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Khodja pour leur bienveillance, leur patience et leur disponibilité.
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Résumé

Cette thèse est consacrée à l’étude de trois problèmes issus de la théorie du contrôle des EDP.

Dans un premier temps, on étudie le comportement asymptotique de la solution du système de

von Kármán viscoélastique unidimensionnel avec retard. On montre que ce dernier est bien posé

dans un espace fonctionnel convenable en utilisant la méthode de Faedo-Galerkin. Pour établir

notre résultat de stabilité, on utilise la méthode de Lyapunov en construisant une fonctionnelle

adéquate.

Dans un deuxième temps, on étudie le problème de la contrôlabilité et de la stabilisation

par le bord pour l’équation des ondes unidimensionnelle dans un domaine non-cylindrique. Pour

la contrôlabilité, on utilise la méthode des caractéristiques pour construire l’unique solution du

problème. Nous sommes alors capables de donner l’expression explicite du contrôle pour lequel

le système atteint le point d’équilibre après un certain temps. De plus, on montre que ce temps

est optimal. Pour la stabilisation, nous fournissons une condition nécessaire et suffisante pour que

l’énergie du système décroisse à un taux prédéterminé. De plus, l’influence de la géométrie du

domaine et l’influence d’un amortisseur dépendant du temps sont clarifiées.

Dans un troisième temps, on étudie la contrôlabilité par le bord de deux équations d’ondes

couplées par un couplage d’ordre un avec coefficients qui dépendent de l’espace et du temps. On

fournie une condition nécessaire et suffisante pour la contrôlabilité exacte en haute fréquences dans

le cas général et pour la continuation unique dans le cas cascade.

Abstract

This thesis is devoted to the study of three problems related to the theory of control of PDE.

In a first time, we study the asymptotic behavior of the solution to the one-dimensional vis-

coelastic von Kármán system with delay. We prove that the latter system is well-posed in a suitable

functional space by using the Faedo-Galerkin method. To establish our stability result, we employ

the Lyapunov method by using a suitable candidate functional.

In a second time, we study the problem of boundary controllability and stabilization for the

one-dimensional wave equation in non-cylindrical domains. For the controllability, one uses the

characteristics method to build the unique solution. We will then be able to give the explicit

expression of the controls for which the system reaches the equilibrium point after a certain time.

Moreover, we show that this time is optimal. For the stabilization, we provide a necessary and

sufficient condition that guarantees the energy decay at any desired rate. In addition, the influences

of the domain geometry and time-dependent feedback are clarified.

In a third time, we study the boundary controllability of two coupled one-dimensional wave

equations with first-order coupling terms with coefficients depending on space and time. We give

a necessary and sufficient conditions for both exact controllability in high frequency in the general

case and for the unique continuation in the cascade case.
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Introduction
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Chapter 1

Aim of the thesis

This thesis is devoted to the study of some problems related to stability and controllability of one dimen-
sional hyperbolic systems.

In Chapter 3, we study the asymptotic behavior of the von Kármán system in presence of viscoelastic
damping mechanism and time delay. We use the Lyapunov method to prove stability for a large class of
kernels under natural assumptions.

In Chapter 4, we study controllability and stability of the one dimensional wave equation in non-
cylindrical domains (or domains with moving boundary). We investigate the controllability and the sta-
bility (with time varying feedback) properties under the effect of the moving boundary. By using the
characteristics method, we will be able to construct the unique solution and to give a full answer to both
questions.

In chapter 5, we study boundary controllability of two coupled wave equations with a first order coupling
terms depending on space and time. We give a necessary and sufficient conditions that guarantee both
controllability in high frequency for general coupling matrix and unique continuation in the cascade case.

In the current chapter, we will present briefly the main results in this work. Chapter 2 will be devoted
to the presentation of some general notions and tools that will be used later.

All the new results presented in this manuscript are take from [64], [90], and [14].

1.1 Stabilization of the delayed viscoelastic one dimensional von Kármán

system

The first problem consists in stabilizing the so called ”the delayed viscoelastic von Kármán system” given
by 




ρhDψtt + ψxxxx −
[
ψx(ηx +

1
2ψ

2
x)
]
x
− g ∗ ψxxxx = 0, in (0,∞)× (0, L),

ρhηtt − [ηx +
1
2(ψx)

2]x + α1ηt + α2ηt(t− τ) = 0, in (0,∞)× (0, L),
ηt(t− τ, x) = f0(t− τ, x), in (0, τ)× (0, L),
ψ = ψx = ηx = 0, in (0,∞)× {0, L},
ψ(0, x) = ψ0(x), ψt(0, x) = ψ1(x), in (0, L) ,
η(0, x) = η0(x), ηt(0, x) = η1(x), in (0, L) ,

(1.1)

where D = (I − h2

12
∂2

∂2
x
) and the interval (0, L) is the segment occupied by the beam. The unknowns

ψ := ψ(t, x), and η := η(t, x) represent, respectively, the vertical displacement, and the longitudinal
displacement at time t of the cross section located at x units from the endpoint x = 0. The positive
constants h and ρ represent respectively the thickness and the mass density per unit volume of the beam.
In System (1.1), α1ηt with α1 > 0, and g ∗ ψxxxx represent the frictional and the viscoelastic dampings
respectively. The time delay is given by α2ηt(t − τ), with α2, τ > 0. The notation (g ∗ f)(·) denotes the
usual convolution product
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(g ∗ f)(t) =
∫ t

0
g(t− s)f(s)ds.

System (1.1) has been studied in [15] by F. D. Araruna, P. B. E. Silva and E. Zuazua which appeared
as a singular limit of the nonlinear one dimensional Mindlin-Timoshenko system when the modulus of
elasticity in shear tends to infinity. For the sake of stabilizing the resultant system, the authors used
two damping mechanisms to the equation satisfied by the vertical displacement component ψ of the form
ψt −ψtxx and a damping mechanism α1ηt to the equation satisfied by the longitudinal displacement. As a
consequence, they obtained an exponential stability result.

Our goal is to study the same system by replacing the two dampings acting on the first equation by a
viscoelastic one. Furthermore, it is interesting to add a delay term to the second component to investigate
how it effects the asymptotic behavior of the solution since it is well known that it may play a role of
anti-damping (see [101]). Note that the presence of the viscoelastic damping g ∗ ψxxxx with the frictional
one α1ηt does not entail necessarily stronger dissipation unless the kernel g decays with a suitable rate,
even for one single equation (See [52] for more details).

To state our result, we assume that:
A1) The kernel and the constants α1 and α2 are such that:

g ∈ L1(R+) ∩ C2(R+) with g(0) > 0,

l = 1−
∫ ∞

0
g(s)ds > 0,

α1 > α2.

A2) There exists a C
1-function H : (0,∞) −→ (0,∞) which is either linear or an increasing and strictly

convex C2-function on [0, r) (r ≤ g(0)) with H(0) = H ′(0) = 0), such that

g′(t) ≤ −ζ(t)H(g(t)), ∀t ≥ 0,

where ζ is a positive non-increasing differentiable function.
We let H1

∗ (0, 1) be the space

H1
∗ (0, 1) =

{
v ∈ H1 (0, 1) ,

∫ L

0
v(x)dx = 0

}
.

Let us begin by a well-posedness result:

Theorem 1 Assume that the initial datum satisfy

(ψ0, ψ1) ∈
[
H2

0 (I) ∩H3 (0, L)
]
×H2

0 (0, L) ,

(η0, η1) ∈
[
H2 (0, L) ∩H1

∗ (0, L)
]
×H1

∗ (0, L) ,

(x, p) 7→ f0(−τp, x) ∈ H1(0, 1;H1
∗ (0, L)),

with the compatibility condition f(., 0) = η1. Moreover, assume that the Hypotheses (A1) , (A2) hold. Then
System (1.1) admits a unique weak solution

(ψ, ψt , ψtt) ∈ L∞
loc

(
0,∞;

[
H2

0 (0, L)
]2 ×H1

0 (0, L)
)
,

(η, ηt , ηtt) ∈ L∞
loc

(
−τ,∞;

[
H1

∗ (0, L)
]2 × L2 (0, L)

)
.

5



The previous result is proved in Subsection 3.2 by using the Faedo-Galerkin method.
Next, define the energy functional E(·) associated with System (1.1)

E(t) =
1

2
ρh ‖ψt (t)‖2 +

ρh3

12
‖ψtx (t)‖2 +

1

2

(
1−

∫ t

0
g(s)ds

)
‖ψxx (t)‖2

+ρh ‖ηt (t)‖2 +
∥∥∥∥ηx (t) +

1

2
(ψx)

2 (t)

∥∥∥∥
2

+

∫ t

0
g(t− s) ‖ψxx(t)− ψxx(s)‖2 ds+

∫ t

t−τ

‖ηt(s)‖2 ds,

The main stability result for System (1.1) is the following:

Theorem 2 Assume that (A1), (A2) hold. Then for any solution to (1.1), there exists two positive
constants k1 ≤ 1 and k2 such that the energy functional E(·) satisfies

E(t) ≤ k2H
−1
1

(
k1

∫ t

g−1(r)
ζ(s)ds

)
, ∀t ≥ 0. (1.2)

where

H1(t) =

∫ r

t

1

sH ′(s)
ds,

and, H1 is a decreasing convex function on (0, r], with lim
t−→0

H1(t) = +∞.

The above result is proved using the Lyapunov method. It consists of building a suitable functional
equivalent to the energy E . For more details, see Section 3.3.

Here, we make several observations:

• By (1.2), if
∫∞
0 ζ(s)ds = +∞ the solution decays to zero when t→ ∞.

• The decay rate of the energy E depends on g, ζ and the function H.We can achieve any desired decay
rate by a suitable choice of these functions (for some examples, see [96]). Moreover, the decay rate
of the solution to System (1.1) is optimal in the sense that it is consistent with the decay rate of the
kernel. Indeed, by assumption (A2) we have:

g′(t) ≤ −ζ(t)H(g(t)), ∀t ≥ 0,

therefore, ∫ t

g−1(r)

−g′(s)
H(g(s))

ds =

∫ r

g(t)

s

H(s)
ds ≥

∫ t

g−1(r)
ζ(s)ds.

Define H0(t) =
∫ r

t
s

H(s)ds, which is decreasing and convex on (0, r] with H0(s) −→
s→0

+∞ and

H0(g(t)) ≥
∫ t

g−1(r)
ζ(s)ds, t ≥ g−1(r),

which leads to

g(t) ≤ H−1
0

(∫ t

g−1(r)
ζ(s)ds

)
, t ≥ g−1(r).

Also, by the properties of H0, H1 and H, the following estimate holds

H1(t) =

∫ r

t

1

sH ′(s)
ds ≤

∫ r

t

1

H(s)
ds = H0(t) ⇒ H−1

1 (t) ≤ H−1
0 (t), t ≥ r. (1.3)

This shows that the decay rate of E cannot be weaker than the decay rate of the kernel g.
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• Assume now that the equality g′(t) = −ζ(t)H(g(t)) holds. In addition, assume that −ζ ′/ζ is a
non-increasing C1 function for t large. Then there exist two positive constants k1, k2 such that:

E(t) ≤ k2g(k1t). (1.4)

To see this, we define the function H̄(t) = ζ(g−1(t))H(t). By computing the derivative of H̄ we
obtain

H̄ ′(t) =
ζ ′(g−1(t))

g′(g−1(t))
H(t) + ζ(g−1(t))H ′(t) =

ζ ′(g−1(t))

−ζ(g−1(t))H(t)
H(t) + ζ(g−1(t))H ′(t),

= −ζ
′

ζ
(g−1(t)) + ζ(g−1(t))H ′(t).

From the properties of g, ξ, and H, one can easily see that H̄(t) is increasing and strictly convex on
(0, r] and g′(t) = −H̄(g(t)). But, by (1.3) we have:

g(t) = H̄−1
0

(∫ t

g−1(r)
ds

)
= H̄−1

0 (t− g−1(r))

⇒ H̄−1
0 (t) = g(t+ g−1(r)),

⇒ H̄−1
1 (t) ≤ g(t+ g−1(r)).

Therefore, by (1.2) we obtain:

E(t) ≤ k2H̄
−1
1 (t)

(
k1

∫ t

g−1(r)
1ds

)
= k2H̄

−1
1 (k1t− k1g

−1(r)),

≤ k2g(k1t+ [1− k1]g
−1(r)) ≤ k2g(k1t),

where we have used the fact that [1 − k1] ≥ 0 and g is decreasing. The equality case is interesting
because it may sometimes be used even if H is not explicitly known. To illustrate this, if g is given
as a decreasing function satisfying (A1) and H is implicitly defined by H(t) = −g′(g−1(t)), which
means g′(t) = −H(g(t)). Then if −g′′/g′ is positive and non-increasing, it follows that H(·) satisfies
hypothesis (A2) which leads to the following estimate

E(t) ≤ k2g(k1t).

For some illustrations, we refer to [96].

1.2 Boundary controllability and boundary time-varying feedback sta-

bilization of the 1−D wave equation in non-cylindrical domains

The second part of this thesis is devoted to the study of boundary controllability and boundary stabilization
of the one-dimensional wave equation is non-cylindrical domains. Consider the systems





ytt(t, x) = yxx(t, x), in Q,
y(t, α(t)) = 1

2u(t), y(t, β(t)) = 0, in (0,∞),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

(1.5)

and 



ytt(t, x) = yxx(t, x), in Q,
yt(t, α(t)) = f(t)yx(t, α(t)), y(t, β(t)) = 0, in (0,∞),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1).

(1.6)
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where the set Q is defined by

Q =
{
(t, x) ∈ R2, x ∈ (α(t), β(t)), α(t) < β(t), t ∈ (0,∞)

}
,

with α(0) = 0 and β(0) = 1.

Define spaces family
[
H1

(β(t))(α(t), β(t))
]
t≥0

by:

H1
(β(t))(α(t), β(t)) =

{
h ∈ H1(α(t), β(t)), h(β(t)) = 0, t ≥ 0

}
.

In the sequel, we use the notation z± to denote the quantities

z±(t) = t± z(t) (1.7)

for any real function function z defined on (0,∞).
Finally, assume that the boundary functions satisfy

α(t) < β(t), ∀t > 0, α, β ∈ C1(0,∞) , max
(∥∥α′

∥∥
L∞(R+)

,
∥∥β′
∥∥
L∞(R+)

)
< 1. (1.8)

Let us start by the controllability part.

1.2.1 Controllability result

The first result that will be presented in this subsection is an existence result:

Theorem 3 For any (y0, y1, u) ∈ H1
(1)(0, 1)×L2(0, 1)×H1

loc(0,∞), there exists a unique solution to System

(1.5) satisfying

y ∈ C
(
[0, t] ;H1

(β(t))(α(t), β(t))
)
∩ C1

(
[0, t] ;L2(α(t), β(t))

)
, t ≥ 0.

Now, we come to the controllability result of System (1.5).

Theorem 4 Let (y0, y1) ∈ H1
(1)(0, 1)×L2(0, 1). Assume that the boundary functions α and β satisfy (1.8).

System (1.5) is exactly controllable at time T > 0 if, and only if, T ≥ T ∗ = (α+)
−1 ◦ β+ ◦ (β−)

−1
(0).

Furthermore, if T = T ∗, there exists a unique control u ∈ H1(0, T ∗) steering the solution (y, yt) to System
(1.5) to the equilibrium point (0, 0) given by

u(t) =





∫ t

0 y1 (α
+(s)) ds+ y0 (α

+(t)) , if t ∈
[
0, (α+)

−1
(1)
)
,

y0

(
−β− ◦ (β+)−1 ◦ α+(t)

)

+
∫ (α+)

−1
(1)

0 y1 (α
+(s)) ds

−
∫ t

(α+)−1(1) y1

(
−β− ◦ (β+)−1 ◦ α+(s)

)
ds,

if t ∈
[
(α+)

−1
(1), T ∗

)
.

(1.9)

Controllability of the wave equation in non-cylindrical domains has been investigated first by C. Bardos
and G. Chen in [20]. They proved exact controllability with a distributed control acting on the whole
domain under some geometrical conditions. Since then, many results have been established especially
in the one-dimensional case by using several methods: domain transformation [38, 89, 9], multipliers
technique [39, 123], non-harmonic analysis [60, 119], d’Alembert’s formula [58], and Carleman estimate for
the multidimensional wave equation [120]. In all these works an observability inequality has been proved.
The technique used in our work is the characteristics method as it has been proposed in [117] in more
general context. For more details, see Section 4.
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1.2.2 Stability result

As previously, we start by an existence result:

Theorem 5 For any (y0, y1, f) ∈ H1
(1)(0, 1)×L2(0, 1)×C([0,∞)). There exists a unique solution to System

(1.6) satisfying the regularity

y ∈ C
(
[0, t] ;H1

(β(t))(α(t), β(t))
)
∩ C1

(
[0, t] ;L2(α(t), β(t))

)
, t ≥ 0.

The proof of Theorem 3 and Theorem 5 will be a consequence of the construction of the explicit solution
that will be done in Section 4.2.

Define the energy functional E associated with System (1.6) by

E(t) : = ‖(y, yt)‖2H1
(β(t))

(α(t),β(t))×L2(α(t),β(t)) (1.10)

=

∫ β(t)

α(t)

(
y2t (t, x) + y2x(t, x)

)
dx, t ≥ 0.

A simple computation shows that E satisfies:

dE

dt
(t) = β′(t)y2x(t, β(t))−

(
α′(t) + α′(t)f(t) + 2f(t)

)
y2x(t, α(t)), t ≥ 0.

Observe that the sign of
dE

dt
(t) depends the boundary functions which are not supposed of constant sign.

The situation is more simple if Q is cylindrical (α ≡ 0, β ≡ 1) and we obtain in this case:

d

dt
E(t) = −2f(t)y2x(t, 0), t ≥ 0.

It suffices to choose f positive for large times. Though, even with such a choice, determining the optimal
decay rate of the energy remains tricky. To overcome this problem, we have studied the solution to System
(1.6) along the characteristic lines which provides an explicit formula of the solution.

To set the stability result, we need to fix some notations. Introduce the function φ := φ(α, β) defined
by

φ := α− ◦
(
α+
)−1 ◦ β+ ◦

(
β−
)−1

.

By assumption (1.8) and notation (1.7), the function φ : [−1,∞) → [α− ◦ (α+)
−1

(1),∞) is well defined
and increasing function as composition of increasing functions. Let (ψn)n≥0 be a sequence of functions
defined by:

ψn : [0, φ(0)) → [0,∞)

τ 7→ ψn(τ) =

n∏

i=0

∣∣∣F
((
α−
)−1 ◦ φ[i](τ)

)∣∣∣ ,

where F =
1− f

1 + f
. The notation φ[n] refers to

φ[n] = φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

,

with the convention φ[0] = I.
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Theorem 6 (General decay) Let (y0, y1) ∈ H1
(1)(0, 1)×L2(0, 1). Assume that the boundary functions α

and β satisfy (1.8). In addition, assume that

φ(τ) < · · · < φ[n](τ) < φ[n+1](τ) −→
n→∞

∞, ∀τ ∈ [0, φ(0)).

Then:
E(t) −→

t→∞
0 ⇔

(
ψn(τ) −→

n→∞
0, ∀τ ∈ [0, φ(0))

)
.

Further, if there exists g ∈ C(R, (0,∞)) and positive constant C > 0 such that

ψn(τ) ∼
n→∞

Cg
(
φ[n](τ)

)
, ∀τ ∈ [0, φ(0)),

then E decays like g, i.e.
E(t) ≤ Cg(t)E(0), t ≥ 0. (1.11)

The following result gives a characterization of exponential stabilization of System (1.6):

Theorem 7 (Exponential decay) Under the assumptions of Theorem 6, the energy E decays exponen-
tially to zero with growth bound ω < 0, i.e. there exists M ≥ 1 such that

E(t) ≤MetωE(0), ∀t ≥ 0,

if, and only if:

sup
τ∈[0,φ(0))

lim
n→∞

lnψn(τ)

φ[n](τ)
= ω.

Another result for System (1.6) in connection with the notion of finite time stability is the following:

Theorem 8 (Extinction in finite time) Under the assumptions of Theorem 6, the energy E vanishes
in finite time T if, and only if, f ≡ 1 and T ≥ T ∗ = (α+)

−1 ◦ β+ ◦ (β−)−1
(0), i.e.

E(T ) ≡ 0, ∀T ≥ T ∗ =
(
α+
)−1 ◦ β+ ◦

(
β−
)−1

(0).

One of the advantages with working with non-autonomous damping is that we are able to stabilize
System (1.6) with any decay rate by a suitable choice of f . One of the main features of our result is that
we can do the converse: the function f can be chosen, starting from a desired decay rate, using the formula

g(α−(t))− g(φ ◦ α−(t))

g(α−(t)) + g(φ ◦ α−(t))
= fg(t).

In particular, if Q is cylindrical, we obtain

g(t)− g(t+ 2)

g(t) + g(t+ 2)
= fg(t).

When moreover f is constant, the stability problem (1.6) has been studied in [116] on cylindrical domains
by using a spectral approach. It has been shown that the eigenvectors of the underlying operator form

a Riesz basis in the space H1
(1)(0, 1) × L2(0, 1) with eigenvalues having 1

2 ln
∣∣∣1−f
1+f

∣∣∣ as real part. Therefore,

exponential decay occurs with growth bound 1
2 ln

∣∣∣1−f
1+f

∣∣∣. If the feedback function f depends on time, to

our knowledge the only existing result is due to P. Martinez and J. Vancostenoble for α ≡ 0, β ≡ 1 in [86,
Section 3.2]. They assumed that there exists a non-increasing function σ : R+ → R+ satisfying

σ(t) ≤ f(t) ≤ 1

σ(t)
, t ≥ 0, with

∫ ∞

0
σ(s)ds = +∞, (1.12)
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and proved the following estimate:

E(t) ≤ E(0)e1−
∫ t

0 σ(s)ds, t ≥ 0. (1.13)

The energy estimate (1.13) is not optimal. For instance, it can be checked that with the choice f(t) =
t

2 + t
,

assumption (1.12) is satisfied for σ(t) = f(t) which yields an exponential decay by (1.13). However, with
this choice of f we can prove by Theorem 7 that the energy decays to zero faster than any exponential
function (see the fourth items of Example 54 for the computation).

A recent result has been obtained in non-cylindrical domain with one fixed end-point by K. Ammari
et al. in [8] where the boundary function is assumed 1-periodic. An exponential decay result has been
obtained for a particular class of feedback functions f.

Novelties of the work The novelties of this work are:

• The control function that steers the solution to System (1.5) to the equilibrium state is given explicitly
by (1.9). We can also find the exact formula of u at any time and for any target state in H1

(1)(0, 1)×
L2(0, 1) (see the proof of Theorem 4 (Proof 4.3.1)).

• The effect of time-varying feedbacks on the behavior of the solution is clarified and a necessary and
sufficient condition is provided for the stability of System (1.6).

• Any decay rate can be achieved on the contrary to the autonomous case where only exponential
decay rate is achievable. Furthermore, the decay rate is optimal.

• We can do the converse for System (1.6), the feedback function f can be chosen based on the desired
decay rate.

• The influence of the moving boundary on the asymptotic behavior of the solution to System (1.6) is
clarified (the boundary nature can increases or decreases the decay rate).

• Since our approach is based on the construction of the exact solutions, both of controllability and
stability results still hold in W 1,p

(β(t))(α(t), β(t)) × Lp(α(t), β(t)), 1 ≤ p < ∞, or in the space of
continuous function.

1.3 Boundary controllability of two coupled wave equations with space-

time first order coupling in 1−D

The third part of this thesis is devoted to the study of boundary controllability of the following system





ytt = yxx +M((ay)t + (by)x), in QT := (0, T )× (0, 1),
y(t, 0) = Bu(t), y(t, 1) = 0, in (0, T ),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

(1.14)

where y = (y1, y2)
t is a vector function and

M = (mij)1≤i,j≤2 ∈ L
(
R2
)
, B = (b1, b2)

t ∈ R2, a, b ∈ C1(QT ;R).

It is well-known (see for instance [130] and the references therein) that System (1.14) is well-posed in a
suitable functional framework. More precisely, we have:
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Proposition 9 Let T > 0. Suppose that:

(y0, y1, u) ∈ L2 (0, 1)2 ×H−1 (0, 1)2 × L2 (0, T ) .

Then there exists a unique weak solution y to System (1.14) such that

(y, yt) ∈ C
(
[0, T ] , L2 (0, 1)2 ×H−1 (0, 1)2

)
.

Moreover, there exists a constant C = C (T, a, b) > 0 such that:

‖y‖C([0,T ],L2(0,1)2×H−1(0,1)2) ≤ C
(
‖Bu‖L2(0,T )2 + ‖(y0, y1)‖L2(0,1)2×H−1(0,1)2

)
.

The adjoint system associated with (1.14) writes:




ϕtt = ϕxx +M∗(aTϕt − bTϕx), in (0, T )× (0, 1),
ϕ|x=0,1 = 0, in (0, T ),

(ϕ,ϕt)|t=0 = (ϕ0, ϕ1) ∈ H1
0 (0, 1)

2 × L2 (0, 1)2 , in (0, 1),
(1.15)

where
aT (t, x) := a(T − t, x), bT (t, x) := b(T − t, x), (t, x) ∈ QT .

It is well-known that controllability of System (1.14) is linked to the observability of its adjoint system
(1.15) (see for instance [36, 129, 126]). Namely,

• System (1.14) is exactly controllable at time T > 0 if, and only if, there exists C = CT > 0 such that
for any (ϕ0, ϕ1) ∈ H1

0 (0, 1)
2×L2 (0, 1)2 , the associated solution ϕ to (1.15) satisfies the observability

inequality :

‖(ϕ0, ϕ1)‖2H1
0 (0,1)

2×L2(0,1)2
≤ C

∫ T

0
|B∗ϕx (t, 0)|2 dt. (1.16)

In this case, the adjoint system is said exactly observable.

• System (1.14) is weakly exactly controllable at time T > 0 if, and only if, there exist C = CT > 0 and
a compact operator N : H1

0 (0, 1)
2 × L2 (0, 1)2 → L2(0, T ) such that for any (ϕ0, ϕ1) ∈ H1

0 (0, 1)
2 ×

L2 (0, 1)2 , the associated solution ϕ to (1.15) satisfies the weak observability inequality :

‖(ϕ0, ϕ1)‖2H1
0 (0,1)

2×L2(0,1)2
≤ C

∫ T

0
|B∗ϕx (t, 0)|2 dt+ C ‖N (ϕ0, ϕ1)‖2L2(0,T ) . (1.17)

In this case, the adjoint system is said weakly observable.

• System (1.14) is approximately controllable at time T > 0 if, and only if, for any (ϕ0, ϕ1) ∈
H1

0 (0, 1)
2 × L2 (0, 1)2, the associated solution ϕ to (1.15) satisfies the unique continuation property :

(B∗ϕx (t, 0) = 0, t ∈ (0, T )) ⇒ ϕ ≡ 0 in QT . (1.18)

Actually, weak observability inequality (1.17) means that the space of the target states is finite co-
dimensional. In addition, if the unique continuation property (1.18) holds, the space of the target states
can be extended to the whole energy space H1

0 (0, 1)
2 × L2 (0, 1)2 (see [125]).

Introduce the function φ : [2,∞) → R defined by

φ (t) =
1

2

∫ t−1

t−2
(aT + bT ) (τ, τ − (t− 2))dτ +

1

2

∫ t

t−1
(aT − bT ) (τ, t− τ)dτ,

and denote by λ1, λ2 the eigenvalues of M∗ if it is diagonalizable and by µ the multiple eigenvalue of M∗

if it is not. Also, we denote by χ(a,b) the characteristic function of the interval (a, b), namely, if a < b,
χ(a,b)(x) = 1 when x ∈ (a, b) and 0 otherwise.
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1.3.1 Weak observability

We start by a negative controllability result:

Theorem 10 If T < 4, the weak observability inequality (1.17) doesn’t hold. More precisely, there is an
infinite dimensional space of unreachable target states.

Now, we present a positive controllability results.

Theorem 11 Let n ≥ 2 be an integer.

• If 2n ≤ T < 2n + 1. Then the weak observability (1.17) holds if, and only if the following three
conditions are satisfied:

1. rank [B |MB] = 2.

2. For any x ∈ [0, 1] , there exists 1 ≤ k ≤ n− 1 such that:





φ (2k + 2− x) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k + 2− x) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

3. For any x ∈ [0, T − 2n) and x∗ ∈ [T − 2n, 1), there exist 1 ≤ k ≤ n and 1 ≤ k∗ ≤ n − 1
respectively such that:





φ (x+ 2k) 6= 0, φ (x∗ + 2k∗) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (x+ 2k) , φ (x∗ + 2k∗) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

• If 2n+ 1 ≤ T < 2n+ 2. Then the weak observability (1.17) holds if, and only if the following three
conditions are satisfied:

1. rank [B |MB] = 2.

2. For any x ∈ [2n+ 2− T, 1) and x∗ ∈ [0, 2n+ 2− T ), there exist 1 ≤ k ≤ n and 1 ≤ k∗ ≤ n− 1
respectively such that:





φ (2k + 2− x) 6= 0, φ (2k∗ + 2− x∗) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k + 2− x) , φ (2k∗ + 2− x∗) /∈ π
ℑ(λ1)

Z, if λ1, λ2∈ C\R.

3. For any x ∈ [0, 1], there exists 1 ≤ k ≤ n such that:





φ (x+ 2k) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (x+ 2k) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

1.3.2 Unique continuation

The constant case

Let us assume first that M is diagonalizable.
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Proposition 12 Assume thatM∗ has 2 distinct eigenvalues µ1, µ2. Then, the unique continuation property
(1.18) holds true at time T ≥ 4 if, and only if

a2 (µ1 − µ2)
(
µ2ξ

2
n1

− µ1ξ
2
n2

)
6=
(
ξ2n1

− ξ2n2

)2
, ∀n1, n2 ∈ Z,

where ξni
= 1

4b
2µ2i + (n1π)

2 , i = 1, 2.

If M is not diagonalizable we have the following result:

Proposition 13 Assume that M∗ is not diagonalizable and let µ be its eigenvalue. Then, the unique
continuation property (1.18) holds true at time T ≥ 4 if, and only if

1

2
b2µ+ a 6= 0.

The cascade case

Assume now that M and B are given by

M =

(
0 1
0 0

)
, B =

(
0
1

)
.

Define the kernels Ki,j
n (·, ·) , 1 ≤ i, j ≤ 2, n ≥ 1, by

K22
n (s, x) =

1

4





(aT + bT ) (
4n+x+s

2 , x−s
2 ) + (aT − bT ) (

4n−2+x+s
2 , 2+s−x

2 ), if 0 ≤ s ≤ x,

(aT + bT ) (
4n−2+s+x

2 , x−s+2
2 ) + (aT − bT ) (

4n−4+s+x
2 , s−x

2 ), if x ≤ s ≤ 1,

K11
n (s, x) =

1

4





(aT + bT ) (
4n+2−x−s

2 , 2−x+s
2 ) + (aT − bT ) (

4n−x−s
2 , x−s

2 ), if 0 ≤ s ≤ x,

(aT + bT ) (
4n+4−x−s

2 , s−x
2 ) + (aT − bT ) (

4n+2−x−s
2 , 2+x−s

2 ) if x ≤ s ≤ 1,

K21
n (s, x) = −1

4
(aT + bT ) (

4n+ x− s

2
,
x+ s

2
)− 1

4
(aT − bT ) (

4n+ x− 2− s

2
,
2− s− x

2
), (s, x) ∈ (0, 1)2,

K12
n (s, x) = −1

4
(aT + bT ) (

4n+ 2− x+ s

2
,
2− x− s

2
)− 1

4
(aT − bT ) (

s+ 4n− x

2
,
s+ x

2
), (s, x) ∈ (0, 1)2,

and let Ki
n,k,l(·, ·), 1 ≤ i ≤ 2, n ≥ 2, k, l ≥ 1, be given by

K1
n,k,l(s, x) =





Kk,l(s, x), 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n, if x ∈ [0, T − 2n),

Kk,l(s, x), 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n− 1, if x ∈ [T − 2n, 1],

K2
n,k,l(s, x) =





Kk,l(s, x), 1 ≤ k ≤ n, 1 ≤ l ≤ n, if x ∈ [0, 2n+ 2− T ),

Kk,l(s, x), 1 ≤ k ≤ n+ 1, 1 ≤ l ≤ n, if x ∈ [2n+ 2− T, 1],

where

Ak,l(x) =

(
φ(2k + 2− x) 0

0 φ(2l + x)

)
, x ∈ [0, 1] , k, l ≥ 1,

Kk,l(s, x) =

(
K11

k (s, x) K12
k (s, x)

K21
l (s, x) K22

l (s, x)

)
, (s, x) ∈ [0, 1]2 , k, l ≥ 1,
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associated with the third kind Fredholm integral equations

Ak,l(x)

(
p−0 (x)
q−0 (x)

)
=

∫ 1

0
K1

n,k,l(s, x)

(
p−0 (s)
q−0 (s)

)
ds, (1.19)

Ak,l(x)

(
p−0 (x)
q−0 (x)

)
=

∫ 1

0
K2

n,k,l(s, x)

(
p−0 (s)
q−0 (s)

)
ds. (1.20)

Theorem 14 Let n ≥ 2 be an integer.

• If 2n ≤ T < 2n+1 : Then, the unique continuation property (1.18) holds true at time T if, and only
if, there exist k, l ≥ 1 such that the unique solution

(
p−0 , q

−
0

)
to Equation (1.19) is the null one.

• If 2n+ 1 ≤ T < 2n+ 2 : Then, the unique continuation property (1.18) holds true at time T if, and
only if, there exist k, l ≥ 1 such that the unique solution

(
p−0 , q

−
0

)
to Equation (1.20) is the null one.

Observe that the weak observability (1.17) holds (see Theorem 11) if, and only if the matrix Ak,l(·) is
invertible on [0, 1] for some k, l ≥ 1. However, if we make the latter assumption, we obtain a characterization
of the unique continuation problem (1.18).

Let us assume that:

• If 2n ≤ T < 2n+ 1 :

1. There exist 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [0, T − 2n). (1.21)

2. There exist 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n− 1, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [T − 2n, 1]. (1.22)

• If 2n+ 1 ≤ T < 2n+ 2 :

1. There exist 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [2n+ 2− T, 0). (1.23)

2. There exist 1 ≤ k ≤ n, 1 ≤ l ≤ n, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [2n+ 2− T, 1]. (1.24)

Under assumptions (1.21) and (1.22) (resp. (1.23) and (1.24)), Equations (1.19) and (1.20) write
(
p−0 (x)
q−0 (x)

)
=

∫ 1

0
A−1

k,l (x)K
i
n,k,l(s, x)

(
p−0 (s)
q−0 (s)

)
ds := Ki

k,l

(
p−0
q−0

)
(x), i = 1, 2,

which are a second kind Fredholm integral equations. The following corollary is a straightforward conse-
quence of the Fredholm alternative:

Corollary 15 Let n ≥ 2 be an integer.

• If 2n ≤ T < 2n+1 : Assume that (1.21) and (1.22) hold for some k, l ≥ 1. The unique continuation

property for (1.18) holds at time T if, and only if 1 /∈ σ
(
K1

k,l

)
.

• If 2n + 1 ≤ T < 2n + 2 : Assume that (1.23) and (1.24) hold for some k, l ≥ 1. The unique

continuation property for (1.18) holds at time T if, and only if 1 /∈ σ
(
K2

k,l

)
.

It is clear that solving such a system of a third kind of Fredholm integral equations (1.19) or (1.20)
is not an easy task. However, we made use of the particular form of the kernels Ki

n,k,l(·, ·), i = 1, 2, to
provide a class of coupling functions a and b for which unique continuations holds. See Subsection 5.4.3
for more details.
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Preceding results

Controllability of non-scalar hyperbolic systems has been intensively investigated in the recent pas years
by many authors. The aim of these researches was to understand how a system of several wave equations
(with less number of control than the states) behaves from a control point of view. So, the question that
should be asked for this kind of systems: what are the optimal conditions on the coupling operators (or
matrices), and the domains of both coupling functions and the control should satisfy so that such a system
is exactly approximately or controllable ?.

Give an answer to this question was the subject of many works. Controllability of two weakly-coupled
wave equations has been studied in [1, 2, 3]. In particular, in [3], the geometric condition appeared for
both supports of the coupling function and the control. Both distributed and boundary controllability
were considered. The authors considered the following control system





utt −∆u+ au+ pv = bf, in (0, T )× Ω,
vtt −∆u+ av + pu = 0, in (0, T )× Ω,
u = b∂f, v = 0, on (0, T )× ∂Ω,
(u, ut, v, vt)|x=0 = (u0, u1, v0, v1) , in Ω,

(1.25)

where Ω is regular open in Rn, the functions a, p, b, b∂ are real and smooth, and f is the control. Clearly,
System (1.25) is distributed (resp. boundary) control problem when b 6= 0 and b∂ = 0 (resp. b∂ 6= 0 and
b = 0). The following theorem is proved:

Theorem 16 (F. Alabau-Boussouira, M. Léautaud, 2013)) Assume that:

• The operator −∆+ a is coercive on H2(Ω) ∩H1
0 (Ω) for L

2-norm.

• p ≥ 0 on Ω and {p > 0} satisfies the (GCC).

• b ≥ 0 on Ω (resp. b∂ ≥ 0 on ∂Ω) and {b > 0} (resp. {b∂ > 0}) satisfies the (GCC) (resp. (GCC∂)).

• ‖p‖L∞(Ω) is small enough,

Then there exists T (resp. T ∗) such that distributed controllability (resp. boundary controllability) of
System (1.25) holds in the space

H1
0 (Ω)× L2(Ω)×H1

0 (Ω)×H2(Ω) ∩H1
0 (Ω),

(resp. L2(Ω)×H−1(Ω)×H1
0 (Ω)× L2(Ω)) at time T (resp. T ∗).

Note that exact controllability cannot be established in the natural energy space since the coupling
operator will be then a compact perturbation for the uncontrolled state.

In [46], it has been got rid of the smallness condition of the coupling function p. In addition, a sharp
estimate to the control time is provided for cascade system type on connected compact manifold M without
boundary (periodic boundary condition in one dimension). More precisely, the authors studied the system





utt −∆u+ pv = bf, in (0, T )×M,
vtt −∆u = 0, in (0, T )×M,
(u, ut, v, vt)|t=0 = (u0, u1, v0, v1) in M,

(1.26)

where p and b are smooth real functions and f is the control. The following result is proved:

Theorem 17 (B. Dehman, J. Le Rousseau and M. Léautaud) Assume that p ≥ 0 on Ω and both
sets {b 6= 0} and {p 6= 0} satisfy the (GCC). Then, System (1.26) in exactly controllable in the space

H1(M)× L2(M)×H2(M) ∩H1(M),

in sufficiently large time T .
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Likewise, it has been shown that more regularity is needed so that exact controllability holds for System
(1.26) with different speeds of propagation. In the same paper [46], the authors could provide an answer
to exact controllability question with space-time coupling coefficient with zero order coupling term in high
frequency. This last result does not require a sign assumption on the coupling coefficient p since the
latter condition is only required to cover the invisible target states in low frequency. We should note that
approximate controllability remains an open question when p depends on both space and time or if it
changes sign on Ω.

The first controllability result without sign assumption on the coupling function is proved in [24] for
boundary controllability problem of two coupled wave equations through velocity. More precisely, the
system 




ytt = yxx +A(x)yt, in (0, 1),×(0, T ),
y(t, 0) = Cu(t), y(t, 1) = 0, in (0, T ),
(y, yt)|t=0 = (y0, y1) , in (0, 1),

(1.27)

has been studied where

A =

(
0 a
0 0

)
∈W 1,∞(0, 1;M2×2(R)), C =

(
0
1

)
.

The authors proved the following result:

Theorem 18 (A. Bennour, F. Ammar Khodja and D. Teniou, 2017) System (1.27) is exactly con-

trollable in
[
L2(0, 1)×H−1(0, 1)

]2
at time T if, and only if

• T ≥ 4.

• ∫ 1

0
a(s) sin2(nπs)ds 6= 0, ∀n ≥ 0. (1.28)

• ∫ 1

0
a(s)ds 6= 0. (1.29)

Note that T = 4 is the natural time for boundary controllability of two coupled wave equations since
the time required for one equation is 2. Assumption (1.28) is to guarantee approximate controllability (in
low frequency) while assumption (1.29) concerns the high frequency part. Note that assumptions T ≥ 4
and (1.29) are necessary, otherwise, the space of the target states will be infinite co-dimensional.

Note that by a suitable change of variables (we set ∂ty2 = ỹ2), we deduce that the above result entails
that System (1.27) is exactly controllable with zero order coupling in the space

L2(0, 1)×H−1(0, 1)×H−1(0, 1)×H−2(0, 1).

In [81], a necessary and sufficient condition is given for distributed exact controllability of N multi-
dimensional zero-order coupled wave equations with constant coupling matrix. The authors studied the
following control system 




ytt = ∆y +Ay + 1ωBu, in (0, T )× Ω,
y = 0 in (0, T )× ∂Ω,
(y, yt)|t=0 = (y0, y1) in Ω,

(1.30)

where ω ⊂ Ω with Ω is an open of Rn with smooth boundary and A ∈ MN×N (R). Of course, the control
region must satisfies the (GCC), and like for parabolic systems (see [13]), the Kalman rank condition
showed up in a natural way. The theorem is stated as follows:
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Theorem 19 (T. Liard, P. Lissy, 2017) Assume that (ω, T ) satisfies the (GCC) at time T > 0. Sys-

tem (1.30) is exactly controllable in
[
H2N

(0) (Ω)×H2N−1
(0) (Ω)

]N
, N ≥ 1, at time T if, and only if

rank[B | AB | · · · | AN−1B] = N,

where
H2N

(0) (Ω) =
{
v ∈ H2N (Ω), v = ∆v = · · · = ∆N−1v = 0 on ∂Ω

}
, N ≥ 1.

The last result is just an application of the main theorem announced in [81] which deals with more
general systems.

The above result has been extended for space variable coupling matrix A = A(x) of cascade form by
M. Duprez and G. Olive In [48], i.e.

A =




a1,1 a1,2 a1,3 · · · a1,N
a2,1 a2,2 a2,3 · · · a2,N
0 a3,2 a3,3 · · · a3,N
...

...
. . . · · · ...

0 0 · · · aN,N−1 aN,N



. (1.31)

The authors showed that exact controllability holds in
[
H2N

(0) (Ω)×H2N−1
(0) (Ω)

]N
, N ≥ 1 if

supp ω ∩ ai,i−1 6= ∅, i ∈ {2, · · ·, N}, A ∈ C2(N−3)(ω,MN×N (R)).

Observe that in the last two results, the time of controllability of the whole system is the time required
for the controllability of a single wave equation. This is due to the non-empty intersection of the coupling
and the control domains. We refer to [46] for a sharp estimate of the control time when this intersection
is empty.

Concerning boundary controllability of zero order N -coupled wave equations, exact controllability has
been studied in [18] with one control force. More precisely, the following system





ytt = yxx +Ay, in (0, T )× (0, 1),
y(t, 0) = Cu(t), y(t, 1) = 0, in (0, T ),
(y, yt)|t=0 = (y0, y1), in (0, 1),

(1.32)

has been studied and the authors proved the following result:

Theorem 20 (S. A. Avdonin, J. Park, L. de Teresa, 2020) Let A ∈MN×N (R) and C = (0, ···, 0, 1)
is a vector in RN and u is a scalar control function. Let (λi)1≤i≤N be the eigenvalues of the matrix A (they

are not necessarily distinct), then System (1.32) is exactly controllable in L2(0, 1;RN )×H−1(0, 1;RN ) at
time T if and only if

• T ≥ 2πn.

•

rank[C | AC | · · · | AN−1C] = N. (1.33)

• λi − λj 6= (πk)2 − (πl)2 , i 6= j, k 6= l, 1 ≤ i, j ≤ N, k, l ∈ Z. (this last condition can be removed if A
has one eigenvalue of algebraic multiplicity N).
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Note that the last assumption guarantees only approximate controllability, it just means that there is
no multiple eigenvalues for the operator ∂xx+A, while the first and the second are to ensure controllability
in high frequency.

Since hyperbolic control is stronger than the parabolic one by the transmutation method, the above
results entails controllability for parabolic system. We refer the reader to [13] for more details.

The most challenging problem in this context is when the coupling matrix depends on both space and
time. An interesting result in this direction is stated in [41]. The authors studied the following system

{
utt −∆u+ Lv = Bf, in (0, T )×M,
(u, ut, v, vt)|t=0 = (u0, u1, v0, v1) in M,

(1.34)

where M is compact manifold without boundary (periodic boundary conditions in the one dimensional
case) with u = (u1, · · ·, uN ), f = (f1, · · ·, fN ) are the vector state and the control respectively and

L = A1∂t +A0, B = B0∂t +B1,

Ai ∈ C∞(R;Si
phg(T

∗M;MN×N )), i = 0, 1,

Bi ∈ C∞(R;Si
phg(T

∗M;Mm×N )), i = 0, 1.

We refer to [61, Definition 18.1.5] for more of details about the symbols space Si
phg(M).

The authors proved that the controllability in high frequency is equivalent to the controllability of a
finite dimensional system along the Hamiltonian flow.

Theorem 21 (Y. Cui, C. Laurent, Z. Wang, 2020) System (1.34) is weakly controllable in
[
L2(M)×H−1(M)

with control u ∈ L2(0, T ;
[
L2(M)

]N
) if, and only if for any ρ0 ∈ S∗M the following finite dimensional

system {
X ′(t) = 1

2a(t, ϕt(ρ0))X(t) + 1
2d(t, ϕt(ρ0))u(t)

X(0) = X0 ∈ CN , u ∈ L2(0, T ;CN ),

is controllable in [0, T ] where:

• (X1(t), X2(t), · · ·, XN (t)) ∈ CN is the state variable.

• S∗M is the co-sphere bundle of M.

• ϕt(ρ0) is the Hamiltonian flow of |ξ|x initiated at ρ0 defined by the formula

ϕt(ρ0) = (x(t), ξ(t)) , ϕt(ρ0) = ρ0.

• a =: a0 − a1
|ξ|x

, ai ∈ C∞(R;Si
phg(T

∗M;MN×N )), i = 0, 1, is the homogeneous principal symbol of

coupling matrix Ai, i = 1, 2.

• d =: b0 − b1
|ξ|x

, bi ∈ C∞(R;Si
phg(T

∗M;MN×m)), i = 0, 1, is the homogeneous principal symbol of the

control operator matrices Bi, i = 1, 2.

• T ∗M is the co-tangent bundle.

Note that controllability of System (1.34) amounts to control a parametrized family of ODEs. The
same idea appeared in [5] for internal controllability of 1−D hyperbolic systems.

As pointed out before, to extend the controllability result to the whole energy space we have to ensure
that the unique continuation holds. This is done in [41, Appendix A.2] for time-independent constant sign
coupling functions with non-empty intersection of both coupling and control supports.
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Novelties of the work

• Providing a necessary and sufficient condition for boundary exact controllability for system (1.14) in
high frequency with Dirichlet boundary condition on the contrary of the previous works where only
periodic boundary conditions are considered.

• Providing a necessary and sufficient condition for the unique continuation in the cascade case for
space-time coupling function without any sign or size assumptions.

1.4 Perspectives and open questions

Let us discuss briefly some possible variations and generalization of the obtained results in this work.

The von Kàrmàn system:

• It will be interesting to study the asymptotic behavior of System (1.1) with less damping mechanisms
(for instance by using only the viscoelastic one). Like for Timoshenko system [10], it is quite natural
to expect that exponential decay occurs at least for the linearized system of (1.1) when the two wave
speeds are equal.

• Another interesting question is to study the controllability of System (1.1) and prove local control-
lability result by using the linearization method. (See [36] or [131]).

The wave equation:

• Only boundary control is considered in our work. It is our hope that the tools developed to deal with
System (1.6) may help in dealing with the distributed control case





ytt(t, x) = yxx(t, x) + χωT
h(t, x), in QT ,

y(t, α(t)) = y(t, β(t)) = 0, in (0, T ),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

(1.35)

where ωT is a moving subset of QT := (0, T )× (0, 1) defined by

ωT = {(t, x) ∈ QT , x ∈ (a(t), b(t))} ,

for some smooth real functions α(t) < a(t) < b(t) < β(t), t ∈ (0, T ), and (y0, y1, h) ∈ H1
0 (0, 1) ×

L2(0, 1) × L2(ωT ). Actually, we can determine the minimal time for which the time-dependent
geometric control condition introduced by J. Le Rousseau et al. in [80, Definition 1.6] is satisfied.
The latter condition states that every generalized bicharacteristic must meet the moving control
region at some time T. It is easy to verify this condition in the one dimensional settings. Indeed,
under assumption (1.8) with a, b ∈ C1(0, T ) and ‖a′‖L∞(0,T ) , ‖b′‖L∞(0,T ) < 1, we find that all the
characteristics with positive slope or negative slope emerging from the point (0, x), for any x ∈ (0, 1)
meet ωT if, and only if T > T ∗ where T ∗ is given by

T ∗ = max {T1, T2} = max
{
b+ ◦ β+ ◦

(
β−
)−1 ◦ b(0), a− ◦ α− ◦

(
α+
)−1 ◦ a(0)

}
.
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In particular, if α ≡ 0 and β ≡ 1, the time T ∗ is given by T ∗ = 2max {a, 1− b} which is exactly the
time given by E. Zuazua in [131]. Distributed controllability of System (1.35) has been studied by
C. Castro et al. [27] in cylindrical domains with moving control support, i.e. α ≡ 0 and β ≡ 1. The
authors proved that exact controllability holds if the moving control support ωT satisfies the geometric
control condition without the restriction ‖a′‖L∞(0,T ) , ‖b′‖L∞(0,T ) < 1. It is worth mentioning that
problem (1.35) has been recently studied by L. Cui in [40] with very particular boundary functions
and moving control support. The critical time of control seems far from being optimal.

• Distributed stabilization of the 1−D damped wave equation on non-cylindrical domains with damping
coefficient depending on both space and time remains an open problem. More precisely, consider the
following problem:





ytt(t, x) = yxx(t, x) + a(t, x)yt, in Q∞,
y(t, α(t)) = y(t, β(t)) = 0, in (0,∞),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1).

(1.36)

We ask the same question as for System (1.6): How do the solution to System (1.36) behaves for large
times? What are the optimal assumptions should the damping function a satisfy to ensure stability?.
It is also quite interesting to study pointwise stabilization of System (1.36) (a := δc(t) with c(t) is
some smooth function such that α(t) < c(t) < β(t)), t > 0). This last question has been solved by
K. Ammari et al. for periodic boundary functions [8].

Note that for α ≡ 0 and β ≡ 1, the stabilization problem (1.36) has been studied by J. Rauch and M.
Taylor in [115] on a manifold without boundary in the usual energy space modulo compact operator.
Concerning the periodic case, exponential stability has been recently obtained for System (1.36) by
J. Le Rousseau et al. in [80].

It would be interesting to extend the result in [115] to the whole energy space for a general function
a(t, x) at least for the 1 − D case and to figure out the behavior of the solution to System (1.36).
Note that the spectral approach or the observability inequality are useless in this case.

Boundary controllability of two coupled wave equations

• We have only studied unique continuation for System (1.14) in the cascade case. It would be very
interesting to extend this result to a general coupling matrix M.
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• In Theorem 21, the manifold M is supposed to be without boundary. A sufficient and a necessary
condition for exact controllability is given in high frequency. A more challenging issue would be to
proving the same result on Riemannian manifold with boundary for both distributed and boundary
controllability for space-time coupling matrices.

• Boundary controllability of N -coupled multi-dimensional wave equations remains an open questions
even for constant coupling matrix. It seems that more assumptions in addition to the Kalman rank
condition have to be added to guarantee exact controllability since it is the case for n = 1 (see
Theorem 20).
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Chapter 2

Concepts from control and stability

theory

2.1 Stability of infinite dimensional systems

In this section, we recall some basic notions from stability theory of PDEs. In particular, the Lyapunov
method. Henceforth, C will denote a positive constant that might change from a line to another.

Consider the linear autonomous Cauchy problem

{
y′(t) = Ay(t), t ∈ (0,∞),
y(0) = y0,

(2.1)

where A : D(A) ⊂ H −→ H and H is a Hilbert space. Assume that A generates a C0-semigroup
(S(t))t≥0 ∈ L(H) (see for instance [112]). Then, the unique solution to the Cauchy problem is given by
y(t) = S(t)y0, t ≥ 0. The semigroup (S(t))t≥0 is called:

• Strongly (asymptotically) stable if for any y0 ∈ H :

‖S(t)y0‖H −→
t→+∞

0.

• Exponentially stable (uniformly stable) if there exist two constants ω > 0 and M ≥ 1 such that for
any y0 ∈ H :

‖S(t)y0‖H ≤Me−ωt ‖y0‖H , ∀t > 0. (2.2)

• Stable with decay rate g(t) −→
t→+∞

0 if for any y0 ∈ D(A) :

‖S(t)y0‖H ≤ Cg(t) ‖y0‖D(A) , t > 0, (2.3)

where ‖y0‖D(A) = ‖y0‖H + ‖Ay0‖H .

• Stable in finite time T > 0 if for any y0 ∈ H : S(T + t)y0 = 0, ∀t ≥ 0.

Note that the norm ‖·‖D(A) in (2.3) cannot be replaced by ‖·‖H . Otherwise, there will exist t0 > 0
such that ‖S(t0)‖L(H) < 1 which yields (2.2).

We also define the growth bound (or the type) of the semigroup (S(t))t≥0 by

ω0 = inf
{
γ ∈ R : ∃M ≥ 1 such that ‖S(t)‖L(H) ≤Meγt

}
.
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It is known that ω0(S) characterized by

ω0 = max{s(A), ωess(S)},

where s(A) and ωess(S) are respectively the spectral bound and the essential growth bound defined by

s(A) = sup {ℜ(λ), λ ∈ σ(A)} , ωess(S) = inf
t>0

‖S(t)‖ess
t

,

and ‖D‖ess is the quotient norm on the Calkin algebra which is defined for any D ∈ L(H) by

‖D‖ess = inf
{
‖D − K‖L(H) , K is compact on H

}
.

For more details, we refer to [99] or [100].
There exists various approaches and characterizations of stability of infinite dimensional systems. For

instance, time domain criteria [44], frequency domain criteria [57, 110], spectral method (for instance for
C0-semigroups generated by Riesz spectral operators [42, Theorem 2.3.5 ]), Lyapunov or multiplier method
[65]. For more details, we refer the reader for instance to [129, 113, 84, 100, 99].

One of the main features of the Lyapunov method is that it can be also adapted for nonlinear problem
for suitable nonlinearities (see [65, Chapter 9] and the references therein). Next, we will pay some attention
to the Lyapunov method since it will be used to prove a stability result for the nonlinear von Kármán
system. See Section 3.

2.1.1 Lyapunov method

The Lyapunov method consists in constructing (or finding) a functional V ∈ C1(H,R) equivalent to the
H-norm of the solution and tending to zero with some decay rate along the trajectory y. More rigorous
definition is given in the following:

Definition 22 We call a Lyapunov functional for System (2.1) a functional V ∈ C1(H,R+) satisfying:

• There exist two positive constants C1 and C2 such that for any solution to (2.1)

C1 ‖S(t)y0‖H ≤ V(y(t)) ≤ C1 ‖S(t)y0‖H , t ≥ 0.

• The functional V satisfies along the trajectory y

d

dt
V(y(t)) ≤ −ωV(y(t)), t > 0, (2.4)

for some ω > 0.

Observe that a simple integration of inequality (2.4) yields

V(y(t)) ≤ Ce−ωtV(y0), t > 0,

which entails exponential decay, i.e.

‖S(t)y0‖H ≤ Ce−ωt ‖y0‖H , t > 0.

A classical application of this method is the damped wave equation. Let Ω be an open set in Rn and
consider the system 




ytt = ∆y − a(x)yt, in (0,∞)× Ω,
y = 0, in (0,∞)× ∂Ω,
y(0, x) = y0(x), y(0, x) = y0(x), in Ω.

(2.5)
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where a(x) > C > 0 is a smooth real function. It can be shown by using the semigroups theory (in particular
the Lummer-Philips lemma [112, Theorem 4.3]) that for any initial data (y0, y1) ∈ H1

0 (Ω) × L2(Ω), there
exists a unique solution to System (2.5)

(y, yt) ∈ C([0,∞[;H1
0 (Ω)× L2(Ω)).

It is not difficult to see that the solution to System (2.5) satisfies the energy estimate

1

2

d

dt
E(t) = −

∫

Ω
a(x) |yt(t, x)|2 dx, (2.6)

where

E(t) = ‖S(t)(y0, y1)‖2H1
0 (Ω)×L2(Ω) =

∫

Ω
|yt(t, x)|2 dx+

∫

Ω
|∇y(t, x)|2 dx.

Clearly, by (2.6) the function t 7→ E(t) is non-increasing. Our goal is to show that it decreases exponentially
to zero. To do this, consider the candidate Lyapunov functional

V(y, yt)(t) = E(t) + ε

∫

Ω
yt(t, x)y(t, x)dx, (2.7)

where ε is a positive constant. First we show that the functional V is equivalent to E. Indeed, by using
Young’s and Poincaré’s inequalities we get

|V(y, yt)(t)− E(t)| =

∣∣∣∣ε
∫

Ω
yt(t, x)y(t, x)dx

∣∣∣∣

≤ ε

2

∫

Ω
|yt(t, x)|2 dx+ εC

∫

Ω
|∇y(t, x)|2 dx

≤ εCE(t).

To conclude, it suffices to take ε < 1/C.
Now, differentiating V with respect to time and using (2.6) then integrating by parts and using Young’s

and Poincaré’s inequalities yields

d

dt
V(y, yt)(t) = −

∫

Ω
a(x) |yt(t, x)|2 dx+ ε

∫

Ω
y2t (t, x)dx

−ε
∫

Ω
|∇y(t, x)|2 dx− ε

∫

Ω
a(x)yt(t, x)y(t, x)dx

≤
(
−a(x) + ‖a‖2∞ ε

8δ
+ ε

)∫

Ω
|yt(t, x)|2 dx+ (−ε+ Cδ)

∫

Ω
|∇y(t, x)|2 dx.

Taking ε small enough and δ < ε/C yields

d

dt
V(y, yt)(t) = −ωE(t) ≤ −CωV(y, yt),

which proves the result. Note that the damping function a is acting on the whole domain. When supp a
is a proper subset of Ω (supp a ( Ω) more work is needed.

An optimal result in this direction has been gotten by J. Rauch and Taylor in [114] on manifold without
boundary. The same result has been generalized later by C. Bardos, G. Lebeau and J. Rauch in [21] on
any connected compact manifolds under the so called geometric control condition. It has been shown by
G. Lebeau in [78] that the energy decays in a logarithmic way in absence of this last condition.
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Likewise, the wave equation can be stabilized by a damping acting on a part of the boundary under
geometric constraints. Consider the system





ytt −∆y = 0, in (0,∞)× Ω,
∂ny + a(x)yt = 0, on (0,∞)× Γ1,
y = 0, on (0,∞)× Γ2,
y(0) = y0, yt(0) = y1, in Ω,

(2.8)

where Γ1 ∪ Γ2 = ∂Ω with Γ1 ∩ Γ2 = ∅ and ∂n denotes the normal derivative. The authors in [21]
proved exponential stability under the geometric control condition using microlocal analysis techniques.
Exponential decay has been also proved under stronger geometric condition (it is known as the multiplier
geometric condition) by G. Chen in [32] by using the multipliers technique. Since then, many successive
works have been done in this direction, see for instance [33, 65, 66, 71, 72, 77] and the references therein.
It is worth to mention that finite time stability might occur for certain class of boundary feedback as it
has been shown in [67].

If the operator A depends on time, i.e. A = A(t), the role of the semigroup (S(t))t≥0 is played by the
evolution family (S(t, s))t≥s≥0. The study of the asymptotic behavior of such systems is different from the
autonomous case. For a survey we refer the reader to [118].

2.1.2 Stability of the 1−D wave equation and the characteristics method

Boundary stability

Let us focus now on the stability of the one-dimensional wave equation. Consider the system




ytt = yxx, in (0,∞)× (0, 1),
yx(t, 0) = ayt(t, 1), y(t, 1) = 0. in (0,∞),
y(0, x) = y0(x), y(0, x) = y0(x), in (0, 1).

(2.9)

where a is a positive constant. The stability result of the above system is well known since the eighties.
A fine spectral analysis has been done in [116] to prove that the corresponding eigenvectors form a Riesz
basis in H1

(1)(0, 1)× L2(0, 1) where

H1
(1)(0, 1) =

{
v ∈ H1(0, 1), v(1) = 0

}
.

As a consequence, the solution to System (2.9) is exponentially stable if and only if the spectrum is located

in the left half-plane, namely ω0 = ℜ(λn) = 1
2 ln

∣∣∣1−a
1+a

∣∣∣ < 0. Now, we will give an alternative proof by using

the characteristics method.
We begin by transforming (2.9) to a first order hyperbolic system by introducing the transformation

p = yt − yx, q = yt + yx, (2.10)

which takes (y, yt) to (p, q). A simple computation shows that (p, q) satisfies the system




pt + qx = 0, in (0,∞)× (0, 1),
qt − qx = 0, in (0,∞)× (0, 1),
(p− aq) |x=0 = (p+ q)|x=1 = 0, in (0,∞),
p|t=0 = p, q|t=0 = q, in (0, 1),

(2.11)

where a = 1−a
1+a

. Conversely, it can be checked that if (p, q) is solution to (2.11) then it satisfies (2.9). In

fact, the transformation (2.10) defines an isomorphism from H1
(1)(0, 1) × L2(0, 1) to L2(0, 1) × L2(0, 1).

Moreover, the following equality holds:

‖p‖2L2(0,1) + ‖q‖2L2(0,1) = 2 ‖yt‖2L2(0,1) + 2 ‖yx‖2L2(0,1) = 2 ‖(y, yt)‖2H1
(1)

(0,1)×L2(0,1) .
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Observe that the first and the second equation in (2.11) are not coupled and satisfy

d

dt
p(t, t+ c) =

d

dt
p(q,−t+ c) = 0, t > 0, c ∈ R,

which allows to find an explicit expression of the unique solution to this system.
First, assume that the initial data p, q are smooth (for instance C1

0 (0, 1)). We can prove by using the
reflection of the characteristic lines on the boundary x = 0, 1 to show that the exact solution to System
(2.11) is given for any n ≥ 0 by the formulas

p(t, x) =





anp(x− t+ 2n), if t− x ∈ [2n− 1, 2n),

−an+1q(t− x− 2n), if t− x ∈ [2n, 2n+ 1),

q(t, x) =





anq(x+ t− 2n), if t+ x ∈ [2n, 2n+ 1),

−anp(2n+ 2− x− t), if t+ x ∈ [2n+ 1, 2n+ 2),

Now, we estimate the solution (p, q) in the L2-norm. We have two cases:

• If t ∈ [2n, 2n+ 1), we have for any (p, q) ∈ C1
0 (0, 1)× C1

0 (0, 1) :

‖p(t)‖2L2(0,1) + ‖q(t)‖2L2(0,1)

= a2n+2

∫ t−2n

0
q2(t− x− 2n)dx+ a2n

∫ 1

t−2n
p2(x− t+ 2n)dx

+a2n
∫ 2n+1−t

0
q2(t+ x− 2n)dx+ a2n

∫ 1

2n+1−t

p2(2n+ 2− x− t)dx

= a2n+2

∫ t−2n

0
q2(x)dx+ a2n

∫ 1−t+2n

0
p2(x)dx

+a2n
∫ 1

t−2n
q2(x) + a2n

∫ 1

2n+1−t

p2(x)dx

≤ Ca[t]
(
‖p‖2L2(0,1) + ‖q‖2L2(0,1)

)

• Similarly, if t ∈ [2n+ 1, 2n+ 2) we obtain for any initial states (p, q) ∈ C1
0 (0, 1)× C1

0 (0, 1) :

‖p(t)‖2L2(0,1) + ‖q(t)‖2L2(0,1) ≤ Ca[t]
(
‖p‖2L2(0,1) + ‖q‖2L2(0,1)

)
.

Therefore, we get for any (p, q) ∈ C1
0 (0, 1)× C1

0 (0, 1) :

‖(p, q) (t)‖L2(0,1)×L2(0,1) ≤ Ca
t
2 ‖(p, q)‖L2(0,1)×L2(0,1) (2.12)

= Cet
ln|a|
2 ‖(p, q)‖L2(0,1)×L2(0,1) .

At this level, since C1
0 (0, 1) is dense in L

2(0, 1), a standard density argument allows to extend the estimate
(2.12) to the energy space L2(0, 1)× L2(0, 1). Indeed, the solution (p, q) can be expressed as

(p, q)t (t) = S(t) (p, q)t , t ≥ 0,

where (S(t))t≥0 is a C0-semigroup (which is completely determined in our case). By (2.12), the estimate

‖S(t) (p, q)‖L2(0,1)×L2(0,1) ≤ Cet
ln|a|
2 ‖(p, q)‖L2(0,1)×L2(0,1) , t ≥ 0,
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holds for any (p, q) ∈ C1
0 (0, 1)× C1

0 (0, 1) and therefore for any (p, q) ∈ L2(0, 1)× L2(0, 1).
The above approach will be used to study the stability of the solution to System (2.9) with a := a(t)

(a depends on time) and moving boundary (see Chapter 4). It can be also extended to more general
wave operators but without lower order terms, for instance ∂tt − ρ(x)∂xx (resp. ∂tt − ∂xρ(x)∂x) for a
smooth positive function ρ. Then wave equation be transformed to a first order hyperbolic system with
the transformation:

p = yt −
√
ρ(x)yx, q = yt +

√
ρ(x)yx,

(resp. p = yt −
(√

ρ(x)y
)
x
, q = yt +

(√
ρ(x)y

)
x
. In this case the characteristics are not anymore lines

but solutions to the ODEs: (
x±
)′
(t) = ±

√
ρ(x±(t)), x±(t0) = x0.

As before, a stability result can be proved by constructing the exact solution. For instance, we can recover
the result proved by S. Cox and E. E. Zuazua in [37].

Internal stability

Observe that System (2.11) is not coupled in the interior on the domain which allowed to find the solution
to a such system. The above approach can be adapted for coupled cascade systems as well.

One of the disadvantages of the characteristics method is that it becomes complex and difficult to use
for genuinely coupled systems. To see that, we consider the internal damped wave equation





ytt = yxx − 2ayt, in (0,∞)× (0, 1),
y(t, 0) = y(t, 1) = 0, in (0,∞),
y(0, x) = y0(x), y(0, x) = y0(x), in (0, 1),

(2.13)

were a is a positive constant. If we try to follow the same steps as before, after using the transformation
(2.10) we obtain 




pt + px − ap− aq = 0, in (0,∞)× (0, 1),
qt − qx − ap− aq = 0, in (0,∞)× (0, 1),
(p+ q) |x=0 = (p+ q)|x=1 = 0, in (0,∞),
p|t=0 = p, q|t=0 = q, in (0, 1).

(2.14)

At first sight, the above system does not seem solvable because of the coupling. Nevertheless, we can get
a high frequency result (or a stability result up to finite dimensional space of initial states) by considering
only the diagonal part of System (2.14) which becomes decoupled and thus the computations are easier.
More precisely, let (S(t))t≥0 be the semigroup solution to System (2.14) on X = L2(0, 1)×L2(0, 1) and let
(Sdiag(t))t≥0 the semigroup solution to the diagonal system





pt + qx − ap = 0, in (0,∞)× (0, 1),
qt − qx − aq = 0, in (0,∞)× (0, 1),
(p+ q) |x=0 = (p+ q)|x=1 = 0, in (0,∞),
p|t=0 = p, q|t=0 = q, in (0, 1),

(2.15)

on the same energy space. It has been shown by AF Neves et al. in [111] that the difference K(t) :=
S(t) − Sdiag(t), t ≥ 0, is compact on X, therefore, they share the same essential spectrum (since it is
invariant under compact perturbations), hence exponential stability holds on X up to finite dimensional
space of initial states since the set σ(A)∩{λ ∈ C, ℜ(λ) > ωess} consists of at most countably many isolated
eigenvalues (see for instance [99, Corollary 2.11], [100, Chapter 3.6]).
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In our case (a is a positive constant), ωess(S) can be easily determined. After solving the diagonal
System (2.15) by using the characteristics method we get for any n ≥ 0:

p(t, x) =





e−atp(x− t+ 2n), if t− x ∈ [2n− 1, 2n),

−e−atq(t− x− 2n), if t− x ∈ [2n, 2n+ 1),
(2.16)

q(t, x) =





e−atq(x+ t− 2n), if t+ x ∈ [2n, 2n+ 1),

−e−atp(2n+ 2− x− t), if t+ x ∈ [2n+ 1, 2n+ 2).

At this level, it can be seen that we have ωess(S) = −a < 0. The aim now is to prove that S(A) < 0 which
amounts to solve the following eigenvalue problem

y′′(x)− aλy(x)− λ2y(x) = 0, x ∈ (0, 1),

subject to
y(0) = y(1) = 0.

It is not difficult to prove that

S(A) = sup
{
ℜ(−a±

√
a2 − n2π2), n ≥ 0

}
< 0,

which entails ω0(S) = S(A).

2.2 Control of infinite dimensional systems

In this section, we recall some general notions about controllability of infinite dimensional systems. For
more details we refer the reader to [36] or [126].

Throughout this thesis, we will focus on the study of the linear control system
{
y′(t) = A(t)y(t) + B(t)u(t), t ∈ (0, T ) ,
y(0) = y0 ∈ H,

(2.17)

where T is a positive real number. For the time being, assume that (A(t))0≤t≤T , (B(t))0≤t≤T are families

of linear operators (bounded or not) respectively defined on D(A(t)) ⊂ H and L2(0, T ;U) with values in
H where H and U are some functional spaces. In (2.17) the function u is the control function. Suppose
that (2.17) is well-posed in the Hadamard sense. The exact controllability issue is the following: Given a
time T > 0, and initial state y0 ∈ H and a desired state y1 ∈ H, does there exist a control u ∈ L2(0, T ;U)
such that y(T, u) = y1? Or at least, can we force the state y(T, u) to be close to the target state y1 as
approximate controllability, which is refered as the approximate controllability issue? The answer to these
questions depends genuinely on the nature of System (2.17). We distinguish two main classes of control
systems, on whether H is finite or infinite dimensional space.

First, let us take a look on the finite dimensional case. Take H = Rn, U = Rm, for any n,m ≥ 1. It is
well known that by Cauchy-Lipschitz theorem, System (2.17) is well-posed under the assumptions

A ∈ L∞((T0, T1) ,Mn×n(R)), B ∈ L∞((T0, T1) ,Mn×m(R)).

If A and B do not depend on time, the system writes
{
y′(t) = Ay(t) + Bu(t), t ∈ (0, T ) ,
y(0) = y0 ∈ Rn,

(2.18)

and the Kalman rank condition provides a full answer to the controllability issue:
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Theorem 23 ([63]) Let A ∈ Mn×n(R), and B ∈ Mn×m(R). System (2.18) is controllable at any time
T > 0 if, and only if

rank
[
B | AB | A2B | · · · | An−1B

]
= n. (2.19)

If the matrices A and B are time dependent, there exists an answer due to A. Chang in [31] and L.
Silverman and H. Meadows in [124]. For more details, we refer the reader to [36, Theorem 1.18].

Observe that in the previous situation, the control u does not depend necessarily on the state y (the
output has no effect on the input): this type of control is called open-loop.

When the control depends on the state, i.e. u := u(t, y(t)) it is called a closed-loop control or a feedback
law. These feedbacks are built in such a way to make the solution reach an equilibrium state (in general
y = 0) in finite or infinite time.

Unlike the finite dimensional case, control of systems might require a minimal time of control. A typical
example is the one-dimensional transport equation.

Example 24 Consider the following boundary control system

{
yt(t, x) + yx(t, x) = 0,
y(0, x) = y0(x), y(t, 0) = u(t),

(t, x) ∈ (0, T )× (0, 1), (2.20)

where T > 0 and u is the control. By using the characteristics method for smooth initial state and control,
we can obtain an explicit formula of the solution to (2.20) which is given by

y(t, x; y0, u) =

{
y0(x− t), if x− t ∈ (0, 1),
u(t− x), if t ≥ x.

One can see easily that if T < 1 System (2.20) is not controllable. Indeed, the solution at this time is
written as

y(T, x; y0, u) =

{
y0(x− T ), if x ∈ (T, 1),
u(T − x), if x ∈ (0, T ),

which confirms the claim. If T ≥ 1, it is enough to choose the control u such that u(T − x) = y1(x),
x ∈ (0, 1), for any target state y1.

t

x = 1

T = 1

Also, in the infinite dimensional settings it may happen that in addition to the minimal time of control,
some geometrical constraints effect the controllability properties as it is shown in the following example:

Example 25 Consider the transport equation but this time with internal localized control

{
yt(t, x)− yx(t, x) = χ(a,b)(x)u(t, x),

y(0, x) = y0(x), y(t, 0) = 0,
(t, x) ∈ (0, T )× (0, 1), (2.21)
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where χ(a,b)(x) equals to 1 if x ∈ (a, b) and 0 otherwise and u is the control function. We assume that y0
and u are smooth enough. Exactly as before, by using the characteristics method we can find an explicit
formula to the solution of (2.21) which is given at time T ≥ 0 by

y(T, x; y0, u) =





y0(x− T ) +
∫ x

x−T
χ(a,b)(s)u(s+ T − x, s)ds, if x− T ∈ (0, 1),

∫ x

0 χ(a,b)(s)u(s+ T − x, s)ds, if T − x ≥ 0.

(2.22)

The above formula shows that System (2.21) is not controllable if a > 0. Indeed, let y1 be a smooth
target state. From the second formula in (2.22) we can see that if x ∈ (0, a) we get y1(x) = 0, ∀T > 0,
which is a constraint on the target state. Also, if T ≤ 1 − b we obtain from the first formula in (2.22)
y1(x) = y0(x − T ), x ∈ (T, 1) which is again a a constraint on both the initial and the target states.
Consequently, System (2.21) is not exactly controllable at any T > 0 if a > 0 or if T ≤ 1 − b. Note that
even we have an explicit formula of the solution, proving controllability is not straightforward. If we look to
the map K : u 7→ y(T, x; 0, u) as a map from L2(0, T ) in L2(0, 1), then a standard functional analysis result
allows to study the surjectivity of K by proving the following inequality for its adjoint (see for instance [26,
Theorem 2.20.])

∃C > 0 : ‖K∗x‖L2(0,T ) ≥ C ‖x‖L2(0,1) , ∀x ∈ L2(0, 1). (2.23)

A simple proof of this inequality will be given later on after developing the duality concept (see for instance
[117]). It will be presented to deal with controllability of more general systems. Actually, it will be seen
that inequality (2.23) holds if, and only if a = 0 and T > 1− b.

2.2.1 General theory

In this subsection we present the general theory of controllability of infinite dimensional systems in an
appropriate functional framework. We will define different types of controllability and approaches to
handle this type of problems. For the sake of the presentation, we will restrict ourselves to the hilbertian
frame. All the given results can be extended to any reflexive Banach space.

Let H,U, V three separable Hilbert spaces. In all what follows, we assume that V is a dense subspace
in H and assume that the embedding V →֒ H is continuous. As a consequence, we have

V ⊂ H ⊂ V ′,

where V ′ is the dual space of V with respect to the pivot space H. Consider the system

{
y′(t) = A(t)y(t) + B(t)u(t),
y(0) = y0 ∈ H,

(2.24)

where u ∈ L2(0, T ;U) is the control. We assume that the families of linear operators (A(t))t∈[0,T ] and
(B(t))t∈[0,T ] satisfy

A (·) : L2(0, T ;V ) −→ L2(0, T ;V ′), (2.25)

B (·) ∈ L
(
L2(0, T ;U), L2(0, T ;V ′)

)
. (2.26)

In addition, we assume that:

• The function t 7→ 〈A(t)ϕ, ψ〉V ′,V is measurable for all ϕ, ψ ∈ V.

• The exists a positive constant M such that for all t ∈ [0, T ] and for all ϕ, ψ ∈ V

∣∣∣〈A(t)ϕ, ψ〉V ′,V

∣∣∣ ≤M ‖ϕ‖V ‖ψ‖V . (2.27)

31



• The bilinear form (ϕ, ψ) 7→ 〈A(t)ϕ, ψ〉V ′,V satisfies the coercivity property on V, namely, there exist
λ ∈ R and α > 0 such that

− 〈A(t)ϕ,ϕ〉V ′,V + λ ‖ϕ‖2H ≥ α ‖ϕ‖2V , for all ϕ ∈ V, t ∈ [0, T ]. (2.28)

The following theorem is valid in the parabolic context:

Theorem 26 ([83, p.102]) Under the assumption (2.25)-(2.28), there exists a unique solution to the
problem (2.24) in the space

W (0, T ;V, V ′) =
{
y ∈ L2(0, T, V ), yt ∈ L2(0, T, V ′)

} continuous→֒ C([0, T ], H).

Furthermore, there exist C,C ′ > 0 such that the following estimation holds

‖y‖W (0,T ;V,V ′) ≤ Ce(T+1)C′
(
‖y0‖H + ‖Bu‖L2(0,T,V ′)

)
.

The proof of this theorem is based on the Faedo-Galerkin method. We will use this approach to prove
an existence theorem for the nonlinear von Kàrmàn system (see Section 3.2). If A(·) is independent of
time, semigroups theory can be used to deal with the well-posedness of System (2.24). We refer to the
same book for the hyperbolic type.

Now, let us move to the controllability of System (2.24).

Definition 27 We say that System (2.24) is :

• Exactly controllable in H at time T > 0 if for any initial state y0 ∈ H and for any target state
y1 ∈ H, there exists a control u ∈ L2(0, T ;U) such that

y(T, y0, u) = y1.

• Null controllable in H at time T > 0 if for any initial state y0 ∈ H, there exists a control u ∈
L2(0, T ;U) such that

y(T, y0, u) = 0H .

• Approximately controllable in H at time T > 0 if for any ε > 0, initial state y0 ∈ H and target state
y1 ∈ H, there exists a control u ∈ L2(0, T ;U) such that

‖y(T, y0, u)− y1‖H < ε.

Clearly, null controllability is a particular case of exact controllability, and if a system is exactly
controllable then it is approximately controllable. The converse in general is not true and there is no
relationship between null controllability and approximate controllability. We should note that the three
types of controllability presented above are equivalent in the finite dimensional case.

In the sequel, we denote by y(t, y0, u) the solution to System (2.24). Since the latter system is linear,
the solution can be decomposed as a sum of homogeneous solution (u = 0) and the solution with zero
initial state (y0 = 0). i.e.

y(t, y0, u) = Sty0 + Ltu, t ∈ (0, T ), (2.29)

where the operators St and Lt are defined by

St : H −→ H Lt : L
2(0, T ;U) −→ H

and
y0 7→ y(t, y0, 0), u 7→ y(t, 0, u),

(2.30)

Let us go back to the controllability problem. Henceforth, we assume that the solution to problem
(2.24) exists. Observe that studying the controllability of System (2.24) at time T amounts to study
the range of the operator LT . The following lemma will be used to provide a useful characterization of
R(LT ),the range of LT (see for instance [129, Theorem 2.2, p. 208]).
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Lemma 28 Let X1, X2 and X3 be three Hilbert spaces and let L1 ∈ L (X1, X3) and L2 ∈ L (X2, X3) . The
following equivalence holds

R(L1) ⊂ R(L2) ⇔ ∃C > 0, ‖L∗
1x‖X1

≤ C ‖L∗
2x‖X2

, ∀x ∈ X3.

Let T > 0 and y1 ∈ H be the desired time and the target state respectively. By (2.29), we have at time
T

y1 − ST y0 = LTu,

thus, exact controllability is equivalent to H ⊂ R(LT ) and the null controllability is equivalent to STH ⊂
R(LTu).

Characterization of exact controllability:
In order to get a characterization of exact controllability, we apply Lemma 28 for

X1 = H, X2 = H, X3 = L2(0, T ;U),

L1 = Id, L2 = LT ,

we find
H ⊂ R(LTu) ⇔ ∃C > 0, ‖L∗

T v‖L2(0,T ;U) ≥ C ‖v‖H , ∀v ∈ H. (2.31)

Characterization of null controllability:
We apply Lemma 28 with

X1 = H, X2 = H, X3 = L2(0, T ;U),

L1 = ST , L2 = LT ,

we find
STH ⊂ R(LTu) ⇔ ∃C > 0, ‖L∗

T v‖L2(0,T ;U) ≥ C ‖S∗
T v‖H , ∀v ∈ H. (2.32)

Characterization of approximate controllability:
Note that from the definition of approximate controllability, System (2.24) is approximately controllable

if, and only if R(LT )
H

= H (R(LTu) is dense in H), which means by [26, Corollary 2.18] that

R(LT )
H

= H ⇔ ker(L∗
T ) = {0H},

namely,
L∗
T v = 0 in (0, T ) =⇒ v = 0. (2.33)

Inequalities (2.31) and (2.32) are known as observability inequalities, while relation (2.33) is known as
the unique continuation property.

Remark 29 We should note that if the family of operators (A(t))t∈[0,T ] generates an evolution family
(S(t, s))0≤s≤t≤T , on H (see [112, Chapter 5] for more details), the operator St is the evolution family
(S(t, s))0≤s≤t≤T , and by the Duhamel’s formula, the operator Lt will be defined by

Ltu :=

∫ t

0
S(t, s)B(s)u(s)ds, t ∈ (0, T ).

Therefore, the operator L∗
t takes the form

L∗
t : H −→ L2(0, T ;U) (2.34)

L∗
tx = B∗(·)S∗(t, ·)x,
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where (S∗(t, s))0≤s≤t≤T , is the adjoint evolution family solution to the backward system

d

ds
S∗(t, s) = −A∗ (s)S∗(t, s),

S∗(t, t) = Id.

In particular, if A(t) = A, then S∗(t, s) = S∗(t− s) is a C0-semigroup.

As it is pointed out in Example 25, even though we have an explicit formula of the control operator
LT it is not straightforward to provide an answer to the exact controllability question. Let us try to deal
with System (2.21) by using the observability inequality defined in (2.31). In the setting of Example 25,
we have:

H : = L2(0, 1), U := L2(a, b), B = χ(a,b) ∈ L
(
L2 (0, 1)

)
,

A : = ∂x, D(A) =
{
v ∈ H1(0, 1), v(0) = 0

}
.

So, the exact controllability issue amounts to prove that there exists a positive constant CT,a,b > 0 such
that for any v ∈ H :

‖L∗
T v‖L2(0,T ;U) =

∫ 1

0

∫ T

0
|B∗S∗(T − s)v(x)|2 dsdx ≥ CT,a,b

∫ 1

0
v2(x)dx, (2.35)

where B∗ = B and z(s, x) = S∗(T − s)v(x) is the solution to the homogeneous transport equation

{
zs + zx = 0, if (s, x) ∈ (0, T )× (0, 1),
z(s, 1) = 0, z(T ) = v ∈ H, if s ∈ (0, T ).

(2.36)

To simplify the computation, we make the variable substitution t = T − s, then System (2.36) becomes

{
zt − zx = 0, if (t, x) ∈ (0, T )× (0, 1),
z|x=0 = 0, z|t=0 = v ∈ H, if t ∈ (0, T ).

(2.37)

By using the characteristics method, we find that the exact solution to System (2.37) is given by

z(t, x) =

{
v(t+ x), if t+ x ∈ (0, 1),
0, if t+ x ≥ 1.

Therefore, inequality (2.35) turns to

∫ ∫

Ξ
χ(a,b) (x) v

2(x+ t)dtdx ≥ CT,a,b

∫ 1

0
v2(x)dx, (2.38)

where Ξ = {(t, x) ∈ (0, T )× (0, 1), t+ x ∈ (0, 1)}.
By letting x+ t = s in (2.38), the left hand side will be

∫ ∫

Ξ
χ(a,b) (x) v

2(x+ t)dtdx =

∫ 1

0

(∫ min{s,T}

0
χ(a,b) (s− t) dt

)
v2(s)ds.

Hence, the function s 7→
∫ min{s,T}
0 χ(a,b) (s− t) dt must be positive in (0, 1) which amounts to say that the

family of lines t 7→ s− t, t ∈ (0, T ) must enter the control region (a, b) for any s ∈ (0, 1) which is possible
if and only if a = 0 or T > 1− b.

This condition is known as the geometric control condition, it states that every characteristic line
corresponding to the adjoint system (2.36) must meet the control region at time before T . (See [21] for a
precise definition in more general context).
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Chapter 3

General decay of the solution to a

nonlinear viscoelastic modified von

Kármán system with delay

This Chapter is taken from [64].
We are concerned with the following nonlinear modified von Kármán system with time delay and a

memory term,





ρhDψtt + ψxxxx −
[
ψx(ηx +

1
2ψ

2
x)
]
x
− g ∗ ψxxxx = 0, in (0,∞)× (0, L),

ρhηtt − [ηx +
1
2(ψx)

2]x + α1ηt + α2ηt(t− τ) = 0, in (0,∞)× (0, L),
ηt(t− τ, x) = f0(t− τ, x), in (0, τ)× (0, L),

(3.1)

where D = (I − h2

12
∂2

∂2
x
) and the interval (0, L) is the segment occupied by the beam. The unknowns ψ =

ψ(t, x), and η = η(t, x) represent, respectively, the vertical displacement, and the longitudinal displacement
at time t of the cross section located at x units from the endpoint x = 0.

In (3.1), subscripts mean partial derivatives and h > 0 is a parameter related to the rotational inertia
of the beam.

When α1 = α2 = 0, this system describes approximately the planar motion of a uniform prismatic
beam of length L with memory term. Here, h and ρ are two positive constants represent respectively the
thickness and the mass density per unit volume of the beam. In System (3.1), α1ηt represents a frictional
damping. The time delay is given by α2ηt(t− τ), where α1, α2, τ are positive constants.

In (3.1), (g ∗ f)(·) is defined by

(g ∗ f)(t) =
∫ t

0
g(t− s)f(s)ds.

This integral term or the viscoelastic damping term that appears in the equations describes the relationship
between the stress and the history of the strain in the beam, according to Boltzmann theory. The function
g represents the kernel of the memory term or the relaxation function.

To the System (3.1) we add the boundary conditions

ψ = ψx = ηx = 0, in (0,∞)× {0, L}, (3.2)

and the initial initial conditions

(ψ(0, ·), ψt(0, ·), η(0, ·), ηt(0, ·)) = (ψ0(·), ψ1(·), η0(·), η1(·), ηt(0, )) in (0, L) (3.3)

The main purpose about problems (3.1)-(3.3) is to deal with the well-posedness and asymptotic behavior
of solutions. Before stating and proving our results, let us recall some other results related to our work.
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Several authors have studied the Mindlin-Timoshenko system of equations. This Model is a widely
used and fairly complete mathematical model for describing the transverse vibrations of beams. It is a
more accurate model than the Euler-Bernoulli one, since it also takes into account transverse shear effects.
The Mindlin-Timoshenko system is used, for example, to model aircraft wings (see, e.g., [47]).

For a beam of length L > 0, this one-dimensional nonlinear system reads as

h3

12
φtt − φxx + k [φ+ ψx)] = 0, in (0,∞)× (0, L),

ρhψtt − k [φ+ ψx)]x +

[
ψx

(
ηx +

1

2
ψ2
x

)]

x

= 0, in (0,∞)× (0, L),

ρhηtt −
[
ηx +

1

2
(ψx)

2

]

x

= 0, in (0,∞)× (0, L). (3.4)

Here, the unknown φ = φ(x, t) represent the angle of rotation. The parameter k is the so called modulus of
elasticity in shear. It is given by the expression k = k̂Eh/2(1+ ǫ), where k̂ is a shear correction coefficient,
E is the Young’s modulus and ǫ is the Poisson’s ratio, 0 < ǫ < 1/2.

For Mindlin-Timoshenko system, there is a large literature, addressing problems of existence, uniqueness
and asymptotic behavior in time when some damping effects are considered, as well as some other important
properties (see [35, 68] and references therein).

When one assumes the linear filament of the beam to remain orthogonal to the deformed middle
surface, the transverse shear effects are neglected, and one obtains, from the Mindlin-Timoshenko system
of equations, the following von Kármán system (see [70]).

{
ρhDψtt + ψxxxx −

[
ψx(ηx +

1
2ψ

2
x)
]
x
= 0, in (0,∞)× (0, L),

ρhηtt − [ηx +
1
2(ψx)

2]x = 0, in (0,∞)× (0, L).
(3.5)

There is also an extensive literature about System (3.5) (see [35, 68, 51, 69, 91, 104, 106, 107, 108, 109]
and references therein).

Lagnese and Leugering [69] considered a one-dimensional version of the von Kármán system describing
the planar motion of a uniform prismatic beam of length L. More precisely, in [69] the following system
was considered:

{
ψtt + ψxxxx − hψxxtt −

[
ψx(ηx +

1
2ψ

2
x)
]
x
= 0, in (0,∞)× (0, L),

ηtt −
[
ηx +

1
2(ψx)

2
]
x
= 0, in (0,∞)× (0, L).

(3.6)

In [69], suitable dissipative boundary conditions at x = 0, x = L and initial conditions at t = 0 were given
and the stabilization problem was studied.

In [15], Araruna et al. have showed how the so called von Kármán model (3.6) can be obtained as
a singular limit of a modified Mindlin-Timoshenko System (3.4) when the modulus of elasticity in shear
k tends to infinity, provided a regularizing term through a fourth order dispersive operator is added.
Introducing damping mechanisms, the authors also show that the energy of solutions for this modified
Mindlin-Timoshenko system decays exponentially, uniformly with respect to the parameter k. As k −→ ∞,
the authors obtain the damped von Kármán model with associated energy exponentially decaying to zero
as well.

Remark 30 Since k is inversely proportional to the shear angle, we note that neglecting the shear effects of
the beam is formally equivalent to considering the modulus k tending to infinity in the Mindlin-Timoshenko
system.

The subject of stability of von Kármán system has received a lot of attention in the last years. It
is important to mention that the authors in [34, 51, 68] proved uniform decay rates for the von Kármán
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system with frictional dissipative effects in the boundary. The stability for a von Kármán system with
memory and boundary memory conditions was treated in [51, 92, 103, 79]. They proved the exponential
or polynomial decay rate when the relaxation function decay is at the same rate. As for the works about
general decay for viscoelastic system, we refer the reader to [30, 105] and references therein.

Delay effects are very important because most natural phenomena are in many cases very complicated
and do not depend only on the current state but also on the past history of the system. The presence of delay
can be a source of instability. In recent years, the stabilization of PDEs with delay effects has draw attention
for many authors and becomes an active area of research (see [62, 30, 45, 101, 102, 121, 122, 128, 127]).

In [22], Benaissa et al. studied a system of viscoelastic wave equations with a linear frictional damping
term and a delay





utt(x, t)−∆u(x, t) +
∫ t

0 g(t− s)∆u(x, s)ds

+α1h1(ut(x, t)) + α2h2(ut(x, t− τ)) = 0,

in R+ × Ω,

u(x, t) = 0,
on R+ × Γ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,
ut(t− τ, x) = f0(t− τ, x), in (0, τ)× Ω,

(3.7)

where Ω is a bounded domain in Rn, n ∈ N, with a smooth boundary ∂Ω = Γ, g is a positive non-increasing
function defined on Rn, h1 and h2 are two functions, τ > 0 is a time delay, α1 and α2 are positive real
numbers and the initial datum (u0, u1, f0) belong to a suitable function space.

In the case g ≡ 0, problem (3.7) has been studied by many authors (see [101, 128, 23]) and in the case
g 6= 0, Cavalcanti et al. [29] studied (3.7) for h2 ≡ 0 and with a linear localized frictional damping a(x)ut.
This work was later improved by Berrimi and Messaoudi [25] by introducing a different functional which
allowed them to weaken the conditions on g.

For a wider class of relaxation functions, Messaoudi [87, 88] considered

utt −∆u+

∫ t

0
g(t− s)∆u(s)ds = b |u|γ u, (3.8)

for γ > 0 and b = 0 or b = 1, and the relaxation function satisfies

g′(t) ≤ −ζ(t)g(t), (3.9)

where ζ is a differentiable non-increasing positive function. He established a more general decay result,
from which the usual exponential and polynomial decay results are only special cases. Such a condition
was then employed in a series of papers, see for instance [54, 94, 95, 105].

Recently, Mustafa and Messaoudi [98] studied the problem (3.8) with b = 0 for the relaxation functions
satisfying

g′(t) ≤ −H(g(t)), (3.10)

where H is a non-negative function, with H(0) = H ′(0) = 0 and H is increasing and strictly convex on
]0, k[ for some k0 > 0. The authors showed a general relation between the decay rate for the energy and
that of the relaxation function g without imposing restrictive assumptions on the behavior of g at infinity.
On the other hand, a condition of the form (3.10) where H is a convex function satisfying some smoothness
properties, was introduced by Alabau-Boussouira and Cannarsa [7] and used then by several authors with
different approaches. We refer to [76] where not only general but also optimal result was established by
Lasiecka and Wang.

Our purpose in this paper is to give a global solvability in Sobolev spaces and energy decay estimates of
the solutions to the problem (3.1) for linear damping, time delay terms and finite memory. We would like
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to see the influence of frictional and viscoelastic dampings on the rate of decay of solutions in the presence
of linear delay term.

Our aim is to investigate (3.1) for relaxation functions g of more general type than the ones in (3.9)
and (3.10). We consider the condition

g′(t) ≤ −ζ(t)H(g(t)), (3.11)

whereH is increasing and convex without any additional constraints onH and the coefficients, and establish
energy decay results that address both the optimality and generality. The energy decay rates are optimal
in the sense that they decay qualitatively the same as the viscoelastic kernels g do.

To obtain global solutions of problem (3.1)-(3.3), we use the Galerkin approximation scheme (see Lions
[82]) together with the energy estimate method. To prove decay estimates, we use a perturbed energy
method and some properties of convex functions. In order to accomplish this goal, we shall pursue a
strategy based on an adaptation of non linear differential inequalities technique developed in [93, 96, 97].
Arguments of convexity were introduced and developed by many authors [28, 43, 74, 75, 85, 50, 6].

We observe that our problem is set in a context where:

a The memory damping is defined only on the equation for the vertical displacement.

b The presence of a frictional damping and a time delay on the equation for the longitudinal displacement.

c Energy decay estimates under a nonlinear tension.

Our work is organized as follows. In the next section, we prepare some materials needed in the proof of
our result, like some lemmas (Poincaré’s and Young’s inequalities) and some useful notations. We introduce
the different functionals by which we modify the classical energy to get an equivalent useful one. In Section
3.2, we state and prove the well-posedness of the problem. Finally, in Section 3.3, we will prove our main
results concerning the decay of the energy associated to the solutions to the problem.

3.1 Statement of the results

As in [101], we introduce the new variable

z(t, x, p) = ηt(t− pτ, x),

which satisfies 



τzt(t, x, p) + zp(t, x, p) = 0, in (0,∞)× (0, L)× (0, 1),
zx(t, x, p) = 0, in (0,∞)× {0, L} × (0, 1),
z0(x, p) = z(0, x, p) = f0(x,−pτ), in (0, L)× (0, 1).

Therefore, problem (3.1)-(3.3) is equivalent to





ρhDψtt + ψxxxx −
[
ψx(ηx +

1
2ψ

2
x)
]
x
− g ∗ ψxxxx = 0, in (0,∞)× (0, L)

ρhηtt −
(
ηx +

1
2ψ

2
x

)
x
+ α1ηt + α2z(1) = 0, in (0,∞)× (0, L)

τzt + zp = 0, in (0,∞)× (0, L)× (0, 1),

(3.12)

with boundary conditions
{
ψ = ψx = ηx = 0, in (0,∞)× {0, L},
zx = 0, in (0,∞)× {0, L} × (0, 1),

(3.13)

and initial conditions
{

(ψ(0, x), ψt(0, x), η(0, x), ηt(0, x)) = (ψ0 (x) , ψ1 (x) , η0 (x) , η1 (x)), in (0, L),
z(0, x, p) = z0(x, p) = f0(x,−pτ), in (0, L)× (0, 1).

(3.14)
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Assumptions
To state and prove our result, we use the following assumptions:
A1) The kernel is such that g ∈ L1(R+) ∩ C2(R+) with g(0) > 0 and

l = 1−
∫ ∞

0
g(s)ds > 0, (3.15)

A2) There exists a C1 function H : (0,∞) −→ (0,∞) which is linear or increasing and strictly convex
C2-function on [0, r) (r ≤ g(0)) with H(0) = H ′(0) = 0), such that

g′(t) ≤ −ζ(t)H(g(t)), ∀t ≥ 0, (3.16)

where ζ is a positive non-increasing differentiable function.
Now, we prepare some notations and hypotheses which will be needed in the proof of our result. Let

L2(0, L) be the usual Hilbert space with the inner product 〈·, ·〉 and the inner product induced norm ‖·‖.
Throughout this paper, we define

H2
0 (0, L) =

{
v ∈ H2(Ω), v(0) = v(L) = vx(0) = vx(L) = 0

}
,

equipped with the norm ‖w‖H2
0 (0,L)

= ‖wxx‖, and the space

H1
∗ (0, L) =

{
v ∈ H1(0, L),

∫ L

0
v(x)dx = 0

}
,

equipped with the norm ‖w‖H1
∗(0,L)

= ‖wx‖ .
C and c denote some general positive constants, which may be different in different estimates.
The following inequality will be used repeatedly in the sequel.

Lemma 31 We have the following Young’s inequality

ab ≤ δa2 +
1

4δ
b2, a, b ∈ R, δ > 0. (3.17)

Also, we define the Hilbert space L2((0, L)× (0, 1)) which is endowed with the inner product

〈〈z, z̃〉〉 =
∫ L

0

∫ 1

0
z(x, p)z̃(x, p)dpdx.

Note that the norms

‖|z|‖2 =
∫ L

0

∫ 1

0
z2(x, p)dpdx,

and

‖|z|‖2∗ =
∫ L

0

∫ 1

0
e−2τpz2(x, p)dpdx,

are equivalent in L2((0, L)× (0, 1)). In the sequel, we use the notation ‖| · |‖ to denote both of norms. We
shall use the second one in the study of the asymptotic behavior since it is more flexible.

Lemma 32 Assume that (ψ,ψt, η, ηt, z) is a strong solution of the problem (3.12)-(3.14). Then we have

ξ
d

dt

∫ L

0

∫ 1

0
z2(t, x, p)dpdx = − ξ

τ

∫ L

0

∫ 1

0

∂

∂p
z2(t, x, p)dpdx

=
ξ

τ

∫ L

0
z2(t, x, 0)− z2(t, x, 1)dx. (3.18)

for any ξ ∈ R.

41



Proof. We multiply the third equation in (3.12) by ξz and integrate the result over (0, L) × (0, 1) with
respect to p and x, respectively, to get the desired result.

Throughout this paper, we denote by ◦ and ⋄ the binary operators defined by

(g ◦ u) (t) =
∫ t

0
g(t− s) ‖u(t)− u(s)‖2 ds,

and

(g ⋄ u) (t) =
∫ t

0
g(t− s) (u(s)− u(t)) ds, (3.19)

where u ∈ C([0, T ];L2 (0, L)).
We define the energy associated with the solution of System (3.12)-(3.14) by

E(t) =
1

2

{
ρh ‖ψt (t)‖2 +

ρh3

12
‖ψtx (t)‖2 +

1

2

(
1−

∫ t

0
g(s)ds

)
‖ψxx (t)‖2

+ρh ‖ηt (t)‖2 +
∥∥∥∥ηx (t) +

1

2
(ψx)

2 (t)

∥∥∥∥
2

+ (g ◦ ψxx)(t) + ξ ‖|z (t) |‖2
}
, (3.20)

where ξ is a positive constant such that

α2τ < ξ < (2α1 − α2)τ, (3.21)

with α1 and α1 satisfying
α2 < α1. (3.22)

The next lemma gives an identity for the convolution product.

Lemma 33 ([10, Lemma 2.1]) For real functions g, ϕ ∈ C1(R+), we have

2(g ∗ ϕ) (t)ϕt (t) = −g(t) |ϕ(t)|2 + (g′ ◦ ϕ)(t)

− d

dt


g ◦ ϕ−




t∫

0

g(s)ds


 |ϕ(t)|2


 .

Lemma 34 Assume that (ψ, ψt, η, ηt, z) is a strong solution of the problem (3.12)-(3.14). Then the deriva-
tive of E(·) satisfies

dE(t)
dt

=

(
ξ

2τ
− α1

)
‖ηt (t)‖2 − α2

∫ L

0
ηt(t, x)z(t, x, 1)dx− ξ

2τ
‖z(t, 1)‖2

−1

2
g(t) ‖ψxx (t)‖2 +

1

2
(g′ ◦ ψxx)(t). (3.23)

Moreover, for all t ≥ 0, we have

dE(t)
dt

≤ (
ξ

2τ
+
α2

2
− α1) ‖ηt (t)‖2 + (

α2

2
− ξ

2τ
) ‖z(t, 1)‖2

+
1

2
(g′ ◦ ψxx)(t)

≤ 0. (3.24)

Proof. Multiplying the first equation in (3.12) by ψt, the second and the fourth equations by ηt and ξz ,
respectively, taking into account (3.18), (3.21) and the boundary conditions (3.13), we obtain the identity
(3.23) after integration over (0, L). Making use of Young’s inequality, then (3.24) follows from (3.21).

Lemma 35 (Jensen inequality) Let F be a convex function on [a, b], f : Ω → [a, b] and h are integrable
functions on Ω, h(x) ≥ 0, and

∫
Ω h(x)dx = k > 0, then Jensen’s inequality states that

F

[
1

k

∫

Ω
f(x)h(x)dx

]
≤ 1

k

∫

Ω
F [f(x)]h(x)dx. (3.25)
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3.2 Global well-posedness

In this section we show the existence and the regularity of solutions of the one dimensional viscoelastic von
Kàrmàn System (3.12)-(3.14).

The existence and uniqueness result of problem (3.12)-(3.14) is stated as follows.

Theorem 36 (Well-posedness) Assume that the initial datum satisfy

(ψ0, ψ1) ∈
[
H2

0 (I) ∩H3 (0, L)
]
×H2

0 (0, L) ,

(η0, η1) ∈
[
H2 (0, L) ∩H1

∗ (0, L)
]
×H1

∗ (0, L) ,

f0 ∈ H1(0, 1;H1
∗ (0, L)),

with the compatibility condition f(., 0) = η1.
Moreover, assume that the Hypotheses (A1) , (A2) hold. Then problem (3.12)-(3.14) admits a unique

weak solution
(ψ, ψt , ψtt) ∈ L∞

loc

(
0,∞;

[
H2

0 (0, L)
]2 ×H1

0 (0, L)
)
,

(η, ηt , ηtt) ∈ L∞
loc

(
−τ,∞;

[
H1

∗ (0, L)
]2 × L2 (0, L)

)
.

Proof. Let T > 0 be fixed and denote by Vm and Wm and Zm be the spaces generated by {ei}1≤i≤m ,
{σi}1≤i≤m and {φi}1≤k≤m, where the families {ek}k≥1, {σk}k≥1 and {φk}k≥1 are orthogonal basis for the

spaces H2
0 (0, L) , H

1
∗ (0, L) and H

1
∗

(
0, L;H1(0, 1)

)
respectively and satisfying

‖ek‖ = ‖σk‖ = ‖|φk|‖ = 1, for any k ≥ 1.

Our starting point is to construct the Galerkin approximation (ψm, ηm, zm) of the solution

ψm(t, x) =

m∑

i=1

umi (t)ei(x), η
m(t, x) =

m∑

i=1

vmi (t)σi(x), z
m(t, x, p) =

m∑

i=1

zmi (t)φi(x, p),

where umi , v
m
i , and wm

i , i = 1, 2, ...,m, are determined by the following ordinary integro-differential equa-
tions:




ρh 〈ψm
tt , ei〉+ ρh3

12 〈ψm
ttx, eix〉+ 〈ψm

xx, eixx〉+
〈
ψm
x

(
ηmx + 1

2 (ψ
m
x )2

)
, eix

〉
− 〈g ∗ ψm

xx, eixx〉 = 0

ρh 〈ηmtt , σi〉+
〈
ηmx + 1

2 (ψ
m
x )2 , σix

〉
+ α1 〈ηmt , σi〉+ α2 〈z(1), σi〉 = 0,

τ 〈〈zmt , φi〉〉+
〈〈
zmp , φi

〉〉
= 0,

(3.26)

with initial conditions

ψm(0, x) =
∑m

i=1 u
m
i (0)ei(x), ψm

t (0, x) =
∑m

i=1 (u
m
i )′ (0)ei(x),

ηm(0, x) =
∑m

i=1 v
m
i (0)σi(x), ηmt (0, x) =

∑m
i=1 (v

m
i )′ (0)σi(x),

zm(0, x, p) =
∑m

i=1 z
m
i (0)φi(x, p).

(3.27)

The above sequences are chosen so that

ψm(0, x) → ψ0(0, x), strongly in H3 (0, L) ∩H2
0 (0, L) ,

ψm
t (0, x) → ψ1(0, x), strongly in H2

0 (0, L) ,
ηm(0, x) → η0(0, x), strongly in H2 (0, L) ∩H1

∗ (0, L) ,
ηmt (0, x) → η1(0, x), strongly in H1

∗ (0, L) ,
zm(0, x, p) → z0(0, x, p), strongly in H1

∗ (0, L;H
1 (0, 1)).

(3.28)
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By virtue of the theory of ordinary differential equations, the System (3.26)-(3.27) has a unique local
solution which is extended to a maximal interval [0, Tm[ (with 0 < Tm ≤ ∞). In the next step, we obtain
a priori estimates for the solution such that it can be extended beyond [0, Tm[ to obtain a single solution
defined for all t > 0.

In order to use a standard compactness argument for the limiting procedure, it suffices to derive some
a priori estimates for umi (t), vmi (t).

The first estimate. Atandard calculations, using (3.26)-(3.27), similar to those used to derive (3.24),
yields

d

dt
Em(t) ≤ 0, ∀t ≥ 0, (3.29)

where

Em(t) =
1

2

{
ρh ‖ψm

t (t)‖2 + ρh3

12
‖ψm

xt (t)‖2 +
(
1−

∫ t

0
g(s)ds

)
‖ψm

xx (t)‖2 + ρh ‖ηmt (t)‖2

+

∥∥∥∥η
m
x (t) +

1

2
(ψm

x )2 (t)

∥∥∥∥
2

+ g ◦ ψm
xx (t) + ξ ‖|zm (t)|‖2

}
. (3.30)

Integrating (3.29) over (0, t) yields

Em(t) ≤ Em(0) ≤ C, ∀t > 0. (3.31)

for some positive constant C independent of m ∈ N.
Also, to get an priori estimate for η, we make use of the embedding H1 (0, L) →֒ L∞ (0, L) and the

boundedness of Em(·) to obtain

‖ηmx (t)‖2 ≤
∥∥∥∥η

m
x (t) +

1

2
(ψm

x )2 (t)

∥∥∥∥
2

+
1

4

∥∥(ψm
x )2 (t)

∥∥2 (3.32)

≤
∥∥∥∥η

m
x (t) +

1

2
(ψm

x )2 (t)

∥∥∥∥
2

+
1

4

∥∥(ψm
x )2 (t)

∥∥
L∞(0,L)

‖(ψm
x ) (t)‖2

≤
∥∥∥∥η

m
x (t) +

1

2
(ψm

x )2 (t)

∥∥∥∥
2

+
L2

4
‖(ψm

x )(t)‖2L∞(0,L) ‖(ψm
xx) (t)‖2

≤
∥∥∥∥η

m
x (t) +

1

2
(ψm

x )2 (t)

∥∥∥∥
2

+ c ‖(ψm
xx)(t)‖2 ‖(ψm

xx) (t)‖2

≤ c
(
Em(0) + E2

m(0)
)
≤ C.

where C is a positive constant independent of m ∈ N.
These estimates imply that the solution (ψm, ηm, zm) of System (3.26)-(3.27) exists globally in [0, T [.
Estimates (3.31)-(3.33) yield

ψm is bounded in L∞(0, T,H2
0 (0, L) ,

ψm
t is bounded in L∞(0, T,H1

0 (0, L) ,
ηm is bounded in L∞(0, T,H1

∗ (0, L) ,
ηmt is bounded in L∞(0, T, L2 (0, L)),
ηmx + 1

2(ψ
m
x )2 is bounded in L∞(0, T, L2 (0, L)),

zm is bounded in L∞(0, T, L2((0, L)× (0, 1)),

(3.33)

for any T > 0.
The second estimate. We have to estimate ψm

tt (0), ψ
m
ttx(0) and η

m
tt (0) in L

2 norm.
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Considering t = 0 in the first equation of (3.26), then multiplying it by (umi )′′ (0) and summing up over
i from 1 to m, it follows that

0 = ρh ‖ψm
tt (0)‖2 +

ρh3

12
‖ψm

ttx(0)‖2 + 〈ψm
0xx, ψ

m
ttxx(0)〉 (3.34)

+

〈
ψm
0x

(
ηm0x +

1

2
(ψm

0x)
2

)
, ψm

ttx(0)

〉
.

Integrating by parts and using Young’s inequality, we get

〈ψm
0xx, ψ

m
ttxx(0)〉 = −〈ψm

0xxx, ψ
m
ttx(0)〉 ,

≤ Cδ ‖ψm
0xxx‖2 + δ ‖ψm

ttx(0)‖2 . (3.35)

Similarly

〈
ψm
0x

(
ηm0x +

1

2
(ψm

0x)
2

)
, ψm

ttx(0)

〉
≤ δ ‖ψm

ttx(0)‖2 + Cδ

∥∥∥∥ψ
m
0x

(
ηm0x +

1

2
(ψm

0x)
2

)∥∥∥∥
2

. (3.36)

Using the embedding H1 (0, L) →֒ L∞ (0, L), we estimate the second term of the right hand side of (3.36)
as follows

∥∥∥∥ψ
m
0x

(
ηm0x +

1

2
(ψm

0x)
2

)∥∥∥∥
2

≤ ‖ψm
0x‖2L∞(0,L)

∥∥∥∥η
m
0x +

1

2
(ψm

0x)
2

∥∥∥∥
2

≤ c ‖ψm
0xx‖2

∥∥∥∥η
m
0x +

1

2
(ψm

0x)
2

∥∥∥∥
2

≤ cE2
m(0) (3.37)

≤ C.

After choosing a suitable δ, we infer from (3.27)-(3.28) and (3.34) that there exists a positive constant C
independent of m such that

‖ψm
tt (0)‖2 + ‖ψm

ttx(0)‖2 ≤ C. (3.38)

Next, multiplying the second equation of (3.26) by (vmi )′′ (0), choosing t = 0 and summing up over i from
1 to m, we get

ρh ‖ηmtt (0)‖2 +
〈
ηm0x +

1

2
(ψm

0x)
2 , ηmttx(0)

〉
+ α1 〈ηm1 , ηmtt (0)〉+ α2 〈zm0 (1), ηmtt (0)〉 = 0. (3.39)

Applying Young’s and Poincaré’s inequalities, using the embedding H1 (0, L) →֒ L∞ (0, L) and the fact
that Em(·) is non-increasing, we conclude that

〈
ηm0x +

1

2
(ψm

0x)
2 , ηmttx(0)

〉
= −〈ηm0xx + ψm

0xψ
m
0xx, η

m
tt (0)〉

≤ δ ‖ηmtt (0)‖2 + Cδ ‖ηm0xx + ψm
0xψ

m
0xx‖2

≤ δ ‖ηmtt (0)‖2 + Cδ ‖ηm0xx‖2 + Cδ ‖ψm
0x‖L∞(I) ‖ψm

0xx‖2

≤ δ ‖ηmtt (0)‖2 + cE2
m(0) (3.40)

≤ δ ‖ηmtt (0)‖2 + C.

Then we use Young’s inequality to obtain, for any δ > 0,

〈ηm1t , ηmtt (0)〉 ≤ δ ‖ηmtt (0)‖2 + Cδ ‖ηm1 ‖2 , (3.41)
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and
〈zm0 (1), ηmtt (0)〉 ≤ δ ‖ηmtt (0)‖2 + Cδ ‖zm0 (1)‖2 . (3.42)

Hence, from (3.27)-(3.28) and with a suitable choice of δ, there exists a positive constant C independent
of m such that

‖ηmtt (0)‖ ≤ C. (3.43)

Next, differentiating the first equation of (3.26) with respect to t, and multiplying the result by (umi )′′ (t),
adding from i = 1 to m, we obtain

1

2

d

dt

{
ρh ‖ψm

tt (t)‖2 +
ρh3

12
‖ψm

ttx (t)‖2
}
+ g(0) ‖ψm

txx (t)‖2

+

〈
d

dt

(
ψm
x (ηmx +

1

2
(ψm

x )2) (t)

)
, ψm

ttx (t)

〉

=
d

dt

〈
g′ ∗ ψm

xx (t) , ψ
m
txx (t)

〉
−
〈
g′′ ∗ ψm

xx (t) , ψ
m
txx (t)

〉
− g′(0) 〈ψm

xx (t) , ψ
m
txx (t)〉

+g(0)
d

dt
〈ψm

xx (t) , ψ
m
txx (t)〉 . (3.44)

We have
〈
d

dt

(
ψm
x (ηmx +

1

2
(ψm

x )2) (t)

)
, ψm

ttx (t)

〉
=

〈
ψm
tx(η

m
x +

1

2
(ψm

x )2) (t) , ψm
ttx (t)

〉

+ 〈ψm
x (ηmtx + ψm

xtψ
m
x ) (t) , ψm

ttx (t) .〉 (3.45)

Making use of Young’s inequality, the embedding H1 (0, L) →֒ L∞ (0, L) and (3.33), we conclude that

〈
ψm
tx(η

m
x +

1

2
(ψm

x )2) (t) , ψm
ttx (t)

〉
≤ Cδ

∥∥∥∥ψ
m
tx(η

m
x +

1

2
(ψm

x )2) (t)

∥∥∥∥
2

+ δ ‖ψm
ttx (t)‖2 ,

≤ C + δ ‖ψm
ttx (t)‖2 . (3.46)

Making use of the embedding H1 (0, L) →֒ L∞ (0, L), we get

〈ψm
x (ηmtx + ψm

xtψ
m
x ) (t) , ψm

ttx (t)〉 = 〈ψm
x (t) ηmtx (t) , ψ

m
ttx (t)〉+

〈
ψm
xt (t) (ψ

m
x (t))2 , ψm

ttx (t)
〉

(3.47)

≤ δ ‖ψm
x (t)‖2L∞(0,L) ‖ηmtx (t)‖2 + Cδ ‖ψm

ttx (t)‖2

+δ ‖ψm
xt (t)‖L∞(0,L)

∥∥∥(ψm
x )2 (t)

∥∥∥
2

≤ L2δ ‖ψm
xx (t)‖2 ‖ηmtx (t)‖2 + Cδ ‖ψm

ttx (t)‖2

+δcEm(0) ‖ψm
xx (t)‖2 ‖ψm

xxt (t)‖2

≤ δC ‖ψm
txx (t)‖2 + C ‖ηmtx (t)‖2 + C ‖ψm

ttx (t)‖2 .

Since g′ and g′′ are continuous functions on [0, T ] then m1 = sup
t∈[0,T ]

|g′| and m2 = sup
t∈[0,T ]

|g′′| exist for all

T <∞. Using Cauchy-Shwarz and Young’s inequalities produce the estimates

〈
g′ ∗ ψm

xx, ψ
m
txx

〉
≤ m2

1Cδ

∫ t

0
‖ψm

xx(s)‖2 ds+ δ ‖ψm
txx‖2 , (3.48)

and
〈
g′′ ∗ ψm

xx, ψ
m
txx

〉
≤ m2

2Cδ

∫ t

0
‖ψm

xx(s)‖2 ds+ δ ‖ψm
txx‖2 . (3.49)

46



Employing Young’s inequality, combining (3.45)-(3.49), then integrating (3.44) over (0, t), we obtain

ρh ‖ψm
tt (t)‖2 +

ρh3

12
‖ψm

ttx (t)‖2 + (g(0)− Cδ) ‖ψm
txx (t)‖

≤ Cδ

∫ t

0
‖ψm

txx(s)‖2 + Cδ

∫ t

0
‖ψm

ttx(s)‖2 ds

Cδ

∫ t

0
‖ηmtx(s)‖2 ds+ Cδ

∫ t

0

∫ s

0
‖ψm

xx(χ)‖2 dχds+ ρh ‖ψm
tt (0)‖2

+
ρh3

12
‖ψm

ttx(0)‖2 + C, (3.50)

where C is a positive constant independent of m but depends on T and the initial data. The term∫ t

0

∫ s

0 ‖ψm
xx(χ)‖2 dχds can be estimated as follows

∫ t

0

∫ s

0
‖ψm

xx(χ)‖2 dχds ≤ cE(0)
∫ t

0

∫ s

0
dχds ≤ CT 2

2
. (3.51)

Next, Multiplying the second equation of (3.26) by (vmi )′′ and summing up over i from 1 to m, we arrive
at

1

2

d

dt

{
ρh ‖ηmtt (t)‖2 + ‖ηmxt (t)‖2

}
+ 〈ψm

xt (t)ψ
m
x (t) , ηmttx (t)〉+ α1 ‖ηmtt (t)‖2 + α2 〈zt(t, 1), ηmtt (t)〉 = 0. (3.52)

Now, applying Young’s and Poincaré’s inequalities, we get

〈ψm
xt (t)ψ

m
x (t) , ηmttx (t)〉 = −〈ψm

xxt (t)ψ
m
x (t) , ηmtt (t)〉 − 〈ψm

xt (t)ψ
m
xx (t) , η

m
tt (t)〉

≤ 2δ ‖ηmtt (t)‖2 + Cδ ‖ψm
x (t)‖L∞(I) ‖ψm

xxt (t)‖2

≤ 2δ ‖ηmtt (t)‖2 + Cδ ‖ψm
xxt (t)‖2 ‖ψm

xx (t)‖2

≤ 2δ ‖ηmtt (t)‖2 + Cδ ‖ψm
xxt (t)‖2 . (3.53)

A differentiation with respect to t of the third equation of (3.26) implies

〈〈zmtt , φi〉〉+
1

τ

〈〈
zmpt , φi

〉〉
= 0. (3.54)

Multiplying (3.54) by (zmi )′ (t), integrating by parts and adding from i = 1 to m, we obtain

τ
d

dt
‖|zmt (t) |‖2 + ‖zmt (t, 1)‖2 − ‖zmt (t, 0)‖2 = 0. (3.55)

Taking the sum of (3.52) and (3.55) and integrating over (0, t), we obtain

ρh

2
‖ηmtt (t)‖2 +

1

2
‖ηmxt (t)‖2 + τ |||zmt (t) |||2 + α1

∫ t

0
‖ηmtt (s)‖2 ds+

1

2

∫ t

0
‖zmt (s, 1)‖2 ds

≤ 1

2
‖ηmtt (0)‖2 +

1

2
‖ηm1x‖2 + τ

∫ 1

0
‖zmt (0, p)‖2 dp+ Cδ

∫ t

0
‖ηmtt (s)‖2 ds

+Cδ

∫ t

0
‖ψm

xxt(s)‖2 ds+ cδ

∫ t

0
‖zt(s, 1)‖2 ds. (3.56)

Combining (3.50) and (3.56) with a suitable choice of δ, then using Gronwall’s lemma, we arrive at

‖ψm
tt (t)‖2 + ‖ψm

ttx (t)‖2 + ‖ψm
txx (t)‖+ ‖ηmtt (t)‖2 + ‖ηmxt (t)‖2 + ‖|zmt (t) |‖2 ≤ C, (3.57)
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where C is independent of m ∈ N.
Replacing φi by −φixx in the third equation of (3.26), multiplying the resulting equation by zmi (t),

summing over i from 1 to m, leads to

τ
d

dt
‖|zmx (t)|‖2 + ‖zmx (t, 1)‖2 − ‖zmx (t, 0)‖2 = 0.

A integration over (0, t) yields

τ | ‖zmx (t) |‖+
∫ t

0
‖zmx (s, 1)‖2 ds =

∫ t

0
‖ηmxt (s)‖2 ds+ τ

∫ 1

0
‖fm0x (p)‖2 dp ≤ C, (3.58)

where C independent of m.
From (3.31), (3.33), (3.57) and (3.58), we infer that

ψm is bounded in L∞(0, T,H2
0 (0, L)),

ψm
t is bounded in L∞(0, T,H2

0 (0, L)),
ηm is bounded in L∞(0, T,H1

∗ (0, L)),
ηmt is bounded in L∞(0, T,H1

∗ (0, L)),
zm is bounded in L∞(0, T ;H1

∗

(
0, L;L2((0, 1)

)
.

(3.59)

Now, using (3.33) and (3.59), we deduce that

ψm → ψ weak-star in W 1,∞(0, T ;H2
0 (0, L)) ∩W 2,∞

(
0, T ;H1

0 (0, L)
)
, (3.60)

ηm → η weak-star in W 1,∞(0, T ;H1
∗ (0, L)) ∩W 2,∞

(
0, T ;L2 (0, L)

)
, (3.61)

ηmx +
1

2
(ψm

x )2 → f weak-star in L∞(0, T ;L2 (0, L)), (3.62)

zm → z weak-star in L∞(0, T ;H1
∗ ((0, L) ;L

2 (0, L)) ∩W 1,∞
(
0, T ;L2((0, L)× (0, 1)

)
, (3.63)

as m→ ∞, for a suitable function f ∈ L∞(0, T ;L2 (0, L)).
According to (3.59), ψm is uniformly bounded in W 1,∞(0, T ;H2

0 (I)), in particular, it belongs to
W 1,2(0, T ;H2

0 (I)). In this way, we can extract a subsequence ψm such that

ψm → ψ strongly in L2
(
0, T ;H1

0 (0, L)
)
as m→ ∞, (3.64)

Therefore,
(ψm

x )2 → ψ2
x almost everywhere in (0,∞)× (0, L) as m→ ∞, (3.65)

Similarly, by using the compact embedding H1 (0, L) →֒ L2 (0, L), we infer that

ηm → η strongly in L2((0,∞)× (0, L)), (3.66)

which implies
ηm → η almost everywhere in (0,∞)× (0, L) as m→ ∞.

Combining (3.60)-(3.63) and (3.65), it follows that f = ηx +
1
2ψ

2
x, and

ψm
x (ηmx +

1

2
(ψm

x )2) → ψx(ηx +
1

2
ψ2
x) weakly in L2((0,∞)× (0, L)).

Similarly, we obtain

zm → z weakly in L2(0, T ;L2 ((0, L)× (0, 1)) , as m→ ∞ (3.67)

The convergence (3.64)-(3.67) allows us to pass to the limit in (3.26)-(3.27). Thus, the problem (3.12)-(3.14)
admits a global weak solution (ψ, η, z).

Uniqueness can be proved by the straightforward methods and Gronwall’s inequality.
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3.3 General decay

In this section we consider a wider class of kernel functions, and we establish a general decay result, which
contains the usual exponential and polynomial decay rates as special cases. The main result of general
decay is the following.

Theorem 37 Assume that (A1), (A2) holds. Then for any solution of (3.12)-(3.14), there exist two
positive constants k1 ≤ 1 and k2 such that the energy functional satisfies

E(t) ≤ k2H
−1
1

(
k1

∫ t

g−1(r)
ξ(s)ds

)
, ∀t ≥ 0, (3.68)

where

H1(t) =

∫ r

t

1

sH ′(s)
ds,

and, H1 is decreasing and convex function on (0, r], with limH1(t) = +∞ when t −→ 0.

To prove Theorem 37, we first proceed to prepare a series of useful lemmas.

Lemma 38 The following inequalities hold

(g ⋄ ψ)2 (t) ≤
∫ t

0
g(t− s) (ψ(t)− ψ(s))2 ds, (3.69)

(
g′ ⋄ ψ

)2
(t) ≤ −c

∫ t

0
g′(t− s) (ψ(t)− ψ(s))2 ds, (3.70)

where g ⋄ ψ is given by (3.19).

Proof. For inequality (3.69), we have

(g ⋄ ψ)2 (t) =

(∫ t

0
g(t− s) (ψ(t)− ψ(s)) ds

)2

=

(∫ t

0

√
g(t− s)

√
g(t− s) (ψ(t)− ψ(s)) ds

)2

.

Cauchy-Schwarz inequality leads to

(g ⋄ ψ)2 (t) ≤
∫ t

0
g(s)ds

∫ t

0
g(t− s) (ψ(t)− ψ(s))2 ds

≤
∫ t

0
g(t− s) (ψ(t)− ψ(s))2 ds.

Similarly, we prove (3.70) by replacing
√
g(t− s) by

√
−g′(t− s).

Let F be the functional defined by

F(t) =
N1

2
I(t) +N1J (t) +N2K(t) + L(t), ∀t ≥ 0, (3.71)

where

I(t) = 〈ρhDψt(t), ψ(t)〉 , (3.72)

J (t) = 〈ρhηt(t), η(t)〉 , (3.73)

K(t) = −〈ρhDψt(t), g ⋄ ψ(t)〉 , (3.74)

L(t) =

∫ L

0

∫ 1

0
e−2τpz2(t, x, p)dpdx, (3.75)
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and N1 and N2 are positive constants that will be chosen later.
Let λ > 0 and define Y(·) by

Y(t) = λE(t) + F(t), ∀t ≥ 0, (3.76)

where E(·) is defined in (3.20).
The following proposition gives the equivalence between E(·) and the functional Y(·).

Proposition 39 Assume that (A1) holds, then there exist two positive constants δ1, δ2 such that

δ1E(t) ≤ Y(t) ≤ δ2E(t), ∀t ≥ 0. (3.77)

Proof. To compare Y(·) with E(·), we have to estimate the terms of the right hand side of (3.71) and to
show that

|F(t)| ≤ c∗E(t), ∀t ≥ 0,

for some c∗ > 0.
From (3.72), (3.73), (3.74) and (3.75), we obtain
• Estimate for I(·)

I (t) = ρh 〈Dψt (t) , ψ (t)〉 = ρh

〈
ψt (t)−

h2

12
ψtxx (t) , ψ (t)

〉
.

Integration by parts and applying poincaré’s and young’s inequalities yield

I(t) = ρh 〈ψt (t) , ψ (t)〉+ ρh3

24
‖ψtx (t)‖2 (3.78)

≤ ρh

2
‖ψt (t)‖2 +

ρhL4

2
‖ψxx (t)‖2 +

ρh3

12
‖ψxt (t)‖2

≤ c1E(t).

• Estimate for J (·)
Using Young’s inequality, we obtain

J (t) = ρh 〈ηt(t), η(t)〉 ≤
ρh

2
‖ηt(t)‖2 +

ρh

2
‖η(t)‖2 .

Applying Poincaré’s inequality, one gets

‖η(t)‖2 ≤ L2 ‖ηx(t)‖2 ≤ L2

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

+
L2

4

∥∥ψ2
x(t)

∥∥2 .

Applying Poincaré’s inequality and the embedding H1(0, L) →֒ L∞(0, L) and then using the fact that
E(·) is decreasing, yields

‖η(t)‖2 ≤ L2

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

+
L4

4
‖ψx(t)‖2L∞(0,L) ‖ψxx(t)‖2

≤ L2

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

+ c ‖ψxx(t)‖2 ‖ψxx(t)‖2

≤ L2

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

+ cE(0) ‖ψxx(t)‖2 (3.79)

≤ c2E(t).

• Estimate for K(·)
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Using (3.69), applying Young’s and then Poincaré inequalities, one gets

K(t) = −〈ρhDψt(t), g ⋄ ψ(t)〉 = −ρh 〈ψt(t), g ⋄ ψ(t)〉+
ρh3

12
〈ψtx(t), g ⋄ ψ(t)〉

≤ ρh

2
‖ψt(t)‖2 +

ρh3

24
‖ψtx(t)‖2 +

(
ρhL4

2
+
ρh3L2

24

)
g ◦ ψxx(t)

≤ c3E(t). (3.80)

• Estimate for L(·)
Since L(·) defines a norm in L2(0, L;L2(0, 1)) which is equivalent to the one induced by L2(0, L;L2(0, 1)),

then we have

L(t) ≤
∫ L

0

∫ 1

0
e−2τpz2dpdx ≤

∫ L

0

∫ 1

0
z2dpdx ≤ E(t). (3.81)

According to (3.78), (3.79), (3.80) and (3.81), we have

|F(t)| ≤ c∗E(t), ∀t ≥ 0,

for
c∗ = max{c1, c2, c3, 1}. (3.82)

Therefore, we obtain
|Y(t)− λE(t)| ≤ c∗E(t), ∀t ≥ 0,

that is
(λ− c∗)E(t) ≤ Y(t) ≤ (λ+ c∗)E(t), ∀t ≥ 0.

So, we can choose λ large enough such that δ1 = λ− c∗ > 0, δ1 = λ+ c∗ > 0. Then (3.77) holds true which
completes the proof.

In order to proof the main theorem, we need some additional lemmas.

Lemma 40 Suppose that (ψ, ψt, η, ηt, z) is the solution of (3.12)-(3.14). Then the derivative of the func-
tional I(·) satisfies

d

dt
I(t) ≤ − (l − ε) ‖ψxx(t)‖2 + ρh ‖ψt(t)‖2 +

ρh3

12
‖ψtx(t)‖2

−
〈
ψx(t)(ηx +

1

2
ψ2
x)(t), ψx(t)

〉
+ Cǫg ◦ ψxx(t), (3.83)

where ε is an arbitrary positive constant.

Proof. Using (3.12) and (3.69), we have

d

dt
I(t) = 〈ρhDψtt(t), ψ(t)〉+ 〈ρhDψt(t), ψt(t)〉 (3.84)

= I1(t) + I2(t) + I3(t) +

〈
ρh

(
I − h2

12
∂2x

)
ψt(t), ψt(t)

〉
,

where

I1(t) = −〈ψxxxx(t), ψ(t)〉 ,

I2(t) =

〈
ψ(t),

t∫

0

g(t− s)ψxxxx(s)ds

〉
,

I3(t) =

〈[
ψx

(
ηx +

1

2
ψ2
x

)]

x

, ψ(t)

〉
.
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Integrating I1(·) and I2(·) by parts twice, and using the boundary conditions, we obtain

I1(t) = −‖ψxx(t)‖22, (3.85)

I2(t) =

〈
ψxx(t),

t∫

0

g(t− s)ψxx(s)ds

〉
. (3.86)

A integration by parts in I3(·), leads to

I3(t) = −
〈
ψx(t)

(
ηx +

1

2
ψ2
x

)
(t), ψx(t)

〉
. (3.87)

Substituting (3.85)–(3.87) in (3.84), we get

d

dt
I(t) (3.88)

= −‖ψxx(t)‖2 +
〈
ψxx(t),

t∫

0

g(t− s)ψxx(s)ds

〉
−
〈
ψx(t)

(
ηx +

1

2
ψ2
x

)
(t), ψx(t)

〉

+ρh ‖ψt(t)‖2 +
ρh3

12
‖ψtx(t)‖2 .

But

〈
ψxx(t),

t∫

0

g(t− s)ψxx(s)ds

〉
=

〈
ψxx(t),

t∫

0

g(t− s) (ψxx(s)− ψxx(t)) ds

〉
+

t∫

0

g(s)ds ‖ψxx(t)‖2 . (3.89)

Substituting (3.89) in (3.88), we obtain

d

dt
I(t) = −(1−

t∫

0

g(s)ds) ‖ψxx‖2 +
〈
ψxx(t),

t∫

0

g(t− s) (ψxx(s)− ψxx(t)) ds

〉
(3.90)

−
〈[
ψx

(
ηx +

1

2
ψ2
x

)]
, ψx(t)

〉

+ρh ‖ψt‖2 +
ρh3

12
‖ψtx‖2 .

Making use of Young’s and Cauchy-Schwarz inequalities for the second term in the right-hand side of
(3.90), we get, for any ε > 0,

〈
ψxx(t),

t∫

0

g(t− s) (ψxx(s)− ψxx(t)) ds

〉
≤ ε ‖ψxx(t)‖2 + Cεg ◦ ψxx(t). (3.91)

From (3.90)-(3.91) and (3.15), we infer that

d

dt
I(t) ≤ − (l − ε) ‖ψxx(t)‖2 −

〈
ψx(t)

(
ηx +

1

2
ψ2
x

)
(t), ψx(t)

〉
+ ρh ‖ψt(t)‖2

+
ρh3

12
‖ψtx(t)‖2 + Cεg ◦ ψxx(t),

which proves Lemma 40.
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Lemma 41 Assume that (ψ,ψt, η, ηt, z) is the solution of (3.12)-(3.14). Then the derivative of the func-
tional J (·) satisfies

d

dt
J (t) ≤ ρh ‖ηt(t)‖2 −

〈
ηx(t) +

1

2
ψ2
x(t), ηx(t)

〉
+ εc

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

+ εc ‖ψxx(t)‖2

+Cε ‖ηt(t)‖2 + Cε ‖z (t, 1)‖2 . (3.92)

where ε is an arbitrary positive constant.

Proof. A differentiation of J (·) yields
d

dt
J (t) ≤ ρh ‖ηt(t)‖2 −

〈
ηx(t) +

1

2
ψ2
x(t), ηx(t)

〉
− α1 〈ηt(t), η(t)〉 − α2 〈z (t, 1) , η(t)〉 .

Applying Young’s inequality, we obtain

d

dt
J (t) ≤ ρh ‖ηt(t)‖2 −

〈
ηx(t) +

1

2
ψ2
x(t), ηx(t)

〉
+ (α1 + α2) ε ‖η(t)‖2

+Cε ‖ηt(t)‖2 + Cε ‖z (t, 1)‖2 . (3.93)

Keeping in mind (3.79), the proof follows.

Lemma 42 Suppose that (ψ, ψt, η, ηt, z) is the solution of (3.12)-(3.14). Then the derivative of the func-
tional K(·) satisfies

d

dt
K(t) ≤ −ρh

(
g0 −

h2

12
ε

)
‖ψt(t)‖2 − (g0 − ε)

ρh3

12
‖ψtx(t)‖2

+
(
cε3 + 2ε+ ρhε

)
‖ψxx(t)‖2 + cε

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

−Cεg
′ ◦ ψxx(t) + Cεg ◦ ψxx(t), (3.94)

where ε is an arbitrary positive constant and

g0 :=

∫ t0

0
g(s)ds ≤

∫ t

0
g(s)ds, ∀t ≥ t0.

Proof. Differentiating K(·) and using (3.12), we obtain

d

dt
K(t) = −

〈
ρhDψtt(t),

∫ t

0
g(t− s)ψ(s)ds

〉

−
〈
ρhDψt(t), g

′ ⋄ ψ(t) +
∫ t

0
g(s)dsψt(t)

〉

= −
∫ t

0
g(s)ds

(
ρh ‖ψt(t)‖2 +

ρh3

12
‖ψtx(t)‖2

)
+ 〈ψxx(t), g ⋄ ψxx(t)〉

−
〈
ψx(t)(ηx +

1

2
ψ2
x)(t), g ◦ ψx(t)

〉

+

〈∫ t

0
g(t− s)ψxx(s)ds, g ⋄ ψxx(t)

〉

−ρh
〈
ψt(t), g

′ ⋄ ψ(t)
〉
+
ρh3

12

〈
ψt(t), g

′ ⋄ ψxx(t)
〉

: = −g0
(
ρh ‖ψt(t)‖2 +

ρh3

12
‖ψtx(t)‖2

)
+ J1(t) + J2(t) + J3(t) + J4(t) + J5(t).
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Next, we shall analyze the terms Ji(·), i = 1, ..., 5.

Estimate for J1(·)
Applying Young’s inequality and (3.69), we get

J1(t) = 〈ψxx(t), g ⋄ ψxx(t)〉 ≤ ε ‖ψxx(t)‖2 + Cεg ⋄ ψxx(t), (3.95)

where ε is an arbitrary positive constant.

Estimate for J2(·)
We follow the previous steps, with applying Poincaré’s inequality, we get

J2(t) = −
〈
ψx(t)

(
ηx +

1

2
ψ2
x

)
(t), g ⋄ ψx(t)

〉
(3.96)

≤ ε2
∥∥∥∥ψx(t)

(
ηx +

1

2
ψ2
x

)
(t)

∥∥∥∥
2

+ Cεg ◦ ψxx(t).

On the other hand, we know that H1(Ω) →֒ L∞(Ω), so

∥∥∥∥ψx(t)

(
ηx +

1

2
ψ2
x

)
(t)

∥∥∥∥
2

≤ ‖ψx(t)‖2L∞(I)

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

≤ c ‖ψxx(t)‖2
∥∥∥∥ηx(t) +

1

2
ψ2
x(t)

∥∥∥∥
2

≤ εc ‖ψxx(t)‖2 +
c

ε

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

.

This implies that

J2(t) ≤ cε3 ‖ψxx‖2 +
cε

4

∥∥∥∥ηx +
1

2
ψ2
x

∥∥∥∥
2

+ Cεg ◦ ψxx.

Estimate for J3(·)
We use (3.69) to get

J3(t) =

〈∫ t

0
g(t− s)ψxx(s)ds, g ⋄ ψxx(t)

〉
(3.97)

= −
∥∥∥∥
∫ t

0
g(t− s) (ψxx(t)− ψxx(s)) ds

∥∥∥∥
2

+

∫ t

0
g(s)ds 〈ψxx(t), g ⋄ ψxx(t)〉

≤ ε ‖ψxx(t)‖2 + Cεg ◦ ψxx(t).

Estimate for J4(·)
Applying Young’s, Poincaré’s inequalities and using (3.70), we conclude that

J4(t) = −ρh
〈
ψt(t), g

′ ⋄ ψ(t)
〉
≤ ρhε ‖ψxx(t)‖2 − Cεg

′ ◦ ψxx(t). (3.98)

Estimate for J5(·)
Finally, for J5(·), invoking (3.70), we obtain

J5(t) =
ρh3

12

〈
ψt(t), g

′ ⋄ ψxx(t)
〉
≤ ρh3

12
ε ‖ψt(t)‖2 − Cεg

′ ◦ ψxx(t). (3.99)

Combining (3.95)-(3.99), we arrive at the proof of (42).
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Lemma 43 Suppose that (ψ,ψt, η, ηt, z) is the solution of (3.12)-(3.14). Then the time derivative of the
functional L(·) satisfies

d

dt
L(t) ≤ −2L(t) + α1e

−2τ

τ
‖z(t, 1)‖2 + α2

τ
‖ηt(t)‖2 . (3.100)

Proof. Keeping in mind that zt(t, x, p) = − 1
τ
zp(t, x, p), we infer

d

dt
L(t) = −2

τ

∫ L

0

∫ 1

0
e−2τpzp(t, x, p)z(t, x, p)dpdx = −1

τ

∫ L

0

∫ 1

0
e−2τp(z2(t, x, p))pdpdx

= −2L(t) + α1e
−2τ

τ
‖z(t, 1)‖2 + α2

τ
‖ηt(t)‖2 .

Proposition 44 Assume that (A1) and (A2) hold, then there exists two positive constants β1, β2 such that

d

dt
Y(t) ≤ −β1E(t) + β2g ◦ ψxx, ∀t ≥ 0. (3.101)

Proof. By using (3.71), (3.76) and combining (3.83)-(3.100), we get

d

dt
Y(t)

≤
{
−N1

2
(l − ε) +N1cε+N2

(
cε3 + 2ε+ ρhε

)}
‖ψxx(t)‖2

+ρh

{
−N2

(
g0 −

h2

12
ε

)
+
N1

2

}
‖ψt(t)‖2 +

{
N1Cε + λ(

ξ

2τ
+
α2

2
− α1)

}
‖ηt(t)‖2

+
ρh3

12

{
N1

2
−N2 (g0 − ε)

}
‖ψtx(t)‖2 + {N1 (εc− 1) + cN2ε}

∥∥∥∥ηx(t) +
1

2
ψ2
x(t)

∥∥∥∥
2

−
{
N2Cε −

λ

2

}
g′ ◦ ψxx(t) + Cε (N1 +N2) g ◦ ψxx(t)− 2M(t)

+

{
N2Cε −

e−2τα1

τ
+ λ(

α2

2
− ξ

2τ
)

}
‖z(t, 1)‖2 . (3.102)

We want to impose suitable conditions on the different parameters so that the coefficients on the right
hand side of (3.102) are all negative. That is to obtain the following inequalities

N1cε+N2

(
cε3 + 2ε+ ρhε

)
<

N1

2
(l − ε) , (3.103)

N1 < 2N2

(
g0 −

h2

12
ε

)
, (3.104)

N1 < 2N2 (g0 − ε) , (3.105)

cN2ε < N1 (1− εc) , (3.106)

N2Cε <
λ

2
, (3.107)

N2Cε <
e−2τα1

τ
− λ(

α2

2
− ξ

2τ
), (3.108)

N1Cε < −λ( ξ
2τ

+
α2

2
− α1). (3.109)
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First, we pick ε such that

ε < min

{
l,
12g0
h2

, g0,
1

c

}
,

so that the above system makes sense. Now, observe that for ε << 1, we get from inequality (3.103)

N1cε+N2

(
cε3 + 2ε+ ρhε

)
≤ ε (N1c+N2 (c+ 2 + ρh)) ,

which means that it is satisfied for all ε such that

ε <
N1l

(N1c+N2 (c+ 2 + ρh))
, (3.110)

for any N1, N2 > 0. Simiarly, inequality (3.106) is verified for all ε satisfies

ε <
N1

(cN2 +N1c)
, (3.111)

for any N1, N2 > 0. To satisfy (3.103) and (3.106), it is enough to pick N1 and N2 such that

N1 < min

{
2N2

(
g0 −

h2

12
ε

)
, 2N2 (g0 − ε)

}
,

with ε is smaller than in (3.110) and (3.111) if needed. Concerning (3.107)-(3.109), we pick

λ > max

{
α2

a1τ
,− N2Cε

(α2
2 − ξ

2τ )
,− N1Cε

( ξ
2τ + α2

2 − α1)
, c∗

}
,

where c∗ is defined in (3.82). (Recall that α2
2 − ξ

2τ and ξ
2τ +

α2
2 −α1 are negative by assumption (3.21)).

We consider the following two cases.

Case I. H(t) is linear:
By Multiplying (3.101) by ζ(·) and using (3.24), we get

d

dt
Y(t)ζ(t) ≤ −β1ζ(t)E(t) + β2ζ(t)g ◦ ψxx

≤ −β1ζ(t)E(t) + β2gζ ◦ ψxx

≤ −β1ζ(t)E(t)− β2ag
′ ◦ ψxx

≤ −β1ζ(t)E(t)− cE ′(t),

which gives, since ζ(·) is non-increasing,

d

dt
(Y(t)ζ(t) + cE(t)) ≤ −β1ζ(t)E(t), ∀t ≥ t1.

Hence, using the fact that Y(·)ζ(t) + cE(·) is equivalent to E(·), it is easy to see that

d

dt
(Y(t)ζ(t) + cE(t)) ≤ −β1ζ(t)(Y(t)ζ(t) + cE(t)), ∀t ≥ t1,

for some β1 > 0. Then

(Y(t)ζ(t) + cE(t)) ≤ γ2e
−β1

∫ t

t1
ζ(s)ds

, ∀t ≥ t1,

from which we deduce
E(t) ≤ γ2e

−β1

∫ t

t1
ζ(s)ds

, ∀t ≥ t1,
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for some γ2 > 0. Furthermore, using the continuity and boundedness of E(t) in [0, t1], we get

E(t) ≤ Ce−β1

∫ t

0 ζ(s)ds, ∀t ≥ 0.

Case II. H(t) is nonlinear:
Next, with f(t) =

∫∞
t
g(s)ds, we use the functional

M(t) =

∫ t

0
f(t− s) ‖ψxx(s)‖2 ds, ∀t ≥ 0.

Lemma 45 Assume that (A1) and (A2) hold. The functional M(·) satisfies, for any ε > 0, the estimate

d

dt
M(t) ≤ (2ε− 1) g ◦ ψxx(t) + (f(t) + Cε) ‖ψxx(t)‖2 , ∀t ≥ 0. (3.112)

Proof. By Young’s inequality and the fact f ′(t) = −g(t), we see that

d

dt
M(t) = f(0) ‖ψxx(t)‖2 −

∫ t

0
g(t− s) ‖ψxx(s)‖2 ds

= −g ◦ ψxx(t)− 2 〈ψxx(t), g ⋄ ψxx(t)〉+ f(t) ‖ψxx(t)‖2 . (3.113)

But
− 2 〈ψxx(t), g ⋄ ψxx(t)〉 ≤ Cε ‖ψxx‖2 + 2εg ◦ ψxx(t). (3.114)

Combining (3.113) and (3.114), we obtain (3.112).
Let us introduce the functional

Ỹ(t)=Y(t) + κM(t), ∀t ≥ 0,

where κ is a positive constant. Then we have Ỹ(·) ∼ E(·). Therefore, it is always possible to pick N1 (in
3.102) and κ large enough to get

d

dt
Ỹ(t) ≤ −CE(t), ∀t ≥ 0.

Integrating over (t0,∞), we get

C

∫ ∞

t0

E(s)ds ≤ Ỹ(t0) <∞. (3.115)

Next, let us define the functional P(·)

P(t) = q

∫ t

t0

‖ψxx(s)− ψxx(t− s)‖2 ds, ∀t ≥ t0,

where q > 0. Thanks to (3.115), we can always choose q such that

P(t) < 1, ∀t ≥ t0. (3.116)

Next we define

Pg(t) = −
∫ t

t0

g′(s) ‖ψxx(t)− ψxx(t− s)‖2 ds, ∀t ≥ t0.

Observe that
Pg(t) ≤ −CE ′(t), ∀t ≥ 0,

for some positive constant C. Since H is strictly convex on (0, r] and H(0) = 0 we have

H(θx) ≤ θH(x), (θ, x) ∈ [0, 1]× (0, r]. (3.117)
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Using (A2), we get

Pg(t) =
1

qP(t)

∫ t

t0

P(t)
(
−g′(s)

)
q ‖ψxx(t)− ψxx(t− s)‖2 ds

≥ 1

qP(t)

∫ t

t0

P(t)ζ(s)H (g(s)) q ‖ψxx(t)− ψxx(t− s)‖2 ds

≥ ζ(t)

qP(t)

∫ t

t0

H (P(t)g(s)) q ‖ψxx(t)− ψxx(t− s)‖2 ds.

Keeping in mind (3.116) and applying inequality (3.117) for θ := P(·) and x = g(·), yields

Pg(t) ≥
ζ(t)

qP(t)

∫ t

t0

H (P(t)g(s)) q ‖ψxx(t)− ψxx(t− s)‖2 ds. (3.118)

Applying Jensen’s inequality (3.25) we obtain

Pg(t) ≥ ζ(t)

qP(t)

∫ t

t0

H (P(t)g(s)) q ‖ψxx(t)− ψxx(t− s)‖2 ds

≥ ζ(t)

q
H

(
1

P(t)

∫ t

t0

P(t)g(s)q ‖ψxx(t)− ψxx(t− s)‖2 ds
)

=
ζ(t)

q
H

(∫ t

t0

g(s)q ‖ψxx(t)− ψxx(t− s)‖2 ds
)

=
ζ(t)

q
H

(∫ t

t0

g(s)q ‖ψxx(t)− ψxx(t− s)‖2 ds
)
,

where H is an extension of H such that H is increasing and strictly convex C2 function on (0,∞) and this
leads to ∫ t

t0

g(s)q ‖ψxx(t)− ψxx(t− s)‖2 ds ≤ 1

q
H

−1
(
qPg(t)

ζ(t)

)
, ∀t ≥ t0.

So (3.101) becomes

Ỹ(t) ≤ −β1E(t) + β2
1

q
H

−1
(
qLg(t)

ζ(t)

)
, ∀t ≥ t0. (3.119)

Let ǫ0 < r, using the fact that E(·) is non-increasing and H
′
> 0, H

′′
> 0, we observe that the functional

N (·) defined by

N (t) := H
′
(
ǫ0

E(t)
E(0)

)
Y(t) + E(t), ∀t ≥ 0,

is equivalent to E(·). Using (3.119), we find that N (·) satisfies
d

dt
N (t) = ǫ0

E ′(t)

E(0)H
′′
(
ǫ0

E(t)
E(0)

)
Y(t) +H

′
(
ǫ0

E(t)
E(0)

)
Y ′(t) + E ′(t)

≤ ǫ0
E ′(t)

E(0)H
′′
(
ǫ0

E(t)
E(0)

)
Y(t)

+H
′
(
ǫ0

E(t)
E(0)

)[
−β1E(t) + β2

1

q
H

−1
(
qPg(t)

ζ(t)

)]
+ E ′(t)

≤ −β1E(t)H ′
(
ǫ0

E(t)
E(0)

)

+
β2
q
H

−1
(
qPg(t)

ζ(t)

)
H

′
(
ǫ0

E(t)
E(0)

)
+ E ′(t). (3.120)
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Let us denote by G∗ the conjugate function of the convex function G defined by G∗(s) = sup
t∈R+

(st−G(t)),
then

st ≤ G∗(s) +G(t), (3.121)

and, thanks to the arguments given in [16, 28, 43, 73, 74]

G
∗
(s) = s(G

′
)−1(s)−G

[
(H

′
)−1(s)

]
, ∀s ≥ 0.

This and the definition of H give

H
∗
(s) = s(H

′
)−1(s)−H

[
(H

′
)−1(s)

]
, ∀s ≥ 0. (3.122)

Taking s := C2
q
H

′
(
ǫ0

E(t)
E(0)

)
and t := H

−1
(
qPg(t)
ζ(t)

)
in (3.121), then making use of (3.120), (3.121) and

(3.122), we arrive at

d

dt
N (t)

≤ −β1E(t)H ′
(
ǫ0

E(t)
E(0)

)
+H

[
H

−1
(
qPg(t)

ζ(t)

)]
+H

∗
[
β2
q
H

′
(
ǫ0

E(t)
E(0)

)]
+ E ′(t)

≤ −β1E(t)H ′
(
ǫ0

E(t)
E(0)

)
+
qPg(t)

ζ(t)
+H

∗
[
β2
q
H

′
(
ǫ0

E(t)
E(0)

)]
+ E ′(t)

≤ −β1E(t)H ′
(
ǫ0

E(t)
E(0)

)
+
qPg(t)

ζ(t)
+
β2ǫ0
q

E(t)
E(0)H

′
(
ǫ0

E(t)
E(0)

)
+ E ′(t). (3.123)

Next, multiplying (3.123) by ζ(t) and using the fact that ǫ0
E(t)
E(0) < r, H

′
(
ǫ0

E(t)
E(0)

)
= H ′

(
ǫ0

E(t)
E(0)

)
, we get

ζ(t)
d

dt
N (t) ≤ −β1E(t)ζ(t)H ′

(
ǫ0

E(t)
E(0)

)
+ qPg(t)

+
β2ǫ0
q
ζ(t)

E(t)
E(0)H

′
(
ǫ0

E(t)
E(0)

)
+ ζ(t)E ′(t)

≤ −β1E(t)ζ(t)H ′
(
ǫ0

E(t)
E(0)

)
+
β2ǫ0
q
ζ(t)

E(t)
E(0)H

′
(
ǫ0

E(t)
E(0)

)
− cE ′(t).

Now, let us define the functional Ñ (·) by

Ñ (t) = N (t)ζ(t) + E(t), ∀t ≥ 0.

It is not difficult to see that there exist two positive constants ρ1 and ρ2 for which we have

ρ1Ñ (t) ≤ E(t) ≤ ρ2Ñ (t), ∀t ≥ 0. (3.124)

Consequently, with an appropriate choice of ǫ0, there exists a positive constant k such that

d

dt
Ñ (t) ≤ −kζ(t)H ′

(
ǫ0

E(t)
E(0)

)
= −kζ(t)H2

(
ǫ0

E(t)
E(0)

)
, ∀t ≥ t0 (3.125)

where H2(s) = sH ′(ǫ0s).
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Since H ′
2(s) = H ′(ǫ0s)+ ǫ0sH

′′(ǫ0s), we use the strict convexity of H on [0, r), we observe that H2 > 0,
H ′

2 > 0 on (0, r].
Defining now

R(t) =
δ1Ñ (t)

E(0) , ∀t ≥ 0.

thanks to (3.124) and (3.125) we have E(·) ∼ R(·) and for a positive constant k̃

d

dt
R(t) ≤ −k̃ζ(t)H2(R(t)) , ∀t ≥ t0.

Then, integrating over (t0, t) yields

∫ t

t0

R′(s)

H2(R(s))
≤ −

∫ t

t0

k̃ζ(s)ds,

and this leads to ∫ ǫ0R(t0)

ǫ0R(t)

R′(s)

H ′(R(s))
≥ k̃

∫ t

t0

ζ(s)ds,

which gives us

R(t) ≤ 1

ǫ0
H−1

1

(
k̃

∫ t

t0

ζ(s)ds

)
, ∀t ≥ t0,

where H1(t) =
∫ r

t
ds

sH′(s) . This completes the proof.
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Chapter 4

Boundary controllability and boundary

time-varying feedback stabilization of the

1−D wave equation in non-cylindrical

domains

This Chapter is taken from [90].
We are interested in the boundary controllability and stabilization of the one dimensional wave equation

in non-cylindrical domains. More precisely, let α and β be two real functions defined on R+ and Q be the
set

Q =
{
(t, x) ∈ R2, x ∈ (α(t), β(t)), α(t) < β(t), t ∈ (0,∞)

}
,

with α(0) = 0 and β(0) = 1. We consider the following two systems




ytt(t, x) = yxx(t, x), in Q,
y(t, α(t)) = 1

2u(t), y(t, β(t)) = 0, in (0,∞),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

(4.1)

and 



ytt(t, x) = yxx(t, x), in Q,
yt(t, α(t)) = f(t)yx(t, α(t)), y(t, β(t)) = 0, in (0,∞),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1).

(4.2)

The functions u ∈ H1
loc(0,∞), and f ∈ C([0,∞)) in (4.1) and (4.2) represent the control force and the

feedback function respectively.

t

x

1

0

Figure 4.1: The curve (t, α(t))t≥0 in red and (t, β(t))t≥0 in blue.
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Controllability of System (4.1) has been extensively studied in the recent past years; most of the papers
dealt with the case of one moving endpoint with boundary conditions of the form

y(t, 0) = 0, y(t, kt+ 1) = u(t), k ∈ (0, 1), t ∈ (0,∞).

In [38], it has been shown that, with these boundary conditions, exact controllability holds for all times

T > e
2k(k+1)

1−k −1
2 . The same authors came back in [39] and improved the latter result to T > e

2k(k+1)

(1−k)3 −1
2 .

Later, in [123], the controllability time has been improved to be T > 2
1−k

. In these papers, only a sufficient
condition is provided for the exact controllability.

Concerning the two moving endpoints case, the boundary functions considered in [119] are of the form

α(t) = −kt, β(t) = rt+ 1, t ∈ (0,∞), k, r ∈ [0, 1) with r + k > 0.

It has been shown that exact controllability holds if, and only if T ≥ 2
(1−k)(1−r) .

Another kind of boundary functions has been considered in [9]. An observability inequality has been
established for the dual of System (4.1) with β ≡ 1 for sufficiently large time under the assumption that
the boundary function α must be periodic and satisfies ‖α′‖L∞(0,∞) < 1. More general boundary functions
are considered in [60] with boundary conditions

y(t, 0) = 0, y(t, s(t)) = u(t), t ∈ (0,∞),

where s : [0,∞) → (0,∞) is assumed to be a C1 function satisfying ‖s′‖L∞(0,∞) < 1. Furthermore, it has
been assumed that s must be in some admissible class of curves (see [60] for more details). Under these
assumptions, the authors proved that exact controllability holds if, and only if T ≥ s+ ◦ (s−)−1

(0), where
s±(t) = t± s(t). Also, they provided a controllability result when the control is located on the non-moving
part of the boundary. By considering the boundary conditions

y(t, 0) = u(t), y(t, s(t)) = 0, t ∈ (0,∞),

they proved that exact controllability holds if, and only if T ≥ (s−)
−1

(1). The same result has been proved
in [58] by using a different approach. In all the cited works, the proofs rely on the multipliers technique,
domain transform, the non-harmonic Fourier analysis or the d’Alembert solution of the wave equation.

Recently, in [120], a new Carleman estimate has been established for the wave equation in non-
cylindrical domains in more general settings. As a consequence, it has been shown for a boundary conditions
as in (4.1) where α(t) < β(t), t ∈ (0,∞), are smooth functions satisfying ‖α′‖L∞(0,∞),‖β′‖L∞(0,∞) < 1, that
System (4.1) is exactly controllable at time T if T > T ∗ and not exactly controllable if T < T ∗ where T ∗ is
the required time by the geometric control condition, in other words, it is the time where a characteristic
line with slope one emanating from the point (0, 0) hits the curve (t, β(t))t≥0 and reflected to intersect
the curve (t, α(t))t≥0 in the point (T ∗, α(T ∗)). Actually, this time can be computed explicitly in terms of

the boundary functions, that is T ∗ = (α+)
−1 ◦ β+ ◦ (β−)−1

(0) where the functions α±, β± are defined by
α±(t) = t± α(t), β±(t) = t± β(t). However, the result doesn’t cover the critical case T = T ∗.

As for the boundary stability of System (4.2) with non-autonomous damping, to the best of our knowl-
edge, the only existing result in the literature is in [8] where the authors dealt with the same system but
with only one moving endpoint, i.e.

y(t, 0) = 0, yt(t, a(t)) + f(t)yx(t, a(t)) = 0, t ∈ (0,∞), (4.3)

where a is a strictly positive 1-periodic function with ‖a′‖L∞(0,∞) < 1 and f is the feedback function. The
authors proved exponential stability of System (4.2) for a particular class of feedbacks f . The proof relies
on transforming problem (4.2) which is posed on non-cylindrical domain into a problem posed on cylindrical
one, then making use of some known results of boundary stability of the 1−D wave equation. If the damping
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function f is constant and the boundary function a is not periodic with derivative ‖a′‖L∞(0,∞) < 1, it has

been shown in [59] for f = 1 that the solution vanishes at time T for any T ≥ a+ ◦ (a−)−1
(0).

In this paper, we will improve all the previous results either for the boundary control or the boundary
stability of the 1 − D wave equation by using the characteristics method. We shall build the unique
exact solution to both Systems (4.1) and (4.2) in an appropriate energy space. To do so, we proceed by
transforming both of systems to a first order hyperbolic system by introducing the Riemann invariants

{
p = yt − yx,
q = yt + yx.

(4.4)

An elementary computation shows that System (4.1) transforms into




pt + px = 0, in Q,
qt − qx = 0, in Q,
(p+ q) (t, α(t)) = u′(t), (p+ q) (t, β(t)) = 0, in (0,∞),
p(0, x) = p̃(x), q(0, x) = q̃(x). in (0, 1).

(4.5)

In the same way, System (4.2) becomes




pt + px = 0, in Q,
qt − qx = 0, in Q,
(p+ F (t)q) (t, α(t)) = 0, (p+ q) (t, β(t)) = 0, in (0,∞),
p(0, x) = p̃(x), q(0, x) = q̃(x), in (0, 1),

(4.6)

where F (t) = 1−f(t)
1+f(t) with 1 + f(t) 6= 0, ∀t ≥ 0.

Henceforth, we use the following notations:

• the spaces family
[
L2(α(t), β(t))

]
t≥0

will be denoted by L2(α(t), β(t)).

• The spaces family
[
H1

(β(t))(α(t), β(t))
]
t≥0

will be denoted by H1
(β(t))(α(t), β(t)) where

H1
(β(t))(α(t), β(t)) =

{
h ∈ H1(α(t), β(t)), h(β(t)) = 0, t ≥ 0

}
.

• For any function z, the functions z± will represent the quantities z±(t) = t± z(t).

• C denotes a generic positive constant which might be different from line to line.

The Riemann coordinates introduced in (4.4) guarantee the equivalence of the transformed Systems
(4.5),(4.6), with the original Systems (4.1),(4.2) up to an additive constant. All the results for the trans-

formed systems will be proved in
[
L2(α(t), β(t))

]2
, then the results for the original ones can be deduced

by inverting the transformation.
Since our approach consists in constructing the unique exact solutions to Systems (4.5) and (4.6),

instead of studying each system separately, we consider the following system




pt + px = 0, in Q,
qt − qx = 0, in Q,
(p+ F (t)q) (t, α(t)) = v(t), (p+ q) (t, β(t)) = 0, in (0,∞),
p(0, x) = p̃(x), q(0, x) = q̃(x). in (0, 1),

(4.7)

where v ∈ L2
loc(0,∞) stands for u′. Note that if F ≡ 1 then System (4.7) turns to be (4.5), and if v ≡ 0,

System (4.7) turns to be (4.6). Observe that the solutions to the first and the second equations of (4.7)
satisfy

d

dt
p(t, c+ t) =

d

dt
q(t, c− t) = 0, t ≥ 0, c ∈ R, c± t ∈ (0, 1). (4.8)
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Hence, p (resp. q) is constant along the characteristic lines x− t = c (resp. x+ t = c). The idea is to use
the boundary conditions

(p+ F (t)q) (t, α(t)) = v(t), (p+ q) (t, β(t)) = 0, t > 0, (4.9)

and the reflection of the characteristic lines x ± t = c, c ∈ R, on the boundary curves (t, α(t))t≥0 and
(t, β(t))t≥0 to find the unique solution to system (4.7). Along this work, we assume that the boundary
functions satisfy

α(t) < β(t), ∀t > 0, α, β ∈ C1(0,∞) , max
(∥∥α′

∥∥
L∞(R+)

,
∥∥β′
∥∥
L∞(R+)

)
< 1. (4.10)

The size assumption in (4.10) guarantees that the characteristic lines x = t+ c (resp. x = c− t) meet the
curve (t, α(t))t≥0 (resp. (t, β(t))t≥0) in finite time; also, they serve to ensure that the characteristic lines
x± t = c are not gliding on the boundary curves or are not out of Q. In fact, assumption (4.10) is necessary
for the existence of solutions.

t

x

1

0

Figure 4.2: An example of a boundary curves (t, α(t)))t≥0 and (t, β(t)))t≥0 that do not satisfy assumption
(4.10). The values of the solution are not defined on the green part of the characteristic lines lying under
or above these curves.

A straightforward consequence of assumption (4.10) is that the functions α± : [0,∞) → [0,∞) and
β± : [0,∞) → [±1,∞) are invertible. In the sequel, we use the standard notations to denote their inverses
by (α±)

−1
and (β±)

−1
.

4.1 Main results

We start by giving the well-posedness result for System (4.7).

Theorem 46 Let (p̃, q̃, v, F ) ∈
[
L2(0, 1)

]2 × L2
loc(0,∞)× C([0,∞)). Assume that the boundary functions

α and β satisfy (4.10). Then, there exists a unique solution to System (4.7) satisfying

(p, q) ∈ C
(
[0, t];

[
L2(α(t), β(t))

]2)
, t ≥ 0. (4.11)

The proof of this theorem is a straightforward consequence of the explicit construction of the unique
solution that will be done in Section 4.2.
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Remark 47 By inverting the transformation given in (4.4), we obtain

yt =
p+ q

2
, yx =

q − p

2
,

hence, for any (y0, y1, u, f) ∈ H1
(1)(0, 1)×L2(0, 1)×H1

loc(0,∞)×C([0,∞)), the solutions to Systems (4.1)

and (4.2 ) satisfy the regularity

y ∈ C
(
[0, t];H1

(β(t))(α(t), β(t)
)
∩ C1

(
[0, t];L2(α(t), β(t)

)
, t ≥ 0.

4.1.1 Controllability result

Definition 48 System (4.1) is said to be exactly controllable at time T > 0 if for any initial state (y0, y1) ∈
H1

(1)(0, 1)× L2(0, 1) and for any target state (h, k) ∈ H1
(β(T ))(α(T ), β(T ))× L2(α(T ), β(T )), there exists a

control u ∈ H1
loc(0,∞) such that (y(T ), yt(T )) = (h, k).

The following result shows that the minimal time T ∗ where exact controllability is possible depends on
the movement of the boundaries and can be represented explicitly in terms of the functions α± and β±.
Moreover, also the unique exact control for T ∗ can be represented explicitly using these functions.

Theorem 49 Let (y0, y1) ∈ H1
(1)(0, 1) × L2(0, 1). Assume that the boundary functions α and β satisfy

(4.10). System (4.1) is exactly controllable at time T > 0 if, and only if T ≥ T ∗ = (α+)
−1◦β+◦(β−)−1

(0).
Further, if T = T ∗, there exists a unique control u ∈ H1(0, T ∗) steering the solution (y, yt) to System (4.1)
to the equilibrium point (0, 0) given by

u(t) =





∫ t

0 y1 (α
+(s)) ds+ y0 (α

+(t)) , if t ∈
[
0, (α+)

−1
(1)
)
,

y0

(
−β− ◦ (β+)−1 ◦ α+(t)

)

+
∫ (α+)

−1
(1)

0 y1 (α
+(s)) ds

−
∫ t

(α+)−1(1) y1

(
−β− ◦ (β+)−1 ◦ α+(s)

)
ds,

if t ∈
[
(α+)

−1
(1), T ∗

)
,

(4.12)

Remark 50 The controllability result still makes sense even if the boundary curves (t, α(t))t≥0 and (t, β(t))t≥0

are allowed to intersect in time larger than T ∗.

Remark 51 Let us consider the particular case α(t) = kt, β(t) = rt+1, k, r ∈ (−1, 1), with 2(k−r)
(1−r)(1+k) <

1
2

(The last assumption guarantees that the boundary curves do not intersect before T ∗). In this case, it can
be checked that T ∗ is given by T ∗ = 2

(1−r)(k+1) which is the same time found in [119]. In particular, if α ≡ 0

and β ≡ 1, we obtain the classical result T ∗ = 2.

x

1

0
tT ∗ T ∗∗
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Remark 52 The minimal time T ∗ is precisely the necessary time for the main characteristic line issued
from the point (0, 0) to touch again the curve (t, α(t))t≥0 in the point (T ∗, α(T ∗)) after having been reflected
from the curve (t, β(t))t≥0. More precisely, the characteristic line x = t hits the curve (t, β(t))t≥0 in the

point
(
(β−)

−1
(0), β

(
(β−)

−1
(0)
))

. The reflected characteristic line passing through the last point, i.e.

x = −t+ β+ ◦ (β−)−1
(0) hits the curve (t, α(t))t≥0 in the point (T ∗, α(T ∗)). If the control u is located on

the curve (t, β(t))t≥0 instead of (t, α(t))t≥0, then T
∗∗ is the analogous time for the main characteristic line

issued form the point (0, 1) with negative slope. In this case T ∗∗ = (β−)
−1 ◦ α− ◦ (α+)

−1
(1).

4.1.2 Stability result

For the sake of lighting notations, we introduce the function φ := φ(α, β) defined by

φ := α− ◦
(
α+
)−1 ◦ β+ ◦

(
β−
)−1

. (4.13)

By assumption (4.10), the function φ : [−1,∞) → [α− ◦ (α+)
−1

(1),∞) is well defined and increasing
function as composition of increasing functions, and hence invertible with inverse

φ−1 := β− ◦
(
β+
)−1 ◦ α+ ◦

(
α−
)−1

.

Let (ψn(·))n≥0 be a sequence of functions such that

ψn(·) : [0, φ(0)) → [0,∞) (4.14)

τ 7→ ψn(τ) =
n∏

i=0

∣∣∣F
((
α−
)−1 ◦ φ[i](τ)

)∣∣∣ .

The notation φ[n] refers to
φ[n] = φ ◦ · · · ◦ φ︸ ︷︷ ︸

n times

,

with the convention φ[0] = I. The following result shows that the asymptotic behavior of the solution to
System (4.2) relies heavily on the behavior of the sequence of functions (ψn(τ))n≥0 defined in (4.14) when
n −→ ∞.

Theorem 53 Let (y0, y1) ∈ H1
(1)(0, 1) × L2(0, 1). Assume that the boundary functions α and β satisfy

(4.10). In addition, assume that

φ(τ) < · · · < φ[n](τ) < φ[n+1](τ) −→
n→∞

∞, ∀τ ∈ [0, φ(0)), (4.15)

then,
‖(y(t), yt(t))‖H1

(β(t))
(α(t),β(t))×L2(α(t),β(t)) −→

t→∞
0,

if, and only if
ψn(τ) −→

n→∞
0, ∀τ ∈ [0, φ(0)). (4.16)

If there exists g ∈ C(R, (0,∞)) such that

ψn(τ) ∼
n→∞

Cg
(
φ[n](τ)

)
, ∀τ ∈ [0, φ(0)), (4.17)

for some positive constant C > 0, then the solution to System (4.2) decays like g, i.e.

‖(y(t), yt(t))‖H1
(β(t))

(α(t),β(t))×L2(α(t),β(t)) ≤ Cg(t) ‖(y0, y1)‖H1
(1)

(0,1)×L2(0,1) . (4.18)
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In particular, there exists M ≥ 1 and ω ∈ R such that

‖(y(t), yt(t))‖H1
(β(t))

(α(t),β(t))×L2(α(t),β(t)) ≤Metω ‖(y0, y1)‖H1
(1)

(0,1)×L2(0,1) , ∀t ≥ 0,

if, and only if

sup
τ∈[0,φ(0))

lim
n→∞

lnψn(τ)

φ[n](τ)
= ω <∞. (4.19)

If f ≡ 1, the solution to System (4.2) vanishes in finite time T if, and only if T ≥ T ∗ = (α+)
−1 ◦ β+ ◦

(β−)
−1

(0), i.e.

y(T ) ≡ yt(T ) ≡ 0, ∀T ≥ T ∗ =
(
α+
)−1 ◦ β+ ◦

(
β−
)−1

(0).

Let us illustrate the previous theorem by some examples.

Example 54 (Cylindrical domain) If Q is cylindrical domain, i.e. α ≡ 0 and β ≡ 1, the function φ
defined in (4.13) is given by φ(τ) = τ + 2, then, φ[n](τ) = τ + 2n. Therefore, the sequence of functions
(ψn(·))n≥0 defined in (4.14) takes the form

ψn : [0, 2) → [0,∞) (4.20)

τ 7→ ψn(τ) =

n∏

i=0

|F (τ + 2i)| .

In this case, the assumptions of Theorem 53 can be checked easily. Note that since the feedback law in
System (4.2) is non-autonomous (f is time dependent), we can achieve any decay rate we want (even
faster than exponential) with a suitable choice of f . Below, we illustrate this fact by several examples:

• Exponential decay:

Let f(t) = 2−sin(πt)
2+sin(πt) , therefore, F (t) =

sin(πt)
2 , thus,

ψn(τ) =

n∏

i=0

|F (τ + 2i)| =
[
sin(πτ)

2

]n+1

.

By (4.19), we have

sup
τ∈(0,1)∪(1,2)

lim
n→∞

lnψn(τ)

φ[n](τ)
= sup

τ∈(0,1)∪(1,2)
lim
n→∞

(n+ 1) ln
∣∣∣ sin(πτ)2

∣∣∣
τ + 2n

= sup
τ∈(0,1)∪(1,2)

1

2
ln

∣∣∣∣
sin(πτ)

2

∣∣∣∣ = − ln 2

2
,

therefore, exponential decay occurs with growth bound ω = − ln 2
2 .

• Polynomial decay:

Let f(t) = (t+1)−s−(t+3)−s

(t+1)−s+(t+3)−s
, s > 0, then F (t) =

(
t+3
t+1

)−s

, consequently, the sequence of functions

(ψn(·))n≥0 defined in (4.20) takes the form

ψn(τ) =

n∏

i=0

|F (τ + 2i)| =
n∏

i=0

∣∣∣∣∣

(
τ + 2i+ 3

τ + 2i+ 1

)−s
∣∣∣∣∣ =

(
τ + 2n+ 3

τ + 1

)−s

.

Set g(t) = (t+ 1)−s , s > 0. A simple computation shows that

lim
n→∞

ψn(τ)

g(φ[n])
= lim

n→∞

ψn(τ)

g(τ + 2n)
=

1

τ + 1
, τ ∈ [0, 2),

thus, by (4.18), the solution to System (4.2) decays like (t+ 1)−s, s > 0.
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• Logarithmic decay:

Let f(t) = log−s(t+1)−log−s(t+3)

log−s(t+1)+log−s(t+3)
, s > 0, then F (t) =

(
log(t+3)
log(t+1)

)−s

, consequently, we obtain

ψn(τ) =

n∏

i=0

|F (τ + 2i)| =
n∏

i=0

∣∣∣∣∣

(
log(τ + 2i+ 3)

log(τ + 2i+ 1)

)−s
∣∣∣∣∣ =

∣∣∣∣∣

(
log(τ + 2n+ 3)

log(τ + 1)

)−s
∣∣∣∣∣ .

By letting g(t) = log−s(t+ 1), s > 0, we get

lim
n→∞

ψn(τ)

g(φ[n])
= logs(τ + 1) lim

n→∞

∣∣∣∣∣

(
log(τ + 2n+ 3)

log(τ + 2n+ 1)

)−s
∣∣∣∣∣ = logs(τ + 1), τ ∈ [0, 2),

hence, (4.18) is satisfied with g(t) = log−s(t+ 1), s > 0.

• Super-stability:

Let f(t) = t
2+t

, therefore, F (t) = 1
t+1 , consequently, we obtain

ψn(τ) =

n∏

i=0

1

τ + 2i+ 1
=

1

(τ + 1) 2nn!

n∏

i=1

(
τ + 1

2i
+ 1

)−1

.

A simple computation shows that

log

n∏

i=1

(
τ + 1

2i
+ 1

)−1

∼
n→∞

C(τ) log n−
τ+1
2 ,

where C(τ) is a positive constant depending on τ. So, we get

ψn(τ) ∼
n→∞

C(τ)

(τ + 1)n
τ+1
2 2nn!

, (4.21)

which by (4.16) implies that the solution to System (4.2) decays to zero. To check whether the stability
is exponential it suffices to use (4.19) to compute the growth bound ω. By using (4.21) we obtain

lim
n→∞

lnψn(τ)

φ[n](τ)
= − lim

n→∞

lnn
τ+1
2 + n ln 2 + lnn!

2n+ τ
= −∞ = ω.

Therefore, the decay rate for this choice of f is faster than any exponential function. Actually, this
phenomena is called super-stability. For more of details, we refer the reader to [19].

Example 55 (Non cylindrical domain) Things are more delicate in the non-cylindrical case. Consider
a boundary functions of the form α(t) = rt, β(t) = kt+1, r, k ∈ (−1, 1). To guarantee that α(t) 6= β(t), ∀t ≥
0, we assume that k ≥ r. The function φ defined in (4.13) will be given by

φ(τ) =
(1 + k) (1− r)

(1− k) (1 + r)
τ +

2 (1− r)

(1− k) (1 + r)
= aτ + b,

therefore, we obtain

φ[n](τ) =





an
(
τ − b

1−a

)
+ b

1−a
, if r < k,

τ + 2n
1+r

, if r = k.

(4.22)
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Consequently,

(
α−
)−1 ◦ φ[n](τ) =





an
(

τ
1−r

− b
(1−a)(1−r)

)
+ b

(1−a)(1−r) , if r < k,

τ
1−r

+ 2n
(1+r)(1−r) , if r = k.

For simplicity, let us take f as in the previous example, f(t) = t
2+t

which implies that F (t) = 1
t+1 . So, we

have:

• If r < k :

From (4.22), we can check that (4.15) is satisfied if, and only if a > 1. To verify (4.16), it is enough
to estimate its asymptotic behavior for a large n. So, we have

ψn(τ) =

n∏

i=0

1∣∣∣ai
(

τ
1−r

− b
(1−a)(1−r)

)
+ b

(1−a)(1−r) + 1
∣∣∣
=

n∏

i=0

1

|ais(τ) + z|

=
1

a
n(n+1)

2 sn+1(τ)

n∏

i=0

∣∣∣∣1 +
z

ais(τ)

∣∣∣∣
−1

.

Since a > 1, the series
∑∞

i=0 ln
(
1 + z

ais(τ)

)
converges, we obtain,

ψn(τ) ∼
n→∞

C(r, k, τ)a−
n(n+1)

2 s−n−1(τ), ∀τ ∈ [0, b) , (4.23)

where C(r, k, τ) is a positive constant depending on r, k and τ. In view of (4.23), if a > 1, the
solution to System (4.2) decays to zero. On the contrary of the cylindrical domain case, even with
this choice of the feedback function f, (4.19) is not satisfied, and hence, exponential stability cannot
occur. Indeed,

lim
n→∞

lnψn(τ)

φ[n](τ)
= − lim

n→∞

n2

2an
ln |a| = 0, ∀τ ∈ [0, b) .

Nevertheless, we still be able to get an idea about the decay rate. From ( 4.23), we observe that the

term that really matters is a−
n2

2 , so, for g(t) = e−
1
2
log2a(t), we obtain

a−
n2

2 ∼
n→∞

Cg(ans(τ) + z), ∀τ ∈ [0, b) .

Note that we did not lose too much since g decays to zero faster than any polynomial function. This
loss can be justified by the fact that the characteristic lines will need a larger time to reflect on the
two boundary lines when t becomes larger.

• If k = r :

In this case, the lines x = rt and x = kt + 1 are parallel, therefore, the needed time from the
characteristics to reflect on the two endpoints is the same, so we might expect super-stability with this
choice of f . Let us first check that whether the solution to System (4.2) decays exponentially or not.
By (4.21 ), the sequence of functions (ψn(·))n≥0 behaves like

ψn(τ) =
n∏

i=0

∣∣∣∣∣
1

τ
1−r

+ 1 + 2i
(1+r)(1−r)

∣∣∣∣∣

=
(1 + r)n (1− r)n

2nn!
(

τ
1−r

+ 1
)

n∏

i=1

∣∣∣∣∣∣
1

(1+r)(1−r)
2i

(
τ

1−r
+ 1
)
+ 1

∣∣∣∣∣∣
.

∼
n→∞

C(r, τ)
(1 + r)n (1− r)n+1

2nn! (τ + 1− r)n
(1+r)(τ+1−r)

2

,
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where C(r, τ) is a positive constant depending on r and τ. By using (4.19), we get

lim
n→∞

lnψn(τ)

φ[n](τ)
= lim

n→∞
− lnn!

2n
= −∞ = ω,

therefore, the solution to System (4.2) is super-stable.

Example 56 (Constant feedback) Consider the case when f is a constant such that f 6= 1 with keeping
α and β as in the previous example. A simple computation yields

ψn = Fn+1 =

∣∣∣∣
f − 1

f + 1

∣∣∣∣
n+1

.

Therefore, by using the formula (4.19), we arrive at:

• If r < k :

We can check that the decay is not exponential. Indeed,

lim
n→∞

lnψn(τ)

φ[n](τ)
= lim

n→∞

(n+ 1) ln
∣∣∣f−1
f+1

∣∣∣
an

= 0, ∀τ ∈ [0, b) .

Nonetheless, by (4.18), we can determine the decay rate for a particular values of f . Let g(t) = t−s.
It is easy to check that if a−s = f−1

f+1 for some s > 0 then

lim
n→∞

ψn(τ)

g
(
φ[n](τ)

) = lim
n→∞

∣∣∣f−1
f+1

∣∣∣
n+1

(ans(τ) + z)−s = C(τ, r, k), ∀τ ∈ [0, b) ,

where C(r, k, τ) is a positive constant depending on r, k and τ. Hence, the solution decays like t−s,
s > 0.

• If r = k :

In this case, we have

lim
n→∞

lnψn(τ)

φ[n](τ)
= lim

n→∞

(n+ 1) ln
∣∣∣f−1
f+1

∣∣∣
2n

(1+r)(1−r)

=
(1 + r) (1− r)

2
ln

∣∣∣∣
f − 1

f + 1

∣∣∣∣ = ω,

hence, exponential decay occurs with growth bound −ω. In particular, if Q is a cylindrical domain
(r = 0), the solution to System (4.2) is exponentially stable if, and only if

1

2
ln

∣∣∣∣
f − 1

f + 1

∣∣∣∣ = ω < 0,

which is a known result from [116].

Remark 57 We have seen in the previous examples that the decay rate is determined in a crucial way
by the boundary functions and the damping function. Actually, we can do the converse for System (4.2).
Namely, by setting

F (t) =
g(φ ◦ α−(t))

g(α−(t))
, ∀t ≥ 0,
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with g(t) 6= 0, for all t ≥ 0, we obtain

ψn(τ) =
n∏

i=0

∣∣∣F
((
α−
)−1 ◦ φ[i](τ)

)∣∣∣ =
n∏

i=0

∣∣∣∣∣
g(φ[i+1](τ))

g(φ[i](τ)

∣∣∣∣∣ =
∣∣∣∣∣
g(φ[n+1](τ))

g(φ[0](τ))

∣∣∣∣∣ .

In this case, (3.57) is automatically satisfied, and since F = 1−f
1+f

, we obtain

g(α−(t))− g(φ ◦ α−(t))

g(α−(t)) + g(φ ◦ α−(t))
= fg(t), ∀t ≥ 0. (4.24)

The last expression provides an explicit relation between the decay rate and the feedback function f. This
means that f can be determined based on the desired decay rate. Formula (4.24) has been used to construct
f in the second and the third points in example (54).

Remark 58 Examples 55 and 56 illustrate the big influence of the boundary nature on the decay rate of
the solution to System (4.2).

4.2 Construction of the exact solution

The aim now is to find the solution (p, q) to System (4.7) in all Q. To this end, let us start by splitting Q
into an infinite number of parts. Namely,

Q = ∪n≥0Σ
p
n = ∪n≥0Σ

q
n, Σp

i ∩ Σp
j ,Σ

q
i ∩ Σq

j = ∅, i 6= j,

where Σp
n,Σ

q
n are given for n = 0, 1, by

Σp
0 = {(t, x) ∈ Q, t ∈ [0, x)} , (4.25)

Σp
1 =

{
(t, x) ∈ Q, t− x ∈ [0, α− ◦

(
α+
)−1

(1))
}
, (4.26)

Σq
0 = {(t, x) ∈ Q, t ∈ [0, 1− x)} , (4.27)

Σq
1 =

{
(t, x) ∈ Q, t+ x ∈ [1, β+ ◦

(
β−
)−1

(0))
}
, (4.28)

and for all n ≥ 1

Σp
2n =

{
(t, x) ∈ Q, t− x ∈

[
φ[n−1] ◦ α− ◦

(
α+
)−1

(1), φ[n](0)
)}

, (4.29)

Σp
2n+1 =

{
(t, x) ∈ Q, t− x ∈

[
φ[n](0), φ[n] ◦ α− ◦

(
α+
)−1

(1)
)}

, (4.30)

Σq
2n =

{
(t, x) ∈ Q, t+ x ∈

[
ξ[n−1] ◦ β+ ◦

(
β−
)−1

(0), ξ[n](1)
)}

, (4.31)

Σq
2n+1 =

{
(t, x) ∈ Q, t+ x ∈

[
ξ[n](1), ξ[n] ◦ β+ ◦

(
β−
)−1

(0)
)}

, (4.32)

where ξ is defined by
ξ := β+ ◦

(
β−
)−1 ◦ α− ◦

(
α+
)−1

. (4.33)

The construction of these regions relies on the reflection of the principal characteristic lines with positive
and negative slopes emerging from the points (0, 0) and (0, 1) and reflected along the boundary curves.
More precisely, the lines x = t and x = −t+1 emerging respectively from (0, 0) and (0, 1) meet the curves

(t, β(t))t≥0 and (t, α(t))t≥0 in the points
(
(β−(0))

−1
, β((β−(0))

−1
)
)
and

(
(α+)

−1
(1), α((α+(1))

−1
)
)
re-

spectively. The regions Σp
0 and Σq

0 are those located between t = 0 and these lines. We can do similarly to
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construct the regions Σp
n,Σ

q
n, n ≥ 1, given above. In the sequel, we denote by pn and qn the restriction of

p and q solutions to System (4.7) on Σp
n and Σq

n, n ≥ 0.

t

x

1

0

Σp
0

Σp
1

Σp
2

Σp
3

Σq
0

Σq
1

Σq
2

Σq
3

Figure 4.3: The regions Σp
i are those between the red lines and Σq

i are those between the blue lines.

Remark 59 In particular, if α ≡ 0 and β ≡ 1, the regions Σp
n,Σ

q
n, n ≥ 0, are simply given by

Σp
n = {(t, x) ∈ R+ × [0, 1], t− x ∈ [n− 1, n)} ,

Σq
n = {(t, x) ∈ R+ × [0, 1], x+ t ∈ [n, n+ 1)} .

During the construction below, we use the standard density argument by assuming first that the initial
states are sufficiently regular then passing to the limit. So, the constructed solutions must be understood
in the weak sense. Let us start by finding p0 and q0 :

Lemma 60 Let (p̃, q̃) ∈
[
L2(0, 1)

]2
. The solution (p0, q0) to System (4.7) is given by

p0(t, x) = p̃(x− t), q0(t, x) = q̃(x+ t). (4.34)

Proof. The proof readily follows from (4.8).
Now, let us find the solution in the regions Σp

1,Σ
q
1 :

Lemma 61 Let (p̃, q̃) ∈
[
L2(0, 1)

]2
. The solution (p1, q1) to System (4.7) is given by

p1(t, x) = v
((
α−
)−1

(t− x)
)
− F

((
α−
)−1

(t− x)
)
q̃
(
α+ ◦

(
α−
)−1

(t− x)
)
, (4.35)

q1(t, x) = −p̃
(
−β− ◦

(
β+
)−1

(x+ t)
)
. (4.36)

Proof. By using (4.34), we have at the boundary

p0(τ, β(τ)) = p̃
(
−β−(τ)

)
, τ ∈

[
0,
(
β−
)−1

(0)
)
,

q0(χ, α(χ)) = q̃
(
α+(χ)

)
, χ ∈

[
0,
(
α+
)−1

(1)
)
.
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By using the boundary conditions given in (4.9), we get

p1(τ, α(τ)) = v(τ)− F (τ)q0(τ, α(τ))

= v(τ)− F (τ)q̃(α+(τ)), τ ∈
[
0,
(
α+
)−1

(1)
)
,

q1(χ, β(χ)) = −p0(χ, β(χ)) = −p̃(−β−(χ)), χ ∈
[
0,
(
β−
)−1

(0)
)
.

Consider the latter values as initial states on both regions Σp
1,Σ

q
1 and use (4.8), we write

p1(t, c− t) = p1(τ, τ − s) , q1(χ, c+ χ) = q1(χ, c+ χ).

By using the fact that p and q are constant along the characteristic lines x = t−α−(τ) and x = −t+β+(χ)
respectively, we obtain

p1(t, t− α−(τ)) = p1(τ, α(τ)) = v(τ)− F (τ)q̃(α+(τ)), (4.37)

and
q1(t,−t+ β+(χ)) = q−1 (χ, β(χ)) = −p̃(−β−(χ)). (4.38)

Now, letting (α−)
−1

(t− x) = τ in (4.37) and χ = (β+)
−1

(x+ t) in (4.38) yields the desired result.

Remark 62 Note that α+ ◦ (α−)
−1

(t − x), (t, x) ∈ Σp
1 and −β− ◦ (β+)

−1
(x + t), (t, x) ∈ Σq

1 belong
to (0, 1) and the above expressions make perfectly sense. To clarify more things, let (t, x) ∈ Σp

1 and let
x̃(s) = s − t + x the line passing through the point (t, x). By moving backwards, this line meets the curve

(s, α(s))s≥0 at the point
(
(α−)

−1
(t− x), α (α−)

−1
(t− x)

)
where (α−)

−1
(t − x) ∈

[
0, (α−)

−1
(1)
)
. We

use again the reflection of the characteristic line with negative slope passing through the latter point. i.e.
x̃(s) = −s+ α+ ◦ (α−)

−1
(t− x) lying in Σp

0, for s = 0, we obtain x̃(0) = α+ ◦ (α−)
−1

(t− x) ∈ (0, 1). We

can do similarly for −β− ◦ (β+)−1
(x+ t), (t, x) ∈ Σq

1.

Lemma 63 Let (p̃, q̃) ∈
[
L2(0, 1)

]2
. The solution (p2, q2) to System (4.7) is given by

p2 (t, x) = v
((
α−
)−1

(t− x)
)

(4.39)

+F
((
α−
)−1

(t− x)
)
p̃
(
−φ−1(t− x)

)
,

q2 (t, x) = −v
((
α−
)−1 ◦ β− ◦

(
β+
)−1

(x+ t)
)

(4.40)

+F
((
α−
)−1 ◦ β− ◦

(
β+
)−1

(x+ t)
)
q̃
(
ξ−1 (x+ t)

)
,

where φ and ξ are defined in (4.13) and (4.33).

Proof. From (4.35) and (4.36), we have at the boundary

p1(τ, β(τ)) = v
((
α−
)−1 ◦ β−(τ)

)
(4.41)

−F
((
α−
)−1 ◦ β−(τ)

)
q̃
(
α+ ◦

(
α−
)−1 ◦ β−(τ)

)
,

τ ∈
[(
β−
)−1

(0),
(
β−
)−1 ◦ α− ◦

(
α+
)−1

(1)
)
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and

q1(χ, α(χ)) = −p̃
(
−β− ◦

(
β+
)−1 ◦ α+(χ)

)
, (4.42)

χ ∈
[(
α+
)−1

(1),
(
α+
)−1 ◦ β+ ◦

(
β−
)−1

(0)
)
.

In order to find p2 and q2, we use the boundary conditions (4.9) and the values of p1 and q1 at the boundary
given in ( 4.41) and (4.42) as initial states. Namely, for any τ and χ such that

τ ∈
[(
β−
)−1

(0),
(
β−
)−1 ◦ α− ◦

(
α+
)−1

(1)
)

and

χ ∈
[(
α+
)−1

(1),
(
α+
)−1 ◦ β+ ◦

(
β−
)−1

(0)
)
,

we have along the lines x = t− α−(τ) and x = −t+ β+(χ) respectively

p2
(
t, t− α−(τ)

)
= p2 (τ, α(τ)) = v(τ)− F (τ)q1 (τ, α(τ)) , (4.43)

q2
(
t, β+(χ)− t

)
= q2 (χ, β(χ)) = −p−1 (χ, β(χ)) . (4.44)

Plugging (4.41) and (4.42) in (4.43) and (4.44), we get

p2
(
t, t− α−(τ)

)
= v(τ) + F (τ)p̃

(
−β− ◦

(
β+
)−1 ◦ α+(τ)

)
,

and

q2
(
t, β+(χ)− t

)
= −v

((
α−
)−1 ◦ β−(χ)

)

+F
((
α−
)−1 ◦ β−(χ)

)
q̃
(
α+ ◦

(
α−
)−1 ◦ β−(χ)

)
.

The proof follows immediately for τ = (α−)
−1

(t− x) and (β+)
−1

(x+ t) = χ.

Remark 64 In the same spirit of Remark 62, the expressions (4.39) and ( 4.40) make perfectly sense.
We can use the same reasoning to show that

−β− ◦
(
β+
)−1 ◦ α+ ◦

(
α−
)−1

(t− x) ∈ (0, 1), ∀(t, x) ∈ Σp
2,

α+ ◦
(
α−
)−1 ◦ β− ◦

(
β+
)−1

(x+ t) ∈ (0, 1), ∀(t, x) ∈ Σq
2.

More generally, we have:

Lemma 65 Let (p̃, q̃) ∈
[
L2(0, 1)

]2
. The solutions p2n+1, p2n+2, q2n+1, q2n+2, n ≥ 1, to System (4.7) are

given by

p2n+1(t, x) (4.45)

=
n∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k]
(t− x)

) k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i]
(t− x)

)

−q̃
((
ξ−1
)[n] ◦ α+ ◦

(
α−
)−1

(t− x)
) n∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k]
(t− x)

)
,
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p2n+2 (t, x) (4.46)

=
n∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k]
(t− x)

) k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i]
(t− x)

)

+p̃
(
−
(
φ−1

)[n+1] ◦ (t− x)
) n∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k]
(t− x)

)
,

q2n+1(t, x) (4.47)

= −
n−1∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1

(x+ t)
)
×

k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ β− ◦
(
β+
)−1

(x+ t)
)

−p̃
(
−
(
φ−1

)[n] ◦ β− ◦
(
β+
)−1

(x+ t)
)
×

n−1∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1

(x+ t)
)
,

q2n+2(t, x) (4.48)

= −
n∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1

(x+ t)
)
×

k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ β− ◦
(
β+
)−1

(x+ t)
)

+q̃
((
ξ−1
)[n+1]

(x+ t)
)
×

n∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1

(x+ t)
)
,

with the convention
−1∏
k=0

= 1. The functions φ and ξ are defined in (4.13) and (4.33).

Proof. The above expressions can be proved by induction. Let us start by proving ( 4.48). At the
boundary x = β(t), (4.45) becomes

p2n+1(t, β(t))

=
n∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β−(t)
) k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ β−(t)
)

−q̃
((
ξ−1
)[n] ◦ α+ ◦

(
α−
)−1 ◦ β−(t)

) n∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β−(t)
)
.

Now, we use the boundary condition given in (4.9), i.e.

q2n+2(χ, β(χ)) = −p2n+1(χ, β(χ)),

χ ∈
[ (

β−1
)−1 ◦ φ[n](0),

(
β−1

)−1 ◦ φ[n] ◦ α− ◦
(
α+
)−1

(1)
)
,
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we find

q2n+2(χ, β(χ)) (4.49)

= −
n∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β−(χ)
) k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ β−(t)
)

+q̃
((
ξ−1
)[n] ◦ α+ ◦

(
α−
)−1 ◦ β−(χ)

) n∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β−(χ)
)
.

Since q is constant along the characteristic lines of the form x = c−t, in particular, on the line x = β+(χ)−t,
we have

q2n+2(t, β
+(χ)− t) = q2n+2(χ, β(χ)).

Finally, by letting χ = (β+)
−1

(x + t) in (4.49 ), we obtain the formula in (4.48). Let us do similarly for
p2n+2. By taking (4.47) for x = α(t), we obtain

q2n+1(t, α(t)) (4.50)

= −
n−1∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1 ◦ α+(t)

)
×

k−1∏

i=0

F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ β− ◦
(
β+
)−1 ◦ α+(t)

)

−p̃
(
−
(
φ−1

)[n] ◦ β− ◦
(
β+
)−1 ◦ α+(t)

)
×

n−1∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1 ◦ α+(t)

)
.

Using the boundary condition

p2n+2(τ, α(τ)) = v(τ)− F (τ)q2n+1(τ, α(τ)),

τ ∈
[(
α+
)−1 ◦ ξ[n](1),

(
α+
)−1 ◦ ξ[n] ◦ β+ ◦

(
β−
)−1

(0)
)
,

and the fact that q is constant along the characteristic lines x = c−t, in particular, on the line x = t−α−(τ),
we obtain

p2n+2(τ, t− α−(τ)) = v(τ)− F (τ)q2n+1(τ, α(τ)). (4.51)

By letting τ = (α−)
−1

(t−x) in (4.50) and plugging the result in (4.51) then using the definition of φ given
in (4.13), we get

p2n+2(t, x)

= v(
(
α−
)−1

(t− x)) +

n−1∑

k=0

v
((
α−
)−1 ◦

(
φ−1

)[k+1]
(t− x)

)
×

k−1∏

i=0

F (
(
α−
)−1

(t− x))F
((
α−
)−1 ◦

(
φ−1

)[i+1]
(t− x)

)

+F (
(
α−
)−1

(t− x))p̃
(
−
(
φ−1

)[n+1]
(t− x)

)
×

n−1∏

k=0

F
((
α−
)−1 ◦

(
φ−1

)[k+1]
(t− x)

)
.

After some manipulation we obtain the formula in (4.46).
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Remark 66 From what has preceded, it is not difficult to see that the solution (p, q) to System (4.7)
satisfies the regularity given in (4.11).

Remark 67 More generally, if (p̃, q̃, v, F ) ∈
[
Lθ(0, 1)

]2 × Lθ
loc(0,∞)× Lη(0,∞), θ, η ∈ [1,∞), we can see

from (4.45)-(4.48) that the solution (p, q) to system ( 4.7) satisfies the regularity

(p, q) ∈ C([0, t]; [Lr(α(t), β(t))]2), t ≥ 0,

with 1
θ
+ 1

η
= 1

r
.

4.3 Proof of main results

4.3.1 Proof of the controllability theorem

Let F ≡ 1 in (4.35),(4.36),(4.39) and (4.40). The solution p1 sees the control immediately for t ≥ 0, on
the contrary, the component q1 has to wait one more reflection on the curve (t, α(t))t≥0 to see it as soon

as t ≥ (β−)
−1

(0). Let us start by proving the necessary part:

Proposition 68 If T < T ∗ = (α+)
−1 ◦ β+ ◦ (β−)

−1
(0), then System (4.5) is not exactly controllable at

time T .

Proof. To prove this lemma, we make use of the expressions of the exact solution given in (4.36) and
(4.40). Let T ∗

ε = T ∗ − ε for sufficiently small ε > 0; the solution q at this time is given by

q(T ∗
ε , x) =





q+1 (T
∗
ε , x) if x ∈

[
α(T ∗

ε ), T
∗
ε − β+ ◦ (β−)−1

(0)
)
,

q+2 (T
∗
ε , x) if x ∈

[
T ∗
ε − β+ ◦ (β−)−1

(0), β(T ∗
ε )
)
.

Thus, System (4.1) will be never exactly controllable since we have for any initial state p̃ and any target
state k

q(T ∗
ε , x) = −p̃

(
−β− ◦

(
β+
)−1

(x+ Tε)
)
= k(x), x ∈

[
α(T ∗

ε ), T
∗
ε − β+ ◦

(
β−
)−1

(0)
)
,

which is clearly a violating of the initial states.

t

x

1

0
T ∗
ǫ T ∗

Now, we prove the sufficient part:

Proposition 69 If T ≥ T ∗ = (α+)
−1 ◦ β+ ◦ (β−)−1

(0), then System (4.7) is exactly controllable at time
T .
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Proof. It suffices to prove it for T = T ∗. Let (h, k) ∈ L2(α(T ∗), β(T ∗)) be a target state and let
T ∗∗ = (β−)

−1 ◦ α− ◦ (α+)
−1

(1). We have three possible configurations:
Case 1: T ∗∗ = T ∗

In this case, we have p(T ∗) = p2(T
∗) and q(T ∗) = q2(T

∗), then by making use of (4.39) and (4.40) we
obtain

h (x) = p2 (T
∗, x) = v

((
α−
)−1

(T ∗ − x)
)
+ p̃

(
−φ−1(T ∗ − x)

)
, x ∈ (α(T ∗), β(T ∗))

k (x) =− v
((
α−
)−1 ◦ β− ◦

(
β+
)−1

(x+ T ∗)
)

+ q̃
(
ξ−1 (x+ T ∗)

)
, x ∈ (α(T ∗), β(T ∗)).

Therefore, the control v is given by

v(t) =





h (T ∗ − α−(t))− p̃
(
−φ−1 ◦ α−(t)

)
, if t ∈

(
(α−)

−1 ◦ β−(T ∗), T ∗
)
,

q̃ (α+(t))

−k
(
β+ ◦ (β−)−1 ◦ α−(t)− T ∗

)
,

if t ∈
(
0, (α−)

−1 ◦ β−(T ∗)
)
.

Case 2: T ∗∗ < T ∗

In this case, p(T ∗) and q(T ∗) are defined by

p(T ∗, x) =





p1(T
∗, x), if x ∈

(
T ∗ − α− ◦ (α+)

−1
(1), β(T ∗)

)
,

p2(T
∗, x), if x ∈

(
α(T ∗), T ∗ − α− ◦ (α+)

−1
(1)
)
,

and q(T ∗) = q2(T
∗). Thus, by making use of (4.35),(4.39) and (4.40), then making some variable substitu-

tions, we arrive at

v(t) =





h1(T
∗ − α−(t)) + q̃ (α+(t)) , if t ∈

(
(α−)

−1 ◦ β−(T ∗), (α+)
−1

(1)
)
,

h2 (T
∗ − α−(t))− p̃

(
−φ−1 ◦ α−(t)

)
, if t ∈

(
(α+)

−1
(1), T ∗

)
,

q̃ (α+(t))

−k
(
β+ ◦ (β−)−1 ◦ α−(t)− T ∗

)
,

if t ∈
(
0, (α−)

−1 ◦ β−(T ∗)
)
,

where h1 and h2 are the restrictions of the target state h on the regions Σp
1 and Σp

2 respectively.
Case 3: T ∗∗ > T ∗

In this case, we have p(T ∗) = p2(T
∗), and q(T ∗) is defined by

q(T ∗, x) =

{
q2(T

∗, x), if x ∈ (α (T ∗) , ξ(1)− T ∗) ,
q3(T

∗, x), if x ∈ (ξ(1)− T ∗, β(T ∗)) .

By using (4.39), (4.40) and (4.47) for n = 1 and t = T ∗, then making some variable substitutions, we
obtain

v(t) =





h (T ∗ − α−(t))− p̃
(
−φ−1 ◦ α−(t)

)
, if t ∈

(
(α−)

−1 ◦ β−(T ∗), T ∗
)
,

q̃ (α+(t))

−k2(β+ ◦ (β−)−1 ◦ α−(t)− T ∗),
if t ∈

(
0, (α+)

−1
(1)
)
,

−p̃
(
−β− ◦ (β+)−1 ◦ α+(t)

)

−k3(β+ ◦ (β−)−1 ◦ α− (t)− T ∗),
if t ∈

(
(α+)

−1
(1), (α−)

−1 ◦ β−(T ∗)
)
,
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where k2 and k3 are the restrictions of the target state k on the regions Σq
2 and Σq

3 respectively. The above
expressions are well defined and the control v is uniquely determined on [0, T ∗). In particular, from (4.39)
and (4.40), we can see that the control

v(t) =





q̃ (α+(t)) , if t ∈
[
0, (α+)

−1
(1)
)
,

−p̃
(
−β− ◦ (β+)−1 ◦ α+(t)

)
, if t ∈

[
(α+)

−1
(1), T ∗

)
,

0, if t ≥ T ∗,

makes p2 and q2 vanish, then by the boundary conditions given in ( 4.9) all the solutions pn, qn, n ≥ 2,
will be zero. To get an explicit formula of the control u, it suffices to inverse the transformation defined in
(4.4), then using the compatibility condition y0(0) = u(0) to obtain (4.12).

Remark 70 Since we have an explicit formula of the solution for all t ≥ 0, we can prove that exact
controllability holds at any time T > T ∗ with loss of uniqueness of the control.

4.3.2 Proof of the stability theorem

In this subsection, we let v ≡ 0. We start by proving the sufficient part.
At time t ≥ 0, the components p and q might involve at most three values of the restrictive solutions

pn and qn respectively on the contrary of the cylindrical case where p and q might involve at most two
values (see Figure 4.2), (if p or q are defined on four regions, we obtain α(t) > β(t)). Let us deal with the
worst case that might occur. We have for the component p:

Case 1: t ∈
[
(α−)

−1 ◦ φ[n−1] ◦ α− ◦ (α+)
−1

(1), (α−)
−1 ◦ φ[n](0)

)
.

In this case, p might expressed in function of p2n−1, p2n, p2n+1,

p(t, x) =





p2n−1(t, x), if x ∈
[
t− φ[n−1] ◦ α− ◦ (α+)

−1
(1), β(t)

)
,

p2n(t, x), if x ∈
[
t− φ[n](0), t− φ[n−1] ◦ α− ◦ (α+)

−1
(1)
)
,

p2n+1(t, x), if x ∈
[
α(t), t− φ[n](0)

)
.

(4.52)

By definition of the regions Σp
n, n ≥ 0, given in (4.25)-(4.32), we have for k = 1, 2, 3

‖p(t)‖2L2(α(t),β(t)) =

3∑

k=1

∫

(t,x)∈Σp
2n+k−2

|p2n+k−2(t, x)|2 dx, (4.53)

which amounts to estimate the right hand side of (4.53). By using the exact solution formulas given in
(4.45) and (4.46), we obtain for k = 1, 2, 3

√√√√
3∑

k=1

∫

(t,x)∈Σp
2n+k−2

|p2n+k−2(t, x)|2 dx

≤ ‖(p̃, q̃)‖[L2(0,1)]2

3∑

k=1

sup
x,(t,x)∈Σp

2n+k−2

n−1+[ k−1
2 ]∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i]
(t− x)

)∣∣∣ .

By definition of the regions Σp
n, n ≥ 0 given in (4.25)-(4.32), we have

(t, x) ∈ Σp
2n ⇔ t− x ∈

[
φ[n−1] ◦ α− ◦

(
α+
)−1

(1), φ[n](0
)
,

(t, x) ∈ Σp
2n+1 ⇔ t− x ∈

[
φ[n](0), φ[n] ◦ α− ◦

(
α+
)−1

(1)
)
,
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therefore, there exist a sequences τn1 (t, x) ∈
[
α− ◦ (α+)

−1
(1), φ(0)

)
and τn2 (t, x) ∈

[
0, α− ◦ (α+)

−1
(1)
)

such that

(t, x) ∈ Σp
2n ⇔ t− x = φ[n−1] (τn1 (t, x)) , (4.54)

(t, x) ∈ Σp
2n+1 ⇔ t− x = φ[n](τn2 (t, x)).

Observe that when (t, x) runs Σp
2n (resp. Σp

2n+1), the bounded sequence τn1 (t, x) (resp. τn2 (t, x)) rises[
α− ◦ (α+)

−1
(1), φ(0)

)
(resp.

[
0, α− ◦ (α+)

−1
(1)
)
). These sequences will play the role of two parameters

τ1 ∈
[
α− ◦ (α+)

−1
(1), φ(0)

)
and τ2 ∈

[
0, α− ◦ (α+)

−1
(1)
)
). With these notations, we have

3∑

k=1

sup
x,(t,x)∈Σp

2n+k−2

n+k−2∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i]
(t− x)

)∣∣∣

≤ sup
τ2∈[0,α−◦(α+)−1(1))

n−1∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ φ[n−1](τ2)
)∣∣∣

+ sup
τ1∈[α−◦(α+)−1(1),φ(0))

n−1∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ φ[n−1](τ1)
)∣∣∣

+ sup
τ2∈[0,α−◦(α+)−1(1))

n∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i] ◦ φ[n](τ2)
)∣∣∣

= sup
τ∈[0,α−◦(α+)−1(1))

ψn−1(τ) + sup
τ∈[α−◦(α+)−1(1),φ(0))

ψn−1(τ)

+ sup
τ∈[0,α−◦(α+)−1(1))

ψn(τ).

So,

‖p(t)‖L2(α(t),β(t)) ≤ ‖(p̃, q̃)‖[L2(0,1)]2 sup
τ∈[0,α−◦(α+)−1(1))

ψn−1(τ) (4.55)

+ ‖(p̃, q̃)‖[L2(0,1)]2 sup
τ∈[α−◦(α+)−1(1),φ(0))

ψn−1(τ)

+ ‖(p̃, q̃)‖[L2(0,1)]2 sup
τ∈[0,α−◦(α+)−1(1))

ψn(τ).

Case 2: t ∈
[
(α−)

−1 ◦ φ[n](0), (α−)
−1 ◦ φ[n] ◦ α− ◦ (α+)

−1
(1)
)
.

In this case, p might be expressed in function of p2n, p2n+1, p2n+2

p(t, x) =





p2n(t, x), if x ∈
[
t− φ[n](0), β(t)

)
,

p2n+1(t, x), if x ∈
[
t− φ[n] ◦ α− ◦ (α+)

−1
(1), t− φ[n](0)

)
,

p2n+2(t, x), if x ∈
[
α(t), t− φ[n] ◦ α− ◦ (α+)

−1
(1)
)
.

(4.56)

In the same way, we obtain the estimate

‖p(t)‖2L2(α(t),β(t)) ≤ ‖(p̃, q̃)‖2
[L2(0,1)]2

sup
τ∈[α−◦(α+)−1(1),φ(0))

ψn−1(τ) (4.57)

+ ‖(p̃, q̃)‖2
[L2(0,1)]2

sup
τ∈[0,α−◦(α+)−1(1))

ψn(τ)

+ ‖(p̃, q̃)‖2
[L2(0,1)]2

sup
τ∈[α−◦(α+)−1(1),φ(0))

ψn(τ).
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Analogously, we have for the component q:

Case 1: t ∈
[
(β+)

−1 ◦ ξ[n−1] ◦ β+ ◦ (β−)−1
(0), (β+)

−1 ◦ ξ[n](1)
)
.

The expression of q might involve the expressions of q2n−1, q2n, q2n+1

q(t, x) =





q2n−1(t, x), if x ∈
[
α(t), ξ[n−1] ◦ β+ ◦ (β−)−1

(0)− t
)
,

q2n(t, x), if x ∈
[
ξ[n−1] ◦ β+ ◦ (β−)−1

(0)− t, ξ[n](1)− t
)
,

q2n+1(t, x), if x ∈
[
ξ[n](1)− t, β(t)

)
.

(4.58)

So, we have

‖q(t)‖L2(α(t),β(t)) =

√√√√
3∑

k=1

∫

(t,x)∈Σq
2n+k−2

|q2n+k−2(t, x)|2 dx (4.59)

≤ ‖(p̃, q̃)‖[L2(0,1)]2 ×
3∑

k=1

sup
x,(t,x)∈Σq

2n+k−2

n−2+[ k−1
2 ]∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1

(x+ t)
)∣∣∣ .

By definition of the regions Σq
n, n ≥ 0 given in (4.25)-(4.32), we have

(t, x) ∈ Σq
2n ⇔ t+ x ∈

[
ξ[n−1] ◦ β+ ◦

(
β−
)−1

(0), ξ[n](1)
)
, (4.60)

(t, x) ∈ Σq
2n+1 ⇔ t+ x ∈

[
ξ[n](1), ξ[n] ◦ β+ ◦

(
β−
)−1

(0)
)
, (4.61)

and since ξ is defined as
ξ = β+ ◦

(
β−
)−1 ◦ φ ◦ β− ◦

(
β+
)−1

,

(4.60) and (4.61) turns to

(t, x) ∈ Σq
2n ⇔ (4.62)

t+ x ∈
[
β+ ◦

(
β−
)−1 ◦ φ[n−1](0), β+ ◦

(
β−
)−1 ◦ φ[n] ◦ β− ◦

(
β+
)−1

(1)
)
,

(t, x) ∈ Σq
2n+1 ⇔ (4.63)

t+ x ∈
[
β+ ◦

(
β−
)−1 ◦ φ[n] ◦ β− ◦

(
β+
)−1

(1), β+ ◦
(
β−
)−1 ◦ φ[n](0)

)
,

therefore, there exist χ1 := χn(t, x) ∈
[
0, φ ◦ β− ◦ (β+)−1

(1)
)
and χ2 := χn

2 (t, x) ∈
[
φ ◦ β− ◦ (β+)−1

(1), φ(0)
)

such that

(t, x) ∈ Σq
2n ⇔ t+ x = β+ ◦

(
β−
)−1 ◦ φ[n−1] (χ1) ,

(t, x) ∈ Σq
2n+1 ⇔ t+ x = β+ ◦

(
β−
)−1 ◦ φ[n](χ2).

Thus, by combining (4.59),(4.62) and (4.63), we obtain
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3∑

k=1

sup
x,(t,x)∈Σq

2n+k−2

n−2+[ k−1
2 ]∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[k] ◦ β− ◦
(
β+
)−1

(x+ t)
)∣∣∣

≤ sup
χ2∈[φ◦β−◦(β+)−1(1),φ(0))

n−2∏

i=0

∣∣∣∣∣
F (α−)

−1 ◦
(
φ−1

)[i] ◦ β− ◦ (β+)−1

◦β+ ◦ (β−)−1 ◦ φ[n−1](χ2)

∣∣∣∣∣

+ sup
χ1∈[0,φ◦β−◦(β+)−1(1))

n−2∏

i=0

∣∣∣∣∣F
(

(α−)
−1 ◦

(
φ−1

)[i] ◦ β− ◦ (β+)−1

◦β+ ◦ (β−)−1 ◦ φ[n−1] (χ1)

)∣∣∣∣∣

+ sup
χ2∈[φ◦β−◦(β+)−1(1),φ(0))

n−1∏

i=0

∣∣∣∣∣F
(

(α−)
−1 ◦

(
φ−1

)[i] ◦ β− ◦ (β+)−1

◦β+ ◦ (β−)−1 ◦ φ[n](χ2)

)∣∣∣∣∣

= sup
χ2∈[φ◦β−◦(β+)−1(1),φ(0))

n−2∏

i=0

∣∣∣F
(
α−
)−1 ◦ φ[n−i−1](χ2)

∣∣∣

= sup
χ1∈[0,φ◦β−◦(β+)−1(1))

n−2∏

i=0

∣∣∣F
((
α−
)−1 ◦ φ[n−i−1] (χ1)

)∣∣∣

= sup
χ2∈[φ◦β−◦(β+)−1(1),φ(0))

n−1∏

i=0

∣∣∣F
((
α−
)−1 ◦ φ[n−i](χ2)

)∣∣∣ .

Finally, we get

‖q(t)‖2L2(α(t),β(t)) ≤ C ‖(p̃, q̃)‖2L2(0,1) sup
χ∈[φ◦β−◦(β+)−1(1),φ(0))

ψn−1(χ) (4.64)

+C ‖(p̃, q̃)‖2L2(0,1) sup
χ∈[0,φ◦β−◦(β+)−1(1))

ψn−1(χ)

+C ‖(p̃, q̃)‖2L2(0,1) sup
χ∈[φ◦β−◦(β+)−1(1),φ(0))

ψn(χ).

Case 2: t ∈
[
(β+)

−1 ◦ ξ[n](1), (β+)−1 ◦ ξ[n] ◦ β+ ◦ (β−)−1
(0)
)
.

As previously, q might involve the values of q2n, q2n+1, q2n+2

q(t, x) =





q2n(t, x), if x ∈
[
α(t), ξ[n](1)− t

)
,

q2n+1(t, x), if x ∈
[
ξ[n](1)− t, ξ[n] ◦ β+ ◦ (β−)−1

(0)− t
)
,

q2n+2(t, x), if x ∈
[
ξ[n] ◦ β+ ◦ (β−)−1

(0)− t, β(t)
)
.

(4.65)

In the same way, the following estimate holds

‖q(t)‖L2(α(t),β(t)) ≤ C ‖(p̃, q̃)‖[L2(0,1)]2 sup
χ∈[0,φ◦β−◦(β+)−1(1))

ψn−1(χ) (4.66)

+C ‖(p̃, q̃)‖[L2(0,1)]2 sup
χ∈[φ◦β−◦(β+)−1(1),φ(0))

ψn−1(χ)

+C ‖(p̃, q̃)‖[L2(0,1)]2 sup
χ∈[0,φ◦β−◦(β+)−1(1))

ψn(χ).

From (4.55),(4.57),(4.64) and (4.66), we deduce that

sup
τ∈[0,φ(0))

ψn(τ) −→
n→∞

0 =⇒ ‖(p, q)(t)‖[L2(α(t),β(t))]2 −→
t→∞

0, (4.67)
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which finishes the proof of the first statement of Theorem 53. The proof of the second and the third
statements are just a consequences of (4.67). By definition of the regions Σp

n,Σ
q
n, n ≥ 0, given in (4.25)-

(4.32), we can see that letting t −→ ∞ is the same as φ[n](τ) −→ ∞, ∀τ ∈ [0, φ(0)) , so, if there exists a
positive function g such that

Cg
(
φ[n](τ)

)
∼

n→∞
ψn(τ), ∀τ ∈ [0, φ(0)),

then obviously (4.18) holds. In particular, exponential stability follows immediately from

sup
τ∈[0,φ(0))

ψn(τ) = sup
τ∈[0,φ(0))

exp

[
φ[n](τ)

(
lnψn(τ)

φ[n](τ)

)]
.

The proof of the necessary part is straightforward. Without loss of generality, assume that the limit of
inf

τ∈[0,φ(0))
ψn(τ) is not zero. From (4.45),(4.46) and (4.54), we obtain

√∫

(t,x)∈Σp
2n+1

|p2n+1(t, x)|2 dx+

∫

(t,x)∈Σp
2n+2

|p2n+2(t, x)|2 dx

≥ C ‖q̃‖L2(0,1) inf
x,(t,x)∈Σp

2n+1

n∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i]
(t− x)

)∣∣∣

+C ‖p̃‖L2(0,1) inf
x,(t,x)∈Σp

2n+2

n∏

i=0

∣∣∣F
((
α−
)−1 ◦

(
φ−1

)[i]
(t− x)

)∣∣∣

≥ C
(
‖q̃‖L2(0,1) + ‖p̃‖L2(0,1)

)
×

[
inf

τ∈[0,α−◦(α+)−1(1))
ψn(τ) + inf

τ∈[α−◦(α+)−1(1),φ(0))
ψn(τ)

]
,

therefore, if (4.16) is not satisfied then clearly stability cannot occur.
Let us prove the second claim of Theorem 53. If f ≡ 1 then F ≡ 0. In this case, we infer from the

exact formula of solutions given in (4.35),(4.36) and (4.40) that we have p1 ≡ 0 while q1 6= 0, and since q
is constant along the characteristic lines, q is identically zero from the time that q2 will be zero, that is
t ≥ T ∗ = (α+)

−1 ◦ β+ ◦ (β−)−1
(0) which is the same time for boundary controllability of System (4.1).
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Chapter 5

Boundary controllability of two coupled

wave equations with space-time first

order coupling in 1−D

This Chapter is taken from [14].

5.1 Introduction

We are interested in the boundary controllability of the following system of two strongly coupled 1 − D
wave equations





ytt = yxx +M((ay)t + (by)x), in QT := (0, T )× (0, 1),
y(t, 0) = Bu(t), y(t, 1) = 0, in (0, T ),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

(5.1)

where y = (y1, y2)
t is a vector function and

M = (mij)1≤i,j≤2 ∈ L
(
R2
)
, B = (b1, b2)

t ∈ R2, a, b ∈ C1(QT ;R), (5.2)

and u a is scalar control function acting at x = 0.
This work is motivated by some previous papers. One of them is the result of Zhang [130]: a single

wave equation in any space dimension with lower order terms is proved to be exactly controllable by a
control acting on part of the boundary under a suitable geometric condition and independently from the
lower terms. The author extended earlier Carleman inequalities proved by Fursikov-Imanuvilov [53] for
the wave equation without these lower order terms.

The same issue arises for systems of n (≥ 2) coupled wave equations with boundary or distributed
controls. In [1], Alabau-Boussouira studied the controllability of 2-coupled wave equations with zero order
coupling operator with constant coefficients. Later, this result has been generalized by Alabau-Boussouira
and Léautaud in [2], [3], for coupling coefficients depending on the space variable under the geometric
control condition introduced in [21]. In these works, one of the coupling coefficients is supposed to be
small.

Dehman, Le Rousseau and Léautaud [46] studied distributed controllability of 2-coupled wave equations
on a Riemannian manifold without boundary (periodic boundary conditions in the 1 − D case) with a
particular zero order coupling operator of cascade type. They proved that exact controllability holds
provided that the Geometric Control Condition is satisfied. Further, they gave a characterization of the
minimal time of control. An abstract result on the exact controllability of cascade systems is due to
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Alabau-Boussouira [4] (abstract setting with application to various coupled second order PDEs). In all
these cited works, it has been assumed that the coupling functions are of constant sign.

A boundary controllability result has been established without the sign or the smallness conditions by
Bennour et al. [24] for 2-coupled wave equations in 1−D with cascade type coupling through velocity.

Concerning the constant case, Avdonin and De Tereza gave a complete answer for the exact boundary
controllability issue for 2-coupled wave equations by zero order operator in 1−D. The same authors came
back in [18] and generalized their result to n (≥ 2) coupled wave equations in 1 − D but always with
constant coupling coefficients under a Kalman rank condition. The same condition appears for distributed
controllability of n (≥ 2)-coupled multidimensional wave equations with zero order coupling matrix with
constant coefficients. It has been proved by Liard and Lissy in [81] that it is necessary and sufficient for the
exact controllability in more regular energy space. An extension of this result can be found in Duprez and
Olive [48] for cascade systems with zero order coupling operator whose coefficients depend on the space
variable. However, boundary controllability has not been treated yet.

Recently, in [41], Cui et al. studied distributed controllability of n (≥ 2)-coupled wave equations with
zero and first order coupling operator whose coefficients depend on both space and time variables on a
compact Riemannian manifold without boundary (periodic boundary conditions in the 1-D case). It has
been shown that the exact controllability issue can be reduced to the controllability of a finite dimensional
system along the associated Hamiltonian flow. The authors also gave a unique continuation results in the
autonomous case under classical support and sign assumptions. The same idea appears in [5] by Alabau-
Boussouira et al. where distributed controllability of 1 − D first order system with periodic boundary
conditions is considered. The authors proved that exact controllability is reduced to the controllability of
parametrized non-autonomous finite dimensional system.

In light of all of the cited works, we can see that the main issue that has to be solved is to figure out
the optimal assumptions the coupling coefficients (or operators) of such systems must satisfy so that exact
or approximate controllability hold.

In this article, we give a necessary and sufficient condition for the boundary exact controllability of
System (5.1) in high frequency for a general matrix M . We shall also propose a criterion for the unique
continuation property in the cascade case. Actually, we will prove that the unique continuation property
is equivalent to solving a system a 2-coupled Fredholm integral equations of the third kind. We apply this
criterion to nontrivial examples.

This paper is organized as follows: after some preliminaries fixing some notations, well-posedness and
equivalence with a first order symmetric hyperbolic system gathered in Section 5.2, we present the main
results of exact controllability of System (5.1) in high frequency (weak observability) in Section 5.3. Section
5.4 is devoted to the unique continuation issue for System (5.1). Appendix 5.5 contains the proof of some
technical lemmas used in the previous sections.

5.2 Preliminaries

In this section, we recall some results about well-posedness which can be proved exactly as in the scalar
case. For the proof of these results in the scalar case, we refer for instance to [130] and the references
therein.

Proposition 71 Let T > 0. Under the assumption (5.2), suppose that:

(y0, y1, u) ∈ L2 (0, 1)2 ×H−1 (0, 1)2 × L2 (0, T ) .

Then there exists a unique weak solution y to System (5.1) such that

(y, yt) ∈ C
(
[0, T ] , L2 (0, 1)2 ×H−1 (0, 1)2

)
.
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Moreover, there exists a constant C = C (T, a, b) > 0 such that:

‖y‖C([0,T ],L2(0,1)2×H−1(0,1)2) ≤ C
(
‖Bu‖L2(0,T )2 + ‖(y0, y1)‖L2(0,1)2×H−1(0,1)2

)
.

The adjoint problem associated with (5.1) writes:





ϕtt = ϕxx −M∗(aϕt + bϕx), in (0, T )× (0, 1),
ϕ|x=0,1 = 0, in (0, T ),

(ϕ,ϕt)|t=T = (ϕ0, ϕ1) , in (0, 1).
(5.3)

Proposition 72 Let T > 0. Under the assumption (5.2), suppose that:

(ϕ0, ϕ1) ∈ H1
0 (0, 1)

2 × L2 (0, 1)2 .

Then there exists a unique weak solution ϕ to System (5.3) such that

(ϕ,ϕt) ∈ C
(
[0, T ] , H1

0 (0, 1)
2 × L2 (0, 1)2

)
.

Moreover, ϕx|x=0,1 ∈ L2 (0, T )2 and there exists a constant C = C (T, a, b) > 0 such that:

‖(ϕ,ϕt)‖C([0,T ],H1
0 (0,1)

2×L2(0,1)2) +
∥∥ϕx|x=0,1

∥∥
L2(0,T )2

≤ C ‖(ϕ0, ϕ1)‖H1
0 (0,1)

2×L2(0,1)2 .

We are interested in the controllability issue for System (5.1). Recall that:

• System (5.1) is said to be

1. exactly controllable at time T > 0 if for any

(y0, y1) , (τ0, τ1) ∈ L2 (0, 1)2 ×H−1 (0, 1)2 ,

there exists u ∈ L2 (0, T ) such that the associated solution y to (5.1) satisfies

(y, yt)|t=T = (τ0, τ1) , in (0, 1) .

2. approximately controllable at time T > 0 if for any

(y0, y1) , (τ0, τ1) ∈ L2 (0, 1)2 ×H−1 (0, 1)2 ,

and any ε > 0, there exists u ∈ L2 (0, T ) such that the associated solution y to (5.1) satisfies:

∥∥∥(y, yt)|t=T − (τ0, τ1)
∥∥∥
L2(0,1)2×H−1(0,1)2

< ε.

These controllability concepts are known to be connected with the observability properties of the adjoint
system (5.3) (see [129, Part 4, Chapter 2 ]). Namely:

• System (5.1) is exactly controllable at time T > 0 if, and only if, there exists C = CT > 0 such that
for any (ϕ0, ϕ1) ∈ H1

0 (0, 1)
2 × L2 (0, 1)2 , the associated solution ϕ to (5.3) satisfies the observability

inequality :

‖(ϕ0, ϕ1)‖2H1
0 (0,1)

2×L2(0,1)2
≤ C

∫ T

0
|B∗ϕx (t, 0)|2 dt. (5.4)

In this case, the adjoint system is said exactly observable.
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• System (5.1) is approximately controllable at time T > 0 if, and only if, for any (ϕ0, ϕ1) ∈ H1
0 (0, 1)

2×
L2 (0, 1)2, the associated solution ϕ to (5.3) satisfies the unique continuation property :

(B∗ϕx (t, 0) = 0, t ∈ (0, T )) ⇒ ϕ ≡ 0 in QT . (5.5)

To study the observability inequality (5.4) for solutions to (5.3), we transform this system into a
hyperbolic system of order one. Introduce the Riemann invariants:

p = ϕt − ϕx, q = ϕt + ϕx, in QT . (5.6)

We will have, under the assumptions of Proposition 72:

p|t=T = ϕ1 −
dϕ0

dx
= p0 ∈ L2 (0, 1)2 , q|t=T = ϕ1 +

dϕ0

dx
= q0 ∈ L2 (0, 1)2 .

Thus, (p0, q0) ∈ L2 (0, 1)2 × L2 (0, 1)2 . Moreover, since ϕ0 ∈ H1
0 (0, 1) and q0 − p0 = 2ϕx, we must have:

∫ 1

0
(q0 − p0) = 0. (5.7)

It is readily seen that System (5.3) writes:





pt + px +M∗ (α1p+ α2q) = 0, in QT ,
qt − qx +M∗ (α1p+ α2q) = 0, in QT ,
(p+ q)|x=0,1 = 0R2 , in (0, T ),

(p, q)|t=T = (pT , qT ), in (0, 1),

(5.8)

where:

α1 =
a− b

2
, α2 =

a+ b

2
, (5.9)

(a, b and M being defined in (5.2)). From which it appears in particular that

α1, α2 ∈ C1(QT ;R). (5.10)

Thanks to Proposition 72, we have

(p, q) ∈ C
(
[0, T ] , L2 (0, 1)2 × L2 (0, 1)2

)
,

(q − p)|x=0,1 ∈ L2 (0, T )2 ,

‖(p, q)‖C([0,T ],L2(0,1)2×L2(0,1)2) +
∥∥∥(q − p)|x=0,1

∥∥∥
L2(0,T )2

≤ C ‖(pT , qT )‖L2(0,1)2×L2(0,1)2 .

Conversely, if (p, q) is a solution to (5.8) associated with (p0, q0) satisfying (5.7), then there exists
ϕ ∈ H1 (QT ) such that:

(
ϕt

ϕx

)
=




q + p

2
q − p

2


 ,

since in QT , from System (5.8), the scalar curl of

(
q + p
q − p

)
is:

(q + p)x − (q − p)t = (px + pt)− (qt − qx) ≡ 0.
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Moreover, taking into account the definition of α1 and α2 in (5.9), it is straightforward that:

ϕtt − ϕxx = −M∗ (aϕt + bϕx) , in QT .

We note moreover that

ϕx =
q − p

2
⇒ ϕ (t, x) =

∫ x

0

q − p

2
(ξ) dξ + C.

From (5.8), it appears that

(q − p)t = (q + p)x ⇒
(∫ 1

0
(q − p)

)

t

= 0 ⇒
∫ 1

0
(q − p) = 0,

the last equality coming from (5.7) and the continuity in time of (p, q). It follows that:

ϕ|x=0,1 = 0, in (0, T ) .

To summarize, let us introduce the space:

H =

{
(f, g) ∈ L2 (0, 1)2 × L2 (0, 1)2 ,

∫ 1

0
(f − g) = 0

}
. (5.11)

This is clearly a closed subspace of L2 (0, 1)2×L2 (0, 1)2and thus a Hilbert space with the usual norm (and
scalar product) of L2 (0, 1)2 × L2 (0, 1)2 . In view of the previous considerations, we have:

Proposition 73 Let T > 0 and H defined in (5.11).

1. For any (pT , qT ) ∈ H, there exists a unique weak solution (p, q) to (5.8) such that (p, q) ∈ C ([0, T ] , H) .
Moreover (p− q)|x=0,1 ∈ L2 (0, T )2 and there exists a constant C = C (T, α1, α2) > 0 such that:

‖(p, q)‖C([0,T ],H) +
∥∥∥(p− q)|x=0,1

∥∥∥
L2(0,T )2

≤ C ‖(pT , qT )‖H .

2. The observability inequality (5.4) is equivalent to

‖(p, q)t=0‖2H ≤ CT

∫ T

0
|B∗p (t, 0)|2 dt. (5.12)

We will need in an essential way the block diagonal system associated with System (5.8):





pt + px +M∗α1p = 0, in QT ,
qt − qx +M∗α2q = 0, in QT ,
(p+ q)|x=0,1 = 0R2 , in (0, T ),

(p, q)|t=T = (pT , qT ), in (0, 1).

(5.13)

System (5.8) is a perturbation of System (5.13) by the multiplication operator defined on H by:

P
(
p
q

)
=

(
02×2 α2I2×2

α1I2×2 02×2

)(
p
q

)
. (5.14)

The plan now is the following:

1. In a first step (Section 5.3), we will give necessary and sufficient condition for the solution to the
diagonal system (5.13) to satisfy the observability inequality (5.12).
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2. In a second step and in the same section (Subsection 5.3.5), starting from a compactness result due
to [111], we will prove that if the solutions of (5.13) satisfy (5.12), then up to a finite dimensional
subspace of initial data in H, the same is true for solutions to System (5.8). More precisely, we
will prove that there exists a compact operator N : H → L2(0, T ), such that the following weak
observability inequality

‖(p, q)t=0‖2H ≤ CT

∫ T

0
|B∗p (t, 0)|2 dt+ ‖N(pT , qT )‖L2(0,T ) , (5.15)

holds. Actually, we will see that N := p(t, 0) − pd(t, 0) where p and pd are the solutions of Systems
(5.8) and (5.13) respectively.

3. The last step (Section 5.4) will provide a necessary and sufficient condition for the unique continuation
property to be satisfied for some particular matrix M and functions α1 and α2. Nontrivial examples
will be developed at the end the section.

5.3 Weak observability

In the block diagonal system (5.13), the change of variables t⇋ T − t (we keep the same notations) leads
to a system of the from 




pt + px −M∗η1p = 0, in QT ,
qt − qx −M∗η2q = 0, in QT ,
(p+ q)|x=0,1 = 0R2 , in (0, T ),

(p, q)|t=0 = (p0, q0), in (0, 1),

(5.16)

where
η1 (t, x) = α2 (T − t, x) , η2 (t, x) = α1 (T − t, x) , (t, x) ∈ QT . (5.17)

Note that the observed component does not change since (p+ q)|x=0 = 0R2 .
In this subsection, for any numbers s, T such that 0 < s < T , we compute the explicit solution Z = (p, q)

to the system 



pt + px −M∗η1p = 0, in QT ,
qt − qx −M∗η2q = 0, in QT ,
(p+ q)|x=0,1 = 0R2 , in (0, T ),

(p, q)|t=s = (ps, qs), in (0, 1).

(5.18)

For given real numbers s, t such that 0 ≤ s < t, the function Z(t, x) = Z(t, x; s, Zs) = (p, q)(t, x; s, Zs) for
t ∈ (s, T ) and x ∈ (0, 1) will denote the solution to (5.18) with its dependence on the starting time s ≥ 0
and the initial data Zs = (ps, qs) ∈ H.

When s = 0, we simply write Z(t, x) = Z(t, x;Z0) but unless necessary, all along this section, Z = (p, q)
will denote the solution to (5.16).

The following assumption is fixed and is assumed in all the results of this section:

ηi ∈ C1
(
QT ,R

)
, i = 1, 2.

It is simply derived from the assumption on a, b in (5.2).
Notice that the exact observability property of System (5.16) amounts to the observability inequality:

∃CT > 0, ‖(p0, q0)‖2H ≤ CT

∫ T

0
|B∗p (t, 0)|2 dt, ∀ (p0, q0) ∈ H.
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To express more compactly the formulas for the solutions to (5.18), we introduce the function φ :
R+×R+ → R defined by

φ (t, s) =





0, if t ≤ s,

∫ max{s,t−1}
max{s,t−2} η1(τ, τ − (t− 2))dτ +

∫ t

max{s,t−1} η2(τ, t− τ)dτ, if t > s,

(5.19)

and the sequence of functions:

fn(t, s) =

n∑

k=0

φ(t− 2k, s), n ≥ 0. (5.20)

When s = 0, we simply write:

φ(t, 0) = φ(t), fn(t, 0) = fn(t), t ∈ R, n ≥ 0.

At this level, it is useful to clarify the geometric meaning of the function φ. Actually the characteristic
curves associated with the hyperbolic systems (5.13), (5.16) are the lines

x+ t = cte, x− t = cte.

Introduce the vector field F =
(
η1+η2

2 , η1−η2
2

)
and let γj (j = 1, 2) the two directions γ1 = (1, 1) and

γ2 = (1,−1) of the characteristic lines. For the canonical scalar product in R2, one has F · γj = ηj ,
(j = 1, 2) and for t > 0, φ (t) is then the line integral of the vector field F along the line Γt defined by the
function:

γt (τ) =





(τ, τ − (t− 2)) , if max{0, t− 2} ≤ τ ≤ max{0, t− 1},

(τ, t− τ) , if max{0, t− 1} ≤ τ ≤ t.
(5.21)

As a consequence, for t > 0 and n ≥ 0, the function function fn (t) is the line integral of the vector field F

along the lines ∪1≤k≤n+1Γt−2k with the convention that if t − 2k < 0, Γt−2k = ∅ (see the figure below for
the representation of these lines).

t

t− 1t− 3

t− 2

x = 1

Figure 5.1: ∪1≤k≤2Γt−2k is represented by the union of the reflected red lines on the boundary.

5.3.1 Main results

As pointed out above, observability inequality for System (5.8) will hold modulo compact operator. A
classical functional analysis result shows that the space of invisible target is finite codimension and it
might be reduced to zero if approximate controllability (or the unique continuation property) holds (See
Section 5.4).

Henceforth, we denote by χ(a,b) the characteristic function of the interval (a, b), namely, if a < b,
χ(a,b)(x) = 1 when x ∈ (a, b) and 0 otherwise. We start by a negative controllability result:

Theorem 74 If T < 4, the weak observability inequality (5.15) doesn’t hold. More precisely, there is an
infinite dimensional space of unreachable target states.
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Now, we present a positive controllability results.
Denote by λ1, λ2 the eigenvalues of M∗ if it is diagonalizable and by µ the multiple eigenvalue of M∗

if it is not. We have the following controllability result:

Theorem 75 Let n ≥ 2 be an integer.

• If 2n ≤ T < 2n+1. Then System (5.8) is weakly observable (see (5.15)) if, and only if the following
three conditions are satisfied:

1. rank [B |MB] = 2.

2. For any x ∈ [0, 1] , there exists 1 ≤ k ≤ n− 1 such that:





φ (2k + 2− x) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k + 2− x) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

3. For any x ∈ [0, T − 2n) and x∗ ∈ [T − 2n, 1), there exist 1 ≤ k ≤ n and 1 ≤ k∗ ≤ n − 1
respectively such that:





φ (x+ 2k) 6= 0, φ (x∗ + 2k∗) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (x+ 2k) , φ (x∗ + 2k∗) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

• If 2n + 1 ≤ T < 2n + 2. Then System (5.8) is weakly observable (see (5.15)) if, and only if the
following three conditions are satisfied:

1. rank [B |MB] = 2.

2. For any x ∈ [2n+ 2− T, 1) and x∗ ∈ [0, 2n+ 2− T ), there exist 1 ≤ k ≤ n and 1 ≤ k∗ ≤ n− 1
respectively such that:





φ (2k + 2− x) 6= 0, φ (2k∗ + 2− x∗) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k + 2− x) , φ (2k∗ + 2− x∗) /∈ π
ℑ(λ1)

Z, if λ1, λ2∈ C\R.

3. For any x ∈ [0, 1], there exists 1 ≤ k ≤ n such that:





φ (x+ 2k) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (x+ 2k) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

Let us make several observations:

Remark 76 To illustrate geometrically the assertions of the above Theorem, we recall that from each point
(0, x) (with x ∈ [0, 1]) come two characteristics which stop at some point of the line t = T. If for example
2n ≤ T < 2n + 1 with n ≥ 2, these characteristics touch the observability boundary [0, T ] × {0} at least
two times at points of the form (2k − x, 0) for one of them and of the form (2l + x, 0) for the other. The
conditions on φ means that there exist at least two consecutive points of the form (2k − x, 0) and two
consecutive points of the form (2l + x, 0) such that the line integrals of the vector field F =

(
η1+η2

2 , η1−η2
2

)
,

namely
∫
Γ
(2(ℓ+1)+x,0)
(2ℓ+x,0)

F · γ and
∫
Γ
(2(k+1)−x,0)
(2k−x,0)

F · γ, are not, depending on the coupling matrix nature, zero or

are not in some discrete set.
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Remark 77 Let us first recall that for any t ≥ 2, the function φ defined in (5.19) is given by

φ (t) =

∫ t−1

t−2
η1(τ, τ − (t− 2))dτ +

∫ t

t−1
η2(τ, t− τ)dτ.

Then, by (5.17) and (5.10) we get

φ (t) =
1

2

∫ 1

0
(a+ b) (T − τ + t− 2, τ) dτ +

1

2

∫ 1

0
(a− b) (T − t+ τ, τ)dτ.

Observe that in the autonomous case (a and b are time independent) the above formulas becomes

φ (t) =

∫ 1

0
a(s)ds. (5.22)

Hence, the coupling with first order derivative in space doesn’t have any influence on the controllability of
System (5.16) in high frequency unless b depends on time. More precisely, if we let a = 0 and b = b(x),
then the weak observability inequality (5.15) doesn’t hold in any time and for any b since φ will be zero.
The situation is not the same for parabolic systems. In [49], boundary controllability of a cascade system
of two parabolic equations in 1−D has been studied with coupling acting on first order component. It has
been shown that the underlying system is exactly controllable if the coupling function satisfies a moment
assumption for the low frequency part and an average assumption like (5.22) for the high frequency. This
shows that differences between hyperbolic and parabolic systems are not limited to the geometric control
condition introduced in [21] or the minimal time of control.

Remark 78 All the results stated above can be generalized to n× n matrix M with a slight modifications.
The minimal time of control becomes 2n rather than 4 and the assumption rank [B |MB] = 2 should be
replaced by

rank
[
B |MB |M2B | · · · |Mn−1B

]
= n.

5.3.2 Construction of the solution to the diagonal system

Given (t, x) ∈ QT , the value of p(t, x) and q(t, x) is determined either by (ps, qs) or by their values at x = 0
or x = 1. More precisely, we have by the characteristics method:

p(t, x) =





exp
(
M∗

∫ t

t−x
η1(τ, τ − (t− x))dτ

)
p(t− x, 0), if t− x > s,

exp
(
M∗

∫ t

s
η1(τ, τ − (t− x))dτ

)
ps(x− t+ s), if t− x < s,

(5.23)

and

q(t, x) =





exp
(
M∗

∫ t

x+t−1 η2(τ, t+ x− τ)dτ
)
q(t+ x− 1, 1), if t+ x− 1 > s,

exp
(
M∗

∫ t

s
η2(τ, t+ x− τ)dτ

)
qs(x+ t− s), if t+ x− 1 < s.

(5.24)

Thus, computing p(t, x) and q(t, x) amounts to evaluate p(t, 0) and q(t, 1) (respectively) as functions of
the initial data (p0, q0), keeping in mind the boundary conditions. The following lemma can be proved by
induction:

Lemma 79 Let n ≥ 0 be an integer and Zs = (ps, qs) ∈ H. Then if Z = (p, q) is the solution to System
(5.18), one has:

p(t, 0) = −efn(t,s)M∗
qs(t− s− 2n), if 2n ≤ t− s < 2n+ 1, (5.25)
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p(t, 0) = efn(t,s)M
∗
ps(2n+ 2− t+ s), if 2n+ 1 ≤ t− s < 2n+ 2. (5.26)

As a consequence:

q(t, 1) = eM
∗(

∫ t

s
η1(τ,τ−(t−1))dτ)ps(t− s− 2n), if 0 ≤ t− s < 1, (5.27)

q(t, 1) = −eM∗(
∫ t

s
η1(τ,τ−(t−1))dτ)p(t− 1, 0), if t− s > 1. (5.28)

Proof. We give the proof for s = 0, and a simple change of variable t⇋ t− s leads to the formulas of the
lemma.

Assume n = 0 in (5.25)-(5.26). For 0 < t < 1, the characteristics method, the boundary conditions and
(5.19)-(5.20) give:

q(t, 0) = eM
∗
∫ t

0 η2(τ,t−τ)dτq0(t)

= ef0(t)M
∗
q0(t).

For 1 ≤ t < 2, as previously:

q(t, 0) = eM
∗
∫ t

t−1 η2(τ,t−τ)dτq(t− 1, 1)

= −eM∗
∫ t

t−1 η2(τ,t−τ)dτp(t− 1, 1)

= −eM∗φ(t)p0(2− t)

= −ef0(t)Mp0(2− t).

Thus (5.25)-(5.26) are verified for n = 0.
Given n ≥ 0, let us assume (5.25) and (5.26). Let 2n+2 ≤ t < 2n+3. Then, by the same computations

using the characteristics method:
q(t, 0) = −eφ(t)M∗

p(t− 2, 0). (5.29)

Since 2n ≤ t− 2 < 2n+ 1, formula (5.25) applies and gives

p(t− 2, 0) = efn(t−2)M∗
q0(t− 2(n+ 1)). (5.30)

Now, from (5.20)

fn(t− 2) =

n∑

k=0

φ (t− 2− 2k)

=
n+1∑

k=1

φ (t− 2k)

= fn+1 (t)− φ (t) . (5.31)

Thus, inserting (5.30)-(5.31) in (5.29) leads to:

2n+ 2 ≤ t < 2n+ 3 ⇒ q (t, 0) = efn+1(t)M∗
q0(t− 2(n+ 1)),

and (5.25) is proved with n replaced by n+ 1.
The proof by induction of (5.26) can be performed in the same way.

Remark 80

1. System (5.18) defines an evolution family (Udiag(t, s))0≤s≤t
on H (see [111], [117] for instance) which

is explicitly computed by mean of formulas (5.23)-(5.24)-(5.25)-(5.26):

Udiag(t, s)Z0 = (p, q)(t, ·; s, Z0), 0 ≤ s ≤ t, Z0 ∈ H. (5.32)
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2. From (5.25)-(5.26), the following formula follows: if Z = (p, q) is a solution to System (5.16)
associated with an initial data Zs = (ps, qs) , then

B∗p (t, 0; s, Zs) =





−B∗efn(t,s)M
∗
qs(t− s− 2n), if 2n ≤ t− s < 2n+ 1,

B∗efn(t,s)M
∗
ps(2n+ 2− t+ s), if 2n+ 1 ≤ t− s < 2n+ 2.

(5.33)

for n ≥ 0. Formula (5.33) will be used in the next subsection in the study of the observability issue
for System (5.16).

5.3.3 Some technical results on multiplication operators

In order to make clear the proof of our exact observability results, we will need some preliminary results
on multiplications operators defined from L2 (0, 1)s in L2 (0, 1)n for some positive integers s, n.

Let M = (mij)1≤i,j≤n a n × n matrix whose entries satisfies mij ∈ C ([0, 1] ,R) . The multiplication

operator M : L2 (0, 1)s → L2 (0, 1)n associated with M is defined by:

(Mh) (x) =M (x)h(x), x ∈ (0, 1) , h ∈ L2 (0, 1)n .

Clearly M is a bounded operator. When s = n, the following characterization of the invertibility of M is
derived from [55, Proposition 2.2]:

Proposition 81 The operator M : L2 (0, 1)s → L2 (0, 1)s is invertible if, and only if:

inf
x∈[0,1]

|detM (x)| > 0.

We are now interested by the case s < n .

Proposition 82 Let s < n and M : L2 (0, 1)s → L2 (0, 1)n . The following properties are equivalent:

1. There exists a constant C > 0 such that

‖h‖L2(0,1)s ≤ C ‖Mh‖L2(0,1)n , ∀h ∈ L2 (0, 1)s .

2. For all x ∈ [0, 1] , there exists a s× s matrix Mext, extracted from M, such that

detMext (x) 6= 0.

Proof. For the proof, see Appendix 5.5.

5.3.4 Observability results

Let us start with the following Lemma:

Lemma 83 Let T > 0 and (p, q) be the solution to (5.16) associated with Z0 = (p0, q0) ∈ H. Then:

• If 2n ≤ T < 2n+ 1 for some n ≥ 0, one has:

∫ T

0
|B∗p (t, 0)|2 dt =

∫ T

0

∣∣∣B∗ef0(x)M
∗
q0(x)

∣∣∣
2
dx, if n = 0, (5.34)
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and for any n ≥ 1
∫ T

0
|B∗p (t, 0)|2 dt =

n−1∑

k=0

∫ 1

0

∣∣∣B∗efk(2k+2−x)M∗
p0(x)

∣∣∣
2
dx (5.35)

+
n−1∑

k=0

∫ 1

0

∣∣∣B∗efk(x+2k)M∗
q0(x)

∣∣∣
2
dx

+

∫ T−2n

0

∣∣∣B∗efn(x+2n)M∗
q0(x)

∣∣∣
2
dx.

• If 2n+ 1 ≤ T < 2n+ 2 for some n ≥ 0, then for n = 0
∫ T

0
|B∗p (t, 0)|2 dt =

∫ T−1

0

∣∣∣B∗ef0(2−x)M∗
p0(x)

∣∣∣
2
dx+

∫ 1

0

∣∣∣B∗ef0(x)M
∗
q0(x)

∣∣∣
2
dx, (5.36)

and for any n ≥ 1
∫ T

0
|B∗p (t, 0)|2 dt =

n∑

k=0

∫ 1

0

∣∣∣efk(x+2k)M∗
q0(x)

∣∣∣
2
dx (5.37)

+

n−1∑

k=0

∫ 1

0

∣∣∣efk(2k+2−x)M∗
p0(x)

∣∣∣
2
dx

+

∫ 1

2n+2−T

∣∣∣efn(2n+2−x)M∗
p0(x)

∣∣∣
2
dx.

Proof. Let n ≥ 0 be an integer and suppose that 2n ≤ T < 2n+ 1. Then, if n = 0,we have from (5.25):
∫ T

0
|B∗p (t, 0)|2 dt =

∫ T

0

∣∣∣B∗ef0(t)M
∗
q0(t)

∣∣∣
2
dt.

If n ≥ 1 :
∫ T

0
|B∗p (t, 0)|2 dt =

n−1∑

k=0

(∫ 2k+1

2k
+

∫ 2k+2

2k+1

)
|B∗p (t, 0)|2 dt+

∫ T

2n
|B∗p (t, 0)|2 dt

: =

n∑

k=1

(Ik + Jk) +

∫ T

2n
|B∗p (t, 0)|2 dt. (5.38)

Using (5.33) leads to:

Ik =

∫ 2k+1

2k
|B∗p (t, 0)|2 dt

=

∫ T−2k+1

T−2k

∣∣∣B∗efk(t)M
∗
q0(t− 2k)

∣∣∣
2
dt

=

∫ 1

0

∣∣∣B∗efk(x+2k)M∗
q0(x)

∣∣∣
2
dx.

For the second integral, in the same way:

Jk =

∫ 2k+2

2k+1
|B∗p (t, 0)|2 dt

=

∫ 2k+2

2k+1

∣∣∣B∗efk(t)M
∗
p0(2k + 2− t)

∣∣∣
2
dt

=

∫ 1

0

∣∣∣B∗efk(2k+2−x)M∗
p0(x)

∣∣∣
2
dt.
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And last:
∫ T

2n
|B∗p (t, 0)|2 dt =

∫ T

2n

∣∣∣B∗efn(t)M
∗
q0(t− 2n)

∣∣∣
2
dt

=

∫ T−2n

0

∣∣∣B∗efn(x+2n)M∗
q0(x)

∣∣∣
2
dx.

Inserting the last formula in (5.38), we get (5.35).
If 2n+ 1 ≤ T < 2n+ 2, exactly as in the previous computations, if n = 0, we get:

∫ T

0
|B∗p (t, 0)|2 dt =

∫ 1

0
|B∗p (t, 0)|2 dt+

∫ T

1
|B∗p (t, 0)|2 dt

=

∫ 1

0

∣∣∣B∗ef0(x)M
∗
q0(x)

∣∣∣
2
dx+

∫ T−1

0

∣∣∣B∗ef0(2−x)M∗
p0(x)

∣∣∣
2
dx,

and if n ≥ 1 :

∫ T

0
|B∗p (t, 0)|2 dt =

(
n∑

k=0

∫ 2k+1

2k
+

n−1∑

k=0

∫ 2k+2

2k+1

)
|B∗p (t, 0)|2 dt+

∫ T

2n+1
|B∗p (t, 0)|2 dt

=
n∑

k=0

∫ 1

0

∣∣∣efk(x+2k)M∗
q0(x)

∣∣∣
2
dx+

n−1∑

k=0

∫ 1

0

∣∣∣efk(2k+2−x)M∗
p0(x)

∣∣∣
2
dx

+

∫ 1

2n+2−T

∣∣∣efn(2n+2−x)M∗
p0(x)

∣∣∣
2
dx,

which is exactly (5.37). This ends the proof of the lemma.
As an immediate consequence, we have:

Corollary 84 Let n ≥ 1.

• If 2n ≤ T < 2n+ 1, a necessary and sufficient condition for exact observability of System (5.16) is
that:

∃CT > 0 :

∫ 1

0
|p0(x)|2 dx ≤ CT

n−1∑

k=0

∫ 1

0

∣∣∣B∗efk(2k+2−x)M∗
p0(x)

∣∣∣
2
dx, ∀p0 ∈ L2 (0, 1)2 , (5.39)

and

n−1∑

k=0

∫ 1

0

∣∣∣B∗efk(x+2k)M∗
q0(x)

∣∣∣
2
dx+ CT

∫ T−2n

0

∣∣∣B∗efn(x+2n)M∗
q0(x)

∣∣∣
2
dx (5.40)

≤ CT

∫ 1

0
|q0(x)|2 , ∀q0 ∈ L2 (0, 1)2 .

• If 2n+1 ≤ T < 2n+2, a necessary and sufficient condition for exact observability of System (5.16)
is:

n−1∑

k=0

∫ 1

0

∣∣∣B∗efk(2k+2−x)M∗
p0(x)

∣∣∣
2
dx+

∫ 1

2n+2−T

∣∣∣B∗efn(2n+2−x)M∗
p0(x)

∣∣∣
2
dx (5.41)

≥ CT

∫ 1

0
|p0(x)|2 dx, ∀p0 ∈ L2 (0, 1)2 ,

and ∫ 1

0
|q0(x)|2 dx ≤ CT

n∑

k=0

∫ 1

0

∣∣∣B∗efk(x+2k)M∗
q0(x)

∣∣∣
2
dx, ∀q0 ∈ L2 (0, 1)2 . (5.42)
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Remark 85 Let n ≥ 2. For 2n ≤ T < 2n+ 1, introduce the matrices:

P2n (x, T ) =




B∗ef0(2−x)M∗

B∗ef0(4−x)M∗

...

B∗efn−1(2n−x)M∗


 ; Q2n (x, T ) =




B∗ef0(x)M
∗

...

B∗efn−1(x+2(n−1))M∗

χ(0,T−2n)(x)B
∗efn(x+2n)M∗


 , (5.43)

and their associated multiplication operators P2n : L2 (0, 1)2 → L2 (0, 1)n and Q2n : L2 (0, 1)2 → L2 (0, 1)n+1 .
With these notations, (5.39) and (5.40) respectively write:

∃CT > 0,

∫ 1

0
|p0(x)|2 dx ≤ CT ‖P2np0‖2L2(0,1)n , ∀p0 ∈ L2 (0, 1)2 , (5.44)

∃CT > 0,

∫ 1

0
|q0(x)|2 dx ≤ CT ‖Q2nq0‖2L2(0,1)n+1 , ∀q0 ∈ L2 (0, 1)2 . (5.45)

For 2n+ 1 ≤ T < 2n+ 2, introduce the matrices:

P2n+1 (x, T ) =




B∗ef0(2−x)M∗

...

B∗efn−1(2n−x)M∗

χ(1,2n+2−T )(x)B
∗efn(2n+2−x)M∗


 ; Q2n+1 (x, T ) =




B∗ef0(x)M
∗

...

B∗efn−1(x+2(n−1))M∗

B∗efn(x+2n)M∗


 , (5.46)

and their associated multiplication operators P2n+1 : L2 (0, 1)2 → L2 (0, 1)n+1 and Q2n : L2 (0, 1)2 →
L2 (0, 1)n+1 . With these notations, (5.41) and (5.42) respectively write:

∃CT > 0,

∫ 1

0
|p0(x)|2 dx ≤ CT ‖P2n+1p0‖2L2(0,1)n+1 , ∀p0 ∈ L2 (0, 1)2 , (5.47)

∃CT > 0,

∫ 1

0
|q0(x)|2 dx ≤ CT ‖Q2n+1p0‖2L2(0,1)n+1 , ∀q0 ∈ L2 (0, 1)2 . (5.48)

We are ready to state our first (negative) results on the controllability of System (5.16).

Lemma 86 For T < 4, there exists an infinite dimensional subspace of initial data (p0, q0) ∈ H for which
the exact observability inequalities (5.39)-(5.42) are not satisfied by the associated solution (p, q) to System
(5.16).

Proof. If 0 ≤ T < 1, from (5.34), one has:

∫ T

0
|B∗p (t, 0)|2 dt =

∫ T

0

∣∣∣B∗ef0(x)M
∗
q0(x)

∣∣∣
2
dx,

and clearly the observability inequality (5.4) does not hold for all (p0, q0) ∈ H × VT where

VT =
{
q0 ∈ H : q0 · ef0MB = 0 in (0, T )

}
.

If 1 ≤ T < 2, from (5.36):

∫ T

0
|B∗p (t, 0)|2 dt =

∫ T−1

0

∣∣∣B∗ef0(2−x)M∗
p0(x)

∣∣∣
2
dx+

∫ 1

0

∣∣∣B∗ef0(x)M
∗
q0(x)

∣∣∣
2
dx.

The observability inequality (5.4) does not hold for all nontrivial (p0, q0) ∈ UT ×H (for instance) where

UT =
{
p0 ∈ H : p0 · ef0(2−·)MB = 0 in (0, T − 1)

}
.
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If 2 ≤ T < 3, from (5.35) follows the equality:

∫ T

0
|B∗p (t, 0)|2 dt =

∫ 1

0

∣∣∣B∗ef0(2−x)M∗
p0(x)

∣∣∣
2
dx

+

∫ 1

0

∣∣∣B∗ef0(x)M
∗
q0(x)

∣∣∣
2
dx+

+

∫ T−2

0

∣∣∣B∗ef1(x+2)M∗
q0(x)

∣∣∣
2
dx,

and again (5.4) does not hold for all (p0, q0) ∈ UT=1 ×H.
Last, for 3 ≤ T < 4, from (5.37):

∫ T

0
|B∗p (t, 0)|2 dt =

n−1∑

k=0

∫ 1

0

∣∣∣B∗ef0(2−x)M∗
p0(x)

∣∣∣
2
dx

+

∫ T−3

0

∣∣∣B∗ef1(4−x)M∗
p0(x)

∣∣∣
2
dx

+
1∑

k=0

∫ 1

0

∣∣∣B∗efk(x+2k)M∗
q0(x)

∣∣∣
2
dx,

and (5.4) does not hold for all (p0, q0) ∈W ×H where

W = UT=1 ∩ {p0 ∈ H : supp (p0) ⊂ (T − 3, 1)} .

All the introduced subspaces of non-observable initial data are actually infinite dimensional.
In these spaces can be found initial data (p0, q0) for which approximate observability does not hold

too: if 0 < T < 4, there exists (p0, q0) ∈ H ×H such that ‖(p0, q0)‖H×H = 1 and for which the associated
solution (p, q) satisfies:

B∗p (t, 0) = 0, t ∈ (0, T ) .

It has to be pointed out that the previous negative observability result does not depend of the choice
of η1, η2 and M.

Before going one in the analysis, let us give a necessary condition for the exact observability to hold:

Lemma 87 Let T > 0. A necessary condition for the exact observability of System (5.16) is

rank [B |MB] = 2. (5.49)

Proof. If (5.49) does not hold, there exists λ ∈ R such thatMB = λB (in other worlds, B is an eigenvector
toM). It follows that for any r ∈ R, erMB = erλB

(
⇔ B∗erM

∗
= erλB∗

)
. Thus, in this case, (5.35) writes:

∫ T

0
|B∗p (t, 0)|2 dt =

∫ 1

0

(
n−1∑

k=0

e2fk(2k+2−x)λ

)
|B∗p0(x)|2 dx

+

∫ 1

0

(
n−1∑

k=0

e2fk(x+2k)λ

)
|B∗q0(x)|2 dx

+

∫ T−2n

0
e2fn(x+2n)λ |B∗q0(x)|2 dx.
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Clearly, the exact observability property will not hold for initial data of the form p0 = αB⊥ and q0 = βB⊥

where α, β ∈ L2 (0, 1) and B⊥ denotes any orthogonal vector to B. The same conclusion is achieved starting
from (5.37).

The purpose in the sequel is to give answers for the exact controllability when T ≥ 4. We begin by the
limit case T = 4. As a first step, we have the following necessary and sufficient condition for observability:

Proposition 88 For T = 4, System (5.16) is exactly observable if, and only if:

inf
t∈[2,4]

∣∣∣det
[
B∗ | B∗eφ(t)M

∗
]∣∣∣ > 0 . (5.50)

Proof. Let (p0, q0) ∈ H and (p, q) the associated solution to System (5.16). For n = 2, the matrices P4

and Q4 defined in (5.43) write:

P4 (x) =

[
B∗ef0(2−x)M∗

B∗ef1(4−x)M∗

]
, Q4 (x) =

[
B∗ef0(x)M

∗

B∗ef1(x+2)M∗

]
.

From Remark 85, System (5.16) is exactly observable if, and only if, the conditions (5.44)-(5.45) are satisfied
with n = 2 and T = 4. From Proposition 81, (5.44)-(5.45) are equivalent to

inf
x∈[0,1]

|detP4 (x)| > 0 and inf
x∈[0,1]

|detQ4 (x)| > 0.

But since the multiplication operator on L2 (0, 1)2 whose matrix is ef0(2−x)M∗
(resp. ef0(x)M

∗
) (x ∈ (0, 1))

is invertible, the two last conditions are equivalent to the following:

infx∈[0,1]
∣∣det

(
P4 (x) e

−f0(2−x)M∗)∣∣ > 0

and

infx∈[0,1]
∣∣det

(
Q4 (x) e

−f0(x)M∗)∣∣ > 0.

Now:

P4 (x) e
−f0(2−x)M∗

=
[
B∗ | B∗e(f1(4−x)−f0(2−x))M∗

]

[
B∗ | B∗eφ(4−x)M∗

]
,

and

Q4 (x) e
−f0(x)M∗

=
[
B∗ | B∗e(f1(x+2)−f0(x))M∗

]

=
[
B∗ | B∗eφ(x+2)M∗

]
.

This leads to the desired inequalities (5.50) after noting that 3 ≤ 4−x ≤ 4 and 2 ≤ x+2 ≤ 3 for 0 ≤ x ≤ 1.

Denote by λ1, λ2 the eigenvalues of M∗ if it is diagonalizable and by µ the multiple eigenvalue if it is
not. The next lemma will provide an equivalent condition to (5.50).

Lemma 89 Let r ∈ R. Then det
[
B∗ | B∗erM

∗] 6= 0 if, and only if:

rank [B | MB] = 2 and





r 6= 0, if λ1, λ2 ∈ R or σ(M∗) = {µ},

r /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.
(5.51)
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Proof. Let P a 2× 2 invertible matrix and set B̃ = P−1B. Then

[
B | erMB

]
=

[
PB̃ | erMPB̃

]

= P
[
B̃ | P−1erMPB̃

]

= P
[
B̃ | erP−1MP B̃

]
.

But
det
[
B∗ | B∗erM

∗
]
6= 0 ⇔ detP × det

[
B̃ | erP−1MP B̃

]
6= 0.

If M is diagonalizable in R then it admits a basis {V1, V2} of real eigenvectors associated with the real
eigenvalues {λ1, λ2}. If P = [V1 | V2] is the eigenvectors matrix, we get

erP
−1MP B̃ =

(
eλ1r 0
0 eλ2r

)
B̃.

So that, if B̃ =

(
β1
β2

)
(so that B = β1V1 + β2V2), then:

det
[
B̃ | erP−1MP B̃

]
= β1β2

(
eλ1r − eλ2r

)
.

Thus, in this case:

det
[
B∗ | B∗erM

∗
]
6= 0 ⇔ β1β2

(
eλ1r − eλ2r

)
6= 0 ⇔





β1β2 6= 0,
and

eλ1r − eλ2r 6= 0.

The condition β1β2 6= 0 expresses thatB is not an eigenvector forM and this is equivalent to rank [B |MB] =
2. For the second condition, one has:

eλ1r − eλ2r 6= 0 ⇔





r 6= 0, if λ1, λ2 ∈ R,

r /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.
.

If M is not diagonalizable, then there exists a 2× 2 invertible matrix P such that

M = P

(
µ 1
0 µ

)
P−1,

then

erP
−1MP B̃ =

(
eµr reµr

0 eµr

)
B̃

and in this case:
det
[
B̃ | erP−1MP B̃

]
= −β22reµr.

The proof follows immediately. (β2 6= 0 says that B is not an eigenvector to M ).
An immediate consequence of Proposition 88 and Lemma 89 is the following

Corollary 90 For T = 4, System (5.16) is exactly observable if, and only if, for any t ∈ [2, 4]:

rank [B | MB] = 2 and





φ (t) 6= 0, if λ1, λ2 ∈ R or σ(M∗) = {µ},

φ (t) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.
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Now, we deal with the case T ≥ 4 :

Proposition 91 Let n ≥ 2 be an integer and 2n ≤ T < 2n+ 1. Then System (5.16) is exactly observable
if, and only if the following three conditions are satisfied:

1. rank [B |MB] = 2.

2. For any x ∈ [0, 1] , there exists 2 ≤ k ≤ n such that:





φ (2k − x) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k − x) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

3. For any x ∈ [0, T −2n) and x∗ ∈ [T −2n, 1), there exist 1 ≤ k ≤ n and 1 ≤ k∗ ≤ n−1 such that:





φ (x+ 2k) 6= 0, φ (x∗ + 2k∗) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (x+ 2k) , φ (x∗ + 2k∗) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

Proof. From Remark 85, System (5.16) is exactly observable if, and only if the conditions (5.44)-(5.45)
are satisfied where we recall that for x ∈ [0, 1] :

P2n (x, T ) =




B∗ef0(2−x)M∗

B∗ef0(4−x)M∗

...

B∗efn−1(2n−x)M∗


 ; Q2n (x, T ) =




B∗ef0(x)M
∗

...

B∗efn−1(x+2(n−1))M∗

χ(0,T−2n)(x)B
∗efn(x+2n)M∗


 .

From Proposition 82 with s = 2 and n given in the lemma, (5.44)-(5.45) amount to say that for any
x ∈ [0, 1], there exist 2× 2 matrices P ext

2n and Qext
2n respectively extracted from P2n and Q2n such that

detP ext
2n (x, T ) 6= 0 and detQext

2n (x, T ) 6= 0.

Fix x ∈ [0, 1] and let us first deal with P2n (x, T ) . We are going to prove that P2n satisfies the required
property if, and only if, the following matrix satisfies it too:

P̃2n (x, T ) =




B∗

B∗eφ(4−x)M∗

...

B∗eφ(2n−x)M∗




The proof of this last point is based on the identity:

fk (2 (k + 1)− x)− fk−1 (2k − x) = φ (2 (k + 1)− x) , k ≥ 1, x ∈ [0, 1] , (5.52)

which is easily derived from the definitions of the function φ and the sequence (fn) in (5.19) and (5.20).
Assume first that there exists x0 ∈ [0, 1] such that for any 2× 2 matrices P̃ ext

2n extracted from P̃2n one
has:

det P̃ ext
2n (x0, T ) = 0.

It follows that

det
[
B∗ | B∗eφ(4−x0)M∗

]
= 0 ⇔





φ(4− x0) = 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ(4− x0) ∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.
,
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by the equivalence given by Lemma 89. By induction, we get that if for k ≥ 1, φ (2k − x0) = 0 then

det
[
B∗eφ(2k−x0)M∗ | B∗eφ(2(k+1)−x0)M∗

]
= det

[
B∗ | B∗eφ(2(k+1)−x0)M∗

]
= 0,

m




φ (2 (k + 1)− x0) = 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2 (k + 1)− x0) ∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.
In view of (5.52), it readily follows that in this case:

P2n (x0, T ) =



B∗

...
B∗


 eφ(2−x0)

and thus for this x0, any 2× 2 matrices P ext
2n extracted from P2n satisfies: detP ext

2n (x0, T ) = 0.
Conversely, if we assume there exists x0 ∈ [0, 1] such that for any 2× 2 matrices P ext

2n extracted from
P2n one has:

detP ext
2n (x0, T ) = 0,

then again using (5.52), it is easily deduced that for any 1 ≤ k ≤ n :




φ (2k − x0) = 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k − x0) ∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

The same considerations hold for Q2n and this proves the proposition.

Proposition 92 Let n ≥ 2 be an integer and 2n+1 ≤ T < 2n+2. System (5.16) is exactly observable if,
and only if the following three conditions are satisfied :

1. rank [B |MB] = 2.

2. For any x ∈ [2n + 2 − T, 1) and x∗ ∈ [0, 2n + 2 − T ), there exist 2 ≤ k ≤ n + 1 and 2 ≤ k∗ ≤ n
respectively such that:





φ (2k − x) , φ (2k∗ − x∗) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (2k − x) , φ (2k∗ − x∗) /∈ π
ℑ(λ1)

Z, if λ1, λ2∈ C\R.

3. For any x ∈ [0, 1], there exists 1 ≤ k ≤ n such that:




φ (x+ 2k) 6= 0, if λ1, λ2 ∈ R or σ(M) = {µ},

φ (x+ 2k) /∈ π
ℑ(λ1)

Z, if λ1, λ2 ∈ C\R.

Proof. Exactly as previously, it suffices to develop the same arguments for the matrices

P2n+1 (x, T ) =




B∗ef0(2−x)M∗

...

B∗efn−1(2n−x)M∗

χ(2n+2−T,1)(x)B
∗efn(2n+2−x)M∗


 ; Q2n+1 (x, T ) =




B∗ef0(x)M
∗

...

B∗efn−1(x+2(n−1))M∗

B∗efn(x+2n)M∗


 .

The proof of Theorems 75 is a straightforward consequences of Lemma 89 and Propositions 91 and 92.

102



5.3.5 Compactness

In section 5.3, we have, after the change of variable t⇋ T − t, considered the System (5.16) that we recall
here: 




pt + px −M∗η1p = 0, in QT ,
qt − qx −M∗η2q = 0, in QT ,
(p+ q)|x=0,1 = 0R2 , in (0, T ),

(p, q)|t=0 = (p0, q0), in (0, 1).

(5.53)

The associated whole system obtained by the same change of variable from (5.8) is:





pt + px −M∗η1p−M∗η2q = 0, in QT ,
qt − qx −M∗η1p−M∗η2q = 0, in QT ,
(p+ q)|x=0,1 = 0R2 , in (0, T ),

(p, q)|t=0 = (p0, q0), in (0, 1).

(5.54)

In the sequel, we denote by Z = Z (t, ·, s; p0, q0) = (p, q) (t, ·, s; p0, q0) the solution to (5.53) and by Zd =
Zd (t, ·; s, p0, q0) = (pd, qd) (t, ·, s; p0, q0) the solution to the diagonal system (5.54).

This section is devoted to the proof of the compactness of the following operator:

DT : H → L2 (0, T )
(p0, q0)

t 7→ B∗ (p− pd)|x=0 .

In fact, we have:

Proposition 93 Let T > 0. Then the operator DT is compact.

The proof of Theorem 93 will need some preliminaries. Recall that the solution to System (5.53) can
be expressed in terms of the evolution family (Ud(t, s))s≤t as

Ud(t, s)Z0 = (pd, qd)(t, ·; s, Z0), 0 ≤ s ≤ t, Z0 ∈ H.

Therefore, there exist two operators
(
S±
d (t, s)

)
s≤t

∈ H → L2(0, 1)2 such that

pd(t, ·; s, Z0) = S−
d (t, s)Z0(·), qd(t, ·; s, Z0) = S+

d (t, s)Z0(·), 0 ≤ s ≤ t, Z0 ∈ H.

Since System (5.54) is a bounded perturbation of System (5.53), then by [112, Chapter 5, Theorem 2.3],
there exists a unique evolution family associated with System (5.54) defined by

U(t, s)Z0 = (p, q)(t, ·; s, Z0), 0 ≤ s ≤ t, Z0 ∈ H.

Similarly, there exist two operators (S±(t, s))s≤t ∈ H → L2(0, 1)2 such that

p(t, ·; s, Z0) = S−(t, s)Z0, q(t, ·; s, Z0) = S+(t, s)Z0, 0 ≤ s ≤ t, Z0 ∈ H.

With these new notations, the operator DT takes the form

DTZ0 = C
(
S−(t, s)− S−

d (t, s)
)
Z0, 0 ≤ s ≤ t, Z0 ∈ H,

where C is the operator
C : C(0, T ;L2(0, 1)2) → L2 (0, T )

v 7→ B∗v|x=0.
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Since (S(t, s))s≤t is a perturbation of (Sd(t, s))s≤t by a multiplication operators with multiplier
PT (s) = PT (T − s), it is clear that the two evolutions families are linked by the Duhamel formula:

U(t, 0)Z0 = Ud(t, 0)Z0 +

∫ t

0
Ud(t, s)PT (s)U(s, 0)Z0ds, Z0 ∈ H.

Therefore,

(U(t, 0)− Ud(t, 0))Z0 =

∫ t

0
Ud(t, s)PT (s) (U(s, 0)− Ud(s, 0))Z0ds

+

∫ t

0
Ud(t, s)PT (s)Ud(s, 0)Z0ds.

Consequently,

(
S−(t, s)− S−

d (t, s)
)
Z0 =

∫ t

0
S−
d (t, s)PT (s) (U(s, 0)− Ud(s, 0))Z0ds

+

∫ t

0
S−
d (t, s)PT (s)Ud(s, 0)Z0ds

= Ψ1(t, ·, Z0) + Ψ2(t, ·, Z0).

Thus,
DT (p0, q0)

t = CΨ1(t, ·, Z0) + CΨ2(t, ·, Z0), Z0 ∈ H.

So, proving that DT is compact amounts to prove the compactness of the operators CΨi(t, ·, Z0), i = 1, 2.
Since (Ud(t, 0))0≤t≤T is completely known, the compactness will be just a consequence of the explicit

formula of the operator CΨ2(t, ·, Z0). To deal with CΨ1(t, ·, Z0) we use the following lemma inspired
from ([48]) which has been used also in ([56]) in the same context to deal with more general autonomous
hyperbolic systems.

Lemma 94 For any f ∈ C([0, T ], H), there exists CT > 0 such that

∫ T

0

∣∣∣∣C
∫ t

0
S−
d (t, s)f(s)ds

∣∣∣∣
2

dt ≤ CT ‖f‖2L2(0,T ;H) . (5.55)

Proof. For the time being, let f = (f1, f2) ∈ C([0, T ], C0(0, 1)
2 × C0(0, 1)

2). By using the characteristics
method, we have by (5.25) and (5.26) for any n ≥ 0 :

(
S−
d (t, s)f(s)

)
(x) =





−Rn(t, x; s)f2(s, t− x− s− 2n), if t− x− s ∈ [2n, 2n+ 1),

Rn(t, x; s)f1(s, 2n+ 2− t+ x+ s), if t− x− s ∈ [2n+ 1, 2n+ 2),
(5.56)

where
Rn(t, x; s) = efn(t−x,s)M∗+

∫ t

t−x
η1(τ,τ−t+x)dτM∗

, n ≥ 0.

In particular, if t− x ∈ (0, 1) :

(
S−
d (t, s)f(s)

)
(x) =





−e
∫ t

t−x
η1(τ,τ−t+x)dτ+

∫ t−x

s
η2(τ,t−x−τ)dτf2(s, t− x− s), if s ∈ [0, t− x),

e
∫ t

s
η1(τ,τ−t+x)dτf1(s, s− t+ x), if s ∈ [t− x, t).
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Consider first the case t− x ∈ [0, 1). Since f is a continuous function, the trace operator makes sense and
thus we obtain

C
∫ t

0
S−
d (t, s)f(s)ds

= B∗

(∫ t

0
S−
d (t, s)f(s)ds

)
(0)

= −B∗e
∫ t

s
η2(τ,t−τ)dτf2(s, t− s)ds.

Therefore ∣∣∣∣B
∗

(∫ t

0
S−
d (t, s)f(s)ds

)
(0)

∣∣∣∣
2

≤ C

∫ t

0
|f2(t− s, s)|2 ds.

By integrating over (0, T ) the above inequality we obtain for any T ≤ 1 :

∫ T

0

∣∣∣∣C
∫ t

0
S−
d (t, s)f(s)ds

∣∣∣∣
2

dt ≤ C

∫ T

0

∫ t

0
|f2(t− s, s)|2 dsdt (5.57)

≤ C

∫ T

0

∫ t

0
|f2(t− s, s)|2 + |f1(t− s, s)|2 dsdt

≤ C

∫ T

0

∫ 1

0
|f2(t, s)|2 + |f1(t, s)|2 dsdt

= C ‖f‖2L2(0,T ;H) .

Now, we deal with the case T ≥ 1. Let t− x ∈ [2n− 1, 2n), n ≥ 1. We write

(∫ t

0
S−
d (t, s)f(s)ds

)
(x)

=

(∫ t−x−2n+1

0
+

n−1∑

k=1

∫ t−x−2k+1

t−x−2k
+

n−1∑

k=0

∫ t−x−2k

t−x−2k−1
+

∫ t

t−x

)
(
S−
d (t, s)f(s)ds

)
(x)

=

∫ t

t−x

e
∫ t

s
η1(τ,t−x−τ)dτM∗

f1(s, s− t+ x)ds

n−1∑

k=1

∫ t−x−2k+1

t−x−2k
Rk−1(t, x; s)f1(s, 2k − t+ x+ s)ds

−
n−1∑

k=0

∫ t−x−2k

t−x−2k−1
Rk(t, x; s)f2(s, t− x− s− 2k)ds

+

∫ t−x−2n+1

0
Rn−1(t, x; s)f1(s, 2n− t+ x+ s)ds.
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A simple variable substitution yields

(∫ t

0
S−
d (t, s)f(s)ds

)
(x)

=

∫ x

0
e
∫ t

s+t−x
η1(τ,t−x−τ)dτM∗

f1(s+ t− x, s)ds

+

n−1∑

k=1

∫ 1

0
Rk−1(t, x; s+ t− x− 2k)f1(s+ t− x− 2k, sds

−
n−1∑

k=0

∫ 1

0
Rk(t, x; t− x− s− 2k)f2(t− x− s− 2k, s)ds

+

∫ 1

2n−t+x

Rn−1(t, x; s+ t− x− 2n)f1(s+ t− x− 2n, s)ds.

Again, since f is a continuous function, the trace operator makes sense and we obtain:

C
(∫ t

0
S−
d (t, s)f(s)ds

)

= B∗

(∫ t

0
S−
d (t, s)f(s)ds

)
(0)

=

n−1∑

k=1

∫ 1

0
B∗Rk−1(t, 0; s+ t− 2k)f1(s+ t− 2k, s)ds

−
n−1∑

k=0

∫ 1

0
B∗Rk(t, 0; t− s− 2k)f2(t− s− 2k, s)ds

−
∫ 1

2n−t

B∗Rn−1(t, 0; s+ t− 2n)f1(s+ t− 2n, s)ds.

Since η1, η2 are bounded, we get, using Cauchy-Shwarz inequality:

∣∣∣∣C
∫ t

0
S−
d (t, s)f(s)ds

∣∣∣∣
2

≤ Cn,t

n−1∑

k=1

∫ 1

0
|f1(s+ t− 2k, s)|2 ds (5.58)

+Cn,t

n−1∑

k=0

∫ 1

0
|f2(t− s− 2k, s)|2 ds

+Cn,t

∫ 1

2n−t

|f1(s+ t− 2n, s)|2 ds,

where Cn,t is a positive constant depending on t and n. Taking the integral of (5.58) over (0, T ) for
T ∈ [2n− 1, 2n), n ≥ 1, and using the fact

∫ T

0

∫ 1

0
|f1(s+ t− 2k, s)|2 dsdt ≤

∫ T

0

∫ 1

0
|f1(t, s)|2 dsdt, ∀k ∈ {1, ..., n− 1},

∫ T

0

∫ 1

0
|f2(t− s− 2k, s)|2 dsdt ≤

∫ T

0

∫ 1

0
|f2(t, s)|2 dsdt, ∀k ∈ {0, ..., n− 1},

yields ∫ T

0

∣∣∣∣
∫ t

0
S−
d (t, s)f(s)ds

∣∣∣∣
2

dt ≤ n ‖f‖2L2(0,T ;H) . (5.59)
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Similarly, we obtain the following estimate for T ∈ (2n, 2n+ 1), n ≥ 1

∫ T

0

∣∣∣∣
∫ t

0
S−
d (t, s)f(s)ds

∣∣∣∣
2

dt ≤ (n+ 1) ‖f‖2L2(0,T ;H) , (5.60)

which ends the proof. The estimates (5.57), (5.59) and (5.60) can be extended for any f ∈ C(0, T ;H) by
using a standard density argument.

Proposition 95 The operator Z0 7→ CΨ1(t, ·, Z0) acting from H to L2(0, T ) is compact.

Proof. The proof of Proposition 95 is a direct consequence of the result proved in [111] (and an extension
of this result in [11] to the case where some wave speeds are equal) which asserts that the difference of the
evolution operators defined by systems (5.54) and (5.53) are compact) and Lemma 94. More precisely, by
letting

f(s) = PT (s) (U(s, 0)− Ud(s, 0))Z0, Z0 ∈ H, s ≤ t,

in (5.55), we obtain

‖CΨ1(t, ·, Z0)‖L2(0,T ) =

∫ T

0
C
∣∣∣∣
∫ t

0
S−
d (t, s)PT (s) (U(s, 0)− Ud(s, 0))Z0ds

∣∣∣∣
2

dt

≤ CT ‖(U(·, 0)− Ud(·, 0))Z0‖2L2(0,T ;H),

which is a compact operator by the result in [11]. It remains to deal with the operator CΨ2(t, ·, Z0).

Proposition 96 The operator Z0 7→ CΨ2(t, ·, Z0) acting from H to L2 (0, T ) is compact.

Proof. The proof is purely constructive. First, we find the solution q(t, ·; s, Z0) = S+(t, s)Z0.
Let (p0, q0) ∈ C0(0, 1)

2 × C0(0, 1)
2. By using the characteristics method, we compute (5.56) for x = 1

by (5.27 and (5.28) we obtain:

(
S+
d (t, s)Z0

)
(x) =





N(t, x; s)f2(s, x+ t− s− 2n), if x+ t− s ∈ [2n, 2n+ 1),

−N(t, x; s)f1(s, 2n+ 2− x− t+ s), if x+ t− s ∈ [2n+ 1, 2n+ 2),
(5.61)

where
Nn(t, x; s) = Rn−1(x+ t− 1, 1; s) + e

∫ t

x+t−1 η2(τ,−τ+t+x)dτ , n ≥ 0.

The aim now is to compute Ψ2(t, ·, Z0) explicitly. We recall that

Ψ2(t, ·, Z0) =

∫ t

0
S−
d (t, s)PT (s)Ud(s, 0)Z0ds, t ≤ T,

where Ud(s, 0)Z0 =
(
S−
d (s, 0)Z0, S

+
d (s, 0)Z0

)t
, 0 ≤ s ≤ t, and

(
S±
d (t, s)

)
s≤t≤T

are given in (5.56) and (5.61).

Applying PT (·) yields

PT (s)Ud(s, 0) =
(
η2(s)S

+
d (s, 0)Z0, η1(s)S

−
d (s, 0)Z0

)t
, s ≤ t.

Therefore,

CΨ2(t, ·, Z0) = C
∫ t

0
S−
d (t, s)

(
η2(s)S

+
d (s, 0), η1(s)S

−
d (s, 0)

)t
Z0ds, t ≤ T. (5.62)
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Let us start by computing the integrand in (5.62). We have for any n ≥ 0

S−
d (t, s)

(
η2(s)S

+
d (s, 0)Z0, η1(s)S

−
d (s, 0)Z0

)t
(x)

=





M1(t, x; s)
(
S−
d (s, 0)Z0

)
(t− x− s− 2n) , if t− x− s ∈ [2n, 2n+ 1),

M2(t, x; s)
(
S+
d (s, 0)Z0

)
(2n+ 2− t+ x+ s), if t− x− s ∈ [2n+ 1, 2n+ 2),

where

M1
n(t, x; s) = −Rn(t, x; s)η1(s, t− x− s− 2n), t− x− s ∈ [2n, 2n+ 1), n ≥ 0,

M2
n(t, x; s) = Rn(t, x; s)η2(s, 2n+ 2− t+ x+ s), t− x− s ∈ [2n+ 1, 2n+ 2), n ≥ 0.

Now, by using (5.56) and (5.61) for s = 0 we get for any n, k ≥ 0

(
S−
d (τ, 0)Z0

)
(t− x− τ − 2n) (5.63)

=





−Rk(τ, t− x− τ − 2n; 0)×
q0(2τ − t+ x+ 2(n− k)),

if τ ∈ (2(k−n)+t−x
2 , 2(k−n)+t−x+1

2 ) ∩ (0, t),

Rk(τ, t− x− τ − 2n; 0)×
p0(2(k − n+ 1)− 2τ + t− x),

if τ ∈ (2(k−n)+t−x+1
2 , 2(k−n)+t−x+2

2 ) ∩ (0, t),

and

S+(t, 0)Z0(2n+ 2− t+ x+ τ) (5.64)

=





Nk(τ, 2n+ 2− t+ x+ τ ; 0)×
q0(2(n− k + 1)− t+ x+ 2τ),

if τ ∈ (2(k−n−1)−t−x
2 , 2(k−n)−t−x−1

2 ) ∩ (0, t),

−Nk(τ, 2n+ 2− t+ x+ τ ; 0)×
p0(2(k − n) + t− x− 2τ),

if τ ∈ (2(k−n)−t−x−1
2 , 2(k−n)−t−x

2 ) ∩ (0, t),

Therefore, we obtain for any k, n ≥ 0

Ψ2(t, ·, Z0) = −
∑

k,n≥0

∫ 2(k−n)+t−x+1
2

2(k−n)+t−x

2

1(τ)(0,t)P
1
k,n(t, x; τ)q0(2τ − t+ x+ 2(n− k))dτ

+
∑

k,n≥0

∫ 2(k−n)+t−x+2
2

2(k−n)+t−x+1
2

1(τ)(0,t)P
1
k,n(t, x; τ)p0(2(k − n+ 1)− 2τ + t− x)dτ

+
∑

k,n≥0

∫ 2(k−n)−t−x−1
2

2(k−n−1)−t−x

2

1(τ)(0,t)P
2
k,n(t, x; τ)q0(2(n− k + 1)− t+ x+ 2τ)dτ

−
∑

k,n≥0

∫ 2(k−n)−t−x−1
2

2(k−n−1)−t−x

2

1(τ)(0,t)P
2
k,n(t, x; τ)p0(2(k − n) + t− x− 2τ)dτ,

where

P 1
k,n(t, x; τ) = M1

n(t, x; τ)Rk(s, t− x− s− 2n; 0),

P 1
k,n(t, x; τ) = M2

n(t, x; τ)Nk(s, 2n+ 2− t+ x+ τ ; 0).
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Consequently

CΨ2(t, ·, Z0)

= −B∗
∑

k,n≥0

∫ 2(k−n)+t+1
2

2(k−n)+t

2

1(τ)(0,t)P
1
k,n(t, 0; τ)q0(2τ − t+ 2(n− k))dτ

+B∗
∑

k,n≥0

∫ 2(k−n)+t+2
2

2(k−n)+t+1
2

1(τ)(0,t)P
1
k,n(t, 0; τ)p0(2(k − n+ 1)− 2τ + t)dτ

+B∗
∑

k,n≥0

∫ 2(k−n)−t−1
2

2(k−n−1)−t

2

1(τ)(0,t)P
2
k,n(t, 0; τ)q0(2(n− k + 1)− t+ 2τ)dτ

−B∗
∑

k,n≥0

∫ 2(k−n)−t−1
2

2(k−n−1)−t

2

1(τ)(0,t)P
2
k,n(t, 0; τ)p0(2(k − n) + t− 2τ)dτ.

The proof follows by [111, Lemma 4] which allows to conclude that CΨ2(t, ·, Z0) is a compact operator
from H to L2(0, T ) since it is a finite sum of such operators.

5.4 Unique continuation

In this section, we deal with two particular cases for which we prove the unique continuation property
holds true for System (5.1). The first one corresponds to constant coupling parameters a, b, and the second
for matrices M in a cascade form with coupling functions a, b depending both on space and time.

5.4.1 The constant case

Here, we assume that a, b ∈ R. Recall that the adjoint system of System (5.1) is given by





ϕtt = ϕxx −M∗(aϕt + bϕx), in (0, T )× (0, 1),
ϕ|x=0,1 = 0, in (0, T ),

(ϕ,ϕt)|t=T = (ϕ0, ϕ1) , in (0, 1).
(5.65)

The correspond unique continuation property reads:

B∗ϕx(t, 0) = 0, ∀t ∈ (0, T ) ⇒ (ϕ0, ϕ1) = (0, 0) , ∀ (ϕ0, ϕ1) ∈ H1
0 (0, 1)

2 × L2(0, 1)2. (5.66)

For the sake of simplicity, we set e
bx
2
M∗
ϕ̃(x) = ϕ(x). Then ϕ̃ is the solution of the following system





ϕ̃tt = ϕ̃xx − 1
4b

2 (M∗)2 ϕ̃− aM∗ϕ̃t, in (0, T )× (0, 1),
ϕ̃|x=0,1 = 0, in (0, T ),

(ϕ̃, ϕ̃t)|t=T = (ϕ̃0, ϕ̃1) , in (0, 1).

By using a standard spectral decomposition of the solution to System (5.65) (See for instance [17, 24]
in the hyperbolic context or [49, 12] in the parabolic one), we can see that proving that (5.66) holds in a
time T ≥ 4 amounts to proving that all the eigenvalues of the corresponding spectral problem

{
λ2ϕ̃(x) = ϕ̃′′(x)−

(
1
4b

2 (M∗)2 + aM∗λ
)
ϕ̃(x), x ∈ (0, 1),

ϕ̃(0) = ϕ̃(1) = 0, ϕ̃ = (ϕ̃1, ϕ̃2) ,
(5.67)

are simple. First, let us assume first that M∗ is diagonalizable.
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Proposition 97 Assume thatM∗ has 2 distinct eigenvalues µ1, µ2. Then, all the eigenvalues of the Sturm-
Liouville problem (5.67) are simple if, and only if

a2 (µ1 − µ2)
(
µ2ξ

2
n1

− µ1ξ
2
n2

)
6=
(
ξ2n1

− ξ2n2

)2
, ∀n1, n2 ∈ Z, (5.68)

where ξni
= 1

4b
2µ2i + (niπ)

2 , i = 1, 2.

Proof. Since M∗ is diagonalizable, there exists a diagonal matrix D = diag(µ1, µ2) and 2 × 2 invertible
matrix P such that M∗ = PDP−1. Letting z = P−1ϕ̃ with z = (z1, z2) in (5.67) yields the following
Sturm-Liouville problem

{
z′′i (x) =

(
λ2 + aλµi +

1
4b

2µ2i
)
zi(x), x ∈ (0, 1),

zi(0) = zi(1) = 0, i = 1, 2.

In order to prove that the eigenvalues of the above problem are simple we have to check that the following
polynomial equations

λ2 + λaµi +
1

4
b2µ2i + (niπ)

2 = 0, ni ∈ Z, i = 1, 2,

don’t have a common roots which is equivalent to check that the following Sylvester matrix is invertible

Sk,n =




1 aµ1
1
4b

2µ21 + (n1π)
2 0

0 1 aµ1
1
4b

2µ21 + (n1π)
2

1 aµ2
1
4b

2µ22 + (n2π)
2 0

0 1 aµ2
1
4b

2µ22 + (n2π)
2


 , n1, n2 ∈ Z,

which is the case if, and only if (5.68) is satisfied.

Remark 98 In particular, if µ1 = −µ2 = µ, assumption (5.68) becomes

−2a2µ2
(
ξ2n1

+ ξ2n2

)
6=
(
ξ2n1

− ξ2n2

)2
, ∀n1, n2 ∈ Z,

which might occur only if, and only if µ ∈ iR.

Now, we consider the case where M∗ is not diagonalizable.

Proposition 99 Assume that M∗ is not diagonalizable and let µ be its eigenvalue. Then, all the eigen-
values of the Sturm-Liouville problem (5.67) are simple if, and only if

1

2
b2µ+ a 6= 0. (5.69)

Proof. In this case, we write M∗ in the Jordan form: there exists a matrix J and a 2×2 invertible matrix
P such that M∗ = PJP−1, where

J =

(
µ 1
0 µ

)
.

Letting z = P−1ϕ̃ in (5.67) yields the following coupled Sturm-Liouville problem




z′′1 (x) =
(
λ2 + aµλ+ 1

4b
2µ2
)
z1(x) +

(
1
2b

2µ+ a
)
z2,

z′′2 (x) =
(
λ2 + aµλ+ 1

4b
2µ2
)
z2(x),

y(0) = y(1) = 0,
z(0) = z(1) = 0.

By the same reasoning as in [12, 49, Proposition 2.1], it can be seen that the above system has non-trivial
solution if, and only if 1

2b
2µ+a 6= 0 with λ fulfills the following second order polynomial equation for some

n ∈ Z :

λ2 + aµλ+
1

4
b2µ2 + (nπ)2 = 0.

It is clear that the above equation has simple roots for any n ∈ Z. This finishes the proof.
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Remark 100 As it is shown, if we let a = 0, the coupling parameter b affects controllability in low
frequency. Actually, conditions (5.68) and (5.69) become respectively

b2 6= 2π2
n22 − n21
µ21 − µ22

, ∀n1, n2 ∈ Z and b 6= 0.

However, b doesn’t affect controllability in high frequency unless it is time dependent. (See Remark 77).

5.4.2 Cascade coupling

In this subsection we prove the unique continuation property for a particular class of System (5.16). We
assume in the sequel that the matrix M and the vector B have the following form:

M =

(
0 1
0 0

)
, B =

(
0
1

)
.

With this in mind, and by decomposing the system by writing p = (p−, p+), q = (q−, q+), the unique
continuation problem of System (5.16) reads





p−t + p−x = 0, in QT ,
q−t − q−x = 0, in QT ,
p+t + p+x − η1p

− − η2q
− = 0, in QT ,

q+t − q+x − η1p
− − η2q

− = 0, in QT ,
(p− + q−)|x=0,1 = (p+ + q+)|x=0,1 = 0, in (0, T ),

p+x=0 = 0, in (0, T ),
(p−, p+, q−, q+)|t=0 =

(
p−0 , p

+
0 , q

−
0 , q

+
0

)
, in (0, 1),

=⇒
(
p−0 , p

+
0 , q

−
0 , q

+
0

)
= 0H , (5.70)

for any
(
p−0 , p

+
0 , q

−
0 , q

+
0

)
∈ H̃ where

H̃ =
{(
p−, p+, q−, q+

)
∈ H1(0, 1)4,

(
p± + q±

)
|x=0,1

= 0
}
, (5.71)

is the associted operator.
Observe that the first and the third equations of the above system are free. The idea is to solve these

equations explicitly and then considering their solution as a second member for the second and the fourth
equations. Let us start by solving the homogeneous part of System (5.70). i.e.





p−t + p−x = 0, in QT ,
q−t − q−x = 0, in QT ,
(p+ + q+)|x=0,1 = 0, in (0, T ),

(p−, q−)|t=0 =
(
p−0 , q

−
0

)
, in (0, 1).

(5.72)

Lemma 101 The solution (p−, q−) to System (5.72) are given by

p−(t, x) =

{
p−0 (x− t+ 2n), if 2n− 1 ≤ t− x ≤ 2n,

−q−0 (t− x− 2n), if 2n ≤ t− x ≤ 2n+ 1,
n ≥ 0, (5.73)

q−(t, x) =

{
q−0 (x+ t− 2n), if 2n ≤ x+ t ≤ 2n+ 1,

−p−0 (2n+ 2− x− t), if 2n+ 1 ≤ x+ t ≤ 2n+ 2,
n ≥ 0. (5.74)

Proof. The proof follows immediately by using the characteristics method.
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Now, we focus on the nonhomogeneous par of System (5.70) where boundary condition q+|x=0 = 0 has
been removed, i.e. 




p+t + p+x = f, in QT ,
q+t − q+x = f, in QT ,
(p+ + q+)|x=1 = p+|x=0 = 0, in (0, T ),

(p+, q+)|t=0 =
(
p+0 , q

+
0

)
. in (0, 1).

(5.75)

Observe that the function f = η1p
− + η2q

− plays the role of a second member. The explicit solution
to (5.75) is given in the following lemma:

Lemma 102 The solution (p+, q+) to System (5.75) are given by

p+ (t, x) =





p+0 (x− t) +
∫ t

0 f (τ, τ + x− t) dτ, if 0 ≤ x− t ≤ 1

∫ t

t−x
f(τ, τ − t+ x)dτ, if t− x ≥ 1,

and

q+ (t, x) =





q+0 (x+ t) +
∫ t

0 f (τ, x+ t− τ) dτ, if 0 ≤ x+ t ≤ 1,

∫ t

x+t−1 f(τ, x+ t− τ)dτ − p+0 (2− x− t)

−
∫ x+t−1
0 f (τ, τ + 2− x− t) dτ

if 1 ≤ x+ t ≤ 2,

∫ t

x+t−1 f(τ,−τ + x+ t)dτ

−
∫ x+t−1
x+t−2 f(τ, τ + 2− t− x)dτ,

if x+ t ≥ 2,

(5.76)

Proof. By using the characteristics method, it follows

p+ (t, x) = p+0 (x− t) +

∫ t

0
f (τ, τ + x− t) dτ, if 0 ≤ x− t ≤ 1,

and

q+ (t, x) = q+0 (x+ t) +

∫ t

0
f (τ, x+ t− τ) dτ, if 0 ≤ x+ t ≤ 1.

Now, at x = 1 we obtain

p+ (t, 1) = p+0 (1− t) +

∫ t

0
f (τ, τ + 1− t) dτ, if 0 ≤ 1− t ≤ 1.

Using the boundary condition, q+ (s, 1) = −p+ (s, 1) , s ≥ 0, entails

q+ (s, 1) = −p+0 (1− s)−
∫ s

0
f (τ, τ + 1− s) dτ, if 0 ≤ 1− s ≤ 1.

Solving the second equation of System (5.75) along the characteristic x(t) = −t+ s+ 1 we get

q+(t,−t+ s+ 1) = q+(s, 1) +

∫ t

s

f(τ, s+ 1− τ)dτ

= −p+0 (1− s)−
∫ s

0
f (τ, τ + 1− s) dτ +

∫ t

s

f(τ, s+ 1− τ)dτ.

Letting x = −t+ s+ 1 yields for any 0 ≤ 2− x− t ≤ 1 :

q+(t, x) = −p+0 (2− x− t)−
∫ x+t−1

0
f (τ, τ + 2− x− t) dτ +

∫ t

x+t−1
f(τ, x+ t− τ)dτ.
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Now, since p(s, 0) = 0, s ≥ 0, we have for any t− x ≥ 1

p+(t, x) =

∫ t

t−x

f(τ, τ − t+ x)dτ. (5.77)

By taking x = 1 in (5.77), the using the boundary conditions q+ (s, 1) = −p+ (s, 1) , s ≥ 0, we get

q+(t, x) =

∫ t

x+t−1
f(τ, x+ t− τ)dτ.

Similarly, we obtain for any x+ t ≥ 2

q+(t, x) = −
∫ x+t−1

x+t−2
f(τ, τ + 2− t− x)dτ +

∫ t

x+t−1
f(τ,−τ + x+ t)dτ,

which ends the proof.
To satisfy the remained boundary condition q|x=0 = 0, it suffices to replace x by zero in (5.76). This

gives the following system of equations

0 = q+0 (t) +

∫ t

0
f (τ, t− τ) dτ, if 0 ≤ t ≤ 1, (5.78)

0 = −p+0 (2− t)−
∫ t−1

0
f (τ, τ + 2− t) dτ +

∫ t

t−1
f(τ, t− τ)dτ = 0, if 1 ≤ t ≤ 2, (5.79)

0 = −
∫ t−1

t−2
f(τ, τ + 2− t)dτ +

∫ t

t−1
f(τ,−τ + t)dτ = 0, if t ≥ 2. (5.80)

As a consequence, we have:

Proposition 103 The unique continuation property (5.70) holds true if, and only if the solution (p0, q0)
to System (5.78)-(5.80) is the null one.

The strategy is the following: We solve Equation (5.80) which depends only on the initial states p−0 , q
−
0

since f does. Then, we prove that p−0 ≡ q−0 ≡ 0 which entails that f ≡ 0 since it depends linearly on p−0
and q−0 . This leads to p

+
0 ≡ q+0 ≡ 0 by (5.78) and (5.79).

Let t ≥ 2. Recall that f = η1p
− + η2q

−. Equation (5.80) becomes

0 = −
∫ t−1

t−2
(η1p

−)(τ, τ + 2− t)dτ +

∫ t

t−1
(η2q

−)(τ,−τ + t)dτ

−
∫ t−1

t−2
(η2q

−)(τ, τ + 2− t)dτ +

∫ t

t−1
(η1p

−)(τ,−τ + t)dτ

: = I1(t) + I2(t) + I3(t) + I4(t).

Since p− (resp. q−) is defined on the characteristics of slope 1 (resp. −1), I1(·) (resp. I2(·)) can be easily
computed. Indeed, by using the expressions of p− and q− given in (5.73) and (5.74) respectively, we obtain

I1(t) = −
∫ t−1

t−2
(η1p

−)(τ, τ + 2− t)dτ (5.81)

= −
(∫ t−1

t−2
η1(τ, τ + 2− t)dτ

)
×

=

{
p−0 (4 + 2n− t), if 2n+ 3 ≤ t ≤ 2n+ 4,

−q−0 (t− 2− 2n), if 2n+ 2 ≤ t ≤ 2n+ 3,
n ≥ 0,
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and

I2(t) =

∫ t

t−1
(η1q

−)(τ,−τ + t)dτ (5.82)

=

(∫ t

t−1
η1(τ,−τ + t)dτ

)
×

=

{
q−0 (t− 2n), if 2n ≤ t ≤ 2n+ 1,

−p−0 (2n+ 2− t), if 2n+ 1 ≤ t ≤ 2n+ 2,
n ≥ 1.

It can be seen that I1(·) and I2(·) are the high frequency part of the solution. Now, we deal with the
compact terms I3(·) and I4(·).

By using the expression of q− given in (5.74), we obtain for any n ≥ 0

I3(t) = −
∫ t−1

t−2
(η2q

−)(τ, τ + 2− t)dτ (5.83)





−
∫ t−1
t−2 η2(τ, τ + 2− t)q−0 (2τ + 2− t− 2n)dτ, if τ ∈

(
2n−2+t

2 , 2n−1+t
2

)
∩ (0, t),

∫ t−1
t−2 η2(τ, τ + 2− t)p−0 (2n− 2τ + t)dτ, if τ ∈

(
2n−1+t

2 , 2n+t
2

)
∩ (0, t).

• If t ∈ [2n− 1, 2n), n ≥ 2 : In this case, the interval (t− 2, t− 1) can be decomposed as

(t− 2, t− 1) = [t− 2,
2n− 4 + t

2
) ∪ (

2n− 4 + t

2
,
2n− 3 + t

2
) ∪ (

2n− 3 + t

2
, t− 1).

Therefore, by using (5.83) we get

I3(t) =

∫ 2n−4+t
2

t−2
η2(τ, τ + 2− t)p−0 (2n− 4 + t− 2τ)dτ

−
∫ 2n−3+t

2

2n−4+t
2

η2(τ, τ + 2− t)q−0 (2τ + 4− t− 2n)dτ

+

∫ t−1

2n−3+t
2

η2(τ, τ + 2− t)p−0 (2n− 2 + t− 2τ)dτ.

And after a change of variables, we obtain

I3(t) =
1

2

∫ 2n−t

0
η2(

2n− 4 + t− s

2
,
2n− t− s

2
)p−0 (s)ds (5.84)

−1

2

∫ 1

0
η2(

s+ t− 4 + 2n

2
,
s− t+ 2n

2
)q−0 (s)ds

+
1

2

∫ 1

2n−t

η2(
2n− 2 + t− s

2
,
2n+ 2− t− s

2
)p−0 (s)ds.

• If t ∈ [2n, 2n+ 1), n ≥ 1 :

The interval [t− 2, t− 1) can be written as

(t− 2, t− 1) = (t− 2,
2n− 3 + t

2
) ∪ (

2n− 3 + t

2
,
2n− 2 + t

2
) ∪ (

2n− 2 + t

2
, t− 1).
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Similarly, we obtain

I3(t) = −
∫ 2n−3+t

2

t−2
η2(τ, τ + 2− t)q−0 (2τ + 4− t− 2n)dτ

+

∫ 2n−2+t
2

2n−3+t
2

η2(τ, τ + 2− t)p−0 (2n− 2 + t− 2τ)dτ

−
∫ t−1

2n−2+t
2

η2(τ, τ + 2− t)q−0 (2τ + 2− t− 2n)dτ.

And after a change of variables we get

I3(t) = −1

2

∫ 1

t−2n
η2(

s+ 2n+ t− 4

2
,
s+ 2n− t

2
)q−0 (s)ds (5.85)

+
1

2

∫ 1

0
η2(

2n+ t− 2− s

2
,
2n− t+ 2− s

2
)p−0 (s)ds

−1

2

∫ t−2n

0
η2(

2n+ t− 2 + s

2
,
2n− t+ 2 + s

2
)q−0 (s)ds.

Now, we deal with I4(·). In the same way, we have for any n ≥ 0 :

I4(t) =

∫ t

t−1
(η1p

−)(τ,−τ + t)dτ (5.86)





∫ t

t−1 η1(τ,−τ + t)p−0 (−2τ + t+ 2n)dτ, if τ ∈
(
2n−1+t

2 , 2n+t
2

)
∩ (0, t),

−
∫ t

t−1 η1(τ,−τ + t)q−0 (2τ − t− 2n)dτ, if τ ∈
(
2n+t
2 , 2n+t+1

2

)
∩ (0, t),

Consider the first case:

• If t ∈ [2n, 2n+ 1), n ≥ 1 : In this case, we write

(t− 1, t) = (t− 1,
t+ 2n− 1

2
) ∪ (

t+ 2n− 1

2
,
t+ 2n

2
) ∪ (

t+ 2n

2
, t),

I4(t) = −
∫ t+2n−1

2

t−1
η1(τ,−τ + t)q−0 (2τ − t− 2n+ 2)dτ

+

∫ t+2n
2

t+2n−1
2

η1(τ,−τ + t)p−0 (−2τ + t+ 2n)dτ

−
∫ t

t+2n
2

η1(τ,−τ + t)q−0 (2τ − t− 2n)dτ,

which yields after a change of variables

I4(t) = −1

2

∫ 1

t−2n
η1(

s+ t+ 2n− 2

2
,
t− 2n− s+ 2

2
)q−0 (s)ds (5.87)

+
1

2

∫ 1

0
η1(

2n+ t− s

2
,
t+ s− 2n

2
)p−0 (s)ds

−1

2

∫ t−2n

0
η1(

2n+ t+ s

2
,
t− 2n− s

2
)q−0 (s)ds.
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• If t ∈ [2n+ 1, 2n+ 2), n ≥ 1 : In the same way,

(t− 1, t) = (t− 1,
t+ 2n

2
) ∪ (

t+ 2n

2
,
t+ 2n+ 1

2
) ∪ (

t+ 2n+ 1

2
, t),

so, we obtain

I4(t) =

∫ t+2n
2

t−1
η1(τ,−τ + t)p−0 (−2τ + t+ 2n)dτ

−
∫ t+2n+1

2

t+2n
2

η1(τ,−τ + t)q−0 (2τ − t− 2n)dτ

+

∫ t

t+2n+1
2

η1(τ,−τ + t)p−0 (−2τ + t+ 2n+ 2)dτ,

and after a change of variables we obtain

I4(t) =
1

2

∫ 2n+2−t

0
η1(

2n+ t− s

2
,
−2n+ t+ s

2
)p−0 (s)ds (5.88)

−1

2

∫ 1

0
η1(

2n+ t+ s

2
,
t− 2n− s

2
)q−0 (s)ds

+
1

2

∫ 1

2n+2−t

η1(
2n+ 2 + t− s

2
,
t+ s− 2n− 2

2
)p−0 (s)ds.

To summarize, the initial states p−0 , q
−
0 are solutions of the following two equations:

• If t ∈ [2n, 2n+ 1), n ≥ 1 :

By gathering (5.81), (5.82), (5.85), and (5.87) we get

0 =

(∫ t−1

t−2
η1(τ, τ + 2− t)dτ +

∫ t

t−1
η1(τ,−τ + t)dτ

)
q−0 (t− 2n)

− 1

2

∫ 1

t−2n

[
η1(

s+ t+ 2n− 2

2
,
t− 2n− s+ 2

2
) + η2(

s+ 2n+ t− 4

2
,
s+ 2n− t

2
)

]
q−0 (s)ds

+
1

2

∫ 1

0

[
η1(

2n+ t− s

2
,
t+ s− 2n

2
) + η2(

2n+ t− 2− s

2
,
2n− t+ 2− s

2
)

]
p−0 (s)ds

−1

2

∫ t−2n

0

[
η1(

2n+ t+ s

2
,
t− 2n− s

2
) + η2(

2n+ t− 2 + s

2
,
2n− t+ 2 + s

2
)

]
q−0 (s)ds.

Letting x = t− 2n yields

φ(x+ 2n)q−0 (x)−
∫ 1

0

(
K21

n (s, x)p−0 (s) +K22
n (s, x)q−0 (s)

)
ds = 0, x ∈ (0, 1), (5.89)

where φ is defined in (5.19) and the kernels K21
n (·, ·) , K22

n (·, ·) , are given by

K21
n (s, x) = −1

2
η1(

4n+ x− s

2
,
x+ s

2
)− 1

2
η2(

4n+ x− 2− s

2
,
2− s− x

2
), (s, x) ∈ (0, 1)2, (5.90)

K22
n (s, x) =

1

2





η1(
4n+x+s

2 , x−s
2 ) + η2(

4n−2+x+s
2 , 2+s−x

2 ), if 0 ≤ s ≤ x,

η1(
4n−2+s+x

2 , x−s+2
2 ) + η2(

4n−4+s+x
2 , s−x

2 ), if x ≤ s ≤ 1.
(5.91)

Observe that when t varies in [2n, 2n+ 1) the x varies in [0, T − 2n).
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• If t ∈ [2n+ 1, 2n+ 2), n ≥ 1 :

Gathering (5.81), (5.82), 5.84, and (5.88) yields

0 = −
(∫ t−1

t−2
η1(τ, τ + 2− t)dτ +

∫ t

t−1
η1(τ,−τ + t)dτ

)
p−0 (2n+ 2− t)

+
1

2

∫ 2n+2−t

0

[
η1(

2n+ t− s

2
,
−2n+ t+ s

2
) + η2(

2n− 2 + t− s

2
,
2n+ 2− t− s

2
)

]
p−0 (s)ds

+
1

2

∫ 1

2n+2−t

[
η1(

2n+ 2 + t− s

2
,
t+ s− 2n− 2

2
) + η2(

2n+ t− s

2
,
2n+ 4− t− s

2
)

]
p−0 (s)ds

−1

2

∫ 1

0

[
η1(

2n+ t+ s

2
,
t− 2n− s

2
) + η2(

s+ t− 2 + 2n

2
,
s− t+ 2n+ 2

2
)

]
q−0 (s)ds.

Letting 2n+ 2− t = x yields

φ(2n+ 2− x)p−0 (x)−
∫ 1

0

[
K11

n (s, x)p−0 (s) +K12
n (s, x)q−0 (s)

]
ds = 0, x ∈ (0, 1), n ≥ 1, (5.92)

where φ is defined in (5.19) and the kernels K11
n (·, ·) , K12

n (·, ·) , are given by

K11
n (s, x) =

1

2





η1(
4n+2−x−s

2 , 2−x+s
2 ) + η2(

4n−x−s
2 , x−s

2 ), if 0 ≤ s ≤ x,

η1(
4n+4−x−s

2 , s−x
2 ) + η2(

4n+2−x−s
2 , 2+x−s

2 ) if x ≤ s ≤ 1,
(5.93)

K12
n (s, x) = −1

2
η1(

4n+ 2− x+ s

2
,
2− x− s

2
)− 1

2
η2(

s+ 4n− x

2
,
s+ x

2
), (s, x) ∈ (0, 1)2. (5.94)

Similarly, when t varies [2n+ 1, 2n+ 2) then x varies (2n+ 2− T, 1].

Observe that equations (5.89) and (5.92) form a system of Fredholm Integral equations of third kind.
Indeed, if t ∈ [2n, 2n+ 1), the interval [2, t) can be written as

[2, t) =
(
∪n−1
l=1 [2l, 2l + 1)

)
∪
(
∪n−1
k=1 [2k + 1, 2k + 2])

)
∪ [2n, t),

In this case, we have to solve Equation (5.89) (resp. Equation (5.92)) in intervals of the form [2l, 2l+1)
(resp. [2k+ 1, 2l+ 2)) for some k, l ≥ 1. In the same way, for t ∈ [2n+ 1, 2n+ 2), the interval [2, t) can be
written as

[2, t) = (∪n
l=1[2l, 2l + 1)) ∪

(
∪n−1
k=1 [2k + 1, 2k + 2])

)
∪ [2n+ 1, T ).

Similarly, we have to solve Equation (5.89) (resp. Equation (5.92)) in the intervals of the form [2l, 2l + 1)
(resp. [2k+ 1, 2l+ 2)) for some k, l ≥ 1. More precisely, introduce the kernels Ki

n,k,l(·, ·), 1 ≤ i ≤ 2, n ≥ 2,
k, l ≥ 1, by

K1
n,k,l(s, x) =





Kk,l(s, x), 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n, if x ∈ [0, T − 2n),

Kk,l(s, x), 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n− 1, if x ∈ [T − 2n, 1],

K2
n,k,l(s, x) =





Kk,l(s, x), 1 ≤ k ≤ n, 1 ≤ l ≤ n, if x ∈ [0, 2n+ 2− T ),

Kk,l(s, x), 1 ≤ k ≤ n+ 1, 1 ≤ l ≤ n, if x ∈ [2n+ 2− T, 1],

where

Ak,l(x) =

(
φ(2k + 2− x) 0

0 φ(2l + x)

)
, x ∈ [0, 1] , k, l ≥ 1,

Kk,l(s, x) =

(
K11

k (s, x) K12
k (s, x)

K21
l (s, x) K22

l (s, x)

)
, (s, x) ∈ [0, 1]2 , k, l ≥ 1,
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associated with the third kind Fredholm integral equations

Ak,l(x)

(
p−0 (x)
q−0 (x)

)
=

∫ 1

0
K1

n,k,l(s, x)

(
p−0 (s)
q−0 (s)

)
ds, (5.95)

Ak,l(x)

(
p−0 (x)
q−0 (x)

)
=

∫ 1

0
K2

n,k,l(s, x)

(
p−0 (s)
q−0 (s)

)
ds. (5.96)

Now, we come to the main theorem of this section:

Theorem 104 Let n ≥ 2 be an integer.

• If 2n ≤ T < 2n+ 1 : Then the unique continuation property for (5.70) holds true at time T if, and
only if, there exist k, l ≥ 1 such that the unique solution

(
p−0 , q

−
0

)
to Equation (5.95) is the null one.

• If 2n + 1 ≤ T < 2n + 2 : Then the unique continuation property for (5.70) holds true at time T if,
and only if, there exist k, l ≥ 1 such that the unique solution

(
p−0 , q

−
0

)
to Equation (5.96) is the null

one.

Now, let us assume that the weak observability holds, i.e

• If 2n ≤ T < 2n+ 1 :

1. There exist 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [0, T − 2n). (5.97)

2. There exist 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n− 1, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [T − 2n, 1]. (5.98)

• If 2n+ 1 ≤ T < 2n+ 2 :

1. There exist 1 ≤ k ≤ n− 1, 1 ≤ l ≤ n, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [2n+ 2− T, 0). (5.99)

2. There exist 1 ≤ k ≤ n, 1 ≤ l ≤ n, such that

φ(2k + 2− x) 6= 0, φ(2l + x) 6= 0, ∀x ∈ [2n+ 2− T, 1]. (5.100)

Under assumptions (5.97) and (5.98) (resp. (5.99) and (5.100)), Equations (5.95) and (5.96) write

(
p−0 (x)
q−0 (x)

)
=

∫ 1

0
A−1

k,l (x)K
i
n,k,l(s, x)

(
p−0 (s)
q−0 (s)

)
ds := Ki

k,l

(
p−0
q−0

)
(x), i = 1, 2, (5.101)

which are a second kind Fredholm integral equations. The following corollary is a straightforward conse-
quence of the above theorem:

Corollary 105 Let n ≥ 2 be an integer.

• If 2n ≤ T < 2n+1 : Assume that (5.97) and (5.98) hold for some k, l ≥ 1. The unique continuation

property for (5.70) holds at time T if, and only if 1 /∈ σ
(
K1

k,l

)
.
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• If 2n + 1 ≤ T < 2n + 2 : Assume that (5.99) and (5.100) hold for some k, l ≥ 1. The unique

continuation property (5.70) holds at time T if, and only if 1 /∈ σ
(
K2

k,l

)
.

Proof. By assumptions (4.19)-(5.100), the Equations (5.101) are Fredholm integral equations of second

kind. By the Fredholm alternative, they possess a unique solution if, and only if 1 /∈ σ
(
Ki

k,l

)
, i = 1, 2, for

some l, k ≥ 1.

Remark 106 Since the component of the kernel A−1
k,l (·)Ki

n,k,l(·, ·), i = 1, 2, k, l ≥ 1, are completely known,

we can always prove that 1 /∈ σ
(
Ki

k,l

)
, i = 1, 2, by assuming that ‖Kk,l‖L(L2(0,1;M2×2(R)))

< 1. Notice that

this is not necessarily a smallness assumption on the coupling coefficients since the kernel involves the
matrix A−1

k,l (·).

Remark 107 It is not difficult to see that if η1 and η2 are time independent, the compact operator Ki
k,l = K,

is symmetric. Therefore, its spectrum consists of real eigenvalues. However, giving a characterization of
the spectrum needs more care.

Remark 108 In [24], it has been shown that the unique continuation property for a(t, x) = a(x) and b = 0
holds at time T > 0 for System (5.70) if, and only if T ≥ 4, and

∫ 1

0
a(s) sin2(πns)ds 6= 0, ∀n ≥ 1. (5.102)

It is natural to expect that condition (5.102) is equivalent to the uniqueness of the solution to Equation
(5.95) (or (5.96)) for Kn,k,l = K.

Remark 109 With a simple change of variable (see [4, Remark 15]), we can deduce that all the results
proved for cascade system with velocity coupling (a 6= 0) hold true for zero order coupling (replace aϕt by
aϕ in System (5.3)) in the space

H1
0 (0, 1)× L2(0, 1)× L2(0, 1)×H−1(0, 1).

5.4.3 Examples

Here, we will provide some illustrations of Theorem 104. For the sake of simplicity, we will use both
coupling functions a and b, also, we will choose the time of control to be T = 2n for some n ≥ 2.

The case η1(t, x) = α(t− x), η2(t, x) = β(t+ x)

Set η1(t, x) = α(t−x) and η1(t, x) = β(t+x) for some smooth functions α and β in QT . After performing a
simple computations, the components K1,i

k (·, ·) , K2,i
l (·, ·) , i = 1, 2, k, l ≥ 1, given in (5.90), (5.91), (5.93)

and (5.94) and the function φ defined in (5.19) take the form

2K12
k (s, x) = −α(2k + s)− β(2k + s), s ∈ (0, 1).

2K21
l (s, x) = −α(2l − s)− β(2l − s), s ∈ (0, 1).

2K11
k (s, x) =

{
α(2k − s) + β(2k − s), if 0 ≤ s ≤ x,
α(2k + 2− s) + β(2k + 2− s), if x ≤ s ≤ 1,

2K22
l (s, x) =

{
α(2l + s) + β(2l + s), if 0 ≤ s ≤ x,
α(2l − 2 + s) + β(2l − 2 + s), if x ≤ s ≤ 1.
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φ (t) =

∫ t−1

t−2
α(t− 2)dτ +

∫ t

t−1
β(t)dτ

= α(t− 2) + β(t), t ≥ 2.

Next, we define the functions Si
j , i = 1, 2 on [0, 1] for any j ≥ 1 by

S1
j (s) = (2φ(2j + 2− s))−1

(
−2φ′(2j + 2− s)− α(2j + 2− s)

+β(2j − s)− β(2j + 2− s) + α(2j − s)

)
,

and

S2
j (s) = (2φ(2j + s))−1

(
−φ′(2j + s) + α(2j + s) + β(2j + s)

−α(2j − 2 + s)− β(2j − 2 + s)

)
.

We have the following unique continuation result:

Proposition 110 Let n ≥ 2. Assume that A−1
k,l (·) exists on [0, 1] for some 1 ≤ k, l ≤ n − 1. Then the

unique continuation property (5.70) holds true in time T = 2n if

∫ 1

0
S1
k(s)ds 6=

∫ 1

0
S2
l (s)ds,

Proof. For T = 2n, the system of integral equations (5.95) writes:

2φ(2k + 2− x)p−0 (x) =

∫ x

0
(α(2k − s) + β(2k − s)) p−0 (s)ds (5.103)

+

∫ 1

x

(α(2k + 2− s) + β(2k + 2− s)) p−0 (s)ds

−
∫ 1

0
(α(2k + s) + β(2k + s)) q−0 (s)ds,

2φ(2l + x)q−0 (x) =

∫ x

0
(α(2l + s) + β(2l + s)) q−0 (s)ds (5.104)

+

∫ 1

x

(α(2l − 2 + s) + β(2l − 2 + s)) q−0 (s)ds

−
∫ 1

0
(α(2l − s) + β(2l − s)) p−0 (s)ds.

Taking the derivative of (5.103) and (5.104) yields

2φ(2k + 2− x)
(
p−0 (x)

)′
=

(
−2φ′(k + 2− x)− α(2k + 2− x)

+β(2k − x)− β(2k + 2− x) + α(2k − x)

)
p−0 (x), (5.105)

2φ(2l + x)
(
q−0 (x)

)′
=

(
−φ′(2l + x) + α(2l + x) + β(2l + x)

−α(2l − 2 + x)− β(2l − 2 + x)

)
q−0 (x). (5.106)

Now, we devide by 2φ(2k + 2 − x) and 2φ(2l + x) the equations (5.105) and (5.106) and integrating the
later two systems to get

p−0 (x) = exp

(∫ x

0
S1
l (s)ds

)
p−0 (0), q−0 (x) = exp

(∫ x

0
S2
k(s)ds

)
q−0 (0),

where

S1
k(s) = (2φ(2k + 2− s))−1

(
−2φ′(k + 2− s)− α(2k + 2− s)

+β(2k − s)− β(2k + 2− s)− α(2k − s)

)
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and

S2
l (s) = (2φ(2l + s))−1

(
−2φ′(2l + s) + α(2l + s) + β(2l + s)

−α(2l − 2 + s)− β(2l − 2 + s)

)
.

Since p−0 and q−0 lie in H̃, they are linked by the boundary conditions (p−0 + q−0 )|x=0,1, we get the system

{
p−0 (0) + q−0 (0) = 0,

p−0 (x) = exp
(∫ 1

0 S
1
k(s)ds

)
p−0 (0) + exp

(∫ 1
0 S

2
l (s)ds

)
q−0 (0) = 0,

which has a unique solution if, and only if

∫ 1

0
S1
k(s)ds 6=

∫ 1

0
S2
l (s)ds.

The case η1(t, x) = α(t+ x), η2(t, x) = β(t− x)

This time set η1(t, x) = α(t + x) and η2(t, x) = β(t − x) for some smooth functions α and β in QT . The
componentsK1,i

k (·, ·) , K2,i
l (·, ·) , j = 1, 2, k, l ≥ 1, given in (5.90), (5.91), (5.93) and (5.94) and the function

φ defined in (5.19) take the form

2K11
k (x) = −2K12

k (x) = α(2k + 2− x) + β(2k − x), x ∈ [0, 1],

2K22
l (x) = −2K21

l (x) = α(2l + x) + β(2l − 2 + x), x ∈ [0, 1],

φ (t) =

∫ t−1

t−2
a(τ, τ − (t− 2))dτ +

∫ t

t−1
β(τ, t− τ)dτ

=

∫ t−1

t−2
α(2τ − (t− 2))dτ +

∫ t

t−1
β(2τ − t)dτ

=
1

2

∫ t

t−2
(α(s) + β(s)) ds, t ≥ 2.

At time T = 2n, the integral equation (5.101) turns to

(Kk,lΦ) (x)=A
−1
k,l (x)Kn,k,l(x)

∫ 1

0
Φ (s) ds, Φ ∈ L2 (0, 1)2 , k, l ≥ 1, x ∈ [0, 1] ,

where

A−1
k,l (x)Kn,k,l(x) =




K11
k

(x)

φ(2k+2−x) − K11
k

(x)

φ(2k+2−x)

− K22
l

(x)

φ(2l+x)

K22
l

(x)

φ(2l+x)


 , 1 ≤ k, l ≤ n− 1, x ∈ [0, 1].

We have the following unique continuation result:

Proposition 111 Let n ≥ 2. Assume that A−1
k,l (·) exists on [0, 1] for some 1 ≤ k, l ≤ n − 1. Then the

unique continuation property (5.70) holds true in time T = 2n if, and only if

1 /∈ σ

(∫ 1

0
A−1

k,l (x)Kn,k,l(x)dx

)
.

The proof of the above proposition is an immediate consequence of combining Corollary 105 and the
following lemma:
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Lemma 112 Let J : L2(0, 1)n → L2(0, 1)n be the compact operator

(Jf) (x) =M(x)

∫ 1

0
f(s)ds, x ∈ (0, 1),

where M ∈ C ([0, 1],Mn×n (R)) . Then 1 ∈ σ(J) if, and only if 1 ∈ σ
(∫ 1

0 M
)
.

Proof. See Appendix 5.5.2.

Remark 113 In the above two examples, we have used both a and b to simplify computations. Dealing
with the integral equation (5.95) and (5.96) with only one of them seems to be not accessible unless they
are in a very particular class of simple functions (for instance a(t, x) = κ2t+κ1x+κ0, κi ∈ R, i = 1, 2, 3).

5.5 Appendix

5.5.1 Proof of Proposition 81

We start by proving that 1 ⇒ 2.
Suppose there exists x0 ∈ [0, 1] such for any s×smatrixMext, extracted fromM, we have detMext (x0) =

0. Denote by M1,M2, ...,Mn the s− dimensional row vector functions of the matrix M so that:

M =




M1

M2
...
Mn


 .

Then from our assumption, the vector space spanned by the Mi (x0) is at most of dimension s − 1. Thus
there exists V ∈ Rs such that

|V |Rs = 1 and Mi (x0) · V = 0, 1 ≤ i ≤ n.

Let u ∈ C∞
0 (R) with

∫
R
u2 (x) dx = 1 and (for example) supp(u) = [−1, 1] . We are going to prove that the

sequence:
hj (x) =

√
ju (j (x− x0))V, j ≥ j0, x ∈ R,

is a singular sequence for the multiplication operator Mext on L
2 (0, 1)s whose matrix is some s× s matrix

Mext, extracted from M . If x0 ∈ (0, 1) (we leave to the reader to check that the proof works with x0 = 0
by choosing hj (x) =

√
ju (jx− 1)V and with x0 = 1 by choosing hj (x) =

√
ju (j (x− 1) + 1)V ), we see

from the definition of u that for j0 sufficiently large

supp (hj) =

[
x0 −

1

j
, x0 +

1

j

]
⊂ [0, 1] , j ≥ j0.

Moreover, for all j ≥ j0.

∫ 1

0
h2j (x) dx = j

∫ 1

0
u2 (j (x− x0)) |V |2Rs dx

= j

∫ x0+
1
j

x0−
1
j

u2 (j (x− x0)) dx

=

∫ 1

−1
u2 (ξ) dξ = 1.
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Since supp(hj) → {x0} as j → ∞, (hj) has no convergent subsequence in L2 (0, 1)n . On the other hand:

‖Mexthj‖2L2(0,1)s =

∫ 1

0
|Mext (x)hj (x)|2 dx

= j

∫ x0+
1
j

x0−
1
j

u2 (j (x− x0)) |Mext (x)V |2 dx

=

∫ 1

−1
u2 (ξ)

∣∣∣∣Mext

(
x0 +

1

j
ξ

)
V

∣∣∣∣
2

dx.

Thus, from Lebesgue’s dominated convergence theorem, we get:

lim
j→∞

‖Mexthj‖2L2(0,1)s = 0.

Since, in particular, the choice of V and the continuity of Mext give:

lim
j→∞

Mext

(
x0 +

1

j
ξ

)
V =Mext (x0)V = 0.

If n = ds+ q with d ≥ 1 and 0 ≤ q ≤ s− 1, we form the s× s extracted matrices:

M1
ext =



M1
...
Ms


 , ..., Md

ext



M(d−1)s+1

...
Mds


 , Md+1

ext =




Mds+1
...
Mn

M1
...

Ms−q




.

We then have:

‖Mhj‖2L2(0,1)n =
n∑

k=1

‖Mk · hj‖2L2(0,1)

≤
d+1∑

k=1

∥∥∥Mk
exthj

∥∥∥
2

L2(0,1)s
.

It readily follows that:
lim
j→∞

‖Mhj‖2L2(0,1)n = 0.

This proves that 1 ⇒ 2.
To prove that 2 ⇒ 1, we assume that for all x ∈ [0, 1] , there exists a s× s matrix Mext, extracted from

M, such that
detMext (x) 6= 0.

Each one of the functions |detMext (x)| is uniformly continuous on [0, 1] :

∀ε > 0, ∃ηMext > 0, |x− y| < ηMext ⇒ ||detMext (x)| − |detMext (y)|| < ε, ∀ (x, y) ∈ [0, 1]2 .

In the sequel, we set η = min {ηMext , Mext extracted s× s matrix} . Let 0 ≤ j ≤ m−1 and ξj ∈
[

j
m
, j+1

m

]
.

There exists a s× s matrix M j
ext ∣∣∣detM j

ext (ξj)
∣∣∣ := δj > 0.
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Choosing m such that 1
m
< η, we get with ε < min

0≤j≤m−1
δj = δ

∣∣∣detM j
ext (x)

∣∣∣ > δ − ε, ∀x ∈
[
j

m
,
j + 1

m

]
.

From Proposition 81, this ensures that for each 0 ≤ j ≤ m− 1, Mj
ext is invertible on L2

(
j
m
, j+1

m

)s
. Now,

we can write for any h ∈ L2 (0, 1)s :

‖Mh‖2L2(0,1)n =

n∑

k=1

‖Mk · h‖2L2(0,1)

=
m−1∑

j=0

n∑

k=1

∫ j+1
m

j

m

|Mk (x) · h(x)|2 dx

≥
m−1∑

j=0

∫ j+1
m

j

m

∣∣∣M j
ext (x)h(x)

∣∣∣
2
dx

≥ C
m−1∑

j=0

∫ j+1
m

j

m

|h(x)|2 dx

≥ C

∫ 1

0
|h(x)|2 dx.

This ends the proof.

5.5.2 Proof of Lemma 112

Proof of ⇒: If 1 ∈ σ(J), there will exist a non-zero f ∈ L2(0, 1)n such that

f(x) =M(x)

∫ 1

0
f(s)ds, x ∈ (0, 1). (5.107)

Integrating (5.107) over (0, 1) yields
∫ 1

0
f(s)ds =

∫ 1

0
M(s)ds

∫ 1

0
f(s)ds.

This shows that
∫ 1
0 f is an eigenvector of the matrix

∫ 1
0 M associated with the eigenvalue 1.

Proof of ⇐: If 1 ∈ σ
(∫ 1

0 M
)
, then there exists an eigenvector of

∫ 1
0 M denoted by V ∈ Rn such that

V =

(∫ 1

0
M(x)dx

)
V.

applying the matrix M(·) yields

M(x)V =M(x)

(∫ 1

0
M(x)V dx

)
, x ∈ [0, 1].

This shows that the vector M(·)V is an eigenvector of J associated with the eigenvalue 1.
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solutions to a von Kármán system with nonlinear boundary dissipation, Diff. Integ. Eqns, 9, (1996),
267-294.

[52] M. Fabrizio, S. Polidoro, Asymptotic decay for some differential systems with fading memory, Appl.
Anal. 81 (2002) 1245-1264.

[53] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series
34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994.

[54] X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping,
Math. Methods Appl. Sci., 32, (2009), 346–358.

[55] V. Hardt and E. Wagenfuhrer. Spectral Properties of a Multiplication Operator. Math. Nachr. 178
(1996) 135-156.

[56] L. Hu, G. Olive, Minimal time for the exact controllability of one-dimensional first-order linear
hyperbolic systems by one-sided boundary controls, Journal de Mathématiques Pures et Appliquées,
148, (2021) 24-74.

[57] F. L. Huang. Characteristic conditions for exponential stability of linear dynamical system in hilbert
spaces. Ann. Differential Equations 1, (1985), 43-56.

[58] M. Gugat, Exact controllability of a string to rest with a moving boundary, Control and Cybernetics,
48, (2019), no. 1.

[59] M. Gugat, Optimal boundary feedback stabilization of a string with moving boundary, IMA Journal
of Mathematical Control and Information, 25, 111–121.

[60] B. H. Haak, D. T. Hoang, Exact observability of a 1-dimensional wave equation on a noncylindrical
domain, SIAM J. Control Optim. 57 (2019), no. 1, 570-589.

[61] L. Hormander, The analysis of linear partial di erential operators. III, Classics in Mathematics,
Springer, Berlin (2007). Pseudo-di erential operators, Reprint of the 1994 edition.

[62] M. Kafini, S. A. Messaoudi and M. I. Mustafa, Energy decay rates for a timoshenko-type system of
thermoelasticity of type III with constant delay, Applicable Analysis, 93, (2014), 1201-1216.

[63] Rudolph E. Kalman, Yu-Chi Ho, and Kumpati S. Narendra, Controllability of linear dynamical
systems, Contributions to Differential Equations, 1, (1963), 189-213.

[64] A. Khemmoudj and Y. Mokhtari, General decay of the solution to a nonlinear viscoelastic modified
von Karman system with delay, Discrete Contin. Dyn. Syst. A, 39 (2019), 3839-3866.

[65] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM Res. Appl.
Math., Masson, Paris, John Wiley & Sons, Ltd., Chichester, UK, 1994.

[66] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation,
J. Math. Pures Appl., 69, (1990), 33-54.

[67] Vilmos Komornik. Rapid boundary stabilization of linear distributed systems. SIAM J. Control
Optim., 35(5), (1997),1591-1613.

[68] J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989.

128



[69] J. E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary
feedback, Journal of differential equation, 91, (1991), 355-88.

[70] J. E. Lagnese and J. L. Lions, Modelling Analysis and Control of Thin Plates, RMA 6, Masson,
Paris, 1988.

[71] J. Lagnese, Decay of solutions of the wave equations in a bounded region with boundary dissipation,
J. Differential Equations, 50, (1983), 163-182.

[72] J. Lagnese, Note on boundary stabilization of wave equations, SIAM J. Control and Optim., 26,
(1988), 1250-1256.

[73] I. Lasiecka, Mathematical Control Theory of Coupled PDE’s (CBMS-NSF Regional Conference Series
in Applied Mathematics), SIAM, Philadelphia, PA, 2002.

[74] I. Lasiecka and D. Doundykov, Energy decay rates for the semilinear wave equation with nonlinear
localized damping and a nonlinear source, Nonlinear Analysis, 64, (2006), 1757-1797.

[75] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlin-
ear boundary damping, Differential and Integral Equations, 6, (1993), 507-533.

[76] I. Lasiecka and X. Wang,, Intrinsic decay rate estimates for semilinear abstract second order equations
with memory, New Prospects in Direct, Inverse and Control Problems for Evolution Equations,
Springer INdAM, Springer, Cham, 10, (2014), 271-303.

[77] I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region
with L2(0,∞;L2(Γ))-feedback control in the Dirichlet boundary conditions, J. Differential Equations,
66, (1987), 340–390.

[78] G. Lebeau, Equation des ondes amorties, dans Algebraic and Geometric Methods in Mathematical
Physics (Kaciveli, 1993), Kluwer Acad. Publ., Dordrecht, (1996), 73-109.

[79] M. J. Lee, J. Y. Park and Y. H. Kang, Exponential decay rate for a quasilinear von Kàrmàn equation
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étude du spectre du système. Thèse, Ecole. Nat. Sup. des Mines de Paris, Sophia-Antipolis, France,
1985.

[117] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent
progress and open questions, SIAM Rev, 20 (1978), 639-739.

[118] R. Schnaubelt, Well-posedness and asymptotic behavior of non-autonomous linear evolution equa-
tions, in Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential
Equations Appl., 50, (2002), 311-338.

[119] A. Sengouga, Exact boundary observability and controllability of the wave equation in an interval
with two moving endpoints, Mathematical Control and Related Fields, 9(2020), 1-25.

[120] A. Shao, On Carleman and observability estimates for wave equations on time-dependent domains,
Proc. Lond. Math. Soc. 119 (2019), no. 4, 998-1064.

[121] F. G. Shinskey, Process Control Systems, Mc Graw-Hill Book Company, New York, 1967.

[122] I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Transactions on
Automatic Control, 25, (1980), 600-603.

[123] H. Sun, H. Li, and L. Lu, Exact controllability for a string equation in domains with moving boundary
in one dimension. Electron. J. Diff. Equations, 98 (2015), 1-7.

131



[124] L. M. Silverman and Henry E. Meadows, Controllability and time-variable unilateral networks, IEEE
Trans. Circuit Theory CT-12, (1965), 308-314.

[125] L. Tartar, Sur un lemme d’équivalence utilisé en analyse numérique. Calcolo 24 (1987) 129-140.
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