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Président : Véronique Cortier Directrice de recherche

Rapporteurs : Patricia Bouyer-Decitre Directrice de recherche
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A B S T R A C T

Real-time systems can be used in a wide range of applications, such
as transport, telecommunications and industry. However, accidents
can happen, and it is necessary to have confidence in these systems in
order to avoid them. It is therefore necessary to formally prove that
their behavior will comply with a specification. This specification can
be of two kinds: with safety properties, showing that the system will
always behave as expected, and security properties, showing that it
will be resistant to certain attacks. For this, the formalism of timed
automata (TAs) [AD94] is fairly common. However, this modeling
may be imperfect, due to the nature of the system, needed simplifica-
tions or imprecisions. We therefore study these timed systems under
uncertainty, i.e. using parameters. The natural extension studied is
the formalism of parametric timed automata (PTAs) [AHV93].

First, we focus on efficient verification methods for PTAs. A bench-
mark library for parametric timed model-checking is presented, allow-
ing us to compare different algorithms for PTAs. Next, we study the
case of state merging in the parametric zone graph (PZG) of a PTA:
if the union of the constraints of two states with the same location
is convex, then these two states can be merged. We propose an algo-
rithm, implement it and compare different heuristics. We show that,
in practice, this method reduces the computation time by an average
of 62%.

Next, we introduce a notion of opacity on PTAs. In our formalism, an
attacker seeks to determine a secret (expressed in terms of visiting a
location) knowing only the total execution time of the system (as well
as the model). We formally define this notion and study two types
of problem: deciding that a system expressed as a TA is opaque, and
determining the parameter valuations of a PTA to ensure the opacity
of the associated TA. We then extend this definition to the case of
secrets with expiration: in this formalism, after a certain delay, finding
a secret is useless for the attacker. We then address the decision
problem as well as the problem of computing the expiration date to
ensure that a TA is opaque. A parameterized extension is also studied,
with the synthesis of parameters in a PTA. For the different problems,
we show decidability results and propose some algorithms to solve
them. We finally present a first version of untimed control associated
with our opacity formalism. In this work, we seek to highlight a set of
actions so that a PTA restricted to this set is opaque; an algorithm and
an implementation are proposed.

vii
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ceux qui ont été mes co-bureaux (ou presque) durant ces trois années :
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indéfectible. Enfin, merci Pierre d’avoir été si présent au cours de ces
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I N T R O D U C T I O N A N D P R E L I M I N A R I E S

If you can keep your head when all about you If you can make one heap of all your winnings
Are losing theirs and blaming it on you; And risk it on one turn of pitch-and-toss,
If you can trust yourself when all men doubt you, And lose, and start again at your beginnings
But make allowance for their doubting too; And never breathe a word about your loss;
If you can wait and not be tired by waiting, If you can force your heart and nerve and sinew
Or, being lied about, don’t deal in lies, To serve your turn long after they are gone,
Or, being hated, don’t give way to hating, And so hold on when there is nothing in you
And yet don’t look too good, nor talk too wise; Except the Will which says to them: “Hold on”;

If you can dream—and not make dreams your master; If you can talk with crowds and keep your virtue,
If you can think—and not make thoughts your aim; Or walk with kings—nor lose the common touch;
If you can meet with triumph and disaster If neither foes nor loving friends can hurt you;
And treat those two impostors just the same; If all men count with you, but none too much;
If you can bear to hear the truth you’ve spoken If you can fill the unforgiving minute
Twisted by knaves to make a trap for fools, With sixty seconds’ worth of distance run–
Or watch the things you gave your life to broken, Yours is the Earth and everything that’s in it,
And stoop and build ’em up with wornout tools; And–which is more–you’ll be a Man, my son!

— Rudyard Kipling, If

1





1
I N T R O D U C T I O N

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth

Complex concurrent systems are used in many areas, such as trans-
ports, communications or industrial units, and become more and more
intricate. They are composed of many entities, interacting to each
other, with complex behaviors. Their ubiquity (e. g., for telecommu-
nication items), their cost (e. g., for space rockets) or their criticality
(e. g., autonomous cars or planes) require to have confidence in such
systems.

However, accidents often occur due to the lack of behavioral studies or
robust verification. That is, when a system faces some perturbations
(such as switching guidance mode or weather conditions), issues can
appear. For example, the launching of the new SpaceX’s rocket had to
be delayed on 17 April 2023, due to pressurization issues. Three days
after, the second attempt lead to the destruction of the Starship rocket,
as well as the launching pad, when the engines broke down one after
the other. One can also raise the Chernobyl disaster, on 26 April 1986,
whose one of the main causes is a misconducted test experiment. More
recently, the Fukushima Daiichi disaster, on 11 March 2011, is due
to an error in the cooling system after reactors’ electricity provision
failed.

Modeling and verification of such systems can help to avoid these
undesirable crashes, even if they can never totally avoid them: every
model includes some approximations or assumptions under which
a system is verified. Nevertheless, they offer a rigorous procedure
for limiting the possibility of unexpected behavior. Throughout this
thesis, we will be interested in the verification of safety properties –
asking if a system will behave well – as well as security properties –
asking if a system could withstand a thoughtless user trying to attack
the system to reveal some secrets.

3



4 introduction

1.1 timing leaks

Timed systems often combine hard real-time constraints with other
complications such as concurrency. Information leakage can have
dramatic consequences on the security of such systems. Among
harmful information leaks, the timing information leakage is the ability
for an attacker to deduce internal information depending on timing
information. They can appear when the time needed to execute some
instructions, or the whole program, depends on private data, such as
user-input variables or the status of the memory.

Diverse examples of attacks based on timing leaks are presented in
the literature with various application cases. For example, [CHSJX22]
proves that it is possible to break the SM2 signature algorithm (the
Chinese standard for public key cryptography) with a deduction on
the most significant zero bits based on the execution time. Among well-
known side-channel attacks based on time, the Spectre vulnerability
was revealed in early 2018 [Koc+20]. The main vulnerability comes
from the out-of-order properties of modern complex cores, allowing
to enforce the presence in the cache of forbidden values. However,
it permits information leakage since an attacker could retrieve these
values only checking the needed time to access a given one. Five years
after its disclosure, this vulnerability persists to be a research field,
yielding to recent publications. Therefore, it remains as a challenge to
automatically detect, or mitigate, such vulnerabilities.

We aim to propose a method based on the formal verification of timed
systems.

1.2 formal verification

When we need to obtain formal guarantees that a system satisfies some
properties (such as not allowing leaks of information), we have to go
beyond testing methods, sometimes used in practice. Indeed, checking
that a system has had a good behavior for some executions cannot be
a proof that it will never misconduct. However, having guarantees
that, for any environment and for all executions, some properties will
be verified can give confidence in a system. To this end, one may use
formal verification techniques, such as model checking [BK08].

1.2.1 Model checking

Given a system and a property, model checking aims to confirm or
deny that the model verifies the property. It is a very active field of
research and has a very high importance in modern computer science,
with the granting of the Turing Award in 2007 to three researchers for
their work on this topic. Depending on the formalism used to describe
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Figure 1.1: Model checking overview

the model and the property, different techniques can be applied to au-
tomatically check the validation of the property. Classical formalisms
include (directed) graphs, automata and their extensions (such as
timed automata (TAs) [AD94]) or Petri nets (PNs) [Pet62]. Properties
can be expressed using various formalisms, such as temporal logics,
allowing to describe, for example, the order on which the events may
appear or their (relative) timestamps.

1.2.2 Timed model checking

In timed model checking, models and properties include timing as-
pects. This extension allows to verify specifications when events must
(or must not) occur within or after a certain duration.

We use the well-known modeling of TAs to describe our systems. In
few words, TAs extend classical finite-state automata with a set of
clocks (which are real-valued variables evolving at the same rate).
These clocks can be compared to integers within invariants or guards
(constraints to verify to stay in a location or to enable a transition).
The formalism of TAs benefits from nice decidability results, justifying
their use to model several classes of systems and to verify their proper-
ties. We can mention, for example, the decidability of the reachability
properties [AD94] with a fair complexity (PSPACE-complete). TAs are
formally defined in Chapter 3.

In Figure 1.2, we present a model of a coffee machine within the
formalism of TAs. Clocks x and y are used to represent the time and
are compared to integers to restrict the timing behavior of the model.
An execution of this system begins in the initial location ℓ0 (“idle”).
After an arbitrarily long time (there are no conditions for staying in or
leaving ℓ0), one can move (instantly) to ℓ1 (“add sugar”) while clocks x
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Figure 1.2: A coffee machine modeled with a TA
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Figure 1.3: Parametric timed model checking overview

and y are reset. It is possible to stay in ℓ1 for five time units (invariant
“y ≤ 5”) and use the press? action to add a sugar; this transition can be
taken when x ≥ 1 and x is reset along it. When y = 5, the transition
“cup!” must be taken and the run reaches ℓ3 (“delivering coffee”). After
three time units (to enable the coffee! transition, guarded by “y = 8”),
the system can reach the final location ℓ0.

Timed model checking allows to verify timing properties over this
kind of models. Therefore, one is able to verify properties such as
“It is possible to have a coffee without any sugar” or “It is always
possible to have a coffee in less than 5 time units”. Its global overview
is depicted in Figure 1.1, with timing models and (timing) properties
as inputs.

Among the timed model checkers, we can mention Uppaal [LPY97],
PAT [SLDP09] and TChecker [HPT].

1.2.3 Parametric timed model checking

Parametric (timed) model checking goes beyond classic (timed) model
checking by allowing to have not only binary yes/no answers, but to
ask to compute parameter valuations ensuring a property. Its overview
is then a little bit different, as displayed in Figure 1.3.
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Figure 1.4: A parametrization of the coffee machine of Figure 1.2

Using parameter synthesis handles important needs. First, one may be
interested by robustness properties: numbers may not be implemented
exactly and assuming exact values may lead to malfunctions. More-
over, it allows to fully explore a system, and not only its correctness
according to some values. Finally, one can also be interested in finding
the good values to design a system according to some requirements.

The classical parametric extension of TAs is parametric timed automata
(PTAs) [AHV93], where TAs are extended with a set of parameters
(which are unknown constants of the system). Their semantics consist
in the union, for all parameter valuations, of the valuated TA semantics.
However, these semantics are commonly expressed using parametric
zones, i. e., a data structure representing a dense set of clock and
parameter values, often represented by a polyhedron. We define
formally PTAs and their semantics in Chapter 3. Figure 1.4 presents
the same coffee machine as previous Figure 1.2, with a parameter p
controlling the delay between two presses in the “add sugar” button.
With these models, one may ask to know “For which values of p is it
possible to have a coffee with six doses of sugar?”.

A well-known model checker supporting PTAs is IMITATOR [And21a].

1.3 the notion of opacity

In its most general form on partially observed labeled transition
systems (LTSs) [Kel76], given a set of runs that reveal a secret (e. g.,
they perform a secret action or visit a secret state), opacity states
that if there exists a run of the system that reveals the secret (i. e.,
belongs to the given secret set), there exists another run, with the same
observation, that does not reveal that secret [BKMR08]. This secret is
completely generic and, depending on its actual definition, properties
and their decidability can differ.

Franck Cassez proposed in [Cas09] a first definition of timed opacity
for TAs: the system is opaque if an attacker cannot deduce whether
some set of actions was performed, by only observing a given set of
observable actions together with their timestamp. It is then proved
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in [Cas09] that it is undecidable whether a TA is opaque, even for
the restricted class of event-recording automata (ERAs) [AFH99] (a
subclass of TAs). This notably relates to the undecidability of timed
language inclusion for TAs.

The aforementioned negative result leaves hope only if the definition
or the setting is changed, which was done in two main lines of works.

First, in [WZ18; WZA18], the input model is simplified to real-time
automaton (RTA), a severely restricted formalism compared to TAs.
With these models, timed aspects are only considered by interval
restrictions over the total elapsed time along transitions: RTAs can be
seen as a subclass of TAs with a single clock, reset at each transition.
In this setting, (initial-state) opacity becomes decidable.

Second, in [AETYM21], the authors consider a time-bounded notion
of the opacity of [Cas09], where the attacker has to disclose the secret
before an upper bound, using a partial observability. This can be seen
as a secrecy with an expiration date. The rationale is that retrieving
a secret “too late” is useless; this is understandable, e. g., when the
secret is the value in a cache; if the cache was overwritten since, then
knowing the secret is probably useless in most situations. In addition,
the analysis is carried out over a time-bounded horizon; this means
there are two time bounds in [AETYM21]: one for the secret expiration
date, and one for the bounded-time execution of the system. The
authors prove that whether a system is time-bounded opaque under a
bounded time horizon, with a notion close to our weakness definition
(Definition 8.1, with unidirectional language inclusion), is decidable
for TAs. A construction and an algorithm are also provided to solve it;
a case study is verified using SpaceEx [Fre+11].

A more extended presentation of related works is presented in Chap-
ter 2.

1.4 problem statement

This thesis aims to propose novel efficient verification tech-
niques for safety and security properties in timed systems under
uncertainty.

This goal is broken down into two sub-problems.

on efficient verification

• How can we efficiently verify a (parametric) timed system?

• How can we compare different methods of (parametric) timed
model checking?
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on security properties

• For which classes of models can we decide whether an attacker
is able to deduce private information from a timed system with
the observation of its execution time?

• If secrets have an expiration date, can we have guarantees that
an attacker is unable to deduce private information from the
total execution time?

• Can we control a system so that it remains secure?

• How can we fix a non-secure system?

1.5 contributions

In this thesis, we present five different scientific contributions: two
about zone merging in PTAs (Section 1.5.1) and three concerning
execution-time opacity (ET-opacity) (Section 1.5.2). As an additional
contribution, we published the technical code and data resulting from
the theoretical and algorithmic contributions from this thesis in long-
term open access venues (Section 1.5.3).

1.5.1 Zone merging in parametric timed automata

PTAs are a powerful formalism for reasoning on concurrent real-time
systems with unknown or uncertain timing constants. Therefore, we
also focus on efficient techniques for parametric timed verification. To
this end, we work on a dedicated benchmark library before studying
efficient techniques to construct and explore PTA state space.

A benchmark library for parametric timed model checking

In order to test the efficiency of new algorithms, a fair set of bench-
marks is required. We present an extension of the IMITATOR bench-
mark library, that accumulated over the years a number of case studies
from academic and industrial contexts. We reformat the library into a
better-structured repository, significantly improving its organization.
We also extend the library with several dozens of new benchmarks;
these benchmarks highlight several new features: liveness proper-
ties, extensions of (possibly parametric) TAs ((P)TAs) (including stop-
watches or multi-rate clocks), and unsolvable toy benchmarks. These
latter additions help to emphasize the limits of state-of-the-art param-
eter synthesis techniques, with the hope to develop new dedicated
algorithms in the future.

This work was conducted in collaboration with Étienne André and
Jaco van de Pol, and published in [AMP21a].
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Efficient convex zone merging

Reducing the state space of PTAs is a significant way to reduce the in-
herently large analysis times. We study different convex zone merging
reduction techniques based on convex union of constraints (making
up parametric zones), allowing to decrease the number of states while
preserving the correctness of verification and synthesis results. We
perform extensive experiments, and identify the best heuristics in
practice, bringing a significant decrease in the computation time on
the aforementioned benchmark library.

This work was conducted in collaboration with Étienne André, Laure
Petrucci and Jaco van de Pol, and published in [AMPP22a].

1.5.2 Execution-time opacity

In our setting, we define a form of opacity in which the observation is
only the time to reach a given final location. Therefore, we are interested
in knowing if an attacker could deduce some private information
knowing only the execution time of a model. It is ET-opaque if there
exist two runs reaching its final location, one visiting a given (private)
location and one not visiting it, of the same duration. That is, for
this particular execution time, the system is ET-opaque if one cannot
deduce whether the system visited the private location.

Guaranteeing execution-time opacity

We address the following ET-opacity problem: given a timed system
with a private location and a final location, synthesize the execution
times from the initial location to the final location for which one
cannot deduce whether the system visited the private location. We
are interested in the existence of a such execution time: if there exists
one, the system is ∃-ET-opaque. We also consider the full ET-opacity
decision problem, asking whether the system is ET-opaque for all
execution times. We show that these problems are decidable for TAs
but become undecidable when one adds parameters, yielding PTAs.
We identify a subclass of PTAs with some decidability results. We
then devise an algorithm for synthesizing PTA parameter valuations
guaranteeing that the resulting TA is ET-opaque. We finally show that
our method can also apply to program analysis.

This work was conducted in collaboration with Étienne André, Didier
Lime and Sun Jun, and published in [ALMS22].

Expiring execution-time opacity problems

We propose a definition of expiring execution-time opacity
(exp-ET-opacity): in addition to the first definition of ET-opacity, the
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secrecy is violated only when the private location was entered “re-
cently”, i. e., within a given time bound (or expiration date) prior
to system completion. This has an interesting parallel with concrete
applications, notably cache deducibility: it may be useless for the
attacker to know the cache content too late after its update. We study
exp-ET-opacity problems in TAs: we consider the set of expiration
dates for which a system is ET-opaque and show when they can
be effectively computed for TAs. We then study the decidability of
several parameterized problems, when not only the bounds, but also
some internal timing constants become timing parameters of unknown
constant values within the framework of PTAs.

This work was conducted in collaboration with Étienne André and
Engel Lefaucheux, and published in [ALM23].

Untimed control for execution-time opacity

We focus on the untimed control problem: exhibiting a controller, i. e.,
a set of allowed actions, such that the system restricted to those actions
is fully ET-opaque (i. e., ET-opaque for all its execution times). We first
show that this problem is not more complex than the full ET-opacity
decision problem, and then we propose an algorithm, implemented
and evaluated in practice. We introduce a prototype tool strategFTO
implementing this algorithm with some heuristics.

This work was conducted in collaboration with Étienne André, Shapa-
gat Bolat and Engel Lefaucheux, and published in [ABLM22b].

1.5.3 Open-access data

The code and data resulting from the aforementioned theoretical
contributions are published as long-term open access data.

Productions and experiments (Chapters 4, 5 and 7) are registered
using Zenodo with Digital Object Identifiers (DOIs). When possible,
they were presented as artifacts joined to the linked publications and
were reviewed by the artifact evaluation committees of the conferences
where the results were published. The experiments, scripts, input and
result files of the following works are available.

• The IMITATOR library (Chapter 4) at
https://doi.org/10.5281/zenodo.4730980 [AMP21b], which
received the functional badge from the TAP’21 artifact evaluation
committee.

• The comparison of merging heuristics (Chapter 5) at
https://doi.org/10.5281/zenodo.6806915 [AMPP22b], which re-
ceived the “evaluated” badge from the FORMATS’22 artifact
evaluation committee.

https://zenodo.org/
https://doi.org/10.5281/zenodo.4730980
https://www.univ-orleans.fr/lifo/events/TAP2021/callforartifacts.html
https://doi.org/10.5281/zenodo.6806915
https://conferences.ncl.ac.uk/formats2022/artifactevaluation/
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• The scalability study of strategFTO (Chapter 9) at
https://doi.org/10.5281/zenodo.7181848 [ABLM22a].

The source code of tools I developed for this thesis (Chapters 4, 5

and 9) is accessible on GitHub:

• the content of the IMITATOR library, at
https://github.com/DylanMarinho/IMITATOR-library;

• the implementation of the merging techniques (Chapter 5) as
options of IMITATOR, at https://github.com/imitator-model-
checker/imitator;

• strategFTO (Chapter 9) at https://github.com/DylanMarinho/
Controlling-TA.

1.6 outline of the manuscript

After the general introduction in the present chapter, this thesis begins
in Chapter 2 by a presentation of other works related to the problems
we study. Then, we recall (parametric) timed model checking and
general preliminary definitions in Chapter 3.

In Part I, we first present our benchmark library for parametric timed
model checking in Chapter 4 and consider heuristics for efficient
merging techniques in Chapter 5.

In Part II, we introduce and study ET-opacity. Chapter 6 introduces
preliminary concepts for the following chapters. We study ET-opacity
problems in Chapter 7, extended with expiring secrecy in Chapter 8.
Finally, we focus on untimed control for ET-opacity in Chapter 9.

We conclude the thesis in Chapter 10.

https://doi.org/10.5281/zenodo.7181848
https://github.com/
https://github.com/DylanMarinho/IMITATOR-library
https://github.com/imitator-model-checker/imitator
https://github.com/imitator-model-checker/imitator
https://github.com/DylanMarinho/Controlling-TA
https://github.com/DylanMarinho/Controlling-TA


2
R E L AT E D W O R K S

Bring the past only if you’re going to build from it.

— Domenico Cieri Estrada

In this Chapter 2, we present works related to the problems we study.

Organization of the chapter

In Section 2.1, we present works concerning the mitigation of tim-
ing leaks not considering solutions based on verification and model-
checking.

In Section 2.2, we present an overview of works considering hyper-
properties.

In Section 2.3, works over timed model checking are recalled, includ-
ing an overview over model checkers supporting TAs and their use.
Section 2.4 extends the same overview over PTAs. In Section 2.5, we
present an overview of security problems with TAs. In Section 2.6, we
present works about the control of real-time systems.

Section 2.7 recalls work about the reduction of the state space of PTAs
and Section 2.8 about libraries for (timed) model checking.

In Section 2.9, we present an overview of parameterized verification,
where the parameter lies in the number of system components (e. g.,
number of processes, of clients, of agents. . . ), with the aim at verifying
the system for any such number of components.

2.1 timing leaks

Defeating timing channel leaks is challenging and can be done with
two main approaches: (i) closing or mitigating the channel, and (ii) re-
ducing the adversary power.

A particular example on mitigating the timing channel includes
constant-time software techniques, which aim to implement software
where the execution time does not depend on secret values. For ex-
ample, [ABBDE16] proposes an approach to verify the constant-time
policy application of a program. [BPT19] uses abstract interpreta-
tion to report time leakage in C programs; an implementation using

13
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the CompCert compiler toolchain [Ler09] and the Verasco static
analyzer [JLBLP15] is presented.

In [WGSW18], the authors propose to eliminate timings leaks with
program transformation. In practice, to an input program and a list
of secret variables, their tool generates a transformed program where
branches and loads are balanced, for example, with the insertion
of dummy variables. That is, the output program is free of timing
vulnerabilities. This method was implemented in LLVM and validated
on a set of cryptographic applications.

[ELFL21] introduces guidelines to design immune cores to micro-
architectural timing leaks. The authors propose two implementations
using the RISC-V instruction set. [JWL18] and [GR21] propose to
ensure opacity by function insertion, including fictitious events in the
system.

2.2 hyperproperties

Temporal logics for hyperproperties are introduced in [Cla+14] to
characterize properties of sets of paths. Their allow to easily define
security policies, as non-interference, adding the ability to quantify a
property over multiple paths.

Model checking techniques for hyperproperties are presented in
[Cla+14; FRS15; FV19] and monitoring is discussed in [FHST18; Hah19;
FHST19; FHST20; CH23]. Some tools have been created to verify hy-
perproperties, as Weaver [FV19] and RVHyper [FHST18].

Time hyperproperties are considered in [BPS20; HZJ21]. In [BPS20]
a particular focus is done on timing leaks and the authors provide a
model checking algorithm.

2.3 timed model checking

2.3.1 Timed automaton verification

Since [AD94], the reachability emptiness (EF-emptiness) problem for
TAs is shown to be decidable and PSPACE-complete. Some studies
were conducted to exhibit subclasses with simpler complexity, e. g.,
TAs with one or two clocks [LMS04]. Cycle detection [AM04] is also
decidable.

Despite these results, the universality problem (asking if the TA ac-
cepts all traces) is undecidable [AD94]. Moreover, inclusion and
equivalence problems (inclusion or equality of TA languages) are
undecidable.
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These problems become decidable for the subclass of deterministic
TAs. Note that, deterministic TA are strictly less expressive than TA,
and it is undecidable to know if there exists a determinization of a
given TA [Tri06]. The subclass of ERAs, where a clock is associated to
each action and reset when it occurs, also provides decidability results
(e. g., [AFH99]).

A survey of decidability results with TAs was proposed by [AM04].

2.3.2 Model checkers supporting the timed automaton formalism

Kronos [Yov97] is a software tool designed to be integrated into
environments for real-time systems. It was used for the analysis of
several processes. In [Ber+01], Kronos is joined to other tools to
propose Taxys. This tool allows to capture the temporal behavior of an
application, including the software, the computer and its environment.

TChecker [HPT] is an open-source model checker designed to exper-
iment verification algorithms of real-time systems. That is, it produces
not only an answer to the verification, but also statistics over the used
algorithms. It provides the verification of emptiness and Büchi empti-
ness problems over TAs and comes with a collection of libraries to
perform algorithm comparisons.

PAT [SLDP09] is a model checker designed to compose, simulate
and reason on real-time systems with concurrency. It comes with
user-friendly interfaces and implements various techniques of model
checking.

Uppaal [LPY97] is an integrated tool for modeling, validating and
verifying real-timed systems modeled in a TA formalism augmented
with some features, as data types. Many features are provided by the
authors, such as a graphical system editor, a simulator, the verification
of safety and liveness properties and the generation of diagnostic
traces.

2.3.3 Using timed automata to ensure safety

There have been many applications of model checking TAs to many
areas, such as robotics, scheduling and protocols. In the following, we
just cite a few as examples of applications.

In [HSLL97], the authors proposes to formally verify with Uppaal a
message transmission controller used by an audio/video company
(Bang&Olufsen). This controller aims to detect collisions between
communications in a single bus. In practice, an error trace is generated
by Uppaal and the mistake in the implementation is highlighted.
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[LMNS05] presents the verification of an industrial case study with
Uppaal-TRON, an extension of Uppaal for black-box conformance
testing.

In [BC11], the authors uses TAs to model a hardware structure. Syn-
chronizing this model with a control flow graph (CFG) of a binary
program, they compute the worst case execution time (WCET) using
Uppaal. Experiments are performed on the ARM9020T real platform.

In [SBP19], the authors propose a framework based on the verification
of TAs using Uppaal to ensure cache coherence.

In [LKP19], TAs are used for the verification of time properties of Java
programs. The authors introduce a formal definition of the Java time
semantics and automatically extract TAs verified using Uppaal. A
study over twenty programs is presented, leading to the identification
of eight errors in these projects.

In [RFRJM19], runtime enforcement of (possibly timed) properties in
TAs is presented. The main goal is to modify the execution of a system
during its execution to ensure the verification of a given property.
[NSJMM22] deals with the verification of program requirements and
reparation using satisfiability modulo theories queries and TAs; an
implementation is provided.

[FH20] proposes to perform timed formal verification of robotic speci-
fications. To this end, the authors model and check these requirements
from a robotic framework using TAs and Uppaal, being mainly fo-
cused on schedulability.

In [VNNK19], the authors study the impact of clock granularity (clocks
that ticks periodically) on timing channel attacks. They model an
adversary with a parametric model in the granularity of the clock,
connected with a model of the system, using TAs. Their technique
allows to derive insights about the effectiveness of attacks and coun-
termeasures. A manual proof on a case study using RSA signatures is
provided, without any implementation.

2.4 parametric timed model checking

2.4.1 Parametric timed automaton verification

Since their definition in 1993 [AHV93], number of (un)decidability
results of problems based on PTAs have been proved.

First, the membership problem (i. e., the emptiness of the language
of a valuated PTA) is shown to be undecidable in the general case
(if there are irrational parameter values) [Mil00], even if it is decid-
able with simpler formalisms (integer-valued parameters or discrete
time) [AD94].
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The EF-emptiness problem (“is a location reachable for some val-
uation?”) is shown to be undecidable by the seminal paper on
PTAs [AHV93]. Other classical problems are also undecidable in
general: AF-emptiness [ALR16; JLR15], AG-emptiness [ALR16] and
EG-emptiness [AL17a].

Studying the properties over a bounded time can lead to some decid-
ability results (e. g., language inclusion of valuated PTAs [OW10]), but
other results remain undecidable (e. g., EF-emptiness [Jov13]).

Since [AHV93], different works were conducted to obtain bounds
for decidability results on the EF-emptiness problem. They aim to
ask for the minimal assumptions over the model to ensure the decid-
ability. For example, it becomes decidable if the PTA contains only
one clock compared to parameters (called “parametric clock”) and
integer-valuated parameters, with arbitrarily many non-parametric
clocks.

A survey of decidability results with PTAs was proposed by [And19b].

2.4.2 Model checkers supporting the parametric timed automaton formalism

Considering hybrid systems (a class going beyond PTAs), the first
model checker was HyTech [HHWT95]. However, it is not maintained
anymore. SpaceEx [Fre+11] is another tool for hybrid systems, not
dedicated to parameter synthesis and mainly focused on safety and
reachability properties.

IMITATOR [And21a] is a tool for PTA verification. It supports the PTA
formalism, extended with many features such as multi-rate clocks,
global variables and data structures. It implements the synthesis
of parameters ensuring safety, reachability, liveness or robustness
properties for example.

Finally, Roméo [LRST09] is a tool supporting parametric time PNs (a
formalism close to PTAs, with a similar level of expressiveness). It
allows the synthesis of parameters.

2.4.3 Using parametric timed automata to ensure safety

As for TAs, there have been many applications of model checking
PTAs. In the following, we just cite a few as examples of applications;
[And19b] presents a more global overview.

[ALRS21] investigates the translation of attack-fault trees, which allow
to model how a safety or security property can be refined into smaller
sub-goals, to (extensions of) PTAs. This is done in order to synthesize
internal constants, as time costs, using IMITATOR to prevent attack to
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be successful. [PKPS19] considers reductions of attack-defense trees
(ADTrees) and presents experiments using IMITATOR.

In [FJ13], PTAs are used for timing analysis of mixed music scores.
[CAS01] considers a protocol on data transfer using timing constraints
to elect a leader.

[CJL17] proposes a new generic algorithm to verify general real-timed
systems, formalized in different formalisms including PTAs. The
authors’ method is based on trace abstraction, differing from classical
computation: many tools (such as the model checkers presented
before) rely on polyhedra libraries. Experiments are proposed with
several tools, including IMITATOR, and show that this technique solves
instances which are not solvable by state-of-the-art analysis tools.

Solutions using PTAs for the Formal Methods for Timing Verification
Challenge (FMTV 2015) are proposed in [SAL15]. These challenges
aim to compute maximum/minimum latencies on periodical systems.
The authors give solutions to each challenge, providing only upper-
bounds for the most difficult. IMITATOR is used for the parameter
synthesis.

In [LGSBL19], the authors present a method based on (extensions) of
TAs and PTAs to perform the verification product-line engineering
tools. They define a notion of coverage with minimum and maximum
delays, asking every location to be accessible within a given interval of
time. Their method is implemented and evaluated using IMITATOR.

In [KLS20], the authors deal with the modeling and verification of a
Thales consensus algorithm. This algorithm has an arbitrary number
of processes, which can possibly fail and restart at any time; their com-
munications are asynchronous and periodic. The proposed method
is based on the modeling of the source code, as well as the execution
interleavings.

[KSA22] proposes to model and verify smart applications in Smart-
Things using the formalism of PTAs. To this end, the authors present a
practical framework, named PSA, to identify safety violations, with a
translation of application programming interfaces to PTAs and toolkits
to model the devices and their environment. The framework PSA is
evaluated using the IMITATOR model checker on practical examples
from the Samsung SmartThings IOT ecosystem.

In [ACFJL21], the scheduling of a flight control system of a space
launcher is implemented into a (extended) PTA. This problem aims
to decide which task is run by the processor at each moment, con-
sidering its importance and urgency. IMITATOR is used to perform
experiments.



2.5 security problems in timed automata 19

2.5 security problems in timed automata

2.5.1 Diagnosability

The diagnosis of TAs is one of the dominant research directions aimed
at analyzing information leakage from a safety perspective. Its goal
is to detect, by observing the system, whether some faulty behavior
occurred. As such, it is some form of dual to opacity. Diagnosis
was first introduced for TAs in [Tri02]. Diagnosability of a system
is shown there to be decidable, though the actual diagnoser may be
quite complex ([BCD05] presents subclasses of TAs allowing simpler
diagnoser). [CT13] presents a summary of the main results on the
diagnosis of TAs.

2.5.2 Non-interference

The notion of opacity is also closely related to the line of work on
defining and analyzing information flow in TAs. It is well-known
(e. g., [Koc96; FS00; BB07; KPJJ13; BCLR15]) that time is a potential
attack vector against secure systems. That is, it is possible that a non-
interferent (secure) system can become interferent (insecure) when
timing constraints are added [GMR07].

In non-interference, actions are partitioned into two levels of privilege,
high and low, and we require that the system in which high-level
actions are removed is equivalent to the system in which they are
hidden (i. e., replaced by an unobservable action). It allows to quantify
the frequency of an attack; this can be seen as a measure of the strength
of an attack, depending on the frequency of the admissible actions.
Different equivalences lead to different flavors of non-interference.
In [BDFST02; BT03], a first notion of timed non-interference is proposed
for TAs. This notion is extended to PTAs in [AK20], with a semi-
algorithm.

In [GMR07], Gardey et al. define timed strong non-deterministic non-
interference (SNNI) based on timed language equivalence between
the automaton with hidden low-level actions and the automaton with
removed low-level actions. Furthermore, they show that the prob-
lem of determining whether a TA satisfies SNNI is undecidable. In
contrast, timed cosimulation-based SNNI, timed bisimulation-based
SNNI and timed state SNNI are decidable. Classical SNNI is the one
corresponding to the equality of the languages of the two systems.
As such it is clearly a special case of opacity in which the secret runs
are those containing a high-level action [BKMR08]. Other equivalence
relations (namely (timed) cosimulation, (timed) bisimulation, sets of
states) are not as easily relatable to opacity. No implementation is
provided in [GMR07].
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In [NNV17], the authors propose a type system dealing with non-
determinism and (continuous) real-time, the adequacy of which is
ensured using non-interference. We share the common formalism of
TAs; however, we mainly focus on leakage as execution time, and
we synthesize internal parts of the system (clock guards), in contrast
to [NNV17] where the system is fixed.

In [VNN18], Vasilikos et al. define the security of TAs in term of
information flow using a bisimulation relation over a set of observable
nodes and develop an algorithm for deriving a sound constraint for
satisfying the information flow property locally based on relevant
transitions.

In [GSB18], Gerking et al. study non-interference properties with
input, high and low actions and provide a resolution method reducing
a secure behavior to an unreachability construction. The proof-of-
concept consists in the exhibition of a test automaton with a dedicated
location that indicates violations of noninterference whenever it is
reachable during execution. Then, Uppaal [LPY97] is used to obtain
the answer.

In [BCLR15], Benattar et al. study the control synthesis problem of
TAs for SNNI. That is, given a TA, they propose a method to automat-
ically generate a (largest) sub-system such that it is non-interferent,
if possible. Different from the above-mentioned work, our work con-
siders PTAs, i. e., timed systems with unknown design parameters,
and focuses on synthesizing parameter valuations which guarantee
information flow property. Compared to [BCLR15], our approach
is more realistic as it does not require change of program structure.
Rather, our result provides guidelines on how to choose the timing
parameters (e. g., how long to wait after certain program statements)
for avoiding information leakage.

A survey on security problems in TAs is proposed by [AA23].

position of our work To the best of our knowledge, our ap-
proach is the first work on parametric model checking for TAs for
information flow property. We therefore present a notion of ET-opacity
and exp-ET-opacity in Chapters 7 and 8, with decidability results on
TAs and PTAs and a notion of control in Chapter 9. In addition, and
in contrast to most of the aforementioned works, our approach comes
with an implementation.
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2.6 controlling real-time systems

2.6.1 Controlling systems

In controller synthesis problems, the goal is not to verify the correct-
ness of a system (according to a property), but to compute a controller,
which restricts the choices of the system, to ensure the verification of
the property. These problems are often modeled with 2-player games,
with the synthesis of a winning strategy for the controller against the
environment.

[FM15] deals with the runtime verification of opacity properties in
LTSs. In this work, the goal is not only to observe a system, but to allow
the monitor to modify the system behavior at runtime. Particularly, the
authors introduce and study K-step opacity, with different levels, from
simple opacity to a strong notion. Their techniques are implemented
in a tool, TAKOS: this tool allows to model-check opacity and to
synthesize runtime verifiers.

2.6.2 Controller synthesis in timed systems

Timed game automata (TGAs) [MPS95] are a common formalism to
express 2-player games on TAs; they are extension of TAs allowing
to reason over the moves of the two players, with controllable and
uncontrollable actions. The problem of controller synthesis for reacha-
bility for TGAs is decidable [MPS95], an implementation is proposed
in [CDFLL05; Beh+07], with case studies in [CJLRR09; JRLD07].

Controller synthesis is extended to probabilistic timed au-
tomata [Bea03] in [JKNP17] and to time PNs in [LLR23]; robustness is
considered in [SBMR13].

[Bac+21] presents a controller synthesis over energy TAs (an extension
of TAs where states have rates, or prices) with uncertainties; the
uncertainty is here modeled by two functions, assigning imprecisions
to rates of states to updates of transitions. The authors’ approach
consists in the translation of the controller problem into arithmetic
expressions. Case studies are presented using a tool chain including
Mathematica v.11.2 [Inc17] and Mjollnir [Mon10].

2.6.3 Controller synthesis in parametric systems

The controller synthesis problem consists in synthesizing (or deciding
the existence of) both the controller and the parameter valuations for
which a given location of the system is reachable.

[JLR19] introduces the formalism of parametric timed game automata
(PGAs) [JLR19], extending TGAs with parameters (on the same way
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as PTAs extend TAs). In this formalism, controller synthesis is unde-
cidable (since the reachability problem is undecidable for PTAs). A
subclass of TGAs, inspired by the class of lower/upper parametric
timed automata (L/U-PTAs) [HRSV02], leads to decidable results. A
semi-algorithm is also provided (without guarantee of termination)
to solve controller synthesis in PGAs. In [JLR22], the same authors
restrict PGAs to integer parameters. Algorithms are proposed and
implemented in Roméo.

2.7 reduce the state space of (possibly parametric) TAs

2.7.1 Extrapolation, simulations and inclusion

Beyond merging (which we will study in this manuscript), various
heuristics were proposed to efficiently reduce the state space of TAs.

extrapolation and simulations Extrapolation and abstrac-
tions were proposed in [AD94; BBLP06; HSW13; HSW16] for TAs, and
then extended to PTAs in [ALR15; BBBČ16; AA22]. These techniques
aim to obtain a finite simulation of the state space of a model while
preserving reachability properties. There are mainly based on the
largest constants appearing in the constraints of a (P)TA and complex
heuristics developed over years. Exploration orders were discussed
in [HT15] for TAs and then in [ANP17] for PTAs. The efficiency
of model checking liveness properties for TAs is discussed notably
in [HSW12; HSTW20].

inclusion Zone inclusion (subsumption) for liveness checking is
discussed for TAs in [LODLDP13] and for PTAs in [AAPP21]. We can
consider inclusion/subsumption as a special case of merging.

over-approximation In addition, computing efficiently exact or
over-approximated successors of “zones” in the larger class of hybrid
automata (HAs) [Hen96] is an active field of research (e. g., [CÁF11;
CSÁ14; SNÁ17; BFFPS20]). Beyond the target formalism (PTAs instead
of HAs), a main difference is that we are concerned here exclusively
with an exact analysis.

These techniques are orthogonal to the merging technique, and they
can be combined, except for inclusion as a particular case of merging.

2.7.2 Merging zones

Merging was first proposed for TAs in [Dav05], and then extended to
the “inverse method” for PTAs in [AFS13].
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In [BSBM06], Ben Salah et al. show that it is safe to perform the
convex merging of various constraints, when they are the result of an
interleaving. The exploration is done in a breadth-first search (BFS)
manner, and states are merged at each depth level. In [BSBM09], the
same authors propose a compositional verification framework, where
merging is briefly mentioned to ensure exactness instead of an over-
approximated approach based on the convex hull: it is mentioned
that “preservation of the timed semantics by this step” is guaranteed
whenever the authors “restrict the merging of transitions and states to
those whose corresponding unions are convex” [BSBM09].

position of our work In Chapter 5, we propose to extend
the constraint merging principle for reachability synthesis in PTAs.
To perform efficient computation times, we propose and investigate
different heuristic techniques.

2.8 benchmark libraries for model checking

No library is really interested in a synthesis of timing parameters on
TAs (including PTAs). We present here some libraries considering
models close to those we study.

RTLib [SGQ16] is a library of real-time systems modeled as TAs.
Contrary to our goal and proposed solution, it does not consider
parametric models.

Two libraries for hybrid-systems benchmarks were proposed in [FI04;
Che+15]. Despite being more expressive than PTAs in theory, these
formalisms cannot be compared in practice: most of them do not
refer to timing parameters. Moreover, these libraries only focus on
reachability properties and non-parameterized benchmarks.

The PRISM benchmark suite [KNP12] collects probabilistic models
and properties. Despite including some timing aspects, time is not the
focus there.

The collection of Matlab/Simulink models [HAF15] focuses on timed
model checking, but has no parametric extensions. Two of our bench-
marks (accel and gear) originate from a translation of their models to
(extensions of) PTAs.

The JANI specification [Bud+17] defines a representation of automata
with quantitative extensions and variables; their syntax is supported
by several verification tools. A library of JANI benchmarks is also
provided; such benchmarks come from PRISM, Modest, Storm and
FIG, and therefore cannot be applied to parameter synthesis for timed
systems.
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Also, a number of model checking competitions started in the last two
decades, accumulating over the years a number of sets of benchmarks,
such as the ARCH (Applied Verification for Continuous and Hybrid
Systems) “friendly competition” [Fre+19; ARCH21], the PNs model
checking contest (MCC) [Amp+19; MCC21], the MARS (Models for
Formal Analysis of Real Systems) workshop repository [MARS21], or
the WATERS workshop series [QV15].

In [And19a; And18], a first version of the PTA library was introduced,
including academic benchmarks, industrial and toy case studies.

position of our library Our library presented in Chapter 4

aims at providing benchmarks for parameter synthesis for (extensions
of) TAs. Notably, we go beyond the TA syntax (offering some bench-
marks with multi-rate clocks, stopwatches, timing parameters, ad-
ditional global variables), while not offering the full power of HAs
(differential equations, complex flows). To the best of our knowl-
edge, no other set of benchmarks addresses specifically the synthesis
of timing parameters.

2.9 parameterized verification

Parametrized verification aims to validate a model regardless of the
value of a parameter. For example, in [BF13], the authors verify a net-
work of identical probabilistic timed processes, where the parameter
is the number of processes. It is therefore unknown and might be
constant over time or might change, with disappearance or creation of
processes. In [BF13], modeling is performed using probabilistic TAs
and the authors study different (un)decidability results.

Parametrized verification of TAs is introduced in [AJ03]. The prob-
lem of checking a safety property is in general undecidable for TA
networks [ADM04], but becomes decidable for TAs with one clock
[AJ03].

[BFS14] proposes parametrized verification of a network with a
parametrized number of entities where the communication topology
can be reconfigured at any time and entities can change probabilisti-
cally. These problems are studied with reduction to 2-player games.
[ADRST16] also studies parametrized verification with a network of
processes whose protocol is defined by a TA, where the parametriza-
tion considers the initial configuration of the network.

In [ADFL19], the authors propose to use parametrized verification on
PTAs. That is, they consider a combination of both timing parameters
and a parametric network size.

A survey on parametrized verification is proposed in [AD16].
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T I M E D M O D E L - C H E C K I N G

When we were children, we used to think that
when we were grown-up we would no longer be vulnerable.

But to grow up is to accept vulnerability...
To be alive is to be vulnerable.

— Madeleine L’Engle

This chapter recalls the necessary concepts used in the subsequent
chapters of this thesis.

3.1 preliminary definitions

3.1.1 Mathematical notations

Through this thesis, we denote by

• R, Q, Z, N the sets of reals, rationals, integers and non-negative
integers, respectively;

• R≥0, Q≥0 the sets of non-negative reals and non-negative ratio-
nals, respectively.

Given α ∈ R, let ⌊α⌋ and fr(α) denote respectively the integral part
and the fractional part of α.

Given a finite set S , the cardinality of S is denoted by |S|.

3.1.2 Finite-state automaton

Automata are a kind of well-known model to study discrete transition
systems and their behaviors. Deterministric finite-state automata
(DFAs) are automata with finitely many states.

Definition 3.1 (Deterministic finite-state automaton). A DFA is
a tuple FAd = (Σ, S, s0, F, δ), where

• Σ is a finite alphabet;
• S is a finite set of states;
• s0 ∈ S is the initial state;
• F ⊆ S is the set of accepting states;
• δ : S× Σ→ S is the transition relation, a partial function

on S× Σ.

25
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3.1.3 Labeled transition system

LTSs were defined as simple models for systems, based on directed
graphs with actions. They allow to describe how a system evolves
with an action.

Definition 3.2 (Labeled transition system [Kel76]). An LTS is a
quadruple S = (QS, ΣS,→S, q0,S) where

• QS is a finite or infinite set of states;
• ΣS a finite or infinite set of actions;
• →S⊆ QS × ΣS ×QS a set of transitions or steps;
• q0,S ∈ QS is the initial state.

We also recall the notion of simulation [BK08] between two transition
systems. Intuitively, this notion is a relation between two systems
sharing the same behavior, in the sense that they are undistinguishable
from the other by an observer.

Definition 3.3 (Simulation, bisimulation). Let S1 =

(Q1, Σ1,→1, q0,1) , S2 = (Q2, Σ2,→2, q0,2) be two LTSs. Let
q1 ∈ Q1 be a state of S1, q2 ∈ Q2 of S2.
A binary relation R is a simulation if

(q1, q2) ∈ R

implies

∀q′1 ∈ Q1, ∀a ∈ Σ, q1
a→1 q′1 =⇒ ∃q′2 ∈ Q2, q2

a→2 q′2 and (q′1, q′2) ∈ R.

If R is symmetric, we say that R is a bisimulation.

3.1.4 Timed transition system

Timed transition systems (TTSs) [HMP91] are introduced as an ex-
tension of transition systems, where the transitions have timing con-
straints.
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Definition 3.4 (Timed transition system [HMP91]). A TTS is a
tuple T = (S, Σ,→, s0) where

• S is a set of states;
• Σ is a set of actions;
• s0 is the initial state;
• → ⊆ S × (Σ ∪R≥0) × S is a labeled transition relation

with two kinds of transitions:
– event transitions: (s, e, s′) with e ∈ Σ (denoted

s e7→ s′);
– time transitions: (s, d, s′) with d ∈ R≥0 (denoted

s d7→ s′).

3.2 clocks , parameters and constraints

3.2.1 Clocks

Clocks are real-valued variables that all evolve over time at the same
rate. Through this thesis, we assume a set X = {x1, . . . , x|X|} of clocks.

A clock valuation is a function µ : X→ R≥0, assigning a non-negative
value to each clock.

We write 0⃗ for the clock valuation assigning 0 to all clocks. Given
a constant d ∈ R≥0, µ + d denotes the valuation s.t. (µ + d)(x) =

µ(x) + d, for all x ∈ X.

3.2.2 Parameters

A (timing) parameter is an unknown constant of a model. Throughout
this thesis, we assume a set P = {p1, . . . , p|P|} of parameters.

A parameter valuation v is a function v : P→ Q≥0.

Remark 1. We choose Q≥0 by consistency with most of the PTA literature,
but also because, for classical PTAs, choosing R≥0 leads to undecidabil-
ity [Mil00].

■

3.2.3 Constraint

We assume ▷◁ ∈ {<,≤,=,≥,>}.

A constraint C is a conjunction of inequalities over X∪P of the form
x ▷◁ ∑1≤i≤|P| αi pi + d, with pi ∈ P, and αi, d ∈ Z. Given a constraint C,
we write µ |= v(C) if the expression obtained by replacing each clock x
with µ(x) and each parameter p with v(p) in C evaluates to true.
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x ≥ 1
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Figure 3.1: A TA example

3.3 Timed automaton

A TA is a finite automaton extended with a finite set of real-valued
clocks [AD94].

Definition 3.5 (Timed automaton [AD94]). A TA A is a tuple
A =

(
Σ, L, ℓ0, ℓ f , X, I, E

)
, where:

1. Σ is a finite set of actions,
2. L is a finite set of locations,
3. ℓ0 ∈ L is the initial location,
4. ℓ f ∈ L is the final location,
5. X is a finite set of clocks,
6. I is the invariant, assigning to every ℓ ∈ L a constraint

I(ℓ) over X (called invariant),
7. E is a finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L

are the source and target locations, a ∈ Σ, R ⊆ X is a set
of clocks to be reset, and g is a constraint over X (called
guard).

TAs are generally represented using directed graphs, where (i) loca-
tions are depicted by nodes, while their invariant are written near
them and (ii) edges are depicted by vertices, labeled with the clock
guard, the action and the set of clocks to be reset. Through this thesis,
the initial location is designated with an incoming arrow, the final one
by a double circle and the invariants are written in dashed boxes.

Example 3.1. In Figure 3.1, we give an example of a TA with three
locations ℓ0, ℓ1 and ℓ2, three edges, with actions {a, b, c}, and one
clock x. ℓ0 has an invariant x ≤ 3 and the edge from ℓ0 to ℓ2 has a
guard x ≥ 1.
ℓ0 is the initial location, while ℓ1 is the (only) final location.

3.3.1 Concrete semantics of timed automata

We define the concrete semantics of a TA using a TTS.
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Definition 3.6 (Semantics of a TA). Given a TA A =(
Σ, L, ℓ0, ℓ f , X, I, E

)
, the semantics of A is given by the TTS

TA = (S, Σ,→, s0), with
1. S =

{
(ℓ, µ) ∈ L×R

|X|
≥0 | µ |= I(ℓ)

}
,

2. s0 = (ℓ0, 0⃗),
3. → consists of the discrete and (continuous) delay transi-

tion relations:
(a) discrete transitions: (ℓ, µ)

e7→ (ℓ′, µ′), if
(ℓ, µ), (ℓ′, µ′) ∈ S, and there exists e =

(ℓ, g, a, R, ℓ′) ∈ E, such that µ′ = [µ]R, and
µ |= g.

(b) delay transitions: (ℓ, µ)
d7→ (ℓ, µ + d), with d ∈ R≥0,

if ∀d′ ∈ [0, d], (ℓ, µ + d′) ∈ S.

Moreover we write (ℓ, µ)
(d,e)7−→ (ℓ′, µ′) for a combination of a delay and

a discrete transition if there exists µ′′ s.t. (ℓ, µ)
d7→ (ℓ, µ′′)

e7→ (ℓ′, µ′).

Given a TA A with concrete semantics (S, Σ,→, s0), we refer to the
states of S as the concrete states of A. A run of a TA A is an alternating
sequence of concrete states of A and pairs of edges and delays starting
from the initial state s0 of the form s0, (d0, e0), s1, · · · , sn with ei ∈ E,

di ∈ R≥0 and si
(di ,ei)7−→ si+1 for i = 0, 1, . . . , n− 1.

Definition 3.7 (Duration of a run). Given a finite run ρ :
(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (di−1, ei−1), (ℓn, µn), the duration of
ρ is dur(ρ) = ∑0≤i≤n−1 di. We also say that ℓn is reachable in
time dur(ρ).

Example 3.2. Consider the TA A in Figure 3.1.
Consider the following run ρ of A: (ℓ0, x = 0), (1.4, a), (ℓ2, x =

1.4), (0.4, b), (ℓ1, x = 1.8)
Note that we write “x = 1.4” instead of “µ such that µ(x) = 1.4”.
We have dur(ρ) = 1.4 + 0.4 = 1.8.

3.3.2 Timed automata regions

In the following, we define an equivalence relation between the clocks
of a TA. Region equivalence was first introduced in [AD94] and permits
a kind of discretization of a TA: despite an infinite number of clock
valuations, there is only a finite number of regions, while two clock
valuations on the same regions have the same behavior.
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Given a TA A, for a clock x, we denote byMx the largest constant to
which x is compared within the guards and invariants of A. That is,
Mx = maxi ({ di | x ▷◁ di appears in a guard or invariant of A}).

Example 3.3. Consider again the TA defined in Figure 3.1. We have
Mx = max {1, 2, 3} = 3.

Region equivalence

Definition 3.8 (Region equivalence [AD94]). We say that two
clock valuations µ and µ′ are equivalent, denoted µ ≈ µ′, if the
following conditions hold for any clocks xi, xj:
either

1. (a) ⌊µ(xi)⌋ = ⌊µ′(xi)⌋,
(b) fr(µ(xi)) ≤ fr(µ(xj)) iff fr(µ′(xi)) ≤ fr(µ′(xj)), and
(c) fr(µ(xi)) = 0 iff fr(µ′(xi)) = 0

or
2. µ(xi) >Mxi and µ′(xi) >Mxi

The equivalence relation ≈ is extended to the states of the semantics
of A: if s = (ℓ, µ), s′ = (ℓ′, µ′) are two states of TA, we write s ≈ s′ iff
ℓ = ℓ′ and µ ≈ µ′.

We denote by [s] the equivalence class of s for ≈. A region is an
equivalence class [s] of ≈. The set of all regions is denoted RA. Given
a state s = (ℓ, µ) and d ≥ 0, we write s+ d to denote (ℓ, µ + d).

Region graph

Definition 3.9 (Region graph [BDR08]). Let A =(
Σ, L, ℓ0, ℓ f , X, I, E

)
be a TA. The region graph RGA = (RA, EA)

is a finite graph with:
• RA as the set of vertices;
• given two regions r = [s] , r′ = [s′] ∈ RA, we have (r, r′) ∈
EA if one of the following holds:

– s
e7→ s′ ∈ TA for some e ∈ E (discrete instantaneous

transition);
– if r′ is a time successor of r: r ̸= r′ and there exists d

such that s+ d ∈ r′ and ∀d′ < d, s+ d′ ∈ r ∪ r′ (delay
transition);

– r = r′ is unbounded: s = (ℓ, µ) with µ(xi) > Mxi

for all xi (equivalent unbounded regions).
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Region automaton

We now define a version of the region automaton based on [BDR08]
where the only letter that can be read (“tick”) means that one time
unit has passed. Note that this automaton is not timed. As such, it is
as usual described by a DFA.

We assume that the original TA A possesses a special location denoted
ℓpriv (as in Part II) and a special clock xtick that is always reset every
one time unit (through appropriate invariants and resets). This clock
does not affect the behavior of the TA, but every time it is reset, we
know that one unit of time passed. We also assume, as it will be
done in Part II, that the TA is deadlocked once ℓ f is reached (i. e., no
transition can be taken and no time can elapse).

Definition 3.10 (Region automaton [BDR08]). The region au-
tomaton of a TA A is a DFA RAA = (Σ, S, s0, F, δ) =

{{tick} ,RA, [s0] , F, T} where
1. tick is the only action;
2. RA is the set of states (a state of RAA is a region of A);
3. [s0] is the initial state (the region associated to the initial

location of A);
4. the set of final states F is the set of regions associated to

the location ℓpriv where xtick is not equal to 1 (i. e., the set
of regions r =

[
(ℓpriv, µ)

]
where µ(xtick) < 1);

5. (r, a, r′) ∈ T iff (r, r′) ∈ EA and a = tick if xtick was reset
in the discrete instantaneous transition corresponding to
(r, r′), and a = ε otherwise.

This definition is inspired on the construction presented in the proof
of [BDR08, Proposition 5.3]. The main difference point is that [BDR08]
presents a construction where the resulting automaton is determinized.

An important property of this automaton is that the word tickk with
k ∈ N is accepted by RAA iff there exists a run reaching the final
location of A within [k, k + 1) time units.

3.4 Parametric timed automaton

A PTA is a TA extended with a finite set of parameters [AHV93].
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Figure 3.2: A PTA example

Definition 3.11 (Parametric timed automaton [AHV93]). A PTA
P is a tuple P =

(
Σ, L, ℓ0, ℓ f , X, P, I, E

)
, where:

1. Σ is a finite set of actions;
2. L is a finite set of locations;
3. ℓ0 ∈ L is the initial location;
4. ℓ f ∈ L is the final location;
5. X is a finite set of clocks;
6. P is a finite set of parameters;
7. I is the invariant, assigning to every ℓ ∈ L a constraint

I(ℓ) over X∪P (called invariant);
8. E is a finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L

are the source and target locations, a ∈ Σ, R ⊆ X is a
set of clocks to be reset, and g is a constraint over X∪P

(called guard).

Example 3.4. In Figure 3.2, we give an example of a PTA with three
locations ℓ0, ℓ1 and ℓ2, three edges, with actions {a, b, c}, one clock x
and two parameters {p1, p2}. ℓ0 has an invariant x ≤ 3 and the edge
from ℓ0 to ℓ2 has a guard x ≥ p1.
ℓ0 is the initial location, while ℓ1 is the (only) final location.

Definition 3.12 (Valuation of a PTA). Given a parameter valua-
tion v, we denote by v(P) the non-parametric structure where
all occurrences of a parameter pi have been replaced by v(pi).

Remark 2. We have a direct correspondence between the valuation of a PTA
and the definition of a TA given in Definition 3.5.

TAs were originally defined with integer constants in [AD94] (as done in
Definition 3.5). By assuming a rescaling of the constants (i. e., by multiplying
all constants in a TA by the least common multiple of their denominators),
we obtain an equivalent (integer-valued) TA, as defined in Definition 3.5.

■
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Example 3.5. Consider the PTA in Figure 3.2 and let v be such that
v(p1) = 1 and v(p2) = 2. v(P) is a TA, represented in Figure 3.1.

3.4.1 Synchronized product of parametric timed automata

In the following, we recall the notion of synchronous product of a set of
PTAs. This product (using strong broadcast, i. e., synchronization on
a given set of actions), or parallel composition, of several PTAs gives a
PTA.

Definition 3.13 (Synchronized product of PTAs). Let N ∈ N.
Given a set of PTAs Pi =

(
Σi, Li, (ℓ0)i, (ℓ f )i, Xi, Pi, Ii, Ei

)
, 1 ≤

i ≤ N, and a set of actions Σs, the synchronized product of
(Pi)1≤i≤N , denoted by P1 ∥Σs P2 ∥Σs · · · ∥Σs PN , is the tuple(

Σ, L, ℓ0, ℓ f , X, P, I, E
)
, where:

1. Σ =
⋃N

i=1 Σi,
2. L = ∏N

i=1 Li,
3. ℓ0 = ((ℓ0)1, . . . , (ℓ0)N),
4. ℓ f = ((ℓ f )1, . . . , (ℓ f )N),
5. X =

⋃
1≤i≤N Xi,

6. P =
⋃

1≤i≤N Pi,
7. I((ℓ1, . . . , ℓN)) =

∧N
i=1 Ii(ℓi) for all (ℓ1, . . . , ℓN) ∈ L,

8. and E is defined as follows.
For all a ∈ Σ, let ζa be the subset of indices i ∈ 1, . . . , N
such that a ∈ Σi. For all a ∈ Σ, for all (ℓ1, . . . , ℓN) ∈ L, for
all (ℓ′1, . . . , ℓ′N) ∈ L,

(
(ℓ1, . . . , ℓN), g, a, R, (ℓ′1, . . . , ℓ′N)

)
∈ E

if:
• if a ∈ Σs, then

(a) for all i ∈ ζa, there exist gi, Ri such that
(ℓi, gi, a, Ri, ℓ′i) ∈ Ei, g =

∧
i∈ζa

gi, R =
⋃

i∈ζa
Ri,

and,
(b) for all i ̸∈ ζa, ℓ′i = ℓi.

• otherwise (if a /∈ Σs), then there exists i ∈ ζa such
that
(a) there exist gi, Ri such that (ℓi, gi, a, Ri, ℓ′i) ∈ Ei,

g = gi, R = Ri, and,
(b) for all j ̸= i, ℓ′j = ℓj.

That is, synchronization is only performed on Σs, and other actions
are interleaved.
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3.4.2 Symbolic semantics of parametric timed automaton

We now define the symbolic semantics of PTAs [HRSV02; ACEF09;
JLR15].

We define the time elapsing of a constraint C, denoted by C↗, as the
constraint over X and P obtained by delaying all clocks in C by an
arbitrary amount of time. That is, for all v, µ′,

µ′ |= v(C↗) if ∃µ : X→ R≥0, ∃d ∈ R≥0 s.t. µ |= v(C) ∧ µ′ = µ + d.

Given R ⊆ X, we define the reset of C, denoted by [C]R, as the
constraint obtained from C by resetting the clocks in R to 0, keeping
other clocks unchanged. That is, µ′ |= v([C]R) if

∃µ : X→ R≥0 s.t. µ |= v(C) ∧ ∀x ∈ X

{
µ′(x) = 0 if x ∈ R
µ′(x) = µ(x) otherwise.

We denote by C↓P the projection of C onto P, i. e., obtained by elimi-
nating the variables not in P (e. g., using Fourier-Motzkin [Sch99]).

The application of one of these operations (time elapsing, reset, projec-
tion) to a constraint yields a constraint; existential quantification can
be handled, e. g., by adding variables and subsequently eliminating
them using, e. g., Fourier-Motzkin.

Definition 3.14 (Symbolic state). A symbolic state is a pair
s = (ℓ, C) where ℓ ∈ L is a location, and C its associated
constraint over X∪P called parametric zone.

Definition 3.15 (Symbolic semantics). Given a PTA P =(
Σ, L, ℓ0, ℓ f , X, P, I, E

)
, the symbolic semantics of P is the LTS

called parametric zone graph (PZG) PZG(P) = (E, S, s0,⇒),
with

• S = {(ℓ, C) | C ⊆ I(ℓ)} ∈ L×R
|X|
≥0

• s0 =
(
ℓ0, (

∧
1≤i≤|X| xi = 0)↗ ∧ I(ℓ0)

)
, and

•
(
(ℓ, C), e, (ℓ′, C′)

)
∈ ⇒ if

– e = (ℓ, g, a, R, ℓ′) ∈ E and
– C′ =

(
[(C ∧ g)]R ∧ I(ℓ′)

)↗ ∧ I(ℓ′) with C′ satisfiable.

Example 3.6. Consider again the PTA P of Figure 3.2. PZG(P) is
represented in Figure 3.3.

That is, in the PZG, nodes are symbolic states, and arcs are labeled
by edges of the original PTA. Given a symbolic state s reachable
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Figure 3.3: PZG of PTA of Figure 3.2

in PZG(P), we define the successors with edges, denoted SuccE(s),
by {(e, s′) | (s, e, s′) ∈ ⇒}.

We also write s ⇒ s′ to denote that for some e, (s, e, s′) ∈ ⇒. Given
t = (s, e, s′) ∈ ⇒, t.source denotes s while t.target denotes s′. Given
s = (ℓ, C), s.constr denotes C while s.loc denotes ℓ. Note that we
usually use bold font to denote anything symbolic, i. e., (sets of)
symbolic states, and constraints.

A well-known result [HRSV02] is that, given a PTA P and a reachable
symbolic state (ℓ, C), if a parameter valuation v belongs to the projec-
tion onto the parameters of C (i. e., v ∈ C↓P), then ℓ is reachable in
the TA v(P). This justifies Definition 3.12.

The (symbolic) state space of a PTA is its PZG. This structure is in
general infinite, due to the intrinsic undecidability of most decision
problems for PTAs. However, for semi-algorithms for parameter syn-
thesis (without a guarantee of termination), it is of utmost importance
to reduce the size of this state space, so as to perform synthesis more
efficiently. We will study and present a contribution on the reduction
of this state space in Part I.

3.4.3 Reachability synthesis

We use reachability synthesis to solve the problems defined in Sec-
tion 7.1. In the following, we define the reachability problem and
recall the procedure to solve reachability synthesis.

The reachability problem

We say that a set of locations Ltarget is reachable in a TA if there exists
a location ℓtarget ∈ Ltarget which is reachable.
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We define the reachability synthesis problem. Given a PTA P and a
set of locations Ltarget, this problems ask to synthesize the (maximal)
set of parameter valuations v such that Ltarget is reachable in v(P).

The reachability synthesis problem:
Input: A PTA P , a set of target locations Ltarget

Problem: Synthesize the (maximal) set of parameter valuations
v such that Ltarget is reachable in v(P).

The synthesis procedure

This procedure, called EFsynth and denoted EFsynth(P , Ltarget) was
formalized in e. g., [JLR15] and is a procedure that may not terminate,
but that computes an exact result (sound and complete) if it terminates.
EFsynth traverses the PZG of P .

Example 3.7. Consider again the PTA P in Figure 3.2.
EFsynth(P , {ℓ2}) = p1 ≤ 3 ∧ p1 ≤ p2. Intuitively, it corresponds
to the disjunction of all parameter constraints in the PZG in Figure 3.3
associated to symbolic states with location ℓ2.

We finally recall the correctness of EFsynth.

Lemma 3.1 (Correctness of EFsynth [JLR15]). Let P be a PTA, and
let Ltarget be a subset of the locations of P . Assume EFsynth(P , Ltarget)

terminates with result K. Then v |= K iff Ltarget is reachable in v(P).

3.5 Lower/upper parametric timed automaton

L/U-PTAs is the most well-known subclass of PTAs with some decid-
ability results: for example, reachability emptiness (“the emptiness
of the valuations set for which a given location is reachable”), which
is undecidable for PTAs, becomes decidable for L/U-PTAs [HRSV02].
Various other results were studied (e. g., [BL09; JLR15; ALR22]).

Definition 3.16 (Lower/upper parametric timed automa-
ton [HRSV02]). An L/U-PTA is a PTA where the set of pa-
rameters is partitioned into lower-bound parameters and upper-
bound parameters, where each upper-bound (resp. lower-
bound) parameter pi must be such that, for every guard or
invariant constraint x ▷◁ ∑1≤i≤|P| αi pi + d, we have: ▷◁ ∈ {≤,<}
implies αi ≥ 0 (resp. αi ≤ 0) and ▷◁ ∈ {≥,>} implies αi ≤ 0
(resp. αi ≥ 0).
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Example 3.8. The PTA in Figure 3.2 is an L/U-PTA with {p1} as
lower-bound parameter, and {p2} as upper-bound parameter.

3.5.1 Monotonicity of lower/upper parametric timed automata

We have the following monotonicity property of L/U-PTAs:

Lemma 3.2 (L/U-PTA monotonicity [HRSV02]). Let PLU be
an L/U-PTA and v be a parameter valuation. Let v′ be a valuation such
that for each upper-bound parameter pu, v′(pu) ≥ v(pu) and for each lower-
bound parameter p l , v′(p l) ≤ v(p l). Then any run of v(P) is a run of
v′(P).

3.6 imitator model checker

IMITATOR [And21a] is a software tool for parametric verification of
(extensions of) PTAs. It takes as input networks of PTAs extended with
several handful features such as synchronization though strong broad-
cast, rational-valued global variables, stopwatches, multi-rate clocks,
and some other useful features. It implements several algorithms,
including parametric reachability or safety analysis (“EF-synthesis”)
[AHV93; JLR15]. IMITATOR is able to verify a large number of case
studies from the literature and industry.

It is fully written in OCaml, and makes use of Parma Polyhedra
Library (PPL) [BHZ08]. It is open-source and free, available under the
GNU General Public License.
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Part I

Z O N E M E R G I N G I N PA R A M E T R I C T I M E D
AU T O M ATA

Eu não sei, de onde vem, essa força que me leva pra você
Eu só sei que faz bem, mas confesso que no fundo eu duvidei
Tive medo, e em segredo, guardei o sentimento e me sufoquei
Mas agora, é a hora, eu vou gritar pra todo mundo de uma vez

Eu tô apaixonado
Eu tô contando tudo e não tô nem ligando pro que vão dizer
Amar não é pecado
E se eu tiver errado, que se dane o mundo, eu só quero você

Eu tô apaixonado
Eu tô contando tudo e não tô nem ligando pro que vão dizer
Amar não é pecado
E se eu tiver errado, que se dane o mundo, eu só quero você

— Luan Santana, Amar não é pecado
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A B E N C H M A R K L I B R A RY F O R E X T E N D E D
PA R A M E T R I C T I M E D AU T O M ATA

Fais de ta vie un rêve,
et d’un rêve, une réalité.

— Antoine De Saint-Exupéry

Before proposing new heuristics to improve the efficiency of the veri-
fication of PTA models, we need to gather a structured set of bench-
marks as a fair comparison basis.

To his end, in this chapter, we present an extension of the IMITATOR
benchmark library, that accumulated over the years a number of case
studies from academic and industrial contexts. We extend here the
library with several dozens of new benchmarks; these benchmarks
highlight several new features.

Motivation

In the past few years, a growing number of new synthesis algorithms
were proposed for PTAs, e. g., using bounded model-checking [KP12],
compositional verification [ABBCR16; AL17b], distributed verifica-
tion [ACN15], for liveness properties [BBBČ16; NPP18; AAPP21], for
dedicated problems [CPR08]—notably for testing timed systems [FK13;
And16; LSBL17; AAGR19; LGSBL19; AAPP21]. However, these works
consider different benchmarks sets, making it difficult to evaluate
which technique is the most efficient for each application domain.
A benchmark suite for (extended) PTAs can be used for different
purposes:

1. when developing new algorithms for (extensions of) PTAs and
testing their efficiency by comparing them with existing tech-
niques;

2. when evaluating benchmarks for (extensions of) TAs (note, as
introduced in Definition 3.12, that valuating our benchmarks
with a parameter valuation yields a TA or a multi-rate automaton
(MRA) [Alu+95]); and

3. when looking for benchmarks fitting in the larger class of HAs.

41



42 a benchmark library for extended parametric timed automata

Contributions of the chapter

In [And19a; And18], the author introduced a first library of 34 bench-
marks, 80 models and 122 properties for PTAs.

However, this former version of the library suffers from several issues.
First, its syntax is only compatible with the syntax of version 2.12 of
IMITATOR [AFKS12], while IMITATOR shifted to version 3.0 [And21a]
in 2021, with a different calling paradigm.1 Second, the former ver-
sion contains exclusively safety/reachability properties (plus some
“robustness” computations, using the IM algorithm, also called trace
preservation synthesis (TPS)). Third, only syntactic information is
provided (benchmarks, metrics on the benchmarks), and no seman-
tic information (expected result, approximate computation time, and
approximate number of states to explore).

In this chapter, we extend the former library with a list of new features,
including syntactic extensions (notably multi-rate clocks [Alu+95]); we
also focus on unsolvable case studies, i. e., simple examples for which no
known algorithm allows computation of the result, with the ultimate
goal to encourage the community to address these cases. In addition,
we add liveness properties, i. e., cycle synthesis. Also, we add semantic
criteria, with an approximate computation time for the properties, an
expected result (whenever available) and an approximate number of
explored symbolic states (computed using IMITATOR). The rationale
is to help users by giving them an idea of what to expect for each
case study. Also, our consolidated classification aims at helping tool
developers to select within our library which benchmarks suit them
(e. g., “PTAs without stopwatches, with many locations and a large
state space”).

To summarize, we propose a new version of our library enhancing the
former one as follows:

1. adding 22 new benchmarks (and 39 models, constituting or not
these new benchmarks)

• adding benchmarks for liveness properties;

• adding a set of toy unsolvable benchmarks, to emphasize the
limits of state-of-the-art parametric verification techniques,
and to encourage the community to develop new dedicated
algorithms in the future;

1 While many keywords remain the same in the model, the property syntax has been
completely rewritten, and the model checker now takes as input a model file and a
property file. In addition, new properties are now possible, and the syntax has been
extended with some useful features such as multi-rate clocks or “if-then-else” control
structures.

https://github.com/imitator-model-checker/imitator/releases/tag/v2.12
https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0
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Table 4.1: Selected new features

Library Size Metrics Format Categories Properties Analysis
Version Bench. Models Prop. Static Semantic .imi JANI Unsolvable EF IM liveness Results

1.0 [And18] 34 80 122

√
× 2.12 × ×

√ √
× ×

2.0 [AMP21c] 56 119 216

√ √
3.0

√ √ √ √ √ √

2. refactoring all existing benchmarks, so that they now implement
the syntax of the 3.0 version of IMITATOR;

3. providing a better classification of benchmarks;

4. highlighting extensions of PTAs, such as multi-rate
clocks [Alu+95] and stopwatches [CL00];

5. offering an automated translation of our benchmarks to the
JANI [Bud+17; JANI17] model interchange format, offering a
unified format for quantitative automata-based formalisms. This
way, the library can be used by any tool using JANI as an in-
put format, and supporting (extensions of) TAs. Even though
other tools implementing the JANI formalism do not handle
parameters, they can run on instances of our benchmarks, i. e., by
valuating the PTAs with concrete valuations of the parameters.

We summarize the most significant dimensions of our extension in
Table 4.1. EF (using the TCTL syntax) denotes reachability/safety,
and IM denotes robustness analysis. We denote with a green cell the
presence of a feature, and with a red cell its absence.

Organization of the chapter

We briefly introduce the IMITATOR extension of PTAs syntax in Sec-
tion 4.1. We present our library in Section 4.2, and conclude in
Section 4.3.

4.1 extending the parametric timed automaton syntax

Our library follows the IMITATOR syntax. Therefore, some bench-
marks (clearly marked as such) go beyond the traditional PTA
syntax, and are referred to IMITATOR parametric timed automata
(IPTAs) [And21a]. These extensions include:

urgent locations They are locations where time cannot elapse.

global rational-valued variables Global variables (called
“discrete”) can be defined, and are part of the discrete part of
a state, together with locations (and different from clocks and
parameters that are part of the continuous part). Global variables
in IMITATOR are exact rationals, following exact arithmetics (as
opposed to, e. g., floating-point arithmetic that can accumulate
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errors and lead to faulty assertions). Exact rationals are encoded
in IMITATOR using the GNU MP library. Non-linear arithmetic
expressions over sole discrete variables are allowed too.

arbitrary flows Some benchmarks require arbitrary (constant)
flows for clocks; this way, clocks do not necessary evolve at the
same time, and can encode different concepts from only time,
e. g., temperature, amount of completion, continuous cost. Their
value can increase or decrease at any predefined rate in each
location, and can become negative. In that sense, these clocks are
closer to continuous variables (as in HAs) rather than TAs’ clocks;
nevertheless, they still have a constant flow, while HAs can have
more general flows. This makes some of our benchmarks fit
into a parametric extension of MRAs. This notably includes
stopwatches, where clocks can have a 1 or 0-rate [CL00]. In
Figure 4.1, x has rate 2 in workingFast, and is stopped in coffee
(rate 0, or stopwatch).

additional syntax improvements Beyond the aforementioned
increase of the syntactic expressive power, the syntax was en-
hanced, for example with accepting locations (that can be used
in properties), global constants, “if. . . then. . . else” conditions
in updates.

working

finished

workingFast
ẋ = 2

coffee
ẋ = 0

x ≤ ptotal

x ≤ ptotal

t ≤ pcoffee

x ≥ 0.8× ptotal

x = ptotal
done

restart
t← pneed

2
x, nb← 0

x = ptotal
done

t ≥ pneed
∧nb ≤ max− 1

drink
t← 0

nb← nb + 1

t = pcoffee
t← 0

t ≥ 0.6× pneed
∧nb ≤ max− 1

drink
t← 0

nb← nb + 1

t = pcoffee
∧x ≥ 0.8× ptotal

t← 0

Figure 4.1: A IPTA example: Writing papers and drinking coffee

https://gmplib.org/
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Example 4.1. This case study researcher is part of the version 2 of
our library, in categories “academic”, “toy” and “teaching” (see our
classification in Section 4.2.3).
The model features two clocks t (measuring the time when needing a
coffee) and x (measuring the amount of work done on a given paper),
both initially 0. Their rate is always 1, unless otherwise specified
(e. g., in workingFast). Initially, the researcher is working (location
working) on a paper, requiring an amount of work ptotal. When the
paper is completed (guard x = ptotal), the IPTA moves to location
finished. From there, at any time, the researcher can start working on
a new paper (transition back to location working, updating x and t).
Alternatively, after at least a certain time (guard t ≥ pneed), the
researcher may need a coffee; this action can only be taken until a
maximum number of coffees have been drunk for this paper (nb ≤
max− 1), where nb is a discrete global variable recording the number
of coffees drunk while working on the current paper. When drinking a
coffee (location coffee), the work is obviously not progressing (ẋ = 0).
Drinking a coffee takes exactly pcoffee time units (guard t = pcoffee
back to location working). Observe that, from the second paper
onward (transition labeled with restart), the researcher is already half-
way of her/his need for a coffee (parametric update t ← 0.5× pneed
[ALR19]).
Also, whenever 80% of the work is done (guard x ≥ 0.8× ptotal),
the researcher may work twice as fast (location workingFast, with
a rate 2 for clock x). In that case, (s)he needs a coffee faster too
(0.6× pneed).
All three durations pcoffee, pneed and ptotal are timing parameters. We
fix their parameter domains as follows: pcoffee, ptotal ∈ [0, ∞) and
pneed ∈ [1, ∞). The maximum number of coffees max ∈ [0, ∞) is
also a parameter; observe that it is (only) compared to the discrete
variable nb, which is allowed by the liberal syntax of IMITATOR.

4.2 the benchmark library

4.2.1 Organization

We decided the following organization for our new version of the
library. The library is made of a set of benchmarks. Each benchmark
may have different models: for example, Gear comes with ten models,
of different sizes (the number of locations notably varies), named
Gear-1000 to Gear-10000. Similarly, some Fischer benchmarks come
with several models, each of them corresponding to a different number
of processes. Finally, each model comes with one or more properties.
For example, for Gear-2000, one can run either reachability synthesis,
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Figure 4.2: The IMITATOR benchmark library Web page:
https://www.imitator.fr/library2/

or minimal reachability synthesis (“for which parameter valuations is
the final location reachable in minimal time?”).

The benchmark library, in its 2.0 version, covers 56 benchmarks, which
group 119 models and 216 properties

From the previous version [And19a], 39 models have been added:
beyond all Unsolvable models, and a few more additions, we no-
tably added a second model of the Bounded Retransmission Protocol
(“BRPAAPP21”), proposed in [AAPP21].

Benchmarks come from industrial collaborations (e. g., with Thales, ST-
Microelectronics, ArianeGroup, Astrium), from academic papers from
different communities (e. g., real-time systems, monitoring, testing)
describing case studies, and from our experience in the field (notably
the Unsolvable benchmarks). For benchmarks extracted from published
works, a complete bibliographic reference is given.

4.2.2 Distribution

The benchmark library is presented on a Web page available at
[AMP21c] and permanently available at [AMP21b]. Several columns
(metrics, syntax used, categories, properties) allow users to select
easily which benchmarks fit their need (see Figure 4.2).

Our benchmarks are distributed in the well-documented IMITATOR
3.0.0 input format [And21b], which is a de facto standard for PTAs.
IMITATOR can provide automated translations to the non-parametric
timed model checker Uppaal [LPY97], as well as the hybrid systems
model checker HyTech [HHWT95] (not maintained anymore). How-
ever, some differences (presence of timing parameters or complex
guards in IMITATOR, difference in the semantics of the synchroniza-
tion model) may not preserve the semantic equivalence of the models.

In addition, we offer all benchmarks in the JANI format [Bud+17]. I
implemented to this end (within IMITATOR) an automatic translation
of IPTAs to their JANI specification. Thus, all of our benchmarks can
be fed to other verification tools supporting JANI as input.

All our benchmarks are released under the CC by 4.0 license.

https://www.imitator.fr/library2/
https://creativecommons.org/licenses/by/4.0/
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Table 4.2: Proportion of each category over the models

Category Number of models Proportion
All 119 100 %
Academic 54 45 %
Automotive 20 17 %
Education 9 8 %
Hardware 6 5 %
Industrial 33 28 %
Monitoring 25 21 %
ProdCons 5 4 %
Protocol 34 29 %
RTS 46 39 %
Scheduling 3 3 %
Toy 34 29 %
Unsolvable 18 15 %

4.2.3 Benchmarks classification

For each benchmark, we provide multiple criteria, notably the follow-
ing ones.

scalability whether the models can be scaled according to some
metrics, e. g., the FischerPS08 benchmark can be scaled accord-
ing to the number of processes competing for the critical section;

generation method whether the models are automatically gener-
ated or not (e. g., by a script, notably for scheduling real-time
systems using PTAs, or to generate random words in bench-
marks from the testing or monitoring communities);

categorization Benchmarks are tagged with one or more cate-
gories: (i) Academic, (ii) Automotive, (iii) Education, (iv) Hard-
ware, (v) Industrial, (vi) Monitoring, (vii) Producer-consumer,
(viii) Protocol, (ix) Real-time system, (x) Scheduling, (xi) Toy,
(xii) Unsolvable. The proportion of each of these tags are given
in Table 4.2 (note that the sum exceeds 100 % since benchmarks
can belong to multiple categories).

Moreover, we use the following static metrics to categorize our bench-
marks:

• the numbers of IPTA components (subject to parallel composi-
tion), of clocks, parameters, discrete variables and actions;

• whether the benchmark has invariants, whether some clocks
have a rate not equal to 1 (multi-rate/stopwatch) and silent
actions (“ϵ-transitions”);

• whether the benchmark is an L/U-PTA and strongly determinis-
tic;
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Table 4.3: Statistics on the benchmarks

Metric Average Median
Number of IPTAs 3 3

Number of clocks 4 3

Number of parameters 4 3

Number of discrete variables 4 2

Number of actions 12 11

Total number of locations 2004 22

Locations per IPTA 979 5

Total number of transitions 2280 54

Transitions per IPTA 1067 13

Metric Percentage
Has invariants? 92 %
Has discrete variables? 24 %
Has multi-rate clocks 17 %
L/U subclass 19 %
Has silent actions? 67 %
Strongly deterministic? 78 %

• the numbers of locations and transitions, and the total number
of transitions.

In Table 4.3, we present some statistics on our benchmarks. Because of
the presence of 3 benchmarks and 25 models (all in the “monitoring”
category) with a very large number of locations (up to several dozens
of thousands), only giving the average of some metrics is irrelevant.
To this end, we also provide the median values. Moreover, the average
and the median of the number of discrete variables are computed
only on the benchmarks which contain at least one such variable; they
represent 24% of our models.

4.2.4 Properties

Properties follow the IMITATOR syntax. In the 1.0 version, they mainly
consisted of reachability and safety properties; in addition, the proper-
ties were not explicitly provided, since IMITATOR 2.x did not specify
properties (they were provided using options in the executed com-
mand).

In the new version of our library, we added several liveness (cycle
synthesis) properties, i. e., for which one aims at synthesizing parame-
ter valuations featuring at least one infinite (accepting) run [NPP18;
AAPP21]; in addition, we added properties such as deadlock-freeness
synthesis (“exhibit parameter valuations for which the model is
deadlock-free”) [And16], optimal-parameter or minimal-time reach-
ability [ABPP19], and some “pattern”-based properties [And13] that
eventually reduce to reachability checking [ABBL03].

More in details, we provide and study eight classes of properties:
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ℓ0

x ≤ 1
ℓ f

x = 1
x ← 0

x = 0∧ y = p

(a) p ∈N

ℓ0

x ≤ 1
ℓ f

x = p
x ← 0

x = 0∧ y = 1

(b) p ∈
{

1
n

}
n ∈N \ {0}

ℓ0 ℓ f

x = p
x ← 0

x = q ∧ y = r

(c) r ∈ {n× p + q | n ∈N}

ℓ0

x ≤ 1

ℓ f

x = 1
x ← 0

y ≥ p ∧ x = 0

(d) p ∈ R≥0

Figure 4.3: Examples of unsolvable benchmarks

1. Safety (AGnot) to obtain the set of valuations for which the
target location is unreachable.

2. Cycle (resp. CycleThrough) to synthesize a parameter constraint
such that, for any parameter valuation in that constraint, the
system contains at least one infinite run [NPP18; AAPP21] (resp.
passing infinitely often through the specified location).

3. DeadlockFree which synthesizes a parameter constraint such
that, for any parameter valuation in that constraint, the system
is deadlock-free [And16].

4. Reachability (EF) to compute the set of parameter valuations for
which some location is reachable.

5. EFpmin (resp. EFpmax) to synthesize the minimum (resp. maxi-
mum) valuation for a given parameter for which a given location
is reachable [ABPP19].

6. EFtmin to synthesize the parameter valuation for which a given
location is reachable in minimal time [ABPP19].

7. Inverse method (IM) to compute a parameter constraint such
that, for any parameter valuation in that constraint, the set of
traces is the same as for the reference valuation [ALM20].

8. Pattern [And13], i. e., a set of predefined properties reducing to
reachability or safety synthesis.

4.2.5 Unsolvable Benchmarks

A novelty of our library is to provide a set of toy unsolvable bench-
marks. They have been chosen for being beyond the limits of the
state-of-the-art techniques. Four of them are illustrated in Figure 4.3.
For example, in Figure 4.3a, the reachability of ℓ f is achievable only
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Table 4.4: Statistics on executions (over 157 properties)

Metric Average Median
Total computation time (in seconds) 245.8 2.819

Number of states 20817.8 580

Number of computed states 34571.7 1089

if p ∈ N; but no verification tool—to the best of our knowledge—
terminates this computation. Moreover, the final location of the PTA
presented in Figure 4.3d is reachable for all p ≥ 0, which is a convex
constraint, but this solution remains not computable.

4.2.6 Expected Performances

Another novelty of the 2.0 version is to provide users with all the
expected results, as generated by IMITATOR. For all properties, we
provide either a computed result, or (for the “unsolvable” bench-
marks), a human-solved theoretical result.

We also give an approximate computation time, and the number of
(symbolic) states explored. These metrics are not strict, as they may
depend on the target model checker and the target hardware/OS, but
this provides the user an idea of the complexity of our models.

If IMITATOR is able to compute the result of a property application,
we provide its output file and extract some relevant features to have a
general idea of its performances: the total computation time, the num-
ber of states and the number of computed states. The executions were
made on an Intel Xeon Gold 5220 CPU @ 2.20 GHz with 96 GiB run-
ning Linux Ubuntu 20 (“gros” cluster of the Grid’5000 testbed [Gri]). If
IMITATOR is not able to compute it—recall that the concerned bench-
marks are tagged with “Unsolvable”—, we provide a similar result file,
whose extension is expres. In this case, the metrics as presented as
“Not executed (Unsolvable)” (“NE (Uns.)”).

In Table 4.4, we present the statistics over 157 IMITATOR executions.
Note that the unsolvable executions (which are computed with a time-
out) are not included in this table.

4.3 conclusion and perspectives

In this chapter, we presented a new version of the IMITATOR bench-
mark library. In its V2.0 version, the library contains 56 benchmarks
with 119 different models and 216 properties. Each of these bench-
marks come with many syntactic and semantic metrics, allowing user
to choose the better examples for their use. We also provide their
translation into the JANI specification.
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Perspectives

To allow a version of our library in both the IMITATOR format and the
JANI format, we implemented within IMITATOR the translation of an
IMITATOR model to its JANI specification. In order for IMITATOR to
also be fed with other existing models specified in JANI, we would like
to implement the reverse translation (from JANI to IMITATOR), using
JANI tools or within IMITATOR. This development would allow us to
extend our library to include models offered by other JANI-supporting
model checkers.

Ultimately, we hope our library can serve as a basis for a parametric
timed model checking competition, a concept yet missing in the model
checking community.

Opening the library to volunteer contributions is also on our agenda.

Finally, we hope that this library can be used as a reference for the
comparison of verification algorithms. This will notably be the pur-
pose of the the next chapter, in which we use our new version of the
library in order to evaluate new heuristics for the efficient verification
of PTAs.
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E F F I C I E N T C O N V E X Z O N E M E R G I N G I N
PA R A M E T R I C T I M E D AU T O M ATA

Live as if you were to die tomorrow.
Learn as if you were to live forever.

— Mahatma Gandhi

In this chapter, we present a method allowing to reduce the PZGs of
PTAs, based on merges of convex constraints. Effectively, our method
provides a gain of 62 % of the average computation time over the
benchmark library presented in the previous chapter compared to not
using the option.

Motivation

PTAs are an inherently expressive but hard formalism, in the sense
that most decision problems are undecidable (see e. g., [And19b] for a
survey), while verification and parameter synthesis are subject to the
infamous state-space explosion in practice. Reducing the state space,
built on-the-fly when performing parameter synthesis, is a significant
way to reduce the sometimes large computation times.

The symbolic semantics of TAs is often represented as zones, i. e., lin-
ear constraints over the clocks with a special form. In [Dav05], a
convex zone merging technique is presented for Uppaal, that pre-
serves reachability properties. This merging technique was extended
to PTAs in [AFS13], and applied to the symbolic semantics of PTAs in
the form of parametric zones, i. e., linear constraints over the clocks
and the parameters, obeying to a special form [HRSV02]. In [AFS13],
the analysis is only performed in the framework of the IM; no other
properties are considered.

Contributions of the chapter

We propose here different merging techniques for PTAs, with the goal
to reduce the state-space size and/or the analysis time. In Section 5.4,
we implement our techniques in IMITATOR, and we perform extensive
experiments on the benchmark library presented in Chapter 4. It turns
out that these various heuristics have very different outcomes in terms
of size of the state space and analysis speed. We then identify the best
heuristics in practice, allowing to significantly decrease the number of
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states and the computation time, while preserving the correctness of
the parameter synthesis for the whole class of reachability properties.
The two main differences with [AFS13] are:

1. the definition of merging for reachability synthesis (and not only
for IM); and

2. the systematic investigation of new heuristics, leading to a
largely increased efficiency w.r.t. the original merging of [AFS13].

Organization of the chapter

We recall the notion of merging in Section 5.1 and present our merging
algorithm in Section 5.2. Several merging heuristics are proposed in
Section 5.3 and evaluated in Section 5.4. We conclude in Section 5.5.

5.1 the notion of merging

We recall the notion of merging from [AFS13]. Two states are mergeable
if:

1. they share the same location; and

2. the union of their constraints is convex.

Definition 5.1 (Merging [AFS13]). Two symbolic states
s1 = (ℓ1, C1), s2 = (ℓ2, C2) are mergeable, denoted by the predi-
cate is mergeable(s1, s2), if ℓ1 = ℓ2 and C1 ∪ C2 is convex.
In that case, we define their merging as (ℓ1, C1 ∪ C2).

Remark 3. Merging is a generalization of inclusion abstraction (also known
as subsumption) [LODLDP13; AAPP21]. Note that if s2 includes s1, i. e.,
C1 ⊆ C2, then C1 ∪C2 = C2 is convex, so the states can be merged, and the
result will be s2.

■

Example 5.1. We display examples of 2-dimensional zones in Fig-
ure 5.3c on page 63. Note that these box-shaped parametric zones are
fictitious and displayed for the purpose of illustration; similar zones,
sometimes using “diagonal” edges, can be obtained from actual PTAs.
Zone C1 can be merged with C4; C2 can also be merged with C4. The
result of these two merging operations is shown in Figure 5.3g. These
two new zones can also be merged together, leading to the zone in
Figure 5.3h.
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Figure 5.1: Example of a PTA with infinite PZG that becomes finite by
merging

Example 5.2. Let us now consider the PTA in Figure 5.1a, with two
clocks (x and y) and two parameters (p1 and p2).
Both clocks and parameters are initially bound to be non-negative
(clocks initially different from 0 can be simulated using an appropriate
gadget, omitted here).
Two transitions lead from the initial location ℓ0 to ℓ1, with a guard
differing in the condition on clock y. The self-loop on ℓ1 can be taken
depending on the value of clock x, and resets it.
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The PZG of this PTA is shown in Figure 5.1b. It features two separate
infinite executions which depend on the first chosen transition. In
the right-hand branch, the first state with location ℓ1 has constraint
y ≤ p1 + x (which can be read y− x ≤ p1) since, although we have
y ≤ p1 when taking the transition from ℓ0, time can then elapse
in ℓ1—but only up to p1 time units, due to invariant x ≤ p1. Then
coefficients on p1 (i. e., 2p1 then 3p1, etc.) start to appear from the
second state with location ℓ1 due to the self-loop on ℓ1 that resets x.
Inclusion reduces one of these two symbolic executions, which exhibits
decreasing zones, as in Figure 5.1c. However, even using inclusion,
the PZG remains infinite.
Finally, Figure 5.1d displays the graph obtained with the merging
approach: the two states obtained after taking a single transition can
indeed be merged. In this example, the PZG with merging becomes
finite, which illustrates the importance of merging.

5.1.1 Preservation of Properties

In the following, we prove that our merging method preserve reacha-
bility properties.

Proposition 5.1. Given a PTA P , let PZG(P) and PZG(P)′ be the
PZG before and after merging. Then PZG(P)′ simulates PZG(P).

Proof. (sketch) Consider the relation s ⊑ s′ iff s.loc = s′.loc and
s.constr ⊆ s′.constr. [NPP18] shows that this forms a simulation rela-
tion, i. e., if s ⊑ s′ and s⇒ s0, then for some s′0, we have s0 ⊑ s′0 and
s′ ⇒ s′0.

Note that while merging, we repeatedly replace a state (ℓ, C) by a state
(ℓ, C∪C′), in which case (ℓ, C) ⊑ (ℓ, C∪C′). So indeed, merged states
can simulate the behavior of all original states that were merged.

Corollary 5.1. Given a PTA P , let PZG(P) and PZG(P)′ be the
PZG before and after merging. Let φ be a property in ∀CTL* [BK08]
with atomic propositions defined in terms of state locations only. Then
PZG(P)′ ⊨ φ implies PZG(P) ⊨ φ.

Proof. (sketch) All universal properties (in ∀CTL*) are preserved by
simulation [BK08, Theorem 7.76]. In this case, the simulation ⊑ also
implies that related states have the same locations, so they satisfy the
same atomic properties.
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The next proposition shows that we do not add arbitrary new behavior.
Indeed, although merging can add behavior, it cannot add unreach-
able locations and, more precisely, the set of locations reachable for
each parameter valuation remains unchanged. This guarantees that
merging preserves reachability synthesis. A version of this result was
shown in a different context in [AFS13, Theorem 1].

Proposition 5.2 (Preservation of reachability properties). Given
a PTA P , let PZG(P)′ be the PZG after merging. Let ℓ be a location,
let v be a parameter valuation.
ℓ is reachable in v(P) iff ∃(ℓ, C′) ∈ PZG(P)′ such that v ∈ C′↓P.

Proof.

⇒ Let us show that, if ℓ is reachable in v(P), then there exists
(ℓ, C′) ∈ PZG(P)′ such that v ∈ C′↓P.

Let PZG(P) be the PZG without merging. By the equiva-
lence between the concrete and symbolic semantics [HRSV02],
there exists (ℓ, C) ∈ PZG(P) such that v ∈ C↓P. As merg-
ing only adds behavior, and creates larger constraints, then
there exists (ℓ, C′) ∈ PZG(P)′ such that C ⊆ C′; therefore,
v ∈ C↓P implies v ∈ C′↓P.

⇐ Let us now show that, if there exists (ℓ, C′) ∈ PZG(P)′ such
that v ∈ C′↓P, then ℓ is reachable in v(P).

We prove this by induction on the number of merge- and
successor- operations in the algorithm. Note that symbolic states
in PZG(P)′ can arise in two ways:

– As a merge of previous states (ℓ, C1) and (ℓ, C2) into
(ℓ, C1 ∪ C2). Let v and µ be given, with µ |= v(C1 ∪ C2).
Then either µ |= v(C1) or µ |= v(C2). So either v ∈ C1↓P or
v ∈ C2↓P, and by induction hypothesis, (ℓ, µ) is reachable
in v(P).

– As a symbolic successor of a state, i. e., ((ℓ′, C′), e, (ℓ, C)) ∈
⇒, for some edge e.

From the property of the PTA semantics [HRSV02] that
parameter valuations can only be restricted over a sym-
bolic run, we have that C′↓P ⊇ C↓P and therefore v ∈
C↓P implies v ∈ C′↓P. By induction hypothesis, ℓ′ is there-
fore reachable in v(P). Following a reasoning similar to
the case above, since merging can only add behaviors, then
there exists a transition between ℓ′ to ℓ in v(P); and there-
fore ℓ is reachable in v(P).
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Note that path properties in PZG(P) are not always preserved
in PZG(P)′, as the following example shows. Also, liveness proper-
ties in PZG(P) (such as “every path visits location ℓ infinitely often”)
are not necessarily preserved in PZG(P)′.

Example 5.3. Figure 5.2b shows the PZG of the PTA in Figure 5.2a.
The maximal paths are ℓ0, ℓ1, ℓ3, ℓ4 and ℓ0, ℓ1, ℓ3, ℓ2 (for p ≤ 1) and
ℓ0, ℓ2, ℓ3 (for p > 1). All maximal paths satisfy the LTL [Pnu77]
property □ (ℓ2 → □¬ℓ4) (“no ℓ4 after an ℓ2”). Also, there is no loop
(infinite run) containing ℓ2.
However, the result after merging in Figure 5.2c introduces the spuri-
ous path ℓ0, ℓ2, ℓ3, ℓ4, violating the first property. It also introduces a
spurious loop ℓ0, (ℓ2, ℓ3)

ω, around ℓ2.

Remark 4. This example uses parameters, but no clocks. [LODLDP13,
Fig. 4] shows an example with only clocks (i. e., a TA) where a spurious loop
is introduced by zone inclusion (subsumption), which is, as specified earlier,
just a special case of zone merging.

■

5.2 merging algorithm

In the following, we introduce the algorithms used for the construction
of the PZG. We figure in each algorithm the heuristics; they are
discussed in Section 5.3.

Algorithm 5.1 constructs the state space for a given PTA P by BFS
from the initial state s0. It computes the set of reachable states Visited
by repeatedly adding the next layer of successor states Qnew (Line 8),
maintaining the transitions (Line 9). Note that each iteration (Line 11)
calls a merging function mergeSets (given in Algorithm 5.2), which may
reduce both Visited and Queue. This call to the merging function is
the crux of our approach.
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Figure 5.2: No preservation of paths properties after merging
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Algorithm 5.1: BFS by layer layerBFS(P)
/* Building PZG(P) = (E, S, s0,⇒)) */

1 Visited← {s0}
2 Queue← {s0}
3 ⇒← ∅
4 while Queue ̸= ∅ do
5 Qnew ← ∅
6 foreach s ∈ Queue do
7 foreach (e, s′) ∈ SuccE(s) do
8 Qnew ← Qnew ∪ ({s′} \Visited)
9 ⇒←⇒∪ {(s, e, s′)}

10 Visited← Visited ∪Qnew

11 Visited, Queue← mergeSets(PZG(P), Visited, Qnew)

Algorithm 5.2: Heuristics to merge states within Q and/or V

Visited Queue Ordered

1 Function mergeSets(PZG(P), V, Q)

2 foreach s ∈ Q do

3

mergeOneState(s, PZG(P), Q)

mergeOneState(s, PZG(P), V)

4 return (V, Q)

Algorithm 5.1 can be extended, depending on the analysis or param-
eter synthesis problem. For instance, an invariant property can be
checked for each reachable symbolic state and terminate as soon as
the property is violated. For reachability synthesis (EFsynth), one may
accumulate all solutions as a set of constraints that lead to a state
satisfying a property. As an optimization, one can prune the state
space on reaching states that lie already within the accumulated con-
straints, since these cannot lead to new solutions. We do not add such
extensions to the algorithm, since this chapter focuses on the merging
of states during state space generation.

Then, Algorithm 5.2 “simply” calls recursively the mergeOneState func-
tion (given in Algorithm 5.3) on each state of Queue, using additional
arguments PZG(P) and Visited and/or Queue. The heuristics to
select arguments for calls to mergeOneState will be discussed later.
Note that mergeOneState modifies its arguments, notably PZG(P) (in
the implementation, we use a call by reference).
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Algorithm 5.3: Merging a state with an update of the statespace
PZG(P) = (E, S, s0,⇒) on-the-fly.

The variant with restart after a merge is indicated as in Restart

1 Function mergeOneState(s, PZG(P), SiblingCandidates)
2 isMerged← false
3 Candidates← getSiblings(s, SiblingCandidates)
4 foreach y ∈ Candidates do

/* Mergeability test */

5 if is mergeable(s, y) then
6 s.constr← s.constr∪ y.constr
7 isMerged← true

/* Update transition targets and source */

8 foreach t ∈ ⇒ do
9 if t.target = y then t.target← s ;
10 if t.source = y then t.source← s ;

/* Delete y */

11 S← S \ {y}
/* Handle initial state */

12 if s0 = y then s0 ← s ;

13 if isMerged then mergeOneState(s, PZG(P), SiblingCandidates) ;

Algorithm 5.3 attempts at merging a state s while looking for can-
didate states in SiblingCandidates. We first look for the siblings
of s (states with same location) within SiblingCandidates (Line 3).
We use a function getSiblings((ℓ, C), S) that returns the siblings, as in
{(ℓ′, C′) ∈ S | ℓ = ℓ′}. If the union of the constraints is convex (Line 5),
then state S becomes the result of merging s with the candidate y
(Line 6). The candidate y is deleted (Line 11), as well as all transitions
leading to or coming from it (Lines 8 to 10). We finally modify the
initial state s0 of PZG(P), in case it was merged (Line 12).

5.3 heuristics for merging

We now introduce and discuss several heuristics for merging states,
leading to various options in the merging algorithm. There is no
provably best option that is guaranteed to be superior over all other
possible options. We will perform extensive experiments in Section 5.4
to find out what works well on a number of benchmarks. The two
main driving forces to select between these options are:

1. a maximal reduction of the state space; and

2. a minimization of the computation time.
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Although usually smaller state spaces tend to require less computation
time, this is not always the case. Sometimes one might need extra
effort to check if states can be merged, in order to perform even more
reduction. Subsequent computations might profit from the smaller
state space, but if one is checking properties on-the-fly, the extra effort
might not be justifiable. The discussion on the options will be guided
by some questions.

The subsequent Example 5.4 will show that different choices can
indeed lead to state spaces of different size. Note that, even when we
fix the answers to the questions, the result is still non-deterministic,
since the result of merging depends on the order in which we would
consider the siblings.

Question 1: What to merge with what?

Assume that we are computing the next level of reachable states in
a BFS process (Algorithm 5.1). Assuming that the states in Visited
have been properly merged, we clearly still need to merge the new
states in s ∈ Queue. What to merge them with? Do we only compare
s with other states in the Queue? Or also with Visited? If we merge
with Visited states, the final state space could become smaller. On
the other hand, since time was spent to compute those states already,
is it worth looking at them? The different strategies considered merge
a new state with its siblings:

• only in the queue (Queue), or

• in all visited states (Visited) (including the queue), or

• first in the queue and, after that, in the visited list (Ordered).

These different possibilities are pictured by different colors in Algo-
rithm 5.2.

Question 2: Restart after a merge?

The next question is what to do if we find that s could be merged with
some s′ into the (larger) sm? We have already searched through some
set Q′ of states before we found s′. Those states in Q′ could not be
merged with s. However, it could be possible that a state s′′ ∈ Q′ can
be merged with sm. So should we restart the search (and lose some
time to find more reduction), or should we just resume the search,
and only find merge candidates for sm in the remaining states that
we have not yet considered? So, if a state can be merged with one
of its siblings, should we restart or not restart the search through all
candidate siblings?
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Question 3: When to update the statespace?

Assume that we find a successful merge of a state s ∈ Queue with
some other state s′ ∈ Visited, leading to a larger state sm. How do
we now modify the already computed part of the state space? We
replace s′ by sm, redirecting all transitions going to s′ to sm. This
could make the successors of s′ unreachable, so we could also redirect
transitions from s′ to transitions from sm. Alternatively, we could just
remove the successors of s′. This is valid, since we will still compute
all successors of sm in the next level. Similar considerations apply to
all states reachable from successors of s′.

These approaches can have unforeseen effects. First of all, if we remove
successor states, they cannot act anymore as merge candidates, thus
potentially blocking future merges (see also Question 5). Second,
removing transitions may change the “shortest path” to reachable
states, leading to wrong answers for depth-bounded and shortest-path
searches. Third, not removing states leads to a larger state space than
necessary. Finally, doing a full reachability analysis is linear in the size
of the state space generated so far (but does not involve any polyhedra
computations).

So one question is how often we should update the computed part
of the state space? The options we considered are to do “garbage
collection” after:

• each merge with each sibling (uMerge), or

• having processed the whole candidate list of a state
(uCandidates)

Question 4: How to update the state space?

The “garbage collection” can be implemented in two ways. If we can
merge a state, we update the state space:

• reconstruct: with a copy of the reachable part of the statespace;
or

• on-the-fly: deleting the merged state and updating its transitions
in situ.

Deleting states on-the-fly is cheaper than running a separate algorithm
to mark and copy the reachable part of the state space. However, note
that when updating transitions on-the-fly, some unnecessary successor
states may stay in the state space. On the one hand, these unnecessary
states and transitions lead to a waste of memory. On the other hand,
they might still be useful as merge candidates for future merges.
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Figure 5.3: Illustration of the merging heuristics

Example 5.4. Recall that Figure 5.3 presents a fictitious example
summarizing the effect of the options discussed in this section. The
PZG (with five states) is shown in Figure 5.3a, the corresponding
projections of the zones on the parameters in Figure 5.3c and the
legend for the different colors in Figure 5.3b. All states have the same
location, hence may be candidates for merging. Two states (s0 and s1)
are in the visited set, while two are in the queue (s2 and s3), and the
last one, s4, is currently being handled.
Let us first consider that the merge is only done with states in the
queue. Then s4 is merged with s2 and no merge with s3 can occur.
This leads to the zones depicted in Figure 5.3d.
Let us now consider that the merge is done with all visited states.
Then the following execution becomes possible: State s4 could be first
merged with s1, leading to the zones in Figure 5.3e. Now, if the restart
option is used, this newly computed zone could be merged with s0,
leading to the zones in Figure 5.3f. Note that we cannot merge the
result with s2 anymore.
Finally, let us consider the case where we merge with the queue
first and then with visited. State s4 is then merged with s2, as in
Figure 5.3d. Then no merge with s3 nor with s0 can be performed,
but a merge with s1 is possible, leading to Figure 5.3g. If furthermore
the state space is updated immediately after a merge, the new state
(instead of s4) is merged with s1, leading to Figure 5.3h.
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Table 5.1: Size of our dataset

# benchmarks # models # properties
Whole reachability dataset 49 84 124

Where at least one execution ends within 120 s 35 68 102

Where at least one merge is performed 24 35 42

5.4 experiments

We evaluate here the effect of the merging heuristics on reachability
synthesis, i. e., the synthesis of the parameter valuations for which a
given reachability property holds. The synthesis algorithm explores
the PZG to find all valid parameter valuations.

5.4.1 Implementation

I implemented all our heuristics in IMITATOR. In this tool, the para-
metric zones in the symbolic states are encoded using polyhedra.
All operations on polyhedra, and notably the mergeability test, are
performed using PPL.

We also reimplemented in the latest version of IMITATOR the original
merging technique of IMITATOR 2.12 of [AFS13] (which was an up-
grade of the merging technique in IMITATOR 2.6.1), so as to obtain a
fair comparison. To avoid differences due to orthogonal improvements
and thus enable a fair experiment, the 2.12 merge functionality has
been re-introduced in the used version of IMITATOR.

5.4.2 Dataset and experimental environment

We use the full set of models with reachability properties from the
IMITATOR benchmark library, described in Chapter 4.

Our dataset comprises 124 pairs made of a model and a reachability
property (i. e., 124 possible executions of IMITATOR). We set a timeout
of 120 s; only 102 executions terminate within this time bound for
at least one of the merging heuristics. For 42 of these executions, at
least one of the heuristics performs at least one successful merge. Full
statistics on our dataset are given in Table 5.1.

Experiments were run on an Intel Xeon Gold 5220 (Cascade Lake-SP,
2.20GHz, 1 CPU/node, 18 cores/CPU) with 96 GiB running Linux
Ubuntu 20 (“gros” cluster of the Grid’5000 testbed [Gri]), using IM-
ITATOR 3.3-beta-2 “Cheese Caramel au beurre salé”. The sources,
binaries, models, raw results and full experiments tables are available
at 10.5281/zenodo.6806915.

https://github.com/imitator-model-checker/imitator/releases/tag/v3.3.0-beta-2
https://www.doi.org/10.5281/zenodo.6806915
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5.4.3 Description of the Experiments

We compare each combination of the heuristics proposed in Section 5.3.
We reference each merge heuristic as a combination of three or four
letters:

1. R or O: the state space is updated by reconstruction (R) or
on-the-fly (O), according to Question 4;

2. V,Q or O: the selected candidates are Visited (V), Queue (Q) or
Ordered (O), according to Question 1;

3. M or C: state space is updated for each merge (M) or after all
candidates (C), according to Question 3;

4. r: the restart option is enabled (nothing otherwise), according to
Question 2.

We refer to the previous implementation of merging (reintroduced in
IMITATOR 3.3-beta-2) with M2.12. Nomerge denotes the experiments
performed when the merging option is disabled.

These algorithms are compared according to:

1. the total computation time needed for a property; and

2. the size of the generated state space.

5.4.4 Results

Our results are obtained over the 102 executions of the dataset for
which at least one algorithm ends before reaching the 120 s timeout.
We do not use any penalty on executions that do not end: their com-
putation time is set to the timeout (120 s) in the subsequent analyses.
Recall that, among these 102 executions, only 42 have states that can
be merged (by at least one of the studied heuristics), while 60 do not
perform any merge for any heuristic.

The metrics tagged by “(merge)” in Tables 5.2 and 5.3 are computed
over the 42 executions where some states can be merged, while the
“(no merge)” only consider the 60 executions where no merge can be
made.

We present in Table 5.2 some of the experimental results obtained
for the different merge heuristics that allow the best reduction of
computation time or in the state-space size. The results for all the
heuristics are presented in Table 5.3 on page 70. In order to allow a
good visualization of the results, the best result in each cell is given
in bold, while the level of green denotes the “quality” of the value in
each cell (white is worst, and 100 % green is best).

The different lines tabulate the following information:

https://github.com/imitator-model-checker/imitator/releases/tag/v3.3.0-beta-2
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Table 5.2: Partial results comparing merge heuristics on time and state-space
size over 102 models

Nomerge M2.12 RVMr OQM

Ti
m

e

# wins 24 20 22 42
Avg (s) 10.0 5.47 4.56 3.77
Avg (merge) (s) 18.8 7.83 5.57 3.63
Avg (no merge) (s) 3.83 3.82 3.85 3.88

Median (s) 1.39 1.2 1.14 1.12
Norm. avg 1.0 0.91 0.91 0.87
Norm. avg (merge) 1.0 0.75 0.74 0.64
Norm. avg (no merge) 1.0 1.02 1.03 1.03

St
at

es
# wins 0 19 37 16

Avg 11,443.08 11,096.54 11,064.37 11,120.79

Avg (merge) 1,512.02 670.43 592.31 729.33

Median 2389.5 703.5 604.5 905.0
Norm. avg 1.0 0.86 0.84 0.88

1. the number of wins over the computation time, i. e., the number
of executions for which the current heuristics gives the smallest
execution time;

2. the average time (in seconds) over all executions;

3. the average time (in seconds), excluding executions where no
states can be merged for any heuristics;

4. the average time (in seconds) for only the executions where no
states can be merged for any heuristics;

5. the median time (in seconds) over all executions;

6. the normalized time average, compared to the Nomerge results,
i. e., the ratio between the heuristic execution time and the
Nomerge one;

7. the normalized time average, excluding executions where no
states can be merged for any heuristics;

8. the normalized time average, for only the executions where no
states can be merged for any heuristics;

We also present the results over the size of the state space (i. e., the
number of states after the merging phase):

1. the number of wins over the size of the state space (i. e., the total
number of symbolic states after merging);

2. the average size of the state space over all models;

3. the average size of the state space over all models, excluding the
executions where no states can be merged;

4. the median size of the state space over all models;

5. the normalized size average, compared to the Nomerge results.
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Figure 5.4: Plot of merging experiment results following the different heuris-
tic choices

The reason to give both an average time (resp. number of states) and
a normalized time (resp. number of states) is because both metrics
complement each other: the weight of the large models has a higher
influence in the average (which can be seen as unfair, as a few models
have a large influence), while all models have equal influence in the
normalized average (which can also be seen as unfair, as very small
models have the same influence as very large models).

In Figure 5.4, we plot the normalized averages on time and state-space
size in scatter plots, according to the heuristic choices. For readability
concerns and to ensure a printable scale, the result entries were these
averages are too large are not displays. It concerns heuristics were
the normalized time average is greater than 8 (heuristics RVCr, RVC,
RQCr, RQC, ROCr, ROC).

In Tables 5.2 and 5.3, we notice that the best (i. e., smallest) times are
obtained when the merging is performed on the queue and when the
update is done after a performed merge, even though doing it with a
reconstruction of the state space after each step loses time compared
to the Otf heuristic. Moreover, restarting when a merge is performed
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does not seem to bring any gain in time. Thus, with respect to time,
when the winner is OQM (i. e., merging when the candidates are taken
from the Queue, when the update is done on-the-fly after each merge
without any restart), which minimizes both the time when a merge
is possible, but also when considering models where no merge can
be performed. Moreover, this heuristic gives the smaller times for the
executions where no merge can be done.

Concerning the state space size, the winner is RVMr (i. e., merging
when the candidates are taken from the Visited states, updating the
state space by a reconstruction after each merge, and with a restart if
a merge can be performed). This performs more checks to identify
states for merging (comparing with all the visited, not only those in
the queue), thus reducing the state space even more.

Note that the methods Nomerge and M2.12 are almost always the
losers (i. e., slowest and largest state space), except for the heuristic
where the update of the state space is performed after the list of
candidates.

Concerning our new heuristics, we note that OQM decreases the
average computation time to 69 % when compared to the previous
merging heuristic (M2.12), and even to only 46 % (i. e., a division by a
factor > 2) compared with M2.12 on the subset of models for which
at least one merge can be done. Compared to disabling merging
(Nomerge), our new heuristic OQM decreases to 38 % on the whole
benchmark set, and even to 19 % (i. e., a division by a factor > 5)
on the subset of models for which at least one merge can be done.
This leads us to consider the new combination of merging only in the
queue and with an on-the-fly update after each merge and without
restart (heuristic OQM) as the default merging heuristic in IMITATOR.

For use cases that require a minimal state space, the new combination
RVMr is the recommended option. Note that this version is still faster
on average (83 %) than the previous heuristic (M2.12), and more than
twice as fast (46 %) as not merging at all (Nomerge).

5.5 conclusion and perspectives

In this chapter, we investigated the importance of the merging opera-
tions in reachability synthesis using PTAs. We investigated different
combinations of options.

The chosen heuristic (OQM, when the candidates are taken from the
Queue, when the update is done on-the-fly after each merge without
any restart) brings a decrease to 38 % of the average computation time
for our entire benchmark library compared to the absence of merging.
In other words, despite the cost of the mergeability test, the overall
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gain is large and shows the importance of the merge operation for
parameter synthesis.

Compared to the previous merging heuristic from [AFS13], the gain
of our new heuristic is a decrease to 69 % of the average computation
time—meaning that our new heuristic decreases the computation time
by 31 % compared to the former heuristic from [AFS13]. We also
provide an heuristic for use cases where a minimal state space is
important, for instance for a follow-up analysis. Even though this is
not the fastest heuristic, it is still faster than not merging at all, and
faster than the old merging heuristic [AFS13].

Our experiments show the high importance of carefully choosing the
merging heuristics. Finally, our heuristics preserve the correctness of
parameter synthesis for reachability properties.

Perspectives

We noted that pruning merged states away (“garbage collection”) can
prevent future merges. Another option would be to keep such states
in a collection of “potential mergers”. These extra states could be
useful as “glue” to merge a number of other states, that otherwise
could not be merged, into one superstate—but at the cost of more
memory. Another option could be to merge more than two states in
one go. These options remain to be investigated.

Other options of our questioning could be investigated. For example,
one could try to update the statespace after having processed all states
in a complete level, creating a new version of this heuristic.

It is well-known that less heuristics can be used for liveness properties
than for reachability properties. Investigating whether some merging
can still be used for liveness synthesis (i. e., the synthesis of parameter
valuations for which some location is infinitely often reachable) is an
interesting future work.

Investigating the recent PPLite [BZ18; BZ20] instead of PPL for poly-
hedra computation is on our agenda.

Another, more theoretical question is to define and compute the “best
possible merge”. Currently, the result of merging is not canonical,
since it depends on the exploration order and the order of searching
for siblings. We have not found a candidate definition that minimizes
the state space and provides natural, canonical merge representatives.

Finally, these better performances in parametric timed model checking
can be applied to security contexts, which we do in the next part of
the manuscript.



70 efficient convex zone merging in parametric timed automata

Table
5.

3:C
om

plete
results

com
paring

m
erge

heuristics
on

tim
e

and
state-space

size
over

1
0

2
m

odels

W
ith

R
estarting

N
o
m
erg

e
M
2
.1
2

R
V
M
r

R
V
C
r

R
Q
M
r

R
Q
C
r

R
O
M
r

R
O
C
r

O
V
M
r

O
V
C
r

O
Q
M
r

O
Q
C
r

O
O
M
r

O
O
C
r

Time

#
w

ins
20

1
7

1
5

2
1
0

3
5

3
9

4
8

8
4

8

A
vg

(s)
1
0.

0
5.

4
7

4.
5
6

4
6.

7
3.

8
4

4
3.

5
3

4.
6
9

4
9.

0
5

5.
5
8

5.
7

3.79
3.

8
1

5.
5
4

5.
6
3

A
vg

(m
erge)

(s)
1
8.

8
7.

8
3

5.
5
7

1
7.

8
3.

8
3

1
0.

1
5.

8
6

1
8.

6
9

8.
0

8.
3
2

3.66
3.

7
7.

8
9

8.
1
4

A
vg

(no
m

erge)
(s)

3.
8
3

3.82
3.

8
5

6
6.

9
3

3.
8
5

6
6.

9
3

3.
8
8

7
0.

2
9

3.
8
9

3.
8
7

3.
8
8

3.
8
8

3.
8
9

3.
8
7

M
edian

(s)
1.

3
9

1.
2

1.
1
4

4.
8
5

1.
1
4

2.
9
8

1.
1
9

6.
4
9

1.
1
5

1.
1
5

1.
1
2

1.11
1.

1
5

1.
1
7

N
rm

.avg
1.

0
0.

9
1

0.
9
1

9.
0
6

0.87
8.

9
1

0.
9
2

1
0.

3
4

0.
9
2

0.
9
2

0.
8
8

0.87
0.

9
2

0.
9
3

N
rm

.avg
(m

erge)
1.

0
0.

7
5

0.
7
4

1.
7
4

0.
6
6

1.
4

0.
7
6

1.
8
6

0.
7
5

0.
7
6

0.
6
6

0.65
0.

7
7

0.
7
8

N
rm

.avg
(no-m

rg)
1.0

1.
0
2

1.
0
3

1
4.

2
7

1.
0
2

1
4.

2
5

1.
0
3

1
6.

3
8

1.
0
3

1.
0
3

1.
0
4

1.
0
3

1.
0
3

1.
0
4

States

#
w

ins
0

1
9

32
2
9

1
5

1
5

2
9

3
0

2
0

2
0

1
6

1
6

2
0

2
0

A
vg

1
1
4
4
5.

6
1

1
1
0
9
6.

5
4

11064.37
1
1
1
0
6.

0
9

1
1
1
2
0.

3
4

1
1
1
2
0.

5
5

1
1
0
6
6.

8
5

1
1
1
0
5.

7
3

1
1
0
8
9.

5
1
1
0
8
9.

5
1
1
1
1
8.

7
3

1
1
1
1
8.

7
3

1
1
0
8
7.

7
7

1
1
0
8
7.

7
7

A
vg

(m
erge)

1
5
1
8.

1
7

6
7
0.

4
3

592.31
6
9
3.

6
2

7
2
8.

2
4

7
2
8.

7
4

5
9
8.

3
3

6
9
2.

7
4

6
5
3.

3
3

6
5
3.

3
3

7
2
4.

3
1

7
2
4.

3
1

6
4
9.

1
4

6
4
9.

1
4

M
edian

2
3
8
9.

5
7
0
3.

5
604.5

6
0
7.

0
9
0
5.

0
9
0
5.

0
604.5

6
0
7.

0
7
0
1.

0
7
0
1.

0
9
0
5.

0
9
0
5.

0
7
0
1.

0
7
0
1.

0

N
rm

.avg
1.

0
0.

8
6

0.84
0.

8
5

0.
8
8

0.
8
8

0.84
0.

8
5

0.
8
6

0.
8
6

0.
8
8

0.
8
8

0.
8
5

0.
8
5

N
o

R
estarting

N
o
m
erg

e
M
2
.1
2

R
V
M

R
V
C

R
Q
M

R
Q
C

R
O
M

R
O
C

O
V
M

O
V
C

O
Q
M

O
Q
C

O
O
M

O
O
C

Time

#
w

ins
20

1
7

1
1

4
8

3
4

2
6

6
1
9

6
8

8

A
vg

(s)
1
0.

0
5.

4
7

4.
5
6

4
6.

4
8

3.
8
5

4
3.

3
1

4.
6
5

4
8.

9
2

5.
0
9

5.
1
9

3.77
3.

7
8

5.
1
6

5.
2
5

A
vg

(m
erge)

(s)
1
8.

8
7.

8
3

5.
5
8

1
7.

1
9

3.
8
6

9.
5
7

5.
7
4

1
8.

4
1

6.
8

7.
0
7

3.63
3.

6
4

7.
0

7.
2
4

A
vg

(no
m

erge)
(s)

3.
8
3

3.82
3.

8
5

6
6.

9
7

3.
8
5

6
6.

9
4

3.
8
9

7
0.

2
8

3.
8
9

3.
8
8

3.
8
8

3.
8
8

3.
8
8

3.
8
7

M
edian

(s)
1.

3
9

1.
2

1.
1
4

4.
3
4

1.
1
4

2.
8
2

1.
1
7

5.
4

1.
1
3

1.12
1.12

1.12
1.

1
3

1.
1
5

N
rm

.avg
1.

0
0.

9
1

0.
9

9.
0
4

0.
8
8

8.
9
1

0.
9
2

1
0.

3
3

0.
9

0.
9
1

0.87
0.87

0.
9
1

0.
9
2

N
rm

.avg
(m

erge)
1.

0
0.

7
5

0.
7
4

1.
6
9

0.
6
5

1.
3
8

0.
7
6

1.
8
3

0.
7
2

0.
7
4

0.64
0.

6
5

0.
7
4

0.
7
6

N
rm

.avg
(no-m

rg)
1.0

1.
0
2

1.
0
2

1
4.

2
8

1.
0
4

1
4.

2
7

1.
0
3

1
6.

3
8

1.
0
3

1.
0
3

1.
0
3

1.
0
3

1.
0
3

1.
0
4

States

#
w

ins
0

1
9

2
3

2
6

1
5

1
5

2
9

32
1
9

1
9

1
5

1
5

1
9

1
9

A
vg

1
1
4
4
5.

6
1

1
1
0
9
6.

5
4

1
1
0
7
3.

5
7

1
1
1
0
5.

3
3

1
1
1
2
3.

2
1
1
1
2
2.

2
4

11068.0
1
1
1
0
5.

4
1

1
1
0
9
6.

8
9

1
1
0
9
6.

8
9

1
1
1
2
0.

7
9

1
1
1
2
0.

7
9

1
1
0
9
0.

0
1

1
1
0
9
0.

0
1

A
vg

(m
erge)

1
5
1
8.

1
7

6
7
0.

4
3

6
1
4.

6
4

6
9
1.

7
9

7
3
5.

1
7

7
3
2.

8
3

601.12
6
9
1.

9
8

6
7
1.

2
9

6
7
1.

2
9

7
2
9.

3
3

7
2
9.

3
3

6
5
4.

5
7

6
5
4.

5
7

M
edian

2
3
8
9.

5
7
0
3.

5
6
3
6.

5
5
8
3.

0
9
0
5.

0
9
0
5.

0
6
0
4.

5
577.0

7
0
6.

5
7
0
6.

5
9
0
5.

0
9
0
5.

0
7
0
1.

0
7
0
1.

0

N
rm

.avg
1.

0
0.

8
6

0.84
0.

8
5

0.
8
8

0.
8
8

0.84
0.

8
5

0.
8
6

0.
8
6

0.
8
8

0.
8
8

0.
8
6

0.
8
6



Part II

E x e c u t i o n - t i m e o pa c i t y

Grândola, Vila Morena Terra da fraternidade
Terra da fraternidade Grândola, Vila Morena
O povo é quem mais ordena Em cada rosto, igualdade
Dentro de ti, ó cidade O povo é quem mais ordena

Dentro de ti, ó cidade À sombra duma azinheira
O povo é quem mais ordena Que já não sabia a idade
Terra da fraternidade Jurei ter por companheira
Grândola, Vila Morena Grândola, a tua vontade

Em cada esquina, um amigo Grândola, a tua vontade
Em cada rosto, igualdade Jurei ter por companheira
Grândola, Vila Morena À sombra duma azinheira
Terra da fraternidade Que já não sabia a idade

— Zeca Afonso, Grândola, Vila Morena





6
P R E L I M I N A R I E S

All truths are easy to understand once they are discovered;
the point is to discover them.

— Galileo Galilei

We now move to the second part of this manuscript, which is con-
cerned with execution-time opacity (ET-opacity). In the next chapters,
we present the three contributions concerning this notion: ET-opacity
problems are studied in Chapter 7, they are extended with expiring
secrecy in Chapter 8, and we focus on untimed control for ET-opacity
in Chapter 9.

In this chapter, we introduce general definitions for Chapters 7 to 9.
Apart from the definition of RA arithmetic recalled in Section 6.2.1, all
the content presented in this chapter is an original contribution of this
thesis.

Organization of the chapter

In Section 6.1, we present preliminary definitions and we develop in
Section 6.2 the computation of two particular sets: the set of execution
times for runs visiting a particular (private) location, and the one for
the runs not visiting it (denoted DVisitpriv(A) and DVisit¬priv(A) in
the following).

6.1 preliminary definitions

6.1.1 Extending the timed automaton and parametric timed automaton
definitions

For all the content of the Part II, we consider a special location, called
“private location” and denoted ℓpriv, in each TA and PTA.

Therefore, we extend the Definitions 3.5 and 3.11 to have A =(
Σ, L, ℓ0, ℓpriv, ℓ f , X, I, E

)
and P =

(
Σ, L, ℓ0, ℓpriv, ℓ f , X, P, I, E

)
.

6.1.2 Special sets of execution times: DVisitpriv(A) and DVisit¬priv(A)

Let us introduce two key concepts to define our notion of opacity.

73
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Given a TA A and a run ρ, we say that ℓpriv is
reached on the way to ℓ f in ρ if ρ is of the form
(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓm, µm), (dm, em), · · · (ℓn, µn) for
some m, n ∈ N such that ℓm = ℓpriv, ℓn = ℓ f and
∀0 ≤ i ≤ n − 1, ℓi ̸= ℓ f . We denote by Visitpriv(A) the set of
those runs, and refer to them as private runs. We denote by
DVisitpriv(A) the set of all the durations of these runs.

Conversely, we say that ℓpriv is avoided on the way to ℓ f in ρ if ρ is of
the form (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓn, µn) with ℓn = ℓ f and ∀0 ≤
i < n, ℓi /∈

{
ℓpriv, ℓ f

}
. We denote the set of those runs by Visit¬priv(A),

referring to them as public runs, and by DVisit¬priv(A) the set of all
the durations of these public runs.

Therefore, DVisitpriv(A) (resp. DVisit¬priv(A)) is the set of all the du-
rations of the runs for which ℓpriv is reachable (resp. avoided) on the
way to ℓ f .

These concepts can be seen as the set of execution times from the initial
location ℓ0 to the final location ℓ f while visiting (resp. not visiting) a
private location ℓpriv. Observe that, from the definition of the duration
of a run, this “execution time” does not include the time spent in ℓ f .

Example 6.1. Consider again the TA in Figure 3.1 on page 28, now
considering that ℓ2 is the private location. We have DVisitpriv(A) =
[1, 2] and DVisit¬priv(A) = [0, 3].

6.2 computing DVisitpriv (A) and DVisit¬priv (A)

We must be able to express the set of execution times, i. e., the dura-
tions of all runs from the initial location to the final location. While the
problem of expressing the set of execution times seems very natural
for TAs, it seems to be barely addressed in the literature, with the
exception of [BDR08; Ros19].

6.2.1 The RA arithmetic

We use the RA arithmetic, which is the set of first-order formulae, inter-
preted over the real numbers, of ⟨R,+,<,N , 0, 1⟩ where N is a unary
predicate such that N (z) is true iff z is a natural number. This arith-
metic has a decidable theory with a complexity of 3EXPTIME [Wei99].

6.2.2 Computing execution times of timed automata

With r, r′ ∈ RA, we denote by λr,r′ the set of durations d such that
there exists a finite path ρ = (si)i in TA such that dur(ρ) = d and the
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associated path π(ρ) = (rk)0≤k≤K in the region graph RGA satisfies
r0 = r, rK = r′. It is shown in [BDR08, Proposition 5.3] that these sets
λr,r′ can be defined in RA arithmetic. Moreover, they are definable by
a disjunction of terms of the form (i) d = m (ii) ∃z,N (z) ∧ d = m + cz
(iii) m < d < m + 1, and (iv) ∃z,N (z) ∧m + cz < d < m + cz + 1,
where c, m ∈N.

Let us give the main idea of the proof presented in [BDR08] (even
though this explanation is not necessary to follow our reasoning
for the computation of execution times of TAs). The idea of the
proof of [BDR08] is to consider the region automaton of A. For
this construction, we consider the particular TA A0 obtained from A
by adding a new clock x0 which is reset to 0 each time it reaches
the value 1 and to count all of the resets of x0. The construction
of A0 ensures that each (finite) run ρ of TA corresponds to a run
ρ0 of TA0 (at each state, the value of x0 is the fractional part of the
total time elapsed), and conversely (erasing x0). The authors propose
next a classical automaton C as a particular subgraph of the region
graph RGA0 , where the only action a denotes the reset of x0 (all
other transitions are labeled with the silent action): this is the region
automaton of A as defined in Definition 3.10. The conclusion follows
because t ∈ λr,r′ if ⌊t⌋ is the length of a path in the deterministic
automaton obtained from RAA by subset construction.

Lemma 6.1 (Reachability-duration computation). The sets DVisitpriv(A)
and DVisit¬priv(A) are computable and definable in RA arithmetic.

Proof. Let A be a TA. We aim at reducing the computation of the
sets DVisitpriv(A) and DVisit¬priv(A) to the computation of sets λr,r′

for some regions r and r′.

First, let us compute DVisitpriv(A). From A, we define a TA A′ by
adding a Boolean discrete variable b, initially false. Recall that dis-
crete variables over a finite domain are syntactic sugar for locations:
therefore, ℓ f with b = false and ℓ f with b = true can be seen as two
different locations. Then, we set b ← true on any transition whose
target location is ℓpriv; therefore, b = true denotes that ℓpriv has been
visited. We denote by ℓ′f true

the final state of A′ where b = true.

DVisitpriv(A) is exactly the set of execution times in A′ between ℓ0

and ℓ′f true
. For all the regions r′i associated to ℓ′f true

, we can compute
(using [BDR08]) λr,r′i

, where r is the region associated to ℓ0 in A′.
Therefore, DVisitpriv(A) can be computed as the union of all the λr,r′i
(of which there is a finite number), which is definable in RA arithmetic.

Second, let us compute DVisit¬priv(A). We define another TA A′′
obtained from A by deleting all the transitions leading to ℓpriv. There-
fore, the set of execution times reaching ℓ f in A′′ is exactly the set of
execution times reaching ℓ f in A associated to runs not visiting ℓpriv.
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DVisit¬priv(A) is exactly the set of executions times in A′′ between ℓ0

and ℓ f . For all the regions r′i associated to ℓ f , we can compute λr,r′i
,

where r is the region associated to ℓ0 in A′′. Therefore, DVisitpriv(A)
can be computed as the union of all the λr,r′i

.

The computation of these sets of execution times DVisit¬priv(A) and
DVisitpriv(A) will be used in the three subsequent chapters dealing
with ET-opacity problems in TAs. Particularly, we use these results to
perform the computation of the execution times for which a system
matches the definition of ET-opaque.



7
G UA R A N T E E I N G E X E C U T I O N - T I M E O PA C I T Y
U S I N G PA R A M E T R I C T I M E D M O D E L C H E C K I N G

That which we call a rose
by any other name would smell as sweet.

— Shakespeare

In this chapter, we investigate problems considering a notion of opac-
ity (namely ET-opacity, for execution-time opacity): we consider that
the attacker has access (only) to the system execution time. We ad-
dress the following problem: given a timed system, a private location
and a final location, synthesize the execution times from the initial
location to the final location for which one cannot deduce whether the
system visited the private location. We also consider a full notion of
ET-opacity, asking whether the system is ET-opaque for all execution
times. We show that these problems are decidable for TAs but be-
come undecidable when one adds parameters (yielding PTAs). Finally,
we devise an algorithm for synthesizing PTA parameter valuations
guaranteeing that the resulting TA is ∃-ET-opaque.

Motivation

Among harmful information leaks, the timing information leakage is
the ability for an attacker to deduce internal information depending
on timing information. Franck Cassez proposed in [Cas09] a first
definition of timed opacity for TAs: the system is opaque if an at-
tacker cannot deduce whether some set of actions was performed, by
only observing a given set of observable actions together with their
timestamp. As surveyed in Section 1.3, two main lines of works study
some restrictions of this problem, to obtain decidability results. It
was done by restricting the models to RTAs in [WZ18; WZA18] and
to time-bounded opacity (where the execution time of the system is
bounded) in [AETYM21].

In this chapter, we focus on timing leakage through the total execution
time, i. e., when a system works as an almost black-box and the
ability of the attacker is limited to know the model and observe the
total execution time. We are interested in system opacity w.r.t. the
execution time: a TA is ET-opaque if an attacker cannot deduce private
information only knowing the execution time of a run of the system.

77
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Our system formalism is much more expressive (and therefore able
to encode richer applications) than in [WZ18; WZA18] because we
consider the full class of TAs instead of the restricted RTAs. We
also consider parametric extensions, not discussed in [Cas09; WZ18;
WZA18; AETYM21].

Contributions of the chapter for TAs

We consider the following version of ET-opacity: given a TA with a
private location denoting the execution of some secret behavior, the
TA is ET-opaque for a given execution time d (i. e., the time of a run
from the initial location to the final location) if there exist two runs of
duration d from the initial location to the final location, one visiting
the private location, and another run not visiting the private location.
That is, for this particular execution time, the system is ET-opaque if
one cannot deduce whether the system visited the private location.
Such a notion of ET-opacity can be used to capture many interesting
security problems: for instance, it is possible to deduce whether a
secret satisfies a certain condition based on whether a certain branch
is visited or not.

To be explicit, the attacker knows a TA model of the system, and can
observe the execution time from the system start until it reaches some
particular final location. No other actions can be observed. Then,
the system is ET-opaque if the attacker cannot deduce whether the
system has visited some particular private location. From a higher-
level point of view, this means that the attacker cannot deduce some
private information, such as whether some location has been visited,
or whether some branch of a given program was visited, by only
observing the execution time. In practice, this corresponds to a setting
where the attacker may interact with some computational process on
a remote machine (e. g., a server) and receives the responses only at
the end of the process (e. g., a server message is received).

We consider three problems based on this notion of ET-opacity:

1. an emptiness problem: the decision of the (non) existence of an
execution time for which the system is ET-opaque (referred to
as ∃-ET-opaque);

2. a computation problem: the computation of the set of possible
execution times for which the system is ET-opaque; and

3. a decision problem: whether the TA is ET-opaque for all execu-
tion times (referred to as fully ET-opaque).

We first prove that these problems can be effectively solved for TAs.
We implement our procedure and apply it to a set of benchmarks
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containing notably a set of Java programs known for their (absence of)
timing information leakage.

Contributions of the chapter for PTAs

As a second setting, we consider a higher-level version of these prob-
lems by allowing (internal) timing parameters in the system, which
can model uncertainty or unknown constants at early design stage.
The setting therefore becomes PTAs.

On the theoretical side, we answer an existential parametric version
of the aforementioned problems, that is, the existence of (at least)
one parameter valuation for which the associated TA is ∃-ET-opaque
(resp. fully ET-opaque). Although we show that these problems are
in general undecidable, we exhibit a subclass with some decidability
results.

Then, we address a practical problem: given a timed system with
timing parameters and a private location, synthesize the timing param-
eters and the execution times for which one cannot deduce whether
the system visited the private location. We devise a general procedure
not guaranteed to terminate, but that behaves well on examples from
the literature.

Summary of the contributions of the chapter

To sum up, this chapter proposes the following contributions:

1. a notion of ET-opacity, and a notion of full ET-opacity for TAs;

2. a procedure to solve the ET-opacity t-computation problem for
TAs, and a procedure to answer the full ET-opacity decision
problem for TAs;

3. a study of two theoretical decision problems extending the two
aforementioned problems to the parametric setting, and exhibi-
tion of a decidable subclass;

4. a practical algorithm to synthesize parameter valuations and
execution times for which the TA is guaranteed to be ET-opaque;

5. a set of experiments on a set of benchmarks, including PTAs
translations from Java programs.

The contributions of this chapter were originally presented
in [ALMS22]. Since this publication, the notions introduced here
were renamed to clarify some concepts. In Appendix B, we present
the correspondence with the previous namings.
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Organization of the chapter

Section 7.1 introduces the problem and Section 7.2 addresses
ET-opacity for TAs. We then address the parametric version of
ET-opacity, with theory studied in Sections 7.3 and 7.4, algorithmic in
Section 7.5 and experiments in Section 7.6. Section 7.7 concludes the
chapter.

7.1 Execution-time opacity problems

7.1.1 Definitions

We now introduce the concept of “ET-opacity for a set of durations
(or execution times) D”: a system is ET-opaque for execution times D
whenever, for any duration in D, it is not possible to deduce whether
the system visited ℓpriv or not. In other words, if an attacker measures
an execution time within D from the initial location to the target
location ℓ f , then this attacker is not able to deduce whether the system
visited ℓpriv.

Definition 7.1 (Execution-time opacity (ET-opacity) for D).
Given a TA A with a private location ℓpriv, and a set of execution
times D, we say that A is execution-time opaque (ET-opaque) for
execution times D if D ⊆ DVisitpriv(A) ∩DVisit¬priv(A).

In the following, we will be interested in the existence of such an
execution time. We say that a TA is ∃-ET-opaque if it is ET-opaque for
a non-empty set of execution times.

Definition 7.2 (∃-ET-opacity). Given a TA A, we say that A is
∃-ET-opaque if DVisitpriv(A) ∩DVisit¬priv(A) ̸= ∅.

If one does not have the ability to tune the system (i. e., change internal
delays, or add some sleep() or Wait() statements in the program), one
may be first interested in knowing whether the system is ET-opaque
for all execution times. In other words, if a system is fully ET-opaque,
for any possible measured execution time, an attacker is not able to
deduce anything on the system, in terms of visit of ℓpriv.

Definition 7.3 (Full ET-opacity). Given a TA A, we say that A
is fully ET-opaque if DVisitpriv(A) = DVisit¬priv(A).

That is, a system is fully ET-opaque if, for any execution time d, a run
of duration d reaches ℓ f after visiting ℓpriv iff another run of duration d
reaches ℓ f without visiting ℓpriv.
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ℓ1 ℓ2 ℓ3

error

ℓ4 ℓpriv

ℓ5

ℓ f
cl ≤ ϵ cl ≤ ϵ cl ≤ ϵ cl ≤ ϵ

cl ≤ ϵ

setupserver

cl ← 0

cl ≤ ϵ

read?x
cl ← 0

cl ≤ ϵ

x < 0

cl ≤ ϵ

x ≥ 0

cl ← 0

x ≤ secret
∧ cl ≤ ϵ

cl ← 0

x > secret
∧ cl ≤ ϵ

cl ← 0

322 ≤ cl
∧ cl ≤ 322 + ϵ

p× 322 ≤ cl
∧ cl ≤ p× 322 + ϵ

Figure 7.1: A Java program encoded in a PTA

Remark 5. This definition is symmetric: a system is not fully ET-opaque
iff an attacker can deduce ℓpriv or ¬ℓpriv. For instance, if there is no path
through ℓpriv to ℓ f , but a path to ℓ f , a system is not fully ET-opaque w.r.t.
Definition 7.3. This case will be defined as weak ET-opacity, introduced and
studied with an expiring secrecy in Chapter 8.

■

Example 7.1. Consider the PTA P in Figure 7.1 where cl is a clock,
while ϵ, p are parameters. We use a slightly extended PTA syntax:
read?x reads the value input on a given channel read, and assigns it to
a (discrete, global) variable x. secret is a constant variable of arbitrary
value. If both x and secret are finite-domain variables (e. g., bounded
integers) then they can be seen as syntactic sugar for locations. Such
variables are supported by most model checkers, including Uppaal

and IMITATOR.
This PTA encodes a server process and is a (manual) translation of a
Java program from the DARPA Space/Time Analysis for Cybersecurity
(STAC) librarya, that compares a user-input variable with a given
secret and performs different actions taking different times depending
on this secret. The original Java program is vulnerable, and tagged
as such in the DARPA library, because some sensitive information
can be deduced from the timing information. The original Java code is
given in Appendix C.
In our encoding, a single instruction takes a time in [0, ϵ], while p is
a (parametric) factor to one of the sleep instructions of the program.
Note that in the original Java code in Appendix C, at line 25, there
is no parameter p but an integer 2; that is, the code is fixed to have
v(p) = 2. For sake of simplicity, we abstract away instructions
not related to time, and merge subfunctions calls. For this work, we
simplify the problem and abstract in this way. Precisely modeling the
timing behavior of a program is itself a complicated problem (due to
caching, speculative execution, etc.) and we leave to future work.
Let v1 such that v1(ϵ) = 1 and v1(p) = 2. For this exam-
ple, DVisitpriv(v1(P)) = [1024, 1029] while DVisit¬priv(v1(P)) =
[2048, 2053]. Therefore, v1(P) is ET-opaque for execution times D =

[1024, 1029] ∩ [2048, 2053] = ∅.
Let v2 such that v2(ϵ) = 2 and v2(p) = 1.002. DVisitpriv(v2(P)) =
[1024, 1034] while DVisit¬priv(v2(P)) = [1026.048, 1036.048].
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ℓ0

ℓpriv

ℓ f

x = 0

x = 1
x ← 0

x = 0

Figure 7.2: TA for which the set of execution times ensuring execution-time
opacity is N

Therefore, v2(P) is ET-opaque for execution times D =

[1026.048, 1034].
Obviously, neither v1(P) nor v2(P) are fully ET-opaque.

a https://github.com/Apogee-Research/STAC/blob/master/Canonical

Examples/Source/Category1 vulnerable.java

7.1.2 Decision and computation problems

Computation problem for execution-time opacity

We can now define the ET-opacity t-computation problem, which con-
sists in computing the possible execution times ensuring ET-opacity.
In other words, the attacker model is as follows: the attacker knows
the system model in the form of a TA, and can only observe the exe-
cution time between the start of the program and the time it reaches
the final location.

The ET-opacity t-computation problem:
Input: A TA A
Problem: Compute the execution times D such that A is
ET-opaque for these execution times D.

Let us illustrate that this computation problem is certainly not easy.
For the TA A in Figure 7.2, the execution times D for which A is
ET-opaque is exactly N; that is, only integer times ensure ET-opacity
(as the system can only leave ℓpriv and hence enter ℓ f at an integer
time), while non-integer rational times violate ET-opacity.

Decision problem for ∃-ET-opacity

We can also define the ∃-ET-opacity decision problem, which consists
in answering whether a TA is ∃-ET-opaque.

https://github.com/Apogee-Research/STAC/blob/master/Canonical_Examples/Source/Category1_vulnerable.java
https://github.com/Apogee-Research/STAC/blob/master/Canonical_Examples/Source/Category1_vulnerable.java
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The ∃-ET-opacity decision problem:
Input: A TA A
Problem: Is A ∃-ET-opaque?

Decision problem for full ET-opacity

We can also define the full ET-opacity decision problem, which consists
in answering whether a TA is fully ET-opaque.

The full ET-opacity decision problem:
Input: A TA A
Problem: Is A fully ET-opaque?

7.2 Execution-time opacity problems for timed au-
tomata

In this section, we address the non-parametric problems defined in Sec-
tion 7.1.2, i. e., the ET-opacity t-computation problem (Section 7.2.1),
∃-ET-opacity decision problem (Section 7.2.2) and full ET-opacity de-
cision problem (Section 7.2.3). We show that both problems can be
solved using a construction of the DVisit sets based on the RA arith-
metic (which was recalled in Section 6.2).

7.2.1 Answering the ET-opacity t-computation problem

Proposition 7.1 (Solvability of ET-opacity t-computation prob-
lem). The ET-opacity t-computation problem is solvable for TAs.

Proof. Let A be a TA. From Lemma 6.1, we can compute and define
in RA arithmetic the sets DVisit¬priv(A) and DVisitpriv(A).

By the decidability of RA arithmetic, the intersection of these sets
is computable. Then, the set D = DVisitpriv(A) ∩ DVisit¬priv(A) is
effectively computable.

This positive result can be put in perspective with the negative result
of [Cas09] that proves that it is undecidable whether a TA (and even
the more restricted subclass of ERAs is opaque, in a sense that the
attacker can deduce some actions, by looking at observable actions
together with their timing. The difference in our setting is that only
the global time is observable, which can be seen as a single action,
occurring once only at the end of the computation. In other words,
our attacker is less powerful than the attacker in [Cas09].
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7.2.2 Checking for ∃-ET-opacity

Proposition 7.2 (Decidability of ∃-ET-opacity decision problem).
The ∃-ET-opacity decision problem is decidable for TAs.

Proof. Let A be a TA. From Lemma 6.1, we can compute and define
in RA arithmetic the sets DVisit¬priv(A) and DVisitpriv(A).

From the decidability of RA arithmetic, the emptiness of the in-
tersection between these sets is decidable. Therefore, answering

DVisitpriv(A) ∩DVisit¬priv(A) ?
= ∅ is decidable.

7.2.3 Checking for full ET-opacity

Proposition 7.3 (Decidability of full ET-opacity decision prob-
lem). The full ET-opacity decision problem is decidable for TAs.

Proof. Let A be a TA. From Lemma 6.1, we can compute and define
in RA arithmetic the sets DVisit¬priv(A) and DVisitpriv(A).

From the decidability of RA arithmetic, the equality between these

sets is decidable. Therefore, answering DVisitpriv(A) ?
= DVisit¬priv(A)

is decidable.

From [Wei99] and [BDR08, Theorem 7.5], the computation of a set λr,r′

is 2EXPTIME and the RA arithmetic has a decidable theory with com-
plexity 3EXPTIME. Therefore, our construction is 5EXPTIME, which is
an upper-bound for the problem complexity. Note that, as in [BDR08],
we did not compute a lower bound for the complexity of Proposi-
tions 7.1 to 7.3. However, Theorem 8.1 will show that this problem is
solvable in NEXPTIME (see Remark 11). The exact complexity remains
to be done as future work.

Remark 6. Remark 11 in the next chapter will also extend this work with
a notion of weakness, not only asking for the equality between public and
private execution times, but allowing a model to be weakly ET-opaque if
DVisitpriv(A) ⊆ DVisit¬priv(A). This will be formally defined and studied
in Chapter 8.

■

Example 7.2. Consider again the PTA P in Figure 3.2 and consider
v′ such that v′(p1) = v′(p2) = 2. Recall from Example 6.1 that
DVisitpriv(v(P)) = [1, 3] and DVisit¬priv(v(P)) = [2, 3]. Thus,
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DVisitpriv(v(P)) ̸= DVisit¬priv(v(P)) and therefore A is not fully
ET-opaque.
Now, consider v′ such that v′(p1) = v′(p2) = 1.5. This time,
DVisitpriv(v′(P)) = DVisit¬priv(v′(P)) = [1.5, 3] and therefore
v′(P) is fully ET-opaque.

7.3 the theory of parametric ∃-ET-opacity

We now address in this section the parametric problems of ∃-
ET-opacity.

7.3.1 Problem definitions

Emptiness problem for ∃-ET-opacity

Let us consider the following decision problem, i. e., the problem of
checking the emptiness of the set of parameter valuations guaranteeing
∃-ET-opacity. The decision problem associated to full ET-opacity will
be considered in Section 7.4.

The ∃-ET-opacity p-emptiness problem:
Input: A PTA P
Problem: Decide the emptiness of the set of parameter valua-
tions v such that v(P) is ∃-ET-opaque.

The negation of the ∃-ET-opacity p-emptiness problem consists in
deciding whether there exists at least one parameter valuation for
which v(P) is ∃-ET-opaque for at least some execution time.

Synthesis problem for ∃-ET-opacity

The synthesis counterpart allows for a higher-level problem by also
synthesizing the internal timings guaranteeing ∃-ET-opacity.

The ∃-ET-opacity p-synthesis problem:
Input: A PTA P
Problem: Synthesize the parameter valuations v such that v(P)
is ∃-ET-opaque.

7.3.2 Undecidability in general

We prove undecidability results for a “sufficient” number of clocks
and parameters. Put it differently, our proofs of undecidability require
a minimum number of clocks and parameters to work; the problems
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ℓ0 ℓ fPℓ′0 ℓpriv

ℓpub ℓ′f

Figure 7.3: Reduction from reachability emptiness

are obviously undecidable for larger numbers, but the decidability is
open for smaller numbers. This will be briefly discussed in Section 7.7.

With the rule of thumb that all non-trivial decision problems are
undecidable for general PTAs [And19b], the following result is not
surprising, and follows from the undecidability of reachability empti-
ness for PTAs.

Theorem 7.1 (Undecidability of ∃-ET-opacity p-emptiness prob-
lem). The ∃-ET-opacity p-emptiness problem is undecidable for gen-
eral PTAs.

Proof. We reduce from the reachability-emptiness problem, i. e., the
existence of a parameter valuation for which there exists a run reaching
a given location in a PTA, which is undecidable (e. g., [AHV93; Mil00;
Doy07; JLR15; BBLS15]). Consider an arbitrary PTA P with initial
location ℓ0 and final location ℓ f . It is undecidable whether there exists
a parameter valuation for which there exists a run reaching ℓ f (proofs
of undecidability in the literature generally reduce from the halting
problem of a 2-counter machine which is undecidable [Min67], so one
can see P as an encoding of a 2-counter machine).

Now, add the following locations and transitions (all unguarded) as in
Figure 7.3: a new urgent1 initial location ℓ′0 with outgoing transitions
to ℓ0 and to a new location ℓpub; a new urgent location ℓpriv with an
incoming transition from ℓ f ; a new final location ℓ′f with incoming
transitions from ℓpriv and ℓpub. Also, ℓ f is made urgent. Let P ′ denote
this new PTA.

First note that, due to the unguarded transitions, ℓ′f is reachable for any
parameter valuation and for any execution time by runs visiting ℓpub
and not visiting ℓpriv. That is, for all v, DVisit¬priv(v(P ′)) = [0, ∞).

Assume there exists some parameter valuation v such that ℓ f is reach-
able from ℓ0 in v(P) for some execution times D: then, due to our
construction with additional urgent locations, ℓpriv is reachable on the
way to ℓ′f in v(P ′) for the exact same execution times D. Therefore,
v(P ′) is ET-opaque for execution times D.

1 Where time cannot elapse (depicted in dotted yellow in our figures).
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Conversely, if ℓ f is not reachable from ℓ0 in P for any valuation,
then ℓpriv is not reachable on the way to ℓ′f for any valuation in P ′.
Therefore, there is no valuation v such that v(P) is ET-opaque for any
execution times. Therefore, there exists a valuation v such that v(P)
is ∃-ET-opaque iff ℓ f is reachable in P—which is undecidable.

Remark 7. Our proof reduces from the reachability-emptiness problem, for
which several undecidability proofs were proposed (notably [AHV93; Mil00;
Doy07; JLR15; BBLS15]), with various flavors (numbers of parameters,
integer- or dense-time, integer- or rational-valued parameters, etc.). See
[And19b] for a survey. Notably, this means (from [BBLS15]) that Theorem 7.1
holds for PTAs with at least 3 clocks and a single parameter.

■

Since the emptiness problem is undecidable, the synthesis problem is
immediately intractable as well.

Corollary 7.1. The ∃-ET-opacity p-synthesis problem is unsolvable
for general PTAs.

7.3.3 A decidable subclass

We now show that the ∃-ET-opacity p-emptiness problem is decidable
for L/U-PTAs. Despite early positive results for L/U-PTAs [HRSV02;
BL09], more recent results (notably [JLR15; AL17a; ALR18; ALM20])
mostly proved undecidable properties of L/U-PTAs, and therefore
this positive result is welcome.

Theorem 7.2 (Decidability of ∃-ET-opacity p-emptiness prob-
lem). The ∃-ET-opacity p-emptiness problem is decidable for
L/U-PTAs.

Proof. We reduce to the ET-opacity t-computation problem of a given
TA, which is decidable (Proposition 7.1).

Let PLU be an L/U-PTA. Let P0,∞ denote the structure obtained
as follows: any occurrence of a lower-bound parameter is replaced
with 0, and any occurrence of a conjunct x ◁ p (where p is necessarily
an upper-bound parameter) is deleted, i. e., replaced with true. P0,∞

is therefore a TA.

Let us show that the set of valuations v such that v(PLU ) is
∃-ET-opaque is non empty iff the solution to the ET-opacity t-
computation problem for P0,∞ is non-empty.
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⇒ Assume there exists a valuation v such that v(PLU ) is ∃-
ET-opaque. Therefore, the solution to the ET-opacity t-
computation problem for P0,∞ is non-empty. That is, there
exists a duration d such that there exists a run of duration d such
that ℓpriv is reachable on the way to ℓ f , and there exists a run of
duration d such that ℓpriv is avoided on the way to ℓ f .

Therefore, from Lemma 3.2, the runs of v(PLU ) of duration d
such that ℓpriv is reachable (resp. avoided) on the way to ℓ f
are also runs of P0,∞. Therefore, there exists a non-empty set
of durations such that P0,∞ is ET-opaque, i. e., solution to the
ET-opacity t-computation problem for P0,∞ is non-empty.

⇐ Assume the solution to the ET-opacity t-computation problem
for P0,∞ is non-empty. That is, there exists a duration d such that
there exists a run of duration d such that ℓpriv is reachable on the
way to ℓ f in P0,∞, and there exists a run of duration d such that
ℓpriv is avoided on the way to ℓ f in P0,∞.

The result could follow immediately—if only assigning 0 and ∞
to parameters was a proper parameter valuation. From [HRSV02;
BL09], if a location is reachable in the TA obtained by valuating
lower-bound parameters with 0 and upper-bound parameters
with ∞, then there exists a sufficiently large constant C such
that, given v assigns 0 to lower-bound and C to upper-bound
parameters, this run exists in v(PLU ). Here, we can trivially
pick d + 1, as any clock constraint x ≤ d + 1 or x < d + 1 will be
satisfied for a run of duration d. Let v assign 0 to lower-bound
and d+ 1 to upper-bound parameters. Then, there exists a run of
duration d such that ℓpriv is reachable on the way to ℓ f in v(PLU ),
and there exists a run of duration d such that ℓpriv is avoided on
the way to ℓ f in v(PLU ). Therefore, the set of valuations v such
that v(PLU ) is ∃-ET-opaque is non empty—which concludes the
proof.

Remark 8. The class of L/U-PTAs is known to be relatively meaningful, and
many case studies from the literature fit into this class, including case studies
proposed even before this class was defined in [HRSV02], e. g., a toy railroad
crossing model and a model of Fischer mutual exclusion protocol given
in [AHV93] (see [And19b] for a survey). Even though the PTA in Figure 7.1
does not fit in this class, it can easily be transformed into an L/U-PTA, by
duplicating p into p l (used in lower-bound comparisons with clocks) and pu

(used in upper-bound comparisons with clocks).

■
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7.3.4 Intractability of synthesis for lower/upper parametric timed automata

Even though the ∃-ET-opacity p-emptiness problem is decidable for
L/U-PTAs (Theorem 7.2), the synthesis of the parameter valuations re-
mains intractable in general, as shown in the following Proposition 7.4.
By intractable, we mean more precisely that the solution, if it can be
computed, cannot (in general) be represented using any formalism for
which the emptiness of the intersection with equality constraints is
decidable. That is, a formalism in which it is decidable to decide “the
emptiness of the valuation set of the computed solution intersected
with an equality test between variables” cannot be used to represent
the solution. For example, let us question whether we could represent
the solution of the ∃-ET-opacity p-synthesis problem for L/U-PTAs
using the formalism of a finite union of polyhedra: testing whether
a finite union of polyhedra intersected with “equality constraints”
(typically p1 = p2) is empty or not is decidable. PPL can typically
compute the answer to this question. Therefore, from the following
Proposition 7.4, finite unions of polyhedra cannot be used to represent
the solution of the ∃-ET-opacity p-synthesis problem for L/U-PTAs.
As finite unions of polyhedra are a very common formalism (not to
say the de facto standard) to represent the solutions of various timing
parameters synthesis problems, the synthesis is then considered to be
infeasible in practice, or intractable (following the vocabulary used in
[JLR15, Theorem 2]).

Proposition 7.4 (Intractability of ∃-ET-opacity p-synthesis prob-
lem). If it can be computed, the solution to the ∃-ET-opacity p-
synthesis problem for L/U-PTAs cannot in general be represented
using any formalism for which the emptiness of the intersection with
equality constraints is decidable.

Proof. We reuse a reasoning inspired by [JLR15, Theorem 2], and
we reduce from the undecidability of the ∃-ET-opacity p-emptiness
problem for general PTAs (Theorem 7.1). Assume the solution of the
∃-ET-opacity p-synthesis problem for L/U-PTAs can be represented in
a formalism for which the emptiness of the intersection with equality
constraints is decidable.

Assume an arbitrary PTA P with notably two locations ℓpriv and ℓ f .
From P , we define an L/U-PTA PLU as follow: for each parameter
pi that is used both as an upper bound and a lower bound, replace
its occurrences as upper bounds by a fresh parameter pi

u and its
occurrences as lower bounds by a fresh parameter pi

l .

By assumption, the solution of the ∃-ET-opacity p-synthesis problem

Γ = {v | v(PLU ) is ∃-ET-opaque}
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for PLU can be computed and represented in a formalism for which
the emptiness of the intersection with equality constraints is decidable.

However, solving the emptiness of
{

v ∈ Γ | ∧i v(pi
u) = v(pi

l)
}

(which
is decidable by assumption), we can decide the ∃-ET-opacity p-
emptiness problem for the PTA P (which is undecidable from Theo-
rem 7.1). This leads to a contradiction, and therefore the solution of the
∃-ET-opacity p-synthesis problem for L/U-PTAs cannot in general be
represented in a formalism for which the emptiness of the intersection
with equality constraints is decidable.

7.4 the theory of parametric full ET-opacity

We address here the following decision problem, which asks about the
emptiness of the parameter valuation set guaranteeing full ET-opacity.
We also define the full ET-opacity p-synthesis problem, synthesizing
the timing parameters guaranteeing full ET-opacity.

7.4.1 Problem definitions

The full ET-opacity p-emptiness problem:
Input: A PTA P
Problem: Decide the emptiness of the set of parameter valua-
tions v such that v(P) is fully ET-opaque.

Equivalently, we are interested in deciding whether there exists at
least one parameter valuation for which v(P) is fully ET-opaque.

We also define the full ET-opacity p-synthesis problem, aiming at synthe-
sizing (ideally the entire set of) parameter valuations v for which v(P)
is fully ET-opaque.

The full ET-opacity p-synthesis problem:
Input: A PTA P
Problem: Synthesize the parameter valuations v such that v(P)
is fully ET-opaque.

7.4.2 Undecidability in general

Considering that Theorem 7.1 shows the undecidability of the
∃-ET-opacity p-emptiness problem, the undecidability of the full
ET-opacity p-emptiness problem is not surprising, but does not follow
immediately.
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ℓ0 ℓ fP ℓ′f
x = 1

Figure 7.4: Undecidability of reachability-emptiness over constant time

To prove this result (that will be stated formally in Theorem 7.3), we
first need the following lemma stating that the reachability emptiness
problem is undecidable in constant time, i. e., for a fixed time bound T.
That is, the following lemma shows that, given a PTA P , a target
location ℓtarget and a time bound T, it is undecidable whether the set
of parameter valuations for which there exists a run reaching ℓtarget in
exactly T time units is empty or not.

Lemma 7.1 (Reachability in constant time). The reachability-emptiness
problem in constant time is undecidable for PTAs with 4 clocks and 2 param-
eters.

Proof. In [ALM20, Theorem 3.12], the authors showed that the
reachability-emptiness problem is undecidable over bounded time
for PTAs with (at least) 3 clocks and 2 parameters. That is, given
a fixed bound T and a location ℓtarget, it is undecidable whether the
set of parameter valuations for which at least one run reaches ℓtarget

within T time units is empty or not.

We reduce the reachability in bounded time (i. e., in at most T time
units) to the reachability in constant time (i. e., in exactly T time units).
In this proof, we fix T = 1.

Assume a PTA P with a location ℓtarget. We define a PTA P ′ as in
Figure 7.4 by adding a new location ℓ′f , and a transition from ℓtarget

to ℓ′f guarded by x = 1, where x is a new clock (initially 0), not used
in P and therefore never reset in the automaton.

Let us show that there is no valuation such that ℓtarget is reachable in
at most 1 time unit iff there is no valuation such that ℓ′f is reachable
exactly in 1 time unit.

⇐ Assume reachability emptiness holds in constant time for P ′, i. e.,
there exists no parameter valuation for which ℓ′f is reachable
in T = 1 time units. Then, from the construction of P ′, no
parameter valuation exists for which ℓtarget is reachable in T ≤ 1
time units.

⇒ Conversely, assume reachability emptiness holds over bounded
time for P , i. e., there exists no parameter valuation for which
ℓtarget is reachable in T ≤ 1 time units. Then, from the con-
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ℓ0 ℓ fPℓ′0 ℓpriv

ℓpub ℓ′f
x = 1

Figure 7.5: Reduction from reachability-emptiness for the proof of Theo-
rem 7.3

struction of P ′, no parameter valuation exists for which ℓ′f is
reachable in T = 1 time units.

This concludes the proof of the lemma.

We can now state and prove Theorem 7.3.

Theorem 7.3 (Undecidability of the full ET-opacity p-emptiness
problem). The full ET-opacity p-emptiness problem is undecidable
for general PTAs with (at least) 4 clocks and 2 parameters.

Proof. We reduce from the reachability-emptiness problem in constant
time, which is undecidable (Lemma 7.1).

Consider an arbitrary PTA P with (at least) 4 clocks and 2 parameters,
with initial location ℓ0 and a final location ℓ f . We add the following
locations and transitions in P to obtain a PTA P ′, as in Figure 7.5:
(i) a new urgent initial location ℓ′0, with outgoing transition to ℓ0

and to a new location ℓpub, (ii) a new urgent location ℓpriv with an
incoming transition from ℓ f , (iii) a new urgent and final location ℓ′f
with incoming transitions from ℓpriv and ℓpub, and (iv) a guard x = 1
(with a new clock x, never reset) on the transition from ℓpub to ℓ′f .

First, note that, due to the guarded transition, ℓ′f is reachable for
any parameter valuation and (only) for an execution time equal
to 1 by runs visiting ℓpub and not visiting ℓpriv. That is, for all v,
DVisit¬priv(v(P ′)) = {1}.

We show that there exists a valuation v such that v(P ′) is fully
ET-opaque (with ℓpriv as private location, and ℓ′f as final location)
iff there exists a valuation v such that ℓ f is reachable in v(P) for
execution time equal to 1.

⇐ Assume there exists some valuation v such that ℓ f is reachable
from ℓ0 in P (only) for execution time equal to 1. Then, due
to our construction, ℓpriv is reachable on the way to ℓ′f in v(P ′)
for the exact same execution time 1. Therefore, v(P ′) is fully
ET-opaque.
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ℓ0

ℓpriv

ℓ f

x ≤ p

Figure 7.6: P0,∞ is not sufficient for the full ET-opacity p-emptiness problem

⇒ Conversely, if ℓ f is not reachable from ℓ0 in P for any valuation
for execution time 1, then ℓpriv is not reachable on the way to ℓ′f
for any valuation of P ′. Therefore, there is no valuation v such
that v(P ′) is fully ET-opaque.

Therefore, there exists a valuation v such that v(P ′) is fully ET-opaque
iff there exists a valuation v such that ℓ f is reachable in v(P) for
execution time equal to 1—which is undecidable. This concludes the
proof.

Let us briefly discuss the minimum number of clocks necessary to
obtain undecidability using our proof (the case of smaller numbers
of clocks remains open). Recall that Lemma 7.1 needs 4 clocks; in the
current proof of Theorem 7.3, we add a new clock x which is never
reset; however, since the proof of Lemma 7.1 also uses a clock which is
never reset, therefore we can reuse it, and our proof does not need an
additional clock. So the result holds for 4 clocks and 2 parameters.

Since the emptiness problem is undecidable, the synthesis problem is
immediately intractable as well.

Corollary 7.2. The full ET-opacity p-synthesis problem is unsolvable
for PTAs with (at least) 4 clocks and 2 parameters.

7.4.3 Undecidability for lower/upper parametric timed automata

Note that reasoning like in Section 7.3.3, i. e., reducing the full
ET-opacity p-emptiness problem to a full ET-opacity decision prob-
lem of the non-parametric P0,∞, is not relevant. Figure 7.6 shows
an L/U-PTA PLU (and more precisely, an upper parametric timed
automaton (U-PTA) [BL09], i. e., an L/U-PTA with an empty set of
lower-bound parameters) which is not fully ET-opaque for any param-
eter valuation, but whose associated TA P0,∞ is.

In addition, while it is well-known that L/U-PTAs enjoy a monotonic-
ity for reachability properties (“enlarging an upper-bound parameter
or decreasing a lower-bound parameter preserves reachability”) as
recalled in Lemma 3.2, we can show in the following example that this
is not the case for full ET-opacity.
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ℓ0

ℓpriv

ℓ f
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x ≤ 1

Figure 7.7: No monotonicity for full ET-opacity in L/U-PTAs

Example 7.3. Consider the PTA in Figure 7.7. First assume v such
that v(p) = 0.5. Then, v(P) is not fully ET-opaque: indeed, ℓ f can
be reached in 1 time unit via ℓpriv, but not without visiting ℓpriv.
Second, assume v′ such that v′(p) = 1. Then, v′(P) is fully
ET-opaque: indeed, ℓ f can be reached for any duration in [0, 1] by
runs both visiting and not visiting ℓpriv.
Finally, let us enlarge p further, and assume v′′ such that v′′(p) = 2.
Then, v′′(P) becomes again not fully ET-opaque: indeed, ℓ f can be
reached in 2 time units not visiting ℓpriv, but cannot be reached in 2
time units by visiting ℓpriv.
As a side note, remark that this PTA is actually a a U-PTA, that is,
monotonicity for this problem does not even hold for U-PTAs.

In fact, we show that, while the ∃-ET-opacity p-emptiness prob-
lem is decidable for L/U-PTAs (Theorem 7.2), the full ET-opacity
p-emptiness problem becomes undecidable for this same class (from
4 parameters). This confirms (after previous works in [JLR15; AL17a;
ALR18]) that L/U-PTAs stand at the frontier between decidability and
undecidability.

Theorem 7.4 (Undecidability of the full ET-opacity p-emptiness
problem for L/U-PTAs). The full ET-opacity p-emptiness problem
is undecidable for L/U-PTAs with (at least) 4 clocks and 4 parameters.

Proof. Let us recall from [ALM20, Theorem 3.12] that the reachability-
emptiness problem is undecidable over bounded time for PTAs with
(at least) 3 clocks and 2 parameters. Assume a PTA P with 3 clocks
and 2 parameters, say p1 and p2, and a final location ℓ f . Take 1 as a
time bound. From [ALM20, Theorem 3.12], it is undecidable whether
there exists a parameter valuation for which ℓ f is reachable in time
≤ 1.

The idea of our proof is that, as in [JLR15; ABPP19], we “split” each of
the two parameters used in P into a lower-bound parameter (p1

l and
p2

l) and an upper-bound parameter (p1
u and p2

u). Each construction
of the form x < pi (resp. x ≤ pi) is replaced with x < pi

u (resp.
x ≤ pi

u) while each construction of the form x > pi (resp. x ≥ pi)
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Figure 7.8: Undecidability of full ET-opacity p-emptiness problem for
L/U-PTAs

is replaced with x > pi
l (resp. x ≥ pi

l); x = pi is replaced with
pi

l ≤ x ≤ pi
u.

The idea is that the PTA P is exactly equivalent to our construction
with duplicated parameters only when p1

l = p1
u and p2

l = p2
u. The

crux of the rest of this proof is that we will “rule out” any parameter
valuation not satisfying these equalities, so as to use directly the
undecidability result of [ALM20, Theorem 3.12].

Now, consider the extension of P given in Figure 7.8, and let P ′ be
this extension. We assume that x is an extra clock not used in P . The
syntax “X \ {x} ← 0” denotes that all clocks of the original PTA P are
reset—but not the new clock x. The guard on the lower transition from
ℓ′0 to ℓ4 stands for 2 different transitions guarded with p1

l < x ≤ p1
u,

and p2
l < x ≤ p2

u, respectively. Let us first make the following
observations:

1. for any parameter valuation, one can take the upper transition
from ℓ′0 to ℓ′f at time 2, i. e., ℓ′f is always reachable in time 2
without visiting location ℓpriv;

2. the original automaton P can only be entered whenever p1
l ≤

p1
u and p2

l ≤ p2
u; going from ℓ′0 to ℓ0 takes exactly 1 time unit

(due to the x = 1 guard);

3. if a run reaches ℓpriv on the way to ℓ′f , then its duration is neces-
sarily 2;

4. from [ALM20, Theorem 3.12], it is undecidable whether there
exists a parameter valuation for which there exists a run reach-
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ing ℓ f from ℓ0 in time ≤ 1, i. e., reaching ℓ f from ℓ′0 in time
≤ 2.

Let us consider the following cases:

1. if p1
l > p1

u or p2
l > p2

u, then thanks to the transitions from ℓ′0
to ℓ0, there is no way to enter the original PTA P (and therefore
to reach ℓpriv on the way to ℓ′f ); since these valuations can still
reach ℓ′f for some execution times (notably x = 2 through the
upper transition from ℓ′0 to ℓ′f ), then P ′ is not fully ET-opaque
for any of these valuations.

2. if p1
l < p1

u or p2
l < p2

u, then one of the lower transitions
from ℓ′0 to ℓ4 can be taken, and therefore ℓ′f is reachable in
a time > 2 without visiting ℓpriv. Since no run can reach ℓ′f
while visiting ℓpriv for a duration ̸= 2, then again P ′ is not fully
ET-opaque for any of these valuations.

3. if p1
l = p1

u and p2
l = p2

u, then the behavior of the modified P
(with duplicate parameters) is exactly the one of the original P .
Also, note that the lower transitions from ℓ′0 to ℓ′f (via ℓ4) cannot
be taken. In contrast, the upper transition from ℓ′0 to ℓ′f can
still be taken, and therefore there exists a run of duration 2
reaching ℓ′f without visiting ℓpriv.

Now, assume there exists a parameter valuation for which there
exists a run of P of duration ≤ 1 reaching ℓ f . And, as a conse-
quence, ℓpriv is reachable, and therefore there exists some run
of duration 2 (including the 1 time unit to go from ℓ0 to ℓ′0)
reaching ℓ′f after visiting ℓpriv. From the above reasoning, all
runs reaching ℓ′f have duration 2; in addition, we exhibited a run
visiting ℓpriv and a run not visiting ℓpriv; therefore the modified
automaton P ′ is fully ET-opaque for such a parameter valuation.

Conversely, assume there exists no parameter valuation for
which there exists a run of P of duration ≤ 1 reaching ℓ f . In
that case, P ′ is not fully ET-opaque for any parameter valuation.

As a consequence, there exists a parameter valuation v′ for which
v′(P ′) is fully ET-opaque iff there exists a parameter valuation v for
which there exists a run in v(P) of duration ≤ 1 reaching ℓ f —which
is undecidable from [ALM20, Theorem 3.12].

As the emptiness problems are undecidable, the synthesis problems
are immediately intractable as well.

Corollary 7.3. The full ET-opacity p-synthesis problem is unsolvable
for L/U-PTAs with (at least) with (at least) 4 clocks and 4 parameters.
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Figure 7.9: Transformed version of Figure 7.1

7.5 parameter synthesis for execution-time opacity

Despite the negative theoretical result of Theorem 7.1, we now address
the ∃-ET-opacity p-synthesis problem for the full class of PTAs. Our
method may not terminate (due to the undecidability) but, if it does,
its result is correct. Our workflow can be summarized as follows.

1. We enrich the original PTA by adding a Boolean flag b and a
final synchronization action;

2. We perform self-composition (i. e., parallel composition with a
copy of itself) of this modified PTA;

3. We perform reachability-synthesis using EFsynth on ℓ f with
contradictory values of b.

We detail each operation in the following.

In this section, we assume a PTA P .

7.5.1 Enriching the PTA

We first add a Boolean flag b initially set to false, and then set to
true on any transition whose target location is ℓpriv (in the line of the
proof of Proposition 7.1). Therefore, b = true denotes that ℓpriv has
been visited. Second, we add a synchronization action finish on any
transition whose target location is ℓ f . Third, we add a new clock
xabs (never reset) together with a new parameter pabs, and we guard
all transitions to ℓ f with xabs = pabs. This will allow to measure the
(parametric) execution time. Let Enrich(P) denote this procedure.

Example 7.4. Figure 7.9 shows the transformed version of the PTA
in Figure 7.1.

7.5.2 Self-composition

We use here the principle of self-composition [Tri98; BDR11], i. e.,
composing the PTA with a copy of itself. More precisely, given a
PTA P ′ = Enrich(P), we first perform an identical copy of P ′ with
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Algorithm 7.1: Formalization of the procedure SynthOp(P)
input : A PTA P with parameters set P

output : Parameter constraint K over P∪ {pabs}
1 P ′ ← Enrich(P)
2 P ′′ ← P ′ ∥{finish} Copy(P ′)
3 return EFsynth

(
P ′′,

{
(ℓ f ∧ b = true, ℓc

f ∧ bc = false)
})

distinct variables: that is, a clock x of P ′ is distinct from a clock x
in the copy of P ′—which can be trivially performed using variable
renaming.2 Let Copy(P ′) denote this copy of P ′. We then compute
P ′ ∥{finish} Copy(P ′). That is, P ′ and Copy(P ′) evolve completely
independently due to the interleaving—except that they are forced to
enter ℓ f at the same time, thanks to the synchronization action finish.

7.5.3 Synthesis

Then, we apply reachability synthesis EFsynth (over all parameters,
i. e., the “internal” timing parameters, but also the pabs parameter) to
the following goal location: the original P ′ is in ℓ f with b = true while
its copy Copy(P ′) is in ℓc

f with bc = false, where variables with a c as
exponent denote variables from the copy. Intuitively, we synthesize
timing parameters and execution times such that there exists a run
reaching ℓ f with b = true (i. e., that has visited ℓpriv) and there exists
another run of same duration reaching ℓ f with b = false (i. e., that has
not visited ℓpriv).

Let SynthOp(P) denote the entire procedure. We formalize SynthOp
in Algorithm 7.1, where “ℓ f ∧ b = true” denotes the location ℓ f with
b = true. Recall that pabs is added by the enrichment step described in
Section 7.5.1.

Example 7.5. Consider again the PTA P in Figure 7.1: its enriched
version P ′ is given in Figure 7.9. Fix v(ϵ) = 1, v(p) = 2. We then
perform the synthesis applied to the self-composition of P ′ according
to Algorithm 7.1. The result obtained with IMITATOR is: pabs = ∅
(as expected from Example 7.1).
Now fix v(ϵ) = 2, v(p) = 1.002. We obtain: pabs ∈
[1026.048, 1034] (again, as expected from Example 7.1).

2 In fact, the fresh clock xabs and parameter pabs can be shared to save two variables,
as xabs is never reset, and both PTAs enter ℓ f at the same time, therefore both “copies”
of xabs and pabs always share the same values.
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Now let us keep all parameters unconstrained. The result
of Algorithm 7.1 is the following 3-dimensional constraint:

5× ϵ + 1024 ≥ pabs ≥ 1024
∧ 1024× p + 5× ϵ ≥ pabs ≥ 1024× p ≥ 0

7.5.4 Correctness

We will state below that, whenever SynthOp(P) terminates, then its
result is an exact (sound and complete) answer to the ∃-ET-opacity
p-synthesis problem. Recall that this problem aims to, given a PTA P ,
synthesize the set of parameters valuations v s.t. v(P) is ∃-ET-opaque.

Let us first prove a technical lemma used later to prove the soundness
of SynthOp.

Lemma 7.2. Assume SynthOp(P) terminates with result K. For all v |= K,
there exists a run ending in ℓ f at time v(pabs) in v(P).

Proof. From the construction of the procedure Enrich, we added a new
clock xabs (never reset) together with a new parameter pabs, and we
guarded all transitions to ℓ f with xabs = pabs. Therefore, valuations
of pabs correspond exactly to the times at which ℓ f can be reached
in v(P).

We can now prove soundness and completeness.

Proposition 7.5 (Soundness of SynthOp). Assume SynthOp(P)
terminates with result K. For all v |= K, there exists a run of duration
v(pabs) such that ℓpriv is visited on the way to ℓ f in v(P) and there
exists a run of duration v(pabs) such that ℓpriv is avoided on the way
to ℓ f in v(P).

Proof. SynthOp(P) is the result of EFsynth called on the self-
composition of Enrich(P). Recall that Enrich has enriched P with
the addition of a guard xabs = pabs on the incoming transitions of ℓ f ,
as well as a Boolean flag b that is true iff ℓpriv was visited along
a run. Assume v |= K. From Lemma 3.1, there exists a run of
P ′′ = P ′ ∥{finish} Copy(P ′) reaching ℓ f ∧ b = true, ℓ′f ∧ b′ = false.
From Lemma 7.2, this run takes v(pabs) time units. From the self-
composition that is made of interleaving only (except for the final
synchronization), there exists a run of duration v(pabs) such that ℓpriv
is reachable on the way to ℓ f in v(P) and there exists a run of duration
v(pabs) such that ℓpriv is avoided on the way to ℓ f in v(P).
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Proposition 7.6 (Completeness of SynthOp). Assume
SynthOp(P) terminates with result K. Assume v s.t. there
exists a run of duration v(pabs) such that ℓpriv is reachable on the way
to ℓ f in v(P) and there exists a run of duration v(pabs) such that
ℓpriv is avoided on the way to ℓ f in v(P). Then v |= K.

Proof. Assume SynthOp(P) terminates with result K. Assume v. As-
sume there exists a run ρ of duration v(pabs) such that ℓpriv is reachable
on the way to ℓ f in v(P) and there exists a run ρ′ of duration v(pabs)

such that ℓpriv is avoided on the way to ℓ f in v(P).

First, from Enrich, there exists a run ρ of duration v(pabs) such that
ℓpriv is reachable (resp. avoided) on the way to ℓ f in v(P) implies that
there exists a run ρ of duration v(pabs) such that ℓ f ∧ b = true (resp.
b = false) is reachable in v(Enrich(P)).

Since our self-composition allows any interleaving, runs ρ of v(P ′)
and ρ′ in v(Copy(P ′)) are independent—except for reaching ℓ f . Since
ρ and ρ′ have the same duration v(pabs), then they both reach ℓ f at
the same time and, from our definition of self-composition, they can
simultaneously fire action finish and enter ℓ f at time v(pabs). Hence,
there exists a run reaching ℓ f ∧ b = true, ℓ′f ∧ b′ = false in v(P ′′).

Finally, from Lemma 3.1, v |= K.

Theorem 7.5 (Correctness of SynthOp). Assume SynthOp(P) ter-
minates with result K and let v be a parameter valuation. The follow-
ing two statements are equivalent:

1. There exists a run of duration v(pabs) such that ℓpriv is reachable
on the way to ℓ f in v(P) and there exists a run of duration
v(pabs) such that ℓpriv is avoided on the way to ℓ f in v(P).

2. v |= K.

Proof. From Propositions 7.5 and 7.6

7.6 experiments : ensuring ∃-ET-opacity

This experimental section is taken from an earlier version [AS19]. We
present here algorithms to solve ET-opacity t-computation problem
(computing the execution times for which a given TA is ET-opaque)
and ∃-ET-opacity p-synthesis problem (synthesizing parameter valua-
tions ensuring that the valuated PTA is ∃-ET-opaque).
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7.6.1 Experimental environment

We ran experiments using IMITATOR 2.10.4 “Butter Jellyfish” (build
2477 HEAD/5b53333) on a Dell XPS 13 9360 equipped with an Intel®
Core™ i7-7500U CPU @ 2.70GHz with 8 GiB memory running Linux
Mint 18.3 64 bits.3

7.6.2 Translating programs into parametric timed automata

We will consider case studies from the PTA community and from
previous works focusing on privacy using (P)TA. In addition, we
will be interested in analyzing programs too. In order to apply our
method to the analysis of programs, we need a systematic way of
translating a program (e. g., a Java program) into a PTA. In general,
precisely modeling the execution time of a program using models like
TA is highly non-trivial due to complication of hardware pipelining,
caching, OS scheduling, etc. The readers are referred to the rich
literature in, for instance, [LYGY10]. In this work, we instead make
the following simplistic assumption on execution time of a program
statement and focus on solving the parameter synthesis problem. How
to precisely model the execution time of programs is orthogonal and
complementary to our work.

We assume that the execution time of a program statement other
than Thread.sleep(n) is within a range [0, ϵ] where ϵ is a small integer
constant (in milliseconds), whereas the execution time of statement
Thread.sleep(n) is within a range [n, n + ϵ]. In fact, we choose to
keep ϵ parametric to be as general as possible, and to not depend on
particular architectures.

Our test subject is a set of benchmark programs from the DARPA
Space/Time Analysis for Cybersecurity (STAC) program.4 These pro-
grams are being released publicly to facilitate researchers to develop
methods and tools for identifying STAC vulnerabilities in the pro-
grams. These programs are simple yet non-trivial, and were built
on purpose to highlight vulnerabilities that can be easily missed by
existing security analysis tools.

7.6.3 A richer framework

The symbolic representation of variables and parameters in IMITA-
TOR allows us to reason symbolically concerning variables. That is,
instead of enumerating all possible (bounded) values of x and secret
in Figure 7.1, we turn them to parameters (i. e., unknown constants),

3 Sources, models and results are available at doi.org/10.5281/zenodo.3251141 and
imitator.fr/static/ATVA19/.

4 https://github.com/Apogee-Research/STAC/

https://doi.org/10.5281/zenodo.3251141
https://www.imitator.fr/static/ATVA19/
https://github.com/Apogee-Research/STAC/


102 guaranteeing execution-time opacity

and IMITATOR performs a symbolic reasoning. Even better, the analy-
sis terminates for this example even when no bound is provided on
these variables. This is often not possible in (non-parametric) TAs
based model checkers, which usually have to enumerate these val-
ues. Therefore, in our PTA representation of Java programs, we turn
all user-input variable and secret constant variables to non-timing
rational-valued parameters, also supported by IMITATOR. Other local
variables are implemented using IMITATOR discrete (shared, global)
variables.

We also discuss how to enlarge the scope of our framework.

multiple private locations This can be easily achieved by
setting b to true along any incoming transition of one of these private
locations.

multiple final locations The technique used depends on
whether these multiple final locations can be distinguished or not. If
they are indistinguishable (i. e., the observer knows when the program
has terminated, but not in which state), then it suffices to merge
all these final locations in a single one, and our framework trivially
applies. If they are distinguishable, then one analysis needs to be
conducted on each of these locations (with a different parameter pabs
for each of these), and the obtained constraints must be intersected.

access to high-level variables In the literature, a distinc-
tion is sometimes made between low-level (“public”) and high-level
(“private”) variables. Opacity or non-interference can be defined in
terms of the ability for an observer to deduce some information on
the high-level variables.

Example 7.6. For example, in Figure 7.10 (where cl is a clock and h
a variable), if ℓ2 is reachable in 20 time units, then it is clear that the
value of the high-level variable h is negative.

Our framework can also be used to address this problem, e. g., by
setting b to true, not on locations but on selected tests / valuations of
such variables.

Example 7.7. For example, setting b to true on the upper tran-
sition from ℓ1 to ℓ2 in Figure 7.10, the answer to the ET-opacity
t-computation problem is D = (30, ∞), and the system is therefore
not fully ET-opaque since ℓ2 can be reached for any execution time
in [0, ∞).
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ℓ1 ℓ2

h > 0
cl > 30

h ≤ 0

Figure 7.10: [VNN18, Fig. 5]

7.6.4 Experiments

Benchmarks

As a proof of concept, we applied our method to a set of examples
from the literature. The first five models come from previous works
from the literature [GMR07; BCLR15; VNN18], also addressing non-
interference or opacity in TAs5. In addition, we used two common
models from the PTA literature, not necessarily linked to security: a
toy coffee machine (Coffee) used as benchmark in a number of papers,
and a model Fischer’s mutual exclusion protocol (Fischer-HRSV02)
[HRSV02]. In both cases, we added manually a definition of private
location (the number of sugars ordered, and the identity of the process
entering the critical section, respectively), and we verified whether
they are opaque w.r.t. these internal behaviors.

We also applied our approach to a set of Java programs from the
aforementioned STAC library. We use identifiers of the form STAC:1:n

where 1 denotes the identifier in the library, while n (resp. v) denotes
non-vulnerable (resp. vulnerable). We manually translated these pro-
grams to PTAs, following the method described in Section 7.6.2. We
used a representative set of programs from the library; however, some
of them were too complex to fit in our framework, notably when the
timing leaks come from calls to external libraries (STAC:15:v), when
dealing with complex computations such as operations on matrices
(STAC:16:v) or when handling probabilities (STAC:18:v). Proposing
efficient and accurate ways to represent arbitrary programs into PTAs
is orthogonal to our work, and is the object of future works.

The ET-opacity t-computation problem

First, we verified whether a given TA model is fully ET-opaque, i. e., if
for all execution times reaching the final location, both an execution
visits the private location and an execution does not visit this private
location. To this end, we also answer the ET-opacity t-computation
problem, i. e., to synthesize all execution times for which the system is
ET-opaque. While this problem can be verified on the region graph
(Proposition 7.1), we use the same framework as in Section 7.5 (solving

5 As most previous works on opacity and TAs do not come with an implementation
nor with benchmarks, it is not easy to find larger models coming in the form of TAs.
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Table 7.1: Experiments: ET-opacity t-computation problem

Model Transf. PTA Result
Name |P| |X| |P| |X| |P| States Time (s) Opaque?

[VNN18, Fig. 5] 1 1 2 3 3 13 0.02 (×)
[GMR07, Fig. 1b] 1 1 2 3 1 25 0.04 (×)
[GMR07, Fig. 2a] 1 1 2 3 1 41 0.05 (×)
[GMR07, Fig. 2b] 1 1 2 3 1 41 0.02 (×)

Web privacy problem [BCLR15] 1 2 2 4 1 105 0.07 (×)
Coffee 1 2 2 5 1 43 0.05

√

Fischer-HSRV02 3 2 6 5 1 2495 5.83 (×)
STAC:1:n 2 3 6 65 0.12 (×)
STAC:1:v 2 3 6 63 0.11 ×
STAC:3:n 2 3 8 289 0.72

√

STAC:3:v 2 3 8 287 0.74 (×)
STAC:4:n 2 3 8 904 6.40 ×
STAC:4:v 2 3 8 19183 265.52 ×
STAC:5:n 2 3 6 144 0.24

√

STAC:11A:v 2 3 8 5037 47.77 (×)
STAC:11B:v 2 3 8 5486 59.35 (×)
STAC:12c:v 2 3 8 1177 18.44 ×
STAC:12e:n 2 3 8 169 0.58 ×
STAC:12e:v 2 3 8 244 1.10 (×)
STAC:14:n 2 3 8 1223 22.34 (×)

the ∃-ET-opacity p-synthesis problem), but without parameters in the
original TA. That is, we use the Boolean flag b and the parameter pabs
to compute all possible execution times. In other words, we use a
parametric analysis to solve a non-parametric problem.

We tabulate the experiments results in Table 7.1. We give from left
to right the model name, the numbers of automata and of clocks in
the original TA (this information is not relevant for Java programs as
the original model is not a TA), the numbers of automata6, of clocks
and of parameters in the transformed PTA, the computation time in
seconds (for the ET-opacity t-computation problem), and the result.
In the result column, “

√
” (resp. “×”) denotes that the model is fully

ET-opaque (resp. is not fully ET-opaque, i. e., vulnerable), while “(×)”
denotes that the model is not fully ET-opaque but ∃-ET-opaque, so
could be fixed at a lower cost. That is, although DVisitpriv(v(P)) ̸=
DVisit¬priv(v(P)), their intersection is non-empty and therefore, by
tuning the execution time, it may be possible to make the system fully
ET-opaque. This will be discussed in Section 7.6.5.

Even though we are interested here in ET-opacity t-computation prob-
lem (and not in synthesis), note that all models derived from Java
programs feature the parameter ϵ. The result is obtained by variable
elimination, i. e., by existential quantification over the parameters dif-

6 As usual, it may be simpler to write PTA models as a network of PTAs. Recall from
Definition 3.13 that a network of PTAs gives a PTA. In this case, |P| denotes the
number of input PTA components.
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ferent from pabs. In addition, the number of parameters is increased by
the parameters encoding the symbolic variables (such as x and secret
in Figure 7.1).

Concerning the Java programs, we decided to keep the most abstract
representation, by imposing that each instruction lasts for a time
in [0, ϵ], with ϵ a parameter. However, fixing an identical (parametric)
time ϵ for all instructions, or fixing an arbitrary time in a constant
interval [0, ϵ] (for some constant ϵ, e. g., 1), or even fixing an identical
(constant) time ϵ (e. g., 1) for all instructions, significantly speeds up
the analysis. These choices can be made for larger models.

discussion Overall, our method is able to answer the ET-opacity
t-computation problem for practical case studies, exhibiting which
execution times ensure ET-opacity, and whether all execution times
indeed guarantee ET-opacity (full ET-opacity decision problem).

In many cases, while the system is not fully ET-opaque, we are able
to infer the execution times guaranteeing ET-opacity (cells marked
“(×)”). This is an advantage of our method w.r.t. methods outputting
only binary answers.

We observed some mismatches in the Java programs, i. e., some of
the programs marked n (non-vulnerable) in the library are actually
vulnerable according to our method. This mainly comes from the fact
that the STAC library expect tools to use imprecise analyses on the
execution times, while we use an exact method. Therefore, a very small
mismatch between DVisitpriv(v(P)) and DVisit¬priv(v(P)) will lead
our algorithm to answer “not fully ET-opaque”, while some methods
may not be able to differentiate this mismatch from imprecision or
noise. This is notably the case of STAC:14:n where some action lasts
either 5,010,000 or 5,000,000 time units depending on some secret,
which our method detects to be different, while the library does not.
For STAC:1:n, using our data, the difference in the execution time
upper bound between an execution performing some secret action and
an execution not performing it is larger than 1 %, which we believe is
a value which is not negligible, and therefore this case study might be
considered as vulnerable.

STAC:4:n requires a more detailed discussion. This particular pro-
gram is targeting vulnerabilities that can be detected easily when they
accumulate, typically in loops. This program checks a number of
times (10) a user-input password, and each password check is made
in the most insecure way, i. e., by returning “incorrect” as soon as
one character differs between the input password and the expected
password. This way is very insecure because the execution time is
proportional to the number of consecutive correct characters in the
input password and, by observing the execution time, an attacker can
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guess how many characters are correct, and therefore using a limited
number of tests, (s)he will eventually guess the correct password. The
difference between the vulnerable (STAC:4:v) and the non-vulnerable
(STAC:4:n) versions is that the non-vulnerable version immediately
stops if the password is incorrect, and performs the 10 checks only if
the password is correct. Therefore, while the computation time is very
different between the correct input password and any incorrect input
password, it is however very similar between an incorrect input pass-
word that would only be incorrect because, say, of the last character
(e. g., “kouignamaz” while the expected password is “kouignaman”),
and a completely incorrect input password differing as early as the
first character (e. g., “andouille”). This makes the attacker’s task very
difficult. The main reason for the STAC library to label STAC:4:n

as a non-vulnerable program is because of the “very similar” nature
of the computation times between an incorrect input password that
would only be incorrect because of the last character, and a com-
pletely incorrect input password. (In contrast, the vulnerable version
STAC:4:v is completely vulnerable because this time difference is am-
plified by the loop, here 10 times.) While “very similar” might be
acceptable for most tools, in our setting based on formal verification,
we do detect that testing “kouignamaz” or testing “kouignamzz” will
yield a slightly faster computation time for the second input, because
the first incorrect letter occurs earlier—and the program is therefore
vulnerable.

The ∃-ET-opacity p-synthesis problem

Then, we address the ∃-ET-opacity p-synthesis problem. In this case,
we synthesize both the execution time and the internal values of the
parameters for which one cannot deduce private information from the
execution time.

We consider the same case studies as for ET-opacity t-computation
problem; however, the Java programs feature no internal “parameter”
and cannot be used here. Still, as a proof of concept, we artificially
enriched one of them (STAC:3:v) as follows: in addition to the para-
metric value of ϵ and the execution time, we parameterized one of
the sleep timers. The resulting constraint can help designers to re-
fine this latter value to ensure ET-opacity. Note that it may not be
that easy to tune a Java program to make it ET-opaque: while this
is reasonably easy on the PTA level (restraining the execution times
using an additional clock), this may not be clear on the original model.
Making a program terminate slower than originally is easy with a
Sleep statement; but making it terminate “earlier” is less obvious, as it
may mean an abrupt termination, possibly leading to wrong results.

We tabulate the results in Table 7.2, where the columns are similar to
Table 7.1. A difference is that the first |P| column denotes the number
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Table 7.2: Experiments: full ET-opacity p-synthesis problem

Model Transf. PTA Result
Name |P| |X| |P| |P| |X| |P| States Time (s) Constraint

[VNN18, Fig. 5] 1 1 0 2 3 4 13 0.02 K
[GMR07, Fig. 1b] 1 1 0 2 3 3 25 0.03 K
[GMR07, Fig. 2] 1 1 0 2 3 3 41 0.05 K

Web privacy problem [BCLR15] 1 2 2 2 4 3 105 0.07 K
Coffee 1 2 3 2 5 4 85 0.10 ⊤

Fischer-HSRV02 3 2 2 6 5 3 2495 7.53 K
STAC:3:v 2 2 3 9 361 0.93 K

of parameters in the original model (without counting these added
by our transformation). In addition, Table 7.2 does not contain a
“opaque?” column as we synthesize the condition for which the model
is non-vulnerable, and therefore the answer is non-binary. However, in
the last column (“Constraint”), we make explicit whether no valuations
ensure ∃-ET-opacity (“⊥”), all of them (“⊤”), or some of them (“K”).

discussion An interesting outcome is that the computation timed
needed to solve this synthesis is comparable to the (non-parametric)
ET-opacity t-computation problem, with an increase of up to 20 % only.
In addition, for all case studies, we exhibit at least some valuations for
which the system can be made ET-opaque. Also note that our method
always terminates for these models, and therefore the result exhibited
is complete. Interestingly, Coffee is ∃-ET-opaque for any valuation of
the 3 internal parameters.

7.6.5 “Repairing” a non-execution-time opaque parametric timed automa-
ton

Our method gives a result in time of a union of polyhedra over
the internal timing parameters and the execution time. On the one
hand, we believe tuning the internal timing parameters should be
easy: for a program, an internal timing parameter can be the duration
of a sleep, for example. On the other hand, tuning the execution
time of a program may be more subtle. A solution is to enforce a
minimal execution time by adding a second thread in parallel with
a Wait() primitive to ensure a minimal execution time. Ensuring a
maximal execution time can be achieved with an exception stopping
the program after a given time; however there is a priori no guarantee
that the result of the computation is correct.

7.7 conclusion

In this work, we proposed an approach based on parametric timed
model checking to not only decide whether the model of a timed sys-
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tem can be subject to timing information leakage, but also to synthesize
internal timing parameters and execution times that render the system
∃-ET-opaque. We implemented our approach in a framework based
on IMITATOR, and performed experiments on case studies from the
literature and from a library of Java programs.

summary In Table 7.3, we present all the decidability results intro-
duced in this chapter. We denote a problem with a green check if it is
decidable (or solvable), a red cross if it is undecidable (or unsolvable).

Table 7.3: Summary of the results for execution-time opacity [ALMS22]

∃-ET-opaque fully
ET-opaque

Decision TA
√

(Proposition 7.2)
√

(Proposition 7.3)

p-emptiness
L/U-PTA

√
(Theorem 7.2) ×(Theorem 7.4)

PTA ×(Theorem 7.1) ×(Theorem 7.3)

p-synthesis
L/U-PTA ×(Proposition 7.4) ×(Corollary 7.3)

PTA ×(Corollary 7.1) ×(Corollary 7.2)

Perspectives

Theory

We proved decidability of the ET-opacity t-computation problem
(Proposition 7.1), of the ∃-ET-opacity decision problem (Proposi-
tion 7.2) and of the full ET-opacity decision problem (Proposition 7.3)
for TAs, but we only provided an upper bound (3EXPTIME) on the
complexity. It can be easily shown that these problems are at least
PSPACE, but the exact complexity remains to be exhibited.

In addition, the decidability of several “low-dimensional” problems
(i. e., with “small” number of clocks or parameters) remains open.
Among these, the one-clock case for full ET-opacity p-emptiness
problem (Theorem 7.1) remains open: that is, is the ∃-ET-opacity
p-synthesis problem decidable for PTAs using a single clock? Our
method in Section 7.5 consists in duplicating the automaton and
adding a clock that is never reset, thus resulting in a PTA with 3 clocks,
for which reachability-emptiness is undecidable [AHV93]. However,
since one of the clocks is never reset, and since the automaton is
structurally constrained (it is the result of the composition of two
copies of the same automaton), decidability might be envisioned.
Recall that the 2-clock reachability-emptiness problem is a famous
open problem [And19b], despite recent advances, notably over dis-
crete time [BO14; GH21]. The 1-clock question also remains open for
full ET-opacity p-emptiness problem (Theorem 7.3). The minimum
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number of parameters required for our proof of the undecidability of
the full ET-opacity p-emptiness problem for PTAs (resp. L/U-PTAs)
to work is 2 (resp. 4), as seen in Theorem 7.3 (resp. Theorem 7.4);
it is open whether using less parameters can render these problems
decidable.

Finally, concerning L/U-PTAs, we proved two negative results, de-
spite the decidability of the ∃-ET-opacity p-emptiness problem (Theo-
rem 7.2), the undecidability of the full ET-opacity p-emptiness problem
(Theorem 7.4) and the intractability of ∃-ET-opacity p-synthesis prob-
lem (Proposition 7.4). It remains open whether these results still apply
to the more restrictive class of U-PTAs.

Applications

We did not propose algorithm to ensure full ET-opacity, and particu-
larly to solve the full ET-opacity p-synthesis problem (which is shown
to be undecidable, Corollaries 7.2 and 7.3). Indeed, the construction
used to solve ∃-ET-opaque problems cannot be easily extended to solve
their full version. Exhibiting such algorithms (or semi-algorithms) re-
mains as a future work.

The translation of the STAC library required some non-trivial creativ-
ity: while the translation from programs to quantitative extensions of
automata is orthogonal to our work, proposing automated translations
of (possibly annotated) programs to TAs dedicated to timing analysis
is on our agenda.

Adding probabilities to our framework will be interesting, helping to
quantify the execution times of “untimed” instructions in program
with a finer grain than an interval; also note that some benchmarks
make use of probabilities (notably STAC:18:v).

IMITATOR is a general model checker, not specifically aimed at solv-
ing the problem we address here. Notably, constraints managed by
PPL contain all variables (clocks, timing parameters, and parameters
encoding symbolic variables of programs), yielding an exponential
complexity. Separating certain types of independent variables (typi-
cally parameters encoding symbolic variables of programs, and other
variables) should increase efficiency.

Finally, we may be interested in close other problems, extending
our notion to take into consideration other paradigms. For example,
this definition of ET-opacity may be not sufficient to formalize side-
channels attacks based on the status of the memory: a secret remains
private, no matter when it happened. In the following chapter, we
will consider an extension of our ET-opacity with an expiration date
of the secret, i. e., an expiration bound after which knowing the secret
is deemed useless.
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8
E X P I R I N G E X E C U T I O N - T I M E O PA C I T Y P R O B L E M S
I N PA R A M E T R I C T I M E D AU T O M ATA

When did everything start having
an expiration date?

— Wong Kar-wai

In this chapter, we introduce a new notion of ET-opacity with expiring
secrecy. We prove some decidability results over different problems
for TAs and PTAs.

Motivation

In Chapter 7, we considered an attacker who had access only to the
execution times: this is ET-opacity. We considered an existential
version of this definition (asking for the existence of an execution
times ensuring ET-opacity) but also a full version (asking if a system
is ET-opaque for all execution times).

In [AETYM21], the authors consider a time-bounded notion of the
opacity of [Cas09], where the attacker has to disclose the secret before
an upper bound, using a partial observability. This can be seen as a
secrecy with an expiration date. The rationale is that retrieving a secret
“too late” is useless; this is understandable, e. g., when the secret
depend of the status of the memory; if the cache was overwritten
since, then knowing the secret is probably useless in most situations.
In addition, the analysis is carried over a time-bounded horizon; this
means there are two time bounds in [AETYM21]: one for the secret
expiration date, and one for the bounded-time execution of the system.
In this chapter, we will incorporate this secret expiration date into
our notion of ET-opacity: we will only consider the former one (the
secret expiration date), and lift the assumption regarding the latter
(the bounded-time execution of the system).

Contributions of the chapter

In this chapter, we consider an expiring version of ET-opacity, where the
secret is subject to an expiration date; this can be seen as a combination
of both concepts from Chapter 7 and [AETYM21]. That is, we consider
that an attack is successful only when the attacker can decide that the
secret location was entered less than ∆ time units before the system

111
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completion. Conversely, if the attacker exhibits an execution time d
for which it is certain that the secret location was visited, but this
location was entered strictly more than ∆ time units prior to the
system completion, then this attack is useless, and can be seen as a
failed attack. The system is therefore fully exp-ET-opaque if the set
of execution times for which the private location was entered within
∆ time units prior to system completion is exactly equal to the set of
execution times for which the private location was either not visited
or entered > ∆ time units prior to system completion.

In addition, when the former (secret) set of execution times is included
into the latter (non-secret) set of times, we say that the system is weakly
exp-ET-opaque; this encodes situations when the attacker might be
able to deduce that no secret location was visited, but is not able to
confirm that the secret location was indeed visited.

On the one hand, our attacker model is less powerful than [AETYM21],
because our attacker has only access to the execution time (and to
the input model); in that sense, our attacker capability is identical
to Chapter 7. On the other hand, we lift the time-bounded hori-
zon analysis from [AETYM21], allowing to analyze systems without
any assumption on their execution time; therefore, we only import
from [AETYM21] the notion of expiring secret.

We first consider exp-ET-opacity for TAs. We show that it is possible
to:

1. decide whether a TA is fully (resp. weakly) exp-ET-opaque w.r.t.
a given time bound ∆ (decision problem);

2. decide whether a TA is fully (resp. weakly) exp-ET-opaque w.r.t.
at least one bound ∆ (emptiness problem);

3. compute the set of time bounds (or expiration dates) for which
a TA is weakly exp-ET-opaque (computation problem).

Second, we show that, in PTAs, the emptiness of the parameter valua-
tion sets for which the system is fully (resp. weakly) exp-ET-opaque
is undecidable, even for the L/U-PTA subclass of PTAs, so far known
for its decidability results.

Organization of the chapter

We define exp-ET-opacity problems in Section 8.1. We address prob-
lems for TAs in Section 8.2, and parametric extensions in Section 8.3.
We conclude in Section 8.4.
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8.1 Expiring execution-time opacity problems

In this section, we formally introduce the problems we address in this
chapter. In the following, let A be a TA.

Let N∞ = N∪ {+∞} and R∞
≥0 = R≥0 ∪ {+∞}.

8.1.1 Expiring execution-time opacity

Let us first recall some notations introduced in Section 6.1.2. We
denote by Visitpriv(A) the set of private runs (i. e., runs visiting the
private location) and by DVisitpriv(A) the set of all the durations of
these runs. Conversely, we denote by Visit¬priv(A) the set of public
runs, and by DVisit¬priv(A) the set of all the durations of these runs.

Given a TA A and a finite run ρ in TA, the duration between two
states of ρ : s0, (d0, e0), s1, · · · , sk is durρ(si, sj) = ∑i≤m≤j−1 dm. We also
define the duration between two locations ℓ1 and ℓ2 as the duration
durρ(ℓ1, ℓ2) = durρ(si, sj) with ρ : s0, (d0, e0), s1, · · · , si, · · · , sj, · · · , sk
where sj the first occurrence of a state with location ℓ2 and si is the
last state of ρ with location ℓ1 before sj. We choose this definition
to coincide with the definitions of opacity that we will define in the
following Definition 8.1. Indeed, we want to make sure that revealing
a secret (ℓ1 in this definition) is not a failure if it is done after a given
time. Thus, as soon as the system reaches its final state (ℓ2), we will
be interested in knowing how long the secret has been present, and
thus the last time it was entered (si).

Given ∆ ∈ R∞
≥0, we define Visitpriv

>∆ (A) (resp. Visitpriv
≤∆ (A)) as the set of

runs ρ ∈ Visitpriv(A) s.t. durρ(ℓpriv, ℓ f ) > ∆ (resp. durρ(ℓpriv, ℓ f ) ≤ ∆).

We refer to the runs of Visitpriv
≤∆ (A) as secret runs.

We define below two notions of ET-opacity w.r.t. a time bound ∆. We
will compare two sets:

1. the set of execution times for which the private location was
entered at most ∆ time units prior to system completion; and

2. the set of execution times for which either the private location
was not visited at all, or it was last entered more than ∆ time
units prior to system completion (which, in our setting, is some-
how similar to not visiting the private location, in the sense that
entering it “too early” is considered of little interest).

If both sets match, the system is fully (≤ ∆)-ET-opaque. If the former
is included into the latter, then the system is weakly (≤ ∆)-ET-opaque.
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Definition 8.1 (Expiring execution-time opacity). Given a TA A
and a bound (i. e., an expiration date for the secret) ∆ ∈ R∞

≥0
we say that A is fully exp-ET-opaque w.r.t. the expiration date ∆,
denoted fully (≤ ∆)-ET-opaque, if

DVisitpriv
≤∆ (A) = DVisitpriv

>∆ (A) ∪DVisit¬priv(A).

Moreover, we say that A is weakly exp-ET-opaque w.r.t. the expi-
ration date ∆, denoted weakly (≤ ∆)-ET-opaque, if

DVisitpriv
≤∆ (A) ⊆ DVisitpriv

>∆ (A) ∪DVisit¬priv(A).

Remark 9. Our notion of weak exp-ET-opaque may still leak some infor-
mation: on the one hand, if a run indeed enters the private location ≤ ∆ time
units before system completion, there exists an equivalent run not visiting
it (or entering it earlier), and therefore the system is exp-ET-opaque; but
on the other hand, there may exist execution times for which the attacker
can deduce that the private location was not entered ≤ ∆ before system
completion. This remains acceptable in some cases, and this motivates us
to define a weak version of exp-ET-opacity. Also note that the “initial-state
opacity” for RTAs considered in [WZ18] can also be seen as weak in the
sense that their language inclusion is also unidirectional.

■

Example 8.1. Consider again the PTA in Figure 3.2; let v be such
that v(p1) = 1 and v(p2) = 2.5. Fix ∆ = 1.
We have:

• DVisit¬priv(v(P)) = [0, 3]
• DVisitpriv

>∆ (v(P)) = (2, 2.5]
• DVisitpriv

≤∆ (v(P)) = [1, 2.5]
Therefore, we say that v(P) is:

• weakly (≤ 1)-ET-opaque, as [1, 2.5] ⊆
(
(2, 2.5] ∪ [0, 3]

)
• not fully (≤ 1)-ET-opaque, as [1, 2.5] ̸=

(
(2, 2.5] ∪ [0, 3]

)
As introduced in Remark 9, despite the weak (≤ 1)-ET-opacity of A,
the attacker can deduce some information about the visit of the private
location for some execution times. For example, if a run has a duration
of 3 time units, it cannot be a private run, and therefore the attacker
can deduce that the private location was not visited at all.

8.1.2 Problems

We define six different problems in the context of (non-parametric)
TAs:
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The full (resp. weak) exp-ET-opacity decision problem:
Input: A TA A and a bound ∆ ∈ R∞

≥0
Problem: Decide whether A is fully (resp. weakly) (≤ ∆)-
ET-opaque.

The full (resp. weak) exp-ET-opacity ∆-emptiness problem:
Input: A TA A
Problem: Decide the emptiness of the set of bounds ∆ such
that A is fully (resp. weakly) (≤ ∆)-ET-opaque.

The full (resp. weak) exp-ET-opacity ∆-computation problem:
Input: A TA A
Problem: Compute the maximal set D of bounds such that A
is fully (resp. weakly) (≤ ∆)-ET-opaque w.r.t. all ∆ ∈ D.

Example 8.2. Consider again the PTA in Figure 3.2; let v be such
that v(p1) = 1 and v(p2) = 2.5 (as in Example 8.1).

• Given ∆ = 1, the weak exp-ET-opacity decision problem asks
whether v(P) is weakly (≤ ∆)-ET-opaque—the answer is “yes”
from Example 8.1.

• The weak exp-ET-opacity ∆-emptiness problem is therefore “no”
because the set of bounds ∆ such that v(P) is weakly (≤ ∆)-
ET-opaque is not empty.

• Finally, the weak exp-ET-opacity ∆-computation problem asks
to compute all the corresponding bounds: in this example, the
solution is ∆ ∈ R∞

≥0.

relations with the execution-time opacity problems

Note that, when considering ∆ = +∞, DVisitpriv
>∆ (A) = ∅ and all the

execution times of runs visiting ℓpriv are in DVisitpriv
≤∆ (A). Therefore,

full (≤ +∞)-ET-opacity matches full ET-opacity. We can therefore
notice that answering the full exp-ET-opacity decision problem for
∆ = +∞ is decidable (Proposition 7.3). However, the emptiness and
computation problems cannot be reduced to full ET-opacity problems
from Chapter 7.

Conversely, it is possible to answer the full ET-opacity decision
problem by checking the full exp-ET-opacity decision problem with
∆ = +∞. Moreover, ET-opacity t-computation problem reduces to
full exp-ET-opacity ∆-computation problem: if +∞ ∈ D, we get the
answer.
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Figure 8.1: Construction used in Proposition 8.1

8.2 Expiring execution-time opacity in timed automata

In this section, we consider the six problems defined previously on
TAs. In general, the link between the full and weak notions of the
three aforementioned problems is not obvious. However, for a fixed
value of ∆, we establish the following result.

Proposition 8.1 (Reduction from full exp-ET-opacity decision
problem to weak exp-ET-opacity decision problem). The full
exp-ET-opacity decision problem reduces to the weak exp-ET-opacity
decision problem.

Proof. Fix a TA A and a time bound ∆ ∈ R∞
≥0.

In this reduction, we build a new TA A′ where secret and non-secret
runs are swapped. More precisely, we add a new clock y that measures
how much time has elapsed since the latest entrance of the private
location. It is thus reset whenever we enter the private location ℓpriv.
This clock is initialized to value ∆ + 1 (which can be ensured by
waiting in a new initial location ℓ′0 for ∆ + 1 time units before going to
the original initial location ℓ0 and resetting every clock but y). When
reaching the final location ℓ f , one can urgently (a new clock z can be
used to force the system to move immediately) move to a new secret
location ℓ′priv if y > ∆ and then to the new final location ℓ′f ; otherwise
(if y ≤ ∆), the TA can go directly to the new final location ℓ′f . Therefore,
a run that would not be secret (as y > ∆) is now secret and reciprocally.
Then, by testing weak (≤ ∆)-ET-opacity of both A and A′, one can
check full (≤ ∆)-ET-opacity of A.

We give a graphical representation of our construction in Figure 8.1.
Formally, given a TA A =

(
Σ, L, ℓ0, ℓpriv, ℓ f , X, I, E

)
and ∆ ∈ R∞

≥0,
we build a second TA A′ = (Σ ∪ {♯} , L′, ℓ′0, ℓ′priv, ℓ′f , X ∪ {y, z} , I′, E′)
where ♯ denotes a special action absent from Σ and where:
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• L′ = L ∪
{
ℓ′0, ℓ′priv, ℓ′f

}
;

• ∀ℓ ∈ L \ {ℓ f } : I′(ℓ) = I(ℓ); I′(ℓ f ) = (I(ℓ f ) ∧ z = 0); I′(ℓ′0) =

(y ≤ ∆ + 1); I′(ℓ′priv) = (z = 0); I′(ℓ′f ) = (z = 0).

• for each (ℓ, g, a, R, ℓ′) ∈ E, we add
(
ℓ, g, a, R′, ℓ′

)
to E′ where

R′ = R ∪ {y, z} if ℓ′ = ℓpriv and R′ = R ∪ {z} otherwise.

We also add the following edges to E′:

–
(
ℓ′0, (y = ∆ + 1), ♯, X, ℓ0

)
;

–
(
ℓ f , (z = 0∧ y > ∆), ♯, ∅, ℓ′priv

)
;

–
(
ℓ f , (z = 0∧ y ≤ ∆), ♯, ∅, ℓ′f

)
;

–
(
ℓ′priv, (z = 0), ♯, ∅, ℓ′f

)
.

There is a one-to-one correspondence between the secret (resp. non-
secret) runs ending in ℓpriv in A and the non-secret (resp. secret) runs
ending in ℓ′priv in A′. Given ρ a run in A and ρ′ the corresponding
run in A′, we have dur(ρ′) = dur(ρ) + ∆ + 1 (where ∆ + 1 is the time
waited in ℓ′0).

Recall from Definition 8.1 the definition of weak (≤ ∆)-ET-opacity
for A′: DVisitpriv

≤∆ (A′) ⊆ DVisitpriv
>∆ (A′) ∪DVisit¬priv(A′).

1. First consider the left-hand part “DVisitpriv
≤∆ (A′)”: these execution

times correspond to runs of A′ for which ℓ′priv was entered less
than ∆ (and actually 0) time units prior to reaching ℓ′f . These
runs passed the y > ∆ guard between ℓ f and ℓ′priv.

From our construction, these runs correspond to runs of
the original A either not visiting ℓpriv at all (since y was
never reset since its initialization to ∆ + 1, and therefore
y ≥ ∆ + 1 > ∆), or to runs which visited ℓpriv more than ∆
time units before reaching ℓ f . Therefore, DVisitpriv

≤∆ (A′) ={
d + 1 + ∆ | d ∈ DVisitpriv

>∆ (A) ∪DVisit¬priv(A)
}

2. Second, consider the right-hand part “DVisitpriv
>∆ (A′) ∪

DVisit¬priv(A′)”: the set DVisitpriv
>∆ (A′) is necessarily empty, as

any run of A′ visiting ℓ′priv reaches ℓ′f immediately in 0-time. The
execution times from DVisit¬priv(A′) correspond to runs of A′
not visiting ℓ′priv, therefore for which only the guard y ≤ ∆ holds.
Hence, they correspond to runs of A which entered ℓpriv less
than ∆ time units prior to reaching ℓ f . Therefore, DVisitpriv

>∆ (A′)∪
DVisit¬priv(A′) =

{
d + 1 + ∆ | d ∈ DVisitpriv

≤∆ (A)
}

To conclude, checking that A′ is weakly (≤ ∆)-ET-opaque (i. e.,
DVisitpriv

≤∆ (A′) ⊆ DVisitpriv
>∆ (A′) ∪ DVisit¬priv(A′)) is equivalent to
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Figure 8.2: Construction used in Remark 10

DVisitpriv
>∆ (A) ∪DVisit¬priv(A) ⊆ DVisitpriv

≤∆ (A). Moreover, from Defini-
tion 8.1, checking that A is weakly (≤ ∆)-ET-opaque denotes checking
DVisitpriv

≤∆ (A) ⊆ DVisitpriv
>∆ (A) ∪DVisit¬priv(A).

Therefore, checking that both A′ and A are weakly (≤ ∆)-ET-opaque
denotes DVisitpriv

≤∆ (A) = DVisitpriv
>∆ (A) ∪ DVisit¬priv(A), which is the

definition of full (≤ ∆)-ET-opacity for A.

To conclude, A is fully (≤ ∆)-ET-opaque iff A and A′ are weakly
(≤ ∆)-ET-opaque.

Remark 10. We can similarly establish the opposite reduction.

Given a TA A, we build a second TA A′ differing from the automaton created
in the proof of Proposition 8.1 only in the transitions exiting ℓ f . We need to
consider the following transitions (depicted in Figure 8.2):

•
(
ℓ f , (z = 0∧ y ≤ ∆), ♯, ∅, ℓ′priv

)
;

•
(
ℓ f , (z = 0∧ y > ∆), ♯, ∅, ℓ′f

)
;

•
(
ℓ f , (z = 0∧ y > ∆), ♯, ∅, ℓ′priv

)
}.

This construction ensures that the runs which were secret in A correspond to
secret runs of A′, while the runs that were non-secret in A correspond to a
secret and a non-secret run of A′.

Thus DVisitpriv
≤∆ (A′) ⊇ DVisitpriv

>∆ (A′) ∪DVisit¬priv(A′) with equality iff

DVisitpriv
≤∆ (A) ⊆ DVisitpriv

>∆ (A)∪DVisit¬priv(A). Therefore the weak (≤ ∆)-
ET-opacity of A can be deduced from the full (≤ ∆)-ET-opacity of A′.

■

We now temporarily restrict ∆ to the integer set N∞. (Theorem 8.4
will lift the coming results to R∞

≥0.)
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Theorem 8.1 (Decidability of full (resp. weak) exp-ET-opacity
decision problem). The full (resp. weak) exp-ET-opacity decision
problem is decidable in NEXPTIME.

Proof. Given a TAA, we first build two TAs fromA, namedAs andAn

and representing respectively the secret and non-secret behavior of the
original TA, while each constant is multiplied by 2. The consequence
of this multiplication is that the final location can be reached in time
strictly between t and t + 1 (with t ∈N) by a public (resp. secret) run
in A iff the target can be reached in time 2t+ 1 in the TA An (resp. As).
Note that the correctness of this statement is a direct consequence
of [BDR08, Lemma 5.5].

We then build the region automata RAn and RAs (of An and As

respectively).

RAn is a non-deterministic unary (the alphabet is restricted to a
single letter) automaton with ε transitions the language of which
is

{
tickk | there is a run of duration k in An

}
, and similarly for RAs

(recall that each constant was multiplied by 2 in An and As).

We are interested in testing equality (resp. inclusion) of those lan-
guages for deciding the full (resp. weak) exp-ET-opacity decision
problem.

[SM73, Theorem 6.1] establishes that language equality of unary au-
tomata is NP-complete and the same proof implies that inclusion is in
NP. As the region automata are exponential, we get the result.

Remark 11. In Chapter 7, we established that the full (≤ +∞)-ET-opacity
decision problem is in 5EXPTIME (Proposition 7.3). Theorem 8.1 thus
extends our former results in three ways: by including the parameter ∆,
by reducing the complexity and by considering as well the weak notion of
ET-opacity.

■

Theorem 8.2 (Solvability of weak exp-ET-opacity
∆-computation problem). The weak exp-ET-opacity ∆-computation
problem is solvable.

Proof. First, we test whether A is weakly (≤ +∞)-ET-opaque thanks
to Theorem 8.1.

• If A is weakly (≤ +∞)-ET-opaque then by definition (and mono-
tonicity) of weak exp-ET-opacity, A is weakly (≤ ∆)-ET-opaque
for all ∆ ∈N∞.
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• Otherwise, there exists a duration d ∈ R≥0 such that t ∈
DVisitpriv

≤+∞(A) = DVisitpriv(A) and d ̸∈ DVisitpriv
>+∞(A) ∪

DVisit¬priv(A) = DVisit¬priv(A). d can be computed as a small-
est word contradicting the inclusion of the language of the two
exponential automata described in Theorem 8.1. Hence, d is at
most doubly exponential.

For all ∆ > t, we thus have that DVisitpriv
≤∆ (A) ̸⊆ DVisitpriv

>∆ (A) ∪
DVisit¬priv(A) and thus that A is not weakly (≤ ∆)-ET-opaque.

In order to synthesize the bounds ∆ ∈N such that A is weakly
(≤ ∆)-ET-opaque, we therefore only have to test the finitely many
integers below t using Theorem 8.1.

Corollary 8.1 (Decidability of weak exp-ET-opacity ∆-emptiness
problem). The weak exp-ET-opacity ∆-emptiness problem is decid-
able.

Proof. According to Theorem 8.2, the weak exp-ET-opacity ∆-
computation problem is solvable. Therefore, to ask for the empti-
ness, one can compute the set of bounds ∆ ensuring the weak (≤ ∆)-
ET-opacity and check its emptiness.

In contrast to the weak exp-ET-opacity ∆-computation problem, we
only show below that the full exp-ET-opacity ∆-emptiness problem is
decidable; the computation problem remains open.

Theorem 8.3 (Decidability of the full exp-ET-opacity
∆-emptiness problem). The full exp-ET-opacity ∆-emptiness prob-
lem is decidable.

Proof. Given a TA A, using Theorem 8.2, we first compute the set
of bounds ∆ such that A is weakly (≤ ∆)-ET-opaque. As full (≤ ∆)-
ET-opacity requires weak (≤ ∆)-ET-opacity, if the computed set is
finite, then we only need to check the bounds of this set for full (≤ ∆)-
ET-opacity and thus synthesize all the bounds achieving full (≤ ∆)-
ET-opacity—which immediately allows us to decide the emptiness.

However, if this set is infinite, by the proof of Theorem 8.2, A is weakly
(≤ ∆)-ET-opaque for any bound ∆ ∈ N∞ (and therefore the secret
durations are included in the non-secret ones). To achieve full (≤ ∆)-
ET-opacity, we only need to detect when the non-secret durations
are included in the secret ones. As the set of secret (resp. non-secret)
durations increases (resp. decreases) when ∆ increases, there is a
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valuation of ∆ achieving full (≤ ∆)-ET-opacity of A iff A is fully
(≤ +∞)-ET-opaque. The latter can be decided with Theorem 8.1.

We now move the previous results to R∞
≥0.

Theorem 8.4. All aforementioned results with ∆ ∈N∞ also hold for
∆ ∈ R∞

≥0.

Proof. Given a TA A and ∆ ∈ R∞
≥0 \N∞, we will show that A is

fully (resp. weakly) (≤ ∆)-ET-opaque iff A is fully (resp. weakly)
(≤ ⌊∆⌋+ 1

2 )-ET-opaque.

Constructing the TA A(2) where every constant is multiplied by 2, we
will thus have that A is fully (resp. weakly) (≤ ∆)-ET-opaque iff A(2)

is fully (resp. weakly) (≤ ∆(2))-ET-opaque where ∆(2) = 2∆ if ∆ ∈N

and ∆(2) = 2⌊∆⌋+ 1 otherwise. The previous results of this section
applying on A(2), they can be transposed to A.

We now move to the proof that A is fully (resp. weakly) (≤ ∆)-
ET-opaque iff A is fully (resp. weakly) (≤ ⌊∆⌋+ 1

2 )-ET-opaque. Let
∆ ∈ R≥0 \N such that A is fully (resp. weakly) (≤ ∆)-ET-opaque and
let ∆(2) = ⌊∆⌋+ 1

2 .

Given a run ρ ∈ Visitpriv
≤∆ (A), let ltpriv(ρ) be the time at which ρ en-

ters for the last time the private location. We denote by Vpriv(ρ)

the singleton
{

ltpriv(ρ)
}

if ltpriv(ρ) ∈ N and the open interval
(⌊ltpriv(ρ)⌋, ⌊ltpriv(ρ)⌋+ 1) otherwise. By definition of the region au-
tomaton, one can build runs going through the same path as ρ in
RAA but reaching the private location at any point within Vpriv(ρ).

Similarly, given lt f (ρ) = dur(ρ) the duration of ρ until the final lo-
cation, we denote Vf (ρ) the singleton

{
lt f (ρ)

}
if lt f (ρ) ∈ N and the

open interval (⌊lt f (ρ)⌋, ⌊lt f (ρ)⌋+ 1) otherwise. Let RRunρ be the set
of runs that follow the same path as ρ in RAA.

The set of durations of runs of RRunρ which belong to Visitpriv
≤∆ (A)

is Vf (ρ) ∩ [0, maxρ′∈RRunρ,dur(ρ′)=dur(ρ)(Vpriv(ρ
′)) + ∆], which is either

Vf (ρ) or the left-open interval (⌊lt f (ρ)⌋, ⌊lt f (ρ)⌋+ fr(∆)]. We denote
by DPriv∆(ρ) this set of durations.

Similarly, given a run ρ ∈ Visitpriv
>∆ (A) reaching the final location at

time lt f (ρ), we can again rely on the region automaton to build a set
of durations DPub∆(ρ) describing the durations of runs that follow
the same path as ρ in RAA and that reach the final location more than
∆ after entering the private location. This set is of the form

{
lt f (ρ)

}
if

lt f (ρ) ∈ N, or
(
⌊lt f (ρ)⌋+ fr(∆), ⌊lt f (ρ)⌋+ 1

)
or

(
⌊lt f (ρ)⌋, ⌊lt f (ρ)⌋+

1
)
.
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• Assume first that A is fully (≤ ∆)-ET-opaque w.r.t. a bound ∆.
As the set of durations reaching the final location is a union
of intervals with integer bounds [BDR08, Proposition 5.3] and
as A is fully (≤ ∆)-ET-opaque, the set DVisitpriv

≤∆ (A) and the

set DVisitpriv
>∆ (A) ∪ DVisit¬priv(A) describes the same union of

intervals with integer bounds.

Let t be a duration within those sets. Then we will show that
t ∈ DVisitpriv

≤∆(2)(A) and t ∈ DVisitpriv
>∆(2)(A)∪DVisit¬priv(A). Note

that if t ∈ DVisit¬priv(A) the latter statement is directly obtained,
we will thus ignore this case in the following.

By definition of DVisitpriv
>∆ (A) and DVisitpriv

≤∆ (A), there exists
a run ρpriv and a run ρpub such that t ∈ DPriv∆(ρpriv) and
t ∈ DPub∆(ρpub). Moreover, we can assume that those runs
satisfy that DPriv∆(ρpriv) and DPub∆(ρpub) do not depend on
the bound ∆ (i. e., they are equal to Vf (ρpriv) and Vf (ρpub)

respectively). Indeed, if such runs did not exist, the set
DVisitpriv

≤∆ (A) or the set DVisitpriv
>∆ (A) ∪ DVisit¬priv(A) would

have ⌊t⌋ + fr(∆) as one of its bounds. As a consequence,
DVisitpriv

>∆ (A) ∪DVisit¬priv(A) = DVisitpriv
>∆(2)(A) ∪DVisit¬priv(A)

and DVisitpriv
≤∆ (A) = DVisitpriv

≤∆(2)(A). Thus A is fully (≤ ∆(2))-
ET-opaque.

• Assume now that A is weakly (≤ ∆)-ET-opaque. We consider
first the case where ∆ ≥ ∆(2). There we have by definition
Visitpriv

≤∆(2)(A) ⊆ Visitpriv
≤∆ (A) and Visitpriv

>∆ (A) ⊆ Visitpriv
>∆(2)(A), and

therefore A is weakly (≤ ∆(2))-ET-opaque.

Now assume that ∆ < ∆(2). The same reasoning as
for the full version mostly applies. As the set of du-
rations reaching the final location is a union of inter-
vals with integer bounds [BDR08, Proposition 5.3] and
as A is weakly (≤ ∆)-ET-opaque, the set DVisitpriv

>∆ (A) ∪
DVisit¬priv(A) describe the same union of intervals with inte-
ger bounds. By the same reasoning as before, DVisitpriv

>∆ (A) ∪
DVisit¬priv(A) = DVisitpriv

>∆(2)(A) ∪ DVisit¬priv(A). Moreover,

given t ∈ DVisitpriv
≤∆(2)(A), there exists ρpriv such that t ∈

DPriv∆(2)(ρpriv). Note that either DPriv∆(2)(ρpriv) = DPriv∆(ρpriv)

and is thus included in DVisitpriv
>∆ (A) ∪ DVisit¬priv(A) or

DPriv∆(2)(ρpriv) = (⌊lt f (ρpriv)⌋, ⌊lt f (ρpriv)⌋ + fr(∆(2))] and
DPriv∆(ρpriv) = (⌊lt f (ρpriv)⌋, ⌊lt f (ρpriv)⌋ + fr(∆)]. As the latter

is included in DVisitpriv
>∆ (A) ∪DVisit¬priv(A) which only has in-

teger bounds, then the former is included in it as well.
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Remark that, in the above, ∆ and ∆(2) can be freely swapped and
thus A is fully (resp. weakly) (≤ ∆(2))-ET-opaque iff A is fully (resp.
weakly) (≤ ∆)-ET-opaque.

8.3 Expiring execution-time opacity in parametric timed

automata

We are now interested in the synthesis (and the emptiness) of the valu-
ations set ensuring that a system is fully (resp. weakly) exp-ET-opaque.
We define the following problems, where we ask for parameter val-
uations v and for valuations of ∆ s.t. v(P) is fully (resp. weakly)
(≤ ∆)-ET-opaque.

The full (resp. weak) exp-ET-opacity (∆+p)-emptiness prob-
lem:
Input: A PTA P
Problem: Decide the emptiness of the set of parameter valua-
tions v and valuations of ∆ such that v(P) is fully (resp. weakly)
(≤ ∆)-ET-opaque.

The full (resp. weak) exp-ET-opacity (∆+p)-synthesis problem:
Input: A PTA P
Problem: Synthesize the set of parameter valuations v and
valuations of ∆ such that v(P) is fully (resp. weakly) (≤ ∆)-
ET-opaque.

Remark 12. A “full exp-ET-opacity decision problem” over PTAs is not
formally defined; it aims to decide whether, given a parameter valuation v
and a bound ∆, a valuated PTA is fully (≤ ∆)-ET-opaque: it can directly
reduce to the problem over a TA (which is decidable, Theorem 8.1).

■

Example 8.3. Consider again the PTA P in Figure 3.2.
For this PTA, the answer to the weak exp-ET-opacity (∆+p)-emptiness
problem is false, as there exists such a valuation (e. g., the valuation
given for Example 8.2).
Moreover, we can show that, for all ∆ and v:

• DVisit¬priv(v(P)) = [0, 3]
• if v(p1) > 3 or v(p1) > v(p2), it is not possible to reach

ℓ f with a run visiting ℓpriv and therefore DVisitpriv
>∆ (v(P)) =

DVisitpriv
≤∆ (v(P)) = ∅

• if v(p1) ≤ 3 and v(p1) ≤ v(p2)

– DVisitpriv
>∆ (v(P)) = (v(p1) + ∆, v(p2)]
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Figure 8.3: Construction for the undecidability of full (resp. weak)
exp-ET-opacity (∆+p)-emptiness problem for L/U-PTAs (used in Theo-
rem 8.5)

– DVisitpriv
≤∆ (v(P)) = [v(p1), min(∆ + 3, v(p2))]

Recall that the full exp-ET-opacity (∆+p)-synthesis problem aims
at synthesizing the valuations such that DVisitpriv

≤∆ (v(P)) =

DVisitpriv
>∆ (v(P)) ∪DVisit¬priv(v(P)). The answer to this problem

is therefore the set of valuations of timing parameters and of ∆
s.t. v(p1) = 0 ∧ ((∆ ≤ 3 ∧ 3 ≤ v(p2) ≤ ∆ + 3) ∨ (v(p2) <

∆ ∧ v(p2) = 3)).

8.3.1 The subclass of lower/upper parametric timed automata

Here, we show that both the full exp-ET-opacity (∆+p)-emptiness
problem and the weak exp-ET-opacity (∆+p)-emptiness problem are
undecidable for L/U-PTAs. This is both surprising (seeing from the
existing decidability results for L/U-PTAs) and unsurprising, consid-
ering the undecidability of the full ET-opacity p-emptiness problem
for this subclass (Theorem 7.4).

Theorem 8.5 (Undecidability of full (resp. weak) exp-ET-opacity
(∆+p)-emptiness problem). The full (resp. weak) exp-ET-opacity
(∆+p)-emptiness problem is undecidable for L/U-PTAs with at least
4 clocks and 4 parameters.

Proof. We reduce from the problem of reachability-emptiness in con-
stant time, which is undecidable for general PTAs with at least 4 clocks
and 2 parameters (Lemma 7.1). That is, we showed that, given a con-
stant time bound T, the emptiness over the parameter valuations set
for which a location is reachable in exactly T time units, is undecidable.
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Assume a PTA P with 2 parameters, say p1 and p2, and a target
location ℓ f . Fix T = 1.

The idea of our proof is that, as in [JLR15] and Proposition 7.4, we
“split” each of the two parameters used in P into a lower-bound
parameter (p1

l and p2
l) and an upper-bound parameter (p1

u and p2
u).

Each construction of the form x < pi (resp. x ≤ pi) is replaced with
x < pi

u (resp. x ≤ pi
u) while each construction of the form x > pi

(resp. x ≥ pi) is replaced with x > pi
l (resp. x ≥ pi

l); x = pi is replaced
with pi

l ≤ x ≤ pi
u. Therefore, the PTA P is exactly equivalent to our

construction with duplicated parameters, provided p1
l = p1

u and
p2

l = p2
u. The crux of the rest of this proof is that we will “rule out”

any parameter valuation not satisfying these equalities, so as to use
directly the undecidability result of Lemma 7.1.

Consider the extension P ′ of P given in Figure 8.3, containing no-
tably new locations ℓ′0, ℓpriv, ℓ′f , ℓi for i = 1, · · · , 4, and a number of
guards as seen on the figure; we assume that x is an extra clock not
used in P . The guard on the transition from ℓ′0 to ℓ4 stands for 2

different transitions guarded with p1
l < x ≤ p1

u, and p2
l < x ≤ p2

u,
respectively.

Due to the fact that ℓpriv must be exited in 0-time to reach ℓ′f , note that,
for any ∆, the system is fully (resp. weakly) (≤ ∆)-ET-opaque iff it is
fully (resp. weakly) (≤ 0)-ET-opaque.

Let us first make the following observations, for any parameter valua-
tion v′:

1. one can only take the upper most transition directly from ℓ′0
to ℓpriv at time 2, i. e., ℓ′f is always reachable in time 2 via a run
visiting location ℓpriv: 2 ∈ DVisitpriv(v′(P ′));

2. the original PTA P can only be entered whenever p1
l ≤ p1

u and
p2

l ≤ p2
u; going from ℓ′0 to ℓ0 takes exactly 1 time unit (due to

the x = 1 guard);

3. if ℓ′f is reachable by a public run (not visiting ℓpriv), then its
duration is necessarily exactly 2 (going through P);

4. we have DVisitpriv
>0 (v

′(P ′)) = ∅ as any run reaching ℓ′f and visit-
ing ℓpriv can only do it immediately;

5. from Lemma 7.1, it is undecidable whether there exists a param-
eter valuation for which there exists a run reaching ℓ f from ℓ0 in
time 1, i. e., reaching ℓ′f from ℓ′0 in time 2.

Let us consider the following cases.

1. If p1
l > p1

u or p2
l > p2

u, then due to the guards from ℓ′0 to ℓ0,
there is no way to reach ℓ′f with a public run; since ℓ′f can still
be reached for some execution times (notably x = 2 through the
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upper transition from ℓ′0 to ℓpriv), then P ′ cannot be fully (resp.
weakly) (≤ 0)-ET-opaque.

2. If p1
l < p1

u or p2
l < p2

u, then one of the transitions from ℓ′0
to ℓ4 can be taken, and DVisitpriv

≤0 (v
′(P ′)) = {1, 2}. Moreover, ℓ′f

might only be reached by a public run of duration 2 through P .
Therefore, DVisit¬priv(v′(P ′)) ⊆ [2, 2]. Therefore P ′ cannot be
fully (resp. weakly) (≤ 0)-ET-opaque for any of these valuations.

3. If p1
l = p1

u and p2
l = p2

u, then the behavior of the modified P
(with duplicate parameters) is exactly the one of the original P .
Also, note that the transition from ℓ′0 to ℓ′f via ℓ4 cannot be taken.
In contrast, the upper transition from ℓ′0 to ℓpriv can still be taken.

Now, assume there exists a parameter valuation for which there
exists a run of P of duration 1 reaching ℓ f . And, as a conse-
quence, ℓ′f is reachable, and therefore there exists some run of
duration 2 (including the 1 time unit to go from ℓ0 to ℓ′0) reaching
ℓ′f after visiting P , which is public. From the above reasoning,
all runs reaching ℓ′f have duration 2; in addition, we exhibited
a public and a secret run; therefore the modified automaton P ′
is fully (resp. weakly) (≤ 0)-ET-opaque for such a parameter
valuation.

Conversely, assume there exists no parameter valuation for
which there exists a run of P of duration 1 reaching ℓ f . In
that case, P ′ is not fully (resp. weakly) (≤ 0)-ET-opaque for
any parameter valuation: DVisitpriv

≤0 (v
′(P ′)) = [2, 2] and 2 ̸∈

DVisitpriv
>0 (v

′(P ′)) ∪DVisit¬priv(v′(P ′)) = ∅).

As a consequence, there exists a parameter valuation v′ for which
v′(P ′) is fully (resp. weakly) (≤ ∆)-ET-opaque iff there exists a pa-
rameter valuation v for which there exists a run in v(P) of duration 1
reaching ℓ f —which is undecidable from Lemma 7.1.

The undecidability of the reachability-emptiness in constant time for
PTAs holds from 4 clocks and 2 parameters. Here, we duplicate the
parameters (which gives 4 parameters), and we add a fresh clock x,
never reset (except from ℓpriv to ℓ′f ); however, the construction of
Lemma 7.1 also uses a special clock never reset. Since ours is only
reset “after” the original P , we can reuse the same clock. Therefore,
our result holds from 4 clocks and 4 parameters.

As the emptiness problems are undecidable, the synthesis problems
are immediately intractable as well.
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ℓ0 ℓ fPℓ′0

ℓpriv

ℓ′f
x = 0 x = 1

x = 1
x ← 0

x = 0

Figure 8.4: Construction for the undecidability of full (resp. weak)
exp-ET-opacity (∆+p)-emptiness problem for PTAs (used in Theorem 8.6)

Corollary 8.2. The full (resp. weak) exp-ET-opacity (∆+p)-synthesis
problem is unsolvable for L/U-PTAs with at least 4 clocks and 4 pa-
rameters.

8.3.2 The full class of parametric timed automata

The undecidability of the emptiness problems for L/U-PTAs proved
above (Theorem 8.5) immediately implies undecidability for the larger
class of PTAs. However, we provide below an original proof, with a
smaller number of parameters.

Theorem 8.6 (Undecidability of full (resp. weak) exp-ET-opacity
(∆+p)-emptiness problem). The full (resp. weak) exp-ET-opacity
(∆+p)-emptiness problem is undecidable for general PTAs for at least
4 clocks and 2 parameters.

Proof. We reduce again from the problem of reachability-emptiness
in constant time, which is undecidable for general PTAs with at least
4 clocks and 2 parameters (Lemma 7.1).

Fix T = 1. Consider an arbitrary PTA P , with initial location ℓ0 and a
given location ℓ f . We add to P a new clock x (unused and therefore
never reset in P), and we add the following locations and transitions
in order to obtain a PTA P ′, as in Figure 8.4: (i) a new initial location
ℓ′0, with an urgent outgoing transition to ℓ0, and a transition to a new
location ℓpriv enabled after 1 time unit; (ii) a new final location ℓ′f with
incoming transitions from ℓpriv (in 0-time) and from ℓ f (after 1 time
unit since the system start).

First, due to the guard “x = 0” from ℓpriv to ℓ′f , note that, for
any ∆, the system is fully (resp. weakly) (≤ ∆)-ET-opaque iff it
is fully (resp. weakly) (≤ 0)-ET-opaque. Also note that, for any
valuation, DVisitpriv

≤0 (v(P ′)) = [1, 1]. For the same reason, note
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that DVisitpriv
>0 (v(P ′)) = ∅. Second, note that, due to the guard

“x = 1” on the edge from ℓ f and ℓ′f (with x never reset on this path),
DVisit¬priv(v(P ′)) can at most contain [1, 1], i. e., DVisit¬priv(v(P ′)) ⊆
[1, 1].

Now, let us show that there exists a valuation v such that v(P ′) is
fully (resp. weakly) (≤ 0)-ET-opaque iff there exists v such that ℓ f is
reachable in v(P) in 1 time unit.

⇒ Assume there exists a valuation v such that v(P ′) is fully (resp.
weakly) (≤ 0)-ET-opaque.

Recall that, from the construction of P ′, DVisitpriv
≤0 (v(P ′)) =

[1, 1]. Therefore, from the definition of full (resp. weak) (≤ 0)-
ET-opacity, there exist runs only of duration 1 (resp. there exists
at least a run of duration 1) reaching ℓ′f without visiting ℓpriv.
Since DVisit¬priv(v(P ′)) ⊆ [1, 1], then ℓ f is reachable in exactly
1 time unit in v(P).

⇐ Assume there exists v such that ℓ f is reachable in v(P) in exactly
1 time unit. Therefore, ℓ′f can also be reached in exactly 1 time
unit: hence, DVisit¬priv(v(P ′)) = [1, 1].

Now, recall that DVisitpriv
>0 (v(P ′)) = ∅ and DVisitpriv

≤0 (v(P ′)) =

[1, 1]. Therefore, DVisitpriv
≤0 (v(P ′)) = DVisitpriv

>0 (v(P ′)) ∪
DVisit¬priv(v(P ′)), which from Definition 8.1 means that v(P ′)
is fully (≤ 0)-ET-opaque. Trivially, we also have that
DVisitpriv

≤0 (v(P ′)) ⊆ DVisitpriv
>0 (v(P ′)) ∪ DVisit¬priv(v(P ′)) and

therefore v(P ′) is also weakly (≤ 0)-ET-opaque.

Therefore, there exists v such that v(P ′) is fully (resp. weakly) (≤ 0)-
ET-opaque iff ℓ f is reachable in v(P) in 1 time unit—which is unde-
cidable (Lemma 7.1). As a conclusion, full (resp. weak) exp-ET-opacity
(∆+p)-emptiness problem is undecidable.

Concerning the number of clocks and parameters, we use the same
argument as in the proof of Theorem 8.5: the undecidability of the
reachability-emptiness in constant time holds from 4 clocks and 2 pa-
rameters, and we add a fresh clock x, but which can be shared with
the global clock of Lemma 7.1. Therefore, our construction requires
4 clocks and 2 parameters.

As the emptiness problems are undecidable, the synthesis problems
are immediately intractable as well.

Corollary 8.3. The full (resp. weak) exp-ET-opacity (∆+p)-synthesis
problem is unsolvable for PTAs for at least 4 clocks and 2 parameters.
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Table 8.1: Summary of the results

Decision Emptiness Computation/Synthesis

TA
Weak

√
(Theorem 8.1)

√
(Corollary 8.1)

√
(Theorem 8.2)

Full
√

(Theorem 8.1)
√

(Theorem 8.3) ?

L/U-PTA
Weak

√
(Remark 12) ×(Theorem 8.5) ×(Corollary 8.2)

Full
√

(Remark 12) ×(Theorem 8.5) ×(Corollary 8.2)

PTA
Weak

√
(Remark 12) ×(Theorem 8.6) ×(Corollary 8.3)

Full
√

(Remark 12) ×(Theorem 8.6) ×(Corollary 8.3)

8.4 conclusion and perspectives

We defined and studied here a new version of ET-opacity where the
secret has an expiration date: that is, we are interested in comput-
ing the set of expiration dates of the secret for which the attacker
is unable to deduce whether the secret was visited recently (i. e., be-
fore its expiration date) prior to the system completion; the attacker
has access only to the model and to the execution time of the sys-
tem. We considered both the full exp-ET-opacity (the system must be
exp-ET-opaque for all execution times) and the weak exp-ET-opacity
(the set of execution times visiting the secret before its expiration
date is included into the set of execution times reaching the final
location without visiting it, or reaching it after the expiration date).
Given a known constant expiration date, the decision problems are
all decidable for TAs; in addition, we can effectively compute the set
of expiration dates for which the system is weakly exp-ET-opaque
(full exp-ET-opacity remains open). However, parametric versions of
these problems, with unknown timing parameters, turned to be all
undecidable, including for the L/U-PTA subclass of PTAs, previously
known for some decidability results. This shows the hardness of the
considered problem.

summary We summarize our results in Table 8.1. “
√

” denotes
decidability, while “×” denotes undecidability; “?” denotes an open
problem.

Perspectives

The main theoretical future work is the open problem in Table 8.1 (full
exp-ET-opacity ∆-computation problem): it is unclear whether we can
compute the exact set of expiration dates ∆ for which a system is fully
(≤ ∆)-ET-opaque.

The proofs of undecidability in Section 8.3 require a minimal number
of clocks and parameters. Smaller numbers might lead to decidability.
In addition, the same proofs are based on an undecidability result
(reachability emptiness in constant time (Lemma 7.1)) which uses
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rational-valued parameters. The undecidability of the emptiness prob-
lems of Section 8.3 over integer-valued parameters does not follow
immediately, and remains to be shown.

While the non-parametric part can be (manually) encoded into existing
problems (like in Section 7.6.2) using a TA transformation in order to
reuse our implementation in IMITATOR, the implementation of the
parametric problems remains to be done. Since the emptiness problem
is undecidable, this implementation can only come in the form of a
procedure without a guarantee of termination, or with an approximate
result.

In addition to weak and full exp-ET-opacity, problems focusing on the
exp-ET-opacity for at least one execution time might give a different
decidability or complexity; for example, we highly suspect that the
complexity of Theorem 8.1 would decrease in this latter situation.



9
U N T I M E D C O N T R O L F O R E X E C U T I O N - T I M E
O PA C I T Y

Eu sei que o tempo não pára
O tempo é coisa rara

E a gente só repara
Quando ele já passou.

— Mariza, O tempo não para

In this chapter, we focus on the untimed control problem: exhibiting a
set of allowed actions, such that the system restricted to those actions is
fully ET-opaque. We introduce an algorithm addressing this problem.
We then implement our algorithm into a prototype tool strategFTO
and evaluate it on a set of case studies.

Motivation

In Chapter 7, we proposed a definition of opacity (ET-opacity) where
the attacker only has access (in addition to the model knowledge)
to the system execution time, i. e., the time from the initial location
to a given location. The ET-opacity t-computation problem therefore
asks “for which execution times is the attacker unable to deduce
whether a private location was visited?” The full ET-opacity decision
problem asks whether the system is ET-opaque for all execution times,
i. e., the attacker is never able to deduce whether the private location
was visited by an execution. We proved in Chapter 7 that this latter
problem is decidable (in NEXPTIME; Theorem 8.1), and we proposed
a practical algorithm using PTAs, implemented in IMITATOR.

If a system is not fully ET-opaque, there may be ways to tune it to
enforce ET-opacity. For instance, one could change internal delays,
or add some sleep() or Wait() statements in the program (see e. g.,
Section 7.6.5). In this chapter, we consider a static (untimed) form
of control of the system. This indicates whether there is a way of
restricting the behavior of users to ensure full ET-opacity. With that
mindset, we assume the set of actions of the TA is partitioned into a set
of controllable actions (that can be disabled) and a set of uncontrollable
actions (that cannot be disabled).

131
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(a) A TA example
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(b) Control(A, {u, a})

Figure 9.1: Running example for control

Contributions of the chapter

We address the following goal: exhibit a controller (i. e., a subset of the
system controllable actions to be kept in addition to the uncontrollable
actions, while other controllable actions are disabled) guaranteeing
the system to be fully ET-opaque. We propose an algorithm exhibit-
ing a set of controllers ensuring full ET-opacity, implemented into a
tool strategFTO, calling IMITATOR for computing suitable ET-opaque
execution times, and PolyOp [BHZ08] for additional polyhedra oper-
ations. This contribution can be seen as a preliminary step towards
more complex controllers, such as timed controllers making a decision
to enforce full ET-opacity at runtime, which would probably require
timed games. This is left as future work.

Organization of the chapter

We present our notion of (untimed) control for full ET-opacity in
Section 9.1 and its implementation in Section 9.2. We conclude in
Section 9.3.

9.1 untimed control for full ET-opacity

In this section, we introduce an untimed control for controlling
ET-opacity. We assume Σ = Σc ⊎ Σu (i. e., Σ = Σc ∪ Σu with

https://github.com/DylanMarinho/Controlling-TA
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Σc ∩ Σu = ∅) where Σc (resp. Σu) denote controllable (resp. uncontrol-
lable) actions.

Definition 9.1 (Strategy). A (static, untimed) strategy of a TA A
is a set of actions σ ⊆ Σ that contains at least all uncontrollable
actions (i. e., Σu ⊆ σ ⊆ Σ).

A strategy induces a restriction of A where only the edges labeled by
actions of σ are allowed:

Definition 9.2 (Controlled TA). Given
A = (Σ, L, ℓ0, ℓpriv, ℓ f , X, I, E) with Σ = Σu ⊎ Σc and
a strategy σ ⊆ Σ, the control of A using σ is the
TA A′ = Control(A, σ) = (σ, L, ℓ0, ℓpriv, ℓ f , X, I, E′) where
E′ = {(ℓ, g, a, R, ℓ′) ∈ E | a ∈ σ}.

Example 9.1. Consider the TA in Figure 9.1a, using one clock x. ℓ1

is the initial location, while ℓ f is the final location, i. e., a location
in which an attacker can measure the execution time from the initial
location. ℓ2 is the private location, i. e., a secret to be preserved: the
attacker should not be able to deduce whether it was visited or not. ℓ2

has an invariant x ≤ 3 (boxed); other locations invariants are true.
Fix σ = {u, a}. Then Control(A, σ) is in Figure 9.1b.

Strategies represent some modifications of the system that can be
implemented to ensure full ET-opacity. We therefore define fully
ET-opaque strategies as strategies ensuring full ET-opacity.

Definition 9.3 (Fully ET-opaque strategy). A strategy σ is fully
ET-opaque if Control(A, σ) is fully ET-opaque.

Note that a strategy (even a maximal one) might achieve full
ET-opacity by blocking all runs (both private or public) from reaching
the target. If reaching the target means completing a task, this might
not be something one would desire. We call a fully ET-opaque strategy
allowing to reach the target for at least some execution time an effective
fully ET-opaque strategy.

We define two slightly different problems: taking a TA A as input,
the (resp. effective) fully ET-opaque strategy-emptiness problem asks
whether the set of (resp. effective) fully ET-opaque strategy for A is
empty.
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The fully ET-opaque strategy-emptiness problem:
Input: A TA A
Problem: Decide the emptiness of the set of fully ET-opaque
strategy for A.

The effective fully ET-opaque strategy-emptiness problem:
Input: A TA A
Problem: Decide the emptiness of the set of effective fully
ET-opaque strategy for A.

Note that, due to the presence of uncontrollable actions, the first
problem (fully ET-opaque strategy-emptiness problem) is not trivial.
(If uncontrollable actions were not part of our definitions, choosing
σ = ∅ would always yield an acceptable fully ET-opaque strategy.)

We will also refine those problems by considering a notion of maximal
(i. e., most permissive) strategy w.r.t. full ET-opacity based on the num-
ber of actions belonging to the strategy: given A, a fully ET-opaque
strategy σ is maximal if for all strategy σ′, if σ′ is fully ET-opaque then
|σ′| ≤ |σ|. We define similarly minimal strategies (least permissive,
i. e., disabling as many actions as possible) as well as maximal (resp.
minimal) effective fully ET-opaque strategy, i. e., the set of largest (resp.
smallest) effective fully ET-opaque strategies.

Example 9.2. Consider again the TA A in Figure 9.1a. As-
sume Σu = {u} and Σc = {a, b, c, d, e, f }. Fix σ1 =

{u, b, c}. We have DVisitpriv(Control(A, σ1)) = [2, 5] while
DVisit¬priv(Control(A, σ1)) = [4, 4]; therefore, σ1 is not fully
ET-opaque.
Now fix σ2 = {u, a, f }. We have DVisitpriv(Control(A, σ2)) =

DVisit¬priv(Control(A, σ2)) = [1, 3]; therefore, σ2 is fully
ET-opaque.
In fact, it can be shown that the set of effective fully ET-opaque
strategies for A is {{u, a} , {u, a, e} , {u, a, f }}; therefore, {u, a}
is the only minimal strategy, while {u, a, e} , {u, a, f } are the two
maximal strategies. In addition, {u, f } is an example of a fully
ET-opaque strategy that is not effective, as ℓ f is always unreachable,
whether ℓpriv is visited or not.
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9.1.1 Complexity

Proposition 9.1 (Complexity). Given a TA A, one can compute the
set of fully ET-opaque strategy over A in NEXPTIME.

Proof. The full ET-opacity decision problem (i. e., checking if a given
TA is fully ET-opaque) is decidable for TAs in (at most) NEXPTIME
(Proposition 7.3, Theorem 8.1, and Remark 11). Moreover, reachability
of the final state can be decided in PSPACE [AD94]. Thus, for any
given strategy, one can check in NEXPTIME whether it is a (resp.
effective) fully ET-opaque strategy.

Computing the list of (resp. effective) fully ET-opaque strategies can be
done naively by testing each possible strategy one by one and keeping
the ones that satisfy the property we want. As there is an exponential
number of possible strategies and repeating exponentially many times
a NEXPTIME algorithm remains in NEXPTIME, this algorithm is in
NEXPTIME.

As a corollary of the above, the (resp. effective) fully ET-opaque
strategy-emptiness problem is in NEXPTIME as well. More precisely,
the above proof establishes that the complexity class of the (resp. ef-
fective) fully ET-opaque strategy-emptiness problem is the maximum
between PSPACE and the complexity of the full ET-opacity decision
problem. As the latter is PSPACE-hard (being trivially harder than
reachability), the two problems lie in the same complexity class. From
a theoretical point of view, one thus cannot do better (in terms of
complexity) than the naive enumeration approach described here to
solve the control problem.

Finding the maximal (resp. minimal) strategies can be done slightly
more efficiently by starting from the set with every (resp. no) control-
lable action and enumerating the potential strategies by decreasing
(resp. increasing) order as one could then potentially stop before full
enumeration. In the worst case, this will however have the same
complexity as the full enumeration.

9.2 implementation and experiments

9.2.1 Implementation in strategFTO

We implemented our strategy generation in strategFTO, an entirely
automated open-source tool written in Java.1 Our tool iteratively

1 Source code is available at https://github.com/DylanMarinho/Controlling-TA. Mod-
els and experiment results are available at 10.5281/zenodo.7181848.

https://github.com/DylanMarinho/Controlling-TA
https://doi.org/10.5281/zenodo.7181848
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Algorithm 9.1: synthCtrl(A) Exhibit all fully ET-opaque strategies

1 S ← ∅
2 foreach s ⊆ Σc do
3 σ← s ∪ Σu

/* Compute execution times */

4 λ1 ← DVisit¬priv(Control(A, σ))

5 λ2 ← DVisitpriv(Control(A, σ))

/* Check for full ET-opacity */

6 if λ1 = λ2 then S ← S ∪ {σ} ;

7 return S

A A′

Control(A, σ1)

. . .

Control(A, σk)

reachPub

reachPriv

I

I

I

I

P

. . .

P

. . . List of strategiesYes?

I Call to IMITATOR

P Call to PolyOp

Result

Figure 9.2: Overview of the tool strategFTO

constructs strategies, then checks full ET-opacity by computing the
private and public execution times and by checking their equality
(Algorithm 9.1).

We give our strategy synthesis algorithm in Algorithm 9.1. The exhibi-
tion of these execution times (DVisit¬priv(A) and DVisitpriv(A), Lines 4

and 5) is done in our implementation by an automated model modifi-
cation (following the procedure described in Sections 7.5 and 7.6.4, but
which was not entirely automated in the aforementioned experiments)
followed by a synthesis problem using PTAs. The synthesis of the
execution times itself is done by a call to IMITATOR 3.3 “Cheese Caramel
au beurre salé”.

strategFTO then checks whether both sets of execution times are equal;
this is done by a call to another external tool—PolyOp 1.22, that
performs polyhedral operations as a simple interface for PPL.

In Figure 9.2, we give an overview of the tool, with calls to IMITATOR
and PolyOp.

algorithms We implement not only the exhibition of all fully
ET-opaque strategies (denoted by synthCtrl(A), in Algorithm 9.1), but
also the following variants:

2 https://github.com/etienneandre/PolyOp

https://github.com/etienneandre/PolyOp
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WC : waiting for choice
WP : waiting for password

Figure 9.3: ATM benchmark

1. synthMaxCtrl(A): synthesize all maximal strategies for A;

2. synthMinCtrl(A): synthesize all minimal strategies;

3. witnessMaxCtrl(A): witness one maximal strategy;

4. witnessMinCtrl(A): witness one minimal strategy.

We implemented these other algorithms by changing the exploration
order of the strategies, and/or by triggering immediate termination
upon the first exhibition of a strategy.

input model The input TA model is given in the IMITATOR
input syntax and can therefore include all the extensions described in
Section 4.1.

9.2.2 Proof of concept benchmark

As a proof of concept, we consider the TA model of an ATM (given
in Figure 9.3). The idea is that (as per our definition of ET-opacity)
the attacker only has access to the execution time, i. e., the time from
the beginning of the program to reaching the end state. The secret is
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whether the ATM user has actually obtained cash (action takeCash).3

The TA uses two clocks: x for “local” actions, and y for a global time
measurement. First, the user starts the process (action start), then
the ATM displays a welcome screen for 3 time units, followed by
another screen requesting the password (action askPwd). Then, the
user can submit a correct (action correctPwd) or incorrect (incorrectPwd)
password; if no password is input within 10 time units, the system
moves to a cancelling phase. The same happens if 3 incorrect password
have been input. After inputting the correct password, the user has the
choice between a fixed-amount quick withdrawal (quickWithdraw), a
normal withdrawal (normalWithdraw) or a balance request (reqBalance).

The quick withdrawal triggers a 15-time unit preparation followed by
the availability of the money, which the user can take immediately
(action takeCash), thus terminating the procedure. If the user does not
take the money, the system moves to the cancelling phase.

The normal withdrawal asks the user to input the desired amount; sim-
ilar to the password, after 3 wrong amounts (action incorrectAmount),
or upon timeout, the system moves to cancelling phase. After the user
retrieves cash (action takeCash), they are asked whether they would
like to perform another operation; if so (action restart), the system goes
back to the choice location. Otherwise (action pressFinish), or unless a
10-time unit timeout is reached, the system moves to the terminating
location. The balance request triggers the balance display, from which
the user can immediately terminate the process (action pressOK), or
go back to the choice menu.

The rationale is that, in the regular terminating and cancelling phases,
the ATM terminates after constant time (invariant y ≤ 100), avoiding
leaking information. However, some actions may lead to quicker ter-
mination (quick withdrawal) or slower termination (multiple choices).

The uncontrollable actions are most of the user actions: correctAmount,
incorrectAmount, correctPwd, incorrectPwd, pressFinish, takeCash. The
controllable actions are the system actions (askPwd, start, finish) and
some of the users actions that can be controlled by disabling the
associated choice (reqBalance, pressOK, quickWithdraw, restart).

9.2.3 Experiments

We first exhibit in Table 9.1 strategies for our benchmark from Fig-
ure 9.3 as computed by strategFTO, for all our algorithms. For space

3 strategFTO allows not only private locations, but also actions. Formally, we could

use an observer with three locations
{
ℓo

0, ℓo
f , ℓo

priv

}
. It is synchronized with the model

with a private action (only) on the transition from ℓo
0 to ℓo

priv: when the private
action occurs, the observer goes to ℓo

priv. We can therefore check ET-opacity on the
synchronized TA with ℓo

priv.
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Table 9.1: Strategy synthesis for Figure 9.3

Actions to disable synthMinCtrl(A) witnessMinCtrl(A) synthMaxCtrl(A) witnessMaxCtrl(A) synthCtrl(A)
restart, pressOK

√ √ √

restart, reqBalance
√ √

restart, pressOK, quickWithdraw
√

restart, pressOK, reqBalance
√

restart, quickWithdraw, reqBalance
√

restart, pressOK, quickWithdraw, reqBalance
√ √ √
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Figure 9.4: Execution times for scalability (in seconds; TO set at 1,800 s)

concern, we tabulate the actions to disable; the strategy is therefore
Σ minus these actions. Also note that, for witnessMaxCtrl(•) and
witnessMinCtrl(•), the order in which we compute the subsets of Σ in
Algorithm 9.1 has an impact on the result, as the algorithm stops as
soon as one strategy is found. According to Table 9.1, the maximal
strategies (i. e., the most permissive, disabling the least number of ac-
tions) are to disable either restart and pressOK, or restart and reqBalance.
This is natural, as restart allows the user to restart a second operation,
thus violating the constant-time nature of Figure 9.3, while pressOK
and reqBalance, if enabled together, allow a quick exit, shorter than a
cash withdrawal operation—thus giving hint to the attacker that the
takeCash secret did not occur.

scalability Then, we test the scalability of strategFTO w.r.t. the
number of actions. We modify Figure 9.3 by adding an increasingly
large numbers of controllable actions; these actions do not play a role
in the control (we basically add unguarded self-loops) but they will
impact the computation time, as we will need to consider an increas-
ingly (and exponentially) larger number of subsets of actions, from
Algorithm 9.1. We add from 1 to 40 such actions, resulting (by adding
the actions in Figure 9.3) in a model with a number of controllable
actions from 11 to 50. We plot these results in Figure 9.4 and present
raw results in Table 9.2. From our results in Figure 9.4, we see that,
without surprise, the execution time for synthCtrl(•) is exponential in
the number of actions. However, synthMaxCtrl(•) and synthMinCtrl(•)
behave much better, by remaining respectively below 15 minutes and
3 minutes, even for up to 50 controllable actions. In addition, it
is important to notice that witnessMaxCtrl(•) and witnessMinCtrl(•)
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Table 9.2: Execution times for scalability (in seconds; TO set at 1,800 s)

Number of synthMinCtrl(A) witnessMinCtrl(A) synthMaxCtrl(A) witnessMaxCtrl(A) synthCtrl(A)
added actions -find min -find min -witness -find max -find max -witness -find all

1 2.89 2.04 12.61 5.92 22.98

2 3.19 2.44 17.81 11.30 44.68

3 3.84 2.74 23.99 17.58 87.07

4 4.43 2.85 31.15 24.92 172.26

5 4.90 3.77 39.69 10.34 342.95

6 6.07 4.09 48.78 11.12 683.77

7 7.02 4.54 59.14 12.35 1,362.48

8 8.34 4.69 70.09 13.46 TO
9 9.32 5.63 82.45 14.52 TO
10 10.51 5.91 95.86 15.65 TO
11 12.04 7.66 111.16 30.49 TO
12 13.99 9.43 126.11 46.00 TO
13 15.54 10.94 143.15 62.50 TO
14 17.58 12.83 160.41 80.32 TO
15 19.88 15.03 180.24 85.64 TO
16 21.94 17.38 199.34 105.15 TO
17 24.39 17.63 221.04 146.98 TO
18 27.64 20.53 241.70 168.79 TO
19 30.49 23.65 264.72 191.16 TO
20 33.43 26.59 287.85 215.33 TO
21 36.58 28.60 313.34 239.52 TO
22 40.46 30.92 339.24 265.90 TO
23 44.31 33.92 366.07 292.51 TO
24 48.52 36.43 395.95 322.16 TO
25 53.21 38.30 423.86 350.92 TO
26 58.02 41.21 453.59 368.86 TO
27 62.36 43.57 484.28 400.39 TO
28 68.56 46.60 517.03 419.43 TO
29 74.39 49.74 551.58 436.35 TO
30 80.64 53.15 586.03 453.37 TO
31 86.89 55.72 621.83 472.63 TO
32 92.91 59.14 656.75 492.10 TO
33 100.67 67.00 693.82 528.71 TO
34 111.66 76.17 730.93 564.68 TO
35 120.37 85.48 768.87 604.42 TO
36 128.35 94.59 809.36 645.01 TO
37 137.28 102.77 856.98 685.03 TO
38 147.68 112.83 897.39 728.48 TO
39 157.42 121.77 940.98 771.68 TO
40 168.74 132.45 984.65 818.25 TO

do not decrease the time very much compared to the full versions
synthMaxCtrl(•) and synthMinCtrl(•). This is because, at a given size,
the number of strategies to be tested remains relatively small.

9.3 conclusion and perspectives

We introduced in this chapter a control problem where the goal is to
exhibit strategies to guarantee the full ET-opacity of a system modeled
by a TA where the attacker only has access to the execution time. We
implemented our algorithm into a prototype tool strategFTO. Even
though it relies on a simple enumeration of the subsets, our tool
strategFTO shows good performance for synthesizing maximal or
minimal strategies, with very reasonable times, even for several dozens
of controllable actions.
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Perspectives

We plan to further optimize our implementation by maintaining a
set of non-effective strategies, i. e., for which ℓ f is unreachable: any
strategy strictly included into a known non-effective strategy will nec-
essarily be non-effective too, and therefore no ET-opacity analysis is
needed for this strategy. An option to efficiently represent this strate-
gies set could be to store it using Binary Decision Diagrams [Bry86].

We also plan to strengthen strategies so that their choice may de-
pend on how long has passed since the start of the execution. As
these strategies still need a finite representation to be handled, this
requires establishing exactly what strategies need to remember to
chose optimally.

The next step is to move towards a timed controller, where strategies
are not disabled in the entire system, but depending on the current
location and timestamp at runtime. Considering other notions around
ET-opacity (as ∃-ET-opacity, weak ET-opacity or expiration secrecy
notions) and exhibiting (timed/untimed) controllers is also a future
work. Runtime enforcement, as in [FM15], is also planned.

Our ultimate goal will be to extend TAs to PTAs, and use automated
parameter synthesis techniques (e. g., [JLR15; AAPP21; AMP21a]),
with a parametric timed controller [JLR19; Gol21].
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G E N E R A L C O N C L U S I O N

Imagine there’s no heaven Imagine no possessions
It’s easy if you try I wonder if you can
No hell below us No need for greed or hunger
Above us only sky A brotherhood of man
Imagine all the people Imagine all the people
Living for today Sharing all the world

Imagine there’s no countries You may say I’m a dreamer
It isn’t hard to do But I’m not the only one
Nothing to kill or die for I hope someday you’ll join us
And no religion too And the world will be as one
Imagine all the people
Living life in peace

— John Lennon, Imagine
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10
G E N E R A L C O N C L U S I O N

The bitterest tears shed over graves
are for words left unsaid and deeds left undone.

— Harriet Beecher Stowe

In this thesis, we presented theoretical and algorithmic contributions
to the analysis of safety and security properties in timed systems
under uncertainty.

10.1 contribution summary

Part I: Zone Merging in parametric timed automata

In Part I, we studied efficient verification of PTAs.

First, we introduced a benchmark library about PTAs, composed of
56 benchmarks with 119 different models and 216 properties. This
library provides several features, including multiple kinds of prop-
erties (about reachability and liveness), classical extensions of PTAs
(such as stopwatches) or unsolvable toy benchmarks. We used the
framework of the IMITATOR model checker, as a de facto standard
for PTAs verification, with useful tools to allow the translation of the
models into other model checkers (such as Uppaal) or specifications
(such as JANI).

Second, we investigated merging techniques for the efficient verifi-
cation of reachability properties in PTAs. We introduced different
merging heuristics and implemented them in IMITATOR. They are
mainly focused on the states considered for merging and on the
techniques to update the state-space after a successful merge. We
evaluated and compared each combination of options with the pre-
viously implemented version. Our method leads to a gain of 62% of
the average computation time over the aforementioned benchmark
library.

Part II: Execution-time opacity

Execution-time opacity

In Part II, we first introduced the ET-opacity concept: a timed system
is ET-opaque if it is impossible for an attacker to decide whether an
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execution of the system visits a private location only knowing the
system execution time. We considered two levels of this definition:

i) ∃-ET-opacity: there exists such an execution time;

ii) full ET-opacity: for each possible execution time, it is possible to
visit and not to visit the private location.

We studied many problems around this definition, such as decision
problems (asking to decide whether a system is ET-opaque) or the
ET-opacity t-computation problem (asking to compute the execution
times ensuring ET-opacity). We also introduced parametric problems,
asking to synthesize internal constants in the system to make the sys-
tem ET-opaque. We showed that these problems are decidable in TAs,
but become undecidable for PTAs. The subclass of L/U-PTAs was
studied and remains at the frontier between decidability and undecid-
ability (in this subclass, e. g., the emptiness of parameter valuations
for ∃-ET-opacity is decidable, but their synthesis is intractable).

Expiring execution-time opacity

Secondly, we extended the previous definition, with the introduction
of an expiration date of the secret (exp-ET-opacity). With this concept,
runs are not simply separated in term of visit of the private location
but we also consider the time spent from its last visit; a run for which
the visit was performed “too early” (i. e., more than the expiration
date before the end of the run) is not considered as private.

We were interested in decision (for a given bound, decide if the
system is exp-ET-opacity) and computation problems (compute the
expiring bounds). We proved that these problems are decidable, except
the full exp-ET-opacity ∆-computation problem which remains open.
We introduced parametric extensions of these problems, which are
undecidable even for the subclass of L/U-PTAs.

Untimed control

Thirdly, we were interested in untimed control for full ET-opacity,
i. e., in finding a subset of actions to disable to ensure ET-opacity.
We proposed an algorithm and implemented a tool, strategFTO, syn-
thesizing all the strategies of a given timed system. This tool was
tested on a proof-of-concept benchmark and we performed scalability
experiments, studying the evolution of its computation time when the
number of actions is increased.
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10.2 perspectives

10.2.1 Parametric timed model checking

In this thesis, we have only studied some form of merging, in a
reachability context and only merging two-by-two areas. Extending
our work to a more general context, for example on liveness properties,
would be a considerable improvement.

We could also investigate a generic format that could be interoperable
with all parametric timed verification tools, for example by extending
the works leading to the JANI specification. This format could then be
integrated with other tools, for example scheduling ones, in order to
check these problems with existing tools.

10.2.2 Other kinds of parameters

In this thesis, we focused on timed systems and timed parameters.
However, other types of parametrization exist: probabilistic systems,
systems with costs, systems with a parametric number of components
(“parameterized verification”). Extending the work we have done, as
well as extending our notions, to such models could be an interesting
continuation.

First, we may want to add these kinds of parameters in our models,
and extend our definition to consider TAs and PTAs with costs [LRS21]
or probabilities [EDLR16; ADF20]. These extensions may allow us to
define more general problems, such as attacks based on the frequency
(i. e., the probability) to visit a private location. Parametrized verifi-
cation will allow us to verify a network of PTAs, with an arbitrary
number of components, as done in [ADFL19].

Second, we may study the equivalent problems in untimed systems,
where parameters represent other types of data, and therefore allow
us to model other types of attacks (e. g., considering the total cost of
a system execution). As the considered formalism varies, our study
could lead to different decidability results and other algorithms.

10.2.3 Execution-time opacity

Theory

In Part II, we proved a number of (un)decidability results related to
ET-opacity problems. However, some of them remain open, includ-
ing the full exp-ET-opacity ∆-computation problem or the existential
extension of exp-ET-opacity (i. e., for at least one execution time). In
addition, the decidability of several “low-dimensional” problems (i. e.,
with “small” number of clocks or parameters) remains open, as well
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as the study of more restricted classes, hoping to exhibit a decidable
one.

We have shown that these problems were generally decidable on TAs
(i. e., for non-parametric models). However, Franck Cassez [Cas09] has
shown that the general notion of timed opacity (allowing the obser-
vation of certain actions by the attacker) was undecidable, even for
subclasses of TAs with restricted expressiveness. We could therefore
question how far we could extend an attacker (so that they would be
more powerful than the one we considered), while keeping the decid-
ability of the studied problems. For example, could they have a certain
view of the system at given times, i. e., know information about the
system at some time steps? We could also work on semi-algorithms
considering the definition introduced by Franck Cassez, as we did for
our notion.

Moreover, we could apply the definition of ET-opacity to other for-
malisms, such as time Petri nets or hybrid automata. They could allow
to define slightly different problems or to have a more general concept;
for example, considering probabilistic extensions of our ET-opacity
could be an interesting extension to look at.

Applications

Although we present experiments with each of the contributions, the
translation of programs required some non-trivial creativity: while
the translation from programs to quantitative extensions of automata
is orthogonal to our work, proposing automated translations of TAs
dedicated to timing analysis was not studied here but could be inves-
tigated. Some works were performed (e. g., [LKP19]) and can provide
the basis for a future work.

Furthermore, although an algorithm has been presented to solve the
full ET-opacity p-synthesis problem, it lacks the ability to compute, in
practice, expiration dates or secure execution times (for all versions
of ET-opacity and exp-ET-opacity). Reflection on these topics could
further extend our work into practical considerations.



R É S U M É E N F R A N Ç A I S

Les systèmes temps-réels sont présents dans de multiples champs d’ap-
plications, comme les transports, les télécommunications ou l’industrie.
Cependant, des accidents peuvent arriver et il est nécessaire d’avoir
confiance en ces systèmes afin de les éviter. Il est donc nécessaire de
pouvoir prouver formellement que leur comportement sera conforme
à une spécification. Celle-ci peut être de deux natures, s’intéressant
(i) à la sûreté du système, montrant qu’il aura toujours un comporte-
ment attendu, (ii) mais aussi la sécurité, montrant qu’il sera résistant
à certaines attaques. Pour cela, le formalisme des automates tem-
porisés (timed automata, TAs) [AD94] est assez commun. Néanmoins,
cette modélisation peut être imparfaite, en raison de la nature du
système, de simplifications devant être faites ou d’imprécisions. Nous
étudions donc ces systèmes temporisés sous incertitude, c’est à dire à
l’aide de paramètres. L’extension naturelle étudiée est alors le forma-
lisme des automates temporisés paramétrés (parametric timed automata,
PTAs) [AHV93].

Cette thèse présente plusieurs contributions, à la fois sur des
techniques permettant une vérification efficace de ces systèmes
ainsi que sur une formalisation de propriétés de sécurité.

a les automates temporisés

Plus précisément, un exemple de TA et de PTA est donné en Fi-
gure A.1.

Un TA est composé de localités (ℓ0, ℓ1, ℓ2), d’actions (press?, cup!, coffee!)
et d’un ensemble d’horloges (x, y). Ces horloges sont des variables
réelles qui évoluent linéairement. Elles peuvent ensuite :

ℓ0 ℓ1 ℓ2

y ≤ 5
y ≤ 8

press?
x ← 0
y← 0

y = 5
cup!

x ≥ 1
press?
x ← 0

y = 8
coffee!

(a) Une machine à café modélisée avec
un TA

ℓ0 ℓ1 ℓ2

y ≤ 5
y ≤ 8

press?
x ← 0
y← 0

y = 5
cup!

x ≥ p
press?
x ← 0

y = 8
coffee!

(b) Une paramétrisation de la machine
à café

Figure A.1 : Exemple de TA et de PTA modélisant une machine à café
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Tableau B.1 : Quelques améliorations de la librairie

Version de Taille Métriques Format Catégories Propriétés Analyse
librairie Bench. Modèles Propriétés Statiques Sémantiques .imi JANI Insolvables EF TPS Vivacité Résultats

1.0 [And18] 34 80 122

√
× 2.12 × ×

√ √
× ×

2.0 [AMP21c] 56 119 216

√ √
3.0

√ √ √ √ √ √

• être comparées au sein de gardes (propriétés à vérifier pour
activer une transition) ;

• être comparées au sein d’invariants (propriétés à vérifier pour
rester dans une localité) ;

• être réinitialisées le long d’une transition.

Un PTA étend naturellement un TA en offrant la possibilité d’utiliser
des paramètres (p) au sein de gardes ou d’invariants.

b vérification efficace

Cette première partie s’articule en deux contributions, en proposant :

1) une librairie de benchmarks pour le model-checking temporisé
paramétré ;

2) une notion permettant la fusion d’états dans le graphe de zones
paramétrées (parametric zone graph, PZG) [AD94] d’un PTA.

b.1 Une librairie de benchmarks

La librairie proposée étend une version précédente [And19a]. Cette ex-
tension propose un certain nombre d’améliorations, résumés dans
le Tableau B.1. Ainsi, nous proposons désormais des métriques
sémantiques (p. ex., temps de calcul et taille de l’espace d’états), une
exportation vers le format JANI, ainsi que des propriétés de vivacité
(liveness).

b.2 Fusion de zones

Nous avons également introduit une notion de fusion de zones dans
les PZGs.

La fusion de zones est définie comme suit :

Définition (Fusion). Deux états symboliques s1 = (ℓ1, C1),
s2 = (ℓ2, C2) sont fusionnables, désigné par le prédicat
is mergeable(s1, s2), si ℓ1 = ℓ2 et C1 ∪ C2 est convexe.
Dans ce cas, leur fusion est définie comme étant (ℓ1, C1 ∪ C2).

Il est alors possible d’inclure cette notion de fusion lors de la construc-
tion d’un PZG. Cette méthode ayant été implémentée, nous avons
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comparé différentes heuristiques et avons montré qu’en pratique cette
méthode permet de réduire en moyenne de 62% le temps de calcul.

c Opacité par rapport au temps d’exécution

Nous nous intéressons ensuite à une notion d’opacité sur les PTAs.
Cette partie se décompose en trois contributions :

1) la formalisation de la notion d’opacité par rapport au temps
d’exécution (execution-time opacity, ET-opacity), avec des résultats
de décidabilité ainsi que des expérimentations ;

2) une première extension, considérant une opacité par rap-
port au temps d’exécution avec expiration (expiring ET-opacity,
exp-ET-opacity), c’est-à-dire que les secrets pourront expirer
après un certain délai ;

3) une seconde extension, introdusant la notion de contrôle non
temporisé pour l’ET-opacity.

c.1 La notion de l’ET-opacity

Définitions

Étant donné un TA A, nous commençons par définir deux ensembles
particuliers de durées :

• DVisitpriv(A) comme étant l’ensemble des durées des chemins
possibles pour lesquels ℓpriv est visitée ;

• DVisit¬priv(A) comme étant l’ensemble des durées des chemins
possibles pour lesquels ℓpriv n’est pas visitée.

Dans notre formalisme, un attaquant cherche à déterminer un secret
(exprimé en terme de visite d’une localité) en ne connaissant que
le temps d’exécution total du système (ainsi que le modèle). Nous
définissons formellement cette notion d’ET-opacity ainsi :

Définition (Opacité par rapport au temps d’exécution). Étant
donné un TA A avec un localité privée ℓpriv et un ensemble de
temps d’exécutions D, on dit que A est opaque par rapport au
temps d’exécution pour les temps d’exécutions D si

D ⊆ DVisitpriv(A) ∩DVisit¬priv(A).

Ainsi, étant donnée une durée d ∈ DVisitpriv(A) ∩DVisit¬priv(A), un
attaquant ne pourra pas déduire la visite ou non de la localité privée
ℓpriv pour un chemin de cette durée, ces deux cas étant possibles.
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Nous nous intéressons ensuite à l’existence d’une telle durée d. On dit
alors que le TA est ∃-ET-opaque s’il est ET-opaque pour un ensemble
non vide de temps d’exécution.

Définition (∃-ET-opacity). Étant donné un TA A, on dit que A
is ∃-ET-opaque si DVisitpriv(A) ∩DVisit¬priv(A) ̸= ∅.

Puis, nous nous intéressons à deux niveaux de définitions, dépendant
de l’inclusion simple ou de l’égalité entre ces deux ensembles :

Définition (ET-opacity faible). Étant donné un TA A, on dit
que A is fortement ET-opaque si DVisitpriv(A) ⊆ DVisit¬priv(A).

Définition (ET-opacity forte). Étant donné un TA A, on dit que
A is fortement ET-opaque si DVisitpriv(A) = DVisit¬priv(A).

Problèmes

Nous considérons ensuite plusieurs problèmes découlant de cette
définition :

• des problèmes de décisions, afin de déterminer si un TA est
ET-opaque ou non ;

• des problèmes de vide (p-emptiness) afin de déterminer le vide
de l’ensemble des valuations de paramètres tels que le TA évalué
vérifie la propriété ;

• des problèmes de synthèse (p-synthesis) afin de synthétiser l’en-
semble des valuations de paramètres tels que le TA évalué vérifie
la propriété.

Résultats de décidabilité

Le Tableau C.2 présente les différents résultats de décidabilité
présentés dans cette thèse. Une case verte désigne un problème
décidable, lorsqu’une case rouge désigne un problème indécidable.

Tableau C.2 : Résultats de décidabilité pour l’ET-opacity

∃-ET-opaque Faiblement
ET-opaque

Fortement
ET-opaque

Decision TA
√ √ √

p-emptiness
L/U-PTA

√
× ×

PTA × × ×

p-synthesis
L/U-PTA × × ×

PTA × × ×
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Tableau C.3 : Résultats de décidabilité pour l’exp-ET-opacity

Décision Vide Calcul/synthèse

TA
Faible

√ √ √

Forte
√ √

?

L/U-PTA
Faible

√
× ×

Forte
√

× ×

PTA
Faible

√
× ×

Forte
√

× ×

c.2 La notion de l’exp-ET-opacity

Nous étendons ensuite cette définition au cas des secrets avec expi-
ration : dans ce formalisme, après un certain délai, trouver un secret
est inutile pour l’attaquant. Nous nous intéressons alors au problème
de décision ainsi qu’à celui du calcul de date d’expiration permettant
d’assurer qu’un TA est exp-ET-opaque. Une extension paramétrée est
également étudiée, avec la synthèse des paramètres dans un PTA. Pour
les différents problèmes, nous montrons des résultats de décidablité
et proposons quelques algorithmes pour les résoudre.

Le Tableau C.3 présente les différents résultats de décidabilité
présentés dans cette thèse. Une case verte désigne un problème
décidable, lorsqu’une case rouge désigne un problème indécidable et
une case jaune un problème ouvert.

c.3 Contrôle non temporisé pour l’ET-opacity

Nous présentons également une première version de contrôle non-
temporisé associé à notre formalisme d’ET-opacity. Nous cherchons
alors à mettre en évidence un ensemble d’actions de sorte qu’un
TA restreint à cet ensemble soit ET-opaque ; un algorithme et une
implémentation sont proposés.

acronymes du résumé en français

ET-opacity

Opacité par rapport au temps d’exécution (execution-time
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[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and
Romain Soulat. “IMITATOR 2.5: A Tool for Analyzing
Robustness in Scheduling Problems”. In: FM (Aug. 27–
31, 2012). Ed. by Dimitra Giannakopoulou and Do-
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[ALR18] Étienne André, Didier Lime, and Mathias Rampari-
son. “TCTL model checking lower/upper-bound para-
metric timed automata without invariants”. In: FOR-
MATS (Sept. 4–6, 2018). Ed. by David N. Jansen and
Pavithra Prabhakar. Vol. 11022. Lecture Notes in Com-
puter Science. Beijing, China: Springer, 2018, pp. 1–17.

doi: 10.1007/978-3-030-00151-3 3 (cit. on pp. 87, 94).

[ALR19] Étienne André, Didier Lime, and Mathias Ramparison.
“Parametric updates in parametric timed automata”.
In: FORTE (June 17–21, 2019). Ed. by Jorge A. Pérez
and Nobuko Yoshida. Vol. 11535. Lecture Notes in
Computer Science. Copenhagen, Denmark: Springer,
2019, pp. 39–56. doi: 10.1007/978-3-030-21759-4 3 (cit. on

p. 45).
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ture Notes in Computer Science. Budapest, Hungary:
Springer, 2014, pp. 123–134. isbn: 978-3-662-44521-1.

doi: 10.1007/978-3-662-44522-8 (cit. on p. 108).

[BPS20] Borzoo Bonakdarpour, Pavithra Prabhakar, and César
Sánchez. “Model Checking Timed Hyperproperties in
Discrete-Time Systems”. In: NFM 2020 (May 11–15,
2020). Ed. by Ritchie Lee, Susmit Jha, and Anastasia
Mavridou. Vol. 12229. Lecture Notes in Computer Sci-
ence. Moffett Field, CA, USA: Springer, 2020, pp. 311–
328. doi: 10.1007/978-3-030-55754-6 18 (cit. on p. 14).

[BPT19] Sandrine Blazy, David Pichardie, and Alix Trieu. “Ver-
ifying constant-time implementations by abstract inter-

https://doi.org/10.1109/TCAD.2020.3012859
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/s10207-008-0058-x
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/978-3-662-44522-8
https://doi.org/10.1007/978-3-030-55754-6_18


bibliography 165

pretation”. In: Journal of Computer Security 27.1 (2019),
pp. 137–163. doi: 10.3233/JCS-181136 (cit. on p. 13).

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for
Boolean Function Manipulation”. In: IEEE Trans. Com-
puters 35.8 (1986), pp. 677–691. doi: 10 . 1109/TC.1986 .

1676819 (cit. on p. 141).

[BSBM06] Ramzi Ben Salah, Marius Bozga, and Oded Maler.
“On Interleaving in Timed Automata”. In: CONCUR
(Aug. 27–30, 2006). Ed. by Christel Baier and Holger
Hermanns. Vol. 4137. Lecture Notes in Computer Sci-
ence. Bonn, Germany: Springer, 2006, pp. 465–476.
isbn: 3-540-37376-4. doi: 10.1007/11817949 31 (cit. on p. 23).

[BSBM09] Ramzi Ben Salah, Marius Bozga, and Oded Maler.
“Compositional timing analysis”. In: EMSOFT (Oct. 12–
16, 2009). Ed. by Samarjit Chakraborty and Nicolas
Halbwachs. Grenoble, France: ACM, 2009, pp. 39–48.

doi: 10.1145/1629335.1629342 (cit. on p. 23).

[BT03] Roberto Barbuti and Luca Tesei. “A Decidable Notion
of Timed Non-Interference”. In: Fundamenta Informor-
maticae 54.2-3 (2003), pp. 137–150 (cit. on p. 19).

[Bud+17] Carlos E. Budde, Christian Dehnert, Ernst Moritz
Hahn, Arnd Hartmanns, Sebastian Junges, and Andrea
Turrini. “JANI: Quantitative Model and Tool Interac-
tion”. In: TACAS, Part II (Apr. 22–29, 2017). Ed. by Axel
Legay and Tiziana Margaria. Vol. 10206. Lecture Notes
in Computer Science. Uppsala, Sweden: Springer, 2017,
pp. 151–168. doi: 10.1007/978-3-662-54580-5 9 (cit. on pp. 23,

43, 46).

[BZ18] Anna Becchi and Enea Zaffanella. “An Efficient Ab-
stract Domain for Not Necessarily Closed Polyhedra”.
In: SAS (Aug. 29–31, 2018). Ed. by Andreas Podel-
ski. Vol. 11002. Lecture Notes in Computer Science.
Freiburg, Germany: Springer, 2018, pp. 146–165. doi:

10.1007/978-3-319-99725-4 11 (cit. on p. 69).

[BZ20] Anna Becchi and Enea Zaffanella. “PPLite: Zero-
overhead encoding of NNC polyhedra”. In: Information
and Computation 275 (Dec. 2020), pp. 1–36. doi: 10.1016/j.

ic.2020.104620 (cit. on p. 69).
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Grenoble Alpe; INRIA Grenoble - Rhone-Alpes, Nov.
2016 (cit. on p. 23).

[SLDP09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. “PAT:
Towards Flexible Verification under Fairness”. In: Lec-
ture Notes in Computer Science 5643 (2009). Ed. by
Ahmed Bouajjani and Oded Maler, pp. 709–714. doi:

10.1007/978-3-642-02658-4 59 (cit. on pp. 6, 15).

[SM73] Larry J. Stockmeyer and Albert R. Meyer. “Word Prob-
lems Requiring Exponential Time: Preliminary Report”.
In: Proceedings of the 5th Annual ACM Symposium on The-
ory of Computing (Apr. 30–May 2, 1973). Ed. by Alfred
V. Aho, Allan Borodin, Robert L. Constable, Robert
W. Floyd, Michael A. Harrison, Richard M. Karp, and
H. Raymond Strong. Austin, Texas, USA: ACM, 1973,
pp. 1–9. doi: 10.1145/800125.804029 (cit. on p. 119).

https://doi.org/10.1007/978-3-030-29662-9_11
https://doi.org/10.1007/978-3-030-29662-9_11
https://doi.org/10.1007/978-3-642-40184-8_38
https://doi.org/10.4230/LIPIcs.ECRTS.2019.18
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1145/800125.804029


bibliography 179
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A P P E N D I C E S

a classical notations

In this appendix, we formally define the logic notions and notations
used in the Section 5.1.1.

a.1 Linear temporal logic

We recall below the syntax and semantics of the linear temporal logic
(LTL) [Pnu77].

Syntax

Given a set AP of atomic propositions, LTL formulae over the set AP
are formed according to the following grammar:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | ⃝ φ | φ1 ∪ φ2

with a ∈ AP.

The⃝ modality, pronounced “next”, is a unary operator where⃝φ

holds (at the current moment) if φ holds in the next state. The ∪
modality is called “until”. It is a binary operator where φ1 ∪ φ2 holds
at the current moment if there is some future moment for which φ2

holds and φ1 holds at all moment until this future moment.

The classical boolean connectives, such as the disjunction ∨, the impli-
cation→ and the equivalence↔, can be derived from this grammar
and can therefore be used in LTL formulae.

From the ∪ operator, it is possible to derive to the temporal modali-
ties ⋄ (named “eventually”, sometimes in the future) and □ (named
“always”, from now on forever).

Semantics

An LTL formula can be satisfied by valuations of the variables in AP.
The satisfaction relation is defined in the following, where w[i : . . . ] =
wiwi+1 . . . denotes the suffix of w starting with the symbol in the i
position.

Given w = w0w1w2 · · · ∈ (2AP)
ω, the satisfaction relation |= is defined

as the smallest relation such that:

• w |= true
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• w |= a iff a ∈ w0

• w |= φ1 ∧ φ2 iff w |= φ1 and w |= φ2

• w |= ¬φ iff w ̸|= φ

• w |=⃝φ iff w[1 : . . . ] |= φ

• w |= φ1 ∪ φ2 iff ∃j ≥ 0, w[j : . . . ] |= φ2 and ∀i, 0 ≤ i < j, w[i :
. . . ] |= φ1.

a.2 Computation tree logic

We recall below the syntax and semantics of the computation tree logic
(CTL) [CE81].

Syntax

CTL state formulae over the set AP of atomic propositions are formed
according to the following grammar, with a ∈ AP and φ a path
formula:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ∃φ | ∀φ

CTL path formulae are formed according to the following grammar,
where ϕ, ϕ1, ϕ2 are state formulae:

φ ::= ⃝ϕ | ϕ1 ∪ ϕ2

The path operators⃝ and ∪ are defined with the same meaning than
in LTL, ∃ and ∀ are quantifiers meaning respectively “for some path”
(there exists a path where φ holds) and “for all paths” (for all paths, φ

holds).

Semantics

CTL formulae are interperted using LTSs. Given an LTS S, the se-
mantics of a CTL formula is given by two relations (denoted |=), one
on the states of S (for state formulae) and one on run of S (for path
formulae).

Let a ∈ AP be an atomic proposition, S = (QS, ΣS,→S, q0,S) be an LTS
corresponding to the concrete semantics of a PTA, a state qS ∈ QS,
ϕ, ϕ1, ϕ2 be CTL state formulae, and φ be a CTL path formula. Since
the LTS refers to the semantics of a PTA, we consider as labeling
function L the function which assigns to a concrete state of S the
corresponding location of the PTA. Formally, given qS = s = (ℓ, C),
L(qS) = ℓ.

We denote by Runs(qS) the set of runs starting from state qS in the
LTS.
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For state formulae, the relation |= is defined as follows:

• qS |= a iff a = L(qS)

• qS |= ¬ϕ iff qS ̸|= ϕ

• qS |= ϕ1 ∧ ϕ2 iff qS |= ϕ1 ∧ qS |= ϕ2

• qS |= ∃φ iff R |= φ for some run R ∈ Runs(qS)

• qS |= ∀φ iff R |= φ for all runs R ∈ Runs(qS).

For path formulae, the relation |= is defined as follows, with a run R
of the LTS and where qS[i] refers to the (i+1)th state of R:

• R |=⃝ϕ iff R[1] |= ϕ

• R |= ϕ1 ∪ ϕ2 iff ∃j ≥ 0, qS[j] |= ϕ2 and ∀i, 0 ≤ i < j, qS[i] |= ϕ1

a.3 Universal fragment of CTL∗

We now introduce formulae in the universal fragment of CTL∗
(∀CTL*) [BK08] and their semantics.

Syntax

Formulae in ∀CTL* are given by the following grammar, with a ∈ AP,
the state formula ϕ and path formula φ:

ϕ ::= true | false | a | ¬a | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ∀φ

φ ::= ϕ | ⃝ φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ∪ φ2 |

Note that, in [BK08], ∀CTL* is defined with a release operator,
denoted R and defined by ∃(ϕ1 R ϕ2) = ¬∀((¬ϕ1) ∪ (¬ϕ2)) and
∀(ϕ1 R ϕ2) = ¬∃((¬ϕ1) ∪ (¬ϕ2)).
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b correspondence with the notions defined in previous

papers

In Table B.4, we present the correspondence between the notions
introduced in this thesis and their original designation.

The changes are due to:

• a clarification of the “opacity” we consider, based only on the
execution times;

• the inclusion of ℓpriv and ℓ f in the definition of a TA;

• a clarification on the problem namings.

Table B.4: Correspondence with the notions defined in [ALMS22]

Notion defined in this thesis Corresponding notion defined in the
paper

ET-opacity (timed) opacity
ET-opaque for a set of execution times (timed) opaque w.r.t. ℓpriv on the way

to ℓ f for a set of execution times
∃-ET-opaque (timed) opaque w.r.t. ℓpriv on the way

to ℓ f for a non-empty set of execution
times

DVisitpriv(A) DReachAℓpriv
(ℓ f )

DVisit¬priv(A) DReachA¬ℓpriv
(ℓ f )

∃-ET-opacity decision problem
full ET-opacity decision problem Full timed opacity decision problem
ET-opacity t-computation problem Timed opacity computation problem
∃-ET-opacity p-synthesis problem Timed opacity synthesis problem
full ET-opacity p-synthesis problem Full timed opacity synthesis problem
∃-ET-opacity p-emptiness problem Timed opacity emptiness problem
full ET-opacity p-emptiness problem Full timed opacity emptiness problem
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c the code of the java example

1 import java . io . BufferedReader ;
2 import java . io . IOException ;
3 import java . io . InputStreamReader ;
4 import java . io . P r i n t W r i t e r ;
5 import java . net . ServerSocket ;
6 import java . net . Socket ;
7

8 // C o e f f i c i e n t s are Disregarded
9 publ ic c l a s s Category1 vulnerable {

10 p r i v a t e s t a t i c f i n a l i n t port = 8000 ;
11 p r i v a t e s t a t i c f i n a l i n t s e c r e t = 1234 ;
12 p r i v a t e s t a t i c f i n a l i n t n = 3 2 ;
13 p r i v a t e s t a t i c ServerSocket server ;
14

15 p r i v a t e s t a t i c void checkSecre t ( i n t guess ) throws InterruptedExcept ion {
16 i f ( guess <= s e c r e t ) {
17 f o r ( i n t i = 0 ; i < n ; i ++) {
18 f o r ( i n t t = 0 ; t < n ; t ++) {
19 Thread . s leep ( 1 ) ;
20 }
21 }
22 } e l s e {
23 f o r ( i n t i = 0 ; i < n ; i ++) {
24 f o r ( i n t t = 0 ; t < n ; t ++) {
25 Thread . s leep ( 2 ) ;
26 }
27 }
28 }
29 }
30

31 p r i v a t e s t a t i c void s t a r t S e r v e r ( ) {
32 t r y {
33 server = new ServerSocket ( port ) ;
34 System . out . p r i n t l n ( ” Server S t a r t e d Port : ” + port ) ;
35 Socket c l i e n t ;
36 P r i n t W r i t e r out ;
37 BufferedReader in ;
38 S t r i n g userInput ;
39 i n t guess ;
40 while ( t rue ) {
41 c l i e n t = server . accept ( ) ;
42 out = new P r i n t W r i t e r ( c l i e n t . getOutputStream ( ) , t rue ) ;
43 in = new BufferedReader (new InputStreamReader ( c l i e n t . getInputStream ( ) ) ) ;
44

45 userInput = in . readLine ( ) ;
46 t r y {
47 guess = I n t e g e r . p a r s e I n t ( userInput ) ;
48 i f ( guess < 0 ) {
49 throw new Il legalArgumentException ( ) ;
50 }
51 checkSecre t ( guess ) ;
52 out . p r i n t l n ( ” Process Complete” ) ;
53 } catch ( I l legalArgumentException | InterruptedExcept ion e ) {
54 out . p r i n t l n ( ”Unable to Process Input ” ) ;
55 }
56 c l i e n t . shutdownOutput ( ) ;
57 c l i e n t . shutdownInput ( ) ;
58 c l i e n t . c l o s e ( ) ;
59 }
60 } catch ( IOException e ) {
61 System . e x i t ( −1 ) ;
62 }
63 }
64

65 publ ic s t a t i c void main ( S t r i n g [ ] args ) throws InterruptedExcept ion {
66 s t a r t S e r v e r ( ) ;
67 }
68 }

Note that the two “for” loops featuring a Thread.sleep(1) (resp. 2)
could be equivalently replaced with a simple Thread.sleep(32*32)

(resp. Thread.sleep(2*32*32)) statement, but

i) this is the way the program is presented in the DARPA library,
and

ii) a (minor) difficulty may come from these loops instead of a
simple Thread.sleep(32*32) statement.
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N O M E N C L AT U R E

Clocks, parameters and constraints

x A clock

0⃗ Clock valuation assigning 0 to all clocks

µ Clock valuation

p A parameter

v Parameter valuation

Mathematical notations

|•| Cardinality of a set

•̇ Derivative

fr(•) Fractionnal part

⌊•⌋ Integral part

•ω Repetition of zero or more occurrences in a word

N Set of integers

N∞ N∪ {+∞}

Q≥0 Set of non-negative rationals

R≥0 Set of non-negative reals

R∞
≥0 R≥0 ∪ {+∞}

Z Set of (positive and negative) integers

Execution-time opacity

DVisitpriv(•) Set of the durations of private runs of •

Visitpriv(•) Set of private runs of •

DVisit¬priv(•) Set of the durations of public runs of •

Visit¬priv(•) Set of public runs of •

DVisitpriv
≤□(•) Set of the durations of secret runs of •

Visitpriv
≤□(•) Set of secret runs of •

DVisitpriv
>□(•) Set of the durations of private and non-secret runs of •

Visitpriv
>□(•) Set of private and non-secret runs of •

187



188 nomenclature

Parametric Timed Automata

a An action

Σ Set of actions

C A constraint (over X or X∪P)

e An edge

E Set of edges

D Set of execution times

∆ Expiring bound considered in Chapter 8 on page 111

ℓ A location

L Set of locations

PLU Lower/upper parametric timed automaton

P Parametric timed automaton

PZG(•) PZG of •

r A region

RA• Region automaton of •

RG• Region graph of •

R• Set of regions

dur(•) Duration of a run

T• Semantics of • (with a TTS)

D Set of expiring bounds

dur•(•, •) Duration between two states (or locations) in a run

σ A (static, untimed) strategy

s A symbolic state

S Set of symbolic states

A Timed automaton
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