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“The most exciting phrase to hear in science, the one that heralds
new discoveries, is not “Eureka!”
but “That’s funny...” ”

Isaac Asimov, 1920–1992

“God grant me the serenity to accept the things I cannot change,
Courage to change the things I can,
and Wisdom to know the difference. ”

Reinhold Niebuhr, 1892-1971





Acknowledgements

Je tiens à exprimer ma gratitude à toutes les personnes qui ont contribué de près ou
de loin à cette thèse.
Ce document marque l’achèvement d’un chapitre de ma vie, et de cette aventure, j’ai
beaucoup appris. Pour cela, je suis entièrement reconnaissant.

En premier lieu, je souhaite réitérer mes remerciements à Antoine Chaillet et Axel
Hutt d’avoir accepté d’être les rapporteurs de ma thèse, d’évaluer son contenu scientifique
et de fournir des retours et corrections qui ont permis d’améliorer ce document ainsi que
son contenu. Je tiens également à remercier les examinateurs : Isabelle Queinnec et Didier
Georges pour leurs retours.

Un grand merci à Mazen Alamir et Bogdan Robu pour m’avoir donné la chance
d’entamer ce doctorat à leurs côtés, pour leur encadrement tout au long de la thèse, et
pour m’avoir accordé leur confiance et une totale liberté sur le sujet. Merci pour votre
soutien technique et humain, vous étiez toujours présents quand j’en avais besoin. J’ai
beaucoup appris grâce à vous, et je tiens à vous l’exprimer.

Je tiens à exprimer ma gratitude envers mes enseignants de l’École Nationale Polytech-
nique d’Alger pour le précieux savoir qu’ils m’ont transmis, dont je tire bénéfice chaque
jour, ainsi que pour leur rigueur et leur sympathie. Un remerciement spécial à Messieurs
Tadjine, Manaa, Kebli et Ouadjaout. Je souhaite également rendre un vibrant hommage
à Abdelouel, qui malheureusement nous a quittés.

Merci à Virginie et Sonia, nos RH qui ont toujours été très efficace, à l’écoute de nos
problèmes administratifs (qu’on adore tant) ainsi que pour leur sympathie et leur bonne
humeur.

Nous avons souvent tendance à résumer l’expérience de ces trois années de thèse
dans un manuscrit de quelques pages, où se trouvent résumés les travaux qui ont abouti.
Le lecteur oublie parfois que ces trois années de thèse représentent trois années de vie
humaine, remplies non seulement de travail, mais aussi de sentiments, de joies et de peines.
Ce document s’efforce de relater l’histoire de nos recherches scientifiques, mais il occulte
les personnes humaines qui ont été derrière nous, qui sans leur soutien, ce manuscrit ne
serait pas ce qu’il est.

Page i



Aziza, toi qui m’as accompagné durant cette thèse, je tiens à exprimer ma profonde
gratitude pour ton soutien indéfectible et tes encouragements. Merci de m’avoir poussé
vers l’avant et pour toute ton aide et surtout pour ta précieuse compagnie durant cette
thèse (et celle d’après). Merci du fond du cœur.

Un immense merci à Adlene qui m’a prodigué tant d’encouragements, me poussant
sans relâche à aller de l’avant, même dans les moments les plus difficiles. Je te suis
également reconnaissant pour toutes les aventures que nous avons partagées, pour tout le
temps que nous avons passé ensemble, et pour ta précieuse compagnie.

Je tiens également à exprimer ma gratitude envers mes frères d’armes : Estebanc et
Mariana, sans lesquels cette thèse aurait été beaucoup moins joyeuse. Nous avons partagé
tant de moments ensemble au fil des années, des rires, des peines et tant d’activités. Merci
du fond du cœur.

Un grand merci également à mes camarades qui ont enrichi ma vie de leur présence et
pour tous les moments que nous avons partagés ensemble : Bob, Andrea, Elise, Adrien,
Maria, Ana, Lucas, Louise, Ariel, Chhay, Kaouther, et Mukhtar.

Enfin, je souhaite conclure en exprimant ma profonde gratitude envers mes parents et
mes frères, sans qui je ne serais pas la personne que je suis aujourd’hui et je n’aurais pas
accompli autant dans ma vie (bien qu’il reste encore beaucoup à faire).
Ils ont toujours été présents à mes côtés quelles que soient les circonstances et ils sont
mon modèle et mon moteur. Il y a une chose pour laquelle je serai reconnaissant toute
ma vie, c’est leur éducation, et les quelques mots écrit ici ne sont suffisant pour exprimer
ma gratitude et amour envers eux.

: thanemirt [merci]

Page ii



Table of Contents

Notations vii

Introduction 1

1 Methodology 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Concept & idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Sparse Dynamical Features . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Model familiarisation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 The excitation input profile as solution to parsimonious optimisation

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Lasso-LARS: Lasso — Least-Angle Regression . . . . . . . . . . . . . . . 16

1.4.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Sparsity level variation . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3 Free response / forced response trade-off . . . . . . . . . . . . . . 25
1.4.4 Fit completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.5 Modes number and distribution . . . . . . . . . . . . . . . . . . . 28

1.5 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5.1 High dimensionality drawbacks . . . . . . . . . . . . . . . . . . . 33
1.5.2 Advantages of feature extraction and selection . . . . . . . . . . . 38
1.5.3 Feature extraction and selection . . . . . . . . . . . . . . . . . . . 39

1.6 Classification & Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Recording systems 51
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Electrode types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.2 Principles of EEG measurement and noise attenuation . . . . . . 54
2.2.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.4 EEG difficulties and artefacts . . . . . . . . . . . . . . . . . . . . 61

2.3 Electrocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.1 Leads placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iii



iv

3 Application 1: Parkinson’s Disease diagnosis 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Generalities on the Parkinson’s Disease . . . . . . . . . . . . . . . . . . . 74

3.2.1 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.3 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 State of the art of EEG-based PD diagnosis . . . . . . . . . . . . . . . . 78
3.4 Sparse Dynamical Features applied to Parkinson’s Disease diagnosis . . . 79

3.4.1 Description of the Data-set . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.3 Application of the proposed method . . . . . . . . . . . . . . . . . 83
3.4.4 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.5 Results & discussion . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Conclusion & perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Application 2: Schizophrenia diagnosis 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Generalities on Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Schizophrenia phases . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.3 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.4 State of the art of EEG-based SZ diagnosis . . . . . . . . . . . . . 102

4.3 Sparse Dynamical Features applied to Schizophrenia Diagnosis . . . . . . 103
4.3.1 Data-set description . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.3 Results & discussion . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.4 Significance and trustfulness . . . . . . . . . . . . . . . . . . . . . 110
4.3.5 Data cleaning & adding of a new feature . . . . . . . . . . . . . . 111
4.3.6 SDF visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Conclusion & perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Application 3: Cardiac Abnormalities 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Generalities on the studied cardiac abnormalities . . . . . . . . . . . . . 120

5.2.1 Sinus Rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.2 Rhythm disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.3 Conduction disturbances . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Sparse Dynamical Features applied to cardiac abnormalities detection . . 127
5.3.1 Description of the Data-set . . . . . . . . . . . . . . . . . . . . . . 127
5.3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Conclusion & perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 141

General conclusion 142



Appendix 147
6.1 Appendix A: Schizophrenia data cleaning . . . . . . . . . . . . . . . . . . 147
6.2 Appendix B: Cardiac Abnormalities . . . . . . . . . . . . . . . . . . . . . 156
6.3 Appendix C: Effect of data leakage (example) . . . . . . . . . . . . . . . 161

References 165





Notations

Ts Sampling period

fs Sampling frequency

N Number of subjects

m Number of harmonic oscillators (pendulums — modes) used in the model

ωi Natural pulsation of the i-th oscillator

Y Signal of interest

Ŷ Predicted signal

L Length of the signal of interest and the predicted signal

yk, ŷk k-th element of the signal of interest and predicted signal respectively

Σ State space system describing the model

ai, bi , ci Respectively the state, input, and output matrices describing the dynamics

of the i-th oscillator

A, B, C Respectively the state, input, and output matrices describing the dynamics

of the system merging the m decoupled oscillators

xk State vector at the time instant k

x0 Initial state (initial position and velocity of each oscillator)

Ui(k) Excitation force/input of the i-th oscillator at the time instant k

uk Input vector that contain the excitation forces of all the m oscillators at

the time instant k

U Control sequence vector

Ũ Control sequence rewritten in matrix/image form

φ1, φ2 Covariate matrix of the free and forced responses respectively

φ1, φ2 Vector-wise standardised version of φ1 and φ2

φ Concatenation of φ1 and φ2

φ∗,i i-th vector of φ



β Vector that contain the initial state x0 and the control sequence U

βOLS Solution of β using Ordinary Least Square algorithm

β0 Intercept term

α Weighting factor that regularises the sparsity of β

αinit Initial value of α initialised by the Lasso-LARS

αf Final value of α set by the expert

αk% k-th percent sparsity level

ω Weighting constant favouring forced/free response

r Residue between Y and Ŷ

l Linear spacing of the sparsity interval

n Number of solution produced by the Lasso-LARS

G Configuration composed of: a number of features and samples, a classifier,

an underlying data distribution

R The a priori accuracy associated being in configuration G

K Number of folds for K-fold cross-validation

W ICA matrix projection (channels base → independent components base)

ICi i-th Independent Component

I1, I2 Time intervals of interest

F1, F2 Respectively Feature 1 and Feature 2 extracted from U

F1(Y ),

F2(Y )

Feature F1 and F2 extracted on the signal of interest Y

H0 Null hypothesis

p Probability / p-value of observing the result given H0

TP True Positive rate



Introduction

To describe the evolution of a phenomenon over time, often a temporal representation
of signals is employed. This representation describes the phenomenon as a sequence of
well-indexed and ordered numbers that follow one another. The importance of time and
the ordering of events of the phenomenon make time series an interesting and natural
representation. This representation is widely used in science and engineering, and it
becomes difficult to remember that it is one among many possible representations that
one might use to describe and study the phenomenon.

Sometimes, this perspective or representation can hinder our understanding. Changing
our point of view might allow us to uncover certain hidden information that was initially
obscured by the representation. The most striking example of a change in perspective is
the Fourier decomposition. It enables a shift from a classical time-based representation
of a signal to a representation that is more informative and useful in some specific cases.
As illustrated in Figure 1, the signal is decomposed into multiple sinusoids, the sum of
which forms the original signal. This representation finds numerous applications, and
to mention just one: filtering. It is by changing the perspective that the contribution
of each sinusoid can be discerned. It is easier to identify those that pertain to the
observed phenomenon and are desirable, as well as those that are undesirable, such
as noise. This task is impossible to accomplish directly with the temporal representa-
tion and it is the change of perspective that renders this information accessible and clearer.

The aim of our research is to propose a novel decomposition that is much more suitable
to excitation-based signals, and where the temporal aspect that is lost during Fourier
decomposition is detrimental. The methodology draws inspiration from the functioning
of the brain, yet remains generic and applicable to various signal types. It enables the
signal to be decomposed into what, control experts, refer to as modes. The key aspect
lies in the fact that these modes can be activated or deactivated at any given moment.
The modes’ excitations are computed optimally to fit the signal to be decomposed. To
enhance the decomposition robustness and meaningfulness, it has been designed following
the principle of parsimony.
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Figure 1: Fourier decomposition.

The ultimate objective is to successfully apply this methodology to diverse real-
world problems, thereby demonstrating its relevance and assessing its performance. The
applications considered are all healthcare-related, spanning from the analysis of electroen-
cephalogram (EEG) signals to electrocardiogram (ECG) signals.

This manuscript focuses on the proposed decomposition that provides what we have
named “Sparse Dynamical Feature” (SDF). The methodology’s performance was evalu-
ated across three problems using real data, encompassing diagnostic scenarios related to:
(1) Parkinson’s Disease, (2) Schizophrenia, and (3) six Cardiac Abnormalities. Special
attention has been given to achieving consistent and meaningful results with an underlying
explainability. The various problems and biases encountered in the literature that affect
the assessment of the model’s performance are also addressed.

The manuscript is structured as follows:

• Chapter 1 describes the methodology behind Sparse Dynamical Feature generation.
Starting with the conceptual and inspirational foundation, followed by the implemen-
tation of the idea, encompassing model definition and resolution of the of specified
optimization problem. The method’s various parameters are meticulously detailed
while illustrating their effect on the generation of SDFs. Automatic procedures to
set these latter are proposed. Drawbacks of high-dimensional features are recalled
and explained followed by the feature extraction that is performed on the SDFs.
The classification & evaluation methods that are less biased and that will be used
for the entire manuscript are addressed in the final part. In the conclusion of this
Chapter, the main novelty and contribution of our work have been outlined.
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• Chapter 2 is entirely devoted to the recording systems that produced the data used
in the manuscript. In this chapter, a detailed study of the fundamental principles of
electroencephalography and electrocardiography is provided.

• Chapter 3 is dedicated to the first application, which focuses on diagnosing Parkin-
son’s disease based on EEG signals.

• Chapter 4 is devoted to the second application, which is the diagnosis of Schizophrenia
and which is also based on EEG data. This part was mainly done to test the genericity
of the method for another brain disease.

• Chapter 5 is dedicated to the third application, which is the detection of six abnor-
malities affecting the heart using ECG signals. The aim is to test the methodology
in a completely different context (different signals) with a particular emphasis on
the visualisation of the SDFs which show notable differences between the different
categories and on which the results are based.

The manuscript is ended by a general conclusion that summarizes the contribution of
the PhD work and draws some interesting tracks for further investigation.
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1.1 Introduction

The most important contribution of the PhD work is the development of the so-called
Sparse Dynamical Features (SDF) which is a block that decomposes pre-processed signal,
thus offering a new point of view on the data and providing access to new biomarkers that
are much more informative and suitable for the applications considered later on. Figure
1.1 is a flowchart illustrating all the steps through which the data passes starting from raw
data until classification and performance evaluation. The main contribution is coloured in
blue.

Preprocessing
Sparse Dynamical 
Feature generation

Feature selection
& extraction

Classi cation
& Evaluation

Raw data

Figure 1.1: Flowchart showing the important steps that the raw data underwent until the classification.
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This chapter will be exclusively dedicated to the study of the last 3 blocks of Figure
1.1. The core idea of the method and the crucial points around which the decomposition
revolves are enumerated first and foremost. These will serve as guidelines to shape the
methodology, which is subsequently detailed. The model that will serve as the foundation
for signal decomposition, along with the optimization problem, is then described. Various
approaches for solving the underlying optimization problem are presented, each with its
own advantages and drawbacks.

The choice of Lasso-LARS method is discussed, followed by an in-depth description
of the associated key parameters. Subsequently, the different methods of feature extrac-
tion and selection that have been applied are described, highlighting the significance and
advantages that feature selection offers. Finally, the classification problem, along with the
different classifiers employed, is addressed, followed by a discussion of the various data
leakage issues and cross-validation procedures used to address them, at least partially.

1.2 Concept & idea

To process, encode, retrieve and transmit information, biological neuronal networks
oscillate [101, 11]. This oscillation can be compared to that of a classical harmonic
oscillator, which results in a sine wave of position versus time. The frequencies and
timings (phase) of these network oscillations are important as they are at the basis of the
mechanism underlying cognitive processes [6, 29]. The oscillation frequencies, as suggested
by various studies, are task-dependent. A slow oscillation is observed for tasks that do
not require attention e.g. biological needs, and a rapid oscillation is observed for tasks
where the person’s attention is required [101].

At the scale of one neuron, the oscillation is not important as it will not have a great
impact on its own. However, it is this mechanism of individual oscillation performed
with the right timing, that leads local-excitatory neurons to a global synchronisation.
Furthermore, synchronization often emerges through the interplay between excitatory and
inhibitory signals which leads to coordinated activity among neurons. The synchronisation
of multiple neurons oscillation is how the brain achieves the large-scale integration of
its many parallel, distributed information-processing activities, which leads to coherence
cognition and behavior. Therefore, the timing of these oscillations has a great importance.
Contrary to the synchronisation, a global inhibitory mechanism exists in the brain and
can lead to rapid de-synchronization of a group of neurons [101].

It should be noted that the measured activity of the brain is a measure of a group
of neurons oscillating in synchrony. Thus, the mechanism of synchronization and de-
synchronization of a group of neurons suggests that the rhythms contributing to that
measure occur in a pulsatory manner [68].
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It is important to note that this rhythmic and pulsating excitation is not unique to
the functioning of the brain, other systems that are familiar to the control community
also show the same particularity. One can imagine, for instance, that there is a change in
a single mode that contributes to the output of that system, or an outright change in the
mode of operation of the dynamic system, such as a model with a switched parameter.
As a consequence, the modelling one seeks must include this kind of aspects. In summary,
the method is inspired by the functioning of the brain, but it can be applied to other
problems that share these same properties to a sufficient extent.

The majority of signals we encounter in real life can be decomposed into two types of
signal/response:

1. A free response: this is the system output without any excitation being perceived,
which is often zero, but in some cases, it is not.

2. A forced response: this represents the part of the system’s behaviour that is
induced by an excitation signal.

We want the method to respect this philosophy too, and not only separate the two types
of response, but also to be able to control the amount of information carried in one or
the other. Indeed, each task has its own necessities and particularities, so we want in our
framework to have the choice of putting more information on the forced regime or the self-
perpetuating regime. More details will be given later for each application. This amounts
to having tunable parameters as it is always the case for the models to be learned or trained.

Considering a set of m harmonic oscillators (pendulums — modes) with distinct natural
pulsations {ω1, ω2, . . . , ωm}, the signal of interest can be represented as a combination of
the outputs of these oscillators, where each one of them contributes with its own amplitude
as in the Fourier series. However, compared to the Fourier series, now the modes are
allowed to be active over either on all the temporal support or only on a portion of it.
Moreover, the temporal information about when an oscillator is switched on or off is now
recovered. Knowing that several rhythms can coexist at the same time and that each
one of them has a different activation duration, the temporal information that cannot be
recovered using the Fourier transform, is of great importance.

Before moving on and describing in depth, the detailed implementation of this intuition,
let’s assume that we have a real signal of some kind and define the objectives and
expectations for our method applied to this signal. The method will transform the signal
and this transformation should:

• Disentangle and separate the contribution of each mode to the signal.

• Indicate the instants at which an oscillator is excited if any.

• Indicate which oscillators are involved as well as their amplitude contribution.

• Separate the forced response from the free response composing the signal.
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Such a transformation allows for a change in the point of view on the data, this latter
is no longer perceived as a traditional time series (sequence of numbers), but rather as
the consequence of different modes that are switched on and off at the right moments
with the right amplitude and which hopefully imitate or discover what has physiologically
happened that produced the measured signals. This change of point of view hopefully
gives access to new features that might be more informative for the applications considered.
In our approach, we have turned to a principle that we consider important:

parsimony

This principle consists of using the minimum number of elementary causes to explain a
phenomenon.

Given that the studied signals are noisy, it is essential to find only the oscillations
that are important, rather than finding all the oscillations in the signal (which may also be
due to noise). This enhances the prediction accuracy and interpretability of the resulting
statistical model. But parsimony is a rather fuzzy concept. This is why a parameter is
required in order to adjust the parsimony’s level. This parameter controls the number of
oscillators that can be awakened/used by the method and the frequencies to be involved.
A high level of parsimony leads to the use of fewer oscillators and they will be excited less
frequently. This is obviously tightly lined to the concept/technique of ℓ1-regularization
that is often used to avoid the over-fitting issue in the learning literature.

In the following section, a rigorous presentation of the method briefly sketched above is
proposed.

1.3 Sparse Dynamical Features

1.3.1 Model definition

In order to put the idea described in the previous subsection into practice, a model con-
sisting of a battery of oscillators with distinct angular frequencies is used. The appropriate
oscillators are switched on and off at a specific timing with the appropriate excitation
amplitude, so that the output of the model Ŷ approximately matches to the signal of
interest Y to an extent that is tailored through a sparsity parameter. The excitation
inputs applied to the oscillator array are named Sparse Dynamical Features (SDF). The
word sparse refers to the fact that the appropriate excitation inputs have been generated
in a parsimonious way.
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Consider a signal of interest Y of length L written in a vector form along with it is
predicted signal Ŷ , the output of our model, denoted as follows:

Y =











y0

y1

...

yL−1











∈ R
L, Ŷ =











ŷ0

ŷ1

...

ŷL−1











∈ R
L, (1.1)

where yk and ŷk are k-th element of the signal Y and Ŷ respectively.

Consider m oscillators (modes) with an increasing angular frequency {ω1, ω2, . . . , ωm}.
The system combining the m decoupled harmonic oscillators can be described by the
following discrete-time state space representation given a sampling period Ts = 1/fs:

Σ :

{

xk+1 = Axk + Buk

ŷk = Cxk

; xk ∈R
2m, uk ∈R

m, ŷk ∈R, (1.2)

where xk is the state vector, uk is the input vector and ŷk is the output of the system Σ
at the instant k, and:

A=diag(a1, . . . , am), B =









b1 02×1 . . . 02×1

02×1 b2 . . . 02×1
...

...
. . .

...
02×1 02×1 . . . bm









, C =(c1 · · · cm) .

Notice that diag(a1, . . . , am) is a block diagonal matrix with the elements {a1, . . . , am}
being on the main diagonal and zero entries elsewhere. More precisely we have:

ai = expm(Ts

(

0 1
−ω2

i 0

)

) ≈

(

1 Ts

−Tsω
2
i 1

)

, bi =

(

0
Ts

)

, ci =
(

fs ωi 0
)

, (1.3)

are the matrices of a unitary gain forced single harmonic oscillator: ai contains the
pendulum dynamics, bi is the input matrix, and ci is the output matrix. expm denotes
matrix exponential, it is important to note that the approximation is given for the reader
only, and that the exact value of the matrix exponential was used in our implementation.

The m modes are merged throughout the matrices A, B and C such that the m
oscillators remain decoupled but also that their contribution is summed up to form the
signal Ŷ .

The input vector uk contains the excitation forces of all the m modes at instant k :

uk =
(

U1(k) U2(k) . . . Um(k)
)
T (1.4)

The form of the matrix bi has been chosen such that the ith pendulum is controllable by
its corresponding control input Ui(k).
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The role of the scaling term ωi present in the matrix ci is to ensure that an oscillator
at rest (xi = 0), excited by an input Ui(k) = z, starts oscillating at time instant k with the
same amplitude as the excitation, i.e. z. This gives a physical meaning to the values of
uk as they will be directly proportional to the oscillation amplitude present in the signal
of interest Y . This also opens up the possibility of comparison between the Ui values
since they are now on the same scale. We can now compare the modes in terms of their
amplitude contribution, but also compare their energy, activity duration, starting time,
number of times they have been excited, etc. From this representation it can be noted
that the analysis of the excitation inputs u can be conducted on a single specific oscillator
or a desired set of oscillators.

The system (1.2) can be then rewritten in the explicit form as:

xk = Akx0 +
k−1∑

i=0

AiB uk−1−i, k = 1, 2, . . . , (1.5)

ŷk = CAkx0 +
k−1∑

i=0

CAiB uk−1−i, k = 1, 2, . . . , (1.6)

where x0 represents the initial oscillating state of our model (initial position and velocity
of each pendulum). If no external input is applied on these pendulums as in the case of
the non-forced regime, i.e. uk =0 for k =1, 2, . . . , the pendulums will keep swinging in
the same manner. Therefore, the information about the free response where no external
stimulus is carried by x0.

To simplify and rewrite the system in the appropriate format for the following equa-
tions, the control sequence U which embeds how the oscillators are excited over time is
defined as [see equation (1.4)]:

.
u2

u1

1

2

2

2

(1.7)

By so doing, the information regarding which of the m oscillators is activated is
embedded in U . The temporal information of when the excitation arrives is indicated
by the active subscript k. Notice that this is relevant only because parsimonious com-
putation of U is used later on, otherwise, all the components of U would have been non-zero.

Given (1.1) and (1.7), the equation (1.6) can be rewritten in a matrix form as:

(

φ1 φ2

)

·




x0

U



 = φ · β = Ŷ , (1.8)
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where:

φ1 =










C

CA
...

CAL−1










∈ R
L × 2m, φ2 =













0 0 . . . 0

CB 0 . . . 0

CAB CB . . . 0
...

...
. . .

...
CAL−2B CAL−3B . . . CB













∈ R
L × m(L−1).

The φ matrix is known as the covariate matrix and a column vector of φ is known as a
covariate vector.

1.3.2 Model familiarisation

In this section we will familiarise ourselves with the proposed model. It is important to
note before starting that the model does not come from a modelling or a study carried out
on a real signal but rather it is a model that we have imposed and that we will excite in
the right manner so that it fits the designed signal of interest. For the following examples,
instead of considering a battery of oscillators, a single oscillator will be considered. Since
all the oscillators are decoupled, the same scenarios that will be defined in the following
will apply:

1) From a resting oscillator to the first excitation (forced regime)

Initially we assume that the oscillator is at rest (x0 = 0). If no force is applied
to it i.e. (U = 0), the oscillator will remain at rest as shown in Figure 1.2.a. This
oscillator is then excited by an impulse of amplitude 1 at time k = 100 in other words
U = (0, 0, . . . , 0, U1(k = 100) = 1, 0, . . . , 0)T . It can be noted that the U vector is sparse
(an important point for what follows). The profile of the excitation U and the output Ŷ
of the model Σ are shown in Figure 1.2.b and 1.2.c respectively.

Figure 1.2 shows that the output of the model Ŷ is 0 before the impulse arrival, then
as soon as the impulse arrives the model starts to oscillate in a pure sinusoidal way with
the same amplitude as the given impulse, i.e. 1. This oscillation continues until the
simulation stops. It is important to note that the system is stable and that the oscil-
lation amplitude does not diverge, and that the oscillator considered in (1.2) is not damped.

Figure 1.3 shows the response of the system to an excitation with amplitude −4. We
can observe that the oscillation amplitude is 4 and that the direction of the first oscillation
points downwards (whereas it pointed upwards in the case of Figure 1.2.c). Moreover, the
angular frequency of the oscillator is ω1.
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Excitation of the model

Figure 1.2: (a) Output Ŷ of the system Σ at rest and where no excitation is applied: (x0 = 0) and
(U = 0). (b) Impulse excitation applied to generate the output presented in (c).

2) Stopping the oscillation

An excited oscillator can be switched off with an impulse of the opposite amplitude
to that which made it start1 as shown in Figure 1.4. For this example, the oscillation
frequency has been set to ω2 with ω2 > ω1 for demonstrative purposes.

3) Free regime contribution

In the previous examples, the oscillator was assumed to be initially at rest (x0 = 0),
however, in a practical case it can be interesting to have oscillators with non-zero initial
positions (or speeds). The benefit of having the contribution of x0 is that it allows the
free response of a signal to be captured. Figure 1.5 shows the output of the model if no
excitation U is applied (U = 0) while the system starts from an initial point (x0 = [1, 0]T ).

1 The same principle also works with the excitation of x0.
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Figure 1.3: Amplitude variation.
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Figure 1.4: Switching off an oscillator.

4) Superposition of the forced and free regime

The free and forced regimes can coexist at the same time, giving our model more
degrees of freedom to generate outputs as shown in Figure 1.6.

In Figure 1.6 it can be observed the individual contribution of the free regime between
0 and 100 and between 400 and 500. The forced response of the system can be observed
between time instants 100 and 400, where the forced activity if entangled with the free
regime and has a different frequency.



Page 14 Chapter 1. Methodology

0 100 200 300 400 500

Time (index)

A
m

p
li
tu

d
e 

0.0

0.5

1.0

0.5

1.0

x0 = [1, 0]T

Figure 1.5: Free response of the system Σ while x0 = [1, 0]
T

and U = 0
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Figure 1.6: Superposition of the forced and free regime.

The examples given previously are only explanatory. The use of a battery of oscillators
with an appropriate frequency span {ω1, ω2, . . . , ωm}, the right initial state x0, and
excitation U are advantageous for fitting a real signal that is more complex as we will see
in the following sections (to give an overview, one can see Figure 1.12).

In the previous examples, we applied U commands and set x0 values manually. In the next
section, it is shown that the computation of the vector U together with the initial state
x0 can be performed for a given measured profile Y using a dedicated parsimony-aware
solver.

1.3.3 The excitation input profile as solution to parsimonious
optimisation problems

A primary solution

Various approaches to find a solution for the unknown β of (1.8) exist. The first, which
is the simplest and cheapest, is the Ordinary Least Squares (OLS) method [40, chap. 2].
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It minimises the squared prediction error and its solution is given by:

βOLS = min
β

‖ Y − φ β ‖2
2, (1.9a)

βOLS =
[

φT φ
]−1

φT Y, (1.9b)

where βOLS is the solution of solution of the optimization problem. Despite its simplicity,
the least square method does not meet our requirements due to the fact that the resulting
β will be full (not sparse), thus, not respecting the parsimony principle.

Methods that comply with the parsimony principle

Complying with the principle of parsimony translates into using as few excitation
inputs as possible to fit the signal of interest to a decent level. Obviously, this statement
is quite fuzzy and only a rationale tuning of the degree of sparsity viewed as a parameter
of some learning strategy would enable to perform an appropriate sparsity level.

One type of method which allows this are referred as subset selection. Different
methods exist such as: Sequential Forward Selection, Sequential Backward Elimination,
Forward-Stagewise Regression, etc. (for more details see [40]).

Several tests using these methods were carried on during this PhD work, however,
the results were not conclusive. Moreover, for some methods, the computation time is
unrealistic (several hours for a single signal). On the contrary, the ones based on sparse
optimization methods, via ℓ1 regularization showed more effectiveness. This is explained
in the remainder of this section.

Lasso: (Least absolute shrinkage and selection operator)

Another type of method that complies with the principle of parsimony is the shrinkage
method. The most fundamental of these is the Lasso which stands for Least Absolute
Shrinkage and Selection Operator. It solves the linear regression (1.8) while imposing
certain coefficients to be zero, thus excluding them from impacting the prediction and
thus respecting the principle of parsimony.

Its aim is to find the subset of ≤ j covariates that results in the smallest value of the
objective function (1.10). The optimisation problem is formulated as follows:

β = argmin
β

∥
∥
∥Y − φ β

∥
∥
∥

2

2
, (1.10)

s.t.
∥
∥
∥ β

∥
∥
∥

0
≤ j.

where the l0-norm2 (nuclear norm) is defined as the number of non-zero elements of β.
By doing so, the solution of the problem (1.10) is restricted to use only k elements of β.

2 l0 is not a proper norm in the mathematical and conventional way as if violates the absolute
homogeneity of a norm (

∥
∥λx

∥
∥

0
6= |λ|

∥
∥x
∥
∥

0
where λ ∈ R\{0, 1} and x 6= 0), by abuse of language the

term norm will be used.
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The l0-norm is non-convex, as illustrated in Figure 1.7. This non-convexity is prob-
lematic, as we are no longer able to use the various solvers and optimizers available in the
field of quadratic programming. The latter are powerful and handle very well quadratic
problems subject to convex constraints. The Lasso method can also be viewed as a convex
relaxation of the best subset selection problem described above as it utilizes the best
convex approximation to the latter by using l1-norm which is the closest convex norm to
l0.

The lasso problem can be written as:

β = argmin
β

∥
∥
∥Y − φ β

∥
∥
∥

2

2
, (1.11)

s.t.
∥
∥
∥ β

∥
∥
∥

1
≤ j.

The equivalent manner to write the problem is:

β = argmin
β

∥
∥
∥Y − φ β

∥
∥
∥

2

2
+ α

∥
∥
∥ β

∥
∥
∥

1
, (1.12)

where α is a weighting constant that manages the trade-off between fitting the Y signal
tightly and using a high number of active excitation inputs (on zero elements of β) or not
fitting the Y signal tightly resulting in a sparser β.

As expected, this scheme results in obtaining sparse solutions, but the correct value of
α which gives the best classification score is not known beforehand. As a consequence,
the value of α has to be changed several times, thereby requiring all the calculations
to be redone. In addition, the calculation time is relatively high, making the method
impractical for a database containing a large number of signals.

The next section will be dedicated entirely to the Lasso-LARS method (a variant of
the lasso) which was selected to solve the optimization problem (1.12). The modifications
introduced to the method will be detailed, along with the different procedures used to set
the different hyper-parameters.

1.4 Lasso-LARS: Lasso — Least-Angle Regression

Among all the shrinkage and subselection methods, the Lasso-LARS (Least Absolute
Shrinkage and Selection Operator — Least-Angle Regression) was retained in this work.
The method is very different from Lasso, but it has been shown that it produces exactly
the same result as Lasso provided a variation applied to the LARS algorithm [40]. More
details on the LARS and Lasso-LARS algorithms can be found in [23].
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1

p = 1).

The Lasso-LARS minimises the same cost function as the Lasso, i.e. a minimisation
of the squared error with a weighted penalty applied to β using the l1 norm. The
corresponding cost function is as follows:

β = argmin
β

∥
∥
∥Y − β0 − φ β

∥
∥
∥

2

2
+ αf

∥
∥
∥ β

∥
∥
∥

1
. (1.13)

Note that now the intercept term β0 has been added. This term represents the value of
the model’s output Ŷ when all modes are inactive i.e. β = 0. In this case, the value of β0
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is equal to the mean value of the Y signal. Note also the change of name of the weighting
constant from α to αf where the subscript f stands for final. More details will be given next.

We have opted for the Lasso-LARS method over all the existing shrinkage and subset-
selection methods for several reasons. Firstly, because it is a very efficient algorithm
for computing the Lasso solution especially when dim(β) ≫ L which is our case3 (as a
reminder, L is the length of the signal of interest Y ). Secondly, our choice was motivated
more particularly for its inherent ability to compute the full solution path as α varies
(when we refer to α we are referring to the value for which the optimization problem is
solved during an intermediate iteration). Indeed, Lasso-LARS will yield all the solutions
to the optimisation problem starting from an initial value of αinit:

αinit =
1

L
max (cov(φ∗,i, Y )), i ∈ {1, . . . , m(L + 1)}, (1.14)

where cov(φ∗,i, Y ) refers to the covariance between the covariate i (i − th column vector
of φ) and Y .

The value of α will decrease over the iterations, until reaching the value provided to
the algorithm αf as argument. Figure 1.8.a gives an example of how the value of α evolves
over iterations. Typical evolution of the number of non-zero elements of β, namely ‖β‖0,
can also be observed in Figure 1.8.b.

At each iteration, the Lasso-LARS generates one β solution to the optimization prob-
lem (1.13). This particular solution corresponds to a single α value for the iteration in
question4. As shown in Figure 1.8, during the first iteration, the first solution produced
corresponds to the value of αinit. As iterations progress, Lasso-LARS mobilizes more
activation input and the β solution produced gradually becomes less sparse. At the
final iteration, once the algorithm has mobilized sufficient activation input, the value αf

will be reached. The total number of iterations denoted n, required to reach this final
value varies for each distinct signal of interest (this issue will be further elaborated in
section 1.4.2). As each iteration produces one β solution, a total of n solutions to the
optimisation problem are generated, characterized by gradually decreasing levels of sparsity.

To briefly explain how lasso-lars works, the active set is defined as the set of covariates
that are active and contribute to the model output Ŷ , and βi is a scalar that defines
the contribution value of each covariate i. Algorithm 1 describes step by step how the
algorithm works (taken from [40], where further details can be found).

3 In our case dim(β) = m(L + 1) and generally m > 10 which verifies the condition, however, even
if the condition is not verified, the algorithm will have the same performance, except that the gain in
calculation time will not be significant.

4 The value of the current α depends on the correlation between the residual r = Y − Ŷ and on the φ

co-variates which have not been mobilized.
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Figure 1.8: Example of the evolution of the value of α and ‖β‖0 over the iterations of the Lasso-Lars.

Algorithm 1 Least Angle Regression: Lasso variation.

1: Initialization: Initialize the residual r = Y − Ŷ and βi = 0, i ∈ {1, . . . , m(L + 1)}.
2: Compute Correlations: Find the predictor φ∗,j the most correlated with r.
3: Update Coefficients: Move the value of βj from 0 to its least square coefficient

〈φ∗,j, r〉, until some other feature φ∗,k has as much correlation with the current residual
as does φ∗,j.

4: Move φ∗,j and φ∗,k in the direction defined by their joint least squares coefficient
of the current residual on (φ∗,j, φ∗,k), until some other competitor φ∗,l has as much
correlation with the current residual r.
a: If a non-zero coefficient hits zero (a sign switch), drop its variable from the active
set and recompute the current joint least squares direction.

5: Stopping: Continue until reaching the stopping criteria.

The algorithm will stop if one of the following stopping criteria is met:

• The number of iterations exceeds the maximum number of iterations allowed.

• All the predictors φ∗,j have been included in the active set, so there are no more
predictors to add to the model.

• The final value of αf specified to the algorithm has been reached: α ≤ αf where
α = max(cov(φ∗,i, r)), for i ∈ {1, . . . , m(L + 1)}.

The following section is dedicated to the visualization of the output of the method
described above, namely, how to go from stacked numbers in a vector that is difficult
to analyse to a display that is simpler to analyse even with the bare eye. The latter is
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applicable for a single β solution chosen, but we are free to vary the level of parsimony of
the solutions visualised.

1.4.1 Visualisation

As previously discussed, the generated SDFs depend on two parameters, namely, the
excitation input U and the initial state of the set of oscillators x0. The concatenation of
these parameters defines the vector β that is to be computed:

β =




x0

U



 ,

The computation of β is performed considering both x0 and U , but for
the remainder of this manuscript, only the forced-regime response will
be analyzed, i.e. U only.

The remaining part of the SDF, i.e. x0, is not considered for the analysis, as no conclusive
results were obtained after studying it. Nevertheless, the presence of x0 in the calculation
remains essential, as it captures the free response, leaving the forced regime to U only.
However, care must be taken as it may be that for some applications x0 is more informa-
tive than U . By abuse of language, when we refer to Sparse Dynamical Features in the
following, we will be referring to the U part of β.

As U contains the amplitude, frequency as well as the instant of activation of the
modes involved, it is difficult to visualise it. As the approach is meant to be explainable,
it is important for us to be able to plot the SDF. To do this, the U vector was rewritten
in matrix form as follows:

Ũ =






| | . . . |
u1 u2 . . . uL−1

| | . . . |




 , (1.15)

=











U1(1) U1(2) . . . U1(L − 1)

U2(1) U2(2) . . . U2(L − 1)
...

...
. . . . . .

Um(1) Um(2) . . . Um(L − 1)











, (1.16)

where Ui(j) is the activation amplitude of the mode i at the time instant j.

For a better visual representation, the matrix Ũ can be considered as an image
where each element Ui(j) represents a pixel. The amplitude of modes activation will be
represented by a colour. More precisely:
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1. Blue: for negative amplitude.

2. White: for inactive mode.

3. Red: for positive amplitude.
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Figure 1.9: Visual representation as a bit-map of the modes’ activity.

Figure 1.9 shows an example of a graphical representation applied on a heart (EEG)
signal, where on the top plot, the real signal and the fit of our model are observed
(almost identical for the chosen level of sparsity), while on the bottom plot, the image
representation of the modes activation input inducing the predicted signal is shown.

In the lower part of the Figure, an example of how a single activation input of a single
mode is illustrated. This example concerns the mode with a frequency of 15 [Hz], which
was activated with an amplitude of −0.1 at the time instant indexed by 62.

We have already discussed the reasons why Lasso-LARS produces a total of n solu-
tions to the optimisation problem with varying levels of sparsity, but in the next section,
more details will be given about this point. We start with a discussion about why it
is interesting to have solutions with a variable sparsity level, the practical problems
encountered, and then the solutions proposed for these problems.
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1.4.2 Sparsity level variation

The greater the value of α, the greater will be the product of α‖ β ‖1. As a result,
the algorithm will tend to reduce the number of active excitation inputs as well as their
amplitude (β will have to be sparse) but at the expense of a lesser accurate fit between
the output of the model Σ and the target signal of interest. By contrast, the smaller
the value of α, the plentiful β will be, and the model’s output Ŷ will fit perfectly the Y
signal. Figure 1.10 illustrates this phenomenon very well, by showing an example where
the squared error ǫ evolves for decreasing values of α can be observed.
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Figure 1.10: Example illustrating the effect of α values on the predicted signal Ŷ and on the number of
activation inputs mobilised by the model. (a) Shows a single activation of a single mode, selected with
the appropriate frequency and excited at the right timing with the appropriate amplitude. (b) Utilisation
of more excitation inputs and its effect on the Ŷ prediction. (c) Shows the ability of our model to fit
the Y signal by exciting more modes and more frequently. The number of distinct modes used in this
example is 40.

To recall, having different solutions with varying levels of parsimony is necessary.
Indeed, the best solution that yields the best result does not necessarily have to fit the
signal Y perfectly as there is a trade-off between fitting the signal Y tightly and risking
capturing the noise as well, and not fitting the signal Y tightly at the risk of not capturing
the important information. This phenomenon is accentuated for the specific signal studied
in the remainder of this manuscript, which is known to be very noisy. So a compromise
has to be made, and this is made possible by the varying levels of sparsity of the many β
solutions corresponding to many varying levels of parsimony.
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As already mentioned, the value of αinit is fixed by the Lasso-LARS based on the
correlation between the signal of interest Y and the co-variates of φ (see eq. (1.14)), thus,
the only remaining choice is that of the αf . The total number of iterations n required by
Lasso-LARS to reach its stopping criteria depends on several factors, including factors
related to (1) the signal of interest: Its complexity, length and frequency content. And (2)
factors related to the model used: The frequency distribution of the modes, the number
of modes used, and the w weighting (which we will describe later in Section 1.4.3). All
these factors make it impossible to have the same number of iterations performed by
Lasso-LARS to reach the same final value αf for the different signals. Consequently,
the total number of solutions n produced differs from one signal to another. This is
not practical for the part that follows the generation of the SDFs, so for each signal,
we would like to have the same number of solutions produced. In addition, the solu-
tions should have an equivalent degree of fit so that they can be compared or used together5.

To overcome this consistency problem, the sparsity interval [αinit — αf ] for which the
n solutions have been produced and that is specific to each signal, is therefore mapped to
the new sparsity interval [0 — 100] %. The most sparse solution is at the 0% level and the
most full solution is at the 100% level, with the remaining solutions spread between these
two values. Once all the solutions produced are brought into the same sparsity interval, the
inconsistency problem of the total number of solutions n produced for each signal remains.
The proposed approach to tackle this problem is to linearly slice the new sparsity interval
with steps of l %, yielding thus, the same number of β solutions with decreasing level of
parsimony taken at each interval. This transformation and slicing procedure is illustrated
in Figure 1.11. In the case where the Lasso-LARS produces more elements than required
(n > 100/l), the appropriate number of exceeding solutions is discarded. Contrary, in
the case where the algorithms produce fewer elements than required (n < 100/l), the
appropriate number of solutions is duplicated once, as depicted in the step 1 of Figure
1.11. For both scenarios, all solutions have an equal probability of being selected.

For the same scenario using the same signal, Lasso-LARS yields the solution of the
optimisation problem 8 times faster than the classic Lasso. Furthermore, unlike the Lasso,
which returns only a single solution, its Lasso-LARS variant yields several solutions, each
corresponding to a given α.

We mentioned earlier that the only remaining parameter, which needs to be determined,
is the value of αf . This latter can be set by visual inspection6 in such a way that over the
entire interval [αinit — αf ], a good variety of solutions is observed i.e. sparse at first and
become less sparse until reaching a level of fit that is almost perfect, as shown in Figure
1.10. If the value of αf is too large, the majority of solutions will be very sparse, and
we won’t obtain well-fitting solutions. Conversely, when αf is too small, the majority of

5 It seems cautious to avoid comparing SDFs resulting from a partial fit to SDFs resulting from another
signal with a complete fit.

6 As you might guess, this is not the option adopted in the sequel!
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Figure 1.11: Mapping solutions from [αinit — αf ] interval to [0 — 100] % interval.

solutions won’t be sparse at all. This behaviour is due to how the Lasso-LARS works in
combination with the mapping discussed earlier in Figure 1.11.

To avoid manually selecting the value of αf , which could introduce some bias and hu-
man subjectivity and even more obviously because it is not scalable regarding the number
of profiles one needs to inspect in order to derive a rational and robust enough value of this
important parameter, the selection of the αf value has been automated. More precisely, a
set of signals is selected randomly, and then, for each signal, the value of α that results in
a fitting error of 1% is saved. This value is averaged across all signals to obtain an αf

value that, based on experiments, is consistent with the initial strategy. The fitting error
is defined as the ratio between the energy of the residual and the energy of the initial signal:

error%(α) = 100 ×
‖Y − Ŷ (α)‖2

2

‖Y ‖2
, (1.17)

Note that this step must be repeated whenever the parameters defining the model
are changed. The parameters we are referring to are: the number of modes m, their
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distribution, and the weighting constant w (that will be discussed in the next section).
Moreover, if for a given application there are multiple channels with a very different signal
complexity over the channels, it is up to the expert to decide whether it is needed to have
a different value of αf for each channel, thus, requiring to redo this procedure for each
channel. The number of times the procedure in question has to be repeated can increase
rapidly, fortunately, almost all the parameters discussed above are set according to strate-
gies and procedures we have established. Furthermore, the method is very lightweight
and does not require a massive computational load.

1.4.3 Free response / forced response trade-off

The Lasso-LARS algorithm heavily involves the computation of correlations, so if the
input features (columns of φ) are standardised, the algorithm will run faster as inner
products might be used in the algorithm. The standardisation serves also to mitigate the
effect of the differing magnitude of the input features on the correlations, therefore the
entries of β have an equal chance of being selected a priori.

Instead of standardising the φ matrix in the conventional way, a slight modification
is proposed in this work. More precisely, let’s denote φ1 and φ2 as the vector-wise
standardised version of the matrices φ1 and φ2 respectively (defined in eq. 1.8). We have
introduced a weighting constant scalar w ∈ (0, 1) so that the finally used standardised φ
matrix is defined as follows:

φ =
(

w φ1 (1 − w) φ2

)

∈ R
L × m(L+1). (1.18)

This trick is used in order to manage the trade-off between a priori likelihood on one hand
and favouring/guiding the choice of modes that are used first (either those of x0 or U) on
the other hand. Therefore, the factor w serves to adjust whether we put more emphasis
on the free or the forced response. With the value of w closer to 1, the resulting SDF will
be placed predominantly in x0, contrary to a value of w closer to 0 that will result in
SDFs placed predominantly in U . Therefore, this parameter serves to balance between
the number of entries that will be dispatched either in x0 or in U . This variation was
intended in the needed case to favour adjusting for the x0 features first since they affect
the whole prediction unlike the U which are active only on a specific small time span (see
Figure 1.12). Moreover, the modification helps on stabilising the algorithm and yields
better results.

From the equation (1.8), we can observe that the predicted signal Ŷ can be decomposed
into two parts: (1) a free response Ŷx0

and (2) a forced response ŶU . In Figure 1.12 we
can visualize how a signal Y is decomposed into a free response and a forced response
that started at time 0 (s).

Ŷ = φ1 x0
︸ ︷︷ ︸

Ŷx0

+ φ2 U
︸ ︷︷ ︸

ŶU

. (1.19)



Page 26 Chapter 1. Methodology

2

1

0

1

2

3

1000 750 500 250 0 250 500 750 1000

2

1

0

1

2

3

2

1

0

1

2

3

time (ms)

am
p

li
tu

d
e 

(µ
V

)

(a)

am
p

li
tu

d
e 

(µ
V

)

(b)

am
p

li
tu

d
e 

(µ
V

)

(c)

Figure 1.12: Example illustrating how a signal of interest Y (in blue) is fitted by the model (1.2) (in
red). (a) Estimated contribution of the forced response alone ŶU . As shown in the sub-figure, the modes
are triggered near the forced regime onset and the shape of this response matches the shape of the signal
Y . (b) Estimated free response Ŷx0

, the oscillations match the Y response prior to excitation arrival and
keep oscillating in a similar way after the arrival of the excitation. (c) The contribution of (a) and (b)
are summed to give the fitted signal Ŷ .

The value of the parameter w was set in such a way that the trade-off between placing
the SDFs in the forced response or in the free response is consistent. More precisely, the
parameter value is manually tuned so that the forced response starts to kick after the
arrival of the forced regime, as shown in Figure 1.12. Experimentally, we have observed
that values ranging from w = 0.4 to w = 0.6 are sufficient. For the example shown in
Figure 1.12, a value of w = 0.55 is used. It should be noted that this tuning is performed
for the lowest level of parsimony7 and it is carried out only once for all the signals as
they often have the same shape so the same value remains consistent for all the signals.
Moreover, the variability of the solutions with regard to this parameter is minimal (a
value of 0.52 will have almost the same results as a value of 0.5).

In cases where there is low free response activity (low background activity), as in
Figure 1.13, a value of w = 0.5 remains reasonably consistent, as the model will know how
to handle this point since it perceives that there are no modes that are active through-

7 Nearly perfect fit, when α = αf .
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out the entire signal and will therefore activate only the appropriate modes (forced regime).

This parameter needs to be set only once for each application. If the application
is changed, the relationship between the forced and free regime is no longer the same,
requiring this step to be repeated.
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Figure 1.13: Example of the decomposition of a signal with low activity in the free regime. We can
observe in (b) the low activity of the model in the free response contribution, which is consistent with
the signal.

1.4.4 Fit completion

The Lasso-LARS algorithm is mainly used to induce sparsity in the solution of β. The
main objective of the algorithm is to minimize the cost function (1.13) and to find its
estimated optimal solution. As the Lasso-LARS algorithm is shaped, the final resulting
β is not completely fitted, i.e. to minimise the cost function (1.13) β must be small in
magnitude so that ‖ β ‖1 is small. As stated previously, we are only interested in finding
the few most important entries of β that are used in fitting as much as possible the signal
Y .
To pursue the initial design objective of the method, a new module has been added and is
applied after the SDFs generation, and this for each level of parsimony. This block is used
for fit completion and is divided into 3 steps:

1. Masking: consists of selecting only the elements that have been activated (non-zero-
entries of β). Once selected, the column vectors corresponding to these elements will
be kept, and the remaining regressors will be removed, thus producing the φ̃ matrix.
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2. Complete fit: Once the regressors that have been activated are selected, a tradi-
tional least squares regression is applied using these regressors. This reduces the
estimation error ǫ without affecting the number of active modes and their frequency
of use.

3. Update: Once the new values have been computed, the previous β̂ values will be
overwritten by the new ones, ensuring that the new value corresponds to its previous
location.

These 3 steps are depicted in Figure 1.14 for illustrative purposes.

Step 1:
masking

Step 2:
complete fit

using Ordinary

Least Square

Step 3:
update

L
th 

element

update following

the previous mask

Figure 1.14: Fit completion for each SDF generated by the Lasso-LARS.

Figure 1.15 shows an example of the use of the method with and without the fit completion
block. We can notice the use of exactly the same modes and excitation timing, we can
obtain a better fit without affecting the sparsity of β.

1.4.5 Modes number and distribution

This section discusses how to determine the number of modes to be included in the
system and their distribution over the frequency range.
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Figure 1.15: Comparison between the methodology fit with and without the completion fit block.

Number of modes used by the model

As mentioned earlier, the number m of modes involved in the model remains to be
determined. This investigation can be carried out in a conventional manner, i.e., by con-
sidering the parameter m as a hyper-parameter to be optimized during the classification.
However, this approach is computationally intensive and moreover, it is challenging to
implement due to the significant increase in the number of generated SDF that leads
to storage and memory issues. As our approach is based on explainability, we leaned
more towards strategies where we can explain the reasons behind the choices we made,
thus making it easier for the reader to re-implement and adjust to their particular problem.

The approach employed is to find the number of modes, denoted as m, which allows
the signal to be decomposed with the same degree of fit while using the lowest number of
active excitation inputs. Adhering to this criterion upholds the principle of parsimony
upon which the entire methodology is founded. To accomplish this, a grid with differ-
ent values of m is considered, and for each value on the grid, the following process is
pursued: (1) Select a sufficiently large8 subset of signals (identical for all grid values)
to ensure significance. (2) Determine the value of αf for the given fixed value of m
that yields a fitting error of 1%. Generate the SDFs for the chosen signals and compute
the average number of active excitation inputs used for each signal. The averaging is
carried out for all signals and across the levels of parsimony axis; in other words, if, for
a signal resulting in 50 SDF solutions with varying degrees of sparsity, the displayed
average excitation count represents the mean of excitation counts across all 50 solutions.
Figure 1.16 depicts the outcome of this analysis for the following grid: {1, 5, 10, 15, . . . , 45}.

8 The appropriate sample size depends on the application and the richness of the selected data. In
general, we need to ensure that the statistics have converged, and usually 200 samples is good number.



Page 30 Chapter 1. Methodology

Selection

Number of modes m

m
e
a
n

 n
u

m
b

e
r
 o

f 
m

o
d

e
s
 e

x
c
it

a
ti

o
n

s
o
v

e
r
 a

ll
 s

p
a
r
s
it

y
 l

e
v

e
ls

40.0

37.5

35.0

32.5

30.0

27.5

25.0

1 5 10 15 20 25 30 35 40 45

Figure 1.16: Evolution of the excitation number as a function of the number of modes m considered in
the model. The same degree of fit is required for all the values.

We can observe from the figure that the appropriate number of modes denoted as m,
lies within the range of 21 to 24. This range not only adheres to the principle of parsimony
by minimizing the required excitation but also represents the smallest number of modes.
It is more advantageous to take the smallest number of modes as this considerably reduces
the complexity of the problem (see matrix size in eq.(1.8)). The exact value of the
parameter m is not very critical, but its order of magnitude is.

The strategy proposed is not specific to the considered applications. Nevertheless,
moving forward, it is essential to take into account the context of the application, as
diverse choices can be made depending on the specific application’s requirements.

Modes’ frequency distribution

The only condition imposed on the m modes was that their angular frequency
{ω1, ω2, . . . , ωm} should be strictly increasing. In this sub-section, two different ways of
distributing these angular frequencies over the entire frequency spectrum of our signals
will be considered. The first is a uniform distribution, and the second is a distribution
weighted by the spectral energy, both will be discussed in the following:

1. Linear distribution: The simplest method, the frequencies of the m modes are
linearly spaced to cover the entire frequency spectrum of the signal.

2. Spectral Energy Weighted distribution: To understand how this part was
operated, we will first look at Figure 1.17 which shows an example of the Power
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Spectral Density (PSD) average over multiple signals with a confidence interval (CI)
of 95%.
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Figure 1.17: Example of average Power Spectral Density of multiple signals.

The more energetic an interval is, the more modes will be placed over this interval.
To achieve this, the power spectral density is normalized so that it can be considered
as a Probability Density Function (PDF). Next, the cumulative density function is
computed, giving the result shown in Figure 1.18.

Next, the interval [0 — 1] is linearly partitioned into m equal parts. We need
to determine the inverse function for each ordinate value. In other words, we
horizontally project the value onto the cumulative density function (CDF), and then
the obtained value is vertically projected onto the x-axis. The resulting frequency
represents the frequency of that mode (as indicated in red in Figure 1.18). By
repeating this process for the m ordinate values, we establish the distribution of
frequencies for these modes, thus allocating them according to the spectral energy.

To compare the outcome of the two distributions, the same procedure as for fixing
the number of modes m has been replicated. This involves testing both approaches and
determining which one complies more with the principle of parsimony. The outcomes of
this analysis are illustrated in Figure 1.19. An example can be observed9 for m = 40,
showcasing a comparison between the number of excitations generated for the same
configuration. It can be observed that the linearly spaced frequency distribution produces,

9 We conducted similar tests for other values of m, and the same result was observed.
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Figure 1.18: Cumulative Density Function of the PSD illustrated above. Illustrates how the frequency
distribution of the modes is related to the PSD.

for the same configuration, the same outcome while utilizing only half the number of
excitations. The latter is the one that best complies with the principle of parsimony.
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Figure 1.19: Comparison of the number of modes excitations between a linear distribution and the
spectral energy weighted distribution of the model frequencies.

From the previous analysis, we concluded that the most important factor is that the
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frequency distribution of the model should cover the entire frequency spectrum as best as
possible. If an interval is more energetic, the modes will be activated much more often or
have a greater amplitude. To illustrate this point, Figure 1.20 shows an example with a
linear frequency distribution, and we can observe the correlation between the PSD and
the calculation of the energy of U carried by each frequency band10. The distribution of
the two PSDs the signal and the model’s output are quite similar. This clearly shows that
the model’s philosophy respects both the frequency aspect and the physical essence of
the signal as intended. It is essential to notice the slight discrepancies between the PSDs
of the signals (depicted in red) and those of our model (depicted in blue). We have no
explanation for this, but we believe it could be explained by the lack of consideration of
the power captured by x0.

1.5 Features extraction

Feature extraction is a fundamental process in machine learning and signal processing,
where raw data is transformed into a more compact and meaningful representation, known
as features. These features are selected to capture essential patterns, characteristics, or
relevant information from the original data without being redundant. Once the features
have been extracted, the model relies on them to make its predictions.

1.5.1 High dimensionality drawbacks

Before discussing feature extraction, it is very important to note that the more features
we have, the more data will be needed to converge to the true distribution underlying the
data. When the dimension of the features increases, the volume of the space containing
the latter grows exponentially, so that the available data will be scattered in that space.
In order to have reliable results, the data must cover the space well enough, so the number
of data must also grow exponentially [8]. This phenomenon is known as the curse of
dimensionality.

Suppose we have a set of discriminant features and we want to study, for example,
the difference between Parkinson’s disease and healthy individuals for this particular set
of features. For practical reasons, in our study, we cannot take the entire worldwide
population suffering from the disease and compare it with the entire worldwide healthy
population. It is necessary to take a representative sample of both populations. For the
global population, and for the features chosen, we have one data distribution for each
condition (healthy or not), these distributions are called the true distribution underlying
the data.

Taking a representative sample from the entire population is equivalent to drawing
a sample from this distribution. In the case where a large number of features are used and

10 Which is also a PSD but not as we know it classically.



Page 34 Chapter 1. Methodology

Frequencies [Hz]

(V
2
/

H
z
)

Power Spectral Density

F
re

qu
en

ci
es

 [
H

z]

PSD

Energy
per frequency band

Time [index]

Signal PSD

Model PSD

(a)

(b)  

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0 10 20 30 40

Figure 1.20: (a) Shows how the PSD of our model is calculated. (b) Comparison between the Power
Spectral Density of the signals used and that produced by our model using (a).

a small sample is drawn, the space in which the data resides is very large (high dimension)
and the samples drawn end up scattered in that space. Given that most classifiers tend to
maximise the separation between the two classes, it is easier to obtain very good results
when there are many features and a few number of data samples. These good results
can also be obtained if we simply had a good draw11 during our sampling [30]. More
alarming is the fact that these good results can also be obtained if the true distribution
(worldwide) of the two classes is exactly the same (overlapped) and therefore theoretically

11 By pure chance, it is possible to have the majority of the samples from the first class in one area,
and those from the other class in another far away area, the likelihood of this happening increases with
the number of features used.
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not separable. Non-separability is equivalent to having a separation accuracy of 50% for
the case of 2 classes.

This shows the importance of studying the statistical significance of the results ob-
tained. These considerations should be taken into account prior to the experiment in
what is so-called “experiment design” where statistical methods and calculations are
used to determine an appropriate sample size to ensure the validity and reliability of
the experimental results. We are aware that it is not always straightforward to put this
into practice, throughout this discussion, we want to raise the alarm about the problem
where the number of features used is not adequate given the number of subjects in the
experiment. In what follows, the problem we have just mentioned will be illustrated using
a simplified example.

In the following example, the goal is to separate and categorize data from two classes:
“x” and “o”. It is assumed that these two classes share the same underlying distribution
(overlapped), therefore, if somehow we have access to this information, we know that the
two classes are not separable. Figure 1.21.a is a discrete example of the same underlying
distribution where if we draw an item in class 1, the probability of drawing it from the left
or the right is the same, similarly for class 2. For simplicity reasons, at first, only 4 ele-
ments will be drawn (2 for each class). Two possible drawing are illustrated in Figure 1.21.b.

Feature 1

Probability

0.5
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class 2

(a)

(b)

draw 1 draw 2
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o
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x
x

o
o

Figure 1.21: (a) Example of a discrete overlapping true distribution. (b) Two possible drawings taken
from the distribution (a).
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It can be observed that for the left-hand draw, the data samples are separable even
though we know that the underlying distributions that generated this draw are not sepa-
rable. It is simply by chance that we have obtained perfect separability of the two classes.
The likelihood of this happening decreases with the number of samples taken, and the
more points we sample, the more we converge on the true distribution.

By drawing only 4 elements, there are 16 possible combinations, for lack of space, we
have illustrated the most important draws12 in Figure 1.22. At the bottom, we have noted
the number of occurrences of a similar draw as well as the classification accuracy obtained
using a Linear Support Vector Machine (SVM). Note that the lowest precision is 50%, so
in the worst scenario, we would say that the data are not separable. But it is possible to
have a good draw by chance and have a precision of 100%. It is important to note that
each occurrence is equally likely to be drawn. Moreover, the decision boundary of the
SVM is the same for each draw (no randomness in the classifier that will lead to different
results).
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decision
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Figure 1.22: Important possible draws of 4 elements from the distribution in Figure 1.21.a with their
number of occurrences and the classification accuracy.

For configuration G, which consists of 1 feature, 4 samples, a linear SVM classifier,
and this specific true distribution underlying data, we will compute the a priori accuracy
(R) associated with this configuration. This a priori accuracy is inherently linked to
the configuration itself, and it assesses the expected accuracy that is yielded by the
configuration before incorporating any evidence or making any sample draw (a prior).
The expected accuracy can be calculated following:

E(R; G) =
∑

i

ri p(ri; G) =
2

16
× 1 +

8

16
× 0.75 +

6

16
× 0.5 = 0.6875, (1.20)

where ri is the accuracy obtained for the possibility i and p(ri; G) is the probability of
observing the possibility i under configuration G which in other words is the number of
occurrences of possibility i.

In the following example, the same procedure will be used to calculate the expected
accuracies for different configurations G (the classifier and the underlying distribution
will be kept the same). The impact of adding more samples on the expected accuracy

12 The remaining draws can be obtained by horizontal symmetry and class swapping.
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will be studied first, followed by the impact of adding one feature at a time. Note that
the added feature has the same marginal distribution as feature 1 shown in Figure 1.21.a.
The obtained results are depicted in Figure 1.23.
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Figure 1.23: The expected accuracy as a function of the total number of samples for a single feature up
to four. Computed points are in solid, their corresponding extension is dashed.

The curves were obtained by listing all the possible splits as shown in Figure 1.22 for
an increasing number of samples. In the case of the red curve (1 feature) the expected
accuracy can be computed according to the subsequent formula:

E(R) =
n∑

k=0

(

n

k

)(
1

n

∣
∣
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∣k −

n

2

∣
∣
∣
∣+

1

2

)

, (1.21)

where the even n is the number of samples taken in the data-set. We could not derive
a formula for the other cases, thus, the first points were determined using a numerical
computation and are represented by the solid line. The dashed curves are what we believe
the extensions of the curves as we could not compute for more samples as the number of
possibilities grows very fast.

Figure 1.23 gives an order of magnitude of the expected accuracy that can be obtained
for a data-set which, if the true underlying distribution is known, is not separable. It can
be observed that as the number of samples increases, the accuracy tends towards 50%,
independently of the number of features taken. Furthermore, for the same number of
samples, the expected accuracy increases as the number of features increases. If we take,
for example, 16 samples for 4 features, the accuracy we can expect is of the order of 80%
simply by being in this configuration, even if the underlying distribution is not separable.

This simplified experiment highlights two important points:
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1. Importance of studying the significance of the results obtained: In some cases, such
a study is difficult, however, we want to warn of the various biases and problems
that can arise with data-based methods. Something that can help we believe is the
use of explainable features, regularization, etc. as having 20 features for 50 data
obviously leads to fragile results. This should be handled by either reducing the
number of features used despite the loss of accuracy or by adding more quality data.

2. Importance of data-set sizes: The number of data samples used should be significantly
higher than the number of features. A good rule of thumb given by Richard Bellman
[8] is to have at least 5 data samples for each feature that covers well the space.
The importance of data-set size is widespread, however, in the previous example, we
wanted to give an idea of the expected accuracy, simply due to the randomness of
the draws in the case where there is little data or a high number of features.

The considerations we have just discussed are often absent in the works we have
encountered and that will be addressed in the following chapters. This aspect enhances
the robustness and relevance of our results, especially considering that we will be utilizing
an extremely limited set of features.

1.5.2 Advantages of feature extraction and selection

As our work is built up around the explainability and significance of the results, the
problem of high dimensionality has been avoided by carrying out feature selection. This
latter offers several advantages:

1. Reducing the risk of over-fitting: Classifiers with strong fit capability, will
no longer be able to over-fit to data that is scattered in a high-dimensional space,
but will be pushed to fit using a small number of features that contain relevant
information. Feature selection helps to project the data into a lower-dimension
feature space that should not be sparse. As will be discussed later on, over-fitting is
intolerable for health applications for obvious reasons.

2. Improving the stability of the classifier: Upon adding new data samples, the
decision boundary should remain stable and not vary a lot. Feature selection helps
to stabilize the decision boundary by giving less degrees of freedom to the classifier.
This effect is more relevant for applications based on small data-sets.

3. Physical explainability: Using explainable features, which have a direct relation-
ship with the targeted application, not only helps to make sense of the model used
but also to understand the model’s decisions. In addition, the final model is more
trustworthy as it is derived from prior knowledge.

4. Extract valuable information: Only the useful and important information that
the model should utilise to perform the classification is extracted and well packed in
these features. The classifier will no longer need to perform the feature extraction.
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5. Reducing computational time: Using fewer features reduces the size of the
problem to be solved, thus considerably reducing computing time. This is important
even in the case of off-line training, as it gives access to methods for testing the
significance of results which are often not feasible due to their heavy computational
demands.

In our case, the SDF (the U vector) at the output of the algorithm has a size of
m(L − 1), where L can be very large. So we often end up with SDFs that are certainly
sparse but occupy a large dimension13. Given that the applications considered in this
manuscript are limited in terms of data quantity, the advantages mentioned above are
even more relevant.

1.5.3 Feature extraction and selection

For the sake of brevity, we have only referred to feature extraction earlier, although,
feature extraction and feature selection will be discussed in greater detail. The difference
between the two is that feature selection is a process that chooses a subset of features from
the original features following a certain criterion. However, feature extraction is a pro-
cess through which a set of new features is created based on the original signals or features.

The different types of feature extraction/selection performed on the generated SDFs
can be split into two categories respectively based on temporal or frequency selection.
This is described hereafter:

Temporal selection:

In some situations, it is preferable to rely on our prior knowledge and experience
regarding the application. For this reason, it is important to tailor the time interval
studied and select the features that have been activated over the time interval of interest
only. Figure 1.24 is an example of a brain signal where it is physiologically and physically
meaningful to consider only features taken over the indicated temporal interval of interest.

The temporal selection is directly performed on the vector U by discarding the elements
of the vector that do not belong to the time interval of interest, as illustrated by Figure
1.25.

Frequency selection:

In other situations, some prior knowledge suggests the selection of a frequency band
of interest. Similarly, this selection is made possible by the proposed method and is
illustrated in Figure 1.26.

13 Typically for the applications addressed m(L − 1) = 40000, due to sparsity the SDF dimensions is
lower and is in the order of 4000.
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Figure 1.24: Example of brain signals with time interval of interest.
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Figure 1.25: Temporal feature selection.
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Figure 1.26: Frequency feature selection.

Feature extraction:

The methodology proposed has been used as a decomposition, a change in the point of
view on the data. Instead of treating our data as a time series, we chose to consider them
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as modes with their associated frequencies, which are activated and deactivated at given
instants with a given amplitude. All signal information is therefore embedded in these SDF.

Just as a temporal signal can be fed directly to the classifier, so can the SDFs. Thus,
the entire vector U can be fed directly to the classifier, or a selection applied to it (fre-
quency and/or time). Although the feature selection is carried out on the SDFs, we will
remain in the high-dimensional case. For the advantages presented in Section 1.5.2 and
the high-dimensional issues discussed in Section 1.5.1, we are forced to perform feature
extraction. The different combinations of feature selection and feature extraction that
can be applied to the generated SDFs are shown in Figure 1.27. It is important to note
that only one case will be used at the time and there is no aggregation of the different
possibilities. Moreover, to recall, x0 must be used for the computation, however, for the
applications considered, no significant results were obtained using it, so it was discarded
for the remainder of the analysis.

Signal SDF

Generation

U

Discarded

Classification

x0

Selection Extraction

Extraction

Selection

switch

Feature selection and/or extraction

Figure 1.27: The different combinations of feature selection and/or extraction that we can apply on the
SDFs.

Different features have been tried out that we thought would be interesting to consider
in the applications considered in the following chapters. Table 1.1 summarizes all the
features that have been used. It should be noted that, depending on the application, only
a subset of these features has been evaluated, not all of them. The features that have
been evaluated will be indicated for each application in its respective section.

Combination of the above:

Note that for this part, the different feature selection/extraction options can be used
individually or in combination. For instance, a first selection of the frequency band of
interest is performed, followed by a feature extraction applied to the resulting selected
features. Thus, yielding the desired features extracted only from the frequency band of
interest.

Once the desired features have been selected and extracted, they will be used by the
next step, which is classification. This will be covered in greater detail in the next section.
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Number Feature f(U)

1 Energy ‖U‖2
2

2 Count non-zero
∑

1(U 6= 0)
3 Mean U
4 Max max(U)
5 Min min(U)
6 Pk-pk max(U) − min(U)
7 Argmin argmin(U)
8 Argmax argmax(U)
9 Argmax−Argmin argmax(U) − argmin(U)

10 Variance σ2 =
[

U − U
]T [

U − U
]

11 Skewness skew(U)
12 Kurtosis kurtosis(U)
13 Count above mean

∑
1(U > U)

14 Count below mean
∑

1(U < U)
15 Norm l1 ‖U‖1

16 Norm ∞ ‖U‖∞

17 Positive argmax arg(‖U‖∞)

Table 1.1: List of extracted features a subset of which is used in the forthcoming applica-
tions.

1.6 Classification & Evaluation

The aim of the classification is to use a model, also called “classifier”, to categorize
the input data into different classes. The classifier utilizes the data to learn patterns
from the inputs in order to separate them and predict the output (the different classes).
Concerning our case, the input data are either the SDF directly or the result of feature
selection/extraction applied on the SDF. The output is the class to which the input data
belongs to.

Different classification algorithms exist with different levels of complexity and use cases.
The less complex models are often appreciated because of their simplicity of use, their low
computational costs and especially for their explainability and the simple interpretation
of the results. As we are aiming to use very few features, simple classifiers are sufficient
for the task. Depending on the complexity of the application the following 3 classifiers
were used:

1. Linear Discriminant Analysis (LDA): The objective is to find a linear combi-
nation of the features such that the between-class variance is maximized relative
to the within-class variance. Figure 1.28.a shows that although the line with the
greatest centroid spread, projected data overlap. However, the discriminant direc-
tions minimize the overlap of the projected data and maximize the between-class
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variance as illustrated in Figure 1.28.b [40].

(a) (b)
Feature 1 Feature 1

Feature 2Feature 2

LDA
Decision
boudary

Figure 1.28: (a) Greatest centroid spread compared to (b) LDA separation.

2. Quadratic discriminant Analysis (QDA): This algorithm works exactly the
same as the LDA, however, instead of having a hyperplane (linear combination of
features), a quadratic curve separates the different classes (quadratic combination
of features). QDA is often used when the data is more complex, and the linear
classifier fails to separate the data. Figure 1.29 shows a comparison between LDA
and QDA separation capabilities. [40].

(a) (b)
Feature 1 Feature 1

Feature 2Feature 2

QDA
Decision
boundary

Figure 1.29: Comparison between decision boundary between: (a) LDA and (b) QDA.

3. Adaptative Boosting (AdaBoost): Is an ensemble learning algorithm designed
to enhance the performance of weak classifiers by combining their predictions. It
iteratively trains a sequence of weak models, such as simple decision trees [89],
assigning higher weights to misclassified instances in each iteration as presented in
Figure 1.30. The final model is formed by giving more influence to those weak models
that perform well. AdaBoost adapts its training focus based on the errors of the



Page 44 Chapter 1. Methodology

previous models, effectively creating a strong classifier that excels in generalization
and is less prone to overfitting. More details can be found in [28].

Strong learner

Weak learner 2Weak learner 1

Dataset Weighted dataset

decision

boundary

weighted

data

Figure 1.30: AdaBoost algorithm in few steps.

The first two classifiers have no hyper-parameters to tune, making them easy to use
and straightforward to implement. However, the AdaBoost classifier has the maximal
number of weak learners as well as a learning rate to tune. Details about these algorithms
are out of the scope of this manuscript and can be found in the given reference [40].

Before discussing the so-called Cross-Validation technique and its relevance in the
design and performance evaluation of the model, which will be addressed in the next
sub-section, we should first discuss the so-called data leakage problems. Data leakage
is defined as the use of information in the model training process that is not supposed
to be available at the time of prediction [45]. This would not be possible in a real-life
scenario, where a new sample of unlabelled data is received and needs to be categorized.
The data leakage introduces a bias in the evaluation of the model and therefore the
claimed performances. Indeed, the developed model will have excellent performances on
the training data and even the presumably designated as test data should data leakage
be present in the process of splitting the data, but it will perform poorly on new unseen
data. Two types of data leakage are important to note which are explained hereafter:

1. Group leakage: Where correlated data/information is present in both the training
and the test sets [4]. This shouldn’t happen in a realistic scenario where new unseen
data arrives. This problem is so serious that sometimes complex models (e.g. neural
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networks) rely on the signature of the data14 and its similarity to the training data
to make their predictions. As a result, the model has poor generalization capabilities,
as little relevant information has been captured. Appendix 6.3 demonstrates the
effect of group leakage with an example using a Convolutional Neural Network
(CNN).

2. Optimisation over test-set: This concerns the optimization of model hyper-
parameters and/or the methods used, as well as the features that worked the best
using the test set. This leakage can occur either directly, i.e. using the test set alone,
or indirectly, using the entire data set (which is partly composed of the test set) [45].
The evaluation of the method becomes biased because the choice of hyper-parameters
and features was made by including the test set, which is not possible in a real
case. This bias is even more accentuated by the fact that today’s models often have
a large number of hyper-parameters and a high generalization capability, which
leads to even greater over-fitting of the latter on the test-set. This problem can be
alleviated by adding a validation-set (more details in the next sub-section).

1.6.1 Cross-Validation

To evaluate the generalisation performance of our method on new unseen data, we
first used the simplest sampling method, namely a Nested Train-Test-Validation split
(NTTV) [60]. This procedure consists first of all of splitting the data-set into a holdout
test-set and a learning-set, this step takes place in the outer loop and the splitting is
performed in a random and stratified manner (keeping the same proportion of the classes
as they appear in the initial population if possible). The learning-set is then randomly
sampled in a stratified manner into a training-set and a validation-set within the inner
loop (see Figure 1.31). This sampling method allows us to have a validation set in order
to select on the latter the best hyper-parameters, but at the cost of reducing the size of
the training-set. It is important to recall that we cannot select the hyper-parameters that
perform the best on the test-set as this is considered as data leakage. [99] is an excellent
study of this bias with different Cross Validation (CV) procedures.

Firstly, the model is trained on the training-set, then the hyper-parameters15 are fine-
tuned and selected on the validation-set. The model is then retrained on the learning-set,
using the best hyper-parameter obtained. Finally, the trained model performances are
evaluated on the test-set. This assessment will result in only one performance estimate,
which will vary considerably and will depend heavily on the splits (which subject is in
which group). One solution to cope with this variance problem is to repeat the splitting
procedure several times with different randomization in each repetition, giving several
performance estimates, one for each given split. The overall performance will then be the
average performance obtained on these different splits. However, even if we randomly split

14 For the applications studied, models recognize the subject’s signature to make the prediction.
15 In our case they are the number of oscillators m, their angular frequency ωi and most importantly

the sparsity level α.
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learning-set
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entire
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Inner loop
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random
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1 repetition
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Figure 1.31: Nested train-test-validation splitting for a single trial.

the subjects into three sets, some subjects will be chosen much more frequently in one
set than in the others. This creates a selection bias that significantly affects the results
(the effect is much more pronounced when the dataset is small) [60]. This selection bias is
reduced as the number of repeated splits is increased but at the expense of computational
cost and time.

K-fold CV

K-fold CV is another solution to reduce the selection bias that works well on small
data sets [92]. It consists of randomly partitioning the data set into K-folds (K partitions).
For K times, we keep a fold that was not previously chosen as a holdout test-set and use
the remaining K−1 folds as a learning-set (see Figure 1.32 for K=5 example). K may be
set to the total number of data instances so that each observation is the holdout once;
This procedure is called Leave-One-Out (LOO) Cross-Validation [60]. This is the best
way to reduce the selection bias and improve the learning performance of the model, but
at the expense of the computational load [99, 60]. In our case, this is practicable because
our model is simple and computationally inexpensive, moreover, we are working on a
small data set.

Nested Leave-One-Out CV

To take advantage of the benefits of the two sampling methods presented above (NTTV
and LOO) and to compensate for their drawbacks, they have been combined to obtain the
Nested Leave-One-Out (NLOO) Cross-Validation. This combination offers the possibility
to perform hyper-parameter tuning, reduce the selection bias and compensate for the small
training-set bias present in NTTV. The NLOO cross-validation procedure is composed
of two nested loops: (1) An outer-loop and (2) an inner-loop, within each of which is a
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Figure 1.32: Example of 5-fold Cross Validation.

LOO procedure. The outer-loop splits the entire data-set into a learning-set and a test-set
while the inner-loop splits the learning-set into a train-set and a validation-set (for more
details, see Figure 1.33).

This approach is the least biased since it simulates the procedure that occurs in a real
case for each repetition. In a real scenario, the entire dataset is partitioned for training
and validation. Once the hyper-parameters are set and the model is trained, evaluation
is performed on a new test set that has never been seen before. Therefore, the training
and validation procedure is blind to the evaluation, and the choice of hyper-parameters
is based only on the dataset at hand. This is exactly the same procedure replicated by
the NLOO CV procedure. Each inner-loop split is independent and blind to the test set,
and in each iteration, the chosen hyper-parameters will differ based on what worked best
within the inner loop.

The metric used in this manuscript is accuracy, which is defined as the number of
correct classifications divided by the total number of classifications made. Since we have
an accuracy value for each split and for each repetition, the reported result is the overall
accuracy, which is the average of all the accuracies across all repetitions and splits:

accuracy =
∑

repetitions

∑

folds

correct classifications
all classifications

(1.22)

For the remainder of this manuscript, when an “N” is mentioned before the CV
procedure, this indicates that a Nested CV procedure is used, either Nested Leave-One-
Out (NLOO) or Nested K-fold (N K-fold). Moreover, in the nested case, the internal
loop always corresponds to a Leave-One-Out (LOO) CV procedure unless it is explicitly
mentioned that this is not the case.
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Figure 1.33: Schematic display of the nested LOO cross-validation.

1.7 Conclusion

In this chapter, we first presented the foundation of our modal decomposition. This
decomposition is generic and can be employed for any physical signal. The oscillators or
modes within the proposed model can be activated or deactivated at any given moment.
The activation timing, along with the amplitude, is determined through the resolution of
an optimal control problem. To solve the latter, the principle of parsimony constitutes
an important pillar, guiding the choice of the optimiser towards the Lasso-LARS. The
parameter α of the method allows for various solution profiles with varying levels of
sparsity, effectively tackling the high noise problem present in the data. Therefore, only
the necessary and meaningful information is captured, while mitigating the impact of noise.

The most important parameters of the method are the number of modes m, the fre-
quency distribution of the modes, the parameter w which manages the trade-off between
free response and forced response, as well as the final value of αf which manages the
degree of fit and the level of parsimony of the solutions have been discussed. The choice
of the latter depends on the application, however, different procedures guiding the choice
have been discussed. Selecting these parameters procedurally reduces the effect of human
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subjectivity on the one hand, and on the other hand, makes the method more explicable
and repeatable compared to a purely algorithmic (heuristic) selection methods.

The selection and extraction of features used in this manuscript have been discussed,
highlighting their advantages and utility. The latter is even more pronounced when dealing
with small datasets. Furthermore, the various employed classifiers have also been covered.
The issue of data leakage is a challenge encountered in the literature, where we have
presented the key points and strategies to tackle it.

Finally, the cross-validation procedure, which ensures results that are closest to reality
with minimal bias, has been addressed. The ultimate solution chosen is the Nested
Leave-One-Out procedure.

Main contributions

The main contributions related to the methodology presented in this chapter are the
following:

• Proposal of a novel feature generation paradigm based on linear state space systems
and parsimonious optimisation, offering a new point of view on the fitted signals.
To our best knowledge, this is the first time we have seen this type of paradigm.

• The proposed method enables the direct disentanglement of the forced and free
regimes from the signal, a topic of significant research interest in fields like Brain
Computer Interfaces.

• The proposed method uses the parsimony level parameter to perform denoising
which is detrimental for some applications.

Additional contributions resulting from the application of the methodology that will be
presented in the remainder of the manuscript are:

• Rigorous analysis of the relevance of results in scenarios with low number of patients
(data instances).

• Achieving results comparable to the state of the art that are explainable and easier
to accept by the clinicians in order to be used as assisting tools. And this, while
using simple classifiers and a relatively low number of features.

• Application of the proposed methodology to three distinct problems using real and
publicly accessible data, without necessitating the modification of the methodology.

The next chapter will cover in depth the recording systems and their specific aspects. This
is necessary to understand the context of our application, be aware of potential pitfalls,
and know how to conduct the required pre-processing.
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2.1 Introduction

This chapter will cover the basic aspects of the data recording systems that have been
used to collect the data needed for the future applications considered. It is important to
note that the experiments and data collection were not carried out by us and that the data
used is publicly available. Nevertheless, this study remains important to understand the
application context, and to avoid potential pit-falls and problems that may be encountered.

In Section 2.2 an introduction to the fundamental principles of electroencephalography
is given, followed by the different methods used to attenuate recorded noise. Subsequently,
the electrode nomenclature, montages, and positions are detailed in Section 2.2.3. The
complexity of EEG recording and the various artefacts that contaminate the recorded
signals are detailed in Section 2.2.4 where we can also see how these artefacts are removed
using Independent Component Analysis (ICA).

In Section 2.3, a brief overview is given of the heart conduction system followed by
leads position of an ECG in Section 2.3.1.

2.2 Electroencephalography

An action potential, also known as a neural impulse, is a short event during which
the electrical potential of a cell rises and then falls rapidly, producing a local current
[101]. This phenomenon is specific to neuronal cells as well as muscle cells [53]. Mea-
surement of the local current reflects the underneath activity of the brain, but direct
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measurement of this current is not possible. An alternative way of measuring the electri-
cal current, thus, brain activity is to measure the voltage, which is equivalent to the current.

Electroencephalography (EEG) is a non-invasive1 method to record the electrical activ-
ity of the brain through electrodes placed directly on the scalp. Due to the low amplitude
of the electrical signal produced by the neurons, which is in the order of 10 mV ; but
measured at the scalp level with an amplitude generally ranging from 0.5 to 100 µV , a very
high amplification gain device is required to amplify the small electrical signal measured
by the electrodes. EEG has been used by several studies to assess individuals’ health
conditions and to study brain function in healthy individuals as well as to diagnose various
diseases that alter the brain electrical activity such as: Parkinson’s Disease, epilepsy,
Alzheimer’s, sleep disorders, schizophrenia, etc [90].

The Figure 2.1 shows an example of EEG recordings.

Amplifier

Electrode

EEG

Figure 2.1: Illustration of EEG recording.

2.2.1 Electrode types

There are two types of electrodes, each with its own advantages and disadvantages:

1. Wet electrodes :

• Generally made from silver, pewter or gold.

• A conductor acting as a bridge between the electrode and the scalp. This can
be either an electrolytic gel (for research purposes) or a glue (for clinical use).

• Low impedance: the gel gets into the skin’s pores, reducing impedance
between the electrode and the scalp.

• Movement resilience: the application of the gel creates a contact surface enabling
the electrode to remain connected, so the recorded signal is not disrupted a lot
by the subject’s movement.

1 Does not require passage through the skin.
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• It takes around 30 minutes to install, and requires a professional.

• Risk of creating an electrolytic gel bridge between two relatively close electrodes,
resulting in an identical measurement signal from both electrodes.

2. Dry electrodes :

• Usually made from graphite or coal.

• No conductive gel is required to be used.

• High impedance: the contact of the electrodes is not good enough and not
directly with the skin, sometimes it even touches the hair which is a poor
electrical conductor.

• Highly sensitive to movement: each movement is amplified, reducing the
Signal-to-Noise Ratio (SNR).

• Rapid set-up due to the fact that it is a slip-on helmet (non-medical use).

Figure 2.2 shows the use and contact point between a wet and a dry electrode.

Wet electrode Dry electrode

Stratum Corneum

Stratum Granulosum

Stratum Spinosum
/ Basale

Dermis

Bad
contact
(space)Conductive

gel

Figure 2.2: Wet electrode (left), dry electrode (right) with the different skin layers.

A high impedance impedes the passage of current from the scalp to the electrodes. As
a result, fewer EEG signals of interest will be transmitted to the electrodes and therefore
recorded, which has the effect of reducing the signal-to-noise ratio. Therefore, to reduce
noise and improve the quality of the EEG recording, the impedance of the electrodes
should be as low as possible. Figure 2.3 shows a comparison between the impedance
over different frequencies between the two types of electrodes (wet and dry) (Figure has
been adapted from [107] only style changes have been made). We can observe that wet
electrodes have a lower impedance and therefore a better recording quality, which explains
why they are widely used in the medical field.

We have discussed this point about electrode types as currently, wet electrodes, which
are widely used in practice and in the medical field, are much more practical for serious
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Figure 2.3: Comparison of impedance at different frequencies of wet/dry electrodes (Figure has been
adapted from [107] only style changes have been made).

experiments because they allow recording with much less noise than dry electrodes ([107]
studied this difference). However, dry electrodes are much easier to set up, so we can
imagine helmets that can be put on for everyday use. We can imagine that we will be
able to diagnose various brain diseases, but we think that this application is a long way
from reality at the moment. The current aim of this work is rather to assist clinicians in
diagnosis.

2.2.2 Principles of EEG measurement and noise attenuation

As presented in the previous section, the electrical signal produced by the neurons
is of very low amplitudes. Therefore, an amplification device with a very high gain is
necessary. Operational Amplifiers are electronic components that amplify an input voltage
to produce a higher output voltage. Figure 2.4 is a simplified circuit of an Operational
Amplifier.

The use of an OA requires the comparison of two electrical potentials (V+ and V−).

V+

V–

Vout  V+ – V–

Figure 2.4: Operational Amplifier.

Usually, the input potential is V+ and V− is the reference potential, so the question arises:
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which reference potential should we compare our electrode potential to? In the following,
we will answer this question.

Referencing and grounding

Since the ground is intrinsically at a potential of 0 V , it is in most cases chosen as
the reference point. Figure 2.5 shows the output using one Active electrode (A) and the
ground (G) as a reference point.

Measuring relative to ground

Ampli er

output: A – G
total body

electrical potential

(brain signal + noise)

A=

G

Figure 2.5: EEG recording using the ground as a reference point.

In electroencephalography, using the ground as a reference is dangerous and has several
inconveniences which include:

1. The potential measured does not correspond to brain activity, but rather to the
electrical voltage of the body as a whole since the human body is an electrical
conductor. The measured brain signal is small and drowns in the measured electrical
potential of the whole body, which in this case is considered noise.

2. Usually, the measuring instrument is affected by noise, and this noise affects all
the electrodes equally. When the ground is used as a reference, the noise is not
attenuated contrary to other montages2 that we will present next.

3. Our aim to reduce impedance for better recording quality makes ground reference
dangerous. Indeed, the danger comes from the fact that the current (as it is easier
now with a low impedance) from the recording device can pass through the subject
and electrify him or her.

2 It refers to a specific arrangement or configuration of the electrodes placed on a person’s scalp to
record the electrical brain activity.
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In order to overcome these problems, different montages exist, such as the one illustrated
in figure 2.6. This montage is known as common mode rejection and uses another measuring
electrode placed on the skull as a reference point.

Common mode rejection

Ampli er

output: (A – G) – (R – G)

A

G

R

Figure 2.6: Common mode rejection montage.

As we can observe in Figure 1, the measured potential is no longer that of the whole
body, but only the brain activity between points A and R (reference), this addresses
problem 1 mentioned above. Since the measured potential is the difference between A and
R, the same noise carried in A and R will be cancelled out, which addresses problem 2
mentioned above. The amplifier’s internal noise and external noise are also attenuated by
maintaining the G measurement point. The only remaining problem, yet very important,
is the electrification of the subject, which is due to the fact that the subject is not
galvanically isolated and is still in direct contact with the ground wire.

To overcome this, an internal point to the amplifier (floating ground) is used to isolate
the subject from the power grid, resulting in the configuration shown in Figure 2.7, which
addresses problem 3 mentioned above. However, information about the absolute potential
(ground) is lost.

The ground electrode is often placed on the forehead (but could be placed anywhere else
on the body; the location of the ground on the subject is generally irrelevant). However,
Some reference electrode locations are more coveted and used in practice, and are shown
in Figure 2.8.

It is important to note that the head can be considered as a dipole, and if we assume
that the head is perfectly spherical and place the electrodes equidistantly and symmetri-
cally, the sum of the signals recorded by all the electrodes will be zero 0 V . So we can
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Figure 2.7: Typical montage with: an active electrode, a reference, and a floating ground.

Common references location

Mastoid

Mid-frontal
Vertex

Nasion

Figure 2.8: Location of commonly used references.

use this average as a virtual reference point. This makes the use of the average reference
interesting, as it gives us information relative to the absolute potential. In practice, the
average reference is the most widely used reference.

It should be noted that the choice of reference during recording is not important since
re-referencing can be done post-recording using simple subtractions. However, even if it
is simple to change a reference, it has a great impact on the EEG and on our point of
view on it as indicated by Figure 2.9 where the same signals are illustrated for various
reference points.
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Average Reference Nasion Reference

Mastoid Reference Vertex Reference

Figure 2.9: Effect of reference change on EEG.

2.2.3 Nomenclature

The electrodes must be well placed in order to maintain consistency, reproducibility of
results, analysis and scientific comparison of the different available methods. Not only
should the electrodes be placed in the same position on the skull, but the same electrodes
should be kept in the same place. This is why there are standards for placement as well
as a nomenclature of electrodes.

Montages

There are different EEG recording systems with different montages that differ in the
number of electrodes used. There are those with 64 electrodes and those with 32 or
even 16. Each has its own standard of placement, but for the example that follows the
international 10-20 system is presented.

For the correct placement of the EEG electrodes, two anatomical measuring points
are used and they are (see Figure 2.10):

1. The nasion: the point between the nose and forehead.

2. The inion: the lowest point of the skull on the occiput.

The line connecting the nasion to the inion passing by the vertex (highest point of the
skull) is first to be considered. Two other lines connect the nasion to the inion passing
by the left eat canal opening (A1) and the right one (A2). Theses lines are divided into
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10—20—20—20—20—10 intervals as presented in the Figure 2.10. At each interval an
electrode is placed, the latter should be symmetrical and equally spaced.

(a) (b)

Figure 2.10: Figure showing the international 10-20 electrodes placement system. (Taken from [95]
after author’s approval)

Nomenclature

Once we know where to place the electrodes on the skull, it is important to know
which electrode to put where. There is a fairly intuitive nomenclature for naming the
electrodes. It is based on numbers and letters to identify the electrode and therefore its
placement.

• The numbers :
They denote the location of the electrodes according to the hemisphere in which
they are located. The letter z defines the location of electrodes positioned on the
median line (the line that connects the nasion to the inion). Odd numbers are used
for electrodes located in the left hemisphere of the brain, and even numbers for the
right hemisphere.

• The letters :
They are used to identify the location of the electrodes according to the lobes of the
brain. C = central; FC = fronto-central; F = frontal; P = parietal; T = temporal;
A = auricular; O = occipital.

Figure 2.11 shows an example of a montage with 64 electrodes (the one used in this
work) where the position of each electrode is depicted. Depending on the colour used, it
also shows which electrodes records/is closed to which brain lobe. This is important to
know as each region is specialised in specific tasks (a sensory region, a motor region, etc.).

To give an idea of what an EEG signal looks like, Figure 2.12 is an example of a
recorded EEG signal using 64 electrodes (channels). Each signal represents the electrical
activity recorded at the corresponding electrode.
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Figure 2.11: Placement and position of a montage with 64 electrodes.
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Figure 2.12: Recorded EEG example with 64 channels.
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2.2.4 EEG difficulties and artefacts

EEG signals are known to have a low signal-to-noise ratio and present many difficulties.
EEG noise is defined by any measured signal whose source is not the coveted brain activity
[98]. Unfortunately, in most cases, the EEG signal is contaminated by various unwanted
artefacts, even though we try to limit their occurrence during the recording sessions.
These artefacts are entangled with the desired brain activity and can have an amplitude
up to 100 times that of the brain activity. In most EEGs we encounter the following
undesired artefacts: ocular, muscular, cardiac, perspiration, line noise, etc. (more details
are given in the following section).

Another difficulty that we may encounter during EEG analysis is volume conduction,
i.e. the transmission of electric fields from a primary current source through biological
tissue towards the recording electrodes [68]. The current may pass through different
conducting mediums3 and is altered as the different tissues have different impedances.
Because of volume conduction, unwanted artefacts will impact a broader region and
therefore will contaminate more electrodes. In addition, we lose the ability to study a
single source or brain region of interest; information is diluted and a signal recorded at
one electrode is a combination of all the electrical activities present in the neighbourhood
of that electrode [98].

A good EEG analogy is like placing several microphones over a football stadium. What
each person is saying couldn’t be recovered, but other information could be obtained,
such as whether a goal has been scored. In the same analogy, the EEG records a group of
neurons oscillating in synchrony but does not record the individual activity.

EEG artefacts

This section will be devoted entirely to the study of artefacts that may be present in
our signals. The latter have a large amplitude and greatly affect the EEG. A method
widely used in the field of EEG signal processing and which aims at isolating the various
brain signals from the artefact signals is Independent Components Analysis (ICA) (more
details are available in [12]). Briefly, this method decomposes a multivariate signal into
additive subcomponents with the assumption that the subcomponents are Gaussian and
independent, which explains the name given to them: Independent Components (IC).
Once the decomposition is computed, the data are projected using a matrix W from the
channel space to the independent components space. It is to be noted that the number of
ICs is equal to the number of channels. After that, the components that contain unwanted
artefacts are removed, so that only the good components remain. Then, the remaining
good components are projected back using the inverse projection W −1 to their initial
space (channels) as presented in Figure 2.13.

3 Skull, meninges and cerebrospinal fluid.
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Figure 2.13: Flowchart showing how removal of unwanted Independent Components using ICA is
performed.

Before removing the bad components, we need to know how to identify them and how
to distinguish them from the good ones, which is the subject of this section. The ICs
are computed using dedicated libraries such as EEGLAB (a Matlab library specialised in
EEG processing and analysis) [18], and their content can be examined in greater detail.
The analysis is based on the layout shown in Figure 2.14 where each element is defined as
follows:

1

2
4

3
Figure 2.14: Independent component analysis template.

1. Component Time Series: Shows a segment of the component’s activity.

2. Activity Power Spectrum: Shows the power spectrum of the IC activity. To help
with scaling, the top plot shows the spectrum from 3 [Hz] to 40 [Hz] while the lower
plot shows the spectrum to at most fs/2 [Hz], where fs is the sampling frequency.

3. Scalp Topography: Shows what effect the independent components process has
on each electrode. Electrodes’ position is represented in black dots, green colours
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represent no effect, where red and blue show positive and negative contributions,
respectively. It is to note that colours far from any electrodes are computed following
an interpolation/extrapolation.

4. IC Number and Percent Data Variance Accounted For (pvaf): Components
are classified according to their importance. The metric used to achieve this is the
pvaf (details will be given at the end of this section) but what is important to know
is that the higher the pvaf, the more important is the IC.

The unwanted components can come from physiological sources (eye blink, muscle
movement, etc.) but also from non-physiological (external) sources such as power line
noise, etc. Each of these components has its own distinctive mark and specificities. The
following is a non-exhaustive list of the different electrical activities thus components
usually encountered in practice:

1) Brain components:

They correspond to the brain’s own activity and are quite often the desired components
to be retained. Figure 2.15 is the analysis panel of a brain component.

Figure 2.15: Independent component representing brain
activity

Its main characteristics are:

• A scalp topography generally
similar to a dipole.

• Spectral energy decreases with
frequency.

• The spectral energy gener-
ally contains peaks varying be-
tween 5 and 30 Hz, with a
greater concentration around
10 Hz.
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2) Ocular components:

They correspond to the effect caused by the movement of the eye on the recorded
EEG. Figure 2.16 is the analysis panel of an ocular component.

Figure 2.16: Independent component containing ocular
artefact.

Ocular activity is mainly charac-
terised by :

• Strong topographical activity
at the eyes region.

• A spectral energy of less than
5 Hz.

• A visible blink on the tempo-
ral signal.

3) Muscle components:

They describe the electrical fields generated by muscle activity. Their activity is more
powerful relative to EEG. Their unit action potential are not synchronized causing more
of the power to be spread out among higher frequencies. Figure 2.17 is the analysis panel
of a muscular component.

Figure 2.17: Independent component representing muscular
activity.

Muscle activity is mainly character-
ized by:

• A spectral energy above 20 Hz.

• A very close dipole.
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4) Heart components:

Heart components capture the electrical potentials generated by the heart. The pattern
observed is very typical to a heart electrocardiogram (ECG). As the heart is far from the
scalp, the topography map looks as a far dipole which looks like a linear gradient. Figure
2.18 shows the analysis panel of a heart component.

Figure 2.18: Independent component representing cardiac
activity.

Heart activity is mainly character-
ized by:

• Clear heart shape (QRS com-
plex) in the data (see section
2.3 Figure 2.24).

• Linear gradient scalp topogra-
phy.

• No peak in the power spec-
trum.

5) Channel noise:

If a channel has poor contact or gets bumped a lot during a recording, it will often
generate large artefacts that do not affect any other channels. It can be recognized by its
scalp topography which puts almost all the weighting on a single channel. Figure 2.19 is
the analysis panel of a channel noise component.

Figure 2.19: Channel noise independent component.

This type of noise is mainly charac-
terised by:

• A highly focal topography.

• They have similarities with mus-
cle components, which makes
them easy to confuse. However,
their respective Spectral Ener-
gies are very different. More-
over, they differ in the scalp to-
pography, which is a dipole for
the muscle component and a sin-
gle point for the channel noise
component.
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6) Other:

It is important to note that not all components are meaningful. ICA assumes that there
are as many independent components as there are electrodes which is almost never the
case. When a component does not converge onto a meaningful signal, it can either capture
a mixture of signals or some noise. Anything that does not fit the above component
categories can be deemed “other”. However, usually, the contribution of these components
to the EEG is negligible, if this is the case they can be left untouched. Figure 2.20 is one
example among many analysis panels of the component other.

Figure 2.20: Other independent components.

Mainly characterized by:

• A non-dipolar topography.

• A spectrum that may have a
low 10 Hz peak, as the brain
signals are probably mixed up
with other noisy signals.

• Anything that does not fall
into one of the above compo-
nent categories.

Once the identification of independent components has been covered, in what follows
we will illustrate the usefulness and potential of this decomposition with a practical
example. The same procedure depicted in Figure 2.13 will be followed. First, a raw EEG
signal over its 64 channels is presented, the latter is contaminated by ocular and cardiac
artefacts that are visually distinguishable4. Next, an ICA decomposition is applied to this
EEG and the various resulting components are shown and identified. To demonstrate
that we can target and remove only a single artefact type, we will only remove the eye
blinks from the EEG and leave the cardiac artefact. Finally, the result of the same EEG
without the eye-blink effect will be shown.

Figure 2.21 is an example of a raw signal where, highlighted in red, the distinctive
signal of a blink and a cardiac artefact can be observed. We have shown all the channels to
illustrate that these artefacts can affect certain channels more than others (the amplitude
of the blink is greater in the channels close to the eyes).

4 This example has been chosen because an in-depth analysis is not strictly required; it can be done
with the naked eye because the artefacts are quite visible.



Chapter 2. Recording systems Page 67

Eye blink
Cardiac

Figure 2.21: Example of a raw EEG with 64 channels. Cardiac and ocular activity can be observed on
it.

In Figure 2.22 only the first 5 of the 64 available Independent Components are shown5 (as
a reminder, there are as many channels as there are components) with their corresponding
pvaf between brackets. By visual inspection, eye blinks can be recognised on the first
component and cardiac activity on the second and third components. For the sake of the
example, only the first component (ocular only) will be removed, by setting all its values
to 0, thus eliminating its contribution to the EEG.
After removing this component, the signal will be projected back from components space
into channels space using the inverse projection matrix computed by the ICA (W −1). The
result of this projection is shown in Figure 2.23. We can observe that the ocular activity
that affected all EEG channels has been removed, while the cardiac activity remains.

5 For space-saving reasons and clarity purposes, only the first 5 are shown.
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IC 1/64

(76.08%)

IC 2/64

(11.32%)
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IC 4/64

(2.46%)

IC 5/64

(2.38%)

120 µV

60 µV

Eye blink to remove

Figure 2.22: Example of first 5 Independent Components, pvaf is represented between parenthesis. It
should be noted that the amplitude scale of the first component is different from the others due to its
relatively high amplitude.

Percent Data Variance Accounted For (pvaf)

The percentage of representative variance “pvaf” of a component describes the extent
to which the initial variance of the channel data can be attributed to that component.
In other words, it indicates the percentage of variance that the component represents
on the initial data. It is calculated by projecting back the component to the channel
representation and then assessing its variance contribution following this formula [see
EEGLAB [18], version 14, function: “eeg_pvaf”]:

pvaf(ICi) = 100 − 100 ×
var [EEG − W −1ICi]

var(EEG)
,

where ICi is the i-th component for which we want to calculate the pvaf, W −1ICi is the
inverse projection from independent component space to channels space, EEG − W −1ICi

is the difference channel by channel between the initial EEG signals and the contribution
of the ICi component to the EEG.

This measure is useful for determining the relative importance of each component [54].
Once the independent ICA components and their corresponding pvaf have been computed,
the components are ranked in descending order of pvaf. Thereafter, the number assigned
to each component will represent its rank such as the first component will have the highest
pvaf and so on.
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Cardiac

Figure 2.23: Same EEG signal as Figure 2.21, with only cardiac activity removed following ICA
decomposition.

2.3 Electrocardiography

The heart has four chambers, the two upper chambers known as the atria and the two
lower chambers known as the ventricles. In a healthy heart, the signal that triggers the
heartbeat begins in the upper right chamber of the heart (right atrium) at the Sinoatrial
node6 which is the pacemaker of the heart. From there, the signal activates the left atrium
and travels to the AtrioVentricular (AV) node. Then, it travels to the lower chambers
(right and left ventricles) via the bundle branches. As the signal travels along the cardiac
conduction system, it triggers nearby muscles to contract in a coordinated manner which

6 The name sinus rhythm comes from the fact that the depolarisation of the cardiac muscle begins at
the sinoatrial node.
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produces the electrical wave (depolarisation wave) observed on the ECG as the one in
Figure 2.24. The most important points along the electrical pathway discussed above are
shown in Figure 2.25.

Q

S

T

R

Baseline
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QRS
complex

Figure 2.24: Sinus rhythms, a heartbeat perceived by the ECG.
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Figure 2.25: Heart conduction system.

2.3.1 Leads placement

To measure the electrical activity produced by depolarization of the cardiac muscles,
electrodes (leads) are placed in different positions on the subject. In a typical ECG
recording, 10 electrodes are placed, subdivided into two categories:
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• 4 limb lead electrodes (RA, LA, RL, LL).

• 6 precordial electrodes (V1, V2, . . ., V6).

The placement of these electrodes is shown in Figure 2.26. In Figure 2.26.a a cross-
section shows the recording area of the six precordial electrodes. These six electrodes
provide a horizontal view of the heart. In Figure 2.26.b six other measurements are shown,
which provide a vertical view of the heart. With these 12 lead-ECG, different views of
how the depolarization wave moves through the heart are recorded.
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Figure 2.26: Leads placement. (a) Placement of precordial electrodes along with the measured sides.
(b) Placement of limb electrodes.

The next chapter will cover the first application of the methodology, which is dedicated
to the diagnosis of Parkinson’s disease. In the latter, the implementation of what we have
covered in the Chapter 1 will be put into practice.
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3.1 Introduction

Parkinson’s Disease (PD) is a chronic neurodegenerative disorder affecting more than
6 million persons worldwide as reported by the World Health Organization [103, 21]. PD
is known by the general public for its motor symptoms such as: tremor at rest, rigidity,
bradykinesia, etc. [103, 5], however, non-motor symptoms may accompany or precede the
onset of motor symptoms, sometimes even arriving 20 years before the onset of the latter
[16, 44].

Currently, the diagnosis of Parkinson’s disease is entirely clinical. Medical profession-
als or clinicians assess patients’ medical condition based on a thorough assessment of
the patient’s symptoms, medical history, and physical examination. The symptoms on
which the diagnosis is often based are motor symptoms [9]. However, as we have already
mentioned, these may appear after the non-motor symptoms which are not specifically
associated with Parkinson’s disease. Leaving the patients in suffering, raising the urge to
look for new biomarkers allowing the early diagnosis of PD.

The aim of this work is not to provide a replacement for healthcare professionals, but
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to offer a data-driven methodology that complements and assists these professionals. The
application is entirely based on real electroencephalogram (EEG) signals, with the aim to
separate Parkinson’s disease patients from healthy subjects. The main objective is not
to have the highest accuracy at the expense of the repeatability and significance of the
results, but rather to have a valid method that is statistically significant, with the least
bias possible, and that can be used in real-world scenarios.

The method presented in Chapter 1 makes it possible not only to deal with the
problems of EEG signals, which are known to be very noisy, but also to generate new
features that are much more faithful to the EEG generation mechanism, as well as being
more informative than the classic features.

This chapter begins with a general presentation of the disease in Section 3.2, followed
by an examination of the current state of diagnosis, whether clinical or non-clinical.
The dataset used within the scope of this application is then detailed, followed by the
implementation of the methodology outlined in the Chapter 1. The obtained results are
presented in detail, accompanied by various tests of validity and robustness. Additionally,
an evaluation in a more restricted context with less learning data is proposed. Finally,
our work on this application is concluded by providing a synthesis of the key elements.

3.2 Generalities on the Parkinson’s Disease

Dopamine deficiency is the main cause of Parkinson’s disease [103, 5]. Dopamine
is a neurotransmitter that enables communication1 within the nervous system, and is
particularly involved in regulating movement. A lack of dopamine has a direct im-
pact on an individual’s behaviour, reflexes and movements. The dopamine deficiency
is caused by the disruption and degeneration of the dopaminergic cells located in the
pars compacta of the locus niger [103, 5], the area of the brain where dopamine is produced.

The cause of the degeneration of dopaminergic neurons remains unknown, however,
researchers have conjectured that the presence of Lewy bodies is the main trigger of this
degeneration [34].

Epidemiology

PD is the second most common neurodegenerative disorder after Alzheimer’s disease.
According to the World Health Organisation’s latest technical report, 5.8 million people
worldwide are affected by Parkinson’s disease (statistics from 2019). It is also reported
that worldwide, disability and mortality attributable to Parkinson’s disease are increasing
more rapidly than for any other neurological disorder, up to double the rate recorded in

1 Has also a role in regulating the feeling of motivation and reward.
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the 2000s [70]. The average onset of Parkinson’s disease is between the ages of 55 and 65,
with the possibility of onset at any age. The number of people affected by the disease
increases with age, reaching 2% over the age of 65. For unknown reasons, men are slightly
more affected than women.

Causes

Parkinson’s disease is considered to be idiopathic, i.e. the exact cause of the disease
remains unknown. Studies show that 5% to 10% of cases are genetic. Researchers suspect
that environmental factors increase the risk. These include exposure to pesticides, solvents
and air pollution throughout life [70].

The next section is devoted entirely to Parkinson’s disease symptoms. Both motor
and non-motor symptoms will be discussed, as both are important in clinical diagnosis.

3.2.1 Symptoms

Parkinson’s disease is known to the general public for its motor symptoms (tremors).
However, non-motor symptoms may accompany or precede these symptoms. It is important
to know that various symptoms are associated with the disease. Each patient has its own
journey, and the course of the disease, the onset of symptoms and their amplitude differ
among patients. This makes the clinical diagnosis of the disease even more complex.

Motor symptoms

At the onset of the disease, motor symptoms usually are unilateral, i.e. they affect
only one side of the body. As the disease progresses, they become bilateral and affect the
whole body. [93, 74, 103]. The following is a non-exhaustive list of the various motor
symptoms:

• Bradykinesia and hypokinesia: The patient will tend to make smaller and
slower movements. Bradykinesia can be identified by: smaller handwriting, an
expressionless face with difficulty in blinking, and a slow, hesitant gait.

• Resting tremor : It can affect the hands, feet, chin, jaw and tongue. Disappears
with voluntary movement.

• Stiffness: The patient’s muscles feel stiff and tighten involuntarily. It can occur in
the arms, legs, neck, back, and even smaller facial muscles.

• Akinesia: Difficulty in initiating movements. Often observed when the patient is
walking and then suddenly stops involuntarily. The blocking lasts about 10 seconds
before the patient is able to resume walking.

• Loss of balance.
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• Swallowing difficulties: as well as a difficulty in communicating verbally (speaking
in a low tone).

Symptoms in bold are often those on which the movement disorder specialist relies for
the clinical diagnosis of PD.

Non-motor symptoms

As already mentioned, these symptoms can appear many years before the onset of
motor symptoms. The problem with these symptoms is that they are very bothersome
on a daily basis, and their proper treatment often requires the correct diagnosis of the
disease, which is fairly complex at this (early) stage [93, 74].

• Mild cognitive impairment: Memory deterioration, slowed thinking with difficulty in
following a conversation.

• Mental health issues such as: depression, anxiety, hallucination, and apathy.

• Impaired sense of smell.

• Pain.

• Sleep disorder : Due to muscle stiffness. Animated dreams with verbal and motor
agitation.

• Constipation.

As one might observe, most of these symptoms are fairly recurrent in the life of a healthy
person. Furthermore, it is important to distinguish between the symptoms’ onset and
normal ageing that can lead to these symptoms.

Figure 3.1 illustrates the time course of Parkinson’s disease progression starting 20
years prior to diagnosis and 20 years after (adapted from [44]).

The next section will be devoted to the clinical diagnosis of Parkinson’s disease,
how it is carried on in practice, and on what it relies. Finally, some statistics on this
clinical diagnosis accuracy are given, as well as the difficulties encountered in diagnosing
Parkinson’s disease in its early stages.

3.2.2 Diagnosis

Currently, the diagnosis of Parkinson’s disease is entirely clinical. Medical professionals
or clinicians assess patients’ medical condition based on a thorough assessment of the
patient’s symptoms, medical history, and physical examination. The symptoms on which
the diagnosis is often based are motor symptoms (section 3.2.1) [9]. However, as we
have already mentioned, these may appear after the non-motor symptoms which are not
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Figure 3.1: Time course of Parkinson’s disease progression along with their symptoms. Abbreviations:
EDS: Excessive Daytime Sleepiness; MCI: Mild Cognitive Impairment; RBD: REM sleep Behaviour
Disorder (adapted from [44]).

specifically associated with Parkinson’s disease. Leaving the patients in suffering, raising
the urge to look for new biomarkers allowing the early diagnosis of PD.

Various tools and guidelines helping clinicians with diagnosis criteria have been de-
veloped (such as the one from the United Kingdom PD Society Brain Research Center
[33]). The overall clinical diagnosis accuracy is in the order of 75 % according to the
World Health Organization [103] or around 79 % following [80]. It is very important to
note that the clinical diagnosis accuracy did not significantly improve during the last
years particularly in the early stages of the disease where the response to dopaminer-
gic treatment is not clear and less prominent [80]. Actually, during the early disease
manifestation (< 5 years of disease duration) the clinical diagnosis accuracy is around
53 % and even lower, around 26 % accuracy, for patients with <3 years disease duration [1].

Once the diagnosis has been established, treatment of the disease follows, which is
the subject of the next section.

3.2.3 Treatment

The dopamine deficiency caused by the degeneration of dopaminergic cells is the main
cause of Parkinson’s disease. The treatment consists mainly of delivering dopamine to the
brain. The dopamine can be administered in a direct form (as dopamine)2 or indirectly
(other substances that the body will convert into dopamine later on).

Taking dopamine directly orally is problematic because it has to pass through the
bloodstream before reaching the brain. This has the effect of disrupting the entire func-

2 Currently being studied on monkeys affected by PD [61]
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tioning of the body, as it responds to this change in hormones. This undesirable effect on
other parts of the body makes it impossible to administer dopamine by injection or orally
(pills). In practice, only indirect administration of dopamine is used. The combination of
Levodopa + Carbidopa remains the most widely used treatment in practice. Carbidopa
inhibits the conversion of Levodopa into dopamine outside the brain, but once in the
brain, Carbidopa loses its effect, allowing Levodopa to be converted into dopamine.

Despite substantial development of drugs to treat PD, none has proven to be effective
in slowing progression. Levodopa remains the most effective drug for improving most
motor and various non-motor symptoms of PD and for improving functioning and quality
of life, although it cannot halt the neurodegenerative process as shown in Figure 3.2.
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Figure 3.2: Unchanged disease course after treatment, but treatment effectiveness in reducing the
severity of symptoms.

The clinical diagnosis of Parkinson’s disease has been discussed, and now we will
move on to data-driven diagnosis methods that are based on electroencephalogram (EEG)
signals. The latter being widely used in practice as the patients’ condition is directly
reflected on the brain electrical activity. In the following section, the state of the art in
EEG-based diagnosis of PD will be detailed.

3.3 State of the art of EEG-based PD diagnosis

Parkinson’s disease diagnosis using EEG has been studied in several works. [12] uses a
selection of Fourier transform coefficients to achieve a maximum accuracy of 82 %. It is
to be noted that in our study we use the same data as the former. In [67], the authors
propose a fully automated approach based on a 1-Dimensional Convolutional Neural
Network (1-D CNN). The model directly classifies the temporal EEG epochs achieving
an accuracy of 88.2 %. To perform the diagnosis, [10] relies on correlation coefficients
calculated between channels as well as the coefficients of an AR model identified on the
EEG to yield a presumable accuracy of 99.1 % see below for a discussion on the relevance of
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such results. [108] uses high-order spectra to perform the diagnosis by extracting thirteen
features from the EEG frequency spectrum, he achieved a presumable accuracy of 99.25 %.
The work in [38] uses the coefficients of an AR model and the wavelet packet entropy to
analyse and investigate whether there is a difference between Parkinsonians and healthy
individuals with no attempt to separate the subjects. Finally, [52] utilises entropy-based
features of 10 channels and a three-way decision model to obtain a classification accuracy
of 92.9 %. This last study would have been more relevant if the author addressed the
problem of unbalanced data-set.

We note that the majority of studies are based only on the frequency features of the
EEG and that few studies focus on the temporal features while the two domains should
complement each other. Only a few of the features used are explainable and we can un-
derstand their design basis to derive conclusions for future work. Most importantly, there
has been no study of the significance of the results obtained, given that in the majority of
studies the number of features used is very large in relation to the number of patients
present in the data set used, which accentuates the problem of the curse of dimensionality
discussed in Section 1.5.1, thus, accentuating the problem of the significance of the findings.

We strongly believe that some of the above-mentioned methods [12, 67, 10, 108] are
subject to data leakage problems. Data leakage is defined as the use of information in the
model training process that is not supposed to be available at the time of prediction [45]
(presented in more detail in Section 1.6). This would not be possible in a real-life scenario,
where we receive new samples of unlabelled data that we need to categorize. The first
type of data leakage that some of the proposed methods suffer from is group leakage,
where correlated data from the same subject are present in both the training and the test
sets [4]. In this case, and using limited amounts of data, a complex model such as the
1-D CNN can even identify the subject’s signature (one can see example in Appendix 6.3).
The second type of data leakage comes from the fact of optimising hyper-parameters and
performing feature selection directly on the test-set (therefore an absence of a validation
set) [45].

3.4 Sparse Dynamical Features applied to Parkinson’s

Disease diagnosis

This section is entirely devoted to the application of the method presented in Chapter 1.
Before moving on to the application, the dataset used is firstly described, along with
the motivations that led us to this data-set choice. Next, the pre-processing (filtering,
cropping, etc.) applied to the data will be described in Subsection 3.4.2, followed by an
important passage addressing Event-Related Potentials (ERP). The values of the selected
hyper-parameters of the proposed methodology are given, and finally, all that has been
discussed previously (methodology, feature selection, evaluation, etc.) is combined in order
to produce the results obtained. The obtained results are subjected to various validity and
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constraint tests, which will also be discussed at the end of this section. Results omitting
the Sparse Dynamical Features generation step are also presented to demonstrate the
effectiveness of the method.

3.4.1 Description of the Data-set

Several EEG datasets dealing with the diagnosis of PD exist, we examined these
before selecting the one on which we can evaluate and test our method. As we seek a
significantly large number of patients as well as a large amount of data, the following
dataset: http://predict.cs.unm.edu (ID: d001) [13] was chosen. One particularity of
this dataset is that the data were almost untouched (raw data) in the sense that few
pre-processing steps have been applied to them. An additional reason for this choice is that
the data-set is publicly available, which is important for transparency and reproducibility
of results purposes. Moving further in this direction, we made our implementation code as
well as the execution steps to reproduce the results accessible to the public through the link:
https://github.com/HoussemMEG/SDF_PD. Additionally, an explanatory animation is
included in the same link.

The experimental EEG data was recorded from N =50 participants, 25 of whom were
suffering from PD and an equal number of sex and age-matched participants serving as a
control group (CTL). This matching is important to reduce the variability in results due
to the age and gender of the subjects. The PD group were subject to the same experiment
twice, once on medication and the other time off medication. In this thesis, only the
off-medication sessions are considered as they showed a noticeable separability from the
CTL group in comparison to the on-medication sessions.

The PD group were subject to a Unified Parkinson’s Disease Rating Scale (UPDRS)
[78] assessing the severity of their disease which was scored by neurologists, the mean
UPDRS score is (24.80 ± 8.66). All participants underwent a Mini Mental State Exam
(MMSE) [97], and all obtained a score above 26 (PD: 28.68 ± 1.03, CTL: 28.76 ± 1.05)
confirming their ability to comprehend the task they will be subjected to. Complete details
and information regarding the subjects and the experimental procedure can be found in [12].

The experiment consisted of a 3-Oddball auditory task, during which the subjects were
presented with a series of 200 repetitive auditory stimuli (trials) infrequently interrupted
by a deviant stimulus. Three types of stimuli can be distinguished:

1. Standard (70 % of the trials).
2. Target (15 % of the trials).
3. Novel / Distractor (15 % of the trials).

To avoid confusing stimulus types with words in the text, each time we refer to a stimulus
type it will be written in italic.
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During this task, the subjects had to count the number of target stimuli they had
heard throughout the whole experiment. The auditory stimuli were presented for a period
of 200 ms and were separated by a random Inter-Trial Interval (ITI) drawn from a uniform
distribution of (500 — 1000) ms preventing subjects’ habituation and anticipation. Figure
3.3 draws an example of an auditory stimuli sequence.

Figure 3.3: Example of a sequence of auditory stimuli.

The raw signals from a random person are shown in Figure 3.4. It can be noted that
the signals are given on the entirety of the 60 channels with a high noise content.

3.4.2 Pre-processing

Throughout the experiment, the EEG signal was continuously recorded at a sampling
rate of fs =500 Hz by the mean of 64 electrodes (channels). Very ventral temporal sites
were removed by [12] as they tend to be unreliable, leaving at the end 60 channels. The
data were then re-referenced to an average reference.

As mentioned in section 2.2.4, EEG signals are known to be very noisy and present
many practical difficulties. Indeed, the coveted brain activity is of a low amplitude and is
often drowned out by ambient noise, making the pre-processing stage mandatory. Despite
the intrinsic complexity of EEGs and their noise content, the pre-processing steps we
have applied are very mild due to the fact that our method is robust to noise. Firstly, to
separate and disentangle the unwanted, high-amplitude ocular activity from the coveted
cerebral activity, we conducted an Independent Component Analysis (ICA) on the data
[96]. We analyzed each independent component (IC) of each subject individually, the ICs
that contained eye blinking and/or very strong3 artefacts were removed by projection
following the guidelines and recommendation of [54] and [12]. Secondly, the data were
then bandpass filtered using a Hamming window, attenuating the frequencies outside the
(1 — 30) Hz interval. This frequency interval was selected because many studies take 20
or 30 Hz as the upper filtering limit [91]. We have taken the widest interval knowing that
our method remains valid even if we widen this interval further.

3 Which we can visually see and which affects the entire signal.
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Figure 3.4: Example of a raw EEG signal composed of 5 trials and 60 channels.

Figure 3.5 shows the signals after applying the pre-processing to the same patient
illustrated in Figure 3.4.

Time windows (segments) starting from stimulus onset (0 ms) up to (+500 ms) post-
stimulus were formed, resulting in 200 time-locked segments, one for each stimulus (see
Figure 3.6 for a more detailed graphical representation). An event-related potential (ERP)
was also calculated separately for each stimulus type by vertically averaging all the signal
segments corresponding to the same stimulus type and channel (see Figure 3.7) [55]. The
aim of this step is to filter the signal and sum up the events occurring at the same time
to make them stand out from the ambient noise. Moreover, all the pre-processing steps
were performed using MNE4 version 0.24.1 [35].

4 An open-source Python package for exploring and analyzing human neurophysiological data.
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Figure 3.5: Previous EEG signal after applying the pre-processing.

3.4.3 Application of the proposed method

For each subject, we computed the ERPs corresponding to each stimulus type and
channel. The window width used ranged from 0 ms to 500 ms post-stimuli5, resulting in
an ERP of length L = 250. The system Σ was created using m = 40 oscillators with an
evenly spaced angular frequency taken from the interval 2π×(1 to 30) Hz following the
procedure presented in Section 1.4.5. The weighting constant w in the equation (1.18)
has been set to w=0.55 following the procedure presented in Section 1.4.3. Figure 1.12
shows the trade-off of the separation between the forced and steady-state regime using

5 The upper limit of 500 ms was chosen due to the minimal interval between stimuli min(ITI) = 500
ms.
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Figure 3.6: EEG segmentation. (a) Raw and continuous 60-channel EEG, recorded for a duration of
∼3 minutes. Stimuli are time-locked to their arrival instant. Segments of 500 ms were taken starting
from the stimulus onset. (b) The result of the segmentation: a 60-channel signal divided into 200 time
windows, each time window corresponds to one stimulus response.
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Figure 3.7: Example of ERP creation process for the Standard stimulus on one specified channel. (a)
Vertical averaging of the corresponding time-locked EEG segments. (b) Result of the vertical averaging
process. The signals length used in this example is only demonstrative, the true window length used in
our method is indicated at the bottom.

the data described above.

The evaluation metric used is the accuracy, which is defined as the number of correct
diagnoses divided by the number of decisions to be made. In the case of multiple repeti-
tions, the stated accuracy is the mean value of the accuracy obtained over all folds and
all repetitions.
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The value of αf was set following the procedure presented in Section 1.4.2 and the
value obtained is in the order of αf =8×10−4. The n resulting β solutions were taken and
mapped as presented in Section 1.4.2 and Figure 1.11 with a regular spacing6 l % = 2 %,
resulting for each ERP in 50 β variants with a decreasing sparsity levels.

To show an example of how a real EEG signal is fitted by our model, Figure 3.8 shows
varying fit level for a target stimulus signal taken from the Cz channel. It is important to
note that the contribution of x0 is taken into account.
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Figure 3.8: Example showing the fit of our model with different levels of sparsity. (a) A high level of
sparsity. (b) A medium level of sparsity. (c) A low level of sparsity.

For the same signal as above, Figure 3.9 shows the separate contribution of U and x0

to the model output. It can be seen that most of U activity takes place after the arrival
of the stimulus. Nonetheless, we do observe some activity in the forced regime before the
stimulus arrives, although it remains low in amplitude.

3.4.4 Features extraction

Studies have shown that patients with PD tend to be significantly slower than healthy
individuals (latency observed in auditory ERP) [39, 25]. They also tend to have lower ERP
amplitude over certain brain regions compared to CTL individuals [73, 25]. However, even
if these differences are observed between PD and CTL groups, the last two biomarkers
extracted directly from the ERP do not permit the discrimination between the two groups

6 This is the value that induces the least solution discard or duplication (see Step 1 in Figure 1.11).
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Figure 3.9: Separate contribution of U and x0 to the output Ŷ .

with good separability and accuracy. This is mainly due to the large variance in latency
and amplitude within the two groups, as well as the high sensitivity of these two indicators
to the disease duration and severity [25]. We believe that the intra-group variance is due
to the high noise content of the EEG, which makes the extracted measures very sensitive
and variable among patients of the same group.

With the observed latency in the ERP and lower amplitude of parkinsonsians compared
to healthy individuals, we moulded the information contained in the generated SDF to fit
these discriminative features. The average excitations forces (mean) was used to replace
the amplitude. The latency that is defined by the time elapsed from stimulus arrival to
the arrival of the largest or smallest spike7 is now replaced by its analogue: the arrival
time of the lowest (in an algebraic sense) oscillator excitation (argmin).

For these two features, we have found the operating time intervals I1 and I2 that gave the
best results and are shown in Figure 3.10:

• F1: the instant of the lowest activation amplitude of all oscillators defined by:

argmin
{

U(I1)
}

.

• F2: the average excitation forces occurring between 180 ms and 500 ms defined by:

mean
{

U(I2)
}

.

Only the two features presented above were tested initially. For the sake of complete-
ness, all the features listed in Table 1.1 were also tested individually, without giving

7 The sign of the peak depend on the channel considered, since the head can be considered as a dipole,
on certain channels the value of the peak is positive whereas it is negative on other channels (see Figure
3.10 to observe the symmetry of the peaks).
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Figure 3.10: Example of one subject standard ERP over the 60 channels. Features operating intervals
are also reported.

convincing results. Frequency selection on certain bands of interest8 was also tested, again
without any convincing results. In the remainder of this chapter, we will focus solely on
the features F1 and F2, which were used to perform the classification using LDA classifier.

At the beginning of this Section 3.4.4, we mentioned that the two bio-markers (ERP
amplitude and latency) did not give significant results due to the fact that there is a large
variance even intra-group, whereas now analogous features are used? Contrary to what was
previously done, the features now are extracted from the SDF instead of the pre-processed
EEG. With the help of the proposed method we were able to obtain significant results for
the equivalent features. We believe that this is due to the fact that the method allows
us to retain the right amount of information needed for the classification9 while avoiding
capturing a lot of noise. Moreover, we believe that separating the forced regime and the
free regime from the signal helped since the free regime did not bleed into the features (as
a reminder, F1 and F2 were extracted from the U part only). More details will be given
in Section 3.4.5 where we compare the same features with and without SDF generation.
Before getting to that, the results will be presented first, and will be the subject of the
next section.

3.4.5 Results & discussion

The form and complexity of the ERP vary according to the type of stimulus and
channel position. This variation is even more pronounced when the channels are far from
one another. Our model utilises fewer modes excitation to fit a less complex ERP, while it
will utilise more modes excitation to fit a more complex ERP. Therefore, the best working
level of sparsity that yields the best classification accuracy varies according to the channel
location. Since the best working sparsity level cannot be determined in advance and since

8 We tested beta waves (13 –– 30) Hz as suggested by [51] for its functional role in PD, delta waves
(< 4Hz), theta waves (4 — 8) Hz, and alpha waves (8 — 12) Hz.

9 Through the nested CV, which selects the appropriate level of fit required.
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we are evaluating our method on all channels and stimuli types, we have left the sparsity
level as a hyper-parameter to be tuned during the validation step as presented in the
Cross-Validation Section 1.6.1.

As a reminder, for each split and each repetition of the outer loop, we use the inner
loop to choose the sparsity level that performs best10 on the validation set. Then, the outer
loop training is carried out with the selected level of sparsity, followed by the evaluation
of the method on the test set.

As a large number of combinations (stimuli type, channels and sparsity level) are being
tested while using few data instances, in some cases due to sampling noise [30], a good
validation accuracy11 is observed for a given sparsity level αk%. While the surrounding
sparsity levels αk−1% and αk+1% yield much poorer results (an accuracy jump is observed).
In this case, the sparsity level αk% is not considered a valid choice of hyper-parameter,
since it is mainly due to luck and is not consistent. We have been careful to consider only
the sparsity levels that yielded good validation accuracy, while the surrounding levels
of sparsity yield equally good results. To do so, we used the following triangular shape
filtering window: [1, 4, 1]/6 and convolved it with all the validation accuracies obtained,
which were ordered according to their sparsity level. Then, the sparsity level that has the
highest smoothed accuracy is selected. This accuracy smoothness is expected since the
variation in sparsity levels is small. This ensures us that our results are not due to luck,
and that they are sufficiently consistent and contain valuable information.

Stimulus choice

We started by evaluating the performance of our method for the different stimuli. For
each stimulus, we evaluated the accuracy obtained by our model, for all the channels
using the NLOO CV. Table 3.1 shows the results obtained. As the EEG has 60 channels
we have only indicated the channel that yielded the highest accuracy (channel*) with its
corresponding accuracy.

Stimuli type standard target novel

Channel* AFz CP
z

CP3

Accuracy 74 % 90 % 74 %

Table 3.1: Results of the highest accuracy obtained for each stimulus type with the
corresponding channel.

As indicate the Table 3.1 the stimulus target showed the highest separation using the
features F1 and F2. These results, need to be interpreted with caution as other features

10 Exhibits the highest accuracy.
11 Over 80%
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can lead to different results. Furthermore, the results obtained for the stimuli standard
and novel are not statistically significant.

Please note that for the rest of this chapter only the target stimulus is considered.

Luck or informative features ?

To test the significance, truthfulness and consistency of the results obtained for the CPz

channel we performed three tests:

1. Permutation test [65]: We define the null hypothesis H0 as: the features F1 and F2

do not allow to differentiate between the PD and CTL group. Under this hypothesis,
we evaluated the probability that the obtained result was simply due to chance and
sampling noise as we have a small data set and we carried out a large number of runs
(each per stimuli type, channel and parsimony level) [30]. After randomly permuting
the labels 500 times, and assessing the best accuracy obtained, we obtain a p-value
of
(

p < 0.03
)

which indicates and favours the fact that the results are significant.
To recall, for statistical significance, the p-value should typically be p < 0.05 [26,
Chapter 1].

2. Parametric consistency: For this part, unlike the other parts, the parsimony level
is fixed and it is no longer a hyper-parameter to be tuned, thus the nested CV
is no longer needed and only the outer-loop is used. For each level of parsimony,
the model accuracy was assessed following a LOOCV procedure. Moreover, a new
spacing l% = 1 % was used to have a finer sparsity grid. Figure 3.11.a shows the
accuracies obtained at each sparsity level. The small variation of the accuracy in
the parsimony zone that yielded the highest accuracy (see the area of interest in
Figure 3.11.a) may suggest the presence of information and that indeed, by using
F1 and F2 the subjects are separable. It should be noted that this area of interest is
the area selected in 100 % of the times during the model selection (in the inner-loop
of the NLOO CV). To illustrate how the features F1 and F2 are scattered on the
plane, we have plotted these in Figure 3.11.a for the sparsity level indicated by a
star in Figure 3.11.b. In addition, we have also plotted the decision boundary.

3. Spatial consistency: We have evaluated the spatial evolution of the accuracy for the
channels surrounding CPz. If these channels also show good results, this may indeed
indicate the presence of information over this region, moreover, it coincides with the
suggestions of Figure 7 in [73]. Figure 3.12 shows the accuracies obtained on the
test-set after a NLOO CV procedure. We observe that the channels CP1 and CP2

located on the same horizontal line to CPz showed great results individually, while
the other surrounding channels did not yield significant results. We can observe
an increasing accuracy as we get closer to CPz, which may suggest the presence of
discriminative information over that region.
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Figure 3.11: (a) Model’s test accuracy for a varying level of sparsity using LOOCV. (b) Scatter plot of
the features F1 and F2 with the corresponding decision boundary taken for the sparsity level indicated by
a star in (a).

Figure 3.12: Model performances over the region surrounding CPz.

Increasing the accuracy through voting

Observing in Figure 3.12 that the channels CP1, CPz and CP2 performed well indi-
vidually, we aggregated the information of these three channels by making them vote on
whether the subject is healthy or non-healthy. All three channels have the same voting
power, so if at least two voters agree on a subject’s condition, we consider the resulting
vote as the output of this new model. Table 3.2 reports the accuracies obtained after a
NLOO CV procedure. The validation set is non-existent for the voting strategy as we
have no parameters to tune.

Figure 3.13 represents the resulting confusion matrix of the voting strategy for the
NLOO CV procedure. We can observe that the classification is balanced as the model
mislabels both classes almost equally. Indeed, we can see that 1 subject out of 25 PD was
wrongly categorized and that 2 subjects out of 25 CTL were wrongly categorized.
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Accuracy
Individual channels

Voting strategy
CP1 CPz CP2

Learning 88.0 % 90.0 % 84.9 % 95.4 %

Validation 87.3 % 89.9 % 84.1 % —
Testing 88.0 % 90.0 % 80.0 % 94.0 %

Table 3.2: Resulting accuracies obtained for the voting strategy and the three individual
channels CP1, CPz and CP2 using the NLOO cross-validation.
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Figure 3.13: Voting strategy confusion matrix.

Regarding the early diagnosis, as presented in Section 3.2.2, in most cases patients
suffer from non-motor symptoms before motor symptoms develop. The onset of the latter
is slow and in some cases can take decades. The main difficulty of early clinical diagnosis
is that it is mainly based on the manifestation of motor symptoms that have not yet
developed sufficiently. To recall, the True Positive (TP) rate12 of clinical diagnosis is
about 26 % (9 of 34) for a duration since the first diagnosis <3 years, and of 53 % (8 of
15) for a duration < 5 years [1]. Now regarding our data-set, we have 12 patients who
have been diagnosed for <3 years and 2 patients for <5 years. For these 14 patients, we
obtain a TP = 100 % strongly suggesting the utility of our method and its ability to work
for early diagnosis cases.

Results with less learning data

For this part, we used Nested K-fold CV instead of the usual NLOO to evaluate the
model performances13 under the constraint of having fewer learning data. This step also
gives an indication about the ability of our model to generalise to new, unseen data. We
believe that if the model trained only by using half of the data performs almost the same
as the model trained on the entire data-set it may suggest that the model trained on the

12 Ratio of PD patients identified correctly.
13 This only concerns the outer-loop, we kept LOO for the inner-loop.
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entire data-set may obtain similar results on a data-set that is double the size of ours
(under the assumptions that we have no covariate shift, for more details see [76]).

Table 2.3.b reports the accuracies obtained using a Nested 5-fold CV procedure where
the learning-set is about 80 % of the entire data-set size. Table 2.3.c reports the accuracies
obtained using a Nested 2-fold CV procedure where the learning-set is about 50 % of the
data-set size. For both Nested 5-fold and Nested 2-fold CV the random partitioning was
repeated 30 000 times. Table 2.3.a is a duplicate of Table 3.2, it was included to improve
readability.

Accuracy
Individual channels

Voting strategy
CP1 CPz CP2

Learning 88.0 % 90.0 % 84.9 % 95.4 %

(a)

N
L

O
O

Validation 87.3 % 89.9 % 84.1 % —

Testing 88.0 % 90.0 % 80.0 % 94.0 %

Learning (± std %) 88.7 % (± 1.3) 89.7 % (± 0.7) 86.5 % (± 1.5) 94.1 % (± 1.1)

(b)

5-
fo

ld Validation (± std %) 87.8 % (± 1.2) 88.8 % (± 0.7) 85.7 % (± 1.4) —

Testing (5−th %) 82.7 % (74.0) 85.4 % (79.7) 77.7 % (70.2) 87.6 % (81.9)

Learning (± std %) 89.4 % (± 2.5) 90.5 % (± 2.1) 86.6 % (± 2.1) 94.5 % (± 2.1)

(c)

2-
fo

ld Validation (± std %) 88.3 % (± 2.3) 88.9 % (± 2.1) 85.7 % (± 2.0) —

Testing (5−th %) 78.0 % (67.9) 81.7 % (72.7) 73.9 % (65.7) 83.8 % (75.5)

Table 3.3: Resulting accuracies obtained for the voting strategy and the three individual
channels CP1, CPz and CP2 using: (a) NLOO cross-validation. (b) Nested 5-fold CV
(80 % learning data and 20 % test data). (c) Nested 2-fold CV (50 % learning data and
50 % test data).

From the Tables 2.3.a, 2.3.b, and 2.3.c we can observe that the accuracies obtained on
the learning and validation sets have not changed significantly, but their variance increases
as the learning-set gets smaller. Regarding the test accuracy, it decreased for the case
of individual channels and for the voting strategy as the learning-set gets smaller which
is expected as less information is present in the learning-set. However, the decrease in
accuracy is not substantial, which demonstrates the robustness of our approach, which is
mainly due to the utilization of only two well-separable features.

The test accuracy of the 30 000 repetitions is shown in Figure 3.14 with the 5−th
percentile marked. This indicates that the accuracy of the model is above the indicated
value in 95 % of the cases.
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Figure 3.14: Resulting test accuracies obtained for the 30 000 random partitioning.

Omitting the feature generation step

In order to test the contribution of the Sparse Dynamical Feature generation to the
results (blue block in Figure 1.1), we tried to omit it. Therefore, the features used
in Section 3.4.4 will be used as they are defined and will be applied directly on the
pre-processed signal Y and this for the same time intervals I1 and I2, as a reminder the
extracted features will now be defined by:

• F1(Y ): the instant of the lowest amplitude of the signal Y defined by: argmin
{

Y (I1)
}

.

• F2(Y ): the mean of the signal Y between 180 ms and 500 ms defined by: mean
{

Y (I2)
}

.

The evaluation of the accuracy will be carried out in the same way, and the results
obtained for a LOO procedure are indicated in the table 2.4.a. As a comparison, the
results keeping the SDF generation block, are shown for the case of a NLOO procedure in
the table 2.4.b.

Note that for the table 2.4.a, there is no validation as there are no hyper-parameters
to select. We can observe that the accuracy with SDF generation performed better than
without the SDF generation, both in training and in testing, for individual channels or
the voting strategy.

We observe that in the case where there is no SDF generation, the accuracy during
voting is quite low, and we did not benefit from the voting strategy. Indeed, the more
confident voters are in their decision, the better the accuracy of the vote, as we can take
advantage of everyone’s good knowledge.
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Accuracy
Individual channels

Voting strategy
CP1 CPz CP2

Learning 73.6 % 81.9 % 77.2 % 78.0 %

(a)
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Validation — — — —
Testing 72.0 % 82.0 % 74.0 % 78.0 %

Learning 88.0 % 90.0 % 84.9 % 95.4 %

(b)
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Validation 87.3 % 89.9 % 84.1 % —
Testing 88.0 % 90.0 % 80.0 % 94.0 %

Table 3.4: Resulting accuracies obtained for the voting strategy and the three individual
channels CP1, CPz and CP2. (a) without the SDF generation in a LOO procedure. (b)
with SDF generation in a NLOO procedure.

Nevertheless, we observe that the accuracy remains reasonably high. This shows first and
foremost, that the selected features (F1 and F2) are not specific to our method and that
they can be used on preprocessed signals directly without further manipulation. This
demonstrates the ability of our SDF generation to preserve the physical meaning of the
signal it was applied to (as it was designed for), adding an element of explainability to
our method. Moreover, it can be conjectured that the proposed method can be used to
discover consistent while unnoticed temporal features for different diseases and experi-
mental protocols.

We believe that our method has yielded better results because our transformation pro-
vides different levels of parsimony, offering varying levels of fit to the noise and relevant
information. The method thus acts as a filter that retains only the necessary information.
The intrinsic functioning of the method, which resembles the functioning of the brain,
provides a new perspective (a new point of view) on the data, which allows us to separate
patients from non-patients with good accuracy.

3.5 Conclusion & perspectives

In this chapter, an overview of Parkinson’s disease generalities was given first. We
have seen that the main cause of PD is dopamine deficiency, which has a direct impact
on the regulation of the motor system. This deficiency is caused by the degeneration of
dopaminergic cells, yet the cause of this degeneration remains unclear. Then, the topic of
symptoms was addressed, and we saw that even if Parkinson’s disease is known to the
general public for its motor symptoms (tremors), non-motor symptoms may accompany
or precede by several years the motor symptoms. These non-motor symptoms are very
bothersome and burdensome for patients, and unfortunately, as we have seen, they can
occur repeatedly even in the life of a healthy person. This makes the clinical diagnosis of
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the disease very complex.

Currently, the diagnosis of Parkinson’s disease is entirely clinical, and is based mainly
on the motor symptoms, which as we have already mentioned, can arrive very late. To
help patients suffering on a daily basis, studies are being carried out to help and support
healthcare professionals for the diagnosis of PD. These so-called data-driven studies are
based on various supports, and in this chapter, we have focused on the most widespread
one, which is the use of electroencephalography (EEG).

Electroencephalography is a method of recording the electrical activity of the brain
using electrodes placed directly on the scalp. The principles of EEG recording and
methods for reducing recording noise were covered first. Follow-up of the different possible
electrode configurations and the electrodes’ nomenclature. EEG signals are known to
be very noisy, as they are contaminated by various artefacts that are entangled with
the desired brain activity. These various artefacts were studied in order to be able to
recognise and remove them using a method called Independent Component Analysis (ICA).

Most importantly, this chapter was dedicated to the application of the method pre-
sented in Chapter 1 for PD diagnosis. The method was evaluated on a publicly available
data-set containing N = 50 subjects of which 25 have Parkinson’s disease and the re-
maining individuals serve as a control group. The evaluation of the model was carried
out with attention to induce the least bias possible so that we do not have an overly
optimistic model that only works on this specific database, but rather have a simple model
with a strong generalisation capability that can be used for new data samples. We were
able to separate the healthy individuals from the unhealthy ones with an accuracy of
94 % using only two features extracted from the generated SDF and thus, by making the
models obtained for the channels CP1, CPz and CP2 vote. The different validity tests
conducted suggest that the method and the results are correct and reliable, specifically
the permutation test, with the resulting p-value of (p < 0.03) that favours the fact the
results are statistically significant. The proposed new bio-markers worked also for the
case where clinicians face the most problems i.e. the early diagnosis of the disease.

The simplicity and interpretability of the features extracted (F1 and F2) from the SDF
are one of the strengths of the method. Indeed, since the SDFs are an image of the
physical signal that was used to generate them, thus, the disease bio-markers can be
directly captured by the SDFs. As a result, the features extracted from the SDFs are
directly associated with the disease in question. So we can mould the extracted features
according to our knowledge of the disease. This can be demonstrated by using the features
F1 and F2 directly on the signals without generating SDFs, which yielded reasonably
good results. These results are even better when the SDF generation block is used. This
shows the interest of the method presented in Chapter 1, which allows us to go to the
source of the signals that make up the EEG, thus giving access to a new point of view
that we believe is more informative and more specific to the mechanism of cerebral signal
generation. In addition, the hyper-parameter sparsity level, which allows the adjustment
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of the degree of fit of the model to the signal of interest, acts as a filter that provides,
through the nested CV, the right amount of information needed for classification without
capturing noise, which for this application is very advantageous given that EEGs are very
noisy. It is important to note that the method and classifiers used are very simple and
computationally inexpensive.

Perspectives

We believe that a real validation with clinical tests is necessary in order to have an
evaluation of the true performances of the method even if we made a lot of effort towards
this point. In addition, we think it is important to have a much larger data-set with more
clinical trials in order to be able to use more features and more sophisticated classifiers.
It is also important to consider other similar brain diseases in the data-set, as we do not
know if the other disease will have the same features as PD.
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4.1 Introduction

Schizophrenia (SZ) is a chronic neuropsychiatric disorder that affects approximately
24 million individuals worldwide [32]. Schizophrenia is known by the general public for
the psychosis symptoms or the so-called positive symptoms (e.g. hallucination, delusion,
disorganized speech and thinking), however, other symptoms may also be connected to
schizophrenia such as the negative symptoms (e.g., blunted affect), in addition to the
cognitive impairments [72].

Currently, the diagnosis of SZ is entirely clinical [85]. Medical professionals assess
patients’ condition based primarily on the behavioural manifestation of positive symptoms,
as well as on the evaluation of the patients’ self-report of their own subjective experiences.
The clinical diagnosis is difficult and tricky as schizophrenia shares symptomatic features
with other disorders such as (bipolar disorder, severe depression, etc.) [31], furthermore,
even a healthy person that does not require medical care may experience psychosis [50].
Various tools have been developed to guide and aid clinical diagnosis such as: the Di-
agnostic and Statistical Manual of Mental Disorders (DSM-V) [3] and the International
Statistical Classification of Disease (ICD-10) [105] (published by the American Psychiatry
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Association and World Health Organisation respectively). Although clinical diagnosis has
been improved, it remains subject to human subjectivity [100]. Furthermore, cognitive
dysfunctions may precede the onset of psychosis [71, 36], leaving patients suffering before
being able to be correctly diagnosed. Hence a need for diagnostic techniques to alleviate
these problems.

Data-driven methods aim to identify, directly from the data, new biomarkers of the
disease. Different diagnostic directions are investigated, the main ones being: functional
Magnetic Resonance Imaging (fMRI) [42, 110, 62], Electromyography (MEG) [24, 14] and
Electroencephalography (EEG) [69, 46, 75, 109, 19, 86], each one with its advantages and
drawbacks [87]. EEG have stood out for the diagnosis of SZ especially for its ability to
record the dynamics of the brain underpinning sensory, cognitive, affective, and motor
processes in response to a stimulus as well as for their high temporal resolution (in the
order of milliseconds), facility of usage and price [17, 56]. These brain and motor processes
are often affected by and directly correlated with the illness, and can even be observed
before the onset of the latter [36].

The aim of this work is to propose a methodology designed to assist and aid healthcare
professionals in diagnosing schizophrenia. The same methodology presented in Chapter 1
will be used for this new application with the aim to test its genericity in this new context.
This application is also based on real electroencephalogram (EEG) signals. The objective
is to separate patients suffering from Schizophrenia from healthy subjects with a desire
to identify new biomarkers to perhaps shed light on the unknown biological reasons that
cause the different symptoms. As with the first application, the primary goal is to have
consistent and coherent results with as little bias as possible, which can be applied in
real-world situations.

This chapter is structured as follows: Section 4.2 first presents the generalities on the
disease of Schizophrenia, the symptoms and the way in which the diagnosis is currently
carried out are the important points tackled. Section 4.2.4 briefly presents the state
of the art of current studies that rely on EEG for the diagnosis of SZ and discusses
the various problems that we have noticed. Section 4.3.1 details the experiment that
produced the dataset used in this chapter, Section 4.3.2 describes the pre-processing that
was applied before the dataset was made available online as well as the pre-processing
that we applied ourselves. Section 4.3.3 initially presents the results obtained using one
feature and without data cleaning, followed by an examination of the results’ significance
and trustfulness. Subsequently, additional results using two features, along with data
cleaning, are presented in Section 4.3.5. Finally, Section 4.4 concludes this chapter and
gives perspectives for future possible investigation.
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4.2 Generalities on Schizophrenia

The word “schizophrenia” [from Greek ’schizo’ (to split) and ’phren’ (mind)] literally
means “splitting of mind or personality” [22] but it rather refers to a fragmented pattern
of thinking [59]. Schizophrenia is not a disease but it is a mental disorder or a syndrome
with numerous symptoms that vary greatly from one individual to another. different
between individuals. SZ is a complex and heterogeneous syndrome, meaning that it can
manifest differently in different individuals and may involve varying combinations and
severity of symptoms [43]. People with schizophrenia have a life expectancy 10 — 20 years
below that of the general population [48].

As stated by the World Health Organisation [104], people with SZ often experience
human rights violations by the community and even in mental health institutions. This
intense and widespread stigma causes social exclusion and impacts their relationships
with others, worse, including family and friends. The stigma contributes to discrimination
which can limit access to general health care, education, and employment. The numbers
are more alarming, as the vast majority of people with schizophrenia do not receive mental
health care as only ∼ 31% of people with psychosis receive specialist mental health care
[102].

Epidemiology & prevalence

The most recent and largest prevalence study of Schizophrenia that we found is [15].
In this study, the prevalence of Schizophrenia is estimated by age, sex, year and for all
countries. The study concluded Schizophrenia has an estimated prevalence of 0.28% with
a 95% Confidence Interval (CI) of (0.24 — 0.31).

Figure 4.1 illustrates the prevalence rate of SZ as a function of age. (the figure has
been adapted from [15], only aesthetic modifications have been made).

From Figure 4.1 it can be observed the onset of schizophrenia can start during
adolescence and young adulthood. The prevalence peaks at around 40 years of age with a
decline in the older age groups. Moreover, there is no observed difference in prevalence
between males and females. In the same study, they concluded that the prevalence rates
do not vary widely across countries and regions (One can see Figure 3 in [15]).

Causes

As stated by the World Health Organisation article on Schizophrenia [104]: “research
did not yet identified one single cause of schizophrenia”. The prevailing hypothesis suggests
that the development of schizophrenia may be attributed to a complex interplay between
genetic factors and a diverse range of environmental factors. Additionally, psychosocial
factors may affect both the onset and progression of schizophrenia. Moreover, heavy use
of cannabis is associated with an elevated risk of the disorder.
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Figure 4.1: Worldwide mean prevalence rates by age and sex (with 95% CI interval).

4.2.1 Symptoms

The symptoms of Schizophrenia can be divided into 3 types [64, 104]:

Positive symptoms

Most human symptoms are an extreme version of a normal physiological process.
However, the positive symptoms are new features that do not have any normal process
in the counterpart. To take an example, a heart beating at a regular pace is considered
a standard physiological process, in its extreme version, where the heart beats fast is
tachycardia. The positive symptoms do not follow this rule of “extreme version of a
normal physiological process”. These positive symptoms include:

• Delusion.

• Hallucination.

• Disorganized speech.

• Disorganized behaviour.

• Catatonic behaviour.

Negative symptoms

The negative symptoms of schizophrenia can often appear several years before the
patients experiences their first acute schizophrenic episode with positive symptoms. The
negative symptoms often appear gradually and slowly get worse with time. Usually, the
negative symptoms are a lack1 of feelings that a healthy person have such as:

1 hence the term “negative”.
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• Poor grooming or hygiene (not wanting to look after themselves).

• Changes in body language and emotions.

• Loosing interest in life and activities (avoiding interaction with people).

• Avolition (lack of motivation).

• Flat effect.

Cognitive symptoms

A cognitive deficit is also observed in patients affected by schizophrenia. As cognitive
symptoms, one can find:

• SZ affects memory, learning, concentration, and understanding.

• Subtle difficulty to notice.

4.2.2 Schizophrenia phases

Schizophrenia tends to happen in episodes, during which, the patient cycles through
all three phases in order [58, 20, 64]:

1. Prodromal: This early stage is often not recognized until after the illness has well
progressed. Due to the fact that the first signs and symptoms of schizophrenia may
be overlooked as they are common to many other conditions, such as depression.

2. Active (also called acute): During this phase, schizophrenia symptoms are usually
obvious and distinctive from other conditions.

3. Residual: Symptoms in this phase of the illness resemble symptoms in the first
phase. They are characterized by a lack of motivation and low energy, however,
some elements of the active phase may remain. Moreover, patients may relapse back
to the active phase after stopping their medication [58].

4.2.3 Diagnosis

As discussed previously in the introduction 4.1, the diagnosis of Schizophrenia is at
present entirely clinical [85] and is based for the most part on the behavioural manifestation
of positive symptoms which occurs during the active phase (when the symptoms are more
prominent) [64]. This clinical diagnosis is tricky as SZ shares symptomatic features with
other disorders and even a healthy person may experience psychosis [31, 50].

The important points concerning the diagnosis have already been covered in the
Introduction 4.1, in what follows we would rather discuss a typical clinical diagnostic
scheme and give more details on the Diagnostic and Statistical Manual of Mental Disorders
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(DSM-V) for schizophrenia [3]. It is important to note that doctors must follow these
guidelines when diagnosing SZ, the guidelines consist of the following elements [94]:

Criterion A. The patient has to exhibit two or more of the following, each present a
significant amount of time (approximately 1-month period). At least one
of these should include the first three elements (marked in bold):

(a) Delusion.

(b) Hallucinations.

(c) Disorganized speech.

(d) Disorganized or catatonic behaviour.

(e) Negative symptoms.

Criterion B. Social or occupational dysfunction: One or more areas of functioning such
as work, interpersonal relations, or self-care are markedly below the level
achieved prior to the onset and this, for a significant period.

Criterion C. Duration: The disturbance or dysfunction lasts for at least 6 months. This
6 month period must include at least 1 month of active phase (symptoms
described in Criterion A).

Criterion D. Exclusion: The disturbance is not attributed to the direct physiological
effects of a substance or another medical condition or no major depressive
episode that occurred during the active phase.

Although clinical diagnosis has improved thanks to these guidelines, it remains subject
to human subjectivity [100] and requires a quite heavy, expensive and meticulous obser-
vation in order to check the rules mentioned above. As previously presented in Section
4.2.1 cognitive dysfunctions may precede the onset of psychosis by several years [71, 36].
From the guidelines of (DSM-V) for schizophrenia diagnosis, it can be observed that
the clinical diagnosis relies mainly on the manifestation of psychosis symptoms, leaving
patients suffering before being able to be correctly diagnosed. To alleviate these problems,
studies are underway to find new biomarkers for the disease, ideally at an early stage
and preferably possible to check and exhibit through a rapid and repeatable process.
EEG-based diagnosis falls in this category.

In the following section, more details about the current state of the art for SZ diagnosis
based on EEG are given. The motivation of this choice has already been presented in the
Introduction 4.1.

4.2.4 State of the art of EEG-based SZ diagnosis

The diagnosis of SZ based on EEG has been studied in several works. In [46], a robust
variational mode decomposition (RVMD) is proposed in order to decompose the EEG
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signal into different modes, and using six features computed on the decomposed signal
they classify the SZ from the control group using an optimised extreme learning machine
(OELM) to achieve a presumable classification accuracy of 92.9%. [75] extract two features
corresponding to Kolmogorov Complexity and Sample Entropy from the Event-Related
Potential (ERP) computed at four electrode locations. The features are separated using a
Neural Network (NN) to achieve an accuracy of 91.2%. In [109], the authors proposed SZ
classification based on the amplitude and latency of N1 and P2 components over the Cz

channel combined with non-ERP related information (demographic) during a button-press
task to generate a tone. The diagnosis accuracy was in the order of 81.1%. [19] used the
mean ERP values computed between 400 — 600 ms post-stimulus during a visual task,
these values were then averaged across four regions of interest (occipital, central, frontal,
and parietal), and then were fed to Linear Discriminant Analysis (LDA) classifier to
achieve an accuracy of 71%. [86] used 16 temporal and 4 frequency features extracted from
ERP computed during a 3-oddball auditory task. Combining these features computer over
8 electrodes and by mean of a Multi-Layer Perceptron (MLP) they achieved a presumable
accuracy of 93.4%. We strongly believe that the majority of the work we have seen suffers
from various problems well known in the machine learning community, the same ones that
have already been covered in Sections 1.6 and 3.3.

To recall, the problems raised previously concerned group leakage, optimisation over
the test-set (see Sections 1.6 and 3.3 and Appendix 6.3), and being subject to the curse of
dimensionality (see Section 1.5.1). The same remarks we raised previously are applicable
and have been raised again for the works mentioned above. A further problem that has
now been identified is the fact of not taking into account the data unbalance (numerical
majority of a category). This unbalance induces a bias on the developed model as it
will tend to favour the dominant category, thus biasing the evaluation and increasing
the false positive or false negative rate. Concerning the curse of dimensionality, not only
the statistical significance of the findings is questionable, but the associated features and
choices lack explainability that might have compensated for the a priori significance issue.

4.3 The Sparse Dynamical Features generation frame-

work applied to Schizophrenia diagnosis

This section is entirely devoted to the application of the method presented in Chapter 1
this time for the diagnosis of Schizophrenia. Before moving on to the application, the
dataset used is firstly described in Section 4.3.1. Subsequently, the pre-processing (filtering,
cropping, etc.) that the data had already undergone as well as those we applied will
be described in Subsection 4.3.2. The values of the selected hyper-parameters of the
proposed methodology are given in Section 4.3.3, and finally, all that has been discussed
previously (methodology, feature selection, evaluation, etc.) is combined in order to
produce the results obtained. It is important to note that the first results produced used
one single feature and included all the subjects. The obtained results are subjected to
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various validity and constrained tests that are discussed in Section 4.3.4. After an in-depth
study, additional results are presented in Section 4.3.5 involving two features and where
additional data cleaning was performed to eliminate subjects we considered to have poor
signals.

4.3.1 Data-set description

The data used in the present chapter are publicly accessible (see: [81]). The study
includes 81 subjects, of which 49 suffer from schizophrenia (SZ) and 32 individuals serve
as a control group (CTL). Diagnoses were based on the structured clinical interview for
DSM-IV2 [7]. The subjects were age and gender-matched to reduce the effect of these two
variables on the experiment. Furthermore, only right-handed subjects were included. The
task that the participants were subjected to was a sensory task involving button pressing
and/or an auditory tone. The stimuli are:

(a) Stimulus 1 “Button Tone”: subjects were asked to press a button at a regular pace,
approximately every 1 to 2 seconds. For each button press, an immediate (without
delay) delivery of a 1000 Hz tone is played.

(b) Stimulus 2 “Play Tone”: the sequence played in stimulus 1 was recorded with
exact timing. The previously recorded tones were played back to the subject, who
had to listen to them passively.

(c) Stimulus 3 “Button Alone”: here the subject were instructed to press the button
at a similar pace, however, in this case, no sound was produced.

4.3.2 Pre-processing

The Data were recorded over 64 electrodes with a sampling rate of 1024 Hz. All the
available data already underwent the following preprocessing before being made publicly
available: (1) Re-reference to averaged ear lobes. (2) High-pass filtering at 0.1 Hz. (3)
Outlier channels interpolation. (4) Epoching of the continuous signal and creation of 3 s
time windows centred around the stimulus arrival. (5) Canonical correlation analysis to
remove muscle and high-frequency white noise. (6) Outlier trial rejection. (7) Independent
Component Analysis for removing unwanted artefacts. (8) Outlier channels interpolation
within single trials. All the channels, single trial, and components outliers are defined as
in [66]. The reader can refer to [81, 27] for the complete details about the experience. To
give an idea of the state of the signals that are publicly available, Figure 4.2 shows an
example of the recorded EEG signals after computing their ERP for each stimulus and
channel.

2 An old but similar version to DSM-V that has been discussed in Section 4.2.3.
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Figure 4.2: ERP of each stimulus over the 64 channels.

As for the pre-processing we applied, the data were first passed through a low-pass
filter at 50 Hz3 and then, down-sampled to 128 Hz. Finally, the data were re-sliced to
form time-locked windows (trials) starting from (−300 ms) pre-stimulus to (+600 ms)
post-stimulus.

An Event-Related Potential (ERP) was calculated separately for each stimulus type
by vertically averaging all the signal segments corresponding to the same stimulus type
and channel (see Figure 4.3) [55]. The aim of this step is to filter the signal and sum
up the events occurring at the same instant to make them stand out from the ambient noise.

The result of the pre-processing and computation of the ERP for the example shown
in Figure 4.2 is shown in Figure 4.4.

4.3.3 Results & discussion

The system Σ defined in Chapter 1 Equation (1.2) was created using m=40 pendulums
that have a linearly spaced frequency taken from (0.1—50) Hz. The frequency band is
identical to that used in pre-processing, as it is the widest band found in the literature.
The weighting constant αf has been set to αf =0.00026 following the procedure presented
in Section 1.4.2 with a final fitting error of 0.1% in order to guarantee a progressive fit at
each level of sparsity. The sparsity spacing was set to l = 1% yielding 100 β solutions
with a decreasing sparsity level. The weighting constant w in the equation (1.18) has

3 The cut-off frequency was set at 50 Hz by visual inspection of the power spectral densities of all the
subjects as this was the widest frequency band that contained the most desirable activity.
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Figure 4.3: Example of ERP creation process over one channel for one stimulus type. (a) Vertical
averaging of the corresponding time-locked EEG segments. (b) Result of the vertical averaging process.
The signal length used in this example is only illustrative, moreover, this step was repeated for each
channel and each stimulus.

Figure 4.4: ERP of each stimulus over the 64 channels after pre-processing.

been set to w=0.5 following the procedure presented in Section 1.4.3.

It is important to note that the number of modes m involved, has been set following a
trial and error procedure with the objective of maximizing the validation accuracy. It is
important to note that the procedure to set the number of modes m described in Section
1.4.5 was not yet developed at the time we produced the results of the current Chapter.
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Out of curiosity, we wanted to test whether the value of m that has been set by trial and
error is consistent with the procedure presented in Section 1.4.5.

To recall the procedure of finding m, firstly, a grid with different number of modes
m is considered, and for each value in that grid, the value of αf was determined to have
a fitting error of 0.1%. The average number of excitation inputs required to fit all the
signals is computed for each fixed value of m. The result is illustrated in Figure 4.5 where
the evolution of the mean number of excitation inputs required for the same degree of fit
is displayed versus the number of modes m present in the model.
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Figure 4.5: Evolution of the excitation number as a function of the number of modes m considered in
the model. The same degree of fit is required for all the values.

In Figure 4.5 we can observe that the value of m found by trial and error maximizing
validation accuracy does not comply with the principle of parsimony. Actually, it is the
opposite, the selected value m = 40 is the value that required overall the largest4 number
of excitation inputs to have the same degree of fit compared to other values.

As an illustration of our model’s output Ŷ exhibiting a gradual fit with varying level of
sparsity, Figure 4.6 displays the computation of the SDFs for channel C3 and the stimulus
(b) “play tone”.

The SDFs for each channel and stimulus type were first generated, and then a total of
17 features presented in Table 1.1 were extracted from them. Subsequently, each feature

4 Optimal in some sense?
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Figure 4.6: Progressive fit of the model’s output Ŷ for Channel C3 and Stimulus (b) “Play Tone”.

was tested individually. A first result was obtained using the NLOO evaluation procedure
with the feature mean(U) over the EEG channel “C3” and for the condition “(b) / Play
Tone” which corresponds to passively listening to the previously recorded sequence of tones.
The other channels and features did not show significant results. Using very few features,
a simple linear classifier such as Linear Discriminant Analysis (LDA) was sufficient to
separate the data. Table 4.1 shows the results obtained for the NLOO procedure as well as
for the nested 5-fold and 2-fold CV procedures where the learning-set5 is about 80% and
respectively 50% of the entire data-set size. For both 5-fold and 2-fold CV the partitioning
was repeated 10 000 times. For the test accuracy, the 5−th percentile is marked which
indicates that the accuracy of the model is above the indicated value in 95 % of the cases.
For informative purposes, the generation of the SDF takes about 2 minutes overall.

To recall, the evaluation metric used is accuracy, which is defined as the number of
correct diagnoses divided by the number of decisions to be made. In the case of multiple
repetitions, the stated accuracy is the mean value of the accuracy obtained overall folds
and all repetitions.

From Table 4.1 we can observe that the best accuracy obtained is for the NLOO case.

5 Composed of the training + validation set.
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Evaluation scheme NLOO 5-fold 2-fold

Learning (± std %) 85.1 % (—) 84.2 % (0.6) 84.5 % (1.6)

Validation (± std %) 85.0 % (—) 83.9 % (0.6) 84.3 % (1.5)

Testing (5−th %) 85.2 % (—) 80.0 %(74.1) 77.2 %(71.2)

Table 4.1: Accuracy obtained by our model using a single feature for different evaluation
procedures.

This result is expected as the NLOO contains the largest learning set and the testing
accuracy decreases, when the learning-set is smaller often the model loses generability
which explains the accuracy loss from NLOO to 5-fold, same applies from 5-fold to 2-fold.
Despite only half the data was used in the learning step, the accuracy remains reasonably
high (77.2 %), this is due to the fact that a small number of features is used. We believe
that if the model trained only by using half of the data performs almost the same as the
model trained on the entire data-set it may suggest that the model trained on the entire
data-set may obtain similar results on a data-set that is double the size of ours (under
the assumptions that we have no covariate shift, for more details see [77]).

Figure 4.7 is a topomap illustrating the model’s accuracy profile for each channel
(regions of the brain). Its main purpose is to highlight the important regions that yielded
good accuracy. On (a) the accuracy obtained on the test set is illustrated, while on (b) the
accuracy obtained during the learning phase is shown. The learning accuracy is depicted
to illustrate the ability of the model, using the feature presented above (mean(U)), to
separate the data without taking into account the model’s generalizability to the test set,
in order to highlight important regions.

It can be observed that the regions surrounding the C3, C5, and FC3 channels are
those that yielded the highest accuracy for both the test and learning sets. The regions
where the model was unable to separate the data are indicated in dark or light blue. Two
other regions stood out and are: adjacent to the Pz channel, and the region neighbouring
the C4 channel which is symmetrical to the first region discussed. We believe that the
fact that the two regions that showed the best separability (around C3 and around C4)
are symmetrical, is synonymous with a physiological function or phenomenon occurring in
these regions that can be linked to Schizophrenia.

Figure 4.8 represents the confusion matrix for the case of the NLOO evaluation
procedure. The sensitivity is 90% and the specificity is 78%. We can observe that the
results obtained are not perfectly balanced.
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Figure 4.7: Topomap illustrating the model’s accuracy profile over the brain regions. (a) shows the
testing accuracy. (b) shows the learning accuracy.
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Figure 4.8: Result confusion matrix for NLOO procedure.

4.3.4 Significance and trustfulness

To assess the statistical validity and consistency of our results for the “C3” channel we
performed two tests:

1. Permutation test [65]: The probability that the results obtained are simply due to
luck is discussed below as we have a small amount of data and have performed several
runs (each for each type of stimuli, channel and feature). We define the following
null hypothesis H0: taking the mean of the SDF does not allow to differentiate the
SZ group from the CTL group. Under this hypothesis, we randomly shuffled the
labels 1000 times, and then we looked at the maximum accuracy obtained. We
obtained a p-value of (p < 0.005) indicating that the results obtained are significant.
As a reminder, for statistical significance, the p-value must be lower than 0.05 [26,
Chapter 1].
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2. Parametric consistency: For this part, we have evaluated the evolution of the
accuracy as a function of the parsimony level. Therefore, unlike the other parts
where a nested cross-validation is used, during this part only the outer loop is used
in a LOO procedure for each parsimony level (in other words, the parsimony level is
fixed). The obtained results are shown in Figure 4.9. It should be noted that the
area of interest is the area that has been selected 100 % of the time by the inner loop
when choosing the alpha hyper-parameter. This indicates that the results obtained
have a parametric consistency and that it is not due to chance that one result spikes
on a given parsimony level. Indeed, since it is a gradual sparsity increase, we expect
the model’s accuracy to be close and smooth and not have a spiking phenomenon
due to luck or sampling noise.
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Figure 4.9: Model’s test accuracy for a varying level of parsimony.

4.3.5 Data cleaning & adding of a new feature

By visually analysing the data, we have noticed that the data for some patients
is very noisy. The first results in the previous section were produced using the entire
data-set, we believe that it is important to provide the results without manipulating
the database. However, in this section, we will be removing 7 subjects (3 CTL and 4
SZ) whose EEGs we consider to be highly noisy (see Appendix 6.1 to see their EEGs
compared to a low noise EEG). It should be noted that the data from the 7 subjects
that will be deleted were correctly diagnosed in the results presented in the previous section.
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In addition, we have noticed that by adding another feature, the variance “var(U)”, we
can gain a few metric points. Table 4.2.a is a duplicate of Table 4.1 to improve readability.
Table 4.2.b shows the results obtained using a single feature which is the mean(U) and
removing the data we consider to be in poor condition. Table 4.2.c shows the results
obtained using two features: the mean and the variance, while removing the noisy data.

Features Data
cleaned?

Set
Evaluation procedure

NLOO 5-fold 2-fold

Mean (U) No

Learning (± std %) 85.1 % (—) 84.2 % (0.6) 84.5 % (1.6)

(a) Validation (± std %) 85.0 % (—) 83.9 % (0.6) 84.3 % (1.5)

Testing (5−th %) 85.2 % (—) 80.0 % (74.1) 77.2 % (71.2)

Mean (U) Yes

Learning (± std %) 86.5 % (—) 86.9 % (0.5) 87.9 % (1.5)

(b) Validation (± std %) 86.4 % (—) 86.7 % (0.5) 87.8 % (1.4)

Testing (5−th %) 86.5 % (—) 82.4 % (76.7) 80.1 % (73.8)

Mean (U)
& Var (U)

Yes

Learning (± std %) 90.1 % (—) 88.5 % (0.6) 88.9 % (1.6)

(c) Validation (± std %) 89.3 % (—) 88.0 % (0.5) 88.5 % (1.5)

Testing (5−th %) 87.8 % (—) 83.4 % (77.4) 79.4 % (72.3)

Table 4.2: Model’s accuracy obtained using one or two features extracted from the
generated SDF using different evaluation procedures with/without cleaning the data-set.

Firstly, by comparing Table 4.2.a with Table 4.2.b, we can observe that by remov-
ing the 7 subjects judged to have poor data, there is a slight gain in accuracy, and
this, for all the evaluation procedures. By adding the second feature and keeping the
same classifier (LDA), around 3 metric points were gained. As it can be observed in
Table 4.2.b, it is the feature mean that has the greatest impact and carries the clas-
sification accuracy. The highest accuracy obtained is for the case presented in Table
4.2.c where two features were used and while the poor data was removed (87.8% accuracy).

Figure 4.10 shows the values of the two feautres6 (mean and var) as well as the decision
boundary of the LDA classifier.

Figure 4.11 shows the testing accuracy distribution of the 10, 000 splits of Table 4.2.
The median value as well as the 5−th percentile are also reported. It can be observed
that the values are well distributed around the median value.

6 The level of parsimony has been fixed to produce this illustration, we have taken the one that gives
the highest accuracy.
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Figure 4.10: Scatter plot of the two extracted features (mean(U) and var(U)) along with the corre-
sponding LDA decision boundary. The cross points × are distant points that have been repositioned
according to their initial location for a clearer graph.
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Figure 4.11: Testing accuracy distribution of the 10.000 repeated splits that produced Table 4.2.

4.3.6 SDF visualisation

This section was conducted after obtaining the results presented above. Its aim is to
determine whether the SDFs of patients with SZ can be visually distinguished from those
of the CTL group.
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Figure 4.12 shows at the top the fit between the real signal (blue) and the model signal
(red). At the bottom of the figure, we can observe which modes have been activated and
when, as we have already done in Figure 1.9.
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Figure 4.12: Visual representation of the model fit (top) and a bit-map of the modes’ activity (bottom)
of a signal taken from channel C3.

Figure 4.12 represents the result for a single subject at a fixed sparsity level. Similarly,
Figure 4.13 displays the summation of the activity of all subjects belonging to the same cat-
egory. This provides us with a global view by averaging the activity of all subjects, allowing
for meaningful comparisons. The selected sparsity level is 76%, which corresponds to
the sparsity level determined by the inner loop (highlighted by the grey area in Figure 4.9).

Figure 4.13 shows the SDFs in their raw state. However, as it can be observed, it
is difficult to draw and observe the differences directly in this figure. To overcome this
problem, a spatial filter has been applied (2-D convolution) to the image7 to smooth out
the result and bring out the areas where the difference is noticeable. The spatial filter
used is a standard unitary Gaussian filter ∼ N (µ = 0, σ2 = 1) and has the form presented
in Figure 4.14.

The filtering result is shown in Figure 4.15, the areas of interest where the difference
is the most noticeable are marked in dashed black. Our framework allows us to visualize
the frequencies and temporal instants of the modes, which differ greatly between the
two categories. We hope that this will give valuable information to practitioners on the
physiological reasons causing Schizophrenia. Moreover, we think that this can make
qualified persons draw new and better conclusions for the diagnosis of SZ.

7 The image has been zero-padded to not alter the dimensions of the image.
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Figure 4.13: Summation of SDFs from all subjects within each category.
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4.4 Conclusion & perspective

In this chapter, a broad overview of schizophrenia was covered first. Rather than being
a disease, schizophrenia is a syndrome that encompasses several symptoms. Depending
on the individual, these symptoms can manifest themselves or not with varying degrees of
severity, making the illness complex and heterogeneous. The disease affects a large number
of people with an estimated prevalence of 0.28% worldwide, and according to the World
Health Organisation: "research has not yet identified a single cause of schizophrenia". It
is important to note that schizophrenia tends to occur in episodes, where patients go
through three distinct phases, each phase has its own intensity and duration. During these
phases, patients suffer from a combination of symptoms with varying degrees of severity
but which are separated into three categories of symptoms: (1) Positive symptoms: these
are symptoms which are specific to the illness and which are known to the general public,
and they are not due to a malfunction of a normal physiological process, we can find:
Hallucination, delusion, etc. The other remaining symptoms are: (2) Negative symptoms,
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Figure 4.15: Filtering of Figure 4.13 using a Gaussian 2D filter.

and (3) cognitive impairments.

One of the guidelines that doctors must follow and that was presented in this Chapter
is the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) for schizophre-
nia. From this it emerges that the diagnosis of SZ is entirely clinical and is based
mainly and for the most part on the behavioural manifestation of positive symptoms,
in addition to other considerations (duration of the illness, exclusion of disturbances,
etc.). Despite the existence of these guidelines, which have improved clinical diagnosis,
it is important to note that they are primarily based on positive symptoms, which, it
should be remembered, can occur 1-2 years after the first symptoms, leaving patients
suffering before they can be diagnosed. Various aids to diagnosis are currently being
developed, and electroencephalography is one of them. EEG have stood out for the
diagnosis of SZ especially for their high temporal resolution as well as its ability to record
the dynamics of the brain underpinning sensory, cognitive, affective, and motor processes
that are affected at the very beginning of the disease even before positive symptoms appear.

After its application in the diagnosis of Parkinson’s Disease in Chapter 3, the method
proposed in Chapter 1 is tested in this new setting. The method was validated on a
publicly accessible data-set containing 81 subjects, 49 of whom have schizophrenia and
32 of whom serve as controls. The evaluation of our approach was carefully conducted
to induce as little bias as possible so as not to have a model that is over-optimistic and
that only works on the present data. The result is that the use of a single feature, which
is the mean of the SDF (mean(U)) calculated for the C3 channel and for the condition
“(b)” which corresponds to passively listening to the same tone, was sufficient to separate
the healthy from the SZ using a straight line (LDA) with an accuracy of 85.2% with a
p-value of (p < 0.005). The model had a sensitivity of 90%, and a specificity of 78%,
which indicates that the model does not classify the CTL equally well to the SZ even
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though the numerical unbalance of the data-set has been taken into account. The topomap
illustrating the model’s accuracy profile over the brain regions for this feature highlighted
3 regions that are listed in order of importance: (1) the region around C3, (2) the region
around the C4 channel which is symmetrical to the C3 channel, and (3) a region around
the Pz channel. The fact that the two major regions are symmetrical suggests that the
results obtained are meaningful and that they are linked to a common physiological
cause. The significance of the results is an important issue that we have addressed
throughout this thesis, and the results suggest that the results obtained are significant.
The significance of the results is an important point that has been addressed throughout
this thesis, and the various tests carried out suggest that the results obtained are significant.

In order to further investigate the results, we have also visually scanned the signals, and
discarded those that we judged to be poor (high noise content), those can be consulted in
Appendix 6.1. It is important to note that the 7 deleted subject signals were all correctly
classified by the previous model. As a result of this deletion and the addition of another
feature which is the variance (var(U)) around 2-4 metric points were gained reaching an
overall accuracy of 87.8% using only these two features and the same classifier (LDA).
From the visualisation of the SDFs generated, we were able to see with the naked eye
differences between the SDFs of the SZ group and the CTL group and spot the frequencies
and timing of the oscillators that are the most distinctive.

Perspectives

The results obtained are still preliminary, and different perspectives can be envisaged, in
particular, the use of a voting strategy between different channels allowing the aggregation
of different information coming from different brain regions as it has been done for the PD
in Chapter 3. We believe that having more data is also important since it allows us to use
more features and more sophisticated classifiers. The possibility of using the entire area
of interest spotted by SDF visual inspection will be now conceivable without affecting the
statistical generability and significance of the results.
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5.1 Introduction

Cardiovascular diseases are the leading cause of death worldwide [82]. Electrocardiog-
raphy (ECG) is a tool that offers valuable insights into cardiac and non-cardiac health
and disease. The ECG is a rapid, accessible and simple test that is employed across
all clinical settings, from the primary care centers to the intensive care units. Despite
its accessibility and widespread uses, its interpretation requires human expertise. The
reproducibility of human interpretation of the ECG varies greatly depending on the levels
of knowledge and expertise. The widespread availability of ECG data has helped to
develop new, automated methods for detecting various diseases and dysfunctions affecting
the heart. The necessity of this automatic interpretation is helpful in developed countries,
but in low and middle-income countries it is a necessity. Indeed, these countries account
for more than 75% of deaths related to cardiovascular diseases (according to the World
Health Organisation [106]), and often, do not have access to cardiologist with full expertise
in ECG diagnosis.

In this chapter, our work is based on the study and analysis of 12-lead ECG, the
most widely used ECG exam, which allows us to study the heart from different points
of view. The data to be used are real data that are publicly available. These data
are annotated by expert cardiologists, and our aim is to identify and classify the six
types of ECG abnormalities from healthy subjects. These six types of abnormalities
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are considered representative of both rhythmic disorders and conduction disturbances.
Rhythmic disorders affect the electrical system that regulates the steady heartbeat, while
conduction disturbances are conditions that affect the circulatory system.

The results presented in this chapter are preliminary. The main objective is not to
have results comparable to the state of the art, but to show the generality and to evaluate
the method in a different context, for different signals than those of Chapters 3 and
4. Moreover, we would like to investigate in more detail the visualization of the SDFs
presented at the end of Chapter 4 that intrigued us. As for the state of the art, briefly,
methods based on deep learning such as deep Convolutional Neural Networks (CNN) can
be found. In [88], it is stated that the CNNs developed and supported by the availability of
numerous digital ECGs could complete ECG interpretation similar to that of a cardiologist
expert. [79] is a good example of the use of CNNs in this context. However, concerns
start to raise regarding the clinical application of these CNNs in real-life scenarios, as the
learned function between the input and output data is unexplainable [84].

The approach we propose addresses this problem by providing a visual explainability
of the SDFs generated and used in the classification. The approach is intended to be
explainable in order to properly classify the different categories. The aim is not to have
the highest accuracy or to compete with the state of the art. We argue that the results
obtained here are preliminary, information known to be detrimental in this context, such
as the heart rate, has not been included in the model. Moreover, the entire data set has
not been used.

At the end of this chapter, following on from the preliminary results obtained, we
propose a scheme that could produce better results. Due to time constraints, this scheme
has not been implemented.

This chapter is structured as follows: Section 5.2 presents the two groups of cardiac
abnormalities studied, i.e. rhythm disorders and conduction disturbances. Section 5.2.1
defines the components of a sinus rhythm, as well as the different notions of RR and PR
intervals that are widespread in the field of cardiology. Sections 5.2.2 and 5.2.3 present
in detail the six abnormalities studied here. Section 5.3 is dedicated to the application
of the method proposed in Chapter 1. It starts by presenting the data-set used and the
pre-processing applied to the data. Results are given in Section 5.3.3 where at the end, a
suggestion is given to improve the results obtained. Section 5.4 concludes this chapter
and gives perspective for future work.

5.2 Generalities on the studied cardiac abnormalities

In this chapter, it is not a single condition or disease that will be studied, but rather
a set of six abnormalities that affect the heart that are considered representative of
both rhythmic and morphologic cardiac abnormalities. It encompasses both (1) rhythm
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disorders and (2) conduction disturbances.

Rhythm disorders are caused by problems affecting the electrical system that regu-
lates the steady heartbeat. Compared to a healthy functioning, the heart rate may be
too slow or too fast, some heart rhythms are lengthened or shortened, and the heartbeat
may stay steady or become irregular. The rhythm disorders that will be studied in this
chapter are: Atrial Fibrillation (AF), Sinus Bradycardia (SB), and Sinus Tachycardia (ST).

Conduction disturbances are conditions that affect the circulatory system, which is
responsible for maintaining the movement of blood in the body. This encompasses any
condition that affects the heart or blood vessels. The conduction disturbances that will
be studied include 1st degree AV block (1dAVb), Right Bundle Branch Block (RBBB),
and Left Bundle Branch Block (LBBB).

5.2.1 Sinus Rhythm

Before discussing the abnormalities in more detail, it is important to define the main
components of a sinus rhythm and to know how a single heartbeat is recorded on an ECG.
The heartbeat is defined by the sequence (P-wave, QRS-complex, ST-segment, T-wave)
which is the result of the correct synchronisation of excitation and contraction of the
heart muscles. The sequence is illustrated in Figure 5.1, where each component can be
visualised. Further details on the physiological aspects of sinus rhythm have been given in
Section 2.3.
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Figure 5.1: Sinus rhythms, a heartbeat perceived by the ECG.

Moreover, other concepts, such as intervals, are well-known and also important to
cardiologists. Nevertheless, the most important are the RR intervals which are often
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used to find the heart rate. Other existing intervals and segments that will be used are
illustrated in Figure 5.2. The different segments mentioned in the figure will be referred
to here and there in the description that follows.

Q

S

T

R

P

Q

S

R

P

RR interval

PP interval

PR segment TP interval

QRS duration

Figure 5.2: ECG important intervals.

In the following sections, each of the six abnormalities will be presented individually in
what follows:

5.2.2 Rhythm disorders

Atrial Fibrillation (AF)

Atrial fibrillation is an abnormal heart rhythm (arrhythmia) characterised by rapid
and irregular beating of the heart’s atrial chambers. AF often begins as short periods
of abnormal beating, which become longer or continuous over time [111]. In AF, the
heart’s upper chambers (atria) contract randomly (irregularly) and at a high pace that
the heart muscle cannot relax properly between contractions. These impulses override
the heart’s natural pacemaker, which can no longer control the rhythm of the heart [63],
which reduces the heart’s efficiency and performance.

Most of the time, atrial fibrillation causes no symptoms at all, to the point where
the person affected is completely unaware of the irregularity of their heartbeat [63]. The
symptoms, if there are any, are:

• Palpitations: feelings of a fast, fluttering or pounding heartbeat.

• Chest pain.

• Dizziness.
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• Fatigue.

Figure 5.3 shows a typical electrical activity in a healthy patient’s heart (top left),
and on the top right side, the unusual electrical activity present in the atrial that causes
AF. At the bottom, the difference can be seen between the typical heartbeat of a healthy
patient in contrast to the cardiac rhythm of a patient with AF. The spikes in the QRS
complex reveal that the cardiac rhythm is uniform but irregular. Moreover, electrical
activity even outside the sinus rhythms is present in AF patients.

Electrical

activity

Unusual electrical activity

Typical heart rhythm Atrial Fibrillation (AF)

Atrial FibrillationTypical heartbeat

Figure 5.3: Difference in excitatory electrical activity between a healthy patient (left) and a patient with
AF (right). Below, the difference between the ECG (lead DII ) of the two categories is shown respectively.

Sinus Tachycardia (ST)

Sinus1 tachycardia is a regular cardiac rhythm in which the heart beats faster than
normal, exceeding 100 beats per minute (bpm), while for a healthy person, at rest, the
heart rate should be around 60 — 100 bpm [41]. While it is common to have tachycar-
dia as a physiological response to exercise or stress, it causes concern when it occurs at rest.

1 The name sinus comes from the increased rate of electrical discharge from the sinus node, as presented
in Section 2.3.
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Most cases of ST are asymptomatic and ST itself is a symptom of a primary disease and
can be an indication of the severity of that disease [49]. If symptoms are present, they
often do not persist for long and may include:

• Palpitations.

• Fainting.

• Chest pain.

• Difficulty breathing.

Figure 5.4 shows the heartbeat of a person with ST (top) and a healthy individual
(middle). It can be observed that the heart rate is higher in the case of ST compared to
the healthy individual. This is also noticeable when comparing the RR intervals, which
are much smaller in the case of ST (RR1 < RR2), almost double the heart rate of a
healthy person.

Healthy heartbeat

Sinus Tachycardia (ST)

Sinus Bradycardia (SB)
RR2

RR3

RR1

RR2

Figure 5.4: ECG (lead DII ) of a person affected by ST (top), a healthy individual (middle), and a
person affected by SB (bottom). The RR intervals are depicted to compare the heart rate.

Sinus Bradycardia (SB)

Sinus tachycardia is a regular cardiac rhythm in which the heart beats slower than
expected and is inferior to 60 bpm (for an adult). It is sometimes a symptom of a certain
heart condition, but it can also be a sign that a person is in a very good physical shape
(professional athlete).
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In most cases, SB is asymptomatic, but when symptoms do appear, they are caused by a
slowing of the heart’s pumping mechanism, which reduces the blood supply to the body
and includes the following symptoms [47]:

• Lightheadedness.

• Dizziness.

• Hypotension.

• Vertigo.

• Syncope.

In Figure 5.4, the cardiac rhythm of a patient with SB (bottom) and a healthy patient
(middle) is plotted. It can be observed that the heart rate is lower in the case of SB
compared to the healthy individual. This is also noticeable when comparing the RR
intervals, which are much wider in the case of SB (RR2 < RR3).

5.2.3 Conduction disturbances

1st degree AtrioVentricular block (1dAVb)

A first-degree AtrioBentricular block (1dAVb) manifests when the conduction through
the AV node (presented in more detail in Section 2.3) experiences a delay, consequently
slowing down the transmission of the action potential from the sinoatrial node to the
ventricles. Despite its occurrence, 1dAVb typically remains asymptomatic, although there
is the potential for progression to more severe forms of heart block, including second- and
third-degree atrioventricular block. The diagnosis of 1dAVb is typically performed using
an electrocardiogram, where it is identified by a prolonged PR interval, exceeding 200 ms.
See Figure 5.5 that depicts an ECG signal of a patient affected by 1dAVb (top) and a
healthy subject (bottom). The difference in the PR interval is also depicted.

Right Bundle Branch Block (RBBB)

A right bundle branch block (RBBB) is a heart block in the right bundle branch of
the electrical conduction system [83]. The electrical signal cannot travel down through its
normal pathway. The signal still gets to the right ventricle, but with a delay as the signal
has to spread from the left bundle branch through the heart muscle and slowly activate
the right ventricle. Some of the ECG criteria for the diagnosis of a RBBB include the
following:

• QRS duration greater than 120 ms.

• “bunny ear” pattern in leads V1 and V3.

Figure 5.6 shows the bunny ears pattern present in the ECG of a person affected by
RBBB (left top) compared to a healthy individual (left bottom). The blockage affecting
the right bundle branch is depicted in the right side of the figure.
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Healthy heartbeat

1st degree AtrioVentricular block (1dAVb)

PR1

PR2

Figure 5.5: ECG (lead DII ) of a person affected by 1dAVb (top) and a healthy individual (bottom).
The PR intervals are depicted to highlight the major differences of the two categories.

Healthy heartbeat

Right Bundle 

Branch Block (RBBB)

Bunny ear

Cardiac conduction

system in RBBB

Block

Right bundle branch

Figure 5.6: ECG (lead V1 ) of a person affected by RBBB (top) and a healthy individual (bottom).

Left Bundle Branch Block (LBBB)

Left bundle branch block is the same as RBBB, but applied to the left branch. The left
ventricle contracts a little later than it normally would. This can cause an uncoordinated
contraction of the heart and this can be observed directly on the ECG as:

• QRS duration greater than 120 ms.

• Dominant S wave in V1

• Prolonged R wave peak time (greater than 60 ms in leads V5 and V6)

Figure 5.7 shows the ECG signals from lead V6 of a patient with LBBB (top) and
a healthy patient (bottom). Focus has been put on the V6 lead in order to show the
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stretching of the R wave peak time discussed in the previous paragraph. The peak-time
R1 and R2 are placed side by side to be compared.

Healthy heartbeat

Left Bundle Branch Block (LBBB)

R1

R2

Figure 5.7: ECG (lead V6 ) of a patient with LBBB (top) and a healthy patient (bottom).

5.3 The Sparse Dynamical Features generation frame-

work applied to cardiac abnormalities detection

This section is entirely devoted to the application of the methodology presented in
Chapter 1 for the detection of the six abnormalities presented in Section 5.2. Firstly,
the database used in the analysis is described. Next, the various pre-processing steps we
applied to the data are detailed. In addition, preliminary results are given, which are
based on direct visualization of the SDFs. Lastly, other ideas that we thought might be
interesting to explore are given, unfortunately, due to time limitations, It was impossible
to explore all the possible tracks.

5.3.1 Description of the Data-set

The data-set used in this Chapter is the largest we could find that is publicly available
(can be downloaded from [79]). The data-set consists of 2 322 513 ECG records from
1 676 384 different patients that were recorded in the period between 2010 and 2016 by
the Telehealth Network of Minas Gerais initiative2 [2]. Six abnormalities were annotated
alongside the healthy ECGs, the abnormalities are the same as those presented in Section
5.2. The annotation is based mainly on annotations provided by expert cardiologists
backed up by an automatic diagnostic system. Each has limited accuracy and can be
subject to error, so these two pieces of information have been combined. Briefly, if the two
annotators are in agreement, the annotation is validated, otherwise other considerations
have been taken into account. Complete details about the data-set and the annotation

2 Brazilian public telehealth initiative that offers telediagnosis and teleconsultation services mainly for
primary care.
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can be found in [79].

The complete database is available upon request to the author, but a set containing
15% of the data is publicly accessible. For the purposes of our demonstration, this is
sufficient.

Before starting the analysis and data manipulation the data set was segmented into
training, validation, and test sets. Each set represents the respective proportions: 70%,
15%, and 15%. As a reminder, the learning set is a merge of the training and validation
sets, so it has a proportion of 85%. We were careful to ensure that ECGs from the same
subject (correlated) were not included in both the learning and test sets to avoid data
leakage. Attention was also paid to keeping the same proportion of subjects from each
category in each set. Moreover, the subjects that have multiple abnormalities have been
removed from our analysis (a total of 3671 subjects). Table 5.1 shows the number of
subjects present in each set and for each category. Moreover, in order to work with
a balanced data set, and not take into account the data unbalance. For each class,
the minimum number of subjects present in the condition with the fewest subjects was
randomly sampled. For example, for the training set, a new training-set was created by
randomly sampling 2816 subjects from each class.

Condition
Entire dataset
(proportion)

Train Validation Test

Healthy 308004 (90.1%) 201218 53410 53376
RBBB 7685 (2.2%) 4984 1331 1370
ST 6976 (2.0%) 4491 1257 1228
AF 5609 (1.6%) 3667 968 974
LBBB 4894 (1.4%) 3107 904 883
SB 4744 (1.4%) 3103 805 836
1dAVb 4196 (1.3%) 2816 699 681

Table 5.1: Number of subjects present in each set and for each category.

The recording was performed using a 12-lead ECG system, which is the most widely
adopted standard for ECG recording [57]. The sampling frequency is fs = 400 Hz and the
recording duration is about 10 s for a total of 4096 sample points for each signal and for
each lead. This makes a signal of size (4096, 12) for each subject. Some recordings have a
total duration of 7 s, so they were zero-padded on both sides in order to have the same
data size. The data is in its raw state and has not undergone any digital pre-processing
before being made publicly available online. Figure 5.8 shows an example of an ECG over
12-leads of a healthy individual that required zero-padding.
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Figure 5.8: Example of a raw 12-lead ECG of a healthy patient that has been zero-padded.

5.3.2 Pre-processing

The data underwent minimal pre-processing, involving bandpass filtering between the
frequencies of (3 to 45) Hz using a Finite Impulse Response (FIR) filter. The selection
of this frequency band was based on a direct observation of the average Power Spectral
Density (PSD) of 200 ECGs from healthy subjects in the training set, which is representa-
tive of the majority. Figure 5.9 illustrates the mean of these PSDs with a 95% confidence
interval.

Once the data had been filtered, an R-peak detection algorithm was used, which is
necessary for the subsequent step which is ECG segmentation. The algorithm in question
is the Hamilton algorithm3, which is widely used in the medical field, more details about
its implementation can be found in [37]. The result of this process has been applied to the
raw signal shown in Figure 5.8 to produce Figure 5.10. In the latter, it can be observed
that the location of the R-peaks has been clearly identified (marked in red).

Once the R-peaks had been identified, the ECG was segmented into different chunks
(windows). These windows start from −0.2 s to 0.4 s around the R-peak (the R-peak
corresponds to 0 s). The same summation principle for creating event-related potential
(ERP) which was used for Figure 3.7 Section 3.4.2 has been repeated in the present chapter.
The aim of this step is no longer the same as before, i.e. to reduce noise, since the latter is
very moderate in ECGs compared to EEGs. But this step served a simplification purpose

3 The algorithm uses the lead DI for R-peak detection.
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Figure 5.9: A representative mean Power Spectral Density of 200 ECGs from healthy subjects with a
95% confidence interval.
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Figure 5.10: Pre-processed ECG, the detected R-peaks are marked in red.

that can be summed up in two points:

1. Data-dimension: As the heart rate varies among individuals, it leads to the yielding
of a varying number of segments for each subject. Consequently, this results in data
of varying sizes across subjects. The management of this data during classification



Chapter 5. Application 3: Cardiac Abnormalities Page 131

is complicated by the fact that it is necessary to aggregate the information from
each window, for example by having them vote on the condition of the subject.

2. Lowering algorithmic complexity: In the end, there will be fewer signals to fit with
our methodology. Although we could have kept all 10 s of ECG, however, the
dimension of the optimization problem (1.8) would have grown considerably, and
the model would need much more time to be fitted.

It is important to note that averaging the different windows remains representative of
the whole cardiac sinus, as shown in Figure 5.11. The blue curve represents a single ECG
segment, while the red curve shows the vertical averaging. It is worth noting that R-peak
detection is very rarely faulty, which means that the averaging is not very representative.
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Figure 5.11: Vertical averaging (red) of the different windows each represents a sinus rhythm (blue).

Remark 1. Employing this method of averaging windows assumes that abnormality impacts
all sinus rhythms, a premise supported by our observations. However, this approach
harbours a significant issue that we are mindful of. Often, cardiologists rely on heart rate
information, particularly for rhythmic disorders such as (AF, SB, ST), as presented in
Section 5.2 and Figure 5.4, where differences in RR intervals were explored. Unfortunately,
with our current method, this valuable RR interval information is lost, representing a
substantial loss of valuable information. Consequently, we anticipate that the model we
propose will exhibit better performance in capturing conduction disturbances (where the
shape of the cardiac sinus is altered) compared to rhythmic disorders (where the primary
alteration lies in the beating frequency).
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Another issue we are mindful of is the fact that the PR interval exceeds 0.2 seconds
for the 1st-degree atrioventricular block (1dAVb). However, in our approach, we selected
a window starting from −0.2 seconds, resulting in the omission of the P-wave for this
particular condition. Although we experimented with wider windows specifically for this
condition with a range of (−0.4, 0.4), the difference in results was not substantial. For the
sake of uniformity and computational efficiency, all the segments are within the range of
(−0.2, 0.4) seconds centred at the R-peaks.

Once the data have been pre-processed, a signal of length L = 240 points is obtained.
Over 12 leads, the dimension of the signal for each subject is (240, 12). In the next section,
the methodology presented in Chapter 1 will be applied to these signals.

5.3.3 Preliminary results

The system Σ, as defined in Chapter 1, Equation (1.2), was constructed using m = 25
modes with linearly spaced frequencies in the range of (0.5 — 45) Hz. The upper-frequency
limit is identical to that used in pre-processing; however, the lower-frequency limit is
smaller. This choice was made considering that the filter is not perfect, and at the
cut-off frequency the attenuation is not very effective4. The selection of the number of
modes m in the model was determined through the procedure outlined in Section 1.4.5.
The result of this procedure is depicted in Figure 5.12, where the evolution of the ex-
citation number is plotted as a function of the number of modes m considered in the model.

The weighting constant w in Equation (1.18) has been assigned to a value of w = 0.5
to give equal importance to the free and forced regime. Actually, there is no free regime
in the ECG at all and there is no stimulus, after which, there is a consequent change
in the dynamics in the signal. Therefore, we already expect the response to be carried
only by the U part of the SDF, as illustrated in Figure 5.13 where it can be observed the
contribution of the free regime (carried by x0 part of the SDF) and the forced regime
(carried by the U part of the SDF).

The signal on each lead has its own complexity and therefore requires a different value
of αf , so the procedure presented in Section 1.4.2 was applied to each lead. For this
procedure, the final fitting error in Equation 1.17 was set to 1%. The values of αf found
are presented in Table 5.2 for the corresponding leads.

As the ECGs are not very noisy, there was no need to have several β solutions with
varying levels of sparsity, therefore, only the solution showing a near-perfect fit was taken

4 The attenuation is 6 dB. We believe it is better to take a wider interval and observe that the model
does not rely on these frequencies.
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Figure 5.12: Evolution of the excitation number as a function of the number of modes m considered in
the model.
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Figure 5.13: (a) Contribution of the free regime to the model’s output. In (b) the contribution of the
forced regime.

(α = αf ).

Once the model parameters have been set, the SDFs were generated for all subjects
and all leads. The visualization of the SDF produced for a healthy subject is shown in
Figure 5.14.
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Lead DI DII DIII AVR AVL AVF V1 V2 V3 V4 V5 V6
αf (×10−5) 15 17 10 15 9 12 16 20 23 31 33 26

Table 5.2: Resulting values of αf for each lead.
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Figure 5.14: Example of the visual plot of the SDF of a healthy subject over the lead DII

In Figure 5.14 a pattern can be clearly seen, with modes being activated (same for
deactivation) one after the other with an increasing modes’ frequency. The same SDF
pattern was observed for all signals. This particular shape intrigued us and motivated
us to look visually at all the SDFs across all categories to determine whether there was
any valuable information emerging that could separate all the categories. As a result, we
summed the SDFs of patients belonging to the same category5 as already done in Section
4.3.6 and where more details are given on this procedure. Once the SDFs had been summed,
we applied the same Spatial Gaussian filter described in Figure 4.14, and the visualization
result is shown in Figure 5.15. The part between 0.1 s to 0.3 s has been removed for il-
lustrative purposes, as it did not contain any valuable information on the modes’ activation.

From Figure 5.15 it can be clearly observed that the two abnormalities (RBBB, LBBB)
are easily distinguishable from the other categories. Regarding the other categories, some
subtle differences and shifts can be seen. More importantly, one can ask himself, are these
subtle differences significant (i.e. are they representing a group pattern) or is it rather
due to chance or variance? We observe that this method of visualization is not suitable to
answer this question and more in-depth analysis needs to be realised.

Further on in this part, our interest is limited in determining whether an abnormality is

5 From the training set.
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Figure 5.15: Summation of SDFs from all subjects within each category and after spatial filtering.

sufficiently distinguishable from the healthy category (please note that for the moment, we
are not concerned with whether an abnormality is different from all the other categories).
To better highlight the areas of difference between abnormalities and the healthy one, a
subtraction has been used. For the sum of the SDFs of each category produced using
the training set, the SDFs of the healthy validation subjects will be extracted. This
allows us to see differential images that directly highlight the areas of interest that are
different between the abnormality and healthy subjects with a dark colour. Moreover,
by comparing the training and validation of healthy subjects, the effect of intra-group
variance can be seen. So if this difference for a category is significantly more illuminated
compared to the reference image produced by the healthy difference, this suggests that a
valuable information is present in that area.

Figure 5.16 shows an example of this subtraction. It is important to note that the
scale on this figure is different from that used in Figure 5.15. It is also important to note
that filtering is only used for visualisation purposes (to smooth out the result), and is
only used after the subtraction has been made.

In Figure 5.16, the difference between “LBBB” vs “Healthy” and “RBBB” vs “Healthy”
can be easily observed. Moreover, using this visualisation, the differences in modes’
activity (amplitude, frequency and timing) can be observed. It is important to remember
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Figure 5.16: Summation of SDFs of all subjects within each category. For each category, healthy
validation SDFs have been subtracted. The SDFs generated to produce this figure were made using the
signals from the lead V1.

that for classification, it is not these images that are used, but rather SDFs (the U vector)
or a temporal selection applied to SDFs. We have noted several zones of interest (one
for each abnormality) on different leads and these are shown in Figures 5.17, and 5.18
in addition to the one shown in Figure 5.16. The temporal selection zone applied to the
SDFs is delimited by green dashed lines and has a scissor mark in front of it.

For the classification, 3 possibilities were considered: (1) using SDFs directly, (2)
using SDFs with temporal selection on the areas of interest marked above, (3) using
SDFs with temporal selection and filtering (the same spatial filter applied above). For
the classification, the AdaBoost classifier was used (detailed in Section 1.6). The weak
learner is a Decision Tree with a depth of 1. Using the validation-set, the best parameters
found are a learning rate of 0.5 and the maximum number of weak estimator being 100.
The classification accuracy for the learning and test-set is reported in Table 5.3. It is
important to note that the accuracy displayed results from the classification of each noted
“abnormality” vs. the “healthy” category. Concerning the last row, all categories were
included. For the abnormality marked as “1dAVb∗”, a wider time interval (−0.4, 0.4) s
was taken in order to take into account the PR interval which is specifically larger for



Chapter 5. Application 3: Cardiac Abnormalities Page 137

1
d

A
V

b

F
re

q
u
en

cy
 (

H
z)

R
B

B
B

F
re

q
u
en

cy
(H

z)

L
B

B
B

F
re

q
u
en

cy
 (

H
z)

H
e
a
lt

h
y

F
re

q
u
en

cy
 (

H
z)

S
B

F
re

q
u
en

cy
 (

H
z)

A
F

F
re

q
u
en

cy
 (

H
z)

S
T

F
re

q
u
en

cy
 (

H
z)

0.2 0.1 0.0 0.1

Time (s)

Lead V4

Amplitude

(mV)

0

5

5

0.5

9.8

19.0

28.3

37.6
45.0

0.5

9.8

19.0

28.3

37.6
45.0

0.5

9.8

19.0

28.3

37.6
45.0

0.5

9.8

19.0

28.3

37.6
45.0

0.5

9.8

19.0

28.3

37.6
45.0

0.5

9.8

19.0

28.3

37.6
45.0

0.5

9.8

19.0

28.3

37.6
45.0

0.3

Figure 5.17: Summation of SDFs of all subjects within each category over lead V4. For each category,
healthy validation SDFs have been subtracted.
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Figure 5.18: Summation of SDFs of all subjects within each category over lead V5. For each category,
healthy validation SDFs have been subtracted.
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this condition. Please remark that the SDF time selection values are written in indexes6

where (0 corresponds to −0.2 s and 239 corresponds to 0.4 s).

Abnor-
mality

Lead
Temporal
selection

Accuracy (%)

no selection
no filtering

selection
no filtering

selection
filtering

learning test learning test learning test

RBBB V1 (39 — 104) 94.6 93.1 94.3 92.5 96.0 94.3

LBBB V1 (6 — 84) 95.5 93.4 95.2 93.4 97.0 95.4

1dAVb V5 (8 — 90) 82.9 80.9 82.8 80.3 85.1 83.0

1dAVb∗ V5 (8 — 170) 86.3 80.4 86.3 80.4 89.8 89.7

SB V5 (20 — 86) 75.3 68.4 75.0 67.7 78.1 74.3

AF V4 (27 — 90) 80.6 72.4 73.8 65.3 76.7 72.8

ST V5 (14 — 90) 79.7 74.7 79.2 75.2 82.1 77.8

All V1 & V5 (6 — 104) — — — — 53.6 52.0

Table 5.3: Result of the classification.

From Table 5.3 it can be observed that the majority of the best accuracies (noted in
bold), are in the case where temporal selection was used in addition to spatial filtering.
Furthermore, better test accuracy is observed for conduction disturbances (1dAVb, RBBB,
and LBBB) compared to rhythm disorders (AF, SB, and ST) where the difference in
accuracy is about 10% to 20%. This difference in results was expected as conduction
disturbances alter the shape of the sinus rhythm, and this information could be retrieved
by our model. However, as underlined above in Remark 1 since rhythm disorders affect
mainly the heart rate, that important information that was lost during the creation of the
windows, and therefore could not be extracted by our model, was not added. However, we
are surprised to see that the model has performed quite well, with minimal information
(without using the information that the cardiologist rely on, i.e. cardiac frequency).
Moreover, without any changes except by taking a wider window in “1dAVb∗”, which
includes the PR interval (to recall, an important factor for the “1dAVb” condition), an
improvement in test accuracy of around 6% can be observed compared to the case with
shorter windows.

The results of all leads that showed visual evidence are shown in Appendix 6.2, to-
gether with SDF visualisations of all leads. These results have not been included here due
to space limitations.

6 To avoid saying for example between −0.015 and 0.01 we say instead (6 — 84).
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It is important to recall that our aim was to separate a single condition from a healthy
condition, so the reference category that was subtracted for the visualisation of the SDFs
was the healthy category from the validation set. If our aim is to build a classifier that
works across all categories, we can and should incorporate specific zones (also identified
visually) that not only separate each disease from healthy but also distinguish between
different diseases. For instance, in Figure 5.18 (lead V5), it is challenging to differentiate
between the SDFs of the abnormalities AF and 1dAVb. The information that needs to
be added in this case is an information that allows for a clear distinction between these
two categories. To address this, as we previously did, we can focus on the AF category
and see where it is most distinguishable from 1dAVb (see Figure 5.19) and then use this
information in a more complex classifier.
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Figure 5.19: Visualisation of the SDF while the “AF” category is the focus category.

In the case where all conditions are considered at once, we believe that it is possible
to improve the results of the method by: (1) adding cardiac frequency information to
improve the separability of the rhythm disorders individually, and (2) using a cascade of
classifiers that target specific diseases and separate them from the other conditions. This
way is more appropriate and allows the right features to be used by the right classifier,
so that the classification features, for example classification of “RBBB” and “LBBB”
conditions, are not contaminated with other information that could lower the accuracy of
that classifier. In addition, the appropriate information can be added for the appropriate
classifier (for example, if we want to separate “AF” and “1dAVb”, we can add the SDFs
present in lead DII illustrated in Figure 5.19 with the appropriate time selection). A
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schematic and possible proposal for this approach is shown in Figure 5.20. The values
used are only a suggestion. Each classifier will have the task of classifying certain classes
only, based on a specific lead and on the most appropriate temporal selection for the
classes concerned.

Entire dataset

RBBB vs LBBB vs REST

RBBB LBBB
HEALTHY vs (SB & ST)

vs (AF & 1dAVb)

SB vs ST AF vs 1dAVb

ST AF 1dAVbSB

Healthy

Classifier 1
lead: V1

selection: (6, 104)

Classifier 2
lead: V4, V5 

selection: (8, 90)

Classifier 3
lead: DII

selection: (38, 42)

Classifier 4
lead: V5

selection: (14, 90)

Figure 5.20: Cascade of classifiers.
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5.4 Conclusion & perspectives

In this Chapter, we have seen that cardiovascular diseases are the leading cause of
death worldwide and that the ECG is a quick, easy-to-access, inexpensive tool that
provides valuable information on the cardiac condition of patients. The interpretation of
these ECGs is complex and requires a high level of expertise (cardiologist). This level
of expertise is not easily accessible in low and middle-income countries, where 75% of
cardiovascular-related deaths occur (according to the World Health Organization). In
addition to data availability, this helped and guided the emergence of automatic diagnosis
methods for ECG classification.

Two families of cardiac abnormalities have been covered: rhythm disorders and con-
duction disturbances for a total of six abnormalities. Each abnormality has been detailed,
with its possible causes, and how to identify it on an ECG. Important notions in the world
of cardiology have been addressed, such as sinus rhythm and intervals, in addition to the
heart conduction system that produces sinus rhythm. The principle of ECG recording
was briefly discussed, with emphasis on the positioning of the 12-leads used to provide
different angles of view on the heart (horizontally and vertically).

The methodology presented in Chapter 1 was tested on a publicly available dataset
containing 348000 12-lead ECG recordings. The pre-processing we applied to these data
is minimal, however, for simplification purposes we vertically summed (as for ERPs) the
sinus rhythms of the same channel. This proved to be problematic in this context, as the
information about the heart rate is lost which is known to be detrimental to the diagnosis
of rhythm disorders.

For the generated SDFs, even though a value of w = 0.5 was set to give equal im-
portance to the free and forced regime, the model by itself used only the U component
(forced regime) for the fit of Y (as the x0 was not solicited). The procedure to set the
number of modes m and the value of αf has proven to be working quite well. The sparsity
level variation was not needed for this application, as ECG are not very noisy compared
to EEG, thus, a perfect fit is preferable in order to capture as much information as possible.

An intriguing pattern (curves) appeared on the visual of the active modes. This pattern
motivated us to visualise the SDFs across all categories to determine whether there was any
valuable information emerging that could separate all the categories. Adding together the
SDFs of the subjects belonging to the same category revealed very noticeable differences
for the RBBB and LBBB categories, but only subtle differences were observed for the
other classes. To make these observed differences more apparent, to each sum of the SDFs
for each category, the value of the healthy validation SDFs has been subtracted, leaving a
kind of differential image that shows the difference between the SDFs for each category
and those of the healthy.

For each category, the SDFs where this difference is the most remarkable were selected.
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These selected SDFs were used in an AdaBoost classifier after being filtered with a gaussian
spatial filter. The results obtained are preliminary and can be improved. A test accuracy
of approximately 75% was obtained for each of the three abnormalities of rhythm disorders
(AF, SB, and ST). The test accuracy obtained for the conduction disturbances (1dAVb,
LBBB, and RBBB) was approximately 10% to 20% higher than that of the rhythm
disorders (between 89% and 95%). This difference in results was expected as conduction
disturbances alter the shape of the sinus rhythm, and this information could be retrieved
by our model. However, since rhythm disorders affect mainly the heart rate, and as
underlined in Remark 1, that important information was lost during the creation of the
signal windows which explains this low accuracy. The testing accuracy obtained using all
the categories at once is in the order of 52%. We believe that this is due to the fact that:
(1) the information necessary and important for the classification of rhythm disorders has
not been included, which considerably reduces the accuracy. (2) the SDF information that
was selected was designed to separate a single abnormality vs healthy, however, specific
SDFs that not only separate each disease from healthy but also distinguish between
different diseases must be included.

Perspective

An important perspective is already presented at the end of Section 5.3.3, which
consists of using a cascade of classifiers, each of which has a specific classification task.
As a consequence, the features that are relevant to the specific task are used only for
that classifier and therefore do not contaminate the other classifiers with unnecessary
information. Moreover, the information needed to classify rhythm disorders such as the
RR interval, and heart rate should be included in the classification. It is important
to remember that this information is already available following the use of the algo-
rithm that locates the R-peaks. The fact of using all the dataset and not just a sub-part
of it is a good way of adding information and improving the classification and its robustness.

Another approach that we consider interesting to study is the characterisation of the
curves obtained during the generation of the SDFs (such as the one illustrated in Figure
5.14). These curves could be characterised by just two or three coefficients, and it could be
that these coefficients are the new bio-markers that allow the six conditions to be separated.

A more in-depth study of the features that can be derived from the visuals produced
by the SDFs is a possible and interesting option (like we did in Chapters 3 and 4).



Conclusion

In this thesis, a new feature generation methodology for time series has been proposed.
The fundamental concept of the method consists of parsimoniously decomposing the signal
into dynamical modes that can be activated and/or deactivated at the appropriate time
with the appropriate amplitude. The excitations applied to these modes to fit the signal
of interest, will then be used as features. Inspired by brain function, the method remains
generic and versatile as it can be applied to a wide range of time series. The features gener-
ated, which we have named Sparse Dynamical Features (SDF), provide a new point of view
on the data, which gives access to informative features that are faithful to brain functioning.

The versatility of the method comes not only from its design, but also from the various
parameters that offer a wide range of options. One important parameter used to manage
the level of sparsity of the solutions produced is “α”. This parameter allows our model
to fit the signal of interest tightly capturing all the information and noise as well, or
not fitting tightly the signal of interest with the risk of not picking up the important
information. This parameter has proved very useful in the case of high-noise signals such
as EEG.

Another useful parameter is the weighting parameter “w”, which is used to favour/guide
the choice of modes that are used by the model and whether the model puts more emphasis
on the free or the forced regime. It is important to note that this weighting only favours
the regime used, however, the most important decision lies in the optimisation, so if there
is no free response in the signal, as in the case of ECG applications, the model will by
itself only use the forced response.

The last important parameter is the number of modes “m” contained in the system.
Once the frequency support used in our model matches the frequency support of the
signal (the same range), a question arises: what should be the frequency resolution of
our model? The parameter m can be used to change the frequency resolution of the
model and therefore, by its design, the model’s fitting capabilities. There is a trade-off
between model complexity and fit capacity, and this parameter is used to fine-tune this
trade-off. With regard to the frequency distribution, we have found that a linearly spaced
distribution is the most effective for the SDF generation. With regard to the frequency
distribution, we have found that a linearly spaced distribution is the most effective for
the SDF generation.
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For all the parameters mentioned above, their setting is procedural in order to reduce the ef-
fect of human subjectivity on the one hand, and on the other hand, makes the method more
explicable and repeatable compared to purely algorithmic (heuristic) selection methods.

It is important to highlight that the computation of a sort of Power Spectral Density (PSD)
based on the generated SDFs resembles the PSD (conventional one) of the signal of interest.

The methodology we have proposed has been tested on three applications, producing
encouraging results while using very few features (one or two for brain diseases) and
relatively simple classifiers (linear). It is important to remember that the aim is not
to replace clinicians but rather to offer diagnostic aid tools, as we are aware of the gap
between a clinical application that works and tests that have been carried out on databases,
even if they contain real signals. The applications studied encompass diagnostic scenarios
related to: (1) Parkinson’s Disease, (2) Schizophrenia, and (3) six Cardiac Abnormalities.
For all three applications, the data is publicly available and for repeatability and trans-
parency purposes, our source code is publicly available (with guides to repeat the findings).

In the literature on the first two applications (i.e. PD and SZ), data leakage problems
have often been encountered. These problems are well known in the machine learning
community and are: (1) group leakage (where correlated data is present in both the
training and test set), and (2) optimisation of hyper-parameters and even parameters on
the test set (absence of a validation set). In addition, we noted a lack of studies of the
statistical significance of the findings and often this is in problematic cases such as being
subject to the curse of dimensionality where the number of features used is relatively high
for the few number of data instances.

It is important to note that our aim was to obtain good results without undermining
their significance. For this reason, various validity tests were performed in addition to the
simplicity and explainability of the findings.

The possibility of making a temporal and/or frequency selection of the SDFs generated,
which in turn can be used directly or combined with a feature extraction layer, makes
it possible to reinforce the significance of the results by incorporating different prior
knowledge established in the studied domain. Moreover, once feature selection/extraction
has been performed, simple classifiers can be used for classification encouraging the
explicability of the results. Moreover, using a few number of features reinforces the
robustness of the classifier to the data quantity, as the model would perform just as
well if only half of the data was used. To further strengthen the explanability, a fairly
intuitive way of visualising the SDFs in the form of an image is proposed where one
can see the activation and deactivation instants of each mode, their frequency, and their
amplitude. This visualization allows either to find areas of interest or to tailor the choice
of features to be extracted. In addition, we hope that this will enable new biomarkers to
be identified and perhaps shed light on the unknown biological reasons that cause the
different symptoms of the disease.
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The proposed methodology has been packaged as a library that can be easily used
by other researchers in other contexts. All the data used in this thesis are publicly
available through the links provided in the corresponding data sections within each
chapter addressing specific applications. Our codes employed in the three applications are
also publicly accessible via the following links, accompanied by a step-by-step guide to
reproduce the results:

• Parkinson’s Disease: https://github.com/HoussemMEG/SDF_PD

• Schizophrenia: https://github.com/HoussemMEG/Schizophrenia-Detection

• Various Cardiac abnormalities: https://github.com/HoussemMEG/ECG

Perspectives

It is important to note that the perspectives set out here only concern the methodology.
The perspectives concerning the applications have been covered in their corresponding
chapters.

• It would be interesting to evaluate the performance of the method in a task that
involves only separating the forced regime and the free regime (very used in brain-
computer interfaces).

• We have noticed that the methodology often suffers in the case where the signal of
interest is long (L is large). One should think of ways of slicing the signal, generating
the SDFs on each portion, and then reassembling the generated SDFs in a coherent
manner.

• We find it very interesting to try out a new functional basis in the model, which
would be more suitable for the problem being addressed (in our case the functional
basis used is the sinusoidal one).

• Another interesting possibility for EEGs is, for example, to use the sinusoidal basis
in the model (as we have done), in addition to which we can add the dynamical
models of eye blinks, and cardiac rhythm, which are known to be contaminants of
the EEG. It is possible to add weightings to the model to make it more sensitive or
less sensitive to pick up this kind of noise. Subsequently, to the SDFs generation,
the contribution of these “unwanted” signals can be removed, leaving only useful
information. This approach may be a substitute for the ICA algorithm that was
needed for the EEG signals, offering an end-to-end approach.

• Adding other information that is useful in addition to SDFs during classification
can be a good proposal.
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Appendix

6.1 Appendix A: Schizophrenia data cleaning

In this Appendix, we have grouped together the signals from several subjects in order
to compare them visually. We have taken the example of a subject with signals that do
not visibly contain a lot of noise, in order to compare it with subjects’ signals that are
noisy, and this, even after the various pre-processing operations that took place before
they were made available online.

The subjects numbered (5, 17, 23, 30, 33, 57, 78) have been removed from the database
only for the section where data cleaning was carried out.

It is important to note that the list of these subjects was established before the
experiment was carried out and before the first results were produced, in order to
guarantee total impartiality. It is also important to remember that all the signals from
the subjects presented in this Appendix have been correctly classified.
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6.2 Appendix B: Cardiac Abnormalities

Abnor-

mality
Lead

Temporal

selection

Accuracy (%)

no selection

no filtering

selection

no filtering

selection

filtering

no selection

filtering

learning test learning test learning test learning test

1dAVb

V3 (37, 79) 82.53 77.57 66.14 55.88 69.59 61.44 82.53 77.57

V4 (40, 84) 82.20 78.98 68.48 58.18 72.11 65.06 82.20 78.98

V5 (8, 90) 82.83 80.90 82.83 80.31 85.15 83.05 82.83 80.90

RBBB

V1 (39, 104) 94.25 93.13 94.25 92.47 96.08 94.31 94.25 93.13

V2 (18, 94) 87.47 83.16 87.57 82.57 90.69 86.12 87.47 83.16

V3 (20, 100) 83.29 76.81 83.92 77.99 87.82 82.20 83.29 76.81

V5 (26, 88) 83.81 80.43 83.84 81.39 88.68 83.90 83.81 80.43

LBBB

V1 (6, 84) 95.17 93.43 95.18 93.43 97.02 95.35 95.17 93.43

V2 (0, 84) 93.89 92.92 93.89 92.92 96.81 94.10 93.89 92.92

V3 (0, 85) 94.03 92.92 94.03 92.92 96.56 94.17 94.03 92.92

V4 (0, 85) 92.51 90.26 92.51 90.26 95.77 92.32 92.51 90.26

SB

V2 (27, 81) 74.59 68.09 74.51 69.20 77.78 71.64 74.59 68.09

V3 (15, 84) 76.31 70.09 75.61 68.69 79.48 71.86 76.31 70.09

V5 (20, 86) 75.32 68.39 75.03 67.65 78.07 74.30 75.32 68.39

AF

V2 (20, 84) 77.64 71.47 70.53 63.41 76.33 70.36 77.64 71.47

V3 (20, 84) 79.88 74.35 71.78 63.86 78.01 71.62 79.88 74.35

V4 (27, 90) 80.57 72.43 73.84 65.34 76.67 72.80 80.57 72.43

ST
V4 (17, 85) 79.89 74.58 79.33 73.69 82.49 77.61 79.89 74.58

V5 (14, 90) 79.66 74.72 79.23 75.24 82.12 77.75 79.66 74.72

Table 6.4: Result of the classification of all leads that showed visual evidence.

All the visualisation for the leads that were not illustrated previously in Chapter 5,
containing the averaged SDFs of all subject within the same category and where the SDFs
of healthy validation has been subtracted is shown in the following Figures.
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6.3 Appendix C: Effect of data leakage (example)

In this section we will take an example which demonstrates the effect of data leak-
age; precisely when correlated data is simultaneously contained in the training and test
set. To highlight the difference, the same experiment will be carried out for two cases:
one with data leakage and the other without. The example concerns the data seen in
Chapter 3 which concerns the diagnosis of Parkinson’s disease by using a one-dimensional
Convolutional Neural Network (1-D CNN). For this example, the data used are the EEG
data after being pre-processed and for the standard stimulus, as there are more trials for
this condition (and therefore more data), which is an important condition for this type of
network.

The CNN network will be given as an input a trial (a time window), however, un-
like in Chapter 3, here the trial is given in its entirety with its 60 channels. The network
will have to learn to differentiate between healthy and parkinsonians on the basis of these
signals. As there are around 140 stimuli for each patient, this gives us a total of 7000 data
instances for all the patients. (only the off-medication session has been considered).

The type of network used is the same as in [67], except that we selected the size of the
network and its architecture ourselves (the number of filters, the size of the filters, etc.).
The network used is illustrated in Figure 6.1, where we can observe that the network used
is much smaller than that used in [67].
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Figure 6.1: 1D-CNN architecture used.

For both cases, the same training parameters and procedure were used. The training,
evaluation and splitting of data into training and test were repeated 100 times to obtain
statistics given the randomness of the network and the splits. As an indication, the
training set corresponds to 90% of the signals and the remaining 10% constitutes the test
set.

The first scenario is when there is no data leakage. If attention is paid to ensuring
that signals from the same patient are not present in both the training and test sets, the
results shown in Figure 6.2 are obtained.

It can be observed that the training accuracy is around 100% and that the test accuracy
does not decrease over epochs. This shows that the model does not over-fit the training
data, and that the training was stopped at the right time. The final average test accuracy
was around 62%.

In the case of the presence of data leakage, in other words, the data instances were
shuffled directly and without taking into account that signals from the same patient should
not be found in the training and test sets, the obtained results are shown in Figure 6.3.

It can be observed that the training accuracy is practically the same as that of the
case without data leakage, which shows that the complexity of the data has not changed
and that the network has been able to learn in the same manner in both cases. However,
in terms of test accuracy, the final accuracy is around 98%, which is an increase of 36%
that is simply due to the fact that the same patient’s data can be found in both the
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Figure 6.2: Results without data-leakage with 95% confidence interval.
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Figure 6.3: Results with data-leakage with 95% confidence interval.

training and test sets. We hypothesise that this is due to the fact that the network is able
to recognise the patient’s signature because the network has a strong learning capability,
in addition to the fact that there is limited amount of data. The effect of this data leakage
is mitigated by the availability of more data.
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