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Titre: Dispersion dans les milieux poreux insaturés
Mots clés: Transport anormal, zone vadose, milieux poreux insaturés, écoulements multiphasiques, mi-
cromodèle.
Résumé: L’activité humaine a un impact signifi-
catif sur la vadose, une zone située au-dessus des
nappes phréatiques, qui n’est que partiellement sat-
urée en eau. La vadose peut être polluée par les ac-
tivités agricoles ou industrielles, ce qui constitue une
menace pour les ressources en eau. De plus, la satu-
ration varie considérablement, notamment en raison
des sécheresses plus fréquentes dues au changement
climatique. Prévoir le transport de contaminants
en milieux insaturées est donc essentiel. Cepen-
dant, la compréhension de la dispersion dans les
milieux poreux insaturés reste limitée, en raison
de l’interaction complexe des flux multiphasiques
non miscibles avec le milieu poreux. Les mod-
èles traditionnels tels que le modèle Fickien, décrit
par l’équation d’Advection-Diffusion, ne parviennent
pas à rendre compte avec précision de la disper-
sion dans les milieux poreux insaturés. L’objectif
est d’aborder la question du transport dans les mi-
lieux poreux insaturés en identifiant les propriétés
pertinentes à l’échelle du pore pour comprendre la
dispersion à plus grande échelle. Il s’agit notamment
de déterminer si la dispersion est fickienne ou non-
fickienne, ce qui est crucial pour prédire la propaga-
tion des polluants. Une double approche est adoptée
: des expériences de transport à l’échelle du pore et
des simulations de Lattice Boltzmann. La visualisa-
tion directe des fluides dans les milieux poreux est un
défi. Nous utilisons donc des micromodèles, réseaux
poreux transparents interconnectés, pour permettre
la visualisation optique à l’échelle du pore. Tout
d’abord, un dispositif expérimental micromodèle a
été établi et optimisé pour étudier l’écoulement et le
transport multiphasiques. Des méthodes d’analyse
ont été développées, ainsi que des techniques de car-
actérisation de la dispersion par l’analyse des mo-
ments spatiaux. Une première série d’expériences
mène à des résultats préliminaires, l’évolution de
la saturation et des distributions de phases avec le
nombre capillaire a été caractérisée. Les expéri-

ences de transport réalisées pour toute la gamme
de saturation montrent que la dispersion augmente
à mesure que la saturation diminue. Cependant,
l’analyse des faibles saturations s’est avérée diffi-
cile en raison de l’augmentation significative de la
dispersion et des limites imposées par la taille du
micromodèle, empêchant l’étude de la dispersion à
long terme. Pour surmonter cette limitation, des
simulations Lattice-Boltzmann ont été utilisées pour
l’écoulement et le transport, car elles sont flexibles
en taille et seulement limitées par le temps de cal-
cul. Toutefois, simuler la distribution de deux phases
après un écoulement multiphasique dans un milieu
poreux complexe reste un défi. Générer des im-
ages à grande échelle de milieux poreux insaturés
à partir de données expérimentales s’est donc avéré
nécessaire pour observer la dispersion à temps long.
Un algorithme de statistique multipoints (MPS) a
été utilisé pour générer à la fois des images de mi-
lieux poreux non saturés plus larges et un grand
ensemble de d’images plus petites pour augmenter
la signification statistique de l’étude. Des simula-
tions d’écoulement et de transport ont été réalisées
sur l’ensemble des images générées afin d’explorer
l’influence de la saturation sur l’écoulement et le
transport. Cette étude révèle que la diminution
de la saturation augmente de manière significative
l’hétérogénéité de l’écoulement, ce qui entraîne une
dispersion accrue. Notamment, la nature non fick-
ienne de l’écoulement tend à être plus prononcée à
faible saturation. De plus, la transition d’un trans-
port fickien à un transport non fickien dépend du
nombre de Peclet. Il existe une compétition entre
l’advection et la diffusion dans des conditions sat-
urées, ce qui entraîne un régime Fickien diffusif pour
les faibles nombres de Peclet. Cependant, le trans-
port en conditions non saturées est principalement
advectif, même à faible nombre de Peclet, et présente
donc un comportement non Fickien.
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Title: Dispersion in unsaturated porous media
Keywords: Non-Fickian dispersion, unsaturated porous media, vadose zone, multiphase flow, micromod-
els.

Abstract: Human activity has a significant impact
on the vadose zone, an area located below the land
surface and above the water tables, only partially
saturated with water. The vadose is susceptible to
pollution from agricultural or industrial activities,
posing a threat to water resources. Plus, satura-
tion levels vary greatly, especially with the increas-
ing frequency of droughts due to climate change.
Hence, predicting contaminant transport in unsat-
urated conditions is crucial. However, the under-
standing of dispersion in unsaturated porous me-
dia remains limited, due to the complex interaction
of multiphase non-miscible flows with the porous
medium. Traditional models such as the Fickian
model, described by the Advection-Diffusion Equa-
tion, fail to accurately capture dispersion in unsat-
urated porous media.

The objective is to address the issue of transport
in unsaturated porous media by identifying relevant
properties at the pore scale to understand disper-
sion at a larger scale. One of the goals is to de-
termine whether dispersion follows Fickian or non-
Fickian behavior, as this understanding is crucial for
predicting the spreading of pollutant in the vadose
zone.

To investigate transport in unsaturated porous
media, a dual approach is being employed: pore-
scale transport experiments and Lattice Boltzmann
simulations. Direct visualization of fluid structure
in natural porous media is challenging. Thus, we
use micromodels, transparent interconnected porous
networks, to enable optical visualization at the pore
scale. First, a micromodel experimental set-up was
established and optimized to study multiphase flow
and transport. Analysis methods were developed,
along with techniques for characterizing dispersion
through spatial moment analysis.

A series of experiments were conducted to ob-
tain initial results on multiphase flow and dispersion.
The evolution of saturation and phase distributions
with the capillary number was characterized. Trans-
port experiments were performed for the entire range

of saturations, showing that dispersion increases as
saturation decreases. However, analyzing low sat-
urations was challenging due to the significant in-
crease in dispersion and limitations imposed by the
micromodel size, preventing the study of long-term
dispersion.

To overcome this limitation, Lattice Boltzmann
simulations were used for flow and transport, as
there is no size limitation except for computational
time. However, simulating the distribution of two
phases after a multiphase flow in a complex porous
medium remains challenging. Generating large-scale
images of unsaturated porous media based on exper-
imental data was then crucial for observing late-time
dispersion. Machine learning techniques, specifi-
cally the Multiple Point Statistic algorithm, were
employed to generate images of wider unsaturated
porous media and a large dataset of smaller images
to increase the statistical significance of the study.

Flow and transport simulations were conducted
using the generated image dataset to explore the in-
fluence of saturation on flow and transport. This
involved examining flow properties under saturated
and unsaturated conditions. The nature of trans-
port, specifically whether it exhibited Fickian or
non-Fickian behavior was investigated. Further-
more, the effect of the Peclet number (a measure of
the balance between advection and diffusion) on dis-
persion for different saturation levels was analyzed.

This study revealed that decreasing saturation
significantly increases flow heterogeneity, leading to
increased dispersion. Notably, the non-Fickian na-
ture of flow tends to be more pronounced with low
saturations. Plus, the transition from Fickian to
non-Fickian depends on the Peclet number. There
is a competition between advection and diffusion in
saturated conditions, resulting in a diffusive Fickian
regime for low Peclet numbers. However, transport
in unsaturated conditions is mainly advective, even
at low Peclet, and thus displays a non-Fickian be-
havior.
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Synthèse

La zone non saturée, ou zone vadose, située au-dessus des nappes phréatiques et
partiellement saturée en eau, joue un rôle crucial en hydrogéologie, notamment dans la
recharge des nappes d’eau. Les activités humaines, y compris les pratiques agricoles, con-
tribuent à la pollution affectant la zone vadose. Avec différents niveaux de saturation,
on s’attend à ce que la zone non saturée connaisse une augmentation significative de la
variabilité de saturation, surtout dans le sud de la France en raison du changement clima-
tique et des sécheresses de plus en plus fréquentes. Par conséquent, la compréhension du
transport des contaminants dans les milieux poreux non saturés devient essentielle pour
évaluer et gérer efficacement les ressources en eau.

Néanmoins, la compréhension de la dispersion dans les milieux poreux non saturés
reste incomplète. Dans la littérature existante, il y a une disparité significative concernant
l’impact de la saturation sur la dispersion. À mesure que la saturation diminue et que le
milieu poreux devient plus hétérogène, le processus de transport devient de plus en plus
complexe. Par conséquent, les modèles conventionnels de dispersion, tels que l’équation
d’advection-diffusion, échouent souvent à capturer précisément le phénomène de dispersion
dans de telles conditions.

À travers cette étude, notre objectif est de mieux comprendre la dispersion dans les
milieux poreux non saturés en étudiant le transport à l’échelle des pores. Ce faisant, nous
visons à évaluer les propriétés à une plus grande échelle et, en particulier, à comprendre
comment la dispersion peut être caractérisée et modélisée dans les milieux poreux non
saturés. Malgré un nombre substantiel d’études sur ce sujet, un consensus concernant
l’impact de la saturation sur la dispersion reste insaisissable. En particulier, la relation
entre le coefficient de dispersion et la saturation présente des divergences considérables.
Alors que la majorité des études suggèrent une augmentation du coefficient de dispersion
avec la diminution de la saturation en eau, certaines montrent une relation non mono-
tone, et quelques-unes proposent même une diminution du coefficient de dispersion avec la
diminution de la saturation. Pour comprendre les origines de ces disparités, nous devons
explorer les mécanismes fondamentaux de la dispersion et l’interaction complexe entre
l’écoulement multiphasique et les caractéristiques du milieu poreux.

Dans le modèle classique, la loi empirique de Fick énonce que le flux est directement
proportionnel au gradient de concentration, donnant ainsi lieu à l’équation d’advection-
diffusion (ADE). Le coefficient de dispersion est la constante de proportionnalité entre la
variance de concentration (σ2) et le temps dans le régime asymptotique D = 1

2 limt→∞
dσ2

dt .
Lorsque la dispersion suit la loi de Fick, elle est appelée dispersion fickienne. Pour obtenir
l’ADE théoriquement, on considère le mouvement brownien, où les molécules subissent des
déplacements aléatoires, conduisant finalement à l’ADE avec un coefficient de diffusion égal
au coefficient de diffusion moléculaire. Dans les milieux poreux, la dispersion est influencée
non seulement par la diffusion moléculaire mais aussi par l’advection due à l’hétérogénéité
de l’écoulement, ce qui donne un coefficient de dispersion exprimé comme la somme de
composantes de diffusion et d’advection.

Pour parvenir à une convergence vers un mouvement fickien, la variance des déplace-
ments doit être finie. Une variance plus élevée conduit à une convergence plus lente vers
une dispersion fickienne. Étant donné que les milieux poreux réels ont une largeur finie, la
variance des déplacements doit également être finie. Par conséquent, la dispersion asymp-
totique devrait être théoriquement fickienne. En conséquence, la dispersion non-fickienne
caractérise un comportement transitoire. Cependant, la convergence vers une dispersion
fickienne peut être extrêmement lente, et dans certains cas, le régime fickien peut ne ja-
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mais être observé. En fait, la dispersion non-fickienne est plutôt la norme que l’exception
dans les milieux poreux.

Dans le contexte des milieux poreux non saturés, la présence d’une deuxième phase
introduit une hétérogénéité supplémentaire, ce qui entraîne souvent une dispersion accrue.
Une question fondamentale abordée dans cette thèse était de comprendre l’impact de la
saturation sur la nature de la dispersion, qu’elle présente un comportement fickien ou non-
fickien. Caractériser et modéliser correctement la dispersion revêt une importance capitale
à cet égard. Pour comprendre la dispersion dans les milieux poreux non saturés, il était
essentiel d’étudier les interactions entre l’écoulement multiphasique et le milieu poreux.
Plus précisément, l’étude s’est concentrée sur la manière dont les propriétés structurelles
du milieu poreux changent avec la saturation. Par exemple, l’étude visait à comprendre
comment l’hétérogénéité du milieu poreux varie avec les niveaux de saturation.

Afin de comprendre la dispersion dans les milieux poreux non saturés, nous avons
réalisé une étude à l’échelle des pores pour identifier les mécanismes d’écoulement et de
dispersion à l’échelle microscopique afin de mieux caractériser la dispersion à une plus
grande échelle. Ce travail a été entrepris sur deux axes principaux, une étude expérimentale
et un travail numérique pour compléter les résultats expérimentaux.

Pour notre étude, nous avons utilisé un micromodèle, un réseau poreux 2D transpar-
ent qui permet la visualisation à l’échelle des pores, couramment utilisé pour les études
d’écoulement et de transport multiphasiques. Le micromodèle a été créé sur la base d’une
tranche 2D d’une roche. Pour mener nos expériences, nous avons conçu un dispositif
expérimental spécifique pour réaliser des expériences d’écoulement multiphasique air-eau
suivies d’expériences de transport.

Notre objectif était d’étudier le transport dans les milieux poreux non saturés avec
une phase piégée, ce qui signifie que des bulles étaient piégées dans le milieu, et nous
n’avons pas délibérément examiné le transport lors du mouvement des bulles, car cela
aurait introduit une complexité significative dans l’étude. Nous avons conçu un dispositif
expérimental pour créer un milieu poreux non saturé avec des distributions de bulles
uniformes et reproductibles. Pour cela, nous avons utilisé un système de co-injection, où
l’eau et l’air étaient injectés simultanément, et nous avons arrêté l’injection une fois un
état stable atteint. L’écoulement multiphasique résultant a conduit à un milieu poreux
avec des bulles piégées, que nous avons utilisé pour nos expériences de transport.

Un défi dans la réalisation d’expériences de transport dans un micromodèle est d’établir
une condition d’entrée claire. Avec un système d’entrée simple, le traceur se disperse dans
le milieu même avant d’entrer dans le milieu poreux, ce qui rend difficile de quantifier
précisément la dispersion. Pour résoudre ce problème, nous avons amélioré l’expérience
de transport en développant un dispositif avec un système d’injection d’entrée bien défini.

De plus, nous avons développé des techniques spécifiques de traitement des données
pour nos données expérimentales. Nous avons conçu des méthodes pour analyser la distri-
bution des phases résultant de la co-injection, pour effectuer la segmentation des phases,
calculer les valeurs de porosité et de saturation, ainsi que les distributions de taille de
grains et de pores.

En outre, pour analyser quantitativement comment la dispersion change avec la satu-
ration, nous nous sommes appuyés sur l’étude des moments spatiaux de la concentration.
Un avantage de cette méthode est qu’elle ne nécessite pas de faire des hypothèses sur la
nature de la dispersion, comme savoir si elle est fickienne ou non-fickienne. Au lieu de cela,
en examinant l’évolution du deuxième moment avec le temps, nous pouvons charactériser
si la dispersion est fickienne ou non-fickienne. Plus spécifiquement, si le deuxième mo-
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ment σ2 est proportionnel à tα, et si α est égal à 1, cela indique une dispersion fickienne.
Inversement, si α diffère de 1, cela indique une dispersion non-fickienne. Pour calculer
les moments spatiaux, nous avons utilisé l’intégration par parties, une technique qui nous
permet de calculer les moments même pour des distributions affectées par du bruit, ce qui
est courant dans des conditions non saturées.

L’ensemble du dispositif expérimental a fourni des résultats expérimentaux de qualité
sur la dispersion dans les milieux poreux non saturés. Initialement, nous avons caractérisé
l’interaction entre l’écoulement multiphasique et le milieu poreux et identifié les propriétés
du milieu poreux non saturé résultant.

Plus précisément, nous avons observé que la saturation augmente avec le nombre capil-
laire (Ca), défini en fonction de la viscosité dynamique µ, de la vitesse d’écoulement (v) et
de la tension superficielle (γ) comme Ca = µv

γ . Cette relation suit une loi de puissance, et
la saturation approche 1 pour des valeurs de Ca suffisamment élevées. Cependant, nous
n’avons pas pu explorer l’ensemble de la plage de saturation car, en dessous de Sw = 0.5,
la phase aqueuse ne percole pas. Par conséquent, notre étude de la dispersion était limitée
à la plage [0.5 − 1] pour la saturation. La distribution des bulles dépendait principale-
ment du nombre capillaire maximal imposé dans le système. Nos résultats correspondent
étroitement aux découvertes antérieures dans la littérature, notamment en ce qui con-
cerne la distribution des tailles de bulles. Aux grandes tailles de bulles, i.e. les bulles
plus grandes que la taille moyenne d’une pore, les distributions de tailles de bulles suivent
une décroissance en loi de puissance avec une coupure dépendant du nombre capillaire.
À mesure que les débits augmentent, les plus grosses bulles sont chassées, ce qui entraîne
une diminution de la taille maximale des bulles. Notamment, en dessous de la taille des
pores, le nombre capillaire avait peu d’impact sur la distribution des bulles.

De plus, à l’échelle des pores dans des conditions non saturées, nous avons observé
que les pores étaient soit presque complètement remplis d’air, ne contenant qu’un mince
film d’eau avec une saturation locale en eau (Sw,local) d’environ 0.2, soit complètement
saturés d’eau. Avec la diminution de la saturation, le nombre de pores remplis d’air a
augmenté, et les gros pores étaient préférentiellement occupés par des bulles par rapport
à des conditions plus saturées.

Après avoir caractérisé le milieu poreux non saturé, nous avons ensuite étudié l’effet
de la saturation sur la dispersion. Nos résultats ont révélé une augmentation globale de
la dispersion à mesure que la saturation diminuait. Dans des conditions saturées, le front
de concentration semble relativement plat et uniforme. Cependant, à mesure que la sat-
uration diminue, le front de concentration présente plus de distorsion, avec l’émergence
de chemins préférentiels et de zones stagnantes. Par conséquent, l’hétérogénéité dans le
processus de dispersion augmente significativement. Pour quantifier la dispersion, nous
avons calculé des moments spatiaux. Dans l’ensemble, nous avons observé une augmen-
tation de la dispersivité 1 à mesure que la saturation diminuait. Néanmoins, caractériser
la nature de la dispersion, qu’elle soit fickienne ou non-fickienne, s’est révélé difficile, en
particulier dans des conditions non saturées. Plusieurs facteurs ont contribué à cette diffi-
culté. Premièrement, la taille limitée du micromodèle a restreint notre étude à de courtes
périodes de temps, en particulier dans des conditions non saturées où le traceur sort rapi-
dement du micromodèle. Deuxièmement, le bruit expérimental et l’incertitude ont rendu
difficile la quantification précise des moments spatiaux, surtout pour les saturations les
plus basses. Par conséquent, il n’était pas possible d’observer une dispersion à long terme.
De plus, notre étude était limitée en termes de débits, ce qui nous a empêchés d’analyser

1. Rapport du coefficient de dispersion et de la vitesse d’écoulement moyenne
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expérimentalement la dispersion sur une large plage de nombres de Péclet.
Pour surmonter les limitations expérimentales de la configuration du micromodèle,

nous nous sommes tournés vers les simulations numériques. Plus précisément, nous avons
utilisé des simulations de Boltzmann sur réseau (LBM), une méthode largement adoptée
pour simuler l’écoulement et le transport dans des milieux poreux complexes. LBM offre
une grande précision et peut être parallélisé de manière efficace, ce qui permet des temps
de calcul relativement courts.

Dans nos simulations numériques, nous avons réalisé des calculs séparés pour l’écoulement
dans le milieu non saturé, puis pour le transport. Cette approche présente plusieurs avan-
tages. Notamment, elle donne accès aux champs de vitesse, ce qui est difficile expéri-
mentalement. Pour la simulation de transport, elle nous permet d’obtenir des conditions
d’entrée parfaitement nettes pour les injections de traceurs, ce qui est difficile à réaliser
dans les configurations expérimentales. Par conséquent, les données générées par les simu-
lations numériques sont moins bruitées et plus faciles à quantifier. C’est particulièrement
avantageux lors du calcul du deuxième moment spatial, qui joue un rôle crucial dans la
détermination de la nature de la dispersion.

Actuellement, simuler le résultat d’un écoulement multiphasique immiscible dans un
milieu poreux complexe à l’aide de méthodes numériques, telles que les simulations de
Lattice-Boltzmann, reste un défi. Par conséquent, nous nous appuyons sur les distribu-
tions de phases expérimentales comme entrées pour les simulations LBM afin d’étudier
l’écoulement et le transport dans de tels milieux. Cependant, cette approche nécessite de
faire plusieurs hypothèses fortes et des simplifications par rapport aux conditions expéri-
mentales réelles. Reproduire avec précision les conditions complexes à l’interface entre
le ménisque d’air et l’eau n’est pas réalisable dans les simulations LBM. Par conséquent,
nous avons dû considérer la phase gazeuse comme une phase solide additive et imposer
une condition de non-glissement pour tous les obstacles dans la simulation. De plus, en
raison des contraintes informatiques, les simulations LBM sont généralement réalisées en
2D, alors que le micromodèle a une profondeur (Lz). Pour prendre en compte la pro-
fondeur de la cellule de Hele-Shaw, nous incorporons le modèle de Darcy-Brinkman pour
l’écoulement. Cependant, cette approche néglige le profil de profondeur des bulles, qui
est présent dans la configuration expérimentale réelle. Pour valider l’exactitude du flux
de travail LBM dans la simulation du transport dans des conditions non saturées dans le
micromodèle, nous comparons les résultats des simulations de transport avec des données
expérimentales pour trois valeurs de saturation différentes. De manière remarquable, les
simulations LBM produisent des résultats proches des données expérimentales de trans-
port, ce qui indique que l’approche LBM capture avec succès la physique de l’écoulement
et du transport dans le micromodèle non saturé, malgré les hypothèses et simplifications
faites. Ce processus de validation offre une confiance dans l’utilisation des simulations
LBM pour étudier les phénomènes de transport dans les milieux poreux non saturés, com-
pensant les limitations des configurations expérimentales et fournissant des informations
précieuses sur la dynamique du transport dans ces conditions.

Étant donné que la méthode LBM nécessite toujours des distributions de phases ex-
périmentales en entrée, l’étude est intrinsèquement limitée à la taille des images du micro-
modèle. À mesure que la saturation diminue et que l’hétérogénéité augmente, la taille du
micromodèle devient de plus en plus petite par rapport au Volume Élémentaire Représen-
tatif (VER) du milieu poreux non saturé. Par conséquent, pour garantir la pertinence de
notre étude sur la dispersion, nous avons besoin soit d’images plus longues du micromodèle
pour prendre en compte une dispersion temporelle plus longue, soit d’un grand nombre de
configurations à deux phases. Malheureusement, obtenir de telles données expérimentales
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peut être difficile et coûteux en temps.
Pour répondre à ces contraintes et élargir la portée de notre étude, nous avons envisagés

l’utilisation d’algorithmes de type machine learning. Nous visons à créer des modèles de
milieux poreux non saturés à partir de nos données expérimentales. Cette approche promet
de surmonter les limitations de taille et de nombre d’échantillons.

Nous avons utilisé l’algorithme Multiple Point Statistics (MPS), développé à l’origine
pour des applications statistiques mais de plus en plus utilisé dans les études sur les mi-
lieux poreux, en particulier par Jimenez-Martinez [31] pour générer des milieux poreux
non saturés. Dans leur travail, ils ont simulé la phase piégée en utilisant des données
expérimentales avec une grille régulière comme milieu poreux. Notre approche est sim-
ilaire, mais nous allons plus loin en générant à la fois un nouveau milieu poreux et la
distribution de phase associée pour une saturation donnée. Pour valider l’efficacité de la
méthode MPS, nous avons comparé les propriétés structurales des milieux générés avec les
images expérimentales utilisées comme données d’entraînement. Notamment, nous avons
comparé les valeurs de porosité et de saturation, ainsi que les distributions de bulles et
de grains. La comparaison a montré que les propriétés structurales étaient très compa-
rables entre les milieux générés et les images expérimentales. Pour valider davantage la
méthode, nous avons réalisé des simulations d’écoulement et de transport à la fois dans les
images expérimentales et générées en utilisant la méthode Lattice-Boltzmann. Les résul-
tats ont démontré que les milieux poreux générés par MPS reproduisaient efficacement les
propriétés d’écoulement et de transport observées dans les images expérimentales. Les dis-
tributions de vitesse de l’écoulement ont été reproduites avec précision, et les propriétés de
transport ont montré une bonne concordance entre les images expérimentales et générées.

Dans l’ensemble, nous avons réussi à valider avec succès la méthode MPS pour la
génération de milieux poreux non saturés à partir d’images expérimentales, qui permettent
l’étude de l’écoulement et du transport avec des propriétés similaires du milieu d’origine.
La force de cette approche réside dans sa généralité, ce qui la rend applicable à toute
distribution bidimensionnelle à deux phases non saturée. En utilisant l’algorithme MPS,
nous pouvons surmonter les limitations de taille expérimentale et de nombre d’échantillons,
nous permettant d’explorer les phénomènes de dispersion et de transport dans les milieux
poreux non saturés à une plus grande échelle et avec une précision accrue.

Une fois que l’ensemble du workflow développé, nous avons poursuivi deux stratégies
différentes pour étudier la dispersion dans les milieux poreux non saturés. La première
stratégie consistait à générer de longues images pour étudier le comportement de disper-
sion à long terme. Cependant, cela entraînait un coût de calcul significatif associé aux
simulations Lattice-Boltzmann, car il est quadratique avec la taille de l’image. De plus, la
plage de Péclet que nous pouvions explorer était limitée en raison de la stabilité numérique
ou des contraintes computationnelles. Pour pallier cette limitation, nous avons adopté une
deuxième stratégie, qui consistait à générer un grand ensemble de données d’images de
milieux poreux générées par MPS à la taille du micromodèle. Cet ensemble de données
couvrait l’ensemble de la plage de valeurs de saturation, permettant une étude statistique
de la dispersion dans les milieux poreux non saturés. Contrairement aux longues images,
les courtes images de cet ensemble de données nous ont permis d’explorer une large gamme
de valeurs de Péclet. En employant ces deux stratégies, nous avons pu obtenir des infor-
mations sur le comportement de dispersion à long terme à travers les longues images et
sur les tendances statistiques de la dispersion avec des valeurs de saturation et de Péclet
variables à travers le grand ensemble de données de courtes images.

Tout d’abord, en ce qui concerne les propriétés d’écoulement, nous nous sommes con-
centrés sur la perméabilité apparente, la tortuosité et l’hétérogénéité dans des conditions
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saturées pour les petites réalisations. La perméabilité apparente a montré une diminution
significative à mesure que la saturation diminuait, approchant zéro près de la saturation
en gaz résiduel. Comme le gaz agissait comme une matrice solide supplémentaire dans
notre système, nous avons comparé nos résultats avec des relations perméabilité-porosité
en utilisant le concept de porosité apparente ϕapp = ϕSw. Les données de perméabilité
étaient en accord avec la relation de puissance couramment trouvée dans la littérature,
suivant la forme Kapp ∝ (ϕapp−ϕ0)c. De même, la tortuosité a considérablement augmenté
avec la diminution de la saturation. Nous avons de nouveau comparé nos résultats avec
des relations tortuosité-porosité, en incorporant le concept de porosité apparente, et avons
trouvé un bon ajustement avec une fonction logarithmique, τ = 1−p ln ϕapp communément
utilisée dans la littérature. Cela suggére que la porosité apparente représente assez bien
les caractéristiques de l’écoulement, indiquant que la nature gazeuse de la phase piégée
n’impacte pas significativement les propriétés d’écoulement.

De plus, nous avons quantifié l’hétérogénéité de l’écoulement en examinant l’écart-type
normalisé de la vitesse σu. Ce paramètre a montré une augmentation significative à mesure
que la saturation diminuait, entraînée par l’émergence de zones stagnantes et de chemins
préférentiels. À mesure que la saturation diminuait, les zones stagnantes s’élargissent de
manière exponentielle, charactérisées par des vitesses très faibles, tandis que les chemins
d’écoulement préférentiels présentent des vitesses très élevées.

Sur la base de notre analyse des petites réalisations, nous avons constaté que l’évolution
des seconds moments dans le temps indiquait un comportement de transport non-fickien
sur une large plage de valeurs de Péclet, tant dans des conditions saturées que non saturées.
Par conséquent, nous n’observerions pas de dispersion asymptotique pour la longueur
moyenne et le Pe considérés, et nous avons caractérisé un régime transitoire. La valeur
moyenne de l’indice de la loi de puissance α dans le second moment a été estimée à 1,5,
mais il y avait une variance statistique considérable parmi les données. Étant donné que
le transport était non-fickien, nous avons caractérisé quantitativement la dispersion en
utilisant le coefficient de dispersion fractionnaire Dfrac

α associé à α = 1,5. Cette analyse a
révélé une augmentation significative de la dispersion à mesure que la saturation diminuait,
ce qui confirmait les résultats expérimentaux.

De manière intéressante, pour des milieux poreux saturés et modérément non saturés,
la dispersion est devenue fickienne à mesure que le nombre de Péclet diminuait. De
plus, la transition du comportement non-fickien au comportement ficien était plutôt nette.
La dépendance du coefficient de dispersion normalisé par rapport au nombre de Péclet
indiquait que la transition se produisait lorsque la diffusion devenait plus efficace dans
le processus de dispersion. De plus, nous avons observé que la plage de nombres de
Péclet pour lesquels la dispersion était non-fickienne augmentait avec la diminution de
la saturation. En d’autres termes, à faible saturation, le transport était principalement
advectif, ce qui conduisait à une dispersion non-fickienne plus prononcée. En revanche, à
saturation élevée, la diffusion est devenue plus dominante, ce qui a conduit à une transition
vers une dispersion fickienne.

Dans les longues réalisations temporelles, nous avons observé que l’indice de la loi
de puissance α augmentait à mesure que la saturation diminuait, ce qui confirmait les
résultats des petites réalisations. Cette tendance suggére qu’à mesure que la saturation
diminue, le comportement non-fickien devient plus prononcé, avec des effets de dispersion
plus forts. De plus, malgré la plage limitée de valeurs de Péclet que nous avons pu explorer
dans les longues simulations, nous avons quand même observé le même effet de Péclet que
celui trouvé dans les courtes images. Cette cohérence entre les simulations courtes et
longues souligne la robustesse de nos conclusions.



viii

Pour résumer, cette étude a permis des avancées significatives sur la compréhension
du transport dans les milieux poreux non saturés. Nous avons développé un dispositif
expérimental nous permettant d’étudier à la fois l’écoulement multiphase et le trans-
port dans un micromodèle, ainsi que le développement de techniques de traitement des
données appropriées. À travers ces expériences, nous avons caractérisé l’interaction en-
tre l’écoulement multiphase et le milieu poreux et étudié les propriétés structurales du
milieu poreux non saturé. Les expériences de transport ont indiqué une augmentation
de la dispersion avec la diminution de la saturation, bien que l’analyse quantitative soit
limitée en raison de contraintes expérimentales. Pour surmonter ces limitations, nous
avons utilisé des simulations Lattice-Boltzmann (LBM) après avoir validé leur aptitude
à modéliser l’écoulement et le transport dans des conditions non saturées dans le mi-
cromodèle. De plus, nous avons développé une méthode basée sur le machine learning
utilisant l’algorithme des statistiques multipoints (MPS) pour générer des images avec des
données expérimentales, permettant une production d’échantillons à grande échelle sans
limitations de taille. L’utilisation de simulations LBM dans les images générées par MPS
a permis d’obtenir de nombreux résultats sur les propriétés d’écoulement et de disper-
sion. Notamment, nous avons constaté qu’à mesure que l’hétérogénéité de l’écoulement
augmente et que les chemins d’écoulement deviennent plus tortueux, avec une présence
accrue de zones stagnantes, la dispersion dans les milieux poreux non saturés présente
un comportement plus advectif. En conséquence, nous avons constaté que la dispersion
non-fickienne devient plus prononcée dans des conditions non saturées. En revanche, dans
des conditions saturées, la dispersion a tendance à être fickienne à mesure que le nombre
de Péclet diminue, car la diffusion devient plus efficace dans le processus de dispersion.
Dans l’ensemble, cette approche globale combinant des expériences, la génération d’images
basée sur le machine learning et des simulations LBM a considérablement fait progresser
notre compréhension des phénomènes de transport dans les milieux poreux non saturés.
Les résultats éclairent l’interaction complexe entre l’écoulement et la dispersion, ce qui
a des implications pour un large éventail d’applications, notamment la gestion des eaux
souterraines, la remédiation environnementale et le transport des contaminants dans les
milieux poreux.

Ce travail pose les bases de futures avancées potentielles, notamment la modélisation
de la dispersion non-fickienne dans les milieux poreux non saturés. Par exemple, il serait
intéressant d’appliquer l’approche de la marche aléatoire en temps continu (CTRW) dans
les milieux non saturés pour prédire les comportements de transport sur de plus longues
périodes dans des conditions non saturées. De plus, il convient de noter que notre étude
actuelle s’est concentrée sur la dispersion dans des milieux non saturés avec une phase
piégée immobile. Élargir notre étude pour inclure le transport impliquant deux phases
immiscibles mobiles fournirait une compréhension plus complète de la dynamique de trans-
port dans des conditions non saturées. À l’avenir, il est possible d’étendre la méthodologie
de cette étude à des conditions tridimensionnelles, ce qui permettrait une représentation
plus proche des milieux poreux du monde réel. Cependant, il est important de reconnaître
que de telles applications numériques exigeraient des ressources computationnelles sub-
stantielles en raison de la complexité accrue et des exigences computationnelles associées
aux simulations 3D.
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Nomenclature

Porous medium
ϕ Porosity

ϕapp Apparent porosity
Sw Water saturation
τ Tortuosity
K Permeability

Kapp Apparent permeability
Q Flow rate

Rpore
eq Pore equivalent radius

d Pore diameter
dpore Mean pore diameter

sbubble
m Mean bubble surface

spore
m Mean bubble surface

Lx Length of the micromodel
Ly Width of the micromodel
Lz Depth of the micromodel

Dimensionless numbers
Ca Capillary number
Kn Knudsen number
Pe Peclet number
Re Reynolds number

Flow
γ Air-Water surface tension
ν Fluid cinematic viscosity
ρ Fluid density
P Pressure

Qair Air flow rate
Qwater Water flow rate

u Velocity field
σu Normalized standard deviation of the velocity field
ux Velocity along the flow direction (x)
uy Velocity along the transverse direction of the flow (y)

⟨∥u∥⟩ Mean of the norm interstitial velocity
⟨ux⟩ Mean interstitial velocity along the direction of the flow
⟨|uy|⟩ Mean absolute interstitial velocity along the transverse direction of the flow
UDarcy Darcy velocity ϕ⟨ux⟩

unorm(x,y) Normalized velocity unorm(x,y) = ∥u(x,y)∥
⟨∥u∥⟩

Lborder Characteristic length of the border influence on the flow
ξy=0 Correlation function in the flow direction
ξx=0 Correlation function in the transverse direction of the flow
ζy=0 Correlation length in the flow direction
ζx=0 Correlation length in the transverse direction of the flow
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Lattice-Boltzmann Methods
λ+ Symmetric relaxation rate
λ− Anti-symmetric relaxation rate
Ω Collision operator

DLB Diffusion coefficient

Multiple Point Statistics algorithm
W Rectangular window to form the patterns of the database from the TI
w Size of W
T Patterns of the database
P Patch selected from the patterns of the database
p Size of P with p < w

Wc Window to browse the coarse Training Image (multi-scale algorithm)
wc Size of Wc

Wf Window to browse the fine Training Image (multi-scale algorithm)
wf Size of Wf

pc Size of P in the coarse simulation
pf Size of P in the fine simulation

Ups Size ratio between the fine and coarse scale image

Transport
c Concentration
c̃ Normalized averaged concentration over the transverse direction

c̃in Injected tracer concentration
D Dispersion coefficient
v Flow velocity

Dm Molecular dispersion coefficient
D∗ Normalized dispersion coefficient D

D∗

µ First moment of the concentration profile
σ2 Centered second moment- Variance of the concentration profile
γ Skewness

mr Centered moment of the order r
λ Dispersivity
α Second moment power law index

Dα
frac Fractional dispersion coefficient associated to the power law index α

Abbreviations
ADE Advection-Diffusion Equation
BTC Breakthrough curves

CTRW Continuous Time Random Walk
LBM Lattice Boltzmann Methods
MIM Mobile Immobile Model
MPS Multiple Point Statistic algorithm
REV Representative Elementary Volume
TI Training Image
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Chapter 1

Introduction

The vadose zone, also known as the unsaturated zone, is a critical component of the
subsurface environment that plays an essential role in the transport and fate of contami-
nants. Fig. 1.1 depicts the vadose zone. Unlike the saturated zone, where the pore spaces
are completely filled with water, the vadose zone consists of partially saturated porous me-
dia, with both air and water occupying the pore spaces. This unique characteristic gives
rise to complex and dynamic flow and transport processes that significantly influence the
movement and behavior of contaminants in the subsurface.

Understanding contaminant transport in unsaturated porous media is of paramount
importance due to its relevance in various fields, such as environmental science, hydrogeol-
ogy, soil and groundwater remediation. Contaminants can enter the subsurface through a
multitude of sources, including industrial activities, agricultural practices, and accidental
spills. Once in the vadose zone, they can migrate downward, potentially reaching the sat-
urated zone and causing groundwater contamination. Additionally, the vadose zone acts
as a critical buffer, regulating the transport of contaminants before they reach sensitive
areas such as surface water bodies or drinking water wells. The study of transport in
unsaturated porous media presents unique challenges and opportunities. Unlike saturated
flow, where the physics of fluid movement are relatively well understood, the presence of
both air and water phases in the vadose zone introduces complexities that demand fur-
ther investigation. Capillary forces, interfacial interactions, and preferential flow paths
are among the factors that influence the behavior of contaminants in unsaturated porous
media.

Furthermore, the vadose zone serves as an interface between the atmosphere and the
saturated zone, making it susceptible to climate change impacts and land-use activities.
Changes in precipitation patterns, temperature, and vegetation cover can have profound
effects on the hydraulic properties and flow dynamics in unsaturated porous media, thereby
altering the fate and transport of contaminants. Notably, the level of saturation depends
directly on precipitations, hence periods of drought or floods directly affect the vadose
zone. With climate change, periods of drought in places such as in the south of France
will become increasingly more frequent. As a result, the level of saturation of the vadose
zones will vary significantly more compared to previous conditions. The ability to predict
contaminant transport for various degrees of saturation is, therefore, of vital importance.
Understanding dispersion in unsaturated porous media, the subject of this thesis, is thus
becoming an environmental issue as well.

However, the understanding of how saturation affects dispersion in porous media re-
mains limited. Classical models, such as advection-diffusion equations, are not always
applicable in unsaturated porous media, and there is disagreement among authors regard-
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Figure 1.1 – Vadose zone, illustration from wikipedia

ing the influence of saturation on dispersion [91,93,121,161].
The challenge arises from the fact that the volume of accessible pores depends on the

interaction of multiphase non-miscible flows (water/air) with the porous medium. The
presence of gas bubbles introduces greater heterogeneity into the system, with stagnant
zones exhibiting very low velocities and preferential paths displaying high velocities. As a
result, both flow and dispersion are influenced by the saturation level and the medium’s
heterogeneity.

In stagnant zones, dispersion is primarily controlled by diffusion, resulting in slow
transport. On the other hand, dispersion in preferential paths is predominantly advective,
leading to rapid solute displacements. Consequently, transport in unsaturated porous
media is significantly more complex compared to saturated media. As an example, Fig.
1.2 illustrates the stagnant zones (dead ends) and preferential paths observed in a transport
experiment using a micromodel 2D porous medium.

However, the effect of saturation on dispersion in porous media remains incompletely
understood, and further research is necessary. Classical models, such as advection-diffusion
equations, cannot always be applied in unsaturated porous media, and authors have dif-
fering opinions on the influence of saturation on dispersion.

Figure 1.2 – Illustration of dead-ends in transport in the unsaturated micromodel: con-
centration field in a porous media shortly after a tracer injection. The dead-ends are
represented by green areas with low concentration, signifying zones of low velocity where
transport is predominantly controlled by diffusion.

In this study, our primary objective is to examine transport phenomena at the micro-
scopic scale. This involves identifying key structural properties within the porous medium
that influence dispersion, such as saturation and connectivity. As previously mentioned,
the advection-dispersion equation does not always accurately depict transport in unsatu-
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rated media. In other words, transport may not necessarily follow Fick’s law. Therefore,
one of our objectives is to determine whether dispersion exhibits Fickian or non-Fickian
behavior, as this understanding is crucial for selecting appropriate models to describe
transport in unsaturated porous media. Ultimately, our goal is to enhance our under-
standing of dispersion processes on larger scales.

This thesis is structured around two main axes: an experimental aspect involving
transport experiments conducted using micromodels, which are essential for comprehend-
ing the multiphase nature of our system, and a numerical aspect that complements the
experimental data through Lattice Boltzmann simulations of flow and transport in micro-
models. The simulations allow for the study of larger media compared to the experimental
setup, resulting in a longer dispersion time, which is crucial for investigating late-stage
dispersion behavior.

Initially, our focus was on the experimental aspect. We employed micromodel tech-
nology, which utilizes transparent interconnected porous networks, allowing for direct
visualization of fluid structure at the pore scale. Our efforts were dedicated to developing
a micromodel setup for conducting transport experiments in unsaturated porous media,
as well as establishing methods for analyzing the acquired data. As a result, we obtained
preliminary experimental findings that shed light on the impact of saturation on phase
distribution and transport within the porous media under multiphase flow conditions.

However, due to the limited size of the micromodel, it does not permit the observation
of late-time dispersion in experiments, notably under low saturation conditions. Further-
more, due to experimental uncertainty, a precise quantitative analysis of dispersion was
constrained. The determination of the transport nature, whether it followed a Fickian or
non-Fickian behavior, was challenging. To overcome these limitations, we utilized Lattice-
Boltzmann simulations for flow and transport, which offer the advantage of scalability and
allow to explore a large Peclet range, with the primary constraint being computational
time.

Although the methods for flow and transport simulations have been established, sim-
ulating the resulting distribution of two phases (air/water) after multiphase flow in a
complex porous medium remains a challenging task. Plus, it is crucial to generate large-
scale images of unsaturated porous media based on experimental data to observe pore-scale
late-time dispersion. To accomplish this, we employed a machine learning approach us-
ing our experimental data (i.e., two-phase distributions in the micromodel resulting from
multiphase flow experiments) as training images. By utilyzing a Multi-scale Multiple
Point algortihm (MPS), commonly employed in geostatistics, we generated images that
replicated unsaturated porous media, incorporating a significant number of realizations to
enhance the statistical significance of our study.

Consequently, we constructed a dataset of training images derived from our exper-
imental data, enabling the creation of an artificial image dataset encompassing various
saturations and configurations. Additionally, we generated representations of longer me-
dia with different saturations to investigate long-term dispersion phenomena.

Finally, we conducted flow and transport simulations using our dataset to explore
the influence of saturation on flow and transport processes. Specifically, we examined
the properties of flow under both saturated and unsaturated conditions, including perme-
ability, tortuosity, and flow heterogeneity. We also investigated the nature of transport,
focusing on whether it exhibited Fickian or non-Fickian behavior. This was accomplished
by studying the evolution of the second moment of the concentration front in transport
simulations and calculating the power index α, which represents the relationship between
the variance (σ2) and time (t) as σ2 ∝ tα. Non-Fickian dispersion occurs when α is differ-
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ent from 1. Thus, we aimed to investigate whether the nature of transport changed with
saturation as the complexity of transport increased.

Additionally, we examined the effect of the Peclet number on dispersion for different
saturation levels to understand how the balance between advection and diffusion influences
dispersion in both saturated and unsaturated conditions. Another aspect we focused on
was quantifying the impact of flow boundaries on transport. Since the media used in
our simulations have limited widths, transport is affected by borders and is not entirely
analogous to a medium with infinite width. We quantified the typical length of the borders
effect and explored how it varied with saturation.

This thesis is structured as follows.

Chapter 2 provides an literature review conducted to establish a solid understanding
of dispersion in unsaturated media, covering essential concepts and theories.

Chapter 3 details the experimental methods employed in this study, including data
analysis techniques.

Chapter 4 presents the numerical method, that complements the experimental ones.
It explains the use of Lattice Boltzmann methods to compute flow and transport within
the micromodel.

Chapter 5 presents the preliminary experimental results pertaining to multiphase flow
and dispersion in unsaturated porous media. Additionally, it discusses the experimental
validation of the Lattice Boltzmann methods employed for studying transport in unsatu-
rated porous media.

Chapter 6 focuses on the workflow developed for the Multi-scale Multiple Point algo-
rithm (MPS), which enables the creation of unsaturated images using our experimental
data. This chapter also proposes a validation of the method based on flow and transport
properties.

Chapter 7 encompasses the numerical results obtained from the LBM simulations of
flow and transport in our data set, and notably results on long time dispersion.

Finally, in Chapter 8, a conclusion is provided, highlighting the insights obtained
through this study concerning dispersion in unsaturated porous media.

By organizing the thesis in this manner, a systematic exploration of the research ob-
jectives, methods, experimental findings, and validation processes is presented, leading to
comprehensive and conclusive results



Chapter 2

State of the art

To begin with, it is essential to establish some fundamental aspects of physics related
to porous media. A quick review of the literature reveals that the physics of dispersion in
unsaturated porous media lies at the intersection of various disciplines, including hydrol-
ogy, fluid mechanics, and applied mathematics. Therefore, it becomes necessary to cover
multiple aspects of this subject, starting with the basics of fluid mechanics in a porous
medium and understanding dispersion in porous media.

When exploring dispersion in unsaturated porous media, numerous concepts from
porous media physics come into play, leading to several questions:

• What is dispersion, precisely? We will introduce generalities about flow and disper-
sion in porous media in a first section (2.1).

• How do we characterize and model dispersion in porous media? We detail the nature
of transient and asymptotic dispersion in a section about non-Fickian dispersion
(section 2.2).

• What are the main multiphase flow mechanisms in porous media? The interactions
between immiscible air-water flow and a porous medium are introduced in a third
section (2.3).

• What have we learned so far from the results on dispersion in unsaturated porous
media, and what insights do they provide? An overview on dispersion in unsaturated
porous media is provided section 2.4.

• How micromodels can be a powerful device to study dispersion in unsaturated porous
media? Section 2.5 details how micromodels can be used to study transport in
unsaturated porous media.

• Is there a way to tackle the limited amount of experimental data by creating synthetic
porous media? The generation of artificial porous media from experimental images
is presented section 2.6.

In this study, we aim to address these questions to gain a deeper understanding of
dispersion in unsaturated porous media.
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2.1 Introduction: generalities on flow and dispersion in porous
media

In this section, we will introduce few notions on porous media necessary to understand
the following sections.

2.1.1 Porous media: from the microscopic to the macroscopic scale

In this study, we are interested in how we can relate the dispersion properties at the
microscopic scale, resulting from the medium interaction with a two phase flow, to a
general behavior at the macroscopic scale.

To understand any property of a porous medium, it is essential to look into each scale
of the porous media. We go from the microscopic scale or the pore scale, where Stokes
law governs the flow, to the mesoscopic and the macroscopic scale, for which the porous
media can be characterized by averaged properties like its porosity, permeability, or an
average pressure gradient. A very large amount of studies in porous media aim to create a
link between the properties at the microscopic scales and the properties at a greater scale,
depending on the statistical properties of the porous medium [36,50,56].

In the porous medium, we will need to work with averaged quantities, such as the
mean flow velocity or porosity, that are defined at the mesoscopic scale. For an average
quantity to be representative, it needs to be averaged over a Representative Equivalent
Volume (REV) (see Fig 2.1) such that the averaged value does not vary significantly if
this volume increases.

Figure 2.1 – Representative Elementary Volume (REV)

The porous media structural properties will be described mainly by the pore statistical
characteristics, such as the pore size distribution, the mean pore size, the connectivity of
the pores, or other properties characterizing the pore and throat shapes.

2.1.2 Flow in porous media, from the microscopic to the macroscopic
scales

Microscopic and mesoscopic scales

At the pore scale, the flow is characterized by low Reynolds 1 numbers, it is therefore
well described by the Stokes equation

η∆umicro = ∇Pmicro, (2.1.1)

1. The Reynolds number characterizes the ratio between inertial and viscous forces
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where umicro and Pmicro are respectively the velocity vector and the pressure at the pore
scale and η is the dynamic viscosity of the fluid.

At the mesoscopic scale, the flow can usually be described by Darcy’s law, that gives
a relation between the mean flow rate and the mean pressure gradient [168] through the
permeability coefficient K that can be a function of space for heterogeneous media

ηu = −K∇P, (2.1.2)

where u and ∇P denotes respectively the velocity and the pressure gradient at the meso-
scopic scale. The Darcy velocity and pressure are averaged over a representative volume
denoted V such as follows

u = 1
V

∫∫∫
V

umicrodv (2.1.3)

Generalization of Darcy’s law, Darcy Brinkmann

In a medium for which the permeability field exhibits discontinuities, the Darcy equa-
tion is no longer adequate to describe the flow. Indeed, a discontinuity of the permeability
would imply a discontinuity of the Darcy velocity field, which is not physically accept-
able. Hence, a dissipative term is introduced to the Stokes equation 2.1.2, leading to the
Darcy-Brinkmann equation [24].

ηu = −K∇P + η∆u.

The validity limit of the Darcy’s law and the necessity to use the Darcy-Brinkmann
equation is deduced from the scale of the permeability fluctuations. If there are some het-
erogeneity which vary on a smaller scale than the pore scale, then the Darcy-Brinkmann
equation becomes necessary. In other words, for λ the correlation length of the perme-
ability field and K the medium permeability, the Darcy-Brinkmann equation becomes
necessary when λ <

√
K. Indeed, the pore scale can be estimated by

√
K.

Particularly, Darcy-Brinkmann models flow in Hele-Shaw cells (two parallel flat plates
separated by a very small gap) with obstacles, which is the same concept than micromodels
[179].

2.1.3 Dispersion in porous media

In the following, we consider two miscible fluids, one of them containing a tracer which
can diffuse in the other one.

Fick’s law and advection-diffusion equation

Historically, the diffusion has been first described empirically by Adolf Fick in 1855.
The first Fick’s law relates the diffusive flux to the concentration gradient. It states
that the flux Jdiff goes from high concentration zones to low concentration zones, with a
magnitude proportional to the concentration gradient ∇c. The proportionality coefficient
is called the diffusion coefficient D.

Jdiff = −D∇c. (2.1.4)

The mass conservation combined with the first Fick law leads to the second Fick law
or the Diffusion Equation

∂c

∂t
= D∇2c. (2.1.5)
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Considering an advective flux Jadv = vC as well as a diffusive flux, with the mean velocity
v, we end up with the Advection-Diffusion Equation (ADE)

∂c

∂t
+ v∇c = D∇2c. (2.1.6)

For a Dirac initial condition initially located at x = 0 and a one dimensional problem
without boundaries, the solution for the concentration C(x,t) is given by a Gaussian

c(x,t) = 1√
4πDt

e
−

(x− vt)2

4Dt . (2.1.7)

When the solute concentration follows the ADE, the transport is qualified of Fickian
transport, otherwise the transport is qualified as non-Fickian or anomalous.

In a porous media, the transport is not necessarily Fickian [18]. In order to understand
transport at the different scales of the porous media, it is necessary to know the nature of
the dispersion. Therefore, it is essential to have tools to characterize the dispersion, such
as spatial moments.

Characterization of the dispersion: spatial moments of the concentration dis-
tribution

In this section, we will introduce the definition of the moments and how they character-
ize dispersion, typically how they distinguish Fickian transport from anomalous transport.
To go further, we introduce the operator ⟨.⟩ which defines the overall average over a large
number of realizations and a 1D concentration profile c(x,t) for a Dirac injection. The
probability distribution for the particle is p(x) = c(x,t)

c0
with c0 =

∫
c(x)dx the mean

concentration. An example of concentration profile at different times is given by Fig. 2.2.

Figure 2.2 – Concentration profiles c(x,t) at different times

A moment of the order r is given by

mr = ⟨xr⟩ =
∫

x
p(x)xrdx.

The first moment corresponds to the mean position, which coincides with the peak
position for a symmetric distribution

µ = m1 = ⟨x⟩ =
∫

x
p(x)xdx.

In Fickian dispersion, the mrean flow velocity will be given by dµ
dt .
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The centered 2 second moment corresponds to the variance, it is the square of the
standard deviation. It characterizes the spread of the plume, and that is the most common
indicator to describe the dispersion

µ2 = V (x) = σ2 =
∫

x
p(x)(x− ⟨x⟩)2dx =

∫
x
p(x)(x− µ)2dx.

For a Fickian dispersion, the variance is proportional to time σ2 ∝ t, and the dispersion
coefficient is defined as

D = 1
2 lim

t→∞

dσ2

dt
.

For example, with the ADE solution to a Dirac injection given equation 2.1.7, the variance
calculus gives indeed

σ2 = 2Dt.

The third moment of the reduced and centered variable, the skewness, is defined as

γ =
〈(

x− µ

σ

)3
〉

=
∫

x
p(x)

(
x− µ

σ

)3
dx.

The skewness γ characterizes the symmetry of the distribution. Negative values of skew-
ness indicate that the mean is shifted from the median to the right, which indicates a tail
of distribution spread to the left. Conversely, positive values of skewness indicate that the
mean is shifted from the median to the left, which indicates a tail of distribution spread
to the right, as shown Fig. 2.3. The skewness is equal to zero for symmetric curves. For
a Fickian dispersion, the skewness equals zero.

Figure 2.3 – Negative and positive skewness

Multi-scale dispersion in porous media

To study transport process in porous media, it is necessary to consider all dispersive
processes involved at each scale of the porous medium. For instance, if the dispersion is
assumed to be Fickian at the microscopic scale or pore scale, it does not necessarily imply
that the dispersion will be Fickian at a greater scale.

From the microscopic scale to the mesoscopic scale: example of the Taylor
dispersion

2. Centering is the process of subtracting the variable mean (average) from each of the values of that
same variable
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The main idea is to get the dispersion law of the mesoscopic scale from the dispersion
at the microscopic scale, governed by the ADE given by Eq. 2.2.4. Let first define the
velocity u and c the concentration at the mesoscopic scale from their counterparts at the
microscopic scale umicro and cm.

u = 1
|V |

∫
V

umicrodv and c = 1
|Vf |

∫
Vf

cmdv, (2.1.8)

where the volume of integration V stands for an REV and the concentration is averaged
on the fluid volume Vf .

They are numerous laws that can describe the transport for these averaged quantities.
In the simplest cases, we also get the advection-diffusion equation

∂c

∂t
+ 1
ϕ

u · ∇c = D∆c, (2.1.9)

where D is the mesoscopic dispersion coefficient.

D is usually different from the molecular diffusion coefficient, because the dispersion
has different sources than the molecular diffusion; indeed, the fluctuations of the velocity
field will be new sources of dispersion,

D = Dm +Ddisp, (2.1.10)

where the term Ddisp stands for the dispersion.

As an illustration, we can mention the simple case of Taylor dispersion [154], obtained
by derivation of tracer transport laws in a infinite tube. This illustration makes sense in
our study of diffusion in porous media as the tube can be assimilated to a pore, in which
there is a mean flow u0.

We now demonstrate that we can get an ADE from the advection-diffusion equation
at the microscopic scale, through a perturbation method.

Figure 2.4 – Taylor dispersion

We consider an infinite tube of radius R with a flow of mean velocity u0 in the z
direction (cf Fig. 2.4). A tracer is injected at the tube entrance, and we suppose that the
advection-diffusion law 2.1.9 controls the transport at the microscopic scale. Moreover,
the flow follows the Poiseuille’s law

umicro(r,θ,z) = umax

(
1 − r2

R2

)

with umax = 2u0.
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We use a small perturbation method, the concentration and the velocity are expressed
as a sum of their cross mean value (c, u0) and a small fluctuation (c′, u′)

cm(r,θ,z) = cm(z) + c′
m(r,θ,z) and umicro(r,θ,z) = u0ez + u′(r,θ,z)ez.

By replacing the latter expression in equation 2.1.9 we obtain

∂(cm + c′
m)

∂t
+ (u0 + u’) · ∇(cm + c′

m) = Dm∆cm +Dm∆c′
m.

Averaging this equation in the transverse direction, it comes

∂cm

∂t
+ u0

∂cm

∂z
+ 1
πR2

∂

∂z

∫
u′c′

mrdrdθ = Dm
∂2

∂z2 cm.

Except for the integral term, the mean concentration follows the classical law of advection-
diffusion. However, this term depending on the correlation between the fluctuation of
velocity and concentration can have a significant impact on the transport.

In the frame moving at the velocity u0, we suppose that the concentration field is
stationary. Then, at the first order of the ADE, we get

u′∂cm

∂z
= Dm∆c′

m.

Then, we can calculate c′ as a function of the mean gradient and derive the integral
term

1
πR2

∂

∂z

∫
u′c′

mrdrdθ = − R2u2
0

48Dm

∂2cm

∂z2 .

We deduce that the mean concentration follows an ADE, for which the diffusion co-
efficient as well as the Taylor dispersion coefficient depends on the heterogeneity of the
velocity fields

∂cm

∂t
+ u0

∂cm

∂z
= (Dm +DTaylor)

∂2cm

∂z2 , (2.1.11)

with DTaylor = R2u2
0

48Dm
.

The example of Taylor dispersion is a typical approach adopted for porous media
study: from the ADE law at the microscopic scale, we derive the transport law at the
mesoscopic scale. With the same kind of approach, it is possible to derive transport laws
at the macroscopic scale.

Effect of the Peclet number on dispersion in porous media

The Peclet number is defined to be the ratio of the rate of advection to the rate of
diffusion, it can be written as

Pe = uL

Dm
(2.1.12)

with L the characteristic length, u the mean velocity of the flow and Dm the diffusion
coefficient.
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Figure 2.5 – Dependence of dispersion coefficient on Peclet number in different flow
regimes. The curve shown approximates longitudinal dispersion in unconsolidated ran-
dom packs (Adapted from Perkins and Johnston (1963) [124]).

For very low Peclet number, transport is purely diffusive and the dispersion coefficient
is of the same order of magnitude of the molecular diffusion coefficient, depending of the
medium tortuosity. When the Peclet number increases, dispersion depends in both diffu-
sion and advection, leading to an increase of dispersion. The dependence of the dispersion
coefficient according to the Peclet number (see Fig. 2.5) has been thoroughly studied,
starting from Perkins and Johnston (1963) [124], and confirmed by a large number of
experimental and numerical studies [115]. It highlights several flow regimes for disper-
sion according to the Peclet number. The first regime (a) shows that at low velocities
or high molecular diffusion coefficients, molecular diffusion predominantly governs disper-
sion, resulting in a constant dispersion coefficient equivalent to the apparent molecular
diffusion coefficient, somewhat lower than the true molecular diffusion coefficient due to
the tortuosity of the porous medium. The second regime (b) shows that as advective
dispersion becomes more effective, both molecular diffusion and convection contribute to
the overall dispersion. In the regime (c), the porous medium can be likened to en efficient
mixer. For the regime (d), as the Peclet number escalates significantly, the equilibrium
between the concentrations within the pores can’t be easily achieved, causing the slope to
be larger than 1. In the regime (c) and (d), diffusion is often neglected and the coefficient
of dispersion is expressed as D = λu with λ the dispersivity and u the mean flow velocity.
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Fickian regime and anomalous dispersion

At the mesoscopic or macroscopic scale, a Fickian regime can present a dispersion
coefficient different from the molecular diffusion coefficient, as a result of coupling velocity
and concentration fluctuations. The origin of the dispersion lies in the fluctuations of the
velocity field, that tends to deform the concentration front and produce a spreading at
the macroscopic scale.

Velocity fluctuations can have different sources, such as viscosity or surface tension.
For passive transport, i.e the concentration does not affect the flow, the velocity field
fluctuations are caused mainly by the heterogeneity of the porous structure.

Plus, as we said, mesoscopic or macroscopic dispersion are not necessarily Fickian.
Anomalous dispersion can be observed as a transient, before the Fickian regime can be
observed, but also as an asymptotic regime, in cases of highly heterogeneous media for
example. Nonetheless, as we will discuss later, in theory, dispersion should converge toward
a Fickian regime for a finite medium, but the convergence might be so slow that it never
occurs. Anomalous dispersion will be thoroughly described in the following section.

2.2 Non-Fickian dispersion in porous media

In porous media, the dispersion can not always be described by the advection-diffusion
equation. In particular, the width of the plume following a tracer injection will not nec-
essarily spread at the square root of the time. In other words, the standard deviation of
the distribution of concentration doesn’t necessarily grow as

√
Dt [108] [97] [158].

There are numerous sources of non-Fickian dispersion, such as the presence of fractures
in the porous media [12], or heterogeneity at the mesoscopic or macroscopic scale [131] that
can induce great differences in the velocity fields, and extreme displacement of particles.
Notably, unsaturated porous media has recently shown non-Fickian behavior [81].

In the previous section, we described Fickian dispersion as an empirical result deriving
from the first Fick law. However, the other classic approach to describe diffusion is the
statistical mechanics: the Brownian motion, based on the a random walk model. It leads
to the same results as Fick’s law, and notably the ADE equation. However, the random
walk concept can be more general than Brownian motion, and can be used to describe
anomalous dispersion.

In this section, we will describe the conditions for dispersion to converge toward Fickian
dispersion by considering the random walk process. Subsequently, we will present some
models that have been developed to predict non-Fickian dispersion in porous media and
how they can be used. The next section will be devoted to the dispersion in the specific
case of unsaturated porous media.

2.2.1 Observation of non-Fickian dispersion in porous media

Context for non-Fickian dispersion in porous media

Non-Fickian dispersion has been observed a great number of times when studying
dispersion in porous media, whether it is in laboratory studies, or in natural porous media
[18]. This has also been observed for experiments of different scales, from a few centimeters
(micromodels) [93], a few meters in laboratory experiments with columns of soil [121], sand
or glass beads [33], to wider scales in hydrology experiments in the field [71].
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Whereas non-Fickian dispersion is usually noticed for media with particular features,
such as strong heterogeneity, fractures [12], fractal designs [132] or unsaturated medium
[81], it also has been reported for macroscopically homogeneous media [183]. Hence, non-
Fickian dispersion is rather common in porous media [18].

Manifestation of non-Fickian dispersion

Usually, dispersion at field scale is studied through Breakthrough Curves (BTC) [138]
[105]. A tracer is injected in the medium at one side and the concentration is measured at
another side as a function of time. BTC are also used in laboratory experiments through
columns of medium (at a smaller scale), and even in simulation works. An example of
BTC is given Fig. 2.6.

Figure 2.6 – Example of a symmetric Breakthrough Curve (BTC) for a pulse injection.
From Maraqa et al (1997) [107]

The non-Fickian nature of the dispersion may be observed from the BTC curves.
If the dispersion is strongly anomalous, the BTC curves will show asymmetry, a long
tailing at long times, as well as an early arrivals of concentration. In Fig. 2.7, we see
that for low heterogeneity the BTC curve is rather symmetrical, and with increasing the
porous medium heterogenity, the non-Fickian character can be observed with an increased
assymetry of the curves.

Figure 2.7 – Simulations of breakthrough curves (BC) as a function of dimensionless time
t u2

D0
with different levels of permeability fluctuations σf . From Talon, Ollivier-Triquet et

al. 2023 [151].
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However, the BTC shape will not necessarily reveal anomalous dispersion, especially
when the dispersion is not too anomalous. Indeed, the BTC can have a regular shape
even when the dispersion is not Fickian. However, several BTC at different depths of
penetration of the concentration in the medium allow to determine non-Fickian behavior
[26] [118] (Fig. 2.8). Indeed, the BTC fitted with an ADE model will give a coefficient
of dispersion different for each depth of the medium, typically a coefficient of dispersion
that grows with time. Some authors conclude in a coefficient of dispersion non constant
in space (or in time, given that texp = xexp/umean), such as in Silliman et al. (1987) [138],
or Bromly et al. (2004) [26].

Figure 2.8 – Experimental conditions with concentration measurement at different depths,
from Nützmann et al. (2002)

Actually, the changing dispersion coefficient accounts for the anomalous dispersion:
the standard deviation is not proportional to the square root of the time and we can
not rigorously define a dispersion coefficient properly in this case. Indeed, the dispersion
coefficient is defined as a constant in the Fickian model, during the asymptotic regime.

D = lim
t→∞

1
2
dσ2

dt

Hence, one should be careful employing the term dispersion coefficient when there is
evidence of non-Fickian dispersion. Furthermore, one should be cautious when fitting ADE
solutions to BTC curves when indications of non Fickian dispersion are present. Indeed
the fit might be good but if the model is not adequate, the results might be misleading.

The non-Fickian nature of dispersion is more obvious with the concentration distri-
bution in the medium. However, it is not always accessible, particularly in field or labo-
ratory experiments. Consequently, concentration profiles or concentration fields are less
commonly used than BTC to study dispersion even though they contain more information.

Nonetheless, concentration fields can be obtained in some cases, typically simulation
work where the concentration can be derived everywhere in the medium for each time
step (for example with pore-network modeling or Lattice-Boltzmann simulations) [106],
but also for some experimental work where it is possible to have access to concentration
profiles. This is the case of micromodels for example [93] [104]. Then, if the concentration
profile is not Gaussian, and/or the standard deviation is not proportional to the square
root of t, the dispersion is non-Fickian.
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Need for a model for non-Fickian dispersion

As explained earlier, non-Fickian dispersion is rather common in porous media, which
is why numerous authors have developed concepts and innovative models to predict anoma-
lous dispersion, especially in the last decades [105] [18] [139] [8] [15]. Particularly, it avoids
the ambiguity behind the use of coefficient of dispersion or dispersivity alone to charac-
terize the dispersion, which is not truly adequate.

The increased heterogeneity in an unsaturated porous medium can lead to non-Fickian
dispersion. Yet, many authors dealing with the subject use the ADE model to fit their
data, and run their analysis on the evolution of the dispersion coefficient with saturation.
If the tendencies they observe are still valuable information, the use of a model accounting
for the anomalous dispersion would be more appropriate and would avoid ambiguities as
well as bad interpretations of the data.

The models developed for non-Fickian dispersion can be quite complex and are not nec-
essarily well understood, especially in experimental fields. However, some experimenters
used non-Fickian models to process their data [121] [107].

2.2.2 Random walk and non-Fickian dispersion

Before we can understand what lies behind these models, first we need to come back at
the roots of the dispersion, the Brownian motion or the random walk, and what hypothe-
ses have been made to derive the ADE. Indeed, we will see how the advection-diffusion
equation can be a particular case of dispersion under less restrictive hypothesis [15] [14].

Brownian motion: consequence of random walk for finite variance processes

Before introducing the Brownian motion and the random walk concept, let first recall
the Central Limit Theorem which will be useful in the following. We consider X1, X2,...Xn

a random sample of n random variables, independent and identically distributed that
follows a distribution characterized by a mean µ and a finite variance σ2. Denoting Sn =
1
n

∑n
k=1Xk the mean of these samples, we have the following convergence for distribution

p of the random variable √
n

σ
(Sn − µ) law−−−→

n→∞
N (0,1),

with N (0,1) the normal distribution with the probability density function given by

φ(t) = 1√
2π

e
−
t2

2 .

In 1908, Einstein theorised the Brownian motion as the consequence of the random
walk [40]. The simplest consideration of the random walk consists in this: for each step of
time, which is constant, the particle moves from a distance L, also constant, in a random
direction of space, as can be seen Fig. 2.9.

In a more general approach, the particle displacements follow a probability distribution
of mean length of displacement µ. We can apply the Central Limit theorem with Xi

the displacement of the particle, the time step i, and nSn the position of the particle.
Assuming that theXi are independent and identically distributed, and follow a distribution
characterized by a mean µ and a finite variance σ0, the random serie

√
n(Sn − µ)/σ0

converges towards N (0,1).
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Figure 2.9 – Schematic of a random walk. Red dot: starting point. Green dot: End point.
The steps length is L, and the final distance between the starting point and the end point
is noted D.

With n = t/T0 and t the time since the the start of the random walk, T0 the time
step, x(t) the particle position at time t is given by Snn. Hence, the mean position is
µn = µt/T0 = vt with v = µ/T0 the drift. The standard deviation is given by σ = σ0

√
n

or σ(t) = σ0√
T0

√
t =

√
2Dt with D = σ02

2T0
the diffusion coefficient.

The large time limit probability of a particle position is given by

p(x,t) = 1√
2πDt

e
−

(x− vt)2

2Dt , (2.2.1)

with v the drift.

The distribution mean position and variance give the traditional results of the Brow-
nian motion, the particle position x(t) at the time t is given by

⟨ x(t) − x0 ⟩ = vt,

and
⟨ (x(t) − x0 − vt)2 ⟩ = 2Dt.

Assuming no drift (µ = 0 or v = 0), the latter equations becomes

⟨ x(t) − x0 ⟩ = 0, (2.2.2)

and
⟨ (x(t) − x0)2 ⟩ = 2Dt, (2.2.3)

The variance is proportional to time, with a diffusion coefficient D. We see that we find
the same results for the evolution of the first and second moments as for the solution of
the ADE equation as described section 2.1.3.

The limit distribution of a particle position p(x,t) (equation 2.2.1) fully describes the
result of the random walk. Furthermore, the distribution p(x,t) is the fundamental solution
of the Fokker-Plank equation, with v the drift

∂p

∂t
+ ∇(vp) = ∆(Dp). (2.2.4)
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It comes that the particle position probability follows the Fokker-Plank equation. Plus,
for a great number of particles, the density of particles or concentration c(x,t) follows the
advection-diffusion equation and the molecular diffusion coefficient is noted Dm

∂c

∂t
+ v· ∇c = Dm∆c. (2.2.5)

For a Dirac initial condition initially located at x = 0 and a one dimensional problem,
the solution for the concentration c(x,t) is given by a Gaussian

c(x,t) = 1√
4πDmt

e
−

(x− vt)2

4Dmt . (2.2.6)

Finally, we see here that Brownian motion is obtained if the distribution of probability
of particle displacement are identical, independent and characterized by a finite variance.
At the microscopic scale, we are in the classical situation of two miscible fluids in contact
and the microscopic velocity and concentration follow the ADE.

Actually, the convergence toward Brownian motion needs less strict hypotheses [20] [15]
[14]. Indeed, in the late 20th century, mathematicians came with some generalizations of
the Central Limit Theorem, such as the Lyapunov extension, that states that under some
conditions, the distributions of the Xi do not need to be identical, but independent and
with finite variance to obtain a convergence to the normal distribution.

In conclusion, the main condition to converge toward the Brownian motion, i.e, normal
dispersion, is to have finite variance for the particles velocities [18]. Consequently, anoma-
lous dispersion, in the asymptotic regime, can occur only if the displacement of particles
shows infinite variance. Since this is quite unlikely, it is reasonable to think that at later
times, dispersion is Fickian.

Link between transient regime and non-Fickian regime

As we stated in the preceding section, the asymptotic nature of the dispersion is
anomalous only if the displacement of particle have infinite variance. However, in the case
of finite but high values of variances, the convergence toward the ADE might be extremely
long, and the transient regime will show features of non-Fickian dispersion.

In the case of porous media, the displacements of particles can take extreme values
due to zones of really weak velocities and mean paths with greater velocities. Thus, the
distribution variance can be extremely large. Nonetheless, infinite variance in a finite
medium is not physically possible (the integral is finite). Consequently, the theory states
that the dispersion should converge toward normal dispersion after a very long time [18]
[17] [16].

However, in the case of porous media dispersion experiments, the duration of the ex-
periment and the size of the medium is limited, which is why it is possible not to observe
the convergence toward normal dispersion. Several dispersion experiments show anoma-
lous dispersion even after a year of experiment [15]. Hence, the anomalous dispersion in
porous media corresponds to a transient regime, but that transient can be so long that
the asymptotic regime is never observed.

If the variance is sufficiently high, we might consider that the dispersion is anomalous
nonetheless, especially for prediction purposes, but it is important to keep in mind that if
what we observed is a transient or pre-asymptotic regime, it might evolve at longer times.
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2.2.3 Modelling non-Fickian dispersion

A great diversity of models

There is abundant literature about modeling anomalous dispersion in porous media.
Indeed, a great diversity of models has been developed in the last decades, but it is a bit
difficult to find consistency between all these different models at first glance [139]. We can
mention the most common ones, such as the Mobile-Immobile model, the Multirate mass
transfer model, the Continuous Random Walk model (CTRW), the fractional (fADE),
Lévy flights, dual porosity models, ADE with non constant coefficients.

Most of these models are non-local formulations in time, which means that they allow
non equilibrium in the porous media, for example delayed storage mobilization or delayed
drainage for the concentration, it is usually referenced as a memory effect.

The great diversity of models is a consequence of the different scientific fields involved
in the research in dispersion in porous media. Theoreticians and researchers in applied
mathematics developed very general models around the generalization of the random walk.
This is the case of CTRW ( [18]) and fractional ADE [15]. However, those models are rarely
used by experimenters in hydrology, notably because they require a lot of parameters. On
the other hand, the MIM model (Mobile Immobile) is widely used by experimenters [118]
[121] [107], next to the ADE, because it is easy to implement.

The CTRW, fractional ADE and MRMT allow distributions with infinite variance, i.e,
an asymptotic non-Fickian regime. The MIM, however, does not allow such a feature, and
then can only model transient non-Fickian regime. However, as explained in the previous
section, the non-Fickian behavior of dispersion observed in real condition is a transient,
so this model could still be adequate to model non-Fickian regime.

We will only describe the MIM model and CTRW because they are commonly used by
researchers studying anomalous transport, even if these models are not a primal interest
of this thesis. However, for interested readers, a thorough description of the models can
be found in Appendix chapter 9 9.1.

Modeling with the Mobile-Immobile concept

In this section, we will present the MIM model, how it can be applied to estimate
parameters of the dispersion and used in the prediction of non-Fickian dispersion in porous
media. Then, we will discuss briefly the advantages and the limits of such methods.

MIM model

Observations in porous media show that there are often great difference of velocity
flow in the medium, with preferential flow paths and stagnant zones with nearly no flow.
In Fig. 2.10 showing the concentration field in a micromodel with a continuous injection,
we can see that there are some green zones of low concentration left behind. The concen-
tration in these zones reaches the tracer concentration much later because the flow there
is almost stagnant and the mass transfer is mostly diffusive. Fig. 2.11 shows the case of
an unsaturated flow in a porous media (micromodel) for which the velocity field has been
estimated, the blue zones correspond to stagnant flow or immobile region with nearly zero
velocity.

These discrepancies in the flow field are held responsible for the long tailing in the
distributions of concentration in dispersion experiments. The dispersion in the stagnant
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Figure 2.10 – Concentration field in a porous media (micromodel), blue for high concen-
tration and green for low concentration, from [104].

Figure 2.11 – Velocity field in a porous media (micromodel), blue for low velocity and red
for high velocity, from [93].

zones is controlled mainly by diffusion (low Peclet number), and the dispersion in the main
flow paths is rather controlled by advection (high Peclet) [81].

The MIM model is based on these observations, and presumes that the porous medium
is divided into a mobile zone and an immobile zone, where the flow is stagnant. The
model allows a state of non equilibrium between the immobile zone characterized by the
concentration Cim and the mobile zone characterized by the concentration Cm and a
mean flow velocity v. The solute transfer between these regions is modeled by a diffusive
exchange rate. The equations of the model (1D) are given by

Sm
∂Cm

∂t
= − vSm∇Cm + SmDm∆Cim − α

ϕ
(Cm − Cim), (2.2.7a)

Simϕ
∂Cim

∂t
= α(Cim − Cm), (2.2.7b)

SC = SmCm + SimCim, (2.2.7c)

with α the transfer coefficient from the mobile to the immobile zone, ϕ the porosity, Dm

the hydrodynamic dispersion coefficient and v the effective flow velocity in the flowing
region. Sm is the water saturation of the mobile zone and Sim the water saturation of the
immobile zone, and Sm +Sim = S the total saturation. Cm the mean concentration in the
mobile zone and Cim the concentration in the immobile zone.

The concentration in the mobile zone is controlled by the classical advection-diffusion,
except for a sink term related to the diffusion to the immobile zone. This transfer of
concentration is linear, proportional to the difference of concentration between the zones.
Consequently, the evolution of concentration in the immobile zone is completely deter-
mined by diffusion from the mobile zone, through the transfer of concentration as a source
term.
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In the asymptotic regime for which a dispersion coefficient can be defined, a correction
to the diffusion coefficient in the ADE, taking into account the transfer to the immobile
zones is given by [93] [141]

D = ϕDm + (1 − ϕ)2 v2

ϕαS
,

with ϕ the proportion of mobile zone (ϕ = Sm/S). The first term represents the dispersion
in the mobile region (Dm), and the second term corresponds to the apparent dispersion
resulting of solute exchange between the mobile and immobile regions.

The MIM model is defined through four fitting parameters, ϕ, α, Dm and v, the two
first parameters define the interaction between the mobile and immobile zone. They are
obtained through curve fitting. They are supposed to be constant in the medium and in
time.

Applications of the MIM model, limitations

The MIM has been widely used to fit and predict anomalous dispersion, especially for
unsaturated porous media, because it is rather easy to implement. The MIM model is
often compared to the standard ADE [121] [107] [81] [93], the results of the fits are often far
better than the fits with ADE solutions, especially for long tailed and asymmetric BTC
that can not be well described by ADE solutions, since they are exhibiting anomalous
behavior.

However, whereas the fits are rather good with experimental data, the predictions of
the MIM model often show discrepancies. For example, in Bromly and Hinz, 2004 [26],
the MIM model fits well with the BTC showing anomalous characteristics. However, the
predictions in the depths of the column are not good, and better predictions are found
with other models such as CTRW. Plus, some authors such as Hasan, 2019 [81], brought
to light that the coefficients of the MIM, constant in the model, would vary in time when
fitted with experimental data, which questions the adequacy of the model. In the case of
unsaturated porous media, one issue is that it does not take into account the topology of
the phase distribution [93], [81].

Generalization of the random walk: Continuous Time Random Walk model
(CTRW)

Asymptotic non-Fickian dispersion

As explained in the preceding section, asymptotic non-Fickian dispersion implies infi-
nite variance of the displacement. Even if this kind of dispersion is not physically possible,
at least in porous media, it can be used to model dispersion with extreme values of vari-
ance.

Generalizations of random walk were introduced to model anomalous dispersion, al-
lowing distributions of displacement or transition times with infinite variances. This con-
cept allowed the development of models such as the Continuous Time Random Walk
(CTRW) [18], the modeling of dispersion with fractional ADE or Levy flight [15]. These
models will be explained in details in the following section.

Remark concerning the CLT:
In cases of infinite variances for the random walk, whether it is in time transition or

displacements, the Central Limit Theorem is no longer valid. Gnedenko and Kolmogorov
(1854) [67] proposed a generalization of the theorem for infinite variances under certain
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restrictive conditions. Instead of converging toward a Gaussian, there is a positive integer
α such that the density converges to an α-stable Levy density.

If (Xk)k∈N are random variables identically distributed, complying with the restrictive
conditions, characterized by their mean µ, then the sum of these converges in distribution
to an α-stable random variable Y

1
σn

1
α

(
n∑

k=1
Xk − nµ

)
law−−−→

n→∞
Y,

with σ a constant.
Many infinite variance random variables such as Pareto or power law converge toward

a Levy α-stable random variable. Particularly, for power-law tail distribution decreasing
a x−α−1, where 0 < α < 2 (if α ≥ 2), then the variance is finite according to Riemann
criteria), they converge toward an α-stable random variable Yα.

The stable variables are different from the normal variable because the tails of the
distributions decay as a power-law. If Y is a stable variable, then the probability p for
large y values is given by

p(Y > y) ∝ y−α (2.2.8)
This generalized version of the central limit theorem can be used to describe anomalous

dispersion, notably for fractional advection-dispersion equations [15]. A generalisation of
the random walk consists on a random walk with fixed time steps continuous in space
(Levy flights), for which the displacement follows any probability distribution, as seen
Fig. 2.12, then the particle distribution can be described by an α-stable random variable.

Figure 2.12 – Illustration of a random walk continuous in space: Levy Flight

Principle of the CTRW
The random walk with constant time and displacement steps converges to Brownian

motion, hence Fickian dispersion. The principle of the CTRW is to generalize the random
walk to any time transition distribution, each step of the random walk can occur with a
waiting time that follows any given probability distribution [18] [17] [16]. This is why it
is called Continuous Time Random Walk. An illustration of such a random walk is given
Fig. 2.13.

The model is by essence extremely general, and almost all others models can be for-
mulated as particular cases of the CTRW. We will see later that those formulations are
formally equivalent.
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Figure 2.13 – Illustration of a Continuous Time Random Walk

As we explained in the previous section 2.2.2, the random walk will eventually converge
toward Brownian motion, unless the probability distribution of transition time has infinite
variance. In other words, the CTRW will model pre-asymptotic anomalous transport,
converging toward ADE if the chosen distribution has finite variance, and conversely,
asymptotic anomalous transport will be obtained for distributions with infinite variance.
The CTRW formulation can be found in the appendix Chapter 9, section 9.1.

Application of the CTRW
The CTRW has been successfully applied to a diversity of situations, for highly het-

erogeneous and fractured media [17] but also macroscopically homogeneous media [18].
Even though it is not widely used yet by experimenters, maybe because the mathematical
concepts are a bit complex at first glance, some examples of CTRW model used in the
study of dispersion in unsaturated media can be found [26].

Equivalence between models

Common principle
Even though the models described in this section can be based on different concepts,

they share some basic principles. If we restrict these models to a non locality in the time,
which means that the mobilization of the concentration does not depend uniquely of the
time but also of the historic (memory function), those formulations can be equivalent [139].

Indeed, they all consist on the expression of a linear mass transfer between the mobile
and immobile regions, and whether this transfer is characterized by a residence time
distribution, a memory function or fractional derivative is not critical.

Equivalences between models
Berkowitz et al. (2001) [17] demonstrated the equivalence between the fractional ADE

and CTRW. They highlight that fractional ADE are not different models from the CTRW;
rather they are asymptotic cases of the CTRW theory. They explicit the equivalence for
fractional ADE and CTRW in term of probability of transition distribution in Laplace
space, for both time fADE and space fADE (Lévy flights).

However, the diversity of approaches makes more difficult a global comprehension, this
is why Silva et al. (2004) [140] tried to unify the formulations through an Multi-Rate
Mass Transfer formulation, on the basis of the work undertaken by several other authors
( [16], [23], [77]). They give the equivalence between the MRMT models parameters and
the other model formulations (cf the appendix Chapter 9, section 9.1). An overview of
the non-Fickian dispersion model is also given in the appendix.
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2.3 Properties of a two-phase flow in porous media

2.3.1 Generalities: physics at the interface

To gain a deeper comprehension of dispersion within unsaturated porous materials, it
is imperative to grasp the interplay between multiphase fluid flow and the porous medium
itself. This entails examining the dynamics occurring at the fluid interface, as it dictates
the dynamics of flow at the pore scale.

Therefore, to characterize two phase flow in a porous media, we will introduce the
physics arising at the interface between fluids [27] [86] [173].

Surface tension

At the interface between two phases, there is a surface tension. The strength dF
arising from the surface tension γ is given by dF = γdl. From each side of the interface,
the pressure difference is given by Laplace’s law

∆P = γ

( 1
R1

+ 1
R2

)
,

with R1 and R2 the curvature radii of the interface (Fig. 2.14). Their sign depends of the
convexity of the interface.

Figure 2.14 – Definition of the curvature radii

One of the most remarkable consequences of surface tension in porous media is the
Jurin’s law, which will govern the water rise in a capillary, and consequently in a pore, as
shown in Fig. 2.15. In capillary of radius r0 immersed in a liquid, the fluid rises up the

Figure 2.15 – Schematic of Jurin’s law

height given by
h = 2γ cos θ

ρgr0
,

with θ the contact angle, ρ the density. For a wetting fluid (cos θ > 0), Jurin’s law predicts
a capillary rise. For a non wetting fluid (cos θ < 0), Jurin’s law predicts a capillary drop.
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Capillary number

The capillary number, denoted Ca, is a dimensionless quantity representing the relative
effect of the viscous drag forces versus the surface tension:

Ca = µv

γ
,

where µ is the dynamic viscosity of the liquid, v is a characteristic velocity and γ the
surface tension.

2.3.2 Two phase flow in porous media: quasi-static conditions

Imbibition

Imbibition is the injection of a wetting fluid in a porous media saturated with a non
wetting fluid, typically the infiltration of water in a wall by capillarity.

Figure 2.16 – Imbibition at the pore scale.

At the pore scale, ∆P = Pnw − Pw = 4γ cos θ
d

> 0, with d the pore diameter, Pnw the
pressure in the non wetting fluid, Pw the pressure in the wetting fluid, and θ the contact
angle. Hence, the surface tension favors the displacement of fluid, which means that this
is a spontaneous invasion (Fig. 2.16). Plus, the smaller the pore, the more efficient the
imbibition will be.

Drainage

Drainage is when a non-wetting fluid displaces a wetting-fluid. In this case, capillary

Figure 2.17 – Drainage at the pore scale.

forces oppose the displacement (Fig 2.17). Thus, there must be an excess of pressure
to impose the drainage. The pressure must be particularly high to fill the small pores.
Indeed, invasion is possible in a pore if ∆P >

4γ cos θ
d

. In other words, if a pressure ∆P

is imposed, only pores for which d >
4γ cos θ

∆P = dmin will be invaded.
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2.3.3 Dynamics of a two phase flow in porous media

In the previous section, we were considering events of drainage and imbibition in quasi-
static conditions. In these cases, the pressure for the non wetting fluid Pnw and the pressure
for the wetting fluid Pw are uniformly distributed. In this configuration, small pores would
be invaded in priority during imbibition, and a pore whose diameters is superior to the
threshold value (d = 4γ cos θ

∆P ) would be filled during drainage.

Now, we consider a flow in the porous medium. There will be a pressure loss in the
medium, due to viscous forces. There is now a competition between capillary forces and
viscous forces. The capillary forces, illustrated with Figure 2.18, can be written as

dFγ = γdx,

and the viscous forces as
Fν = µvL, (2.3.1)

with v the mean velocity, dx the distance travelled by the fluid and L the height of the
domain.

Figure 2.18 – Illustration of the force necessary to increase the surface area. dF = γdx
F = γL for one interface.

Therefore, capillarity favors the filling of small pores when viscosity penalizes long
paths. This competition is characterized by the capillary number Ca = µU0/γ. This
competition between capillary and viscous forces is the origin of the capillary fingering
phenomena. For low Ca, capillary forces are dominant and capillary fingering can be
observed, since pores are filled as a function of their radius (Fig. 2.19). If the capillary
number is high, viscous forces are dominant and the front of imbibition will be rather flat.

Figure 2.19 – Capillary fingering: effect of increasing Ca from left to right. Adapted from
Tang (2020) [153]

However, even for high values of the capillary numbers, fingering can be observed when
the two fluids have a different viscosity. This is called the Saffman-Taylor instability, or
viscous fingering. A difference of density between the fluids can also lead to fingering, this
is called the Rayleigh-Taylor instability or density fingering.
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Generalised Darcy equations: relative permeability

In the previous sections, we only considered a fluid pushing another fluid. Now, we
consider a simultaneous injection of two fluids, a wetting fluid (denoted w) and a non-
wetting fluid (denoted nw). For each phase, we define a velocity rate 3 (u⃗w and u⃗nw) and
a pressure (Pw and Pnw). The saturation of each phase are noted Sw and Snw(= 1 − Sw)
respectively. The generalized Darcy equations writes

u⃗w = −Kkrw(Sw)
µw

(∇Pw − ρwg⃗) and u⃗nw = −Kkrnw(Sw)
µnw

(∇Pnw − ρnwg⃗) ,

where K is the medium permeability. krw and krnw are the relative permeabilities, µw

and µnw are the viscosities of the wetting and the non-wetting phases respectively. The
phases pressure Pw and Pnw are not equal, but are related with the equation

Pnw(Sw) − Pw(Sw) = Pc(Sw),

where Pc is the capillary pressure, a function of the saturation.
Omitting source terms and phase compressibility, the mass conservation of the phases

are given by
∂

∂t
(ϕSw) + ∇ · u⃗w = 0, (2.3.2a)

∂

∂t
(ϕSnw) + ∇ · u⃗nw = 0. (2.3.2b)

The relative permeabilities krnw and krnw and the capillary pressure Pc are functions of
the wetting phase saturation Sw to determine. There can be different kinds of models,
experimental or numerical [51,84].

2.3.4 Flow with a trapped phase

In a natural porous medium, many events can lead to the trapping of gas in the
medium, such as a combination of drainage, imbibition and drying. Hence, the distribution
of gas clusters in the system results from the hydrological history of the porous media.
Many phenomena are involved in the trapping, and lead to the fragmentation of gas by
the porous medium.

Bubble creation mechanisms

We will describe a few processes that lead to bubble creation at the pore level, in the
case of drainage in a porous medium [135] [127] [130]. Bubble creation during drainage
can follow three main mechanisms.

Snap-off
The snap-off occurs when gas penetrates through a constriction filled with liquid.

Then, the sudden decrease in local capillary pressure in the constriction leads to the refill
of liquid in the constriction. Consequently, a discontinuous gas bubble is formed and a
lamella is created in the constriction perpendicular to the flow direction (Fig. 2.20).

The decrease in capillary pressure necessary to induce the snap-off depends on the
geometry of the constriction. For instance, in the case of straight cylindrical throats,
the capillary pressure must decrease to half of the one capillary pressure at the entrance.
Basically, smaller pore throats lead more easily to snap-off events.

3. volumetric mean
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Figure 2.20 – Illustration of bubble creation mechanisms, from Haggerty (2023) [78]

Lamella division

It occurs when a pre-existing liquid lamella goes through a bifurcation in the porous
medium, and simultaneously invades both passages, dividing into two. It results in the
creation of a net new lamella (Fig 2.20).

Leave behind

When a gas phase invades two adjacent pore bodies, it leaves a liquid filled constriction
intact and isolated as a new lamella (Fig 2.20). Those different mechanisms depend
strongly on the capillary number. We observe high fragmentation of gas at high capillary
numbers (hence smaller clusters) [175].

Residual saturation resulting from a two phase flow

For a simultaneous air-water injection, in an artificial porous medium initially satu-
rated in water, authors found that a steady state can be reached ( [150] [35]), for which
the air is transported in disconnected bubbles. The bubbles are either mobile or trapped,
and sometimes trapped bubbles can coalesce with mobile ones and leave the medium.

The saturation at steady state after stopping the air injection depends on the flow
history. For different initial conditions, the resulting trapped phase might not be the
same, and it will be mainly determined by the maximal value of the capillary number
reached during the flow history. In other words, for a air-water co-injection, the saturation
at the steady state will depends mainly of the maximal flow-rate that has been imposed
during the flow history. Indeed, in the figure 2.21, we see that at lower Ca values, when
capillary forces are dominant, the saturation value depends significantly on the initial
phase configuration or on the flow history. However, at higher Ca, the saturation becomes
independent of the initial configuration and it follows a master curve converging toward
an asymptotic residual value.

Distribution of ganglia resulting from a two-phase flow

We consider two non miscible fluids injected in a porous media, whether it is a co-
injection of fluids, cycles of drainage and imbibitions, or even more complex two phase
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Figure 2.21 – Residual saturation of non wetting fluid VS Ca for different initial conditions,
from Chevalier et al. (2015).

flow. When the saturation of the wetting phase becomes large enough, ganglia of the
non-wetting phase ends up disconnected. It results in the trapping of the non wetting
phase. Then, at a steady state, how will the non wetting phase be trapped in the medium,
and particularly, what kind of distribution will the ganglia adopt?

Authors generally agree in a power law distribution for the ganglia size, with a cut-off
at large sizes (compared to the mean pore throat).

Two phase flow air-water: gas bubbles distributions

For a simultaneous injection of air and water, at the steady state, Chevalier et al.
(2015) [35] and Tallakstad et al. (2009) [150] show that the distribution of the trapped
phase is given by a power law with cut-off [150], [35], [91] such as:

p(l) = l−ϕh

(
l

l∗

)
,

with p the probability distribution of the ganglia size, h the cut-off function, and l∗ the
cut-off size. The probability distributions of bubbles size is represented in Fig 2.22.

In Tallakstad [150], they find a power law coefficient ϕ = 2.07 and they choose an
exponential cut-off function h(l/l∗) = e−l/l∗ . They also note a cut-off for small sizes.
Chevalier et al. [35] find a power law coefficient close to 2 for large sizes and 1

2 for smaller
sizes. They show that the cut-off size is inversely proportional to the capillary number:

l∗ ∝ 1
Ca
.

In other words, the maximal bubble size depends on the maximal flow rate that has been
injected in the system.

Trapping of bubbles in the porous medium

When disconnected, air bubbles are transported in the porous medium, some of them
will follow mean flow paths and others will get stuck in zones of low velocity flow, or dead
ends. The trapping results from an interaction between the porous medium structural
properties and the flow history. Indeed, the pore sizes distribution, as well as the pore
throat sizes will influence the snap-off mechanism, and the fragmentation of the non-
wetting phase, and the gas bubbles will get stuck preferentially in zones of low flow velocity
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Figure 2.22 – Distribution of air bubbles in porous media after a air-water co-injection,
From Jimenez-Martinez et al. [91] (left), Chevalier et al. [35] (Right), Tallakstad et al. [150]
(top).

or dead-ends. Thus, the distribution of trapping sites is an intrinsic property of the
medium.

Hence, structural characteristics such as the porous medium heterogeneity will influ-
ence the trapping pattern. Indeed, a more heterogeneous medium will usually lead to a
more heterogeneous pattern of the trapped phase [53]. Moreover, according to Chevalier
et al. [35], the position of the clusters becomes deterministic for high capillary numbers.
Indeed, in Fig 2.23, the spatial distribution maps between different realizations for the
probability of trapping get more and more contrasted as the capillary number grows. This
means that the localisation for the trapping becomes more deterministic. Furthermore,
trapping sites for low Ca numbers often include the trapping sites of high Ca numbers.

Topology of the flow with a trapped phase

The presence of bubble leads to new zones of low velocity, or dead ends, as well as
preferential paths. Even though dead zones and preferential flow paths may have existed
in the medium without the trapped phase, they will not be the same with the presence of
bubbles.

Furthermore, the trapped phase increases the spread of the velocity distribution, as
there are bubble blocking the way to certain parts of the medium, in addition to the dead
ends already present in the saturated case. This reorganization of the flow is marked by a
deep change of the velocity probability distribution function (pdf), with a strong increase
of the low velocity probability. According to Velasquez et al. (2021), [122], the low velocity
exhibits a power-law trend and the high velocity follows an exponential trend.
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Figure 2.23 – Probability maps of trapping for different Ca numbers: Ca = 3.7.10−7 (a),
7.4.10−6 (b), 3.0.10−5 (c), and 3.3.10−4 (d).

Thus, to characterize the flow field, it is possible to define a backbone, that is consti-
tuted of the main flow paths, to which are connected dead zones of low velocity [91] [122].
In Velasquez et al., 2021, the threshold to do so is chosen as the change of trend be-
tween the power law and the exponential trend. This allows the authors to decompose
the velocity pdf in the sum of the velocity pdf in the backbone and the velocity pdf in the
dead-ends

p(q) = (1 − f)pB(q) + fpD(q),
with f the ratio of the dead-end area to the total area, pB(q) the backbone flow rate pdf
and pD(q) the dead-ends pdf. Under some hypothesis not detailed here, the authors model
the velocity pdf for low velocity as

pE(v) = 2γf
v(1 + 2γ) ln

(
v

vc

)−1−2γ

,

and the velocity pdf for high velocity as

pE(v) =
( 2γf

1 + 2γ

√
αvc

v
+ (1 − f)

√
v

αvc

)
C∗
αvc

e
−
v

αvc ,

with γ a power law coefficient, vc the characteristic velocity which is saturation dependant
and C∗ and α geometric coefficients depending on the throats width and the channel size.

2.4 Saturation effects on dispersion in porous media
In nature, dispersion in unsaturated media is rather common. Indeed, the soils are not

necessarily saturated in water and they may contain air bubbles. However, the effect of
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saturation on dispersion in porous media is still not well known at the moment. Indeed,
even though numerous authors have worked on the subject, there is a large discrepancy
in the results. The nature of the dispersion in unsaturated porous media is difficult to
characterize because it is necessary to understand first the non miscible air-water flow and
its interaction with the porous media topology; and how the dispersion will arise according
to this flow history.

In this section, we will give an overview of the different results on unsaturated porous
media, and give a few keys of interpretation to explain the discrepancy of the results.

2.4.1 Effect of saturation: discrepancy of results

At first stance, there is a large discrepancy in the results concerning the effect of
saturation in porous media. This is partly due to the different background of the authors
who study the dispersion in unsaturated porous media, and consequently the different
approaches that are used to characterize the dispersion.

Indeed, hydrologists, petrophysicists, geologists, experimental or theoretical physicist
do not have an uniform understanding of the problem, which leads to different approaches
to characterize the dispersion, and different models to describe the nature of dispersion.
Therefore, this diversity of methods and models to describe the dispersion leads to ambi-
guities in the interpretation and the comparison of certain results.

2.4.2 Description of the dispersion: ambiguities

Given the different backgrounds of the authors studying the dispersion in porous media,
there are somehow ambiguities that lie in the description of the dispersion, typically with
the use of the dispersion coefficient, even in presence of anomalous dispersion.

Anomalous dispersion: inadequacy of the dispersion coefficient

A number of authors characterize the effect of saturation on dispersion with the value
of the dispersion coefficient. Notably, authors do not necessarily make a clear distinction
between anomalous and Fickian regime. In some cases they use the dispersion coefficient
with clear signs of anomalous dispersion [118], without considering that they are charac-
terizing a transient. Indeed, it can result from a pre-asymptotic regime that can converge
toward Fickian dispersion. Plus, the anomalous signature is shown to be greater in mul-
tiphase flows [157]. Indeed, many experiments in unsaturated conditions show signs of
anomalous dispersion. Therefore, the dispersion coefficient is not rigorously defined, and
it is biased to describe the dispersion only using the dispersion coefficient. Therefore,
authors often choose to describe the dispersion with other parameters as well, such as the
transfer coefficient for the MIM model. However, since the models used are often different,
it can be difficult to compare accurately the results of different studies.

Peclet number

When experimentally studying the effect of saturation in the dispersion, numerous
authors change the flow rate to adapt the degree of saturation and study transport with
different flow rates. Indeed, increasing the water flow rate tends to reduce the quantity of
air in the medium.
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However, the Peclet number depends directly of the flow rate, and it is an essential
parameter for the dispersion. Typically, for a Fickian dispersion, the dispersion coefficient
increases with the Pe number, this is illustrated by the expression of the Taylor dispersion
coefficient in a tube

DTaylor = Dm(1 + Pe2

48 ).

To characterize the dispersion and take into account the change of Pe, some authors
use the empiric law depending of the mean flow velocity

Ddisp = Dmτ
2 + λv,

or eventually
Ddisp = Dmτ

2 + λvθ,

with τ the diffusive tortuosity, λ the dispersivity and θ an empirical exponent. They give
values of the dispersivity instead of values of dispersion coefficient. However, this does not
necessarily mean that all the influence of the Pe number is taken into account with this
formulation of the dispersion coefficient, especially if the dispersion is anomalous. Notably,
it was demonstrated [116] that high Pe numbers usually favor anomalous dispersion.

For example, for a porous medium with immobile zones, if the flow rate is increased, the
stagnant zones are still characterized by low local Pe number, but the main flow paths will
be characterized by a higher Pe number. Hence, when changing the flow rate to change
the saturation and study transport, we observe the coupling of two opposing effects. If
the flow rate decreases and the air saturation increases, on the one hand, the diminution
of the Pe number tends to decrease the dispersion. On the other hand, the increase of air
bubbles in the medium tends to create more stagnant zones in the medium and preferential
paths, leading to an increased flow heterogeneity, increasing advective dispersion. This
coupling effect exists whether the resulting dispersion is anomalous or not, therefore it is
complicated to interpret results for which there is a variation of both saturation and Peclet
number. Triadis et al.(2018) [157] show that the Pe numbers increases the anomalous
nature of the dispersion in multiphase flows, typically with a transient time towards a
Fickian regime longer with high Pe numbers, or no Fickian regime observed even at large
times. Therefore, if possible, it is better to compare experiments with the same Pe number.

2.4.3 Different trends

Increase of the dispersion with a decreasing water saturation

A large number of authors note an increase of the dispersion in unsaturated porous
media, compared to saturated conditions, as shown Fig. 2.24. Among them, Bromly and
Hinz (2004) [26] noted an increase of dispersivity for low water content, compared to high
water content, for experiment of tracer injection in sand columns (cf Fig. a). Maraqa et
al. (1997) [107] noted that the dispersivity was multiplied by a factor two in unsaturated
conditions, for BTC experiments in various soil samples (cf Fig. b). Furthermore, Nütz-
man et al. (2002) [118] gave a monotone decreasing relation between the dispersivity and
the water content. Haga et al. (1999) [76] also noted an increase of the dispersion under
unsaturated conditions, highlighted by the BTC at different saturation conditions, that
are widening when the saturation decreases in the sub-figure (d) of 2.24.
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Figure 2.24 – Figures illustrating the increase of dispersion under unsaturated condition. a)
From Bromly and Hinz (2004): Dispersivity calculated from BTC curves, tracer injection
in columns of sand. The measurements are made at different column lengths and for low
and high water content (WC) b) From Maraqa et al. (1997): Dispersivity values calculated
from BTC curves for different natural samples, under saturated and unsaturated conditions
c) From Nützman et al. (2002): Dispersivity values as a function of the water content,
calculated from BTC, for a tracer injection in soil columns d) From Haga et al. (1999):
BTC of dispersion experiments in packed beds, for different conditions of saturation.

Non monotonic tendencies

Some articles tends to highlight non monotone relations between the saturation and
the dispersivity, or the dispersion coefficient, as shown Fig. 2.25. Particularly, Padilla et
al. (1999) [121] measured a dispersion coefficient that increases with water content until
it reaches a maximum, then decreases to a minimum level in saturated condition (cf Fig.
2.25 a) ), for a dispersion coefficient calculated with the ADE model and the MIM model.

Karadimitriou [93] also noted a non monotonic relation between the dispersion coeffi-
cient and the water saturation, the dispersion coefficient increases with water saturation
and reaches a maximum for medium values of water saturation, and decreases when the
water saturation gets closer to full saturation. This tendency is verified for different flow
rates, or in other words Peclet numbers.

This tendency is also brought to light by Raoof et Hassanizadey (2013) [128] with
poreflow network simulations. Their results suggest that there could be a link between
the water saturation for which the dispersion is maximal and the fraction of percolating
saturated pores.
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Figure 2.25 – Illustrations of the non monotonic relation of dispersion with water content
or saturation. a) Dispersion coefficient as a function of water content, for BTC experiments
in soil columns from Padilla et al. (1999) b) Dispersion coefficient as a function of water
saturation, calculated from BTC experiments in 2D micromodels from Karadamitriou et
al.(2016). c) Dispersivity as a function of saturation. Results of simulations using a pore
flow network model, for three generic networks. The pore-body size distributions have
different variances: high (var H), medium(var M), low(var L). From Raoof et Hassanizadey
et al. (2013).

Other tendencies

A minority of articles show different tendencies for the dispersion from what we have
mentioned in the preceding sections, as shown in Fig. 2.26. That is the case of Vander-
borght et al. (2007) [161], which collects data to analyse dispersion properties. However,
the influence of saturation is difficult to interpret here, because a great number of param-
eters change with the saturation.

Birkholzer et al. (1997) [21] investigated on channeling effects in porous media through
unsaturated highly heterogeneous media through numerical simulations, and found dis-
persivity that tends to decrease with saturation, although the tendency is not clear. In
both cases, the water saturation is modified through the flow rate, so the Peclet number
also changes, which makes the interpretation for the influence of the saturation hazardous.

Conclusion

There is a divergence in the results concerning the effect of saturation on dispersion,
mainly because of the multiplicity of the approaches, and the different parameters that
can be changed during the experiments. Nonetheless, the decrease of saturation from the
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Figure 2.26 – a) Dispersivity as a function of the flow rate. From Vanderborght et al.
(2007). b) Dispersivity as a function of the flow rate. From Birkholzer et al. (1997).

fully saturated porous medium tends to increase the dispersion, at least for a range of
saturation values close to the full saturation.

Thus, the increasing dispersion is linked to an expansion of the velocity field. The
unsaturated medium favors extreme velocity values in stagnant zones and preferential flow
paths leading to an increased dispersion and often anomalous dispersion. For example, in
Triadis et al., 2018 [157], the dispersion for saturated medium quickly converges towards
Fickian dispersion, when the dispersion in unsaturated porous medium is anomalous for
a long period of time, until eventually converging to Fickian dispersion, as shown in the
Fig. 2.27.

However, non monotonic relations observed by several authors suggest that the effect
of the decrease of saturation is much more complex and can not be reduced to an increase
of the dispersion coefficient. Then, to understand how the unsaturated porous media
affects the flow field, it is essential to characterize the interaction between the porous
media structural properties and the non-miscible two-phase flow.

2.4.4 Influence of the two phase flow topology on the dispersion

Role of heterogeneity

The anomalous character of the dispersion is known to increase with more complex
geometry for porous media. Quite intuitively, the presence of a trapped phase in the
porous medium increases the flow heterogeneity, it also affects the connectivity and the
complexity of the possible paths. According to the way the trapped phase is distributed
in the medium, it can lead to a greater number of dead-ends and preferential paths, both
resulting in an increased spreading [157].

Velocity probability density function

With a trapped phase, the reorganization of the flow is marked with a deep change
of the velocity probability density function, with a strong increase of the low velocities
probability (see subsection 2.3.4), due to the formation of dead-ends. A. V. Parra et al.
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Figure 2.27 – Pore scale simulations of dispersion in saturated (no trapped phase) and
unsaturated media (trapped phase). Variance as function of time, for different slip condi-
tions. The lines b = 1 correspond to Fickian dispersion while the lines b = 2 correspond
to ballistic dispersion (non Fickian). From Triadis et al. (2018) [157].

(2021) [122] showed the effect of the saturation on the transition to strong anomalous
transport in unsaturated conditions by modelling the velocity probability distribution
function, decomposed in the preferential flow path and the dead end zones. Fig. 2.28

Figure 2.28 – Simulation of advective dispersion in time for four saturation values. The
plot compares σx

2 using the particle tracking analysis (continuous lines) with σx
2 from a

CTRW approach computed using the predicted velocity PDF pE(v) (dashed lines). From
A.V Parra et al. (2021).

from Velasquez et al. shows that for unsaturated media, the dispersion tends to get
closer to a ballistic behavior (σ ∝ t) whereas it reaches a diffusive behavior in saturated
conditions (σ2 ∝ t).
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Nature of the trapped phase

Once the trapped phase is distributed, and that the preferential paths and the dead
ends are created, does the gas nature of trapped phase influences significantly the disper-
sion, or the air bubbles are acting as an additive solid matrix in the medium?

The answer lies at the phase interface. In the case of CO2 and water injection in
a micromodel, Kazemifar et al. (2016) [95] noted shear induced circulation zones, i.e,
vortices near the interface thanks to micro-PIV techniques. Thus, the trapped water
ganglia are not entirely stagnant as they are near the fluid-fluid interface. Therefore,
water films could have an impact on the unsaturated porous media transport properties.

2.5 Micromodels for porous media studies

In this section, we will describe micromodels and their utility to study dispersion in
unsaturated porous media. More particularly, we want to show how they are relevant to
study both multi phase flow and dispersion in porous media. This experimental device
consists of microfluidic interconnected channels in a transparent material, with an inlet
and an outlet that allow to introduce and extract the different phases. It allows the visu-
alization of fluid dynamics and transport in a porous medium. We will comment briefly
micromodels fabrication methods and the visualization techniques associated to under-
stand how micromodels can be used. Then, we will report some of the results obtained
through micromodels on multiphase flows and dispersion that highlight the contribution
of micromodels in porous media during these last decades.

2.5.1 Generalities

Complex flow and transport in porous media can be difficult to characterize experi-
mentally. Visualization techniques are particularly helpful to identify some key elements
in the studied phenomenon. To allow direct visualization of the fluid structure and disper-
sion patterns, micromodels have been developed since 1950. They consist of a transparent
interconnected porous network that enables optical visualization at the pore scale [92], [1].
Although there are other techniques of visualization in non-transparent porous media, they
are not quite adapted to study pore scale dynamics. Focused ion beam scanning electron
microscopy (FIB/SEM) or X-Ray micro-computed tomography (micro-CT) requires long
scanning times, therefore it has a poor temporal resolution. An alternative is the NMR,
but is is still limited in spatial resolution.

Micromodels allow a pore scale observation of the flow and fluid structure under tran-
sient condition with a camera and eventually a microscope. According to the fabrication
method, they can be in 2D or 3D. Whereas 3D micromodels better mimic the physics, they
imply more complex visualization techniques, and a close match of refractive indexes for
both solid matrix and fluids, whereas the flow in a 2D micromodel can be easily observed
with a camera. It is constituted of a single layer of microfluidic channels with an arbitrary
porous structure, but consequently, it does not capture the physics associated with 3D
porous connections [1].

There are different kind of micromodels, according to the pattern of pores chosen.
They can be perfectly regular, with the same geometry for all pores; partially regular, for
example with pores shaped like square or crosses but with pore sizes chosen according to
a statistical distribution, correlated or uncorrelated. The pattern can also be fractal, or
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Figure 2.29 – Different geometry of micromodels, from [1].

irregular: there is no spatial correlation, the pores are placed randomly in the network and
their size is chosen according to a given spatial distribution. The diversity of micromodels
patterns is illustrated in Fig. 2.29.

Fabrication

Different methods of fabrication are possible depending on the kind of transparent
material that is used, or the quality required for the micromodel. Hard material can be
used, such as glass and silicon: glass micromodels are of good quality although they are
fragile; silicon micromodels are quite close to glass except that the silicon is translucent and
not water-wet. Soft materials, such as PDMS (poly-dimethil-siloxane) or PMMA (poly-
méthyl-methacrylate) are really cheap but they present several drawbacks, among them
the reactivity with some fluids and chemical products, that can induce a swelling of the
micromodel [92]. There are two main categories of fabrication: non additive or additive
manufacturing (and eventually micro-particles packing for 3D porous media) [1], [92].
The non additive manufacturing consists in several steps: first, the lithography. It is the
transfer of the pre-designed geometric pattern from a mask to a photo-resist layer on the
substrate. The second step is the shaping, which allows to give the particular shape to
the micromodel. It can be done by etching, replica molding, etc.

For the lithography, the most common technique is photo-lithography (Fig. 2.30). A
photo-resisting layer is exposed to UV light through a mask to create the porous pattern
[1], [92].

Figure 2.30 – Illustration of photo-lithography, from Anbari, 2018 [1]

As for the shaping, several methods are possible (Fig. 2.31). The dry-etching uses
a reactive ion beam to attack the substrate. The replica molding uses a model with a
negative shape of the micro-pattern, therefore the structure can be copied a dozen time
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with the same mold. Laser engraving is also used for etching with all variety of materials.
For the latter method, the problem is often the resolution [1]. The Fig. 9.9 in the
appendix (Chapter 9, section 9.1.5) summarizes the fabrication methods, their advantages
and disadvantages.

Figure 2.31 – Schematic of the etching technique, from Anbari, 2018

Visualization techniques

For 2D micromodels, visualization techniques simply consist in camera observation,
with a microscope if needed. For 3D micromodels, the pore space and the fluid flow
structure is visualized by confocal microscopy. Fig. 9.10 in the appendix Chapter 9,
section 9.1.5 sums up the different visualization methods, their suitability and their limits.

Limitations of micromodels

Although micromodels have become really interesting tools to investigate mechanisms
at the pore scale, there are still limitations to the use of micromodels that one should
keep in mind. Indeed, one primordial limitation for 2D micromodels, that are the most
commonly used, is the difficulty to relate quantitatively the behavior observed in the
micromodel in 2D to the behavior in a real medium in 3D. Typically, it might be difficult
to upscale parameters obtained from micromodels studies to 3D porous media.

Another limitation is that 2D micromodels are not rigorously two-dimensional: the
depth can have an effect on the observation. Indeed, experiments observation in micro-
models often relate to depth-average quantities [143]. Typically, experiments using camera
observation to measure concentration profiles in micromodels provide values that are av-
eraged along the depth Lz and no information about the depth profile is available. For
example, the average concentration is computed as

⟨c(x,y)⟩ = 1
Lz

∫ Lz

0
c(x,y,z)dz. (2.5.1)

The depth of the micromodel can be really significant when it comes to the comparison of
2D simulations and micromodel experiments. Indeed, 2D Navier-Stokes simulations or 2D
Darcy simulations do not capture fully the behavior of 2.5 D micromodels, as Soulaine et
al.. (2021) showed [143] (Fig. 2.32). According to the ratio of the micromodel depth over
the pore throat, it might be relevant to use a depth integrated model, which is equivalent
to a Darcy-Brinkmann model, to take into account the effect of depth on the flow.
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Figure 2.32 – Comparison of different models to model flow in a micromodel. Single phase
flow simulation using 3D, 2D and 2D depth averaged for different aspect ratio between
the micromodel thickness and the pore-throat. From Soulaine et al. (2021) [143].

2.5.2 Micromodels for the characterization of non miscible two-phase
flows in porous media

Micromodels are frequently used to study multiphase flow in porous media, indeed,
they allow to assess the volume fraction of each phase, assuming that the cross section on
the image reflects exactly the volume occupation [1]. The distribution of the phases can
be obtained at any time.

Non miscible multiphase flows

Notably, non miscible multiphase flow processes have been thoroughly studied through
micromodel experiments [35] [94] [79] [180]. Indeed, during non miscible multiphase flow
processes, there are multiple possible configurations for the phase distributions of the wet-
ting fluid (typically water if the micromodel is waterwet) and non wetting fluid (typically
air or oil), that depend on the capillary number, on each phase saturation and on the flow
history.

The previous section (2.3.4 and 2.3.4) described the work of several authors that studies
two-phase flow with micromodels, notably Tallakstad [150] and Chevalier [35]. Chevalier
et al. (2015) [35] use a micromodel with random flow obstacle that mimics a fractured
rock sample to study the distribution of ganglia during a co-injection process, as seen Fig.
2.33.

In order to study the multi-phase flow, several authors assessed the velocity map in the
micromodel using micro-PIV (Particle Image Velocimetry) techniques [79] [22]. Indeed, in
Haques et al., 2021 [79], the velocity distribution obtained for a two-phase flow had distinct
characteristics that are completely different from the single phase flow. Particularly, those
peculiarities create instabilities that lead to preferential flow paths near stagnant fluid
ganglia.

Velasquez et al. (2021) [122] decomposed the medium in a back-bone and dead ends
from flow simulations in the micromodel, as seen in the Fig. 2.34. It is possible to map
the preferential flow-paths as well as the dead ends to characterize the structure of the
flow and the effect of crucial parameters, such as the saturation value.
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Figure 2.33 – Micromodel device to study two phase flow process. Blue: oil. Grey: solid.
light purple: water. From Chevalier et al., 2015 [35].

Figure 2.34 – Decomposition of the medium into a back-bone (red) and dead-ends (blue)
from the velocity field in the unsaturated micromodel. Obstacle are shown in grey, air
clusters in black, the velocity in the water phase is indicated with the color bar. From
Velasquez et al. (2021) [122].

Influence of the pattern for multi-phase flow in micromodels

The pattern, defined amongst other things by the pore distributions and the pore
depths, can be designed to mimic as closely as possible the natural porous media of
interest. For example, it can be useful to model multi-scale pore sizes, that are common in
carbonate rocks, and eventually pores of different depths [177] [172], that are involved in
multi-phase flow mechanisms. Indeed, the capillary snap-off mechanism is an important
characteristic for oil and bubble break-up. It only occurs when the size of the throats
are smaller than the pore bodies in both perpendicular directions of the flow. Therefore,
a limitation of 2D micromodels is that the unique depth does not allow the snap-off
mechanism and therefore does not fully capture the 3D physics of multiphase flows [37].

2.5.3 Micromodels to study dispersion in porous media

Saturated conditions

Micromodels have been widely used to study transport in porous media, they allow
to visualize and quantify solute transport in porous media [38] [88]. In saturated condi-
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tions, they also can be used to study dispersion of complex objects such as colloids [5],
suspensions [13] or even micro-organisms, as illustrated in Fig. 2.35.

Figure 2.35 – Pore scale visualization of colloids straining in saturated porous media using
micromodels. From Auset, 2006 [4].

Unlike rock samples or columns experiments, they provide a concentration map of the
tracer, which gives significantly more information on the transport mechanism than BTC
curves for example. Particularly, it gives insight on the interaction between the nature of
the porous media (pore sizes distribution, connectivity, roughness, etc) and the transport,
i.e., how some characteristics of the network will influence the dispersion, and for instance
lead to preferential paths or stagnant zones in the porous medium.

Unsaturated conditions

Micromodels are ideal tools to study transport in unsaturated porous media since they
provide both non miscible phases configurations and concentration fields. Therefore, they
have been widely used in several fields of research, such as biology, to study the influence of
the water-air interface on transport of micro-organisms [166], or colloid transport [165] [96]
[133] or to quantify liquid volatilization in unsaturated porous media or vapor transport
[169] [136]. In the last decade, there has been a growing interest about transport in
unsaturated conditions, particularly in the vadose zone and how micromodels can be used
to study the dispersion [165] [92] [93] [81]. Leontidis et al. (2020) [104] studied the
influence of saturation on the dispersion using micromodels, as well as Kadamitriou et al.
(2016) [93] (cf Fig. 2.36 and Fig. 2.37), who investigated the influence of the immobile
zones in the transport, as well as the mixing at the pore scale. Jimenez et al. (2020) [90]
studied the impact of phase distributions on mixing and reactions in unsaturated porous
media.

When studying transport with a micromodel, an experimental difficulty is to create a
neat front of concentration at the entrance of the device; particularly because of the dis-
persion in the tubing connecting the fluid and the inlet of the micromodel. To improve the
tracer injection, Jimenez-Martinez [91] developed a photo-bleaching method that allows
to create a rather neat Dirac injection of the tracer, as can be seen in Fig. 2.38.
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Figure 2.36 – Micromodel experiment of dispersion in unsaturated porous media, from
Kadamitriou et al., 2016 [93].

Figure 2.37 – Dispersion coefficients computed from micromodel experiments, from
Kadamitriou et al., 2016 [93].

Figure 2.38 – Dirac injection in an unsaturated porous media, from Jimenez-Martinez,
2017 [91]

2.6 Synthetic image reconstruction in porous media

2.6.1 Introduction

Earth science studies can be restricted by the amount of experimental data available,
either because of the limited sample sizes or the finite number of data samples. To over-
come this issue, it can be advantageous to generate artificial media from experimental
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images through numerical methods, such as multiple-point statistics algorithms (MPS) or
deep learning methods [167].

Multiple-Point statistics algorithms are commonly used in pore scale imaging and
geostatistics. They allow to generate images with complex shapes and structures. Their
leading idea is to retrieve information about the desired shape, spatial distribution and
connection of the objects from a training image (TI), that represents a conceptual model
of the expected structure. This information is then used to fill iteratively the simulation
grid, resulting in a synthetic medium with spatial distribution consistent with the training
image [59,148].

MPS algorithms are based on minimization problems, and as such are not technically
machine learning algorithms. Deep learning methods, based on neural networks, have
become more and more common in Earth sciences and particularly pore scale modelling
and imaging [167]. They have been used to replace or accelerate traditional methods with
neural networks. As an illustration, Conventional Neural Networks (CNN) have been used
for pore space segmentation [117,162,167], to identify different types of minerals from gray
scales images with minimal human supervision. Generative Adversarial Networks (GANs),
along with CNNs have been used for image quality enhancement, and image generation.
GANs for image generation are based on two neural networks, a discriminator, that is
trained to identify fake data, and a generator that creates data close enough from the
database to deceive the discriminator [70].

Deep learning is used either for reconstruction of 3D images from 2D slices of a rotating
sample, or for generation of synthetic images. Mosser et al. (2017) [114] have trained a
GANs network to create synthetic images from a data set consisting on subsets of a rock
CT-scan, allowing a large number of training images (between 2000 and 10000 according to
the rocks studied). The synthetic images give satisfying results, notably for average values
such as porosity and permeability. However, neural networks ask for a very large amount of
data with equivalent statistic properties, that is not always easy to obtain in experimental
conditions. Databases in Earth science are still in a early stage of development, even
though the recent years have shown a great improvement in that matter [167]. Moreover,
they still fail to fully capture complex geometry pattern and the different scales of the
porous structure. The main advantage of deep learning methods is that once the neural
network is trained, the time to produce sample is very short, which allows to create
large samples while maintaining computational efficiency. GANs have also been used to
accelerate MPS algorithm for image generation.

In the following, we will focus on MPS algorithms as they are still the most commonly
used for porous media generation, and have the advantage to allow image generation with
a single training image.

2.6.2 Multiple-Point statistics algorithm

MPS approaches were initially developed for geological modeling to generate new distri-
butions of complex geometry patterns from a training image that represents the expected
structure. Originally, geostatistics would rely on correlations between two points of the
reservoir. It did not allow to model complex objects such as curvilinear channels. There-
fore, the leading idea was to rely on more than 2 points and use a training image as a
conceptual representation of the spatial structure to analyse the geological statistics and
to reproduce it in a simulation. The first idea was formalised in 1993 by Guardiana et
al [72], but the first efficient algorithm was created in 2000 [145].
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Simultaneously, significant developments occurred in infography, notably for texture
mapping. Texture mapping was introduced by Catmull in 1974 [29] to cover 3D objects
with 2D images. Issues about image distortion in 3D and pixelisation when the image is
stretched led to a new idea: to generate a texture similar to the original sample directly
on the 3D object (Heeger Berger [82]). In 1999, a texture mapping algorithm for image
reparation with very good results was proposed by Efros and Leung [49]. Since then,
numerous methods were developed, for instance the generation through neighbourhood
prospecting: a pixel with similar neighbourhood than the pixel to be simulated is identified
in the original texture. A similar method is developed with patch instead of pixels [59].

In 2007, Multiple-point statistics and texture mapping are combined with Arpat and
Caers work [2]. They replace the probabilistic approach (i.e the reproduction of statistics)
by the reproduction of patterns used in infography, using a database of extracted pattern
from the training image. Since then, MPS algorithms have been increasingly used, as the
occurrences of publication mentioning MPS highlights (see Fig. 2.39). Furthermore, the
range of application of multiple-point statistics has widened, and notably they have been
applied to porous media image generation.

Figure 2.39 – Evolution of the importance of MPS algorithm and its applications to porous
media in the recent decades.

2.6.3 MPS application to porous media

MPS were first applied to porous for 3D reconstruction from 2D images in 2004 by
Okabe and Blunt [119]. They managed to recover permeability from Lattice Bolztman
simulation of flow in the 3D porous medium synthesised by MPS. In a similar vein, Zhang
et al (2012) [181] proposed a method using MPS to reconstruct 3D porous media from
a 2D thin section of a porous media, tested on three sandstones samples. Multiple-point
statistics is used to reconstruct the image of the next layer, that becomes the new training
image. The 3D medium is obtained by stacking all the reconstructed layers. Numerous
authors developed the reconstruction of 3D images with 2D thin sections in the following
years ( [41,52,171,182]).

Another application of MPS to porous media was proposed by Jimenez et al in
2020 [90]. They used an MPS algorithm to generate unsaturated porous media from
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experimental data that share similar statistics in term of saturation and trapped fluid
distribution.

2.7 Conclusion
The second chapter of this thesis aimed to provide an overview of the state of the

art in transport phenomena in unsaturated porous media. We introduced notions about
physics on porous media for better comprehension. Afterwards, the following key findings
and insights were obtained:

On one hand, we focused on the multiphase flow phenomena in porous media. Im-
miscible two-phase flow in quasi-static and dynamic conditions were studied, as well as
mechanisms of bubbles creation in the porous medium during two-phase flow. We partic-
ularly detailed the behavior of a flow with a trapped phase, and how the trapped phase
depends on the history of the two-phase flow, and notably on the maximal capillary num-
ber reached during the flow.

On the other hand, the chapter highlighted how dispersion arises in porous media and
how it can be modeled. Indeed, dispersion cannot always be described with advection-
dispersion equation in porous media, notably in heterogeneous and unsaturated porous
media. Hence, we detailed what determines the nature of dispersion, Fickian or non-
Fickian. In theory, asymptotic dispersion should be Fickian no matter how heterogeneous
the medium is, however the time to reach this dispersion might never be too long to be
observed. Therefore, models for non-Fickian dispersion have been developed to describe
more accurately dispersion in porous media.

Furthermore, a thorough review of the existing literature revealed various simulation
and experimental approaches that have been employed to study transport processes in
unsaturated porous media. These studies do not agree on the effect of saturation on dis-
persion. The majority finds a dispersion coefficient that increases when the saturation
decreases, but non-monotic relations were also observed, and a minority find an increase
of the dispersion coefficient with decreasing saturation. Theses discrepancies can be ex-
plained partially by the variability in the approach, the different kind of flow and model
considered while studying the dispersion in unsaturated porous media. Furthermore, the
impact of various factors, including soil heterogeneity, capillary forces, and boundary con-
ditions, on transport behavior in unsaturated porous media was examined. The findings
indicated that these factors can significantly influence flow patterns, transport rates, and
the spreading of contaminants in the subsurface.

Finally, we detailed some specific methodology that impact research in flow and trans-
port, notably we higlighted the importance of micromodels in the study of multi-phase
flow and transport in porous media, and machine learning methods that can be used to
tackle the experimental lack of data in porous media studies.

The next chapter of this thesis will build upon the foundation established in this state-
of-the-art review. It will delve into the experimental methodology used to investigate
transport phenomena in unsaturated porous media, including the setup, measurements,
and data analysis techniques employed.





Chapter 3

Experimental methods and data
processing

Having established the key concepts for understanding the mechanisms involved in
dispersion in unsaturated porous media, this chapter focuses on the experimental setup
employed to study dispersion in an unsaturated porous medium using a micromodel.

The challenge was twofold: first, we needed to design a transport experiment using
the micromodel that would ensure a neat injection front at the inlet. Conventional tracer
injection methods, where the tracer is introduced through a single inlet, do not yield such
a precise concentration front. Second, we had to devise a method to create unsaturated
porous media with a relatively uniform distribution of bubbles at the scale of the mi-
cromodel, and this needed to be reproducible. Finally, we used these two methods to
perform transport experiments in unsaturated porous media, and with the aim to monitor
concentration fields evolution with time, for various degrees of saturation.

Furthermore, we will detail the analytical methods we developed to analyze transport
experiment images, i.e., how we analyse the concentration fields and their evolution in time
to characterize the dispersion. Indeed, we developed a method based on spatial moments
computation to characterize dispersion. This method is rather straightforward, and avoids
to use a model to fit the data, which often implies hypothesis on the nature of dispersion.
This is typically the case when the breakthrough curves are fitted with ADE solutions. We
will also present how we can analyze the unsaturated porous media, notably the partition
of the phases, and what kind of statistics we can extract from the images.
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3.1 Multi-phase flow and transport experiments

3.1.1 Experimental set-up

Micromodel

We use a glass micromodel of inner etched network dimensions of 10 mm wide by 17
mm long. The micromodel is wet-etched with fabrication depth Lz of 40 µm. The interior
model network is based on an image of a 2D slice of Bentheimer rock, obtained from X-Ray
tomography. It was modified to force percolation in 2D leading to a higher final porosity
than the original rock. The mask is presented Fig. 3.1.

Figure 3.1 – Binarized mask of the inner micromodel network

The inner porous media is characterized by a total number of grains of 2602; the average
porosity is ϕ = 0.66 and the permeability K of the micromodel (including connectors) is
4.7 Darcy. Plus, the micromodel can be considered as strongly water-wet as it is entirely
made of glass.

Each longitudinal side of the inner porous network comprises a rectangular reservoir
followed by a flow diverting system of larger canals that bring the different fluids into
the micromodel, as shown in Fig. 3.2. This micromodel has the particularity to have
three inlets and three outlets as well as inlet and outlet tanks. The central inlet (or
outlet) undergoes successive bifurcations, it splits into two branches, that split into two
branches as well, resulting in eight branches evenly distributed and connected with the
model entrance.

Figure 3.2 – Micromodel connectors configuration: three inlets and three outlets, an inlet
and outlet tank

The analysis of the micromodel structure with ImageJ watershed algorithms gives the
distribution of pores as well as the pore equivalent radius, as shown in Fig. 3.3. The pores
size distribution shows a long tail towards large pores, and the dashed line indicates the
mean equivalent pore radius, estimated to 0.1 mm.
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Figure 3.3 – Micromodel network characteristics, with mean values shown as dashed line.
A sample of the pore network decomposition is shown on the right, throats are shown in
green separating the black pores.

Fluids and injection system

The gas used is ambient air, the liquid is MilliQ and the tracer is Parker Quink blue-
black ink, diluted at 40% in mass with MilliQ water. We chose the ink as a tracer and
the percentage after Leontidis, 2020 [104], that tested different tracer and concentrations
to improve the contrast.

Water and ink are injected with a Vinduum pump, delivering a continuous flow rate
that can be chosen for our system between approximately 0.1 µl/min and 1 ml/min. As
the flow rate is too low to be accurately assessed by a flow meter, the pump was pre-
calibrated by weighting produced water. We observed a 2% error margin for flow rates
superior to 0.001 ml/min. Below this flow rate, the error increases, up to 35% for flow
rates around 0.1µL/min. Air is injected with a Harvard syringe pump, with a range of
flow rate similar to the Vinduum pump. The exact air flow rate was not significant for
our measures so no calibration was done.

Visualisation techniques

The micromodel is inserted in a holder and it is placed horizontally on the opti-
cal bench, above a flat dome red light with adjustable intensity. A high speed camera
with a lens is placed above the system to visualize the concentration field or the two
phase flow (Fig. 3.4). The camera JAI (SP-12000M-CXP4 model) provides 12-megapixel
monochrome resolution (4096 × 3072 pixel) and full-field framerate of 189 frames per
second (fps). The software Hiris realizes the connection with the camera for the image
acquisition.

Microfluidic set-up

The micromodel is connected to the pump and/or the syringe pump at the inlet through
different tubings and connectors, as seen in Fig. 3.5. The outlet is connected to the
pressure and flow rate sensors.
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Figure 3.4 – Experimental set-up

Figure 3.5 – Microfluidic set-up

Data acquisition

Data acquisition is done thanks to the Hiris software. We choose the fps value for
transport or co-injection experiment as a function of the flow rate. The fps is chosen from
a range of 10 to 100 fps. For each experiment, it is essential to capture an image of the
saturated porous medium (with or without tracer) so it can be used as a mask later on
the image processing.
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3.1.2 Experimental protocols

Fluid injections methods

To study the dispersion in unsaturated conditions, the first step is to set a steady-
state two phase fluid distribution, for which the gas is distributed rather uniformly in the
system. To this goal, we choose to co-inject air and water simultaneously in the system at
different fractional flow ratio. The air is injected with the syringe pump at a given flow
rate Qair through the central inlet while water is injected on the lateral sides with a flow
rate Qwater, as it can be seen in Fig. 3.6.

Figure 3.6 – Co-injection set-up

The air and water are injected simultaneously, but in the micromodel we observe
alternating passages of water and air. By adjusting the water and air flow rates, we get
successive sequences of air and water injections. During the air passage, there are both
mobile and trapped air clusters, whereas during the water passage there are only the
trapped air clusters. After a few cycles, the air distribution during the water passages
becomes stable (saturation and air clusters distribution). As shown Fig. 3.7, the mean
image gray level (which is monotonically proportional to the mean saturation as we will
see later) linked to the saturation of the medium, reaches stable values for each part
of the co-injection cycle. The injection can be stopped when a steady-state is reached.
This method allows to obtain unsaturated porous media with a spatially uniform phase
distribution in the porous medium.

Transport experiment

To be able to characterize the dispersion, we need a neat concentration front, with the
maximal and minimal concentration of the tracer in the same considered concentration
field. However, with a simple injection system (i.e., a system with one inlet for the ink
injection and one outlet), and as the dispersion begins inside the tubing connecting to
the micromodel, the concentration profile inside the micromodel is already very dispersed
at the beginning of the injection. The dispersion in the tubing can be slightly reduced,
notably with the flow rate, but not sufficiently because of the length of the tubing, so
that the concentration front is already dispersed when entering the micromodel [104] (cf
Appendix Chapter 9, 9.2).

To tackle this issue, we take advantage of the multi-inlet configuration of the micro-
model to set a new injection protocol that allows a neat concentration front at the entrance
of the micromodel, so that the concentration profiles can be analysed by the methods of
moments.
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Figure 3.7 – Co-injection dynamics. (Left) unsaturated porous media during water injec-
tion with trapped air clusters (up) and during air injection with trapped and mobile air
clusters (bottom). The bubbles are in darker gray. (Right) Mean gray level of the image,
showing cycling behavior linked to the alternating between the water injection (trapped
air clusters only) and the air injection (trapped and mobile air clusters).

Injection protocol for a neat boundary condition

The objective of the new protocol is to saturate the inlet tank with 100% ink solution
before entering the micromodel porous region.

Figure 3.8 – Schematic of the injection configuration: first step

The injection configuration is achieved in two steps (Fig. 3.8): first ink solution is
injected from the central inlet while inlet 1 is opened to the atmosphere. At this step,
the ink will fill preferentially the lateral inlets and the inlet tank without entering the
porous medium because of the greater pressure (due to the water column at the end of
the microfluidic set-up). When the inlets and the inlet tank are filled with the tracer, the
lateral inlet 1 is closed and the injection in the porous medium begins.

This new configuration allows to get a concentration front particularly neat as it is
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shown in the comparison with the dispersion experiment in a one inlet micromodel (Fig.
3.9). The concentration profiles are now fully contained in the micromodel, which makes
possible the measure of spatial moments. It is particularly useful for dispersion experi-
ments in unsaturated porous media as the dispersion usually increases and the concentra-
tion front is more spread.

Figure 3.9 – Illustration of the new method efficiency: Transport experiment with the
one inlet micromodel, from Leontidis, 2020 [104] VS transport experiment in the three
inlets micromodel. The micromodel image a) concentration profile is represented by the
purple curve on the Fig.b). The micromodel image c) corresponds to the purple curve in
the center from the image d). The images have not been edited to show the difference of
contrast regarding the concentration front between the two methods.

3.2 Data processing

3.2.1 Data analysis of the non miscible fluid distribution: image pro-
cessing

All image processing is done using Fiji software [134].

Image segmentation

In a first step we identified the different phases (air, solid and water) in the images.
The camera settings (light intensity and the objective aperture) were optimised in order
to produce the largest possible difference between the gray levels of each phase.

For a saturated micromodel (only solid and water), a gray level threshold is chosen at
the minimum between the two peaks of the gray level histogram to differentiate the solid
and the water phase. The image is binarized according to this threshold value, with a
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gray level value for the solid phase (0) and a gray level value for the aqueous phase (255)
as shown Fig. 3.10.

Figure 3.10 – Histogram of saturated image: choice of the threshold value for binarization.

For unsaturated conditions (solid, water and air), the segmentation is difficult to per-
form when using only the image of the unsaturated micromodel. Indeed, there is no clear
contrast difference between air clusters and the other phases, except for the air clusters
interface. An ink solution is injected in the unsaturated media to obtain a clear contrast
between air clusters and the water phase.

To identify the different phases in unsaturated conditions, we developed the following
image processing workflow (see Fig. 3.11) :

1. Subtraction of the saturated image from the unsaturated image to obtain the image
of the air clusters (Fig. 3.11).

2. Binarization of the air clusters image, the gray-scale of the air is set to 55.

3. Binarization of the saturated micromodel to obtain a mask of the porous structure.

4. Add the image of the air clusters to the mask. This results in an image with three
specific gray levels, each one corresponding to a different phase (Fig. 3.12).

Figure 3.11 – Subtraction of the saturated image from the unsaturated image to obtain
the image of the air clusters

Gray scale and concentration calibration

To relate the gray scale of the image and the concentration, it is necessary to calibrate.
This work has been done before by Leontidis, 2020 [104] (cf Fig. 3.13). The calibration
method consists in saturating the porous medium with solutions at different ink concen-
trations between 0 and 40 percent in mass and measuring the gray scale for the different
concentrations.
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Figure 3.12 – Addition of the image of the air clusters to the mask. This results in an
image with three specific gray levels, each one corresponding to a different phase

Figure 3.13 – Calibration curve for the image technique, from Leontidis 2020 ( [104])

Concentration profiles

To get the concentration profiles, we average on the transverse direction the pixel
grayscales G(x,y), excluding pixels that do not belong to the flow zone (for which the
grayscale is zero)

G(x) =

∑
yi/G(x,yi )̸=0

G(x,yi)∑
yi/G(x,yi )̸=0

1
.

Then, we convert the mean grayscale in a mean concentration. For an affine relation
between the grayscale G(x) and the concentration, we get

c(x) = cmin + (cmax − cmin)Gmin −G(x)
Gmin −Gmax

.

Concentration profiles can be noisy, particularly for experimental data. Therefore, we
can use a filter to smooth the curve, such as the Savgol filter present in Python library, as
shown Fig. 3.14.
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Figure 3.14 – Concentration profile for a continuous injection and smoothed curve with
the Savitsky-Golay algorithm (Savgol filter).

Quantitative analysis on phases distribution

With binary images for each phase of the system, we can compute the area occupied
by each phase with ImageJ measuring tools. Indeed, the histogram gives the number of
pixels for each gray level (i.e for each phase), namely nsolid, nair and nwater. Notably, it
gives access to the saturation denoted Sw

Sw = nwater
nair + nwater

,

and the porosity denoted ϕ

ϕ = nair + nwater
nair + nwater + nsolid

.

The analyse particle tool from the ImageJ toolbox allows to identify each particle on
a binarized image, with selection parameters such as the minimal area and the circularity.
The characteristics of each identified object are measured (area, perimeter, shape factors,
etc). It allows us to get statistical data on the bubbles and solid particle distributions.

These data serve as a base to extract different statistical properties, such as the area
distribution of the bubbles (maximal area, mean area, etc). It is possible to use them to
perform more complex analysis and/or operations on the image stack.

3.2.2 Data analysis of the concentration fields: methods of moments

Introduction

The spatial moments method is a straightforward method to characterize dispersion,
which does not require any hypothesis on the nature of dispersion, contrary to fitting
breakthrough curves with models such as ADE solutions. The method can be applied to
experimental or simulation data (Fig. 3.15), for continuous or Dirac injections. Notably,
it can be applied to 2D Lattice-Boltzmann transport simulations in porous media, that
will be detailed in a later chapter.

In this section, we will present the method of spatial moments for analysing the dis-
persion in the medium. To this goal, we consider a 2D flow characterized by a mean flow
in the x direction, and with an injection of tracer at the entrance of the medium (x = 0).
We aim at quantifying dispersion by deriving the moments of the concentration profiles.
The computations are realized with the Python software.
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Figure 3.15 – Example of concentration fields. (Left) LBM transport simulation in sat-
urated porous media. (Right) Laboratory experiment of dispersion in saturated porous
media.

We work with a set of images of concentration fields as a function of time, for which
concentration is quantified by the pixel gray level. Images should have been modified
beforehand so that the part where there is no water (solid or gas) has a zero gray scale
level. In order to test the validity of the method, we take the example of dispersion in a
2D channel (2D Taylor dispersion), for which analytical solutions are well known. We run
dispersion simulations on a 2D channel and use the moments methods to see if it fits with
the theory.

General principle

Spatial moments of the concentration fields are frequently used to characterize dis-
persion, notably because they enable to distinguish Fickian transport from anomalous
transport. In particular, we study the temporal evolution of the concentration field along
the flow direction via time dependent second moments. First, we average the concen-
tration over the width of the medium to have one dimensional normalized concentration
profiles defined as c̃(x,t) = 1

cinLy

∫ Ly

0 c(x,y,t)dy with cin being the injection concentration.
Then, the dispersion analysis is done by characterizing the statistical properties of the
distribution over time through the computation of spatial moments, as shown Fig. 3.17.

The first moment leads to the mean position of the concentration front for a given time.
Its time evolution allows to know the effective velocity of the concentration front in the
medium. The second moment characterizes the width of the distribution, consequently,
its evolution with time allows to assess the concentration front spreading. Notably, in the
context of normal dispersion it allows to derive the dispersion coefficient.

If the injection is a pulse, we can characterize directly the distributions of the con-
centration profiles. On the other hand, if the injection is continuous (Fig. 3.16, (Left)),
then we need to characterize the distributions of the profile derivatives (Right). Then, for
continuous injection, 1D distributions p(x,t) are generally obtained from the normalized
derivatives of the concentration profiles such that p(x,t) = −∂c̃(x,t)

∂x . The moment of order
r is defined as

mr(t) =
∫ Lx

0
p(x,t)xrdx = −

∫ Lx

0

∂c̃(x,t)
∂x

xrdx. (3.2.1)

For r ≥ 1, this formula requires the computation of the average concentration derivative,
however it leads to noisy results in practice. To improve the quality of the analysis and
decrease the noise, we can resort to integration by part in Eq. 3.2.1. In the following,
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we detail the alternative method of calculation and compare it to the classical integrative
method.

Figure 3.16 – Example of concentration profiles for a continuous injection (Left) and
derivatives of the concentration profiles for a continuous injection (Right)

Figure 3.17 – Illustration of the first and second moment: mean position and width of the
distribution

Calculation methods

Spatial moments calculation: classical method

The derivatives of the concentration profiles are computed numerically and can be
smoothed with the Savgol filter as shown 3.18. Then, moments expression are computed
according to Eq. 3.2.1.

Remarks

In the preceding chapter, the expression of moments is presented using integrals. How-
ever, since concentration profiles are discrete, calculating the moments numerically requires
summation instead of integration. When dealing with experimental images, it is common
to encounter noisy distributions. To address this issue, we adopt specific measures to
ensure the reliability of our calculations:

• Exclusion of negative values: Since noise can lead to occasional negative values in
the distribution, which are not physically meaningful, we exclude such values from
our analysis.
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Figure 3.18 – Concentration profile derivative and smoothed curve with the Savitsky-Golay
algorithm

• Limiting the interval for variance calculation: To mitigate the influence of noise at
the extremities of the distributions, we set appropriate limits for calculating the
variance around the mean position [xmoy − rσ;xmoy + rσ], with r > 3, to avoid the
noise at the extremities of the distributions. For a Gaussian distribution, it means
that values below cin e−(rσ)2/σ2 = cin e−r2 = 10−4 cin are neglected for r = 3.

Spatial moments calculation: integrative method

To avoid the computation of the derivatives, we resort to integration by part in
Eq. 3.2.1, for r>0. With the boundary conditions c̃(x = 0,t) = 1 and c̃(x = Lx,t) = 0, we
have

mr(t) = −
(

[c̃(x)xr]Lx
0 − r

∫ Lx

0
c̃(x,t)xr−1dx

)
, (3.2.2)

considering the boundary conditions, it simplifies as

mr(t) = r

∫ Lx

0
c̃(x,t)xr−1dx. (3.2.3)

We obtain moments of the order r. We now detail the formula for r = 1,2,3 as they are
the most useful to characterize dispersion. The first moment (r = 1) is given by

m1(t) = µ(t) =
∫ Lx

0
c̃(x,t)dx. (3.2.4)

Furthermore, the variance defined as

σ2(t) =
∫ Lx

0
p(x,t)(x−m1(t))2dx, (3.2.5)

recasts
σ2(t) = m2(t) −m2

1(t) (3.2.6)

with
m2(t) = 2

∫ Lx

0
c̃(x,t)xdx. (3.2.7)

Finally, the skewness is given by

γ(t) = E

[(
x(t) − µ(t)

σ(t)

)3]
= m3(t) − 3µ(t)σ(t)2 − µ(t)3

σ(t)3
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with
m3(t) = 3

∫ Lx

0
c̃(x,t)x2dx. (3.2.8)

For a discrete set of concentration (c̃i)i∈1,...,n over the domain (x̃i)i∈1,...,n, the first
moment writes

µ = Lx

n

n∑
i=1

c̃i,

the variance

σ2 = −µ2 + 2Lx

n

n∑
i=1

c̃ixi,

and the skewness

γ =
3Lx

n

n∑
i=1

c̃ixi
2 − 3µσ2 − µ3

σ3 .

Remarks

The values obtained using this method are highly sensitive to the boundary conditions
applied. Therefore, it is crucial to carefully set and define appropriate boundary condi-
tions to ensure accurate results. One common adjustment involves subtracting an offset
from the data so that the concentration at the right side of the profile equals zero. For
datasets with minimal noise, such as simulation results in a channel, both the integrative
and derivative methods will yield similar outcomes. However, when dealing with data
containing a substantial amount of noise, the integrative method proves to be more ad-
vantageous. In such cases, the derivative curve can become extremely noisy, making the
derivative approach less reliable, while the integrative method remains robust and suitable
for analyzing the noisy data accurately.

Dispersion characterization

Moments verification

To check the accuracy of the calculated first and second moments, we can compare the
concentration distribution with a Gaussian function that has the same first and second
moments. For Fickian dispersion, the Gaussian function should fit the data quite well.
This comparison provides a means to ensure that the moments we calculated are correct,
as illustrated in Fig. 3.19. Once the spatial moments have been computed, we can
characterize the dispersion.

First moment: front velocity

The front velocity can be determined by examining the slope of the first moment as
a function of time. The first moment provides the mean position of the concentration
front over time. In the case of a constant flow rate, the front velocity typically reaches
a steady value after an initial transient period. To obtain the final value of the front
velocity, a linear regression analysis is performed on the data to estimate the slope of the
first moment versus time during the steady-state phase.

Second moment: nature of the dispersion
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Figure 3.19 – From simulation data. Comparison of the distribution (derivative) with a
Gaussian taking the moments calculated as parameters.

The variation of the second moment with time provides valuable insights into the
nature of dispersion. If the second moment becomes proportional to time, it indicates
Fickian dispersion behavior. In the Fickian case, a dispersion coefficient can be calculated
by performing a linear regression analysis on the second moment versus time data.

σ2 ∝ 2Dt. (3.2.9)

Validation of the method with an example: Taylor dispersion simulations in a
bi-dimensional channel

To validate the derivative and integrative method, we take the well-known example of
Taylor dispersion (in 2D), for which the coefficient of dispersion is given by

D = Dm

(
1 + Pe2

210

)
= Dm + v2L2

210Dm
,

with Dm being the microscopic diffusion coefficient, L the channel length and v the flow
velocity.

We conducted a series of simulations to explore dispersion within the channel at various
velocity levels. The primary objectives were to analyze the dispersion outcomes and verify
the accuracy of our methodology. We chose a configuration of a channel that is 10000
pixels long and 46 wide, with 3 solid pixels (i.e pixels with a 0 value) on each side to mark
the limits of the channel.

Simulations: generation of the flow field with Stokes and dispersion with
ADE equations

We used a Lattice-Boltzmann code developed at IFPEN to simulate flow and transport
in porous media. It is a TRT-LBM method and it will be described more thoroughly in the
numerical section. We performed the Lattice-Boltzmann simulation in two steps. First,
we simulated the flow with a Stokes law in the channel. Then, once the flow was stable, we
simulated the injection of a tracer at the inlet, the microscopic diffusion being controlled
by the advection-diffusion equation with the diffusion coefficient Dm. We realized two
types of injection: Dirac injection (Fig. 3.21) and continuous injections 3.20.

Simulations parameters
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Figure 3.20 – Concentration field for a continuous injection in the channel

Figure 3.21 – Concentration field for a Dirac injection in the channel

We realized those simulations for different values of the flow velocity and for the two
types of injection. Thus, we could derive the spatial moments and particularly the second
moment and its evolution with time, for each value of the flow velocity. From the dispersion
coefficient expression, there must be a linear dependency between the dispersion coefficient
and the square of the Peclet number.

Derivation of the moments

We compute the moments with the derivative and integrative method. As shown in Fig.
3.19, the computed moments fit really well with the simulation data, for both methods.
We took a simple example of bi-dimensional channel, and it is simulation data, therefore
there is very little noise. Hence, there is almost no difference between the two methods
results. The moments computed being quasi identical for the two methods, for simplicity,
only one curve or set of data is shown in the following discussion, that is representative of
both methods results.

Analysis of the dispersion

We analysed the simulations with the methods previously described. The first moment
and the variance are linear with time, so we could derive the effective velocity and the
dispersion coefficient. As shown in Fig. 3.22, effective velocity obtained from the calcu-
lations corresponds to the fluid velocity imposed in the simulation, which validates the
method to characterize the front velocity with the first moment.

Figure 3.22 – Effective velocity as a function of the velocity imposed in the simulation.

Then, we derived the dispersion coefficients from the simulation as well as the theo-
retical values (cf Tab. 3.1). As shown Fig. 3.23, we found a linear dependence between
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the dispersion coefficient and the velocity squared as predicted by the Taylor formula in a
channel. Plus, the dispersion coefficient computed fits well with the theoretical coefficients,
as Tab. 3.1 highlights.

Table 3.1 – Theoretical coefficient dispersion values and computed values. The error is
computed as the relative difference with the theoretical value. For Pe values for which no
Dirac injection simulation was realized, the table indicates ∅.

Dtheory Pe Dcontinuous DDirac Errorcontinuous
0.00346 4.8 0.00347 0.00344 0.2 %
0.00399 7.6 0.00404 ∅ 1 %
0.0121 24.4 0.125 0.0120 3 %
0.0388 49.0 0.0401 ∅ 3 %
0.144 97.3 0.141 ∅ 2 %
0.88 242.0 0.83 0.86 5 %
3.52 486 3.45 3.52 2 %
14.1 975 13.6 13.5 4 %

Figure 3.23 – Dispersion coefficient as a function of the mean flow velocity

Therefore, the method is accurate to characterize the dispersion whether it is a Dirac or
continuous injection. However, simulations with high Pe involved larger numerical errors
and were less accurate than simulations at low velocity: the problem probably comes from
the size of the channel, using a wider channel instead would decrease the error.

Comparison of the integrative and derivative methods

The integrative and derivative method have been validated with the channel simu-
lations, for which they give similar results. However, in the case of experimental data,
typically in the case of unsaturated porous media, the derivative method is not adapted
because the concentration profiles are too noisy. In such cases, the integrative method is
more accurate and can be used to analyse the data, as it can be seen in Fig. 3.24.
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Figure 3.24 – Moments computation for experimental data in unsaturated condition

Conclusion

In this section, we have provided a detailed explanation of the method used to study
dispersion by computing spatial moments. To validate the effectiveness of this method,
we applied it to a well-known example of Taylor dispersion, which served as a benchmark.

Moreover, we have introduced an alternative approach that overcomes the limitations
of the traditional method, specifically when dealing with noisy experimental distributions,
which are common in unsaturated conditions. This alternative method allows us to calcu-
late spatial moments more reliably and accurately even in the presence of significant noise
in the experimental data.

3.2.3 Further Data Processing

Porous media analysis

REV (Representative Elementary Volume)

It can be useful to compute a Representative Elementary volume (REV) of the porous
medium, typically to ensure that the medium is sufficiently large to be statistically repre-
sentative.

The process of calculating the REV involves taking windows of increasing size within
the image of the porous medium. For each window, a statistical analysis is performed
to determine specific properties, such as porosity value or mean grain area. The goal is
to identify the window size at which the statistical properties stabilize, indicating that
the medium is sufficiently large to be considered statistically representative. The REV is
defined for a specific property, the porosity value for example, or the mean grain area. As
we can see in Fig. 3.25, the porosity is not constant when computed in a small window,
but it reaches a constant value when the window is sufficiently large, for a size that can
be defined as the REVporosity. The same behavior is observed with the grain area, and we
can define another REV, the REVgrains. The REV computed after different criteria can
be different, here for example the REVporosity is larger than the REVgrains.

Furthermore, we can define a REV for unsaturated media. For example by taking the
saturation or the bubble mean size as a REV criteria (REVsat and REVbubble). It allows
us to assess the minimal size we need to have statistically representative properties. Still,
if we want to study dispersion, having a porous media that has a REV for porosity does
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Figure 3.25 – REV of the porous media. (Left) Porosity ϕ as a function of the window’s
size. (Right) Mean grain size and grain size standard deviation as a function of the
window’s size.

not mean that it is statistically representative for the dispersion. Indeed, the REV for
dispersion (computed for the dispersion coefficient for example) is often a lot larger than
the REVporosity, and particularly so in unsaturated conditions [39].

3.3 Validation of the transport protocol

3.3.1 Repeatability of the injection

The repeatability of the injection has been investigated. To this end, we repeated the
injection for different flow rates and computed the moments in order to see if the results
were comparable, and especially if the front velocity was constant (non interruption of
the injection) and the velocity value similar for all injections. The front velocity can be
computed with the first moment. The front velocity corresponds to the slope of the first
moment.

Figure 3.26 – Repeatability of the injection in saturated conditions: First moment evo-
lution with time for a given flow rate (Q=0.01mL/min), for 4 repetitions (left); Front
velocity as function of flow rate (right)

We see in Fig. 3.26 (left) that the slopes of the first moment represented as a function
of time are really similar, which means the front velocity is the same for all injections.
There is a slight transient regime where the slopes are different at the beginning of the
injection, which might be linked to the fact that the initial conditions are not exactly
identical when we open and close the valves.
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Figure 3.27 – Repeatability of the dispersion experiment in saturated conditions: Disper-
sion coefficient as a function of flow rate.

The dispersion experiment is also repeatable in terms of dispersion coefficients as we
can see in Fig. 3.27. We computed the dispersion coefficient from the slopes of the
second spatial moment, for a wide range of flow rates and under saturated conditions. As
expected, the dispersion coefficient increases with the flow rate. The repeatability of the
injection has also been investigated under unsaturated conditions for different flow rates
and saturation values. It gives similar results as shown in Fig. 3.28. Indeed, the slope of
the moments are also similar. There is a slight inflexion of the curves at the beginning of
the experiment in some cases, as the configuration of injection is complex, there is a little
delay before the flow velocity becomes constant.

Figure 3.28 – Repeatability of the injection: First moment evolution with time for a given
flow rate (Q=0.01mL/min), for 4 repetitions in unsaturated conditions.

3.4 Conclusion
In this chapter, we provided a comprehensive description of the experimental and data

processing methods developed for this research. To study flow in unsaturated porous me-
dia, we developed a micromodel experimental setup. This micromodel enables the capture
of the multiphase structure and allows access to the concentration field at any point during
the experiment. Firstly, we outline the co-injection setup and the procedure for creating
unsaturated conditions in the micromodel. Specifically, we described how water and air
are simultaneously injected into a cross tubing, resulting in a cyclic process of air and wa-
ter injections within the micromodel. The co-injection process is halted when the trapped
phase reaches a steady state, thereby preserving the unsaturated medium with immobile
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air clusters for subsequent transport experiments. Additionally, we provide details on the
tracer injection configuration, which ensures a clear boundary condition at the entrance
of the micromodel. This modified configuration allows for the filling of the reservoir and
the inlets of the micromodel with the tracer before starting the injection within the mi-
cromodel itself. This approach effectively prevents dispersion in the upstream tubing.
Furthermore, we presented the data processing developed to analyze the concentration
fields resulting from transport experiments. Notably, we characterize transport properties
by computing moments of the concentration profiles.

However, the experimental methods we developed have intrinsic limitations, first we do
not have direct access to the flow and the velocity field with experiments, and the range
of Peclet or flow rates we can achieve is rather limited. Despite, perfectly determined
boundary condition is impossible to achieve. This is why we complemented experimen-
tal techniques with flow and transport simulation using the Lattice Boltzmann method
(LBM), a class of Computational Fluid Dynamics method commonly used for its high
computational efficiency and its ability to deal with complex geometry such as porous
media.





Chapter 4

Numerical strategy

4.1 Numerical methods for flow and transport simulations

Regarding the experimental limitations in a micromodel, we propose to complement
our experimental work with numerical simulations. In fact, flow experiments in a micro-
model do not provide direct access to the flow, whereas numerical simulations can easily
compute the velocity field at any point. In addition, the experimental device does not
have a perfectly neat ink inlet condition. Although complex conditions at the interface
between the different phases cannot be accurately reproduced in simulations, transport
simulations can guarantee a clear boundary condition and a more accurate analysis. Fi-
nally, changing the micro-model structure is a time consuming and complicated task in
experiments whereas it can be done easily with numerical models.

Many approach and numerical methods can be considered to simulate our physical
system. In this work, we seek for a fast, robust and accurate numerical method. Also, we
want this method efficient on large domain while keeping a micro pore-scale (micro, meso)
resolution. On one side, we have the conventional numerical methods, where a macroscopic
description of the fluid dynamic is characterized by a set of equations. To solve these equa-
tions, we could resort to classical methods such as finite difference (FD) methods for which
derivatives are computed numerically. The FD methods do not conserve mass, momentum
and energy. Their order of accuracy can be significantly upgraded but their robustness is
irretrievably reduced. They are barely used for complex geometry because they are based
on regular grid most of the time. Finite volume (FV) methods rely on a decomposition of
the geometry (called mesh) in non overlapping small volumes (called cells). The equation
are integrated on each cell so that fluxes need to be computed at each cell boundary. FV
methods are robust, conservative and can resolve complex geometry. However the mesh
construction might not be easy for complex/large geometries and the mesh orientation
can have a deep impact on the solution accuracy [103, 129]. Also, FV methods generate
numerical diffusion which can prevail over the real physics. Their accuracy improvement
is generally limited to second order (theoretically) [160] and is effectively less for complex
problem involving non-linearly or rheology [45]. Finite element methods (FEM) requires
a gridding of the geometry to define an associated basis of polynomial function. A varia-
tional formulation of the problem is then deduced and solved. FEM can deal with complex
geometry and can have a high order accuracy. However, they do not preserve conservation
and generally generates instabilities. FEM, and also FD and FV methods when associ-
ated with an implicit numerical scheme, require to solve very large sparse linear systems.
The resolution of these sparse linear systems is a key point for the methods efficiency [89]
which is generally degraded when the number of unknowns increases. On the other side,
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we have the kinetic methods which model distributions of particles in coordinates and
velocity spaces. Integration of these particle distributions yields moments (mass, momen-
tum, energy, etc.) to recover information of the flow. Kinetics methods requires a collision
operator which is designed to recover the desired physics. Among others, let cite the lattice
gas models [57, 80], the smoothed-particle hydrodynamics (SPH) methods [164] and the
Lattice Boltzman methods (LBM) [99]. These methods can deal with complex geometry.
The LBM are natively second order accuracy and are very efficient on huge mesh with
massive parallel computations. For these reasons, LBM are becoming increasingly popular
in the scientific community as illustrated in Fig. 4.1.

In [174], Yang et al performed a comparison of numerical methods for 3D pore-scale flow
with solute transport. They reviewed FV methods with the codes TETHYS (The Transient
Energy Transport Hydrodynamics Simulator [126]) and STAR-CCM [137] (associated with
a multigrid solver), LBM methods [61,62], SPH methods [156] with the library LAMMPS
[125] and the pore network model (PNM) with code UT-PNM from University of Texas
at Austin [110]. Their simulation models are composed of about 53 million nodes and
3.7 million nodes. They concluded that all the methods provide similar results in term of
accuracy. The UT-PNM was very efficient but it needed a geometry simplification and the
local flow velocity was no more available for precise analysis. They noticed that the LBM
were very efficient, especially when used on GPU. For these reasons, we choose to use
LBM to simulate our physical systems. The first reason is the simplicity of use, especially
because we do not need to generate a mesh. Keep also in mind that we will use the method
for very large domains while keeping the pore scale resolution. To be clear, in the chapter
7, we performed simulations with more than 350 million nodes. It was possible thanks
to the parallel computing ability of the LBM method; 9000 processors were used. In
comparison, the efficiency of classical numerical methods would have dropped drastically
because processor communications become a bottleneck and the data size is limited.

To reduce our computational costs and times, we choose to proceed the simulation
methodology in two sequential steps. We first resolve a steady "base flow" in the porous
media, without any tracer. A pressure gradient is imposed between the inlet and the outlet
of the domain and we let the simulations converge through a steady state, up to a well
tuned criterion. From this first computational step, we retrieve the local velocity field.
Then, we solve the advection diffusion of a passive tracer, its advection velocity being the
velocity obtained from our first step. The tracer is numerically injected at the entrance
of the domain and we simulate until its breakthrough at the outlet. With this simulation
methodology, we suppose that the tracer is effectively passive: it has no influence on
the ’base flow’. Even if this assumption might look restrictive, it is perfectly appropriate
to our physical problem. Thus, we used two separate codes, each one devoted to its
physics. This has another great advantage on the numerical efficiency; we can optimize
the numerical parameters (time steps for example) separately. To finish with, to further
reduce computational times, we will restrict our simulation on 2D numerical models. The
Darcy-Brinkman equation is used to compute the depth-average velocity. This allows to
describe a 3D velocity field with a 2D equation as demonstrated by [178]. Then, the ADE
flow is solved in 2D also by using the depth-average velocity. The numerical simulations
have been performed with the waLBerla Framework [11] [68].
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Figure 4.1 – Increasing popularity of Lattice Boltzmann Method: occurrences of "Lattice
Boltzmann Method" and "LBM + porous media" in research papers

4.2 Lattice Boltzmann method

4.2.1 Introduction

With the growth of computer power, CFD methods for numerical resolution of gov-
erning equations of fluid mechanics have been increasingly used and developed. Indeed, a
great number of model equations do not have analytical solutions, such as Navier-Stokes
equation [142]. It motivates the development of methods for numerical resolution. Over
the last two decades, LBM, an alternative approach to simulate flow, transport and heat
transfer gained in popularity [34]. In this approach, instead of solving directly the govern-
ing equations, the kinetic equation is solved to obtain the particle distribution function.
Then, one obtains the macroscopic variables by evaluating the hydrodynamic moments of
the particle distribution function. The main idea behind the LBM approach is that the
collective behaviour of many microscopic particles defines the macroscopic dynamics of
a fluid. Moreover, the individual behavior of an individual particle does not impact the
macroscopic behavior. Therefore, the LBM finds the solution of a minimal Boltzmann
kinetic equation instead of discretizing the fluid governing equation.

In this section, we describe the Lattice-Boltzmann method in its general framework; we
start by the description of the Boltzmann equation (BE) and then the Lattice-Boltzmann
Method (LBM) which corresponds to a discretization of the BE in space and velocity.
We review some classical collision operator and start to focus on our problems: flow in
unsaturated porous media. Then, we select the best operator in line with our objectives
and our means. Most of the classical concepts of LBM presented in this section have been
inspired by [99] and [123].

4.2.2 Boltzmann equation

Kinetic models describe the particle distribution function f(r,v, t) which represent the
density of particles at position r, velocity v and time t. f is connected to macroscopic
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variables like the density, the momentum and the total energy with the relations

ρ(r, t) =
∫
f(r,v, t)dv, ρu(r, t) =

∫
f(r,v, t)vdv,

and ρE(r, t) =
∫
f(r,v, t)|v|2dv.

(4.2.1)

When the fluid is left at rest, it is admitted that the particle distribution tends towards
an equilibrium with an isotropic velocity denoted here u∞. The equilibrium is given by
the Maxwell-Boltzmann distribution [69]

f eq(r,|v − u∞|, t) = ρ

( 1
2πRT

) 3
2

exp
(

−|v − u∞|
2RT

)
, (4.2.2)

where R is the is the ideal gas constant and T the fluid temperature.
The particle distribution is governed by the Boltzmann equation

∂f

∂t
+ v · ∇rf + F · ∇vf = Ω(f), (4.2.3)

where F is the force field acting on the particles in the fluid. For simplicity, it will
be omitted in the following. Ω(f) is the collision operator. In order to preserve mass,
momentum and energy conservation, the collision operator must satisfy∫

Ω(f)dv = 0,
∫

Ω(f)vdv = 0 and
∫

Ω(f)|v|2dv = 0. (4.2.4)

The original collision operator of Boltzmann is far too complex to be applied in practical
cases. Generally, we consider simplified operator that are sufficient to reproduce correctly
the physics. Several approximations of collision operators will be detailed later on in
subsection 4.2.6. Here we just give the example of the Bhatnagar-Gross-Krook (BGK)
collision model [19]

Ω(f) = −1
τ

(f − f eq), (4.2.5)

where τ is the relaxation time.
To finish with, the Boltzmann equation admit an entropy

H =
∫ ∫

f ln(f)drdv, (4.2.6)

which can only decrease (∂H
∂t

≤ 0) and reaches its minimum value when f → f eq.

4.2.3 Lattice-Boltzmann method

LBM is a discretization method of the Boltzmann equation using a regular grid of
spacing ∆x and a discrete set of velocities cq. Many velocity sets have been experimented,
most frequently in the framework of Navier-Stokes equations. Denoting these velocity sets
as DnQm with n ∈ {1,2,3} the dimension of the domain and m the number of veloci-
ties, we can cite the classical D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27 discretizations.
Usually, increasing the dimension m of the velocity set increases the accuracy but also
the computational costs. In addition to the velocity set chosen, we have to consider an
associated set of positive weight wq which must satisfy consistency relations to recover the
moment conservation [99]. The first 3 consistency relations are given by∑

q

wq = 1,
∑

q

wqcq = 0, and
∑

q

wqcq ⊗ cq = c2
sIn, (4.2.7)
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Then we consider a discrete velocity distribution function fq(r,t) which approximates
the continuous distribution by using Hermite series expansions (see [99] for more details).
This discrete velocity distribution function fq(r,t) satisfies the Boltzmann equation in
discretized velocity space

∂fq

∂t
+ cq · ∇fq = Ωq (4.2.8)

From the discrete velocity function and with the consistency relations 4.2.7, we recover
the macroscopic moments

ρ(r,t) =
∑

q

fq(r,t), ρu(r,t) =
∑

q

cqfq(r,t),

and ρE(r,t) =
∑

q

|cq|2fq(r,t).
(4.2.9)

As space and velocity are discretized such that nodes are connected by the velocity vectors
cq up to a certain time increment ∆t, the equation 4.2.3 can be integrated along the
characteristics which yields the lattice Boltzmann equation

fq(r + cq∆t,t+ ∆t) − fq(r,t) =
∫ ∆t

0
Ωq(r + scq,t+ s)ds (4.2.10)

where the integral term for the collision operator have to be approximated. When approx-

imated explicitly and at first order
∫ ∆t

0
Ωq(r + scq,t + s)ds ≈ ∆tΩq(r,t) we recover the

Lattice Boltzmann equation. It is possible to use the Crank-Nicolson method [159] for the
integration of this collision operator, to obtain a second order in space and time method.
This second order method can be reformulated as the first order Lattice Boltzmann method
thanks to a clever change variable [42].

4.2.4 Macroscopic flow behavior

It is possible to prove that the Boltzmann equation with the BGK collision operator
4.2.5 describes the macroscopic behaviour of a fluid when certain conditions are satisfied.
For example, it is possible to recover the Navier Stokes equations. Introducing the Knudsen
number Kn = l/L with l the particle mean free path and L the macroscopic length
scale, we consider a Chapman-Enskog expansion [32] of the particle distribution from the
Maxwell-Boltzmann distribution

f = f eq + ϵf (1) + ϵ2f (2) + . . . (4.2.11)

where ϵ = O(Kn). By inserting this development in the Boltzmann equation, computing
the moments (mass, momentum and energy) and identifying the term with respect to their
order in ϵ, we find

p = ρc2
S and η = ρc2

S(τ − ∆t
2 ), (4.2.12)

where cs =
√

1
3

∆x
∆t is defined as the isothermal sound of speed of the Lattice.

4.2.5 Numerical resolution

The numerical resolution of LBE is made with two sequential steps:
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1. the collision step consist in resolving

f̃q(r,t) = fq(r,t) + ∆tΩq(r,t) (4.2.13)

where f̃q(r,t) is the particle distribution after collision. This step requires computa-
tion of the moments and the equilibrium distribution;

2. the propagation step is devoted to the integration of the transport operator along
the characteristics

fq(r + cq∆t,t+ ∆t) = f̃q(r,t) (4.2.14)

After this step, one obtain the update discrete particle distribution (i.e. fq at time
t+ ∆t ).

Decomposing the numerical resolution of the LBE in two steps is a crucial feature of the
LBM. The first step is said local and non-linear: the computation of f̃q(r,t) do not require
values from neighbouring nodes, despite it is non-linear because moments are required
to evaluate the equilibrium distribution. The second step is said linear and non-local:
discrete particle distribution are exchanged between the neighbouring nodes relatively to
their discrete velocity. This makes the LBM a very appropriate and powerful tool for
high-performance computing and very large data simulations. This property of the LBM
is usually summarized as “non-linearity is local, non-locality is linear” [57].

Regarding the equilibrium distribution, the Maxwell-Boltzmann distribution 4.2.2 in-
volve an exponential function that is time consuming. In order to increase the computer
efficiency, it is generally admitted that computing the first three terms of the Hermite
series expansion is sufficient in our macroscopic framework [99]. So, in the numerical
implementation, we consider (under isothermal assumption)

f eq
q = wqρ

(
1 + u · cq

c2
S

+ (u · cq)2

2c4
S

− |u|2

2c2
S

)
. (4.2.15)

To finish with, with the consistency relations 4.2.7, we recover the moments

ρ =
∑

q

f eq
q =

∑
q

fq, ρu =
∑

q

f eq
q cq =

∑
q

fqcq,

and ρE =
∑

q

f eq
q |cq|2 =

∑
q

fq|cq|2.
(4.2.16)

About boundary condition, they can be solved numerically following different strate-
gies. In our work, it will be necessary to model a wall boundary condition. We choose
the half way bounce back algorithm [101] as it preserve mass conservation and is formally
second order accurate.

4.2.6 Selecting a collision operator

The main differences between all the variety of LBM methods come mainly from the
collision operator Ωq (and the boundary condition) implementation strategies. Here, we
propose a brief review of the classical operators and justify the operator chosen in our
work. The goal here is not to perform a complete review of all the existing collision
operators but to list the most used to justify our choice.

The first example of collision opertaor is the discrete version of the BGK operator [19]
(see Eq. 4.2.5) which writes

Ωq = 1
τ

(
f eq

q − fq

)
. (4.2.17)
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For this collision operator, all the discrete particle distribution relaxes to their equilib-
rium with the same relaxation time τ . The BGK collision operator was the first used in
numerical simulations, in particular to solve the Navier-Stokes equations. Nevertheless, it
has been shown that this operator lack of stability and accuracy [63,100,147].

To increase the stability and accuracy of the LBM, collision operators with more relax-
ation times were considered. Among the classical methods with more than one relaxation
time, we propose to cite the two relaxation time (TRT) method [63, 65], the multiple
relaxation time (MRT) method [48] operators, the cascaded method [3,61] and the cumu-
lant methods [3]. With these operators, it is not possible to determine all the relaxation
times from the identification with the macroscopic equation with a Chapmann-Enskog’s
like expansion. In fact, there is no doubt that these unconstrained relaxation times add
potential stability to these methods. Despite, when the number of relaxation times is
superior to two strictly, it is generally a difficult task to properly set these parameters and
elaborate clear relations on the stability improvement [43,47,102]. In addition, the relax-
ation is not directly based on the particle distributions, but on some "moments" obtained
by a linear or non-linear transformation of the fq which generates inevitably additional
computational cost. The latter is generally reduced by resorting to smart formulation and
implementation of the methods.

Focusing on the ADE, we refer to [85] for a complete review. In comparison with
the Navier-Stokes equation, fewer collision operators have been used. The BGK operator
has been used in [54, 170] but stability and accuracy are limited [146, 147]. Chopard et
al. [7] proposed an elegant improvement of the BGK, introducing a fictional volume force to
reduce errors. The TRT collision operator [63,66] has two relaxation time, the first enables
to correctly capture the advection and diffusion physics accurately, the second enables to
reduce instabilities and residual errors. The MRT [31, 176] and central moments [174]
collision operators have also been experimented. The authors [174] admits that only the
first relaxation parameter is determined with physical constraints, the other coefficients
are "arbitrarily" set to 1. They recommend users of this collision operators to experiment
other values than 1 to increase the accuracy or reduces numerical instabilities specifically
for their application. As the goal of this thesis was not to evaluate collision operators, we
choose to focus on the TRT operators described bellow. For similar reason and to reduce
the implementation effort, the TRT operator will be used to solve the Darcy-Brinkman
equation also.

4.2.7 TRT collision operator

In our work, we use the LBM-TRT (Two-Relaxation-Time) scheme [63]. The TRT col-
lision operator is designed with two relaxation rates, λ+ and λ−. They govern respectively
the relaxation of the symmetric and the anti-symmetric parts of the discrete distribution
toward their equilibrium.

For convenience, let assume the vectors are order from q = 0 to m−1 such that c0 = 0.
Then, for each velocity index q ∈ {1, . . . ,m− 1}, let note q̄ the associated index such that
cq = −cq̄. We can now define respectively the symmetric part f+ and the unsymmetrical
part f− of the discrete distribution function as

f+
q = 1

2(fq + fq̄), f−
q = 1

2(fq − fq̄) for q ≥ 1 and f+
0 = f0, f−

0 = 0. (4.2.18)

In the same manner, we introduce the symmetric part (f eq)+ and the unsymmetrical part
(f eq)− of the discrete equilibrium distribution function f eq

q .
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For the TRT model, the collision step 4.2.13 writes as

f̃q(r,t) = fq(r,t) − ∆tλ+
(
f+

q −
(
f eq

q

)+
)

− ∆tλ−
(
f−

q −
(
f eq

q

)−
)

for q ≥ 1,
and f̃0(r,t) =

(
1 − ∆tλ+) f0(r,t) + ∆tλ−f eq

0 .
(4.2.19)

Let recall that f̃q design the discrete particle distribution after the collision step.
For the TRT collision operator, we usually introduce the magic number Λ to tune the

method accuracy and stability. The magic number is given by

Λ = Λ+Λ− with Λ+ =
( 1

∆tλ+ − 1
2

)
and Λ+ =

( 1
∆tλ− − 1

2

)
(4.2.20)

The parameters Λ+ and Λ− have to be positive [63] such that λ+ and λ− must satisfy

0 < ∆tλ± < 2. (4.2.21)

With the TRT collision operator, the LBM can reproduce multiple flow physics. To do
so, the numerical parameters Λ+ and Λ− (or λ+ and λ−) and the equilibrium distribution
f eq must be adapted to recover the desired physics. Once again, this adaptation are
made by using Chapmann-Enskog expansion. In the next section 4.3, we explain how the
TRT-LBM can reproduce Darcy Brinkam equation and ADE.

4.2.8 Lattice units

To improve the LBM effiency, the simulation is usually performed in Lattice units. In
fact, the physical systems are not resolve directly by the LBM, they are first converted
in a non-dimensional problem where ∆t = 1 and ∆x = 1, which simplifies the relations
4.2.13, 4.2.14 4.2.19, 4.2.20 and 4.2.21. Denoting z a quantity in the physical units and
z∗ the same quantity in the lattice units, one can obtained the useful following conversion
relations

t∗ = t

∆t , x∗ = x

∆x, u∗ = ∆x
∆t u, µ∗ = ∆t

∆x2µ, D∗ = ∆t
∆x2D. (4.2.22)

Of course, the discrete set of vector cq have to be reshape accordingly to the Lattice unit
system. Bellow, we detail the D2Q9 velocity set in Lattice units.

4.2.9 D2Q9 Velocity set

The numerical study of this work aims at reproducing 3D micromodels. As the micro-
models width is small, we will focus on 2D numerical methods, the width effects being
reproduced by using an appropriate physical model (see subsection 4.3.1). We will use the
D2Q9 velocity set given by

c0 = 0,

c1 =
(

1
0

)
, c2 =

(
0
1

)
, c3 =

(
−1
0

)
, c4 =

(
0

−1

)
,

c5 =
(

1
1

)
, c6 =

(
−1
1

)
, c7 =

(
−1
−1

)
, c8 =

(
1

−1

)
.

(4.2.23)

For usual applications (Navier-Stokes equations for example), the weight are set to

w0 = 4
9 , wq = 1

9 for 1 ≤ q ≤ 4, and wq = 1
36 for 5 ≤ q ≤ 8. (4.2.24)
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4.3 Lattice-Boltzmann method for porous media
We aim to apply LBM method to compute flow and transport in porous media. We

want to retrieve the velocity field at the equilibrium state solving flow equations with
LBM, and then simulate a tracer injection solving the Advection-Diffusion equation in the
computed flow. More precisely, we want to compute 2D flow field and concentration fields
in experimental images of the micromodel, after segmentation between different phases.
The micromodel has a depth Lz so we use a depth-average model to compute simulation
in 2D. In our two-fluid-phase system, air clusters are immobile so in the following we
consider flow and transport in the water phase only. In the following, we detail the flow
and transport equations considered in order to obtain the velocity and concentration field
specific to each saturation. We also describe the boundary conditions and the choice of
parameters.

4.3.1 Flow simulations

Darcy-Brinkman equation

The Darcy-Brinkman equation [25] is used to compute the depth-average velocity. This
allows to describe a 3D velocity field with a 2D equation as demonstrated by [178]. The
velocity field u in the fluid phase is thus governed by the Darcy-Brinkman equation [25]

−ρνeff∆u + ρν

K
u = g − ∇P (4.3.1)

where ρ is the density of the fluid, ν represents the kinematic viscosity and P is the
pressure, g the gravity and νeff an effective viscosity accounting here for the length average.
The permeability K is computed from the depth with the relation K = Lz

2/12. Physically,
the Laplacian term models the transverse diffusion of momentum. It allows to describe the
boundary layer induced by the no-slip wall boundary conditions. According to [178], νeff
should be slightly different from ν. However, in our case, the permeability is low enough so
that the boundary layer is small and thus its impact on the dispersion is limited [87,143].
Thus, the gap between νeff and ν being small, it can be neglected in our study. For this
reason, we set the effective viscosity as νeff = ν.

To solve the Darcy-Brinkman equation 4.3.1 with the LBM, we apply the strategy of
Guo and Zhao [74] or also Ginzburg and Talon [64]. The Darcy-Brinkman equation is
reformulated as a Stokes equation with a source terms that corresponds to the drag force
due to the porous medium and the gravity

∇P = ρνeff∆u + F, (4.3.2)

where the source term is given by

F = −ρν

K
u + g. (4.3.3)

The TRT method adaptation is presented in the next paragraph.

TRT collision operator for Darcy-Brinkman

The Two-Relaxation-Time Lattice (TRT) was used to compute the flow field at steady
state. For this, we aim to solve solved Eq. 4.3.2 ans 4.3.3 in the water phase to obtain the
velocity field. To do so, the TRT collision operators described 4.2.7 has to be adapted.
The propagation step 4.2.14 is left unchanged. Whereas the fluid density is still defined



80 Chapter 4. Numerical strategy

from the particle distribution function as usual ρ = ∑
fq, the velocity is no more defined

directly from the second moment J = ∑
fqcq. In fact the collsion step has to take into

account of the external force (here the gravity and Darcy Brinkman drag force). For this
we use the force model of Guo et al. [75]. First the velocity u has to be shifted by the
external force such that

u = 1
ρ

J + 1
2F. (4.3.4)

Unfortunately, in our particular case, the former relation is not explicit in u because the
force F given Eq. 4.3.3 includes the drag force which is linear relatively to u. After [64,74],
the velocity can be defined explicitly by defining a fictious velocity

v = 1
ρ

J + 1
2g (4.3.5)

which is used to deduced the fluid velocity

u = 1
1 + 2ν/Kv. (4.3.6)

Then the collision step must also be adapted to take account of the force. The relation
4.2.19 thus becomes

f̃q(r,t) = fq(r,t) − λ+
(
f+

q −
(
f eq

q

)+
)

− λ−
(
f−

q −
(
f eq

q

)−
)

+ Sq, (4.3.7)

where the external force contribution Sq is adapted from [74]

Sq = ρwq

(
cq · F + uF : (cqcq − c2

sIn)
c2

s

)
. (4.3.8)

The equilibrium distribution relation 4.2.15 is also formally the same but the velocity
given by 4.3.6.

The scheme requires to calculate the two relaxation parameters λ+ and λ−. However,
for numerical reasons (precision, stability), we fix the numerical parameter Λ = Λ+Λ−
and the viscosity ν. Λ rules the numerical error of the scheme (see [64, 65]), here we use
Λ = 0.1875. λ+ and λ− are then deduced from

λ+ = 2
6ν + 1 and λ− = 2

2Λ
3ν + 1

. (4.3.9)

Boundary conditions

We suppose that the gas phase is not modified by the actual flow and that there is no
flow in the gas phase. No-slip boundary conditions are applied at the water-solid but also
at the water-air interface. The latter assumption is thus equivalent to consider the gas
phase as solid.

We apply the so-called bounce back rule corresponding to a no-slip condition at the
solid/fluid interface given by:

fq̄(r,t+ ∆t) = f̃q(r,t). (4.3.10)

The fluid is driven by applying an inlet and outlet imposed pressure.
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Simulation parameters

In order to obtain the velocity field by solving the Darcy-Brinkman equation, for images
with the same length Lx than the micromodel, unless otherwise specified, we adopt the
following parameters:

Convergence criteria K ∆P ν Λ
2 · 10−9 7.9 0.3 0.11 0.1875

As we apply pressure boundary conditions, the mean velocities depend on the satura-
tion. Consequently, the velocity fields will be rescaled to preserve the Pechlet number in
the ADE simulation.

4.3.2 Transport simulation

Advection-Diffusion-Equation

Transport of a passive tracer is governed by the advection-diffusion

∂c

∂t
+ u · ∇c−Dm∆c = 0, (4.3.11)

where c is the solute concentration in the fluid, u the local velocity vector obtained from
the resolution of the Darcy-Brinkman equation given by Eq. 4.3.1 in subsection 4.3.1 and
Dm the molecular self-diffusion coefficient.

Lattice Boltzmann simulations

Here we detail the adaptation of the TRT LBM needed to simulated the ADE equation
4.3.11. For clarity, the discrete distribution functions for ADE are denoted gq in the
subsection to avoid confusion with the Darcy-Brinkman resolution.

In the case of the ADE, only the first moment has to be considered, and it gives the
tracer concentration

c(r,t) =
∑

q

gq(r,t). (4.3.12)

Then the equilibrium function involved in the collision operator has to be modified ac-
cordingly to [10,63] 

(
f eq

q

)+
(r,t) = c(r,t)E+

q ,(
f eq

q

)−
(r,t) = c(r,t)E−

q ,

(f eq
0 )+ (r,t) = c(r,t)E0,

(f eq
0 )− (r,t) = 0,

(4.3.13)

where 

E+
q = wqDLB + wq

2 [3(u · cq)2 − |u|2],

E−
q = wq(u · cq),

E0 = 1 −
m−1∑
q=1

E+
q (r,t).

(4.3.14)

where the weight are given by

wq = 1
3 for 1 ≤ q ≤ 4, and wq = 1

12 for 5 ≤ q ≤ 8. (4.3.15)
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with w0 unused. Beware this set of weight do not fulfill the consistency relation 4.2.7
anymore. In fact, only the first moment is used to compute the tracer concentration. u
is the advection velocity given from the Darcy Brinkman simulation with Eq. 4.3.1. The
diffusion coefficient DLB is deduced from the molecular diffusion coefficient.

DLB = Dm

Λ− . (4.3.16)

Regarding the numerical parameters, we set

Λ+ = 4 and Λ− = 1
16 . (4.3.17)

which gives the Mach number Λ = 1/4.

Boundary conditions

No-slip boundary conditions at the solid/fluid interfaces were applied by using the
bounce-back condition

gq̄(r,t+ ∆t) = g̃q(r,t). (4.3.18)

We consider continuous tracer injection starting as a specific time t = 0, where
molecules are injected from the top of the images. Tracers are thus injected continuously
at the inlet slice (x0,y). In practice, this is done as follows

∀r0 = (x0,y) and ∀t ∈ (0, tmax)
{
g0(r0,t) = c0,

gq(r0,t) = 0 for q ≥ 1,
(4.3.19)

with c0 the concentration of the tracer injected at position r0.

Simulation parameters

Let remark first, the velocity fields obtained form the Darcy-Brinkman simulation are
not equal because we impose pressure boundary conditions and different water saturation.
Consequently, so set the Pe number in the transport simulations, we rescale the velocity
field with a prefactor C∥u∥. The other parameters are set such as follow

Dm DLB Λ+ Λ− Λ
3.125 · 10−4, 6.25 · 10−2 5 · 10−3, 1 4 0.0625 0.25

4.4 Illustration of LBM simulation
Fig. 4.2 shows an image of the micromodel containing the three phases (water, air,

solid), the porous structure on which simulations are performed (supposing that the gas
behaves as the solid), the velocity field in the fluid phase and the concentration field.

4.5 Conclusion
To complement the experimental methods, we incorporate Lattice-Boltzmann simu-

lations using two-dimensional images of unsaturated porous media with trapped phases.
These simulations enable the computation of the velocity field at equilibrium and facili-
tate the simulation of tracer injection in complex media. The Lattice-Boltzmann Method
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Figure 4.2 – (Left) Three phase segmented image (red: air, black: solid, white: water).
[Middle left] Binary image with air clusters as solid (black) used for the velocity field
simulation. [Middle right] Velocity magnitude. (Right) Concentration field for continuous
injection from the top.

(LBM) is employed, which simulates fluid density on a lattice through streaming and colli-
sion processes, instead of directly solving the flow equations. For flow simulations, we uti-
lized the LBM-TRT scheme for the Darcy-Brinkman equation within the two-dimensional
images of the unsaturated micromodel. We applied the same boundary conditions for
the gas phase as for the solid phase. Subsequently, for transport simulations, we solved
the Advection-Diffusion Equation (ADE). The assumptions, boundary conditions, and
parameter choices for these simulations are meticulously described in this chapter.





Chapter 5

Experimental results on dispersion
in unsaturated porous media

5.1 Introduction

Throughout this thesis, extensive efforts were made to develop experimental meth-
ods and conduct data analysis to acquire essential experimental data, as described in
Chapter 3. The micromodel setup was meticulously optimized to facilitate two-fluid flow
experiments, followed by tracer transport experiments within the resulting unsaturated
micromodel. This comprehensive experimental setup enabled the collection of valuable
data concerning the dynamics of multiphase flow within the micromodel, as well as the
transport behavior in an unsaturated micromodel featuring static air clusters. In this
section, we present the preliminary findings obtained through these experiments, focusing
specifically on dispersion phenomena in unsaturated porous media. Initially, we examine
the outcomes of the interaction between air-water fluids and the micromodel, studying the
resulting phase distributions achieved through co-injection experiments. Furthermore, we
compare our results with existing literature to validate and reinforce the significance of
our findings. Subsequently, for each phase distribution resulting from the two-fluid phase
injection, a series of transport experiments are performed. These experiments provide
initial insights into the influence of saturation on dispersion in porous media, particu-
larly concerning the evolution of dispersivity with varying levels of saturation. However,
as anticipated, the investigation of dispersion in low water cases saturation necessitates
complementary methods, such as simulations. Due to the limitations imposed by the
micromodel size, it becomes challenging to study dispersion over sufficiently long dura-
tions to obtain satisfactory results, particularly in assessing the Fickian or non-Fickian
nature of dispersion. Nonetheless, important tendencies have been identified, guiding the
subsequent stages of research.

Consequently, our objective is to complement the experimental data with Lattice Boltz-
mann simulations that replicate the experimental conditions within the micromodel. How-
ever, several strong hypotheses are needed to perform the LBM simulations, such as how
we consider the micromodel depth and the nature of the interfaces between the water and
the air phase. Therefore, we provide an experimental validation of the Lattice Boltzmann
methodology, described in the previous chapter.

The following chapter is structured as follows: the first part presents the results re-
garding non-miscible multiphase flow in the micromodel, followed by the presentation of
preliminary results on dispersion in the second part. Finally, we propose an experimental
validation of Lattice-Boltzmann simulations in the micromodel to consolidate the findings
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of our study.

5.2 Multiphase flow in porous media

Before we could address the subject of dispersion in unsaturated porous media, it was
necessary to understand the interaction between the micromodel and the non-miscible
multiphase flow, more specifically what kind of phase distribution we would obtain after
a non-miscible multiphase flow.

5.2.1 Co-injection experiments

We conducted air water co-injection experiments for a large range of flow rates (accord-
ing to the method described in the Chapter 3, section 3.1.2). At the end of the co-injection,
we stopped the experiment to get the trapped phase distributions. An example of phases
distribution after image processing is given Fig. 5.1. We can see a disconnected phase in
blue (air buble) in the percolating wetting phase (water). The distribution seems rather
homogeneous.

Figure 5.1 – Example of distribution after a co-injection experiment, Qwater =
0.25mL/min, Qair = 1mL/min. Black: water, white: solid, blue: air.

By adjusting the flow rates Qwater and Qair, it is possible to change the final saturation
in the medium (computed according to the method described in the Chapter 3, 3.2.1).
The values of flow rates, Ca numbers and saturation for the different experiments are
given in table 5.1.

The Ca number defined for the water flow is computed as follow:

Ca = µQwater
ϕSγ

,

with 
µ = 1.005.10−3 Pa.s at 20°C,
ϕ = 0.70 (computed from the binarized mask),
γ = 72.8.10−3 N/m at 20°C.

5.2.2 Macroscopic scale: evolution of the saturation with the flow rate

The saturation range we could obtain was from Sw = 0.55 at the lowest to the full
saturation Sw = 1. In other word, there is a maximal threshold of Sg ≃ 0.45 for the air
saturation, which corresponds to the residual gas saturation Sgr. When the air saturation
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Table 5.1 – Table of the chosen flow rates Qwater and Qair

for each experiment, the corresponding Ca number and the resulting saturation Sw.
Qwater(mL/min) Qair(mL/min) Ca×10−4 Sw

0.025 0.025 0.23 0.55
0.025 0.025 0.23 0.58
0.03 0.03 0.27 0.59
0.03 0.03 0.27 0.59
0.03 0.03 0.27 0.59
0.05 0.05 0.46 0.62
0.05 0.05 0.46 0.60
0.05 0.05 0.46 0.61
0.07 0.07 0.64 0.69
0.07 0.07 0.64 0.66
0.07 0.07 0.64 0.68
0.10 0.10 0.91 0.68
0.15 0.15 1.37 0.74
0.15 0.15 1.37 0.76
0.15 0.15 1.37 0.73
0.25 1.00 2.28 0.78
0.25 1.00 2.28 0.81
0.70 5.00 6.37 0.90
0.70 5.00 6.37 0.84
0.70 5.00 6.37 0.87
1.70 6.00 15.47 0.95
1.70 6.00 15.47 0.95

exceeds this threshold, the water comes back spontaneously in the medium by capillarity.
We cannot maintain an air saturation above Sgr while having water percolation. Fig. 5.2
illustrates the range of saturation we obtain from the co-injection experiment.

Figure 5.2 – Different saturation obtained with co-injection. Black: water; white: solid;
Blue: air.

Fig. 5.3 shows the evolution of the saturation with the capillary number, for the range
of saturation reachable with co-injection. The saturation values are rather repeatable
between the different co-injection experiments. The water saturation increases with the
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Figure 5.3 – Water saturation evolution with the Ca used during the co-injection

Ca number as a higher flow rate chases the air more efficiently. Data can be fitted with a
power law with Sw ∈ [0.55,1]. Thus, for our experimental conditions, we could derive an
empirical law for the saturation as a function of the Ca number

Sw − Sw0 = aCab,

with (a,b) = (0.12, 0.35) and Sw0 = 0.55.

The results are consistent with the analysis of Chevalier et al. [35], for which the
saturation at the steady state after a non miscible multiphase flow experiment depends
essentially on the maximal capillary number (or flow rate) that has been imposed to the
system.

5.2.3 Microscopic scale: bubble’s distribution

The saturation value is not sufficient to describe the interaction between the porous
medium and the multiphase flow at the pore scale, as it only gives a cumulative value of
all the bubble area. Therefore, we analysed the bubbles area distribution for the same
data set as the saturation analysis. From the distribution, we could extract information
such as the mean or maximal bubble size. Then, in the following section we investigate
the properties of the phase distribution.

Air bubble distributions

Mean bubble area

As we can see in Fig. 5.4, the mean bubble area decreases with increasing Ca number.
Also, the mean bubble size is quite similar for all repetitions of co-injection experiments.
Plus, the bubble area is maximum for the lowest Ca numbers, corresponding to the lowest
water saturation values. It decreases similarly to a power law when the flow rate increases.

According to the analysis described in the Chapter 3, the pore equivalent radius of our
micromodel is given by

Req
pore = 97µm. (5.2.1)

Thus, the mean pore surface is given by

sm
pore = πReq

pore
2 = 3.0 10−2 mm2. (5.2.2)
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Figure 5.4 – Mean bubble area as a function of the capillary number

Denoting the mean bubble area sm
bubble we see that for highest Ca number sm

bubble is slightly
superior to sm

pore, which means that bubbles occupy a bit more than one pore on average.
The area occupied by one bubble increases up to 4 pores average area for the lowest Ca
numbers.

sm
bubble ≃ 4sm

pore.

Maximal area

The maximal bubble area follows the same trend than the mean area as it can be seen
in Fig. 5.5, but the dispersion of the data is higher. This is expected, as the probability
for extreme area values is small, so the data is based on low probability events (as it will
be shown in the next section with the computation of the probability density function).

Figure 5.5 – Maximal bubble area as a function of the capillary number Ca

Nonetheless, the tendency is consistent with the relation of proportionality between the
maximal bubble size smax and the inverse of the Ca number mentioned by Chevalier [35]

smax ∝ 1
Ca

.

Indeed, the bubble size area decreases by approximately a decade for a decade of the
capillary number. Therefore, the flow rate sets a maximal size of bubbles in the medium,
the bubbles above this threshold are systematically chased away or fragmented.

Bubbles distributions: probability density function
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To characterize the phase distribution, we can compute the probability density function
(pdf) p(s), with s the bubble area. The probability p[sa,sb] for a bubble to have an area in
the interval [sa,sb] is given by

p[sa,sb] =
∫ sb

sa

p(s)ds. (5.2.3)

As we are working with a logarithmic distribution, we compute the intervals of the
distribution along a logarithmic scale. For [s1,s2,...,sN ] the limits of the computation
intervals, and N the number of intervals, for a logarithmic distribution, we have

log(sk+1) − log(sk) = α,
s1 = smin,
sN = smax,

with α = 1
N − 1 log(smax/smin).

Figure 5.6 – Air bubbles probability density functions p(s). (Left) pdf of the distributions
for different values of capillary numbers. (Right) pdf of all the distributions and fit with
a power law p(s) ∝ s−2.

Fig. 5.6 shows the probability density function p(s) for different realisations and cap-
illary numbers. Fig. 5.6 (left) shows a realisation by capillary number and the right
sub-figure show all realisation regardless of the Ca. We observe a plateau for small bubble
sizes, a power law decrease of the pdf from a threshold size, and a cut-off at large sizes.
The slope break between the plateau and the power law slope happens for a bubble area
sm

bubble of 0.02 mm2, or 0.7 sm
pore. Thus, below the mean pore size, the bubble sizes are

rather uniformly distributed. Above the pore size, the bubbles are fragmented by the
porous network and the size pdf decreases with the bubble area.

The cut-off depends on the flow rate, the higher the flow rate the smaller the cut-off.
This only means that the maximal size of the bubble is imposed by the capillary number,
which we saw in the previous section. We find a power law decrease with a coefficient
of 2.0, as shown in Fig. 5.6 (Right). This is consistent with the results of Tallakstad et
al. [150] and Chevalier et al. [35], as Fig. 5.7 highlights. The distribution can be described
by the following scaling

p(s) ∝ s2f(sCa),
with f(sCa) being a function cut-off of the capillary number. Indeed Chevalier et al.
found the following scaling for p(s)

p(s) ∝ s2 e−sCa,
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choosing f(sCa) = e−sCa as a cut-off function. Tallakstad [150] found a similar relation:

p(s) ∝ sτ e−s/smax ,

where τ = 2.07; e−s/smax is another function cut-off, depending of Ca and assuming that
smax ∝ 1/Ca as mentioned previously.

Figure 5.7 – From Chevalier et al. [35]. pdf of ganglia distribution resulting from a mul-
tiphase flow.

The Ca dependence of the cut-off functions highlights once again the fact that the
bubble maximal size in the system is controlled by the flow rate imposed to the medium,
when all other parameters about the fluids and the porous medium are fixed. Indeed,
the maximal bubble size depends on the porous medium structure. In Oughanem et
al.. [120] they show that the oil ganglia size depends largely on the aspect ratio Rpore

Rthroats
,

with Rpore the pore radius and Rthroats the throat radius. In our experiment, the porous
network properties such as the pore and throat distributions are fixed by the micromodel
(cf Chapter 3). Complementary results about bubble preferential trapping sites can be
found in the appendix, chapter 9, section 9.3.

5.2.4 Microscopic scale: structural properties at the pore scale

In this section, we want to analyze how the water saturation changes the medium
properties at the pore scale, notably if certain pores are preferentially filled, and what
effect the saturation has on the porous network structural properties. First, we consider
the local saturation for each pore. The pore network of our micromodel is identified
through a watershed operation (ImageJ software). It allows to define the pores and the
throat of our medium, as well as their structural properties (size, shape). For our set of
data, i.e. images of the micromodel in unsaturated conditions, we compute for each pore of
the micromodel the local saturation (i.e. the fraction of the pore filled by water) using an
ImageJ algorithm. For each mean saturation Sw, we can compute the local saturations Sw,i

for all pores i, and make the distinction between fully saturated and partially saturated
pores populations (i.e. pores that only contain water VS pores that contain both air and
water). The pore network and the local saturations are illustrated Fig. 5.8.
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Figure 5.8 – Illustration of the unsaturated pore network. The solid grains are represented
in black, the water phase in white and the air clusters in blue. The dashed lines shows the
delimitation between the different pores. The pore 1 is fully saturated in water (Sw,1 = 1,
whereas the pore 2 is only partially saturated Sw,2 < 1.

Saturated and unsaturated pores

To inquire on how the pores population evolve with saturation, we computed the size
distribution of saturated and partially saturated pores for different mean saturation values
(see Fig. 5.9).

Figure 5.9 – [Top] Size distribution (log) of saturated and partially saturated pores for
different mean saturation values. The distributions are fitted with log-normal distribution
(in full lines). [Bottom] From the log-normal distribution fitted in the top figure: position
of the maximum of the saturated pore size distribution as a function of the mean satura-
tion.
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The distributions show a good fit with log-normal distributions, displayed in Fig. 5.9
[Top]. First, the maximum of the peak for the saturated pores happens for smaller pore
sizes than the partially saturated pores population. We can see that for the saturated
pores, the peak of saturated pores is shifted toward the small pore sizes (and inversely
the peak of unsaturated pores is shifted towards the large pore sizes) when the water
saturation decreases. Fig. 5.9 [Bottom], showing the peak position of the maximum of the
saturated pore distribution, highlights this tendency. In other words, as the saturation
decreases, the bubbles fill preferentially large pores.

Local saturation

We computed the local saturation distribution for the unsaturated pores, i.e. the
numbers of pores for a given local saturation. We can see Fig. 5.10 that there are two

Figure 5.10 – Local water pore saturation distribution for different saturation values

principal water saturation values, a peak of water saturation around 0.2 and a peak near
1: i.e. a pore filled with air at 80% (a bubble fills more or less the whole pore, with
water films) and pore almost saturated. The peaks intensity evolves with the global water
saturation: when the saturation decreases, the ratio of pores with a local saturation of 0.2
increases. In conclusion, when the water saturation decreases, bubbles tends to fill more
pores, they fill preferentially large pores and they fill them almost completely. Except for
the water films, they form a global large structure with the solid grains around them.

Further analysis on the structural properties of the unsaturated porous medium can
be found in the appendix Chapter 9, section 9.3.2.

5.2.5 Conclusion: insight on multiphase flow interaction in porous me-
dia

Our results and observations on multiphase flow in 2D micromodel are consistent with
the literature results.

• The water saturation after a multiphase flow depends mainly on the water capillary
number Ca imposed, the saturation increases with increasing Ca.

• The final air saturation is necessarily above the residual gas saturation Sgr due to
capillary contact with the water phase.
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• The order of magnitude for the mean bubble size and the pores mean radius is
similar. The mean bubble size decreases with the capillary number.

• The maximal bubble size is determined by the Ca number.

• The probability density function for the bubble size follows a power law for sizes
above the pore size, and a cut-off at large sizes.

• Locally, a pore is either completely saturated with water, almost fully unsaturated
(i.e. filled by a bubble and the water film surrounding the bubble), or slightly
unsaturated.

• As saturation decreases, larger bubbles occupy the porous network, and larger pores
are unsaturated.

Furthermore, the properties of the unsaturated media and more particularly the prop-
erties of the phase distribution affect most likely the dispersion behavior. Thus, knowing
how to characterize the interaction between the non-miscible two phase flow and the porous
media will be useful in the following to describe dispersion mechanisms.

5.3 Dispersion in unsaturated porous media

5.3.1 Dispersion dependence with saturation

Data set

As we have shown before, we can obtain a range of water saturations from 0.55 to
1 through co-injection experiments. For a given saturation, the water miscible tracer is
injected with the flow rate Qt. In order to conserve the saturation of the porous medium,
we need to use injection flow rates inferior to the co-injection flow rate Qwater. In practice,
the gas phase is not completely stable even with flow rates inferior to the co-injection flow
rates for long periods of time, so we use flow rates at least 10 times inferior to the injection
flow rate. As high Peclet numbers tend to increase dispersion and that the dispersion is
already greatly increased in unsaturated conditions, we work with the lowest flow rates
available with the pump, from 0.1µL/min to 5µL/min.

We conducted a large sequence of transport experiments for the whole range of sat-
uration. For a given unsaturated porous medium, we usually performed several tracer
injections when it was possible. Indeed, the gas phase can be destabilised easily and it
is difficult to conserve the exact same configuration for a large series of transport experi-
ments. For each transport experiment, we analyse the phase distribution as well.

Qualitative observations

For the same configuration as in section 5.2, we show in Fig. 5.11 the results of the
tracer injection at different times. The first row gives the phase distribution of the medium,
and the other columns show the concentration field at four different times. We can see
that there is a clear change in the dispersion behavior with the saturation. Indeed, the
concentration front (purple in the figure) is rather flat for saturated media or low satu-
rations, but the more the saturation decreases, the more it is deformed, until is becomes
difficult to visualise it. When the saturation decreases, the preferential flow paths appear
as well as dead ends in the concentration field. The dead ends are particularly remarkable
in the last column for low saturation, with orange zones (no tracer) completely surrounded
by zones saturated with ink.
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Figure 5.11 – Tracer injection experiments for 5 saturation values. First row: Phase
distributions. Other columns: concentration fields. Dark green: tracer concentration.
Light orange: no tracer.
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Fig. 5.12 shows the concentration front for different values of saturation, the images
have been binarized. Dispersion patterns change greatly with saturation. We observe a
distortion of the concentration front which is enhanced when the water saturation is low.
There seems to be some sort of threshold since water saturation around 0.85 and 0.7 show
a distinctive pattern. Above 0.85, the concentration front is rather straight. On the other
hand, we observe distinctive preferential flow paths features for saturation values around
0.7. This change of behavior might be related to the size of the obstacles, with the increase
of the maximal bubble size when saturation decreases. However, quantitative analysis has
yet to be done to evaluate how the concentration front extends for example, and see how
it relates with saturation and the bubble sizes.

Figure 5.12 – Preferential flow paths for different saturation values. The experimental
images have been binarized to emphasize on the tracer concentration flow paths.

Dispersion analysis

We calculated moments for each transport experiment. The moment computation is
valid as long as the tracer has not left the micromodel. In Fig. 5.13, we computed the
moments for the saturation values of Fig. 5.2. There is a clear influence of the saturation
on the dispersion, the slope of the second moment increases when the saturation decreases.
The slope of the second moment, computed by linear regression, gives an estimation of
the dispersion coefficient.

Nature of the dispersion

We only observe short time dispersion here, so it is difficult to conclude on the Gaus-
sian or non-Gaussian nature of dispersion, even when the moments computed are rather
linear. Indeed, especially for low saturation, the micromodel exhibits strong front distor-
tion patterns: we characterize very short time dispersion and the moments computation
is often based on one or two preferential flowpaths (cf Fig. 5.11).

Furthermore, not all moments computed are as linear as in Fig. 5.13. Indeed, in
the Fig. 5.14, we show the evolution of the second moment for three different phases
configurations than the Fig. 5.13, including two different saturations, and two different
realizations with a similar saturation. We see that if the evolution of the second moment
can be linear, as seen in Fig. 5.14 (Left), it also can present a sort of initial transient, as
seen in Fig. 5.14 (Center), and even show a non linear pattern as seen in Fig. 5.14 (Right).
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Figure 5.13 – Evolution of second moments with time for different saturation values.
Linear regression of the second moment slopes allows to compute dispersion coefficient
estimations for each saturation.

Figure 5.14 – Second moment evolution with time for different saturation values. (Left)
Examples of linear second moment with time. (Center) and (Right) Examples of second
moments non linear with time. The linear fits to estimate a dispersion coefficient are
shown in orange.

The non linearity is more frequent when the water saturation is low. For high saturations,
the moments are rather linear and the dispersion is probably Fickian. For lower satu-
rations, the uncertainty is high and it is not possible to know whether the dispersion is
Fickian or not. Therefore, characterizing transport with a dispersion coefficient might not
be adequate. However, given the quality of experimental data, it is the only quantity that
we can derive to compare the different transport experiments. Linear regressions realized
to derive dispersion coefficient are shown in Fig. 5.14.

Dispersivity as a function of saturation: preliminary analysis

Keeping in mind the issues concerning the computation of the dispersion coefficient, we
still derive the slopes of the second moments to get a first trend for the effect of saturation
in dispersion. We used the moments computed to derive a value of the dispersivity λ.
We compute the dispersivity rather than the dispersion coefficient because the effective
velocity could be different between the different injections, and normalizing by the velocity
gives better correlation with saturation.

λ = D

veff
(5.3.1)

Supposing that the moments evolve linearly with time, we computed the slopes for the first
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and second moments, which gives respectively the effective velocity veff and the dispersion
coefficient D. Then, the dispersivity can be computed. In Fig. 5.15, the shaded area
highlights the range of saturation values for which the measured dispersivity is largely
affected by errors. Still, the tendency is quite clear from the figure, the dispersivity tends
to decrease as the water saturation increases.

Figure 5.15 – Dispersivity values as a function of saturation. The shaded area shows
the range of saturation for which there is a high uncertainty on the dispersion coefficient
computation.

Limit of the analysis: need for simulation

Our analysis is limited by the length of the micromodel and by the uncertainty inherent
to experimental data, we cannot conclude on the nature of dispersion and the results we
obtain, such as Fig. 5.15 are not sufficient to describe properly the dispersion, notably
at long times. This is why we will perform simulation in unsaturated porous media to
improve our analysis, as we will detail in a later chapter.

5.3.2 Influence of bubbles distributions

We aim at understanding at the pore scale the mechanisms that induce the disper-
sion in unsaturated porous media, and see how the unsaturated porous media properties
influence dispersion. As we characterize the bubbles distribution, we tried to see if some
characteristics of the bubbles distribution (area, perimeter, Feret 1, etc) would show strong
correlation with the dispersivity values. For each parameter, we would evaluate the mean,
the standard deviation and the maximum of the distribution. Again, the values of disper-
sivity we computed are largely affected by errors for low saturation values.

The Fig. 5.16 shows the evolution of the dispersivity (calculated as described in the
previous section) as a function of the bubble size characteristics of the bubble distributions,
namely the bubble mean and maximal size, the perimeter and the mean Feret. As Fig.
5.16 highlights, there is a good correlation between the bubble characteristics such as the
mean area or perimeter and the maximal size. The dispersivity increases with the bubble
size. However, none of the parameter stands out particularly. We calculated Spearman
correlation coefficients (correlation values based on the variables ranks) to assess if some

1. The Feret diameter (or caliper diameter) is a measure of an object size along a specified direction. In
general, it can be defined as the distance between the two parallel planes restricting the object perpendicular
to that direction. [111]



5.3. Dispersion in unsaturated porous media 99

Figure 5.16 – Influence of the bubble characteristics on the dispersivity. Dispersivity as a
function of: a) the bubbles mean size. b) the bubbles maximal size. c) the bubbles mean
perimeter. d) the bubble mean Feret.

bubble parameters could be more relevant than others to influence the dispersivity (Fig.
5.17). Spearman correlation coefficients are between −1 and 1. A negative value implies a
negative correlation between the variable, and positive value implies a positive correlation.
The closer the absolute value to 1, the better correlation between the two variables.

Figure 5.17 – Correlation coefficient between the dispersivity and different bubble charac-
teristics. m stands for mean, SD for Standard Deviation and M for maximum.

However, the correlation coefficient was always below the correlation coefficient be-
tween saturation and dispersivity (-0.85). The different parameters have similar corre-
lation coefficients. Nonetheless, for each parameter, the maximum of the distribution
has the best correlation coefficient (around 0.80). Therefore, the bigger bubbles in the
unsaturated medium might have a greater influence in the dispersion.

However, our efforts involve dealing with data that contains noise, posing a challenge
to deeper interpretation. It’s conceivable that by using improved data, correlations might
emerge between specific structural characteristics and dispersion. Notably, a parallel in-
vestigation employing numerical data was carried out later in this research, but it failed to
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yield any additional insights into a potential correlation between structure and dispersion.

5.4 Experimental validation of Lattice-Boltmann simulation
in the micromodel

As mentioned earlier, the experimental system exhibits certain limitations, particu-
larly in obtaining a well-defined entrance condition, resulting in significant variability in
the dispersion experiment results. To overcome these experimental limitations, we aim
to employ Lattice-Boltzmann simulations to compute flow and transport within the mi-
cromodel, considering both saturated and unsaturated conditions. Our goal with the
simulations is to accurately reproduce the transport physics occurring in the micromodel.
However, it is important to note that there are certain aspects of the experimental setup
that Lattice-Boltzmann simulations cannot fully capture.

One such aspect is the exact conditions at the interfaces, such as air/solid and solid/air,
which cannot be replicated in the simulation. In our case, where the immiscible gas phase
is trapped and immobile, we treat it as an additional solid phase within the medium,
applying the same boundary condition to all obstacles. Furthermore, our simulations are
conducted in a 2D image of the micromodel, which has a limited depth, denoted as Lz. To
account for the depth, we use a Darcy-Brinkmann (or depth average) model for the flow.
However, we acknowledge that we still neglect the shape of air clusters and solid grains in
the z direction.

Therefore, our objective is to assess the influence of these simulation assumptions
on transport and evaluate the suitability of the method for studying transport in un-
saturated micromodels. We achieve this by performing a comparative analysis between
the experimental work and Lattice-Boltzmann simulations for three different saturations.
Specifically, we conduct experiments for each saturation and, subsequently, for each phase
configuration, we compute flow and transport using the simulations. After obtaining the
concentration fields for both experiments and simulations, we proceed to compare the
transport properties.

By conducting this thorough evaluation and comparison, we aim to gain insights into
the adequacy of our simulation hypotheses for studying transport in unsaturated micro-
models and understand the limitations and implications of our chosen approach.

5.4.1 Experimental and simulation conditions

Experimental conditions and simulation parameters

The injection is continuous for both simulation and experimental work. The inlet
condition for simulation is perfectly neat (c̃(x = 0) = 1), while the experimental inlet
condition is more diffuse and not completely symmetrical due to the complex injection
set-up. Consequently, the concentration front in the experiments is already slightly diffuse
and asymmetrical when the experiment starts, contrary to the simulation.

The experiments and simulation Pe number were computed from the front velocity
values. Table 5.2 gives the Pe for simulation and experiments.

Hypotheses of comparison

As experimental and simulation conditions are not identical notably in term of Pe
and inlet conditions, we formulate some hypotheses to be able to compare simulation and
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Table 5.2 – Table of the Pe number for experiments and simulations, with Pe = v dpore
Dm

and (Dm
exp = 10−3mm/s, Dm

sim = 0.003125 (LBM units)).

Sw Peexp Pesim
1 15 10

0.87 4 10
0.70 2 10

experimental results. First, to take into account the inlet condition that is not exactly
similar, we consider an offset in time to adjust experimental and simulation concentration
fronts at the beginning.

Second, as the injection velocity is not the same for experiments and simulations, we
suppose that the dispersion is invariant by normalization by v (at least, in our range of
Pe). When considering the ADE equation, it is the same as considering only macroscopic
diffusion coefficient.

Indeed, we assume that D = Dm +Dmacro, with Dmacro ∝ λv, λ being the dispersivity.
If the microscopic dispersion can be neglected, Dm << Dmacro, then, the ADE becomes

∂c̃

∂t
+ v

∂c̃

∂x
= λv△c̃ (5.4.1)

with t′ = tv
Lx

the normalised time, it leads to

∂c̃

∂t′
+ Lx

∂c̃

∂x
= Lxλ△c̃ (5.4.2)

Therefore, with these assumptions, the ADE is invariant by v. The concentration evolution
can be compared for different Pe number with the relative time t′.

Considering the time offsets to take into account the inlet conditions, the relative time
can be written as follow

t′Sw

exp = t− toffset
exp(Sw)

∆t′Sw

Exp
(5.4.3)

with ∆t′Sw

Exp = Lx
vSw

exp , vSw
exp is the mean flow velocity in the experiment at the satura-

tion Sw.

t′Sw

sim = t− toffset
sim(Sw)

∆t′Sw

sim (5.4.4)

with ∆t′Sw

sim = Lx
vSw

sim , vSw
sim is the mean flow velocity in the simulation at the saturation

Sw.

5.4.2 Results

We consider three saturation values (Sw = 1, Sw = 0.87, Sw = 0.7) for which we
performed transport experiments and simulations. We compute the concentration pro-
files, and find time offsets so that the beginning conditions are almost identical for the
concentration profiles.
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Figure 5.18 – Comparison of experimental and simulated concentration fields for three
normalized times, Sw = 1.

Figure 5.19 – Comparison of experimental and simulated concentration fields for three
normalized times, Sw = 0.87.

Figure 5.20 – Comparison of experimental and simulated concentration fields for three
normalized times, Sw = 0.70.

Concentration fields

The concentration fields (Fig. 5.18, 5.19, and 5.20) show a good accordance between
the experiments and the simulations. As we see in the saturated case (Fig. 5.18), there
is more distortion of the concentration front in the simulation, which might be explained
by the more diffuse inlet condition in the experiment. When the saturation decreases
(Fig. 5.19), patterns such as preferential paths and dead ends appear and we can see that
they match between simulation and experiments, even though some patterns can be more
noticeable in the experiments and some other more noticeable in the simulation. The less
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saturated case (Fig. 5.20) shows more discrepancies, as the system gains in complexity.

Dispersion analysis

By analyzing the concentration profiles depicted in Fig. 5.21, we can observe a sat-
isfactory agreement between the experimental and simulation data, considering that the
experimental profiles exhibit more pronounced noise, as anticipated. To further assess
the dispersion behavior, we compute the second moment σ2 for all simulations and ex-
periments. The results reveal that experimental and simulation data share very similar
dispersion characteristics, particularly in the case of higher saturation levels. However,
as the saturation decreases, the concentration profiles become increasingly noisy. Conse-
quently, due to the inherent noise in the experimental data, the computation of the second
moment tends to be less precise. Nonetheless, despite the greater noise in the experimental
data, the comparison between experiments and simulations provides valuable insights into
the dispersion behavior within the system.

Figure 5.21 – [Top and bottom left] Comparison of experimental and simulated concentra-
tion profiles for three normalized times, and three saturation values respectively Sw = 1,
Sw = 0.87 and Sw = 70. [Bottom right] Comparison of the second moment evolution with
the normalised time t′ for three saturations in simulation and experiments. An offset has
been subtracted to the second moment for a better comparison of the slopes.

5.4.3 Validation of LBM simulation to compute transport in saturated
and unsaturated micromodel

The comparison of transport properties between the experimental and simulation data
demonstrates a high level of similarity, despite variations in Peclet numbers, inlet condi-
tions, and the presence of significant experimental noise. This observation suggests that
2D Lattice-Boltzmann (LBM) simulations conducted within the micromodel are suitable
for studying transport using experimental images. Notably, the impact of physical pa-
rameters that differ between the experiments and simulations, such as the dimensionality
(3D vs. 2D) and physico-chemical interactions at the interfaces, is overshadowed by the
noise inherent to experimental limitations. In other words, the experimental noise is more
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pronounced than the discrepancies arising from these physical parameters. Thus, the
utilization of 2D LBM simulations alongside experimental images provides an adequate
approach for investigating transport phenomena within the micromodel, despite certain
disparities between the experimental setup and the simulation framework.

5.5 Conclusion on preliminary results
Using the developed experimental setup, a series of experiments were conducted to ac-

quire initial results on multiphase flow properties and preliminary findings on dispersion.
The production of a wide range of saturations in the micromodel enabled the characteriza-
tion of saturation evolution with the capillary number following multiphase flow. Notably,
it was observed that saturation is primarily determined by the water capillary number,
and it increases with increasing capillary number. The distribution of phases resulting
from the co-injection was also analyzed, focusing on the size distribution of bubbles as
a function of the capillary number. As indicated by existing literature, the bubbles size
distribution for different capillary number differs mainly by the cut-off at large sizes, i.e.
by the maximum bubble size in the medium.

Subsequently, transport experiments were conducted in the unsaturated micromodel
across the entire range of saturations. These experiments facilitated a qualitative analysis
of dispersion patterns, including dead-ends and preferential flows, as well as the compu-
tation of spatial moments to characterize dispersion. The findings indicated an increasing
trend of dispersion as water saturation decreased. However, conclusive determination re-
garding the Gaussian nature of dispersion could not be made due to limitations imposed
by the micromodel size and the increased dispersion observed in low saturation conditions.

Consequently, the second part of the thesis focuses on Lattice Boltzmann simula-
tions, serving as a complementary numerical approach to the experimental investigations.
These simulations are particularly valuable for studying non-miscible flow in porous me-
dia, which remains challenging to replicate experimentally. An experimental validation of
Lattice Boltzmann simulations was proposed to investigate transport phenomena in both
saturated and unsaturated micromodels.

Given the limitations of experimental images due to the micromodel size, an objective
is to utilize the experimental images to generate larger unsaturated porous media through
data training techniques. This approach would facilitate the study of long-term transport
in unsaturated porous media and enable a statistical analysis of dispersion with various
configurations for short porous media.



Chapter 6

Generating synthetic images of
unsaturated porous media with a
multiscale multipoint statistics
approach

As we saw in the last chapter, transport experiments in a micromodel show significant
limitations, notably the condition at the inlet is never completely neat and the size limit
of the micromodel only allows to observe short time dispersion.

Although Lattice-Boltzmann simulations in unsaturated images of the micromodel
allow to overcome the issue of the inlet condition, the size of the micromodel still limits
the study to short term dispersion. Indeed, simulating the results of a multiphase flow
in a complex porous media is still difficult. Plus, there is the question of representativity
of the unsaturated porous medium: when the saturation decreases, the heterogeneity
of the medium increases significantly and the size of the micromodel is not necessarily
statistically representative. Therefore, it would be necessary to consider longer media, or
realize experiments on a large number of samples which is rather time consuming.

Hence, creating artificial new images from experimental data would allow to overcome
this issue. In this section, we designed a machine learning based method to produce
artificial images of unsaturated porous media from our experimental data. The goal is
to generate a large number of unsaturated images without limiting their size. We used
a multiscale multi-point statistics algorithm, a methodology more commonly applied to
geostatistics.

In this chapter, we detail the method developed and we propose a validation by com-
paring properties of the generated and experimental images, in term of structure, flow and
transport.

6.1 Motivation

When conducting transport experiments in a micromodel, it is difficult to experi-
mentally obtain a neat tracer injection condition due to the dispersion in the inlet tub-
ing [91, 104]. To overcome this difficulty several authors simulated tracer transport in
images of partially saturated porous media. These images were obtained either experi-
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mentally or numerically (either by simulation of two-phase flow or machine learning meth-
ods) [6, 28,46,90,163].

In both cases, creating new images for different saturations in various porous struc-
tures is time consuming. Moreover, further comprehension of the coupling between pore
structure, immiscible two-fluid-phase distribution and transport requires a statistically
relevant amount of data, i.e. two-fluid-phase distributions associated with their trans-
port properties. Also, as the saturation decreases, the spatial heterogeneity of the system
becomes more important, as air clusters size distributions widens. Therefore, it would
be necessary to study larger sample sizes to ensure the relevance of the statistical anal-
ysis. The difficulty to obtain a sample size larger than the Representative Elementary
Volume (REV) could explain partially the discrepancy in the literature about the effect
of saturation in transport in porous media. One way to deal with the increased spatial
heterogeneity is to increase the sample size, although it is often difficult experimentally.
One alternative approach to address this issue is by conducting the experiment or simu-
lation on multiple distinct samples. However, when it comes to experiments, it becomes
exceedingly challenging and costly to carry them out in comparable mediums possessing
identical properties. For simulations, it is thus necessary to generate a large number of
different two-fluid-phase configurations having the same statistical properties.

To this goal, [90] considered multiple-point statistical simulations (MPS) [144] to gen-
erate two-fluid-phase distributions in a given two-dimensional porous structure consisting
of irregularly arranged spheres. MPS approaches were initially developed for geological
modeling to generate new distributions of complex geometry patterns from a training im-
age that represents the expected structure (see for instance [149] for a review). In [90], the
training images considered for simulation were obtained from immiscible two-fluid-phase
experiments in their micromodel. The solid matrix was not modified during simulations
and acted as a constraint in the algorithm. The approach was applied to three different
saturations.

In the present work, we extend the previous approach to heterogeneous pore structures
and consider a MPS algorithm to generate simultaneously a new solid structure and an
air-water distribution. In this way, the coupling between saturation and pore topology
can be easily studied for different structures. The MPS considered in our study [44,58–60]
introduces two levels of resolution for the training image in order to properly capture and
reproduce the geometric features within limited simulation times. The training images
consist of two-fluid-phase distributions (air/water) in porous media obtained experimen-
tally, when a steady state is reached and air clusters are immobile. The resulting generated
porous medium and the associated air clusters distribution share similar topological statis-
tics with the training image. The proposed method thus appears as a generalisation of
the one described in [90], notably because it simulates jointly the porous structure and
the air clusters distribution for a complex porous medium geometry. Summarizing, the
method is not specific to a given geometric structure of a porous medium and could be
applied to any given 2D distribution, even with complex geometry patterns. The proposed
approach presented here represents a significant novelty compared to the method outlined
in [90]. It stands out as a generalization due to its ability to simultaneously simulate both
the porous structure and the distribution of air clusters within a complex porous medium
geometry. In essence, this method is not restricted to a particular geometric structure of a
porous medium, making it applicable to any given 2D distribution, even those exhibiting
intricate geometric patterns.

In the following, we detail the multi-scale MPS algorithm and explain how it is used
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to create new images from experimental ones. We present images generated by the MPS
algorithm for several saturations and analyze their statistical properties. Finally, results
of flow and transport simulations are also provided and discussed to prove the relevance
of our methodology.

6.2 Multiple-point statistics algorithm
In the following paragraphs, we first describe the principle of the MPS algorithm used

in this work and then detail its multi-scale extension which is required to deal with large
objects in restrained computational times. All the MPS algorithm notations can be found
in the Nomenclature Table.

6.2.1 MPS algorithm

The first step of the approach consists in retrieving from the Training Image (TI) the
information that will be used afterwards to generate new images. It consists more precisely
in building a database of all the sub-images of a given size occurring in the Training Image.
To do so, the Training Image is browsed with a rectangular window W of size w pixels; all
the sub-images of size w present in the Training Image are stored in the database. These
images will be referred to as patterns in what follows and denoted T .

The second step consists in generating a new image iteratively by complementing at
each step the current (incomplete) generated image with a patch P of size p pixels with
p < w. This patch is selected from the pattern database to maximize the similarity with
the incomplete image. The different steps of the algorithm are illustrated in Fig. 6.1 and
detailed below:

• Initialisation: we select randomly a pattern T of the database, extract the patch P
located in its center and paste this patch in the center of the simulation grid (see
Fig. 6.1).

• Until all pixels have been visited once:

– Identify the set of non-simulated pixels that have at least one simulated neigh-
bour.

– Sort the pixels in descending order based on the number of simulated neighbors
they have, from the pixel with the highest count of simulated neighbors to the
pixel with the lowest count of simulated neighbors.

– For each pixel i visited according to that order:
∗ Step 1: Extract from the partially generated image the sub-image W(i) of

size w centered in i

∗ Step 2: Compare W(i) to the pattern database extracted from the TI and
select the pattern T (i) the closest to W(i) in terms of Euclidean distance
weighted by a Gaussian filter (to give more weight to the central pixels, see
also [59,60]).

∗ Step 3: Extract the central part of T (i) to obtain de patch P(i) and paste it
on the simulated grid around pixel i while keeping the previously simulated
pixels unchanged.

From a practical point of view, the main configuration parameters of the MPS are the
Training Image size, the shape and size of the window W used to browse the Training
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Figure 6.1 – Schematic for the simulation around pixel i. Step 1: At each iteration,
pixels with at least one simulated neighbour are selected. Then, the pixel i with the most
simulated neighbours is chosen for simulation (identified by a red cross). A window W(i)
centered in i (indicated by a red square) defines the neighbourhood that will be compared
to the Training Image (TI). Step 2: The pixels in the red square already simulated are
compared to each pattern of size w in the TI (e.g black and purple square). Step 3: The
closest pattern is extracted from the TI (here purple square). Step 4: A patch at the
center of this chosen pattern is extracted and pasted on the generated image, centered on
i while keeping the pixels already simulated unchanged.

Image, the shape and size of the patch P used to fill progressively the generated image,
the distance formulation for the comparison between the simulated, training patterns and
in the search order in the database. As illustrated in [58–60], the window W should be
large enough to properly capture and reproduce the TI features. However, the larger
the window is, the longer the simulation times becomes. On the contrary, the use of a
larger patch P reduces simulation times as the simulation grid is filled in less iterations,
but this can also lead to a degradation of the results with occurrence of discontinuities
for instance. Finally, a bigger Training Image allows to better capture the statistics of
the medium but at the cost of longer simulation times induced by the larger size of the
database. To overcome these limitations, we resort to the multi-scale MPS described in the
following paragraph. Note that the MPS algorithm makes it possible to generate multiple
realizations from the Training Image. The realization will be determined by the pattern
selected in the database at the initialization step. Each initialization pattern leads to a
new realization.
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6.2.2 Multi-scale algorithm

To reduce the impact of the window and patch size on the generated image and the sim-
ulation time, the previous MPS algorithm was extended to a multi-scale framework [58,60].
For simplicity, this variant is presented here with two levels: a fine scale that corresponds
to the initial Training Image, and a coarser scale used to speed up the computations.
Nevertheless, it is important to note that the method remains applicable regardless of the
number of scales employed, it can be extended to include multiple intermediate coarser
images along with a fine image.

In a first step, the multi-scale algorithm consists in generating a coarse image. In this
way, a coarse Training Image is generated by upscaling the initial fine one. Then we use
the one-scale MPS algorithm described above: the coarse Training Image is browsed with
a rectangular window Wc of size wc pixels to generate a database. The latter is used to
produce a coarse realization. This coarse level simulation is generally fast, and provides
a trend that is complemented with fine level details in the second step. This enables to
reduce the size of the window Wf used on the fine scale without degrading the results.

In the second step, the coarse and fine Training Images are considered to define a dual
database consisting of pairs of fine and coarse patterns obtained by browsing the Training
Images with fine and coarse windows Wf and Wc. The simulation on the fine scale then
involves the joint comparison of the already simulated values on the fine and coarse scales
with this dual database. At each pixel i to be simulated, the patched values P(i) thus
depend on the values already simulated around i on both the fine and coarse scales. The
approach is illustrated in Fig. 6.2. Further details on the MPS algorithm can be found
in the aforementioned publications [44,58–60].

The configuration parameters for this multiscale algorithm consist of the fine scale
Training Image, the upscaling coefficient between the fine and coarse levels (Ups), and the
window and patch sizes considered on the fine and coarse scales (wf , pf for the fine scale
and wc, pc for the coarse scale).

6.2.3 Application of MPS to unsaturated porous media images

The following section details the application of MPS to unsaturated porous media
images (consisting of three phases). It includes the choice and preparation of the Training
Images from experimental data, the analysis of the configuration parameter influence on
the resulting images and the post-processing procedure.

Preparation of Training Images

The MPS algorithm is applied to Training Images that should follow the subsequent
criteria: to simulate a medium statistically representative, the Training Image size should
be superior to the REV (Representative Elementary Volume) defined after statistical anal-
ysis of properties of interest (the medium porosity, saturation, grain and air cluster size
distributions).

In addition, Training Images from experimental data are pre-processed. For example,
some air clusters envelop grains entirely, and therefore they will not impact the flow or
the transport. Thus, elements included in grains or air clusters that are not in contact
with the percolating wetting phase are cleared. Also, elements of small size whose effects
on the flow are negligible are suppressed as well. It allows to improve the MPS resulting
images quality. The image processing is realized with the ImageJ software.
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Figure 6.2 – Schematic for the attribution of the patch value for the multiscale algorithm.
In what follows, square windows are considered. For a given pixel i to be simulated on
the fine level, we extract the fine scale simulated sub-image Wf (i) of shape wf centered in
i, and the coarse simulated sub-image Wc(i) of shape wc centered in i. Then, Wc(i) and
Wf (i) are simultaneously compared to the patterns of the dual database, as shown by the
green and blue rectangles.

Post-processing

Images obtained with MPS present small defects that are not physical: discontinuities
of the different phases, absence of water film between grains and air clusters, inclusions
in grains or air clusters. Such defects are shown in a zoom of a generated image in Fig.
6.4 (Left). Note that they may be lessen with other configuration parameters for the
MPS algorithm, but at the cost of longer simulation times. Here, we rather applied a
post-processing algorithm to the generated images with the following features:

• Smoothing discontinuities and unnatural straight lines that appear in the generated
images. Straight lines are due to the patch size. They are generated during the
image simulation when patches are progressively added to the generated image.

• Suppression of inclusions in grains and air clusters, that do not participate to the
flow

• Removal of grains and air clusters smaller than the minimal grain and air cluster
size found in the Training Image
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• Generation of the water film between air cluster and solid that is not always complete
in the MPS image.

Post-processing algorithm methodology The post-processing algorithm is using Im-
ageJ software. Fig. 6.3 shows the different steps of the post-processing algorithm. The

Figure 6.3 – MPS image post-processing. [Up] Air clusters processing. 1.a Air clusters
before post-processing. 1.b Smoothed image of 1.a. 1.c Smoothed air clusters (binarized
image of 1.b). 1.d Final air clusters image. Creation of the water film (black) around the
air cluster. [Bottom] 2.a Solid grains before post-processing. 1.b Smoothed image of 2.a.
2.c Smoothed solid grains (binarized image of 2.b). 2.d Final solid grains image.

algorithm treats grains and air clusters separately, by isolating them and creating two dis-
tinct binarized images for air clusters (1.a) and grains (2.a). The post-processing consists
in the following steps:

1. Air clusters: A blurred image (1.b) is created from the binarized air clusters image
(1.a). Then, it is binarized with a threshold chosen to maintain the same air area
percentage than the original image (1.a) to obtain (1.c). This allows smoothing of
the air clusters outlines while conserving their general shape. Grains (2.a): The
aim is similar but the method is slightly different, as the grains are not as circular
as air clusters, and a strong blur would smooth the pointy grains. As we want to
maintain shape characteristics, first a close operation is performed (it consists in a
dilatation followed by a an erosion), then a light blur is applied (2.b). The image is
then binarized (2.c).

2. Holes are filled for both grains and air clusters.

3. The particle grain sizes are analysed and particles whose size is smaller than the
minimal grain size of the Training Image are erased. The same operation is performed
for air clusters.

4. The air clusters image is dilated and subtracted from the grain image (2.c) to create
a water film between solid and air cluster (2.d).
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The final image is obtained by recomposing grains and air clusters. Fig. 6.4 (Right) shows
the image after post-processing.

Figure 6.4 – MPS image before (Left) and after (Right) post-processing, black: solid, red:
air, white: water.

Choice of the configuration used for the MPS algorithm

Parameters of the MPS algorithm influence the resulting images. Fig. 6.5 shows the
statistics (porosity, saturation and grains/air clusters size distribution) obtained for differ-
ent parameters of the multi-scale MPS algorithm. In order to select the best configuration,
we compare statistics of the generated images to those of the Training Image. The stud-
ied parameters are the size of the window wc and the patch pc used for the coarse level
simulation. The other parameters (wf , pf , Ups, and the seed used to initialize randomly
this simulation) are kept constant.

Tab. 6.2.3 shows the different parameter settings of the MPS algorithm used to find
suitable settings to reproduce experimental phase distributions (Fig. 6.5). Here, Nx and
Ny are the dimensions in pixels of the Training Image, wf and pf the template and patch
size at the fine scale, and wc and pc the template and patch size at the coarse scale. The
random seed determines the choice of the first patch.

Fig. 6.5 shows that the configuration 5 shows the best agreement between generated
and experimental image statistics, therefore we chose those parameters in the following.

Settings Nx Ny wf pf wc pc Ups seeds
n°1 1200 1200 39 29 49 29 10 5
n°2 1200 1200 39 29 59 29 10 5
n°3 1200 1200 39 29 9 6 10 5
n°4 1200 1200 39 29 29 9 10 5
n°5 1200 1200 39 29 9 3 10 5
n°6 1200 1200 39 29 49 19 10 5
n°7 1200 1200 39 29 39 29 10 5

Table 6.1 – MPS parameters for the choice of the best configuration.

6.3 Method validation

The study is based on three experimental images with different saturation levels (Sw =
1, Sw = 0.87 and Sw = 0.70). Saturation profiles were not constant along the micromodel
axis, notably near the micromodel inlet and outlet due to capillary effects. In order to



6.3. Method validation 113

Figure 6.5 – Statistics of MPS generated image obtained with 7 parameter settings com-
pared to the Training Image (TI) for saturation, porosity, grain and air clusters size
distributions. The relative value is defined as the ratio between the MPS generated and
experimental images value (for instance, for saturation the ratio is SMPS

w /SExp
w ). The

shaded area indicates the tolerance zone for which the settings provide statistics close
enough to the Training Image, for example settings n°5 (wf = 39, pf = 29, wc = 9, pc = 3,
Ups = 10.)

work with rather homogeneous two-fluid-phase distributions, the experimental images have
been slightly cropped to avoid boundary effects.

6.3.1 Generated images

Fig. 6.6 shows results of the MPS algorithm after post processing for both saturated
and unsaturated cases. As a reminder, the parameters chosen for those images correspond
to the best setting found Fig. 6.5 (n°5). The training image TI, indicated on the experi-
mental images in Fig. 6.6, is chosen to be as representative as possible of the whole image
in terms of structure properties.

Visually, the generated images show good agreement with their respective training
images. The saturated medium is reproduced with a similar porosity (0.66 vs 0.69 for the
experimental and the generated image, respectively). The average values of saturation
Sw are also very similar between the experimental images and their respective generated
images (1 vs 1,0.87 vs 0.85,0.70 vs 0.65). Plus, fine structure elements such as water films
around bubbles are reproduced as well, as it can be seen on the zooms of Fig. 6.6.

6.3.2 Structural properties

We analysed and compared the structural properties of the experimental images and
MPS generated images, first focusing on the porous medium structure (i.e. the mask) and
then on the two-fluid-phase distribution.

Statistical comparison of the porous structure

In the previous section, we analyzed four mean quantities (saturation, porosity, air and
grains size standard deviation). To analyse further the structure of the generated porous
medium and compare it to the experimental porous medium, grains, pores and throats
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Figure 6.6 – [Top] Phase segmentation for saturated (Left) and unsaturated conditions
[Middle and Right], respectively ExpImSw=1, ExpImSw=0.87 and ExpImSw=0.70. The
blue square indicates the window chosen as training image TI for the MPS algorithm.
[Bottom] Simulation results, the MPS generated images are GenImSw=1, GenImSw=0.85
and GenImSw=0.65 after post-processing. The algorithm settings are identical for these
realizations (wf = 39, pf = 29, wc = 9, pc = 3, Ups = 10, as defined in section 6.2.3).

distributions in size (area) are computed. The analysis of pore and throats properties was
performed with the imageJ software, as detailed in Chapter 3, 3.2.1. Fig. 6.7 (Left) shows
the cumulative distributions of grain, pore and throat sizes for the saturated experimental
image ExpImSw=1 and generated image GenImSw=1. The distributions are all in good
agreement.

Additionally, in order to assess if the grains shape was reproduced as well, we computed
the distributions of several geometric factors such as the circularity and the solidity. The
circularity of an object (grain or air cluster) is defined as C = 4πArea

Perimeter2 , and the solidity
S = Area

Convex Area quantifies the objects convexity 1. Fig. 6.7 (Right) shows the circularity
and solidity distributions of the saturated experimental image ExpImSw=1 and generated
image GenImSw=1, and they are in good agreement as well.

1. The convex area or convex hull of a shape is the smallest convex set that contains it.
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Figure 6.7 – (Left) Cumulative probability density function in size (area) of grains, pores
and throats for the generated image (GenImsat) and the experimental image (ExpImsat)
in the saturated case. To facilitate comparison across all saturations (ranging from 0 to
1), the area for each distribution has been normalized by its maximum value. It ensures
that the sizes of the distributions are scaled within a common range of 0 to 1. (Right)
Grains solidity and circularity cumulative probability density function for the generated
image (GenImsat) and the experimental image (ExpImsat).

Statistical comparison of the two-fluid-phase distributions

We analysed and compared the two-fluid-phase topology of the unsaturated exper-
imental images (ExpImSw=0.87, ExpImSw=0.70) and their respective generated image
(GenImSw=0.85, GenImSw=0.65) for two saturation values. Air clusters are analysed in
terms of size and geometry.

Fig. 6.8 shows the different distributions characterizing the air clusters of the ex-
perimental images and their respective generated images. The experimental air clusters
distributions in size (Fig. 6.8 (Left)) of both saturations are very well reproduced by the
MPS algorithm. The size distribution for low saturation shows more large size clusters, for
both generated and experimental images. In addition, the distributions of circularity and
solidity (Fig. 6.8 (Right)) show, that there is a rather good agreement between the air
clusters shapes in the experimental images and the MPS generated ones, even though there
is more discrepancy than for size distributions. Notably, air clusters circularity tends to be
slightly superior for generated images than for the training images. This might be caused
by the post-processing algorithm that tends to smooth the shapes and erases asperities,
as well as by the size of the training image that might be slightly small.

6.3.3 Flow and transport properties

As the structures of the saturated and unsaturated porous media are correctly repro-
duced by MPS, we now investigate flow and transport properties of the generated images.
To this goal, we simulate the velocity and concentration fields using Lattice Boltzmann
method (LBM) in the MPS generated images GenIm and in the experimental images
ExpIm. We assume the bubbles to act as an extra solid matrix in the simulations.

Velocity fields comparison

Fig. 6.9 shows crops of the velocity field of the experimental images as well as the
corresponding MPS generated images for the three saturation values. Specific patterns
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Figure 6.8 – Different distributions characterizing the shape of the air clusters for exper-
imental images for two saturation values (ExpImSw=0.70 and ExpImSw=0.87) and their
respective MPS generated images (GenImSw=0.65 and GenImSw=0.85). The distributions
are described through cumulative probability distribution functions. (Left) Distribution
in size. (Right) Distribution in solidity and circularity.

of the velocity field of each saturation are correctly reproduced in the generated images.
Notably stagnant zones (corresponding to the black areas) and high velocity zones, that
are characteristic for lower saturations, seem to be properly generated.

Figure 6.9 – Velocity magnitude computed with LBM (cropped images), in the experimen-
tal images [Top] and in the corresponding generated images [Bottom] for three saturation
values (Sw = 1, Sw = 0.87, Sw = 0.70) ⟨∥u∥⟩max = 0.06 (LBM units).

More quantitatively, Table 6.2 shows the mean value of the velocity norm ⟨∥u∥⟩ and its
normalized standard deviation σ∥u∥

⟨∥u∥⟩ of the experimental and the generated images. The
mean velocity in the generated images is rather well reproduced in the saturated case,
but as water saturation decreases the gap between the mean velocity of the saturated and
unsaturated porous medium widens. Nonetheless, the standard deviation is in rather good
agreement for all saturation values. To be more quantitative, we computed the velocity
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Image ⟨∥u∥⟩ (LB units) σ∥u∥
⟨∥u∥⟩

ExpImSw=1 5.77 · 10−3 0.62
GenImSw=1 5.41 · 10−3 0.58
ExpImSw=0.87 5.06 · 10−3 0.82
GenImSw=0.85 4.06 · 10−3 0.87
ExpImSw=0.70 2.69 · 10−3 1.05
GenImSw=0.65 1.70 · 10−3 1.25

Table 6.2 – Comparison of the mean of velocity norm ⟨∥u∥⟩ and its normalized standard
deviation σ∥u∥

⟨∥u∥⟩ between experimental and generated images.

distribution shown in Fig. 6.10. Velocity distributions are also in very good agreement.
The fact that the velocity fields of unsaturated porous media show more low velocity values
is also correctly reproduced by the MPS images. Indeed, when the saturation decreases,
the heterogeneity of the medium increases and it leads to stagnant zones, which accounts
for very low velocities in the distribution, as well as water films. Consequently, the MPS
algorithm allows properly reproducing the flow properties of saturated and unsaturated
porous media.

Figure 6.10 – Velocity distribution for the experimental images and their corresponding
generated images. The velocity for each image has been normalized by its mean value.

Comparison of the concentration fields

As the flow properties are well conserved in the generated images, we computed the
concentration fields using LBM. Fig. 6.11 shows the resulting concentration fields of the
experimental images as well as of the generated images, for identical simulation settings.
Characteristic patterns of each saturation are qualitatively well reproduced by the MPS
images. For the saturated porous medium a homogeneous tracer front can be observed
in both images. Also, an increase in heterogeneity of the front with decreasing saturation
can be seen in the experimental and the generated images. In addition, the appearance
of low concentration zones (stagnant zones reached by the tracer only by diffusion) and
high concentration zones (corresponding to preferential, high velocity paths in the velocity
field) when the saturation decreases is well reproduced in the generated images. This is a
consequence of the heterogeneity characterizing the velocity field. Furthermore, Fig. 6.12
(Left) shows concentration profiles (average concentration in y-direction as a function of x)



118
Chapter 6. Generating synthetic images of unsaturated porous media

with a multiscale multipoint statistics approach

Figure 6.11 – Concentration fields simulated with Lattice Boltzmann for the three inves-
tigated saturation values for experimental images (Top) and their respective generated
image (Bottom) at t = 1.0 · 105 LB units, cmax = 1.

at a given time (t = 1.2 · 105 LB units). The concentration profiles of the experimental and
the generated images are very close. Second moments σ2(t) are computed as a function of
time to quantify the spreading of the concentration front (see Fig. 6.12 (Right)). Second
moments in the unsaturated case show rather good agreement as well. However, we notice
that the agreement is slightly weaker when we decrease the saturation. This is due to
the fact that the saturation profile is increasingly noisy because the system becomes more
heterogeneous. Increasing the training image size would probably improve the agreement.

In conclusion, dispersion behavior is similar in the generated and experimental porous
media for all investigated saturations. Consequently, the methodology proposed here
enables studying dispersion in unsaturated porous media in this whole range of saturation,
for numerous phase configurations and porous media sizes.

6.4 Conclusions

In this chapter, we proposed a new workflow allowing further investigations of transport
mechanisms in two-dimensional unsaturated porous media. From experimental images,
we generated new images using a multi-scale MPS algorithm. We compared structural
properties such as porosity, grain, pore and throat size distribution for the porous structure
(saturated medium) and the saturation and air clusters distribution for the two-fluid-
phase topology (unsaturated media). Using the proper parameters, there was an overall
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Figure 6.12 – (Left) Concentration profiles at t = 1.2 · 105 LB units for the three satura-
tion values for the experimental images ExpIm and their respective MPS generated images
GenIm. (Right) Temporal evolution of the second spatial moments σ2(t) describing the
spreading of the tracer front of the concentration fields given in Fig. 6.11. σ2(t) is given
for the three saturation values for the experimental images ExpIm and their respective
MPS generated images GenIm.

very good agreement between properties of the experimental images and MPS generated
images. Using Lattice-Boltzmann method, we computed velocity and concentration fields
in both experimental and generated images, for saturated and unsaturated conditions. We
showed that the velocity distributions were very similar. Concentration profiles were also
in very good agreement, and the variance points out that the dispersion properties of the
experimental images are well reproduced by the MPS images. Consequently, it is possible
to generate an unsaturated porous medium having a new topology but similar properties
that will lead to the same transport behavior.

An interesting feature of this work is that the generated images are theoretically not
limited in size, in contrast to experimental images. The only restrictions are the computa-
tional time and the computer’s memory. Therefore, it becomes possible to study long time
dispersion, which is essential to grasp the asymptotic dispersion behavior in unsaturated
porous media. Indeed, tracer diffusion into dead end pores is very slow and contributes
to long tailed distributions. Consequently, the influence of dead ends can also be seen at
larger time scales. Further on, for heterogeneous or unsaturated structures, asymptotic
regimes only establish for large systems. Thus, the determination of the transport be-
havior (Gaussian or not) in unsaturated porous medium requires computations in large
structures. The MPS algorithm also allows to generate a large number of different porous
structures for a given saturation, leading to several statistical realisations when studying
transport properties. Indeed, a statistical relevant data set allows further insights into
the correlation between transport and saturation. In conclusion, the workflow proposed
here provides the technical tools to gain valuable knowledge on transport in unsaturated
porous media.

In the following, we use this new developed methodology for two main goals: study
long time dispersion in long unsaturated porous media for different saturations, and realise
a statistical analysis of short term dispersion by generating a large number of images with
different configurations.





Chapter 7

Numerical results on flow and
dispersion in unsaturated porous
media

7.1 Introduction

In chapter 5, we conducted an experimental study on transport in unsaturated porous
media using a micromodel. This allowed us to understand the nature of multiphase flow
and observe phase configurations resulting from immiscible two-phase flow. Through trans-
port experiments, we identified dispersion patterns such as dead ends and preferential flow
paths in the medium, and we analyzed the influence of saturation on dispersivity.

However, we encountered several limitations in our experimental approach. Firstly,
the micromodel’s short length prevented us from studying long-time dispersion and de-
termining whether the dispersion behavior in unsaturated porous media follows a Fickian
or non-Fickian nature. Indeed, implementing precise initial conditions for transport is
a challenging task, as the concentration front at the entrance of the micromodel is not
perfectly neat at the beginning of experiments. Additionally, experimental noise posed
challenges in interpreting the results accurately.

To overcome these limitations and complement our experimental findings, we used lat-
tice Boltzmann methods (LBM) for flow and transport simulations within the image of
the micromodel, making certain assumptions, notably considering gas as an additionnal
solid phase. To validate the assumptions made in the Lattice Boltzmann Method (LBM)
model, we conducted experimental tests using a micromodel. The micromodel served as
a physical representation of the system under both saturated and unsaturated conditions.
We compared experiments with simulations in the respective 2D images of the unsatu-
rated medium. Thus, we could verify the accuracy of the LBM model against empirical
observations. While we could not directly obtain phase distribution through simulations,
we utilized a machine learning approach based on the multiple-point statistics (MPS) al-
gorithm to generate images with similar structures to experimental unsaturated images
used as training images. The MPS algorithm was presented in chapter 6. We conducted
validation to ensure that the flow and transport properties in the generated images closely
matched those observed in the experimental images. The results of the validation process
confirmed that the properties in the generated images were indeed similar to those in
the experimental images. This validation provides confidence in the use of the generated
images for further analysis and study of flow and transport in unsaturated porous media.
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With this workflow in place, our objective is to create a dataset of MPS-generated
images to study transport in unsaturated porous media with statistical relevance. Ad-
ditionally, we aim to investigate long-time dispersion using longer images generated by
the MPS algorithm. Considering the quadratic increase in computation time with image
length in LBM simulations, we employ two strategies. Firstly, we create a dataset of gen-
erated images that match the size of the micromodel to study many different realizations
and enable statistical analysis of short-time dispersion. Simultaneously, we perform long
time dispersion transport simulations in long images on a selected range of saturations.

The chapter is structured as follows:

• Presentation of the datasets used for our main study on flow and transport, along
with their creation process. This includes the dataset of unsaturated images match-
ing the micromodel size for statistical analysis of short-time dispersion, and the
dataset of long images for studying long-time dispersion;

• Characterization of the effect of saturation on flow properties, particularly how it
decreases permeability, enhances flow heterogeneity and alters the spatial character-
istics of flow;

• Statistical study of short-time dispersion, including an analysis of the nature of
dispersion on short images and how the non-Fickian behavior evolves with saturation.
Additionally, the effect of the Peclet number on dispersion is examined to determine
its role in the non-Fickian behavior of short-time dispersion;

• Examination of long-time dispersion on long images for a selection of saturations to
assess if the non-Fickian behavior persists over time. The effect of the Peclet number
is further investigated;

• Investigation of the effect of borders on dispersion, evaluating the impact of medium
width on flow properties on short and long images.

7.2 Data set

In this chapter, our focus is on conducting Lattice Boltzmann Method (LBM) sim-
ulations using the MPS workflow outlined in the previous chapter 6. In this section,
we provide further clarification on the dataset we utilize to generate these images and
the process of creating a representative dataset of MPS-generated images for studying
dispersion.

7.2.1 Experimental Dataset: training images

Through our experimental study, we acquire phase distributions resulting from co-
injection across a saturation range of 0.55 to 1. The experimental dataset comprises 25
images that capture the configuration of phases within the micromodel. From this dataset,
we extract training images (TI).

We aim to create training images statistically representative of the various saturations
and phase distributions that can be observed in the micromodel. We cannot take a whole
experimental image as a training image, because of a memory limitation of the MPS algo-
rithm we use. However, from a same experimental image, we can extract different training
images with different configurations. Each training image is not necessarily representative
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of the whole experimental image. Indeed, the REV for phases configurations might be
superior to the TI size or even the micromodel size for the lower saturations. However, it
allows us to explore a large set of saturations and configurations. Our TI dataset contains
20 training images. For a sufficiently large number of TI, it allows to create a training
image dataset fully representative of the phases configurations in the micromodel and their
variability.

7.2.2 Generated images: two data sets

The Multiple-Point Statistics (MPS) approach allows us to generate images of desired
sizes and various configurations using a training image (TI). By leveraging the MPS tech-
nique, we can create datasets suitable for conducting Lattice Boltzmann Method (LBM)
simulations to study flow and transport phenomena. However, conducting simulations on
long images can be computationally intensive and time-consuming.

To address this challenge, we employ two parallel strategies in our approach. Indeed,
our main datasets for LBM flow and transport computations consist of two distinct sets:

• The short dispersion dataset: this dataset comprises images that are approximately
the same size as the micromodel (Ly

∗ = 1980, Lx
∗ = 3780 pixels 1 or Ly = 0.90, Lx =

1.73 cm). To ensure statistical significance and capture the variability in the system,
we generate multiple realizations for each training image using different random
seeds. This dataset allows us to study short-time dispersion phenomena within a
reasonable computational time.

• The long time dispersion dataset: in contrast to the short dispersion dataset, the
images in this dataset are four times longer (Ly

∗ = 1980, Lx
∗ = 18000 pixels, or

Ly = 0.90 and Lx = 8.3 cm). However, due to the increased size, the computational
cost for simulating flow and transport becomes significantly higher. Therefore, we
carefully select a limited number of long images to investigate dispersion over longer
time periods. These longer images enable us to gain insights into the behavior of
solute transport over extended durations, albeit at a higher computational expense.

Table 7.1 presents a summary of the properties associated with the two datasets.
Fig.7.1 illustrates how the MPS generated dataset was created.

By leveraging these two datasets, we can comprehensively analyze both short-time
and long-time dispersion phenomena, balancing computational efficiency and capturing
the relevant aspects of flow and transport processes.

Short-time dispersion dataset Long-time dispersion dataset
Numbers of TI 20 5
Lx

∗ (pixels) 3780 18000
Number of processors 180 9000

Table 7.1 – Properties of the two different datasets

1. The notations Lx
∗ and Ly

∗ concerns Lattice-Boltzmann units
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Figure 7.1 – Creation of the MPS generated images from experimental images, illustration
with an experimental image of the micromodel.

7.3 Effect of saturation on the flow

7.3.1 Introduction

In this section, we examine the evolution of different characteristics (permeability,
tortuosity, heterogenity) of the flow with saturation across the entire range of saturation
values, Sw ∈ [0.5 − 1] 2. To have a large number of data points, we use the dataset with
small size realizations.

In the initial stage of our analysis, we concentrate on the evolution of permeability
as it relates to water saturation. It has been observed that as the saturation decreases,
the permeability of the medium also diminishes [112]. Our objective is to quantitatively
measure this effect and determine if our data aligns with existing models or theories. Sec-
ondly, we delve into the evolution of velocity fields in relation to saturation. Our transport
experiments have revealed the presence of dead ends within the medium, which are charac-
terized by areas of low velocity, as well as preferential flowpaths exhibiting high velocities.
We aim to quantify how saturation influences the occurrence of low-velocity dead ends
and examine the heterogeneity of flow through the standard deviation of velocity. Lastly,
we observed that dispersion patterns undergo alterations with varying saturation levels.
There is a spatial reorganization of the flow that demands characterization. Specifically,
we analyze the spatial correlation of the flow with saturation and also explore tortuosity,
which highlights the increased significance of transverse flow at low saturations.

7.3.2 Apparent permeability

Permeability is an essential characteristic of porous media. Understanding the perme-
ability of a porous medium is crucial for predicting fluid flow patterns and transport of

2. The saturation range is slightly larger than in the experiments, as training images selected in unsat-
urated experimental images can have a smaller saturation than the whole medium.
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contaminants. In our medium, the gas phase consists of immobile air clusters, which we
have treated as an additional solid matrix in our simulation. This allows us to calculate
the apparent permeability of the flow as a function of saturation.

By analyzing the velocity fields, we can determine the mean Darcy velocity of the
medium, denoted as UDarcy.

UDarcy = 1
LxLy

Lx∑
i=0

Ly∑
j=0

ux(xi,yj) (7.3.1)

with LxLy the number of pixels in the image (width and length of the image) 3. The
apparent permeability Kapp in the x-direction can then be computed using the equation

Kapp = −UDarcyνρLx

∆P , (7.3.2)

where ν, ρ, Lx, and ∆P represent constant parameters in our simulations, given in the
numerical methods section 4.3.1.

Since many permeability models incorporate porosity as a key parameter, we introduce
the concept of apparent porosity to facilitate comparisons. The apparent porosity of the
medium can be calculated using the equation

ϕapp = ϕSw, (7.3.3)

where ϕ represents the saturated medium porosity, which equals 0.69 in our case.

Fig. 7.2 illustrates the relationship between the apparent permeability and the appar-
ent porosity of the medium. Our observations reveal a clear trend where the permeability
decreases as the apparent porosity, or saturation, decreases. In the fully saturated medium
(represented by Sw = 1 and ϕapp = ϕ = 0.69), the apparent permeability is measured at
approximately 20 Darcy 4. As the saturation decreases to its lowest point (Sw = 0.5 and
ϕapp = 0.40), the apparent permeability approaches zero.

Numerous experimental and numerical studies have extensively explored the relation-
ship between porosity and permeability, including well-known models like the Kozeny-
Carmann model and its derivatives [152]. Several authors have proposed power-law rela-
tions, summarized by Equation 7.3.4, where permeability (K) is expressed as a function
of porosity (ϕ), with R representing a function of the pore radius and c denoting the
power-law index.

K = Rϕc. (7.3.4)

We can fit our data using a power-law function of the form Kapp = Rϕc
app, considering the

apparent porosity, to determine the values of R and c that provide a good fit.

In our experimental observations, we found that we were unable to achieve saturation
values lower than approximately Sw0 ∼ 0.5, which corresponded to the point where water
phase percolation occurred. As a result, the permeability approached zero for saturation
values close to this limit. We introduced the concept of percolation apparent porosity
ϕ0 = ϕSw0, representing the porosity below which there is no longer percolation of the
water phase.

3. UDarcy = ϕ⟨ux⟩ with ⟨ux⟩ the interstitial longitudinal velocity.
4. It is superior to the value of the experimental micromodel set-up permeability (4.7 Darcy), as we

measure not only the micromodel but also all the connectors permeability in the experimental case.
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Figure 7.2 – Apparent permeability as a function of the apparent saturation ϕapp = ϕSw.
A power law fit is shown in the figure.

To better represent the trend of permeability approaching zero as the saturation ap-
proaches the lower limit of our saturation range, we employed a fitting approach with the
equation Kapp = R(ϕapp − ϕ0)c. As seen in Fig 7.2, the model reasonably fits our data,
yielding the following parameters R = 153, c = 2.2, and ϕ0 = 0.3. Consequently, the
permeability can be described by the equation

Kapp = Rϕc(Sw − Sw0)c. (7.3.5)

Overall, the evolution of the apparent permeability of the medium aligns with certain
classical models that establish the relationship between permeability and porosity in ex-
perimental systems. We ignored the two-phase nature of our system by considering the
apparent porosity, however it still gave satisfying matches with existing theories. This
is rather surprising, as the structure of the gas phase is quite different from the porous
structure. It would be relevant to extend this analysis to different media with varying
porosity values to assess the general applicability of this model in describing the evolution
of permeability with saturation.

7.3.3 Velocity field distributions

Velocity distributions

The velocity field in a porous medium provides valuable information about how fluids
flow within the material. It reveals how the flow velocity varies spatially across the porous
medium. Notably, it gives insights into the heterogeneity of the flow, heterogeneous ve-
locity fields can include to preferential flow or localized stagnation zones, influencing the
overall transport and mixing behavior. This section describes the velocity field changes
with saturation in the porous medium. The aim is to understand how low and high
velocities are affected by different saturation levels.

Due to the wide range of velocities, we consider the distribution of the logarithmic
velocities p(log |u|). We consider interstitial velocity, i.e. velocities in the flow section of
the porous medium (taking the gas phase as solid). Only strictly positive velocities are
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taken into account. Moreover, to facilitate comparison, the velocities are normalized by
the mean velocity. This normalization accounts for variations in mean velocity caused
by changes in permeability with saturation, as we applied the same pressure drop in all
simulations. The normalized velocity is given by

unorm(x,y) = ∥u∥(x,y)
⟨∥u∥⟩

. (7.3.6)

Figure 7.3 – For different saturations, distributions of log(unorm) are shown. The number
of bins for the distribution computation is given by Nbin=300.

In Figure 7.3, the velocity distribution is plotted for various saturation values. It
is observed that as the saturation decreases, the velocity distribution becomes wider,
and the tail of the distribution extends towards lower velocities. This widening suggests
the formation and expansion of dead-end regions within the medium. Notably, at lower
saturation levels, a second peak emerges at very low velocities, indicating the presence of
nearly stagnant zones in the flow.

Additionally, there is a spreading towards high velocities with saturation especially
below Sw = 0.70. These high velocities arise due to the formation of preferential paths
as the saturation decreases. The maximal velocity increases with decreasing saturation
implying a stronger flow along these preferential paths.

The transition between the velocity distributions of saturated and unsaturated con-
ditions is observed to be rather gradual in our study, which contrasts with findings from
other similar studies such as Velasquez et al. (2021) [122]. One possible explanation for
this difference is that the system under investigation in our study does not involve a model
system with regular pillars. Instead, it consists of an intrinsic heterogeneous medium de-
rived from a rock section. The inherent heterogeneity of the medium could contribute
to the progressive nature of the transition between saturated and unsaturated velocity
distributions, as compared to the more abrupt transitions observed in studies involving
regular pillar structures.

In summary, the velocity distribution analysis reveals that as saturation decreases, the
velocity field undergoes changes characterized by a wider distribution, spreading towards
lower velocities, as well as the appearance of nearly stagnant zones and the development
of preferential flow paths with higher velocities.
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Heterogeneity of the flow: velocity standard deviation

The characterization of flow heterogeneity is performed by considering the normalized
standard deviation of the velocity field, denoted as σu. We consider the interstitial velocity,
therefore σu is defined considering the ensemble of points where the liquid is present within
the medium, denoted as L. The size of L is given by ϕappnxny and therefore

σu
2 = 1

ϕapp

1
LxLy⟨∥u∥⟩2

∑
(xi,yj)∈L

(∥u∥(xi,yj) − ⟨∥u∥⟩)2. (7.3.7)

Figure 7.4 displays σu as a function of saturation, revealing that the standard devi-
ation increases as the saturation decreases. This indicates that the flow becomes more
heterogeneous in unsaturated conditions. Notably, for the lowest saturation values, the
standard deviation is approximately three times higher than that in saturated conditions.

Figure 7.4 – Normalized velocity standard deviation σu as a function of saturation

Moreover, when plotted on a logarithmic scale, a linear relationship is observed between
σu and the saturation. This linear behavior suggests a power law relationship between the
two variables. Fitting the data with a power law yields a satisfactory agreement, with a
power coefficient of -1.9, giving the following relation

σu ≃ σu,Sw=1S
−1.9
w . (7.3.8)

7.3.4 Spatial evolution of the flow

The velocity distribution helps to identify the existence of pathways through which
fluids preferentially flow within the porous medium. It indicates the presence of regions of
higher or lower flow velocities, revealing the network of interconnected pores or channels
that contribute to fluid transport.

Qualitative observations

Fig. 7.5 presents velocity fields for 5 different saturations covering the whole range
of saturation. As saturation decreases, we observe that certain flow paths become pre-
dominant, leaving zones with almost no flow that grow in size. For the lower values of



7.3. Effect of saturation on the flow 129

saturation, particularly near the percolation limit (Sw ∼ 0.5), there are only a few velocity
paths and the dead ends are nearly as large as the medium width.

Figure 7.5 – Example of velocity fields for 5 saturation values. (MPS generated porous
media).

Dead-ends

As we discussed, the velocity distributions show the presence of low velocity zones
of increasing importance when the saturation decreases, corresponding to dead ends in
the flow. To characterize these dead-ends, we compute for all saturations the area where
velocity is under a certain velocity threshold (excluding the solids and air clusters). We
try different thresholds to ensure that the main tendency is for the dead ends does not
depend on the threshold.

This velocity ratio threshold is chosen between ru,threshold = uthreshold
⟨∥u∥⟩ = 1.6.10e−4 and

ru,threshold = uthreshold
⟨∥u∥⟩ = 1.6.10e−6, the lowest range of velocities in the saturated porous

medium (cf Fig. 7.3). Again, the threshold is normalized by the mean velocity in the
medium for all saturations.

Fig. 7.6 shows the area of dead ends according to the saturation. It decreases expo-
nentially with saturation, reaching maxima for the lower saturations. The tendency does
not depend on the velocity threshold chosen, as we find a similar exponential factor.

Tortuosity

Tortuosity provides valuable information on the geometric complexity and the path
lengths of fluid flow within the material. It quantifies the degree to which fluid path-
ways deviate from straight lines due to the tortuous nature of the porous structure. As
the saturation decreases in our medium, the level of heterogeneity increases, resulting in
greater tortuosity. This can be attributed to the growth of obstacles within the medium,
which causes the paths reaching the end of the medium to become more convoluted and
tortuous.

Tortuosity is typically defined as the ratio of the average pore length (Le) to the length
of the porous medium (L) along the major flow or diffusion axis

τ = Le

L
. (7.3.9)
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Figure 7.6 – Area of dead ends as a function of saturation for different velocity thresholds.
Exponential fits are shown.

Alternatively, another straightforward approach to compute tortuosity is by calculating
the ratio of the average magnitude of the velocity over the entire flow (solid zones where
there is no flow are not considered) to the average magnitude of its component along the
macroscopic flow direction (x) using the latter equation:

τ = ⟨∥u∥⟩
⟨|ux|⟩

. (7.3.10)

We compute the tortuosity for the entire dataset. While most tortuosity models con-
sider the relationship with porosity, there is a lack of consistency in models that incorporate
the relationship between tortuosity and saturation, which likely depends on the specific
characteristics of the medium and flow. As a result, we choose to represent the tortuos-
ity as a function of the apparent porosity in Figure 7.7. Our findings demonstrate that
tortuosity increases as saturation decreases, indicating that the flow paths become more
convoluted. At lower saturations (or apparent porosities), the tortuosity reaches a value of
1.4, indicating that transverse velocity contributes nearly as much as longitudinal velocity.

There are several models available to explain the connection between tortuosity and
porosity. Among them, the logarithmic model proposed by Koponen et al. [98] is frequently
mentioned. Koponen et al utilized the Lattice Gas Automata (LGA) technique to solve
flow equations within a two-dimensional porous medium composed of randomly positioned
rectangles. They investigated the porosity range of ϕ ∈ [0.5, 1] and arrived at the following
findings

τ = 1 − p lnϕ. (7.3.11)

Barrande et al. (2007) [9] developed a correlation based on experimental measurements
on glass sphere pack in 3D with p = 0.49.

We fitted our data with the logarithmic model and obtained a satisfactory fit, with
p = 0.42, which is surprisingly close to the coefficient (p) obtained by Barrande et. al [9]
(p = 0.49).

Overall, the evolution of flow tortuosity aligns with classical models that describe the
relationship between tortuosity and porosity in experimental model systems. It is worth
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noting that our study accounts for apparent porosity variations resulting from changes
in saturation. The two-phase (air/water) nature of our system is ignored when defining
the apparent porosity, but as we found that the tortuosity still aligns with classical mod-
els considering tortuosity change over porosity, it may then not significantly impact the
tortuosity.

Figure 7.7 – Tortuosity τ as a function of the apparent porosity ϕapp.

Spatial correlation of the flow

As mentioned earlier, the flow exhibits distinct patterns, including zones of low velocity
and preferential flow paths with high velocities. These patterns become more prominent
as the saturation decreases. Specifically, the low velocity zones tend to expand, and the
preferential flow paths become fewer in number. This behavior is particularly noticeable
in the growth of dead ends and the reduction of available preferential paths. Consequently,
the spatial heterogeneity of the flow experiences a significant increase.

To quantify the spatial heterogeneity of the flow and determine its characteristic length,
we employ the autocorrelation function, denoted as ζ(x, y). This function is defined as
follows

ζ(r⃗0) = 1
LxLy

∫ ∫
v(r⃗)v(r⃗0 − r⃗)dr⃗ (7.3.12)

with v(x,y) = ∥u(x,y)∥−ϕapp⟨∥u∥⟩
ϕapp⟨∥u∥⟩ the normalized and centralised velocity. The mean velocity

is computed for the entire medium, including solid components where there is no flow.
As discussed later, the flow might decrease close to the boundaries. To mitigate these

boundary effects and ensure accurate computation of the autocorrelation function, we
focus on the central region of the medium, excluding the boundaries. Specifically, we
consider the spatial domain defined by 0.05Lx < x < 0.95Lx and 0.15Ly < y < 0.85Ly.
It is particularly important to account for the boundary effects in the transverse flow,
especially at low saturation levels, as we will see in a following section.

Furthermore, due to the presence of flow directionality along the x axis, the x and y
directions are not equivalent in the velocity field. Consequently, we cannot compute the
correlation function using the norm of the distance ⟨∥r∥⟩. Instead, we separately analyze
the correlation in two directions. We calculate ζ(x = 0, y) = ζx=0(y) to examine the
correlation in the direction transverse to the flow, and ζ(x, y = 0) = ζy=0(x) to analyze
the correlation in the direction of the flow. This approach allows us to capture and
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differentiate the spatial correlation characteristics in each direction, accounting for the
anisotropy of the velocity field.

Figure 7.8 – Correlation function in the transverse direction ζx=0(y) (Left) and in the
longitudinal direction ζy=0(x) (Right) for a selection of saturation values.

In Figure 7.8, we present the transversal and longitudinal correlation functions of the
flow. The left side of the figure displays the transversal correlation function, while the
right side shows the longitudinal correlation function. These functions are plotted for
various saturation levels.

An important observation is that as the saturation decreases, the correlation function
exhibits a slower decrease, indicating a longer-range spatial dependence. In other words,
the correlation persists over greater distances at lower saturation levels. Comparing the
transversal and longitudinal correlation functions, we notice a significant difference in
correlation lengths. The correlation length in the longitudinal flow direction is greater
compared to the transverse flow direction by approximately an order of magnitude. This
indicates that the flow exhibits stronger spatial correlation along the direction of the flow
compared to the transverse direction.

To quantify the characteristic correlation length, we introduce a threshold approach.
We define a threshold value rζ such that the correlation function falls below these thresh-
olds at specific distances ξx and ξy. We select a threshold value of rζ = 0.05. Several
methods, including exponential fitting and integral computation, were tested for length
quantification, and the threshold method yielded the best results.

In Fig. 7.9, we present the evolution of the computed correlation length with satura-
tion. The figure shows the characteristic correlation length for the transversal direction
ζx=0(y) and the longitudinal direction ζy=0(x). In saturated conditions, the correlation
length in the transverse direction is of the same order of magnitude than the pore size (0.1
mm). The correlation length globally increases as the saturation decreases, indicating that
the spatial structures of the flow become more extended and exhibit larger characteristic
lengths at lower saturation levels.

7.3.5 Conclusion

In this section, we examined various properties of flow in unsaturated porous media
using our dataset of MPS-generated images with micromodel size. Here is a summary of
our findings.
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Figure 7.9 – Correlation characteristic length as a function of saturation in the transverse
direction ξy for and in the longitudinal direction ξx for a threshold rζ = 0.05.

Average Flow Properties We calculated the apparent permeability of the flow by
considering air clusters as an additional solid phase, as they do not percolate or move in the
flow. We related the apparent permeability to the apparent porosity, which is proportional
to the saturation. The results showed that the apparent permeability decreases with
decreasing saturation following a power law relationship Kapp = Rϕ2.2(Sw − Sw,perc)2.2 .
This finding is consistent with existing models and experimental studies relating porosity
and permeability.

Velocity Distribution We analyzed the velocity field distributions and observed that
as the saturation decreases, the distribution widens significantly for low velocities, indi-
cating the presence of dead ends in the medium. Additionally, high velocities are more
prevalent in low-saturated media, indicating the emergence of preferential flow paths. The
maximum velocities also increase with decreasing saturation, indicating that as the num-
ber of preferential paths decreases, the velocity within them increases by one order of
magnitude compared to saturated conditions. Overall the flow heterogeneity increases,
as quantified by the standard deviation of velocities, which increases threefold in low
saturation compared to saturated conditions, and follows a power law σu ∝ S−1.9

w .

Tortuosity The heterogeneity of the flow is also spatial, as the pathways become more
and more tortuous as the saturation decreases. We aimed to characterize the evolution
of flow tortuosity with saturation. As mentioned in the experimental chapter, dead ends
grow in size as saturation decreases, resulting in tortuous flow paths. We found that
the tortuosity increases with decreasing saturation and could be described using apparent
porosity. Our data fitted well with the logarithmic model commonly used in numerical
and experimental studies.

Dead-ends and spatial correlation of the flow We investigated the emergence of
dead ends by considering the cumulative area covered by regions with velocities below the
lowest velocities observed in saturated conditions. We observed an exponential increase
in the dead-end area with decreasing saturation. Furthermore, we examined the spatial
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correlation of the flow to understand how it evolves with saturation. The transverse
correlation length, which is perpendicular to the flow direction, was found to be of the
order of the pore size in saturated conditions and increased as saturation decreased. In
contrast, the longitudinal correlation length, aligned with the flow direction, was greater.
These findings highlight the considerable evolution of spatial heterogeneity in the flow with
saturation, including an exponential increase in the area occupied by dead ends, increased
flow tortuosity, and enhanced spatial correlation of the velocity field.

In summary, our study reveals that as saturation decreases in unsaturated porous me-
dia, the flow exhibits widening velocity distributions, increased flow heterogeneity, higher
flow tortuosity, and the emergence of dead ends and preferential flow paths. These changes
are accompanied by a decrease in apparent permeability and an increase in the spatial cor-
relation length of the flow. Overall, the flow properties undergo significant transformations
with decreasing saturation, leading to more complex and heterogeneous flow patterns.

7.4 Dispersion in unsaturated porous media

7.4.1 Introduction

In this section, we investigate the effect of saturation on dispersion in porous media
with numerical simulations. We perform Lattice-Boltzmann simulation for transport in
the flow fields previously determined. The LBM method in unsaturated conditions, con-
sidering the second phase as solid, has been validated with experiments in the micromodel
in saturated and unsaturated conditions. The flow fields have been computed beforehand
and the properties of the flow, such as the velocity distribution, permeability and emer-
gence of dead ends, have been studied in the previous section. We perform continuous
tracer injections simulation in unsaturated porous media generated with the MPS method
described in a previous chapter. Numerical simulations offer distinct advantages over the
previously described transport experiments. They provide a completely neat initial con-
centration front, minimal noise 5, and allow greater flexibility in parameter adjustments,
such as the Peclet number. As a result, numerical transport simulations enable a more
precise quantification of the evolution of the second moment and the nature of disper-
sion, whether it is Fickian or non-Fickian. Additionally, employing Lattice Boltzmann
simulations in the MPS-generated images offers the advantage of generating a substantial
number of different realizations. Furthermore, it provides flexibility in terms of the size
of the porous medium being simulated. By utilizing numerical simulations, we gain the
flexibility to explore a wider range of scenarios and parameters, providing a deeper under-
standing of dispersion phenomena in unsaturated porous media. This approach bridges
the gap between experimental observations and theoretical analysis, allowing for more
accurate insights into the complex dynamics of dispersion in porous media.

The first part of our study focuses on analyzing short-term dispersion by conducting
simulations on a large number of realizations to ensure statistical relevance. We investigate
dispersion patterns, such as dead ends and preferential paths. Additionally, we delve into
the quantitative aspects by examining concentration profiles and the temporal evolution
of the second moment. In our study, we examine the nature of dispersion in unsaturated
porous media, specifically investigating whether the second moment exhibits a linear rela-
tionship with time or not, through a power law index. Furthermore, we conduct transport
simulations for different values of the Peclet number (Pe) to understand its impact on

5. except for high Peclets for which numerical errors increase significantly
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dispersion. Specifically, we explore whether higher Peclet numbers tend to lead to more
non-Fickian dispersion due to increased advection.

In the second part of our study, we focus on investigating long-term dispersion using
a selected set of MPS-generated images with larger dimensions. Similar to the short-
term dispersion simulations, we perform simulations for different saturations and Peclet
numbers. However, due to the computational cost associated with Lattice Boltzmann
simulations in longer media, the number of realizations is limited. Nonetheless, this allows
us to examine whether the results obtained for short dispersion are indicative of a short
transient regime or if they are representative of longer dispersion behavior.

By analyzing these results, we aim to gain deeper insights into the nature of dispersion
in unsaturated porous media, particularly characterizing the dependence of dispersion
on saturation. This understanding contributes to a better characterization of transport
processes in such porous media environments.

7.4.2 Methodology

Parameter range

We conducted Lattice Boltzmann Method (LBM) simulations on Multi-Point Statistics
(MPS) generated images, encompassing the entire saturation range of [0.5, 1]. Additionally,
we explored a range of achievable Peclet numbers, with high values limited by numerical
stability and low values limited by computation time. The Peclet number is computed as

Pe = ⟨∥u∥⟩dpore
Dm

(7.4.1)

with ⟨∥u∥⟩ the mean interstitial velocity, dpore the mean pore diameter of the saturated
medium and Dm the diffusion coefficient. In order to control the Peclet number, we
adjusted both the mean velocity ⟨∥u∥⟩ and the molecular diffusion coefficient Dm. Indeed,
due to numerical constraints, we were unable to maintain the same flow velocity while
varying only Dm across all simulations. As a result, both the diffusion coefficient and flow
velocity had to be modified for the LBM simulations to function properly. We perform
LBM simulation on MPS generated images, covering the range of saturation [0.5,1], and
we also explore a range of Peclet number that could be achieved Pe ∈ [0.01,1000], but
limited in high values by simulation errors and in low values by computation time.

Transport analysis

In our simulations, we obtain concentration fields over time. We analyze these fields by
calculating longitudinal concentration profiles and computing spatial moments of the con-
centration profile at different time points. The moments analysis is described thoroughly
in the Chapter 3, section 3.2.2.

The evolution of the first moment over time provides information on the mean position
of the front in the micromodel. To determine the velocity of the front, we perform linear
regression on the first moment data to calculate its slope. The second moments indicate
the spreading of the front. To account for potential non-Fickian dispersion, we examine the
slope of the second moment evolution over time using a logarithmic scale. By considering
a power law relationship for the second moment, denoted by σ2(t) ∝ tα, we can assess
the nature of dispersion. If the power law index α is close to one, the dispersion can
be considered Fickian; otherwise, it is non-Fickian. It is worth noting that computing a
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dispersion coefficient becomes problematic when the second moment exhibits a power law
behavior with α ̸= 1 as it would be time dependent. Therefore, we introduce a fractional
dispersion coefficient Dfrac

α that allows us to represent the best fit of the second moment
using a power law with a power law index of α.

σ2
fit(t) = Dfrac

α tα (7.4.2)

However, fractional dispersion coefficients are difficult to compare if the value of α is
not constant (the unit, in cm2.s−α depends on α). Therefore, α has to be fixed to allow
a comparison. Furthermore, note that the fractional dispersion coefficient coincides with
the dispersion coefficient for α = 1, D = 1

2D
frac
α=1. In some cases, notably when considering

different Peclet numbers, fractional dispersion coefficients are not longer suited for the
analysis, as they cannot be compared to existing literature, and the fractional unit hinders
simple normalization. In these cases, we rather compute dispersion coefficients instead.

7.4.3 Qualitative observations

To begin, in order to understand the impact of saturation on dispersion, we examine
the concentration fields for various saturation values. Fig. 7.10 displays the simulation
results for four chosen saturation levels. The figure illustrates the concentration fields at
three consecutive positions of the concentration front.

Figure 7.10 – Effect of saturation on transport. Concentration fields for 4 saturations
values and three mean positions of the concentration front (µ0 = 0.18Lx, µ1 = 0.43Lx,
µ2 = 0.65Lx).

Similar to the findings from experimental results, the concentration front appears rel-
atively homogeneous in the case of highest saturation. However, as the saturation dimin-
ishes, the concentration front spreads out and the dispersion patterns undergo a change.
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Figure 7.11 – Effect of saturation on long time dispersion. Concentration fields for 3
saturations values, the concentration has been normalized by the tracer concentration.

Specifically, we observe distinct preferential paths that gain prominence in intensity while
decreasing in number as saturation decreases. In the saturated case, there are no dead
ends, as the concentration rapidly reaches the tracer concentration after the passage of
the front. Nevertheless, as saturation decreases, dead ends start to emerge, growing in
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size with further reductions in saturation. In the case of minimal saturation, dead ends
become a substantial portion of the concentration field. Even after the front has passed,
there remain extensive areas with a concentration close to zero. Overall, the dispersion
patterns, including both preferential paths and dead ends, significantly expand in size as
saturation decreases.

Fig. 7.11 displays the concentration fields for three different saturations in the context
of long time dispersion. Similar observations to those in the case of short time dispersion
can be made. Notably, in the low saturated scenario, the dead ends remain unfilled with
concentration even for long time dispersion. However, the influence of the lateral borders
becomes more pronounced in the long images, particularly for low saturations. We will
delve into quantifying this border effect on dispersion in a later section.

7.4.4 Short time dispersion: spatial moments of the dispersion

Concentration profiles

To quantify the dispersion properties, we aim to compute spatial moments, specifi-
cally by examining the longitudinal profiles of the concentration profiles across our entire
dataset. Fig. 7.12 displays the concentration front at successive times for selected satu-
ration values. Here and in the following, for a same Peclet number, the time is multiplied
by a corrective term so that the longitudinal interstitial velocity would be the same when
comparing different simulations 6.

Figure 7.12 – Concentration profiles for different time and saturation values.

6. For a given Peclet, the simulation were computed so that the Darcy velocities would be equal.
With the change of saturation and tortuosity, the longitudinal interstitial velocity (ruling the transport
velocity) is not the exactly the same. Therefore, to able a comparison, we correct the time such that
tsi = tnum

si
⟨ux⟩

⟨ux,ref⟩ . ux,ref is a selected reference velocity from a simulation conducted under saturated
conditions at the given Peclet.
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As the saturation decreases, we observe that the concentration profiles become more
spread out, and they exhibit higher levels of noise. Additionally, in certain cases, the
concentration profiles may not be on average monotonous. This occurs when there are
large dead ends at specific positions in the image, as shown in Fig. 7.12. In such instances,
the local concentration can be smaller than the concentration further ahead.

It is important to note that differentiating the concentration profiles to study transport
properties, particularly for moments computation, becomes impractical at low saturation
levels. Consequently, it is necessary to compute moments through integration by parts to
overcome this limitation (cf Chapter 3, section 3.2.2).

First moment of the concentration: front velocity

Firstly, we compute the first moment as a function of time. Fig 7.13 (Left) presents
the evolution of the first moment over time for different saturations. It is evident that
the first moment exhibits a linear relationship with time across all cases. The slope of the
first moment remains the same for the different saturations. To quantify this observation,
we perform linear regression analysis on the fist moment for all our dataset. For each fit,
we obtain a regression coefficient greater than 0.9999. The slope of the regression line
indicates the velocity of the front.

Figure 7.13 – Influence of saturation on the front velocity. (Left) First moment as a
function of time for different saturations values. (Right) Normalized front velocity (slope
of the first moment normalized by the longitudinal interstitial velocity ⟨ux⟩ ) as a function
of saturation Sw for all the Peclet number range Pe ∈ [0.1,1000].

In Fig. 7.13 (Right), we display the velocity of the front normalized by the interstitial
velocity ⟨ux⟩. Since no significant effect was observed with respect to the Peclet number,
we represent all the data collectively, without distinguishing the different Peclet numbers.
As it could be expected, the front velocity matches with the interstitial velocity, and there
is no significant effect of the saturation. In a sense, this result could be surprising for low
saturations and high Peclet number, for which large dead ends are observed in the velocity
field. Indeed, in the MIM model (cf Chapter 2, section 2.2), which takes into account the
presence of dead-ends in the flow, the front velocity depends on the percentage of dead
ends in the flow field.
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Influence of saturation on the second moment

We consider the evolution of the second moment with time for different water sat-
uration. Fig. 7.14 (Left) illustrates the second moment for a selection of saturations.
Firstly, it is evident that the amplitude of the second moment increases as the saturation

Figure 7.14 – Influence of saturation on dispersion: second moment as a function of time
for different saturation values, Pe=100. (Left) Linear scale. (Right) Logarithmic scale.

decreases. This indicates a significant increase in dispersion with decreasing saturation.
Furthermore, the second moment does not exhibit a linear relationship with time, particu-
larly noticeable for low saturation values. Fig. 7.14 (Right) presents the second moments
on a logarithmic scale. After a transient time, they are represented by rather straight
lines indicating a power law behavior. The slope is greater than one, emphasizing that
the second moment is not proportional to time. This observation holds true even for fully
saturated conditions. The slope ranges between 1 (diffusive behavior) and 2 (ballistic
behavior). Additionally, the slope seems to be closer to 2 in low saturation conditions.

Therefore, dispersion exhibits non-Fickian behavior under these conditions. Dispersion
is increased in unsaturated conditions, and the non-Fickian character (reflected in the
power-law index) may depend on the saturation level.

Non-Fickian dispersion: Computation of the power law index

To quantify the non-Fickian behavior, we measure the slope of the second moment on
a logarithmic scale. Fig. 7.15 provides an example (for Sw = 0.8) of a second moment
plot and the linear regression performed on a logarithmic scale. We optimize the fit by
considering the appropriate time range for the regression, ensuring an regression coefficient
above 0.9985 for the entire dataset. The value of α = 1.49 in this example confirms non-
Fickian dispersion.

Power law index as a function of saturation

Fig. 7.16 shows the power law index α as a function of saturation. The values of α range
between 1 and 2 across the dataset. The mean value of α is 1.49 with a standard deviation
of 0.21. This indicates a statistical dispersion in the data. However, there is a slight
decreasing trend when the saturation increases. We fit a linear trend of α = −0.9Sw +2.7,
with a regression coefficient of r2 = 0.59. We observe that dispersion is non-Fickian even in
saturated conditions. To determine if this trend is statistically significant, we calculate the
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Figure 7.15 – Example of fit used to determine the power law index α, Sw = 0.8, and
Pe=100.

Figure 7.16 – Power law index as a function of saturation Sw. Pe=100.

Pearson correlation coefficient 7. The correlation coefficient is found to be 0.47, indicating a
moderate correlation between the data (where 0 represents no correlation and 1 represents
complete correlation). The p-value (0.0025) is significantly smaller than 0.05. Therefore,
the trend indicating a dependence of α on saturation is statistically relevant, despite the
weak correlation due to the strong statistical dispersion in the data.

In conclusion, the dispersion behavior observed for Pe=100 in the study is predom-
inantly non-Fickian, with a mean power law index α of 1.5. The dispersion exhibits a
range of behaviors, including diffusive (α close to 1) and ballistic (α close to 2) in the
most extreme cases. Additionally, as the saturation decreases, there is a trend for α to
increase, indicating a stronger departure from Fickian behavior and a more pronounced
non-Fickian character of dispersion in unsaturated conditions.

7. The Pearson correlation coefficient is a correlation coefficient measuring linear correlation between
two sets of data. It is the ratio between the covariance of two variables and the product of their standard
deviations.
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In 2D regular structures, they observed a transition from Fickian to non-Fickian with
decreasing water saturation ( [163]). 3D transport experiments using RMN imaging in
homogeneous rock with various degrees of saturation ( [73]) show non-Fickian dispersion
even in saturated conditions, with a non-Fickian character enhanced by lower saturations.
Our results are therefore representative of a general tendency and most likely not constraint
to the geometry of the porous media.

Fractional dispersion coefficient

Here, the objective is to quantify the amplitude of dispersion. However, we observed
non-Fickian dispersion (σ2 ∝ tα, with α ̸= 1), therefore computing dispersion coefficients
is not judicious and we compute fractional dispersion coefficients. Nonetheless, the power
law index is not constant for the whole dataset, and fractional dispersion coefficients cannot
be compared for different α values. Thus, to able a comparison, we take the medium value
α = 1.5 for computing a comparable fractional dispersion coefficients Dfrac

1.5 . We perform
a power law fit such that

αfit = Dfrac
1.5 t

1.5 (7.4.3)

Figure 7.17 – Fractional dispersion coefficient as a function of saturation Sw (Pe=100),
α = 1.5.

Fig.7.17 illustrates the fractional dispersion coefficient as a function of saturation. It is
observed that the fractional dispersion coefficient increases significantly as the saturation
decreases, reaching more than ten times the value observed in saturated conditions. There
is more statistical fluctuation in the data for low saturations. This can be attributed to
two factors: first, the real power law index (α) tends to be higher than the average
value of 1.5 in these cases, indicating a stronger departure from Fickian behavior; second,
the representative elementary volume (REV) may increase with heterogeneity and may
approach the size of the medium, leading to greater statistical variability in the data.

In summary, the dispersion exhibits non-Fickian behavior for this Pe in both saturated
and unsaturated conditions for the considered parameters. Therefore, we are very likely
characterizing a transient. Furthermore, the non-Fickian character, as represented by
the power law index (α), tends to increase as the saturation decreases. Dispersion is
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significantly enhanced in unsaturated conditions, with the fractional dispersion coefficient
reaching up to ten times the value observed in saturated conditions.

7.4.5 Short time dispersion: Effect of the Peclet number

We also examined the influence of Peclet number on the dispersion properties, which
represents the interplay between diffusion and advection. In this section, we explore the
impact of Peclet numbers on dispersion characteristics at various saturations. Specifically,
we examine the changes in second moments for different saturations and Peclet numbers,
calculating the power law index α and dispersion coefficient.

Qualitative observations

Fig. 7.18 illustrates concentration fields at the same position of the front for various
saturations as the Peclet number increases.

Figure 7.18 – Effect of Peclet number on transport for different saturation. Concentration
fields for 4 saturation values. For each saturation, a concentration field for three Pe values
is shown.

In the case of saturation being at its highest, we observe that the concentration front
spreads further with increasing Peclet number. Additionally, there is a notable appearance
of channeling patterns, which are less present at low Pe values. Even for saturation values
close to 1, the channeling effect and front spreading are evident at high Peclet numbers.

However, as the saturation decreases, the impact of Peclet number becomes less dis-
tinct. The diffusion is not able to smooth the distortion of the front caused by the het-
erogeneity. For medium and low saturation levels, the Peclet number mainly accentuates
the contrast between preferential paths and dead ends.
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In highly saturated case, two distinct preferential paths observed at high Pe can co-
alesce and become one at low Pe due to greater diffusion. However, at low saturation,
the typical distance between the preferential paths is too large to result on mixing at low
Peclet numbers and the main shape of the concentration front remains similar.

Saturated case

While the dispersion may not be Fickian, we consider dispersion coefficient in the
following, and not fractional dispersion coefficient. This decision was made to facilitate
a straightforward comparison of our results with classical findings from the literature.
Moreover, comparing fractional dispersion coefficients with different Pe values can prove
to be quite challenging and may introduce complexities in the analysis 8. First, we examine
the impact of the Peclet number in a saturated medium. Fig. 7.19 illustrates how the
Peclet number influences the power law index α. α, which indicates the Fickian or non-

Figure 7.19 – Evolution of the power law index α and the normalized dispersion coefficient
D∗ with the Peclet number, Sw = 1. The red and blues lines indicate the value for the
simulation realized at Pe=0, for α (red) and D∗ (blue).

Fickian nature of dispersion, is greater than 1 at high Pe values (α ∼ 1.4) and decreases as
the Peclet number decreases. Remarkably, it approaches 1 when the Peclet number is less
than 1. In other words, dispersion exhibits non-Fickian behavior at high Peclet numbers
and becomes more Fickian as the Peclet number decreases.

Literature thoroughly studied the effect of Peclet number on the dispersion coefficient,
as detailed in the bibliography Chapter 2, section 2.1.3. To able a comparison with results
from the literature, we computed the normalized dispersion coefficient D∗ = Ddisp

Dm
as a

function of the Peclet number. It implies that we impose α = 1 when fitting the second
moment (D∗ is computed by linear regression of the second moment). In Fig. 7.19, for

8. When varying the P e, we change the value of Dm. To quantify dispersion we need to normalize the
dispersion coefficient by Dm (cm2.s−1). However, in the case of the fractional dispersion coefficient, the
unit is fractional (cm2.s−α) and depends on α, normalization proves to be quite complex, preventing an
accurate comparison of the results.
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high Peclet values, the dispersion coefficient is approximately proportional to the Peclet
number. As the Peclet number decreases, the normalized dispersion coefficient slowly
converges to a constant value close to 1.

This relationship with the Peclet number has been observed in saturated condition by
several authors [124] [55] [115]. The regime in which the dispersion coefficient is not Peclet
dependant is commonly referred to as the diffusive regime. On the other hand, the regime
where the normalized dispersion coefficient D∗ is proportional to the Peclet number is
dominated by advection.

The simultaneous dependence of α and D∗ on the Peclet number suggests that dis-
persion in a saturated medium is Fickian in the diffusive regime as it would be expected.
For high Peclet numbers, the dispersion is completely dominated by advection and the
transport is non-Fickian. The non-Fickian character slowly decreases with decreasing the
Peclet number as diffusion becomes more effective (but dispersion is still dominated by
advection; (Pe > 10, D∗ > 100). When diffusion and advection have the same order of
magnitude (Pe ∈ [1,10] and D∗ ∈ [1,10]), α sharply decreases towards 1 (Fickian trans-
port). It is worth noting that the value of the normalized dispersion coefficient provides
an indication of the diffusive tortuosity in the saturated medium, given by the relationship
Ddisp = Dm

τd
for low Peclet numbers. For instance, it yields a diffusive tortuosity value of

τd,Sw=1 = 2.15.

The Influence of Saturation on the Peclet Number’s Effect

We now examine the influence of the Peclet number for different saturations. Fig. 7.20
(Left) displays how the exponent α changes as the Peclet number varies.

For all saturations, we observe a similar trend with the Peclet number as in the sat-
urated case. Namely, there is a transition from Fickian behaviour at low Pe (α = 1) to
non-Fickian behaviour at higher Pe (α ≈ 1.5 in this case). However, we note that the Pe
value of the transition depends on the saturation, with the transition occurring at lower
Pe when the saturation is lower. For example, the transition in the saturated case hap-
pens for a Peclet value around 5, whereas the transition occurs at Pe ≈ 0.05 for the lower
saturation (Sw = 0.69).

Now, we examine the normalized dispersion coefficient D∗ as a function of the Peclet
number, shown in Fig. 7.20 (Right). Similarly to the saturated case, the dispersion
coefficient increases with saturation. However, as the saturation decreases, the dispersion
coefficient begins to increase at lower values of the Peclet number. For a given Pe, the
dispersion coefficient is therefore higher at lower saturation. Furthermore, the regime for
which the dispersion coefficient is rather constant with the Peclet; known as the diffusive
regime; occurs at lower Peclet for lower saturations. Typically, it becomes rather constant
for Pe ≈ 1 in saturated conditions and Pe ≈ 0.01 for the lower saturation (Sw = 0.69).
Interestingly, the transition between the diffusion regime and a regime for which advection
becomes effective in the dispersion (i.e. D∗ depends on the Peclet) occurs at a Peclet of
the same order of magnitude (slightly smaller) than for the transition between Fickian
and not Fickian observed for the power law index α.

Note that the value of D∗ in purely diffusive conditions (Pe = 0, straight line in Fig.
7.20 (Right) decreases with reducing saturation: the diffusive tortuosity of the medium
thus rises with saturation.

For all saturation cases, D∗ increases with the Peclet number. For the low and medium
saturations, it increases proportionally with the Peclet indicating an advective regime. For
a saturation close to 1 (e.g Sw = 0.88), it starts decreasing more slowly as Pe decreases,
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indicating the transition towards a diffusive regime for lower Peclet values. Therefore,
as saturation decreases, dispersion is more dominated by advection which leads to non-
Fickian dispersion for a larger range of Peclet [PeSw ,+ ∞] .

Figure 7.20 – (Left) For different saturations, evolution of the power law index α with the
Peclet number. (Right) For different saturations, evolution of the normalized dispersion
coefficient D∗ with the Peclet number. The continuous lines show values of D∗(Pe = 0)
obtained from simulations with no flow.

Fig. 7.21 shows the evolution of α with saturation values for a larger number of
realizations. It confirms the results given by the Fig. 7.20. For high values of Peclet
number (e.g Pe = 1000), advection dominates transport and dispersion is non-Fickian,
even for the saturated case, which leads to a power law index α being relatively constant
with saturation. For low Peclet number values (e.g Pe=1), we observe that α increases
as saturation decreases. Indeed, the dispersion is still dominated by advection and is non
Fickian for low saturations; but for high saturation values, diffusion is more effective, and
therefore dispersion is closer to Fickian. In other words, the correlation between α and
Sw depends on the Peclet number.

For our statistical study with a large number of realizations on the influence of α
with saturation, we used an intermediate Peclet number value (Pe = 100). Therefore, a
moderate correlation is observed, as dispersion in low saturation is completely advective
and non Fickian, whereas dispersion in both the saturated and moderately unsaturated
cases is only weakly influenced by diffusion and also exhibit a non-Fickian character,
although in average weaker than for the low saturations values. In hindsight, conducting
this study with a smaller Peclet number value would have been more relevant.

Overall, we can describe the dependency of α as{
α(Pe,PeSw) → 1 for Pe << PeSw ,

α(Pe,PeSw) → αadvection for Pe >> PeSw .
(7.4.4)

with PeSw the threshold Peclet number separating the diffusion and advection regime,
that decreases with decreasing saturation. For the saturated case, this threshold can be
estimated to PeSw=1 = 5, whereas it is inferior in unsaturated conditions. It can be
estimated to PeSw=0.88 = 0.5, PeSw=0.8 = 0.1, and PeSw=0.8 = 0.05.

7.4.6 Long time dispersion

To characterize long time dispersion, we extended our analysis to include larger images.
This approach was particularly important for low saturations, where analyzing dispersion
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Figure 7.21 – Evolution of the power law index α with the saturation for different Peclet
numbers.

in images of the micromodel size is limited due to the highly heterogeneous front and
rapid tracer movement, resulting in a short transient observation. By observing long time
dispersion, we can confirm whether the tendencies observed for short-time dispersion are
comparable and not solely dependent on initial properties. This enables us to gain a more
comprehensive understanding of the overall dispersion behavior.

Figure 7.22 – (Left) Evolution of the second moment with time for different saturations.
(Right) Power law index α as a function of the saturation Sw. Pe=5.

Fig. 7.22 (Left) shows the evolution of the second moment as a function of time for
different saturation. As observed for short time dispersion, the second moments exhibit a
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power law behavior. The slope is different from 1, proving non Fickian behavior, especially
for low saturations. Indeed, as Fig. 7.22 (Right) shows, the power law index α tends
increase when the saturation decrease, as it was observed for short time dispersion.

Figure 7.23 – Evolution of the power law index with the Peclet number in the saturated
case and for Sw = 0.87.

Fig. 7.23 depicts the variation of the power law index as a function of the Peclet
number. The range of Peclet number values we could explore was severely restricted due
to extremely long computation times for low Peclet numbers and numerical stability issues
for high Peclet numbers.

Nonetheless, we observed a consistent decrease in the power law coefficient α with
increasing Peclet numbers, reaffirming the findings from our previous analysis. Despite
the limitations in the Peclet number range studied, this trend reinforces our earlier obser-
vations regarding the relationship between dispersion behavior and the Peclet number.

To conclude, the long-time simulations we performed do not allow to observe a transi-
tion to an asymptotic Fickian regime. The transient, i.e. non Fickian dispersion, could be
extremely long, and the medium is still too short to observe it. The computational cost
for longer media is too high to consider this method to observe asymptotic dispersion.

7.4.7 Conclusion

This study, conducted on a large number of realizations, has provided valuable in-
sights into short-time dispersion in unsaturated porous media. The key findings can be
summarized as follows:

• Firstly, the evolution of the second moments over time indicates that transport
is non-Fickian over a wide range of Peclet number values, in both saturated and
unsaturated conditions. Therefore, we are characterizing a transient. The mean
value of the power law index α is found to be close to 1.5, but with a substantial
statistical variance among the data.

• The dispersion, characterized by the fractional dispersion coefficient Dfrac
α associated

with α = 1.5, reveals a significant increase in dispersion as the saturation decreases.

• For saturated and moderately unsaturated porous media, dispersion becomes Fickian
as the Peclet number decreases. Interestingly, the transition between Fickian and



7.5. Quantification of the boundary effect on flow and transport 149

non-Fickian is rather sharp, with a threshold Peclet number that depends on the
saturation PeSw .

• The dependence of the normalized dispersion coefficient with the Peclet number
shows that the transition between non-Fickian and Fickian regime happens when
diffusion is more effective in the dispersion.

• Moreover, the Peclet number PeSw at which dispersion becomes Fickian decreases
with decreasing saturation. The advective regime covers a broader range of Peclet
numbers in the unsaturated case. In situations of low saturation, the diffusion regime
is not observed within the range of Peclet number values considered, and transport
remains non-Fickian, with α values relatively constant over the considered Peclet
number range.

Thus, the dependence of the Fickian regime with Peclet number depends on the sat-
uration, and the power law index α increases as the saturation decreases for low Peclet
number values. This is because transport at low saturation is predominantly advective,
while at high saturation diffusion is more effective. Conversely, for high Peclet number val-
ues, transport remains advective even in the saturated case, and no correlation is observed
between the power law index α and the saturation.

7.5 Quantification of the boundary effect on flow and trans-
port

7.5.1 Motivation

When looking at the concentration fields Fig. 7.10, it seems that the concentration
fronts are not perfectly flat with a slight curvature near the borders. When examining
dispersion in a medium with a finite width, we should observe both inherent dispersion
resulting from the medium’s properties, as well as an additional dispersion caused by
the borders of the medium. The existence of boundaries or borders within a medium
introduces additional resistance and modifies the complexity of the flow path, resulting
in decreased velocities at the outer edges of the medium. This is because the presence
of borders creates obstructions and constrains the movement of fluid, causing the flow to
take a more convoluted and elongated route, known as tortuosity. As a result, the overall
velocities near the lateral extremities of the medium are reduced compared to the velocities
within the central regions. A lateral gradient of the velocity could change the dispersion,
as it is observed in Taylor dispersion in a channel. In our simulation, we implemented
a no-slip condition for the grains, meaning that the fluid velocity at the surface of the
grains is assumed to be zero. However, we employed free-slip conditions for the borders
or boundaries of the system. This choice was made to minimize the boundary effect.

Our objective is to evaluate the impact of boundaries on flow and transport phenomena
and determine whether the width of the micromodel is sufficient to represent and study
transport accurately. Additionally, we aim to quantify the distance from the wall at which
the effects of the boundaries become negligible.

To conduct our study, we employ the following method: firstly, we utilize the MPS
algorithm to generate a large unsaturated porous medium using a training image obtained
from our experimental data set. For this purpose, we select a saturation value of Sw = 0.82.
The size of the generated medium is set to Ly = Lx = 3780 pixels (1.73 cm). From the
newly created image, we extract five additional images with increasing widths: Ly1 = 360,
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Ly2 = 900, Ly3 = 1800, Ly4 = 2700, and Ly5 = 3780 pixels. These images have the same
length of Lx = 3780 pixels. Fig. 7.24 illustrates the original generated image and the set
of images with different widths extracted from it. Next, we perform Lattice Boltzmann

Figure 7.24 – Set of images created to study the effect of the width. (Left) Unsaturated
image generated with the MPS algorithm. White: grains. Red: gas. Black: water. (Right)
Images extracted from the MPS generated image width different widths Ly, indicated in
pixels. Images have been binarized to compute the flow with LBM. Black: solid. White:
Void.

Method (LBM) simulations for flow and transport in each of the five extracted images.
By simulating the flow and transport processes, we obtain steady-state velocity fields as
well as concentration fields over time.

7.5.2 Effect of the medium width on the flow properties

Figure 7.25 – Velocity fields for different widths obtained with LBM.

Fig. 7.25 displays the velocity fields corresponding to the five different widths investi-
gated in this study. It is important to note that the same pressure boundary conditions
were applied to all simulations. Upon observing the velocity fields, we notice that the
movement of the fluid in the lateral direction is constrained by the presence of walls,
leading to an enhanced channeling effect. This effect is particularly pronounced in cases
with smaller widths, where a single dominant channel is observed along the length of the



7.5. Quantification of the boundary effect on flow and transport 151

medium. In order to further analyze the flow characteristics, we compute velocity profiles
in the transverse direction of the flow, normalized by the mean velocity, defined as

ũ∗(y) = 1
Lx⟨∥u∥⟩

∫ Lx

0
∥u(x,y)∥dx. (7.5.1)

For the flow simulations, pressure conditions are applied at the boundaries, resulting
in different mean velocities for each medium width. To assess the permeability change of
the medium, we compute the ratio between the permeability of each width (KLy ) and the
permeability of the widest medium width (KLy5). This normalized velocity is denoted as
KLy

∗ = KLy

KLy5
.

In Fig. 7.26 (Left), the permeability and the normalized velocity standard deviation are
presented. Notably, the permeability exhibits a significant decrease as the medium width
decreases. When the width increases, after reaching a certain threshold (around 0.8 cm),
the permeability reaches a plateau, indicating a typical width where further increase has
limited impact on permeability. Similar observations can be made for the velocity standard
deviation. It increases when the width decreases, the boundaries adding heterogeneity to
the flow. As the medium width increases, the flow becomes more statistically representa-
tive, leading to the velocity deviation reaching a plateau. The permeability and velocity
variations are low for widths greater than Ly3 = 0.8 cm, suggesting that beyond this point,
the medium captures more adequately the flow dynamics.

Figure 7.26 – Effect of width on the velocity profiles. (Left) Permeability and velocity
standard deviation evolution with the medium width. (Right) Velocity profiles along the
y axis (transverse to the flow) averaged along the x axis (direction of the flow). Velocities
have been normalized for each profile by the mean velocity of the widest image ⟨∥u∥⟩Ly5

.

In Fig. 7.26 (Right), the transverse velocity profiles for the five different widths are
presented. Despite significant fluctuations in the profiles, the presence of boundary effects
is evident. On average, the velocity decreases near the walls, indicating the impact of the
boundaries on the flow. Specifically, there is a zone adjacent to the wall where the velocity
remains consistently below the mean velocity. However, due to the implementation of a
free-slip condition (to minimize boundary effects), the velocity does not reach zero in
close proximity to the wall. Quantifying the precise length of the boundary effect proves
challenging; however, it can be approximated to be around 0.05 − 0.1 cm. This range
represents approximately 10% of the micromodel width, signifying that the boundary
effect on the flow is spatially significant within the system.

The observed boundary effects highlight the importance of considering the impact of
boundaries when analyzing flow properties. It is indeed critical to select an appropri-
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ate medium width for studying flow properties, as excessively narrow widths may not
accurately represent the flow properties of the porous media.

7.5.3 Effect of the medium width on transport properties

Having examined the influence of width on flow, we now focus on the impact of bound-
aries on dispersion. It is important to note that the mean velocities differ across the media
of different widths. To facilitate a meaningful comparison of transport properties, we nor-
malize the time by the mean velocity of each respective medium. This normalization is
achieved by

t′Ly
= t

⟨∥u∥⟩Ly5
⟨∥u∥⟩Ly

, (7.5.2)

where t′Ly
represents the normalized time for a specific medium width Ly, and ⟨∥u∥⟩Ly5

and ⟨∥u∥⟩Ly denote the mean velocities for the widest and considered width, respectively.
By normalizing the time in this manner, we account for the variations in mean velocities
and establish a consistent reference for comparing transport properties across the different
samples.

In Fig. 7.27, the concentration fields for the five different medium widths are presented
at a specific normalized time. Notably, we observe that the concentration near the walls
tends to be lower compared to the bulk of the medium. Additionally, in the case of
smaller media widths, a notable observation is the presence of only one or two dominant
preferential paths for the transport of the solute. This characteristic limits the statistical
relevance of the medium in terms of the dispersion pattern.

Figure 7.27 – Effect of width on the transport. Concentration fields as a function of the
position x at t′ = 100000(LBM units) = 2.3s for 5 different widths.

Fig. 7.28 provides concentration profiles for the various medium widths at a normal-
ized time of t′ = 100000 = 2.3s . There is a noticeable difference in the concentration
profiles, particularly for the smaller values of Ly. However, as the medium width, Ly,
increases, the disparity between the concentration profiles diminishes rapidly. This ob-
servation suggests that the influence of the boundaries on the concentration distribution
becomes less pronounced as the width of the medium expands.
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Figure 7.28 – Effect of width on the concentration profiles. Concentration profiles for 5
medium widths at t′ = 30000 (LBM units) = 0.7s (Left) and t′ = 100000 (LBM units)
= 2.3 s (Right). Sw = 0.82.

For a more quantitative comparison of transport properties, we calculate the second
moment as a function of time for each medium width Ly. In Fig. 7.29 (Left), we present
the evolution of the second moments with time on a logarithmic scale. Remarkably, all
the curves display a similar slope of α = 1.5.

Figure 7.29 – Second moments evolution with time for different medium widths. (Left)
Second moment in logarithmic scale (dashed lines) and fit (solid lines) of the second
moments The slopes indicates non Fickian behavior i.e., a power law coefficient α = 1.5
different than one. The moments curves are fitted with a power law σ2 = Dfrac

1.5 t1.5. (Right)
Second moment in linear scale to highlight the different fractional dispersion coefficients.
Dfrac

1.5 estimated with the power law fit is indicated.

Fig. 7.29 (Right) accentuates the distinct slopes through the utilization of a linear
scale. The fractional dispersion coefficient decreases when the medium width Ly increases.
However, as the width Ly reaches a value of Ly3 (0.82 cm/1800 pixels in this case),
the tendencies for the second moments become remarkably similar and the fractional
dispersion coefficient reaches a constant. This finding indicates that the influence of the
boundaries is not significantly impacting the transport dynamics for widths larger than
0.82 cm in this specific configuration.

Overall, this quantitative analysis suggests that for widths greater than 0.82 cm,
boundaries have a relatively minor impact on the transport behavior. The similarities
in the fractional dispersion coefficients above this width imply that the dispersion mecha-
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nisms in these larger widths exhibit consistent and comparable characteristics, independent
of the specific width. Based on the findings and analysis presented, conducting transport
studies within images with the micromodel width (Ly = 0.90 cm) appears to be a reason-
able choice.

Nonetheless, we focused on investigating the impact of medium width on dispersion for
a specific saturation value, without considering the entire saturation range. However, given
that the system’s heterogeneity increases as saturation decreases, it becomes important to
explore the effect of saturation on the boundary effect. Specifically, it would be valuable to
determine if saturation influences the length of the boundary region within the medium.

7.5.4 Influence of saturation on the boundary effect

Our objective is to investigate the influence of medium heterogeneity on the boundary
effect, particularly considering the effect of saturation. In particular, we aim to quantify
the length of the boundary region for different saturation values. To accomplish this, we
conduct flow simulations in MPS-generated images of the same size as the micromodel
for varying saturation levels. We analyze the velocity profiles to assess the impact of
saturation on the boundary effect. As we observed significant fluctuations in the velocity
profiles in the previous section, we also compute velocity fields for longer media with a
length of Lx = 8.2 cm (Ly = 0.90 cm) to decrease the noise. By examining the velocity
profiles for different saturation values, we can determine if there are notable differences in
the length of the boundary region.

Figure 7.30 – Effect of saturation on the boundary border. Velocity profiles ũ∗(y) along
the y direction (transverse to the flow) for different saturation values and medium lengths.
(Left) Lx = 1.73 cm (Right) Lx = 8.3 cm, an exponential fit (ũ∗(y) = b − ae

− y
Lborder ) is

used to compute the border length Lborder.

In Fig. 7.30 (Left), the transverse velocity profiles for different saturation levels in
short media (Lx = 1.73, Ly = 0.90 cm) are presented. It is observed that saturation
appears to have an influence on the boundary effect, with indications of increased lengths
of the boundary effect at lower saturation levels. However, due to the presence of statistical
noise, conducting a precise quantitative analysis becomes challenging.

In Fig. 7.30 (Right), the transverse velocity profiles for different saturation levels in
longer media are shown. The increased length of the media allows for clearer observations
of the boundary effect, as the profiles exhibit reduced noise. It is clear that as saturation
decreases, the characteristic length of the boundary effect Lborder (i.e. the length for
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which the profile becomes constant) increases significantly. To quantify the extent of
the boundary effect, we conduct an exponential fit to determine the characteristic length
Lborder over which it influences the system.

ũ∗
Ly

(y) = b− ae
− y

Lborder , (7.5.3)

a, b and Lborder are estimated with a fit and given in Fig. 7.30. It appears that Lborder

for the least saturated case is approximately four times longer than that for the saturated
conditions. Interestingly, the boundary length observed for the saturated medium is of
the same order of magnitude than the average diameter of a grain, which measures around
0.016 cm in the porous medium.

As expected, the analysis of transverse velocity profiles in media with different satu-
rations reveals that decreasing water saturation intensifies the boundary effect, leading to
increased significance of the borders effect in the overall dispersion behavior. To extend
the findings to a broader context, as the heterogeneity of the medium increases, the impact
of the boundary effect becomes more prominent.

7.5.5 Conclusion

In this section, we conducted a quantitative analysis of the boundary effect on flow
and transport in porous media. We performed simulations for media with varying widths,
focusing on a saturation value within our range (Sw = 0.82). Our findings revealed several
key insights. Regarding flow properties, we observed that the average flow characteristics,
such as mean velocity and velocity standard deviation, were influenced by the medium
width up to a certain size. Beyond this threshold, the flow properties become independent
of the system size. In terms of spatial variability, the transverse velocity profiles exhibited
a clear boundary effect, with lower velocities near the lateral boundaries. We estimated
a characteristic length of the boundary effect of approximately 0.05 cm for a saturation
Sw = 0.87, representing around 10% of the micromodel size, within which the boundary
effect was still perceptible. Turning to transport properties, we investigated them for all
medium widths. Our results indicated that the width of the medium had a significant
impact on transport properties for widths below Ly = 0.82 cm. This suggests that in
our configuration, the borders do not play a major role in the transport behavior when
studying dispersion in media of our micromodel size for this saturation.

However, it is important to note that our analysis focused on a specific saturation
value. The boundary effect on dispersion behavior could vary with different saturation
or with different porous media properties. Therefore, we quantified the border length for
different saturation values. Note that the value of the border length found for Sw = 0.87
matches the one estimated in the short images Lborder = 0.05 cm. We found that the
border length increased as saturation decreased. In fact, the border length for the lowest
saturation value was up to three times longer than in the saturated case. This implies that
when considering lower saturations, the width needed to neglect the impact of the borders
might need to be larger than our micromodel size. Additionally, dispersion patterns such
as preferential flow paths and dead ends are more prominent with decreasing saturation,
as noted in the experimental results, necessitating a larger medium width to capture the
dispersion behavior with statistical relevance

Despite these observations, we maintained a consistent width equal to the micromodel
size for all saturations in our LBM simulations. This decision was made considering
the computational time, as LBM simulation time increases at least quadratically with the
image size. However, it is essential to keep in mind the potential influence of saturation and
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medium heterogeneity on the boundary effect and dispersion behavior when considering
flow and transport in confined porous media systems.



Chapter 8

Conclusion

The vadose zone, located above water tables and partially saturated with water, plays
a crucial role in hydrogeology, particularly in water table recharge. Human activities,
including agricultural practices, contribute to pollution sources affecting the vadose zone.
With different saturation levels, the vadose zone is expected to experience a significant
increase in saturation variability, especially in the southern region of France due to cli-
mate change. Consequently, comprehending contaminant transport in unsaturated porous
media becomes essential for effectively assessing and managing water resources

Nonetheless, the understanding of dispersion in unsaturated porous media remains
incomplete. In the existing literature, there is a significant disparity concerning the impact
of saturation on dispersion. As the saturation decreases and the porous medium becomes
more heterogeneous, the transport process becomes increasingly intricate. Consequently,
conventional models of dispersion, such as the Advection-Diffusion Equation, often fail to
accurately capture the dispersion phenomenon in such conditions.

Through this study, our objective is to gain insights into dispersion in unsaturated
porous media by investigating transport at the pore scale. By doing so, we aim to assess
properties at a larger scale and, particularly, understand how dispersion can be character-
ized and modeled in unsaturated porous media. Despite a substantial number of studies
on this subject, a consensus regarding the impact of saturation on dispersion remains
elusive. Specifically, the relationship between the dispersion coefficient and saturation
exhibits considerable discrepancies. While a majority of studies suggest an increasing dis-
persion coefficient with decreasing water saturation, some show a non-monotonic relation,
and a few even propose a decreasing dispersion coefficient with decreasing saturation. To
unravel the origins of these disparities, we must delve into the fundamental mechanisms
of dispersion and the intricate interplay between phase flow and the characteristics of the
porous medium.

In the classical model, Fick’s empiric law states that the flux is directly proportional
to the concentration gradient, giving rise to the Advection-Diffusion Equation (ADE).
The coefficient of dispersion is the constant of proportionality between the concentration
variance (σ2) and time in the asymptotic regime D = 1

2 limt→∞
dσ2

dt . When the dispersion
follows Fick’s law, it is termed Fickian dispersion. To derive the ADE theoretically, one
considers Brownian motion, where molecules undergo random walks, eventually leading to
the ADE with a diffusion coefficient equal to the molecular diffusion coefficient. In porous
media, dispersion is influenced not only by molecular diffusion but also by advection due to
flow heterogeneity, resulting in a dispersion coefficient expressed as the sum of a diffusion
and advection components.
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To achieve convergence toward Fickian motion, the variance of displacements must be
finite. A higher variance leads to slower convergence towards Fickian dispersion. Since
real porous media have finite width, the variance of displacements should also be finite.
Therefore, asymptotic dispersion should be Fickian theoretically. As a result, non-Fickian
dispersion characterizes a transient behavior. However, the convergence toward Fickian
dispersion can be extremely slow, and in some cases, the Fickian regime might never be
observed. In fact, non-Fickian dispersion is rather the norm than the exception in porous
media.

In the context of unsaturated porous media, the presence of a second phase introduces
additional heterogeneity, which often results in increased dispersion. A fundamental ques-
tion addressed in this thesis was to comprehend the impact of saturation on the nature of
dispersion, whether it exhibits Fickian or non-Fickian behavior. Properly characterizing
and modeling dispersion is of utmost importance in this regard. To understand disper-
sion in unsaturated porous media, it was essential to investigate the interactions between
the multiphase flow and the porous medium. Specifically, the study focused on how the
structural properties of the porous media change with saturation. For instance, the in-
vestigation aimed to understand how the heterogeneity of the porous medium varies with
saturation levels.

In order to understand dispersion in unsaturated porous media, we performed a pore
scale study, to identify flow and dispersion mechanisms at the microscopic scale in order
to better characterize dispersion at a greater scale. This was done through two main
axes, an experimental study, and numerical work to complement experimental findings.
For our study, we utilized a micromodel, a transparent 2D porous network that enables
visualization at the pore scale, commonly employed for multiphase flow and transport
investigations. The micromodel was created based on a 2D slice of a rock. To conduct our
experiments, we designed a specific experimental set-up to carry out air-water multiphase
flow experiments followed by transport experiments.

Our focus was on studying transport in unsaturated porous media with a trapped
phase, meaning that bubbles were trapped within the medium, and we deliberately did not
examine transport during bubble movement, as this would introduce significant complexity
to the study. We devised an experimental set-up to create an unsaturated porous medium
with uniform and repeatable bubble distributions. To achieve this, we employed a co-
injection system, where both water and air were injected simultaneously, and we stopped
the injection once a steady state was achieved. The resulting multiphase flow led to a
porous medium with trapped bubbles, which we utilized for our transport experiments.

One challenge in conducting transport experiments in a micromodel is to establish
a clear inlet condition. With a simple inlet system, the tracer becomes dispersed in the
medium even before entering the porous medium, making it difficult to accurately quantify
dispersion. To address this issue, we improved the transport experiment by developing a
device with a well-defined inlet injection system. In addition, we developed specific data
processing techniques for our experimental data. We designed methods to analyze the
phase distribution resulting from co-injection, to perform phases segmentation, retrieve
porosity and saturation values, as well as grains and pores size distributions.

Furthermore, to quantitatively analyze how dispersion changes with saturation, we
adopted spatial moments of the concentration as our approach. One advantage of this
method is that it does not require making any assumptions about the nature of disper-
sion, such as whether it is Fickian or non-Fickian. Instead, by examining the evolution
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of the second moment with time, we can differentiate between Fickian and non-Fickian
dispersion. In specific terms, if the second moment σ2 is proportional to tα, and α equals
1, it indicates Fickian dispersion. Conversely, if α differs from 1, it points to non-Fickian
dispersion. To compute the spatial moments, we employed integration by parts, a tech-
nique that enables us to calculate moments even for distributions affected by noise, which
is common in unsaturated conditions.

The entire experimental set-up provided valuable experimental results, offering insights
into dispersion in unsaturated porous media. Initially, we characterized the interaction
between the multiphase flow and the porous medium and identified the properties of the
resulting unsaturated porous medium. Specifically, we observed that saturation increases
with the Capillary number (Ca), defined based on the dynamic viscosity µ, flow velocity
(v), and surface tension (γ) as Ca = µv

γ . This relationship follows a power law, and
saturation approaches 1 for sufficiently high Ca values. However, we were unable to explore
the entire range of saturation since, below Sw = 0.5, the water phase does not percolate.
Consequently, our dispersion study was restricted to the range of [0.5 − 1] for saturation.
The distribution of bubbles primarily depended on the maximal Ca number imposed in
the system. Our results align closely with previous findings in the literature, particularly
concerning the distribution of bubble sizes. At larger sizes, bubble size distributions
followed a power-law decay with a cut-off that depended on the Ca number. As flow
rates increase, larger bubbles are chased away, leading to a decrease in the maximum
bubble size. Notably, below the pore size, the Ca had little impact on the distribution of
bubbles. Furthermore, at the pore scale under unsaturated conditions, we observed that
pores were either almost completely filled with air, hosting only a thin water film with
local water saturation (Sw,local) of approximately 0.2, or completely saturated with water.
As saturation decreased, the number of pores filled with air increased, and large pores
were preferentially occupied by bubbles compared to more saturated conditions.

Having characterized the unsaturated porous medium, we then investigated the effect
of saturation on dispersion. Our findings revealed a global increase in dispersion as satu-
ration decreased. In saturated conditions, the concentration front appeared relatively flat
and uniform. However, as saturation decreased, the concentration front exhibited more
distortion, with the emergence of preferential paths and dead ends. Consequently, the
heterogeneity in the dispersion process significantly increased. To quantify dispersion, we
computed spatial moments. Overall, we observed an increase in dispersivity 1 as satura-
tion decreased. Nevertheless, characterizing the nature of dispersion, whether Fickian or
non-Fickian, proved challenging, particularly in unsaturated conditions. Several factors
contributed to this difficulty. First, the limited size of the micromodel constrained our
study to short time periods, especially in unsaturated conditions where the tracer rapidly
exited the micromodel. Second, experimental noise and uncertainty made it challenging
to precisely quantify spatial moments, especially for the lowest saturations. As a result,
it was not possible to observe long time dispersion. Moreover, our study was limited in
terms of flow rates, which prevented us from analyzing dispersion over a wide range of
Peclet numbers experimentally.

To overcome the experimental limitations of the micromodel setup, we turned to nu-
merical simulations as a powerful alternative. Specifically, we utilized Lattice-Boltzmann
simulations, a widely adopted method for simulating flow and transport in complex porous
media. LBM offers high accuracy and can be efficiently parallelized, leading to relatively

1. Ratio of the dispersion coefficient and the mean flow velocity
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short computation times. In our numerical simulations, we conducted separate calcula-
tions for flow in the unsaturated medium and subsequently for transport. This approach
has several advantages. Notably, it gives access to the velocity fields which is difficult
experimentally. For transport simulation, it enables us to achieve perfectly neat inlet
conditions for tracer injections, which is challenging to achieve in experimental setups.
As a result, the data generated through numerical simulations are less noisy and easier
to quantify. This is particularly beneficial when computing the second spatial moment,
which plays a crucial role in determining the nature of dispersion.

Currently, simulating the result of an immiscible multiphase flow in a complex porous
medium using numerical methods, such as Lattice-Boltzmann simulations, remains chal-
lenging. As a result, we rely on experimental phase distributions as inputs for LBM
simulations to study flow and transport in such media. However, this approach requires
making several strong assumptions and simplifications compared to the actual experimen-
tal conditions. Reproducing accurately the complex conditions at the interface between
the air meniscus and water is not feasible in LBM simulations. Therefore, we had to
consider the gas phase as an additive solid phase and impose a no-slip condition for all
obstacles in the simulation. Additionally, due to computational constraints, LBM simula-
tions are typically conducted in 2D, while the micromodel has a depth (Lz). To account
for the depth of the Hele-Shaw cell, we incorporate the Darcy-Brinkmann model (or depth-
integrated) model for flow. However, this approach neglects the depth profile of bubbles,
which is present in the actual experimental setup. To validate the accuracy of the LBM
workflow in simulating transport in unsaturated conditions in the micromodel, we compare
the results of transport simulations with experimental data for three different saturation
values. Remarkably, the LBM simulations yield results that are close to the experimental
transport data, indicating that the LBM approach successfully captures the physics of flow
and transport in the unsaturated micromodel, despite the assumptions and simplifications
made. This validation process provides confidence in the use of LBM simulations to study
transport phenomena in unsaturated porous media, compensating for the limitations of
experimental setups and providing valuable insights into transport dynamics under these
conditions.

Given that the LBM method still requires experimental phase distributions as in-
puts, the study is inherently limited to the size of the micromodel images. As saturation
decreases and heterogeneity increases, the micromodel size becomes increasingly smaller
compared to the Representative Elementary Volume (REV) of the unsaturated porous
medium. Consequently, to ensure the relevance of our dispersion study, we require either
longer images of the micromodel to consider longer time dispersion or a large number of
two-phase configurations. Unfortunately, obtaining such experimental data can be chal-
lenging and may come with significant limitations.

To address these constraints and broaden the scope of our study, we are exploring the
use of machine learning techniques. By employing machine learning algorithms, we aim
to create unsaturated porous media models from our experimental data. This approach
holds the promise of overcoming size and sample number limitations. We employed the
Multiple Point Statistics (MPS) algorithm, originally developed for statistical applications
but increasingly utilized in porous media studies, particularly by Jimenez-Martinez [90]
for generating unsaturated porous media. In their work, they simulated the trapped phase
using experimental data with a regular grid as the porous medium. Our approach is simi-
lar, but we go a step further by generating both a new porous medium and the associated
phase distribution for a given saturation. To validate the MPS method’s efficacy, we com-
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pared the structural properties of the generated media with the experimental images used
as training data. Notably, we compared porosity and saturation values, as well as the
distributions of bubbles and grains. The comparison showed that the structural proper-
ties were highly comparable between the generated media and the experimental images.
To further validate the method, we conducted flow and transport simulations in both
the experimental and generated images using the Lattice-Boltzmann method. The results
demonstrated that the MPS-generated porous media effectively replicated the flow and
transport properties observed in the experimental images. The velocity distributions of
the flow were accurately reproduced, and the transport properties showed good agreement
between the experimental and generated images.

Overall, we successfully validated the MPS method for generating unsaturated porous
media from experimental images and for studying flow and transport with similar prop-
erties. The strength of this approach lies in its generality, making it applicable to any 2D
unsaturated two-phase distribution. By employing the MPS algorithm, we can overcome
the limitations of experimental size and sample numbers, enabling us to explore disper-
sion and transport phenomena in unsaturated porous media at a greater scale and with
increased accuracy.

Once the entire workflow was developed, we pursued two different strategies to study
dispersion in unsaturated porous media. The first strategy involved generating long images
to investigate long-time dispersion behavior. However, there was a significant computation
cost associated with Lattice-Boltzmann simulations, as it is quadratic with the image size.
Furthermore, the range of Peclet we could explore was limited due to numerical stability
or computational constraints. To address this limitation, we adopted a second strategy,
which involved generating a large dataset of MPS-generated porous media images at the
micromodel size. This dataset covered the entire range of saturation values, enabling
a statistical study of dispersion in unsaturated porous media. Unlike the long images,
the short images in this dataset allowed us to explore a wide range of Peclet values.
By employing these two strategies, we were able to gain insights into both long-time
dispersion behavior through the long images and statistical trends in dispersion with
varying saturation and Peclet values through the large dataset of short images.

Firstly, concerning flow properties, we focused on the apparent permeability, tortuos-
ity, and heterogeneity under saturated conditions for the small realizations. The apparent
permeability showed a significant decrease as saturation decreased, approaching zero near
the residual gas saturation. As the gas acted as an additional solid matrix in our system,
we compared our results with permeability-porosity relations using the concept of appar-
ent porosity ϕapp = ϕSw. The permeability data aligned well with the power-law relation
commonly found in the literature, following the form Kapp ∝ (ϕapp − ϕ0)c. Similarly,
the tortuosity increased considerably with decreasing saturation. We again compared our
results with tortuosity-porosity relations, incorporating the concept of apparent porosity,
and found a good fit with a logarithmic function, τ = 1 − p lnϕapp commonly used in
litterature. This suggested that the apparent porosity accurately represented flow char-
acteristics, indicating that the gas nature of the trapped phase might not significantly
impact flow properties.

Additionally, we quantified flow heterogeneity by examining the normalized velocity
standard deviation σu. This parameter exhibited a significant increase as saturation de-
creased, driven by the emergence of dead ends and preferential flow paths. As saturation
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decreased, the number of dead ends expanded exponentially, leading to very low velocities,
while preferential flow paths resulted in regions of very high velocities.

Based on our analysis of small realizations, we found that the evolution of the second
moments over time indicated non-Fickian transport behavior over a wide range of Peclet
values, both in saturated and unsaturated conditions. Therefore, we would not observe
asymptotic dispersion for the medium length and Pe considered, and we characterized a
transient regime. The mean value of the power law index α in the second moment was
estimated to be 1.5, but there was a considerable statistical variance among the data. Since
transport was non-Fickian, we quantitatively characterized dispersion using the fractional
dispersion coefficient Dfrac

α associated with α = 1.5. This analysis revealed a significant
increase in dispersion as saturation decreased, which confirmed the experimental findings.

Interestingly, for saturated and moderately unsaturated porous media, dispersion be-
came Fickian as the Peclet number decreased. Moreover, the transition from non-Fickian
to Fickian behavior was rather sharp. The normalized dispersion coefficient’s dependence
on the Peclet number indicated that the transition occurred when diffusion became more
effective in the dispersion process. Furthermore, we observed that the range of Peclet num-
bers for which dispersion was non-Fickian increased with decreasing saturation. In other
words, at low saturation, transport was predominantly advective, leading to a more pro-
nounced non-Fickian dispersion. On the other hand, at high saturation, diffusion became
more dominant, resulting in a transition towards Fickian dispersion.

In the long time realizations, we observed that the power law index α increased as satu-
ration decreased, which confirmed the findings from the small realizations. This trend sug-
gested that as saturation decreased, the non-Fickian behavior became more pronounced,
with stronger dispersion effects. Moreover, despite the limited range of Peclet values
that we could explore in the long simulations, we still observed the same effect of Peclet
as found in the short images. This consistency across both short and long simulations
provided strong support for the validity and robustness of our findings.

To summarize, this work provided valuable insights into the study of transport in
unsaturated porous media. We developed an experimental set-up that allowed us to inves-
tigate both multiphase flow and transport in a micromodel, along with the development
of appropriate data processing techniques. Through these experiments, we character-
ized the interaction between the multiphase flow and the porous medium and derived
the structural properties of the unsaturated porous medium. Transport experiments indi-
cated an increase in dispersion with decreasing saturation, although quantitative analysis
was limited due to experimental constraints. To overcome these limitations, we utilized
Lattice-Boltzmann (LBM) simulations after validating their suitability for modeling flow
and transport in unsaturated conditions within the micromodel. Furthermore, we devel-
oped a machine learning-based method using the Multiple Point Statistics (MPS) algo-
rithm to generate images with experimental data, enabling large-scale sample productions
without size limitations. Employing LBM simulations in the MPS-generated images pro-
vided powerful insights into flow properties and dispersion. Notably, we found that as
flow heterogeneity increased, and flow paths became more tortuous, with an increased
presence of dead ends, dispersion in unsaturated porous media exhibited a more advective
behavior. Consequently, we found that non-Fickian dispersion became more pronounced
in unsaturated conditions. In contrast, in saturated conditions, dispersion tended to be
Fickian as the Peclet number decreased, as diffusion became more effective in the dis-
persion process. Overall, this comprehensive approach combining experiments, machine
learning-based image generation, and LBM simulations significantly advanced our under-
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standing of transport phenomena in unsaturated porous media. The findings shed light on
the complex interplay between flow and dispersion, which has implications for a wide range
of applications, including groundwater management, environmental remediation, and the
transport of contaminants in porous media.

This work lays the foundation for potential future advancements, including the mod-
eling of non-Fickian dispersion in unsaturated porous media. For instance, it would be
interesting to apply the Continuous Time Random Walk (CTRW) approach in unsaturated
media to predict transport behaviors over longer time frames in unsaturated conditions.
Furthermore, it’s worth noting that our present study focused on dispersion in unsatu-
rated media with an immobile trapped phase. Expanding our investigation to encompass
transport involving two mobile immiscible phases would provide a more comprehensive
understanding of transport dynamics in unsaturated conditions. Looking ahead, there’s
potential to extend this workflow to three-dimensional conditions, which would allow for a
closer representation of real-world porous media. However, it’s important to acknowledge
that such numerical applications would demand substantial computational resources due
to the increased complexity and computational demands associated with 3D simulations.





Chapter 9

Appendices

9.1 Bibliography appendix: Non Fickian dispersion mod-
elling

9.1.1 Modeling with the Mobile-Immobile concept

MRMT (Multi-Rate Mass Transfer) model

The Multi-Rate Mass Transfer model is a generalization of the MIM model, with N
immobile zones, hence N transfer coefficients αi. The mobile zone is connected to the N
immobile zones and there is a diffusive transfer associated to each of these zones. Hence,
the MRMT model can be considered as a matrix formulation of the MIM model. The
following illustration explains the model for N=5, the arrow symbolizes the mobile zone,
and the squares of different size the immobile zones characterized by their respective
transfer coefficient to the mobile region [8] [139].

Figure 9.1 – Illustration of the MRMT model for N=5, from Babey 2014

The domain is assumed to consist of a mobile continuum, and several overlapping
immobile continua, each of them is characterized by its state variable, the concentration
in the zone. The governing equations of the MRMT models are given by

β ∂cm
∂t +∑N

j=1 βj
∂cim,j

∂t = Lu(cm), (9.1.1)

and
∂cim

∂t = αj(um − uim,j); j = 1,...,N, (9.1.2)
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with Lu the transport operator such that Lu(cm) = ∇.(Dm∇cm) and β = Rmϕm

with ϕm the the mobile porosity and Rm the retardation factor for the mobile phase;
βi = Rim,jϕim,j with ϕim,j the porosity and Rim,j the retardation factor of the immobile
region i.

F the total exchange between mobile and immobile regions is the sum of all mass
transfer

F = ∑N
j=1 Fj = ∑N

j=1 βjαj(cm − cim,j). (9.1.3)

The physical meaning of the parameters is that N immobile zones are considered, that
they are characterized by their concentration cim,j and they exchange mass with the mobile
zone proportionally to the difference of concentration. The parameters can be related to
a memory function, which encodes mass transfer between the mobile and the immobile
regions, such as in the CTRW model or fractional ADE model [139] [155]. We will develop
in another section the equivalences between those different models. The model parameters
are adjusted to fit the dispersion behavior, for example in a field experiment.

Applications of the MRMT models, limitations

The MRMT allows more flexibility than the MIM model because more exchange terms
are allowed. The more immobile regions are considered, the closer from real transport
the model becomes, according to Babey, 2015 [8], especially for transport at long times.
Particularly, MRMT models have been successfully applied to multi-phase transport [155],
even though it is not commonly used by experimenters at the moment. The MRMT model
can be quite general, as it can be equivalent to the CTRW and fractional ADE under some
restrictions (cf section Equivalence between models). A limitation of the MRMT is the
number of parameters needed, which increases linearly with the number of immobile zones
considered. Hence, the MRMT formulation is not a parsimonious model (i.e a model that
requires a minimal number of parameters to describe a phenomenon).

9.1.2 Modelling with random walk concepts: Continuous Time Random
Walk

CTRW formulation

The probability by unity of time for a walker to just arrive in s at the time t R(s,t) is
given by the sum at all discrete positions s’ of the probability to be at the position s’ and
to perform the transition from s’ to s for any given time. Then, the continuous nature in
time distribution of the CTRW is expressed trough the time integral and the probability
function ψ(δs,δt), which gives the probability rate for the walker to realize a jump of δs
after a time δt. R(s,t), the probability for a walker to just arrive in s at the time t is given
by

R(s,t) = ∑
s′
∫ t

0 ψ(s− s′,t− t′)R(s′,t′)dt′. (9.1.4)

To understand this formula, let’s take a particle in s which just arrived from a position
s′, and arrived at the time t′ in s′. The probability for this event equals to the probability
to just arrive in s′ at the time t′ R(s′,t′) multiplied by the probability to realize a jump
from s′ to s between t′ and t, ψ(s − s′,t − t′). To get the probability R(s,t), we sum the
probabilities on all positions s′, for all lapses of time t− t′.
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The probability for the walker to be in s at the time t P (s,t) is the probability for a
particle to arrive in s at a time t′, and to stay in s between t and t′, summed for all times
t′. Therefore, it is a function of R(s,t) given by

P (s,t) =
∫ t

0 Ψ(t− t′)R(s,t′)dt′, (9.1.5)

with Ψ(δt) the probability to stay in site during the time lapse δt. It is given by

Ψ(t) = 1 −
∫ t

0 ψ(t′)dt′, (9.1.6)

with ψ(t′) is the probability to leave the site after a time t’, for all possible jumps.

For a walker to be on site at the time t, it would have arrived at time inferior or equal
to t, or stayed in site at the time t. Consequently, the sum of probability for all times t’
to arrive in site at a time t′ < t plus the probability to stay in site at the time t equals to
1, which give the expression of Ψ(t). ψ(t′) is given by

ψ(t′) = ∑
s ψ(s,t′)dt′. (9.1.7)

The whole concept resides in the choice of the probability ψ(s,t) to adequately describe
the physical process of the particle motion. Typically, for anomalous transport to occur,
large time behavior of ψ(s,t) are needed, in other words, the transitions times must be
able to take really high values, and the variance of the transition time distribution must
be infinite. This is the case when ψ(s,t) is power tailed,

ψ(s,t) →t→∞ t−1−β, 0 < β < ∞. (9.1.8)

Usually, the dependence of the mean position l(t) and the standard deviation σ(t) of
the probability P(s,t) (or the concentration distribution) depends essentially of the form
of ψ(s,t) at larger times. In the special case of a power tailed probability distribution, it
can be shown [17] that

l(t) ∝ tβ, (9.1.9)

and
σ(t) ∝ tβ. (9.1.10)

This demonstrates the non-Gaussian behavior of the process of propagation of P(s,t),
a Gaussian behavior would have been characterized by l(t) ∝ t and σ(t) ∝ t

1
2 .

To get back to what was said about the Central Limit Theorem and the conditions
for a random walk to converge toward Brownian motion, this is typically a case where
ψ(s,t) does not fulfill the conditions for the central limit theorem, which is why it does
not converge toward a Gaussian behavior.

Analytical analysis

Resolution of the R(s,t) equation and analytical expressions
The equation of R(s,t) is a convolution in space and time, that could be resolved

through Laplace or Fourier transform. With inverse Laplace transform, we can theoret-
ically get the analytical expression of P (s,t) the concentration distribution for a given
ψ(s,t). However, given the difficulty to compute accurately inverse Laplace transform,
they are not calculated. Nonetheless, some calculation in Laplace space give essential
information, notably for First Time Passage distributions (probability to arrive in s at the
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time t for the fist time). They are equivalent in tracer test measurement to breakthrough
curves for a pulse input. Breakthrough curves for a step input are described by Cumulative
FPTD (CFPTD).

In the same example of power tailed distribution, characterized with a β parameter
such that ψ(s,t) ∝ t−1−β, we get analytical expression for the CFPTD for large values of
x [18]:

CFPTD(x) = exp(− 1−β
β

(βx)
1

1−β )√
2π(1−β)(βx)

1
1−β

(9.1.11)

Figure 9.2 – Illustration of CFTPD (or BTC curves) with different values of β, with L
the distance between the inlet and the outlet, and τ a dimensionless time. The axis are
normalized to allow a comparison of the curves.

From the CFPTD curves Fig. 9.2, we can see that low values of β involve greater
dispersion and long tails in the distributions, with greater standard deviation.

9.1.3 Generalization of the Fokker-Planck equation: fractional advection-
diffusion equations

Introduction

The concept behind fractional ADE is actually quite similar to the CTRW concept, it
resides in a generalization of the random walk, but goes further in the analogy of Brownian
motion with a generalized version of the Fokker-Plank equation, which is a fractional ADE.
The conditions to obtain these equations are a bit more restrictive than the Continuous
Random Walk, which is why fractional ADE are less general than continuous Random
Walk models.

The fractional ADE commonly found in the literature are fractional in space [15],
which means that the random walk is continuous in space. They are a special case of Levy
flight. In this section, we will describe the principle of fractional ADE and how they can
be used to model dispersion behavior or fit experimental data.

Fractional calculus

Before we can explain in detail the principle of fractional ADE, it is needed to introduce
a few notions of fractional calculus. In order to define fractional derivation, a generalization
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of the integration operator I is introduced. The iterative integration formula for an integer
n is given by the Cauchy Formula [30]

(Inf)(x) = 1
(n−1)!

∫ x
0 (x− t)n−1f(t)dt. (9.1.12)

This formula can be generalized to a positive number α thanks to the Gamma function.
The gamma function is given by Γ(α) =

∫∞
0 t−α−1e−tdt and for any integer n Γ(n+1) = n!.

Hence, we can define Iα given by

(Iαf)(x) = 1
Γ(n)

∫ x
0 (x− t)α−1f(t)dt. (9.1.13)

Then, to define a fractional derivative, we can use a little trick by combining the
classical derivation operator D and the generalized integration operator. Indeed, for a
positive number α, we can define an integer n such that n = int(α)+1. Then, a derivation
of order α is equivalent to an integration of order nα times and a derivation of order n.

Then, we can write [83]

Da+
αf(x) = dn

dxnDa+
−(n−α)f(x) = dn

dxn Ia+
n−α; x > a, (9.1.14)

Db
αf(x) = (− d

dx)nDb−
−(n−α)f(x) = (− d

dx)nIb
n−α; x < b. (9.1.15)

This is the Riemann-Liouville fractional derivative. Fractional derivative can be a real
practical tool, especially since the properties of the usual derivation are conserved in
Fourier space (the Fourier transform of the α derivative of a function f(x) will be given by
TF (Dαf(x))(k) = (ik)α ˆf(k).

Figure 9.3 – Fractional derivative of a Gaussian function, α = 0.18

Figure 9.4 – Fractional derivative of a Gaussian function, α = 0.42

NB: This is the simplest way to introduce fractional derivation, however some gener-
alized definitions of fractional derivation have been introduced, that allow a more uniform
definition but we won’t discuss it further, the aim was just to introduce the concept to be
able to understand the following section.
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Figure 9.5 – Fractional derivative of a Gaussian function, α = 0.74

Principle of space fractional ADE

The fractional ADE is a consequence of the random walk. We will see here how we can
obtain a generalized Fokker-Plank equation from a random walk continuous in time, and
under which hypotheses (from [15]). If the distribution of displacement of the random walk
has an infinite variance, the Central Limit Theorem can not be applied. However, the sum
of displacements can converge toward an α-stable Levy density which is a generalization
of the CLT mentioned in the section Random walk and dispersion.

Typically, for a long tailed distribution such as P (Y > y) ≈ Wyα, if α < 2, the variance∫
y2(y−α−1) diverges. Therefore, the Central Limit Theorem can not be applied anymore,

but the random walk converges toward Levy motion, characterized by Levy density f(y),
and the Fourier transform of f(y) is given by

f̂(k) =
∫∞

−∞ e−ikyf(y)dy = exp[−|k|ασα(1 + i β sign(k) tan(πα
2 )) − µik], (9.1.16)

with α the stability index, µ the mean of the distribution, β the skewness and σ the
spreading. Then, the concentration distribution for a large number of particles is given by

Ĉ(k,t) = exp[−σ(t)|k|ασα(1 + i β sign(k) tan(πα
2 )) − µik]

= exp[−Dt|cos( π
α/2)||k|α(1 + i β sign(k) tan(πα

2 )) − µik], (9.1.17)

with the spreading σ
σ = (Dt|cos( π

α/2)|)α. (9.1.18)

This is equivalent to

Ĉ(k,t) = exp[q Dt(−ik)α + p Dt(ik)α − ik vt], (9.1.19)

with p and q characterizing the skewness, p+q=1, µ = v and D a constant coefficient (D is
not the dispersion coefficient). Then, it can be easily verified that the equation governing
this distribution is

∂C
∂t = −v ∂C

∂x + pD ∂αC
∂xα + qD ∂αC

∂(−x)α , (9.1.20)

or
∂C
∂t = −v ∂C

∂x + (1
2 + β

2 )D ∂αC
∂xα + (1

2 − β
2 )D ∂αC

∂(−x)α , (9.1.21)

with the α derivative defined with the fractional calculus concept detailed in the previous
section. For a symmetric distribution (p = q = 1

2) or β = 0 we have

∂C
∂t = −v ∂C

∂x +D△αC, (9.1.22)

with △α = ∂α

∂(−x)α + ∂α

∂(x)α .
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We can see the close analogy with the ADE equation. Furthermore, for α = 2, the
equation becomes identical to the ADE. However, the coefficient D can be qualified of
dispersion coefficient only if α = 2 (Gaussian regime). Indeed, for a given α density, a
dispersion coefficient can not be defined, plus the coefficient D has the unity of mα/s, its
physical interpretation cannot be similar to the fickian regime as the variance of the plume
grows as (Dt)α.

By analogy to the ADE solutions for a step of concentration, we can derive similar
semi-analytical expressions for fractional ADE symmetric solutions

C(x,t) = C0
2 (1 − serfα(x−vt

Dtα )), (9.1.23)

with
serfα(z) = 2

∫ z
0 fα(x)dx, (9.1.24)

and fα the α-stable density.
Few remarks on α-stable densities
α-stable densities are invariant when shifted by vt and scaled by t 1

α . Plus, the variance
of the plume is scaled as 2

α . Once again, if α = 2, the results coincide with the solution of
the ADE equation (for a pulse input), i.e a Gaussian distribution. From the figure of the
α-stable densities for different values of α (9.6), we can see that α-stable densities, or in
other words the fractional ADE model allows long tailed distributions, which is not the
case of the Gaussian model. This is particularly remarkable in the graph (b) (Fig 9.6),
with the logarithmic scale.

Application of fractional ADE

Fractional ADE (fADE) can adequately fit and predict dispersion in porous media that
exhibits patterns of non-fickian dispersion. According to the work of Zhou (2003) [184], it
becomes interesting to use fractional ADE instead of the ADE if the order of the fADE is
significantly inferior to 2. In other words, the dispersion needs to show clear signs of non
linearity to use fADE.

Benson et al. have applied the fADE to predict dispersion successfully in a field exper-
iment (MADE tests, [15] [14]) with heterogeneous porous media. In Moradi (2018) [113],
they show that space fADE adequately capture the non-fickian nature of the dispersion
for heterogeneous soil, but the comparison of ADE and fADE in homogeneous soils gave
similar results, even though the dispersion in the homogeneous media tests shows patterns
of non-fickian dispersion. The non-fickian nature of the dispersion needs to be significant
to properly use the space fADE.

Efforts have been made to develop the fractional ADE tools and extend the link with
other models such as CTRW and MRMT. The extension to time fractional ADE has been
pursued, but it is not widely used in modelling yet due to the computational burden of
the solution of time fADE [109].

Nonetheless, Meerschaert et al. [109] have developed the time fractional ADE and
applied space fADE and time fADE to field experiments and numerical simulations to
assess the adequacy of the fractional ADE. Their analysis highlights that natural porous
media with highly contrasting permeability may form mobile and relatively immobile
zones, which results in a wide time distribution for solute waiting time. They conclude
that transport process can be characterized efficiently by time-non local model, including
the time fADE, the MRMT model, and the CTRW framework with mobile/immobile
distinction and appropriate memory function.
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Figure 9.6 – Symmetric α-stable densities for different values of α, with a linear scale (a)
and logarithmic scale (b), from Benson, 2001 [15].

Space fADE can also adequately describe the transport if the porous media tends to
form preferential flow paths. Spatio-temporal ADE might be the more adequate way to
model the dispersion in cases with sub-diffusion (retention of solute in dead-ends) and
super-diffusion (particle jumps due to preferential paths).

Remarks

Although fractional ADE implies to understand, at least superficially, rather complex
mathematical concepts such as fractional calculus, the fractional ADE formulation is very
general, and can model adequately non-fickian dispersion. Gaussian dispersion is just a
particular case of the fractional ADE.

Furthermore, the main advantage of the fractional ADE is to give a rather simple
equation to describe the transport, as well as an analytical solution in Fourier space. The
model is parsimonious, a few parameters only are needed to define the model entirely



9.1. Bibliography appendix: Non Fickian dispersion modelling 173

(v, α,D and eventually β for space fADE asymmetric distributions).
Plus, in the case of space fADE, the parameters of the model can be directly linked

with physical parameters of the concentration distribution. Indeed, if we have access to the
concentration profile, v and β are given by the first and third moment of the distribution,
and α and D can be computed from the maximum concentration as a function of time
and the second moment as a function of time. Nonetheless, the fractional ADE is not as
general as the CTRW, as it assumes that the random walk converges toward an α-stable
distribution.

9.1.4 Comparison of dispersion models

Figure 9.7 – Equivalence between models based on MRMT formulation, from Silva et al.
2009 [140]

Overview of non-Fickian dispersion models

Tab. 9.8 summarizes some essential traits of the different models.

9.1.5 Micromodels bibliography appendix

Micromodels fabrication methods

Additive manufacturing: shaping

The other shaping method is additive manufacturing, the main method is stereo-
lithography. It is a kind of 3D printing, based on the solidification of a liquid resin by
photo-polymerisation, the resin is added layer by layer. There are other kind of additive
manufacturing, such as fused deposition, electron beam melting, laser sintering. However,
additive manufacturing is still in its early stage for the fabrication of micromodels [1].
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Figure 9.8 – Modeling non-Fickian dispersion, overview

Figure 9.9 – Micromodels fabrication methods, from Kadamitriou, 2012 [92]

Micromodels visualization methods
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Figure 9.10 – Visualisation techniques, from Anbari, 2018 [1]

9.2 Method appendix

9.2.1 Taylor dispersion in the tubing

The Taylor dispersion coefficient in a tube is given by

DT aylor = D0(1 + P 2
e

48 ). (9.2.1)

Thus, the spreading of the concentration in the tubing is given by

< x2 >= D0(1 + P 2
e

48 )L
u
, (9.2.2)

with Pe = uL
D0

.

< x2 >= D0
L

u
+ u2

LD048 (9.2.3)

Hence, there is a competition between the diffusive term of the dispersion and the convec-
tive term. The optimal flow rate is given by Qopt = D0πa

2√
48.

9.3 Experimental results appendix

9.3.1 Phase distribution resulting from a two-phase flow

Position of the bubbles in the porous medium: deterministic or probabilistic?

A question arises when considering the interaction between the multiphase flow and
the porous medium. Is the position of the bubbles random in the porous medium or are
there more probable sites for bubbles to be trapped in? We repeated three experiments
of co-injection for two different Ca values (6.4 × 10−5 and 6.4 × 10−4). The position of
the bubbles have been determined in each case, and the images have been superposed.
Fig. 9.12 shows the superposition of images for the highest Ca. Solid is blue and the dark
spots highlight the presence of areas in the porous medium where bubbles are most likely
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Figure 9.11 – Taylor dispersion

to be trapped in and the white color shows areas where it is very unlikely for bubbles to
get trapped in.

Remark This is done with only three experiment repetitions, but a superposition of a
large number of images would give us a good estimation of the probability for a bubble to
be trapped in the porous medium for a given flow rate.

Figure 9.12 – Superposition of the bubbles positions for three co-injection experiments,
Ca = 6.4 × 10−5. Blue: Solid. Dark: presence of bubble for each repetition. Dark grey:
Presence of bubble for two out of three repetition. Light grey: Presence of bubble for only
one repetition. White: Absence of bubble

Fig. 9.13 gives the comparison of bubbles positions superposition for two flow rates.
For readability and to ease the comparison, the solid phase is shown in white. We can see
that the image for the highest Ca (right) is more contrasted than the low Ca (left): the
area where bubbles are likely to be trapped (grey or dark spots) decreases greatly. The
position of bubbles is restricted to a smaller portion of the porous media hence the position
of the bubbles is more deterministic. This is consistent with the work of Chevalier [35], in
which they computed the presence probability over a large number of realisations, and for
different values of Ca values. They observed that with increasing Ca, the images would
get more contrasted, which highlights that the phase distribution patterns becomes more
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deterministic.

Figure 9.13 – Comparison of the bubble positions probabilities p for two Ca. (Left)
Ca = 6.4 × 10−5 . (Right) Ca = 6.4 × 10−4. Dark: presence of bubble for each repetition.
Dark grey: p =1 Dark grey: p=0.66 Light grey: p=0.33. White: p=0.

Figure 9.14 – Illustration of trapping site. Superposition of three occurrences for Ca =
6.4 × 10−4.

At the pore scale, we observe that there are favorable sites of trapping for which the
probability to find a bubble is high (dark spots), but the bubble shape around a trapping
site changes from one experience to another. Typically, for the highest Ca number, 31% of
the ganglia on average share a trapping site (dark spot), when the dark spots only represent
7% of the total area occupied by bubbles. The trapping around a site is illustrated Fig.
9.14.

9.3.2 Structural properties of the unsaturated porous medium

Ratio of saturated pores We define the ratio of saturated pores as the number of
pores saturated over the total number of pores.

rpores =
npores/Sw=1
npores

(9.3.1)

In Fig. 9.15, the ratio of saturated pores decreases progressively when the water sat-
uration decreases. Plus, there is an important variability for low water saturation values.
Plus, at the lower mean saturation value, around 40% of the pores are still fully saturated
in water. The observed tendency indicates that pores are filled with air selectively.
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Figure 9.15 – Ratio of saturated pore as a function of water saturation

Evolution of the porous network with saturation

Assuming air clusters at rest, we consider a new porous medium where the air cluster
are replaced by solid. For a given saturation, a new porous medium is defined, with
its pores and throats. Here, we aim to analyze the evolution of the pores and throats
properties of this new network with saturation.

Pores and throats identification: watershed operation Air clusters are assimilated
as solid. We create a binary image of the unsaturated porous medium. Then, we apply
a watershed operation to create the pore and throats network. This is illustrated in the
Fig. 9.16. Then, we can analyse the pores and throats size by using the particle analysis
tool (ImageJ).

Figure 9.16 – Unsaturated pore network identification. From left to right: unsaturated
image, binarized unsaturated image (new pore network), pores and throats identification
with watershed.

Pores size analysis Fig. 9.17 shows that the mean pore size in the modified porous
network decreases with a decreasing water saturation, as bubbles occupy a fraction of
the pores. Mean pore size and saturation are almost proportional: the pore size in the
modified network is directly related to the local saturation of a pore in the porous network.
The creation of smaller pores when the saturation decreases can also be seen Fig. 9.17
(Bottom left), as pores distribution spreads towards small pore sizes. Pores of really small
size (100 times smaller than the mean pore size in the saturated medium) corresponds
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to water films around the bubbles. Plus, the pore size variance increases when the water
saturation decreases, which means the heterogeneity of the medium gets wider.

Figure 9.17 – Pore area analysis of the unsaturated networks. [Top] Mean pore size and
standard variation of the unsaturated network normalized by the mean pore size in the
saturated medium. [Bottom left] Distributions of the pore areas for different saturation
values.





Bibliography

[1] Alimohammad Anbari, Hung-Ta Chien, Sujit S. Datta, Wen Deng, David A. Weitz,
and Jing Fan. Microfluidic model porous media: Fabrication and applications. Small,
14(18):1703575, March 2018.

[2] G Burc Arpat and Jef Caers. Conditional simulation with patterns. Mathematical
Geology, 39:177–203, 2007.

[3] Pietro Asinari. Generalized local equilibrium in the cascaded lattice boltzmann
method. Phys. Rev. E, 78:016701, Jul 2008.

[4] M. Auset and A. Keller. Pore-scale visualization of colloid straining and filtration
in saturated porous media using micromodels. Water Resour Res, 42, 10 2006.

[5] Maria Auset and Arturo A. Keller. Pore-scale processes that control dispersion of
colloids in saturated porous media. Water Resources Research, 40(3), March 2004.

[6] R. Aziz, V. Joekar-Niasar, and P. Martinez-Ferrer. Pore-scale insights into transport
and mixing in steady-state two-phase flow in porous media. Int. J. Multiph. Flow,
109:51–62, 2018.

[7] Chopard B., Falcone J. L., and Latt J. The lattice boltzmann advection-diffusion
model revisited. The European Physical Journal Special Topics, 171(1):245–249,
2009.

[8] Tristan Babey, Jean-Raynald de Dreuzy, and Céline Casenave. Multi-rate mass
transfer (MRMT) models for general diffusive porosity structures. Advances in Water
Resources, 76:146–156, February 2015.

[9] M Barrande, R Bouchet, and R Denoyel. Tortuosity of porous particles. Analytical
chemistry, 79(23):9115–9121, 2007.

[10] G. Batôt, L. Talon, Y. Peysson, M. Fleury, and D. Bauer. Analytical and numerical
investigation of the advective and dispersive transport in herschel–bulkley fluids by
means of a lattice–boltzmann two-relaxation-time scheme. Chemical Engineering
Science, 141:271–281, 2016.

[11] Martin Bauer, Sebastian Eibl, Christian Godenschwager, Nils Kohl, Michael Kuron,
Christoph Rettinger, Florian Schornbaum, Christoph Schwarzmeier, Dominik
Thönnes, Harald Köstler, et al. walberla: A block-structured high-performance
framework for multiphysics simulations. Computers & Mathematics with Applica-
tions, 81:478–501, 2021.

[12] F. Bauget and M. Fourar. Non-fickian dispersion in a single fracture. Journal of
Contaminant Hydrology, 100(3-4):137–148, September 2008.



182 Bibliography

[13] P. Bedrikovetsky. Upscaling of stochastic micro model for suspension transport in
porous media. Transport in Porous Media, 75(3):335–369, April 2008.

[14] David A. Benson and Mark M. Meerschaert. A simple and efficient random walk
solution of multi-rate mobile/immobile mass transport equations. Advances in Water
Resources, 32(4):532–539, April 2009.

[15] David A. Benson, Rina Schumer, Mark M. Meerschaert, and Stephen W. Wheatcraft.
Fractional dispersion, lévy motion, and the made tracer tests. Transport in Porous
Media, 42(1/2):211–240, 2001.

[16] Brian Berkowitz, Joseph Klafter, Ralf Metzler, and Harvey Scher. Physical pictures
of transport in heterogeneous media: Advection-dispersion, random-walk, and frac-
tional derivative formulations. Water Resources Research, 38(10):9–1–9–12, October
2002.

[17] Brian Berkowitz, Georg Kosakowski, Gennady Margolin, and Harvey Scher. Applica-
tion of continuous time random walk theory to tracer test measurements in fractured
and heterogeneous porous media. Ground Water, 39(4):593–604, July 2001.

[18] Brian Berkowitz, Harvey Scher, and Stephen E. Silliman. Anomalous transport in
laboratory-scale, heterogeneous porous media. Water Resources Research, 36(1):149–
158, January 2000.

[19] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision pro-
cesses in gases. i. small amplitude processes in charged and neutral one-component
systems. Physical review, 94(3):511, 1954.

[20] Patrick Billingsley. Probability and Measure. John Wiley and Sons, second edition,
1986.

[21] J. Birkholzer and C.-F. Tsang. Solute channeling in unsaturated heterogeneous
porous media. Water Resour Res, 33(10):2221–2238, October 1997.

[22] Gianluca Blois, Julio M. Barros, and Kenneth T. Christensen. A microscopic particle
image velocimetry method for studying the dynamics of immiscible liquid–liquid
interactions in a porous micromodel. Microfluidics and Nanofluidics, 18(5-6):1391–
1406, January 2015.

[23] Tanguy Le Borgne, Marco Dentz, Diogo Bolster, Jesus Carrera, Jean-Raynald
de Dreuzy, and Philippe Davy. Non-fickian mixing: Temporal evolution of the
scalar dissipation rate in heterogeneous porous media. Advances in Water Resources,
33(12):1468–1475, December 2010.

[24] H. C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a
dense swarm of particles. Flow, Turbulence and Combustion, 1(1), December 1949.

[25] H.C. Brinkman. A calculation of the viscous forces exerted by a flowing fluid on a
dense swarm of particles. Appl. Sci. Res., sect A1:27–39, 1947.

[26] M. Bromly and C. Hinz. Non-fickian transport in homogeneous unsaturated repacked
sand. Water Resour Res, 40(7), July 2004.

[27] Hans-Jürgen Butt, Karlheinz Graf, and Michael Kappl. Physics and chemistry of
interfaces. John Wiley & Sons, 2013.



Bibliography 183

[28] Francisco J Carrillo, Ian C Bourg, and Cyprien Soulaine. Multiphase flow modeling
in multiscale porous media: An open-source micro-continuum approach. Journal of
Computational Physics: X, 8:100073, 2020.

[29] Edwin Earl Catmull. A subdivision algorithm for computer display of curved surfaces.
The University of Utah, 1974.

[30] Louis Auguste Cauchy. Résumé des leçons données à l’Ecole royale polytechnique
sur le calcul infinitésimal. Imprimerie Royale, Paris, 1823.

[31] Zhenhua Chai and T. S. Zhao. Nonequilibrium scheme for computing the flux of
the convection-diffusion equation in the framework of the lattice boltzmann method.
Phys. Rev. E, 90:013305, Jul 2014.

[32] S. Chapman and T.G. Cowling. The Mathematical Theory of Non-uniform Gases:
An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion
in Gases. Cambridge University Press, 1958.

[33] E. Charlaix, J. P. Hulin, and T. J. Plona. Experimental study of tracer dispersion in
sintered glass porous materials of variable compaction. Physics of Fluids, 30(6):1690,
1987.

[34] Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows. Annual
review of fluid mechanics, 30(1):329–364, 1998.

[35] T. Chevalier, D. Salin, L. Talon, and A.G. Yiotis. History effects on nonwetting fluid
residuals during desaturation flow through disordered porous media. Phys. Rev. E,
91(4), April 2015.

[36] MA Christie. Flow in porous media—scale up of multiphase flow. Current Opinion
in Colloid & Interface Science, 6(3):236–241, 2001.

[37] Charles A. Conn, Kun Ma, George J. Hirasaki, and Sibani Lisa Biswal. Visualizing
oil displacement with foam in a microfluidic device with permeability contrast. Lab
Chip, 14(20):3968–3977, 2014.

[38] Yavuz M. Corapcioglu, Sabina Chowdhury, and Sharon E. Roosevelt. Micromodel
visualization and quantification of solute transport in porous media. Water Resources
Research, 33(11):2547–2558, November 1997.

[39] Molly S Costanza-Robinson, Benjamin D Estabrook, and David F Fouhey. Represen-
tative elementary volume estimation for porosity, moisture saturation, and air-water
interfacial areas in unsaturated porous media: Data quality implications. Water Re-
sources Research, 47(7), 2011.

[40] John Crank. The mathematics of diffusion. Oxford university press, 1979.

[41] J-F Daian, CP Fernandes, PC Philippi, and JA Bellini da Cunha Neto. 3d recon-
stitution of porous media from image processing data using a multiscale percolation
system. Journal of Petroleum Science and Engineering, 42(1):15–28, 2004.

[42] Paul J. Dellar. Bulk and shear viscosities in lattice boltzmann equations. Phys. Rev.
E, 64:031203, Aug 2001.



184 Bibliography

[43] Paul J. Dellar. Incompressible limits of lattice boltzmann equations using multiple
relaxation times. Journal of Computational Physics, 190(2):351–370, 2003.

[44] B. Doligez, M. Le Ravalec, S. Bouquet, and M. Adelinet. A review of three geosta-
tistical techniques for realistic geological reservoir modeling integrating multi-scale
data. Bulletin of Canadian Petroleum Geology, 63(4):277–286, 2015.

[45] G. Dongmo, B. Braconnier, C. Preux, Q. Tran, and C. Berthon. Glimm and fi-
nite volume schemes for polymer flooding model with and without inaccessible pore
volume law. ECMOR XVII, 2020(1):1–21, 2020.

[46] Z. Dou, X. Zhang, C. Zhuang, Y. Yang, J. Wang, and Z. Zhou. Saturation de-
pendence of mass transfer for solute transport through residual unsaturated porous
media. Int J Heat Mass Tran, 188:122595, 2022.

[47] François Dubois and Pierre Lallemand. Quartic parameters for acoustic applica-
tions of lattice boltzmann scheme. Computers & Mathematics with Applications,
61(12):3404–3416, 2011. Mesoscopic Methods for Engineering and Science — Pro-
ceedings of ICMMES-09.

[48] D. D’Humières. Generalized lattice boltzmann equations, rarefied gas dynamics:
Theory and simulations. Progress in Astronautics and Aeronautics, 159:450–458,
1992.

[49] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling.
In Proceedings of the seventh IEEE international conference on computer vision,
volume 2, pages 1033–1038. IEEE, 1999.

[50] CL Farmer. Upscaling: a review. International journal for numerical methods in
fluids, 40(1-2):63–78, 2002.

[51] I Fatt and H Dykstra. Relative permeability studies. Journal of Petroleum Tech-
nology, 3(09):249–256, 1951.

[52] Junxi Feng, Qizhi Teng, Xiaohai He, and Xiaohong Wu. Accelerating multi-point
statistics reconstruction method for porous media via deep learning. Acta Materialia,
159:296–308, 2018.

[53] Andrea Ferrari, Joaquin Jimenez-Martinez, Tanguy Le Borgne, Yves Méheust, and
Ivan Lunati. Challenges in modeling unstable two-phase flow experiments in porous
micromodels. Water Resources Research, 51(3):1381–1400, March 2015.

[54] E. G. Flekkøy. Lattice bhatnagar-gross-krook models for miscible fluids. Phys. Rev.
E, 47:4247–4257, Jun 1993.

[55] JJ Fried and MA Combarnous. Dispersion in porous media. In Advances in hydro-
science, volume 7, pages 169–282. Elsevier, 1971.

[56] Christophe C Frippiat and Alain E Holeyman. A comparative review of upscaling
methods for solute transport in heterogeneous porous media. Journal of Hydrology,
362(1-2):150–176, 2008.

[57] U Frisch and B Hasslacher. Y. pomeau,“lattice-gas automata for the navier-stokes
equation,”. Phys. Rev. Lett, 56(14):1505–1508, 1986.



Bibliography 185

[58] C. Gardet. Modélisation multi-échelles de réservoir et calage d’historique de produc-
tion. PhD thesis, Université Pierre et marie Curie, 2014.

[59] C. Gardet, . Le Ravalec, and E. Gloaguen. Pattern-based conditional simulation
with a raster path: a few techniques to make it more efficient. Stoch Env Res Risk
A, 30(2):429–446, January 2016.

[60] C. Gardet and M. Le Ravalec. Multiscale multiple point simulation based on texture
synthesis. 09 2014.

[61] Martin Geier, Andreas Greiner, and Jan G. Korvink. Cascaded digital lattice boltz-
mann automata for high reynolds number flow. Phys. Rev. E, 73:066705, Jun 2006.

[62] Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred Krafczyk. The
cumulant lattice boltzmann equation in three dimensions: Theory and validation.
Computers & Mathematics with Applications, 70(4):507–547, 2015.

[63] I. Ginzburg, D. d’Humières, and A. Kuzmin. Optimal stability of advection-diffusion
lattice boltzmann models with two relaxation times for positive/negative equilib-
rium. J. Stat. Phys., 139(6):1090–1143, 2010.

[64] I. Ginzburg, G. Silva, and L.Talon. Analysis and improvement of Brinkman lattice
Boltzmann schemes: Bulk, boundary, interface. similarity and distinctness with finite
elements in heterogeneous porous media. Phys. Rev. E: Stat. Phys. Plasmas Fluids
Relat. Interdisciplin. Top., 91:023307, February 2015.

[65] I. Ginzburg, F. Verhaeghe, and D. d’Humières. Two-Relaxation-Time Lattice Boltz-
mann scheme: About parametrization, velocity, pressure and mixed boundary con-
ditions. Commun. Comput. Phys., 3:427–478, 2008.

[66] Irina Ginzburg. Multiple anisotropic collisions for advection–diffusion lattice boltz-
mann schemes. Advances in Water Resources, 51:381–404, 2013. 35th Year Anniver-
sary Issue.

[67] BV Gnedenko, AN Kolmogorov, BV Gnedenko, and AN Kolmogorov. Limit distri-
butions for sums of independent. Am. J. Math, 105, 1954.

[68] Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, and
Ulrich Rüde. A framework for hybrid parallel flow simulations with a trillion cells
in complex geometries. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 1–12, 2013.

[69] T.I. Gombosi. Gaskinetic Theory. Cambridge Atmospheric and Space Science Series.
Cambridge University Press, 1994.

[70] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544, 2014.

[71] P. Gouze, T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, and P. Pezard. Non-
fickian dispersion in porous media: 1. multiscale measurements using single-well
injection withdrawal tracer tests. Water Resources Research, 44(6), June 2008.

[72] Felipe B Guardiano and R Mohan Srivastava. Multivariate geostatistics: beyond
bivariate moments. Geostatistics Tróia’92: Volume 1, pages 133–144, 1993.



186 Bibliography

[73] V Guillon, M Fleury, D Bauer, and Marie-Christine Néel. Superdispersion in ho-
mogeneous unsaturated porous media using nmr propagators. Physical Review E,
87(4):043007, 2013.

[74] Zhaoli Guo and T. S. Zhao. Lattice boltzmann model for incompressible flows
through porous media. Phys. Rev. E, 66:036304, Sep 2002.

[75] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the
forcing term in the lattice boltzmann method. Phys. Rev. E, 65:046308, Apr 2002.

[76] D. Haga, Y. Niibori, and T. Chida. Hydrodynamic dispersion and mass transfer in
unsaturated flow. Water Resour Res, 35(4):1065–1077, April 1999.

[77] Roy Haggerty, Sean A. McKenna, and Lucy C. Meigs. On the late-time behavior
of tracer test breakthrough curves. Water Resources Research, 36(12):3467–3479,
December 2000.

[78] Ryan Haggerty, Dong Zhang, Jongwan Eun, and Yusong Li. Characterization of
bubble transport in porous media using a microfluidic channel. Water, 15(6):1033,
March 2023.

[79] N. Haque, A. Singh, and U.K. Saha. Experimental visualization and analysis of
multiphase immiscible flow in fractured micromodels using micro-particle image ve-
locimetry. J. Energy Res. Technol., 144(2), May 2021.

[80] J Hardy, Yves Pomeau, and O De Pazzis. Time evolution of a two-dimensional
classical lattice system. Physical Review Letters, 31(5):276, 1973.

[81] S. Hasan, V. Joekar-Niasar, N.K. Karadimitriou, and M. Sahimi. Saturation depen-
dence of non-fickian transport in porous media. Water Resour Res, 55(2):1153–1166,
February 2019.

[82] David J Heeger and James R Bergen. Pyramid-based texture analysis/synthesis.
In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 229–238, 1995.

[83] Richard Herrmann. Fractional Calculus. WORLD SCIENTIFIC, March 2014.

[84] M Honarpour and SM Mahmood. Relative-permeability measurements: An
overview. Journal of petroleum technology, 40(08):963–966, 1988.

[85] Rongzong Huang and Huiying Wu. A modified multiple-relaxation-time lattice boltz-
mann model for convection–diffusion equation. Journal of Computational Physics,
274:50–63, 2014.

[86] Henk Huinink. Unsaturated flow. In Fluids in Porous Media Transport and phase
changes. IOP Publishing, 2016.

[87] N. Jarrige, I. Bou Malham, J. Martin, N. Rakotomalala, D. Salin, and L. Talon.
Numerical simulations of a buoyant autocatalytic reaction front in tilted hele-shaw
cells. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top., 81:066311,
2010.



Bibliography 187

[88] F. Javadpour and D. Fisher. Nanotechnology-based micromodels and new image
analysis to study transport in porous media. Journal of Canadian Petroleum Tech-
nology, 47(02), February 2008.

[89] Miroslav Tuma Jennifer Scott. Algorithms for Sparse Linear Systems. Birkhauser,
Cham, 2023.

[90] J. Jiménez-Martínez, A. Alcolea, J.A. Straubhaar, and P. Renard. Impact of phases
distribution on mixing and reactions in unsaturated porous media. Adv Water Re-
sour, 144:103697, October 2020.

[91] J. Jiménez-Martínez, T. Le Borgne, H. Tabuteau, and Y. Méheust. Impact of sat-
uration on dispersion and mixing in porous media: Photobleaching pulse injection
experiments and shear-enhanced mixing model. Water Resour Res, 53(2):1457–1472,
February 2017.

[92] N. K. Karadimitriou and S. M. Hassanizadeh. A review of micromodels and their use
in two-phase flow studies. Vadose Zone Journal, 11(3):vzj2011.0072, August 2012.

[93] N.K. Karadimitriou, V. Joekar-Niasar, M. Babaei, and C. A. Shore. Critical role of
the immobile zone in non-fickian two-phase transport: A new paradigm. Environ-
mental Science & Technology, 50(8):4384–4392, April 2016.

[94] F. Kazemifar, G. Blois, D.C. Kyritsis, and K.T. Christensen. A methodology for
velocity field measurement in multiphase high-pressure flow of CO2 and water in
micromodels. Water Resour Res, 51(4):3017–3029, April 2015.

[95] Farzan Kazemifar, Gianluca Blois, Dimitrios C. Kyritsis, and Kenneth T. Chris-
tensen. Quantifying the flow dynamics of supercritical CO2–water displacement in a
2d porous micromodel using fluorescent microscopy and microscopic PIV. Advances
in Water Resources, 95:352–368, September 2016.

[96] Arturo A. Keller and Maria Auset. A review of visualization techniques of biocolloid
transport processes at the pore scale under saturated and unsaturated conditions.
Advances in Water Resources, 30(6-7):1392–1407, June 2007.

[97] Donald L. Koch and John F. Brady. Anomalous diffusion in heterogeneous porous
media. Physics of Fluids, 31(5):965, 1988.

[98] A. Koponen, M. Kataja, and J. Timonen. Tortuous flow in porous media. Physical
Review E, 54(1):406–410, July 1996.

[99] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E.M. Viggen.
The Lattice Boltzmann Method: Principles and Practice. Graduate Texts in Physics.
Springer International Publishing, 2016.

[100] A. Kuzmin, I. Ginzburg, and A.A. Mohamad. The role of the kinetic parameter in
the stability of two-relaxation-time advection–diffusion lattice boltzmann schemes.
Computers & Mathematics with Applications, 61(12):3417–3442, 2011. Mesoscopic
Methods for Engineering and Science — Proceedings of ICMMES-09.

[101] A.J.C. Ladd. Numerical simulations of particulate suspensions via a discretized
boltzmann equation. part 1. theoretical foundation. Journal of Fluid Mechanics,
271:285–309, 1994.



188 Bibliography

[102] Pierre Lallemand and Li-Shi Luo. Theory of the lattice boltzmann method: Disper-
sion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E, 61:6546–
6562, Jun 2000.

[103] Karine Laurent, Éric Flauraud, Christophe Preux, Quang Huy Tran, and Christophe
Berthon. Design of coupled finite volume schemes minimizing the grid orientation
effect in reservoir simulation. Journal of Computational Physics, 425:109923, 2021.

[104] V. Leontidis, S. Youssef, and D. Bauer. New insights into tracer propagation in
partially saturated porous media. Oil & Gas Science and Technology – Revue d’IFP
Energies nouvelles, 75:29, 2020.

[105] Melissa Levy and Brian Berkowitz. Measurement and analysis of non-fickian dis-
persion in heterogeneous porous media. Journal of Contaminant Hydrology, 64(3-
4):203–226, July 2003.

[106] Mojtaba G. Mahmoodlu, Amir Raoof, Tom Bultreys, Jeroen Van Stappen, and
Veerle Cnudde. Large-scale pore network and continuum simulations of solute lon-
gitudinal dispersivity of a saturated sand column. Advances in Water Resources,
144:103713, October 2020.

[107] M.A. Maraqa, R.B. Wallace, and T.C. Voice. Effects of degree of water saturation
on dispersivity and immobile water in sandy soil columns. J. Contam. Hydrol.,
25(3-4):199–218, March 1997.

[108] G. Matheron and G. De Marsily. Is transport in porous media always diffusive? a
counterexample. Water Resources Research, 16(5):901–917, October 1980.

[109] Mark M. Meerschaert, Jeff Mortensen, and Stephen W. Wheatcraft. Fractional
vector calculus for fractional advection–dispersion. Physica A: Statistical Mechanics
and its Applications, 367:181–190, July 2006.

[110] Yashar Mehmani. Modeling single-phase flow and solute transport across scales. PhD
thesis, University of Texas at Austin, 2014.

[111] Henk G Merkus. Particle size measurements. Particle Technology Series. Springer,
Dordrecht, Netherlands, 2009 edition, January 2009.

[112] R. J. MILLINGTON and J. P. QUIRK. Permeability of porous media. Nature,
183(4658):387–388, February 1959.

[113] G. Moradi and B. Mehdinejadiani. Modelling solute transport in homogeneous and
heterogeneous porous media using spatial fractional advection-dispersion equation.
Soil and Water Research, 13(No. 1):18–28, January 2018.

[114] Lukas Mosser, Olivier Dubrule, and Martin J Blunt. Reconstruction of three-
dimensional porous media using generative adversarial neural networks. Physical
Review E, 96(4):043309, 2017.

[115] Peyman Mostaghimi, Branko Bijeljic, and Martin J. Blunt. Simulation of flow and
dispersion on pore-space images. In All Days. SPE, September 2010.

[116] Alon Nissan and Brian Berkowitz. Anomalous transport dependence on péclet num-
ber, porous medium heterogeneity, and a temporally varying velocity field. Physical
Review E, 99(3), March 2019.



Bibliography 189

[117] Yufu Niu, Peyman Mostaghimi, Mehdi Shabaninejad, Pawel Swietojanski, and
Ryan T Armstrong. Digital rock segmentation for petrophysical analysis with re-
duced user bias using convolutional neural networks. Water Resources Research,
56(2):e2019WR026597, 2020.

[118] G. Nützmann, S. Maciejewski, and K. Joswig. Estimation of water saturation de-
pendence of dispersion in unsaturated porous media: experiments and modelling
analysis. Adv Water Resour, 25(5):565–576, May 2002.

[119] Hiroshi Okabe and Martin J Blunt. Prediction of permeability for porous media
reconstructed using multiple-point statistics. Physical Review E, 70(6):066135, 2004.

[120] Rezki Oughanem, Souhail Youssef, Daniela Bauer, Yannick Peysson, Eric Maire, and
Olga Vizika. A multi-scale investigation of pore structure impact on the mobilization
of trapped oil by surfactant injection. Transport in Porous Media, 109(3):673–692,
July 2015.

[121] I.Y. Padilla, T.-C.J. Yeh, and M.H. Conklin. The effect of water content on so-
lute transport in unsaturated porous media. Water Resour Res, 35(11):3303–3313,
November 1999.

[122] Andrès Vélasquez Parra, Tomas Aquino, Mathias Willman, Tanguy Le Borgne, Yves
Méheust, and Joaquin Jimenez-Martinez. Sharp transition to strongly anomalous
transport in unsaturated porous media. Water Resources Research, March 2021.

[123] Mathis Pasquier, Stéphane Jay, Jérôme Jacob, and Pierre Sagaut. A lattice-
boltzmann-based modelling chain for traffic-related atmospheric pollutant dispersion
at the local urban scale. Building and Environment, 242:110562, 2023.

[124] T.K. Perkins and O.C. Johnston. A review of diffusion and dispersion in porous
media. Society of Petroleum Engineers Journal, 3(01):70–84, March 1963.

[125] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-
nal of Computational Physics, 117(1):1–19, 1995.

[126] Swain N. R., Latu K., Christensen S. D., Jones N. L., Nelson E. J., Ames D. P.,
and Williams G. P. A review of open source software solutions for developing water
resources web applications. Environmental Modelling & Software, 67:108–117, 2015.

[127] TC Ransohoff and CJ Radke. Mechanisms of foam generation in glass-bead packs.
SPE reservoir engineering, 3(02):573–585, 1988.

[128] A. Raoof, H. Nick, S.M. Hassanizadeh, and C.J. Spiers. Poreflow: A complex pore-
network model for simulation of reactive transport in variably saturated porous
media. Computers & Geosciences, 61:160–174, 2013.

[129] Roland Masson Robert Eymard, Cindy Guichard. Grid orientation effect in coupled
finite volume schemes. IMA Journal of Numerical Analysis, 2012.

[130] JG Roof. Snap-off of oil droplets in water-wet pores. Society of Petroleum Engineers
Journal, 10(01):85–90, 1970.

[131] M Sahimi and A O Imdakm. The effect of morphological disorder on hydrodynamic
dispersion in flow through porous media. Journal of Physics A: Mathematical and
General, 21(19):3833–3870, October 1988.



190 Bibliography

[132] Muhammad Sahimi. Fractal and superdiffusive transport and hydrodynamic dis-
persion in heterogeneous porous media. Transport in Porous Media, 13(1):3–40,
October 1993.

[133] James E. Saiers and John J. Lenhart. Colloid mobilization and transport within un-
saturated porous media under transient-flow conditions. Water Resources Research,
39(1), January 2003.

[134] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,
S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D. J. White, V. Harten-
stein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for
biological-image analysis. Nature Methods, 9(7):676–682, June 2012.

[135] James J Sheng. Enhanced oil recovery field case studies. Gulf Professional Publishing,
2013.

[136] N. Shokri, P. Lehmann, and D. Or. Critical evaluation of enhancement factors
for vapor transport through unsaturated porous media. Water Resources Research,
45(10), October 2009.

[137] Siemens Digital Industries Software. Simcenter STAR-CCM+, version 2021.1,
Siemens 2021.

[138] S. E. Silliman and E. S. Simpson. Laboratory evidence of the scale effect in dispersion
of solutes in porous media. Water Resources Research, 23(8):1667–1673, August
1987.

[139] Orlando Silva, Jesus Carrera, Marco Dentz, S. Kumar, Andrés Alcolea, and Matthias
Willmann. A general real-time formulation for multi-rate mass transfer problems.
2009.

[140] Orlando Silva, Jesus Carrera, Marco Dentz, S. Kumar, Andrés Alcolea, and Matthias
Willmann. A general real-time formulation for multi-rate mass transfer problems.
Hydrology and Earth Sciences, 2009.

[141] F. De Smedt and P. J. Wierenga. Solute transfer through columns of glass beads.
Water Resources Research, 20(2):225–232, February 1984.

[142] Yoshio Sone and Y Sone. Kinetic theory and fluid dynamics. Springer, 2002.

[143] C. Soulaine, J. Maes, and S. Roman. Computational microfluidics for geosciences.
Frontiers in Water, 3, March 2021.

[144] J. Straubhaar, P. Renard, and T. Chugunova. Multiple-point statistics using
multi-resolution images. Stochastic Environmental Research and Risk Assessment,
34(2):251–273, February 2020.

[145] Sebastien Bruno Strebelle. Sequential simulation drawing structures from training
images. Stanford University, 2000.

[146] Shinsuke Suga. Stability and accuracy of lattice boltzmann schemes for anisotropic
advection-diffusion equations. International Journal of Modern Physics C,
20(04):633–650, 2009.



Bibliography 191

[147] Shinsuke Suga. An accurate multi-level finite difference scheme for 1d diffusion
equations derived from the lattice boltzmann method. Journal of Statistical Physics,
140:494–503, 2010.

[148] Pejman Tahmasebi. Multiple point statistics: a review. Handbook of mathematical
geosciences: Fifty years of IAMG, pages 613–643, 2018.

[149] Pejman Tahmasebi. Multiple Point Statistics: A Review, pages 613–643. Springer
International Publishing, Cham, 2018.

[150] Ken Tore Tallakstad, Grunde Løvoll, Henning Arendt Knudsen, Thomas Ramstad,
Eirik Grude Flekkøy, and Knut Jørgen Måløy. Steady-state, simultaneous two-phase
flow in porous media: An experimental study. Physical Review E, 80(3), September
2009.

[151] Laurent Talon, Emma Ollivier-Triquet, Marco Dentz, and Daniela Bauer. Tran-
sient dispersion regimes in heterogeneous porous media: On the impact of spatial
heterogeneity in permeability and exchange kinetics in mobile–immobile transport.
Advances in Water Resources, 174:104425, 2023.

[152] Xiao-Hua Tan, Li Jiang, Xiao-Ping Li, Yue-Yang Li, and Kai Zhang. A complex
model for the permeability and porosity of porous media. Chemical Engineering
Science, 172:230–238, November 2017.

[153] Y. B. Tang, M. Li, Y. Bernabé, and J. Z. Zhao. Viscous fingering and preferential
flow paths in heterogeneous porous media. Journal of Geophysical Research: Solid
Earth, 125(3), March 2020.

[154] Sir Geoffrey Taylor. On the dispersion of a solute in a fluid flowing through a tube.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 235(1200):67–77, April 1956.

[155] Jan Tecklenburg, Insa Neuweiler, Jesus Carrera, and Marco Dentz. Multi-rate mass
transfer modeling of two-phase flow in highly heterogeneous fractured and porous
media. Advances in Water Resources, 91:63–77, May 2016.

[156] Nathaniel Trask, Martin Maxey, Kyungjoo Kim, Mauro Perego, Michael L. Parks,
Kai Yang, and Jinchao Xu. A scalable consistent second-order sph solver for un-
steady low reynolds number flows. Computer Methods in Applied Mechanics and
Engineering, 289:155–178, 2015.

[157] Dimetre Triadis, Fei Jiang, and Diogo Bolster. Anomalous dispersion in pore-scale
simulations of two-phase flow. Transport in Porous Media, 126(2):337–353, October
2018.

[158] Alina Tyukhova, Marco Dentz, Wolfgang Kinzelbach, and Matthias Willmann.
Mechanisms of anomalous dispersion in flow through heterogeneous porous media.
Physical Review Fluids, 1(7), November 2016.

[159] S. Ubertini, P. Asinari, and S. Succi. Three ways to lattice boltzmann: A unified
time-marching picture. Phys. Rev. E, 81:016311, Jan 2010.

[160] Bram van Leer. Towards the ultimate conservative difference scheme. v. a second-
order sequel to godunov’s method. Journal of Computational Physics, 32(1):101–136,
1979.



192 Bibliography

[161] J. Vanderborght and H. Vereecken. Review of dispersivities for transport modeling
in soils. Vadose Zone J, 6(1):29–52, February 2007.

[162] Igor Varfolomeev, Ivan Yakimchuk, and Ilia Safonov. An application of deep neural
networks for segmentation of microtomographic images of rock samples. Computers,
8(4):72, 2019.

[163] A. Velásquez-Parra, T. Aquino, M. Willmann, Y. Méheust, T. Le Borgne, and
J. Jiménez-Martínez. Sharp transition to strongly anomalous transport in unsat-
urated porous media. Geophys Res Lett, 49(3):e2021GL096280, 2022.

[164] D. Violeau. Fluid Mechanics and the SPH Method: Theory and Applications. Uni-
versity Press, Oxford, 2012.

[165] J. Wan and J.L. Wilson. Colloid transport in unsaturated porous media. Water
Resour Res, 30(4):857–864, April 1994.

[166] Jiamin Wan, John L. Wilson, and Thomas L. Kieft. Influence of the gas-water inter-
face on transport of microorganisms through unsaturated porous media, February
1994.

[167] Ying Da Wang, Martin Blunt, Ryan Armstrong, and Peyman Mostaghimi. Deep
learning in pore scale imaging and modeling. Earth-Science Reviews, 215, 02 2021.

[168] Stephen Whitaker. Flow in porous media i: A theoretical derivation of darcy's law.
Transport in Porous Media, 1(1):3–25, 1986.

[169] Mark D. Wilkins, Linda M. Abriola, and Kurt D. Pennell. An experimental investi-
gation of rate-limited nonaqueous phase liquid volatilization in unsaturated porous
media: Steady state mass transfer. Water Resources Research, 31(9):2159–2172,
September 1995.

[170] Dieter Wolf-Gladrow. A lattice boltzmann equation for diffusion. Journal of Statis-
tical Physics, 79:1023–1032, 1995.

[171] Yuqi Wu, Chengyan Lin, Lihua Ren, Weichao Yan, Senyou An, Bingyi Chen, Yang
Wang, Xianguo Zhang, Chunmei You, and Yimin Zhang. Reconstruction of 3d
porous media using multiple-point statistics based on a 3d training image. Journal
of Natural Gas Science and Engineering, 51:129–140, 2018.

[172] Ke Xu, Tianbo Liang, Peixi Zhu, Pengpeng Qi, Jun Lu, Chun Huh, and Matthew
Balhoff. A 2.5-d glass micromodel for investigation of multi-phase flow in porous
media. Lab on a Chip, 17(4):640–646, 2017.

[173] Liang Xue, Xiaozhe Guo, and Hao Chen. Fluid Flow in Porous Media. WORLD
SCIENTIFIC, February 2020.

[174] Xiaofan Yang, Yashar Mehmani, William A. Perkins, Andrea Pasquali, Martin
Schönherr, Kyungjoo Kim, Mauro Perego, Michael L. Parks, Nathaniel Trask,
Matthew T. Balhoff, Marshall C. Richmond, Martin Geier, Manfred Krafczyk, Li-
Shi Luo, Alexandre M. Tartakovsky, and Timothy D. Scheibe. Intercomparison of
3d pore-scale flow and solute transport simulation methods. Advances in Water
Resources, 95:176–189, 2016. Pore scale modeling and experiments.



Bibliography 193

[175] Christopher Yeates. Multi-Scale Study of Foam Flow Dynamics in Porous Media.
PhD thesis, Sorbonne Université, 2019.

[176] Hiroaki Yoshida and Makoto Nagaoka. Multiple-relaxation-time lattice boltzmann
model for the convection and anisotropic diffusion equation. J. Comput. Phys.,
229(20):7774–7795, oct 2010.

[177] Wonjin Yun, Cynthia M. Ross, Sophie Roman, and Anthony R. Kovscek. Creation
of a dual-porosity and dual-depth micromodel for the study of multiphase flow in
complex porous media. Lab on a Chip, 17(8):1462–1474, 2017.

[178] J. Zeng, Y.C. Yortsos, and D. Salin. On the Brinkman correction in unidirectional
Hele-Shaw flows. Phys. Fluids, 15:3829–3836, 2003.

[179] Jie Zeng, Yannis C Yortsos, and Dominique Salin. On the brinkman correction in
unidirectional hele-shaw flows. Physics of Fluids, 15(12):3829–3836, 2003.

[180] D. Zhang, R. Zhang, S. Chen, and W.E. Soll. Pore scale study of flow in porous
media: Scale dependency, REV, and statistical REV. Geophys Res Lett, 27(8):1195–
1198, April 2000.

[181] Ting Zhang and Yi Du. Reconstructing porous media using mps. In Multimedia and
Signal Processing: Second International Conference, CMSP 2012, Shanghai, China,
December 7-9, 2012. Proceedings, pages 341–348. Springer, 2012.

[182] Ting Zhang, Yi Du, Tao Huang, and Xue Li. Reconstruction of porous media using
multiple-point statistics with data conditioning. Stochastic environmental research
and risk assessment, 29:727–738, 2015.

[183] Xiaoxian Zhang and Mouchao Lv. Persistence of anomalous dispersion in uniform
porous media demonstrated by pore-scale simulations. Water Resources Research,
43(7), July 2007.

[184] Liuzong Zhou and H. M. Selim. Application of the fractional advection-dispersion
equation in porous media. Soil Science Society of America Journal, 67(4):1079–1084,
July 2003.


	Page de garde
	1 Introduction
	2 State of the art
	2.1 Introduction: generalities on flow and dispersion in porous media
	2.1.1 Porous media: from the microscopic to the macroscopic scale
	2.1.2 Flow in porous media, from the microscopic to the macroscopic scales
	2.1.3 Dispersion in porous media

	2.2 Non-Fickian dispersion in porous media
	2.2.1 Observation of non-Fickian dispersion in porous media
	2.2.2 Random walk and non-Fickian dispersion
	2.2.3 Modelling non-Fickian dispersion

	2.3 Properties of a two-phase flow in porous media 
	2.3.1 Generalities: physics at the interface
	2.3.2 Two phase flow in porous media: quasi-static conditions
	2.3.3 Dynamics of a two phase flow in porous media
	2.3.4 Flow with a trapped phase

	2.4 Saturation effects on dispersion in porous media 
	2.4.1 Effect of saturation: discrepancy of results
	2.4.2 Description of the dispersion: ambiguities
	2.4.3 Different trends
	2.4.4 Influence of the two phase flow topology on the dispersion

	2.5 Micromodels for porous media studies
	2.5.1 Generalities
	2.5.2 Micromodels for the characterization of non miscible two-phase flows in porous media
	2.5.3 Micromodels to study dispersion in porous media

	2.6 Synthetic image reconstruction in porous media
	2.6.1 Introduction
	2.6.2 Multiple-Point statistics algorithm
	2.6.3 MPS application to porous media

	2.7 Conclusion

	3 Experimental methods and data processing
	3.1 Multi-phase flow and transport experiments
	3.1.1 Experimental set-up
	3.1.2 Experimental protocols

	3.2 Data processing
	3.2.1 Data analysis of the non miscible fluid distribution: image processing
	3.2.2 Data analysis of the concentration fields: methods of moments
	3.2.3 Further Data Processing

	3.3  Validation of the transport protocol 
	3.3.1 Repeatability of the injection

	3.4 Conclusion

	4 Numerical strategy
	4.1 Numerical methods for flow and transport simulations 
	4.2 Lattice Boltzmann method
	4.2.1 Introduction
	4.2.2 Boltzmann equation
	4.2.3 Lattice-Boltzmann method
	4.2.4 Macroscopic flow behavior
	4.2.5 Numerical resolution
	4.2.6 Selecting a collision operator
	4.2.7 TRT collision operator
	4.2.8 Lattice units
	4.2.9 D2Q9 Velocity set

	4.3 Lattice-Boltzmann method for porous media
	4.3.1 Flow simulations
	4.3.2 Transport simulation

	4.4 Illustration of LBM simulation
	4.5 Conclusion

	5 Experimental results on dispersion in unsaturated porous media
	5.1 Introduction
	5.2 Multiphase flow in porous media
	5.2.1 Co-injection experiments
	5.2.2 Macroscopic scale: evolution of the saturation with the flow rate
	5.2.3 Microscopic scale: bubble's distribution
	5.2.4 Microscopic scale: structural properties at the pore scale
	5.2.5 Conclusion: insight on multiphase flow interaction in porous media

	5.3 Dispersion in unsaturated porous media
	5.3.1 Dispersion dependence with saturation
	5.3.2 Influence of bubbles distributions

	5.4 Experimental validation of Lattice-Boltmann simulation in the micromodel
	5.4.1 Experimental and simulation conditions
	5.4.2 Results
	5.4.3 Validation of LBM simulation to compute transport in saturated and unsaturated micromodel

	5.5 Conclusion on preliminary results

	6 Generating synthetic images of unsaturated porous media with a multiscale multipoint statistics approach
	6.1 Motivation
	6.2 Multiple-point statistics algorithm
	6.2.1 MPS algorithm
	6.2.2 Multi-scale algorithm
	6.2.3 Application of MPS to unsaturated porous media images

	6.3 Method validation
	6.3.1 Generated images
	6.3.2 Structural properties
	6.3.3 Flow and transport properties

	6.4 Conclusions

	7 Numerical results on flow and dispersion in unsaturated porous media
	7.1 Introduction
	7.2 Data set
	7.2.1 Experimental Dataset: training images
	7.2.2 Generated images: two data sets

	7.3 Effect of saturation on the flow
	7.3.1 Introduction
	7.3.2 Apparent permeability
	7.3.3 Velocity field distributions
	7.3.4 Spatial evolution of the flow
	7.3.5 Conclusion

	7.4 Dispersion in unsaturated porous media
	7.4.1 Introduction
	7.4.2 Methodology
	7.4.3 Qualitative observations
	7.4.4 Short time dispersion: spatial moments of the dispersion 
	7.4.5 Short time dispersion: Effect of the Peclet number
	7.4.6 Long time dispersion
	7.4.7 Conclusion

	7.5 Quantification of the boundary effect on flow and transport
	7.5.1 Motivation
	7.5.2 Effect of the medium width on the flow properties
	7.5.3 Effect of the medium width on transport properties
	7.5.4 Influence of saturation on the boundary effect
	7.5.5 Conclusion


	8 Conclusion
	9 Appendices
	9.1 Bibliography appendix: Non Fickian dispersion modelling
	9.1.1 Modeling with the Mobile-Immobile concept
	9.1.2 Modelling with random walk concepts: Continuous Time Random Walk
	9.1.3 Generalization of the Fokker-Planck equation: fractional advection-diffusion equations
	9.1.4 Comparison of dispersion models
	9.1.5 Micromodels bibliography appendix

	9.2 Method appendix
	9.2.1 Taylor dispersion in the tubing

	9.3 Experimental results appendix
	9.3.1 Phase distribution resulting from a two-phase flow
	9.3.2 Structural properties of the unsaturated porous medium


	Bibliography

