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Résumé en francais

Introduction

Ces derniéres années, poussée par le besoin de systémes de transport plus stirs
et plus autonomes, 'industrie automobile a connu un changement de paradigme
vers l'intégration d’'un nombre croissant de systemes avancés d’aide a la conduite
(ADAS). A mesure que les niveaux d’aides & la conduite augmentent, allant de
laide au freinage & des niveaux plus élevés d’automatisation (dits de niveaux 4 et
5), il est désormais primordial de développer des systémes de perception robustes.
Dans cette these, on appelle perception la capacité d’un systeme a modéliser son
environnement a ’aide de multiples capteurs.

La plupart des systémes d’aides a la conduite reposent sur des capteurs de types
caméras, LIiDAR et radar pour créer une représentation de ’environnement, chacun
de ces capteurs présentant des avantages et des inconvénients. Par exemple, la haute
résolution des caméras est indispensable pour lire les panneaux de signalisation ou
pour reconnaitre des objets. D’un autre c6té, le LIDAR apparait comme un cap-
teur adapté pour cartographier en 3D l’environnement de part sa haute résolution
angulaire. Cependant, en cas de mauvaises conditions météorologiques (brouillard,
pluie) et lumineuses (nuit, contre-jour), lefficacité des caméras et des LiDAR est
limitée. Egalement, bien qu’il soit possible d’obtenir des informations de vitesse et
de distance a I’aide de caméras stéréo par exemple, la capacité des caméras a estimer
ces grandeurs reste extrémement limitée, et il en est de méme pour le LiDAR.

D’un autre c6té, le radar s’est imposé comme un concurrent de choix pour
compléter les caméras et le LIDAR en raison de ses capacités uniques et sa robustesse
pour détecter des objets et estimer leur vitesse dans des conditions météorologiques
défavorables ou des scénarios a faible luminosité. En émettant des ondes radio et en
mesurant leurs réflexions, le radar permet de mesurer la vitesse et la distance avec
une grande précision. Alors que les faisceaux laser émis par le LIDAR peuvent étre
diffractés par des gouttelettes d’eau, créant ainsi des fausses détections, les ondes
émises par le radar les traversent et n’entravent pas le fonctionnement du radar.

Combinés, les caméras, le LIDAR et le radar garantissent un cocon de sécu-
rité a 360° autour du véhicule. Si la fusion des capteurs est apparue comme une
approche essentielle pour accroitre la précision, la sécurité et la redondance des sys-
temes ADAS, cette efficacité dépend grandement de la capacité de chaque capteur
a fournir une représentation adéquate de ’environnement. Grace a 1’émergence
de 'apprentissage profond, des algorithmes de vision par ordinateur ainsi que le
grande nombre de jeu de données pour des applications de conduites autonomes

[Ettinger 2021, Urtasun 2012, Caesar 2019], des progres considérables ont été faits
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Tx antenna Chirp generation

Radar target lists

LP filter H ADC |__| FFT signal |__| Post. |__
processing processing

Range processing
(Fast time FFT)
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Figure 1: Chaine de traitement du signal d’un radar FCMW. L’antenne Tx émet
des ondes électromagnétiques qui sont réfléchies par les objets environnant le radar
et regues par l'antenne Rx. Une fois regue, l'onde réfléchie est multipliée par
Ponde émise, filtrée et échantillonnée au travers de ’ADC (convertisseur analogique-
numérique). Les données de I’ADC sont ensuite analysée pour estimer la distance,
la vitesse et I’angle d’arrivée des objets environnant le radar. Une étape de post-
traitement (groupement et suivi de cibles) est appliquée pour produire le nuage de
point radar.

dans le développement d’algorithmes de perception et de fusion spécifiques aux cap-
teurs caméras et LiDAR. Cependant, malgré les atouts du radar, peu de travaux
ont exploré les possibilités d’utiliser de l'intelligence artificielle (IA) sur des don-
nées radar. Ce manque d’exploration est attribué a plusieurs facteurs, notamment
la disponibilité limitée des jeux d’apprentissage avec des données radar, sa résolu-
tion angulaire limitée par rapport aux capteurs caméra et LiDAR mais également

les défis inhérents au traitement de ces données a ’aide d’IA.

En se concentrant sur les capteurs radar, cette these vise & combler le fossé entre
les radars automobiles et les algorithmes de perception basés sur I'TA. Dans leur
forme actuelle, les données radar consistent en une liste de cibles (également con-
nues sous le nom de nuages de points radar), qui contiennent des informations sur
la position de la cible, sa vitesse et une notion de surface équivalente radar (RCS)
caractérisant la cible. Dans la littérature, certains travaux ont déja essayé d’utiliser
des modeles d’TA sur ces données radar pour de la classification ou de la seg-
mentation d’objets [Scheiner 2018, Scheiner 2020, Ulrich 2021, Tatarchenko 2023].
Cependant, comme le montre la Figure 1, bien que permettant le développement
d’algorithmes peu cofiteux en mémoire et en calcul, les nuages de points radar né-
cessitent d’importantes étapes de pré et post-traitement (détection, suivi, regroupe-

ment) avant d’étre utilisés par des modeles d’intelligence artificielle. De plus, ces
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Figure 2: Exemples de spectres RD et RA. De gauche a droite: image caméra,
spectre RD et spectre RA

étapes de traitement filtrent le signal brut réfléchi par les objets, ce qui peut affecter
les performances des algorithmes d’intelligence artificielle.

Une alternative aux nuages de points consiste & représenter le signal réfléchi par
les objets sous la forme d’un spectre (données brutes) qui représente l’environnement
en distance et en vitesse (distance-Doppler, RD), en distance et en angle (distance-
angle, RA), ou en distance, en angle et en vitesse (distance-angle-Doppler,
RAD). La Figure 2 montre un spectre RD et RA avec l'image caméra associée.
Ces trois derniéres années, la parution de base de données comme CARRADA
[Ouaknine 2021b], RADDet [Zhang 2021] ou encore CRUW [Wang 2021c| a per-
mis d’accélérer la recherche vers le développement de modeles d’'TA pour la dé-
tection et la classification d’objets a partir de données radar brutes. Alors que
certains travaux se concentrent sur la classification d’objets a partir de données
brutes [Akita 2019, Palffy 2020, Khalid 2019], d’autres aspirent a réduire le nombre
d’étapes de post-traitement du radar pour détecter et classifier simultanément des
objets [Ouaknine 2021a, Wang 2021b, Gao 2021, Giroux 2023].

Inspirée de ces travaux, cette these propose d’exploiter les spectres radar pour
détecter et identifier des usagers de la route dans des environnements complexes.
Essentiellement, cette these vise a proposer des algorithmes d’apprentissage profond
congus explicitement pour les données radar et a étudier si ces algorithmes peuvent
se substituer a certaines étapes dans la chaine de traitement radar. Cette these a
été réalisée au sein de l'institut d’intelligence artificielle ANITI, en collaboration
avec la société NXP, un leader mondial dans le domaine des émetteurs-récepteurs

et des micro contréleurs pour radars automobiles. L’entreprise est activement
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impliquée dans la construction de radars de nouvelle génération pour améliorer
la sécurité routiere et le confort du conducteur. Dans ce contexte, cette theése
constitue une étape pionniere dans la conception d’émetteurs-récepteurs et de
micro contrdleurs de radar basés sur I'TA. Les algorithmes proposés dans cette
these devront répondre aux contraintes de ’environnement automobile : faible

consommation d’énergie, faible complexité et temps de réaction rapide.

Détection et identification d’objets a partir de spectres

distance-vitesse

La premiére étude de cette these est dédiée a la détection et 'identification d’objets
multiples & partir de spectres RD. Le choix d’utiliser le spectre RD pour des taches
de détection (ou de segmentation) plutdt que RA [Wang 2021b, Ju 2021] et RAD
[Ouaknine 2021a, Gao 2021] est principalement motivé par des raisons d’efficacité.
Premierement, le spectre RAD exige beaucoup de calcul pour étre produit et est
volumineux en mémoire. Deuxiémement, dans la chaine de traitement radar, les
objets sont détectés dans la représentation RD (a 1’aide d’algorithmes de type CFAR
[Blake 1988], voir Figure 1) puis, pour chaque objet, ’angle auquel se trouve 'objet
par rapport au radar est calculé. Ainsi, I'utilisation de ce type de spectre apparait
naturelle pour intégrer un modele d’IA dans un systeme radar, de la maniére la
plus efficace possible.

Le spectre RD pouvant étre vu comme une image représentant ’environnement
en distance et vitesse, cette étude vise a étudier la possibilité d’utiliser des al-
gorithmes de détection pensés pour des images caméras au radar. Plus partic-
ulierement, un modele de type Faster R-CNN [Ren 2017] est adapté pour les don-
nées radar. La Figure 3 illustre I’architecture de Faster R-CNN utilisée dans cette
étude. Etant donné un spectre RD, un réseau de neurones convolutionnel (CNN)
est d’abord utilisé pour extraire des caractéristiques spécifiques a la scéne. Ensuite,
un second petit CNN est utilisé pour générer des régions du spectre susceptibles de
contenir des objets (le RPN). Pour chacune de ces régions, un autre petit réseau de
neurones est utilisé pour déterminer la classe de 'objet présent dans la région ainsi
que sa position exacte.

Les spectres RD et les images caméras présentant des différences notables en
termes de tailles, de textures et de formes d’objets, il n’est pas optimal d’utiliser des
réseaux de neurones pensés pour des images caméras dans 'optique d’extraire des
caractéristiques des spectres radar. De plus, les modeles utilisés pour I'extraction
de caractéristiques pour des images caméras sont bien trop gros et coliteux en

calcul pour étre utilisés dans des applications embarquées. Un réseau de neurones
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Figure 3: Architecture de Faster R-CNN et du modeéle DAROD proposée. (a)
Architecture de DAROD. Le modele proposé est inspirée de VGG [Simonyan 2015]
(b) Exemple du modele Faster R-CNN. Etant donné un spectre RD, un réseau de
neurones convolutionnel (CNN) est d’abord utilisé pour extraire des caractéristiques
spécifiques a la scene. Ensuite, un second petit CNN est utilisé pour générer des
régions du spectre susceptibles de contenir des objets (le RPN). Pour chacune de
ces régions, un autre petit réseau de neurones est utilisé pour déterminer la classe
de I'objet présent dans la région ainsi que sa position exacte.

convolutionnel (CNN) spécifique aux données radar, dénommé DAROD, léger en
mémoire, nécessitant peu d’opérations est donc proposé et intégré a un modele
Faster R-CNN. Ce réseau est inspiré de larchitecture VGG [Simonyan 2015] et
est composé de trois blocs de convolutions. Une pratique courante en apprentissage
profond consiste a réduire la taille de la donnée d’entrée a mesure que la profondeur
de réseau augmente. Les dimensions du spectre représentant des informations de
distance et de vitesse, la résolution spatiale du spectre est réduite d’un facteur
deux dans la dimension Doppler pour minimiser la perte d’information de vitesse
des objets. Egalement, pour chaque région proposée par le RPN, la vitesse de
I'objet dans la région est estimée et ajoutée comme information additionnelle pour
améliorer la classification de I'objet.

Le modele proposé, est entrainé sur deux jeux de données différents (CAR-
RADA [Ouaknine 2021b] et RADDet [Zhang 2021]). De maniére générale, les
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expériences montrent qu’'un modele d’apprentissage profond atteint de trés bonnes
performances de détection en utilisant uniquement des données radar brutes de type
spectres distance-vitesse. DAROD se montre plus performant que I'implémentation
originale de Faster R-CNN (qui utilise un modeéle créé pour des images caméras,
ResNet-50 [He 2016]), ainsi que le modeéle RADDet [Zhang 2021] spécifiquement
développé pour des données radar, tout en ayant un cofit calculatoire moindre.
Des expériences supplémentaires montrent aussi que I'ajout de l'information de
vitesse comme information additionnelle pour aider la classification améliore les
performances du modele. Enfin, les comparaisons avec des approches classiques
(détection avec un algorithme CFAR [Blake 1988], regroupement de cibles et suivi
de cibles) montrent qu'une approche basée sur de 'apprentissage profond améliore
la précision de localisation des objets et diminue le nombre de fausses détections,

confirmant la promesse de I'TA pour le radar automobile.

Détection et identification d’objets en temps réel a partir
de données radar brutes

La seconde étude de cette these est dédiée a la détection d’objets a partir de données
radar en temps réel. Cette étude, un peu plus générale, vise a exploiter I'information
temporelle pour améliorer les performance de détection des détecteurs d’objet radar
basées sur de I'apprentissage profond. Les modeles utilisés dans la premiére étude
ont montré de bonnes performances de détection et de classification. Cependant,
leurs capacités a différencier des objets de classes similaires (comme des piétons et
des cyclistes) sont limitées. En radar, exploiter 'information temporelle est cruciale
car la signature d’'un objet évolue au cours du temps et varie selon plusieurs fac-
teurs tels que sa distance par rapport au radar, son orientation et sa classe. Ainsi,
I’exploitation de I'information temporelle, ¢’est-a-dire ’utilisation de plusieurs spec-
tres radar a des pas de temps successifs, pourrait permettre d’apprendre des infor-
mations comme la dynamique de ’objet et donc de limiter la confusion entre classes.

Récemment, différent travaux ont vu le jour dans le but d’apprendre des dépen-
dances temporelles entre différents spectres radar ou entre objets. Principale-
ment, ces approches reposent sur des convolutions temporelles [Ouaknine 2021a,
Wang 2021b, Ju 2021], sur des réseaux de neurones récurrents convolutionnels
[Major 2019] ou sur des modeles d’attention [Li 2022]. Cependant, la plupart de ces
méthodes ont du mal & capturer des dépendances a long terme et sont souvent non-
causales (elles utilisent des informations du passés et du futur) et donc impossibles
a utiliser en temps réel.

Dans le but d’extraire des dépendances spatio-temporelles entre objets, un nou-
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veau modele mélangeant convolutions et réseaux de neurones récurrents est pro-
posé. Contrairement a la plupart des modeles de détection temporels pour du
radar, le modele proposé, appelé RECORD, est causal, c’est-a-dire qu’il n’utilise
que l'information passé pour effectuer une prédiction de la position des objets a un
instant donné. Le modele proposé consiste en un modeéle mélangeant convolution
et LSTMs convolutionnels [Shi 2015] a différentes résolutions afin d’apprendre a
extraire des informations pour des objets de différentes tailles. Pour satisfaire les
contraintes d’un modele temps réel, des convolutions et des LSTMs convolutionnel
efficients sont utilisés (Inverted Residual Bottleneck blocs [Sandler 2018] et Bottle-
neck LSTM [Zhu 2018]). L’architecture étudiée ayant pour but d’étre générique, elle
peut traiter tout types de données radar brutes (RD, RA, RAD) et apprendre dif-
férentes taches de détection d’objet (détection et segmentation). Deux variantes de
Parchitecture sont proposées: simple vue (RECORD, voir Figure 4a) et multi vues
(MV-RECORD, voir Figure 4b). Alors que l'architecture simple vue est entrainée
a détecter des objets dans ’espace distance-vitesse ou distance-angle, la multi vues
utilise un encodeur par vue et est entrainée a détecter des objets simultanément
dans 'espace distance-vitesse et distance-angle. Deux types d’entrainement sont
proposés: buffer et online. L’approche buffer consiste a entrainer le modele sur des
séquences d’environ une seconde et a prédire la position des objets dans la scéne
uniquement en fonction des N précédents spectres. La mémoire (ses états) des Con-
vLSTMs est réinitialisée toutes les N spectres. L’inconvénient de cette approche est
qu’elle nécessite de sauvegarder N spectres en mémoire avant de faire une prédic-
tion. L’approche online, la plus efficace, consiste a entrainer le modele a prédire la
position des objets dans la scéne pour chaque pas de temps. Le modele est entrainé
sur des séquences plus longues (environ deux secondes) sans jamais réinitialiser
la mémoire des ConvLSTMs. Le modele apprend ainsi a garder et supprimer les
informations nécessaires selon les situations.

En raison de sa haute fréquence d’image (30 image par seconde) et de sa grande
taille comparée & CARRADA [Ouaknine 2021b], RECORD est d’abord prototypé
sur la base de données CRUW [Wang 2021c| sur des spectres distance-angle. Les
performances de RECORD sont comparées a différents modeles basés sur des convo-
lutions temporelles [Ju 2021}, de l'attention [Fare Garnot 2021], des Transformers
[Jiang 2023] et des variantes de RECORD n’utilisant pas le temps. Dans la plupart
des scénarios de conduite, RECORD est plus performant que ses concurrents tout
en étant plus efficace en terme de nombre de parametres, d’opérations et de temps
d’inférence. Les versions online et buffer montrent des performances similaires,
cependant, la version online est bien plus efficace et adaptée pour étre embarquée.

Entrainé sur la base de données CARRADA [Ouaknine 2021b], le modele pro-
posé surpasse le modele état de 'art TMVA-Net [Ouaknine 2021a] dans plusieurs
cas pour les versions online et buffer: multi-vues (RD et RA), simple vue (RD).
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(a) Architecture du modéle RECORD. Les fleches arrondies représentent des couches récur-
rentes. Le signe plus représente 'opération de concaténation. Le nombre de filtre par couche
et la taille de sortie sont représentés a gauche et a droite de chaque couche.

b. Temporal Multi-View Skip Connection
(TMVSC)

a. Multi-view model

(b) Architecture du modéle multi vues MV-RECORD. Chaque encodeur utilise
larchitecture de RECORD présentée en Figue 4a. Les blocs en pointillées correspondent
a une opération optionnelle, appliquée seulement si les cartes de caractéristiques ont des
tailles différentes.

Figure 4: Architectures des modeles RECORD et MV-RECORD.

Comme pour les expériences sur la base de données CRUW, les modeles RECORD
et MV-RECORD sont plus efficients que TMVA-Net. Bien qu’intéressant pour
la recherche, les approches multi vues sont longues et difficiles & optimiser et a
intégrer dans un systéme radar. A mesure que la résolution des radar augmente, la
quantité de mémoire nécessaire a la production des spectres RA et RAD augmente.
En conclusion, cette étude suggere que les modeles simple vue semblent plus
appropriés pour traiter des données radar brutes et pour détecter des objets.
Appliqués sur des spectres RD et couplés a un algorithme d’estimation d’angle
d’arrivée, ils devraient permettre d’améliorer les performances de détection et de

classification des radars.

Apprentissage auto-supervisé pour de la détection
d’objets radar
La derniere étude de cette these présente un travail préliminaire pour apprendre a

détecter des objets avec peu de données radar annotées. L’annotation des don-
nées est cruciale en apprentissage profond pour apprendre de bonnes représen-
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Figure 5: Vue d’ensemble de RICL. Deux réseaux sont utilisés pour encoder les car-
actéristiques de chaque spectre (un réséau online et un réseau target). L’opération
RoIAlign [He 2017] est utilisée pour extraire les caractéristiques de chaque objet dé-
tecté par CFAR. Une fonction de colit contrastive est appliquée pour chaque paire
d’objet.

tations pour la détection d’objets. L’annotation des données radar étant com-
pliquée, la plupart des auteurs de base de données radar annotent les jeux de
données de maniére semi-automatique [Ouaknine 2021b, Wang 2021c, Zhang 2021,
Rebut 2022]. Cependant, ces annotations reposent sur la fusion des détections a
laide d'une caméra [He 2017] et des détections du radar (obtenues avec des méth-
odes classiques). Une telle méthode peut mener & des mauvaises détections ou des
objets manqués. Le but de cette derniere étude vise donc a réduire la quantité de
labels nécessaires a ’entrainement des modeles de détections d’objets utilisant des
données radar, en les pré-entrainant de maniére auto supervisée et en les spécialisant
a une tache de détection avec des annotations manuelles.

En utilisant un apprentissage contrastif, une extension de la méthode SoCo
[Wei 2021] est proposée pour apprendre des représentations de ce qu’est un objet
dans un spectre RD, sans utiliser de labels (appelé RICL). Une vue d’ensemble de la
méthode est présentée en Figure 5. L’idée consiste a extraire la position d’un méme
objet a deux pas de temps successifs dans un spectre RD (a I’aide d’un algorithme
de type CFAR), d’encoder cette représentation & I’aide d’un réseaux de neurones
convolutionnel et de maximiser la similarité entre ces objets pour en extraire des
informations relatives a leurs classes (inconnues au moment de I’entrainement). Une
fois le modele pré-entrainé (les représentations des objets apprises), le modele est
spécialisé sur une tache donnée. Ici la détection d’objets.

Dans cette étude, le réseau de neurones convolutionnels choisi est un ResNet-50
[He 2016]. Ce modele est pré-entrainé et spécialisé sur la base de données
CARRADA [Ouaknine 2021b], et des spectres RD sont utilisés. Le modele de
détection choisi est le méme que pour la premiere étude, a savoir un Faster
R-CNN. Pour tester lefficacité de la méthode, le modele est spécialisé pour
de la détection d’objets avec différentes quantités de labels, allant de 100% a

5%. Des comparaisons en utilisant un pré-entrainement différent (supervisé) sur



10 Résumé en francais

une base de données d’images naturelles (ImageNet [Russakovsky 2015]) sont
également faites. En utilisant 10% et 20% de données, pré-entrainer Faster
R-CNN avec RICL améliore les performances de détection par rapport & un
entralnement avec une initialisation aléatoire. Dans le cas ou plus de données
labélisées sont utilisées, le pré-entrainement proposé ne semble pas améliorer
les performances. En revanche, le pré-entrainement d’'un ResNet-50 sur le jeu
de données ImageNet améliore les performances de détection peu importe la
quantité de labels. Ces travaux étant préliminaires, plusieurs pistes d’amélioration
existent. Premierement, la méthode utilisée pour associer les objets a deux pas
de temps successif est simpliste. L’utilisation d’un algorithme de suivi de cibles
pour associer les objets ensemble semble plus adéquate et plus précise. Egalement,
I'apprentissage auto-supervisé repose sur la possibilité d’apprendre d’une grande
quantité de données non annotées. En radar, les jeux de données sont petits
et CARRADA est I'un des plus petit. Pré-entrainer le modeéle & partir de jeux
de données plus grand comme RADIal [Rebut 2022] est une autre piste de recherche.

Conclusion

Pour conclure, cette thése montre le potentiel de 'utilisation de modeles d’IA pour
améliorer les capacités de perception des radar automobiles en utilisant des données
brutes: spectres distance-vitesse, distance-angle et distance-angle-vitesse. Ce travail
a montré que des algorithmes d’TA utilisant ces données brutes peuvent se substituer
aux traitements basés sur les nuages de points, plus coliteux et nécessitant une
chaine de pré- et post-traitement plus lourde. Il a également permis d’évaluer et
de mieux comprendre les avantages et inconvénients des différents modeles, taches
de détection, et types de données, d’'un point de vue des performances de détection
mais aussi en vue de 'intégration dans une chaine temps-réelle et embarquée. Ce
travail souligne I’évolution constante de la synergie entre IA et radar, ouvrant la
voie a des transports plus sfirs et plus intelligents.



Introduction

In recent years, driven by the need for safer and more autonomous transport sys-
tems, the automotive industry has undergone a paradigm shift towards the inte-
gration of a growing number of advanced driver assistance systems (ADAS, Figure
7). As we navigate the journey from low ADAS levels (driver assistance, partial
and conditional automation) toward higher levels of driving automation (levels 4
and 5, see Figure 6), robust perception systems have become paramount. Percep-
tion forms the cornerstone of ADAS systems, allowing vehicles to represent their
surroundings through multiple sensors, enabling informed decision-making for safer
and more efficient driving scenarios.

Among the array of sensors employed in perception, the primary sensing tech-
nologies for ADAS systems are cameras, LiDAR and radars. Ultimately, there is no
one-size-fits-all sensor solution. Each sensor has unique strengths and weaknesses
and can complement or provide redundancy to the other sensor types [Gu 2022].
High-resolution camera sensors appear indispensable for reading traffic signs or de-
tecting and classifying objects. The ultra-precise angular and fine resolutions at
the range of LiDAR sensors make LiDAR well-suited for high-resolution 3D envi-
ronment mapping. However, cameras and LiDAR technologies’ effectiveness and
reliability become compromised in varying lighting and harsh weather conditions.
Despite the speed and depth information that can be obtained using stereo cameras,
cameras’ ability to measure distance and speed remains extremely limited. Also,
LiDAR’s ability to estimate velocity and detect objects far ahead remains limited.

On the other hand, radar has emerged as a formidable contender due to its

Figure 6: Levels of ADAS and their meaning. Source: [Gu 2022]
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Figure 7: Type of sensors found in ADAS systems. Vehicles with ADAS are
equipped with various cameras and sensors for 360-degree visibility. Source:
https://dewesoft.com/blog/types-of-adas-sensors

unique capabilities in adverse weather conditions or low-light scenarios, and its ro-
bustness in maintaining consistent performance across diverse environments. By
emitting radio waves and measuring their reflections, radar allows for highly accu-
rate speed and distance measurements. While LiDAR illuminates the target scene
with sparsely placed laser beams, radar illuminates the scene seamlessly. LiDAR
may miss smaller targets at greater distances if the targets are situated between
the sharply defined laser beams. As a result, radar is a much more reliable sensor
for longer-range operation [Gu 2022]. Moreover, environmental debris and water
drop refraction introduced by adverse weather conditions will not impair radar op-
erations.

Combined, cameras, LiDAR and radar guarantee a 360° safety type cocoon
around the vehicle as shown in Figure 7. While sensor fusion has emerged as a crit-
ical approach for enhancing the perception accuracy and the safety of ADAS systems
(by adding sensor redundancy), the efficacy of fusion hinges upon the robustness
and the performance of individual sensor processing. Driven by the recent surge in
deep learning and computer vision, and the large number of automotive datasets
[Ettinger 2021, Urtasun 2012, Caesar 2019] with cameras and LiDAR data, the re-
search community has seen significant strides in the development of sensor-specific
perception and sensor fusion involving cameras and LiDARs. However, despite its
distinctive strengths, the radar has been sidelined for artificial intelligence (AI)-
driven perception tasks. This dearth of exploration is attributed to several factors,

including the limited availability of radar datasets, the inability of radar to capture
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Figure 8: Example of radar point clouds. Source: [Gu 2022]

colour information, its limited angular resolution compared to camera and LiDAR
sensors and the inherent challenges of processing such data using Al.

Focusing on the radar sensors, this thesis aims to bridge the gap between au-
tomotive radar technology and Al-driven perception. In its current form, radar
data consists of a list of targets (also known as radar point clouds), which contains
information about the position of the target, its velocity and a notion of radar cross
section (RCS) characterising the target (see Figure 8). However, radar point clouds
require significant pre and post-processing steps before being used by Al models.
Also, these processing steps filter the raw signal reflected by objects, which can
affect the performance of artificial intelligence algorithms. One alternative to point
clouds consists of representing the signal reflected by the objects as a spectrum
which represents the environment in distance and velocity (range-Doppler, RD),
distance and angle (range-angle, RA), or range, angle and velocity (range-angle-
Doppler, RAD).

This thesis proposes leveraging radar spectrum representations to detect and
identify road-user objects in complex environments. In essence, this thesis aims
to propose deep learning algorithms tailored explicitly for radar data and study if
those algorithms can substitute conventional radar processing steps. This thesis
was conducted at the ANITI artificial intelligence institute, in collaboration with
the semiconductors company NXP, a world leader in automotive radar transceivers
and microcontrollers. The company is actively involved in building next-generation
radar for enhancing road safety and increasing driver convenience. In this context,
this thesis also serves as a pioneering step in designing Al-enabled radar transceivers
and microcontrollers. The algorithms proposed in this thesis will have to meet the
constraints of the automotive environment: low energy consumption, low complex-

ity and fast reaction time.
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Thesis overview

First, we give an introduction to automotive radar, its role in ADAS systems and
its limitations in Chapter 1. Then Chapter 2 gives an overview of prior works
to this thesis. Particularly, we review the literature on Al for automotive radar
perception and the limits of current methods.

Second, we investigate similarities between an image-based object detection model
and radar data in its range-Doppler representation. Radar signal can be trans-
formed into an image-like spectrum containing the objects’ position and speed but
remains different from camera images. Regarding the data’s small size and the raw
radar dataset’s limited size, it is challenging to use a computer vision model directly
on it. We propose in Chapter 3 to adapt a Faster R-CNN [Ren 2017] model for
radar object detection using range-Doppler data. We study the distinctive char-
acteristics of range-Doppler data compared to camera images, and we propose a
lightweight radar-specific feature extractor to detect objects in range-Doppler view.
We then compare this approach to traditional radar object detectors.

Third, we tackle the problem of online object detection for radar. Time is crucial
information for perception. For example, it allows for exploiting correlations be-
tween objects in successive frames. In radar, exploiting the time is crucial as an
object’s signature evolves depending on many factors like the distance, the angle
of arrival and the object’s class. In Chapter 4, we propose a model leveraging
convolutions and convolutional recurrent neural networks for online radar object
detection. The proposed model learns spatio-temporal features from several types
of radar data (range-Doppler, range-azimuth or range-azimuth-Doppler) and can
perform different perception tasks, ranging from object detection to semantic seg-
mentation. Finally, as our model aims to operate in a computationally constrained

environment, we propose an efficient model with few parameters and operations.

In deep learning, data annotation is a key parameter to succeed in learning mean-
ingful representations for object detection, semantic segmentation or classification.
However, radar data is not human-friendly; therefore, it is challenging to label it.
In Chapter 5, we propose a preliminary work to learn with less data. We leverage
self-supervised learning frameworks from computer vision and radar knowledge, and
we propose a pre-training strategy to reduce the labelling effort and train models

with less data.

For each of the works presented in this thesis, aiming to bridge the gap between au-

tomotive radar technology and Al-driven perception, we present the limitations and
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the general perspectives to design future generations of radar perception algorithms.
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1.1 Radar in ADAS systems

In the quest for safer and more autonomous transportation systems, advanced driver
assistance systems (ADAS) have become increasingly important in our lives, with
a growing number of vehicles being equipped with these advanced technologies.
In 2021, approximately 33% of new vehicles in the United States, Europe, Japan
and China had ADAS features. In 2030, 50% of new vehicles are expected to be
ADAS-enabled [Nagpal 2022].

ADAS refers to a range of technologies and features designed to assist drivers in
operating their vehicles [Galvani 2019]. It provides safety and convenience through
various functionalities such as collision avoidance, lane departure warning, adaptive
cruise control and automated parking. These systems rely on sensors, such as radar,

cameras, lidar and V2X (Vehicle-to-Everything) to gather and interpret real-time
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Figure 1.1: Type of radars found in ADAS systems. Different types of radars
(short range, long range, corner), with different functions are arranged all around
the vehicle. Source: NXP Semiconductors

data about the vehicle’s surroundings. As most road crashes come from human
error, ADAS enables proactive actions to enhance safety and improve the driving
experience [Brookhuis 2001].

Among camera and LiDAR sensors, radar sensors are good candidates for ADAS
applications as they bring complementary information to other sensors. In particu-
lar, because radar sensors emit electromagnetic waves, they can operate in difficult
weather conditions (night, fog, snow, dust, and intense light). Also, they allow
more accurate distance and velocity estimation in a single capture compared to
camera and LiDAR sensors. Therefore, radar sensors are appropriate for, but are
not limited to:

 Blind Spot Detection (BSD)

o Lane Change Assist (LCA)

o Adaptive Cruise Control (ACC)

o Automatic Emergency Braking (AEB)

When arranged all around the vehicle, and combined with other sensors, radars
allow creating a 360-degree safety cocoon as shown in Figure 1.1.

1.2 Radar principle

Radar (RAdio Detection and Ranging) is an active sensor that transmits radio fre-
quency (RF) electromagnetic (EM) waves and uses the reflected waves from objects
to estimate the distance, velocity, and azimuth and elevation angles of these tar-

gets [Patole 2017]. Figure 1.2 illustrates the principle of radar. Radars can operate
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Figure 1.2: Principle of a radar. A radar emits electromagnetic waves and uses the
reflected waves from objects to estimate the distance, velocity, and azimuth and
elevation angles.

in frequency bands ranging from 3MHz to 300GHz. Automotive radar systems
generally use 24GHz or 77GHz bands to achieve high velocity and range resolution.

Distance, speed and direction of arrival are estimated by computing the differ-
ence between the emitted and received signals. Targets can be detected depending
on their radar cross section (RCS). The RCS characterises the target and measures
how detectable an object is by the radar. The RCS is expressed in m? or dB-m?.
For example, the RCS of a pedestrian, a car and a bicycle are around 1 m?, 10 m?
and 2 m? respectively [Richards 2005]. Nevertheless, this varies greatly depending
on the target’s orientation or distance from the radar. The radar equation 1.1 shows
how the range affects the power reflected by a target.

1.2.1 The radar equation

Considering P, the nominal transmit power, and a target at a distance R, then the
received power is related to the transmit power of a radar:

P,Go)\?

P = (nggm (1.1)

where G is the antennas gain, ¢ is the RCS of the target, and A is the wave-

length of the emitted EM wave. Equation 1.1 is known as the radar equation

[Richards 2005]. For automotive radar, G, P, and A vary little. Hence the power

received back from a target depends on its RCS ¢ and decreases proportionally to

R*. The radar equation determines the maximum range R,qz (in meter) of radar
for a given target RCS:

. PGoX?

R = | 17727
ma Pr,min (477)3

(1.2)
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( froriRrI: dar) MRR (corner radar) SRR
Distance range (Ryin — Rmaz) 10-250 m 1-100m 0.15-30m
Range resolution (9,) 0.5m 0.5m 0.1lm
Range accuracy (A,) 0.1m 0.1m 0.02m
Azimuth field of view + 15° =+ 40° + 80°
Angular accuracy (Ag) 0.1° 0.5° 1°
Bandwidth 600MHz 600MHz 4GHz

Table 1.1: Automotive radar sensors classification and their associated characteris-
tics [Hasch 2012]

Where P, in (W) is the smallest perceivable power.

1.2.2 Automotive radar classification and waveform

Depending on the application (see Figure 1.1) and the waveform used, automotive
radar exhibits different characteristics. These characteristics include:

o Maximum range (R,q,): the maximum range at which a target can be de-
tected.

o Maximum speed (Vpqz): the maximum non-ambiguous speed the radar can
detect. Targets with a relative speed v, higher than v,,4, will be detected but
their speed will be incorrect.

o Range resolution (d,): how close in range can two objects of equal strength

be and theoretically still be detected as two objects.

o Speed resolution (d,): how close in velocity can two objects of equal strength
be and theoretically still be detected as two objects.

o Accuracy: how precisely the measurement can be made. Accuracy informs
about the uncertainty about the real position of target. We refer the range

and the angular accuracy to as A, and Ay respectively.

According to the characteristics mentioned above, automotive radars can be
classified in three different categories: short-range radar (SSR), medium-range radar
(MRR , or corner radar), and long-range radar (LRR, or front radar). Short-
range radars require higher range resolution, accuracy and field of view than long-
range radars, as they must detect objects close to the car. However, the different
categories of radar are vagueness, evolve and need to be standardised in the radar
marketplace. Therefore, Table 1.1 gives a rough estimate of the characteristics of

the different types of radar sensors.



1.3. FMCW automotive radar 21

Automotive radar classes, summarised in Table 1.1, present diverse specifications
in terms of several fundamental radar system performance metrics (range and ve-
locity resolution, angular direction, SNR (signal-to-noise ratio) [Patole 2017]. The
type of waveform the radar emits also affects these metrics. Automotive radar wave-
forms are either continuous waves (CW) or pulsed and modulated in frequency or
phase. Modulated radar waveforms include FMCW (Frequency Modulated Con-
tinuous Wave), PMCW (Pulsed Modulated Continuous Wave), SFCW (Stepped
Frequency Continuous Wave) or OFDM (Orthogonal Frequency-Division Multi-
plexing). Each waveform type has its advantages and limitations in processing,
implementation, and performance.

Today, most automotive radars use FMCW waveforms. FMCW radars transmit
periodic wideband frequency-modulated pulses, whose angular frequency increases
linearly during the pulse (also known as a chirp). While simple CW waveforms
can determine velocity but cannot determine target range, FMCW radars allow
simultaneous range and velocity estimation with high range and velocity resolution.
The ADC (Analog to Digital Converter) is an expensive piece of hardware in radar.
To satisfy the Nyquist-Shannon theorem, the sampling rate (fs) of the ADC must
satisfy:

B < % (1.3)

where B is the desired detectable frequency band. Because FMCW radars use a
narrow band, they require a low sampling rate (around 80 MHz for LLRs) com-
pared to PMCW and OFDM radars. Thus, they are cheaper and are preferred for

automotive applications.

1.3 FMCW automotive radar

1.3.1 FMCW radar system

System overview Figure 1.3 illustrates a 1Tx-1Rx, FMCW radar system, i.e. a
system with one emitting (Tx) and one receiving (Rx) antenna. Chirps are emitted
through an Tx antenna. The receiving Rx antenna receives the signal reflected
by targets in the radar’s field of view. Then, a mixer multiplies the sent and the
received signals to produce a low-frequency beat signal, whose frequency gives the
target range. A low-pass filter is used to filter out unwanted high frequencies. The
ADC digitises the signal at periodic sampling intervals during each chirp. Finally,

signal processing is performed to obtain radar point clouds.

Transmitted FMCW signal An FMCW radar periodically transmits P chirps
over N, transmitting antennas to estimate the range, the velocity and the DoA of
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Txantenna Chirp generation

A

LP filter — ADC

Signal
procesing

Rx antenna

Figure 1.3: FMCW radar system overview. Chirps are emitted through an antenna.
The receiving antenna receives the signal reflected by targets in the radar’s field
of view. Then, a mixer multiplies the sent and the received signals to produce a
low-frequency beat signal, whose frequency gives the target range. A low-pass filter
is used to filter out unwanted high frequencies. The ADC digitises the signal at pe-
riodic sampling intervals during each chirp. Finally, signal processing is performed
to obtain radar point clouds.

the targets. For n'" antenna, we express the emitted signal as:

B
s(t) = Apexp j2n(fe + ﬁt)t (1.4)
= Ajexpj(2nfit+nKt?) 0<t<T, (1.5)
= A;expj®(t) (1.6)

where K = %, fe is the carrier frequency, B is the bandwidth of the signal, Tj
is the duration of the chirp (fast time), T" is the pulse period, and A, is the am-
plitude related to the transmit power. Figure 1.4 depicts one chirp profile and its
parameters. As shown in Figure 1.4, different parameters define the FMCW signal:

o fo: the starting frequency of the chirp (76-81 GHz)
o B: the bandwidth of the chirp (hundreds of MHz)
o Tywen: a pause time between chirps (few us)

o Tierie: the time for the ramp to be linear. During this phase, there is no
acquisition by the ADC.

o Tppr: the time during which the ADC acquires the data (tens of us)

o Treser: the time needed for the ramp generator to reset before the next chirp
(few pus)

o Tramp: Tsertie + Trrr, the total time of the ramp. Also referred to as Tp in
Equation 1.5.
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Figure 1.4: FMCW radar chirp and parameters.

o Tehirp: Tramp + Treset + Taweel, the total time of the chirp. Also referred to as
T in Equation 1.5.

e Nepirp: the total number of chirps emitted within a frame, or sequence of
chirps (usually 256, 512 or 1024).

e T'trame: the duration of a radar frame. It comprises the emission of N, of

duration f.pirp and the processing time. T'trame = Nenirp * tenirp

Received signal The signal r(t) received at time ¢ from a single reflector at radar

range r = c7 is related to the signal transmitted at time ¢ — 27 earlier as:
r(t) = Apexpj(2mfo(t — 27) + K (t — 27)2), 0<t<T, (1.7)

where c is the speed of light, and A, is the amplitude of the received signal.

After mixing (IF block, Figure 1.3), the mixed signal for a single chirp duration
(but this can be generalised to all chirps) is:

y(t) = s()r(t) (1.8)
= A A, exp j(D(t) — B(t — 27)), 0<t<Tp (1.9)

This mixed signal has components at the sum and difference frequencies of the two

signals. After filtering the sum of the frequencies (which are outside the receiver’s
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bandwidth), the beat signal z(t) can be expressed as follows:

z(t) = Aexp j(AnT Kt + 47 fo1) (1.10)
= Aexpj(4w(£)Kt+4ﬂfc(£)) (1.11)
— Aexp j(2n ()t + () (1.12)

where A is a modulation constant (which is related to A, and A;). Equating
Equations 1.11 and 1.12, we have the beat frequency f; of the IF signal:

2K
fb(?”) = T’f’ (113)
and the phase of the IF signal:
4z f. 4
= = — 1.14
v(r) = Tep = (114)

We can see that the phase and the beat frequency of the IF signal are range de-
pendent. While the beat frequency allows distance measurement, we will see in
Section 1.3.3 the phase variation provides an exquisitely sensitive measure of range
variation which is used in Doppler processing over multiple chirps in the frame.

Finally, we can express the sampled ADC output z[j] at ADC sample j within a

J .
fapc”

chirp from a target at range r by setting ¢ =

J
fapc

a[j] = Aexp j(2m fiy(r)( ) +(r)) (1.15)
where f4pc is the sampling frequency of the ADC. For each chirp, the ADC samples
the signal at periodic intervals to obtain a grid-like representation of the signal as

shown in Figure 1.6.

Figure 1.5: Radar signal processing chain. First, the received signal is converted
from the time domain to the frequency domain to extract distance and velocity
information. An object detector is applied to find the range and velocity bins where
there are objects. Then, the azimuth (and the elevation) of objects is estimated.
Finally, some post-processing steps are applied to output the final target list.
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1.3.2 Radar signal processing chain

Figure 1.5 gives a simplified view of the signal processing block of Figure 1.3. We
refer to this as the radar signal processing chain (RSP). After being reflected by
the target, the signal is sampled at even intervals during each chirp as illustrated in
Figure 1.6(1) and a windowing operation is applied. This corresponds to the signal
conditioning block.

Following the signal conditioning, the signal analysis block estimates the dis-
tance and the velocity of objects in the radar’s field of view. A 2D Fast Fourier
Transform (FFT) (range and Doppler FFTs) is applied to the received signal to
measure the difference in frequency and phase between the emitted and received
waves (therefore, the distance and the velocity of an object). We go into the details
of it in Section 1.3.3. Then direction of arrival (DoA) estimation techniques (a 3rd
FFT for example) are applied to estimate the angle of arrival (AoA) of the target.
In the case of Multiple Input Multiple Output (MIMO) radars, MIMO demodula-
tion is applied before the DoA. We explain DoA estimation and MIMO radar in
Section 1.3.5.

In practice, a peak detector such as the Constant False Alarm Rate algorithm
(CFAR) [Blake 1988] is applied after the Doppler FFT to detect potential targets.
This is because computing the 3rd FFT on all the range and velocity bins, and
antennas is computationally demanding. For each potential target, the DoA is
estimated to save computation. We detail the CFAR principle in Section 1.3.4.

Once targets are detected, post-processing steps are applied. It can be
super-resolution algorithms (MUSIC [Schmidt 1986], ESPRIT [Paulraj 1985]) to
estimate better the DoA of targets, clustering (DBSCAN [Ester 1996], K-
means [Lloyd 1982]), target tracking (using Kalman filtering [Kalman 1960,
Bertozzi 2004]) and classification [Rohling 2010, Yamada 2005, Gavrila 2001].

In the following sections, we give details of range, velocity and angle estimation,

target detection and post-processing.

1.3.3 Range and velocity estimation

Range estimation We saw in Section 1.3.1 the range of an object can be easily
determined from the beat frequency f; as:
cfp(r)

= 1.1
r 5K (1.16)

The beat frequency is the difference in frequency between the emitted and the
received signals. Because of the linearity of the frequency variation of the chirp,
this difference in frequency is constant and proportional to the delay 7 between the

emitted and received signals as shown in Figure 1.6(1). This difference in frequency
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Figure 1.6: Range and Doppler radar processing. (1) A spectrogram of an FMCW
waveform with carrier frequency f. and bandwidth B. The emitted signal is in
blue, and the received signal is in green. Orange points correspond to the points
sampled by the ADC. (2) The ADC matrix after sampling and the corresponding
Range-Doppler spectrum. Range FFT is first applied for every chirp. Doppler FFT
is then applied for each chirp index (or sample). (3) Illustration of the phase of the
range FFT that evolves according to the relative velocity.

can be precisely measured using an FFT for every chirp (fast-time index) to obtain
the range spectrum. We call this operation the range FFT (Figure 1.6(2)). The
beat frequency fy[m] (in Hz) corresponding to a peak in bin m in the M point range
FFT sampled at fapc is:

fulm] = LALC

i , for 0 <m <

% (1.17)

The range of individual objects r[m] can be computed from the beat frequencies
fo[m] present in peaks of the range spectrum:

] = cfolm] — emfapc

for 0<m <
oK oMK 0 U ETMET

(1.18)
The constraint 0 < m < % restricts the range calculation to positive frequencies

and ranges. Negative ranges are meaningless and cannot be computed since the
ADC data is real.

Range limit and resolution For a given ADC sampling frequency fapc, the
maximum range of the radar is inversely proportional to the slope of the chirp and
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appears at the Nyquist bin m = 5-:

cr ADC  c¢faDpC
Rmax,ADC: ramiaés, D = J;I? (119)

The bin spacing in a M point range FFT is an estimate of the range resolution 9,

5. — CTramp _ cfapc
" 2BTuhirpy 2MK

(1.20)

Velocity estimation The velocity estimation is based on a phenomenon called
the Doppler effect. Suppose a target is moving ahead from the radar with a velocity
v. With a relative motion between the target and the radar, the reflected waves are

Rt
(&

now delayed by time 7 = . The time dependant delay term causes a frequency

shift in the received wave known as the Doppler shift:

_ +2v

fa== (1.21)

The beat signal z(t) in Equation 1.12 now includes the Doppler shift:

z(t) = Aexp j(2m(fo(r) + fa) + (7)) (1.22)

The beat frequency f, now depends on the target range r and the target’s relative
speed v = %. The two cannot be separated using the beat frequency of a single
pulse. Instead, multiple chirps are used to estimate the velocity. For the same
sample, the small target’s variation in distance will slightly change the phase (r)
between two chirps. This phase appears in the phase of the range FFT bin as shown

in Figure 1.6(3). Differentiating Equation 1.14 with respect to time gives:

dp(r) _ Amfodr _ Arfo
dt ¢ dt ¢

(1.23)

where v is the reflector’s radial velocity. Therefore, by applying a FFT on P points
(the number of emitted chirps) for each chirp index (the fast time), we can estimate
the velocity of a target at range r. We call this operation the Doppler FFT, and
this operation results in a range-Doppler (RD) spectrum (or map). The target
velocity v[p] corresponding to a peak in the Doppler FFT bin p is:

olpl = 2ere, for0<p< % o
opl = CEeene o P <)< N

1
where fprr = Tonms

range bin m and Doppler bin pn then, a peak in the RD map at position (m,p) can

is the pulse repetition frequency (PRF). If there is a target at

be seen, as shown in Figure 1.6.1
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Velocity limit and resolution The maximum target velocity (in m/s) is a func-

tion of the PRF:
A cfprr

4Tchirp B 4fc
The bin spacing in a N point Doppler FFT is an estimate of the velocity resolution
Oy

(1.25)

Umax,PRF =

_ ¢ _ cfPRF
2chchirpTchirp 2chchirp

0y (1.26)

1.3.4 Target detection

Figure 1.8 shows the procedure to compute the DoA of targets after range and
velocity estimation. Before estimating the DoA of targets, one must first detect
potential targets in the radar’s field of view. Recall that a potential target cor-
responds to a peak in the range-Doppler spectrum. Most FMCW radars apply a
Constant False Alarm Rate [Blake 1988] algorithm to detect peaks in the RD spec-
trum. CFAR automatically adapts the threshold to keep the false alarm rate at the
desired level. Therefore, it will also adapt the probability of detection.

The most common CFAR detector is the cell-averaging detector (CA-CFAR)
[Rohling 1983]. First, the RD map is divided into a grid of cells; each cell contains
information about the radar reflections at a specific range and velocity. For each
cell in the map (cell under test, CUT), the noise is estimated using a 2D sliding

window:

1 N M
P = SN 1.27
N + M j=1k=1 J;Jk ( )

where N + M are the number of training cells in the 2D window and xj;, are the cells
in the window. Figure 1.7 shows the 2D window of a CFAR algorithm. Generally,
guard cells are placed adjacent to the CUT to prevent signal components from
leaking into the training cells, which could affect the noise estimate. Then, the
threshold factor can be written as [Richards 2005]:

1

a=(N+M)(P,, ™ —1) (1.28)

where Py, is the desired alarm rate (set empirically). The detection threshold is
set as:
T =aP, (1.29)

If the value of the CUT is higher than T, there is a potential object at the cell
coordinate. The coordinate is kept in memory for further processing. It is also
possible to represent the output of the threshold operation as a binary detection

mask.
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Figure 1.7: 2D CFAR window. Source: [Hameed 2022]

1.3.5 Direction of arrival estimation

Basic angle estimation Estimating the angle of arrival of an object requires at
least two Rx antennas. Figure 1.9 shows a radar that has one Tx and four Rz
antennas separated by a distance d (Single Input Multiple Output, SIMO). The
signal emitted by the Tz antennas is reflected and received by all the Rz antennas.

However, the signal from the object must travel an additional distance of
dsin @ to reach the second R, antenna. This corresponds to a phase difference
of w= 27”dsin€ between the signals received between the first and the second Rz
antennas. For each subsequent antenna, an additional phase-shift w with respect to
the preceding antennas is added. This results in a linear progression in the phase
of the signal across the N antennas [Rao 2018] (for example, [0,w, 2w, 3w]). Simi-
larly to the range FFT, the differential distance from the object to each antenna
results in a phase change in the Doppler FFT peak. Therefore, w (so the angle)
can be estimated by performing an FFT across the Np, antennas (thus, the Ng,
RD maps). We refer to this operation as the angle FFT. This results in a novel
radar representation, namely the Range-Angle-Doppler (RAD) map. We sum-

Figure 1.8: DoA estimation in radar.
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marise the processing in Figure 1.10. Summing along the Doppler axis results in a
Range-Angle (or range-azimuth, RA) spectrum.

In practice, the angle FFT is computed across the Ng, antennas only on the
range and the Doppler bins where an object is detected, as shown in Figure 1.8.
To enhance the spatial resolution of the radar, super-resolution algorithms (MUSIC
[Schmidt 1986], ESPRIT [Paulraj 1985]) can be used. Super-resolution algorithms
use multiple radar measurements of an object and fuse them to estimate its position

accurately.

Introduction to MIMO radars Increasing the number of antennas results in
an angle FFT with more points, improving the angle estimation accuracy and en-
hancing the angle resolution. Nevertheless, adding an infinite number of receiving
antennas is not feasible in practice.

Imagine we want to double the angle resolution of our radar in Figure 1.9. One
way to do this would be doubling the number of RX antennas, which would bring
us to add four antennas. Instead, another way to achieve the same configuration is
to add one T'z, as shown in Figure 1.11.

As for the SIMO case, transmission from 7Tz results in a phase shift of
[0,w, 2w, 3w] at the four Rx antennas. Because the space between Tz and Tz
equals 4d, any signal from Txo travels an additional distance of 4dsinf. Conse-
quently, transmission from T’z results in a phase shift of [4w, 5w, 6w, Tw]. Gathering
the RD maps from all the virtual antennas and applying an FFT across the virtual
antennas allows us to estimate w, hence the angle of arrival.

Generally, with N7, and Npg, antennas, it is possible to generate a virtual an-
tenna array of Ny, X Ng;. Employing MIMO techniques results in a multiplicative
increase in the number of (virtual) antennas [Rao 2018].

MIMO modulation All Rz antennas must be able to separate the signals cor-
responding to different T'x antennas. One way of doing it is to have the T, trans-

. TX antenna
O RX antenna

0
dsiniB)
8
; O
w 2w 3w

0

Figure 1.9: 1Tz-4Rx radar. Source: [Rao 2018]



1.3. FMCW automotive radar 31

Figure 1.10: Range-Angle-Doppler FFT processing for 4 Rx antennas. ADC data
from all the receiving antennas are sampled to create a cube of data. Then three
FFTs are successively applied on the cube to obtain the RAD cube. In practice,
the RAD cube is not used.

Figure 1.11: Principle of MIMO radar. Source: [Rao 2018]
mitting on orthogonal channels (see Figure 1.12(a)). From communication theory,
there are three known ways to make signals orthogonal:
e Time: Each TX transmits signals one at time, using the same spectrum

e Frequency: TXs transmit at the same time, but using a central frequency
shift big enough so that all their spectra don’t overlap.

e Coding: TXs transmit at the same time and frequency, using orthogonal

sequences.

Figure 1.12 show examples of MIMO modulated radar waveforms.

1.3.6 Post-processing steps

Figure 1.13 shows the post-processing steps required to obtain the final target lists.

For safety, automotive radars require multiple measurements to confirm detection.
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Figure 1.12: MIMO modulation strategies. (a) Orthogonality domains for Tx sig-
nals. (b) Time Division Multiple Access (TDMA) modulation. (c) Doppler Division
Multiple Access (DDMA) modulation. (d) Code Division Multiple Access (CDMA)
modulation.

Following the target detection (range and velocity estimation, peak detection and
DoA estimation), targets are ego-motion compensated, clustered and tracked. For
tracking, Kalman filters [Kalman 1960] are typically used. The tracking might be
constrained to moving targets only; this is why targets are first classified as moving
or static. Ego-velocity of the radar can be estimated based on the detections and
used as a filter to separate still-standing and moving targets. Finally, the final
target list consists of the target’s position in cartesian coordinates (z,y), the radial
velocity v,, the RCS o and the angle of arrival 6 of the target.

Figure 1.13: Simplified post-processing operations for target detection.
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1.4 Limits of current radar systems

The target identification problem Although current radar systems work and
are efficient, they present some limitations. First of all, current radar systems do
not have classification ability. They can detect objects but cannot differentiate
them (e.g., is it a car or a pedestrian?). Thus, radar systems sometimes output
undesirable targets that are unnecessary for ADAS tasks. In a future where vehicles
are expected to be autonomous, identifying targets is mandatory to make decisions.
Suppose the camera or the LIDAR are deficient, and the system must use the radar
as a backup sensor. In such specific cases, the radar is expected to output reliable
predictions about the position and the class of the object to help the system to
make a decision. This thesis explores the possibility of using radar data for object

classification using Al.

The complexity of the radar signal processing chain Second, as shown in
Figures 1.8 and 1.13, there are many post-processing steps before obtaining the
target list. However, CFAR, Kalman filtering, or clustering algorithms depend on
many hyper-parameters that affect their performance. Moreover, all these filter-
ing techniques produce very sparse target lists. Post-processing operations ranging
from CFAR to Kalman filtering often reduce a target to a few points. At the same
time, the spectrum (RD, RA or RAD) contains much more valuable information
about the environment. Indeed, the RAD cube is a kind of 3D representation of
the radar’s field of view. For that reason, this thesis aims to leverage the po-
tential of deep learning to reduce the complexity of the radar signal processing
chain and add classification ability to radar. Considering the raw data (RD, RA
or RAD maps), we study deep learning-based object detection and segmentation
algorithm to detect and identify targets using only raw radar data. This work has
been made possible thanks to the release of raw data datasets such as CARRADA
[Ouaknine 2021b]. As an example, prior to our work, Gao et al. [Gao 2019b] and
Akita et al. [Akita 2019] show the potential of deep learning for target recogni-
tion. Also, Fatseas and Bekooij [Fatseas 2019] use object detection algorithm and
Kalman filtering to detect, identify and track targets using only the RD spectrum.
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This chapter gives an overview of the prior work to this thesis. First, we present
deep learning and computer vision fundamentals. Second, we review the literature
for automotive radar perception. In this thesis, we use the term perception for
computer vision applied to radar because it acknowledges the broader process of
acquiring and interpreting sensory information, regardless of the sensing modality
involved, while computer vision traditionally focuses on visual data analysis.

In Sections 2.1 and 2.2, we present deep learning background and some models
for object detection and segmentation in computer vision that are useful for this
thesis. In Section 2.3, we present available automotive datasets for radar perception.
In Section 2.4 and 2.5, we give an overview about the literature on radar perception
for radar point clouds and raw data, respectively.

2.1 Deep learning background

Machine learning and deep learning Deep learning refers to a subset of ma-
chine learning which is a subset of artificial intelligence. A machine learning al-
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gorithm is an algorithm that can learn from data. According to [Mitchell 1997]:
"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.". While traditional machine learning
learns a mapping from hand-crafted representation (features) to a specific output,
deep learning learns not only a mapping from representation to output but also the
representation itself.

In this thesis, task T consists of image classification, segmentation, and object
detection. The performance measure P is specific to the task 7. It is used to
measure how well our algorithm performs on unseen data. The experience FE is a
set of data points with associated features, also known as a dataset. Each data
point is associated with a label or target in a supervised setting. The target is used
to teach the deep learning algorithm what to do.

Artificial neural networks An artificial neural network (ANN) is a computing
system inspired by the biological neural networks that constitutes animal brains.
The model can be represented with a directed acyclic graph of artificial neurons
connected to each other [Goodfellow 2016]. A neuron is a function that takes a set

of input signal z = (x1, x2, ..., x,) and outputs a single value y:

Y= O’(Xn: w;z; + b) (2.1)

i=1

with w; and b are the weights and the bias of the neuron and ¢ is an activation
function. Typically o is non-linear to allow the neuron to learn complex non-linear
functions. The most popular activation functions are the sigmoid function o(a) =
ﬁ, the rectified linear unit (ReLU) o(a) = maz(0,a) and the hyperbolic
tangent function o(a) = tanh(a). Figure 2.1 depicts the computation of a neuron.

Figure 2.1: Artificial neural neuron. A neuron is a function that takes a set of
input signal = (x1, 2, ...,x,), computes a weighted sum of the input and apply
an activation function to it to produce the output.
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Figure 2.2: The multi-layer perceptron. Neurons are stacked together to form
layers. The first layer is called the input layer. The last layer is called the output
layer. Other layers are called hidden layers.

In an ANN, neurons are stacked together to form layers, and the network be-
comes a composition of layers. Since an artificial neural network is a composition
of functions, it is a function. Because the information flows through the function
evaluated from the inputs, intermediate functions and finally through the output,
we also refer to ANN as feed-forward neural networks.

A common ANN is the multi-layer perceptron (MLP, Figure 2.2). The MLP
stacks multiple layers of neurons together, where neurons of each layer are connected
to other neurons belonging to different layers through edges with associated weights.
The output of the i** layer of an MLP is computed as:

YO = O Dy =) | )y (2.2)

where WO () and ¢@ are the weight matrix, the bias vector and the activation
of the i*" layer respectively. Thus, the MLP is # parameterised function defining a
mapping y = f(x;0) where § = (W® @), .. (WM 1)) are the parameters of
the network, x = (21,9, ..., z,) are the input values and y = (y1,y2, ..., Ym ) are the
output values of the network.

MLPs are not the only type of ANNs. In the following paragraphs we choose
to present two types of neural networks, namely the convolutional neural networks
and the recurrent neural networks. As an example we choose to leave aside the well
known Transformer architecture [Vaswani 2017a].

Training a neural network Training a neural network consists of iteratively

updating the weights 6 of the network to minimise a cost function J(6). In the
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supervised training setting, for a given loss function £, we minimise the empirical
risk:

N
T0) = Eayep o [E @09 = 3 LGED:0,50)  (23)
=1

Where N is the number of training examples, and y is the target output. The
minimisation process, the optimisation step, uses backpropagation and a gradient
descent algorithm such as the Stochastic Gradient Descent (SGD) [Kiefer 1952,
Robbins 1951].

Recurrent neural networks (RNN)  Recurrent neural networks (or RNNs)
[Rumelhart 1986] are a family of neural networks for processing sequential data
(e.g. music, video, text) [Goodfellow 2016]. While a traditional feed-forward neural
network would have separate parameters for each input feature, a RNN shares
the same weights across several time steps. RNNs are called recurrent because
they perform the same task for every sequence element. As show in Figure 2.3, a
RNN takes as input an element of the sequence and outputs a hidden state and an
activation vector. The hidden state acts as the memory of the RNN. It is updated
based on the current input and the previous time step’s hidden state. Let U, V, W be
the shared weights of the RNN, b, ¢, two bias vectors, and o1 and g9 some activation
functions. The traditional RNN is defined as:

Y =g (b+ VAED £ Uz®) (2.4)
G = og(c+ Wh) (2.5)

Where §(*) is the prediction of the RNN at timestep ¢ and 2®) is the hidden state at
timestep t. RNNs are trained using backpropagation through time (BPTT). BPTT
is a computational technique that allows for the efficient calculation of gradients by
unfolding the network across time and propagating the errors backwards. However,
traditional RNNs cannot handle long-term dependencies and suffer from the van-

Figure 2.3: Left: a recurrent neural network. Right: Unfolded recurrent neural
network.
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ishing gradient problem. The vanishing gradient problem refers to the issue where
the gradients become very small during backpropagation, hindering the training
process and resulting in slow or ineffective convergence. Variants of RNNs have
been proposed to solve this, such as Long-Short-Term-Memory networks (LSTMs)
[Hochreiter 1997] and Gated Recurrent Unit (GRU) [Cho 2014]. LSTMs and GRUs
add additional cells (called gates) to allow the gradient to flow through the network
without vanishing.

Convolutional neural networks (CNN) Considering an input image with size
HxW xC, we want to process with an MLP. In an MLP, every output unit interacts
with every input unit (see Figure 2.2). This means a single MLP would require at
least H x W x C parameters to process each image pixel. Thus, MLPs cannot
scale for high-dimensional data. Moreover, they cannot learn spatial features as the
data is flattened. Convolutional neural networks [Lecun 1989] tackle this issue by
replacing matrix multiplication with convolutions. For the 2D case, the convolution
operation consists of applying a set of C' 2D kernels K € RF1*F2XC gyer an input

RHXWXC

image (or a feature maps) I € such as:

(K« I)(h,w) = ZZZI(Z’,]’, )K(h —i,w— j,c) (2.6)
1 7 c

Where h,w € N defines the coordinates in the image (or the feature maps). CNNs
show interesting properties for grid-like data. The kernel weights are shared for the
entire image, reducing the number of parameters of the network. Also, convolutions
are equivariant to translation. This means the representation will be the same if we

move an object in the input image I and apply a convolution on the shifted object.

2.2 Computer vision background

This section presents well-known deep learning algorithms for computer vision for
image classification, object detection and semantic segmentation. Figure 2.4 sum-
marises the different computer vision existing tasks we describe in this section.

2.2.1 Image classification

Image classification is one domain for which deep learning has achieved break-
throughs in the past few years. Image classification is the task of identifying an
object in an image and assigning a class to it. Yann LeCun [Lecun 1989] pioneered
the use of neural networks on image classification using convolutional neural net-
works and backpropagation. The increase in computational power and the release

of large-scale datasets such as ImageNet (ImageNet Large Scale Visual Recognition
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Figure 2.4: Computer vision tasks. Image classification consists in identifying an
object in an image and assigning a class to it. Semantic segmentation (or image
segmentation) is the tasks in which the goal is to categorise each pixel in an image
into a class or object. Object detection aims to detect and locate objects of interest
in an image. Instance segmentation involves identifying and separating individual
objects withing an image.

Challenge, ILSVRC) [Russakovsky 2015] revived the interest of researchers in deep
learning. ImageNet is an object recognition dataset containing over a million images
across 1k of object classes.

AlexNet

Krizhevsky et al. [Krizhevsky 2012] leverage the power of GPUs (Graphical Power
Unit ) and introduced AlexNet, a CNN with a similar architecture as LeNet-5
[Lecun 1989]. AlexNet introduced better non-linearity in the network with the
ReLU activation function and proves ReLU is more efficient for gradient propa-
gation. Moreover, the paper introduced two major deep learning concepts: the
dropout as a regularisation method and the concept of data augmentation to re-
duce overfitting. Finally, Krizhevsky et al. show that deeper networks are better.
The more convolutional layers there are, the more fine-grained features the network
learns for classification. Although now outdated, AlexNet was the forerunner of the

current use and craze for deep learning.

Deeper is better (VGG)

Krizhevsky et al. suggest that the depth of CNNs allows finer features extraction.
Simonyan and Zisserman [Simonyan 2015] explored this point by stacking several
convolutional layers with small kernels (3 x 3)together. VGG networks build upon
the following configuration: a stack of convolutional layers (which have different
depths in different architectures), three fully connected layers and a softmax layer.
The depth of the networks ranges from 11 layers to 19 layers. The deepest architec-
ture (VGG19) reaches 7.5% top-5 validation errors, outperforming AlexNet. The
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Figure 2.5: ResNet building block [He 2016]

model we present in Chapter 3 is inspired by this architecture.

Connecting the layers (ResNet)

AlexNet [Krizhevsky 2012], VGG [Simonyan 2015] or GoogLeNet [Szegedy 2015] all
follow the same trend: going deeper. However, stacking more and more layers does
not necessarily lead to better accuracy. When the depth of the network increases, a
degradation problem appears. Accuracy gets saturated, and adding layers leads to
higher training errors. In other words, the networks are more challenging to train
when they are deeper because it is more difficult to backpropagate the gradient.
ResNet networks family [He 2016] introduces the concept of residual connections.
As shown in Figure 2.5, identity mapping is added via an element-wise addition
between the input and the output of the layer. This helps the gradient propagation
and avoids the problem of vanishing gradient. Also, residual connections help to
combine different levels of features at each network step. He et al. [He 2016] were
able to stack up to 152 layers, thus reaching a top-5 validation error of 5.71%.

Efficient CNNs

The general trend in deep learning is to build bigger and deeper networks to extract
more fine-grained features. Despite increasing the accuracy, these networks could
be more computationally efficient in size and speed. In many real work applications,
including automotive applications in this thesis, the recognition and detection tasks
must be carried out on the edge of computationally limited accelerators. MobileNet
[Howard 2017, Sandler 2018, Howard 2019] family introduces a new kind of efficient
architecture in order "to build very small and low latency models that can be easily
matched to the design requirements for mobile and embedded vision application"
[Howard 2017]. In this thesis, we build an efficient network upon these requirements;
the contribution is presented in Chapter 4.

MobileNetV1 [Howard 2017] is one of the first CNN architectures built for mo-
bile and embedded vision applications. MobileNetV1 is based on a simple architec-
ture (similar to VGG [Simonyan 2015]) and uses depthwise separable convolutions

instead of plain convolutions to build a lightweight deep neural network. Depthwise
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Figure 2.6: In MobileNetV1, the standard convolutional filters in (a) are replaced
by two layers: depthwise convolution in (b) and pointwise convolution in (c¢) to
build a depthwise separable filter with M input channels, N output channels and
a kernel size Dp.

separable convolutions use 8 to 9 times less computation than standard convolu-

tions. Figure 2.6 illustrates this module.

MobileNetV2 [Sandler 2018] was proposed by Sandler et al. as an improvement
of MobileNetV1. MobileNetV2 is based on a new type of layer called inverted resid-
ual (IR). An IR block is a residual block [He 2016] that uses an inverted structure
for efficiency reasons. A first 1 x 1 convolution is used to widen the number of input
channels by an expansion rate v. Then, a 3 x 3 depthwise convolution is used on
the output of the first convolution. Finally, a second 1 x 1 convolution is used to
reduce the number of channels to apply a residual connection. The 3 x 3 depthwise
convolution drastically reduces the number of parameters of the block. We show
the structure of an IR block in Figure 2.7.

MobileNetV3 [Howard 2019] is the last generation of the MobileNets family.
Compared to MobileNets V1 and V2, MobileNetV3 is tuned through a combination
of Neural Architecture Search (NAS) and novel architecture modules. MobileNetV3
mixes the IR block proposed in MobileNetV2 with Squeeze-and-Excite modules
[Hu 2018]. Additionally, the authors propose to replace the ReLU activation func-

v (B,C,H,W)
[ Pointwise, 1x1 + ReLU+ ]
LayerNorm
1 (B,y-C,H,W)
[ Depthwise, 3x3 + ReLU+ ]
LayerNorm

y By C,HW)

[Pointwise, 1x1+ LayerNorm

! (B,C,H,W)

2
y

Figure 2.7: Inverted Residual block. The 4+ symbol corresponds to the addition
operation.
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tion with a Hard Swish activation function:

ReLUG6 3
h-swish(z) = :Ee6(ac+)

2.2.2 Object detection

Object detection is a computer vision task that aims to detect and locate objects
of interest in an image or video. The task involves identifying the position and the
boundaries (bounding boxes) of objects and classifying them into different categories
(see Figure 2.4).

Datasets and benchmarks

The most popular benchmarks and datasets for object detection are the Pascal VOC
(Visual Object Classes) [Everingham 2012] and the MSCOCO [Lin 2014] datasets.
For autonomous driving applications, other benchmarks exist, such as the nuScenes
dataset [Caesar 2019], the KITTI Vision Benchmark [Urtasun 2012}, or the Waymo
Open Dataset challenge [Ettinger 2021].

Pascal VOC dataset [Everingham 2012] is one of the first object detection and
segmentation dataset. The first version was released in 2005, but the 2012 version is
the most popular. Pascal VOC dataset contains around 10K images over 20 object
categories (vehicles, animals, bicycles). Each image has pixel-level segmentation,
bounding box, and object class annotations. The Pascal VOC has been widely used
for object detection, semantic segmentation and classification tasks but remains a
small dataset.

MSCOCO dataset [Lin 2014] is a large-scale object detection, segmentation,
keypoint recognition, and captioning dataset. To this day, this is the benchmark
of reference for computer vision tasks. The dataset comprises 328k images over
80 categories (91 for the latest version). The dataset has various annotations,
including bounding boxes, semantic and panoptic segmentation, and key points

detection annotations.

Metrics

Object detection can be seen as a regression (locate objects) and a classification
task formulated as a multi-task problem. In order to evaluate object detectors, one
needs to evaluate the localisation and classification performance of the model. For
object detection, the mean average precision (mAP) is commonly used. The mAP
is built upon the following metrics: Intersection Over Union (IoU), precision and

recall.
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Figure 2.8: Intersection over Union

Intersection Over Union IoU is a measure based on Jaccard Index that evalu-
ates the overlap between two bounding boxes (or two segmentation masks for image
segmentation). It requires a ground-truth box By and a predicted bounding box
B,. The IoU ranges from 0 to 1. A perfect object localisation would have an IoU
of 1. By setting a threshold, we can tell if a detection is valid (true positive, TP)
or not (false positive, FP). The IoU is given by the overlapping area between By,
and B,, divided by the area of union of them:

area(B, N By;)

IoU =
© area(B, U By;)

(2.8)

Figure 2.8 shows the IoU operation for bounding boxes.

Precision and Recall The precision is the ability of the model to identify only
the relevant objects. It is the percentage of correct positive predictions (IoU >

threshold):
TP TP

TP+ FP - all detection

The recall is the ability of a model to find all the relevant cases (all ground

(2.9)

Precision =

truth bounding boxes). It is the percentage of true positives detected among all
relevant ground truths. For critical automotive scenarios, a high recall is desirable,
indicating we do not miss any objects.

TP TP

Recall = =
eca TP+ FN  all ground truth

(2.10)

Mean Average Precision The mAP evaluates the average precision for all
classes in the dataset. In practice, the AP is the area under the curve (AUC)
of the precision vs recall curve. The COCO mAP [Lin 2014] consists of computing
the AP for each class with different IoU thresholds, ranging from 0.5 to 0.95 with
a 0.05 step, and average them.
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Models

The state-of-the-art (SOTA) methods for object detection can be categorised
into two categories: one-stage [Redmon 2016, Liu 2016, Lin 2017b, Zhou 2019,
Tian 2019] and two-stage methods [Ren 2017, He 2017, Lin 2017a).

R-CNN (Region-CNN) R-CNN object detectors are a family of two-stage ob-
ject detectors. Two-stage detectors aim first to find the location of potential objects
(proposals), then extract a feature vector at the position of the detected object to
classify it and improve the localisation precision.

Using a selective search algorithm, the R-CNN model [Girshick 2014] groups
objects based on their colours, texture, and shape. Then, each proposal is resized
to match the input of a CNN pre-trained on ImageNet!. The feature vector of the
CNN is then used as input of an SVM (Support Vector Machine) for classification,
and a linear regression model is used to predict objects’ location. In practice, the
regression model outputs d-values representing the difference between the proposal
boxes and the actual location of the objects. This remains true for all object
detection models.

Fast R-CNN In R-CNN, each proposal goes through a CNN for classification
and regression, which is inefficient and not adapted for real-time applications. In
[Girshick 2015], Girshik et al. try to reduce the computational cost of R-CNN by
performing a single CNN forward pass® on the image. Then, they extract Regions
Of Interest (Rol) using the selective search algorithm on the produced feature maps.
Each Rol is reduced to a fixed size using a pooling layer and a small shared two-
layer MLP extracts features. Finally, the vector created by the two-layers MLP is
used to predict the object’s class with a softmax classifier and its position with a
linear regressor. Fast R-CNN allows nine times faster training speed and processes
images 146 times faster than R-CNN.

Faster R-CNN The R-CNN [Girshick 2014] and the Fast R-CNN [Girshick 2015]
depend on heuristic-based region proposal algorithms (selective search) to hypoth-
esise object locations. However, region proposal algorithms are slow compared to
neural networks on GPUs. For example, in Fast R-CNN, the selective search algo-
rithm takes up to 2 seconds in inference to produce proposals. Therefore, Ren et al.
[Ren 2017] proposes to use GPUs to compute the proposals with deep convolutional
neural networks. They introduce a novel network in the Fast R-CNN framework,
the region proposal network (RPN). The RPN takes a set of feature maps (produced

'R-CNN uses the AlexNet [Krizhevsky 2012] architecture to extract features
*Fast R-CNN uses VGG [Simonyan 2015] backbone.
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Figure 2.9: Left: Faster R-CNN overview. First a CNN extracts features from an
input image to produce the features maps. Then the RPN proposes proposals that
are used as input of a Fast R-CNN head to predict the position and the class of
objects in the input image. Right: The RPN and its anchors at a single location.
For each position in the feature map, a 3 x 3 convolution is applied. Then two
MLPs are used to predict a set of k proposals relative to k reference boxes called
the anchors. Source: [Ren 2017]

using a CNN) as input and learns to generate proposals. To generate proposals, a
3 x 3 sliding window is applied over the feature maps?. Then, each sliding window is
mapped to an n-dimensional feature space. The RPN predicts a set of k& proposals
at each sliding window location. So the classification layer outputs 2k objectness
score, and the regression layer outputs 4k outputs encoding the coordinates of k
boxes. The predictions of the RPN are relative to k reference boxes with different
scale and aspect ratios, which we refer to as anchors (see Figure 2.9). Anchors
are selected according to their confidence score to keep only relevant anchors cor-
responding to a potential object. Finally, the proposals and the feature maps are
used as input of a Fast R-CNN model. Learning to propose regions and sharing the
features between the RPN* allows faster inference speed (0.2 seconds) than Fast
R-CNN.

Mask R-CNN Finally, in [He 2017], He et al. proposed an extension of Faster
R-CNN to perform the object detection and segmentation task simultaneously.
Mask R-CNN follows the Faster R-CNN framework (i.e. a shared backbone and
a RPN) and adds a third segmentation head to a Fast R-CNN model. Mask R-

3In practice, this is implemented using the convolution operation.
“The RPN can be seen as the combination of a feature extractor (VGG16 [Simonyan 2015] or
ZF-net [Zeiler 2014]) and a small CNN.
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Figure 2.10: YOLO overview. YOLO divides the input image into a S x S grid,
and for each cell predicts B bounding boxes, confidence for those boxes and C' class
probabilities. The predictions are then encoded as an S x S x (B*5+C') tensor. The
S x S grid corresponds to the output feature maps of a CNN, and the B bounding
boxes are similar to the anchors in Faster R-CNN. Source: [Redmon 2016]

CNN replaces the classic Rol pooling operation with a new pooling operation called
RolAlign (Region of Interest Align). RolAlign removes the quantisation of Rol
pooling and computes the exact coordinates of objects. Additionally, Mask R-CNN
adopts a ResNeXt-101 backbone [Xie 2017] with Feature Pyramid Networks (FPN)
[Lin 2017a]. FPN uses a top-down architecture with lateral connections to extract
features according to their scale.

You Only Look Once (YOLO) Compared to RPN-based object detectors,
which perform detection on region proposals and thus end up performing prediction
multiple times for various regions in an image, YOLO [Redmon 2016] architecture
(and more generally single-stage architectures) aims to perform the detection and
the classification in a single forward pass. YOLO? divides the input image into a
S xS grid, and for each cell predicts B bounding boxes, confidence for those boxes
and C class probabilities. The predictions are then encoded as an S x .S x (Bx5+C)
tensor. The S x S grid corresponds to the output feature maps of a CNN, and the
B bounding boxes are similar to the anchors in Faster R-CNN. YOLO predicts
offsets between anchors and bounding box coordinates for each grid cell. How-
ever, because YOLO predicts few objects per location after several downsampling
steps, it struggles with small objects and makes localisation errors. YOLOv2 (or
YOLO9000) [Redmon 2017] reduces the number of localisation errors by using batch
normalisation and pre-training the backbone on high-resolution images to learn from

SWe refer to YOLO for the first version of YOLO. We use YOLOv* for subsequent versions of
it.
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Figure 2.11: SSD model vs. YOLO model. SSD detects objects at multiple scales
while YOLO uses a single scale feature maps [Liu 2016]

high-resolution features. Moreover, the authors add pass-through layers which con-
catenate high-resolution features with low-resolution features to obtain fine-grained
feature maps.

Single Shot MultiBox Detector (SSD) SSD is another single-stage object
detection approach that predicts object locations and classes in a single forward
pass. Compared to YOLO [Redmon 2016] and YOLOv2 [Redmon 2017], SSD uses
multi-scale feature maps for detection. Similarly to YOLO, SSD defines a set of
anchors at each feature maps cell for multiple feature maps (extra-feature layers).
SSD computes c class scores and four offsets relative to the default anchor boxes for
each extra-feature layer and each box at each location. This yields (¢+4)xkxm*n
predictions, where m and n are the size of the feature maps, and k is the number
of anchors.

Conclusion In this section we presented the main frameworks for object detec-
tion in computer vision. Most of object detectors are built upon YOLO, SSD or
Faster R-CNN. To further improve the performance of these object detectors, re-
searchers focus their works on improving features extraction [Liu 2022, Liu 2021],
training strategy [Caron 2021] or new paradigms such as anchor-free object detec-
tors [Tian 2019, Carion 2020a, Zhou 2019]. In this thesis, we will use the Faster
R-CNN framework and study how much this architecture is suited for radar object
detection. Two-stage detectors are generally more accurate but slower than sin-

gle stage detectors. Thus we will optimise the features extraction stage to extract



2.2. Computer vision background 49

meaningful radar features while being computationally efficient.

2.2.3 Image segmentation

Segmentation is the process of partitioning an image into multiple regions. There
are three groups of segmentation: semantic segmentation, instance segmentation
and panoptic segmentation.

Semantic segmentation is the task in which the goal is to categorise each pixel
in an image into a class or object. Semantic segmentation aims to produce an
image’s dense pixel-wise segmentation map, also known as a segmentation mask.
Instance segmentation involves identifying and separating individual objects within
an image, including detecting the boundaries and assigning a unique label to each
object. Instance segmentation is a type of object detection. Finally, panoptic seg-
mentation combines semantic segmentation and instance segmentation to provide a
comprehensive understanding of the scene. In this thesis, we will focus on semantic

segmentation only.

Datasets and benchmarks

As for object detection, the PASCAL VOC [Everingham 2012] and the MSCOCO
[Lin 2014] datasets are famous benchmarks for semantic segmentation. Addition-
ally, the Cityscapes [Cordts 2016] dataset is widely used for semantic segmentation.
We refer the reader to Section 2.2.2 for details about Pascal VOC and MSCOCO.

The Cityscapes dataset [Cordts 2016] is a large-scale dataset for semantic un-
derstanding of urban street scenes. It provides semantic, instance-wise, and dense
pixel annotations for 30 classes grouped into eight categories (flat surfaces, humans,
vehicles, constructions, objects, nature, sky, and void). The dataset is small com-
pared to MSCOCO. Indeed, Cityscape contains only 5000 annotated images and
20000 coarse annotated ones.

Metrics

Because semantic segmentation models predict masks, the mloU metric we defined
in Section 2.2.2 and the pixel accuracy is used. The IoU is computed between a
ground truth mask and the prediction for each class. Then, by averaging the IoU
of each class, we compute the mloU.

The pixel accuracy is the percentage of pixels in the image which are correctly
classified. Generally, pixel accuracy is reported for each class separately and by
averaging across classes. One issue with pixel accuracy is that it can provide mis-
leading results when the class representation is small within the image (e.g. mostly

background).
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Models

Semantic segmentation models aim to label each pixel of an image with a corre-
sponding class. Thus, such models require the same input and output size. A naive
approach is to design an architecture with convolutional layers without decreasing
the input size. Then, apply a softmax function to the last feature maps. Neverthe-
less, this is computationally expensive. Deep CNNs for image classification generally
downsample the size of the input multiple times to learn deeper representations.
However, we must produce a full-resolution segmentation mask the same size as the
input image for semantic segmentation. One popular image segmentation approach
follows an encoder-decoder architecture, where the encoder downsamples the spa-
tial resolution, developing lower-resolution feature maps, and where the decoder
upsamples the feature representations learned by the encoder into a segmentation
mask.

Fully Convolutional Networks (FCN) Long et al. [Long 2015] were the first
to propose a fully convolutional network trained end-to-end for image semantic seg-
mentation. The authors proposed to adapt existing image classification networks
(e.g. AlexNet [Krizhevsky 2012]) as an encoder and use transpose convolution (or
deconvolution) layers on the top of the feature maps to upsample low-resolution
features into a full-resolution segmentation map. However, FCN struggles to pro-
duce fine-grained segmentation masks. Indeed, the input’s resolution is reduced by
32, and the authors use a single deconvolution layer. To address this issue, the
authors propose slowly upsampling the encoded representation at different stages,
adding skip connections from earlier layers and summing feature maps together. It
allows fine layers (where) to be combined with coarse layers (what), improving the

segmentation of object boundaries.

U-Net Later on, Ronneberger et al. [Ronneberger 2015] improved the FCN ar-
chitecture by expanding the capacity of the decoder. Instead of using a single
deconvolution, they propose a symmetric encoder-decoder architecture for image
semantic segmentation. The encoder (referred to as contracting path in the original
paper) captures context. The decoder (referred to as expanding path) is symmetric
to the encoder and enables precise localisation. Also, U-Net adds skip connections
between the encoder and the decoder to combine low-level features (where) with
high-level features (what). U-Net architecture has become popular, modified, and
adapted for various segmentation problems. Today, we can consider this architec-
ture as the reference encoder-decoder architecture. Figure 2.12 depicts the U-Net

architecture.
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Figure 2.12: U-Net architecture [Ronneberger 2015]

The DeepLab family One problem in image segmentation or object detection
is classifying, segmenting or detecting the same objects at different scales. This
has been addressed for object detection using FPN [Lin 2017a], multi-scale feature
maps [Liu 2016], or multi-scale anchors [Ren 2017]. A second problem is the coarse
resolution of the feature maps caused by the repeated downsampling operations
performed at consecutive layers in the backbone network. Encoder-decoder with
skip connections [Ronneberger 2015] has been shown to help to solve these issues.
Chen et al. proposed DeepLabV1 [Chen 2015] and then DeepLabV2 [Chen 2018a] to
solve the problems above. DeepLabV2 architecture combines atrous convolutions,
spatial pyramid pooling and Conditional Random Fields (CRF). To increase the
size of the feature maps, Chen et al. propose to remove the downsampling operator
from the last few max-pooling of deep convolutional neural networks® and instead
upsample the feature maps using atrous (or dilated) convolutions. Atrous convolu-
tion consists of convolution with a sparse kernel. A fixed number of zeros separates
elements in the kernel, called the dilation rate. It allows to enlarge the receptive
field of a network to incorporate a larger context without increasing the number
of parameters. This way, the authors can increase the size (and the resolution) of
the computed feature maps by a factor of 4. Inspired by Spatial Pyramid Pooling
[He 2014] and Feature Pyramid Network [Lin 2017a], the authors also introduce a
new module called Atrous Spatial Pyramid Pooling (ASPP) to deal with multiple
scale objects. ASPP applies multiple parallel filters with different dilation rates on
the feature maps, thus allowing learning patterns at different scales. The feature
maps are processed with different receptive fields and then concatenated. Finally,

5The deep convolutional neural networks used for DeepLabV2 are VGG16 [Simonyan 2015] or
ResNet101 [He 2016].
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to improve the segmentation of object boundaries, the concatenated feature maps
are processed by a fully connected conditional random field [Kréhenbiihl 2011].

Later on, Chen et al. revisited their work and proposed DeepLabV3 [Chen 2017].
DeepLabV3 employs atrous convolution in cascade or parallel to better capture long-
range information in the deeper blocks. The ASPP module is also modified with
lower dilation rates, and a 1 x 1 convolution and batch normalisation are added. The
concatenated feature maps of the ASPP module are directly processed to predict
the segmentation mask, and the dense CRF is no longer required.

Last, DeepLabV3+ [Chen 2018b] extends DeepLabV3 by opting for an encoder-
decoder structure. DeepLabV3+ uses the Deepl.abV3 as an encoder, and a simple
decoder processes the low-level features from the encoder and the feature maps
from the ASPP module. For efficiency, Chen et al. use depthwise-separable convo-
lutions [Howard 2017] in the decoder and the ASPP module. Finally, they adapt
the Xception model [Chollet 2017] in the encoder to extract features.

Conclusion In this section, we presented well-known models for semantic segmen-
tation. Today, most image segmentation networks are built following an encoder-
decoder architecture and skip connections. To this day, this is the more natural way
to process images. Using these principles, we will build the semantic segmentation
and detection models we present in this thesis.

2.3 Automotive radar datasets

One fundamental principle of deep learning is the need for data. The best computer
vision models generally learn from vast amounts of annotated data. Hence, datasets
with annotated radar data are required to apply deep learning algorithms for radar
perception. When starting this thesis, very few radar datasets with raw radar
frames were available [Gao 2019b, Ouaknine 2021b]. From 2020 to now, more and
more datasets have been released for different tasks (classification, detection, seg-
mentation, tracking) and with different radar representations. This section presents
available radar datasets we can use for automotive radar perception. We split these
datasets into point cloud datasets and raw data datasets.

2.3.1 Point clouds datasets

Point clouds are the standard representation of radar data. Point clouds represent
the signal at the target-level. Similarly to Palffy et al. [Palffy 2022], we refer to
2+1D radar for radars that output a sparse point cloud of reflection. Each point
contains the range r of the target, the angle of arrival 6 and the radial velocity v,..

We refer to 341D radar for radars having three spatial dimensions: the range r, the
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Figure 2.13: Overview of point clouds radar datasets. (a) nuScenes [Caesar 2019
dataset sample. We notice a few points per object, and the radar has no elevation
capabilities. (b) Astyx [Meyer 2019] dataset sample. Compared to nuScenes data,
the radar has elevation capabilities, and more points per object are available. (c)
RadarScenes [Schumann 2021] dataset sample. The point cloud is denser than
the nuScenes point cloud, but no elevation measurement exists. (d) VoD dataset
[Palffy 2022] sample. We can see that radar (big points) has a lower resolution than
LiDAR but has a better resolution than nuScenes data and elevation data.

azimuth 6, the elevation o and the radial velocity v,. Point clouds can be used for
object classification, segmentation (clustering objects of the same class) and sensor
fusion. Because radar point clouds are sparse, they are particularly appropriate for
embedded applications. This sparsity is also a drawback because models need more
information to generalise well.

nuScenes [Caesar 2019], released in 2019, is the first public large-scale dataset for
autonomous driving. It contains 2+1D radar point clouds from 5 radars alongside
cameras, LiDARs and IMUs. Although data from several radars is available, these
radars have low resolution, resulting in very sparse (few points per object) point
clouds as shown in Figure 2.13. Some work tried using this dataset for object
detection [Niederlohner 2022, Svenningsson 2021], but the resolution is too low to
obtain enough detection accuracy. As a result, nuScenes’ radar data is mainly used

for sensor-fusion applications rather than radar-only perception.
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To address the sparsity of low-resolution radar, 241D or 3-+1D high-resolution
radar datasets were made public such as Astyx [Meyer 2019], RadarScenes
[Schumann 2021] or View-of-Delft (VoD) [Palffy 2022] datasets.

Astyx dataset [Meyer 2019] (no longer available) is the first 341D high-
resolution radar dataset. It contains data from one radar, camera and LiDAR
with 3D bounding box annotations. Compared to the nuScenes dataset, one radar
frame contains around 1000 3D points instead of 100 2D points. However, the Astyx
dataset remains very small as the dataset consists of only 500 synchronised frames,
containing around 3000 manually annotated objects divided into seven classes (bus,
car, cyclist, motorcyclist, person, trailer and truck). Moreover, the dataset mainly
comprised non-consecutive measurements, and few driving scenarios are available.

Schumann et al. try to alleviate that and propose the RadarScenes dataset
[Schumann 2021], which consists of four 2+1D high-resolution radars for automotive
perception. It contains 4.3 hours of driving in real automotive scenarios, resulting in
118.9 million radar points. The point clouds of the dataset are manually annotated
and are divided between 11 object classes with four large main categories and a
total of over 7000 road users. Unfortunately, only moving objects are annotated.

The VoD dataset [Palffy 2022] then appears as a good candidate for 3-++1D radar
perception. VoD dataset brings around 9000 synchronised and calibrated camera,
LiDAR and radar frames together. Data were acquired in complex, urban traffic.
The dataset consists of more than 120000 manually annotated 3D bounding boxes
of moving and static objects, including pedestrians, cyclists and car labels. The
VoD dataset is the biggest and the most realistic radar point clouds dataset yet.

2.3.2 Raw datasets

The sparsity of radar point clouds is both an advantage and a disadvantage. On
the one hand, this sparsity allows the development of very efficient algorithms for
automotive radar perception running on edge devices. On the other hand, radar
point clouds contain low-level information (position of targets, velocity, radar cross
section) due to many filtering techniques (Figure 1.5). The information available
in the raw signal could help increase radar perception algorithms’ accuracy. Thus,
filtering techniques might be removed from the conventional signal processing chain,
and raw data could be used as input of deep neural networks for object detection
and classification that we detail thereafter.

Low-resolution radar datasets

Ouaknine et al. observed a need for annotated datasets with range-angle or
range-Doppler raw radar data and proposed in 2020 the CARRADA dataset
[Ouaknine 2021b]. CARRADA is the first raw radar data dataset made public.
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Figure 2.14: Overview of low-resolution raw radar datasets. (a) CARRADA
[Ouaknine 2021b] dataset sample. RA and RD maps are available with correspond-
ing annotations in the following format: bounding boxes, points, and segmentation
masks. (b) RADDet [Zhang 2021] dataset sample. RAD tensors are available in
polar and cartesian coordinates. Annotations are 3D bounding boxes in range, an-
gle and Dopper dimensions. (¢) CRUW [Wang 2021c| dataset sample in city road
driving scenario. The upper row shows the RGB images with the detected bound-
ing boxes from Mask R-CNN and the projected CFAR detections (vertical lines).
The lower row shows the RF images with the CFAR detections (dots) and the final
object annotations [Wang 2021c].

It contains around 12000 synchronised camera-FMCW radar frames with range-
angle-Doppler annotations. The dataset has been recorded on a test track to reduce
environmental noise. Simple scenarios with cars, pedestrians and cyclists moving
with various trajectories have been recorded to simulate urban driving scenarios.
Zhang et al. propose a similar dataset with RAD tensors and 3D RAD bounding
boxes annotations.

The RADDet dataset comprises around 10k frames collected in sunny weather
at several random locations. The sensors were set up on the sidewalks and facing the
main roads. Such a sensor setup makes RADDet more realistic than CARRADA.
Similarly to CARRADA, the sensor of the RADDet dataset is static, thus reducing
noise effects due to the vehicles’ movements.

The CRUW dataset [Wang 2021c] is another large camera-radar dataset. It
contains about 400k frames of two stereo cameras and two FMCW radars collected
in four scenarios: campus road, parking lot, city street and highway. Contrary to
CARRADA or RADDet datasets, only RA maps (no Doppler) are available in the
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CRUW dataset, and annotations are in the form of points to remain compliant
with conventional radar outputs. Unfortunately, the CRUW dataset is not publicly
available, but authors release a subset of it, named the ROD20217 dataset. The
ROD2021 dataset contains about 50k frames from a single RGB camera and FCMW
radar.

In this thesis, we use these datasets as they were the only ones available during
the major part of the thesis. We also chose to work on these datasets as the
low-resolution aspect of the radars used in CARRADA, RADDet or CRUW is
challenging. We hypothesise that with enough data and good annotations, a deep
learning algorithm could overstep the low resolution of the radar. We show samples
of these datasets in Figure 2.14.

High-resolution radar datasets

Low-resolution radar datasets are very useful for detecting objects in range and
velocity. However, the low-angle resolution makes detecting and classifying objects
difficult in the azimuth domain. More recently, high-resolution radar datasets have
started emerging. The goals of high-resolution datasets are multiple: enabling
accurate 3D detection and classification for radar sensors [Paek 2022, Rebut 2022,
Madani 2022] and avoiding the computationally expensive generation of RA radar
maps [Rebut 2022].

RADIal (for Radar, LiDAR et al.) is a raw high-resolution radar dataset in-
cluding other sensor modalities like cameras and LiDAR. RADIal aims to motivate
research on automotive high-resolution radar and camera-lidar-radar sensor fusion.
RADIal contains around 25k synchronised frames, out of which more or less 8k are
labelled with vehicles and free-space driving masks. Data are provided in ADC data
to be used directly to detect and classify vehicles and avoid time-consuming RA
map generations. However, the RADIal dataset mainly contains data recorded on
highways or countryside and only car labels, making it challenging to use for more
general applications (city roads).

The K-Radar [Paek 2022] is a 3+1D radar dataset with a similar size as RADIal
[Rebut 2022] collected under various scenarios (e.g. urban, suburban, highways),
time (e.g. day, night), and weather conditions (e.g. clear, fog, rain, snow). It con-
tains around 35k manually annotated 4D radar tensors (range, Doppler, azimuth,
elevation). Unlike the ADC data of the RADIal dataset, K-Radar tensors are heavy,
and the dataset cannot be downloaded because of its massive size (16TB).

Finally, Madani et al. introduce the Radatron dataset [Madani 2022]. The
Radatron dataset is a high-resolution radar dataset using a cascaded MIMO radar.
As for the K-Radar dataset [Paek 2022], radar data is in the form of 4D tensors. The

Thttps://www.cruwdataset.org/rod2021
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Figure 2.15: (a) RADIal dataset sample. From left to right: camera image with
projected laser point cloud in red and radar point cloud in indigo, vehicle annotation
in orange and free-driving space annotation in green ; radar power spectrum (MIMO
RD) with bounding box annotation ; free-driving space annotation in bird-eye view,
with vehicles annotated with orange bounding boxes, radar point cloud in yellow and
LiDAR point cloud in red ; range-azimuth map in Cartesian coordiates, overlayed
with radar point cloud and LiDAR point cloud [Rebut 2022]. (b) K-Radar dataset
sample in various weather conditions. (c¢) Radatron dataset sample. Ground truth
are marked in green.

dataset is collected under clear weather conditions, and out of the 152k frames, 16k
vehicles were annotated with 2D bounding boxes on RA maps. Radatron presents

several limitations:

1. The radar’s maximum range is 25 meters, while RADIal or K-Radar can
detect objects up to 100 meters.

2. Radatron does not leverage the 4D nature of the data because annotations
are only provided for 2D RA maps.

3. As RADIal, Radatron only provides annotations for vehicles.

However, learning to detect vulnerable road users like pedestrians is essential for

automotive applications.
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Figure 2.16: Overview of scanning radar datasets. Scanning radar allows a 360°
view around the car. (a) RADIATE dataset sample with different driving scenarios
under several weather conditions. (b) Oxford RobotCar dataset sample.

To conclude, the main challenge of high-resolution radar datasets is the storage
and sharing of these datasets. Indeed, 4D radar tensors are very cumbersome in
memory. The choice of RADial’s authors to release the ADC data alongside a
signal processing pipeline is the best choice to allow research on high-resolution
radar datasets. It also enables the development of new processing techniques on
ADC data to replace some parts of the conventional radar signal processing chain
(see Figure 1.5). We show samples of high-resolution datasets in Figure 2.15

Scanning radar datasets

Scanning radar data (see Figure 2.16) is another radar data available. One advan-
tage of scanning radars is that they allow a 360° representation of the environment.
Because they measure each azimuth using a moving antenna, scanning radar pro-
vides better azimuth resolution than low-resolution radars (around 0.9° azimuth
resolution). However, they do not provide Doppler information, a significant ad-
vantage of radar sensors and crucial for automotive applications. During this thesis,
we will not use these datasets because we consider the Doppler information a core
radar component and because scanning radar is not used in practice.

The Oxford RobotCar [Barnes 2020], MulRan and RADIATE [Sheeny 2021]
datasets provide radar data using scanning radars. The Oxford RobotCar dataset
contains around 240k radar scans collected in various traffic, weather and lightning
conditions in Oxford, UK. Data from sensors such as LiDAR, GPS or cameras are
also available. However, the authors of the Oxford RobotCar dataset do not provide

annotations.
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The RADIATE [Sheeny 2021] dataset is an annotated dataset collected in a
mixture of weather (sun, fog, rain, snow, day, night) and driving scenarios. The
dataset includes 5 hours of radar images, 3 hours of which are fully annotated
with eight categories (i.e. van, car, bus, truck, motorbike, bicycle, pedestrian and
group of pedestrians). RADIATE dataset includes other modalities such as cameras,
LiDAR and GPS data. Likewise, K-Radar [Pack 2022], the strength of RADIATE
lies in the various weather driving scenarios, showing the relevance of using radar

on top of other sensors for perception in automotive scenarios.

2.4 Automotive radar perception on radar point clouds

Radar point cloud (or radar reflection) is the default output of radar. Radar re-
flections are sparse and light in memory. Thus, they are the most commonly used
representation in the industry for efficiency and embedded object classification, de-
tection and segmentation [Ulrich 2021].

Object classification is the task of assigning a class to clusters of reflections.
The clusters are generally obtained after applying clustering algorithms like DB-
SCAN on the radar point cloud [Scheiner 2018, Scheiner 2019, Scheiner 2020,
Tatarchenko 2023]. Scheiner et al. [Scheiner 2018, Scheiner 2019] propose to use
One-vs-All (OVA) and One-vs-One (OVO) binary classifiers for multi-class road
users classification. Binary classifiers overcome data imbalance. They extract a
set of features from clusters of point clouds for the target recognition process.
[Scheiner 2019] show that ensemble classifiers and recurrent neural networks al-
low accurate feature selection and improved classification accuracy. Building upon
[Scheiner 2018, Scheiner 2019], [Scheiner 2020] study if high-resolution radar point
clouds allow better accuracy than conventional radars. However, these methods are
features-based and require radar data knowledge to build a good set of features.

The progress of deep learning algorithms has led to the development of data-
driven approaches [Tatarchenko 2023, Ulrich 2021] for object recognition. Ulrich
et al. [Ulrich 2021] propose DeepReflecs, a deep learning approach using a cluster
of points which contains the position, the radar cross-section, the range and the
radial velocity. They propose to process the data using a simple 1D CNN of 1284
parameters. They show superior performance than features-based approaches at a
lower computational cost. In order to explain the classification process, Tatarchenko
and Rambach [Tatarchenko 2023] format radar point clouds as a histogram. They
use the histogram vector as input of a simple MLP and improve the classification
accuracy of DeepReflecs [Ulrich 2021].

Nonetheless, clustering algorithms require setting hyper-parameters that can af-
fect classification performance. Thus, object detection aims to combine clustering
and classification methods at once [Dreher 2020, Ulrich 2022, Niederlohner 2022,
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Danzer 2019]. In contrast, object segmentation methods attempt to classify each re-
flection to create clusters automatically [Schumann 2018, Danzer 2019, Feng 2019].

Object detection and segmentation models for radar point clouds use all the
reflections available in the scene (or accumulated over a short period to increase
the resolution) as input. The most common approaches are grid-based or point-
based.

Grid-based approaches usually render the radar point cloud to a 2D bird-
eye-view (BEV) representation or 3D cartesian grid and apply a CNN on it
[Dreher 2020, Niederlohner 2022, Xu 2021]. In [Xu 2021], the author renders the
point cloud onto a pillar and uses a self-attention mechanism to solve the prob-
lem of orientation estimation in a grid-based approach. [Dreher 2020] exploits the
YOLOVv3 architecture on a grid-map representation of the point cloud. However,
the sparsity of the data does not lead to encouraging results. Niederlohner et al.
[Niederlohner 2022] accumulate point clouds over time to reduce the sparsity of the
data and apply an FPN architecture on a rendered point clouds for object detec-
tion and cartesian velocity estimation. As in [Dreher 2020], the results were not
encouraging due to the high sparsity of the radar point cloud.

Point-based approaches are appropriate for sparse point-cloud object detection.
Indeed, they do not pad the data with zeros when there is no measurement. Instead,
they learn the relationship between each point in a local neighbourhood. Point-
based CNNs create a pseudo-image of the point cloud in the object detection model.
Well known architectures are PointNet [Charles 2017], PointNet++ [Qi 2017], Vox-
elNet [Zhou 2018] or PointPilars [Lang 2019]. In the literature, researchers suc-
cessfully modify these architectures for object detection or segmentation on radar
point clouds [Schumann 2018, Feng 2019, Tilly 2020, Palffy 2022, Xiong 2022]. In
particular, Xiong et al. [Xiong 2022] show contrastive learning on radar clusters
helps improve overall detection performance using fewer training data. Ulrich et
al. [Ulrich 2022] take advantage of both methods. They mix point-based and grid-
based approaches to improve object detection and orientation estimation on radar
point clouds. [Fent 2023] employs a graph neural network (GNN) instead of a CNN
for object detection and segmentation on radar reflections.

Finally, other works on radar point clouds exist for ghost target detection
[Kraus 2020] or scene-flow estimation [Ding 2022, Ding 2023].

2.5 Automotive radar perception on raw data

As explained in Chapter 1, radar sensors usually output point clouds representing
the detected targets. Section 2.4 shows we can use radar point clouds for tasks such
as object recognition [Ulrich 2021], segmentation [Feng 2019] or ghost target detec-
tion [Kraus 2020]. However, the low resolution of radar sensors and the numerous



2.5. Automotive radar perception on raw data 61

Figure 2.17: Raw data object classification data flow. The dotted lines represent
an optional operation.

filtering techniques (thresholding, clustering, tracking) applied to the signal result
in a loss of valuable information compared to the raw radar signal (see Chapter 1).
Moreover, point clouds contain little information about the target and are sparse
no matter the resolution of the radar, lowering the accuracy of point clouds radar
object detectors [Niederlohner 2022, Ulrich 2022]. Therefore, several works consider
lower-level representation such as RD, RA or RAD spectra to perform tasks like
object classification, detection, segmentation or tracking to exploit the information

available in the radar signal fully.

2.5.1 Object classification

In order to classify objects using raw radar data, the vast majority of approaches
we present in this section rely on CFAR [Blake 1988] and clustering (DBSCAN)
algorithms to first detect targets before classifying them using machine learning.
Figure 2.17 shows typical data flow to classify targets using raw radar data. We
can split object classification on raw radar data methods into features-based and

spectrum-based methods.

Features-based methods

Features-based methods are in between point clouds-based and raw data-based
methods. They consist of using handcrafted features from the range and the
Doppler profile to recognise objects such as pedestrians or vehicles [Heuel 2011,
Prophet 2018b, Prophet 2018a, Lee 2017] before tracking them and producing
point clouds. SVM classifiers are commonly used for the classification process.
[Prophet 2018b] and [Heuel 2011] also propose to add a tracker after the classifier
to improve classification accuracy. In [Prophet 2018a], Prophet et al. propose to
directly use regions of interest (Rol) from the range-Doppler maps and the image-

based feature descriptor SURF [Bay 2006] to learn scale, rotation and skew invari-
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ant features from the image directly. They show that using image-based features
as input of an SVM classifier achieves an 88% accuracy on pedestrians.

Spectrum-based methods

The work of Prophet et al. [Prophet 2018a] shows the potential of using the spec-
trum to classify objects in radar. This work lead to many studies for object classi-
fication using of convolutional neural networks [Kim 2018, Pérez 2018, Patel 2019,
Khalid 2019, Cai 2019, Akita 2019, Lee 2019, Palffy 2020, Gao 2019b, Gao 2019a,
Patel 2022, Saini 2023, Angelov 2018].

Micro-Doppler object classification Some methods such as [Angelov 2018],
[Lee 2019] or [Gao 2019b] use the micro-Doppler signatures of detected ob-
jects to recognise moving targets using VGG [Gao 2019b, Lee 2019], ResNet50
[Angelov 2018], or AlexNet [Lee 2019] models. The micro-Doppler effect is a phe-
nomenon that appears when, in addition to the constant Doppler frequency shift
induced by the motion of a radar target, the target or any structure on the target
(the wheels of a car, arms of a human body) undergoes micro-motion dynamics
that induce additional Doppler modulations on the returned signal [Chen 2006].
However, using the micro-Doppler signature is unsuitable for real-time applications
because it requires accumulating the signal over a short period (from 0.5 seconds
to 2 seconds). Furthermore, for reliable detection of multiple objects, range and
Doppler features must be considered [Khalid 2019]. As a result, we focus our re-

search on models based on the range-Doppler or the range-azimuth spectrum.

Classification with RA, RD or RAD tensors Pérez et al. [Pérez 2018] use
tiny two layers CNN to classify moving targets such as pedestrians, cyclists or
cars based on their Rol in the range-angle-Doppler power spectrum. They show
that such a model can achieve 97.3% accuracy in classifying objects in single-target
scenarios. Kim et al. [Kim 2018], Khalid et al. [Khalid 2019] and Akita et al.
[Akita 2019] propose to learn temporal dynamics of moving objects using recurrent
and convolutional neural networks. [Kim 2018] classifies sequences of range-Doppler
spectra with single moving objects, while [Khalid 2019] and [Akita 2019] extract
Rols from the RD and RA spectrum respectively. The authors of [Akita 2019]
show that using raw data benefits object classification in this study. They compare
the performance of their classifier on raw data (raw reflection intensity Rol) versus
radar features such as the maximum intensity of the reflection or a set of features
(average reflection intensity, maximum reflection intensity, roundness). Patel et al.
[Patel 2022] notice that deep radar classifiers maintain high confidence for ambigu-
ous, complex samples under domain shift and signal corruptions. Indeed, according

to the radar equation (Equation 1.1), the same target at different ranges produces
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different measurements. As a result, they introduce a specific label-smoothing strat-
egy for radar during training to improve the uncertainty of the classifier.

Hybrid approaches Other methods propose to mix radar knowledge (target-
level) and the radar cube (low-level) to address the direction of arrival estimation
problem, which is not used by spectrum-based classifiers. Patel et al. [Patel 2019]
addresses the lack of position information in object classification by adding prelim-
inary information to Rols as a channel. It can be the distance between the highest
intensity pixel and other pixels of the Rol or a decayed Rol spectrum. The decayed
Rol spectrum consists of a spectrum where peripheral reflections are attenuated
and important reflections are pronounced. They show a 3% to 6% improvement
in the accuracy by adding this target-level knowledge to the input using a three-
layer CNN. Gao et al. [Gao 2019a] build an SVM-CNN hybrid model to classify
moving objects. Palffy et al. [Palffy 2020] propose an approach that fully exploits
target-level and low-level information. First, they detect targets using conventional
radar signal processing. A region of interest from the RAD cube is extracted for
each detected object, and range, azimuth and speed features are learned using two
small CNNs. Then, target-level features (range, azimuth, RCS, absolute speed) are
concatenated with low-level features to be classified by One-vs-All and One-vs-One
binary classifiers. An overview of RTC-Net is shown in Figure 2.18. RTC-Net is
more accurate than a features-based method like [Prophet 2018b]. More recently,
[Saini 2023] introduced a similar hybrid approach mixing target-level (point clouds)
and low-level (spectra). The authors use two graph neural networks to learn em-
beddings from the radar range-Doppler Rol and the reflections. Then, the spectral
embedding is concatenated with the reflections embedding before being used for

target recognition.

Figure 2.18: RTC-Net model overview. RTC-Net extracts Rols from the radar
cube using a list of detections. A combination of CNNs is used to extract features
for each extracted Rol. Ensemble classifiers use the features to perform the target
classification. Source: [Palffy 2020]
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Features-based, spectrum-based or hybrid classification models rely on conven-
tional radar object detectors and clustering methods to detect targets before classi-
fication. In addition, most of the methods above work for single-moving object sce-
narios and report results on proprietary datasets. It has been shown in [Gao 2019b]
that, despite good classification accuracy, when tested in more complex scenarios
(multiple objects, city roads), these models exhibit a lot of missing detection, which
might be critical for safety. Adding a tracking algorithm on top of classification al-
gorithms helps to reduce unwanted detection. However, we may wonder about the
possibility of an all-in-one system to detect and classify objects simultaneously from

raw data.

2.5.2 Object detection and segmentation

Deep learning-based object classification models rest upon thresholding algorithms
to detect targets before identification and tracking. Nevertheless, thresholding,
clustering and tracking algorithms are heuristic-based and sometimes produce false
positives. Object detection and segmentation is one of the main tasks in computer
vision, for which deep neural networks have achieved a significant breakthrough in
the past decade. Such approaches have been successfully applied to LiDAR and
cameras. However, as stated in Section 2.3, before 2021, the need for more publicly
available radar datasets has slowed down research in object detection for radar data.
Given the performance of object detection algorithms for computer vision, several
researchers have attempted to exploit these models for radar object detection on dif-
ferent modalities (RA, RD, RAD) [Fatseas 2019, Kaul 2020, Zhang 2021, Li 2022].
Deep learning algorithms can leverage all the information in the raw signal to im-
prove the detection and the classification of road users. Moreover, directly applying
deep learning models on raw data allows to reduce the number of post-processing
steps before detecting objects.

Object detection and segmentation on RAD tensors

In order to exploit all the available information in the radar signal
[Gao 2021, Ouaknine 2021a, Franceschi 2022, Brodeski 2019, Major 2019,
Zhang 2021, Giroux 2023, Fang 2022] conducted work on RAD tensors. In-
deed, RAD tensors aggregate distance, velocity and angle information together.
Brodeski et al. [Brodeski 2019] first introduced this kind of approach in 2019. They
propose a two-stage detector on the RAD cube for detection and DoA estimation.
To remain compliant with the conventional signal processing chain, they first detect
objects in range and velocity using a U-Net-like [Ronneberger 2015] segmentation
model. Then, for each detected object, they crop a Rol from the RAD cube and
the detection network latent space. Finally, they pass it to a small network for



2.5. Automotive radar perception on raw data 65

elevation and azimuth prediction. However, their data comes from an anechoic
chamber with some corner reflectors inside, which is unrealistic. Franceschi and
Rachkov [Franceschi 2022] extend this work to simulated radar data. They use
the same network as [Brodeski 2019] and show a higher accuracy, recall and dice
score than conventional methods. However, this work highlights the difficulty
of deep neural networks to estimate azimuth and elevation in complex scenarios
despite good generalisation results on real data for object detection. Moreover, the
simulated data is unrealistic and looks closer to LiDAR data than radar data.

Similarly, Fang et al. [Fang 2022] introduce ERASE-Net, a two-stage detector
called detect-then-segment. From a RAD tensor, they first detect object centres
in RAD space, then extract and separate regions of interest from the background
to form sparse point clouds. Lastly, they segment objects in RA and RD views
using a sparse segmentation network for efficiency. In [Zhang 2021] Zhang et al.
adapt the famous YOLO architecture [Redmon 2016] for 3D object detection on
the RAD cube. They propose a backbone named RadarResNet that learns to
extract velocity information in the channel dimension without 3D convolutions.
Their model predicts object position in polar and cartesian coordinates, the latter
providing the best detection result. However, the Doppler information is encoded
as an extra channel. In computer vision, increasing the number of channels as we
go deeper into the network is a good practice. Encoding the velocity in such a way
might lead to a wrong estimation of the object’s velocity.

To avoid this, multi-view models were proposed [Major 2019, Ouaknine 2021a,
Gao 2021]. They use one encoder per view to extract information separately before

Figure 2.19: MVRSS framework. At a given instant, radar signals take the form
of a range-angle-Doppler (RAD) tensor. Sequences of q + 1 2D views of this
data cube are formed and mapped to a common latent space by the proposed
multi-view architectures. Two heads with distinct decoders produce a semantic
segmentation of the range-angle (RA) and range-Doppler (RD) views respectively.
Source: [Ouaknine 2021a]
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Figure 2.20: RADDet model. Features are extracted from the RAD cube with
a custom ResNet model adapter to radar. Two YOLO heads are used to detect
objects in the RAD and in the RA cartesian views. Source: [Zhang 2021]

merging it into a single latent space. For example, RAMP-CNN [Gao 2021] predicts
barycentres in the RA domain using multiple views (RA, RD, AD) as input. The
model comprises three different 3D convolutional autoencoders learning across mul-
tiple timesteps and domains. However, RAMP-CNN is huge (around 104 million
parameters) and cannot be considered for real-time applications. Ouaknine et al.
[Ouaknine 2021a] also introduce multi-view radar semantic segmentation (MVRSS)
architectures to detect and classify objects in range-azimuth and range-Doppler do-
mains (TMVA-Net and MVA-Net). As RAMP-CNN, they use one encoder per
view and concatenate features from each view in a latent space. In order to handle
the variability of radar objects’ signature, Atrous Spatial Pyramid Pooling module
[Chen 2018a] is used. They use the latent space to feed two decoders in charge of
segmenting objects in RD and RA view. The models learn from past frames using
3D convolutions but only predict the positions of objects for the last timestep, mak-
ing it more efficient than RAMP-CNN. Finally, Major et al. [Major 2019] perform
bird-eye-view object detection in the RA domain using a multi-view model. Instead
of using 3D convolutions to learn from time, they propose to add an LSTM cell on
top of a detection head. One takeaway of their work is that predicting the posi-
tion in cartesian coordinates instead of polar coordinates leads to higher detection
accuracy. Indeed, it considers the increase in distance between adjacent bins when

the range increases.

Nevertheless, RAD tensors are computationally demanding to produce and cum-
bersome in memory (especially for high-resolution radar). Multi-view models are
hard and long to train and do not necessarily lead to better performance as shown
by [Major 2019]. Since RA maps provide range angle information, thus allowing de-
tection targets around the car, it has been explored extensively for object detection.

RA maps are smaller than RAD cube, hence they are more efficient.
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Object detection and segmentation on RA maps

Alongside the CRUW dataset [Wang 2021c|, Wang et al. launch the ROD2021
challenge. The ROD2021 challenge came with the ROD2021 dataset, a subset
of CRUW. This competition motivates research on new models for object detec-
tion using the RA modality. RODNet [Wang 2021b] has paved the way for a new
radar object detection paradigm. To overcome the low resolution of radar, they
propose to detect objects as points in RA view instead of using bounding boxes
[Major 2019, Zhang 2021] or segmentation masks [Ouaknine 2021a, Kaul 2020].
That makes the detection task easier and well-posed when the boxes are not well
defined, but reduces objects to a single point which is not always true. RODNet
[Wang 2021b] consists of an hourglass [Newell 2016] 3D encoder-decoder model that
predicts object location at multiple successive timesteps. However, as RAMP-CNN
[Gao 2021], the models proposed by Wang et al. are huge (more than 100 million
parameters). Ju et al. [Ju 2021] then introduce a lightweight module called Di-
mension Apart Module (DAM), which separately learns range, azimuth and time
information to save computations. Zheng et al. [Zheng 2021] replace the 3D con-
volutions of RODNet with (2+1)D convolutions [Tran 2018]. They use ensemble
learning to detect objects either in static or moving scenarios. Lately, Dalbah et al.
[Dalbah 2023] exploit the power of the Transformer architecture [Vaswani 2017b] to
solve the ROD2021 challenge. However, all these models process and predict data
by batch of N frames and require a buffer of N frames to store in memory. 3D
convolutions are used to learn spatio-temporal information, therefore the learned
temporal context is not reused by the network from one batch to another. More-
over, because frames are treated and predicted by batch the methods presented
above can be seen as non-causal because the convolutional kernel is applied on past
and future frames. In real-time scenarios, one only needs to predict the position of
objects for the last timestep, not for all the frames. In Chapter 4, we propose an
alternative by predicting only the object position for the last frame based on the

previous ones with recurrent neural networks to handle long-term dependencies.

Apart from the ROD2021 challenge, Dong et al. [Dong 2020] propose a proba-
bilistic and class-agnostic object detector. Based upon the CenterNet [Zhou 2019]
architecture, they model the uncertainty by predicting variances for bounding boxes
orientation, size and offset. They also experiment with different types of RA in-
puts: polar or cartesian coordinates, with or without MUSIC [Schmidt 1986] super-
resolution algorithm. Kaul et al. [Kaul 2020] present a weakly-supervised method
using camera and LiDAR supervision semantic segmentation using scanning radar
data. As in many works [Wang 2021b, Major 2019, Ouaknine 2021a], they use the
time information and store it in the channel dimension. Using the same type of

data, Li et al. use a Transformer-like module and computer vision backbones to
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Figure 2.21: RODNet models. The authors propose three encoder-decoder architec-
ture to predict the positions of objets in radar snippets. The M-Net model allows
to merge RA maps from multiple chirps. Source: [Wang 2021b]

learn temporal dependencies between objects’ features (size, position, shape) at
two successive frames; then predict the class and position of objects. Madani et
al. introduce a two-stream FPN-based car detection algorithm for cascaded MIMO
radar using low-resolution and high-resolution RA maps to solve the misdetection
problem due to high-speed vehicles in large cascaded MIMO arrays. In contrast,
Meyer et al. [Meyer 2021] investigate if the information on the cartesian distance
between data points in the radar signal can be used in graph neural networks to
improve the performance of object detection tasks. Their model only detects cars
but performs better than tensor-based approaches.

Object detection and segmentation on RD maps

The release of high-resolution radar datasets has marked the last year [Rebut 2022,
Madani 2022, Paek 2022]. The higher the resolution, the more data to process
and to store. As a result, it becomes unfeasible to use RA or RAD data for
object detection. The range-Doppler spectrum is one of the most efficient rep-
resentations available in radar. Indeed, it contains information about the dis-
tance and the velocity, and last but not least, it contains angle information
through the antenna’s dimensions. For efficiency reasons and before high-resolution
radars, some prior works on RD maps using low-resolution radar have been done
[Fatseas 2019, Dubey 2020, Guo 2022, Fatseas 2022]. In [Fatseas 2019], the authors
use YOLO [Redmon 2016] object detector and Kalman filtering to detect and track
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pedestrians and bicyclists in the range-Doppler domain. Dubey et al. [Dubey 2020]
propose to use generative adversarial networks (GAN) [Goodfellow 2014] to detect
the presence of targets in a scene. The generator is a U-Net [Ronneberger 2015]
model, taking as input a RD spectrum, and the discriminator is an autoencoder
which predicts whether the input is a detection mask or the ground truth mask. Us-
ing computer vision object detectors (YOLOX, D-DETR, SSD, RetinaNet, Faster
R-CNN), Guo et al. [Guo 2022] first detect objects in RD view using a single frame.
Then, they use Kalman filtering and Deep SORT algorithms to fix wrong detection
made by the detection model based on historical information. For low-resolution
radars, because of the lack of annotated datasets and the low resolution in angle, the

methods mentioned above were mainly used as alternatives to CFAR algorithms.

High-resolution radar object detection and segmentation

Thanks to high-resolution radars and large-scale annotated datasets [Rebut 2022,
Paek 2022], more and more researchers have started proposing new architec-
tures for radar object detection using ADC data or complex MIMO RD spectra
[Rebut 2022, Yang 2023, Giroux 2023]. All these works use ADC data or complex
MIMO RD spectra to predict the position of objects in cartesian coordinates, with
no need for complex DoA processing techniques. Rebut et al. try to replace conven-
tional signal processing with deep neural networks to cope with the computationally
demanding resource and memory footprint of high-resolution radar data. They pro-
pose a multi-task architecture composed of five blocks: a pre-encoder reorganising
and compressing RD tensor into meaningful and compact representation, a shared
FPN encoder learning semantic information, a range-angle decoder building a range-
azimuth latent representation from the feature pyramid, a detection head localising
vehicles in range-azimuth coordinates and a segmentation head predicting the free
driving space. Giroux et al. [Giroux 2023] replace the backbone of [Rebut 2022]
with a SwinTransformer backbone and use the ADC data instead of the complex
MIMO RD spectrum. Signal processing is replaced by complex-valued linear layers,
exploiting the prior knowledge of the Fourier transform, as in [Zhao 2023]. Sim-
ilarly, Yang et al. [Yang 2023] learn to transform ADC data to RD latent space
from the Fourier transformer algorithm. They build a dataset with ADC data and
complex MIMO spectra pairs and learn semi-supervised to build complex MIMO
spectra from ADC data. Then, they use the FFT-RADNet [Rebut 2022] model for
object detection and free-space driving segmentation.

We saw in this section that there needs to be a consensus in the community
about the type of data to use for automotive radar perception (RA, RD, RAD) and
the formulation of the problem to detect and identify objects (detection with bound-
ing boxes, segmentation, point-based detection). All of the methods, as mentioned
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earlier, have advantages and drawbacks. Regarding the type of data, because of the
size of high-resolution radar data, the use of complex MIMO RD spectra or ADC
data seems to be the most promising and realistic research direction. Some works
[Major 2019, Dong 2020, Rebut 2022] prefer to learn or to predict the position of
objects in cartesian coordinates directly and show a slight performance improve-
ment when using this representation. Other works [Wang 2021b, Ouaknine 2021a]
directly predict objects’ position in polar coordinates and map the prediction in
cartesian coordinates afterwards without losing accuracy.

2.5.3 Data augmentation for radar

In computer vision, one technique to artificially augment a dataset, avoid overfit-
ting and increase generalisation capability of a model is to use data augmentation.
Basic transforms are image manipulation, image erasing or image mix. Image ma-
nipulation methods are basic image transformations. They include random flipping
(horizontal, vertical), rotation, scaling or Gaussian noise addition. Image erasing
methods idea is to delete one or more sub-regions in the image, then replace the
pixel values of these sub-regions with constant or random values. The CutOut
[Xu 2022] is one of them. ImageMix data augmentation receive increasing interest
in the recent year. These methods are mainly completed by mixing two or more
images or images sub-regions into one. MixUp [Zhang 2018], CutMix [Yun 2019] or
AugMix [Hendrycks* 2020] are the main mixing data augmentation methods.

As mentioned in [Gao 2021], most of the existing data augmentation tech-
niques algorithms we mentioned above cannot be applied to the radar data. In-
deed, radar data differs from cameras images. Raw radar data has complex in-
put, energy loss with range (a same object differs from one range, velocity or
angle to another, see Equation 1.1), and non uniform resolution in the angu-
lar domain. In order to take into account these different factors, some works
tried to exploit radar specific information to increase diversity of radar data
[Gao 2021, Zheng 2021, Brodeski 2019, Sheeny 2020].

Similarly to camera images, we can horizontally and vertically flip radar spec-
trum without altering the data because radar has symmetric property in the Doppler
and in the angular domains. Most the methods we mentioned in the previous section
use flipping. Given the received power of an object varies with range and viewing
angle, Sheeny et al. propose three data augmentation methods for radar classifica-
tion: attenuation in range, change of resolution and background shift. Gao et al.
also translate targets in range and angle by shifting cells in the polar-coordinates.
A detailed view of the process is given in Figure 2.22.

Finally, Zheng et al. derive CutMix family algorithms for radar. Their Scene-
Mix algorithm mixes RA snippets from different scenes. SceneMix comprises three
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Figure 2.22: Translation in range and angle data augmentation. Source: [Gao 2021]

Figure 2.23: SceneMix augmentations. Source: [Zheng 2021]

mixing strategies: VideoMix [Yun 2020], VideoCropMix and NoiseMix. VideoMix
mixes two RA snippets with random proportion. VideoCropMix randomly crop on
a radar snippet and replace the cropped area with the corresponding area in an-
other video. NoiseMix extracts noise from one radar snippet and add it to another
snippet. Figure 2.23 shows an example of the SceneMix augmentation.
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3.1 DMotivation

This chapter is dedicated to multiple road-users detection on range-Doppler spectra.
Based upon the Faster R-CNN architecture [Ren 2017], we propose a new object
detection and classification model to resolve road-users targets in distance and ve-
locity. This chapter introduces a lightweight backbone for Faster R-CNN adapted
to RD data. We design our model to handle the complexity of the RD maps and the
small size of radar objects while trying to keep the processing pipeline as efficient
as possible.

Chapter 2 indicates that radar point clouds are sparse, and the filtering tech-
niques applied to the radar signal to obtain those reduce the information for tar-
get classification. Hence, the reflections list might hamper classification perfor-

mance. Radar data can also be represented as raw data tensors (RD, RA or
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RAD maps). Contrary to radar point clouds, such tensors benefit radar object
detection because they represent the unfiltered signal. Prior works to this con-
tribution show that deep learning models, and particularly CNNs, enable accu-
rate object classification [Akita 2019], segmentation [Ouaknine 2021a] or detection
[Meyer 2021, Wang 2021b, Zhang 2021] on raw data tensors. However, most of
these works exploit the RA or the RAD views. Instead, we propose to build a
model for object detection on RD maps in this chapter.

The use of RD maps instead of RAD tensors is motivated by the fact that RAD
tensors are more computationally demanding to produce for radar microcontroller
units (MCUs) and heavy in memory. Also, the RA view might not be an adequate
representation for object detection since it does not account for Doppler, which is
crucial information, as we will see in this chapter. Besides, the RA map usually
suffers from a poor angular resolution caused by a few antennas in the FMCW radar.
In this chapter, we hypothesise that the RD spectrum contains enough information
for detection and classification tasks in automotive radar. Angular information
can be computed for each target afterwards in a post-processing step, either using
standard techniques or with Al as done by Brodeski et al. in [Brodeski 2019].

In the computer vision literature, one can detect an object by drawing bound-
ing boxes around it (object detection) or attributing a class to every pixel in the
image (image segmentation). Today, there has yet to be a consensus in the radar
community about which task to use for radar object detection. Many automo-
tive radar datasets (CARRADA [Ouaknine 2021b], RADDet [Zhang 2021], CRUW
[Wang 2021c|) are annotated semi-automatically because radar data is difficult to
annotate. Usually, an object detection model (Mask R-CNN [He 2017]) first detects
objects on the camera. Then, the detection from the radar (the target list) and the
object detection model are merged together to keep objects of interest. Finally,
valid points are projected onto the radar view. Bounding boxes or segmentation
masks are then created from those points. However, this process can lead to miss
targets if the object detection models miss objects. Also, the points projected on
the radar might not truly represent the targets because of the filtering operation in
the radar signal processing chain.

This is why this work focuses on learning to represent targets as boxes instead of
segmenting the RD map. According to the radar equation 1.1, the power received
by the radar, thus the signature in the RD spectra, decreases proportionality to
the distance to the power of four. The same car at five meters will have a different
signature at 40 meters. While an image segmentation model learns regular shapes
and pixel values, an object detection approach might be more robust to shape and
intensities variation and less prone to overfitting. Indeed, the RD spectrum con-
tains mostly noise, creating imbalance in the dataset. In contrast, object detection

operates on a higher level by identifying and localising specific targets, allowing it
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to be less affected by noise present in individual range-Doppler bins.

Section 3.2 introduces our model. Section 3.3 presents the settings and results of
the experiment. In Section 3.4, we compare the results of our deep learning-based
model with traditional radar object detectors. Finally, Section 3.5 discusses and
concludes the chapter.

This chapter is mainly inspired by our article "DAROD: A Deep Au-
tomotive Radar Object Detect on Range-Doppler maps" published at
IEEE Intelligence Vehicle Symposium (IV) [Decourt 2022a] !.

3.2 Methodology

This section presents a lightweight Faster R-CNN architecture for object detection
on Range-Doppler spectra. Given an RD map as input, we use a convolutional
neural network to learn relevant features, as in Faster R-CNN. Following the feature
extraction, we use a region proposal network (RPN) to propose spectrum regions
containing potential targets. A small network is slid over the learned convolutional
feature map to generate region proposals. For each point in the feature maps, the
RPN learns whether an object is present in the input image at its corresponding
location and estimates its size. A set of anchors is placed on each location’s output
feature maps’ input image. These anchors indicate possible objects in various sizes
and aspect ratios at this location. We refer to Section 2.2.2 for more detailed
information about RPN and anchors. Next, the bounding box proposals from the

!The code of this work was made publicly available here: https://github.com/colindecourt/
darod/

Figure 3.1: Road users signature in range-Doppler view. We show two RD maps of
RADDet dataset, along with the bounding boxes around objects and their zoom.


https://github.com/colindecourt/darod/
https://github.com/colindecourt/darod/
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RPN are used to pool features from the backbone feature maps. This study uses a
pooling size of 4 x 4. These features are used to classify the proposals as background
or object and to predict a bounding box using two sibling fully connected layers.
This second part is named Fast-RCNN [Girshick 2015]. We depict this pipeline in
Figure 3.2b.

We show in Figure 3.1 two RD maps with radar signatures of some objects in
the captured scene of the RADDet dataset. Even though those RD maps seem
complex, their information remains of low complexity, contrary to camera images
which are bigger and more diverse in textures, orientations, geometry, and lighting.
Although noisier, RD maps have fixed orientation, and their objects exhibit more
similar patterns and shapes.

To account for those differences, we modify Faster R-CNN to include a lighter
backbone and a modified RPN. Our backbone is derived from the VGG architecture
[Simonyan 2015] and contains seven convolutional layers. Figure 3.2a depicts this
lightweight backbone architecture. To keep the processing pipeline as simple and
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Figure 3.2: DAROD overview. (a) DAROD backbone. We propose a simple feature
extractor derived from the VGG architecture which contains seven convolutional
layers. (b) Overview of the Faster R-CNN architecture. First we extract feature
from a RD map. Then, the RPN make proposals using DAROD’s feature maps.
For each proposal, we extract a Rol from the feature maps and we classify it as an
object or not.
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efficient as possible, we decide not to resize the spectrum and to process it as
it is, resulting in an input of size 256 x 64. Indeed, our goal is to study if an
object detection model performs better than conventional detection algorithms like
CFAR. Therefore, to add such an algorithm in the radar processing chain (see Figure
1.5), we prefer to adapt the backbone to the output of the signal analysis block.
The backbone comprises two blocks with two 2D convolutions and one with three
2D convolutions. Following each convolutional block, we apply a 2D max pooling
operation to down-sample the input size. Because the dimension is smaller than
camera images and to minimise the loss of Doppler information which is helpful for
classification, we down-sample the Doppler dimension only by a factor of two after
the first block. Then, we obtain a set of 32 x 32 feature maps, which led to the best
performance. The number of channels for each block of convolutions is respectively
set to 64, 128 and 256.

The next step is to define the anchors used by the RPN to capture the objects’
diversity of shape and size. In this work, we use three scales and three aspect
ratios to generate anchors, yielding nine anchors at each position in the feature
map. The mean size of objects in RD maps is 8 x 8. We use this size as a reference
for the anchor’s scale. We use scales of 4 and 16 for smaller and bigger objects,
resulting in anchors scales of sizes [4,8,16]. Additionally, we set aspect ratios to
[%, %, %] Contrary to Faster R-CNN where aspect ratios are set to [1,2, %], we
choose aspect ratios where denominators are multiples of 4 to account for the i
ratio between input height and width. To reduce the computational complexity of
the model, we do not consider all the combinations of scales and ratios. We only
consider combinations containing scale eight and ratio % resulting in fewer anchors
generated per image (5 at each position). We find these settings provide the best
performances.

Since the RD spectrum is not translation invariant (the velocity is a character-
istic of the target), we decide to add this information to the feature vector used
for classification and bounding box regression. This feature vector corresponds to
the flattened region proposed by the RPN. We compute the velocity by extracting
the top-k (k is set to 3) pixel positions with the highest intensities in the proposed
Rol. Knowing the velocity resolution of the radar , and the position of the "
highest pixel in the Rol p;, we compute the i*" velocity using the following formula:
v; = 0y - p;. We notice a slight improvement in the performances using the Doppler
values as extra features.

We optimise the model using the loss functions described in [Ren 2017]. For
training RPN, a binary class label is assigned to each anchor. To take into account
the uncertainty of the annotations, we assign a positive label to anchors having a
high ToU overlap with a ground-truth (GT) box or having an IoU overlap higher
than 0.5 (instead of 0.7 in the original paper [Ren 2017]). We assign a negative
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label to an anchor if it has an IoU overlap lower than 0.3 for all GT boxes. Anchors
that are neither positive nor negative do not contribute to the training objective.
According to [Ren 2017], we minimise the following multi-task loss to train the

RPN:
1 1

Les(pis py Lreg(tis tF), 3.1
chsz 1s(p p)+NregZp o(tis t7) (3.1)

7 7
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where 7 is the index of an anchor in a mini-batch, and p; is the predicted probability
of anchor ¢ being an object. pj is set to 1 if the anchor is positive and 0 if the anchor
is negative. t; is a vector representing the coordinates transformation between the
predicted box and an anchor. ¢ represents the coordinates transformation between
an anchor and the GT box. The classification loss L. is a binary cross-entropy.
The regression loss L,4 is the Huber loss defined in [Huber 1964]. N is the mini-
batch size, representing the number of proposals (positive and negative) to use for
training the RPN. Here we set N to 32 as there are few objects in our RD data.
Nyeq is the number of positive anchor locations.

For training the second part of the network (the detection head Lge;), we use a
similar multi-task loss as for the RPN. We train the regression head using the same
loss function as the RPN and replace the binary cross entropy with multi-class cross

entropy. As a result, we optimise the following loss function:

L= Lopn + Laet (3.2)

3.3 Experiments and results

3.3.1 Datasets and competing methods

We train our model on the two publicly available radar datasets CARRADA
[Ouaknine 2021b] and RADDet [Zhang 2021]. For the CARRADA dataset, we use
the segmentation masks as a reference to create our bounding boxes by drawing
a box around masks. For each instance, we take the minimum and the maximum
(z,y) coordinates of the segmentation masks to create the bounding boxes. Regard-
ing the RADDet dataset, we extract the RD maps by summing the values of the
RAD tensors over the angle dimension. We use the same bounding boxes provided
by the authors of the RADDet dataset by only taking coordinates along the range
and the Doppler dimension. We use the default train/val/test distribution of the
CARRADA dataset. For RADDet, we randomly split the train into training and
validation sets with a 9:1 ratio. For testing, we use the provided test set.

We compare our model DAROD, made of the lightweight backbone and the
simplified Faster R-CNN architecture displayed in Figure 3.2, with the RADDet
model [Zhang 2021]. At the time of this study, it was the only published object de-
tector designed for radar data. We modify the RADDet model to train it only with
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Model ToU 0.3 IoU 0.5 4# params (M) Runtime
mAP Precision Recall mAP Precision  Recall (ms)
DAROD (ours) 68.26 + 0.08 79.84 48.37  58.20 + 0.03 74.31 44.19 3.4 25.31
Faster R-CNN (pretrained) 71.08 + 0.12 51.70 72.97 64.56 = 0.09 47.86 67.21 41.3 37.19
Faster R-CNN 64.21 + 0.07 45.90 74.17  52.93 £ 0.06 41.59 67.40 41.3 37.19
RADDet RD 48.59 + 0.05 61.31 42.56  18.57 + 0.08 36.73 25.50 7.8 74.03

Table 3.1: Results of different models on CARRADA dataset.

RD maps as input instead of RAD tensors. We also consider the variant RADDet
RAD, corresponding to the original RADDet model (train on RAD tensors) evalu-
ated only on the range and the Doppler dimensions, using the pre-trained weights
provided in [Zhang 2021]. As a second baseline, we consider the state of the art
in computer vision by selecting the Torchvision? Faster R-CNN implementation us-
ing the default hyper-parameters, namely a resizing of the input from 256 x 64 to
800 x 800 and a ResNet50+FPN backbone pre-trained on ImageNet. In addition,
we train the Torchvision Faster R-CNN without the pre-training on ImageNet to
evaluate the impact of this pre-training on the results.

3.3.2 Training setting and evaluation metrics

We use the Adam optimiser with the recommended parameters and a learning rate
of 1 x 1074 for all our experiments. We set the batch size to 32 for both datasets.
Our model has trained over 100 and 150 epochs for CARRADA and RADDet
datasets. As the Faster R-CNN object detector contains several hyper-parameters,
we perform a grid search over some carefully chosen parameters to improve the
performance of our model. We randomly use horizontal and vertical flipping as
data augmentation strategies.

We evaluate our model using the mean average precision (mAP), a well-known
metric for evaluating object detectors. We consider mAP at IoU thresholds 0.3
and 0.5 to consider the uncertainty of the annotations, which are generated semi-
automatically for both datasets as discussed in Section 3.1. In addition, we provide
precision and recall at IoU thresholds 0.3 and 0.5. All the experiments are conducted
using the Tensorflow® deep learning framework and an Nvidia RTX 2080Ti GPU.

3.3.3 Results

Tables 3.1 and 3.2 show the performance of our model on CARRADA and RADDet
datasets*. Our DAROD model outperforms the RADDet method on both datasets
while it remains competitive with Faster R-CNN. When pre-trained on ImageNet,

“https://github.com/pytorch/vision
Shttps://wuw.tensorflow.org/
4We train all the models ten times, and we show the mean results for each in Table 3.1 and 3.2
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Model IoU 0.3 IoU 0.5 4 params (M) Runtime
mAP Precision Recall mAP Precision Recall (ms)
DAROD (ours) 65.56 = 0.83  82.31 47.78 46.57 +£ 0.7 68.23 38.74 3.4 25.31
Faster R-CNN (pretrained) 58.47 £ 0.67 52.17 56.92  49.55 + 0.72 47.78 51.77 41.3 37.19
Faster R-CNN 49.16 £+ 0.56 32.33 61.46  40.84 + 0.61 29.37 55.29 41.3 37.19
RADDet RD 38.42 + 1.12 78.20 29.77  22.87 £ 1.45 60.41 20.55 7.8 74.03
RADDet RAD [Zhang 2021] 38.32 68.80 26.83 17.13 46.55 16.99 8 75.2

Table 3.2: Results of different models on RADDet dataset. We do not report mean
and standard deviation for RADDet RAD as we report the results from the paper.

Faster R-CNN leads to the best mAP in 3 cases, with DAROD being second best,
the positions being inverted in the last experiment (RADDet dataset and IoU at
0.3).

Generally, we observe that DAROD achieves good precision scores but medium
recall. This suggests that our model accurately classifies targets when there are
detected but misses some objects present in the scene. The confusion matrices in
Figure 3.3a confirms this interpretation. For each class, we notice that 20% of
the time, targets are detected while there are no objects in the image (last line of
the confusion matrix). The confusion matrix’s last column also shows that DAROD
tends to miss objects in the scene, which can be problematic for critical applications.
We explain this behaviour because we aimed to optimise mAP, which measures the
global performance of object detectors. We might be able to improve the recall
by reducing the selectivity of our model during training and in the post-processing
step or by decreasing the penalty of classification errors. Finally, because of their
similarities (velocity, RCS), we notice confusion between pedestrians and bicyclists.
Mainly, pedestrians are classified as bicyclists. On the contrary, cars are either
correctly classified or missed. Examples in Appendix A show some failure cases of
DAROD (missed targets and confusion between similar classes).

We draw the same conclusion for the RADDet model, which obtains decent
precision scores but low recall, impacting mAP@0.3 and mAP@Q.5. The confusion
matrix in Figure 3.3b shows many pedestrians and bicyclists false positives and
mostly missed cars and pedestrians. Under-represented classes (bicyclists, motor-
cycles, buses) are rarely missed. As for the CARRADA dataset, we notice confusion
between similar classes (bus and truck here), which raises the question about the
necessity of labelling such classes.

The original version of the Faster R-CNN model achieves sufficient precision
scores and good recall, resulting in more false positives but fewer missed targets,
which may be better for critical applications. In this implementation, because the
input spectrum is upsampled targets are bigger, therefore they match more anchors
than in our implementation. The number of positive labels to train the RPN and
the Fast R-CNN part is also higher. This is why the recall of Faster R-CNN is better
than ours. However, upsampling the input might change the radar signature which
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(a) DAROD confusion matrix (CAR- (b) DAROD confusion matrix (RADDet
RADA dataset). dataset).

Figure 3.3: DAROD confusion matrices on CARRADA and RADDet datasets.
DAROD tends to miss objects in the scene, and struggle to classify similar classes
correctly, which can be problematic for critical applications

can affect the classification results. Also, because of its size Faster R-CNN is more
subject to overfitting than DAROD. Finally, the pretraining of the Faster R-CNN
backbone on the ImageNet dataset helps to improve the detection performance. It
drastically improves the precision score but does not impact the recall score. This
is interesting because the features in ImageNet are highly different from radar data.
This suggests the network uses the shapes and the patterns learned on ImageNet to
find objects in the spectrum. We discuss further pretraining strategies in Section
3.5.

A critical point in automotive radar is the computational load of the different
models. We compute the FLOPS (floating point operations per second) of the
different models and represent it as a function of the performance in Figure 3.4.
Not surprisingly, radar based approaches are far more efficient than Faster R-CNN
that uses up-sampling and deeper backbones. RADDet model is the model with
the lowest number of FLOPS as it is inspired from the single stage detector YOLO
[Redmon 2016]. The number of FLOPS required by DAROD is slightly bigger than
RADDet, but stays reasonable to run on microcontrollers.

3.3.4 Ablations studies
Impact of additional features

We add the velocity of each detected target to the feature vector used for the
classification. We try to add this information in different ways:
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Figure 3.4: Number of FLOPS vs. mAP@(.5 for DAROD, Faster R-CNN (pre-
trained or trained from scratch), RADDet and RADDet RAD.

1. We extract the range and the velocity values from the centre of the Rol.

2. We extract the top-k maximum intensities from the Rol and extract the top-k
range and velocity values from it, with £ = 3.

3. We compute a range and velocity grids, then use these grids as additional