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Résumé en français

Introduction

Ces dernières années, poussée par le besoin de systèmes de transport plus sûrs
et plus autonomes, l’industrie automobile a connu un changement de paradigme
vers l’intégration d’un nombre croissant de systèmes avancés d’aide à la conduite
(ADAS). À mesure que les niveaux d’aides à la conduite augmentent, allant de
l’aide au freinage à des niveaux plus élevés d’automatisation (dits de niveaux 4 et
5), il est désormais primordial de développer des systèmes de perception robustes.
Dans cette thèse, on appelle perception la capacité d’un système à modéliser son
environnement à l’aide de multiples capteurs.

La plupart des systèmes d’aides à la conduite reposent sur des capteurs de types
caméras, LiDAR et radar pour créer une représentation de l’environnement, chacun
de ces capteurs présentant des avantages et des inconvénients. Par exemple, la haute
résolution des caméras est indispensable pour lire les panneaux de signalisation ou
pour reconnaître des objets. D’un autre côté, le LiDAR apparaît comme un cap-
teur adapté pour cartographier en 3D l’environnement de part sa haute résolution
angulaire. Cependant, en cas de mauvaises conditions météorologiques (brouillard,
pluie) et lumineuses (nuit, contre-jour), l’efficacité des caméras et des LiDAR est
limitée. Également, bien qu’il soit possible d’obtenir des informations de vitesse et
de distance à l’aide de caméras stéréo par exemple, la capacité des caméras à estimer
ces grandeurs reste extrêmement limitée, et il en est de même pour le LiDAR.

D’un autre côté, le radar s’est imposé comme un concurrent de choix pour
compléter les caméras et le LiDAR en raison de ses capacités uniques et sa robustesse
pour détecter des objets et estimer leur vitesse dans des conditions météorologiques
défavorables ou des scénarios à faible luminosité. En émettant des ondes radio et en
mesurant leurs réflexions, le radar permet de mesurer la vitesse et la distance avec
une grande précision. Alors que les faisceaux laser émis par le LiDAR peuvent être
diffractés par des gouttelettes d’eau, créant ainsi des fausses détections, les ondes
émises par le radar les traversent et n’entravent pas le fonctionnement du radar.

Combinés, les caméras, le LiDAR et le radar garantissent un cocon de sécu-
rité à 360° autour du véhicule. Si la fusion des capteurs est apparue comme une
approche essentielle pour accroître la précision, la sécurité et la redondance des sys-
tèmes ADAS, cette efficacité dépend grandement de la capacité de chaque capteur
à fournir une représentation adéquate de l’environnement. Grâce à l’émergence
de l’apprentissage profond, des algorithmes de vision par ordinateur ainsi que le
grande nombre de jeu de données pour des applications de conduites autonomes
[Ettinger 2021, Urtasun 2012, Caesar 2019], des progrès considérables ont été faits
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Figure 1: Chaîne de traitement du signal d’un radar FCMW. L’antenne Tx émet
des ondes électromagnétiques qui sont réfléchies par les objets environnant le radar
et reçues par l’antenne Rx. Une fois reçue, l’onde réfléchie est multipliée par
l’onde émise, filtrée et échantillonnée au travers de l’ADC (convertisseur analogique-
numérique). Les données de l’ADC sont ensuite analysée pour estimer la distance,
la vitesse et l’angle d’arrivée des objets environnant le radar. Une étape de post-
traitement (groupement et suivi de cibles) est appliquée pour produire le nuage de
point radar.

dans le développement d’algorithmes de perception et de fusion spécifiques aux cap-
teurs caméras et LiDAR. Cependant, malgré les atouts du radar, peu de travaux
ont exploré les possibilités d’utiliser de l’intelligence artificielle (IA) sur des don-
nées radar. Ce manque d’exploration est attribué à plusieurs facteurs, notamment
la disponibilité limitée des jeux d’apprentissage avec des données radar, sa résolu-
tion angulaire limitée par rapport aux capteurs caméra et LiDAR mais également
les défis inhérents au traitement de ces données à l’aide d’IA.

En se concentrant sur les capteurs radar, cette thèse vise à combler le fossé entre
les radars automobiles et les algorithmes de perception basés sur l’IA. Dans leur
forme actuelle, les données radar consistent en une liste de cibles (également con-
nues sous le nom de nuages de points radar), qui contiennent des informations sur
la position de la cible, sa vitesse et une notion de surface équivalente radar (RCS)
caractérisant la cible. Dans la littérature, certains travaux ont déjà essayé d’utiliser
des modèles d’IA sur ces données radar pour de la classification ou de la seg-
mentation d’objets [Scheiner 2018, Scheiner 2020, Ulrich 2021, Tatarchenko 2023].
Cependant, comme le montre la Figure 1, bien que permettant le développement
d’algorithmes peu coûteux en mémoire et en calcul, les nuages de points radar né-
cessitent d’importantes étapes de pré et post-traitement (détection, suivi, regroupe-
ment) avant d’être utilisés par des modèles d’intelligence artificielle. De plus, ces
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Figure 2: Exemples de spectres RD et RA. De gauche à droite: image caméra,
spectre RD et spectre RA

étapes de traitement filtrent le signal brut réfléchi par les objets, ce qui peut affecter
les performances des algorithmes d’intelligence artificielle.

Une alternative aux nuages de points consiste à représenter le signal réfléchi par
les objets sous la forme d’un spectre (données brutes) qui représente l’environnement
en distance et en vitesse (distance-Doppler, RD), en distance et en angle (distance-
angle, RA), ou en distance, en angle et en vitesse (distance-angle-Doppler,
RAD). La Figure 2 montre un spectre RD et RA avec l’image caméra associée.
Ces trois dernières années, la parution de base de données comme CARRADA
[Ouaknine 2021b], RADDet [Zhang 2021] ou encore CRUW [Wang 2021c] a per-
mis d’accélérer la recherche vers le développement de modèles d’IA pour la dé-
tection et la classification d’objets à partir de données radar brutes. Alors que
certains travaux se concentrent sur la classification d’objets à partir de données
brutes [Akita 2019, Palffy 2020, Khalid 2019], d’autres aspirent à réduire le nombre
d’étapes de post-traitement du radar pour détecter et classifier simultanément des
objets [Ouaknine 2021a, Wang 2021b, Gao 2021, Giroux 2023].

Inspirée de ces travaux, cette thèse propose d’exploiter les spectres radar pour
détecter et identifier des usagers de la route dans des environnements complexes.
Essentiellement, cette thèse vise à proposer des algorithmes d’apprentissage profond
conçus explicitement pour les données radar et à étudier si ces algorithmes peuvent
se substituer à certaines étapes dans la chaîne de traitement radar. Cette thèse a
été réalisée au sein de l’institut d’intelligence artificielle ANITI, en collaboration
avec la société NXP, un leader mondial dans le domaine des émetteurs-récepteurs
et des micro contrôleurs pour radars automobiles. L’entreprise est activement
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impliquée dans la construction de radars de nouvelle génération pour améliorer
la sécurité routière et le confort du conducteur. Dans ce contexte, cette thèse
constitue une étape pionnière dans la conception d’émetteurs-récepteurs et de
micro contrôleurs de radar basés sur l’IA. Les algorithmes proposés dans cette
thèse devront répondre aux contraintes de l’environnement automobile : faible
consommation d’énergie, faible complexité et temps de réaction rapide.

Détection et identification d’objets à partir de spectres
distance-vitesse

La première étude de cette thèse est dédiée à la détection et l’identification d’objets
multiples à partir de spectres RD. Le choix d’utiliser le spectre RD pour des tâches
de détection (ou de segmentation) plutôt que RA [Wang 2021b, Ju 2021] et RAD
[Ouaknine 2021a, Gao 2021] est principalement motivé par des raisons d’efficacité.
Premièrement, le spectre RAD exige beaucoup de calcul pour être produit et est
volumineux en mémoire. Deuxièmement, dans la chaîne de traitement radar, les
objets sont détectés dans la représentation RD (à l’aide d’algorithmes de type CFAR
[Blake 1988], voir Figure 1) puis, pour chaque objet, l’angle auquel se trouve l’objet
par rapport au radar est calculé. Ainsi, l’utilisation de ce type de spectre apparaît
naturelle pour intégrer un modèle d’IA dans un système radar, de la manière la
plus efficace possible.

Le spectre RD pouvant être vu comme une image représentant l’environnement
en distance et vitesse, cette étude vise à étudier la possibilité d’utiliser des al-
gorithmes de détection pensés pour des images caméras au radar. Plus partic-
ulièrement, un modèle de type Faster R-CNN [Ren 2017] est adapté pour les don-
nées radar. La Figure 3 illustre l’architecture de Faster R-CNN utilisée dans cette
étude. Étant donné un spectre RD, un réseau de neurones convolutionnel (CNN)
est d’abord utilisé pour extraire des caractéristiques spécifiques à la scène. Ensuite,
un second petit CNN est utilisé pour générer des régions du spectre susceptibles de
contenir des objets (le RPN). Pour chacune de ces régions, un autre petit réseau de
neurones est utilisé pour déterminer la classe de l’objet présent dans la région ainsi
que sa position exacte.

Les spectres RD et les images caméras présentant des différences notables en
termes de tailles, de textures et de formes d’objets, il n’est pas optimal d’utiliser des
réseaux de neurones pensés pour des images caméras dans l’optique d’extraire des
caractéristiques des spectres radar. De plus, les modèles utilisés pour l’extraction
de caractéristiques pour des images caméras sont bien trop gros et coûteux en
calcul pour être utilisés dans des applications embarquées. Un réseau de neurones
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Figure 3: Architecture de Faster R-CNN et du modèle DAROD proposée. (a)
Architecture de DAROD. Le modèle proposé est inspirée de VGG [Simonyan 2015]
(b) Exemple du modèle Faster R-CNN. Étant donné un spectre RD, un réseau de
neurones convolutionnel (CNN) est d’abord utilisé pour extraire des caractéristiques
spécifiques à la scène. Ensuite, un second petit CNN est utilisé pour générer des
régions du spectre susceptibles de contenir des objets (le RPN). Pour chacune de
ces régions, un autre petit réseau de neurones est utilisé pour déterminer la classe
de l’objet présent dans la région ainsi que sa position exacte.

convolutionnel (CNN) spécifique aux données radar, dénommé DAROD, léger en
mémoire, nécessitant peu d’opérations est donc proposé et intégré à un modèle
Faster R-CNN. Ce réseau est inspiré de l’architecture VGG [Simonyan 2015] et
est composé de trois blocs de convolutions. Une pratique courante en apprentissage
profond consiste à réduire la taille de la donnée d’entrée à mesure que la profondeur
de réseau augmente. Les dimensions du spectre représentant des informations de
distance et de vitesse, la résolution spatiale du spectre est réduite d’un facteur
deux dans la dimension Doppler pour minimiser la perte d’information de vitesse
des objets. Également, pour chaque région proposée par le RPN, la vitesse de
l’objet dans la région est estimée et ajoutée comme information additionnelle pour
améliorer la classification de l’objet.

Le modèle proposé, est entraîné sur deux jeux de données différents (CAR-
RADA [Ouaknine 2021b] et RADDet [Zhang 2021]). De manière générale, les
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expériences montrent qu’un modèle d’apprentissage profond atteint de très bonnes
performances de détection en utilisant uniquement des données radar brutes de type
spectres distance-vitesse. DAROD se montre plus performant que l’implémentation
originale de Faster R-CNN (qui utilise un modèle créé pour des images caméras,
ResNet-50 [He 2016]), ainsi que le modèle RADDet [Zhang 2021] spécifiquement
développé pour des données radar, tout en ayant un coût calculatoire moindre.
Des expériences supplémentaires montrent aussi que l’ajout de l’information de
vitesse comme information additionnelle pour aider la classification améliore les
performances du modèle. Enfin, les comparaisons avec des approches classiques
(détection avec un algorithme CFAR [Blake 1988], regroupement de cibles et suivi
de cibles) montrent qu’une approche basée sur de l’apprentissage profond améliore
la précision de localisation des objets et diminue le nombre de fausses détections,
confirmant la promesse de l’IA pour le radar automobile.

Détection et identification d’objets en temps réel à partir
de données radar brutes

La seconde étude de cette thèse est dédiée à la détection d’objets à partir de données
radar en temps réel. Cette étude, un peu plus générale, vise à exploiter l’information
temporelle pour améliorer les performance de détection des détecteurs d’objet radar
basées sur de l’apprentissage profond. Les modèles utilisés dans la première étude
ont montré de bonnes performances de détection et de classification. Cependant,
leurs capacités à différencier des objets de classes similaires (comme des piétons et
des cyclistes) sont limitées. En radar, exploiter l’information temporelle est cruciale
car la signature d’un objet évolue au cours du temps et varie selon plusieurs fac-
teurs tels que sa distance par rapport au radar, son orientation et sa classe. Ainsi,
l’exploitation de l’information temporelle, c’est-à-dire l’utilisation de plusieurs spec-
tres radar à des pas de temps successifs, pourrait permettre d’apprendre des infor-
mations comme la dynamique de l’objet et donc de limiter la confusion entre classes.

Récemment, différent travaux ont vu le jour dans le but d’apprendre des dépen-
dances temporelles entre différents spectres radar ou entre objets. Principale-
ment, ces approches reposent sur des convolutions temporelles [Ouaknine 2021a,
Wang 2021b, Ju 2021], sur des réseaux de neurones récurrents convolutionnels
[Major 2019] ou sur des modèles d’attention [Li 2022]. Cependant, la plupart de ces
méthodes ont du mal à capturer des dépendances à long terme et sont souvent non-
causales (elles utilisent des informations du passés et du futur) et donc impossibles
à utiliser en temps réel.

Dans le but d’extraire des dépendances spatio-temporelles entre objets, un nou-
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veau modèle mélangeant convolutions et réseaux de neurones récurrents est pro-
posé. Contrairement à la plupart des modèles de détection temporels pour du
radar, le modèle proposé, appelé RECORD, est causal, c’est-à-dire qu’il n’utilise
que l’information passé pour effectuer une prédiction de la position des objets à un
instant donné. Le modèle proposé consiste en un modèle mélangeant convolution
et LSTMs convolutionnels [Shi 2015] à différentes résolutions afin d’apprendre à
extraire des informations pour des objets de différentes tailles. Pour satisfaire les
contraintes d’un modèle temps réel, des convolutions et des LSTMs convolutionnel
efficients sont utilisés (Inverted Residual Bottleneck blocs [Sandler 2018] et Bottle-
neck LSTM [Zhu 2018]). L’architecture étudiée ayant pour but d’être générique, elle
peut traiter tout types de données radar brutes (RD, RA, RAD) et apprendre dif-
férentes tâches de détection d’objet (détection et segmentation). Deux variantes de
l’architecture sont proposées: simple vue (RECORD, voir Figure 4a) et multi vues
(MV-RECORD, voir Figure 4b). Alors que l’architecture simple vue est entraînée
à détecter des objets dans l’espace distance-vitesse ou distance-angle, la multi vues
utilise un encodeur par vue et est entraînée à détecter des objets simultanément
dans l’espace distance-vitesse et distance-angle. Deux types d’entraînement sont
proposés: buffer et online. L’approche buffer consiste à entraîner le modèle sur des
séquences d’environ une seconde et à prédire la position des objets dans la scène
uniquement en fonction des N précédents spectres. La mémoire (ses états) des Con-
vLSTMs est réinitialisée toutes les N spectres. L’inconvénient de cette approche est
qu’elle nécessite de sauvegarder N spectres en mémoire avant de faire une prédic-
tion. L’approche online, la plus efficace, consiste à entraîner le modèle à prédire la
position des objets dans la scène pour chaque pas de temps. Le modèle est entraîné
sur des séquences plus longues (environ deux secondes) sans jamais réinitialiser
la mémoire des ConvLSTMs. Le modèle apprend ainsi à garder et supprimer les
informations nécessaires selon les situations.

En raison de sa haute fréquence d’image (30 image par seconde) et de sa grande
taille comparée à CARRADA [Ouaknine 2021b], RECORD est d’abord prototypé
sur la base de données CRUW [Wang 2021c] sur des spectres distance-angle. Les
performances de RECORD sont comparées à différents modèles basés sur des convo-
lutions temporelles [Ju 2021], de l’attention [Fare Garnot 2021], des Transformers
[Jiang 2023] et des variantes de RECORD n’utilisant pas le temps. Dans la plupart
des scénarios de conduite, RECORD est plus performant que ses concurrents tout
en étant plus efficace en terme de nombre de paramètres, d’opérations et de temps
d’inférence. Les versions online et buffer montrent des performances similaires,
cependant, la version online est bien plus efficace et adaptée pour être embarquée.

Entraîné sur la base de données CARRADA [Ouaknine 2021b], le modèle pro-
posé surpasse le modèle état de l’art TMVA-Net [Ouaknine 2021a] dans plusieurs
cas pour les versions online et buffer : multi-vues (RD et RA), simple vue (RD).
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(b) Architecture du modèle multi vues MV-RECORD. Chaque encodeur utilise
l’architecture de RECORD présentée en Figue 4a. Les blocs en pointillées correspondent
à une opération optionnelle, appliquée seulement si les cartes de caractéristiques ont des
tailles différentes.

Figure 4: Architectures des modèles RECORD et MV-RECORD.

Comme pour les expériences sur la base de données CRUW, les modèles RECORD
et MV-RECORD sont plus efficients que TMVA-Net. Bien qu’intéressant pour
la recherche, les approches multi vues sont longues et difficiles à optimiser et à
intégrer dans un système radar. À mesure que la résolution des radar augmente, la
quantité de mémoire nécessaire à la production des spectres RA et RAD augmente.
En conclusion, cette étude suggère que les modèles simple vue semblent plus
appropriés pour traiter des données radar brutes et pour détecter des objets.
Appliqués sur des spectres RD et couplés à un algorithme d’estimation d’angle
d’arrivée, ils devraient permettre d’améliorer les performances de détection et de
classification des radars.

Apprentissage auto-supervisé pour de la détection
d’objets radar

La dernière étude de cette thèse présente un travail préliminaire pour apprendre à
détecter des objets avec peu de données radar annotées. L’annotation des don-
nées est cruciale en apprentissage profond pour apprendre de bonnes représen-
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Figure 5: Vue d’ensemble de RICL. Deux réseaux sont utilisés pour encoder les car-
actéristiques de chaque spectre (un réséau online et un réseau target). L’opération
RoIAlign [He 2017] est utilisée pour extraire les caractéristiques de chaque objet dé-
tecté par CFAR. Une fonction de coût contrastive est appliquée pour chaque paire
d’objet.

tations pour la détection d’objets. L’annotation des données radar étant com-
pliquée, la plupart des auteurs de base de données radar annotent les jeux de
données de manière semi-automatique [Ouaknine 2021b, Wang 2021c, Zhang 2021,
Rebut 2022]. Cependant, ces annotations reposent sur la fusion des détections à
l’aide d’une caméra [He 2017] et des détections du radar (obtenues avec des méth-
odes classiques). Une telle méthode peut mener à des mauvaises détections ou des
objets manqués. Le but de cette dernière étude vise donc à réduire la quantité de
labels nécessaires à l’entraînement des modèles de détections d’objets utilisant des
données radar, en les pré-entraînant de manière auto supervisée et en les spécialisant
à une tâche de détection avec des annotations manuelles.

En utilisant un apprentissage contrastif, une extension de la méthode SoCo
[Wei 2021] est proposée pour apprendre des représentations de ce qu’est un objet
dans un spectre RD, sans utiliser de labels (appelé RICL). Une vue d’ensemble de la
méthode est présentée en Figure 5. L’idée consiste à extraire la position d’un même
objet à deux pas de temps successifs dans un spectre RD (à l’aide d’un algorithme
de type CFAR), d’encoder cette représentation à l’aide d’un réseaux de neurones
convolutionnel et de maximiser la similarité entre ces objets pour en extraire des
informations relatives à leurs classes (inconnues au moment de l’entraînement). Une
fois le modèle pré-entraîné (les représentations des objets apprises), le modèle est
spécialisé sur une tâche donnée. Ici la détection d’objets.

Dans cette étude, le réseau de neurones convolutionnels choisi est un ResNet-50
[He 2016]. Ce modèle est pré-entraîné et spécialisé sur la base de données
CARRADA [Ouaknine 2021b], et des spectres RD sont utilisés. Le modèle de
détection choisi est le même que pour la première étude, à savoir un Faster
R-CNN. Pour tester l’efficacité de la méthode, le modèle est spécialisé pour
de la détection d’objets avec différentes quantités de labels, allant de 100% à
5%. Des comparaisons en utilisant un pré-entraînement différent (supervisé) sur
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une base de données d’images naturelles (ImageNet [Russakovsky 2015]) sont
également faites. En utilisant 10% et 20% de données, pré-entraîner Faster
R-CNN avec RICL améliore les performances de détection par rapport à un
entraînement avec une initialisation aléatoire. Dans le cas où plus de données
labélisées sont utilisées, le pré-entraînement proposé ne semble pas améliorer
les performances. En revanche, le pré-entraînement d’un ResNet-50 sur le jeu
de données ImageNet améliore les performances de détection peu importe la
quantité de labels. Ces travaux étant préliminaires, plusieurs pistes d’amélioration
existent. Premièrement, la méthode utilisée pour associer les objets à deux pas
de temps successif est simpliste. L’utilisation d’un algorithme de suivi de cibles
pour associer les objets ensemble semble plus adéquate et plus précise. Également,
l’apprentissage auto-supervisé repose sur la possibilité d’apprendre d’une grande
quantité de données non annotées. En radar, les jeux de données sont petits
et CARRADA est l’un des plus petit. Pré-entraîner le modèle à partir de jeux
de données plus grand comme RADIal [Rebut 2022] est une autre piste de recherche.

Conclusion

Pour conclure, cette thèse montre le potentiel de l’utilisation de modèles d’IA pour
améliorer les capacités de perception des radar automobiles en utilisant des données
brutes: spectres distance-vitesse, distance-angle et distance-angle-vitesse. Ce travail
a montré que des algorithmes d’IA utilisant ces données brutes peuvent se substituer
aux traitements basés sur les nuages de points, plus coûteux et nécessitant une
chaîne de pré- et post-traitement plus lourde. Il a également permis d’évaluer et
de mieux comprendre les avantages et inconvénients des différents modèles, tâches
de détection, et types de données, d’un point de vue des performances de détection
mais aussi en vue de l’intégration dans une chaîne temps-réelle et embarquée. Ce
travail souligne l’évolution constante de la synergie entre IA et radar, ouvrant la
voie à des transports plus sûrs et plus intelligents.



Introduction

In recent years, driven by the need for safer and more autonomous transport sys-
tems, the automotive industry has undergone a paradigm shift towards the inte-
gration of a growing number of advanced driver assistance systems (ADAS, Figure
7). As we navigate the journey from low ADAS levels (driver assistance, partial
and conditional automation) toward higher levels of driving automation (levels 4
and 5, see Figure 6), robust perception systems have become paramount. Percep-
tion forms the cornerstone of ADAS systems, allowing vehicles to represent their
surroundings through multiple sensors, enabling informed decision-making for safer
and more efficient driving scenarios.

Among the array of sensors employed in perception, the primary sensing tech-
nologies for ADAS systems are cameras, LiDAR and radars. Ultimately, there is no
one-size-fits-all sensor solution. Each sensor has unique strengths and weaknesses
and can complement or provide redundancy to the other sensor types [Gu 2022].
High-resolution camera sensors appear indispensable for reading traffic signs or de-
tecting and classifying objects. The ultra-precise angular and fine resolutions at
the range of LiDAR sensors make LiDAR well-suited for high-resolution 3D envi-
ronment mapping. However, cameras and LiDAR technologies’ effectiveness and
reliability become compromised in varying lighting and harsh weather conditions.
Despite the speed and depth information that can be obtained using stereo cameras,
cameras’ ability to measure distance and speed remains extremely limited. Also,
LiDAR’s ability to estimate velocity and detect objects far ahead remains limited.

On the other hand, radar has emerged as a formidable contender due to its

Figure 6: Levels of ADAS and their meaning. Source: [Gu 2022]
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Figure 7: Type of sensors found in ADAS systems. Vehicles with ADAS are
equipped with various cameras and sensors for 360-degree visibility. Source:
https://dewesoft.com/blog/types-of-adas-sensors

unique capabilities in adverse weather conditions or low-light scenarios, and its ro-
bustness in maintaining consistent performance across diverse environments. By
emitting radio waves and measuring their reflections, radar allows for highly accu-
rate speed and distance measurements. While LiDAR illuminates the target scene
with sparsely placed laser beams, radar illuminates the scene seamlessly. LiDAR
may miss smaller targets at greater distances if the targets are situated between
the sharply defined laser beams. As a result, radar is a much more reliable sensor
for longer-range operation [Gu 2022]. Moreover, environmental debris and water
drop refraction introduced by adverse weather conditions will not impair radar op-
erations.

Combined, cameras, LiDAR and radar guarantee a 360° safety type cocoon
around the vehicle as shown in Figure 7. While sensor fusion has emerged as a crit-
ical approach for enhancing the perception accuracy and the safety of ADAS systems
(by adding sensor redundancy), the efficacy of fusion hinges upon the robustness
and the performance of individual sensor processing. Driven by the recent surge in
deep learning and computer vision, and the large number of automotive datasets
[Ettinger 2021, Urtasun 2012, Caesar 2019] with cameras and LiDAR data, the re-
search community has seen significant strides in the development of sensor-specific
perception and sensor fusion involving cameras and LiDARs. However, despite its
distinctive strengths, the radar has been sidelined for artificial intelligence (AI)-
driven perception tasks. This dearth of exploration is attributed to several factors,
including the limited availability of radar datasets, the inability of radar to capture

https://dewesoft.com/blog/types-of-adas-sensors


Introduction 13

Figure 8: Example of radar point clouds. Source: [Gu 2022]

colour information, its limited angular resolution compared to camera and LiDAR
sensors and the inherent challenges of processing such data using AI.

Focusing on the radar sensors, this thesis aims to bridge the gap between au-
tomotive radar technology and AI-driven perception. In its current form, radar
data consists of a list of targets (also known as radar point clouds), which contains
information about the position of the target, its velocity and a notion of radar cross
section (RCS) characterising the target (see Figure 8). However, radar point clouds
require significant pre and post-processing steps before being used by AI models.
Also, these processing steps filter the raw signal reflected by objects, which can
affect the performance of artificial intelligence algorithms. One alternative to point
clouds consists of representing the signal reflected by the objects as a spectrum
which represents the environment in distance and velocity (range-Doppler, RD),
distance and angle (range-angle, RA), or range, angle and velocity (range-angle-
Doppler, RAD).

This thesis proposes leveraging radar spectrum representations to detect and
identify road-user objects in complex environments. In essence, this thesis aims
to propose deep learning algorithms tailored explicitly for radar data and study if
those algorithms can substitute conventional radar processing steps. This thesis
was conducted at the ANITI artificial intelligence institute, in collaboration with
the semiconductors company NXP, a world leader in automotive radar transceivers
and microcontrollers. The company is actively involved in building next-generation
radar for enhancing road safety and increasing driver convenience. In this context,
this thesis also serves as a pioneering step in designing AI-enabled radar transceivers
and microcontrollers. The algorithms proposed in this thesis will have to meet the
constraints of the automotive environment: low energy consumption, low complex-
ity and fast reaction time.
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Thesis overview

First, we give an introduction to automotive radar, its role in ADAS systems and
its limitations in Chapter 1. Then Chapter 2 gives an overview of prior works
to this thesis. Particularly, we review the literature on AI for automotive radar
perception and the limits of current methods.

Second, we investigate similarities between an image-based object detection model
and radar data in its range-Doppler representation. Radar signal can be trans-
formed into an image-like spectrum containing the objects’ position and speed but
remains different from camera images. Regarding the data’s small size and the raw
radar dataset’s limited size, it is challenging to use a computer vision model directly
on it. We propose in Chapter 3 to adapt a Faster R-CNN [Ren 2017] model for
radar object detection using range-Doppler data. We study the distinctive char-
acteristics of range-Doppler data compared to camera images, and we propose a
lightweight radar-specific feature extractor to detect objects in range-Doppler view.
We then compare this approach to traditional radar object detectors.

Third, we tackle the problem of online object detection for radar. Time is crucial
information for perception. For example, it allows for exploiting correlations be-
tween objects in successive frames. In radar, exploiting the time is crucial as an
object’s signature evolves depending on many factors like the distance, the angle
of arrival and the object’s class. In Chapter 4, we propose a model leveraging
convolutions and convolutional recurrent neural networks for online radar object
detection. The proposed model learns spatio-temporal features from several types
of radar data (range-Doppler, range-azimuth or range-azimuth-Doppler) and can
perform different perception tasks, ranging from object detection to semantic seg-
mentation. Finally, as our model aims to operate in a computationally constrained
environment, we propose an efficient model with few parameters and operations.

In deep learning, data annotation is a key parameter to succeed in learning mean-
ingful representations for object detection, semantic segmentation or classification.
However, radar data is not human-friendly; therefore, it is challenging to label it.
In Chapter 5, we propose a preliminary work to learn with less data. We leverage
self-supervised learning frameworks from computer vision and radar knowledge, and
we propose a pre-training strategy to reduce the labelling effort and train models
with less data.

For each of the works presented in this thesis, aiming to bridge the gap between au-
tomotive radar technology and AI-driven perception, we present the limitations and
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the general perspectives to design future generations of radar perception algorithms.
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1.1 Radar in ADAS systems

In the quest for safer and more autonomous transportation systems, advanced driver
assistance systems (ADAS) have become increasingly important in our lives, with
a growing number of vehicles being equipped with these advanced technologies.
In 2021, approximately 33% of new vehicles in the United States, Europe, Japan
and China had ADAS features. In 2030, 50% of new vehicles are expected to be
ADAS-enabled [Nagpal 2022].

ADAS refers to a range of technologies and features designed to assist drivers in
operating their vehicles [Galvani 2019]. It provides safety and convenience through
various functionalities such as collision avoidance, lane departure warning, adaptive
cruise control and automated parking. These systems rely on sensors, such as radar,
cameras, lidar and V2X (Vehicle-to-Everything) to gather and interpret real-time
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Figure 1.1: Type of radars found in ADAS systems. Different types of radars
(short range, long range, corner), with different functions are arranged all around
the vehicle. Source: NXP Semiconductors

data about the vehicle’s surroundings. As most road crashes come from human
error, ADAS enables proactive actions to enhance safety and improve the driving
experience [Brookhuis 2001].

Among camera and LiDAR sensors, radar sensors are good candidates for ADAS
applications as they bring complementary information to other sensors. In particu-
lar, because radar sensors emit electromagnetic waves, they can operate in difficult
weather conditions (night, fog, snow, dust, and intense light). Also, they allow
more accurate distance and velocity estimation in a single capture compared to
camera and LiDAR sensors. Therefore, radar sensors are appropriate for, but are
not limited to:

• Blind Spot Detection (BSD)

• Lane Change Assist (LCA)

• Adaptive Cruise Control (ACC)

• Automatic Emergency Braking (AEB)

When arranged all around the vehicle, and combined with other sensors, radars
allow creating a 360-degree safety cocoon as shown in Figure 1.1.

1.2 Radar principle

Radar (RAdio Detection and Ranging) is an active sensor that transmits radio fre-
quency (RF) electromagnetic (EM) waves and uses the reflected waves from objects
to estimate the distance, velocity, and azimuth and elevation angles of these tar-
gets [Patole 2017]. Figure 1.2 illustrates the principle of radar. Radars can operate
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Figure 1.2: Principle of a radar. A radar emits electromagnetic waves and uses the
reflected waves from objects to estimate the distance, velocity, and azimuth and
elevation angles.

in frequency bands ranging from 3MHz to 300GHz. Automotive radar systems
generally use 24GHz or 77GHz bands to achieve high velocity and range resolution.

Distance, speed and direction of arrival are estimated by computing the differ-
ence between the emitted and received signals. Targets can be detected depending
on their radar cross section (RCS). The RCS characterises the target and measures
how detectable an object is by the radar. The RCS is expressed in m2 or dB·m2.
For example, the RCS of a pedestrian, a car and a bicycle are around 1 m2, 10 m2

and 2 m2 respectively [Richards 2005]. Nevertheless, this varies greatly depending
on the target’s orientation or distance from the radar. The radar equation 1.1 shows
how the range affects the power reflected by a target.

1.2.1 The radar equation

Considering Pt, the nominal transmit power, and a target at a distance R, then the
received power is related to the transmit power of a radar:

Pr = PtGσλ
2

(4π)3R4 (1.1)

where G is the antennas gain, σ is the RCS of the target, and λ is the wave-
length of the emitted EM wave. Equation 1.1 is known as the radar equation
[Richards 2005]. For automotive radar, G, Pt and λ vary little. Hence the power
received back from a target depends on its RCS σ and decreases proportionally to
R4. The radar equation determines the maximum range Rmax (in meter) of radar
for a given target RCS:

Rmax = 4

√
PtGσλ2

Pr,min(4π)3 (1.2)
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LRR
(front radar) MRR (corner radar) SRR

Distance range (Rmin −Rmax) 10-250 m 1-100m 0.15-30m
Range resolution (δr) 0.5m 0.5m 0.1m
Range accuracy (∆r) 0.1m 0.1m 0.02m
Azimuth field of view ± 15° ± 40° ± 80°

Angular accuracy (∆ϕ) 0.1° 0.5° 1°
Bandwidth 600MHz 600MHz 4GHz

Table 1.1: Automotive radar sensors classification and their associated characteris-
tics [Hasch 2012]

Where Pr,min (W) is the smallest perceivable power.

1.2.2 Automotive radar classification and waveform

Depending on the application (see Figure 1.1) and the waveform used, automotive
radar exhibits different characteristics. These characteristics include:

• Maximum range (Rmax): the maximum range at which a target can be de-
tected.

• Maximum speed (vmax): the maximum non-ambiguous speed the radar can
detect. Targets with a relative speed vr higher than vmax will be detected but
their speed will be incorrect.

• Range resolution (δr): how close in range can two objects of equal strength
be and theoretically still be detected as two objects.

• Speed resolution (δv): how close in velocity can two objects of equal strength
be and theoretically still be detected as two objects.

• Accuracy: how precisely the measurement can be made. Accuracy informs
about the uncertainty about the real position of target. We refer the range
and the angular accuracy to as ∆r and ∆ϕ respectively.

According to the characteristics mentioned above, automotive radars can be
classified in three different categories: short-range radar (SSR), medium-range radar
(MRR , or corner radar), and long-range radar (LRR, or front radar). Short-
range radars require higher range resolution, accuracy and field of view than long-
range radars, as they must detect objects close to the car. However, the different
categories of radar are vagueness, evolve and need to be standardised in the radar
marketplace. Therefore, Table 1.1 gives a rough estimate of the characteristics of
the different types of radar sensors.
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Automotive radar classes, summarised in Table 1.1, present diverse specifications
in terms of several fundamental radar system performance metrics (range and ve-
locity resolution, angular direction, SNR (signal-to-noise ratio) [Patole 2017]. The
type of waveform the radar emits also affects these metrics. Automotive radar wave-
forms are either continuous waves (CW) or pulsed and modulated in frequency or
phase. Modulated radar waveforms include FMCW (Frequency Modulated Con-
tinuous Wave), PMCW (Pulsed Modulated Continuous Wave), SFCW (Stepped
Frequency Continuous Wave) or OFDM (Orthogonal Frequency-Division Multi-
plexing). Each waveform type has its advantages and limitations in processing,
implementation, and performance.

Today, most automotive radars use FMCW waveforms. FMCW radars transmit
periodic wideband frequency-modulated pulses, whose angular frequency increases
linearly during the pulse (also known as a chirp). While simple CW waveforms
can determine velocity but cannot determine target range, FMCW radars allow
simultaneous range and velocity estimation with high range and velocity resolution.
The ADC (Analog to Digital Converter) is an expensive piece of hardware in radar.
To satisfy the Nyquist-Shannon theorem, the sampling rate (fs) of the ADC must
satisfy:

B <
fs

2 (1.3)

where B is the desired detectable frequency band. Because FMCW radars use a
narrow band, they require a low sampling rate (around 80 MHz for LLRs) com-
pared to PMCW and OFDM radars. Thus, they are cheaper and are preferred for
automotive applications.

1.3 FMCW automotive radar

1.3.1 FMCW radar system

System overview Figure 1.3 illustrates a 1Tx-1Rx, FMCW radar system, i.e. a
system with one emitting (Tx) and one receiving (Rx) antenna. Chirps are emitted
through an Tx antenna. The receiving Rx antenna receives the signal reflected
by targets in the radar’s field of view. Then, a mixer multiplies the sent and the
received signals to produce a low-frequency beat signal, whose frequency gives the
target range. A low-pass filter is used to filter out unwanted high frequencies. The
ADC digitises the signal at periodic sampling intervals during each chirp. Finally,
signal processing is performed to obtain radar point clouds.

Transmitted FMCW signal An FMCW radar periodically transmits P chirps
over NT x transmitting antennas to estimate the range, the velocity and the DoA of
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Figure 1.3: FMCW radar system overview. Chirps are emitted through an antenna.
The receiving antenna receives the signal reflected by targets in the radar’s field
of view. Then, a mixer multiplies the sent and the received signals to produce a
low-frequency beat signal, whose frequency gives the target range. A low-pass filter
is used to filter out unwanted high frequencies. The ADC digitises the signal at pe-
riodic sampling intervals during each chirp. Finally, signal processing is performed
to obtain radar point clouds.

the targets. For nth antenna, we express the emitted signal as:

s(t) = At exp j2π(fc + B

2T t)t (1.4)

= At exp j(2πfct+ πKt2) 0 ≤ t ≤ T0 (1.5)
= At exp jΦ(t) (1.6)

where K = B
2T , fc is the carrier frequency, B is the bandwidth of the signal, T0

is the duration of the chirp (fast time), T is the pulse period, and Ar is the am-
plitude related to the transmit power. Figure 1.4 depicts one chirp profile and its
parameters. As shown in Figure 1.4, different parameters define the FMCW signal:

• fc: the starting frequency of the chirp (76-81 GHz)

• B: the bandwidth of the chirp (hundreds of MHz)

• Tdwell: a pause time between chirps (few µs)

• Tsettle: the time for the ramp to be linear. During this phase, there is no
acquisition by the ADC.

• TF F T : the time during which the ADC acquires the data (tens of µs)

• Treset: the time needed for the ramp generator to reset before the next chirp
(few µs)

• Tramp: Tsettle + TF F T , the total time of the ramp. Also referred to as T0 in
Equation 1.5.
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Figure 1.4: FMCW radar chirp and parameters.

• Tchirp: Tramp + Treset + Tdweel, the total time of the chirp. Also referred to as
T in Equation 1.5.

• Nchirp: the total number of chirps emitted within a frame, or sequence of
chirps (usually 256, 512 or 1024).

• Tframe: the duration of a radar frame. It comprises the emission of Nchirp of
duration tchirp and the processing time. Tframe = Nchirp ∗ tchirp

Received signal The signal r(t) received at time t from a single reflector at radar
range r = cτ is related to the signal transmitted at time t− 2τ earlier as:

r(t) = Ar exp j(2πfc(t− 2τ) + πK(t− 2τ)2), 0 ≤ t ≤ T0 (1.7)

where c is the speed of light, and Ar is the amplitude of the received signal.
After mixing (IF block, Figure 1.3), the mixed signal for a single chirp duration

(but this can be generalised to all chirps) is:

y(t) = s(t)r(t) (1.8)
= AtAr exp j(Φ(t) − Φ(t− 2τ)), 0 ≤ t ≤ T0 (1.9)

This mixed signal has components at the sum and difference frequencies of the two
signals. After filtering the sum of the frequencies (which are outside the receiver’s
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bandwidth), the beat signal x(t) can be expressed as follows:

x(t) = A exp j(4πτKt+ 4πfcτ) (1.10)

= A exp j(4π(r
c

)Kt+ 4πfc(
r

c
)) (1.11)

= A exp j(2πfb(r)t+ ψ(r)) (1.12)

where A is a modulation constant (which is related to Ar and At). Equating
Equations 1.11 and 1.12, we have the beat frequency fb of the IF signal:

fb(r) = 2K
c
r (1.13)

and the phase of the IF signal:

ψ(r) = 4πfc

c
r = 4π

λ
r (1.14)

We can see that the phase and the beat frequency of the IF signal are range de-
pendent. While the beat frequency allows distance measurement, we will see in
Section 1.3.3 the phase variation provides an exquisitely sensitive measure of range
variation which is used in Doppler processing over multiple chirps in the frame.
Finally, we can express the sampled ADC output x[j] at ADC sample j within a
chirp from a target at range r by setting t = j

fADC
:

x[j] = A exp j(2πfb(r)(
j

fADC
) + ψ(r)) (1.15)

where fADC is the sampling frequency of the ADC. For each chirp, the ADC samples
the signal at periodic intervals to obtain a grid-like representation of the signal as
shown in Figure 1.6.

Figure 1.5: Radar signal processing chain. First, the received signal is converted
from the time domain to the frequency domain to extract distance and velocity
information. An object detector is applied to find the range and velocity bins where
there are objects. Then, the azimuth (and the elevation) of objects is estimated.
Finally, some post-processing steps are applied to output the final target list.
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1.3.2 Radar signal processing chain

Figure 1.5 gives a simplified view of the signal processing block of Figure 1.3. We
refer to this as the radar signal processing chain (RSP). After being reflected by
the target, the signal is sampled at even intervals during each chirp as illustrated in
Figure 1.6(1) and a windowing operation is applied. This corresponds to the signal
conditioning block.

Following the signal conditioning, the signal analysis block estimates the dis-
tance and the velocity of objects in the radar’s field of view. A 2D Fast Fourier
Transform (FFT) (range and Doppler FFTs) is applied to the received signal to
measure the difference in frequency and phase between the emitted and received
waves (therefore, the distance and the velocity of an object). We go into the details
of it in Section 1.3.3. Then direction of arrival (DoA) estimation techniques (a 3rd
FFT for example) are applied to estimate the angle of arrival (AoA) of the target.
In the case of Multiple Input Multiple Output (MIMO) radars, MIMO demodula-
tion is applied before the DoA. We explain DoA estimation and MIMO radar in
Section 1.3.5.

In practice, a peak detector such as the Constant False Alarm Rate algorithm
(CFAR) [Blake 1988] is applied after the Doppler FFT to detect potential targets.
This is because computing the 3rd FFT on all the range and velocity bins, and
antennas is computationally demanding. For each potential target, the DoA is
estimated to save computation. We detail the CFAR principle in Section 1.3.4.

Once targets are detected, post-processing steps are applied. It can be
super-resolution algorithms (MUSIC [Schmidt 1986], ESPRIT [Paulraj 1985]) to
estimate better the DoA of targets, clustering (DBSCAN [Ester 1996], K-
means [Lloyd 1982]), target tracking (using Kalman filtering [Kalman 1960,
Bertozzi 2004]) and classification [Rohling 2010, Yamada 2005, Gavrila 2001].

In the following sections, we give details of range, velocity and angle estimation,
target detection and post-processing.

1.3.3 Range and velocity estimation

Range estimation We saw in Section 1.3.1 the range of an object can be easily
determined from the beat frequency fb as:

r = cfb(r)
2K (1.16)

The beat frequency is the difference in frequency between the emitted and the
received signals. Because of the linearity of the frequency variation of the chirp,
this difference in frequency is constant and proportional to the delay τ between the
emitted and received signals as shown in Figure 1.6(1). This difference in frequency
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Figure 1.6: Range and Doppler radar processing. (1) A spectrogram of an FMCW
waveform with carrier frequency fc and bandwidth B. The emitted signal is in
blue, and the received signal is in green. Orange points correspond to the points
sampled by the ADC. (2) The ADC matrix after sampling and the corresponding
Range-Doppler spectrum. Range FFT is first applied for every chirp. Doppler FFT
is then applied for each chirp index (or sample). (3) Illustration of the phase of the
range FFT that evolves according to the relative velocity.

can be precisely measured using an FFT for every chirp (fast-time index) to obtain
the range spectrum. We call this operation the range FFT (Figure 1.6(2)). The
beat frequency fb[m] (in Hz) corresponding to a peak in bin m in the M point range
FFT sampled at fADC is:

fb[m] = mfADC

M
, for 0 ≤ m ≤ M

2 (1.17)

The range of individual objects r[m] can be computed from the beat frequencies
fb[m] present in peaks of the range spectrum:

r[m] = cfb[m]
2K = cmfADC

2MK
, for 0 ≤ m ≤ M

2 (1.18)

The constraint 0 ≤ m ≤ M
2 restricts the range calculation to positive frequencies

and ranges. Negative ranges are meaningless and cannot be computed since the
ADC data is real.

Range limit and resolution For a given ADC sampling frequency fADC , the
maximum range of the radar is inversely proportional to the slope of the chirp and
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appears at the Nyquist bin m = M
2 :

Rmax,ADC = cTrampfs,ADC

4B = cfADC

4K (1.19)

The bin spacing in a M point range FFT is an estimate of the range resolution δr:

δr = cTramp

2BTchirp
= cfADC

2MK
(1.20)

Velocity estimation The velocity estimation is based on a phenomenon called
the Doppler effect. Suppose a target is moving ahead from the radar with a velocity
v. With a relative motion between the target and the radar, the reflected waves are
now delayed by time τ = R±vt

c . The time dependant delay term causes a frequency
shift in the received wave known as the Doppler shift:

fd = ±2v
c

(1.21)

The beat signal x(t) in Equation 1.12 now includes the Doppler shift:

x(t) = A exp j(2π(fb(r) + fd) + ψ(r)) (1.22)

The beat frequency fb now depends on the target range r and the target’s relative
speed v = ∂r

∂t . The two cannot be separated using the beat frequency of a single
pulse. Instead, multiple chirps are used to estimate the velocity. For the same
sample, the small target’s variation in distance will slightly change the phase ψ(r)
between two chirps. This phase appears in the phase of the range FFT bin as shown
in Figure 1.6(3). Differentiating Equation 1.14 with respect to time gives:

dψ(r)
dt

= 4πfc

c

dr

dt
= 4πfcv

c
(1.23)

where v is the reflector’s radial velocity. Therefore, by applying a FFT on P points
(the number of emitted chirps) for each chirp index (the fast time), we can estimate
the velocity of a target at range r. We call this operation the Doppler FFT, and
this operation results in a range-Doppler (RD) spectrum (or map). The target
velocity v[p] corresponding to a peak in the Doppler FFT bin p is:v[p] = pcfP RF

2Nfc
, for 0 ≤ p ≤ P

2

v[p] = (p−P )cfP RF

2Nfc
, for P

2 ≤ p ≤ N
(1.24)

where fP RF = 1
Tchirp

is the pulse repetition frequency (PRF). If there is a target at
range bin m and Doppler bin pn then, a peak in the RD map at position (m, p) can
be seen, as shown in Figure 1.6.1
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Velocity limit and resolution The maximum target velocity (in m/s) is a func-
tion of the PRF:

vmax,P RF = λ

4Tchirp
= cfP RF

4fc
(1.25)

The bin spacing in a N point Doppler FFT is an estimate of the velocity resolution
δv:

δv = c

2fcNchirpTchirp
= cfP RF

2fcNchirp
(1.26)

1.3.4 Target detection

Figure 1.8 shows the procedure to compute the DoA of targets after range and
velocity estimation. Before estimating the DoA of targets, one must first detect
potential targets in the radar’s field of view. Recall that a potential target cor-
responds to a peak in the range-Doppler spectrum. Most FMCW radars apply a
Constant False Alarm Rate [Blake 1988] algorithm to detect peaks in the RD spec-
trum. CFAR automatically adapts the threshold to keep the false alarm rate at the
desired level. Therefore, it will also adapt the probability of detection.

The most common CFAR detector is the cell-averaging detector (CA-CFAR)
[Rohling 1983]. First, the RD map is divided into a grid of cells; each cell contains
information about the radar reflections at a specific range and velocity. For each
cell in the map (cell under test, CUT), the noise is estimated using a 2D sliding
window:

Pn = 1
N +M

N∑
j=1

M∑
k=1

xjk (1.27)

where N+M are the number of training cells in the 2D window and xjk are the cells
in the window. Figure 1.7 shows the 2D window of a CFAR algorithm. Generally,
guard cells are placed adjacent to the CUT to prevent signal components from
leaking into the training cells, which could affect the noise estimate. Then, the
threshold factor can be written as [Richards 2005]:

α = (N +M)(P− 1
N+M

fa − 1) (1.28)

where Pfa is the desired alarm rate (set empirically). The detection threshold is
set as:

T = αPn (1.29)

If the value of the CUT is higher than T , there is a potential object at the cell
coordinate. The coordinate is kept in memory for further processing. It is also
possible to represent the output of the threshold operation as a binary detection
mask.
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Figure 1.7: 2D CFAR window. Source: [Hameed 2022]

1.3.5 Direction of arrival estimation

Basic angle estimation Estimating the angle of arrival of an object requires at
least two Rx antennas. Figure 1.9 shows a radar that has one Tx and four Rx
antennas separated by a distance d (Single Input Multiple Output, SIMO). The
signal emitted by the Tx antennas is reflected and received by all the Rx antennas.

However, the signal from the object must travel an additional distance of
d sin θ to reach the second Rx antenna. This corresponds to a phase difference
of ω = 2π

λ d sin θ between the signals received between the first and the second Rx

antennas. For each subsequent antenna, an additional phase-shift ω with respect to
the preceding antennas is added. This results in a linear progression in the phase
of the signal across the N antennas [Rao 2018] (for example, [0, ω, 2ω, 3ω]). Simi-
larly to the range FFT, the differential distance from the object to each antenna
results in a phase change in the Doppler FFT peak. Therefore, ω (so the angle)
can be estimated by performing an FFT across the NRx antennas (thus, the NRx

RD maps). We refer to this operation as the angle FFT. This results in a novel
radar representation, namely the Range-Angle-Doppler (RAD) map. We sum-

Figure 1.8: DoA estimation in radar.
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marise the processing in Figure 1.10. Summing along the Doppler axis results in a
Range-Angle (or range-azimuth, RA) spectrum.

In practice, the angle FFT is computed across the NRx antennas only on the
range and the Doppler bins where an object is detected, as shown in Figure 1.8.
To enhance the spatial resolution of the radar, super-resolution algorithms (MUSIC
[Schmidt 1986], ESPRIT [Paulraj 1985]) can be used. Super-resolution algorithms
use multiple radar measurements of an object and fuse them to estimate its position
accurately.

Introduction to MIMO radars Increasing the number of antennas results in
an angle FFT with more points, improving the angle estimation accuracy and en-
hancing the angle resolution. Nevertheless, adding an infinite number of receiving
antennas is not feasible in practice.

Imagine we want to double the angle resolution of our radar in Figure 1.9. One
way to do this would be doubling the number of RX antennas, which would bring
us to add four antennas. Instead, another way to achieve the same configuration is
to add one Tx, as shown in Figure 1.11.

As for the SIMO case, transmission from Tx1 results in a phase shift of
[0, ω, 2ω, 3ω] at the four Rx antennas. Because the space between Tx1 and Tx2

equals 4d, any signal from Tx2 travels an additional distance of 4d sin θ. Conse-
quently, transmission from Tx2 results in a phase shift of [4ω, 5ω, 6ω, 7ω]. Gathering
the RD maps from all the virtual antennas and applying an FFT across the virtual
antennas allows us to estimate ω, hence the angle of arrival.

Generally, with NT x and NRx antennas, it is possible to generate a virtual an-
tenna array of NT x ×NRx. Employing MIMO techniques results in a multiplicative
increase in the number of (virtual) antennas [Rao 2018].

MIMO modulation All Rx antennas must be able to separate the signals cor-
responding to different Tx antennas. One way of doing it is to have the Tx trans-

Figure 1.9: 1Tx-4Rx radar. Source: [Rao 2018]



1.3. FMCW automotive radar 31

Figure 1.10: Range-Angle-Doppler FFT processing for 4 Rx antennas. ADC data
from all the receiving antennas are sampled to create a cube of data. Then three
FFTs are successively applied on the cube to obtain the RAD cube. In practice,
the RAD cube is not used.

Figure 1.11: Principle of MIMO radar. Source: [Rao 2018]

mitting on orthogonal channels (see Figure 1.12(a)). From communication theory,
there are three known ways to make signals orthogonal:

• Time: Each TX transmits signals one at time, using the same spectrum

• Frequency: TXs transmit at the same time, but using a central frequency
shift big enough so that all their spectra don’t overlap.

• Coding: TXs transmit at the same time and frequency, using orthogonal
sequences.

Figure 1.12 show examples of MIMO modulated radar waveforms.

1.3.6 Post-processing steps

Figure 1.13 shows the post-processing steps required to obtain the final target lists.
For safety, automotive radars require multiple measurements to confirm detection.
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Figure 1.12: MIMO modulation strategies. (a) Orthogonality domains for Tx sig-
nals. (b) Time Division Multiple Access (TDMA) modulation. (c) Doppler Division
Multiple Access (DDMA) modulation. (d) Code Division Multiple Access (CDMA)
modulation.

Following the target detection (range and velocity estimation, peak detection and
DoA estimation), targets are ego-motion compensated, clustered and tracked. For
tracking, Kalman filters [Kalman 1960] are typically used. The tracking might be
constrained to moving targets only; this is why targets are first classified as moving
or static. Ego-velocity of the radar can be estimated based on the detections and
used as a filter to separate still-standing and moving targets. Finally, the final
target list consists of the target’s position in cartesian coordinates (x, y), the radial
velocity vr, the RCS σ and the angle of arrival θ of the target.

Figure 1.13: Simplified post-processing operations for target detection.
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1.4 Limits of current radar systems

The target identification problem Although current radar systems work and
are efficient, they present some limitations. First of all, current radar systems do
not have classification ability. They can detect objects but cannot differentiate
them (e.g., is it a car or a pedestrian?). Thus, radar systems sometimes output
undesirable targets that are unnecessary for ADAS tasks. In a future where vehicles
are expected to be autonomous, identifying targets is mandatory to make decisions.
Suppose the camera or the LiDAR are deficient, and the system must use the radar
as a backup sensor. In such specific cases, the radar is expected to output reliable
predictions about the position and the class of the object to help the system to
make a decision. This thesis explores the possibility of using radar data for object
classification using AI.

The complexity of the radar signal processing chain Second, as shown in
Figures 1.8 and 1.13, there are many post-processing steps before obtaining the
target list. However, CFAR, Kalman filtering, or clustering algorithms depend on
many hyper-parameters that affect their performance. Moreover, all these filter-
ing techniques produce very sparse target lists. Post-processing operations ranging
from CFAR to Kalman filtering often reduce a target to a few points. At the same
time, the spectrum (RD, RA or RAD) contains much more valuable information
about the environment. Indeed, the RAD cube is a kind of 3D representation of
the radar’s field of view. For that reason, this thesis aims to leverage the po-
tential of deep learning to reduce the complexity of the radar signal processing
chain and add classification ability to radar. Considering the raw data (RD, RA
or RAD maps), we study deep learning-based object detection and segmentation
algorithm to detect and identify targets using only raw radar data. This work has
been made possible thanks to the release of raw data datasets such as CARRADA
[Ouaknine 2021b]. As an example, prior to our work, Gao et al. [Gao 2019b] and
Akita et al. [Akita 2019] show the potential of deep learning for target recogni-
tion. Also, Fatseas and Bekooij [Fatseas 2019] use object detection algorithm and
Kalman filtering to detect, identify and track targets using only the RD spectrum.
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This chapter gives an overview of the prior work to this thesis. First, we present
deep learning and computer vision fundamentals. Second, we review the literature
for automotive radar perception. In this thesis, we use the term perception for
computer vision applied to radar because it acknowledges the broader process of
acquiring and interpreting sensory information, regardless of the sensing modality
involved, while computer vision traditionally focuses on visual data analysis.

In Sections 2.1 and 2.2, we present deep learning background and some models
for object detection and segmentation in computer vision that are useful for this
thesis. In Section 2.3, we present available automotive datasets for radar perception.
In Section 2.4 and 2.5, we give an overview about the literature on radar perception
for radar point clouds and raw data, respectively.

2.1 Deep learning background

Machine learning and deep learning Deep learning refers to a subset of ma-
chine learning which is a subset of artificial intelligence. A machine learning al-
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gorithm is an algorithm that can learn from data. According to [Mitchell 1997]:
"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.". While traditional machine learning
learns a mapping from hand-crafted representation (features) to a specific output,
deep learning learns not only a mapping from representation to output but also the
representation itself.

In this thesis, task T consists of image classification, segmentation, and object
detection. The performance measure P is specific to the task T. It is used to
measure how well our algorithm performs on unseen data. The experience E is a
set of data points with associated features, also known as a dataset. Each data
point is associated with a label or target in a supervised setting. The target is used
to teach the deep learning algorithm what to do.

Artificial neural networks An artificial neural network (ANN) is a computing
system inspired by the biological neural networks that constitutes animal brains.
The model can be represented with a directed acyclic graph of artificial neurons
connected to each other [Goodfellow 2016]. A neuron is a function that takes a set
of input signal x = (x1, x2, ..., xn) and outputs a single value y:

y = σ(
n∑

i=1
wixi + b) (2.1)

with wi and b are the weights and the bias of the neuron and σ is an activation
function. Typically σ is non-linear to allow the neuron to learn complex non-linear
functions. The most popular activation functions are the sigmoid function σ(a) =

1
1+exp −a , the rectified linear unit (ReLU) σ(a) = max(0, a) and the hyperbolic
tangent function σ(a) = tanh(a). Figure 2.1 depicts the computation of a neuron.

Figure 2.1: Artificial neural neuron. A neuron is a function that takes a set of
input signal x = (x1, x2, ..., xn), computes a weighted sum of the input and apply
an activation function to it to produce the output.
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Figure 2.2: The multi-layer perceptron. Neurons are stacked together to form
layers. The first layer is called the input layer. The last layer is called the output
layer. Other layers are called hidden layers.

In an ANN, neurons are stacked together to form layers, and the network be-
comes a composition of layers. Since an artificial neural network is a composition
of functions, it is a function. Because the information flows through the function
evaluated from the inputs, intermediate functions and finally through the output,
we also refer to ANN as feed-forward neural networks.

A common ANN is the multi-layer perceptron (MLP, Figure 2.2). The MLP
stacks multiple layers of neurons together, where neurons of each layer are connected
to other neurons belonging to different layers through edges with associated weights.
The output of the ith layer of an MLP is computed as:

y(i) = σ(l)(W (l)y(i−1) + b(i)) (2.2)

where W (l), b(i) and σ(i) are the weight matrix, the bias vector and the activation
of the ith layer respectively. Thus, the MLP is θ parameterised function defining a
mapping y = f(x; θ) where θ = ((W (i), b(i)), ..., (W (1), b(1))) are the parameters of
the network, x = (x1, x2, ..., xn) are the input values and y = (y1, y2, ..., ym) are the
output values of the network.

MLPs are not the only type of ANNs. In the following paragraphs we choose
to present two types of neural networks, namely the convolutional neural networks
and the recurrent neural networks. As an example we choose to leave aside the well
known Transformer architecture [Vaswani 2017a].

Training a neural network Training a neural network consists of iteratively
updating the weights θ of the network to minimise a cost function J(θ). In the
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supervised training setting, for a given loss function L, we minimise the empirical
risk:

J(θ) = Ex,y∼p̂data(x,y)[L(f(x; θ), y] = 1
N

N∑
i=1

L(f(x(i); θ), y(i)) (2.3)

Where N is the number of training examples, and y is the target output. The
minimisation process, the optimisation step, uses backpropagation and a gradient
descent algorithm such as the Stochastic Gradient Descent (SGD) [Kiefer 1952,
Robbins 1951].

Recurrent neural networks (RNN) Recurrent neural networks (or RNNs)
[Rumelhart 1986] are a family of neural networks for processing sequential data
(e.g. music, video, text) [Goodfellow 2016]. While a traditional feed-forward neural
network would have separate parameters for each input feature, a RNN shares
the same weights across several time steps. RNNs are called recurrent because
they perform the same task for every sequence element. As show in Figure 2.3, a
RNN takes as input an element of the sequence and outputs a hidden state and an
activation vector. The hidden state acts as the memory of the RNN. It is updated
based on the current input and the previous time step’s hidden state. Let U, V,W be
the shared weights of the RNN, b, c, two bias vectors, and σ1 and σ2 some activation
functions. The traditional RNN is defined as:

h(t) = σ1(b+ V h(t−1) + Ux(t)) (2.4)
ŷ(t) = σ2(c+Wh(t)) (2.5)

Where ŷ(t) is the prediction of the RNN at timestep t and h(t) is the hidden state at
timestep t. RNNs are trained using backpropagation through time (BPTT). BPTT
is a computational technique that allows for the efficient calculation of gradients by
unfolding the network across time and propagating the errors backwards. However,
traditional RNNs cannot handle long-term dependencies and suffer from the van-

Figure 2.3: Left: a recurrent neural network. Right: Unfolded recurrent neural
network.
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ishing gradient problem. The vanishing gradient problem refers to the issue where
the gradients become very small during backpropagation, hindering the training
process and resulting in slow or ineffective convergence. Variants of RNNs have
been proposed to solve this, such as Long-Short-Term-Memory networks (LSTMs)
[Hochreiter 1997] and Gated Recurrent Unit (GRU) [Cho 2014]. LSTMs and GRUs
add additional cells (called gates) to allow the gradient to flow through the network
without vanishing.

Convolutional neural networks (CNN) Considering an input image with size
H×W×C, we want to process with an MLP. In an MLP, every output unit interacts
with every input unit (see Figure 2.2). This means a single MLP would require at
least H × W × C parameters to process each image pixel. Thus, MLPs cannot
scale for high-dimensional data. Moreover, they cannot learn spatial features as the
data is flattened. Convolutional neural networks [Lecun 1989] tackle this issue by
replacing matrix multiplication with convolutions. For the 2D case, the convolution
operation consists of applying a set of C 2D kernels K ∈ Rk1×k2×C over an input
image (or a feature maps) I ∈ RH×W ×C such as:

(K ∗ I)(h,w) =
∑

i

∑
j

∑
c

I(i, j, c)K(h− i, w − j, c) (2.6)

Where h,w ∈ N defines the coordinates in the image (or the feature maps). CNNs
show interesting properties for grid-like data. The kernel weights are shared for the
entire image, reducing the number of parameters of the network. Also, convolutions
are equivariant to translation. This means the representation will be the same if we
move an object in the input image I and apply a convolution on the shifted object.

2.2 Computer vision background

This section presents well-known deep learning algorithms for computer vision for
image classification, object detection and semantic segmentation. Figure 2.4 sum-
marises the different computer vision existing tasks we describe in this section.

2.2.1 Image classification

Image classification is one domain for which deep learning has achieved break-
throughs in the past few years. Image classification is the task of identifying an
object in an image and assigning a class to it. Yann LeCun [Lecun 1989] pioneered
the use of neural networks on image classification using convolutional neural net-
works and backpropagation. The increase in computational power and the release
of large-scale datasets such as ImageNet (ImageNet Large Scale Visual Recognition
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Figure 2.4: Computer vision tasks. Image classification consists in identifying an
object in an image and assigning a class to it. Semantic segmentation (or image
segmentation) is the tasks in which the goal is to categorise each pixel in an image
into a class or object. Object detection aims to detect and locate objects of interest
in an image. Instance segmentation involves identifying and separating individual
objects withing an image.

Challenge, ILSVRC) [Russakovsky 2015] revived the interest of researchers in deep
learning. ImageNet is an object recognition dataset containing over a million images
across 1k of object classes.

AlexNet

Krizhevsky et al. [Krizhevsky 2012] leverage the power of GPUs (Graphical Power
Unit ) and introduced AlexNet, a CNN with a similar architecture as LeNet-5
[Lecun 1989]. AlexNet introduced better non-linearity in the network with the
ReLU activation function and proves ReLU is more efficient for gradient propa-
gation. Moreover, the paper introduced two major deep learning concepts: the
dropout as a regularisation method and the concept of data augmentation to re-
duce overfitting. Finally, Krizhevsky et al. show that deeper networks are better.
The more convolutional layers there are, the more fine-grained features the network
learns for classification. Although now outdated, AlexNet was the forerunner of the
current use and craze for deep learning.

Deeper is better (VGG)

Krizhevsky et al. suggest that the depth of CNNs allows finer features extraction.
Simonyan and Zisserman [Simonyan 2015] explored this point by stacking several
convolutional layers with small kernels (3 × 3)together. VGG networks build upon
the following configuration: a stack of convolutional layers (which have different
depths in different architectures), three fully connected layers and a softmax layer.
The depth of the networks ranges from 11 layers to 19 layers. The deepest architec-
ture (VGG19) reaches 7.5% top-5 validation errors, outperforming AlexNet. The
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Figure 2.5: ResNet building block [He 2016]

model we present in Chapter 3 is inspired by this architecture.

Connecting the layers (ResNet)

AlexNet [Krizhevsky 2012], VGG [Simonyan 2015] or GoogLeNet [Szegedy 2015] all
follow the same trend: going deeper. However, stacking more and more layers does
not necessarily lead to better accuracy. When the depth of the network increases, a
degradation problem appears. Accuracy gets saturated, and adding layers leads to
higher training errors. In other words, the networks are more challenging to train
when they are deeper because it is more difficult to backpropagate the gradient.
ResNet networks family [He 2016] introduces the concept of residual connections.
As shown in Figure 2.5, identity mapping is added via an element-wise addition
between the input and the output of the layer. This helps the gradient propagation
and avoids the problem of vanishing gradient. Also, residual connections help to
combine different levels of features at each network step. He et al. [He 2016] were
able to stack up to 152 layers, thus reaching a top-5 validation error of 5.71%.

Efficient CNNs

The general trend in deep learning is to build bigger and deeper networks to extract
more fine-grained features. Despite increasing the accuracy, these networks could
be more computationally efficient in size and speed. In many real work applications,
including automotive applications in this thesis, the recognition and detection tasks
must be carried out on the edge of computationally limited accelerators. MobileNet
[Howard 2017, Sandler 2018, Howard 2019] family introduces a new kind of efficient
architecture in order "to build very small and low latency models that can be easily
matched to the design requirements for mobile and embedded vision application"
[Howard 2017]. In this thesis, we build an efficient network upon these requirements;
the contribution is presented in Chapter 4.

MobileNetV1 [Howard 2017] is one of the first CNN architectures built for mo-
bile and embedded vision applications. MobileNetV1 is based on a simple architec-
ture (similar to VGG [Simonyan 2015]) and uses depthwise separable convolutions
instead of plain convolutions to build a lightweight deep neural network. Depthwise
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Figure 2.6: In MobileNetV1, the standard convolutional filters in (a) are replaced
by two layers: depthwise convolution in (b) and pointwise convolution in (c) to
build a depthwise separable filter with M input channels, N output channels and
a kernel size DK .

separable convolutions use 8 to 9 times less computation than standard convolu-
tions. Figure 2.6 illustrates this module.

MobileNetV2 [Sandler 2018] was proposed by Sandler et al. as an improvement
of MobileNetV1. MobileNetV2 is based on a new type of layer called inverted resid-
ual (IR). An IR block is a residual block [He 2016] that uses an inverted structure
for efficiency reasons. A first 1×1 convolution is used to widen the number of input
channels by an expansion rate γ. Then, a 3 × 3 depthwise convolution is used on
the output of the first convolution. Finally, a second 1 × 1 convolution is used to
reduce the number of channels to apply a residual connection. The 3 × 3 depthwise
convolution drastically reduces the number of parameters of the block. We show
the structure of an IR block in Figure 2.7.

MobileNetV3 [Howard 2019] is the last generation of the MobileNets family.
Compared to MobileNets V1 and V2, MobileNetV3 is tuned through a combination
of Neural Architecture Search (NAS) and novel architecture modules. MobileNetV3
mixes the IR block proposed in MobileNetV2 with Squeeze-and-Excite modules
[Hu 2018]. Additionally, the authors propose to replace the ReLU activation func-

Pointwise, 1x1 + ReLU+

LayerNorm

Depthwise, 3x3 + ReLU+
LayerNorm

Pointwise, 1x1 + LayerNorm

Figure 2.7: Inverted Residual block. The + symbol corresponds to the addition
operation.
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tion with a Hard Swish activation function:

h-swish(x) = x
ReLU6(x+ 3)

6 (2.7)

2.2.2 Object detection

Object detection is a computer vision task that aims to detect and locate objects
of interest in an image or video. The task involves identifying the position and the
boundaries (bounding boxes) of objects and classifying them into different categories
(see Figure 2.4).

Datasets and benchmarks

The most popular benchmarks and datasets for object detection are the Pascal VOC
(Visual Object Classes) [Everingham 2012] and the MSCOCO [Lin 2014] datasets.
For autonomous driving applications, other benchmarks exist, such as the nuScenes
dataset [Caesar 2019], the KITTI Vision Benchmark [Urtasun 2012], or the Waymo
Open Dataset challenge [Ettinger 2021].

Pascal VOC dataset [Everingham 2012] is one of the first object detection and
segmentation dataset. The first version was released in 2005, but the 2012 version is
the most popular. Pascal VOC dataset contains around 10K images over 20 object
categories (vehicles, animals, bicycles). Each image has pixel-level segmentation,
bounding box, and object class annotations. The Pascal VOC has been widely used
for object detection, semantic segmentation and classification tasks but remains a
small dataset.

MSCOCO dataset [Lin 2014] is a large-scale object detection, segmentation,
keypoint recognition, and captioning dataset. To this day, this is the benchmark
of reference for computer vision tasks. The dataset comprises 328k images over
80 categories (91 for the latest version). The dataset has various annotations,
including bounding boxes, semantic and panoptic segmentation, and key points
detection annotations.

Metrics

Object detection can be seen as a regression (locate objects) and a classification
task formulated as a multi-task problem. In order to evaluate object detectors, one
needs to evaluate the localisation and classification performance of the model. For
object detection, the mean average precision (mAP) is commonly used. The mAP
is built upon the following metrics: Intersection Over Union (IoU), precision and
recall.
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Figure 2.8: Intersection over Union

Intersection Over Union IoU is a measure based on Jaccard Index that evalu-
ates the overlap between two bounding boxes (or two segmentation masks for image
segmentation). It requires a ground-truth box Bgt and a predicted bounding box
Bp. The IoU ranges from 0 to 1. A perfect object localisation would have an IoU
of 1. By setting a threshold, we can tell if a detection is valid (true positive, TP)
or not (false positive, FP). The IoU is given by the overlapping area between Bgt

and Bp, divided by the area of union of them:

IoU = area(Bp ∩Bgt)
area(Bp ∪Bgt)

(2.8)

Figure 2.8 shows the IoU operation for bounding boxes.

Precision and Recall The precision is the ability of the model to identify only
the relevant objects. It is the percentage of correct positive predictions (IoU >

threshold):
Precision = TP

TP + FP
= TP

all detection (2.9)

The recall is the ability of a model to find all the relevant cases (all ground
truth bounding boxes). It is the percentage of true positives detected among all
relevant ground truths. For critical automotive scenarios, a high recall is desirable,
indicating we do not miss any objects.

Recall = TP

TP + FN
= TP

all ground truth (2.10)

Mean Average Precision The mAP evaluates the average precision for all
classes in the dataset. In practice, the AP is the area under the curve (AUC)
of the precision vs recall curve. The COCO mAP [Lin 2014] consists of computing
the AP for each class with different IoU thresholds, ranging from 0.5 to 0.95 with
a 0.05 step, and average them.
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Models

The state-of-the-art (SOTA) methods for object detection can be categorised
into two categories: one-stage [Redmon 2016, Liu 2016, Lin 2017b, Zhou 2019,
Tian 2019] and two-stage methods [Ren 2017, He 2017, Lin 2017a].

R-CNN (Region-CNN) R-CNN object detectors are a family of two-stage ob-
ject detectors. Two-stage detectors aim first to find the location of potential objects
(proposals), then extract a feature vector at the position of the detected object to
classify it and improve the localisation precision.

Using a selective search algorithm, the R-CNN model [Girshick 2014] groups
objects based on their colours, texture, and shape. Then, each proposal is resized
to match the input of a CNN pre-trained on ImageNet1. The feature vector of the
CNN is then used as input of an SVM (Support Vector Machine) for classification,
and a linear regression model is used to predict objects’ location. In practice, the
regression model outputs δ-values representing the difference between the proposal
boxes and the actual location of the objects. This remains true for all object
detection models.

Fast R-CNN In R-CNN, each proposal goes through a CNN for classification
and regression, which is inefficient and not adapted for real-time applications. In
[Girshick 2015], Girshik et al. try to reduce the computational cost of R-CNN by
performing a single CNN forward pass2 on the image. Then, they extract Regions
Of Interest (RoI) using the selective search algorithm on the produced feature maps.
Each RoI is reduced to a fixed size using a pooling layer and a small shared two-
layer MLP extracts features. Finally, the vector created by the two-layers MLP is
used to predict the object’s class with a softmax classifier and its position with a
linear regressor. Fast R-CNN allows nine times faster training speed and processes
images 146 times faster than R-CNN.

Faster R-CNN The R-CNN [Girshick 2014] and the Fast R-CNN [Girshick 2015]
depend on heuristic-based region proposal algorithms (selective search) to hypoth-
esise object locations. However, region proposal algorithms are slow compared to
neural networks on GPUs. For example, in Fast R-CNN, the selective search algo-
rithm takes up to 2 seconds in inference to produce proposals. Therefore, Ren et al.
[Ren 2017] proposes to use GPUs to compute the proposals with deep convolutional
neural networks. They introduce a novel network in the Fast R-CNN framework,
the region proposal network (RPN). The RPN takes a set of feature maps (produced

1R-CNN uses the AlexNet [Krizhevsky 2012] architecture to extract features
2Fast R-CNN uses VGG [Simonyan 2015] backbone.
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Figure 2.9: Left: Faster R-CNN overview. First a CNN extracts features from an
input image to produce the features maps. Then the RPN proposes proposals that
are used as input of a Fast R-CNN head to predict the position and the class of
objects in the input image. Right: The RPN and its anchors at a single location.
For each position in the feature map, a 3 × 3 convolution is applied. Then two
MLPs are used to predict a set of k proposals relative to k reference boxes called
the anchors. Source: [Ren 2017]

using a CNN) as input and learns to generate proposals. To generate proposals, a
3×3 sliding window is applied over the feature maps3. Then, each sliding window is
mapped to an n-dimensional feature space. The RPN predicts a set of k proposals
at each sliding window location. So the classification layer outputs 2k objectness
score, and the regression layer outputs 4k outputs encoding the coordinates of k
boxes. The predictions of the RPN are relative to k reference boxes with different
scale and aspect ratios, which we refer to as anchors (see Figure 2.9). Anchors
are selected according to their confidence score to keep only relevant anchors cor-
responding to a potential object. Finally, the proposals and the feature maps are
used as input of a Fast R-CNN model. Learning to propose regions and sharing the
features between the RPN4 allows faster inference speed (0.2 seconds) than Fast
R-CNN.

Mask R-CNN Finally, in [He 2017], He et al. proposed an extension of Faster
R-CNN to perform the object detection and segmentation task simultaneously.
Mask R-CNN follows the Faster R-CNN framework (i.e. a shared backbone and
a RPN) and adds a third segmentation head to a Fast R-CNN model. Mask R-

3In practice, this is implemented using the convolution operation.
4The RPN can be seen as the combination of a feature extractor (VGG16 [Simonyan 2015] or

ZF-net [Zeiler 2014]) and a small CNN.
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Figure 2.10: YOLO overview. YOLO divides the input image into a S × S grid,
and for each cell predicts B bounding boxes, confidence for those boxes and C class
probabilities. The predictions are then encoded as an S×S×(B∗5+C) tensor. The
S × S grid corresponds to the output feature maps of a CNN, and the B bounding
boxes are similar to the anchors in Faster R-CNN. Source: [Redmon 2016]

CNN replaces the classic RoI pooling operation with a new pooling operation called
RoIAlign (Region of Interest Align). RoIAlign removes the quantisation of RoI
pooling and computes the exact coordinates of objects. Additionally, Mask R-CNN
adopts a ResNeXt-101 backbone [Xie 2017] with Feature Pyramid Networks (FPN)
[Lin 2017a]. FPN uses a top-down architecture with lateral connections to extract
features according to their scale.

You Only Look Once (YOLO) Compared to RPN-based object detectors,
which perform detection on region proposals and thus end up performing prediction
multiple times for various regions in an image, YOLO [Redmon 2016] architecture
(and more generally single-stage architectures) aims to perform the detection and
the classification in a single forward pass. YOLO5 divides the input image into a
S×S grid, and for each cell predicts B bounding boxes, confidence for those boxes
and C class probabilities. The predictions are then encoded as an S×S×(B∗5+C)
tensor. The S × S grid corresponds to the output feature maps of a CNN, and the
B bounding boxes are similar to the anchors in Faster R-CNN. YOLO predicts
offsets between anchors and bounding box coordinates for each grid cell. How-
ever, because YOLO predicts few objects per location after several downsampling
steps, it struggles with small objects and makes localisation errors. YOLOv2 (or
YOLO9000) [Redmon 2017] reduces the number of localisation errors by using batch
normalisation and pre-training the backbone on high-resolution images to learn from

5We refer to YOLO for the first version of YOLO. We use YOLOv* for subsequent versions of
it.
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Figure 2.11: SSD model vs. YOLO model. SSD detects objects at multiple scales
while YOLO uses a single scale feature maps [Liu 2016]

high-resolution features. Moreover, the authors add pass-through layers which con-
catenate high-resolution features with low-resolution features to obtain fine-grained
feature maps.

Single Shot MultiBox Detector (SSD) SSD is another single-stage object
detection approach that predicts object locations and classes in a single forward
pass. Compared to YOLO [Redmon 2016] and YOLOv2 [Redmon 2017], SSD uses
multi-scale feature maps for detection. Similarly to YOLO, SSD defines a set of
anchors at each feature maps cell for multiple feature maps (extra-feature layers).
SSD computes c class scores and four offsets relative to the default anchor boxes for
each extra-feature layer and each box at each location. This yields (c+4)∗k ∗m∗n
predictions, where m and n are the size of the feature maps, and k is the number
of anchors.

Conclusion In this section we presented the main frameworks for object detec-
tion in computer vision. Most of object detectors are built upon YOLO, SSD or
Faster R-CNN. To further improve the performance of these object detectors, re-
searchers focus their works on improving features extraction [Liu 2022, Liu 2021],
training strategy [Caron 2021] or new paradigms such as anchor-free object detec-
tors [Tian 2019, Carion 2020a, Zhou 2019]. In this thesis, we will use the Faster
R-CNN framework and study how much this architecture is suited for radar object
detection. Two-stage detectors are generally more accurate but slower than sin-
gle stage detectors. Thus we will optimise the features extraction stage to extract
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meaningful radar features while being computationally efficient.

2.2.3 Image segmentation

Segmentation is the process of partitioning an image into multiple regions. There
are three groups of segmentation: semantic segmentation, instance segmentation
and panoptic segmentation.

Semantic segmentation is the task in which the goal is to categorise each pixel
in an image into a class or object. Semantic segmentation aims to produce an
image’s dense pixel-wise segmentation map, also known as a segmentation mask.
Instance segmentation involves identifying and separating individual objects within
an image, including detecting the boundaries and assigning a unique label to each
object. Instance segmentation is a type of object detection. Finally, panoptic seg-
mentation combines semantic segmentation and instance segmentation to provide a
comprehensive understanding of the scene. In this thesis, we will focus on semantic
segmentation only.

Datasets and benchmarks

As for object detection, the PASCAL VOC [Everingham 2012] and the MSCOCO
[Lin 2014] datasets are famous benchmarks for semantic segmentation. Addition-
ally, the Cityscapes [Cordts 2016] dataset is widely used for semantic segmentation.
We refer the reader to Section 2.2.2 for details about Pascal VOC and MSCOCO.

The Cityscapes dataset [Cordts 2016] is a large-scale dataset for semantic un-
derstanding of urban street scenes. It provides semantic, instance-wise, and dense
pixel annotations for 30 classes grouped into eight categories (flat surfaces, humans,
vehicles, constructions, objects, nature, sky, and void). The dataset is small com-
pared to MSCOCO. Indeed, Cityscape contains only 5000 annotated images and
20000 coarse annotated ones.

Metrics

Because semantic segmentation models predict masks, the mIoU metric we defined
in Section 2.2.2 and the pixel accuracy is used. The IoU is computed between a
ground truth mask and the prediction for each class. Then, by averaging the IoU
of each class, we compute the mIoU.

The pixel accuracy is the percentage of pixels in the image which are correctly
classified. Generally, pixel accuracy is reported for each class separately and by
averaging across classes. One issue with pixel accuracy is that it can provide mis-
leading results when the class representation is small within the image (e.g. mostly
background).
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Models

Semantic segmentation models aim to label each pixel of an image with a corre-
sponding class. Thus, such models require the same input and output size. A naive
approach is to design an architecture with convolutional layers without decreasing
the input size. Then, apply a softmax function to the last feature maps. Neverthe-
less, this is computationally expensive. Deep CNNs for image classification generally
downsample the size of the input multiple times to learn deeper representations.
However, we must produce a full-resolution segmentation mask the same size as the
input image for semantic segmentation. One popular image segmentation approach
follows an encoder-decoder architecture, where the encoder downsamples the spa-
tial resolution, developing lower-resolution feature maps, and where the decoder
upsamples the feature representations learned by the encoder into a segmentation
mask.

Fully Convolutional Networks (FCN) Long et al. [Long 2015] were the first
to propose a fully convolutional network trained end-to-end for image semantic seg-
mentation. The authors proposed to adapt existing image classification networks
(e.g. AlexNet [Krizhevsky 2012]) as an encoder and use transpose convolution (or
deconvolution) layers on the top of the feature maps to upsample low-resolution
features into a full-resolution segmentation map. However, FCN struggles to pro-
duce fine-grained segmentation masks. Indeed, the input’s resolution is reduced by
32, and the authors use a single deconvolution layer. To address this issue, the
authors propose slowly upsampling the encoded representation at different stages,
adding skip connections from earlier layers and summing feature maps together. It
allows fine layers (where) to be combined with coarse layers (what), improving the
segmentation of object boundaries.

U-Net Later on, Ronneberger et al. [Ronneberger 2015] improved the FCN ar-
chitecture by expanding the capacity of the decoder. Instead of using a single
deconvolution, they propose a symmetric encoder-decoder architecture for image
semantic segmentation. The encoder (referred to as contracting path in the original
paper) captures context. The decoder (referred to as expanding path) is symmetric
to the encoder and enables precise localisation. Also, U-Net adds skip connections
between the encoder and the decoder to combine low-level features (where) with
high-level features (what). U-Net architecture has become popular, modified, and
adapted for various segmentation problems. Today, we can consider this architec-
ture as the reference encoder-decoder architecture. Figure 2.12 depicts the U-Net
architecture.
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Figure 2.12: U-Net architecture [Ronneberger 2015]

The DeepLab family One problem in image segmentation or object detection
is classifying, segmenting or detecting the same objects at different scales. This
has been addressed for object detection using FPN [Lin 2017a], multi-scale feature
maps [Liu 2016], or multi-scale anchors [Ren 2017]. A second problem is the coarse
resolution of the feature maps caused by the repeated downsampling operations
performed at consecutive layers in the backbone network. Encoder-decoder with
skip connections [Ronneberger 2015] has been shown to help to solve these issues.
Chen et al. proposed DeepLabV1 [Chen 2015] and then DeepLabV2 [Chen 2018a] to
solve the problems above. DeepLabV2 architecture combines atrous convolutions,
spatial pyramid pooling and Conditional Random Fields (CRF). To increase the
size of the feature maps, Chen et al. propose to remove the downsampling operator
from the last few max-pooling of deep convolutional neural networks6 and instead
upsample the feature maps using atrous (or dilated) convolutions. Atrous convolu-
tion consists of convolution with a sparse kernel. A fixed number of zeros separates
elements in the kernel, called the dilation rate. It allows to enlarge the receptive
field of a network to incorporate a larger context without increasing the number
of parameters. This way, the authors can increase the size (and the resolution) of
the computed feature maps by a factor of 4. Inspired by Spatial Pyramid Pooling
[He 2014] and Feature Pyramid Network [Lin 2017a], the authors also introduce a
new module called Atrous Spatial Pyramid Pooling (ASPP) to deal with multiple
scale objects. ASPP applies multiple parallel filters with different dilation rates on
the feature maps, thus allowing learning patterns at different scales. The feature
maps are processed with different receptive fields and then concatenated. Finally,

6The deep convolutional neural networks used for DeepLabV2 are VGG16 [Simonyan 2015] or
ResNet101 [He 2016].
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to improve the segmentation of object boundaries, the concatenated feature maps
are processed by a fully connected conditional random field [Krähenbühl 2011].

Later on, Chen et al. revisited their work and proposed DeepLabV3 [Chen 2017].
DeepLabV3 employs atrous convolution in cascade or parallel to better capture long-
range information in the deeper blocks. The ASPP module is also modified with
lower dilation rates, and a 1×1 convolution and batch normalisation are added. The
concatenated feature maps of the ASPP module are directly processed to predict
the segmentation mask, and the dense CRF is no longer required.

Last, DeepLabV3+ [Chen 2018b] extends DeepLabV3 by opting for an encoder-
decoder structure. DeepLabV3+ uses the DeepLabV3 as an encoder, and a simple
decoder processes the low-level features from the encoder and the feature maps
from the ASPP module. For efficiency, Chen et al. use depthwise-separable convo-
lutions [Howard 2017] in the decoder and the ASPP module. Finally, they adapt
the Xception model [Chollet 2017] in the encoder to extract features.

Conclusion In this section, we presented well-known models for semantic segmen-
tation. Today, most image segmentation networks are built following an encoder-
decoder architecture and skip connections. To this day, this is the more natural way
to process images. Using these principles, we will build the semantic segmentation
and detection models we present in this thesis.

2.3 Automotive radar datasets

One fundamental principle of deep learning is the need for data. The best computer
vision models generally learn from vast amounts of annotated data. Hence, datasets
with annotated radar data are required to apply deep learning algorithms for radar
perception. When starting this thesis, very few radar datasets with raw radar
frames were available [Gao 2019b, Ouaknine 2021b]. From 2020 to now, more and
more datasets have been released for different tasks (classification, detection, seg-
mentation, tracking) and with different radar representations. This section presents
available radar datasets we can use for automotive radar perception. We split these
datasets into point cloud datasets and raw data datasets.

2.3.1 Point clouds datasets

Point clouds are the standard representation of radar data. Point clouds represent
the signal at the target-level. Similarly to Palffy et al. [Palffy 2022], we refer to
2+1D radar for radars that output a sparse point cloud of reflection. Each point
contains the range r of the target, the angle of arrival θ and the radial velocity vr.
We refer to 3+1D radar for radars having three spatial dimensions: the range r, the
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Figure 2.13: Overview of point clouds radar datasets. (a) nuScenes [Caesar 2019]
dataset sample. We notice a few points per object, and the radar has no elevation
capabilities. (b) Astyx [Meyer 2019] dataset sample. Compared to nuScenes data,
the radar has elevation capabilities, and more points per object are available. (c)
RadarScenes [Schumann 2021] dataset sample. The point cloud is denser than
the nuScenes point cloud, but no elevation measurement exists. (d) VoD dataset
[Palffy 2022] sample. We can see that radar (big points) has a lower resolution than
LiDAR but has a better resolution than nuScenes data and elevation data.

azimuth θ, the elevation α and the radial velocity vr. Point clouds can be used for
object classification, segmentation (clustering objects of the same class) and sensor
fusion. Because radar point clouds are sparse, they are particularly appropriate for
embedded applications. This sparsity is also a drawback because models need more
information to generalise well.

nuScenes [Caesar 2019], released in 2019, is the first public large-scale dataset for
autonomous driving. It contains 2+1D radar point clouds from 5 radars alongside
cameras, LiDARs and IMUs. Although data from several radars is available, these
radars have low resolution, resulting in very sparse (few points per object) point
clouds as shown in Figure 2.13. Some work tried using this dataset for object
detection [Niederlöhner 2022, Svenningsson 2021], but the resolution is too low to
obtain enough detection accuracy. As a result, nuScenes’ radar data is mainly used
for sensor-fusion applications rather than radar-only perception.
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To address the sparsity of low-resolution radar, 2+1D or 3+1D high-resolution
radar datasets were made public such as Astyx [Meyer 2019], RadarScenes
[Schumann 2021] or View-of-Delft (VoD) [Palffy 2022] datasets.

Astyx dataset [Meyer 2019] (no longer available) is the first 3+1D high-
resolution radar dataset. It contains data from one radar, camera and LiDAR
with 3D bounding box annotations. Compared to the nuScenes dataset, one radar
frame contains around 1000 3D points instead of 100 2D points. However, the Astyx
dataset remains very small as the dataset consists of only 500 synchronised frames,
containing around 3000 manually annotated objects divided into seven classes (bus,
car, cyclist, motorcyclist, person, trailer and truck). Moreover, the dataset mainly
comprised non-consecutive measurements, and few driving scenarios are available.

Schumann et al. try to alleviate that and propose the RadarScenes dataset
[Schumann 2021], which consists of four 2+1D high-resolution radars for automotive
perception. It contains 4.3 hours of driving in real automotive scenarios, resulting in
118.9 million radar points. The point clouds of the dataset are manually annotated
and are divided between 11 object classes with four large main categories and a
total of over 7000 road users. Unfortunately, only moving objects are annotated.

The VoD dataset [Palffy 2022] then appears as a good candidate for 3+1D radar
perception. VoD dataset brings around 9000 synchronised and calibrated camera,
LiDAR and radar frames together. Data were acquired in complex, urban traffic.
The dataset consists of more than 120000 manually annotated 3D bounding boxes
of moving and static objects, including pedestrians, cyclists and car labels. The
VoD dataset is the biggest and the most realistic radar point clouds dataset yet.

2.3.2 Raw datasets

The sparsity of radar point clouds is both an advantage and a disadvantage. On
the one hand, this sparsity allows the development of very efficient algorithms for
automotive radar perception running on edge devices. On the other hand, radar
point clouds contain low-level information (position of targets, velocity, radar cross
section) due to many filtering techniques (Figure 1.5). The information available
in the raw signal could help increase radar perception algorithms’ accuracy. Thus,
filtering techniques might be removed from the conventional signal processing chain,
and raw data could be used as input of deep neural networks for object detection
and classification that we detail thereafter.

Low-resolution radar datasets

Ouaknine et al. observed a need for annotated datasets with range-angle or
range-Doppler raw radar data and proposed in 2020 the CARRADA dataset
[Ouaknine 2021b]. CARRADA is the first raw radar data dataset made public.
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Figure 2.14: Overview of low-resolution raw radar datasets. (a) CARRADA
[Ouaknine 2021b] dataset sample. RA and RD maps are available with correspond-
ing annotations in the following format: bounding boxes, points, and segmentation
masks. (b) RADDet [Zhang 2021] dataset sample. RAD tensors are available in
polar and cartesian coordinates. Annotations are 3D bounding boxes in range, an-
gle and Dopper dimensions. (c) CRUW [Wang 2021c] dataset sample in city road
driving scenario. The upper row shows the RGB images with the detected bound-
ing boxes from Mask R-CNN and the projected CFAR detections (vertical lines).
The lower row shows the RF images with the CFAR detections (dots) and the final
object annotations [Wang 2021c].

It contains around 12000 synchronised camera-FMCW radar frames with range-
angle-Doppler annotations. The dataset has been recorded on a test track to reduce
environmental noise. Simple scenarios with cars, pedestrians and cyclists moving
with various trajectories have been recorded to simulate urban driving scenarios.
Zhang et al. propose a similar dataset with RAD tensors and 3D RAD bounding
boxes annotations.

The RADDet dataset comprises around 10k frames collected in sunny weather
at several random locations. The sensors were set up on the sidewalks and facing the
main roads. Such a sensor setup makes RADDet more realistic than CARRADA.
Similarly to CARRADA, the sensor of the RADDet dataset is static, thus reducing
noise effects due to the vehicles’ movements.

The CRUW dataset [Wang 2021c] is another large camera-radar dataset. It
contains about 400k frames of two stereo cameras and two FMCW radars collected
in four scenarios: campus road, parking lot, city street and highway. Contrary to
CARRADA or RADDet datasets, only RA maps (no Doppler) are available in the
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CRUW dataset, and annotations are in the form of points to remain compliant
with conventional radar outputs. Unfortunately, the CRUW dataset is not publicly
available, but authors release a subset of it, named the ROD20217 dataset. The
ROD2021 dataset contains about 50k frames from a single RGB camera and FCMW
radar.

In this thesis, we use these datasets as they were the only ones available during
the major part of the thesis. We also chose to work on these datasets as the
low-resolution aspect of the radars used in CARRADA, RADDet or CRUW is
challenging. We hypothesise that with enough data and good annotations, a deep
learning algorithm could overstep the low resolution of the radar. We show samples
of these datasets in Figure 2.14.

High-resolution radar datasets

Low-resolution radar datasets are very useful for detecting objects in range and
velocity. However, the low-angle resolution makes detecting and classifying objects
difficult in the azimuth domain. More recently, high-resolution radar datasets have
started emerging. The goals of high-resolution datasets are multiple: enabling
accurate 3D detection and classification for radar sensors [Paek 2022, Rebut 2022,
Madani 2022] and avoiding the computationally expensive generation of RA radar
maps [Rebut 2022].

RADIal (for Radar, LiDAR et al.) is a raw high-resolution radar dataset in-
cluding other sensor modalities like cameras and LiDAR. RADIal aims to motivate
research on automotive high-resolution radar and camera-lidar-radar sensor fusion.
RADIal contains around 25k synchronised frames, out of which more or less 8k are
labelled with vehicles and free-space driving masks. Data are provided in ADC data
to be used directly to detect and classify vehicles and avoid time-consuming RA
map generations. However, the RADIal dataset mainly contains data recorded on
highways or countryside and only car labels, making it challenging to use for more
general applications (city roads).

The K-Radar [Paek 2022] is a 3+1D radar dataset with a similar size as RADIal
[Rebut 2022] collected under various scenarios (e.g. urban, suburban, highways),
time (e.g. day, night), and weather conditions (e.g. clear, fog, rain, snow). It con-
tains around 35k manually annotated 4D radar tensors (range, Doppler, azimuth,
elevation). Unlike the ADC data of the RADIal dataset, K-Radar tensors are heavy,
and the dataset cannot be downloaded because of its massive size (16TB).

Finally, Madani et al. introduce the Radatron dataset [Madani 2022]. The
Radatron dataset is a high-resolution radar dataset using a cascaded MIMO radar.
As for the K-Radar dataset [Paek 2022], radar data is in the form of 4D tensors. The

7https://www.cruwdataset.org/rod2021
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Figure 2.15: (a) RADIal dataset sample. From left to right: camera image with
projected laser point cloud in red and radar point cloud in indigo, vehicle annotation
in orange and free-driving space annotation in green ; radar power spectrum (MIMO
RD) with bounding box annotation ; free-driving space annotation in bird-eye view,
with vehicles annotated with orange bounding boxes, radar point cloud in yellow and
LiDAR point cloud in red ; range-azimuth map in Cartesian coordiates, overlayed
with radar point cloud and LiDAR point cloud [Rebut 2022]. (b) K-Radar dataset
sample in various weather conditions. (c) Radatron dataset sample. Ground truth
are marked in green.

dataset is collected under clear weather conditions, and out of the 152k frames, 16k
vehicles were annotated with 2D bounding boxes on RA maps. Radatron presents
several limitations:

1. The radar’s maximum range is 25 meters, while RADIal or K-Radar can
detect objects up to 100 meters.

2. Radatron does not leverage the 4D nature of the data because annotations
are only provided for 2D RA maps.

3. As RADIal, Radatron only provides annotations for vehicles.

However, learning to detect vulnerable road users like pedestrians is essential for
automotive applications.
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Figure 2.16: Overview of scanning radar datasets. Scanning radar allows a 360°
view around the car. (a) RADIATE dataset sample with different driving scenarios
under several weather conditions. (b) Oxford RobotCar dataset sample.

To conclude, the main challenge of high-resolution radar datasets is the storage
and sharing of these datasets. Indeed, 4D radar tensors are very cumbersome in
memory. The choice of RADial’s authors to release the ADC data alongside a
signal processing pipeline is the best choice to allow research on high-resolution
radar datasets. It also enables the development of new processing techniques on
ADC data to replace some parts of the conventional radar signal processing chain
(see Figure 1.5). We show samples of high-resolution datasets in Figure 2.15

Scanning radar datasets

Scanning radar data (see Figure 2.16) is another radar data available. One advan-
tage of scanning radars is that they allow a 360° representation of the environment.
Because they measure each azimuth using a moving antenna, scanning radar pro-
vides better azimuth resolution than low-resolution radars (around 0.9° azimuth
resolution). However, they do not provide Doppler information, a significant ad-
vantage of radar sensors and crucial for automotive applications. During this thesis,
we will not use these datasets because we consider the Doppler information a core
radar component and because scanning radar is not used in practice.

The Oxford RobotCar [Barnes 2020], MulRan and RADIATE [Sheeny 2021]
datasets provide radar data using scanning radars. The Oxford RobotCar dataset
contains around 240k radar scans collected in various traffic, weather and lightning
conditions in Oxford, UK. Data from sensors such as LiDAR, GPS or cameras are
also available. However, the authors of the Oxford RobotCar dataset do not provide
annotations.
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The RADIATE [Sheeny 2021] dataset is an annotated dataset collected in a
mixture of weather (sun, fog, rain, snow, day, night) and driving scenarios. The
dataset includes 5 hours of radar images, 3 hours of which are fully annotated
with eight categories (i.e. van, car, bus, truck, motorbike, bicycle, pedestrian and
group of pedestrians). RADIATE dataset includes other modalities such as cameras,
LiDAR and GPS data. Likewise, K-Radar [Paek 2022], the strength of RADIATE
lies in the various weather driving scenarios, showing the relevance of using radar
on top of other sensors for perception in automotive scenarios.

2.4 Automotive radar perception on radar point clouds

Radar point cloud (or radar reflection) is the default output of radar. Radar re-
flections are sparse and light in memory. Thus, they are the most commonly used
representation in the industry for efficiency and embedded object classification, de-
tection and segmentation [Ulrich 2021].

Object classification is the task of assigning a class to clusters of reflections.
The clusters are generally obtained after applying clustering algorithms like DB-
SCAN on the radar point cloud [Scheiner 2018, Scheiner 2019, Scheiner 2020,
Tatarchenko 2023]. Scheiner et al. [Scheiner 2018, Scheiner 2019] propose to use
One-vs-All (OVA) and One-vs-One (OVO) binary classifiers for multi-class road
users classification. Binary classifiers overcome data imbalance. They extract a
set of features from clusters of point clouds for the target recognition process.
[Scheiner 2019] show that ensemble classifiers and recurrent neural networks al-
low accurate feature selection and improved classification accuracy. Building upon
[Scheiner 2018, Scheiner 2019], [Scheiner 2020] study if high-resolution radar point
clouds allow better accuracy than conventional radars. However, these methods are
features-based and require radar data knowledge to build a good set of features.

The progress of deep learning algorithms has led to the development of data-
driven approaches [Tatarchenko 2023, Ulrich 2021] for object recognition. Ulrich
et al. [Ulrich 2021] propose DeepReflecs, a deep learning approach using a cluster
of points which contains the position, the radar cross-section, the range and the
radial velocity. They propose to process the data using a simple 1D CNN of 1284
parameters. They show superior performance than features-based approaches at a
lower computational cost. In order to explain the classification process, Tatarchenko
and Rambach [Tatarchenko 2023] format radar point clouds as a histogram. They
use the histogram vector as input of a simple MLP and improve the classification
accuracy of DeepReflecs [Ulrich 2021].

Nonetheless, clustering algorithms require setting hyper-parameters that can af-
fect classification performance. Thus, object detection aims to combine clustering
and classification methods at once [Dreher 2020, Ulrich 2022, Niederlöhner 2022,
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Danzer 2019]. In contrast, object segmentation methods attempt to classify each re-
flection to create clusters automatically [Schumann 2018, Danzer 2019, Feng 2019].

Object detection and segmentation models for radar point clouds use all the
reflections available in the scene (or accumulated over a short period to increase
the resolution) as input. The most common approaches are grid-based or point-
based.

Grid-based approaches usually render the radar point cloud to a 2D bird-
eye-view (BEV) representation or 3D cartesian grid and apply a CNN on it
[Dreher 2020, Niederlöhner 2022, Xu 2021]. In [Xu 2021], the author renders the
point cloud onto a pillar and uses a self-attention mechanism to solve the prob-
lem of orientation estimation in a grid-based approach. [Dreher 2020] exploits the
YOLOv3 architecture on a grid-map representation of the point cloud. However,
the sparsity of the data does not lead to encouraging results. Niederlöhner et al.
[Niederlöhner 2022] accumulate point clouds over time to reduce the sparsity of the
data and apply an FPN architecture on a rendered point clouds for object detec-
tion and cartesian velocity estimation. As in [Dreher 2020], the results were not
encouraging due to the high sparsity of the radar point cloud.

Point-based approaches are appropriate for sparse point-cloud object detection.
Indeed, they do not pad the data with zeros when there is no measurement. Instead,
they learn the relationship between each point in a local neighbourhood. Point-
based CNNs create a pseudo-image of the point cloud in the object detection model.
Well known architectures are PointNet [Charles 2017], PointNet++ [Qi 2017], Vox-
elNet [Zhou 2018] or PointPilars [Lang 2019]. In the literature, researchers suc-
cessfully modify these architectures for object detection or segmentation on radar
point clouds [Schumann 2018, Feng 2019, Tilly 2020, Palffy 2022, Xiong 2022]. In
particular, Xiong et al. [Xiong 2022] show contrastive learning on radar clusters
helps improve overall detection performance using fewer training data. Ulrich et
al. [Ulrich 2022] take advantage of both methods. They mix point-based and grid-
based approaches to improve object detection and orientation estimation on radar
point clouds. [Fent 2023] employs a graph neural network (GNN) instead of a CNN
for object detection and segmentation on radar reflections.

Finally, other works on radar point clouds exist for ghost target detection
[Kraus 2020] or scene-flow estimation [Ding 2022, Ding 2023].

2.5 Automotive radar perception on raw data

As explained in Chapter 1, radar sensors usually output point clouds representing
the detected targets. Section 2.4 shows we can use radar point clouds for tasks such
as object recognition [Ulrich 2021], segmentation [Feng 2019] or ghost target detec-
tion [Kraus 2020]. However, the low resolution of radar sensors and the numerous
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Figure 2.17: Raw data object classification data flow. The dotted lines represent
an optional operation.

filtering techniques (thresholding, clustering, tracking) applied to the signal result
in a loss of valuable information compared to the raw radar signal (see Chapter 1).
Moreover, point clouds contain little information about the target and are sparse
no matter the resolution of the radar, lowering the accuracy of point clouds radar
object detectors [Niederlöhner 2022, Ulrich 2022]. Therefore, several works consider
lower-level representation such as RD, RA or RAD spectra to perform tasks like
object classification, detection, segmentation or tracking to exploit the information
available in the radar signal fully.

2.5.1 Object classification

In order to classify objects using raw radar data, the vast majority of approaches
we present in this section rely on CFAR [Blake 1988] and clustering (DBSCAN)
algorithms to first detect targets before classifying them using machine learning.
Figure 2.17 shows typical data flow to classify targets using raw radar data. We
can split object classification on raw radar data methods into features-based and
spectrum-based methods.

Features-based methods

Features-based methods are in between point clouds-based and raw data-based
methods. They consist of using handcrafted features from the range and the
Doppler profile to recognise objects such as pedestrians or vehicles [Heuel 2011,
Prophet 2018b, Prophet 2018a, Lee 2017] before tracking them and producing
point clouds. SVM classifiers are commonly used for the classification process.
[Prophet 2018b] and [Heuel 2011] also propose to add a tracker after the classifier
to improve classification accuracy. In [Prophet 2018a], Prophet et al. propose to
directly use regions of interest (RoI) from the range-Doppler maps and the image-
based feature descriptor SURF [Bay 2006] to learn scale, rotation and skew invari-
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ant features from the image directly. They show that using image-based features
as input of an SVM classifier achieves an 88% accuracy on pedestrians.

Spectrum-based methods

The work of Prophet et al. [Prophet 2018a] shows the potential of using the spec-
trum to classify objects in radar. This work lead to many studies for object classi-
fication using of convolutional neural networks [Kim 2018, Pérez 2018, Patel 2019,
Khalid 2019, Cai 2019, Akita 2019, Lee 2019, Palffy 2020, Gao 2019b, Gao 2019a,
Patel 2022, Saini 2023, Angelov 2018].

Micro-Doppler object classification Some methods such as [Angelov 2018],
[Lee 2019] or [Gao 2019b] use the micro-Doppler signatures of detected ob-
jects to recognise moving targets using VGG [Gao 2019b, Lee 2019], ResNet50
[Angelov 2018], or AlexNet [Lee 2019] models. The micro-Doppler effect is a phe-
nomenon that appears when, in addition to the constant Doppler frequency shift
induced by the motion of a radar target, the target or any structure on the target
(the wheels of a car, arms of a human body) undergoes micro-motion dynamics
that induce additional Doppler modulations on the returned signal [Chen 2006].
However, using the micro-Doppler signature is unsuitable for real-time applications
because it requires accumulating the signal over a short period (from 0.5 seconds
to 2 seconds). Furthermore, for reliable detection of multiple objects, range and
Doppler features must be considered [Khalid 2019]. As a result, we focus our re-
search on models based on the range-Doppler or the range-azimuth spectrum.

Classification with RA, RD or RAD tensors Pérez et al. [Pérez 2018] use
tiny two layers CNN to classify moving targets such as pedestrians, cyclists or
cars based on their RoI in the range-angle-Doppler power spectrum. They show
that such a model can achieve 97.3% accuracy in classifying objects in single-target
scenarios. Kim et al. [Kim 2018], Khalid et al. [Khalid 2019] and Akita et al.
[Akita 2019] propose to learn temporal dynamics of moving objects using recurrent
and convolutional neural networks. [Kim 2018] classifies sequences of range-Doppler
spectra with single moving objects, while [Khalid 2019] and [Akita 2019] extract
RoIs from the RD and RA spectrum respectively. The authors of [Akita 2019]
show that using raw data benefits object classification in this study. They compare
the performance of their classifier on raw data (raw reflection intensity RoI) versus
radar features such as the maximum intensity of the reflection or a set of features
(average reflection intensity, maximum reflection intensity, roundness). Patel et al.
[Patel 2022] notice that deep radar classifiers maintain high confidence for ambigu-
ous, complex samples under domain shift and signal corruptions. Indeed, according
to the radar equation (Equation 1.1), the same target at different ranges produces
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different measurements. As a result, they introduce a specific label-smoothing strat-
egy for radar during training to improve the uncertainty of the classifier.

Hybrid approaches Other methods propose to mix radar knowledge (target-
level) and the radar cube (low-level) to address the direction of arrival estimation
problem, which is not used by spectrum-based classifiers. Patel et al. [Patel 2019]
addresses the lack of position information in object classification by adding prelim-
inary information to RoIs as a channel. It can be the distance between the highest
intensity pixel and other pixels of the RoI or a decayed RoI spectrum. The decayed
RoI spectrum consists of a spectrum where peripheral reflections are attenuated
and important reflections are pronounced. They show a 3% to 6% improvement
in the accuracy by adding this target-level knowledge to the input using a three-
layer CNN. Gao et al. [Gao 2019a] build an SVM-CNN hybrid model to classify
moving objects. Palffy et al. [Palffy 2020] propose an approach that fully exploits
target-level and low-level information. First, they detect targets using conventional
radar signal processing. A region of interest from the RAD cube is extracted for
each detected object, and range, azimuth and speed features are learned using two
small CNNs. Then, target-level features (range, azimuth, RCS, absolute speed) are
concatenated with low-level features to be classified by One-vs-All and One-vs-One
binary classifiers. An overview of RTC-Net is shown in Figure 2.18. RTC-Net is
more accurate than a features-based method like [Prophet 2018b]. More recently,
[Saini 2023] introduced a similar hybrid approach mixing target-level (point clouds)
and low-level (spectra). The authors use two graph neural networks to learn em-
beddings from the radar range-Doppler RoI and the reflections. Then, the spectral
embedding is concatenated with the reflections embedding before being used for
target recognition.

Figure 2.18: RTC-Net model overview. RTC-Net extracts RoIs from the radar
cube using a list of detections. A combination of CNNs is used to extract features
for each extracted RoI. Ensemble classifiers use the features to perform the target
classification. Source: [Palffy 2020]
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Features-based, spectrum-based or hybrid classification models rely on conven-
tional radar object detectors and clustering methods to detect targets before classi-
fication. In addition, most of the methods above work for single-moving object sce-
narios and report results on proprietary datasets. It has been shown in [Gao 2019b]
that, despite good classification accuracy, when tested in more complex scenarios
(multiple objects, city roads), these models exhibit a lot of missing detection, which
might be critical for safety. Adding a tracking algorithm on top of classification al-
gorithms helps to reduce unwanted detection. However, we may wonder about the
possibility of an all-in-one system to detect and classify objects simultaneously from
raw data.

2.5.2 Object detection and segmentation

Deep learning-based object classification models rest upon thresholding algorithms
to detect targets before identification and tracking. Nevertheless, thresholding,
clustering and tracking algorithms are heuristic-based and sometimes produce false
positives. Object detection and segmentation is one of the main tasks in computer
vision, for which deep neural networks have achieved a significant breakthrough in
the past decade. Such approaches have been successfully applied to LiDAR and
cameras. However, as stated in Section 2.3, before 2021, the need for more publicly
available radar datasets has slowed down research in object detection for radar data.
Given the performance of object detection algorithms for computer vision, several
researchers have attempted to exploit these models for radar object detection on dif-
ferent modalities (RA, RD, RAD) [Fatseas 2019, Kaul 2020, Zhang 2021, Li 2022].
Deep learning algorithms can leverage all the information in the raw signal to im-
prove the detection and the classification of road users. Moreover, directly applying
deep learning models on raw data allows to reduce the number of post-processing
steps before detecting objects.

Object detection and segmentation on RAD tensors

In order to exploit all the available information in the radar signal
[Gao 2021, Ouaknine 2021a, Franceschi 2022, Brodeski 2019, Major 2019,
Zhang 2021, Giroux 2023, Fang 2022] conducted work on RAD tensors. In-
deed, RAD tensors aggregate distance, velocity and angle information together.
Brodeski et al. [Brodeski 2019] first introduced this kind of approach in 2019. They
propose a two-stage detector on the RAD cube for detection and DoA estimation.
To remain compliant with the conventional signal processing chain, they first detect
objects in range and velocity using a U-Net-like [Ronneberger 2015] segmentation
model. Then, for each detected object, they crop a RoI from the RAD cube and
the detection network latent space. Finally, they pass it to a small network for
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elevation and azimuth prediction. However, their data comes from an anechoic
chamber with some corner reflectors inside, which is unrealistic. Franceschi and
Rachkov [Franceschi 2022] extend this work to simulated radar data. They use
the same network as [Brodeski 2019] and show a higher accuracy, recall and dice
score than conventional methods. However, this work highlights the difficulty
of deep neural networks to estimate azimuth and elevation in complex scenarios
despite good generalisation results on real data for object detection. Moreover, the
simulated data is unrealistic and looks closer to LiDAR data than radar data.

Similarly, Fang et al. [Fang 2022] introduce ERASE-Net, a two-stage detector
called detect-then-segment. From a RAD tensor, they first detect object centres
in RAD space, then extract and separate regions of interest from the background
to form sparse point clouds. Lastly, they segment objects in RA and RD views
using a sparse segmentation network for efficiency. In [Zhang 2021] Zhang et al.
adapt the famous YOLO architecture [Redmon 2016] for 3D object detection on
the RAD cube. They propose a backbone named RadarResNet that learns to
extract velocity information in the channel dimension without 3D convolutions.
Their model predicts object position in polar and cartesian coordinates, the latter
providing the best detection result. However, the Doppler information is encoded
as an extra channel. In computer vision, increasing the number of channels as we
go deeper into the network is a good practice. Encoding the velocity in such a way
might lead to a wrong estimation of the object’s velocity.

To avoid this, multi-view models were proposed [Major 2019, Ouaknine 2021a,
Gao 2021]. They use one encoder per view to extract information separately before

Figure 2.19: MVRSS framework. At a given instant, radar signals take the form
of a range-angle-Doppler (RAD) tensor. Sequences of q + 1 2D views of this
data cube are formed and mapped to a common latent space by the proposed
multi-view architectures. Two heads with distinct decoders produce a semantic
segmentation of the range-angle (RA) and range-Doppler (RD) views respectively.
Source: [Ouaknine 2021a]
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Figure 2.20: RADDet model. Features are extracted from the RAD cube with
a custom ResNet model adapter to radar. Two YOLO heads are used to detect
objects in the RAD and in the RA cartesian views. Source: [Zhang 2021]

merging it into a single latent space. For example, RAMP-CNN [Gao 2021] predicts
barycentres in the RA domain using multiple views (RA, RD, AD) as input. The
model comprises three different 3D convolutional autoencoders learning across mul-
tiple timesteps and domains. However, RAMP-CNN is huge (around 104 million
parameters) and cannot be considered for real-time applications. Ouaknine et al.
[Ouaknine 2021a] also introduce multi-view radar semantic segmentation (MVRSS)
architectures to detect and classify objects in range-azimuth and range-Doppler do-
mains (TMVA-Net and MVA-Net). As RAMP-CNN, they use one encoder per
view and concatenate features from each view in a latent space. In order to handle
the variability of radar objects’ signature, Atrous Spatial Pyramid Pooling module
[Chen 2018a] is used. They use the latent space to feed two decoders in charge of
segmenting objects in RD and RA view. The models learn from past frames using
3D convolutions but only predict the positions of objects for the last timestep, mak-
ing it more efficient than RAMP-CNN. Finally, Major et al. [Major 2019] perform
bird-eye-view object detection in the RA domain using a multi-view model. Instead
of using 3D convolutions to learn from time, they propose to add an LSTM cell on
top of a detection head. One takeaway of their work is that predicting the posi-
tion in cartesian coordinates instead of polar coordinates leads to higher detection
accuracy. Indeed, it considers the increase in distance between adjacent bins when
the range increases.

Nevertheless, RAD tensors are computationally demanding to produce and cum-
bersome in memory (especially for high-resolution radar). Multi-view models are
hard and long to train and do not necessarily lead to better performance as shown
by [Major 2019]. Since RA maps provide range angle information, thus allowing de-
tection targets around the car, it has been explored extensively for object detection.
RA maps are smaller than RAD cube, hence they are more efficient.
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Object detection and segmentation on RA maps

Alongside the CRUW dataset [Wang 2021c], Wang et al. launch the ROD2021
challenge. The ROD2021 challenge came with the ROD2021 dataset, a subset
of CRUW. This competition motivates research on new models for object detec-
tion using the RA modality. RODNet [Wang 2021b] has paved the way for a new
radar object detection paradigm. To overcome the low resolution of radar, they
propose to detect objects as points in RA view instead of using bounding boxes
[Major 2019, Zhang 2021] or segmentation masks [Ouaknine 2021a, Kaul 2020].
That makes the detection task easier and well-posed when the boxes are not well
defined, but reduces objects to a single point which is not always true. RODNet
[Wang 2021b] consists of an hourglass [Newell 2016] 3D encoder-decoder model that
predicts object location at multiple successive timesteps. However, as RAMP-CNN
[Gao 2021], the models proposed by Wang et al. are huge (more than 100 million
parameters). Ju et al. [Ju 2021] then introduce a lightweight module called Di-
mension Apart Module (DAM), which separately learns range, azimuth and time
information to save computations. Zheng et al. [Zheng 2021] replace the 3D con-
volutions of RODNet with (2+1)D convolutions [Tran 2018]. They use ensemble
learning to detect objects either in static or moving scenarios. Lately, Dalbah et al.
[Dalbah 2023] exploit the power of the Transformer architecture [Vaswani 2017b] to
solve the ROD2021 challenge. However, all these models process and predict data
by batch of N frames and require a buffer of N frames to store in memory. 3D
convolutions are used to learn spatio-temporal information, therefore the learned
temporal context is not reused by the network from one batch to another. More-
over, because frames are treated and predicted by batch the methods presented
above can be seen as non-causal because the convolutional kernel is applied on past
and future frames. In real-time scenarios, one only needs to predict the position of
objects for the last timestep, not for all the frames. In Chapter 4, we propose an
alternative by predicting only the object position for the last frame based on the
previous ones with recurrent neural networks to handle long-term dependencies.

Apart from the ROD2021 challenge, Dong et al. [Dong 2020] propose a proba-
bilistic and class-agnostic object detector. Based upon the CenterNet [Zhou 2019]
architecture, they model the uncertainty by predicting variances for bounding boxes
orientation, size and offset. They also experiment with different types of RA in-
puts: polar or cartesian coordinates, with or without MUSIC [Schmidt 1986] super-
resolution algorithm. Kaul et al. [Kaul 2020] present a weakly-supervised method
using camera and LiDAR supervision semantic segmentation using scanning radar
data. As in many works [Wang 2021b, Major 2019, Ouaknine 2021a], they use the
time information and store it in the channel dimension. Using the same type of
data, Li et al. use a Transformer-like module and computer vision backbones to
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Figure 2.21: RODNet models. The authors propose three encoder-decoder architec-
ture to predict the positions of objets in radar snippets. The M-Net model allows
to merge RA maps from multiple chirps. Source: [Wang 2021b]

learn temporal dependencies between objects’ features (size, position, shape) at
two successive frames; then predict the class and position of objects. Madani et
al. introduce a two-stream FPN-based car detection algorithm for cascaded MIMO
radar using low-resolution and high-resolution RA maps to solve the misdetection
problem due to high-speed vehicles in large cascaded MIMO arrays. In contrast,
Meyer et al. [Meyer 2021] investigate if the information on the cartesian distance
between data points in the radar signal can be used in graph neural networks to
improve the performance of object detection tasks. Their model only detects cars
but performs better than tensor-based approaches.

Object detection and segmentation on RD maps

The release of high-resolution radar datasets has marked the last year [Rebut 2022,
Madani 2022, Paek 2022]. The higher the resolution, the more data to process
and to store. As a result, it becomes unfeasible to use RA or RAD data for
object detection. The range-Doppler spectrum is one of the most efficient rep-
resentations available in radar. Indeed, it contains information about the dis-
tance and the velocity, and last but not least, it contains angle information
through the antenna’s dimensions. For efficiency reasons and before high-resolution
radars, some prior works on RD maps using low-resolution radar have been done
[Fatseas 2019, Dubey 2020, Guo 2022, Fatseas 2022]. In [Fatseas 2019], the authors
use YOLO [Redmon 2016] object detector and Kalman filtering to detect and track
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pedestrians and bicyclists in the range-Doppler domain. Dubey et al. [Dubey 2020]
propose to use generative adversarial networks (GAN) [Goodfellow 2014] to detect
the presence of targets in a scene. The generator is a U-Net [Ronneberger 2015]
model, taking as input a RD spectrum, and the discriminator is an autoencoder
which predicts whether the input is a detection mask or the ground truth mask. Us-
ing computer vision object detectors (YOLOX, D-DETR, SSD, RetinaNet, Faster
R-CNN), Guo et al. [Guo 2022] first detect objects in RD view using a single frame.
Then, they use Kalman filtering and Deep SORT algorithms to fix wrong detection
made by the detection model based on historical information. For low-resolution
radars, because of the lack of annotated datasets and the low resolution in angle, the
methods mentioned above were mainly used as alternatives to CFAR algorithms.

High-resolution radar object detection and segmentation

Thanks to high-resolution radars and large-scale annotated datasets [Rebut 2022,
Paek 2022], more and more researchers have started proposing new architec-
tures for radar object detection using ADC data or complex MIMO RD spectra
[Rebut 2022, Yang 2023, Giroux 2023]. All these works use ADC data or complex
MIMO RD spectra to predict the position of objects in cartesian coordinates, with
no need for complex DoA processing techniques. Rebut et al. try to replace conven-
tional signal processing with deep neural networks to cope with the computationally
demanding resource and memory footprint of high-resolution radar data. They pro-
pose a multi-task architecture composed of five blocks: a pre-encoder reorganising
and compressing RD tensor into meaningful and compact representation, a shared
FPN encoder learning semantic information, a range-angle decoder building a range-
azimuth latent representation from the feature pyramid, a detection head localising
vehicles in range-azimuth coordinates and a segmentation head predicting the free
driving space. Giroux et al. [Giroux 2023] replace the backbone of [Rebut 2022]
with a SwinTransformer backbone and use the ADC data instead of the complex
MIMO RD spectrum. Signal processing is replaced by complex-valued linear layers,
exploiting the prior knowledge of the Fourier transform, as in [Zhao 2023]. Sim-
ilarly, Yang et al. [Yang 2023] learn to transform ADC data to RD latent space
from the Fourier transformer algorithm. They build a dataset with ADC data and
complex MIMO spectra pairs and learn semi-supervised to build complex MIMO
spectra from ADC data. Then, they use the FFT-RADNet [Rebut 2022] model for
object detection and free-space driving segmentation.

We saw in this section that there needs to be a consensus in the community
about the type of data to use for automotive radar perception (RA, RD, RAD) and
the formulation of the problem to detect and identify objects (detection with bound-
ing boxes, segmentation, point-based detection). All of the methods, as mentioned
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earlier, have advantages and drawbacks. Regarding the type of data, because of the
size of high-resolution radar data, the use of complex MIMO RD spectra or ADC
data seems to be the most promising and realistic research direction. Some works
[Major 2019, Dong 2020, Rebut 2022] prefer to learn or to predict the position of
objects in cartesian coordinates directly and show a slight performance improve-
ment when using this representation. Other works [Wang 2021b, Ouaknine 2021a]
directly predict objects’ position in polar coordinates and map the prediction in
cartesian coordinates afterwards without losing accuracy.

2.5.3 Data augmentation for radar

In computer vision, one technique to artificially augment a dataset, avoid overfit-
ting and increase generalisation capability of a model is to use data augmentation.
Basic transforms are image manipulation, image erasing or image mix. Image ma-
nipulation methods are basic image transformations. They include random flipping
(horizontal, vertical), rotation, scaling or Gaussian noise addition. Image erasing
methods idea is to delete one or more sub-regions in the image, then replace the
pixel values of these sub-regions with constant or random values. The CutOut
[Xu 2022] is one of them. ImageMix data augmentation receive increasing interest
in the recent year. These methods are mainly completed by mixing two or more
images or images sub-regions into one. MixUp [Zhang 2018], CutMix [Yun 2019] or
AugMix [Hendrycks* 2020] are the main mixing data augmentation methods.

As mentioned in [Gao 2021], most of the existing data augmentation tech-
niques algorithms we mentioned above cannot be applied to the radar data. In-
deed, radar data differs from cameras images. Raw radar data has complex in-
put, energy loss with range (a same object differs from one range, velocity or
angle to another, see Equation 1.1), and non uniform resolution in the angu-
lar domain. In order to take into account these different factors, some works
tried to exploit radar specific information to increase diversity of radar data
[Gao 2021, Zheng 2021, Brodeski 2019, Sheeny 2020].

Similarly to camera images, we can horizontally and vertically flip radar spec-
trum without altering the data because radar has symmetric property in the Doppler
and in the angular domains. Most the methods we mentioned in the previous section
use flipping. Given the received power of an object varies with range and viewing
angle, Sheeny et al. propose three data augmentation methods for radar classifica-
tion: attenuation in range, change of resolution and background shift. Gao et al.
also translate targets in range and angle by shifting cells in the polar-coordinates.
A detailed view of the process is given in Figure 2.22.

Finally, Zheng et al. derive CutMix family algorithms for radar. Their Scene-
Mix algorithm mixes RA snippets from different scenes. SceneMix comprises three
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Figure 2.22: Translation in range and angle data augmentation. Source: [Gao 2021]

Figure 2.23: SceneMix augmentations. Source: [Zheng 2021]

mixing strategies: VideoMix [Yun 2020], VideoCropMix and NoiseMix. VideoMix
mixes two RA snippets with random proportion. VideoCropMix randomly crop on
a radar snippet and replace the cropped area with the corresponding area in an-
other video. NoiseMix extracts noise from one radar snippet and add it to another
snippet. Figure 2.23 shows an example of the SceneMix augmentation.
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3.1 Motivation

This chapter is dedicated to multiple road-users detection on range-Doppler spectra.
Based upon the Faster R-CNN architecture [Ren 2017], we propose a new object
detection and classification model to resolve road-users targets in distance and ve-
locity. This chapter introduces a lightweight backbone for Faster R-CNN adapted
to RD data. We design our model to handle the complexity of the RD maps and the
small size of radar objects while trying to keep the processing pipeline as efficient
as possible.

Chapter 2 indicates that radar point clouds are sparse, and the filtering tech-
niques applied to the radar signal to obtain those reduce the information for tar-
get classification. Hence, the reflections list might hamper classification perfor-
mance. Radar data can also be represented as raw data tensors (RD, RA or
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RAD maps). Contrary to radar point clouds, such tensors benefit radar object
detection because they represent the unfiltered signal. Prior works to this con-
tribution show that deep learning models, and particularly CNNs, enable accu-
rate object classification [Akita 2019], segmentation [Ouaknine 2021a] or detection
[Meyer 2021, Wang 2021b, Zhang 2021] on raw data tensors. However, most of
these works exploit the RA or the RAD views. Instead, we propose to build a
model for object detection on RD maps in this chapter.

The use of RD maps instead of RAD tensors is motivated by the fact that RAD
tensors are more computationally demanding to produce for radar microcontroller
units (MCUs) and heavy in memory. Also, the RA view might not be an adequate
representation for object detection since it does not account for Doppler, which is
crucial information, as we will see in this chapter. Besides, the RA map usually
suffers from a poor angular resolution caused by a few antennas in the FMCW radar.
In this chapter, we hypothesise that the RD spectrum contains enough information
for detection and classification tasks in automotive radar. Angular information
can be computed for each target afterwards in a post-processing step, either using
standard techniques or with AI as done by Brodeski et al. in [Brodeski 2019].

In the computer vision literature, one can detect an object by drawing bound-
ing boxes around it (object detection) or attributing a class to every pixel in the
image (image segmentation). Today, there has yet to be a consensus in the radar
community about which task to use for radar object detection. Many automo-
tive radar datasets (CARRADA [Ouaknine 2021b], RADDet [Zhang 2021], CRUW
[Wang 2021c]) are annotated semi-automatically because radar data is difficult to
annotate. Usually, an object detection model (Mask R-CNN [He 2017]) first detects
objects on the camera. Then, the detection from the radar (the target list) and the
object detection model are merged together to keep objects of interest. Finally,
valid points are projected onto the radar view. Bounding boxes or segmentation
masks are then created from those points. However, this process can lead to miss
targets if the object detection models miss objects. Also, the points projected on
the radar might not truly represent the targets because of the filtering operation in
the radar signal processing chain.

This is why this work focuses on learning to represent targets as boxes instead of
segmenting the RD map. According to the radar equation 1.1, the power received
by the radar, thus the signature in the RD spectra, decreases proportionality to
the distance to the power of four. The same car at five meters will have a different
signature at 40 meters. While an image segmentation model learns regular shapes
and pixel values, an object detection approach might be more robust to shape and
intensities variation and less prone to overfitting. Indeed, the RD spectrum con-
tains mostly noise, creating imbalance in the dataset. In contrast, object detection
operates on a higher level by identifying and localising specific targets, allowing it
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to be less affected by noise present in individual range-Doppler bins.
Section 3.2 introduces our model. Section 3.3 presents the settings and results of

the experiment. In Section 3.4, we compare the results of our deep learning-based
model with traditional radar object detectors. Finally, Section 3.5 discusses and
concludes the chapter.

This chapter is mainly inspired by our article "DAROD: A Deep Au-
tomotive Radar Object Detect on Range-Doppler maps" published at
IEEE Intelligence Vehicle Symposium (IV) [Decourt 2022a] 1.

3.2 Methodology

This section presents a lightweight Faster R-CNN architecture for object detection
on Range-Doppler spectra. Given an RD map as input, we use a convolutional
neural network to learn relevant features, as in Faster R-CNN. Following the feature
extraction, we use a region proposal network (RPN) to propose spectrum regions
containing potential targets. A small network is slid over the learned convolutional
feature map to generate region proposals. For each point in the feature maps, the
RPN learns whether an object is present in the input image at its corresponding
location and estimates its size. A set of anchors is placed on each location’s output
feature maps’ input image. These anchors indicate possible objects in various sizes
and aspect ratios at this location. We refer to Section 2.2.2 for more detailed
information about RPN and anchors. Next, the bounding box proposals from the

1The code of this work was made publicly available here: https://github.com/colindecourt/
darod/

Figure 3.1: Road users signature in range-Doppler view. We show two RD maps of
RADDet dataset, along with the bounding boxes around objects and their zoom.

https://github.com/colindecourt/darod/
https://github.com/colindecourt/darod/
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RPN are used to pool features from the backbone feature maps. This study uses a
pooling size of 4×4. These features are used to classify the proposals as background
or object and to predict a bounding box using two sibling fully connected layers.
This second part is named Fast-RCNN [Girshick 2015]. We depict this pipeline in
Figure 3.2b.

We show in Figure 3.1 two RD maps with radar signatures of some objects in
the captured scene of the RADDet dataset. Even though those RD maps seem
complex, their information remains of low complexity, contrary to camera images
which are bigger and more diverse in textures, orientations, geometry, and lighting.
Although noisier, RD maps have fixed orientation, and their objects exhibit more
similar patterns and shapes.

To account for those differences, we modify Faster R-CNN to include a lighter
backbone and a modified RPN. Our backbone is derived from the VGG architecture
[Simonyan 2015] and contains seven convolutional layers. Figure 3.2a depicts this
lightweight backbone architecture. To keep the processing pipeline as simple and
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Figure 3.2: DAROD overview. (a) DAROD backbone. We propose a simple feature
extractor derived from the VGG architecture which contains seven convolutional
layers. (b) Overview of the Faster R-CNN architecture. First we extract feature
from a RD map. Then, the RPN make proposals using DAROD’s feature maps.
For each proposal, we extract a RoI from the feature maps and we classify it as an
object or not.
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efficient as possible, we decide not to resize the spectrum and to process it as
it is, resulting in an input of size 256 × 64. Indeed, our goal is to study if an
object detection model performs better than conventional detection algorithms like
CFAR. Therefore, to add such an algorithm in the radar processing chain (see Figure
1.5), we prefer to adapt the backbone to the output of the signal analysis block.
The backbone comprises two blocks with two 2D convolutions and one with three
2D convolutions. Following each convolutional block, we apply a 2D max pooling
operation to down-sample the input size. Because the dimension is smaller than
camera images and to minimise the loss of Doppler information which is helpful for
classification, we down-sample the Doppler dimension only by a factor of two after
the first block. Then, we obtain a set of 32 × 32 feature maps, which led to the best
performance. The number of channels for each block of convolutions is respectively
set to 64, 128 and 256.

The next step is to define the anchors used by the RPN to capture the objects’
diversity of shape and size. In this work, we use three scales and three aspect
ratios to generate anchors, yielding nine anchors at each position in the feature
map. The mean size of objects in RD maps is 8 × 8. We use this size as a reference
for the anchor’s scale. We use scales of 4 and 16 for smaller and bigger objects,
resulting in anchors scales of sizes [4, 8, 16]. Additionally, we set aspect ratios to
[1
4 , 1

2 , 1
8 ]. Contrary to Faster R-CNN where aspect ratios are set to [1, 2, 1

2 ], we
choose aspect ratios where denominators are multiples of 4 to account for the 1

4
ratio between input height and width. To reduce the computational complexity of
the model, we do not consider all the combinations of scales and ratios. We only
consider combinations containing scale eight and ratio 1

4 resulting in fewer anchors
generated per image (5 at each position). We find these settings provide the best
performances.

Since the RD spectrum is not translation invariant (the velocity is a character-
istic of the target), we decide to add this information to the feature vector used
for classification and bounding box regression. This feature vector corresponds to
the flattened region proposed by the RPN. We compute the velocity by extracting
the top-k (k is set to 3) pixel positions with the highest intensities in the proposed
RoI. Knowing the velocity resolution of the radar δv and the position of the ith

highest pixel in the RoI pi, we compute the ith velocity using the following formula:
vi = δv · pi. We notice a slight improvement in the performances using the Doppler
values as extra features.

We optimise the model using the loss functions described in [Ren 2017]. For
training RPN, a binary class label is assigned to each anchor. To take into account
the uncertainty of the annotations, we assign a positive label to anchors having a
high IoU overlap with a ground-truth (GT) box or having an IoU overlap higher
than 0.5 (instead of 0.7 in the original paper [Ren 2017]). We assign a negative
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label to an anchor if it has an IoU overlap lower than 0.3 for all GT boxes. Anchors
that are neither positive nor negative do not contribute to the training objective.
According to [Ren 2017], we minimise the following multi-task loss to train the
RPN:

Lrpn = 1
Ncls

∑
i

Lcls(pi, p
∗
i ) + 1

Nreg

∑
i

p∗
i Lreg(ti, t∗i ), (3.1)

where i is the index of an anchor in a mini-batch, and pi is the predicted probability
of anchor i being an object. p∗

i is set to 1 if the anchor is positive and 0 if the anchor
is negative. ti is a vector representing the coordinates transformation between the
predicted box and an anchor. t∗i represents the coordinates transformation between
an anchor and the GT box. The classification loss Lcls is a binary cross-entropy.
The regression loss Lreg is the Huber loss defined in [Huber 1964]. Ncls is the mini-
batch size, representing the number of proposals (positive and negative) to use for
training the RPN. Here we set Ncls to 32 as there are few objects in our RD data.
Nreg is the number of positive anchor locations.

For training the second part of the network (the detection head Ldet), we use a
similar multi-task loss as for the RPN. We train the regression head using the same
loss function as the RPN and replace the binary cross entropy with multi-class cross
entropy. As a result, we optimise the following loss function:

L = Lrpn + Ldet (3.2)

3.3 Experiments and results

3.3.1 Datasets and competing methods

We train our model on the two publicly available radar datasets CARRADA
[Ouaknine 2021b] and RADDet [Zhang 2021]. For the CARRADA dataset, we use
the segmentation masks as a reference to create our bounding boxes by drawing
a box around masks. For each instance, we take the minimum and the maximum
(x, y) coordinates of the segmentation masks to create the bounding boxes. Regard-
ing the RADDet dataset, we extract the RD maps by summing the values of the
RAD tensors over the angle dimension. We use the same bounding boxes provided
by the authors of the RADDet dataset by only taking coordinates along the range
and the Doppler dimension. We use the default train/val/test distribution of the
CARRADA dataset. For RADDet, we randomly split the train into training and
validation sets with a 9:1 ratio. For testing, we use the provided test set.

We compare our model DAROD, made of the lightweight backbone and the
simplified Faster R-CNN architecture displayed in Figure 3.2, with the RADDet
model [Zhang 2021]. At the time of this study, it was the only published object de-
tector designed for radar data. We modify the RADDet model to train it only with
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Model IoU 0.3 IoU 0.5 # params (M) Runtime
(ms)mAP Precision Recall mAP Precision Recall

DAROD (ours) 68.26 ± 0.08 79.84 48.37 58.20 ± 0.03 74.31 44.19 3.4 25.31
Faster R-CNN (pretrained) 71.08 ± 0.12 51.70 72.97 64.56 ± 0.09 47.86 67.21 41.3 37.19

Faster R-CNN 64.21 ± 0.07 45.90 74.17 52.93 ± 0.06 41.59 67.40 41.3 37.19
RADDet RD 48.59 ± 0.05 61.31 42.56 18.57 ± 0.08 36.73 25.50 7.8 74.03

Table 3.1: Results of different models on CARRADA dataset.

RD maps as input instead of RAD tensors. We also consider the variant RADDet
RAD, corresponding to the original RADDet model (train on RAD tensors) evalu-
ated only on the range and the Doppler dimensions, using the pre-trained weights
provided in [Zhang 2021]. As a second baseline, we consider the state of the art
in computer vision by selecting the Torchvision2 Faster R-CNN implementation us-
ing the default hyper-parameters, namely a resizing of the input from 256 × 64 to
800 × 800 and a ResNet50+FPN backbone pre-trained on ImageNet. In addition,
we train the Torchvision Faster R-CNN without the pre-training on ImageNet to
evaluate the impact of this pre-training on the results.

3.3.2 Training setting and evaluation metrics

We use the Adam optimiser with the recommended parameters and a learning rate
of 1 × 10−4 for all our experiments. We set the batch size to 32 for both datasets.
Our model has trained over 100 and 150 epochs for CARRADA and RADDet
datasets. As the Faster R-CNN object detector contains several hyper-parameters,
we perform a grid search over some carefully chosen parameters to improve the
performance of our model. We randomly use horizontal and vertical flipping as
data augmentation strategies.

We evaluate our model using the mean average precision (mAP), a well-known
metric for evaluating object detectors. We consider mAP at IoU thresholds 0.3
and 0.5 to consider the uncertainty of the annotations, which are generated semi-
automatically for both datasets as discussed in Section 3.1. In addition, we provide
precision and recall at IoU thresholds 0.3 and 0.5. All the experiments are conducted
using the Tensorflow3 deep learning framework and an Nvidia RTX 2080Ti GPU.

3.3.3 Results

Tables 3.1 and 3.2 show the performance of our model on CARRADA and RADDet
datasets4. Our DAROD model outperforms the RADDet method on both datasets
while it remains competitive with Faster R-CNN. When pre-trained on ImageNet,

2https://github.com/pytorch/vision
3https://www.tensorflow.org/
4We train all the models ten times, and we show the mean results for each in Table 3.1 and 3.2

https://github.com/pytorch/vision
https://www.tensorflow.org/
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Model IoU 0.3 IoU 0.5 # params (M) Runtime
(ms)mAP Precision Recall mAP Precision Recall

DAROD (ours) 65.56 ± 0.83 82.31 47.78 46.57 ± 0.7 68.23 38.74 3.4 25.31
Faster R-CNN (pretrained) 58.47 ± 0.67 52.17 56.92 49.55 ± 0.72 47.78 51.77 41.3 37.19

Faster R-CNN 49.16 ± 0.56 32.33 61.46 40.84 ± 0.61 29.37 55.29 41.3 37.19
RADDet RD 38.42 ± 1.12 78.20 29.77 22.87 ± 1.45 60.41 20.55 7.8 74.03

RADDet RAD [Zhang 2021] 38.32 68.80 26.83 17.13 46.55 16.99 8 75.2

Table 3.2: Results of different models on RADDet dataset. We do not report mean
and standard deviation for RADDet RAD as we report the results from the paper.

Faster R-CNN leads to the best mAP in 3 cases, with DAROD being second best,
the positions being inverted in the last experiment (RADDet dataset and IoU at
0.3).

Generally, we observe that DAROD achieves good precision scores but medium
recall. This suggests that our model accurately classifies targets when there are
detected but misses some objects present in the scene. The confusion matrices in
Figure 3.3a confirms this interpretation. For each class, we notice that 20% of
the time, targets are detected while there are no objects in the image (last line of
the confusion matrix). The confusion matrix’s last column also shows that DAROD
tends to miss objects in the scene, which can be problematic for critical applications.
We explain this behaviour because we aimed to optimise mAP, which measures the
global performance of object detectors. We might be able to improve the recall
by reducing the selectivity of our model during training and in the post-processing
step or by decreasing the penalty of classification errors. Finally, because of their
similarities (velocity, RCS), we notice confusion between pedestrians and bicyclists.
Mainly, pedestrians are classified as bicyclists. On the contrary, cars are either
correctly classified or missed. Examples in Appendix A show some failure cases of
DAROD (missed targets and confusion between similar classes).

We draw the same conclusion for the RADDet model, which obtains decent
precision scores but low recall, impacting mAP@0.3 and mAP@0.5. The confusion
matrix in Figure 3.3b shows many pedestrians and bicyclists false positives and
mostly missed cars and pedestrians. Under-represented classes (bicyclists, motor-
cycles, buses) are rarely missed. As for the CARRADA dataset, we notice confusion
between similar classes (bus and truck here), which raises the question about the
necessity of labelling such classes.

The original version of the Faster R-CNN model achieves sufficient precision
scores and good recall, resulting in more false positives but fewer missed targets,
which may be better for critical applications. In this implementation, because the
input spectrum is upsampled targets are bigger, therefore they match more anchors
than in our implementation. The number of positive labels to train the RPN and
the Fast R-CNN part is also higher. This is why the recall of Faster R-CNN is better
than ours. However, upsampling the input might change the radar signature which
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(a) DAROD confusion matrix (CAR-
RADA dataset).

(b) DAROD confusion matrix (RADDet
dataset).

Figure 3.3: DAROD confusion matrices on CARRADA and RADDet datasets.
DAROD tends to miss objects in the scene, and struggle to classify similar classes
correctly, which can be problematic for critical applications

can affect the classification results. Also, because of its size Faster R-CNN is more
subject to overfitting than DAROD. Finally, the pretraining of the Faster R-CNN
backbone on the ImageNet dataset helps to improve the detection performance. It
drastically improves the precision score but does not impact the recall score. This
is interesting because the features in ImageNet are highly different from radar data.
This suggests the network uses the shapes and the patterns learned on ImageNet to
find objects in the spectrum. We discuss further pretraining strategies in Section
3.5.

A critical point in automotive radar is the computational load of the different
models. We compute the FLOPS (floating point operations per second) of the
different models and represent it as a function of the performance in Figure 3.4.
Not surprisingly, radar based approaches are far more efficient than Faster R-CNN
that uses up-sampling and deeper backbones. RADDet model is the model with
the lowest number of FLOPS as it is inspired from the single stage detector YOLO
[Redmon 2016]. The number of FLOPS required by DAROD is slightly bigger than
RADDet, but stays reasonable to run on microcontrollers.

3.3.4 Ablations studies

Impact of additional features

We add the velocity of each detected target to the feature vector used for the
classification. We try to add this information in different ways:
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Figure 3.4: Number of FLOPS vs. mAP@0.5 for DAROD, Faster R-CNN (pre-
trained or trained from scratch), RADDet and RADDet RAD.

1. We extract the range and the velocity values from the centre of the RoI.

2. We extract the top-k maximum intensities from the RoI and extract the top-k
range and velocity values from it, with k = 3.

3. We compute a range and velocity grids, then use these grids as additional
input channels.

Figure 3.5 summarises the different methods.
We report in Table 3.3 the detection results on the CARRADA dataset when

adding the following features: the range, the velocity and the range and the velocity
values. Overall, adding features about the position and the velocity of targets boost
the mAP. We notice that extracting the top-3 maximum intensities from the RoI
lead to the best results. Indeed, the successive downsampling stages and the RoI
pooling operation result in an approximate location of the target. Selecting the
centre of the RoI as a reference might extract features from the background (i.e.
noise) instead of from the target.

On the contrary, choosing the top-k maximum intensity will help to correct
localisation error by putting more weights on high-intensity values (i.e. foreground).
Finally, using the range and Doppler grids as additional input channels does not
improve the results. We imagine the distance and Doppler information are lost and
do not flow through successive layers. However, we see a slight improvement when
using a Doppler grid, which suggests the targets’ velocity is helpful.

Size of the feature map

We study the impact of the size of the feature maps on the mAP. We do not consider
feature maps bigger than 32×32 to save computations. We experiment with square
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Figure 3.5: DAROD additional features extraction process summary.

features maps (16 × 16 and 8 × 8) and rectangular features maps to keep the ratios
of the input (32 × 8 and 16 × 8). Table 3.4 shows a 32 × 32 feature maps provides
the best results. The smaller the feature maps, the less accurate the model. While
IoU thresholds increase, the mAP of models using larger feature maps increase. We
experimented with smaller pooling sizes in Faster R-CNN for smaller feature maps
and did not notice any improvements. We use the CARRADA dataset for these
experiments.

Features Maximum (top-3) Centre Grid No features
Range 55.87 55.52 55.42

Doppler 58.10 55.73 56.19
Range & Doppler 58.20 53.13 52.34

No features 54.85

Table 3.3: mAP@0.5 for DAROD when adding additional features (range, Doppler
or range and Doppler) to the feature vector of detected targets. The last line reports
the mAP@0.5 for a model without additional features.
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Feature maps size mAP@0.1 mAP@0.3 mAP@0.5 mAP@0.7
32 × 32 (baseline) 73.33 68.26 58.20 29.28

16 × 16 62.11 57.76 47.50 20.15
8 × 8 50.22 45.37 33.22 9.11

32 × 16 59.92 55.58 44.83 20.32
16 × 8 52.49 47.17 38.01 15.35

Table 3.4: DAROD mAP for different feature maps size. We report the mAP
at different thresholds to show how the size of the feature maps affects location
accuracy. Experiments are on the CARRADA dataset.

3.4 Comparison with conventional object detectors

In this section, we aim to compare our DAROD model with conventional object
detectors. The goal of this thesis being to reduce the complexity of the radar signal
processing chain (see Figures 1.5 and 1.13). This chapter shows that deep learning-
based object detectors can be considered alternatives to CFAR detectors and their
associated post-processing steps. In the CARRADA dataset, DoA points from the
radar are available. They are obtained using the processing chain presented in
Figure 1.5. Because these points are potential objects, we consider two baselines.

In Section 3.4.1 we evaluate DAROD for detection only (objects/no objects)
and we compare it with the DoA points. However, whereas the CFAR algorithm
detects objects based on their intensity, our model was trained to detect specific
objects like cars or pedestrians explicitly. Therefore, in Section 3.4.2 we consider
a second baseline with an AI-based classifier which learns to remove background
detections (binary) or to classify them (multi-class).

3.4.1 Binary object detection

To compare DAROD with conventional object detectors, we project the DoA points
on the RD spectrum as our model detects objects in the RD view. Unfortunately,
we can not compute the DoA for the CARRADA dataset because we do not have
the ADC data. As our model outputs boxes, we cluster the radar detection using
DBSCAN and draw a bounding box around each cluster following the same method
as in [Ouaknine 2021b]. Figure 3.6 summarises the process, and Table 3.5 shows
the mAP at different IoU thresholds.

Table 3.5 shows that our approach outperforms conventional radar object de-
tectors. We consider another baseline with an AI-based classification stage (binary
and multi-class). We describe this approach in detail in Section 3.4.2. We note that
using a classifier which learns to remove background objects increases the overall
detection performance. The results highlight the relevance of using deep-learning-



3.4. Comparison with conventional object detectors 85

Figure 3.6: CARRADA Point Clouds dataset generation. After projecting point
clouds on the RD map (pink points), we cluster points using the DBSCAN algorithm
(green and orange points). For each cluster, we create a segmentation mask using
the same procedure as [Ouaknine 2021b]. From the segmentation masks, we draw
bounding boxes around each cluster to obtain box for binary detection (green and
orange boxes). For the multi-class detection, we then compute the IoU between
ground truth box (blue box) and boxes from CFAR+DBSCAN. If the IoU is greater
than a threshold, we label the box from CFAR+DBSCAN using the ground truth
label (a car here) and set the label of the last box to background.

based object detectors for the detection tasks. Indeed, DAROD exhibits better
localisation precision, resulting in a better AP for object detection.

3.4.2 Multi-class object detection

Dataset Following the clustering stage, we use the DeepReflecs model
[Ulrich 2021] to classify the detected point clouds as background or objects (cars,
pedestrians, bicyclists). We create the CARRADA Point Clouds dataset by map-
ping the point clouds with the labels provided in [Ouaknine 2021b]. To build the
dataset, we map the ground truth labels available in the CARRADA dataset on the
DoA points. For each detected cluster, we draw a bounding box around it. We then
compute the IoU between the cluster bounding box and all the ground truth boxes.

mAP@0.1 mAP@0.3 mAP@0.5
CFAR+DBSCAN 46.88 39.23 26.34
CFAR+DBSCAN+DeepReflecs (binary) 69.90 60.10 37.26
DAROD (detection only) 86.10 77.85 66.66

Table 3.5: Object/no object detection performance comparison between DAROD
and a traditional radar object detection.
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Figure 3.7: DeepReflecs model architecture [Ulrich 2021]

If the IoU between the cluster bounding box and a ground truth box is higher than
a threshold, we label the cluster with the ground truth bounding box label. The
ground truth box is removed from the label list, and we repeat the operation for
all the clusters. Non-matched clusters are then labelled as background. Figure 3.6
illustrates the process.

Model Using our CARRADA Point Clouds dataset, we train the DeepReflecs
model for object classification. DeepReflecs [Ulrich 2021] takes as input a list of M
reflections with five features as input. In the original paper, the authors use the final
detection list, which contains the position of the object in cartesian coordinates, the
velocity, the RCS and the range of the target. In this study, we work in the RD
domain. Thus we do not aim to estimate the object’s DoA. We slightly change the
features for the classification accordingly, and we use the following features: the
range, the velocity and the RCS of the reflection, and the mean range and velocity
value of the cluster.

We train the model over 500 epochs using Adam optimiser and a learning rate

(a) DeepReflecs train and validation loss (b) DeepReflecs train and validation ac-
curacy

Figure 3.8: Train and validation metrics (loss and accuracy) for the DeepReflecs
model on the CARRADA Point Clouds dataset.
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Figure 3.9: DeepReflecs confusion matrix on the CARRADA Point Clouds dataset

mAP@0.1 mAP@0.3 mAP@0.5
DAROD (ours) 73.33 68.26 58.20

RADDet RD [Zhang 2019] 59.63 48.59 18.57
CFAR+DBSCAN+DeepReflecs 39.81 34.69 19.57

Table 3.6: Comparison between deep learning object detectors and a conventional
approach with DeepReflecs [Ulrich 2021] model.

of 1 × 10−4. The batch size is set to 512. Figure 3.7 shows the DeepReflecs model.

Classification results For classification only, DeepReflecs reaches an accuracy
of 80.33%. Performance can be further improved by using re-sampling strategies to
decrease the imbalance in the dataset. Figure 3.8 shows the train and validation
loss and accuracy on the CARRADA Point Clouds dataset. Also, we report in
Figure 3.9 the confusion matrix of DeepReflecs on the test set. As for the detection
task, bicyclists are often classified as pedestrians. Generally, the model correctly
classifies background objects.

Object detection results We report in Table 3.6 the mAP of deep
learning radar object detectors and a hybrid radar object detector
(CFAR+DBSCAN+DeepReflecs). Section 3.4.1 shows that combining CFAR and
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DBSCAN approaches lead to lower localisation accuracy than deep learning object
detectors. Table 3.6 confirms that deep learning models (DAROD or RADDet)
achieve higher mAP than conventional approaches with point cloud classification
networks. Nevertheless, such an approach reaches better mAP@0.5 than RADDet
RD [Zhang 2019]. We think the mAP of the CFAR+DBSCAN+DeepReflecs model
could be improved by improving the accuracy of DeepReflecs (thus trying to reduce
the confusion between cyclists and pedestrians).

3.4.3 Discussion

Although DAROD outperforms traditional methods (with and withou AI) in bi-
nary and multi-class object detection tasks, the comparison could be unfair. First,
the CARRADA dataset is made to detect only pedestrians, bicyclists and cars.
However, many other targets or reflections in the scene affect the detection results
(binary task). We noticed that using a classification network helps to increase the
overall performance of the approach, but the mAP at high IoU remains low. Second,
because we formulate the detection problem as bounding boxes, we evaluate the con-
ventional approach using the mAP metric. We created the bounding boxes from the
point clouds of each cluster using the same code as the authors of the CARRADA
dataset. However, in the CARRADA dataset, the authors correct DBSCAN’s clus-
ters using the prediction of a Mask R-CNN model [He 2017] they project on the RD
spectra. As a result, IoU between boxes from CFAR+DBSCAN and the ground
truth might be low for objects corrected in the annotations process, hence decreasing
IoU at higher thresholds (greater than 0.5). Figure 3.6, which shows how we build
the dataset, illustrates this issue. We think the mAP@0.3 is a good starting point
to compare different deep-learning and non-deep-learning methods. Although less
accurate than our approach, the CFAR+DBSCAN+DeepReflecs approach achieves
decent results at this threshold. For the multi-class object detection, this method
has low mAP@0.3 compared to DAROD and RADDet [Zhang 2021]. Decreasing the
class imbalance in the dataset and performing grid-search over hyper-parameters
could improve the accuracy of the classifier and the overall mAP. We did not con-
duct such experiments as this is not the purpose of this thesis.

3.5 Conclusion and perspectives

In this chapter, we presented an adaptation of the Faster R-CNN model for object
detection on range-Doppler maps. First, we show that a deep learning model can
achieve good detection performance compared to traditional radar object detectors.
Second, we demonstrated that our DAROD backbone attains higher mAP than the
original implementation of Faster R-CNN when no pre-training of the backbone is
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done, using ten times fewer parameters. Also, we show that our model outperforms
the radar-based model RADDet [Zhang 2021] on the CARRADA and the RADDet
dataset.

We designed our backbone to deal with range-Doppler data specifically. We
experimented with different pooling and feature map sizes, proving that the dis-
tance and, mainly, the velocity information are crucial to improving detection and
classification results. We introduced three methods to add the distance and the
velocity information into the Faster R-CNN framework. We found sampling the
top-k highest intensity values from the detected RoI to provide the best results.

Finally, we compared our model with conventional radar object detectors (i.e.
CFAR + DBSCAN) with and without object classification. Experiments show
that deep-learning object detectors improve localisation precision and yield fewer
false positives. This comparison confirms the promise of deep learning applied to
automotive radar.

Comparison between deep-learning object detectors and conventional
object detectors In Section 3.4, we studied CFAR detectors’ performance and
analysed their performance against DAROD. For a fair comparison, we trained a
point cloud classifier, DeepReflecs [Ulrich 2021], to classify targets as background
or road users (pedestrians, bicyclists and cars). We found that adding a classi-
fier increases the performance of conventional object detectors. Nevertheless, the
DeepReflecs performance could be improved by making the association between
points and label better (see Figure 3.6), reducing the imbalance in the dataset and
searching for better hyper-parameters. Moreover, we compared our model with
the detections projected on the RD spectrum. A better comparison would be to
estimate the DoA of objects detected by our method and then compare our point
clouds with those from the radar. Such comparison could be done using the RAD-
Det [Zhang 2021] or the RADIal [Rebut 2022] datasets as they contain the ADC
data required for running the entire processing chain. However, the whole process-
ing chain must be implemented to obtain the default point clouds.

Comparison with the RADDet model In section 3.3.3, we show that our
model achieves much better mAP than the RADDet model on CARRADA and
RADDet datasets. We want to emphasise that the RADDet model was specifically
designed to process RAD tensors instead of RD spectra. Therefore, it might be
inefficient on RD spectra, and the results might suffer from this difference. For this
reason, we evaluated the RADDet model on the range and the Doppler dimensions
only, using the pre-trained model provided by the authors. Results are given in Ta-
ble 3.2 as the RADDet RAD model. Results show that an RD-only model achieves
better mAP than the RAD model. Because RADDet uses the Doppler information
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in the channel dimension, we conclude that the model is better at detecting objects
in the RA or cartesian space than in the RD view.

Model efficiency We conducted experiments to compare our lightweight radar-
based model with the original implementation of Faster R-CNN. At a similar feature
map resolution as DAROD, the Faster R-CNN model we compare with achieves
good performance. However, regarding the large number of parameters and FLOPS
of this model, the gain in performance we observe does not improve by far the
results. We concluded that using very deep convolutional neural networks to extract
meaningful information from radar data is not essential. Naturally, this is true for
the CARRADA and the RADDet datasets as they are small. With larger datasets,
we might enlarge the size of the models to increase their learning capacities. Even
though our model is the lightest in terms of parameters, the number of floating point
operations it requires remains big to be embedded. Replacing the 2D convolutions
with depth-wise separable convolutions or transforming our model into a single-
stage detector could be a solution to improve the efficiency of our backbone.

Pre-training the backbone Although camera images are very different from
RD maps, pre-training the weights of Faster R-CNN lead to an improvement of 7
to 9 points in mAP, which outperformed DAROD in 3 of the 4 cases. Pre-training
the backbone of DAROD might also led to a significant increase in performance.
However, this is not trivial since it requires a well-suited dataset in terms of shape
and complexity. Experiments have been conducted to pre-train the DAROD back-
bone using the ImageNet [Russakovsky 2015] dataset, but we found DAROD to be
undersized to be pre-trained adequately on ImageNet. A good pre-training of object
detectors’ backbones could help reduce the annotation process of radar data and the
number of required labels to train models. Exploring self-supervised pre-training
methods such as SimCLR [Chen 2020a], MoCo [He 2020], BYOL [Grill 2020] or
DINO [Caron 2021] while exploiting the specificity of radar data could help to re-
duce the number of required labels for radar object detectors. We start conducting
research on pre-training radar networks in Chapter 5.

Exploiting the temporal information We demonstrated that a simple and
light backbone performed well for object detection and classification tasks, con-
trary to deeper image-based backbones. However, our model needs to consider the
temporal information of radar data, which could help build a more accurate radar
object detector. Indeed, the confusion matrices in Figures 3.3b, 3.3a and 3.9 re-
vealed some confusion between similar objects (pedestrians and bicyclists, trucks
and buses). This is due mainly to the intra-class variations in the shape of objects.
In radar, the same object at two different distances, angle of arrival or velocity can
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be very different in the RD view (this remains true in the RA and RAD views).
Exploiting the time information (e.g. multiple frames) has been shown to help to
capture better the dynamics of objects, and therefore, the intra-class variation of
objects [Ouaknine 2021a, Major 2019, Wang 2021b]. The next chapter introduces a
new approach to learning features from the time for radar. It shows the relevance of
such an approach to improving radar object detectors’ detection and classification
accuracy.
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4.1 Motivation

For automotive applications, time is key information which can be exploited to
learn temporal patterns between successive frames in videos for example. The
models tested in Chapter 3 worked independently on the different frames. While
they showed decent detection and classification results, their ability to distinguish
between close classes (e.g. pedestrians and bikes) was limited (see Figures 3.3a,
3.3b and 3.9). Indeed, radar object signatures vary a lot for a same object located
at different distance, angle of arrival and with a different speed, resulting in a lot
of variance in the class distribution. According to the radar equation (Equation
1.1), the signature of an object vary with the distance between the object and the
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Figure 4.1: Fluctuation of the radar signature of a pedestrian over time. The
power reflected by the pedestrian decrease with the distance, according to the radar
equation.

radar. This variation, also referred to as the dynamic of the object, is characteristic.
Therefore, the use of time in radar makes it possible to learn the dynamics of the
objects held in the radar signal, handle the variation in the shape of the object over
time, and reduce the noise between successive frames (induced by the movement of
the surrounding object and the vehicle itself). We show in Figure 4.1 the fluctuation
over time of the signature of a pedestrian which moves away from the radar. In
this example we can see that the farther the pedestrian, the lower the reflected
power. Also, the figure illustrates the micro-Doppler effects that appears when the
pedestrian is close from to radar (due to an higher velocity of the arms compared
to the body of the pedestrian).

Recent efforts have been made to exploit temporal relationships between raw
radar frames using multiple frames for detection or segmentation tasks. The most
common approaches such as [Ouaknine 2021a, Wang 2021b, Ju 2021] is to use tem-
poral convolutions (or 3D convolutions). Conversely, in [Major 2019], Major et al.
use a ConvLSTM to detect cars in RA view and [Li 2022] processes sequences of
two successive radar frames to learn the temporal relationship between objects.
Most temporal radar object detectors use temporal convolutions to learn spatial
and temporal information. However, these methods are often non-causal, struggle
to capture long-term dependencies and are unsuitable for real-time applications.
Indeed, temporal convolutions require large kernel, therefore more parameters and
computations, to capture long-term dependencies. Moreover, because the convo-
lutional kernel is applied over past and future frames, some models based on 3D
convolutions are not causal [Ju 2021, Wang 2021b].

This chapter presents a new convolutional and recurrent neural network (CRNN)
for radar spectra. Unlike most multi-frame radar object detectors, our model is
causal, which means we only use past frames to detect objects. This characteristic
is crucial for real-time ADAS applications because such systems do not have access
to future frames. To learn spatial and temporal dependencies, we introduce a
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model consisting of 2D convolutions and convolutional recurrent neural networks
with ConvLSTMs at different scales. Additionally, we use efficient convolutions
and efficient ConvRNNs (inverted residual blocks [Sandler 2018] and Bottleneck
LSTMs [Zhu 2018]) to reduce the computational cost of our approach. Our model
is end-to-end trainable and does not require pretraining or multiple training steps.
We present a generic method that can process either RA, RD or RAD spectra and
outperforms state-of-the-art architectures on different tasks (point-based detection
and semantic segmentation). To our knowledge, this is the first fully convolutional
recurrent network for radar spectra and also the first with LSTMs at different scales.

Section 4.2 presents prior art on sequential object detection in computer vision
and radar. Sections 4.3 and 4.4 describe our approach and the proposed model.
We present the results of our experiments on the ROD2021 dataset [Wang 2021c]
and the CARRADA [Ouaknine 2021b] dataset in Section 4.5. Finally, Section 4.6
discusses and concludes the chapter.

This chapter is mainly inspired from our article "A recurrent CNN for
online object detection on raw radar frames" submitted at IEEE Trans-
action on Intelligent Transportation Systems (T-ITS)1 [Decourt 2022b].
A patent has also been filed for this work.

4.2 Related work

4.2.1 Sequential object detection in computer vision

Object detection and segmentation are fundamental problems in computer vi-
sion. However, the majority of object detection and segmentation algorithms have
been developed on static images. For some applications (robotics, autonomous
driving, earth observation), processing sequences of images is desirable. Due
to motion blur or object occlusion and correlations between frames, it is sub-
optimal to directly apply classical object detectors, or segmentation algorithms
[Chen 2018b] on successive frames. To exploit the temporal information in se-
quences, optical flows [Zhu 2017, Yu 2022], recurrent networks with or without
convolutions [Zhu 2018, Li 2018, Pfeuffer 2019, Ventura 2019, Zhang 2019], at-
tention [Fare Garnot 2021, Yu 2022], transformers [Yu 2022, Duke 2021], aggre-
gation methods [Chen 2020b] or convolutions (temporal or spatial) [Xiao 2018,
Bertasius 2018] were widely used.

In [Li 2018] and [Zhu 2018], authors propose to transform the SSD object detec-
tor in a recurrent model. In [Li 2018], the authors add ConvLSTM cells on the top
of the detection head. In [Zhu 2018], an LSTM cell is added between the last feature
map of the feature extractor and the detection head. However, these models only

1The code of this contribution is available here: https://github.com/colindecourt/record/

https://github.com/colindecourt/record/
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use single scale feature maps to learn temporal relationships. In [Ventura 2019],
authors present a recurrent model for one-shot and zero-shot video object instance
segmentation. Contrary to previous methods and ours, they use a fully recurrent
decoder composed of upsampling ConvLSTM layers to predict instance segmenta-
tion masks. Another approach proposed by Sainte Fare Garnot and Landrieu in
[Fare Garnot 2021] consists in using temporal self-attention to extract multi-scale
spatio-temporal features for panoptic segmentation of satellite image time series.

4.2.2 Sequential object detection in radar

In radar, object detection or segmentation algorithms [Schumann 2018, Gao 2021,
Franceschi 2022, Zhang 2021, Decourt 2022a] that do not use time suffer from low
performances for similar classes such as pedestrians and bicyclists [Ouaknine 2021a,
Decourt 2022a]. According to the Doppler principle, motion information is held in
the radar signal and should help to differentiate between a pedestrian (non-rigid
body, motion information widely distributed), and a car (rigid body, more con-
sistent motion information) [Wang 2021b]. 3D convolutions are primarily used in
radar to learn spatio-temporal dependencies between frames. Methods such as
[Wang 2021b, Gao 2021, Ju 2021, Zheng 2021] adopt 3D encoder-decoder architec-
tures where they predict the position of objects for N successive frames. Despite
their performances, these methods require a buffer of N frames in memory to work
and are not really online methods in inference, as the convolutional kernel is applied
over past and future frames. Additionally, one may encounter border effects due to
the padding applied on the first and the last frame in the buffer. On the contrary,
our approach doesn’t access future frames neither in training nor in inference. Ad-
ditionally, the number of parameters of models using 3D convolutions is huge for
real-time applications (34.5M for RODNet-CDC [Wang 2021b], 104M for RAMP-
CNN [Gao 2021]). Consequently, Ju et al. [Ju 2021] introduced Dimension Apart
Module (DAM), a lightweight module for spatio-temporal feature extraction on RA
maps that can be integrated into U-Net style network architecture. Alternatively,
Ouaknine et al. propose in [Ouaknine 2021a] to use 3D convolutions to encode the
spatial information of the N past frames in an online setting. Similarly to other 3D
convolutions-based methods, TMVA-Net [Ouaknine 2021a] has a lot of parameters
compared to our approach.

Kaul et al. [Kaul 2020] propose a model without 3D convolutions where the
time information is stacked in the channel dimension. [Niederlöhner 2022] aggre-
gates point clouds of different time steps to increase the resolution of the radar
point cloud. More recently, Li et al. [Li 2022] propose an approach inspired by the
transformer architecture and based on computer vision-based feature extractors to
exploit temporal dependencies between objects in two successive frames. Finally,
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Major et al. [Major 2019] follow [Jones 2018] by using a ConvLSTM over the fea-
tures of a multi-view convolutional encoder. Even though this model is similar to
ours, the LSTM cell is applied only to the learned cartesian output before the de-
tection head, and the proposed model only detects cars. Additionally, this model
is not end-to-end trainable and requires pre-training of a non-recurrent version of
it before.

4.3 Problem formulation

We aim to design a model to learn the implicit relationship between frames at
different spatial and temporal levels recurrently. This section describes the archi-
tecture of our single-view spatio-temporal encoder and decoder. We also introduce
a multi-view version of our model designed to learn spatial and temporal features
in different views (e.g. RD, AD, and RA) simultaneously.

Let us consider a sequence R of N radar frames ranging from time k − N + 1
to k such as: R = {rk−N+1, . . . , rk}. We aim to find the locations of every object
in the scene at time k, Pk, based on the N past frames. We define our model with
two functions, the encoder E and the decoder D.

We consider a causal model, which means it uses only the past to predict the
next time step. For each time step k of the sequence, we consider a recurrent
convolutional encoder taking as input the frame at time k and a set of I previous
hidden states Hk−1 = {h0

k−1, . . . , h
i
k−1, . . . , h

I−1
k−1} with i the index of the recurrent

unit if more than one are used. The encoder returns a set of features maps Fk and
a set of updated hidden states Hk = {h0

k, . . . , h
i
k, . . . , h

I−1
k } such that:

E(rk, Hk−1) = (Fk, Hk). (4.1)

Because our encoder encodes the past N frames recurrently to predict the position
of objects at time step k, our decoder is a fully convolutional decoder that takes as
input the encoder’s updated hidden states Hk (the memory) and the set of feature
maps Fk (spatio-temporal feature maps) such that:

D(Fk, Hk) = Pk. (4.2)

As we want to improve the classification accuracy more than the localisation
accuracy, we use recurrent layers in the encoding phase only. In encoder-decoder
architectures, the encoder learns to extract an abstract representation of the radar
frame relative to the class while the decoder is used for localisation. Using recurrent
layers only in the encoding phase allows the encoder to encode spatio-temporal
relationships at the object level to improve the objects’ representation.
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Figure 4.2: Model architecture (RECORD). Our encoder mixes efficient 2D con-
volution (IR block) and efficient ConvLSTMs (Bottleneck LSTMs) to learn spatio-
temporal dependencies at multiple scales. The decoder is a 2D convolutional de-
coder, taking as input the last feature maps of the encoder and a set of two hidden
states. It predicts either a confidence map or a segmentation mask. Rounded ar-
rows on Bottleneck LSTMs stand for a recurrent layer. Plus sign stands for the
concatenation operation. We report the output size (left) and the number of out-
put channels (right) for each layer.

4.4 Model description

4.4.1 Encoder

An overview of our single-view architecture is shown in Figure 4.2. We propose
a fully convolutional recurrent encoder (left part of Figure 4.2). In other words,
our encoder mixes 2D convolutions and ConvRNNs. We use 2D convolutions to
learn spatial information and reduce the size of inputs. To reduce the number of
parameters of the model and its computation time, we use inverted residual (IR)
bottleneck blocks from the MobileNetV2 [Sandler 2018] architecture instead of clas-
sic 2D convolutions for most of the convolutional layers of the model. IR bottleneck
is a residual block based on depthwise separable convolutions that use an inverted
structure for efficiency reasons. Then, we propose inserting ConvLSTM [Shi 2015]
cells between convolutional layers to learn the temporal relationship between frames.
Similarly to the convolutions, we replace the classic ConvLSTM with an efficient
one proposed in [Zhu 2018] by Liu and Zhu called Bottleneck LSTM. Contrary to
a classic ConvLSTM, authors replace convolutions with depthwise-separable con-
volutions, which reduces the required computation by a factor of eight to nine.
Additionally, tanh activation functions are replaced by ReLU activation functions.
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Bottleneck LSTM’s equations are given by:

ft = σ((M+N)WN
f ⋆ [xt, ht−1])

it = σ((M+N)WN
i ⋆ [xt, ht−1])

ot = σ((M+N)WN
o ⋆ [xt, ht−1])

ct = ft ◦ ct−1 + it ◦ ϕ((M+N)WN
c ⋆ [xt, ht−1])

ht = ot ◦ ϕ(ct)
bt = ϕ((M+N)WN

b ⋆ [xt, ht−1]),

(4.3)

where M and N are the numbers of input and output channels, jW k ⋆ X denotes
a depthwise-separable convolution with weights W , input X, j input channels, k
output channels and, ◦ denotes the Hadamard product. Contrary to [Zhu 2018],
we do not use the proposed bottleneck gate bt authors propose. This gate aims
to reduce the number of input channels of the LSTM to reduce the computational
cost of the recurrent layer. This gate is not valuable for this work because we use
few channels for our ConvLSTM. As a result, M = N . σ and ϕ denote the sigmoid
and the LeakyReLU activation function, respectively. In this work, we use two
bottleneck LSTMs, as a result, I = 2. Such a layout enhances spatial features with
temporal features and vice versa.

We follow the MobileNetV2 [Sandler 2018] structure by first applying a full con-
volution to increase the number of channels followed by a single IR bottleneck block.
Except for the first IR bottleneck block, we set the expansion rate γ to four. Next,
we apply two blocks composed of three IR bottleneck blocks followed by a bot-
tleneck LSTM to learn spatio-temporal dependencies. Because the computational
cost of bottleneck LSTMs is proportional to the input size, we use a stride of two
in the first IR bottleneck block to reduce the input dimension. Finally, we refine
the spatio-temporal feature maps obtained from the bottleneck LSTMs by adding
three additional IR bottleneck blocks.

Because we treat data sequences, it is desirable to calculate normalisation statis-
tics across all features and all elements for each instance independently instead of
a batch of data (a batch can be composed of sequences from different scenes). As
a result, we add layer normalisation before sigmoid activation on gates ot, it and ft

in the bottleneck LSTM, and we adopt layer normalisation for all the layers in the
model.

4.4.2 Decoder

As described in Section 4.3, our decoder is a 2D convolutional decoder which takes
as input the last feature maps of the encoder (denoted Fk) and a set of two hidden
states Hk = {h0

k, h
1
k}. Our decoder is composed of three 2D transposed convolutions
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Figure 4.3: Multi-view model architecture (MV-RECORD). We use the encoder
described in Figure 4.4.1 for each view. We use the decoder from RECORD as
decoder in the multi-view model. Dashed boxes denote an optional operation ap-
plied only if the feature maps have different shapes. Gray arrows denote the same
output.

followed by a single IR block with an expansion factor γ set to one, and a layer
normalisation layer. Each transposed convolution block upsamples the input feature
map by two. Finally, we use two 2D convolutions as a classification/segmentation
head (depending on the task) which projects the upsampled feature map onto the
desired output.

The U-Net architecture [Ronneberger 2015] has popularised skip connections
between the encoder and decoder. It allows precise localisation by combining high-
resolution and low-resolution features. We, therefore, adopt skip connections be-
tween our encoder and our decoder to improve the localisation precision. To prevent
the loss of temporal information in the decoding stage, we use the hidden states of
each bottleneck LSTM (denoted by h0

k and h1
k in Figure 4.2) and concatenate them

with the output of a transposed convolution operation to propagate in the decoder
the temporal relationship learned by the encoder.

4.4.3 Multi-view spatio-temporal object detector

The preceding sections described a spatio-temporal radar object detection architec-
ture for single view inputs (i.e. RA or RD). However, using more than one view
to represent targets in their entirety might be desirable. In other words, to simul-
taneously find the position (distance, angle), the velocity and the class of targets.
In this section, we propose to extend the previous architecture to a multi-view ap-
proach. We follow the paradigm of Ouakine et al. [Ouaknine 2021a] by replicating
three times the encoder proposed in Section 4.4.1 (one for RA view, one for RD
view and one for AD view, see Figure 4.2). Then, the latent space of each view is
concatenated to create a multi-view latent space. We use two decoders to predict
objects’ positions in all dimensions (RA and RD). One for the RA view and one for
the RD view. The multi-view latent space is the input of these decoders.
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In Section 4.4.2, we use the hidden states of each bottleneck LSTMs for the skip
connection to add the temporal information in the decoding part. For the multi-
view approach, we want to take advantage of the multi-view and the spatio-temporal
approaches in the skip connections to supplement decoders with data from other
views (e.g. add velocity information in the RA view). Similarly to the multi-view
latent space, we concatenate the hidden states from RD, RA and AD views. This
concatenation results in a set of concatenated hidden states Hk = {h0

kskip
, h1

kskip
}.

We describe the operation to obtain Hk in Figure 4.3b. We concatenate Hk in the
same way as in the single view approach. We call this operation Temporal Multi-
View Skip Connections (TMVSC). Figure 4.3 illustrates the multi-view architecture
we propose.

4.4.4 Training procedure

We propose two training methods to train RECORD and MV-RECORD: online
and buffer, summarised in Figure 4.4. Let us denote by R = {rk−N+1, . . . , rk} a
sequence of N radar frames ranging from time k−N+1 to k, P = {pk−N+1, . . . , pk}
the objects’ position in the sequence (the ground truth) and L the loss function we
aim to minimise.

Buffer training We adopt a many-to-one paradigm when training using the
buffer approach. We train the model to predict only the position of the objects
in the last frame rk as shown in Figure 4.4a. Therefore, given a sequence of N
radar frames, we minimise the following loss function:

L(p̂, p) = L(p̂k, pk) (4.4)

where k is the last time step of the sequence. Buffer training forces the model to
focus on a specific time window and to learn a global representation of the scene.
However, in inference, the model must process N frames sequentially to make a
prediction. Therefore, we propose to train the model differently using a many-to-
many paradigm to improve the model’s efficiency in inference.

Online training We adopt a many-to-many paradigm when training using the
online approach. We train the model to predict the position of the objects for every
frame in the sequence R as shown in Figure 4.4b. Therefore, given a sequence of N
radar frames, we minimise the following loss function:

L(p̂, p) =
N∑

k=1
L(p̂k, pk) (4.5)
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Figure 4.4: Training procedures with N = 3. (a) Buffer training procedure (many-
to-one). (b) Online training procedure (many-to-many).

Online training pushes the model to use previous objects’ positions to make a
new prediction. It encourages the model to keep only relevant information from
the previous frames. Online training requires training with longer sequences but
allows data processing one by one (no buffer) in inference. In contrast to the buffer
approach, the hidden states are not reset in inference.

4.5 Experiments

4.5.1 Single-view object detection

Dataset. We prototype and train our model, RECORD, on the ROD2021 challenge
dataset2, a subset of the CRUW dataset [Wang 2021c]. Due to its high frame rate
(30 fps), this dataset is well-suited to evaluate the temporal models. Also, this
dataset use a different detection paradigm than the CARRADA dataset. In the
ROD2021 datasets, objects are represented as points (as like the output of a radar).
We think this representation is more adapted to radar than bounding boxes or
segmentation masks. Therefore, we prototype our model to deal with such outputs.
The ROD2021 dataset contains 50 sequences (40 for training and 10 for testing)
of synchronised cameras and raw radar frames. Each sequence contains around
800-1700 frames in four different driving scenarios (parking lot (PL), campus road
(CR), city street (CS), and highway (HW)).

The provided data of the ROD2021 challenge dataset are pre-processed se-
quences of RA spectra (or maps). Annotations are confidence maps (ConfMaps) in
range-azimuth coordinates that represent object locations (see Figure 4.2). Accord-
ing to [Wang 2021b] one set of ConfMaps has multiple channels, each representing

2https://www.cruwdataset.org/rod2021

https://www.cruwdataset.org/rod2021
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one specific class label (car, pedestrian, and cyclist). The pixel value in the cls-
th channel represents the probability of an object with class cls occurring at that
range-azimuth location. We refer the reader to [Wang 2021b] for more information
about ConfMaps generation and post-processing. RA spectra and ConfMaps have
dimensions 128 × 128.

Evaluation metrics We use the metric proposed in [Wang 2021b] to evaluate
the models on the ROD2021 challenge datasets. In image-based object detection,
intersection over union (IoU) is mostly used to estimate how close the prediction and
the ground truth (GT) are. For our single-view approach, as we predict the location
of objects, we utilise the object location similarity (OLS) to match detection and
GT. The OLS is defined as:

OLS = exp −d2

2(sκcls)2 (4.6)

where d is the distance (in meters) between the two points in the RA spectrum,
s is the object distance from the radar sensor (representing object scale informa-
tion) and κcls is a per-class constant that describes the error tolerance for class cls
(average object size of the corresponding class). First, OLS is computed between
GT and detection. Then the average precision (AP) and the average recall (AR)
are calculated using different OLS thresholds ranging from 0.5 to 0.9 with a step of
0.05, representing different localisation error tolerance for the detection results. In
the rest of this section, AP and AR denote the average precision and recall for all
the thresholds.

Evaluation procedure In the ROD2021 dataset, annotations of test sequences
are unavailable.To train and evaluate our models and the baselines similarly, we
selected 36 sequences out of 40 to train the model and four for validation. We
use the validation set for early stopping. Once the models are trained, we test
them on the test set. Finally, we update the prediction on the ROD2021 evaluation
platform to evaluate the performance of each model. As for the ROD2021 challenge,
the evaluation is done for 70% of the test set.

Competing methods We compare our approach with several radar-based and
image-based methods using sequences of multiple radar frames. For the radar-based
approach, we first benchmark our model against DANet3 [Ju 2021], a 3D convolu-
tional model which won the ROD2021 challenge. Because image-based models are
too heavy for our application, we finally contrast our recurrent approach against

3The original implementation is not available so we implement it according to author’s guide-
lines. We do not use test augmentation and ensemble learning in this paper.
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the attention-based model UTAE [Fare Garnot 2021], which is lighter than image-
based approaches and which we can use causally. We found that decreasing the
number of channels of UTAE and changing the positional encoding improved the
performances (see Table B.1). We also consider two variants of our model without
LSTMs, one using the time along the channel dimension (no lstm, multi) and one
using a single frame (no lstm, single).

Experimental settings We use sequences of 32 frames for the online training.
For validation and testing, frames are processed one by one. For the buffer training,
we use sequences of 12 frames in both training and evaluation. Here we reset the
hidden states every 12 frames. We use this buffer approach for fair comparison with
other baselines that also use a buffer, although it is less efficient than the online
approach. We optimise our model using the Adam optimiser with learning rate
(1 × 10−3) for the buffer method and 3 × 10−4 for the online method. We decay
the learning rate exponentially by a factor of 0.9 every ten epochs. We train all the
models using a binary cross-entropy loss.

We use an early stopping strategy to stop training if the model does not improve
for seven epochs. To avoid overfitting, we use a stride of four for the buffer model
and eight for the online model (i.e., how many frames the model skips between each
training iteration) in the training dataset. The stride is set to one in validation
and testing as we process data on the fly. We apply different data augmentation
techniques during training, such as horizontal, vertical and temporal flipping. We
use these settings for all the baselines, except for DANet where we use the settings
recommended by the authors. All the models were implemented using the Pytorch
Lightning4 framework and trained on an NVIDIA Quadro RTX 8000 GPU. We run

4https://www.pytorchlightning.ai/

Model AP AR Params (M)
Mean PL CR CS HW Mean PL CR CS HW

RECORD (buffer, ours) 72.8 ± 2.2 95.0 67.7 48.3 77.4 82.8 ± 1.5 96.7 73.9 72.8 81.7 0.69
RECORD (online, ours) 73.5 ± 3.5 96.4 72.5 49.9 72.5 81.2 ± 2.0 96.4 78.1 68.8 77.6 0.69
RECORD (no lstm, multi) 65.5 ± 4.6 89.9 57.3 43.1 68.9 78.9 ± 1.4 93.1 68.2 71.5 75.7 0.47
RECORD (no lstm, single) 59.5 ± 2.9 85.7 48.5 39.11 64.4 75.1 ± 2.1 90.8 62.4 68.9 69.6 0.44
DANet [Ju 2021] 71.9 ± 2.3 94.7 65.7 51.9 70.0 80.7 ± 2.3 96.2 75.1 72.8 73.0 0.74
UTAE [Fare Garnot 2021] 68.4 ± 4.6 92.1 67.4 51.4 65.5 78.4 ± 2.2 94.6 74.0 69.7 70.0 0.79
T-RODNet [Jiang 2023] 69.9 ± 3.4 95.6 72.5 48.2 63.7 79.5 ± 1.9 97.2 79.1 70.2 67.2 159.7

Table 4.1: Results obtained on the test set of the ROD2021 challenge for different
driving scenarios (PL: Parking Lot, CR: Campus Road, CS: City Street and HW:
Highway). Overall, our recurrent models outperform baselines. The model that
does not use time gets the worst performance. We report the best results over five
different seeds with standard deviation. The best results are in bold, and the second
bests are underlined.
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Figure 4.5: Runtime vs. GMACS on the ROD2021 dataset. RECORD (online) is
one of the most efficient model among the baselines (low GMACS, low runtime).
The T-RODNet model that uses Transformers is the slowest and the one requiring
the more operations. Overall, most of the models have a runtime lower than 20 ms
(on GPU).

all the models with five different seeds and report the mean and standard deviation
results in the next paragraph.

Results Table 4.1 presents the results of our model and the baselines on the test
set of the ROD2021 challenge. Our recurrent approaches generally outperform base-
lines for both AP and AR metrics; this remains true for most scenarios. Overall,
most of the targets are detected, as shown in Figure 4.6, which confirms the high re-
call of the proposed models. Despite some mis-classified targets, the online version
of RECORD obtains the best trade-off between performances and computational
complexity (parameters, number of multiplications and additions and runtime, see
Figure 4.5). Despite having less GMACs than UTAE and DANet, the buffer ver-
sion of RECORD is the slowest one among all the models. Indeed, for each new
frame we need to process the 11 previous ones, which is inefficient. Results show
that the online version should be preferred for real-time applications. Additionally,
RECORD methods exceed 3D and attention-based methods on static scenarios such
as parking lot (PL) and campus road (CR). In PL and CR scenarios, the radar is
static and the velocity of targets varies a lot, our recurrent models seem to learn
variations of the target’s speed better than other approaches. Surprisingly the
attention-based method UTAE, initially designed for the segmentation of satellite
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(a) RECORD (online).

(b) RECORD (buffer).

Figure 4.6: RECORD (online) and RECORD (buffer) qualitative results on the
ROD2021 dataset. We show two samples per scenarios. From left to right: highway,
city street, camprus road and parking lot. As shown in Table 4.1, the parking lot
scenarios is the easiest one. More results are available in Appendix B.

images, obtains very competitive results with our method and the DANet model.
The T-RODNet model shows good results on static scenarios but is unsuitable for
real-time application. As shown in Figure 4.5, it is the slowest and the one requiring
the more operations. We notice that the approach using the time in the channel
dimension reaches lower AP and AR than their counterpart, which explicitly uses
time as a new dimension. Finally, training our model without the time and using
only a 2D backbone (no lstm, single) obtains the lowest performance on the test
set. Qualitative results in Appendix B confirm the conclusion we draw here.

Ablation studies We demonstrate the relevance of using bottleneck LSTMs in-
stead of classic ConvGRUs or ConvLSTMs in Table 4.2. Bottleneck LSTMs reduce
the number of parameters and GMACS and achieve higher AP and AR than classic
ConvRNNs. Additionally, we show in Table 4.3 the AP and the AR of our model
with different skip connections. We show that concatenating temporal features with
spatial features of the decoder (i.e., our RECORD model) reaches better AP and
AR than a method without skip connections, or one where we add the temporal
features to the spatial features of the decoder. Nevertheless, the concatenation of
features increases the number of parameters and the number of GMACS of the
model compared to other approaches.
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ConvRNN type AP AR Params (M) GMACS
Bottleneck LSTM [Zhu 2018] 69.8 ± 2.2 80.2 ± 1.5 0.69 5.0

ConvLSTM [Shi 2015] 66.63 ± 3.28 79.36 ± 2.39 1.0 11.6
ConvGRU [Ballas 2016] 69.7 ± 2.4 81.2 ± 1.4 0.94 9.8

Table 4.2: Comparison of different types of ConvRNN. We train all the models with
the same loss and hyperparameters. Bottleneck LSTM achieves the best AP while
having fewer parameters and GMACS.

Skip connection AP AR Params (M)
Concatenation 69.8 ± 2.2 80.2 ± 1.5 0.69

Addition 64.4 ± 5.3 80.5 ± 1.1 0.58
No skip connections 63.7 ± 6.2 78.7 ± 3.5 0.58

Table 4.3: Comparison of different types of skip connections. Results are averaged
over 5 different seeds on the ROD2021 test set. Concatenation is the RECORD
model, addition stand for a model where we add the output of transposed convolu-
tions to hi

k, and no skip connection stands for a model without skip connections.

Data augmentation study Table 4.4 shows the impact of different types of
data augmentation and their combination on the performance. The experiments
were conducted on the validation set. Among all the data augmentation available,
horizontal flipping and Gaussian noise appear to be the most useful one. Tem-
poral flipping reduces the overall performance when used alone or with Gaussian
noise. However, when combined with horizontal flipping, or Gaussian noise this

Horizontal Flipping Temporal Flipping Gaussian Noise AP AR
p = 0.5 p = 0.5 p = 0.3

✗ ✗ ✗ 72.89 79.94
✓ ✗ ✗ 74.66 83.67
✗ ✓ ✗ 70.61 78.73
✗ ✗ ✓ 72.02 81.78
✓ ✓ ✓ 77.37 83.14
✗ ✓ ✓ 70.84 79.52
✓ ✓ ✗ 78.30 84.63
✓ ✗ ✓ 75.59 83.57

Table 4.4: Impact of different types of data augmentation and their combination
on the performance. Experiments were done on the validation set using the same
seed.
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data augmentation helps to increase the overall performance.

4.5.2 Multi-view semantic segmentation

Dataset To demonstrate the relevance of our method, we train our model for
multi-view object segmentation on the CARRADA dataset [Ouaknine 2021b]. The
CARRADA dataset contains 30 sequences of synchronised cameras and raw radar
frames recorded in various scenarios with one or two moving objects. The CAR-
RADA dataset provides RAD tensors and semantic segmentation masks for both
RD and RA views. Contrary to the CRUW dataset, the CARRADA dataset only
contains simple driving scenarios (static radar on an airport runway). The frame
rate is 10Hz. The objects are separated into four categories: pedestrian, cyclist,
car and background. The RAD tensors have dimensions 256 × 256 × 64 and the
semantic segmentation masks have respectively dimensions 256 × 256 and 256 × 64
for the RA and the RD spectra. For training, validation and testing, we use the
dataset splits provided by the authors.

Evaluation metrics We evaluate our multi-view model using the intersection
over union (IoU). IoU is a common evaluation metric for semantic image segmen-
tation, which quantifies the overlap between the target mask T and the predicted
segmentation mask P. For a single class, IoU is defined as:

IoU =
∣∣T ∩ P

T ∪ P

∣∣. (4.7)

We then average this metric over all classes to compute the mean IoU (mIoU).

Competing methods We compare our multi-view model with state-of-the-art
multi-view radar semantic segmentation models, namely MV-Net and TMVA-Net
[Ouaknine 2021a]. Additionally, we train a buffer and an online single-view variant
of our RECORD model. We train two different models, one for the RA view and
one for the RD view.

Experimental settings As for the ROD2021 dataset, we use two evaluation
settings for MV-RECORD: online and buffer.The CARRADA dataset has a signif-
icantly lower frame rate than the ROD2021 dataset. In order to match the same
time as a single view model, we set the number of input frames to five for the buffer
variant and ten for the online one, which corresponds to a time of respectively 0.5
and 1 second. We set the batch size to eight and optimise the model using Adam
optimiser with a learning rate of 1×10−3 for both buffer and online methods except
for the online multi-view model where the learning rate is set to 3 × 10−4.



4.5. Experiments 109

We decay exponentially the learning rate every 20 epochs with a factor of 0.9.
We use a combination of a weighted cross-entropy loss and a dice loss with the
recommended parameters described in [Ouaknine 2021a] to train our model as we
find it provides the best results. To avoid overfitting, we apply horizontal and
vertical flipping data augmentation. We also use an early stopping strategy to stop
training if the model’s performance does not improve for 15 epochs. Training multi-
view models is computationally expensive (around six days for TMVA-Net and five
days for ours). As a result, we train models using the same seed as the baseline for
a fair comparison. We use the pre-trained weights of TMVA-Net and MV-Net to
evaluate baselines.

Results Table 4.5 shows the results we obtain on the CARRADA dataset. Our
multi-view approaches beat the state-of-the-art model TMVA-Net on the multi-
view radar semantic segmentation task while using two times fewer parameters
and requiring significantly fewer GMACS (see Figure 4.7). More, as shown in
Figures 4.8 and 4.9, both approaches succeed in detecting a car which was not
annotated. Our approach seems to correctly learn the variety of objects’ shapes
without complex operations such as the atrous spatial pyramid pooling (ASPP) used
in TMVA-Net. We notice that using recurrent units instead of 3D convolutions in a
multi-view approach significantly helps to improve the classification of bicyclists and
cars, especially on the RA view, where we double the IoU for bicyclists compared
to TMVA-Net. However, bicyclists and pedestrians are very similar classes, and

Model IoU Params (M)mIoU Bg Ped Cycl Car

RA

MV-RECORD (buffer, ours) 44.5 99.8 24.2 20.1 34.1 1.9
MV-RECORD (online, ours) 42.4 99.8 22.1 11.1 36.4 1.9

RECORD* (buffer, ours) 34.8 99.7 10.3 1.4 27.7 0.69
RECORD* (online, ours) 36.3 99.8 12.1 3.1 30.4 0.69

TMVA-Net [Ouaknine 2021a] 41.3 99.8 26.0 8.6 30.7 5.6
MV-Net [Ouaknine 2021a] 26.8 99.8 0.1 1.1 6.2 2.4

RD

MV-RECORD (buffer, ours) 63.2 99.6 54.9 39.3 58.9 1.9
MV-RECORD (online, ours) 58.5 99.7 49.4 26.3 58.6 1.9

RECORD* (buffer, ours) 58.1 99.6 46.6 28.6 57.5 0.69
RECORD* (online, ours) 61.7 99.7 52.1 33.6 61.4 0.69

TMVA-Net [Ouaknine 2021a] 58.7 99.7 52.6 29.0 53.4 5.6
MV-Net [Ouaknine 2021a] 29.0 98.0 0.0 3.8 14.1 2.4

Table 4.5: Results on the multi-view approach on CARRADA dataset. MV-
RECORD stands for our multi-view approach. RECORD* stands for a single-view
approach. The best results are in bold, and the second bests are underlined.
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CARRADA dataset - Runtime vs. GMACS
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Figure 4.7: Runtime vs. GMACS on the CARRADA dataset. Multi-view methods
have higher runtime and require more GMACS than single-view models. Our MV-
RECORD (buffer) has few GMACS compared to TMVA-Net but requires more
than 250ms for a single forward pass, while the online one can perform a single
forward pass in 20 ms. RAD stands for the multi-view approach.

improving the detection performance of bicyclists leads to a loss in the detection
performance of pedestrians for the RA view. In the RD view, MV-RECORD models
outperform the TMVA-Net approach for all classes. We notice a huge gap in RA
view performances between the CARRADA dataset and the CRUW dataset, as
well as between the two views of the CARRADA dataset. We hypothesise that the
small frame rate of the CARRADA dataset might cause these differences. Indeed,
the RD view contains Doppler information, enabling one to learn the dynamics of
targets. However, the RA view might not contain as much motion information as
in the ROD2021 dataset, where the frame rate is higher, allowing the network to
learn the dynamics of targets even in the RA view. Unfortunately, we cannot share
the same analysis for the online multi-view approach. Compared to the results
on the ROD2021 dataset, where the online approach performs better than the
buffer one, we could not find proper training settings for the online multi-view
model. Despite MV-RECORD online reaching higher IoU than TMVA-Net on
the RA view, this model performs similarly with TMVA-Net on the RD view but
has significantly lower IoU than the MV-RECORD buffer approach. Figures 4.8
and 4.9 confirm that the online version of MV-RECORD performs worse than the
buffer one. In Figure 4.9 (right column), we notice the pedestrian is detected but
misclassified by the model. We think these differences are mostly optimisation
problems. Indeed, we show the online training outperforms the buffer training
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Figure 4.8: Qualitative results for MV-RECORD (buffer). Despite missing
annotations for some objects, our model can detect and classify all objects in the
scene in some cases. From left to right: camera image, radar spectrum (top row is
RD and bottom row is RA), predicted mask and ground truth mask. More results
are available in Appendix B. Legend: pedestrians, bicyclists, cars.

when using a single view on both the ROD2021 (Table 4.1) and the CARRADA
dataset. Especially on the RD view, our single view and online model outperforms
TMVA-Net without using the angle information, with eight times fewer parameters
and less computations. This confirms that the low frame rate of the CARRADA
dataset limits the motion information that the recurrent layers can learn. Finally,
despite having fewer GMACS and parameters than TMVA-Net, our multi-view
model (buffer) is much slower in inference than TMVA-Net and is unsuitable for
real-time applications. The online version is faster and should be preferred for real-
time applications. Decreasing the size of the feature maps in the early layer of the
network might help to increase the inference speed of the model. Also, we notice
using a profiler that the LayerNorm operation takes up to 90% of the inference time
for the multi-view models and up to 70% of the inference time for the single-view
models. Replacing layer normalisation with batch normalisation should speed up
the runtime of our approaches. Given the good results of the single-view approach
(especially for the RD view), we recommend using our model for single-view inputs,
as RECORD was originally designed for single-view object detection.

4.6 Conclusion and perspectives

In this chapter, we tackled the problem of online object detection for radar using re-
current neural networks. Contrary to the detectors studies in Chapter 3, which use
a single frame to detect objects in different radar representations, we learn spatial
and temporal relationships between frames by leveraging characteristics of FMCW
radar signal. We propose a new architecture type that iteratively learns spatial and
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Figure 4.9: Qualitative results for MV-RECORD (online). Despite missing
annotations for some objects, our model can detect and classify all objects in the
scene in some cases. However, we noticed more misclassified objects than the buffer
version of MV-RECORD. From left to right: camera image, radar spectrum (top
row is RD and bottom row is RA), predicted mask and ground truth mask. More
results are available in Appendix B. Legend: pedestrians, bicyclists, cars.

temporal features throughout a recurrent convolutional encoder. We designed an
end-to-end, efficient, causal and generic framework that can process different types
of radar data and perform various detection tasks (key point detection, semantic
segmentation). Our methods outperform competing methods on both CARRADA
and ROD2021 datasets. Notably, our models help distinguish pedestrians and cy-
clists better and learn the target variations better than 3D approaches.

The difference with the results in the DANet paper Experiments in Section
4.5.1 show that DANet produces a 71.9 AP and 79.5 AR which is different from
the results announced in the original paper. The code of DANet being unavailable,
we implemented it according to the author’s guidelines. Although we obtained the
same number of parameters announced for the DAM blocks, our implementation
has 740k parameters instead of the 460k announced in the paper. Beyond the
implementation, the training and evaluation procedure in our paper is different
from the one in the DANet [Ju 2021] paper. While DANet is trained on the entire
training set, we trained it on 36 carefully chosen sequences for a fair comparison
with other models. Also, DANet authors use the following techniques when testing
the model to improve the performance: test-time augmentation (TTA), ensemble
models and frame averaging. Because DANet predicts frames by a batch of 16
with a stride of four, the authors average the overlapping frames (12 in total) in
inference. Together, those techniques boost the performance of DANet around ten
points, according to the ablation studies in DANet’s paper, which is coherent with
the gap between our scores and the ones from DANet paper. While applying TTA,
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ensemble models and training all the models using all the sequences would certainly
also improve the global performance of all the models in Table 4.1, we preferred
comparing the architectures on a simpler but fair evaluation.

Why recurrent neural networks are suitable for radar Radar data differs
from LiDAR and images. The most critical differences being 1) the data is simpler
in terms of variety, size, and complexity of the patterns; and 2) the datasets are
smaller. We thus believe that our lighter architectures are flexible enough, while
being less sensitive than huge backbones and less prone to overfitting for radar
data. This mainly explains why Bottleneck LSTMs perform better than ConvL-
STMs/ConvGRUs (see Table 4.2). Also, we think convolutional LSTMs are more
adapted to radar sequences because 1) convLSTMs learn long-term spatio-temporal
dependencies at multiple scales, which 3D convolution cannot do because of the
limited size of the temporal kernel; 2) LSTMs can learn to weigh contributions of
different frames which can be seen as an adaptive frame rate depending on the
scenarios and the speed of vehicles; 3) Hidden states keep the position/velocity of
objects in previous frames in memory and use it to predict the position in the next
timesteps. Indeed, we show that, except for MV-RECORD, which is hard to opti-
mise, online methods generally perform better than buffer ones while having lower
computational cost (GMACs and inference time).

Vision Transformers and radar One alternative to RNN is the use of Vision
Transformers (ViT)[Dosovitskiy 2021]. ViT has been proven to be a solid alter-
native to CNN and to solve some challenges of CNNs (pixel weighting, shared
concepts across images, spatially distant concepts). In [Naseer 2021], Naseer et al.
show Transformers are more robust to occlusions, perturbations and domain shift
and less biased towards local texture. The work of Caron et al. [Caron 2021] shows
that self-supervised ViT can automatically segment foreground objects, which is an
interesting property for radar. Additionally, ViT mainly utilises dense connections
and embeddings, lowering the number of FLOPS compared to CNN but increas-
ing the number of parameters. However, training ViT needs large-scale datasets
and sometimes self-supervised pre-training. As large-scale radar datasets become
available, it is worth considering ViT as a backbone to learn spatial, temporal
or spatio-temporal radar features. Giroux et al. [Giroux 2023] and Jiang et al.
[Jiang 2023] propose to use Transformers blocks (SwinTransformers) as a backbone.
Both works show that ViTs perform similarly to CNNs for radar object detection.
While [Giroux 2023] confirms the ViT can lower the number of GFLOPS compared
to CNNs, the authors of [Jiang 2023] mix 3D convolutions. As shown in Table
4.1 and Figure 4.5, such combination is too computationally expensive and does
not help to reduce the FLOPS compared to RECORD, DANet [Ju 2021] or UTAE
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[Fare Garnot 2021]. For multi-frame object detection, one future work could be
to change the embedding of [Giroux 2023] with the tubelet embedding proposed in
[Arnab 2021]. In this way, the Transformer can learn global information in different
parts of the spectrum at different time steps.

Multi-view vs. single-view Although multi-view methods are interesting for
research purposes, we find them challenging and long to optimise. Multi-view mod-
els allow us to find the distance, arrival angle and targets’ relative velocity in a
single forward pass. However, it requires the use of the RAD cube as input. This
poses some problems for real-time applications. First, it requires computing the
direction of arrival (a FFT) for every point in range and Doppler, resulting in
256 × 64 FFT to compute. Second, using the RAD cube necessitates to store it.
For low-resolution radars (CARRADA, RADDet, CRUW datasets), the size of the
RAD cube is generally 256 × 256 × 64, around 1.64MB in memory. For comparison,
the size of our RECORD model is about 2.6MB.

In this way, using the RAD cube is not the most efficient approach for real-
time applications. Radars generally detect targets in the range-Doppler view and
compute the direction of arrival for each detected target to save computation time.
Soon, high-resolution radars will replace low-resolution radar. Regarding the size of
the ADC data of high-resolution radar, using the RAD tensors for perception tasks
is difficult. Indeed, high-resolution radars use more chirps, samples, and antennas
to increase the resolution. In the RADIal dataset [Rebut 2022], the RD spectrum
has a 512 × 256 × 32 size. After DOA estimation, the RA spectrum has a 512 × 730
size, resulting in a RAD cube of 512 × 730 × 256 (around 380MB).

For future work and efficiency, we recommend using our RECORD model on
single-view inputs, particularly the RD spectrum. We could use our backbone
on high-resolution radar data to learn a spatio-temporal RA latent space as in
[Rebut 2022, Giroux 2023].
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5.1 Motivation

In deep learning, the data annotation is a crucial parameter to succeed in learning
meaningful representations for object detection, semantic segmentation or classi-
fication. Since radar raw data is complex and time-consuming to annotate, gen-
erally, the authors of radar datasets generate the annotations semi-automatically
[Ouaknine 2021b, Zhang 2021, Rebut 2022, Wang 2021c]. The authors of the CAR-
RADA, the RADDet, and the CRUW datasets first detect objects in the camera
(using a pre-trained Mask-RCNN [He 2017]) and in the radar views (using CFAR,
DBSCAN and DoA estimation techniques). Then, they project the Mask R-CNN
detection on the radar view and combine them to create the label. The authors of
the RADIal dataset adopt a similar approach, but they also use the detection from
a LiDAR.
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However, using a semi-automatic approach to generate the radar data anno-
tations has limitations. For example, an object detected in radar but not by the
Mask-RCNN model is removed and reciprocally, which leads to unannotated valid
targets. Such examples can be found in Appendix A and B. Also, the annotations
are constructed using the traditional operations presented in Chapter 1 (CFAR,
DBSCAN, target tracking). This raises the question of developing more accurate
deep learning-based detectors than traditional ones. Indeed, if the annotations orig-
inated from conventional radar detection techniques, the deep learning algorithms
cannot outperform them.

Chapter 3 shows that pre-training the backbone of a Faster-RCNN model on
the ImageNet [Russakovsky 2015] dataset drastically improves the detection perfor-
mance. However, our DAROD model was not large enough to learn from ImageNet.
Given the difficulty of annotating radar data, this chapter investigates a method
to pre-train radar object detectors using unlabelled radar data and self-supervised
learning (SSL). While SSL techniques aim to improve the overall performance of
computer vision models, we aim to use SLL to learn with fewer labelled data (i.e.
reduce the number of annotations required). The long-term goal of this study is to
reduce the number of annotations required to train radar object detectors by pre-
training models on large radar datasets and fine-tuning them on a small amount of
manually annotated data.

This chapter presents an early work to pre-train radar object detectors. We
propose an extension of the work of [Wei 2021] by using radar knowledge to learn
object-level representations using contrastive learning. Our preliminary results
show that such pre-training improves the performance of object detectors when
trained with only 50% to 10% of labels.

Section 5.2 presents what is self-supervised learning. Section 5.3 reviews the
most popular computer vision SSL frameworks. Sections 5.4 and 5.5 raise the
limitations of the frameworks presented in Section 5.3 for object localisation and
radar applications, respectively. In Section 5.6, we present a self-supervised pre-
training method for radar object detection and preliminary results. Finally, Section
5.7 concludes the chapter and proposes further research directions.

5.2 What is self-supervised learning?

In SSL, a model learns to obtain a supervisory signal from the data itself by lever-
aging the structure of the data. SSL has been particularly impactful in natu-
ral language processing (NLP), allowing to pre-train large language models such
as GPT-3 [Brown 2020] or BERT [Devlin 2019] on large unlabelled text datasets.
More recently, in [Goyal 2021], researchers show that pre-training models with self-
supervised techniques on large image datasets (one billion images) enable compet-
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itive results with models trained in a supervised manner.
The global goal of SSL (in computer vision) is to learn generic representations

of the data across tasks (classification, detection, segmentation). To do so, SSL
defines a pretext task that allows to learn representations from the dataset without
labels [Goodfellow 2016, Balestriero 2023]. Then, the learned representation can
be reused for fine-tuning a model on downstream tasks (classification, detection or
segmentation). A common pretext task in NLP is to mask a word in a text and
predict it from the surrounding words, to force the model to capture relationships
among words without labels. In computer vision, researchers aim to encourage
two views of the same image to be mapped to similar representations [Grill 2020,
Chen 2020a] or to predict missing patches of an image [He 2022].

SSL has several advantages over traditional supervised learning. First, it does
not require any labelled data, which are complex and expensive to obtain, especially
for radar data. Second, self-supervised learning can be used to learn more robust
features against adversarial examples or label corruption than supervised learning
[Goyal 2022] because it does not rely on the labels to learn features. Finally, self-
supervised learning can be used to pre-train models with more data, improving
models’ performance on downstream tasks.

5.3 A review of SSL frameworks for computer vision

There has been a growing interest in SSL since 2020, thanks to the avail-
ability of large datasets and high-memory GPUs. This section gives a non-
exhaustive overview of the most popular recent SSL frameworks. According to
[Balestriero 2023]1, we categorise SSL into four families: Deep Metric Learning
(DML), Self-Distillation (SD), Canonical Correlation Analysis (CCA), and Masked
Image Modelling (MIM). However, these methods, built upon the knowledge of early
experiments, are only some of the existing approaches for SSL. As an example, early
attempts to pre-train models in a self-supervised manner include but are not limited
to information restoration [Pathak 2016], learning spatio-temporal relationships in
videos [Wang 2015, Pathak 2017], grouping similar objects [Caron 2018], or using
denoising auto-encoder (generative approaches) [Vincent 2008].

5.3.1 Deep Metric Learning

SSL’s Deep Metric Learning family originated from the idea of contrastive learning
[Bromley 1993, Hadsell 2006]. The idea of DML is to encourage the similarity
between semantically transformed versions of an input (or views). In DML, one

1We refer the reader to [Balestriero 2023] for a deeper overview of SSL frameworks for computer
vision and their challenges.
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trains a network to make the embedding of two samples close or far from each
other. Generally, because labels are unavailable, different views of the same image
are created using image transformations. These views refer to as positive pairs are
expected to be made similar. The dissimilar samples we want to make are called
negatives. To make negatives far from positive, a distance m is imposed so that
images from different classes must have a distance larger than m. A variant to the
contrastive loss is the Triplet loss [Weinberger 2009, Schroff 2015], which consists
of a query, a positive and a negative sample. In the Triplet loss, we aim to minimise
the distance between the embedding of the query and the positive sample and to
maximise the distance between the query and the negative sample.

SimCLR We now present one of the most prominent DML approaches termed
SimCLR [Chen 2020a]. The idea of SimCLR is simple. Two views of the same
image are created using a combination of image transformations (random resizing,
cropping, colour jittering) and are encoded using a CNN. After the views are en-
coded, a MLP is used to map the features from the CNN to another space where
the contrastive loss is applied to encourage the similarity between the two views. In
SimCLR, negative samples are other images in the batch; thereby, SimCLR requires
large batches to work. Figure 5.1 summarises the SimCLR method.

Apart from SimCLR, other DML approaches exist in the literature. For ex-
ample, Sermanet et al. [Sermanet 2018] use a triplet loss in video frames where
positive pairs come from nearby frames.

Figure 5.1: SimCLR overview. Two views of the same image are created using
a combination of image transformations and are encoded using a CNN. After the
views are encoded, a MLP is used to map the features from the CNN to another
space where the contrastive loss is applied to encourage the similarity between the
two views. Source: [Chen 2020a]
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5.3.2 Self-Distillation

As for the DML family, the self-distillation family relies on the following mechanism:
feeding two views of the same image to two encoders (a CNN or a ViT) and mapping
one view to the other using a predictor (a MLP). However, this approach (using the
identical two encoders) can lead to dimensional collapse. Dimensional collapse is
a phenomenon that appears in SSL when the information encoded across different
dimensions of the representation is redundant [Balestriero 2023]. One example of
dimensional collapse is that the two encoders consistently predict a constant value
for any input. A solution to dimensional collapse is to update one of the two encoder
weights with a running average of the other encoder’s weights. One advantage of
the self-distillation method is that they do not necessarily require negative sam-
ples compared to DML approaches. The most famous SD approaches are BYOL
[Grill 2020] and DINO [Caron 2021], which we will explain later.

BYOL (Bootstrap Your Own Latent) BYOL [Grill 2020] first introduced
self-distillation as a mean to avoid dimensional collapse [Balestriero 2023]. BYOL
uses two networks (the online or student and the target or teacher) along with
a predictor to map the outputs of one network to the other. The online and the
target networks are two identical CNNs with different weights. The student network
predicts the output, while the teacher network produces the target. As for most
SSL methods, each network receives a different view of the same image. BYOL uses
image transformations, including random resizing, cropping, colour jittering, and
brightness alterations. Each view is encoded using a CNN and then projected in
a new space using a MLP. The particularity of BYOL is that the student network
uses an additional MLP (the predictor) to map the student network’s outputs to
the target network’s output. The student network is updated using SGD, and
the teacher is slowly updated using an exponential moving average (EMA) of the
student’s weights. Figure 5.2 illustrates the BYOL method.

Figure 5.2: BYOL overview. BYOL uses two networks (CNNs), the teacher and
the student networks, along with a predictor (a MLP) to map the outputs of one
network to the other. The student network is updated using SGD, and the teacher
is slowly updated using an EMA of the student’s weights. Source: [Grill 2020]
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Figure 5.3: DINO overview. Compared to BYOL, DINO does not use a predictor
but performs a centring of the student network output and applies a softmax func-
tion. [Caron 2021]

DINO Another self-distillation method that builds upon BYOL is DINO
[Caron 2021]. DINO follows the BYOL idea but performs a centring of the output
of the teacher network instead of using a predictor to avoid the model’s sensitivity
to mini-batch size. The centring operations consists to subtract the exponential
moving average from the teacher’s raw activation. The network is trained simi-
larly to BYOL but uses ViT encoders instead of CNN. One interesting property of
DINO is that the model can automatically discover and segment objects in images
or videos without supervision.

Many other methods belong to the SD family. MoCo [He 2020] builds a dic-
tionary look-up to sample positive and negative pairs, removing the need for large
batch size in SimCLR. SiamSiam [Chen 2021] replaces the BYOL moving average
encoder with a stop-gradient.

5.3.3 Canonical Correlation

The CCA family originates from the canonical correlation framework
[Hotelling 1992]. The goal of CCA is to infer the relationship between two
variables by analysing their cross-covariance matrices, therefore maximising the
information content of the embedding. Compared to DML and SD family, CCA
does not require large batches or memory bank, momentum encoder or stop
gradient operation [Bardes 2022].

From the CCA framework arises SSL approaches such as SWAV [Caron 2020],
BarlowTwins [Zbontar 2021] or the most recent one VicReg [Bardes 2022]. While
BarlowTwins drives the normalised cross-correlation matrix of two embeddings from
two views of the same image toward the identity, VicReg aims to balance three
objectives (see Figure 5.4). VicReg proposes to minimise the distance between two
embedding of the same view while maintaining the variance of the embedding above
a threshold and pushing the covariance between embedding variables of a batch to
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Figure 5.4: VicReg overview. VicReg proposes to minimise the distance between
two embedding of the same view while maintaining the variance of the embedding
above a threshold and pushing the covariance between embedding variables of a
batch to zero. Source: [Bardes 2022]

zero. Maintaining the variance above a threshold prevents collapse, minimising the
distance ensures views are encoded similarly, and covariance encourages different
dimensions of the representation to capture different features.

5.3.4 Masked Image Modelling

Early SSL techniques for computer vision entailed applying degradation to images
and learning to reconstruct the original images. It included generative models such
as denoising auto-encoders [Vincent 2008], shuffling image patches [Noroozi 2016] or
image in-painting [Pathak 2016]. However, these methods did not reach competitive
results with supervised models.

Masked language modelling (MLM) shows impressive results for pre-training
language models [Devlin 2019, Brown 2020], however as explained in [Bao 2022], it
is not trivial to transpose such a method to vision because there is much more pos-
sible output for images than for text. This transposition is known as masked image
modelling. In [Dosovitskiy 2021], authors first attempted to pre-train their ViT by
masking patches and then teaching the model to predict pixel values directly. How-
ever, this pre-training strategy is less effective than supervised training. Instead,
authors of BEiT [Bao 2022] remove the pixel-wise reconstruction loss and apply the
BERT pre-training strategy to the image. They first encode image patches using
a variational auto-encoder and then pre-train their encoder to predict the discrete
token values from masked tokens. This approach leads to significantly better perfor-
mance on downstream tasks than other self-supervised and supervised approaches.

The effectiveness of BEiT paved the way for new MIM pre-training approaches.
In [Xie 2022] and [He 2022] (see Figure 5.5), authors propose similar approaches,
which consist of randomly masking a high proportion of the input image and learn-
ing to reconstruct missing patches using MSE loss. Both approaches exploit the
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Figure 5.5: MAE overview [He 2022]

Transformer architecture instead of the variational auto-encoder from BEiT and
re-introduce the pixel-wise reconstruction loss. Despite simple approaches, masked
auto-encoders have achieved competitive performance on various vision tasks (clas-
sification, detection, segmentation). Similarly, Woo et al. [Woo 2023] propose a
Fully Convolutional Masked Auto-Encoder (FCMAE) instead of Transformer to
pre-train their model. They propose to mask random patches in the input image and
to use sparse convolution to encode the remaining patches. Using a simple decoder,
they also show competitive results against fully supervised and self-supervised ap-
proaches.

5.4 Pre-training models for object localisation

Collecting annotations for object detection or semantic segmentation is expensive.
SSL techniques appear as a good solution to reduce the number of labelled images
required to train object detectors or image segmentation models. Most learning
frameworks presented in Section 5.3 perform well and are competitive with super-
vised approaches on downstream tasks as shown in [Ericsson 2021]. However, SSL
frameworks are mostly tuned for image classification and lack good localisation
representation. Indeed, the data used for the pre-training contains a single object
centred in the image. Zhao et al. [Zhao 2021] note that due to the transformation
applied to the image (random cropping, colour jittering), SSL frameworks are rela-
tively robust to occlusion invariance and tend to learn to use all part of the image
to make their predictions.

Recent works [He 2022, Li 2021] suggest that ViT contains superior localisation
information in their learned representations and transfers better to object local-
isation downstream tasks than CNNs. Nevertheless, these algorithms include a
localisation objective in their loss function as the patches include the localisation
information. Apart from ViT, a solution is to rely on carefully chosen unsupervised
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Figure 5.6: SoCo overview. SoCo randomly selects proposals from the selective
search algorithm as object priors and constructs three views of an image where the
scales and locations of the same objects are different. RoIs are extracted using the
RoIAlign operator. Views are encoded using a CNN. The model is trained using
the BYOL framework. Source: [Wei 2021]

object priors to learn localised features. Methods propose to modify SSL frameworks
with such prior to enhance localisation in their features [Wei 2021, Wang 2021a,
Dai 2021, Yang 2021, Bar 2022, Tong 2022, Zhao 2021, Carion 2020b]. It is worth
noting that improving localisation features comes at the price of a lower accu-
racy when transferring features for classification. One example of unsupervised
object priors is to modify the training loss to enforce the relationship between ex-
tracted features from locations within a single image [Wang 2021a, Yun 2022]. In
[Yun 2022], Yun et al. encourage adjacent patches within an image to produce
similar features by computing a contrastive loss between adjacent patches. Instead
of modifying the loss function, some works explicitly add a prior on object loca-
tion [Wei 2021, Yang 2021]. [Wei 2021] and [Yang 2021] both leverage RoIAlign
[He 2017] to pre-train the backbone and the detection head of a CNN in a self-
supervised manner to improve localisation on downstream tasks. Instance Locali-
sation [Yang 2021] pastes a randomly chosen patch cut from the foreground of one
image onto two other images and extracts features corresponding to only the pasted
foreground patch. They use a contrastive loss to force the model to produce similar
features regardless of the background and the location of the foreground patch in
the image. SoCo [Wei 2021] randomly selects proposals from the selective search al-
gorithm as object priors and constructs three views of an image where the scales and
locations of the same objects are different. They train their model using the BYOL
[Grill 2020] framework. Figure 5.6 gives an overview of SoCo. Finally, although
ViT naturally encodes the position of objects, methods for pre-training DETR
[Carion 2020a] family detectors were proposed in [Dai 2021, Bar 2022]. Most of the
methods mentioned above enhance the localisation performance of self-supervised
learners on object detection and semantic segmentation downstream tasks compared
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to fully supervised methods or common SSL frameworks.

5.5 Limits of image-based pre-training strategies for
radar

So, how do we transfer pre-training strategies from computer vision to radar? In
this section we raise some limitations of applying the framework we presented in
Section 5.3 to radar data directly.

The data augmentation problem First, SSL frameworks belonging to the self-
distillation, deep metric learning, and canonical correlation analysis families rely
on several image transformations to encourage similarities between two views of
the same image. However, as explained in Section 2.5.3, most of the existing im-
age transformations used in SSL frameworks cannot be applied to the radar data.
Radar data differs from camera images in several ways. For example, it has com-
plex input, energy loss with range (see the radar equation 1.1), and a non-uniform
resolution in the angular domain. Except for horizontal and vertical flipping, we
cannot transform too much radar data without altering it. Therefore, directly ap-
plying methods such as SimCLR [Chen 2020a] or BYOL [Grill 2020] is not possible.
One alternative to encourage the similarities between similar objects in radar is to
use successive frames. Assuming objects are not moving too much between two
successive frames, we can consider two close frames as positive and far frames as
negative and then train a model using a Triplet loss or a contrastive loss as in
[Pathak 2017, Zhang 2019].

The localisation problem Second, raw radar data contains multiple objects at
different distances, velocities or angles. As discussed in Section 5.4, SSL frameworks
are designed on datasets with single objects centred in the image. Hence, for efficient
pre-training for object localisation models in computer vision, adding a prior about
object location in radar is essential. Fortunately, obtaining that prior in radar is
easily possible using CFAR-like object detectors. CFAR is an alternative to the
selective search algorithm used in [Bar 2022] and [Wei 2021] for pseudo-labelling
the data. Experiments in Section 5.6.2 provide encouraging results using such an
approach.

Masked image modelling Masked image modelling pre-training [He 2022,
Xie 2022, Woo 2023, Bao 2022] shows impressive transfer performance on image
classification and downstream tasks. However, MIM techniques could not be suited
for radar data. In [He 2022], it has been shown that the higher the masking ra-
tio, the better the performance on downstream tasks. A standard masking ratio
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Figure 5.7: Reconstructed RD spectrum using the FCMAE MIM framework. We
use a 200-epochs training schedule, a patch size of 16 × 16 and we set the masking
ratio to 0.6. The model learns to reconstruct the noise and the floor reflections (the
line in the middle), but cannot reconstruct true targets.

is about 60%. Unlike images, radar data mainly contains noise and tiny targets.
Masking 60% of a spectrum means a small probability of masking targets. Thus,
the network is more about learning noise rather than the probability distribution of
targets, as shown by experiments with the FCMAE framework [Woo 2023] on the
CARRADA dataset in Figure 5.7. Also, in the MIM framework, the patches have
a 32 × 32 size, which is larger than the size of an object in radar (8 × 8 on average),
resulting in a low signal-to-noise ratio inside the patch. However, our experiments
did not show better reconstruction by decreasing the patch size. This suggests that
MIM frameworks in their current form (randomly masking square patches in an
image) are unsuitable for radar.

The amount of data Finally, one key ingredient of SSL is the amount of data.
Generally, the more data available to pre-train the model, the more accurate the
model on downstream tasks. Most SSL frameworks are pre-trained on large un-
labelled image datasets (up to one billion) images. However, such large datasets
still need to be created for radar and might hamper the benefits of pre-training
strategies compared to a fully supervised approach. As a result, in this chapter, we
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aim to analyse the advantages of the pre-training radar object detection models to
reduce the amount of labelled data during the training instead of achieving higher
performance than fully supervised learning.

5.6 Radar Instance Contrastive Learning (RICL)

This section presents a preliminary work of a pre-training strategy for radar
object detection on the RD spectrum. We address the localisation problem by
proposing a variant of the SoCo [Wei 2021] method for radar. We focus on the RD
spectrum to consider future generations of radar, as explained in Section 4.6.

In self-supervised learning, the pretext task is fundamental to learning represen-
tations without labels. In computer vision, the main pretext tasks are encouraging
two views of the same image to be the same [He 2020, Chen 2020a, Bardes 2022]
or randomly masking patches of an image and learning to reconstruct them
[He 2022, Tong 2022, Xie 2022]. However, as explained in Section 5.5, due to the
small number of data transformations available in radar and the noise in the data,
it is not possible to use these pretext tasks. Also, methods based on image trans-
formations generally under-performs for localisation tasks.

Although the well-known pretext tasks cannot be applied to radar, a simple
way exists to create pseudo-labels for RD spectra. By exploiting CFAR object
detectors, we can easily create a binary segmentation mask which contains the
position of possible objects. Moreover, supposing an object is not moving too much
between two successive frames, it is possible to encourage the similarity between
the same possible objects at different time steps. Then, we propose to leverage both
particularities to pre-train a model for object detection. Our approach is a modified
version of the SoCo [Wei 2021] framework (see Figure 5.6) but differs in different
ways. First, we use the output of a CA-CFAR [Rohling 1983] detector to propose
objects. Second, we do not create different views of the same images and proposals.
Instead, we use two successive RD maps and apply the contrastive loss between
the same object at different time steps. We detail the method in Section 5.6.1.
The choice of a BYOL-based framework is motivated because it does not require
to sample negatives to apply the contrastive loss. There are multiple objects in
spectra, and we do not know the class of those objects. As objects belonging to
the same class can be present in the same spectrum, we want to avoid repelling the
representations of those objects.

5.6.1 Methodology

We propose an approach for pre-training the backbone and the detection head of an
object detection model without labels, named RICL for Radar Instance Contrastive
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Figure 5.8: RICL framework overview. We use two networks (an online and target
network) to encode features from each view in parallel. We use RoIAlign to extract
object-level features from CFAR output (each object has an specific id in the figure).
The contrastive loss is applied object-wise, no negative samples are required.

Learning. Figure 5.8 displays an overview of RICL. This section details the pre-
training strategy.

Overview Given two successive RD maps, we encode features from each view
using two identical CNNs (an online and a target network). From the CFAR de-
tection, we then use RoIAlign [He 2017] to extract object-level features. Following
the RoIAlign operation, the object-level features are passed to a detection head
(a MLP) before being mapped onto another space using a projector (online and
student networks) and a predictor (online network only). As for SoCo, we use the
BYOL [Grill 2020] framework for learning the representations.

Object proposals generation and matching We use a CA-CFAR
[Rohling 1983] detector to generate proposals with possible objects. Because CA-
CFAR outputs a binary segmentation mask and aims to detect objects as boxes,
we transform segmentation masks into bounding boxes. Figure 5.9 summarises the
process. For each segmentation mask, we first apply the DBSCAN algorithm to
cluster objects and get all the instances in the image. Then, for each object, we
define a bounding box b = {x1, x2, y1, y2}, where (x1, y1) and (y1, y2) are the bottom
left and the top right coordinates of the object respectively.

We adopt a simple rule to match objects in two successive frames together.
Supposing an object is moving with a mean radial relative speed vr and the time
between two successive frames is tf , it travels a distance of d = vr ∗ tf . Supposing
the velocity of the object is constant between two frames, two objects are the same
if:

|dt − dt−1| ≤ d± εd (5.1)
|vrt − vrt−1 | ≤ εv (5.2)
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Figure 5.9: RICL object proposals generation and matching. First, CFAR is applied
on frames at t and t− 1. Then we cluster objects to retrieve all the objects in the
spectra. Then, we match objects together and return bounding boxes for each valid
object.

where dt, dt−1, vrt , vrt−1 are the range and the velocity of the objects at time t and
t − 1 respectively and, εd and εv are uncertainty constants for the range and the
velocity. Indeed, because we compute the range and the velocity using the centre
of the box, this constant is necessary to avoid matching errors.

View construction In our proposed framework, we use two views (instead of
three in SoCo), namely Rt and Rt−1. The views correspond to two successive
range-Doppler maps (separated by 0.1 seconds for the CARRADA dataset).

Object-level contrastive learning We aim to pre-train a model for object
detection. Experiments in Chapter 3 show the relevance of the Faster-RCNN
[Ren 2017] architecture for radar object detection. Thus, as SoCo, we use the
Faster R-CNN framework to pre-train an object detection model for radar. The
following explains the modified SoCo framework we use, proposed in [Wei 2021].

First, we compute RD spectrum-level features using a backbone fS . With the
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bounding box representation b, we apply RoIAlign [He 2017] to extract the fore-
ground features from the last feature map of the backbone. An R-CNN head fH

is introduced into pre-training to align the pre-training for object detection. For a
RD map R and a bounding box b, the object-level feature representation is:

h = fH(RoIAlign(fS(R), b)). (5.3)

SoCo follows BYOL [Grill 2020] learning framework. Therefore, two neural net-
works are used to learn: the online and target networks. They share the same
architecture, but they have different weights. The weights of the target network
fS

ξ , f
H
ξ are updated using an EMA of the student’s weights fS

θ , f
H
θ with a momen-

tum coefficient τ . τ controls how fast the target’s weights are updated. Extending
Equation 5.3 to the online and target networks and multiple objects, the object-
level feature representation hi of a set of possible objects {bi} in views Rt and Rt−1

is respectively:
hi = fH

θ (RoIAlign(fS
θ (Rt), bi)), (5.4)

h
′
i = fH

ξ (RoIAlign(fS
ξ (Rt−1), bi)). (5.5)

As in BYOL, the online network is appended with a projector gθ and a predictor
qθ to obtain the latent embedding. The target network is only appended with the
projector gξ to avoid trivial solutions. gθ, qθ and gξ are all two-layer MLPs in
this chapter. The latent embedding of hi and h

′
i of object-level representations are

defined respectively with:

vi = qθ(gθ(hi)), v
′
i = gξ(h′

i) (5.6)

The contrastive loss for the i-th possible object is defined as:

Li = −2 · ⟨vi, v
′
i⟩

∥vi∥2 · ∥v′
i∥2

(5.7)

Then, the overall loss function for a pair of RD maps is:

L = 1
K

K∑
i=1

Li (5.8)

where K is the number of possible objects in the RD maps. Finally, as in SoCo and
BYOL, the loss is symmetrised by separately feeding Rt to the target network and
Rt−1 to the online network to compute L̃. At each training iteration, a stochastic
optimisation step is performed to minimise LRICL = L + L̃.
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5.6.2 Experiments

5.6.2.1 Pre-training settings

Architecture We adopt the Faster R-CNN [Ren 2017] framework to evaluate
the pre-training strategy. To match with the SoCo framework, which uses the fifth
residual block of a ResNet [He 2016] architecture as the detection head, we use a
ResNet-50 backbone. We modify the pooling stride of the ResNet architecture to
obtain a feature map with the same size as DAROD (i.e. 32 × 32, see Chapter 3).
The RoI align operation is applied on the fourth residual block of the ResNet. We
follow SoCo and BYOL using two layers MLPs for the projection and the prediction
network. They consist of a linear layer with an output size of 4096 followed by batch
normalisation, rectified linear units (ReLU), and a final linear layer with an output
dimension of 256. Because we deal with small objects, the size of the RoI pooling
is set to four.

Dataset and data augmentation We pre-train Faster R-CNN using the CAR-
RADA [Ouaknine 2021b] dataset, without labels. We apply horizontal and vertical
flipping to avoid dimensional collapse. Note that we always apply the flipping for
both frames.

Object proposals generation and matching We use the following settings for
CA-CFAR. The range and Doppler guard length are set to four and two, respec-
tively. The range and Doppler training length are set to 20 and 10, respectively. We
set εv to 0.6 and εd to 1. We find these values provide the best matching between
frames.

Optimisation We use a 100-epoch training schedule to pre-train the model. We
use the SGD optimiser with a cosine decay learning rate schedule and a warm-up
period of 10 epochs. We set the learning rate to 0.001. The weight decay is set to
1 × 10−3. The total batch size is set to 16. For the update of the target network,
the momentum coefficient τ starts from 0.9 and is increased to one during training.
Note that because this chapter presents preliminary results, we did not extensively
research the hyper-parameters.

5.6.2.2 Fine-tuning settings

For ease of development, we use the Detectron API2 to fine-tune the Faster R-CNN
framework.

2https://github.com/facebookresearch/Detectron

https://github.com/facebookresearch/Detectron
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% of labels 100% 50% 20% 10% 5%
AP AP@0.5 AP AP@0.5 AP AP@0.5 AP AP@0.5 AP AP0.5

Supervised 13.62 39.39 10.82 33.86 5.11 17.63 6.26 22.04 3.58 13.17
ImageNet 16.19 42.53 16.67 40.86 8.54 25.52 11.95 35.98 7.94 25.38

RICL 13.68 39.34 11.24 34.61 6.99 22.71 8.25 29.81 4.21 15.46

Table 5.1: Comparison of RICL with a supervised approach and ImageNet pre-
training for different amounts of data. AP stands for the COCO mAP. AP@0.5 is
the AP at IoU threshold 0.5. Best results are in bold, second best are underlined.

Weights initialisation We consider three training schemes: supervised, Ima-
geNet and RICL. The supervised model is the default Detectron Faster R-CNN
implementation we train from scratch. The ImageNet model is the default Detec-
tron Faster R-CNN implementation where the backbone (ResNet-50) is initalised
using pre-trained weights from ImageNet. The RICL model has the same code base
as the supervised and ImageNet, but the backbone and the detection head are ini-
tialised using the weights of the backbone and the detection head from the online
network. We do not load the weights of the projection and the prediction networks.

Dataset This chapter aims to learn with fewer data. To evaluate the pre-training
strategy, we create subsets of the training set of the CARRADA dataset. We train
and fine-tune the same model five times with 100%, 50%, 20%, 10% and 5% of the
training dataset. We create these splits randomly and use the same subsets for the
supervised, ImageNet and the RICL training. We validate and test the model with
100% of the validation and testing sets.

Optimisation We use the same hyper-parameters as in Chapter 3 to train the
Faster R-CNN model. We train all the models using an SGD optimiser. The
base learning rate is set to 0.02 and increases linearly for the first 1000 iterations
[Goyal 2017] and drops twice by a factor of two after 2500 and 5000 steps. We train
the models for 20000 iterations and use early stopping to avoid overfitting. Weight
decay of 1 × 10−4 is used.

Metrics We report the bounding boxes COCO AP and the AP@0.5. COCO AP
corresponds to the mean of all AP@IoU where IoU ranges from 0.5 to 0.95 with
0.05 step.

5.6.2.3 Results

We report in Table 5.1 the preliminary results of the RICL pre-training strategy
compared to a supervised approach with random weights initialisation and Ima-
geNet pre-training. Overall, we notice RICL speed-up convergence and outperforms
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the supervised training when trained with fewer data but remains less effective than
a pre-training on ImageNet. Although performing similarly with 100% and 50% of
the training set, RICL boosts the performance of Faster R-CNN when training with
20% and 10% of the data. Indeed, pre-training Faster R-CNN with RICL allows an
improvement of five and seven points when 20% and 10% of the dataset are used,
respectively.

Experiments using ImageNet pre-trained weights confirm the findings in Chapter
3. No matter the amount of data, ImageNet pre-training outperforms RICL and the
training from scratch by far. We notice that the model trained with the ImageNet
weights slightly outperforms the model trained from scratch while being trained
with only 50% of the training set. Also, this model reaches the same AP@0.5 using
5% and 20% of the training set. However, this should be treated cautiously since
we construct the training subsets randomly. For all training strategies, the AP
and the AP@0.5 are higher using 10% of the data than using 20%. To avoid this
phenomenon, cross-validation should be used.

Finally, though RICL pre-training generally improves performance compared to
training from scratch, there is still a gap between a pre-training on ImageNet and
our method.

5.7 Conclusion and perspectives

This chapter presented preliminary and encouraging results to pre-train radar object
detectors. We modified the SoCo [Wei 2021] framework (which is an extension of
the BYOL [Grill 2020]) to the range-Doppler spectrum, and we show that we can
leverage the radar knowledge to pseudo-label the data and use the pseudo-labels to
learn useful representation. The RICL pre-training strategy generally improves the
detection performance when using less data but remains far from a pre-training on
a large dataset like ImageNet and a fully supervised approach. We now raise some
limitations to our approach and some research tracks to improve it.

The model First, for fast prototyping, we use a ResNet-50 backbone which is not
appropriate for radar. This choice has been motivated by the availability of the pre-
trained weights on the ImageNet dataset to compare with our approach. Indeed,
the results we obtain with this backbone are far from those presented in Chapter 3.
Though the aim of this chapter is more to present preliminary results than obtaining
a high-performance model, experiments using the DAROD (see Chapter 3) or the
RECORD (see Chapter 4) models must be conducted. Indeed, those backbones
have been proven to be more adapted to radar data than the ResNet-50 model.
Since the ResNet-50 model is larger than DAROD and RECORD, it requires more
data to reach good performance. As mentioned throughout this thesis, the size of
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radar datasets are not sufficient to train larger models.

Matching objects together We use a greedy method to match the detection
from CFAR, sometimes resulting in matching noise with an object or matching
different objects when two detected objets are close. It can perturb the pre-training
and lead to poor learning of representations. A possible improvement for better
pre-training is to track objects using Kalman filtering [Kalman 1960] for a more
extended period and use the tracker’s output to match objects together. Target
tracking allows accurate target matching and an improved dataset for learning
representations. Additionally, it enables not to use only two successive frames but
to encourage the similarity between the same object at non-consecutive time steps.
Indeed, according to the radar equation (see Equation 1.1), the same object at
different range and velocity have a variable signature. Encouraging the embedding
of RICL to be close to the same object at non-consecutive time steps might help to
learn better representations of this object. Finally, in the SoCo paper [Wei 2021],
authors show that using more than two views improves the results. For further
work, we consider feeding the target network with a third frame with the same
objects as the two others.

The amount of data We use the CARRADA dataset to learn representation.
However, the CARRADA dataset is small (around 4000 frames contain objects),
and we might need more data to learn good object-level representation. One key
ingredient in SSL is the amount of data. It has been shown for computer vision that
the more data, the better the pre-training. We build RICL under the assumption
that the radar data is simple (few objects, mostly noise) and that we can learn
object-level representation with little data. However, results in Table 5.1 show no
differences in the performance between a model trained from scratch and pre-trained
with 100% of the dataset. More, using pre-trained weights from the ImageNet
dataset outperforms our approach in all scenarios. This suggests that the proposed
pre-training is perfectible and can be further improved. Pre-training using larger
radar datasets such as RADDet (10000 frames) and RADIal (31000 frames, 8000
with annotations) needs to be conducted. However, using these datasets implies
modifying our RICL framework. Indeed, the RADDet dataset does not contain
successive frames. As for the RADIal dataset, the data is a MIMO RD spectrum
which requires different processing than the non-MIMO RD spectrum. The RADIal
dataset is preferred because its size and format are in tune with the future generation
of radars.





Conclusion

The search for safer and more robust perception systems led to the massive use of
AI models to detect and identify objects in complex urban environments. Presently,
most perception systems use cameras and LiDAR sensors to build a representation
of the scene. The use of radar sensors remains sporadic and dedicated to tasks re-
quiring speed estimation, and the use of AI for radar processing is limited to point
cloud classification. In this thesis, we successfully demonstrated the potential of
AI models in enhancing automotive radar perception using raw data. By exploring
radar spectra such as range-Doppler, range-angle, and range-angle-Doppler, this
work has established their effectiveness in substituting radar point clouds and vari-
ous aspects of the radar signal processing chain for object detection. In the different
chapters of this thesis, we endeavoured to find the best representation of the radar
signal to use and the most appropriate formulation to learn to detect and identify
objects using raw data.

Can computer vision models be adapted to radar data?

In Chapter 3, we tried to adapt computer vision models to radar spectra, specifically
the range-Doppler spectrum, showcasing the relevance of computer vision models in
detecting and classifying objects. Notably, this chapter shows that designing light
and simple backbones to account for radar data specifics (speed information, smaller
input data, varying objects’ shape and size) is more effective than using larger ones.
This is true for the data we used in this thesis but should be confirmed on high-
resolution data and larger datasets. Moreover, we found that using a backbone pre-
trained on the ImageNet dataset significantly improved the detection performance.
These experiments paved the way for Chapter 5’s preliminary work. Finally, this
chapter confirmed the superiority of AI models over conventional methods for road-
user object detection and classification using RD maps.

Although informative, the comparison with conventional radar object detectors
was somewhat unfair because we have compared our model with detection projected
onto the RD spectrum. A more appropriate comparison would be to generate the
radar point clouds by replacing CFAR with DAROD, computing the direction-of-
arrival of the targets and applying the subsequent post-processing steps (tracking,
ego-motion compensation). We expect our method to be still superior because
DAROD originally outputs fewer false-positives than CFAR.
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How do we learn spatio-temporal relationships in radar?

The model introduced in Chapter 4, named RECORD, a combination of convolution
and convolutional LSTMs, emerged as a versatile framework capable of learning
spatio-temporal relationships across different radar data types and tasks. Notably,
this model outperformed existing models based on temporal convolutions, attentions
or ViT while maintaining computational efficiency, rendering it a promising solution
for embedded systems. Convolutional LSTMs appeared to be more adapted to radar
data than temporal convolutions because of their ability to learn long-term spatio-
temporal dependencies at multiple scales. One limitation of this work lies in the
feasibility of the buffer training mode. On the CARRADA dataset, the model that
uses a buffer of N frames outperforms TMVA-Net on both RD and RA views.
However, despite having few GMACS compared to TMVA-Net, the runtime of this
approach is inappropriate for real-time applications (almost 100ms for a forward
pass).

To some extent, this chapter revealed the limitations of multi-view models.
While interesting for research purposes, they are long, hard to optimise, and chal-
lenging to deploy in real scenarios, as discussed in Chapter 4. As the resolution
of radar increases, it requires more memory and computation to store and produce
RAD cubes. From Chapter 4, we concluded that single-view models are more ap-
propriate for raw data than multi-view models. They should mainly be used on
RD spectra to detect objects and coupled with the direction of arrival estimation
method to detect objects in 3D.

Pre-training radar object detectors

Chapter 5 endeavours to address the challenge of learning with limited data, which
led to the creation of a pretraining framework inspired by SoCo, named RICL.
While yielding promising results, it became evident that pretraining the model with
large image datasets (like ImageNet) is more efficient than the proposed method.
The results presented in Chapter 5 are preliminary. Thus, this chapter’s work
must be improved and compared with other image-based SSL frameworks. Among
possible improvements, we propose using target tracking algorithms to match the
same objects within successive frames and train RICL on a larger radar dataset like
RADIal. Also, experiments were conducted using a ResNet-50 backbone, which has
been proven not to be the most adequate backbone for radar object detection.

Further investigations using the backbones proposed in this thesis should be
conducted. Last, experiments using a backbone pre-trained on ImageNet confirmed
that the dataset size used to pre-train the model matters more than the framework.
The suggestion to conduct experiments with larger radar datasets, potentially ac-
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quired through unannotated radar data collection campaigns, presents an avenue for
future research. Owing to the complexity of annotation radar data, self-supervised
learning is a promising path to improve AI-driven radar object detection.

Limitations

Single-stage object detectors vs. two-stages object detectors In Chapter
3, we adapt the Faster R-CNN architecture to radar data for object detection on
RD maps. However, as explained in Section 2.2.2, two-stage detectors are more
accurate than single-stage detectors but slower. For embedded applications, it is
preferable to have a fast inference model. Hence, single-stage models should be
preferred. We decided to use a two-stage detector to increase the accuracy of our
model. Regarding the simple nature of radar data, it is worth asking if two-stage
detectors are needed. Single-stage detectors endowed with a relevant backbone have
a good chance of being as accurate as two-stage detectors.

Problem formulation Throughout this thesis, we experimented with very dif-
ferent object recognition tasks: object detection, semantic segmentation and point-
based detection. Today, there has yet to be a consensus in the radar community
about which task to use for radar object detection. In Chapters 3 and 5, we con-
ducted work by representing objects with bounding boxes to account for objects’
shape variation and the uncertainty on the localisation. In Chapter 4, we adopted
the object as point representation from [Wang 2021c] to detect objects in RA maps.
We also trained RECORD to segment objects in RA and RD maps. Each task has
its advantages and disadvantages.

On the one hand, representing objects as bounding boxes makes the model more
robust to shape and intensity variation and relaxes constraints on object localisation
during the training. However, retrieving the object’s exact position requires more
complex post-processing before being incorporated into the complete radar system.
On the other hand, learning to produce segmentation masks is analogous to the
output of CFAR detectors, making integrating AI models into the system easier.
Applied on range-Doppler maps, semantic segmentation models show a promising
path toward real-time application. Lastly, representing objects as points is a well-
chosen task for radar object detection. In radar, the default representation of
objects is a list of points with position, speed and RCS information. Hence, it
would be a natural direction to output a similar representation. Naturally, this
requires annotating radar datasets in this way. This thesis did not conclude about
the best formulation to detect objects using raw radar data but gives clues about
which one to choose in which application.
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Comparison with point cloud based approaches This thesis aimed to build
deep neural networks for radar object detection using raw data. We demonstrated
that strong performances can be achieved using deep learning on radar spectra,
particularly on the range-Doppler maps. However, we did not compare our work
with AI models on radar point clouds like [Palffy 2022, Saini 2023]. We did not
perform this comparison because of the unavailability of radar datasets containing
both ADC data (or spectrum) and corresponding annotated point clouds.

Pretraining strategy The results presented in Chapter 5 remain far from those
obtained using the weights of a model pre-trained on ImageNet. This chapter
aimed to show that a good pre-training strategy allows for a reduction in the num-
ber of labelled data without losing performance. Nevertheless, Chapter 5’s work is
preliminary, and we agree that it can be improved in many ways. First, using a
ResNet-50 backbone instead of DAROD, RECORD or other radar-based backbones
[Zhang 2021, Rebut 2022, Giroux 2023] might prevent the model from learning rel-
evant features from the data. This choice was motivated by the availability of pre-
trained weights on ImageNet for ResNet-50. Second, knowing the key ingredient of
self-supervised learning is the amount of data available, we use the smallest radar
dataset available. For sure, this hindered the learning of representations. Last,
we compared our model with a supervised pre-training strategy on the ImageNet
dataset. As our pre-training strategy is unsupervised, we believe we could have
made a comparison with other image-based pre-training strategies such as SoCo
[Wei 2021], BYOL [Grill 2020] or MoCo [He 2020].

Future works

Deploying our models in the real world As we gaze into the short-term
perspective, this thesis contributes to deciding on the dimension of future genera-
tions of radar hardware accelerators by providing key performance indicators like
the number of parameters, GMACS and the runtime required to reach a certain
level of performance. Deep learning models are often over parameterised; therefore,
pruning and quantisation will be pivotal to optimising the models proposed in this
thesis for real-world deployment. Beyond pruning the models, the models proposed
in this thesis can serve as base models for NAS, as proposed by Boot et al. in
[Boot 2023]. In addition to enhancing the efficiency of the models, their integration
into the system must be considered. From Chapter 4, we saw that with the in-
creasing resolution of radar sensors, using RAD tensors and, therefore, multi-view
models appears difficult for computational reasons. A first step towards integrat-
ing deep learning models into radar systems is to use single-view models instead of
CFAR detectors to detect objects in the RD view before calculating their direction
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of arrival. In this way, we can obtain a list of targets containing the position (dis-
tance, azimuth, elevation), the speed and the class of the objects. Besides allowing
us to get a representation of the environment, it will enable us to compare raw
data-based methods with point cloud-based methods.

Improving RICL As explained above, the pre-training strategy proposed in
Chapter 5 offers many avenues for improvement. First, the methodology to match
the same objects together must be improved. We consider tracking targets through
time to perform the matching. Second, a backbone designed for radar data should
be used. Among the available backbones, we will first try to use the backbone pro-
posed in this thesis, but experiments using the FFT-RADNet model [Rebut 2022]
or the Radar-ResNet from [Zhang 2021] are contemplated. Last, we will use a larger
dataset like RADIal [Rebut 2022] to pre-train the model using RICL.

With the advent of high-resolution imaging radars, another idea for pre-training
radar object detectors is to exploit the dense point clouds they produce. Instead
of extracting object-level features using CFAR and DBSCAN algorithms, we can
project the point clouds on the RD spectrum to extract regions of interest (similar
to what Palffy et al. do in RTC-Net [Palffy 2020]). Because the point clouds
originate from the radar signal processing chain, they are already clustered and
tracked. Therefore, using such a hybrid approach (mixing target-level and low-
level features) allows more accurate feature extraction than the one we proposed in
Chapter 5.

Another research direction is learning the object’s location from high-resolution
radar point clouds as a pretext task. This is very different from RICL but might be
considered for future works. Such a pretext task might ensure the model learning
a 3D representation of the environment. Another possibility lies in a sensor fusion-
based approach using LiDAR point clouds and radar point clouds.

We think that the success of self-supervised learning for radar lies in increasing
the size of the radar datasets. As pre-training radar models do not necessarily
require labelled data, we hope this thesis will encourage academic and industrial
researchers to release large unlabelled radar datasets with point clouds and raw
data available.

Sensor fusion Sensor fusion is emerging as an approach of choice for guaranteeing
high-quality perception and improved robustness of ADAS systems. The efficiency
of sensor fusion depends upon the robustness and the performance of individual
sensor processing. With the models proposed in this thesis and the growing interest
in deep learning for radar, the next step towards robust and redundant perception
systems is based on sensor fusion.
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Building transparent, explainable and reliable models Since the models
proposed in this thesis aim to be deployed in critical systems, they must be trans-
parent, explainable and reliable following the recommendation of the European
Union in its 2020 report on "Robustness and Explainability of Artificial Intelli-
gence" [Hamon 2020]. This is even truer if we consider replacing the entire radar
processing chain with an AI model. While the current radar signal processing chain
is fully interpretable (i.e. the ability to understand the decision-making process),
the AI models we used in this thesis are not. Developing hybrid models is a po-
tential path toward certifiable AI-driven radar systems. Hybrid models consist in
developing AI models that mix radar knowledge (target-level) and the radar cube
(low-level). As the point clouds of the generation of radar become dense, it is pos-
sible to use the detections from the radar signal processing chain to detect targets
and extract regions of interest from the range-Doppler spectrum to classify them
following [Palffy 2020]. Using the detection from the radar signal processing chain
is the first step for increasing the interpretability of the models because we can
explain why the target is detected. The next step in building explainable models is
to use explainable AI toolboxes [Fel 2022].

Toward AI-enabled automotive radars From a longer-term perspective,
with the emergence of high-resolution 4D radars, we can imagine building an
all-in-one AI system able to detect, classify and track objects in a single forward
pass. Such a system would substantially reduce the number of processing steps
by making the prediction either from the RD spectrum or by learning the signal
processing transformation from ADC data as suggested in [Zhao 2023]. To build
such a system, one first needs to measure the benefits of AI models over the current
radar signal processing chain, its computational costs, the input data to use and
its place in the data flow.

To conclude, this thesis represents a fundamental step towards increasing the
robustness of driver assistance systems by making better use of radar sensors. This
work underscores the ever-evolving synergy between artificial intelligence and radar
technology, charting a course toward safer and more advanced automotive systems.
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Multiple road-users detection
on Range-Doppler maps

A.1 CARRADA dataset

Figure A.1: Qualitative results for DAROD on CARRADA dataset.
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A.2 RADDet dataset

Figure A.2: Qualitative results for DAROD on RADDet dataset.
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Online object detection from
radar raw data

B.1 UTAE performances improvement.

Table B.1 depicts the performance improvement of UTAE [Fare Garnot 2021] model
with and without positional encoding and with a modified number of channels in the
encoder and the decoder. We modify the number of channels of UTAE to match
our architecture. We found that decreasing the model size and using positional
encoding improve the model’s performance. We define positional encoding as the
time between the first and the kth frames.

# channels Pos. enc. AP AR Params (M)
Encoder Decoder

16, 32, 64, 128 16, 32, 64, 128 Yes 68.4 78.4 0.79
16, 32, 64, 128 16, 32, 64, 128 No 46.9 64.3 0.79
64, 64, 64, 128 32, 32, 64, 128 Yes 60.8 77.9 1.1

Table B.1: Performances improvement of UTAE model with and without positional
encoding and with the default architecture (underlined line). Results are obtained
on the test set and on a single seed.
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B.2 Single-view object detection

B.2.1 RECORD (online)

Figure B.1: RECORD (online) qualitative results on the ROD2021 dataset. We
sample two example per scenario. From left to right: highway, city street, campus
road and parking lot.
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Figure B.2: Qualitative results for RECORD (online) on CARRADA dataset (RD
view). From left to right: camera image, RD spectrum, predicted mask and ground
truth mask. Legend: pedestrians, bicyclists, cars.

Figure B.3: Qualitative results for RECORD (online) on CARRADA dataset (RA
view). From left to right: camera image, RA spectrum, predicted mask and ground
truth mask. Legend: pedestrians, bicyclists, cars.
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B.2.2 RECORD (buffer)

Figure B.4: RECORD (buffer) qualitative results on the ROD2021 dataset. We
sample two example per scenario. From left to right: highway, city street, campus
road and parking lot.
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B.2.3 RECORD (no LSTM, multi)

Figure B.5: RECORD (no LSTM, multi) qualitative results on the ROD2021
dataset. We sample two example per scenario. From left to right: highway, city
street, campus road and parking lot.
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B.2.4 RECORD (no LSTM, single)

Figure B.6: RECORD (no LSTM, single) qualitative results on the ROD2021
dataset. We sample two example per scenario. From left to right: highway, city
street, campus road and parking lot.
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B.2.5 DANet

Figure B.7: DANet [Ju 2021] qualitative results on the ROD2021 dataset. We
sample two example per scenario. From left to right: highway, city street, campus
road and parking lot.
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B.2.6 UTAE

Figure B.8: UTAE [Fare Garnot 2021] qualitative results on the ROD2021 dataset.
We sample two example per scenario. From left to right: highway, city street,
campus road and parking lot.
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B.2.7 T-RODNet

Figure B.9: T-RODNet [Jiang 2023] qualitative results on the ROD2021 dataset.
We sample two example per scenario. From left to right: highway, city street,
campus road and parking lot.

B.3 Multi-view object detection

B.3.1 MV-RECORD (online)
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Figure B.10: Qualitative results for MV-RECORD (online) on CARRADA
dataset (RD view). From left to right: camera image, RD spectrum, predicted
mask and ground truth mask. Legend: pedestrians, bicyclists, cars.

Figure B.11: Qualitative results for MV-RECORD (online) on CARRADA
dataset (RA view). From left to right: camera image, RA spectrum, predicted
mask and ground truth mask. Legend: pedestrians, bicyclists, cars.
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B.3.2 MV-RECORD (buffer)

Figure B.12: Qualitative results for MV-RECORD (buffer) on CARRADA
dataset (RD view). From left to right: camera image, RD spectrum, predicted
mask and ground truth mask. Legend: pedestrians, bicyclists, cars.

Figure B.13: Qualitative results for MV-RECORD (buffer) on CARRADA
dataset (RA view). From left to right: camera image, RA spectrum, predicted
mask and ground truth mask. Legend: pedestrians, bicyclists, cars.
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B.3.3 TMVA-Net

Figure B.14: Qualitative results for TMVA-Net on CARRADA dataset (RD
view). From left to right: camera image, RD spectrum, predicted mask and ground
truth mask. Legend: pedestrians, bicyclists, cars.

Figure B.15: Qualitative results for TMVA-Net on CARRADA dataset (RA
view). From left to right: camera image, RA spectrum, predicted mask and ground
truth mask. Legend: pedestrians, bicyclists, cars.
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B.3.4 MV-Net

Figure B.16: Qualitative results for MV-Net on CARRADA dataset (RD view).
From left to right: camera image, RD spectrum, predicted mask and ground truth
mask. Legend: pedestrians, bicyclists, cars.

Figure B.17: Qualitative results for MV-Net on CARRADA dataset (RA view).
From left to right: camera image, RA spectrum, predicted mask and ground truth
mask. Legend: pedestrians, bicyclists, cars.
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Titre : Extrac�on et iden�fica�on de cibles mul�ples pour radar automobile à l'aide d'intelligence ar�ficielle
Mots clés : Radar FMCW, Intelligence ar�ficielle, Détec�on, Iden�fica�on, Suivi
Résumé : Ces dernières années, l'appari�on de véhicules de plus en plus connectés ont ouvert la voie à des modes de transports plus sûrs et plus
autonomes. Ces véhicules s'appuient sur des systèmes avancés d'aide à la conduite (ADAS) et u�lisent divers capteurs comme le radar, la caméra, le
LiDAR et le V2X pour créer un cocon de sécurité à 360° autour du véhicule. Si l'intelligence ar�ficielle et l'appren�ssage profond ont permis la
détec�on et l'iden�fica�on d'objets en temps réel à l'aide de caméras et de LiDAR, l'u�lisa�on de ces algorithmes sur des données radar est encore
limitée. Pourtant, les radars présentent des avantages, notamment celui de fonc�onner dans des condi�ons météorologiques difficiles et d'offrir de
bonnes performances en terme de résolu�on en distance, angulaire et en vitesse, à un coût inférieur à celui du LiDAR. Cependant, les données
renvoyées par les radars actuels con�ennent peu d'informa�on concernant les cibles détectées et plusieurs étapes de pré-traitement et de post-
traitement sont nécessaires pour les obtenir. Ces étapes de traitement dénaturent le signal brut réfléchi par les objets, pouvant affecter les
performances des algorithmes d'intelligence ar�ficielle. Ce doctorat vise à développer de nouveaux algorithmes d'appren�ssage profond
spécifiquement adaptés aux données radar, visant à être incorporés dans des systèmes automobiles. Ces algorithmes auront pour but de détecter et
iden�fier les objets autour d'un véhicule dans des environnements complexes. Outre les algorithmes, ce�e thèse étudiera quelles types de données
radar, et donc quelle quan�té de pré-traitement, perme�ent d'obtenir les meilleures performances. Les algorithmes proposés dans ce�e thèse
devront sa�sfaire aux contraintes des environnements automobiles: faible puissance, faible complexité et temps de réac�on rapide.

Title: Mul�ple target extrac�on and iden�fica�on for automo�ve radar with A.I.
Key words: FMCW Radar, Ar�ficial intelligence, Detec�on, Classifica�on, Tracking
Abstract: In recent years, connected vehicles have paved the way for safer and more automated transporta�on systems. These vehicles rely heavily
on Advanced Driving Assistance Systems (ADAS) and use various sensors like radar, camera, LiDAR, and V2X to ensure 360° safety type of cocoon
around the vehicle. While ar�ficial intelligence and deep learning have enabled real-�me object detec�on and iden�fica�on using cameras and LiDAR,
the use of such algorithms on radar data is s�ll limited. Radar sensors offer advantages, such as working in challenging weather condi�ons and
providing good performance in distance, angular and speed resolu�on, at a lower cost than LiDAR. However, radars output rela�vely low content
informa�on regarding the detected targets and several pre and post-processing steps are required to obtain those. Since the processing steps filter
the raw signal returned by objects, it can affect the performance of AI algorithms. This PhD aims to develop new deep learning algorithms explicitly
tailored for raw radar data to integrate them into automo�ve systems. These algorithms will detect and iden�fy objects in complex environments.
Addi�onally, this thesis will explore the op�mal types of radar data and pre-processing steps for achieving the best performance. The algorithms will
have to meet automo�ve constraints, including low power consump�on, simplicity, and fast response �mes.
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