)||padr
— Jt,

t’i”—‘—l
< [ el K lnr
i YU

< Z Iz, Ky, — Ko llom
. 1 771+1

Xlwhwm (#yy — £V 8

< \H"P (0,0) — 0.

n—o0

Lm

||/0 f(?“, Xr)d’l" - ZAt;L’t;EH

O]

Proof of Theorem IV.2.4. Let r € (1,00) and (u,v) € Ajg ). Denote by Sq(ﬂ), the set of functions

f € Li([u,v],Cs°) such that ||f|| 5¢ < 1. Then applying a Besov embedding (see Remark A.1.5)
[u v p,r

first and then Lemma IV.4.4, we obt;in

[ tteeis] <o s | [

f S(oo)

C’sup H/st ds

(<><>)

sup
rest)

LTYL
A4l +H(B+6—~—A)>

- +H
<o<w—u>+<ﬁpﬂwl+mn[] ey (0= w7
0,T

As Schwartz functions are dense in Bp ., it is sufficient to take the supremum over f € Li([u,v],C®),
By [25, Corollary 2] we know that (L9([u,v], g )=

s
to conclude t~hat L(X.) € Lq([u,v],B@T) .
) as the latter is separable. Hence we get that

L9 ([u, v], B;fn/

/+H
£y s <C (0= 07O i,
w,v] 25! !
Using the embedding from Remark A.1.5, this gives the same upper bound for ||£(X.

Finally, under the assumption that ¢ > ﬁ, we minimize the left-hand side of (IV.2.2) over

)HbH Bl’ (U - u) /+ +H(/3+,3———)\)> )

[u v] 7!

all A € (0, 1] and get the condition (IV.2.3) by choosing

1
/\—m@(o,l]
]
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IV.4.3 Some words on the McKean-Vlasov Equation

Following the intuitions built in Section 1.2.6 an important motivation to study the regularity of
Equation (IV.1.1) is to improve on existence and uniqueness results to the McKean-Vlasov equation,
for any initial distribution X,

t

Xt:X0+/ b*/Ls(XS)dS+Bt
0

,U,tzﬁ(Xt), t>0.

(IV.4.5)

The benchmark result (for H < 1/2) is that well-posedness holds for b € B2, with 8 > 1 — 1/(2H)
(see |51], [49, Theorem 7.4]). In the following, we sketch an argument how Theorem IV.2.4 could
be used to get existence of a strong solution to (IV.4.5) for distributions b € BS, with

B>2—1/H (IV.4.6)

and therefore with less regularity than the current state of the art theory allows for. The argument
given below is done for a small time interval, however by an iteration argument this can be extended
to any interval [0, 7. Also, via a bootstrap argument, condition (IV.4.6) can be improved. We leave
the detailed arguments to the work in progress [LA5|. In particular, the arguments actually work
for b € Bg for p arbitrarily large but finite, instead of Bgo, however we also disregard this subtlety
here.

Let (b,,)nen be a sequence of smooth functions that converges to b in Bgo_. By the standard
theory of McKean-Vlasov equations, the equation

t

X;L:X0+/ by, * u(X,) ds + By
0

pi = LX), £ >0,

has a pathwise unique, strong solution for any n € N. Denote " = b,, * u™. Since for any ¢ € [0, 7],
p™ is a probability measure and || - || po is uniformly bounded among all probability measures, we
have u™ € L>=([0,T], B}). Hence using that b,, is smooth, we get by a convolution inequality and a
Besov embedding that b” € L>°([0,T], BY,), for any k > 0. Thus b" satisfies Assumption (A).

Let ¢t > 0 be small. Applying Theorem IV.2.4 (apart from the subtlety of the additional power

of ||bll ;.58 ) With a < ﬁ —1,8=—a,p=o00,¢=2and A =1, and some £1,e2 > 0, we get
n €1 €9 n
I3, 55, < OO + 2o i 1y gane) (v.a7)
< O + 200l 1", o) (IV.4.8)

where we used Young’s inequality for Besov spaces in the second step (see [69, Theorem 2.2]).

Hence, after choosing ¢ small enough we can uniformly bound ||u"| 2

[o,t]Bil ’

Again by Young’s inequality for Besov spaces, there is

b" . S |6 " o« S8 b < 00. Iv.4.9
6% 5 v S 0l 71, 5, S 5P o < o0 (1V.4.9)

Hence,
sup [[b" | ;2 gara < 00 (IV.4.10)
neN [0,¢)7e°
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Observe that the conditions on o and § from (IV.4.6) imply that o can be chosen large enough
such that 8+« > 1 —1/(2H), hence the drifts b" satisfy “uniformly in n” Assumption (A). Now
apply Lemma IV.4.4 to X, f =b", B = B4+a, p = +00, A = 1 and § = 2. It follows, using
(IV.4.10), that there exists 7 > 0 such that for any n € N and any (u,v) € Ajg g,

Thus by Kolmogorov’s tightness criterion, (X"),en is tight in Cpg .

/ b" (r, X7') dr

< Csup [|b" ||L2 Bﬂ+a(1 + ||b"HL2 Bﬂ+a) (v—u)" < o0
Lm neN 0,t] 0,t]

We now aim at the identification of the limit points of (X™),en and (p")nen. Up to taking a
subsequence, we get that (1" )nen converges weakly in the space of probability measures on Cp 4 to
some probability measure p>°. It follows from [51, Corollary A.5| (up to minor modification of the
space) that for any u € [0,t], b * ! converges to b uS° in BY,. Then, after uniformly bounding
16 % u™ — b * p ||L2 B by similar arguments as in (IV.4.10), we get after an interpolation of

Besov spaces that, for any € > 0,
n _ 00
Hb * W b * U ||L[20’t]8é30+a75 njo 0.
On the other hand, we also have by (IV.4.7) and Remark A.1.5 that

T P L e 1 (1V.4.11)

0,05

< Clb, — b||8é3075 njo 0.
Then it follows that

[[brxp™ — b MOOHL? 35“"*5

< b " —b*u HLz B e+ (b p™ — b p™ s pgreme =2, 0

In particular 5% = b % > € L2([0,t], B% ™) for any > 0. Therefore it fulfills condition (A) and
we know from [49] that there exists a pathwise unique strong solution X with drift 5>°. Then by
the stability estimate [49, Theorem 3.2|, putting the same noise on the same probability space, X"
converges to X in Lm(Q;C[OJ]). Since p™ converges weakly to u®°, we get in particular that p>
must coincide with the law of X. Hence X is a strong solution to (IV.4.5).

IV.A Another regularising property of fBm

Below we state and prove a lemma, similar to Lemma I1.B.1, however allowing for time dependence.
The proof is based on stochastic sewing phrased with control functions, i.e. Lemma A.2.3.
Lemma IV.A.1. Let g € (1,00], m € [2,00), p € [1,00] and v — d/p € (57 V T;I,O) Then there
exists a constant C' > 0 such that for any deterministic times 0 < S < T, any fz of the form
f=(t,) = f(t,- + ), for f € LY([0,T],Bpy) N LI([0,T],C') and an Fs-measurable random variable

T

/ f=(r, B,)dr
S

—
—

< Cfllug, 5y (T = SO, (IV.A.1)

Lm
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Proof. We aim to apply Lemma A.2.3. For S < s <t < T, define

Ay = /St fE(Ta Br)dr and As,t =FE° |:/t fE(Tv BT)dT:| .

As E®[0 A, ¢] = 0, condition (A.2.8) trivially holds.
Using Minkowski’s integral inequality and Lemma I1.5.1(b), we get that

L'm

WE&W&W

| Asillim = |
t
< [ 1= 5B D)o
t ~
<€ [ 1l (7 = 570~
<C ||f(r7 )HL‘[I 1B (t— 5)1/‘1/+H(7—d/p)'

Note that the power of (t — s) is positive as v —d/p > —1/(¢'H). Also the above is a control raised
to a power greater than 1/2 as v —d/p > —1/(2H). Therefore condition (A.2.7) is fulfilled.
Let t € [S,T]. Let (Ilx)ken be a sequence of partitions of [S,¢] with mesh size converging to

zero. For each k, denote 11, = {tf}fvz"l By Lemma 11.5.1(c), we obtain
tf+1 tk
1A= 3 Al < 3 [ 1A B) = B Bl
K3 1 2
<Ol o Ml — 0.

Now the result follows by applying Lemma A.2.3.
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The rest of the thesis solely focuses on the case of Brownian noise. Hence, in order to avoid
confusion, we hereon denote the noise by W instead of B. The equation under consideration is
similar to the ones of the previous sections, however drifts are singular functions and no longer
distributions. In this chapter, that is based on [LLA3|, path-by-path uniqueness is established as well
as a fine property of the flow generated by such equations.

V.1 Introduction

For a measurable time-dependent vector field b : [0,7] x R? — R, d > 1, and a measurable driving
signal v : [0,T] — R? with vy = 0, we consider the deterministic ordinary integral equation (ODE)

t
Ye = Yo —I—/ b(r,yy)dr + v, te€0,T]. (V.1.1)
0

Here, T' > 0 is a finite time horizon which is fixed but arbitrary. Because b is only measurable, a
solution (y¢).e(o,7), if it exists, should be measurable and satisfy the integrability condition

T
| btrldr < o (V.1.2)
0

which ensures that the integral in (V.1.1) is well-defined in Lebesgue sense. For such solution, it is
immediate that y — ~ is continuous.

109
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When 7 is sampled from a stochastic process W on a stochastic basis (2, F,P), equation (V.1.1)
transforms into the stochastic differential equation (SDE)

t
E:%+/M&m$+W@t€Mﬂ. (V.1.3)
0

A solution Y : Q x [0,T] — R? to (V.1.3) is a stochastic process such that for a.s. w, (Ye(w))eelo,m)
is a solution to (V.1.1) with W(w) in place of ~.

We recall that it is now well-understood that the addition of fast oscillating driving signals v, W
can make both (V.1.1) and (V.1.3) well-posed for very irregular vector fields b with references given
in previous chapters. However, let us mention again the following benchmark result by Krylov and
Rockner [68], establishing existence of a pathwise unique adapted solution to (V.1.3), for b fulfilling

T 1
(/ (/ |b(r, x)|pda:)%dr>q <oo, (p,q) €T = {(p,q) € (2,00)%: 2+£i < 1}. (V.1.4)
0 R4 q D
This condition is also known as the sub-critical Ladyzhenskaya—Prodi-Serrin (LPS) condition in
fluid dynamics, see more in [15, 40)].
A typical result of recent articles on regularization by noise is that when ~ is a sample path of
an irregular stochastic process (such as fractional Brownian motion), then for almost every such
sample path, ODE (V.1.1) has a unique solution, i.e. path-by-path uniqueness holds. As mentioned

in Section 1.2.3, having pathwise uniqueness for (V.1.3) does not provide uniqueness for the W(w)-
driven ODE

t
n:%+/Mm@M+MWLtGMH, (V.1.5)
0

for a given w. In fact, examples of SDEs driven by Brownian motion which have pathwise uniqueness
but not path-by-path uniqueness are given in [103, LA1]. We point to Chapter VI and Section V.B
for further discussions on the related concepts.

The main goal of the current chapter is the following result, which will be stated more precisely
later in Theorems V.2.2, V.2.4 and V.2.5.

Theorem. Assuming that W is a standard Brownian motion, then path-by-path uniqueness, path-
by-path stability and strong completeness for (V.1.3) hold under the Krylov—Rdéckner condition
(V.1.4).

By path-by-path stability, we mean that for a sequence of functions (b™) converging sufficiently
fast to b in a suitable topology, there exists an event of full probability which depends only on (b")
and T such that for every w in such event, for every = € R%, the solution Y” to the ODE

t
V'==z —i—/ b (r, Y, )dr + Wi(w), t€]0,T]
0

converges uniformly to the unique solution to (V.1.5) with initial condition Yy = x. This is stronger
than standard stability results because the event of full probability measure only depends on (b™).
Usually, for each n, we have to choose Y™ to be the pathwise unique strong solution and the set
of full measure on which convergence holds depends on the choice of Y (respectively the set of w
for which it fulfills the equation). Additionally, with this procedure the event of full measure would
also depend on the choice of the initial condition.
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Strong completeness refers to the property that for almost all trajectories of the Brownian
motion, the equation can be solved globally regardless of the initial data. Strong completeness is a
rather demanding property and may fail even for SDEs with bounded smooth (but with unbounded
derivatives) coefficients, with examples given by Li and Scheutzow in [77]. Strong completeness for
SDEs driven by Brownian motion with standard regularity conditions are considered in [75, 100].
Alternatively, when the SDE under consideration can be lifted to a rough differential equation which
has unique global solution, then it is strongly complete, see [97]. The SDE (V.1.3) under condition
(V.1.4) falls outside of the standard Ito6 framework and Lyons’ rough path theory. Hence, our result
provides the first example of strongly complete singular SDEs driven by Brownian motion.

To the best of our knowledge, path-by-path stability is a new concept, and path-by-path unique-
ness under (V.1.4) has not been established in the literature although there were some open discus-
sions and attempts on the problem in [41, 101]. [34, 101] shows path-by-path uniqueness for SDEs
with bounded drifts. For equations driven by general fractional noise with distributional drifts, this
kind of result is shown in [24, 49, 62|, by reformulating the original equation into the framework of
nonlinear Young differential equations. In this framework, proofs are considerably simpler, however,
the assumed regularity conditions on the drifts in the aforementioned works exclude the Krylov—
Rockner condition (V.1.4). Although the solutions of nonlinear Young differential equations are
apparently different from solutions of ordinary differential equations, it follows from our analysis
that solutions of (V.1.5) can also be interpreted in nonlinear Young sense, see Remark V.4.5.

Our approach is closer to that of [34] taking into account the insights from [24, 49, 101]| and the
quantitative John-Nirenberg inequality recently obtained in [71]|. Davie [34] delivers all arguments
from first principles, which unfortunately increases the level of technicality. His proof consists of
two main parts; one is the regularizing estimates for averaging operators along Brownian motion
(|34, The basic estimate, Proposition 2.1]) and the other is the uniqueness argument. Catellier and
Gubinelli in [24] reformulate and extend Davie’s approach in the framework of nonlinear Young
integration, leading to path-by-path uniqueness for a large class of fractional SDEs. Although more
general, results in [24] do not reproduce Davie’s result due to several technical reasons. Shaposhnikov
in [101] gives a simpler justification for Davie’s uniqueness arguments, calling out the importance
of the flow generated by (V.1.3). Galeati and Gerencsér in [49] adopt this argument in combination
with estimates for nonlinear Young integrals. It is known that [101] contains several technical issues
some of which were corrected in [102]|. Herein, we discover and justify another one which was not
addressed in [101, 102], see Remark V.5.3.

As for our strategy, we apply John—Nirenberg inequality to show Davie estimates under (V.1.4)
(see Proposition V.3.1). The John-Nirenberg inequality effectively reduces estimating all positive
moments to estimating only the second moment. This shortens existing arguments and improves
known results from [34, 95]. Building upon Davie estimates, we use nonlinear Young integration to
obtain a key regularizing estimate for averaging operators along Brownian motion (Lemma V.4.3).
This allows us to show that equation (V.1.3) generates a random continuous semiflow and obtain
a priori estimates for any solution to (V.1.5) (Propositions V.5.1 and V.5.2). Applying these a
priori estimates and the regularity of the semiflow generated by (V.1.3), we are able to identify any
solution with the semiflow, see proof of Theorem V.2.2 in Section V.5. Although using similar tools
as [24, 49, 101], our proofs are logically different from the aforementioned articles. Additionally,
our arguments are generic and are not strictly tied to Brownian motion, as long as the random
semiflow generated by the SDE (V.1.3) and the averaging operators along the driving signal W are
sufficiently regular. This leads to a new uniqueness criterion for ODEs of the form (V.1.1), which
does not require any regularity on the vector field, but instead relies on the regularizing effect of
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the driving signal 7. These results are summarized in Section V.A.

Structure of the chapter. Main results are stated in Section V.2. In Section V.3, we show
Davie estimates under (V.1.4). In Section V.4, we show some path-by-path regularizing estimates,
which are consequences of Davie estimates and the sewing lemma. The proof of the main results are
presented in Section V.5. In Section V.A, we summarize a uniqueness criterion for (V.1.1) which is
based on the regularization effect of the driving signal. In Section V.B, we give a relation between
“path-by-path” uniqueness and adaptedness of solutions.

V.2 Main results

A semiflow generated by the ODE (V.1.1) over the period [0, 7] is a measurable map (s, t,z) — ¢;*
defined on A[O’T} x R? such that for every 0 <s<u<t<Tandzxé€ Rd,

T t s,z
/ b(r, %) |dr < oo, ¢ =ax+ / b(r, % )dr + v —vs and  ¢)" = ;W” )
S S

We say that ¢ is locally k-Hélder continuous if for every compact set K C R?, there exists a finite
constant C' = C(x, K, T) such that for every z,y € K and (s,t) € Ap 7y,

|67 = ¢1%| < Clz —y|"

Proposition V.2.1 (Random Hélder semiflow). Under (V.1.4), there exists an almost surely locally
k-Holder continuous semiflow to (V.1.3) for every k € (0,1). In other words, there exists a jointly
measurable map (s, t,z,w) — X;*(w) defined on Ag ) x RY x Q such that for a.s. w, (s,t,x) —
X7 (w) is a locally k-Hélder continuous semiflow to (V.1.5) for every k € (0,1).

The semiflow (X;*) is constructed by taking the continuous extension of the family of strong
solutions over the dyadics. Hence, it inherits other properties and as such, it is adapted and is
a flow of homeomorphisms. However, we will not use these properties. Proposition V.2.1 thus
improves upon [39, Theorem 1.2] by showing joint continuity in all parameters and allowing the set
of full measure on which the flow solves the equation to be uniform with respect to the initial data.
Because b is not continuous, showing that the continuous extension X forms a family of solutions
to (V.1.3) is actually a major obstacle. This is overcome thanks to the path-by-path regularizing
estimates obtained by sewing techniques and Dayvie estimates, see Lemma V.4.3 and Corollary V.4.4.
These arguments can be applied for other situations and it is expected that the conclusions of
Proposition V.2.1 hold for SDEs with bounded measurable drifts, more details are discussed in
Remark V.5.3. Furthermore, it follows from our arguments that a solution to (V.1.5) is also a
nounlinear Young solution and a regularized solution, see Remark V.4.5 for further details.

Theorem V.2.2 (Path-by-path uniqueness). There exists an event Qp € F which depends only
on b,T and has full probability measure such that for every w € Oy, any solution Y to (V.1.5) is
identical to X%Y0(w). As a consequence, path-by-path uniqueness for Equation (V.1.3) holds.

Remark V.2.3. The dependence on T' can easily be removed by considering the event N3, 7.
The dependence on b seems necessary. When an initial datum is specified so that Yy = £ for some
£ € R%, the set .7 is independent from . In addition, if £ is a random variable which is not
necessary Jp-measurable, Theorem V.2.2 implies uniqueness among non-adapted solutions.

The event (), 7 essentially contains w such that
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(i) the semiflow X;*(w) is almost Lipschitz in z,

(ii) the averaging operators

(1) > /0 b(r, Wi (w) + 2)dr, /0 1b](r, Wi (w) + )dr

are jointly locally H6lder continuous with exponent (a, 1 — €) for some a > 0 and some ¢ > 0
sufficiently small.

These properties are rather generic and available not only when W is a Brownian motion but also
for other stochastic processes. The case of fractional Brownian motion is currently investigated in
[19].

To state the result on path-by-path stability, we introduce some additional notations. For v > 0,
W—P(R?) is the Bessel potential space W™"P(R?) := {f : I fllw—vp(may == (I — A)ingLp(Rd) <
oo}. When v = 0, we have W"P(R%) = LP(RY). A sequence (z") in a metric space (Z,p) is
summable convergent to an element z € Z if there is a constant n > 0 such that

oo
Zp(z"7z)’7 < 0.
n=1

In such case, we write 3-lim, 2" = z in Z. It is evident that summable convergence implies
convergence in the usual sense. Conversely, if lim, z" = z, then for every n > 0, there exists a
subsequence (2“(™) such that S°0° | p(2/(", 2)" < oo, in particular ¥-lim,, 2/ = 2.

Theorem V.2.4 (Path-by-path stability). Let (p,q) € J and (b") be a sequence of measurable
functions in ILE. We assume that X-lim, b = b in LI([0, T], WP (R%)) where v satisfies either

2 d 2
vel0,1—-), —+-+rv<2 (V.2.1)
q p q
or
2 d 4 d
vell—-=-,1, —-+-<3-2v, —<uw (V.2.2)
q p q p

Then there exists an event Q/(bn) p1s which depends on (b"),b,T and has full probability measure,
such that for every w € Q/(bn) v Jor every (s,x) € [0,T] x R?, whenever Y™ are solutions to ODEs

t
Y'=ux +/ b (r, Y, )dr + Wi(w) — Ws(w), te s, T,

then lim, Y" = X*%(w) uniformly on [s,T].

We say that the SDE (V.1.3) is strongly complete if for a.s. w, the ODE (V.1.5) generates a
continuous semiflow over [0, 00). This means that there exists a measurable map

0,00)2 x R? x Q — R?
(5,8, 2,w) = X" (w)

such that for a.s. w the following hold:
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(i) (s,t,x) —~ X;""(w) is continuous;

(ii) foreveryOSsgugtandeRd

/ |b(r, X% (w))|dr < oo, X" (w)=z+ / b(r, X" (w))dr + Wi(w) — Ws(w)
and

S,T u,XZ"w w
X (w) = XN W),

Our definition given above is different from the literatures’ in that (ii) demands that the event
on which the semiflow solves the equation is independent from initial data. Heuristically, strong
completeness requires that the random semiflow is defined globally over all nonnegative times [0, co)
and continuously in (s, ,z) over [0, 00)2 xRY. That the semiflow is generated by the equation means
that for almost every w and every initial data (s, z), the map ¢ — X;**(w) is a global solution which
does not blow up in finite time. The latter property can be thought as “path-by-path non-explosion”.
SDEs which have global pathwise solutions without explosion may fail to have path-by-path non-
explosion with examples given in |77].

Our next result provides a general principle which asserts that if over any finite period of time,
an SDE generates a random continuous semiflow and has path-by-path uniqueness, then the SDE is
strongly complete. Although this fact has been observed in [97] in the context of rough differential
equations, singular SDEs form another distinct class of equations. It is therefore necessary to draw
the connections.

Theorem V.2.5 (Strong completeness). Suppose that for every T' > 0, (V.1.3) generates a random
continuous semiflow over [0,T] and that path-by-path uniqueness holds over [0,T]. Then (V.1.3) is
strongly complete.

Proof. Let (X;**) and (X;"*) be random continuous semiflows respectively over [0, 7] and [0, 7] for

some T < T. Then by path-by-path uniqueness X | A xRE = X. This implies the existence (and
uniqueness) of a random continuous semiflow over all nonnegative time. O

The proofs of Proposition V.2.1 and Theorems V.2.2 and V.2.4 are presented in Section V.5.

V.3 Davie estimates

We show a variant of Davie estimates in [34, Propositions 2.1, 2.2].

Proposition V.3.1. Let f be a Schwartz function in L} for some (p,q) € J. Then there is a
constant C' = C(d,p,q,T) such that for every (s,t) € Ay ) and m > 1,

d

t 1 d 1_1_d
[ orewaar <er (m o)+ 1) Il -9 (V.3.)

Lm
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where T'(r) = fooo u" e Udu is the Gamma function. Consequently, for every bounded continuous
function f in LA([0,T)), every z,y € RY, every (s,t) € Ao,y and m > 1, we have

/ Wy +2) — F(r. Wy + g)ldr

Lm
d 1

1 1_1_4d
<cr (m<2+2p>+1) 1 g o (= )27l =yl (V.3.2)

The precise growth constant I' (m( % + %) + 1) is not essential to our current purposes. Nev-

ertheless, it improves upon previous known estimates from [41, 95]. To prove this result, we follow
a recent approach from [71] based on the quantitative John—Nirenberg inequality. We prepare two
auxiliary lemmas, putting

z|2

a
2 2t .

pe(x) := Lysg)(27t) ™
Lemma V.3.2. The operator f — D(f) defined by

D(f)(t,x) = / Vpaly) - VF(t — 5,2 — y)d(s,y).

RxRd

is bounded on L} for every (p,q) € (1,00)2.

Proof. The operator D is associated to the Fourier multiplier
z? 9

O(zg,x) = 2 =2 .+l

= Cc—
22 +izg’
for some absolute constant ¢, where i is the imaginary unit. A result from [78, Corollary 1, pg. 234|

asserts that D is a bounded operator on L} provided that ® admits continuous (for zo, ..., x4 # 0)
purely mixed derivatives of orders k£ < d + 1 such that

o <M

ok
Zj ..., 0 .

Tjy T
for all distinct ji, ..., jx and for some finite constant M. Such condition can be verified directly. [

Lemma V.3.3 (Quantitative John—Nirenberg inequality). Let V' be an adapted continuous process,
» be a deterministic control and o € (0,1). Assume that

[E*[V: = Villloe < 5¢(s,8)*  V(s,t) € Ap 1y
Then, there exists a finite constant Co > 0 such that for every (s,t) € Ay 1) and every m > 1,

I sup (Vi = Vi[[lzm < Cal'(m(1 — @) + 1) (s, £)".
u€ls,t]

Proof. Without the growth constant I'(m(1 — «) + 1), this result is a direct consequence of [106,
Excercise A.3.2]. To obtain the precise growth constant, we follow [71] closely. Continuity and the
assumption imply that

BTV = VolllLoe < 5e(s,8)"

for every (s,t) € Ajgq) and all stopping times o, 7 satisfying s < 0 < 7 < t. The class of all

processes with such property is denoted by VMOW/®=Var in |71 Section 3]. We then apply [71,
Corollary 3.5 to obtain the desired estimate. O
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Proof of Proposition V.3.1. In view of Lemma V.3.3, it suffices to estimate the conditional
second moment. Define for each (s,t) € Ap 71,

t
1
W:/Vﬂﬂ%W}Mﬂ]ﬁ:2WM—%ﬁ (V.3.3)
0

Using integration by parts, tower property of conditional expectation and Fubini’s Theorem we
have, almost surely,

t t
I = ES/ / E2 [V f(ri, Wy,)] - Vf(re, Wy, )dridrs
t ’ t
= _ES/ / [/]Rd f(rl, Y+ WTQ)VPH*TQ (y)dy] : Vf(’f'g, Wrz)drldTQ
s Jrg

t t
== [ L UL ROt WO Vi) - Va4 W (2)ddrydrs
s Jrg
=11+ I

where

t ot
I :/ / /d [/df(rl,y+z+WS)Vpr1_T2(y)dy} - f(re, 2 4+ Ws)Vpp,_s(2)dzdrdrs,
s Jro JR R

t t
Iy = / / /d I Iy 42+ W) -V, ()dy] f(r2, 2 + We)pr,—s(2)dzdridrs.
s Jrog JR R

To estimate I, we apply Holder’s inequality (below p’ satisfies % + I% = 1) to see that for any
v € RY,

t t
/ / / [ / Py & 2+ )V (9)dy] f(r2, 2 + 0)Vpry_s(2)dzdrydrs
s Jro JRA R4

t t
< [ [ 170z 0 sl om0+l | el sy
s Jrg

d

t t (_l_i)i 1-1 _1_d
S HfHLg([s,t])/ (/ (r1 =) 2 2 aTdry) 1| f(ro)ll poray(ra — 8) "2 2 dry
s ro

1

! 1_4d_1 _1_d
S I s / (t=72)2 72 4 || f(ra) | o(ray(ra — 5) "2 2rdry
S

d 1 d

a1 ! 14
SWM®MV*VMQ/WﬂMMmMm—@2%w2
S

l1_d_1 l1_d_1 2_
q

Al

This yields that, almost surely,
L) S 11y gy (= )75
To estimate I2, we apply Holder inequality and Lemma V.3.2 to see that

Lo S 1 s s 1 s 0l o
p/



V.4. Path-by-path estimates 117

where

fWS(T7 z) = f(?“,Z + WS), p,‘f(z) :pr—s('z)v

and p’, ¢’ denote the Holder conjugates of p, ¢ respectively. Applying Holder inequality again, we
have

W,
1L /PNl < sl ar@—2 1 llLa(gs,)-
p’ p/(p—2)

Using the fact that (p,q) € J and some elementary calculations, we have

1 s _ . 1—-4_2
H [s,t]P H]LQ/(Q—Q) = C(t s) P q
p/(p—2)

for some constant ¢ depending on p,q. Combining with the previous estimates, we obtain that

1—-2_4d
‘IS,t, 5 Hf”]ig([s,t])(t - S) a P a.s.

Consequently,

1_1_d

It is evident that V' is continuous. Applying Lemma V.3.3, we obtain (V.3.1).
Next we show (V.3.2). By approximations, we can assume that f has bounded continuous first
derivatives. We observe that

t 1 gt
/f(T7Wr+x)—f(T,Wr+y)dr:(x—y)-/ /Vf(r,WT-l-@x-l-(l—H)y)drdH.
s 0 Js

Then it follows from (V.3.1) that

t
H/ fr, W+ ) — f(r, W, +y)dr|| ..

t
< sup H Vf(r,Wr+¢9x+(1—G)y)drHLm|1:—y|
oco,1] Js

t

<le—ylsw || [ V50 W+ 2],
2€R4 s

1

< 1 d 1_1_4d
ST (G + 500+ 1) gy (e - 937+ o -l

The proof is completed. O

V.4 Path-by-path estimates

Let f be a measurable function on R x RY. If w is such that fOT |f(r, Wy (w))|dr < oo then the
function ¢ — fg f(r,Wy(w))dr is continuous. The following result extends this argument for the
function (¢, x) — fg f(r,W,.(w) 4+ z)dr. The integrability condition fOT |f(r, Wy(w) + z)|dr < oo is
no longer sufficient and one has to replace it with the quantity =7 x(f)(w) defined below.
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Lemma V.4.1. Let K C R? be a compact set containing 0, o € (O ————— ) for some (p,q) € T
and € € (0,1). There exists a function E7 k ac = Erx : L — Ll(Q) such that

(i) E1. K satisfies the triangle inequality, i.e. =7k (f +9) < Erx(f) + Er,x(9);
(ii) for every f € L,
EErx ()] < 11 lLao.r; (V.4.1)

(iii) for every bounded measurable function f in L}, there exists an event Qyp x of full measure
such that for every w € Q1 K, every (s,t) € Ay ) and every z,y € K,

| [ 180 W) +2) = £ Wele) + 9)ldr] < Erac(Ple —ol S =57, (V-42)
‘/ [, We(w) + @)dr| < Zrpe(F@)(t - 5)°. (V.4.3)

Proof. For each function f € L}, we define

f r, Wy )dr
=rk(f) = COre( // " dsat
0,772 Cft—spr
t
aWT - aWT d m %
+// S f o We + @) — f(r,Wr 4+ y)] T‘ dsdtdxdy)
[0,7]2 x K2 [t — s|n|z —y|r2
for some absolute constants Cr x > 0, m > 2 sufficiently large and v, € (Rv -+ (f - % - %)),

Y2 € (55 214 ) fixed. The constants C7 i and m will be determined at a later step. It is obvious
that (i ) holds Using (V.3.2) and the following estimate from [72, Lemma 4.5]

2

! m< m m(1—4—2)
B( [ £ Wdr)" Iy =)™ 79, (V.4.4)

we see that (ii) holds.

It remains to show that (iii) holds. Assume first that f is bounded continuous so that the
map (t,z) — fg f(r,W.(w) + x)dr is continuous for a.s. w. From (V.3.2) and (V.4.4), applying
the multiparameter Garsia—Rodemich-Rumsey inequality (|64, Theorem 3.1|), there exist constants
Cr k and m such that (V.4.2) and (V.4.3) hold.

Below, we remove the continuity restriction.

Step 1. We show (iii) for f = 1y where U is an open set of finite measure in R x R%. By
Urysohn lemma, there exists a sequence of increasing continuous functions f™ converging pointwise
to f. From (i) and (ii), we can choose a further subsequence, still denoted by (f™) such that
lim, Z7 k (f") = Erk(f) a.s. We then apply (V.4.2) and (V.4.3) for f" and take limit in n to
obtain (iii).

Step 2. We show (iii) for a general bounded measurable f in L. Let M be a constant such that
|f| < M. By Lusin theorem, for any n € N, there exists a continuous function f" and an open set
U™ such that |[U"| < 27" and |f — f"| < 2M1y~. This implies that lim,, f* = f in L. Using (ii),
we can choose subsequences, still denoted by n such that a.s.

li7ILn ETJ((IlUn) =0 and 1111111 ETJ((f”) = ET’K(f). (V45)
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Define

Then
Alf] < A[f"] + Alf = f"]. (V.4.6)
Applying (V.4.2) for the continuous function f™, we have a.s.
Alf") S Erg(fM)le =yl 5t = )% V(s,t,z,y) € Ay x K2

Applying (V.4.2) and (V.4.3) for 1yn, we have a.s.

t
Alf =M < QM/ [Lyn(r,W, + x) + L1yn(r, W, + y)]dr
<AMEp g (Lyn)(t — )% V(s t,2,y) € A x K.

Hence, from (V.4.6), taking limit in n and using (V.4.5), we see that (V.4.2) holds. The estimate
(V.4.3) is obtained in a similar way. O

Remark V.4.2. Via a truncation procedure as is done in the last step in the proof of Lemma V.4.3
below, one can remove the assumption of boundedness in Lemma V.4.1(iii). The current formulation
is sufficient for our purpose.

The following result provides an alternative perspective to [34, Lemmas 3.3 and 3.4] and [101,
Lemmas 3.3 and 3.4].

Lemma V.4.3. Let f : [0,T] x R — R be a function in L} for some (p,q) € J, K C R? be
a compact set containing 0, and o € (0,% — % — é) Then there exists an event Qy 1 ¢ with
full probability such that for every w € Qr 1, every € € (0,), there is a deterministic constant
C = C(g, ) such that for every (s,t) € Ay g, every function v : [0,T] — K of finite variation, we

have

‘ / f(r, Wy (w) + 4y )dr — / fr, Wy (w) + ¢5)d7"’ < CET,K(f)(w)[w]éfw(t — )" (V.4.7)

[s:t]

and

| [ 560+ )] < CErac£) )1+ WIS - 9 (V.48)

[s:t]

Proof. Since (V.4.8) is a consequence of (V.4.7) and (V.4.3), we only focus on (V.4.7).
Step 1. We first show the result assuming that f is a bounded continuous function. For (s,t) €
Ajg,r) define Ay, = fst f(r, W, + 1s)dr so that, for u € [s, ],

t
6As,u7t = / [f(?", Wr + 7/’5) - f(?", Wr + %)]dr
Applying (V.4.2), we have

16 Asutl < B (F)lou — sl 75 (t = 8)* < B (F) W] i e (8 — 5).
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That & < « ensures that 1 — e+ a > 1. Since f is continuous, we have for every t € [0, 7],

Fr, Wy 44y )dr = lim >~ Agy
0 Iwls0 la,blem

where 7 is any partition of [0,¢]. We apply the sewing lemma [46, Theorem 2.2 and Remark 2.3]
formulated with controls to obtain (V.4.7).

Step 2. To remove the continuity assumption and show the result for a bounded measurable
function f, we use similar arguments as in Lemma V.4.1.

First, using Urysohn lemma, one can show that (V.4.7) holds for f = 1y for any open set U of
finite measure. In particular, we have a.s.

t
| / L (r, W + ¥ )dr| S B (Lo) (1 + [ prar) (= )° (V.4.9)

[s,1]

for every (s,t) € App7) and every .

Next, applying Lusin theorem, we can find for each integer n > 1 a continuous bounded function
f™ and an open set U™ such that [U"| < 27" and |f — f"| < 2M1yn, where M is a constant such
that | f| < M. This implies that lim,, f* = f in L]. For each s < t, we put

t t
I = [ £ v = [ 50+ )
so that J[f] = J[f"] + J[f — f"]. By the previous step,

[TLf"] < OBk (f") W] rter (= 5)%

[s,1]

Using (V.4.3) and (V.4.9),

t

t
T — ) < M| / Ly (r, Wy 4+ )dr| + sup | [ Ly (r, Wy + 2)dr|
s zeK s

S MT(1 + [¥] 5Bk (Lon).

[s,t]

By Lemma V.4.1(i)(ii), we can further choose a subsequence, still denoted by n, such that
lignETJ((f”) =Zrk(f) and h;LHETJ((]lUn) =0 as.

We emphasize that the null events only depend on f, 7T, K and are independent from s,t,1. Then,
by passing through the limit in n, we obtain that

[I[f]] < CET,K(f)w)]é[;i;r (t—s)".
Step 3. Consider now the case f € Lj. For each integer M > 1, define fM = J1(s<n)- Note
that (f™) (respectively (|f™|)) is a sequence of bounded functions converging to f (respectively
|f]) in L}, We can choose a sequence (M,) such that (Zq i (fM"),Zr k(| f"])) converges to
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(Zr.x(f),Erk(|f])) a.s. Using this, (V.4.8) (with |f*"|) and monotone convergence we then have
a.s. w

t t
J 1)+ w)lar =t [P0, ) + 0

< CErr(If)(w)(1 + [w]é[g%r)(t — )% <oo.

From the above estimate and (V.4.3), applying the Lebesgue dominated convergence theorem, we
have lim,, J[f — fM»] = 0. As in the previous step, we have

UL < T+ 1L = 2]

S ET,K(an)[w](lj[l_;%r (t =) + [JLf = fH]I.

We take the limit in n to obtain (V.4.7).
This concludes the proof. O

Corollary V.4.4. Let f be a function in L} for some (p,q) € J. Let (Z,p) be a metric space and
(t, 2) = ¥F be a bounded function from [0,T] x Z to R? such that

(i) for each z € Z, t — 9} has finite variation and supzez[wz]c[ld%r < 005
(i) the family {z = Ui }repo,r) 18 uniformly equicontinuous, i.e.

lim sup sup |¢f —f| = 0.
hi0 tefo,1] p(z,2)<h

Then there exist an event Q1 of full measure and a sequence of bounded continuous functions (f™)
which are independent from 1 and (Z,p), such that lim,, f™ = f in L} and for every w € Qg p,

t t
lim/ [ (r, Wy (w) + 2 )dr = / f(r, Wy (w) + ¢Z)dr uniformly in (t,z) € [0,T] x 2.
" Jo 0

Consequently, the map

wwHAﬂmmw+ww

is continuous on [0,T] x Z.

Proof. Let (K') be an increasing sequence of compacts such that |J;, K* = RY. Let Q #1.Ki be as
in Lemma V.4.3. In view of (V.4.1), we can choose a sequence of bounded continuous functions
(f™) such that lim, Zp xi(f* — f) = 0 a.s. for all i € N. Because ¢ is bounded, there exists
j € N such that ¢7 € K7 for all (¢,2) € [0,T] x Z. Applying (V.4.8) and (i), we have for any

w € Qf’T = ﬂl Qf,T,Ki7

lim /t [ (r, Wy (w) + 2 )dr = /t f(r, Wy (w) + ¢Z)dr uniformly in (¢,2) € [0,T] x 2.
" Jo 0

Due to (ii), the function (¢, z) — fg f7(r, Wy(w) 4 9Z)dr is continuous for each n. This shows the
claim. O
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Remark V.4.5. We record some consequential observations which may be useful for other purposes.

(i) From Lemma V.4.3, it follows that for a.s. w, a solution of (V.1.5) is also a solution in the
framework of nonlinear Young integrals. More precisely, for a.s. w, if Y is a solution to (V.1.5),
then there is a control s and a number 5 > 1 such that for ¢y =Y — W,

t
|ty — s —/ b(r, Wy (w) + vs)dr| < %(S,t)ﬁ V(s,t) € Ap,1y-

Via the sewing lemma, this means that ¢ is a solution to the nonlinear Young integral equation

([65])
t
Ve = P +/ bW(dT, l/JT) V(S,t) S A[O,T}7

where fst bW (dr,1,) is the nonlinear Young integral defined as the limit of the Riemann sums

3 / b, W+ n)dr-

[uyo] 7

While nonlinear Young integral equations have been a central theme in previous works [24, 49, 50,
62, LA4|, it was not known if (V.1.5) under (V.1.4) can be formulated in this framework.

(ii) From Corollary V.4.4, it follows that for a.s. w, a solution of (V.1.5) is also a regularized
solution in the following sense: For a.s. w, if Y is a solution to (V.1.5) then there exists a sequence
of bounded continuous function (") and a continuous function V' : [0,7] — R? such that V; =
limy,, fot b"(r,Y,)dr uniformly on [0,7] and Y; = Yy + V; + Wi(w) for all ¢t € [0,7]. Regularized
solutions of stochastic differential equations appear in [8, 13, 20, LA4|.

V.5 Proof of main results

For a given w and a solution Y to (V.1.5), we obtain in Proposition V.5.1 a priori estimates on the
variations of Y — W on arbitrary intervals. This allows us to show the existence of random Hélder
continuous semiflow (X;*)s; . , i.e. Proposition V.2.1. We then show in Proposition V.5.2 another
set of a priori estimates on Y; — Xf’YS (w) for any given (s,t) € A . Having these properties
at our disposal, we proceed to prove path-by-path uniqueness and stability, i.e. Theorems V.2.2

and V.2.4.

Proposition V.5.1. Let K C R? be a compact set containing 0, (u,v) € A,y and a € (0, % — % —

%). Let w be such that (V.4.7) and (V.4.8) hold with f = |b| and any function ¢ of finite variation

taking values in K. Let Y : [u,v] — R? be a solution to (V.1.5) on [u,v], i.e. [7|b(r,Y;)|dr < oo
and

t
Yi=Y; +/ b(T, Kn)dr + Wt(w) — Ws(w) V(S,t) € A[uﬂ,].

Assume that Yy — Wy(w) € K for all t € [u,v]. Then there exists a finite constant C = C(e, o) such
that

o [

/ bl Yo)dr < O3 (bl) (@) — 0)* + C(Zrk (B () (v — w))*. (V.5.1)
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Proof. We omit the dependence on w in this proof. Define v» =Y — W and note that

ey < [ Bltr. Yo

Applying (V.4.8), we have

v v 1—¢
[ bl < CZ o - w0+ CZnto ([ by ) -

Applying Young’s inequality, we have for every ¢/ > 0

o |=

Zrac 8] [ 1010 Yoy o w2 [ e e+ o Erac()w - 0)°)

We choose &’ sufficiently small to get (V.5.1). O

Proof of Proposition V.2.1. For each sz, let ()N(f’m)te[S,T] be the unique strong solution to
(V.1.3) started from x at time s. By definition of a solution, for every w in a set of full measure
that depends on s and x, we have fST b(r, X" (w))|dr < co and

t
K5 (w) =3+ / b(r, X3 (w))dr + Wi(w) — Wi(w) ¥t € [s,T]. (V.5.2)
S
Note that the construction above is also possible for random initial condition z (see [115, Theorem

1.1]), however, if not mentioned otherwise, throughout the rest of the proof z is deterministic.
Let m > 2 be a fixed number. By [52, Theorem 1.2 (1.2)]

IX5" = XY < |2 =yl pm (V.5.3)

for any initial random points x,y which are Fs-measurable. Applying [72, Lemma 4.5, we get

1% - K

t ~
lLm < H/ b(r, X% )dr|
t/

L'm 5 ’t - t/|a
for some o € [%, 1). Using (V.5.3) and pathwise uniqueness, we have for s’ < s,

~ ~ 7 ~ ~ "s/,m ~ 7 1
X5 = X lm = X7 = X0 om S e = X |lm S s = &2
It follows, that
X5 = XY pm S o =yl + [t — ¢ + |s — 8|2 (V.5.4)

Since m can be arbitrarily large, applying Kolmogorov continuity criterion (|94, Theorem (2.1)
Chapter I|), we see that for a.s. w, the map (s, ¢, z) — X" (w) is locally Holder continuous on

{(s,t,z) € Ay X RY : s,t, x are dyadic}

with exponents (a, 8, k) € (0,a) x (0,1/2) x (0,1). Because for each s,z, (X;"*(w))ie[s 1) is con-
tinuous, the map (s,t,z) — X;*(w) is locally Holder continuous on

G :={(s,t,x) € A1) X R? : s, are dyadic}
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with the same exponents.

Let Q' be the event of full measure on which (V.5.2) holds whenever s,z are dyadic, and X is
locally Holder continuous on G. For each w € €, let X (w) be the (unique) continuous extension of
X w)‘G to Ap . X R We show that (X;")s ¢ is the desired semiflow. Hélder regularity is clear
and hence, we focus on showing the semiflow properties. Since b is not continuous, it is non-trivial
that for almost every w and for each (s, x), the map t — X;"*(w) satisfies the equation (V.1.5). The
main difficulty is to show that the continuous extension of the map

t
(s,t,x »—>/ r, X% (w dr—/ b(r, X" (w))dr

which is defined on G, is identical to the map

(s,t,a:)»—>/ b(r, X% (w))dr,

which is defined on Ay 77 x R,

Let H C R? be a compact set and put Z = [0,T] x H. Let (K,)nen be sequence of compacts
exhausting RY. Let Q\b|,T = N Npen Q150> f0r Qp 1k, as in Lemma V.4.3, ie. (V.4.7) and
(V.4.8) hold for f = |b| and any function 1 of finite variation with values in K,,. We verify the con-
ditions (i) and (ii) of Corollary V.4.4 for w € Q|b|7T. For each (t,s,z) € [0,T] x Z, define ¢;"" (w) :=
X;Tn(s t)( W) = Wiin(s,1) (W), and if s, z are dyadic, define ¢ (w) := ermxn(s 9 (W) = Whnin(s,1) (w). Note
that v (w) is the continuous extension of ¢)(w). By continuity, there exists N € N such that ¢>" (w)
takes values in Ky for all (s,z) € Z. As (V.4.8) holds, we can apply Proposition V.5.1 for the
compact Ky and we can find a constant Cr(w) such that whenever s, z are dyadic,

T
0 @l = 5 @leygy < [ 10X (@)dr < Cre).

[0,7] [0,T]
This means that for any partition 7 of [0,7] and (s, z) dyadic in Z
Y (W) — ()] < Cr(w).
[u,v]em

By continuity, the above estimate also holds for every (s,z) € Z. This implies that

sup_[¢™(w)]etvar < Or(w),
(s,x)e2

verifying (i). Uniform equicontinuity condition (ii) is satisfied because X (w) is locally Hélder con-
tinuous on Ay 7 x R?. Let Q1 be the event in Corollary V.4.4. Let w € Q‘b‘ 7 N Q7. Applying
Corollary V.4.4, we see that the map

(t,5,2) /O b(r, Wi (w) + 15 (w))dr = /O b(r, X% (w))dr

is continuous on [0,7] x Z. .
It is now clear from (V.5.2) that for every w € Q7 N Qy 7, for every (s, t,x) € Ajg ) X H, we
have

X7 (w) =2+ / b(r, X% (w))dr + Wi(w) — Ws(w).
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By exhausting R? with a sequence of increasing compact sets (H*), we see that the above equation
holds for every (s,t,x) € Apor X R?. By pathwise uniqueness and using that existence of a strong
solution also holds for random initial condition, we have for every s < u < t and every = € R¢

X500 = XN s, (V.5.5)

Note that the exceptional null event (V.5.5) depends on s,u,t,z. However, because all processes

in (V.5.5) are continuous, one can deduce that for a.s. w, X;"* = X;"Xu’ for any s, u,t,z, which
means that (X, (w))sq 18 a semiflow. O

The next result, together with Proposition V.5.1, provide a priori estimates for any solution.

Proposition V.5.2. Let K C R? be q compact set which contains 0. Let 1 be the event
with full probability on which (X;*) is a locally k-Hélder continuous semiflow for every r € (0,1)

and (V.4.7) holds with f € {b,|b|} and any function v of finite variation taking values in K. Let

we i andY be a solution to (V.1.5). Suppose that th’ys (w) — Wi(w) belongs to K for every

s,t) € Ajg- Then, there exist
(0,77
(i) a control > which depends only on Y, =7 i (b)(w), Zr.x (|b])(w), d, p, ¢;
(#i) a constant 5 > 1 which depends only on d,p,q
such that
Y= XY ()] < #(5,8)° ¥(s,8) € Ay, (V.5.6)

Proof. We omit the dependence of w in the argument below. Define 1y = Y — W and £* =

Zﬁ(s,-) — Winin(s,.)- The proof consists of two steps.

Step 1. We show that for € € (0, a), there exist a constant C' = C(Z7 k(|b]), €) such that

‘ /St[]b|(r, XYe) ‘b\(r,Yr)]dr‘ <C </t yb|(r,mdr)l_£ (t — 5)°
+C(t—s)

o
€

V(S,t) S A[O,T}- (V57)

As ¥, = £ we obtain that

/wmm%%wmmw
:/WME”%W@W+@WW—/WWK%WMW+%Wr

We note that £5Ys and v are contained in K and have finite variation such that

t t
{fS’YS]CL arg/ ‘b‘(T,X{f’YS)dT and [w](,’[lé‘;?fg/‘ ’b’(T,Y;«)dT.

[s,1]
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Applying Lemma V.4.3, we have for every ¢ € (0, ) and every (s,t) € A 7y,

[0 2 = 00 Wi+ €07 ar] 2o ([ i XSY&)d)l_au—s)a,

S 21,k (]0]) </ |b|(r, Y, )d > (t—s)*.
We also have

(/ 1b](r, X2%) dr ’/ [16](r, X3 — |b|(rY)]dr +‘/ ]b|rY)dr‘ T (V58)

It follows that

[ 1000300~ bl 9, +

[ 0127 = 0 Yo € S| [ 0016379 = e v |- 0

+2nao) ([ t rbr<r,mdr)l_a (t - 5)°.

ZracBD] [ 101027 =l Yolar] (e - o

Applying Young’s inequality, we have for every ¢/ > 0

1
€

< e/| [ 110 XY = bl Y)ldr| + Cor (Erac((b)(E = 5)°) 7 (V.5.9)

Combining the previous two inequality and choosing ¢’ sufficiently small yields (V.5.7).
Step 2. We show (V.5.6). Let (s,t) € Ay be fixed. Using the equations and the identity

Vs = gs,’YS, we obtain that

t
X7 = Vil = | [ bl X2 bt Yol

t t
< / [b(r, X5Y5) — b(r, W, + £59)]dr| + / [b(r, Y;) — b(r, W, + 1) dr

Applying Lemma V.4.3, we have for every ¢ € (0, o),
1—¢
)/ r, X5Y%) — b(r, W, +£5Y5)]dr Er,k( (/ ] (r, X2¥*)d ) (t—s),

‘/S[b(T,Y;“)_ (r, Wy + 1s) dT"<:TK </ |b|(r, Yy )d > E(t_s)a,

Combining with (V.5.8), we have

(t—5)

+ S0 (b (/ b/(r, ;)d ) T

t 1=
X7 il 2] [ bl X%~ i ol
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We apply (V.5.9) and (V.5.7) to get

t 1—¢
|Xf"/s—yt|<c<s,ET,K<br>,ET,K<b>>(( [ vy ) (t—s>a+<t—s>°‘/€>.

Choosing € small enough such that a/e > 1 yields (V.5.6). O

Proof of Theorem V.2.2. Let K, = {x € R%: |z| < n} (n € N) and D = U2, N> Q1 K,
for Oy 1 K, as in Proposition V.5.2 (i.e. the event with full probability on which (X;") is a locally
r-Holder continuous semiflow for every x € (0, 1) and (V.4.7), with f € {b, |b|} and any function 1) of
finite variation taking values in K, holds). Note that ) 1 has full probability. Let w € N0, Oy 7k,
for some k and let Y be a solution to (V.1.5). By continuity, we can choose N > k such that Ky
contains Xf’YS (w) — Wi(w) for every (s,t) € A ). Let s be the control and 3 be the constant
found in Proposition V.5.2. We note that > depends on N. Let 7 € (0,7] be a fixed but arbitrary
number and define

F(t) =X teo,1].
For (s,t) € A7}, we obtain by the semiflow property that

s,Y,
x5V

F(t) — F(s) = XbY — X5Y = Xt — X7
Then, using Holder continuity of the semiflow (Proposition V.2.1), we have
[F(t) = F(s)| S Vi = X7,
for some k € (0,1) which can be chosen to be arbitrarily close to 1. Applying (V.5.6), we have
|F(t) = F(s)] S »(s, )"

Choosing & so that 3 > 1, for any sequence of partitions IL,, = {t;} of [0, 7] with mesh converging
to 0, we get that

Nnp
[F(r) = FO)] < Y [F(t:) = F(tio1)| S| sup s(tim1, )|~ 3(0,7) =3 0.
i=1 i<Nn

Hence F(7) = F(0). Since 7 was arbitrarily chosen in (0,7, this means that Y and X%¥0 are
identical. ]

Proof of Theorem V.2.4. In the proof, we write ||b" —b|| for ||b”—b||sz0 W rr (B); where p, g and

v satisfy either (V.2.1) or (V.2.2) as in the statement. Denote by (X;"*")s . the Holder continuous
semiflow of solutions to

t
X, = Xo +/ b (r, X, )dr + Wy, t€1[0,T). (V.5.10)
0

In view of Theorem V.2.2, it suffices to show that there exists an event Q,(b") pr such that for every
/
w € Q) 1o

lim X"(w) = X (w) uniformly over compact sets of Ajg ) ¥ R, (V.5.11)

n—o0
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From (V.5.4) and [52, Theorem 1.2, Remark 2.13|, putting Vs;, = X" — X;"*, we can find
an « € [4,1) such that for every m > 1, ¢,# € [0,7] and z, 2’ € R?

Vate = Vewallom Sls— V2 + [t =1 + v — 2|,
and
Vs tallom S (10" 0.

Hence,
Vit = Varwrarlim S (Is = o[V + [t = ] + | — 2/ )20 — b /2.

Applying Garsia-Rodemich-Rumsey inequality, for every compact set K C R?, every m > 1, we
have

I suwp [Vigelllom < G [lb™ — 0]/ (V.5.12)
(S,t,m)EA[O’T]XK
for some finite constant C, 7 .
Let (K') be an increasing sequence of compacts such that ).y K' = R% By definition of
summable convergence, we can choose m > 2 so that

= b < .

Using (V.5.12) and Markov’s inequality, we have for every ¢

P( sup [ X" — X7V > an—b\i> < O g i I6™ = b5
(s,t,y)€A [, )X K o

Applying Borel-Cantelli lemma, we get an event Qéb”) p.r of full measure on which X" (w) converges
to X (w) uniformly on Ay 7} x K'. Putting Q pmypr = ﬂiQébﬂ),b,P it follows that (V.5.11) holds for
every w € ) b1 O

Remark V.5.3. The fact that for almost every w, for every s, z, (X;""(w)); is a solution to (V.1.5) is
crucial for the proof of path-by-path uniqueness. When b is not continuous, this property becomes
highly non-trivial. It was taken for granted without any justifications in [101, 102]. We achieved
this property in Proposition V.2.1 by utilizing the regularizing estimates from Lemma V.4.3. This
issue is irrelevant to [34] because of its different arguments. We take this chance to note that the
exceptional null events in [34] depend on the initial condition. This dependence can be removed fol-
lowing our arguments herein. In fact, one just replaces Proposition V.3.1 by Davie’s basic estimate,
then the rest of the arguments follows with minimal adjustments. In particular, Proposition V.2.1
and Theorems V.2.2 and V.2.4 hold with p = ¢ = o0.

V.A ODE uniqueness

Most of the arguments in Section V.5 are independent from the probability space, and hence,
independent from the probability law of the driving noise. This forms a uniqueness criterion for
ODE (V.1.1) which does not require any regularity on the vector field, but instead relies on the
regularizing effect of the driving signal v with Lemma V.4.3 being a prototype. This regularizing
effect is formalized by the following definition.
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Definition V.A.1. Let f: [0, 7] x R? — R? be a measurable function. We say that v is (1 — ¢, a)-
regularizing for f if there exist a control n and a constant =7 g for each compact set K C R? such
that

t
| 15030460 = £+ 01| < Eraclulls (s, 0°

for every (s,t) € Ay and every ¢ : [0,7] — K of finite variation.

Theorem V.A.2. Let K C R? be a compact set which contains 0. Suppose that v is (1 — €, a)-
regularizing for b,|b|. Let y be a solution to (V.1.1). Suppose that ¢7"¥* — v, belongs to K for every
(s,t) € Apo,7)- Then, there exists a control > which depends only on y,Zr i,n such that

lye — 5 Y| < se(s, t)mnU==T D) (s 1) € Ay (V.A.1)
Suppose furthermore that ¢ is locally k-Holder continuous for some k € (0, 1] such that
/i-min(l—eJroz,%) > 1.
Then (yYi)iejo,m 18 identical to (qﬁg’yo)te[oﬂ.

The proof of this result follows analogous arguments used in proving Proposition V.5.2 and The-
orem V.2.2 and hence is omitted.

V.B Adapted solutions and path-by-path solutions

This section is devoted to proving Theorem V.B.1 (taken from |[LA3|) that puts the intuition that
path-by-path uniqueness is identifying all solutions that might possibly not be adapted into a
rigorous result. In particular, if it is known a priori that all solutions are adapted, then pathwise
uniqueness and path-by-path uniqueness are equivalent. To recall the different notions of existence
and uniqueness, see Definition VI.1.1 and VI.1.1.

Theorem V.B.1. Consider
dX; = b(t, Xy)dt + dW; (V.B.1)
for b:[0,T] x R* = R? be measurable. Assume that
(i) pathwise uniqueness to (V.B.1) holds,
(i) all path-by-path solutions to (V.B.1) are weak solutions.
Then path-by-path uniqueness holds.

Proof. Assume that path-by-path uniqueness does not hold. Let (2, F,P) be a probability space
on which a Brownian motion W is defined. Then there exists a set A C 2 of positive measure such
that for w € A, there exist multiple solutions to

Xi(w) = Xo + /0 b(s, Xs(w))ds + Wi(w),
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with the same initial condition. Then we can define two path-by-path solutions X! and X? to
(V.B.1) by letting them agree with the unique strong solution on A€ and letting X'(w) # X?(w)
on A, which is possible by the above and the axiom of choice. By assumption, both X' and X? are
adapted w.r.t. filtrations (F}) and (F?) such that W is a Brownian motion w.r.t. these filtrations.
Hence, W is also a Brownian motion with respect to (F;} U F7?). Therefore we constructed two
solutions on the same filtered probability space (€, F, (F} UF?)ic(o.1), P). By construction X! # X?
on a set of positive measure. This contradicts pathwise uniqueness. O
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In the current chapter we take a different viewpoint on the equation considered in Chapter V.
Instead of showing path-by-path uniqueness for a certain class of singular drifts, we identify drifts
that are even more singular such that uniqueness does no longer hold, however uniqueness among
adapted solutions does. The material is based on |[LA1].

VI.1 Introduction

We consider Stochastic Differential Equations (SDEs) of the type
t
X, :X0+/ b(s, Xo)ds + Wi, te€[0,T], (VLL1)
0

where T > 0 is a fixed deterministic time, b: [0, 7] xR? — R? is measurable and W is a d-dimensional
Brownian motion. As mentioned in previous sections, one can think of different kinds of solutions:

(a) Weak and strong solutions to the SDE (VI.1.1).

(b) Considering Equation (VI.1.1) as an ODE for each realization (W;(w))o<t<r of the Brownian
path (“path-by-path" solutions).

The second of the above is possible as we consider an SDE with constant diffusion coefficient.
Therefore we can evaluate the noise term therein for each Brownian path, which would generally
not be possible with a more general diffusion term as this would lead to a stochastic integral.

In both [42, page 12] and [1, page 3] it was phrased as an open problem whether every solution
of type (b) has to arise from an adapted solution. In a higher-dimensional setting this question was

131
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answered via a counterexample in [103], making heavy use of the dimension d > 2. Hence, it is a
natural question whether similar counterexamples can be constructed in a one-dimensional setting.
We give a positive answer to this question in Section VI.3. The construction relies on patching
together Bessel processes, Bessel bridges and a well-known SDE without a weak solution. It can
easily be extended to any dimension d > 1.

Important definitions. Below we recall different types of solutions to (VI.1.1). In all cases, we
assume that the following condition is, almost surely, satisfied (and do not repeat it for different
types of solutions):

T
/0 |b(s, Xs(w))|ds < oo.

This is in line with the literature, see for example [94, Chapter 9]. Note that in the definitions
below the initial condition Xy might not be deterministic. Instead it prescribes the initial law of
any solution to (VL.1.1).

Furthermore, T' > 0 is a fixed deterministic time, i.e. we consider solutions defined on the whole
prescribed time interval.

Definition VI.1.1 (Existence). (i) If there exists a filtered probability space (2, F,F, P) equipped
with a Brownian motion W and an F-adapted process (Xi);c(or) such that (X, W) fulfills
(VI.1.1) almost surely for ¢ € [0,7], we say that (X,W) is a weak solution to (VI.1.1) on
[0,T]. If the choice of W is clear from the context, we write that X is a weak solution.

(ii) We call X a strong solution if X is a weak solution and X is adapted to the filtration generated
by W.

(iii) Let Xo € R? be deterministic. Let (€2, F,P) be a probability space on which a Brownian
motion W is defined. We call a mapping X: Q — Cjo 7] a path-by-path solution to (VI.1.1)
on [0, T if there exists a set Q0 C Q of full measure such that, for w € Q, (X (w), W(w)) fulfills
equation (VI.1.1).

Definition VI.1.2 (Uniqueness). (i) We say that pathwise uniqueness for (VI.1.1) holds if for
any two weak solutions (X, W), (X, W) defined on the same filtered probability space with
the same Brownian motion W and the same initial condition, X and X are indistinguishable.

(i) Let Xy € R? be deterministic. We say that path-by-path uniqueness for (VI.1.1) holds if for
any probability space on which a Brownian motion W is defined, there exists a set of full
measure €2, such that, for w € Q, there exists a unique solution on [0, 7] to

Xy(w) = Xo +/0 b(s, Xo(w))ds + Wi (w).

(iii) Let X be a nonnegative weak solution to (VI.1.1) such that all other nonnegative weak so-
lutions defined on the same probability space with the same Brownian motion and the same
initial condition are indistinguishable from X. Then we call X the pathwise unique nonneg-
ative weak solution. In a symmetric manner we define a pathwise unique nonpositive weak
solution.
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In particular the definitions are given such that solutions have to be defined on the whole time
interval [0, T]. The following implications follow directly from the definitions:

’ strong existence ‘ — ’ weak existence ‘ — ’ path-by-path existence ‘

’ path-by-path uniqueness ‘ — ’ pathwise uniqueness ‘

Remark VI.1.3. Tt is also possible to equivalently rephrase the definition of path-by-path uniqueness
in the following way (see [41]): For v € Cjo ) and X € RY deterministic, let S(y, Xo) be the set of
solutions X € Cjg ] to the deterministic equation

t
X =Xy —I—/ b(S,Xs)dS + v, te& [O,T].
0

Then, path-by-path uniqueness to Equation (VI.1.1) holds if there exists a null set N/ C Clo,17
with respect to Wiener measure such that |S(y, Xo)| = 1 for v € Cjo r7\NV. Note that no measurablity
condition on S is required here.

Comparison with previous results. In [103], for dimension d > 2, drifts b are constructed such
that

o there exist multiple path-by-path solutions, but there exists no weak solution;
e there exists a pathwise unique weak solution to (VI.1.1), but path-by-path uniqueness is lost.

The main contribution of this chapter is that in Section V1.3, we construct drifts b such that
the two situations described above happen for Equation (VI.1.1) with d > 1.

From Chapter V, we know that path-by-path uniqueness to (V1.1.1) holds for b € IL}([0, T]) and
p € [2,00],q € (2,00] with

d 2
—+ <l (VI.1.2)
P q

As existence of a unique strong solution in this regime holds by [68], counterexamples like the ones
above can only be constructed with b ¢ LJ([0,T7]) for any p, g fulfilling the previous conditions.

V1.2 Preparatory results and Bessel bridges

Lemma VI.2.1. If there exists a weak solution on [0,T] to (VI.1.1) with initial condition X
fulfilling P(Xo = 0) > 0, then there also exists a weak solution on [0,T] with initial condition
fulfilling P(Xo = 0) = 1.

Proof. Let (X, W), defined on a filtered probability space (2, F,F,P), be a weak solution to (VI.1.1)
with Xy fulfilling IP’(XO =0) >0. Let A = {XO = 0}. Define (X,W) and (€, F,F,P) in the

following way: Q = ={ENA:EcF} F,={ENA:EcF} for CcF, PC)= chg for

we A Xw)= X(w) and W (w) = W(w). First, we check that X is adapted to F. Let U C R be
measurable. Then

X' U)=Xx7YU)nAe F.
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Next, we check that W is an F-Brownian motion. As Xj is Fo-measurable and W is an F-Brownian
motion, we know that, for 0 < s < ¢,

B(W, - W, e ) = LTt —gﬁ; U} N A)

=P(W, — W, € U)

and using this we get, for V e F,

P{W,— W, eUINV)
P(A)

P ({Wt — W, eU}n v) - = P(W, — W, € U)B(V).

Hence, W is an F-Brownian motion.

Clearly (X, W) fulfills equation (VIL.1.1) a.s. O
The following lemma and its proof are similar to [15, Example 7.4] and [29, Example 2.1].

Lemma VI.2.2. Let T > 0. Let f: R = R be measurable. There does not exist a weak solution on
[0,T] to

t
X; = Xo+ / b(X,)ds + Wi, (VI.2.1)
0

with initial condition Xo fulfilling P(Xo € (—1,1)) > 0 and

1
b(z) = ~Liazofal<1} 5 + Lifal>11.f(2)-

Proof. Step 1: First we show, by contradiction, that there exists no weak solution to (VI.2.1) on
[0,7"/2] with initial condition Xo = 0. Assume there exists a weak solution (X, W) on [0,7/2] with
Xo =0. Let 71 == inf{s > 0 : | X4| > 1}, so that, on [0,71], f does not play a role. Then by Ito’s
Lemma, we get that, for t € [0,7T/2],

tATL tATL tATL
XEAHZ/O —]l{X#O}der/o 1ds+/0 2X,dW,

tAT1 tATY
= / ﬂ{XS:O}dS + / 2XdWs.
0 0

Define X' = Xirr,. Note that X™ is a continuous semimartingale with quadratic variation
(X™)¢ =t ATy, so we can use |94, Chapter 6, Corollary (1.6)] to obtain

tATL tATL
/0 :H.{sto}ds = /(; ]]-{Xs:(]}d<X>S - /R :H'{EZO}Ltm/\Tl (X)d(l,' == 0,

where L(X) denotes the local time of X. Hence, (X]')? = ngl 2XdWy is a local martingale and
as |X™| < 1it is also a martingale. Note that X]' = 0 and (X™)? > 0. This implies that X™ must
be identically 0, which contradicts (X™); =t A1 as 71 > 0 a.s.

Step 2:

Assume that there exists a weak solution (X, W) to (VI1.2.1) on [0,T] (defined on some filtered
probability space (2, F,F,[P)) with initial condition X fulfilling P(Xy € (—1,1)) > 0. W.l.o.g. we
assume that there exists a € [0, 1) such that P(Xy € [0,a]) > 0.
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Let 79 == inf{t > 0: X; < 0} and

={Xo€[0,al}N{ sup Wy <1—a, Wy, < —a}.
te[0,7/2]

Then {19 < T/2} D C. To see this let w € C and assume that inf,cjg /9 Xi(w) > 0. Then by
construction sup;e(o /2 Xt(w) < 1, so again f does not play a role and therefore

T2 4
X7/o(w) :XO(W)/ IXs(w )d5+WT/2( w) < a+ Wpjp(w) <0,
0

which gives a contradiction. Hence P(ro < T/2) > 0 as C C {ro < T/2} and P(C) > 0.

Let 79 :== 19 A (T/2), W, = Wiyt — W3, and X, = Xsy4¢t. Then (Xtth)te[() T/2) i8 a weak
solution to (VI.2.1) on [0,7/2] with initial condition X7, which fulfills P(X;z = 0) > 0. This holds
true because first, for ¢t € [0,7/2],

_ To+t
Xy = Xappr = Xo + / b(Xa)ds + Waysr — W,
v
= )({-O —|—/ b(Xs)dS + W,
0

where we used that 79 4+ 7'/2 < T. Second, W is an F7-Brownian motion for F;° := Fs,; by [93,
page 23, Theorem 32| and X is clearly adapted to F. Hence, we constructed a solution to (VL.2.1)
on [0,7/2] starting from 0 with positive probability. This gives a contradiction to Step 1 due to
Lemma VI.2.1.

O

In the following lemma we consider two SDEs and present some properties of solutions to these
SDEs. Both have been investigated thoroughly in the literature (references are given in the proof
of Lemma VI.2.3). The lemma is stated to give a clearer presentation of the counterexamples in
Section VI.3.

Lemma VI.2.3. Let y > 0. Consider the following equations on [0,T]:

t t
- X, 1 / y—X, 1
X = 1 74—* ds + 1 —+ = |ds+ W V1.2.2
t /(; {Xs>0} ( Xs) § 0 {Xs<0} ( T s X, S ts ( )

t
0 s

(a) Any weak solution to (V1.2.2) on [0,T] satisfies | X1| =y a.s. and does not change its sign on
the interval (0,T] a.s. Moreover, there exists a nonnegative strong solution and a nonpositive
strong solution that are unique in the class of nonnegative/nonpositive solutions. We will call
these solutions nonnegative/nonpositive Bessel bridge.

(b) For ):(0 > 0, there ezists a pathwise unique nonnegative strong solution on [0,T] to (VI.2.3).
For Xy > 0, pathwise uniqueness holds.
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Proof. (a): Weak existence follows by [88, page 274, Equation (29)|. Pathwise uniqueness and
strong existence follow by the same arguments as in the proof of Proposition 1 in [103|, which is
stated for y =1 and T = 1.

(b): Special case of Theorem 3.2 in [28]. See also [94, Chapter 11]. O

Lemma VI.2.4. Let X be the nonnegative Bessel bridge on [0,T] with Xo =0 and X7 = 1. Then
there exists € > 0 small enough such that {supycpom Xt < 2} D {supyepo,r) [Ws + s| < €} and
therefore

P( sup X <2)>0.
te[0,7)

Proof. Recall that X satisfies

¢ 1-Xs 1
X = 1 — + — .
¢ /0 {X‘S>O}<T—s +Xs)ds+Wt

Let € € (0,1/2) and consider the set A := {sup,cjo 1 |Ws + s| < e} fulfilling P(4) > 0. Let w € A.
Assume that there exists 7o € [0,7] such that X, (w) = 2. Let p; == sup{s € [0, 7] : Xs(w) = 1}.
By continuity X,, (w) = 1. Then, for w chosen above,

71 -X 1
XT2:1+/pl <T_SS+‘X'S>dS+WT2_Wp1

s

<1+/ 7d5+26—(’7'2—p1)
P1 X
<1+2 <2,
which gives a contradiction. Hence, sup;¢(o 7 Xt(w) < 2 for w € A. O

Remark V1.2.5. Let X =2 —Y where Y is the Bessel bridge with Yy = 0 and Yy =1, i.e. (Y, W)

is the unique nonnegative weak solution to (VI.2.2) on [0, T]. In particular, for W = —W, (X, W)
is a weak solution on [0,7] to

¢ 1- X, 1 N
Xy =2 1 - ds + W,
t Jr/o {XS<2}(T_8 2—X5> s+ Wy

with Xg =2 and X7 = 1. Lemma VI.2.4 gives that

P( inf X; > 0) > 0.
t€[0,T]

V1.3 Construction of Counterexamples

VI1.3.1 Path-by-path existence but no weak existence

In the following proposition we construct an SDE without weak solutions, but with multiple path-
by-path solutions. The construction is done in a one-dimensional setting, but can easily be extended
to multiple dimensions.
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Proposition VI.3.1. Let T > 0. Consider, on [0,3T], the SDE
t
X = / b(S,Xs>d8 + W, (VI?)l)
0

where

l—2z 1 11—z 1 )
Lizsoy <T—t+x>+1{x<0}<T—t +$> fo<t<T,

bt,z) =< 0 if T <t<?2T,

—1 1 1 )
1{x¢0,|x|<1}% + 1{x>1}m + ﬂ{x<—1}m if 2T <t < 3T.

There does not exist a weak solution to (V1.3.1) on [0,3T], but there exist path-by-path solutions.

Idea of the proof.

The drift is constructed in a way such that for a solution X the following must hold: X7 is
forced to be equal to 1 or —1. On the time interval [T, 27] we let a Brownian motion evolve freely
without any drift. On the time interval [27,3T] the drift is constructed in a way such that there
exists no adapted solution if Xor € (—1,1). However if |Xor| > 1, then X can be extended to
the interval [0,37] with |X;| > 1 for all ¢ € [2T", 37| while still being adapted. Hence, any adapted
solution must avoid taking a value in (—1,1) at time 27. If Wor — Wp = Xop — X7 € (0,2), this
can only be achieved if one can choose Xp = 1. Similarly, if Wopr — Wp = Xop — Xp € (—2,0),
one must be allowed to choose X7 = —1. This necessity of “looking into the future" prohibits the
existence of weak solutions, but not the construction of path-by-path solutions.

Proof. No weak solution.

Assume there exists a weak solution X defined on some filtered probability space (2, F,F,P).
By Lemma VI.2.3(a), P(|X7|=1) =1. Assume that P(Xy = 1) > 0. Let A; = {Xp =1} and
Ag = {Wop — Wy € (=2,0)}. Then we have Xop(w) € (—1,1) for w € Ay N Ay. As Ay is Fp-
measurable and Wop — Wy is independent of Fp, P(A; N A2) > 0. Hence, after a time shift, we
would have a weak solution on [0, 7] to the SDE

t 1 1 1
X, = X, +/ <IL <=+ Lix.on———+1 _ >ds+W,
t 0 0 {Xs#0,| Xs|<1} 2Xs {X.5>1}Xs 1 {Xs<—1} Xs 1 t

with P(Xyp € (—1,1)) > 0, which contradicts Lemma VI.2.2. Hence, X7 = —1 a.s. By the same
arguments as above we must have Xp(w) = 1 for w € Ay, where Ay :== {Wap — Wy € (0,2)}, which
gives a contradiction to X7 = —1 a.s. as P(Ay) > 0.

Existence of a path-by-path solution.

Let Xt X :Q — Co,7) be the nonnegative and nonpositive Bessel bridge with terminal value
1, respectively —1. Let C} == {War — W > 0} and Cy = {War — Wy < 0}. Define X: Q — Clo 21
such that, for t € [0, 277,

Xt((/J) =

X} r(w) + Wr(w) — Wr(w)  ifw e Cy,
Xop(w) + Wir(w) = Wr(w)  ifwe Cs.

Hence | Xor(w)| > 1 for w € C; U Cy. By Lemma VI.2.3(b) (after a shift of the space variable),
we can uniquely extend X to [0,377] fulfilling (VI.3.1) so that |X;| > 1 for all ¢ € [2T,37T]. As
C1 U s has full measure, X is indeed a path-by-path solution.
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Existence of other path-by-path solutions.

Other path-by-path solutions can be constructed. Indeed on the set C3 := {Wop — Wp > 2} we
can choose freely if X coincides with the nonnegative or nonpositive Bessel bridge on [0, 7] since,
for w € C3, Xor(w) > 1. Then, we can proceed the same way as before. ]

VI1.3.2 Pathwise unique weak solution, no path-by-path uniqueness

The following proposition gives an example of a one-dimensional SDE with a pathwise unique weak
solution, but for which path-by-path uniqueness does not hold. Again, the construction can easily
be extended to multiple dimensions.

Proposition VI.3.2. Let T > 0. Consider, on [0,4T], the SDE

¢
X, :/ b(s, Xs)ds + Wi, (VL3.2)
0
where
22 1 —2-z 1 ,
Liz>0 (T—t + :c) + L{z<o} <T—t + x) ifo<t<T,
1 3—x 1 1—=z 1 )
b(t x) _ :ﬂ.{:p<0}; + :H.{x>2} <2T‘—t + LE—2> + ﬂ{0<m<2} (21_,_1/_ + o 2) ZfT < t < 2T7
b 1 .
H{x<0}; if 2T < t < 3T,
1 1 1 1 )
ﬂ{x<0}§ - H{xﬁ,\x—?ISl}m + 1{x>3}r_3 + Il{o<:c<1}ﬁ if 3T <t < A4T.

There exists a pathwise unique weak solution to (V1.3.2) on [0,4T], but path-by-path uniqueness
does not hold.

Idea of the proof. On the time interval [0,7] the drift is the one of an SDE solved by a
Bessel bridge. Hence, for ¢ € [0, T] there exists a pathwise unique nonnegative weak solution and a
pathwise unique nonpositive weak solution. On [T,47] x R_ the drift is constructed such that the
nonpositive Bessel bridge on [0, 7] can be extended in a unique way to a weak solution on the time
interval [0,47]. On [T,4T] x R4 the drift is constructed so that we can extend the nonnegative
Bessel bridge on the time interval [0,7] to path-by-path solutions on [0,47], but not to a weak
solution. Hereby solutions are allowed to enter the negative half plane (which is no problem as the
drift there ensures the existence of nonpositive solution), but with positive probability a situation
as in Proposition VI.3.1 occurs; i.e. weak solutions X are forced to fulfill X3p € (1, 3) with positive
probability and on the time interval [3T, 47| the drift is constructed such that these solutions cannot
be extended to [0,47].

Proof. Existence of a pathwise unique nonpositive weak solution.

Note that there exists a pathwise unique nonpositive weak solution X on [0, 7] to (VI.3.2) with
X7 = —2 by Lemma VI.2.3(a). We can extend this solution in a pathwise unique way to [0, 477 by
Lemma VI.2.3(b).

No other weak solution.
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Assume that there exists another weak solution X to (VI.3.2). Then we must have P(Xp =
2) > 0. Let

A ={ X+ =2 Ay = inf X; >0 Xor=1
1= {X7 = 2}, 2 {t€[1%1,’2ﬂ ¢ >0, Xor =1},

Az :={ inf (W;—War) > —1,Wsr — War € (0,2)}.
3 {te[él%vgﬂ( t 2T) 3T 2T ( )}

First assume that P(Xor = 1 | X7 = 2) = 1. Then by assumption and by Lemma VI.2.4 and
Remark VI.2.5, for € > 0 small enough,

P(Al N AQ) = P(Al N { sup ‘Wt — Wp — (t — T)‘ < 8})
te(T,2T

=P(A)P( sup |[Wy—Wr—(t—T)| <e)>0.
te[T,2T)

Hence P((;_, 4;) > 0 as A3 is independent of A; N Ay. Note that Xsr(w) € (1,3) for
w € ﬂ?zl A;. This gives a contradiction to Lemma VI.2.2 as after a space shift we would have
a weak solution to Equation (VI.2.1) with initial condition X fulfilling P(X, € (—1,1)) > 0.

Assume now that P(Xor = 1 | X7 = 2) < 1 and therefore P(Xor = 3 | X7 = 2) > 0. Let
Al = Al, 1212 = {XQT = 3} and

Az =1 inf (W — Wop) > —3, War — Wap € (—2,0)}.
3 {te[g%’gﬂ( ¢ oT) ,War or € (—2,0)}

Then by assumption P((;_, 4;) > 0 and X3r(w) € (1,3) for w € 2_, A; and again this leads
to a contradiction to Lemma VI.2.2.

Construction of another path-by-path solution.

By separately considering the sets C1 = {Wsp — War > 0} and Cy = {W3p — War < 0} we
construct an additional path-by-path solution on the set C1UC5 of full measure. Let X : C1 — Cjg a7
coincide on [0, 7] with the Bessel bridge such that X7 = 2 and on [T, 2T with the spatially shifted
Bessel bridge (similar to Remark VI.2.5) such that Xop = 3. Let 7 := inf{t > 2T : W, —Wyp = —3}.
Then, by Lemma VI.2.3(b), for w € C1 N {7 > 3T} we can extend X to the time interval [0, 47
fulfilling equation (VI.3.2). Now consider w € C; N {7 < 3T'}. We can clearly extend X to the time
interval [0, 7| by adding the Brownian increment W; — Wor. Then we have that X, (w) = 0. Hence,
for w e C1N{r < 3T} and ¢ € [1,4T], we can choose X to be the pathwise unique nonpositive
solution on [1,4T] to

t
1
Xt:XT—i—/ —ds+ Wy — W,
TXS

and therefore we can construct X : C1 — Cjg 47 fulfilling equation (VI.3.2).
Let
~ 1 1
b(t,x) =b(t,z) — ﬂ{t}T,a:<O}; + ﬂ{t>3T,a;<0}m-

For w € Cy and t € [0,47), let X fulfill
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such that X coincides with the Bessel bridge on [0,7] and the spatially shifted Bessel bridge (see
Remark VI.2.5) on [T, 2T] so that X7 = 2 and Xo7 = 1. This is possible by the same ‘arguments as
in the proof of Proposition VI.3.1. Let 7 := inf{t > T : X; = 0} A4T. On [0, 7] let X := X. Then
X is a solution to (VI.3.2) on [0, 7] as, for > 0, b(t,z) = b(t,x). On [rg,4T], we choose X to be
the pathwise unique nonpositive solution on [y, 47] to

X, = XTO+/ s+ We=Wa,

As P(Cy UC3) = 1, we can construct a path-by-path solution Y: Q — Cjg 47 by setting

A~

v B X(w) if we Cy,
W=\ %) fwe



Besov spaces and stochastic sewing

A.1 Elementary results on Besov spaces

Definition A.1.1 (Partition of unity). Let x,p € C°(R% R) be radial functions and for j > 0,
pj(z) = p(277x). We assume that x is supported on a ball around 0 and p is supported on an
annulus. Moreover, we have

X+Y pi=1, (A.1.1)

J>0
supp(x) Nsupp(p;) =0, Vj > (A.1.2)
supp(p;) Nsupp(pi) = 0, if [i — J| (A.1.3)

Then we call the pair (x, p) a partition of unity.
Existence of a partition of unity is proven in |11, Prop. 2.10]. Let such a partition be fixed.

Definition A.1.2 (Littlewood-Paley blocks). Let f be an R%valued tempered distribution. We
define its j-th Littlewood-Paley block by

Ypi F(f)) for j >

F (e
Ajf = FH(xF(f) fo 1,
0 for j < —2,

where F and F~! denote the Fourier transform and its inverse.

Definition A.1.3. For s € R and 1 < p,¢ < oo, let the nonhomogeneous Besov space B, , be the
space of R%valued tempered distributions u such that

. q
lulsg,, = | D2 (21 8ulloes) | < o
JEL

Remark A.1.4. Note that any finite measure lies in B by similar computations as in [11, Proposition
2.39]. Therefore, after an embedding of Besov spaces (see Remark 1.2.2), it lies in B3¢ as well.
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Remark A.1.5. For s € R, p,q € [1,00] and any ¢ > 0,
+
By = B, , — B,.

For a proof see [109, page 47, Proposition 2].

The following lemma comes directly from the definition of Besov spaces and Bernstein’s inequal-
ity (see [11, Lemma 2.1]).

Lemma A.1.6. Let s € R and p,q € [1,00]. Let D denote the distributional derivative operator.
Then, for f € B,

7q’
1Df g1 < [1Fllsy,.

Lemma A.1.7 and A.1.8, both taken from [8] (respectively [59] for d > 1), are used on a regular
basis. Hence, we state them again below.

Lemma A.1.7. Let v € R and p € [1,00] and the Gaussian semigroup Gy defined by (1.2.10). Then
there exists C > 0 such that for any f € By,

(a) 1Gefllrray < CHfHB;/tV/Q for any t > 0, provided that v < 0;

(b) limy_o Gof = f in By for every 7 < ~;
(¢) supyso [|Gefllsy < Ifllsys

(d) |Gefller < ClfllggtO=YP=D/2 for all t > 0, provided that v — d/p < 0.

Lemma A.1.8. Let f be an R%-valued tempered distribution, v € R, p € [1,00]. Then for any
a,ay,az,a3 € R, a,aq,ay € [0, 1], there exists a constant C > 0 such that

(a) [ Fla+ sy =Ifllsy
(b) [lf(ar +-) = flag + )5y < Clar = aa|*[| fl gyre 5
(¢) If(ar+-) = flag+-) = flaz+-) + flaz + a2 — a1 + )5y < Clar —ag|*™ |ar — a3|* || f] e v

Lemma A.1.9. Let y € R, p € [1,00] and f € B} and t > 0, the function G.f defined by (1.2.10)
15 smooth and bounded.

Proof. Smoothness comes from [104, Th 3.13]. We now prove boundedness: First, we consider the
case f € By for v € R and p € [1,00] such that v — d/p < 0. Using Lemma A.1.7(a) and the

embedding B} — BL /", we have

y_d y_ d
IGef |z < Cyllfllgyamt® ™% < Collfllsyt® 2.

So, Gi¢f is bounded. Now for arbitrary v € R and p € [1,00] such that f € By, one can choose

7' < v such that v/ — d/p < 0. We then have f € B;,/ since By C B;/. By the first part of the proof
G f is bounded. O
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The following lemma provides an embedding between Hélder and Besov spaces for functions
with compact support. It is useful when we deal with local times.

Lemma A.1.10. Let M C R? be a compact set, 0 < § < B < 1 and p,q € [1,00]. There exists

constants C,C > 0 only depending on M such that for any f € C® with support included in M, we
have

£, < CUFlLgs < Cllflls

The first inequality follows by Remark 1.2.3 and the second inequality by the Proposition on
page 14 in [99].

A.2 Variations of the stochastic sewing lemma

In this section we recall recent extensions of the stochastic sewing Lemma (see [70, Th. 4.1 and
Th. 4.7]) and [49, Lemma 2.5|. In all statements, let 0 < .S < T, let m € [2,00), let (2, F,F,P) be a
filtered probability space and let A : Ajg ) — L™ such that Ag; is Fy-measurable for (s,t) € Aig 7).

Lemma A.2.1 (Stochastic sewing Lemma). Let n € [m,00|. Assume that there exist constants

['1,T2 20, e1,62 > 0, g, B2 € [0,1/2) with az + B2 < 1/2 such that for every (s,t) € Aigr and
u:i=(s+1)/2,

HES[(SAS,u,t]HL”

IESTI6As e ™1™

1t =)t (A.2.1)

<Ii(t-—
< Dou— S) 7T — u) 2 (t — 5)/2+e2, (A.2.2)

n

Suppose there exists a process (Ar)ie(s,r) such that, for any t € [S,T] and any sequence of partitions
Il = {tf}f&o of [S,t] with mesh size going to zero, we have
Ny,
Ay = lim ZAtf,t?H in probability. (A.2.3)

k—o00 4
=0

Moreover, there exists a constant C = C(e1, €2, ag, B2, m) independent of S, T such that for every
(s,t) € Aig) we have

IES[|A; — As — Agf| ™Y ™| zn < CTo(t — 5)Y /270278242 L O (t — 5)1F51
and
IESTA; — Ay — Ag4]||zn < OTy(t — s)1 e,

Lemma A.2.2 (Stochastic sewing lemma with random controls). Let A be a random control. As-
sume that there exist constants I'1, a1, $1 = 0 with aq + B1 > 1 such that

IE“6 Ag | < Tilt — s|*'A(s, )" a.s. (A.2.4)
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for all (s,t) € Aigq) and u = (s +t)/2. Additionally, assume that (A.2.2) holds for m = n and
ag = B2 = 0 and that there exists a process (Ai)e(s,r) such that (A.2.3) holds. Then there is a map
B: A — L™ and a constant C > 0 such that for all (s,t) € Aig 1y,

|-At - As - As,t|
|| Bs ¢l

CT1|t — 5| \(s,t)"' + Bsy a.s. and (A.2.5)
CTylt — s|!/%F52, (A.2.6)

NN

Lemma A.2.3 (Stochastic sewing lemma with controls). Assume that there exist controls s, s
and constants €1,€2 > 0 such that, for S <s<u<<t << T,

sa(s,0)'2(t — )7
2\ S

| Astllm <
< (s, t)(t — 5)2.

B0 As el | L

Then there exists a process (At)ic(s,m) such that (A.2.3) holds and there exists a constant C =
C(m,e1,e2) > 0 such that for all (s,t) € Aig 7y,

A — Ag||pm < Coer(s,0)2(t — 8)° + Caea(s, t)(t — )°2. (A.2.9)
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