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Résumé/Abstract

La méréologie est la discipline qui s’intéresse aux relations entre une partie et son tout
et entre parties au sein d’un même tout. Selon la théorie la plus communément utilisée,
appelée ≪ méréologie classique extensionnelle ≫, une entité ne peut être partie d’une autre
entité qu’une seule fois. Par exemple, votre cœur n’est qu’une seule fois partie de votre
corps.

Ce principe a été remis en question par certains travaux antérieurs. En effet, il n’est pas
possible de décrire la structure méréologique de certaines entités, telles que les universaux
structurés ou les types de mots, dans le cadre de la méréologique classique extension-
nelle. Ces entités peuvent avoir plusieurs fois la même partie. Par exemple, l’universel de
molécule d’eau (H2O) a comme partie l’universel d’atome d’hydrogène (H) deux fois, alors
qu’une molécule d’eau particulière a comme parties deux atomes d’hydrogène distincts.

Dans ce travail, nous suivons la piste ouverte par Karen Bennett en 2013. Bennett a
ébauché une nouvelle méréologie qui permet de représenter la structure méréologique de
ces entités. Dans sa théorie, être une partie d’une entité, c’est remplir un ≪ slot ≫ de cette
entité. Ainsi, dans le mot ≪ patate ≫, la lettre ≪ a ≫ est partie du mot deux fois, parce
qu’elle occupe deux ≪ slots ≫ de ce mot : le deuxième et le quatrième.

La proposition de Bennett est innovante en cela qu’elle offre un cadre général, qui
n’est pas restreint à un type d’entités. Toutefois, la théorie souffre de plusieurs problèmes.
D’abord, elle est limitée : de nombreuses notions de méréologie classique n’y ont pas
d’équivalent, telles que la somme méréologique ou l’extensionnalité. Ensuite, parce que
la théorie, par son axiomatique, provoque des problèmes de comptage. Ainsi, l’universel
d’électron n’est partie que sept fois de l’universel de méthane, au lieu des dix fois qui sont
attendues.

Nous avons proposé une solution dont le principe est que les slots doivent être dupliqués
autant de fois que nécessaire pour obtenir un comptage correct. Cette duplication est
opérée grâce à un mécanisme appelé ≪ contextualisation ≫, qui permet de copier les slots
en rajoutant un contexte supplémentaire. Ainsi, nous avons établi une théorie permettant
de représenter des entités qui peuvent avoir plusieurs fois la même partie tout en évitant
les problèmes de comptage.

Nous avons développé une méréologie des slots sur la base de cette théorie, c’est-à-
dire une théorie représentant des relations méréologiques entre slots. Ainsi, nous avons pu
développer les diverses notions présentes en méréologie classique, telles que la supplémentation,
l’extensionnalité, la somme et la fusion méréologiques.

Cette proposition fournit une méréologie très expressive et logiquement bien fondée qui
permettra d’explorer, dans de futurs travaux, des questions complexes soulevées dans la
littérature scientifique. En effet, certaines entités ne peuvent pas être différenciées par leurs
seules structures méréologiques, mais requièrent de représenter des relations additionnelles
entre leurs parties. Notre théorie méréologique offre des outils et des pistes permettant
d’explorer de telles questions.
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Mereology is the discipline concerned with the relationships between a part and its
whole and between parts within a whole. According to the most commonly used theory,
“classical extensional mereology”, an entity can only be part of another one once. For
example, your heart is part once of your body.

Some earlier works have challenged this principle. Indeed, it is impossible to describe
the mereological structure of certain entities, such as structural universals and word types,
within the framework of classical extensional mereology. These entities may have the same
part several times over. For example, the universal of water molecule (H2O) has as part
the universal of hydrogen atom (H) twice, while a particular water molecule has two
distinct hydrogen atoms as parts.

In this work, we follow the track opened by Karen Bennett in 2013. Bennett sketched
out a new mereology to represent the mereological structure of these entities. In her theory,
to be a part of an entity is to fill a “slot” of that entity. Thus, in the word “potato”, the
letter “o” is part of the word twice because it occupies two “slots” of that word: the second
and the sixth.

Bennett’s proposal is innovative in offering a general framework that is not restricted
to one entity type. However, the theory has several problems. Firstly, it is limited: many
notions of classical mereology have no equivalent, such as mereological sum or extension-
ality. Secondly, the theory’s axiomatics give rise to counting problems. For example, the
electron universal is only part of the methane universal seven times instead of the expected
ten times.

We have proposed a solution based on the principle that slots must be duplicated
as often as necessary to obtain a correct count. This duplication is achieved through a
mechanism called “contextualisation”, which allows slots to be copied by adding context.
In this way, we have established a theory for representing entities that may have the same
part multiple times while avoiding counting problems.

We have developed a mereology of slots based on this theory, which is a theory rep-
resenting mereological relationships between slots. In this way, we have developed the
various notions present in classical mereology, such as supplementation, extensionality,
mereological sum and fusion.

This proposal provides a very expressive and logically sound mereology that will enable
future work to explore complex issues raised in the scientific literature. Indeed, some
entities cannot be differentiated by their mereological structures alone but require the
representation of additional relationships between their parts. Our mereological theory
offers tools and avenues to explore such questions.
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Adrien qui m’ont guidé à travers ces quatre ans. Leurs conseils et support m’ont permis
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Chapter 1

Introduction

Combien de lettres y a-t-il dans le mot ≪ potato ≫ ? Six ? Ou quatre peut-être ? La
réponse à donner dépend de ce que l’on compte quand on demande ≪ combien de lettres ? ≫.
Lorsque nous répondons ≪ six ≫, nous comptons le nombre de caractères dans le mot, c’est-
à-dire le nombre de motifs d’encre sur le papier : il y a six motifs, donc il y a six lettres.
Certains de ces motifs peuvent se ressembler, ils sont quand même distincts. Lorsque nous
répondons ≪ quatre ≫, nous comptons le nombre de symboles utilisés parmi un ensemble
prédéfini : l’alphabet latin. Parmi les 26 symboles qu’il contient, quatre sont utilisés. Il
y a donc plusieurs réponses possibles à la question initialement posée. Toutefois, affirmer
que le mot ≪ potato ≫ contient à la fois quatre et six lettres porte a minima à confusion,
voire s’avère contradictoire. Comment donc exprimer le fait qu’il existe deux réponses
possibles ? Cette distinction est généralement réalisée grâce aux concepts de ≪ type ≫ et
de ≪ token ≫. Les diverses apparitions du mot ≪ potato ≫ dans cette introduction sont des
tokens distincts d’un même type. De façon similaire, les apparitions de la lettre ≪ o ≫ dans
chaque apparition du mot ≪ potato ≫ sur cette page sont des tokens distincts (les motifs
d’encre) d’un même type (cette lettre spécifique dans l’alphabet latin de 26 lettres).

La question semble résolue : un token ≪ potato ≫ du type “potato” contient six
tokens de quatre types distincts et le type “potato” contient les quatre types “a”, “o”,
“p”, “t”. Toutefois, décrire le type “potato” comme contenant les quatre types, sans
en dire plus, ne nous semble pas convaincant : les types “atop” et “topato” contiennent
également ces quatre types, et uniquement eux. Comment expliquer que “potato” soit
distinct de “atop” et “topato” ? Avec la seule description faite de ces types, ce n’est
pas possible. Considérons un token de chacun de ces types et donnons-en une description.
Le token ≪ potato ≫ contient six tokens de lettres de quatre types distincts. Le token
≪ atop ≫ contient quatre tokens de quatre types. Enfin, le token ≪ topato ≫ contient
six tokens de quatre types. C’est grâce aux multiplicités des tokens de lettres que nous
pouvons distinguer les deux premiers tokens. Pour distinguer le premier et le troisième,
il faut utiliser l’ordre des tokens de lettres. Carrara and Smid (2022b) utilisent le même
raisonnement pour définir trois critères d’identité des types de mots.

Les universaux structurés posent le même problème. Commençons par introduire les
universaux. Ces entités sont des entités communes à toutes leurs instances. Tous les
chevaux sont similaires dans une certaine mesure ; pour les philosophes réalistes, c’est
l’universel Cheval qui explique ce fait : tous les individus de chevaux instancient cet
universel. Dans cette thèse, nous ne prendrons pas part au débat philosophique entre
nominalistes et réalistes quant à l’existence de ces universaux (voir Armstrong (1978b,a)).
Toutefois, s’ils existent, alors cette thèse propose un moyen d’en représenter la structure.
Dans les années 1980, des philosophes, tels que David Lewis (1986), David Armstrong
(1986), John Bigelow (1986, 1989), Robert Pargetter (1989) et Peter Forrest (1986) ont
discuté de l’existence des universaux structurés, c’est-à-dire des universaux construits à
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partir d’autres universaux.

L’exemple historiquement utilisé est celui de l’universel Méthane, construit à par-
tir des universaux Carbone et Hydrogène. Ainsi, selon une conception réaliste, les
atomes de carbone sont des instances de l’universel Carbone, les atomes d’hydrogène
sont des instances de l’universel Hydrogène et les molécules de méthane sont des ins-
tances de l’universel Méthane. Si les universaux structurés existent, alors, de la même
façon qu’une instance de Méthane est faite d’une instance de carbone et de quatre
instances d’hydrogène, l’universel de méthane est fait des universaux de carbone
et d’hydrogène. Toutefois, alors qu’une instance de méthane est faite de quatre ins-
tances distinctes d’hydrogène, il n’existe qu’un seul universel d’hydrogène. Le même
raisonnement que celui développé plus haut sur les tokens de mots et de lettres existe :
prenons l’universel de butane, dont les instances ont quatre atomes de carbone et dix
atomes d’hydrogène. Ainsi, ce qui distingue une instance de méthane d’une instance de
butane est la multiplicité des atomes qui les composent. Considérons enfin l’universel
d’isobutane, dont les instances ont les mêmes nombres d’atomes que celles du butane.
Ce qui distingue une instance de butane d’une instance d’isobutane est la façon dont
les atomes sont liés : les atomes d’une molécule de butane sont disposés en chaine, alors
que ceux d’une molécule d’isobutane ont une forme de tétraèdre.

Enfin, s’il fallait donner d’autres exemples d’entités qui peuvent posséder plusieurs fois
la même partie, on pourrait considérer celui du mur temporel d’Effingham and Robson
(2007), dans lequel un mur est construit avec la même brique utilisée cent fois grâce à une
succession de voyages temporels, ou encore les courbes temporelles fermées de Gilmore
(2007) avec lesquelles un atome d’hydrogène pourrait coexister avec une version antérieure
de lui-même, voire former une molécule de dihydrogène.

Ces problèmes de représentation sont des problèmes méréologiques : ils concernent
la manière dont une entité et ses parties sont liées. La méréologie est la discipline qui
s’intéresse aux relations de partie : ≪ aux relations entre une partie et un tout, et aux
relations entre des parties d’un même tout ≫ (Varzi, 2019). La version communément
acceptée parmi les théories méréologiques est appelée méréologie classique extensionnelle
(CEM ; Classical Extensional Mereology). Elle contient diverses relations, comme les
relations de partie ou de chevauchement. De plus, elle contient deux familles de principes,
dits de décomposition et de composition. Le premier groupe de principes traite de la
façon dont une entité peut-être décomposée en parties. Par exemple, l’un de ces principes,
l’extensionnalité, affirme que deux choses qui ont les mêmes parties sont identiques. Le
second groupe traite des principes qui régissent la composition de choses afin d’obtenir
des entités plus complexes. Par exemple, la somme méréologique binaire est la relation
qui lie deux parties à la chose composée d’elles et uniquement elles : ainsi, la somme des
verres et du cadre forme mes lunettes.

La méréologie classique extensionnelle n’est pas compatible avec les entités telles que
les types de mots et de lettres ou les universaux structurés. En effet, plusieurs principes
de cette théorie s’opposent au fait que des entités puissent avoir plusieurs fois la même
partie. Le principe ≪ Parts Just Once ≫ (Parties Juste une Fois en français) énoncé par
Effingham and Robson (2007) affirme qu’≪ un objet composite ne peut avoir le même
objet comme partie propre plusieurs fois ≫. Ce principe est en opposition directe avec ce
que nous souhaitons développer : une théorie méréologique où un objet composite pourrait
avoir la même partie propre plusieurs fois. Toutefois, ce principe ne peut pas être formulé
en méréologique classique extensionnelle à cause du terme ≪ plusieurs fois ≫1. Il existe

1Cette théorie est généralement exprimée en logique classique (du premier ordre) et admet une relation
de partie binaire P . Par conséquent, P (x, y) ∧ P (x, y) (avec P la relation de partie) se simplifie en
logique classique en P (x, y) et ne permet pas de prendre en compte le nombre d’occurrences. De plus, une
modification de la relation P en relation ternaire pour y inclure un nombre d’occurrences nous fait sortir
du cadre traditionnel de la méréologie.
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par contre deux théorèmes de la méréologie classique extensionnelle sur la composition
méréologique. Le premier, appelé ≪ Idempotence ≫ affirme que ≪ la somme de x avec
lui-même est égale à x ≫. Le second, appelé ≪ Subpotence ≫ par Cotnoir and Varzi (2021),
affirme que ≪ si x est une partie de y, alors la somme de x et de y est identique à y ≫2.
Par la suite, ces entités, non-idempotentes sous la somme méréologique, seront nommées
des ≪ entités non-idempotentes ≫.

Le constat que la méréologie classique extensionnelle n’est pas adaptée à toutes les
entités n’est pas nouveau. Toutefois, les réactions face à ce constat diffèrent. Ainsi, Le-
wis (1986), après avoir introduit l’exemple de l’universel Méthane présenté plus haut,
conclut qu’une approche méréologique des universaux structurés n’est pas possible parce
que cela nécessiterait qu’une entité puisse avoir la même partie plusieurs fois. Néanmoins,
d’autres acceptent l’idée de modifier la méréologie classique extensionnelle afin qu’elle
puisse prendre en compte les entités non-idempotentes. Parmi ces théories, on peut ci-
ter notamment la conception par occurrences de Wetzel (2009), la méréologie à slots de
Bennett (2013), la méréologie abélienne de Cotnoir (2015) ou l’utilisation d’une logique
plurale par Carrara and Smid (2022b)3.

Ainsi, l’objectif de cette thèse est d’établir une théorie générale qui permet de représen-
ter tout type d’entités non-idempotentes. Cette théorie devra également permettre de
correctement compter les multiplicités de chaque partie. Enfin, parce qu’il s’agira d’une
théorie méréologique, nous attendons de cette théorie qu’elle possède les notions couram-
ment admises par une théorie méréologique, à savoir les relations basiques de partie, de
partie propre et de chevauchement, ainsi que des principes de décomposition tels que la
supplémentation ou l’extensionnalité, mais également des principes de composition, tels
que la somme ou la fusion.

Dans cette thèse, nous avons sélectionné, comme base de solution à notre problème,
la méréologie à slots proposée par Bennett (2013). Bien qu’elle soit une ébauche, comme
la décrit Bennett, cette théorie est novatrice en cela qu’elle apporte un cadre général
pour représenter les entités non-idempotentes: de fait, elle n’est pas restreinte à certaines
classes d’entités. Elle a suscité de nombreux commentaires (Fisher (2013), Cotnoir (2015),
Garbacz (2016)) et a inspiré plusieurs théories manipulant et adaptant la notion de slot :
Barton et al. (2020b), Sattig (2021), Barton et al. (2022). Nous avons pu nous-même
identifier certaines difficultés et en proposer des corrections : Tarbouriech et al. (2021) et
Tarbouriech et al. (2024).

La méréologie à slots analyse la relation de partie en utilisant deux primitives. Ces
deux primitives, tirées d’une comparaison avec les ontologies des rôles, sont est un slot de
et remplit. Ainsi, pour que l’entité a soit une partie de l’entité b, il faut que a remplisse un
slot de b. Bien que cette proposition apporte de nouvelles possibilités de représentation,
elle présente plusieurs problèmes. Fisher (2013), Cotnoir (2015) et Garbacz (2016) ont émis
plusieurs critiques et identifié plusieurs problèmes d’ordre philosophique ou axiomatique.
Toutefois, nous avons identifié des problèmes plus pratiques : nous avons montré que sous
sa forme originale, cette théorie, qui permet de représenter des entités non-idempotentes,
ne permet pas de compter correctement le nombre d’occurrences des parties. Cependant,
comme nous le verrons, on peut l’adapter et la développer afin qu’elle remplisse cet objectif.

Dans ce travail, nous nous sommes restreints à la méréologie. Nous avons exploré les
différentes notions méréologiques qui pouvaient être définies en se basant sur la méréologie

2Lorsqu’il introduit le principe de Subpotence pour la première fois, Cotnoir (2015) le nomme ≪ Idem-
potence ≫. Toutefois, dans le livre Mereology, écrit avec Varzi, ce principe est appelé ≪ Subpotence ≫.
Étant donné que l’idempotence désigne classiquement la propriété x + x = x, nous utilisons ici le terme
d’≪ Idempotence ≫ dans son sens traditionnel, et désignons le principe introduit par Cotnoir (2015) par
≪ Subpotence ≫.

3Ces théories sont respectivement présentées dans la Section 2.6.1, le Chapitre 3, la Section 4.1 et la
Section 4.2.
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à slots. Cependant, nous verrons en discussion que notre proposition théorique pourrait
être étendue, dans de futurs travaux, pour intégrer des relations non-méréologiques qui
permettraient notamment de distinguer Butane et Isobutane. Notre objectif est ici
de proposer un socle robuste pour de telles extensions futures. De plus, cet objectif est
abordé en utilisant un cadre de représentation de logique du premier ordre, fréquent en
ontologie appliquée.

Cette thèse s’articule selon trois parties, découpées en chapitres :

• La Partie I constitue un état de l’art permettant de comprendre les sujets abordés
dans les parties suivantes. Le Chapitre 2 de cette partie présente, en se basant sur
les travaux récents de Cotnoir and Varzi (2021), les notions de méréologie classique
extensionnelle utilisées dans la suite de cette thèse. La dernière partie de ce cha-
pitre présente certaines entités non-idempotentes : universaux structurés et types
de mots. La littérature étant vaste sur ces entités, cette section se concentre, après
une présentation générale de ces entités, sur leurs aspects méréologiques. En effet,
ces entités ne constituent pas le cœur de ce travail et ne sont utilisées que comme
sources de questions et d’exemples. Le Chapitre 3 présente la méréologie à slots
développée par Bennett (2013), ainsi que les critiques présentes dans la littérature.
De plus, nous proposons dans ce chapitre notre propre critique de cette théorie,
en présentant les problèmes de comptage. Enfin, le Chapitre 4 de cet état de l’art
présente diverses théories qui apportent des compléments intéressants pour traiter
la question qui nous intéresse.

• La Partie II constitue notre proposition comme solution à la question qui nous
intéresse. Dans le Chapitre 5, adapté de l’article (Tarbouriech et al., 2021), une
correction et extension de la théorie de Bennett est présentée. Cette correction
et extension théorique, nommée ≪ Copy-Slot Mechanism ≫, permet de corriger les
problèmes de comptage identifiés dans la théorie de Bennett. Toutefois, cette propo-
sition introduit un nouveau problème de comptage. Afin de remédier à ce problème,
nous avons établi les critères permettant d’évaluer notre théorie. Ainsi, le Chapitre
6 développe ces prérequis en y intégrant le choix d’exploiter la théorie de Bennett,
ainsi que divers éléments tirés des autres théories présentées dans le Chapitre 4. Le
Chapitre 7 présente les deux outils mis en place pour nous aider à développer une
théorie permettant de corriger les problèmes de comptage identifiés dans la théorie
de Bennett, sans en créer de nouveaux. Le premier outil utilisé est Alloy, qui est
un outil pour explorer les modèles et trouver des contre-exemples à une théorie. Le
second outil est Coq, qui est un assistant de preuves. Il nous a permis de vérifier les
preuves de tous les théorèmes de la théorie. Les trois chapitres suivants constituent
ensuite la proposition théorique aboutie. L’essentiel du contenu de ces chapitres a
été publié dans l’article (Tarbouriech et al., 2024). Le Chapitre 8 aborde la notion
de slot en tentant de la définir, ainsi que d’autres questions se rapportant à cette
notion. Le Chapitre 9 présente le cœur de la proposition : une méréologie des slots4.
Afin de régler les problèmes de comptage, cette théorie introduit une notion de
contextualisation des slots. Cette notion est ensuite utilisée pour définir les notions
méréologiques de partie, de chevauchement, ainsi que les principes de composition
et de décomposition. Toutes ces relations méréologiques sont définies uniquement
entre des slots, d’où le terme de ≪ méréologie des slots ≫. Cette nouvelle approche
permet de dépasser les limitations rencontrées par Bennett dans la définition de cer-
tains de ses axiomes et théorèmes (notamment la supplémentation). Ce chapitre est

4Les noms en français des deux théories sont très semblables. Toutefois, ≪ méréologie à slots ≫ désigne
la théorie de Bennett (≪ Slot Mereology ≫ en anglais), alors que ≪ méréologie des slots ≫ désigne notre
proposition (≪ Mereology Of Slots ≫ en anglais).
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illustré avec des exemples tirés des entités non-idempotentes, comme l’universel de
molécule de dihydrogène. Enfin, le Chapitre 10 propose d’utiliser la théorie sur des
cas particuliers, pour en démontrer certains aspects et la façon dont elle règle les
problèmes évoqués.

• La Partie III est la partie de conclusion. Le Chapitre 11 propose des pistes de
réflexion sur de futurs travaux qui pourraient compléter les limites identifiées. Enfin,
le Chapitre 12 conclut cette thèse en synthétisant notre proposition.

• L’Annexe A fournit une liste des formules utilisées dans ce document, sauf celles
présentées dans le Chapitre 4.

How many letters are there in the word “potato”? Six? Or maybe just four? The
answer depends on what we count when we ask: “How many letters?”. By answering
“six”, we count the number of characters in the word, i.e. the number of ink patterns
on the paper: there are six patterns, thus six letters. Some of these patterns might look
similar, but they are nonetheless distinct. By answering “four”, we count the number of
symbols used among a predefined set: the Latin alphabet. Four symbols appear in the
word, among the 26 symbols the Latin alphabet contains. Therefore, there are multiple
valid answers to the initial question. However, affirming that the word “potato” contains
four and six letters is at least confusing, if not contradictory. How do we express the fact
that these two answers are reasonable? It can be done with “types” and “tokens”. The
multiple occurrences of the word “potato” in this introduction are distinct tokens of the
same type. Similarly, the multiple occurrences of the letter “o” in the word “potato” are
distinct tokens (the ink patterns) of the same type (this very letter in the 26-symbol Latin
alphabet).

The question seems solved: a word token “potato” of the word type “potato” has six
letter tokens of four distinct letter types, and the word type “potato” contains the four
letter types “a”, “o”, “p”, “t”. Nevertheless, describing the word type “potato” as
containing four letter types without saying more does not seem convincing: the word types
“atop” and “topato” also contain these four letter types, and only them. How do we
explain that “potato” is distinct from “atop” and “topato”? With the sole description
given above, it is not achievable. Consider a token of each of these types and describe
each of them. The word token “potato” contains six letter tokens of four letter types.
The word token “atop” contains four letter tokens of four letter types. Finally, the word
token “topato” contains six letter tokens of four letter types. We can distinguish the first
and the second tokens thanks to the multiplicities of letter tokens. Furthermore, we can
distinguish the first and the third one due to the order of the letter tokens. Carrara and
Smid (2022b) use the same reasoning to establish three identity criteria for word types.

Structural universals are similarly problematic. Universals are shared entities to all of
their instances: all horses are similar in some way, and for realistic philosophers, the univer-
sal Horse explains this similarity. All horses instantiate this universal. In this manuscript,
we will not enter into the philosophical debate between nominalists and realists concerning
the existence of universals (see Armstrong (1978b,a)). Nonetheless, this thesis proposes
a framework to represent their structures if they exist. In the 1980s, philosophers like
David Lewis (1986), David Armstrong (1986), John Bigelow (1986, 1989), Robert Parget-
ter (1989) and Peter Forrest (1986) discussed the existence of structural universals, i.e.
universals built from other universals.

The historical example used in the literature is the universal of Methane, composed
of the universals of Carbon and Hydrogen. Therefore, according to a realist conception,
carbon atoms are instances of the universal Carbon, hydrogen atoms are instances of the
universal Hydrogen and methane molecules are instances of the universal Methane.
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If structural universals exist, then, in a similar way that methane instances are made of
a carbon instance and four hydrogen instances, the universal Methane is made of the
universals Carbon and Hydrogen. However, while an instance of Methane is made
of four distinct instances of Hydrogen, there is only one universal Hydrogen. The
same reasoning can be developed as the one presented above for word and letter tokens.
Consider the universal Butane, whose instances have four carbon atoms and ten hydrogen
atoms. What distinguishes an instance of Methane and an instance of Butane is the
multiplicity of the atoms that compose them. Consider now the universal Isobutane,
whose instances have the same number of atoms as those of Butane. What distinguishes
them is how these atoms are bonded: in a butane molecule, carbon atoms are in a chain,
while they form a tetraedron in an isobutane molecule.

Finally, if one requires more examples of entities that can have the same part multiple
times, we could consider the example of the temporal wall of Effingham and Robson (2007),
in which the same brick, used a hundred times thanks to time travel, composes a wall.
Alternatively, close timelike curves of Gilmore (2007), thanks to which a hydrogen atom
could coexist with a prior version of itself and bond with this prior version to make a
dihydrogen molecule.

These problems of representation are mereological: they are about how an entity and
its parts relate. Mereology is the study of parthood relations: “of the relations of part to
whole and the relations of part to part within a whole”. The commonly accepted version
is called Classical Extensional Mereology, or CEM. It introduces various relations, like
relations of parthood or overlap. Moreover, it contains two families of principles, known
as decomposition and composition principles. The first group of these principles deals with
how an entity decomposes into parts. For example, one of these principles, extensionality,
states that two things are equal if they have the same parts. The second group deals
with how entities are composed to make bigger entities. For example, the binary sum is
the relation that relates two entities to the thing composed of these two entities and only
them; thus, my glasses are the sum of their lenses and their frame.

Classical extensional mereology is incompatible with entities such as word and letter
types or structured universals. Several principles of this theory oppose the fact that entities
can have the same part more than once. The “Parts Just Once” principle enunciated by
Effingham and Robson (2007) asserts that “a composite object cannot have the same
object as its proper part many times over”. This principle directly opposes what we want
to develop: a mereological theory in which a composite object could have the same proper
part several times over. However, this principle is not expressible in classical extensional
mereology because of the term “many times over”.5 On the other hand, there are two
theorems of classical extensional mereology on mereological composition. The first, called
“Idempotence”, asserts that “the sum of x with itself is equal to x”. The second, called
“Subpotence” by Cotnoir and Varzi (2021), asserts that “if x is part of y, then the sum of x
and y is identical to y”.6 Hereafter, these entities, non-idempotent under the mereological
sum, will be referred to as “Non-idempotent entities”.

The observation that classical extensional mereology is unsuitable for all entities is not
new. However, reactions to this observation differ. Thus, Lewis (1986), after introducing
the example of the universal Methane presented above, concludes that a mereological

5This theory is generally expressed in classical (first-order) logic and admits a binary part relation P .
Consequently, P (x, y) ∧ P (x, y) (with P the part relation) simplifies in classical logic to P (x, y) and does
not allow for the number of occurrences. Moreover, modifying the relation P into a ternary relation to
include a number of occurrences takes us outside the traditional framework of mereology

6 When he first introduced the principle of Subpotence, Cotnoir (2015) called it “Idempotence”. How-
ever, in the book Mereology, written with Varzi, this principle is called “Subpotence”. Since “Idempotence”
classically refers to the property x + x = x, we use the term “Idempotence” here in its traditional sense
and refer to the principle introduced by Cotnoir (2015) as “Subpotence”.
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approach to structured universals is impossible because it would require an entity to have
the same part more than once. Nevertheless, others accept the idea of modifying classical
extensional mereology to consider non-idempotent entities. These theories include the
occurrence-based design of Wetzel (2009), the slot mereology of Bennett (2013), the abelian
mereology of Cotnoir (2015) or the use of plural logic by Carrara and Smid (2022b).7

Thus, this thesis aims to establish a general theory that allows the representation
of non-idempotent entities. This theory must also enable each part’s multiplicities to
be counted correctly. Finally, because it will be a mereological theory, we expect it to
possess the notions commonly accepted by a mereological theory, namely the fundamental
relations of part, proper part and overlap, as well as decomposition principles such as
supplementation or extensionality, but also composition principles, such as sum or fusion.

In this thesis, we have selected the slot mereology proposed by Bennett (2013) as the
basis for a solution to our problem. Although it is a sketch, as Bennett describes it, this
theory is innovative in providing a general framework for representing non-idempotent
entities; thus, it is not restricted to certain classes of entities. It has prompted numerous
comments (Fisher (2013), Cotnoir (2015), Garbacz (2016)) and inspired several theories
manipulating and adapting the notion of slot: Barton et al. (2020b), Sattig (2021), Barton
et al. (2022). We identified specific difficulties and proposed corrections: Tarbouriech et al.
(2021) and Tarbouriech et al. (2024).

Slot mereology analyses the part relation using two primitives. These two primitives,
drawn from a comparison with role ontologies, are is a slot of and fills. Thus, for a to
be a part of b, a must fill a slot of b. Although this proposal brings new representation
possibilities, it raises several problems. Fisher (2013), Cotnoir (2015) and Garbacz (2016)
have raised several criticisms and identified several philosophical or axiomatic problems.
However, we have identified more practical problems: We have shown that in its original
form, this theory, which allows non-idempotent entities to be represented, does not allow
the number of occurrences of parts to be counted correctly. However, as we shall see, it
can be adapted and developed to meet this objective.

In this work, we have restricted ourselves to mereology. We have explored the various
mereological notions that could be defined based on slot mereology. However, we will
see in the discussion that our theoretical proposal could be extended in future work to
integrate non-mereological relations that would notably allow us to distinguish Butane
and Isobutane. Our aim here is to propose a robust foundation for such future extensions.
Furthermore, this objective is addressed using a first-order logic representation framework,
which is common in applied ontology.

This thesis is structured in three parts, divided into chapters:

• Part I constitutes a state of the art enabling the understanding of the topics covered
in the following parts. Chapter 2 presents, based on the recent work of Cotnoir and
Varzi (2021), the notions of extensional classical mereology used in the remainder
of this thesis. The last part of this chapter presents some non-idempotent entities:
structured universals and word types. As the literature on these entities is vast, this
section focuses, after a general presentation of these entities, on their mereological
aspects. Indeed, these entities do not constitute the core of this work and are
only used as sources of questions and examples. Chapter 3 presents the slot-based
mereology developed by Bennett (2013) and the criticisms present in the literature.
In addition, we offer our own critique of this theory in this chapter, presenting
counting problems. Finally, Chapter 4 of this state of the art presents various theories
that provide exciting additions to address the question of interest to us.

• Part II constitutes our proposal as a solution to the question at hand. In Chap-

7These theories are respectively presented in Sections 2.6.1, 4.1 and 4.2 and Chapter 3.
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ter 5, adapted from the article (Tarbouriech et al., 2021), a correction and extension
of Bennett’s theory is presented. This theoretical correction and extension, named
“Copy-Slot Mechanism”, corrects the counting problems identified in Bennett’s the-
ory. However, this proposal introduces a new counting problem. To remedy this
problem, we have established criteria for evaluating our theory. Thus, Chapter 6
develops these prerequisites by integrating the choice of exploiting Bennett’s theory
and various elements drawn from the other theories presented in Chapter 4. Chap-
ter 7 presents the two tools to help us develop a theory to correct the counting
problems identified in Bennett’s theory without creating new ones. The tools used
are Alloy, a tool for exploring models and finding counterexamples to a theory, and
Coq, a proof assistant. It enabled us to check the proofs of all the theorems in the
theory. The following three chapters constitute the final theoretical proposal. Most
of the content of these chapters has been published in the article (Tarbouriech et al.,
2024). Chapter 8 tackles the notion of a slot by attempting to define it and other
questions relating to it. Chapter 9 presents the heart of the proposal: a mereology
of slots.8 To solve counting problems, this theory introduces a notion of slot contex-
tualization. This notion is then used to define the mereological notions of part and
overlap and the principles of composition and decomposition. All these mereological
relationships are defined only between slots, hence the term “mereology of slots”.
This new approach makes it possible to overcome the limitations encountered by
Bennett in defining some of her axioms and theorems (notably supplementation).
The chapter is illustrated with examples drawn from non-idempotent entities, such
as the universal Dihydrogen. Finally, Chapter 10 proposes to use the theory on
particular cases to demonstrate certain aspects of it and how it solves the problems
evoked.

• Part III is the concluding section. Chapter 11 first proposes our work, offering food
for thought on future work that might complement the limitations identified. Finally,
Chapter 12 concludes this thesis by offering a summary of our proposal.

• Appendix A provides a list of formulas presented in this work, excepted those of
Chapter 4.

8In this thesis, “Slot Mereology” will refer to Bennett’s theory, whereas “Mereology of Slots” refers to
our proposal.
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State Of The Art
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Chapter 2

Classical Mereology

In this chapter, I present the mereological notions that will be used later on. Mereology
aims at explaining what parthood relations are; more precisely, to explain the relations
between a whole and its parts, and between parts within a whole. This chapter does not
aim at offering a complete account of all mereological notions. This section is mainly
based on Varzi (2019) and Cotnoir and Varzi (2021).

Mereology finds applications, with applied ontology, in many sciences, including com-
puter science. In particular, it is used, among other thing, in knowledge representation,
conceptual modelling, ontology engineering or semantic web. For further details, see, for
example, Guarino et al. (1996); Polkowski (2014); Keet (2006); Bjørner (2018).
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2.1 Historical Background

The term “mereology” was originally coined, in Polish as “mereologia”, by Stanis law
Leśniewski to designate one of the three components of his formal systems. But the study
of the mereological relations, like the parthood relation, is much older. Some mereological
questions were already addressed by Greek thinkers (Presocratics), the Chinese school
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of logicians Mı́ngjiā or the Hindu philosophy school Vaíses. ika, all around 6th and 5th

centuries BCE. It was also a matter of interest for medieval philosophers and Scholastics.
Systematic study of the parthood relation was only started at the beginning of the

twentieth century, with Edmund Husserl and Leśniewski. The former (Husserl, 1901)
studied it as an essentiel part of the general framework he was developing for formal
ontology. The latter (Leśniewski, 1916, 1931) studied mereology as an alternative to set
theory. The theory of Leśniewski, unlike Husserl’s, is a theory meant to be complete,
and may be considered as “the first fully worked out example of a mereological theory”
(Cotnoir and Varzi, 2021, p. 10).

However, Leśniewski’s work is in Polish, and thus was not accessible to non-speakers
of Polish. In 1940, Leonard and Goodman (1940) developed Calculus of Inviduals, which
is, in fact, essentially equivalent to Leśniewski’s Mereology. This common theory is known
as classical mereology.

In 1987, Simons published Parts: A Study in Ontology in which he gives a “connected
account of the various kinds of mereology [. . . ] which exists, widely scattered, in the
literature”. In his work, he exposes the philosophical problems of Leornard, Goodman
and Leśniewski theories and proposes a way to correct these problems. His work, as
a seminal work on mereology, serves as a basis for many of the publications in formal
ontology that have followed.

2.2 Basic Relations

Multiple axiomatisations of a mereological theory are possible, depending on the choice of
the primitive relation: parthood, proper parthood, overlap or disjointness. As my proposal
uses the parthood relation to define those other relations (although, as we will see, my
proposal does not consider parthood as a primitive), I will present classical mereology
using the parthood relation as the primitive. Refer to (Cotnoir and Varzi, 2021, pp. 44–
55) for a general presentation of alternatives. More specifically, refer to Leśniewski (1916)
and Simons (1987) for proper-parthood-based theories, to Goodman (1951) and Leonard
and Goodman (1940) for theories based on overlap or disjointness.

2.2.1 Parthood

In classical mereology, parthood is the relation that relates an entity with the object it is
a part of. For example, the handle is part of the door and my lunch time of tomorrow is
part of my occupations of tomorrow. Contrary to the proper parthood relation, parthood
is formalised as a reflexive relation. Therefore, as stated by Axiom 2.1, every entity is part
of itself. The relation is also transitive (e.g. my right hand is part of my right arm which
is part of my body, therefore my right hand is part of my body) as stated by Axiom 2.2.
Finally, the parthood relation is antisymmetrical, i.e. two entities that are part of each
other are in fact the very same entity, as posited by Axiom 2.3. These axioms characterise
the parthood relation as a partial order. The theory generated by these three axioms is
called ground mereology by Varzi (1996).

Axiom 2.1 (Parthood Reflexivity).

∀x(P(x, x))

Axiom 2.2 (Parthood Transitivity).

∀x, y, z(P(x, y) ∧ P(y, z) → P(x, z))

Axiom 2.3 (Parthood Antisymmetry).

∀x, y(P(x, y) ∧ P(y, x) → x = y)
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2.2.2 Proper Parthood

The proper parthood relation is similar to the parthood relation, but without reflexivity,
i.e. an entity cannot be a proper part of itself. When we use the word “part” in an
everyday talk, it generally refers to proper parthood. The examples given in the previous
section are examples of proper parts. Definition 2.1 follows Varzi (2019).

Definition 2.1 (Proper Parthood).

PP(x, y) ≜ P(x, y) ∧ x ̸= y

As consequences of Definition 2.1 and Axioms 2.1 to 2.3, the proper parthood relation
is irreflexive, transitive and asymmetric, as stated by Theorems 2.1 to 2.3.1

Theorem 2.1 (Proper Parthood Irreflexivity).

∀x(¬PP(x, x))

Theorem 2.2 (Proper Parthood Transitivity).

∀x, y, z(PP(x, y) ∧ PP(y, z) → PP(x, z))

Theorem 2.3 (Proper Parthood Asymmetry).

∀x, y(PP(x, y) → ¬PP(y, x))

2.2.3 Overlap

The overlap relation holds between entities that have a part in common, as defined by
Definition 2.2. Following (Cotnoir and Varzi, 2021, p. 55), sub-relations of overlap exist, as
pictured in Figure 2.1, namely proper overlap and improper overlap. The former relation,
defined by Definition 2.3, holds between overlapping entities that are not part of each
other. The latter relation, defined by Definition 2.4, holds between a whole and one of
its parts. Finally, if two entities do not overlap, i.e. there is no shared part, they are
disjoint, as defined by Definition 2.5. All these relations are symmetric, as stated by
Theorems 2.4 to 2.7. The overlap and improper overlap relations are reflexive, whereas
the proper overlap and the disjointness relations are irreflexive as stated by Theorems 2.8
to 2.11.

Definition 2.2 (Overlap).

O(x, y) ≜ ∃z(P(z, x) ∧ P(z, y))

Definition 2.3 (Proper Overlap).

PO(x, y) ≜ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x)

Definition 2.4 (Improper Overlap).

IO(x, y) ≜ P(x, y) ∨ P(y, x)

Definition 2.5 (Disjointness).

D(x, y) ≜ ¬O(x, y)

1The proofs of theorems and lemmas presented in the state of the art are not presented here, as they
can be found in the literature about mereology.
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(with PP(x, y))

x = y

(d) Improper overlap
(with x = y)

Figure 2.1: Different kinds of overlap between x and y (arrows represent the proper
parthood relation)

Theorem 2.4 (Overlap Symmetry).

∀x, y(O(x, y) → O(y, x))

Theorem 2.5 (Proper Overlap Symmetry).

∀x, y(PO(x, y) → PO(y, x))

Theorem 2.6 (Improper Overlap Symmetry).

∀x, y(IO(x, y) → IO(y, x))

Theorem 2.7 (Disjointness Symmetry).

∀x, y(D(x, y) → D(y, x))

Theorem 2.8 (Overlap Reflexivity).

∀x(O(x, x))

Theorem 2.9 (Proper Overlap Irreflexivity).

∀x(¬PO(x, x))

Theorem 2.10 (Improper Overlap Reflexivity).

∀x(IO(x, x))

Theorem 2.11 (Disjointness Irreflexivity).

∀x(¬D(x, x))

2.3 Decomposition Principles

In mereological theories, the decomposition principles express how an entity decomposes
into parts. Those principles range from weak principles, like company — i.e. if a whole
has a proper part, then it has another one — to strong ones, like complementation — i.e.
if an entity y is not part of x, then there is something that is the sum of all the parts
of y that are disjoint from x. After having presented the notions of mereological atom in
Section 2.3.1, the decomposition principles are presented from the weakest to the strongest
in Sections 2.3.2 to 2.3.4.

2.3.1 Atoms

In mereological theories, atoms, sometimes called simples, are entities that do not have
proper parts, as defined by Definition 2.6.

Definition 2.6 (Atom).
A(x) ≜ ¬∃y(PP(y, x))
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2.3.2 Supplementation

When considering how an entity decomposes, one of the first principles that can be for-
mulated is that if an entity y has a proper part x, then it must have another proper part
z, different from x, called a remainder. In other words, it is never the case that something
has only one proper part, e.g. my hand is not the only proper part of my arm. This
principle is called company and is formalised by Axiom 2.4. In particular, it eliminates
finite linear orders, such as depicted in Figure 2.2a, which do not correspond to a standard
understanding of parthood. Even though this axiom excludes models such as depicted in
Figure 2.2a, it does not exclude structures like those pictured in Figures 2.2b and 2.2c. To
prevent Figure 2.2b from being a model, one can posit the Axiom 2.5 of strong company,
i.e. an entity y that has a proper part x also has a proper part z which is not a part of
x. Axiom 2.5 does prevent such z and x to be improper-overlapping. However, it does
not prevent them to be proper-overlapping. The principle that does so is called supple-
mentation, or weak supplementation in opposition to other forms of supplementation, and
is formalised by Axiom 2.6. Note that Axiom 2.6 does not explicitly state that z is a
proper part of y, but simply a part of y. However, it does imply that z is a proper part:
x overlaps with y but not with z, therefore y and z are different. This axiom entails that
an entity with proper parts has (at least) two distinct and disjunct proper parts.

Axiom 2.4 (Company).

∀x, y(PP(x, y) → ∃z(PP(z, y) ∧ x ̸= z))

Axiom 2.5 (Strong Company).

∀x, y(PP(x, y) → ∃z(PP(z, y) ∧ ¬P(z, x)))

Axiom 2.6 (Supplementation).

∀x, y(PP(x, y) → ∃z(P(z, y) ∧ ¬O(z, x)))
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(a)

y

x

OO

z

OO

OO

(b)
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z

__

•
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•

`` ??

•

__

?? aa == `` >> __

(c)

Figure 2.2: Three unsupplemented models (dotted arrows represent an infinite repetitition
of the pattern)

2.3.3 Strong Supplementation and Extensionality

A stronger version of the supplementation exists. It is called strong supplementation and
formalised by Axiom 2.7. This axiom states that if an entity y is not a part of another
entity x, then there is some part of y that does not overlap with x. This part can be y
itself. This axiom excludes models such as pictured in Figure 2.3, where x and y are two
entities both having as proper parts the same entities: w and z. Note that Axiom 2.6 is a
theorem of ground mereology and strong supplementation (Axioms 2.1 to 2.3 and 2.7).
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Axiom 2.7 (Strong Supplementation).

∀x, y(¬P(y, x) → ∃z(P(z, y) ∧ ¬O(z, x)))

x y

z

OO <<

w

OObb

Figure 2.3: A model of supplementation, but not of strong supplementation

From ground mererology and strong supplementation, various theorems of extensional-
ity can be proved. Extensionality is a restriction of Leibniz’s Law to a specific mereological
relation.2 Theorems 2.12 and 2.13 are two theorems of extensionality: the former uses the
proper parthood relation, while the latter uses the overlap relation.

Theorem 2.12 (PP-Extensionality).

∀x, y[∃z(PP(z, x) ∨ PP(z, y)) → (x = y ↔ ∀z(PP(z, x) ↔ PP(z, y)))]

Theorem 2.13 (O-Extensionality).

∀x, y(x = y ↔ ∀z(O(z, x) ↔ O(z, y)))

These theorems state multiple things: first, if two entities are identical, then they
stand in the same mereological relation PP (respectively O) with the same entities. But
this is a trivial consequence of the identity of those entities. Second, if two entities relate
to exactly the same objects by the mereological relation PP (respectively O), then they
are identical. There is a difference between those theorems: the former is conditioned to
the existence of a proper part, but not the latter. This is because the overlap relation is
reflexive: every entity overlap with at least itself. This is not the case for proper part: a
mereological atom does not have any proper parts. In Theorem 2.12, if the premise was
removed and x and y would be different atoms, then ∀z(PP(z, x) ↔ PP(z, y)) would be
vacuously true, and therefore, it could be concluded that x = y, which is a contradiction.

2.3.4 Complementation

Finally, there is an even stronger decomposition principle, called complementation, and
formalised by Axiom 2.8. Although it starts like Axiom 2.7, its consequent is different.
This axiom states that if y is not a part of x, then there is a z that is the composite
object made of all the things that are parts of y and that do not overlap with x, i.e.
z is the complement of x in y. Contrary to strong supplementation, which states that
there is some remainder without saying anything about how all the remainders relate, the
complementation axiom states that all the parts of y that do not overlap with x form a
unique entity z. This axiom is stronger as it requires that all the remaining parts can be
aggregated into something. As we do not have seen anything about aggregating parts yet,
this discussion will be continued in the relevant section, i.e. Section 2.4. As an example
of a strongly supplemented model that violates complementation, see Figure 2.4, where y
is not a part of x, but there is no entity composed of the remaining parts, i.e. z and w.

2Leibniz’s Law can refer to two things: either the Identity of Indiscernibles—which states that two ob-
jects that have the same properties are identical (∀x, y(∀F (F (x) ↔ F (y)) → x = y))— or the conjunction
of this principle with the Indiscernibility of Identicals—which states that two objects that are identical
have the same properties (∀x, y(x = y → ∀F (F (x) ↔ F (y)))). For more, see (Forrest, 2020). In literature
about mereology, both the first principle, or the conjuction can be found to axiomatise extensionality: see
(Cotnoir and Varzi, 2021) for the use of one principle and (Varzi, 2019) for the use of the conjunction.
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Axiom 2.8 (Complementation).

∀x, y(¬P(y, x) → ∃z∀w(P(w, z) ↔ (P(w, y) ∧ ¬O(z, x))))

y
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z

??

x

__ ??

w

``

Figure 2.4: A strongly supplemented model violating complementation

2.4 Composition Principles

In the same way we express principles about how entities decompose into parts, it is possi-
ble to express principles to explain how entities compose into wholes. Those principles are
called composition principles. This section first presents two of the composition principles,
namely binary sum and fusion, and then the notion of mereological universe.

2.4.1 Binary Sum

Mereological sum is something we are used to: the blade and the handle make a knife,
the roots, the trunk, the branches and the leaves make the tree, and my first name and
my last name make my name. The literature about mereological sums contains multiple
definitions (see for example Lewis (1991) and Casati and Varzi (1999)). Two of the
commonly accepted definitions of sum are formalised by Definitions 2.7 and 2.8, where
Si(z, x, y) reads as “z is a sumi of x and y”.

Definition 2.7 (Sum1).

S1(z, x, y) ≜ P(x, z) ∧ P(y, z) ∧ ∀w(P(w, z) → O(w, x) ∨ O(w, y))

Definition 2.8 (Sum2).

S2(z, x, y) ≜ ∀w(O(z, w) ↔ O(w, x) ∨ O(w, y))

By the first definition, z being a sum of x and y means that x and y are both parts of
z and that every part of z either overlaps x or y. While P(x, z)∧ P(y, z) ensures that z is
above x and y (i.e. an upper bound), ∀w(P(w, z) → O(w, x) ∨ O(w, y)) ensures that there
is nothing else in between (i.e. z is a minimal upper bound). By the second definition, z
being a sum of x and y means that, for every w, w overlaps z iff w overlaps either x or y.

What about the existence of the sumi? Under which circumstances does a sum between
some x and y exist? To answer these questions, an axiom of existence is commonly
accepted. It can be formalised as in Axiom Schema 2.9, where ξ is a suitable binary
condition.

Axiom Schema 2.9 (Existence of Sumi).

∀x, y(ξ(x, y) → ∃z(Si(z, x, y)))
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Even though these two definitions are different, they are equivalent if the theory has the
strong supplementation axiom Axiom 2.7. For more explanations about their differences
in the absence of strong supplementation, see Varzi (2019). Furthermore, with strong
supplementation, sum is also unique, thanks to extensionality (Theorem 2.13). Therefore,
from now on assuming we are in the context of groung mereology with strong supplemen-
tation, we can speak of z as “the” sum of x and y and use some operator: x+i y represents
the sum between x and y. Finally, as long as x and y satisfy ξ, their sumi is idempotent,
commutative and associative.

Varzi (2019) gives four theorems to show how sum behaves with parthood: Theo-
rems 2.14 to 2.17.

Theorem 2.14.

∀x, y(P(x, x+i y))

Theorem 2.15.

∀x, y, z(P(x, y) → P(x, y +i z))

Theorem 2.16.

∀x, y, z(P(x+i y, z) → P(x, z))

Theorem 2.17.

∀x, y(P(x, y) ↔ x+i y = y)

2.4.2 Fusion

Fusion (also called generalised sum) is a stronger composition principle that can be sum-
marised as “infinitary sum”. While the sum can only deal with a finite amount of operands,
fusion is defined to work with an infinite number of operands.

To generalise binary sum, the idea is to consider the generalised sum of all elements
for which some predicate ϕ holds. However, as the logical apparatus chosen in this work
is first order logic, quantifying over predicates is not possible. Fusion is therefore defined
using a definition schema. Two of the commonly accepted definitions of fusion are given
by Definition Schemata 2.9 and 2.10, respectively named Leśniewski fusion and Goodman
fusion.3

In these schemata, ϕ is a formula in which the variable w should occur free. ϕ itself
is not a variable in our (first-order) language. For readability, we use a predicate-like
notation, such as ϕ(w), even though ϕ is not to be understood as a predicate variable.
The formula F1ϕz should read as “z is the fusion1 of all the ϕ-ers”, where the term “ϕ-er”
refers to an entity for which the formula ϕ holds.

Definition Schema 2.9 (Fusion1).

F1ϕ(z) ≜ ∀w(ϕ(w) → P(w, z)) ∧ ∀v(P(v, z) → ∃w(ϕ(w) ∧ O(v, w)))

Definition Schema 2.10 (Fusion2).

F2ϕ(z) ≜ ∀v(O(v, z) ↔ ∃w(ϕ(w) ∧ O(v, w)))

According to the first definition schema, z being the fusion of all entities for which ϕ
holds means that every ϕ-er is a part of z and that every part of z overlaps with some
ϕ-er. This definition schema contains two parts, like the Definition 2.7 of binary sum: the
left part makes z an upper bound while the right part makes z as minimal as possible.

3To read more about Leśniewski fusion, see Van Inwagen (1987) and Lewis (1991). For more about
Goodman fusion, see Eberle (1970), Simons (1987) and Casati and Varzi (1999).
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The second definition schema is similar to the Definition 2.8 of binary sum: it exploits
the overlap relation to state that, for every v, v overlaps z iff it overlaps some ϕ-er.

Following Lewis (1991), take for example ϕ as “being a cat”. If z is the fusion of the
phi-ers (i.e. the things that are cats), z “is that large, scattered chunk of cat-stuff which is
composed of all the cats there are, and nothing else”. Or, in other words, z is “the thing
that overlaps all and only those things that overlap some cat”. To continue with the same
example, Definitions 2.11 and 2.12 give an example of the definition schemata used with
the predicate Cat.

Definition 2.11 (Fusion1 Of Cats).

F1Cat(z) ≜ ∀w(Cat(w) → P(w, z)) ∧ ∀v(P(v, z) → ∃w(Cat(w) ∧ O(v, w)))

Definition 2.12 (Fusion2 Of Cats).

F2Cat(z) ≜ ∀v(O(v, z) ↔ ∃w(Cat(w) ∧ O(v, w)))

As proved by (Cotnoir and Varzi, 2021, pp. 166–168), both definitions are equivalent
as long as the parthood relation is reflexive and transitive, and the theory has strong
supplementation.

Now that fusions are defined, let’s look at existence axioms. There are commonly two
axiom schemata: one restricted and the other one unrestricted, as formalised by Axiom
Schemata 2.10 and 2.11.

Axiom Schema 2.10 (Restricted Existence of Fusioni).

∃w(ϕ(w)) ∧ ∀w(ϕ(w) → ψ(w)) → ∃z(Fiϕ(z))

Axiom Schema 2.11 (Unrestricted Existence of Fusioni).

∃w(ϕ(w)) → ∃z(Fiϕ(z))

Both axioms have ∃w(ϕ(w)) as an antecedent. This is to guarantee that there is some
ϕ-er. Otherwise, it would give the existence of the fusion of no elements, thus creating a
null element, which mereological theories reject. The difference between these two axioms
is that in the first one, for a fusion z to exist, all the ϕ-ers need to satisfy some condition
ψ.

2.4.3 Universe

In mereological theories, the universe is the entity of which every other entity is a part.
Varzi (2019) defines the universe as the fusion of everything that is part of itself, as
presented by Definition 2.13. The parthood relation being reflexive, the universe is the
fusion of everything. With the unicity of fusions, the universe is generally noted U .

Definition 2.13 (The Universe).

U(z) ≜ FiP(w,w)(z)

2.5 Parts Just Once, Idempotence and Subpotence Princi-
ples

Effingham and Robson (2007) introduce the “Parts Just Once” principle as follows: “a
composite object cannot have the same object as a proper part many times over” (Effin-
gham and Robson, 2007, p. 636). This principle is not expressible in classical extensional
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mereology due to the occurrence of “many times over” as Cotnoir (2013, 2015) explains
it. Cotnoir (2015) uses similar principles, expressible in first-order logic: “Idempotence”
and “Subpotence”. Idempotence, as generally admitted, is defined as x+ x = x, where +
refers to the binary sum. Thus, summing the same entity twice cannot result in anything
else that the said entity. Cotnoir (2015) defines subpotence4 as follows: “If x is a part of
y, then the sum of x and y is identical to y.” (Cotnoir, 2015, p. 429).

2.6 Challenging Entities

In the previous sections, I presented classical extensional mereology. However, this theory
has limitations. In particular, it cannot represent entities that do not comply with the
Parts Just Once, Idempotence and Subpotence principles, presented in Section 2.5. In this
section, I present some of these entities. In particular, I present structural universals,
informational entities and types. Their analysis can provide useful knowledge about how
those entities compose. The philosophical literature on these entities is vast and addresses
questions such as their ontological nature or how they relate to other entities. I will not
delve into those, and this section will be restricted to the analysis of some mereological
issues raised by such entities.

2.6.1 Structural Universals

In this section, I give a presentation of the most common conception about structural
universals, based one the analysis of the debate on structural universals proposed by
Garbacz (2020), as well as the work of Fisher (2018). Some conceptions about structural
universals will be mentioned without further deep exploration. Before presenting what
structural universals are (or could be),5 I will make an overview of the historical debate.

What are structural universals? First, they are universals, that is, abstract entities that
explain resemblance between individuals. Consider three horses in a field. What explain
the resemblance between these three individuals (or particulars) is the universal Horse.
These three horses are said to be instances of the universal. However, the existence
of such universals is debated. Realism endorses it, while Nominalism or Conceptualism
reject their existence. For more about this debate, see Armstrong (1978c,b); Macleod
and Rubenstein (2023). Second, they are complex, that is, “somehow composed of other
universals” (Garbacz, 2020, p. 4). The debate about the nature of the composition and
the existence of structural universals dates, at least, from the 1970s and 1980s. Armstrong
(1978a) introduces the notion of structural properties: “A property, S, is structural if and
only if proper parts of particulars having S have some property or properties, T. . . not
identical with S, and this state of affairs is, in part at least, constitutive of S” (Armstrong,
1978a, p. 69). This notion of structural properties is then later discussed by Armstrong
(1986); Lewis (1986); Bigelow (1986); Forrest (1986); Bigelow and Pargetter (1989).

Lewis (1986) gives various conceptions of structural universals: the linguistic concep-
tion, the magical conception and the pictorial conception (and its variants). The linguistic
conception asserts that a structural universal is “a set-theoretic construction out of sim-
ple universals, in just the way that a (parsed) linguistic expression can be taken as a
set-theoretic construction out of its words” (Lewis, 1986, p. 31), which he rejects because
“it presupposes simple universals and so fails to account for infinite complexity” (Fisher,
2018, p. 4). The magical conception asserts that a structural universal is a mereological
atom (so it is not composed of other universals) that involves other universals. Lewis

4As explained in Footnote 6, Cotnoir first called it “idempotence”. However, in Cotnoir and Varzi
(2021), the proposition is called “subpotence”.

5A part of the debate is about the very existence of such entities. However, this debate is not in the
scope of my work. In the remainder, I will use present tense for brevity.
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rejects this conception as it has an “unacceptable price in mystery” (Lewis, 1986, p. 42).
As these two conceptions do not involve the parthood relation, I will not explore them
further.

About the pictorial conception, Lewis says:

On the pictorial conception, a structural universal is isomorphic to its in-
stances. The methane atom consists of one carbon atom and four hydrogen
atoms, with the carbon bonded to each of the four hydrogens; the structural
universal methane likewise consists of several parts, one for each of the five
atoms, and one for each of the four bonds. (Lewis, 1986, p. 33)

I will take isomorphism in Lewis’ view to mean that if an instance of the universal X
is composed of n instances of the universal Y , then X is composed n times of the universal
Y . However, Lewis argues as follows:

Each methane molecule has not one hydrogen atom but four. So if the struc-
tural universal Methane is to be an isomorph of the molecules that are its
instances, it must have the universal Hydrogen as a part not just once, but
four times over. Likewise for Bonded, since each molecule has four bonded
pair of atoms. But what can it mean for something to have a part four times
over? What are there four of? There are not four of the universal Hydrogen,
or of the universal Bonded, there is only one. (Lewis, 1986, p. 34)

Lewis considered that something cannot be part of something else multiple times.
Thus, he rejected the pictorial conception. He explored four variants of this pictorial
conception. The fourth variant interestingly assumes the existence of entities he called
amphibians. Amphibians are “like universals in the way they occur repeatedly” and “like
particulars in the way they duplicate one another” (Lewis, 1986, p. 39). According to this
conception, Methane would contain four amphibians of Hydrogen. Lewis rejected this
variant, as amphibians seem too bizarre to be taken seriously.

Garbacz (2020) proposes an analysis of the debate over structural universals. As
Lewis’ conceptions are sketchy, he proposes a formalisation for some of them: the pictorial
conception, the magical conception and the amphibian variant of the pictorial conception,
for which there are two formalisations. These formalisations are based on a mapping
between the parts of an instance of the universal U and the parts of this universal.

Garbacz then gives the facets of structural universals, which seems accepted by all
parties of the debate:

1. There are two disjoint domains of entities: individuals and universals,
where the former instantiate the latter.

2. Universals are posited, rather than discovered, to serve some theoretical
goal(s), for example [. . . ] to explain various kinds of similarity between
individuals [. . . ]

3. The relation of parthood is primarily defined on individuals [. . . ]

4. The relation of parthood or rather a counterpart thereof can be deriva-
tively defined on universals [. . . ] if individual x is part of individual y and
if this mereological fact has to do with the universals x and y instantiate,
say, respectively, V and U , then necessarily, every instance of V is part
of some instance of U .6

6The quantification and implication in the consequent seems in the wrong way, compared to Princi-
ple 2.2. Indeed, it concludes that every instance of V is part of some instance of U . But every instance of
Carbon is not a part of an instance of Methane. On the other hand, every instance of Methane has
an instance of Carbon as a part. I assume that the consequent should read “every instance of U has as
part some instance of V ”.
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5. If this account adequately represents the common assumptions of the
debate in question, we are now in the position to provide a definition
of structural universals. Here U is defined as a structural universal if
and only if there exists (at least) one universal V such that the following
principles are satisfied by U and V :

Principle 2.1. It is possible that some instance of universal U has a part
that is an instance of V .

Principle 2.2. If some instance of universal U has a part that is an
instance of universal V , then necessarily, every instance of U has a part
that is an instance of V .

If universals U and V satisfy these principles, one can say that V is part,
or better chunk, of U .

(Garbacz, 2020, pp. 9–10)

Garbacz’s Principle 2.2 is in line with my interpretation of Lewis’ isomorphism given
above. Principle 2.2 asserts that as soon as an instance of U has a part that is an instance
of V , it is the case for every instance of U . This may be problematic, as this view assumes
that all instances of U have the same mereological structure. While, to some extent,
this seems understandable for some entities, it might be problematic for others, like cats
or bikes and the universals Cat or Bike, as they can be tail-amputated cats, Manx cats
(naturally tailless cats) or bikes with a pennant. The Isomorphism principle described here
assumes that the instances used to understand the structure of the structural universals
are typical.7 The examples used here, structural universals of molecules or string types,
are not problematic in this respect. Indeed, all their instances are similar, at least at the
level of details considered: a methane molecule could contain a carbon-14 atom, while
another one could contain a carbon-12 atom. Those two carbons have a different number
of neutrons, like some cats have tail and others do not.

Garbacz gives the contestable aspects of the debate, which I will not elaborate here.
He finishes his work with a classification of the theories of structural universals, some of
which will be presented in Chapters 3 and 4.

Wetzel (2009) proposes another conception, called the Occurrence Conception. First
introduced to be used on word types (see Section 2.6.2), Wetzel generalises occurrences to
other entities like structural universals. This conception is more detailed in Section 2.6.2.
Wetzel’s occurrences are similar to Lewis’ amphibians. However, they are not the same
thing: Lewis presented the amphibians of Hydrogen as being all “all alike” (Lewis,
1986, p. 39), but occurrences of Hydrogen are different. Davis (2014) and Garbacz
(2020) discuss further the notion of occurrences.

2.6.2 String Types

As I explained in the introduction, the distinction type/token is a useful philosophical
tool. But what are such entities exactly? In this section, I present what letter and string
types are and the problems of individuation they raise.

The identity criteria of words types are discussed by many scholars (Bromberger (2011);
Hawthorne and Lepore (2011); Irmak (2019); Kaplan (1990, 2011); Lando (2019); McCul-
loch (1991); Wetzel (1993, 2009)). There are, at least, two conceptions of word types,

7“Typicality reflects how typical or representative an individual is with respect to a concept” (Yeung
and Leung, 2006, pp. 98–99). Typicality has been considered as key to understand “functional parthood”
and related transitivity issues (Vieu, 2006) and the quantification and implication form of the formula
relating parthood among universals and parthood among their instances is addressed by Bittner et al.
(2004).
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based on the identity criterion used to individuate them. Kaplan (1990, 2011) argues
that the same word type can be spelled and pronounced in different ways: the word type
“color” can be written as “colour” (in Canada and United Kingdom, for example) and
“color” (in the United States of America); “schedule” is pronounced in two different
ways. This conception is known as Kaplanian Word Types (Carrara and Smid, 2022b) or
the Common Currency Conception (Kaplan, 1990).

The other conception, called the Orthographic Conception, bases the identity criterion
of words types on their spelling: if two tokens are spelled differently, they cannot be
instances of the same word type, contrary to the Kaplanian conception. This conception
“suggests that letter types are parts of word types” (Carrara and Smid, 2022b, p. 178).
Indeed, it only takes into account the spelling of word types,8 and excludes semantic and
phonological properties of words. Thus, this conception is more interesting to us as it
challenges mereological extensionalism: consider two word types, given in introduction:
“potato” and “atop”. As letter types are unique (there are no multiple letter types
“a”), both of these word types have the following parts: “a”, “o”, “p”, “t”. Thus, by
extensionality, they must be identical, but they are not.

Multiple formalisations of the mereological structure of string types have been given.
Wetzel (2009) suggests that, in addition to types and tokens, there are also occurrences.
Consider the string type “Macavity, Macavity, there’s no one like Macavity”.
In this type, Wetzel says that the string type “Macavity” occurs three times: there
are three occurrences of the string type “Macavity”. Wetzel gives three individuating
parameters: what is occurring, in what is it occurring, and where is it occurring. From
there, she defines string types as functions. For example, the function of the string type
“atop” would be: 0 7→ “a”, 1 7→ “t”, 2 7→ “o” and 3 7→ “p”. A detailed analysis of
Wetzel’s work is proposed by Davis (2014), who also gives a slightly different approach.

Carrara and Smid (2022b) suggests that string types are pluralities of mereological
sums. Their theory is presented in Section 4.2. In this theory, they present three iden-
tity criteria “individually necessary and jointly sufficient for the identity of word types”
(Carrara and Smid, 2022b, p. 6).

String types are informational entities, some of which are involved in information
content entities, like words and sentences (Barton et al., 2020b). However, informational
entities are not limited to strings nor words: narrative fictions, musical scores, images,
process plans also are informational content entities. Sanfilippo (2021) gives a state of the
art of what are informational entities. Their mereological structure has been described by
Barton et al. (2020a,b, 2021, 2022), based on the Slot Mereology of Bennett, presented in
Chapter 3.

8As only the spelling is taken into account, we will use, in the remainder, “string types” to designate
word types under the orthographic conception. As we will see, some of the string types used as examples
are not English words.
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Chapter 3

The Slot Mereology of Bennett

This chapter presents the theory proposed by Bennett (2013), later called “Slot Mereology”
by Fisher (2013), based on the decomposition of the parthood relation into two relations.
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3.1 Theory Presentation

Bennett’s theory is motivated as an answer to Lewis’ critique of the isomorphic variant of
the pictorial conception of structural universals (see Section 2.6.1). The idea of Bennett
is inspired by the decomposition between a role and a role player. As she argues, besides
structural universals, there are some cases where two entities are linked by the same
relation multiple times. The examples she gives are the cousin relation and the three feet
from relation. If two persons are double cousins (i.e. children of pairs of siblings), then
they are cousins two times. And by considering a sphere such that the shortest distance
along the surface between two antipodal points is three feet, then these two points are
three feet from each other as many times as there are three-foot-long arcs on the surface.
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3.1.1 Definitions

Instead of a single primitive, Slot Mereology considers that an entity is a part of another
one by filling one of its slots. It uses two primitives fills (F ) and slot-of (Ps). The
former relates an entity to the slots it fills. The latter relates slots to their owners. On
these two primitives, Bennett defines five relations Parthood, Proper Parthood1, Overlap,
Slot-overlap and Proper Parthood Slot.

Definition 3.1 states that a is a part of b by filling some slot of b.

Definition 3.1 (Parthood).

P(a, b) ≜ ∃s(Ps(s, b) ∧ F(a, s))

Definition 3.2 states that a is a proper part of b iff a is a part of b and b is not a part
of a.

Definition 3.2 (Proper Parthood).

PP(a, b) ≜ P(a, b) ∧ ¬P(b, a)

Definition 3.3 states that a and b overlap by sharing a common part.

Definition 3.3 (Overlap).

O(a, b) ≜ ∃c(P(c, a) ∧ P(c, b))

Definition 3.4 states that a and b slot-overlap by sharing a common slot.

Definition 3.4 (Slot-overlap).

Os(a, b) ≜ ∃s(Ps(s, a) ∧ Ps(s, b))

In Bennett’s theory, two entities have two ways to overlap: either the same entity fills
a slot of each entity, or the two entities own the same slot.

Finally, Definition 3.5 states that a slot s is a proper parthood slot (just “proper slot”
in the following) of a iff s is owned but not filled by a.

Definition 3.5 (Proper Parthood Slot).

PPs(s, a) ≜ Ps(s, a) ∧ ¬F(a, s)

3.1.2 Axioms

Axioms 3.1 to 3.3 state the difference between slots and fillers: a slot is something that is
filled and owned, and it cannot own slots nor fill them.

Axiom 3.1 (Only Slots are Filled).

F(a, s) → ∃b(Ps(s, b))

Axiom 3.2 (Slots Cannot Fill).

F(a, s) → ¬∃b(Ps(a, b))

1Bennett’s definition of proper parthood varies from the one presented in Definition 2.1. In ground
mereology, these two definitions are equivalent as far as Axiom 2.3 holds. For more information about
their differences, see (Cotnoir and Varzi, 2021, pp. 65–68) and (Carrara and Smid, 2022a).
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Axiom 3.3 (Slots Don’t Have Slots).

Ps(s, a) → ¬∃t(Ps(t, s))

Axiom 3.4 states that wholes have improper slots, that is slots filled by their owner.

Axiom 3.4 (Improper Parthood Slots).

∃s(Ps(s, a)) → ∃t(Ps(t, a) ∧ F(a, t))

Axiom 3.5 states that slots of parts are inherited.

Axiom 3.5 (Slot Inheritance).

[Ps(s, b) ∧ F(a, s) ∧ Ps(t, a)] → Ps(t, b)

Axiom 3.6 states that if two fillers occupy each other slots, they are equal.

Axiom 3.6 (Mutual Occupancy is Identity).

(Ps(s, b) ∧ F(a, s)) ∧ (Ps(t, a) ∧ F(b, t)) → a = b

Axiom 3.72 states that a slot has only one filler.

Axiom 3.7 (Single Occupancy).

Ps(s, a) → ∃!b(F(b, s))

Axiom 3.8 states that if two entities a and b have a slot and b is not a part of a, then
b has a slot that a does not own.

Axiom 3.8 (Slot Strong Supplementation).

∃s(Ps(s, a)) ∧ ∃t(Ps(t, b)) → [¬(∃u(Ps(u, a) ∧ F(b, u))) → ∃v(Ps(v, b) ∧ ¬Ps(v, a))]

3.1.3 Theorems

Theorems 3.1 to 3.6 show that F and Ps are irreflexive, asymmetric and transitive, which
make them strict order relations.

Theorem 3.1 (Filler-Irreflexivity).

∀a(¬F(a, a))

Theorem 3.2 (Filler-Asymmetry).

∀a, s(F(a, s) → ¬F(s, a))

Theorem 3.3 (Filler-Transitivity).

∀a, b, c(F(a, b) ∧ F(b, c) → F(a, c))

Theorem 3.4 (Slot-Irreflexivity).

∀s(¬Ps(s, s))

2Following Garbacz (2016), I have corrected the typographical mistake in Bennett’s axiom stating as a
consequent ∃!b(F(s, b)). This cannot be as s is a slot, and therefore, it cannot fill.
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Theorem 3.5 (Slot-Asymmetry).

∀a, s(Ps(s, a) → ¬Ps(a, s))

Theorem 3.6 (Slot-Transitivity).

∀s, t, u(Ps(s, t) ∧ Ps(t, u) → Ps(s, u))

Theorems 3.7 to 3.9 show that the parthood relation, defined by Definition 3.1, is tran-
sitive, anti-symmetric and (conditionally) reflexive, as expected from a parthood relation.

Theorem 3.7 (Transitivity).

∀a, b, c(P(a, b) ∧ P(b, c) → P(a, c))

Theorem 3.8 (Anti-Symmetry).

∀a, b(P(a, b) ∧ P(b, a) → a = b

Theorem 3.9 (Conditional Reflexivity).

∀a(∃s(Ps(s, a)) → P(a, a))

Theorem 3.10 (resp. Theorem 3.11) states that anything that has a (resp. proper)
part has a (resp. proper) slot. Both theorems originally contain a typographical mistake.
The theorems are introduced as “everything that has a part has a parthood slot, and vice
versa (ditto for proper parts)” (Bennett, 2013, p. 94).

Theorem 3.10 (Parts ↔ Slots).

∀a(∃b(P(b, a)) ↔ ∃s(Ps(s, a)))

Theorem 3.11 (Composites ↔ Slot-Composites).

∀a(∃b(PP(b, a)) ↔ ∃s(PPs(s, a)))

Theorem 3.12 states that if a is a proper part of b, then there is a slot owned by b, but
not by a. Bennett intended it as a slot version of Weak Supplementation (see Axiom 2.6).
However, as presented in Section 3.2.1, Bennett’s theory makes the similarity with Weak
Supplementation “viciously superficial” (Garbacz, 2016, p. 173).

Theorem 3.12 (Slot Weak Supplementation).

∀a, b(PP(a, b) → ∃s(Ps(s, b) ∧ ¬Ps(s, a)))

Finally, Bennett introduces Theorem 3.133 as a slot version of PP-Extensionality.
However, as showed by Garbacz (see Section 3.2.1), this is a not a theorem of the theory.

Theorem 3.13 (Slot Extensionality).

∀a, b[∃c(PP(c, a)) ∨ ∃c(PP(c, b)) → (a = b↔ ∀s(PPs(s, a) ↔ PPs(s, b)))]

3Following Garbacz (2016), I have corrected the the last quantifier, which was mistyped: ∃ instead of
∀.
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3.1.4 About Composition

In her theory, Bennett did not propose any sum operator. However, she made three
remarks about sums.

First, she noted that a fully unrestricted axiom of unrestricted sum is not reasonable.
Indeed, she argues that in her theory, slots cannot be parts of anything, so there cannot
be sums involving slots.

Second, slots being put aside, she argues that sums of fillers cannot be unique. Bennett
gives an example of two things a and b that might have multiple sums: a+b, a+a+b. There
are entities that have the same parts but not the same number of them. For example,
Methane and Ethane (CH4 and C2H6) have the same atom universals as parts, but in
different quantities. Moreover, keeping our molecule universal examples, we could think
of molecules that are not bonded in the same way. As pointed out by Lewis (1986) and
McFarland (2018), butane and isobutane have the same chemical formula, i.e. the same
parts (C4H10), but are isomers, i.e. their parts are arranged in different ways. If a sum of
fillers were to exist, it cannot be idempotent, as it would make Methane and Ethane
the same entity. Nonetheless, even a non-idempotent sum would not be enough as it would
not enable us to differentiate Butane and Isobutane universals.

Third, she argues that a non-idempotent sum of fillers would entail that the world is
junky (i.e. everything is a proper part of something else; see (Cotnoir and Varzi, 2021,
pp. 220–229)), and thus, there is no universe. This is in opposition with classical mereology,
whose unrestricted composition makes junks impossible (see Bohn (2009); Schaffer (2010);
Cotnoir (2014)). She gives the following example:

“To see this, imagine a world with two simple fillers, a and b. Almost unre-
stricted composition entails that they have a fusion; call it c. But if every two
or more things have a fusion, then every composite must fuse with each and
all of its own proper parts. So c and a must compose something, as must c
and b, and c and a and b (also known as d).” (Bennett, 2013, p. 99)

3.1.5 Some Examples

3.1.5.1 The Structural Universal Methane

Any methane molecule particular is composed of five atoms: one carbon and four hy-
drogens, each bound to the carbon atom. Moreover, any carbon atom particular has six
electrons, and each hydrogen atom particular has one electron.4 Using slot mereology, the
universal Methane is described as having five proper slots, one for the Carbon universal
and four for the Hydrogen universal. The current structure is described by Facts (3.1)5

and pictured in Figure 3.1, where a oo
s

represents Ps(s, a), a
s

represents F(a, s) and

a
s zz represents Ps(s, a) ∧ F(a, s) (the same notation will be used in following figures).
Note that Axiom 3.4 entails that S0 exists and is an improper slot of Methane.

Ps(Si,Methane) 0 ≤ i ≤ 5 F(Hydrogen, Si) 2 ≤ i ≤ 5
F(Methane, S0) F(Carbon, S1)

(3.1)

Let us represent the electrons of each atom. Each carbon atom has six electrons, and
each hydrogen atom has one. So, in our case, the universal Carbon owns six slots filled

4Note that atoms also have other parts, such as nuclei, but for simplicity, we only represent electrons
in this example. The reasoning we will develop for electrons also applies to other parts such as nuclei.
Furthermore, the specific problems of identity raised by quantum mechanics are ignored (see (French,
2019)).

5The formulas that use index i are compact notations for several formulas.
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Figure 3.1: Representation of Methane and its parts, Carbon and Hydrogen

with Electron, whereas the universal Hydrogen owns only one, as described by Facts
(3.2).

F(Electron, S12) ∧ Ps(S12,Hydrogen)
F(Electron, Si) ∧ Ps(Si,Carbon) 6 ≤ i ≤ 11

(3.2)

One thing to keep in mind is the fact that even if there are four slots of Methane
filled by Hydrogen, there is only one universal of Hydrogen, which has only one slot
filled by Electron. Bennett’s Axiom 3.5 states that wholes inherit slots from their
parts. In our case, this means that Methane inherits from Carbon and Hydrogen
their slots filled by Electron. Methane inherits six slots from Carbon and only one
slot from Hydrogen. Considering that Methane has no other slots filled by Electron,
Methane has in total seven slots filled by Electron.

According to Axioms 3.4 and 3.5, there are two additional slots, called S13 and S14,
that are improper slots of Carbon and Hydrogen, respectively (see Facts (3.3)). For
readability, we do not present the full mereological structure of Methane here. Nonethe-
less, other examples are presented, with a full representation of the mereological structure,
in Chapter 10.

Ps(S13,Carbon) Ps(S14,Hydrogen)
F(Carbon, S13) F(Hydrogen, S14)

(3.3)

Regarding improper slots S13 and S14, there are two possibilities: either those two
slots are different from the ones previously mentioned, or some of them are identical to
some of the previously mentioned slots. In this example, we chose the first possibility: S13
and S14 are different from all the other slots. All the slots of Carbon and Hydrogen
are inherited by Methane, due to Axiom 3.5: Ps(Si,Methane) (6 ≤ i ≤ 14). Note that
it is also the case for improper slots.

3.1.5.2 The Structural Universal TwoAdjoiningRooms

Consider the universal whose instances are two two-wall rooms6 separated by an adjoining
wall. We consider the universals Wall, Room and TwoAdjoiningRooms. The first
one is atomic and only has an improper slot SWall. The second one has an improper slot
SRoom and two slots S1 and S2 filled by Wall. Finally, the last one has an improper slot
STAR and two slots S3 and S4 filled by Room. The mereological structures are pictured
in Figure 3.2 where only improper slots and direct slots are represented.

TAR33 kk
��
STAR

Room

S3

Room

S4

(a) TwoAdjoiningRooms

Room44 jj
��
SRoom

Wall

S1

Wall

S2

(b) Room

Wall
��
SWall

(c) Wall

Figure 3.2: Direct slots of TwoAdjoiningRooms (TAR), Room and Wall

6Although our world does not abound with two-wall rooms, this makes for a simple example. One may
imagine a semi-circular wall closed by a straight wall.
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3.2 Critiques from the Literature

Various critiques, more or less developed, exist about Bennett’s theory. In the following
sections, I present and analyze three of them, i.e. Garbacz’s, Fisher’s and Cotnoir’s.

3.2.1 Garbacz’s Critique

Garbacz (2016) shows why Bennett’s proof of Theorem 3.12 based on Axiom 3.8 is in-
valid: the premise of Theorem 3.12 (PP(a, b)) does not imply the premises of Axiom 3.8
(∃s(Ps(s, a)) ∧ ∃s(Ps(s, b))). Indeed, a being a proper part of b implies that b has a slot,
but tells nothing about a having a slot. Garbacz thus offers two solutions: weaken 3.8 or
introduce a new axiom that states that every filler has a slot, which can be improper.

Garbacz notes that even though Bennett’s proof is not correct, Theorem 3.12 still is
a theorem of the theory. Indeed, the Slot Weak Supplementation Theorem states that
“if a is a proper part of b, then b has a parthood slot s that isn’t a parthood slot of
a” (Bennett, 2013, p. 97). As a is a proper part of b, it occupies one of the slots of b.
According to Axiom 3.4, b has an improper slot (let’s call it t). Slot t cannot be owned
by a, otherwise, by Axiom 3.6 (Mutual Occupancy Is Identity), a and b would be equal,
which would contradict the fact that a is a proper part of b. So, in every case, Slot Weak
Supplementation is satisfied thanks to the existence of the improper slot of b. Note that if
the slot s of b filled by a is not an improper slot of a (that is, it is not owned by a), it is true
that Ps(s, b)∧¬Ps(s, a), and thus the Slot Weak Supplementation is satisfied. As Garbacz
noted, “instead of being a form of supplementation, [Theorem 3.12] is a consequence of
the specific form of the reflexivity of slot parthood: each object that has slots fills a slot
in itself”.

Moreover, Garbacz (2016) showed that Theorem 3.13 is not a theorem of Bennett’s
theory. Indeed, Garbacz gives a model of the theory, pictured in Figure 3.3, in which all
Bennett’s axioms are satisfied, but not Theorem 3.13. Consequently, Garbacz proposed
three revisions of Axiom 3.8 to be able to prove Theorem 3.13.

a
��
aa

s

b
��

==

t

c
zz

u

Figure 3.3: Garbacz’s counter-example

Garbacz’s final revision of 3.8 is exposed in (3.4). Intuitively, it means that if b has a
proper slot and b is not a part of a, then there is a proper slot of b that is not a proper
slot of a.

∀a, b[∃s(PPs(s, b)) → (¬∃t(Ps(t, a) ∧ F(b, t)) → ∃u(PPs(u, b) ∧ ¬PPs(u, a))] (3.4)

3.2.2 Fisher’s Critique

Fisher (2013, 2018) analyses the ontological cost of Bennett’s slot mereology and explains
why slot mereology cannot account for the composition of structural universals.

Fisher first compares the ideological costs of slot mereology and CEM, using the num-
ber of primitives as the comparison criterion: the fewer primitives there are, the cheaper
it is. Thus, his first argument is the following:

“In comparing CEM with slot-mereology, it follows that (ceteris paribus) the
extra primitive is a prima facie reason to reject slot-mereology. If we do not
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have an argument that defeats this prima facie reason, we ought to reject slot-
mereology.” (Fisher, 2013, p. 759)

In Fisher’s argument, I think that the “ceteris paribus” is of great importance. Indeed,
CEM and slot mereology are not equal, besides the number of primitives: slot mereology
has more expressive power than CEM. Even though, as we have seen in Section 3.1.4, slot
mereology cannot account for the difference between Butane and Isobutane universals,
it can account for Methane and Ethane universals, whereas CEM cannot. Therefore, it
seems that the ceteris paribus clause is wrong here. So the extra primitive is not a prima
facie reason to reject slot mereology, contrary to what Fisher argues.

The next Fisher’s argument I want to discuss about is his objection based on Theo-
rem 3.13. His argument is the following:

“Notice that being butane has being hydrogen ten times over, being carbon
four times over, and bonded thirteen times over. It therefore has twenty-seven
parthood slots, each filled by its respective universal. But being isobutane also
has being hydrogen ten times over, being carbon four times over, and bonded
thirteen times over. Therefore, it also has twenty-seven parthood slots. Given
Slot Extensionality ([Theorem 3.13]), ‘composite objects are identical just in
case they have exactly the same proper parthood slots’ [(Bennett, 2013, p. 97)].
Therefore, being isobutane and being butane are identical. [ . . . ] according to
slot-mereology they are identical given that they have the same number of
slots.” (Fisher, 2013, p. 760)

Besides the fact that Slot Extensionality is not a theorem of Bennett’s slot mereology
(see Section 3.2.1), it seems that Fisher used a stronger version of the theorem. Indeed,
the theorem states that “composite objects are identical just in case they have exactly
the same proper parthood slots” (Bennett, 2013, p. 97). However, Fisher seems to use a
version that states that composite objects are identical just in case that, for every existing
filler, they have the same number of slots filled by this filler. According to Bennett’s Slot
Extensionality, it would require, for Butane and Isobutane to be identical, that both
owns the exact same proper slots. Nonetheless, as already analysed by (Masolo and Vieu,
2018, p. 73), nothing enforces that Butane and Isobutane have a common slot, besides
inherited slots (see Section 3.3), let alone that they share all their proper slots. However,
it is true that the mereological structures of Butane and Isobutane are similar, not to
say almost identical. I think this is an expected result, as the difference between them
is a structural one, and not mereological one. They are different not because they have
different parts, but because their parts are not bonded in the same way.

3.2.3 Cotnoir’s Critique

Cotnoir (2015) presents some remarks and open questions about Bennett’s theory. First,
following Fisher (2013), he notes the ideological cost involved in ontological commitments
to slots. In particular, he asks “[h]ow exactly are we to think of slots?” (Cotnoir, 2015,
p. 435). Then he notes that Bennett does not provide any mereological sum or fusion
on parts. Cotnoir’s remarks complete Bennett’s remarks on composition, presented in
Section 3.1.4.

“Slots cannot be parts of slots; nor are they parts of the objects they are slots
for. As a result, it is very difficult to tell when looking at some parts a and
b what their sum should be. We need to know what slot-structure is present
in the whole before we can determine what the relevant sum is. How many
slots need to be filled? There are many possible answers to this question,
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each of which determines at least one distinct object, but usually many more.
Suppose, for example, the whole has three slots. Then there are six possible
sums aab, aba, baa, abb, bab, and bba, assuming it matters to the identity
of the object which part fills which slot. Even if we identify objects like aba
and baa, we still fail to have it that mereological sum is unique (i.e. the
extensionality of sums fails). Perhaps this is to be expected; but it would be
nice to have a theory of composition that explained this. However, given the
complexities of composition Bennett does not develop any theory of it. These
are open questions a fully developed non-idempotent mereology would need to
answer.” (Cotnoir, 2015, p. 436)

3.3 My Critique

3.3.1 About the 8th Axiom

Bennett’s Axiom 3.8 is an adaptation of classical strong supplementation into slot mereol-
ogy. It is used in the proofs of Slot Weak Supplementation (3.12) and Slot Extensionality
(3.13). However, as we have seen above, Garbacz (2016) showed that this move has multi-
ple problems, as 3.12 does not capture the idea of Weak Supplementation and 3.13 actually
is not a theorem of Bennett’s theory. Therefore, Garbacz proposed a revision of the theory.
We can even go further than Garbacz’s reasoning by noticing that Axiom 3.8 is actually
a theorem of the theory. Here follows a proof that Axiom 3.8 is a theorem of Bennett’s
theory.

Proof. Let a and b be two fillers such that both have a slot. Suppose that there are no slot owned by a
and filled by b, i.e. suppose that b is not a part of a. Let us call this H1. We want to prove that there is
some slot that is a slot of b but not a slot of a. From the assumptions, b has a slot. Thus, by Axiom 3.4,
there is a slot u that is an improper slot of b. Suppose that u is owned by a: contradiction with H1.
Therefore, u is owned by b, but not by a.

3.3.2 Counting Problems

“Counting how many times filler A has filler B as a part” means counting the number of
appearances of B in A. But what counts as a genuine appearance? As Bennett’s theory
includes improper slots, we can define two counting criteria. The first counting criterion,
C1, enables us to count the number of different slots owned by A that are filled by B,
whether they are also owned by B (and are thus improper slots of B) or not. The second
counting criterion, C2, enables us to count the number of different slots owned by A that
are filled by B and that are not owned by B (that is, that are not improper slots of B).
Note that it means that, according to C2, A is part of itself zero times, even though A
has improper slots. Therefore C2 is only relevant when counting proper parts.

The results obtained with the two criteria will be compared following the isomorphism
principle proposed by Lewis (1986), presented in Section 2.6.1: a methane molecule has
as parts one carbon atom particular, four hydrogen atom particulars and ten electron
particulars.7 Thus, we expect from a mereological theory adequate for non-idempotent

7As noticed by a reviewer of (Tarbouriech et al., 2024), in some common understanding of chemistry,
only atoms are considered as bona fide parts of molecules, and electrons are only considered when analysing
bonding between atoms. The chemistry examples of this work mainly serve to illustrate the formal theory,
in particular parthood transitivity, and should not be considered as providing a detailed account of mere-
ology in chemistry. If the Electron universal is not to be considered as a part of molecule universals,
further work might be needed to address parthood transitivity issues among universals, similarly as when
applying classical mereology to represent parthood relations among concrete particulars (see, e.g., (Vieu,
2006)).
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entities and counting criterion to lead to the methane molecule universal Methane having
as parts Carbon once, Hydrogen four times and Electron ten times.

Bennett’s theory raises two issues concerning the countability of parts: a first one stems
from the existence of improper slots, and a second one from slots of parts. Ultimately, as
we will see, both are caused by the slot inheritance axiom (Axiom 3.5).

3.3.2.1 Improper Slot Problem

Let us say we want to count the number of times Hydrogen is part of Methane.
Methane has five different slots filled with Hydrogen: four direct slots8 (S2 to S5)
and one inherited slot (S14), the latter being the improper slot of Hydrogen itself.
Hydrogen is part of Methane five times according to C1 and four times according
to C2.9 By comparing those results with the expected result when we count how many
hydrogen particulars belong to a particular of methane molecule, we can state that criterion
C2 leads to a correct result, whereas criterion C1 leads to an incorrect result.

Among the possible models of the slot mereology, Figure 3.4 illustrates three models
worthy of interest. In these models, A and B are different and B is part of A. Here is an
informal description of the three models:

(a) A has only one slot S1 that is filled by B and this slot is not owned by B;

(b) A has only one slot S1 that is filled by B and this slot is also owned by B (and thus,
is an improper slot of B);

(c) A has exactly two different slots S1 and S2 that are filled by B. One of these slots
(say S2) is also owned by B.

A
��S0

OO

B
S1

(a)

A
��S0

OO

B
S1

rr

(b)

A
��S0

?? ``

B
S1

B
S2
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Figure 3.4: Three possible models of the slot mereology.

From the facts represented in Figure 3.4, we can deduce the following facts:

• in model (a), according to both C1 and C2, B is part of A once;

• in model (b), by C1, B is part of A once. However, by C2, B is part of A, but zero
times ;

• in model (c), by C1, B is part of A twice. However, by C2, B is part of A once.10

According to the counting criteria, we get different results for models (b) and (c).
Since it is obviously absurd for B to be part of A, but zero times, C2 is inappropriate.
Thus, we have shown that neither C1 (by the Methane example) nor C2 (by examples
of Figure 3.4) can be compatible with Bennett’s theory.

8 I define direct slots for Bennett’s theory as in Definition 3.6.

Definition 3.6 (Direct Slot). DPs(s, a) ≜ Ps(s, a) ∧ ¬∃b(PP(b, a) ∧ Ps(s, b))

9Note that different results from the ones presented are possible if a different representation of the slot
structure of the methane molecule is used.

10S1 and S2 are filled by the very same universal. In contrast to Bennett’s figures in which slots can be
drawn one inside another, we chose to separate them, even if it implies to repeat the filler.
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3.3.2.2 Parts of Parts Problem

The second problem stems from the parts of the parts. Let’s say we want to count how
many times Electron is part of Methane. If we do so, we will find six slots inherited
from Carbon (namely S6, S7, S8, S9, S10, S11) and one slot inherited from Hydrogen
(namely S12), that is, seven slots in total. C1 would thus lead to Methane having
Electron as a part seven times, whereas C2 would lead to it having Electron as a
part at most seven times (depending on whether some of those slots also are improper
slots of Electron). This result is different from the expected result of Electron being
part of Methane ten times.

3.3.2.3 Conclusion on the Two Counting Problems

These two problems are in fact caused by the same axiom of slot inheritance (Axiom 3.5),
which i) makes improper slots inheritable and ii) does not make the subparts inheritable
multiple times. Since this axiom was presumably introduced by Bennett to allow parthood
transitivity, we will need, in the proposals that will be presented in Chapters 5, 8 and 9, to
replace it by alternative axioms that do not lead to the same problems, while still ensuring
parthood transitivity.

3.3.3 About the Overlap Relation

In her theory, Bennett defines two overlap relations: the overlap on fillers (Definition 3.3)
and the overlap on slots (Definition 3.4). The first relation is the classic overlap relation
of mereology. However, in the examples we are interested in, this relation is not that
relevant. Indeed, if we consider the structural universals of organic molecules, all those
universals are overlapping, because they all have as a part the universal of Carbon. The
second relation introduced by Bennett, at first sight, seems more interesting: two fillers
are slot-overlapping if they share a slot. However, the relevance of this relation is also
questionable: remember that in Bennett’s theory, the improper slots are also inherited.
So, in our examples of universals of organic molecules, each of them inherits the improper
slot of the Carbon universal. One could posit that the universal of Carbon does not
have an improper slot. However, as soon as Carbon is assumed to have parts (for instance
Electron), it does have an improper slot. Therefore, all universals of organic molecules
slot-overlap with each other. Once again, the problem here ultimately lies in the Slot
Inheritance Axiom 3.5.

A second problem with Bennett’s overlap is about model ambiguity. Consider the two
strings “xyz” and “xyyz”. The mereological structure pictured in Figure 3.5 is compat-
ible with Bennett’s theory, where X can be either “xyz” or “xyyz”. “xy” and “yz” are
overlapping in the general sense of having a common part (namely “y”). But from the
mereological structure pictured on this figure, there is no way to know whether “xy” and
“yz” are overlapping in the sense of sharing the same occurrence of “y” (as in the whole
“xyz”) or not (as in the whole “xyyz”). While a model in which there are two different
slots filled by “y”, one owned by “xy” and the other by “yz”, can exclusively represent
“xyyz”, we cannot find a model exclusive to “xyz” that contains slots filled by “xy”, “y”,
and “yz”. The model pictured in Figure 3.5 seems to be such a model for “xyz”, but it is
ambiguous, as just showed.
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Chapter 4

Alternative Theories

This chapter presents other theories existing in the literature to represent non-idempotent
entities. They do not serve as the basis of the solutions I will develop in Part II. However,
they provide other views on the representation of non-idempotent entities. Some existing
theories that explore the representation of non-idempotent entities are not discussed in
this section. Wetzel (2009) and Barton et al. (2020a,b, 2021, 2022) have been addressed
in Section 2.6. Mormann (2012) and Masolo and Vieu (2018) use states of affairs and
graph theory to represent mereological structures, which is too far from our aim to use
first order logic.
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4.1 Cotnoir – Multisets

4.1.1 Theory Presentation

As Cotnoir (2015) writes it, his aim was “to explore and develop a mereology for which
[subpotence] and Parts Just Once can fail.” (Cotnoir, 2015, p. 445). These principles
have been presented in Section 2.5. Cotnoir proposes what he called a non-idempotent
mereological theory, using multiset theory (see (Blizard, 1989) for more). Multisets are
similar to sets, except that each element is associated to some multiplicity. A multiset A
can be characterised by its multiplicity map mA : D → N, where D is a class of multisets,
such that mA(x) > 0 iff x ∈ A. The multiplicity of x in A is assumed to be unique. Note
that multisets are extensional, as they are defined by the multiplicities of their elements.

Cotnoir defines parthood and proper parthood with Definitions 4.1.1 and 4.1.2. The
parthood relation is reflexive, transitive and antisymmetric.

Definition 4.1.1 (Part). A ⊆ B iff mA(x) ≤ mB(x), for all x ∈ D
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Definition 4.1.2 (Proper Part). A ⊂ B iff A ⊆ B ∧A ̸= B

Cotnoir also defines other notions of parthood, namely whole parthood and full part-
hood, and the notion of root with Definitions 4.1.3 to 4.1.5. For example, the mset {a, a}
is a whole part of {a, a, b} and {a, b} is a full part of {a, a, b}. As noted by Cotnoir, “full
parts are just parts that have the same root” (Cotnoir, 2015, p. 442). Cotnoir also gives
an example with structural universals: “the structural universal Water is a full part,
but not a whole part, of the universal Hydrogen Peroxide” (Cotnoir, 2015, p. 442).
Presumably, Cotnoir considers that Water contains Hydrogen twice and Oxygen once,
while Hydrogen Peroxide contains Hydrogen and Oxygen twice.

Definition 4.1.3 (Whole Part). A is a whole part of B iff for all x ∈ D, if mA(x) > 0,
then mA(x) = mB(x)

Definition 4.1.4 (Root). The root of an mset A is the set A∗ = {x ∈ D | mA(x) > 0}

Definition 4.1.5 (Full Part). A is a full part of B iff A ⊆ B and A∗ = B∗

Cotnoir proposes a first notion of composition, namely sum, with product as its dual,
defined by Definitions 4.1.7 and 4.1.8. With this notion, he also defines overlap in a
non-classical way, as presented by Definition 4.1.6. Indeed, using the classical definition
of overlap based on the parthood relation, it would imply that everything overlaps with
everything else, as every msets have the empty mset as a part.

Definition 4.1.6 (Overlap). A and B overlap iff A ∩B ̸= ∅

Definition 4.1.7 (Sum). A ∪B is the mset defined by mA∪B(x) = max(mA(x),mB(x))

Definition 4.1.8 (Product). A∩B is the mset defined by mA∩B(x) = min(mA(x),mB(x))

Cotnoir also introduces, with Definition 4.1.9, the notion of powermset as a way to
have the exact multiplicities of each part. For example, the powermset of {x, x, y} is
{∅, {x}, {x}, {x, x}, {y}, {x, y}, {x, y}, {x, x, y}}. In this case, {x} being in the powermset
twice means that {x} is part of {x, x, y} twice.

Definition 4.1.9 (Powermset). The powermset of an mset X, ℘̃(X), is the multiset
containing (multiplicities of) all parts of X

Cotnoir introduces the notions of merge and complements with Definitions 4.1.10
and 4.1.11.

Definition 4.1.10 (Merge). A ⊎B is the mset defined by mA⊎B(x) = mA(x) +mB(x)

Definition 4.1.11 (Complements). If A ̸⊆ B then A − B is the mset defined by
mA−B(x) = mA(x) −mA∩B(x), for all x ∈ D

4.1.2 My Critique

Cotnoir’s aim was to “to explore and develop a mereology for which idempotence and
Parts Just Once can fail.” (Cotnoir, 2015, p. 445), which he managed to achieve (see
below). However, using multisets has some consequences that I would like to discuss.
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4.1.2.1 Mereological Relations

Cotnoir’s theory provides a partial order relation that handles multiplicities defined on
multisets. However, the definition of the parthood relation entails uncommon results:

• the empty mset being a submset of all msets, it is a part of everything, which is
a generally unwanted result in mereological theories. However, Cotnoir provides a
non-classical definition of overlap that takes this into account. Therefore, the overlap
does not hold between any pair of msets.

• the structural universal Water is a part of the structural universal Hydrogen
Peroxide.

In his paper, Cotnoir only states that Water is part of Hydrogen Peroxide, but
he does not state whether Oxygen and Hydrogen are parts of Water and Hydrogen
Peroxide. Is it possible to be a part and a member of the same mset? The structural
universal Water is the mset {H,H,O}.1 To be a part is to be a submset. The submsets
of Water are ∅, {H}, {H}, {O}, {H,H}, {H,O}, {H,O}, {H,H,O}. Therefore, if H and
O are submsets of Water, each of them must be identical with one of the members of
the powermset. The mset {H,H,O} is Water itself. Furthermore, the multiset theory
possesses an axiom of foundation (see (Blizard, 1989, pp. 47–48)) that rules out the cases
where msets are members of themselves and where pairs of msets are mutually members
of each other. Therefore {H}, {O}, {H,H} and {H,O} are not identical to H and O.
Finally, the only mset remaining among the ones cited above is the empty set. But if
both Hydrogen and Oxygen are unintuitively the empty set, they are equal, which is
an unwanted conclusion. Therefore, it is not possible for Hydrogen and Oxygen to be
both members and parts of Water.

If Hydrogen and Oxygen are not parts of Water, Cotnoir’s mereology states that
Water is part of Hydrogen Peroxide, which is too far from what is commonly expected
from a mereological theory. Finally, maybe the problem comes from the definition of
parthood.

Let us suppose that Hydrogen and Oxygen are not members of Water. What
could be the members of these three msets? One possible formalisation is to consider
that there is some o and h such that Oxygen is {o}, Hydrogen is {h} and Water is
{h, h, o}. This way, Hydrogen and Oxygen are parts of Water. However, this raises
the question of the nature of h and o. Furthermore, Cotnoir states that the members of an
mset are msets. Thus, this raises the question of what would be the nature of the elements
of h and o, and how to avoid infinite regression without inducing unwanted chemical facts:
if Hydrogen contains the empty mset n times and Oxygen contains the empty mset m
times, one is part of the other.

A possible solution to make compatible being parts and members is to define being
part as being member. This way, Hydrogen and Oxygen would be parts of Water
and Water would not be a part of Hydrogen Peroxide. However, while the submset
relation is a partial order (reflexive, antisymmetric and transitive), it is not the case for
the member relation, which is irreflexive, asymmetric and non-transitive. Thus, the aim to
obtain a theory similar to ground mereology, i.e. based on a partial order, is not reached.

4.1.2.2 Multiplicities

In Cotnoir’s theory, counting the multiplicities of parts can be done using the powermset,
i.e. the mset containing all submsets of an mset. Consider the example of the structural

1The chemical symbols H and O are used for brevity while expressing msets. They respectively refer
to Hydrogen and Oxygen.
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universal TwoAdjoiningRooms presented in Section 3.1.5.2. Using Cotnoir’s theory, the
structural universal Room might be represented by the mset {W,W,W,W} where W is the
universal Wall.2 Similarly, the universal TwoAdjoiningRooms might be represented
by the mset {W,W,W,W,W,W,W}, containing W seven times as there is a common wall.
The powermset of TwoAdjoiningRooms contains {W,W,W,W} 35 times.3 In other
words, Room is a part of TwoAdjoiningRooms 35 times, instead of the expected two
times. Finding a representation that would avoid this problem is a challenge for Cotnoir’s
theory.

4.1.2.3 Decomposition Principles

Msets are extensional, i.e. if two msets have exactly the same members with the same
multiplicities, they are the same mset. From this, one could deduce mereological exten-
sionality: two msets that have the same parts with the same multiplicities have the same
powermset, and two msets that have the same powermset are identical. Therefore, two
msets that have the same parts with the same multiplicities are identical. However, as
mentioned in Section 2.6.1, some structural universals have the same parts and are differ-
ent, like Butane and Isobutane. Thus, it is not clear how the theory could be extended
to handle such cases.

Cotnoir introduces a notion of complement. However, as he mentions, there are a lot
of counter-intuitive and non-classical results: the sum of an mset and its complement does
not necessarily equal the universe, and their product is not necessarily the empty set (i.e.
an mset and its complement can overlap). We can also add to that that an mset can be
its own complement. For example, the complement of {a} in {a, a} is {a} itself.

4.1.2.4 Composition Principles

Let us see how Cotnoir’s theory deals with providing some composition operations that
handle multiplicities. Consider once again the example of the universal TwoAdjoin-
ingRooms. It is the mset {W,W,W,W,W,W,W}, containing W seven times, as there is
a common wall. Of the operations proposed by Cotnoir, the sum Room ∪Room is equal
to {W,W,W,W} (i.e. Room itself) and the merge Room⊕Room is {W,W,W,W,W,W,
W,W} (i.e. the mset containing Wall eight times). Therefore, there are no operations
in Cotnoir’s theory that make possible a composition with partial overlap.

4.1.2.5 Conclusion On Cotnoir’s Theory

For the reasons explained in the above sections, Cotnoir’s theory does not seem to be
an adequate solution to represent non-idempotent entities. While Bennett’s theory has
some counting problems, it is axiomatised in first-order logic, unlike Cotnoir’s mereology.
Cotnoir admits the lack of axiomatisation as a current limitation of his theory. As first-
order logic is more compatible with standard works in applied ontology, Bennett’s theory
seems to be a better choice.

2Taking into account the results of the previous discussion, Room could be represented by {w,w,w,w}
and Wall by {w}, but this would not change the argumentation developed here.

3Cotnoir gives the following instructions to obtain the powermset: “first imagine distinguishing between
each individual ‘instance’ of a given element in X; second, take the classical powerset; and third, undo all
the ‘distinctions’ you made in step one.” (Cotnoir, 2015, p. 442). If we distinguish each ‘instance’ with
a subscript number, TwoAdjoiningRooms equals {W1,W2,W3,W4,W5,W6,W7}. The number of sets of
size 4 is

(
7
4

)
, i.e. 35.
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4.2 Carrara and Smid – Plural Logic

4.2.1 Theory Presentation

Carrara and Smid (2022b) claim that the two main controversies of mereology are about
the condition of existence and the uniqueness of fusions. The latter is about the extension-
ality of parthood (see Section 2.3.3 for more). As explained in Section 2.6.2, word types
challenge classical mereology. In their article, they “investigate an approach to word types
that is compatible with classical mereology, and in particular with extensionality” (Car-
rara and Smid, 2022b, p. 3). As alternative proposals, such as the ones of Bennett (2013)
or Cotnoir (2015) we have just seen, they propose a theory compatible with classical mere-
ology. To do so, they use plural logic (see Yi (2005, 2006); Oliver and Smiley (2016) for
more about plural logics).

Carrara and Smid use the overlap relation4 as a primitive for classical theory, and
define parthood, proper parthood and fusion as in Definitions 4.2.1 to 4.2.3. x is a part
of y if everything that overlaps with x overlaps with y. Proper parthood is defined as in
Definition 2.1. Finally, y is a fusion of the ϕ-ers iff for every entity, it overlaps with y iff it
overlaps with a ϕ-er, i.e. this is Goodman fusion (see Definition Schema 2.10). The fusion
of two things (the binary sum) is noted x+ y.

Definition 4.2.1 (Parthood).

P(x, y) ≜ ∀z(O(z, x) → O(z, y))

Definition 4.2.2 (Proper Parthood).

PP(x, y) ≜ P(x, y) ∧ ¬P(y, x)

Definition 4.2.3 (Fusion).

F (y, ϕ) ≜ ∀z(O(z, y) ↔ ∃x(ϕ(x) ∧ O(z, x)))

With these three definitions, they use Axioms 4.2.1 to 4.2.3. The first one posits the
equivalence between overlap and having a common part. The second states that if there
is some ϕ-er, then the fusion of ϕ-ers exists. Finally, the last one is equivalent to the
O-Extensionality, that is, two entities are identical if every entity that overlaps with one
overlaps with the other one.

Axiom 4.2.1 (Shared Part).

∀x, y(O(x, y) ↔ ∃z(P(z, x) ∧ P(z, y)))

Axiom 4.2.2 (Unrestricted Composition).

∃x(ϕ(x)) → ∃y(F (y, ϕ))

Axiom 4.2.3 (Extensionality).

∀x, y(∀z(O(z, x) ↔ O(z, y)) → x = y)

Carrara and Smid also use some basic plural logic, which is based on the relation ⪯,
where x ⪯ X is read “x is one of the X’s”. Capital letters refer to pluralities. They
use Axioms 4.2.4 to 4.2.6 as axioms. The first axiom is an extensionality principle. The
second one states that every plurality has some member. Finally, the third one states

4Carrara and Smid use infix operators as relations. I replace the infix operators by (binary) predicates
for homogeneity.
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that if there is some ϕ-er, then there is a plurality that contains all the ϕ-ers, and only
them. Axiom 4.2.6 is syntactically close from Axiom 4.2.2. The latter states that if a ϕ-er
exists, then the fusion of the ϕ-ers exists. The former states that if a ϕ-er exists, then the
plurality whose members are ϕ-ers exists. The difference is that in the plurality, there are
ϕ-ers and only ϕ-ers, while in the fusion of the ϕ-ers, there are also parts of ϕ-ers (if some
of them are not mereological atoms) and sums of ϕ-ers.

Axiom 4.2.4 (Plural Identity).

∀X,Y (X = Y ↔ ∀z(z ⪯ X ↔ z ⪯ Y ))

Axiom 4.2.5 (Not Empty).
∀X(∃x(x ⪯ X))

Axiom 4.2.6 (Comprehension).

∃x(ϕx) → ∃Y (∀x(x ⪯ Y ↔ ϕx))

From their analysis of word types identity, Carrara and Smid define three identity
conditions, namely Kind, Number and Order. They take these principles’ logical inverses
to be “individually necessary and jointly sufficient for the identity of word types” (Carrara
and Smid, 2022b, p. 6).

(Kind) If two words do not have all the same letters, they are distinct.

(Number) If the number of letter instances in one word is different from the number of
letter instances in another, they are distinct.

(Order) If the order of letters in one word is different from the order of letters in another
word, they are distinct.

From there, they define word types as a pluralities of fusions of a letter type (the
plurality of all letter types is A) and an integer (the plurality of integers is N) to represent
the position of the letter in the word type.5 For example, the word type ‘latte’ is the
plurality of ‘l’+1, ‘a’+2, ‘t’+3, ‘t’+4 and ‘e’+5, and ‘late’ is ‘l’+1, ‘a’+2, ‘t’+3 and
‘e’+4. They also define the two relations of N-overlap and A-overlap, respectively noted
ON and OA, as is Definition 4.2.4. In other words, two entities N-overlap (respectively A-
overlap) iff they have the same integer part (resp. the same letter-type part). Finally, they
formulate the theorem of Identity Theorem which captures the identity criteria expressed
by Kind, Number and Order.

Definition 4.2.4 (N- and A-Overlap). ∀x1, x2 ⪯ N, y1, y2 ⪯ A, let z1 = x1 + y1 and
z2 = x2 + y2. Then

ON(z1, z2) ≜ x1 = x2

OA(z1, z2) ≜ y1 = y2

Theorem 4.2.1 (Identity Theorem).

[∀z1 ⪯W1∃z2 ⪯W2(ON(z1, z2) ∧ OA(z1, z2))∧
∀z2 ⪯W2∃z1 ⪯W1(ON(z1, z2) ∧ OA(z1, z2))]

↔W1 = W2

5Said otherwise, word types are functions from a set X to a set Y such that there is a total ordering on
X, and for each element of each element of X (or a subset of X), it relates to a single element in Y, and
if a member x of X relates to a member of Y , then all members of X that are smaller than x also relates
to a member of Y .
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While not having mereological relations between letter types and word types, Carrara
and Smid successfully define a way to count the number of times a letter type is in a word
type. This is defined with Definition 4.2.5. This definition states that for a letter type y,
if there are only n distinct fusions in the word type that have y as their letter part, then
n is the number of times the letter type y is in the word type.

Definition 4.2.5 (Number of Letter Instances). If ∃z1, . . . , zn ⪯ W [(z1 ̸= z2 ∧ z1 ̸=
z3 ∧ . . . ∧ zn−1 ̸= zn) ∧ y < z1 ∧ (OA(z1, z2) ∧ OA(z2, z3) ∧ . . . ∧ OA(zn−1, zn)) ∧ ∀v ⪯
W (P(y, v) → v = z1 ∨ . . . ∨ v = zn)],
then n is the number of instances of the letter y in W , i.e. #W y = n.

4.2.2 My Critique

Carrara and Smid do not define mereological relations between letter types and word
types. However, such relations are definable: one could state that the letter type ‘a’ is
a part of the word type ‘latte’ because it is a part of one of the fusions of the word
type. But this is defining the parthood relation in an alternative way, while one of the
requirements of Carrara and Smid was to keep classical mereology.

My biggest concern is that this theory seems adequate for word types (and more gen-
erally for entities whose structure is in one dimension), however, this does not seem easily
extendable to represent other non-idempotent entities, such as universals of molecules.
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Part II

A Theory Proposal
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Chapter 5

Copy-Slot Mechanism

In this chapter, I present an adaptation of the Copy-Slot Mechanism presented in (Tar-
bouriech et al., 2021). This was a first attempt to fix counting problems.

This chapter contains three parts. The counting problems identified in sections Sec-
tions 3.3.2.1 and 3.3.2.2 will be respectively addressed in the first two sections. As a
reminder, the first problem, called the Improper Slot Problem, comes from the inheri-
tance of improper slots by entities other than their filler. The second problem, called the
Parts of Parts Problem, comes from the inheritance of parts of parts in such a way
that they are counted only once.

As it will be presented, these two counting problems will be identified. However, a
new counting problem will emerge. This problem is described in Section 5.3. A solution
will be proposed in Chapter 9.

Contents

5.1 Constraining Improper Slots Further . . . . . . . . . . . . . . . 57

5.2 Parts of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Pre-Formal Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Axiomatizing Copy-Slots . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Critique on Copy-Slot Mechanism . . . . . . . . . . . . . . . . . 62

5.1 Constraining Improper Slots Further

Bennett does not state explicitly why she admitted in her theory the possibility for fillers
to have improper slots. However, we can assume that they were introduced to satisfy con-
ditional reflexivity (Theorem 3.9) as they are not used for any other purpose in Bennett’s
paper. Hence, we could impose that an improper slot should not be owned by anything
else than the filler it is an improper slot of, with Axiom 5.1.

Axiom 5.1 (Improper Slots are only owned by their Filler).

∀a, s(Ps(s, a) ∧ F(a, s) → ∀b(Ps(s, b) → a = b))

Using Axiom 5.1 and Definitions 3.1 and 3.2, we can deduce Theorem 5.11, which
states that a proper part of x is a part of x by filling a slot it does not own itself.

Theorem 5.1 (Improper Slots Don’t Contain Proper Parts).

∀x, y(PP(y, x) → ∃s(Ps(s, x) ∧ F(y, s) ∧ ¬Ps(s, y)))

1In (Tarbouriech et al., 2021), there is a typographical mistake: s is quantified twice, once in ∀ and
once with ∃.
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Proof. Let x and y be two fillers such that y is a proper part of x. By definition of proper parthood
(Definition 3.2), we know that P(y, x) ∧ ¬P(x, y), which leads to ∃s(Ps(s, x) ∧ F(y, s)).

To complete the proof, we need to show that s is not a slot of y. Suppose that s is a slot of y. We
have Ps(s, y) ∧ F(y, s), which, according to Axiom 5.1, leads to x = y. However, we know that ¬P(x, y):
contradiction. Therefore, we have ¬Ps(s, y).

This would make sure that every proper part of a filler fills a slot of this filler which it
does not own. Therefore, models like model (b) in Figure 3.4 are excluded.

Axiom 5.1 and Bennett’s slot inheritance Axiom 3.5 and Definition 3.1 lead together
to Formula 5.1, stating that every part which has an improper slot is identical to its whole,
which is way too restrictive, and leads to trivial models only. For this reason, the slot
inheritance axiom should be revised.

∀x, y, s(P(y, x) ∧ Ps(s, y) ∧ F(y, s) → x = y) (5.1)

Proof. Let x and y be two fillers such that y is part of x. Let s be an improper slot of y. According to
axiom (3.5), s is also a slot of x. Therefore, according to axiom (A5.1), x = y.

We revise Axiom 3.5 by accepting instead that if x is a part of y and s is a proper slot
of x, then s is also a slot of y. That is, we restrict slot inheritance to proper slots, by the
following Axiom 5.2.

Axiom 5.2 (Proper Slot Inheritance).

∀a, b, s(P(a, b) ∧ Ps(s, a) ∧ ¬F(a, s) → Ps(s, b))

The proof of parthood transitivity Theorem 3.7 relies on Axiom 3.5. As we replaced
this axiom by Axiom 5.2, we need to prove that parthood is still transitive, which is done
by Theorem 5.2:

Theorem 5.2 (Parthood Transitivity).

∀a, b, c(P(a, b) ∧ P(b, c) → P(a, c))

Proof. Let a, b and c be three fillers such that a is a part of b and b is a part of c.
If a = b then P(a, c). Let’s suppose now that a ̸= b.
By definition of P (Definition 3.1), there is a slot s such that Ps(s, b) ∧ F(a, s).
By unicity of the filler and a ̸= b, b does not fill s. Then, since b is a part of c, by Axiom 5.2 s is a

slot of c. Since a fills s, a is a part of c by definition of parthood (Definition 3.1).
Thus, in all cases, a is a part of c.

There are still two things to discuss: the generalisation of improper slots to all fillers,
and the possibility for a filler to have multiple improper slots.

Bennett’s Axiom 3.4 ensures that anything that possesses a slot has an improper slot.
Bennett justifies the conditional reflexivity by stating that “the reflexivity of parthood is
restricted to things that have parthood slots. That’s because [Axiom 3.3] and the definition
of parthood entail that parthood slots cannot have parts at all” (Bennett, 2013, p. 94).
This certainly justifies why slots are not part of themselves, but it does not justify why
fillers without slots are not part of themselves. We found no other justification for this.
Garbacz (2016) made the same observation. We therefore generalize Bennett’s Axiom 3.4
by adding that every filler has an improper slot, in line with what Garbacz proposed in
his axiom (GA9). We thus add Axiom 5.3 to the theory.

Axiom 5.3 (Additional Improper Parthood Slots).

∀a, s(F(a, s) → ∃t(Ps(t, a) ∧ F(a, t)))
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We can broaden the theorem of conditional reflexivity (3.9) as Theorem 5.3.

Theorem 5.3 (General Conditional Reflexivity).

∀a(∃s(Ps(s, a) ∨ F(a, s)) → part of(a, a))

Proof. This is a trivial consequence of Definition 3.1 and Axioms 3.4 and 5.3.

The last point to discuss about improper slots is that in Bennett’s theory, an entity
can have several improper slots. Remember that we determine the number of slots of
a universal by considering the number of parts of a particular that would instantiate
this universal, because of the Isomorphism principle (see Section 2.6.1) and the counting
criteria (see Section 3.3.2). For example, a particular of Methane has arguably itself as a
part only once. From this viewpoint, Methane should have a unique improper slot. More
generally, we add the following Axiom 5.4 asserting that a thing has only one improper
slot.

Axiom 5.4 (Only One Improper Slot per Filler).

∀a, s, t(Ps(s, a) ∧ F(a, s) ∧ Ps(t, a) ∧ F(a, t) → s = t)

With these new axioms, we can reconsider the Methane universal. The mereological
structure of Methane is described by Facts 5.2 for the proper slots as well as Facts 5.3
for the improper slots.

Ps(Si,Methane) 1 ≤ i ≤ 12 Ps(Si,Carbon) 6 ≤ i ≤ 11
Ps(S12,Hydrogen) F(Carbon, S1)

F(Hydrogen, Si) 2 ≤ i ≤ 5 F(Electron, Si) 6 ≤ i ≤ 12
(5.2)

Ps(S0,Methane) F(Methane, S0)
Ps(S13,Carbon) F(Carbon, S13)
Ps(S14,Hydrogen) F(Hydrogen, S14)
Ps(S15,Electron) F(Electron, S15)

(5.3)

If we count how many times Hydrogen is part of Methane, the result is four times,
for both counting criteria C1 and C2, defined in Section 3.3.2. In the remainder, we will
no longer refer to counting criteria C1 and C2 for proper parts, as they are equivalent in
the new theory, since improper slots are not inheritable anymore. Also, as every filler has
now a unique improper slot, improper slots will no longer be represented on figures in the
remainder of the paper.

5.2 Parts of Parts

5.2.1 Pre-Formal Idea

The second problem comes from the inheritance by the whole of the proper slots owned
by its parts. As shown with the slots filled by Electron in section 3.3.2.2, these slots
are not inherited the correct number of times. To solve this problem, we will propose a
different system. This system will rest on the pre-formal intuition that slots should not
be inherited but copied.

To implement this idea, we drop Axioms 3.5 and 5.2 altogether and “simulate” a
(controlled) slot inheritance using slots that we will call “copy-slots”. If a whole is a part
of a bigger whole, its entire structure is copied using copy-slots. These copy-slots are slots
that have the same filler as the slot they are copied from. Improper slots are not copied.
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We can represent from which slot a copy-slot is copied from with the relation copied-
from, noted CF . We can also represent through which Hydrogen-filled slots the copy-slots
(filled by Electron) are copied thanks to another relation: copied-through, noted CT ,
between a copy-slot and a slot. Those two relations are represented in Figure 5.1, where
Si
oo

Sj
represents CT(Sj , Si) and

Si
oo

Sj
represents CF(Sj , Si). On this figure, S3

is a copy-slot owned by A which is copied from S2 through S1.

AOO ee

BOO

S1

Coo

{{

S3

C
S2

Figure 5.1: Example of application of CF and CT .

Let’s see what would happen on Methane by using this pre-formal idea. Carbon
fills one slot of Methane. Therefore, its structure is present only once: Methane has
six copy-slots filled by Electron. Hydrogen fills four slots of Methane. Hence,
its structure is repeated four times: Methane has four additional copy-slots filled by
Electron. With this structure repetition, Methane has now ten copy-slots filled by
Electron, which is the correct number. That is, among the ten copy-slots of Methane
filled by Electron, six of them are copied from the six electron-filled slots of Carbon
and four of them are the result of copying four times from the one electron-filled slot of
Hydrogen.

5.2.2 Axiomatizing Copy-Slots

According to our pre-formal idea, the first thing to do is to get rid of the revised slot
inheritance axiom (Axiom 5.2) (as well as the original Axiom 3.5) and endorse an axiom2

of anti-inheritance (Axiom 5.5).3

Axiom 5.5 (Anti-Inheritance).

∀a, b, s, t([a ̸= b ∧ Ps(s, b) ∧ F(a, s) ∧ Ps(t, a)] → ¬Ps(t, b))

Since Axiom 5.2 was previously used to prove parthood transitivity (Theorem 3.7), we
need to accept new axioms involving copy-slots that would enable to prove (Theorem 3.7).
To illustrate how copy-slots work, let’s use a simpler example: the HeliumDimer univer-
sal, whose mereological structure is pictured in Figure 5.2a.

Note that since a particular of HeliumDimer has four particulars of Electron as
parts, the universal HeliumDimer should have four slots filled by Electron. And this
is indeed the case in our theory. As a matter of fact, the Helium universal has two
slots filled by Electron, which are each copied twice, through each of the two slots of
HeliumDimer filled by Helium.

More generally, we can say that there are as many copy-slots as there are possible pairs
of slots (s, t) such that the first element is the slot through which the copy-slot copies,
called “path-slot”, and the second element, called “source-slot”, is the slot from which the
copy-slot is copied. In the case of the HeliumDimer, those pairs are (S1, S3), (S1, S4),

2In (Tarbouriech et al., 2021), there is a missing premise: a ̸= b, thus reducing the possible models to
the empty model and the model with only one filler, but no slot.

3This implies that parthood is discrete (see (Masolo and Vieu, 1999)), which is not an issue for the
examples considered here.
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Figure 5.2: The mereological structure of HeliumDimer represented in Bennett’s and
Copy-Slots Theories. He2 is HeliumDimer, He is Helium and E is Electron. (A
dotted arrow represents the CF relation. A dashed arrow represents the CT relation.)

(S2, S3) and (S2, S4). This is what Axiom 5.6 describes. Axiom 5.7 imposes that the
copy-slot has the same filler as its source-slot. Figure 5.2b pictures how copy-slots work
with the HeliumDimer universal.

Axiom 5.6 (Existence of a Unique Copy-Slot for each Whole and Path-Slot, Source-Slot
Pair).

∀a, b, s, t(PPs(s, a) ∧ F(b, s) ∧ PPs(t, b) → ∃!u(Ps(u, a) ∧ CT(u, s) ∧ CF(u, t)))

Axiom 5.7 (Copied Slot has the Same Filler as its Source).

∀s, t(CF(t, s) → ∃a(F(a, s) ∧ F(a, t)))

Axioms 5.6 and 5.7 and Definition 3.1 are sufficient to prove the theorem of transitivity
(Theorem 3.7):

Proof. Let x, y and z be three fillers such that x is a part of y and y is a part of z.
If x = y then x is a part of z. So let’s suppose that x ̸= y.
By definition of P (Definition 3.1), there are two slots s and t such that Ps(s, y)∧F(x, s)∧Ps(t, z)∧

F(y, t).
According to Axiom 5.6, there is a slot u of z copied from s through t.
By Axiom 5.7, since x fill s, x also fills u. Therefore, x is a part of z.

As pictured in Figure 5.1, any copy-slot is owned by the same filler as the path-slot it
copies through is. Axiom 5.8 ensures that both slots are owned by the same filler. Also,
any pair of path-slot and source-slot are related by a filler: the path-slot is filled by it, and
the source-slot is owned by it. Axiom 5.9 ensures that the path-slot and the source-slot
are related.

Axiom 5.8 (Same Owner).

∀a, s, t(PPs(t, a) ∧ CT(t, s) → PPs(s, a))

Axiom 5.9 (Copy Constrains Structure).

∀s, t, u(CT(u, s) ∧ CF(u, t) → ∃a(F(a, s) ∧ PPs(t, a)))

Finally, both relations CF and CT are constrained to be functional, by Axioms 5.10
and 5.11.4 This ensures that a copy-slot is only related to one pair. Otherwise, we cannot
be sure that counting yields a proper result; if the same copy-slot is used for multiple pairs
of slots filled with Carbon and Electron, Methane will not have the right number of
Electron parts.

4These axioms are discussed in the context of overlap in section 5.3.
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Axiom 5.10 (Functionality Of CF ).

∀s, t, u(CF(s, t) ∧ CF(s, u) → t = u)

Axiom 5.11 (Functionality Of CT ).

∀s, t, u(CT(s, t) ∧ CT(s, u) → t = u)

The resulting theory, with Axioms 3.1 to 3.4, 3.6, 3.7, 5.1 and 5.3 to 5.11, along with
Definitions 3.1 to 3.6, is sufficient to prove that the problem of counting inherited slots
is solved. The proof below focuses on the representative case of a filler a that has b as a
part m times, where b itself has c as a part n times. It shows that a has c as a part m×n
times.

Proof. Let a, b and c be three different fillers, let s1, . . . , sm be different slots of a filled by b and let
z1, . . . , zn be different slots of b filled by c.

We want to make sure that a has exactly one slot filled by c for each pair (si, zj) of slots.
Let’s first prove that a has at least one slot filled by c for each pair. Let (si, zj) and (sk, zl) be two

different pairs. Since PPs(si, a) ∧ F(b, si) ∧ PPs(zj , b), according to axiom (A5.6), there is a copy-slot
v such that Ps(v, a), CT(v, si) and CF(v, zj). Assume that v is also the copy-slot for the pair (sk, zl),
i.e., CF(v, zl) and CT(v, sk). According to axioms (A5.10) and (A5.11), both relations CF and CT are
functional. Therefore, we deduce that si = sk and zj = zl, making the two pairs the same: contradiction.
Hence, there is a different slot of a filled by c for each pair. Due to the unicity in axiom (A5.6), there is
at most one slot for each pair.

We can conclude that a, having at least and at most one slot for each pair, has exactly the right
number of slots filled by c.

Let’s illustrate this on the Methane universal. Facts (5.4) describe the mereological
structure without improper slots nor copy-slots; note that Facts (5.3) still hold in addition.
Facts (5.5) describe the copy-slots. With copy-slots, Methane has exactly ten slots (S16
to S25) filled by Electron, which is the expected result.

Ps(Si,Methane) 1 ≤ i ≤ 5 Ps(Si,Carbon) 6 ≤ i ≤ 11
Ps(S12,Hydrogen) F(Carbon, S1)

F(Hydrogen, Si) 2 ≤ i ≤ 5 F(Electron, Si) 6 ≤ i ≤ 12
(5.4)

Ps(Si,Methane) 16 ≤ i ≤ 25 F(Electron, Si) 16 ≤ i ≤ 25
CT(Si, S1) 16 ≤ i ≤ 21 CT(Si, Si−20) 22 ≤ i ≤ 25

CF(Si, Si−10) 16 ≤ i ≤ 21 CF(Si, S12) 22 ≤ i ≤ 25
(5.5)

5.3 Critique on Copy-Slot Mechanism

In this chapter, we removed Bennett’s Slot Inheritance (Axiom 3.5), adopted an anti-
inheritance axiom, made more accurate what improper slots are, and developed the “copy-
slot mechanism” as a solution for the two counting problems. The idea we developed is
that slots were no longer inherited but rather that the mereological structure of fillers is
duplicated every time the filler occupies a slot, i.e., the slots of the filler are duplicated
to be slots of the whole. The original slot and the duplicated slot have the same content:
only their owners change. We introduced two relations CF and CT to implement this
copy mechanism. Consider the structure of HeliumDimer, presented in Figure 5.2: the
structure of the Helium universal (namely slots S3 and S4) is repeated twice: once for
each of the occurring slot of the Helium universal (namely slots S1 and S2). By redefining
improper slots, we fixed the first problem (Improper Slot Problem). With the copy-slot
mechanism, we fixed the second counting problem (Parts of Parts Problem).

However, the copy-slot mechanism has a flaw. This flaw leads to an excessive duplica-
tion of slots, and by extension to a wrong counts of parts. Figures 5.3a and 5.3b represent
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the same structure of the string “cats”. The first one does not have copy-slots, the second
does.5 By looking at the second figure, we see that “cats” owns two slots S7 and S13
filled by “c”, whereas it should only have one. This is because of the multiple levels in the
mereological structure: S7 is a slot copied from the structure of “cat”, while S13 is copied
from the structure of “ca”. The copy-slot mechanism misses a feature ensuring unicity.

As a solution, we will propose a new system. Even though the relations CF and CT
are discarded, the core idea of the copy-slot mechanism is preserved. This new system also
works by considering that the mereological structure of each filler should be duplicated as
many times as possible, but not more than necessary, as we will see in Chapter 9.

But before describing our proposal in details in Chapters 8 and 9, we need to introduce
requirements to guide us and tools to help us. This is done in Chapters 6 and 7.

Ps(S3, cat) F(c, S3) CF(S3, S1) CT(S3, S5)
Ps(S4, cat) F(a, S4) CF(S4, S2) CT(S4, S5)
Ps(S7, cats) F(c, S7) CF(S7, S3) CT(S7, S9)
Ps(S8, cats) F(a, S8) CF(S8, S4) CT(S8, S9)
Ps(S10, cats) F(ca, S10) CF(S10, S5) CT(S10, S9)
Ps(S11, cats) F(t, S11) CF(S11, S6) CT(S11, S9)
Ps(S13, cats) F(c, S13) CF(S13, S1) CT(S13, S10)
Ps(S14, cats) F(a, S14) CF(S14, S2) CT(S14, S10)

(5.6)
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Figure 5.3: A partial view on the mereological structure of “cats” without and with copy-
slots

5Only entities useful for the current reasoning are pictured in the figures. It is possible to consider other
entities, such as “at” or “ct”, but they are not relevant here.
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Chapter 6

Requirements

In this chapter, I develop requirements to evaluate the theory and to guide its development
in order to fill potential theoretical gaps.

Contents

6.1 Mereological Relations . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Decomposition Principles . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Composition Principles . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Establishing Requirements . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Mereological Relations

Consider the structural universal of Dihydrogen or the string type “aa”. Both entities
are composed twice of the same entity: respectively the universal Hydrogen and the letter
“a”. However, classical mereology cannot represent such a fact. For example, P(x, y) ∧
P(x, y) is equivalent to P(x, y) and does not state that x is part of y twice. Therefore, the
parthood relation has to be changed in such a way that parthood multiplicity (i.e. how
many times x is a part of y) can be formalised.

In the next sections, I will assume that parthood multiplicity can be formalised. We
would like such a theory to provide classical features of mereology, such as partial order,
supplementation or extensionality.

Furthermore, the theory should provide a way to count how many times x is part
of y. I explained in Sections 3.3 and 4.1.2 how Cotnoir’s and Bennett’s theories fail to
provide a correct account of how many times an entity is part of another one – although
for different reasons. Note that, a relation that just states that x is part of y multiple
times is not enough: consider a ternary relation, such as part-of-n-times(x, y, 2) meaning
that x is part of y two times. One could then think of changing parthood transitivity into
an axiom involving a multiplication: part-of-n-times(x, y, 2) ∧ part-of-n-times(y, z, 2) →
part-of-n-times(x, z, 4). However, this would not account for cases where one of the oc-
currences of x of one occurrence of y in z overlaps with one of the occurrence of x of the
other occurrence of y in z. Then, x should only be part of z only thrice. A multiplication
would only provide an upper bound of the number of times that x can be part of z.

6.2 Decomposition Principles

Do the decomposition principles, presented in Section 2.3, still make sense? In fact, even
the weakest principle, the Company axiom, is not compatible with non-idempotent entities.
It states that if an entity has a proper part, it has another distinct proper part, or in other
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words, no entity has only one proper part. The Company axiom is not compatible with
entities such as Dihydrogen1 or ‘aa’.

A quick objection to this observation is that the Company axiom is satisfied whenever
a proper part has itself some proper part - consider proper parts of Hydrogen, like
Electron. However, what could be the proper parts of ‘a’? The strokes used to write
a letter depend on the font and are arguably not parts of the letter type. If ‘a’ is a
mereological atom, i.e. it does not have any proper parts, then the Company axiom does
not hold for ‘aa’.

The second axiom of decomposition introduced in Section 2.3.2 is Strong Company,
which states that if an entity has a proper part, it has another proper part that is not a
part of the first one. Electron being a proper part of Hydrogen, Dihydrogen violates
the Strong Company axiom.

If we consider a molecule with two different atoms as a part, it is also problematic.
Consider the CarbonMonoxide universal, composed of Carbon and Oxygen. Those
two latter universals are different from one another, and none of them is part of the
other one. Therefore, Company and Strong Company axioms hold in this case. However,
consider now the Supplementation axiom, which states that for any entity y, for each of its
proper parts x, there is another proper part z which does not overlap with x. In the case of
CarbonMonoxide, if we consider that Carbon and Oxygen are structural universals
with both Electron as a part, they share a part, i.e. they are overlapping. Therefore,
the CarbonMonoxide universal is a counter-example to Supplementation.

If we restrict the universe to universals of molecules, of atoms and Electron, we
get what mereological theories typically reject, namely a mereological equivalent to the
empty set of set theory: Electron would be part of anything else. Therefore, the Strong
Supplementation axiom, that states that if y is not a part of x, then there is something
in y that does not overlap with x, is also violated.

Finally, it is interesting to understand how some classical mereological theorems fail
and what are the implications of these failures. PP-Extensionality (respectively O-Exten-
sionality) theorem states that two entities that have the same proper parts (resp. overlaps
with the same entities) are the same entity. What this means is that for two entities to be
different, there need to be something that makes the difference. But consider the universals
of Butane and Isobutane, or the string types “cab” and “bac”. Those entities have the
same parts with the same multiplicities, but arranged in a different way. However, how
the parts are arranged is not a concern of mereology. These arrangements are not encoded
in the mereological relations. Therefore, according to PP-Extensionality, Butane and
Isobutane should be the same entity. This conclusion also holds for “cab” and “bac”.

As it was showed, classical mereology fails to provide a way to represent entities that
can have the same part multiple times. What can be done? If we want a theory en-
compassing some decomposition principles, it should capture the spirit of these principles,
instead of copying their syntax. It will be addressed in Chapter 9.

6.3 Composition Principles

What about Composition Principles? The first principle introduced in Section 2.4 is the
sum, i.e. the idea of adding multiple things together to obtain something bigger. Among
the properties of the sum are idempotence and unicity.

Idempotence of sum means that the sum of an entity with itself is identical to this
entity. For example, the sum of your computer and itself is nothing else than itself. There
is not something bigger, composed twice of your computer. Now, consider the Helium
universal. Add Helium with itself. What is the result? In other words, what is the entity

1In this example, the chemical bond relation is not considered as a part of the HeliumDimer universal.
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that has Helium as a part twice? The first answer seems to be HeliumDimer. But what
about idempotence? Maybe the answer is Helium?

Unicity of sum means that the result of the sum is unique. Consider the following
example: the sum of Carbon four times and Hydrogen ten times can be either Butane
or Isobutane have these parts in a correct amount. Here, there is no unique sum in
general.

6.4 Establishing Requirements

Classical mereology does not provide a suitable framework to represent entities that can
have the same part multiple times. What kind of mereology would enable to do so? To
analyse it, let’s first remember that the core theory of mereology is usually considered as
being a partial order relation and some supplementation principle. However, one could
expect a more elaborate theory that includes other relations, advanced decomposition
principles and some composition principles.

First, the theory must provide a partial order relation that can represent the multi-
plicities of parts, as some entities can have the same part multiple times. On this basis,
the theory could provide relevant relations, such as proper part and overlap.

Second, the theory must be able to express not only the fact that an entity has a
part multiple times, but also how many times it has it as a part. These counts must be
correctly handled in mereological relations and operations, like parthood inheritance or
sum. For example, if x has y as a part twice, and y has z as a part twice, x must have z
as a part four times - or less in case of overlap.

Third, the theory must provide some decomposition principles that capture the spirit
of the classical ones, while taking into account that some entities are parts more than
once. The weakest one we have seen is the Company axiom, which states that nothing
has only one proper part.

Fourth, the theory must also provide some composition principles that take into ac-
count multiplicities (to differentiate methane and butane) and non idempotence of sum
(to differentiate butane and isobutane).
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Chapter 7

Tools

This chapter presents two tools I used in order to obtain a more reliable theory: Alloy
and Coq. Alloy is a sample and counter-example finder, used to test the consequences
of axioms. I used it in three different ways: finding samples, finding counter-examples
and as an heuristic tool. These three uses are explained in the following sections. The
second tool, Coq, is a proof assistant. I used it to prove each of my theorem candidates
in order to be sure that they are theorems of the theory. I explain how I used it in the
following sections. The last section of this chapter presents use examples of these tools
with Bennett’s 8th Axiom (Axiom 3.8) and 14th Theorem (Theorem 3.13).

All the code written with both of these tools is available at https://github.com/

CedricTarbouriech/PhD under the license GNU General License v3.0. Among Alloy
files, there are different implementations in Alloy of Bennett’s theory. The differences
between them are explained in Section 7.1.3. There are also an implementation of the
extension of Garbacz (2016) and implementations of the two theories I proposed: the
Copy-Slot Mechanism, presented in Chapter 5 and the Mereology of Slots, presented in
Chapter 9. Among Coq files, there is a file with Bennett’s theory. The proofs in this file
do not necessarily follow Bennett’s proofs. In particular, Axiom 3.8 is presented as an
theorem and Theorem 3.12 is proved with Axiom 3.4. Finally, there are files for my two
theories.
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7.1 Alloy

7.1.1 Presentation

“Alloy is a language for describing structures and a tool for exploring them.
It has been used in a wide range of applications from finding holes in security
mechanisms to designing telephone switching networks.

An Alloy model1 is a collection of constraints that describes (implicitly) a
set of structures, for example: all the possible security configurations of a
web application, or all the possible topologies of a switching network. Alloy’s
tool, the Alloy Analyzer, is a solver that takes the constraints of a model
and finds structures that satisfy them. It can be used both to explore the
model by generating sample structures, and to check properties of the model
by generating counterexamples. Structures are displayed graphically, and their
appearance can be customized for the domain at hand.

At its core, the Alloy language is a simple but expressive logic based on the no-
tion of relations, and was inspired by the Z specification language and Tarski’s
relational calculus. Alloy’s syntax is designed to make it easy to build models
incrementally, and was influenced by modeling languages (such as the object
models of OMT and UML). Novel features of Alloy includes many new rich
subtype facilities for factoring out common features and a uniform and power-
ful syntax for navigation expressions.” (About Alloy, from Alloy’s website)

Even though Alloy2 is designed for software modeling, I used it to develop my theory
while exploring the axioms. In addition to finding samples and counter-examples, I used
it as a tool to get proof hints. These uses are described in Section 7.1.2 and illustrated
with examples.

7.1.2 Uses And Examples

I used Alloy in three different ways: to find samples, counter-examples and hints for
theorem proofs. They are presented in the following sections. Listing 7.1 gives a bit of
Alloy code that will be used in the following sections. Note that not all the code is in this
listing. It can be found on Github.

1 // The signatures Slot and Filler represent respectively slots and fillers.

2 // A slot can relate to fillers with the relation slot of.
3 // A filler can relate to slots with the relation fills.
4 // The two relations are sets of couples.

5 sig Slot { slot_of : set Filler }
6 sig Filler { fills : set Slot }
7
8 // Three predicates:

9 // * The two primitives F and Ps are defined with operations on sets:

10 // x fills s means that the couple (x, s) is in the set fills.
11 // * The relation P is defined in Alloy like it is defined in the theory.

12 pred F(a : Filler, s : Slot) { a→ s in fills }
13 pred Ps(s : Slot, a : Filler) { s→ a in slot_of }
14 pred P(a, b : Filler) { some s : Slot | Ps[s, b] and F[a, s] }
15
16 // Improper Parthood Slots

1In Alloy, the word “model” is used with a different meaning than in logic. In the remainder of this
section, “model” will refer to Alloy model. Logic models will be referred to as “samples”, except when
referred as “model of the axiomatic theory”.

2https://alloytools.org
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17 fact A4 {
18 all a : Filler | (some s : Slot | Ps[s, a]) implies

19 (some t : Slot | Ps[t, a] and F[a, t])
20 }

Listing 7.1: Signatures, Predicates and an Axiom

In Alloy, signatures are sets of entities of some kind: the signature Slot is the set
containing all the slots of a sample.

7.1.2.1 Finding Samples

The first way I use Alloy was to find samples. After having implemented axioms of the
theory, I used the command run to ask Alloy to generate samples. The command run
can be parametered to specify some additional conditions for the samples. For example,
Listing 7.2 shows two calls to the run command. The first call asks for samples in which
there are three distinct fillers a, b and c, such that a and b are parts of c. The second call
asks for samples in which there are three distinct fillers a, b and c, such that a is a part of
b and b is a part of c. Figure 7.1 shows a sample Alloy found for each of the run.

1 run { some disj a, b, c : Filler | P[a, c] and P[b, c] } for 3
2
3 run { some disj a, b, c : Filler | P[a, b] and P[b, c] } for 3

Listing 7.2: Two Calls of the run Command

(a) P(a, b) ∧ P(b, c) (b) P(a, c) ∧ P(b, c)

Figure 7.1: Two Samples Found by Alloy

Finally, while Alloy is useful to see the various ways axioms influence samples, it is also
a good indicator of problematic axiomatisations. As explained in Footnote 2 on page 60,
the Axiom 5, presented in (Tarbouriech et al., 2021, p. 10), is problematic. It corresponds
to Axiom 5.5 and was missing x ̸= y in its premises. This created a contradiction whenever
there was a slot involved: the incorrect version of axiom states that improper slots are not
owned by their owners. Thus, the only two models of the axiomatic theory existing were
the empty model, containing no entities, and the model with only one filler. This problem
was detected thanks to Alloy, as, once the axiom was added, it only found two samples.
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7.1.2.2 Finding Counter-Examples

We know that Bennett’s 14th Theorem (Slot Extensionality Theorem 3.13) is not a theo-
rem of her theory, as explained in Section 3.2.1. The present section shows how to exploit
Alloy to find this result. After implementing Bennett’s definitions and axioms in Alloy, we
could ask Alloy to check this theorem as done in Listing 7.3. The command check checks
whether the given assertion (here, an implementation in Alloy of Bennett’s Theorem 3.13)
has counter-examples, with, at most, 3 slots and 3 fillers.

1 check T14 {
2 all a, b : Filler |
3 ((some c : Filler | PP[c, a]) or (some c : Filler | PP[c, b])) implies

4 ((a = b) iff (all s : Slot | PPs[s, a] iff PPs[s, b]))
5 } for 3

Listing 7.3: Assertion T14 And check Command

Alloy finds a counter-example, pictured in Figure 7.2. In this counter-example, Alloy
shows which entities are the a and b of the assertion. Moreover, this counter-example is
also the one presented by Garbacz (2016), pictured in Figure 3.3.

Figure 7.2: The First Counter-Example Proposed By Alloy

7.1.2.3 Giving Hints For Proofs

In this section, I show how I found out that Bennett’s 8th Axiom (Slot Strong Supplemen-
tation Axiom 3.8) is not an axiom, but a theorem. Alloy gave me an intuition about this,
that I finally proved using Coq. The proof is explained in Section 7.2.2. In this section, I
used a different implementation of the theory: see Section 7.1.3 for more explanations.

Using Alloy, I first posited Axioms 3.1 to 3.7 as facts. They are called A1-A7 in Alloy.
Then I wrote an assertion corresponding to Bennett’s Axiom 3.8 and asked Alloy to search
for counter-examples with a high maximum number (20) of entities, as in Listing 7.4.

1 fact { A1 A2 A3 A4 A5 A6 A7 }
2
3 assert A8 {
4 all a, b : Entity |
5 ((some s : Entity | Ps[s, a]) and (some t : Entity | Ps[t, b]))
6 implies

7 ((no u : Entity | Ps[u, a] and F[b, u]) implies
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8 (some v: Entity | Ps[v, b] and not Ps[v, a]))
9 }

10
11 check A8 for 20

Listing 7.4: Assertion A8 And check Command

From my tests, 20 entities is already a significant number as most of the counter-
examples are generally found with less entities. This is called the Small Scope Hypothe-
sis by Jackson (2012): “if an assertion is invalid, it probably has a small counterexam-
ple”(Jackson, 2012, p. 143). As presented in Section 3.2.1, Garbacz showed that The-
orem 3.12 does not need Axiom 3.8, contrary to Bennett’s proof, but just Axiom 3.4.
Following my intuition, I removed Axiom 3.4 from the facts (and just keep A1-A3 and
A5-A7) and asked Alloy to find a counter-example, which it did nearly instantly (even
with a very little scope). In order to strengthen my intuition, I then removed all axioms
but Axiom 3.4 and asked Alloy to find a counter-example with a scope of 20, which it did
not find.

7.1.3 Various Implementations

Alloy is a powerful tool that offers various ways to implement a theory. In this section, I
want to discuss three implementations I did, and the consequences they have.

7.1.3.1 Number Of Signatures

Bennett did not axiomatically partition the entities in her theory into slots and fillers.
There are entities, and these entities can play a slot-role or a filler-role. When it comes
to Alloy implementation, the choice is possible: either create one signature Entity whose
instances can relate to other instances with slot of and fills, or create two signatures
Slot and Filler whose instances relate to each other instances with, respectively, slot of
and fills. These two implementations are presented in Listing 7.5.

Furthermore, when declaring a relation in a signature, we should give a cardinality: a
slot relates to some (i.e. at least zero) fillers with slot of. While the slot of relation is a
n to n relation (a slot can have multiple owners and a filler can have multiple slots), the
relation fills is a 1 to n relation (a filler can fill multiple slots, but a slot is only filled by
exactly one filler). This can be done in Alloy, but it requires that the relation is defined
within the Slot signature, as showed in Listing 7.5.

1 // First implementation: only one signature

2 sig Entity { slot_of : set Entity, fills : set Entity }
3
4 // Second implementation: two signatures, with a relation each

5 sig Slot { slot_of : set Filler }
6 sig Filler { fills : set Slot }
7
8 // Third implementation: two signatures, with both relations in Slot

9 sig Slot { slot_of : set Filler, filled_by : one Filler }
10 sig Filler {}

Listing 7.5: Three Different Implementations of the Signatures

The choice made for the implementation of the signature(s) influences the implemen-
tation of the remaining parts. First, when implementing relations, the types of the param-
eters change, as showed in Listing 7.6. When using a relation, Alloy checks if the given
argument is of the correct type. This is important for some axioms. Indeed, consider the
variable a in Axiom 3.2. In the premise, a occupies the “filler-place” of the relation. In
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the conclusion, a occupies the “slot-place” of the relation. While this works with the one-
signature implementation, it does not with the two-signatures one: Alloy detects that the
relation is given a filler while it expects a slot. The same reasoning holds for Axiom 3.3.
These two axioms are useful to clearly differentiate slots and fillers: nothing can be both.
In Alloy, signatures cannot share instances. Therefore, the two-signatures implementa-
tion does not need these two axioms. For the same reason, Theorems 3.1 to 3.6, whose
proofs rely on contradiction and vacuously true premises, cannot be implemented in the
two-signatures implementation.

1 // First implementation: only one signature

2 pred F(a, s : Entity) { a→ s in fills }
3 pred Ps(s, a : Entity) { s→ a in slot_of }
4
5 // Second implementation: two signatures

6 pred F(a : Filler, s: Slot) { s in a.fills }
7 pred Ps(s : Slot, a: Filler) { a in s.slot_of }

Listing 7.6: Two Different Implementations of the Relations

Furthermore, in the second two-signatures implementation, Axiom 3.7 is not needed.
Indeed, this axiom posits the uniqueness of the filler, which is implemented with cardinality
of the relation. Finally, when using the commands run and check, the choice on the
number of signatures is important.

First, these commands can be parametered with the scope size (the number of entities).
In Listing 7.4, the scope size is set to 20, which means that Alloy can use at most 20 entities.
However, it does not tell Alloy whether it should have at most 10 fillers and 10 slots, or 5
fillers and 15 slots. On the other hand, with a two-signatures implementation, we can tell
Alloy how many of each we want.

Second, while it seems that the two-signatures implementation is better than the one-
signature one, I think there is an advantage to sometimes use a one-signature implementa-
tion. In the process I described in Section 7.1.2.3, in order to activate/deactivate axioms,
they cannot be implemented directly in signatures. Otherwise, I would have to modify
the signatures each time I wanted to see the consequences of an axiom, instead of just
deactivating it.

Using two-signatures implementation seems more efficient in execution time, as some
constraints are directly implemented in the very structure of signatures, instead of stated
as facts. However, the one-signature offers more flexibility to explore the theory. As I
do not have extensively analysed the impacts of the implementation choice, I will not go
further on the track of efficiency.

7.1.3.2 Three Coding Styles

Alloy provides three different coding styles to implement theories: the predicate calculus
style, the navigation expression style, and the relation calculus style. Listing 7.7 shows
the same constraint expressed in the three different styles. This example is from (Jackson,
2012, pp. 33–34). The example is the implementation of an address book, that maps
names to addresses. This constraint states that each name is mapped to at most one
address.

1 // Predicate calculus style

2 all n: Name, d, d’: Address | n→ d in address and n→ d’ in address implies d = d’
3
4 // Navigation expression style

5 all n: Name | lone n.address
6
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7 // Relational calculus style

8 no ∼address.address − iden

Listing 7.7: The Same Constraint in Three Different Coding Styles

The first style is verbose and the third style often cryptic. Therefore, the second style
is often preferred. To stay as syntactically close as possible from the theory, I first used
the predicate calculus style. However, I also tried to implement the theory in other coding
styles. Listing 7.8 shows two different implementations of Axioms 3.5 and 3.6 (in this
listing, the uses of Ps and F, defined in Listing 7.6, are replaced by their definitions in
order to facilitate comparisons).

1 // First implementation: predicate calculus style

2 fact A5 {
3 all a, b : Filler, s, t : Slot |
4 (b in s.slot_of and s in a.fills and a in t.slot_of) implies b in t.slot_of
5 }
6 fact A6 {
7 all a, b : Filler, s, t : Slot | ((b in s.slot_of and s in a.fills) and
8 (a in t.slot_of and t in b.fills)) implies a = b

9 }
10
11 // Second implementation: relation calculus style

12 fact A5 { slot_of.fills.slot_of in slot_of }
13 fact A6 { fills.slot_of & ∼(fills.slot_of) in iden }

Listing 7.8: Axioms 3.5 and 3.6 in Different Styles

In order to compare, I asked Alloy to check Theorem 3.12. Between the two implemen-
tations, everything was identical but the implementations of Axioms 3.5 and 3.6. The first
implementation generates a problem to solve that contains 289370 variables and 326475
clauses. On a mean of ten runs, it was solved in about 1211 milliseconds. The second
implementation generates a problem to solve that contains 19610 variables and 36810
clauses. On a mean of ten runs, it was solved in about 52 milliseconds. Although the two
implementations are logically equivalent, the latter generates 15 times fewer variables, 9
times fewer clauses and solves the problem 23 times faster. As I did not extensively anal-
yse the efficiency of the implementations, but only did simple tests, I will not go further
in the efficiency comparisons.

7.2 Coq

7.2.1 Presentation

Coq is a proof assistant with which students, researchers, or engineers can ex-
press specifications and develop programs that fulfill these specifications. This
tool is well adapted to develop programs for which absolute trust is required:
for example, in telecommunication, transportation, energy, banking, etc. In
these domains the need for programs that rigorously conform to specifications
justifies the effort required to verify these programs formally. [. . . ]

The Coq system is not only interesting to develop safe programs. It is also
a system with which mathematicians can develop proofs in a very expressive
logic, often called higher-order logic. These proofs are built in an interactive
manner with the aid of automatic search tools when possible. The application
domains are very numerous, for instance logic, automata theory, computational
linguistics and algorithms [. . . ].
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This system can also be used as a logical framework to give the axioms of
new logics and to develop proofs in these logics. For instance, it can be used
to implement reasoning systems for modal logics, temporal logics, resource-
oriented logics, or reasoning systems on imperative programs.

(Bertot and Castéran, 2013, p. 1)

I used Coq as it is presented in the third paragraph above. After defining the relations
and the axioms, I proved each of the theorems. Coq is a really helpful tool as it helps
keep track of the goals to prove at each step of a proof. In addition to prove the theorems
presented in this thesis, it helped me to understand some of the complex concepts I had to
deal with. In particular, it helped me strengthen my intuitions about which formula could
be theorems, which were not and which axioms were needed for non-theorems to become
theorems of the theory. I used the work of Bertot and Castéran (2013) as a reference, as
well as questions on StackOverflow,3 a Q&A website for developers.

7.2.2 Use Example

To give some examples of Coq, Listing 7.9 is the code used to prove that Axiom 3.8 is a
theorem. I commented the code directly in the listing. From there, even though it was
not yet proved, I had the intuition that Axiom 3.8 might be a theorem whose proof only
relies on Axiom 3.4. Listing 7.9 shows the proof in Coq. I commented the proof to make
it easily understandable to anyone that does not know how Coq works. Furthermore, the
proof shows that the only axiom needed is Axiom 3.4.

1 Parameter Entity : Set.
2
3 (* The two primitives of the theory take two entities

4 * and return a logical proposition. *)

5 Parameter F : Entity → Entity → Prop.
6 Parameter Ps : Entity → Entity → Prop.
7
8 (* The relation P is defined as taking x and y
9 * and returning the proposition ∃s(F(x, s) ∧ Ps(s, y)). *)

10 Definition P x y := exists s, F x s ∧ Ps s y.
11
12 (* Coq Implementation of Axiom 3.4. *)

13 (* ∀a(∃s(Ps(s, a)) → ∃t(Ps(t, a) ∧ F(a, t))) *)

14 (* Improper Parthood Slots *)

15 Axiom A4 : forall x, (exists y, Ps y x) → (exists z, Ps z x ∧ F x z).
16
17 Theorem BA8 : forall a b, (exists s, Ps s a) ∧ (exists t, Ps t b) →
18 (∼(exists u, Ps u a ∧ F b u) → (exists v, Ps v b ∧ ∼Ps v a)).
19 Proof.
20 (* Let a and b be such that s is a slot of a and t a slot of b. *)

21 (* Call nPba the hypothesis that b is not a part of a. *)

22 intros a b ((s & Pssa) & (t & Pstb)) nPba.
23 (* According to Axiom 3.4, b has an improper slot u. *)

24 pose proof (whole_improper_slots b (ex_intro _ t (Pstb))) as (u & Psub & Fbu).
25 (* We want to prove that there is a slot owned by b, but not a. *)

26 (* I affirm that this slot is u. We already know it is owned by b. *)

27 exists u; split; auto.
28 (* We only have to prove that it is not owned by a. *)

29 (* Suppose it is the case: call this hypothesis Psua. *)

30 intros Psua.
31 (* According to nPba, there are no slot owned by a and filled by b. *)

3https://stackoverflow.com/
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32 destruct nPba.
33 (* However, u does, because of hypothesis Psua: contradiction. *)

34 exists u; split; assumption.
35 (* Therefore, u is not owned by a. *)

36 Qed.

Listing 7.9: Proof Of Axiom 3.8 Commented
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Chapter 8

Slot Characterisation

In this chapter, I propose a better characterisation of what slots are by addressing dif-
ferent topics: ownership, properness and dependencies. This characterisation is based on
Definitions 3.1 to 3.5 and Axioms 3.1 to 3.4, 3.6 and 3.7.
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8.1 Definition

Bennett defines a slot as “a location in a mereological nexus” and “an aspect of the
mereological structure of a whole” (Bennett, 2013, p. 87). We restrict those definitions
by stating that a slot is a holistic aspect of the mereological structure of a whole, i.e., a
contextual mereological location in a unique whole. Therefore, it depends existentially on
this whole, as explained below in Section 8.4. We add to the theory the unary predicate
S , that states that something is a slot, defined by Definition 8.1.

Definition 8.1 (Slot).

S(s) ≜ ∃a(Ps(s, a))

8.2 Ownership

In our theory, we consider slots as inner elements of wholes that characterise different
contexts in which parts occur.1 As inner elements of a whole, that is, as elements of its
mereological structure, they are not shareable with other wholes, as imposed by Axiom 8.1
below. This is in contradiction with Bennett’s axiomatisation since in her theory, slots
can have multiple owners because of slot inheritance.

Axiom 8.1 (Single Owner).

∀a, b, s(Ps(s, a) ∧ Ps(s, b) → a = b)

1To follow the analogy with roles that inspired Bennett’s theory, those contexts can be seen as relational
roles. In this view, we consider that slots correspond to fully saturated roles, such as “President of the
United States”, as opposed to the unsaturated role “President”. For more on role saturation, see Masolo
et al. (2004).
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We showed in Section 3.3.2 that slot inheritance is the origin of counting problems.
By imposing that slots have a single owner, slot inheritance is no longer possible, as
demonstrated by Theorem 8.1 below. Therefore, we reject Bennett’s Slot Inheritance
3.5. Consequently, as parthood transitivity Theorem 3.7 is the only theorem of Bennett’s
theory that was proved with 3.5, we will need to show that it is still a theorem of our
theory when the relevant axioms will be added.

Theorem 8.1 (Anti-Inheritance).

∀a, b, s, t([a ̸= b ∧ Ps(s, b) ∧ F(a, s) ∧ Ps(t, a)] → ¬Ps(t, b))

Proof. Let a and b be two different fillers (a ̸= b) and s and t two slots such that a is a part of b by filling
its slot s (Ps(s, b) ∧ F(a, s)) and t is a slot of a (Ps(t, a)). We want to prove that t cannot be a slot of b
(¬Ps(t, b)). Suppose that t is a slot of b (Ps(t, b)). Because t is a slot of a and b, we know by A8.1 that
a = b. Contradiction. Therefore, t cannot be a slot of b.

In the remainder, we will sometimes call slots “occurring contexts”. Consider the two
following definite descriptions: “the universal of hydrogen that fills s2” and “the universal
of hydrogen that fills s3”. Those two descriptions are misleading. By reading them, one
could assume the existence of two different universals of hydrogen, which does not make
sense. Indeed, what is intended here is to refer to two occurrences of the same universal,
Hydrogen, in the slots s2 and s3. Those two different occurrences exist because there
are two different slots. Those slots are “occurring contexts” of the universal within a given
universal, the owner of the slots. Those occurring contexts are not intrinsic properties of
the universals filling the slots. An occurring context characterises the internal structures
of an entity larger than the filler of this context.

We add two relations, namely SO and SF , respectively defined by Definition 8.2 and
Definition 8.3. These relations state that two slots have the same owner, for the former,
and the same filler, for the latter. They are trivially reflexive, symmetric, and because the
owner and the filler of a slot are unique, transitive.

Definition 8.2 (Same Owner).

SO(s, t) ≜ ∃a(Ps(s, a) ∧ Ps(t, a))

Definition 8.3 (Same Filler).

SF(s, t) ≜ ∃a(F(a, s) ∧ F(a, t))

Now that slots only have one owner, the two counting criteria C1 and C2, defined in
Section 3.3.2, are equivalent when counting proper parts. Note that with anti-inheritance,
the distinction between direct and non-direct slots (see Footnote 8 on page 44) is not
relevant anymore: all slots are direct (but see Section 9.1 to see how this distinction is
recovered).

Since slot inheritance was instrumental in Bennett’s theory to derive important the-
orems, we will adopt instead what we call an operation of “contextualisation” between
slots. Consider the following example: some entity a has a slot s filled by b, and b owns a
slot t filled by c. In Bennett’s theory, with slot inheritance, the slot t will also be a slot
of a. Here, instead of inheriting t, we posit that a has a slot u filled by c, which is a copy
of t, contextualised by s. Contextualisation will fix the flaw of the copy-slot mechanism,
presented in Section 5.3, as we will see in Section 9.1.

But first, let’s address some questions about slots’ nature that are barely touched in
Bennett’s paper: are slots existentially dependent on their owners? On their fillers? And
what are improper slots?
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8.3 Properness

Bennett’s theory proposes Definition 3.5 to define proper slots. The definition states that
some slot s is a proper slot of a if it is a slot of a and a does not fill s. Therefore, an
improper slot is a slot owned and filled by the same entity, as defined by Definition 8.4.

Definition 8.4 (Improper Slot).

IPs(s, a) ≜ Ps(s, a) ∧ F(a, s)

In Bennett’s theory, the properness of a slot is a property relative to an owner of this
slot. Therefore, a slot can be an improper slot of a filler a and, at the same time, a proper
slot of a filler b. However, in our theory, Axiom 8.1 makes it impossible for a slot to have
multiple owners. Therefore, proper and improper slots form a partition of slots, i.e. slots
are either proper or improper, but not both, as expressed by Lemma 8.2, where ⊕ is the
XOR connective.

Lemma 8.2 (Either Proper or Improper).

∀s[S(s) → ∃!a(PPs(s, a) ⊕ IPs(s, a))]

Proof. Let s be a slot. s has an owner a (Definition 8.1), and this owner is unique (Axiom 8.1). Either
a fills s, and therefore s is an improper slot, or a does not fill s, and therefore s is a proper slot of a.

Bennett does not explicitly state why she admitted improper slots. However, as she
clearly aims to mimic classical extensional mereology, she needs some sort of parthood
reflexivity and improper parthood relation. Improper slots make the parthood relation
conditionally reflexive (3.9), and we note that they are not used for any other purpose in
Bennett’s paper. Therefore, we can presume that improper slots are introduced only for
the conditional reflexivity of parthood.

Using Axiom 8.1 and Definitions of P (3.1) and PP (3.2), we can deduce Lemma 8.3,
which states that a proper part of a is filler of a proper slot of a. This ensures that every
proper part of a whole fills a slot of this whole, without owning this slot. This excludes
models like the one pictured in Figure 3.4b.

Lemma 8.3 (Proper Parts iff Proper Slots).

∀a, b(PP(b, a) ↔ ∃s(PPs(s, a) ∧ F(b, s)))

Proof. Let a and b be two fillers.
Let us first suppose that b is a proper part of a. By definition of proper parthood 3.2, P(b, a)∧¬P(a, b).

From P(b, a) and definition 3.1, we deduce the existence of a slot s such that Ps(s, a) ∧ F(b, s). We want
to prove that 1) s is a proper slot of a and that 2) b fills s, which is already in the hypotheses. s is a
slot of a. If a does not fill s, then s is a proper slot of a. Suppose that a fills s. According to 3.7, a = b.
Contradiction: b is a proper part of a. Therefore a does not fill s.

Let us now suppose that there is some s that is a proper slots of a and that is filled by b. We want
to prove that b is a part of a and that a is not a part of b. b fills a slot of a. Thus, by 3.1, b is a part of
a. Suppose now that a is a part of b. By antisymmetry (3.8), a = b. Thus a fills s: contradiction as s is
a proper slot of a. Therefore a is not a part of b.

As explained in Section 5.1, Bennett’s Axiom 3.4 ensures that anything that possesses
a slot has an improper slot. In this previous section, we generalise improper slots to every
fillers, whether they own or fills a slot. This was done by Axiom 5.3. We add axiom
Axiom 8.2 to the current theory and broaden Bennett’s Theorem of conditional reflexivity
3.9 as Lemma 8.4.
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Axiom 8.2 (Additional Improper Slot).

∀a, s(F(a, s) → ∃t(IPs(t, a)))

Lemma 8.4 (General Conditional Reflexivity).

∀a, s(Ps(s, a) ∨ F(a, s) → P(a, a))

Proof. This is a trivial consequence of 3.1, 3.4 and Axiom 8.2.

In Bennett’s theory, nothing excludes that an entity has an improper slot several times.
Remember that we determine the number of slots of a universal by considering the number
of parts of a particular that would instantiate this universal (Isomorphism principle and
counting criteria, see Sections 2.6.1 and 3.3.2). For example, a particular of Methane
has arguably itself as a part only once. From this viewpoint, Methane should have a
unique improper slot. More generally, we add the following Axiom 8.3 asserting that a
filler has at most one improper slot.

Axiom 8.3 (Unique Improper Slot per Filler).

∀a, s, t(IPs(s, a) ∧ IPs(t, a) → s = t)

With Axiom 3.6, Bennett introduces anti-symmetry, i.e., if a is part of b by filling its
slot s and b is part of a by filling its slot t, then a = b. With Axiom 8.3, we can assert
that, besides a = b, we also have s = t, as expressed by Theorem 8.5.

Theorem 8.5 (Mutual Occupancy is Slot Identity).

∀a, b, s, t(Ps(s, b) ∧ F(a, s) ∧ Ps(t, a) ∧ F(b, t) → s = t)

Proof. Let s and t be two slots, and a and b two fillers such that (Ps(s, b)∧F(a, s))∧(Ps(t, a)∧F(b, t)). By
3.6, we know that a = b. Therefore, by Definition 8.4, s and t are improper slots of a (IPs(s, a)∧IPs(t, a)).
By Axiom 8.3, s = t.

To sum up, so far we removed slot inheritance by removing Bennett’s Axiom 3.5
and clarified what slots are in our theory, i.e., non-shareable elements of mereological
structures. We also made clear the differences between proper and improper slots. We
kept axioms Axioms 3.1 to 3.4 and Axioms 3.6 to 3.8 in our theory, which will be used,
with our Axioms 8.1 to 8.3 as a basis for the operation of contextualisation between slots
and mereology of slots that we will now present.

As explained above, the removal of Bennett’s Axiom 3.5 implies that we will need to
show that Theorem 3.7 is a theorem of our theory. Nonetheless, other Bennett’s theorems
are not dependent on Axiom 3.5 and still hold with the axioms we consider in the remainder
of the paper, as do all of Theorems 8.1 and 8.5 and Lemmas 8.2 to 8.4 demonstrated in
this section.

8.4 Existential Dependencies

Even though Bennett explores the existential dependencies of entities on their slots and
parts, she says nothing about the existential dependencies of slots on their owners and
fillers.

In Bennett’s theory, slots can be related to fillers by two relations: Ps and F . Therefore,
a specific slot can be owned by some fillers and filled by some other (or identical) fillers.
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Does a slot existentially depend on its owner? Or on its filler? And if so, what is the
nature of this dependency?

Bennett’s theory asserts that all slots have an owner (Axiom 3.1). In our theory, a slot
is an inner element of a single whole (Axiom 8.1). Therefore, the facts that slots always
have an owner and are elements of their single owner’s mereological structure suggest
that slots existentially depend on their unique owner. Thus, although we do not formally
account for the modal aspect of dependence in our theory, we can assume that slots are
specifically dependent on their owner: the existence of a specific slot depends on the
existence of its owner. If the owner would disappear, the slot would also cease to exist.

We just pointed out that slots are inner elements of their owner. They have another
important characteristic in Bennett’s theory: they are always filled (Axiom 3.7). Bennett
also points out that the content of a slot can change over time: a slot can have two different
fillers at two different times. Thus, a slot does not specifically depend on its filler. This
raises the question of whether a slot generically depends on its fillers across time, which
we will not address here as we leave the complex issue of mereological change for further
work.
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Chapter 9

Mereology Of Slots

In this chapter, I present the theory proposed in Tarbouriech et al. (2024). This theory
uses the idea developed in the Copy-Slot Mechanism: the slots should be duplicated as
many times as needed. This theory fixes the counting problems identified in Bennett’s
theory and in the Copy-Slot Mechanism. After establishing a strong basis that enables to
count correctly, this chapter presents an exploration of the mereology of slots.

I define mereological relations similar to those of classical mereology and show and
prove that we get similar definitions and theorems, in particular decomposition and prin-
ciple theorems. This theory is based on Definitions 3.1 to 3.5 and 8.1 to 8.4 and Axioms 3.1
to 3.4, 3.6, 3.7 and 8.1 to 8.3.
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9.1 Slot Contextualisation

Now that we further explained what slots are in our theory, let us look at our solution to
make parthood transitive. We keep the core idea developed with the copy-slot mechanism:
the mereological structure of a filler should be duplicated as many times as the filler
occupies a slot. In this paper, as seen in Chapter 8, the idea is to use slots as occurring
contexts of parts. Instead of using the relations CF and CT , we want a theory in which
we can assert about the Figure 5.2b that S5 and S6 are respectively the results of S3 and
S4 being contextualised by S1. In the same way, we want to say that S7 and S8 are the
results of S3 and S4 being contextualised by S2.

In Figure 9.1, b is a part of a by filling s, and c is part of b by filling t. In this
configuration, we want b’s parts to also be parts of a, i.e., we want c to be a part of a.
The slot t cannot be inherited by a, as it would be in Bennett’s theory: t is a slot of b
and only b. However, c should fill a slot of a because it fills a slot of b, which itself fills a
slot of a. For this, we introduce the relation of slot contextualisation. In our example, slot
contextualisation relates a slot u of a to s and t. We say that u is the “contextualisation
of t by s”. The relation of slot contextualisation is abbreviated CoS : CoS(u, s, t) means
that u is the result of the contextualisation of t by s. Furthermore, we want this relation
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to only hold between slots, we want slots u and s to have the same owner and we want
slots u and t to have the same filler. From now on, •rr represents, in figures, the
contextualisation with the arrow head, the black dot and the arrow tail respectively linked
to u, s and t in CoS(u, s, t).

a55 OO

c •
kk

u

bOO

s

c
t

Figure 9.1: An example of contextualisation

As already mentioned, the contextualisation is a relation between three slots, as im-
posed by Axiom 9.1.

Axiom 9.1 (Domains of Contextualisation).

∀s, t, u(CoS(u, s, t) → S(u) ∧ S(s) ∧ S(t))

The existence of the contextualisation is implied by the existence of some filler a such
that one of the slots is a slot of a, and the other one is filled by a. This condition of
existence is captured by the predicate Cb, defined by Definition 9.1: Cb(t, s) reads “t is
contextualisable by s”. Axiom 9.2 states that a slot t is contextualisable by a slot s if and
only if a contextualisation u of t by s exists.

Definition 9.1 (Contextualisable by).

Cb(t, s) ≜ ∃a(F(a, s) ∧ Ps(t, a))

Axiom 9.2 (Contextualisable iff Contextualisation Exists).

∀s, t[Cb(t, s) ↔ ∃u(CoS(u, s, t))]

We also impose, with Axiom 9.3, that the contextualisation is unique. Consequently, we
will use the notation s◦t as a binary function that gives the resulting slot of t contextualised
by s, in other words, the contextualisation of t by s.

Axiom 9.3 (Unicity of Contextualisation).

∀s, t, u, v(CoS(u, s, t) ∧ CoS(v, s, t) → u = v)

We will now use the notation u = s◦ t instead of the statement CoS(u, s, t), and in the
context in which t is contextualisable by s, we will simply use s ◦ t.1

We can deduce from this that if s ◦ t and t ◦ s exist, then s = t. In other words, in the
general case where s and t are different, if the contextualisation s ◦ t exists, then t ◦ s does
not. This is expressed by Theorem 9.1.

Theorem 9.1 (Symmetric Contextualisation is Slot Identity).

∀s, t, u, v(u = s ◦ t ∧ v = t ◦ s → s = t)

1In proofs, we will often omit reference to Axiom 9.2 for this last use.
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Proof. Let s, t, u and v be four slots such that u = s ◦ t and v = t ◦ s. By Axiom 9.2, we know there are
a and b such that F(a, s) ∧ Ps(t, a) and F(b, t) ∧ Ps(s, b). By T8.5, s = t.

Let us now introduce Axioms 9.4 and 9.5 to prevent some unwanted contextualisations.
Axiom 9.4 ensures that if s ◦ t and s ◦ u are equal, then t = u, i.e. it ensures that when
an entity a is part of another entity c by filling a slot s, there are as many slots of a as
there are slots of c that are the results of a contextualisation by s. Otherwise, it would
be possible for the contextualisations of two different slots of the same entity a to be
identical, as pictured in Figure 9.2a. In such a case, a could have two slots filled by b
which by contextualisation could lead to only one slot of c filled by b; this would obviously
not lead to the correct result when counting how many times b is part of c.

In addition, we would like to ensure that a contextualisation of an improper slot s by
some slot t results in t. Otherwise, in the example pictured by Figure 9.2b, a would be
part of c three times instead of once. However, it is possible to adopt a weaker axiom,
more similar to Axiom 9.4 and to use it to demonstrate such a proposition. This adopted
axiom is Axiom 9.5 and the resulting theorem is Theorem 9.3, presented further below.

Axiom 9.4 (Injectivity to the Left).

∀s, t, u, v(v = s ◦ t ∧ v = s ◦ u → t = u)

Axiom 9.5 (Injectivity to the Right).

∀s, t, u, v(v = t ◦ s ∧ v = u ◦ s ∧ ∃a(IPs(s, a)) → t = u)

cOO jj

aOO ii
s

b• 22• 22
v

b
t

b

u

(a) Injectivity to the left

c44 OO jj

a
t

s

a• // •oo
v

a
us

(b) Injectivity to the right by improper slot
(s is represented by labels on dashed arrows.)

Figure 9.2: Injectivities of Contextualisation: unwanted models with t ̸= u

Axiom 9.5 ensures that if s is an improper slot and v = t ◦ s = u ◦ s, then u = t.
However, this axiom does not ensure that t = v. For this, we will introduce Axiom 9.6,
an axiom of associativity. There is moreover another motivation to introduce it. Consider
the example given in Figure 5.3, reinterpreted using contextualisation. We know that
S7 = S9 ◦ S3 and S13 = S10 ◦ S1. Among the slots used in these contextualisations, some
are also results of contextualisation: S3 = S5 ◦ S1 and S10 = S9 ◦ S5. By replacing S3 and
S10 in the first two equations, we get S7 = S9◦(S5◦S1) and S13 = (S9◦S5)◦S1. If we want
to avoid slot duplication, as exposed in the copy-slot mechanism, we want that S7 = S13,
i.e., S9 ◦ (S5 ◦ S1) = (S9 ◦ S5) ◦ S1. This is enabled by Axiom 9.6, which intuitively states
that if t ◦ u and s ◦ (t ◦ u) exist, then s ◦ t and (s ◦ t) ◦ u exist and s ◦ (t ◦ u) = (s ◦ t) ◦ u,
and vice versa.

Axiom 9.6 (Contextualisation Associativity).

∀s, t, u, v[∃w(v = s ◦ w ∧ w = t ◦ u) ↔ ∃x(v = x ◦ u ∧ x = s ◦ t)]

This axiom means that there are two “paths” from u to v = (s ◦ t) ◦ u = s ◦ (t ◦ u),
as pictured respectively by Figures 9.3a and 9.3b.2 In Figure 9.3a, t is contextualised by

2Figure 9.3 is subdivided into two figures for readability: they are two partial views of the same model.
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s to get (s ◦ t), filled by the same filler as t, which owns u. Thus, (s ◦ t) ◦ u exists. In
Figure 9.3b, u is contextualised by t to get (t ◦ u). And this slot, owned by the filler of s,
is contextualised by s to get s ◦ (t ◦ u). Associativity implies that (s ◦ t) ◦ u and s ◦ (t ◦ u)
are identical.
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c•
33 FF

s ◦ t
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(s ◦ t) ◦ u
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t
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u

(a) (s ◦ t) ◦ u
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s

d• //
s ◦ (t ◦ u)
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d• 22
t ◦ u

d

u

(b) s ◦ (t ◦ u)

Figure 9.3: Associativity: (s ◦ t) ◦ u = s ◦ (t ◦ u)

Slots of various properness can be contextualised together. We can distinguish three
specific non-disjoint cases: 1) both slots are improper slots (Left-and-Right-Improper Con-
textualisation, see Theorem 9.2); 2) the first operand is an improper slot (Improper Slot
Is Right Neutral Element, see Theorem 9.3); 3) the second operand is an improper slot
(Improper Slot Is Left Neutral Element, see Theorem 9.4).

The only slots that can be contextualised by themselves are improper slots. This is
because of the condition expressed by Axiom 9.2 (Contextualisable iff Contextualisation
Exists). Therefore, a slot s is improper iff s = s ◦ s is true, as expressed by Theorem 9.2.

Theorem 9.2 (Left-and-Right-Improper Contextualisation).

∀s(∃a(IPs(s, a)) ↔ s = s ◦ s)

Proof. Left-to-right: let a be a filler and s its improper slot (IPs(s, a)). By definition, this means that
Ps(s, a) ∧ F(a, s). According to Axiom 9.2, the slot s ◦ s exists. By Axiom 9.1, we know that s ◦ s is
owned by some b (Ps(s ◦ s, b)). And by Single Occupancy Axiom (3.7), we know that there is a c that
fills s ◦ s (F(c, s ◦ s)). We want to show that s = s ◦ s. We will show that a = b = c, and conclude that,
as there can only be one improper slot per filler, s = s ◦ s.

Let us first show that a = c. We know by Axiom 8.2 that c has an improper slot t (Ps(t, c)∧F(c, t)).
With F(c, s ◦ s)∧Ps(t, c), we know that (s ◦ s) ◦ t exists. By Contextualisation Associativity (Axiom 9.6),
s◦ t exists. Thus, by Axiom 9.2, there is a d that fills s and owns t (F(d, s)∧Ps(t, d)). However, we know
that s is already filled by a and that a slot can only be filled by one filler (3.7), therefore a = d. We also
know that t is owned by c and d, i.e. a. However, there can only be one owner (Axiom 8.1), therefore,
a = c = d. One of the consequences is that s = t, as s and t are improper slots of a and that there is
only one improper slot per filler.

Let us prove that a = b. We know that s ◦ (s ◦ s) exists. Therefore by Axiom 9.2, there is a e that
fills s and owns s ◦ s. By 3.7 (Single Occupancy), a = e. By Axiom 8.1 (Single Owner), e = b. So a = b.

We know that s and s ◦ s are filled and owned by a, i.e. they are a’s improper slots. However, there
is only one improper slot per filler. Therefore, s = s ◦ s.

Right-to-left: let s be a slot such that s = s ◦ s. By Axiom 9.2, we know that there is an a such that
Ps(s, a) ∧ F(a, s), which is, by definition, IPs(s, a).

Theorems 9.3 and 9.4 show that improper slots act as neutral elements when contextu-
alisation is defined. The converses, i.e. neutral elements of contextualisation are improper
slots, will be demonstrated below by Theorems 9.9 and 9.10.

Theorem 9.3 (Improper Slot Is Right Neutral Element).

∀a, s, t(IPs(s, a) ∧ F(a, t) → t = t ◦ s)
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Proof. Let s and t be two slots and a be a filler such that s is the improper slot of a (IPs(s, a)) and a fills
t (F(t, a)). According to Theorem 9.2, s = s ◦ s. According to Axiom 9.2, there is a u such that u = t ◦ s.
So u = t ◦ (s ◦ s). By associativity (Axiom 9.6), we know that u = (t ◦ s) ◦ s. So u = u ◦ s. Finally, as
t ◦ s = u ◦ s, by Axiom 9.5, t = u. Thus t = t ◦ s.

Theorem 9.4 (Improper Slot Is Left Neutral Element).

∀a, s, t(IPs(s, a) ∧ Ps(t, a) → t = s ◦ t)

Proof. Let s and t be slots, and a a filler, such that s is the improper slot of a (IPs(s, a)) and t is a
slot of a (Ps(t, a)). With Theorem 9.2, we know that s = s ◦ s. By Axiom 9.2 (Contextualisable iff
Contextualisation Exists), there is a u such that u = s ◦ t. So u = (s ◦ s) ◦ t, which, by Contextualisation
Associativity (Axiom 9.6), gives u = s ◦ (s ◦ t). So u = s ◦u. Finally, as s ◦ t = s ◦u, by Axiom 9.4, t = u.
Thus t = s ◦ t.

Theorem 9.5 states that if a slot s is the result of a contextualisation of some slot by
t and t is the result of a contextualisation of some slot by s, then s = t.

Theorem 9.5 (Mutual Contextualisation is Identity).

∀s, t, u, v(s = t ◦ u ∧ t = s ◦ v → s = t)

Proof. Let s, t, u and v be slots such that s = t ◦ u and t = s ◦ v. By replacing s by t ◦ u in t = s ◦ v, we
know that t = (t ◦ u) ◦ v. By Contextualisation Associativity (Axiom 9.6), we know t = t ◦ (u ◦ v). With
the same reasoning, we know s = s ◦ (v ◦u). With Theorem 9.1, u = v. So, by replacing v by u, we know
that s = t ◦ u and t = t ◦ (u ◦ u). u being an improper slot, we know by Theorem 9.2 that u = u ◦ u. So
t = t ◦ u. Therefore by Unicity of Contextualisation (Axiom 9.3), s = t.

As said when introducing contextualisation, the resulting slot and the contextualising
slot should have the same owner. This is guaranteed by Theorem 9.6. Furthermore, the
resulting slot and the contextualised slot have the same filler, as expressed by Theorem 9.7.

Theorem 9.6 (Contextualisation Same Owner).

∀u, s, t(u = s ◦ t → SO(u, s))

Proof. Let u, s and t be such that u = s ◦ t. By Axiom 9.1, we know that u, s and t are slots, i.e. they
have an owner. We call a the owner of u (Ps(u, a)). The owners of s and t are not useful for this proof,
so we ignore them. By 3.4, we know that a as an improper slot v (IPs(v, x)). By Improper Slot Is Left
Neutral Element (Theorem 9.4), we know that u = v ◦ u. So u = v ◦ (s ◦ t). By Contextualisation
Associativity (Axiom 9.6), u = (v ◦ s) ◦ t. As there is a contextualisation v ◦ s, we know by Axiom 9.2
that there is a b that fills v (F(b, v)) and owns s (Ps(s, b)). The slot v is filled by a and b, which gives,
by 3.4, that a = b. This means that s and u are both owned by a, i.e. they have the same owner.

Theorem 9.7 (Contextualisation Same Filler).

∀u, s, t(u = s ◦ t → SF(u, t))

Proof. Let u, s and t be such that u = s ◦ t. By Axiom 9.1, we know that u, s and t are slots. With 3.7, we
know there is a a that fills t. We want to prove that a also fills u. By Axiom 8.2, a has an improper slot v.
According to Axiom 9.2, t◦v exists. According to Axiom 9.2, there is a b that fills s and owns t. According
to Theorem 9.6, t◦v and t have the same owner. This owner being unique (Axiom 8.1), t◦v is owned by b.
Therefore, s◦ (t◦ v) exists. By Contextualisation Associativity (Axiom 9.6), s◦ (t◦ v) = (s◦ t)◦ v = u◦ v.
So, by Axiom 9.2, there is something that fills u and owns v. With Axiom 8.1, there is only one owner,
namely a. Therefore, u is filled by a. As a fills t and u, by Definition 8.3, SF(u, t).
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We mentioned earlier that because we removed Slot Inheritance Axiom 3.5, we would
need to prove Parthood Transitivity Theorem 3.7 using our new theory. Here is a proof
of it, using contextualisation.

Theorem 9.8 (Parthood Transitivity).

∀a, b, c(P(a, b) ∧ P(b, c) → P(a, c))

Proof. Let a, b and s be three fillers such that a is a part of b and b is a part of c. We want to prove that
a is a part of c, i.e. that there is some slot owned by c and filled by a. By definition of parthood (3.1),
there are two slots s and t such that F(a, s) ∧ Ps(s, b) and F(b, t) ∧ Ps(t, c). According to Axiom 9.2, as
b fills t and owns s, there is a slot u such that u = t ◦ s. By Theorem 9.7, u and s have the same filler,
i.e. a. By Theorem 9.6, u and t have the same owner, i.e. c. Therefore, u being filled by a and owned c,
a is a part of c.

As already mentioned before, Theorems 9.9 and 9.10 show that neutral elements are
improper slots.

Theorem 9.9 (Right Neutral Element Is Improper Slot).

∀s, t(t = t ◦ s → ∃a(IPs(s, a) ∧ F(a, t)))

Proof. Let s and t be two slots such that t = t ◦ s. According to Axiom 9.2 (Contextualisable iff Contex-
tualisation Exists), there is a filler a that fills t and owns s. According to Theorem 9.7 (Contextualisation
Same Filler) and 3.7 (Single Occupancy), s and t have the same filler, i.e. a. The slot s is filled and
owned by a, so by Definition 8.4, s is the improper slot of a.

Theorem 9.10 (Left Neutral Element Is Improper Slot).

∀s, t(t = s ◦ t → ∃a(IPs(s, a) ∧ Ps(t, a)))

Proof. Let s and t be slots such that t = s ◦ t. According to Axiom 9.2 (Contextualisable iff Contextu-
alisation Exists), there is a filler a that fills s and owns t. According to Theorem 9.6 (Contextualisation
Same Owner) and Axiom 8.1 (Single Owner), s and t have the same owner, i.e. a. The slot s is filled and
owned by a, so by Definition 8.4, s is the improper slot of a.

Theorem 9.11 shows that if s and t are contextualisable by u, then for all v, s is a
contextualisation of t by v iff (u ◦ s) is a contextualisation of (u ◦ t) by v.

Theorem 9.11 (Contextualisation Stable under Contextualisation).

∀s, t, u(Cb(s, u) ∧ Cb(t, u) → ∀v(s = t ◦ v ↔ u ◦ s = (u ◦ t) ◦ v))

Proof. Let s, t and u be slots such that s and t are contextualisable by u. Let v be a slot. We want to
prove that s = t ◦ v ↔ u ◦ s = (u ◦ t) ◦ v.

Left-to-right: suppose that s = t ◦ v. Let us prove that u ◦ s = (u ◦ t) ◦ v. First, let us prove that
(u ◦ t) ◦ v exists. For it to exist, according to Axiom 9.2, there must be some filler that fills u ◦ t and owns
v. According to Axiom 9.2, s = t ◦ v implies that there is a filler a that fills t and owns v. Let us show
that a fills u ◦ t. According to Theorem 9.7 (Contextualisation Same Filler), u ◦ t and t have the same
filler, i.e. a. Therefore, as there is a filler that fills u ◦ t and owns v, (u ◦ t) ◦ v exists.

Let us now prove that (u ◦ t) ◦ v equals u ◦ s. By Axiom 9.6 (Contextualisation Associativity),
(u ◦ t) ◦ v = u ◦ (t ◦ v). Using the fact that s = t ◦ v, we get that (u ◦ t) ◦ v = u ◦ s.

Right-to-left: suppose that u ◦ s = (u ◦ t) ◦ v. Let us prove that s = t ◦ v. By Axiom 9.6 (Contextu-
alisation Associativity), u ◦ s = u ◦ (t ◦ v). By Axiom 9.4 (Injectivity to the Left), s = t ◦ v.
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Definition 3.6 defines what a direct slot is on the basis of Bennett’s theory, in partic-
ular by using multiple owners for the same slot. However, since A8.1 prevents any slot
from having multiple owners, this definition is not relevant anymore. Direct slots can be
redefined using slot contextualisation: a direct slot is a slot that is not the result of the
contextualisation of a proper slot by another proper slot; put differently, a direct slot s
can be equal to t ◦ u only if t, u, or both are improper slots (which implies that if one of
them is not an improper slot, it is identical to s).

Definition 9.2 (Direct Slot — With Contextualisation).

DP’s(s, a) ≜ Ps(s, a) ∧ ∀t, u[s = t ◦ u → (∃b(IPs(t, b))) ∨ (∃c(IPs(u, c)))]

We defined the slot contextualisation relation and operator in order to recontextualise
parts when they should be inherited. After stating the domain and existential conditions
of contextualisation, we explained why it should be unique and associative. After ex-
ploring special cases of contextualisation, we demonstrated expected properties, such as,
in contextualisation u = s ◦ t, u and s have the same owner, and u and t have the same
filler. We also proved that parthood transitivity holds. Exploiting this relation of slot
contextualisation, we will define in the next sections basic mereological relations between
slots.

9.2 Slot Parthood

We first define slot (general) parthood, then slot proper parthood.
If u = s ◦ t, as in Figure 9.1, the two slots s and u of the same owner a cannot be

seen as representing two non-overlapping locations in the mereological structure of a. In
fact, u = s ◦ t counts as a copy of t, which is a slot of the filler of s. Matching the
parthood relation between c (the filler of t) and b (the filler of s), we propose to consider
u (the contextualisation of t by s) as a part of s and define a parthood relation between
slots (PoS ) on the basis of the contextualisation relation, as expressed by Definition 9.3.
Lemma 9.12 gives the domain and the range of the relation. As we will see, this will enable
the characterisation of a classical mereology among slots of the same owner.

Definition 9.3 (Part of Slot).

PoS(u, s) ≜ ∃t(u = s ◦ t)

Lemma 9.12 (PoS Domain and Range).

∀s, t(PoS(s, t) → S(s) ∧ S(t))

Proof. By Definition 9.3 and Axiom 9.1.

The relation PoS is conditionally reflexive, anti-symmetrical and transitive, as respec-
tively expressed by Theorems 9.13 to 9.15. Except for the restriction to slots in reflexivity,
these are the properties expected from a parthood relation, such as in classical mereology
(Varzi, 2019).

Theorem 9.13 (Conditional PoS Reflexivity).

∀s(S(s) → PoS(s, s))
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Proof. Let s be a slot and a its owner (Ps(s, a)). By 3.7, we know that there is a b that fills s (F(b, s)).
By Axiom 8.2, b has an improper slot t (Ps(t, b)∧F(b, t)). By Axiom 9.2 (Contextualisable iff Contextu-
alisation Exists) and Theorem 9.3 (Improper Slot Is Right Neutral Element), we know that s ◦ t = s. By
Definition 9.3, PoS(s, s).

Theorem 9.14 (PoS Anti-Symmetry).

∀s, t(PoS(s, t) ∧ PoS(t, s) → s = t)

Proof. Derives directly from Theorem 9.5 (Mutual Contextualisation is Identity).

Theorem 9.15 (PoS Transitivity).

∀s, t, u(PoS(s, t) ∧ PoS(t, u) → PoS(s, u))

Proof. Let s, t and u be slots such that PoS(s, t) and PoS(t, u). By Definition 9.3, there are v and w such
that s = t ◦ v and t = u ◦ w. By replacing t in the expression of s, we get s = (u ◦ w) ◦ v. According to
Axiom 9.6, the contextualisation is associative, therefore s = u◦ (w ◦v). By Definition 9.3, PoS(s, u).

Two slots standing in a PoS relation have the same owner, as expressed by Theo-
rem 9.16. Furthermore, all slots are slots of a iff they are slot-parts of their a’s improper
slot, as expressed by Theorem 9.17.

Theorem 9.16 (PoS Same Owner).

∀s, t(PoS(s, t) → SO(s, t))

Proof. Derives directly from Theorem 9.6 (Contextualisation Same Owner).

Theorem 9.17 (Slots iff Slot-Parts of Improper Slot).

∀a, s(IPs(s, a) → ∀t(Ps(t, a) ↔ PoS(t, s)))

Proof. Let a be a filler and s its improper slot (IPs(s, a)). Let t be a slot.
Left-to-right: suppose that t is a slot of a. By Theorem 9.4 (Improper Slot Is Left Neutral Element),

t = s ◦ t. Therefore, by Definition 9.3, PoS(t, s).
Right-to-left: suppose that t is a slot-part of s. By Theorem 9.16, s and t have the same owner.

Therefore, t is a slot of a.

The mereology we are currently defining has an uncommon characteristic. Indeed, the
relation of slot-parthood PoS is locally restricted. As showed by Theorems 9.16 and 9.17,
this relation can only hold between slots of the same owner and all slots of a filler are parts
of its improper slots.3 Thus, there are as many separated mereological structures as slot-
owners. Two slots owned by different entities cannot be mereologically related. Similarly,
we will later introduce other mereological relations that can also only hold between slots
of the same owner (Theorems 9.23, 9.29 and 9.40).

Moreover, the mereological structure of slots and the mereological structure of fillers
constrain each other, as expressed by Theorem 9.18. For any pair of slots t and s, if t,
filled by b, is a slot-part of s, filled by a, then b is a part of a. However, if b is a part

3As we will see in Section 9.6 and especially with Theorem 9.57, it means that improper slots are local
universes. For a given owner, there is nothing bigger than its improper slot, i.e. the improper slot is not
a proper part of something. Therefore, this mereological theory does not have junks, as defined in (Varzi,
2019, § 4.2) or (Cotnoir and Varzi, 2021, pp. 220–229).
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of a, it is not true that for every pair of slots respectively filled by b and a, the first
slot is a part of the second one. As a matter of fact, these two slots do not necessarily
fulfil the contextualisation conditions. As an example, consider two molecule universals:
Methane and CarbonDioxide. Both have the universal Carbon as a part, as it fills a
slot of each. The slot of Methane filled by Carbon is not a slot-part of the improper
slot of CarbonDioxide. Reciprocally, the slot of CarbonDioxide filled by Carbon is
not a slot-part of the improper slot of Methane. What we can state is that if b is a part
of a, then, there are (at least) two slots respectively filled by b and a with the first one
being a part of the second; in particular, this will be satisfied with the improper slot of a.

Theorem 9.18 (Slot Structure and Filler Structure constrain Each Other).

∀a, b(∃s, t(PoS(t, s) ∧ F(a, s) ∧ F(b, t)) ↔ P(b, a))

Proof. Left-to-right: let a and b be two fillers, and s and t be two slots, such that F(b, t), F(a, s) and
PoS(t, s). By Definition 9.3, there is a u such that t = s ◦ u. By Theorem 9.7 (Contextualisation Same
Filler) and 3.7 (Single Occupancy), t and u have the same filler, namely b. By Axioms 9.2 (Contextual-
isable iff Contextualisation Exists) and 3.7, we know that there is an entity filling s and owning u, and
this entity is a. Therefore, Ps(u, a) and F(b, u). By 3.1, this means that P(b, a).

Right-to-left: let a be a filler and b a part of a (P(b, a)). According to 3.4, there is a s that is the
improper slot of a (IPs(s, a)). By the Parthood Definition (3.1), there is a t such that F(b, t) ∧ Ps(t, a).
According to Theorem 9.17, t is a slot-part of s.

Theorem 9.19 states that PoS is stable under contextualisation, i.e. u is a slot-part of
t iff s ◦ u is a slot-part of s ◦ t.

Theorem 9.19 (PoS Stable under Contextualisation).

∀s, t, u(Cb(t, s) ∧ Cb(u, s) → (PoS(u, t) ↔ PoS(s ◦ u, s ◦ t)))

Proof. Let s, t, u such that t and u are contextualisable by s.
Left-to-right: suppose that u is a slot-part of t (PoS(u, t)). Therefore, there is a v such that u = t◦v.

Thus, by Theorem 9.11, s◦u = s◦(t◦v). By Contextualisation Associativity (Axiom 9.6), s◦u = (s◦t)◦v.
By Definition 9.3, this means that PoS(s ◦ u, s ◦ t).

Right-to-left: suppose that s ◦ u is a slot-part of s ◦ t (PoS(s ◦ u, s ◦ t)). Therefore, there is a v such
that s◦u = (s◦ t)◦v. By associativity, s◦u = s◦(t◦v), i.e. by Theorem 9.11, u = t◦v. By Definition 9.3,
this means that PoS(u, t).

With the relation PoS , we can define the relation of proper parthood between slots
PPoS , as expressed in Definition 9.4. This definition follows that of proper parthood in
classical mereology, presented in Section 2.2.2.

Definition 9.4 (Proper Part of Slot).

PPoS(s, t) ≜ PoS(s, t) ∧ s ̸= t

As is the case in classical mereology, this relation is irreflexive, asymmetrical and
transitive, as expressed by Theorems 9.20 to 9.22. Furthermore, two slots in a PPoS -
relation share the same owner, as stated by Theorem 9.23.

Theorem 9.20 (PPoS Irreflexivity).

∀s(¬PPoS(s, s))
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Proof. Derives directly from Definition 9.4.

Theorem 9.21 (PPoS Asymmetry).

∀s, t(PPoS(s, t) → ¬PPoS(t, s))

Proof. Derives directly from Definition 9.4 and Theorem 9.14.

Theorem 9.22 (PPoS Transitivity).

∀s, t, u(PPoS(s, t) ∧ PPoS(t, u) → PPoS(s, u))

Proof. Derives directly from Definition 9.4 and Theorems 9.14 and 9.15.

Theorem 9.23 (PPoS Same Owner).

∀s, t(PPoS(s, t) → SO(s, t))

Proof. Derives directly from Definition 9.4 and Theorem 9.16.

A slot can be in relation PPoS with either a proper or an improper slot. These two
possibilities are pictured in Figure 9.4. Figure 9.4a is identical to Figure 9.1, adding the
PPoS(u, s). Figure 9.4b highlights an important feature of contextualisation by improper
slots: every proper slot of a filler a is a slot-proper-part of a’s improper slot, as expressed
by Theorem 9.24.
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Figure 9.4: PPoS relation according to whole properness (dotted arrows represent the
PPoS relation)

Theorem 9.24 (Proper Slots iff Proper Parts Of Improper Slot).

∀a, s(IPs(s, a) → ∀t(PPs(t, a) ↔ PPoS(t, s)))

Proof. Let a be a filler and s its improper slot (IPs(s, a)). Let t be a slot. We want to prove that
PPs(t, a) ↔ PPoS(t, s).

Left-to-right: suppose t is a proper slot of a (PPs(t, a)). We want to prove PoS(t, s) ∧ s ̸= t. With
Theorem 9.17 (Slots iff Slot-Parts of Improper Slot), PoS(t, s). s and t cannot be identical, as the same
slot would be proper and improper, which is not possible according to Lemma 8.2 (Either Proper or
Improper). Thus s ̸= t.

Right-to-left: suppose t is proper slot-part of s (PPoS(t, s)). We want to prove that t is a proper slot
of a, i.e. it is a slot of a, but it is not filled by a. By Theorem 9.23, s and t have the same owner, thus
Ps(t, a). Suppose that t is filled by a, making t an improper slot of a. By Axiom 8.3, s = t. However, as
PPoS(t, s), s ̸= t: contradiction. Therefore, t is not filled by a.
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Theorem 9.25 shows that proper parthood relations between slots and proper parthood
relations between fillers constrain each other.

Theorem 9.25 (Slot Structure and Filler Structure constrain Each Other — Proper
Part).

∀a, b(∃s, t(PPoS(t, s) ∧ F(a, s) ∧ F(b, t)) ↔ PP(b, a))

Proof. Let a and b be two fillers.
Left-to-right: let s and t be two slots such that t is a slot-proper-part of s, a fills s and b fills t.

According to Theorem 9.18, b is a part of a. According to 3.2, we have to prove that a is not a part of
b to finish the proof. Suppose that a is a part of b. With 3.8, P is anti-symmetric. Therefore, a = b.
According to Definition 9.4, as PPoS(t, s), PoS(t, s) and s ̸= t. Furthermore, with Definition 9.3, there
is some u such that t = s ◦u. With Axiom 9.2 and 3.7, there is a single entity that fills s and owns u, i.e.
a. With Theorem 9.7 and 3.7, t and u are filled by the same entity, i.e. a. The slot u, being owned and
filled by a, is its improper slot. By Theorem 9.3, s = s ◦u. Finally, with Axiom 9.4, s = t: contradiction.
Therefore a is not a part of b, and thus, PP(b, a).

Right-to-left: suppose that b is a proper part of a. According to 3.2, b is a part of a and a is not a
part of b. According to Theorem 9.18 and P(b, a), there are two slots s and t such that s is a slot-part
of t, a fills s and b fills t. According to Definition 9.4, we have to prove s ̸= t to fulfil the proof. Suppose
that s = t. Therefore, because F(a, s), F(b, t) and Single Occupancy (3.7), a = b. Contradiction: b is a
proper part of a and they cannot be identical. Therefore, s ̸= t.

Theorem 9.26 states that PPoS is stable under contextualisation, i.e. if u is a slot-
proper-part of t, then s ◦ u is a slot-proper-part of s ◦ t.

Theorem 9.26 (PPoS Stable under Contextualisation).

∀s, t, u(Cb(t, s) ∧ Cb(u, s) → (PPoS(u, t) ↔ PPoS(s ◦ u, s ◦ t)))

Proof. Let s, t and u be slots such that t and u are contextualisable by s.
Left-to-right: suppose that u in a slot-proper-part of t. By Definition 9.4, u is a slot-part of t and is

different from t. We want to prove that s ◦ u is a slot-proper-part of s ◦ t, i.e. that s ◦ u is a slot-part
of s ◦ t and that s ◦ t ̸= s ◦ u. By Theorem 9.19 (PoS Stable under Contextualisation), we know that
PoS is stable under contextualisation. Therefore, s ◦ u is a slot-proper-part of s ◦ t. Suppose now that
s ◦ t = s ◦ u. By Axiom 9.4 (Injectivity to the Left), we infer that t = u. Contradiction. Therefore,
s ◦ t ̸= s ◦ u, and PPoS(s ◦ u, s ◦ t).

Right-to-left: suppose that s ◦ u is a slot-proper-part of s ◦ t. We want to prove that u is a slot-
proper-part of t, i.e. that u is a slot-part of t and that u and t are different. By Definition 9.4, s ◦ u
is a slot-part of s ◦ t. Therefore, by Theorem 9.19, u is a slot-part of t. We want to prove u ̸= t. By
Definition 9.4, s ◦ u ̸= s ◦ t. Suppose that u = t. Thus s ◦ t ̸= s ◦ t: contradiction. Therefore, u ̸= t.

With slot contextualisation, we defined the relations of slot-parthood and slot-proper-
parthood. Those relations have the same properties as the relations of ground mereology,
as presented in Sections 2.2.1 and 2.2.2: slot-parthood is (conditionally) reflexive, antisym-
metric and transitive, while slot-proper-parthood is irreflexive, asymmetric and transitive.
We also showed that both relations also have the same-owner property and are stable
under contextualisation. Finally, we showed that slot-mereological structure and filler-
mereological structure are linked and partially constrain each other. With these relations,
we can enrich further the mereology of slots, by defining the slot-overlap relation.

9.3 Overlap of Slots

With the slot parthood relation PoS , we can define the relation of overlap between slots
OoS , as expressed in Definition 9.5, following the classical definition of overlap (see Sec-
tion 2.2.3).
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Definition 9.5 (Overlap of Slots).

OoS(s, t) ≜ ∃u(PoS(u, s) ∧ PoS(u, t))

Figure 9.5 pictures two configurations in which s and t slot-overlap on u: in Figure 9.5a,
s and t are filled by the same entity b. On the contrary, in Figure 9.5b, s and t have different
fillers, namely b and d. Unlike Bennett’s slot-overlap, this overlap of slots is less pervasive
as it is restricted to slots of the same whole and corresponds more closely to our preformal
intuition.
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Figure 9.5: Slot-overlap between s and t

With our relation of overlap of slots and with the existence of contextualisations, the
model ambiguity depicted in Figure 3.5 with Bennett’s theory disappears: we have either
the model in Figure 9.6a for the string “xyz” or the model in Figure 9.6b for the string
“xyyz” (slots for parts “x” and “z” in “xy” and “yz” and their contextualisations are
omitted for readability). The model in Figure 9.6a cannot represent “xyyz” as there is
only one slot filled by “y” in the whole.

xyz55 OO ii

xyOO

s
y

•
ll

•
22
u

yzOO

t

y
s′

y
t′

(a) s and t are slot-overlapping: string “xyz”

xyyz2255 iill

y
•

ll
s′′

xyOO

s
yzOO

t
y

•
22
t′′

y
s′

y
t′

(b) s and t are not slot-overlapping: string
“xyyz”

Figure 9.6: Non-ambiguous models for “xyz” and “xyyz”

This relation is conditionally reflexive and symmetrical, as expressed by Theorems 9.27
and 9.28. Except for the premise in Theorem 9.27, these theorems are common theorems
of classical mereology.

Theorem 9.27 (Conditional OoS Reflexivity). ∀s(S(s) → OoS(s, s))

Proof. Relation PoS is reflexive, therefore, by definition OoS is also reflexive.

Theorem 9.28 (OoS Symmetry). ∀s, t(OoS(s, t) → OoS(t, s))

Proof. According to the Definition 9.5 and the commutativity of the AND logical operator.

Two overlapping slots have the same owner, as showed by Theorem 9.29.

Theorem 9.29 (OoS Same Owner). ∀s, t(OoS(s, t) → SO(s, t))
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Proof. Let s and t be two slots such that OoS(s, t). According to Definition 9.5, we know ∃u(PoS(u, s)∧
PoS(u, t)). With Theorem 9.6 (Contextualisation Same Owner) and Axiom 8.1 (Single Owner), SO(s, t).

As expressed by Lemma 9.30, if two slots overlap, they also overlap with the slots the
other one is part of.

Lemma 9.30 (Overlap with Part Implies Overlap with Whole).

∀s, t, u(OoS(u, t) ∧ PoS(t, s) → OoS(u, s))

Proof. Let s, t and u be three slots such that OoS(u, t)∧PoS(t, s). By Definition 9.5, we know that there
is a v such that PoS(v, u) ∧ PoS(v, t). By Theorem 9.15 (PoS Transitivity), we know that PoS(v, s).
Therefore, there is a common slot-part between u and s, namely v. By definition, OoS(u, s).

Lemma 9.31 expresses the fact that all the slots of any filler a overlap with a’s improper
slot.

Lemma 9.31 (Slot-Overlap With Improper Slot). ∀a, s, t(IPs(s, a)∧Ps(t, a) → OoS(s, t))

Proof. Let a be a filler, s its improper slot (IPs(s, a)) and t one of its slots (Ps(t, a)). According to
Theorem 9.13 (Conditional PoS Reflexivity), PoS(t, t). According to Theorem 9.17 (Slots iff Slot-Parts
of Improper Slot), PoS(t, s). By Definition 9.5, OoS(s, t).

From the definition of OoS , we can deduce that every slot s that is a slot-part of a
slot t overlaps with that slot, as stated by Lemma 9.32.

Lemma 9.32 (PoS Implies OoS ). ∀s, t(PoS(s, t) → OoS(s, t))

Proof. Let s and t be slots such that PoS(s, t). We want to prove that there is a slot that is a slot-part
of s and t. The slot s fulfils these requirements. It is a slot-part of t by hypothesis. And the slot-part
relation being reflexive, it is also a slot-part of itself.

Theorem 9.33 states that OoS is stable under contextualisation, i.e. if t and u overlap,
then s ◦ t and s ◦ u overlap.

Theorem 9.33 (OoS Stable under Contextualisation).

∀s, t, u(Cb(t, s) ∧ Cb(u, s) → (OoS(t, u) ↔ OoS(s ◦ t, s ◦ u)))

Proof. Let s, t and u be slots such that t and u are contextualisable by s.
Left-to-right: suppose that u slot-overlaps with t (OoS(t, u)). By Definition of OoS (Definition 9.5),

we know there is a v such that PoS(v, t) ∧ PoS(v, u). By Theorem 9.16 (PoS Same Owner), v has the
same owner as t, thus v is contextualisable by s. By Theorem 9.19 (PoS Stable under Contextualisation)
and PoS(v, t) ∧ PoS(v, u), we deduce PoS(s ◦ v, s ◦ t) ∧ PoS(s ◦ v, s ◦ u). Therefore, by Definition 9.5,
OoS(s ◦ t, s ◦ u).

Right-to-left: suppose that s ◦ t overlaps with s ◦ u. By Definition D9.5, there is a v′ such that
PoS(v′, s◦t) and PoS(v′, s◦u). By Definition 9.3, there is vt and vu such that v′ = (s◦t)◦vt = (s◦u)◦vu.
By Contextualisation Associativity (Axiom 9.6), s◦(t◦vt) = s◦(u◦vu). Thus, by Axiom 9.4, t◦vt = u◦vu.
Let us call v the slot equal to t ◦ vt and u ◦ vu. By Definition 9.3, v is a slot-part of t and u. Thus, t and
u overlap.

With Theorem 9.18, we showed cross-constraints between PoS relations between slots
and P relations between fillers. Theorem 9.34 expresses a constraint from the OoS rela-
tions between slots towards the O relations between fillers. However, unlike Theorem 9.18,
we did not find interesting constraints from O relations between fillers towards OoS re-
lations between slots. Indeed, if two entities a and b overlap, it means that they have a
common part c, but in two different slots s and t, as slots cannot have multiple owners.
Nothing ensures that there are two slots u and v such that u ◦ s = v ◦ t.
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Theorem 9.34 (Slot-Overlap Constrains Overlap between Fillers).

∀a, b, s, t(OoS(s, t) ∧ F(a, s) ∧ F(b, t) → O(a, b))

Proof. Let s and t be two slots and a and b their respective fillers. Suppose that s and t slot-overlap
(OoS(s, t)). By Definition 9.5, it means that there is a slot u that is a slot-part of both s and t. By
Lemma 9.12 and 3.7, there is some filler c that fills u. By Theorem 9.18, c is a part of a and b. Therefore,
by 3.3, a and b are overlapping.

In our theory, as a slot has a unique owner, Bennett’s relation of slot-overlap between
fillers, presented in Section 3.3.3, collapses to the identity on fillers. Fortunately, the slot-
mereological structure we have introduced enables us to grasp a more adequate notion of
overlap.

We defined a slot-overlap relation, which has the same properties as in classical mere-
ology: (conditionally) reflexive and symmetric. Furthermore, this relation has the same-
owner property and is stable under contextualisation. Those mereological relations PoS
and OoS will now be used to introduce supplementation principles in the next section.

9.4 Slot Supplementation Principles

First of all, let us note that the main motivation behind Bennett’s slot mereology and
ours is to represent entities that can have a same part multiple times. Therefore, we
do not want supplementation over fillers. Indeed, the Dihydrogen molecule universal
has as proper part the Hydrogen atom universal (twice), but there is no proper part of
Dihydrogen that does not overlap with Hydrogen.

Our Single Owner Axiom (Axiom 8.1) makes Garbacz’s revisions of Bennett’s Ax-
iom 3.8, presented in Section 3.2.1, vacuously true theorems. Therefore, we have to find
a new axiomatic formulation for slot strong supplementation. Like in classical mereology,
we have introduced here notions of parthood, proper parthood and overlap relations be-
tween slots. This means that we can adapt the Strong Supplementation axiom of classical
mereology (see Section 2.3.3), as expressed by Axiom 9.7 below. We previously explained
that in our mereology, the mereological relations can only hold between slots of the same
owner. However, in the Slot Strong Supplementation Axiom, we need not impose that
s and t have the same owner. Indeed, if they do not have the same owner, none of the
possible slot-parts of t can overlap with s, and in particular, t does not overlap with s.
Thus, the axiom is trivially true in that case.

Axiom 9.7 (Slot Strong Supplementation).

∀s, t[S(s) ∧ S(t) → (¬PoS(t, s) → ∃u(PoS(u, t) ∧ ¬OoS(u, s)))]

From this axiom, we can deduce a theorem of Slot Weak Supplementation, expressed
by T9.35. This theorem states that if a whole has a proper slot, then it must have another
slot that does not overlap with the first one.

Theorem 9.35 (Slot Weak Supplementation).

∀s, t(PPoS(s, t) → ∃u(PoS(u, t) ∧ ¬OoS(u, s))

Proof. Let s and t be two slots such that PPoS(s, t), i.e. PoS(s, t)∧s ̸= t. From PoS(s, t), and PoS Anti-
Symmetry (Theorem 9.14), we deduce ¬PoS(t, s). From ¬PoS(t, s) and Slot Strong Supplementation
(Axiom 9.7), we deduce ∃u(PoS(u, t) ∧ ¬OoS(u, s)).

98



We can also prove theorems of OoS -Extensionality (Theorem 9.36) and PPoS -Exten-
sionality (Theorem 9.37). For Theorem 9.36, the premise S(s)∧S(t) is necessary: without
it, ∀u,OoS(s, u) ↔ OoS(t, u) would be vacuously true for every pair of fillers, leading to
all fillers being equal.

Theorem 9.36 (OoS -Extensionality).

∀s, t[S(s) ∧ S(t) → (∀u,OoS(s, u) ↔ OoS(t, u)) → s = t]

Proof. Let s and t be two slots such that ∀u,OoS(s, u) ↔ OoS(t, u) (let us call this H1). We want to
prove that s = t. Suppose that s is different from t (s ̸= t). Either PoS(t, s) or ¬PoS(t, s).

Suppose first that PoS(t, s). By Definition 9.4, we know PPoS(t, s). According to the Slot Weak Sup-
plementation Theorem 9.35, there is a u such that PoS(u, s)∧¬OoS(u, t). With PoS(u, s) and Lemma 9.32
(PoS Implies OoS), we know that OoS(u, s). By H1, we deduce that OoS(u, t). Contradiction: u does
and does not overlap t. Suppose now that ¬PoS(t, s). By Slot Strong Supplementation Axiom 9.7, there
is an u such that PoS(u, t)∧¬OoS(u, s). By the same reasoning, we also get a contradiction: u does and
does not overlap s.

Thus, s = t.

Theorem 9.37 (PPoS -Extensionality).

∀s, t[∃u(PPoS(u, s) ∨ PPoS(u, t)) → (∀u,PPoS(u, s) ↔ PPoS(u, t)) → s = t]

Proof. Let s and t be two slots such that one of them as a slot-proper-part u, and that ∀u,PPoS(u, s) ↔
PPoS(u, t) (let us call this H1). We want to prove that s = t. Suppose that s is different from t. Either
PoS(t, s) or ¬PoS(t, s).

Suppose first that PoS(t, s). Therefore, by Definition of PPoS (Definition 9.4), PPoS(t, s), and by
H1, PPoS(t, t). Contradiction, as PPoS is irreflexive (Theorem 9.20).

Suppose thus that ¬PoS(t, s). According to Slot Strong Supplementation (Axiom 9.7), there is a v
such that PoS(v, t) ∧ ¬OoS(v, s). Suppose that t and v are different. By definition, PPoS(v, t), and by
H1, PPoS(v, s). However, v does not overlap s (¬OoS(v, s)). Contradiction. Thus t = v, and ¬OoS(t, s).
However, u is a slot-part of s and t: by hypothesis, it is a slot-part of one of them, and by H1, it is also
a slot-part of the other one. Therefore, OoS(t, s). Contradiction.

Thus s = t.

We added the Slot Strong Supplementation axiom and proved Slot Weak Supplemen-
tation and OoS -Extensionality. Thanks to our mereological relations among slots, this
axiom and these theorems are syntactically similar or identical to those of classical mere-
ology. Compared to Bennett’s theory, our supplementation correctly captures the spirit
of supplementation and extensionality. In the next section, we will develop further our
mereology of slots and introduce the sum of slots.

9.5 Slot-Sum

Bennett did not propose any sum operator in her theory. But she made three remarks
presented in Section 3.1.4. The first one was that a fully unrestricted axiom of unrestricted
sum would not be reasonable, as it would lead to sum of slots and fillers. Therefore, we
follow Bennett here: unrestricted sum is off the table. The second remark was that
sums of fillers cannot be unique. As we do not propose any sums of fillers, there is
nothing more to add here. Finally, with the third remark, she argues that, in classical
extensional mereology, Strong Supplementation entails that all “composites” of a and b are
identical. Importantly, our axiom of Slot Strong Supplementation does not entail the same
conclusion. Indeed, in our theory, different entities which own different slots may have the
same entities as part, whether with the same multiplicities (like Butane or Isobutane)
or not (like Methane and Ethane). We agree with Bennett on her entire reasoning
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about sums of fillers. However, there is one point where our visions diverge: Bennett’s
theory does not have a parthood relation over slots, but our theory does. In the following
section, I will show how sums over slots can be introduced in the theory.

We introduce the relation SoS1 to capture the intuition of sum of slots. SoS1(u, s, t)
means that u is a sum of s and t. We first define SoS1 and SoS2 following Definitions 2.7
and 2.8, presented in Section 2.4.1. The definitions are given by Definitions 9.6 and 9.7.
We will show that these two definitions are equivalent, as proved by Theorem 9.39. The
domains of SoS1 is given by Lemma 9.38.

Definition 9.6 (Sum with Parthood).

SoS1(u, s, t) ≜ PoS(s, u) ∧ PoS(t, u) ∧ ∀v(PoS(v, u) → OoS(s, v) ∨ OoS(t, v))

Definition 9.7 (Sum with Overlap).

SoS2(u, s, t) ≜ ∀v(OoS(u, v) ↔ OoS(s, v) ∨ OoS(t, v))

Lemma 9.38 (Domains of Sum).

∀s, t, u(SoS1(u, s, t) → S(s) ∧ S(t) ∧ S(u))

Proof. Trivially by Definition 9.6 and Lemma 9.12.

Theorem 9.39 (SoS1 and SoS2 are Equivalent).

∀s, t[SO(s, t) → ∀u(SoS1(u, s, t) ↔ SoS2(u, s, t))]

Proof. Let s and t be two slots with the same owner. Let u be a slot.
Left-to-right: suppose SoS1(u, s, t). By Definition 9.6, s and t are slot-parts of u and ∀v(PoS(v, u) →

OoS(s, v)∨OoS(t, v)) (let us call this H). We want to prove ∀v(OoS(u, v) ↔ OoS(s, v)∨OoS(t, v)). Let w
be a slot. We want to prove that 1) OoS(u,w) → OoS(s, w) ∨OoS(t, w) and 2) OoS(s, w) ∨OoS(t, w) →
OoS(u,w).

1) Suppose that u and w overlap. By Definition 9.5, there is a x that is slot-part of u and w.
According to H, x overlaps s or t. Suppose that x overlaps s. Therefore, by Lemma 9.30 (Overlap with
Part Implies Overlap with Whole), OoS(s, x) and PoS(x,w), we deduce that OoS(s, w). Similarly, we
can show that if x overlaps t, then w overlaps t.

2) Suppose that s overlaps w. By Lemma 9.30 and PoS(s, u), we deduce that w and u overlap. The
same reasoning holds if we suppose that t and w overlap: w overlap u.

Right-to-left: suppose SoS2(u, s, t), i.e. ∀v(OoS(v, u) ↔ OoS(v, s) ∨ OoS(v, t)) (let us call this H).
We want to prove that 1) s and t are slot-parts of u and that 2) ∀v(PoS(v, u) → OoS(s, v) ∨OoS(t, v).

1) Let us prove that s is a slot-part of u. Suppose that that s is not a slot-part of u. Therefore,
by the Slot Strong Supplementation (Axiom 9.7), there is a v that is a slot-part of s and that does not
overlap u. v being a slot-part of s, both are overlapping, by Lemma 9.32. According to H, as v overlaps
s, it overlaps u. Contradiction: by Slot Strong Supplementation, it cannot overlap u. Therefore, s is a
slot-part of u. A similar reasoning proves that t is slot-part of u.

2) Let v be a slot-part of u. By Lemma 9.32, v and u are overlapping. With H, OoS(v, s) ∨
OoS(v, t).

SoS1 and SoS2 being equivalent, we will use SoS1 in the remainder. However, every
true proposition involving SoS1 is also true when substituting SoS2 for SoS1. Axiom 9.8
is the only axiom we will accept involving the sum relation. It ensures that a sum of two
slots exists if they have the same owner. The addition of this axiom will be enough to
derive classical properties of binary sum, presented in Section 2.4.1.

Axiom 9.8 (Sum Existence).

∀s, t(SO(s, t) → ∃u(SoS1(u, s, t)))
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Slots can only be summed within the same mereological structure, i.e. if they have
the same owner. Therefore the resulting slot also has the same owner. This is stated by
Theorem T9.40.

Theorem 9.40 (Sum Same Owner).

∀s, t, u[SoS1(u, s, t) → ∃a(Ps(u, a) ∧ Ps(s, a) ∧ Ps(t, a))]

Proof. Let u, s and t be slots such that SoS1(u, s, t). By Definition 9.6, we know PoS(s, u) ∧ PoS(t, u).
By Theorem 9.16 (PoS Same Owner) and Axiom 8.1 (Single Owner), we know that s, t and u have the
same owner.

Slot Strong Supplementation ensures the unicity of the sum, as showed by Theo-
rem 9.41. The unicity being proved, we will use the operator + to represent sums of slots:
s + t is a binary function that returns the sum of s and t. Furthermore, we will use the
notation u = s+ t instead of SoS1(u, s, t).

Theorem 9.41 (Sum Unicity).

∀s, t, u, v(SoS1(u, s, t) ∧ SoS1(v, s, t) → u = v)

Proof. Let s, t, u and v be four slots such that u and v are both sums of s and t. We want to prove
u = v. According to OoS -Extensionality (Theorem 9.36), if we prove ∀w(OoS(u,w) ↔ OoS(v, w)), then
we have u = v. Both sums being equivalent, let us use the Definition 9.7: we know that ∀w(OoS(u,w) ↔
OoS(s, w)∨OoS(t, w)) and ∀w(OoS(v, w) ↔ OoS(s, w)∨OoS(t, w)). Hence, ∀w(OoS(u,w) ↔ OoS(v, w)),
and u = v.

The sum of slots is idempotent and commutative, as expressed by Theorems 9.42
and 9.43. Those properties are standard results of mereology, presetend in Section 2.4.1
(Propositions 41, 42 and 43 of Varzi (2019)).

Theorem 9.42 (Sum Idempotence).

∀s(S(s) → s+ s = s)

Proof. Let s be a slot and a its owner (Ps(s, a)). We have to prove that s + s = s, which means, by
Definition 9.7, ∀v(OoS(v, s) ↔ OoS(v, s) ∨OoS(v, s)), which is tautologically true. Thus s+ s = s.

Theorem 9.43 (Sum Commutativity).

∀s, t(SO(s, t) → s+ t = t+ s)

Proof. By Definition 9.7 and the commutativity of the OR operand.

The following explores the various existing theorems resulting from the use of the
slot-sum and contextualisation operators with the relations PoS and OoS . We consider
the ◦ operator to have a higher priority than the + operator. Therefore s ◦ t + u has to
be interpreted as (s ◦ t) + u. The first four lemmas (Lemmas 9.44 to 9.47) are similar
to Theorems 2.14 to 2.17, presented in Section 2.4.1. They illustrate how slot-sum and
PoS work together. Lemma 9.44 states that if s + t exists, then s is a slot-part of s + t.
Lemma 9.45 states that if t + u exists and s is a slot-part of t, then s is a slot-part of
t + u. Lemma 9.46 states that if s + t is a slot-part of u, then s is a slot-part of u. And
Lemma 9.47 states that s is a slot-part of t if and only if s+ t = t.

Lemma 9.44.
∀s, t(SO(s, t) → PoS(s, s+ t))

101



Proof. By Definition 9.6.

Lemma 9.45.
∀t, u[SO(t, u) → ∀s(PoS(s, t) → PoS(s, t+ u))]

Proof. Let s, t and u be three slots such that t and u have the same owner and that s is part of t. By
Lemma 9.44, t is slot-part of t+ u. Thus, by PoS Transitivity (Theorem 9.15), PoS(s, t+ u).

Lemma 9.46.
∀s, t[SO(s, t) → ∀u(PoS(s+ t, u) → PoS(s, u))]

Proof. Let s, t and u be three slots such that s and t have the same owner and s+ t is slot-part of u. By
Definition 9.6, PoS(s, s+ t). By PoS Transitivity (Theorem 9.15), PoS(s, u).

Lemma 9.47.
∀s, t(PoS(s, t) ↔ s+ t = t)

Proof. Left-to-right: let s be a slot-part of t (PoS(s, t)). We want to prove s + t = t, that is, by
Definition 9.7, ∀v(OoS(v, t) ↔ OoS(v, s) ∨OoS(v, t)), which is tautologically true. Thus s+ t = t.

Right-to-left: let s and t be slots such that s+ t = t. By Definition 9.6, PoS(s, t).

The following Theorem 9.48 describes the behaviour of overlap combined with sums.
It states that something overlaps the contextualisation of the sum of two operands by a
slot s iff it overlaps the contextualisation of one of the operands by s.

Theorem 9.48 (Overlaps the Contextualised Sum iff Overlaps one of the Contextualised
Operands).

∀s, t, u[Cb(t, s) ∧ Cb(u, s) → ∀v(OoS(v, s ◦ (t+ u)) ↔ OoS(v, s ◦ t) ∨ OoS(v, s ◦ u))]

Proof. Let s, t and u be slots such that t and u are contextualisable by s. By Axiom 9.2 (Contextualisable
iff Contextualisation Exists), s ◦ t and s ◦ u exist. By Axiom 9.8 (Sum Existence), t + u exists, and by
Theorem 9.40, t+ u is a slot of a. Finally, by Axiom 9.2, s ◦ (t+ u) exists. Let v be a slot.

Left-to-right: suppose that v and s ◦ (t+ u) overlap. We want to prove that v overlaps s ◦ t or s ◦ u.
By Definition 9.5 (OoS), there is a w that is a slot-part of v and s ◦ (t + u). w being a slot-part of
s ◦ (t+ u), we know by Definition 9.3 (PoS), that there is a w1 such that w = (s ◦ (t+ u)) ◦ w1, i.e., by
Contextualisation Associativity (Axiom 9.6), w = s ◦ ((t+u) ◦w1). Let w2 be (t+u) ◦w1. By definition,
w2 is a slot-part of t+u. The definition of sum (Definition 9.6) states that every slot-part of t+u overlaps
t or u. So w2 overlaps (1) t or (2) u.

(1) If w2 overlaps t: with Theorem 9.33 (OoS Stable under Contextualisation), as we know OoS(w2, t),
we know that OoS(s ◦w2, s ◦ t), i.e. OoS(w, s ◦ t). By definition of OoS , there is a w3, slot-part of w and
s ◦ t. Let us prove that w3 is a slot-part of v. We know that w3 is slot-part of w, and that w is slot-part
of v, therefore, by PoS Transitivity (Theorem 9.15), w3 is slot-part of v. Thus OoS(v, s ◦ t).

(2) By the same reasoning applied to u, OoS(v, s ◦ u).
That is, in every cases, OoS(v, s ◦ t) ∨OoS(v, s ◦ u).
Right-to-left: suppose that v overlaps s ◦ t, i.e. there is a w slot-part of v and s ◦ t. We want to prove

that v and s ◦ (t+ u) overlap, i.e. that there is a shared slot-part. Let us prove that this shared slot-part
is w. As w being a slot-part of v is one of the hypotheses, we only have to prove that w is a slot-part
of s ◦ (t + u). As w is a slot-part of s ◦ t, we know that there is a w′ such that w = (s ◦ t) ◦ w′. With
Contextualisation Associativity (Axiom 9.6), we get w = s ◦ (t ◦ w′). t being a slot-part of t + u, there
is a t′ such that t = (t + u) ◦ t′. So, we can write, by replacing t by (t + u) ◦ t′ in w = s ◦ (t ◦ w′), that
w = s ◦ (((t+ u) ◦ t′) ◦w′). Finally, by Associativity, we get that w = (s ◦ (t+ u)) ◦ (t′ ◦w′), which is, by
Definition 9.3, that w is a slot-part of s◦ (t+u). A similar reasoning leads to the fact that if OoS(v, s◦u),
then OoS(v, s ◦ (t+ u)).

Let us focus on the distributivity of contextualisation over the sum. In the first step,
we prove that left distributivity holds, presented by Theorem 9.49. In the second step, we
discuss why right distributivity is unwanted in our theory.
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Theorem 9.49 (Left Distributivity).

∀s, t, u[Cb(t, s) ∧ Cb(u, s) → (s ◦ (t+ u) = s ◦ t+ s ◦ u)]

Proof. Let s, t and u be slots such that t and u are contextualisable by s. We want to prove that s◦(t+u)
and s◦ t+s◦u are identical. To do so, we will use the OoS -Extensionality (Theorem 9.36). Therefore, we
have to prove that for every v that overlaps one, it also overlaps the other one (∀v(OoS(v, s ◦ (t+ u)) ↔
OoS(v, s ◦ t+ s ◦ u))). Let v be a slot.

Left-to-right: suppose v overlaps s ◦ (t+ u). We want to prove that v overlaps with s ◦ t+ s ◦ u. By
Theorem 9.48, we know that v overlaps s ◦ t or s ◦ u. In both cases, by Definition 9.7, we know that v
overlaps s ◦ t+ s ◦ u.

Right-to-left: suppose that v overlaps s ◦ t+ s ◦ u. We want to prove that v overlaps with s ◦ (t+ u).
By Definition 9.7, we know that v overlaps s ◦ t or s ◦ u. In both cases, by Theorem 9.48, we know that
v overlaps s ◦ (t+ u).

We proved that ∀v(OoS(v, s ◦ (t + u)) ↔ OoS(v, s ◦ t + s ◦ u)), therefore by OoS -Extensionality,
s ◦ (t+ u) = s ◦ t+ s ◦ u.
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Figure 9.7: Counter-example to right distributivity

In this theory, we do not want right distributivity of contextualisation over the sum.
Take the example pictured by Figure 9.7. Consider the sum of t and u, i.e. the slot (t+u).
This slot is filled by an entity c, that has two slots t′ and u′, such that t = (t+ u) ◦ t′ and
u = (t + u) ◦ u′. From the first equality, if we admit right distributivity, t ◦ t′ and u ◦ t′
would exist and t would be identical to t ◦ t′ +u ◦ t′. However, neither t ◦ t′ nor u ◦ t′ exist,
as the conditions of existence are not fulfilled: there is no entity that fills t or u and owns
t′.

In fact, the only case where the right distributivity holds, i.e. (s+ t) ◦ u = s ◦ u+ t ◦ u
(call this H) is true, is when s = t. If so, s + t = s + s = s, and by replacing t, we get
s◦u = s◦u+ s◦u. The sum being idempotent, this is a tautology. However, it is possible
to go further: if (s+ t) ◦ u, s ◦ u and t ◦ u exist (so without positing H) then s = t. This
is the result of Theorem 9.51. Before proving it, consider Lemma 9.50 that shows that if
s and a sum of s and another slot are filled by the same filler, they are equal.

Lemma 9.50 (Same Filler of Operand and Sum Implies Identity).

∀s, t(SF(s, s+ t) → s = s+ t)

Proof. Let s and t be two slots such that they have the same filler. Let us call this filler a. By Def-
inition 9.6, s is a slot-part of s + t. So by Definition 9.3, there is a slot s′ such that s = (s + t) ◦ s′.
According to Theorem 9.7 (Contextualisation Same Filler) and 3.7 (Single Occupancy), s and s′ have the
same filler, i.e. a. According to Axioms 9.2 (Contextualisable iff Contextualisation Exists) and 3.7, there
is something that fills s+ t and owns s′, i.e. a. The slot s′ is owned and filled by a. So by Definition 8.4,
s′ is the improper slot of a. Finally, by Theorem 9.3 (Improper Slot Is Right Neutral Element), as s′ is
an improper slot, we deduce, from s = (s+ t) ◦ s′, that s = s+ t.

Theorem 9.51 (Right Distributivity Is Trivial).

∀s, t, u(Cb(s+ t, u) ∧ Cb(s, u) ∧ Cb(t, u) → s = t)
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Proof. Let s, t and u be three slots such that (s + t) ◦ u, s ◦ u and t ◦ u exist. We want to prove that
s = t. According to Axiom 9.2 (Contextualisable iff Contextualisation Exists), there are three fillers a, b
and c such that a fills s + t and owns u, b fills s and owns u and c fills t and owns u. Furthermore, by
Axiom 8.1 (Single Owner), a = b = c. According to Lemma 9.50, as s and s + t are filled by the same
filler, s = s+ t. In the same way, we deduce that t = s+ t. Therefore, s = t.

We show with Lemma 9.52 that if s and t are slot-parts of u, then s+ t is a slot-part
of u.

Lemma 9.52 (Sum is Slot-Part if Operands are Slot-Parts).

∀s, t, u(PoS(s, u) ∧ PoS(t, u) → PoS(s+ t, u))

Proof. Let s, t and u be three slots such that s and t are slot-parts of u (PoS(s, u)∧PoS(t, u)), i.e. there
are s′ and t′ such that s = u ◦ s′ and t = u ◦ t′. According to Theorem 9.16 (PoS Same Owner) and
Axiom 8.1 (Single Owner), s, t and u share the same owner. Therefore, according to Axiom 9.8 (Sum
Existence), s+ t exists. We know that s+ t = (u ◦ s′)+ (u ◦ t′). With Left Distributivity (Theorem 9.49),
we get that s+ t = u ◦ (s′ + t′), i.e. that PoS(s+ t, u).

We then prove that slot-sum is associative, as demonstrated by Theorem 9.53.

Theorem 9.53 (Sum Associativity).

∀s, t, u[SO(s, t) ∧ SO(t, u) → (s+ t) + u = s+ (t+ u)]

Proof. Let s, t and u be three slots that have the same owner. SoS1 and SoS2 being equivalent, let us
use SoS2. By Definition 9.7, (s+ t) + u is:

(a) ∀v(OoS(v, s+ t) ↔ OoS(v, s) ∨OoS(v, t))

(b) ∀v(OoS(v, (s+ t) + u) ↔ OoS(v, s+ t) ∨OoS(v, u))

By using (a) to partially rewrite (b), we get ∀v(OoS(v, (s+ t)+u) ↔ OoS(v, s)∨OoS(v, t)∨OoS(v, u)
(1).

Similarly, from s+ (t+ u), we get ∀v(OoS(v, s+ (t+ u)) ↔ OoS(v, s) ∨OoS(v, t) ∨OoS(v, u)) (2).
From (1) and (2), we obtain ∀v(OoS(v, (s + t) + u) ↔ OoS(v, s + (t + u)), which, according to

Theorem 9.36, entails (s+ t) + u = s+ (t+ u).

We can prove that sums are stable under contextualisation, i.e. that for some slots u,
s and t that can be contextualised by v, it is true that u = s+ t iff v ◦ u = v ◦ s+ v ◦ t, as
showed by Theorem 9.54.

Theorem 9.54 (Sum Stable under Contextualisation).

∀s, t, u, v[Cb(u, v) ∧ Cb(s, v) ∧ Cb(t, v) → (u = s+ t ↔ (v ◦ u) = (v ◦ s) + (v ◦ t))]

Proof. Let s, t, u and v be slots such that u, s and t are contextualisable by v. By Definition 9.1
and Axiom 8.1, there is a unique a that is the filler of v and the owner of u, s and t. According
to Theorem 9.19 (PoS Stable under Contextualisation), we have PoS(s, u) ↔ PoS(v ◦ s, v ◦ u) and
PoS(t, u) ↔ PoS(v ◦ t, v ◦ u) (call them H1 and H2). We want to prove that u = s + t ↔ (v ◦ u) =
(v ◦ s) + (v ◦ t).

Using Definition 9.6, it is [PoS(s, u)∧PoS(t, u)∧∀v′(PoS(v′, u) → OoS(s, v′)∨OoS(t, v′))] ↔ [PoS(v◦
s, v ◦ u) ∧ PoS(v ◦ t, v ◦ u) ∧ ∀v′(PoS(v′, v ◦ u) → OoS(v ◦ s, v′) ∨ OoS(v ◦ t, v′))]. Using H1 and H2, it
can be rewritten as [PoS(v ◦ s, v ◦ u) ∧ PoS(v ◦ t, v ◦ u) ∧ ∀v′(PoS(v′, u) → OoS(s, v) ∨ OoS(t, v))] ↔
[PoS(v◦s, v◦u)∧PoS(v◦t, v◦u)∧∀v′(PoS(v′, v◦u) → OoS(v◦s, v′)∨OoS(v◦t, v′))], which can simplified
into ∀v′(PoS(v′, u) → OoS(s, v′) ∨OoS(t, v′)) ↔ ∀v′(PoS(v′, v ◦ u) → OoS(v ◦ s, v′) ∨OoS(v ◦ t, v′))

Left-to-right: suppose that ∀v′(PoS(v′, u) → OoS(s, v′)∨OoS(t, v′)) (call this H). Let w′ be a slot such
that PoS(w′, v◦u), i.e. there is a x such that w′ = (v◦u)◦x. We want to prove OoS(v◦s, w′)∨OoS(v◦t, w′).
We have w′ = (v ◦ u) ◦ x. By Axiom 9.6, we get w′ = v ◦ (u ◦ x). Let w be u ◦ x. Given w′ = v ◦ w, by
Theorem 9.33, the goal OoS(v ◦ s, v ◦ w) ∨ OoS(v ◦ t, v ◦ w) is equivalent to OoS(s, w) ∨ OoS(t, w). By
Definition 9.3, w = u ◦ x gives PoS(w, u). By H and PoS(w, u), we prove the goal OoS(s, w)∨OoS(t, w).

Right-to-left: suppose that ∀v′(PoS(v′, v ◦ u) → OoS(v ◦ s, v′) ∨ OoS(v ◦ t, v′)) (call this H). We
want to prove that ∀v′(PoS(v′, u) → OoS(s, v′) ∨ OoS(t, v′)). Let w be a slot such that PoS(w, u). Let
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us prove that OoS(s, w) ∨ OoS(t, w) According to Theorem 9.16, u and w have the same owner, i.e. a.
Therefore, w is contextualisable by v. By Theorem 9.33, the goal OoS(s, w) ∨OoS(t, w) is equivalent to
OoS(v ◦ s, v ◦w)∨OoS(v ◦ t, v ◦w). By Theorem 9.19, PoS(w, u) is equivalent to PoS(v ◦w, v ◦u), which,
by H, gives OoS(v ◦ s, v ◦ w) ∨OoS(v ◦ t, v ◦ w), i.e. the goal.

We added a new relation of slot-sum, syntactically based on Varzi’s 392. After axioma-
tising the existence condition of the sum of slots, we highlighted the properties of the sum
of slots: unicity, same-owner, idempotence, commutativity, left distributivity, associativity
and stability under contextualisation. In the next section, we will take a step further by
defining the fusion of slots.

9.6 Slot-Fusion

After having axiomatised the sum of slots, we look at mereological fusion, in the sense
presented in Section 2.4.2. This has two goals. First, fusion is a classical construct
of mereological theories: adding it to our theory extends the coverage of mereological
concepts. Second, we expect the fusion to make provable one of our pre-formal intuitions,
left unproved until now: the fact that an improper slot is the “union”4 of all the slots of
its filler.

While binary sum can be understood as an operation over a finite collection of entities
where the operands must be given in an extensional way (e. g. a+ b+ c), fusion operates
over a collection of entities given in an intensional way (e. g. the fusion of all the cats, or
the fusion of all the slots of a given filler), such a collection possibly being infinite.

As is the case with sum, there are multiple definitions of fusion in the literature (see
Section 2.4.2, (Varzi, 2019) or (Cotnoir and Varzi, 2021, pp. 161–163)). While other
definitions exist,5 we choose to use the definition of the so-called Leśniewski fusions, as
given by Definition Schema 9.8.

What does it mean for z to be the fusion of all ϕ-ers? According to the definition
schema, which contains two conjuncts, z is the fusion of all ϕ-ers iff 1) every ϕ-er is a
slot-part of z and 2) every slot-part of z overlaps with some ϕ-er.

Definition Schema 9.8 (Fusion of Slots).

FoSϕ(z) ≜ ∀w(ϕ(w) → PoS(w, z)) ∧ ∀v(PoS(v, z) → ∃w(ϕ(w) ∧ OoS(v, w)))

In the literature, multiple formulas enforcing the existence of fusion are often taken
as axioms. The Unrestricted Existence, presented in (9.1), ensures the existence of the
fusion of the ϕ-ers, as long as there is at least one ϕ-er. This condition avoids positing the
existence of the fusion of a collection of zero elements.

∃w(ϕ(w)) → ∃z(FoSϕ(z)) (9.1)

This formula is problematic for multiple reasons: it enables the fusion of fillers, the
fusion of slots and fillers, and the fusion of slots that do not have the same owner. In-
deed, as explored in Section 9.2 and as stated by Theorems 9.16 and 9.29, our theory’s
mereological relations only holds between slots that have the same owner. Therefore, we
conclude that Unrestricted Existence is not desirable to our theory.

The Restricted Existence, presented in (9.2), generally contains another premise, which
states that all ϕ-ers must satisfy some condition ψ.

4The word “union” is used here to avoid using both the word “sum”, since our binary sum is not
applicable to any (possibly infinite) number of slots, as well as the word “fusion” which is yet to be
formally defined.

5Other existing definitions are equivalent to the definition we choose under some conditions: for more
details, see Section 2.4.2 and (Cotnoir and Varzi, 2021, pp. 160–174).
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(∃w(ϕ(w)) ∧ ∀w(ϕ(w) → ψ(w)) → ∃z(FoSϕ(z)) (9.2)

In our case, we identified two conditions: each ϕ-er must be a slot, and all ϕ-ers must
have the same owner. While a formula of the form ∀w(ϕ(w) → ψ(w)) can easily take into
account that every w is a slot, we do not see what formula can say that all slots have the
same owner. Therefore, we propose a slightly modified version as follows:

∃w(ϕ(w)) ∧ ∀w(ϕ(w) → S(w)) ∧ ∃w(ϕ(w) ∧ ∀v(ϕ(v) → SO(w, v))) → ∃z(FoSϕ(z))

This formula states that 1) there is a ϕ-er, 2) every ϕ-er is a slot, and 3) there is a ϕ-er
that has the same owner as all other ϕ-ers. This formula can be simplified as in Axiom
Schema 9.9, i. e. if there is a ϕ-er and every ϕ-er have the same owner, then the fusion of
these ϕ-ers exists.

Axiom Schema 9.9 (Fusion Existence).

∃w(ϕ(w) ∧ ∀v(ϕ(v) → SO(v, w))) → ∃s(FoSϕ(s))

The fusion of the ϕ-ers is unique, as proved by Theorem Schema 9.55.

Theorem Schema 9.55 (Fusion Unicity).

∃w(ϕ(w)) → ∀s, t(FoSϕ(s) ∧ FoSϕ(t) → s = t)

Proof. Consider w such that ϕ(w) holds. Let s and t be fusions of the ϕ-ers. We want to show that s and
t are equal. To do so, let us use OoS -Extensionality: we now have to prove that s and t are slots and
that ∀u,OoS(s, u) ↔ OoS(t, u). By the first conjunct of Definition Schema 9.8 and ϕ(w), w is a slot-part
of s and t. According to Lemma 9.12 (PoS Domain and Range), s and t are slots. We still have to prove
∀u,OoS(s, u) ↔ OoS(t, u).

Let u be a slot. The proof is similar from left-to-right and right-to-left: suppose that s (resp. t) and
u are overlapping. Therefore, by Definition 9.5, there is some slot a such that a is a slot-part of s (resp. t)
and u. According to the second conjunct of Definition Schema 9.8, as a is a slot-part of s (resp. t), there
exists some ϕ-er b that overlaps with a, i.e. there is some slot c that is a slot-part of a and b. According
to the first conjunct of Definition Schema 9.8, as b is a ϕ-er, it is a slot-part of t (resp. s). At this point,
we know that c is a slot-part of a and b, which are respectively parts of u and t (resp. s). Therefore, by
PoS Transitivity, c is a common slot-part of u and t (resp. s), i.e. u and t (resp. s) are overlapping.

Theorem 9.56 shows that slot-sum, defined in Definition 9.6, is equivalent to the fusion
of a collection of two slots. This means that binary slot-sum is a particular of fusion, and
therefore that Axiom 9.8 is an instantiation of Axiom Schema 9.9 and so redundant.

Theorem 9.56 (Sum is a special Case of Fusion).

∀s, t, u(FoSw=s∨w=t(u) ↔ SoS1(u, s, t))

Proof. Let s, t and u be slots. We want to prove that FoSw=s∨w=t(u) ↔ SoS1(u, s, t).
Left-to-right: suppose that u is the fusion of ϕ-ers such that ϕ is w = s ∨ w = t. By Definition

Schema 9.8, ∀w(w = s ∨ w = t) → PoS(w, u) (call this H1) and ∀v(PoS(v, u) → ∃w((w = s ∨ w =
t) ∧OoS(v, w)) (call this H2).

We want to prove that SoS1(u, s, t), i.e. PoS(s, u), PoS(t, u) and ∀v(PoS(v, u) → OoS(s, v) ∨
OoS(t, v)). PoS(s, u) and PoS(t, u) are trivial using H1: if w is s or t, then PoS(w, u). Let us prove
that ∀v(PoS(v, u) → OoS(s, v) ∨OoS(t, v)). Let v be a slot such that PoS(v, u). By H1, there is w such
that (w = s∨w = t)∧OoS(v, w). By rewriting it, we got (w = s∧OoS(v, w))∨ (w = t∧OoS(v, w)), i.e.
OoS(s, v) ∨OoS(t, v).

Right-to-left: suppose that u = s + t, i.e. PoS(s, u), PoS(t, u) and ∀v(PoS(v, u) → OoS(s, v) ∨
OoS(t, v)) (call this H). We want to prove that u is the fusion of the ϕ-ers, i.e. ∀w(w = s ∨ w = t) →
PoS(w, u) (call this G1) and ∀v(PoS(v, u) → ∃w((w = s ∨ w = t) ∧OoS(v, w)) (call this G2).

G1: let w be a slot such that w = s∨w = t. We want to prove that PoS(w, u). This is trivial, given
that both s and t are slot-parts of u.
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G2: let v be a slot such that PoS(v, u). We want to prove that there is some w such that (w =
s∨w = t)∧OoS(v, w), or, rewritten the same way it was previously, OoS(v, s)∨OoS(v, t). This is trivial,
given that PoS(v, u) and H.

Theorem 9.57 shows that if an entity a has some slot, its improper slot is the sum of its
slots. The proposition ∀t(IPs(t, a) ↔ FoSPs(w,a)(t)) is equivalent to the current consequent
of the theorem, as both improper slot and fusion are unique, by Axiom 8.3 and Theorem
Schema 9.55.

Theorem 9.57 (Improper Slot is Fusion of Filler’s Slots).

∀a(∃s(Ps(s, a)) → ∃t(IPs(t, a) ∧ FoSPs(w,a)(t)))

Proof. Let a be a filler and s a slot of a. We want to prove that the improper slot of a is the fusion of
a’s slots. Because a owns s, we deduce by 3.4 that there is a slot t that is the improper slot of a. Let us
prove that t is the fusion of a’s slots. According to Fusion’s Definition Schema 9.8, t is the fusion of a’s
slots iff 1) ∀w(Ps(w, a) → PoS(w, t)) and 2) ∀v(PoS(v, t) → ∃w(Ps(w, a) ∧OoS(v, w))).

1) Let w be a slot of a. According to Theorem 9.17 (Slots iff Slot-Parts of Improper Slot), w is a
slot-part of a’s improper slot, i.e. w is a slot-part of t.

2) Let v be a slot such that v is a slot-part of t. Let us prove that there is a slot that is a slot of a
and that slot-overlaps with v. As a’s improper slot, t is a slot of a. Furthermore, as v is a slot-part of t,
by Lemma 9.32, it overlaps with t.

In conclusion, if a has a slot, its improper slot is the fusion of its slots.

Finally, Theorem Schema 9.58 shows that fusion is stable under contextualisation. It
states that if s′ is the contextualisation of s by t and that every ϕ-er can be contextualised
by t, then s is the fusion of the ϕ-ers iff s′ is the fusion of the contextualisations by t of
the ϕ-ers.

Theorem Schema 9.58 (Fusion Stable under Contextualisation).

∀s, t[Cb(s, t) ∧ ∀w(ϕ(w) → Cb(w, t)) → (FoSϕ(s) ↔ FoS∃w′(w=t◦w′∧ϕ(w′))(t ◦ s))]

Proof. Let s and t be slots such that s is contextualisable by t and ∀w(ϕ(w) → Cb(w, t)) (call this H).
We want to prove FoSϕ(s) ↔ FoS∃w′(w=t◦w′∧ϕ(w′))(t ◦ s).

Left-to-right: suppose that s is the fusion of the ϕ-ers. By Definition Schema 9.8, ∀w(ϕ(w) →
PoS(w, s)) and ∀v(PoS(v, s) → ∃w(ϕ(w) ∧ OoS(v, w)) (call them H1 and H2). We want to prove that
FoS∃w′(w=t◦w′∧ϕ(w′))(t ◦ s), i.e. that ∀w(∃w′(w = t ◦w′ ∧ ϕ(w′)) → PoS(w, t ◦ s)) and ∀v(PoS(v, t ◦ s) →
∃w(∃w′(w = t ◦ w′ ∧ ϕ(w′)) ∧OoS(v, w))) (call them G1 and G2).

G1: let w and w′ be such that w = t ◦ w′ and ϕ(w′). We want to prove PoS(w, t ◦ s). According to
H1, as w′ is a ϕ-er, then PoS(w′, s). Given that w = t ◦w′ and PoS(w′, s), by Theorem 9.19 (PoS Stable
under Contextualisation), we get PoS(w, t ◦ s).

G2: let v be such that PoS(v, s′), i.e. by Definition 9.3, there is v′ such that v = s′ ◦ v′. We want to
prove ∃w(∃w′(w = t◦w′∧ϕ(w′))∧OoS(v, w))). By Axiom 9.6, v = (t◦s)◦v′ = t◦(s◦v′). Let v′′ be s◦v′.
By Definition 9.3, PoS(v′′, s). By H2, we get that there is w′′ such that ϕ(w′′) and OoS(v′′, w′′). Given
that w′′ is a ϕ-er, by H1, PoS(w′′, s). By Theorem 9.16, there is some a such that Ps(w

′′, a) and Ps(s, a).
With Axiom 9.2 and s′ = t◦s, there is some b such that F(b, t) and Ps(s, b). Because of Axiom 8.1 (Single
Owner), a = b. As a owns w′′ and fills t, by Axiom 9.2, there is a w′′′ such that w′′′ = t ◦ w′′. Our goal
is ∃w(∃w′(w = t ◦ w′ ∧ ϕ(w′)) ∧ OoS(v, w))). There are w′′′ and w′′ such that w′′′ = t ◦ w′′ and ϕ(w′′).
We only need to prove that OoS(v, w′′′). Given that v = t ◦ v′′ and w′′′ = t ◦ w′′, by Theorem 9.33, we
need to prove that OoS(v′′, w′′). This as already proven.

Right-to-left: suppose that s′ is the fusion of the contextualisations by t of the ϕ-ers. By Definition
Schema 9.8, ∀w(∃w′(w = t◦w′ ∧ϕ(w′)) → PoS(w, s′)) and ∀v(PoS(v, s′) → ∃w(∃w′(w = t◦w′ ∧ϕ(w′))∧
OoS(v, w))) (call them H1 and H2). We want to prove that FoSϕ(s), i.e. ∀w(ϕ(w) → PoS(w, s)) and
∀v(PoS(v, s) → ∃w(ϕ(w) ∧OoS(v, w)) (call them G1 and G2).

G1: let w be a ϕ-er. We want to prove that PoS(w, s). With H, there is a w′ such that w′ = t ◦ w.
Given that s′ = t ◦ s and w′ = t ◦ w, by Theorem 9.19, we get that PoS(w, s) ↔ PoS(w′, s′). Therefore,
to prove PoS(w, s), it is enough to prove PoS(w′, s′). This can be proven using H1: w is a ϕ-er such that
w′ = t ◦ w, therefore PoS(w′, s′).

G2: let v′ be a slot such that it is a slot-part of s, i.e. there is a v such that v′ = s◦v. We want to prove
that there is a ϕ-er that overlaps with v′. s being contextualisable by t, let v′′ be v′′ = t◦v′ = s′◦v = t◦s◦v.
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By Definition 9.3, v′′ is a slot-part of s′. Therefore, with H2, there are w and w′ such that w = t ◦w′, w′

is a ϕ-er and v′′ overlaps with w. As w′ is a ϕ-er, let us prove that it overlaps with v′ to complete the
proof. As OoS(v′′, w), i.e. OoS(t ◦ v′, t ◦ w′), by Theorem 9.33, OoS(v′, w′).

9.7 Evaluating The Theory

In Chapter 6, I presented requirements to evaluate the theory. In this section, I propose
to do so.

The first requirement is about providing a partial order relation that can represent
multiplicities of parts. This relation was provided by Bennett’s Slot Mereology. This
theory has a parthood relation that is partial order relation. Furthermore, by defining
this parthood relation with the two relations slot-of Ps and fills F , Bennett provided a
way to represent non-idempotent entities.

The second requirement is about being able to count correctly the multiplicities of
parts. This is ensured by contextualisation, as the axiomatisation of contextualisation
removes counting problems. This is showed in Chapter 10.

The third and fourth requirements are about providing decomposition and composi-
tion principles. While providing such principles is not possible using a parthood relation
between fillers, it is possible for slots. Therefore, the slot-part-of relation (PoS ) is used to
formalise supplementation and extensionality, for decomposition principles, and sum and
fusion, for composition principles.
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Chapter 10

Illustrations

In this chapter, I apply the mereology of slots to more realistic examples, in particular those
used in Section 3.3.2, where we exposed the counting problems. Section 10.1 explores the
Dihydrogen universal as a first and basic example. Section 10.2 illustrates how overlap
works with the universal of two rooms with an adjoining wall. Finally, Section 10.3
shows how to deal with overduplications, illustrated with the string type “cats”. The first
example will also be used to give examples of interesting properties of slot-sums. The
examples will be presented step by step: we will first show the mereological structures
with only direct slots; then we will apply contextualisation to represent the full structure.
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10.1 The Dihydrogen Universal

This section illustrates the theory using the Dihydrogen. The Dihydrogen universal
has two proper slots S1 and S2 filled by the Hydrogen universal and one improper slot
SH2 . The Hydrogen universal has two proper slots S3 and S4, respectively filled by the
Electron and the HydrogenNucleus universals, and one improper slot SH. Finally,
both Electron and HydrogenNucleus only have an improper slot (as before, we
consider HydrogenNucleus as a mereological atom). Their four mereological structures
are pictured in Figure 10.1, where only improper and direct slots are represented.
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(a) Dihydrogen
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��
SH

E

S3

HN

S4

(b) Hydrogen

E
��
SE

(c) Electron

HN

�� SHN

(d) HydrogenNucleus

Figure 10.1: Direct slots of Dihydrogen (H2), Hydrogen (H), Electron (E) and
HydrogenNucleus (HN)

A partial view on the mereological structure of Dihydrogen is pictured in Figure 10.2.
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To simplify the figure, neither the improper slots nor the contextualisations in which those
improper slots are involved are displayed. Some sums, like S5 + S7 are not represented.
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Figure 10.2: A partial view on the mereological structure of Dihydrogen

In this example, the Dihydrogen universal has Hydrogen as a part twice, and
Electron and HydrogenNucleus two times each, as expected. Furthermore, there
are no overduplications. However, this partial view does not represent all the slots of the
Dihydrogen universal. In Figure 10.3, all the slots of Dihydrogen are represented. The
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S2 = S7 + S8
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E

S7

HN
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Figure 10.3: A semi-lattice of sums of slots (dotted arrows represent the PPoS relation)

relation pictured by dotted arrows is not Ps, but PPoS . Slots linked to the same slot all
sum together to that targeted slot. For example, summing the slots S1, S5+S7 and S6+S7
results in slot S5 +S6 +S7. Some slots are filled by entities whose nature is unknown. For
example, slot S5 +S8 is filled by something that has Electron and HydrogenNucleus
as parts once each.1 However, this filler of S5+S8 is not Hydrogen. Indeed, we can adapt
Bennett (2017)’s argumentation for her Spatial Separation case. She argued convincingly
that the electron of one hydrogen atom and the nucleus of another hydrogen atom do not
sum up to an hydrogen atom. Similarly, in the current theory, a slot filled by Electron
from one contextualisation of Hydrogen (S1) and a slot filled by HydrogenNucleus
from a different contextualisation of Hydrogen (S2) do not sum up to a slot filled by
Hydrogen, as they do not come from the same contextualisation.2

Also, as it is unknown whether the filler of S5 +S8 and the one of S6 +S7 are identical,
indexes have been added to differentiate them. Those numbers only have a differentiating

1Our theory does not include any mereological sum on fillers. Such a sum would be by no means trivial,
as developed in Section 9.5. Therefore, the content of these slots in this example is simply written as a list
of their parts. This notation does not belong to the language of our theory.

2This conclusion is supported by the fact that for S5 + S8 to be filled by Hydrogen, S5 + S8 must be
the improper slot of Hydrogen (SH) or one of its contextualisation. But it does not seem that we can
rewrite S5 + S8 = (S1 ◦ S3) + (S2 ◦ S4) using SH . Contrast this with S5 + S6 = S1 ◦ S3 + S1 ◦ S4. By Left
Distributivity, it is S1 ◦ (S3 + S4), i.e. S1 ◦ SH . The latter being a contextualisation of SH , it is filled by
Hydrogen.
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use, and not an ordering one. The sum of all the slots of Dihydrogen is its improper
slot SH2 .

10.2 The TwoAdjoiningRooms Universal

Consider the universal TwoAdjoiningRooms, presented in Section 3.1.5.2. There are
four slots resulting of the contextualisation of a proper slot of Room by a proper slot
of TwoAdjoiningRooms, namely S5 to S8. Those contextualisations are pictured in
Figure 10.4. Improper slots and contextualisations involving them are not displayed.
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Figure 10.4: Full structure of TwoAdjoiningRooms

If we want a universal isomorphic to its instances, the two occurrences of the universal
Room within the universal TwoAdjoiningRooms are supposed to overlap. To do so,
a slot resulting of a contextualisation of some slot by S3 has to be the same as a slot
resulting of a contextualisation of some slot by S4. Let us say that S6 = S7. Figure 10.5
represents the correct structure of TwoAdjoiningRooms, with S3 and S4 overlapping
on S6.
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Figure 10.5: Full structure of TwoAdjoiningRooms with overlapping slots

10.3 The String Type “cats”

For this example, let us recursively decompose the string “cats” into two parts: all the
letters except the last one and the last letter, i.e. “cat” and “s”. The string “cat” is itself
decomposed into “ca” and “t”. Finally, “ca” is decomposed into “c” and “a”. The four
letters only own an improper slot each, respectively Sc, Sa, St and Ss. The string “ca”
has an improper slot Sca and two proper slots S1 and S2 respectively filled by “c” and
“a”. The string “cat” has an improper slot Scat and two direct proper slots S3 and S4
filled by “ca” and “t”. Finally, the string “cats” has an improper slot Scats and two direct
proper slots S5 and S6 filled by “cat” and “s”. The mereological structures are pictured
in Figure 10.6 where only improper slots and direct slots are represented. In this figure
and the following ones, some slots are not pictured. For example, we can consider that
“cats” also decomposes into “ca” and “ts”. However, for simplicity, we do not explore
every possibility here.

To explain the role of Axiom 9.6 (Contextualisation Associativity), in Figure 10.7,
we first do not accept it and show a model with overduplicated slots. Then, we show
in Figure 10.8 how overduplications are solved thanks to the adoption of Axiom 9.6. In
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these two last figures, contextualisations are not represented as usual. For readability, the
black dots used in all previous figures to represent the contextualising slots are replaced
by labels between square brackets on the dashed arrows ( oo [s] ).
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(d) “c”, “a”, “t” and “s”

Figure 10.6: Some relevant direct and improper slots of the string types

As in the previous examples, improper slots and contextualisations involving them are
not displayed. The indirect slots of “cat” are S7 and S8 respectively equal to S3 ◦ S1 and
S3 ◦ S2. Those of “cats” are S9 = S5 ◦ S3, S10 = S9 ◦ S1, S11 = S9 ◦ S2, S12 = S5 ◦ S7,
S13 = S5 ◦ S8, and S14 = S5 ◦ S4. These are all the possible contextualisations by the
proper slots initially considered.
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Figure 10.7: A partial view of the structure of “cats” without the Associativity Axiom

However, in Figure 10.7, “cats” has two slots filled by “c” and two slots filled by “a”,
where it should only have one of each. This is because Contextualisation Associativity
(Axiom 9.6) is not accepted here. If we accept it, S10 = (S5 ◦S3)◦S1 = S5 ◦(S3 ◦S1) = S12
and S11 = (S5 ◦ S3) ◦ S2 = S5 ◦ (S3 ◦ S2) = S13, as pictured in Figure 10.8.
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Figure 10.8: A partial view of the structure of “cats” with the Associativity Axiom
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Chapter 11

Discussion And Perspectives

In this chapter, I discuss different questions that emerged during this work. Some are
inspired by reviewers questions or by discussions with my supervisors. Others are my own
reflections.

Contents

11.1 On the Primitive Choice . . . . . . . . . . . . . . . . . . . . . . . 115

11.2 Being Part of Itself Multiple Times . . . . . . . . . . . . . . . . 116

11.3 Non-Mereological Relations Between Slots . . . . . . . . . . . . 117

11.3.1 Satisfying the Order Criterion . . . . . . . . . . . . . . . . . . . 118

11.3.2 Stability Under Contextualisation . . . . . . . . . . . . . . . . . 118

11.3.3 Relations Between Slots of Different Owners . . . . . . . . . . . . 118

11.4 Using the Mereology of Slots for Idempotent Entities . . . . . 118

11.1 On the Primitive Choice

One of the many questions in mereology concerns the choice of the primitive used to
axiomatise the theory. As I explained in Chapter 2, there are, at least, as many axiomati-
sations as relations: each mereological relation (part, proper part, overlap, etc.) has been
used as a primitive for some mereological theories. Therefore, when it comes to the mere-
ology of slots, it is natural to wonder whether a similar theory would have been possible
using a different primitive relation than contextualisation. As a matter of fact, one of the
reviewers of (Tarbouriech et al., 2024) raised this question. In this section I explain why
I think it is not relevant to use one of the classical mereological relations among slots as a
primitive, and why we should keep the contextualisation relation as a primitive. Although
the theory has three primitives, I will not discuss removing the primitives F and Ps.

Changing the primitive would rest on a misunderstanding of what the contextualisation
relation is about. As it happens, contextualisation serves as a basis to define all the mere-
ological relations between slots. However, this is not its first use. The contextualisation
relation is a way to ensure that parthood between fillers is transitive, and that the parts
are inherited with the right cardinality: its motivation was to fix the counting problems
(at least the Parts of Parts Problem of Bennett’s theory, and the Overduplication
Problem of the Copy-Slot Mechanism). Removing this primitive would require to find
another fix to the counting problems.
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11.2 Being Part of Itself Multiple Times

In Bennett’s slot mereology and in the mereology of slots, to occupy a slot is equivalent
to be a part of the slot’s owner. To occupy two slots of the same owner is to be twice a
part of this owner. Until now, only proper parts can be parts of the same thing multiple
times. Is it possible for an entity to be a part of itself multiple times?

Consider the Sierpiński carpet. To create it, take a square. Divide it in 9 same-size
squares in a 3-by-3 grid and remove the central subsquare. Apply the same procedure
recursively to the remaining eight squares. In this fractal, the eight subsquares are similar
to the bigger square they are in, with just a change of scale. Consider now the universal
SierpińskiCarpet, whose instances are Sierpiński carpets. If we keep the Isomorphism
principle (presented in Section 2.6.1), the universal has itself as parts eight times.

Consider another example, inspired by wall-building examples of Kearns (2011) and
Effingham and Robson (2007). Kearns (2011) tells the story of Jane as follows:

Jane builds a wall, using various bricks (including, as we shall see, one very
special brick). Jane then shrinks this wall down to the size of a brick using her
superpowers (she has superpowers, by the way) and then travels back in time
with the mini-wall to before the wall was built. She then uses the mini-wall as
one of the bricks to build the wall. Kearns (2011)

Let me change the end of the story. Instead of using the mini-wall once, Jane uses
one of her superpowers to duplicate the special brick, as many times as needed. She then
rebuilds the wall with many copies of the shrunken wall. In this case, the wall is part of
itself multiple times.

Mereology of slots does not provide a way to represent such relations. An entity is a
part of itself because it fills its improper slot. Thus, according to the counting criterion,
it is part of itself once. To be able to represent “being part of itself multiple times”, the
entity should thus have multiple improper slots, which is forbidden by Axiom 8.3. But
removing this axiom is not an easy task. Indeed, in the theory, improper slots have some
important properties. First, they are the sum of the entity’s slots. If an entity can have
multiple improper slots, then it means that the sum of slots is not idempotent. From there,
a lot of things must be changed in the mereology of slots (for example, supplementation
and extensionality principles must be abandonned). This is clear when considering how
much had to be changed to classical mereology in order for fillers to have multiple parts.
This cannot be a solution, as it would just push the problem one step further.

It seems there are two ways to be part of itself. When considering a reflexive form of
parthood, the SierpińskiCarpet is part of itself once, in the same way that Methane
(or any other entity) is part of itself once: the SierpińskiCarpet is a self-part once.
On the other hand, the SierpińskiCarpet is part of the SierpińskiCarpet multiple
times, in the same way that Hydrogen is part of Methane mutiple times. However,
by definition of proper part, SierpińskiCarpet cannot be a proper part of itself, in the
same way that Hydrogen is a proper part of Methane. A possibility would be to build
a theory that admits a new type of slot – let’s call it self-slot – that would be what makes
parthood reflexive (this self-slot might also be the sum of all the slots of its filler); on
the other hand, improper slots would be slots filled by their owner and a filler could have
multiple improper slots. Therefore, SierpińskiCarpet would be a self-part only once,
but an improper part (in the sense of filling an improper slot) multiple times.

However, by definition, improper slots are what are filled and owned by the same
thing. Self-slots will, supposedly, also be filled and owned by the same thing. What would
differentiate self-slots among improper slots? It does not seem easy to differentiate them
with definitions. Thus, the theory might need more primitives to assert which slots are
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self-slots and which slots are improper slots. But new primitives increase the ontological
cost of the theory.

I do not have a fully developped theory that would account for entities such as the
Sierpiński Carpet that are part of themselves multiple times, but have provided above a
few pointers towards a possible solution.

11.3 Non-Mereological Relations Between Slots

The proposed theory provides a framework to describe entities that have the same part
multiple times. In doing so, it makes it possible to explain the difference between Metha-
ne, presented in Section 3.1.5.1, and Ethane.1 The first reason is that they own different
slots, and in particular different improper slots. However, this reason does not satisfy me,
as I do not think there is a difference between stating that “they are different” and “their
improper slots, which are unique and intrinsic to them, are different”. The difference is
asserted, it does not come from a general principle, like extensionality. The second reason
is that they have a different number of slots. We could define appropriate predicates
to characterise this distinction. For example, having a single slot filled by Carbon and
having exactly two slots filled by Carbon.2 Consider now Butane and Isobutane, two
universals whose instances have six carbon atoms and ten hydrogen atoms as parts. Only
the first reason is valid in their case, as they do not have a different number of slots: they
have the same number of slots, filled by the same thing (except, of course, their improper
slots). Nothing, except asserting it, can prove their difference.

What can make a difference? If we analyse the mereology of slots using the three
criteria of string types identity of Carrara and Smid (2022b) presented in Section 4.2,
we can see that the mereology of slots satisfies Kind and Number. However, Order
is not satisfied. Indeed, there is nothing in the theory that enables us to represent the
non-mereological relations, such as precedence for letter types, or bonding for molecule
universals. In the literature, multiple authors consider that the bonding relation is a filler
itself. Consider Methane. In the representation I used, presented in Section 3.1.5.1,
Methane has five direct proper slots: four are filled by Hydrogen and one is filled by
Carbon. Some authors, like Lewis (1986); Bennett (2013), consider that there should
also be four slots filled by the bonding relation, as there are four chemical bondings in
a methane molecule particular. However, this is not satisfying, as it does not help in
satisfying the Order criterion. There are thirteen bondings in any butane particular, and
same in any isobutane particular. Adding thirteen slots to Butane and Isobutane does
nothing for the Order criterion. Furthermore, in the literature, the relation is described as
a dyadic universal Bonding. Therefore, while Methane has four slots filled by Bonding,
there is no information about which entities are linked by this relation.

The relation could not hold between the fillers. The universal Carbon is not bonded
to the universal Hydrogen in a general way. The bonding exists in the context of being
parts of Methane. Furthermore, the relation cannot fill a slot. As slots are occurring
contexts of their fillers, it makes sense to link the slots with the relations. Thus, if the slot
S1 of Methane, filled by Carbon, relates with the bonding relation to the slot S2 filled
by Hydrogen, then it means that the part-of-Methane occurrence of Carbon relates
to a part-of-Methane occurrence of Hydrogen.

Using non-mereological relations between slots seems possible. In fact, it is already the
case. Consider the relations Same Filler (SF ) and Same Owner (SO). They are not, per se,
mereological relations. In addition to differentiate entities, like isomers, non-mereological

1The chemical formula of Ethane is C2H6: molecules of ethane have two carbon atoms and six hydrogen
atoms as parts.

2But in first-order logic, one cannot define a generic predicate of having a different number of slots.
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relations between slots could be of great interest. For example, one could extend the
expressivity of the theory by adding Allen (1983) interval algebra between slots (which
could be applied to string types, for example). However, there are still many questions to
answer. Here are some: is this enough to satisfy the Order criterion? are these relations
stable under contextualisation, like mereological relations are? can a relation hold between
slots of different fillers? In the next subsections, I share some of my thoughts about these
questions.

11.3.1 Satisfying the Order Criterion

With non-mereological relations between slots, there would be a difference between Bu-
tane and Isobutane, as one would have a slot filled by Carbon linked by a bonding
relation to three Carbon-filled slots, and the other would not. However, this might not be
enough. Butane and Isobutane are structural isomers, which means that they have the
same parts, but their structure is different. But, there are other types of isomers, called
stereoisomers or spatial isomers. These molecules have the same molecular formula, their
parts relates in the same way, the only difference being the position in space of their
parts. Therefore, in the case of spatial isomers, the bonding relation is not enough to
differentiate them. Thus, only taking into account the bonding relation is not satisfying
for the Order criterion. It may be interesting to consider relations with higher arity (for
example, ternary relations) between slots.

11.3.2 Stability Under Contextualisation

Consider the universal Methane, its two slots S1 and S2, respectively filled by Carbon
and Hydrogen and the relation linking these two slots. Consider now the universal
PairOfMethane which is the universal instantiated by any pair of methane molecules.
Consider that Methane fills the slots S3 and S4 of PairOfMethane. In this case, the
slots S3 ◦ S1, S3 ◦ S2, S4 ◦ S1 and S4 ◦ S2 exist. It seems reasonable to say that S3 ◦ S1
and S3 ◦ S2 are linked by the bonding relation, as they are contextualised from the same
occurrence of Methane, i.e. the one that occurs thanks to S3. In the same way, S4 ◦ S1
and S4 ◦S2 are linked by the bonding relation, as they are both parts of the S4-occurrence
of Methane. With the same reasoning, it seems reasonable to say that S3 ◦ S1 and
S4 ◦S2 are not linked by the bonding relation. While it seems to be the case that bonding
is stable under contextualisation, the generalisation is not trivial, as it depends on the
relation. Therefore, I will not push further the analysis.

11.3.3 Relations Between Slots of Different Owners

If two slots have different owners, they might be different occurring contexts. Consider one
slot s of the universal Water filled by Hydrogen and the slot t of Methane filled by
Hydrogen. It is not clear how these two occurrences of Hydrogen can relate. However,
the slots s and t relate by the SF (same filler) relation. This subject is tricky and need a
deeper investigation.

11.4 Using the Mereology of Slots for Idempotent Entities

We have used slot mereology to represent the structure of non-idempotent entities, such
as structural universals and string types. The common feature between these entities is
the fact that they can have the same entity as a part multiple times. However, we haven’t
discussed the relevance of using the slot mereologies for entities that do not have this
property, like material individuals. It might indeed be considered as desirable to have

118



a single mereological theory for both universals and particulars. But one can wonder
whether it is feasible.

We do not see any feature of the theory that would make impossible its use to represent
the structure of material individuals. However, an important advantage of slot mereologies
is to represent various contexts of appearance of an entity, as discussed in Chapter 8.
This is not the case of material individuals, as such individuals can only appear in one
mereological context at a given time.

Unless slots are reused for something else than mereological purposes, for instance to
represent roles, as suggested by Bennett, slot mereologies appear unnecessary for material
individuals.
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Chapter 12

Conclusion

Dans cette thèse, nous avons basé notre travail sur la méréologie à slots proposée par
Bennett. Notre objectif était de fournir un cadre théorique permettant de représenter
les entités non-idempotentes. Ces entités, qui peuvent avoir plusieurs fois la même par-
tie, étaient un défi pour la méréologie classique extensionnelle en cela qu’elles n’étaient
pas compatibles avec plusieurs des principes de cette méréologie, comme le ≪ Parts Just
Once ≫, l’Idempotence ou la Subpotence. Notre proposition, en plus de permettre la
représentation de telles entités, permet d’assurer un comptage exact du nombre de parties
d’une entité.

La méréologie à slots, sur laquelle nous avons basé notre travail, posséde plusieurs
problèmes. En particulier, nous avons identifié deux problèmes dits de comptage : lorsque
la méréologie à slots est utilisée pour représenter la structure d’entités complexes, des
erreurs de comptage dans le nombre de parties qu’ont ces entités surviennent. Ces deux
problèmes sont liés à l’axiomatisation de la théorie. Le premier vient de l’héritage des
slots impropres, ces slots qui permettent à la relation de partie d’être réflexive. Le second
problème vient de l’héritage des slots des parties. Au final, les deux problèmes trouvent
leur origine dans un seul axiome de la théorie de la méréologie à slots : l’axiome d’héritage
des slots.

Afin de résoudre ces problèmes, nous nous sommes débarassés de cet axiome. Toutefois,
sa présence dans la théorie était cruciale : c’est cet axiome qui assure la transitivité de
la relation de partie. Afin de restaurer cette transitivité, il nous a fallu développer une
nouvelle théorie.

Dans un premier temps, nous avons proposé le mécanisme de copie des slots. Ce
mécanisme repose sur l’idée que les slots des parties d’un tout doivent être copiés autant
de fois que nécessaire pour assurer un juste comptage des parties. Le Chapitre 5 restitue
ce mécanisme, qui a fait l’objet d’une publication (Tarbouriech et al., 2021). Bien que
ce mécanisme permette de corriger les problèmes de la théorie de Bennett et rétablisse la
transitivité de la relation de partie, il comporte des limitations et produit de nouveaux
problèmes de comptage.

Dans un second temps, nous avons développé une nouvelle solution, proposée dans
(Tarbouriech et al., 2024), qui repose sur l’idée déjà présente dans le mécanisme des
slots copiés : les slots doivent être copiés autant que nécessaire pour assurer un juste
comptage des parties. Après avoir clairement défini ce qu’était un slot impropre, nous
avons proposé l’opération de contextualisation. Cette opération, munie, entre autres,
d’axiomes d’existence, d’unicité et d’associativité, a permis de restaurer la transitivité de
la relation de partie, tout en évitant les limitations et problèmes de comptage identifiés
avec le mécanisme des slots copiés.

À ce stade, cette extension de la théorie de Bennett corrigeait les problèmes et per-
mettait de compter correctement le nombre de parties d’une entité. Toutefois, il s’agissait
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d’une théorie méréologique restreinte au strict minimun : bien qu’elle admettait des
axiomes assurant la réflexivité (conditionnelle), la transitivité et l’anti-symmétrie de la
relation de partie entre fillers, elle n’admettait pas de principes de composition ou de
décomposition. En effet, le seul axiome de la théorie allant dans ce sens, le Supplémentation
Forte des Slots, est en fait un théorème dérivant directement de l’axiome d’existence des
slots impropres.

Afin de pallier ce problème, nous avons défini, basée sur l’opération de contextualisa-
tion, une relation de partie entre slots. Après avoir prouvé que cette relation de partie
entre slots possédait les propriétés requises (transitivité, réflexivité et anti-symétrie), nous
avons développé une théorie méréologie syntaxiquement proche à la méréologie classique
extensionnelle présentée, par exemple, par Varzi (2019).

Ainsi, cette méréologie comprend, en plus de la relation de partie entre slots, une rela-
tion de partie propre entre slots et une relation de chevauchement entre slots. De plus, nous
avons introduit des principes de décomposition traditionnels, tels que la supplémentation
et l’extensionnalité. Nous avons également introduit les principes de composition que sont
la somme et la fusion, tout en montrant qu’ils agissent de façon similaire aux principes de
méréologie classique. Par conséquent, les quatre critères, établis dans le Chapitre 6, sont
remplis.

In this thesis, we based our work on the slot-based mereology proposed by Bennett.
We aimed to provide a theoretical framework for representing non-idempotent entities.
These entities, which can have the same part several times, were a challenge for classical
extensional mereology in that they were not compatible with several of the principles of
this mereology, such as “Parts Just Once”, Idempotence or Subpotence. Our proposal
not only allows the representation of such entities but also ensures an exact count of the
number of parts of an entity.

The slot mereology on which we based our work has several problems. In particular, we
have identified two so-called counting problems: when slot mereology is used to represent
the structure of complex entities, counting errors in the number of parts these entities have
to occur. These two problems are linked to the axiomatization of the theory. The first
comes from the inheritance of improper slots, which allow the part relation to be reflexive.
The second problem comes from the inheritance of part slots. Ultimately, both problems
originate in a single axiom of the theory of slot mereology: the slot inheritance axiom.

In order to solve these problems, we got rid of this axiom. However, its presence in
the theory was crucial: this axiom ensures the transitivity of the part relation. In order
to restore this transitivity, we had to develop a new theory.

First, we proposed the slot copy mechanism. This mechanism is based on the idea
that the slots of the parts of a whole must be copied as many times as necessary to ensure
a fair count of the parts. Chapter 5 describes this mechanism, which has already been
published in (Tarbouriech et al., 2021). Although this mechanism corrects the problems
of Bennett’s theory and restores the transitivity of the part relation, it has limitations and
produces new counting problems.

In a second step, we developed a new solution, proposed in (Tarbouriech et al., 2024),
based on the idea already present in the copied slots mechanism: slots must be copied as
much as necessary to ensure a fair counting of the parts. Having defined what improper
slots are, we proposed the contextualization operation. This operation, equipped with,
among other things, axioms of existence, uniqueness and associativity, restored the transi-
tivity of the part relation while avoiding the limitations and counting problems identified
with the copied slot mechanism.

At this stage, this extension of Bennett’s theory corrected the problems and enabled
correct counting. However, it was a mereological theory restricted to the strict minimum:
although it admitted axioms ensuring the (conditional) reflexivity, transitivity and anti-
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symmetry of the part relation between fillers, it did not admit principles of composition
or decomposition. The only axiom of the theory along these lines, Strong Slot Supple-
mentation, is a theorem derived directly from the axiom of the existence of improper
slots.

To overcome this problem, we have defined a part relation between slots based on the
contextualization operation. After proving that this part relation between slots possesses
the required properties (transitivity, reflexivity and anti-symmetry), we developed a the-
ory of mereology syntactically close to the classical extensional mereology presented, for
example, by Varzi (2019).

Thus, besides the part relation between slots, this mereology has a proper part relation
between slots and an overlap relation between slots. In addition, we have introduced
traditional decomposition principles, such as supplementation and extensionality. We
have also introduced the compositional principles of sum and merge, showing that they
act similarly to the principles of classical mereology. As a result, the four criteria set out
in Chapter 5 have been met.

123



124



Bibliography

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843.

Armstrong, D. M. (1978a). A Theory of Universals: Universals & Scientific Realism,
volume 2. Cambridge University Press.

Armstrong, D. M. (1978b). Nominalism and Realism: Universals & Scientific Realism,
volume 1. Cambridge University Press.

Armstrong, D. M. (1978c). Universals: An Opinionated Introduction. Cambridge Univer-
sity Press, New York.

Armstrong, D. M. (1986). In defence of structural universals. Australasian Journal of
Philosophy, 64(1):85–88.
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Appendix A

List Of Formulas

A.1 Definitions

Number Name Definition

D2.1 Proper Parthood PP(x, y) ≜ P(x, y) ∧ x ̸= y

D2.2 Overlap O(x, y) ≜ ∃z(P(z, x) ∧ P(z, y))

D2.3 Proper Overlap PO(x, y) ≜ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x)

D2.4 Improper Overlap IO(x, y) ≜ P(x, y) ∨ P(y, x)

D2.5 Disjointness D(x, y) ≜ ¬O(x, y)

D2.6 Atom A(x) ≜ ¬∃y(PP(y, x))

D2.7 Sum1
S1(z, x, y) ≜ P(x, z) ∧ P(y, z)∧
∀w(P(w, z) → O(w, x) ∨ O(w, y))

D2.8 Sum2 S2(z, x, y) ≜ ∀w(O(z, w) ↔ O(w, x) ∨ O(w, y))

DS2.9 Fusion1
F1ϕ(z) ≜ ∀w(ϕ(w) → P(w, z))∧
∀v(P(v, z) → ∃w(ϕ(w) ∧ O(v, w)))

DS2.10 Fusion2 F2ϕ(z) ≜ ∀v(O(v, z) ↔ ∃w(ϕ(w) ∧ O(v, w)))

D2.11 Fusion1 Of Cats
F1Cat(z) ≜ ∀w(Cat(w) → P(w, z))∧
∀v(P(v, z) → ∃w(Cat(w) ∧ O(v, w)))

D2.12 Fusion2 Of Cats F2Cat(z) ≜ ∀v(O(v, z) ↔ ∃w(Cat(w) ∧ O(v, w)))

D2.13 The Universe U(z) ≜ FiP(w,w)(z)

D3.1 Parthood P(a, b) ≜ ∃s(Ps(s, b) ∧ F(a, s))

D3.2 Proper Parthood PP(a, b) ≜ P(a, b) ∧ ¬P(b, a)

D3.3 Overlap O(a, b) ≜ ∃c(P(c, a) ∧ P(c, b))

D3.4 Slot-overlap Os(a, b) ≜ ∃s(Ps(s, a) ∧ Ps(s, b))

D3.5 Proper Parthood Slot PPs(s, a) ≜ Ps(s, a) ∧ ¬F(a, s)

D3.6 Direct Slot DPs(s, a) ≜ Ps(s, a) ∧ ¬∃b(PP(b, a) ∧ Ps(s, b))
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Number Name Definition

D8.1 Slot S(s) ≜ ∃a(Ps(s, a))

D8.2 Same Owner SO(s, t) ≜ ∃a(Ps(s, a) ∧ Ps(t, a))

D8.3 Same Filler SF(s, t) ≜ ∃a(F(a, s) ∧ F(a, t))

D8.4 Improper Slot IPs(s, a) ≜ Ps(s, a) ∧ F(a, s)

D9.1 Contextualisable by Cb(t, s) ≜ ∃a(F(a, s) ∧ Ps(t, a))

D9.2 Direct Slot — With Con-
textualisation

DP’s(s, a) ≜ Ps(s, a) ∧ ∀t, u[s = t ◦ u→
(∃b(IPs(t, b))) ∨ (∃c(IPs(u, c)))]

D9.3 Part of Slot PoS(u, s) ≜ ∃t(u = s ◦ t)
D9.4 Proper Part of Slot PPoS(s, t) ≜ PoS(s, t) ∧ s ̸= t

D9.5 Overlap of Slots OoS(s, t) ≜ ∃u(PoS(u, s) ∧ PoS(u, t))

D9.6 Sum with Parthood
SoS1(u, s, t) ≜ PoS(s, u) ∧ PoS(t, u)∧
∀v(PoS(v, u) → OoS(s, v) ∨ OoS(t, v))

D9.7 Sum with Overlap
SoS2(u, s, t) ≜ ∀v(OoS(u, v) ↔
OoS(s, v) ∨ OoS(t, v))

DS9.8 Fusion of Slots
FoSϕ(z) ≜ ∀w(ϕ(w) → PoS(w, z))∧
∀v(PoS(v, z) → ∃w(ϕ(w) ∧ OoS(v, w)))

A.2 Axioms

Number Description Axiom

A2.1 Parthood Reflexivity P(x, x)
A2.2 Parthood Transitivity P(x, y) ∧ P(y, z) → P(x, z)
A2.3 Parthood Antisymmetry P(x, y) ∧ P(y, x) → x = y
A2.4 Company PP(x, y) → ∃z(PP(z, y) ∧ x ̸= z)
A2.5 Strong Company PP(x, y) → ∃z(PP(z, y) ∧ ¬P(z, x))
A2.6 Supplementation PP(x, y) → ∃z(P(z, y) ∧ ¬O(z, x))
A2.7 Strong Supplementation ¬P(y, x) → ∃z(P(z, y) ∧ ¬O(z, x))

A2.8 Complementation
¬P(y, x) → ∃z∀w(P(w, z) ↔
(P(w, y) ∧ ¬O(z, x)))

AS2.9 Existence of Sumi ξ(x, y) → ∃z(Si(z, x, y))
AS2.10 Restricted Existence of

Fusioni

∃w(ϕ(w)) ∧ ∀w(ϕ(w) → ψ(w)) → ∃z(Fiϕ(z))

AS2.11 Unrestricted Existence of
Fusioni

∃w(ϕ(w)) → ∃z(Fiϕ(z))

A3.1 Only Slots are Filled F(a, s) → ∃b(Ps(s, b))
A3.2 Slots Cannot Fill F(a, s) → ¬∃b(Ps(a, b))
A3.3 Slots Don’t Have Slots Ps(s, a) → ¬∃t(Ps(t, s))
A3.4 Improper Parthood Slots ∃s(Ps(s, a)) → ∃t(Ps(t, a) ∧ F(a, t))
A3.5 Slot Inheritance [Ps(s, b) ∧ F(a, s) ∧ Ps(t, a)] → Ps(t, b)

A3.6 Mutual Occupancy is Iden-
tity

(Ps(s, b) ∧ F(a, s))∧
(Ps(t, a) ∧ F(b, t)) → a = b

A3.7 Single Occupancy Ps(s, a) → ∃!b(F(b, s))

A3.8 Slot Strong Supplementa-
tion

∃s(Ps(s, a)) ∧ ∃t(Ps(t, b)) →
[¬(∃u(Ps(u, a) ∧ F(b, u))) →
∃v(Ps(v, b) ∧ ¬Ps(v, a))]
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Number Description Axiom

A5.1 Improper Slots are only
owned by their Filler

Ps(s, a) ∧ F(a, s) → ∀b(Ps(s, b) → a = b)

A5.2 Proper Slot Inheritance P(a, b) ∧ Ps(s, a) ∧ ¬F(a, s) → Ps(s, b)
A5.3 Additional Improper Part-

hood Slots
F(a, s) → ∃t(Ps(t, a) ∧ F(a, t))

A5.4 Only One Improper Slot
per Filler

Ps(s, a) ∧ F(a, s)∧
Ps(t, a) ∧ F(a, t) → s = t

A5.5 Anti-Inheritance
[a ̸= b ∧ Ps(s, b)∧
F(a, s) ∧ Ps(t, a)] → ¬Ps(t, b)

A5.6 Existence of a Unique
Copy-Slot for each Whole
and Path-Slot, Source-Slot
Pair

PPs(s, a) ∧ F(b, s) ∧ PPs(t, b) →
∃!u(Ps(u, a) ∧ CT(u, s) ∧ CF(u, t)))

A5.7 Copied Slot has the Same
Filler as its Source

CF(t, s) → ∃a(F(a, s) ∧ F(a, t))

A5.8 Same Owner PPs(t, a) ∧ CT(t, s) → PPs(s, a)
A5.9 Copy Constrains Structure CT(u, s) ∧ CF(u, t) → ∃a(F(a, s) ∧ PPs(t, a))
A5.10 Functionality Of CF CF(s, t) ∧ CF(s, u) → t = u
A5.11 Functionality Of CT CT(s, t) ∧ CT(s, u) → t = u

A8.1 Single Owner Ps(s, a) ∧ Ps(s, b) → a = b
A8.2 Additional Improper Slot F(a, s) → ∃t(IPs(t, a))
A8.3 Unique Improper Slot per

Filler
IPs(s, a) ∧ IPs(t, a) → s = t

A9.1 Domains of Contextualisa-
tion

CoS(u, s, t) → S(u) ∧ S(s) ∧ S(t)

A9.2 Contextualisable iff Con-
textualisation Exists

Cb(t, s) ↔ ∃u(CoS(u, s, t))

A9.3 Unicity of Contextualisa-
tion

CoS(u, s, t) ∧ CoS(v, s, t) → u = v

A9.4 Injectivity to the Left v = s ◦ t ∧ v = s ◦ u→ t = u
A9.5 Injectivity to the Right v = t ◦ s ∧ v = u ◦ s ∧ ∃a(IPs(s, a)) → t = u

A9.6 Contextualisation Associa-
tivity

∃w(v = s ◦ w ∧ w = t ◦ u) ↔
∃x(v = x ◦ u ∧ x = s ◦ t)

A9.7 Slot Strong Supplementa-
tion

S(s) ∧ S(t) → (¬PoS(t, s) →
∃u(PoS(u, t) ∧ ¬OoS(u, s)))

A9.8 Sum Existence SO(s, t) → ∃u(SoS1(u, s, t))
AS9.9 Fusion Existence ∃w(ϕ(w) ∧ ∀v(ϕ(v) → SO(v, w))) → ∃s(FoSϕ(s))
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A.3 Theorems And Lemmas

Number Description Theorem/Lemma
T2.1 Proper Parthood Irreflex-

ivity
¬PP(x, x)

T2.2 Proper Parthood Transi-
tivity

PP(x, y) ∧ PP(y, z) → PP(x, z)

T2.3 Proper Parthood Asymme-
try

PP(x, y) → ¬PP(y, x)

T2.4 Overlap Symmetry O(x, y) → O(y, x)
T2.5 Proper Overlap Symmetry PO(x, y) → PO(y, x)
T2.6 Improper Overlap Symme-

try
IO(x, y) → IO(y, x)

T2.7 Disjointness Symmetry D(x, y) → D(y, x)
T2.8 Overlap Reflexivity O(x, x)
T2.9 Proper Overlap Irreflexiv-

ity
¬PO(x, x)

T2.10 Improper Overlap Reflex-
ivity

IO(x, x)

T2.11 Disjointness Irreflexivity ¬D(x, x)

T2.12 PP-Extensionality
∃z(PP(z, x) ∨ PP(z, y)) →
(x = y ↔ ∀z(PP(z, x) ↔ PP(z, y)))

T2.13 O-Extensionality x = y ↔ ∀z(O(z, x) ↔ O(z, y))
T2.14 - P(x, x+i y)
T2.15 - P(x, y) → P(x, y +i z)
T2.16 - P(x+i y, z) → P(x, z)
T2.17 - P(x, y) ↔ x+i y = y

T3.1 Filler-Irreflexivity ¬F(a, a)
T3.2 Filler-Asymmetry F(a, s) → ¬F(s, a)
T3.3 Filler-Transitivity F(a, b) ∧ F(b, c) → F(a, c)
T3.4 Slot-Irreflexivity ¬Ps(s, s)
T3.5 Slot-Asymmetry Ps(s, a) → ¬Ps(a, s)
T3.6 Slot-Transitivity Ps(s, t) ∧ Ps(t, u) → Ps(s, u)
T3.7 Transitivity P(a, b) ∧ P(b, c) → P(a, c)
T3.8 Anti-Symmetry P(a, b) ∧ P(b, a) → a = b
T3.9 Conditional Reflexivity ∃s(Ps(s, a)) → P(a, a)
T3.10 Parts ↔ Slots ∃b(P(b, a)) ↔ ∃s(Ps(s, a))
T3.11 Composites ↔ Slot-

Composites
∃b(PP(b, a)) ↔ ∃s(PPs(s, a)

T3.12 Slot Weak Supplementa-
tion

PP(a, b) → ∃s(Ps(s, b) ∧ ¬Ps(s, a))

T3.13 Slot Extensionality
∃c(PP(c, a)) ∨ ∃c(PP(c, b)) →
(a = b↔ ∀s(PPs(s, a) ↔ PPs(s, b)))
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T5.1 Improper Slots Don’t Con-
tain Proper Parts

PP(y, x) → ∃s(Ps(s, x) ∧ F(y, s) ∧ ¬Ps(s, y))

T5.2 Parthood Transitivity P(a, b) ∧ P(b, c) → P(a, c)
T5.3 General Conditional Re-

flexivity
∃s(Ps(s, a) ∨ F(a, s)) → part of(a, a)

T8.1 Anti-Inheritance [a ̸= b ∧ Ps(s, b) ∧ F(a, s) ∧ Ps(t, a)] → ¬Ps(t, b)
L8.2 Either Proper or Improper S(s) → ∃!a(PPs(s, a) ⊕ IPs(s, a))
L8.3 Proper Parts iff Proper

Slots
PP(b, a) ↔ ∃s(PPs(s, a) ∧ F(b, s))

L8.4 General Conditional Re-
flexivity

Ps(s, a) ∨ F(a, s) → P(a, a)

T8.5 Mutual Occupancy is Slot
Identity

Ps(s, b) ∧ F(a, s) ∧ Ps(t, a) ∧ F(b, t) → s = t

T9.1 Symmetric Contextualisa-
tion is Slot Identity

u = s ◦ t ∧ v = t ◦ s→ s = t

T9.2 Left-and-Right-Improper
Contextualisation

∃a(IPs(s, a)) ↔ s = s ◦ s

T9.3 Improper Slot Is Right
Neutral Element

IPs(s, a) ∧ F(a, t) → t = t ◦ s

T9.4 Improper Slot Is Left Neu-
tral Element

IPs(s, a) ∧ Ps(t, a) → t = s ◦ t

T9.5 Mutual Contextualisation
is Identity

s = t ◦ u ∧ t = s ◦ v → s = t

T9.6 Contextualisation Same
Owner

u = s ◦ t→ SO(u, s)

T9.7 Contextualisation Same
Filler

u = s ◦ t→ SF(u, t)

T9.8 Parthood Transitivity P(a, b) ∧ P(b, c) → P(a, c)
T9.9 Right Neutral Element Is

Improper Slot
t = t ◦ s→ ∃a(IPs(s, a) ∧ F(a, t))

T9.10 Left Neutral Element Is
Improper Slot

t = s ◦ t→ ∃a(IPs(s, a) ∧ Ps(t, a))

T9.11 Contextualisation Stable
under Contextualisation

Cb(s, u) ∧ Cb(t, u) →
∀v(s = t ◦ v ↔ u ◦ s = (u ◦ t) ◦ v)
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L9.12 PoS Domain and Range PoS(s, t) → S(s) ∧ S(t)
T9.13 Conditional PoS Reflexiv-

ity
∀s(S(s) → PoS(s, s))

T9.14 PoS Anti-Symmetry PoS(s, t) ∧ PoS(t, s) → s = t
T9.15 PoS Transitivity PoS(s, t) ∧ PoS(t, u) → PoS(s, u)
T9.16 PoS Same Owner PoS(s, t) → SO(s, t)
T9.17 Slots iff Slot-Parts of Im-

proper Slot
IPs(s, a) → ∀t(Ps(t, a) ↔ PoS(t, s))

T9.18 Slot Structure and Filler
Structure constrain Each
Other

∃s, t(PoS(t, s) ∧ F(a, s) ∧ F(b, t)) ↔ P(b, a)

T9.19 PoS Stable under Contex-
tualisation

Cb(t, s) ∧ Cb(u, s) →
(PoS(u, t) ↔ PoS(s ◦ u, s ◦ t))

T9.20 PPoS Irreflexivity ¬PPoS(s, s)
T9.21 PPoS Asymmetry PPoS(s, t) → ¬PPoS(t, s)
T9.22 PPoS Transitivity PPoS(s, t) ∧ PPoS(t, u) → PPoS(s, u)
T9.23 PPoS Same Owner PPoS(s, t) → SO(s, t)
T9.24 Proper Slots iff Proper

Parts Of Improper Slot
IPs(s, a) → ∀t(PPs(t, a) ↔ PPoS(t, s))

T9.25 Slot Structure and Filler
Structure constrain Each
Other — Proper Part

∃s, t(PPoS(t, s) ∧ F(a, s) ∧ F(b, t)) ↔ PP(b, a)

T9.26 PPoS Stable under Con-
textualisation

Cb(t, s) ∧ Cb(u, s) →
(PPoS(u, t) ↔ PPoS(s ◦ u, s ◦ t))

T9.27 Conditional OoS Reflexiv-
ity

S(s) → OoS(s, s)

T9.28 OoS Symmetry OoS(s, t) → OoS(t, s)
T9.29 OoS Same Owner OoS(s, t) → SO(s, t)
L9.30 Overlap with Part Implies

Overlap with Whole
OoS(u, t) ∧ PoS(t, s) → OoS(u, s)

L9.31 Slot-Overlap With Im-
proper Slot

IPs(s, a) ∧ Ps(t, a) → OoS(s, t)

L9.32 PoS Implies OoS PoS(s, t) → OoS(s, t)

T9.33 OoS Stable under Contex-
tualisation

Cb(t, s) ∧ Cb(u, s) →
(OoS(t, u) ↔ OoS(s ◦ t, s ◦ u))

T9.34 Slot-Overlap Constrains
Overlap between Fillers

OoS(s, t) ∧ F(a, s) ∧ F(b, t) → O(a, b)
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T9.35 Slot Weak Supplementation PPoS(s, t) → ∃u(PoS(u, t) ∧ ¬OoS(u, s)
T9.36 OoS -Extensionality S(s) ∧ S(t) → (∀u,OoS(s, u) ↔ OoS(t, u)) → s = t

T9.37 PPoS -Extensionality
∃u(PPoS(u, s) ∨ PPoS(u, t))
→ (∀u,PPoS(u, s) ↔ PPoS(u, t)) → s = t

L9.38 Domains of Sum SoS1(u, s, t) → S(s) ∧ S(t) ∧ S(u)
T9.39 SoS1 and SoS2 are Equivalent SO(s, t) → ∀u(SoS1(u, s, t) ↔ SoS2(u, s, t))
T9.40 Sum Same Owner SoS1(u, s, t) → ∃a(Ps(u, a) ∧ Ps(s, a) ∧ Ps(t, a))
T9.41 Sum Unicity SoS1(u, s, t) ∧ SoS1(v, s, t) → u = v
T9.42 Sum Idempotence S(s) → s+ s = s
T9.43 Sum Commutativity SO(s, t) → s+ t = t+ s
L9.44 - SO(s, t) → PoS(s, s+ t)
L9.45 - SO(t, u) → ∀s(PoS(s, t) → PoS(s, t+ u))
L9.46 - SO(s, t) → ∀u(PoS(s+ t, u) → PoS(s, u))
L9.47 - PoS(s, t) ↔ s+ t = t

T9.48 Overlaps the Contextualised
Sum iff Overlaps one of the
Contextualised Operands

Cb(t, s) ∧ Cb(u, s) →
∀v(OoS(v, s ◦ (t+ u))
↔ OoS(v, s ◦ t) ∨ OoS(v, s ◦ u))

T9.49 Left Distributivity
Cb(t, s) ∧ Cb(u, s) →
(s ◦ (t+ u) = s ◦ t+ s ◦ u)

L9.50 Same Filler of Operand and
Sum Implies Identity

SF(s, s+ t) → s = s+ t

T9.51 Right Distributivity Is Trivial Cb(s+ t, u) ∧ Cb(s, u) ∧ Cb(t, u) → s = t
L9.52 Sum is Slot-Part if Operands

are Slot-Parts
PoS(s, u) ∧ PoS(t, u) → PoS(s+ t, u)

T9.53 Sum Associativity SO(s, t) ∧ SO(t, u) → (s+ t) + u = s+ (t+ u)

T9.54 Sum Stable under Contextuali-
sation

Cb(u, v) ∧ Cb(s, v) ∧ Cb(t, v) →
(u = s+ t ↔ (v ◦ u) = (v ◦ s) + (v ◦ t))

TS9.55 Fusion Unicity ∃w(ϕ(w)) → ∀s, t(FoSϕ(s) ∧ FoSϕ(t) → s = t)
T9.56 Sum is a special Case of Fusion ∀s, t, u(FoSw=s∨w=t(u) ↔ SoS1(u, s, t))
T9.57 Improper Slot is Fusion of

Filler’s Slots
∃s(Ps(s, a)) → ∀t(IPs(t, a) ↔ FoSPs(w,a)(t))

TS9.58 Fusion Stable under Contextu-
alisation

Cb(s, t) ∧ ∀w(ϕ(w) → ∃w′(w′ = t ◦ w)) →
(FoSϕ(s) ↔ FoS∃w′(w=t◦w′∧ϕ(w′))(t ◦ s))
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