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RÉSUMÉ EN FRANÇAIS

Contexte

Les systèmes de contrôle de versions sont l’une des pierres angulaires du développement
des logiciels modernes. En intégrant les modifications entre les versions, ils facilitent la
collaboration entre les développeurs et permettent l’intégration et la livraison continues des
artefacts logiciels. Au fil du temps, les développeurs produisent de nouvelles versions qui
introduisent des fonctionnalités et du code supplémentaires. Par exemple, le noyau Linux
compte aujourd’hui plus d’un million de commits, 20 000 fonctionnalités et plus de 15
millions de lignes de code (voir [LM18] et section 11.1.2). Ce qui ralentit le téléchargement,
la construction et l’analyse des logiciels [Ach+19]. Par conséquent, il devient essentiel
d’améliorer l’efficacité des systèmes qui gèrent les historiques des codes sources des logiciels
tout en améliorant la facilité d’utilisation et notre compréhension des historiques déjà
existants.

Pour comprendre l’importance et les défis des historiques de code sources, de nombreux
parallèles peuvent être établis avec les supports de connaissances antérieurs. Comme les
livres, les projets de logiciels contiennent des parties importantes du savoir humain, de la
même manière que nous conservons les livres dans des bibliothèques et des archives, nous
conservons les historiques des logiciels dans des coffres-forts (Github Arctic Vault [Vau20])
et des archives (SoftWare Heritage (SWH) [DZ17]) À l’instar des livres, la croissance de
la production et de l’utilisation des logiciels a été rendue possible par l’automatisation.
Comme les livres écrits dans des langues anciennes qui sont traduits et adaptés aux
langues et aux préoccupations modernes, les logiciels sont modernisés et maintenus;
notament par l’usage d’outils qui automatisent des taches de refactoring, de contrôle, et
d’ameloriations de la qualité du code. Contrairement aux livres, le développement du code
source moderne est massivement collaboratif, des milliers de développeurs modifient des
logiciels interdépendants. Contrairement aux livres, les logiciels sont modifiés et publiés
à un rythme rapide. Contrairement aux livres, le code source est, en plus d’être lu par
des humains, conçu pour être traité et transformé par d’autres programmes, tels que les
compilateurs et les systèmes de construction.

Pour que les outils de traitement du code source restent simples, les langages de
programmation sont structurés et suivent de nombreuses règles et modèles explicitement
définis. Si les règles et les modèles aident les développeurs à définir les programmes avec
précision, ils rendent parfois l’adaptation et la modernisation difficiles, de sorte que les
développeurs se dotent d’un plus grand nombre d’outils pour automatiser les tâches de
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maintenance. Pourtant, en raison des contraintes de ressources et de l’efficacité limitée,
les maintenances automatisées existantes sont appliquées à un nombre limité de versions :
généralement, la dernière version et quelques têtes de branches sélectionnées. En fait, la
maintenance des anciennes versions n’est la plupart du temps assurée que pour les systèmes
logiciels critiques, souvent sous la forme de rétro-portages de corrections de bogues de
sécurité.

Le développement de logiciels modernes s’appuie sur les Version Control System (VCS)
pour gérer le code source. Le premier VCS remonte à 1972 avec Source Code Control
System (SCCS) [Roc75], qui stockait simplement les deltas des fichiers individuels. Depuis
50 ans, de nombreux VCS ont été développés, évoluant de manière empirique pour gérer
des projets et des pratiques plus exigeants. En 2023, l’VCS le plus répandu est Git. Il
est utilisé pour toutes sortes de projets, et est capable de gérer de grands projets logiciels
composés de millions de Lines of Code (LoC), tels que le noyau Linux, Chromium, ou
LLVM. Depuis l’avènement de Git, les grandes entreprises ont encore amélioré VCS pour
gérer un grand nombre de projets couvrant l’ensemble de l’entreprise [Met23; PL16]. Enfin,
les chercheurs ont conçu des moyens d’archiver efficacement l’historique du code source de
millions de projets [DZ17].

Parallèlement à l’avènement de VCS, un nouveau domaine de recherche a vu le jour,
axé sur l’évolution des logiciels. Les lois de l’évolution des logiciels ont commencé à
être énoncées en 1974 par Lehman et Belady, et après des décennies d’affinement, huit
lois ont été élaborées [Leh78; Leh79; Leh96; LR03; YM13]. En 1976, l’auteur [Swa76] a
classé la maintenance des logiciels en fonction du contexte et de la cause de l’activité de
maintenance. En 1994, Parnas présente le vieillissement des logiciels [Par94], établissant
un parallèle entre le vieillissement des logiciels et celui des organismes vivants.

Avec tous ces outils et une compréhension approfondie de l’évolution des logiciels, il
est désormais beaucoup plus facile de créer, de contribuer et de partager des systèmes
logiciels. Les forges logicielles, telles que GitHub ou Gitlab, constituent l’une des dernières
améliorations sur le front de l’accessibilité, avec des fonctionnalités et des outils complets
qui aident à organiser et à automatiser le développement. Si l’on ajoute les avantages du
développement open-source, [Hec99], il a conduit à une forte augmentation des projets
open-source. Par exemple, les références SWH s’élèvent à environ 200 millions d’origines
Git (y compris les forks), dont 188 millions sur GitHub (cf. section 11.2).

Problème

Fournir en permanence des produits et des services robustes sur des systèmes logiciels
massifs et complexes nécessite des analyses et des tests approfondis. Par conséquent,
l’exécution de toutes les analyses et de tous les tests à chaque changement constitue un
défi, voire même un impossibilité. Les systèmes de construction et les outils d’analyse
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existants s’attaquent déjà à cette complexité par des approches incrémentales, soit en
modifiant de manière incrémentale un état transitoire, soit en mettant en cache des
artefacts intermédiaires. Cependant, les approches existantes considèrent des artefacts
à gros grain (le plus souvent au niveau du fichier) et une représentation basée sur le
texte (avec peu d’accès à la sémantique). Dans cette thèse, nous démontrons qu’il est
possible d’améliorer de manière significative les approches incrémentales en considérant
des éléments à grain plus fin tout en adaptant les analyses existantes.

Cette thèse vise donc à relever divers défis scientifiques concernant l’extensibilité des
approches et des analyses logicielles à de grands projets logiciels industriels. Le premier
défi que j’aborde concerne l’analyse temporelle de l’historique des codes sources par le biais
de coévolutions fines, afin d’aider à la compréhension et à l’automatisation des codes. Ces
coévolutions constituent un défi en raison des relations complexes entre les éléments du code
et de la quantité de bruit qui les entoure. L’identification des coévolutions qui s’étendent
sur plusieurs versions et commits est particulièrement coûteuse, augmentant de manière
exponentielle avec la taille de la fenêtre de l’historique du code. Dans les coévolutions, les
dimensions spatiales et temporelles de l’analyse du code source s’additionnent, ce qui rend
son identification plus difficile à mettre à l’échelle sur de longues périodes de l’histoire du
logiciel. Ce premier défi a permis de réaliser que les représentations structurées actuelles
du code source ne permettent pas d’effectuer des analyses temporelles efficaces. En effet,
le deuxième défi concerne l’inefficacité des analyses temporelles actuelles du code source,
qui ne parviennent pas à exploiter la redondance temporelle et spatiale du code source
dans l’historique des logiciels. Dans la plupart des historiques de logiciels, la quantité de
changements apportés par chaque commit est faible par rapport à la taille de l’ensemble
de la base de code, c’est-à-dire quelques lignes de code parmi des millions.

Contributions

Concrètement, il nous manque une représentation du code source qui permette de
partager des morceaux de code inchangés entre plusieurs versions. Ainsi, la mémoire est
épargnée et le partage des résultats intermédiaires est possible, ce qui rend les composantes
des analyses temporelles incrémentielles. Les contributions majeures de cette thèse com-
prennent la fourniture d’une nouvelle structure de données qui bénéficie à l’analyse des
deux dimensions, à savoir spatiale et temporelle. Pour la dimension spatiale, je l’ai d’abord
démontrée en relevant le défi de trouver toutes les références à des déclarations données.
Plutôt que de créer et de maintenir une table d’association pour chaque version, je propose
de m’appuyer sur des oracles probabilistes locaux pour naviguer efficacement dans le code
en élaguant les branches infructueuses de la recherche. En ce qui concerne la dimension
temporelle, j’en fais la démonstration en relevant le défi de la différenciation des versions
du code source. Plutôt que de considérer des arbres de code individuels (qui doivent

7



également être analysés individuellement), je propose d’exploiter les éléments de code
partagés pour lazifier les algorithmes de différenciation, ce qui permet de les adapter à des
milliers de commits composés de millions de nœuds.

Par conséquent, tout au long de cette thèse, le thème le plus récurrent est l’importance
de la mise à l’échelle d’analyse de grands projets "industriels" de code source.

Chapters 2 to 4 présente le contexte et l’état de l’art concernant la gestion et l’analyse
des historiques de code source, à la fois à partir de la littérature académique et des outils
de l’industrie. Chapter 2 couvre la gestion et la formalisation des évolutions des logiciels.
Chapter 3 présente des approches qui analysent le code source à un moment donné (en
dehors de toute considération temporelle), telles que l’analyse statique et dynamique,
notamment la résolution de noms. Enfin, chapter 4 présente des analyses temporelles de
l’histoire des codes sources, en combinant les aspects développés dans chapters 2 and 3.

Je présente ensuite trois contributions, pour mieux entretenir l’historique des codes
sources. La première contribution (chapter 5) sert à montrer qu’il est effectivement
possible d’analyser les changements de code et leurs impacts à un niveau fin, en déduisant
les relations de causalité structurelles et fonctionnelles entre les changements. Ensuite,
chapter 6 présente comment l’analyse des historiques de code peut être rendue efficace
en représentant le code source dans une structure (nommée HyperAST ) qui permet
d’exploiter la redondance dans l’espace et le temps tout en rendant les analyses notables
incrémentales. Sur la dimension spatiale, chapter 7 présente une approche qui calcule
de manière incrémentale les impacts possibles de ces changements. Sur la dimension
temporelle, chapter 8 présente une approche (nommée HyperDiff ) qui calcule de manière
incrémentale les changements de l’arbre du code source à un niveau fin.

Chapter 9 discute des considérations techniques importantes des contributions présen-
tées, en particulier en ce qui concerne la mise en œuvre de HyperAST , de HyperDiff et de
leurs composants. Chapter 9 présente également des cas d’utilisation de l’HyperAST : le
suivi du code source à travers un long historique, le calcul efficace des métriques de lots
avec des requêtes dynamiques, et la notation des devoirs de programmation. Chapter 10
conclut la thèse et présente quelques perspectives.
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Chapter 1

INTRODUCTION

“Calculating Machines comprise various pieces of mechanism for assisting the
human mind in executing the operations of arithmetic. Some few of these
perform the whole operation without any mental attention when once the given
numbers have been put into the machine.”

— Charles Babbage, Passages from the Life of a Philosopher (1864), p. 42

VCS are one of the corner stones of modern software development. By tacking changes
across versions, they facilitate developers collaboration, and enable continuous integration
and delivery of software artifacts. Over time, developers produce new versions that
introduce additional features and code. For example, the Linux kernel now has more than
1M commits, 20K features, and more than 15M lines of code (see [LM18] and section 11.1.2).
Making it slow to download,1 build and analyze [Ach+19]. Therefore, it becomes essential
to improve the efficiency of systems that manage software source code histories while also
improving usability and our understanding of already existing histories.

To understand the importance and challenges of source code histories, many parallels
can be drawn with previous knowledge supports. Like books, software projects hold
important parts of human knowledge. In the same way we keep book in libraries and
archives, we keep software histories in vaults (Github Arctic Vault [Vau20]) and archives
(SWH [DZ17]). Like books, the growth of software production and usage was enabled by
automation. Like books written in ancient languages that are translated and adapted to
modern languages and concerns, software are also modernized and maintained through time
to stay relevant. Unlike books, modern source code development is massively collaborative,
thousands of developers interact with dependent software. Unlike books, software are
modified and released at a fast pace. Unlike books, source code is in addition to being
read by humans, designed to be processed and transformed by other programs, such as
compilers and build systems.

To keep source code processing tools simple, programming languages are structured
and follow numerous explicitly defined rules and patterns. While rules and patterns help
developers define programs precisely, they sometimes make adaptation and modernization
cumbersome, so developers help themselves with even more tool to automate maintenance
tasks. Yet, due to resources constraints and limited efficiency, existing automated mainte-
nances are applied on a limited number of versions: usually, the latest version and some

1https://github.blog/2018-03-05-measuring-the-many-sizes-of-a-git-repository/
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selected branch heads. Actually, maintenance of older versions are most of the time only
provided for critical software systems, often in the form of back ports of security bug fixes.

Modern software development relies on VCS to manage source code. The first VCS
can be traced back to 1972 with SCCS [Roc75], that simply stored delta of individual files.
Since 50 years, many VCS have been developed, evolving empirically to manage more
demanding projects and practices. As of 2023 the most widespread VCS is Git. It is used
for all kinds of projects, and is able to handle large software projects made of millions LoC,
such as the Linux kernel, Chromium, or LLVM. Since the advent of Git, large companies
have further improved VCS to manage large number of projects spanning over their entire
company [Met23; PL16]. Finally, researchers have devised ways of efficiently archiving the
source code histories of millions of projects [DZ17].

In parallel to the advent of VCS, came a new field of research focusing on the evolution
of software. Laws of software evolutions started being enunciated in 1974 by Lehman and
Belady, and following decades of refinement, eight laws were developed. [Leh78; Leh79;
Leh96; LR03; YM13]. In 1976, Swanson categorized maintenance of software depending
on the context and cause of the maintenance activity. In 1994, Parnas introduces software
aging [Par94], tracing a parallel between aging in software and living organisms.

With all these tools and a thorough understanding of software evolution, it is now much
easier to create, contribute and share software systems. One of the latest improvement
on the front of accessibility are software forges, such as GitHub or Gitlab, with extensive
features and tools helping with organizing and automating development. Adding up with
advantages of open-source development [Hec99], it has led to a large increase of open-source
projects. For example, SWH references is around 200 millions Git origins (including forks)
where 188 million of them are on GitHub (cf. section 11.2).

Continuously delivering robust products and services on massive and complex software
systems requires extensive analyses and tests. Therefore, executing every analyses and tests
at every change is challenging or downright impractical. Existing build systems and analysis
tools already tackle this complexity through incremental approaches, either incrementally
mutating a transient state or caching intermediate artifacts. Yet, existing approaches still
consider coarse grained artifacts (often at file level) and text based representation (little
access to semantic). In this thesis, we calm that it is possible to significantly improve
incremental approaches by considering finer grained elements while adapting existing
analyses.

This thesis aims to tackle various scientific challenges around the scalability of software
approaches and analyzes to large industrial software projects. The initial challenge I
address concerns the temporal analysis of source code histories through fine-grained co-
evolutions, to help with code understanding and automation. These co-evolutions are
challenging due to the intricate relationships between code elements and the amount of
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noise that surrounds them.2 Identifying co-evolutions that spans multiple versions and
commits is particularly expensive, exponentially growing with the window’s size of the code
history. In co-evolutions, both the spatial and temporal dimensions of source code analysis
compound, making its identification harder to scale over long software histories. This
initial challenge led to the realization that current structured source code representations
are not enabling efficient temporal analyzes. Indeed, the second challenge concerns the
inefficiency of current temporal source code analyzes, which fail to exploit temporal and
spatial source code redundancy in software histories. In most software histories, the
quantity of changes each commit brings is small compared to the size of the whole code
base, e.g., a single line in millions of lines of code. Concretely, we are missing a source
code representation that supports sharing unchanged pieces of code over multiple versions.
Thus, sparing memory and enabling the sharing of intermediate results, consequently,
making components of temporal analyses incremental. The major contributions provided
in this thesis includes providing a new data structure that at least benefits analysis of both
dimensions, namely spatial and temporal. For the spatial dimension, I first demonstrate it
by addressing the challenge of finding all references to given declarations. Rather that
creating and maintaining an association table for each version, I propose to rely on local
probabilistic oracles to efficiently navigate code i.e., pruning fruitless branches from the
search. For the temporal dimension, I then demonstrate it by addressing the challenge of
diffing source code versions. Rather than considering individual tree of code (that must
be also individually parsed), I propose to leverage the shared code elements to lazify the
diffing algorithms, making it scale to thousands of commits made of millions of nodes.

Consequently, throughout this thesis, the most recurring theme revolves around the
importance of scaling to large "industrial" source code projects.

Chapters 2 to 4 present the background and state-of-the-art regarding the management
and analysis of source code histories, both from the academic literature and the industry
tools. Chapter 2 covers the management and formalization of software evolutions. Chap-
ter 3 presents approaches that analyze source code at a given moment (outside temporal
considerations), such as static and dynamic analysis, notably name resolution. Finally,
chapter 4 presents temporal analyses of source code histories, combining the aspects
developed in chapters 2 and 3.

I then present three contributions, toward the goal of better maintaining source code
histories. The first contribution (chapter 5) serves to show that it is indeed possible to
analyze code changes and their fine-grained impacts, deducing structural and functional
causality relations between changes. Then, chapter 6 presents how analyzing code histories
can be made efficient by representing source code in a structure (named HyperAST ) that
allows to exploit redundancy in space and time while making notable analyses incremental.

2It seems pretty close to superposition in deep learning systems: https://transformer-circuits.
pub/2022/toy_model/index.html
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On the spatial dimension, chapter 7 presents an approach that incrementally computes
the possible impacts of these changes. On the temporal dimension, chapter 8 presents an
approach (named HyperDiff ) that incrementally computes fine-grained source code tree
changes.

Chapter 9 discusses important technical considerations of presented contributions,
particularly regarding the implementation of the HyperAST , the HyperDiff and their
components. Chapter 9 also presents use cases for the HyperAST: at tracking source
code throughout a long history, efficiently computing batch metrics with dynamic queries,
and grading programming homework. Chapter 10 concludes the thesis and presents some
perspectives.
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Part I

Background & State-Of-The-Art

(1) We cannot assume that the old stuff is known and didn’t work.
If it didn’t work, we have to find out why. Often it is because it
wasn’t tried.
(2) We cannot assume that the old stuff will work. Sometimes widely
held beliefs are wrong.
(3) We cannot ignore the splinter software engineering groups. To-
gether they outnumber the people who will read our papers or come
to our conferences.
(4) Model products are a must. If we cannot illustrate a principle
with a real product, there may well be something wrong with the
principle, Even if the principle is right, without real models, the
technology won’t transfer. Practitioners imitate what they see in
other products. If we want our ideas to catch on, we have to put
them into products. There is a legitimate, honorable and important
place for researchers who don’t invent new ideas but, instead, apply,
demonstrate, and evaluate old ones.
(5) We need to make the phrase “software engineer” mean something.
Until we have professional standards, reasonably standardised edu-
cational requirements, and a professional identity, we have no right
to use the phrase, “Software Engineering”.

– David Lorge Parnas, Software Aging (1994)
sec. 10. Conclusions for our profession
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Chapter 2

SOFTWARE EVOLUTION

This chapter presents the state-of-the-art and concepts regarding the management of
source code histories and study of software evolutions. Section 2.1 covers how source code
histories are managed and processed by recounting the emergence VCS (section 2.1.1), then
detailing the one that now prevails, namely Git. Section 2.2 is devoted to the definition of
software evolution and surrounding concepts.

2.1 Source Code Management systems

Many system management tools exist. Configuration managers, such as Ansible or
Chef are used to configure servers and pools of computers. Package managers either at
the system level like apt or pacman, or at the application level like maven or npm help
with retrieving binary and source code artifacts stored in registries. In this thesis, I will
focus on Source Code Management (SCM) systems, also synonym to Version Control
Systems (VCS). To some extent I will also consider the integration into software forges
and CI/CD systems.

VCS provide developers with both the development history of their software systems
and control over the evolutions of their software systems by keeping track of their changes
and by providing multiple features to leverage development histories. Examples of widely-
used VCS are Git,1 Mercurial,2 and SVN .3 Taking Git as example, developers do commits,
i.e., set of changes in their source code associated with a description message. The set of
commits composes the history of the versioned software. Figure 2.1b gives an excerpt of
an open-source project versioned using Git and visualized with Github. Each commit has
an author, a description message, a date, references to issue tracking system (e.g. #3394),
and when part of a forge can incorporate information related to tools that automatically
builds, checks elements of the software system on each commit (here the ✓ and × symbols
that point to such tools). Modern VCS enable many fundamental process and practices,
that facilitate collaborative software development by allowing each developer to work
concurrently on different source states that can be merged once in a satisfying state. For
example to develop the Linux kernel, a decentralized approach is preferred. Here, progress

1https://git-scm.com
2https://www.mercurial-scm.org
3https://subversion.apache.org
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is shared by pulling commits from each other repository there is no central source of truth.a

On the flip-side, at Google or Meta, a trunk (a branch in a specific repository instance) is
designated while others source states are short-lived working branches. Short-lived branches
can be merged into the trunk and deployed after having passed automated tests and reviews
of collaborators, i.e., Continuous Integration (CI)/Continuous Deployment (CD).

VCS are also an essential part of software forges. A change made to source stored
in the forge (after a push) triggers packaging and distribution once a set of automated
checks succeed and changes get positively reviewed (Pull request, CI). Each new version
is qualified with a version number that document the nature of the change (semantic
versioning), in addition to a summary of notable changes in a human-readable format
(changelog) that can be automatically –at least in part– generated using metadata from
commits since the last release. The source code history and neighboring artifacts can
be navigated with search tools. A bug report or a contribution (Issue, Pull request)
can mention specific code ranges, then these code ranges can be observed in context (in
their file, with a diff, or a blame), in conjunction commit messages can reference existing
issues (marking as fixed). In addition, these issues and pull requests can be automatically
submitted by bots, to notably upgrade dependencies or notify uses of vulnerable code.

$ git log
commit d4129d7cf7623c6a73ff3ddeadc0fb7069426c91
Author: Rijnard van Tonder <rvantonder@gmail.com>
Date: Thu Jun 4 22:59:54 2020 -0700

chore: allow LSIF upload action to pass even if upload fails (#3394)

commit f8f3fe4966c5669d01881e0bae18a752ffe2ee36
Author: Martin Monperrus <monperrus@users.noreply.github.com>
Date: Thu Jun 4 16:59:16 2020 +0200

feat: add CtVariable#isPartOfJointDeclaration (#3392)

commit 8ad42f8a22bdfa31d7c08a7717187f43d91d4213
Author: Martin Monperrus <monperrus@users.noreply.github.com>
Date: Thu Jun 4 15:24:31 2020 +0200

refactor(ElementSourceFragment): improve clarity (#3390)

commit 12d748fdec2b2eb4cfccae9af556b8f1f9d0bd4b
Author: Martin Monperrus <monperrus@users.noreply.github.com>
Date: Thu Jun 4 15:23:57 2020 +0200

feat(SameFilter): add utility class SameFilter (#3391)

commit e980d36fb69ffcfcd62ee03db82714356bcea2d7
Author: Martin Monperrus <monperrus@users.noreply.github.com>
Date: Wed Jun 3 03:54:35 2020 +0200

fix: fix duplicate imports in sniper mode (#3388)

(a) Git command
(b) Github web app

Figure 2.1 – Commit summaries part of the git history of a software system

2.1.1 Emergence of version control systems

Version control is an old concern. Looking at the historical developments of VCS, we
can observe the empirical adoption of new concepts and approaches to version source code,
notably through their open-source counterpart (in bold).

It started with local VCS, versioning individual files as deltas, where collaboration took
the form of acquiring locks on files. Source Code Control System (SCCS) [Roc75] started
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being developed in 1972 for a first public release in 1977, using interleaved deltas. Then
came Revision Control System (RCS) [Tic85], released in 1982, that used reverse
deltas to improve performances while on the latest versions [Tic62].

Then came the centralized client-server SCM systems. Concurrent Versioning
System (CVS), first released in 1990, which allows multiple CVS clients to synchronize
with a single CVS server which internally uses RCS. Subversion (SVN) first released in
2000, with significant improvements compared to CVS, most notably allowing to commit
multiple changed files in a single transaction.

Finally, came the distributed SCM systems, with BitKeeper in 2000 followed by Git
and Mercurial 4 in 2005, due mainly to license issues. While BitKeeper, Mercurial, and
previous VCS are based on the changesets model, Git is on contrary designed like backup
snapshots of a file system (a snapshot per commit).

Name Creation Repr. State Granularity
CVS 1990 Changeset Centralized file
SVN 2000 Changeset Centralized tree

BitKeeper 2002 Changeset Distributed tree
Mercurial 2005 Changeset Distributed tree

Git 2005 Snapshot Distributed tree
Piper 2006 Snapshot Centralized tree

Sapling 2006 Snapshot Hybrid tree
SWH 2016 Snapshot Distributed tree

Table 2.1 – Comparison of a few notable Version Control Systems.5

Nowadays, two kinds of versioning systems are mainly distinguished:
ChangeSet where only changes are stored, i.e., set of actions on source code, and
Snapshot where only the state of the source code is stored, i.e., content of files and
structure of directories.
This distinction is crucial to understand capabilities of modern VCS , yet it is often
misunderstood. Therefore, in the next section, I am going to explain how Snapshot VCS
work. Besides, there is a notable Github blog post 6 clarifying Snapshot nature of Git.

4https://www.mercurial-scm.org
5You can also find a well maintained comparison in https://en.wikipedia.org/wiki/Comparison_

of_version-control_software.
6https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
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It is also possible to distinguish source code repositories into mono- and micro-
repositories. Very large repositories (Millions of lines of code) spanning over entire
organizations are often considered as mono-repositories, but other criteria can be
used. Mono-repositories are reportedly used in large organizations, such as Google or
Meta/Facebook [PL16; Met23]. The Linux kernel can also be considered as a mono-
repo, but is more like a mono-tree a where there is no central repository. Notable
multi-repositories are ones of Apache or Oracle, and reportedly at Amazon or Netflix
[Bro19].

ahttps://blog.ffwll.ch/2017/08/github-why-cant-host-the-kernel.html

2.1.2 Snapshot VCS

Git is currently the most widespread (Snapshot) VCS,7 so I will to focus on Git and
present its most notable principles, core data structure, and vocabulary. I will also briefly
mention improvements made in clones/forks of Git. But let me first introduce the Merkle
DAG structure [Mer87], as it is a central component of Git that enables the robust and
efficient storage of snapshots.

Merkle DAG

A Merkle DAG is a data structure similar to a Merkle Tree [Mer87], but with nodes
holding a payload and no balancing requirements. Each node is uniquely identified by a
cryptographic hash of its content (the hash function must be shared), and child nodes
can easily be referenced in the payload of nodes, along with other data. Consequently,
structurally identical nodes are deduplicated, effectively making it a Direct Acyclic Graph
(DAG). This identification scheme is especially useful for archival [DZ17], and is categorized
by Di Cosmo and Zacchiroli as intrinsic identifiers (in opposition to extrinsic identifiers
that necessitate a registry).

However, a Merkle DAG has limitations regarding its compression efficiency: 1) the
diversity of stored content, i.e., only structurally identical nodes are shared, 2) the size
of payloads of nodes relative to the size of identifiers, i.e., the memory overhead of the
unique identifying hashs must be compensated by the sharing of identical content; To make
collisions as improbable as possible, the unique identifying hashs must be large, tenth of
bytes long and scaled in proportion to the expected number of unique nodes. Additional
metadata and contextual intermediary results must be stored aside (akin to columnar
databases) due to nodes being shared and append-only. The internal fork of Git by Github
reportedly uses additional technics to compress git objects during packing [Bla22].

7Git represents 97.5% of origins reported SWH, section 11.2 contains scraping results
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Figure 2.2 – Example of a Git Merkle DAG.
Legend: circle: Commit, triangle: Tree, square: Blob.

The Git VCS

In Git, elements of the MerkleDAG are named Objects.8 Objects have a unique identifier
called Oid that is the hash of the content of the Object. Figure 2.2 depicts the three major
kinds of Objects: a Blob object (square) corresponds to the content of a file; a Tree object
(triangle) corresponds to a directory, it maps by name other Tree objects but also Blob
objects; a Commit object (circle) is a snapshot of the codebase. It points to a Tree and its
parent Commit objects. For the sake of simplicity, these objects are referenced as Blob,
Tree, and Commit in the rest of the thesis.

The Git model is simple and allows some robust and flexible merge heuristics, as
explained in the FAQ of Git 9:

“Relying on explicit rename tracking makes it impossible to merge two trees that
have done exactly the same thing, except one did it as a patch (create/delete)
and one did it using some other heuristics”

and by Linus Torvalds himself 10:

“That’s because GIT fundamentally doesn’t do the ‘delta-within-a-file’ model.”

Git focuses on storing content. Changes are an optimization and search concern. In
cases where there is a particular intent behind a change, it should be written in the commit
message, technics exist to formalize such intents, such as conventional commits. Separating
the intent from modifications allows to search code while reinterpreting the history with
new approaches, e.g., different diff algorithms as we will see in the next section. On the
performance side, change related technics are used to compress the history, for example,
blobs are compressed by default, and existing objects can be packed in a compressed

8https://git-scm.com/docs/gitglossary
9https://archive.kernel.org/oldwiki/git.wiki.kernel.org/index.php/GitFaq.html#Why_

does_Git_not_.22track.22_renames.3F
10https://marc.info/?l=linux-kernel&m=111314792424707
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format.
Moreover, to accommodate additional constraints, custom implementations of Git

emerged with significant modifications, particularly on the infrastructure side:
— Google Piper [PL16], the internal VCS of Google hosting their famous mono-repo,

and reportedly offering access control and partial fetch [PL16],
— Meta Sapling, the recently open-sourced VCS of Meta, also hosting their own mono-

repo,
— Software heritage (SWH) [DZ17] from INRIA, which focuses on archiving source

code,
— GitHub’s internal fork of Git, they contribute to upstream Git (partially due to

licensing).


Software Heritage [DZ17] uses different naming conventions: Blob → file content,
Tree → directory, Commit → revision, Tag → release.

2.1.3 Working with source code changes: diff, merge, blame

VCS provide developers with merging and diffing tools to help developers manage and
monitor changes. As explained in the previous section Snapshot SCM systems (such as
Git), do not store individual changes but compute them on demand, i.e., changes can
be reinterpreted depending on context. For example with Git, the command git diff

has four preconfigured algorithms [NHM20]: myers (default)[Mye86], minimal, patience,
or histogram; and can use external tools by setting an environment variable with an
executable.11 Approaches computing diffs can be classified by their structuration degree,
i.e., the amount of semantic information used to structure and compare diffed content.

Figure 2.3b illustrates a rendered diff output (patch [MES02]) where added lines are
green and start with the ’+’ symbol, while removed lines are red and start with ’-’.

The most general and widespread diff approaches process source code like any other
text (i.e., a list of characters), with commits considered as sets of text files associated to
paths.

Asaduzzaman et al. [Asa+13], Canfora et al. [CCD08] and Reiss et al. [Rei08] proposed
a language-independent techniques for diffing. But sometimes, considering code as text is
not enough to consistently obtain the high quality diffs that fits the original intent of the
developer and refer to language specific constructs.

Tree Diff

Apart from diffs on text, it is also possible to process the structured tree representation
of source code into a diff, also called an edit script. Zhang and Shasha [ZS89] defined an

11https://git-scm.com/docs/git-diff#Documentation/git-diff.txt-diffexternal
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$ git log
diff --git

a/src/main/java/spoon/reflect/visitor/filter/SameFilter.java
b/src/main/java/spoon/reflect/visitor/filter/SameFilter.java

↪→
↪→
new file mode 100644
index 00000000..d6fa514d
--- /dev/null
+++ b/src/main/java/spoon/reflect/visitor/filter/SameFilter.java
@@ -0,0 +1,27 @@
+/**
+ * SPDX-License-Identifier: (MIT OR CECILL-C)
+ *
+ * Copyright (C) 2006-2019 INRIA and contributors
+ *
+ * Spoon is available either under the terms of the MIT License (s
+ */
+package spoon.reflect.visitor.filter;
+
+import spoon.reflect.declaration.CtElement;
+import spoon.reflect.visitor.Filter;
+
+/** Finds the element given in parameter, useful for checking if a
+ * Here "same" refers to the Junit meaning: same object memory,
+public class SameFilter implements Filter<CtElement> {
+ private final CtElement argument2;
+
+ public SameFilter(CtElement argument2) {
+ this.argument2 = argument2;
+ }
+
+ @Override
+ public boolean matches(CtElement element) {
+ return element == argument2;
+ }
+}
diff --git

a/src/test/java/spoon/test/replace/ReplaceParametrizedTest.java
b/src/test/java/spoon/test/replace/ReplaceParametrizedTest.java

↪→
↪→
index 34f2664b..2cff5fca 100644
--- a/src/test/java/spoon/test/replace/ReplaceParametrizedTest.java
+++ b/src/test/java/spoon/test/replace/ReplaceParametrizedTest.java
@@ -38,7 +38,7 @@ import spoon.reflect.reference.CtFieldReference;

import spoon.reflect.reference.CtTypeReference;
import spoon.reflect.visitor.CtScanner;
import spoon.reflect.visitor.CtVisitable;

-import spoon.reflect.visitor.Filter;
+import spoon.reflect.visitor.filter.SameFilter;

(a) Git command (b) Github web app

Figure 2.3 – A commit that shows added and removed text chunks using a syntactic diff
algorithm

edit distance between pairs of trees, using insertion, deletions and updates. They also
proposed an algorithm to compute this distance optimally, it is named the ZS algorithm
in the literature. Chawathe et al. proposed to compute edit scripts on trees and defined
complex actions that can operate on subtrees, such as move [Cha+96] (in the literature it is
called the Chawathe algorithm), copy and glue [CG97], thus, shortening the resulting diff.
Pawlik et al. [PA11] proposed to improve the efficiency of worst case executions from the
ZS algorithm. Duley et al. [DSK12] presented a diff for Verilog HDL files. Hashimoto et
al. [HM08] proposed to further preprocess ASTs: pruning common subtrees, and collapsing
certain syntactic categories into hash digests, then using the ZS algorithm [ZS89]. Nguyen
et al. [Ngu+11] also proposed to compute a diff, but they focused more on finding cloning
actions rather than a complete diff.

Fluri et al. [Flu+07] proposed ChangeDistiller, a tool and algorithm improving over
[Cha+96] for computing diffs. Similarly, Falleri et al. [Fal+14] proposed a tool and
algorithm, called GumTree, that extends the matching phase [Cha+96] by first mapping
subtrees greedily (inspired by [CAM02]), then falling back to the ZS algorithm, thus
reducing the number of comparisons and the average complexity. Higo et al. [HOK17]
proposed to integrate the action of copy-and-paste to make the diff easier to understand
for developers. Matsumoto et al. [MHK19] also proposed an extension of GumTree
by incorporating information of line differences in addition to the AST to also ease
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comprehension. Other approaches aim at improving the diffs that GumTree produces with
additional steps [DP16; Fri+18; Hua+18].

All these existing approaches focus on efficiently computing a diff between two files.
Yet, when developers ask for a git diff they do so on entire commits picked from a
source code history (Git). Since a Git commit can contain numerous files, diffing entire
commits directly faces scalability issues.

Tsantalis et al. [TKD20] proposed an approach for detecting refactorings, called
RefactoringMiner. Refactorings are high level changes that do not by themselves fully
explain changes to a codebase. Moreover, RefactoringMiner mostly focuses on Java, while
some other recent extensions make it work on Python [Atw+21] and Kotlin [Zar20].

Similarly, for multiple languages, Silva et al. [Sil+20] with RefDiff also proposed an
approach capable of finding refactorings.

Finally, Falleri et al. [FMM15] combined Spoon [Paw+15] with GumTree [Fal+14],
allowing them to handle entire Java projects i.e.,, diffing multiple files.

(Structured) Merge

In addition to Diff, an essential part of modern collaborative development is the ability
to merge contributions automatically or at least semi-automatically, i.e., only acting on
merge conflicts. Actually, merging can be considered as an extension of Diffing [MES02;
Men02].Textual merges, working on lines of text are widely adopted [MES02; Men02].
For example, Git provides three merge algorithms all configurable with diff-algorithms:
three-way [KKP07], recursive, and octopus. For AST merges there is notably an approach
presented by Larsén et al. [Lar+22] that leverage Gumtree to reduce false collisions as
they append in line based merges.

Real-time collaboration is also a merge problem. Without getting into details (of the
CAP theorem), in a distributed context i.e., each user has a version of the data, when users
share their modifications conflicts might arise, that would need an intervention and would
hinder the editing process. So merge conflicts must be "resolved" automatically, more
specifically, it refers to Conflict-free Replicated Data Types (CRDT) [Sha+11; KB17].

Blame / Code Tracking

Git also provides a blame subcommand ( git blame ) which enables to track textual
changes throughout consecutive commits. It provides options to track duplicates and
match specific textual patterns.

Synonymously to blame, we can track changes. Tracking is often used for more
structured approaches [HHK20; HMK11; GAS19] that track code elements (code blocks,
attributes, methods, ...) in a source code history.

IntelliJ provides a code tracking feature capable of following renames. [HMK11]
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improves capabilities of Git with tracking methods by isolating said method in individual
files, it has limited capabilities in cases of short methods. Cregit [GAS19] further improves
diff and blames from Git by first preprocessing the source code (C/C++), i.e., it parses the
source code text and feed the usual diff algorithm with tokens (one per line) corresponding
to code elements along with their type in the syntax tree. Similarly, FinerGit [HHK20]
preprocess source code to improve the textual diff, putting a token per line and annotating
them with their type. Contrary to Cregit, it focuses on Java source code.

To better handle complex refactorings (not just renames), additional approaches where
devised: Code Shovel [Gru+21] is a multistaged approach that allows to track a given
method up to its introduction, it does not use tree diffs nor advanced semantic information
but focuses on specific method change heuristics. Code Shovel seems to provide better
results and performances than FinerGit to track methods. Finally, while it seem to be able
to easily scale out, it might not be efficient to track hundreds of methods on large code
bases. Code Tracker [JT22] leverages RefactoringMiner to track methods and classes. It
outperforms Code Shovel. SEAL [Sat+23] improves blame quality using dataflow analysis.
It is a followup to Cregit.

Providing advanced maintenance features on source code histories still remains a
challenge for large complex projects. Indeed, there are no approaches that that scale, while
also representing fine-grained code together with full code analysis.

2.2 Source code evolution

The goal of a software evolution is to adapt the different artifacts of the software to
the ever-changing user requirements and environment. An evolution consists of one or
multiple changes that developers apply on the software artifacts. For example, in Figure
2.3b, a change in the imports was committed to the class.

Software evolution can occur under different forms to achieve various purposes. Various
types of evolution have been categorized in the past [Swa76; LS80], under the name of
maintenance evolutions:

— Corrective evolution refers to changes that correct any discovered problems, errors,
failures, and inconsistencies, etc.

— Adaptive evolution aims to keep a software product usable in a changing environment.
— Perfective evolution aims to improve functionalities, performance, reliability, or to

increase the maintainability of a software.

In practice, developers can set up guidelines to rationalize contributions, and specify a
concrete format for commits messages.12 The change type 13 is often the first information,

12https://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#
commit-message-format

13https://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#type
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optionally followed by a scope, a subject, and a detailed message. Some widely used
change types are feat when adding a feature, fix when fixing a bug, refactor when
making a structural change that should not change behavior. The change type is sometime
mixed with the scope, e.g., docs that corresponds to documentation only changes as it
sometimes makes little sense to specify the precise nature of the change. Formatting
commits messages has also the advantage of enabling further processing by other tool, for
example, to automatically generate changelogs, i.e., a human-readable list of changes with
categories directly corresponding to change types. It can also help with semantic versioning
[Pre13; RVV14] aka MAJOR.MINOR.PATCH by automatically checking or incrementing the
version. Indeed, a fix corresponds to a PATCH, while a new feature corresponds to a MINOR,
and it is also possible to notify breaking changes, i.e., MAJOR.

Table 2.2 presents a comparison between change types form conventional commits and
the maintenance evolution classification.

Change type Corrective Adaptive Perfective
Bug Fix ✓

Refactoring ✓

Optimization ✓

Table 2.2 – Classification of types of maintenance evolutions

Change types can also be classified depending on the nature of its impacts, as shown
in table 2.3. It can either be:

— functional, e.g., break or fix a test,

— operational, e.g., improve performances, or

— developmental, e.g., rename a class.

Change type Functional Operational Developmental
Feature Addition + ± ±

Bug Fix + ± ±
Refactoring = ± +

Optimization = + ±

Table 2.3 – Nature of changes impacts

One popular type of changes is refactoring. Software refactoring is the object-oriented
term of restructuring as it was introduced by Opdyke [Opd92]. Refactoring is any
modification to the software with the two purposes: 1) to make it easier to understand and
to change or 2) to make it less susceptible to errors when future changes are introduced

27



Software evolution

Figure 2.4 – Example of evolutions in a commit identified by evolutions detection tools,
such as RefactoringMiner [Tsa+18a; TKD20].

[Arn86; Opd92]. Overall, a refactoring improves quality and facilitates future adaptations
and extensions, but without having a functional effect, or in the worst case without
introducing any new behavior on the conceptual level [MT04; Sun+01].

Regardless of the type or intent of changes, ultimately, a change is an evolution to the
code varying in size from fine to coarse grained, That we can define as follow:

Definition 1 – Source code evolution. We refer to changes in source code as evolutions
spotted from code histories, for example, between commits or releases. The literature
classifies evolutions into two groups that correspond to two levels of granularity:

— Atomic evolutions in the form of insertions, deletions, or updates of an AST ele-
ment [Fal+14];

— Complex evolutions take the form of composition of atomic evolutions. For example,
deleting a piece of code and inserting the same piece somewhere else can be interpreted
as a move. Another example of complex evolutions are refactoring operations [Fow99],
such as extract class/method or push/pull method.

2.3 Conclusion

This first background chapter presented the "temporal" dimension of source code
analysis, and presented VCS, while detailing the most prevalent, namely Git. Then it
presented major uses of VCS targeted toward studying and understanding source code
change and evolution: Diffing, Merging and Tracking. Finally, it presented the literature
on source code evolution and defined them.

Next chapter will present the "spatial" dimension of source code analysis, and presented
approaches that allow to relate code elements at a given commit.
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Chapter 3

PROCESSING AND ANALYZING

SOFTWARE

Software systems are often large and complex. Their source code easily reach millions
of lines, written by many contributors, spanning over numerous concerns. Build systems
process those millions of lines into usable artifacts, targeting diverse platforms and hardware.
These three factors (size, complexity, and diversity), make it challenging to predict the
behavior of all or part of a software system (or change to it). To help themselves, software
engineers use additional pieces of software to analyze and test source code in different
environments. Nonetheless, analyzing and testing come at a cost, mainly time but also
computing resources.

Assessing source code quality is an important part of producing complex yet reliable
software systems. It can be achieved through various means, often categorized between
static and dynamic analyzes or as hybrids of both. It is also possible to consider the
dichotomy between simulation and emulation, respectively checking abstract properties,
e.g., termination and computing concrete values in an emulated context, e.g., inputs. Static
and dynamic analyzes often complement each other, due to trade-offs among precision,
recall, and compute/development time. Concretely, static analysis is best suited to prove
simple properties for any inputs, while dynamic analysis takes a concrete input to compute
a concrete result.

In this context, performance of analyzes is particularly challenging as it often limits
the interactivity of analyzes. We will often be able to classify three possibilities to make
an analysis/process scale: doing less, adding compute power, trading compute against
memory. In many situations, build and analysis tasks can have (or can be made into)
independent components. It will be mentioned at multiple occasions in this chapter,
especially for the Hybrid analyzes.

Section 3.1 presents a gradient of static analysis approaches from quantifying the
quality of source code using patterns and heuristics, to verifying specific properties by
leveraging language semantics. Section 3.2 presents the most used family of dynamic
analyses, aka testing. It introduces software testing practices in general and presents
dynamic-analysis approaches leveraging tests. Finally, Section 3.3 presents crosscutting
approaches focusing on reducing resources needed to analyze and test source code without
reducing precision and recall. The application of these technics to the analysis of source
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code histories will be detailed in chapter 5.

Definition 2 – Impact: Effects of evolution on program properties. Source
code evolution can affect observable properties of the systems under study, be it from
compilation, linting, tests, or benchmarks. Given P a property, P state can either be pass
or fail. We classify code evolution effects into three categories, namely:

— Impacting Evolution: P goes from pass to fail, namely the evolution breaks P

— Repairing Evolution: P goes from fail to pass, namely the evolution repairs P

— Effectless/Neutral Evolution: P state does not change

Definition 3 – Dependency graph. A graph where nodes are elements of an Abstract
Syntax Tree (AST) and relations are representing dependencies between AST elements.
Here dependency means that when changed or broken, it might have effects on properties
of the program represented by the AST as defined in definition 2. There are multiple types
of dependency relations.

For the semantic of a programming language, we consider:
— Referential relations between a declaration and its references, such as between: a

callee and a caller, a variable/attribute access and declaration, a type reference and
a type declaration.

— Structural relations between a parent and children AST elements, such as between
a class and its methods, a type and its inner/associated types.

— Data relations i.e., data dependence (related to race conditions) between a read
and a write.

— Package dependencies between a library and its usage in an app or another library.
A package manager handles these dependencies either at a source level or at the
system level.

A dependency graph can take the form of an overlay graph, and association table, or
simply attributes of AST nodes referencing other AST nodes.

Static and dynamic analyzes can extract different relations for representing dependencies
among elements of an AST. There are multiple well known structures and approaches
that can be part of a dependency graph, in particular:

— a call graph relates method/constructor/lambda declarations to calls;
— a dataflow graph typically relates variables writes to variable reads and in general

the flow of data through languages constructs;
— a type hierarchy relates type declarations through inheritance;
— a typed AST has types assigned each expression;
— a scope graph relates references and declarations through scopes [Ant+18].
— a package dependency tree relates packages with the help of a package manager e.g.,

npm ls --all or mvn dependency:tree .
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3.1 Static analysis

In the context of this thesis, a number of static analysis are needed to scale to large
software systems. Indeed, dynamic analysis requires building and executing the analyzed
program, becoming impractical for large projects. In comparison, static analysis can be
adapted indifferently from runtime to infer a lot of results that could be obtained through
dynamic analysis.

Multiple kinds of semantics can be distinguished: integers, floats, pointers (memory),
references, types, etc. These semantics depend on each other to fully analyze a program,
for example, x/(1-1) can easily be checked for illegal operations just using semantic
of integers, but once we have int a = 1-1; x/a, it is necessary to resolve references,
replacing the reference to a by its value. It is also common to analyze source code by
matching code patterns. In general, a static analysis without an extensive knowledge of
data flow are considered more like a structural analysis. It is a notable distinction due
also to the cost and complexity of computing such information.

3.1.1 Structural analysis

Structural analyses can be further divided by the amount of syntactic information they
consider. Indeed, some basic features can be provided by considering source code as any
other text, similar to what Git does to store source code histories (see section 2.1.2). It
has the advantage of limiting complexity and specificity of the tools while enabling the
use of existing text based tools.

Exact and fuzzy code search can be achieved with text based approaches. For instance,
to search and navigate source code, source code forges (e.g., GitHub, Gitlab) use of-the-shelf
text indexing tools, such as ElasticSearch. Yet these of-the-shelf tools have limitations.
In 2022, GitHub replaced ElasticSearch with its own code search engine [Gita], that uses
text heuristics to optimize indexing. Additionally, Blobs are classified (and searchable) by
language using a number of heuristics.1

Ctags is a legacy tool used to extract declarations, such as functions, variables, and
types. It notably provides an index of declarations to Cscope (see next section).

Palomba et al. [Pal+17] predicted bug-prowness of Java classes by learning composed
thresholds on specific static code metrics.

Cocinelle [LM18] introduced by Lawall and Muller allows to match and apply code
patterns (they call semantic patches) in C source code. It performs best-effort type
inference, but no alias analysis nor dataflow analysis (it has to be implemented in the
semantic patches).

1https://github.com/github-linguist/linguist
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3.1.2 Semantic analysis

Semantic analyzes use semantic information about the program and language under
analysis to simulate its behavior. Semantic analyzes often manipulate an intermediate
representation to facilitate reasoning, notably the flow of data, i.e., data flow analysis.
However, producing such intermediate representation is non-trivial and might require to
consider a significant amount of semantic information, such as with name resolution.

The semantic of references (also called name resolution) is an integral part of compilers
and static analyzers, it is used to resolve variable accesses, function calls, and type references.
Another major application of this semantic is the enhanced visualization and navigation
of source code, often in the form of call graphs and type hierarchies. The Language Server
Protocol (LSP) specification [Mic] defines methods to navigate referential relations, such
as references, definition, declaration, typeDefinition, implementation.

While in compiler and static analyzers, references must be resolved unambiguously,
it is not mandatory for human consumption. Indeed, depending on the language, the
reference analysis can be a non-trivial task. For example in Java, it is possible to shadow,2

obscure2, hide,3 overload3, or override3 a declaration. Thus, the analysis of partial Java
source code is often ambiguous [DH08].

Nonetheless, Dagenais and Hendren [DH08] statically analyzed partial Java programs,
to infer type facts, considering ambiguous references.

In comparison, Cscope has worked fine for decades, with the C language having a
simple semantic of references.

GitHub has put many efforts adding code navigation through reference in their web
interface. They particularly worked on a project named Semantic [Git22] to transform
ASTs using compositions of semantic rules. It notably relies on Tree-Sitter [Mic22] to
obtain Concrete Syntax Trees (CSTs) and fused-effects to compose semantics. Yet they
had reliability issues with directly composing entire semantics, so they feel back to using an
approach focussed on name resolution. Indeed, Semantic is now using stack graphs 4 [CA22]
itself based on scope graphs [Ant+18]. With scope graphs, Antwerpen et al. presented
an approach representing referential relations in scopes with a graph. For a specific
class of referential semantics, this formalization enables the resolution of local referential
relations in partial source code. Poulsen, Zwaan, and Hübner are working on extending
the applicability of this approach to handle languages, such as Java, they call multi-phased
name resolution [PZH23]. With stack-graphs, Creager and Antwerpen implement and
extend scope graphs to also resolve members accesses, i.e., first resolving the object type
before resolving the member.

[Soe+16] do test selection, including dynamic bindings (overestimation).
2https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.4
3https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#d5e13748
4https://github.blog/2021-12-09-introducing-stack-graphs/
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Wu, Zhu, and Li [WZL21] associate a call graphs with evolutions.



Example of shadowing in Java:

class A extends B { C x; } class B {} class C {}
Given this Java source code, adding an inner class C to B changes the reference to
C in A, effectively hiding the outer class C from inside A. The type hierarchy takes
priority over the structural hierarchy. In practice, to unambiguously resolve a type
reference in a Java class, all its parent types definitions must be known.

class A extends B { C x; } class B {class C {}} class C {}

3.2 Dynamic Analysis

Dynamic analysis focuses on the concrete behavior of software. Compared to static
analysis, functionally, it has the possibility to access to runtime context, thus it is
particularly useful to observe concrete behavioral changes, e.g., through regression testing.
The concreteness is also a challenge as it directly limits the coverage of behaviors requiring
multiple runs. However, dynamic analysis can be laborious due to issues tracing back to
source code, while additional debug information and instrumentation will decrease runtime
performances.

In the context of this thesis, by relying on the build system and runtime intended to
be used with the software projects under analysis, dynamic analysis is a robust way of
observing consequences of changes. Indeed, I used test executions for chapter 5 to extract
information about the effects of code evolutions (definition 5), which directly participated
to confirm the finding of co-evolutions (definition 6).

The section presents dynamic analysis and notably focuses on testing (non-exhaustive
overview). Indeed, dynamic analyses are often relying on tests because they aim to cover
as much as possible the possible behaviors expressed by the program, in a controlled
environment. The frontier between testing and dynamic analysis is often "fuzzy". Multiple
dynamic analysis approaches target tests, such as test coverage, mutation testing, test
synthesis, fuzzing, parametric testing. Finally, we will also see non-functional analyses,
i.e., to measure performances of a program, as dynamic analysis is often the only way to
do so.

3.2.1 Testing

Software testing is a software engineering practice that aims at evaluating an aspect of
a software system to check whether it meets the expected result [HH88]. Software testing
takes a large place in the current development process: developers manually write most of
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1 export class Counter {
2 constructor(private x: number)

{}↪→

3

4 count(cb?: (n:number)=>number)
5 : number {
6 if(cb === undefined) {
7 this.x++;
8 } else {
9 this.x = cb(this.x);

10 }
11 return this.x;
12 }
13 }

1 test('count with undefined fct',
() => {↪→

2 const c = new Counter(0);
3 expect(c.count()).toBe(1);
4 });
5

6 test('count with fct', () => {
7 const c = new Counter(3);
8 expect(c.count(x => x-2))
9 .toBe(1);

10 });

Listing 1 – an object-oriented class (left) and two associated tests (right)

the tests, which can be time-consuming [Bel+17]; test suites, developed and maintained in
parallel to software code to assess the correct behavior of this last, can be large [Zai+08]. A
test suite is composed of a set of tests, i.e., executable scenarios, that check the correctness
of a given element of the software. Listing 1 depicts a basic example of code and two
associated tests. The class Counter, on the left, has one private class attribute x, a public
constructor that sets this attribute, and a public method count. The two tests, on the
right, that test different usage scenarios of the method count: The first test calls the
count method without any argument. It thus checks that x is incremented (line 7 in the
class code). The second test calls the count method with a function as argument. The
x attribute thus takes the result of this function with x as argument (line 9 in the class
code).

There exists different types of tests that work at different granularities, and that use
different technics to achieve their goal. For example, the two tests of Listing 1 are unit
tests: they focus on testing different usages of a unit (here the class Counter) without any
dependency to other units (i.e., other classes). The goal of unit testing is to check that
an isolated unit works as expected before testing in interaction with other units. It often
requires mock implementations to tests units in isolation.

When it is difficult to isolate units, another kind of tests is end-two-end (e2e) testing:
an e2e test simulates a user that interacts with the system to perform a specific usage
scenario of the system under test. This is often related to system testing as it can sometimes
work on the whole application under a specific scenario instead of a code unit. This is
also related to acceptance testing that consists of e2e / system tests described in the
specifications of the system and defined by the client. The goal of acceptance testing
is to provide the client with tests that demonstrate that features of the system work as
expected. An especially effective approach when a large amount of input can be used along
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concise oracles/properties is property-based testing where inputs are generated instead of
being concretely written.

When it is difficult to specify oracles, it is possible to fall back to catching regressions
(i.e., regression testing) with snapshot testing where previous execution outputs are saved
then comparing to new ones. With the drawback that it might also catch improvements.
When even storing test outputs is problematic, it is still possible to use fuzz testing to
assess a system’s robustness by trying to provoke crashes while providing random inputs.

To cover many complex features, the number of tests (including along generated inputs)
can become very large, hence, taking a long time to execute along with a lot of resources.
The major trade-off resides in the balance between catching regressions, obtaining quick
feedbacks from the test suite, and maintaining tests (when there are changes to features
or dependencies).

3.2.2 Approaches Synergizing with Tests

Beyond its original goal of validating the behavior of a system under test, software
engineering techniques and research works leverage test suites to achieve various purposes,
including the improvement of said tests. Indeed, tests suites execute software system code
so that one can extract run-time information from these executions. Various techniques
used such run-time information, in particular to propose software testing techniques that
complement tests. Code coverage is a testing assement technique that uses test execution
information to mark code lines or code statements as covered or not by at least one
test [ZHM97]. This technique gives as output a metric to evaluate the quality of a test
suite and helps developers in improving it. For example with Listing 1, the execution of
the two tests give a coverage score of 100% of the code statements of class Count: the two
tests cover all the code statements of this class. This, however, does not mean that the
code is safe, as we will see in the next paragraph.

Complementary to test coverage, mutation analysis is another metric that leverages test
execution information [JH10; Pap+19]. At run time, mutation operators change specific
code instructions (for example, replace a + instruction by a - one) to check whether the
test catches the mutant, i.e., the fictive alteration of the code. These two metrics, test
coverage and mutation score, aim at providing testers with metrics to assess and improve
the quality of their test suite.

In response to bad coverage or low mutation score, automated approaches can be used.
Test amplification “consists of exploiting the knowledge of a large number of test cases,

in which developers embed meaningful input data and expected properties in the form of
oracles, in order to enhance these manually written tests with respect to an engineering
goal” [Dan+19].

[KZ19] combine multiple testing approaches to improve performances of parametric
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testing on system tests. In short, this approach extract unit tests from system tests, then
executes the extracted unit tests with parametric technics, finally, it lifts back failing tests
to system tests to validate their verdicts.

For certain programs that are inherently complex to test well in a limited number of
tests, i.e., requiring to use many inputs (but respect notable invariants), such as parsers
and protocols with possibilities of deadlock, it is important to first focus and leverage
parametric approaches, such as Quickcheck, and employ delta debugging technics to quickly
simplify failure-inducing inputs [ZH02].

Commit slicing [Li+17; LRC22] is also a notable use of tests, leveraging test coverage
to approximate code connexity. Actually, a thorough code coverage is necessary to infer
proper dependencies between code elements and (consequently) changes.

3.3 Hybrid analysis

In the context of this thesis, scaling code analysis technics is crucial to reach developers
that work on large projects. This section presents how this scaling problematic is tackled
in the literature. Indeed, static and dynamic analysis can be combined to leverage the
efficiency and exhaustiveness of static analysis together with the precision and concreteness
of dynamic analysis.

Damodaran et al. [Dam+17] present an overview of malware detection approaches and
the benefits of hybrid analysis, specifically on performance concerns.

Test selection allow to reduce the number of tests that need to be executed [ERS10;
Soe+16].

Memoization/Caching of intermediary build artifacts makes builds incremental and
reduce built time [SA93], it can be done using Ccache with make, some build systems
are designed to build incrementally large code bases, such as Buck2 (Meta) and Bazel
(internally Blaze at Google).

With JUnit, once tests are built it is possible to execute them in parallel, reducing the
duration of the test suite’s execution.

3.4 Conclusion

This second background chapter presented another dimension of source code analysis,
this time through "space" (in opposition to "time"), i.e., analyzing relations between
code elements at a given state (version/commit). Indeed, to concretely relate evolutions
we defined the effect of a change on other code elements and properties of a program,
we also defined the dependency graph that enables to related code elements through
different dependency relations and propagate effects of a change, i.e., it should allow to
model and predict the effects of changes throughout dependency relations (see chapter 5).
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Approaches from the state-of-the-art of source code analysis were presented through the
different categories of static, dynamic and hybrid analyzes. Moreover, as an essential
component of advanced analyses, it specifically focussed on reference analysis and name
resolution, as it is fundamental component of code navigation, many advanced source code
analysis, building of dependency graphs (definition 3), and predicting impact of changes
(definition 2). Finally, to scale to real world problems, it emphasized the performance
concerns of source code analysis, through different approaches, such as incrementally, and
parallelization.
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Chapter 4

TEMPORAL CODE ANALYSIS AND

ANALYZING EVOLVING SOFTWARE

“Within Google, we sometimes say, ‘Software engineering is programming
integrated over time.’ ”

— Titus Winters et al. Software Engineering at Google (2020), p. 3

This chapter presents the state-of-the-art on how temporal analysis and spatial analysis
of source code are combined, with the aim of better understanding software engineering
practices and automating software engineering tasks. It starts with a classification of
temporal code analyzes (section 4.1) that allow us to better understand the problems faced
by researchers and their needs when analyzing source code histories. Then section 4.2
presents an in-depth state-of-the-art on source code co-evolution.

4.1 Classification of temporal code analyzes

Temporal code analysis refers to a code analysis that studies the code of a software
system over several moments of its existence. Such a class of analyzes differ from history-
based analyzes in the way that one can study the different commits of a history with no
interest in temporality or code evolution. So, not all history-based analyzes are temporal
code analyzes. For example, Herbold et al. [Her+22] analyzed tangled history commits
singly with no focus on temporality. Similarly, Śliwerski, Zimmermann, and Zeller [ŚZZ05]
proposed an approach for analyzing history commits to state whether a given commit
induces bug fix. Fischer, Pinzger, and Gall [FPG03] proposed an approach for building
a release history database by merging information from code histories and bug tracking
systems. The authors then used this approach to study change couplings [FGP05]. Instead,
a temporal code analysis may study the evolution of code metrics over time [Bal+97;
Rap+04] or track the (co-)evolutions of code elements [Gru+21; HHK20; Zai+11; Le +21].
The interested readers can refer to the survey of Kagdi, Collard, and Maletic [KCM07] for
more details about approaches that mine software repositories and therefore their history.

Here, we propose to classify temporal code analyzes into three main categories, namely
batch, tracking and cross-AST.
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4.1.1 Batch temporal code analysis

The batch category corresponds to analyzes that operate on several versions (e.g.,
several commits) sequentially without requiring relations between the underlying ASTs of
those versions. The approach of Tufano et al. [Tuf+17], that studied how smells appeared
in source code, typifies this class: the approach checkouts each commit sequentially to
launch a code analysis on it and get its results.

We identified four sub-categories separated into two groups: external or internal batch
analyzes and semantic or textual batch analyzes. External batch analyzes refer to the use
of an external standalone tool applied on each version (e.g., Decor [Moh+09]), such as in
[Tuf+17; Pal+18] to detect bad smells in Java files. Internal batch analyzes refer to ad
hoc analyzes specifically developed for the approach. For example Rapu et al. [Rap+04]
studied the stability of classes by launching a specific code analysis on each studied version
of software systems in a batch process. The analysis of one version produced metrics for all
the classes of this version. The process is then repeated for different versions to study the
stability of classes. Gall, Hajek, and Jazayeri [GHJ98] studied the evolutionary coupling
between files (i.e., which file changed with which other file). Alexandru et al. [Ale+19]
computed the cyclomatic complexity of classes over versions. Batch analyzes may require
syntactic knowledge of the language used in stored files [Zim+05]. We call this sub-category
semantic batch code analyzes. For example, studying the stability of a method requires to
locate methods in files based on the used language. Textual batch code analyzes do not
consider such semantic. For example, studying the evolutionary coupling between files
does not require any syntactic knowledge.

4.1.2 Tracking temporal code analysis

The tracking class of analyzes is close to the batch class in the way that the approaches
analyze code sequentially but with the challenge of identifying the new position of a code
element (e.g., method, statement) in the different versions. The challenge in such analyzes
is that tracking a code element requires both syntactic knowledge of the language used in
stored files, and a dedicated heuristic to follow an element as precisely as possible. For
example, tracking a method requires knowing what corresponds to its beginning (e.g.,
annotations or a JavaDoc block for Java code) and its end. To bypass this requirement
in order to move from the tracking to the batch category, several approaches made a
simplifying assumption. For example, Khomh et al. [Kho+12] considered that one Java
class corresponds to one Java file, thus enabling the use of batch process without tracking
precisely Java classes.

Several approaches track code elements using, for example, meta-programming tools,
such as Spoon [Paw+15] using Git commands or Git-based tools that eases the analysis of
Git histories (e.g., PyDriller [SAB18]). For example, the Git command log has an option
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L to track given lines in a given file, as used in [LH22; Blo+18]. Examples of tracking are:
using Git commands to compute the change- and error-proneness of code chunks [Blo+18]
or to study the evolution of methods complexity [LH22]; techniques for getting method
histories, such as CodeShovel [Gru+21] or FinerGit [HHK20]; understand when a null
pointer issue or a bad smell appeared in a commit [Cor+16];

4.1.3 Cross-AST code analysis

The cross-AST category corresponds to analyzes that operate on several ASTs at the
same time to investigate complex relationships between code evolutions. For example,
studying the co-evolution process of code and their tests [LY17; Le +21] or identifying
causes for bugs code repair [Lin+07; Ni+20].

Wu, Zhu, and Li [WZL21; WLL21] combine call graphs with evolutions computed by
ChangeDistitiller [Flu+07] in a database, it is presented as a formalization of internals of
CSlicer [Li+17].

Padioleau, Lawall, and Muller [PLM06] presents evolutions to Linux kernel drivers,
they call collateral evolution, that occur in response to evolutions in the kernel and driver
support libraries.

A refactoring [TKD20; Sil+20] can also be considered as a combination of causally
related evolutions that can be fully handled statically.

To summarize, performing temporal code analyzes, i.e., analyzing the AST of the
same program at different times, faces the following issues:

— For cross-AST analyzes, stakeholders have to write and maintain boilerplate glue
code to put in relation multiple ASTs, such as in [Le +21];

— As a consequence of the previous point, analyzes may consider evolutions at a coarse
granularity, i.e., the class or method level only, such as in [Pal+14], while temporal
analyzes might require more fine-grained evolutions (e.g., instructions);

— Analyzes may face memory and CPU over-consumption when several ASTs have to
be compared or analyzed together (i.e., not a batch process), thus preventing them
to scale, as detailed in [Le +21];

— Stakeholders have to write and maintain their own API for performing temporal
queries, i.e., queries on several versions of an ASTs (e.g., asking the stability of a
given class [Rap+04]);

— Stakeholders have to re-analyze the program history on every new analysis;

— Current temporal code analysis approaches (e.g., [Ale+19]) support the computation
of syntactical metrics in a sequential batch way as a temporal code analysis.
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4.2 State-of-the-art on Software Co-evolution

This section presents an overview of the literature about software co-evolution, that
aim to show how existing approaches combine temporal and spatial analysis to automate
source code maintenance, notably tests. Section 4.2.1 first establishes the methodology
and comparison criteria to help organize existing research works on software co-evolution.
Then section 4.2.2 presents and details the resulting classification.

4.2.1 Methodology

This section presents the methodology I used to build this state of the art. I propose
criteria to categorize approaches that work on code and test co-evolution. Thanks to those
criteria I propose to classify the literature and choose best-suited techniques depending on
particular concerns. Figure 4.1 illustrates those criteria as a feature model.

The comparison criteria are inspired from the survey written by Hebig et al. [HKB16]
on the co-evolution of models. To gather relevant papers, the bibliographical research
started with a set of articles provided by my supervisors. Then I searched on mainly google
scholar with keywords from previous papers and also followed the most relevant references
from papers that I read, known as the snowballing technique.

In this classification, co-evolution is considered as a two-step process, where the first
step would be about evolution, while the second step would be about co-evolution. Both
steps contain specific categorization criteria that will now be detailed along with the degree
of automation and language characteristics.

Degree of automation

One of the first criterion to consider is the degree of automation of the co-evolution.
It quantifies the amount of involvement needed by a developer in the process of co-evolution.
In case of a full automation one might only have to confirm co-evolution, otherwise in a
semi-automated co-evolution one might need to choose between possible resolutions to
apply or even create a custom transformation, capable of handling some domain-specific
evolutions. We distinguish manual, semi-automated and fully-automated approaches.

Language characteristics

The software systems that can be co-evolved contain different characteristics. Those
characteristics can particularly be observed through the programming language point of
view. Most software projects use various frameworks and programming languages. This
multitude of languages might share common characteristics. We mainly consider: i) the
language paradigm, i.e., Object oriented, Imperative or Declarative and ii) the type system,
i.e., strongly or weakly typed languages.
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Co-evolution

Degree of automation

Manual Semi Auto

Implementation evolution

Granularity

Atomic Composed
Abstraction

Class Function Branch Instruction

Detection

Online Offline

Tests co-evolution

Impact analysis

Mode

Online Offline
Analysis methods

Static Dynamic Hybrid ...

Kind of test

Unit test System test

Target

Calls Inputs Oracles

Type

Repair Amplify

Language characteristics

Typing System Paradigm

Figure 4.1 – Feature model of co-evolution of code and test [ : or, : xor, : mandatory,
: optional]

Detection and classification of evolutions

Detecting and classifying evolutions is the first step before considering co-evolution.
Each major criterion part of this step of co-evolution are explained in the following:

1. Granularity: The granularity of evolution is important to the automation of the
co-evolution. The simplest kind of evolutions is an atomic change, while it is very
simple to detect simple changes, they contain little information alone. Additions,
deletions, and modifications are the simplest atomic changes, and often the only
atomic changes considered. Moreover, it is possible to combine atomic changes
into composed changes that bring additional contextual information. For example,
moving a method from one class to another is composed of a deletion and addition
of method.

2. Level of abstraction: In every software analysis, the level of abstraction reflects the
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trade-off made between precision and performance. For example, the file abstraction
can be considered as high abstraction to detect changes in a code. The file abstraction
is what most compilers for procedural languages are using to avoid recompiling
unchanged files. There is also the class abstraction, it is one of the most used, as
it syntactically and statically presents a large quantity of semantic information. In
fact, methods are carrying the behaviors of object, and behaviors can be shared
through inheritance. But this abstraction requires the analyzed language to be
object-oriented and possibly have class, prototypes and an inheritance system. To
establish measurements of impacts from changes it is necessary to look at calls, this
abstraction is a call graph. Finally looking at the level of flow graphs, i.e., blocks of
instructions linked by branches might be necessary for some analyses, but it requires
a lot of effort and processing power to compute.

3. Detection: The detection of changes can be done online by logging operations
made on files or offline by comparing states of files between versions. Detecting
changes through online logging is more precise but is also more intrusive than offline
detection. Online detection can be brittle in case of unlogged changes. Thus, all
external tools modifying the code would need to provide the set of applied changes.

Co-evolution of tests

Here, we will look at the particular aspects that concern the actual the co-evolution of
code and test.

1. Impact analysis: The impact analysis of code changes on tests need to be
quantified to propose relevant co-evolution. It allows to locate tests that need to be
co-evolved and to provide some more contextual information on tests dependencies.
Two modes of impact analysis can be discerned. Offline impact analysis is computed
when the developer is done with his current set of changes. While online impact
analysis is computed interactively whenever a change happens.
Moreover, several methods can be used herein depending on the type of language
used for the code. We can distinguish static analysis for statically typed code,
dynamic analysis for dynamically typed code, or hybrid analysis too.

2. Kind of tests: The kind of tests targeted by a tests’ co-evolution methods could
be relevant as system tests are much bigger and take longer than unit tests. In a
way the kind of tests handled by co-evolution methods should give a lead on the
scalability of the approach.

3. Type: Given some evolutions, two types of co-evolution are possible. Amplifica-
tion co-evolution creates new tests from other tests by various exploratory methods
(genetics, regression, etc.). Repair co-evolution modifies existing tests to make it
pass the compilation, or the runtime checks.
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4. Target: The target of the test co-evolution can be the calls, the inputs of calls, the
expression of oracles, or a combination of the 3.

Calls in a unit tests refer to invoking specific functions or methods that are being
tested. This is essentially the action you want to test and evaluate. In other
words, a call is the execution of the code you want to verify.

Inputs refer to the data or parameters that you provide to the function or method
being tested. These inputs are crucial for assessing the behavior and correctness
of the code under different scenarios. From a list of call it is possible to use the
corresponding declarations to infer possible parameter values.

Oracles set the standard of correctness for the program under test, i.e., oracles
enforce a concrete program specification. In tests, oracles take the form of
assertion statements.

For example, in the first test case of Listing 1, a call to the constructor of Counter
is made with the number 3 as an input, then a call to the method count is made
with a function as an input. Finally the oracle checks that the value return by the
previous call is equal to the number 1.
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Table 4.1 – Classification part 1, evolution of production code [?: not mentioned, N/A: not attributable]

Reference Language Granularity Abstraction Detection Automation
Čubranić and Murphy 2003 [ČM03] all ? metadata, . . . offline auto
Adamapoulos et al. 2004 [AHH04] Fortan-77 N/A mutant offline auto
Jiang et al. 2006 [Jia+06] N/A composed event offline auto

Halfond et al. 2008 [HO08]
java, PHP,
http,. . .

composed calls, data flow offline semi 1

Memon et al. 2008 [Mem08] all composed event offline semi 2

Hassan 2009 [Has09] C,C++ atomic pattern, metadata offline auto
Daniel et al. 2010 [DGM10] Java, .NET composed 3 instruction offline semi1

Dagenais et al. 2011 [DR11] Java composed3 metadata offline semi1

Jin & Orso 2012 [JO12] C composed class, flow graph offline auto
Mirzaaghaei et al. 2014 [MPP14] Java atomic class offline auto
Dagenais et al. 2014 [DR14] Java composed pattern offline semi1

Khelladi et al. 2017 [Khe+17a] OCL composed class online semi2

Fluri et al. 2009
[Flu+07;
GFP09]

Java composed instruction, class offline auto

Falleri et al. 2014 [Fal+14] Java atomic instruction, class offline auto
Silva et al. 2020 [Sil+20] Java composed instruction, class offline auto
Tsantalis et al. 2018 [Tsa+18b] Java composed3 instruction, class offline auto

1Makes recommendations, on possible co-evolutions.
2Might sometimes require human design choices.
3Only consider in place compositions.
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Table 4.2 – Classification part 2, co-evolution of tests [?: not mentioned, N/A: not attributable]

Reference Language Impact Analysis Kind Type Target Auto-
Mode Method of test mation

Adamapoulos et al. 2004 [AHH04] Fortan-77 offline static, genetic unit generate tests inputs auto

Halfond et al. 2008 [HO08]
Java, PHP,
http,. . .

offline static ? repair calls in general semi1

Memon et al. 2008 [Mem08] all offline dynamic unit5 repair whole tests semi2

Thummalapenta et
al.

2009 [Thu+09] Java offline static unit generate
tests calls and param-
eters

semi1

Daniel et al. 2010 [DGM10] Java, .NET offline static, symbolic unit repair whole tests semi1

Robinson et al. 2011 [Rob+11] Java offline static unit5 generate whole tests auto
Jin & Orso 2012 [JO12] C N/A6 dynamic unit generate tests calls and inputs auto
Galeotti et al. 2013 [GFA13] Java N/A6 static, symbolic unit generate tests calls and inputs auto
Tonella et al. 2014 [TTN14] all offline dynamic all generate tests event semi1

Mirzaaghaei et al. 2014 [MPP14] Java offline static all
repair,
amplify

whole tests auto

Fraser et al. 2014 [FA14] Java N/A6 static unit generate tests calls and inputs auto
Mirshokraie et al. 2015 [MMP15] js offline dynamic unit generate whole tests auto
Mirshokraie et al. 2016 [MMP16] js offline dynamic unit generate whole tests auto

Khelladi et al. 2017 [Khe+17a] OCL offline static N/A7 repair
whole models and
constraints

semi2

Kampmann & Zeller 2019 [KZ19] web-sql-python-C
stack

offline dynamic unit generate whole tests auto

5In the context of regression testing.
6Do not use changes to generate tests.
7Co-evolve OCL constraints.
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4.2.2 Classification of approaches

In this section, we will present the state of the art on co-evolution of code and tests
following the classification given by the feature model in Figure 4.1. We will present
some of our results in Table 4.1 regarding the classification of approaches that detect and
classify evolution in software artifacts, mostly code. Then in Table 4.2, regarding the
actual co-evolution of software artifacts, mostly tests. It should be noted that approaches
mentioned in one table but not in the other, either only detect evolution or only improve
tests without considering evolution.

Language characteristics

As shown in Tables 4.1 and 4.2, most of the approaches that I found focus on object-
oriented programming languages. In particular, they use the Class construct and strong
and static type systems, like Java, C#, and C++. These approaches seem to correlate
strongly with techniques, such as static analysis and patterns recognition. Nonetheless,
some approaches do not rely on particular characteristics of languages in themselves, like
class and static types, but they rely on the run-time behavior of the program. These
approaches use events at some points with dynamic analysis to produce behavioral models
[JO12; KZ19; Mem08]. We also found a few approaches working on declarative constraints
systems [Khe+17a], or on database language paradigms [ZED11; KZ19].

Degree of automation

In both Tables 4.1 and 4.2, the automation criterion refers to the approach in general
and not only on evolution or co-evolution, as it was very difficult to distinguish both. We
noticed that most approaches are automatic, but many offer semi-automation.

Evolution of the Implementation

1. Granularity: Table 4.1 shows a correlation between the granularity of changes and
the automation of the corresponding approach, where approaches using composed
changes require more manual intervention. The cause of this correlation seems to
be that approaches using composed evolution are more complex although they can
handle a greater variety of evolution.

All approaches considering evolution use some degree of composed changes, Dagenais
et al. use some basic compositions in [DR11; DR14]. For example, renaming is
composed of the deletion of a name and the addition of a new one. Here the authors
consider the case of in-place renaming, so it is easier to infer the relation between
the deletion and addition.
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Tsantalis et al. [Tsa+18b] detects high level refactoring embedded in Refactoring-
Miner.4 Other tools focus on detecting evolution changes. Gumtree [Fal+14] considers
only atomic changes, RefDiff [Sil+20] and ChangeDistiller [Flu+07; GFP09] consider
complex changes but are less precise/performant than RefactoringMiner [Tsa+18b].

2. Abstraction: Both Tables 4.1 and 4.2 show that the abstraction of choice is the
class construct.
Some approaches make use of metadata to mine patterns in Content Versioning
Systems (CVS). Zaidman et al. in [Zai+08; Zai+11] mine co-evolution patterns
in SVN commits, while Martinez et al. in [MM19], RefactoringMiner [Tsa+18b],
Gumtree [Fal+14] considers only atomic changes, RefDiff [Sil+20] and ChangeDis-
tiller [Flu+07; GFP09] mine co-evolution patterns in git commits.

3. Detection: Table 4.1 shows that most of the approaches that we found use offline
detection. These approaches deal with contents that can be edited in many ways,
making it difficult to change each editing mode. Thus, these articles rely either on
file metadata and file diffs to detect changes [MPP14; DGM10; HO08], metadata
of CVS and blob differences [MM19; Has09; DR11; ČM03; Tsa+18b], or behavioral
differences [Mem08; Jia+06].

Co-evolution of tests

We found 12 approaches explicitly focussing on tests co-evolution. We also found a
few others approaches that do not exactly co-evolve tests but similar purpose artifacts or
do not explicitly use the co-evolution term.

1. Impact Analysis:

Analysis mode All the articles retained in the state of the art are doing offline
impact analysis. There is therefore either no need for test co-evolution during
code changes, or the current test co-evolution techniques are too expensive to
react to each change.

Analysis methods We found different methods of impact analysis.
Static analysis is the most wide spread type of analysis here, as shown in
Tables 4.1 and 4.2. The causes of this distribution seem to be due to the
large amount of semantic and structural information available in strongly typed
object-oriented languages, such as Java.
On the contrary, dynamic analysis does not appear to be very common, in
fact, dynamic analysis is particularly suitable for highly dynamic and weakly
typed languages, such as Javascript and Perl. But it requires to go down to the
runtime of the program which causes a performance penalty and an increase in

4https://github.com/tsantalis/RefactoringMiner
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complexity. Nonetheless in [KZ19] Kampmann at al. use dynamic analysis to
synthesize unit tests from system tests through the use of behavioral models
and fsm inference algorithms.
Mirshokraie et al. in [MMP13] then in [MMP15; MMP16] combine dynamic
analysis and mutation testing to improve tests of Javascript programs.
Hybrid analysis seem to be in many future works [And+17] but we did not
find approaches explicitly claiming it in the context of co-evolution.

2. Kind of tests: We found no approaches claiming to be able to repair or generate
system tests. So the hypothesis on the computational complexity of these approaches
does not seem invalid.
Kampmann et al. in [KZ19] use system tests to generate new unit tests. Mirshokraie
et al. in [MMP16] also use system tests but in the from of GUI tests to generate
new unit tests.
Memon et al. in [Mem08] generate unit tests in the particular case of regression
testing. Here the regression testing allows the creation of oracles from the program
current behavior.
Khelladi et al. [Khe+17a] do not co-evolve tests but a very close artifact. In fact,
they co-evolve OCL, a declarative constraint language on models, such as class
diagrams. Here specifying constraints is very similar to specifying oracles.

3. Target: Tonella et al. [TTN14] and Jiang et al. [Jia+06] use traces to construct
a functional behavioral model of an application. Then they generate new tests as
skeletons of calls from paths in the fsm. Halfond et al. [HO08] detect parameter
mismatch in multi-languages systems. Dagenais et al. [DR11; DR14] recommend
alternatives for broken calls and for general references. Fraser et al. [FA14] produce
tests composed of calls and inputs from Java generics. Daniel et al. [DGM10]
compute new inputs for tests that maximize coverage through symbolic execution.
Adamopoulos et al. [AHH04] amplify inputs through mutation testing and genetic
algorithms. Zhang et al. [ZED11] amplify tests for database systems through
the use of symbolic execution and genetic algorithms. Table 4.2 shows that fully
automated approaches generating (non regression) unit tests are not producing tests
with oracles. Except with Kampmann et al., and Mirshokraie et al. in [KZ19]
and [MMP15; MMP16] where they borrow oracles from system tests (such as GUI
tests) to generates unit tests. combine dynamic analysis and mutation testing to
improve tests of Javascript programs. In facts, oracles are part of the application
specification, thus there can not be automatically generated. To overcome this
restriction, Mirzaaghaei et al. [MPP14] use oracles from other tests, Kampmann
et al. [KZ19] run system tests with the same inputs as unit tests to reduce false
positives triggered by oracles in unit tests (if an oracle from an unit test fails,
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the corresponding system test should also fail). Khelladi et al. [Khe+17a] repair
constraints which is very similar to repairing oracles.

4. Type: Robinson et al. [Rob+11] use static analysis to generate tests then mutation
testing to refine generated tests. Kampmann et al. [KZ19] synthesize unit tests from
system tests.
Mirzaaghaei et al. [MPP14] amplify and repair unit tests using carefully handcrafted
patterns that matches certain evolution. However creating these pattern can be
tedious. A partial solution to this problem could come from Khelladi et al. in
[KKE18], who are combining repairing rules to co-evolve models given changes in
metamodels.
Daniel et al. [DGM10] repair tests using symbolic execution, more specifically they
focus on repairing string literals. Memon et al. [Mem08] repair regression GUI tests,
more specifically they repair the sequence of GUI events, sometimes it needs manual
interventions when the approach does not find an appropriate resolution.

4.3 Precising the Definition of Co-evolutions in their
Time Dimension

In view of the extensive state-of-the-art, in both spatial and temporal dimensions of
source code analysis, there might be practical opportunities to consider causal relation
between evolutions to precisely analyze and understand source code histories. Indeed,
multiple Cross-AST code analyzes consider causal relations between evolutions. Yet even
the exact name of such causal evolution differs depending on the exact application context.

The collateral evolution from Padioleau, Lawall, and Muller [PLM06] explicitly
consider the fixing of drivers caused by changes to the kernel and support libraries.

Migrations from Lamothe, Shang, and Chen [LSC18] focuses on changes between
dependencies API that necessitates changes to application code.

Refactorings can be seen as a modification or creation of a declaration that necessitates
fixing references of this declaration.

Co-evolution is a term used in multiple studies of source code histories with the
aim of understanding the development process of practitioners [Zai+08; Zai+11; MRZ14;
Flu+09; VP18]. For the development and study of models. Co-evolution is also used to
qualify related changes in model driven developpement [Dem+16; Kus+15a; Kus+15b;
Sch+15; Sch+15; HKB16; KSW18; Cic+08; DIP11; Khe+16; Khe+17b; Khe+17a; KKE18;
Khe+20].

Sometimes coupled-evolution is also used [DIP13; Di +14], some other times co-
change [Sil+15; SVM19].

In the remainder of this thesis, we choose to use co-evolution to describe causally
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related evolutions. We propose definition 4 that aims to be applicable concretely in diverse
contexts. Moreover, we also propose four derivative definitions that allow to qualify special
configurations of co-evolutions (definitions 4.A to 4.D), with the aim of producing more
precise results.


In biology with a more observational definition, a co-evolution corresponds to
evolutions that takes place in different species due to the same environmental
stimulus.

Definition 4 – Source code co-evolution. A source code co-evolution is composed of:
an evolution that breaks a property, i.e., it is the cause of the co-evolution; a second
evolution that fixes a property broken by the cause, i.e., it is the repair of the co-evolution.
In a timeline, the cause would be the first applied, followed by the repair .

We distinguish four types of co-evolution: namely complete and partial, that have
their own definition of the cause and the repair , and immediate and delayed, that
distinguish by when the cause and the repair append through time (i.e., different
commits).

Definition 4.A – Complete co-evolution. A complete co-evolution:
1/ consider a piece of code that satisfies a set of properties;
2/ then applies evolutions that break some properties;
3/ and finally repairs all the broken properties.

Definition 4.B – Partial co-evolution. A partial co-evolution corresponds to all the
scenarios that differ from the definition of a complete co-evolution, such that a partial
co-evolution:
1/ considers a piece of code that satisfies a set of properties;
2/ then applies evolutions that break some properties;
3/ and finally repairs some of the broken properties.

Partial co-evolutions relax criteria to obtain and study other interesting cases of co-
evolutions. Naturally, a co-evolution might switch between partial and complete when
considering different properties.

Definition 4.C – Immediate co-evolution. An immediate co-evolution corresponds
to cases when both the cause and repair are located in the same commit.

Definition 4.D – Delayed co-evolution. A delayed co-evolution corresponds to cases
when the cause or repair are spread over several commits.

Moreover, considering that we can have at some point (i.e., in a commit) a partial
co-evolution. Then, later this co-evolution might be completed by additional evolutions (if
not completed at least repairing additional properties). Thus, making this new composition
of evolutions a delayed co-evolution.
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4.4 Conclusion

This chapter presented the implications of combining temporal and spatial analysis
of source code with the aim of better understanding source code histories and toward
automating engineering tasks, especially maintenance tasks. It first proposed a classification
of temporal source code analysis integrating the state-of-the art approaches, then focused
on the state-of-the-art of source code co-evolutions. This state-of-the-art enabled us to
enunciate a general definition of source code co-evolution, based on properties that can
be precisely instantiated. Chapter 5 will propose an approach to automatically find such
co-evolution, with precision by leveraging test verdicts, and at scale by leveraging diffs and
static impact analysis. Chapter 6 will specifically target limitations of current temporal
source code analyzes by providing a framework for incremental analyzes of source code
histories.
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Part II

Contributions

“I considered that a machine to execute the mere isolated operations
of arithmetic, would be comparatively of little value, unless it were
very easily set to do its work, and unless it executed not only accu-
rately, but with great rapidity, whatever it was required to do.”
— Charles Babbage, Passages from the Life of a Philosopher (1864), p. 43

“The purpose of software engineering is to control complexity, not
to create it.” — Jon L. Bentley, Programming Pearls

“The battle for a fast system can be won or lost in specifying the
problem it is to solve.” — Jon L. Bentley, Programming Pearls

The four next chapters present my contributions toward better maintenance of
software through co-evolutions:
Chapter 5 demonstrates the feasibility of finding precise co-evolutions in large
source code histories, leveraging static impact analysis and tests to select
possibly impacted tests and precisely observe functional effects of combination
of changes.
Then I address the efficiency of computing fine-grained changes and their
impacts from code histories:
Chapter 6 revisits how source code histories are represented and processed,
leveraging both the structured nature of code, its stability through time, and
locality of intermediate analyses. It led to an approach called HyperAST .
Chapter 7 presents an approach leveraging the HyperAST to compute referential
dependencies incrementally.
Chapter 8 presents a novel code differencing technique, called HyperDiff that
leverage the HyperAST to compare commits at scale.
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Chapter 5

TEMPORAL ANALYSIS OF SOURCE CODE

HISTORIES THROUGH CODE-TEST

CO-EVOLUTIONS

As presented in the background on source code evolution (section 2.2) developers
change their code base over time, to adapt to new requirements of their users or to
changes in the environment. Fundamentally these evolutions stretch over three dimensions:
Corrective, Adaptive, and Perfective. Concretely, developers often use feature addition,
bug fix, performance optimization, and refactoring. Using these keywords (as part of the
conventional commit specification) facilitates the reviewing process and allow to simplify
the constitution of changelogs. Indeed, it allows to associate invariants on sets of evolutions
while automatically checking them: a bug fix should not change the API, a refactoring
should not change the behavior of the source code, and a feature addition should not
break existing features. Refactorings are particularly interesting due to the way we test
software, especially regression testing, since refactoring should not change the behavior of
the program.

Based on the works of Zaidman et al. [Zai+08] and Levin and Yehudai [LY17] on
co-evolutions between production code (abbreviated as code) and test code (abbreviated as
tests), I propose to automatically find co-evolutions in industrial Java codebases. Precisely
identifying effects of production code evolutions on tests is a real challenge. To find a code
and test co-evolution, a practitioner indeed has to find and isolate impacting groups of
evolutions. This practitioner can hardly do this task by hand since it requires to identify
and test each possible combination of evolutions, i.e., to compile code and run for each
combination the tests to evaluate potential impacting and repairing effects. Then, the
practitioner has to associate an impacting evolution to its possible repairing evolutions,
following the same process. For 10 evolutions in a single commit, this could imply 210

combinations to evaluate.
This chapter presents an automated approach for precisely finding code and test

co-evolutions in Java and Maven source code repositories. Our approach supports both
atomic and complex evolutions, such as refactorings. It first performs a static analysis of
Git histories and Java code to identify groups of interacting evolutions and tests. It then
applies several heuristics to reduce the combinatorial explosion of candidate co-evolutions.
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The approach finally narrows down these results with a dynamic analysis, based on test
execution and compilation, which evaluates the effects of evolutions on test verdicts and
compilation results. This dynamic analysis is one novelty of our approach that permits
to qualify with high confidence the causal relation between two groups of evolutions in
production and test code, i.e., the cause and repair of a co-evolution. Moreover, as another
novelty in contrast to [Zai+08; Zai+11; LZP09; LY17], we refine the definition of code
and test co-evolution to distinguish two types, namely complete and partial co-evolutions.
The former is when the co-evolved test passes, and the latter is when it does not, hence,
missing some co-evolution ingredients.

We conducted an empirical study on a curated set of 45 open-source systems having Git
histories. Our approach found 612 co-evolutions among which 500 are contained in single
commits and 112 are scattered on two separated commits. In particular, our approach
detected 202 complete co-evolutions for which it exhibits a precision of 100 % and an
underestimated recall of 37.5 % in detecting the code and test co-evolutions. Our approach
also spotted the different kinds of code and test co-evolution that researchers manually
identified in previous work [Zai+08; Zai+11; LY17].

In summary, the contributions of this chapter are as follows:

— The first, to the best of our knowledge, automated approach for detecting tests
and code co-evolutions in single commits (immediate) and in separated commits
(delayed);

— We conducted an empirical study on 45 open-source software systems to evaluate
the performance of our approach;

— The study confirms the existence of immediate and delayed co-evolutions. It also
gives evidences and permits the novel characterization of complete and partial co-
evolutions;

— We bundled the set of detected co-evolutions as a knowledge base for further investi-
gation on this topic;

— We provide a comprehensive dataset for replicating the empirical study. https:
//github.com/quentinLeDilavrec/ICSME2021

The remainder of this chapter is organized as follows: Section 5.1 instantiate the
definitions given previously where properties are tests. Section 5.2 details the approach.
Section 5.3 presents the evaluation of the approach. Section 5.4 concludes the chapter.

The content and results of this chapter were published at ICSME 2021 [Le +21].
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Figure 5.1 – Example of a rename change evolution and co-evolution.

Figure 5.2 – Example of an add parameter change evolution and co-evolution.

5.1 Source Code Co-evolutions Instantiated to Tests

Given that we defined impacts and co-evolutions on abstract properties in definitions 2
and 4 at the end of chapter 4. To conform to code and test and observe effects and
impacts these definitions must be instantiated considering more concrete properties. We
choose three categories of properties: the compilation of the source/production code,
the compilation of all tests and finally the success or failure of tests. These three
categories have interactions. For Java codebase, due to build lifecycles, they are strongly
dependent: to run tests all source code must compile, then for all tests to compile the
whole source/production code must also compile. Any error short circuits the rest of the
lifecycle. A code-test co-evolution denotes the idea of propagating the evolution of the
code into tests, so they remain consistent with the modified code state.

Definition 5 – Effect of evolutions on tests. Code evolutions (on production code or
on tests) can affect observable properties of the systems under study. In this work we use
two properties: production and test code compilation (i.e., a compilation passes or fails);
and test execution verdicts (i.e., a test passes or fails). We classify code evolution effects
on these two properties into three categories, namely:

— Impacting Evolution. This is an evolution that now makes a test fail or prevents
code to compile.

— Repairing Evolution. This is a code evolution that now makes a test pass. This
implies that production and tests compilation pass.

— Effectless/Neutral Evolution. This is a code evolution that does not change the state
of tests or compilation.
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Figure 5.3 – Co-evolution patterns [ : represents impacts, : represents the belonging
of a piece of code to an evolution, : represents the parent-child relation between two
commits, : represents the equivalence relation between pieces of code contained in
different commits (it can be the identity relation, but also an evolution)]

To qualify the effects on compilation or on test execution, we rely on the following
states:

1. PCFAIL (level 1): production code compilation fails (test code not compiled or
executed);

2. TCFAIL (level 2): production code compilation passes but test code compilation
fails;

3. TFAIL (level 3): both compilations pass and the statically impacted test fail.

4. TPASS (level 4): both compilations pass and the statically impacted test pass;

Definition 6 – Code and test co-evolution. A code and test co-evolution is composed
of: a first set of evolutions in code that breaks tests, i.e., it is the cause of the co-evolution;
a second set of evolutions in code and/or tests that fixes tests broken by the cause, i.e., it
is the repair of the co-evolution. In a timeline, the cause is first applied, followed by the
repair. We distinguish two types of co-evolution, namely complete and partial, that have
their own definition of the cause and the repair.

Definition 6.A – Complete test co-evolutions. A complete co-evolution:
1/ starts at TPASS (before the cause);
2/ degrades to TFAIL, TCFAIL, or PCFAIL after the cause (and before the repair);
3/ restores back to TPASS after the repair (applied after the cause).
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Definition 6.B – Test compiling co-evolutions. A partial co-evolution corresponds to
all the scenarios that differ from starting to TPASS and ending to TPASS, and imply a
degradation when applying the cause. For example, one partial co-evolution scenario is:
1/ it starts at TFAIL (before the cause);
2/ moves to TCFAIL after the cause (and before the repair);
3/ moves back to TFAIL after the repair (that does not strictly repair in such cases).

Figure 5.3a presents an immediate co-evolution in a code-test context, where both
production code and tests evolve, and with the breaking and repairing evolutions in the
same commit. Symmetrically, fig. 5.3b presents two groups of evolutions, yet they are
part of different commits, possibly separated by many others, thus making it a delayed
co-evolution.

5.2 Overall Approach
This section presents our approach for finding code and test co-evolutions from code

histories. Figure 5.4 shows the overall process of our approach. After cloning the evolution
history of a given project, it detects evolutions A . Then, a static analysis computes
dependency graphs between evolutions in production code and test code B . Next the approach
organizes evolutions C . Through a dynamic analysis, it then qualifies the effects of each group
of evolutions on tests (as impacting, repairing, or neutral) D . Finally, the approach assembles
the production code evolutions that impact test code, with the test code evolutions that repair
tests E .

5.2.1 Detecting evolutions
The first step A of the approach consists in detecting all the evolutions between two commits

t and t + n, with n ≥ 1. The approach relies on state-of-the-art techniques for detecting atomic
and complex evolutions, respectively with Gumtree [Fal+14] and RefatoringMiner [Tsa+18a;
TKD20].

5.2.2 Extracting dependency graphs
The second step B of the approach consists in identifying evolutions in production code

that might have impacts on tests. This step involves a static analysis that explores three kinds of
dependency graphs (see Definition 3) from each identified evolution. For each evolution e located
in the production code, the static analysis identifies the corresponding elements e0...en in the
AST and extracts the three kinds of graphs from them. The construction of each graph stops
when reaching an AST element located in test code.

Figure 5.5 illustrates the static analysis based on the example of Figure 2.4 and its evolution #1
that consists of a new parameter b in the declaration of the method aMethod. The static analysis
starts from b to explore its type (int) and its method aMethod. The analysis then gathers all
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Figure 5.4 – Overall process of the approach.

b

public void aMethod(int a, int b)

object.aMethod(value, 3); ... ...

int

Figure 5.5 – Illustration of the static analysis, based on Figure 2.4. The bubble represents
one dependency from an AST element of an evolution in production code to an AST
element in test code.

59



Temporal Analysis of Source Code Histories through Code-test Co-evolutions

the calls to aMethod. Evolution #2 depicts one of those calls located in test code, so that the
analysis stops the exploration for this AST path: it has found an evolution in production code
that may have an impact on test code. The analysis however continues to explore the AST based
on the other calls to aMethod to find other potential impacts in test code.

5.2.3 Organizing evolutions
The static analysis can only find potential impacts on tests. We need a dynamic analysis

to qualify those potential impacts with precision. To do so, we observe compilation and test
execution results.

A naive analysis would require to evaluate 2n ×m cases, where n is the total number of
evolutions and m is the total number of tests: for each identified evolution, we would have
to compile and run all the tests. For a large number of evolutions and tests in real histories
this would not scale. Moreover, all evaluated cases might not be useful to find co-evolutions.
Our third step C thus aims at reducing this combinatorial number of cases. We developed
an optimization based on the dependency graph (computed in the previous step) and complex
evolutions. This optimization consists in organizing atomic evolutions into groups that we are
then able to explore efficiently (see Section 5.2.4).

Grouping statically related evolutions

The static analysis of the previous step computed a set of dependencies from production
code to test code, as illustrated by Figure 5.5. Instead of considering each dependency path
individually we can group those that are statically related. We consider evolutions not statically
dependent on each other as unlikely to be part of a same co-evolution. The top graph of evolutions
of Figure 5.6 shows an example of a statically related group of evolutions.

Grouping evolutions by source

Based on the groups of evolutions produced during the previous grouping step, the second
grouping step simply consists in grouping those groups using their location in the production
code or tests.

Grouping using complex evolutions

The approach handles atomic evolutions in the grouping step C because atomic evolutions
are: i/ the basic evolution operations so that they also represent complex evolutions; ii/ the most
accurate evolutions to represent the transition from a state to another. For the detected complex
evolutions, to be able to apply them and qualify their effects, we thus represent them as a group
of atomic evolutions. So, a complex evolution is applied if all its atomic evolutions are applied.

For example, moving a method is a complex evolution composed of multiple atomic ones: it
consists of deleting the method from its original location and inserting the same method in a
different location, as depicted by the "Graph of grouped evolutions" in Figure 5.6: the deletion
D0 implies D3 and D4 so that they are grouped. The same reasoning applies for the insertions
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where: I5 (resp. I7, I8) corresponds to its opposite operation D0 (resp. D3, D4). The operation
I9 is not part of Move Method since it is a post-operation applied after the move to customize
the insertion.

Lossy evolution graph compression

The previous grouping step produces as output an oriented graph of grouped evolutions
that is still too large and not usable for an automated and efficient exploration. This new step
transforms the graph of grouped evolutions into a tree of evolutions (see Figure 5.6). To do so,
the transformation starts from the root node and analyzes its children, namely D0, I1, and U2.
The transformation then considers their upper group of evolutions and parenthood that links
those groups:

— U2 has no upper group so it is left alone (N1).

— The Move Method group requires the target class to exist so that the Insert Class group
must be its parent (so N2 is the parent of N3).

— Three atomic evolutions of Insert Class (I5, I7, and I8) are related to the Move Method
group, so that the Insert Class can be reduced to I1 and I6 (group N2) and have as unique
child the Move Method group (group N3).

— I9 refers to an additional insertion done after the move, so that it is left alone in N4 and
has as parent N3.

Compared to the initial graph of atomic evolutions, this step significantly reduces the number
of cases to consider.

5.2.4 Qualifying evolutions effects

Sequentializing evolutions

In step D (Figure 5.5), to evaluate the functional effects of each group of evolutions on tests,
we need to apply those evolutions to then run the tests. To do so, our approach now takes as
input the tree of groups of evolutions produced by the step ’Lossy compression’ (Section 5.2.3).
The approach now sequentializes the compressed tree (see Figure 5.6), i.e., it transforms this tree
into sequences of evolutions to apply. This transformation uses a gray code 1 to go through all
possible combinations of leafs in the tree of evolutions. Then, parents evolutions are interleaved,
following two cases: if the leaf corresponds to an insertion then its parents should be inserted
recursively (if not already done); if the leaf corresponds to a deletion then its parents with no
child must be removed. Note that the entire group of evolutions must be applied before we can
run the tests.

For example, with Section 5.2.3, at the root node the sequence is empty. The first child is I1,
but this sequence is incomplete (I6 missing) so that it cannot be evaluated. I6 is then added

1An optimal ordering algorithm for sequences of evolutions. See "Section 22.3. Gray Codes" in Press et
al. [Pre+07].
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to complete this sequence. Recursively, atomic evolutions of N3 complete another sequence to
evaluate: [I1, I6, D0, D3, D4, I5, I7, I8]. I9 then completes another sequence.

Qualifying sequences of evolutions

The qualification is based on compilation and test execution results. For example with
Figure 5.6, we assume that those changes compose the commit tx. The approach applies on the
code at tx−1 (i.e., before applying tx) the first possible sequence: [I1, I6]. This sequence gives as
output one of the qualifications we introduced previously: PCFAIL, TCFAIL, TFAIL, or TPASS.

It then applies the next sequence: [I1, I6, U2]. In an optimization purpose, the approach does
not go back to tx−1 and apply the full sequence. Instead, it applied on tx−1 + [I1, I6] the missing
operations, namely U2.

When the next sequence to apply does not contain operations applied during the previous
sequence, the approach revert those operations. For example, with the last two sequences of
Figure 5.6: [. . . , I8, I9, U2] and [. . . , I8, U2]. The approach must revert the operation I9 to obtain
the latest sequence. Because our approach relies on the three basic evolution operations (insert,
delete, update), to cancel one of these operations the approach applies its opposite: for an insert
it applies a delete (vice versa); the opposite of an update is an update that automatically applies
its changes in the reverse order.

5.2.5 Assembling co-evolutions

Based on the effects of each group of evolutions, this step E (see Figure 5.6) can now
combine evolutions to form co-evolutions. For example, given a group of evolutions A that breaks
a test T and an additional group of test evolutions B that fixes back T . Our approach then
identifies a co-evolution where A is the cause of the co-evolution and where B is the repair of
the co-evolution. Based on definitions 6.B and 6.A, we can qualify the types of co-evolution as
complete or partial.

To find delayed co-evolutions (def. 4.D), spanning over multiple commits, we search for a
group of evolutions that breaks a test in some commits, then we search the same test (using the
signature along with move and update evolutions) in a later commit where we locate groups
of evolutions that repair the test. It should be noted that, here, evolutions from intermediary
commits are either considered as part of the cause, or the repair (depending on status of the
test before applying the final repair), whether all intermediary evolutions are part of the actual
minimal co-evolution would require additional refinements and is left as a future investigation.

5.2.6 Implementation

We implemented our approach to support Java Maven projects that use Git. Our implemen-
tation is open-source and freely available in our companion Web page.2

2https://github.com/quentinLeDilavrec/ICSME2021
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Technically, it is implemented in Java and interfaces with Jgit, GumTree [Fal+14], Refac-
toringMiner [Tsa+18a; TKD20], and Spoon [Paw+15] for performing the steps A to C (see
Figure 5.4). The tool stores all the results in a Neo4j graph database.

For qualifying groups of evolutions (step D ) the tool relies on Maven and its build lifecycle
phases that permits to: compile production code, compile test code, run specific tests, and get
the status of these phases. For example, to qualify complete co-evolutions, Maven must gives us:

1. TPASS before applying the cause evolutions;

2. TFAIL or TCFAIL right after those evolutions;

3. TPASS again after having applied the repair evolutions.

One can query all the results in the database using the Cypher query language [Fra+18].
We did so to extracting data we discuss in the next section dedicated to the evaluation of the
proposal based on this implementation.

5.3 Evaluation
This section presents the evaluation of our approach. All the materials and data of this

empirical study are freely available on the companion Web page. First, we present the research
questions. Then, we present the data set and evaluation process before we discuss the obtained
results. We finally discuss the threats to validity and the scope of the approach.

We ran the implementation of our approach on the following hardware configuration: 2 x
Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz; 187Gb ram; 1 T SSD, running Ubuntu.

5.3.1 Research Questions
RQ1: Can we detect code and test co-evolutions with precision? This aims to

assess the ability of our approach in finding co-evolutions, by looking both at their quality and
representativity.

RQ2: Can we detect immediate and delayed co-evolutions and in what ratio?
This aims to assess whether our approach can find both types of co-evolutions and to shed light
on their frequency.

RQ3: To what extent delayed and immediate co-evolutions are similar or different?
Through this question we aim at scrutinizing those co-evolutions to characterize them.

RQ4: What is the time performance of the approach? We aim at discussing to what
extent the approach scales.

5.3.2 Experimental Protocol
To the best of our knowledge, our approach is the first one that permits to automatically find

code and test co-evolutions from histories. So, we had to select representative software systems
to analyze. This sub-section details the selection criteria we used and the resulting data set of
software systems. We then detail the dependent variables.
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Data Set

The source of our data set is GitHub. We aimed to select Java projects that we can compile,
are well tested and having a rich evolution history. To gather such data, we took the following
steps:

1. We queried GitHub 3 to retrieve Java projects with more than five stars and that use
Maven (i.e., have a pom.xml file) so that dependencies, builds, and tests are automatically
handled. We then made an intersection with the qualitative data set 4 of Allamanis et al.
[AS13] who aimed to study coding and testing practices in Java. With this first step, we
found 3588 repositories that should now be filtered.

2. We then selected projects that have at least two releases on GitHub. This selection
has multiple beneficial effects: (a) We consider that as a possible maturity threshold;
(b) Zaidman et al. [Zai+11] have shown clear development cycles between releases; (c) It
filters out initial commits, which are often difficult to interpret due to their size and
uniqueness; (d) We made the hypothesis that the longest a code history is, the more it
might contain test and co-evolutions (because of maintenance and evolution operations);
This filtering resulted in 3588 repositories.

3. Even though we selected projects with releases, it is still not a guarantee that they compile
and build. Thus, for each project we tried to construct the AST and build the ten latest
releases and filtered those that did not build at least once. Thus, we kept at the end 395
repositories with 5439 releases in total (with an average of 14 releases per repository).

4. This work focuses on code and test co-evolution. Tests are also crucial in our approach
since it uses tests to qualify the nature of the effect of evolutions. So, we further selected
projects that have a significant number of tests (JUnit tests in our case). We fixed this
minimal threshold of tests to 50. This resulted in 164 repositories to analyze.

5. As we consider complex and refactoring evolutions in this chapter, we aimed at detecting
co-evolutions involving refactorings. As such, we found 30 122 refactorings on 91 projects.
Then, we extracted the ones with at least 10 refactorings, thus, reaching 45 repositories.

Dependent Variables

Precision. For measuring the precision, we first applied our automated approach to obtain
a set of possible co-evolutions. We then check them manually, but since this is a very time-
consuming task, we only scrutinized complete co-evolutions to state whether they were indeed
valid ones. On these complete co-evolutions, we computed the precision as follows.

precision = |coevolutionscorrect|
|coevolutionsdetected|

× 100

Recall. For measuring the recall, we need to have a ground truth of test and code co-
evolutions. Such a ground truth would permit the identification of the co-evolutions our approach

3Using PyGithub.py library https://github.com/PyGithub/PyGithub
4http://groups.inf.ed.ac.uk/cup/javaGithub/
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does not detect. However, to the best of our knowledge our approach is the first one that
automatically detects code and test co-evolutions, so that no ground truth exists.

Manually detecting co-evolutions in the analyzed repositories to obtain a ground truth is not
possible: for immediate co-evolutions, this would require to manually test the effects of several
evolutions together. So for a commit with n atomic evolutions, this would imply 2n ×m cases to
evaluate. It is even more challenging to start looking for delayed co-evolutions as the number of
atomic evolutions to consider mechanically increases. The evaluation of one single case requires
to run each test before and after the code evolutions, and after the tests evolutions to qualify the
evolutions as co-evolutions or not. This becomes infeasible to perform manually.

Nonetheless, we can compute the minimal recall to have an underestimation of it. To do so,
when a code evolution statically impacts a test, we make the overestimating hypothesis this test
is part of a code and test co-evolution. So, given |testsimpacted| the number of tests we found
statically impacted by evolutions, and |testscoevolved| the number of such tests already part of
the co-evolutions we identified, we computed the recall this way:

recall = |testscoevolved|
|testsimpacted|

× 100

Execution time. Through the execution time we aim at evaluating the scalability of the
proposed approach (RQ4). This variable computes the mean execution time of the approach on:
one commit; one release; one repository. Given tt the overall execution time in seconds spent
for analyzing all the repositories, |repos| the total number of analyzed repositories, |commits|
the total number of commits computed from all the repositories, we compute timep (time per
repository) and timec (time per commit) as follows:

timep = tt

|repos|
timec = tt

|commits|

5.3.3 Results

From the 45 repositories, we analyzed in total 6738 commits and 78 million lines of Java
code.

RQ1: Can we find prescise code and test co-evolutions?

Table 5.1 reports the co-evolutions found in the analyzed repositories.
Regarding complete co-evolutions, in total, our approach automatically found 202

co-evolutions among which 88 co-evolutions involved at least one refactoring evolution (first
line of Table 5.1). These values concern both immediate and delayed co-evolutions (we discuss
in details about these two different types of co-evolutions in RQ2). We computed a precision
of 100 % and a recall of 37.5 % for complete co-evolutions. To compute the recall, the value
|testsimpacted| equals 4997, while the value |testscoevolved| equals 1877. As previously discussed,
our recall result is underestimated. To precise this value, we encourage researchers to replicate
our experiment to potentially find missing co-evolutions. The co-evolutions we identified would
serve them as the minimal ground truth for computing their recall.
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Regarding partial co-evolutions, table 5.1 reports the results for all found co-evolutions
in the different cases of the initial states of the co-evolved tests. We found 111 additional partial
co-evolutions where the tests were failing, then impacted by the code evolution before to be
repaired to their initial state. We also observed 276 passing tests and 23 failing tests where
they respectively were degraded but did not come back to their initial state after being partially
repaired.

Table 5.1 – Complete and partial co-evolutions found.

Status of tests Co-evolutions Type
Initial Final All With ≥1

refactoring
TPASS TPASS 202 86 Complete
TFAIL TFAIL 111 30 Partial
TPASS TFAIL 79 13 Partial
TPASS TCFAIL 197 115 Partial
TFAIL TCFAIL 23 1 Partial

Total 612 245

Regarding the semantic of partial co-evolutions, we identified two different facets. First, a
partial co-evolution can be part of a complete co-evolution (our implementation has found or not),
i.e., a step towards completing a co-evolution (we discuss the co-evolutions our tool may miss in
the threats to validity section). Such partial co-evolutions are interesting to understand how
complete co-evolutions are formed. For example, partial co-evolutions can be used as a contrast to
complete co-evolutions for drawing lists of best and bad practices in code and test co-evolutions,
analogously to design pattern and anti-pattern [Jaa+16]. Second, a partial co-evolution may
exist because some tests did not pass, i.e., developers never fixed them. We think that such
partial co-evolutions are in minority in our results because of the criteria we used to select mature
projects.

RQ1 insights:

❖ Our approach founds complete code and test co-evolutions with a precision of 100 %
and a recall of at least 37.5 %.

❖ We give evidences of the existence of partial co-evolutions. Finding partial co-evolution
shows our approach flexibility and ability to cover different scenarios.

❖ Thanks to those co-evolutions, we produced a knowledge base that practitioners can
use, for example, as a ground truth in experiments.
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Table 5.2 – All detected categories of co-evolutions.

Status of tests Immediate
Co-evolutions

Delayed
Co-evolutions Type

Initial Final All With ≥1
refactoring All With ≥1

refactoring
TPASS TPASS 140 82 62 6 Complete
TFAIL TFAIL 62 28 49 2 Partial
TPASS TFAIL 78 12 1 1 Partial
TPASS TCFAIL 197 115 0 0 Partial
TFAIL TCFAIL 23 1 0 0 Partial

Total 500 238 112 3

RQ2: Can we find immediate and delayed co-evolutions and in what ratio?

Table 5.2 displays our results for immediate and delayed co-evolutions for both complete
and partial co-evolutions. Regardless of the type of co-evolutions (complete, partial, immediate,
delayed), our approach found a total of 612 co-evolutions. The total number of immediate
co-evolutions (complete and partial) is 500, so 81.69%. The total number of delayed co-evolutions
(complete and partial) is 112, so 18.30%. Moreover, we observe a slightly different ratio on the
202 complete co-evolutions with a bit more of immediate ones. In particular, 140 (69.30%) are
immediate complete co-evolutions and 62 (30.69%) are delayed complete co-evolutions.

Finally, we calculated the gap in delayed co-evolutions as the number of commits between
the commit of the cause and the repair. For example, a gap of two means that the cause is in a
first commit and the repair in the next commit.

We observed that 69, 3, 1, 13, and 26 of the delayed co-evolutions (both complete and partial),
respectively, come with a gap of 2, 3, 4, 5, 8. Regarding complete delayed co-evolutions, 59 come
with a gap of 2, while 3 others, respectively, come with a gap of 3, 4, and 5 commits. Note that
in order to scale when detecting delayed co-evolutions, we limited our search up to a gap of 30
commits.

RQ2 insights:

❖ Our approach is able to automatically spot immediate and delayed co-evolutions.

❖ We observed a ratio of 69.31% of immediate complete co-evolutions and 30.69% of
delayed complete co-evolutions, suggesting that developers seem to co-evolve their tests
while performing evolutions on production code.

❖ We observed mostly a distance of two commits in delayed co-evolutions while the rest
varied between four and eight commits.
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Figure 5.7 – Refactoring evolutions in immediate co-evolutions.

RQ3: To what extent delayed and immediate co-evolutions are similar or
different?

We now look in depth at what are the differences or similarities of immediate and delayed
co-evolutions.

First, we had a look at the evolutions constituting the detected co-evolutions, in particular
at what refactoring evolutions are part of both types of co-evolutions. Figures 5.7 and 5.8 give
the types of refactoring and their frequency we found in respectively the spotted 272 refactorings
in immediate and 14 refactorings delayed co-evolutions.

We observed that when a refactoring evolution is part of a code and test co-evolution, it
is most likely to occur within an immediate co-evolution (272), whereas, delayed co-evolutions
rather implicate atomic changes and few refactorings (14). This suggests or can be explained
as when developers perform a significant evolution to the code, they may tend to ensure their
consistency with the tests immediately, hence, performing immediate co-evolutions. Whereas,
developers may miss impacts of small or minor code evolutions on the tests, hence, performing
delayed co-evolutions.

Moreover, we investigated the length of the dependency chains (in edges) in both types
of co-evolutions. Our hypothesis is that the shorter the dependency chain is, the likelier the
co-evolution to be immediate, and vice versa. On average, the length of the dependency chain for
an immediate and a delayed co-evolution, respectively, is 10.84 and 10.44. Thus, our hypothesis
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is rejected based on the results. This is surprising, because one may think as the more close the
code evolution to the tests, the likelier developers will see it and fix it immediately and not delay
it in further commits. Nonetheless, future research remains necessary to further investigate other
reasons behind the delayed co-evolutions.
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Figure 5.8 – Refactoring evolutions in delayed Co-evolutions.

RQ3 insights:

❖ Immediate co-evolutions tend to have far more refactoring evolutions (272) than in
delayed co-evolutions (14). This may suggest how developers handle co-evolutions
based on the size of the committed evolutions.

❖ Our hypothesis that the immediate co-evolutions tend to have shorter dependency
paths between the cause and the repair than the delayed co-evolutions is rejected.

RQ4: What is the time performance of the approach?

The overall execution time (tt) our tool spent for analyzing the whole 164 (|repos|) reposito-
ries 5 is 90 720 min (1512 h). The value |commits| is 15 954.

So timep, the average time per repository, is 553.17 min (9.22 h). timec, the average time
per commit, is 5.67 min. Of course these mean values depend on: the number of commits per
repository; the number of evolutions per commit. As an indication, Figure 5.9 depicts a boxplot
of the number of evolutions per commit, with a median value of 10 atomic evolutions per commit.

RQ4 insights:

❖ The computed durations show that our proposal scales but still requires considerable
resources to perform large-scale studies.

❖ The time it takes to automatically analyze the code base typifies the extreme difficulty
to perform such analyzing tasks manually, thus motivating our proposal.

5.3.4 Threats to Validity

Beyond the threats to validity that may affect our experiment, this section also discusses the
scope of our proposal.

5We had to apply the approach on the 164 to perform the filtering step 5) on the data set. We consider
here those 164 repositories instead of the curated set of 45 repositories to have more representative results.
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Figure 5.9 – Number of atomic evolutions per commit

External Validity

We used selection criteria to find a large representative panel of Java code repositories, stored
on Github. We consider Maven projects, a build automation tool widely used in the industry.
We do not think that the use of another build automation tool, such as Gradle, would have an
impact on detection of code and test co-evolutions.

We use Github releases during the selection process of projects to analyze. A Github release
is associated to a Git tag. This helped us in filtering Git tags of interests. We do not think that
the use of other version control systems (VCS), such as Mercurial would prevent the use of our
proposal since it is based on atomic evolutions common to all VCS. The main challenge is related
to RefactoringMiner that our approach relies on for detecting refactorings and that works with
Git. We would have to find a similar tool for other VCS. Finally, we cannot generalize our results
to software repositories in other languages than Java.

Internal Validity

We conducted manual analyzes to measure the precision of the approach. Such a manual
analysis is error-prone, so to overcome this threat two persons performed all the manual analysis.
They then compared their results. On divergent results, these two persons discussed to converge
to a final decision. These persons are authors of the paper with a high expertise in detecting
code and test co-evolutions. Note that as non-experts of the analyzed projects, these two persons
cannot detect tests of poor quality, i.e., tests that still pass while they should not (missing
assertion, flaky tests, etc.). To limit this issue, we designed criteria for selecting relevant projects.

The exact computation of the recall is not technically possible due to the combinatorial
explosion of the number of cases to evaluate when establishing ground truth. To overcome this
issue we underestimated the real recall of our approach by over-estimating the possible existing
co-evolutions. This way, we do not overclaim on the performance of our approach.
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Construct Validity

Our approach relies on Gumtree and RefactoringMiner to find atomic and complex evolutions.
The precision and recall of these tools have an impact on the performance of our proposal. To
limit this threat we validated by hand the co-evolutions found by our approach.

To qualify evolutions, we rely on code compilation and test execution verdicts. However, a
passing test suite after a production code change does not certify that this change has no effect
on the test suite: a test of low quality might not spot regressions. We consider this threat while
designing the selection criteria of the projects to analyze. Moreover, one can consider other
assessable properties that compilation result and test verdict to spotting co-evolutions. We think
that compilation results and test verdicts are still good enough to cover a large majority of test
and code co-evolutions.

Closely related, the relevance of the selected projects has an impact on the evaluation results.
To limit this threat, we designed rigorous selection criteria.

Regarding the recall of our approach, we use our static analyzing technique for spotting tests
that are statically impacted by evolutions. Our technique might miss some cases, in particular
because our approach does not consider code reflexivity.

Regarding the detection of delayed co-evolutions, we use a maximal threshold of 30 commits
between commits to analyze because of resource limitations. If such a threshold may miss
complete co-evolutions we think that its value 30 is high enough to limit this effect.

Finally, Git and Github have several strategies for merging branches that may affect the
computation of immediate and delayed co-evolutions. For example, the Squash technique squashes
all the commit of the branch into a single commit. The Rebase technique individually adds
each commit of the branch into the base branch. Studying commits and branches structures
is another combinatorial challenge. We only considered the most direct sequences of commits
between releases.

5.4 Conclusion
To the best of our knowledge, the approach presented in this chapter was the first to

automatically find code and test co-evolutions in object-oriented code. Our approach can find
co-evolutions contained in a single commit (immediate co-evolution) but also co-evolutions
scattered over multiple commits (delayed co-evolution). We implemented our approach in a tool
that analyzes Java code stored in Git repositories. Our implementation is fully open-source and
available for replicating studies.

We evaluated our approach by conducting an empirical study on a curated data set of
45 repositories using our implementation. Our approach found 202 complete and 410 partial
co-evolutions. We also detected 140 immediate and 62 delayed complete co-evolutions. For
delayed co-evolutions, the gap between the cause and repair commits varied from 2 to 8. Finally,
we also observed that the dependency chains tend to be the same in immediate and in delayed
co-evolutions.

An internship future work would be to explore further composition of tests, together with
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more aggressive delta refinements on specific co-evolutions, especially the delayed ones to try
to observe kind of trickle co-evolutions. Initially, we envisioned the use of this ground truth to
design a recommendation engine for code and test co-evolution. We also aimed at porting over
the ground truth to analyze, understand, and explain at a large scale how developers do test and
code co-evolutions. We also planed to consider other software artifacts in addition to code and
test, such as issues and dependency configurations. In particular, considering dependencies may
increase the quantity of found co-evolution.

But there were obvious performance limitations that were observed during the evaluation,
that will be discussed with more details in the implementation section 9.1.1. To sum up, we had
a suboptimal memory management due Java and a poor synergy between the implementation of
Spoon, Gumtree, and RefactoringMiner, itself in part due to limitations of Java at composing
objects other than by reference, becoming very inefficient for large numbers of such compositions
e.g., elements of ASTs (both for garbage collection and cache locality). While on a more
fundamental standpoint, we would have benefited from an approach that would have enabled us
to leverage temporal and spatial redundancy in source code histories.

To address these limitations, we proposed an approach, called HyperAST (chapter 6), that
leverages the temporal and spatial redundancy in source code histories at the granularity of a
CST and with features of an AST. To show its benefits and in relation to our approach detecting
co-evolutions we focussed on demonstrating two components: Chapter 7 proposes a reference
analysis which is incremental and targets impact analysis; Chapter 8 proposes a structured diffing
(inspired by GumTree) that supports efficient tracking of code elements.

73



Chapter 6

HYPERAST: EFFICIENT ANALYSIS OF

ENTIRE CODE HISTORIES

The contributions presented in this chapter directly target the resolutions of limitations
presented in the previous chapter, with the idea of reusing non changed parts of AST through
time.

To recontextualize, the emergence of distributed version control systems (VCS), such as
GitHub or GitLab, has permitted accessing a massive quantity of software and their histories.
This offers golden opportunities for both researchers and engineers to perform code analysis of
software at large.

Researchers have been analyzing software code histories from different angles, such as recovery
of traceability links [AHS20; Bav+12], refactorings [TKD20], edit scripts (aka. Diffs) [Fal+14],
duplicate code [Maz+16], bad smells and their origins [Tuf+15], or mining of fixes for program
repair [Koy+20]. Engineers in the software industry developed code analysis tools at scale, such
as Copilot 1 for code completion, LGTM 2 for bug detection, or CodeQL 3 for querying the code.

To do so, relying on structured code representation, namely the Abstract Syntax Trees
(AST), has become a foundation for many of the above-mentioned tools and software engineering
activities.

One of the intrinsic property of software is its continuous evolution [Men08] and its growing
complexity as it evolves. This new dimension asks for temporal code analysis of software histories.
In particular, to consistently analyze code elements through their evolutions (i.e., different
commits and releases) and also linking their analysis. Such a temporal code analysis can focus,
for instance, on origin of code smells [Tuf+17], bug prediction [Pal+17], class stability [Rap+04]
throughout commits, co-evolution [Le +21; LY17] by linking impacting changes and their
resolutions.

However, a temporal code analysis requires to simultaneously handle multiple ASTs, corre-
sponding to the different versions of the corresponding software across its history. Unfortunately,
doing so on large set of commits for large sized software faces major scalability issues both in
terms of memory and CPU usage. With state-of-the-art analysis tools, the whole computation is
indeed typically redone from scratch for each version, i.e., commit, even if the commit under
analysis is almost identical to previously analyzed ones [LY17; Tuf+17; Le +21]. Boldi et al.
[Bol+20] proposed to compress the file structure of a software history without considering the

1https://copilot.github.com/
2https://lgtm.com/
3https://codeql.github.com/
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content and for storage purposes of the archive. With LISA [Ale+19], Alexandru et al. rely on a
vertex compression algorithm to share AST nodes among revisions. However, without sharing
identical code subtrees independently of their position, nor providing tracking of changed code
elements.

The contribution presented in this chapter is to add a time dimension to an AST, turning it
into a HyperAST capturing all of it history. The goal is to ease temporal code analysis at large
scale on a large timeline of a software history. To do so, the HyperAST is built incrementally
on a set of commits. It integrates the ASTs of the different versions in one place by leveraging
on the code redundancy through space (between code elements) and through time (between
versions). This stems from the observation that for a set of commits in a software history, most
of the ASTs’ elements are similar since most often only small code changes are applied in each
commit compared to the rest of the code base. In its core, the HyperAST is a Direct Acyclic
Graph (DAG) where nodes are unique, allowing for an efficient reuse of nodes in a single version
and across versions if unchanged. Moreover, intermediate computation results on top of the
HyperAST , such as hashes and references, are calculated and stored as metadata along the nodes
of the HyperAST . This allows for an efficient reuse of the metadata across versions. The goal of
metadata is also to serve as basis for a further in-depth temporal code analysis. To the best of
our knowledge, the HyperAST is the first attempt to offer an optimized AST covering multiple
versions at once in contrast to maintaining multiple ASTs for each version.

We evaluate the HyperAST on three levels: 1. its feasibility, 2. its scalability, 3. its usefulness
on a practical scenario of usage, namely finding references of declarations and computing tree
diffs (presented in chapters 7 and 8).

In particular, we evaluate the HyperAST on a data set of 18 real-word and representative Java
projects taken from GitHub, by comparing it on a sample of thousand of commits per project to
a state-of-the-art tool as a baseline, namely Spoon [Paw+15]. Our results show the HyperAST
correctly represents a software history of a set of commits. It nearly always was able to serialize
the code back to its files. Only in 0.02% of the cases it failed, due to erroneous code in its original
state. Moreover, we were able to scale on large repositories with an order-of-magnitude difference
in speed between the HyperAST and Spoon, from 6 up to 8076 in CPU construction time and
from 12 up to 1159 in memory footprint. The minimum and a maximum of construction time
in CPU for the HyperAST ranged from 1 min and 2 h 22 min, while it ranged from 1 h 14 min
and 93 h 31 min for Spoon. Besides, The minimum and a maximum of memory footprint for the
HyperAST ranged from 63 MB and 7.2 GB, while it ranged from 16 GB and 2.2 TB for Spoon.
Thus, the gains in construction time varied from 83.4 % to 99.9 % and the gains in memory
footprint varied from 91.8 % to 99.9 %.

The main contributions presented in this chapter are:

1. a novel kind of AST, namely the HyperAST , that aims to enable efficient large scale
temporal code analyzes on software histories;

2. an open-source implementation of the HyperAST ;

3. an evaluation that demonstrates the feasibility, the scalability and the relevance of the
HyperAST ;
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4. a replication package for open-science.

The rest of the chapter is structured as follows. Section 6.1 presents the HyperAST . Section 7.2
details the evaluation. Section 6.3 concludes the chapter.

The approach and results presented this chapter were published at ASE 2022 [Le +22].

6.1 The HyperAST Approach
This section details the concept of HyperAST , that improves scalability when analyzing large

software histories. The first enabling hypothesis is about 1) redundancy in space between code
elements in a single version, and especially 2) redundancy in time among consecutive commits,
where small changes are applied compared to the overall size of the code base [Zai+08]. The
second hypothesis is that various computations can be done once on code subsets [DR14; Fal+14]
then reused multiple times in space and time.

This section first gives an overview of the HyperAST and then describes its structure. After
that, it details how the HyperAST is constructed and updated with every new commit. Later in
the thesis, chapters 7 and 8 present two foundational analyses that leverage the HyperAST .

6.1.1 Overview

Figure 6.1 shows the overall workflow of the approach of building the HyperAST incrementally
on new commits. Given the Git the Merkle DAG of a software history, per commit (green circle),
the construction process explores the hierarchy of directories through the Git Trees (blue triangles),
and parses the code files represented by Git Blobs (red squares). We rely on Tree-Sitter [Mic22]
that parses the code into a CST (Concrete Syntax Tree). For each git object treated, the
construction process associates its Object Identifier (OId) to its corresponding node in the
HyperAST and stores it into a cache. Thus, if encountered again in following commits, those
nodes are not inserted and simply reused across versions. Moreover, when processing an element
to insert in the HyperAST , the process first extracts identifying data and checks whether the
element is already inserted. If not, metadata are computed and inserted as well.

6.1.2 HyperAST Structure

This section introduces the structure of the HyperAST .
The HyperAST represents a Direct Acyclic Graph (DAG) i.e., a recursive data structure

represented by list of nodes, such that:

HyperAST = {v ∈ V |v = (type, label, children, metadata)}

type: refers to a rule name of the language grammar, such as class, method declaration,
assignment.
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Figure 6.1 – Overall approach of the HyperAST .

label: The textual content of a token in a grammar. It is mandatory for leaf nodes but optional
for the parent nodes. For example with the given variable declaration ”int i = 0; ”, i is
the label of the variable identifier and 0 is the label corresponding to the literal assigned
to i. The parent node’s label of the variable declaration is empty.

children: A list of references to other nodes in the HyperAST . They can be intrinsic identifiers
(e.g., unique content hash) or extrinsic identifiers (e.g., pointer, index).

metadata: A persistent storage for intermediate results or computation of code analysis on
the local subtree throughout versions. It helps in reducing redundant and unnecessary
computation when analyzing code histories. Its exact definition depends on how stakehold-
ers plan to use and augment the HyperAST to fit their needs. For example, it could be
complexity metrics or hashes, it could be stored directly inline or somewhere else in the
heap (see implementation chapter 9.1 for details).
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1 public class A {
2 public void a1 ( ) {
3 B b = new B( ) ;
4 this . a2 (b) ;
5 }
6 public void a2 (B b) {
7 b . b1 ( ) ;
8 }
9 }

(a) Version vx: Method a1 creates a B object
and calls method a2 with it.

1 public class A {
2 public void a1 ( int value ) {
3 B b = new B( value ) ;
4 this . a2 (b) ;
5 }
6 public void a2 (B b) {
7 b . b1 ( ) ;
8 }
9 }

(b) Version vx+1: Method a1 now has a pa-
rameter used to create b.

Figure 6.2 – Illustrative example of 2 versions of a Java class.
Vx+1
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Figure 6.3 – Example of a representation in the HyperAST for the first and second commits
of class A in Figure 6.2.

In the HyperAST , a node v is uniquely identified by its type, label, and children. This
characteristic is essential when combined with the recursive structure of children as it allows
reusing structural clones (i.e., unchanged part of the code) from a commit to other ones.

6.1.3 HyperAST Construction
This section details the construction of a HyperAST by first focusing on the tree construction,

and then on metadata computations.

Tree construction

The construction process of a HyperAST is a tree-to-tree transformation. It starts by
processing the commits and their trees of a git’s Merkle DAG recursively. This thus maintains
the structure and hierarchy of the history in terms of directories and code files, facilitating the
serialization of the HyperAST back to the code. When reaching a Blob, it is parsed as a CST to
be processed before to be inserted into the HyperAST . So, the produced HyperAST keeps the
same structure as the original git’s Merkle DAG where Blobs are replaced by acpCST. Compared
to Git, this increase of granularity enables code analysis and allows further code deduplication.
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The construction of the HyperAST can be considered as append-only. Thus, it is incremental
in its nature since the approach processes each commit separately and appends all elements
related to the commit in the HyperAST .

Moreover, node insertion and metadata computation are done only if the node is absent from
the HyperAST . To check whether an element is already present in the HyperAST , the approach
uses its hash (see Similarity metrics in Section 6.1.3) to detect a structurally similar node. In the
following, we explain how to handle the different Git objects and the parsed CSTs to construct
the HyperAST .

Handling a Commit: Each commit has a corresponding root node added to the HyperAST .

Handling a Tree: To insert a Tree in the HyperAST , the approach first inserts its children
(i.e., post-order mode). To computationally benefit from the Merkle DAG, the HyperAST
keeps a temporary association table as a cache between an Oid (git Object Identifier) and
references to HyperAST nodes. This allows quickly checking the presence of a node in the
HyperAST . The construction approach handles each child of a given Tree as follows:

Tree Child is handled recursively.

Blob Child is parsed to produce a CST, which elements are handled recursively.

Finally, a Tree is inserted in the HyperAST as a node with its type set to ’directory’ and
its label as the Tree name, and with references to its processed children.

Handling a CST element: A CST is also a recursive structure, which is processed following
the same steps as for handling a Tree in post order. Finally, a processed CST element
is inserted in the HyperAST as a node with its: original CST element type; label; and
references to its processed children.

We now take the two commits in Figure 6.2 as an example to show the constructed HyperAST .
Figure 6.3 depicts the constructed HyperAST at the second commit V x + 1. The left part (white)
depicts the HyperAST after its construction on the first commit V x. The right part (green)
depicts the new elements added to the HyperAST after the second commit is treated: the addition
of the parameter int value in the method a1(), and the argument value in the constructor
invocation new B(). This example shows how both commits exist in the same HyperAST . For
sake of readability, Figure 6.3 does not illustrate the nodes’ metadata. The entry points in
the HyperAST corresponds to the handled commits (Vx and Vx+1). Thanks to the structural
similarities between Vx and Vx+1, Vx+1 can reuse all unchanged subtrees of the code
and their already computed metadata, depicted by the green arrows: this is reuse of
redundancy in time. Finally, it is worth noting that nodes are shared even in a single
version, i.e., redundancy in space, such as the id: ’value’ node in dashed green.

Metadata provisioning

The goal of metadata is to provide developers with intermediate pre-calculated results to be
reused for a posteriori temporal code analysis across versions. We designed the HyperAST to be
extensible to add other types of metadata either during or after its construction by appending
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the newly computed metadata. This section discusses two concrete kinds of metadata that we
are computed during the evaluation.

Similarity metrics. During the construction of a HyperAST , hashes [Fal+14; CDR09;
CAM02] are computed as metadata to help in comparing subtrees: a structural hash; a structural
and label hash; a syntactical hash. The structural hash only uses the type of nodes, while the
structural and label hash also uses nodes’ labels. The creation of a HyperAST also computes for
each subtree a syntactical hash that considers its serialized code. This metric aims to help in
comparing and indexing versions of code. It is used in chapter 8.

Index of references. Given a declaration, finding all its references is a standard feature in
most code analysis tools. It often implies maintaining an association table between declarations
and references. This works fine in the case of a single version. However, maintaining such global
tables and ASTs for multiple versions requires heavy maintenance work to keep those numerous
tables synchronized. Instead, one could use an oracle capable of answering with certainty when
a reference is absent from a given piece of code, i.e., from a subtree. Thus, only exploring the
subtrees that may contain references. It is used in chapter 7.

6.2 Evaluation
This section presents the evaluation of the HyperAST construction. First, we present the

research questions to then discuss the results. Then, we present the data set and evaluation
process. We finally discuss the threats to validity, limitations, and the scope of the approach. All
the material of this section and a replication package are available on our companion
web page 4.

We ran the implementation of our approach on the following hardware configuration: 2 x
Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz; 187Gb ram; 1 T SSD, running Ubuntu 18.04.6.

6.2.1 Research Questions
We now formulate the research questions as follow:

RQ1 Can we compute the HyperAST correctly over several versions? This research
question aims to investigate the sound construction of the HyperAST .

RQ2 How does the HyperAST perform and scale compared to a traditional approach?
This aims to position the scalability performance of our contribution over a long evolution
history with an established state-of-the-art solution.

6.2.2 Data Set
This section presents the data set used in the evaluation and its selection process. The source

of our data set is GitHub. We aimed to select real-world Java projects that compile, that are
widely used, and continuously maintained with a rich evolution history. To gather such data, we
follow this process:

4https://github.com/quentinLeDilavrec/ASE2022
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Table 6.1 – Data set characteristics.

Projects Java LoC Java files Commits Contrib. Stars
Apache Hadoop 1.63M 10.2k 25,749 435 12k
Apache Flink 1.5M 13.2k 30,587 1,037 1.8k
Netty 317k 2.78k 10,789 569 29k
AWS SDK Java v2 265k 3.15k 8,766 88 1.4k
Apache Dubbo 197k 2.81k 5,437 393 37k
Apache Log4j2 183k 2.32k 12,031 132 2.8k
Jenkins 181k 1.69k 32,252 701 19k
Javaparser 179k 1.67k 8,031 166 4.1k
Inria Spoon 154k 2.06k 3,891 106 1.3k
Apache Maven 92.5k 1.05k 11,567 150 3.1k
Apache Spark 85.6k 1.06k 32,821 1,805 33k
Apache SkyWalking 84.7k 1.58k 7,022 397 1.9k
Jackson Core 52.3k 283 2,025 59 200
Alibaba Arthas 44.2k 586 1,726 155 29k
Jacoco 38.8k 633 1,749 46 3.2k
JUnit4 31.2k 471 2,486 151 8.3k
Google gson 25.8k 212 1,650 124 21k
SLF4J 13.5k 256 1,956 61 1.9k

1. We first curated a list of software organizations that are present on GitHub. Among the
organizations we selected are Apache, Google, QuarkusIO, AWS, Alibaba, Junit-team,
Mockito, ReactiveX, Spring, Facebook, Bazel build, Jenkins, etc. To which we added other
organizations that deliver known software, such as JavaParser, Netty, FasterXMl, Jacoco,
Qos, Inria.

2. To ensure that the software builds correctly, we focused on projects that use a build
automation process that successfully passes. We selected Maven projects for this purpose.
We also selected projects that support up to Java 14 included since it was imposed by the
baseline tool to which we compare to.

3. We selected the most popular projects (based on their number of ’stars’ on Github) and
with more than one thousand commits. We finally reached 18 real-world and representative
software projects: industrial and academic projects, small to very large-sized projects,
monolithic and modular, and simple to complex projects.

Table 6.1 describes our curated final list of software projects.

6.2.3 Results

We empirically evaluate the key properties of the HyperAST . To do so, we can classify the
properties in two categories. A property can either be objectively checked with a simple assertion,
e.g., identity of parsing and re-serializing, or needs a comparison with an existing tool, e.g.,
for CPU/memory performance and finding references. We choose to compare the HyperAST
against Spoon [Paw+15] as it is a well-known tool in the community, which is used to analyze
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Figure 6.4 – Megabytes of memory taken for each commit, legend: orange=spoon,
blue=hyperAST, with total, x order-of-magnitude difference, and + gain. Note: we
do the analysis starting from the last commit published corresponding to the commit n°0.
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Figure 6.5 – CPU time taken to construct each commit, legend: orange=spoon,
blue=hyperAST, with total, x order-of-magnitude difference, and + gain. Note: we
do the analysis starting from the last commit published corresponding to the commit n°0.
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and modify Java code. Thus, we observe differences of performances between Spoon and the
HyperAST both in time and in memory for construction and finding references.

RQ1: Can we compute the HyperAST correctly over several versions?

To answer RQ1 we implemented a serialization service to parse the code and pretty-printing it
back to the file level. We can thus evaluate the sound incremental construction of the HyperAST
with the following equivalence.

code ≡ prettyprint(parse(code))
Therefore, the goal is to show that the construction of the HyperAST is a sound transformation

of the Git Merkle DAG and the code Blobs. To do that, we performed the above verification for
each project using a set of Java file Blobs uniformly sampled from the Git object database.

On a total of 299 041 Java Blobs from all commits, the HyperAST was able to parse and
to serialize 299 007 them back successfully with an exact equivalence. Thus, achieving 99.98%
correctness. We looked at the remaining 34 Blobs and found that it was caused by Tree-Sitter:
these Blobs contain errors in the code with missing tokens, which the Tree-Sitter parser corrected
by adding the most likely tokens that respect the Java grammar rules. This feature of Tree-Sitter
allows the HyperAST to analyze even erroneous code in contrast to existing tools.

Therefore, we can answer RQ1 positively. Ensuring the sound construction of the HyperAST
is essential for code transformation purposes, such as patch application or code refactoring.

RQ1 insights: Results show the soundness of the HyperAST construction with 99.98% of
correctness. It is a preserving transformation for correct code into the HyperAST . Erroneous
code is slightly corrected at the token level in 0.02%.

RQ2: How does the HyperAST perform and scale compared to a traditional
approach?

This RQ investigates the difference between the HyperAST and traditional approaches in
terms of memory footprint and execution time for building ASTs over versions. To do so, we
selected the most recent thousand of commits in each project to analyze for a fair comparison
between Spoon and the HyperAST . For the memory footprint, we measure the heap with and
without the constructed structures, i.e., the HyperAST and the Spoon ASTs. For construction
time, we measure the time in CPU cycles from the start to the end of the construction.

With the HyperAST we use the Rust functions Instant :: now() and Instant :: elapsed().as_nanos()
for time measurement and jemallocctl library for memory measurement. With Spoon, we use the
Java function System.nanoT ime() for time measurement and the functions runtime.totalMemory()
and runtime.freeMemory() for memory measurement.

Figures 6.4 and 6.5 give the measured memory footprint and the construction time for both
Spoon and the HyperAST . Note that since we started by treating the latest commit in the
history and went back in time to treat the other commits, the depicted figures show the results
in that order of commits, i.e., left (0) being the most recent commit. Overall, the HyperAST
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outperforms Spoon. We observe less memory footprint and less construction time for HyperAST
than Spoon.

Regarding the memory footprint, the HyperAST outperforms Spoon in all projects, as shown
in Figure 6.4. On minimum and maximum, respectively, the HyperAST consumed 63 MB in
Jacoco and 7.5 GB in Hadoop of memory compared to 17 GB in Gson and 2.3 TB in Hadoop
for Spoon. We observed the smallest and the biggest gains in memory footprint of +91.8% and
+99.9%, respectively, in the Jenkins and Jacoco projects. The order-of-magnitude difference in
memory footprint between the HyperAST and Spoon varied from ×12 in Jenkins up to ×1159 in
Jacoco. Note that the sudden drop in the Spoon project is due to erroneous code in the commits
that could not compile, whereas the HyperAST can still handle them thanks to the robustness
and resilience of Tree-Sitter.

Regarding the construction time, we also observe benefits for the HyperAST over Spoon, as
shown in Figure 6.5. The HyperAST outperforms Spoon for the analyzed projects. On minimum
and maximum, respectively, the HyperAST took 1 min in Slf4j and 2 h and 22 min in Dubbo
of construction time, compared to 1 h 14 min in Jacoco and 93 h 31 min in Flink for Spoon.
We observed the smallest and the biggest gains in construction time of +83.4% and +99.99%,
respectively, in the Jenkins and Jacoco. The order-of-magnitude difference in construction time
between the HyperAST and Spoon varied from ×6 in Jenkins up to ×8076 in Jacoco. It is worth
noting that the HyperAST outperforms Spoon even thought we run it on a single CPU core (no
parallelization) in contrast to Spoon with the JDT. Thus, we actually consumed less computing
power per commit. Parallelization would improve the construction time, i.e., latency, but, is left
as future work.

Figures 6.4 and 6.5 confirm that the memory footprint and the construction time of the
HyperAST are always paid initially and then are much lower for later commits. Therefore, the
HyperAST depends on the code size only for the first commit and then only depends on the
commit size, i.e., code changes. For Spoon, it is rather dependent on the code size as expected,
where the larger the code is, the more memory and time it consumes to construct its AST.

Finally, we clearly see the issue of scalability with Spoon only on a thousand of commits.
However, a thousand of commits did not stress test the HyperAST . To do so, we took the
Hadoop project that showed to be the most costly to build, and we built the HyperAST on all its
history of 25 749 commits. The measured memory footprint was 71 GB and the construction time
was 18 h 21 min. Compared to Spoon with a thousand of commits, we are still outperforming
it with gains of +72% in construction time and +97.4% in memory footprint. Resulting in an
order-of-magnitude difference of ×3.6 for construction time and ×38 for memory footprint.

RQ2 insights: The HyperAST shows significant results in performance compared to Spoon.
It provides scalability gains in memory footprint from +91.8% to +99.9% and in construction
time from +83.4% and +99.99%. Same observation holds when the HyperAST takes all the
25 749 commits of Hadoop.
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6.2.4 Threats to Validity

Internal Validity

Considering performance measurements, we choose to measure CPU and memory consumption
for each processed commit. Our goal was to show to what extent the HyperAST scales on complex
real-world software with large histories while quantifying it per commit to observe the scalability
tendencies. Measuring once for all commits would not have accurately reflected variations of
analysis costs, as during development a software might change in quality, complexity and size.
Measuring in finer grain than a commit, say for a module, a package or a class, may also be
biased, as the measurements could overweight the actual processing cost itself. Thus, measuring
performance per commit gives more confidence in the results.

Moreover, as spoon compiles the code, some commits could not be analyzed with Spoon.
Whereas, we still were able to analyze them and insert them in the HyperAST thanks to the
resilience of Tree-Sitter for ill-formed code. In addition, for the validity check with precision and
recall, we had to select the commits that Spoon successfully compiled on which it computed the
association tables. Thus, being able to compare the found references on both approaches. Our
goal here was to show that the HyperAST can be used in a code analysis efficiently. However,
we did not measure the effort of developing the service of finding references, as this was not the
goal of the present contribution. Nonetheless, this is left for future work.

External Validity

We implemented and evaluated the HyperAST approach for Java with maven build system.
Our conclusions in theory could generalize to other programming languages with similar features
than Java (e.g., strong static nominal typing). Nonetheless, further experimentation remains
necessary on other languages to generalize our results. Note that Tree-sitter is able to support
other languages (e.g., C, JavaScript). Thus, making the HyperAST extensible beyond Java by
integrating the Tree-sitter grammars of other languages. However, the goal of this contribution
was not to support multiple languages but to show the scalability benefits provided by the
HyperAST . Since the publication of [Le +22] we added support for C/C++ without much
issues (some expression where missing from the tree-sitter grammar of C/C++, e.g., inline asm)
and it successfully handled the Linux kernel and Stockfish, yet we still lack a more systematic
benchmark for example comparing the HyperAST to Cocinelle [LM18] pattern matching or
Tree-Sitter queries (both would require us to implement their query language for the HyperAST ).
Moreover, we relied on Spoon as a baseline, mainly due to its popularity as a frontend to the Java
development tools (JDT). Hence, we cannot generalize the observed benefit of the HyperAST
compared to Spoon for other AST tooling, such as JavaParser as it also resolves the references.
This is left for future work to enhance the comparison results.

Finally, the HyperAST considers Git histories. As discussed in this chapter, the HyperAST
can operate on any snapshot-based history similar to Git, with minimal development (see
implementation chapter 9.1). For the other cases (e.g. SVN), a classical technique consists
in converting a repository to Git similarly as Software Heritage [DZ17] initiative does before
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archiving repositories.

Conclusion Validity

Our evaluation gave promising results, showing that the HyperAST allows to save a lot,
respectively, with an order-of-magnitude difference from 6 up to 872 in construction time and
from 12 up to 1158 in memory footprint. The evaluation results also showed providing a reliable
service for finding references with an average precision and recall respectively of 90% and 97%.
Even though we evaluated it on 18 projects, we plan to further extend the scope of this evaluation.
Indeed, including more projects would give more insights and statistical evidence. Yet, our
curated list of projects represents real-world complex software with very large histories.

6.3 Conclusion
This chapter presented a novel type of AST, namely the HyperAST that allows temporal

code analyzes to scale across large code histories. The evaluation on 18 large projects shows
that the HyperAST is able to scale to thousands of commits with multiple order-of-magnitude
difference between the HyperAST and Spoon, from ×6 up to ×8076 in construction time and
from ×12 up to ×1159 in memory footprint. While the HyperAST requires up to 2 h 22 min and
7.2 GB for the biggest project, Spoon requires up to 93 h 31 min and would require 2.2 TB to
maintain all these ASTs in memory. The gains in construction time varied from 83.4% to 99.99%
and the gains in memory footprint varied from 91.8% to 99.9%. These benefits and gains were
also observed when we built the HyperAST on the whole 25 749 commits history of the Hadoop
project in contrast to only a thousand of commits with Spoon.
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Chapter 7

(SPACIAL ANALYSIS) EFFICIENT

REFERENCE ANALYSIS ON CODE

HISTORIES

This chapter discusses how to use the HyperAST and its metadata for a classical task:
navigating in the code from a given declaration to all its references. This is a central functionality
used to implement multiple well-known approaches, such as code smells detection [Tuf+17],
bug prediction [Pal+17], refactoring [TKD20], and co-evolution [Le +21; LY17]. Furthermore,
evaluating this use case will indirectly show the performance and correctness benefits of the
HyperAST (section 7.2). This analysis focuses on Java source code as it is widely used and similar
to many other programming languages. Furthermore, it presents challenging name resolution, as
presented in section 3.1.2, Poulsen, Zwaan, and Hübner call them multi-phased type (or name)
resolutions [PZH23]. Finally, given the complexity of the referential semantic of Java, it should
be possible to adapt our implementation to other programming languages.

The approach and results presented this chapter were partly published at ASE 2022 [Le +22].
This chapter comes with more details on the inner working of the reference analysis, and a
supplementary research question (RQ4).

7.1 Approach

Given a declaration, finding all its references is a standard feature in most code analysis
tools. It often implies maintaining an association table between declarations and references. It
works fine in the case of a single version. However, maintaining such global tables and ASTs for
multiple versions requires heavy maintenance work to keep those numerous tables synchronized.
Instead, our solution rather uses an oracle capable of answering with certainty when a reference
is absent from a given piece of code, i.e., from a subtree. With such oracle only the subtrees
that may contain references need to be explored, while the rest is pruned from the search. The
interface to our oracle is modeled as a function that takes a signature and returns Absent if
there is no reference corresponding to the given signature in the associated subtree, otherwise it
returns MaybePresent. Relaxing one side of the oracle semantic has multiple advantages that
will be detailed during this chapter.

The preprocessing phase takes place during the building of the HyperAST . As described in
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chapter 6, metadata can be computed and persisted in each node of the HyperAST between
the deduplication and insertion step, such that compiling metadata is made incremental. The
metadata computation consists in partially resolving references while propagating references and
declarations (they are also cached), the remaining unresolved references are the one actually
compressed and stored as metadata.

int m1(C x, D y) {
...

}

int m2(C x) {
...

}

class A extends B {

}

class C {...}class B {...}

Figure 7.1 – Example source code represented as nested subtrees.

7.1.1 Representing a signature
Naturally to search and match signatures we need to choose a representation. Listing 2

show how signatures for references and declarations are represented. Here, we focus mainly
on simple qualified identifier, i.e., a chain of identifiers. Yet depending on the chosen se-
mantic of references, additional types of signatures are defined, such as calls, array accesses,
primitives, this, super. For example, in Java import java.lang.Object; correspond to
Type(Identifier(Identifier(Root,"java"),"lang"),"Object").

1 enum Sig<Id> {
2 // resolved signature
3 Root,
4 // unresolved signature
5 Pending,
6 // scoped identifier
7 Identifier(Id,String),
8 // scoped type
9 // needed because of obscuring

10 Type(Id,String),
11 // Choice between sig. variants
12 // needed because of shadowing
13 // produced by partial resolutions
14 Choice(Vec<Id>),
15 // language specific cases: this, primitives ...
16 }

Listing 2 – Construct used to define a signature

For performance reasons (mainly memory consumption) sets of references and declarations are
actually backed by a store that deduplicates signatures and their components, i.e., the signature
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store is a DAG. For example, given java.lang.Object and java.lang.Float, java.lang will
be shared. This nesting is actually easy to apply in combination to the store by properly setting
the generic type for Sig in listing 2 as reference to a signature in the store. Listing 2 shows how
it can be achieved easily.

7.1.2 Indexing References

Our indexing leverages the extensible metadata provided by an HyperAST . Concretely, the
metadata serve the purpose of an index, given a specific search query, it accelerates the access
to searched code elements. More specifically the goal of the indexing is to provide an oracle
in each node of the HyperAST , and prune subtrees that will surely not provide results for the
given search. Consequently, by default it is always functionally correct for an oracle to return
MaybePresent.

1001000100

D R

D R

fixed-point resolutionscoping

hashing

D R ∪ D R ∪ D R ∪ D R

aggregating

Figure 7.2 – Partially resolve references and compute oracles from still unresolved references.

Figure 7.2 illustrates both the principle of the partial reference resolution and the computing
of a reference oracle. Computing a reference oracle on a subtree is done in post-order traversal
i.e., a node is processed once all children have been processed. It is an incremental algorithm
that takes advantage of the deduplication of subtrees to only process each identical subtree once.
Here each subtree has both a set of declarations D and a set of references R.

The Extraction and Aggregation Process

This process vary depending on the type of the node being processed and the one being
aggregated. For example, given the assignment statement Cy = x; the expression x is handled
first, x is extracted as Identifier(Pending, ”x”) and inserted in the set of references. Then
back to the statement, the type access C is extracted as Type(Pending, ”C”) ; the local variable
declaration y is extracted as Identifier(Root, ”y”) (of type C). C and x (aggregated) are inserted
in the set of references, y → C is inserted in the set of declarations.
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Listing 3 illustrate the accumulation of each child state to the current partial reference
analysis state. Where a state S contains a set of visible declarations and a set of unresolved
references but also other language specific information, for example to handle visibility of class
members.

1 fn accumulate(current: S, child: S) -> S {
2 // ...
3 else if current.is_type_body() {
4 match (current, child) {
5 // ...
6 (Members(mut l), FieldDeclaration{
7 visibility,
8 kind,
9 name,

10 }) => {
11 let identifier = Sig::Identifier(Maybe, name);
12 // ... // additional instructions to leverage signature store
13 l.push((visibility, i, kind));
14 Members(l)
15 }
16 (Members(mut l), MethodDeclaration{
17 visibility,
18 kind,
19 name,
20 parameters,
21 }) => {
22 let identifier = Sig::Invocation(Maybe, name, paramters);
23 // ... // additional instructions to leverage signature store
24 l.push((visibility, i, kind));
25 Members(l)
26 }
27 //...
28 }
29 }
30 // ...
31 }

Listing 3 – Combine partial referential analysis states

For example, taking fig. 7.1, when processing the body of class A,

— initializing the state corresponding to the body, such that sbody0 = Members(∅),

— then combining the state obtained from method m1 we name sm1, we have sbody1 =
accumulate(sbody0 , sm1), such that now sbody1 = Members({m1(C, D)}),

— then combining method m2 we name sm2, we have sbody1 = accumulate(sbody0 , sm2), let us
consider that m2 is public, such that now sbody2 = Members({m1(C, D), public m2(C)})
(visibility is important for name resolution).
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The Partial Resolution Process

This process operates on the set of declarations and the set of references. The partial resolution
is a fixed-point algorithm i.e., fixed-point resolution. To be more efficient, declarations
are resolved first. For example, given a set of declarations only containing the declaration
Identifier(Root, ”y”) of type Type(Pending, ”C”), Type(Pending, ”C”) cannot be resolved
for now (thus y keep the same type), while Identifier(Pending, ”x”) would be resolved to
Type(Pending, ”C”).

In post order, the aggregating of (D,R) consists in reinserting declarations and references in
a single (D,R) tuple (if relevant, already initialized with the current declaration or reference).
Then, scoping declaration allows qualifying declaration relative to their parents. After that, the
fixed-point resolution allows resolving references using declarations. Resolutions are cached, which
allows implementing the fixed-point condition. Fully resolved references can be removed. Finally,
hashing creates the reference oracle using a bloom filter, as explained in the next paragraph.

A major subtlety in most languages, is that Identifiers should in priority match variable
declarations and then type declarations (i.e., Obscuring).

Structure of Oracle Persisted in HyperAST

To instantiate our oracle we rely on Bloom filters [Blo70]. Bloom filters are notably used in
network security [GA13; BM04], and bio-informatics [MP11]. Multiple alternatives and variants
of Bloom filters exist in the literature and libraries depending, we use the original Bloom filter
for its simplicity and effectiveness [Blo70], as it also facilitated further specializations.

A Bloom filter is a probabilistic data structure efficient to check whether an element is
absent from a set. Consequently, checking for the presence of an element only has probabilistic
guarantees. This probabilistic relaxation allows to gain a substantial space advantage over other
data structures, as elements are not required to be stored. Indeed, in the usual hash sets, to
counteract hash collisions, inserted elements must be kept to be compared with new elements.
Concretely, a bloom filter is an array of n bits all initially set to 0 and a set of hash functions H.
Then, for each element, the Bloom filter use those hash functions to get a set of integers indexes.
They set to 1 the corresponding indexes (modulo n) in the bit array to indicate the presence of
element. The number of hash functions is usually a major optimization point where the false
positive rate (FPR) is function of n, the number of hash functions, and number of expected
inserted elements. Growing a Bloom filter can be a major issue (also removing elements), as it
requires to re-insert all elements, thus, in part, defeating the compression benefits.

In practice, as metadata for each subtree in an HyperAST , our oracle stores the unresolved
references obtained through our partial reference resolution. Therefore, to instantiate each Bloom
filter we have four interacting values to consider: the FPR, the number of bits n, the number of
hash functions |H| and the expected number of unresolved references r. Notice, that our oracle
is used in a recursive data structure, thus, during a traversal the FPR is compounded, meaning
that we can reduce n and |H| significantly without impacting the overall effectiveness on the
approach. Moreover, we are building each oracle from a set of references known at instantiation
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(due to the non-contextual post order traversal), therefore, we know the number of elements that
will ever be stored inside each Bloom filter. Finally, to reduce the computing cost for the happy
path we would like to keep the number of hash functions as low as possible, actually, using a
single hash function per size of bitset (due to modulo) also keeps the code simpler as we can hard
code it (or choose at compile time). So, with a single hash function we should have FPR ≈ |r|

n ,
e.g., with n = 2|r| each oracle would prune subtrees that do not hold our reference with a rate
of 1

2 .
A few optimizations are also possible:

— n can be chosen in powers of 2 to make the modulo a shift operation.

— A lower bound can be chosen given the number of unresolved references, the size, or height
of the subtree.

— An upper bound can be chosen on similar parameters. In both cases, at both extreme the
efficiency of our oracle diminish. As it goes down in a subtree each pruning only removes a
few elements, while it goes up, it has fewer chances of not containing a particular reference.

— The upper bound could also lead to a kind of multi-staging, where we choose hash functions
with more collisions, i.e., not taking full signatures but just names, e.g., java.lang.Object

produces a list composed of "java", "lang" and "Object". This last optimization has not
been implemented yet.

7.1.3 Finding all References Matching a Signature
This searching phase consists in going done the code (subtrees) to find references corresponding

to a given signature. Without using the oracles, it would be very similar to a naive traversal
trying to match a given pattern.

Figure 7.3 illustrates the actual search process. Given the reference E, it recursively goes
down the AST. At each subtree, the local reference oracle is used to check whether the subtree
might contain E, if it tells that E is absent then the whole subtree is skipped, thus saving
operations that would not lead to finding any wanted references.

int m1(C x, E y) {
...

}

int m2(C x) {
...

}

1001
10001class A extends B {

}

100011

class C {...}
00111

class B {...}
100110

100010 E

Figure 7.3 – Example ref ana using oracles.
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Data: a node n ∈ T , and a signature s
Result: R the set of nodes from T matching s,
in itself the function returns a set of aliases of s

1 if ref_oracle(n, s) = Absent then
2 return ∅;
3 if let "package" p ";" = n then
4 if object(s) = p then
5 return {name(s)};
6 else if let "import" o ".*;" = n then
7 if object(s) = o then
8 R = R ∩ n;
9 return {name(s)};

10 else if let "import" c ";" = n then
11 if s = c then
12 R = R ∩ n;
13 return {name(s)};
14 . . .
15 else
16 if n is variable access ∧ s = n then
17 R = R ∩ n;
18 else if n is type ref ∧ s is type ref ∧ s = n then
19 R = R ∩ n;
20 . . .
21 A = ∅;
22 foreach c ∈ children(n) do
23 A = A ∩ search(s, n);
24 foreach a ∈ A do
25 A = A ∩ search(a, n);

Algorithm 1: search(s, t)
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Algorithm 1 presents a pseudocode of the search algorithm. The first condition allows to
stop the search in the current subtree when the reference oracle (ref_oracle) guarantee there is
no reference in n matching s. Then, it presents three special cases specific to Java, that alias the
signature s (line 3 to 13): package declaration, star import, import. Otherwise, (line 16-20) we
try to match the signature s to the one represented by the current node n, e.g., when it is a
variable access or a type reference. Finally, (line 21-23) for each child it recursively searches for s

and other aliases a while adding newly found alias to A.

7.1.4 Finding all References from a Declaration

Given a declaration i.e., a piece of code, to find all references to this declaration we need
to climb up in the tree of code up until the declaration is not visible anymore. Once reaching
each new scope we search for references with the approach presented in the previous section
(section 7.1.3). It starts from the given declaration and goes up in the AST while the declaration
is visible, each time the scope changes a search is done in the subtree.

7.2 Evaluation
This section presents the evaluation of the HyperAST used to efficiently find all reference to

given declarations. First, we present the research questions to then discuss the results. Then, we
present the data set and evaluation process. We finally discuss the threats to validity, limitations,
and the scope of the approach. All the material of this section and a replication package
are available on our companion web page 1.

We ran the implementation of our approach on the following hardware configuration: 2 x
Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz; 187Gb ram; 1 T SSD, running Ubuntu 18.04.6.

7.2.1 Research Questions

We now formulate the research questions as follow:

RQ1 How does the HyperAST perform and scale on the code analysis task of finding
references compared to a traditional approach? This aims to investigate whether a
code analysis task can leverage on the HyperAST , thus opening a new perspective to work
with the evolution/time dimension rather than on only a single version at a time.

RQ2 To what extent our approach decorrelates the cost of searching for references
from the size of the code base? This aims to investigate the correlation between the
number and types of declarations against the cost of finding their corresponding references.
This research question also demonstrates that we need neither association tables nor
searching inefficiently in the whole code base. It actually details results shown in RQ2 by
specifically looking at the cost of each individual search, while also detailing the context
where the search is done i.e., code size.

1https://github.com/quentinLeDilavrec/ASE2022
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7.2.2 Data Set

We use the same dataset as section 6.2.2.

7.2.3 Results
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RQ1: comparing our approach against the usual association table approach

This RQ aims to compare the HyperAST and Spoon on the same task of code analysis,
namely finding references of declarations. For the HyperAST , we use our prototype solution
based on our reference oracle. For Spoon, we rely on its constructed association tables.

We first check the validity of our prototype solution. Then, we compare the performances of
finding references. We consider Spoon as a ground truth. Thus, we can compute precision and
recall for the HyperAST in finding references. Precision and recall vary from 0 to 1, i.e., 0% to
100%. They are defined as follows:

precision = ResolvedReferences ∩ ExpectedReferences

ResolvedResolutions

recall = ResolvedReferences ∩ ExpectedReferences

ExpectedReferences

The comparison of references is not based on their labels, as this is not a guarantee of finding
the same references. Rather, the comparison is based on the start en end characters in the
code. This is a more restrictive comparison that further would discriminate our approach while
increasing confidence in the results.

Figure 7.5 shows the different measured precision and recall in our case studies for the
HyperAST . The measurements are per commit where the left (0) represent the most recent
commit as we went back in time up to the thousand commit. We observed on average 90%
precision and 97% recall. Precision ranged from 68.2% to 98.2% in Spoon and Slf4j projects,
while recall ranged from 84.4% to 99.7% in Spoon and Jenkins projects. In the projects where
precision was low, namely Spoon, Jacoco, and Junit4, we investigated the found references by
the HyperAST and Spoon. We found that many discrepancies are due to minor shift in the start
and end characters, mainly due to the inclusion of comments to the found references. However,
other cases were due to an over-estimation of the HyperAST for possible shadowed or overridden
references.

Figure 7.4 shows how the HyperAST compares to Spoon in terms of searching time to find
all references. It shows that it is similar on average to Spoon for small-sized projects up to
180 k of LOC! (LOC!). We observe that our prototype of finding reference over preforms
for medium-sized projects up to 300 k of LOC! and it under performs for large-sized projects
with millions of LOC. However, in the Haddop and Flink projects, Spoon out performs the
HyperAST by roughly 10 min per commit. Nonetheless, in contrast to Spoon that is only capable
of calculating all references for all declarations at once, the HyperAST can calculate the references
for a single declaration at a time whenever needed. Therefore, depending on the usage scenario,
the HyperAST will outperform Spoon in case of finding references for some given declarations
and not all of them.

RQ1 insights: Results show the validity of finding references based on the HyperAST . We
observed an average 90% precision and 97% recall without a significant difference in search
time but a difference of 10 min in large-sized projects.
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Figure 7.6 – Time cost searching for all references to local declarations (local_variable,
parameter_declaration).
Each search is normalized, the search time is divided by the number of found references.
The dots colors are there to help with distinguishing modules.
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Figure 7.7 – Time cost searching for all explicit references to global declarations
(class_declaration, interface_declaration).
Each search is normalized, the search time is divided by the number of found references.
The dots colors are there to help with distinguishing modules.
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RQ2 Lazy def-use resolution

Contrary to traditional def-use computations, our lazy search do not need to go over the
entire code just to find the references of a few declarations. With our approach the cost of
computing def-use should be proportional to the number of found references, while disconnected
from the size of the codebase. One major usecase would be to just search for references to
changed delcarations. Considering the lazyness of our approach w.r.t. declarations, in Figure 7.4
we show the expected cost of finding all references to 50% and 10% of the declarations. In this
use-case, we were always faster and less costly than Spoon. For the largest projects, we decreased
the search time to roughly 17 and 3 minutes in Hadoop and to roughly 13 and 2 minutes in
Flink, compared to their respective 26 and 17 minutes.

Figure 7.7 presents performances due to the major specificity of our approach. It shows the
average time it costs to find a reference of a given type declaration over the size of the considered
code (measured in Java LoCs, computed with scc,2 ignoring blank lines and comments). We can
observe a correlation between the search duration and the size of the code. Thus, our approach
does not completely decorrelate the time cost from the size of the code. However, in the worst
case the computation time grows linearly with the size of the code (1ms at 1KLoC, 10 ms at
10KLoC, 100ms at 100KLoC).

On contrary as it should, in Figure 7.6 for local def-use, we do not observe any significant
correlation between search time and the number of LoC in the analyzed module.

Finally, using these results to estimate the cost of resolving a set of declarations having a
total number of a 1000 references in 20KLOC, it should take less than 20 seconds.

RQ2 insights: This detailed presentation of performances results shows the lazy nature
of our approach. Indeed, our approach obtains performance benefits searching a subset of
declarations, here, a single one each. Thus, comparing to Spoon on Figure 7.4, searching
for 50% and 10% of the declarations and references will divide our overall search time by
half and ten. Thus, making it faster than spoon on realistic searches that focuses on specific
declarations.
For global declarations, the worst case is linearly correlated to the size of maven modules,
whereas moving to the best case de-correlates the search cost from the module size. It shows
the difference between successful and unsuccessful uses of oracles.

7.2.4 Limitations

It would require further evaluations to precisely quantify the impact of each hyperparameters
on the performances of our approach.

2https://github.com/boyter/scc
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7.3 Conclusion
This chapter presented an application of the HyperAST to the resolution of referential relation,

more specifically, given a declaration finding all its references. This is a major component of
a static impact analysis as presented in chapter 5. This analysis focused on Java source code
as it is widely used, similar to many other programming languages and present multiple name
resolution challenges.

In the evaluation, we compared our approach to the standard association table using Spoon to
populate it. We observed on average 90% precision and 97% recall when comparing exact reference
relations. For the search time, when resolving all reference relations we did not find a significant
difference. Yet compared to the usual approach that requires to rebuild the association table by
going through each reference, we were able to show that by the lazy nature of our approach that
each declaration could be searched individually, in the worst case in 200 milliseconds.
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Chapter 8

(TEMPORAL ANALYSIS) HYPERDIFF:
FINE GRAINED TREE DIFFS OF ENTIRE

CODE HISTORIES

This chapter presents another use case for the HyperAST , this time focusing on the temporal
aspect of source code analysis. Indeed, as software evolves quickly, one way to study its evolution
is through computing source code diffs on its AST representation (also called an edit script). It
is composed of actions (i.e., changes) that represent the applied changes from an original version
to an evolved version of the code. Actions are either atomic or composed. An atomic action can
be either an insert (add), delete (remove), or update of AST nodes. A composed action is an
action composed of other actions. For example a move action is composed of a delete and an
insert (possibly also an update), which moves a given node (deletion) to another place in the
AST (insertion).

Moreover, jointly analyzing and computing the structured difference on thousands commits
corresponding to hundreds thousands LoC faces scalability issues. Mainly because of the cost of:
1) parsing the original and evolved code to produce two ASTs, and hence, doing so on thousands
of commits; 2) wasting resources by not reusing intermediate computation results that could be
shared among versions; 3) unsuitable memory layout of compared trees by allocating nodes in
the global heap (i.e., not contiguous, indexed by generic pointers, etc.). Many existing works
proposed to compute structured diffs (see section 2.1.3), proposing various improvement over
their predecessors.

Two existing research tools are widely used to compute AST diffs, namely Change Distiller
and GumTree (see section 2.1.3). Both approaches are extensively evaluated in the literature,
and they are both based on Chawathe’s algorithm [Cha+96], where there is a mapping phase
and an edit-script construction phase. We specifically choose GumTree [Fal+14] as it is the
latest diffing tool and has a very accessible code base, with benchmarks and implementation
of previous stat-of-the-art techniques. The GumTree approach notably focuses on scalability
by reducing its algorithmic complexity to O(n2) compared to state-of-the-art techniques, i.e.,
O(n3). This chapter will also show that the GumTree algorithm is particularly compatible with
the HyperAST . However, GumTree was only evaluated on pairs of files, and still suffers from
scaling issues on large software projects where code tree are made of millions of nodes. Actually,
there exists an implementation combining GumTree with the Spoon parser to compute diffs on
commits, yet it suffers from the above-mentioned limitations w.r.t. scalability. To the best of
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our knowledge, we are the first to propose an approach that addresses the scalability issue of
computing diffs on large code histories.

The GumTree approach introduced a two phased mapping algorithm that trades some
optimality for a lot of efficiency. An illustration of the gumtree algorithm is presented on the
left side of fig. 8.1. The first mapping phase is the top-down matching (also called subtree
matching in [Fal+14]). It is a top-down traversal (breadth-first) that consists in matching
subtrees in rounds (level by level starting from the root). Each round, unmatched subtrees are
opened, i.e., the root of the subtree is skipped, and its children are made available to be matched
on the next round. The second mapping phase is the bottom-up matching, a bottom-up
traversal (post-order) that matches previously unmatched tree nodes using an optimal matching
algorithm and the previously matched subtrees. In post-order, unmatched nodes are compared
to candidates (i.e., other nodes that share mapped descendants) in the other version. Then, the
most similar candidate is selected to apply an optimal matching algorithm, such as RTED [PA11]
or ZS [ZS89] (ZS is the default).

Note for later that GumTree uses and computes the following metadata on each node:

— the height of a subtree (in number of nodes);

— the size of a subtree (in number of nodes or in the number of characters);

— the structural hash: the hash of a subtree that depends on the type and order of nodes
(ignore labels);

— the label hash: the hash of a subtree that depends on the type, label, and order of nodes

Note that while GumTree was originally evaluated on diffing files, we target diffing at the
commit level, which poses the challenge of making it scale to tree multiple orders of magnitude
larger (millions instead of thousands).

In this chapter, we propose a novel code differencing approach that enables the production of
diffs/edit scripts at scale on large software codebases. We combine concepts of GumTree [Fal+14],
a mainstream code differencing algorithm, and HyperAST [Le +22], a novel representation of
code histories, to propose an incremental and memory efficient approach. In particular, rather
that having an AST for each version to analyze, the HyperAST leverages code redundancy in
space and time using a Direct Acyclic Graph to provide a single temporal AST containing all
versions at once. On top of the HyperAST , we take on the challenge of proposing novel AST
matching algorithms, inspired by GumTree, on this DAG representation instead of the classical
and inefficient analyzes of a pair of full ASTs. Essentially, we make the original greedy GumTree
algorithms lazy. Our approach pre-computes metadata and lazily decompresses the DAG to
decorrelates the cost of diffing from the size of the code base. Thus, enabling code differencing at
scale.

We evaluated our approach on a curated list of 19 large software projects. Compared to
GumTree as a baseline, the proposed approach outperforms it in scalability both in time and
memory. We observed an order-of-magnitude difference in CPU time: 1) from ×1.2 to ×12.7 for
the total time of diff computation, 2) from ×1 to ×226 for the top-down and bottom-up phases
total time, and 3) from ×3.2 to ×233 for the top-down phase total time. We also observed an
order-of-magnitude difference in memory footprint of ×4.5 per AST node. Finally, we gain all the
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time while having a 99.3% of identical diffs with respect to GumTree and 99.99975% of identical
mappings and actions in the remaining 0.7% diffs. Finally, we also outperform GumTree-Spoon
when including the parsing cost. We are faster by 14.52 times in median and when excluding
extreme cases of gains, we are faster on average by 13.68 times.

This chapter follows the Engineering Research Method as we propose a novel scalable code
differencing approach and evaluated through case studies supplemented with a replication package.

This chapter presents the following contributions:

— A novel approach for diffing commits that scales for the analyzes of large code histories.

— An evaluation of the proposal composed of benchmarking studies that demonstrates the
ability of the approach to scale compared to a state-of-the-art code differencing approach.

— Open Science: All the code of the approach and the artifacts of the evaluation are freely
available as a replication package. https://anonymous.4open.science/r/FSE23-DC22/

The rest of the chapter is structured as follows: Section 8.1 presents the novel approach.
Section 8.2 details the evaluation and threats to validity. Section 8.4 concludes the chapter.

The approach and results presented this chapter were published at FSE 2023 [Le +23].

8.1 Contribution
Considering a code history represented using the HyperAST , we introduce a lazy code

differencing approach inspired by the GumTree approach [Fal+14] with a faster and more efficient
mapping of pairs of trees (that characterize commits). The contribution addresses the scalability
issues as the following:
1/ the use of the HyperAST data structure overcomes the wasting of resources by not reusing
intermediate computation results that could be shared among versions;
2/ the proposed lazy algorithm fixes the unadapted memory layout of compared trees by allocating
nodes in the global heap;
3/ combining the HyperAST with the lazy diff algorithm reduces unneeded memory accesses to
the ASTs during the diff algorithm.

The scaling capabilities of our approach benefit from the same hypothesis as the HyperAST :
given a large code base, the amount of changes (i.e., new subtrees) brought by each commit is
usually tiny compared to the size of the code base. While both HyperAST and GumTree handle
subtrees, HyperAST de-duplicates identical subtrees (i.e., storing structural identical subtrees
once). Thus, it might provide benefits when combined with specific algorithms for matching
identical subtrees (that prune further traversal when matched). Compared to the GumTree
approach, we propose to leverage the structure of the HyperAST to significantly reduce memory
accesses and cache misses, while speeding up the diff.

Figure 8.1 shows the main differences between the GumTree approach and ours: The GumTree
approach starts by parsing whole code files to then process all their resulting trees to compute
metadata and finally produce diffs. It follows a top-down and bottom-up phases to compute the
mappings between the original and evolved versions of the ASTs. After that, it computes the
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Figure 8.1 – GumTree pipeline (left) ; our pipeline with content of HyperAST (right)

diff. Instead, our approach relies on the HyperAST to efficiently process a code history, i.e., a
Git repository. For each version (i.e., commit), our approach incrementally parses and computes
metadata to persist. In addition to persisting metadata, the HyperAST also precomputes the
structural equality using a reference equality, since identical subtree are de-duplicated. Then,
pairs of trees from the HyperAST are lazily decompressed and mapped also in the same two
phases (top-down and bottom-up) and finally used to produce diffs. Thus, the lazy decompression
allows us to only focus on the changed parts of the code for diffing.

In this section, we first detail how the approach leverages HyperAST to provide structured
code with metadata, and then how those structured data fit the requirements of each matching
algorithm we propose. We then present the two specific matching algorithm, namely the lazy
top-down matching and the lazy bottom-up matching. Our contribution herein is to adapt
the original greedy algorithms of GumTree for the decompressed trees, leveraging on the lazy
decompression. While optimizing the performances, our approach produces the same results as
the original algorithms.

8.1.1 GumTree to HyperAST Metadata

To efficiently compare code elements, GumTree uses several precomputed metadata (see
chapter introduction and section 6.1.3). As our approach leverages on the HyperAST that needs
to compute and expose these metadata. The size and a hash (similar to the label hash) were
already present in the HyperAST . Thus, we only extended the construction of the HyperAST
(i.e., parsing commits) to compute the label and structural hashes. In addition to these metadata,
GumTree needs to test whether two subtrees are identical, i.e., an isomorphic function. However,
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due to the DAG nature of the HyperAST , identical subtrees are de-duplicated. Thus, we know
that referentially identical subtrees are isomorphic without having to recursively compare their
content as GumTree does in its implementation.

8.1.2 Obtaining a Tree from the HyperAST
We now present the compressed tree and its lazy decompression.

Decompressed tree

The HyperAST is a DAG where subtrees are unaware of their parents, as such, algorithms
requiring global information on nodes (i.e., subtrees) need additional structures. Global informa-
tion refers to any information on parents of a node. It can be the global position of a node, its
path, declaring class, file or offset in characters. In the remainder of this paper – as opposed
to the compressed tree (the DAG) in HyperAST– we call such a structure that holds global
information on nodes a decompressed tree. The process of extracting a decompressed tree from
the HyperAST is named a decompression. To exploit spacial locality, a decompressed tree is
represented by a contiguous array using a post-order layout. Actually, the bottom-up step mainly
traverses trees in post-order, process subtrees (descendants) and other post-order properties, such
as contiguous descendants, key roots and leftmost tree descendants. It has almost no downsides,
other than having a O(n) access time to access the n-th children (precomputing leftmost tree
descendants is mandatory to obtain this complexity).

A decompressed tree has the following structure (inspired by the Zs algorithm [ZS89], see
Section 2.1.3):

ids: an array of Ids that indexes subtrees in the HyperAST

llds: an array of integers that indexes leftmost tree descendants

parents: an array of integers that indexes parents

The decompressed tree is column-oriented, i.e., is a struct of arrays,1 while nodes are
indexed by their position in post-order. In addition, considering that a decompressed tree is
contiguous we are able to replace the uses of hash sets by bit sets.2 Indeed, the original GumTree
algorithm [Fal+14] uses existential quantifier (∃) in various places and implemented by hash sets.

The downside of this decompressed tree would lie in the upfront cost of decompressing two
entire versions before being able to compare them. Nonetheless, it is countered by the fact that
it is lazily decompressed.

Lazy decompression

The upfront decompression of the HyperAST is actually not mandatory. Reducing and
deferring the decompression effectively makes the decompression lazy. Indeed, considering the

1Structs of arrays (SoA) reduce memory wasted by padding, while helping with cache misses when
only a subset of fields is needed.

2Using a bit sets to implement a set, is more memory efficient than a hash set (a single bit per element),
considering modern virtual memory, where zeroed pages are not physically allocated.
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Data: A source tree T1 and a destination tree T2, an multimap MM, an empty
list A of candidate mappings, and an empty set of mappings M, the
minimum height for a matched subtree minHeight

Result: The set of mappings M
1 L1 ← PList(root(T1)); L2 ← PList(root(T2));
2 while min(peekMax(L1), peekMax(L2)) > minHeight do
3 if peekMax(L1) ̸= peekMax(L2) then
4 if peekMax(L1) > peekMax(L2) then
5 foreach t ∈ pop(L1) do open(t,L1);
6 else
7 foreach t ∈ pop(L2) do open(t,L2);
8 else
9 H1 ←pop(L1); H2 ← pop(L2);

10 b1 ← BitSet(|H1|); b2 ← BitSet(|H2|);
11 foreach (i1, i2) ∈ 0..|H1| × 0..|H2| do
12 if isomorphic(H1[i1], H2[i2]) then
13 link(MM, H1[i1], H2[i2]);
14 b1[i1]← 1; b2[i2]← 1;

15 foreach i1 ∈ 0..|H1|if ¬b1[i1] do open(H1[i1], L1);
16 foreach i2 ∈ 0..|H2|if ¬b2[i2] do open(H2[i2], L2);

17 ignored← BitSet(|T1|);
18 foreach t1 ∈ allSrcs(MM) do
19 uniq ← ⊥;
20 if |dsts(MM, t1)| == 1 then
21 t2 ← dsts(MM, t1)[0];
22 if |srcs(MM, t2)| == 1 then
23 uniq ← ⊤;
24 add all pairs of isomorphic nodes of s(t1) and s(t2) to M;

25 if ignored[t1] ∨ uniq then continue;
26 foreach t1 ∈ srcs(MM, dsts(MM, t1)[0]) do
27 ignored[t1]← 1;
28 foreach t2 ∈ dsts(MM, t1) do
29 add(A, (t1, t2));

30 sort (t1, t2) ∈ A using sim(t1, t2,M)
31 ignored_src← BitSet(|T1|); ignored_dst← BitSet(|T2|);
32 foreach (t1, t2) ∈ A do
33 if ¬ignored_src[t1] ∧ ¬ignored_dst[t2] then
34 add all pairs of isomorphic nodes of s(t1) and s(t2) to M;
35 ignored_src[t1]← 1; ignored_dst[t2]← 1;
36 foreach t ∈ s(t1) do ignored_src[t]← 1;
37 foreach t ∈ s(t2) do ignored_dst[t]← 1;

Algorithm 2: Lazy subtree matching
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original GumTree matching algorithms and depending on the amount of changes and where they
are located, entire subtrees might remain unchanged and will be matched early (using metadata
and referential equality) without ever needing to access their descendants. In those cases, there
is no need to decompress these subtrees. In Figure 8.1, a subtree with compressed descendants is
materialized by dotted cells (fat red arrows means all descendants are matched uniformly). To
control the decompression process while computing the diff, we provide three different methods
to decompress a tree T :

decompress_children(T, t): decompresses in T the children of the node located at position t.

decompress_to(T, t): decompresses in T the node located at position t. It also decompresses
all its parents with the method decompress_children.

decompress_descendants(T, t): decompresses in T the descendants located at position t.
It offers optimization opportunities when considering the layout of the decompressed tree
(e.g., post-order). Indeed, for the post-order layout, it is possible to reduce the number
of accesses to the HyperAST with a stack that allows to defer the insertion of children
when decompressing a node. Thus, there is no need to access the size (metadata in the
HyperAST ) of those children before actually decompressing them.

Each decompression method is incremental. Thus, making the overall decompression incre-
mental. To check whether a node is decompressed, we check if its parent is 0 (i.e., its initial
value). This property always holds, except for the edge case where |T | ≤ 1, i.e., the tree is
a single node. These three methods are used as follows in the proposed matching algorithms:
Methods decompress_children and decompress_descendants replace every call to the original
(non decompressing) children accessor. The method decompress_descendants is specifically
used when most or all descendants need to be decompressed. The method decompress_to should
be used when a specific node needs to be decompressed.

8.1.3 Lazyfied Top-down Mapping Phase

Algorithm 2 3 summarizes the top-down phase that matches the largest isomorphic subtrees
between the source T1 and target T2. The underlined expressions in Algorithm 2 represents our
optimizations for lazifying the GumTree top-down phase.

The following constructs are required to understand Algorithm 2:

— root(T ) is the root node of T .

— s(t) returns the list of descendants in post-order, i.e., from lld(t) to t (see Section 8.1.2).

— BitSet(n) is an array of bits of size n.

— PList(t) creates a height-indexed priority tree list L containing the subtree t.

— peekMax(L) returns the greatest height of the list.

— pop(L) takes the list of greatest height subtrees from L.

3Note that we use in Algorithms 2 to 4 the same hyperparameters as GumTree [Fal+14], namely,
minHeight = 2, maxSize = 100, and minDice = 0.5.
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— open(L, t) inserts all the children of t into L. Algorithm 3 presents this function. Compared
to GumTree we changed the access to children into a decompression of said children (using
decompresschildren). Then, instead of accessing a precomputed height directly on the
node (as GumTree does), we need to access the subtree corresponding to HyperAST , first
recovering the identifier (with original, see Section 8.1.2) to the HyperAST , then accessing
the height metadata (with height, see introduction of chapter 8)

— sim(t1, t2) computes a similarity distance between t1 and t2. It ranges from 0 to 1, where
a value of 1 indicates that the descendants of T1 are the same as those of T2.

Data: a subtree t ∈ T , T being layouted in post-order, and a height-indexed
priority list L containing subtrees of T

Result: The range of descendants in post-order
1 foreach t′ ∈ decompress_children(t) do
2 h← height(original(t′))− 1;
3 if h > minHeight then
4 level← maxHeight− h;
5 L[level]+ = t;

Algorithm 3: Open a subtree in priority list

MM represents a structure containing multi-mappings, i.e., mappings where nodes can be
part of multiple mappings as opposed to M that only contains distinct mappings.

— allSrcs(MM) returns all mapped sources in MM.

— srcs(MM, t2) returns all source nodes mapped to t2 in MM.

— dsts(MM, t1) returns all destination nodes mapped to t1 in MM.

— link(MM, t1, t2) maps t1 and t2 in MM.

Algorithm 2 follows three steps. The first step (lines 1-20) calculates the multi-mappings
(MM) between the largest isomorphic subtrees. It maps isomorphic subtrees (Lines 15-16), while
iteratively opening unmapped subtrees. More specifically, when the heights are not equals for
the subtrees (Lines 4-8) or when they are not mapped in Line 16 with bi = 0 (Lines 19-20).

The second step of Algorithm 2 (Lines 21-34) moves multi-mappings stored in MM to a list
of mappings A (Line 34), while directly moving mono-mappings (i.e., mappings between exactly
2 nodes) to M (Line 28). It mainly serves as a preprocessing phase before sorting and filtering
multi-mappings. It also removes mono-mappings, and hence, reduces the number of mapping
to sort and filter. It uses a bit set to mark nodes that are already mapped (Line 21). Then,
Algorithm 2 sorts the list mappings in A using a similarity distance (Line 35), such as the dice
distance used in GumTree [Fal+14].

The last step (Lines 36-44) extracts mappings from A to M (Line 40), while filtering
overlapping mappings with an already accepted one, i.e., sharing nodes. Nodes accepted in
M are marked by ignored_src and ignored_dst (Line 41-44) that forbids them from being
accepted later (Line 39).
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8.1.4 Lazyfied Bottom-up Mapping Phase

Data: A source tree T1 and a destination tree T2, and an empty set of mappings
M, a threshold minDice and a maximum tree size maxSize

Result: The set of mappings M
1 foreach s1 ∈ T1 | s1 is not matched, in post-order do
2 t1 ← decompress_to(T1, s1);
3 if t1 has no matched children then continue;
4 t2 ← candidate(t1,M);
5 if t2 ̸= null∧ dice(t1, t2,M)> minDice then
6 M←M∪ (t1, t2);
7 if |s(t1)| < maxSize ∨ |s(t2)| < maxSize then
8 u1 ← decompress_descendants(t1);
9 u2 ← decompress_descendants(t2);

10 R ← opt(u1, u2);
11 foreach (ta, tb) ∈ R do
12 if ta, tb not already mapped ∧ type(ta) = type(tb) then
13 M←M∪ (ta, tb);

Algorithm 4: Lazy bottom-up matching

The bottom-up phase, as shown in Algorithm 4,3 complements the top-down phase, leveraging
the previously mapped subtrees in M to further map the remaining nodes. The underlined
expressions represent our optimizations for lazifying the GumTree bottom-up phase. Using the
subtrees mapped in previous phase, Algorithm 4 is able to map slightly different nodes (i.e.,
not isomorphic nodes). The matcher first compares the number of shared descendants, to then
match subtrees smaller than minHeight (leveraging existing optimal mapping algorithms).

With the bottom-up phase, in post-order, we aim to map remaining (unmapped) source
nodes (Algorithm 4) to destination nodes. We only decompress the unmapped source nodes
(Algorithm 4) before skipping the nodes with no matched children (Algorithm 4). Then, the
auxiliary candidate function is used to find a candidate destination node t2 (Algorithm 4) most
similar to t1. Using the Dice distance (compared to minDice GumTree parameter), if t1 and t2

are similar enough (Line 5), they are matched in M (Algorithm 4). If t1 and t2 have a small
number of descendants (compared to maxSize GumTree parameter), their descendants are then
decompressed and provided to opt (Lines 7-10). opt is an optimal matching algorithm (such as
Zs) that matches nodes of u1 and u2 while minimizing the edit distance. Finally, only mappings
with unmatched nodes and same types are kept and added in M. To generate the diff, we use
the same algorithm of Chawathe et al. [Cha+96] without lazifying it in this paper.

8.2 Evaluation
This section presents the evaluation of our code differencing approach. First, we present

the research questions. We then present the data set and evaluation process. After that, we
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present our evaluation protocol and the obtained results. We finally discuss the threats to validity,
limitations, and the scope of the approach. All the material of this section and a replication
package are available on our companion web page.4 We ran the implementation of our
approach on the following hardware configuration: 2 x Intel(R) Xeon(R) Gold 6238 CPU @
2.10GHz; 187Gb ram; 1 T SSD, running Ubuntu 18.04.6.

8.2.1 Research Questions
We formulate the research questions as follows:

RQ1 To what extent can our approach produce identical results as the state-of-the-
art technique? This aims to investigate the soundness of the produced mappings and
diff compared to a ground truth, namely GumTree.

RQ2 To what extent does our approach perform and scale on the memory footprint
of computing diffs compared to a state-of-the-art approach? This aims to position
the scalability performance on memory consumption of our diffing algorithm over a long
evolution history with an established state-of-the-art solution. In particular, we measure
the memory heap allocated per node.

RQ3 To what extent does our approach perform and scale on the time performance
of computing diffs compared to a state-of-the-art approach? This aims to position
the scalability performance on execution time of our diffing algorithm over a long evolution
history with an established state-of-the-art solution. In particular, we measure the total
time to compute a diff and the time for the two phases of top-down and bottom-up of the
mappings.

RQ4 To what extent does our approach perform compared to a state-of-the-art
approach on a practical use case of parsing and diffing commits? The previous
RQs evaluated the performance of our commit diffing algorithm. Thus, ignoring the AST
preparation (extraction and construction) from a history. RQ4 measuring the cost of
parsing the commits along with the cost of computing the diffs. It does on a concrete use
case as experienced by a developer that computes commit diffs on a code history.

8.2.2 Dataset
Table 8.1 details the final list of software projects we used in the following evaluation. The

evaluation re-used the dataset employed in the HyperAST paper [Le +22] as it has been already
peer-validated and it matches our following requirements:

— Large open-source real-world Java projects to work on representative code;

— A sizable number of contributors per project to work on commits made by different
developers;

— A large number of commits per history to work on representative code histories;

— Java 14 support, since GumTree 3.0 works with JDT 3.26.

4https://anonymous.4open.science/r/FSE23-DC22/
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Table 8.1 – Data set characteristics

Projects # LoC # files Commits Contributors Stars
Apache Hadoop 1.63M 10.2k 25,749 435 12k
Apache Flink 1.5M 13.2k 30,587 1,037 1.8k
Quarkus 614k 10.5k 29,635 616 9.7k
Google Guava 509k 3.16k 5,794 273 44k
Netty 317k 2.78k 10,789 569 29k
Apache Dubbo 197k 2.81k 5,437 393 37k
Alibaba fastjson 188k 3.12k 3,946 176 24k
Apache Log4j2 183k 2.32k 12,031 132 2.8k
Jenkins 181k 1.69k 32,252 701 19k
Javaparser 179k 1.67k 8,031 166 4.1k
Inria Spoon 154k 2.06k 3,891 106 1.3k
AWS Toolkit Eclipse 93.9k 1.08k 111 21 27k
Apache Maven 92.5k 1.05k 11,567 150 3.1k
Apache Spark 85.6k 1.06k 32,821 1,805 33k
Apache SkyWalking 84.7k 1.58k 7,022 397 1.9k
Jackson Core 52.3k 283 2,025 59 200
Alibaba Arthas 44.2k 586 1,726 155 29k
Google gson 25.8k 212 1,650 124 21k
SLF4J 13.5k 256 1,956 61 1.9k

8.2.3 Evaluation Protocol

We now present the experimental protocol we followed for the evaluation. As GumTree is
the most advanced state-of-the-art differencing tool, we select it as a baseline. The evaluation
protocol is divided into three parts: one protocol for RQ1, another one for RQ2 and RQ3, and
one specific protocol for RQ4. These four RQs use several of the following five objects:
GumTree. The original version of GumTree in Java without its Java parser. Used in RQ1 to
RQ3.
Lazy. The current proposed approach (in Rust), relying on the HyperAST version with lazy
top-down and bottom-up phases. Used in RQ1 to RQ4.
Not lazy. The closest equivalent of GumTree Java but in Rust and relying on the HyperAST .
This object is useful to mitigate comparison between Java and Rust program executions. This
version still benefits from the HyperAST but no lazy phases. Used in RQ3.
Partial lazy. Similarly to Not lazy but lazy on the top-down phase. Useful to measure the
effect of not lazifying during the bottom-up phase. Used in RQ3.
GumTree-Spoon.5 The original version of GumTree in Java backed with its official Java parser
(Spoon). Used in RQ4.

We now detail the protocol for each RQ:
⇒ RQ1. It compares the results of our approach (object Lazy) to the baseline (i.e., object
GumTree). To do so, we check whether each diff Lazy and GumTree produced are identical. The

5https://github.com/SpoonLabs/gumtree-spoon-ast-diff
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independent variables are the mappings found in a diff and the actions a diff contains. Thus, We
compare the mappings and the diff’s actions for our approach against GumTree.
⇒ RQ2. It focuses on the following two objects: GumTree, Lazy. Partial Lazy and Not Lazy
are not discussed here because they only differ from Lazy about when memory is used, not the
total amount consumed. The independent variables for RQ2 are: the measured memory heap
allocated using the objects Lazy and GumTree; the number of nodes used in both objects (both
Lazy and GumTree use the same number of nodes). We then divided the measured heap size by
the number of nodes to obtain a result in byte per node.
⇒ RQ3. It studies the four following objects: GumTree, Lazy, Not Lazy, Partial Lazy. The
independent variable in RQ3 is the execution time. First the total time spent: top-down, bottom-
up and computing the diff actions from the mappings with Chawathe algorithm [Cha+96]; then
the two matching phases: top-down and bottom-up; finally only the top-down phase.
RQ1-3. Regarding RQ1 to RQ3, the first step of the protocol consists in parsing the various
commits to provide to GumTree and to construct the HyperAST . This is a preprocessing step
before computing the diffs. Then, we provide the resulting parsed trees to our approach and
to GumTree. To precisely evaluate the commit diffing algorithm, we provide HyperAST and
GumTree with the same ASTs for these three RQs. Only after that, we start measuring the
performance of the different phases and algorithms for computing the diffs. So, the parsing time
for GumTree and construction time of the HyperAST are not considered in the evaluation in
the RQ1, RQ2, and RQ3. Thus, ensuring a more controlled measurements of the algorithmic
performances and an unbiased comparison.
⇒ RQ4. It studies the two following objects: GumTree-Spoon and Lazy. The independent
variable in RQ4 is the execution time. We compare the spent time at computing diffs of the
latest 100 commits for each project while including the ASTs parsing time for GumTree-Spoon
and construction time of the HyperAST . Indeed, the combination of Spoon with GumTree allow
us to feed entire commits as ASTs to the GumTree algorithm with the Spoon parser.

8.2.4 Results

We now present and discuss the observed results.

RQ1: To what extent can our approach produce identical results as the state-
of-the-art technique?

To answer RQ1, we compare the mappings and diffs produced by our approach to the
GumTree baseline. In total, we calculated 18 092 diffs implying 919 132 mappings.6 17 972 (99.3%)
of these diffs were identical by matching the GumTree results identically. 99.999% of the 919 132
mappings of the diffs are also identical.

We manually scrutinized and checked the other 120 (0.7%) diff and found out the following
edge cases. 1) 64 cases were GumTree had a diff generation error, and hence, not computing

6Distribution of change size per diff is given in our anonymous github in size-plot.png. Varying from
small changes, to very large changes several commits.
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fully the final diff actions. However, when comparing their mappings, they were identical. 2)
2 cases where our diff had 2 more actions than the GumTree diff. 3) 54 other cases where our
diff had less actions than the GumTree diff. This last 54 cases are explained by the fact that we
could calculate more mappings between the AST nodes than what GumTree did. In fact, these
cases highlight better diffs since they do not contain additional add and delete actions due to
unmapped AST nodes. Overall, even in these 120 diffs, 99.999% of mappings and 99.943% of the
diff actions are identical. Only, few mappings and diff actions cause comparison issue. Therefore,
we consider these marginal cases as outliers due to implementation issues in our prototype or our
execution environment in comparison to the more than 99% of correct diffs and mappings.

RQ1 insights: The results show that 99.3% of the diffs and 99.999% of the mappings our
approach produced are identical to the GumTree outputs. 120 diffs where not identical to
GumTree. Still, they remain similar at 99.943% of diff actions and at 99.999% of mappings.
Thus, our approach produces identical results that GumTree on the involved data set.

RQ2: To what extent does our approach perform and scale on the memory
footprint of computing diffs compared to a state-of-the-art approach?

To answer RQ2, we measure the memory heap allocated given the same number of nodes
for our approach and for GumTree. On average, GumTree needs 74.4 bytes per node. Our
implementation needs 0.278 byte per node in the DAG (over 1000 commits) and 16.13 additional
bytes per decompressed node. Moreover, considering that our approach decompresses nodes
lazily and the allocation of a zeroed (0) and contiguous piece of memory, on modern operating
systems such an allocation is deferred at the granularity of a virtual memory page. Thus, with
our approach physical memory is only allocated when a node is decompressed (writing something
not trivially zero). Yet, the peak (transient) memory footprint of our approach occurs during the
diff generation at the same stage as the originalGumTree implementation. Indeed, we did not
make the Chawathe et al. [Cha+96] algorithm lazy as it is not a focus of the core contribution
on computing the mappings, both in our approach and GumTree. In addition, the Chawathe
algorithm (diff generation) other memory constraints as it uses a third tree that starts as a copy
of the source tree and is mutated for each change until it structurally becomes the destination
tree.

RQ2 insights: Results show out low memory footprint compared to GumTree with, on
average, 0.278 + 16.13 bytes per node in our approach versus 74.4 bytes per node in GumTree.
Representing an order-of-magnitude difference of ×4.5.

RQ3: To what extent does our approach perform and scale on the time
performance of computing diffs compared to a state-of-the-art approach?

Herein, we measure time at the three different stages of the GumTree algorithm, namely the
total time spent; the two matching phases (top-down and bottom-up phases); and the top-down
phase only. Figures 8.2 to 8.4 shows respectively the results for the three aforementioned stages.
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Figure 8.2 – Comparing overall diff time;
Color Legend: [lazy: blue, partial lazy: orange, not lazy: red, GumTree: green]

Facet Legend 1 in black: [relative gain in %, p-value (Mann-Whitney); avg. for our approach, avg. for
GumTree]

Facet Legend 2 in red: [relative gain in %, p-value (Mann-Whitney); avg. for our lazy approach, avg. for
our non-lazy variant]

Each figure uses the same plotting scheme: the time taken is displayed as vertical box plots on a
logarithmic scale where the mean is a thick horizontal black line and the median is a thin colored
horizontal line. The box delimits the first and third quantile. The vertical bar delimits the 95%
confidence interval. Extreme points are displayed outside this interval.

Figures 8.2 to 8.4 shows groups of four box plots corresponding to the four objects we compare
(see Section 8.2.3), respectively: Lazy (our approach, in blue), Partial lazy, Not lazy (in red), and
GumTree (in green). We faceted (i.e., grouped) the figure in both axis, due to the correlation
of computation time both with: 1) the size of the output (i.e., the diff) horizontally with three
groups (rows): 1 to 10, 10 to 1000, and 1000 to 5000 changes. The number of changes is the size
of the diff in terms of number of modifications needed to transform one AST version to the other.
2) the size of each version vertically in terms of number of nodes, from hundred thousands to
millions in 6 groups (columns). On top of each facet (i.e., groups of box plots) in black, we put
the relative gain in %, the p-value, and the average time for our approach and GumTree. In red,
we display the same information for our lazy and the non-lazy variant.

Figure 8.2 presents the total time taken to compute the diff including the top-down and
bottom-up mapping phases with the diff generation. We can first observe that our approach
outperforms the original GumTree each time, gaining between 42% (avg. 6.48 s vs 8.26 s) and
83% (avg. 4.49 s vs 22 s) of reduced overall computation time. The gains are more important
with a lower number of changes relative to the size of the codebase. In particular, Between
1 and 10 changes, our gains increase up to 83% of execution time compared to the baseline..
Then, between 10 and 1000 changes, our gains increase up to 80%. Finally, for more than 1000
changes our gains improve up to 74%. In addition, we observe that our approach with the lazy
implementation also outperforms the non-lazy variant all the time, regardless of the size of the
code and the size of the diff. The gain varies from 16% (avg. 55 s vs 60 s) to 24% (41.5 s vs 55 s).

Moreover, for the four largest projects with more than 300KLOC and 3M nodes, we disabled
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Figure 8.3 – Comparing the top-down and bottom-up phases time;
Color Legend: [lazy: blue, partial lazy: orange, not lazy: red, GumTree: green]

Facet Legend: [relative gain in %, p-value (Mann-Whitney) ; avg. for our approach, avg. for GumTree]
Facet Legend 2 in red: [relative gain in %, p-value (Mann-Whitney); avg. for our lazy approach, avg. for

our non-lazy variant]

the generation of the diff for the GumTree implementation. Indeed, we observed extreme
slowdowns of GumTree when enabled, leading almost every time to out of memory errors. As we
did not attempt to lazify the generation of the diff, we further measured the time performance
without the generation, i.e., the top-down and bottom-up phases only and the time performance
of the top-down phase only.

Figure 8.3 presents the time taken to compute the mappings during the top-down and
bottom-up matching phases. Herein, our approach outperforms the original GumTree top-down
and bottom-up phases each time, gaining between 39% (avg. 6.26 s vs 7.30 s) and 94% (avg.
2.50 s vs 40.7 s) of reduced overall computation time of the mappings. Between 1 and 10 changes,
our gains increase from 47% to 94%. Then, between 10 and 1000 changes, our gains increase
from 44% to 93%. Finally, for more than 1000 changes our gains improve from 39% to 90%.
Similarly, our lazy variant outperforms the non-lazy variant all the time. The gain varies from
46% to 80%.

Figure 8.4 presents the time taken to compute only the mappings with the top-down matching
phase. Herein, our lazy top-down phase outperforms the original GumTree top-down each time,
gaining between 89% (avg. 91.1 ms vs 510 ms) and 98% (avg. 5.38 ms vs 235 ms) of reduced
overall computation time of the top-down mappings. Between 1 and 10 changes our gains increase
from 95% to 98%. Between 10 and 1000 changes, they increase from 95% to 96%. Finally, for
more than 1000 changes they increase from 88% to 95%. Similarly, our lazy variant largely
outperforms the non-lazy variant all the time. The gain varies from 87% to 94%.

These three figures highlight our lazy approach significantly gains during the top-down phase
(in percentage) and the bottom-up phase (in absolute time). While our diff generation is faster
than the GumTree one and scales up to thousands of actions on large software projects (e.g.,
Hadoop), further gain could be achieved. Indeed, we did not lazify the diff generation, meaning
that a full decompression of the trees is mandatory before generating the diff. Lazifying the
generation is future work. It is worth noting that for the results of the lazy variant, a full
decompression is done before computing the diff, taking 26.6% of the generation time while
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Figure 8.4 – Comparing top-down phase time;
Facet Legend: [relative gain in %, p-value (Mann-Whitney) ; avg. for our approach, avg.

for GumTree]
Facet Legend 2 in red: [relative gain in %, p-value (Mann-Whitney); avg. for our lazy

approach, avg. for our non-lazy variant]
Color Legend: [lazy: blue, partial lazy: orange, not lazy: red, GumTree: green]

only 12.0% for the non-lazy variant. Furthermore, in Figure 8.3 we observe that the bigger the
projects, the better our lazy approach performs compared to the two variants Partial lazy and
Not lazy. In Figure 8.4, we also observe the same gain compared to the Not lazy variant.

RQ3 insights: Results show a systematic and significant gains of 83% on average and up
to 99% of our lazy approach compared to GumTree in all phases, from the top-down and
bottom-up matching phases to the generation of the diff. Representing an order-of-magnitude
difference in total time: 1) from ×1.2 to ×12.7 for diff computation, 2) from ×1 to ×226 for
the top-down and bottom-up phases, and 3) from ×3.2 to ×233 for the top-down phase.

RQ4: To what extent does our approach perform compared to a state-of-the-art
approach on a practical use case of parsing and diffing commits?

To answer this RQ, we measured the execution time for parsing and diffing 100 commits for
each project. Hence, we can compare the overall performance in a practical use case similarly as
a developer would go through to compute diffs on given number of commits. To do so, we use
the GumTree-Spoon version that parses a commit and then calls the GumTree diffing algorithm.

Figure 8.5 depicts the time of our approach including the construction of the HyperAST in
orange versus the computation time for GumTree-Spoon including the parsing of the commits.
We observe that our approach outperforms GumTree-Spoon on all the projects. For our largest
projects Hadoop and Flink, GumTree-Spoon crashes most of the time during the generation of
the diffs, due to using more than 32 GB of memory heap. 7 We also had other cases of crashes
in Jenkins and in Gson. These cases are in red rather than orange in fig. 8.5. In SkyWalker,

7with the JVM disabling this limit mendates to go from 32 bits pointers to 64 bits and poses other
issues (even bigger footprint, cache misses).
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GumTree-Spoon could not parse completely most of the commits due to an issue with the
multi-modules of Java. GumTree-Spoon could only parse some modules, sometimes one module
only. This explains why in many commits it was faster than our approach that did diff all
modules. Overall, when computing diff successfully, our approach was on 14.52 times faster than
GumTree-Spoon in half of the cases (median). We had extreme cases of improvement in the
six last small projects (from Jackson to slf4j) where we were thousands and hundred thousands
times faster than GumTree-Spoon. Excluding these projects, we reach an average of 13.68 times
where we are faster.

We also investigated the case of diffing only two commits by looking at the first two commits in
our projects, since we must construct the HyperAST entirely in the first commit and incrementally
update it in the second commit, before computing the diff. We see that we could compute the
diff faster than GumTree, as shown by t[0] in Figure 8.5 (note that it is in two formats min:sec
or 0.millisec). For example, in maximum in Hadoop and Flink, our approach took, respectively
1 min 24 s and 1 min 10 s while GumTree took 21 min 57 s and 24 min 3 s. In minimum in Slf4j,
we took 300 ms while GumTree took 36 s. In other medium-sized projects as netty, dubbo, log4j,
jenkins, javaparser, spoon, maven and spark, we respectively took from 3 s to 27 s, while GumTree
took from 19 s to 3 min 35 s. On the smallest four projects, our approach varied from 300 ms
(0.3 s) to 675 ms, whereas GumTree-Spoon varied from 9 s to 36 s. Therefore, even on two commits
where we must build the HyperAST from scratch, a developer benefits of our lazified approach
based to diff two commits or more. We could reach a gain up to 99% and an order-of-magnitude
of ×122 when considering the two first commits only.

RQ4 insights: Our lazy approach outperforms GumTree-Spoon. We are faster by 14.52
times in half of the cases (median) and when excluding extreme cases of gains, we are faster
on average by 13.86 times. We also outperform GumTree-Spoon on the basic use case of
diffing two commits only, with a gain up to 99% and an order-of-magnitude of ×122.

8.2.5 Threats to Validity

This sections discusses threats to validity w.r.t. [Woh+12].

Internal Validity

Considering the computation of diffs, we first had to evaluate its ability to produce identical
outputs (mappings and diffs) as GumTree. To make sure we have unbiased measurements, we
used the HyperAST to construct the code history and we retrieved the trees of each commit
from the HyperAST . Thus, we had a uniform representation of the node elements (i.e., same
parser and same grammar for the ASTs) for comparing our approach and GumTree. Moreover,
our implementation and the HyperAST are implemented in Rust while GumTree is developed
in Java. To mitigate this difference of language while comparing execution time and memory
usage, we provide and compared our approach with two other objects developed in Rust using
the HyperAST : Partial lazy and Not lazy. Not lazy is the closest Rust version of GumTree while
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still benefiting of the HyperAST . Compared to these two variant objects, our evaluation still
shows significant benefits for our approach with all lazy phases.

External Validity

The evaluation implied 19 projects. We carefully follow a clear protocol to select relevant
and significant Java projects. Our curated list of projects represents real-world complex software
systems with very large histories.

We implemented our approach on top of the HyperAST by lazifying the GumTree algorithms.
We then evaluated our approach on projects written mainly in Java and build with Maven. Our
conclusions in theory could generalize to other programming languages with similar features as
Java (e.g., strong static nominal typing). Nonetheless, further experimentation remains necessary
on other languages to generalize our results. We also cannot generalize the diffing results to
other diffing algorithms, such as [Flu+07]. Note that as the HyperAST supports only Java so
far, we could only evaluated and compared to GumTree on Java projects. However, the goal of
this paper was not to support multiple languages but to show the scalability of computing diffs
on large code history. Besides, GumTree performance are not language dependent [Fal+14].

Construct Validity

Our evaluation shows that our approach scales the computation of diffs on large code history
and large projects representing real-world complex software with very large histories. Compared
to GumTree, we outperformed it by an order-of-magnitude difference in CPU time from ×1.2 to
×12.7 for the total time of diff computation and up to ×226 in intermediate phases of the diff

118



(Temporal analysis) HyperDiff: Fine grained tree diffs of entire code histories

computation, and an order-of-magnitude difference in memory footprint of ×4.5 per AST node.
Further evaluation remains necessary for more insights and statistical evidence.

8.3 Data Availability
All the materials used to evaluate HyperDiff and a replication package are

available at: https://gihub.com/quentinLeDilavrec/FSE23/
It contains:

— a snapshot of our implementation,

— the notebooks used to compute results and plots for the evaluation, and

— the snapshot of baseline (GumTree) along a generator that enable to use the exact same
AST topology, utils to make comparison of results faster, and some instrumentation to
prescisely measure performances.

The implementation and benchmark helpers are part of our mono-repo:
https://gihub.com/HyperAST/HyperAST/

8.4 Conclusion
This chapter introduced a novel code differencing approach that scales to large code histories

composed of millions of nodes, leveraging the HyperAST representation of code histories to
further lazify the GumTree algorithm and scale with the number of changes instead of the
number of nodes under diff. The major improvement presented in our approach is related to
the representation and building of the trees that support the diffing. By representing elements
of the tree in a structure of arrays (contrary to heap allocated nodes) we were able to improve
memory locality, in addition with such contiguous representation we were able to use bit-sets
on multiple occasions, instead of usual hash-sets. More importantly, we were able to limit the
memory footprint of the top-down and bottom-up phases by skipping decompressions of subtrees
from the HyperAST (its DAG).

The evaluation showed that our approach outperforms the well-known source code diffing
approach presented by GumTree. In particular, we observed an order-of-magnitude difference
in CPU time from ×1.2 to ×12.7 for the total time of diff computation and up to ×226 in
intermediate phases of the diff computation. We also observed an order-of-magnitude difference
in memory footprint of ×4.5 per AST node. Finally, we gained all the time while having
99.3% of identical diffs with respect to GumTree and 99.99975% of identical mappings in the
remaining 0.7% diffs. When including the parsing cost along with the diff, we still outperformed
GumTree-Spoon. We were faster by 14.52 times in half of the cases (median) and when excluding
extreme cases of gains, we were faster on average by 13.68 times.
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Chapter 9

IMPLEMENTATION AND PRACTICAL USES

This chapter presents and discusses implementation and practical uses related to HyperAST.

9.1 Implementation Concerns throughout the Thesis
This section will discuss the more technical concern underlying my thesis. Indeed, during my

thesis and to support my research, I actually developed two tools and later extended the second.
Actually, the second tool was a response to the limitations of the first one and other solutions
available at the time. One candidate could have been related to RefactoringMiner. However,
its orientation towards representing what changes in priority was arguably in conflict with the
approach taken in my first publication (chapter 5), where prioritizing what did not change was,
in my view, crucial to effectively analyzing code histories.

9.1.1 Limitations in First Approach (chapter 5)
I developed the tooling for my first article (chapter 5) using Java, relying on two state-of-the-

art libraries, namely Spoon and Gumtree. They both work on code trees (in Spoon references
are resolved on the fly), but I faced unsatisfying trade-offs and limitations. Indeed, in Java
there are two ways of structuring data, with primitives or with referential objects (Python and
Ocaml suffer from similar issues, and C# to a lesser extent). Other developers have encountered
similar limitations, for example, the creator of JGit, Shawn O. Pearce, in an email, seems to
explain that in the end, one either accepts a large performance hit (for data intensive tasks,
easily two times slower) or just abandon most concepts considered good practices related to
Object-Oriented Programming (OOP) and ends up using Java primitives to write Java code
that actually resemble C code 1:

“JGit struggles with not having unsigned types in Java.”

“JGit struggles with not having an efficient way to represent a SHA-1. C can just
say "unsigned char[20]" and have it inline into the container’s memory allocation. A
byte[20] in Java will cost an *additional* 16 bytes of memory, and be slower to access
because the bytes themselves are in a different area of memory from the container
object. We try to work around it by converting from a byte[20] to 5 ints, but that
costs us machine instructions.”

“Native Java collection types have been a snare for us in JGit. We’ve used java.util.*
types when they seem to be handy and already solve the data structure problem at
hand, but they tend to preform a lot worse than writing a specialized data structure.”

1https://marc.info/?l=git&m=124111702609723&w=2
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There are issues with maintainability regarding performances:

“Both parts of JGit are about as good as I know how to make them, but we’re really
at the mercy of the JIT, and changes in the JIT can cause us to perform worse
(or better) than before. Unlike in C Git where Linus has done assembler dumps of
sections of code and tried to determine better approaches.”

Shawn O. Pearce also gives some orders of magnitude:

“Notably, ‘rev-list –objects –all’ takes about 2x as long in JGit as it does in C Git
on a project like the linux kernel, and ‘index-pack’ for the full 270M pack file takes
about 2x as long.”

Finally, even after aggressive optimizations impacting the modularity and maintainability,
one might suffer significant performance hits from using Java.

“its practical to build Git in a higher level language, but you just can’t get the same
performance, or tight memory utilization, that C Git gets.”

Actually, there are some attempts at making Java better, notably Valhalla 2 that aims to
provide user defined primitives, or Apache Arrow that handles storing columnar data for you.
However, Valhalla is still far from being ready to be used, and using Apache Arrow would require
a complete rewrite of AST nodes in Spoon and GumTree. There is also GrallVM that attempts
to fix issues related to the JVM and Java. It marginally improves performances [WW12] and
Garbage Collector (GC) but does not solve limitations of Foreign Function Interface (FFI) in
Byte-code mode. Moreover, GrallVM does not tackle memory layout limitations. Finally, the
compilation to native target is exchanging Just In Time (JIT) for acceptable FFI.

9.1.2 Finding Alternatives to Java, Spoon, and Gumtree
During the writing of [Le +21], I found the GitHub Semantic project [Git22], that was

targeted toward code navigation and name resolution. At this point, it was actively developed
using composition of semantics (also called Data types à la carte) and a very interesting effect
system 3 to process and analyze an AST. However, it is developed in a very advanced Haskell
that I was not confident I could comprehend and make it work for my usecase. At some point
(during the development of the HyperAST ), shortly after having shipped a beta on GitHub, they
actually left aside a large part of the Data types à la carte 4 in favor of stack-graphs [Gitb] which
is their implementation 5 of the formalism of Antwerpen et al. [Ant+18] that specifically focuses
on name resolution. I believe they choose to take this route due to major advantages of scope
graphs, particularly its incrementally (see section 3.1.2).

While considering to change of programming language (departing from Java), my main
requirement was to obtain more control over the memory layout, my secondary requirement
was to be able to write more generic and modular code without major trade-offs regarding
performances. C++ could have been a good choice regarding these two criteria, yet I was not

2https://openjdk.org/projects/valhalla/
3https://hackage.haskell.org/package/fused-effects
4You can find a branch pointing to the attempt using compositions of semantics

https://github.com/github/semantic/tree/algebraic-experiments.
5Hendrik van Antwerpen is currently actively developing stack-graph at GitHub.
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confident using templates to make generic code, and properly handling memory. At this point I
heard about a system language called Rust, that was leveraging LLVM and had a first edition
shipped in 2018, so it seemed robust enough to support a prototype. The deal maker compared
to C++ was the more constrained and verified move semantic in the form of the ownership and
borrowing concepts. Compared to Java and C++, switching to Rust had multiple advantages:
As said earlier, it had better generics (type checks before monomorphisation), better memory
control and management, i.e., explicit while safe control over memory layout and compile time
garbage collection. Rust is also more explicit about type conversion, thus, helping with reducing
bugs. It also provides pattern matching akin to functional languages. It provides a first class
interoperability with C, particularly useful as I was eager to use Tree-Sitter [Mic22] which
is written in C and provides additional features in Rust. Finally, Rust provides very helpful
compilation-error messages, powerful macro (very useful to handle certain genericity limitations),
and a modern package manager named Cargo.

In the end, I replaced Java with Rust, JGit with git2-rs (a Rust wrapper over libgit2 ), Spoon
with HyperAST and Tree-Sitter, GumTree with HyperDiff .

9.2 Tackling Efficiency Concerns while Implementing
HyperAST and HyperDiff

The HyperAST is a DAG stored in an Entity-Component-System database [Nys14], inspired
from Silva, Campos, and Rocha [SCR21] that showed high performance gains. The code of the
HyperAST implementation is open source and freely available.6 The implementation
interacts with Git to obtain the history of a given repository through its Merkel DAG. The
implementation then uses Tree-Sitter [Mic22] to parse the code of each Git Blob. Tree-Sitter is an
incremental and resilient parser that tries to fix erroneous CSTs to a certain extent. Tree-Sitter
is thus able to handle commits with erroneous code that a compiler would not.

The following paragraphs present some "optimizations" used on the HyperAST .
Structures of Arrays (SoAs) are widely used in performance sensitive contexts, to reduce

memory wasted by padding, and reduce memory contention, i.e., improving spatial and temporal
locality. Indeed, it can help massively with reducing cache misses, especially when only a subset
of fields is needed. Moreover, to best of my knowledge, there is no readily optimization passes that
are able to provide equivalent performance benefits. This layout is used on multiple occasions for
the HyperAST : For the main store of nodes through an Entity Component System (ECS) [Gil19].
For the decompressed tree used in HyperDiff . It could also be used for the DAG of references
used of the reference analysis in chapter 7.

A Bit Set implements a set using an array of bits. It is limited to dense sets of a limited
size, such as with identifiers given by increasing a counter. This structure becomes rapidly more
memory efficient than a hash set (a single bit per element) when the number of elements increases.
Moreover, considering modern virtual memory, where zeroed pages are not physically allocated,

6https://github.com/quentinLeDilavrec/HyperAST
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it is also possible to defer physical memory allocation. It might be possible to further improve
performances by using Judy arrays or Tries. I use Bit Sets on multiple occasions, especially for
HyperDiff to implement existential operators used in the GumTree algorithm.

Another data structure based on a Bit Set that I used with the HyperAST is the Bloom
Filter [Blo70]. I made a simplified implementation for the reference oracle presented in chapter 7.
My implementation only uses one hash function shared by the whole HyperAST , it would be
suboptimal if we considered a single Bloom Filter, but the HyperAST is a recursive data structure,
such that reduced performances of an oracle are counteracted by the oracles in its children.
Exactly quantify this action would require an in depth study, and could very well be applied to
features other than reference analysis, typically clone detection.

9.3 Improving Dissemination with a Graphical Demon-
strator

To facilitate the diffusion of my research, I developed a graphical demonstrator leveraging
the HyperAST that enable its users to compute statistics and track pieces of code in a Git
history (and publicly available on a Git forge). I was able to demonstrate its use (along with the
tracking section 9.3.2) on multiple occasions at the 2023 edition of GDR GPL and at weekly
team meetings. For the demonstrations, I often presented the Code base of Spoon (Java), Linux
kernel, and Stockfish (C/C++).

The graphical interface is implemented using the egui library, it is especially interesting as it
enabled me to easily target web browsers and native platforms, it also left me free of implementing
complex renderings and interactions that would have been difficult to achieve in the usual web
engines. The Representational State Transfer Application Programming Interface (REST API)
was implemented using the axum library, it is modular, extensible, and leverage the Rust type
system without abusing macro.

9.3.1 Computing batch metrics
This particular demonstration on computing batch metrics has two objectives: Section 9.3.1

presents how we showed that it was possible to query code stored inside the HyperAST i.e.,
computing statistic and matching certain patterns (be it very programmatically). Section 9.3.1
presents how we demonstrated the added value of the approach regarding efficiency by comparing
the usual approach to one that leverages the HyperAST . We limit ourselves to a few commits as
the naive method take a long time to execute (we could have made it parallel, but it would only
reduce latency). The simple query should be sufficient to show the performance benefits of our
tool.

Scripting metrics computation on HyperAST

In the Graphical User Interface (GUI) and through a REST API it is possible to dynamically
execute arbitrary (sandboxed) queries on the HyperAST . It is still very programmatical, i.e.,
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writing with a Rust syntax and Javascript semantic, we leverage the scripting language and
interpreter called Rhai 7 to traverse the HyperAST and compute simple statistics. This scripting
system was chosen as it is sandboxed, and configurable/extendable, while still being efficient.

Figure 9.1 presents a very simple query (center) that counts the number of files and number
of nodes in ten commits from Stockfish 8 starting at 7f2eb10e (left side) going over consecutive
commits.

The computing model is transparent to the way it traverses the HyperAST , it is written in
three parts with data and functions that can be provided in scope:

— Init returns the initial state that will be passed to the first Filter. Additional accumulator
structures are provided to compute statistics (mean, max, quantiles) and format specific
data (file path + payload).

— Filter selects children than will be traversed and initialize their payload. The payload
for the current node is provided in scope as s. Functions are also provided, such as
is_directory(), is_file(), and children(). The first two are predicates on the type
of the current node and children() retrieves the list of child ids, so it can return along
with their payload.

— Accumulate accumulates the payload from current node s to its parent p. Note that
the payload is a dynamic object so it is possible to add specific behaviors and overload
operators, such as +=.

The right side of fig. 9.1 show metrics returned after running the query on the ten commits.
It takes the form of a table with a commit per row, first column is the short id, last is about the
compute time (excluding build time of the HyperAST), and all other columns contain metrics
accumulated in the payload.

Benefits of Using Metadata in HyperAST

In fig. 9.1, the total compute time is 5.88 minutes, decomposed into (top right) 1.61s to build
the HyperAST and 5.86m to compute the metrics on the 10 commits. The last column shows
the time taken per commit, between 32 and 40 seconds. Thus, it is made obvious that running
the scripts is orders of magnitude slower than building the HyperAST i.e., parsing and adding
the content of each commit to the HyperAST . Then, by running a slight variation of the script,
as shown in fig. 9.2, allow us to show the performance benefits of the HyperAST . Actually, the
script differs in two major places: in the filtering phase it stops at files, and in the accumulation
phase, from the current node, using size() it accesses the precomputed metadata that stores
the number of elements contained in the subtree. The direct consequence of these modifications
is that only a fraction of the nodes need to be accessed, around 40 instead of 14 000. We can
observe that it takes less than 15 milliseconds per commits (2000 times less than the previous
case), yet it still returns the same total number of nodes.

7https://github.com/rhaiscript/rhai
8https://github.com/official-stockfish/Stockfish
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Figure 9.1 – Compute the number of files and number of nodes in 10 commits of Stockfish,
naively i.e., by traversing the whole Tree for each commit.

Figure 9.2 – Compute the number of files and number of nodes in 10 commits of Stockfish,
smartly i.e., by using metadata precomputed on subtrees.
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9.3.2 Code tracking
The demonstrator also provides a graphical interface to track source code, this time it uses

HyperDiff [Le +23], notably the mappings, and leverages the top-down phase to take a shortcut
when the piece of tracked code is mapped early. Figure 7.7 displays a screenshot of the app
working on Stockfish–the famous chess engine, where I tracked some configuration variables that
set the value of chess pieces. In a few minutes, I was able to track them back to their first
introduction, through more than three thousand commits (see "skipped <#commit> commits"
on the bottom panes displaying metadata). During the tracking it is possible configure when to
stop ("Triggers" in the left menu). In this case, I choose to stop every time the global constant
changed. Actually, it also stops when the piece of code failed to be matched, in this case it is
possible to recover manually, but it should be possible to further improve the tracking heuristic
and reduce the number of manual interventions.

Figure 9.3 – Code tracking.

9.4 Grading programming homework
Together with Djamel Eddine Khelladi, I supervised a group of master student (first year)

for a year, each Wednesday afternoons. The given technical goal was to produce a Visual Studio
Code extension using the HyperAST that would help teachers with the grading of programming
homework, and it could have been extended to a more industrial context to compare different
code histories. The pedagogical goal was to introduce student to modern development assistant
tools, such as Integrated Development Environment (IDE) extensions (e.g., Visual Studio Code
extension), protocols for developer tooling (e.g., LSP), and more fundamentally structured code
representation and analysis. The students were able to develop the extension, and demonstrated
its principle in front of their fellow students. They showed the process of a professor selecting
his repository, then selecting students repositories that should be considered (they were able
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to use the GitLab API) and selecting the metrics that should be computed. Then after a few
seconds to clone, preprocess and compute metrics (with the HyperAST ), it displayed a table of
metrics (columns) by students (rows). They were able to provide some metrics, and count some
code patterns. Finally, they also showed an adjacency matrix comparing the distance (Jaccard
similarity coefficient over the set of subtrees) between each repository, to help the professor
detect signs of gross plagiarism.
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Chapter 10

CONCLUSION AND PERSPECTIVES

In this thesis, I started by exploring possibilities offered by fine-grained and precise source
code analyzes in the form of co-evolutions to understand and maintain source code histories. I
especially considered the testing aspect, using test execution verdicts to explain causes for tests
evolutions. To make such dynamic analysis scale, I adjoined static analysis technics allowing
to preselect groups of evolutions and tests that could lead to a co-evolution thus reducing the
combinatorial explosion of cases to dynamically analyze. We evaluated our approach on 45
industrial grade repositories. On this occasion we were able to automatically find 140 complete
immediate co-evolutions i.e., breaking then repairing a test, and 500 partial immediate co-
evolutions i.e., that did not fully fix the broken tests. More importantly we were able to find 62
delayed co-evolutions spanning over multiple commits i.e., a test is broken only to be repaired in
a later commit, and 112 including partials.

Precisely analyzing source code histories with approaches available at the time, allowed me
to notice opportunities for orders of magnitude more efficient analyzes, by leveraging spatial
and temporal code redundancy along with partial source code analyzes. It led me to devise the
HyperAST , a framework enabling incremental analysis of source code histories in a fine-grained
structured form (AST), by leveraging properties of a DAG. To evaluate the HyperAST , we used
18 well known Java projects, and processed thousands of commits. The HyperAST was more
than 91.8% more memory efficient and 83.4% faster to construct than the usual approach.

I presented concrete benefits of the HyperAST for spatial analysis through a novel reference
analysis that enables to find all references to a given declaration without having to first compute
a global index, nor updating this index after change. It proposes complete change of doing
reference analyzes, by partially computing unresolved references to accelerate reference searches.
Our reference analysis was evaluated along the HyperAST , and showed an average 90% precision
and 97% recall compared to the baseline results. We were also able to show that our approach
was lazy i.e., a search time proportional to the number of declarations considered, while it showed
similar performances to the baseline in the worst case (considering all declaration).

I also presented the benefits of the HyperAST for temporal analysis through HyperDiff , an
incremental structured diff algorithm that leverages unchanged code to reduce memory usage.
During the evaluation, we showed that HyperDiff computed valid diffs compared to the baseline,
on average 4.5 times lower memory footprint, and on average 83% faster than the baseline.

These two analyses introduce two different ways of leveraging the HyperAST ’s DAG topology.
The reference analysis shows a contextual analysis from which non-contextual intermediate
computation are extracted, thus making the original analysis incremental. The diff analysis
complementarly shows a lazy decompression from the DAG to a tree topology, thus reducing

128



Conclusion and Perspectives

memory contention while providing a more conventional tree.
I also developed a graphical demonstrator to help with dissemination and facilitate experi-

mentation on the HyperAST . It presents a query system that allows to compute statistics, and
it also provides code tracking along with alternative code and changes visualization.

10.1 Perspectives and future work
This section presents perspectives to this thesis with possible impacts both on fundamental

data structures and practices, and on development tasks automation and quality improvements.

10.1.1 Automated Source Code Co-evolution
The approach presented in chapter 5 already has all the component necessary to mutate

source code given a list of actions, they are used to apply sets of evolutions before running test, so
it should be straight forward to use it for some degree of automation using very simple heuristics
comparable to the one used in mutation testing. Yet, it would still require work to extract and
apply complex co-evolution pattern. First, it would necessitate to synthesis co-evolution patterns.
Then, matching patterns applicable on a given source code. Finally, it would require to select
the best pattern to apply.

Using the HyperAST , I believe, would allow a better scaling of the original approach, yet
some features would have to be migrated, specifically the ones related to actioning compilation
and tests through Maven, and the code implementing the co-evolution assembler. It would
also require to finish and test a full-fledged impact analysis that uses the HyperAST . Indeed,
the semantic of references in Java is very complex, so chaining searches can currently produce
unsatisfactory results. The main reason I did not invest time perfecting the reference analysis of
Java programs is related to recent work of Creager and Antwerpen on stack-graphs [Gitb; CA22]
that is the focus of section 10.1.3.

10.1.2 Rewriting source code histories
Source code histories are useful in many circumstances: to collaborate and archive, for code

provenance and to track root cause of bugs, to study development processes, to take part in a
new project, to train ai systems to fix bugs and write code, or simply by curiosity. Yet, using
raw source code histories has pitfalls and might prove itself suboptimal, there is a need for
preprocessing. When researchers analyze code histories they often filter certain commits (to
evaluate RefactoringMiner merges are filtered out, i.e., commits with two parents or more). In
general, rewriting a code history that has already been shared is a bad practice, yet sometimes
developers have to rewrite specific parts of their code history, notably to remove confidential
data or make part of an internal repository public. Moreover, rewriting source code histories
could also be used to simplify a code base by removing changes that cannot be traced back to
a (recent) release. Rewriting could also be used to reorder commits, to posteriorly adopt (or
prepare adopting) good engineering practices like Test Driven Development (TDD), or bring
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bug fixes closer (even merging it) to the commit introducing the fixed code. Removing useless
changes is something that can be done with approaches, such as commit slicing [Li+17]. Yet it
does not model a distance or an order between changes.

I think rewriting source code histories could leverage the approach presented in chapter 5
regarding co-evolutions. Considering the idea of posteriorly adopting (or preparing to adopt) good
engineering practices like TDD, we could consider the addition of tests (and their components:
assertions, inputs, and calls) as causes of co-evolutions, such that moving the test earlier in
time, but just before their repair would make the history look like it was developed in a perfect
TDD fashion. Actually rewriting could be very similar to automatically applying co-evolutions if
cleverly implemented. It would first require to find co-evolutions, then compute the distance
metric between breaks and repairs, correlated to the fragmentation of co-evolutions (i.e., more
or less delayed), then move the repairs closer to the breaks, or even putting repairs located in
tests before the breaks.

10.1.3 Robust reference analysis

A recent work of Creager and Antwerpen on stack-graphs [Gitb; CA22] in addition to
[PZH23] have shown that it was possible to declaratively specify the semantic of references of
general purpose languages, such as Java, Javascript, and Typescript. While at the same time
incrementally resolving them. It opens up new way of implementing robust reference analyzes,
and my approach (chapter 7) could benefit from it. Indeed, I had to implement the partial
reference analysis in about 10KLoCs and the reference search in about 4KLoCs to show that
my approach work. However, extending my implementation would require a lot more work to
develop and maintain robust reference analyzes for multiple languages, compared to, I believe,
using their declarative specification. To be sure, I would have to make a prototype. Yet, it would
first require me to implement the Tree-Sitter queries for the HyperAST . Then, I would have to
find a way to adapt their graph concepts to my partial resolution facilities. I would also have to
do adaptations for the search process, which is a total 180 compared to their original intended
use (resolution process).

10.1.4 Advanced code tracking

Code tracking is a difficult problem that shares a lot with diffing. For example, Refactoring-
Miner [TKD20] was used to develop Code Tracker [JT22]. Notably, SEAL [Sat+23] leverages
LLVM IR to extract data-flow information from source code to better explain commit interac-
tions. Similarly, combining diffs and ref analysis could lead to better code tracking. Indeed,
common tree diff approach are essentially working on tree using purely structural comparisons,
yet using referential relations it should be possible to infer structurally ambiguous mappings with
a high precision e.g., small method without enough entropy to match structurally when renamed.
Usually, such approach would be impractical to the prohibitive code of compilation, yet both our
approach presented in chapters 7 and 8 would give us opportunities improving accuracy without
making it inconveniently slow. Similarly, it should be possible to improve diffing accuracy by
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exploring hyperparameters configuring the diff algorithm [MFM23].

10.1.5 Multi-Level MerkleDAGs: Beyond uniform identifier
schemes

This is one of the most technical yet fundamental perspective. Uniform identifiers used in
Merkel DAGs as intrinsic identifier are very useful at the architectural level, allowing to uniformly
store objects in usual key-value stores. Yet, it is not memory efficient for small nodes, such as
fine-grained AST elements. Indeed, for a node (e.g., git object) with a very small content the
identifier is actually larger than the stored content. So, I would like to work on circumventing
this limitation. I especially see two solutions that could be combined:

— Specialize intrinsic identifiers: given certain context-free information, such as the type,
height, size, and bytes, use different identifier schemes (e.g., more or less bytes for the hash
with a some discriminant). This way it is still an intrinsic identifier, but with a memory
footprint more adapted to an optimal topology for the DAG, i.e., reducing the size of
identifier used often.

— Decontextualize subtrees: it would be easy to remove labels from leafs and store them
in their parents. The labels would simply be reassigned by topological order, when the
original subtrees are requested. The idea here is not to remove subtrees (it would make
it impossible to recover the subtree corresponding to a given identifier), but to improve
cache locality and put the decontextualized subtrees in a cold store.

At this point, I don’t know how these approach would behave on large amount of code, nor
do I know the hyperparameters that would be best, yet it could open new possibilities of large
code storage that would also be efficient to query.
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Chronologically, I started my PhD, by making small a state of the art on code co-evolutions,
which put me on track of designing an approach to automatically find fine-grained co-evolutions
in code histories. This first article [Le +21] was combining change analysis and impact analysis
to select candidate co-evolutions later validated by leveraging unit tests. I implemented the
associated tool (the two first repositories in the tool list in section 10.3) in Java and used multiple
existing libraries such as Spoon, Maven, GumTree, and RefactoringMiner. During the evaluation,
while analyzing large industrial histories with what was available at the time made me realize the
limitations of batch analyzes on code histories. At this point, considering that typical source code
histories changed mostly in small increment, there should be a way of making change and impact
analysis incremental, while drastically reducing the memory consumption. My second article
[Le +22] targeted the problem of representing code histories. It showed that it was possible
to make an impact analysis significantly more incremental, while requiring a fraction of the
memory. The HyperAST tool was created on this occasion. My third article [Le +23] showed
that computing tree diffs could also be made more incremental, and significantly more efficient,
notably for memory layout and accesses. It is implemented as an extension to HyperAST , in a
module called HyperDiff .

10.2 Publications List

This section lists the academic articles that I co-wrote in the context of this thesis.

[Le +21] Quentin Le Dilavrec et al., « Untangling spaghetti of evolutions in software
histories to identify code and test co-evolutions », in: 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2021,
pp. 206–216 (cit. on pp. 38, 40, 55, 74, 87, 121, 132, 133).

[Le +22] Quentin Le Dilavrec et al., « HyperAST: Enabling Efficient Analysis of
Software Histories at Scale », in: 37th IEEE/ACM International Conference
on Automated Software Engineering, IEEE/ACM, 2022, pp. 1–12 (cit. on
pp. 76, 85, 87, 102, 110, 132, 133).

[Le +23] Quentin Le Dilavrec et al., « HyperDiff: Computing Source Code Diffs at
Scale », in: 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE’23),
2023 (cit. on pp. 103, 126, 132, 133).
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10.3 Tool List
This section lists the tools that I developed in the context of this thesis.
Co-evolutions [Le +21]

— github.com/quentinLeDilavrec/java-tests-coevolution (main repository)

— github.com/quentinLeDilavrec/impact-miner (incremental impact computing)

— github.com/quentinLeDilavrec/ICSME2021 (reproduciton package)

— github.com/quentinLeDilavrec/astexplorer (GUI to visualize co-evolutions)

HyperAST + HyperDiff [Le +22; Le +23]

— github.com/HyperAST/HyperAST (main repository)

— github.com/quentinLeDilavrec/ASE2022 (reproduction package)

— github.com/quentinLeDilavrec/FSE23 (reproduction package)

— github.com/quentinLeDilavrec/refsolver (helper lib. for evaluation)

— observablehq.com/collection/@quentinledilavrec/evaluation-hyperast (notebook for evalua-
tion)

— observablehq.com/@quentinledilavrec/presentation-hyperast-ase22

— observablehq.com/@quentinledilavrec/presentation-hyperdiff-fse23
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LIST OF ABBREVIATIONS

SCM Source Code Management

VCS Version Control System

SWH SoftWare Heritage

CI Continuous Integration

CD Continuous Deployment

DAG Direct Acyclic Graph

SCCS Source Code Control System

RCS Revision Control System

CVS Concurrent Versioning System

WWCVSND What Would CVS Not Do ?
It comes from a remark by Linux Tovalds about how he designed Git.

WWCVSNED What Would CVS Never Ever Do ?
This is the updated version used by L. Torvalds in a presentation at Google in 2007.
https://www.youtube.com/watch?v=4XpnKHJAok8

LoC Line of Code

AST Abstract Syntax Tree

CST Concrete Syntax Tree

OOP Object-Oriented Programming

DAG Direct Acyclic Graph

IDE Integrated Development Environment

LSP Language Server Protocol

CRDT Conflict-free Replicated Data Types

FFI Foreign Function Interface

GC Garbage Collector

JIT Just In Time

AOT Ahead Of Time

SoA Structure of Arrays

AoS Array of Structures

ECS Entity Component System

REST API Representational State Transfer Application Programming Interface

TDD Test Driven Development

GUI Graphical User Interface

134



Chapter 11

APPENDIX

11.1 Statistics on Large Source Code Histories
This section records some statistics on large source code histories that I mention in the thesis

outside the evaluations of contributions. Using cloc through npx is a simple way of measuring
the size of a codebase.

11.1.1 LLVM
$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ git log -1 5c91b2886f6bf400b60ca7839069839ac3980f8f --format=%ci | cat
2023-11-11 10:57:44 -0500
git rev-list --count 5c91b2886f6bf400b60ca7839069839ac3980f8f
480479
$ npx cloc 5c91b2886f6bf400b60ca7839069839ac3980f8f
Need to install the following packages:

cloc
Ok to proceed? (y)

131888 text files.
120126 unique files.
15837 files ignored.

1 error:
Line count, exceeded timeout: /tmp/yGlAcW6iS2/clang/include/clang/Basic/DiagnosticLexKinds.td

github.com/AlDanial/cloc v 1.96 T=160.46 s (748.7 files/s, 188229.6 lines/s)
---------------------------------------------------------------------------------------
Language files blank comment code
---------------------------------------------------------------------------------------
C++ 29626 957439 1868516 5538216
LLVM IR 35727 641211 5932691 3012388
C/C++ Header 11834 316607 499285 1485146
C 10522 259818 1602768 1011002
YAML 4988 68367 64987 888260
Assembly 10677 477381 1221032 819602
TableGen 1311 93710 84379 577524
Text 1334 186074 0 544462
JSON 111 18 0 420282
Python 2318 52229 57881 224176
reStructuredText 1970 70767 86744 145715
XML 130 187 823 143660
CMake 2166 12895 8495 95363
Objective-C 1885 20548 32722 72161
Fortran 90 2028 19428 93531 71315
Markdown 219 13734 205 56221
HTML 84 4744 601 44217
Windows Module Definition 203 4757 142 36370
Objective-C++ 546 7130 6686 27116
OpenCL 588 5369 9243 19723
Starlark 65 2273 15137 16328
SVG 27 0 23 13710
Pascal 55 3181 19674 11568
Perl 24 2036 1920 7823
CSV 64 4 0 6935
Bourne Shell 113 1016 1171 6558
CUDA 247 2568 8250 6200
OCaml 38 1441 2395 5051
SWIG 125 1088 13 4977
Lisp 23 412 296 3641

135



Appendix

awk 2 114 100 3525
CSS 22 463 133 2759
TeX 5 191 5 2556
Smalltalk 187 0 3 2298
JavaScript 23 305 953 2286
make 334 788 211 2053
Bourne Again Shell 14 237 377 1807
HLSL 104 541 1932 1753
DOS Batch 60 177 145 1408
Windows Resource File 113 144 45 1181
Expect 10 23 28 715
Fortran 77 66 42 378 649
Scheme 21 41 24 637
TypeScript 11 105 203 618
Julia 1 164 574 597
C# 8 89 107 570
vim script 16 90 119 545
Bazel 13 73 62 447
Lua 6 46 21 342
Jupyter Notebook 3 0 2434 319
Dockerfile 11 94 188 314
MSBuild script 1 0 7 254
Protocol Buffers 5 53 72 233
diff 2 16 197 195
Rust 4 31 21 140
Mathematica 2 23 0 100
MATLAB 11 7 0 55
INI 8 11 0 50
TOML 2 2 0 25
m4 1 7 0 24
Visual Studio Solution 1 1 1 20
Swift 2 6 0 17
D 1 2 0 16
NAnt script 1 0 0 13
Fortran 95 5 15 47 7
Logos 2 4 0 2
---------------------------------------------------------------------------------------
SUM: 120126 3230337 11627997 15344240
---------------------------------------------------------------------------------------

11.1.2 Linux
$ git clone https://github.com/torvalds/linux.git
$ git show a4d7d701121981e3c3fe69ade376fe9f26324161 | grep Date
Date: Tue Jun 6 06:18:28 2023 -0700
git rev-list --count a4d7d701121981e3c3fe69ade376fe9f26324161
1186465
$ npx cloc a4d7d701121981e3c3fe69ade376fe9f26324161
Need to install the following packages:

cloc
Ok to proceed? (y)

80290 text files.
70888 unique files.
9435 files ignored.

github.com/AlDanial/cloc v 1.96 T=89.27 s (794.0 files/s, 386327.9 lines/s)
---------------------------------------------------------------------------------------
Language files blank comment code
---------------------------------------------------------------------------------------
C 32446 3302774 2592126 17034043
C/C++ Header 23566 708780 1361445 7070233
reStructuredText 3339 165090 67625 451118
JSON 549 2 0 376158
YAML 3489 64392 16151 300159
Assembly 1334 48449 101763 233861
Text 1852 28226 0 125417
Bourne Shell 945 29262 19976 114568
make 2811 11069 11937 50859
SVG 74 90 1171 48177
Python 183 8951 7767 44993
Perl 69 7562 5160 37635
Rust 55 1273 8094 7690
yacc 10 710 409 4996
PO File 6 948 1088 3733
lex 10 373 309 2253
C++ 12 384 145 2070
Bourne Again Shell 55 392 309 1611
awk 13 238 154 1373
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CSV 10 74 0 654
Glade 1 58 0 603
NAnt script 2 153 0 537
Cucumber 1 34 58 198
TeX 1 6 74 156
TNSDL 2 33 0 140
CSS 3 41 60 136
Windows Module Definition 2 15 0 113
m4 1 15 1 95
Clojure 33 0 0 75
XSLT 5 13 26 61
Umka 1 17 0 44
MATLAB 1 17 37 35
vim script 1 3 12 27
Markdown 1 8 0 25
Ruby 1 4 0 25
HTML 1 1 5 10
INI 1 1 0 6
sed 1 2 5 5
TOML 1 1 9 2
---------------------------------------------------------------------------------------
SUM: 70888 4379461 4195916 25913894
---------------------------------------------------------------------------------------

11.1.3 Chromium
I did not clone the entire repository of Chomium, so I cannot use git to count the number

of commits. But GitHub displays 1,344,623 in the commit counter on the "main" branch as of
11/11/2023.
$ git clone --depth 1 https://github.com/chromium/chromium.git
$ git show --no-patch --format=%ci e09463b55787b38bafe6ffcb307f563ba7fbc3a8 | cat
2023-11-11 17:51:32 +0000
$ npx cloc e09463b55787b38bafe6ffcb307f563ba7fbc3a8
Need to install the following packages:

cloc
Ok to proceed? (y)

384678 text files.
324053 unique files.
103011 files ignored.

9 errors:
Line count, exceeded timeout: /tmp/ZIStYpmliR/chrome/browser/file_select_helper_unittest.cc
Line count, exceeded timeout: /tmp/ZIStYpmliR/chrome/browser/ui/web_applications/web_app_file_handling_browsertest.cc
Line count, exceeded timeout: /tmp/ZIStYpmliR/chromeos/ash/components/drivefs/drivefs_pinning_manager.cc
Line count, exceeded timeout: /tmp/ZIStYpmliR/chromeos/ash/components/drivefs/fake_drivefs.cc
Line count, exceeded timeout: /tmp/ZIStYpmliR/third_party/blink/perf_tests/speedometer21/resources/todomvc/architecture-examples/angularjs/node_modules/angular/angular.min.js
Line count, exceeded timeout: /tmp/ZIStYpmliR/third_party/chromevox/third_party/sre/sre_browser.js
Line count, exceeded timeout: /tmp/ZIStYpmliR/third_party/rust/proc_macro2/v1/crate/src/parse.rs
Line count, exceeded timeout: /tmp/ZIStYpmliR/third_party/webxr_test_pages/webxr-samples/js/webxr-polyfill.js
Line count, exceeded timeout: /tmp/ZIStYpmliR/third_party/webxr_test_pages/webxr-samples/js/webxr-polyfill.module.js

github.com/AlDanial/cloc v 1.96 T=256.62 s (1262.8 files/s, 191759.1 lines/s)
---------------------------------------------------------------------------------------
Language files blank comment code
---------------------------------------------------------------------------------------
C++ 60040 2596400 1714065 13706599
HTML 100518 468936 96162 4417454
JSON 6926 1084 0 3685145
C/C++ Header 51074 1030188 1281508 3478639
XML 11264 148134 30233 3249582
JavaScript 19982 397263 742375 2353762
Java 9223 243144 300142 1321082
Text 24855 59885 0 1253769
Python 6038 181708 231264 741077
Objective-C++ 5068 150730 109100 736487
Rust 2095 47298 87261 645421
TypeScript 3856 98807 113890 508095
C 1106 88774 104432 454848
SVG 3611 9021 12323 293329
Assembly 213 23750 9796 256464
Markdown 2750 62714 526 214338
C# 232 11650 17482 127363
XHTML 2440 3776 2969 115713
IDL 2683 16877 1 113892
CSV 31 6 0 82135
Mojo 1723 22015 63173 73116
Protocol Buffers 1217 19014 44899 65574
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Objective-C 175 9849 8931 62192
YAML 1900 4997 1742 59244
CSS 1333 10349 6534 58611
Bazel 489 4831 2943 49179
diff 250 2860 13596 28089
PHP 770 4218 9654 26926
JSON5 79 561 2653 23429
Bourne Shell 472 5280 7270 23350
Windows Module Definition 26 65 81 18975
Starlark 112 1941 2300 17979
Perl 185 3872 4663 17256
reStructuredText 105 6728 3690 16210
CMake 107 1633 1678 15282
SQL 240 676 1219 14836
m4 27 1510 222 12484
DTD 19 2079 2387 9728
make 67 1304 1288 8463
Ruby 34 1078 555 6520
Swift 73 1046 1139 5113
TOML 81 647 764 3719
Kotlin 23 370 839 2934
Pascal 21 1857 9278 2717
Jinja Template 47 175 29 2505
Bourne Again Shell 57 616 662 2455
DenizenScript 56 39 15 2136
XSLT 78 142 86 1930
Vuejs Component 18 202 235 1910
Maven 10 82 46 1701
Groovy 3 170 217 1534
TeX 2 2 11 1486
Dockerfile 23 205 286 1247
Windows Resource File 27 233 551 1059
XSD 9 193 172 967
CoffeeScript 4 118 32 920
WiX source 1 109 78 798
DOS Batch 45 257 249 777
Meson 9 110 73 776
MSBuild script 12 36 33 725
Flatbuffers 16 344 1367 704
JSX 5 112 60 677
Jupyter Notebook 2 0 968 573
Lisp 8 161 229 570
Go 7 70 58 569
yacc 1 49 42 406
Handlebars 10 10 0 403
Elm 2 114 29 399
vim script 6 52 95 191
Visual Studio Solution 7 7 7 177
awk 2 18 12 156
GLSL 5 31 36 137
INI 12 24 1 134
Gradle 1 27 38 131
SCSS 6 24 15 112
Dart 3 20 7 102
ANTLR Grammar 1 33 0 94
Mako 6 29 13 93
PowerShell 2 23 24 87
PlantUML 1 23 0 82
HLSL 3 8 9 63
SWIG 1 14 28 56
TNSDL 1 16 0 48
D 2 10 70 17
sed 2 11 20 17
ProGuard 1 0 6 16
Standard ML 1 1 0 9
Arduino Sketch 1 4 5 8
WebAssembly 2 0 0 8
Properties 1 0 0 5
Gencat NLS 1 0 0 1
---------------------------------------------------------------------------------------
SUM: 324053 5752849 5050941 38406091
---------------------------------------------------------------------------------------
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let rows = document.querySelectorAll(".card > div > div > table > tbody > tr");
let data = [...rows.values()].map(x => ({

orig: x.querySelector("td:nth-child(1)").textContent,
typ: x.querySelector("td:nth-child(2)").textContent,
count:

parseInt(x.querySelector("td:nth-child(3)").textContent.replaceAll(",",
""))

↪→

↪→

}));
let acc = acc = data.reduce((acc, x) => {

if (acc[x.typ] === undefined) {
acc[x.typ] = x.count

} else if (x.count > 0) {
acc[x.typ] += x.count

};
return acc

}, Object.create({}));
let counts = Object.entries(acc).map(x => x[1], 0);
let total = counts.reduce((acc, x) => acc + (x > 0 ? x : 0), 0);

console.log("git");console.log(acc.git)
console.log("total");console.log(total)
console.log("git / total");console.log(acc.git / total)

Listing 4 – Script gathering origins count on SWH

git
195,307,567
total
200,254,083
git / total
0.9752988007740147

Listing 5 – Script results gathering origins count on SWH

11.2 SWH Origins
To obtain data on the number of Git projects I ran listing 4 statistics from Software Heritage.1

The output is shown in listing 5, and we observe that 97.5% of open source projects (by origins
without deduplication) available on Software heritage are Git repositories while most of them
are hosted on GitHub (188 millions).

1https://web.archive.org/web/20230802013447/https://archive.softwareheritage.org/
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Titre : Analyse précise et à l’échelle des historiques de code source

Mot clés : génie logiciel, analyse d’historiques, coévolution, maintenance des logiciels, calcul

intensif

Résumé : Les systèmes de contrôle de ver-
sions sont l’une des pierres angulaires du dé-
veloppement des logiciels modernes. En in-
tégrant les modifications entre les versions,
ils facilitent la collaboration entre les dévelop-
peurs et permettent l’intégration et la livrai-
son continues des artefacts logiciels. Au fil du
temps, les développeurs produisent de nou-
velles versions qui introduisent des fonctionna-
lités et du code supplémentaires. Par exemple,
le noyau Linux compte aujourd’hui plus d’un
million de commits, 20 000 fonctionnalités et
plus de 15 millions de lignes de code. Ce qui
ralentit le téléchargement, la construction et
l’analyse des logiciels. Par conséquent, il de-
vient essentiel d’améliorer l’efficacité des sys-
tèmes qui gèrent les historiques des codes
sources des logiciels tout en améliorant la fa-
cilité d’utilisation et notre compréhension des
historiques déjà existants.

Fournir en permanence des produits et
des services robustes sur des systèmes lo-
giciels massifs et complexes nécessite des
analyses et des tests approfondis. Par consé-
quent, l’exécution de toutes les analyses et de
tous les tests à chaque changement consti-
tue un défi, voire est carrément irréalisable.
Les systèmes de construction et les outils
d’analyse existants s’attaquent déjà à cette
complexité par des approches incrémentales,
soit en modifiant de manière incrémentale un
état transitoire, soit en mettant en cache des
artefacts intermédiaires. Cependant, les ap-
proches existantes considèrent toujours des
artefacts à gros grain (souvent au niveau du

fichier) et une représentation basée sur le
texte (peu d’accès à la sémantique). Dans
cette thèse, nous démontrons qu’il est pos-
sible d’améliorer de manière significative les
approches incrémentales en considérant des
éléments à grain plus fin tout en adaptant les
analyses existantes.

Cette thèse vise à relever plusieurs dé-
fis scientifiques concernant l’extensibilité des
approches et des analyses logicielles à de
grands projets logiciels industriels. Le premier
défi que j’aborde concerne l’analyse tempo-
relle de l’historique des codes sources par
le biais de coévolutions fines. Le deuxième
défi concerne l’inefficacité des analyses tem-
porelles actuelles du code source, qui ne par-
viennent pas à exploiter la redondance tem-
porelle et spatiale du code source dans l’his-
torique des logiciels. En effet, dans la plu-
part des historiques de logiciels, la quantité
de changements apportés avant chaque va-
lidation est faible par rapport à la taille de
l’ensemble de la base de code, c’est-à-dire
quelques lignes de code parmi des millions.

Cette thèse présente notament une nou-
velle structure de données qui permet de par-
tager le code inchangés finement et de per-
siter des resultats intermediaires pour ainsi
rendre incrementales des analyses tempo-
relles de code source. Ensuite, sont présenté
deux analyses, l’une spatial, permettant de-
puis une déclration de retrouver ces refe-
rences, l’autre temporel, permettant d’inferer
les changements entre deux versions.
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Abstract:
VCS are one of the corner stones of

modern software development. By tacking
changes across versions, they facilitate de-
velopers collaboration, and enable continuous
integration and delivery of software artifacts.
Over time, developers produce new versions
that introduce additional features and code.
For example, the Linux kernel now has more
than 1M commits, 20K features, and more
than 15M lines of code. Making it slow to
download, build and analyze. Therefore, it be-
comes essential to improve the efficiency of
systems that manage software source code
histories while also improving usability and our
understanding of already existing histories.

Continuously delivering robust products
and services on massive and complex soft-
ware systems requires extensive analyses and
tests. Therefore, executing every analyses
and tests at every change is challenging or
downright impractical. Existing build systems
and analysis tools already tackle this com-
plexity through incremental approaches, ei-
ther incrementally mutating a transient state or
caching intermediate artifacts. Yet, existing ap-
proaches still consider coarse grained artifacts
(often at file level) and text based representa-
tion (little access to semantic). In this thesis,

we calm that it is possible to significantly im-
prove incremental approaches by considering
finer grained elements while adapting existing
analyses.

This thesis aims to tackle various scien-
tific challenges around the scalability of soft-
ware approaches and analyzes to large in-
dustrial software projects. The initial chal-
lenge I address concerns the temporal anal-
ysis of source code histories through fine-
grained co-evolutions, to help with code under-
standing and automation. The second chal-
lenge concerns the inefficiency of current tem-
poral source code analyzes, which fail to ex-
ploit temporal and spatial source code redun-
dancy in software histories. In most software
histories, the quantity of changes each com-
mit brings is small compared to the size of the
whole code base, e.g., a single line in millions
of lines of code.

In particular, this thesis presents a new
data structure that allows fine-grained sharing
of unchanged code and persistence of inter-
mediate results, thus making temporal anal-
yses of source code incremental. Next, two
analyses are presented, one spatial, making it
possible to retrieve references from a declina-
tion, and the other temporal, making it possi-
ble to infer changes between two versions.
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