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Introduction

This thesis is concerned with geometric and probabilistic phenomena arising in high-
dimensional spaces. Typically, the study of high-dimensional objects become exponentially
difficult as the dimension grows. For instance, in combinatorics, there are 2n different bi-
nary labelings of a set with n elements. In another direction, if one wants to discretize the
continuous hypercube [0; 1]n with a precision ϵ > 0, it requires

(
1
ϵ

)n points. This is known
as the "curse of dimensionnality" [15]

However, under additional assumptions, the curse can sometimes turn into a bless-
ing [32]. A typical example is the well known Central Limit Theorem in probability.
If X1 . . . Xn is a sequence of independent and identically distributed random variables,
then their average 1

n

∑n
i=1Xi converges to a normal distribution. From a geometric point

of view, if we take X1 to be uniform on the interval, then Central Limit Theorem is a
statement about the behavior of the diagonal marginal of the distribution of mass of the
continuous hypercube.

It turns out that the statistical context of iid random variables can be relaxed to a more
geometric criterion of convexity. To be precise, if K is a convex body of the Euclidean
space Rn, and if µ is the uniform distribution on K, then for sufficiently large n, most
of the marginals of µ are essentially normal. This is the content of the Central Limit
Theorem for Convex bodies. The question has a long history, going back to Sudakov [80]
and Diaconis and Freedman [31]. In [4] (see also [25]) it was reduced to estimating the
variance of the Euclidean norm. To be a little bit more precise, we say that a probability
µ is isotropic if it is centered, and satisfies∫

(x · θ)2dµ = 1 for all θ ∈ Sn−1

Any non-degenerate probability can be made isotropic after a suitable affine transforma-
tion, so that this hypothesis is only a normalization. Anttila, Ball and Perissinaki [4]
showed that the Central Limit Theorem reduced to the estimation of the so called thin-
shell parameter :

σ2n = sup
µ
σ2µ = sup

µ
Var|X|2 (0.0.1)

7



8 INTRODUCTION

where X is distributed according to µ, and the supremum runs over all isotropic uniform
probabilities on a convex body of Rn. Since µ is isotropic, E|X|22 = n, so that a trivial
bound is σn = O(

√
n). The first non-trivial bound was obtained by Klartag in [54]. The

result actually holds not only in the class of uniform probabilities over convex bodies, but
in the more general setting of log-concave probabilities, that is probabilities having convex
support, and density of the form e−V with V convex. It is not difficult to see that for an
isotropic log-concave probability µ,

σ2µ ≃ 1

n
Varµ|X|22.

Thus, in the case where µ the standard Gaussian, or the uniform distribution on the
hypercube, which are two instances of log-concave probabilities, by independence σµ ≃ 1.
The questions whether this holds for any isotropic log-concave probability is the content
of the Variance, or thin-shell Conjecture.

Conjecture 0.1. There exists a universal constant C > 0 such that

σn ≤ C.

An even stronger conjecture is the KLS Conjecture, formulated by Kannan Lovász and
Simonovits [50]. We say that a probability µ satisfies a Poincaré inequality with constant
K > 0 if for any locally Lipschitz function f : Rn 7→ R, one has,

Varµ(f) ≤ K2

∫
Rn

|∇f |2dµ, (0.0.2)

We denote by cP (µ) the best constant such that (0.0.2) holds. Define

Ψ2
n = sup

µ
c2P (µ).

Notice that by plugging f = |.|22 in (0.0.2), one gets σµ ≲ cP (µ), thus the following is a
strengthening of Conjecture 0.1.

Conjecture 0.2. There exists a universal constant C > 0 such that

Ψn ≤ C.

Plugging linear forms in (0.0.2) shows that Ψn ≥ 1. For the standard Gaussian, it is
well known that cP (γ) = 1. In other words, the extremizers of the functional inequality
(0.0.2) are simple one dimensional objects. The KLS conjecture asks whether this behavior
generalizes, up to constant, to all log-concave probabilities. This is one instance of the
(conjectural) simplicity of high-dimensional objects under a convexity assumption. The
conjecture has a wide range of consequences both in computer science and convex geometry,
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see [66] for a survey. One striking application is that it implies the famous slicing or
hyperplane conjecture in convex geometry :

Conjecture 0.3. There exists C1 > 0 such that for any n, and any convex body K of Rn

of volume 1, there exists a hyperplane H such that

Vol(K ∩H) ≥ C1.

Equivalently, there exists a constant C2 such that for any isotropic log concave probability
µ of Rn with density f ,

f(0)1/n ≤ C2

We define, for n ≥ 1,
Ln = sup

f
f(0)1/n (0.0.3)

where the supremum runs over all densities f such that dµ = f(x)dx is isotropic and log-
concave. The first connection between Ψn and Ln was announced by Ball, and proved in
[11] where the authors show that Ln ≲ ecΨn for an absolute constant c > 0. The inequality
was later improved drastically to Ln ≲ Ψn by Eldan and Klartag [36]. For a long time,
the best estimate for the KLS constant was Ψn ≲

√
n, dating back to the original work of

Kannan Lovász and Simonovits [50]. In 2013, Eldan introduced a new idea to tackle the
conjecture, namely the stochastic localization process, which will be at the center of this
manuscript. It allowed him to relate the KLS constant to the a priori weaker thin-shell
constant, namely

Ψn ≲ log(n)σn,

obtaining the then best-bound Ψn ≲ n1/3 log(n) by using the Guédon-Milman estimate for
σn [47]. Later, Lee and Vampala obtained the bound Ψn ≤ n1/4 using a slightly simplified
version of the process. A breakthrough was obtained by Chen, proving a subpolynomial
estimate for Ψn [28], before a polylog estimate by Klartag and Lehec [62], and very recently
the bound Ψn ≲

√
log n by Klartag [56].

Besides the Poincaré inequality (0.0.2), another functional inequality which shall be of
interest to us is the logarithmic-Sobolev inequality. A Borel probability µ on Rn is said
to satisfy a logarithmic Sobolev inequality with constant ρ > 0 if for any locally Lipschitz
function f : Rn 7→ R, one has,

Entµ(f
2) ≤ 2ρ2

∫
Rn

|∇f |2dµ, (0.0.4)

where for a non-negative function g, Entµ(g) = Eµ(g log g)−Eµ(g) logEµ(g). We denote by
ρLS(µ) the optimal constant ρ such that (0.0.4) holds. The log-Sobolev inequaltiy (0.0.4) is
actually stronger than the Poincaré inequality (0.0.2). This should make sense intuitively,
since the Poincaré inequality controls the L2 norm of centered function by the L2 norm of
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its gradient, while the log-Sobolev controls the stronger L2 log(L2) norm by the very same
energy term. Concretely, by looking at small perturbations of inequality (0.0.4), one easily
concludes that

cP (µ) ≤ ρLS(µ).

Much like the Poincaré inequality, the log-Sobolev inequality has strong consequences
on the behavior of the measure µ, in particular it implies stronger concentration and
isometric properties. Yet again, the standard Gaussian satisfies a log-Sobolev inequality
with constant ρLS(γ) = 1, and the extremizers are one dimensional. The classical Herbst’s
argument shows that the log-Sobolev inequality implies that the tails of the µ decay faster
than a Gaussian, thus the exponential distribution, for instance, does not satisfy inequality
(0.0.4). In the spirit of the KLS conjecture, it is tempting to ask whether in the log-concave
setting, the obstruction to satisfying inequality (0.0.4) only comes from the behavior of
linear forms.

Conjecture 0.4. There exists a constant C > 0 such that for any n ∈ N and any centered
log-concave probability µ on Rn,

ρLS(µ) ≤ C sup
θ∈Sn−1

| < ., θ > |Ψ2(µ)

where for a function g : Rn 7→ R, |g|Ψ2(µ) = inf
{
t > 0 / Eµ

[
exp(g2/t2) ≤ 2

]}
.

We introduce the quantity
Gn = sup

µ
ρLS(µ) (0.0.5)

where the supremum runs over all centered log-concave probabilities µ on Rn such that

sup
θ∈Sn−1

| < ., θ > |Ψ2(µ) ≤ 1.

By scaling, Conjecture 0.4 is equivalent to the boundedness of Gn. Little is known about
Conjecture 0.4. Bobkov showed [19] that Gn ≲

√
n.

In Chapter 1 we revisit the article of Ball and Nguyen [11], about the so called entropy
jump for log-concave vector. For a random vector X in Rd, assuming integrability, we
define

Ent(X) = E(− log(X)).

It is well known that when the covariance is fixed, the Gaussian vector with said covariance
maximizes the entropy. For normalization, suppose that the covariance of X is Id, we know
that the sequence

Sn =
1√
n
(X1 + · · ·+Xn)

where the Xi are iid copies of X, converge to a standard Gaussian. Thus a natural
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question is whether the entropy is monotone along this sequence, that is, whether Ent(Sn) is
increasing. This was an important conjecture that has been solved by Arstein-Avidan, Ball,
Barthe and Naor in 2004 [5]. The case n = 2 is known as the Shannon-Stam inequality:

Ent

(
X1 +X2√

2

)
≥ Ent(X).

When X is log-concave and has covariance Id, Ball and Nguyen lower-bounded its entropy
jump by

Ent

(
X1 +X2√

2

)
≥

c2P (X)

4(1 + c2P (X))
(Ent(G)− Ent(X))

where G is a standard Gaussian. Using the same approach, we extend this result to the
case where X1 and X2 are not identically distributed, and prove a similar result for the
Fisher information.

Chapter 2 is an introduction to the stochastic localization process, which we use in
Chapter 3,4 and 5. We start by a brief exposition of the classical localization in convex
geometry which is at the root of stochastic localization. We then proceed to defining
the process, analyzing its elementary properties and review its use in the context of the
KLS conjecture with the numerous breakthroughs that took place since the original article
of Eldan. Finally, the last two subsections are devoted to folklore knowledge about the
process, that is, the logaritmic obstruction, which was pointed out by Klartag, and how
the process can be used to obtain a "random localization".

Chapter 3 is devoted to the study of log-concave probabilities that are strongly log-
concave on a subspace. Write dµ = e−V (x) dx. It is well-known that if the potential V is
strongly convex, namely

∇2V ≥ ρId,

then
cP (µ) ≤

1

ρ
.

We investigate the case where the strong convexity assumption is only available on a
subspace, that is

PE∇2V PE ≥ ρ

where PE is the orthogonal projection onto a given subspace E of dimension n− k. Using
the stochastic localization process, we provide an estimate for the Poincaré constant of µ
as well as for its concentration function.

In Chapter 4 we investigate Conjecture 0.4. We leverage our estimate on the concentra-
tion function proved in Chapter 3 in the case E = 0, which combined with a net argument
allow us to improve on Bobkov’s estimate. We show that

Gn ≲ n1/4.
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We also study a subclass of subgaussian log-concave probabilities which satisfy

Cov

(
1

Zh
eh·xµ

)
≤ β2In for all h ∈ Rn.

Equivalently, we require that the Hessian of the log-Laplace transform Lµ of µ is uniformly
bounded, which is stronger than requiring a quadratic bound on Lµ. From there we provide
an upper-bound for the quantity

sup
h∈Rn,t≥0

|Cov
(

1

Zt,h
e−t|x|

2+h·x
)
|op,

which can be shown to control the log-Sobolev constant of µ, by stochastic localization.

Chapter 5 we provide some additionnal remarks about tilt-stable measures and draw
a connection between the stochastic localization process and the multiscale Bakry-Emery
criterion of Bodineau and Bauerschmidt [14].

Finally, Chapter 6 is independent of the previous and makes no reference to the stochas-
tic localization process. We still study an high-dimensionnal object, in this case a large
random linear system :

1

αn
√
n
AnXn + 1n = Xn, (0.0.6)

where An is a random matrix of size n × n with independent Gaussian entries, 1n is the
vector with 1 entries and αn is a positive sequence. Such equations arise for instance from
the study of foodwebs, where Xn represents the population of the species involved and

1
αn

√
n
An models their interaction. We are interested in the feasibility of the system, that

is the quantity
pn = P(Xn ≥ 0).

We show that pn exhibits a cut-off phenomena. That is, there is a sharp transition from 0

to 1 at an explicit critical scaling α∗
n. We also discuss extensions to the non-Gaussian case.

0.1 Notations and mathematical preliminaries

For two positive functions f, g : X 7→ R+, depending on parameters x ∈ X we write f ≲ g

if there exists a constant C > 0 such that f ≤ Cg. We write f ≃ g if f ≲ g and g ≃ f .
Depending on the context, f and g might be functionals over log-concave probabilities, or
positive sequences for instance. Unless specified otherwise, |.| denotes the Euclidean norm,
while |.|op denotes the operator norm. That is, for a matrix A ∈Mn(R),

|A|op = sup
θ∈Sn−1

|Aθ|.
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For a random variable taking values in a space E, X : Ω 7→ E and a probability µ on E,
we write X ∼ µ if µ is the law of X.

Throughout the manuscript, with the notable exception of Chapter 1, we say that a
probability µ satisfies a Poincaré inequality with constant K > 0 if for any locally Lipschitz
function f : Rn 7→ R, one has,

Varµ(f) ≤ K2

∫
Rn

|∇f |2dµ, (0.1.1)

We denote by cP (µ) the best constant such that (0.1.1) holds. If X ∼ µ we again write
cP (X) = cP (µ). Notice that with this convention the Poincaré constant is 1-homogeneous:

∀λ ∈ R cP (λX) = |λ|cP (X).

In Chapter 1 however, we exceptionally write

cX = c2P (X),

where cX is again referred to as the Poincaré constant of X and is 2-homogeneous.
Similarly, throughout the manuscript, a Borel probability µ on Rn is said to satisfy a

logarithmic Sobolev inequality with constant ρ > 0 if for any locally Lipschitz function
f : Rn 7→ R, one has,

Entµ(f
2) ≤ 2ρ2

∫
Rn

|∇f |2dµ, (0.1.2)

where for a non-negative function g, Entµ(g) = Eµ(g log g) − Eµ(g) logEµ(g). We denote
by ρLS(µ) the optimal constant ρ such that (0.1.2) holds.

0.1.1 Log-concavity

Here we recall a sparse number of well-known facts about log-concave probabilities that
we will use frequently in the manuscript. A good reference is [2] and references therein.

We say that a Borel probability µ is log-concave, if for all compact sets A and B and
λ ∈ [0, 1],

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ.

Equivalently, µ = e−V (x)dx where V : Rn 7→ R ∪ {∞} is convex. We say that a random
variable X is log concave if its law is.

The celebrated Prékopa-Leindler inequality ensures that marginalization preserves log-
concavity

Lemma 0.5. Every marginal of a log-concave measure is log-concave.

Consequently, since the product of two log-concave measures is again log-concave, con-
volutions also preserve log-concavity.
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Lemma 0.6. If X and Y are log-concave, so is X + Y .

A fundamental property of log-concave probabilities is that we can compare their mo-
ments. This is known as Borell’s Lemma:

Lemma 0.7. Let X be a log-concave real random variable. There exists a constant C,
independent of X, such that for all p ≥ 1,

E(|X|p)1/p ≤ CE|X|

Poincaré and Cheeger constant of log-concave measures

We say that a probability µ on Rn satisfies a Cheeger inequality with constant h if

µ+(A) ≥ 1

h
min(µ(A), 1− µ(A)) (0.1.3)

for all measurable set A, where µ+(A) = lim inf
ϵ

0−→
µ(Aϵ)−µ(A)

ϵ and Aϵ = {x ∈ Rn, d(x,A) ≤
ϵ} is the euclidean ϵ-extension of A. We denote by hµ the best such constant.

In general, Cheeger[27] and Maz’ya[71] proved that a Cheeger inequality implies a
Poincaré inequality.

Lemma 0.8. Let µ be a probability on Rn, then

cP (µ) ≲ hµ.

Buser[26] and Ledoux[65] showed that this hierarchy could be reversed when µ is log-
concave.

Lemma 0.9. Let µ be a log-concave probability, then

cP (µ) ≃ hµ

Finally, we conclude this introduction with a result of Emmanuel Milman [72], which
shows that it is enough to consider set of half measure in 0.1.3.

Theorem 0.10. Let µ be a log-concave probability, then

1

hµ
= inf

A,µ(A)=1/2

µ+(A)

min(µ(A), 1− µ(A))



Chapter 1

Entropy and Information jump for
log-concave vectors

This chapter is a reproduction of

Pierre Bizeul. Entropy and information jump for log-concave vectors. Comptes Rendus.
Mathématique, 361(G2):487–493, 2023

1.1 Introduction

Let X be a random vector distributed according to a measure µ in Rd, with density
f with respect to the Lebesgue measure. We will denote this by X ∼ µ = fdλ. If∫
f | log f | < +∞, we define its entropy by

EntL(µ) = EntL(X) = −
∫
Rd

f log f,

where the subscript L stands for "Lebesgue".

It should be noted that this entropy can be either positive or negative, and that for
any invertible matrix A, EntL(AX) = EntL(X) + log(|detA|). Entropy is also translation
invariant, and it is classical that, when the covariance matrix is fixed, the Gaussian distri-
bution maximizes entropy. It will be useful to normalize vectors so that they are centered,
and have covariance matrix identity. Such a vector, as well as its distribution, is called
isotropic.

The classical Shannon-Stam inequality asserts that taking a convolution increases en-
tropy: for two iid random vectors X1 and X2

EntL(X1) ≤ EntL(
X1 +X2√

2
).

Moreover, there is equality if and only if X has a Gaussian distribution. Now, one can

15
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wonder if that equality case is stable, meaning if the entropy jump EntL(
X1+X2√

2
)−EntL(X)

is small, does it imply that X is almost Gaussian ? The general answer is no, as one can
convince himself by considering a well chosen double-bump Gaussian [30].

However, when the distribution of X admits a spectral gap, excluding double-bumped
type distributions, some positive answers exist. Recall that X is said to have a spectral
gap, or equivalently satisfy a Poincaré inequality, if there exists a constant c > 0 such that
for any smooth enough function f , the variance of f(X) can be controlled in terms of the
euclidean norm of ∇f(x) as follows:

varf(X) ≤ cE
[
|∇f(X)|2

]
.

The smallest such constant c will be denoted cX and called the Poincaré constant of X.
Under a spectral gap assumption, it was proven by Ball, Barthe and Naor in [10] that for
a one dimensional isotropic random variable X,

EntL

(
X1 +X2√

2

)
− EntL(X1) ≥

1

2(1 + cX)
(EntL(G)− EntL(X1)),

where G is a standard Gaussian.

We can rewrite the right-hand side as a Kullback-Leibler divergence. Recall that, if X
is isotropic,

EntL(G)− EntL(X) = D(X||G) =
∫
Rd

fγ log(fγ)dγ ≥ 0,

where fγ is the relative density of X with respect to the Gaussian measure γ, that is
X ∼ fγdγ and G ∼ γ. In the sequel we shall use the notation D(X) = D(X||G). This is
a strong measure of closeness to the Gaussian; for instance the Pinsker-Csiszar-Kullback
inequality states that (∫

Rd

|f − g|
)2

≤ 1

2
D(X||G),

where f and g are the density of X and G, respectively. In 2012, Ball and Nguyen
generalized the result to arbitrary dimension, assuming log-concavity of X ([11]). They
use a semigroup approach, differentiating twice the entropy along the Ornstein-Uhlenbeck
semigroup.

The Fisher information of a random vector with smooth density f is

IL(X) =

∫
|∇f |2

f
= 4

∫
|∇
(√

f
)
|2,

whenever those integrals are well defined. As for the entropy, for a fixed covariance matrix,
the Gaussian is extremal; in this case, it has the smallest information. Information is classi-
cally the derivative of the entropy along the semi-group. In the spirit of the Shannon-Stam
Inequality, the Blachman-Stamn inequality asserts that taking a convolution decreases the
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information:

IL(X1) ≥ IL

(
X1 +X2√

2

)
.

As before, we can define a relative information, notably to the Gaussian measure dγ. If
X ∼ fγdγ is a random vector with smooth density, we will denote its relative information
to dγ by

I(X||G) = Iγ(X) =

∫ |∇fγ |2

fγ
dγ.

When X is isotropic, integrating by parts yields:

I(X||G) = IL(X)− d = IL(X)− IL(G).

Consequently, for a measure µ on Rd, we write D(µ||γ) = D(X||G), IL(µ) = IL(X)

and I(µ||γ) = I(X||G) where X ∼ µ is a random vector distributed according to µ
In this note, we use the same strategy as in [11], but improve their result in two

directions. First we generalize it to non identically distributed pairs of random vectors.
For two measures µ and ν define

δE,λ(µ, ν) = EntL(Xλ)− (1− λ)EntL(X0)− λEntL(X1),

where X0 and X1 are independent random vectors distributed according to µ and ν re-
spectively, and Xλ =

√
1− λX0 +

√
λX1. The Shannon-Stam inequality asserts that

δλ(µ, ν) ≥ 0 and this quantity is precisely the deficit in the Shannon-Stam inequality.

Theorem 1.1 (Quantitative Shannon-Stam). Let µ, ν be two log-concave isotropic mea-
sures with Poincaré constant respectively c0 and c1, and λ ∈ [0, 1]. Then,

δE,λ(µ, ν) ≥
λ(1− λ)

4max(c0, c1)
(D(µ||γ) +D(ν||γ)) .

This should be compared with a recent result of Eldan and Mikulincer ([38], Theorem
3). They get a more general result, allowing µ and ν to have different covariance matrices,
but in the case where µ and ν have the same covariance matrix, they get a worst dependence
on the Poincaré constant.

Secondly, we get a same kind of inequality for the information, yielding a stability
result for the Blachman-Stam inequality. Define this time the information deficit of a pair
of measures by

δI,λ(µ, ν) = (1− λ)IL(X0) + λIL(X1)− IL(Xλ)

where X0 and X1 are independent random vectors distributed according to µ and ν re-
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spectively, and Xλ =
√
1− λX0 +

√
λX1

Theorem 1.2 (Quantitative Blachman-Stam). Let µ, ν be two log-concave isotropic mea-
sures with Poincaré constant respectively c0 and c1, and λ ∈ [0, 1]. Then,

δI,λ(µ, ν) ≥
λ(1− λ)

4max(c0, c1)
(I(µ||dγ) + I(ν||dγ)) .

In the sequel, quantities computed with respect to the Lebesgue measure have a sub-
script “L” while quantities that are computed with respect to the Gaussian measure have
none.

1.2 A lemma of Ball-Nguyen

Let X be a random vector with smooth density f = e−Ψ with respect to the Lebesgue
measure. We define σL(X) to be the random matrix σL(X) := ∇2(Ψ)(X) and, we denote

KL(X) = E
[
∥σL(X)∥2

]
,

where ∥.∥ denotes the Hilbert-Schmidt norm on matrices and the subscripts L yet again
stands for "Lebesgue", which we take temporarily as the reference measure. Understanding
this quantitiy will prove to be important later on, as it will appear in the second derivative
of the entropy along the Ornstein-Uhlenbeck semigroup.

We recall a lemma of Ball-Nguyen [11], for which we provide a simple proof.

Lemma 1.3. (Ball-Nguyen) Let X be a random vector in Rd with smooth density, E ⊂ Rd

be any subspace, pE be the orthogonal projection onto E and XE = pE(X). Then

σL(XE) ≤ pEE [σL(X)|XE ] p
∗
E , a.s,

for the partial order on symmetric matrices.

Proof. Let ΨE : E −→ R be such that XE ∼ e−ΨE(x)dx. We have for x ∈ E

ΨE(x) = − ln

∫
E⊥

e−Ψ(x,y)dy.

Then, setting dνx = e−Ψ(x,y)∫
E⊥ e−Ψ(x,y)dy

dy, a straightforward computation shows that:

∀x ∈ E, ∇2ΨE(x) =

∫
E⊥

∇2
xxΨdνx − Covdνx(∇xΨ).

In particular,

∀x ∈ E, ∇2ΨE(x) ≤
∫
E⊥

∇2
xxΨdνx,

which is the desired result
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If X0 and X1 are two independent random vectors in Rd and λ ∈ [0, 1], applying the
previous lemma to the random vector (X0, X1) and the projection p(x, y) =

√
1− λx+

√
λy

yields:

Lemma 1.4. For any independent random vectors X0, X1 in Rd, with smooth densities,
and any λ ∈ [0, 1]

σL(Xλ) ≤ E [(1− λ)σL(X0) + λσL(X1)|Xλ] a.s,

where Xλ =
√
1− λX0 +

√
λX1.

If X0 and X1 are log-concave and independent, then so is Xλ, by Prékopa’s theorem.
Thus σL(X0), σL(X1) and σ(Xλ) are positive matrices, so as in Ball-Nguyen’s article, the
inequality above translates to an inequality on their norm.

Lemma 1.5. For any log-concave independent random vectors X0, X1 in Rd, with smooth
densities, and any λ ∈ [0, 1]

(1− λ)KL(X0) + λKL(X1)−KL(Xλ) ≥ λ(1− λ)E
[
∥σL(X1)− σL(X0)∥2

]
.

Remark : In particular, we have :

KL(Xλ) ≤ (1− λ)KL(X0) + λKL(X1),

which can be seen as a second-order Blachman-Stam inequality.

Proof. As explained, the matrices being positive, the inequality in Lemma 1.4 implies that:

∥σL(Xλ)∥ ≤ ∥E [(1− λ)σL(X0) + λσL(X1)|Xλ]∥ .

Taking the expectation of the square and using Jensen’s inequality then implies:

KL(Xλ) ≤ E
[
∥(1− λ)σL(X0) + λσL(X1)∥2

]
= (1− λ)2KL(X0) + λ2KL(X1) + 2λ(1− λ)E [⟨σL(X0), σL(X1)⟩]

= (1− λ)KL(X0) + λKL(X1)− λ(1− λ)E
[
∥σL(X0)− σL(X1)∥2

]
since X0 and X1 are independent.

Now we want to translate this result to the Gaussian setting. Assuming that X has
density fγ = e−φ with respect to the Gaussian measure, we similarly introduce:

σ(X) := σγ(X) := ∇2(φ)(X)

K(X) := Kγ(X) = E
[
∥σ(X)∥2

]
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I(X) = Iγ(X) = E
[
∥∇φ(X)∥2

]
.

Note that the definition of I is consistent with the one given in the introduction. Then
Lemma 1.5 becomes:

Lemma 1.6. For any log-concave independent isotropic random vectors X0, X1 in Rd,
with smooth densities, and any λ ∈ [0, 1], we have

(1− λ)M(X0) + λM(X1)−M(Xλ) ≥ λ(1− λ)E
[
∥σ(X1)− σ(X0)∥2

]
, (1.2.1)

where M(X) = K(X) + 2I(X).

Proof. Let X be an isotropic log-concave random vector with density e−φ with respect to
the Gaussian measure, and e−Ψ with respect to the Lebesgue measure. By definition we
have:

σ(X) = σL(X)− Id.

Hence,
K(X) = KL(X)− 2E [Tr(σL(X))] + n.

Now, by integration by parts:

E [Tr(σL(X))] =

∫
Rn

div (∇Ψ)(x)e−Ψ(x)dx

=

∫
Rn

∇Ψ(x) · ∇Ψ(x)e−Ψ(x)dx

= E
[
∥∇Ψ(X)∥2

]
= E

[
∥∇φ(X) +X∥2

]
= I(X) + n.

The lemma follows.

The next lemma provides a lower bound for the right-hand side in the inequality (1.2.1).

Lemma 1.7. For any log-concave independent isotropic random vectors X0, X1 in Rd with
smooth densities we have

(1− λ)M(X0) + λM(X1)−M(Xλ) ≥
λ(1− λ)

2max(c0, c1)
(I(X0) +K(X0) + I(X1) +K(X1)),

where c0, c1 are the Poincaré constants of X0 and X1, respectively.

Proof. We denote by c0 the Poincaré constant of X0. We condition on X1 and apply the
Poincaré inequality for X0 to the function ∇φ0(X0)−∇2φ1(X1)X0 which is centered and
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we use the fact that X0 and X1 are isotropic:

E
[∥∥∇2φ0(X0)−∇2φ1(X1)

∥∥2] ≥ 1

c0
E
[∥∥∇φ0(X0)−∇2φ1(X1)X0

∥∥2]
=

1

c0
E
[
∥∇φ0(X0)∥2 +

∥∥∇2φ1(X1)
∥∥]

=
1

c0
(I(X0) +K(X1)).

By symmetry we get:

E
[
∥σγ(X1)− σγ(X0)∥2

]
≥ 1

2max(c0, c1)
(I(X0) +K(X0) + I(X1) +K(X1)).

Plugging this into Lemma 1.6 concludes the proof.

1.3 The Ornstein-Uhlenbeck process and proof of the theo-
rems

Let X be a random vector in Rd with density f with respect to the Gaussian measure γ.
Let Lγ be the diffusion operator defined by Lγf(x) = ∆f(x)−∇f(x) · x. The differential
equation associated to Lγ is the modified heat equation:

∂ft
∂t

= Lγft ; f0 = f.

Its solution ft is the relative density of the random vector Xt = e−tX+
√
1− e−2tG, where

G is a standard Gaussian independent of X, with respect to the Gaussian measure. From
this description of Xt it is clear that Xt has a C∞ density, with integrability properties as
good as f , and that the process commutes with convolutions, in the sense that, with the
notations of the previous sections, for all independent X0, X1 random vectors, and any
λ ∈ [0, 1], we have

(Xλ)t = (Xt)λ in law. (1.3.1)

It is also useful to note that if X is such that cX ≥ 1, in particular if X is isotropic, then
for all t ≥ 0:

cXt ≤ cX .

Indeed, if X and Y are independent random vectors satisfying a Poincaré inequality and
λ ∈ [0, 1], then using the conditional variance formula, a few computations show that

c√λX+
√
1−λY ≤ λcX + (1− λ)cY ,

which in our case yields cXt ≤ e−2tcX + (1− e−2t)× 1 ≤ cX .
We denote by (Pt)t≥0 the semi-group defined by Pt(f) = ft. The following computa-
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tions are standard (see [9]): if X has finite entropy, then for t > 0

∂

∂t
Ent(Xt) = I(Xt) ,

∂I(Xt)

∂t
= −2I(Xt)− 2K(Xt) = −M(Xt)−K(Xt).

As a consequence, a linear inequality on the information can be integrated along the semi-
group to get the same inequality for the entropy. We also get that ∂I(Xt)

∂t ≤ −2I(Xt)

which implies that I(Xt) ≤ e−2tI(X0). Moreover, the control role of L comes from the
observation that

e2t
∂(e−2tI(Xt))

∂t
= −2M(Xt). (1.3.2)

Now we are in position to prove Theorem 1.2, from which Theorem 1.1 will be an immediate
corollary.

Let X0 and X1 be two isotropic random log-concave vectors in Rd and λ ∈ [0, 1], and
Xλ =

√
1− λX0 +

√
λX1. Denote by (X0)t, (X1)t and (Xλ)t their evolution along the

Ornstein-Uhlenbeck semi-group. Further define:

I0(t) = I((X0)t) , I1(t) = I((X1)t) , Iλ(t) = I((Xλ)t),

and similarly, define K0(t),K1(t),Kλ(t),M0(t),M1(t),Mλ(t); using (1.3.2), the commuta-
tion property (1.3.1), the observation that the Poincaré constants only decrease along the
semi-group and Lemma 1.7, we get the following:

Lemma 1.8. With the previous notations, for all t ≥ 0,

− ∂

∂t
((1− λ)e−2tI0(t)+λe

−2tI1(t)− e−2tIλ(t)) ≥
λ(1− λ)e−2t

max(c0(t), c1(t))
(I0(t) +K0(t) + I1(t) +K1(t))

≥ − λ(1− λ)

2max(c0, c1)
e−2t ∂

∂t
(I0(t) + I1(t)).

Proofs of Theorem 1.1 and Theorem 1.2.
Integrating the inequality of Lemma 1.8 from 0 to ∞, we get:

(1− λ)I(X0) + λI(X1)− I(Xλ)

≥ − λ(1− λ)

2max(c0, c1)

∫ +∞

0
e−2t d

dt
(I0(t) + I1(t)) dt

=
λ(1− λ)

2max(c0, c1)

(
I(X0) + I(X1)− 2

∫ ∞

0
e−2t(I0(t) + I1(t)) dt

)
≥ λ(1− λ)

4max(C0, C1)
(I(X0) + I(X1)) ,
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where in the last inequality, we used the fact that I1(t) ≤ e−2tI(X1) and I0(t) ≤ e−2tI(X0).
This proves Theorem 1.2.

Integrating Theorem 1.2 along the semi-group yields Theorem 1.1.
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Chapter 2

The stochastic localization process

2.1 The localization method and the KLS bound

In their original paper, Kannan Lovász and Simonovits obtained the bound

c2P (µ) ≲ Tr(Covµ) (2.1.1)

using a localization lemma of Lovász and Simonivits which we now describe. We state a
slightly different version which is due to Bobkov [20].

Lemma 2.1. Let α, β > 0 and (fi)i=1,..,4 be non-negative continuous functions on Rn such
that for any segment I ⊂ Rn and any affine function ℓ on I,(∫

I
f1e

ℓ

)α(∫
I
f2e

ℓ

)β
≤
(∫

I
f3e

ℓ

)α(∫
I
f4e

ℓ

)β
. (2.1.2)

Then,

(∫
Rn

f1

)α(∫
Rn

f2

)β
≤
(∫

Rn

f3

)α(∫
Rn

f4

)β
(2.1.3)

Now, we briefly explain how to deduce the KLS bound let µ be a log-concave probability
with density p. Let A,B,C be a partition of Rn and denote by ϵ = d(A,B). We apply
Lemma 2.1 with α = β = 1 and

f1 = p1A, f2 = p1B, f3 = p1C , f4 =
gp

ϵ

where g is a non-negative continuous function. We denote by µℓ the probability on I having
a density proportional to peℓ. Inequality (2.1.3) rewrites

µ(A)µ(B) ≤ µ(C)

ϵ

∫
g dµ, (2.1.4)

25
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which holds if (2.1.2), that is the same inequality for µℓ, holds. Now, we choose B = (Aϵ)
c

and let ϵ→ 0. Notice that (2.1.4) takes the form of the isoperimetric inequality

µ(A)µ(Ac) ≤ µ+(A)

∫
g dµ,

which holds if the same inequality holds for µℓ for any interval I. In summary, we reduced
the isoperimetric inequality for µ to isoperimetric inequalities for one-dimensional log-
concave probabilities µℓ.

Corollary 2.2. Let g be a non-negative continuous function on Rn such that any one-
dimensional log-concave probability ν on Rn one has

1

hν
≤
∫
g dν.

Then, for any log-concave probability µ on Rn,

1

hµ
≤ 2

∫
g dµ.

Note that the factor 2 comes from the inequality 2µ(A)µ(B) ≥ max(µ(A), µ(B)). The
choice of g(x) = C|x| for a constant C ensuring that the one-dimensional inequality holds
yields (2.1.1). Bobkov improved on this bound by choosing g = C||x|2 − α2|1/2 for an
arbitrary α, to be optimized.

2.2 From localization to stochastic localization

Lemma 2.1 is the most used version of the localization lemma. It is easily deduced from
the original localization lemma, which we now discuss.

Lemma 2.3. Let f and g be two continuous function on Rn such that∫
f(x)dx > 0 and

∫
g(x)dx > 0

Then, there exists an interval I, and an affine function ℓ on I such that,∫
I
f(t)ℓ(t)n−1dt > 0 and

∫
I
g(t)ℓ(t)n−1dt > 0

Now, using a suitable choice of f and g it is not too difficult to deduce a variant of
Lemma 2.1 involving weights ℓ(t)n−1 in the one-dimensional integrals. Passing to expo-
nential weights require a bit more work, we refer to [50] for details. The proof of Lemma
2.3 relies on the so called bisection method. In a nutshell, one chooses a hyperplane H
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such that, say, ∫
H+

f =

∫
H−

f =
1

2

∫
Rn

f > 0.

where H+ and H− are the two complementary half spaces. One of the two, say H+, must
satisfies ∫

H+

g > 0

One then repeats this procedure countably many times and check that at the end of the
procedure, he is left with an integral over a segment (or a point). We refer to [69] for
details. Note that this proof works verbatim when we take integral with respect to a
general log-concave measure instead of the Lebesgue measure.

From the same method, it is possible to derive another point of view on localization.
Starting from a measure µ and an integrable function f with say

∫
fdµ = 0, by repeatedly

bisecting the space and preserving the measure of f , we get in the limit

Lemma 2.4. There exists a disintegration of µ:

µ =

∫
µωdP (ω)

where

• Almost surely µω is a "needle", that is a one dimensional log concave probability or
a Dirac.

•
∫
fdµω = 0 almost surely

Let us briefly comment on the difference. Notice that when we work with two functions,
the process is not symmetric in f and g, we take a bisecting hyperplane for f and then
choose one of the two halfspaces where the integral of g is > 0. Instead, here, we work
with only one function, thus we keep all the information at each step, resulting in the
decomposition Lemma 2.4. It is then easy to recover the result for two functions for µ.
Starting with two functions with positive integrals f and g, one applies Lemma 2.4 to
f −

∫
fdµ for instance, and get a disintegration of µ into needles µω satisfying∫

fdµω =

∫
fdµ

almost surely. Now, since µ = Eµω, there exists at least one ω for which∫
gdµω > 0.

In other words, instead of selecting the good part of the decomposition at each step, we
may select it at the very end.



28 CHAPITRE 2

This is for example the point of view that is taken in Klartag’s extension of the localiza-
tion method to the Riemannian context [60]. We shall recover this variant of localization
in section 2.7.

The drawback of this procedure is that one has little control over the resulting one-
dimensional measures, since the algorithm is not really tractable. A typical idea to try and
circumvent this problem is to randomize the procedure. This is the idea that inspired the
development of the stochastic localization process. Now, a few leaps of faith are gonna be
required. The operation of restricting an integral to a half-space H = {x, x · θ ≥ 0} is the
multiplication of the integrand by the convex one-dimensional function

x→ 1x·θ≥0.

Instead, we shall work the simplest convex one-dimensional function, namely the linear
form x → x · θ. Let us start by investigating the first step of the algorithm. Let p be a
density on Rn and consider

p1(x) = p(x)(1 + (x− a) · θ) (2.2.1)

where θ is a random variable to be specified, and a ∈ Rn. We assume that p is compactly
supported, so that p1 remains positive if θ is small enough. The simple computation∫
Rn p1 = 1+

∫
Rn(x−a) · θ p(x)dx shows that if we want p1 to be a density, we shall choose

a to be the barycenter of p. In that case, if we further choose θ to be of zero expectation,
we have decomposed our initial density p into a mixture of random densities p1 which
satisfy

Ep1(x) = Ep(x) for all x ∈ Rn.

A natural choice is to take θ uniformly distributed on a small sphere, or again, θ ∼ N (0, ϵ)

for a small parameter ϵ > 0. Letting ϵ → 0 leads to investigating the infinite system of
stochastic differential equations

dpt(x) = pt(x)(x− at) · dBt (2.2.2)

where (Bt)t≥0 is a standard Brownian and at is the barycenter of pt. This is the definition
of the stochastic localization process, which we now make rigorous.

2.3 The process and its basic properties

Let µ be a compactly supported probability with density p. For t ≥ 0 and θ ∈ Rn let

Zt,θ =

∫
Rn

p(x)e−
t
2
|x|2+θ·x.
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We define a probability density by

pt,θ(x) =
1

Zt,θ
p(x)e−

t
2
|x|2+θ·x,

and its barycenter and covariance matrix :

a(t, θ) =

∫
Rn

x pt,θ(x)dx

and
A(t, θ) =

∫
Rn

(x− a(t, θ))⊗2 pt,θ(x)dx.

Theorem 2.5. The stochastic differential equation

dθt = a(t, θt) dt+ dBt (2.3.1)

with Bt a standard Brownian motion admits a unique solution (θt)t≥0. Furthermore, de-
noting by at = a(t, θt), the probability density pt = pt,θt satisfies

dpt(x) = pt(x)(x− at) · dBt (2.3.2)

In other words, the infinite sytem of SDEs (2.3.2) admits the solution

pt(x) =
1

Zt
p(x)e−

t
2
|x|2+θt·x (2.3.3)

where Zt is a normalizing factor.

The fact that equation (2.3.1) admits a unique well defined solution follows from stan-
dard argument about SDE’s. While the rigorous approach is to derive (2.3.2) from (2.3.1),
going in the reverse way is more intuitive. Thus we start with equation (2.3.2), we as-
sume existence and show that pt is indeed a density taking the form (2.3.3). Denote by
mt =

∫
pt(x) dx. Much like in the discrete setting (2.2.1), the term at in (2.3.2) ensures

that dmt = 0. Thus pt integrates to 1 almost surely. Furthermore, (2.3.2) is close to being
a logarithmic derivative, so we compute :

d log pt(x) =
dpt(x)

pt(x)
− 1

2

d[p(x)]t
pt(x)2

= (x− at) · dBt −
1

2
|x− at|2

= x · (dBt + at dt)−
1

2
|x|2 + dzt

= x · dθt −
1

2
|x|2 + dzt.

Where zt regroups the terms that do not depend on x, making up for the normalizing
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factor Zt.
We denote by µt the density with density pt. From now on we assume that µ is log-

concave.

Proposition 2.6. • The process (µt)t≥0 is a martingale, in the sense that for any
compactly supported function φ, then(∫

φdµt

)
t≥0

is a martingale.

• For any t ≥ 0, µt satisfies the CD(t,∞) criterion, that is

∇2(− log(pt)) ≥ tId uniformly

• µt → µ∞ weakly, where µ∞ = δa∞ is a Dirac measure and a∞ ∼ µ

Proof. The first point follow from (2.3.2), and the second from (2.3.3). The third point
follows from the first two.

Now we compute the dynamics of the barycenter and covariance matrix, which shall
prove useful.

Lemma 2.7. dat = AtdBt

Proof. We simply compute

dat = d

∫
x pt(x) dx

=

(∫
x(x− at)

t pt(x) dx

)
· dBt

= AtdBt

A similar but tedious computations shows that

Lemma 2.8.
dAt =

(∫
(x− at)

⊗3pt(x) dx

)
dBt −A2

t dt

2.4 A functional-analytic description of the process

Before explaining how stochastic localization may be used to tackle the KLS conjecture,
we describe the functional-analytic point of view developped by Klartag and Putterman
[59] which sheds some light on the process.
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Let f be a measurable function and consider the martingale

Mt =

∫
fµt =

∫
e−

t
2
|x|2+θt·xf(x)p(x)dx∫
e−

t
2
|x|2+θt·xp(x)dx

(2.4.1)

We are interested in expressing this martingale in terms of the heat semi-group. The heat
semigroup is the collection of operators (Ps)s≥0 which acts on square integrable function
by

Psg = g ∗ γs

where γs is the normal density with covariance sId. By abuse of notations we shall also
denote by γs the corresponding measure. It is classical that Pt is a self-adjoint operator
from L2 to L2. We need to make a convolution appear in (2.4.1), but that is not too
difficult. Let g be a function, t ≥ 0 and θ ∈ Rn. Finally let Zγ(s) = (2πs)n/2, we write :∫

e−
t
2
|x|2+θt·xp(x)dx =

∫
e−

t
2
|x−θ/t|2e

t
2
| θ
t
|2p(x)dx

= e
1
2t
|θ|2Zγ(1/t)P1/tg

(
θ

t

)
By substituting this into (2.4.1) we get that

M1/t =
Pt(fp)(tθ1/t)

Ptf(tθ1/t)
= Qtf

(
tθ1/t

)
(2.4.2)

where we have defined an operator Qtg = Pt(gp)
Ptg

which depends on µ. When the context
is not clear, we may thus write Qµ for the operator associated to µ or Qρ for the same
operator associated to a function ρ. Let us describe what this operator is exactly. Let
g and h be two functions such that the following integrals are well defined, and define
µγt = Ptµ to be the evolution of µ along the heat semi group, that is the density of µγt
is simply Ptp (we use this rather unusual subscript to avoid confusion with the stochastic
localization process). Then by definition of Qt,∫

hPtgdµ =

∫
Pthgp dx

=

∫
hPt(gp) dx

=

∫
hQtgPtp dx

=

∫
hQtgdµγt .
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In other words, if we see Pt as an operator from L2(µγt) to L2(µ), then

Qt = P ∗
t . (2.4.3)

In particular, we may write∫
fdµ =

∫
fPt(1)dµ =

∫
Qtfdµγt . (2.4.4)

On the other hand, coming back to (2.4.2) and denoting by Yt = tθ 1
t
, we have

∫
fdµ = EM1/t = EQtf(Yt) (2.4.5)

This suggests that Yt ∼ µγt . If that is the case, we can deduce an explicit expression for
the tilt process :

θt = tYt ∼ tX + tW1/t ∼ tX +Wt (2.4.6)

where (Wt)t≥0 is a standard Brownian. The last equality (in law) is the classical time rever-
sal property of the Brownian motion, which is easily checked by computing the quadratic
variation [tW1/t]t = t. Equation (2.4.6) is indeed true, as was shown in [59] using stochastic
calculus.

Lemma 2.9. The following equality holds in law

(θt)t≥0 ∼ (tX +Wt)t≥0

where X ∼ µ and (Wt)t≥0 is a standard Brownian.

To summarize, from this functional-analytic viewpoint, the stochastic localization method
consists in writing, up to a time reversal s = 1/t,∫

fdµ =

∫
Qsfdµγs ,

and analyzing the operator Qs. This is essentially the method that is used by Bodineau
and Bauerschmidt in [14]. More about this connection can be found in Chapter 5 .

2.5 Approaching the KLS Conjecture

In this subsection, we establish the classical lemma which relates the KLS constant Ψ2
n to

the behavior of the covariance matrix At.

We start with a set S of half measure, µ(S) = 1
2 . Using the martingale property, and

the gaussian factor of µT , we have, at time T > 0 :
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µ+(S) = Eµ+T (S)

≳
1√
T
E (µT (S)(1− µT (S))) . (2.5.1)

Thus, we need to understand how the process gt = µt(S) evolves over time. We know it
starts from 1

4 and ends at 0 since µ∞ is a Dirac. We hope it stays say greater than 1
8 for

a sufficiently long time. Simple Itô calculus shows that, for all T ≥ 0

d(gt(1− gt)) = martingale − d[g]t

In particular,

E(gT (1− gT )) =
1

4
− E[g]T . (2.5.2)

Let us compute the quadratic variation.

Lemma 2.10.
d[g]t ≤ |At|op dt

Proof.

dgt = d

∫
S
pt(x)dx =

(∫
S
(x− at)pt(x)

)
· dBt.

Thus,

d[g]t =|
∫
S
(x− at)pt(x)|2 dt

= sup
θ∈Sn−1

(∫
S
(x− at) · θpt(x)

)2

dt

≤ sup
θ∈Sn−1

(∫
Rn

((x− at) · θ)2 pt(x)
)
dt

≤ |At|op dt

Plugging Lemma 2.10 into (2.5.2) we get that

E(gT (1− gT )) ≥
1

4
−
∫ T

0
E|At|op dt. (2.5.3)

Plugging this into (2.5.1), we arrive at

Lemma 2.11. Let µ be a log-concave probability, and µt its stochastic localization with
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covariance At. Let T ≥ 0 such that∫ T

0
E|At|op dt ≤

1

8
.

Then,

Ψ2
µ ≲

1

T

As a first consequence, it is now straightforward to recover the KLS bound (2.1.1).
From Lemma 2.8, we see that any linear functional of At has a decreasing expectation. In
particular, since |At|op ≤ Tr(At), we may choose T = 1

8Tr(A) in the previous Lemma 2.11
and conclude that

Ψ2
µ ≲ Tr(A).

Let us summarize what is known about the behavior of At. From now on, we assume that
the initial measure µ is log-concave and isotropic. The general idea is to choose a smooth
potential dominating the operator norm of At, typically

Φt = Tr(Apt )
1/p,

for some p ≥ 1. As we have just seen, the case p = 1 is rather easy and gives the
original KLS bound. For greater p, one typically computes the dynamics dΦt and resorts
to Gronwall type arguments to show that for a suitable choice of t, the potential Φt has
not changed too much.

Using p = 2, Lee and Vampala [67] were able to show that

ETr(A2
t )

1/2 ≤ CTr(A2
0)

1/2 = C
√
n for t ≤ T =

1

C
√
n

Thus proving the then best bound on the KLS constant :

Ψ2
n ≲

√
n.

Let us introduce a new constant

κn = sup
X

|EX1 (X ⊗X)|2HS . (2.5.4)

where the norm is the Hilbert-Schmidt one, and the supremum runs over all isotropic log-
concave vectors X. Then, although originally proved in a slightly different setting, using
p = log(n), Eldan showed that [35] :

Lemma 2.12. There exists a universal constant C such that for t ≤ T0 =
1

Cκ2n log(n)
,

E|At|op ≤ C.
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Plugging this into Lemma 2.11 brings

Ψ2
n ≲ κ2n log(n) (2.5.5)

Eldan then went on to show that
κ2n ≲ σ2n log n, (2.5.6)

thus implying a reduction of the KLS conjecture to the Variance conjecture up to a logar-
itmic factor:

Theorem 2.13.
ψ2
n ≲ σ2n log(n)

2.

Furthermore, it is easy to see that
κ2n ≤ 4ψ2

n (2.5.7)

Indeed, write B = EX1 (X ⊗X) = EX1XX
T . Then, using the Poincaré inequality for X

|B|2HS = Tr(BBT ) = EX1⟨BX,X⟩

≤ (EX2
1 )

1/2Var(⟨BX,X⟩)1/2

≤ 2cP (X)E(|BX|2)1/2

≤ 2cP (X)|B|HS

where in the last inequality we have used that X is isotropic. This provides the bound

Lemma 2.14. There exists a universal constant C such that for t ≤ T1 =
1

CΨ2
n log(n)

,

E|At|op ≤ C.

Of course plugging this directly into Lemma 2.11 brings a rather uninteresting bound
Ψ2
n ≲ Ψ2

n log(n). However, Lemma 2.12 indicates that it the stochastic localization is able
to estimate the KLS constant up to a logarithmic term. We shall see a bit later that this
logarithmic obstruction is not an artefact of the proof and is somewhat inevitable. This
lemma also opens the gate to a bootstrap type argument. Improving the bound on Ψ2

n

improves the control on At which itself controls Ψ2
n. It was this idea which led to Chen’s

breakthrough [28]. The additional ingredient he brought was the following lemma, saying
essentially that the covariance matrix cannot explode too fast :

Lemma 2.15. For any p ≥ 3, and any t2 > t1 > 0,

E(TrApt2)
1/p ≤

(
t2
t1

)2p

E(TrApt1)
1/p

Let p ≥ 3, T1 = 1
CΨ2

n log(n)
and T2 > T1. We write Φt = Tr(Apt )

1/p. Combining Lemma
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2.14 and Lemma 2.15 we have

∫ T2

0
E|At|op ≤

∫ T1

0
E|At|opdt+

∫ T2

T1

EΦtdt

≤ CT1 + E (ΦT1)

∫ T2

T1

(
t

t1

)2p

dt

≤ o(1) + Cn1/p
T 2p+1
2

T 2p
1

Recall that we want this integral to be less than 1
8 . We thus need T 2p+1

2 ≤ c
T 2p
1

n1/p for an
appropiate constant c. That is we choose

T2 = c
T
2p/2p+1
1

n1/p(2p+1)

Lemma 2.11 then implies

Ψ2
n ≤ 1

T2

≲ n1/2p(p+1)(Ψ2
n log(n))

2p/2p+1

that is,
Ψ2
n ≤ Cpn1/p log(n)2p

for a universal constant C > 0 and any p ≥ 3. Optimizing in p, we choose p =
√

logn
log logn

yielding Chen’s bound :

Ψ2
n ≲ exp(C

√
log n log logn). (2.5.8)

Notice that this implies in particular that Ψ2
n = o(nα) for any α > 0.

After Chen’s bound, a polylog bound was achieved by Klartag and Lehec [62]. Although
still utilizing the stochastic localization process, Lemma 2.12 and Chen’s Lemma 2.15
(extended to the case p = 2). Their proof is different and does not use exactly the same
strategy. In particular they estimate the thin-shell parameter σn directly, by the looking
at the dynamics of the barycenter at. Their proof yields

σ2n ≲ (log n)8

and thus via Eldan’s Theorem 2.13,

Ψ2
n ≲ (log(n))10.
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The exponent can be improved as remarked later by Lee, Vampala and Jambulapati [49].

Finally, very recently, Klartag [56] obtained the bound.

Ψ2
n ≲ log n (2.5.9)

To understand the proof we need to come back to the standard lemma, Lemma 2.11. Recall
the strategy, we consider a set of half measure S and say that at time T ≥ 0:

µ+(S) = Eµ+T (S)

≥ E
(√

cP (µT ) µT (S)(1− µt(S))
)

(2.5.10)

Now, up until here we have established a criterion to ensure that the term µT (S)(1−µT (S))
is essentially a constant for sufficiently small T and used the fact that cP (µT ) ≤ 1

T . Let us
use our best bound on |At|op which is Lemma 2.14. We set T = 1

c1Ψ2
n log(n)

for a suitable
c1 and we have for all t ≤ T

E|At|op ≤ C (2.5.11)

for a universal constant C. Now, denoting again gt = µt(S), we have

E (gT (1− gT )) ≥
1

4
−
∫ T

0
E|At|opdt

≥ 1

4
− c2

Ψ2
n log(n)

(2.5.12)

where c2 = C
c1

. As usual this ensures that we will be able to bound from below the term
gT (1− gT ). In particular, for a suitable choice of c1, we have

E (gT (1− gT )) ≥
7

32

for instance. Since gT (1− gT ) ≤ 1
4 almost surely, a little computation shows that

P
(
gT (1− gT ) ≥

1

8

)
≥ 3

4
(2.5.13)

Define the event
U = {|AT |op ≤ 4C}.

Recall that by (2.5.11), we have

P(U) ≥ 3

4
. (2.5.14)

In particular, we have

P
(
U ∩ gT (1− gT ) ≥

1

8

)
≥ 1

4
.



38 CHAPITRE 2

We denote by V this event. We may thus write

µ+(S) = Eµ+T (S)

≥ E
(√

cP (µT ) µT (S)(1− µt(S))1V

)
≳ E

(√
cP (µT )1V

)
(2.5.15)

Looking at the last term, we have thus reduced the estimation of the Poincaré constant of
an isotropic log-concave probability µ (or rather its Cheeger constant) to the estimation
of the Poincaré constant of measures µT which satisfy

• Cov(µT ) ≤ 4C for a universal constant C.

• µT satisfies CD(T,∞), for T = c1Ψ
2
n log(n).

At this point we did not do anything new, but just looked at the consequences of Lemma
2.14. In a nutshell, it tells us that up to a constant, when we have to estimate Ψ2

n, we
might restrict our attention to the probabilities satisfying the two points above. In other
words we have gained a curvature term for free. Now, from the Brascamp-Lieb inequality
we know that

cP (µT ) ≤
1

T

while the KLS conjecture predicts that

cP (µT ) ≲ 1 ?

A natural question is to try an intermediate bound which is the geometric mean : Do we
have

cP (µT ) ≲
1√
T
?

The answer is yes. This was the key new ingredient of Klartag in his latest paper [56],
where using the L2 method he shows that

Lemma 2.16. Let ν = e−V (x)dx be a log concave probability which satisfies ∇2V ≥ ρ.
Then

cP (ν) ≤

√
|Cov(ν)|op

ρ
.

Plugging this into (2.5.15), we have

µ+(S) ≳ E
(√

cP (µT )1V

)
≳

1

T 1/4
P(1V)

≳
1

T 1/4
≳ (Ψ2

n log n)
1/4
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This being true for any isotropic log-concave probability µ, we arrive at

Ψ2
n ≲ Ψn

√
log n

and finally,
Ψ2
n ≲ log n. (2.5.16)

2.6 The logarithmic obstruction

In this section, we describe the obsctruction to proving the KLS conjecture via the standard
scheme of proof that we just explained. We prove the following observation which is due
to Klartag (unpublished).

Lemma 2.17. There exists a universals constant c such that starting from the isotropic
exponential product probability µ, one has

E|AT |op ≥ c log(n) for T =
1

log(n)

The idea is that the stochastic localization process respect the product structure. In
other words, if µ = µ1 ⊗ · · · ⊗ µn is a product measure, then µt is also a product measure,
and µt = µ1,t ⊗ · · · ⊗ µn,t, where µi,t is the one-dimensional stochastic localization of µi,
for all t ≥ 0. Indeed, let 1 ≤ i ≤ n from (2.3.3),

µi,t ∝ e−tx
2
i+θt,i·xµi,

but from Lemma 2.9, θt,i has the same law tXi + Wt where Wt is a one dimensional
Brownian motion. Then, the operator norm of the covariance matrix At is the maximum
of n independent random variables, which in the case of the exponential measure result,
as we shall see, in a logarithmic factor.

We take µ1 = · · · = µn = µexp, the isotropic one sided exponential measure :

dµexp = pexp(x)dx =
1

e
e−x1{x≥−1}dx. (2.6.1)

For better readability, we drop the subscript and write p = pexp.

pt =
1

eZ̃t
e−

t
2
x2+θtx−x1{x≥−1}

=
1

Zt
e
− t

2

(
x− θt−1

t

)2

1{x≥−1}

=
1

Z(t, ht)
e−

t
2
(x−ht)21{x≥−1}
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where ht = θt−1
t and

Z(t, h) =

∫ ∞

−1
e−

t
2
(x−h)2dx =

∫ ∞

−1−h
e−

t
2
x2dx

We want to compute the variance of µexp,t. We use the following standard fact about
one-dimensional log concave densities

Lemma 2.18. Let µ = f(x)dx be a one-dimensional log-concave probability, then

Varµ(x) ≃
1

(max f)2

Note that this amounts to saying that the slicing conjecture holds in dimension 1.
From Lemma 2.18, we just need to compute the maximum of pt. For t ≥ 0 and h ≥ 1

we write
pt,h(x) =

1

Z(t, h)
e−

t
2
(x−h)21{x≥−1}

and µt,h the corresponding measure. Notice that if h ≥ −1, the maximum of pt,h is precisely
attained at h and has value √

t

2π
≤ 1

Z(t, h)
≤ 2

√
t

2π

Thus, in that case

Varµt,h(x) ≃
1

t
(2.6.2)

Now, we determine the probability of the event ht ≥ −1 at time t ≥ 0. Recall that
θt ∼ tX+Bt where X is distributed according to the one dimensional exponential measure
and Bt is a standard Brownian.

P(ht ≥ −1) = P(θt ≥ 1− t)

≥ P(tX +Bt ≥ 1)

≥ 1

2
P(X ≥ 1

t
)

≥ 1

2
e−1/t.

In particular, for T = 1
log(n) we get that P(hT ≥ −1) ≥ 1

2n which by (2.6.2) implies that

P
(
VarµT (x) ≥

1

cT

)
≥ 1

2n
. (2.6.3)

Now let µ⊗n be the n dimensional product measure, µ⊗nt be the stochastic localization
process starting from µ⊗n and At its covariance matrix. Recall that µ⊗nt = µ1, t⊗· · ·⊗µn,t
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where the µi,t are iid copies of µ. Thus by (2.6.3),

E|AT |op = Emax
i

VarµT,i(x)

≳ T P
(
max
i

VarµT,i(x) ≥
1

cT

)
≳ T

(
1− 1

2n

)n
≳ T

≳ log(n).

This proves Lemma 2.17. The interested reader can check that the transition arises indeed
around T , that is, there is constant c > 0 such that

E|At|op ≲ 1 for t ≤ 1

c log n
.

To conclude this subsection, we describe a similar phenomenon happening for the smallest
eigenvalue λmin(At). First, let us explain why we should care about it. Recall the entropic
formulation of the slicing conjecture, for any isotropic log-concave vector X, we have that

LX ≤ e−c
Ent(X)

n (2.6.4)

for a universal constant c > 0, see for instance [11]. Now, take X an isotropic log-concave
vector, and write Xt for its stochastic localization. By concavity of x→ −x log(x)

Ent(X) ≥ EEnt(Xt)

= EEnt(A1/2
t A

−1/2
t Xt)

= EEnt(X̃t) +
1

2
E log det(At) (2.6.5)

where X̃t = A
−1/2
t (Xt − at) is isotropic. Remark that

c2P (X̃t) ≤ |A−1
t |opc2P (Xt) ≤ 1

tλmin(At)
. (2.6.6)

Now we use the following Lemma, which is due to Ball and Nguyen [11].

Lemma 2.19. Let Y be an isotropic log-concave vector, then

Ent(Y ) ≳ −nc2P (Y )
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Plugging this into (2.6.5), we get

Ent(X) ≳ E
−n

tλmin(At)
+ E log detAt (2.6.7)

≳ −n
(
E

1

tλmin(At)
− E log λmin(At)

)
(2.6.8)

≳ −nE
(

1 + t

tλmin(At)

)
(2.6.9)

where in the last inequality we used the inequality log(u) ≥ − 1
u . In particular, we get

Lemma 2.20. If T > 0 is such that E 1
λmin(At)

≤ 2, then

LX ≲ e
c
T

Unfortunately, using the same arguments as for the greatest eigenvalue, one can show
that for the exponential product measure, the smallest eigenvalue behaves as

E
1

λmin
≳ 1 + t log(n). (2.6.10)

Thus, it is not possible to get a good estimate for the slicing constant via Lemma 2.20 in
general. In that case the situation is much worse because of the exponential dependence.

Remark : It is possible to improve the decomposition for entropy (2.6.5). Indeed we
can compute

dEnt(Xt) = −d
∫
ft(x) log(ft)(x) dx

= martingale +
1

2

∫
d[f ]t
ft

dx

= martingale+
1

2

∫
|x− at|2ft(x) dx dt

= martingale+
1

2
Tr(At)dt

Thus we can get an exact decomposition for the entropy as :

Ent(X) = EEnt(Xt) +
1

2

∫ t

0
ETr(As)ds

= EEnt(X̃t) +
1

2
E log det(At) +

1

2

∫ t

0
ETr(As)ds

However, the last term that we previously neglected should not help too much, since it is
less than 1

2 tn.
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2.7 From stochastic localization to random localization

Here we discuss some possible variants of the stochastic localization process as defined
by Theorem 2.5. Let (Ċt)t≥0 be symmetric non-negative matrices and set Ct =

∫ t
0 Ċsds.

Starting with a density p we consider the evolution

dpt(x) = pt(x)(x− at) · Ċt
1
2dBt (2.7.1)

In other words, instead of choosing a uniform random direction dBt we insert a control
matrix. So far we have used Ċt

1/2
= Id. Much like previously, we get an explicit expression

for the solution

Theorem 2.21. The infinite sytem of SDEs (2.7.1) admits the solution

pt(x) =
1

Zt
p(x)e−

1
2
xTCtx+θt·x (2.7.2)

where Zt is a normalizing factor and (θt)t≥0 is the solution of the simple SDE

dθt = Ċtat dt+ Ċt
1/2
dBt.

Now let f be a measurable function and Mt =
∫
fdµt. Using (2.7.1) we compute

dMt = d

∫
f(x)pt(x)dx

=

(
Ċt

1/2
∫
f(x)(x− at)pt(x)dx

)
· dBt

In particular, denoting vt =
∫
f(x)(x − at)pt(x), if we choose Ċt = Pv⊥t

= Pt to be the
orthogonal projector onto v⊥t ,

dMt = 0

that is ∫
fdµt =

∫
fdµ a.s. (2.7.3)

At time t we have then effectively decomposed the measure µ into a mixture of measures
µ = Eµt respecting the measure of a given function f . Let us denote by Vt the convex
function such that µt = e−Vt(x)dx. By (2.7.2), we see that

∇2Vt ≥
∫ t

0
Psds (2.7.4)

Now, for any s ≥ 0, Ps is a projector of rank n − 1. In particular, for any projector Q of
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rank 2

dim(ℑQ ∩ ℑPs) ≥ 2− 1 = 1

thus,
Tr(QPsQ) ≥ 1.

For a symmetric matrix M write λ1(M), . . . , λn(M) the decreasing sequence of eigenvalues
of M . We have :

λn−1(∇2Vt) ≥
1

2
inf
Q

Tr(Q∇2VtQ)

≥ inf
Q

∫ t

0
Tr(QPsQ)ds

≥ t

2

where the infimum runs over rank two projectors. This ensures all but one eigenvalues
of ∇2Vt goes to infinity. As a consequence, in the limit, µ∞ is either a Dirac or a one-
dimensional log-concave measure. We have thus obtained a needle decomposition of µ,

µ = Eµ∞

where µ∞ are log-concave probabilities satisfying∫
fdµ∞ =

∫
fdµ.

As an application, since µ∞ is more log-concave than µ, if µ satisfies a curvature condition
∇2(V ) ≥ ρ then so does µ∞. One can then prove inequalities like cP (µ) ≤ 1

ρ by just
proving it in dimension one.

In the general setting where no curvature condition is assumed, one can still say that

Varµ(f) = Eµ(f2)− (Eµ(f))2

= E
[
Eµ∞(f2)

]
− (Eµ∞(f))2

= EVarµ∞(f)

≲ Eµ(|A∞|op) = Eµ(Tr(A∞))

where in the last inequality we used the fact that the KLS conjecture holds in dimension
one, and A∞ has rank at most one. One might then hope to bound that quantity. For
all we know, any needle decomposition (not necessarily the one given by the stochastic
localization process) could satisfy ETr(A∞) ≲ 1, and thus prove the KLS conjecture.

The idea of using a projector matrix to get a desintegration of µ into low-dimensionnal
measures has been used fruitfully notably by Klartag in [61] where the standard gaussian
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measure is decomposed into lower-dimensionnal gaussian measures whose barycenter be-
longs to an analytic manifold, and by Eldan Koehler Zeitouni [37] who proved a localization
type lemma for the Ising model. In the next section, we use a constant projector matrix
to analyze measures which satisfies a curvature condition on a subspace of Rn.
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Chapter 3

On measures strongly log-concave on
a subspace

This chapter is a reproduction of

Pierre Bizeul. On measures strongly log-concave on a subspace. arXiv preprint arXiv:2203.09422,
2022, to appear in Annales de l’Institut Henri Poincaré, Probabilités et Statistiques

3.1 Introduction

Let V : Rn 7→ R be a C2 convex function, such that dµ(x) = e−V (x)dx is a log-concave
probability measure. It is well-known that if µ is t-strongly log-concave, that is V satisfies
the Bakry-Émery condition :

∇2V ≥ t (3.1.1)

for some t > 0, where ∇2 stands for the Hessian, it has good isoperimetric properties. In
particular, its Poincaré constant is at most 1

t . Recall that the measure µ is said to satisfy
a Poincaré inequality with constant c if for all locally Lipschitz function f we have :

V arµ(f) ≤ c2 Eµ(|∇f |2)

where here and in the sequel, |.| stands for the Euclidean norm. The best such constant is
denoted by cP (µ), the Poincaré constant of µ. The KLS conjecture [51] proposes that when
µ is log-concave, its Poincaré constant is, up to a universal constant, less than the operator
norm of its covariance matrix. Since Poincaré inequalities are homogeneous, we can state
the conjecture only for normalized measures, without loss of generality. A measure µ is
called isotropic if it is centered and its covariance matrix is the identity. Introduce

Ψn = sup
µ

cP (µ),

47



48 CHAPITRE 3

where the supremum runs over all isotropic log-concave measures of Rn. The KLS conjec-
ture then reads :

Ψn ≤ c

for some universal constant c > 0.

A related property of strongly log-concave probabilities is that they exhibit good con-
centration function. Recall that the concentration function of a measure µ is the function
αµ : R+ 7→ [0, 1/2] defined by :

αµ(r) = sup
{S, µ(S)=1/2}

µ(Scr)

where Sr = {x ∈ Rn / d(x, S) ≤ r} and d(x, S) is the Euclidean distance between x and
S. It follows from the Prékopa-Leindler inequality that if µ is t-strongly log-concave, then
for all measurable sets S,

µ(Scr) ≤
1

µ(S)
exp

(
− tr

2

4

)
. (3.1.2)

In particular, it has a Gaussian-type concentration function :

αµ(r) ≤ 2 exp

(
− tr

2

4

)
, (3.1.3)

see for instance [35] Proposition 2.6 and its proof. It was first observed by Gromov and
Milman ([46] see also [64] Corollary 3.2 for a better constant) that a Poincaré inequality
implies exponential concentration, that is :

αµ(r) ≤ exp

(
− r

3cP (µ)

)
. (3.1.4)

The converse implication has been established in the log-concave case by E.Milman [73]
where he shows that when µ is log-concave,

cP (µ) ≲ α−1
µ (1/4) (3.1.5)

where for two expressions a, b depending on parameters, a ≲ b means there is a universal
constant c > 0 such that a ≤ cb. We also write a ≃ b when a ≲ b and b ≲ a.

In an attempt to tackle the KLS conjecture, Eldan [35] introduced a stochastic process,
known as stochastic localization, which, roughly, decomposes, for all time t ≥ 0, a log-
concave measure µ into an average of measures µt(ω) which are t-strongly log-concave.
This strategy enabled Eldan to relate the KLS conjecture to the a priori weaker Variance
conjecture, then Lee and Vempala [68] to obtain the then better bound on Ψn : Ψn ≲ n1/4.
Recently, Chen obtained that Ψn = o(nα) for every α > 0, [28], and very recently, Klartag
and Lehec obtained Ψn = O(log(n)5) [57].
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In this note, we propose a slight generalization of the criterion (3.1.1) allowing the
potential to be flat in some directions. The observation is that stochastic localization
behaves well when restrained to a subspace.

Our main result is the following :

Theorem 3.1. Let V : Rn 7→ R be a C2 convex potential such that dµ(x) = e−V (x)dx is a
probability measure. Suppose that there is 1 ≤ k ≤ n, a subspace E of codimension k and
η > 0 such that

∇2V ≥ ηPE

where PE is the orthogonal projector onto E. Let K be the covariance matrix of µ. Define
Q = PE⊥KPE⊥

(i) cP (µ) ≲ max
(

1√
η , ∥Q∥1/2op Ψk

√
max(log(k), 1)

)
(ii) There is a universal constant c > 0 such that for every A such that µ(A) = 1

2 ,

µ(Acr) ≲ exp

(
−cmin

(
r

∥Q∥1/2op

, r2min

(
η,

1

Ψ2
kmax(log(k), 1) ∥Q∥op

)))

In the particular case E = {0}, inequality (ii) implies a new bound for the concentration
function of log-concave measures, which we state, without loss of generality, in the isotropic
case.

Corollary 3.2. For any isotropic log-concave measure µ and any r > 0, we have

αµ(r) ≲ exp

(
−cmin

(
r,

r2

Ψ2
n log(n)

))
Remark : Note that (ii) implies (i). Indeed, choosing

r = c′ max

(
1
√
η
, ∥Q∥1/2op Ψk

√
max(log(k), 1)

)
,

for an appropriate choice of constant c′ > 0, we get that µ(Acr) ≤ 1
4 . By (3.1.5), this implies

(i). On the other hand it is easy to check that the exponential concentration obtained
by combining (i) with (3.1.4) is weaker than (ii). Remark : The idea of evaluating
concentration functions with stochastic localization already appears in the work of Lee
and Vempala ([68], Theorem 16). To improve the Paouris deviation inequality for the
Euclidean norm ([77]), they develop a more refined analysis of the process, using the so-
called Stieltjes potential. They prove that for any L-Lipschitz function g, and any isotropic
log-concave probability measure µ one has :

∀t ≥ 0 P(|g(X)− ḡ(X)| ≥ Lt) ≤ exp

(
− ct2

t+
√
n

)
(3.1.6)
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where X ∼ µ and ḡ(X) is the median or mean of g(X). Notice that when g is the
Euclidean norm, then by Borell’s Lemma [22], Eµ(|x|) ≃ Eµ(|x|2)1/2 =

√
n since µ is

isotropic. Plugging this into (3.1.6) yields

∀t ≥ 0 P(|X| ≥ t
√
n) ≤ exp(−cmin(t, t2)

√
n) (3.1.7)

However, thanks to the new estimate of Chen, Ψn = o(nα) for every α > 0, we can
obtain this result directly from Corollary 3.2. Indeed, for a general isotropic log-concave
probability measure µ it asserts that for all measurable A such that µ(A) = 1/2 and all
r > 0,

µ(Acr) ≲ exp

(
−cmin

(
r,

r2

Ψ2
n log(n)

))
.

Let g be a L-Lipschitz function, and let A = {x ∈ Rn, g(x) ≤ ḡ(X)}, by definition of
the median, µ(A) = 1/2. Now set Gr = {x ∈ Rn, g(x) ≤ ḡ(X) + Lr}, then because g is
L-Lipschitz, Ar ⊂ Gr, where Ar is the r-extension of A. We get that

µ(Gcr) ≤ µ(Acr) ≲ exp

(
−cmin

(
r,

r2

Ψ2
n log(n)

))
,

For the Euclidean norm, which is 1-Lipschitz, this yields

P(|X| ≥ r
√
n) ≲ exp

(
−cmin

(
r
√
n,

r2n

Ψ2
n log(n)

))
≲ exp

(
−cmin(r, r2)

√
n
)

where we used the fact that Ψ2
n log(n) = o(

√
n) thanks to Chen’s estimate. Notice that

using the Lee-Vampala estimate Ψ2
n = O(

√
n) would lead to an extra logarithmic factor

in the deviation estimate whose removal was the object of their work with the Stieltjes
potential.

Lemma 3.3. It is enough to prove Theorem 3.1 when Q = Ik.

Proof. Let dµ(x) = e−V (x)dx be a measure satisfying the hypothesis of Theorem 3.1 and

let X be a random vector whose law is µ. Set S =

[
∥Q∥1/2op In−k 0

0 Q1/2

]
where the matrix

is expressed in a basis adapted to the splitting Rn = E ⊕ E⊥. Define the random vector
X̃ = S−1X, whose law is dµ̃(x) = e−Ṽ (x)dx = | detS| e−V (Sx)dx and covariance matrix

K̃ = S−1KS−1.

For a symmetric n × n matrix M , we denote by λ1(M) ≥ · · · ≥ λn(M) its ordered
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eigenvalues. It is classical and easy to check that for every r > 0 one has

αµ(r) ≤ αµ̃

(
r

λ1(S)

)
= αµ̃

(
r

∥Q∥1/2op

)
(3.1.8)

However, with this choice of S, µ̃ satisfies :

λn−k(PE∇2Ṽ PE) ≥ η̃ = ∥Q∥op η and Q̃ = PE⊥K̃PE⊥ = Ik.

We can then apply Theorem 3.1 to µ̃ which, combined with (3.1.8), yields the result.

We conclude this introduction with a classical inequality, which essentially goes back
to Freedman [40], that we will use for controlling deviation of martingales in the sequel.

Lemma 3.4. Let Mt be a continuous local martingale starting from 0.

∀T > 0 P(MT ≥ a , [M ]T ≤ b) ≤ exp(−a
2

2b
)

Proof. For all λ ∈ R, define the process E(λM) by

E(λM)t = exp

(
λMt −

λ2

2
[M ]t

)
.

Elementary Itô calculus shows that E(λM) is a local martingale. Moreover, it is positive,
so by Fatou’s lemma it is a supermartingale. In particular, for all t ≥ 0, E E(λM)t ≤
E(λM)0 = 1, that is :

∀t ≥ 0, E exp

(
λMt −

λ2

2
[M ]t

)
≤ 1

Now, assume that [M ]T ≤ b almost surely. Then,

P(MT ≥ a) = P(E(λM)t ≥ eλa−
λ2

2
[M ]T )

≤ P(E(λM)t ≥ eλa−
λ2

2
b)

≤ E(E(λM)t) e
λ2

2
b−λa

≤ e
λ2

2
b−λa

Choosing the optimal λ = a
b yields :

P(MT ≥ a) ≤ e−
a2

2b .
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The proof follows from applying this argument to the local martingale M τ
t = Mt∧τ ,

where τ = inf{t ≥ 0, [M ]t ≥ b} is a stopping time. Indeed, remark that [Mt∧τ ]t ≤ b almost
surely, and that

P(MT ≥ a , [M ]T ≤ b) ≤ P(M τ
T ≥ a) ≤ e−

a2

2b .

3.2 Restricted stochastic localization

Let µ be a log-concave measure satisfying the hypothesis of Theorem 3.1 with Q = Ik. We
denote by P : Rn 7→ Rn the orthogonal projection onto the k-dimensional subspace E⊥.
In the following we work in an orthonormal basis such that this subspace is spanned by
the k first basis vectors. Let f be the density of µ, for all x ∈ Rn, consider the following
stochastic differential equations :

dft(x) = (x− at)
TPdBtft(x) ; f0(x) = f(x) (3.2.1)

where at =
∫
Rn xft(x)dx is the barycenter of the measure µt, which we define here as

having density ft, and (Bt)t≥0 is a standard Brownian motion on Rn.
This system of equation is the same as the usual stochastic localization, except for the

addition of the matrix P which projects the random direction given by the Brownian onto
the subspace where we need to bend the potential. The idea of adding a projector first
appears in a paper of Klartag [55] for other purposes. The following facts and computations
are very standard, and we refer the reader to [35] and [68] for a more detailed exposition. In
particular, we need to assume that the support of µ is bounded to grant the existence and
well-definedness of the process for all time t ≥ 0 and then extend the result to arbitrary µ
by approximation; we again refer to [35].

Proposition 3.5. • Equation (3.2.1) defines a function-valued martingale ft in the
sense that for any continuous and compactly supported function ϕ :

∫
Rn

ϕ(x)ft(x)dx is a martingale (3.2.2)

• ft is a density and for all x ∈ Rn,

ft(x) =
1

Zt
e−

t
2
xTPx+ct·xf(x) := e−Vt(x) (3.2.3)

where ct is the solution of :

c0 = 0, dct = PdBt + Patdt (3.2.4)
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in particular we see that ∇2Vt ≥ min(η, t)Id

Proof. For the existence and well-definedness of the process, see the remark below. While
it is possible to check that ft as defined by (3.2.3) satisfy (3.2.1), we sketch a different
proof to lighten the exposition. Let mt =

∫
Rn ft(x)dx be the total mass at time t. Recall

thatat = 1
mt

∫
Rn xft(x)dx is the barycenter of ft. Then, by (3.2.1),

dmt =

(
P

∫
Rn

(x− at)ft(x)dx

)
.dBt

= (Pat(mt − 1)) .dBt.

It is easy to check that this simple stochastic differential equation admits a unique solution
(see [76] §5.2). It is given by mt = 1. To establish (3.2.3), we use (3.2.1) to compute:

d log ft(x) =
dft(x)

ft(x)
− 1

2

d[f(x)]t
ft(x)2

= (P (x− at)) · dBt −
1

2
(x− at)

TP (x− at)dt

= x · (PdBt + Patdt)−
1

2
xTPxdt+ dzt

= x · dct −
1

2
xTPxdt+ dzt

where dzt regroups the terms that do not depend on x. It encodes the normalizing factor
Zt. The expression (3.2.3) together with the proof that mt = 1 ensures that ft is a density.
The martingale property (3.2.2) is straightforward since, for any ϕ compactly supported,

d

∫
Rn

ϕ(x)ft(x)dx =

(∫
Rn

ϕ(x)P (x− at)ft(x)dx

)
· dBt.

Finally, the lower-bound on the Hessian of Vt is a direct consequence of (3.2.3).

Remark : Equation (3.2.1) defines an infinite system of stochastic differential equations.
It is therefore a priori unclear whether a solution exists. However there is a simpler,
although arguably less intuitive, way of defining the process. First notice that, given the
initial data f , at is but a function of t and ct defined as the barycenter of the density ft
(3.2.3). Hence, we can first define ct by equation (3.2.4) and then ft by equation (3.2.3),
and only then compute dft(x).

The next two lemmas are standard and straightforward computations in stochastic
localization which are obtained using Itô calculus. See [35] and ([68], Lemma 20). We
denote by Kt the covariance matrix of µt. Since the computation for its infinitesimal
change dKt is a bit tedious, we omit it to lighten the exposition.

Lemma 3.6. dat = KtPdBt
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Proof. By Itô calculus and (3.2.1),

dat = d

∫
Rn

xft(x)dx =

∫
Rn

x(x− at)
TPft(x)dx dBt

=

∫
Rn

x(x− at)
T ft(x)dx PdBt

=

∫
Rn

(x− at)(x− at)
T ft(x)dx PdBt = KtPdBt

Lemma 3.7. dKt =
∫
Rn(x− at)(x− at)

TP (x− at)
TdBtft(x)dx−KtPKtdt

Now we want to have an estimate of the concentration function of µ. We first need to
understand how the measure of a set evolves along the process.

Lemma 3.8. Let S ⊂ Rn be a measurable set and define st = µt(S), then :

d[s]t ≤ (∥PKtP∥op)dt

Proof.

dst =

∫
S
dft(x)dx = ⟨

∫
S
P (x− at)ft(x)dx, dBt⟩

So the quadratic variation is

d[s]t = max
|ξ|≤1

(∫
S
ξTP (x− at)ft(x)dx

)2

dt

≤ max
|ξ|≤1

(∫
S

(
ξTP (x− at)

)2
ft(x)dx

)(∫
S
ft(x)dx

)
dt

≤ max
|ξ|≤1

(ξTPKtPξ)dt ≤ (∥PKtP∥op)dt

To control the above quadratic variation, we need to control the norm of Qt = PKtP .
This is the purpose of the next section.

3.3 Control of the covariance matrix

We will see that the matrix Qt, seen as a k × k matrix, follows the same dynamics as
the covariance matrix of the standard stochastic localization in Rk. To be more precise,
it is the covariance matrix of the marginal density, which follows a stochastic localization
dynamics. Hence, to control its operator norm, we use the same strategy as Eldan.
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Lemma 3.9. Define gt(y) =
∫
Rn−k ft(y, x)dx the marginal density of the vector Yt = PXt,

where Xt is the random vector with density ft. The barycenter of Yt is bt = Pat. Then,

dgt(y) = (y − bt)
TdWtgt(y) (3.3.1)

where Wt is a standard Brownian in Rk. Moreover Qt is the covariance matrix of Yt and

dQt =

∫
Rk

(y − bt)(y − bt)
T (y − bt)

TdWtgt(y) dy −Q2
tdt (3.3.2)

Proof. The lemma follows from straightforward computations.

Remark : Equation (3.3.1) is the definition of the stochastic localization process used
by Lee and Vampala [68] and Klartag and Lehec [57]. It is also the process used by Chen
[28] when the initial measure is isotropic. Eldan [35] has a slightly different definition,
even if most of the ideas used to analyze one process transfer to the other. From now,
the main purpose of this section is to show that the operator norm of Qt is bounded
by a constant up to time T = c0

Ψ2
k max(log(k),1)

, with c0 a universal constant, see Lemma
3.14 below. This result essentially goes back to Eldan [35], in a slightly different setting,
and further appears in Lee-Vampala ([68], Lemma 58) and Chen ([28], Lemma 7). We
provide a simplified exposition of the proof of Chen. Following Eldan, we use the potential
Γt = Tr(Qpt ) =

∑k
i=1 λ

p
i for some p ≥ 1 where λ1 ≥ · · · ≥ λk are the eigenvalues of Qt. In

the following, we denote by (e1, . . . , ek) a basis of eigenvectors of Qt, where the dependence
on t and ω is implicit.

Lemma 3.10.

dΓt =
∑
i

pλp−1
i uii · dW −

∑
i

pλp+1
i dt+

∑
i ̸=j

pλp−1
i

|uij |2

λi − λj
dt+

∑
i

p(p− 1)

2
λp−2
i |uii|2dt

(3.3.3)
where for all i, j, uij =

∫
Rk(y − bt) · ei (y − bt) · ej (y − bt)gt(y)dy

Proof. The functional Φ : M 7→ Tr(Mp) defined on symmetric matrices is C∞. On the
dense open set U of matrices whose eigenvalues are pairwise distinct, the functionals M 7→
λi(M) are smooth by implicit value theorem. Let Q ∈ U , with eigenvalues λ1, . . . , λk
and eigenvectors e1, . . . , ek and let qi,j be the entries of Q in the basis e. The following
computations are standard, see ([34], Lemma 1.4.8)

∇λi(Q) = eie
T
i .

For the second derivative, the only non-zero terms are

∂2λi
∂q2i,j

=
2

λi − λj
.
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Combining this with (3.3.2) proves the result when Qt belongs to U , it is easy to see that
it extends to the general case.

Lemma 3.11.
d(Γ

1/p
t ) = vt · dWt + δt dt (3.3.4)

where

vt =

(∑
i

λpi

) 1
p
−1(∑

i

λp−1
i uii

)
(3.3.5)

and

δt ≤ (p− 1)

(∑
i

λpi

) 1
p
−1∑

i,j

λp−2
i |uij |2 (3.3.6)

Proof. By Ito calculus, d(Γ1/p
t ) = 1

pΓ
1
p
−1

t dΓt + Itô term. But x → x1/p is concave, so the
Itô term is negative. Injecting equation (3.3.3) yields

vt =

(∑
i

λpi

) 1
p
−1(∑

i

λp−1
i uii

)

and

δt ≤
p− 1

2

(∑
i

λpi

) 1
p
−1∑

i

λp−2
i |uii|2 +

(∑
i

λpi

) 1
p
−1∑

i ̸=j

λp−1
i

λi − λj
|uij |2.

Now, notice that uij = uji so that

∑
i ̸=j

λp−1
i

λi − λj
|uij |2 =

1

2

∑
i ̸=j

λp−1
i − λp−1

j

λi − λj
|uij |2

≤ 1

2

∑
i ̸=j

(p− 1)max(λi, λj)
p−2|uij |2

≤ p− 1

2

∑
i ̸=j

(λp−2
i + λp−2

j )|uij |2

≤ (p− 1)
∑
i ̸=j

λp−2
i |uij |2

which proves the lemma.

In the next two lemmas, we bound |vt| and δt in terms of Γ
1
p

t in order to apply a
Gronwall-type argument.

Lemma 3.12. There is a universal constant c > 0 such that for all t ≥ 0,

|vt| ≤ c

(
Γ

1
p

t

)3/2

a.s .



3.3. CONTROL OF THE COVARIANCE MATRIX 57

Proof. Let Ỹ = Yt − bt be distributed according to gt(y − bt)dt, where we drop the de-
pendence in t for readibility. Let Ỹ1, . . . Ỹk its coordinates in the basis e1, . . . , ek. Ỹ is a
centered log-concave vector of Rk of covariance Qt and for all 1 ≤ i ≤ k, EỸ 2

i = λi. Note
that for all 1 ≤ i ≤ k, uii = E

[
Ỹ 2
i Ỹ
]
. Then, for all θ ∈ Sk−1,

|uii · θ| = |E
[
Ỹ 2
i Ỹ · θ

]
|

≤ E
[
Ỹ 4
i

]1/2
E
[
(Ỹ · θ)2

]1/2
≲ E

[
Ỹ 2
i

]
∥Qt∥1/2op

≤ λiΓ
1/2p
t

where in the second inequality we used Borell’s lemma ([22]). This proves the lemma.

Lemma 3.13. For all t ≥ 0,

δt ≤ 4pΓ
2/p
t Ψ2

k

Proof. With the same notations as in the previous lemma, for all 1 ≤ i, j ≤ k, uij =

E
[
ỸiỸj Ỹ

]
. For all 1 ≤ i ≤ k, we define the matrix ∆i = E

[
ỸiỸ Ỹ

T
]
. Following Chen [28],

we compute :

∑
i,j

λp−2
i |uij |2 =

∑
i,j,k

λp−2
i E(ỸiỸj Ỹk)2

=
∑
i

λp−2
i Tr(∆2

i )

=
∑
i

λp−2
i Tr(∆iEỸiỸ Ỹ T )

=
∑
i

λp−2
i E

(
ỸiỸ

T∆iỸ
)

≤
∑
i

λp−2
i E(Ỹ 2

i )
1/2Var(Ỹ T∆iỸ )1/2

≤
∑
i

λp−2
i λ

1/2
i cP (Ỹ )

(
4E
[
|∆iỸ |2

])1/2
= 2cP (Ỹ )

∑
i

λ
p−3/2
i Tr(∆iQt∆i)

1/2

≤ 2cP (Ỹ )

(∑
i

λpi

)1/2(∑
i

λp−3
i Tr(∆2

iQt)

)1/2
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Now, ∑
i

λp−3
i Tr(∆2

iQt) =
∑
i

λp−3
i

∑
j,k

λj(∆i)
2
j,k

=
∑
i,j,k

λp−3
i λjE

(
ỸiỸj Ỹk

)2
≤
∑
i,j,k

λp−2
i E(ỸiỸj Ỹk)2

where in the last inequality, we used the convexity inequality : λp−3
i λj ≤ p−3

p−2 λ
p−2
i +

1
p−2 λ

p−2
j . Plugging this into the inequality above yields :

∑
i,j

λp−2
i |uij |2 ≤ 2cp(Ỹ )

(∑
i

λpi

)1/2
∑

i,j

λp−2
i |uij |2

1/2

which implies ∑
i,j

λp−2
i |uij |2 ≤ 4cp(Ỹ )2

(∑
i

λpi

)
.

Plugging this into (3.3.6) remarking that cP (Ỹ ) = cP (Yt) yields :

δt ≤ 4pΓ
1/p
t cP (Yt)

2

≤ 4pΓ
1/p
t ∥Qt∥opΨ

2
k

≤ 4pΓ
2/p
t Ψ2

k.

We are now in position to control the growth of Γt by a Gronwall-type argument.

Lemma 3.14. There are constants c0, c1 > 0 such that for any t ≤ T = c0
Ψ2

k max(log(k),1)
,

we have :
P
(
max
s∈[0,t]

∥Qs∥op ≥ 10

)
≤ exp

(
−c1
t

)
.

As a consequence, for any measurable set S ⊂ Rn of measure µ(S) = 1/2, setting st =
µt(S), we have :

P([s]t ≥ 10t) ≤ exp
(
−c1
t

)
Proof. Set p = max(log(k), 1), so that

Γ
1/p
0 ≤ e
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as we will use repeatedly in the proof. Recall that

d(Γ
1/p
t ) = vt · dWt + δt dt

and define the stopping time τ = inf{t ≥ 0 , Γ
1/p
t ≥ 3Γ

1/p
0 }. We denote by Mt the

martingale term Mt =
∫ t
0 vs · dWs. For all t ≥ 0 we have :

Γ
1/p
t∧τ = Γ

1/p
0 +Mt∧τ +

∫ t∧τ

0
δsds

≤ Γ
1/p
0 +

∫ t∧τ

0
4pΓ2/p

s Ψ2
kds+Mt∧τ (By Lemma 3.13)

≤ Γ
1/p
0 + 36pΓ

2/p
0 Ψ2

k t+Mt∧τ

(
Γ2/p
s ≤ 9Γ

2/p
0

)
≤ Γ

1/p
0

(
1 + 36emax(log(k), 1)Ψ2

k t
)
+Mt∧τ

(
Γ
2/p
0 ≤ eΓ

1/p
0

)
We choose c0 ≤ 1

36e , so that for all t ≤ T = c0
Ψ2

k max(log(k),1)
,

Γ
1/p
t∧τ ≤ 2Γ

1/p
0 +Mt∧τ .

Consequently, for all such t,

P(τ ≤ t) = P(Γt∧τ = Γτ )

≤ P
(
Mt∧τ ≥ Γ

1/p
0

)
.

Now, τ being a stopping time, Mt∧τ is a martingale, whose quadratic variation is

[M ]t∧τ =

∫ t∧τ

0
|vs|2ds ≤ c

∫ t∧τ

0
3
(
Γ
1/p
0

)3/2
ds ≤ 3ce3/2 t = c̃1 t

where in the first inequality we used Lemma 3.12. By Lemma 3.4 we get :

P(τ ≤ t) ≤ P
(
Mt∧τ ≥ Γ

1/p
0

)
= P

(
Mt∧τ ≥ Γ

1/p
0 , [M ]t∧τ ≤ c̃1 t

)
≤ exp

(
−Γ

2/p
0

2c̃1t

)
≤ exp

(
−c1
t

)
.

With c1 = 1
2c̃1

. Now notice that 3Γ
1/p
0 ≤ 3e ≤ 10 which proves the first statement. The

second statement follows from Lemma 3.8
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3.4 Proof of the main theorem

Take a subset S of measure 1/2 and r > 0, for t ≤ T = c0
Ψ2

k max(log(k),1)
we have :

µ(Scr) = Eµt(Scr)

≤ E
[
µt(S

c
r)1µt(S)≥ 1

4

]
+ P

(
µt(S) ≤

1

4

)
≤ 4 exp(−1

4
min(η, t)r2) + P(s0 − st ≥

1

4
, [s]t ≤ 10t) + P( [s]t ≥ 10t) (By (3.1.2))

≤ 4 exp(−1

4
min(η, t)r2) + exp

(
− 1

320t

)
+ exp

(
−c1
t

)
(By Lemmas 3.4 and 3.14)

≤ 4

(
exp(−1

4
min(η, t)r2) + exp

(
−c4
t

)) (
with c4 = min(c1,

1

320
)

)
Define β = min(η, T ) and choose t(r) = min(η, T, 1r ) = min(β, 1r ) we get that :

• If r ≥ 1
β ,

µ(Scr) ≤ 8 exp(−c5r) (3.4.1)

where c5 = min(1/4, c4)

• If r ≤ 1
β ,

µ(Scr) ≤ 4

(
exp

(
−1

4
min(η, T )r2

)
+ exp

(
− c4
min(η, T )

))
≤ 8 exp

(
−c5βr2

)
(3.4.2)

Overall this implies that for all r > 0,

µ(Scr) ≲ exp(−min(c0r, c1βr
2))

which is the desired result.



Chapter 4

Log-Sobolev inequalities for
subgaussian log-concave probabilities

This chapter is based on a preprint, to appear on arXiv.

4.1 Introduction and results

A Borel probability µ on Rn is said to satisfy a logarithmic Sobolev inequality with constant
ρ > 0 if for any locally Lipschitz function f : Rn 7→ R, one has,

Entµ(f
2) ≤ 2ρ2

∫
Rn

|∇f |2dµ, (4.1.1)

where for a nonnegative function g, Entµ(g) = Eµ(g log g)−Eµ(g) logEµ(g) and |.| denotes
the euclidean norm. We denote by ρLS(µ) the optimal constant ρ such that (4.1.1) holds.
It is well known that the log-Sobolev inequality (4.1.1) implies gaussian concentration. In-
deed, the Herbst argument implies a quadratic bound on the logarithmic Laplace transform
of Lipschitz functions.

log

∫
esfdµ ≤

ρ2s2|f |2Lip
2

+ s

∫
Rn

fdµ, (4.1.2)

where |f |Lip is the Lipschitz constant of f . Markov’s inequality then implies gaussian
concentration of f around its mean,

µ(|f − Eµ(f)| ≥ t) ≤ 2e
− t2

|f |2
Lip

ρ2
. (4.1.3)

Taking f to be a linear form, we see that µ must have sub-gaussian tails.

In a related direction, we say that µ satisfy a Poincaré inequality with constant K > 0

61
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if for any locally Lipschitz function f : Rn 7→ R, one has,

Varµ(f) ≤ K2

∫
Rn

|∇f |2dµ, (4.1.4)

where V arµ(f) = Eµ(f2) − Eµ(f)2is the variance of f . We denote by CP (µ) the optimal
constant K such that (4.1.4) holds. It is classical that the log-Sobolev inequality (4.1.1) is
stronger than (4.1.4),

CP (µ) ≤ ρLS(µ).

Not all measure may satisfy a Poincaré or log-Sobolev inequality. Even under good
integrability assumptions, if the support of µ is disconnected, one may build a non-constant
function whose gradient vanishes µ almost everywhere, violating (4.1.4), hence also (4.1.1).
A general class of measure which avoids double-bump type distribution is the class of log-
concave measures, that is measures that write dµ = e−V (x)dx, for some convex V : Rn 7→
R∪{+∞}. For such measures, the well-known KLS conjecture proposes that it is enough,
up to a universal constant, to test linear functions in (4.1.4).

Conjecture 4.1 (KLS). There exists a constant C > 0 such that for any n ∈ N and any
log-concave probability µ on Rn,

CP (µ)
2 ≤ C sup

θ∈Sn−1

Varµ (< ., θ >)

The KLS conjecture has attracted a lot of attention since its original formulation in [50],
culminating in a polylog estimate by Klartag and Lehec [62]. By analogy, it is natural to
conjecture that the log-Sobolev constant of log-concave probabilities should be controlled
by the Ψ2 norm of the coordinates.

Conjecture 4.2. There exists a constant C > 0 such that for any n ∈ N and any centered
log-concave probability µ on Rn,

ρLS(µ) ≤ C sup
θ∈Sn−1

| < ., θ > |Ψ2(µ)

where for a function g : Rn 7→ R, |g|Ψ2(µ) = inf
{
t > 0 / Eµ

[
exp(g2/t2) ≤ 2

]}
.

Let us slightly reformulate.

Definition 4.3. Let µ be a probability, and bµ its barycenter. We say that µ is α sub-
gaussian if

sup
θ∈Sn−1

| < x− bµ, θ > |Ψ2(µ) ≤ α

for some α > 0.
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We introduce the quantity
Gn = sup

µ
ρLS(µ) (4.1.5)

where the supremum runs over all 1 sub-gaussian log-concave measures µ on Rn. By
scaling, Conjecture 4.2 is equivalent to the boundedness of Gn.

Bobkov proved [19] that if µ is a centered log-concave probability on Rn, then it satisfies
a log-Sobolev inequality with constant of order | |X| |Ψ2 where X is distributed according
to µ. We always have

| |X| |Ψ2 ≲
√
n sup
θ∈Sn−1

| < ., θ > |Ψ2(µ)

where for two quantities a and b depending on parameters, we write a ≲ b when there
exists a universal constant c > 0 such that a ≤ cb (see Proposition 4.19). This inequality
in tight in general, since | |X| |2Ψ2

≥ log(2)E|X|2 which is obvious from the definition.
Hence, Bobkov’s result can be reformulated as

Gn ≲
√
n.

Our first result is the following improvement:

Theorem 4.4. There exists a constant C > 0 such that for all n ≥ 1

Gn ≤ C n1/4.

In another direction, a well-known result of Bobkov [20] asserts that for a log-concave
vector X,

c2P (X) ≲ Var(|X|2). (4.1.6)

In the case of the Euclidean ball, the inequality is tight, up to constant. In the same spirit,
we show that

Theorem 4.5. Let X be a log-concave vector, then

ρ2LS(X) ≲ ||X|2 − E|X|2|ψ1

Yet again, the bound is tight, up to constants, when X is uniform over the Euclidean
ball. As in [20], we use a localization argument to reduce the problem to dimension 1.

Next, we look at two subclasses of sub-gaussian log-concave probabilities. The first one
is rotationally invariant log-concave probabilities. For this class we explain that Conjecture
4.2 holds. Using a result of Bobkov [21], we show that:

Theorem 4.6. Let µ be a rotationally invariant log-concave probability. There exists a
universal constant C > 0 such that,

ρLS(µ) ≤ C | < ., e1 > |Ψ2(µ)
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where e1 is the first element of the canonical basis.

The second one is the class of tilt-stable log-concave probabilities.

Definition 4.7. We say that a measure µ is β tilt-stable, for some β > 0, if for all h ∈ Rn

|Cov(τhν)|op ≤ β2In.

where τhµ = 1
Zh
µeh·x, and |.|op denotes the operator norm.

Tilt-stability is a stronger requirement than sub-gaussianity.

Lemma 4.8. Let β > 0 µ be a β-tilt stable measure, then µ is Cβ subgaussian.

We postpone its proof to Section 4.2 (see Lemma 4.18). As a consequence, Conjecture
4.2 implies the weaker

Conjecture 4.9. Let µ be a β tilt-stable log-concave probability, then

ρLS(µ) ≲ β.

We introduce the quantities
G̃n = sup

µ
ρLS(µ)

and
K̃n = sup

µ

∣∣ |X| − E|X|
∣∣
Ψ2

where both suprema run over all log-concave probabilities µ of Rn that are 1 tilt-stables.
By scaling, Conjecture 4.9 then reads

G̃n ≲ 1.

Furthermore, since the norm is 1-Lipschitz, Proposition 4.15 below shows that

K̃n ≲ G̃n. (4.1.7)

We show the following reverse inequality:

Theorem 4.10.
G̃n ≲ n1/6K̃n

1/3

Remark : Plugging (4.1.7) into Theorem 14 only yields G̃n ≲ n1/4, which is a corollary
of Theorem 4.4. Any improvement over the inequality K̃n ≲ n1/4 provides an improvement
for G̃n.

Let us say a word about the proof strategy.
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Definition 4.11. Let β > 0. We say that a measure µ is β strongly tilt-stable if

sup
t>0 h∈Rn

|Cov
(

1

Zt,h
µe−t|x|

2+h·x
)
|op ≤ β2

By definition, strong tilt-stability implies tilt-stability. In Section 4.4, we show that

Lemma 4.12. If µ is β strongly tilt-stable and log-concave, then

ρLS(µ) ≲ β

Finally, we show that log-concave tilt-stable measures are strongly log-concave, but
with an extra factor n1/6K̃n

1/3
.

Lemma 4.13. Let µ be a log-concave measure on Rn that is 1 tilt-stable, then µ is
n1/6K̃n

1/3
strongly tilt-stable.

Combining Lemmas 4.12 and 4.13 proves Theorem 4.10.

Organization of the Chapter

In Section 4.2, we recall some backgrounds facts and prove Theorem 4.4. In Section 4.4,
we investigate an approach to Conjecture 4.2 via stochastic localization. The only result
from this section that we shall use later on is Corollary 4.35, which was first established
in [29]. Section 4.3 is devoted to the proof of Theorem 4.5. Finally, in Section 4.5, we
establish Theorem 4.6 and 4.10.

4.2 Background and Proof of Theorem 4.4

We start by recalling useful facts about sub-gaussian and sub-exponential random variables,
for which a good reference is [81] and log-concave vectors.

4.2.1 Sub-gaussian random variables

Definition 4.14. Let X be a real random variable. Then the following properties are
equivalent:

1. There exists K1 > 0 such that

P(|X| > t) ≤ 2 exp(−t2/K2
1 ) for all t > 0.

2. There exists K2 > 0 such that

E exp(X2/K2
2 ) ≤ 2.
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3. There exists K3 > 0 such that

E exp(s(X − EX)) ≤ exp(s2K2
3 ) for all s ∈ R

Furthermore, the optimal constants in the three inequalities are all equivalent up to
some universal constants. If X satisfies any of the above properties, we say that is X is
subgaussian, and we define :

|X|Ψ2 = inf
{
t > 0 / E

[
exp(X2/t2) ≤ 2

]}
Finally, for a measure µ on Rn, and a function f : Rn 7→ R, we define |f |Ψ2(µ) = |f(X)|Ψ2

where X is distributed according to µ, X ∼ µ. In that terminology, the Herbst’s argument
(4.1.3) may be reformulated as :

Proposition 4.15. Let µ be a probability satisfying a log-Sobolev inequality. Then for any
centered Lipschitz function f ,

|f |Ψ2(µ) ≲ ρLS(µ) |f |Lip

It is seen, by an application of Jensen’s inequality, that the Ψ2 norm of a variable
controls its L2 norm, as mentioned in the introduction.

Lemma 4.16. Let X be a sub-gaussian random variable, then

Var(X) ≤ EX2 ≤ log(2)|X|2Ψ2

As a consequence, using the triangle inequality, one can show that centering only
improves the Ψ2 behavior.

Lemma 4.17. Let X be a real random variable, then

|X − EX|Ψ2 ≲ |X|Ψ2 .

We are now in position to prove that tilt-stability implies subgaussianity.

Lemma 4.18. Let X be a 1-tilt stable random vector, then for all t ∈ R and θ ∈ Sn−1

logEet(X−EX)·θ ≤ t2/2

Proof. Without loss of generality, we assume that X is centered. Write µ for the law of
X. Denote by Lν the log-Laplace transform of ν, that is for any h ∈ Rn,

Lν(h) = log

∫
Rn

eh·xdν.



4.2. BACKGROUND AND PROOF OF THEOREM 4.4 67

It is classical, and easily seen by direct differentiation, that the derivatives of the log-
Laplace involves the moments of the measure:

∇Lν(h) = bar(τhν) (4.2.1)

∇2Lν(h) = Cov(τhν). (4.2.2)

Since Lν(0) = 0 and ∇Lν(h) = bar(ν) = 0, integrating (4.2.2) finishes the proof.

Notice that this implies Lemma 4.8. Finally, we establish the following deviation bound
for the norm of a vector with sub-gaussian marginals.

Proposition 4.19. Let X be a random vector in Rn, define σSG(X) = supθ∈Sn−1 |X ·θ|Ψ2.
Then, there exists a universal constant c0 > 0 such that for all t ≥ 2c0

√
nσSG(X)

P(|X| ≥ t) ≤ exp

(
− t2

2c0σ2SG(X)

)
.

Proof. We use a simple net argument, and we work with sub-optimal constants to lighten
the proof. Let N be a 1

2 -net of the sphere. That is a collection of points on the sphere
such that any point on the sphere is at distance at most 1

2 of N . It is classical that we
might choose N such that

|N | ≤ e2n

where in that context |.| stands for the cardinal of the set. Now, for any x ∈ Rn, we have
that

|x| ≤ 2 sup
θ∈N

x · θ. (4.2.3)

Now, we use a simple union bound to establish the property. Let t ≥ 0,

P(|X| ≥ t) ≤ P (∃θ ∈ N / x · θ ≥ t)

≤ |N | exp
(
−t2/c0σ2SG(X)

)
≤ exp

(
2n− t2/c0σ

2
SG(X)

)
≤ exp

(
− t2

2c0σ2SG(X)

)
for t ≥ 2c0

√
nσSG(X).

where we chose c0 ≥ 1.

4.2.2 Sub-exponential random variables

Definition 4.20. Let X be a real random variable. We say that if X is sub-exponential
if there exists K > 0 such that

E exp(|X|/K) ≤ 2.
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In that case, we denote by |X|ψ1 the lowest such K.

Just like the ψ2 norm, the ψ1 norm controls the L2 norm.

Lemma 4.21. Let X be a sub-exponential random variable, then

Var(X) ≤ EX2 ≤ 2|X|2Ψ1

Proof. The lemma follows from the real inequality 1 + x2 ≤ e2|x|.

And we deduce the centering lemma

Lemma 4.22. Let X be a real random variable, then

|X − EX|Ψ1 ≲ |X|Ψ1 .

4.2.3 Log-concave vectors

For a probability µ, we introduce its concentration function αµ defined for r ≥ 0 by

αµ(r) = sup
A,µ(A)= 1

2

µ(Acr)

where Ar is the r-extension of A:

Ar = {x, d(x,A) ≤ r}

where d denotes the Euclidean distance. It is classical that if µ satisfies a log-Sobolev
inequality with constant ρ then

αµ(r) ≤ exp(−r2/ρ2)

which is a reformulation of (4.1.3).
The following result, which reduces the study of log-Sobolev inequalities for log-concave

vectors to the a priori weaker gaussian concentration has been established by E.Milman in
a series of papers([72],[74],[75])

Theorem 4.23. Let µ be a log-concave measure, and K > 0 such that

αµ(r) ≤ exp(−r2/K2)

then,
ρLS(µ) ≲ K.

The following is the celebrated Bakry-Emery criterion [8], which provides a quantitative
bound on the log-Sobolev constant of strongly log-concave measures:
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Theorem 4.24. Let µ = e−V (x) be a log concave probability and assume that ∇2V ≥ tId

for some t > 0, then

ρ2LS(µ) ≤
1

t
.

Finally, we shall need the following results about one-dimensional log-concave vectors

Lemma 4.25. Let X be a log-concave real random variable with unit variance Var(X) = 1.
Then there exists universal constants c0, c1, c2 such that

1.
Var(X2)1/2 ≥ c0.

2.
Var((X − EX)2)1/2 ≤ c1.

3.
|X − EX|ψ1 ≤ c2.

Proof. The existence of c1 is just the fact that the thin-shell conjecture holds true in
dimension one. The existence of c2 is a reformulation of Borell’s lemma.

Finally, there are various ways of proving the existence of c0. We replicate the proof
given in [20]. We use the following extension of Borell’s inequality proved by Bourgain
[24]: If Q is a polynomial of degree k and p > 0, there exists a universal constant C(k, p)
such that for all log concave random vector Z in any dimension,

|Q(Z)|p = (E|Q(Z)|p)1/p ≤ C(k, p)|Q(Z)|0 = C(k, p)eE log|Q(Z)|.

In our case, we write :

Var(X2)1/2 = |X2 − EX2|2 = |(X + (EX2)1/2)(X − (EX2)1/2)|2
≥ |(X + (EX2)1/2)(X − (EX2)1/2)|0
= |(X + (EX2)1/2)|0|(X − (EX2)1/2)|0

≥ 1

C(1, 2)2
|(X + (EX2)1/2)|2|(X − (EX2)1/2)|2

≥ 1

C(1, 2)2
Var(X)

=
1

C(1, 2)2
.
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4.2.4 A short proof of Theorem 4.4

Here we give a very short proof of Theorem 4.4, the main ingredient is the following
estimate on the concentration function of log-concave probabilities, proved in [16].

Theorem 4.26. Let µ be a log-concave probability with covariance matrix A, then there
exists a constant c1 > 0, such that

αµ(r) ≤ exp

(
−c1min

(
r

|A|1/2op

,
r2

|A|opΨ2
n log(n)

))
We are now in position to prove Theorem 4.4.

Proof. Let µ be a 1 sub-gaussian log-concave probability and letX be distributed according
to µ. We assume, without loss of generality that µ is centered. Let A be the covariance of
µ. By Lemma 4.16,

A = Cov(µ) ≤ In

By Theorem 4.23, it is enough to estimate αµ. Let S be any set of half measure, µ(S) = 1/2.
By Markov’s inequality,

P(|X| ≥ 2
√
n) ≤ P(|X| ≥ 2Tr(A)1/2) ≤ 1

4
,

so that S intersects the ball of radius 2
√
n. Hence for any r ≥ 4

√
n, Scr ⊂ B(0, r/2)c.

Using Proposition 4.19, we get that

αµ(r) ≤ exp

(
−r

2

c

)
for r ≥ R0 = c

√
n(X). (4.2.4)

for some absolute constant c > 0. For the small values of r, remark that, for r ≤ R0, we
have that r ≤ r2

R0
. Plugging this into Theorem 4.26 yields for all r ≤ R0,

αµ(r) ≤ exp

− c′r2

max
(√

n|A|1/2op , |A|opΨ2
n log(n)

)


≤ exp

(
− c′′r2

√
n|A|1/2op

)
(4.2.5)

where we used the fact that Ψ2
n log(n) = O(

√
n) which has been known since the break-

through of Chen [28]. Combining (4.2.4) and (4.2.5) finally yields

αµ(r) ≤ exp

 −c′′′r2

max
(
1,
√
n|A|1/2op

)
 ≤ exp

(
−c′′′r2√

n

)
which concludes the proof.
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4.3 Proof of Theorem 4.5

In this section, we prove Theorem 4.5. The proof consists in a reduction to dimension one
via a localization argument, together with a solution for the one-dimensional case.

4.3.1 The one dimensional case

Our aim is to prove the following lemma.

Lemma 4.27. Let X be a log-concave random variable on the real line, then

ρ2LS(X) ≲ |X2 − EX2|ψ1 .

The first step is to show that the right-hand-side is minimized, up to constants, when
X is centered:

Lemma 4.28. Let Y be a centered log-concave random variable on the real line, then

|Y 2 − EY 2|ψ1 ≲ inf
a∈R

|(Y + a)2 − E(Y + a)2|ψ1

Proof. Let Y be as in the definition. By homogeneity we may assume that EY 2 = 1, that
is, Y is isotropic. We temporarily adopt the notation

K = |Y 2 − EY 2|ψ1 .

Let c0, c1, c2 be the three constants from Lemma 4.25. Recall that the standard deviation
is a lower bound for the ψ1 norm (Lemma 4.21).

We distinguish two cases:

• If K ≤ 8c1c2

Then for any a ∈ R, the log-concave vector Y + a has unit variance, thus

Var((Y + a)2)1/2 ≥ c0.

Thus,

|(Y + a)2 − E(Y + a)2|ψ1 ≥ 1

2
Var((Y + a)2)1/2

≥ c0
2

≥ c0
16c1c2

K

• If K ≥ 8c1c2
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Let a ∈ R, expanding the squares, we find that

|(Y + a)2 − E(Y + a)2|ψ1 = |Y 2 + 2aY − 1|ψ1 .

We compute:

Var(Y 2 + 2aY − 1) = Var(Y 2 + 2aY )

≥
(
Var(2aY )1/2 −Var(Y 2)1/2

)2
Now, since Y is an isotropic log-concave random variable,

c0 ≤ Var(Y 2)1/2 ≤ c1.

Thus, we get that

|Y 2 + 2aY − 1|ψ1 ≥ 1

2
Var(Y 2 + 2aY − 1)1/2

≥ 1

2

(
Var(2aY )1/2 −Var(Y 2)1/2

)
≥ 1

2
(2a− c1) . (4.3.1)

We again make a case disjunction.

– If a ≥ K
4c2

+ c1
2 , we get from (4.3.1) that

|Y 2 + 2aY − 1|ψ1 ≥ K

4c2

– If a ≤ K
4c2

+ c1
2 we simply use the triangle inequality :

|Y 2 + 2aY − 1|ψ1 ≥ |Y 2 − 1| − |2aY |ψ1

≥ K − 2a|Y |ψ1

≥ K − 2ac2

≥ K/2− c1c2

≥ K/4

In the end, we get that

|(Y + a)2 − E(Y + a)2|ψ1 ≥ K

C

with C = max(4, 4c2,
c0

16c1c2
), which is the desired result.
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Now we lower bound the quantity |Y 2−EY 2|ψ1 when Y is one dimensional and centered.

Lemma 4.29. Let Y be a centered log-concave random variable on the real line, then

|Y 2|ψ1 ≲ |Y 2 − EY 2|ψ1 .

Proof. By the triangle inequality,

|Y 2|ψ1 ≲ |Y 2 − EY 2|ψ1 + |EY 2|ψ1

≲ |Y 2 − EY 2|ψ1 + EY 2

≲ |Y 2 − EY 2|ψ1 +Var(Y )

Now, applying Lemma 4.25 one more time,

Var(Y ) ≲ Var(Y 2)1/2

≲ |Y 2 − EY 2|ψ1

which concludes the proof.

Now we are in position to prove Lemma 4.27. Let X be a log-concave real random
variable, and let Y = X − EX. Recall Bobkov’s result :

ρLS(X) = ρLS(Y ) ≲ |Y 2|ψ1 .

Combining Lemmas 4.29 and 4.28, we get that

ρLS(X) ≲ |Y 2|ψ1

≲ |Y 2 − EY 2|ψ1

≲ |X2 − EX2|ψ1 ,

which is Lemma 4.27.

4.3.2 A localization argument

We use the following geometric version of the localization lemma:

Lemma 4.30. Let µ be a log-concave probability, and S be any measurable set. Then there
exists a disintegration

µ = Eµ∞(ω)

where almost surely
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• µ∞ is one dimensional and log-concave

• µ∞(S) = µ(S)

In the sequel we drop the dependence in ω.
Now, for a measure µ, we define the quantity

1

kµ
= inf

S

µ+(S)

µ(S)(1− µ(S))
√
log 1

µ(S)

= inf
S

µ+(S)

Eµ(S)

Ledoux ([65]) showed that for all log-concave measure µ,

kµ ≃ ρLS(µ).

Now, we fix a set S and a disintegration µ = Eµ∞ given by the localization lemma. We
may write:

µ+(S) = Eµ+∞(S)

≥ E
(

1

kµ∞
Eµ∞(S)

)
= E

(
1

kµ∞

)
Eµ(S)

Thus we need to estimate 1
kµ∞

. Now, let a ≥ 0 and denote by Ka = ||X|2 − a|Ψ1 where
X ∼ µ. Write X∞ for the vector having density µ∞. We have that

2 ≥ Ee(|X|2−a)/Ka = E
[
Ee(|X∞|2−a)/Ka

]
Thus by Markov’s inequality, with probability greater than 1/2,

Ee(|X∞|2−a)/Ka ≤ 4.

We work on that event that we denote by U . Now since X∞ is one-dimensional, we may
write X∞ = b∞ + ξ∞θ∞ where ξ∞ is log concave, |θ| = 1 and b∞ ⊥ θ∞. Thus,

Ee(|X∞|2−a)/Ka = Ee(|b∞|2+ξ2∞−a)/Ka ≤ 4

That is, we have shown that

|ξ2∞ − (a− |b|2)|ψ1 ≤ 2Ka

In particular, although that is not necessary,

|ξ2∞ − Eξ2∞|ψ1 ≲ Ka (4.3.2)



4.4. AN APPROACH VIA STOCHASTIC LOCALIZATION 75

since the mean minimizes the ψ1 norm up to a universal constant. Now, using Lemma
4.27, we may rewrite (4.3.2) as

1

kµ∞
≳

1

Ka
(4.3.3)

Finally putting all together we get

µ+(S) ≥ E

(
1

kµ∞

)
Eµ(S)

≥ E

(
1

kµ∞
1U

)
Eµ(S)

≳
1

Ka
Eµ(S)

S being arbitrary, we get
kµ ≲ Ka = ||X|2 − a|Ψ1 .

Taking a = EX2 concludes the proof.

4.4 An approach via stochastic localization

In this section we describe a general strategy to estimate the log-Sobolev constant of a
log-concave probability using stochastic localization. We briefly recall the definition and
basic properties of the process in the Lee-Vampla formulation [67], we refer to [35],[67],[28]
and [62] for a more detailed exposition.

Let µ be log-concave probability on Rn with density f . For t ≥ 0 and h ∈ Rn we
introduce the probability

µt,h =
1

Zt,h
µe−t|x|

2+h·x (4.4.1)

which density will be denoted by ft,h and where Zt,h is a normalizing constant. We further
denote by

at,h =

∫
Rn

x dµt,h

and
At,h =

∫
Rn

(x− at)(x− at)
Tdµt,h

the barycenter and covariance matrix of the measure µt,h. Consider the stochastic differ-
ential equation:

h0 = 0 dht = at,htdt+ dBt (4.4.2)

where (Bt)t≥0 is a standard Brownian motion. The stochastic localization of µ is the
measure-valued process (µt,ht)t≥0, which by a slight abuse of notations, we hereby denote
by (µt)t≥0. Accordingly, we drop the dependence in ht to denote by ft, at andAt the density,
barycenter, and covariance matrix of the process. The following lemma is classical, and is
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an alternate definition of the process.

Lemma 4.31. For any x ∈ Rn,

dft(x) = (x− at)ft(x) · dBt

As an immediate consequence, we obtain

Lemma 4.32. For any measurable function φ, the process
(∫

Rn φdµt
)
t≥0

is a martingale.

To avoid unnecessary constants, we introduce for a measure ν with barycenter b,

σ̃(ν) = inf{K > 0, ∀u ∈ Rn, EX∼νe
(X−b)·u ≤ e

u2K2

2 }.

By Definition 4.14, we have that σ̃ ≃ σSG. We define σ̃t = σ̃(µt). The following couple of
lemmas show that in order to bound the log-Sobolev constant of µ, it is enough to bound
σ̃t. Let g be a locally-Lipschitz function, and Mt =

∫
g2dµt.

Lemma 4.33. For all T > 0,

Entµ(g
2) = EEntµT (g

2) + Ent(MT )

= EEntµT (g
2) + E

∫ T

0

d[M ]t
2Mt

≤ 2

T
Eµ(|∇g|2) + E

∫ T

0

d[M ]t
2Mt

Proof. The first line follows from the martingale property (Lemma 4.32), while the second
one is derived from straightfroward Itô calculus. Finally for the last inequality we used
the fact that µt = µt,ht satisfies the Bakry-Emery condition (Theorem 4.24), which can be
seen from the definition (4.4.1).

Lemma 4.34.
d[M ]t
2Mt

≤ σ̃t
2Entµt(g

2).

Proof. Let t ≥ 0, we first compute

dMt = d

∫
g2dµt =

(∫
g2(x− at)µt

)
· dBt.
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Let λ > 0 a parameter to be determined later. From the previous computation,

d[M ]t = |
∫
g2(x− at)µt|2

= sup
θ∈Sn−1

(∫
g2(x− at) · θµt

)2

= λM2
t sup
θ∈Sn−1

(∫
g2

Mt

(x− at) · θ√
λ

µt

)
≤ λM2

t sup
θ∈Sn−1

(
Entµt

(
g2

Mt

)
+ logEµte

(x−at)·θ√
λ

)2

≤ λM2
t

(
1

Mt
Entµt

(
g2
)
+
σ̃t

2

2λ

)2

≤ 2

(
λEnt2µt(g

2) +
σ̃t

4M2
t

4λ

)
where in the last inequality, we used that (a + b)2 ≤ 2(a2 + b2) for reals a, b. Finally, we
get that for any λ > 0,

d[M ]t
2Mt

≤
λEnt2µt(g

2)

Mt
+
σ̃t

4Mt

4λ
.

Choosing the optimal λ = σ̃t2Mt
2Entµt (g)

concludes the proof.

At this point, it is unclear whether a high-probability bound on σ̃t is enough to establish
a log-Sobolev inequality for µ. We explain the difference with what happens in the context
of the KLS conjecture, where one seeks to bound the variance of an arbitrary function φ.
Denoting by Nt =

∫
Rn φdµt the analogs of Lemmas 4.33 and 4.34 are the followings

For all T ≥ 0 Varµ(φ) ≤
1

T
Eµ
(
|∇φ|2

)
+ E

∫ T0

0
d[N ]t (4.4.3)

and the control on d[N ]t:
d[N ]t ≤ |At|opVarµt(φ) (4.4.4)

which is obtained by Cauchy-Schwarz (see for instance [29]). Now, suppose that µ is
isotropic, for normalization sake, one typically proves a bound of the form :

P

(
sup

0≤t≤T0
|At|op ≥ 2

)
≤ exp

(
− c

T0

)
(4.4.5)

for some T0 ≥ 0. Now, by a theorem of E.Milman, we might assume that φ is 1-Lipschitz.
Furthermore, we might also assume that µ has a bounded support, of polynomial diameter
D (actually one can assume that D ≲

√
n). In that case, one has the trivial almost sure

upper-bound
For all t ≥ 0, Varµt(f) ≤ D2 a.s. (4.4.6)
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Using this, one can bound the second term of the right hand side of (4.4.3) as:

E
∫ T0

0
d[N ]t ≤ 2

∫ T0

0
EVarµtφ dt+D2 exp

(
− c

T0

)
≤ 2T0Varµ(φ) +D2 exp

(
− c

T0

)

Now, since D is polynomial, if T0 ≤ c1
log(n) , D

2 exp
(
− c
T0

)
= o(1). Plugging this into (4.4.3)

yields:

Varµ(φ) ≤
2

T0
Eµ
(
|∇φ|2

)
+ o(1)

≤ 2

T0
+ o(1)

≲
2

T0
.

This finally implies that CP (µ)2 ≲ 1
T0

.

In our case, although it is enough to prove gaussian concentration for 1-Lipschitz func-
tion by Theorem 4.23, no such reduction is available at the level of the log-Sobolev in-
equality, so that it is unclear whether a high-probability bound for σ̃t of the type (4.4.5)
would be enough to conclude that ρLS(µ)2 ≲ 1

T0
. However, it is clear that an almost sure

bound on σ̃t is enough. As a consequence, we retrieve the following corollary, which already
appears in [29].

Corollary 4.35. Let µ be a M strongly log-concave log-concave probability on Rn

ρLS(µ) ≤ 2M

Proof. Recall that by definition,

M2 = sup
t>0, h∈Rn

|Cov( 1

Zh,t
µe−t|x|

2+h·x)|op.

Set t > 0 and h0 ∈ Rn. The fact that

sup
h∈Rn

|Cov( 1

Zh,t
µe−t|x|

2+h·x)|op ≤M2

shows that the measure µt,h0 is M tilt-stable. From Lemma 4.18, this implies that
σ̃(µt,h0) ≤M . By letting t and h0 take arbitrary values, we see that

σ̃t ≤M a.s.

Plugging this into Lemma 4.34 then in Lemma 4.33 yields, for an arbitrary function g, and
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T > 0:

Entµ(g
2) ≤ 2

T
Eµ(|∇g|2) +M2

∫ T

0
EEntµtdt

≤ 2

T
Eµ(|∇g|2) +M2TEntµ(g

2)

Choosing T = 1
2M2 yields the result.

4.5 Some subclasses of subgaussian log-concave probabilities

4.5.1 Rotationally invariant measures

We say that a measure µ is rotationally invariant if for any orthogonal transformation
R ∈ O(n) and any measurable set A, µ(RA) = µ(A). When µ is absolutely continuous
with respect to the Lebesgue measure then dµ = λ(|x|)dx for some positive integrable
function λ. Now, it is easy to check that µ is log-concave if and only if λ is log-concave
and nonincreasing.

In order for µ to satisfy a log-Sobolev inequality, its marginals must be sub-gaussian.
This is not always the case, as one might consider a density proportional to e−|x| (remark
that this is not the exponential product measure, since the norm is the ℓ2 one. However
the decay of the tails is still only exponential.)

By scaling, we assume that µ is isotropic, that is for any θ ∈ Sn−1,
∫
Rn (x · θ)2 dµ = 1.

Equivalently, ∫
Rn

|x|2dµ = n.

Bobkov [21] established the following estimate for the concentration function.

Proposition 4.36. The concentration function of µ satisfy :

αµ(r) ≤ e−cr
2

for r ≤
√
n

for some universal constant c > 0.

As a consequence, we get that

αµ(r) ≤ e
− c1r

2

σSG(µ)2 for r ≤ 2σSG(µ)
√
n. (4.5.1)

where we used the fact that σSG(µ) ≳ 1 since µ is isotropic. Using Proposition 4.19, we
conclude that

αµ(r) ≤ e
− c2r

2

σSG(µ)2 for r ≥ 0
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for some universal constant c2 > 0. By Theorem 4.23, this implies Theorem 4.6.

4.5.2 Tilt-stable measures

Let ν be a centered probability on Rn. For any h ∈ Rn, we define the tilted measure
τhν = ν0,h = 1

Zh
νeh·x. Recall that that ν is said to be β tilt-stable is for any h ∈ Rn

Cov(τhν) ≼ β2In.

Or, equivalently,
∇2Lν(h) ≤ β2In

uniformly in h, where Lν is the log-Laplace transform of ν, that is for any h ∈ Rn,

Lν(h) = log

∫
Rn

eh·xdν.

Tilted measures and the log-Laplace transform are known to play a central role in convex
geometry ([53], [58], [36]). In the context of the discrete hypercube, tilt-stable measures
appear notably in the work of Eldan and Shamir [39], where they are shown to exhibit
non-trivial concentration and Eldan and Chen [29].

Examples of tilt-stable measures include strongly log-concave measures, by the Brascamp-
Lieb inequality which is a weaker form of Theorem 4.24, as well as product of tilt-stable
measures. Indeed, if ν = ν1 ⊗ ν2 ⊗ · · · ⊗ νk is a product measure, notice that for any
h = (h1, . . . , hk),

τhν = τh1ν1 ⊗ · · · ⊗ τhkνk

so that if and each component is βk tilt-stable, ν is itself tilt-stable with constant β =

max1≤i≤k βi. The uniform measure on the discrete or continuous hypercube is then easily
seen to be tilt-stable for instance.

An interesting question is to give sufficient conditions for a log-concave probability µ to
be tilt-stable. A natural question in that direction is whether all sub-gaussian log-concave
probabilities are in fact tilt-stables.

In the following, given a tilt-stable log-concave probability µ we use a perturbation
argument to show that it is strongly tilt-stable by estimating

sup
t>0,h∈Rn

|Cov(µt,h)|op.

The idea is that the tilt-stability of µ allows us to get rid of the tilts in the above supremum.
This is justified by the next lemma.

Lemma 4.37. Let µ be a sub-gaussian probability, h ∈ Rn and t > 0. Then there exists
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h0 ∈ Rn such that
µt,h =

1

Z
(τh0µ) e

−t|x−bar(τh0µ)|
2

where Z is a normalizing constant. In other words, all the measures µt,h may be obtained
as centered gaussian perturbations of tilts of µ.

Proof. Developping the right hand-side shows that

1

Z
(τh0µ) e

−t|x−bar(τh0µ)|
2
= µt,h0+2tbar(τh0µ)

.

Hence, we need to show that for any t > 0, the function F : h0 −→ h0 + 2tbar(τh0µ)

is onto. By (4.2.2), its jacobian is JF (h) = In + 2tCov(τh0µ) ≥ In. This implies that F
is open (sends open sets to open sets) and proper (pre-image of compacts are compacts),
hence onto.

A perturbation result

According to the previous Lemma, we wish to upper-bound the covariance of measures
of the type νt = 1

Zt
νe−t|x|

2 in terms of ν. In our setting, ν will be a centered tilt-stable
log-concave measure. In general we can say the following.

Lemma 4.38. Let ν be a probability, then

|Cov(νt)|op ≤
∫
|x2|dνt ≤

∫
|x|2dν

In particular, if ν is centered,

|Cov(νt)|op ≤ Tr(Cov(ν)) (4.5.2)

Proof. It suffices to remarks that

d

dt

∫
|x|2dνt = −

∫
|x|2dνt +

(∫
|x2|dνt

)2

≤ 0

and |Cov(νt)|op ≤ Tr(Cov(νt)) ≤
∫
|x|2dνt.

Our goal is to improve on (4.5.2) when ν is a centered sub-gaussian log-concave prob-
ability.

The following lemma is inspired by Barthe and Milman [12].

Lemma 4.39. Let ν be a centered sub-gaussian probability on Rn with sub-gaussian con-
stant σSG(ν) and t > 0. Then the probability

νt =
1

Zt
e−t|x|

2
ν
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is sub-gaussian with constant:

σ2SG(νt) ≲ σ2SG(ν) (1 + logK(t))

where K(t) =
∫
Rn e

−2t|x|2dν

(
∫
Rn e

−2t|x|2dν)
2

Proof. For any λ > 0, let Eλ be the event Eλ = {dνtdν ≤ λ}. Let S be a measurable set, we
simply write

νt(S) =

∫
S∩Eλ

dνt +

∫
S∩Ec

λ

dνt

≤
∫
S∩Eλ

dνt
dν

dν + Pνt(Ecλ)

≤ λν(S) + Pνt(Ecλ).

Next, by Markov’s inequality,

Pνt (Ecλ) = Pνt
(
dνt
dν

> λ

)
≤

Eνt dνtdν
λ

=
K(t)

λ
.

Let θ ∈ Sn−1 and r > 0. Setting S = Sθ,r = {x, |x · θ| ≤ r}, we get :

νt({x, |x · θ| ≤ r}) ≤ λν({x, |x · θ| ≤ r}) +
K(t)

λ

≤ 2λe
− cr2

σ2
SG

(ν) +
elogK(t)

λ

where we used the sub-gaussianity of ν, and c > 0 is a universal constant. Optimizing in
λ > 0 yields :

νt({x, |x · θ| ≤ r}) ≤ max

(
1 , 2

√
2 exp

(
− cr2

2σ2SG(ν)
+

logK(t)

2

))
≤ 2 exp

(
− c1r

2

σ2SG(ν) (1 + logK(t))

)
where c1 > 0 is a universal constant. This shows that

|< . , θ >|2Ψ2(νt)
≲ σ2SG(ν) (1 + logK(t)) .

The functional < . , θ > is a priori not centered for νt. Using Lemma 4.17 concludes the
proof.

Now, we wish to estimate K(t). We are mostly interested in small values of t, since
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for large t, when ν is log-concave, which is the case of interest for us, we will simply use
Cov(νt) ≤ 1

t . When ν is a standard Gaussian, a quick computation shows that K(t)

behaves like logK(t) ≲ nt2 = E(|G|2)t2. We recover this estimate with an extra factor,
the Ψ2 norm of |X| − E|X| (see Lemma 4.41 below). We start with a preliminary lemma

Lemma 4.40. Let X be a random vector with sub-gaussian norm, then there exists a
universal constant c1 > 0 such that for any r > 0,

P
(
|X|2 ≤ E|X|2 − r

)
≤ exp

(
− c1r

2

4E|X|2M2

)

Proof. To alleviate notations, we denote byM =
∣∣ |X|−E|X|

∣∣
Ψ2(ν)

. For any 0 < r < E|X|2

we have,

P
(
|X|2 ≤ E|X|2 − r

)
= P

(√
X ≤

√
E|X|2 − r

)
≤ P

(
|X| ≤

(
E|X|2

)1/2 − r

2 (E|X|2)1/2

)

≤ P

(
|X| ≤ E|X|+ cM − r

2 (E|X|2)1/2

)

where in the first inequality we used the concavity of the square-root function, and in the
second one, we used that

E|X|2 = (E|X|)2 +Var(|X|)

≤ (E|X|)2 + c2M2 ≤ (E|X|+ cM)2

for a universal constant c > 0. Using the gaussian concentration for |X|, we get that for
any r ≥ 4cM

(
E|X|2

)1/2,
P
(
|X|2 ≤ E|X|2 − r

)
≤ P

(
|X| ≤ E|X| − r

4 (E|X|2)1/2

)
(4.5.3)

≤ exp

(
− r2

4E|X|2M2

)
(4.5.4)

Combining this with the trivial bound P
(
|X|2 ≤ E|X|2 − r

)
≤ 1 for small r, yields the

result.

Lemma 4.41. Under the same hypothesis as in Lemma 4.39, we have

logK(t) ≲
(
1 + t2

∣∣ |X| − E|X|
∣∣2
Ψ2(ν)

E|X|2
)
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Proof. By Jensen’s inequality,
∫
Rn e

−2t|x|2dν ≥ e−tE|X|2 , so that

K(t) ≤ e2tE|X|2
∫
Rn

e−2t|x|2dν. (4.5.5)

Now, using Lemma 4.40, for any t > 0

E
[
e−t|X|2

]
=

∫ ∞

O
P
(
|X|2 ≤ r

)
te−trdr

≤ t

∫ E|X|2

0
P(|X|2 ≤ r) e−trdr + e−tE|X|2

≤ t

∫ E|X|2

0
P(|X|2 ≤ E|X|2 − r) e−t(E|X|2−r)dr + e−tE|X|2

≤ te−tE|X|2
∫ E|X|2

0
exp

(
− c1r

2

4E|X|2M2
+ tr

)
dr + e−tE|X|2

≤ te−tE|X|2e
t2E|X|2

c1M
2

∫
R
exp

−

( √
c1r

2M
√

E|X|2
−
tM
√
E|X|2

√
c1

)2
 dr + e−tE|X|2

≤ e−tE|X|2

2t

√
2M2E|X|2

c1
e

M2t2E|X|2
c1 + 1


≤ c̃1e

−tE|X|2
(
1 + e

t2E|X|2M2

c1

)
where in the last inequality we used that z ≤ ez

2 valid for all z ∈ R. Combining this with
(4.5.5) yields

K(t) ≲ 1 + e
2t2E|X|2M2

c1 ,

concluding the proof.

4.5.3 Proof of Theorem 4.10

Let µ be a 1 tilt-stable log-concave probability. Let t > 0 and h ∈ Rn. By Lemma 4.37,
there exists h0 ∈ Rn such that

µt,h =
1

Z
(τh0µ) e

−t|x−bar(τh0µ)|
2
.

Denote by At,h = Cov(µt,h). Remark that τh0µ is again a 1 tilt-stable log-concave proba-
bility. Then, combining Lemmas 4.39 and 4.41, applied to τh0µ after a centering, we get
that

|At,h|op ≲ σ2SG(µt,h)

≲ 1 + t2K̃n
2
Tr(At,h)
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≲ 1 + t2K̃n
2
n

On the other hand, since µ is log-concave, µt satisfies the Bakry-Emery criterion with
constant t, so that

|At,h|op ≲ max

(
1 + t2K̃n

2
n ,

1

t

)
≲ n1/3K̃n

2/3
.

Applying Corollary 4.35 finishes the proof.
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Chapter 5

Some additional remarks about
tilt-stability and stochastic
localization

5.1 More on tilt-stable measures

Let µ be a 1-tilt stable probability, which we do not assume to be log-concave at this point.
For a symmetric positive matrix J and h ∈ Rn we define the measure

µJ,h ∝ e
1
2
⟨Jx,x⟩+⟨h,x⟩µ.

We show that if the operator norm of J is not too large, then µJ,h is well-behaved. When
µ is the uniform probability on the discrete hypercube {−1; 1}n, the measures µJ,h are
called Ising models, which is an important topic in statiscal physics. The following result
is due to Bodineau and Bauerschmidt [13]. Although they were mostly interested in Ising
models, their proof extend verbatim to this general setting.

Theorem 5.1. Let µ be a 1-tilt-stable probability, 0 ≼ J ≺ In and h ∈ Rn, then

(i) Cov(µJ,h) ≤ 1
1−∥J∥op

In

(ii) c2P (µJ,h) ≤
1

1−∥J∥op
suph c

2
P (µ0,h)

(iii) ρ2LS(µJ,h) ≤
1

1−∥J∥op
suph ρ

2
LS(µ0,h)

Before moving to the proof, let us comment the result. First, notice that all inequalities
become equalities if µ is the standard Gaussian. Now the fact that (i) implies (ii) and (iii)
was recovered by Eldan and Chen in [29]. Our purpose here is to show how their method,
based on the stochastic localization process, also gives (i) for free. The idea is essentially
to get rid of the quadratic part of µJ,h using the stochastic localization process.
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From now on, we fix a matrix J and a vector h and we write

ν = µJ,h

We denote by T = ∥J∥op. Recall the general form of the stochastic localization process
Theorem 2.21. We make the choice Ċt = J

∥J∥op
and write ht in place of θt for the tilt

process. Thus we get a martingale on the space of measures (νt)t≥0, we write Ft = dνt
dν , its

dynamics is

dFt(x) = ⟨J
1/2(x− at)

∥J∥1/2op

, dBt⟩Ft(x) for x ∈ supp(ν) (5.1.1)

Furthermore, νt has the explicit expression:

dνt =
1

Zt
e
− 1

2
t J
∥J∥op

x·x +ht·x
dν

=
1

Zt
e

1
2
⟨(J− t

∥J∥op
J)x,x⟩+⟨h+ht,x⟩

dµ

In other words, we have
νt = µJ(1− t

T ),h+ht

In particular, at time t = T , νT = µ0,h+hT . In other words we have decomposed the
measure ν = µJ,h into a mixture of tilts of µ.

Now, let f be a function, and write Mt =
∫
fdνt. Since Mt is a martingale, we have

for all time t ≥ 0,

Varν(f) = EVarνt(f) + Var(Mt)

= EVarνt(f) + E
∫ t

0
d[M ]s (5.1.2)

Now from (5.1.1), we compute for all time t ≥ 0

dMt = d

∫
fFtdν =

(
Ċ

1/2
t

∫
f(x)(x− at)dνt

)
· dBt

And using the Cauchy-Schwarz inequality,

d[Mt] = |Ċ1/2
t

∫
f(x)(x− at)dνt|2 dt

= sup
θ∈Sn−1

|
∫
f(x)C

1/2
t (x− at) · θdνt|2 dt

≤ sup
θ∈Sn−1

∫ (
C

1/2
t (x− at)

)2
dνt Varνt(f) dt

≤ |C1/2
t AtC

1/2
t |opVarνt(f) dt
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≤ |At|opVarνt(f) dt

where in the last inequality we used the fact that |Ct|op = | J
|J |op |op = 1. Plugging this into

(5.1.2), we get that at time T

Varν(f) ≤ EVarνT (f) + E
∫ T

0
|At|opVarνt(f) (5.1.3)

We introduce the function

α(u) = sup
J,|J |op=u, h∈Rn

∥Cov(µJ,h)∥op

Then if f(x) = ⟨x, θ⟩ for some θ ∈ Sn−1, (5.1.3) implies

VarµJ,h(⟨x, θ⟩) ≤ α(0) +

∫ T

0
α2(T − t)dt

≤ α(0) +

∫ T

0
α2(t)dt

Taking the supremum over J, h and θ such that |J | = T on the left hand-side, we get the
differential inequation

α(T ) ≤ α(0) +

∫ T

0
α2(t)dt

If we call y(T ) = α(0) +
∫ T
0 α2(t)dt this rewrites√

y′ ≤ y

=⇒ y′

y2
≤ 1

=⇒ d

(
1

y

)
≥ −1

=⇒ y(T ) ≤ y(0)

1− Ty(0)
, ∀T ≤ 1

y(0)

But y(0) = α(0) = 1, thus we get for all 0 ≤ T ≤ 1,

α(T ) ≤ y(T ) ≤ 1

1− T

which is (i).
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Now, proving (ii) is easy. For an arbitrary function f we get from (5.1.2) that

d

dt
EVarνt(f) = −Ed[M ]t

≥ −E|At|opEVarνt(f)

≥ −α(T − t)EVarνt(f)

This integrates into

Varν(f) ≤ e
∫ T
0 α(T−t) dtEVarνT (f)

≤ 1

1 + T
EVarνT (f)

≤ 1

1 + T
sup
h
c2P (µ0,h)E

[
EνT |∇f |

2
]

≤ 1

1 + T
sup
h
c2P (µ0,h)Eν |∇f |2

where we used the fact that νT = µ0,h+hT and the martingale property in the last line.
The proof for the log-Sobolev constant is completely analogous.

5.2 Relationship with the multiscale Bakry-Émery criterion

In 2020, Bodineau and Bauerschmidt introduced a new criterion to derive log-Sobolev
inequalities, which they called the multiscale Bakry-Emery criterion. We give an overview
of their approach and explain the link with the stochastic localization. This connection
has been described by Shenfeld [78], we give an alternate point of view.

The multiscale Bakry-Emery criterion in a nutshell

Let ν be a measure on, say Rn, with density

dν = e−V0(x)−Ax·x

where A is a positive symmetric matrix. The usual Bakry-Emery criterion asserts that if V0
is convex, then ρ2LS(ν) ≤

1
λmin(A)

. The proof consists in analyzing the time-homogeneous
semi-group associated to ν. In contrast, Bodineau and Bauerschmidt uses a time dependent
semi-group, which we now describe. For t ≥ 0, we define

Ċt = Q2
t = e−tA, Ct =

∫ t

0
Ċs ds (5.2.1)

Notice that C∞ = A−1. For a positive symmetric matrix B we write γB for the centered
Gaussian with covariance B Now we define
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• the renormalised potential Vt by

e−Vt = e−V0 ∗ γCt (5.2.2)

• An operator Qt by
Qt(f)(x) = eVt(x)

(
e−V0f ∗ γCt

)
(x) (5.2.3)

• A renormalised measure νt such that for any function f

Eν(f) = Eνt(Qtf) (5.2.4)

We have the explicit expression for νt: νt = 1
Z γC∞−Cte

−Vt . Notice that ν0 = ν and
ν∞ = δ0

Now using the same approach as Bakry-Emery, given a function f , Bodineau and
Bauerschmidt analyze the dynamics of t → Eνt(Φ(Qtf)) where Φ(x) = x log x. They
prove the following

Theorem 5.2. Under mild assumptions on ν, if there are numbers µ̇t such that

Qt∇2VtQt ≥ µ̇tId

then
ρLS(ν)

2 ≤
∫ ∞

0
e−tλmin(A)−2µtdt

where µt =
∫ t
0 µ̇s ds.

Relationship with the stochastic localization process

To simplify the exposition, we consider the special case A = Id, so that Ct = (1 − e−t)I.
We make the change of variable r = 1−e−t. By a slight abuse, we keep the same notations
as previously. We thus work on [0, 1] instead of R+, and we have

•
e−Vr = e−V0 ∗ γr = Pr(V0). (5.2.5)

•

Qr(f)(x) = eVr(x)
(
e−V0f ∗ γr

)
(x) =

Pr(fe
−V0)

Pr(e−V0)
. (5.2.6)

•
Eν(f) = Eνr(Qrf). (5.2.7)

We have the explicit expression for νr: νt = 1
Z γ1−re

−Vr . Notice that ν0 = ν and
ν1 = δ0
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And Theorem 5.2 rewrites

Theorem 5.3. Under mild assumptions on ν, if there are numbers µ̇r such that

∇2Vr ≥ µ̇r,

then,

ρLS(ν)
2 ≤

∫ 1

0
e−2µrdr

where µr =
∫ r
0 µ̇s ds.

Notice that if V0 is convex, then so is Vr and we recover the fact that ρLS(ν)2 ≤ 1. Now
the operator Qr that we defined by (5.2.6) is much like the operator Qµt that we introduced
for a measure µ in the functional-analytic description of the stochastic localization process
in section 2.7. The only difference is that e−V0 is not the density of ν, thus Q is not exactly
Qν , however it is not too difficult to pass from one to the other. For a function f we write
for 0 ≤ r ≤ 1,

∫
fdν =

∫
fe−V0e−

|x|2
2 dx

=

∫
fe−V0Pr

(
e
− |x|2

2(1−r)

)
dx

=

∫
Qρr(f)e

− |x|2
2(1−r)Pr(e

−V0) dx (5.2.8)

This is the equality (5.2.7) defining νr. However, we have not gained anything applying
this trick. Indeed, for a function f , x0 ∈ Rn and s ≥ 0, expanding and refactoring the
Gaussian factor shows that

Ps(fe
−V0− |x|2

2 ) =
1

Z

∫
f(y)e−V0(y)e−

y2

2
− |x0−y|2

2s

=
1

(1 + s)n
e
− |x20|

2(1+s)P s
1+s

(
e−V0

)( x0
1 + s

)
(5.2.9)

In particular, we get that for any s ≥ 0 and any x ≥ 0

Qνsf((1 + s)x) = Qρ s
1+s

(x) (5.2.10)

Thus, working with Qρ or Qµ makes no difference. To summarize, in the functional analytic
point of view on stochastic localization we write∫

fdν =

∫
Qµs (f)d(Psν) for s ≥ 0,
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while in the Bodineau Bauerschmidt framework, we write:∫
fdν =

∫
Qρr(f)e

− |x|2
2(1−r)Pr(e

−V0) dx for 0 ≤ r ≤ 1.

The equality between the two right-handsides is obtained by setting r = s
1+s and using

(5.2.10) and (5.2.9).

Finally, we are interested in reformulating Theorem 5.3 in terms of quantities relevant
in the study of the localization process. The task is to compute

∇2Vr = ∇2(− logPr(e
−V0))

A straightforward but slightly tedious computation shows that for all y ∈ Rn

(∇2Vr)(y) =
1

t
Id− 1

t2
Cov

(
1

Z
νe−

1−r
2r

|x|2+ 1−r
r
x·y
)

(5.2.11)

where Z is a normalising constant. We introduce

χ(t) = sup
h∈Rn

|Cov( 1
Z̃
e−

t
2
|x|2+h·x)|op

Then, by (5.2.11), the best uniform bound on ∇2Vr is

∇2Vr ≥
1

r
−
χ(1−rr )

r2

We set
χ(t) =

1

1 + t
+ λ(t)

Notice that if V is convex, then λ(t) ≤ 0 for all t ≥ 0, thus λ measures in a sense the lack
of convexity. The bound now reads

∇2Vr ≥
−λ(1−rr )

r2
(5.2.12)

For t ≥ 0 we define

Λ(t) =

∫ t

0
λ(s) ds

and we assume that the limit Λ(∞) exists. Now we compute, for r ≥ 0∫ r

0

−λ(1−ss )

s2
ds =

∫ r

0

d

ds

(
Λ

(
1− s

s

))
ds

= Λ

(
1− r

r

)
− Λ(∞)
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Plugging this into Theorem 5.3 yields after a change of variable

ρ2LS(ν) ≤ e2Λ(∞)

∫ +∞

0

e−2Λ(u)

(1 + u)2
du (5.2.13)

It can be checked that the bound gives an equality when ν is a Gaussian. Note that asking
for Λ(∞) to exists is not very restrictive. For instance, if ν satisfies

−∇2(log(
dν

dx
)) ≥ −M

for a positive number M , then for T ≥M we get

χ(T ) ≤ 1

T −M
(5.2.14)

which ensures that the limit exists.
Now we explain how to recover a variant of (5.2.13) using the stochastic localization

process directly. We keep the same notations, and we do assume the existence of an M > 0

such that −∇2(log(dνdx)) ≥ −M .

Theorem 5.4. With the same notations as before

ρ2LS(ν) ≤ lim
T→∞

e
∫ T
0 χ(s)ds

T
= eΛ(∞)

.

Yet again, one can check that this is an equality for Gaussians. It is not clear how to
compare this with (5.2.13). As a first step, notice that one implication of Theorem 5.4 is
the bound

χ(t) ≥ 1

χ(0) + t
(5.2.15)

with equality when ν is a Gaussian. Otherwise we would get a contradiction by applying
the result to a tilt of ν that almost realizes χ(0). As a consequence we get that for all
u ≥ 0

eΛ(u) ≥ χ(0) + u

χ(0)(1 + u)
(5.2.16)

In particular, plugging this into (5.2.13) yields

ρ2LS(ν) ≤ χ(0)e2Λ(∞). (5.2.17)

However, it can be seen that this new bound is weaker than Theorem 5.4, since by (5.2.16),
eΛ(∞) ≥ 1

χ(0) .
We move to the proof of Theorem 5.4. From now on νt refers to the stochastic local-

ization of ν, and not the renormalised measure. Let f be a positive function, and denote
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by Mt =
∫
fdνt. Since Mt is a martingale, we have the following decomposition of the

entropy:

Entν(f) = EEntνt(f) + E
∫ t

0

d[M ]t
2Mt

.

Furthermore, we proved in the previous chapter

E
d[M ]t
2Mt

≤ χ(T )EEntνt(f).

Thus, we get that
d

dt
EEntνt(f) ≥ −χ(T )EEntνt(f),

which integrates to
Entν(f) ≤ e

∫ t
0 χ(s)EEntνt(f) (5.2.18)

Now, since we have assumed that −∇2(log(dνdx)) ≥ −M , for all times T > M , the measure
νT is almost surely T −M strongly log-concave, thus for all T > M

Entν(f) ≤ e
∫ T
0 χ(s)dsEEntνT (f)

≤ e
∫ T
0 χ(s)ds

T −M
EEνT

(
|∇f |2

f

)
≤ e

∫ T
0 χ(s)ds

T −M
Eν
(
|∇f |2

f

)
Thus, letting T go to infinity, we get

ρ2LS(ν) ≤ lim
T→∞

e
∫ T
0 χ(s)ds

T −M

= lim
T→∞

1 + T

T −M
e
∫ T
0 χ(s)− 1

1+s
ds

= e
∫∞
0 λ(s)ds = eΛ(∞)
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Chapter 6

Positive solutions for large random
linear systems

This chapter is based on
Pierre Bizeul and Jamal Najim. Positive solutions for large random linear systems.

Proceedings of the American Mathematical Society, 149(6):2333–2348, 2021

6.1 Introduction

Denote by An an n × n matrix with independent Gaussian N (0, 1) entries and by αn a
positive sequence. We are interested in the componentwise positivity of the n × 1 vector
xn, solution of the linear system

xn = 1n +
1

αn
√
n
Anxn , (6.1.1)

where 1n is the n× 1 vector with components 1.
It is well-known since Geman [42] that the limsup of the spectral radius of An√

n
is almost

surely (a.s.) ≤ 1, so that matrix
(
In − An

αn
√
n

)
is eventually invertible as long as αn ≫ 1.

In this case, vector xn = (xk)k∈[n], where we denote by [n] = {1, · · · , n}, is

xn =

(
In −

An
αn

√
n

)−1

1n with xk = e∗k

(
In −

An
αn

√
n

)−1

1n ,

where ek is the n × 1 canonical vector and B∗ is the transconjugate of B (or simply its
transpose if B is real).

The positivity of the xk’s is a key issue in the study of Large Lotka-Volterra (LV)
systems, widely used in mathematical biology and ecology to model populations with
interactions.

Consider for instance a given foodweb and denote by xn(t) = (xk(t))k∈[n] the vector

97
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of abundances of the various species within the foodweb at time t. A standard way to
connect the various abundances is via a LV system of equations

dxk(t)

dt
= xk(t)

1− xk(t) +
1

αn
√
n

∑
ℓ∈[n]

Akℓ xℓ(t)

 for k ∈ [n] , (6.1.2)

where the interactions (Akℓ) can be modeled as random in the absence of any prior infor-
mation. Here, the Akℓ’s are assumed to be i.i.d. N (0, 1). At the equilibrium dxn

dt = 0, the
abundance vector xn is a solution of (6.1.1) and a key issue is the existence of a feasible
solution, that is a solution xn where all the xk’s are positive. Dougoud et al. [33] based
on Geman et al. [43] proved that a feasible solution is very unlikely to exist if αn ≡ α

is a constant. In fact, the CLT proved in [43] asserts that for any fixed number M of
components

(xk − 1)k∈[M ]
D−−−−→

n→∞
Z ∼ N (0, σ2α IM ) ,

where D−→ (resp. P−→) stands for the convergence in distribution (resp. in probability) and
where σ2α = O(1). As an important consequence, vectors xn with positive components will
become extremely rare since

P{xk > 0, k ∈ [M ]} −−−→
n→∞

(∫ ∞

− 1
σα

e−x
2/2

√
2π

dx

)M
⇒ P{xk > 0, k ∈ [n]} −−−→

n→∞
0 .

In this article, we consider a growing scaling factor αn → ∞ and study the positivity
of xn’s components in relation with αn.

We find that there exists a critical threshold α∗
n =

√
2 log n below which feasible so-

lutions hardly exist and above which feasible solutions are more and more likely to exist.
More precisely, we prove the following:

Theorem 6.1 (Feasibility). Let αn −−−→
n→∞

∞ and denote by α∗
n =

√
2 log n. Let xn =

(xk)k∈[n] be the solution of (6.1.1).

1. If ∃ ε > 0 such that αn ≤ (1− ε)α∗
n then P

{
mink∈[n] xk > 0

}
−−−→
n→∞

0 ,

2. If ∃ ε > 0 such that αn ≥ (1 + ε)α∗
n then P

{
mink∈[n] xk > 0

}
−−−→
n→∞

1 .

We illustrate the transition toward feasibility In Figure 6.1.

Remark : Proof of Theorem 6.1 is based on an analysis of the order of magnitude of the
extreme values of the xk’s, which heavily relies on sub-Gaussiannity of Lipschitz functionals
with Gaussian entries. This property remains true if the Aij ’s satisfies a logarithmic sobolev
inequality - details are provided in Section 6.4. The case of discrete entries remains open
although simulations (see Figure 6.1 (B)) indicate that a similar phase transition occurs.
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Remark : Notice that 1
α∗
n

goes to zero extremely slowly. For modeling purposes, the
threshold σ∗n := 1

α∗
n

acts as an n-dependent upper bound of the standard deviation of the
entries of (α−1

n An), under which feasibility occurs.

(A) Gaussian entries. (B) Bernoulli ±1 entries.

Figure 6.1: Transition toward feasibility. We consider different values of n, respectively
1000 (dashed line), 4000 (solid line). For each n and each κ on the x-axis, we simulate
10000 n × n matrices An and compute the solution xn of (6.1.1) at the scaling αn(κ) =
κ
√
log(n). Each curve represents the proportion of feasible solutions xn obtained for 10000

simulations. The dotted vertical line corresponds to the critical scaling α∗
n =

√
2 log(n)

for κ =
√
2. .

To complement the picture, we provide the following heuristics at the critical scaling
α∗
n =

√
2 log n:

P
{
min
k∈[n]

xk > 0

}
≈ 1−

√
e

4π log n
+

e

8π log n
as n→ ∞ . (6.1.3)

Aside from the question of feasibility arises the question of stability : for a large complex
system, that is a system of coupled differential equations describing the time evolution of
the abundances of the various species of a given foodweb, how likely a perturbation of
the solution x will return to the equilibrium? Gardner and Ashby [41] considered stability
issues of complex systems connected at random. Based on the circular law for large matrices
with i.i.d. entries, May [70] provided a complexity/stability criterion and motivated the
systematic use of large random matrix theory in the study of foodwebs, see for instance
Allesina et al. [1]. Recently, Stone [79] and Gibbs et al. [45] revisited the relation between
feasibility and stability.

We complement the result of Theorem 6.1 by adressing the question of stability in the
context of a LV system (6.1.2) and prove that under the second condition of the theorem
feasibility and stability occur simultaneously.

Recall that the solution at equilibrium xn is stable if the Jacobian matrix J of the
Lotka-Volterra system evaluated at xn, that is

J (xn) = diag(xn)

(
−In +

An
αn

√
n

)
(6.1.4)
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has all its eigenvalues with negative real part.

Corollary 6.2 (Stability). Let xn = (xk)k∈[n] be the solution of (6.1.1). Assume that
ℓ+ := lim supn→∞

√
2 logn
αn

< 1. Denote by Sn the spectrum of J (xn). Then

max
λ∈Sn

min
k∈[n]

|λ+ xk|
P−−−→

n→∞
0 and max

λ∈Sn

Re(λ) ≤ −(1− ℓ+) + oP (1) . (6.1.5)

Proof of Corollary 6.2 relies on standard perturbation results from linear algebra and
on Theorem 6.1.

Organization of the paper

Theorem 6.1 is proved in Section 6.2, Corollary 6.2 in Section 6.3. In Section 6.4, elements
supporting heuristics (6.1.3) are provided, together with extensions to non-homogeneous
systems (where vector 1n in (6.1.1) is replaced by a generic deterministic vector rn) and
non-Gaussian entries.
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6.2 Positive solutions: proof of Theorem 6.1

We will use the following notations for the various norms at stake: if v is a vector then
∥v∥ stands for its euclidian norm; if A is a matrix then ∥A∥ stands for its spectral norm
and ∥A∥F =

√∑
ij |Aij |2 for its Frobenius norm. Let φ be a function from Σ = R or C to

C then ∥φ∥∞ = supx∈Σ |φ(x)|.

Some preparation and strategy of the proof

Denote by Qn =
(
In − An

αn
√
n

)−1
the resolvent and by s(B) the largest singular value of a

given matrix B. Then it is well known that almost surely sn := s(n−1/2An) −−−→
n→∞

2 (see

for instance [7, Chapter 5]) hence s
(

1
αn

√
n
An

)
−−−→
n→∞

0. In particular, the solution

xn = (xk)k∈[n] =

(
In −

An
αn

√
n

)−1

1n = Qn 1n ,

with In the n × n identity, is uniquely defined almost surely for all n large. In order to
study the minimum of xn’s components, we partially unfold the above resolvent (in the
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sequel, we will simply denote A,α,1, Q instead of An, αn,1n, Qn) and write:

xk = e∗kx = e∗kQ1 =
∞∑
ℓ=0

e∗k

(
A

α
√
n

)ℓ
1 ,

= 1 +
1

α
e∗k

(
n−1/2A

)
1+

1

α2
e∗k

(
n−1/2A

)2
Q1 = 1 +

1

α
Zk +

1

α2
Rk ,(6.2.1)

where

Zk = e∗k

(
n−1/2A

)
1 =

1√
n

n∑
i=1

Aki and Rk = e∗k

(
n−1/2A

)2
Q1 . (6.2.2)

Notice that the Zk’s are i.i.d. N (0, 1).

Extreme values of Gaussian random variables

Consider the sequence (Zk) of standard Gaussian i.i.d. random variables, recall that α∗
n =

√
2 log n and let

Mn = max
k∈[n]

Zk , M̌n = min
k∈[n]

Zk and β∗n = α∗
n −

1

2α∗
n

log(4π log n) . (6.2.3)

Denote by G(x) = e−e
−x the Gumbel cumulative distribution. Then the following results

are standard, (i.e. [63, Theorem 1.5.3]): for all x ∈ R

P {α∗
n(Mn − β∗n) ≤ x} −−−→

n→∞
G(x) , P

{
α∗
n(M̌n + β∗n) ≥ −x

}
−−−→
n→∞

G(x) . (6.2.4)

Strategy of the proof

Eq. (6.2.1) immediately yields{
mink∈[n] xk ≥ 1 + 1

αM̌ + 1
α2 mink∈[n]Rk ,

mink∈[n] xk ≤ 1 + 1
αM̌ + 1

α2 maxk∈[n]Rk .

We rewrite the first equation as

min
k∈[n]

xk ≥ 1 +
α∗
n

αn

(
M̌ + β∗n
α∗
n

− β∗n
α∗
n

+
mink∈[n]Rk

α∗
nαn

)
= 1 +

α∗
n

αn

(
−1 + oP (1) +

mink∈[n]Rk

α∗
nαn

)
, (6.2.5)

where we have used the fact that (α∗
n)

−1(M̌ + β∗n) = oP (1). Similarly,

min
k∈[n]

xk ≤ 1 +
α∗
n

αn

(
−1 + oP (1) +

maxk∈[n]Rk

α∗
nαn

)
.
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The theorem will then follow from the following lemma.

Lemma 6.3. The following convergence holds

maxk∈[n]Rk

αn
√
2 log n

P−−−→
n→∞

0 and
mink∈[n]Rk

αn
√
2 log n

P−−−→
n→∞

0 .

Proof of Lemma 6.3 requires a careful analysis of the order of magnitude of the extreme
values of the remaining term (Rk)k∈[n]. It is postponed to Section 6.2.

Lipschitz property and tightness of Rk(A)

Let η ∈ (0, 1) and φ : R+ → [0, 1] be a smooth (infinitely differentiable) function with
values

φ(x) =

1 if x ∈ [0, 2 + η]

0 if x ≥ 3
,

and strictly decreasing from 1 to zero as x goes from 2 + η to 3. Notice in particular that
∥φ′∥∞ is finite. Recall that sn = s(n−1/2A) is the largest singular value of the normalized
matrix n−1/2A and denote by

φn := φ(sn) = φ
(
s(n−1/2A)

)
.

Notice that P{φn < 1} = P{sn > 2 + η} −−−→
n→∞

0 (by the a.s. convergence of sn to 2).
Instead of working with Rk we introduce the truncated quantity:

R̃k = φnRk . (6.2.6)

For a given n× n matrix A, we may consider its 2n× 2n hermitized matrix H(A) defined

as H(A) =

(
0 A

A∗ 0

)
. Notice that the singular values of A together with their negatives

are the eigenvalues of H(A).

Lemma 6.4. Let R̃k be given by (6.2.6), then the function A 7→ R̃k(A) is Lipschitz, i.e.∣∣∣R̃k(A)− R̃k(B)
∣∣∣ ≤ K∥A−B∥F , (6.2.7)

where ∥A∥F is the Frobenius norm and K is a constant independent from k and n.

Proof. Notice that φ(sn) = 0 and φ′(sn) = 0 for sn ≥ 3, which implies that one may
consider the bound sn ≤ 3 in the following computations, for R̃k or its derivatives would

be zero otherwise. Recall the definition of the resolvent Q =
(
I − A

α
√
n

)−1
then Q−1Q = I

which yields Q = I + A
α
√
n
Q from which we deduce that

φn ∥Q∥ ≤ φn

(
1− 1

α

∥∥∥n− 1
2A
∥∥∥)−1

≤ 1

1− 3α−1
≤ 3 (6.2.8)
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for n large enough.

We first consider a matrix A such that H(A) has simple spectrum (i.e. with 2n distinct
eigenvalues, each with multiplicity 1). We denote by ∂ij = ∂

∂Aij
and prove that the vector

∇R̃k(A) =
(
∂ijR̃(A), i, j ∈ [n]

)
satisfies

∥∇R̃k(A)∥ =

√∑
ij

∣∣∣∂ijR̃k(A)∣∣∣2 ≤ K . (6.2.9)

We may occasionally drop the dependence of R̃k in A. We begin by computing

∂ijR̃k = lim
h→0

R̃k(A+ heie
∗
j )− R̃k(A)

h
,

= (∂ijφn)Rk + φn e
∗
k

(
∂ij

(
n−

1
2A
)2)

Q1+ φn e
∗
k

(
n−

1
2A
)2

(∂ijQ)1

=: T1,ij + T2,ij + T3,ij .

Straightforward computations yield

∂ij

(
n−

1
2A
)2

=
1

n

(
Aeie

∗
j + eie

∗
jA
)

and ∂ijQ =
1

α
√
n
Qeie

∗
jQ . (6.2.10)

It remains to compute ∂ijφn = φ′(sn)∂ijsn. Recall that H(A) has a simple spectrum and
notice that A 7→ sn(A) is differentiable. In fact, since sn is simple, it is a simple root of the
characteristic polynomial. In particular, it is not a root of its derivative and one can use
the implicit function theorem to conclude its differentiability. Let u and v be respectively
the left and right normalized singular vectors associated to s(A). Then

H(A)w = s(A)w with w =

(
u

v

)
and ∥w∥2 = 2 ,

moreover w is (up to scaling) the unique eigenvector of s(A) since s(A) is simple by
assumption. We now apply [48, Theorem 6.3.12] to compute sn’s derivative:

∂ijs(A) =
1

∥w∥2
(
u∗eie

∗
jv + v∗eje

∗
iu
)
= u∗eie

∗
jv hence ∂ijsn =

1√
n
u∗eie

∗
jv (6.2.11)

(recall that all the considered vectors are real). We first handle the term T1,ij .

∑
ij

|T1,ij |2 =
∑
ij

∣∣∣∣u∗eie
∗
jvφ

′(sn)e
∗
k

(
n−1/2A

)2
Q

1√
n

∣∣∣∣2 ,

≤ 36∥φ′∥2∞
∑
i

|u∗ei|2
∑
j

∣∣e∗jv∣∣2 ≤ 36∥φ′∥2∞ .
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We now handle the term T2,ij .

∑
ij

|T2,ij |2 =
∑
ij

∣∣∣∣φne
∗
k

(
A√
n
eie

∗
j + eie

∗
j

A√
n

)
Q

1√
n

∣∣∣∣2,

≤ 2φ2
n

∑
i

∣∣∣∣e∗k A√
n
ei

∣∣∣∣2∑
j

∣∣∣∣e∗jQ 1√
n

∣∣∣∣2 + 2φ2
n

∑
i

|e∗kei|
2
∑
j

∣∣∣∣e∗j A√
n
Q

1√
n

∣∣∣∣2 ,
= 2φ2

n

(
e∗k

A√
n

A∗
√
n
ek

)(
1∗
√
n
Q∗Q

1√
n

)
+ 2φ2

n

(
1∗
√
n
Q∗A

∗A

n
Q

1√
n

)
≤ 22 × 34 .

The term T3,ij can be handled similarly and one can prove
∑

ij |T3,ij |
2 ≤ 38. Gathering all

these estimates, we finally obtain the desired bound:√∑
ij

∣∣∣∂ijR̃k∣∣∣2 ≤
√
3
∑
ij

|T1,ij |2 + 3
∑
ij

|T2,ij |2 + 3
∑
ij

|T3,ij |2 ≤ K ,

where K neither depends on k nor on n.

Having proved a local estimate over ∥∇R̃k(A)∥ for each matrix A such that H(A) has
simple spectrum, we now establish the Lipschitz estimate (6.2.7) for two such matrices
A,B.

Let A,B such that H(A) and H(B) have simple spectrum and consider At = (1 −
t)A + tB for t ∈ [0, 1]. Notice first that the continuity of the eigenvalues implies that
there exists δ > 0 sufficiently small such that H(At) has a simple spectrum for t ≤ δ and
t ≥ 1 − δ. To go beyond [0, δ) ∪ (1 − δ, 1] and prove that H(At) has simple spectrum
for the entire interval [0, 1] except maybe for a finite number of points, we rely on the
argument in Kato [52, Chapter 2.1] which states that apart from a finite number of tℓ’s:
t0 = 0 < t1 < · · · < tL < tL+1 = 1, the number of eigenvalues of H(At) remains constant
for t ∈ [0, 1] and t ̸= tℓ, ℓ ∈ [L]. Since H(At) has simple spectrum for t ∈ [0, δ) ∪ (1− δ, 1],
it has simple spectrum for all t /∈ {tℓ, ℓ ∈ [L]}.

We can now proceed:∣∣∣R̃k(At1)− R̃k(A)
∣∣∣ =

∣∣∣∣ limτ↗t1

∫ τ

0

d

dt
R̃k(At) dt

∣∣∣∣ =

∣∣∣∣ limτ↗t1

∫ τ

0
∇R̃k(At) ◦

d

dt
At dt

∣∣∣∣ ,
≤ lim

τ↗t1

∫ τ

0
∥∇R̃k(At)∥ × ∥B −A∥F dt ≤ K t1 ∥B −A∥F .

By iterating this process, we obtain

∣∣∣R̃k(B)− R̃k(A)
∣∣∣ ≤

L+1∑
ℓ=1

∣∣∣R̃k(Atℓ)− R̃k(Atℓ−1
)
∣∣∣

≤
L+1∑
ℓ=1

K(tℓ − tℓ−1)∥B −A∥F = K∥B −A∥F ,
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hence the Lipschitz property along the segment [A,B].

The general property follows by density of such matrices in the set of n × n matrices
and by continuity of A 7→ R̃k(A). Let A,B be given and Aε → A and Bε → B be such
that H(Aε) and H(Bε) have simple spectrum then:∣∣∣R̃k(B)− R̃k(A)

∣∣∣ ≤ ∣∣∣R̃k(Bε)− R̃k(B)
∣∣∣+K∥Bε −Aε∥+

∣∣∣R̃k(Aε)− R̃k(A)
∣∣∣

−−−→
ε→0

K∥B −A∥F .

Proof of Lemma 6.4 is completed.

We now use concentration arguments to bound Emaxk∈[n](R̃k − ER̃k).

Proposition 6.5. Let K be as in Lemma 6.4, then Emaxk∈[n](R̃k − ER̃k) ≤ K
√
2 log n .

Proof. By applying Tsirelson-Ibragimov-Sudakov inequality [23, Theorem 5.5] to R̃k(A),
we obtain the following exponential estimate:

Eeλ(R̃k(A)−ER̃k(A)) ≤ e
λ2K2

2 ∀λ ∈ R .

We now estimate the expectation of the maximum (we drop the dependence in A).

exp

(
λEmax

k∈[n]
(R̃k − ER̃k)

)
≤ E exp

(
λmax
k∈[n]

(R̃k − ER̃k)
)

≤
n∑
k=1

Eeλ(R̃k−ER̃k) ≤ ne
λ2K2

2 .

Hence for λ > 0,

Emax
k∈[n]

(R̃k − ER̃k) ≤ log n

λ
+
λK2

2
=: Φ(λ) .

Optimizing in λ, we get λ∗ =
√
2 logn
K and Φ(λ∗) = K

√
2 log n, the desired estimate.

Proposition 6.6. We have ER̃k(An) = O(1) uniformly in k ∈ [n].

Proof. By exchangeability, we have ER̃k = 1
n

∑n
i=1 ER̃i and∣∣∣∣∣ 1n

n∑
i=1

ER̃i

∣∣∣∣∣ =

∣∣∣∣∣ 1nEφn1∗
(
A√
n

)2

Q1

∣∣∣∣∣ ≤
∥∥∥∥ 1√

n

∥∥∥∥2 E
(
φn

∥∥∥∥ A√n
∥∥∥∥2 ∥Q∥

)
= O(1) .

by (6.2.8). Proof of Proposition 6.6 is completed.

We are now in position to prove Lemma 6.3.
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Proof of Lemma 6.3

Since the R̃i(A)’s are exchangeable, ER̃k(A) = ER̃1(A). Notice that maxk∈[n] R̃k(A) −
R̃1(A) is nonnegative hence by Markov inequality,

P

{
maxk∈[n] R̃k(A)− R̃1(A)

α
√
2 log n

≥ ε

}
≤

E
(
maxk∈[n] R̃k(A)− R̃1(A)

)
εα

√
2 log n

=
E
(
maxk∈[n]

(
R̃k(A)− ER̃k(A) + ER̃1(A)

)
− R̃1(A)

)
εα

√
2 log n

,

=
E
(
maxk∈[n]

(
R̃k(A)− ER̃k(A)

))
εα

√
2 log n

≤ K

εα

by Proposition 6.5. This implies that

maxk∈[n] R̃k(A)− R̃1(A)

α
√
2 log n

P−−−→
n→∞

0 . (6.2.12)

We now prove that
R̃1(A) /

(
α
√
2 log n

)
P−−−→

n→∞
0 . (6.2.13)

By Proposition 6.6, ER̃1(A) = O(1) hence ER̃1(A)/(α
√
2 log(n)) → 0. Applying Poincaré’s

inequality (cf. [23, Theorem 3.20] and its extension to Lipschitz functionals on p. 73) to
the Lipschitz functional A 7→ R̃1(A) (cf. Lemma 6.4), we can bound R̃1(A)’s variance by
K2 and obtain

P

(∣∣∣∣∣R̃1(A)− ER̃1(A)

α
√
2 log n

∣∣∣∣∣ > δ

)
≤ var(R̃1(A))

2δ2α2 log n
≤ K2

2δ2α2 log n
−−−→
n→∞

0 .

This and Proposition 6.6 yield (6.2.13). Combining (6.2.12) and (6.2.13) finally yields:

maxk∈[n] R̃k(A)

α
√
2 log n

P−−−→
n→∞

0 .

In order to obtain the result for the untilded quantities, we write

P
{∣∣∣∣maxk Rk(A)

α
√
2 log n

∣∣∣∣ > ε

}
≤ P

{
max

k
Rk(A) ̸= max

k
R̃k(A)

}
+ P

{∣∣∣∣∣maxk R̃k(A)

α
√
2 log n

∣∣∣∣∣ > ε

2

}
,

= P{φn < 1}+ P

{∣∣∣∣∣maxk R̃k(A)

α
√
2 log n

∣∣∣∣∣ > ε/2

}
−−−−→
n→∞

0 .

One proves the second assertion similarly. This concludes the proof of Lemma 6.3.
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6.3 Stability: proof of Corollary 6.2

In order to study the stability of large Lotka-Volterra systems, we are led to study the
matrix

J (xn) = diag(xn)

(
−In +

An
αn

√
n

)
.

We first establish the following estimatesmink∈[n] xk ≥ 1− ℓ+ − oP (1) ,

maxk∈[n] xk ≤ 1 + ℓ+ + oP (1) .
(6.3.1)

The first estimate immediately follows from (6.2.5) together with Lemma 6.3. From xk’s
decomposition (6.2.1) we have

max
k∈[n]

xk ≤ 1 +
Mn

αn
+

maxk∈[n]Rk

α2
n

= 1 +
α∗
n

αn

(
Mn − β∗n

α∗
n

+
β∗n
α∗
n

+
maxk∈[n]Rk

α∗
nαn

)
≤ 1 + ℓ+ + oP (1) ,

where the last inequality follows from Lemma 6.3 and the fact that (α∗
n)

−1 (Mn−β∗n)
P−→ 0.

We now compare the spectra of matrices D(xn) = −diag(xn) and J (xn) by relying on
Bauer and Fike’s theorem [48, Theorem 6.3.2]: for every λ ∈ Sn, there exists a component
xk of vector xn such that

|λ+ xk| ≤
∥∥∥∥diag(xn) An

αn
√
n

∥∥∥∥ ≤ 1

αn
∥diag(xn)∥

∥∥∥∥An√
n

∥∥∥∥
(a)

≤ 1

αn

(
1 + ℓ+ + oP (1)

)
(2 + oP (1)) = oP (1) .

where (a) follows from the second estimate in (6.3.1) and from the spectral norm estimate.
Notice that the majorization above is uniform for λ ∈ Sn. The first part of the corrolary
is proved. Finally,

Re(λ) + xk ≤ |λ+ xk| = oP (1) ⇒ Re(λ) ≤ − min
k∈[n]

xk + oP (1) .

The estimate (6.1.5) finally follows from the first estimate in (6.3.1).
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6.4 Heuristics at critical scaling, non-homogeneous systems
and non-gaussian entries

A heuristics at the critical scaling

We provide here a heuristics to compute the probability that a solution xn is feasible at
critical scaling α∗

n =
√
2 log n.

Heuristics 6.4.1. The probability that a solution is feasible at the critical scaling α∗
n is

asymptotically given by

P(xk > 0, k ∈ [n]) ≈ 1−
√

e

4π log n
+

e

8π log n
=: H1(n) . (6.4.1)

In Figure 6.2, we compare the heuristics with results from simulations.

Figure 6.2: Probability at critical scaling. The solid curve corresponds to the proportion
of feasible solutions at critical scaling α∗

n obtained for 10000 simulations (for n ranging from
50 to 3750 with a 200-increment) - notice the strong standard deviation. The dashed curve
represents the heuristics H1 defined in (6.4.1). The dotted curve represents the heuristics
H2 introduced in Remark 6.4. Notice the substantial discrepancy between H1 and H2..

Arguments. Consider

xk = 1 + e∗k
An

α∗
n

√
n
1n +

Rk
(α∗

n)
2
= 1 +

Zk
α∗
n

+
Rk

(α∗
n)

2
= 1 +

1

α∗
n

(
Zk +

Rk
α∗
n

)
.

Following Geman and Hwang [43, Lemma A.1], one could prove that Zk and Rk are
asymptotically independent centered Gaussian random variables, each with variance one.
We thus approximate the quantity Zk+Rk

α∗
n

by a Gaussian random variable with distribution

N
(
0, 1 + 1

(α∗
n)

2

)
and set xk ≈ 1 +

(
1
α∗
n

√
1 + 1

(α∗
n)

2

)
Uk where the Uk’s are i.i.d. N (0, 1).
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Denote by M̌U
n = mink∈[n] Uk then

P(xk > 0 , k ∈ [n]) ≈ P

(
1 +

(
1

α∗
n

√
1 +

1

(α∗
n)

2

)
M̌U
n > 0

)
.

Recall that standard Gaussian extreme value convergence results yield

P
{
α∗
n

(
−M̌U

n − β∗n
)
< x

}
= P

{
α∗
n(M̌

U
n + β∗n) > −x

}
−−−→
n→∞

G(x) = e−e
−x
, (6.4.2)

where β∗n is defined in (6.2.3). Denote by Θ(α) =
√
1 + α−2 then

P
(
1 + Θ(α∗

n)
M̌U
n

α∗
n

> 0

)
= P

(
α∗
n(M̌

U
n + β∗n) > − (α∗

n)
2

Θ(α∗
n)

+ α∗
nβ

∗
n

)
.

Notice that

− (α∗
n)

2

Θ(α∗
n)

+ α∗
nβ

∗
n =

1

2
− 1

2
log(4π log n) +O

(
1

(α∗
n)

2

)
=

1

2
+ log

1√
2πα∗

n

+O
(

1

(α∗
n)

2

)
.

Hence

P
(
1 + Θ(α∗

n)
M̌U
n

α∗
n

> 0

)
= P

(
α∗
n(M̌

U
n + β∗n) >

1

2
+ log

1√
2πα∗

n

+O
(

1

(α∗
n)

2

))
,

(a)
≈ e

− exp
(

1
2
+log 1√

2πα∗
n
+O

(
1

(α∗
n)2

))
= e

−
√

e
2π

1
α∗
n
(1+O((α∗

n)
−2))

,

= 1−
√

e

2π

1

α∗
n

+
1

2

e

2π

1

(α∗
n)

2
+O

(
1

(α∗
n)

3

)
. (6.4.3)

We finally end up with the announced approximation

P(xk > 0 , k ∈ [n]) ≈ H1(n) := 1−
√

e

4π log n
+

e

8π log n
.

Remark : A rougher approximation would have been to set xk ≈ 1 + Zk
α∗
n

with Zk ∼
N (0, 1) and to drop the next term Rk

(α∗
n)

2 in the heuristics but this would have resulted in
the following approximation

P(xk > 0, k ∈ [n]) ≈ 1− (4π log(n))−1/2 + (8π log(n))−1 =: H2(n) ,

which is worse than H1(n), as illustrated in Figure 6.2.

Positivity for a non-homogeneous linear system

By homogeneous, we refer to a LV system where the intrinsic growth rate of species i
is equal to 1. If not, the system is non-homogeneous (NH). The results developed so far
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extend to a NH linear system where 1n is replaced by a vector rn with slight modifications.
In particular, we identify a regime where feasibility and stability occur simultaneously.
Denote by rn = (rk) a n × 1 deterministic vector with positive components and consider
the linear system

xn = rn +
1

αn
√
n
Anxn . (6.4.4)

Introduce the notations

rmin(n) = min
k∈[n]

rk , rmax(n) = max
k∈[n]

rk and σr(n) = ∥r/
√
n∥ =

√
n−1

∑
k∈[n]

r2k .

Assume that there exist ρmin, ρmax independent from n such that eventually

0 < ρmin ≤ rmin(n) ≤ σr(n) ≤ rmax(n) ≤ ρmax <∞ .

Then

Theorem 6.7 (Feasibility - NH case). Let αn −−−→
n→∞

∞ and denote by α∗
n =

√
2 log n. Let

xn = (xk)k∈[n] be the solution of (6.4.4).

1. If ∃ ε > 0 such that αn ≤ (1− ε)α
∗
nσr(n)
rmax(n)

then P
{
mink∈[n] xk > 0

}
−−−→
n→∞

0 .

2. If ∃ ε > 0 such that αn ≥ (1 + ε)α
∗
nσr(n)
rmin(n)

then P
{
mink∈[n] xk > 0

}
−−−→
n→∞

1 .

Remark : Contrary to the homogeneous system where there is a sharp transition at
α∗
n =

√
2 log(n), the situation is not as clean-cut here and there is a buffer zone

αn ∈
[
σr(n)

rmax(n)

√
2 log(n) ,

σr(n)

rmin(n)

√
2 log(n)

]
in which the study of the feasibility is not clear.

This buffer zone is illustrated in Figure 6.3 where we simulate the transition toward
feasibility for a non-homogeneous system (6.4.4) in the case where deterministic vector rn
is equally distributed over [1, 3], i.e.

rn(i) = 1 +
2i

n
, σr(n) =

√√√√ 1

n

∑
i∈[n]

r2n(i) −−−→n→∞

√∫ 1

0
(1 + 2x)2 dx (6.4.5)

We introduce the quantities

t1 = lim
N

√
2σr(N)

rmax
≃ 0.98 and t2 = lim

N

√
2σr(N)

rmin
≃ 2.94 . (6.4.6)

As one may notice, the transition region is wider than in the homogeneous case.



6.4. HEURISTICS AT CRITICAL SCALING, NON-HOMOGENEOUS SYSTEMS AND NON-GAUSSIAN ENTRIES111

Figure 6.3: Transition toward feasibility for a NH system. The curves are obtained as
for Figure 6.1 for rN defined in (6.4.5). The thresholds t1 and t2 are computed in (6.4.6)..

Elements of proof. We have

xk = e∗kQ rn = rk +
1

α

∑n
i=1 riAki√

n
+

1

α2
e∗k

(
A√
n

)
Q rn = rk +

σr(n)

α
Uk +

1

α2
R

(r)
k

where the Uk’s are i.i.d. N (0, 1). One can check by carefully reading the proof of Lemma
6.3 that the conclusions of the lemma apply to R(r)

k . In particular, one may check that
Proposition 6.6 holds uniformly in k ∈ [n] in the non-homogeneous case. Denote by
M̌ = mink∈[n] Uk, then

min
k∈[n]

xk ≤ rmax(n) +
σr(n)

α
M̌ +

maxk∈[n]R
(r)
k

α2
,

≤ rmax(n) +
σr(n)α

∗

α

(
M̌ + β∗

α∗ − β∗

α∗ +
maxk∈[n]R

(r)
k

σr(n)α∗α

)
,

= rmax(n) +
σr(n)α

∗

α
(−1 + oP (1)) .

The first statement of the theorem follows. The second statement follows similarly, noticing
that mink∈[n] xk ≥ rmin(n) + α−1σr(n)M̌ + α−2mink∈[n]R

(r)
k . Proof of Theorem 6.7 is

completed.

A non homogeneous system (6.4.4) is associated to the following Lotka-Volterra system

dxk(t)

dt
= xk(t)

rk − xk(t) +
1

αn
√
n

∑
ℓ∈[n]

Akℓxℓ(t)


for k ∈ [n] whose jacobian at equilibrium is still given by (6.1.4).

Theorem 6.8 (Stability - NH case). Let xn = (xk)k∈[n] be the solution of (6.4.4) and
assume that

ℓ+ := lim sup
n→∞

α∗
n σr(n)

αn rmin(n)
< 1 .
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Denote by Sn the spectrum of J (xn). Then for every λ ∈ Sn,

max
λ∈Sn

min
k∈[n]

|λ+ xk|
P−−−→

n→∞
0 and max

λ∈Sn

Reλ ≤ −(1− ℓ+) + oP (1) .

Beyond the Gaussian case

In this section, we extend the result to the class of random variables satisfying a logarithmic
Sobolev inequality. The Gaussianity of the entries is used at three crucial steps, and in
each case, it is enough that the entries satisfy a log-Sobolev inequality for some constant
ρ <∞:

• Gaussian entries immediately imply that the Zk’s are independent standard Gaussian
random variables, for which the study of the extrema is standard.

In the case where the entries are not Gaussian, the Zk’s are no longer Gaussian but this
issue can easily be circumvented since by the CLT the Zk’s converge in distribution to a
standard Gaussian. The extreme value study of such families of Zk’s has been carried out
in [3, Propositions 2 & 3]. In our case, it is easy to check that the LSI(ρ) condition ensures
that we can apply [3, Proposition 3].

• Gaussian concentration has been used to prove sub-Gaussiannity of the Lipschitz
functionnal R̃k(A). This remains valid under a log-Sobolev inequality assumption,
the value of the constant being irrelevant to us. (The point is that, by tensorization,
for any column i the log-Sobolev constant of the vector (Ai,j)1≤j≤n remains upper-
bounded by ρ, which does not depend on n.)

• In the proof of Lemma 6.3 the Gaussian Poincaré inequality is used to prove that
R̃1(A)/(α

√
2 log(n)) goes to zero in probability, but the log-Sobolev inequality im-

plies the Poincaré inequality. Again the constant does not matter.

Hence we can extend Theorem 6.1 as :

Theorem 6.9. Assume that the entries Aij are i.i.d. centered, with finite variance equal
to 1 and satisfy a logarithmic Sobolev inequality, then the conclusions of Theorem 6.1 hold.



Perspectives

Let us briefly describe a sample of possible directions for future work.

Log-sobolev inequalities for log-concave measures

We strongly believe that the estimates proved in Chapter 4 can be improved.
A first goal is to elaborate a complete scheme of proof using stochastic localization,

continuing the work initiated in Section 4.4, thus reducing the problem to controlling the
evolution of the subgaussianity parameter σSG(µ) along the stochastic localization process.

In a related direction, consider a probability µ = e−V satisfying ∇2V ≥ ρ for some
ρ > 0. In [56], the key ingredient proved by Klartag is an improved Lichnerowicz inequality:

cP (µ)
2 ≤

√
|Cov(µ)|op

ρ
.

A natural question is to try and prove a similar inequality for the log-Sobolev constant:

ρLS(µ)
2 ≲

√
σ2SG(µ)

ρ
.

Finally, much remains to be understood about tilt-stable log-concave measures. For a
measure µ, write

dµt,h =
1

Zt,h
e−t|x|

2+h·xdµ

Recall that µ is 1-tilt stable if

sup
h∈Rn

|Cov(µ0,h)|op ≤ 1

In Section 4.5.2, we show that if µ is 1-tilt stable and log-concave it is Cn-strongly tilt
stable, that is

sup
t>0,h∈Rn

|Cov(µt,h)|op ≤ Cn,

for some constant Cn polynomial in the dimension. We recall that the strong tilt-stability
constant controls the log-Sobolev constant. We strongly believe that Cn could be chosen to

113
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be polylogarithmic in the dimension, thus providing a polylog estimate for the log-Sobolev
constant of tilt stable log concave measures. This would require using a different approach
than the perturbation argument of Section 4.5.2. Let us give a heuristic to support this
belief. Fix T = 1

c log2 n
for some constant c > 0. For any t ≤ T , we know that

|Cov(µt,ht)|op ≤ 2 with high probability.

where ht = tX + Bt. (This is a slightly stronger version of Lemma 2.14). However, in
the spirit of Lemma 4.37, we may apply this argument not only to µ but to all its tilts
µ0,h for h ∈ Rn. We could then hope to recover all the measures µt,h by this procedure,
for t ≤ T . To make it more clear, if instead of having a bound on the measures µt,ht
with high probability on ht, we could derandomize the stochastic localization process and
have a bound just for the 0 tilt, µt,0, then applying Lemma 4.37 would immediately yield
Cn ≲ log2 n.

Finally, a very natural and important question, to our eyes, is to determine whether
all sub-gaussian log-concave measures are in fact tilt-stables, up to a constant. A starting
point is to investigate the one-dimensional case.

A KLS conjecture on the hypercube

Let µ be the uniform measure on the discrete hypercube Cn = {−1, 1}n. For a positive
symmetric matrix J and vector h ∈ Rn, we introduce the measure

µJ,h =
1

ZJ,h
µe

1
2
Jx·x+h·x

where ZJ,h is a normalizing constant. As we have seen in Section 5.1,

Proposition 6.10.

Cov(µJ,h) ≼
1

1− |J |op
In and CP (µJ,h) ≤

1

1− |J |op

where in that context CP stands for the optimal constant in the discrete Poincaré inequality.
Using (a renormalized version of) the process introduced by Eldan and Chen[29], the

measure µJ,h can be decomposed into measures µt = µJt,ht where Jt = (1 − t)J , for
0 ≤ t ≤ 1 . In particular, starting from a measure µJ,h with |J |op ≤ 1, one gets that
cP (µt) ≤ 1

t almost surely. This is analogous to what happens for the stochastic localization
of log-concave measures, and provides an approach to tackling the following KLS-type
question:

Question 6.11. Let µJ,h be as above, with |J |op ≤ 1, is it true that

CP (µJ,h) ≲ |Cov(µJ,h)|op ?
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Very similarly to the setting of the KLS Conjecture, one then needs to control the
evolution of the covariance matrix along the process. The main difficulty is the absence of
the traditional machinery for log-concave vectors, such as Borell’s Lemma.

Shortest billiard trajectory of random polytopes

Finally, we describe a question witch has a slightly different flavor and which is part of an
ongoing discussion with Professor Ostrover.

Let K be a convex body of Rn. We denote by ξ(K) the length of the shortest periodic
billiard trajectory in K, by inrad(K) the inradius of K, and by width(K) the minimal
width of K. The following lower and upper-bound for ξ(K) are due to Ghomi [44] and
Ostrover and Artstein-Avidan[6], respectively.

4inrad(K) ≤ ξ(K) ≤ 2width(K). (6.4.7)

Denote by s(K) = width(K)
inrad(K) . When K is symmetric, the two bounds coincide, so that

s(K) = 1. However, in the case of the regular simplex ∆n for instance, we have s(∆n) ≃√
n. It is natural to wonder what happens in the case of random polytopes. More precisely

Let ν be, for instance, the uniform measure on the sphere, define for N ≥ n the random
polytope

PN = conv(X1, . . . , XN )

where the X1, . . . , XN are iid and distributed according to ν. We propose to estimate
s(PN ). When N = n, PN is close to being a regular simplex so that we expect s(PN ) to be
big. When N is (very) large however, PN converges to the euclidean ball, so that s(PN )
should be close to 1.
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