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Abstract

In the case of hybrid vehicles, and even more so in the case of all-electric power-
trains, the on-board energy storage system remains the weak link: very expensive,
limited in driving range, slow to recharge, main causes of over-costs,... The chal-
lenge for any car manufacturer wishing to develop a clean vehicle is therefore not
only to optimise the electric power-train, both in terms of cost and range, but also to
bring the battery into line with the life of the vehicle. Battery lifetime is therefore a
crucial element for the development of electric vehicles under acceptable cost con-
ditions. In this context, the failure of battery could lead to serious inconvenience,
performance deterioration, accelerated ageing and costly maintenance.

For that, the predictive maintenance of on-board energy storage system aims at
predicting the Remaining Useful Life (RUL) of a Lithium-Ion (Li-Ion) and to per-
form necessary maintenance services, using past and current operating informa-
tion. A reliable predictive maintenance model should be able to accurately predict
the future state of the battery such that the maintenance service could be scheduled
in advance.

The aim of this thesis is to combine the extension of battery life and the anal-
ysis of battery ageing with Machine Learning (ML) techniques. The challenge is
therefore to use ageing data of Li-Ion batteries in order to extract knowledge on
the State Of Health (SOH) of the batteries. Most ageing data come from papers
from research institutes such as the NASA Prognostics Centre of Excellence (PCoE)
[SGC09, BKD14] or the department of chemical engineering of the Massachusetts
Institute of Technology [SAJ+19] that publicly made available the results of differ-
ent ageing tests on several batteries. We propose several approaches to take op-
erating data such as time series of current, voltage and temperature coming from
battery cells to build ageing models. The developed models can either predict the
Remaining Useful Life (RUL) of a battery or the evolution of its SOH.

Keys words: Lithium-Ion batteries; Electric Vehicles; Predictive Maintenance; Ma-
chine Learning; Time Series; SOH; RUL
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Résumé

Dans le cas des véhicules hybrides, et plus encore dans celui des chaînes de
traction tout électriques, le système de stockage d’énergie embarqué reste le mail-
lon faible : très coûteux, limité en autonomie, lent à recharger, cause principale
de surcoûts,... Le défi pour tout constructeur automobile souhaitant développer un
véhicule propre est donc non seulement d’optimiser la chaîne de traction électrique,
tant en termes de coût que d’autonomie, mais aussi d’adapter la batterie à la durée
de vie du véhicule. La durée de vie de la batterie est donc un élément crucial pour
le développement de véhicules électriques dans des conditions de coût accepta-
bles. Dans ce contexte, la défaillance d’une batterie peut entraîner de graves in-
convénients, une détérioration des performances, un vieillissement accéléré et une
maintenance coûteuse.

Pour cette raison, la maintenance prévisionnelle des systèmes de stockage d’énergie
embarqués vise à prédire la durée de vie utile restante (RUL) d’une batterie Lithium-
Ion (Li-Ion) et à effectuer les services de maintenance nécessaires, en utilisant les
données d’utilisation passées et présentes. Un modèle de maintenance prévision-
nelle fiable doit être capable de prédire avec précision l’évolution de l’état de la
batterie de manière à ce que les opérations de maintenance puissent être program-
mées à l’avance.

L’objectif de cette thèse est de combiner l’extension de la durée de vie de la bat-
terie et l’analyse du vieillissement de la batterie avec des techniques d’apprentissage
automatique. Le défi consiste donc à utiliser les données de vieillissement des bat-
teries Li-Ion afin d’extraire des connaissances sur l’état de santé (SOH) des bat-
teries. La plupart des données de vieillissement proviennent d’articles d’instituts
de recherche tels que le NASA Prognostics Centre of Excellence (PCoE) [SGC09,
BKD14] ou le département de génie chimique du Massachusetts Institute of Tech-
nology [SAJ+19] qui ont rendu publics les résultats de différents tests de vieillisse-
ment sur plusieurs batteries. Nous proposons plusieurs approches pour utiliser les
données de fonctionnement telles que les séries temporelles de courant, de tension
et de température provenant des cellules de batterie pour construire des modèles
de vieillissement. Les modèles développés peuvent prédire le RUL d’une batterie
ou l’évolution de son SOH.

Mots clef: Batteries lithium-ion; Véhicules Électriques; Maintenance Prévisionnelle;
Apprentissage Automatique; Séries Temporelles; SOH ; RUL
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Introduction

Context

In France as in many other countries in the world, a vast majority of journeys are
made by individual motorised vehicles, either cars or two-wheeled vehicles. The
transportation field is responsible for 15% of green house gas emissions world-
wide, and 30% in France [Big20]. The impact of our mobility over climate change
and air pollution is no longer a matter of debate, and the necessity to reduce our
carbon footprint has become clear. The European Parliament has reaffirmed its po-
sition concerning the zero emission goal for the transportation field by the year 2035
[Eur21]. Among other measures, a text was adopted to forbid the commercialisa-
tion of new combustion engine vehicles by this date. Studies have shown that im-
plementing a proactive policy in favour of electric vehicles (EVs) would contribute
to reduce the global emissions of CO2 from the transportation field. Up to today, the
only serious alternative to combustion vehicles are battery powered vehicles. The
most widespread batteries in EVs are Lithium-Ion (Li-Ion) batteries, which have re-
cently emerged as a topic of both interest and concern. Awareness has been raised
about the resources needed to built EVs and more especially Li-Ion batteries.

The use of such batteries is one of the main reasons why the spread of EVs is
slowed down. They account for the majority of the price of an EV, and although
research in the transportation field has brought EVs in line with the performances
of thermal vehicles, one of the most often cited arguments against EVs is their lack
of driving range.

Electrifying the transportation field will only prove efficient in the global context
of the ecological transition under certain conditions. Considering this, EVs could
become a key link in the chain of sustainable mobility.

There are two main lines of improvement for EVs. The first one consists in work-
ing on the batteries themselves, and the second one concerns the way batteries and
EVs are used. Li-Ion batteries are electro-chemical devices built to store electric-
ity under a chemical form. Although a great variety of battery exists, Li-Ion is the
dominant technology in the field of EVs due to its superior energy density. One
concern about Li-Ion batteries comes from the materials that are necessary to build
them, mainly metals such as lithium, nickel and cobalt. Although lithium resources
on earth should not be a limiting factor for the spread of EVs [GMK+11], some bat-
tery manufacturers have started investing in new technologies that could be a good
complement to li-ion batteries. For example, the world leader battery manufacturer
CATL has been working for several years on sodium batteries (batteries that use
sodium in-stead of lithium). Tesla, among other car manufacturers, are investing
in a type of Li-Ion batteries that is free of cobalt, nickel and manganese and rather
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uses Iron and Phosphate (LFP batteries). Using a more diverse range of battery
types could alleviate the tensions on raw materials.

The other axis of improvement for EVs is to work on the typology of the ve-
hicles themselves and on the energy management both inside vehicles and from a
user point. One of the best ways to alleviate the tension on raw materials is to de-
velop vehicles that are optimally sized to meet the real needs of users and to reduce
as much as possible the carbon emissions linked to the conception of vehicles and
batteries. Sober mobilities should be explored, with smaller and lighter vehicles
and smaller batteries. More recently, the company CATL has been working on con-
densed batteries2, which could allow batteries twice smaller than current ones to
carry the same amount of energy. Focusing on a French battery manufacturer, the
company Tiamat has been working on sodium-ion batteries for mobility and sta-
tionary energy storage 3. This technology of batteries offers a higher power density
than Li-Ion batteries (from 1 to 5 kW/kg for sodium-ion batteries compared to 0.5 to
1 kW/kg for Li-Ion batteries) and higher cycle life (up to 8000 cycles for sodium-ion
batteries).

Vehicles and batteries that are designed to be reparable and recyclable, with a
reasonable driving range for daily journeys, and an efficient energy management
system are the key points to make electric vehicles truly clean. The energy mana-
gement on the other hand consists in making the best possible use of the battery.
On the vehicle side, it could mean balancing the cells in a battery pack, limiting
the current peaks, warming up the battery before charging, cooling it down during
driving... On the user side, a very important point is to identify which are the most
damaging behaviours for the battery. This way, a feedback could be made in order
to avoid hazardous situations and help users develop an eco-driving.

Motivation

Among all the solutions mentioned to enable EVs to become a truly sustainable
part of tomorrow’s mobility, this thesis focuses on one aspect in particular of the
management of batteries. It is known that the storage capacity of a Li-Ion battery
degrades throughout its life. The degradation comes from several factors and is
quite hard to model considering the complexity of such devices. Several motiva-
tions have guided this work. The global objective of this thesis is to establish a
predictive maintenance strategy to make the best possible use of a battery inside a
vehicle. This strategy must include several aspects:

• the battery needs to be studied in its global operating environment

• the best modelling approach needs to be selected (either from physics or from
data, with what type of models...)

• the predictive model should be able to identify the main causes of degradation

2"CATL launches condensed battery with an energy density of up to 500 Wh/kg, enables electri-
fication of passenger aircrafts", 19 Apr 2023.

3« Nous voulons créer en France un Tesla de la batterie sodium-ion », affirme Laurent Hubard,
directeur de Tiamat Energy (Accessed in September 2023)

 https://www.catl.com/en/news/6015.html
 https://www.catl.com/en/news/6015.html
https://www.usinenouvelle.com/article/nous-voulons-creer-en-france-un-tesla-de-la-batterie-sodium-ion-affirme-laurent-hubard-directeur-de-tiamat-energy.N1815362
https://www.usinenouvelle.com/article/nous-voulons-creer-en-france-un-tesla-de-la-batterie-sodium-ion-affirme-laurent-hubard-directeur-de-tiamat-energy.N1815362
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• the approach should be reliable and applicable to real-life situations.

Structure of the thesis

Pre-processed 
data

Learning 
process Predictive model

Raw data

Internal management 
of the battery

SOH / RUL 
prediction

Adapted driving

Figure 1: Global framework of the thesis

The global context of this thesis is illustrated in figure 1. This work was carried
out as part of the VEHICLE project4, funded by INTERREG V A Upper Rhine Pro-
gramme, FEDER and Franco-German regional funds (Bade-Wurtemberg, Rhénanie-
Palatinat and Grand Est). The global ambition of this project was to improve the
Total Cost of Ownership (TCO) of electric vehicles. This can be achieved, among
other things, by improving the cycle life and performances of Li-Ion batteries. In
the scope of this thesis, the improvement of battery performances was investigated
by focusing on finding raw operation data from Li-Ion batteries, making it usable
in a Machine Learning algorithms and building predictive models. In all following
chapters, several models will be presented, with a strong focus on data. Information
is given on the type of data that is used and on what is extracted from raw data in
order to train machine learning models. The aim of the three contributions that will
be detailed is to find a way to link the way a battery is being used to its ageing stage
and to identify the impact of a certain usage over the storage capacity in advance.

Chapter 1 - State of the Art. Before diving into contributions, the first chapter of
this thesis aims as giving a broad vision of the context and tools that are used in all
following works. The fundamentals of machine learning and time series are given,
as well as basics about the functioning of Li-Ion batteries. The first chapter also
contains an extensive review of the literature about predictive prognostics for Li-Ion
batteries. The conclusion on the literature review justifies the choices of architecture
and exploited data to build the models.

Chapter 2 - RUL prediction from historical features. The first contribution of this
thesis is related to the prediction of Remaining Useful Life (RUL) of a battery by ex-
ploiting historical data contained in a dataset published by the MIT. Predicting the

4https://www.vehicle-project.org/

https://www.vehicle-project.org/
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RUL of a system is a common task in predictive prognostics in order to anticipate
the End of Life (EoL) and avoid reaching this point by settling maintenance opera-
tions in advance.

Chapter 3 - SOH prediction from time series. As a complement to the prediction
of RUL, another approach was developed for predicting the evolution of SOH ac-
cording to operating data. Different models are exploited in order to make the best
possible use of the information contained in time series of current, voltage and tem-
perature. In this chapter, a strong emphasis is put on how to extract features from
operating data and structure them for a use in Recurrent Neural Networks (RNN).

Chapter 4 - Seq2Seq for SOH prediction. The last modelling contribution of this
thesis is an extension of the SOH prediction from time series chapter. The same data
and features are used but a long term prediction of the SOH is made through the
use of a more complex models referred to as Sequence to Sequence (Seq2Seq).

Chapter 5 - Experimental setup. This last short chapter is a description of the
experimental setup that was developed in the years since the beginning of this the-
sis. The aim is to study the ageing of batteries by cycling them (ie. charging and
discharging them continuously) with a specific device and by fixing custom test
conditions. The acquired data should be used to train new models or to test the
performances of the previously developed models.

Finally, an overall assessment of the work that was done in the scope of this
thesis is made in conclusion, as well as a presentation of future works.
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1.1 Theoretical Background

1.1.1 General information on data

In 2020, the amount of data generated each day was equivalent to 2, 5.1018 bytes
(1018 = one quintillion). It was estimated that 94% of all data in the world is stored
in digital format, and that 90% of all data ever produced by humans has been made
in the past two years [Ade15, Dom21]. Digital data can be of any nature and any
quality, and concern any field from data generated by smart sensors to the latest
images released by the James Webb telescope. [VR16]

Big data is a recent concept that was born according to the explosion of the
amount of data. With concepts such as digitisation, anticipation and controlled
processes, a new industrial revolution is underway, known as "Industry 4.0". The
transportation field is also being revolutionised with the development of smart,
autonomous and cleaner vehicles. Not only should smart factory adapt to the con-
sumer trend, it should also avoid downtime maintenance and optimise the use and
lifetime of all the components in a production chain, or of any connected object.
The problematic is similar in the transportation field, with a strong focus on electric
vehicles that are meant to replace thermal vehicles within a few years.

This is what predictive maintenance is about: avoiding downtime maintenance
by observing in real time the behaviour of a system so that replacement or repair-
ing operation can be scheduled in advance, when minimum damage has occurred.
Due to the increasing complexity of systems, whether part of a production chain or
a vehicle, and the complexity of the interaction between systems, predictive main-
tenance has reached a critical importance [ZdCd+20].

Predictive maintenance strategies can be developed through data-based models
and domain knowledge. In the scope of this thesis, only data-based strategies will
be studied. Data-based models rely on the acquisition of data from a given system,
through the use of different types of sensors. Data can be of different nature, but an
important part of it is generated under the form of time series.

This section aims at giving a definition of time series and reviewing the common
operations related to time series.

1.1.2 General information on time series

Time series are a specific type of sequential data, where time is taken into account.
A global definition of sequential data could be an ordered list of consecutive k
items, picked from a given finite ensemble A. For example, the word "sequence"
can be seen as a sequence itself, where each item of the sequence are the letters
(S,E,Q,U,E,N,C,E).

In time series, the position of each item in a sequence is related to time. A time
series Xt corresponds to a set of observations where each observed value is associ-
ated with a corresponding time : Xt = {x1, x2, . . . , xT}, with a number of T values.
Time series can be continuous or discrete.

In the case of continuous time series, observations are recorded continuously,
and related time values are continuous in a given interval (for example t ∈ [0, 1],
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where time can take any possible value between 0 and 1). Continuous time series
can be generated by analog sensors for example.

In the case of discrete time series, the set of time values is a discrete set and
observations can be made at fixed or irregular time intervals. The time unit re-
lated to measurements can be of different natures. A commonly used time unit is
the second (SI unit), but sometimes, traditional units such as minute, hour, month,
or year can be found. In some specific cases, other custom units related to time
can be found. For example, in the case of batteries, some ageing criteria are mea-
sured at each charge or discharge cycle and thus evolve chronologically according
to the number of cycles. Typical examples of time series are weather data (tem-
perature, wind speed, humidity...), electronic health records (heart rate, blood pres-
sure...) [ROC+18] or data related to industrial devices (levels of vibrations, rotation
speed of a motor...).

In the scope of this thesis, a strong focus will be placed on discrete time series
since it is this type of data that will be used to build predictive models.

Time series can either be uni-variate or multi-variate. Uni-variate time series
refer to time series where a unique variable is observed at each time step. Multi-
variate time series corresponds to an ensemble of time series relative to different
observations [CTPK09]. The several components of a multi variate time series can
be synchronous or asynchronous. In this case, Xt includes multiple time series.

Types of operations on time series

The work on time series is not new: very early papers were written in 1906 by
Arthur Schuster [Sch06], and major works on Time Series, Forecasting and Control
were written by Box & Jenkins in 1970. Still, the recent and phenomenal increase of
the amount of collected data each day, correlated with the improvement of the com-
puting power [OHL+08], has opened the way to new challenges. Several common
operations on time series are listed here, mostly related to data driven algorithms.

Classification
Time series can be associated with a label according to its characteristics. In a

dataset D where each time series Xt,N is associated with its corresponding class
yN, D = {(Xt,1, y1), . . . , (Xt,N, yN)}, the classification task consists in training a
classifier on dataset D so that it can map a given input to its corresponding class.
[IFW+19]

Clustering
Some time series can have similarities although there is no clear knowledge

about a label, unlike in the classification problem. Clustering time series consists
in automatically gathering similar data into homogeneous groups. The classifica-
tion process can help identifying structures in a dataset. [ASY15]

Prediction
Prediction can be of different nature according to the type of time series (either

uni-variate or multi-variate).
Considering a uni-variate time series X with a known number of T time steps

Xt = xi, x2, . . . , xT
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following unknown values

xT+1, xT+2, . . . , xT+N

of X can be predicted.
In the case of a multi-variate time series, predictions can either be endogenous

or exogenous. Considering a multi-variate time series X with a known number of T
time steps and k variables,

Xi,t = x1,1, x1,2, . . . , x1,T, ..., xk,1, xk,2, . . . , xk,T

an endogenous prediction would consist in predicting the following values of one
of the k sub series, or all of them.

An exogenous prediction, on the contrary, would consist in predicting the fol-
lowing steps of another time series (either uni-variate or multi-variate) from one or
more of the k sub series.

Feature selection
Generated data can sometimes reach such volumes that it becomes impossible

to use it directly as input to algorithms. Recent work on time series shows that
data needs to be treated in a specific way, by selecting the most useful part of it and
getting rid of irrelevant information [CKLF16, GBMP13]. Feature selection aims at
focusing on the part of information that is relevant for solving a given problem. For
example in multi-variate time series, some acquired signals could bring redundant
or useless information for the prediction problem. Feature selection helps keeping
only useful signal in the prediction process.

Feature extraction
Feature extraction is another dimension reduction technique. As feature selec-

tion selects useful information from the original set of data, feature extraction rather
creates a new set of data by transforming the information contained in original data.
Transformation of data should result in a lower dimensional space while preserving
most of the relevant information [KKN14]. Feature extraction can be combined with
feature selection when a great number of new features is created from the original
data. It often happens that not all new features are useful, and the best subset of
features is therefore identified with feature selection techniques.

1.1.3 Acquiring data

All of the above-mentioned operations are data-driven, which means that before ap-
plying any data pre-processing technique (feature extraction or selection) or build-
ing any model (whether it is for clustering, classifying or predicting time series),
data needs to be acquired and stored. The quality of any data-driven model relies
on the quality of data, and no amount of data pre-processing can fully make up for
poor data quality.

Discrete time series are acquired through digital sensors. Data sensing is there-
fore a crucial step in any time series manipulation. Industry 4.0 relies partly on data
acquisition, and sensors have evolved into embedded and smart devices. [JHS+21]
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Most of the time series that are studied in the scope of this thesis are physical
signals related to the functioning of batteries, or their operating environment. Sen-
sors involved in the acquisition of such signals operate in the thermal, electrical and
mechanical domains. The physical quantities measured by sensors are referred to
as "measurand" and vary according to the domain. [MK19]

Table 1.1: Examples of measurands according to the sensor domain

Domain Measurand
Thermal Temperature (T°)
Electrical Current (I), Voltage (V), Resistance (R), Internal resistance (IR),

Power (P)
Mechanical Speed, Acceleration, Pressure

Sensors dedicated to prognostics and health management of a system should
include memory and/or data transmission abilities.

Through sensors and real-time acquisition of data, especially time series, the
functioning of any system in its environment can be observed. In order to increase
product reliability, availability and affordability, predictive maintenance appears as
a key strategy. Its aim is to take advantage of operating data by turning it into pre-
dictive models that can anticipate the evolution of a system and its potential failures
[MK19]. In this scope, Machine Learning (ML) appears as the most efficient tool to
extract knowledge and build models from data. Most predictive prognostics mod-
els are based on ML algorithms, whose fundamentals are described in the following
section.

1.1.4 The learning process

ML is a sub-field of Artificial Intelligence (AI) and can be defined as a field of
study that gives computers the ability to learn without being explicitly programmed
[Sam00]. In more explicit terms, ML is based on algorithms that can extract knowl-
edge from data. Unlike the classical programming paradigm, where models are
based on knowledge on a given topic, ML uses a dataset as input and creates mod-
els that can perform tasks and allow decision making.

To do so, algorithms are built to learn functions from a set of examples. The
set of examples is referred to as the dataset, there is one specific dataset for each
application. All ML algorithms follow the same procedure for analysing the dataset
and identifying patterns in the data, called the learning process, described in figure
1.1. The aim of the learning process is to find a mathematical function that can map
the input data to a corresponding output. The mathematical function that results
of the training process is what is called the model, and that will be used to make
decisions.

The learning process can vary according to the application and to the type of
data. The implied mathematical functions can also vary according to the complexity
of the application.
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Data ML Model Prediction

Optimisation Evaluation

Figure 1.1: Learning process of a Machine learning algorithm

Table 1.2: A (theoretical) dataset for the classification of Li-Ion batteries
according to their initial characteristics, through supervised learning

Features Label
Batt. ID Initial capacity (Ah) Initial IR (mΩ) (performance)

b1c0 1.0710 16.7424 1
b1c42 1.0803 16.7679 2
b2c30 1.0670 17.7890 3
b3c45 1.0692 15.7420 1

1.1.5 Supervised and unsupervised learning

The nature of the dataset on which a machine learning model is based determines
the choice of the learning process.

Supervised learning can be applied when training data is available under the
form of input-output pairs, which means that each input sample Xi has a corre-
sponding label yi.

Table 1.3: A dataset for the prediction of the RUL of Li-Ion batteries
through supervised learning

Features Label (RUL)
Cycle ID IR (mΩ) Charge time (min) Capacity (Ah) (cycles)

0 16.7423 13.34 1.0710 1851
50 16.5933 13.43 1.0766 1801

500 16.7248 13.34 1.0619 1351
1000 17.0227 13.43 1.0389 851

The example datasets represented in table 1.2 and 1.3 are divided into features
and labels.

In table 1.2, each input sample (each line) corresponds to one battery, and each
battery is described by two features. The features characterise the initial perfor-
mances of a brand new battery (its initial capacity and internal resistance). The
corresponding label of each sample is a number between 1 and 3 which indicates
the level of performance of the battery (1 means the battery cycle life is between
1000 and 1500 cycles, 2 means the cycle life is between 500 and 1000 cycles, and 3
means the cycme life is lower than 500 cycles).
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In table 1.3, each input sample corresponds to one cycle in the life of a battery,
and is described by several features (the internal resistance, charge time and capac-
ity). The corresponding output of each sample is the Remaining Useful Life (RUL)
of the battery at this precise cycle.

Both datasets could be used for supervised learning, but for different tasks. The
type of label in dataset 1.2 are numerical values that correspond to a level of perfor-
mance. In this case, labels can only take three possible values, and samples are clas-
sified according to their labels. Classification is a typical task of supervised learn-
ing. On the contrary, labels in dataset 1.3 are numerical values that corresponds to
the RUL of the battery in terms of cycles. That label can take any positive value.
Therefore, the learning process will result in a model that can make a regression on
a numerical value.

Unsupervised learning can be applied when only input features are available,
without labels. The learning process will thus aim at building a model that can
recognise recurrent patterns in data and use them for different tasks. A very com-
mon process in unsupervised learning is clustering, where similar time series are
gathered into homogeneous groups. Unsupervised learning can also be used to
operate dimension reduction tasks such as Principal Component Analysis (PCA)
to reduce the number of features [KP11] or outlier detection to remove abnormal
samples.

1.1.6 Artificial Neural Networks

Artificial Neural Networks (ANN) have been become very popular for sequence
data and time series treatment since the late 1980s. With the advances in computing
abilities and data availability, ANN have been outperforming any other approach
since 2009, including in time series related problems. ANN are mathematical mod-
els used for ML based on non-linear mathematical functions, giving them the ability
to identify complex relationships in data. They have been proven to have universal
approximation capabilities, provided there is enough data for training [Puy01].

The most basic form of ANN, and one of the most important ones, is called
Feedforward Neural Networks (FNN).

The learning principle mentioned above is achieved thanks to a specific struc-
ture that takes data as input and applies non linear transformations to it. The global
functioning of ANN involve several mathematical operations at different stages of
the learning process. The following sections will describe the mathematical build-
ing blocks of ANN. The association of these mathematical building blocks, which
creates the global model in the end, is referred to as the architecture of the model.

The neuron

Artificial Neurons that compose ANN were inspired biological neurons. Neurons
receive, transform and flow information in one direction. The operation a that takes
place in a neuron j is characterised by its weights wi,j, bias wj,0 and activation func-
tion ϕ as represented in figure 1.2. The output of a neuron is computed according
to equation 1.1
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Figure 1.2: Basic form of an artificial neuron, used in ANN [Bou04]

y = aj(x, w) = ϕ(∑
i

wijxi + wj0) (1.1)

Activation functions

Activation functions are generally non-linear functions. Without the activation func-
tion, the mathematical behaviour of a neuron would just result in a linear transfor-
mation of the input data. Adding a non-linear operation after the neuron is neces-
sary to be able to learn complex relationships in data. Popular activation functions
are :

• sigmoid : σ(x) = 1
1+e−x

• Rectified Linear Unit (ReLU) : R(x) = max(0, x)

• hyberbolic tangent : tanh(x) = 2
1+e−2x

5.0 2.5 0.0 2.5 5.0
0.00

0.25

0.50

0.75

1.00

(a) Sigmoid

5.0 2.5 0.0 2.5 5.0
0

2

4

(b) ReLU

5.0 2.5 0.0 2.5 5.0
0.0

0.5

1.0

1.5

2.0

(c) Tanh

Figure 1.3: Activation functions

Activation functions are systematically associated with neurons. When several
neurons are associated together, it creates what is called a layer. Layers can be
stacked to add depth to the model.

The use and choice of activation function inside each neuron depends on the
place of the layer inside the network, the type of data used and the type of predic-
tion.
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Loss function

The aim of a ML model, and in this case of an ANN, is to establish relationships
between a given input and the corresponding output. In order to make sure the
right relationship is established and that it is reliable, a quantitative measure of the
performance of the model is needed. The loss function is an error function that is
used to evaluate the model during training. According to the number of outputs,
the model might have several loss functions, but the results of those functions is
averaged so that one unique value of loss is taken into account during the learning
process. The quality of the model depends on the choice of loss function, and this
choice is guided by the type of prediction that is made. This thesis only focuses on
supervised learning models for regression tasks. The Mean Square Error (MSE) is
a commonly used loss function for regression. Considering a real output Y and the
value predicted by an ANN Ŷ, the MSE is expressed as shown in equation 1.2:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (1.2)

Gradient Descent

The learning process described in 1.1.4 includes an optimisation step, and that truly
is what gives ML algorithms the ability to learn.

The weights of an ANN are initialised with random values, with a specific distri-
bution and range according to the architecture of the network [TF95, SHK+14]. The
model filled with random weights, or untrained model, can be used to make pre-
dictions from the input dataset, but the result would be meaningless. The output
of the untrained model is systematically compared with the expected output, and
weights and biases are gradually updated according to the error. This gradual up-
dating of the weights of a network is what is called training. After training, thanks
to the optimisation, the error between the predicted and expected output should be
as low as possible.

In mathematical terms, the optimisation of a ML algorithm is about finding the
parameters that minimise the loss function. The optimisation is based on the con-
cept of gradient descent.

The loss function of a ML model is a differentiable function, whose global min-
imum can be determined by calculation in theory. The loss value is computed for
each of the input data and depends on the weights of the model, as represented in
figure 1.4.

In the case of ANNs, finding the global minimum of the loss function can be-
come very complicated, considering that ANNs often have tens of thousands of
parameters. Rather than computing the minimum of the loss function by determin-
ing the point where its derivative equals 0, stochastic gradient descent is applied.

The gradient is the slope of a curve at a given point. More precisely, it is the
derivative of a function that takes a vector as input (thus, a multidimensional input).
Considering a given set of weights w = (w1, w2, . . . , wn), the derivative of the loss
function for this set of weights is :
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Figure 1.4: Evolution of the loss function according to the weights

∇ f (w) =


∂ f
∂x1

(w)
∂ f
∂x2

(w)
...

∂ f
∂xn

(w)

 (1.3)

For each step of the learning process, the same operation is made. (i) The output
of the network is computed according to the set of weights. (ii) The loss between the
predicted and expected output is computed. (iii) The gradient of the loss function
according to the set of weights is computed. (iv) The weights are updated in the
opposite direction of the gradient, in order to minimise the loss function.

Backpropagation

Backpropagation is the process through which the gradient of the loss function is
computed for each layer of the ANN, from the output layer and backwards to the
input layer.

The depth of an ANN

Artificial Neural Networks are built by stacking layers of artificial neurons. The
more neurons per layers and the more layers stacked, the deeper the network.

In Feedforward Neural Networks (FNN), the information flows in one direction.
Each neuron in an FNN is fully connected to all the following ones in the network,
which means the output of a neuron is used as input to the following ones. FNN
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are usually used to perform tasks such as clustering, classification and regression
on numerical or categorical data. The depth of a network depends on the number
of stacked layers. Each additional layer in a model is meant to add a different and
increasingly meaningful representation of the input data.

Hidden layers

Output layer

Input layer

Figure 1.5: A multi-layer ANN

FNN can be combined to other types of networks when complex representations
are involved, typically for pattern recognition or time series treatment. In this case,
models belong to the category of Deep Neural Networks.

1.1.7 Deep Neural Networks for time series

Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special type of neural networks that
are built to process data in one or two dimensions, in a grid-like topology, typically
the pixels of an image [GBC16, Sch15].

Although CNN have been very popular in practical applications such as image
recognition, they have been used for speech processing and time series in 1995 by
LeCun and Bengio [LB98]. Uni-variate time series can be thought of as 1D images,
and multi-variate time series as 2D images. CNN are built to learn translation in-
variant patterns in data, which means they can automatically isolate relevant local
patterns in a time series and recognise them somewhere else in the signal. This
process can be seen as automatic feature extraction.

However, when dealing with time series, CNN are mostly used to perform clas-
sification tasks, and not prediction. CNN is the most successful architecture on a
2D image topology, but to process sequential data, recurrent neural networks are
preferred.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) have become very popular in time series related
problems. RNN, unlike FNN or CNN, have the ability to process data sequences by
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keeping track of their past elements. They have a memory that can carry informa-
tion on the history of all the past elements of the input signal, and they use the past
states as input to predict the next or future states.

Figure 1.6: Working principle of the cell of an RNN unfolded in time
[LBH15]

In figure 1.6, the working principle of an RNN is explained. Each output ot of
the network depends on the input xt and all the previous input values. U, V and W
are weight matrices that do not change with time unroll. The same weight matrices
are used at each time step.

The first RNN that were developed were theoretically able to carry information
throughout any sequence, but suffered from a vanishing gradient problem when
dealing with very long sequences. Simple RNN can therefore not learn long term
dependencies.

Several advances in the architecture and the training process of RNN made it
possible to overcome this problem. Long Short Term Memory networks (LSTM) is
a type of RNN which comprises three gates, making it easier to carry past data over
long sequences and therefore resolve the vanishing gradient problem.

Forget gate 

Input gate Output gate 

ctct-1

Figure 1.7: Structure of a Long Short Term Memory network

As shown in figure 1.7, an LSTM comprises three gates called the "input", "for-
get" and "output" gate. For each time step, the hidden state of the LSTM is updated,
as well as the cell state. In the following equations, ft is the forget gate, it is the input
gate, ot is the output gate, ct is the cell state and ht is the hidden state. Two different
activation functions are used, σg for the Sigmoid and σc for the hyperbolic tangent.
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ft = σg(W f ∗ xt + U f ∗ ht−1 + b f ) (1.4)

The forget gate aims at deciding which part of the information should be kept
in memory or not. It takes into account the input of the cell at time t, xt, and the
output of the previous layer, ht, in order to modify the cell state from time t − 1,
ct−1. The cell state carries information along the entire chain of an LSTM.

it = σg(Wi ∗ xt + Ui ∗ ht−1 + bi) (1.5)

c′t = σc(Wc ∗ xt + Uc ∗ ht−1 + bc) (1.6)

ct = ft · ct−1 + it · c′t (1.7)

The input gate determines what information should be added to the cell state.
The cell state is updated according to the output of the forget and input gates, and
of the result of c′t.

ot = σg(Wo ∗ xt + Uo ∗ ht−1 + bo) (1.8)

ht = ot · σcct (1.9)

The output of an LSTM cell is computed as a function of the cell state ct, the
input of the cell xt and the previous output ht.

A possible variant of the LSTM is the bidirectional-LSTM (bi-LSTM). Bi-LSTM
are composed of the same gates as the LSTM but can flow the information forward
and backwards at the same time.

Transformers & Attention modules

Transformers are a class of deep learning models that have revolutionised various
fields, especially natural language processing [VSP+17]. At the heart of a Trans-
former lies its attention mechanism, which is often referred to as attention modules.
These attention modules enable the model to analyse and weigh the importance of
different parts of an input sequence, allowing it to capture complex relationships
and dependencies within the data. Unlike traditional RNN or CNN, Transformers
excel at handling long-range dependencies and are highly parallelisable, making
them well-suited for a wide range of sequential data tasks, from language transla-
tion to image generation and beyond.

1.1.8 Parameters and hyper parameters tuning

The learning done by machine learning is finding the parameters (or weights) of a
model using a dataset. [Kel19]

The principle of learning algorithms is to find a function f that can map a set of
inputs to a set of outputs by minimising some expected loss. Most often the learning
process is done by optimising a set of parameters, regarding a training criterion.
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Considering a model A (ie. a mathematical function), its parameters Θ , a loss
function L and samples x from a given distribution Gx, the principle of optimisation
resides in solving equation 1.10:

Min(L(x; AΘ)) (1.10)

In the case of ANN, the optimisation consists in setting the right weights and
biases to the different layers of neurons.

However, there is another set of parameters to be considered and which cannot
be optimised automatically during the training process described above. These are
called hyper-parameters, and the actual learning algorithm A is the one obtained
after appropriately choosing them.
Regarding neural networks, one should consider the number of layers, and units
per layer but also the learning rate, momentum, dropout . . .

The problem of identifying the right hyper-parameters can then be considered
as an upper layer of optimisation. It consists in finding the best set of hyper pa-
rameters λ, in order to minimise the generalisation error of algorithm A, defined
as:

Ex∼Gx [L(x; Aλ(X(train)))] (1.11)

There can be a great variety of hyper parameters to consider, and the most crit-
ical part is to choose the right way to combine them. The most common way to
identify the best hyper parameters λ is to iterate through various combinations of
hyper parameters.

While grid search offers an exhaustive way of testing all possible configurations,
this method is rather ineffective and can be thought of as a “brute force” method.
Depending on the complexity of the model, testing each possible configuration of
hyper parameters can be a very long process. The number of possible combinations
grows exponentially with the number of hyper-parameters [Bel15].

Random Search however is a more efficient way to go through several possible
hyper parameter configurations. Random search produces a set of trials by drawing
hyper parameters from a uniform distribution space [BB12].

The work described in [BB12] shows that Random Search has statistically more
chances to find a good enough combination of parameters by going through fewer
iterations.

Figure 1.8 illustrates a space of nine hyper parameters, whose distribution has
important dimensions and less important dimensions. Grid search only tests the
important dimension in three distinct places, whereas Random Search explores it at
nine distinct places.
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Figure 1.8: Random search vs grid search [BB12]

1.2 Li-Ion Batteries

1.2.1 A brief history of Li-Ion batteries & electric vehicles

At the beginning of the 20th century, thermal cars represented a minority of vehicles
on the road 1. Due to the lack of charging infrastructure and obvious inconvenients
in terms of driving range and speed (no more than 65 km, and no faster than 32
km/h), the popularity of electric vehicles declined progressively from 1920.

The environmental impact of thermal cars however has brought attention again
on electric vehicles from the late 1990s. The need for better energy storage solutions
and alternatives to lead-acid batteries and nickel–cadmium (Ni–Cd) gave way to
extensive research in the field of Li-Ion batteries. The first Li-Ion battery was com-
mercialised by Sony in 1991, after the works of Yoshio Nishi [JW98, Mas09]. Thanks
to their remarkable performances (higher energy density, longer cycle life, and re-
duced weight) compared to other battery chemistries used at that time, mainly lead-
acid, nickel–cadmium (Ni–Cd) or nickel-hydrid (Ni–MH), Li-Ion batteries were adopted
very quickly in all portables devices. Their use started in mobile phones and com-
puters, and now all kinds of vehicles and power tools are running on Li-Ion batter-
ies. In 2019, Stanley Whittingham, John B. Goodenough and Akira Yoshino received
the Nobel Prize of chemistry for their joint works on Li-Ion batteries.

1.2.2 Working principle of Li-Ion batteries

Li-Ion batteries, and batteries in general, are electrical energy storage devices. They
are electrochemical devices that convert chemical energy into electricity back and
forth. All batteries, no matter the chemistry, are composed of an anode (negative
electrode) and a cathode (positive electrode). Both electrodes are floating in an elec-
trolyte, and they are separated by a membrane called the separator. In Li-Ion batter-
ies, the cathode is protected from direct contact with the electrolyte by a filter called
the Solid Electrolyte Interface (SEI).

During discharge, the energy contained in the battery under a chemical form
is converted to electricity by connecting the anode and the cathode through an ex-
ternal circuit. Electrons flow from the cathode (which has the lower potential) to
the anode (which has the higher potential), which creates current. As batteries are
reversible conversion devices, the reaction can be reversed by the addition of an

1Britannica, Early electric automobiles (Accessed in September 2023)

https://www.britannica.com/technology/automobile/Early-electric-automobiles
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external electrical energy source. Then, electricity is converted back to chemical
energy.

The chemical reactions that take place inside batteries are oxido-reductions. When
electrons move from one electrode to the other through an external circuit, positive
ions Li+ flow in the opposite direction from one electrode to the other through the
electrolyte, the separator and the SEI. Electrons and cations can go from one cath-
ode to the other according to the oxido-reduction reaction that occurs (either during
charge or discharge).

SEI
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Figure 1.9: Operating diagram of a Li-Ion battery

Cell chemistries

There are three main technologies of Li-Ion batteries on the market at the moment:
Nickel-manganese-cobalt (NMC), Nickel-cobalt-aluminium (NCA) and Lithium-Iron-
Phosphate (LFP) cells. The differences between those chemistries are the materials
used for the electrodes and electrolyte. Depending on the materials used, batteries
have different advantages and disadvantages that make them more or less suitable
for each application. Battery chemistries can be classified according to six criteria:
cost, specific energy, specific power, safety performance and life span [The10]. The
most widespread battery chemistry on EVs for the moment is NMC cells because
they have a higher energy density (which means a higher driving range) and wider
operating temperature range. NCA have a shorter life cycle than NMC batteries
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Figure 1.10: Comparison of different cell chemistries according to six
criteria [The10]

and are not used in so many cars nowadays. LFP cells on the contrary have a lower
energy density but better cycle life, and increased security (less thermal runaway
risk). All those characteristics are summarised in figure 1.10.

All the dataset described in the section make use of one or more of these chemistries,
with cells that have a cylindrical shape.

Cell architectures

There are three main types of packaging for batteries: cylindrical, prismatic and
pouch. They also have consequences over the performances of the batteries [SAS17].

Cylindrical batteries are easy to manufacture and are mechanically stable. They
prevent batteries from swelling. They benefit from longevity and their cost is quite
low. However, the cylindrical shape leads to a lower space efficiency. They are
extensively used in portable applications such as laptops, but also in electric vehi-
cles. The most commonly found dimensions for cylindrical batteries are 18650 and
21700.

The advantage of prismatic batteries, on the contrary, lies in their thin shape.
They allow a better space management and flexibility. However, they have a shorter
lifespan and they are more expensive to build.

Pouch batteries are an alternative to cylindrical and prismatic batteries. The
principle is to weld foil tabs to the electrodes and to bring them outside in a fully
sealed way. They are light and cost effective but an important swelling has to be
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taken into account. As the metal enclosure is eliminated, the weight is reduced but
the cells need allowance to expand in the battery compartment.

1.2.3 Ageing mechanisms in Li-Ion batteries

The ageing phenomenon in a Li-Ion battery can come from many external and inter-
nal factors. Physical mechanisms such as thermal or mechanical stress can influence
the degradation (for example with high external temperature, vibrations due to the
state of the road etc . . . ). Chemical mechanisms occur inside the battery and can
be divided into two main degradation modes : Loss of Lithium Inventory (LLI),
which is caused by consumption of lithium ions through side reactions and Loss
of Active Material (LAM), which results in a loss of storage capacity. LLI is mainly
caused by SEI film formation and decomposition, electrolyte decomposition, and
lithium plating. All degradation mechanisms are detailed in references [Chr17a]
and [HXLP20].

Figure 1.11: Degradation mechanisms in Li-Ion cells [BRM+17]

1.2.4 Battery Ageing Data

Li-Ion batteries are quite recent as explained earlier, and the spread of electric ve-
hicles is only starting. Operating data of Li-Ion batteries inside vehicles is very
difficult to obtain due to the challenges linked to battery performances. Car ma-
nufacturers are most likely to keep all information about batteries and battery mana-
gement private in order to be competitive and gain market share in the automotive
sector. Therefore, most of the publicly available data comes from laboratories that
have led research on the performances of Li-ion batteries in different contexts, with
different objectives. Acquiring ageing data from Li-Ion batteries can take a very
long time and requires lots of resources because they are so efficient that a large
number of cycles is needed to observe any deterioration. Moreover, test devices are
very costly, even more so with extreme test conditions (such as high or low con-
trolled temperature in climate chambers). In order to reduce the costs and required
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power for battery testing, it is almost systematic to use battery cells and not full
battery packs. Indeed, the power required to fully charge or discharge real vehicle
battery packs is much higher than with isolated cells.

In this section, several of the most useful publicly available datasets are pre-
sented. Most of them have been used at some point in this thesis, either to get
information about battery ageing in general or to built predictive models that will
be described in the three contribution chapters. Information that is provided here
mainly comes from references [HHHK19], [HXLP20] and [dRSYL21]. Several of
those datasets can be downloaded from the online platform Battery Archive 2. Ta-
ble 1.4 gives a summary of the presented datasets, with their names, institutes, the
years over which tests were conducted, and optional remarks. A detailed review of
each of the datasets in this table is given in the next paragraphs.

Table 1.4: Main Public Ageing Datasets

Dataset Name Institute Number
of Cells

Year Remarks

PCoE Battery Dataset NASA Ames 34 2008-
2010

Cycle Life Prediction
Dataset

MIT - Stanford Univer-
sity

124 2017-
2018

Short-Term Cycling
Performance Dataset

Sandia National Labo-
ratories

24 2017 Different
chemistries
and tempera-
tures

Long-Term Degrada-
tion Dataset

Sandia National Labo-
ratories

86 2018-
2020

Different
chemistries,
temperatures,
and depths of
discharge

Oxford Battery
Degradation Dataset

Oxford University 8 2015 Driving profiles

NASA PCoE Dataset

The NASA PCoE dataset is known as a reference benchmark since it was the first
public dataset on battery ageing 3. This dataset contains 34 cells divided into 6
groups. The cycling experiment was segmented into three parts: charging, dis-
charging and impedance spectroscopy. The charging protocol is the same for all
tests, a constant-current/constant-voltage (CC-CV) charging protocol with 1.5A rate
and a 4.2V charging voltage threshold. Various discharging currents were used.
Cells were cycled at different ambient temperatures, which influences the ageing

2batteryarchive.org
3Accessed in 2021 at https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-

repository/

batteryarchive.org
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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speed. After each cycle, the impedance of battery cells is measured through an elec-
trochemical impedance spectroscopy (EIS) with a frequency sweep from 0.1Hz to
5kHz.

MIT - Stanford Dataset

The MIT dataset was elaborated in collaboration with Toyota engineering and with
the Department of Materials Science and Engineering of Stanford University in
20194 [SAJ+19]. It is the largest available dataset regarding Li-Ion battery ageing.
The cells used for testing are Li-Ion Iron Phosphate (LFP) / graphite cells from A123
manufacturer, model APR18650M1A. These cells have a 3.3 V nominal voltage and
a 1.1 Ah nominal capacity. They can provide discharge currents up to 30 A. The cells
were tested in a 30°C climate chamber. The batteries are always discharged at a con-
stant current of 4.4 A (4 C) (see section about health indicators for an explanation
about the C-rate 1.3.1). The most important factor in the tests is the charging policy.
Batteries are charged following a multi-step CC-CV policy which makes it possible
to reduce the charging time. A complete overview of the 124 different battery cells
and their associated charge protocol is given in table 1.6, and all charge protocols
are detailed in table 1.7 (there are 69 different charge protocols for 124 battery cells).

The cells were divided into three batches. Each batch shows some irregularities
which are detailed on the dataset’s web page. The temperature measurements were
made using a thermocouple attached to the surface of battery cells with thermal
paste and adhesive tape. Internal resistance is measured during charging at 80%
SOC, using an average of ten 30ms or 33ms pulses of ±3.6C.

Table 1.5: Characteristics of the battery cells tested in the MIT dataset

Ncells Type Manufacturer Vnom (V) Cnom (Ah) T (C°)
124 LFP A123 3.6V 1.1Ah 30° C

Short-Term Cycling Performance Dataset SNL

The Sandia National Laboratory dataset 5 is described in [BFCF17]. This interesting
dataset contains data from multiple types of batteries tested at different tempera-
tures, as summarised in table 1.8.

Temperature measurements are obtained using a thermocouple attached to the
body of the batteries, and the chamber used for testing has a temperature range of
-73 °C to 200 °C. The experiment is segmented into two main parts : cycling tests
and abuse tests. Cycling test protocols go as follows. First, 3 batteries of each type
are entirely discharged. They are then placed in a climate chamber and left to rest
for 12 hours to reach the desired temperature. The charging protocol is the same for
every test, and consists in a 1C CC-CV charge. Between each charge and discharge,
a 10-minute rest period is implemented. EIS is then performed on the cells, before

4Accessed in 2019 at https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
5Accessed in 2020 at https://www.sandia.gov/energystoragesafety-ssl/research-

development/research-data-repository/

https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
https://www.sandia.gov/energystoragesafety-ssl/research-development/research-data-repository/
https://www.sandia.gov/energystoragesafety-ssl/research-development/research-data-repository/
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Table 1.6: MIT dataset : all tested batteries and their associated charge
protocol

Cell Cycle
life Protocol Cell Cycle

life Protocol Cell Cycle
life Protocol

b1c0 1852 0 b2c0 300 22 b3c0 1009 61
b1c1 2160 0 b2c1 148 23 b3c1 1063 62
b1c2 2237 0 b2c2 438 24 b3c3 1115 63
b1c3 1434 1 b2c3 335 25 b3c4 1048 64
b1c4 1709 1 b2c4 444 26 b3c5 828 63
b1c5 1074 2 b2c5 480 27 b3c6 667 65
b1c6 636 3 b2c6 511 28 b3c7 1836 66
b1c7 870 3 b2c10 561 29 b3c8 828 61
b1c9 1054 4 b2c11 477 30 b3c9 1039 62
b1c11 788 5 b2c12 458 31 b3c10 1078 66
b1c14 880 6 b2c13 483 32 b3c11 817 64
b1c15 719 6 b2c14 485 33 b3c12 932 63
b1c16 862 7 b2c17 494 34 b3c13 816 64
b1c17 857 7 b2c18 487 35 b3c14 858 63
b1c18 691 8 b2c19 461 36 b3c15 876 67
b1c19 788 8 b2c20 502 37 b3c16 1638 66
b1c20 534 9 b2c21 489 38 b3c17 1315 62
b1c21 559 9 b2c22 513 39 b3c18 1146 64
b1c23 1014 10 b2c23 527 40 b3c19 1155 63
b1c24 1017 11 b2c24 495 3 b3c20 813 61
b1c25 854 11 b2c25 461 3 b3c21 772 65
b1c26 870 12 b2c26 471 3 b3c22 1002 68
b1c27 842 12 b2c27 468 41 b3c24 825 61
b1c28 860 13 b2c28 509 42 b3c25 989 62
b1c29 917 13 b2c29 498 43 b3c26 1028 64
b1c30 709 14 b2c30 481 44 b3c27 850 63
b1c31 876 14 b2c31 492 45 b3c28 541 65
b1c32 731 15 b2c32 519 46 b3c29 858 67
b1c33 757 15 b2c33 520 47 b3c30 935 62
b1c34 742 16 b2c34 499 48 b3c31 731 68
b1c35 703 16 b2c35 463 49 b3c33 1284 61
b1c36 704 17 b2c36 535 50 b3c34 1158 62
b1c37 648 17 b2c37 478 51 b3c35 1093 64
b1c38 617 18 b2c38 465 52 b3c36 923 63
b1c39 625 18 b2c39 459 53 b3c40 796 64
b1c40 966 19 b2c40 499 54 b3c41 786 63
b1c41 1051 19 b2c41 429 55 b3c42 1642 66
b1c42 702 20 b2c42 466 56 b3c43 1046 61
b1c43 651 20 b2c43 462 57 b3c44 940 62
b1c44 616 21 b2c44 457 58 b3c45 1801 66
b1c45 599 21 b2c45 487 59

b2c46 429 60
b2c47 713 15
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Table 1.7: All charge cycles in the MIT dataset

# Protocol # Protocol # Protocol
0 3.6C(80%)-3.6C 23 2C(10%)-6C 46 5.2C(50%)-4.25C
1 4C(80%)-4C 24 2C(2%)-5C 47 5.2C(58%)-4C
2 4.4C(80%)-4.4C 25 2C(7%)-5.5C 48 5.2C(66%)-3.5C
3 4.8C(80%)-4.8C 26 3.6C(22%)-5.5C 49 5.2C(71%)-3C
4 5.4C(40%)-3.6C 27 3.6C(2%)-4.85C 50 5.6C(25%)-4.5C
5 5.4C(50%)-3C 28 3.6C(30%)-6C 51 5.6C(38%)-4.25C
6 5.4C(60%)-3C 29 3.6C(9%)-5C 52 5.6C(47%)-4C
7 5.4C(60%)-3.6C 30 4C(13%)-5C 53 5.6C(58%)-3.5C
8 5.4C(70%)-3C 31 4C(31%)-5 54 5.6C(5%)-4.75C
9 5.4C(80%)-5.4C 32 4C(40%)-6C 55 5.6C(65%)-3C
10 6C(30%)-3.6C 33 4C(4%)-4.85C 56 6C(20%)-4.5C
11 6C(40%)-3C 34 4.4C(24%)-5C 57 6C(31%)-4.25C
12 6C(40%)-3.6C 35 4.4C(47%)-5.5C 58 6C(40%)-4C
13 6C(50%)-3C 36 4.4C(55%)-6C 59 6C(4%)-4.75C
14 6C(50%)-3.6C 37 4.4C(8%)-4.85C 60 6C(52%)-3.5C
15 6C(60%)-3C 38 4.65C(19%)-4.85C 61 5C(67%)-4C-newstructure
16 7C(30%)-3.6C 39 4.65C(44%)-5C 62 5.3C(54%)-4C-newstructure
17 7C(40%)-3C 40 4.65C(69%)-6C 63 5.6C(36%)-4.3C-newstructure
18 7C(40%)-3.6C 41 4.9C(27%)-4.75C 64 5.6C(19%)-4.6C-newstructure
19 8C(15%)-3.6C 42 4.9C(61%)-4.5C 65 3.7C(31%)-5.9C-newstructure
20 8C(25%)-3.6C 43 4.9C(69%)-4.25C 66 4.8C(80%)-4.8C-newstructure
21 8C(35%)-3.6C 44 5.2C(10%)-4.75C 67 5.9C(15%)-4.6C-newstructure
22 1C(4%)-6C 45 5.2C(37%)-4.5C 68 5.9C(60%)-3.1C-newstructure

Table 1.8: SNL dataset : tested batteries and test conditions

Ncells Type Vnom (V) Cnom (Ah) T (C°) Imax (A)
6 LFP 3.3V 1.1Ah 5,15,25,35,45°C 30A
6 LCO 3.6V 2.5Ah 5,15,25,35,45°C 20A
6 NCA 3.6V 2.9Ah 5,15,25,35,45°C 6A
6 NMC 3.6V 3Ah 5,15,25,35,45°C 20A

the cycling starts. Cycling consists of a discharge rate of 1C, which changes every
5 cycles and takes the values from 5A to 30A or until reaching the manufacturer’s
limit. When using high load currents, the maximum recommended temperature
can be attained, and in this case the discharge procedure becomes segmented to al-
low the experiment to continue. This cycle is repeated for every temperature value.
Note that when reaching 25° C, another EIS test is conducted and a 1C cycling is per-
formed. The second part of the experiment is the abuse tests, which uses the same
protocol as the cycling test but allows the battery to reach temperatures beyond the
manufacturer’s recommendations.
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Long-Term Degradation Dataset SNL

This dataset6 is described in [PBF+20]. The aim of this dataset is to study the effect
of depth of discharge (DoD), load current and temperature on battery degradation.
86 cells of three different chemistries were considered in this study.

Table 1.9: SNL dataset: tested batteries

Type Vnom (V) Vlow (V) Vhigh (V) Cnom (Ah) Imax (A)
LFP 3.3V 2V 3.6V 1.1Ah 30A
NCA 3.6V 2.5V 4.2V 3.2Ah 6A
NMC 3.6V 2 4.2V 3Ah 20A

The experiments are conducted in a climate chamber and the body temperatures
of the batteries are measured using a thermocouple. First of all, cells are placed in
thermal chambers for a day to reach the desired temperature. The cells are then
discharged to 0% SOC. A round of cycling consists here of a capacity measurement,
a certain number of cycles and another capacity measurement. Capacity measure-
ment in this study consisted of 3 charge and discharge cycles at 0.5C with a DoD of
a 100%. The number of cycles defining a round varies between 125 and 1000 cycles.
The number of cycles of the next round is halved if a 5% capacity loss is measured.
EIS is performed every 3% capacity loss. Tests are conducted beyond 80% SOH.
The tests can be aborted if the voltage or temperature limits of the cells is reached.
The following table shows the different combinations of parameters used in this ex-
periment. The charging of all cells was done at 0.5C, and the NCA cells were not
discharged at 3C since it would be destructive.

Table 1.10: SNL dataset: test conditions

Discharge
rate

Conditions 1 Conditions 2 Conditions 3

0.5C 40%-60%, 25°C 20%-80%, 25°C 0%-100%, 25°C
1C 0%-100%, 15°C 0%-100%, 25°C 0%-100%, 35°C
2C 0%-100%, 15°C 0%-100%, 25°C 0%-100%, 35°C
3C 40%-60%, 25°C 20%-80%, 25°C 0%-100%, 25°C

6Accessed in 2020 at https://www.batteryarchive.org/snl_study.html

https://www.batteryarchive.org/snl_study.html
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Oxford Battery Degradation Dataset Oxford

This dataset7 is used in [Chr17b]. Ageing data is collected from 8 pouch battery
cells. The batteries were tested with a CC-CV charging profile and a driving dis-
charging profile based on the urban Artemis profile. The Artemis cycle is a stan-
dardised speed profile used to asses the performances of vehicles. For more infor-
mation, see chapter 5. Every 100 cycles, characterisation cycles were made. The
available data is comprised of two files, the first ExampleDC_C1.mat, only contains
the data from the first cycle with a 2C charging profile and a variable discharge
profile. The other, Oxford_Battery_Degradation_Dataset_1.mat contains the results of
each characterisation test made every 100 cycles, until the EoL of the batteries.

Table 1.11: Oxford dataset : tested batteries and test conditions

Ncells Type Cnom (Ah) T°C Ncycles

8 NMC 740mAh 40°C End of life

1.2.5 Choice of ageing data

Five different datasets were presented in the previous sections, but not all of them
had the same utility in the contributions that are described in the next chapters.
Only three datasets out of all of them were used to build models. The preferred
dataset is the one published by the MIT because it contains significant ageing data
coming from 124 similar battery cells. The LFP technology is used in more and
more vehicles due to the increased safety and cycle life as mentioned earlier. The
high quality of the dataset in terms of amount of data and provided signals makes it
more suitable for model training. The NASA dataset was also employed for model
training as it is a reference in the field of predictive prognostics for Li-Ion batteries.
Indeed, it was the first publicly available dataset and a great number of approaches
are based on it, as will be described in the next section. Finally, the SNL dataset
was used in one of the models described in chapter 3 for the variety of battery
chemistries and test conditions.

1.3 Related work

1.3.1 Prognostics and Health management of Li-Ion batteries

Predictive prognostics

Predictive maintenance was officially defined in a European and French norm (NF
EN 13306 [AFN19]) as a "condition-based maintenance carried out following a forecast
derived from repeated analysis or known characteristics and evaluation of the significant
parameters of the degradation of the item". According to this definition, predictive
maintenance includes aspects such as :

7Accessed in 2020 at https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac

https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
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• condition monitoring : an activity carried out manually or automatically, de-
signed to measure at predetermined intervals the characteristics and parame-
ters of the actual physical state of an element

• default diagnostics : actions taken to identify faults, locate them and deter-
mine their causes

• prognostics of failure : actions taken to predict a future state (of reliability)
on the basis of current and historical conditions, or to estimate the Remaining
Useful Life (RUL) of items

There are two main approaches for battery predictive prognostics (and predic-
tive prognostics in general) : physical-model-based and data-driven approaches.
Physical-model-based techniques were the first ones to be developed, before data
acquisition linked to the industry 4.0 exploded. Both methods have their advan-
tages and drawbacks but we believe that their different aspects are complementary.

A model-based approach for the PHM of a system relies on the establishment of
a simulation model according to physical rules and modelling equations. The aim is
to understand and reproduce the behaviour of a system in order to obtain data that
could be exploited, in particular with the introduction of disturbances. It implies
a complete understanding of the system and gives a global representation of the
different answers to sollicitations. There are several types of physic-based models
for the predictive prognostics of Li-Ion batteries, including mechanistic, equivalent
circuit, empirical or fused approaches. References [HXLP20] and [HXGL12] have
established comparisons between the different battery models that have been de-
veloped in literature. However, the main drawback of physic-based models is that
they require many resources to model often very complex physical rules. Most of
the time, the problem has to be simplified due to computational cost [TR15].

In data-driven approaches, no deep physical understanding of the model is re-
quired. A "black box" model is established instead of a fully representative model
for simulations. Rules are built from data : this kind of approach requires to have
historical data on the system in order to predict future degradation trends. Data-
driven approaches have reached very promising results due to the increasing amount
of data collected from batteries. Although there is a great variety of possible data-
driven approaches thanks to statistical models or machine learning algorithms,
PHM of batteries relies on the same three global steps in all cases: (i) data acqui-
sition, (ii) data processing, and (iii) decision making.

Health Indicators (HI)

Predictive prognostics of Li-Ion batteries aims at determining in advance when a
failure could occur. The physical manifestations of degradation in a battery were
described in the previous section 1.2.3, however, in real life applications such as in
an EV, it is impossible to settle sensors that would be able to catch physical phe-
nomenon such as dendrite formations or any degradation of the electrodes for ex-
ample. Defining a predictive prognostics strategy for Li-Ion batteries requires to
observe other signals that can either be acquired with non-intrusive sensors, or to
compute other Health Indicators (HI) from those originally acquired signals. Some
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of those HI directly reflect the physical battery degradation, and are therefore re-
ferred to as Direct Health Indicators (DHI). Although DHI are the best tools to quan-
tify the degradation stage of a battery, they might be difficult to observe or compute
directly from a vehicle, which is why other HI are considered in the contributions
of this thesis. Signals that can easily be acquired in EV are current, voltage and tem-
perature. Many Refined Health Indicators (RHI) can be computed from them such
as the mean, minimum or range of those easily acquired signals. In the following
paragraphs, DHI are described.

Capacity A battery is an electrochemical component built to store electrical en-
ergy under the form of chemical energy. The capacity of a battery is the quantity of
electrical energy, measured in ampere-hours (Ah), that a battery can deliver during
one discharge [PS16]. Capacity is computed by integrating the current over a whole
cycle. The current rate (C-rate) when using a battery is often given according to its
capacity. For example, discharging a 1.1Ah battery cell at a current rate of 1C means
the battery is discharged with a 1.1A current.

State of Health (SOH) SOH is a global term to define the available storage ability
of a battery in use. The State of Health (SOH) of a battery is defined as the ratio
between the storage capacity of the battery at any time (Q(t)) and its initial capacity
(Qnom). Trivially, the higher the SOH, the better the performance.

SOH(t) =
Q(t)
Qnom

and SOH(t)% =
Q(t)
Qnom

∗ 100 (1.12)

Usually, the SOH of a Li-Ion battery degrades very slowly in the early cycles
of its life and the curve is almost linear with a very gentle slope, and after a certain
time, there is an inflection point from which the curve starts decreasing much faster.

End of Life (EoL) and Remaining Useful Life (RUL) Monitoring the SOH of a bat-
tery is essential, considering that it decreases throughout its life. Concerning elec-
tric vehicle applications, a battery is considered out of use when it has lost 20% of
its initial capacity [HXLP20, LZWD19]. The EoL of a battery corresponds to the
time (often expressed as a number of charge and discharge cycles) when a battery
reaches this threshold.
It is to be noted that EoL for EV application does not mean the battery is completely
out of use. After reaching 80% of its initial capacity, a battery is considered un-
suitable for EV applications but not for domestic use where they can be offered a
second life. Considering this definition, the Remaining Useful Life (RUL) of a bat-
tery corresponds to the number of charge and discharge cycles it can go through
before reaching its EoL.

Internal Resistance (IR) The Internal Resistance (IR) of a battery encompasses the
notion of resistance, capacitance and inductance in one model. The IR of a battery
highly affects its performances. Indeed, a high IR causes the battery to heat up due
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to current restrictions, and also causes voltage drops. IR can be measured with dif-
ferent methods such as current pulses to study the voltage drops or Electrochemical
Impedance Spectroscopy (EIS).

1.3.2 Existing approaches for Prognostics and Health Management
for Li-Ion batteries

Battery Predictive 
Prognostics

Physical-model-based 
approaches

Data-driven 
approaches

Statistical analysis Signal processingArtificial intelligence

Figure 1.12: Global classification of models for predictive prognostics
of Li-Ion batteries

As described in the previous sections and illustrated in figure 1.12, the first dis-
tinction in battery predictive prognostics models is made between model based and
data driven approaches. This section will not go into detail about physical-model-
based approaches, but will focus extensively on data-driven approaches. Data
driven approaches can themselves be divided into three sub-categories, namely sta-
tistical analysis, artificial intelligence and signal processing.

Signal processing based Predictive prognostics

Signal processing approaches can have several interests. Concerning predictive
prognostics, identifying degradation patterns thanks to frequency decomposition
can help predicting the shape of the degradation curve knowing the evolution of
SOH during the first cycles in the life of a battery. However, signal processing is
more widely used for data cleaning and pre-processing. Several treatments can be
applied to raw data in order to remove noise in collected signals, and decomposed
signals can be used as extracted features in input of other types of models.

Statistical analysis

Statistical approaches aim at predicting the future degradation trend of a health
indicator by comparing historical variations with known signals [MSV+20].
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Artificial intelligence based

Artificial intelligence approaches have proved very efficient in the field of predic-
tive prognostics due to their ability to approximate complex phenomenon without
need for expert knowledge. The major topic in predictive prognostics for Li-Ion
batteries is to predict the evolution of one of the HI mentioned above, according to
different inputs. Considering that the desired output is known in advance, mainly
supervised learning models are developed. Therefore, supervised learning is the
only type of learning that will be described in the scope of this thesis. The predic-
tive prognostics strategies built on artificial intelligence are often classified accord-
ing to the implemented algorithm. A first distinction in the category of artificial
intelligence based approaches can be made according to the complexity of the em-
ployed model. Not all artificial intelligence models require the same training pro-
cess, amount of data or computation complexity. The following paragraphs aim at
describing several approaches that were encountered in the literature based on the
type of model and their applications.

Artificial-intelligence-based 
predictive prognostics for Li-Ion 

batteries 

Predicted signal Prediction mode Input signals Model type

● SOH
● RUL
● IR

● Iterative
● Direct
● OSA 
● MSA
● Sequence
● …

● DHI
● RHI
● EIS
● Data sequences
● …

● Regression
● ANN
● CNN
● RNN
● …

Figure 1.13: Different ways to classify the AI-based predictive prog-
nostics models for Li-Ion batteries

Gaussian process regression (GPR) Gaussian process regression aims at map-
ping input features to a given output through a non-parametric regression. In
[ZTZ+20], Zhang et al. have developed a model that is both able to predict SOH
and RUL from Electrochemical Impedance Spectroscopy (EIS) measurements. EIS
and capacity measurement that compose the training dataset are generated in their
laboratory with custom operating conditions, and point predictions of capacity and
RUL are made according to one single EIS measurement. GPR was also employed
in [zKYZ+21] by Kong et al., who have extracted features from voltage and tem-
perature curves to predict SOH and RUL. The employed data for training comes
from the MIT dataset. Their model takes as input several consecutive charge and



1.3. Related work 33

discharge cycles (up to 400 hundred cycles) and outputs point predictions of SOH
or RUL.

Linear regression Some approaches in the literature have found linear relation-
ships between computed features and SOH or cycle life. Along with the dataset
published by the MIT, a linear model completed with an elastic net for regularisa-
tion was studied to link computed features from early cycles with the global cycle
life of the batteries. Studied features are derived from the difference between ca-
pacity curves at cycle 1 and 100, but also from a linear interpolation of the capacity
fade curve between cycles 91 and 100, and from other HI such as the IR, charge time
and temperature. The aim of their model is not to make an online prediction of the
RUL of a battery, but rather to identify its global cycle life from early cycles, which
is to say before degradation signs appear. Another reference mentions the use of
a linear model that uses raw voltage curves and V’, a computed feature called the
unit time voltage drop to predict both SOH and SOC [HTL+17]. The SOH depends
on V’ and on the estimated SOC at each cycle, and can be estimated at each cycle
with a good accuracy (RMSE < 0.04).

Artificial Neural Networks Among artificial-intelligence-based approaches for pre-
dictive prognostics of Li-Ion batteries, some models stand out by their effectiveness
and popularity. It is the case for Artificial Neural Networks (ANN), which have
been used in countless articles in the literature, whatever the architecture. The
present paragraph and following ones aim at describing the most relevant existing
approaches according to the type of ANN.

FNN is the most basic form of ANN, and some approaches have been exploiting
their performances with different types of input features and for different types of
predictions.

An Extreme Learning Machine (ELM) model was developed by Razavi-Far et
al. to predict RUL of a battery from capacity data [RFCS+18]. They built their
model on the NASA dataset and developed several strategies for One-Step-Ahead
(OSA) and Multi-Step-Ahead (MSA) predictions of SOH. Up to 60% of the historical
degradation curve of SOH is kept for training and a variable number of predictions
according to the strategy is made in order to determine the RUL of the battery.

You et al. [YPO17] have developed a method to cluster current, voltage and tem-
perature distributions over the whole life of a battery in order to distinguish similar
patterns according to the degradation stage of a battery. The aim of their model is
to use the information contained in a sample of current, voltage and temperature
data coming from a portion of charge or discharge cycle to predict the actual SOH
of the battery. Raw values of current, voltage and temperature are used as input to
an ANN that outputs one single value of SOH. Their model is trained "offline" with
available data, and prediction can be made "online" with newly collected data.

Data of current, voltage, temperature have also been employed in approaches by
Kumprom et al. and Choi et al. [KY19, CRPK19] as input to an ANN that predicts
either RUL and SOH or simply capacity. Both approaches have employed battery
ageing data from NASA. Kumprom et al. have also added capacity measurement as
input feature to their predictive model and have compared the performances of a
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deep ANN (an ANN with multiple hidden layers) with other models such as linear
regression, support vector machine and shallower ANN (i.e. an ANN with only one
hidden layer) with a clear advantage for the deeper ANN. Choi et al. on the other
hand have compared the performances of the ANN with more complex models
such as RNN and CNN, with an advantage for the RNN model. Such structures are
presented in the next paragraph.

Recurrent Neural Networks One can understand why ANN have been so widely
employed for the predictive prognostics of Li-Ion batteries. The ageing phenomenon
of Li-Ion batteries depends on intrinsic characteristics of the batteries, but also on
a great number of external parameters and mainly the operating conditions of an
electric vehicle. The type of data that is manipulated when building a data-driven
predictive prognostics model for Li-Ion batteries is time series. Whether they de-
scribe the long term evolution of SOH (over the whole cycle life of a battery) or the
short term variations of current, voltage or temperature during one use cycle, all
battery-related signals refer to a time unit. RNN have been described in detail in the
previous part of this chapter (see Theoretical background 1.1.7), and were proved
to be particularly adapted to the study of time series, especially in prediction tasks.
This explains why so many articles in the literature are based on this type of model.
Although a great number of models have in common the use of RNN, some specific
feature extraction techniques, input signals or prediction modes make it possible to
distinguish several approaches.

The first observation that can be made is that the vast majority of RNN-based
predictive prognostics models use capacity (or SOH) as single input signal to pre-
dict the future trend of capacity (or SOH). Non linear models (such as ANN) that
use past values of a given signal to predict the future values of the same signal are
referred to as Non linear Auto-Regressive models (NAR). The principle of NAR
models is summed up in equation 1.13

y(t + 1) = f {y(t), y(t − 1), ..., y(t − d)}. (1.13)

where d is the size of the input time window and t is the time stamp.
Liu et al. [LZP19] have developed a RUL prediction model based on a mix

of Bayesian Moving average and LSTM. A notion of uncertainty is introduced in
their results and the accuracy of the prediction is guaranteed with the development
of multiple LSTM sub-models based on different divisions of the initial training
dataset. All the sub-models are trained on capacity data only, focusing on a small
window of consecutive capacity values (39 cycles). The prediction corresponds to
the value of SOH at the 40th cycle. To the best of their performances, with a RUL
prediction made after 500 full cycles, the error between the actual RUL and the pre-
dicted one is of 9 cycles.

Zhang et al. [ZXHL17] have also based their model on an LSTM that predicts
RUL according to historical values of SOH. Two models are developed according
to the amount of capacity degradation data that is kept to train the model. The first
one used 50% of SOH data and the second up to 70% of the whole curve. With those
two models, they reach an average error of -3 cycles and 15 cycles respectively.
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Li et al. [LZWD19] and Qu et al. [QLMF19] have developed similar approaches
in that an LSTM is used to predict SOH from historical data of SOH. In both ap-
proaches, historical data of SOH is decomposed into several sub-signals follow-
ing an Empirical Mode Decomposition (EMD), each corresponding to a given fre-
quency. Those several signals are used as input features to an LSTM, combined with
Elman Neural Networks in the first case and particle swarm attention mechanisms
in the second case. Models are trained on the beginning of the degradation curve
of a battery (up to 70% of the whole curve). Li et al. have obtained a 2.99% MAPE
on the prediction of RUL of one of the batteries in their test dataset. Qu et al. have
obtained an RMSE of 0.0119 on the prediction of SOH for one of the batteries in
their dataset, by using 30% of the degradation curve for training.

More recently, Liu et al. [LSOW21] have employed this same decomposition
method combined with an LSTM to iteratively predict the SOH. The uncertainty
of the prediction is given with a Gaussian process regression sub-process. GPR
also aims at capturing short term regeneration phenomena when the LSTM focuses
more on the long term dependencies. The combination of the two models gives the
prediction of future capacity data. SOH is either predicted on the short term (6 steps
ahead) or long term (24 steps ahead). Predictions are made using an iterative tech-
nique : the previously predicted capacity value is used as input for next prediction
and so on. In their approach, the first 80 cycles are kept for training the model, and
the rest of capacity data is used as validation. For long term predictions, they reach
an RMSE of 0.0041 on one of the batteries in their dataset.

Fewer approaches have exploited the alternative of using only current, voltage
and temperature data to predict SOH or RUL. Non linear models that use past val-
ues of one or several signals to predict the future values of one or several other
signals are referred to as Non linear Regressive models with exogenous inputs
(NRX). The principle of NRX models is summed up in equation 1.14

y(t + 1) = f {x1(t), x1(t − 1), ..., x1(t − d1),
. . . ,

xn(t), xn(t − 1), ..., xn(t − dn)} (1.14)

where y is the target time series, xn are exogenous variables, t is the timestamp and
d is the size of the input window.

In an article by You et al. [YPO17], a focus is made on capacity fade curves. Their
approach consists in improving the history-based methods for capacity forecasting,
based on the global observation of current and voltage curves. They develop a
"snapshot based" approach that can adapt to atypical changes in current and voltage
discharge curves and brings more flexibility to the predicting model. Their model is
based on an LSTM, mixed with a pooling layer that merges the output of the LSTM
layer, and a regression layer at the end. To build their model, they gathered custom
ageing data from 70 battery cells and managed to get an average error of 2.46% on
the SOH prediction.

The paper [RDW+21] describes an innovative model for RUL prediction, based
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on Auto-CNN-LSTM. Their strategy aims at improving three different points : of-
fline training should be made possible by including information from adjacent charge
and discharge cycles, cleaned from any noise. Their prediction of the RUL should
be continuous and not a single point value. To do so, they implement a model
based on auto encoder CNN and LSTM, and a post smoothing method to solve the
discontinuity in the prediction results. All the tests are conducted on NASA PCoE
data. Features are extracted from temporal curves of voltage, temperature and cur-
rent at every cycle with measurements such as the largest measured voltage during
charging etc. All the data is normalised in a [0,1] range before being used in any
model. Tests are conducted on two batteries of the NASA PCoE dataset.

Sequence to Sequence In a recent approach, an extensive use of LSTM is made,
with the development of a sequence to sequence model for the prediction of SOH
by Li et al. [LSD+21]. Their goal is to predict in one shot the whole SOH degrada-
tion curve at any moment in the life of a battery, including before degradation signs
appear. The model takes as input the past SOH curve only (NAR model). They start
making prediction after 100 cycles, and add data to the input sequence of the model
as the battery ages. This is made possible by the use of Seq2Seq recurrent neural
network that are particularly adapted to sequence prediction problems with vari-
able length. The structure of the model is built to take sequences of variable length
as input, and to output sequences of variable length also. The first sequence to be
taken as input for a given battery corresponds to the first 100 cycles. As the battery
gets older, ageing data is concatenated to the initial vector and thus, the input vec-
tor grows. Training is done on all available data, which makes an online prediction
possible. If the model is trained to predict the future SOH curve at any time, any
input vector can be given as input and the prediction can be made. The ultimate
goal of their model is to be implemented in an on board BMS. The performances
of the model are evaluated with the Mean Absolute Percentage Error (MAPE). Five
random battery cells are kept aside for validation. As can be expected, their model
shows a lower accuracy when the prediction is made at the Beginning of Life (BoL).
The more data taken as input, the better the accuracy. Error metrics are given ac-
cording to several criteria. The model is built to predict either the 80EoL, 65EoL or
the knee point (the moment when SOH starts to drop after the plateau). They reach
a MAPE of 1.78% relatively to the SOH prediction.

Convolutional neural networks Although CNN are traditionally used in image
recognition problems, their ability to automatically extract features from data has
brought attention to them, including in the field of time series prediction. Shen et al.
[SSL+20] have developed a model based on several CNN models for the prediction
of capacity, coupled with transfer learning and ensemble learning to improve the
prediction and combine the results of the several models. They have based their
study on two different datasets, a first custom dataset to train the models, and the
NASA dataset for transfer learning and testing. The aim of their study is to predict
the capacity of a battery at each cycle according to partial curves of current, voltage
and capacity.
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1.3.3 Literature discussion

The previous sections aimed at describing in detail the different types of models
based on artificial intelligence and more particularly neural networks. Three types
of models clearly appear as dominating the predictive prognostics approaches for
Li-Ion batteries : ANN (feed forward type), RNN (either LSTM or Sequence to Se-
quence) and CNN (mainly for feature extraction from time series). In table 1.12, a
comparative summary of the existing approaches is made. What is interesting to
note is that other connections between models can be made, not only based on the
type of model that is used but rather on the type of prediction and on the input
features that are employed.

In the paragraph on RNN, a distinction is made between NAR and NRX mod-
els, depending on whether or not they take SOH as an input when predicting SOH.
Based on the description of several articles of the literature, and on the summary
that is made in table 1.12, it appears that NAR models are the most popular models
in the field of predictive prognostics for Li-Ion batteries. This can be explained by
the nature and the shape of the degradation curve of SOH. As presented in section
1.2.4 and again in the definition of the SOH that is given earlier, the degradation
curve of Li-Ion batteries is similar from one battery to another if the use conditions
remain the same. Using past SOH values to predict future ones, and especially
at very short term (as is the case for most approaches) seams logical considering
that SOH varies very little from one cycle to the next. Very accurate predictions
of future SOH values from past ones can be reached, especially with models that
are dedicated to time series prediction such as LSTM. Although NAR models are
very efficient, those results should be interpreted in a specific context. The data that
was described earlier and that is used in all state-of-the-art articles corresponds to
lab tests of batteries that are cycled following pre-defined protocols. The use con-
ditions of batteries generally remains the same from the beginning to the end of
life, which is why the degradation process is very stable, without recovery or ac-
celerated ageing phases. In this context, the only use of past SOH values to predict
future ones is very efficient, because all SOH degradation curves follow the same
pattern. However, in a more realistic context, it is very unlikely that two batteries
will degrade in the same way in an electric vehicle. If the operating condition of
a battery changes completely during its life (for example if the user changes, if the
vehicle is used in a different region with higher or lower temperatures, with differ-
ent roads . . . ), predicting SOH looking only at its past values might not be sufficient
to take into account all the external parameters. Therefore, in all the contributions
that were developed in the scope of this thesis, only NRX models were developed,
either to predict SOH or RUL. Moreover, the ultimate goal of a predictive prognos-
tics strategy for Li-Ion batteries in an EV is to be directly implementable on board a
vehicle. This implies that the features used as inputs to the predictive models can
be retrieved directly from the battery in the vehicle. This criterion has motivated
the choice to use exclusively current, voltage, and temperature data in our SOH
predictive models.

In addition to the classification of models according to their input features, there
is also a difference between models that can predict SOH at very short terms or
long terms. It appears clearly in table 3.9 that very few approaches are able to
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give a long term estimation of the evolution of SOH with one single prediction.
In most approaches, and no matter the type of inputs (NAR or NRX models), it
is the current SOH value that is estimated (direct prediction) or the value of SOH
One-Step-Ahead (OSA prediction), without long-term projections in the future. In
some NAR approaches, predictions are used as new inputs to the models in order to
iteratively predict further values of SOH, which is a way of making long term pre-
dictions. Only two state-of-the-art articles intended to predict the SOH several time
steps ahead directly, with one prediction. In ref [LSOW21], the SOH is predicted
multi steps ahead (MSA prediction), but the maximum horizon is of 24 cycles only.
In [LSD+21], the developed model is an NAR model. This statement has brought
another goal to the models developed in the scope of this thesis, which is to obtain
a reliable and long term prediction of SOH according to the operating data, without
using iterative predictions.

The last distinction that can be made between state-of-the-art article relies in
their ability to make online predictions or not. The term "online" here means that
SOH predictions (either at short term or long term) can be made at any time in
the life of a battery, depending on the amount of data that is taken as input by
the predictive model. Some approaches use up to half of the SOH curve to train
the model and can only make predictions on the rest of the curve. Our goal is to
build models that take a limited amount of data as input and that are able to make
predictions on unseen data even at the very beginning of the life of a battery.



1.3.
R

elated
w

ork
39

Table 1.12: Summary of existing artificial intelligence based approaches for the predictive prognostics of Li-Ion batteries

Reference Type of model Complementary model Type of input
features

Online
prediction

Long term SOH
prediction Employed dataset

[SAJ+19] LR Elastic net NRX No No MIT
[wYPO16] ANN KNN NRX Yes No Custom
[KY19] ANN None NARX Yes No NASA
[WFG16] ANN Importance Sampling NRX Yes No Custom
[YPO17] LSTM Pooling NRX Yes No Custom
[RDW+21] LSTM CNN NRX Yes No NASA
[LZP19] LSTM BMA NAR No No CALCE

[QLMF19] LSTM Particle swarm +
attention mechanisms NAR No No NASA

[LZWD19] LSTM Elman networks NAR No No CALCE
[ZXHL17] LSTM None NAR No No Custom
[LSOW21] LSTM GPR NAR No Yes NASA + CALCE
[SSL+20] CNN None NARX Yes No Custom + NASA
[LSD+21] Seq2Seq None NAR Yes Yes RWTH
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2.1 Introduction - The challenge of predicting battery
life

Previous chapters have shown why Li-Ion batteries are so widespread in EV and
HEV. In comparison with other battery chemistries, their characteristics in terms of
energy density, operating temperature range, lifetime, voltage levels . . . make them
the most suitable technology for the transportation field, or any type of portable
device.

However, Li-Ion batteries are the subject of many expectations from the con-
sumers regarding the driving range, cycle life and safety. The performances of
Li-Ion batteries are highly impacted by their operating environment, and each pe-
riod of driving or storage has a direct impact on battery health. Calendar ageing
is linked to storage conditions of a battery and is completely uncorrelated with the
way a battery is used. Cyclic ageing on the other hand depends mostly on the op-
erating conditions of a vehicle and on the behaviour of users. Many factors have
already been identified as hazardous for the battery, but it is of crucial importance
to monitor the evolution of the SOH of a battery and understand the ageing mecha-
nisms that are at stake. In addition, even though operating conditions play a major
role in the evolution of battery performance, not all batteries have the same basic
characteristics and some may degrade more rapidly than others.

One of the aims of PHM is to search for reliable health indicators in order to
build models that help monitoring and predicting the evolution of the performances
of a battery.

This chapter describes the work that has been done regarding both an early and
offline estimation of the global cycle life of Li-Ion batteries and an online predic-
tion of the RUL of a battery. First, an analysis of the data provided by the MIT is
made. The reason why this study is based on the MIT dataset is given in chapter 1
as a conclusion of the description of all available datasets. Several health indicators
are extracted from raw operating data. Depending on the type of prediction (offline
cycle life prediction or online RUL prediction), two models are designed and evalu-
ated, built on different data structures and health indicators. This approach makes
a direct link between battery operating data and its cycle life.

2.2 Data analysis

In the MIT dataset, information is provided on two bases: per cycle and according
to time. In the per cycle base, for example, the value of internal resistance for each
cycle is stored, which makes it possible to evaluate the evolution of the factor on the
whole cycle life of the battery cell. All quantities related to the ageing of batteries
and whose evolution can be traced over the entire life of a battery are referred to
as historical features. For each cycle, one single value of each historical feature is
stored. In figures 2.1a and 2.1b, the evolution of two historical features, the SOH
and the internal resistance, is represented for several different batteries. Each curve
represents one battery, and the longer the life cycle of the cell, the darker the curve.
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In the time base, data about the cell temperature, voltage, current and capacity
are collected at a given frequency during each operating step (charge, discharge or
pause) of each cycle according to the time. The sampling rate is variable depending
on the test step, but on average data is collected every 5 seconds.

Figures 2.2a and 2.2b show the temporal evolution of operating data for several
different cycles of one given battery (time series of IC and VC) The color of the curve
depends on the cycle number.
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Figure 2.1: Historical data for five different battery cells
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Figure 2.2: Operating data of battery cell b1c4

Each battery in the MIT dataset was cycled from beginning to end of life, that is
until each battery reaches 80 % of its initial storage capacity. The study lead by the
MIT intentionally aimed at observing the effects of fast charging on battery cycle
life. According to figures 2.3a and 2.3b, the influence of operating conditions is
clearly identifiable. The whole dataset gathers operating data from 124 different
battery cells which are evenly separated into three batches. Each batch is defined
by the date when the tests were started. The first two batches were tested from
May and June 2017 respectively, and the last one was tested from April 2018. There
are minute differences in the use conditions of the battery cells between the first
two batches and the last one, mainly regarding the length of the pauses during the
charge phase and the IR measurement method. Globally, the charge time varies
between 9 and 14 minutes and comprises pauses of variable length, and the cycle
life of the tested battery cells ranges from 300 to 2237 cycles. Figure 2.3b also shows
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that two batteries that are cycled at the same moment, in the same conditions and
with the same charge protocol can have a cycle life gap of up to 1000 cycles. In both
figures, each dot represents one cell. Some charge protocols were used for several
batteries which is represented by the colour of the vertical lines on which dots are
placed. The more batteries per charge protocol, the darker the vertical line. Each
charge protocol is represented by a number, and detailed information are given in
the first chapter, in table 1.7.

Those simple observations highlight the fact that two batteries (and therefore
two vehicles) with the same characteristics but different use conditions can have
very different cycle lives, and that even batteries with same characteristics and same
use conditions can have variable performances. Based on these observations, the
need to develop models to estimate the cycle life of a battery is clear. The aim of
such tools is to determine which batteries perform best from the very first cycles
of use, which could make it possible to use only the best performing batteries in
vehicles, and to monitor the evolution of a battery’s performance in order to identify
any failures as far in advance as possible.

2.3 From a global life cycle estimation to an online pre-
diction of the Remaining Useful Life

We previously illustrated the importance of developing cycle life prediction strate-
gies. The confidence of drivers and the Total Cost of Ownership (TCO) of EVs
depend on the performances of the battery and on its global life span. Therefore,
an early cycle life prediction strategy could make it possible to select only the best
performing batteries to be used in EVs, leaving batteries with lower performances
for stationary applications. The goal is to estimate the global cycle life of a battery
before any degradation signs appear. A common strategy is to take advantage of
the information contained in historical operating data and to build an estimation
model based on the offline computation of health indicators, which will be detailed
in the following sections.

The early degradation of the cycle life of a battery can be combined to an online
prediction of its RUL. An embedded approach where data is acquired continuously
while the battery is used makes it possible to continuously predict and update the
ageing stage of a battery and its RUL. The following sections describe the different
strategies that were developed for the early offline prediction of the global cycle life
of a battery and the online prediction of the RUL of a battery.

2.3.1 Offline strategy for global cycle life estimation

A great variety of approaches in the literature tackles the problem of predicting bat-
tery life with an offline strategy. As described in the last paragraph, predicting the
global cycle life of a battery before capacity degradation is a key point in the mana-
gement of an electric vehicle and in the understanding of early ageing mechanisms
of batteries.
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Figure 2.3: Influence of the charge protocol over the cycle life and
charge time of all cells in the MIT dataset

The offline strategy for global cycle life estimation described in this chapter con-
sists in comparing the state of a brand new battery that has not been through any
charge or discharge phases with the state of the same battery after 100 full operating
cycles (successive complete charges and discharges) as it was done in the study by
[SAJ+]. Li-Ion batteries being very efficient, and the use of batteries being identical
from BoL to EoL in the MIT dataset, minimal damage is observed between cycle 0
and cycle 100. Nevertheless, even the slightest change of the battery performance
after 100 use cycles can be exploited to estimate its global cycle life.

An estimation model is built by learning how to link minute degradation signs
between cycle 1 and 100 to the global cycle life of the battery. This means that
for each battery, a single prediction of its global cycle life is made after 100 cycles,
considering observed data at cycles 1 and 100.
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Figure 2.4: Offline strategy for global cycle life prediction

In the following section, a description of the ageing indicators that are computed
after 100 cycles of use is given.

2.3.2 Offline health indicators for global cycle life estimation

As described in section 2.2, the MIT dataset contains several types of information.
Whether it is on the per cycle basis or the temporal basis, raw data signals are pro-
vided, without pre-processing or feature engineering. All this raw data contains
information about the RUL and the ageing stage of the battery at a given time, but
it needs to be pre-processed and combined in order to highlight the factors that
most represent the evolution of life cycle.
In references [SAJ+19, WFG16, RZH+18] to cite a few, features are computed from
geometrical properties of charge and discharge curves (Voltage, Current, Internal
Resistance, Temperature, . . . ). Those features are meant to be independent of the
length of the time series, because not all cells charge and discharge at the same
speed. Therefore, features such as the time when the battery terminal voltage reaches
its maximum value, or the moment when the output current of the battery starts to
drop are used.

In the predicting approach developed in [SAJ+19], the geometrically computed
features are combined with scalar features from the aforementioned per-cycle data.

In the offline strategy for global cycle life prediction, several features are com-
puted from the early cycles of a cell (from cycle 4 to 100). Each cell is represented
by several offline health indicators defined by [SAJ+], and that take into account
the performances of the battery during the early cycles of its life. All the formulas
that are given regarding offline features are taken from [SAJ+]. For a great number
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of those features, the difference between the capacity computed during cycle 1 and
capacity computed during cycle 100 is used. Considering that the charge and dis-
charge time varies from one cycle to another, the time series of capacity at each cycle
has a different length. In order to subtract the two vectors (capacity at cycle 1 and
100), they need to be the same length. To do so, a linear interpolation is made on
capacity curves and the are evenly re-sampled over 200 points. Computed features
are the following:

Features computed from the difference of capacity Q between cycles 100 and 10
∆Q100−10 (in all formulas, p is the length of the resulting vector after subtraction)

• Minimum: min∆Q100−10 = log(|min(∆Q)|)

• Variance: var(∆Q100−10) = log
(∣∣∣ 1

p−1 ∑
p
i=1(∆Qi − ∆Qi)

∣∣∣)

• Skewness: skew(∆Q100−10) = log
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• Kurtosis: kurt(∆Q100−10) = log
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Features computed from the difference of capacity between cycles 4 and 5 (∆Q5−4)

• Minimum: min∆Q5−4 = log(|min(∆Q)|)

• Variance: var(∆Q5−4) = log
(∣∣∣ 1

p−1 ∑
p
i=1(∆Qi − ∆Qi)

∣∣∣)
Features computed from the capacity during cycle 2

• QD2 : The value of discharge capacity at cycle 2

• ∆QD(max−2)
: Difference between the maximum value of discharge capacity be-

tween cycles 1 and 100, and QD2

Features computed from the linear fit to the capacity fade curve
A linear model is computed to best fit the evolution of several consecutive dis-

charge capacity values, as a function of the cycle number. The target of the linear
model is to find the appropriate weight vector b* (slope and intercept) to bring the
predicted values q̂ as close as possible to the real capacity values Q.

b* = argminb
1
d
∥q − Xb∥ (2.1)

In this formula, d corresponds to the number of cycles used in the prediction.
In this scope, two features are used, which are:

• the slope of the linear fit to the capacity fade curve between cycles 2 and 100
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• the intercept of the linear fit to the capacity fade curve between cycles 2 and
100

Other offline features computed from the time series of temperature

• T°max100−2 : The maximum value of temperature between cycles 2 and 100

• T°min100−2 : The minimum value of temperature between cycles 2 and 100

Other offline features computed from historical data

• IR2: The value of internal resistance at cycle 2

• IRmin: The minimal value of IR from cycles 2 to 100

• ∆IR100−2: The difference of IR between cycles 2 and 100

• TC: Average charge time

2.3.3 Online strategy for Remaining Useful Life prediction

The true interest of battery cycle life prediction is to be able to update the estima-
tions as a function of the use of the battery at any moment of its life. While various
approaches of the literature focus on predicting battery life from early degradation
signs, fewer ones focus on an online prediction of the RUL of a battery. The logical
complement of the offline strategy is to design an online method for estimating the
RUL of a battery continuously and not only once after 100 use cycles.

The online strategy for RUL prediction described in this chapter consists in ob-
serving each operating cycle of a battery and extracting health indicators from it.
Those health indicators are used as input to an estimation model that allows an
online prediction of the RUL of a battery. This means that for each battery, each
use cycle can be used as input to the estimation model, and there can be as many
prediction as the number of cycles in the life of a battery.

2.3.4 Online health indicators for Remaining Useful Life predic-
tion

The features that are described in section 2.3.2 correspond to the offline strategy
where 100 charge-discharge cycles are necessary to perform a prediction of the
global cycle life of a battery cell.

An online prediction of the RUL of a battery requires to use different input fea-
tures and to shift the approach from a cell-based prediction to a cycle-based pre-
diction. The features that are used to make an online prediction of the RUL are
not computed by comparing two cycles between them anymore, but only consid-
ering the operating data coming from a cell during one cycle. Each operating cycle
is then represented by a combination of features that either come from historical
data or time series of temperature. The online features for RUL prediction are the
following:
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RUL prediction 1

EoL

RUL prediction 2

…

Online 
features

Figure 2.5: Online strategy for RUL prediction

Online features taken from historical data

• IR: The value of internal resistance during one cycle

• QC: The value of charge capacity

• QD: The value of discharge capacity

• SOH: The SOH of a cell at a given cycle

• TC: The charge time

Online features computed from time series of temperature

• The average temperature during one cycle: TAvg = 1
N ΣN

t=0T°t (for a cycle with
N time steps)

• T°min: The minimal temperature during one cycle

• T°max: The maximal temperature during one cycle

2.4 Building training datasets for offline and online cy-
cle life predictions

2.4.1 Offline prediction

Data structure

The dataset that is used for the offline prediction of the global cycle life of battery
cells is built as shown in Figure 2.6. This dataset is used to train several algorithms
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that are presented in the following sections. The basic dataset contain as many
samples as there are batteries provided by the MIT dataset. Each cell is represented
by a combination of offline features, computed as detailed in section 2.3.2. In its
initial form, this dataset contains 124 samples and 16 features.

feature 1 feature 2 feature 3 ... feature n-1 feature n

cell1 x1,1 x1,2 x1,3 ... x1,n-1 x1,n

cell2 x2,1 ...

... ...

celln-1 xm-1,1 ...

celln xm,1 ... xm,n

Tt, Qt

MIT raw 
data 

Time series Historical data

●  Offline features
○ ΔQ
○ Linear fit
○ Average T°
○ …

● Historical Features
○ Qc, QD, SOH
○ IR
○ Chargetime

target = cycle life

Cycle lifecell 1

Cycle lifecell 2

...

Cycle lifecell n-1

Cycle lifecell n

Figure 2.6: Cell-based dataset for the offline prediction of the global
cycle life

Dimension reduction

Some offline computed features as detailed in the previous section may contain
similar or sometimes useless information. Therefore, to figure out which features
are the most influential and how to combine them in a model, a common practice
is to use data reduction techniques. Two simple dimension reduction techniques
were used on the previously detailed dataset: outlier detection and feature selection
based on unsupervised and supervised learning.

Outlier detection Outlier detection consists in detecting samples that are far away
from the regions where data are most concentrated. The presence of abnormal sam-
ples could be caused by measurement errors, experimental errors, data processing,
or from abnormal battery cells that could be defective. Deleting these outliers cleans
the data and helps to obtain better predicting performances.

The outlier detection process applied in this approach is a tree-based algorithm
for anomaly detection called the isolation forest [LTZ12].

Given a dataset X, the aim of the isolation forest is to determine which samples
in X are abnormal by isolating them. The isolation forest algorithm "isolates" sam-
ples or observations by randomly and recursively splitting a dataset according to a
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split value p chosen between the minimum and maximum value of a given feature.
Abnormal samples require less partitioning than regular samples, and the lower the
number of partitions to isolate a sample, the higher the abnormality.

From the dataset of 124 battery cells, and with a contamination rate of 5%, 7
outliers were spotted and deleted from the dataset. The 5% criterion is an empirical
threshold commonly used in the literature. Figure 2.7 represents the cycle life of the
124 cells as a function of one of the computed features, with outlier samples shown
in purple.

For the following treatments on dimensionality reduction and more precisely
feature selection, several algorithms were applied both on the initial 124 samples
dataset, and on the resulting 117 samples without outliers.

Figure 2.7: Detection of outlier samples

Feature selection Three selectors have been used in order to check which features
should be kept according to different criteria. Each feature selection test applied
to the initial dataset gives a new dataset to be separated into train, validation and
test sets for the predictive prognostics algorithms (an extensive description of the
distinction between train, validation and test ensembles is given in the coming sec-
tion 2.4.3). The three selectors that were chosen are based on variance estimation
for each feature (selector 1), dependency test between the features and the target
(selector 2), or coefficient estimation based on the development of a theoretical ma-
chine learning model (selector 3). The theoretical model that was used for selector
3 is a linear regressor. More details about the feature selection algorithms are given
in table 2.1.

The number of features kept by each selector and the name of the resulting
dataset are summarised in table 2.2 and figure 2.8. Datasets D1 to D8 are used
to build several independent offline predictive models whose performances are de-
scribed and compared in the rest of the chapter. The number of features kept in
each dataset is independent of the number of samples, but the selected features are
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Table 2.1: The three feature selection approaches for offline global cycle
life prediction

Selector Type Description

1 Variance Threshold Baseline approach All features whose variance is lower
than a pre-defined threshold are deleted

2 Select K Best Dependency Tests

The dependence between the target
(the global cycle life) and the input features
(offline feature)
is computed

3 Select from model Estimator

A theoretical model is trained
(either a NN or a linear model)
to select the most useful features
based on importance weight

different according to whether outlier detection is made or not. According to the
accuracy of the different models built after the different datasets, the best subset of
features and therefore most efficient dimension reduction technique will be high-
lighted.

MIT
dataset

Training dataset 
with computed 

features

D1 : Training 
dataset without 

outliers

D2 : Full 
training dataset

Outlier 
detection

D3

D5

D7

D4

D6

D8

Feature 
selection

Feature 
selection

Selector 1

Selector 1

Selector 2

Selector 2

Selector 3

Selector 3

Figure 2.8: Dimension reduction process

Table 2.2: Dataset number according to the number of samples and
features

Feature
selector

Outlier detection No outlier detection # Features(117 samples) (124 samples)
Ø D1 D2 16

Selector 1 D3 D4 6
Selector 2 D5 D6 7
Selector 3 D7 D8 3



2.4. Building training datasets for offline and online cycle life predictions 53

2.4.2 Online prediction

Data structure

An online prediction of the RUL of a battery requires to use different input features
and to shift the approach from a cell-based prediction to a cycle-based prediction.
That is, each input sample of the online dataset corresponds to one cycle in the life
of one cell. Each cycle is represented by several features described earlier in section
2.3.4.

If the model is trained offline with all available data for all cycles, the prediction
can be made online starting from any cycle and providing data coming from only
one cycle.

The number of samples in the resulting cycle-based dataset is given by the for-
mula:

S =
N

∑
i=1

ki (2.2)

where N is the total number of cells in the dataset and ki is the cycle life of cell
number i.

The online RUL prediction approach is based on the complete number of cycles
of each battery. The resulting cycle-based dataset provides almost 100,000 training
samples. The target prediction is the RUL of the cell, which can be computed for
each sample following equation 2.3:

RUL = ki − n (2.3)

where ki is the cycle life of cell number i and n is the observed current cycle of the
cell.

The features that are kept in the online dataset are easily obtained and do not
require any pre-process, except for SOH that is obtained by comparing the current
capacity with the initial one. That means online estimation can be done at a low
computational cost once the predicting model is trained offline. This final dataset
will be mentioned in the rest of the chapter as D9.

2.4.3 Training, validation and tests ensembles

The training principle of an ANN requires to split the original dataset into three
ensembles: a training set, a validation set and a test set. The training ensemble is the
one used for computing the loss of the model during the weight optimisation phase
as explained in section 1.1.4. The validation set is used to evaluate the capacity
for generalisation of the model on unseen data during the training process. Once
the model is fully developed and trained, the final performance measurements are
done on the test set which is completely unknown to the model.

Random split

Random split is the simplest way to divide the data into three sets. If enough data is
available, the whole ensemble is randomly separated in three. The train ensemble
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feature 1 feature 2 feature 3 ... feature m-1 feature m

cell1 cycle1 x1,1 x1,2 x1,3 ... x1,m-1 x1,m

cell1 cycle2 x2,1 ...

... ...

celln cyclek-1 xj,1 ...

celln cyclek xj,1 ... xj,m

#
 s

am
pl

es

target = RUL

RULcell 1,cycle 1

RULcell 1, cycle 2

...

RULcell n, cycle k-1

RULcell n, cycle k

MIT
dataset

Historical data Time series 

● Online features
○ T°avg
○ T°max
○ …

Tt, Qt

● Historical Features
○ Qc, QD, SOH
○ IR
○ Chargetime

Figure 2.9: 2D dataset with scalar features

generally contains more data than the validation and test ensembles. This approach
was employed in this chapter for the online prediction model. The three sets were
distributed in the following proportions: first, the global dataset is divided in two,
with 80% for training and 20% for validation. The test ensemble is then created by
taking 20% of the train ensemble. In the end, 64 % of the data goes to the training
set, 20 % to the validation set and the test set is composed of the remaining 16 %.

K-Fold cross-validation

When little data is available in the original dataset, randomly splitting it in three
ensembles could lead to inhomogeneous spreads. With a K-fold approach, data is
split into K partitions of equal size. For each partition i, a model is trained on the
remaining K – 1 partitions, and evaluated on partition i. The final score is then the
average of the K scores obtained. This method is helpful when the performance of
the model shows significant variance based on the train-test split. Schematically,
K-fold cross-validation looks like figure 2.10 1. A 10-fold cross validation process
was employed for training and defining the hyper-parameters of the offline model.

1https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html


2.5. Methodology 55

Figure 2.10: K-fold validation process (Sklearn, Cross-validation: eval-
uating estimator performance)

2.5 Methodology

2.5.1 Two types of predictive models

Linear model

The first and most basic model to perform the global cycle life prediction is a lin-
ear model. The linear model maps the input features X = (X1, X2, . . . , Xn) to the
corresponding cycle life Y of a cell according to the equation:

f (X) = b0 +
n

∑
j=1

wjXj (2.4)

The weights of the function w = (w1, w2, . . . , wn) are determined through an
ordinary least square regression in order to minimise the residual sum of squares
between the observed cycle life of the cells in the dataset, and the cycle life predicted
by the linear approximation.

This model is considered as a baseline approach and mainly aims at providing
a reference for the predicting performances of the second offline predictive model,
described in the following section.

Feedforward Neural Networks

Although there have been multiple models developed for the prediction of any
degradation signs of Li-Ion batteries (RNN [VABA18], auto-regressive models [LXJL13],

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
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LSTM [QLMF19] [ZRFG17], CNN [LDS18]), this contribution only explores the per-
formances of an ANN coupled with various feature selection techniques. ANN are
studied for this specific application because they can adapt to a great variety of data
types and sizes. Moreover, we based our approach on a prediction of the global cy-
cle life or of the RUL as a scalar value. No sequential prediction of the SOH or other
ageing features such as the internal resistance is made. A complete overlook of the
functioning of ANN is given in section 1.1.6.

Cell based ANN for global cycle life prediction The models described in this
chapter are based on feed-forward neural networks (FNN) for the prediction of a
single numerical value, which in the case of the offline prediction, is the global cycle
life of a battery cell expressed in number of cycles.

Given that the offline dataset is quite small (124 samples for the 124 battery cells
contained in the original dataset), the associated predictive model must be of a lim-
ited size in terms of number of layers and number of units per layers. A small
network usually avoids over-fitting when only limited training data is available.
The offline cell-based model uses a stack of fully connected layers and the last layer
only contains one unit and no activation function. This is a classical setup for re-
gression: the last layer is linear, therefore the network can predict the global cycle
life in any range. A description of the architecture of the cell based ANN is given in
section 2.5.2.

Cycle based ANN For the same reasons as exposed in section 2.5.1, the online
prediction of the RUL is performed with an FNN, trained on dataset D9. D9 has
fewer features but many more samples than the cell-based dataset, which entails
using a deeper model. A description of the architecture of the cycle-based ANN is
given in section 2.5.2.

2.5.2 Building the predictive models

Optimisation

Offline prediction model Because there are so few samples in D1 to D8, hyper-
parameter tuning of the offline ANN was carried out using a 10-fold cross valida-
tion technique. Cross validation helps reducing the biases that could be introduced
by the separation of the dataset between train and test sets. Especially with small
datasets, the validation dataset used to tune hyper-parameters might be unrepre-
sentative of the training data.

When error is calculated on several partitions of the dataset, the evaluation is
more reliable. After several tests with different configurations, it appeared that the
best performances were obtained with a single layer perceptron, composed of 64
units and a Rectified Linear Unit activation function. The number of units in the
input layer varies according to the number of features in the training dataset (cf
table 2.2).
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Online prediction model The dataset on which the online-prediction model is
based contains many more samples, which makes the use of cross validation for
hyper parameter tuning less relevant. However, as the structure of the ANN is more
complex, several possibilities for the number of layers, number of units per layer
and activation functions for each hidden layer have been tested. In order to test a
wide range of configurations and to methodically evaluate all possible association
of parameters, a Tree of Parzen Estimators algorithm is implemented. In the end,
the selected model consists in a four-layer ANN. The first three layers all have 128
units and a Sigmoid activation function, and the output layer is the same as in the
cell-based ANN.

Figure 2.11: Structure of the 2nd ANN

Weight initialisation

Gradient descent and backpropagation aim at modifying the weights of a neural
network during training. Nevertheless, the first prediction of the network is per-
formed with initial weights, and the efficiency of the training depends partly on
the way the weights are initialised. ANN are generally initially filled with small
uniform random values (very close to 0).

For both models, either offline or online, the weight initialisation of the ANN
is performed following a Glorot normal initialisation, also called Xavier normal
initialisation. This method draws samples from a truncated normal distribution
centred on 0 with a standard deviation that depends on the number of input and
output units in the weight vector, as described in equation 2.5. Each weight in a
layer receives its input from all the nodes in the previous layer (or directly from the
input layer itself) and sends its output to all the following nodes in the following
layer. With nj the size of a given layer, and nj+1 the size of the following layer, the
normalised initialisation is defined by the following equation [GB16]:

W ∼ U =

[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]
(2.5)



58 Chapter 2. RUL prediction from historical features

Initialising the weights following the Glorot normal initialisation allows a faster
convergence.

2.5.3 Training setup

Optimisers

Offline and online models were trained using different optimisers, Root Mean Square
propagation (RMSProp) and Adam.

RMSProp RMSProp is a very popular extension of the gradient descent algorithm
for training ANN and was first introduced by [TH12]. RMSProp is designed to ac-
celerate the learning process and improve the performances of the resulting model.
With this optimiser, the learning rate is not considered fix during training and its
value changes over time according to the value of the gradient. The aim is to put
a stronger emphasis on recently computed gradients and therefore enable the opti-
miser to better take into account the local shape of the learning space. This optimiser
was used to train the offline-prediction model.

Adam Another optimiser was employed for the training of the online RUL pre-
diction. The online model takes more parameters as input and iterates through a
lot more samples during training which makes the use of the Adam optimiser more
appropriate according to [KB15].

Adam optimisation is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order moments of the gradient. The
name Adam comes itself from adaptive moment estimation. The evolution of the
learning rate is close to the one obtained with RMSProp, but it was shown that the
Adam optimiser has better performances than the RMSProp algorithm regarding
the correction of the bias term in a neural network and leads to better performances
with large models in terms of data and parameters.

Initial learning rate

The optimisers that are implied in the learning process and that are described in the
previous paragraphs are designed to modify the learning rate directly during the
training process. Although there are recommended default settings for the optimis-
ers, the initial value of the learning rate can influence the training time. Therefore,
the initial learning rate can be considered as one of the hyper-parameters that are
defined during hyper-parameter optimisation. The learning rate is combined with
the gradient (computed from the error between the output of the network and the
expected output) during the training process. The gradient is computed at each step
of the training process and the parameters are modified in the opposite direction of
the gradient according to the learning rate. The learning rate plays a very important
role in the learning process. Defining the right initial learning rate and modifying
its value during the training process should lead to a fast convergence toward the
global minimum of the loss function and prevent any divergence.
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Figure 2.12: Experimental process

The offline model was trained with an initial learning rate of 0.009, and the on-
line model was trained with an initial learning rate of 0.001.

Experimental process

Whether it is with the offline or online prediction model, the experimental process
is the same. Both models are initialised with random weights as described in para-
graph 2.5.2 and a baseline architecture. The first step is to perform the optimisation
of all hyper-parameters in order to define the best possible architecture. Hyper pa-
rameters optimisation is described in detail in section 1.1.8. Once the architecture
of the learning models is defined, all models are trained and tested on 10 different
train, validation and test splits. From those ten different splits, 10 different models
are obtained. The performance of the best of them is mentioned as "best", and the
performances of the 10 models are also averaged.

2.5.4 Monitoring the training process

During the training phase, two different techniques were employed to avoid over-
fitting and determine the number of training epochs. The first one is an empirical
method which consists in interpreting the evolution of the validation curve in com-
parison with the training curve after the training. The second one allows an online
observation of the validation loss and a better monitoring of the training process.
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Graphical visualisation of the validation error

A way to graphically detect overfitting consists in visualising the evolution of the
train and validation curves. The validation ensemble aims at evaluating the perfor-
mances of the model on unseen data at each step of the training process. Thanks
to backpropagation, the weights of the model are adjusted in order to minimise
the training loss, which decreases through the whole training process. If train and
validation set are well defined, the validation loss should follow the same trend as
training loss. However, at some point, the validation loss stops decreasing while the
training loss keeps decreasing. From the moment when validation and train curve
start diverging, the model is overfitting. A simple way to avoid it is to train the
model, visualise train and val loss, identify the moment when overfitting appears,
and re-train the model from scratch with fewer epochs. This method is mostly ap-
plied during the early stages of the development of the model in order to visualise
the impact of the hyper-parameters on the performances of the model.

Early stop

Determining the length of the training process by observing the validation vs train
curves requires to perform the training at least twice (once for checking the mo-
ment when overfitting starts to occur, and another time to perform the training
from scratch without overfitting).

A more direct and accurate way to figure out the training length once the archi-
tecture is fixed is to observe the evolution of the validation loss in real time during
the training process. The goal of the training process is to make the train and valida-
tion loss decrease, and the training process should be stopped whenever validation
loss stops decreasing. The early stop process consists in computing the validation
loss at each step and keeping in memory its minimum value. If after a certain num-
ber of epochs the loss value does not improve, the training process terminates and
the weights of the best performing model (the ones that gave the minimum loss)
are restored.

Training process

After having completed the setup of hyper-parameters for the cell-based ANN and
cycle-based ANN, both models are re-trained on a training set without validation
data. The initial datasets D1 to D9 are both randomly split into train and test sets.
In order to obtain reliable results, the process is repeated several times. The error
measure is computed as the average of all obtained measures.

During training, the backpropagation process for weight optimisation is carried
out with the Adam optimiser for the cycle-based ANN and with RMSprop for the
cell-based ANN. The loss is calculated with Mean Square Error and performance is
judged with the Mean Absolute Error metrics [Cho15]. We used mini-batch gradient
descent in order to obtain an efficient and relatively short training time combined
with an accurate convergence towards the minimum loss.
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2.6 Prediction results

In this section the results of the offline prediction models and the online prediction
model are presented. Both cell-based ANN and cycle-based ANN are built to pre-
dict one single value of global cycle life or RUL. The output can take any possible
positive value.

Global cycle life

Predicted cycle life
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Figure 2.13: Predicting performance of a linear regression on D1
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Figure 2.14: Predicting performance of the cell-based ANN on D1

Figures 2.13 to 2.15 represent the predicting performances of the different net-
works and of the linear regression. The predicted RUL is plotted as a function of
the real RUL. Table 2.3 summarises the performances of a linear regression made
on datasets D1 to D8.

To the best of its performance, linear regression reaches a 12.97 % error. This per-
formance is reached using dataset D1, where outlier samples have been removed
and all features are kept. Looking at the global performances of the regression,
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Table 2.3: Linear regression performances

RMSE MAE MAPE
D1 131.17 96.43 12.97 %
D2 151.86 107.61 18.23 %
D3 137.52 107.64 15.69 %
D4 125.59 117.92 18.47 %
D5 127.11 98.53 13.73 %
D6 159.6 117.4 18.04 %
D7 259.63 188.37 25.92 %
D8 202.25 143.35 21.24 %

Table 2.4: Cell based ANN performances

RMSE MAE MAPE
D1 115.94 81.91 10.09 %
D2 158.13 100.3 13.25 %
D3 128.94 94.58 13.4 %
D4 128.95 94.36 13.61 %
D5 119.89 85.96 11.16 %
D6 203.21 132.59 28.37 %
D7 331.96 251.68 3.97 %
D8 1956.9 559.2 71.42 %

datasets with less features give worse prediction performances, but generally, all
datasets without outliers give better MAPE performances than their equivalent
datasets still containing outliers.

With the use of the cell-based ANN on D1 to D8 datasets, the predicting per-
formances are slightly improved compared to the linear regression. The best error
percentage is of 10.09 % and feature selection has the same impact on performances
than with linear regression.

The results described in tables 2.3 and 2.4 show that outlier detection on the ini-
tial dataset has proved very efficient. For the linear regression, removing outliers
helps improving the prediction of about 13 cycles on average, and of about 18 cy-
cles with the cell-based ANN (we excluded the results obtained with D7 and D9
as they clearly are not reliable). On the other hand, we can observe that the best
predicting performances are always obtained with D1, which means that the more
features, the better the accuracy. All the features used for predictions have a share
of representative data that is important to take into account.

RUL prediction

The best predicting performances are by far obtained with the cycle-based ANN.
Its performances are summarised in table 2.5. The network was trained and tested
10 times with different train/validation/test splits of D9 and the MAPE obtained
is of 4.49 % with a MAE of 5.84 cycles, on average over the 10 different trainings.
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Figure 2.15: Online RUL predictions with the cycle-based ANN
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Figure 2.16: Absolute error distribution of the cycle based ANN for
RUL prediction

The average standard deviation of the absolute error (σAE) is also given and is ob-
tained by computing the standard deviation of the MAE for each distribution and
averaging the obtained measures.

In table 2.5, the performances of the best model out of the 10 different distri-
bution is also shown. This model reaches a 4.26 % MAPE and a 5.76 MAE. The
standard deviation of the absolute error on this distribution is of 10.81 cycles.

Table 2.5: Cycle-based ANN performances, on average and for the best
distribution

MAE σAE σAE MAPE (%) RMSE NMSE
Average 5.84 12.69 4.49 13.97 1.34*10−3

Best 5.76 10.81 4.26 12.25 1.03*10-3
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Table 2.6: Comparison of different approaches in the literature

RMSE MAE MAPE
Cycle-based RUL prediction 12.25 5.76 4.26 %

LR from [SAJ+] 173 N/A 8.6 %
CNN from [HK19] N/A 115 N/A

Comparison and interpretation

Although many papers in the literature mention their performances in the predic-
tion of RUL, the results obtained in the scope of this contribution can only be com-
pared with other approaches that were developed using the same dataset. For now,
few papers have based any predictive model on this dataset. The original paper
by [SAJ+19] proposed a feature-based approach using a linear combination of the
selected features. The only other approach that was found using this dataset was
proposed by a research group in an online application designed to predict the RUL
and current cycle of any battery [HK19]. They have based their approach on a CNN.

Table 2.6 compares the results obtained by all existing approaches with our best
performing model. Although not all the same scoring measures were used in the
two previous works, the available scores show that our approach outperforms the
prediction performances of the linear model developed by [SAJ+19] and CNN de-
veloped by [HK19]. These results illustrate the fact that accurate prediction through
machine learning needs a great number of samples. Changing the dataset to a cycle
representation of ageing factors is more efficient than building features from early
cycles or from a temporal window over several consecutive cycles.



65

Chapter 3

SOH prediction from time series

Contents
3.1 Introduction - Predicting the SOH of Li-Ion

batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Preliminary Study . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Taking advantage of operating data . . . . . . . . . . . . . . . . . . 67

3.2.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 The principle of sliding windows of time series for SOH
prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Model-based feature selection . . . . . . . . . . . . . . . . . . 69

3.2.4 Calculation-based feature extraction . . . . . . . . . . . . . . 72

3.3 Two approaches for a point prediction of SOH with XLSTMs . . 75

3.3.1 AE-XLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 TSF-XLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 AE-XLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 TSF-XLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Comparison and interpretation . . . . . . . . . . . . . . . . . 81

3.5 Conclusion on point prediction of SOH . . . . . . . . . . . . . . . 82



66 Chapter 3. SOH prediction from time series

3.1 Introduction - Predicting the SOH of Li-Ion
batteries

Currently, a vast majority of approaches make use of past SOH curves only to pre-
dict future SOH curves as shown in the description of the literature in chapter 1.
Among NAR models, various architectures have been employed with very good
results. NAR models in the field of PHM for batteries are very efficient due to the
smooth and slow degradation process of Li-Ion batteries in experimental datasets.
Indeed, the storage capacity of a battery, represented by its SOH, describes a de-
creasing curve, with a steady plateau at the beginning and a knee point from which
capacity starts dropping. However, building a PHM strategy for Li-Ion batteries
should take into account all available information about the use of the battery, and
especially current, voltage and temperature curves. Studying only past values of
SOH can give very accurate predictions of SOH for the coming cycles only if the
use of the battery stays the same. If the use conditions vary, the prediction of SOH
will not be impacted consequently when using NAR models.

In chapter 2, a first model for predicting the RUL of a battery according to tem-
perature and historical features of one cycle was described. For the contributions
that are described in this chapter and the following one, the emphasis is put on
exploiting the information contained in time series of current, voltage and temper-
ature exclusively, considering that they are the simplest signals to acquire on board
of an EV. The aim is to link the way a battery is used (through the aforementioned
time series) to a future degradation of SOH, possibly at short and long term. This
chapter describes the work that has been done concerning feature extraction and
feature selection from time series of I, V and T°, and concerning SOH prediction
with different types of models based on LSTM.

To begin with, a short preliminary study is delivered in order to justify the choice
of working with NRX models rather than NAR models.

3.1.1 Preliminary Study

In order to study the complexity of the SOH degradation curve, we have applied
a very simple model to a full SOH degradation curve. We define the Carbon Copy
(CC) of the SOH curve as a signal that takes at time t the exact same value as SOH
at time t − 1 [HCR+17], as described in equation 3.1.

SOHCC(t) = SOH(t − 1) (3.1)

Table 3.1: Prediction performances of SOH one step ahead with CC on
a battery from the MIT dataset

Carbon copy
RMSE 5.4 * 10−4

NMSE 1.2 * 10−4

MAE 3.0 * 10−4
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Figure 3.1: Carbon copy and LSTM prediction of the SOH

Figure 3.1 shows a comparison between the real SOH curve and its prediction
through CC. The two curves are almost identical. Table 3.1 shows the predicting
error of the one-cycle-ahead prediction of SOH by CC. The MAE of the CC of SOH
reaches 3.10−4. It appears clearly here that predicting SOH future values from the
observation of past ones is quite a trivial process. From one cycle to another, the
variation of SOH is very limited, and the shape of the curve facilitates short term
predictions.

The very good performances are to be interpreted in a specific context. First of
all, the carbon copy is built to predict the next step of a signal. For long term pre-
dictions, such simple models could not give accurate results. Moreover, the MIT
dataset on which this carbon copy is based contains ageing data from 124 battery
cells that were all tested with similar discharge rates. Indeed, all batteries are fully
discharged with a constant current of 4A, and although the charge protocol varies
from one battery to another, it remains the same for a given battery from the begin-
ning to its end of life. This means that the degradation process is very stable, with-
out recovery or accelerated ageing phases. In this context, the only use of past SOH
values to predict future ones is very efficient, because all SOH degradation curves
follow the same pattern. However, in a more realistic context, it is very unlikely that
two batteries will degrade in the same way in an electric vehicle. Therefore, other
parameters should be taken into account as input to a predictive model in order
to build a more reliable representation of the ageing phenomenon that takes place
inside a battery.

3.2 Taking advantage of operating data

3.2.1 Data analysis

In chapter 2, a detailed analysis of the data is given 2.2, with an emphasis on the
differences between historical data (SOH, IR, charge time...) and local time series
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(current, voltage, temperature...). Historical data and local time series do not vary
on the same scale but both carry information on battery ageing.

For all following contributions, features are computed and extracted from six
different temporal curves: charge current, charge voltage, charge temperature, dis-
charge current, discharge voltage and discharge temperature, namely IC, VC, TC, ID, VD
and TD.

In this chapter, two different methods are used for feature extraction : Auto-
Encoders (AE) extraction or calculation-based extraction. The features that are ei-
ther extracted by AE or by calculation are used as input to a window-based exoge-
nous LSTM. Several models are designed according to the type of feature exctrac-
tion and selection.

The global framework of this contribution is described in figure 3.2, and the
following subsections detail the different principles of time series sliding windows,
feature extraction, feature selection and window LSTM for SOH prediction.

Raw data

I V T

Calculation-based 
feature extraction 

window
XLSTM

SOH 
prediction

Model-based 
feature extraction 

window
AE - XLSTM

SOH 
prediction

Figure 3.2: SOH point prediction based on the time series of current,
voltage and temperature

3.2.2 The principle of sliding windows of time series for SOH pre-
diction

The first contribution, detailed in chapter 2 only made use of historical data and of
a limited amount of features extracted from time series of temperature. In the first
contribution, those features are computed for each use cycle, and a prediction of
the RUL of Li-Ion batteries is made at any moment in the life of a battery. The input
of this network consists in a combination of features computed for only one cycle.
Therefore, two major aspects of this approach could be completed in order to make
the best possible use of all available ageing data acquired during the operation of
Li-Ion batteries. The first aspect concerns the type of data that is used as input of a
predictive model. Only temperature curves are used for predicting RUL, and infor-
mation about the use of a battery through current and voltage data is not utilised.
By combining the information contained in historical data and temperature curves
with the information contained in voltage and current curves, a global representa-
tion of the ageing stage and of the operating conditions of a battery can be obtained.
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The second aspect concerns the amount of data that is fed to the predictive model
in order to obtain a reliable model. Predicting the RUL of a battery from only one
use cycle can prove very useful, especially in the beginning of life of a battery when
little ageing data is available. However, when predicting the SOH of a battery, it can
prove more useful to use a larger window of operating data, for example, several
consecutive cycles. The state of health of a battery does not degrade significantly
from one cycle to the next, as the preliminary study 3.1.1 of this contribution has
proven. That is why a larger window of operating data should be used.

In this contribution, RNN are used in order to take advantage of operating data
that are time series. The aim is to observe a window of operating data and to extract
features from it in order to predict the impact on the SOH several cycles ahead.

Although RNN and especially LSTM are built to learn long term dependencies
in time series, small input windows are used in this contribution. Rather than giv-
ing as input the complete time series of current, voltage and temperature coming
from a battery since the beginning of its life, a smaller window of several consec-
utive cycles is considered. This allows more flexibility in the models. There is no
need to store large data sequences, and data preprocessing is made simpler because
the size of the window is fixed. The window dataset that is built differs from one
approach to another, as a function of the feature extraction process. Predictions can
be made on a very short scale, or for longer time horizons. The training dataset
for SOH prediction in this approach is built in a way that several forecasting hori-
zons are made possible. Future values of SOH are predicted from 25 up to 400
cycles ahead according to the model. In the scope of this contribution, an online
prediction of SOH is made. As described in the literature review in chapter 1, most
approaches implement very short term predictions, or iterative prediction, which
consists in updating the input signal given to the predictive model with the last
prediction. The two different approaches described in this chapter are trained with
"offline data", and prediction can be made "online", on unseen data corresponding
to a window of 25 consecutive cycles at any moment of the cycle life of a battery
cell.

Two different feature extraction strategies are studied in the scope of this chap-
ter: model-based feature extraction and computational feature extraction. The aim
of feature extraction in this case is to reduce the dimension of the input time series
of I, V and T° in order to reduce the amount of data processed by the predictive
model.

3.2.3 Model-based feature selection

Automatic feature extraction

In several approaches of the literature, Auto-Encoders Neural Networks (AENN)
are used for feature extraction [DLM18, RDW+20]. These models are mainly used
for their dimensional reduction [RZH+18] and augmentation [RDW+20] capabili-
ties, but are also used for feature extraction and data fusion [DLM18]. As can be
seen in Figure 3.3, they have a symmetrical structure.
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Figure 3.3: Global structure of an Auto-Encoder

The AENN is basically composed of three parts : the input layer (called encoder),
the output layer (called the decoder), and the central layer which is the encoded ver-
sion of the input signal. The global aim of the AENN is to reduce any input signal to
a low dimensional vector (the encoded vector) and to decode it back to its original
form without losing information. If the decoder is able to accurately reconstruct the
input signal, then the encoded version can by used as a condensed representation
of the input signal with confidence. Therefore, when AENN are used for dimension
reduction, only the encoding part is kept in order to get the encoded vector as an
output of the model, and not the decoded vector. Encoding and decoding layers are
made of LSTM layers.

Sliding windows of raw time series

As explained in section 3.2.2, the predictive models developed for this contribution
are built on small windows of time series of current, voltage and temperature. The
encoded signals given by auto-encoders are used directly as input to the predictive
models, which means windows of raw time series need to be constructed before
being fed to the auto-encoder. The length of the input window is fixed to 25 con-
secutive cycles. The first window consists of the first 25 cycles of a battery, and
each subsequent window moves forward one cycle. The resulting dataset consists
in successive sliding and overlapping windows of raw time series that all have a
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different length. The six different signals that are taken into account are time series
of current, voltage and temperature during charge and discharge separately.

Selection of inputs

In order to determine which of the six studied inputs (voltage, current and tem-
perature, during charge and discharge) have most impact on the SOH prediction,
a comparison was made between different combinations of inputs. The aim of the
comparison is to select the best possible combination.

Tests are made on the global architecture of the model that uses AE feature ex-
traction. The model is referred to as AE-XLSTM and is described in detail in section
3.3.1. The AE-XLSTM outputs a SOH prediction, and different subsets of input sig-
nals are tested with the complete model. The different tested combinations of input
signals are shown in table 3.2. Note that tests are not conducted on every possible
combination to limit computing time. Tested combinations are those we think are
the most relevant, based on expert knowledge. For each combination of signals,
three different trainings are conducted, and the average performances of the result-
ing models on SOH prediction are shown in table 3.3. All trainings are done using
the SNL dataset.

Table 3.2: Tested combinations of input features for the AE-XLSTM

Name Uc Ud Ic Id Tc Td
All X X X X X X
Charge X X X
Discharge X X X
Voltage X X
Current X X
Temperature X X
Current / temp. X X X X

Table 3.3: Predicting performances of the AE-XLSTMwith the different
tested combinations of input signals

Name MAE RMSE
All 0.73.10−2 1.09.10−2

Charge 1.78.10−2 2.04.10−2

Discharge 2.75.10−2 3.21.10−2

Voltage 0.99.10−2 1.32.10−2

Current 1.44.10−2 1.81.10−2

Temperature 1.20.10−2 1.43.10−2

Current / temp. 0.99.10−2 1.30.10−2

As can be seen in Table 3.3, the best performing combinations are the one using
all available inputs and the one using only current and temperature time series. This
could have been expected, as temperature reflects both the battery’s environment
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and use (even in a climate-controlled chamber), and the current output is directly
linked to the strain put on the battery.

3.2.4 Calculation-based feature extraction

As a complement to the model-based feature extraction strategy, another and com-
pletely different method was implemented in order to extract features from the
same time series of current, voltage and temperature. Rather than using a complex
model like the Auto-Encoder, low computational features are defined. For each
of the input signals, and at each cycle of the life of each cell, several features are
computed in the temporal, statistical and spectral domain. The list of all computed
features for each of the aforementioned curves is the following, separated into do-
mains [BFF+20]. In all equations, s represents the time series signal vector, t is the
corresponding time vector and N is the length of s.

Temporal domain

• Total Energy: ∑N
i=1 s2

tN−t0

• Area Under the Curve (AUC): ∑N
i=1(ti − ti1) ∗

si+si−1
2

Statistical domain

• Root Mean Square (RMS):
√

1
N ∑N

i=1 s2
i

• Maximum : the largest value in s

• Minimum : the smallest value in s

Spectral domain

The Fast Fourier Transform of the signal is computed ( f req, f mag = f f t(t, s)), from
which several features are extracted:

• Fundamental frequency : the lowest frequency of the Fourier transform

• Fmax : the maximum frequency of the Fourier transform

• Power Bandwidth : the width of the frequency interval in which 95% of the
power of the signal is located

By reducing current, voltage and temperature time series to a combination of
several scalar features, local time series can then be represented at the same scale
as Historical Features (HF), in the form of Time Series Features (TSF). For example,
the global evolution of the RMS value of charge current is shown in Figure 3.4, and
the AUC of charge voltage is shown in Figure 3.5, both over the whole cycle life of
different cells, just as HF can be represented. Every curve corresponds to a different
battery, and the darker the curve, the longer the cycle life.
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Sliding windows of time series features

Model-based feature extraction implies that time series are sliced in windows be-
fore being fed to the auto-encoder. With the computation-based feature extraction,
features are first computed for each time series of current, voltage and temperature
during charge and discharge, and the input vectors of the predictive models are
sliced afterwards.

Given any cycle in the life of a battery, it can be represented by a vector that
combines HF and TSF as follows:

xcyclei = {x1
i , x2

i , . . . , xn
i } (3.2)

where n corresponds to the number of HF and TSF combined.
As the architecture involves an LSTM that is made to deal with data sequences,
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the input of the network is made of several consecutive cycles, as shown in equa-
tion 3.3:

wj = {xcyclei , xcyclei+1
, . . . , xcyclei+m} (3.3)

where m corresponds to the size of the window.
To each input vector corresponds an output predicted value of SOH yj. The

final dataset is composed of a series of overlapping windows from several batteries.
After feeding all the dataset composed of a series of Z windows {w1, w2, . . . , wZ},
the LSTM produces an output vector of SOH values {y1, y2, . . . , yZ} .

Time Series Feature selection

After computing features from the original time series, each cycle is represented by
a vector of features that includes TSF and HF. The architecture that is developed
here is based on supervised learning models that use as input vector this combina-
tion of TSF and HF to predict future SOH values. Machine learning models have
the ability to focus on the most relevant features during the training process. How-
ever, the vector that combines HF and TSF has a very high dimensionality, because
the same number of features is computed from each of the six time series described
earlier. Having a great number of features increases the chances to have irrelevant
or less significant information, which can be seen as noise and the training data. In-
cluding useless features in the training process of a machine learning model means
that the complexity of the model is increased for nothing, with a higher training
time and less reliable results. A common practice is to reduce the dimensionality
of the input vector of a learning algorithm by selecting a subset of features that
best represent the predicting problem. Two common methods to implement feature
selection are the Filter method and the Wrapper method.

Filter methods do not depend on the learning model that is used for the predic-
tion problem. Features are chosen independently by an evaluation criterion such as
the variance, as implemented in the previous chapter.

The approach described in this contribution uses wrappers for selecting features
[KH13, TNN+19, LKRH15]. Wrappers have the advantage of evaluating the rele-
vance of features according to the performance of a predictive model. The wrapper
technique for feature selection uses the training process on a given machine learning
model to select the best combination of features. The aim is to obtain the best pos-
sible performances with a given algorithm by testing iteratively different subsets,
numbers and combinations of features. The strategy is to start with an initial set of
features and to add or remove several features after each training process in order
to study the impact on the performances. This process is called the Sequential Fea-
ture Selection (SFS). The selection can either be done forwardly or backwardly. For
each working direction, a global number of features should be chosen first, which
is the termination criteria p.

With Forward Sequential Feature Selection (FSFS), the model is first tested with
each feature isolated and the best performing feature is kept as the first feature of
the subset. The model is then trained again with a set of two features composed of
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the first selected one, and all the remaining ones iteratively. The process is repeated
as many times as needed to reach the termination criteria p.

With Backward Sequential Feature Selection (BSFS), the model is first tested with
all available features, and the less relevant feature is removed at each training round
until the termination criteria is reached.

For this contribution, FSFS is done using an ANN. 10 features are kept, mainly
coming from charge curves. A summary of the selected features is given in table
3.8.

3.3 Two approaches for a point prediction of SOH with
XLSTMs

The working principle of a recurrent neural network and especially Long Short
Term Memory is described in the first chapter, section 1.1.7. The idea is to make
a better use of battery operating data than with a simple FNN by taking into ac-
count the sequential aspect in time series of I, V and T°, through the features that
are extracted from them.

3.3.1 AE-XLSTM

Raw data

I V T
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Selection 
of inputs
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Figure 3.6: Framework of the point prediction of SOH with the AE
XLSTM

The global framework of the AE-XLSTM approach is summarised in figure 3.6.
Windows of raw time series are used to make an SOH prediction. Each of these
time series are identically distributed to two branches. One of them is made of
the encoding layers of an AE trained to reconstruct this particular time series as
explained in section 3.2.3. This encoder outputs encoded versions of the various
input signals. The second branch is composed of LSTM layers.

The complete architecture of the AE-XLSTM is given in figure 3.7. The AE part
is made of LSTM layers of the following sizes : [256,16] (looking back at figure 3.3,
those two layers belong to the encoding layers). The size of the encoded vector is
equal to the size of the layer preceding the Repeat vector layer, which means 16
units. In parallel to the encoding layers, the input time series are distributed to-
wards LSTM layers. These two LSTM layers are of size 256 and 32. The reason
why time series are both distributed to an encoder and to LSTM cells is that the
encoder branch acts as a static feature extraction method while the second branch
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gives more context as it learns from time series of varying lengths. After concatenat-
ing the outputs of the different branches, the SOH prediction is made using LSTM
layers of sizes [512,256,256,32] and a final dense layer with 1 unit and a linear acti-
vation function giving the final output.
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Figure 3.7: Architecture of the AE-XLSTM

Data pre-processing

Contrary to the model described in the first chapter, and to the TSF-XLSTM model,
the AE-XLSTM was trained on the dataset published by the SNL. An extensive des-
cription of this dataset is given in chapter 1. In this study, only the data measured
from the NMC cells tested at a 0-100% depth of discharge is used. A first look at
the SNL data showed some spikes in most capacity evolution curves, which had
to be dealt with using a simple function which detects these spikes and computes
their new value using the neighbour ones. These spikes are artefacts indicated on
the dataset download page, and are due to the transitions between normal cycling
and capacity checks. After excluding these outliers, the data could be normalised
before being used. Min-Max normalisation is applied to the data :

MinMax =
data − min(data)

max(data)− min(data)
(3.4)

The output data ranges from 0 to 1. Note that this normalisation process is applied
to the input of the models, as the target data is the SOH which is obtained by divid-
ing the capacity values by the nominal capacity of the battery.

Training process

The training process of the model has two steps. First, each auto-encoder is trained
to reconstruct a particular time series. For the six time series of charge and discharge
voltage, current and temperature, six different AE were trained. Windows of 25
time series with a length of around 750 time steps each are used as input to the AE.
The encoders reduce this input and condenses the information contained in each of
the time series into a vector of 16 values. Then, the encoding layers of the AE are
used inside the general model. The encoders’ weights are frozen during the training
of the final model. The loss function used in all training sessions is the Mean Square
Error. The AE were trained for 500 epochs and the general model for 1000 epochs,
both using an initial learning rate of 5 ∗ 10−5 and the Adam optimiser.
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The AE-XLSTM model, unlike the TSF-XLSTM model, was first trained on the
SNL dataset (see description in chapter 1). In this study, only the data measured
from the NMC cells tested at a 0-100% depth of discharge is used.

The batteries are split as follows : 60% for training, 20% for testing and 20%
for validation, which is a common data distribution in ML problems. To evaluate
the prediction performance of the proposed architecture, a dozen trainings were
executed on the SNL data to evaluate the prediction performance of the model.
Each training was done using a different distribution of training, validation and
testing data. Tests on the MIT Life cycle dataset are also conducted subsequently in
order to study the effect of different charging protocols and to compare the results
with the ones of the TSF-XLSTM model. For those tests, 18 batteries are randomly
picked from the three batches of the MIT dataset. The 18 batteries are split as for
the SNL dataset (60% for training, 20% for validation and 20% for testing), and the
whole model is trained anew with the MIT batteries (including the AE for feature
extraction).

3.3.2 TSF-XLSTM

Exogenous LSTM

As explained in the preliminary study 3.1.1, the aim of this contribution is to make
use of the information contained in local time series of current, voltage and tem-
perature and not only historical data. The features that are extracted are used as
input to a multi layer LSTM which has for final goal to predict the SOH multi cy-
cles ahead. Each input sample corresponds to a window of 25 consecutive cycles,
and the developed LSTM takes into account the temporal aspect of data from the
beginning to the end of the window.

Exogenous bi-directional LSTM

For comparison, another type of RNN was trained with the same structure as our
TSF-XLSTM, except that bi-directional LSTM (biLSTM) are used instead of unidi-
rectional LSTM. BiLSTM imply the same data transformations as detailed earlier,
but two LSTM are trained on the input sequence : the first one on the original in-
put sequence and the second one on a reversed copy of the input sequence. The
comparative architecture involving biLSTM is referred to as TSF-biXLSTM.

Data pre-processing

Each vector representing a cycle gathers features that have different ranges and
units. In order to improve the efficiency of the learning process and to give the same
importance to all features, a scaling step is necessary. For this work, a feature-wise
maximum-absolute normalisation is applied. Each feature is scaled by its maximum
absolute value and therefore is shifted to a [-1,1] range or [0,1] if all the values are
positive.
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Training process

The ability of an ANN to learn relationships between inputs and outputs relies on
the training process during which the weights and biases of the network are up-
dated and optimised. However, before optimising the weights and biases of the
network, its global structure should be considered and treated as an upper layer
of optimisation. The structure of a network is defined by a set of hyper parame-
ters which include the number of layers and number of units per layer, but also the
learning rate, momentum and dropout used in each layer. There are different ap-
proaches designed to optimise the hyper parameters of a machine learning model.
The simplest way, and most exhaustive, is the Grid Search method. All possible
configurations of hyper parameters are tested, which can lead to a very long pro-
cess according to the complexity of the model [Bel15]. Random Search is a more
efficient way to go through several possible hyper parameters configurations. Ran-
dom search produces a set of trials by drawing hyper parameters from a uniform
distribution space [BB12]. However, hyper parameters optimisation can be done
faster and more efficiently than with grid and random search, with Bayesian op-
timisation [WCZ+19, SLA12]. The principle of hyper-parameters is explained in
detail in section 1.1.8 of chapter 1.

Tuning hyper parameters consists in minimising a given loss function. Bayesian
optimisation outperforms grid search and random search by reducing the number
of iterations used to minimise this loss function. Following this procedure, the final
structure of the model for SOH prediction consists of two LSTM layers with respec-
tively 256 and 32 neurons, and a fully connected output layer of one unit with no
activation function as one single value is predicted.

After defining the best set of hyper parameters for the network, the training
process is completed through backpropagation, with the Adam optimiser and a
learning rate of 0.01.

For each training process, the whole dataset is divided into three parts: a train-
ing, a validation and a test set. The training set contains 64% of all available data,
the validation set contains 20% of all available data and the test set is composed of
the remaining 16%. This distribution was also employed and explained in the pre-
vious chapter 2. The three ensembles are distinct and every single battery is used
only once. The distribution of batteries between train, validation and test sets is
made randomly.

Each measurement showed in the following section is computed as follows: for
each model, 10 different random train/validation/test splits are made, and the
model is trained from scratch 10 times. For every training process, performance
measurements are done on the test set as the average of all errors on all predictions.
After completing the 10 consecutive training processes, the final error measurement
is computed as the average of all previously computed measures.
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3.4 Prediction results

3.4.1 AE-XLSTM

Table 3.4 shows the average of the error metrics computed during twelve different
training sessions. The error is computed only for 50-cycles-ahead predictions of
SOH. The MAE value of around 0.01 on the SOH prediction reflects an average
error of 1% on the capacity loss prediction, which is a good result knowing that
the model does not use historical SOH values. As a benchmark, we study a well-
performing NAR model based on LSTM layers and historical SOH values only. A
window of previously measured SOH values is used as an input to predict a future
value of SOH.

Table 3.4: Comparison of predicting performances between the AE-
XLSTMand a NAR LSTM on the SNL dataset

Usage History
(AE-XLSTM) (LSTM)

MAE (10−2) 1.03 0.96
σAE (∗10−2) 0.93 3.00

RMSE (10−2) 1.32 1.24
MAPE 1.32 1.29
NMSE 0.18 0.14
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Figure 3.8: Real vs 50-cycles-ahead predicted SOH for battery b3c42
with the AE-XLSTM
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Figure 3.9: Real vs 50-cycles-ahead predicted SOH for battery b1c29
with the AE-XLSTM

3.4.2 TSF-XLSTM

Predicting performances

This section investigates the predicting performances of our different models, for
SOH forecasting. Our SOH model has the ability to forecast SOH multiple steps
ahead, and observations on the quality of the model are made as a function of the
number of steps ahead. The size of the input window stays the same for all tests
and was fixed at 25 consecutive cycles. For both models, all error metrics will be
shown. For SOH forecasting, the output value is scaled with the maximum-absolute
method so it varies between 0 and 1 (all values are positive). MAE and RMSE mea-
surements will then refer to signals that have an amplitude of 1. Different models
are trained according to the input data.

TSF-XLSTM Table 3.5 shows the predicting performances of our TSF-XLSTM model,
on MIT batteries, in the case of multi-step-ahead predictions. The size of the input
window is of 25 cycles, and the SOH prediction can be made from 25 cycles ahead
up to 400 cycles ahead. For all cases, two metrics are given: the average prediction
error and the minimum prediction error. As explained in Section 3.3.2, different
successive trainings are made on different train/validation/test splits, and the av-
erage error in computed as the average result of all trainings. The prediction error
of the best performing model is also shown for each predicting horizon.

As expected, the best performances are obtained for short term predictions, 25
cycles ahead. As the forecasting horizon grows longer, the predicting performances
degrade. The best of our model reaches a 1.14% RMSPE, for a 25 cycles ahead
prediction. Nevertheless, with very long term predictions, up to 400 cycles ahead,
the RMSPE stays as low as 3.14%. In Figure 3.12, the average and minimum MAE
and RMSE of each model, corresponding to each predicting horizon, are plotted.
The curves show that the prediction error increases almost linearly according to
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the number of cycles ahead. The structure of the model does not vary from one
predicting horizon to the other, which means that the architecture is quite robust.

In Figures 3.10 and 3.11, a comparison is made between the real SOH curve and
the predicted one, for 25 cycles ahead predictions and 300 cycles ahead predictions.
Those predicted curves correspond to predictions that were made with the best per-
forming model, trained to predict 25 or 300 cycles ahead. The batteries chosen to
compare real SOH and predicted SOH were picked in the test set of the correspond-
ing model. In both cases, the predicted curves are very close to the real SOH curve.

Given the results presented in Table 3.5, our models stay on average between
1.1.10−2 (25 cycles ahead) and 2.4.10−2 (400 cycles ahead) for the MAE, and the
standard deviation of the MAE stays below 2.10−2 (for 400 cycles ahead). Consid-
ering that those measures refer to signals that have a [0,1] range, we can conclude
that our TSF-XLSTM models give accurate predictions, at both short term and long
term, with a high reliability.
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Figure 3.10: Real vs 25-cycles ahead predicted SOH for battery b2c5

TSF-biXLSTM The results obtained with the TSF-biXLSTM are summarised in
table 3.6. By comparing tables 3.5 and 3.6, several observations can be made. The
performances of the TSF-XLSTM and TSF-biXLSTM are very close. Regarding the
MAE of the best models, the TSF-XLSTM has slightly better performances for short
term predicting horizons (25 and 50 cycles ahead), and slightly lower performances
for long term predicting horizons (350 and 400 cycles ahead). On average however,
the MAE TSF-XLSTM has a lower standard deviation.

3.4.3 Comparison and interpretation

There have not been many approaches in the literature dealing with the SOH pre-
diction from the MIT dataset. We compared the predicting performances of the
three described models, namely the AE-XLSTM model, the TSF-XLSTM model and
the TSF-biXLSTM model.
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Figure 3.11: Real vs 300-cycles ahead predicted SOH for battery b3c27

Table 3.5: XLSTM performances for SOH prediction on MIT batteries

Prediction horizon (No. of cycles ahead)
Metric Type 25 50 100 150 200 250 300 350 400
MAE (∗10−2) Average 1.1 1.2 1.4 1.3 1.9 1.6 2.0 2.1 2.4

Best 0.8 1.1 1.2 0.9 1.5 1.1 1.5 1.6 2.0
σAE (∗10−2) Average 1.1 1.5 1.6 1.9 2.1 1.9 2.3 2.4 2.8

Best 0.7 1.2 1.1 1.0 1.7 1.5 1.4 1.9 2.0
RMSE (∗10−2) Average 1.5 1.9 2.1 2.3 3.0 2.5 3.0 3.2 3.7

Best 1.0 1.6 1.6 1.4 2.2 1.9 2.1 2.5 2.8
RMSPE (%) Average 1.7 2.2 2.4 2.7 3.3 2.8 3.5 3.7 4.2

Best 1.1 1.8 1.8 1.6 2.6 2.1 2.5 2.9 3.1
NMSE (∗10−1) Average 1.2 1.8 2.1 2.5 3.6 2.7 3.9 4.3 5.7

Best 0.5 1.2 1.2 0.8 2.2 1.4 1.7 2.7 3.1

We can see from Table 3.7 that the TSF-XLSTM model outperforms the AE-
XLSTM model. For a 50-cycles-ahead SOH prediction, the TSF-XLSTM shows a
RMSE of 1.6 ∗ 10−2 compared to 2.8 ∗ 10−2 for the AE-XLSTM model.

The TSF-XLSTM is less complex as it only uses LSTM in the model itself. The
data preprocessing requires low computational abilities as very simple features are
extracted from time series.

3.5 Conclusion on point prediction of SOH

This chapter focuses on the prediction of future SOH values of Li-Ion batteries,
based on the study of two major datasets published by the MIT and the Sandia
National Laboratory. We propose here several feature extraction strategies coupled
with feature selection in order to use time series of current, voltage and temperature
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Figure 3.12: Evolution of the average and minimum MAE and RMSE
according to the number of cycles ahead

Table 3.6: TSF-biXLSTM performances for SOH prediction on MIT bat-
teries

Prediction horizon (No. of cycles ahead)
Metric Type 25 50 100 150 200 250 300 350 400
MAE (∗10−2) Average 1.0 1.3 1.4 1.2 1.8 1.5 2.0 2.0 2.1

Best 0.8 1.1 1.1 0.9 1.4 1.1 1.5 1.5 1.7
σAE (∗10−2) Average 1.3 1.6 2.0 2.1 2.4 2.1 2.3 2.5 2.5

Best 0.7 1.2 1.0 1.3 1.8 1.4 1.4 1.9 2.1
RMSE (∗10−2) Average 1.6 2.1 2.4 2.4 3.1 2.6 3.0 3.2 3.3

Best 1.1 1.7 1.5 1.6 2.3 1.8 2.1 2.4 2.7
RMSPE (%) Average 1.8 2.3 2.8 2.9 3.6 3.0 3.5 3.7 3.8

Best 1.2 1.8 1.7 1.9 2.7 2.1 2.5 2.8 3.2
NMSE (∗10−1) Average 1.3 2.0 3.1 2.9 4.5 3.1 3.9 4.5 4.4

Best 0.5 1.3 1.1 1.2 2.2 1.3 1.7 2.3 3.0

Table 3.7: Comparison of SOH prediction performances, 50 cycles
ahead, on MIT batteries

MAE (∗10−2) σAE (∗10−2) RMSE (∗10−2) NMSE (∗10−1)
TSF-XLSTM 1.1 1.2 1.6 0.1

TSF-biXLSTM 1.1 1.2 1.7 0.1
AE-XLSTM 2.4 1.2 2.8 8.1

as input to a SOH predicting model. These features, used in combination with
LSTMs can lead to accurate and long term prediction of future values of SOH from
an input window of 25 cycles.

There are very few approaches in the literature that have based their study on
the MIT dataset, and none of them were based on NRX models. Considering that
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Figure 3.13: Evolution of the average and minimum MAE and RMSE
of the bi-directional XLSTM according to the number of cycles ahead
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Figure 3.14: Comparison of the MAE of the TSF-XLSTM and the TSF-
biXLSTM models according to the number of cycles ahead

the NRX architectures described in this chapter are based on the use of TSF or en-
coded time series only and not past SOH values, it is hard to compare our TSF-
XLSTM or AE-XLSTM models to any NAR models. A generic comparison between
our two models and two NAR models developed by Qu et al. [QLMF19] and 2021
by Liu et al. [LSOW21] is given in table 3.9.

The major difference in the models described in this chapter is that all avail-
able data from several batteries are used to train the model. Training data can be
considered as offline data, used to learn degradation patterns. Once the model is
trained, predictions can be made online from any input window of the test battery.
This means that it is not necessary to isolate the first part of the data from a given
battery and use it in model learning to predict future SOH values. In [QLMF19], at
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least 30% of the data is used for incremental learning, and it can go up to 70% of
the SOH curve. That means only the last 50 cycles can be predicted by the model.
In [LSOW21], 50% of the SOH data is also used for training. Moreover, in both
[QLMF19] and [LSOW21], predictions are made iteratively. We use input windows
of 25 cycles, which represents on average around 3% of the lifetime of the batteries
that are tested in the MIT dataset.

The very good results obtained by NAR models depend on the nature of the in-
put data. Experimental ageing tests of Li-Ion batteries lead to a steady degradation
trend, but one that does not represent the real use of an electric vehicle. By using
TSF in a model, the SOH prediction is slightly less accurate, but more flexible and
adaptable to different use cases.

Although we do not reach the same accuracy as NAR models, our TSF-XLSTM
model has promising performances and could adapt to more realistic situations. It
is still complicated to provide quantitative arguments to support this hypothesis,
but the principle of NAR models for SOH prediction implicitly requires that the use
conditions of a battery remain the same throughout its entire life. By observing op-
erating data, our model could take into account any change in the use environment
of the vehicle (through external temperature), or any change in the driving profile
of a user (through current and voltage).



86
C

hapter
3.

SO
H

prediction
from

tim
e

series

Table 3.8: Computed and selected features for the TSF-XLSTMand TSF-biXLSTM

Domain Feature Current Voltage Temperature
Charge Discharge Charge Discharge Charge Discharge

Temporal Total Energy
√ √

Area Under the Curve
√ √

Statistical Mean
√

Root Mean Square
Max

√ √

Min
Spectral Fundamental freq.

Fmax
√

Power Bandwidth
√ √
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Table 3.9: Architecture comparison

TSF-XLSTM AE-XLSTM PA-LSTM LSTM + GPR + IMF
[QLMF19] [LSOW21]

Used features Time series (V, I, T°) Time series (V, I, T°) SOH SOH

Proposed
architecture

-Feature extraction -AE feature extraction -EMD -EMD
-TSF windows -Encoded windows -Particle Swarm -GPR

-Attention mechanisms
-LSTM -LSTM -LSTM -LSTM

Type of
model

-NRX -NRX -NAR -NAR
-Generic model -Generic model -One model per cell -One model per cell
for all cells for all cells

Training data All available data All available data At least 30% of SOH 50% of SOH
for each cell for each cell

Type of
prediction

-Multi cycles ahead -Multi cycles ahead -One cycle ahead -Multi cycles ahead
-Online -Online -Iterative -Iterative
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Seq2Seq for SOH prediction
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4.1 Introduction - From a point prediction to a full se-
quence prediction

The first two contributions of this thesis take advantage of both historical data and
time series. The prediction of RUL through the use of a cycle based ANN makes
a powerful use of historical and temperature data, and the prediction of SOH with
window based exogenous LSTM proves that time series of current, voltage and tem-
perature give an accurate image of the ageing stage of a battery, both at a short and
long term. In order to go further in the use of time series for the prediction of SOH,
another type of model is described in this chapter. By structuring data differently
than with the previous window-based approach, and by increasing the complexity
of the predictive model, a different type of SOH prediction can be made. With the
previous TSF-XLSTM, TSF-biXLSTM and AE-XLSTM models, a fixed window of
features was used as input to predict a single future point of SOH. The SOH pre-
diction could either be made at short or long term, giving a good estimation of the
effect of the use conditions of a battery on its ageing at a precise moment in the
future. However, point predictions fail to show when exactly a failure could occur
in the life of a battery. What is interesting is to be able to link a very short input
feature window with a wider output window of SOH in order to spot the exact mo-
ment when the SOH is most going to be affected, and to have a direct and long term
view of the ageing process of a battery.

This contribution was inspired by the work of Li et al. from the university of
Aachen [LSD+21], which is described in detail in chapter 1. The idea is to adapt
their NAR model to our NRX approach. Our goal is to be able to predict the SOH of
a battery until its EoL by observing a limited window of exogenous input features.

In this chapter, a quick description of the principle of sequence prediction is
given, and then the work that was done concerning this contribution is described,
with a detailed presentation of the data structure and model architecture, followed
by a presentation of the prediction results.

4.2 Seq2Seq for SOH prediction

4.2.1 The principle of sequence prediction

All the sequences that are dealt with in the scope of this research work are time
series. With the first two contributions described in the previous chapters, the in-
formation contained in time series is exploited to make point predictions, either of
the RUL of the battery or of its SOH at different horizons. In the first contribu-
tion, a point prediction of the RUL is made from single points of historical data and
temperature during one cycle. Although several features are used, the prediction
is made from one single time step to one single value. This is referred to as a "one
to one" prediction, depicted in figure 4.1. In the second contribution, a point pre-
diction of SOH is made from windows of operating data. Several features are used
in one window, which consists in a sequence of 25 consecutive cycles. The model
outputs one single value of SOH, therefore a "many to one" prediction is made, as
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depicted in figure 4.2. The contribution described in this chapter consists in de-
signing a "many to many" predictive model in order to predict a full SOH sequence
from a fixed window of operating data, as shown in figure 4.3. The following sec-
tions describe the fundamentals of sequence prediction.

Offline cycle life prediction 
OR

Online RUL prediction

input features

One timestep

Output 

One point

Figure 4.1: One to one prediction

Window XLSTM

input features

Many timesteps

Output 

One point

Figure 4.2: Many to one prediction

XSeq2Seq

input features

Many timesteps

Output 

Many points…

Figure 4.3: Many to many prediction

Sequence to Sequence learning

Time series are a specific type of sequence data. Throughout the literature, a tremen-
dous amount of research topics concern word or letter sequences, and refer to the
field of Natural Language Processing (NLP).

Sutskever et al. have described the principle of sequence to sequence learning
with ANN. In [SVL14], the principle of the sequence to sequence model is described,
and consists in translating an input to an output by overcoming the limitations of
traditional DNN (an ANN with multiple hidden layers). Indeed, DNN can only be
applied to problems where inputs and targets can sensibly be encoded with vec-
tors of fixed dimensionality. In the case where the length of the sequence is not
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known in advance, DNN can’t be efficient. Therefore, they describe a novel way of
mapping sequences that have different lengths, and lengths that are not linked with
any simple monotonic relationship. LSTM are used as encoder and decoder as they
have the ability to learn long term dependencies. It means that two different LSTM
are used to complete those two functions, and they make use of deep LSTM. Their
last contribution consists in reversing the order of the input sequence. This way, the
distance between one word and its translation is reduced.

4.3 Data structure for a sequence to sequence approach

4.3.1 Growing window to sequence

The approach described by [LSD+21] is based on an NAR model that uses historical
data of SOH to predict the future evolution of SOH. As the battery ages, more and
more historical data become available and can therefore be used as input to the
predictive model. Here, the goal of the sequence to sequence approach is to be
able to predict the entire SOH degradation curve until EoL at once, using all the
available historical data at the moment when the prediction is made. In other terms,
throughout the life of the battery, the input vector (composed of historical SOH
data) grows and the output predicted sequence shrinks.

First predictions should be longer, and are made from very short sequences. As
more and more historical data become available, shorter predictions are made from
longer input sequences. The accuracy of the model should then be improved over
time. Figure 4.4 illustrates the evolution of the input vs output vector of a Seq2Seq
model as a function of the moment when the prediction is made. The shorter the
RUL of the battery, the longer the input vector and the longer the predicted output.
In figure 4.5, a detailed version shows how data can be sampled inside a growing
window in order to reduce the amount of processed data.

4.3.2 Sliding window to sequence

The approach described in this chapter consists in adapting the Seq2seq model ear-
lier described and developed by [LSD+21]. In their framework, only historical data
of SOH are exploited to predict the future degradation trend of the battery. The aim
of this contribution is to shift this NAR Seq2Seq model to an NRX Seq2Seq model
that performs well with a fixed amount of data as input. In comparison with the
NAR approach, this contribution uses more features as input to the model in order
to predict the same signal, which is the entire SOH degradation trend until EoL. In
order to reduce the amount of information to be processed by the model, the size
of the input window is fixed which means that no matter the moment when the
prediction is made, the model will have access to the same amount of data, coming
from the last operating cycles. In this way, it is made clearer which part in the life of
a battery has the biggest impact on its degradation trend. The principle of sliding
windows with a fixed size to predict windows of variable size is depicted in figure
4.6.
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Figure 4.4: Growing input window for sequence prediction

1st input window

2nd input window

1st output window

2nd output window

Figure 4.5: Detailed sampling process for growing windows
to sequence

The data that was used to train the TSF-XSeq2Seq was built according to this
sliding-reducing windows principle, and in order to reduce the amount of pro-
cessed and predicted data, a specific data sampling method was defined. The input
samples correspond to 25 consecutive cycles with no re-sampling. Each time the
window moves forward, from one sample to the next, it moves 10 cycles ahead. For
the output sequences, one point out of 50 is kept from the original sequence. This
sampling process is illustrated more in detail in figure 4.7.

4.4 Seq2seq framework for SOH prediction

4.4.1 Input features

This contribution is a complementary approach to the TSF-XLSTM described in
chapter 3. Although it would be interesting to study the impact of the input fea-
tures on the performances of the SOH sequence prediction model, those first results
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Figure 4.6: Sliding input window for sequence prediction

Figure 4.7: Detailed sampling process for growing windows
to sequence

were generated using the same features as in the previous contribution, without
further feature extraction or selection process. A detailed description of the feature
extraction and selection process is given in section 3.2.4 in the previous chapter.

4.4.2 Data structure

In sections 4.3.1 and 4.3.2, a comparison is made between models that can handle in-
put sequences of a growing length (growing window to sequence) and models that
use input sequences of the same length throughout the prediction process (sliding
window to sequence). Our contribution is based on a sliding window to sequence
approach. Input windows are built in such a way that their shape remains the same,
no matter the moment when the prediction is made, but output windows still have
a variable length, which implies some adaptations of the model and data structure.

In order for the model to be able to handle sequences of variable length as out-
put, a padding process is applied. All output sequences are made uniform before
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the training process, that is to say all sequences are brought to the same size, which
corresponds to the length of the longest sequence in the training set. In order to
bring all sequences to that length, they are zero padded, which means they are
completed from the end with as many zeros as needed to reach the length of the
longest output sequence in the training dataset. The shorter the sequence, the more
zeros are added in the end. This principle is depicted in figure 4.8.
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Figure 4.8: Sliding input window for sequence prediction

4.4.3 Architecture

In the previous chapter, a regular LSTM is developed to make a point prediction
of SOH from fixed size windows of TSF. The structure of a regular LSTM makes
it very easy to process sequences of fixed sizes, but in the scope of this chapter,
and as described in section 4.4.2, the targeted output is a window of a variable size
corresponding to the evolution of the SOH of a battery until its EoL. Therefore,
regular LSTMs are not sufficient to handle the prediction problem and RNN-based
Sequence to Sequence models should be used in-stead (Seq2Seq).

Seq2Seq models rely on the same principle as Auto-Encoders, as described in
the previous chapter for the AE-XLSTM 3. In the case of a Seq2Seq model, the
architecture is the same as an AE, but the input and output vectors are different, and
the whole model is kept to make prediction (encoding and decoding parts). This
principle could be compared to the translation process as described in section 4.2.1
and in [SVL14]. An input sentence is encoded and then decoded back to another
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Figure 4.9: Principle of Sequence to Sequence models [LSD+21]

language. Concerning time series, an input window is encoded and decoded back
to another time series.

In the case of the NAR Seq2Seq model developed by [LSD+21], input sequences
of SOH are padded with zeros. Therefore, for this precise data structure, the first
layer in the model is a masking layer in order not to take into account all the zeros
in the input signal. The rest of the model corresponds to the encoding-decoding
structure, built with LSTM cells that can either be uni-directional or bi-directional.
In the scope of this chapter, for the TSF-XSeq2Seq, several sequences of TSF are fed
as input to the Seq2Seq model and are decoded back to full sequences of SOH until
the EoL of a given battery. As input sequences are not zero-padded, there is no need
of a masking layer at the beginning of the model.

All the results presented in the next sections were obtained with the following
architecture : the TSF-XSeq2Seq model is composed of four layers in the encoding
part and four layers in the decoding part, plus two time-distributed layers after the
decoder which makes 10 layers in total. All the layers in the encoding and decoding
part of the TSF-XSeq2Seq are identical bi-directional LSTM layers with 100 nodes
and a dropout fraction of 0.01. The last time distributed layer has a linear activation
function in order to predict any floating value.

4.4.4 Training process

For storage and computation time constraints, tests were only led on one dataset
spread into train, validation and test. All the 124 batteries from the three batches of
the MIT dataset are shuffled and randomly split between the three ensembles. The
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train ensemble contains 79 batteries, the validation ensemble contains 25 batteries
and the test ensemble contains the remaining 20 batteries. During training, the
Adam optimiser is used (see section 2.5.3 in the previous chapter) with an initial
learning rate of 0.0004. The performances of the model on the validation ensem-
ble are continuously observed during training and the training process is stopped
thanks to an early stopping method (see 2.5.4). All the prediction results and curves
are computed or plotted from different batteries of the test ensemble.

4.4.5 Error metrics

The error metrics that are used in the scope of this work rely on the same score as in
the previous models, but they need to be modified in order not to take into account
the zero padding.

During the training phase, the MAE is used as the cost function, with a masking
step in order to get rid of the zeros at the end of the predicted and true sequence.

4.5 Prediction results

4.5.1 Results

In this section, the predicting performances of the TSF-XSeq2Seq for SOH sequences
are investigated. For each input window, composed of several features, the TSF-
XSeq2Seq is able to predict a full SOH sequence. Unlike in the previous chapter,
several curves are shown for three different batteries belonging to the test ensemble.
The size of the input window does not vary from one prediction to another, but the
prediction starts later and later as the battery ages, because the input window shifts
forward in time. As a consequence, the predicted sequence is shorter and shorter.

Figures 4.10 to 4.12 show the predicting performances of the TSF-XSeq2Seq on
batteries b1c17 (that belongs to the first batch of the MIT dataset), b2c27 (that be-
longs to the second batch) and b3c7 (that belongs to the third batch).

For each battery, four curves are represented. The first one corresponds to the
first possible prediction, when the battery has just been through the first 25 cycles
that are necessary to build an input window and make a prediction. The three
following curves show predictions that are made approximately after one quarter
of the life of the battery has passed, then half of the life, and then when only a few
cycles remain.

Regarding long term predictions, which is to say when the prediction is made at
the very beginning of the life of a battery, the TSF-XSeq2Seq is able to match almost
perfectly the SOH degradation curve until the EoL of the three batteries. The sec-
ond prediction is also very close to the original SOH curve, although a small offset
appears at the end of the curve, which induces a difference between the predicted
RUL and the real RUL.

For batteries b1c17 and b2c27, predictions stay very close to the original curve
until the EoL of the batteries. However, for battery b3c7, a clear gap between the
real curve and the predicted one appears from the prediction made after 1000 cycles.
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In table 4.1, the errors are computed as follows : for each battery of the test
ensemble, predictions are made for each input window, sliding from BoL to EoL.
For each prediction the output sequence is compared to the real one, and three
types of error scores are represented. The earliest error is the error that is obtained
by comparing the first possible prediction for all test batteries, which means the
error computed on the prediction that is made after the first 25 cycles in the life
of the battery. This early error is computed for all batteries and the average of all
earliest error is given as "earliest error" in all tables. Similarly, the latest error is
computed from the last sample of each battery. The average error simply consists
in averaging all errors of all predictions.

Quite logically, the TSF-XSeq2Seq has lower error rates for late predictions, as
the output sequence gets shorter and shorter. However, the error computed for the
earliest prediction is in the same order of magnitude as the average error, with a
standard deviation of the MAE of 0.02 which shows that the predictions are quite
steady and reliable even at a very early degradation stage.

Table 4.1: Performances of the TSF-XSeq2Seq for all test batteries

TSF-XSeq2Seq

MAPE
Average 2.60
Earliest 2.95
Latest 1.46

MAE
Average 0.02
Earliest 0.03
Latest 0.01

σAE

Average 0.01
Earliest 0.02
Latest 0.00

RMSE
Average 0.03
Earliest 0.04
Latest 0.01

RMSPE Average 3.24
Earliest 4.11
Latest 1.46

4.5.2 Comparison and interpretation

In this section, the prediction results of our TSF-XSeq2Seq model are detailed in
comparison with the model developed in [LSD+21] and in comparison with an
NAR model developed on the MIT data referred to as NAR-Seq2seq, whose struc-
ture is described in the following paragraph.

NAR comparative approach on the MIT dataset

The structure of the NAR-Seq2seq is almost identical as the TSF-XSeq2Seq : the ar-
chitecture and hyper parameters are the same, but the input features and the shape
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of the training data vary. In the NAR-Seq2seq, only one sequence of SOH is used
in stead of the previously described combination of TSF sequences used in the TSF-
XSeq2Seq. Therefore, the first layer of the NAR-Seq2seq takes as input one single
sequence. The aim of this last comparative approach is to study the performances
of a model that has the same characteristics as the model developed by [LSD+21]
but that would be trained on the MIT dataset, like our TSF-XSeq2Seq. Therefore
the structure of the data that was used to train the NAR-Seq2seq is the same as in
[LSD+21], growing input windows that are padded with zeros according to their
length, and diminishing output windows that are also padded with zeros. Con-
cerning the sampling rate, the input windows take into account one SOH point out
of ten. The first window of each battery contains three data points which account
for 30 cycles. As for the output sequences, they contain one SOH point out of 40.

Comparison of performances

The comparison between the model developed by [LSD+21] and the TSF-XSeq2Seq
should be interpreted carefully considering that those two approaches are very dif-
ferent. First, they apply to different training data. Indeed, the model by [LSD+21]
was trained on the dataset that is provided with their study. This dataset is a cus-
tom dataset that was built with their own test bench (a complete description of the
dataset is provided in chapter 2). And secondly, their approach is based on an NAR
model that takes growing windows of SOH as input to predict full sequences of
SOH.

The approach described in this chapter is a NRX model with sliding windows as
input in stead of growing windows, and was trained on the MIT dataset. The most
meaningful comparison is to be made between the TSF-XSeq2Seq and the NAR-
Seq2seq because they oppose different strategies but are trained on the same data.

Table 4.2 gathers predicting results from our TSF-XSeq2Seq, the NAR-Seq2seq
and the model by [LSD+21]. It appears clearly that our NRX model outperforms
both the NAR-Seq2seq and the one trained on Aachen data. For both early predic-
tion and on average, our TSF-XSeq2Seq has lower errors and higher reliability. Both
NAR models have very similar performances, although the NAR-Seq2seq seems to
have better early performances than average ones when model by [LSD+21] per-
forms better on average than at early stages. Our TSF-XSeq2Seqhas very close per-
formances on average and at an early stage, and a MAE that stays under 0.02.

An interesting comparison to make is with the TSF-XLSTM model described
previously in chapter 3. Indeed, this model was the first attempt to predict SOH
from TSF. The aim is different, as only point values of SOH are predicted at different
horizons, but the input features used in this TSF-XSeq2Seq are exactly the same and
the size of the input window is also identical. From table 4.3, it can be seen that
the TSF-XLSTM has better performances with predictions under 300 steps ahead.
With 350 and 400-steps-ahead predictions, the TSF-XSeq2Seq has better predicting
performances. The reliability of both models expressed by the standard deviation
of the absolute error stay close (from 1.1 ∗ 10−2 to 2.8 ∗ 10−2 for the TSF-XLSTM
and 1.0 ∗ 10−2 for the TSF-XSeq2Seq). The output predicted by the TSF-XSeq2Seq
is more complex than a single point which increases the uncertainties. Further tests
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should be led in order to improve the architecture of the TSF-XSeq2Seq and also to
create an NAR comparative model with a specific architecture that does not only
vary from the input features.

Table 4.2: Comparison of performances between [LSD+21], TSF-
XSeq2Seq and NAR Seq2Seq on MIT data

[LSD+21] NAR Seq2Seq TSF-XSeq2Seq

MAPE Average 3.34 7.16 2.60
Earliest 4.50 4.14 2.95

MAE Average 0.04 0.06 0.02
Earliest 0.05 0.04 0.03

σAE
Average 0.03 0.03 0.01
Earliest 0.05 0.03 0.02

RMSE Average 0.05 0.07 0.03
Earliest 0.08 0.05 0.04

RMSPE Average 4.37 8.31 3.24
Earliest 6.78 5.90 4.11

Table 4.3: Average performances of the TSF-XLSTM and TSF-XSeq2Seq
for SOH prediction on MIT batteries

Prediction horizon (No. of cycles ahead) TSF-XSeq2SeqMetric 25 50 100 150 200 250 300 350 400
MAE (∗10−2) 1.1 1.2 1.4 1.3 1.9 1.6 2.0 2.1 2.4 2.0
σAE (∗10−2) 1.1 1.5 1.6 1.9 2.1 1.9 2.3 2.4 2.8 1.0

RMSE (∗10−2) 1.5 1.9 2.1 2.3 3 2.5 3 3.2 3.7 3.0
RMSPE (%) 1.7 2.2 2.4 2.7 3.3 2.8 3.5 3.7 4.2 3.2

4.6 Conclusion about SOH sequence prediction

This last contribution chapter focuses on the prediction of full SOH sequences of
Li-Ion batteries from operating data represented by TSF. The model that was de-
veloped for this purpose is built following an approach by Li et al. [LSD+21] that
aimed at predicting full SOH sequence from growing windows of SOH as the bat-
tery ages. Here, the same output is kept, but the input is modified in order to take
operating data into consideration rather than SOH only. Input windows are also
modified from growing ones to sliding ones, with a fixed size of 25 consecutive
cycles. Our study shows that this SOH sequence prediction model, referred to as
TSF-XSeq2Seq, has very good predicting performances at all stages in the life of a
battery.

As few approaches in the literature are based on the MIT dataset, and even fewer
ones on SOH sequence prediction, we compare the results of our TSF-XSeq2Seq
with a similar structure but trained on an endogenous feature (SOH only), referred



4.6. Conclusion about SOH sequence prediction 101

to as NAR-Seq2seq and with the TSF-XLSTM described in the previous chapter.
According to the tests that were led, the TSF-XSeq2Seq that is an exogenous model
has better performances than the NAR-Seq2seq, but slightly lower performances
than the point prediction exogenous model TSF-XLSTM for predictions under 300
steps ahead. However, the sequence prediction model offers a good complement
model and has promising performances and could make it possible to link a specific
use mode to a future degradation at any moment.
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Figure 4.10: Seq2Seq predictions on battery b1c17
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Figure 4.11: Seq2Seq predictions on battery b2c27
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Figure 4.12: Seq2Seq predictions on battery b3c7
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Chapter 5

Experimental setup for Li-Ion battery
ageing
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5.1 Motivations

In all the models described in the contribution chapters 2, 3 and 4, predictive models
are built with public ageing datasets that were built by big research laboratories. All
the datasets are presented in chapter 1. In this last chapter, our attempt to build our
own ageing dataset is described, with a detailed overview of the test bench, sensors,
devices used and test protocols.

The aim of this test bench is to be able to gather ageing data from different Li-Ion
batteries with custom conditions and test protocols. This project comes from a sim-
ple observation after studying all the publicly available datasets. The aim of all the
different predictive models that are built in the scope of this thesis is to be able to
predict how a specific use mode will affect the ageing of a battery, represented by its
SOH or RUL. Although the developed models are theoretical for now, the ultimate
goal of predictive prognostics is to be able to monitor online the functioning of a
battery inside a vehicle, with embedded sensors and on-board predictive models
(or remote smart devices for prediction, with a data transfer strategy). Therefore,
the predictive models should be able to deal with real operating data and provide
accurate online predictions. That means models should be trained with data that is
as close as possible (or even identical) to real operating data that could be acquired
on board a vehicle. The fact is that most dataset, and all the ones that were trained
in the scope of the three detailed contributions like the MIT dataset are based on
test protocols that are very different to real use conditions. In the MIT dataset for
example, each battery is charged and discharged following the same test procedure
throughout its whole life. The aim of the dataset as described earlier in chapter
1 is to study the influence of fast charging over the cycle life of LFP battery cells.
Therefore, charge protocols with high current rates are implemented to shorten the
charge time, and a limited importance is given to the discharge phase during which
batteries are discharged with a constant current of 4C. This type of data brings in-
teresting information about the ageing phenomena that can occur in batteries but
training a model only from them leads to a partial understanding of what could
occur in real life. If training and real data are too different, the predictive model is
certain not to perform well on board a vehicle.

This is why we decided to build our own ageing dataset with test protocols that
would be closer to real world driving scenarios. We built custom cycling proto-
cols with variable charge and discharge modes for each battery and throughout its
life. Batteries are discharged following current profiles that correspond to realistic
driving scenarios and that are described in the following sections. Several battery
chemistries are tested in order to get the most diverse ageing dataset.

5.2 Data acquisition

All data ageing tests were conducted on a test bench on site, at the INSA Strasbourg.
Experimentation started in January 2020 and is still going on as the aim of the test
bench is to perpetuate the cycling tests in order to enrich the data that can be used
to train predictive models and gather information on the ageing of the batteries. It
took a few months to create and optimise the test plans and the setup of the test



5.2. Data acquisition 107

bench. The first official cycling tests started in January 2022. The following sections
describe the devices that are used to test the batteries, and the test conditions.

5.2.1 Battery cycler

The device used to cycle the batteries is a cycler from Basytec, model XCTS. This
cycler has 12 channels and can be used for a great number of applications, including
life time testing, cell grading, usability tests, quality insurance, . . . , on any kind
of electrochemical energy storage systems (Li-Ion batteries, fuel cells, capacitors,
ultra capacitors . . . ). The model that is used does not include a climate chamber, so
battery cells are tested at room temperature.

5.2.2 Sensors

Three principal signals are acquired : current, voltage and surface temperature of
battery cells. From those signals, other ones are computed in real time such as total
capacity (computed from the current integral), capacity per cycle, internal resis-
tance, energy... According to the models that were developed in the scope of this
thesis, only current, voltage, temperature and capacity are needed.

5.2.3 Test conditions

All the batteries that are cycled are brand new batteries. The test protocols were
designed and improved with specific batteries that were no longer used after that
for ageing tests. Batteries are all referenced with specific codes that take into account
the chemistry and cell manufacturer (eg. FLP-A123-00, NMC-SAMSUNG-01). As
mentioned before, tests are conducted at room temperature inside the lab.

5.2.4 Safety measures

The tests that are conducted should not be too harmful and no extreme use of the
battery is made. The purpose of those ageing tests is to study the degradation of
batteries under realistic conditions. There should not be any over-heating, under or
over voltages, nor positive or negative current peaks over the limits specified by cell
manufacturers. Nevertheless, some hardware and software safety measures were
implemented in order to get rid of all possible risks.

All the batteries are placed in sealed safety boxes (called Bat-safe) that are meant
to contain any battery fire and filter gas emissions. There are maximum two batter-
ies per box. The safety boxes are placed on a lab bench designed for electronic test-
ing, which means they can resist fire. Cables that are connected to the cycler have
specific connecting lugs for which we had to design custom and protected small
circuits. The connection between the cables on the battery side and the cycle cables
is protected by a plastic box as shown in figure 5.2. Battery cells are plugged on a
specific circuit (shown in figure 5.3) and no short circuits between power cables is
possible.
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Figure 5.1: Organisation of the test bench

Figure 5.2: Protection boxes for connecting lugs

Figure 5.3: Battery connecting circuit inside the bat-safes
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The cell voltage, current and temperature are continuously monitored. Stop con-
ditions are defined at the beginning of all test protocols and consist in putting an
end to any test if the voltage goes over or under the maximum and minimum rec-
ommended values. The same stop conditions are defined for current and tempera-
ture.

5.3 Choice of batteries

The aim of the test bench is to get data from different chemistries, as not all car ma-
nufacturers use the same technologies in electric vehicles. The two most widespread
battery chemistries are LFP and NMC batteries. Our first choice was to use the same
cell model as the one tested by the MIT in the dataset that was mainly used to de-
velop the predictive models. Therefore, most of our ageing data comes from LFP
cells model APR18650M1A from the manufacturer A123. A123 was then bought by
Lithium Werks and we had to switch to model APR18650M1B which has a slightly
higher capacity.

Apart from LFP cells, NMC cells were also tested. In the scope of the Vehicle
project, a partnership with a French electric motor scooter manufacturer was estab-
lished. The aim of this partnership was to make use of the data that was collected
from their vehicles, that are exclusively used for food delivery. Inside their scoot-
ers, NMC cells are used and two manufacturers were tested in their prototypes
: Samsung and Panasonic. Some samples coming from their battery cells stocks
were tested on our test bench, and we ordered other battery cells from the same
manufacturers to increase to amount of data acquired by our test bench.

Chemistry Manufacturer Cnom Vnom Imax T°min T°max

LFP A123 1.1 Ah 3.3 V 30 A - 30°C + 60°C
LFP Lithium Werks 1.2 Ah 3.3 V 50 A (Pulse) - 30°C + 60°C

NMC Samsung 3.35 Ah 3.6 V 13 A (Pulse) - 10°C + 60°C
NMC Panasonic 2.25 Ah 3.6 V 1.3 A -20°C + 45°C

Table 5.1: Tested batteries and their characteristics

5.4 Test protocols

The aim is to simulate the cycle ageing of batteries by using them continuously in
conditions that are close to the real use of a battery inside an EV. In-stead of dis-
charging the battery cells with a constant current, driving cycles are used to simu-
late a realistic use of a vehicle, with dynamic currents and pauses while the battery
discharges. Different charge protocols are also used, with either fast, standard or
slow charging currents. Indeed, an electric vehicle is very unlikely to be charged
every time with a fast charger. Most charges are made at night and at home with
standard chargers. The only parameter that we couldn’t take into account in our test
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bench was partial charges and discharges because it is easier to monitor the evolu-
tion of SOH with full charges and discharges. Therefore, battery cells are invariably
charged and discharged at 100%.

5.4.1 Driving cycles

The battery cycler that is used only allows discharge currents up to 25A per cells
which limits the tests range. Moreover, when designing the test protocols, the idea
was to create different scenarios that were comparable between them in order to
have meaningful ageing results. For some part of the tests, driving cycles were pro-
vided by Mob-Ion, and they correspond to an urban use of a motor scooter, which
means speed stays under 50 km/h. The driving cycles that were used for the other
tests are standardised driving cycles designed to assess performances of thermal
vehicles in terms of fuel consumption and greenhouse gas emissions [BLMB09].

WLTC

The Worldwide harmonised Light vehicles Test Cycles (WLTC) is used to assess
the performances of light-duty vehicles. The class 3 cycle was used, because it is
representative of vehicles driven in Europe and Japan. It is divided into four parts
according to the maximum speed : low, medium, high and extra high. Only the
urban (low) part of the cycle with speeds under 60km/h was kept [KBW+15].
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Figure 5.4: Urban WLTC speed profile

ARTEMIS

The ARTEMIS cycle (Assessment and Reliability of Transport Emission Models and
Inventory Systems) was designed by the Transport Research Laboratory [PGB07] in
order to have a better understanding of emission modelling but also to develop a
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harmonised methodology for estimating emissions from all transport modes at the
national and international levels. The Urban ARTEMIS cycle ranges from 0 to 58
km/h with an average speed of 17.7 km/h and with several phases of acceleration
and breaking.
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Figure 5.5: Urban ARTEMIS speed profile

Electric scooter driving cycles from Mob-Ion

As mentioned before, a partnership was established with a motor scooter manu-
facturer. For the tests that were led on the battery cells coming from their stocks,
specific driving cycles were used. Those driving cycles come directly from acquired
data on one of their scooters. As their scooters are only used in urban environments,
the speed stays under 50 km/h and comprises small driving periods punctuated by
stops that correspond to red lights or stops for deliveries.

5.4.2 Charging procedures

The charging procedures that were designed for battery tests are regular CC-CV
protocols. Three charge profiles are used : a fast one, a standard one and a slow one.
The only parameter that varies from one profile to another is the current rate during
the CC phase. The standard charge current is recommended by the manufacturer in
the cell’s datasheet. The slow charge current is half the standard charge current and
the fast charge current is between 1.2 and 3.7 times the standard charge current.

Figures 5.6 and 5.7 show two different test protocols, each with a full discharge
with a driving cycle. In figure 5.6, the first full driving discharge is followed by
a slow charge and then the second one by a fast charge. In figure 5.7, the first
full driving discharge is followed by a slow charge and then the second one by a
standard charge.
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Figure 5.6: Slow charge followed by fast charge

5.4.3 Test structures

Figure 5.8 illustrates the global structure of a test protocol, no matter the battery
type. The first step in each test protocol is to completely empty the battery, because
they usually are delivered at a 50% state of charge. After this first step, a full com-
plete charge with a slow charge current is operated. This is when the first capacity
check is done : the battery is fully discharged again at 1C, and this capacity check
will be used as a reference for the initial capacity of the battery cell. Another full
standard charge follows the capacity check, and then starts the ageing tests that
will go on until the battery reaches its EoL (which corresponds to a loss of 20% of
its initial capacity).

On figure 5.8, three loops are represented (numbered from 1 to 3) :
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Figure 5.7: Slow charge followed by standard charge

1. The first loop is a driving-like full discharge. The driving cycles can be one of
the three earlier described one (WLTC, ARTEMIS, or Mob-Ion for the motor
scooter cells). This loop can be repeated as many times as needed to com-
pletely empty the battery (ie. when the voltage drops below the cut-off volt-
age).

2. The second loop comprises the first loop. It aims at repeating four times
the full driving discharge, and after each of those discharges, a different full
charge is operated (either slow, standard or fast).

3. After repeating the full driving discharge combined with a full charge, a ca-
pacity check is programmed in order to monitor the ageing of the battery. The
capacity check is done by fully discharging the cell at a constant rate of 1C.
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This loop, which comprises the first two ones, is repeated as many times as
needed to lower the SOH of the battery to 80%.

This structure is a generic structure. For each battery cell manufacturer (ex-
cept for the one furnished by Mob-Ion), two slightly different kinds of tests were
launched. One is referred to as "variable charge/fixed ARTEMIS" and the other
one as "fixed standard charge/WLTC ARTEMIS discharge". The global structure of
the test is the same, but for the variable charge/fixed ARTEMIS structure, the driv-
ing discharge loop only uses ARTEMIS cycles and then the complete charge varies
between slow, standard and fast. For the fixed standard charge/WLTC ARTEMIS
discharge, the structure reverses and the driving cycles vary between WLTC and
ARTEMIS while the full charge always remains a standard charge.

Full driving discharge Capacity check

Full fast, standard 
or slow charge 

Initial capacity 
check

Full standard charge 

time 

current

1

2

3

Initial full 
discharge

Full slow charge

Figure 5.8: Structure of the test protocols

5.4.4 Storage procedures

At some points since the battery cycling was launched, tests had to be stopped for
various reasons and some of the batteries that were used to design the tests had
to be stored afterwards. Li-Ion batteries need to be put in a specific state of charge
before being stored for a long time in order not to degrade. Therefore, we designed a
storage procedure that was launched anytime the tests needed to be stopped. This
procedure was meant to fully discharge the battery, and then to charge it at 50%
with reference to its voltage [KJ17]. The storage voltage is defined as follows :

Ustorage = Umin + (Ucharge − Umin) ∗ 0.5 (5.1)

where Umin is the minimum cell voltage recommended by the manufacturer and
Ucharge is the charge voltage recommended by the manufacturer (Ucharge is higher
than the nominal voltage).
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Each time a test has to be stopped, the storage procedure is launched, and then
the same full test protocol is started again (comprising the initial discharge, full
charge, capacity check and three loops described earlier).

5.5 Ageing results

The current tests have been launched in January 2022. Nine month after, several
batteries have seen their SOH drop below 80%, but for most cells, tests are still
running.

Samsung cells have all reached their EoL, while the capacity of LFP batteries
has barely dropped (1.11Ah for cell LFP-A123-01, 1.07 Ah for cell LFP-A123-02 and
1.04 Ah for cell LFP-A123-03). Panasonic cells are reaching their EoL, but tests will
continue until their SOH goes below 80% to see how SOH evolves in late life.

5.6 Conclusion on the experimental setup for Li-Ion bat-
tery ageing

This short chapter aimed at presenting the experimental setup that was built all
along this PhD to increase the amount of data used to build predictive prognostics
models for Li-Ion batteries. Collecting ageing data is quite slow with Li-Ion batter-
ies because they perform very well and take time to degrade. Moreover, the amount
of data needs to be very large to train a model and training data must include as
many battery cells as possible. The amount of collected data from our test bench up
to today is not sufficient to train a SOH predictive model from scratch. However,
it could already prove useful for other applications. The prediction of SoC for ex-
ample does no require that batteries reach their EoL. Only operating data coming
from multiple cycles are needed, and our tested batteries have been through sev-
eral hundreds of full charge and discharge cycles. This test bench is meant to be
made permanent, which means that each time a battery cell reaches its EoL, it can
be replaced by a new one. Samsung cells for example have already been replaced
by new ones. In order to make the best possible use of our ageing data, a database
has been created to store and possibly share the information. Ageing data will be
made available upon request.
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Conclusion and Future Work

Conclusion

Throughout all the chapters of this thesis, the principle and importance of predic-
tive maintenance for Li-Ion batteries were presented. The challenges associated
with battery performance are of crucial importance to the development of EVs as
part of a truly sustainable development strategy. The transformation of the trans-
port sector will only be truly effective if we take into account the issues surround-
ing Li-Ion batteries, their production, use and recycling. All the contributions ad-
dressed by this thesis focus on the operating mode and environment of Li-Ion bat-
teries. A number of problems have been raised, such as the need for representative
data on the use of batteries in vehicles, the need to extract simple features from it, to
predict SOH or RUL at any stage of the life of a battery... The use of ANN and RNN
makes it possible to model the ageing phenomena that occur inside Li-Ion batteries
more efficiently than with physical approaches. Even though the obtained models
with ANN and RNN are "black box" models, the facts that they can adapt to any
input and be embedded on board a vehicle make them a very powerful tool in the
scope of predictive maintenance.

Three major models are built and take advantage of a dataset that was published
by the department of chemical engineering of the MIT, in collaboration with Toy-
ota engineering and with the Department of Materials Science and engineering of
Stanford university in [SAJ+19].

These models are highly theoretical, suggesting the use of individual battery
cells instead of traditional battery packs. However, despite their theoretical nature,
these approaches are promising and could be applied to various other situations.
It has been shown that even with a minimal amount of input signals consisting of
easily obtainable parameters like current, voltage, and temperature, one can gain
valuable insights into the battery’s environment and usage patterns. The contribu-
tions described in the different chapter of this thesis are summarised below.

In chapter 2, a first model for RUL prediction is developed. The advantage and
originality of this model lie in the fact that the prediction is based on a single use
cycle. An ANN is developed, referred to as cycle-based-ANN. This model takes as
input a combination of historical features and features computed from time series
of temperature. The obtained predictions are outperforming other approaches of
the literature with a MAE of 5.76 cycles.

In chapter 3, time series data of current, voltage, and temperature are exploited
to identify the influence of battery usage in the evolution of SOH. Features are ex-
tracted from those time series and used as input to a TSF-XLSTM. The prediction
is made from a window of 25 consecutive cycles and corresponds to one value of
SOH from 25 to 400 cycles ahead.
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In chapter 4, a complementary approach to the 2nd contribution is made. In
stead of predicting one single value of SOH, the full sequence of SOH until EoL
is predicted with a TSF-XSeq2Seq. When comparing the point prediction with the
sequence prediction, the TSF-XLSTM model has better performances than the TSF-
XSeq2Seq, but the TSF-XSeq2Seq bring a wider view of the impact of a use mode
over the global life of a battery.

Finally, in chapter 5, a quick presentation of our battery test bench is given. The
aim of this test bench is to gather ageing data form different battery cells, with
different test protocols that are close to real operating conditions. Ultimately, this
data will be used to train new ML models for the predictive maintenance of Li-Ion
batteries.

Future Work

Several perspective can be explored after the different contributions of this thesis.
One of the first goals is to take advantage of the data generated with the test

bench in our predictive models. Indeed, there is considerable room for improve-
ment in the usefulness of the contributions if models are trained with realistic data
in stead of theoretical data. For now, the amount of collected data is not sufficient to
train new models from scratch. However, a first interesting use of the data would
be implement transfer learning from pre-trained models. The aim of transfer learn-
ing is to improve the performances of a model by transferring information from
another domain [WKW16]. In this case, the previously trained TSF-XLSTM or TSF-
XSeq2Seq would be the baseline approach, and an upper layer of knowledge could
be brought by new data coming from the test bench.

Concerning the test bench, as part of our commitment to open science, some
efforts will be put to creating an accessible data base on which ageing data would
be uploaded regularly. The idea is to answer the FAIR principles 1.

The ultimate goal of predictive maintenance is to make real-time predictions
while a system is being used. This thesis focused on a small part of the develop-
ment of a predictive maintenance strategy which consists in building predictive
models. In order to complete the global approach, the models should be embedded
on board a vehicle and make use of instantly acquired data coming from current,
voltage and temperature sensors. That way, user could be informed of the impact
of their driving habits on the SOH of the battery. Moreover, a real-time internal
battery management strategy could be deployed in order to make the best possi-
ble use of it. Some protections could be settled such as cell balancing, temperature
control, limitation of the current peaks to cite a few... By raising the awareness on
the user side about eco-driving and best practices, and by improving the internal
management of the battery, the global cycle life and driving range of a battery could
be significantly increased. An increased cycle life and better driving range mean a
reduced TCO and environmental impact.

1https://www.go-fair.org/fair-principles/

https://www.go-fair.org/fair-principles/
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Deploying an embedded approach that works with real-time-acquired data re-
quires to study the scalability of the models. Our current theoretical models per-
form well with a limited amount of data and with (almost) no restriction concerning
computation requirements for training and testing. On board a vehicle, it is crucial
to make sure that the model will perform equally with potentially less power to run
calculation, and more data, or data of a slightly different quality. Cloud computing
combined with data transfer could be an option to consider, which is a problem that
will be tackled by the European project Energetic 2, hold by INSA Strasbourg.

Finally, a major perspective of this thesis is to improve the understanding of
the ageing mechanisms by improving the understanding of the "black box" models
that were developed. ANN are complex mathematical functions and it is almost
impossible to isolate the contribution of one of the input signals in the prediction of
the model. Works on explainability have already started, linked to the prediction
of the state of charge of a battery [HSM+23]. The aim of this work is to identify
patterns where battery ageing accelerates by analysing temperature data from Li-
Ion cells. This approach is based on the use of SHAP, an explanation method first
introduced in [LL17].

2https://recherche.insa-strasbourg.fr/lancement-projet-horizon-europe-energetic/

https://recherche.insa-strasbourg.fr/lancement-projet-horizon-europe-energetic/
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Résumé en français de la thèse de doctorat

1 Introduction

1.1 Contexte

En France comme dans beaucoup d’autres pays du monde, la grande majorité des
déplacements se fait en véhicules individuels motorisés, qu’il s’agisse de voitures ou de
deux-roues. Le secteur des transports est responsable de 15 % des émissions de gaz à
effet de serre dans le monde, et de 30 % en France. Le Parlement européen a réaffirmé
sa position concernant l’objectif de zéro émission pour le secteur des transports d’ici
2035 [Eur21]. Parmi d’autres mesures, un texte a été adopté pour interdire la com-
mercialisation de véhicules thermiques neufs d’ici à cette date. À ce jour, les véhicules
électriques (VE) constituent la seule alternative sérieuse aux véhicules thermiques.
Les batteries les plus répandues dans les VE sont les batteries lithium-ion (Li-Ion),
qui sont récemment devenues un sujet d’intérêt et de préoccupation. Les ressources
nécessaires à la construction des VE, et plus particulièrement des batteries Li-Ion, ont
fait l’objet d’une prise de conscience collective.

L’utilisation de ces batteries est l’une des principales raisons pour lesquelles la
diffusion des VE est ralentie. Elles comptent pour la majeure partie du prix d’un VE,
et bien que la recherche dans le domaine des transports ait porté les performances des
VE au même niveau que celles des véhicules thermiques, l’un des arguments le plus
souvent cité à l’encontre des VE réside dans leur manque d’autonomie.

L’électrification des transports ne sera efficace dans le contexte global de la transi-
tion écologique que sous certaines conditions. Dans cette optique, les VE pourraient
devenir un maillon essentiel dans la chaîne des mobilités durables.

L’une des façons d’améliorer les VE est de travailler sur la structure des véhicules
eux-mêmes et sur la gestion de l’énergie à la fois à l’intérieur des véhicules et du point
de vue de l’utilisateur. L’un des meilleurs moyens d’atténuer la tension sur les matières
premières est de développer des véhicules de taille optimale pour répondre aux besoins
réels des utilisateur·ice·s et de réduire autant que possible les émissions de carbone liées
à la conception des véhicules et des batteries. Les modes de mobilités sobres doivent
être explorés davantage, avec des véhicules plus petits et plus légers et des batteries
plus petites. Récemment, la société CATL a travaillé sur des batteries condensées1, qui
pourraient permettre à des batteries deux fois plus petites que les modèles actuels de
transporter la même quantité d’énergie. Du côté français, la société Tiamat a travaillé
sur des batteries sodium-ion pour la mobilité et le stockage stationnaire de l’énergie
2. Cette technologie de batteries offre une densité de puissance plus élevée que les
batteries Li-Ion (de 1 à 5 kW/kg pour les batteries sodium-ion contre 0,5 à 1 kW/kg
pour les batteries Li-Ion) et une durée de vie plus longue (jusqu’à 8000 cycles pour les
batteries sodium-ion).

Des véhicules et des batteries conçus pour être réparables et recyclables, avec une
autonomie raisonnable pour les trajets quotidiens, et un système de gestion de l’énergie
efficace sont les points clés pour que les véhicules électriques soient vraiment propres.

1"CATL launches condensed battery with an energy density of up to 500 Wh/kg, enables electri-
fication of passenger aircrafts", 19 Apr 2023.

2" Nous voulons créer en France un Tesla de la batterie sodium-ion ", affirme Laurent Hubard,
directeur de Tiamat Energy (Consulté en septembre 2023)

1

 https://www.catl.com/en/news/6015.html
 https://www.catl.com/en/news/6015.html
https://www.usinenouvelle.com/article/nous-voulons-creer-en-france-un-tesla-de-la-batterie-sodium-ion-affirme-laurent-hubard-directeur-de-tiamat-energy.N1815362
https://www.usinenouvelle.com/article/nous-voulons-creer-en-france-un-tesla-de-la-batterie-sodium-ion-affirme-laurent-hubard-directeur-de-tiamat-energy.N1815362


La gestion de l’énergie, quant à elle, consiste à faire le meilleur usage possible de
la batterie. Du côté du véhicule, il peut s’agir d’équilibrer les cellules d’un pack de
batteries, de limiter les pics de courant, de réchauffer la batterie avant la charge, de la
refroidir pendant la conduite... Du côté des usagers, il est très important d’identifier les
comportements les plus dommageables pour la batterie. De cette manière, un retour
d’information pourrait être effectué afin d’éviter les situations dangereuses et d’aider
les utilisateur·ice·s à développer une conduite écologique et responsable.

1.2 Structure de la thèse et contributions

Dans le cadre de cette thèse, l’amélioration des performances des batteries a été étudiée
en se concentrant sur la recherche de données brutes de fonctionnement des batteries
Li-Ion, en les rendant utilisables dans un algorithme d’apprentissage automatique et
en construisant des modèles prédictifs. Dans les chapitres de contributions théoriques,
plusieurs modèles seront présentés, en mettant l’accent sur les données. Des informa-
tions sont données sur le type de données utilisées et sur ce qui est extrait des données
brutes afin d’entraîner des modèles d’apprentissage automatique. L’objectif des trois
contributions théoriques qui seront détaillées est de trouver un moyen de lier la façon
dont une batterie est utilisée à son stade de vieillissement et d’identifier à l’avance
l’impact d’une certaine utilisation sur la capacité de stockage.

Dans le premier chapitre, les outils théoriques nécessaires à la compréhension des
contributions sont décrits, ainsi que les principes fondamentaux du fonctionnement des
batteries Li-Ion et les approches existantes concernant la maintenance prévisionnelle
des batteries Li-Ion. Dans le chapitre 2, la première contribution est détaillée. Cette
première contribution est liée à la prédiction de la durée de vie restante (RUL) des
cellules Li-Ion testées par le MIT dans un jeu de données décrit de manière étendue.
Dans le troisième chapitre, un modèle de prédiction du SOH en fonction des données
d’utilisation (courant tension et température) est décrit. La prédiction est faite à
partir de données provenant d’une fenêtre de plusieurs cycles d’utilisation consécutifs
et consiste en une seule valeur future de SOH (de 25 à 400 cycles en avance). Dans
le chapitre 4, la même fenêtre d’utilisation est reprise en entrée d’un modèle plus
complexe, de type Sequence to Sequence (Seq2Seq). Ce modèle permet de prédire
une séquence complète de SOH jusqu’à la fin de vie d’une batterie. Enfin, dans le
cinquième et dernier chapitre, le dispositif expérimental conçu pour faire cycler des
batteries selon des sollicitations sur mesure et récolter des données de fonctionnement
est présenté.

2 État de l’art (Chapitre 1)

2.1 Outils théoriques

2.1.1 Type de données exploitées

Cette thèse porte sur l’exploitation de séries temporelles relevées lors de l’utilisation des
batteries Li-Ion (majoritairement des données de courant, tension et température). Ces
séries temporelles sont discrètes, multi-variées et synchrones. Les modèles développés
prennent en entrée plusieurs variables pour prédire un seul signal à la fois (soit le RUL
soit le SOH). Les variables d’entrées et de sortie sont systématiquement distinctes
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(aucun signal en entrée du modèle ne se retrouve dans le résultat de prédiction), donc
les modèles sont dits exogènes. Tous les modèles développés sont des modèles régressifs,
qui permettent de prédire une ou plusieurs valeurs futures d’un seul signal à partir de
plusieurs séries temporelles multi-variées.

Avant d’être exploitées dans les modèles d’apprentissages, les données brutes font
l’objet d’un pré-traitement en plusieurs étapes. Le but du pré-traitement de données
est d’extraire des paramètres représentatifs du phénomène de vieillissement des bat-
teries en lien avec leur mode d’utilisation, puis de sélectionner les paramètres les plus
pertinents afin de réduire la quantité de données à prendre en compte lors de la phase
d’apprentissage.

2.1.2 Modèles d’apprentissage

Les modèles développés dans cette thèse sont des modèles d’apprentissage automa-
tique, qui est une branche de l’intelligence artificielle. L’apprentissage automatique
permet de tirer de la connaissance à partir de données réelles grâce à un processus
d’apprentissage. L’objectif de ce processus est de trouver une fonction mathématique
capable d’associer les données d’entrée à une sortie correspondante. La fonction math-
ématique qui résulte du processus d’apprentissage est ce que l’on appelle le modèle,
qui sera utilisé pour prendre des décisions. Les modèles décrits dans les trois chapitres
de contributions théoriques sont des modèles d’apprentissage supervisés, basés sur des
réseaux de neurones de différents types selon les données traitées et la prédiction faite.
Ces réseaux peuvent être à propagation directe (figure 2) ou récurrents (Recurrent
Neural Networks, RNN), de type Long Short Term Memory (LSTM) (figure 3).

Data ML Model Prediction

Optimisation Evaluation

Figure 1: Principe du processus d’apprentissage

2.2 Les batteries Li-Ion

Les batteries Lithium-Ion (Li-Ion) connaissent un véritable essor depuis les années
1990, de fait de la popularisation massive des véhicules électriques.

Les batteries Li-Ion, et les batteries en général, sont des dispositifs de stockage de
l’énergie électrique. Ce sont des dispositifs électrochimiques qui convertissent l’énergie
chimique en électricité dans les deux sens. Toutes les batteries, quelle que soit leur com-
position chimique, sont composées d’une anode (électrode négative) et d’une cathode
(électrode positive). Les deux électrodes flottent dans un électrolyte et sont séparées
par une membrane appelée séparateur. Dans les batteries Li-Ion, la cathode est pro-
tégée du contact direct avec l’électrolyte par un filtre appelé interface électrolyte solide
(SEI). Le principe de fonctionnement d’une batterie Li-Ion est résumé dans la figure
4.
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Hidden layers

Output layer

Input layer

Figure 2: Structure d’un réseau de neurone artificiel à propagation directe

Forget gate 

Input gate Output gate 

ctct-1

Figure 3: Structure d’un RNN de type Long Short Term Memory (LSTM)

Le phénomène de vieillissement d’une batterie Li-Ion peut provenir de nombreux
facteurs externes et internes. Les mécanismes physiques tels que le stress thermique
ou mécanique peuvent influencer la dégradation (par exemple avec une température
externe élevée, des vibrations dues à l’état de la route, etc.) Les mécanismes chimiques
se produisent à l’intérieur de la batterie et peuvent être divisés en deux modes de
dégradation principaux : La perte lithium, qui est causée par la consommation d’ions
lithium par le biais de réactions secondaires et la perte de matière active, qui entraîne
une perte de capacité de stockage. Les mécanismes de dégradation d’une batterie sont
résumés dans la figure 5.

2.3 Données de vieillissement de batteries

Les modèles développés étant des modèles d’apprentissage, les données de vieillisse-
ment jouent un rôle essentiel.

Les données de fonctionnement des batteries Li-Ion à l’intérieur des véhicules sont
très difficiles à obtenir en raison des défis liés aux performances des batteries. Il est
très fréquent que les constructeurs automobiles gardent confidentielles toutes les in-
formations relatives aux batteries et à leur gestion afin d’être compétitifs et de gagner
des parts de marché dans le secteur de l’automobile. Par conséquent, la plupart des
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Figure 4: Schéma de fonctionnement d’une batterie Li-Ion

Figure 5: Mécanismes de dégradation dans les batteries Li-Ion [BRM+17]

données accessibles au public proviennent de laboratoires qui ont mené des recherches
sur les performances des batteries Li-ion dans différents contextes et avec différents ob-
jectifs. L’acquisition de données sur le vieillissement des batteries Li-Ion peut prendre
beaucoup de temps et nécessiter beaucoup de ressources, car elles sont si performantes
qu’un grand nombre de cycles est nécessaire pour observer une détérioration. En outre,
les dispositifs d’essai sont très coûteux, d’autant plus dans des conditions d’essai ex-
trêmes (telles que des températures contrôlées élevées ou basses dans des chambres
climatiques). Afin de réduire les coûts et la puissance nécessaire pour tester les bat-
teries, il est presque systématique d’utiliser des cellules et non des packs batteries
complets. En effet, la puissance requise pour charger ou décharger complètement des
batteries de véhicules est beaucoup plus élevée qu’avec des cellules isolées. Les princi-
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Table 1: Principaux jeux de données publics sur le vieillissement de cellules Li-Ion

Nom du jeu de don-
nées

Organisme # Cellules Année Remarques

PCoE Battery
Dataset

NASA Ames 34 2008-
2010

Cycle Life Prediction
Dataset

MIT - Stanford Univer-
sity

124 2017-
2018

Short-Term Cycling
Performance Dataset

Sandia National Labora-
tories

24 2017 Chimies et
températures
différentes

Long-Term Degrada-
tion Dataset

Sandia National Labora-
tories

86 2018-
2020

Chimies, tem-
pératures et
profondeurs
de décharge
différentes

Oxford Battery
Degradation Dataset

Oxford University 8 2015 Profils de con-
duite

paux jeux de données disponibles dans la littérature et exploités dans cette thèse sont
résumés dans le tableau 2

2.4 Approches existantes pour la maintenance prévisionnelle
des batteries Li-Ion

En ce qui concerne les batteries, la maintenance prévisionnelle vise à déterminer com-
ment et quand une défaillance se produira en fonction des données de fonctionnement
antérieures acquises par divers capteurs, mais vise également à donner une image à
long terme de l’état de santé de la batterie [WWYL19]. Dans une grande majorité
d’articles, la maintenance prévisionnelle des batteries Li-Ion consiste à déterminer leur
durée de vie utile restante. Une batterie est considérée comme hors d’usage pour un
véhicule électrique lorsqu’elle a atteint 80% de son état de santé initial (fig 6).

Figure 6: Evolution of SOH, from 100% to 80%

La plupart des approches traitent de la prédiction de la RUL en termes de cycles.
Cela peut se faire soit en prévoyant l’évolution temporelle du SOH de la batterie, soit
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en effectuant une régression directe sur le RUL.
Dans les deux cas (prédiction SOH ou RUL), on trouve une grande variété d’approches

dans la littérature. Les approches basées sur les données pour la maintenance prévi-
sionnelle des batteries peuvent être classées en trois catégories : Modèles autorégres-
sifs non linéaires (NAR), Modèles autorégressifs non linéaires avec variables
exogènes (NARX), et Modèles régressifs non linéaires avec variables exogènes
(NRX).

2.5 Modèles autorégressifs non linéaires

L’approche NAR consiste à observer une fenêtre de valeurs passées du SOH pour
prédire la tendance future du SOH. Dans la plupart des approches NAR, les réseaux
de neurones récurrents (RNN) sont utilisés en raison de leur capacité à apprendre
des représentations à partir de séquences de données. Dans [LZWD19], Li et al. ont
combiné la décomposition en mode empirique des courbes de SOH avec les réseaux
de neurones d’Elmann et des LSTM. Zhang et al. dans [?] et Liu dans [LZP19] ont
également divisé les courbes SOH en fenêtres successives afin de les prendre comme
entrée de plusieurs réseaux LSTM.

2.6 Modèles autorégressifs non linéaires avec variables exogènes

Les approches NARX diffèrent des approches NAR par l’inclusion d’autres variables
d’entrée dans les modèles prédictifs. Le SOH est combiné à d’autres paramètres
représentatifs du phénomène de vieillissement afin de prédire la tendance future du
SOH avec plus de précision. Dans [KY19], Khumprom et Yodo ont utilisé des paramètres
extraits des courbes de courant et de tension pour prédire le futur SOH avec un réseau
de neurones à propagation directe.

2.7 Modèles régressifs non linéaires avec variables exogènes

Avec les approches NRX, seules les variables exogènes sont utilisées pour prédire le
SOH ou le RUL. Pour la prédiction du SOH avec les approches NRX, seules les car-
actéristiques extraites des séries temporelles telles que le courant et la tension sont
utilisées comme entrée du modèle. Pour la prédiction du RUL, seul le SOH ou une
combinaison du SOH et d’autres caractéristiques peuvent être utilisés. Dans [YPO17],
You, Park et Oh ont isolé des fenêtres de courant et de tension comme entrée d’un
modèle LSTM multiple. Ren et al. dans [RZH+18] ont extrait des caractéristiques des
courbes temporelles avec des auto-encodeurs, combinés avec des réseaux de neurones
à convolutions et des LSTM pour la prédiction du RUL.

3 Contributions de cette thèse

3.1 Prédiction de la durée de vie restante (RUL) à partir de
paramètres historiques (Chapitre 2)

Ce chapitre décrit les travaux réalisés concernant une estimation précoce et hors
ligne de la durée de vie globale des batteries Li-Ion et une prédiction en ligne de
la durée de vie utile d’une batterie. Une analyse des données fournies par le MIT
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Figure 7: Stratégie de prédiction de la durée de vie globale hors ligne

est tout d’abord effectuée. Plusieurs indicateurs de santé sont extraits des données
d’exploitation brutes. Selon le type de prédiction (prédiction de la durée de vie du
cycle hors ligne ou prédiction de la durée de vie utile en ligne), deux modèles sont
conçus et évalués, sur la base de structures de données et d’indicateurs de santé dif-
férents. Cette approche établit un lien direct entre les données de fonctionnement de
la batterie et sa durée de vie.

La stratégie hors ligne pour l’estimation de la durée de vie globale décrite dans
ce chapitre consiste à comparer l’état d’une batterie neuve qui n’a subi aucune phase
de charge ou de décharge avec l’état de la même batterie après 100 cycles de fonc-
tionnement complets (charges et décharges complètes successives), comme cela a été
fait dans l’étude de [SAJ+]. Les batteries Li-Ion étant très efficaces et l’utilisation des
batteries étant identique du début à la fin de vie dans l’ensemble des données du MIT,
des dommages minimes sont observés entre le cycle 0 et le cycle 100. Néanmoins, le
moindre changement dans les performances de la batterie après 100 cycles d’utilisation
peut être exploité pour estimer sa durée de vie globale. La stratégie de prédiction hors
ligne est décrite dans la figure 7. Plusieurs paramètres sont extraits de la comparaison
entre les courbes de capacité et de résistance interne aux cycles 1 et 100, aux cycles 4
et 5 et directement au cycle 2.

La stratégie en ligne pour la prédiction de la durée de vie utile décrite dans ce
chapitre consiste à observer chaque cycle de fonctionnement d’une batterie et à en
extraire des indicateurs de santé. Ces indicateurs de santé sont utilisés comme données
d’entrée dans un modèle d’estimation qui permet une prédiction en ligne de l’autonomie
d’une batterie. Cela signifie que pour chaque batterie, chaque cycle d’utilisation peut
être utilisé comme entrée du modèle d’estimation, et qu’il peut y avoir autant de
prédictions que le nombre de cycles dans la vie d’une batterie (voir figure 8). Pour
chaque cycle d’utilisation, plusieurs paramètres sont extraits des données historiques
(le SOH, la résistance interne (IR), le temps de charge, . . . ), ainsi que des courbes de
température (Tmoy, Tmin, Tmax, . . . ) et sont ensuite exploités en entrée d’un réseau de
neurones à propagation directe pour prédire le RUL (voir fig 11).

La figure 11 montre les performances de prédiction du modèle en ligne pour la
prédiction RUL. Le tableau 2 compare les performances du modèle de prédiction de
la durée de vie globale hors ligne et de la prédiction du RUL en ligne avec d’autres
approches de la littérature, basées sur le même ensemble de données et d’autres modèles
de prédiction du RUL. Le modèle en ligne atteint une erreur absolue de 9,25 cycles en
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Figure 8: Stratégie de prédiction de la durée de vie globale en ligne

Figure 9: Structure du réseau de neurones pour la prédiction en ligne de la RUL
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Figure 10: Performances de prédiction de la durée de vie globale hors ligne

moyenne et surpasse les deux autres approches décrites dans [SAJ+] et [HK19].
Bien que cette approche donne des résultats très précis pour la prédiction de la

durée de vie utile des cellules, elle présente certaines lacunes. La méthode en ligne ne
prend en compte que les caractéristiques historiques et certains paramètre extraits de
courbes de température, ce qui signifie que les séries temporelles de la tension et de la
température ne sont pas prises en compte. En outre, chaque cycle de la vie d’une cellule
est considéré comme un échantillon d’entrée du modèle d’apprentissage, ce qui signifie
que tous les cycles sont considérés comme indépendants. Afin d’étudier l’impact des
conditions de fonctionnement d’une batterie sur son SOH, les séries temporelles du
courant, tension et température doivent être prises en compte.
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Figure 11: Performance de prédiction en ligne du RUL

Table 2: Comparaison des performances de prédiction du modèle en ligne avec la
littérature

RMSE MAE MAPE
Prédiction hors ligne de la durée de vie globale 115,95 81,91 10,09

Prédiction en ligne du RUL 12.25 5.76 4.26 %
LR from [SAJ+] 173 N/A 8.6 %
CNN from [HK19] N/A 115 N/A

3.2 Prédiction de l’état de santé (SOH) à partir de séries tem-
porelles (Chapitre 3)

La deuxième contribution de cette thèse consiste à compléter le modèle de prédic-
tion en ligne du RUL basé sur les cycles par un modèle capable de prédire le SOH
d’une batterie en fonction de ses conditions d’utilisation. Ce modèle de prédiction du
SOH est basé sur l’utilisation de modèles non linéaires régressifs avec des variables
exogènes, utilisant uniquement des caractéristiques externes extraites des données de
conduite pour prédire les valeurs futures du SOH (courbes de courant, de tension et
de température).

Dans ce chapitre, deux modèles sont décrits. Ces deux modèles permettent d’extraire
des paramètres des séries temporelles de courant, tension et température deux deux
manière différentes : grâce à un modèle d’apprentissage d’une part (Auto-encodeur)
et par des méthodes calculatoires d’autre part (TFS). Ces paramètres extraits sont
utilisés en entrée de deux modèles différents, respectivement référencés sous les ter-
mes AE-XLSTM et TSF-XLSTM. Ces deux modèles sont basés sur l’utilisation de
réseaux de neurones récurrents de types LSTM.

Avec les deux modèles, les prédictions de SOH peuvent être faites à très court
terme ou à plus long terme. L’ensemble de données d’entraînement pour la prédiction
du SOH dans cette approche est construit de manière à ce que plusieurs horizons de
prédiction soient possibles. Les valeurs futures du SOH sont prédites de 25 à 400 cycles
à l’avance.

Dans les figures 12 et 13, une comparaison est faite entre la courbe réelle du SOH
et la courbe prédite, pour des prédictions à 50 cycles d’avance avec l’AE-XLSTM et
des prédictions à 25 cycles d’avance avec le TSF-XLSTM.

Le tableau 3 montre que le modèle TSF-XLSTM est plus performant que le mod-
èle AE-XLSTM. Pour une prédiction du SOH à 50 cycles d’avance, le TSF-XLSTM
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Table 3: Comparaison des performances de prédiction du SOH, 50 cycles à l’avance,
sur les cellules du MIT

MAE (∗10−2) σAE (∗10−2) RMSE (∗10−2) NMSE (∗10−1)
TSF-XLSTM 1.1 1.2 1.6 0.1
AE-XLSTM 2.4 1.2 2.8 8.1
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Figure 12: AE-XLSTM
Prédiction du SOH 50 cycles en avance
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Figure 13: TSF-XLSTM
Prédiction du SOH 25 cycles en avance

présente une RMSE de 1, 6 ∗ 10−2 contre 2, 8 ∗ 10−2 pour l’AE-XLSTM.
Le modèle TSF-XLSTM est moins complexe car il n’utilise que des LSTM dans

le modèle lui-même, contrairement au modèle AE-XLSTM qui fait entrer en jeu un
Auto-encodeur en amont du LSTM. Le pré-traitement des données nécessite de faibles
capacités de calcul car des caractéristiques très simples sont extraites des séries tem-
porelles.

Bien que ces modèles aient de très bonnes performances, ils ne prédisent qu’une
seule valeur de SOH dans le futur. En prédisant une séquence complète de SOH à
partir d’une fenêtre de plusieurs cycles consécutifs, l’impact d’une utilisation donnée
sur le SOH d’une batterie pourrait être étudié plus précisément.

3.3 Utilisation d’un modèle de type Seq2Seq pour la prédiction
de séquences d’état de santé (SOH) (Chapitre 4)

La dernière contribution de cette thèse consiste à améliorer la méthode précédente de
prédiction du SOH en produisant une séquence complète de SOH plutôt qu’un point
unique. Le problème passe d’une régression sur le SOH à une approche de prédiction
de séquence à séquence. Une telle approche a été mise en œuvre dans [LSD+21]. Dans
cet article, des chercheur·euse·s de l’université allemande d’Aix-la-Chapelle décrivent
un nouvel ensemble de données sur le vieillissement des batteries Li-Ion, qui a servi à
construire un modèle de type séquence à séquence (Seq2Seq) permettant de prédire la
dégradation de la capacité.

Le principe de la prédiction Seq2Seq repose sur l’utilisation de cellules LSTM con-
struites comme un Encodeur-Décodeur. Le modèle décrit dans [LSD+21] est un modèle
NAR, ce qui signifie que seules les valeurs passées de SOH sont utilisées pour prédire
les valeurs futures. Nous avons adapté cette approche pour transformer le modèle
de prédiction de séquences de SOH en un modèle NRX, qui prenne en entrée une
fenêtre fixe de 25 cycles consécutifs d’utilisation d’une cellule (représentés par des
paramètres extraits des séries temporelles de courant, tension et température) et qui
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prédise l’évolution du SOH de cette cellule jusqu’à la fin de sa vie. De plus, le modèle
a été adapté pour pouvoir l’entraîner sur les données issues du MIT et non plus celles
fournies par l’université d’Aix-la-Chappelle.
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Figure 14: Principe des fenêtres glissantes pour la prédiction de séquences de SOH

La figure 15 montre les performances de prédiction de notre TSF-XSeq2Seq pour
la prédiction du SOH à partir d’une seule fenêtre de 25 cycles consécutifs sur la cellule
b1c17 du jeu de donnée du MIT et à deux moments différent dans la vie de la cellule.
Dans le tableau 4, une comparaison est faite entre les performances du modèle de
[LSD+21] et notre TSF-XSeq2Seq. Pour chaque métrique d’erreur, deux mesures sont
fournies : l’erreur obtenue lors de la première prédiction possible à partir de la première
fenêtre d’entrée extraite des séries temporelles de courant, tension et température de
chaque cellule de l’ensemble de test, et l’erreur moyenne obtenue sur l’ensemble des
fenêtres d’entrée de toutes les cellules de test.

Il apparaît clairement que notre modèle NRX est plus performant que le modèle
endogène basé sur les données d’Aix-la-Chapelle. Tant pour la prédiction précoce que
sur la moyenne de toutes les prédictions possibles, notre TSF-XSeq2Seq a des erreurs
plus faibles et une meilleure réplicabilité des résultats.

3.4 Dispositif expérimental (Chapitre 5)

Le dernier chapitre de cette thèse décrit le travail effectué pour construire notre pro-
pre ensemble de données sur le vieillissement de cellules de batteries Li-Ion, avec une
présentation détaillée du banc d’essai, des capteurs, des dispositifs utilisés et des pro-
tocoles d’essai.

L’objectif est de construire un banc d’essai complet pour différents types de cellules
de batterie et d’obtenir des données de vieillissement à partir d’un dispositif de cyclage
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Figure 15: Prédiction de séquences complètes de SOH sur la cellule b1c17

Table 4: Comparaison des performances de prédiction entre la méthode [LSD+21] sur
les données d’Aix-la-Chapelle et le TSF-XSeq2Seq sur les données MIT

[LSD+21] TSF-XSeq2Seq

MAPE En moyenne 3.34 2.60
1ère prédiction 4.50 2.95

MAE En moyenne 0.04 0.02
1ère prédiction 0.05 0.03

σAE
En moyenne 0.03 0.01
1ère prédiction 0.05 0.02

RMSE En moyenne 0.05 0.03
1ère prédiction 0.08 0.04

RMSPE En moyenne 4.37 3.24
1ère prédiction 6.78 4.11

de batterie.
Plusieurs protocoles d’essai ont été établis et différentes cellules de batterie peuvent

être testées en même temps en suivant des cycles de charge et de décharge prédéfinis.
Notre objectif est de constituer un ensemble de données complet avec une très large
gamme de tests représentatifs de l’utilisation réelle des batteries dans les VE. Par
exemple, les tests qui ont été définis avec le cycleur correspondent à des phases de
charge rapide, standard ou lente et à des conditions de décharge qui sont définies
d’après plusieurs cycles de conduite normalisés.

Les tests actuels ont été lancés en janvier 2022. Neuf mois plus tard, plusieurs
batteries ont vu leur SOH passer sous la barre des 80%, mais pour la plupart des
cellules, les tests se poursuivent.

Certaines cellules NMC ont atteint leur fin de vie, tandis que la capacité des bat-
teries LFP a à peine baissé. Certains tests seront poursuivis au-delà des 80% de
dégradation pour observer l’évolution du SOH.

4 Conclusion et travaux futurs
Dans cette thèse, trois modèles majeurs sont construits et tirent parti d’un jeu de
données publié par le département d’ingénierie chimique du MIT, en collaboration avec
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Figure 16: Charge lente suivie d’une charge rapide

Figure 17: Installation du banc de test

Toyota engineering et avec le département de science des matériaux et d’ingénierie de
l’université de Stanford [SAJ+19].

Ces modèles sont très théoriques et suggèrent l’utilisation de cellules de batterie
individuelles au lieu de packs batterie complets. Cependant, malgré leur caractère
théorique, ces approches sont prometteuses et pourraient être appliquées à diverses
autres situations. Il a été démontré que même avec une quantité minimale de sig-
naux d’entrée extraits des courbes de courant, tension et température, il est possible
d’obtenir des informations précieuses sur l’environnement de la batterie et ses modes
d’utilisation. Les différentes contributions décrites permettent de prédire avec fiabilité
la durée de vie restante et l’évolution de l’état de santé de cellules Li-Ion, en fonction
de leur mode d’utilisation et à tout moment de leur vie.

Les perspectives d’évolution de ces travaux sont nombreuses. La quantité de don-
nées générées par le banc d’essai décrit dans le chapitre 5 n’était pas suffisante au
moment de la publication des travaux pour pouvoir entraîner un modèle complet. Une
première amélioration consisterait en l’emploi de ces données au sein des algorithmes
d’apprentissage, suivi de la publication des données dans une démarche de science
ouverte.

Le but de la maintenance prévisionnelle est de prendre en compte l’évolution d’un
système dans son environnement d’utilisation pour prédire de potentielles défaillances.
Le fait d’embarquer les modèles développés dans des systèmes de gestion de la batterie
embarqués permettrait d’en exploiter tout le potentiel.
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Résumé 

La batterie est un élément central des véhicules électriques, soumis à de nombreux enjeux en 
termes de performances, sécurité et coût. La durée de vie des batteries en particulier fait l’objet 
d’une grande attention, car elle doit s’aligner avec la durée de vie d’un véhicule. Dans ce contexte, la 
maintenance prévisionnelle vise à prédire de manière fiable la durée de vie utile restante (RUL) et 
l’évolution de l’état de santé (SOH) d'une batterie Lithium-Ion (Li-Ion) en utilisant les données 
d'utilisation passées et présentes, de manière à anticiper les opérations de maintenance. L’objectif 
de cette thèse est de tirer profit de l’information contenue dans les séries temporelles de courant, 
tension et température via des algorithmes d’apprentissage automatique. Plusieurs modèles 
prédictifs ont étés développés à partir de jeux de données publics, afin de prédire le RUL d’une 
batterie ou l’évolution de son SOH à plus ou moins long terme.  

Mots clefs : Batteries lithium-ion, Véhicules Électriques, Maintenance Prévisionnelle, Apprentissage 
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Résumé en anglais 

The battery is a central component of electric vehicles, and is subject to numerous challenges in 
terms of performance, safety and cost. The life of batteries in particular is the subject of a great deal 
of attention, as it needs to be aligned with the life of a vehicle. In this context, predictive maintenance 
aims to reliably predict the remaining useful life (RUL) and the evolution of the state of health (SOH) 
of a Lithium-Ion (Li-Ion) battery using past and present operating data, so as to anticipate 
maintenance operations. The objective of this thesis is to take advantage of the information 
contained in the time series of current, voltage and temperature via machine learning algorithms. 
Several predictive models have been developed from public datasets, in order to predict the RUL of 
a battery or the evolution of its SOH in the more or less long term. 
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