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Clotilde MARUT

Short abstract

This thesis is devoted to the implementation of ensemble density-functional theory (eDFT).
Various formalisms of eDFT are explored and applied to small atomic and molecular systems:
PPLB ensembles for the description of systems with fractional number of electrons, GOK
ensembles to access neutrally excited states, and N -centered ensembles, which allow for the
extraction of charged excitation energies, with no alteration of the number of electrons of
the system. We will assess the performance of commonly used exchange-correlation function-
als regarding the extraction of excitation energies, within the scope of eDFT. In particular,
we will address some infamous deficiencies of standard approximations, such as the lack of
derivative discontinuity, the violation of the piecewise-linearity exact-condition, the descrip-
tion of systems with fractional charge and fractional spin, and their practical implications on
dissociation processes.
Keywords: Quantum chemistry, electronic structure, ensemble density-functional theory, Hartree-

Fock theory, excitation energy, PPLB-DFT, GOK-DFT, N -centered eDFT, fractional spin, frac-

tional charge

Résumé court

Cette thèse est consacrée à l’étude de la théorie de la fonctionnelle de la densité d’ensemble
(eDFT) à travers différents formalismes et leur application à des systèmes atomiques et
moléculaires : les ensembles PPLB pour la description de systèmes avec un nombre frac-
tionnaire d’électrons, les ensembles GOK pour accéder aux états excités, et les ensembles
N -centrés qui permettent d’extraire des énergies d’excitation chargée, sans altération du
nombre d’électrons. Nous évaluerons la performance des fonctionnelles standard d’échange-
corrélation vis-à-vis de l’extraction d’énergies d’excitation à travers l’eDFT. En particulier,
nous discuterons certaines des limitations les plus connues de ces approximations standard,
telles que l’absence de dérivée discontinue, la violation de la condition exacte de linéarité par
morceaux, la description des systèmes avec charge ou spin fractionnaires et leur impact dans
les processus de dissociation.
Mots-clés: Chimie quantique, structure électronique, théorie de la fonctionnelle de la densité

d’ensemble, méthode de Hartree-Fock, énergie d’excitation, PPLB-DFT, GOK-DFT, eDFT N -

centrée, spin fractionnaire, charge fractionnaire
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I’m not a man of too many faces
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But those who speak know nothing
And find out to their cost
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fantasmé.
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Abstract

Over the last few decades, density-functional theory (DFT) has proved to be a rigorous
approach for describing the ground-state of any electronic system. Due to a relatively low
computational cost and the elaboration of sophisticated density-functional approximations
(DFAs), DFT became the prevailing method used in electronic-structure calculations. Still,
there remain numerous challenges that standard DFAs fail to overcome. These limitations
are not attributed to failures of the theory itself but are rather due to deficiencies of the cur-
rently used approximate exchange-correlation (xc) functionals. There exists a generalization
of ground-state DFT to fractional occupation numbers which allows for the description of
systems with fractional number of electrons, PPLB-DFT. Such grand canonical extension of
DFT can be achieved through the use of the ensemble formalism and enables direct extrac-
tion of charged excitation energies and other properties from a single DFT-like calculation.
Unfortunately, the inability of commonly used exchange-correlation DFAs to mimic the in-
famous derivative discontinuity (DD) has proved to be highly detrimental to the prediction
of charged excitations such as ionization potentials and electron affinities, yielding substan-
tial errors, and known as the fundamental-gap problem. Regarding this matter, ensemble
DFT (eDFT) offers a very appealing alternative benefiting from the possibility for explic-
itly weight-dependent xc-functionals to mimic the infamous DD through their derivatives
with respect to the ensemble weights. DFT is known to possess deficiencies when it comes
to computing charged and neutral excitations. The most popular way to access neutrally
excited states within the scope of DFT is through its time-dependent extension, TD-DFT.
Indeed, one would usually turn to TD-DFT to get accurate transition energies for low-lying
excited-states with a relatively moderate computational cost. Although TD-DFT has been
incredibly successful to access neutral excitation energies, it still suffers from some limita-
tions and fails to provide accurate descriptions of some phenomena and properties. eDFT
constitutes a promising alternative to TD-DFT for computing electronic excitation energies.
In eDFT, it is possible to extract any neutral excitation energies of a N -electron system
from a single calculation through the use of a Gross-Oliveira-Kohn (GOK) ensemble, with a
similar computational cost and level of approximation for the xc-functional than in an usual
DFT calculation. GOK-DFT is a less well-known but comparably rigorous alternative to
TD-DFT where the large choice of ensemble weights and the weight-dependence of DFAs
can significantly impact the accuracy of the energies. In DFT, it is well-known that the
HOMO-LUMO gap can be a very poor estimation of the fundamental gap of the system,
whereas eDFT may provide better predictions. Nevertheless, accessing charged excitations
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Abstract

usually require to vary the number of electrons of the system, which can be problematic
for some systems. Very recently, a new canonical eDFT formalism has been developed, the
N -centered formalism, which allows for the extraction of charged excitation energies without
any alteration of the number of electrons of the system. The behaviour of standard approx-
imations in the scope of eDFT may provide additional insight into the intrinsic systematic
errors of DFAs, such as the violation of the piecewise-linearity and constancy-condition exact
properties. Indeed, poor descriptions of systems with fractional charges and fractional spins
have shown to have major implications on the description of strongly correlated systems,
which are known to suffer from large static-correlation errors, as well as on the prediction of
asymptotic integer dissociations and band-gap predictions. These considerations may lead
the way to further development and refinement of the DFT scheme towards both current and
emerging applications.
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Résumé

Au cours des dernières décennies, la théorie de la fonctionnelle de la densité (DFT) s’est im-
posée comme une approche rigoureuse pour la description de l’état fondamental des systèmes
électroniques. Grâce à son faible coût computationnel et à l’élaboration d’approximations
sophistiquées pour la fonctionnelle d’échange-corrélation (xc-DFA), la DFT est devenue la
méthode de choix pour le calcul de structure électronique. Néanmoins, il subsiste nombre
de défis que la DFT ne parvient pas à surmonter. En réalité, ces carences ne sont pas le
fruit de la théorie elle-même mais plutôt du fait de défauts intrinsèques des approximations
utilisées. Il existe une formulation plus générale de la DFT pour les nombres fractionnaires
d’occupation qui permet la description de systèmes avec nombre fractionnaire d’électrons,
la PPLB-DFT. Cette formulation grand canonique de la DFT peut être mise en place à
l’aide d’un formalisme d’ensemble et permet une extraction directe d’énergies d’excitation
chargée et d’autres propriétés à partir d’un seul calcul de type DFT. Malheureusement,
l’incapacité des DFAs à reproduire la fameuse dérivée discontinue (DD) s’est avérée être par-
ticulièrement préjudiciable pour la prédiction d’énergies d’excitation chargée, telles que les
potentiels d’ionisation et les affinités électroniques, donnant lieu à des erreurs conséquentes,
et connue comme le problème du gap fondamental. Dans ce contexte, la DFT d’ensemble
(eDFT) offre une alternative très attrayante du fait de sa capacité à user de DFAs dépendantes
du poids de l’ensemble pour reproduire la DD via leur dérivée. La DFT est connue pour mon-
trer des limites vis-à-vis du calcul d’énergies d’excitation chargée et neutre. La procédure
standard pour accéder aux états excités neutralement dans le cadre de la DFT est à travers
son extension dépendante du temps, la TD-DFT. En effet, l’usage est de recourir à la TD-
DFT pour obtenir des prédictions acceptables pour les énergies de transition des niveaux
excités les plus bas, cela avec un coût computationnel relativement modéré. Bien que la TD-
DFT se soit avérée incroyablement fructueuse pour accéder aux énergies d’excitation neutre,
elle a également montré certaines limites lors de la description de certains phénomènes et
propriétés physiques. En cela, l’eDFT constitue une alternative prometteuse à la TD-DFT
pour le calcul des énergies d’excitation électroniques. En eDFT, il est possible d’extraire
n’importe quelle énergie d’excitation neutre d’un système électronique en un seul calcul à
l’aide d’un ensemble Gross-Oliveira-Kohn (GOK), et cela avec un coût computationnel et un
niveau d’approximation pour la fonctionnelle d’xc, similaires à ceux de la DFT standard. La
GOK-DFT est une alternative moins connue mais tout autant rigoureuse que la TD-DFT,
où le large choix de poids de l’ensemble et la dépendance en poids de la fonctionnelle xc
peuvent significativement influer sur la qualité des énergies calculées. En temps normal,
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Résumé

accéder aux énergies d’excitation chargée nécessite de faire varier le nombre d’électrons du
système, ce qui peut s’avérer problématique dans certains cas. Très récemment, un nou-
veau formalisme canonique a été développé, l’eDFT N -centrée, rendant possible l’extraction
d’énergies d’excitation chargée sans altération du nombre d’électrons. Le comportement des
DFAs standard dans le cadre de l’eDFT peut offrir une compréhension plus poussée de la
nature intrinsèque des erreurs systématiques dont elles souffrent, telles que la violation des
conditions exactes de linéarité par morceaux et de constance de l’énergie. En outre, la mau-
vaise description des systèmes avec charge et spin fractionnaires a prouvé avoir un impact
majeur dans la description des systèmes fortement corrélés ainsi que dans les processus de
dissociation et la prédiction de gaps d’énergie. Tout cela pourrait donner un nouvel essor au
développement futur de la DFT et à des applications émergentes jusqu’alors inaccessibles.
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E Résumé substantiel en français 253
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Introduction

Ensemble Density-Functional Theory

Over the last few decades, density-functional theory (DFT), in its Kohn-Sham (KS) formu-
lation, has proved to be a rigorous approach for describing the ground-state of any electronic
system. Due to a relatively low computational cost and the elaboration of sophisticated
functional approximations, DFT became the prevailing method used in electronic-structure
calculations. This plebiscite stems from the practical observation that simple approxima-
tions perform remarkably well for a wide range of problems in chemistry and physics. As a
matter of fact, the success or failures of DFT is based on the quality of the density-functional
approximation (DFA).

There exists a formally-exact generalization of ground-state Kohn-Sham DFT (KS-DFT)
for electronic states with fractional occupation numbers which allows for the description of
open-systems with fractional number of electrons, PPLB-DFT. Such grand canonical exten-
sion of KS-DFT can be achieved through the use of the ensemble formalism and enables
direct extraction of charged excitation energies and other properties from a single DFT-like
calculation.
Unfortunately, the inability of commonly used exchange-correlation (xc) approximate func-
tionals to mimic the famous derivative discontinuity of the exact potential has proved to be
highly detrimental to the accurate prediction of charged excitations such as ionization po-
tentials and electron affinities, yielding substantial errors and known as the fundamental-gap
problem.
Regarding this matter, ensemble DFT (eDFT) offers a very appealing alternative benefit-
ing from the possibility for explicitly weight-dependent xc-functionals to mimic the infamous
derivative discontinuity through their derivatives with respect to the weights of the ensemble.
In that sense, eDFT functionals may offer more stable and accurate predictions for excitation
energies.

DFT is known to possess deficiencies when it comes to computing charged and neutral
excitations. The most popular way to access neutral excited states within the scope of DFT
is through its time-dependent (TD) extension, TD-DFT. Indeed, to circumvent these limi-
tations, one would usually turn to TD-DFT to get accurate transition energies for low-lying
excited-states with a relatively moderate computational cost.
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Introduction

Although TD-DFT has been incredibly successful to access neutral excitation energies, it still
suffers from some limitations and fails to provide accurate descriptions of some phenomena
and properties. For instance, within this time-dependent formalism, double excitations are
completely absent from the spectra of TD-DFT and the quality of the excitation energies
highly depends on the choice of the exchange-correlation functional which is usually treated
in the standard adiabatic approximation.
Ensemble density-functional theory constitutes a promising alternative to TD-DFT for com-
puting electronic excitation energies. In eDFT, it is possible to extract any neutral excitation
energies of a N -electron system from a single calculation through the use of a Gross-Oliveira-
Kohn (GOK) ensemble, with a similar computational cost and level of approximation for the
exchange-correlation functional than in an usual pure-state DFT calculation.
GOK-DFT is a less well-known but comparably rigorous alternative to TD-DFT where the
large choice of ensemble weights and the weight-dependence of approximate functionals can
significantly impact the accuracy of the energies. These considerations are essential for the
development of accurate functionals for ensemble applications.

In DFT (and PPLB-DFT), it is well-known that the Kohn-Sham gap (or HOMO-LUMO
gap) can be a very poor estimation of the fundamental gap of the physical system but,
within the scope of eDFT, it is possible to significantly improve the quality of this estima-
tion through the infamous derivative discontinuity which can be directly connected to the
weight-dependence of the xc-functional.
While this improvement can be quite consequent for small finite systems, it is still problem-
atic when it comes to large periodic systems, like cristalline solids. Indeed, for such systems,
extracting charged excitations will require to induce a same small variation of the number
of electrons in every unit cell of the system which will inexorably lead to an infinitely large
charge for the whole system.
Very recently, a new canonical eDFT formalism has been developed, the N -centered formal-
ism, which allows for the extraction of charged excitation energies without any alteration of
the number of electrons of the physical open system.

The extension of DFT to fractional charges and fractional spins has led to the devel-
opement of exact conditions such as the piecewise linearity of the energy and the constancy
condition that must be satisfied by exchange-correlation functionals. Exact conditions have
helped unravel and understand limitations of commonly used DFAs that still exhibit large
systematic errors such as localization or delocalization errors and static correlation errors.
As a matter of fact, the tendency of commonly used functionals to fail to obey those two
exact-constraint has been proven to have widespread implications.
Many massive failures of DFAs can be formalized and understood through the concept of frac-
tional charges and fractional spins whose descriptions lead to errors that manifest themselves
in a wide range of applications, from the simplest atomic and molecular systems to more
challenging systems. Indeed, poor descriptions of fractional spins and fractional charges have
shown to have major implications on the description of strongly correlated systems, which are
known to suffer from large static-correlation errors, as well as on the prediction of asymptotic
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integer dissociations and band-gap predictions.

Present-day DFAs already make DFT widely applicable to a variety of many-electron
systems in physics, chemistry and material science, but there remain numerous challenges
that common DFAs fail to overcome. These limitations are not attributed to failures of the
theory itself but are rather due to deficiencies of the currently used approximate exchange-
correlation functionals and, therefore, designing functionals that would properly encompass
exact-conditions while remaining universally applicable constitutes a challenging task.
We believe that the behaviour of current standard approximations in the scope of ensemble
applications may provide additional insight into the intrinsic systematic errors of approximate
functionals and lead the way to further development and refinement of the DFT scheme
towards both current and emerging applications. We will discuss and present those various
eDFT formalisms through their application to very simple systems.

Numerical Details

In order to perform self-consistent ensemble calculations at both Hartree-Fock and DFT lev-
els, an ensemble DFT code was implemented in Fortran during this PhD: the QuAcK eDFT
code. The QuAcK software is a quantum chemistry package written in Fortran that includes
an eDFT module which can perform self-consistent ensemble calculations with a large variety
of approximations.
All results were computed using the QuAcK eDFT Fortran Code and/or Mathematica 12.0
and 13.0. Unless otherwise stated, calculations were performed in an unrestricted formal-
ism with the QuAcK eDFT software and the convergence threshold of the self-consistent
calculations was set to 10−5. Atomic units are used throughout.

Thesis Structure

The thesis is organized as follows.

Part I discusses the foundations of quantum chemistry and focuses on the development
of two of the major ab initio methods that form cornerstones of computational chemistry.
Chapter 1 gives a brief overview of the main problematics and fundamental concepts of quan-
tum chemistry regarding electronic-structure calculations. Concepts such as the many-body
wave function, the Schrödinger equation and the many-body problem are discussed.
The Hartree-Fock theory and its formalism, which is a pillar of quantum chemistry compu-
tational methods, are extensively introduced in Chapter 2.
Chapter 3 is devoted to density-functional theory which became over the last decades the
prevailing post-Hartree-Fock approach for calculation of physical and chemical properties of
matter.
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Introduction

Part II of this manuscript is devoted to ensemble DFT and its numerical implementation
and application to simple real atomic and molecular systems.
Chapter 4 makes the connection between standard DFT and ensemble DFT through its ex-
tension to systems with fractional numbers of electrons, PPLB-DFT, and its performance
regarding charged excitation energies.
As for neutral excitation energies, Chapter 5 presents a second ensemble DFT formalism
dedicated to neutrally excited states, GOK-DFT.
Turning back to charged excitations, Chapter 6 presents a quite-recent eDFT canonical en-
semble formalism which benefits from the practical advantage to give access to charged
excitations with no alteration of the number of electrons of the physical system.
Finally, Chapter 7 details the concept of fractional-charge and fractional-spin errors which
can be formalized by use of the ensemble formalism, and have shown to have widespread
implications in electronic-structure calculations.

For each ensemble formalism discussed in this work, supplementary materials, such as
additional results and numerical proof of correctness of the eDFT computational code, are
available in the Appendix of this manuscript (see Appendices B, C and D), as well as exper-
imental references (see Appendix A) of the properties of interest.
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Chapter 1

Quantum Chemistry
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1.1.1 Some Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Description of the State of the System . . . . . . . . . . . . . . . . 8
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1.2 The Many-Electron Problem . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 The “Exact” versus “Approximate” Dilemma . . . . . . . . . . . . 14

1.2.2 The Variation Method . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . 19

1.1 Electronic-Structure Theory

1.1.1 Some Context

The aim of Quantum Chemistry [39, 35, 58] is to accurately predict the behavior and proper-
ties of atoms, molecules or materials which are composed of interacting electrons and nuclei.
Many important properties and phenomena can be explained and predicted through knowl-
edge and good comprehension of those interactions. Electronic-structure theory is one of the
central topics of quantum chemistry and focuses on the behavior of the electrons in order to
explain and predict the reactivity or chemical and physical properties of matter. Whereas
we use Newton’s equations when we need to study the motion of classical particles, when it
comes to quantum particles, like electrons, it is quantum mechanics that one must resort to.
First, let us recall some basic principles of the quantum mechanics formalism that we will
need in that study.
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Chapter 1. Quantum Chemistry

1.1.2 Description of the State of the System

The wave function

In quantum mechanics [84], all the information about the physical state of an electronic
system is encompassed into a mathematical object known as the “wave function” Ψ of the
system. For a given electronic system, in the non-relativistic framework, the wave function
will be a complex-valued function and will depend on all the space and spin coordinates of
the N electrons of the system.

Ψ ≡ Ψ(x1,x2, ...,xN) = Ψ(r1, σ1, r2, σ2, ..., rN , σN) , (1.1)

where ri ∈ R3, σi ∈ {↑; ↓} ≡ {+1
2
;−1

2
} and xi = (ri, σi) are respectively the space-coordinate

vector, the spin coordinate and the combined space-spin coordinate vector of electron i ∈
J1;NK. Hence, the wave function fully describing the quantum state of the system depends
on 4N coordinates, 3N space coordinates and N spin coordinates. The set of all realizable
wave functions accessible to the system is called a “Hilbert space” H.

The Pauli exclusion principle

Since electrons are fermions, which are particles with half-integer spins, the electronic wave
function must obey the “Pauli exclusion principle” which states that two electrons cannot
occupy the same quantum state simultaneously. Thus, the electronic wave function must be
antisymmetric with respect to the permutation of any pair of electrons, meaning permutation
of both space and spin coordinates

Ψ(x1,x2, ...,xi, ...,xj, ...,xN) = −Ψ(x1,x2, ...,xj, ...,xi, ...,xN) . (1.2)

Although this abstract quantity does not actually possess any physical meaning and is rather
a purely statistical object, it can be seen as a probability amplitude and therefore must be
square integrable and normalized∫

· · ·
∫

|Ψ(x1,x2, ...,xN)|2dx1dx2...dxN = 1 . (1.3)

Note that the previous integration includes integration over all space coordinates plus sum-
mation over all spin values. The knowledge of the wave function unravel the path to many
other quantities, some of which contain much more physical meaning.

The electron density

The primary quantity that we will use in this work is the “electron density” of the system

n(r) = N

∫
· · ·
∫

|Ψ(r, σ,x2, ...,xN)|2dσdx2...dxN , (1.4)

which represents the probability density of finding any electron in an infinitesimal element
of volume dr at position r.
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1.1. Electronic-Structure Theory

Note that the electron density is a much simpler quantity than the wave function since it
only depends on 3 coordinates, r ∈ R3, no matter the size of the system (meaning the total
number of electrons).
Since we know that there are N electrons spread out over all the accessible space region, it
is only logical that if one extends the search to all this space one will ultimately find the
N electrons. For that reason, the electron density must be normalized to the number of
electrons of the system ∫

R3

n(r)dr = N . (1.5)

But for now let us stay with the wave function Ψ.

In this chapter, we chose to first introduce the notion of wave function in the space-spin
representation as it is a simple mathematical function Ψ(r, σ). Actually, there exists a much
general representation of the wave function which is based on linear algebra and which we
will need in order to proceed through the following sections: the “Dirac notation”.
For the sake of clarity we will restrict the following explanation to the case of a single-electron
system and will also neglect its spin coordinate.

1.1.3 The Dirac Notation

Bra and ket

In quantum mechanics, the state Ψ of an electronic system will be represented by a “ket”
vector |Ψ⟩, which is a column vector. Similarly, there also will be a “bra” vector ⟨Ψ|, which is
a row vector and whose components are the complex conjugates of the ones of the correspond-
ing ket |Ψ⟩. Similarly to the wavefuntion Ψ(r, σ), which was normalized in the space-spin
representation, those two vectors will also be normalized

⟨Ψ|Ψ⟩ = 1 . (1.6)

This operation can be applied to any bra ⟨Ψ| and ket |Φ⟩ of the Hilbert space defined
previously and is called an “inner product”. In the space representation, it is equivalent to
a simple integral formulation

⟨Ψ|Φ⟩ =
∫
R3

Ψ∗(r)Φ(r)dr . (1.7)

Moreover, the wave function Ψ(r) defined previously is just the component, or projection, of
the ket |Ψ⟩ into the space representation

Ψ(r) = ⟨r|Ψ⟩ . (1.8)

So far we have seen the formalism used to describe the state of the system but what about
its properties?
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Chapter 1. Quantum Chemistry

Observable and operator

In quantum mechanics, any physical measurable property A is called an “observable” and is
associated with a linear and hermitian, or self-adjoint, “operator” Â which must verify the
following property

Â† = Â . (1.9)

If the system was originally in the state |Ψ⟩, measuring the property A will consist in
applying the hermitian operator Â associated with that property to the left-side of |Ψ⟩.
One of the most infamous oddities of quantum mechanics is that any measurement will
influence the state of the system. Therefore it may result for the system to be in a new
quantum state |Ψ′⟩, meaning different than the initial state, once measurement is done

Â |Ψ⟩ = |Ψ′⟩ . (1.10)

Eigenvalue equation

The only realizable values that one can observe during a measurement of the property A are
the “eigenvalues” {ai} associated with the operator Â, and are the solutions of the following
“eigenvalue equation”

Â |φi⟩ = ai |φi⟩ . (1.11)

Since we want to measure real physical properties, meaning classical properties, it may not
seem surprising to state that any hermitian operators associated with those observables must
possess real eigenvalues {ai} ∈ R.
The states {|φi⟩} that satisfy this equation are called “eigenstates” of the operator Â and
can be chosen to form an orthonormal basis

⟨φi|φj⟩ =
∫
R3

φ∗
i (r)φj(r)dr = δij , (1.12)

where δij is the “Kronecker delta symbol”, which has the value δij = 1 when i = j and δij = 0
when i ̸= j.
For the sake of simplicity, we will only consider the case of non-degenerate solutions which
implies that for each eigenvalue ai there will exist only one eigenstate |φi⟩, solution of the
eigenvalue equation.
Note that the number of solutions of the eigenvalue equation of an hermitian operator can
be infinite, thus the orthonormal basis formed by its eigenstates {|φi⟩} would be of infinite
dimension. The basis {|φi⟩} is said to be “complete” in the sense that any state of the Hilbert
space |Ψ⟩ ∈ H can be uniquely expanded in terms of the normalized eigenstates such that

|Ψ⟩ =
∞∑
i=1

ci |φi⟩ , (1.13)

where {ci} is a unique set of complex coefficients.
Those eigenstates are in fact the only physical states of the system that will not be changed
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1.1. Electronic-Structure Theory

due to measurement. If the system were initially in one of the eigenstate |φi⟩ of the operator
Â, it would still be in that same eigenstate after measurement.
One of the specificities of the eigenstates of a hermitian operator is that in this particular
basis, {|φi⟩}, the matrix representation A of the operator Â will be diagonal and its main
diagonal elements will actually be the eigenvalues {ai}

A =


a1 0 . . . 0

0 a2
...

...
. . . 0

0 . . . 0 a∞


{|φi⟩}×{|φi⟩}

. (1.14)

In that sense, solving an eigenvalue problem will often consist in finding the orthonormal
basis in which the matrix representation of the operator is diagonal.
At this point, there is still one last notion that we need to discuss before moving on to the
next subsection: the “expectation value”.

Expectation value

We have seen that the only possible outcomes for the measurement of a property are the
eigenvalues associated with its hermitian operator. But because the quantum world is a
probabilistic world, the fact is that the result of the measurement would still be totally
random and one would not be able to predict with certainty which of the eigenvalues one
would obtain.
The expectation value of an observableA is the statistical average value that one would expect
to obtain if one were to do a large amount of measurements on the same quantum state |Ψ⟩.
Using the Dirac notation and the corresponding space representation, the expectation value
of an observable A is defined as follows〈

Â
〉
Ψ
≡ ⟨Ψ|Â|Ψ⟩

⟨Ψ|Ψ⟩
=

∫
Ψ∗(r)ÂΨ(r)dr∫
Ψ∗(r)Ψ(r)dr

. (1.15)

As a matter of fact, the electron density (1.4) introduced in the previous section is itself the
expectation value of an observable associated with a hermitian operator.
For a N -electron system in the normalized state |Ψ⟩, the electron density n(r) is defined as
the expectation value of the observable associated with the density operator n̂(r) such that

n(r) = ⟨Ψ|n̂(r)|Ψ⟩ , (1.16)

with

n̂(r) =
N∑
k

δ(r− rk) , (1.17)

where {rk} are the space coordinate vectors of the N electrons, and δ(x) is the “Dirac delta
function” which has the value δ(x) = 1 when x = 0, and δ(x) = 0 when x ̸= 0.
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Chapter 1. Quantum Chemistry

There exist numerous properties, and so as many observables, that quantum chemists and
physicists are interested in and would like to accurately predict depending on their field of
work: position, spin, electric dipole momentum... but the one for which they would probably
all share a common interest would be the total energy of the system.

1.1.4 The Schrödinger Equation

The time-independent Schrödinger equation

The hermitian operator associated with the total-energy observable of an electronic system
is called the “Hamiltonian” Ĥ and will take different forms depending on the characteristics
of the system, the nature of the interactions involved, the environment in which it is placed...
If one applies the formalism introduced in the previous subsection 1.1.3, one deduces that the
only possible outcomes for a measurement of the total energy E of an electronic system will
be the sets of eigenvalues associated with the hermitian energy operator, the Hamiltonian Ĥ.
Moreover, the eigenvalue equation associated with the Hamiltonian operator is a very cru-
cial equation in quantum mechanics and is known as the “time-independent Schrödinger
equation”

Ĥ |Ψ⟩ = E |Ψ⟩ , (1.18)

where Ψ is the wave function associated with the quantum state of the electronic system.
The eigenstates and eigenvalues of the time-independent Schrödinger equation are usually
referred to as the “stationary states” and “energy levels” of the system, respectively.

The energy spectrum

When we have introduced the notion of eigenvalues in 1.1.3, we have assumed that they
were discrete quantities but, as a matter of fact, there exist situations and operators for
which the eigenvalues form a continuous set. For an electronic system, the set of eigenvalues
associated with the Hamiltonian operator is called the “energy spectrum” and represents all
the realizable values for the total energy of the system. There are three possible scenarios
[88, 5] to consider:

� The energy spectrum of the system is discrete which means that the eigenvalues of the
time-independent Schrödinger equation will consist of a discontinuous, possibly infinite,
set of values {En}, with n ∈ N. Furthermore, the corresponding eigenstates can be nor-
malized in order to form an orthonormal basis and the physical stationary states are
called “bound states”. Bound states are usually associated with negative energy levels.
For example, the quantum harmonic oscillator is a well-known example of systems with
a fully discrete energy spectrum.

� The energy spectrum of the system is continuous which means that the eigenvalues can
take a continuous range of values and the corresponding eigenstates have an infinite
norm. Therefore, they cannot be normalized although they can be made orthonormal

12



1.1. Electronic-Structure Theory

in a more general sense. Those states are often called “unbound states” or “scattering
states” and are usually associated with positive energies.

� The energy spectrum of the system is partly discrete and partly continuous in the
sense that there are bound states as well as unbound states among the eigenstates of
the time-independent Schrödinger equation. However, it is possible to study each part
separately. A well-known example of systems with a mixed discrete-continuous energy
spectrum is the hydrogen atom and all the hydrogen-like systems.

From now on we will only consider systems with a discrete energy spectrum.

Excitation energies

When a quantum system possesses a discrete energy spectrum, the state with the lowest
energy level is referred to as the “ground state” while all the other states are called “excited
states”. Although the ground state is defined as the more energetically stable state of the
system, it is yet possible for an electron to be promoted from an initial low-energy level to
a higher excited state by absorbing a specific amount of energy, from a photon for example.
During an electronic-transition process, the promoted electron will usually very briefly exist
in the higher energy state untill relaxing back to a more energetically stable state and, along
this relaxation, will in turn release photon energy.
The specific amount of energy required in order to promote an electron from an initial energy
level En to another energy level Em is simply the energy difference between those two levels
and is called “excitation energy”

Ωnm = Em − En . (1.19)

When one changes the electronic configuration of the system by promoting one or many
electrons from an initial state to another state, one talks about “neutral excitations” since
one only rearranges the electron configuration without changing the total number of electrons
of the system.

� One famous example of neutral excitation energies, which will be discussed in this work,
is called the “optical gap” [7] ΩN

opt and corresponds to the lowest energy transition
accessible for the system via absorption of a single photon. The optical gap is usually
assumed to be the transition from the ground state EN

0 to the lowest excited state EN
1

ΩN
opt ≡ ΩN

01 = EN
1 − EN

0 . (1.20)

Another type of excitation energies are the ones corresponding to processes during which
one adds (or removes) electrons to (or from) an initial electronic configuration. In that case,
since one is changing the total number of electrons of the system, one will denote those
excitations as “charged excitations”.
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Chapter 1. Quantum Chemistry

� The first charged excitation energy that we will mention in this work is the one corre-
sponding to the removal of an electron from its ground-state electronic configuration. It
corresponds to the electronic transition from the ground state of the N -electron system
to the ground state of the (N − 1)-electron system and is known as the “ionization
potential”. The ionization potential represents the cost in energy that one must pay
in order to remove an electron from the system. Actually, each removal of an electron
from the system will be associated with a ionization potential which will be referred to
as “first ionization potential”, “second ionization potential”...
The first ionization potential of the N -electron system is defined as follows

IN0 = EN−1
0 − EN

0 . (1.21)

� Similarly, we will also be interested in the charged excitation corresponding to the
addition of an electron to the ground state of the N -electron system. In that case, the
property of interest would be the “electron affinity” which represents the amount of
energy which is released by the system due to the addition of a new electron

AN
0 = EN

0 − EN+1
0 . (1.22)

� Finally, based on those two properties, one can also define the last useful notion that
one will need in order to discuss charged excitations: the “fundamental gap”. The fun-
damental gap of a N -electron system is defined as the difference between its ionization
potential and its electron affinity

ΩN
fun = IN0 − AN

0 . (1.23)

In the previous definitions, the subscript “0” and the superscript “N” emphasize the fact
that the reference state is the ground state of the N -electron system.

So far, we have covered all the basic formalism of quantum mechanics required to prop-
erly describe and study an electronic system but the fact is that real materials, like atoms,
molecules or solids, are never composed of only electrons. They actually consist of a dynam-
ical environment formed by an arrangement of nuclei through which the electron disribution
spreads out and interacts with.
To get a realistic and accurate description of such a system can be very challenging as we
shall see in the next section.

1.2 The Many-Electron Problem

1.2.1 The “Exact” versus “Approximate” Dilemma

Approximate solution and exact constraints

In the previous section, we have seen that the key to accurately describe and predict the
behavior and properties of an electronic system was to solve the famous time-independent
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Schrödinger equation
Ĥ |Ψ⟩ = E |Ψ⟩ . (1.24)

Unfortunately, there exist only very few systems, essentially one-electron systems, for which
we actually can analytically solve this equation. Most of the time, for more complicated
systems, we must rely on approximations and numerical computation.
Indeed, for a N -electron system, in the space-spin representation, the time-independent
Schrödinger equation takes the form

H(x1,x2, ...,xN)Ψ(x1,x2, ...,xN) = EΨ(x1,x2, ...,xN) , (1.25)

where we see that both the Hamiltonian and the wave function depend on all space and spin
coordinates of the system.
The first difficulty would be to properly describe the Hamiltonian of the system which must
encompass all the information about the motion of the system and the nature of its interac-
tions. As we shall see later, the main problematic part of the Hamiltonian would be the one
describing the interacting nature of the electrons.
The second difficulty, and not the least, comes from the wave function itself since it must
describe the correlated motion of interacting electrons which is a very complex system. The
fact is that we simply do not know the form of the “exact” wave function of an interacting
many-electron system.
Hopefully, we do know some of the “exact constraints” and properties that the exact wave
function must verify. For instance, we have already introduced in the previous section the
anti-symmetry property, due to the Pauli exclusion principle 1.1.2, as well as the normaliza-
tion constraint (1.5).
Since the exact wave function seemed unreachable, even now despite the great advances
achieved over the last decades in numerical computation, many methods in quantum chem-
istry were based on the simpler idea of finding the best “approximate solution” for the
time-independent Schrödinger equation.

Basis set expansion

Many methods use the concept of “basis set” in order to expand approximate wave functions
and optimize them with respect to a set of specific constraints.
For a given finite basis {|fi⟩} of size M ∈ N, the idea would be to find the best expansion

coefficients {ci} from which we could build the best approximate solution ˜|Ψ⟩

|Ψ⟩ ≈ ˜|Ψ⟩ =
M∑
i=1

ci |fi⟩ . (1.26)

As we have seen before, the exact wave function of the system can be written as an infinite
expansion within the orthonormal basis of its eigenstates (1.13). From a computationally
perspective, infinite basis are impossible to achieve, however we can still lean on the idea
that the larger the basis the more accurate the result. Of course, using a larger basis would
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also result in increasing the computational effort required in order to achieve the wanted
accuracy.
All those considerations must be taken into account whenever one needs to perform quantum
chemistry calculations.

Hartree-Fock ansatz

In quantum chemistry, many different ansatz have been proposed for the form of the approx-
imate wave function, engendering various methods. The simplest one was probably the idea
of using a single “Slater determinant” approximation to mimic the exact wave function which
might seem a very crude approximation since Slater determinants are usually associated with
the description of non-interacting electrons

|Ψ⟩ ≈ ˜|Ψ⟩HF = |Φ0⟩ , (1.27)

where Φ0 is a Slater determinant describing the ground state of a non-interacting N-electron
system.
This particular ansatz is typical of the “Hartree-Fock” method (HF) which will be thoroughly
introduced in the next chapter.

Post-Hartree-Fock methods

Many other methods (Configuration Interaction, Coupled Cluster, Møller-Plesset Perturba-
tion Theory, Density-Functional Theory. . . ) have actually been developped based on the
Hartree-Fock formalism and are then referred to as “post-Hartree-Fock” methods.
In order to go beyond the scope of Hartree-Fock theory, some of them rather use a multi-
determinantal ansatz in order to get a better approximation for the exact wave function of
the interacting N-electron system, and thus a better prediction of its total energy

|Ψ⟩ ≈ ˜|Ψ⟩ = c0 |Φ0⟩+
∑
I=1

cI |ΦI⟩ , (1.28)

where ΦI represents any other determinant, other than the ground state determinant Φ0,
associated with a N -electron system.

For instance, the “Configuration Interaction” (CI) method defines the approximate wave
function as a linear combination of Slater determinants, not only including the Hartree-
Fock ground state determinant but also all (or some) of the excited determinants that one
can obtain when exciting one or many electrons from the Hartree-Fock configuration (singly
excited, doubly excited...)

|Ψ⟩ ≈ ˜|Ψ⟩CI = c0 |Φ0⟩+
∑
S

cS |ΦS⟩+
∑
D

cD |ΦD⟩+ . . . (1.29)

where the summations are over all determinants that are singly (S), doubly (D)... excited
relative to the Hartree-Fock determinant Φ0.
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If the CI expansion (1.29) takes into account all the possible excited determinants, the method
is called “Full CI” (FCI) and the resulting energy and wave function should converge towards
the exact ones. If one chooses to only take into account a finite number of determinants, for
computational cost considerations for instance, the CI expansion is said to be truncated.

Another post-Hartree-Fock method which was widely used over the past decades is the
“Density-Functional Theory” (DFT). Density-functional theory is indeed based on the Hartree-
Fock frameworks but doesn’t use a multi-determinantal form for the approximate wave func-
tion in order to go beyond the Hartree-Fock result. Instead, it relies on the electron density
(1.4) as we shall see in a few chapters.

In this work, we will strictly focus on Hartree-Fock and Density-Functional Theory meth-
ods.

1.2.2 The Variation Method

The variation principle

We have seen that solving exactly the time-independent Schrödinger equation was not a re-
alistic objective but that one could instead try to find the best approximate solution. We
shall discuss now what we mean by “best” approximation.

We recall that the total energy associated with a given state of the system is defined as
the expectation value 1.1.3 of the Hamiltonian operator. Let us call Ψ0 the normalized exact
ground-state wave function of the system and E0 the associate exact ground-state energy so
that

E0 ≡
〈
Ĥ
〉
Ψ0

= ⟨Ψ0|Ĥ|Ψ0⟩ . (1.30)

Since we do not know the exact ground-state wave function Ψ0, we will use instead a nor-
malized approximate wave function, which will be referred to as “trial wave function” Ψ̃, and
in which we can retain some of the known exact characteristics of the exact ground-state
wave function, like the normalization constraint (1.5) and the antisymmetry property 1.1.2
for instance.
The expectation value of the energy associated with this trial wave function is then

Ẽ ≡
〈
Ĥ
〉
Ψ̃
=
〈
Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉 . (1.31)

The variation principle [84] states that any trial wave function will have a total energy higher
than the exact total energy and the only possibility to obtain the exact energy would be if
the trial wave function were actually the exact wave function of the system

E0 ≤
〈
Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉 = Ẽ . (1.32)

Note that the variation principle, although applied to the energy in this work, is a much more
general approach which consists in finding approximate solutions to any eigenvalue problem
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1.1.3.

In practice, one often has to restrict the search to a specific subset of trial wave functions
with a specific form, obeying a specific set of constraints that one would have imposed, with
a targeted symmetry. . . If one applies the variation principle to a specific subset of trial wave
functions, the minimum of the energy that one would obtain would be a variational estimate
of the exact ground-state energy for this particular class of trial wave functions.
Hence, if one could extend the search to all possible trial wave functions, one would ultimately
find that the minimizing trial wave function would be the exact ground-state wave function of
the system, and that the associated minimum of the energy would be the exact ground-state
energy.

Linear expansion and matrix eigenvalue problem

We have seen in 1.2.1 that one could use a finite basis set {fi}, with a fixed number M of
basis functions, to linearly expand a trial wave function

˜|Ψ⟩ =
M∑
i=1

ci |fi⟩ . (1.33)

Linear expansions of trial wave functions allow one to reformulate the variation method in a
more general matrix formulation: the “linear variational method”.
The linear variational method not only provides an approximate solution for the ground
state {Ψ0;E0} of the system but also a whole set of approximations for a given number of
eigenstates {Ψi;Ei}.

If one chooses to work with a finite basis set of real orthonormal basis functions {fi}, so
that

⟨fi|fj⟩ = ⟨fj|fi⟩ = δij , (1.34)

one can replace all the terms of the eigenvalue equation 1.1.3 by their matrix representations

Hc = Ec . (1.35)

The trial wave function would then be replaced by a column vector c whose elements would
be its expansion coefficients with respect to the orthonormal basis {fi}

c ≡


c1
c2
...
cM


{|fi⟩}

, (1.36)

and, similarly, the Hamiltonian operator Ĥ would be replaced by its matrix representation
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H in the same basis

H =


H11 H12 . . . H1M

H21 H22
...

...
. . .

...
HM1 . . . . . . HMM


{|fi⟩}×{|fi⟩}

. (1.37)

Since we have chosen to work with a real basis and since the Hamiltonian is an hermitian
operator (1.9), it would be a M ×M symmetric matrix such that

Hij = Hji = ⟨fi|Ĥ|fj⟩ , (1.38)

where Hij is the matrix element of H of row i and column j.
Because of its dimensionality, solving the linear variational problem (1.35) consists in solving
M distinct eigenvalue equations and, for each equation, in finding the column vector c which
only changes by a scalar multiplication by some scalar energy E after left-multiplication by
the Hamiltonian matrix.

For a hermitian operator, the matrix eigenvalue problem has exactly M orthonormal so-
lutions Ψ̃n, with the associated real eigenvalues Ẽn, with Ẽ0 < Ẽ1 · · · < ẼM−1.
When one works out the variational principle in a M -dimensional vector space, one obtains
a set of M solutions {Ψ̃n; Ẽn}, with n ∈ J0,M − 1K, which can be interpreted as variational
estimates of the M lowest exact electronic states of the system {Ψn;En} [35, 84].

� In the case of linear expansions of the trial wave function (see equation (1.33)), the set
of approximate solutions will be upper bounds to the set of the exact lowest energies
and, in the limit of a complete basis set M → ∞, these solutions will converge from
above towards the exact solutions.

� Conversely, for nonlinear expansions of the trial wave function, the lowest approximate
solution {Ψ̃0; Ẽ0} would still be an upper bound to the exact ground state {Ψ0;E0} of
the system but it would no longer be guaranteed for the approximations of the excited
states.

1.2.3 The Born-Oppenheimer Approximation

Molecular system

We have seen how one could describe and predict the behavior and properties of electronic
systems but when one does quantum chemistry one needs to describe real systems, atoms,
molecules, condensed matter... which are not limited to a sole electronic environment.
Such systems are usually modelized as two sets of different particles, a set of electrons with
space-coordinates {ri}, mass me and charge −e, with i ∈ J1;NK, and a set of nuclei with
space-coordinates {RA}, mass {MA}, atomic numbers {ZA} and nuclear charges {ZAe}, with
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A ∈ J1;MnuclK.
In the non-relativistic and time-independent framework, the wave function associated with
the quantum state of a molecular system will only depend on all the spatial-coordinates (or
spin-coordinates if one does not neglect the spin of the electrons and nuclei)

Ψ({ri}, {RA}) . (1.39)

By “only” we mean that it will only depend explicitly on the position coordinates of the
particles, not their momenta.

As we have seen in this chapter, in order to get a proper description of this system one
must solve the time-independent Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ , (1.40)

where the Hamiltonian of the whole molecular system will also depend on the space-coordinates
of all the electrons and nuclei Ĥ({ri}, {RA}).
In the absence of any external electric or magnetic field, the non-relativistic time-independent
molecular Hamiltonian [39] can be decomposed as follows

Ĥ = − ℏ2

2me

N∑
i=1

∇2
i +

1

2

N∑
i=1

N∑
j=1

j ̸=i

e2

|ri − rj|
−

N∑
i=1

Mnucl∑
A=1

ZAe
2

|ri −RA|

+
1

2

Mnucl∑
A=1

Mnucl∑
B=1
B ̸=A

ZAZBe
2

|RA −RB|
−

Mnucl∑
A=1

ℏ2

2MA

∇2
A

= T̂e + V̂ee + V̂en︸ ︷︷ ︸
Ĥelec

+V̂nn + T̂n .

(1.41)

where ℏ is the reduced Planck’s constant.

In the previous decomposition, one has to distinguish two subsets.
The first three terms represent the electronic part of the molecular Hamiltonian since they
are the only terms which depend on the electronic characteristics and positions.
They consist of the operators for the kinetic energy of the electrons T̂e, the Coulomb repul-
sion between electrons V̂ee and the coulombic attraction between electrons and nuclei V̂en,
respectively, and will be gathered in order to form the electronic Hamiltonian Ĥelec of the
molecular system.
The last two terms in the previous molecular Hamiltonian expression only depend on the
nuclei characteristics and positions and represent the operator associated with the coulom-
bic repulsion between nuclei V̂nn and the operator for the kinetic energy of the nuclei T̂n,
respectively.
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1.2. The Many-Electron Problem

Atomic units and accuracy

In Sciences, people usually work and perform calculations using the “International System
of Units” (S.I.) but in the context of computational chemistry there exists a much more
convenient metric system for atomic and molecular calculations, the “Atomic Units System”
(a.u.).
The atomic units system [84] is based on fundamental constants from which one can derived
many more:

� The atomic unit of mass is the electron mass me ≡ 1;

� The atomic unit of charge is the elementary charge e ≡ 1;

� The reduced Planck’s constant ℏ is equal to unity ℏ ≡ 1;

� The atomic unit of length is the Bohr radius (or just “Bohr”) a0 = 4πϵ0ℏ2
mee2

≡ 1, where
ϵ0 is the vacuum permittivity;

� Coulomb’s constant is equal to unity ke =
1

4πϵ0
≡ 1;

� The atomic unit of energy is the Hartree Eh = mee4

(4πϵ0ℏ)2 ≡ 1.

Besides the atomic units system, quantum chemists and physicists sometimes prefer to work
with other units in order to express energy estimates. In this work, we may sometimes express
the energy in “electron-volt” or in “kilocalorie per mole”

Eh = 27.2116 eV = 627.509 kcalmol−1 . (1.42)

In order to evaluate the accuracy of a numerical result, it may be compared to a reference
value obtained from another method, or from experiments. In quantum chemistry, the energy
difference between the approximate energy and the reference value is usually said acceptable
if it is less than a specific amount of energy, the “chemical accuracy”

ϵ ≈ 9.5× 10−4 a.u. ≈ 0.026 eV ≈ 0.599 kcalmol−1 , (1.43)

but it may also depend on the nature of the problem one is working on and it may partly
determine, along with the computational cost, the appropriate method to use.

The use of the atomic units system enables one to completely recast the time-independent
Schrödinger equation into a dimensionless form

Ĥ = −1

2

N∑
i=1

∇2
i +

1

2

N∑
i=1

N∑
j=1

j ̸=i

1

rij
−

N∑
i=1

Mnucl∑
A=1

ZA

riA
+

1

2

Mnucl∑
A=1

Mnucl∑
B=1
B ̸=A

ZAZB

RAB

−
Mnucl∑
A=1

1

2MA

∇2
A , (1.44)

where we have used shorter notations to express the distances between particles such that rij
represents the distance between electrons i and j, riA, the distance between electron i and
nucleus A and RAB, the distance between nuclei A and B.
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The Born-Oppenheimer approximation

The “Born-Oppenheimer approximation” [39] stems from the practical observation that elec-
trons are much more lighter than nuclei and, hence, have much smaller mass me ≪ MA.
Since the kinetic operator describing the motion of a particle is proportional to the inverse
of its mass, a very intuitive approximation consists in stating that, since electrons are much
faster than nuclei, they do not “see” the motion of the nuclei and instantaneously react to
any change of the nuclear configuration. This is the Born-Oppenheimer approximation.

As a first consequence, one can choose to completely neglect the nuclear kinetic term T̂n

in the molecular Hamiltonian defined previously. Furthermore, since the electrons do not see
the motion of the nuclei, they perceive them like simple point charges, in the sense that the
electrons will move in the field of frozen nuclei.
Another consequence of the Born-Oppenheimer approximation will be that, since the nuclei
are considered fixed, the distance between two nuclei is also a constant. For that reason the
operator describing the coulombic repulsion between nuclei V̂nn will be a constant operator
and will only result in adding a constant shift in the eigenvalues of the total Hamiltonian,
with no change in the eigenvectors.

If one applies the Born-Oppenheimer approximation to the molecular Hamiltonian defined
previously in equation (1.44), one obtains that

Ĥ ≈ Ĥtot ≡ Ĥelec + V̂nn , (1.45)

which is now the total Hamiltonian Ĥtot of a molecular system with fixed nuclei.
Solving the Schrödinger equation associated with Ĥtot is known as “the electronic problem”
and will be our sole concern in this work.
Nevertheless, if one’s interest were also to describe and predict the nuclear motion and prop-
erties of the molecular system such as the vibrational, rotational or translational energies, it
would still be achievable in the Born-Oppenheimer framework.

In a sense, the Born-Oppenheimer approximation decouples the motions of the electrons
and the nuclei and allow to treat both separately. Indeed, the Born-Oppenheimer approxi-
mation for the total molecular wave function of the system is

Ψ({ri}, {RA}) ≈ Ψelec({ri}, {RA})︸ ︷︷ ︸
motion of the electrons

in the field of “fixed” nuclei

motion of the nuclei in the
“average” field of the electrons︷ ︸︸ ︷

Ψnucl({RA}) , (1.46)

where Ψnucl describes the vibrational, rotational and translational motion and energy of the
system while Ψelec describes the electronic behavior and properties.
First, one would have to solve the electronic problem,

Ĥelec |Ψelec⟩ = Eelec |Ψelec⟩ , (1.47)
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in order to find out the electronic eigenstates and energies {Ψelec, Eelec} which would only
depend parametrically on the nuclear configurations {RA}. This means that, for each nuclear
configuration, there will be a different set of electronic eigenstates Ψelec({ri}, {RA}) and
energies Eelec({RA}).
Once the electronic problem is resolved, one would have to average all the positions and
characteristics of the electrons over the electronic wave function in order to solve the nuclear
equation describing the motion of the nuclei in the “average” field of the electrons

Ĥnucl |Ψnucl⟩ = Enucl |Ψnucl⟩ . (1.48)

A commonly used description consists in saying that the nuclei move on a “potential energy
surface” Etot({RA}) which is obtained by solving the electronic problem.
Hence, one would obtain a complete description, yet approximated, of all the molecular and
electronic behaviors and properties of the molecular system.
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Hartree-Fock Theory
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2.1 The Hartree-Fock Ansatz for the Wave function

Hartree-Fock theory is a computational method which aims to solve approximatly the time-
independent Schrödinger equation for many-body electronic systems under the non-relativistic
Born-Oppenheimer approximation. It is the simplest wave function method and can be a
very useful approximation for qualitative studies of molecular systems but also a very con-
venient starting point for more accurate methods.
Although Hartree-Fock method is often not accurate enough, it has the advantage of being
applicable to large systems where other methods usually fail and often constitutes a good
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Chapter 2. Hartree-Fock Theory

choice when one wants to have a qualitative description of molecular systems. When Hartree-
Fock is insufficient to provide accurate predictions, it can still be used as a convenient first
guess that more accurate methods will improve by adding corrections.
To do so, Hartree-Fock relies on the concept of “orbitals” to give a proper, yet approximate,
description of electronic structure of atomic and molecular systems.

2.1.1 Spin Orbitals, Molecular Orbitals and Atomic Orbitals

An orbital is a wave function associated with a single electron. As we have seen in the
previous chapter, the quantum state of an electron include informations about the spatial
distribution of the electron but also its spin σ, an intrinsic quantum property (we will use
the compact notation x for the combined space-spin coordinate). Hence, orbitals must reflect
those two aspects.
In this work, we must distinguish three different classes of orbitals: “spin orbitals”, “molecular
orbitals” (MOs) and “atomic orbitals” (AOs).

Spin orbitals and molecular orbitals

A spin orbital χi(x) gives the complete description of an electron and usually takes the
form of a product of a spatial function, a spatial orbital φi(r) which is also referred to as a
molecular orbital, and a spin function which can be of two types, α or β depending on the
spin value of the electron

χi(x) ≡

{
φi(r)α(σ)

φi(r)β(σ)
. (2.1)

Hence, if we have a finite set of molecular orbitals at our disposal, we can form twice as much
spin orbitals.
Since the spin functions are orthonormal, if one chooses to build spin orbitals from a set of
orthonormal molecular orbitals, the resulting spin orbitals will also be orthonormal

⟨χi|χj⟩ =
∫

χ∗
i (x)χj(x)dx = δij . (2.2)

Note that it is not mandatory to build all spin-orbitals with the same set of molecular orbitals.
One could choose to use different sets of molecular orbitals to build the spin orbitals for
electrons with spin α and electrons with spin β. The choice of using a unique set or two
different sets of molecular orbitals depending on the spin of the electrons will give rise to two
different Hartree-Fock formalisms: “Restricted” and “Unrestricted” Hartree-Fock, which will
be discussed in detail in subsequent sections.

Atomic orbitals

The last class of orbitals that we will need are atomic orbitals ϕµ(r). Atomic orbitals do not
have physical meaning but are rather mathematical basis functions that we will use in order
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2.1. The Hartree-Fock Ansatz for the Wave function

to expand linearly the molecular orbitals

φi(r) =
∑
µ

Cµiϕµ(r) . (2.3)

There exist multiple possible functions to use as atomic orbitals (Slater-type function, Gaussian-
type function. . . ) but they should reflect the nature of the system in order to get a proper
description. The nature of the atomic orbitals can affect the accuracy and the computational
cost of the method.
For molecular systems, a common choice is to use atom-centered Gaussian functions because
Gaussians functions possess very convenient calculus properties which make integrals, espe-
cially two-electron integrals, much easier to compute with Gaussian-Type Orbitals (GTO)
than with Slater-Type orbitals (STO).
For extended periodic systems, for instance, one can rather choose to use plane wave basis
functions to expand the spatial orbitals.

2.1.2 Hartree Product and Slater Determinant

Hartree product

Originally, Hartree [34] proposed to describe N-electron wave functions as simple product
of one-electron orbitals. In that sense, he assumed that electrons behave like independent
particles so that they do not “see” each other and are totally “uncorrelated”. This particular
form of wave function is known as a “Hartree product”

ΨHP(x1,x2, . . . ,xN) ≡ χi(x1)χj(x2) . . . χk(xN) . (2.4)

Unfortunately, Hartree products are not consistent with the indistinguishability requirement
of electrons nor with the antisymmetry exact constraint imposed by the Pauli exclusion
principle [80] and [23].

Slater determinant

Hopefully, we can correct the antisymmetry and indistinguishability failure of the Hartree
product by taking precise linear combinations of Hartree products and forming what is called
a “Slater determinant”

Φ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) . . . χk(x1)
χi(x2) χj(x2) . . . χk(x2)

...
...

. . .
...

χi(xN) χj(xN) . . . χk(xN)

∣∣∣∣∣∣∣∣∣ . (2.5)

The previous definition represents a general normalized Slater determinant formed from a
random set of N occupied spin orbitals {χi, χj, . . . , χk}.
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In the particular case where the determinant must represent a ground state, the N elec-
trons would be placed in the spin orbitals which possess the lowest orbital energies {εi} and
the ground state Slater determinant would be formed from these particular subset of spin
orbitals

Φ0(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)
χ1(x2) χ2(x2) . . . χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣ , (2.6)

where we have chosen to sort the spin orbitals so that ε1 < ε2 < · · · < εN .
Any other Slater determinant would be associated with an excited state of the system.

There exists a shorter notation for representing a Slater determinant which consist in only
representing its diagonal elements, the occupied spin orbitals, in a ket vector

Φ0(x1,x2, . . . ,xN) ≡ |χ1(x1)χ2(x2) . . . χN(xN)⟩ = |χ1χ2 . . . χN⟩ . (2.7)

From now on, we will use this compact notation when working with Slater determinants.

Using a single Slater determinant to represent a many-electron wave function is analogous
to treating the electron-electron interaction in an average way as we will see in the next
section.

2.2 The Hartree-Fock Approximation

2.2.1 Mean-Field Theory

We have seen in 1.2.3 that, in the non-relativistic Born-Oppenheimer approximation, the
exact electronic Hamiltonian of the system may be written in the form

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

Mnucl∑
A=1

ZA

riA
+

1

2

N∑
i=1

N∑
j=1

j ̸=i

1

rij
. (2.8)

The first two terms are usually gathered together in order to form the “core” Hamiltonian

ĥi = −1

2
∇2

i −
Mnucl∑
A=1

ZA

riA
(2.9)

which is a one-electron operator describing the kinetic aspect of the motion of an electron i
in the field of fixed nuclei and the attractive coulombic interaction with the latter.
The third term in the electronic Hamiltonian expression, the electron-electron coulombic re-
pulsion operator, is a two-electron operator in the sense that it depends of the instantaneous
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positions of two electrons, i and j.

The fact is that it is much easier to solve a set of N one-electron problems than a single
N -electron problem. For that reason, one must find a way to rewrite the electronic Hamil-
tonian as a sum of one-electron operators. Unfortunately, because of the two-electron term
mentioned previously, the exact electronic Hamiltonian is not “separable”

Ĥelec =
N∑
i=1

(
ĥi +

1

2

N∑
j=1

j ̸=i

1

rij

)
. (2.10)

That is the issue Hartree-Fock theory proposes to overcome. In order to simplify the above
mentioned complexity of the electronic Hamiltonian, Hartree and Fock proposed to appprox-
imate the electron-electron repulsion in an average way.
Whereas in the exact electronic repulsion, the interaction between each pair of electrons have
to be considered, Hartree and Fock chose to consider that each electron would rather inter-
act with an averaged electrostatic field due to the charge distribution of all the remaining
electrons. Therefore, each electron will experience an “effective one-electron potential” due
to the presence of all the other electrons.
That is why Hartree-Fock theory is sometimes referred to as an “independent-particle model”
or a “mean-field theory”.

2.2.2 The Hartree-Fock Energy

The Hartree-Fock ground state energy of the system is defined as the expectation value of
the electronic Hamiltonian operator Ĥelec for a ground state single Slater determinant wave
funtion Φ0. It can be expressed in terms of the occupied spin orbitals from which the Slater
determinant is built as follows

EHF = ⟨Φ0|Ĥelec|Φ0⟩ =
N∑
i=1

hi +
1

2

N∑
i=1

N∑
j=1

(Jij −Kij) , (2.11)

where

hi = ⟨Φ0|ĥ1|Φ0⟩ = ⟨χi|ĥ1|χi⟩

=

∫
χ∗
i (x1)ĥ1(r1)χi(x1)dx1

(2.12)

is the one-electron integral which represents the core energy of an electron placed in a spin
orbital χi. In this definition, the summation is over all occupied spin orbitals and the in-
tegration is over the space-spin coordinate of any electron placed in the spin orbital χi. It
is a dummy variable so we choose to use x1 for one-electron integrals and x1 and x2 for
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two-electron integrals.

The second part of the Hartree-Fock energy consists of a double summation of the term

Jij −Kij = ⟨Φ0|
1

r12
|Φ0⟩ (2.13)

and constitutes the two-electron part of the Hartree-Fock energy. It can be divided into two
distinct contributions

Jij = ⟨χiχj|
1

r12
|χiχj⟩ = ⟨ij|ij⟩

=

∫
χ∗
i (x1)χ

∗
j(x2)

1

r12
χi(x1)χj(x2)dx1dx2

(2.14)

is the “Coulomb” integral, where we have used the physicist’s notation for two-electron
integrals over spin orbitals

⟨ij|kl⟩ ≡ ⟨χiχj|χkχl⟩ =
∫

χ∗
i (x1)χ

∗
j(x2)

1

r12
χk(x1)χl(x2)dx1dx2 . (2.15)

The Coulomb part of the Hartree-Fock energy is purely classical and emerges from the electro-
static interaction between two charge distributions, or charge densities, due to the occupation
of the spin orbitals χi and χj. Note that, in that definition, an electron placed in a spin orbital
χi can interact with itself leading to the corresponding “self-interaction” energy Jii which
does not possess any physical meaning.

The second contribution to the two-electron part of the Hartree-Fock energy

Kij = ⟨χiχj|
1

r12
|χjχi⟩ = ⟨ij|ji⟩

=

∫
χ∗
i (x1)χ

∗
j(x2)

1

r12
χj(x1)χi(x2)dx1dx2

(2.16)

is known as the “exchange” integral and is much more subtle than the classical Coulomb
contribution. It encompasses all the quantum aspects of the electron-electron repulsion and
arises directly from the antisymmetry exact constraint imposed to the Hartree-Fock wave
function.

The coulomb and exchange integrals are very similar except that in the latter the spin
orbitals of the electrons are swapped, thus the denomination “exchange”.
Note that Kij exactly cancells out Jij when i = j which is why the summation is no longer
restricted by the constraint i ̸= j in equation (2.11). Consequently, Hartree-Fock exchange
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is said to be “exact exchange” in the sense that it exactly cancels out the above mentioned
“self-interaction” term Jii and restores the physical requirement that dictates that an electron
cannot interact with itself.

The Hartree-Fock energy can be rewritten in terms of one and two-electron integrals over
occupied spin orbitals as follows

EHF =
N∑
i=1

⟨i|ĥ|i⟩+ 1

2

N∑
i=1

N∑
j=1

⟨ij||ij⟩ , (2.17)

where we used the following compact notation for the combined Coulomb-exchange integrals

⟨ij||ij⟩ ≡ ⟨ij|ij⟩ − ⟨ij|ji⟩ = ⟨χiχj|χiχj⟩ − ⟨χiχj|χjχi⟩ = Jij −Kij . (2.18)

Hence, each occupied spin-orbital χi will add a one-electron contribution ⟨i|ĥ|i⟩ to the energy
and each unique pair of occupied spin-orbitals {χi, χj} will add a two-electron contribution
⟨ij||ij⟩.

2.2.3 The Hartree-Fock Equations

At this point, we would like to transform the unsolvable many-electron Schrödinger equation
associated with a Slater determinant

Ĥelec |Φ0⟩ = E |Φ0⟩ (2.19)

into a set of eigenvalue equations where some operator Ô would act on each single spin orbital
χi with orbital energy εi

Ô |χi⟩ = εi |χi⟩ . (2.20)

For that purpose, we need to introduce several operators which arise directly from the pre-
vious definitions introduced in 2.2.2.

Coulomb and exchange operators

First, we define the Coulomb operator Ĵj

Ĵj(x1) =

∫
|χj(x2)|2

1

r12
dx2 (2.21)

which acts on an arbitrary spin orbitals χi as follows

Ĵj(x1)χi(x1) =

[ ∫
|χj(x2)|2

1

r12
dx2

]
χi(x1) . (2.22)

The Coulomb operator is simply the local electrostatic potential generated by an electron
placed in the spin orbital χj that an electron placed in x1 would experience.
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Note that the definition of the Coulomb operator is independent of the spin orbital on which
it acts.

Similarly, we also define the exchange operator which acts on spin orbitals in a more
complicated manner

K̂j(x1)χi(x1) =

[ ∫
χ∗
j(x2)

1

r12
χi(x2)dx2

]
χj(x1) . (2.23)

The exchange operator K̂j is much more subtle that the Coulomb operator in the sense that
its definition depends explicitly on the spin orbital on which it acts. Thus, it represents a
non-local potential.

Fock operator

If we apply the variation theorem to the Hartree-Fock energy defined in (2.11) and minimize
it, using Lagrange’s method of undetermined multipliers for instance, with respect to a change
in the spin orbitals under the constraint that the spin orbitals remain orthonormal through
the optimization process, we obtain the following “Hartree-Fock equations”[

ĥ(x1) +
N∑
j=1

(
Ĵj − K̂j

)]
χi(x1) =

N∑
j=1

εjiχj(x1) . (2.24)

Based on this equation, we can define the “Fock operator”

f̂(x1) = ĥ(x1) + v̂HF(x1) (2.25)

which includes the effective one-electron Hartree-Fock potential

v̂HF(x1) =
N∑
j=1

(
Ĵj − K̂j

)
(2.26)

and acts on each spin orbital as follows

f̂(x1)χi(x1) =
N∑
j=1

εjiχj(x1) . (2.27)

Since the Fock operator only approximates the two-electron part of the electronic Hamil-
tonian, in the absence of two-electron interactions, the Fock operator must reproduce the
exact Hamiltonian of the system. That is why Hartree-Fock theory is known to be exact for
one-electron systems.
The last equation does not exactly take the form of the usual eigenvalue equation and is
referred to as a pseudo-eigenvalue equation.
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2.2. The Hartree-Fock Approximation

2.2.4 Solutions to the Hartree-Fock equations

Canonical equations and canonical orbitals

As we have seen, the Fock operator is defined itself in terms of the occupied spin orbitals
through the one-electron effective potential, and especially the exchange operator, thus the
Hartree-Fock equations are non-linear equations and must be solved iteratively as we will see
in a subsequent section.

As a matter of fact, any set of non-linear equations admits many independent variational
solutions and it is always possible to transform a specific set of solutions into another set of
more convenient solutions using a unitary transformation U, which must verify the following
property

U† = U−1 . (2.28)

That is because the expectation value of the electronic Hamiltonian is stationary with respect
to unitary variations of the spin orbitals.
For an arbitrary set of solutions {χi}, the matrix representation of the fock operator will not
be diagonal and neither will be the matrix ε of the Lagrange multipliers {εji}.

There exists a unique set of solutions which diagonalizes the Fock matrix and for which ε
is diagonal. This particular set can be obtained using a unitary transformation as mentioned
before and is known as the “canonical spin orbitals” {χ′

i}.
The Hartree-Fock equations can be rewritten in terms of the canonical orbitals in order to
retrieve the form of a usual eigenvalue equation whose solutions are the canonical spin or-
bitals {χ′

i} with canonical spin orbital energies {ε′i}

f̂(x1)χ
′
i(x1) = ε′iχ

′
i(x1) . (2.29)

Hence, in the Hartree-Fock framework, by solving a set of one-electron effective eigen-
value equations, we can find the best spin orbitals from which we can build the best Slater
determinant with the lowest Hartree-Fock energy.
From now on, we will only consider the canonical spin orbitals and will drop the prime
notation.

Interpretation of spin orbital energies

We have shown that in order to obtain the best Hartree-Fock energy, one must solve a set
of eigenvalue equations associated with the Fock operator f̂ . Since the Fock operator is an
hermitian operator, it admits an infinite set of eigenfunctions, or spin orbitals, {χi} and
eigenvalues, spin orbital energies, {φi}.
Among those solutions, the N spin orbitals with the lowest orbital energies will be referred
to as “occupied” spin orbitals while for all the remaining spin orbitals the denomination
“virtual” or “unoccupied” will be used.
There have been attempts to connect the spin orbitals to physical property of the system, like
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the total energy for instance. Indeed, we can express the Hartree-Fock ground state energy
in terms of the occupied spin orbital energies {εi}

EHF =
N∑
i=1

εi −
1

2

N∑
i=1

N∑
j=1

(Jij −Kij) , (2.30)

with

εi = ⟨χi|f̂ |χi⟩ = hi +
N∑
j=1

(Jij −Kij) . (2.31)

Hence, we see that the Hartree-Fock energy of the system cannot be written as a simple
sum of orbital energies of occupied spin orbitals. The reason is that, in the Hartree-Fock
framework, the spin orbital energies double count the electronic repulsion energy because of
the average treatment of the electron-electron interaction.

Koopmans’ theorem

Koopmans tried to relate occupied and virtual spin orbital energies with total energy differ-
ences involved in processes of removal or addition of an electron from/to a neutral system
[43, 84, 35].
For instance, let us remove an electron of a N -electron system from a specific spin orbital χk

with orbital energy εk under the assumption that the spin orbitals will not relax during the
process.
Based on equation (2.30), we can express the Hartree-Fock energy of the N - and (N − 1)-
electron systems and subtract them in order to obtain the ionization potential of the N -
electron system introduced in the first chapter

IN0 = EN−1
HF − EN

HF = −εk (2.32)

Hence, we find that the Hartree-Fock ionization potential is equivalent to the opposite of the
orbital energy of the occupied spin orbital from which we removed the electron.
We can apply the same reasoning to the case where we decide to add an electron in a virtual
spin orbital of the N -electron system, still under the strong assumption that the spin orbitals
do not relax during the process

AN
0 = EN

HF − EN+1
HF = −εk . (2.33)

Again, we find that the Hartree-Fock electron affinity of the N -electron system is identical to
the opposite of the orbital energy of the virtual spin orbital into which we added an electron.

Although the idea of extracting physical meaning from spin orbital energies can seem very
appealing, the fact is that those conclusions where derived under a very strong approximation,
the “frozen orbital approximation”, in which we consider that the spin orbitals of the neutral,
cationic and anionic systems are identical which is not physically relevant.
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Moreover, Koopmans’ theorem was originally established for “closed-shell” systems, which
are systems with no unpaired electrons, and, besides the lack of orbital relaxation, Hatree-
Fock orbitals do not include any correlation effects either.
Furthermore, whereas occupied spin orbitals are well-defined and usually behave in a rather
consistent way when one does calculations, virtual spin orbitals are much seen like the left-
overs of a calculation and can get more and more numerous depending on the size of the
basis set used to perform the calculation.
For all those reasons, the subject of equating orbital energies to physical properties like
ionization potentials or electron affinities remains a controversial debate.

2.3 The Basis-Set Formulation

We have seen in the previous sections that Hartree-Fock equations are integro-differential
equations and although they can, in principle, be solved numerically for atomic systems, for
large molecules it can turn to be a very demanding task.
Fortunately, a very simple procedure has been developed which proposes to overcome numer-
ical limitations by turning the integro-differential Hartree-Fock equations into a much easier
to compute matrix formulation as we will see.
Furthermore, we will see that it is possible to enforce some restrictions on the Hartree-Fock
wave function, like symmetry constraints, in order to target specific solutions.

2.3.1 Restricted Hartree-Fock

In this subsection, we will explain how Hartree-Fock theory can be applied to closed-shell
systems[84].

Restricted spin orbitals

In closed-shell systems, there are no unpaired electrons so that each molecular orbital will
be doubly occupied with an electron with spin α and an electron with spin β.
For that reason, restricted Hartree-Fock formalism (RHF) enforces the restriction that the
spin orbitals of both spins are built from the same set of molecular orbitals {φi}. Thus, for
that particular class of molecular systems the total number of occupied molecular orbitals
is N

2
while the total number of occupied spin orbitals is N , where N is the total number of

electrons.
The restricted spin orbitals take the form

χi(x) ≡

{
φi(r)α(σ)

φi(r)β(σ)
, (2.34)

where we used the same notations introduced in 2.1.1.
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Restricted Hartree-Fock equations

Originally, we have introduced the Hartree-Fock equations in terms of spin orbitals which
include the spin component of the electrons but it is possible to eliminate the spin functions
of the spin orbitals in order to rewrite the Hartree-Fock equations into a more convenient
space-only representation.
The restricted Hartree-Fock equations in terms of the molecular orbitals are then

f̂(r1)φi(r1) = εiφi(r1) , (2.35)

where the spatial Fock operator f̂(r1) acting on the occupied spatial orbitals is defined as
follows

f̂(r1) = ĥ(r1) +

N
2∑

j=1

[
2Ĵj(r1)− K̂j(r1)

]
. (2.36)

In this definition, the summation is made over all N
2
occupied molecular orbitals φi(r) and the

Coulomb and exchange operators, Ĵj(r1) and K̂j(r1), are the spatial analogs of the Coulomb
and exchange operators defined in (2.22) and (2.23) for the spin orbitals.

Restricted Hartree-Fock energy

Similarly to what was done with the spin orbital formulation of the Hartree-Fock energy, we
can derive an expression of the restricted Hartree-Fock energy of a closed-shell in terms of
the occupied molecular orbitals

ERHF = 2

N
2∑

i=1

hi +

N
2∑

i=1

N
2∑

j=1

(
2Jij −Kij

)
. (2.37)

The factor 2 in the Coulomb term comes from the fact that an electron will interact with
electrons of both spins through the classical coulombic interaction while it will only interact
with same-spin electrons through the exchange quantum interaction.

The Roothaan-Hall equations

As mentioned before, Hartree-Fock equations are integro-differential equations and can be
very troublesome to solve, especially for large molecular systems.
Fortunately, Roothaan [72] and Hall [33] proposed, separately, a simple and elegant procedure
to overcome the complexity of integro-differential problems by introducing a finite basis set
of basis functions.
The idea is to linearly expand each unknown molecular orbital φi in a finite basis set of K
known basis function, the atomic orbitals {ϕµ}

φi(r) =
K∑

µ=1

Cµiϕµ(r) , (2.38)
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where {Cµi} are the expansion coefficients of the molecular orbital φi in terms of the atomic
orbitals {ϕµ}. Atomic orbitals usually do not form an orthonormal basis.

If we inject the previous linear expansion of the molecular orbitals into the restricted
Hartree-Fock equations (2.35), we obtain a complete matrix reformulation of the problem,
the “Roothaan-Hall equations”

FC = SCε , (2.39)

where F is the matrix representation of the Fock operator f̂ in the atomic orbital basis {ϕµ}
and is known as the Fock matrix. Its elements are defined as follows

Fµν =

∫
ϕ∗
µ(r1)f̂(r1)ϕν(r1)dr1 . (2.40)

S is the overlap matrix with elements

Sµν =

∫
ϕ∗
µ(r1)ϕν(r1)dr1 (2.41)

and represents the amount of overlap between two atomic orbitals.
Finally, ε is a diagonal matrix containing the orbital energies of the molecular orbitals.

If the atomic orbitals were orthonormal, the overlap matrix would simply be identical to
the K×K identity matrix and would vanish from the Roothaan-Hall equations. In that case,
solving Roothaan-Hall’s equations would not differ from solving the usual matrix eigenvalue
problem. It would consist in diagonalizing the Fock matrix in order to find the corresponding
eigenfunctions C with eigenvalues ε.
In the general case, where the AO basis is not orthonormal, the Roothaan-Hall equations are
called a “generalized eigenvalue problem” and are still non-linear equations that one must
solve iteratively.

The orthogonalization procedure

Since matrix eigenvalue problems are much easier to solve than generalized eigenvalue prob-
lems, it would be in our interest to find a procedure to orthogonalize the atomic orbitals.
Fortunately for us, such a procedure exists. Indeed, it is possible to orthogonalize any non-
orthogonal basis with the help of a transformation matrix X which must verify the following
property

X†SX = 1 , (2.42)

where S is the overlap matrix of the non-orthonormal basis.
If we apply such a transformation matrix to the old coefficient matrix C and to the old Fock
matrix F, we can build a new coefficient matrix

C′ = X−1C ⇐⇒ C = XC′ , (2.43)
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as well as a new Fock matrix

F′ = X†FX , (2.44)

and we obtain the “transformed Roothaan-Hall equations” [84]

F′C′ = C′ε . (2.45)

As you can see, transformed Roothaan-Hall equations are indeed a standard matrix eigen-
value problem.

Actually, there exist multiple choices for the transformation matrix but some of the most
commonly used would probably be

� symmetrical (Löwdin) orthogonalization

X ≡ S− 1
2 , (2.46)

� canonical orthogonalization

X ≡ Us−
1
2 , (2.47)

where U is the unitary matrix that transforms the non-diagonal overlap matrix S of the
non-orthonormal atomic basis into a new diagonal overlap matrix s

U†SU = s . (2.48)

Restricted charge densities and density matrices

In a closed-shell molecule, each occupied molecular orbital (or spatial orbital) φi(r) is doubly
occupied and contains one electron with a spin α and one electron with a spin β. Hence, the
charge density for electrons with spin α and the charge density for electrons with spin β will
be identical and will be exactly half the total charge density n(r)

n(r) = 2

N
2∑

i=1

|φi(r)|2

nα(r) = nβ(r) = 1
2
n(r)

. (2.49)

If we expand the molecular orbitals in a finite basis of atomic orbitals {ϕµ} and inject
these expansions in the previous definition for the total charge density we can obtain a matrix
formulation of the total density

n(r) =
K∑

µ=1

K∑
ν=1

Pµνϕµ(r)ϕ
∗
ν(r) , (2.50)
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where Pµν are the matrix elements of the matrix representation of the charge density n(r)
which is known as the “density matrix” P

Pµν = 2

N
2∑

i=1

CµiC
∗
νi . (2.51)

The density matrix contains all the information about the expansion of the molecular or-
bitals and thus perfectly describes the Hartree-Fock wave function of the system. The den-
sity matrix formulation is particularly useful and important, especially for the numerical
implementation of the Self-Consistent-Field (SCF) procedure used to iteratively solve the
Roothaan-Hall equations and in which the Fock operator will itself be written in terms of
the density matrix as we will see.

Density matrix formulation of the restricted Hartree-Fock energy

The restricted Hartree-Fock energy can be reformulated in terms of the density matrix as
follows

ERHF =
1

2

K∑
µ=1

K∑
ν=1

Pνµ

(
Hcore

µν + Fµν

)
(2.52)

with 
Hcore

µν =
∫
ϕ∗
µ(r1)ĥ(r1)ϕν(r1)dr1

Fµν = Hcore
µν +

K∑
λ=1

K∑
σ=1

Pλσ

[
⟨µσ|νλ⟩ − 1

2
⟨µσ|λν⟩

] (2.53)

and where ⟨µν|λσ⟩ are the two-electron integrals defined between atomic orbitals in the same
manner that we did with molecular orbitals and spin orbitals

⟨µν|λσ⟩ =
∫

ϕ∗
µ(r1)ϕ

∗
ν(r2)

1

r12
ϕλ(r1)ϕσ(r2)dr1dr2 . (2.54)

We see that the restricted Hartree-Fock energy of the system can be expressed with only
three terms, the core Hamiltonian matrix Hcore, the density matrix P and the Fock matrix
F.
The core Hamiltonian matrix does not depend on the expansion coefficients which means
that, in the iterative process, it will not be necessary to compute it at each iteration, that is
to say each time the expansion coefficients of the molecular orbitals are changed.
The Fock matrix depends on the expansion coefficients through the density matrix and for
that reason, at each new iteration, a new Fock matrix must be built. It also depends on
atomic two-electron integrals which also must be computed and stored only once.

At this point we have seen all the required concepts to apply Hartree-Fock theory to
closed-shell systems.
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2.3.2 Unrestricted Hartree-Fock

When the molecular system includes singly occupied orbitals, which means that there are
unpaired electrons, a new Hartree-Fock formalism must be employed: Unrestricted Hartree-
Fock (UHF)[84].

Unrestricted spin orbitals

Let us recall the Hartree-Fock eigenvalue equation in terms of spin orbitals

f̂(x1)χi(x1) = εiχi(x1) . (2.55)

In unrestricted Hartree-Fock theory, the molecular orbitals are allowed to vary with much
more flexibility than in restricted Hartree-Fock in order to lower the energy.
In that sense, the spin orbitals are not required to be built from the same set of molecular
orbitals. Instead, two different sets of molecular orbitals will be considered depending on the
nature of the spin orbital, one set of molecular orbitals {φα

i } with orbital energies {εαi } to
describe electrons with a spin α and another set {φβ

i } with energies {εβi } to describe electrons
with a spin β.
Hence, the unrestricted spin orbitals are defined as follows

χi(x) ≡

{
φα
i (r)α(σ)

φβ
i (r)β(σ)

(2.56)

Note that, although we distinguish two different sets of molecular orbitals it is yet possible
that the most energetically favorable Hartree-Fock solution corresponds to the restricted so-
lution where the same molecular orbitals are used for both spins. There exist some situations
where the unrestricted Hartree-Fock solution reduces to the restricted one.
The derivation of unrestricted Hartree-Fock formalism is identical to the one detailed in the
restricted section 2.3.1 with the peculiarity that it must be done twice and applied separately
to each spin.

Unrestricted Hartree-Fock equations

From now on, we will consider a molecular system with Nα electrons of spin α occupying the
spatial orbitals {φα

i } and Nβ electrons of spin β occupying the spatial orbitals {φβ
i } so that

the total number of electrons is
N ≡ Nα +Nβ . (2.57)

We start by injecting the two previous unrestricted expansions into the general Hartree-Fock
equations (2.55). By doing so, we obtain two different sets of unrestricted Hartree-Fock
equations in terms of the molecular orbitals

f̂α(r1)φ
α
i (r1) = εαi φ

α
i (r1) (2.58) f̂β(r1)φ

β
i (r1) = εβi φ

β
i (r1) (2.59)
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where the two Fock operators f̂α(r1) and f̂β(r1) are defined as follows

f̂α(r1) = ĥ(r1) +
Nα∑
j=1

[
Ĵ α

j (r1)− K̂α
j (r1)

]

+
Nβ∑
j=1

Ĵ β
j (r1)

(2.60)

f̂β(r1) = ĥ(r1) +
Nβ∑
j=1

[
Ĵ β

j (r1)− K̂β
j (r1)

]
+

Nα∑
j=1

Ĵ α
j (r1)

(2.61)

and where the summations are over the Nα and Nβ occupied molecular orbitals of each
spin.
The Fock operator expressions show that an α electron in a molecular orbital φα

i will have
a spin-independent core energy and will interact with all α and β electrons, including itself,
through the Coulomb operators Ĵ α

j and Ĵ β
j , respectively, and will also interact exclusively

with all α electrons through the exchange operator K̂α
j . The same reasoning holds for the β

electrons.

Unrestricted Hartree-Fock energy

We can derive as well a formulation of the unrestricted Hartree-Fock energy in terms of the
occupied molecular orbitals of each spin

EUHF =
Nα∑
i=1

hα
i +

Nβ∑
i=1

hβ
i

+
1

2

Nα∑
i=1

Nα∑
j=1

(
Jαα
ij −Kαα

ij

)
+

1

2

Nβ∑
i=1

Nβ∑
j=1

(
Jββ
ij −Kββ

ij

)
+

Nα∑
i=1

Nβ∑
j=1

Jαβ
ij .

(2.62)

The unrestricted Hartree-Fock energy of the sysem includes summation of the core energy
of the Nα electrons with spin α and Nβ electrons with spin β along with the coulombic and
exchange energies of all pairs of electrons with spin α and all pairs of electrons with spin
β. The last contribution comes from the coulombic interaction between all pairs of electrons
with different spins.

The Pople-Nesbet Equations

Analogue to the derivation of Roothaan-Hall equations, we will try to derive a matrix for-
mulation of the unrestricted Hartree-Fock equations by introducing a basis set of atomic
orbitals.
We start by expanding both sets of spatial orbitals {φα

i (r)} and {φβ
i (r)} in the same atomic
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orbital basis set {ϕµ(r)} of size K.
The unrestricted molecular orbitals are then

φα
i (r) =

K∑
µ=1

Cα
µiϕµ(r) (2.63) φβ

i (r) =
K∑

µ=1

Cβ
µiϕµ(r) . (2.64)

By injecting those two expansions, we can reformulate the two unrestricted Hartree-Fock
equations, in equations (2.58) and (2.59), in their respective matrix representations

FαCα = SCαεα (2.65) FβCβ = SCβεβ (2.66)

where Fα and Fβ are the matrix representations of the two Fock operators defined in equa-
tions (2.60) and (2.61) in the atomic orbital basis {ϕµ}, with matrix elements

Fα
µν =

∫
ϕ∗
µ(r1)f

α(r1)ϕν(r1)dr1 (2.67) F β
µν =

∫
ϕ∗
µ(r1)f

β(r1)ϕν(r1)dr1 . (2.68)

Cα and Cβ are K × K square matrices whose columns contain the expansion coefficients
of the corresponding spatial orbitals {φα

i } and {φβ
i }, respectively.

εα and εβ are diagonal matrices whose elements are the orbital energies {εαi } and {εβi } asso-
ciated with the spatial orbitals {φα

i } and {φβ
i }, respectively.

Hence, we see that by introducing a finite basis of atomic orbitals in the unrestricted
Hartree-Fock framework, we obtain a set of two generalized eigenvalue problems. Those two
matrix equations are known as the “Pople-Nesbet equations” [71] and are a generalization of
the restricted Roothaan-Hall equations.
We stress that Pople-Nesbet equations consist of two coupled Roothaan-Hall equations in the
sense that they cannot be solved separately. Indeed, each of the two Fock operators depends
on the expansion coefficients of the molecular orbitals of all electrons, not only the ones of a
specific spin. That is why they must be solved simultaneously in the iterative process.
Of course, since the atomic orbitals are usually not orthonormal, we can apply the same
orthogonalization procedure introduced before in order to transform the Pople-Nesbet equa-
tions into standard matrix eigenvalue problems.

Unrestricted charge densities and density matrices

Let us define the total charge density for electrons with spin α and the total charge density
for electrons with spin β
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nα(r) =
Nα∑
i=1

|φα
i (r)|

2 (2.69) nβ(r) =
Nβ∑
i=1

∣∣∣φβ
i (r)

∣∣∣2 (2.70)

as well as the total charge density for all electrons

n(r) = nα(r) + nβ(r) . (2.71)

If we inject the expansions of the unrestricted molecular orbitals into the above-mentioned
definitions, we can obtain matrix representations for the charge densities of each spin

nα(r) =
K∑

µ=1

K∑
ν=1

Pα
µνϕµ(r)ϕ

∗
ν(r) (2.72) nβ(r) =

K∑
µ=1

K∑
ν=1

P β
µνϕµ(r)ϕ

∗
ν(r) (2.73)

with

Pα
µν =

Nα∑
i=1

Cα
µi(C

α
νi)

∗ (2.74) P β
µν =

Nβ∑
i=1

Cβ
µi(C

β
νi)

∗ . (2.75)

Pα
µν are the matrix elements of the density matrix Pα for electrons with spin α and P β

µν

are the matrix elements of the density matrix Pβ for electrons with spin β.
Finally, the matrix representation of the total charge density will be the total density matrix
which is simply the sum of the density matrices of both spins

P = Pα +Pβ (2.76)

Density matrix formulation of the unrestricted Hartree-Fock energy

Similarly to what was done for the restricted Hartree-Fock energy, the unrestricted Hartree-
Fock energy can be reformulated in terms of the density matrices defined previously as follows

EUHF =
1

2

∑
µ

∑
ν

[
PνµH

core
µν + Pα

νµF
α
µν + P β

νµF
β
µν

]
(2.77)

with 

Hcore
µν =

∫
ϕ∗
µ(r1)ĥ(r1)ϕν(r1)dr1

Fα
µν = Hcore

µν +
∑
λ

∑
σ

[
Pλσ ⟨µσ|νλ⟩ − Pα

λσ ⟨µσ|λν⟩
]

F β
µν = Hcore

µν +
∑
λ

∑
σ

[
Pλσ ⟨µσ|νλ⟩ − P β

λσ ⟨µσ|λν⟩
]
.

(2.78)

Multiple Hartree-Fock solutions

For a closed-shell system, where there are as many spin-up electrons as spin-down electrons,
Nα = Nβ, restricted Hartree-Fock is usually employed but is known to show deficiencies
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when applied to dissociation processes for instance. Indeed, when a closed-shell system
must dissociate into open-shell fragments, restricted Hartree-Fock fails to provide the correct
answer and one must turn to unrestricted Hartree-Fock instead.
In the iterative process, if one enforces the constraint that the first guess for the density
matrices verify the property Pα = Pβ, which means that the two initial Fock matrices will
be identical, Fα = Fβ, then the resulting Hartree-Fock solution will be the restricted one.
However, if one relaxes the above-mentioned constraint on the density matrices, the two initial
Fock matrices will be distinct and it is possible to target a solution with a lower energy than
the restricted one, if such a solution exists, the unrestricted Hartree-Fock solution.

2.3.3 Hartree-Fock Limit and Correlation Energy

When we introduced Hartree-Fock theory, we explained that it was an independent-particle
theory that described the motion of “uncorrelated” electrons by approximating the electronic
repulsion in an average manner. The fact is that any single-determinantal wave function, like
the Hartree-Fock wave function, cannot properly describe the behaviour and properties of an
interacting many-electron system, even when using a complete basis set, because it does not
account for correlation effects.

The single-determinantal wave function used in Hartree-Fock theory cannot describe the
detailed correlated motion of the electrons and, thus, cannot recover all of the exact ground
state energy of the system even when computed in an infinite basis of orthonormal spin
orbitals. The missing part is called “correlation energy”[84].
To be precise, Hartree-Fock theory does include some correlation due to the exchange term
that only applies to same spin electron pairs and arises directly from the antisymmetry
requirement of the Pauli exclusion principle. This type of correlation is often called “Fermi
correlation” and has to be distinguished from the general definition of correlation used in
quantum chemistry.
“Hartree-Fock limit” EHF

0 is the intrinsic limitation of this single-determinantal model. It is
the lower energy that can be obtained by performing a Hartree-Fock calculation in the limit
of a complete basis set and is an upper bound to the exact energy of the system.
The exact ground state energy of the system E0 can be obtained by minimizing the energy
of a multi-determinantal wave function in a complete basis set of determinants (FCI).
Hence, the correlation energy is defined as the difference between the exact ground state
energy and the Hartree-Fock limit and is negative

Ecorr ≡ E0 − EHF
0 . (2.79)

Although correlation was defined originally in the limit of a complete basis set, the definition
has since been extended to finite basis set calculations for practical considerations.

The concept of correlation is particularly difficult to apprehend and numerous attempts
have been made to unravel its origins [58]. Correlation effects are sometimes classified into
two categories: “dynamical correlation”[39], arising from the instantaneous nature of the
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exact coulombic repulsion between electrons, and “static correlation”, arising from near-
degeneracies among configurations that strongly interact and involved in dissociation pro-
cesses for instance.
Nevertheless, the frontier between those two concepts is not always well-defined and it is far
from obvious to give a proper definition of what one calls correlation effects appart from the
generic definition of equation (2.79).

2.4 The Self-Consistent-Field Scheme

As we have seen, Hartree-Fock theory is a self-consistent-field method which has to be solved
iteratively. For sake of simplicity, we will only discuss the computational procedure applied
for restricted Hartree-Fock calculations. As a matter of fact, the unrestricted procedure only
differs from the restricted one in the fact that some of the steps have to be done twice, one
for each of the spins.
The restricted SCF procedure [84] is as follows:

1. Specify informations about the system (nuclear coordinates, atomic numbers, number
of electrons) and the AO basis set.

2. Compute all required integrals that do not change from one iteration to the other
(overlap of the non-orthogonal AOs, core-Hamiltonian matrix elements and 2-electron
integrals in the AO basis).

3. Diagonalize the AO overlap matrix in order to obtain a transformation matrix required
in the orthogonalization procedure for the AO basis.

4. Form an initial guess at the density matrix

5. Calculate the set of two-electron integrals and the elements that depend on the density
matrix, such as the two-electron part of the Fock matrix.

6. Form the Fock matrix by summation of the core-Hamiltonian part obtained in step 2
and the two-body part obtained in step 5.

7. Calculate the transformed Fock matrix by use of the transformation matrix obtained
in step 3.

8. Diagonalize the transformed Fock matrix to obtain a set of expansion coefficients and
eigenvalues in the orthogonalized basis.

9. By inversion of the orthogonalization procedure, deduce the solutions in the initial
non-orthogonal basis.

10. Form the new density matrix obtained from the expansion coefficients obtained in step
9.
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11. Check if the new density matrix is close enough to the previous iteration, in accordance
with the predefined convergence treshold. If the new density matrix is not satisfactory
enough, return to step 5 in order to proceed to a new iteration.

12. If convergence is achieved, use the quantities obtained from the last iteration to compute
expectation values like the energy and properties of interest.
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3.1 Early Stages of Density-Functional Theory

Whe have seen that all the information about a N -electron system was contained into its
wave function and that the knowledge of the wave function could unravel the path to any
electronic properties of the system. Unfortunately, the wave function remains difficult to
access and one must rely on other alternatives to obtain proper predictions to physical and
chemical properties.
Fortunately, the wave function is not the only quantity containing information about the
system that one can exploit. Density-Functional Theory [65] stemmed from the need to find
new formalisms, other than wave function-based methods, where one could rely on simpler
quantities than the elusive wave function in order to access accurate descriptions of atoms,
molecules and condensed-matter properties.

3.1.1 Reduced Density Matrices

There exist quantities, reduced quantities [65, 39], that, although containing less information
than the wave function, are much more convenient to exploit computationally. We will discuss
some of them.
For a N -electron system in a state represented by a wave function Ψ, we define the first-order
density matrix as follows

γ1(x
′
1,x1) = N

∫
· · ·
∫

Ψ(x′
1,x2, . . . ,xN)Ψ

∗(x1,x2, . . . ,xN)dx2 . . . dxN , (3.1)

which is normalized to the total number of electrons N such that

Tr{γ1(x′
1,x1)} =

∫
γ1(x1,x1)dx1 = N , (3.2)

and from which we can obtain the total electron density of the system

n(x1) = γ1(x1,x1) . (3.3)

γ1(x
′
1,x1) is the coordinate-space representation of a hermitian one-electron operator γ̂1 which

admits an infinite set of eigenfunctions {χi} with eigenvalues {ni}.
The eigenfunctions of the first-order density matrix operator are called “natural spin orbitals”
and the corresponding eigenvalues are the “occupation numbers” of the natural spin orbitals.
Since γ̂1 is a hermitian operator, it can be expanded in the complete basis of its eigenstates

γ̂1 =
∞∑
i=1

ni |χi⟩ ⟨χi| , (3.4)

or in the space-spin representation

γ1(x
′
1,x1) =

∞∑
i=1

niχi(x
′
1)χ

∗
i (x1) . (3.5)
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Many operators are spin-independent so one can decide to eliminate the spin-dependency by
summation over spin components. Hence, one can define a first-order spinless density matrix

ρ1(r
′
1, r1) =

∑
σ

γ1(r
′
1, σ, r1, σ) . (3.6)

Additionally, one can also define the second-order reduced density matrix

γ2(x
′
1,x

′
2,x1,x2) =

N(N − 1)

2

∫
· · ·
∫

Ψ(x′
1,x

′
2,x3, . . . ,xN)Ψ

∗(x1,x2,x3, . . . ,xN)dx3 . . . dxN

(3.7)
which is normalized to the number of unique pairs of electrons such that

Tr{γ2(x′
1,x

′
2,x1,x2)} =

∫∫
γ2(x1,x2,x1,x2)dx1dx2 =

N(N − 1)

2
. (3.8)

Finally, there exists a more “complete” density matrix, the Nth-order density matrix

γN(x
′
1,x

′
2 . . .x

′
N ,x1,x2 . . .xN) = Ψ(x′

1,x
′
2 . . .x

′
N)Ψ

∗(x1,x2 . . .xN) , (3.9)

which contains as much information about the system as the wave function itself such that
it can be used to calculate the expectation value of any operator Ô〈

Ô
〉
= Tr{γN Ô} , (3.10)

like the Hamiltonian operator, for instance,

E[γN ] = Tr{γNĤ} . (3.11)

As a matter of fact, it has been proved that the exact total energy could be written as a
functional of the electron density and the first- and second-order density matrices only

E[n, γ1, γ2] = T [γ1] + Ven[n] + Vee[γ2] , (3.12)

where T , Ven and Vee are the kinetic, nuclear attraction and electronic repulsion energy func-
tionals, respectively.
Since the kinetic and nuclear attraction operators are one-electron operators, it seems logical
that they can be defined as functionals of one-body quantities such as the first-order density
matrix and the electron density. Conversely, since the electron-electron term arises from the
simultaneous interaction between each pairs of electrons, it makes sense that it is associated
with a functional of a two-body quantity such as the second-order density matrix.
Furthermore, the electron density and the first-order density matrix can be built from inte-
gration of the second-order density matrix. Thus, in theory, one only needs the second-order
density matrix in order to obtain the total energy of the system

E[γN ] = E[n, γ1, γ2] = E[γ2] , (3.13)

but, because of N -representability limitations, the second-order density matrix is often dif-
ficult to work with. Hence, in principle, it is possible to compute electronic properties, like
the total energy, directly from reduced quantities much simpler than the wave function.
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3.1.2 The Exact kinetic-energy functional

From the above discussion, the exact kinetic energy functional of the system can be expressed
as a functional of the first-order density matrix

T̂ =

∫ [
− 1

2
∇2

rγ1(x
′
1,x1)

]
x′
1=x1

dx1 , (3.14)

which, at this point, is our main interest.
If we inject the expansion of the first-order density matrix defined in equation (3.4) in terms of
its eigenstates, the spin orbitals, and eigenvalues, the occupation numbers, the exact kinetic
energy functional takes the form of an orbital functional, not a density functional,

T =
∞∑
i=1

ni ⟨χi|−
1

2
∇2|χi⟩ . (3.15)

Since electrons are fermionic particles and, thus, must obey the Fermi exclusion principle,
the occupation numbers of the natural spin orbitals must obey the following constraint

0 ≤ ni ≤ 1 , (3.16)

and we must retrieve the total number of electrons of the system by summation upon all
occupation numbers

∞∑
i=1

ni = N . (3.17)

In the case of an interacting system, the state of the system will consist of an infinite set of
occupied natural spin orbitals with possibly fractional occupation numbers [65].
Therefore, the total electron density of such a system takes the following form

n(r) =
∑
σ

∞∑
i=1

ni|χi(r, σ)|2 . (3.18)

3.1.3 The Thomas-Fermi Model

Decades before the foundational theorems of density-functional theory were even formalized,
Thomas and Fermi [86] proposed the very first “density-functional” approximation. Whereas
the exact formulation of the kinetic-energy functional of an electronic system was based on the
first-order density matrix, they proposed an approximation in terms of the electron density.
Indeed, their work was based on the concept of the local density approximation (LDA) [65],
which has since been applied to other quantities. The LDA consists in making the assumption
that matter behaves locally like a homogeneous electronic system. Hence, the Thomas-Fermi
(TF) approximation for the kinetic energy functional

TTF[n] = CF

∫
n(r)

5
3dr , (3.19)
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with CF = 3
10
(3π2)

2
3 .

The Thomas-Fermi model [39, 65] stemmed from the will to design a total-energy func-
tional that would truly be a functional of the sole electron density. The total energy provided
by such a simple model includes the TF kinetic energy functional and the classical nuclear
attraction and Hartree functional for the Coulombic electronic repulsion only,

ETF[n] = TTF[n] + EH[n] + Ven[n] , (3.20)

with the classical Hartree energy functional

EH[n] =
1

2

∫∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 , (3.21)

and the nuclear attraction energy functional (for molecules)

Ven[n] = −
Mnucl∑
A=1

∫
ZAn(r)

|RA − r|
dr . (3.22)

Thus, the Thomas-Fermi model does not account for exchange or correlation contributions.
A few years later, The TF model was extended to include an additional exchange contribu-
tion, yielding the Thomas-Fermi-Dirac (TFD) model [39].
Unfortunately, both TF and TFD models were atomic models and were not consistent with
the description of chemical bonds, making the two theories highly unsuitable for chemical
applications. Nevertheless, Thomas and Fermi were the first to introduce (although implic-
itly) the concept of density functionals, and their work therefore became a cornerstone for
the development of a promising exact theory, density-functional theory.

3.2 Density-Functional Theory Fundamental Idea

3.2.1 The Hohenberg-Kohn Theorems

The fundamental and conceptual idea of density-functional theory strongly relies on the work
of Hohenberg and Kohn [37] whose theorems provided legitimacy to this appealing theory.

The first Hohenberg-Kohn theorem proved that the electron density of a N -electron sys-
tem could serve as basic variable to access all electronic properties of the system [65], which
was a very attractive idea because of the system-size independent low dimensionality of the
electron density, compared to the wave function.
They proved a one-to-one correspondence between the ground-state density of an electronic
system and the external potential experienced by the electrons of the system. As a matter
of fact, they have shown, in an astonishingly simple manner, that two external potentials
differing by more than a constant cannot be associated with the same ground state density.
Hence, the electron density determines the external potential, within an additive constant,
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as well as the total number of electrons of the system through the normalization constraint.
The first Hohenberg-Kohn theorem can be summarized as follows
“The ground-state electron density of a system of interacting electrons uniquely determines
the external potential in which the electrons move and thus the Hamiltonian and all physical
properties of the system.”[49]

The second Hohenberg-Kohn theorem states that there exists a density-based analog of
the variational principle defined upon wave functions for the total energy of the system.
First, they state that the total energy of the system is a functional of the electron density
only. Indeed, for a given external potential v(r), the total energy can be written according
to the following density-functional decomposition

E[n] = T [n] + Vee[n] + Ven[n]

= FHK[n] + Ven[n] ,
(3.23)

with

Ven[n] =

∫
n(r)v(r)dr (3.24)

and the Hohenberg-Kohn universal functional

FHK[n] = T [n] + Vee[n] = ⟨Ψ| T̂ + V̂ee |Ψ⟩ . (3.25)

In the above-mentioned definition, Ψ is the ground-state wave function associated with the
ground-state density n.
Then, the second HK theorem states that any trial density ñ will lead to an upper bound of
the true energy of the system that can only be obtained with the true ground-state density
n0 ,

E0 ≡ E[n0] ≤ E[ñ] . (3.26)

In practice, the major difficulty arises from the fact that the closed-form of the exact energy
functional is unknown, especially the form of the Hohenberg-Kohn universal functional, and
because of that one must resort to approximate functionals instead.
FHK[n] is said to be “universal” in the sense that it does not depend on the external field
experienced by the electrons. For that reason, the energy of any electronic system placed
in the field associated with a given local external potential v(r), will be determined by
the same exact functionals FHK[n], and thus E[n]. Density-functional theory is therefore a
reformulation of wave mechanics in which the electron density plays a key role (crucial).

3.2.2 The Levy Constrained-Search Formulation

v-representability and N-representability of electron densities

An electron density is said to be v-representable if it is generated by an antisymmetric wave
function associated with an external potential v through an Hamiltonian operator.
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As a matter of fact, electronic properties can only be associated with functionals of v-
representable densities and the density-based variational principle can exclusively be applied
upon v-representable densities [65]. Unfortunately, all “well-behaved” densities are not nec-
essary v-representable, even for simple systems, and the exact constraints that guarantee
v-representability of the density are not known.
Hopefully, there exists a similar but less-restrictive constraint upon electron densities that
still ensures the variational principle, the N -representability constraint. In practice, N -
representable densities are much easier to obtain than v-representable densities and most
positive, normalized and continuous densities are N -representable.

Constrained-search reformulation

Any v-representable trial density ñ will yield a greater energy than the true ground-state
energy, that is the energy provided by the true ground-state density n0 of the system,

E[ñ] = FHK[ñ] +

∫
ñ(r)v(r)dr ≥ E[n0] . (3.27)

originally, the Hohenberg-Kohn functional was defined exclusively for v-representable densi-
ties but it has been since reformulated into a constrained-search form [53, 52, 54],

FHK[n0] = T [n0] + Vee[n0]

= ⟨Ψ0| T̂ + V̂ee |Ψ0⟩

= min
Ψ→n0

⟨Ψ| T̂ + V̂ee |Ψ⟩ ,
(3.28)

where Ψ0 is the ground-state wave function associated with the v-representable density n0,
and where the search is upon all antisymmetric and normalized wave functions, not only
ground-state wave functions, which generate the density n0.
Hence, the definition of the Hohenberg-Kohn universal functional has been extended to a less
restrictive class of densities, N -representable densities, such that

F [n] = min
Ψ→n

⟨Ψ| T̂ + V̂ee |Ψ⟩ . (3.29)

The last definition stands for any N -representable density n and the minimization is made
upon all antisymmetric wave functions that gives the density n. Note that this definition
allows the degeneracy of the ground-state wave function.
The variational minimization of the total energy therefore becomes

E0 = min
Ψ

⟨Ψ| T̂ + V̂ee + V̂en |Ψ⟩

= min
n

{
min
Ψ→n

⟨Ψ| T̂ + V̂ee + V̂en |Ψ⟩
}

= min
n

{
F [n] +

∫
n(r)v(r)dr

}
= min

n
E[n] .

(3.30)
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The above-mentioned constrained-search scheme allows one to define an energy functional
which is applicable to any N -representable density instead of only v-representable ones,

E[n] = F [n] +

∫
n(r)v(r)dr . (3.31)

Still, F remains very difficult to approximate. Note that, since the density contains less
information than the wave function, functionals of reduced quantities such as the density
may take a much complicated form than wave function functionals, or have a simple explicit
form while applying to a very restricted domain.
Finally, one may rewrite the universal functional as

F [n] ≡ min
Ψ→n

⟨Ψ| T̂ + V̂ee |Ψ⟩

= ⟨Ψ[n]| T̂ + V̂ee |Ψ[n]⟩

= T [n] + Vee[n] ,

(3.32)

where Ψ[n] is the wave function that yields the electron density n and minimizes the quantity
⟨Ψ| T̂ + V̂ee |Ψ⟩. Thus, Ψ[n] is a functional of the density.
With that definition, one can define the exact kinetic energy functional

T [n] = ⟨Ψ[n]| T̂ |Ψ[n]⟩ , (3.33)

and the exact electronic repulsion functional

Vee[n] = ⟨Ψ[n]| V̂ee |Ψ[n]⟩ . (3.34)

3.3 Kohn and Sham Approach

For coulombic systems, the kinetic energy is known to represent a very significant part of the
total energy so the use of approximate kinetic energy functionals can have a major impact
on the final accuracy and thus their elaboration requires peculiar attention and care. In that
matter, Kohn and Sham approach has been a tremendous breakthrough and gave rise to
modern density-functional theory because it enables to retrieve almost all the exact kinetic
energy of the system [9].

3.3.1 Kohn-Sham system

Kohn and Sham [42] proposed to connect the real N -electron system to a fictitious auxiliary
system, the “Kohn-Sham system”. The Kohn-Sham system is a fictitious non-interacting
N -electron system which has the particularity of having the same density than the real
interacting system.
Non-interacting systems are usually assumed to be described by a single Slater determinant
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wave function Φ and since the Kohn-Sham system is, by definition, a non-interacting system,
the universal functional for such a system will only consist of a kinetic contribution

Fs[n] ≡ min
Φ→n

⟨Φ|T̂ |Φ⟩

= ⟨Φ[n]| T̂ |Φ[n]⟩

= Ts[n] ,

(3.35)

where the constrained-search is over all Slater determinants that yield the density n [65], and
Φ[n] is the Slater determinant that minimizes the kinetic energy ⟨Φ|T̂ |Φ⟩ and yields the
density n. The subscript “s” is used to point out that the system is a non-interacting system
and, thus, is described by a single Slater determinant wave function.

Since the electron density of the Kohn-Sham system is forced to mimic the density of
the real system, the Kohn-Sham system cannot experience the same external potential v(r)
than the real interacting system. Instead, it will experience a one-electron effective potential,
the Kohn-Sham potential vs(r), which encompasses all the potential contributions of the real
interacting system, arising from its “interacting” nature in addition to the external nuclear
potential v(r), such that

vs(r) = v(r) + vee(r)

= v(r) + vH(r) + vxc(r) .
(3.36)

vee(r) is the potential experienced by the real interacting system due to the interacting nature
of the electrons. It is usually decomposed into a classical coulombic contribution, the Hartree
potential,

vH(r) =

∫
n(r′)

|r− r′|
dr′ , (3.37)

and an unknown quantum contribution, the exchange-correlation potential vxc(r).

By modifying the potential, one can influence the density, and vice-versa. Hence, the
Kohn-Sham potential is here to make sure that the Kohn-Sham electron density remains
identical to the real electron density during the variational-optimization process.

3.3.2 Kohn-Sham equations

The Kohn-Sham wave function is a Slater determinant built from a set of Kohn-Sham molec-
ular orbitals {φi(r)}. The N Kohn-Sham orbitals with lowest energies will each be occupied
by a single electron while the remaining orbitals will be unoccupied.
For such non-interacting systems, the exact kinetic energy functional takes the form

Ts[n] = min
Φ({φi})→n

N∑
i=1

⟨φi|−
1

2
∇2|φi⟩ , (3.38)
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where the optimization process consists in finding the best set of orthonormal molecular
orbitals which generates a single Slater determinant with the lowest kinetic energy, and
yields the given electron density

N∑
i=1

|φi(r)|2 = n(r) . (3.39)

Let us recall the generic expression of the exact total energy functional of the interacting
system experiencing the external local potential v(r),

E[n] = T [n] + Vee[n] +

∫
n(r)v(r)dr . (3.40)

Remember that this functional stands for any density generated by an antisymmetric N -
electron wave function.
When one works in the Kohn-Sham framework, one only consider single Slater-determinant
wave functions. For that reason one can reformulate the energy functional such that

E[n] = Ts[n] + EH[n] + Exc[n] +

∫
n(r)v(r)dr , (3.41)

where the exact kinetic energy functional T [n] of the interacting system is replaced with the
exact kinetic energy functional Ts[n] of the non-interacting Kohn-Sham system, and the exact
electronic repulsion energy functional Vee[n] is replaced by the classical coulombic Hartree
repulsion energy functional EH[n].
The third term in the previous decomposition is the exchange-correlation energy functional

Exc[n] ≡
(
T [n]− Ts[n]

)
+
(
Vee[n]− EH[n]

)
, (3.42)

and arises from the two previously-mentioned kinetic and electron-electron approximations.
Hence, the task of the exchange-correlation energy term is to correct the resulting errors in
order to recover the exact total energy of the real interacting system.

We have seen that the Kohn-Sham kinetic energy functional and the electron density
could be explicitly formulated in terms of the occupied Kohn-Sham orbitals from which the
single Slater determinantal wave function is formed. For that reason, we can recast the
variational optimization of the total energy in terms of the Kohn-Sham orbitals under the
constraint that they remain orthonormal during the variational procedure∫

φ∗
i (r)φj(r)dr = δij , (3.43)

where δij is the Kronecker delta.
Such optimization problems with specific-constraint requirements are usually treated using
Lagrange’s multipliers method which will not be detailed in this work.
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Minimization of the energy defined in equation (3.41), under the orthonormalization con-
straint defined in equation (3.43) yields the following Kohn-Sham equations (in their canon-
ical form) (

− 1

2
∇2 + vs(r)

)
φi(r) = εiφi(r) . (3.44)

vs(r) is the Kohn-Sham one-electron effective potential experienced by the non-interacting
Kohn-Sham system and defined in equation (3.36). Moreover, in the KS scheme, the exchange-
correlation potential is defined as the functional derivative of the exchange-correlation energy
functional with respect to the electron density, such that

vxc(r) =
δExc[n]

δn(r)
. (3.45)

Departing from the Kohn-Sham one-electron Hamiltonian operator ĥs, in its space-representation

hs(r) ≡ −1

2
∇2 + vs(r) , (3.46)

acting on the Kohn-Sham molecular orbitals such that

hs(r)φi(r) = εiφi(r) , (3.47)

it is straightforward to see that the Kohn-Sham equations form a set of one-electron eigen-
value equations whose eigenfunctions are the Kohn-Sham orbitals {φi}, with eigenvalues the
Kohn-Sham orbital energies {εi}. Note that the Kohn-Sham equations are nonlinear equa-
tions and must be solved iteratively.

Hence, we see that the Hartree-Fock and Kohn-Sham density-functional frameworks are
very similar. Though, we must point out some fundamental differences between these two
formalisms. The Hartree-Fock formalism is not exact in the sense that it completely neglects
correlation effects arising from the mutual influence between electrons, while Kohn-Sham
DFT takes them into account through the exchange-correlation functional and, thus, is an
exact theory.
Another fundamental difference comes from the nature of the electronic repulsion potential.
In Hartree-Fock theory, the single Slater determinantal approximation gives rise to a non-local
exchange potential, while in KS-DFT it is the choice of the exchange-correlation functional
that will determine the nature of the potential, local, semi-local or non-local.
Finally, KS-DFT offers much more flexibility by allowing one to design approximations for
the exchange-correlation energy functional in order to improve the results.

3.3.3 Interpretation of the Kohn-Sham Orbital Energies

Analogously to Koopmans’ theorem in Hartree-Fock theory, there have been attempts to
provide physical meaning [2] for the eigenvalues of the Kohn-Sham equations. As a matter
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of fact, Janak proposed a generalization of the KS scheme to fractional occupation numbers
that allows for the electron number of the system to vary continuously.
Janak’s theorem [38] establishes a direct connection between the slope of the total energy E
of the system with respect to the fractional occupation number ni of a specific KS orbital
and the enery εi of this orbital

∂E

∂ni

= εi . (3.48)

Departing from Janak’s theorem, a direct connection between the ionization potential, defined
as the slope of the energy with respect to the number of electrons of the system, and the KS
HOMO energy can be derived

IN0 = −εHOMO . (3.49)

Note that this result, known as the “IP theorem” can be established as well by considering
the asymptotic decay of the exact electron density of the system.
As for the electron affinity of the N -electron system, although there exists no direct con-
nection with the LUMO energy, an expression based on these two quantities can be derived
through the infamous “derivative discontinuity” ∆, a spatial step experienced by the exact
xc-potential as the number of electrons N crosses an integral value.
Hence, the following formulation of the fundamental gap in terms of the Kohn-Sham frontier
orbital energies

ΩN
fun = εLUMO − εHOMO +∆ . (3.50)

In DFT, for finite-size systems, it is possible to obtain excitation energies by use of different
sets of occupation numbers in order to mimic the neutral, cationic and anionic ground states
and by performing total-energy differences provided by multiple self-consistent DFT calcu-
lations. As a matter of fact, despite requiring multiple calculations, the above-mentioned
∆SCF method is known to provide much better excitation energies than the KS eigenvalues
because ground-state KS-DFT favors total energies over potential quantities such as orbital
energies. Finally, the KS gap is usually too small and strongly depends on the functional
used in the calculation.
The physical meaning of the Kohn-Sham orbital energies will be extensively discussed in the
next chapter.

3.4 The Basis-Set Formulation of DFT

Hartree-Fock and Kohn-Sham DFT are very similar in both conceptual and computational
aspects. Within the scope of KS-DFT, one has to solve the Kohn-Sham equations

hs(r)φi(r) = εiφi(r) , (3.51)

in order to find the Kohn-Sham molecular orbitals with Kohn-Sham energies.
Practical calculations of KS-DFT starts with the expansion of the Kohn-Sham molecular
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orbitals in a finite basis of K atomic orbitals, like in Hartree-Fock theory

φi(r) =
K∑

µ=1

Cµiϕµ(r) . (3.52)

Kohn-Sham generalized eigenvalue problem

The use of a finite basis set allows for a matrix formulation of the Kohn-Sham problem,
which is a generalized eigenvalue problem

FC = SCε , (3.53)

or equivalently
K∑

µ=1

FµνCνi = εi

K∑
µ=1

SµνCνi . (3.54)

In the KS-DFT framework, the Fock matrix elements can be decomposed as follows

Fµν = hµν + Jµν + V xc
µν , (3.55)

and include the one-electron core Hamiltonian integral

hµν =

∫
ϕ∗
µ(r)

(
− 1

2
∇2 + v(r)

)
ϕν(r)dr , (3.56)

the classical coulombic integral

Jµν =

∫
ϕ∗
µ(r)vH(r)ϕν(r)dr , (3.57)

and the combined exchange-correlation integral

V xc
µν =

∫
ϕ∗
µ(r)vxc(r)ϕν(r)dr . (3.58)

Note that, one can apply the orthogonalization procedure in order to transform the Kohn-
Sham generalized eigenvalue problem into a standard matrix eigenvalue problem by orthogo-
nalizing the initial non-orthogonal atomic basis, as discussed for the Hartree-Fock framework.

Density matrix formulation

It is possible to reformulate the Kohn-Sham scheme in terms of the Kohn-Sham density
matrix of the system P with

Pµν =
N∑
i=1

CµiC
∗
νi , (3.59)
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where the summation is upon all occupied Kohn-Sham molecular orbitals.
With the density matrix, one can generate the electron density of the system

n(r) =
K∑

µ=1

K∑
ν=1

Pµνϕµ(r)ϕ
∗
ν(r) , (3.60)

and the two-electron Hartree integral

Jµν =
K∑

λ=1

K∑
σ=1

Pλσ ⟨µσ|νλ⟩ , (3.61)

where we used the physicist’s notation for two-electron integrals, previously introduced in
the Hartree-Fock chapter.
Hence, we can obtain a much easier-to-compute expression for the total energy of the system

E =
K∑

µ=1

K∑
ν=1

Pνµhµν +
1

2

K∑
µ=1

K∑
ν=1

PνµJµν + Exc . (3.62)

We stress that the (restricted) Kohn-Sham computational procedure is extremely similar to
the restricted Hartree-Fock procedure but still differs in the way one must treat the exchange-
correlation contribution Exc. Indeed, while the Hartree-Fock exact-exchange energy can
be expressed explicitly in terms of the two-electron integrals and the density matrix, the
exchange-correlation functionals used in Kohn-Sham-DFT do not possess a simple linear
dependence on the electron density, and thus cannot be evaluated analytically. For that
reason, numerical integrations must be employed instead.

3.5 Spin Density-Functional Theory

Like we have seen when we discussed the restricted- and unrestricted formulations of Hartree-
Fock theory, there are situations where one must take into acount the spin distributions of
the system. Although, in principle, the total electron density of the system is sufficient to
obtain the electronic properties of any electronic system, closed-shell as well as open-shell
systems, considering both spin densities have shown to provide better results and have led
to the elaboration of many spin-dependent approximate functionals.

3.5.1 Spin Densities

First, let us recall the expressions of the spin densities of an N -electron system with Nα

spin-up electrons, Nβ spin-down electrons and total electron density n(r).
The spin density for spin-up electrons is defined as follows

nα(r) = N

∫
· · ·
∫

|Ψ(r, α,x2 . . .xN)|2dx2 . . . dxN , (3.63)
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and is normalized to the total number of spin-up electrons such that∫
nα(r)dr = Nα . (3.64)

Similarly, the spin density for spin-down electrons is defined as

nβ(r) = N

∫
· · ·
∫

|Ψ(r, β,x2 . . .xN)|2dx2 . . . dxN , (3.65)

and is normalized to the total number of spin-down electrons such that∫
nβ(r)dr = Nβ . (3.66)

Of course, the sum of the two spin densities recovers the total electron density

n(r) = nα(r) + nβ(r) . (3.67)

3.5.2 Spin Extension of the Universal Density Functional

The universal density functional F [n] previously introduced was defined for anyN -representable
density and was formulated under the form of a constrained-search minimization upon all
normalized antisymmetric wave functions which yield a specific density n(r).
As a matter of fact, this definition can be extended to spin densities into the form of a
spin-density functional. The constrained-search will then be performed upon a double con-
straint, that all considered normalized antisymmetric wave functions yield the two specific
spin-densities defined in equations (3.63) and (3.65) such that

F [nα, nβ] = min
Ψ→{nα,nβ}

⟨Ψ| T̂ + V̂ee |Ψ⟩ . (3.68)

3.5.3 Unrestricted Kohn-Sham Approach

The Kohn-Sham approach can be extended as well to a more general spin-density formulation.
The universal functional will then be decomposed into the same contributions than for the
standard Kohn-Sham scheme, except for the fact that some of those contributions will now
be functionals of the two spin densities in place of the total electron density

F [nα, nβ] = Ts[n
α, nβ] + Vee[n

α, nβ]

= Ts[n
α, nβ] + EH[n] + Exc[n

α, nβ]
(3.69)

with
Ts[n

α, nβ] = min
Φ→{nα,nβ}

⟨Φ|T̂ |Φ⟩ . (3.70)

In the above kinetic energy functional, the constrained-search is made upon all Slater deter-
minants built from unrestricted molecular orbitals, that is to say from two different sets of
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molecular orbitals depending on the spin nature of the electrons occupying these orbitals: φα

for spin-up electrons and φβ for spin-down electrons.
Of course, the spin densities can be obtained from the occupied Kohn-Sham unrestricted
molecular oritals

nα(r) =
Nα∑
i=1

|φα
i (r)|

2 (3.71) nβ(r) =
Nβ∑
i=1

∣∣∣φβ
i (r)

∣∣∣2 . (3.72)

Because the classical Hartree functional is spin-independent, it therefore remains a func-
tional of the total electron density as opposed to the exchange-correlation term which is
usually decomposed into exchange and correlation contributions, and treated separately

Exc[n
α, nβ] = Ex[n

α, nβ] + Ec[n
α, nβ] . (3.73)

Note that the exchange term has the specificity of originating from an interaction between
same-spin electrons only. For that reason, the two spin-densities are entirely decoupled into
the exchange functional. As a matter of fact, there exists a simple procedure which allows to
transform any standard exchange functional Ex[n] into a spin-density functional Ex[n

α, nβ],
the “spin-scaling relation” [87]

Ex[n
α, nβ] =

1

2

(
Ex[2n

α] + Ex[2n
β]
)
. (3.74)

Since correlation effects stem from the correlated motions of all electrons, there exists no
similar scaling relation to extend standard correlation functionals Ec[n] and it is thus neces-
sary to build new spin-unrestricted correlation functionals Ec[n

α, nβ].

In order to find the best sets of Kohn-Sham molecular orbitals with orbital energies, one
must solve two sets of unrestricted Kohn-Sham equations

hα
s (r)φ

α
i (r) = εαi φ

α
i (r) (3.75) hβ

s (r)φ
β
i (r) = εβi φ

β
i (r) , (3.76)

where hα
s (r) and hβ

s (r) are the space representations of the Kohn-Sham one-electron Hamil-
tonian operators, ĥα and ĥβ, acting on the unrestricted Kohn-Sham molecular orbitals {φα

i }
and {φβ

i }, respectively.
They are defined as follows

hα
s (r) = −1

2
∇2

r + vαs (r) (3.77) hβ
s (r) = −1

2
∇2

r + vβs (r) . (3.78)

vαs (r) and vβs (r) are the unrestricted Kohn-Sham one-electron effective potentials

vαs (r) = v(r) + vH(r) + vαxc(r) (3.79) vβs (r) = v(r) + vH(r) + vβxc(r) , (3.80)
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which include the external local potential v(r), the spin-independent classical Hartree poten-
tial

vH(r) =

∫
n(r′)

|r− r′|
dr′ , (3.81)

and the spin-dependent exchange-correlation potentials, defined as follows

vαxc(r) =
δExc[n

α, nβ]

δnα(r)
(3.82) vβxc(r) =

δExc[n
α, nβ]

δnβ(r)
. (3.83)

vαxc(r) and vβxc(r) are functional derivatives of the spin-dependent exchange-correlation func-
tional with respect to the spin densities nα(r) and nβ(r), respectively.

We stress that since the two sets of unrestricted Kohn-Sham equations depend on all
the occupied Kohn-Sham molecular orbitals, they must be solved simultaneously like in the
unrestricted Hartree-Fock framework.

3.6 Exchange-Correlation Energy

3.6.1 Building Approximations

Density-functional theory is, in principle, an exact theory in the sense that one is assured
that there exists a unique and exact energy functional, valid for all systems and completely
defined by the electron density. Unfortunately, the explicit form of such a functional remains
elusive, even now, and scientists had to compromise and focus on the design and the elabo-
ration of sufficiently accurate approximate functionals instead.

To this end, Kohn and Sham approach has constituted a tremendous progress, despite
the need to reintroduce auxiliary orbitals, Kohn-Sham orbitals, in an originally intended
density-based model. Kohn-Sham theory proposed to split the kinetic energy functional into
two parts, the first one and major part being the kinetic energy Ts[n] of a fictitious non-
interacting system sharing the same density than the real interacting system, plus a small
correction term, the kinetic correlation energy Tc[n], in order to recover the exact kinetic
energy T [n] of the interacting system. Hence, the Kohn-Sham decomposition of the total
energy

E[n] = T [n] + Eee[n] + Ene[n]

= Ts[n] + EH[n] + Exc[n] + Ene[n] .
(3.84)

The strength of Kohn-Sham theory comes from the fact that not only the kinetic energy is
treated exactly in this model and a significant amount of the real kinetic energy is recovered,
but, since kinetic energy is known to be a much larger part of the total energy compared
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to the elusive non-classical electronic repulsion, focus has since been on designing accurate
exchange-correlation functionals

Exc[n] =
(
T [n]− Ts[n]

)
+
(
Eee[n]− EH[n]

)
= Tc[n] + Ex[n] + Uc[n]

= Ex[n] + Ec[n] .

(3.85)

Although we do not know either the explicit form of the exact exchange-correlation func-
tional, a number of exact conditions and properties that this exact functional must verify
and possess are well known [9]. Among these, we can cite specific scaling properties [65] and
asymptotic behaviors for the exchange and correlation functionals, the self-interaction-free
requirement which imposes that the exchange functional must exactly cancel the spurious
coulombic self-interaction of the electrons and, of course, the obvious requirements coming
from the simple observation that there shall be no correlation effects in one-electron systems,
among other things.

The choice to separate the exchange-correlation functional into two distinct contributions
stem not only from the practical observation that exchange and correlation energy function-
als must obey specific constraints and properties but also from the hope to benefit from
error cancellations between the exchange and correlation counterparts. Indeed, while the
exchange and correlation functionals may perform very poorly when used separately, it has
been observed that the results could be greatly improved when the two functionals were used
together. Many of the most used exchange-correlation functionals were designed with that
objective in mind.

3.6.2 Jacob’s Ladder

To this day, hundreds of exchange-correlation functionals have been developed, some were
elaborated based on specific systems, like the Helium atom or the uniform electron gas (UEG),
some are known to provide promising results for specific properties or specific phenomena,
some were built to fit specific experimental data or were based on interpolations in order
to fulfill specific asymptotic behaviors. . . Despite the profusion of functionals developed over
the past decades, it is still difficult to argue which functional is the most adequate to use
independently of the system or property of interest.
Nevertheless, most of these functionals [87] are based on a certain number of parameters and
a classification has been proposed based on the intuitive idea that the more parameters the
functional needs the more accurate the results will be, but, on the other hand, the larger the
computational cost will be.
Perdew [69] proposed a classification of the exchange-correlation functionals according to the
number of basic quantities they exploit and the degree of accuracy they can provide: “Jacob’s
ladder”.
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The Local Density Approximation

The simplest functionals are based on the electron density n(r) only and constitute what is
known as the “Local Density Approximation” (LDA) class of functionals

ELDA
xc [n] =

∫
n(r)εunifxc

(
n(r)

)
dr , (3.86)

where the exchange-correlation energy per particle can be decomposed as a sum of exchange
and correlation contributions

εunifxc (n) = εunifx (n) + εunifc (n) . (3.87)

The local density approximation is known to provide better results when it distinguishes the
spin-down and spin-up electron densities. Hence, in practice, its spin-scaled generalization,
the “Local Spin Density Approximation” (LSDA), is preferred to its original formulation

ELSDA
xc [nα, nβ] =

∫
n(r)εunifxc

(
nα(r), nβ(r)

)
dr . (3.88)

The LDA functionals were designed based on the approximation that any inhomogeneous
system, with electron density n(r), locally behaves like an infinite uniform electron gas with
the same density. The exchange energy functional of such a system were derived analytically
by Dirac and, then, Slater (with the Xα method) and was used to build the LDA exchange
functional, referred to as the Dirac (1930) [22], or Slater (1951) [79] functional

ES51
x [n] ≡ ELDA

x [n] = Cx

∫
n(r)

4
3dr , (3.89)

with

Cx = −3

4

(
3

π

) 1
3

. (3.90)

The analytical form of the correlation energy of a uniform electron gas has only be derived
in distinct asymptotic configurations, the high- and low-density limits, but thanks to highly
accurate quantum Monte Carlo calculations (performed by Ceperley and Alder in 1980 [11]),
many analytic interpolation formulas have been successfully established, among which the
ones constructed by Vosko, Wilk and Nusair (VWN) [89]

EVWN
c [n] ≡ ELDA

c [n] =

∫
n(r)εVWN

c

(
n(r)

)
dr . (3.91)

For the sake of simplicity, we will not detail the explicit form of these parametrizations.
The LDA is known to provide very acceptable results for systems with slowly varying elec-
tron densities and have been used extensively by the solid state community to describe
extended systems, such as metals. For finite systems, like atoms and molecules, where the
slowly varying density approximation becomes less relevant, LDA has shown some failures
and limitations when predicting certain properties such as binding energies or gap predic-
tions. Nevertheless, LDA remains the cornerstone of all approximate functionals and have
unravelled the path to many other more sophisticated approximations, as we shall see below.
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The Generalized Gradient Approximation

If one needs to go beyond LDA, one can choose to use functionals that not only depend
explicitly on the local value of the electron density n(r) but also include a dependence on the
gradient of the density ∇n(r). These functionals are “semi-local” functionals and constitute
the class of “Generalized Gradient Approximations” (GGAs)

EGGA
xc [n] =

∫
n(r)εGGA

xc

(
n(r),∇rn(r)

)
dr . (3.92)

In this work, we will use the “BLYP” exchange-correlation GGA-functional which consists of
the “B88” LDA-based exchange functional [3], developed by Becke, and the “LYP” Helium-
based correlation functional [51, 17], developed by Lee, Yang and Parr.

Meta Generalized Gradient Approximations

Other exchange-correlation functionals were based on more complicated quantities such as
the square of the density gradient, the laplacian of the density or the kinetic energy density τ .
These functionals are known as the “Meta-Generalized-Gradient-Approximations” (mGGAs)

EmGGA
xc [n] =

∫
n(r)εmGGA

xc

(
n(r),∇n(r), τ

)
dr . (3.93)

Hybrid functionals

Ultimately, more sophisticated, and presumably more accurate, functionals were designed,
some including an occupied and/or virtual Kohn-Sham orbital dependency by mixing a frac-
tion of Hartree-Fock exact-exchange functional with GGA or LDA functionals: “Hybrid
Approximations” [4]. For instance, a general three-parameter hybrid functional takes the
form

E3H
xc [n] = aEHF

x [n] + bEGGA
x [n] + (1− a− b)ELDA

x [n] + cEGGA
c [n] + (1− c)ELDA

c [n] . (3.94)

In this work, we will use the famous and widely used “B3LYP” functional [83, 41] which
includes the “B88” exchange and “LYP” correlation GGA-functionals, with the parameters
a = 0.20, b = 0.72 and c = 0.81.
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Chapter 4. PPLB Ensembles to Target Charged Excitations

4.1 Introduction: DFT for Open Systems

4.1.1 Grand Canonical Ensemble and Chemical Potential

In quantum chemistry, in order to describe a system who has reached an equilibrium state in
a multiplicative scalar external potential field v(r), at temperature θ, with a given chemical
potential µ and an electron density n(r) in a grand canonical ensemble, we define the grand
potential [65] density functional Ω[n] (also known as the Landau free energy or Landau
potential) as

Ω[n] ≡ F [n] +

∫
n(r)(v(r)− µ)dr , (4.1)

where F [n] is the universal density functional

F [n] ≡ T [n] + U [n]− θS[n]

= Tr

[
Γ̂

min

n

(
T̂ + Û +

1

β
ln Γ̂

min

n

)]
.

(4.2)

Let us recall that, in this context, T and U are the kinetic energy and electron-electron
interaction potential energy of the system, and T̂ and Û are the corresponding operators.
Furthermore, S is the entropy of the system and

β =
1

kBθ
, (4.3)

is a constant based on the absolute temperature θ of the system and the Boltzmann constant

kB. As for Γ̂
min

n , it is the density matrix operator that obeys the following two constraints:
it minimizes the quantity

Tr

[
Γ̂
(
T̂ + Û +

1

β
ln Γ̂

)]
, (4.4)

and gives the density n(r), with Tr the trace operation in matrix algebra.
We stress that, since we are using the grand-canonical ensemble formalism, F [n] defined in
equation (4.2) is a universal functional of an electron density n(r) that may integrate to a
non-integer number of electron, which could be seen as the time-average electron number N
of a system that can exchange electrons with its surroundings.
Such systems are referred to as “open systems” in opposition to “closed systems” which have
a fixed integer number of electrons. Furthermore, electronic states associated with a fixed
integer number of electrons N are referred to as “pure states”.

In a grand-canonical ensemble at a given temperature θ and chemical potential µ, the
Hohenberg-Kohn theorems remain valid through their extensions to isolated open systems
with a fractional number of electrons N :
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� At equilibrium, the electron density n0(r) uniquely determines the equilibrium density
operator Γ̂0 and, hence, all the properties of the equilibrium state.

� There is a variational principle that dictates the minimization of the grand potential
of the system, among all electron densities n(r) integrating to N ,

Ω0 ≡ Ω[n0] = min
n(r)

Ω[n]. (4.5)

In the zero-temperature limit (θ = 0 or, equivalently, β = ∞), the equilibrium state of the
grand-canonical system becomes the ground state, which is our main concern in this work.
In this limit, the entropy contribution disapears from the universal-functional expression
(see equation (4.2)),leading to a grand-canonical extension of the standard DFT universal
functional proposed by Hohenberg and Kohn

F [n] = min
ˆΓ→n(r)

Tr

[
Γ̂
(
T̂ + V̂ee

)]
, (4.6)

where V̂ee is the electron-electron interaction potential energy operator.
This is the grand-canonical ground-state universal functional proposed by Perdew, Parr,
Levy and Balduz (PPLB) [70]. In that definition, they extend Levy’s constrained search,
used in pure-state DFT, to density operators in Fock space which are operators associated
with statistical mixtures (or ensembles) of states with different numbers of electrons, that is
to say grand-canonical ensembles. From now on, we will refer to those ensembles as “PPLB
ensembles”.

We have seen that, in the zero-temperature limit, the grand potential reduces to

Ω[n] = F [n] +

∫
n(r)(v(r)− µ)dr

= E[n]− µN ,

(4.7)

with the grand-canonical ensemble energy functional

E[n] = F [n] +

∫
n(r)v(r)dr , (4.8)

defined for any electron densities integrating to any number of electrons N , either integral
or fractional.
Like in pure-state DFT, there exists a variational principle for the grand potential, which
states that

Ω0 ≡ Ω[n0] = EN
0 − µN

≤ Tr

[
Γ̂
(
Ĥ − µN

)]
≤ E[n]− µ

∫
n(r)dr ,

(4.9)
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where EN
0 ≡ E[n0] is the ground-state ensemble energy associated with the minimizing

ground-state ensemble electron density n0(r) which integrates to the possibly fractional num-
ber of electrons N .
The above-mentioned variation principle is equivalent to the variation equation that one must
solve in order to obtain the stationary states of the energy (or eigenstates of the Hamiltonian
operator Ĥ) of the grand-canonical system,

δ

{
E[n]− µ

∫
n(r)dr)

}
= 0 . (4.10)

Equation (4.10) can be reformulated such that one obtains the following Euler-Lagrange
equation

δE[n]

δn(r)
− µ = 0 , (4.11)

leading to the well-known definition of the chemical potential

µ ≡ ∂E0(N )

∂N
. (4.12)

Hence, the chemical potential µ of an open system placed in an external field potential v(r)
is defined as the slope of its total energy with respect to its number of electrons N and must
be constant through space.

4.1.2 PPLB Ensemblse, Ionization Potential and Electron Affinity

Let us now look more closely to what happens to the chemical potential in two distinct
situations, the removal and the addition of an electron from/to a pure-state system with an
initial integer number of electrons N .

PPLB Ensembles

When an electron is gradually removed/added from/to the ground state of a neutral N -
electron system, the open system transits from its neutral form towards its cationic/anionic
form, that is the ground states of the (N − 1)- or (N + 1)-electron systems, respectively. As
a consequence, the exact ground-state energy EN

0 of such an open system will consist of a
linear combination of both N - and (N−1)-electron (or N - and (N+1)-electron) ground-state
energies, each ponderated by a set of normalized weights {w1, w2} such that

EN
0 = w1E

N
0 + w2E

N±1
0 . (4.13)

In practice, when one works with ensembles, it is not mandatory for the weights of the
ensemble to possess physical meaning. Nevertheless, in the present work, one intuitive and
practical choice consists in using the fractional charge-deviation α defined as

N ≡ N± = N ± α , (4.14)
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with 0 ≤ α ≤ 1.
By doing so, one obtains the “left” (superscript “−”) and “right” (superscript “+”) PPLB
two-state ensembles (or biensembles) describing the ground-state energy of the grand-canonical
N -electron system, while an electron is removed/added from/to the ground state of its neu-
tral form

EN−

0 = (1− α)EN
0 + αEN−1

0 (4.15) EN+

0 = (1− α)EN
0 + αEN+1

0 . (4.16)

Ionization Potential, Electron Affinity and Piecewise Linearity Condition

Thus far, we have seen that, for a given external potential v(r), in the zero-temperature limit,
the chemical potential of a N -electron system in its ground state was defined as the slope of
its ground-state energy, with respect to the variation of the number of electrons

µ ≡ ∂E0(N )

∂N
. (4.17)

Let us apply this definition to the two above-mentioned PPLB ensemble ground-state en-
ergies. Given that N− = N − α and N+ = N + α, and that the exact energy of an open
system must be linear with respect to the charge deviation α, between two successive integer
numbers of electrons, we obtain that

µ− =
∂EN−

0

∂N− = −∂EN−
0

∂α

= EN
0 − EN−1

0

≡ −IN0

(4.18)

µ+ =
∂EN+

0

∂N+
=

∂EN+

0

∂α

= EN+1
0 − EN

0

≡ −AN
0 .

(4.19)

IN0 and AN
0 are the first ionization potential and first electron affinity of the neutral N -

electron system, respectively. They can be seen as the respective costs in energy that one
must provide for removing or adding an electron from/to the ground state of the neutral
system.

Since, for most systems (atoms, molecules, solids), the ionization potential and electron
affinity are not equal quantities (see Appendix A), it is straightforward to see that the
chemical potential of an open system must therefore experience a “jump”, as the number of
electrons crosses an integral value. From the energy point of vue, this means that the exact
ground-state energy curve with respect to the number of electrons of the open system must
be a series of straight line segments with different slopes, between two successive pure-state
energies. This is known as the “piecewise linearity condition” that any exact ground-state
energy must obey.
Furthermore, the discontinuity experienced by the chemical potential when crossing an integer
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Chapter 4. PPLB Ensembles to Target Charged Excitations

number of electrons is known to be of major importance regarding band gaps predictions of
solids. In this study, we will restrict our work to small atomic and molecular systems and will
aim to calculate charged excitation energies such as ionization potentials, electron affinities
or fundamental gaps, defined as follows

ΩN
0 ≡ IN0 − AN

0 , (4.20)

within the scope of PPLB-DFT.

4.1.3 From DFT to PPLB-DFT

Fundamentals of DFT

Let us consider a N -electron system under the influence of a multiplicative external potential
v(r). First, we recall the two fundamental ideas stated by the Hohenberg and Kohn theorems,
which are the two pillars of DFT [65]:

� There is a one-to-one correspondence between the external potential v(r) and the elec-
tron density n(r) of the system. Hence, the electron density uniquely determines all
the properties of the system through the knowledge of density functionals.

� There exists a variational principle which dictates the minimization of the total energy
E[n] of the system upon all electron densities n(r) integrating to the number of electrons
N.

Hence, the total energy of the system is a functional of the electron density and is defined as
follows

E[n] = F [n] +

∫
n(r)v(r)dr , (4.21)

where F [n] is the universal density functional, in the sense that it is the same functional for
any system of electrons with the same electron density n(r), independently of the external
potential v(r) into which the electronic system is moving,

F [n] = T [n] + Vee[n] . (4.22)

We recall that, in the above definition, T [n] is the total kinetic-energy density functional,
and Vee[n] is the electron-electron interaction potential-energy density functional.
Now that we have defined the expression of the total-energy density functional, the variational
principle stated in the second Hohenberg-Kohn theorem tells us that the electron density that
minimizes the energy of the system is the ground-state electron density n0(r), and any other
N -electron densities would yield a larger energy than the true ground-state energy of the
system

E0 ≡ E[n0] = min
n(r)

{E[n]} , (4.23)
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where the minimization is upon all N -electron densities n(r), such that∫
n(r)dr = N . (4.24)

We have seen that this minimization could be reformulated into the Euler-Lagrange equation,
which highlights how a change in the electron density can affect the energy of the system

δE[n]

δn(r)
− µ = 0 . (4.25)

In the above expression, µ is the Lagrange multiplier associated with the normalization con-
straint, defined in equation (4.24), and can be interpreted as the chemical potential of the
N -electron system, as discussed previously.

DFT is a in-principle-exact theory but the quality of the calculated quantities highly
depends on how one decides to express the different contributions to the total-energy density
functional, and either resort to exact functionals or approximations.

Kohn-Sham System

Kohn and Sham proposed to reintroduce the concept of orbitals into the DFT scheme in
order to ease the computation of the total kinetic energy of the system, with an acceptable
lost of accuracy.
Indeed, initially, the formulation of the exact ground-state kinetic-energy functional

T[{χi}] ≡
∞∑
i=1

ni ⟨χi|−
1

2
∇2

r|χi⟩ , (4.26)

was based on a summation over an infinite number of natural spin orbitals {χi(x)}, that is
orbitals that diagonalize the density matrix operator Γ̂, with occupation numbers {ni} such
that 0 ≤ ni ≤ 1, in order to obey the Fermi exclusion principle. In addition, the summation
upon all occupation numbers must recover the total number of electrons of the system such
that

∞∑
i=1

ni = N . (4.27)

Hence, the exact ground-state kinetic-energy functional of the system is an implicit functional
of the electron density through the spin orbitals, and the exact ground-state electron density
is defined as follows

n0(r) =
∞∑
i=1

∑
σ

ni|χi(r, σ)|2 . (4.28)

To avoid having to work with a large number of spin orbitals with random fractional occupa-
tion numbers, Kohn and Sham proposed to restrict the DFT framework to sets of orthonormal
spin orbitals, where only the N lowest orbitals would be occupied with occupation numbers
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ni = 1, whereas all the remaining orbitals would be unoccupied with occupation numbers
ni = 0.
It is important to note that the Kohn-Sham formalism is actually a special case of a more
general framework depicted in the formulation of the exact kinetic energy functional. There-
fore, within the Kohn-Sham framework, one no longer obtains an exact formulation for the
ground-state kinetic-energy functional of the interacting N -electron system, but an approxi-
mation

Ts[n] ≡
N∑
i=1

⟨χi|−
1

2
∇2

r|χi⟩ . (4.29)

Furthermore, in the KS formulation, the ground-state electron density takes the form

n0(r) =
N∑
i

∑
σ

|χi(r, σ)|2 . (4.30)

We stress that this approximated formulation for the ground-state kinetic-energy functional
of the interacting system is only valid for a set of orthonormal spin orbitals, which have to
obey the following constraint ∫

χ∗
i (x)χj(x)dx = δij , (4.31)

where the integration is over both spin and space coordinates, and becomes exact for a
noninteracting N -electron system with the same density n0(r). Indeed, such noninteracting
systems can be described by a single Slater determinantal wave function built from the N
lowest occupied orthonormal spin orbitals. This is known as the Kohn-Sham system.

The Kohn-Sham system is a fictitious noninteracting N -electron system which has the
specificity of having the exact same ground-state electron density than the density of the real
interacting N -electron system.
The role of the Kohn-Sham system is to mimic the true density of the interacting system by
hiding all the electron-electron interaction effects into a Kohn-Sham effective potential

vs(r) = v(r) + vee(r) , (4.32)

where v(r) is the external potential of the real interacting system, and vee(r) is the electron-
electron interaction potential which contains the Hartree, exchange and correlation contri-
butions. Note that the subscript ”s” stands for Slater determinant.
Since the ground-state electron density n0(r) which minimizes the total energy of the Kohn-
Sham system has to be the exact same ground-state electron density than the one of the true
interacting system, it can be obtained by solving a much simpler problem than the interact-
ing many-body picture.
To find the set of orthonormal Kohn-Sham spin orbitals that minimizes the Kohn-Sham
energy, one must solve self-consistently and independently the N nonlinear Kohn-Sham one-
electron equations [

− 1

2
∇2

r + vs(r)

]
χi(x) = εiχi(x) , (4.33)

76



4.1. Introduction: DFT for Open Systems

in order to obtain a set of Kohn-Sham orbitals (or eigenstates) {χi} and Kohn-Sham orbital
energies (or eigenvalues) {εi}.
Once one have obtained the optimal set of spin orbitals and occupation numbers, one can
build the ground-state electron density by putting the N electrons in the N Kohn-Sham
orbitals with lowest energy, such that

n0(r) =
N∑
i

∑
σ

|χi(r, σ)|2 . (4.34)

Finally, one can compute the corresponding ground-state energy of the interacting system

E[n0] = Ts[n0] + EH[n0] + Exc[n0] +

∫
v(r)n0(r)dr , (4.35)

where EH[n] and Exc[n] are the Hartree and exchange-correlation energy density functionals,
respectively.

Extension of DFT to Fractional Occupation Numbers

We have seen that the Kohn-Sham method originated from the simple choice to put the N
electrons of the system into the N lowest spin orbitals, in order to obtain a much easier-to-
compute formulation for the kinetic-energy functional.
Actually, there exists a more general Kohn-Sham scheme where one can choose to occupy an
arbitrary number M of spin orbitals, with M ≥ N , with fractional occupation numbers [65,
87] 0 ≤ ni ≤ 1. This generalization has shown to be particularly interesting when one wants
to extract physical meaning from the Kohn-Sham eigenvalues εi.

It was Slater, with his ”transition state” concept (applied in theXα method [79]), who first
helped to set the stage for fractional occupation numbers, which Janak have then generalized
and extended to Kohn-Sham theory. Similarly to Ts[n] in Kohn-Sham theory, Janak proposed
the following formulation for the generalized kinetic-energy functional, where “J” stands for
“Janak”,

TJ[n] ≡
M∑
i=1

ni ⟨χi|−
1

2
∇2

r|χi⟩

=
M∑
i=1

ni

∫
χ∗
i (x)(−

1

2
∇2

r)χi(x)dx .

(4.36)

We stress that this generalized kinetic-energy functional is now a functional of both sets of
orthonormal spin orbitals and occupation numbers {χi, ni}, as opposed to standard KS-DFT.
Within this new approximation for the kinetic energy, the total-energy density functional of
the noninteracting generalized Kohn-Sham system becomes

E[n] = TJ[n] +

∫
veff(r)n(r)dr , (4.37)
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where veff(r) = v(r) + vH(r) + vxc(r).
Note that this ”generalized” Kohn-Sham potential is not exactly the same that the one de-
fined for the ”Slater” Kohn-Sham system because the exchange-correlation potential vxc(r)
has changed due to the change of approximation for the kinetic part of the energy.

In order to find the ground-state common electron density of both noninteracting and
interacting systems, one has to minimize the above-mentioned total energy upon all sets of
orthonormal spin orbitals and occupation numbers, obeying the following constraints

N =
M∑
i=1

ni (4.38) n(r) =
M∑
i=1

∑
σ

ni|χi(r, σ)|2 . (4.39)

The minimization of the energy will lead to a set of one-electron equations, very similar
to the Kohn-Sham equations[

− 1

2
ni∇2

r + niveff(r)

]
χi(x) = ε′iχi(x) . (4.40)

For a given set of non-zero occupation numbers {ni}, one can reformulate the previous
equation by applying a change of variable

εi =
ε′i
ni

, (4.41)

in order to recover the usual form of Kohn-Sham equations with new potential veff(r)[
− 1

2
∇2

r + veff(r)

]
χi(x) = εiχi(x) . (4.42)

Hence, the Kohn-sham scheme can be extended to an arbitrary set of orthonormal spin
orbitals with fractional occupation numbers, under the condition that the total number of
electrons, which can either be fractional or integer, is recovered as well as the ground-state
electron density.

Finally, once one have obtained the ground-state electron density n0(r) of the interacting
system, one can compute the corresponding ground-state energy

E[n0] = TJ[n0] + EH[n0] + Exc[n0] +

∫
v(r)n0(r)dr , (4.43)

where the exchange-correlation functional Exc[n] includes an additional correction due to the
change of approximation for the kinetic energy (as opposed to standard KS-DFT), for which
we choose to use TJ[n] instead of the usual Kohn-Sham kinetic energy functional Ts[n].
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Physical Interpretation of the Kohn-Sham Orbital Energies

In both Hartree-Fock and Kohn-Sham theories, one has to solve an eigenvalue equation
(Hartree-Fock equation and Kohn-Sham equation) in order to obtain the ground-state elec-
tron density of a N -electron system and the minimization of the energy of the system will
result in an infinite number of spin orbitals {χi} with spin orbital energies {εi}.
The N spin orbitals with lowest energy are referred to as “occupied” spin orbitals while the
remaining infinite number of spin orbitals with higher energy are unoccupied and referred to
as “virtual” spin orbitals.
We have seen that the ground-state density of a system can be obtained by summation over
all occupied spin orbitals, and that the ground-state energy can be determined through the
use of density functionals. But, what about the spin orbital energies? It is well-known that
the energy of the system is not the sum of the occupied spin-orbital energies, but it would
be very convenient if one could extract physical meaning from the spin-orbital energies.

As a matter of fact, Koopmans [43, 39] has shown that, for a closed-shell system, that is
a system with no unpaired electrons, the ionization potential and the electron affinity of a
N -electron system are exactly the opposite of the energy of the occupied/virtual spin orbital
from which/into which we remove/add an electron

IN0 = −εNN (4.44) AN
0 = −εNN+1 . (4.45)

Hence, in this context, the ionization potential is the opposite of the HOMO (highest occu-
pied molecular orbital) energy and the electron affinity is the opposite of the LUMO (lowest
unoccupied molecular orbital) energy of the neutral N -electron system.
Nevertheless, Koopmans’ theorem was derived under the strong assumption that the spin
orbitals of the neutral, cationic and anionic species were identical, which is not true in prac-
tice. This is known as the “frozen orbital” approximation, which completely neglects orbital
relaxation. Moreover, Koopmans’ theorem was first derived in the restricted Hartree-Fock
(RHF) framework and then generalized to Kohn-Sham DFT where correlation effects are
incorporated, despite of the above-mentioned considerations.
Therefore, Koopmans’ theorem is merely a first approximation [84] for the ionization po-
tential and electron affinity of a system but has the undeniable advantage of only requiring
a single HF or DFT calculation where it usually takes three calculations to get the N -,
(N − 1)- and (N + 1)-electron ground-state energies, to compute ionization potentials and
electron affinities.

The idea of connecting physical properties to fictitious spin orbitals and, in particular, to
virtual orbitals, is regularly subject to controversy. Indeed, in Koopmans’ theorem, ioniza-
tion potentials are directly connected to occupied spin-orbital energies (often known as the
“IP theorem”) while electron affinities are obtained from virtual spin-orbital energies, which
are usually seen like the mathematical leftovers of the self-consistent calculation.
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In practice, Hartree-Fock and DFT calculations are performed in a specific basis set whose
size determines the amount of spin orbitals that one will obtain at the end of the calculation.
The amount of occupied orbitals does not depend on the size of the basis set, but the number
of virtual orbitals has shown to quickly increase as one uses larger basis.
In fact, when one increases the size of the basis set, the occupied orbital energies tend to
converge towards specific values but the virtual ones do not exhibit such a nice physical
behaviour and get more and more numerous. This is why equating physical properties with
orbital energies is reasonable enough for ionization potentials but becomes highly question-
able for electron affinities.
For instance, in Hartree-Fock theory, virtual orbitals are usually positive, leading to negative
Koopmans’ electron affinities, but many neutral systems are known to form stable anions
when adding an electron to the neutral ground state, which implies having a lower energy
for the (N + 1)-electron system and, thus, a positive electron affinity.
Hartree-Fock orbital energies are acceptable approximations for the ionization potential and
electron affinity of atomic systems and finite solids, but Kohn-Sham orbitals are known to be
poorer orbitals and to yield smaller HOMO-LUMO gaps than in Hartre-Fock calculations.
Nevertheless, Kohn-Sham DFT orbitals have the advantage to incorporate correlation ef-
fects, which Hartree-Fock orbitals lack of, and benefit from the possibility of improving the
exchange-correlation energy functional to get better approximations, through the Kohn-Sham
gap.

Note that, even with the exact functional, the KS-DFT LUMO energy is not equal to the
opposite of the electron affinity of the neutral system, because there must be a “jump” in
the potential as the number of electrons of the open system crosses an integer value. This
discontinuity ∆ has shown to be exactly the missing part that must be taken into account
in order to connect the electron affinity with the LUMO energy

IN0 = −εHOMO (4.46) AN
0 = −εLUMO +∆ . (4.47)

As for the fundamental gap, one sees that the Kohn-Sham HOMO-LUMO gap, defined as

ΩKS
0 = εLUMO − εHOMO , (4.48)

can be used as a first approximation for the fundamental gap of the neutral N -electron system

ΩN
0 ≡ IN0 − AN

0

= ΩKS
0 −∆ .

(4.49)

The missing term ∆ is known as the “derivative discontinuity” and will be discussed further
throughout this work

∆ = ΩKS
0 −ΩN

0 = (εLUMO + AN
0 )− (εHOMO + IN0 ) . (4.50)
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In order to have a qualitative idea of the level of accuracy than one would obtain using or-
bital energies to approximate physical properties, HOMO and LUMO energies of the Li atom
are depicted in Figure 4.1 for various unrestricted methods and levels of xc-approximations,
in the cc-pVDZ basis set, compared to the experimental references for the opposites of the
ionization potential and electron affinity of Li.

UHF LSDA BLYP B3LYP Exp.

Figure 4.1: HOMO-LUMO gap (solid line-dashed line gap) of Li obtained from a single ground-state DFT
calculation within different levels of approximations in the cc-pVDZ basis, compared to its experimental
fundamental gap (black) (see Appendix A).

We see that the UHF orbital energies give quite a good approximation for the opposite
of the ionization potential of Li but are too high for the opposite of the electron affinity. As
for the DFT xc-functionals, it is straightforward to see that the KS HOMO-LUMO gaps are
much smaller than the UHF gap, with the HOMO energy being too high and the LUMO
energy being too low, compared to the experimental references.

All the previous discussion was made within the scope of integer number of electrons but
what we would like to know is how does this work when we study a system with a fractional
number of electrons, or an ensemble.
Fortunately, Slater, and then Janak, have shown that for a set of spin orbitals with fractional
occupation numbers, which have been discussed previously, the spin-orbital energies εi can
be interpreted as the variation of the total energy of the system, with respect to the variation
of the fractional occupation number of the same spin orbital

∂E

∂ni
= εi . (4.51)

We stress that, in the above definition, which is known as “Janak’s theorem”[38], the occu-
pation numbers are allowed to vary continuously and the relaxation of the orbitals is taken
into account.
Hence, we see that the spin orbital energies can be interpreted as the slope of the total energy
with respect to the variation of the occupation numbers, and thus the number of electrons
of the system. In that sense, orbital energies are very similar to chemical potentials, as dis-
cussed in the beginning of this chapter, which are identical to either the opposite of ionization
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potentials or the opposite of electron affinities, depending on the situation we are describing,
that is the removal or the addition of an electron to the neutral system.

As a matter of fact, Perdew and Levy [67] have proved that, when |r| −→ ∞ (that is
far from the system), the asymptotic decay of the exact electron density of an interacting
N -electron system evolving in a vanishing external potential v(r), with a highest fully, or
partly, occupied Kohn-Sham orbital, was entirely dictated by its ionization potential

n(r) ∼ exp

[
− 2
√
2IN0 |r|

]
. (4.52)

Furthermore, they derived the asymptotic behavior of the exact Kohn-Sham non-interacting
ensemble density , which includes an explicit dependence on the HOMO energy of the system

nKS(r) ∼ exp

[
− 2
√
2
[
− εNN + vs(∞)

]
|r|
]
. (4.53)

Since the interacting system and the non-interacting Kohn-Sham system must, by definition
of the Kohn-Sham system, share the same exact electron density, and since the exact Kohn-
Sham effective potential vs(r) has also been proved to vanish far from the system, they
managed to prove the validity of the ionization potential (IP) theorem with no use of Janak’s
theorem,

εNN = −IN0 . (4.54)

Ensemble Formalism versus DFT with Fractional Occupation Numbers

We would like to point out the subtle difference between DFT with fractional occupation
numbers and PPLB (ensemble) DFT. Let us say that one’s interest is to know the ground-
state energy of a N -electron system from which a fraction 0 ≤ α ≤ 1 of the electron occupying
the highest spin orbital is removed. The electronic configuration of such a system would
consist of a set of orthonormal spin orbitals in which only the N − 1 lowest orbitals would
be occupied with occupation numbers ni = 1 and the Nth orbital would be fractionnaly
occupied with nN = 1− α.
Hence, the quantum state of this system can be described by an electron density integrating
to a fractional electron number N , such that

M∑
i=1

ni =
N−1∑
i=1

(1) + 1− α = N − α = N , (4.55)

and

n(r) =
M∑
i=1

∑
σ

ni|χi(r, σ)|2

=
N−1∑
i=1

∑
σ

|χi(r, σ)|2 + (1− α)|χN(r, σ)|2 .

(4.56)
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We have seen that the Kohn-Sham DFT framework was still valid for electron densi-
ties with fractional electron numbers, thus one can apply total-energy density functionals to
such a density, for a given set of occupation numbers, and then minimize it in order to find
the best set of spin orbitals from which one can build the minimizing ground-state electron
density and compute the corresponding ground-state energy of the system. To do so, the
only requirement would be to have a DFT computational code capable of handling fractional
occupation numbers.

Actually, there exists another possible framework that one could resort to to study a sys-
tem with a fractional number of electrons within the scope of DFT, the ensemble formalism.
The ensemble formalism has the advantage to allow one to extract individual properties, like
excitation energies, through the calculation of simple derivatives of the ensemble energy as
we whall see.
For instance, in order to describe the removal of an electron from a N -electron system, as
discussed previously, the first step would be to build the corresponding left PPLB ensemble
density

nα
0 (r) = (1− α)nN

0 (r) + αnN−1
0 (r) , (4.57)

a linear mixture of the two ground-state densities of the N - and (N − 1)-electron systems
built from the same set of molecular orbitals, such that

nN
0 (r) =

N∑
i=1

|φα
i (r)|

2 (4.58) nN−1
0 (r) =

N−1∑
i=1

|φα
i (r)|

2 . (4.59)

We stress that, in the ensemble formalism, all the individual densities included in the ensem-
ble are built from the same set of weight-dependent molecular orbitals {φα

i } with integral
occupation numbers. In that sense, for a given ensemble weight α, the variationally opti-
mized set of ensemble molecular orbitals will not necessarily be the same as the set of orbitals
optimized for the ground-state of the neutral system, nor the same set of orbitals optimized
for the cationic system.
Therefore, in an ensemble DFT calculation, the molecular orbitals are not truly fractionally
occupied but it is the ensemble weight instead that will mimic the open system with overall
fractional number of electrons.

4.2 Perdew-Parr-Levy-Balduz Density-Functional The-

ory Formalism

4.2.1 Open systems and ensembles

In quantum mechanics, a system which can exchange electrons with other systems is referred
to as an “open system” and is associated with a fluctuating and possibly fractional total
number of electrons N . A fractional number of electrons can be interpreted as a time average
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in an open system which exchanges electrons with its surroundings.
As a matter of fact, the quantum ground state of an open system cannot be described by a
single wave function Ψo, but will instead take the form of a statistical mixture, or ensemble,
associated with an ensemble density matrix

Γw
0 ≡

∑
I

wI

∣∣ΨNI
0

〉 〈
ΨNI

0

∣∣ , (4.60)

where
{
ΨNI

0

}
is the set of allowed “pure” ground states for the open system, and {NI} are

the corresponding integer number of electrons associated with these ground states.
The ensemble weights, w ≡ {wI}, can be interpreted as the probabilities associated with the
respective pure states, from which the ensemble is built. Hence, the weights must be positive
and normalized such that the total number of electrons the system is recovered∑

I

wI = 1 (4.61)
∑
I

wINI = N . (4.62)

In that context, the expectation value of any observable O associated with an Hermitian
operator Ô is defined as follows〈

Ô
〉
Γw

0

≡
∑
I

wI

〈
ΨNI

0

∣∣Ô∣∣ΨNI
0

〉
. (4.63)

Hence, the ground-state ensemble energy of an open system is given as

Ew
0 ≡

∑
I

wI

〈
ΨNI

0

∣∣Ĥ∣∣ΨNI
0

〉
=
∑
I

wIE
NI
0 ,

(4.64)

where ENI
0 and ΨNI

0 are the ground-state energy and ground state wave function, respectively,
of the NI-electron system.

4.2.2 PPLB Ensemble Energy and Ensemble density

From now on, as an illustrative concrete example, we will consider the ionization of a N -
electron system, that is to say an open system whose total number of electronsN continuously
varies from the integer number N to (N − 1), while an electron is gradually removed from
it. Of course, the current explanation can similarly be extended to the description of the
addition of a new electron to a N -electron system. For practical reasons, we choose to use
the physical charge deviation α

α ≡ |N −N | , (4.65)

as single-weight variable for the left PPLB ensemble, so that α = 0 corresponds to N = N
and α = 1 corresponds to the situation where the electron has been fully ionized, such that
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N = N − 1.
The ground state of such an open system is described by a ground-state ensemble density
matrix [12], built from the ground-states density matrices of the N - and (N − 1)-electron
systems,

ΓN
0 ≡ Γ α

0 = (1− α)
∣∣ΨN

0

〉 〈
ΨN

0

∣∣+ α
∣∣ΨN−1

0

〉 〈
ΨN−1

0

∣∣ . (4.66)

With this exact ground-state ensemble density matrix, one can generate the exact ground-
state ensemble density

nα
0 (r) ≡ Tr[Γ α

0 n̂(r)]

= (1− α)nN
0 (r) + αnN−1

0 (r) ,
(4.67)

where Tr is the trace operator, and n̂(r) is the density operator.
In this definition,

nN
0 (r) ≡ nΨN

0
(r) (4.68) nN−1

0 (r) ≡ nΨN−1
0

(r) (4.69)

are the exact individual ground-state densities of the N - and (N − 1)-electron systems.
Similarly, one can obtain the exact ground-state ensemble energy of the open system, defined
as

Eα
0 ≡ Tr[Γ α

0 Ĥ]

= (1− α)EN
0 + αEN−1

0 .
(4.70)

4.2.3 Theoretical Extraction of Individual-State Properties and
Excitation Energies

In the exact theory, the exact ground-state ensemble energy and density must be linear with
respect to the weight of the ensemble, α, which in the present situation has been chosen
to represent the fractional deviation of the number of electrons of the open system from its
initial integer value N . As a matter of fact, one can exploit this linear feature of the energy
in order to extract physical properties of the individual states included in the ensemble, as
well as the corresponding charged excitation energies, by taking simple derivatives of the
ensemble energy with respect to the ensemble weight

EN
0 = Eα

0 − α
dEα

0

dα

EN−1
0 = Eα

0 + (1− α)
dEα

0

dα

IN0 ≡ EN−1
0 − EN

0 =
dEα

0

dα
.

(4.71)
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4.2.4 PPLB Variational Principle and Universal Functional

Canonical formalism

The Hohenberg-Kohn theorems of standard ground-state density-functional theory state that
for a N -electron system, with electron density n(r), experiencing an external potential v(r),
there exists a functional

Ev[n] = F [n] +

∫
n(r)v(r)dr , (4.72)

whose minimization with respect to number-conserving variations of the density∫
n(r)dr = N , (4.73)

yields the exact ground-state density n0(r) with exact ground-state energy

EN
0 ≡ Ev[n0] = min

n
Ev[n] , (4.74)

where the minimization is over all N -electron trial densities.
Furthermore, let us recall the constrained-search formulation for the universal functional

F [n] ≡ min
Ψ→n

〈
T̂ + V̂ee

〉
Ψ

= ⟨Ψ[n]| T̂ + V̂ee |Ψ[n]⟩

= T [n] + Vee[n] ,

(4.75)

where the search is over all antisymmetric trial wave functions which yield the given electron
density n(r), and where Ψ[n] is the particular antisymmetric wave function that yields the

density n(r) and minimizes the quantity
〈
T̂ + V̂ee

〉
.

Grand canonical formalism

The Hohenberg-Kohn theorems and the constrained-search formulation of the universal func-
tional, first, have been applied to pure states and ensembles with fixed integer number of
electrons N . They have then been extended to trial densities which integrate to fractional
numbers of electrons N .
Indeed, for an open system with a fractional number of electrons N = N − α, described by
an ensemble density matrix Γ α and ensemble density nα(r), subject to an external potential
v(r), there exists a functional

Ev[n
α] = F [nα] +

∫
nα(r)v(r)dr , (4.76)

whose minimization with respect to number-conserving variations of the ensemble density,∫
nα(r)dr = N , (4.77)
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yields the lowest average energy, or ensemble energy,

EN
0 ≡ Ev[n

α
0 ] = min

nα
Ev[n

α] , (4.78)

for a N -electron open system in a statistical mixture of a specific type.

Indeed, the left PPLB universal ensemble density functional [12] is defined as follows

F [nα] ≡ min
Γ α

→nα

〈
T̂ + V̂ee

〉
Γ α

= (1− α)
〈
ΨN,α

0 [nα]
∣∣∣ T̂ + V̂ee

∣∣∣ΨN,α
0 [nα]

〉
+ α

〈
ΨN−1, α

0 [nα]
∣∣∣ T̂ + V̂ee

∣∣∣ΨN−1, α
0 [nα]

〉
,

(4.79)

where the search is over all N -electron ensemble density matrix operators Γ̂
α
of the type

Γ α = (1− α)
∣∣∣ΨN,α

0

〉〈
ΨN,α

0

∣∣∣+ α
∣∣∣ΨN−1, α

0

〉〈
ΨN−1, α

0

∣∣∣ , (4.80)

built from an arbitrary set of weight-dependent N - and (N − 1)-electron ground states
{ΨN,α

0 ,ΨN−1, α
0 } that yields the ensemble density

n ˆΓ α(r) = Tr
[
Γ̂

α
n̂(r)

]
= (1− α)n

Ψ
N,α
0

(r) + αn
Ψ
N−1, α
0

(r) = nα(r) . (4.81)

ΨN,α
0 [nα] and ΨN−1, α

0 [nα] are the particular ground states that minimize the quantity〈
T̂ + V̂ee

〉
Γ α = Tr

[
Γ̂

α
(
T̂ + V̂ee

)]
, (4.82)

for a given weight α, and yield the ensemble density nα(r) such that

(1− α)n
Ψ
N,α
0 [nα](r) + αn

Ψ
N−1, α
0 [nα](r) = nα(r) . (4.83)

Hence, the minimization of the ensemble energy Ev[nα] yields the exact ground-state ensemble
energy which is the lowest energy for a (N − α)-electron system in a statistical mixture of
the type

Eα
0 = (1− α)EN

0 + αEN−1
0 , (4.84)

where EN
0 and EN−1

0 are the ground-state energies of a N - and (N − 1)-electron systems
experiencing the external potential v(r).
As a matter of fact, the constrained-search can conveniently be extended to any type of
statistical mixtures yielding the given density nα(r), under the “concave-upward condition”
which requires that the plot of the ground-state ensemble energy, EN

0 , with respect to the
number of electrons, N , must verify the following condition

EN
0 <

(
EN+1

0 + EN−1
0

)
2

. (4.85)

In practice, this condition is always true for coulombic electronic systems, allowing for a less
restrictive minimization.
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4.2.5 Kohn-Sham Formulation of PPLB-DFT

Kohn-Sham system

Analogous to standard Kohn-Sham DFT formalism, one can choose to decompose the uni-
versal PPLB functional into two contributions

F [nα] = Ts[n
α] + EHxc[n

α] , (4.86)

where Ts[nα] is the non-interacting ensemble kinetic-energy functional, and EHxc[nα] is the
combined Hartree-exchange-correlation ensemble energy functional.
By doing so, one assumes that there exists an auxiliary non-interacting system, the Kohn-
Sham system, which will have the same ensemble density than the interacting system asso-
ciated with the ensemble density nα(r).

One important feature of the PPLB framework is that the weight of the ensemble, α,
and the ensemble density, nα(r), are not independent quantities. Indeed, since the ensemble
density has to integrate to the fractional number of electrons N = N − α, a change of the
weight α will automatically result in a variation of the density. Therefore, all the informa-
tion that defines the ensemble will already be encompassed within the ensemble density. This
means that the exact functional, that is to say the one that shall guarantee the piecewise
linearity of the ensemble energy, as mentioned in the chemical potential section, is not re-
quired to possess a weight-dependency to properly describe the energy of the open system.
Of course, since the exact functional is not known, one is not compelled to restrict his work
to the sole domain of standard weight-independent functionals and always has the possiblity
to explore the feasability and the relevance of building better approximations based on an
explicit weight-dependency, as will be further discussed through this work.

From now on, for sake of simplicity, we will use the generic notation n(r) instead of nα(r)
when referring to any ensemble density which integrates to the fractional number of electrons
N , especially when defining functionals.

Non-interacting ensemble kinetic energy

The PPLB Kohn-Sham non-interacting ensemble kinetic-energy functional can be expressed
in a constrained-search formulation [12] defined as follows

Ts[n] = min
γ̂α→n

{
Tr
[
γ̂αT̂

]}
= (1− α)

〈
ΦN,α

0 [n]
∣∣∣ T̂ ∣∣∣ΦN,α

0 [n]
〉
+ α

〈
ΦN−1, α

0 [n]
∣∣∣ T̂ ∣∣∣ΦN−1, α

0 [n]
〉
,

(4.87)

where the constrained-search is over all non-interacting ensemble density matrix operators
γ̂α, built from an arbitrary set of weight-dependent single Slater determinantal ground states
{ΦN,α

0 , ΦN−1, α
0 }, such that

γ̂α = (1− α)
∣∣∣ΦN,α

0

〉〈
ΦN,α

0

∣∣∣+ α
∣∣∣ΦN−1, α

0

〉〈
ΦN−1, α

0

∣∣∣ , (4.88)
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recovers the interacting ensemble density

nγ̂α(r) = Tr
[
γ̂αn̂(r)

]
= (1− α)n

Φ
N,α
0

(r) + αn
Φ

N−1, α
0

(r)

= n(r) .

(4.89)

{
ΦN,α

0 [n],ΦN−1, α
0 [n]

}
are the particular Slater determinants from which is built the non-

interacting ensemble density-matrix operator that minimizes the ensemble kinetic energy

Tr
[
γ̂αT̂

]
, (4.90)

that is the Kohn-Sham ensemble density matrix operator

γ̂α
KS = (1− α)

∣∣∣ΦN,α
0 [n]

〉〈
ΦN,α

0 [n]
∣∣∣+ α

∣∣∣ΦN−1, α
0 [n]

〉〈
ΦN−1, α

0 [n]
∣∣∣ , (4.91)

and yields the interacting ensemble density, for a fixed given weight α, such that

nα
KS(r) = Tr

[
γ̂α

KSn̂(r)
]

= (1− α)n
Φ

N,α
0 [n](r) + αn

Φ
N−1, α
0 [n](r)

= n(r) .

(4.92)

PPLB-DFT Kohn-Sham molecular orbitals

One can express the variational principle for the PPLB ensemble energy in terms of the
weight-dependent molecular orbitals {φα

p (r)} from which the Kohn-Sham single Slater deter-

minants {ΦN,α
0 ,ΦN−1, α

0 } are built

Eα
0 = min

{φα
p }

{
Tr
[
γ̂α
(
T̂ + V̂en

)]
+ EHxc[nγ̂α ]

}
= Tr

[
γ̂α

KS

(
T̂ + V̂en

)]
+ EHxc[n

α
KS] .

(4.93)

From now on, we will use the notation {φα
p} to refer to the specific set of minimizing weight-

dependent Kohn-Sham orbitals, that is to say the orbitals from which is built the set of single
Slater determinantal Kohn-Sham wave functions {ΦN,α

0 [nα],ΦN−1, α
0 [nα]} ≡ {ΦN,α

0 ,ΦN−1, α
0 },

that minimize the PPLB ensemble energy and mimic the true PPLB ensemble density n(r).
For that reason, in the exact theory, one must have

nα
KS(r) = (1− α)n

Φ
N,α
0

(r) + αn
Φ

N−1, α
0

(r)

= (1− α)nΨN
0
(r) + αnΨN

0
(r)

= n(r)

(4.94)
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{nΨN
0
(r) ≡ nN

0 (r), nΨN−1
0

(r) ≡ nN−1
0 (r)} are the exact individual ground-state electron densi-

ties generated by the exact eigenstates {ΨN
0 ,Ψ

N−1
0 } of the interacting system.

We stress that in an eDFT calculation, all the individual states of the ensemble are built
from the same set of weight-dependent Kohn-Sham orbitals, as opposed to the standard KS-
DFT framework where these states would be built from different sets of optimized orbitals
obtained from distinct calculations.

The individual Kohn-Sham densities can be obtained by summation over all occupied
weight-dependent Kohn-Sham orbitals for the given state

n
Φ

N,α
0

(r) =
N∑
p=1

∣∣φα
p (r)

∣∣2 (4.95) n
Φ

N−1, α
0

(r) =
N−1∑
p=1

∣∣φα
p (r)

∣∣2 . (4.96)

Based on these definitions, one can reformulate the non-interacting Kohn-Sham ensemble
density in terms of the occupied weight-dependent Kohn-Sham molecular orbitals, such that

nα
KS(r) = (1− α)

N∑
p=1

∣∣φα
p (r)

∣∣2 + α
N−1∑
p=1

∣∣φα
p (r)

∣∣2
=

N−1∑
p=1

∣∣φα
p (r)

∣∣2 + (1− α)|φα
N(r)|

2

= n(r) .

(4.97)

Hence, it is straightforward to see that the ensemble density of the N -electron open system
corresponds to having the (N − 1) lowest Kohn-Sham molecular orbitals occupied by one
electron while the Nth Kohn-Sham molecular orbital, the “HOMO” of the open system, is
fractionnally occupied by a fraction of (1− α) electron.
Note that, although the Kohn-Sham molecular orbitals must mimic the true ensemble density
of the interacting open system, that does not mean that the individual Kohn-Sham densities
will mimic the true interacting individual densities as well. Indeed, appart from the α = 0
and α = 1 cases, the Kohn-Sham molecular orbitals will be optimized with respect to the
ensemble, that is to say for a specific weight-configuration and not for a specific state included
in the ensemble.

PPLB-DFT Kohn-Sham equations

The weight-dependent minimizing Kohn-Sham orbitals are the solutions of a set of non-linear
equations, the self-consistent PPLB-DFT Kohn-Sham equations [12](

− 1

2
∇2 + v(r) + vHxc(r)

)
φα
p (r) = εαpφ

α
p (r) , (4.98)
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where v(r) is the weight-independent local external nuclear potential, and vHxc(r) is the
weight-independent Hartree-exchange-correlation potential

vHxc(r) =
δEHxc[n]

δn(r)
, (4.99)

defined as the functional derivative of the Hartree-exchange-correlation energy functional
EHxc[n], with respect to the ensemble density n(r).

Hence, we see that PPLB-DFT is very similar to the standard ground-state formulation
of Kohn-Sham DFT, with the difference that the Kohn-Sham solutions are now a set of
weight-dependent molecular orbitals {φw

p (r)} with weight-dependent orbital energies {εwp }.
As previously mentioned, in PPLB-DFT, the exact Hartree-exchange-correlation functional
is not weight-dependent since all the information about the ensemble, that is to say the
weight configuration, is already encompassed within the ensemble density.
Of course, like in standard DFT, the exact functional remains out of reach and, for that
reason, one is free to resort to standard weight-independent exchange-correlation approximate
functionals, or to design new functionals [30, 29, 24, 45], with or without explicit weight-
dependency [55, 59], in order to improve the quality and accuracy of the self-consistent
results.

4.2.6 Practical Extraction of Individual-State Properties and Ex-
citation Energies

Removal of an electron

From now on, we will consider the possibility to use a weight-dependent Hartree-exchange-
correlation density functional Eα

Hxc[n] so that the PPLB ensemble density takes the form

Eα
0 = Tr

[
γ̂α

KS

(
T̂ + V̂en

)]
+ Eα

Hxc[n
α
KS]

= (1− α)
〈
ΦN,α

0

∣∣∣ T̂ + V̂en

∣∣∣ΦN,α
0

〉
+ α

〈
ΦN−1, α

0

∣∣∣ T̂ + V̂en

∣∣∣ΦN−1, α
0

〉
+ Eα

Hxc[n
α
KS] ,

(4.100)

with the non-interacting single Slater determinantal Kohn-Sham wave functions,
{
ΦN,α

0 ,ΦN−1, α
0

}
, and Kohn-Sham ensemble density

nα
KS(r) = (1− α)n

Φ
N,α
0

(r) + αn
Φ

N−1, α
0

(r) . (4.101)

According to the Hellmann-Feynman theorem, we can express the derivative of the PPLB
ensemble energy with respect to the weight α in terms of the occupied Kohn-Sham orbital en-
ergies and the derivative of the possibly weight-dependent Hartree-echange-correlation func-
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tional, with respect to the weight,

dEα
0

dα
=
〈
ΦN−1, α

0

∣∣∣ T̂ + V̂en

∣∣∣ΦN−1, α
0

〉
−
〈
ΦN,α

0

∣∣∣ T̂ + V̂en

∣∣∣ΦN,α
0

〉

+

∫
δEα

Hxc[n
α
KS]

δn(r)

(
n
Φ

N−1, α
0

(r)− n
Φ

N,α
0

(r)
)
dr+

∂Eα
Hxc[n

α
KS]

∂α

=
N−1∑
p=1

εαp −
N∑
p=1

εαp +
∂Eα

Hxc[n
α
KS]

∂α

= EN−1, α
0 − EN,α

0 +
∂Eα

Hxc[n
α
KS]

∂α

(4.102)

where EN,α
0 and EN−1, α

0 are the Kohn-Sham auxiliary energies of the individual states of the
PPLB ensemble.
We obtain the following left-PPLB key-formulation for the ionization potental of the neutral
N -electron system, defined as the slope of the energy of the open system,

IN0 = −εαN +
∂Eα

Hxc[n
α
KS]

∂α
. (4.103)

We stress that, in the exact theory [12], since the exact Hxc functional is known to be weight-
independent, the additional weight derivative in equations (4.102) and (4.103) would reduce
to zero.
Hence we see that −εαN , which corresponds to the opposite of the HOMO energy of the
N -electron system, is a first approximation fot the ionization potential IN0 of the neutral
N -electron system, which is consistent with Janak’s theorem.
Indeed, since (1− α) is the occupation number of the Nth Kohn-Sham orbital, by applying
Janak’s theorem one obtains

εαN =
dEα

0

d(1− α)
= −dEα

0

dα
= −IN0 . (4.104)

Thus, with the exact functional, which must be weight-independent, the prediction for the
ionization potential of the neutral system must reduce to the opposite of the weight-dependent
HOMO energy of the neutral system.
As a matter of fact, when approximate functionals are used, this first Kohn-Sham prediction
is usually poor but can be improved by means of an explicit weight-dependent Hartree-
exchange-correlation approximate functional, through the additional contribution stemming
from its derivative with respect to the ensemble weight.

In the same manner, one can obtain an analog formulation for the ground-state energies
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of the individual states included in the left PPLB ensemble

EN
0 = Eα

0 − α
dEα

0

dα

= EN,α
0 + Eα

Hxc[n
α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr− α
∂Eα

Hxc[n
α
KS]

∂α
,

(4.105)

and

EN−1
0 = Eα

0 + (1− α)
dEα

0

dα

= EN−1, α
0 + Eα

Hxc[n
α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α
.

(4.106)

Addition of an electron

At this point, we have thoroughly studied how to apply the PPLB-DFT formalism to describe
an open system from which an electron was continuously removed. We will now briefly depict
the main differences and key-results that one would obtain when applying this formalism to
describe the addition of an electron to a N -electron open system, such that

N = N + α . (4.107)

The quantum state of such an open system would then be described by an ensemble density
matrix operator built from the N - and (N + 1)-electron ground-state wave functions

ΓN
0 ≡ Γ α

0 = (1− α)
∣∣ΨN

0

〉 〈
ΨN

0

∣∣+ α
∣∣ΨN+1

0

〉 〈
ΨN+1

0

∣∣ , (4.108)

which yield the exact right PPLB ensemble density

nα
0 (r) = (1− α)nN

0 (r) + αnN+1
0 (r) , (4.109)

with exact right PPLB ensemble energy

Eα
0 = (1− α)EN

0 + αEN+1
0 . (4.110)

Once the minimizing weight-dependent Kohn-Sham molecular orbitals and energies are
self-consistently obtained, the derivative of the right PPLB ensemble energy can be expressed
in terms of Kohn-Sham quantities, as follows
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dEα
0

dα
=
〈
ΦN+1, α

0

∣∣∣ T̂ + V̂en

∣∣∣ΦN+1, α
0

〉
−
〈
ΦN,α

0

∣∣∣ T̂ + V̂en

∣∣∣ΦN,α
0

〉

+

∫
δEα

Hxc[n
α
KS]

δn(r)

(
n
Φ

N+1, α
0

(r)− n
Φ

N,α
0

(r)
)
dr+

∂Eα
Hxc[n

α
KS]

∂α

=
N+1∑
p=1

εαp −
N∑
p=1

εαp +
∂Eα

Hxc[n
α
KS]

∂α

= EN+1, α
0 − EN,α

0 +
∂Eα

Hxc[n
α
KS]

∂α
.

(4.111)

Hence, one can derive the following key-formulation for the electronic affinity of the neutral
N -electron system

−AN
0 = εαN+1 +

∂Eα
Hxc[n

α
KS]

∂α
. (4.112)

Again, we stress that the additional weight-derivative of the (approximate) Hxc functional
must reduce to zero for the exact Hxc functional.
Indeed, if one were to use the exact functional, the (N + 1)th Kohn-Sham orbital energy,
which by definition is the HOMO energy of the anionic (N+1)-electron system , would equal
the opposite of the electron affinity of the neutral system. The last result is consistent with
Janak’s theorem which states that, since the occupation number of the (N+1)th Kohn-Sham
orbital is precisely α, one must have

εαN+1 =
dEα

0

dα
= −AN

0 . (4.113)

Again, since most weight-independent approximate functionals give poor predicitions for
ionization potentials and electron affinities, the ensemble-DFT framework enables one to
improve these predicitions by designing weight-dependent approximate functionals.
Finally, predictions for the individual states included in the right PPLB ensemble can be
obtained as well from the right PPLB-DFT self-consistent calculation, such that

EN
0 = Eα

0 − α
dEα

0

dα

= EN,α
0 + Eα

Hxc[n
α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr− α
∂Eα

Hxc[n
α
KS]

∂α

(4.114)

and

EN+1
0 = Eα

0 + (1− α)
dEα

0

dα

= EN+1, α
0 + Eα

Hxc[n
α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α
.

(4.115)
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4.3 Numerical Implementation of PPLB-DFT

From now on, our aim is to extract charged excitation energies, more precisely ionization
potentials and electron affinities, from self-consistent PPLB-DFT calculations applied to real
systems. To do so, we will use the ensemble formalism to mimic open systems from/to which
a single electron is removed/added from/to the HOMO/LUMO of the neutral N -electron
system, in its ground-state electronic configuration.
Such left and right PPLB-DFT calculations have been performed for a small range of small
atomic systems, within various levels of approximation, in order to present a more consistent
overview of the performance of commonly used methods and xc-functionals within the scope
of the PPLB-DFT ensemble framework.
Furthermore, we will study as well to what extent designing explicitly weight-dependent xc-
functionals can overtake standard ground-state approximations in improving and restoring
the quality of the physical properties extracted from the self-consistent PPLB-DFT ensemble
calculations.

4.3.1 Basic Principles

As introduced previously, we will apply the PPLB ensemble formalism to study the removal
and the addition of an electron from/to the ground-state of some small atomic systems.
In this work, the lithium atom Li will serve as an illustrative model-system and, for all
considered systems, unrestricted calculations have been performed at both Hartree-Fock and
density-functional theory levels. Hence, the spin-unrestricted Hartree-Fock (UHF) formalism
has been used as well as some of the standard weight-independent exchange-correlation func-
tionals of standard ground-state DFT: the Local Spin Density Approximation (LSDA), the
Generalized Gradient Approximation (GGA) BLYP functional and the hybrid GGA B3LYP
functional, which includes specific amounts of UHF, LSDA and GGA contributions, as men-
tioned in Chapter 3.

When an electron is continuously removed or added from/to a N -electron system, the
latter behaves like an open system with a fractional number of electrons N = N ±α, with α
the fractional charge deviation from the central integer value N

α ≡ |N − N|. (4.116)

Moreover, the exact ground-state electron densities and energies of such open systems consist
of linear mixtures of the pure-state ground-state densities and energies, respectively, upon
which the corresponding charged excitations are defined, that is the N - and (N ± 1)-electron
quantities.
To avoid the use of too heavy notations, and since the present work’s only concern is ground-
state energies, we choose to loose the subscript “0” and use instead the generic notations
{Eα, nα(r)} to refer to the ground-state energies and densities associated with either the re-
moval or the addition processes, and described by left and right PPLB ensembles, respectively.
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We recall the compact expressions of the exact ground-state ensemble densities and en-
ergies associated with PPLB ensembles

nα(r) = (1− α)nN
0 (r) + αnN±1

0 (r) (4.117) Eα = (1− α)EN
0 + αEN±1

0 , (4.118)

where 0 ≤ α ≤ 1 is the PPLB ensemble weight which describes, in those two processes,
the physical charge deviation from the central integer number of electron N .
In that context, the α = 0 weight-configuration corresponds to the initial neutral N -electron
system, while the case α = 1 corresponds to the cationic/anionic system, depending on the
left or right nature of the PPLB ensemble. In these three scenarios, the PPLB-DFT ensemble
calculations reduce to standard ground-state DFT calculations.

One important feature of the PPLB framework is that the weight of the ensemble and
the ensemble density are not independent quantities. Indeed, since the ensemble density has
to integrate to the fractional number of electrons N = N± α, a change in the weight α will
automatically result in a change in the density. All the information that defines the ensem-
ble is therefore already encompassed in the ensemble density, which means that the exact
functional, that is the functional that must guarantee the piecewise linearity of the ensemble
energy, is not required to possess an additional weight-dependency to properly describe the
energy of the open system. Of course, since the exact functional is not known, one is not
compelled to restrict his work to the sole domain of standard weight-independent functionals,
and always has the possiblity to explore the feasability and the relevance of building better
approximations based on an explicit weight-dependency, as will be further discussed through
this work.

Since the exact ground-state ensemble energy of the N -electron system is supposed to be
linear with respect to the ensemble weight α, one can easily extract the individual ground-
state energies {EN

0 ;EN±1
0 } and excitation energies, such as the ionization potential IN0 and

the electron affinity AN
0 of the N -electron system, directly from the left and right PPLB

ensemble energies Eα and their derivatives with respect to the weight α, such that

EN
0 = Eα − α

∂Eα

∂α

EN−1
0 = Eα + (1− α)

∂Eα

∂α

IN0 = EN−1
0 − EN

0 =
∂Eα

∂α

(4.119)

EN
0 = Eα − α

∂Eα

∂α

EN+1
0 = Eα + (1− α)

∂Eα

∂α

AN
0 = EN

0 − EN+1
0 = −∂Eα

∂α
.

(4.120)
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In practice, when one performs DFT or eDFT calculations, some of the primal pieces
to which one has access once the convergence is achieved, are the Kohn-Sham orbital en-
ergies {εi}. Hence, it would be very convenient to extract the above-mentioned individual
energies and excitation energies, directly from the ensemble Kohn-Sham quantities. Again,
we insist that, for an ensemble DFT calculation, the set of Kohn-Sham orbitals will be
weight-dependent and optimized relative to the whole ensemble, and not for one specific
state included in the ensemble. For that reason, the individual and excitation energy predic-
tions will all be obtained from the same ensemble Kohn-Sham system. Let us recall the key
formulas that will be used to predict individual-state properties and excitation energies from
PPLB-DFT practical calculations

EN
0 = EN,α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

− α
∂Eα

Hxc[n
α
KS]

∂α

EN−1
0 = EN−1, α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α

IN0 = −εαN +
∂Eα

Hxc[n
α
KS]

∂α
(4.121)

EN
0 = EN,α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

− α
∂Eα

Hxc[n
α
KS]

∂α

EN+1
0 = EN+1, α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α

AN
0 = −εαN+1 −

∂Eα
Hxc[n

α
KS]

∂α
.

(4.122)

To perform an ensemble DFT calculation, the first step is to define the characterstics of
the ensemble for which one aims to variationally optimize the Kohn-Sham orbitals, in order
to minimize the ensemble energy of the system.
Indeed, to define a given ensemble, one must specify the number and nature of the individual
states included in this ensemble, along with the weights associated with these states. To do
so, one must indicate how to populate the unique set of ensemble Kohn-Sham orbitals by
specifying the distinct sets of occupation numbers to use for all molecular orbitals of both
spin channels and, this, for each individual state of the ensemble.
To illustrate these practical considerations, the characteristics of both left and right PPLB
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ensembles applied to the lithium atom, for mimicking the removal and addition of an electron
from/to its ground state, are reported in Tables 4.1 and 4.2. Note that, all occupation
numbers must be specified, that is occupation numbers for both occupied and virtual sets
of molecular orbitals built from a specific atomic orbital basis set. For all considered atomic
systems, the electronic configurations of the individual states included in the PPLB ensembles
were chosen in accordance with the Aufbau principle and the known spin multiplicity of the
states [1, 40].

Table 4.1: Electronic configurations of the individual states of the left PPLB biensemble mimicking the
removal of a spin-up electron from the electronic configuration of the lithium ground state. Only the
occupation numbers of the six lowest molecular orbitals of each spin channel are depicted.

State of the ensemble Weight Spin Occupation numbers

↑ 1 1 0 0 0 0
1 1− α ↓ 1 0 0 0 0 0

↑ 1 0 0 0 0 0
2 α ↓ 1 0 0 0 0 0

Table 4.2: Electronic configurations of the individual states of the right PPLB biensemble mimicking the
addition of a spin-down electron to the electronic configuration of the lithium ground state. Only the
occupation numbers of the six lowest molecular orbitals of each spin channel are depicted.

State of the ensemble Weight Spin Occupation numbers

↑ 1 1 0 0 0 0
1 1− α ↓ 1 0 0 0 0 0

↑ 1 1 0 0 0 0
2 α ↓ 1 1 0 0 0 0

4.3.2 With Weight-Independent xc-Functionals

We have performed PPLB ensemble density-functional theory calculations to study the be-
havior of a simple open system, the lithium atom, when we continuously vary its total number
of electrons within the range N ∈ [0; 4]. We did these calculations using both unrestricted
Hartree-Fock and spin density-functional theory methods, within different range of standard
weight-independent exchange-correlation functionals, in order to present a global overview of
how standard ab initio methods, originally designed and widely used for pure-state (ground-
state) applications, perform when extended to ensemble frameworks.

We have successively removed/added an electron from/to the lithium atom and its cationic
and anionic counterparts in their ground-state configurations in order to plot the variation
of the total energy E N ≡ E α of such an open system with respect to the fractional number
of electrons N ≡ N ± α, with N ∈ J0, 4K.
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In the exact theory, for a fixed integral number N , the plot of the exact ensemble energy,
depicted in the range N ∈]N − 1, N ], must be linear and its slope must be identical to the
ionization potential of the N -electron system, IN0 , or equivalently the electron affinity of the
(N − 1)-electron system, such that

IN0 ≡ AN−1
0 . (4.123)

Similarly, in the range N ∈]N,N+1], the exact ensemble energy must also be linear but with
a different slope which must be identical to the electron affinity of the N -electron system,
AN

0 , also equivalent to the ionization potential of the (N + 1)-electron system,

AN
0 ≡ IN+1

0 . (4.124)

As discussed in the introduction, the costs in energy for the removal and the addition
of an electron from/to the ground state of a neutral system are different. Hence, the exact
ensemble energy EN of an open system must be piecewise linear with respect to the variation
of the number of electrons N .
Perdew, Parr, Levy and Balduz have derived two fundamental exact properties that an in-
principle-exact theory, such as Kohn-Sham DFT, must obey when applied to an open system

� The exact total-energy curve with respect to the number of electrons of the open sys-
tem, EN (N ), must consist of a series of straight lines between integral electron numbers
N .

� When crossing an integral number of electrons, the exact exchange-correlation potential
must experience a “jump”, known as the “derivative discontinuity”, ∆xc.

These two exact constraints are in fact intrinsically connected and violation of one shall cause
immediat consequences on the other, as we shall see in this work.
Indeed, using an approximate exchange-correlation functional that lacks a derivative disconti-
nuity will result in deviation from the piecewise linearity exact condition for the total energy.
For that reason, designing functionals that possess a derivative discontinuity property can
help to restore the piecewise linear behavior of the total energy.
It is interesting to note that these considerations are not specific to the PPLB-DFT frame-
work, but are rather general observations that remain valid within the scope of many quantum-
chemistry methods, such as Hartree-Fock theory, standard Kohn-Sham DFT and generalized
Kohn-Sham (GKS) DFT, among others.
As a consequence, if an approximate functional does not possess a derivative discontinuity,
it may yield erroneous predictions when describing real phenomena such as dissociation or
charge-transfer processes, and result in significant errors, like the infamous localization and
delocalization errors, for instance.

Piecewise linearity of the energy

First, let us verify the capability of standard methods and functionals to behave in accordance
with the “piecewise linearity” exact requirement for the energy, as depicted in Figure E.1.
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Figure 4.2: Violation of the piecewise-linearity criterion of the PPLB ensemble energy of Li with respect
to the number of electrons of the open system with various methods and xc-functionals, in the cc-pVDZ
basis. PPLB ensemble energies are compared to the corresponding linear-interpolation energies defined
with the same methods and functionals, between the corresponding pure-state energies (dots).

Hartree-Fock energy is known to depict a concave behaviour, that is to say a positive
curvature (see Table 4.3), which means that fractional configurations of the open system will
be given a greater energy than integral configurations and, thus, will be less energetically
favourable. To illustrate this point, let us consider a simple dimer with a total number of
electrons (2N+1), where N is an integer. We would like to know which electronic distribution
of such a system would be favored by a concave energy function, such as Hartree-Fock
energy. To do so, let us recall the following mathematical property that any midpoint-concave
function f must obey

f

(
x1 + x2

2

)
≥ f(x1) + f(x2)

2
, (4.125)

where x1 and x2 are basic variables of the function f .
In the present work, the function of interest depicts the variation of the total energy of an
open system with respect to the variation of its number of electrons N . Therefore, if one
applies the previous concave property to E(N ), with x1 = N and x2 = N + 1, one obtains
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the following condition for the energy of the open system

2E

(
N +

1

2

)
≥ E(N) + E(N + 1) . (4.126)

This means that, in the Hartree-Fock formalism, the dimer that we have considered to il-
lustrate our point would be less energetically stable if the two sites were open systems with
fractional number of electrons (N + 1

2
), than if they were closed systems with respective

integral number of electrons N and N + 1.
Hence, in an Hartree-Fock calculation, the delocalization of the charge will raise the energy
of the system. Such functionals that tend to favor too localized charge distributions over
much delocalized ones are associated with “localization errors”.
Conversely, commonly-used DFA functionals are known to deviate from the piecewise lin-
earity exact condition with negative curvatures, thus, yielding convex energy curves. If one
applies the previous reasoning to a convex energy, one obtains the following property

2E

(
N +

1

2

)
≤ E(N) + E(N + 1) , (4.127)

which states that, in that case, fractional configurations, that is to say delocalized charge
distributions, will be given a lower, and thus more stable, energy than integral configurations,
or pure states. These observations have led to the concept of “fractional-charge error” or
“delocalization error” which is a direct consequence of the negative deviation of the approx-
imate energy of an open system from the piecewise-linear exact energy.

Fractional charges are not, at first, real phenomena but can arise from dissociation pro-
cesses of real systems [14], such as stretched molecules where the electron density will delocal-
ize over all dissociated fragments and may cause significant errors throughout binding curves
in their dissociation limits, exhibiting too low or too high predictions for binding energies.
Fractional charge is not specific to atoms and molecules but is a more general problem that
may arise from any delocalized charge distribution. Indeed, the inability of commonly-used
approximate functionals to properly predict the energy for fractional charges in small finite
systems will lead to significant systematic errors in the prediction of properties of larger
systems, like larger molecules or solid state materials [61]. For instance, poor description of
fractional charges may have major implications on band-gap predictions.
Evaluating the performance and limitations of approximate functionals when applied to fic-
titious systems, such as fractionally charged systems, can help to better apprehend their
physical consequences on real systems.

To confirm these general observations regarding Hartree-Fock’s and Kohn-Sham DFT
standard functionals’ performances, we have applied the PPLB ensemble DFT framework to
a small benchmark of small simple atomic systems, mainly composed of the atoms of the first
two rows of the periodic table, in addition to the first three noble gas (see Table 4.3). For
these systems, we have estimated the curvature of the PPLB ensemble energy in two situa-
tions, the “left” PPLB framework depicting the response of the neutral N -electron system in
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its ground-state configuration when we remove an electron from its highest occupied orbital,
and the “right” PPLB framework depicting the response of the neutral N -electron system in
its ground-state configuration when we add a new electron in its lowest unoccupied orbital.
The curvature of the PPLB ensemble energies were estimated by applying the trapezoidal
rule in order to estimate the area between the non-linear PPLB ensemble-energy curves and
their linear interpolations.
As you can see in Table 4.3, Hartree-Fock method provides a positive curvature, and thus a
concave ensemble energy, for all considered systems and for both removal and addition pro-
cesses, whereas the local, semi-local and hybrid density-functional approximations (DFAs)
provide a negative curvature, and thus a convex ensemble energy, in all cases. It seems that
the curvature of the ensemble energy of the open system tends to diminish when the number
of electrons increases, and the results seem to show that of all considered DFAs, the hybrid
B3LYP functional appears to be the one that depicts a total energy with the less deviation
from the piecewise linearity exact criterion, confirming somehow its recognized supremacy
over other DFAs, just like in standard ground-state DFT.

Table 4.3: Estimation of the curvature of the “left” and “right” PPLB ensemble energies obtained
by computing the area, using the trapezoidal rule, between the curves of the ensemble energy and
the corresponding linear interpolation between the individual pure state energies of the (N − 1)-, N -
and (N + 1)-electron systems. The calculations were performed in Dunning’s correlation-consistent cc-
pVDZ basis set, using different range of exchange-correlation approximations. The blanks correspond to
calculations that did not converge throughout the whole removal/addition process.

Removal: N → N − 1 Addition: N → N + 1
UHF LSDA BLYP B3LYP UHF LSDA BLYP B3LYP

H 0.000 −13.611 −14.480 −11.235 0.897 −5.606 −5.490 −4.242
He 0.323 −2.208 −2.211 −1.727 0.296 −2.152 −2.041 −1.560
Li 0.000 −0.179 −0.199 −0.155 0.017 −0.157 −0.159 −0.126
Be 0.012 −0.145 −0.147 −0.118 0.013 −0.120 −0.119 −0.092
B 0.012 −0.120 −0.119 −0.092 0.017 - −0.093 −0.071
C 0.015 −0.093 −0.093 −0.071 0.017 - −0.077 −0.059
N 0.015 - −0.076 −0.058 0.015 −0.063 −0.063 −0.047
O 0.014 −0.059 −0.058 −0.032 0.015 - −0.053 −0.039
F 0.014 - −0.049 −0.037 0.014 - −0.045 -
Ne 0.013 - −0.043 −0.032 - - −0.032 −0.024
Ar 0.001 - - −0.005 0.000 - −0.004 −0.003

Mean 0.038 −2.345 −1.747 −1.232 0.130 −1.619 −0.743 −0.626

The curvature of the PPLB ensemble energy can be explained by the intrinsic nature of
the functional used to predict the total energy of the open system. Indeed, many approximate
functionals have been designed to compensate the practical void stemming from the elusive
nature of the exact functional, and, although those functionals can have various analytical
forms, can be functionals of different quantities (orbitals, electron density, Green’s function,
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...) or have different characteristics (non-local, local, semi-local, ...), the large majority of
those functionals happens to be non-linear with respect to the quantity they are applied to.
Indeed, if one considers the Slater (or Dirac) exchange functional already mentioned in Chap-
ter 3, one can see that this particular functional of the electron density is highly non-linear
with respect to the electron density to which it must be applied.

Let us briefly recall the definition of a linear density functional. A linear functional, when
applied to a linear combination of electron densities, must yield the exact same result that it
would have yielded if one had first applied it to individual electron densities, and then built
a linear combination of these results as follows

E[an1 + bn2] = aE[n1] + bE[n2] , (4.128)

where a and b are real coefficients, and n1(r) and n2(r) are individual electron densities.
When one performs ensemble DFT (eDFT), the primary quantity required to compute the
ensemble energy is the corresponding ensemble density and is, by construction, a linear
combination of individual electron densities. Explicit functionals of ensemble densities have
not been elaborated to this day, but one can still benefit from decades of development that
have been devoted to the design and the elaboration of many density functionals within
the scope of standard Kohn-Sham DFT. For that reason, one can choose to apply standard
density functionals directly to ensemble densities instead.
However, because of the non-linear nature of most approximate functionals, such a procedure
will result in significant errors as we shall see. Indeed, if one considers the left PPLB ensemble
density, defined previously, and applies a non-linear functional to it according to the following
equation, one obtains the following ensemble energy

E
[
nα
]
≡ E

[
(1− α)nN

0 (r) + αnN−1
0 (r)

]
= Eα . (4.129)

On the other hand, if one chooses to perform multiple standard ground-state DFT calcu-
lations by applying this same functional to the individual densities, included in the PPLB
ensemble density, in order to build in a second step a linear combination of these individual
energies, one would obtain the following energy

(1− α)E
[
nN
0

]
+ αE

[
nN−1
0

]
= (1− α)EN

0 + αEN−1
0 = Eα

0 . (4.130)

Note that, while equation (4.129) depicts the result of an ensemble DFT calculation, equa-
tion (4.130) is provided exclusively by multiple standard ground-state DFT calculations and
therefore should be perfectly linear with respect to the weight of the linear combination, α.
The fact is that, because of the non-linearity of the approximate density functional, these
two procedures will not yield the same energy [14] and will be responsible for the deviation
of the PPLB ensemble energy from the piecewise-linearity exact requirement.
We would like to draw attention on the particular weight configurations, α = 0 and α = 1,
for which the corresponding PPLB ensemble densities simply reduce to the ground-state
electron densities of the N - and (N − 1)-electron systems, respectively. In these two situ-
ations, the non-linearity of the approximate functional is no longer a problem and the two
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above-mentioned procedures become identical and reduce to standard ground-state DFT cal-
culations.
Furthermore, we would like to point out that these considerations about the non-linearity of
approximate functionals are not specific to DFT, nor to PPLB (ensemble) DFT, but remain
valid and have shown to have significant impact for many quantum chemistry methods, and
other ensemble formalisms, as we shall see in upcoming chapters.

Another way to understand the origin of the wrong description of fractional charges by
approximate functionals is to make an analogy with the concept of “self-interaction error”
that occurs in standard Kohn-Sham DFT and Hartree-Fock theory. Recall that for one-
electron systems, the Fock exchange functional is referred to as “exact exchange” because
it exactly cancels out the unphysical spurious interaction resulting from the fact that the
classical Hartree functional allows a given electron to interact with itself. For that reason,
one of the exact criteria to enforce on any approximate exchange functionals should be its
ability to compensate the additional contribution to the total energy of a one-electron system,
stemming from the self-interaction error inherent to the classical Hartree functional. Unfor-
tunately, in practice, it is far from trivial to design such approximate exchange functionals.
As a matter of fact, the concept of self-interaction error has been generalized to many-electron
systems, under the name “many-electron self-interaction error” [62], in order to point out the
fact that approximate exchange functionals could still be exact for one-electron systems but
yet fail to cancel out the self-interaction error additional terms for many-electron systems.
In ensemble DFT, an intuitive way to proceed would be to apply standard DFT functionals
to the ensemble density built as a linear combination of several individual electron densities.
To illustrate this point, we apply the Hartree functional to the previously-defined left PPLB
ensemble density, and it is straightforward to see that such a construction will inexorably
result in additional artificial terms resulting from the unphysical interaction between the
individual densities of the ensemble.

EH[n
α] =

1

2

∫∫
nα(r1)nα(r2)

|r1 − r2|
dr1dr2

=
1

2

∫∫ [
(1− α)nN

0 (r1) + αnN−1
0 (r1)

][
(1− α)nN

0 (r2) + αnN−1
0 (r2)

]
|r1 − r2|

dr1dr2

= (1− α)2EH[n
N
0 ] + α2EH[n

N−1
0 ] + α(1− α)

∫∫
nN
0 (r1)n

N−1
0 (r2)

|r1 − r2|
dr1dr2 .

(4.131)

Hence, we see that applying standard-DFT approximate functionals to an ensemble density
not only results in a non-linear combination of the contribution of each individual densities
included in the ensemble density (first two terms of equation (4.131)), but also yields addi-
tional terms which correspond to spurious unphysical interactions between these individual
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densities. Note that, in addition to the explicit quadratic weight-dependency of the ensemble
Hartree energy, there is also an implicit weight-dependency of the individual densities due to
the weight-dependency of the orbitals from which they are built.
As a consequence, standard-DFT approximate functionals may give rise to additional sources
of errors when used in an ensemble framework compared to their behaviour within the scope
of standard Kohn-Sham DFT and Hartree-Fock theory. Furthermore, these additional erro-
neous features may have significant impact on the relevance of using ensemble quantities to
extract physical properties as we shall see.

Derivative discontinuity and physical meaning of the frontier orbital energies

We will now analyse the impact that a non-piecewise-linear energy may have on the behaviour
and physical relevance of Kohn-Sham and Hartree-Fock orbitals, and more especially on the
frontier orbitals, that is to say the HOMO and LUMO, of the neutral N -electron system [46].

In our attempt to study and understand the impact that the curvature of the energy of
an open system may have on the prediction of ionization potentials, electron affinities and,
by extension, fundamental gaps, we must go back to the definition of the chemical potential
expressed in terms of the slope of the total energy with respect to the number of electrons
of the system. From this definition, one obtains that the ionization potential IN0 is the
constant slope of the energy curve EN (N ) in the range N ∈ [N −1;N ], whereas the electron
affinity AN

0 is the constant slope of the energy curve in the range N ∈ [N ;N +1]. Note that
the electron affinity of the N -electron system is identical to the ionization potential of the
(N + 1)-electron system

AN
0 ≡ IN+1

0 . (4.132)

Since ionization potentials and electron affinities have distinct values, the slope of EN (N )
must change discontinuously when N crosses an integral value N from left to right.

On the left side of the energy curve, that is to say, for N ∈]N − 1;N ], the highest
occupied molecular orbital of the open system is the Nth Kohn-Sham orbital with a fractional
occupation number (1 − α), and the HOMO energy is then εNN and must be constant and
equal to the opposite of the ionization potential of the N -electron system, in accordance with
both the IP theorem and Janak’s theorem

εNN =
dEN

d(1− α)
= −dEN

dα
=

dEN

dN
= EN

0 − EN+1
0 ≡ −IN0 . (4.133)

Note that, when N = N − 1, the HOMO of the open system is no longer the Nth orbital,
but becomes the (N − 1)th orbital instead and does not approximate IN0 anymore, but IN−1

0

instead. Nevertheless, in that particular case, it is still the Nth orbital energy that must be
interpreted as IN0 .

Similarly, on the right side of the energy curve, that is, for N ∈]N ;N + 1], the HOMO
of the open system is the (N + 1)th Kohn-Sham orbital with fractional occupation number
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α and energy εNN+1, which must as well be constant and equal to the opposite of the electron
affinity of the N -electron system, AN

0 , such that

εNN+1 =
dEN

dα
=

dEN

dN
= EN+1

0 − EN
0 ≡ −AN

0 . (4.134)

Note that, when N = N , the HOMO of the open system changes and becomes the Nth
orbital and is no longer an approximation for −AN

0 , instead it is still εNN+1, which becomes
the LUMO energy, that must approximate −AN

0 .
Thus, we see that the variation of the exact HOMO of a N -electron system with respect to
N must be a piecewise-constant function, and each step must match the successive ionization
potentials and electron affinities defined for each integral number of electrons N .
We would like to add that, in ensemble DFT, one must be cautious when using “HOMO”
and “LUMO” terminologies in the context of using ensemble quantities to approximate real
properties, like ionization potentials and electron affinities, of a given real pure-state system.
Indeed, in ensemble DFT, the orbitals are optimized with respect to the whole ensemble,
with fractional number of electrons N , and not to the real N -electron system of whom we
want to predict real physical properties, such as ionization potentials and electron affinities.

The fact is that, even in the exact theory [12], the LUMO of the N -electron system, εNN+1,
is not the HOMO of the (N + 1)-electron system, εN+1

N+1,

lim
N→N−

(
εNN+1

)
̸= lim

N→N+

(
εNN+1

)
. (4.135)

As a matter of fact, when crossing an integral number of electrons N , the exact Kohn-Sham
potential must experience a discontinuity, known as the “derivative discontinuity” [81], ∆xc,
and this “jump” must be passed on to the frontier orbitals of the N -electron system, that is,
the HOMO and LUMO, thus affecting the physical interpretation of the Kohn-Sham frontier
orbital energies.
Indeed, when crossing an integral number of electrons N from the left to the right, because
of the multiplicative nature of the exact Kohn-Sham potential, applying a constant shift to
the exact Kohn-Sham potential will result for all the Kohn-Sham eigenvalues to jump by
the same quantity. Note that, conversely, the Kohn-Sham orbitals will remain unchanged by
this jump-in-potential. Hence, in the exact theory, an exact Kohn-Sham DFT calculation,
at fixed integral number N , must yield HOMO and LUMO energies that verify εNHOMO ≡ εNN = −IN0

εNLUMO +∆xc ≡ εNN+1 +∆xc = −AN
0 .

(4.136)

Consequently, the exact Kohn-Sham HOMO-LUMO gap of the N -electron system can be
connected to its fundamental gap as follows

εNLUMO − εNHOMO +∆xc ≡ εNN+1 − εNN +∆xc = IN0 − AN
0 , (4.137)
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where IN0 , and AN
0 are obtained by total-energy differences from exact Kohn-Sham DFT

individual self-consistent calculations for the N -, (N − 1)- and (N +1)-electron ground-state
energies (∆SCF method).

Hence, due to the derivative discontinuity, the HOMO and LUMO energies of a single,
even exact, Kohn-Sham DFT calculation cannot be simultaneously interpreted as the op-
posite of the ionization potential and electron affinity of a N -electron system, respectively.
This is known as the “fundamental gap problem”.
As a matter of fact, most of commonly used approximate exchange-correlation functionals
are known to lack a derivative discontinuity, and it has been proved that local and semi-local
functionals, such as LSDA and GGAs functionals, simply do not allow for such a derivative
discontinuity because of their intrinsic analytical nature [81].
Indeed, since the Kohn-Sham electron density is continuous across an integral number of elec-
trons N , and since most of standard local and semi-local approximate exchange-correlation
potentials are continuous functions of the electron density and its gradient, it is straightfor-
ward that such approximate Kohn-Sham potentials are unable to exhibit such a discontinu-
ity [45]. Nevertheless, standard DFAS can still be used as starting point in the design and
the elaboration of new functionals, which could naturally inherit a derivative discontinuity
through additional corrections, or ensemble generalizations [50].
In the present discussion, we would like to take the opportunity to highlight a substancial
distinction between a characteristic of the exact Kohn-Sham potential defined for a system
with a fractional number of electrons N and its alter-ego for integral number N . Early stud-
ies have proved that, for an open system, the exact Kohn-Sham potential was well-defined
whereas, for a system with integral number of electrons N , it was only defined up to a con-
stant [68, 64]. The latter point can be understood by considering that reaching the integer
point N from the left and from the right would correspond to different calculations, describ-
ing different open systems, N ∈ [N − 1, N ] and N ∈ [N,N + 1], and then associated with
different exact Kohn-Sham potentials.

In practice, Hartree-Fock’s HOMO and LUMO are known to have too low and too high
energies, respectively, yielding overestimated and underestimated ionization potential and
electron affinity predictions, compared to the ∆SCF results (see Table 4.4).
Conversely, standard exchange-correlation density-functional approximations (DFAs) are known
to yield HOMO and LUMO energies that underestimate and overestimate the ionization po-
tential and the electron affinity of the neutral N -electron system, respectively. One can see
in Table 4.4, that standard DFAs yield LUMO energies that give very poor predictions for
the electron affinity and fail to reproduce the corresponding ∆SCF references.
Note that all these methods yield frontier orbital energies with different-sign errors such that
they can still benefit from error cancellation, and manage to yield “acceptable” predictions
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for fundamental gaps. Nevertheless, DFAs are known to yield very small Kohn-Sham gaps.

Table 4.4: Comparison between the unrestricted Hartree-Fock and Kohn-Sham HOMO and LUMO
energies obtained from a single ground-state DFT calculation for Li, using various range of exchange-
correlation functionals in the cc-pVDZ basis set. The ∆ notations refer to relative errors between
the quantity in the line above and the corresponding ∆SCF property.

UHF LSDA BLYP B3LYP Experiment1

∆SCF I0 0.196 31 0.200 87 0.202 95 0.206 61 0.198 14
−εN 0.196 32 0.116 78 0.112 10 0.134 66 -
∆ (%) 0.005 −41.862 −44.759 −34.824 -

∆SCFA0 −0.015 58 0.013 79 0.008 70 0.013 11 0.022 71
−εN+1 −0.022 45 0.077 49 0.056 06 0.057 35 -
∆ (%) −44.094 461.856 544.367 337.452 -

∆SCF I0 − A0 0.211 89 0.187 07 0.194 25 0.193 49 0.175 43
εN+1 − εN 0.218 77 0.039 28 0.056 04 0.077 30 -
∆ (%) 3.246 −79.002 −71.150 −60.049 -

1 Ref. [19]

If one performs PPLB ensemble DFT calculations and continuously varies the ensemble
weight α, or charge deviation, one will observe that the weight-dependent Kohn-Sham orbital
energies and more especially, the frontier orbital energies of the N -electron system, will
significantly deviate from the piecewise-constant feature dictated by the exact theory. As a
consequence, the variation of the HOMO energy of the N -electron system with respect to
the variation of the number of electrons N , will not depict a “piecewise-constant” behaviour
as depicted in Figure E.2.
The positive curvature of the unrestricted Hartree-Fock energy (see Table 4.3 and Figure
4.4) will cause a negative deviation of the HOMO energy, that is to say that the HOMO
energy will be lower than the opposite of the ∆SCF ionization potential that it is supposed
to mimic, whereas the negative curvature of DFA functionals will cause a positive deviation
of the HOMO energy, yielding too low ionization potentials. Therefore, to what extent the
HOMO and LUMO energies of a N -electron system approximate ionization potentials and
electron affinities depends on how well the functional respects the piecewise-linearity exact
constraint for the total ensemble energy of the open system [46].
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Figure 4.3: Violation of the piecewise-constant feature of the HOMO energy of Li with respect to the
number of electrons N , using various methods and levels of xc-approximation, in the cc-pVDZ basis. The
weight-dependent HF/KS orbital energies are compared to the opposite of the corresponding ionization
potentials and electron affinities obtained by total energy differences (∆SCF) between successive pure-
state energies.
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Figure 4.4: Impact of the violation of the piecewise-linearity exact condition of the total energy of an
open system on the physical relevance of the Hartree-Fock/Kohn-Sham gap. Calculations were performed
on Li in the cc-pVDZ basis within different levels of approximation. A parallel is drawn between the
curvature of the total energy of the open system (left panel) and the inability of the HF/KS HOMO-
LUMO gap (right panel) to reproduce the fundamental gap of the system, obtained by total-energy
differences within the same level of approximation (∆SCF method). The experimental fundamental gap
of Li is also reported for comparison (see Appendix A).
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Weight-dependent orbitals

One practical advantage of ensemble DFT is to allow for the extraction of physical proper-
ties of an electronic system, like excitation energies for instance, from a single calculation, as
opposed to the standard scheme that would normally require multiple DFT calculations.
Until now, we have only considered two-state ensembles to illustrate the theory, since such
ensembles can be seen like transient states between the two physical states included in the
ensemble. If one was to consider a larger ensemble, including many more physical excited
states, or ensembles with different weights, it would probably be less obvious to retain phys-
ical meaning within the total ensemble energy.

When performing ensemble DFT calculations, one has to keep in mind that, unlike in
standard ground-state DFT where the set of orbitals, that will be used to build the ground-
state electron density of the system and compute its total ground-state energy, is optimized
with respect to a single physical state (the ground state), in ensemble DFT, the set of weight-
dependent orbitals will be optimized with respect to the whole ensemble. This means that,
for any given weight-configuration, the optimal set of ensemble orbitals that minimizes the
total ensemble energy is not expected to match the minimizing set of orbitals of one specific
individual state of the ensemble.
When variationally optimized, the set of ensemble orbitals will be associated with specific
sets of integral occupation-numbers in order to rebuild each individual state of the ensemble.
Then, these individual states will be linearly combined, by use of the fixed set of ensemble
weights, such that the ensemble density is recovered

nα(r) = (1− α)nN,α
0 (r) + αnN±1, α

0 (r) , (4.138)

where the superscript “α” is used to highlight the fact that the individual densities included
in the ensemble density are both built from the same weight-dependent set of variationaly
optimized orbitals. Hence, the individual states obtained from a single PPLB ensemble DFT
calculation will not necessarily correspond to the true physical individual states that the
ensemble is expected to be built on.
If one considers the so-called left and right PPLB ensembles defined in this chapter,

E α = E[nα(r)] = (1− α)E N,α
0 + αE N±1, α

0 , (4.139)

only the two weight-configurations, α = 0 and α = 1, correspond to standard ground-state
DFT calculations and must yield the exact set of weight-independent orbitals optimized rel-
atively to the ground state of the neutral N -electron system (for α = 0) and its anionic or
cationic counterparts (for α = 1), as illustrated in Figure 4.5. Any other weight-configuration
will yield a set of weight-dependent orbitals, comprised between these two physical configu-
rations. Note that, for two-state ensembles (or biensembles), the weight-configuration α = 1

2
,

referred to as “equi(bi)ensemble”, is of particular interest since, by construction, it doesn’t
favor one individual state of the ensemble over the other and treats both equally, as well as
the physical properties associated to these states,

E α= 1
2 =

1

2
E

N,α= 1
2

0 +
1

2
E

N±1, α= 1
2

0 . (4.140)
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Figure 4.5: Variations of the three lowest occupied (red) and virtual (blue) spin-up (left chanel) and
spin-down (right chanel) Kohn-Sham orbital energies with respect to the PPLB weight α when removing
(left panel) a fraction α of the highest spin-up electron of Li and when adding (right panel) a fraction
α of a spin-down electron to Li, using the LSDA xc-functional and cc-pVDZ basis.

In order to study the impact of the weight-dependency of the ensemble Kohn-Sham or-
bitals on the quality of the Kohn-Sham predictions for the ionization potential and the
electron affinity of a system, we have performed left and right PPLB calculations for vari-
ous atomic systems, in their ground-state configurations, and tried to quantify this impact
by computing percent errors between the ensemble Kohn-Sham predictions and the corre-
sponding ∆SCF results, within the same level of approximation. To do so, the ground-state
electronic configurations of the neutral, anionic and cationic systems were defined in accor-
dance with the Aufbau principle and the spin multiplicity available in the NIST Atomic
Spectra Database [1]. Hence, left PPLB calculations were performed in order to extract
ionization potentials (see equations (E.6)) whereas right PPLB calculations were performed
to extract electron affinities (see equations (E.7)).

For a small charge deviation, the left and right PPLB eDFT predictions for the ionization
potential and the electron affinity of the neutral systems considered do not match what one
would obtain by performing total-energy differences with the ∆SCF method, as depicted in
Table 4.5. Indeed, one can see that, for all systems considered in this work, unrestricted
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Hartree-Fock left PPLB calculations yield predictions that overestimate the ionization po-
tential of the system compared to the ∆SCF reference that one would obtain with the same
level of approximation. Conversely, UHF right PPLB calculations yield underestimated pre-
dictions for the electron affinity. Note that the magnitude of the percent errors for the
ionization potential and the electron affinity are significantly different in the same way as it
is in standard ground-state Hartree-Fock calculations (see Table 4.4).
For standard weight-independent DFAs, the results are also in accordance with standard
ground-state DFT observations and one can see that left PPLB calculations yield underesti-
mated ionization potentials and considerably-overestimated electron affinities. Moreover, one
can see that the hybrid xc-functional B3LYP is the DFA that exhibits the lesser deviation
from its ∆SCF predictions.

Table 4.5: Percent errors of the weight-dependent Hartree-Fock/Kohn-Sham predictions for the ion-
ization potential and electron affinity of simple atomic systems obtained from left and right PPLB
biensemble calculations, respectively, compared to the ∆SCF references. The calculations were per-
formed for a small charge deviation α = 0.05 in both unrestricted Hartree-Fock and DFT frameworks
with standard weight-independent xc-functionals in the cc-pVDZ basis set. The blanks correspond to
calculations that did not converge.

∆(%) Removal and addition at α = 0.05

UHF LSDA BLYP B3LYP

−εN −εN+1 −εN −εN+1 −εN −εN+1 −εN −εN+1

H 0.000 −41.765 −39.918 794.219 −41.434 691.558 −32.501 859.715
He 5.372 −2.636 −33.583 17.787 −33.445 17.996 −25.886 13.904
Li 0.005 −41.399 −37.476 455.329 −40.251 713.793 −31.242 382.837
Be 3.638 −21.529 −34.188 324.181 −35.161 267.414 −27.614 241.083
B 6.034 −71.016 −48.875 - −49.257 738.726 −37.901 883.215
C 8.369 −535.667 - - −45.465 2755.613 −34.481 896.918
N 9.319 −34.870 - 275.905 −42.669 276.013 −32.053 219.715
O 14.616 −80.478 −33.286 - −46.562 1055.969 −34.793 1086.863
F 14.099 −818.481 - - −42.252 664.854 −31.269 410.378
Ne 13.429 13.613 - - −39.114 14.163 −28.775 10.714

Mean 7.488 −163.422 −37.887 373.484 −41.561 719.609 −31.651 500.534

Similarly, Table 4.6 shows percent errors obtained for the “equibiensemble” weight-configuration,
α = 0.5, which equally mixes both ground states of the neutral system and its cationic or
anionic form (see equation (4.140)).
It is worth noting that the equibiensemble calculations considerably improve the HF/KS
predictions for the ionization potentials and electron affinities, compared to the predictions
obtained for a small charge deviation in Table 4.5. Although the sign of the percent er-
rors appears to be more erratic for that weight-configuration, we note that B3LYP remains
the standard weight-independent DFA that exhibits the smallest deviation from its ∆SCF
references.
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Table 4.6: Percent errors of the weight-dependent Hartree-Fock/Kohn-Sham predictions for the ioniza-
tion potential and electron affinity of simple atomic systems obtained from left and right PPLB biensem-
ble calculations, respectively, compared to the ∆SCF references. The calculations were performed for
the “equibiensemble” configuration, α = 0.5, in both unrestricted Hartree-Fock and DFT frameworks
with standard weight-independent xc-functionals in the cc-pVDZ basis set. The blanks correspond to
calculations that did not converge.

∆(%) Removal and addition at α = 0.5
UHF LSDA BLYP B3LYP

−εN −εN+1 −εN −εN+1 −εN −εN+1 −εN −εN+1

H 0.000 −2.951 2.594 27.967 1.943 20.360 1.757 19.367
He −0.306 0.049 1.327 0.522 0.932 0.508 0.602 0.330
Li 0.000 −4.314 2.143 1.744 0.973 8.110 1.003 2.701
Be −0.224 −0.512 0.396 1.545 0.251 −0.539 0.061 0.817
B −0.001 −2.542 −0.578 - −0.271 −0.176 −0.061 3.595
C −0.288 −18.762 - - −0.080 3.437 0.029 3.956
N −0.288 −2.123 - 1.259 −0.018 1.109 0.057 1.108
O −0.726 −4.327 24.502 - 0.065 5.324 0.070 6.616
F −0.590 −37.766 - - 0.139 3.317 0.126 2.539
Ne −0.478 16.129 - - 0.145 0.183 0.133 0.108

Mean −0.290 −5.711 5.064 6.607 0.407 4.163 0.377 4.113

Extraction of individual-state energies

In order to understand why PPLB equibiensembles seem to be the “optimal” weight-configuration
which yields ionization potentials and electronic affinities most in line with those that one
would obtain with standard ground-state DFT calculations, we will look more closely at the
behaviour of the weight-dependent individual-state energies that one would obtain from left
and right PPLB calculations (see equations (E.6) and (E.7)) and, more specifically, how they
behave when we vary the PPLB weight α in the full range [0; 1].
As one can see in Figure 4.6, in the zero-weight limit, α = 0, the left PPLB calculation re-
duces to a standard ground-state DFT calculation for the ground-state of the neutral system,
Li. Hence, the ensemble prediction for the ground-state energy of Li perfectly matches its
standard ground-state DFT reference (black, dashed lines).
Conversely, this zero-weight configuration will result in the worst prediction for the ground-
state energy of the cationic system, yielding an underestimated ground-state energy for Li+

with maximum error, for all density-functional approximations. For this particular system,
only unrestricted Hartree-Fock formalism seems to be able to yield both neutral and cationic
ground-state energies with negligible errors, which was expected since we have seen that,
for this system and level of approximation, the left PPLB ensemble energy has exhibited
near-zero curvature.
As the PPLB weight increases, and thus the physical charge deviation, the left PPLB bi-
ensemble includes more and more of the cationic ground state, increasing the error for the
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prediction of the ground-state energy of Li, and diminishing the error for the ground-state
energy of Li+. Finally, when α = 1, the left PPLB ensemble reduces to a standard ground-
state DFT calculation but, this time, optimized for the description of the ground state of the
cationic system Li+, thus yielding a prediction for its ground-state energy in total adequation
with standard ground-state DFT calculations, and an underestimated ground-state energy
of Li, with maximum error.
Note that the maximum errors of the ground-state energies of Li, obtained when α = 1, and
Li+, obtained when α = 0, exhibit similar magnitudes, for all DFAs considered. Finally, we
see that for the equibiensemble configuration, α = 0.5, as expected, both individual states
of the left PPLB ensemble are equally deteriorated and underestimated with respect to their
standard DFT references.
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Figure 4.6: Variations of the weight-dependent individual states extracted from the left PPLB biensemble
with respect to the physical charge deviation α. The weight-dependent ground-state energies of the
neutral and cationic forms of the lithium atom are recovered by use of the variationally optimized ensemble
orbitals as described in 4.3.2. Left PPLB calculations were performed with various xc-approximations, in
the cc-pVDZ basis set. The black dashed lines correspond to the same individual states obtained from
standard ground-state DFT calculations with the same level of approximation.

As a matter of fact, most of these observations remain applicable to right PPLB results,
apart from a few subtleties. Indeed, one can see in Figure 4.7 that, similarly to left PPLB
results, the maximum errors for the weight-dependent ground-state energies of Li and Li−

are of a similar magnitude. When increasing the weight, that is to say when adding a larger
fraction of a new electron to the neutral system, the ensemble prediction for the ground-state
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energy of Li starts to gradually deteriorate, whereas the prediction for the ground-state energy
of Li− is improved. Again, the equibiensemble configuration appears to be an acceptable
compromise that equally takes into account both neutral and anionic ground states, yielding
similar amount of errors for both ground-state energies.
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Figure 4.7: Variations of the weight-dependent individual states extracted from the right PPLB biensem-
ble with respect to the physical charge deviation α. The weight-dependent ground-state energies of the
neutral and anionic forms of the lithium atom are recovered by use of the variationally optimized ensemble
orbitals as described in 4.3.2. Right PPLB calculations were performed with various xc-approximations,
in the cc-pVDZ basis set. The black dashed lines correspond to the same individual states obtained from
standard ground-state DFT calculations with the same level of approximation.

Note that, in the PPLB-DFT framework, unrestricted Hartree-Fock tends to overestimate
both ground-state energies included in the ensemble, whereas density-functional approxima-
tions tend to underestimate them. Moreover, for any weight-configurations, UHF yields an
unstable anionic form, that is to say with a higher ground-state energy than the one of the
neutral form, in accordance with standard ground-state UHF results (black dashed lines). As
opposed to DFAs which start to yield stable anionic ground-state energies, yet significantly
underestimated, as one starts increasing the weight, until an inversion happens and the en-
semble prediction for the neutral form becomes more energetically stable than the ensemble
prediction for the anionic ground-state energy.
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Extraction of excitation energies

Considering the previous observations relative to the extraction of individual ground-state
energies from PPLB biensembles and the definitions of the ionization potential and elec-
tron affinity, expressed as total-energy differences of these individual ground-state energies
(see equations 1.21 and 1.22), it is straightforward to understand that a variation of the
PPLB weight, or fractional-charge deviation, will have a direct impact on the quality of the
predictions of these excitation energies.
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Figure 4.8: Variations of the weight-dependent ionization potential of Li extracted from left PPLB bi-
ensembles with respect to the physical charge deviation α. The left PPLB calculations were performed
with various xc-approximations, in the cc-pVDZ basis set. The black dashed lines correspond to ioniza-
tion potentials obtained by total-energy differences (∆SCF) from standard ground-state HF and DFT
calculations with the same level of approximation. The experimental (black solid line) ionization poten-
tial of Li (see Appendix A) is also reported for sake of completeness.

As depicted in Figure 4.8, the left PPLB prediction for the ionization potential of the neu-
tral system Li nearly linearly varies as the weight increases, going from an underestimated to
an overestimated prediction, with similar magnitudes, for all DFAs considered. As expected,
the equibiensemble configurations, α = 0.5, yield ionization-potential predictions that are
almost identical to the ones that one would have obtained with the ∆SCF method, under the
same level of approximation (black dashed lines). Note that, because of the almost perfectly
linear UHF left PPLB ensemble energy, for this particular system, unrestricted Hartree-Fock
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yields an almost perfectly constant and correct prediction for the ionization potential.
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Figure 4.9: Variations of the weight-dependent electron affinity of Li extracted from right PPLB bi-
ensembles with respect to the physical charge deviation α. The right PPLB calculations were performed
with various xc-approximations, in the cc-pVDZ basis set. The black dashed lines correspond to electron
affinities obtained by total-energy differences (∆SCF) from standard ground-state HF and DFT calcu-
lations with the same level of approximation. The experimental (black solid line) electron affinity of Li
(see Appendix A) is also reported for sake of completeness.

Similarly, if one applies the same considerations to right PPLB biensembles (see Figure
4.9), one sees that the ensemble prediction for the electron affinity of the neutral system,
Li, also depicts an almost perfectly linear variation with respect to the ensemble weight
and will, in all cases, match the ∆SCF references, for calculations that are performed in
the equibiensemble configuration, α = 0.5. Moreover, one can see that UHF right PPLB
biensemble calculations yield, at first, underestimated electron affinities and, as the weight
increases, overestimated electron affinities, with respect to the ∆SCF references. Conversely,
right PPLB electron affinities obtained from DFAs depict an opposite behaviour.

In conclusion, the results discussed in the present work confirm that the violation of the
piecewise-linearity exact criteria for the total energy of an open system, due to the inability
of standard approximations to restore such exact feature, may have significant consequences
on the quality of the physical properties that the ensemble was intentionally designed to
predict. Indeed, the weight-dependency of the predictions of the individual states included
in the PPLB ensembles has shown to be non-negligible. Such a consideration has to be taken
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into account in order to motivate which weight-configuration would be the most relevant to
consider, depending on the quantity or property of interest that one would like to extract
from a single ensemble DFT calculation. Of course, in the case of simple biensembles like
the ones presented in this work, the answer remains quite intuitive and the equibiensemble
configuration has proved to be the “best” option, but if one were to consider larger ensembles,
with various weights for instance, the adequate answer, if such exists, would probably be less
obvious.

4.3.3 With Weight-Dependent xc-Functionals

Building weight-dependent exchange functionals

From now on, we explore the feasibility of designing an explicitly weight-dependent xc-
functional which would be capable of correcting the spurious curvature of PPLB-DFT en-
semble energies provided by standard weight-independent functionals.
Since exchange energies are much significant than correlation energies, we assume that in-
jecting an explicit weight-dependency into the exchange part of the total ensemble energy
could correct most of the curvature of the energy.
To do so, we start from the assumption that replacing the weight-independent exchange en-
ergy with a weight-dependent one will not affect much the remaining ensemble energy, which
may be a very crude approximation since the orbitals are optimized for a given potential that
will inexorably be affected by the change of the exchange functional.

To proceed, we start by removing the standard “DFA” exchange energy from the total
ensemble energy, and replacing it by a weight-dependent “eDFA” exchange energy such that

E α, eDFA[n] = E α,DFA[n]− E α,DFA
x [n] + E α, eDFA

x [n] , (4.141)

with the weight-dependent ensemble density-functional approximation (eDFA) for the ex-
change energy

E α, eDFA
x [n] ≡ F α

x E α,DFA
x [n] , (4.142)

in which F α
x is an explicitly weight-dependent multiplicative exchange scaling factor.

The eDFA exchange approximation must correct the curvature of the ensemble energy stem-
ming from the use of standard ground-state density-functional approximations (DFAs), with
ensemble densities instead of pure-state densities. Moreover, the eDFA must recover as well
the pure-state individual ground-state energies obtained with the standard DFAs in ground-
state DFT, that is, when α = 0 and α = 1, in addition to yielding a perfectly linear ensemble
energy between these two limits. The weight-dependent eDFA total-energy functional must
therefore obey the following property

E α, eDFA = E α=0,DFA + α
(
E α=1,DFA − E α=0,DFA

)
. (4.143)

Hence, we reverse engineer the analytical expression of the weight-dependent “curvature-
corrected” (CC) exchange scaling factor, in terms of the DFA ensemble total and exchange
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energy contributions at various weights

F α
x =

E α=0,DFA + α
(
E α=1,DFA − E α=0,DFA

)
−
(
E α,DFA − E α,DFA

x

)
E α,DFA

x

. (4.144)

Since there must be no curvature at weight α = 0 and α = 1, and since we have observed than
for standard weight-independent functionals, the curvature of the ensemble energy seems to
be maximal for α = 1

2
, we choose to approximate the exchange scaling factor with a 4th order

polynomial expression

F α
x ≈ 1− α(1− α)

[
a+ b

(
α− 1

2

)
+ c

(
α− 1

2

)2
]
, (4.145)

centered on α = 1
2
, and which reduces to 1 when α = 0 and α = 1, as depicted in Figure

4.10.
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Figure 4.10: Comparison between the weight-dependent left and right PPLB exchange scaling factors
Fα
x associated with the removal of an electron (left panel) and the addition of an electron (right panel)

from/to Li, using different methods and xc-functionals in the cc-pVDZ basis set.

The “eDFA” total ensemble energy functional is therefore given as

E α, eDFA[n] = Ts[n] + EH[n] + E α, eDFA
x [n] + EDFA

c [n] + Een[n] , (4.146)

where we choose to put all the explicit weight-dependency of the ensemble Hartree-exchange-
correlation functional into the exchange part, and to resort to the classical weight-independent
Hartree functional EH[n], and a standard weight-independent DFA correlation functional
EDFA

c [n]. Of course, the explicit weight-dependency will be included as well in the Hartree-
exchange-correlation potential

v α, eDFA
Hxc (r) = vH(r) + v α, eDFA

x (r) + vDFA
c (r) , (4.147)
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where vH(r) and vDFA
c (r) are the weight-independent Hartree and correlation potentials,

respectively, and

v α, eDFA
x (r) =

δE α, eDFA[n]

δn(r)

= F α
x vDFA

x (r) ,

(4.148)

is the weight-dependent exchange potential.

The use of a weight-dependent exchange functional may allow for the extraction of more
stable individual-state properties and excitation energies, that is to say more constant with
respect to the variation of the ensemble weight. This is due to its additional contribution
through its derivative with respect to the ensemble weight, as discussed in 4.2.6,

∂E α, eDFA
Hxc [n]

∂α
=

∂E α, eDFA
x [n]

∂α
=

∂F α
x

∂α
E DFA

x [n] . (4.149)

Henceforth, such eDFA exchange functionals will be referred to as “Curvature-Corrected”
(CC) functionals and will be designed based on standard DFAs, such as the LSDA func-
tional, the BLYP GGA-functional, the B3LYP hybrid-functional, and Unrestricted Hartree-
Fock exact-exchange functional (UHF). From now on, these weight-dependent exchange-
correlation functionals will be referred to as “CC-LSDA”, “CC-BLYP”, “CC-B3LYP” and
“CC-UHF”, respectively (see Figure 4.10).

Weight-dependent CC-exchange multiplicative scaling factors have been computed within
the scope of both left and right PPLB-DFT biensembles applied to a small set of atomic
systems, and for various levels of xc-approximation, as depicted in Figures 4.11 and 4.12.
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Figure 4.11: Comparison between the weight-dependent left PPLB exchange scaling factors Fα
x associ-

ated with the removal of an electron from simple atomic systems using the spin unrestricted Hartree-Fock
(UHF) method (left panel) and the hybrid-GGA xc-functional B3LYP (right panel), in the cc-pVDZ basis
set. Elements from the second row of the periodic table plus the first three noble gases are considered.
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Note that, apart from the noble gases, the atomic systems considered in this work exhibit
well-ordered weight-dependent exchange scaling factors in both left and right PPLB-DFT
frameworks, and for alll evels of xc-approximation considered.
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Figure 4.12: Comparison between the weight-dependent left PPLB exchange scaling factors Fα
x associ-

ated with the removal of an electron from simple atomic systems using the spin unrestricted Hartree-Fock
(UHF) method (left panel) and the hybrid-GGA xc-functional B3LYP (right panel) in the cc-pVDZ basis
set. Elements from the second row of the periodic table are considered.

Numerical results

We have performed self-consistent left PPLB calculations with the above-mentioned weight-
dependent “CC” xc-functionals in order to assess to what extent the curvature of PPLB
ensemble energies obtained with standard DFAs would affect the quality of the ensemble
predictions of physical properties such as ionization potentials and electron affinities.
Regarding the PPLB ensemble energies obtained with weight-dependent CC-functionals (see
Figure 4.13), one can see that such functionals managed to recover ensemble energies with
near-zero curvatures, for all considered levels of approximation, as they were intended to.

Turning now to the ensemble predictions of ionization potentials and electron affinities
of open systems obtained with CC-functionals. One can see that by enforcing the piecewise-
linearity exact condition on PPLB ensemble energies, the weight-dependent CC-functionals
managed to restore a much satisfactory piecewise-constant feature for the IP/EA diagram
(see Figure 4.14), as opposed to the performance of the weight-independent DFAs.
As a matter of fact, the weight-dependent orbital energies obtained with a given weight-
independent DFA are very similar to the ones provided by its weight-dependent CC alter-ego.
As a consequence, most of the improvement of the results is due to the additional contribution
of the weight derivative of the CC-functionals, due to their explicit weight-dependency, and
illustrated by the “DD” term (see Tables 4.7 and 4.8 for more details).
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Figure 4.13: Restoring the piecewise-linearity criterion of the PPLB ensemble energy of Li with respect
to the number of electrons of the open system using the weight-dependent (CC) analogs (colored solid
lines) of standard weight-independent approximations (colored dashed lines) in the cc-pVDZ basis set.

As for predicting individual-state energies and excitation energies from PPLB ensembles,
one can see in Figures 4.15 and 4.16 that the CC-functionals succeed in providing more
stable and accurate PPLB predictions for the ground-state energies of the neutral, cationic
and anionic forms of Li, as well as for ionization potentials and electronic affinities. By ac-
curate, we mean more in accordance with the ground-state energies obtained with multiple
self-consistent calculations within the scope of standard ground-state DFT, for individual-
state energies, or by total-energy differences (∆SCF method) for excitation energies, with
the same level of approximations.
Indeed, the present work has shown that the well-known performance of standard weight-
independent xc-functionals in ground-state DFT is not necessarily recovered within the scope
of ensemble DFT. This is due to the fact that,in their original conception, such functionals
were not intended to be applied to ensemble densities, that is, to linear mixtures of electron
densities. As a result, this “misuse” of commonly used functionals reveals erreouneous fea-
tures that are responsible for unphysical and inaccurate descriptions of physical sysems, such
as predicting weight-dependent ground-state energies or excitation energies.
Nevertheless, in the PPLB-DFT framework, although the exact xc-functional is known to be
weight-independent, designing weight-dependent approximate xc-functionals may provide a
promising alternative to overcome the limitations of standard ground-state approximations
that seem to suffer from addditional deficiencies when extended to ensemble applications.
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Figure 4.14: Restoring the step-diagram feature of the HOMO energy of Li with respect to the number
of electrons of the open system using the weight-dependent (CC) analogs (colored solid lines) of standard
weight-independent approximations (colored dashed lines) in the cc-pVDZ basis set. The corresponding
ionization potentials and electron affinities obtained by total energy differences (∆SCF) between suc-
cessive pure-state energies are also reported for comparison.
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Figure 4.15: Comparison between left PPLB-DFT individual-state energies (left panel) and ionization
potentials of Li (right panel), obtained with the weigth-independent LSDA xc-functional (red dashed
lines) and its weight-dependent CC-counterpart (red solid lines), as functions of the fractional-charge
deviation α, in the cc-pVDZ basis set. SCF individual-state energies and ∆ ionization potential (black
dashed line) are reported for comparison as well as the experimental ionization potential (black solid
line) of Li (see Appendix A).
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Figure 4.16: Comparison between right PPLB-DFT individual-state energies (left panel) and electron
affinities of Li (right panel), obtained with the weigth-independent LSDA xc-functional (red dashed lines)
and its weight-dependent CC-counterpart (red solid lines), as functions of the fractional-charge deviation
α, in the cc-pVDZ basis set. SCF individual-state energies and ∆ electron affinity (black dashed line)
are reported for comparison as well as the experimental electron affinity (black solid line) of Li (see
Appendix A).
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Figure 4.17: Impact of the ability of CC-functionals to restore the piecewise-linearity exact condition
of the total energy of an open system on the physical relevance of the ensemble prediction for the
fundamental gap. Calculations were performed on Li in the cc-pVDZ basis set with the LSDA xc-
functional and its weight-dependent CC counterpart. A parallel is drawn between the re-establishment of
the piecewise-linearity condition of the total energy of the open system (left panel) and the improvement
of the ensemble fundamental gap (right panel). The corresponding fundamental gap obtained by total
energy differences (∆SCF method) between successive pure-state energies within the same level of
approximation is also reported for comparison.

In conclusion, the inability of commonly used weight-independent approximations to pro-
vide piecewise-linear energies for open systems has shown to have critical implications of
the quality and physical relevance of using ensemble quantities to approximate real physical
properties. For instance, the capability of a given approximate functional to yield accurate
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band-gap predictions is inextricably linked to its ability to obey the piecewise-linearity re-
quirement for the energy, as depicted in Figure E.3.
For the sake of completeness, Tables 4.7 and 4.8 provide more detailed overviews of the per-
formance of weight-dependent CC-approximations within the scope of PPLB ensemble DFT,
compared to the performance of their weight-independent alter-egos.
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Chapter 5

GOK Ensembles to Target Neutral
Excitations
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5.1 Introduction: Excited States in Quantum Chem-

istry

As we have seen in Chapter 3, DFT is a ground state theory originally designed to de-
scribe static (time-independent) systems associated with a time-independent external poten-
tial v(r). Nevertheless, similarly to the Hohenberg-Kohn theorem, the Runge-Gross theorem
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[73] proved the existence of a unique one-to-one correspondence between a time-dependent
external potential v(r, t) and the electron density of a system evolving in such a potential
n(r, t).
Hence, DFT has been extended to include time-dependent external potentials which allow the
description of excited states and give access to excitations associated with the conservation
of the number of electrons of the system, such as optical excitations with excitonic effects.
Note that, in a similar spirit, there also exists a time-dependent extension of Hartree-Fock
theory, TD-HF.

In practice, the most common application of TD-DFT is in the linear response regime
which avoid solving the full time-dependent Schrödinger equation. TD-DFT is very similar to
standard ground state DFT and consists in solving self-consistently a set of time-dependent
Kohn-Sham equations with an additional difficulty arising from the observation that the
exchange-correlation potential is much more subtle than in ground state DFT due to the fact
that it must encompass a “time-memory” effect [57] through its dependency on the density.
In general, a way to avoid this difficulty is to use TD-DFT in the scope of the adiabatic ap-
proximation which consist in neglecting this time-memory characteristic of the xc-potential
by using instead its time-independent ground state analog used in standard ground state
DFT.
Unfortunately, the adiabatic approximation, which implies the use of a static xc-kernel, re-
stricts the domain of application of TD-DFT to the sole description of singly excited states
and, as a consequence, completely misses multiple excitations which description would re-
quire a frequency-dependent xc-kernel.
TD-DFT, in its linear response and adiabatic formulation, has emerged as one of the most
promising alternative in the context of neutral excitations.
Despite the fact that it can predict excitation energies quite accurately, it yet suffers of nu-
merous qualitative deficiencies [56] which still need to be overcomed.
TD-DFT has been widely and successfully employed over the last decades but fails to pro-
vide a proper description of a number of phenomena [9] and properties of interest such as the
description of Rydberg states, charge transfer excitations [27] or conical intersections which
play a key role in photochemical mecanisms. Moreover, multiple excitations are completely
absent from the spectra provided by TD-DFT.
Hence, the need to develop a more general approach applicable to arbitrary excited states
and able to access the whole spectrum of a system within a time-independent formalism and
with a low computational cost.

Gross-Oliveira-Kohn ensemble-DFT formalism may provide such an appealing alternative.
As we will see in this chapter, GOK-DFT is an in-principle exact and time-independent theory
which can not only access all kind of excitation energies but also excited state energies and
densities in a single DFT-like calculation through the use of the ensemble formalism.
Nevertheless, such a formalism will raise a number of questions which remain to be answered
in order to fully exploit this method. For instance, the choice of optimal weight values
and the necessity to design new weight-dependent approximate xc-functionals [28] will be of
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primary interest in this work. Moreover, we will highight the necessity to go beyond standard
weight-independent xc-functionals and the possibility to use the Linear Interpolation Method
(LIM) as an alternative to obtain accurate predictions of excitation energies for atomic and
molecular systems.

5.2 Gross-Oliveira-Kohn Density-Functional Theory For-

malism

5.2.1 GOK Ensemble Energy and Ensemble Density

To give insight to the fundamental idea of GOK-DFT, let us consider a non-degenerate en-
ergy spectrum of a N -electron system {EN

I } where EN
0 is the energy of the ground state, EN

1

is the energy of the first excited state . . .
We recall that the energy spectrum is the set of eigenvalues of the time-independent Schrödinger
equation

Ĥ
∣∣ΨN

I

〉
= EN

I

∣∣ΨN
I

〉
(5.1)

where the Hamiltonian operator takes the form

Ĥ = T̂ + V̂ee + V̂en . (5.2)

We admit that those eigenstates are numbered so that

E0 ≤ E1 ≤ E2 ≤ · · · ≤ E∞ . (5.3)

While DFT is a ground state theory, GOK-DFT allows the description of both ground
and excited states of an electronic system with a fixed integer number of electrons N , thus
paving the way to neutral excitation energies. GOK-DFT was developped in the 1980s by
Gross, Oliveira and Kohn (see [31]), as a generalization of the equiensemble DFT developped
by Theophilou [85].
GOK-DFT formalism is very similar to standard DFT except that the primary variable will
be an ensemble density instead of the usual electron density. Although we only consider non-
degenerate cases in this work, the theory still holds in case of degeneracy where multiplet
degeneracy can be handled by assigning the same weight to the degenerate states of the
ensemble.
The GOK ensemble energy takes the following form

Ew =
M−1∑
I=0

wIEI (5.4)

and consists of a linear statistical mixture, an ensemble, of the M lowest energy levels of
the system {EN

I ≡ EI}. In the ensemble formulation of the energy, each energy level is
ponderated by a weight wI so that the set of weights w = {wI} which defines the ensemble
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is normalised and monotically decreasing so that the lowest energy gets the larger weights
and so on

w0 = 1−
M−1∑
I=1

wI (5.5) 0 ≤ wM−1 ≤ · · · ≤ w1 ≤ w0 . (5.6)

Hence, the GOK ensemble energy takes the form

Ew =

(
1−

M−1∑
I=1

wI

)
E0 +

M−1∑
I=1

wIEI . (5.7)

Along with the GOK ensemble energy, a GOK ensemble density nw(r) is similarly defined
as the corresponding linear mixture, with the same fixed set of weights, of the individual
densities nI(r) of each states included in the GOK ensemble.

nw(r) =

(
1−

M−1∑
I=1

wI

)
n0(r) +

M−1∑
I=1

wInI(r) (5.8)

Hence, in GOK-DFT, the system of interest will be jointly defined by its ensemble density
and ensemble energy, the latter being expressed as a functional of the former, in complete
analogy with ground state DFT.
We stress that, in the exact theory, each individual density nI(r) is generated by a specific
wave function ΨI which is an eigenstate of the Hamiltonian operator of the N -electron sys-
tem. Conversely, the exact GOK ensemble density is not generated by a wave function which
would consist of a linear mixture of the individual states {ΨI}.

5.2.2 Theoretical Extraction of Individual-State Properties and
Excitation Energies

At this point, we would like to emphasize the fact that the GOK ensemble energy Ew is
an auxiliary quantity in the sense that it does not possess any physical meaning but can
rather be exploited to extract individual-state properties of interest, like excitation energies
for instance [20]. Indeed, because the exact individual energies of the GOK ensemble are
real energies and therefore must be weight-independent, it is straightforward to see that the
exact ensemble energy must be linear with respect to the weights. For that reason, the energy
levels of the individual states included in the ensemble can be extracted by taking simple
derivatives of the GOK ensemble energy with respect to the weights.
Hence, the extraction of the ith excitation energy of the N -electron system

∂Ew

∂wI
= EI − E0 . (5.9)
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Based on that simple observation, a general expression of the individual states of the ensemble
can be derived by combining the ensemble energy and its derivatives with respect to the
ensemble weights

EI = Ew +
M∑
J=1

(δJI − wJ)
∂Ew

∂wJ
, (5.10)

where 0 ≤ I ≤ M − 1.
Although we will focus on the extraction of individual energies and excitation energies, it is
yet possible to access the individual densities of the states of the ensemble through a similar
formulation

nI(r) = nw(r) +
M∑
J=1

(δJI − wJ)
∂nw(r)

∂wJ
. (5.11)

5.2.3 GOK Variational Principle

Whereas in standard ground state DFT, the state of interest is associated with a density
generated by a wave function, in GOK-DFT, the basic variable will be a statistical mixture
of densities and will be generated by a density matrix.
First, let us define the exact GOK density matrix

Γ̂
w

0 =

(
1−

M−1∑
I=1

wI

)
|Ψ0⟩ ⟨Ψ0|+

M−1∑
I=1

wI |ΨI⟩ ⟨ΨI | , (5.12)

with exact GOK ensemble energy

Ew
0 = Tr{Γ̂

w

0 Ĥ} , (5.13)

built from the exact eigenstates {ΨI} of the Hamiltonian operator of the N -electron system.
Similarly, if the true eigenstates were unknown and we were to use a set of trial wave functions
{Ψ̃I} instead, we would therefore obtain a trial GOK density matrix

Γ̂
w
=

(
1−

M−1∑
I=1

wI

) ∣∣∣Ψ̃0

〉〈
Ψ̃0

∣∣∣+ M−1∑
I=1

wI

∣∣∣Ψ̃I

〉〈
Ψ̃I

∣∣∣ , (5.14)

with trial GOK ensemble energy
Ew = Tr{Γ̂

w
Ĥ} . (5.15)

In complete analogy with ground state DFT, GOK-DFT is a variational formalism and is
based on the GOK variational principle [32] for the ensemble energy which takes the following
form

Ew
0 ≤ Ew =

M∑
I=0

wI

〈
Ψ̃I

∣∣∣Ĥ∣∣∣Ψ̃I

〉
. (5.16)

The GOK variational principle states that if we use a set of orthonormal and normalized trial
wave functions {Ψ̃I} instead of the true eigenstates {ΨI} of the Hamiltonian of the system
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to build the indiviual states of the ensemble, we will inevitably obtain an approximate GOK
ensemble energy instead of the exact GOK ensemble energy. Nevertheless, we are assured
by the variational principle that this approximate ensemble energy will be an upper bound
to the exact GOK ensemble energy. It is worth noting that the GOK variational principle
remains valid even for infinite ensembles M = ∞.
In standard DFT, Rayleigh and Ritz variational principle is mostly applied to ground states
because for excited states, the trial wave functions must be orthogonal to all the lower
eigenstates of the Hamiltonian and this orthogonality constraint is extremely complicated to
ensure in practice.
Originally, Theophilou’s density-functional formalism for excited states was an extension of
Rayleigh-Ritz variational principle to equiensembles which are ensembles of equally weighted
states. Following this work, Gross, Oliveira and Kohn proposed a generalization to ensembles
of unequally weighted states. Although GOK-DFT allows one to use distincts weights for
each state of the ensemble, in practice, it may seem convenient to express all the weights
of the ensemble in terms of a single real parameter, w, or to use a set of well-defined and
more physical weights such as Boltzmann’s weights, among other possibilities. There have
been many attempts to find an “optimal” weight configuration which would be able to yield
satisfactory predictions for the properties of interest on a relatively steady basis.

5.2.4 Universal GOK Ensemble Density-Functional

Similarly to standard DFT, it is possible to extend the Hohenberg-Kohn theorems to GOK
ensembles and to establish a one-to-one mapping between a local external potential and an
ensemble density for a given set of fixed weights w. Moreover, the GOK ensemble energy and
all the electronic properties of the ensemble can be expressed as functionals of the ensemble
energy. Furthermore, the GOK ensemble energy can be obtained variationally and can take
the form of a constrained-search minimization over all N-electron densities generated by an
antisymmetric wave function instead of the originally ensemble v-representability restriction.
Let us define the universal GOK ensemble density-functional

Fw[n] = min
ˆΓ

w

→n

Tr
{
Γ̂

w
(
T̂ + V̂ee

)}

=
M∑
I=0

wI ⟨Ψw
I [n]| T̂ + V̂ee |Ψw

I [n]⟩
(5.17)

where the search is over all N -electron ensemble density matrices Γ̂
w
, built from an arbitrary

set of weight-dependent orthonormal wave functions {Ψw
I }, that yield the density

n ˆΓ
w(r) = Tr{Γ̂

w
n̂(r)} =

M−1∑
I=0

wI nΨw
I
(r) = n(r) , (5.18)

and where {Ψw
I [n]} are the weight-dependent wave functions that minimize the quantity

Tr
{
Γ̂

w
(
T̂ + V̂ee

)}
(5.19)
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for a given set of fixed weights w = {wI} and yield the density

M−1∑
I=0

wI nΨw
I [n](r) = n(r) . (5.20)

Hence, the variational principle for the ensemble energy takes the form

Ew = min
n

{Fw[n] +

∫
n(r)v(r)dr} (5.21)

and is valid for any N -electron density.
Note that while the GOK universal funtional is indeed “universal” in the sense that it does
not depend on the external potential v(r), it is not ensemble-independent and may depend
on the excited states included in the ensemble. For that reason, designing approximate
functionals for ensemble applications appears to be a very challenging task.

5.2.5 Kohn-Sham Formulation of GOK-DFT

Kohn-Sham system

The standard Kohn-Sham DFT formalism can be extended to GOK-DFT in order to decom-
pose the universal GOK functional into two contributions

Fw[n] = Tw
s [n] + Ew

Hxc[n] , (5.22)

where Tw
s [n] is the non-interacting ensemble kinetic energy functional and Ew

Hxc[n] is the
combined Hartree-exchange-correlation ensemble energy functional.
Hence, Kohn and Sham ensemble extension assumes that there exists an auxiliary non-
interacting system, the Kohn-Sham system, which will have the same ensemble density n(r)
than the interacting system.

Non-interacting ensemble kinetic energy

The non-interacting ensemble kinetic energy functional can be expressed in a constrained-
search formulation

Tw
s [n] = min

γ̂w→n
Tr
{
γ̂wT̂

}
=

M−1∑
I=0

wI ⟨Φw
I [n]| T̂ |Φw

I [n]⟩ ,
(5.23)

where the constrained-search is over all non-interacting ensemble density matrix operator γ̂w

built from an arbitrary set of weight-dependent single Slater determinant {Φw
I },

γ̂w =
M−1∑
I=0

wI |Φw
I ⟩ ⟨Φw

I | , (5.24)
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that yields the interacting ensemble density n(r),

nγ̂w(r) = Tr{γ̂wn̂(r)} =
M−1∑
I=0

wI nΦw
I
(r) = n(r) , (5.25)

and where {Φw
I [n]} are the Slater determinants from which is built the non-interacting en-

semble density operator that minimizes the ensemble kinetic energy Tr
{
γ̂wT̂

}
,

γ̂w
KS =

M−1∑
I=0

wI |Φw
I [n]⟩ ⟨Φw

I [n]| , (5.26)

and yield the interacting ensemble density for a given set of fixed weights w = {wI},

nw
KS(r) =

M−1∑
I=0

wI nΦw
I [n](r) = n(r) . (5.27)

GOK-DFT variational ensemble energy

The variational principle for the GOK ensemble energy can be formulated in terms of the
weight-dependent molecular orbitals {φw

p (r)} from which the single Slater determinants {Φw
I }

are built

Ew = min
{φp}

{
Tr
[
γ̂w
(
T̂ + V̂en

)]
+ Ew

Hxc[nγ̂w ]

}
= Tr

[
γ̂w

KS

(
T̂ + V̂en

)]
+ Ew

Hxc[n
w
KS] .

(5.28)

From now on, we will use the notation {φw
p } to refer to the minimizing Kohn-Sham weight-

dependent orbitals, that is to say the orbitals from which is built the set of single Slater
determinantal Kohn-Sham wave functions, {Φw

I } ≡ {Φw
I [n

w]}, that minimize the GOK
ensemble energy Ew and mimic the true GOK ensemble density nw(r).
Hence, in the exact theory, we must have

nw
KS(r) =

M−1∑
I=0

wI nΦw
I
(r) =

M−1∑
I=0

wI nΨI (r) = nw(r) (5.29)

where {nΨI (r) ≡ nI(r)} are the exact individual electron densities generated by the exact
eigenstates {ΨI} of the interacting system.
We stress that all the individual states of the ensemble are built from the same set of weight-
dependent Kohn-Sham orbitals but will be associated with specific occupation numbers in
order to reproduce the different excited configurations.
The individual Kohn-Sham densities can be obtained by summation over all occupied Kohn-
Sham squared orbitals for the given state

nΦw
I
(r) =

∑
p

nI
p

∣∣φw
p (r)

∣∣2 , (5.30)
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where {nI
p} is the set of occupation numbers of the weight-dependent Kohn-Sham orbitals

for the individual single-determinantal Kohn-Sham wave function Φw
I of the Ith state of the

ensemble. Recall that, for a single determinantal wave function, the occupied and virtual
molecular orbitals must verify

nI,occ
p = 1 (5.31) nI,virt

p = 0 . (5.32)

Finally, the occupation numbers are inherent to the nature of the states included in the
ensemble and, therefore, are fixed and do not depend on the ensemble weights.

GOK-DFT Kohn-Sham equations

The minimizing Kohn-Sham orbitals are the solutions of a set of non-linear equations, the
self-consistent GOK-DFT Kohn-Sham equations(

− 1

2
∇2 + v(r) + vwHxc(r)

)
φw
p (r) = εwp φ

w
p (r) (5.33)

where v(r) is the weight-independent local external nuclear potential and vwHxc(r) is the
weight-dependent Hartree-exchange-correlation potential

vwHxc(r) =
δEw

Hxc[n]

δn(r)
(5.34)

which is the functional derivative of the weight-dependent Hartree-exchange-correlation en-
ergy functional Ew

Hxc[n] with respect to the ensemble density n(r).
Hence, we see that GOK-DFT is very similar to the standard ground-state formulation of
Kohn-Sham DFT with the substantial difference that the Kohn-Sham solutions are now a set
of weight-dependent molecular orbitals {φw

p (r)} with weight-dependent orbital energies {εwp }
and that the Hartree-exchange-correlation energy functional must be weight-dependent.
Indeed, since any variation of the ensemble weights will not affect the total number of electron
of the system, which will always be N , by construction of the ensemble,∫

nw(r)dr = N , ∀w (5.35)

any change in the ensemble weights must be encompassed into the energy functional, and
more precisely into the Hartree-exchange-correlation functional through an explicit weight-
dependence.

5.2.6 Decomposition of the Ensemble Hxc-Functional

Like in standard Kohn-Sham density-functional theory, a common choice is to decompose
Ew

Hxc[n] into three parts, the Hartree, exchange and correlation contributions

Ew
Hxc[n] = Ew

H [n] + Ew
x [n] + Ew

c [n] (5.36)
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with, for each term, the possibility to use standard weight-independent ground-state func-
tionals or to design new weight-dependent functionals.
For instance, for the classical electronic repulsion functional, it is possible to use the standard
Hartree functional which does not contain an explicit dependence on the ensemble weights
but still possesses an implicit weight-dependence when applied to the ensemble density

EH

[
nw
]
=

1

2

∫∫
nw(r)nw(r′)

|r− r′|
drdr′ . (5.37)

Another intuitive possibility would be to consider that each individual state of the ensem-
ble would contribute commensurately with its respective weight so that the total weight-
dependent ensemble Hartree functional would take the form of a linear statistical mixture of
the Hartree energies of the individual states built from the ensemble Kohn-Sham orbitals

Ew
H

[
nw
]
=

M−1∑
I=0

wIEH

[
nΦw

I
(r)
]
. (5.38)

The exact GOK ensemble exchange energy functional is defined as follows

Ew
x [n] =

M−1∑
I=0

wI ⟨Φw
I [n]| V̂ee |Φw

I [n]⟩ − EH[n] , (5.39)

where V̂ee is the electronic repulsion potential energy operator.
In complete analogy with standard KS-DFT, we define the GOK ensemble correlation energy
functional, which stems from the use of non-interacting single Slater determinantal Kohn-
Sham wave functions {Φw

I } instead of the true interacting eigenstates {Ψw
I }, and which

includes the kinetic and potential missing parts of the energy as discussed in Chapter 3

Ew
c [n] =

M−1∑
I=0

wI

(
⟨Ψw

I [n]| T̂ + V̂ee |Ψw
I [n]⟩ − ⟨Φw

I [n]| T̂ + V̂ee |Φw
I [n]⟩

)
=
(
Tw[n]− Tw

s [n]
)
+
(
V w
ee [n]− Ew

H [n]− Ew
x [n]

)
= Tw

c [n] + Uw
c [n] .

(5.40)

Similarly to standard DFT, the choice of the Hartree, exchange and correlation function-
als will be crucial for the accurate prediction of physical properties of interest within the
GOK-DFT framework, with an additional challenge stemming from the lack of explicitly
weight-dependent approximate functionals specifically designed for ensemble applications on
real atomic and molecular systems [28]. Many attempts to go beyond conventional ground
state approximate functionals have been explored so far [30, 24, 29, 74], like the Optimized
Effective Potential method (OEP) [48] or the use of orbital-dependent Exact-Exchange en-
ergy (EXX), to name a few.
The OEP method consists in variationally minimizing an orbital-dependent energy functional
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with respect to a local effective potential associated with the orbitals through a set of one-
particle Kohn-Sham equations. In OEP, for a given trial local potential, the Kohn-Sham
orbitals are determined as solutions of the Kohn-Sham equations associated with this local
potential and then the energy is variationally minimized with respect to this local potential
instead of the orbitals, as opposed to conventional KS-DFT. Unfortunately, OEP requieres
a higher computational cost than standard KS-DFT.
Another possibility would be to use orbital-dependent exact-exchange energy (EXX) which
consists in using Fock exchange energy functional calculated from the Kohn-Sham orbitals,
that is to say orbitals optimized with respect to a local multiplicative potential instead of
the non-local Hartree-Fock potential. In the ensemble framework, the construction of an
orbital-dependent ensemble exact-exchange functional (EEXX) [27, 21] could be a way to
include weight-dependencies into the exchange functional but would remain computationally
demanding since the OEP procedure should, in principle, be used.

Recently, accurate ensemble DFT calculations have been performed for very simple sys-
tems, such as the helium atom [90] and the hydrogen molecule [6], in order to provide more
insight into the weight-dependence of ensemble xc-energies and potentials. In those works,
an inversion method as well as Lieb maximisation were used in order to extract and evaluate
accurate xc potentials and energies from accurate densities. Still, the need to substantial ad-
ditional work in order to model the unknown and elusive weight dependence of the ensemble
exchange-correlation functional.

5.2.7 Practical Extraction of Individual-State Properties and Ex-
citation Energies

Based on the definition of the GOK ensemble energy and the application of the Hellmann-
Feynman theorem, excitations energies can be expressed, in principle exactly, in terms of
Kohn-Sham energies and weight derivatives of the exchange-correlation functional

∂Ew

∂wI
= EI − E0 = Ew

I − Ew
0 +

∂Ew
Hxc[n]

∂wI

∣∣∣∣
n=nw

KS

. (5.41)

In this definition, Ew
I is the Ith weight-dependent Kohn-Sham auxiliary total energy, obtained

by summation of the energy of the Kohn-Sham orbitals which are occupied in the Ith state
of the ensemble

Ew
I =

∑
p

nI
pε

w
p . (5.42)

We stress that, even in the exact theory, that is to say with the exact functional, Ew
I is not

equal to the exact energy associated with the true eigenstates ΨI . As it was pointed out in
the density-functional theory chapter, the exact total energy of the system is not the sum of
the occupied Kohn-Sham orbital energies.
Hence, for each excited state included in the ensemble, there will be an additional shift in the
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Hartree-exchange-correlation potential which will result in a weight derivative of the Hxc-
energy functional with respect to the weight of the additional excited state. Although the
physics encompassed within GOK-DFT is different from the scope of PPLB DFT, derivative
discontinuities also exist in GOK-DFT and are directly connected to the weight-derivatives
of the Hxc-functional. Moreover, note that, as opposed to PPLB DFT, in GOK-DFT the
Kohn-Sham potential is not uniquely defined but only up to a constant.

In conventional ground state DFT, Levy and Zahariev proposed to inject a shift in the
Hartree-exchange-correlation potential in order to reformulate the exact total ground state
energy of the system in terms of the above-mentioned Kohn-Sham auxiliary energy only.
The Levy-Zahariev shifting procedure has since been extended to GOK ensembles where the
weight-dependent Levy-Zahariev shift for the potential is defined as follows

vwHxc(r) = vwHxc(r) +
Ew

Hxc[n]−
∫
vwHxc(r)n(r)dr∫

n(r)dr
, (5.43)

where vwHxc(r) is the LZ-shifted Hartree-exchange-correlation potential and vwHxc(r) is the
originally unshifted potential

vwHxc(r) =
δEw

Hxc[n]

δn(r)
. (5.44)

Once the LZ-shifting procedure is applied to the potential, the GOK ensemble energy reduces
to a more convenient expression and will be reformulated as a weighted sum of the LZ-shifted
Kohn-Sham auxiliary total energies

Ew =

(
1−

M−1∑
I=1

wI

)
Ew
0 +

M−1∑
I=1

wIE
w
I . (5.45)

Since the GOK ensemble density must always integrate to the fixed number of electrons
N and since all the states of the ensemble are associated with that same fixed number of
electrons, the Kohn-Sham auxiliary energies of the individual states of the ensemble will all
be obtained from distinct sets of N occupied Kohn-Sham orbital energies and will be equally
shifted as follows

Ew
I = Ew

I + Ew
Hxc

[
nw
KS

]
−
∫

δEw
Hxc

[
nw
KS

]
δn(r)

nw
KS(r)dr . (5.46)

Note that the Kohn-Sham excitation energies are not affected by the LZ-shift

Ew
I − Ew

0 = Ew
I − Ew

0 . (5.47)

Excitation energies are not the only properties that can be extracted from a single GOK-DFT
ensemble calculation. Individual properties such as ground and excited state energies

EI = Ew
I +

M∑
J=1

(δJI − wJ)
∂Ew

Hxc

∂wJ
, (5.48)
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and densities

nI(r) = nΨI (r) = nΦw
I
(r) +

M∑
J=1

M∑
K=0

(δJI − wJ)wK

∂ nΦw
K
(r)

∂wJ
, (5.49)

can be recovered as well from the ensemble.
The following work focus on the extraction of excitation energies from GOK-DFT ensemble
calculations.

5.3 Numerical Implementation of GOK-DFT

5.3.1 With Standard Weight-Independent Exchange-Correlation
Functionals

Biensembles

As a first concrete application of GOK-DFT, we will consider two specific GOK biensembles
applied to a set of two-electron atomic and molecular systems, the helium atom He, the
hydrogen molecule H2 in its equilibrium geometry (RH−H = 1.40 bohr) and the helium
hydride cation HeH+ also in its equilibrium geometry (RHe−H = 1.46 bohr). Calculations will
be performed by the QuAcK eDFT Fortran code especially implemented during this PhD
thesis to perform ensemble DFT calculations. Various basis sets and levels of approximations
will be used in order to give a more complete overview of the practical application of the
theory.
In that spirit, we will first consider the two-state ensemble including the ground state energy
EN

0 ≡ E0 of the N -electron system (with N = 2) and its first singly-excited singlet state
energy EN

1 ≡ E1 which we will admit to be the lower excited state energy of the system.
This biensemble will be referred to as the “single” GOK biensemble and takes the following
form

Ew
1 = (1− w1)E0 + w1E1 . (5.50)

Table 5.1: Electronic configurations of the individual states of the “single” GOK biensemble applied to
a system with N = 2 electrons.

State of the ensemble Weight Spin Occupation numbers

↑ 1 0 0 0 0 0
1 1− w1 ↓ 1 0 0 0 0 0

↑ 0 1 0 0 0 0
2 w1 ↓ 1 0 0 0 0 0

Similarly, we will also consider a second biensemble by including only the ground state
energy of the system and its lower doubly-excited singlet state energy EN

2 ≡ E2 which we
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will admit to be the lower excited state energy of the system. This biensemble will then be
referred to as the “double” GOK biensemble and is expressed as

Ew
2 = (1− w2)E0 + w2E2 . (5.51)

Tables 5.1 and 5.2 summarize the main characteristics of the “single” and “double” GOK
biensembles that will serve as inputs for the eDFT Fortran code.

Table 5.2: Electronic configurations of the individual states of the “double” GOK biensemble applied to
a system with N = 2 electrons.

State of the ensemble Weight Spin Occupation numbers

↑ 1 0 0 0 0 0
1 1− w2 ↓ 1 0 0 0 0 0

↑ 0 1 0 0 0 0
2 w2 ↓ 0 1 0 0 0 0

Although GOK theory enforces GOK ensembles to arrange ground and excited state
energies in increasing order, we will exceptionnally ignore this requirement in order to study
separately the impact of each excited state in the ensemble. Moreover, the domain of validity
of the GOK variational principle requires both weights of the above-mentioned biensembles
to be restricted to the range 0 ≤ wi ≤ 1

2
, with i ∈ {1; 2}, but we will intentionally extend

the study by exploring the full range of weights 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1 in order to build
weight-dependent exchange-correlation functionals afterwards.
Hence, we see that for such GOK biensembles, despite the fact that the GOK variational
principle requires the weights w1 and w2 to be restricted to the domain [0, 1

2
], for the zero-

weight limits wi = 0 and for the particular weight configurations w1 = 1 and w2 = 1, the
GOK biensemble calculations reduce to standard DFT calculations and must yield standard
DFT references for the ground state energy

Ew
1
=0 = Ew

2
=0 = E0 , (5.52)

the singly-excited state energy
Ew

1
=1 = E1 , (5.53)

and the doubly-excited state energy

Ew
2
=1 = E2 , (5.54)

respectively. We would like to stress out that these individual energies will not necessarily
match the exact ground and excited states of the system unless in the scope of the exact
theory. In practice, since the exact universal functional defined by Hohenberg and Kohn is
not known, one must rely on approximations instead and will obtain approximated ground
and excited state energies.
Our interest will be to extract the corresponding single and double excitation energies of the
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system, defined as total energy differences between the singly-excited state energy and the
ground state energy,

Ω1 = E1 − E0 , (5.55)

and between the doubly-excited state energy and the ground state energy of the system

Ω2 = E2 − E0 . (5.56)

Note that, in standard DFT, predictions of these quantities would require to perform two
standard DFT calculations for each excitation energy while in the GOK biensemble frame-
works defined previously, a single biensemble calculation can allow one to extract one of these
excitation energies according to equation (E.15).
If one uses conventional weight-independent approximate functionals, there will be no con-
tribution from the weight-derivative term in equation (E.15) and the ensemble predictions
of the excitation energies will be solely determined by the corresponding weight-dependent
Kohn-Sham auxiliary excitation energies. In accordance with the electronic configurations
of the individual states of the “single” and “double” GOK biensembles, depicted in Tables
5.1 and 5.2, it is straightforward to see that the ensemble Kohn-Sham auxiliary excitation
energies reduces to

ΩKS
1 = ε↑2 − ε↑1 , (5.57)

for the lowest single excitation energy, also known as the optical gap, and

ΩKS
2 = (ε↑2 + ε↓2)− (ε↑1 + ε↓1) , (5.58)

for the lowest double excitation energy.
In order to study the performance of a given approximate functionals in GOK ensemble
DFT compared to its performance in standard ground state DFT, we will compare the GOK
ensemble predictions of the above-mentioned excitation energies to the ∆SCF references that
one would obtain by performing total energy differences between multiple standard DFT
calculations. To avoid confusion, we recall the definition of the ∆SCF excitation energies,
which will be used as references in this work

Ω∆SCF
1 = Ew

1
=1 − Ew

1
=0 , (5.59)

Ω∆SCF
2 = Ew

2
=1 − Ew

2
=0 . (5.60)

For comparison, we will also report the excitation energy predictions obtained with the
Linear Interpolation Method (LIM) [78] which consists in extracting weight-independent (by
construction) excitation energies from equiensembles energies. By applying the LIM method
to the two above-mentioned GOK biensembles, we obtain the following compact notation

Ω biLIM
i = 2

[
Ew

i
= 1

2 − Ew
i
=0
]
, (5.61)

where i ∈ {1; 2}.
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In GOK-DFT, the exact weight-dependent xc-functional would yield a perfectly linear en-
semble energy and, hence, a constant value of the excitation energies independently of the en-
semble weights. In practice, because conventional density-functional approximations (DFAs)
do not depend on the ensemble weights, the resulting ensemble energy will be far from being
linear and there will be no contribution to the excitation energies from the weight-derivative
term in equation (E.15). The deviation from linearity of the “single” and “double” GOK
biensemble energies of He is depicted in Figure E.4 for various approximate xc-functionals.
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Figure 5.1: Violation of the linearity exact-criteria of the GOK ensemble energy of He obtained for the
single (blue) and double (red) GOK biensembles for various methods and levels of xc-approximation in
the cc-pVDZ basis set. The SCF GOK ensemble energies (solid line) are compared to the corresponding
linear interpolations (dashed line). The shaded areas highlight the GOK variational principle restricted-
domain of validity.

In order to quantify the deviation from linearity of the “single” and “double” GOK-
biensembles, the curvature of both ensemble energies was evaluated by computing the area
between the ensemble energy curves and the linear interpolations in between the two weight
limits wi = 0 and wi = 1, with i ∈ {1; 2}. To do so, the trapezoidal rule was used and percent
errors of the curvature were computed. We report in Table 5.3 the curvature percent errors
of the GOK biensemble energies applied to He, H2 and HeH+, with various methods, xc-
functionals and basis sets. Whereas this work is focused on two-electron systems, it appears
that even for such “simple” systems, the curvature of GOK biensemble energies can be highly
dependent on the system of interest, the nature of the ensemble, the choice of method and
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approximation or the basis set used to perform the calculations. Despite the observation that
unrestricted Hartree-Fock (UHF) seems to yield positive curvatures while density-functional
approximations (DFAs) show a tendency to yield negative curvatures and that “double”
GOK biensemble energies seem to have larger curvature than the “single” GOK biensemble
energies, it seems to be no clear “rule of thumb” that may be used to classify somehow the
curvature of GOK ensemble energies. Hence revealing the subtleties that a potential accurate
“ensemble” functional may have to overcome in order to yield an overall efficiency for a wide
range of systems, applications . . .

Table 5.3: Estimation of the curvature of the GOK ensemble energies of the “single” and “double”
biensemble energies. The curvature errors are expressed in terms of percent errors compared to the
linear interpolation of the ensemble energies in between the two limits of the weight, wi = 0 and wi = 1,
with i ∈ {1; 2}. Calculations were performed in both cc-pVDZ and cc-pVQZ basis sets, with unrestricted
Hartre-Fock (UHF) and standard weight-independent density-functional approximations (DFAs), LSDA,
BLYP and B3LYP.

UHF LSDA BLYP B3LYP

cc-pVDZ cc-pVQZ cc-pVDZ cc-pVQZ cc-pVDZ cc-pVQZ cc-pVDZ cc-pVQZ

“Single” GOK biensemble curvature (%)

He 5.212 2.969 0.208 −0.327 0.365 −0.213 1.257 0.390
H2 6.373 5.733 −0.094 −0.242 0.141 −0.038 1.301 1.056

HeH+ 3.398 3.387 −0.291 −0.269 −0.206 −0.181 0.503 0.517

“Double” GOK biensemble curvature (%)

He 17.198 3.426 −0.209 −5.899 0.923 −6.214 1.830 −4.242
H2 15.468 13.780 −3.967 −4.547 −3.761 −4.353 −0.103 −0.834

HeH+ 4.671 4.985 −5.740 −5.153 −5.914 −5.311 −3.739 −3.214

Since weight-dependent approximate xc-functionals fail to provide perfectly linear GOK
ensemble energies, excitation energies associated with the singly- and doubly-excited states
obtained via the derivatives of the biensemble energies with respect to the weights w1 and
w2, respectively, vary significantly with the weights, which is highly unphysical, compared to
the ∆SCF references obtained within standard DFT with the same level of approximations,
as depicted in Figures 5.2 and 5.3 in the case of the helium atom.
As expected, equiensemble weight-configurations, wi = 0.5, tend to yield predictions of the
single and double excitation energies that are in good accordance with what one would ob-
tain in the scope of standard DFT with the ∆SCF method. Interestingly, when the ensemble
Kohn-Sham excitation energies are nearly linear in the range wi ∈ [0, 0.5], the particu-
lar weight configurations wi = 0.25 tend to match the linear interpolation method (LIM)
weight-independent predictions obtained from equiensemble energies. In the case of the sin-
gle excitation energy, we see that in the zero-zeight limit, which corresponds to a standard
ground-state DFT calculation, the ensemble Kohn-Sham prediction overestimates the exci-
tation energy for all methods and functionals considered compared to the ∆SCF predictions.
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Figure 5.2: Weight-dependence of the lowest single excitation energy of He obtained from the “single”
GOK biensemble for various methods and xc-approximations in the cc-pVDZ basis set. The weight-
dependent ensemble Kohn-Sham excitation energies (equation (5.57)) are compared to the corresponding
weight-independent Linear Interpolation Method (LIM) predictions (equation (5.61)) and the ∆SCF
predictions (equation (5.66)) obtained by total energy differences within the same level of approximation.
The shaded areas highlight the GOK variational principle restricted-domain of validity.

The LIM predictions tend as well to yield overestimated predictions for the single and
double excitations but with an amount up to twice smaller than the zero-weight ensemble
Kohn-Sham predictions. For the double excitations depicted in Figure 5.3, only the LSDA
functional yield an underestimated LIM prediction relative to the ∆SCF compared to the
other approximations considered. Moreover, the LSDA and BLYP ensemble Kohn-Sham
double excitation energies are increasing functions of the weight while all the other ensemble
Kohn Sham predictions of both single and double excitation energies of He are decreasing
functions of the weigths.
Note that, although convergence of the SCF ensemble DFT calculation have been achieved,
the BLYP GGA xc-functional has shown some difficulties to yield perfectly smooth ensemble
Kohn-Sham prediction for both single and double excitaion energies of He in the range wi ∈
[0.5, 1] which one may consider without consequence since it is out of the GOK variational
principle validity domain.
Tables 5.4, 5.5 and 5.6 provide a more detailed overview of the weight-dependence of the
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ensemble Kohn-Sham predictions of the single and double excitation energies of He, H2 and
HeH+ for various weight-configurations, methods, xc-funcionals and basis sets.
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Figure 5.3: Weight-dependence of the lowest double excitation energy of He obtained from the “double”
GOK biensemble for various methods and xc-approximations in the cc-pVDZ basis set. The weight-
dependent ensemble Kohn-Sham excitation energies (5.58)) are compared to the corresponding weight-
independent Linear Interpolation Method (LIM) predictions (equation (5.61)) and the ∆SCF predictions
(5.67)) obtained by total energy differences within the same level of approximation. The exact lowest
double excitation of He (from [8]) is reported as well for comparison. The shaded areas highlight the
GOK variational principle restricted-domain of validity.
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Triensembles

Let us define the GOK “triensemble” which includes the three lowest electronic states of the
N -electron system, which we will assume to be the ground state, the lowest singly-excited
state and the lowest doubly-excited state. Thus, this triensemble will contain the ground
state of configuration 1s2, the lowest singly-excited state of configuration 1s2s and the first
doubly-excited state of configuration 2s2. We assume that the singly-excited state is lower in
energy than the doubly-excited state and that there are no additional lower-in-energy single
excitations between the ground state and the doubly-excited state which can be a rather
crude assumption for some systems.
For instance, in the particular case of the hydrogen molecule in a stretched geometry, with
RH−H = 3.7 bohr, the doubly-excited state becomes the lowest excited state with the same
symetry as the ground state and, therefore, should be included in the GOK ensemble ac-
cordingly. Moreover, in practice, there may be a large number of singly-excited states lying
in between the ground state and the lowest doubly-excited state. Although it may not be
consistent with the GOK theory to ignore those additional low-lying excited states, from a
practical point of view, it is impossible to take into account a complete finite spectrum of a
system in order to access a specific excitation energy. Therefore, in this work, we take the
liberty to study a more practical type of GOK ensemble.
We will first distinguish the two-weight triensemble

Ew = (1− w1 − w2)E0 + w1E1 + w2E2 , (5.62)

where w = {w1;w2}, and the single-weight triensemble which is a variant of the former
triensemble where w1 = w2 = w

Ew = (1− 2w)E0 + wE1 + wE2 . (5.63)

Note that, to ensure the validity of the GOK variational principle, one should have

0 ≤ w2 ≤
1

3
(5.64) w2 ≤ w1 ≤

1

2
(1− w2) . (5.65)

Table 5.7 summarizes the characteristics of the GOK triensemble that will serve as inputs
for the eDFT Fortran code.

Table 5.7: Electronic configurations of the individual states of the GOK triensemble applied to two-
electron systems.

State of the ensemble Weight Spin Occupation numbers

↑ 1 0 0 0 0 0
1 1− w1 − w2 ↓ 1 0 0 0 0 0

↑ 0 1 0 0 0 0
2 w1 ↓ 1 0 0 0 0 0

↑ 0 1 0 0 0 0
3 w2 ↓ 0 1 0 0 0 0
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Based on that definition of the GOK triensemble, we straightforwardly retrieve the ∆SCF
predictions of the single and double excitation energies that one would obtain by total energy
differences

Ω∆SCF
1 = Ew

1
=1;w

2
=0 − Ew

1
=0;w

2
=0 , (5.66)

and
Ω∆SCF

2 = Ew
1
=0;w

2
=1 − Ew

1
=0;w

2
=0 . (5.67)

The “equitriensemble” corresponds to the particular weight configuration {w1 = w2 = w = 1
3
}

where the three individual states contribute equally to the GOK ensemble

Ew= 1
3 =

1

3
E0 +

1

3
E1 +

1

3
E2 . (5.68)

The “single” and “double” excitation energies extracted from this particular ensemble will
be referred to as “equitri Ω1” and “equitri Ω2”, respectively.
Moreover, in order to extract multiple excitation energies from the GOK triensemble defined
previously, we will apply the Linear Interpolation Method which can be easily extended to
higher excitations [77]. These excitations will be referred to as “triLIM Ω1” and “triLIM Ω2”.
In the case of an ensemble of three non-degenerate states, the first LIM excitation energy is
identical to the one obtained from the “single” GOK biensemble

Ω triLIM
1 = 2

[
Ew

1
= 1

2
;w

2
=0 − Ew

1
=0;w

2
=0
]
. (5.69)

while the second LIM excitation energy takes the form

Ω triLIM
2 = 3

[
Ew

1
= 1

3
;w

2
= 1

3 − Ew
1
= 1

2
;w

2
=0
]
+

1

2
Ω triLIM

1 . (5.70)

We have computed the various above-mentioned predictions of the single and double ex-
citation energies in order to highlight to what extent one given excited state of the GOK
triensemble may influence the accuracy of each ensemble excitation energies. The results
obtained for the helium atom within the LSDA approximation and the cc-pVDZ basis set
are depicted in Figures E.5 and 5.5 for both excitation energies.
In the case of the single excitation energy, we see that the addition of the doubly-excited state
to the GOK triensemble, by increase of the weight w2, has only very small impact on the
prediction of the single excitation energy, slightly increasing the ensemble prediction of the
latter. Similarly, the variation of the weight w1 of the singly-excited state will not have a sig-
nificant impact on the quality of the ensemble double excitation energy, as depicted in Figure
5.5. Conversely the equiensemble limit, w1 = w2 =

1
3
, yield significantly overestimated single

and double excitation energies by around 0.1 hartree and 0.2 hartree, respectively, compared
to the ∆SCF predictions.
The LIM single excitation energy is as well higher than the ∆SCF prediction, but with a
smaller increase, around 0.01 hartree. Interestingly, for the double excitation energy, the
presence of the singly-excited state in the GOK triensemble yields a surprisingly and signif-
icantly lower LIM double excitation energy, by around 1.5 hartree compared to the ∆SCF
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prediction, which is actually much closer to the exact double excitation energy of He (see Ta-
ble 5.8). Finally, note that the single-weight GOK triensemble doesn’t seem to be a pertinent
choice to obtain accurate predictions of the single and double excitation energies, yielding
drastically too high excitation energies as the ensemble weight increases.
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Figure 5.4: Weight-dependence of the lowest single excitation energy of He obtained from GOK triensem-
bles. The ensemble Kohn-Sham single excitation energies obtained from GOK triensembles are re-
ported for the single-weight configuration (w1 = w2 = w, see equation (E.12)), for various weight-
configurations of the two-weight triensemble (equation (E.11)) as well as for the equiensemble config-
uration (w1 = w2 = 1

3 , see equation (5.68)) and are compared to single excitations obtained from the
“single” GOK biensemble (w2 = 0), the Linear Interpolation Method (LIM) prediction obtained from the
biensemble or triensemble, equivalently, (equations (5.61) and (5.69)) as well as the ∆SCF prediction
(equation (5.66)) obtained with the same level of approximation. Calculations were performed within
the LSDA approximation and in the cc-pVDZ basis set.

For a more quantitative overview, Table 5.8 reports excitation energies of He, H2 and
HeH+, for various methods and exchange-correlation functionals in the cc-pVDZ basis set.
In particular, we report the excitation energies obtained with GOK-DFT for the equiensemble
configurations of the biensembles and triensemble considered in this work. For comparison,
we also report results obtained with the Linear Interpolation Method (LIM) applied to both
biensembles (biLIM) and triensemble (triLIM) defined in equations (5.61), (5.69) and (5.70).
Note that two calculations are needed to get the first triLIM excitation energy with an ad-
ditional equiensemble calculation for each higher excitation energy.
Additionally, ∆SCF excitation energies, defined in equations (5.66) and (5.67), which also
require three separate calculations at specific set of ensemble weights, have been computed
to highlight the “poor” performance of conventional weight-independent ground state xc-
functionals when used in the scope of GOK ensemble DFT calculations. Finally, we report
accurate predictions of the double excitation energy of He and H2 at equilibrium bond length,
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obtained from [59].
It is worth mention that in the case of the helium atom, the lowest doubly-excited state is
extremely high in energy and lies in the continuum. For that reason, its description requires
the use of a basis set containing enough diffuse functions. In this work we used the same basis
sets for all two-electron systems considered, independently of such consideration. Based on
the poor results obtained for the double excitation energy of He, compared to the accurate
reference reported in Table 5.8, the choice of the basis set may be held responsible for that
particular system (see Table C.1 for additional results regarding this point). Nevertheless,
despite the possibly inapropriate basis set, the linear interpolation method (LIM) still man-
ages to yield a more accurate prediction of the double excitation energy compared to all other
predictions.
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Figure 5.5: Weight-dependence of the lowest double excitation energy of He obtained from GOK
triensembles. The ensemble Kohn-Sham double excitations obtained from GOK triensembles are re-
ported for the single-weight configuration (w1 = w2 = w, see equation (E.12)), for various weight-
configurations of the two-weight triensemble (equation (E.11)) as well as for the equiensemble config-
uration (w1 = w2 = 1

3 , see equation (5.68)) and are compared to double excitations obtained from
the “double” GOK biensemble (w1 = 0), the Linear Interpolation Method (LIM) predictions obtained
from the biensemble (equation (5.61)) and triensemble (equation (5.70)) as well as the ∆SCF prediction
(equation (5.67)) obtained with the same level of approximation and the exact double excitation (from
[8]). Calculations were performed within the LSDA approximation and in the cc-pVDZ basis set.
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Table 5.8: Excitation energies (in hartree) associated with the lowest single and double exci-
tations of He, H2 with RH−H = 1.40 bohr and HeH+ with RHe−H = 1.46 bohr, for various
methods and exchange-correlation functionals in the cc-pVDZ basis set. Accurate predictions
of the single and double excitation energies of He and H2 are also reported for comparison.

UHF LSDA BLYP B3LYP

∆SCFΩ1 1.679 51 1.620 50 1.595 35 1.617 58
biLIMΩ1 1.995 46 1.632 88 1.618 69 1.697 18
equibiΩ1 1.679 42 1.622 55 1.605 98 1.624 80
triLIMΩ1 1.995 46 1.632 88 1.618 69 1.697 18
equitriΩ1 1.741 72 1.729 06 1.721 80 1.728 68
Accuratea 0.757 75
∆SCFΩ2 3.445 89 3.300 73 3.255 47 3.352 33
biLIMΩ2 4.031 68 3.292 41 3.277 97 3.432 80
equibiΩ2 3.442 36 3.301 89 3.297 26 3.330 17
triLIMΩ2 2.105 19 1.759 43 1.805 39 1.888 48
equitriΩ2 3.943 31 3.506 04 3.508 29 3.597 37

He

Accuratea 2.125 85

∆SCFΩ1 0.434 58 0.432 85 0.427 26 0.434 41
biLIMΩ1 0.609 20 0.429 86 0.430 66 0.471 43
equibiΩ1 0.432 14 0.434 12 0.431 58 0.437 48
triLIMΩ1 0.609 20 0.429 86 0.430 66 0.471 43
equitriΩ1 0.385 94 0.485 17 0.481 16 0.465 55
∆SCFΩ2 1.064 18 1.006 43 1.012 67 1.026 34
biLIMΩ2 1.341 48 0.929 27 0.938 69 1.024 39
equibiΩ2 1.086 23 1.013 81 1.021 42 1.037 90
triLIMΩ2 1.323 51 0.953 69 0.963 51 1.039 08
equitriΩ2 1.089 48 1.011 95 1.017 59 1.035 16

H2

Accurateb 1.056 54

∆SCFΩ1 0.872 74 0.873 50 0.861 96 0.870 25
biLIMΩ1 1.126 95 0.851 10 0.845 38 0.908 31
equibiΩ1 0.874 88 0.872 17 0.860 38 0.869 42
triLIMΩ1 1.126 95 0.851 10 0.845 38 0.908 31
equitriΩ1 0.867 92 1.033 02 1.028 03 0.998 38
∆SCFΩ2 2.260 81 2.201 55 2.231 16 2.238 44
biLIMΩ2 2.512 83 1.885 70 1.898 91 2.027 84
equibiΩ2 2.264 85 2.163 64 2.185 21 2.202 46
triLIMΩ2 2.511 05 1.954 65 1.972 45 2.083 65

HeH+

equitriΩ2 2.259 05 2.157 48 2.176 91 2.194 54

a obtained from [8].
b obtained from [59].
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5.3.2 With Weight-Dependent Exchange-Correlation Functionals

In complete analogy with what has been done for PPLB ensembles (see 4.3.3), we de-
signed weight-dependent exchange functionals based on standard ground state DFT density-
functional approximations (DFAs) in order to correct curvature errors of GOK ensemble
energies of the “single” and “double” biensembles

E
w

i
, eDFA

x [n] ≡ F
w

i
x E

w
i
,DFA

x [n] , (5.71)

in which F
w

i
x is an explicit weight-dependent scaling factor.

To do so, we reverse-engineered the weight-dependent exchange multiplicative scaling factor
F

w
i

x of the “single” and “double” GOK biensembles for all considered two-electron systems,
xc-approximations, and basis sets.

As expected, such weight-dependent scaling factors are highly dependent on the nature
of the ensemble, the xc-functional, the basis set and the system of interest, as depicted in
Figures 5.6 and 5.7. We would like to stress that such curvature-corrected (CC) exchange
functionals are obviously not transposable to routine applications but are rather intended
to highlight the necessity to design explicit weight-dependent xc-functionals which could be
used to palliate the limitations and deficiencies of standard weight-independent xc-functionals
which fail to yield acceptable results when transposed to the scope of ensemble DFT, not
even with the same accuracy that they provide in standard DFT.
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Figure 5.6: Comparison between the weight-dependent exchange scaling factors of He for the “single”
(left panel) and “double” (right panel) GOK biensembles in the cc-pVQZ basis set for various methods
and weight-dependent xc-functionals.
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Figure 5.7: Comparison between the weight-dependent LSDA exchange scaling factors of He (purple),
H2 (blue) and HeH+ (red) for the “single” (left panel) and “double” (right panel) GOK biensembles in
the cc-pVDZ (solid line) and cc-pVQZ (dashed line) basis sets.

Nevertheless, recently, there have been attempts to design more general weight-dependent
xc-functionals, especially designed to access single and double excitation energies of two-
electron systems by use of a GOK triensemble such as the one studied in this work. The
exchange part of this functional was also based on an optimized weight-dependent multi-
plicative scaling factor while the correlation part was designed as a linear combination of two
functionals designed to access single and double excitation energies of a two-electron finite
uniform electron gas (FUEG) [55, 59].

For a given level of approximation, the weight-dependent CC-functional will rely on its
explicit weight-dependence to restore the linearity of the GOK biensemble energy obtained
from its weight-independent analog. We stress that since the weight-dependent exchange
scaling factors are enforced to reduce to unity in the weight limits wi = 0 and wi = 1, so
that the CC-functionals reduce to their standard weight-independent analogs in those two
specific weight configurations, only the curvature of the ensemble energy will be affected by
the new weight-dependent functionals. In no case will they yield more accurate energies
than the weight-independent approximations they were built from in the particular weight-
configurations wi = 0 and wi = 1, which we recall must reduce to standard DFT calculations.
Hence, if one were to use the ∆SCF method to extract excitation energies from the ensemble
energy, by performing total energy differences from multiple DFT calculations, the results
obtained with a given weight-dependent CC-functional would be identical to the ones ob-
tained with the corresponding weight-independent functional.
For that reason, the weight-dependent ensemble Kohn-Sham orbitals obtained with the CC-
functionals reduce to the standard Kohn-Sham orbitals obtained with the weight-independent
functionals, as depicted in Figure E.6. Nevertheless, for any other weight-configuration, we
see that the weight-dependent CC-functionals wil slightly change the Kohn-Sham orbitals in
order to yield a perfectly linear ensemble energy.
In the case of the “single” GOK biensemble, we note that the unrestricted Hartree-Fock
orbitals will be slightly increased by the weight-dependent CC-UHF functional while the
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LSDA and BLYP density-functional approximations (DFAs) Kohn-Sham orbitals will be
slightly lowered by the CC-functionals. Note that the change induced by the CC-procedure
is much significant in unrestricted Hartree-Foch than in the LSDA and BLYP cases, which
was expected since the UHF GOK biensemble energy had the most significant amount of
curvature to correct. As a matter of fact, because the hybrid functional B3LYP includes, by
construction, a specific amount of Hartree-Fock exchange energy, the resulting Kohn-Sham
orbitals are slightly increased by the weight-dependent CC-functional.
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Figure 5.8: Weight-dependence of the lowest single excitation energy of He obtained from the “single”
GOK biensemble. The ensemble Kohn-Sham excitation energies of the weight-independent standard
functionals and their weight-dependent CC-analogs are reported. The complete ensemble single excita-
tion energies, which include the additional weight-derivative “DD” contributions of the CC-functionals,
are reported. For comparison, the LIM predictions of the weight-independent and weight-dependent
approximations are also reported. Finally, the ∆SCF single excitation energies obtained within the same
level of approximation are reported as well as the exact single excitation energy (from [8]). Calculations
were performed in the cc-pVQZ basis set with various methods and levels of approximations.

By restoring the linearity of the GOK biensemble energy and, thus, the weight-independence
of its constant slope, the CC-functionals yield much more stabilised and accurate predictions
of the single excitation energy, compared to the corresponding ∆SCF references, through
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the additional weight-derivatives of the CC-exchange-correlation functionals. Note that, by
construction, the linearity of the ensemble energy will yield as well a more accurate LIM
prediction of the excitation energy, as depicted in Figure E.6. Indeed, with the exact func-
tional, the linear interpolation method would yield exact excitation energies. We report in
Table 5.9 a more detailed overview of the performance of the CC-functionals, compared to
their weight-independent standard analogs, to extract single and double excitation energy
predictions from the “single” and “double” GOK biensembles studied in this work.
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Chapter 6

N-centered Ensembles: a Canonical
Formalism for Charged Excitations
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6.1 Introduction: Charged Excitations

Although DFT has been made widely applicable to a large variety of many-electron systems,
mainly due to the fact that major efforts have been dedicated to the design of a large panel
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of approximations, and became over the last decades a reliable and practical method with
a reasonably low computational cost in many scientific fields such as physics, chemistry and
material science, it still suffers from some serious discrepancies.
Indeed, there are still some specific quantities whose direct extraction from the Kohn-Sham
(KS) eigenvalues provided by a DFT calculation fails to provide satisfactory accuracy com-
pared to experimental references. For instance, ionization potentials, electron affinities and,
by construction, fundamental gaps are some examples of elusive properties that are poorly
predicted by Kohn-Sham quantities resulting from a DFT calculation, like we have seen in
the PPLB chapter. However, those quantities can still be evaluated by mean of the ∆SCF
method as ground-state total energy differences between neutral, anionic and cationic species
[13].
In fact, such properties arising from processes which involve alteration of the total number of
electrons of the system of interest can be quite challenging in some situations. For instance,
in the case of periodic systems, such as crystalline solids, varying the total number of elec-
trons constitutes an additional difficulty to overcome because of the periodic nature of such
systems. Indeed, because of the periodic boundary conditions, an infinitesimal change of the
charge of a unit cell would imply an identical change in each replica of the unit cell which
would therefore result in an infinitely large change of the total number of electrons of the
whole system.
Hence, the need to overcome this difficulty and to find a way to extract charged excitations
such as fundamental gaps based on quantities arising from calculations of the neutral system
only, without the imperative to vary the total charge of the system. Of course, many success-
ful attempts have been made so far to improve the accuracy of fundamental gap predictions
provided by conventional semi-local functionals in the KS-DFT framework. For instance, the
use of the exact-exchange (EXX) functional combined with the optimized effective potential
(OEP) method [48] to restore the missing derivative discontinuity of approximate functionals,
as discussed in the PPLB chapter, or the possibility to go beyond the KS framework and to
rely on the generalized Kohn-Sham scheme (GKS) instead [82], where the interacting-electron
system is mapped into an interacting fictitious system that can still be described by a single
Slater determinant but associated with a non-local orbital-dependent operator.
Although the GKS framework, combined with the screened-exchange approach or the hybrid
functional approach, has led to significant improvement in the prediction of fundamental
gaps of solids compared to the standard KS scheme, for finite-sized systems, like atoms and
molecules, it remains unsuccessful because of its inability to take into account sufficient long-
range exchange term.
Another alternative, suggested by Kraisler and Kronik, would consist in the ensemble gener-
alization of the Hartree and exchange-correlation terms [45, 47, 50].
Nevertheless, a very appealing idea would be to be able to extract charged excitation energies
from a first-principles approach which would only require a DFT-like low computational cost
and the sole use of quantities associated with the neutral system, thus avoiding any alteration
of the number of electrons, which would make it broadly-applicable to either finite or periodic
systems.
In this chapter, we will present an in-principle-exact canonical reformulation of the fun-
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damental gap problem in DFT and will explore its practical application to simple atomic
systems.

6.2 N-centered Ensemble Density-Functional Theory

6.2.1 N-centered eDFT Fundamental Idea

Quite recently, Senjean and Fromager have introduced the concept of N-centered ensembles
[76] to yield accurate descriptions of charged excitation processes through a canonical for-
malism which artificially maintains the total number of electrons of the system fixed and
equal to a specific integer value within the ensemble DFT (eDFT) framework. Conversely
to the standard PPLB grand canonical approach where the number of electrons of the phys-
ical open system is expected to vary continuously, resulting in a discontinuous shift in the
exact exchange-correlation potential, known as the derivative discontinuity, everytime that
an integral number of electrons is crossed, in the N-centered canonical framework, the exact
xc-potential does not have to exhibit such a discontinuous shift.
Hence, while the absence of derivative discontinuity in commonly used approximations to
the xc-energy is highly detrimental to the accurate prediction of charged excitations such
as the fundamental gap in standard PPLB-DFT and often results in substantial errors, in
N-centered ensemble DFT, it is inconsequential and the ability of approximate functionals to
yield accurate predictions for charged excitations will rather be determined by the ensemble-
weight dependence of such functionals [36].
In this chapter, we explore different choices of N -centered ensembles for the purpose of de-
scribing properties resulting from charge fluctuations around the so-called central integral
number of electrons N of a neutral atomic system.

Originally, the concept of N -centered ensemble was introduced for the purpose of calcu-
lating fundamental gaps in a single in principle exactly DFT-like calculation, in complete
analogy with GOK-DFT ensembles [12]. Formally, an N -centered ensemble consists of a
linear mixture of the ground states of the neutral, cationic and/or anionic forms of a given
species and a set of ensemble weights scaled so that the total number of electrons associated
with the corresponding auxiliary N -centered ensemble density is fixed and equal to the cen-
tral integral number of electrons N of the neutral system for any variation of the ensemble
weights, hence the name N -centered.
Note that, in the original formulation of the theory, the ensemble weights have no physical
meaning and are just auxiliary variables on which any true physical property extracted from
the ensemble should not depend.
So far, various definitions of N -centered ensembles have been proposed, among which the
single-weight N -centered ensemble, which allows a direct extraction of the fundamental gap
of the neutral N -electron system

Eξ = (1− 2ξ)EN
0 + ξEN−1

0 + ξEN+1
0 , (6.1)
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with 0 ≤ ξ ≤ 1
2
, and its two-weight generalization

Eξ =

(
1− (N − 1)

N
ξ− − (N + 1)

N
ξ+

)
EN

0 + ξ−EN−1
0 + ξ+EN+1

0 (6.2)

which enables direct extraction of both ionization potential and electron affinity of the neu-
tral system in a single calculation and whose ensemble weights ξ ≡ {ξ−, ξ+} must obey the
following convexity conditions

ξ± ≥ 0 (6.3) ξ−(N − 1) + ξ+(N + 1) ≤ N . (6.4)

Note that the single-weight N -centered ensemble defined in expression (6.1) is simply re-
covered when ξ− = ξ+ = ξ.

In addition to the above-mentioned N -centered reformulation of the fundamental gap
problem, two additional variants of N -centered ensembles were proposed for the purpose of
describing an open N -electron system resulting from both addition and removal of an elec-
tron [75]. For such canonical ensembles, a convenient and physical choice for the ensemble
weight value is to use the physical charge deviation α of the fractional electron number of the
open system, N = N ± α, associated with the ensemble relative to the central integer value
N of the neutral system, thus drawing a parallel with PPLB grand canonical ensembles.
The so-called left (subscript “-”) and right (subscript “+”) N -centered ensembles, which
correspond to the special weight configurations{

ξ− =
Nα

N − 1
, ξ+ = 0

}
(6.5)

{
ξ− = 0, ξ+ =

Nα

N + 1

}
, (6.6)

respectively, with 0 ≤ α ≤ 1, allow to treat both scenarios separately and to obtain an
in-principle-exact reformulation of the ionization potential and electron affinity theorems.
From now on, we will focus on the concept of left and right N -centered ensemble DFT and
compare it with conventional left and right PPLB-DFT for open systems, as discussed in the
PPLB chapter.

6.2.2 Left and Right N-centered Formalisms

Auxiliary ensembles

First, let us introduce the so-called left and right N -centered ensemble density matrix oper-
ators, respectively,

Γ̂
ξ−

= (1− α)Γ̂
N
+

Nα

N − 1
Γ̂

N−1
(6.7) Γ̂

ξ+

= (1− α)Γ̂
N
+

Nα

N + 1
Γ̂

N+1
(6.8)
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based upon the (N − 1)-, N - and (N + 1)-electron ground-state density matrix operators
Γ̂

N−1
=
∣∣ΨN−1

0

〉 〈
ΨN−1

0

∣∣
Γ̂

N
=
∣∣ΨN

0

〉 〈
ΨN

0

∣∣
Γ̂

N+1
=
∣∣ΨN+1

0

〉 〈
ΨN+1

0

∣∣ .
(6.9)

Furthermore, we define the left and right N -centered ensemble weights

ξ− =
N

N − 1
α (6.10) ξ+ =

N

N + 1
α (6.11)

whose expressions depend on the physical charge deviation α, from the central integral num-
ber of electrons N , of the left and right physical open systems with fractional number of
electrons

N− = N − α (6.12) N+ = N + α , (6.13)

respectively.

Consequently, based on the individual ground-state energies and densities of the (N−1)-,
N - and (N + 1)-electron systems, we can derive the following left and right N -centered en-
semble energies

Eξ− = (1− α)EN
0 +

Nα

N − 1
EN−1

0

= Tr
[
Γ̂

ξ−

Ĥ
] (6.14)

Eξ+ = (1− α)EN
0 +

Nα

N + 1
EN+1

0

= Tr
[
Γ̂

ξ+

Ĥ
] (6.15)

as well as the corresponding left and right N -centered ensemble densities

nξ−(r) = (1− α)nN
0 (r) +

Nα

N − 1
nN−1
0 (r)

= Tr
[
Γ̂

ξ−

n̂(r)
]

(6.16)

nξ+(r) = (1− α)nN
0 (r) +

Nα

N + 1
nN+1
0 (r)

= Tr
[
Γ̂

ξ+

n̂(r)
]

(6.17)

which always integrate to the central integral number of electrons N , independently of the
physical charge deviation α of the true physical open systems. Hence, the left and right
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N -centered normalization constraints∫
nξ−(r)dr = N (6.18)

∫
nξ+(r)dr = N . (6.19)

True physical ensembles

We stress that the left and righ N -centered ensembles are not the true physical ensembles
describing the open systems from/to which we remove/add an electron, they are auxiliary
quantities and thus do not possess any physical meaning. Let us recall the definitions of the
true physical ensembles associated with the open systems, the PPLB ensembles, which are
generated by ensemble density matrix operators of the form

Γ̂
N−

≡ Γ̂
α−

= (1− α)Γ̂
N
+ αΓ̂

N−1
(6.20) Γ̂

N+

≡ Γ̂
α+

= (1− α)Γ̂
N
+ αΓ̂

N+1
(6.21)

with PPLB ensemble energies

EN− ≡ Eα−
= (1− α)EN

0 + αEN−1
0

= Tr
[
Γ̂

N−

Ĥ
] (6.22)

EN+ ≡ Eα+

= (1− α)EN
0 + αEN+1

0

= Tr
[
Γ̂

N+

Ĥ
] (6.23)

and PPLB ensemble densities

nN−
(r) ≡ nα−

(r) = (1− α)nN
0 (r) + αnN−1

0 (r)

= Tr
[
Γ̂

N−

n̂(r)
]

(6.24)

nN+

(r) ≡ nα+

(r) = (1− α)nN
0 (r) + αnN+1

0 (r)

= Tr
[
Γ̂

N+

n̂(r)
]

(6.25)

which integrate to the true physical fractional numbers of electrons of the open systems
relative to the charge deviation α∫

nN−
(r)dr = N − α = N− (6.26)

∫
nN+

(r)dr = N + α = N+ . (6.27)

Connection between N-centered ensembles and PPLB ensembles

Nevertheless, a direct connection between the true physical PPLB ensemble density matrix
operators of the open systems and their canonical auxiliary N-centered counterparts can be
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derived

Γ̂
α−

=
(
1− α

N

)
Γ̂

ξ−

− α(1− α)

N

dΓ̂
ξ−

dα
(6.28) Γ̂

α+

=
(
1+

α

N

)
Γ̂

ξ+

+
α(1− α)

N

dΓ̂
ξ+

dα
, (6.29)

as well as for the true physical PPLB ensemble energies

Eα−
=
(
1− α

N

)
E ξ− − α(1− α)

N

dE ξ−

dα
(6.30) Eα+

=
(
1+

α

N

)
E ξ+ +

α(1− α)

N

dE ξ+

dα
(6.31)

and PPLB ensemble densities

nα−
(r) =

(
1− α

N

)
n ξ−(r)− α(1− α)

N

dn ξ−(r)

dα
(6.32)

nα+

(r) =
(
1+

α

N

)
n ξ+(r)+

α(1− α)

N

dn ξ+(r)

dα
.

(6.33)

6.2.3 Theoretical Extraction of Individual-State Properties and
Excitation Energies

As already discussed in the PPLB and GOK chapters, the practical advantage of the ensem-
ble formalism is to enable extraction of physical properties such as individual-state energies
and excitation energies from a given ensemble by taking simple derivatives of the ensemble
energy with respect to the ensemble weights.
First, let us recall the key expressions derived from the left and right PPLB ensembles for the
prediction of the ionization potential and electron affinity of the neutral N -electron system,
respectively

EN
0 = Eα− − α

dEα−

dα

EN−1
0 = Eα−

+ (1− α)
dEα−

dα

IN0 = EN−1
0 − EN

0 =
dEα−

dα

(6.34)

EN
0 = Eα+ − α

dEα+

dα

EN+1
0 = Eα+

+ (1− α)
dEα+

dα

AN
0 = EN

0 − EN+1
0 = −dEα+

dα
.

(6.35)

Turning now to the left and right N -centered canonical auxiliary ensembles, we derive similar
results for the extraction of the same set of exact properties of the true physical systems
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EN
0 = E ξ− − α

dE ξ−

dα

EN−1
0 =

N − 1

N

[
E ξ− + (1− α)

dE ξ−

dα

]
IN0 = − 1

N

[
E ξ− + (1− α−N)

dE ξ−

dα

]
(6.36)

EN
0 = E ξ+ − α

dE ξ+

dα

EN+1
0 =

N + 1

N

[
E ξ+ + (1− α)

dE ξ+

dα

]
AN

0 = − 1

N

[
E ξ+ + (1− α +N)

dE ξ+

dα

]
.

(6.37)

6.2.4 Kohn-Sham Formulation of N-centered Ensemble DFT

From now on, for the sake of clarity, we will only detail the Kohn-Sham formulation of left N -
centered ensemble density-functional theory which can easily be adapted for right N -centered
ensembles.

N-centered variational principle and universal functional

In complete analogy with the GOK-DFT variational principle, the left N -centered ensemble
energy is variationally determined as follows

E ξ− = min
n

{
F ξ− [n] +

∫
n(r)v(r)dr

}
, (6.38)

where the minimization is over all left N -centered trial ensemble densities of the type

n(r) ≡ n ξ−(r) , (6.39)

and where the left N -centered universal ensemble density functional can be decomposed as
follows

F ξ− [n] = T ξ−

s [n] + E ξ−

Hxc[n] , (6.40)

where the superscript “ξ−” emphasizes the fact that, unlike standard KS-DFT functionals,
the hereby ensemble functionals are weight-dependent. Naturally, since ensemble DFT is
a generalization of standard DFT to ensembles, when the ensemble density reduces to a
standard electron density, that is to say associated with a single electronic state, the ensemble
functionals must reduce as well to their standard weight-independent analogs.

N-centered non-interacting kinetic functional

Following the decomposition of the left N -centered universal functional, we define the left
N -centered non-interacting ensemble kinetic energy functional which can be expressed within
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the following constrained-search formulation

T ξ−

s [n] = min
γ̂ ξ−→n

{
Tr
[
γ̂ ξ−T̂

]}
= (1− α)

〈
ΦN, ξ−

0 [n]
∣∣∣ T̂ ∣∣∣ΦN, ξ−

0 [n]
〉
+

Nα

N − 1

〈
ΦN−1, ξ−

0 [n]
∣∣∣ T̂ ∣∣∣ΦN−1, ξ−

0 [n]
〉
,

(6.41)

where the constrained-search is over all non-interacting left N -centered ensemble density ma-
trix operators γ̂ ξ− , built from an arbitrary set of weight-dependent single Slater determinants

{ΦN, ξ−

0 ,ΦN−1, ξ−

0 }

γ̂ ξ− = (1− α)
∣∣∣ΦN, ξ−

0

〉〈
ΦN, ξ−

0

∣∣∣+ Nα

N − 1

∣∣∣ΦN−1, ξ−

0

〉〈
ΦN−1, ξ−

0

∣∣∣ , (6.42)

that yield the interacting left N -centered ensemble density n(r)

nγ̂ ξ− (r) = Tr
[
γ̂ ξ−n̂(r)

]
= (1− α)n

Φ
N, ξ−
0

(r) +
Nα

N − 1
n
Φ

N−1, ξ−
0

(r)

= n(r) .

(6.43)

In particular,
{
ΦN, ξ−

0 [n],ΦN−1, ξ−

0 [n]
}

are the minimizing ground-state Slater determinants

from which is built the minimizing non-interacting left N -centered ensemble density operator,
the so-called left N -centered Kohn-Sham ensemble density matrix operator

γ̂ ξ−

KS = (1− α)
∣∣∣ΦN, ξ−

0 [n]
〉〈

ΦN, ξ−

0 [n]
∣∣∣+ Nα

N − 1

∣∣∣ΦN−1, ξ−

0 [n]
〉〈

ΦN−1, ξ−

0 [n]
∣∣∣ , (6.44)

which has the particularity of minimizing the non-interacting ensemble kinetic energy, Tr
[
γ̂ ξ−T̂

]
,

as well as yielding the interacting left N -centered ensemble density, n(r), for a given and fixed
weight ξ−

n ξ−

KS (r) = Tr
[
γ̂ ξ−

KS n̂(r)
]

= (1− α)n
Φ

N, ξ−
0 [n]

(r) +
Nα

N − 1
n
Φ

N−1, ξ−
0 [n]

(r)

= n(r) .

(6.45)

Hence, we see that, in complete analogy with standard Kohn-Sham DFT, left N -centered
ensemble DFT is based on the mapping of an interacting left N -centered ensemble system to
a non-interacting left N -centered ensemble system that both share a common left N -centered
ensemble density.

N-centered variational ensemble energy and Kohn-Sham molecular orbitals

For practical reasons, one can express the variational principle for the left N -centered ensem-

ble energy in terms of the weight-dependent molecular orbitals
{
φξ−
p (r)

}
, which are implicit
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functionals of the left N -centered ensemble density, from which the non-interacting Kohn-
Sham Slater determinants are built,

E ξ−

0 = min
{φ ξ−

p
}

{
Tr
[
γ̂ ξ−

(
T̂ + V̂en

)]
+ EHxc[nγ̂ ξ− ]

}

= Tr
[
γ̂ ξ−

KS

(
T̂ + V̂en

)]
+ EHxc[n

ξ−

KS ] .

(6.46)

From now on, we will use the notation {φ ξ−
p } to refer to the specific set of minimizing weight-

dependent Kohn-Sham orbitals, that is to say the orbitals from which is built the set of single

Slater determinantal Kohn-Sham wave functions,
{
ΦN, ξ−

0 ,ΦN−1, ξ−

0 } ≡ {ΦN, ξ−

0 [n],ΦN−1, ξ−

0 [n]
}
,

that minimize the left N -centered ensemble energy and mimic the true interacting left N -

centered ensemble density n ξ−

0 (r).
For that reason, in the exact theory, we must have

n ξ−

KS (r) = (1− α)n
Φ

N, ξ−
0

(r) +
Nα

N − 1
n
Φ

N−1, ξ−
0

(r)

= (1− α)nΨN
0
(r) +

Nα

N − 1
nΨN

0
(r)

= n ξ−

0 (r)

(6.47)

where
{
nΨN

0
(r) ≡ nN

0 (r), nΨN−1
0

(r) ≡ nN−1
0 (r)

}
are the exact individual ground-state electron

densities generated by the exact eigenstates
{
ΨN

0 ,Ψ
N−1
0

}
of the interacting N - and (N − 1)-

electron systems.
We stress that, for a given ensemble DFT calculation, all the individual states of the ensemble
are built from the same set of weight-dependent Kohn-Sham orbitals.
Hence, the individual Kohn-Sham densities can be obtained by summation over all occupied
Kohn-Sham orbitals for the given state

n
Φ

N, ξ−
0

(r) =
N∑
p=1

∣∣∣φ ξ−

p (r)
∣∣∣2 (6.48) n

Φ
N−1, ξ−
0

(r) =
N−1∑
p=1

∣∣∣φ ξ−

p (r)
∣∣∣2 . (6.49)

Based on those definitions, the non-interacting left N -centered Kohn-Sham ensemble den-
sity can be reformulated in terms of the occupied weight-dependent Kohn-Sham molecular
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orbitals

n ξ−

KS (r) = (1− α)
N∑
p=1

∣∣∣φ ξ−

p (r)
∣∣∣2 + Nα

N − 1

N−1∑
p=1

∣∣∣φ ξ−

p (r)
∣∣∣2

=

(
1 +

α

N − 1

)N−1∑
p=1

∣∣∣φ ξ−

p (r)
∣∣∣2 + (1− α)

∣∣∣φ ξ−

N (r)
∣∣∣2

= n ξ−

0 (r) .

(6.50)

Hence, we see that the left N -centered ensemble density of the N -electron open system
does not mimic the true physical PPLB ensemble density which would correspond to having
the (N − 1) lowest Kohn-Sham molecular orbitals occupied by exactly one electron while the
Nth Kohn-Sham molecular orbital, the “HOMO”, would be fractionnally occupied by (1−α)
electron.

Self-consistent N-centered Kohn-Sham equations

The minimizing left N -centered Kohn-Sham orbitals are the solutions of a set of non-linear
equations, the self-consistent left N -centered Kohn-Sham equations(

− 1

2
∇2 + v(r) + v ξ−

Hxc(r)

)
φ ξ−

p (r) = ε ξ−

p φ ξ−

p (r) , (6.51)

where v(r) is the weight-independent local external nuclear potential and v ξ−

Hxc(r) is the
weight-dependent Hartree-exchange-correlation potential which is, by definition, the func-

tional derivative of the ensemble Hartree-exchange-correlation energy functional E ξ−

Hxc[n] with
respect to the left N -centered ensemble density n(r)

v ξ−

Hxc(r) =
δE ξ−

Hxc[n]

δn(r)
. (6.52)

Hence, we see that left N -centered density-functional theory, like GOK-DFT, is very similar
to the standard ground-state formulation of Kohn-Sham DFT with the difference that the

Kohn-Sham solutions are now a set of weight-dependent molecular orbitals
{
φ ξ−
p (r)

}
with

weight-dependent orbital energies
{
ε ξ−
p

}
.

Both PPLB-DFT and N -centered DFT aim to describe the energy and properties of an
open-system but the main difference between these two formalisms is that, since N -centered
ensemble densities are forced, by the scaling factors, to always integrate to the central integral
number of electrons N in place of the true physical fractional number of electrons N , it is a
canonical formalism and, thus, the exactN -centered Hartree-exchange-correlation functionals
must be weight-dependent in order to recover all the information about the ensemble, that
is to say the weight configuration.
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Indeed, in PPLB-DFT, the ensemble density changes accordingly to the physical charge
deviation α of the open system, which has been chosen to be the PPLB ensemble weight
and, consequently, the exact PPLB Hartree-exchange-correlation functional is not required
to possess a weight-dependency, unlike its N -centered counterpart.

6.2.5 Practical Extraction of Individual-State Properties and Ex-
citation Energies

Levy-Zahariev shift-in-potential

Like in GOK-DFT, one may find appealing to have a more convenient formulation of the
left N -centered ensemble energy and of the individual-state properties encompassed in the
ensemble, directly expressed in terms of the non-interacting Kohn-Sham orbital energies.
In that spirit, one can choose to apply the Levy-Zahariev (LZ) shift-in-potential in order to
rewrite the left N -centered ensemble energy into the form of weighted sums of LZ-shifted
Kohn-Sham orbital energies only. The LZ shift-in potential procedure is defined as follows

v ξ−

Hxc(r) = v ξ−

Hxc(r) +
E ξ−

Hxc[n]−
∫
v ξ−

Hxc(r)n(r)dr∫
n(r)dr

, (6.53)

where v ξ−

Hxc(r) is the LZ-shifted Hartree-exchange-correlation potential and v ξ−

Hxc(r) is the
originally unshifted potential, the definition of which is hereby recalled

v ξ−

Hxc(r) =
δE ξ−

Hxc[n]

δn(r)
. (6.54)

Let us define the weight-dependent Kohn-Sham auxiliary (total) energies of the N - and
(N − 1)-electron ground-states of the left N -centered ensemble

EN, ξ−

0 =
N∑
p=1

ε ξ−

p (6.55) EN−1, ξ−

0 =
N−1∑
p=1

ε ξ−

p . (6.56)

Analogous to standard KS-DFT where the total ground-state energy of the system is not
the sum of the energy of the occupied Kohn-Sham orbitals, the exact left N -centered ensem-
ble energy does not reduce to a weighted sum of occupied Kohn-Sham orbital energies

E ξ−

0 = (1− α)EN, ξ−

0 +
Nα

N − 1
EN−1, ξ−

0 + E ξ−

Hxc[n
ξ−

KS ]−
∫

v ξ−

Hxc(r)n
ξ−

KS (r)dr , (6.57)

where the non-interacting left N -centered Kohn-Sham ensemble density n ξ−

KS (r) mimics the

true interacting left N -centered ensemble density n ξ−

0 (r).
When one applies the Levy-Zahariev shift-in-potential procedure, one obtains a more compact
formulation of the exact left N -centered ensemble energy of the system

E ξ−

0 = (1− α)EN, ξ−

0 +
Nα

N − 1
EN−1, ξ−

0 , (6.58)
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where 
EN, ξ−

0 = EN, ξ−

0 +

(
E ξ−

Hxc

[
n ξ−

KS

]
−
∫ δE ξ−

Hxc

[
n ξ−
KS

]
δn(r)

n ξ−

KS (r)dr

)
EN−1, ξ−

0 = EN−1, ξ−

0 + N−1
N

(
E ξ−

Hxc

[
n ξ−

KS

]
−
∫ δE ξ−

Hxc

[
n ξ−
KS

]
δn(r)

n ξ−

KS (r)dr

) (6.59)

are the weight-dependent LZ-shifted Kohn-Sham auxiliary energies of the individual states
included in the ensemble. This corresponds to applying the following shift to each Kohn-
Sham molecular orbital energy

ε ξ−

p = ε ξ−

p +
E ξ−

Hxc[n
ξ−

KS ]−
∫
v ξ−

Hxc(r)n
ξ−

KS (r)dr∫
n ξ−

KS (r)dr
. (6.60)

Individual energies and excitation energies

Once the LZ-shift-in-potential procedure applied, one obtains much practical formulations
of the individual-state properties and excitation energies of the physical system in terms of
Kohn-Sham ensemble quantities and derivatives of the ensemble Hxc-energy functional with
respect to the ensemble weights

E ξ−

0 = (1− α)EN, ξ−

0 +
Nα

N − 1
EN−1, ξ−

0

EN
0 = EN, ξ−

0 − α
∂E ξ−

Hxc

∂α

∣∣∣∣∣
n ξ−
KS

EN−1
0 = EN−1, ξ−

0 +
(N − 1)

N
(1− α)

∂E ξ−

Hxc

∂α

∣∣∣∣∣
n ξ−
KS

IN0 = −ε ξ−

N − 1

N
(1− α−N)

∂E ξ−

Hxc

∂α

∣∣∣∣∣
n ξ−
KS

(6.61)

E ξ+

0 = (1− α)EN, ξ+

0 +
Nα

N + 1
EN+1, ξ+

0

EN
0 = EN, ξ+

0 − α
∂E ξ+

Hxc

∂α

∣∣∣∣∣
n ξ+

KS

EN+1
0 = EN+1, ξ+

0 +
(N + 1)

N
(1− α)

∂E ξ+

Hxc

∂α

∣∣∣∣∣
n ξ+

KS

AN
0 = −ε ξ+

N+1 −
1

N
(1− α +N)

∂E ξ+

Hxc

∂α

∣∣∣∣∣
n ξ+

KS

.

(6.62)

These are the key results upon which our numerical implementation of N -centered density-
functional theory was based in order to perform N -centered ensemble DFT calculations on
real simple atomic and molecular systems.
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6.3 Numerical Implementation of N-centered Density-

Functional Theory

In order to explore the performance and subtleties of N -centered ensemble DFT when ap-
plied to real physical systems, we have implemented various N -centered formalisms in our
ensemble DFT Fortran software which enables us to perform N -centered calculations at
both Hartree-Fock and DFT levels with commonly used weight-independent approximate
exchange-correlation functionals and with weight-dependent approximate xc-functionals es-
pecially designed for the occasion.

6.3.1 With Standard Weight-Independent Exchange-Correlation
Functionals

First, let us explore how commonly used approximate xc-functionals that were originally
designed for ground-state applications in standard DFT behave when extended to the N -
centered ensemble DFT framework.

Left N-centered ensembles

As a first concrete example, we chose to apply the left N -centered ensemble DFT formalism
to a small set of simple atomic systems in order to assess the capability of commonly used
approximate functionals to yield accurate ionization potentials through the self-consistent
variational minimization of a canonical auxiliary quantity, the left N -centered ensemble en-
ergy.
Let us recall that a left N -centered ensemble energy/density consists of a statistical mixture
of both N - and (N − 1)-electron ground-state energies/densities where the fixed ensemble
weigths assigned to those states are scaled so that the overall fictitious number of electrons
associated with the auxiliary ensemble system remains artificially constant and equal to the
central integral value N while the true number of electrons of the real open systemN = N−α
continuously varies in the range N ∈ [N − 1, N ], relative to the physical charge deviation α,

E ξ−

0 = (1− α)EN
0 +

Nα

N − 1
EN−1

0 . (6.63)

As an illustrative example, details of the electronic configurations used in order to perform
practical calculations of left N -centered ensemble DFT in the case of the lithium atom are
reported in Table 6.1. Since our intent was to draw a direct parallel between the performance
of left N -centered and left PPLB ensembles, the exact same electronic configurations were
used for both ensemble formalisms.
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Table 6.1: Electronic configurations of the individual states of the left N -centered biensemble associated
with the removal of the highest spin-up electron from the electronic configuration of the Lithium ground
state. Only the occupation numbers of the six lowest molecular orbitals of each spin are depicted.

State of the ensemble Weight Spin Occupation numbers

↑ 1 1 0 0 0 0
1 1− α ↓ 1 0 0 0 0 0

↑ 1 0 0 0 0 0
2 Nα

N−1 ↓ 1 0 0 0 0 0

In the exact theory, the exact left N -centered ensemble energy, that one would obtain
with the exact left N -centered ensemble functional, should be perfectly linear with respect
to the ensemble weight, and thus to the physical charge deviation of the number of electrons
of the real open system N .
Conversely to the exact left PPLB ensemble energy which must yield the exact ground-state
energies of the neutral and cationic systems when α = 0 and α = 1, respectively, the exact
left N -centered ensemble energy must yield the exact ground-state energy of the N -electron
system for the weight configuration α = 0 but must yield a specific fraction, pre-established
by the left N -centered scaling factor, of the exact ground-state energy of the cationic system
when α = 1. Hence, in the exact theory, one must have

E ξ−=0
0 = EN

0 (6.64) E
ξ−= N

N−1

0 =
N

N − 1
EN−1

0 . (6.65)

In the left PPLB framework, we have seen that the use of approximate xc-functionals in
place of the unknown exact functional would result in two practical observations: approx-
imate ground-state energies for the neutral and cationic systems, when α = 0 and α = 1,
respectively, plus additional curvature in the ensemble energy for any other weight configu-
ration, 0 < α < 1. Left PPLB and left N -centered ensemble energies of the lithium atom
obtained within various levels of approximation are reported in Figure 6.1 for illustrative
purposes.
In the left N -centered framework, similar observations can be made. For a given approximate
functional, the resulting left N -centered ensemble energy will exhibit additional curvature
but, most of all, it will significantly deviate from its theoretical endpoint value which should
be equal to a specific fraction of the ground-state energy of the cationic system obtained in
standard ground-state DFT with the same level of approximation, as depicted in Figure 6.1.
Hence, when a density-functional approximation (DFA) is used in place of the elusive and
unknown exact functional, the resulting ensemble energy will exhibit the following properties

E DFA, ξ−=0 = EN,DFA
0 (6.66) E DFA, ξ−= N

N−1 ̸= N

N − 1
EN−1,DFA

0 . (6.67)

175



Chapter 6. N -centered Ensembles: a Canonical Formalism for Charged Excitations

2.0 2.2 2.4 2.6 2.8 3.0

-11

-10

-9

-8

-7

2.0 2.2 2.4 2.6 2.8 3.0

-11

-10

-9

-8

-7

2.0 2.2 2.4 2.6 2.8 3.0

-11

-10

-9

-8

-7

2.0 2.2 2.4 2.6 2.8 3.0

-11

-10

-9

-8

-7

Figure 6.1: Comparison between the left PPLB (blue, solid line) and left N -centered (red, solid line)
ensemble energies of Li obtained with different levels of approximations in the cc-pVDZ basis set. Linear
interpolations of the PPLB (blue, dashed line) and N -centered (red, dot-dashed line) ensemble energies
are reported to highlight the additional curvature arising from the use of approximate functionals as
well as the endpoint deviation of the N -centered ensemble energy relative to its theoretical value (red,
dashed line).

This endpoint deviation can be explained by the fact that most approximate functionals
are not linear relative to the quantity that they must apply to, the electron density for
instance. Indeed, when α = 1, because of the multiplicative scaling factor N

N−1
, the left

N -centered ensemble density does not reduce to a single ground-state density and because of
the nonlinearity of the approximate functional, applying a nonlinear functional to a scaled
density fails to yield the corresponding scaled ground-state energy that one would obtain if
the functional were linear,

E DFA, ξ−
[

N

N − 1
n

]
̸= N

N − 1
E DFA, ξ− [n] . (6.68)

In order to have a much substantial overview of the performance of standard weight-
independent functionals in the left N -centered ensemble DFT framework, we have performed
left N -centered ensemble DFT calculations for a small set of simple atomic systems consist-
ing of elements of the first two rows of the periodic table plus the first three noble gases.
For each element, we have computed two specific features of the left N -centered ensemble
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energy curve: the curvature of the ensemble energy relative to its linear interpolation with
“wrong” endpoint value, and its total deviation relative to its theoretical linear interpolation
with “correct” endpoint value (see Figure 6.1).
These two aspects of the total error were computed by use of the trapezoidal rule which
consists in approximating the area under a curve. By subtracting those areas, percent errors
of the “curvature-only” and “total” deviations were computed for various atomic systems
and within various levels of approximation, the results are reported in Table 6.2.
Regarding the curvature, it seems that Hartree-Fock results tend to yield positive curvatures
and thus concave left N -centered ensemble energies while LSDA and BLYP functionals tend
to yield negative, and quite similar, curvatures and thus convex left N -centered ensemble
energies. As for the B3LYP hybrid functional, the results seem to be more subtle in the
sense that for some systems the resulting left N -centered ensemble energy will exhibit neg-
ative curvature while positive curvature for others. Nevertheless, B3LYP seems to yield left
N -centered energy with the lesser curvature.
Turning now to the total deviation of the left N -centered ensemble energy relative to its
theoretical linear interpolation. It appears that for all considered systems and within all con-
sidered levels of approximations, the total deviation of the left N -centered ensemble energy
is positive, resulting in an overestimation of the ensemble energy. Moreover, given the order
of magnitude of the curvature percent errors compared to the one of the total percent errors,
one can presume that the use of a standard weight-independent functional in the scope of
left N -centered ensemble DFT may have significant impact on the “quality” of the result-
ing left N -centered ensemble energy, and thus, on the accuracy of the physical properties
that one aims to extract from it. Hence, at this point, one can assume that standard weight-
independent functionals will show significantly different efficiencies in the scope of N -centered
ensemble DFT, as opposed to their well-established notorieties in standard ground-state DFT.
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As previously mentioned in this chapter, N -centered ensembles were designed to extract
physical properties of real systems from an auxiliary canonical ensemble energy by taking
simple derivatives with respect to the ensemble weight. Furthermore, we have seen that
those physical properties could be reformulated in terms of the weight-dependent Kohn-
Sham orbital energies with an additional contribution arising from the weight derivative of
the ensemble Hartree-exchange-correlation energy (see equations (6.61) and (6.62)).
In particular, left N -centered ensembles were specifically designed to extract ionization po-
tentials in a single ensemble calculation.
Since standard approximations, originally designed for ground-state applications, do not
possess any explicit dependency on the ensemble weight, it is straightforward to see that
the only ensemble contribution to the prediction of physical properties will come from the
weight-dependent Kohn-Sham orbital energies. For instance, in the scope of left N -centered
ensemble DFT, ionization potentials will be directly approximated by the opposite of the
LZ-shifted highest occupied molecular orbital (HOMO) of the neutral system, unlike in the
PPLB framework where ionization potentials were associated instead with the unshifted
HOMO energy of the neutral system.

IN0 = −ε ξ−

N − 1

N
(1− α−N)

∂E ξ−

Hxc

∂α

∣∣∣∣∣
n ξ−
KS

(6.69)

Once more, we would like to stress the fact that unlike in standard DFT, in any ensemble DFT
formalism, Kohn-Sham orbitals and orbital energies are weight-dependent and thus may differ
from one ensemble DFT calculation to another, accordingly to the variation of the ensemble
weight. Nevertheless, for sake of simplification, we will lose the superscript notation “ξ−” of
the Kohn-Sham orbital energies whose purpose was to highlight their weight-dependency.

In order to compare the performance of left PPLB ensembles and left N -centered ensem-
bles in the prediction of ionization potentials with a given weight-independent approximation,
the left PPLB unshifted HOMO energy of the neutral system as well as the left N -centered
LZ-shifted and unshifted HOMO energy of the neutral system are reported in Figure 6.2.
Additionally, ∆SCF ionization potentials obtained with the same level of approximation are
also reported in order to assess the quality of the ensemble Kohn-Sham predictions compared
to the ones obtained by total energy differences, which require multiple DFT calculations.
Let us recall that in the left PPLB framework, when the xc-functional has no explicit depen-
dence on the weight ensemble, ionization potentials are solely approximated by the opposite
of the weight-dependent unshifted HOMO energy of the neutral system while, in the scope
of left N -centered theory, it is the opposite of the weight-dependent LZ-shifted HOMO en-
ergy that becomes an approximation for the ionization potential of the neutral system (see
equation (6.69)).
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Figure 6.2: Variation of the ionization potential of Li with respect to the fractional number of electrons
of the open system, obtained within various ensemble formalisms and with various weight-independent
exchange-correlation functionals in the cc-pVDZ basis set. Opposite of the left PPLB weight-dependent
HOMO energy of the neutral system (blue solid line) is reported as well as the opposite of the left N -
centered weight-dependent unshifted (red dashed line) and LZ-shifted (red solid line) HOMO energies.
For each level of approximations, ∆SCF ionization potentials (black dashed line) are also reported for
comparison.

Turning back to Figure 6.2, we see that in the zero-weight limit (for N = N = 3), the
opposites of the left PPLB and N -centered unshifted HOMO energies are identical, which
was expected since both ensemble calculations reduce to the same standard ground-state
calculation in that limit. Whereas one electron is continuously removed from Li, through
the variation of the ensemble weights, both PPLB and N -centered ensemble HOMO energies
vary accordingly. While the opposite of the PPLB HOMO energy increases and manages to
match halfway, for α = 0.5, the ∆SCF ionization potential reference obtainded within the
same level of approximation, its N -centered counterpart decreases with a similar order of
magnitude, departing from the ∆SCF reference.
In left N -centered theory, we have seen that it is not the unshifted HOMO energy that will be
used as a first approximation to the ionization potential of the neutral system but, instead,
the LZ-shifted HOMO energy, as depicted in Figure 6.2. Hence, we see that, for all con-
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sidered approximations, the impact of the weight-dependent LZ-shift on the HOMO energy
is quite significant and will be responsible for yielding significantly overestimated ionization
potentials relative to PPLB predictions and ∆SCF references. For instance, with the B3LYP
functional, the ionization potential is significantly overestimated, with respect to the ∆SCF
reference, by about 1.5 hartrees, which is highly detrimental in terms of accuracy.

In order to offer a more complete overview of the “poor” performance of standard weight-
independent xc-functionals in the scope of left N -centered ensemble DFT, we have applied
the theory to a set of small atomic systems in order to assess the behavior as well as the
quality of the weight-dependent unshifted and LZ-shifted HOMO energies relative to the
corresponding ∆SCF ionization potentials, for a small variation of the ensemble weight. The
results were computed in terms of percent errors and are reported in Table 6.3.

Table 6.3: Percent errors of the opposite of the unshifted and Levy-Zahariev shifted N th Kohn-Sham
orbital energies compared to the ionization potential obtained from ∆SCF calculations for simple atomic
systems. The left N -centered calculations were performed for a small charge deviation, α = 0.05, in
Dunning’s correlation-consistent cc-pVDZ basis set and using different range of exchange-correlation ap-
proximations, in the scope of both Hartree-Fock and DFT theories. The blanks correspond to calculations
that did not converge.

∆(%) Left N-centered at α = 0.05
UHF LSDA BLYP B3LYP

−εN −εN −εN −εN −εN −εN −εN −εN
He −0.796 58.623 −38.456 57.782 −38.383 58.495 −30.927 56.989
Li −7.925 387.766 −44.335 552.518 −47.126 552.135 −38.180 507.456
Be −2.940 379.063 −39.465 442.576 −40.523 449.713 −32.996 420.682
B −1.486 531.705 −54.949 607.644 −55.457 615.473 −44.164 582.404
C 1.915 539.186 - - −51.046 607.122 −40.081 579.213
N 3.604 551.882 - - −47.779 610.743 −37.164 586.210
O 7.226 818.062 −52.880 792.719 −52.473 792.428 −40.769 771.797
F 7.842 779.842 - - −47.538 774.864 −36.582 755.088
Ne 7.969 757.247 - - −43.907 763.389 −30.927 56.989

Mean 1.712 533.708 −46.017 490.647 −47.136 580.484 −36.865 479.647

For a given atomic system and within a given level of approximation, if we compare the
percent errors associated with the opposite of the HOMO energy of the neutral system ob-
tained in left N -centered ensemble DFT compared to its left PPLB counterpart (see Table
4.5), we can see that the order of magnitude obtained with both ensemble formalisms, rela-
tive to the corresponding ∆SCF reference, are similar, in the range 30 to 50% for DFAs.
However, in the N -centered framework, once the LZ-shift is applied to the weight-dependent
Kohn-Sham orbital energies, the order of magnitude of the resulting percent error associated
with the opposite of the LZ-shifted HOMO energy is significantly increased up to several
hundreds percent, yielding significantly worse ionization potentials than in the PPLB frame-
work. Thus, highlighting the fact that besides the general observation that standard weight-
independent xc-functionals are rather inadequate to be used in the scope of ensemble-DFT,
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they are even more inadequate when they are applied to a completely fictitious auxiliary en-
semble with no direct physical reality whatsoever. Hence the need to dedicate a lot of effort in
the development of approximate functionals intentionally designed for ensemble applications.

As a small aside, note that in an ensemble formalism, especially in an unrestricted one
where spins are treated distinctly, the highest occupied molecular orbital (HOMO) of the
ensemble, which can be interpreted as a fictitious average system, is not necessarily the
same orbital than the HOMO of the neutral system because the overall ensemble does not
necessarily share the same set of occupation numbers than the one associated with a given
individual state included in this ensemble. By “not the same”, we mean that they can be
orbitals labeled with different numbers. Indeed, a given orbital can be occupied for the
description of a given individual state of the ensemble while unoccupied for the description
of the ensemble. Since N -centered ensembles are canonical ensembles associated with a fixed
integral number N of electrons, the orbital designated as HOMO of those types of ensembles
will always be the same orbital used as the HOMO of the neutral N -electron system but
this will not necessarily be the case for other types of ensembles, especially grand canonical
ensembles. Of course, the same logic holds for the LUMO denomination.

Right N-centered ensembles

Now that we have explored the capability of left N -centered ensembles to yield accurate
predictions for ionization potentials of atomic systems when combined with standard weight-
independent exchange-correlation functionals, we will proceed with the extraction of electron
affinities from right N -centered ensembles.
First, let us recall the generic expression of right N -centered ensemble energies associated
with an open system arising from the addition of an electron to a neutral N -electron system
in its ground-state electronic configuration,

E ξ+

0 = (1− α)EN
0 +

Nα

N + 1
EN+1

0 . (6.70)

As an illustrative example, Table 6.4 reports the details of the electronic configurations
that have been used in order to perform practical calculations of right N -centered ensemble
DFT applied to the lithium atom. Again, in the interest of establishing a parallel between
right PPLB an right N -centered results, both ensembles were built with the same individual
electronic configurations, that is to say that for a given system, the same electron has been
added to the neutral system within both formalisms.
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Table 6.4: Electronic configurations of the individual states of the right N -centered biensemble mimicing
the addition of a spin-down electron to the electronic configuration of the lithium ground state. Only
the occupation numbers of the six lowest molecular orbitals of each spin are depicted.

State of the ensemble Weight Spin Occupation numbers

↑ 1 1 0 0 0 0
1 1− α ↓ 1 0 0 0 0 0

↑ 1 1 0 0 0 0
2 Nα

N+1 ↓ 1 1 0 0 0 0

Similarly to the exact left N -centered ensemble, in the exact theory, the exact right N -
centered ensemble energy must be perfectly linear with respect to the ensemble weight and
must obey the following specific boundary conditions,

E ξ+=0
0 = EN

0 (6.71) E
ξ+= N

N+1

0 =
N

N + 1
EN+1

0 . (6.72)

Hence, the exact right N -centered ensemble energy, which is an auxiliary canonical quantity
with no direct physical meaning, must reduce to the exact ground-state energy of the neutral
system in the zero-weight limit and yield a scaled exact ground-state energy of the anionic
system, with the right N -centered scaling factor N

N+1
, when α = 1.

In practice, when a density-functional approximation (DFA) is used in place of the unknown
exact functional, the resulting boundary conditions will be more subtle because of the non-
linearity of most approximate functionals, as discussed for the left N -centered framework.

E DFA, ξ+=0 = EN,DFA
0 (6.73) E DFA, ξ+= N

N+1 ̸= N

N + 1
EN+1,DFA

0 . (6.74)

Indeed, approximate weight-independent functionals will yield non-linear right N -centered
ensemble energies with an additional endpoint deviation compared to the theoretical result
that would have been obtained if the functional were perfectly linear, as depicted in Figure
6.3. For a more complete overview of right N -centered ensemble energy features, percent er-
rors of curvature-only and total deviation of right N -centered ensemble energies applied to a
small set of atomic systems are reported in Table 6.5, within several levels of approximations.

Conversely to left N -centered ensemble energies, we observe that right N -centered en-
semble energies obtained with approximate functionals tend to be underestimated compared
to their theoretical counterparts. This may be a direct consequence of the fact that the right
N -centered scaling factor is, by construction, a positive number less than unity while its
left N -centered counterpart is greater than unity, resulting in overestimated left N -centered
ensemble energies.
As for the sign of the curvature, and thus the convex or concave nature of the ensemble

183



Chapter 6. N -centered Ensembles: a Canonical Formalism for Charged Excitations

energy, it does not seem to be affected by the left or right nature of the N -centered ensemble
but much more by the choice of approximation.
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Figure 6.3: Comparison between the right PPLB (blue, solid line) and right N -centered (red, solid line)
ensemble energies of Li obtained with different levels of approximations in the cc-pVDZ basis set. Linear
interpolations of the PPLB (blue, dashed line) and N -centered (red, dot-dashed line) ensemble energies
are reported to highlight the additional curvature arising from the use of approximate functionals as
well as the endpoint deviation of the N -centered ensemble energy relative to its theoretical value (red,
dashed line).

Turning now to electron affinities and how they can be extracted from right N -centered
ensembles. We recall the key-result derived in right N -centered ensemble DFT formalism
which enables one to express the electron affinity of a neutral N -electron system in terms
of the weight-dependent LUMO energy plus an additional contribution arising from the
derivative of the ensemble Hartree-exchange-correlation functional,

AN
0 = −ε ξ+

N+1 −
1

N
(1− α +N)

∂E ξ+

Hxc

∂α

∣∣∣∣∣
n ξ+

KS

. (6.75)

Hence, we see that, just like in standard ground-state DFT, in N -centered ensemble DFT
theory the HOMO and LUMO of the neutralN -electron system, the so-called frontier orbitals,
play a key-role in approximating ionization potentials and electron affinities with the crucial
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difference that, in ensemble DFT, the orbitals resulting from the calculation are weight-
dependent and are not optimized with respect to the ground-state of the neutral N -electron
system but to the whole ensemble system instead.
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Figure 6.4: Variation of the electron affinity of Li with respect to the fractional number of electrons
of the open system, obtained within various ensemble formalisms and with various weight-independent
exchange-correlation functionals in the cc-pVDZ basis set. Opposite of the right PPLB weight-dependent
LUMO energy of the neutral system (blue solid line) is reported as well as the opposite of the right N -
centered weight-dependent unshifted (red dashed line) and LZ-shifted (red solid line) LUMO energies.
For each level of approximations, ∆SCF electron affinities (black dashed line) are also reported for
comparison.

Since we only consider weight-independent approximations for now, the resulting electron
affinity will solely be determined by the opposite of the weight-dependent LZ-shifted LUMO
energy of the neutral system, as depicted in Figure 6.4.
Once again, we observe that, in the zero-weight limit, the opposite of the right PPLB and
right N -centered unshifted LUMO energies reduce to the same quantity but start departing
from each other while the ensemble weight increases, that is to say while a new electron
is added to the physical open system. We see that in both left and right N -centered en-
semble DFT the LZ-shift-in-potential procedure has significant impact on the quality of the
prediction of ionization potentials and electron affinities. Indeed, once the LZ-shift applied
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to the LUMO energy of the neutral system, the opposite of the resulting LZ-shifted LUMO
energy is moved far above the ∆SCF reference, yielding significantly overestimated electron
affinities, by around one hartree for the lithium atom.

Percent errors of the opposite of right N -centered unshifted and LZ-shifted LUMO ener-
gies of various atomic systems within various levels of approximation are reported in Table
6.6. The calculations were performed for a small variation of the ensemble weight.

Table 6.6: Percent errors of the opposite of the unshifted and Levy-Zahariev shifted (N + 1)th Kohn-
Sham orbital energies compared to the electron affinities obtained from ∆SCF calculations for simple
atomic systems. The right N -centered calculations were performed for a small charge deviation, α =
0.05, in Dunning’s correlation-consistent cc-pVDZ basis set and using different range of exchange-
correlation approximations, in the scope of both Hartree-Fock and DFT theories. The blanks correspond
to calculations that did not converge.

∆(%) Right N-centered at α = 0.05
UHF LSDA BLYP B3LYP

−εN+1 −εN+1 −εN+1 −εN+1 −εN+1 −εN+1 −εN+1 −εN+1

He −1.011 37.373 20.014 83.211 20.316 86.607 16.109 76.869
Li 8.338 4831.135 528.638 8850.237 820.745 14 190.784 453.614 8690.216
Be −0.342 2367.638 371.425 5741.472 306.665 4796.656 284.420 5243.750
B −27.375 5132.238 - - 841.821 13 176.832 1037.817 19 532.833
C −267.345 33 269.129 - - 3122.446 49 429.494 1048.642 20 221.910
N −17.827 2282.024 312.917 5454.507 313.207 5495.939 257.886 5548.179
O −46.529 4996.777 - - 1196.761 22 501.888 1275.353 29 784.450
F −506.966 49 838.080 - - 751.706 14 901.682 480.963 11 963.366
Ne 15.126 291.815 - - 16.157 421.713 12.687 405.308

Mean −93.770 11 449.578 308.248 5032.356 821.091 13 889.066 540.832 11 274.097

Once more, we see that right PPLB and N -centered ensemble DFT LUMO energies are
associated with percent errors of similar orders of magnitude, about a few hundreds per-
cent. Nevertheless, in right N -centered ensemble DFT, the additional LZ-shift-in-potential
applied to the LUMO energy will significantly increase the magnitude of the error relative
to the ∆SCF reference. While it is well-known than LUMO energies yield poor predictions
for physical properties such as electron affinities, we see that this infamous deficiency is even
more detrimental in the N -centered framework because of the additional contribution of the
LZ-shift to the prediction of electron affinities.

Therefore, without an explicit weight-dependence of the Hxc-functional, it seems un-
reachable to obtain accurate predictions for charged excitation energies such as ionization
potentials and electron affinities through an N -centered ensemble DFT formalism. Hence
the need to dedicate significant efforts to designing explicit weight-dependent approximate
functionals which encompasses subtilities arising from the scope of both ground-state DFT
and ensemble DFT.
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Single-weight N-centered triensembles

Now that we have seen how ionization potentials and electron affinities can be extracted from
left and right N -centered ensembles, respectively, in a single DFT-like calculation, we will
explore the capability of N -centered ensembles to enable direct extraction of fundamental
gaps. As a matter of fact, the original formulation of N -centered ensemble DFT proposes to
design a three-state ensemble which includes the ground states of the neutral, cationic and
anionic forms of a N -electron system,

Eξ = (1− 2ξ)EN
0 + ξEN−1

0 + ξEN+1
0 , (6.76)

with 0 ≤ ξ ≤ 0.5.
In this work, we will focus on the single-weight N -centered triensemble which has the speci-
ficity of assigning the same ensemble-weight to both cationic and anionic contributions of
the ensemble. Since ground-state energies are physical quantities, they must have no depen-
dency on the ensemble weight and, therefore, the single-weight N -centered ensemble energy
must be linear with respect to the ensemble weight. As a consequence, the variation of the
ensemble weight must have no impact on the slope of the exact N -centered ensemble energy
which must remain constant for any weight-configuration. The practical advantage of such
ensemble is to enable direct extraction of fundamental gaps through the derivative of the
ensemble energy with respect to the ensemble weight,

ΩN
0 ≡ IN0 − AN

0

= EN−1
0 + EN+1

0 − 2EN
0

=
dEξ

dξ
.

(6.77)

Based on that definition, we can derive in the same manner that we did for the left and
right N -centered biensemble formulations for ionization potentials and electron affinities,
fundamental gap formulations based on the weight-dependent N -centered ensemble Kohn-
Sham orbital energies and on the derivative of the Hartree-exchange-correlation functional
with respect to the ensemble weight. Hence, we derive the following N -centered formulation
for the fundamental gap of the N -electron system,

ΩN
0 = ε ξ

N+1 − εξN +
∂Eξ

Hxc

∂ξ

∣∣∣∣∣
n ξ

KS

. (6.78)

Hence we see that, in the single-weight N -centered triensemble framework defined previously,
we obtain that the fundamental gap of the N -electron system can be approximated by the
traditional HOMO-LUMO gap of the neutral system, obtained from the unshifted weight-
dependent ensemble Kohn-Sham orbital energies, plus an additional contribution arising from
the explicit dependence of the exact ensemble Hartree-exchange-correlation functional on the
ensemble weight.
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Of course, if standard weight-independent approximate Hxc-functionals were to be used in
place of the exact unknown functional, the resulting fundamental gap prediction would solely
be determined by the ensemble HOMO-LUMO gap of the neutral system which may turn
out to be insufficient, in complete analogy with standard-DFT Kohn-Sham HOMO-LUMO
gaps.

In order to test the theory, we have performed single-weight N -centered triensemble en-
semble DFT calculations for various simple atomic systems (see Table 6.8) in order to eval-
uate the accuracy and behaviour of the weight-dependent Kohn-Sham approximation for
the fundamental gap compared to what one would obtain when performing standard ∆SCF
calculations with the same level of Hxc approximation. Note that computing fundamental
gaps from ∆SCF calculations would require three standard-DFT calculations while a single-
weight N -centered triensemble fundamental gap would only require a single calculation with
a DFT-like computational cost.
As an illustrative example, Table 6.7 reports details of the electronic configurations that
have been used to apply the single-weight N -centered triensemble eDFT theory to the lithium
atom. We stress that theN -centered HOMO-LUMO formulation of fundamental gaps derived
in equation (6.78) is only valid if the electronic configurations used to build the individual
states of the ensemble are chosen accordingly.

Table 6.7: Electronic configurations of the individual states of the single-weight N -centered triensemble
applied to the lithium atom.

State of the ensemble Weight Spin Occupation numbers

↑ 1 1 0 0 0 0
1 1− 2ξ ↓ 1 0 0 0 0 0

↑ 1 0 0 0 0 0
2 ξ ↓ 1 0 0 0 0 0

↑ 1 1 0 0 0 0
3 ξ ↓ 1 1 0 0 0 0

As expected, assessing the performance of standard weight-independent xc-functionals in
the scope of single-weight N -centered triensemble eDFT theory has led us to the same con-
clusions already drawn in the left and right N -centered frameworks. The use of inadequate
weight-independent approximations results in non-linear N -centered ensemble energies and,
thus, associated with non-constant slopes, resulting in unphysical weight-dependent funda-
mental gaps, as depicted in Figure 6.5. Indeed, the lack of explicit weight-dependence in the
xc-functionals results in the absence of the weight-derivative additional term in the prediction
of fundamental gaps, which appears to have significant impact on the quality of the result.
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Figure 6.5: Variation of the fundamental gap of Li with respect to the ensemble weight, extracted
from the single-weight N -centered triensemble and for various weight-independent exchange-correlation
functionals in the cc-pVDZ basis set. ∆SCF fundamental gaps (black dashed line) and experimental
fundamental gaps (black solid line) are also reported for comparison (see Appendix A).

In the zero-weight limit, the single-weight N -centered calculation reduces to a standard
ground-state DFT calculation for the neutral system, yielding significantly underestimated
Kohn-Sham fundamental gaps and slightly overestimated Hartree-Fock fundamental gaps,
compared to ∆SCF references obtained within the same level of approximations. Experimen-
tal fundamental gaps are also reported in Figure 6.5 to highlight the very poor quality of
Kohn-Sham fundamental gaps in both ground-state DFT and N -centered eDFT.
In addition, percent errors of single-weight N -centered fundamental gap predictions relative
to ∆SCF fundamental gaps obtained with standard weight-independent approximations are
reported in Table 6.8 for various atomic systems and various weight configurations.
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Table 6.8: Percent errors of the single-weight N -centered triensemble eDFT Kohn-Sham fundamen-
tal gap compared to the ∆SCF reference for simple atomic systems. The single-weight N -centered
triensemble calculations were performed for a small charge deviation, ξ = 0.05 and for the equitriensem-
ble configuration ξ = 1/3, in Dunning’s correlation-consistent cc-pVDZ basis set and with different level
of exchange-correlation approximations. The blanks correspond to calculations that did not converge.

∆(%) single-weight N-centered εN+1 − εN
UHF LSDA BLYP B3LYP

ξ = 0.05 ξ = 1/3 ξ = 0.05 ξ = 1/3 ξ = 0.05 ξ = 1/3 ξ = 0.05 ξ = 1/3

He 1.322 −14.823 −26.749 −27.256 −27.011 −27.522 −21.489 −25.065
Li −6.526 −64.596 −83.759 −93.728 −84.297 −95.379 −69.571 −89.389
Be −0.099 −39.231 −64.182 −65.289 −64.229 −66.491 −51.664 −61.020
B 2.249 −61.840 −98.089 −99.421 −94.148 −97.994 −75.058 −90.797
C 6.776 −60.273 - - −95.385 −98.424 −75.188 −90.851
N 6.582 −46.112 - - −77.984 −87.614 −60.833 −80.785
O 13.768 −57.928 - - −94.811 −98.185 −73.741 −90.299
F 16.279 −56.951 - - −95.675 −98.492 −73.815 −90.328
Ne −9.039 −27.396 - - −25.379 −27.596 −19.662 −25.434

Mean 3.479 −47.683 −68.194 −71.423 −73.213 −77.521 −57.891 −71.552

Furthermore, the increase of the N -centered single weight fails to improve the results,
yielding even more underestimated fundamental gap predictions with DFAs.
At the Hartree-Fock level, the variation of the ensemble weight will result in a much signif-
icant decrease of the gap, compared to the rather slow decrease provided by DFAs. While
Hartree-Fock theory is known to yield overestimated fundamental gaps in standard DFT,
this overestimation will gradually give way to a much significant underestimation of the gap,
as the N -centered ensemble weight increases.

6.3.2 With Weight-dependent Exchange-Correlation Functionals

Building weight-dependent N-centered exchange functionals

Thus far, we have highlighted the poor performance of standard weight-independent xc-
functionals when used in the scope of N -centered ensemble DFT, characterised by a deviation
of the N -centered ensemble energies from the theoretical ensemble energies that one would
expect based on the well-known performance of such approximate functionals within their
original framework, ground-state KS-DFT. Indeed, we have seen that the use of inadequate
weight-independent and non-linear approximate functionals may cause two notable features
of the N -centered ensemble energies, curvature and wrong endpoint energy values, that may
have significant impact on the ability of such functionals to provide accurate predictions for
physical properties such as ionization potentials and electron affinities.
Therefore, our interest is to build a weight-dependent functional that would aim at correcting
both curvature and wrong endpoint features of left and right N -centered ensemble energies
in order to explore the impact that such functionals may have on the quality of the physical
properties extracted from those ensembles.
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Since the order of magnitude of exchange energies is much more significant than for correlation
energies, we assume that injecting an explicit weight-dependency into the exchange part of
the total ensemble energy functional may correct most of the incorrect features of left and
right N -centered ensemble energies.
Hence, to design our weight-dependent approximate exchange functional we will start by
removing the standard weight-independent exchange energy functional from the total N -
centered ensemble energy functional and replace it with a weight-dependent exchange energy
functional,

E ξ±, eDFA[n] = E ξ±,DFA[n]− E ξ±,DFA
x [n] + E ξ±, eDFA

x [n] , (6.79)

with the weight-dependent N -centered ensemble density-functional approximation (eDFA)
for the exchange energy

E ξ±, eDFA
x [n] ≡ F ξ±

x E ξ±,DFA
x [n] , (6.80)

where F ξ±
x is the explicitly weight-dependent N -centered exchange scaling factor and ξ± =

N
N±1

are the left (−) or right (+) N -centered ensemble weight.

The eDFA exchange approximate functional defined in equation (6.80) must correct both
curvature and endpoint deviation errors of the N -centered ensemble energy stemming from
the use of inadequate standard ground-state density-functional approximations (DFAs).
Thereby, the eDFA ensemble energy functional defined in equation (6.79) must recover the
same pure-state individual ground-state energy of the neutral system obtained with standard
DFAs in ground-state DFT, when α = 0, as well as the scaled ground-state energy of the
cationic/anionic system, when α = 1, in addition to yielding a perfectly linear N -centered
ensemble energy between those two boundary conditions

E ξ±, eDFA = EN,DFA
0 + α

(
N

N ± 1
EN±1,DFA

0 − EN,DFA
0

)
. (6.81)

Combining equations (6.79), (6.80) and (6.81), we deduce the analytical expression of the
weight-dependent N -centered CC-exchange multiplicative scaling factors

F ξ±

x =

EN,DFA
0 + α

(
N

N±1
EN±1,DFA

0 − EN,DFA
0

)
−
(
E ξ±,DFA − E ξ±,DFA

x

)
E ξ±,DFA

x

. (6.82)

In order to explore separately the impact of the curvature and endpoint deviation of the N -
centered ensemble energy, we have designed weight-dependent exchange functionals so that
only the linearity of the N -centered ensemble energy would be restored, with no alteration
of the endpoint energy value. Hence, the analytical expression of the “curvature” weight-
dependent N -centered CC-exchange multiplicative scaling factors

F ξ±

x,curv =
EN,DFA

0 + α
(
E ξ±= N

N±1
,DFA − EN,DFA

0

)
−
(
E ξ±,DFA − E ξ±,DFA

x

)
E ξ±,DFA

x

. (6.83)
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Since the weight-dependent eDFA exchange functional must reduce to its weight-independent
counterparts in the zero-weight limit α = 0 but not for α = 1, we choose to approximate the
N -centered exchange scaling factor with a 4th order polynomial expression that reduces to
unity when α = 0 (see Figure 6.6),

F ξ±

x ≈ 1 + aα + bα2 + cα3 ++dα4 . (6.84)

As for the “curvature” weight-dependent N -centered CC-exchange multiplicative scaling fac-
tors, they must yield no corrections at weight α = 0 and α = 1, with no correction of the
N -centered endpoint energy value. Therefore, we choose to approximate the “curvature”
scaling factor with a 4th order polynomial expression centered on α = 1

2
and which reduces

to 1 when α = 0 and α = 1 (see Figure 6.7)

F ξ±

x,curv ≈ 1− α(1− α)

[
a+ b

(
α− 1

2

)
+ c

(
α− 1

2

)2
]
, (6.85)

with {a, b, c, d} a set of real parameters.
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Figure 6.6: Comparison between weight-dependent left (left panel) and right (right panel) N -centered
“total deviation” exchange scaling factors of Li, obtained from various weight-dependent approximations
in the cc-pVDZ basis set.
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Figure 6.7: Comparison between weight-dependent left (left panel) and right (right panel) N -centered
“curvature-only” exchange scaling factors of Li, obtained from various weight-dependent approximations
in the cc-pVDZ basis set.

Hence, the following decomposition for the weight-dependent eDFA N -centered total-
energy functional

E ξ±, eDFA[n] = Ts[n] + EH[n] + E ξ±, eDFA
x [n] + EDFA

c [n] + Een[n] , (6.86)

where we choose to put all the explicit weight-dependency of the Hartree-exchange-correlation
functional into its exchange part and to use the classical weight-independent Hartree func-
tional EH[n] and a standard weight-independent DFA correlation functional EDFA

c [n]. Addi-
tionally to the ensemble energy functional, the explicit weight-dependency will be included
as well in the ensemble Hartree-exchange-correlation potential

v ξ±, eDFA
Hxc (r) = vH(r) + v ξ±, eDFA

x (r) + vDFA
c (r) , (6.87)

where vH(r) and vDFA
c (r) are the weight-independent Hartree and correlation potentials,

respectively, and

v ξ±, eDFA
x (r) =

δE ξ±, eDFA[n]

δn(r)

= F ξ±

x vDFA
x (r) ,

(6.88)

is the weight-dependent N -centered exchange potential.

In this work, the use of a weight-dependent exchange functional will enable us to extract
more stable individual-state properties and excitation energies from N -centered ensembles,
that is to say more constant with respect to the variation of the ensemble weight, due to the
additional contribution stemming from its derivative with respect to the ensemble weight,

∂E ξ±, eDFA
Hxc [n]

∂ξ±
=

∂E ξ±, eDFA
x [n]

∂ξ±
=

∂F ξ±
x

∂ξ±
E DFA

x [n] . (6.89)
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The N -centered weight-dependent eDFAs will be referred to by use of the same denomi-
nation already used in this work for the weight-dependent approximate functionals that have
been designed in the scope of PPLB and GOK ensemble formalisms. Hence, each weight-
independent DFA considered in this work will serve as starting point for the design of its
weight-dependent counterpart, the CC-DFA functional. Total and “curvature-only” weight-
dependent N -centered CC-exchange multiplicative scaling factors have been computed within
the scope of both left and right N -centered biensembles applied to a small set of atomic sys-
tems and for various levels of xc-approximation, as depicted in Figure 6.8.
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Figure 6.8: Comparison between weight-dependent “total deviation” (left panel) and “curvature-only”
(right panel) left N -centered exchange scaling factors of a set of simple atomic systems, obtained from
the weight-dependent xc-functional CC-B3LYP in the cc-pVDZ basis set.

Left N-centered ensembles

We have performed self-consistent left N -centered calculations with the above-mentioned
weight-dependent CC xc-functionals in order to assess to what extent the curvature and
endpoint deviations of N -centered ensemble energies obtained with standard DFAs would af-
fect the quality of the ensemble predictions of physical properties such as charged excitations.
Regarding the leftN -centered ensemble energies obtained with weight-dependent CC-functionals
(see Figure E.7), we see that such functionals managed to recover the “correct” ensemble en-
ergies, with no curvature and with correct endpoint energy values, for all considered levels
of approximation, as they were intended to. Nevertheless, despite the good behaviour of
the CC ensemble energies for almost the full range of the ensemble weight, a small endpoint
deviation still subsists. This may be because the CC-functionals are still non-linear with
respect to the quantity they are applied to and even enforcing a predefined endpoint value
on such functionals doesn’t ensure the final self-consistent results.
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Figure 6.9: Comparison between the left PPLB (blue solid line) and left N -centered (red solid line)
ensemble energies of Li obtained with standard weight-independent xc-functionals and their weight-
dependent CC-analogs in the cc-pVDZ basis set. Linear interpolations of the PPLB (blue dashed line)
andN -centered (red dot-dashed line) ensemble energies are reported to highlight the additional curvature
arising from the use of weight-independent approximate functionals as well as the endpoint deviation
of the N -centered ensemble energy relative to its theoretical value (red dashed line). For each level of
approximation, the left N -centered ensemble energy obtained with the corresponding weight-dependent
CC-functional is also reported (dark-red solid line).

Turning now to the ensemble predictions of the ionization potential of Li obtained with
CC-functionals, we see that by correcting the total deviation of the left N -centered ensemble
energies, the weight-dependent CC-functionals managed to yield much satisfactory ionization
potentials than the weight-independent DFAs, as depicted in Figure E.8.
As a matter of fact, the weight-dependent orbital energies obtained from a given DFA and
the ones provided by its CC-counterpart are very similar and the same observation stands for
the LZ-shifted orbital energies (see Table D.1). Moreover, most of the improvement of the
results is due to the additional contribution of the weight derivative of the CC-functionals,
illustrated by the “DD” term.
Nevertheless, because of the residual endpoint deviation of the CC left N -centered ensemble
energies, the prediction of ionization potentials tends to depart from the ∆SCF references as
the ensemble weight increases, that is to say as the electron is gradually removed and the
number of electrons of the open system decreases, yielding more and more underestimated
predictions. For that reason, left N -centered calculations in the zero-weight limit seems to
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be the best option to obtain satisfactory results.
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Figure 6.10: Variation of the ionization potential of Li with respect to the fractional number of electrons
of the open system, obtained within left PPLB and left N -centered ensemble formalisms with various
weight-independent and weight-dependent exchange-correlation functionals in the cc-pVDZ basis set.
For each weight-independent approximation, opposite of the left PPLB weight-dependent HOMO energy
(blue solid line) of the neutral system is reported as well as the opposite of the left N -centered weight-
dependent LZ-shifted HOMO energy (red solid line). Opposites of the left N -centered weight-dependent
unshifted (dark-red dashed line) and LZ-shifted (dark-red dot-dashed line) HOMO energies obtained with
weight-dependent CC xc-functionals are also reported for comparison along with the total ionization
potential prediction (dark-red solid line) arising from the additional weight-derivative contribution of
the CC xc-functional. ∆SCF ionization potentials (black dashed line) obtained with weight-independent
approximations are also reported for comparison.

Right N-centered ensembles

Similarly, we have performed self-consistent right N -centered eDFT calculations with the
CC-functionals that were designed to correct the curvature and endpoint deviations exhib-
ited by standard weight-independent approximations in right N -centered ensemble energies.
We draw the same conclusions that for the performance of CC-functionals when applied to left
N -centered ensembles. Indeed, CC-functionals succeed as well to restore the “correct” (the-
oretical) right N -centered ensemble energies for each considered levels of xc-approximations
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despite of a marginal endpoint deviation that subsists for final ensemble-weight values, as de-
picted in Figure 6.11. Note that these residual endpoint deviations of the CC-functionals ap-
pear to be smaller than the ones exhibited by left N -centered ensembles with CC-functionals.
This may be connected to the fact that the N -centered scaling factor of the ensemble weight
is, by construction, larger than unity for left ensembles whereas smaller than unity for right
ensembles. Hence, the residual endpoint deviation of the left N -centered ensembles would
be emphasized compared to its right counterpart.
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Figure 6.11: Comparison between the right PPLB (blue solid line) and right N -centered (red solid line)
ensemble energies of Li obtained with standard weight-independent xc-functionals and their weight-
dependent analogs (CC xc-functionals) in the cc-pVDZ basis set. Linear interpolations of the PPLB
(blue dashed line) and N -centered (red dot-dashed line) ensemble energies are reported to highlight
the additional curvature arising from the use of weight-independent approximate functionals as well as
the endpoint deviation of the N -centered ensemble energy with respect to its theoretical value (red
dashed line). For each level of approximation, the right N -centered ensemble energy obtained with the
corresponding weight-dependent CC-functional is also reported (dark-red solid line).

As for the extraction of electron affinities from right N -centered ensembles with the
CC-functionals (see Figure 6.12), we see that, for a given CC-functional, the unshifted and
LZ-shifted orbital energies are almost unchanged compared to their counterparts provided
by the corresponding weight-independent xc-functional (see Table D.2). Indeed, most of the
improvement in the prediction of electron affinities will arise from the additional weight-
derivative of the CC-functionals, the “DD” contribution.
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Finally, because of the residual endpoint deviation in the ensemble energies provided by the
CC-functionals, the resulting electron affinity predictions ensemble will succeed in matching
the ∆SCF references for small ensemble-weight values but will become slightly overestimated
as the ensemble-weight increases. Hence, we see that for both left an right N -centered en-
sembles, the zero-weight limits appear to be the most judicious choice for extracting physical
properties from such ensembles.
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Figure 6.12: Variation of the electron affinity of Li with respect to the fractional number of electrons of
the open system, obtained within right PPLB and right N -centered ensemble formalisms with various
weight-independent and weight-dependent exchange-correlation functionals in the cc-pVDZ basis set. For
each weight-independent approximation, opposite of the right PPLB weight-dependent LUMO energy of
the neutral system (blue solid line) is reported as well as the opposite of the right N -centered weight-
dependent LZ-shifted LUMO energy (red solid line). Opposites of the rightN -centered weight-dependent
unshifted (dark-red dashed line) and LZ-shifted (dark-red dot-dashed line) LUMO energies obtained with
weight-dependent CC xc-functionals are also reported for comparison along with the electron affinity
prediction arising from the additional weight-derivative contribution of the CC xc-functional (dark-red
solid line). ∆SCF electron affinities (black dashed line) obtained with weight-independent approximations
are also reported for comparison.
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6.4 Extended N-centered Ensembles: Combining Charged

and Neutral Excitation Energies

Very recently, work has been done to benefit from the strong analogy between GOK-DFT
and N -centered eDFT by designing hybrid GOK/N -centered ensembles that would incor-
porate N -electron neutrally excited states into regular N -centered ensembles, thus allowing
for the extraction of both charged and neutral excitation energies from a single ensemble
DFT calculation. Such ensembles, proposed by Fromager et al., are referred to as extended
N -centered (eN -centered) ensembles.

6.4.1 Left Extended N-centered Triensemble

First, let us introduce the following left extended N -centered (left eNcent) triensemble, which
is obtained by mixing a left N -centered ensemble with a conventional GOK biensemble

Eη = (1− α− w)EN
0 +

Nα

N − 1
EN−1

0 + wEN
1 , (6.90)

where η ≡ {ξ−;w} = { Nα
N−1

;w} gathers the positive left N -centered and GOK ensemble
weights. Note that, by definition of both GOK and N -centered ensembles, extended N -
centered ensembles are canonical ensembles associated with ensemble densities that integrate
to the central integral number N of electrons.
To ensure that the variational minimization of the left eN -centered ensemble energy yield a
lower bond of the energy, the positive left eN -centered ensemble weights must obey convex-
ity constraints in addition to the GOK constraint, thus leading to the following restricted
domains

0 ≤ w ≤ 1

2
− α

2
≤ 1

2
⇐⇒ 0 ≤ α ≤ 1− 2w ≤ 1 . (6.91)

In complete analogy with the work presented in the GOK chapter, we chose to apply the
left eN -centered eDFT formalism to a small set of two-electron systems in order to assess
the performance of commonly-used weight-independent xc-approximations within this new
framework. Hence, the theory was applied to the helium atom He, the hydrogen molecule H2

in its equilibrium geometry and the helium hydride cation HeH+ in its equilibrium geometry.
Details of the electronic configurations that were used to build the left eN -centered ensemble
are reported in Table 6.9.
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Table 6.9: Electronic configurations of the individual states of the left extended N -centered triensemble
applied to two-electron systems. All individual states of the ensemble are built from a common set of
orbitals associated with specific occupation numbers.

State of the ensemble Weight Spin Occupation numbers

↑ 1 0 0 0 0 0
1 1− α− w ↓ 1 0 0 0 0 0

↑ 0 0 0 0 0 0
2 Nα

N−1 ↓ 1 0 0 0 0 0

↑ 0 1 0 0 0 0
3 w ↓ 1 0 0 0 0 0

Note that, for the particular settings displayed in Table 6.9, the weight-dependent HOMO
and LUMO energies of the neutral (ground-state) system are defined as εη

N = ε↑,η1

εη
N+1 = ε↑,η2 .

(6.92)

Variations of the left eN -centered ensemble energy of He with respect to both left N -
centered and GOK ensemble weights, obtained within the LSDA approximation, are depicted
in Figure 6.13. The variation of the leftN -centered weight does not seem to have much impact
on the left eN -centered ensemble energy whereas the variation of the GOK weight results in a
substantial positive shift of the eN -centered ensemble energy. Moreover, the left N -centered
nature of the left eN -centered ensemble seems to induce most of the curvature of the left
eN -centered ensemble energy, compared to the GOK contribution.
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Figure 6.13: Variation of the left extendedN -centered ensemble energy of He with respect to the physical
charge deviation α of the left N -centered ensemble weight (left panel) and the GOK weight w (right
panel) for various weight configurations, obtained with the weight-independent LSDA xc-functional in
the cc-pVDZ basis set.
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Although the left eN -centered ensemble energy is a fictitious auxiliary quantity, it gives
access to all individual energies included in the ensemble and, therefore, to all excitation
energies involving those states.
For instance, an exact formulation of the first ionization potential of the N -electron system,
defined as

IN0 ≡ EN−1
0 − EN

0 , (6.93)

can be derived from quantities arising from the left eN -centered eDFT calculation. Indeed,
one can derive the following exact formulation for the ground-state ionization potential

IN0 = −εη
N − 1

N

(
1− α−N

)∂E η
Hxc

∂α

∣∣∣∣∣
nη

KS

+
w

N

∂E η
Hxc

∂w

∣∣∣∣∣
nη

KS

. (6.94)

Additionally, one can extract the first ionization potential of the lowest N -electron excited
state, defined as

IN1 ≡ EN−1
0 − EN

1 , (6.95)

for which an exact formulation can also be derived from the left eN -centered ensemble energy

IN1 = −εη
N+1 −

1

N

(
1− α−N

)∂E η
Hxc

∂α

∣∣∣∣∣
nη

KS

+
(w
N

− 1
)∂E η

Hxc

∂w

∣∣∣∣∣
nη

KS

. (6.96)

Finally, the inclusion of neutrally excited states in the left eN -centered ensemble enables the
extraction of neutral excitation energies, such as the optical gap of the N -electron system,
defined as

ΩN
1 ≡ EN

1 − EN
0

= IN0 − IN1 ,
(6.97)

for which the following formulation can be derived

ΩN
1 = εη

N+1 − εη
N +

∂E η
Hxc

∂w

∣∣∣∣∣
nη

KS

. (6.98)

We stress that the fact that we managed to express all excitation energies of equations 6.94,
6.96 and 6.98 in terms of the HOMO and LUMO energies of the neutral (ground-state) sys-
tem defined in equation 6.92 is a direct consequence of the electronic configurations that we
chose to use to build the individual states of the left eN -centered ensemble. Different choices
may lead to different formulations for the excitation energies.

Thereby, we see that approximate functionals with no explicit weight-dependence will
yield ionization potentials through the sole contribution of the opposite of the weight-
dependent LZ-shifted HOMO energy of the neutral N -electron system, with no additional
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contributions arising from the derivatives of the Hxc functional with respect to both ensemble
weights. As expected, the poor performance of standard weight-independent functionals in
yielding accurate ionization potentials in the scope of left N -centered eDFT is extended to
the left eN -centered framework, as depicted in Figure 6.14.
Similarly, with weight-independent approximations, the “excited” first ionization potential
will solely be approximated by the opposite of the weight-dependent LZ-shifted LUMO energy
of the neutral N -electron system, yielding very unsatisfactory results (see Figure 6.15).
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Figure 6.14: Variation of the left extended N -centered first ionization potential of He with respect
to the physical charge deviation α of the left N -centered ensemble weight (left panel) and the GOK
weight w (right panel) for various weight configurations, obtained with the weight-independent LSDA
xc-functional in the cc-pVDZ basis set. ∆SCF and experimental first ionization potentials are reported
for comparison (see Appendix A).
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Figure 6.15: Variation of the left extended N -centered “excited” first ionization potential of He with
respect to the physical charge deviation α of the left N -centered ensemble weight (left panel) and the
GOK weight w (right panel) for various weight configurations, obtained with the weight-independent
LSDA xc-functional in the cc-pVDZ basis set. The ∆SCF “excited” ionization potential is reported for
comparison.

As a matter of fact, predictions of excitation energies that involve individual states as-
sociated with the scaled left N -centered ensemble weight tend to be of significantly poor
quality whereas excitation energies, such as the optical gap, that arise from the GOK part
of the ensemble seem to yield much acceptable results (see Figure 6.16).

0.0 0.2 0.4 0.6 0.8 1.0

1.61

1.62

1.63

1.64

1.65

0.0 0.2 0.4 0.6 0.8 1.0

1.61

1.62

1.63

1.64

1.65

Figure 6.16: Variation of the left extended N -centered optical gap of He with respect to the physical
charge deviation α of the left N -centered ensemble weight (left panel) and the GOK weight w (right
panel) for various weight configurations, obtained with the weight-independent LSDA xc-functional in
the cc-pVDZ basis set. Optical gaps obtained in GOK-DFT with the linear interpolation method (LIM)
and ∆SCF method are reported for comparison.

In view of these mitigated results, finding an optimal weight configuration that would yield
satisfactory excitation energies in a single eDFT calculation, independently of the system it is
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applied to or the choice of approximation seems to be even more challenging when the nature
of the ensemble involves two different ensemble formalims with two specific ensemble weights
(see Table 6.10). Hence, the left eN -centered ensemble framework seems to have inherited
the deficiencies of its left N -centered counterpart in the scope of weight-independent approx-
imations, emphasizing the necessity to design much adequate weight-dependent functionals
to harness properly the potential offered by such new eDFT formalisms.

Table 6.10: Percent errors of the Kohn-Sham predictions compared to the ∆SCF predictions for the first
ionization potential IN0 , the “excited” first ionization potential IN1 and the optical gap ΩN

1 of He, H2

and HeH+, extracted from left extended N -centered calculations in the cc-pVDZ basis set and using
the weight-independent LSDA xc-functional. For the sake of simplicity, we chose to lose the superscript
“η” that highlighted the weight-dependence of the orbital energies.

α w −εN −εN+1 εN+1 − εN
0 1/2 57.134 69.394 0.126
1/3 1/3 50.036 62.441 −0.641
1/2 1/4 45.760 57.709 −0.858

He

1/2 0 46.771 55.867 0.526

0 1/2 51.838 189.293 0.293
1/3 1/3 44.651 186.184 −8.424
1/2 1/4 40.859 183.756 −12.726

H2

1/2 0 44.455 189.445 −9.916

0 1/2 30.203 65.926 −0.151
1/3 1/3 25.668 66.314 −8.871
1/2 1/4 23.275 65.829 −12.885

HeH+

1/2 0 25.461 68.244 −10.894

6.4.2 Right Extended N-centered Triensemble

For the sake of completeness, we explored as well the possibility of mixing a right N -centered
ensemble with a conventional GOK biensemble in order to extract electron affinities and
neutral excitation energies from the same eDFT calcultaion.
In this context, we define the following right extendedN -centered (right eN -centered) triensem-
ble

Eη = (1− α− w)EN
0 +

Nα

N + 1
EN+1

0 + wEN
1 , (6.99)

where η ≡ {ξ+;w} = { Nα
N+1

;w} gathers the positive right N -centered and GOK ensem-
ble weights which must obey the following restricted constraints to ensure the variational
minimization of the right eN -centered ensemble energy,

0 ≤ w ≤ 1

2
− α

2
≤ 1

2
⇐⇒ 0 ≤ α ≤ 1− 2w ≤ 1 . (6.100)

Table 6.11 displays the details of the electronic configurations that were used to apply the
right eN -centered formalism to two-electron systems. Note that, within this context, the
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frontier-orbital energies of the neutral (ground-state) N -electron system are still consistent
with equation (6.92).

Table 6.11: Electronic configurations of the individual states of the right extended N -centered triensem-
ble applied to two-electron systems. All individual states of the ensemble are built from a common set
of orbitals associated with specific occupation numbers.

State of the ensemble Weight Spin Occupation numbers

↑ 1 0 0 0 0 0
1 1− α− w ↓ 1 0 0 0 0 0

↑ 1 1 0 0 0 0
2 Nα

N+1 ↓ 1 0 0 0 0 0

↑ 0 1 0 0 0 0
3 w ↓ 1 0 0 0 0 0

Such right eN -centered ensembles allow for the extraction of the first electron affinity,
defined as

AN
0 ≡ EN

0 − EN+1
0 , (6.101)

as well as the “excited” first electron affinity,

AN
1 ≡ EN

1 − EN+1
0 , (6.102)

and finally the optical gap,
ΩN

1 ≡ EN
1 − EN

0 . (6.103)

Once more, when using weight-independent Hxc-functionals, those three excitation en-
ergies will be solely approximated by the weight-dependent LZ-shifted kohn-Sham auxiliary
excitation energies with no additional contributions arising from the derivatives of the func-
tional with respect to the ensemble weights. As a direct consequence, we derive the following
first approximations for the above-mentioned excitation energies

AN
0 ≈ EN

0 − EN+1
0 = −εN+1

AN
1 ≈ EN

1 − EN+1
0 = −εN

ΩN
1 ≈ EN

1 − EN
0 = εN+1 − εN = εN+1 − εN

(6.104)

Hence, due to the electronic configurations used to build the ensemble, we see that the fron-
tier orbitals of the neutral (ground-state) system play a key-role in our attempt to predict
excitation energies from right eN -centered ensemble DFT calculations.

Unfortunately, in complete analogy with the conclusions drawn within the left eN -centered
framework, right eN -centered eDFT suffers as well of the inability of right N -centered eDFT
to yield satisfactory electron affinity predictions (see Table 6.12) with an order of magnitude
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significantly worse than the one obtained for ionization potential predictions in the scope of
left eN -centered ensembles, whereas the order of magnitude associated with the predictions
of the optical gap are relatively similar in both formalisms.

Table 6.12: Percent errors of the Kohn-Sham predictions compared to the ∆SCF predictions for the
electron affinity AN

0 , the “excited” electron affinity AN
1 and the optical gap ΩN

1 of He, H2 and HeH+,
extracted from right extended N -centered calculations in the cc-pVDZ basis set and using the weight-
independent LSDA xc-functional. For the sake of simplicity, we chose to lose the superscript “η” that
highlighted the weight-dependence of the orbital energies.

α w −εN −εN+1 εN+1 − εN
0 1/2 416.859 83.445 0.126
1/3 1/3 423.439 84.390 0.437
1/2 1/4 426.526 84.814 0.599

He

1/2 0 429.289 84.807 1.067

0 1/2 246.410 373.049 0.293
1/3 1/3 251.459 373.620 3.109
1/2 1/4 253.908 373.847 4.495

H2

1/2 0 256.427 382.506 2.573

0 1/2 84.805 364.966 −0.151
1/3 1/3 86.860 363.698 2.912
1/2 1/4 87.871 362.917 4.467

HeH+

1/2 0 88.577 378.483 0.666
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7.1 Introduction: Fractional-Charge and Fractional-Spin

Errors

The undeniable success of DFT is due, to a large extent, to the possibility to resort to ap-
proximate xc-functionals, as the exact functional remains out of reach. Paradoxically, the
approximate nature of the functionals is also responsible for some of the most massive failures
of DFT. Interestingly, such failures are not exclusive to large or complicated systems or to a
given class of approximations, but are rather large systematic errors that occur even for the
description of the simplest one- or two-electron systems, with either the simplest or the more
elaborated approximation.
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The inability of approximate functionals to obey the piecewise linearity exact-condition
for the energy of systems with fractional charge has been formalized into the concept of
localization and delocalization errors [61] (or fractional charge errors) and has shown to be
responsible for much of the deviation of calculated DFT properties from experimental results
such as band gap predictions or dissociation limits.
As for the violation of the constancy condition for fractional spins, it has led to the static-
correlation error [15] (or fractional spin error) and reflects the incapacity of approximate
functionals to properly describe systems with degenerate ground states associated with dif-
ferent spin configurations.
Static correlation (or strong correlation) encompasses situations where single-determinantal
(single-particle) approaches, such as HF and KS-DFT, fail to provide a proper description
of quantum matter. Static-correlation errors have shown to be significant in situations in-
volving degeneracies and near-degeneracies, in strongly correlated systems where electron
interactions are particularly difficult to describe, or in situations involving the breaking of
chemical bonds.
As a matter of fact, most of the methods exhibiting small fractional-charge errors tend to
yield large fractional-spin errors, and vice-versa. For instance, while second-order Møller-
Plesset (MP2) perturbation theory provides very low fractional-charge errors, it also exhibits
infinite fractional-spin errors. Hence, a method or approximation which would be able to
provide marginal errors for both descriptions of fractional charge and fractional spin con-
cepts still constitutes a challenge for electronic-structure calculations.

The concept of fractional charge and fractional spin and their formal and practical impli-
cations on real systems have been extensively studied by Mori-Sánchez, Cohen and Yang [14,
16] whose work have provided enlightening insights into the intrinsic nature of some mas-
sive systematic errors of approximate xc-functionals within the scope of HF and KS-DFT.
Moreover, they proposed a unified formulation of both concepts leading to the “flat-plan
condition” [60] for the exact energy of systems with both fractional charges and fractional
spins.
These considerations may be essential to the future development of DFT and the elaboration
of new approximate functionals which would overcome both basic errors.

7.2 Fractional-Dissociation Problem

7.2.1 Fractional-Charge Error of Atomic Systems

Before addressing the asymptotic fractional-dissociation problem, we recall that the “piece-
wise linearity” exact property, derived by Perdew, Parr, Levy and Balduz (PPLB) [70], states
that, as the number of electrons N of an open system continuously varies, the exact total
energy of such a system, EN (N ), must consist of a series of straight lines between integral
electron numbers N . In Chapter 4, we have highlighted the inability of standard methods
and functionals to behave in accordance with the “piecewise linearity” exact requirement for
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the energy.

We have seen that Hartree-Fock energy is known to depict a concave behaviour, that is to
say a positive curvature, which means that fractional configurations of the open system will
be given a greater energy than integral configurations and, thus, will be less energetically
favourable. Hence, in an Hartree-Fock calculation, the “delocalization” of the charge will
erroneously raise the energy of the system. Such functionals that tend to favor too localized
charge distributions over much delocalized ones are associated with “localization errors”.
Conversely, commonly-used DFA functionals are known to deviate from the piecewise linear-
ity exact condition with negative curvatures, thus, yielding convex energy curves, as depicted
in Figure 7.1. In that case, fractional configurations, that is to say delocalized charge distri-
butions, will be given a lower, and thus more stable, energy than integral configurations, or
pure states. These observations have led to the concept of “fractional-charge error” or “delo-
calization error” which is a direct consequence of the negative deviation of the approximate
energy of an open system from the piecewise linear exact energy.
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Figure 7.1: Energy versus fractional number of electrons N for H, Li, C and F with weight-independent
BLYP (blue solid line) and weight-dependent CC-BLYP (red dashed line) xc-functionals in cc-pVDZ
basis set.

Regarding this matter, we have designed for each considered approximation explicitly
weight-dependent alter-egos, “curvature corrected” (CC) xc-functionals, that were intended
to correct the energy curvature exhibited by the weight-independent functional, in order to
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restore the piecewise linearity exact condition of the energy. A major asset of such weight-
dependent ensemble functionals arises from the fact that their elaboration does not necessarily
require to step outside the DFT framework or to resort to methods with a higher degree of
complexity such as an optimized effective potential method, for instance.
We have performed self-consistent PPLB-DFT ensemble calculations in order to confirm the
correct functioning of the CC-functionals in yielding piecewise linear energies for open sys-
tems, as depicted in Figure 7.1. We stress that such functionals are not intended for routine
applications on a wide range of systems since their elaboration is, by construction, highly
specific in the sense that it depends on the system-of-interest, the nature of the ensemble,
the choice of basis set, the choice of xc-approximation. . . The CC-functionals presented in
this work only aim to highlight the possibility to benefit from explicit weight-dependency
into xc-functionals to correct and improve deficiencies of standard approximations within the
scope of ensemble DFT.

Fractional charges are not, at first, real phenomena but can arise from dissociation pro-
cesses of real systems [14], such as stretched molecules where the electron density will delocal-
ize over all dissociated fragments, and may cause significant errors throughout binding curves
in their dissociation limits, exhibiting too low or too high predictions of binding energies, as
we shall see below.
Moreover, the concept of fractional charge is not specific to atoms and molecules but is
a more general problem that may arise from any delocalized charge distribution. Indeed,
the inability of commonly used approximate functionals to properly predict the energy for
fractional charges in small finite systems will lead to significant systematic errors in the pre-
diction of properties of larger systems, like larger molecules or solid-state calculations [61].
For instance, poor description of fractional charges may have major implications on band-gap
predictions, as discussed in Chapter 4.
Hence, evaluating the performance and limitations of approximate functionals when applied
to fictitious systems, like fractionally charged systems, can help to better apprehend their
physical consequences on real systems.

7.2.2 Impact of the Fractional-Charge Error on Dissociation Lim-
its

A practical consequence of the principle of “integer preference”, derived by Perdew [66], is
that, upon stretching, a neutral molecule must dissociate into neutral atoms with integral
numbers of electrons on each. As a matter of fact, many approximations fail to obey this
simple exact property and erroneously predict that many-electron systems dissociate into
fractionally charged fragments, instead. This asymptotic fractional dissociation is highly un-
physical and has practical implications.
From energetic considerations, this means that with DFAs an unphysical minimum of the
energy of the overall dissociated system is reached when the total charge is delocalized upon
all dissociated fragments. This erroneous result stems from the inability of standard ap-
proximations to yield proper descriptions of charge-transfer processes, in both molecular and
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solid-state systems. It is a direct consequence of the violation of the piecewise linearity exact-
condition for the energy, which has been formalized into localization and delocalization errors
of approximate functionals. Many systems and approximations are known to exhibit such er-
roneous behaviour, yielding well-separated atoms with fractional number of electrons on each.

Following the work of Kraisler and Kronik [44], we address the fractional-dissociation
problem by employing both standard weight-independent approximations and our weight-
dependent CC-functionals, designed within the PPLB framework. By restoring the piecewise
linearity of the energy of the dissociated fragments, the weight-dependent CC-functionals
may be able to prevent spurious charge transfer between the well-separated atoms and to
yield proper descriptions of dissociation limits of molecular systems, as opposed to standard
approximations, as we shall see.

Neutral diatomic molecules

We chose to proceed in the same manner as Kraisler and Kronik did to assess the performance
of their OEP-based “ensemble generalization” when addressing the fractional-dissociation
problem. Hence, we start by considering dissociation limits of neutral diatomic molecules
AB whose proper dissociation limit A . . . B must yield well-separated atoms A and B, with
respective integer numbers of electrons NA and NB.
We will consider the total energy EA...B(q) of any dissociation limit involving the transfer of
a fractional charge q from one atom to the other, with −1 ≤ q ≤ 1. With that definition,
q = 0 corresponds to the correct dissociation limit A . . . B with no spurious charge-transfer,
while q = 1 and q = −1 correspond to the transfer of a whole electron from atom B to atom
A, and vice-cersa.
The total energy of such a dissociated system is dictated by another exact principle, the
“separability” principle [66] which states that the total energy of a system composed of
well-separated subsystems can be obtained by summation of the energies of the underlying
compounds. As a result, the total energy of a well-separated neutral diatomic molecule is
given as

EA...B(q) = EA(NA + q) + EB(NB − q) . (7.1)

For the diatomic model system AB, the configurations q = −1, q = 0 and q = 1 correspond
to dissociated fragments A+ . . . B−, A . . . B and A− . . . B+, respectively.

We have performed self-consistent PPLB ensemble DFT calculations for a small set of
atomic systems within various levels of approximation in order to obtain the atomic energy
curves E(N ) (see Figure 7.1) as functions of the fractional number of electrons N that are
needed in equation (E.30). By summation of these atomic energies, we have built dissociation
limits of a small set of neutral diatomic molecules: LiF, CF and FH, as depicted in Figures
E.9 and 7.3.
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Figure 7.2: Energy E(N ) versus fractional number of electrons N for Li (top left panel) and F (top
right panel) and dissociation limit E(q) versus fractional charge q for Li. . .F (bottom), with weight-
independent B3LYP (blue solid line) and weight-dependent CC-B3LYP (red dashed line) in cc-pVDZ
basis set. The green dot highlights the unphysical spurious minimum of the energy exhibited by standard
approximations. For the diatomic model system AB, the configurations q = −1, q = 0 and q = 1
correspond to dissociated fragments A+ . . . B−, A . . . B and A− . . . B+, respectively.
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Figure 7.3: Dissociation limit E(q) versus fractional charge q for C. . .F (left panel) and F. . .H (right
panel), with weight-independent BLYP (blue solid line) and weight-dependent CC-BLYP (red dashed
line) in cc-pVDZ basis set. The green dots highlight the unphysical spurious minima of the energy
exhibited by standard approximations. For the diatomic model system AB, the configurations q = −1,
q = 0 and q = 1 correspond to dissociated fragments A+ . . . B−, A . . . B and A− . . . B+, respectively.

For the dissociated LiF molecule the weight-independent B3LYP xc-functional yields a
convex energy curve with a spurious minimum at q = −0.20. In contrast, the weight-
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dependent CC-B3LYP xc-functional yields an energy in much more accordance with the
piecewise linearity condition and with a correct minimum at q = 0.
Similarly, the weight-independent BLYP xc-functional provides convex energies for the disso-
ciated CF and FH molecules, with unphysical minima at q = −0.10 and q = 0.05, respectively,
whereas the weight-dependent CC-BLYP xc-functional yields much more piecewise-linear en-
ergies, with correct minima at q = 0 for both systems.
Hence, restoring piecewise linearity of the atomic energies ensures proper dissociation limits
of larger systems, such as molecules.

Singly-ionized diatomic molecules

Again, departing from the work of Kraisler and Kronik, we have applied our CC-functionals
to a small set of singly ionized diatomic molecules of the type (A . . . B)+ in order to assess the
consistency of the dissociation limits obtained with weight-independent and weight-dependent
functionals. For such system, the total energy of the dissociated system can be obtained as
follows

E(A...B)+(q) = EA(NA − q) + EB(NB − (1− q)) , (7.2)

with 0 ≤ q ≤ 1 and 1− q the fractions of the electron removed from atom A and B, respec-
tively, such that a single electron is removed from the overall system.
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Figure 7.4: Energy E(N ) versus fractional number of electrons N for H (left panel) and dissociation
limit E(q) versus fractional charge q for (H . . .H)+ (right panel), with weight-independent LSDA (blue
solid line) and weight-dependent CC-LSDA (red dashed line) in cc-pVDZ basis set. The green dot
highlights the unphysical spurious minimum of the energy exhibited by standard approximations.

In the case of the symmetric homoatomic (H . . .H)+, the correct dissociation limit must
correspond to having an hydrogen atom H and cation H+ for all values of q but, in practice,
many convex approximate functionals, such as the LSDA, favor an unphysical dissociation
limit with half of the electron delocalized on each hydrogen center, corresponding to q = 0.5,
as depicted in Figure 7.4. Indeed, we see that the LSDA yields an underestimated spurious
minimum for the dissociation limits of (H . . .H)+ by around 0.10 hartree.
Once more, by restoring the piecewise linearity exact condition for the atomic energy curves,
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the weight-dependent CC-LSDA functional succeeds in providing an almost perfectly con-
stant energy curve for the dissociated system, as required.
As for the singly ionized heteroatomic diatomic molecules, (C . . .H)+, (F . . .H)+ and (C . . .F)+,
the BLYP functional also predict erroneous convex energies, underestimated by around 0.07,
0.07 and 0.04 hartree, respectively, with corresponding spurious minima at q = 0.40, q = 0.60
and q = 0.30, as depicted in Figure 7.5.
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Figure 7.5: Dissociation limit E(q) versus fractional charge q for (C . . .H)+, (F . . .H)+ and (C . . .F)+,
with weight-independent BLYP (blue solid line) and weight-dependent CC-BLYP (red dashed line) in
cc-pVDZ basis set. The green dots highlight the unphysical spurious minima of the energy exhibited
by standard approximations. The true minima obtained at q = 0, q = 1 and q = 0 with CC-BLYP
correspond to dissociation limts C+ . . .H, F . . .H+ and C+ . . .F, respectively.

The weight-dependent CC-BLYP xc-functional manages to restore the linearity feature for
the energy and thus remedy the spurious fractional dissociation, yielding proper dissociation
limits corresponding to well-separated fragments C+ . . .H, F . . .H+ and C+ . . .F. This result
is consistent with the ionization potentials of the atomic subsystems (see Appendix A), which
represent the cost-in-energy for removing an electron from neutral atomic systems,

IC0 < IH0 < IF0 . (7.3)

In conclusion, regarding the asymptotic fractional-dissociation problem, designing ap-
proximate functionals which are capable of restoring piecewise linearity of the atomic en-
ergies ensures proper dissociation limits of larger systems, such as molecules. Explicitly
weight-dependant xc-functionals may therefore offer such an appealing alternative within a
DFT-like framework.
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7.3 Fractional-Spin Error

7.3.1 Fractional-Spin Formalism

Spin-pure electron

An electron can only be in two specific spin-configurations, the spin-up or spin-down con-
figurations (also known as the high- and low-spin configurations), corresponding to specific
values of the spin magnetic quantum number ms = ±1

2
and frequently denominated as α and

β spins, respectively.

Figure 7.6: Illustrative representations of the spin-up (ms = +1
2) and spin-down (ms = −1

2) configura-
tions of a single electron.

As we have seen, the wave function associated with the description of a single electron
is called an orbital. For one-electron systems, the exact ground-state wave function will be
determined by a single occupied spatial orbital φ0(r) from which one can derive the exact
ground-state spatial electron density

n0(r) = |φ0(r)|2 (7.4)

with the normalization constraint ∫
n0(r)dr = N = 1 , (7.5)

where N is the number of electrons of the system.
The exact energy of such one-electron system is solely determined by the kinetic energy
T [n0] of the electron and its potential energy Vext[n0] arising from the interaction between
the single electron and an external potential such as the one provided by an atomic nucleus.
The kinetic and potential energies of an electron are usually conveniently combined to form
a one-body component of the energy, the core energy h[n0],

E0 = T [n0] + Vext[n0] ≡ h[n0] . (7.6)

Fractional-spin electron

Conversely to spin-pure electrons, a fractional-spin electron is associated with unphysical
spin configurations, −1

2
< ms <

1
2
.
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Figure 7.7: Illustrative representations of various fractional-spin configurations of a single electron (−1
2 <

ms <
1
2) with conservation of the overall norm of the spin.

As a result, the electron density of a fractional-spin electron can be modeled by use of
the ensemble formalism. Indeed, by mixing individual spin-up, nα(r), and spin-down, nβ(r),
electron densities in accordance with specific ensemble weights, (1− w) and w, respectively,
one obtains a two-state ensemble density that allows for the description and the study of
such unconventional electronic system

nw(r) = (1− w)nα(r) + w nβ(r) , (7.7)

with the ensemble weight 0 ≤ w ≤ 1. Note that nσ(r) (with σ = {α, β}) are spatial elec-
tron densities associated with spin-pure one-electron systems and thus should be normalized
accordingly ∫

nσ(r)dr = 1 . (7.8)

As a consequence, the ensemble density introduced in equation (E.31) is also associated with
the description of a single electron and is therefore normalized as well, for any variation of
the ensemble weight ∫

nw(r)dr = 1 . (7.9)

By construction of the ensemble, the description of spin-pure electrons is encompassed within
the fractional-spin formalism and are recovered when w = 0 and w = 1.
Note that when w = 1

2
, which corresponds to the so-called equiweight ensemble (or equiensem-

ble), the overall system mimicked by the ensemble electron density corresponds to a closed-
shell system containing exactly half a spin-up and half a spin-down electron.

Constancy condition

Analogously to the piecewise-linearity of the energy for open-systems [61], Cohen, Mori-
Sánchez and Yang [15, 14, 16] have shown the existence of another exact-condition that should
be satisfied by exchange-correlation functionals for the energy of fractional-spin systems. This
exact-condition, known as the constancy-condition for fractional spins, involves systems with
degenerate ground-states associated with different spin-configurations and states that, for a
given one-electron system, any fractional-spin configurations must be degenerate in energy
with a normal spin-pure system.
In complete analogy with the delocalization error for fractional charges, the deviation of the
energy of a fractional-spin system from the constancy-condition requirement with a given
approximate functional is known as the fractional-spin error or static correlation error. As
a matter of fact, many quantum chemistry methods, including Hartree-Fock theory and
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density-functional theory, struggle to provide proper description and energies of fractional-
spin systems in accordance with the constancy-condition, even for the simplest system, as
we whall see.

Unrestricted and restricted Hartree-Fock energies

One can derive analytic expressions of the Hartree-Fock energy of a fractional-spin one-
electron system by use of the ensemble density introduced in equation (E.31). We shall see
that even in the scope of Hartree-Fock theory, which is known to be exact for one-electron
systems, the energy of a fractional-spin one-electron system will differ from the energy of a
spin-pure one-electron system.
Let us start by considering a two-state ensemble composed of spin-up and spin-down fractions
of a single electron, in their respective lowest spatial orbitals φα

1 (r) and φβ
1 (r) with ensemble

weights (1− w) and w, respectively, yielding the normalized spin-pure electron densities

nσ(r) = |φσ
1 (r)|

2 , (7.10)

with σ = {α, β}.
Furthermore, let us recall the definition of the (spin-resolved) one-particle density matrix for
the electrons of spin σ,

γσ
1 (r, r

′) =

Nσ
occ∑
i
σ

ni
σ
φ∗
i
σ
(r)φi

σ
(r′) , (7.11)

where {ni
σ
} are the occupation numbers of the Nσ

occ occupied spatial orbitals of the spin
channel σ.
Finally, one can derive the weight-dependent (spin-resolved) one-particle ensemble density
matrix

γw
1 (r, r

′) = γα,w
1 (r, r′) + γβ,w

1 (r, r′)

= (1− w)γα
1 (r, r

′) + wγβ
1 (r, r

′)

= (1− w)φα
1 (r)φ

α
1 (r

′) + wφβ
1 (r)φ

β
1 (r

′) .

(7.12)

Note that the diagonal element of equation (7.12) recovers the ensemble density defined in
equation (E.31)

γw
1 (r, r) = (1− w)φα

1 (r)
2 + wφβ

1 (r)
2 = nw(r) (7.13)

Based on that definition, one can derive the weight-dependent ensemble analogues of the
Hartree-Fock core energy

Ew
core = (1− w)

∫
φα
1 (r)ĥ(r)φ

α
1 (r)dr+ w

∫
φβ
1 (r)ĥ(r)φ

β
1 (r)dr

= (1− w)hα
1 + whβ

1 ,

(7.14)
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Hartree energy

Ew
H =

1

2

∫∫
γw
1 (r, r)γ

w
1 (r

′, r′)

|r− r′|
drdr′

=
1

2

∫∫
nw(r)nw(r′)

|r− r′|
drdr′

=
1

2

∫∫ [
(1− w)φα

1 (r)
2 + wφβ

1 (r)
2
][
(1− w)φα

1 (r
′)2 + wφβ

1 (r
′)2
]

|r− r′|
drdr′

=
1

2

[
(1− w)2Jαα

11 + 2w(1− w)Jαβ
11 + w2Jββ

11

]
,

(7.15)

and exchange energy for a fractional-spin system

Ew
x = −1

2

∫∫
γα,w
1 (r, r′)γα,w

1 (r′, r) + γβ,w
1 (r, r′)γβ,w

1 (r′, r)

|r− r′|
drdr′

= −1

2

∫∫
(1− w)2φα

1 (r)φ
α
1 (r

′)φα
1 (r

′)φα
1 (r) + w2φβ

1 (r)φ
β
1 (r

′)φβ
1 (r

′)φβ
1 (r)

|r− r′|
drdr′

= −1

2

[
(1− w)2Jαα

11 + w2Jββ
11

]
,

(7.16)

where hσ
1 and Jσσ′

11 are the one-electron and Coulomb matrix elements in the UHF spatial-
orbital basis

{
φα
1 , φ

β
1

}
.

Summation of the above-mentioned contributions yields the unrestricted Hartree-Fock
total energy of the fractional-spin system

Ew
UHF = Ew

core + Ew
H + Ew

x

= (1− w)hα
1 + whβ

1 + w(1− w)Jαβ
11 .

(7.17)

Of course, in case where a single common set of spatial orbitals is used for both spin fragments,
such that

φα
1 (r) = φβ

1 (r) = φ1(r) , (7.18)

the restricted Hartree-Fock energy is recovered

Ew
RHF = h1 + w(1− w)J11 . (7.19)

If one compares the expressions of the UHF and RHF ensemble energy of the fractional-spin
system, one can see that they drastically differ from the expression of the energy of a spin-pure
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one-electron system in the sense that they do not reduce to a single one-body contribution due
to the unphysical presence of an additional weight-dependent artificial coulombic interaction
with no additional exchange counterpart.
Moreover, it is straightforward to see that the UHF and RHF yield equivalent energies for
the spin-pure states at w = 0 and w = 1, with no spurious coulombic interaction, and the
spin-unpolarized state at w = 1/2, which corresponds to a singlet state with a single electron
with half a spin-up and half a spin-down.
Minimization of the unrestricted and restricted Hartree-Fock energies yields the UHF and
RHF ground-state energies of the fractional-spin one-electron system.

Generalized Hartree-Fock energy

As a matter of fact, Hartree-Fock theory exists in many different formalisms depending on
the symmetry restrictions imposed to the electronic state [26], and each of these approxima-
tions may yield different fractional-spin errors [10].
Whereas restricted Hartree-Fock uses the same spatial orbitals for both spin-up and spin-
down electrons, conserving Ŝ2 and Ŝz (squared-magnitude and z-component operators of
the spin angular-momentum vector) spin symmetry, the unrestricted approach uses different
spatial orbitals for different spins, allowing broken Ŝ2 symmetry but enforcing Ŝz symmetry.
More constraints on the wave function can only raise the energy of a variational optimized
solution. If we eliminate symmetry constraints related to spin and time reversal, we get the
generalized Hartree-Fock (GHF) solutions which allows mixed-spin descriptions, as well as
complex wave functions.
The GHF formalism uses a single-determinantal wave function with no restrictions on the one-
electron orbitals other than orthonormality. The more familiar restricted and unrestricted
Hartree-Fock methods can be regarded as special cases of the generalized HF method in which
additional restrictions are imposed on the orbitals. In practice, GHF allows each orbital to
have spin-up and spin-down components and is not guaranteed to conserve either Ŝ2 or Ŝz

symmetry. Fukutome [25] classifies these three Hartree-Fock formalisms as time-reversal in-
variant closed-shell, axial spin density waves and torsional spin density waves, respectively.

A GHF two-state ensemble is an extension of the UHF ensemble with an additional
flexibility stemming from the fact that every orbital can include both a spin-up and a spin-
down component so that

φI(x) = φα
I (r) |α⟩+ φβ

I (r) |β⟩ , (7.20)

where x = {r, σ} is the combined space-spin coordinate associated with the single electron,
and the index I = {1, 2} labels the states belonging to the two-state GHF ensemble.
In this work, we used the two-component spinor basis

|α⟩ =
(
1
0

)
, |β⟩ =

(
0
1

)
, (7.21)
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such that

φI =

(
φα
I

φβ
I

)
. (7.22)

Hence, the corresponding GHF ensemble density

nw
GHF(r) = (1− w)n1(r) + w n2(r) , (7.23)

where the two-component density is defined as

nI(r) =

(
nαα
I (r) nαβ

I (r)

nβα
I (r) nββ

I (r)

)
, (7.24)

with

nσσ′

I (r) = φσ
I (r)φ

σ′

I (r) . (7.25)

With those definitions, one can derive an analytic expression of the generalized Hartree-Fock
energy of a fractional-spin one-electron system

Ew
GHF = (1− w)h[n1] + wh[n2] + w(1− w)

∑
σ, σ′

[(
φσ
1φ

σ
1 |φσ′

2 φ
σ′

2

)
−
(
φσ
1φ

σ
2 |φσ′

2 φ
σ′

1

)]
. (7.26)

In the RHF and UHF formalisms, the fractional-spin error arises from the lack of exchange
interaction between spin-up and spin-down densities in both ensembles. This missing term
in the restricted and unrestricted frameworks leads to a fractional-spin error because the
artificial coulomb interaction between the two fragments of the spin of the single electron is
not sufficiently cancelled, leading to the static-correlation error for fractional-spin systems.
In that sense, the fractional-spin ensemble behaves as a two-body problem.
Conversely, when the two individual GHF densities and their corresponding orbitals are
equivalent, the exact energy is recovered, for all weight-configurations,

Ew
GHF = E0 , (7.27)

with φ1 = φ2 = φ0.

As a matter of fact, the spin expectation values can be used to understand how GHF
succeeds in providing the correct exchange energy to fully cancel the fractional-spin error
[10], as opposed to RHF and UHF. Additional flexibility of the GHF approximation conserves
the overall norm of the spin vector and results in an exchange interaction that cancels out
the spurious Coulomb interaction. As a consequence, a fractional-spin one-electron ensemble
built from GHF densities must be independent of the ensemble weight and thus always exact.
Since the GHF representation of a one-electron system with either a spin-pure or a fractional-
spin electron must always be exact, variational optimization of the two-state GHF ensemble
will reduce to a single GHF state with exact energy and density.
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7.3.2 Application to Fractional-Spin One-electron Systems

Hydrogen atom

We first consider the hydrogen atom in a minimal spatial basis comprising the lowest-energy
(and exact ground-state of H) 1s and 2s atomic orbitals

ϕ1s(r) =

√
1

4π
exp(−r) (7.28) ϕ2s(r) =

√
1

32π
(2− r) exp

(
−r

2

)
, (7.29)

with r = |r| the electron-nucleus distance.
Note that the same physics occurs in larger basis sets, as we shall see below.
By use of these two basis functions, one can form a parametrized generic expression for the
single occupied orbital for the fractional-spin RHF ensemble

φ(r) = cos θϕ1s(r) + sin θϕ2s(r) , (7.30)

with θ an orbital-rotation angle to be optimized.
Similarly, the UHF orbitals of the spin-up and spin-down fractions of the single electron can
be built using different orbital-rotation angles for each spin, θα and θβ, such that

φα(r) = cos θαϕ1s(r) + sin θαϕ2s(r) (7.31) φβ(r) = cos θβϕ1s(r) + sin θβϕ2s(r) . (7.32)

Let us recall the analytical solutions for the ground-state of H, with exact ground-state
density

n0(r) = |ϕ1s(r)|2 , (7.33)

and exact ground-state energy

E0 = −1

2
Eh . (7.34)

We have computed optimized RHF and UHF energies built from the above-mentioned
RHF and UHF parametrized orbitals. As expected, in the 1s2s basis set, both formalisms are
equivalent at the spin-pure configurations w = 0 and w = 1, yielding the exact ground-state
energy of the hydrogen atom, as depicted in Figure 7.8.
Nevertheless, for any other fractional-spin configuration, 0 < w < 1, both formalisms exhibit
a non-zero weight-dependent deviation from the exact energy, the fractional-spin error, whose
maximum is reached when the fractional-spin system is in the spin-unpolarized state, at
w = 0.5. As expected, RHF and UHF calculations yield equivalent results for this particular
closed-shell configuration.
For intermediate weight configurations, the greater flexibility of the unrestricted orbitals
compared to their restricted counterparts enables an additional marginal energetic relaxation
of the UHF energy in an attempt to reduce the overall fractional-spin error. As a matter
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of fact, spatial separation of the different spin components is essential for providing the
additional relaxation of the unrestricted ensemble relative to the restricted ensemble [10].
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Figure 7.8: Restricted and unrestricted Hartree-Fock ensemble energies for the fractional-spin H atom
in the 1s2s basis set compared to the exact energy. The functional-driven error (FDE) and the RHF and
UHF density-driven errors (DDE) are also represented for completeness.

The total fractional-spin error of the HF formalisms can be decomposed into two contribu-
tions, the error stemming from the use of an incorrect approximate functional and the error
arising from the use of an incorrect approximate electron density. To study and compare
the impact of both errors on the overall fractional-spin error, calculations were performed by
fixing the spatial electron density at its exact value n0(r) and computing the energy via the
incorrect HF energy functional, yielding the functional-driven error (FDE) and, by construc-
tion, the density-driven error (DDE) defined as the remaining part of the total fractional-spin
error obtained by injection of incorrect approximate RHF and UHF densities into the exact
functional h[n].
We find that, for both formalisms, the magnitude of the fractional-spin DDE is very small
in the H atom compared to the much significant FDE. Furthermore, the magnitude of the
unrestricted DDE is always larger than its restricted counterpart, reaching maximum magni-
tude when the unrestricted energetic relaxation is most significant, which is consistent with
the broader observation than in HF theory, lower electronic energies can be reached at the
expense of less accurate electronic densities.
Indeed, while the restricted ensemble provides a greater energy error but a more accurate
density, the unrestricted framework offers energetic stabilization with a detrimental impact
on the quality of the electron density.

The performance of five commonly used functionals is shown in Figure E.11 for the
fractional-spin H atom in a larger basis set. The left-hand side shows the energy of the
fractional-spin H atom and the right-hand side shows the fractional-spin error defined as the
difference in energy of the H atom with a fractional-spin electron compared to the energy of
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the H atom with a spin-pure electron, obtained with a given approximate functional.
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Figure 7.9: Ensemble energies (left panel) and fractional-spin errors (right panel) for the fractional spin
H atom at the restricted and unrestricted Hartree-Fock levels and with various unrestricted DFAs in the
cc-pVDZ basis set, compared to the exact results.

Such self-consistent calculations reveal important deficiencies in the approximate function-
als for fractional-spin ensembles. Note that even functionals which are exact for the spin-pure
H atom such as Hartree-Fock exhibit large errors for fractional-spin systems. Hartree-Fock
has the largest error while LSDA has the smallest error, but both functionals overestimate
the energy for fractional-spin systems.
GGA functionals, such as BLYP, perform roughly the same as LSDA despite their varied
forms and more sophisticated hybrid functionals, such as B3LYP, have a behaviour inbe-
tween LSDA and HF [15].

Hydrogen molecule cation

From now on, our interest is to study the behaviour of a fractional-spin one-electron molecu-
lar system upon dissociation at the HF level. As a matter of fact, the error in some stretched
molecules has been shown to stem from the inability of approximate functionals to satisfy
the exact fractional-spin constancy condition [15, 14, 63].
Indeed, incorrect molecular dissociations are normally attributed to the lack of static correla-
tion, which can be connected to the violation of the constancy condition for the fractional-spin
states of the dissociating atoms. For example, complete dissociation of the H2 molecule yields
a singlet system, which consists of two fractional-spin H atoms separated by a large distance.
For that particular system, spin-restricted DFT calculations yield significantly overestimated
energy and this overestimation has been shown to match exactly twice the fractional-spin
error for the H atom with fractional-spin configuration w = 0.5, corresponding to an electron
with half a spin-up and half a spin-down.
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For that reason we now turn to the one-electron homonuclear diatomic H+
2 which is a one-

electron system with two sites. We want to study the behaviour of the ground-state of a
fractional-spin H+

2 upon stretching. In the case of H+
2 , the dissociation limit should yield an

isolated H atom with an additional single proton which should not energetically contribute
because of the infinite spatial separation of the two dissociated fragments.

We will use the same STO-3G basis of atomic orbitals and restricted spatial molecular
orbitals than the ones used for the description of the hydrogen molecule. Therefore, we will
use a minimal basis formalism comprising two contracted s-type gaussian functions ϕL(r)
and ϕR(r) to build the one-electron spatial orbitals, or molecular orbitals, of our system.
We choose to center these two atomic orbitals on the left and right H atoms, respectively,
with bond length R. One practical advantage of such a small basis set is to allow for the
derivation of analytic expressions of the ground-state energy of such a system and to study
its behaviour in the dissociation limit [84].
We obtain two delocalized, symmetry-determined, orthonormal restricted molecular orbitals,
one occupied orbital with lower energy and one virtual orbital with higher energy

φ1(r) =
ϕL(r) + ϕR(r)√

2(1 + SLR)
(7.35) φ2(r) =

ϕL(r)− ϕR(r)√
2(1− SLR)

, (7.36)

where SLR = ⟨ϕL|ϕR⟩ defines the overlap of the non-orthogonal atomic orbitals at a given
bond length R.

The ground-state unrestricted occupied molecular orbitals can be conveniently built as
linear combinations of the restricted symmetry-determined orbitals, beneficiating from ad-
ditional flexibility through the use of a single parameter, an orbital rotation angle θ, such that

φα
1 (r) = cos θφ1(r) + sin θφ2(r) (7.37) φβ

1 (r) = cos θφ1(r)− sin θφ2(r) . (7.38)

Similarly, one can build the corresponding unrestricted virtual molecular orbitals

φα
2 (r) = − sin θφ1(r) + cos θφ2(r) (7.39) φβ

2 (r) = sin θφ1(r) + cos θφ2(r) . (7.40)

Note that the symmetric RHF orbitals are recovered for θ = 0, while θ = ±π/4 corre-
sponds to full spatial-separation of the spin-up and spin-down orbitals, localized on opposite
H atoms.

226



7.3. Fractional-Spin Error

The UHF ensemble energy can then be derived as

Ew
UHF = cos2 θh1 + sin2 θh2

+ w(1− w)
[
cos4 θJ11 + sin4 θJ22 + 2 cos2 θ sin2 θ(J12 −K12)

]
,

(7.41)

where the one-electron, Coulomb and exchange matrix elements in the RHF orthogonal basis
are denoted

hi = (φi|ĥ|φi) , Jij = (φiφi|φjφj) , Kij = (φiφj|φjφi) . (7.42)

By differentiating equation (7.41) with respect to the orbital-rotation angle θ and solving

dEw
UHF

dθ
= 0 , (7.43)

one obtains the stationary points of the ensemble energy of fractional-spin H+
2 and, therefore,

the ground-state RHF and UHF solutions whose existence can be formalized by the following
stationary conditions,

cos θRHF = 0 (7.44)

and

cos2 θUHF =
h1 − h2 + 2w(1− w)(J12 − J22 − 2K12)

−2w(1− w)(J11 − 2J12 + J22 + 4K22
) . (7.45)

Note that solutions of equation (7.43) are not guaranteed to be true minimum of the energy
as we shall see.
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Figure 7.10: Restricted (dashed lines) and unrestricted (solid lines) energy of H+
2 as functions of the

bond length R for various fractional-spin configurations (left panel) and restricted dissociation limits
(right panel) of a fractional-spin H+

2 as a function of the ensemble weight, at the Hartree-Fock level in
cc-pVQZ basis set. For all fractional-spin configurations considered, dissociation limits of H+

2 (dotted
lines) are also reported for clarity.
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Chapter 7. Fractional-Charge Error, Fractional-Spin Error and How They Can Emerge
from Dissociation Processes

We find that at short bond-length, for each value of the weight (or fractional-spin config-
uration), there exists a single stationary solution which always corresponds to the restricted
solution θ = 0 and is a true minimum of the energy, and no unrestricted solution exists.
On increasing the bond length, up to a weight-dependent critical value Rw

c , the restricted so-
lution will no longer be a true minimum of the energy but will become instead a saddle point
of the energy while a lower-energy unrestricted solution will emerge if the ensemble weight
allows it (w ̸= 0 or 1). This transition point can be seen as a weight-dependent analogue to
the Coulson–Fischer point [18] of H2 and can be determined by solving θRHF = θUHF.
Figure E.12 reveals that the critical bond-length Rw

c decreases as w increases between 0 and
1, reaching a minimum at w = 1/2. As a result, the shortest bond length for UHF symme-
try breaking of fractional-spin H+

2 occurs when the fractional-spin error of the dissociating
fragments is largest.
Whereas restricted solutions yield weight-dependent overestimated dissociation limits, unre-
stricted solutions go smoothly to the proper limit of one single spin-pure H atom, calculated
with the same level of approximation and basis set. Therefore, at the HF level, in complete
analogy with the dissociation of H2, it becomes more energetically favorable for the spatial
symmetry of fractional-spin H+

2 to be broken by localizing the high-spin and low-spin orbitals
on opposite centers.
As a matter of fact, like for the H atom, spatial separation of the spin-up and spin-down
densities minimizes the fractional-spin error, leading to more accurate UHF energies. It is
worth mentionning that the UHF energetic relaxation is more significant for H+

2 than for
the H atom as the two atomic centers increase the possible extent of spatial separation [10].
Hence, increase of the negative unrestricted density-driven error lower the overall unrestricted
energy and frational-spin system.

In the minimal basis, one can derive analytical expressions for the dissociation limits of
fractional-spin H+

2 within both RHF and UHF formalisms by expanding the expressions of
the RHF and UHF ensemble energies in the atomic-orbital basis set and by considering that,
in the large-R limit, the overlap between the two AOs decays to zero as R grows as well as
all integrals mixing the two atom-centered basis functions.
Therefore, the RHF and UHF dissociation limits are given as

lim
R→+∞

Ew
RHF = lim

R→+∞

(
h1 + w(1− w)J11

)
= (1− w)hL + whR +

w(1− w)

4
(JLL + JRR)

= hL +
w(1− w)

2
JLL

(7.46)
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7.3. Fractional-Spin Error

and

lim
R→+∞

Ew
UHF = lim

R→+∞

(
(1− w)hα

1 + whβ
1 + w(1− w)Jαβ

11

)
= lim

R→+∞

(
(1− w)hL + whR + w(1− w)JLR

)
= hL ,

(7.47)

with hL = hR, JLL = JRR and JLR = JRL the one-body and Coulomb matrix elements in the
atomic-orbital basis.
We find that the error in the RHF energy of a dissociated fractional-spin H+

2 is exactly half
the fractional-spin error of a H atom with spin-up and spin-down configurations of respective
weights (1 − w) and w while the UHF ensemble energy decays to the correct energy. As a
result, delocalization of the electron density over two dissociated atomic centers reduces the
overall RHF fractional-spin error in one-electron models by a factor 2.
As a matter of fact, the reduction in the RHF fractional-spin error is even more pronounced
for larger numbers of atomic centers as delocalizing the RHF electron density over multiple
sites further reduces the fictitious Coulomb repulsion between the spin-up and spin-down
densities.
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Conclusion

Various ensemble formalisms have been extensively discussed throughout this thesis within
the scope of both Hartree-Fock and density-functional theories. The performance of such
methods based on ensemble densities as a basic variable has been investigated regarding the
prediction of charged and neutral excitation energies.

In particular, the generalization of standard ground-state KS-DFT to electronic states
with fractional occupation numbers, PPLB-DFT, has been studied by use of the ensemble
formalism to describe the behaviour of the ground-state energy of an open system upon con-
tinuous variation of its total number of electrons. In this context, the so-called left and right
PPLB ground-state ensemble energies have been self-consistently computed in order to ex-
tract ionization potentials and electron affinities, respectively, for simple atomic systems with
standard weight-independent exchange-correlation approximations. This has highlighted the
inability of standard approximations to recover the infamous derivative discontinuity of the
exact potential and therefore to obey the piecewise-linearity exact condition for the total en-
ergy of an open system, with massive implications on band-gap predictions. The fundamental
gap has been addressed as well as the possibility to resort to explicitly weight-dependent ap-
proximations to mimic the elusive derivative discontinuity through their weight-derivatives
in order to restore the piecewise-linearity condition for the energy and to yield much satis-
factory predictions for physical properties.

The second issue we focused on was to what extent DFT can give access to (neutrally) ex-
cited states through its time-independent in-principle-exact ensemble extension, GOK-DFT.
Regarding this matter, we considered various two-state and three-state GOK ensembles, in-
tentionally designed to extract single and double excitation energies of two-electron systems.
The curvature of GOK ensemble energies has been studied as well as the construction of
curvature-corrected weight-dependent exchange-correlation functionals. Excitation energies
have been extracted from GOK ensembles in various manners: by differentiation of the GOK
ensemble energies with respect to the ensemble weights, through multiple choices of ensemble
weights, such as the equiweight configuration, or by use of the Linear Interpolation Method.
In the present work, although we only discussed the use of weight-dependent approxima-
tions within the scope of elementary GOK ensembles, we believe that exploring much larger
and sophisticated ensembles, built from multiple states and weights, along with the devel-
opment of xc-approximations with multiple weight-dependencies could turn GOK-DFT into
a routinely practical procedure for neutrally excited states and excitation energies. In this
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Conclusion

respect, within the scope of GOK-DFT, standard ground-state approximations could be used
as starting points for the future development of weight-dependent approximations specifically
designed for ensemble applications. As a matter of fact, very recently, exact conditions for
ensemble functionals have been investigated and may offer crucial and instructive insights
regarding this matter.

Then, we addressed the fundamental gap problem through its recent canonical refor-
mulation proposed by Senjean and Fromager, in which the challenging task of mimicking
the infamous derivative discontinuity of the exact potential is entirely transposed into the
modeling of the weight dependency of the Hxc functional. This offers an in-principle-exact
time-independent unified formulation of charged and neutral excitation energies within en-
semble DFT. Practical self-consistent calculations of left and right N -centered ensembles
have been performed for the extraction of ionization potentials and electron affinities of real
atomic systems, respectively, as well as the two-weight and single-weight original formula-
tions of N -centered ensembles, especially designed for the direct extraction of fundamental
gaps. Curvatures and total deviations of the N -centered ensemble energies with respect to
the theoretical values, obtained with standard ground-state weight-independent approxima-
tions, have been investigated and have shed light on the detrimental impact that nonlinear
density functionals may have on the self-consistent results within the scope of N -centered
theory. Regarding this matter, we have shown how explicitly weight-dependent approximate
functionals could benefit from their weight derivatives to circumvent limitations of standard
ground-state approximations and provide much satisfactory ensemble predictions for physi-
cal properties. Finally, newly developed GOK/N -centered combined ensembles, which allow
for the extraction of charged and neutral excitation energies from the same DFT-like self-
consistent calculation, have been explored as well and applied to real two-electron systems.

The final issue that we have chosen to address in this thesis is the concepts of fractional-
charge and fractional-spin errors, which stem from the inability of standard approximations
to obey the piecewise-linearity and the constancy exact conditions for the energy. We have
shown that fractional-charge errors, also known as localization and delocalization errors,
may have significant impact on band-gap predictions and may be responsible for erroneous
descriptions of dissociation processes. As for the fractional-spin error, or static-correlation
error, we have shown that even approximations that are known to be exact for one-electron
systems, like Hartree-Fock theory, fail to provide physically relevant descriptions of systems
with fractional spins. Weight-dependent approximations may be a solution to palliate these
deficiencies, as well.

In view of these considerations, we believe that it is necessary to go beyond ground-state
DFAs in order to fully exploit the potential of eDFT and turn it into a reliable and low-cost
computational method, for a wide range of applications. With regard to this matter, the
development of a new class of approximate exchange-correlation functionals with explicit
weight-dependencies and specifically designed for ensemble applications should be further
investigated.
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Appendix A

Experimental Ionization Potentials,
Electron Affinities and Fundamental
Gaps of Neutral Atomic Systems

Table A.1: Experimental ionization potentials, electron affinities and fundamental gaps of neutral atomic
systems [19, 50]. All energy values are given in atomic Hartree units.

Atom Ionization Potential Electron Affinity Fundamental Gap

H 0.499 734 0.027 716 0.472 017
He 0.903 570 - -
Li 0.198 142 0.022 712 0.175 429
Be 0.342 603 - -
B 0.304 947 0.010 279 0.294 667
C 0.413 808 0.046 381 0.367 426
N 0.534 118 - -
O 0.500 454 0.053 694 0.446 759
F 0.640 276 0.124 991 0.515 285
Ne 0.792 482 - -
Ar 0.579 155 - -
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Appendix B

PPLB-DFT Supplementary Material

B.1 PPLB-DFT Code Testing

In order to ensure the proper functioning of our eDFT Fortran code within the scope of PPLB-
DFT, we managed to verify the consistency of the data extracted from the self-consistent
eDFT calculation, such as individual-state energies and excitation energies.
Indeed, in PPLB-DFT we have seen that once the calculation has reached convergence,
yielding the minimizing molecular orbitals with corresponding minimum ensemble energy,
excitation energies and individual energies can be extracted from the ensemble calculation
in two different manners: from the ensemble energy and its derivatives with respect to the
ensemble weights

EN
0 = Eα − α

∂Eα

∂α

EN−1
0 = Eα + (1− α)

∂Eα

∂α

IN0 = EN−1
0 − EN

0 =
∂Eα

∂α

(B.1)

EN
0 = Eα − α

∂Eα

∂α

EN+1
0 = Eα + (1− α)

∂Eα

∂α

AN
0 = EN

0 − EN+1
0 = −∂Eα

∂α
.

(B.2)

or from the (Hartree-Fock or Kohn-Sham) auxiliary energies and the derivative of the weight-
dependent Hartree-exchange-correlation functional
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EN
0 = EN,α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

− α
∂Eα

Hxc[n
α
KS]

∂α

EN−1
0 = EN−1, α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α

IN0 = −εαN +
∂Eα

Hxc[n
α
KS]

∂α
(B.3)
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0
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Hxc[n

α
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∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

− α
∂Eα

Hxc[n
α
KS]

∂α

EN+1
0 = EN+1, α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α

AN
0 = −εαN+1 −

∂Eα
Hxc[n

α
KS]

∂α
.

(B.4)

Nevertheless, quantities obtained from either methods should be identical.
Derivatives of the ensemble energy with respect to the ensemble weights were computed by
use of a finite difference approximation in its symmetric difference quotient formulation.

B.1.1 PPLB-DFT with Weight-Independent Functionals
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Figure B.1: Checking the validity of left PPLB-DFT calculations with the weight-independent LSDA xc-
functional in the cc-pVDZ basis set. Individual energies and excitation energies obtained with equations
(B.3) (blue dashed lines) are compared to the same quantities obtained with equations (E.4) (red solid
lines).
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B.1. PPLB-DFT Code Testing

When weight-independent approximate functionals are used, excitation energies and individ-
ual energies obtained from equations (B.3) and (B.4) will include no additional contribution
arising from the explicit weight-dependency of the approximate functional, as depicted in
Figures B.1 and B.4.
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Figure B.2: Checking the validity of right PPLB-DFT calculations with weight-independent LSDA xc-
functional in the cc-pVDZ basis set. Individual energies and excitation energies obtained with equations
(B.4) (blue dashed lines) are compared to the same quantities obtained with equations (E.5) (red solid
lines).

B.1.2 PPLB-DFT with Weight-Dependent Functionals

Conversely, when a weight-dependent approximate functional is used, the weight derivative
of the Hxc-functional will contribute to improving predictions of excitation energies and
individual energies, as depicted in Figures B.3 and B.4 .

0.0 0.2 0.4 0.6 0.8 1.0
-7.35

-7.30

-7.25

-7.20

-7.15

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

Figure B.3: Checking the validity of left PPLB-DFT calculations with the weight-dependent CC-LSDA xc-
functional in the cc-pVDZ basis set. Individual energies and excitation energies obtained with equations
(B.3) (blue dashed lines) are compared to the same quantities obtained with equations (E.4) (red solid
lines).
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Figure B.4: Checking the validity of right PPLB-DFT calculations with the weight-dependent CC-
LSDA xc-functional in the cc-pVDZ basis set. Individual energies and excitation energies obtained with
equations (B.4) (blue dashed lines) are compared to the same quantities obtained with equations (E.5)
(red solid lines).

B.2 Overview of PPLB-DFT Results with CC-functionals

B.2.1 Individual-State Energies

In this subsection, we show that the CC-functionals succeed in providing more stable and
accurate PPLB predictions for the ground-state energies of the neutral, cationic and anionic
forms of Li, as depicted in Figures B.5 and B.6. By accurate, we mean more in accordance
with the ground-state energies obtained with multiple self-consistent calculations within the
scope of standard ground-state DFT with the same level of approximations.
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Figure B.5: Comparison between left PPLB-DFT neutral and cationic ground-state energies of Li,
obtained with weight-independent xc-functionals (colored dashed lines) and their weight-dependent CC-
counterparts (colored solid lines), as functions of the fractional-charge deviation α, in the cc-pVDZ basis
set. SCF (black dashed line) individual-state energies obtained with the same level of approximation are
reported for comparison.
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Figure B.6: Comparison between right PPLB-DFT neutral and anionic ground-state energies of Li,
obtained with weight-independent xc-functionals (colored dashed lines) and their weight-dependent CC-
counterparts (colored solid lines), as functions of the fractional-charge deviation α, in the cc-pVDZ basis
set. SCF (black dashed line) individual-state energies obtained with the same level of approximation are
reported for comparison.

B.2.2 Excitation Energies

In this subsection, we show that the CC-functionals succeed in providing more stable and
accurate PPLB predictions for the ionization potential and electron affinity of Li, as depicted
in Figures B.7 and B.8. By accurate, we mean more in accordance with the ionization
potentials and electron affinities obtained with the ∆SCF method within the scope of standard
ground-state DFT with the same level of approximations.
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Figure B.7: Comparison between left PPLB-DFT ionization potentials of Li, obtained with weight-
independent xc-functionals (colored dashed lines) and their weight-dependent CC-counterparts (colored
solid lines), as functions of the fractional-charge deviation α, in the cc-pVDZ basis set. ∆SCF (black
dashed line) ionization potentials obtained with the same level of approximation are reported for com-
parison as well as the experimental (black solid lines) ionization potential of Li (see Appendix A).
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Figure B.8: Comparison between right PPLB-DFT electron affinities of Li, obtained with weight-
independent xc-functionals (colored dashed lines) and their weight-dependent CC-counterparts (colored
solid lines), as functions of the fractional-charge deviation α, in the cc-pVDZ basis set. ∆SCF (black
dashed line) electron affinities obtained with the same level of approximation are reported for comparison
as well as the experimental (black solid lines) electron affinity of Li (see Appendix A).
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GOK-DFT Supplementary Material

C.1 GOK-DFT Code Testing

In order to ensure the proper functioning of our eDFT Fortran code within the scope of GOK-
DFT, we managed to verify the consistency of the data extracted from the self-consistent
eDFT calculation, such as individual-state energies and excitation energies.
Indeed, in GOK-DFT we have seen that once the calculation has reached convergence yielding
the minimizing molecular orbitals with corresponding minimum ensemble energy, excitation
energies can be extracted from the ensemble calculation in two different manners: from the
ensemble energy and its derivatives with respect to the ensemble weights

ΩI =
∂Ew

∂wI
, (C.1)

or from the (Hartree-Fock or Kohn-Sham) auxiliary excitation energies and the derivative of
the weight-dependent Hartree-exchange-correlation functional

ΩI = Ew
I − Ew

0 +
∂Ew

Hxc[n]

∂wI

∣∣∣∣
n=nw

KS

. (C.2)

Nevertheless, excitation energies obtained from equations (C.1) and (C.2) should be identical.
Derivatives of the ensemble energy with respect to the ensemble weights of equation (C.1)
were computed by use of a finite difference approximation in its symmetric difference quotient
formulation.

C.1.1 GOK-DFT with Weight-Independent Functionals

When weight-independent approximate functionals are used, excitation energies obtained
from equation (C.2) reduce to weight-dependent auxiliary excitation energies built from the
molecular orbital energies, with no additional contribution arising from the explicit weight-
dependency of the approximate functional, as depicted in Figure C.1.
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Figure C.1: Checking the validity of GOK-DFT “single” biensemble calculations with weight-independent
approximations in the cc-pVDZ basis set.

C.1.2 GOK-DFT with Weight-Dependent Functionals

Conversely, when a weight-dependent approximate functional is used, the weight derivative of
the Hxc-functional will contribute to improving predictions of excitation energies, as depicted
in Figure C.2.
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Figure C.2: Checking the validity of GOK-DFT “single” biensemble calculations with weight-dependent
approximations in the cc-pVDZ basis set. The “DD” term refers to the aditional contribution arising
from the weight-derivative of the approximate functional (see equation (C.2)).
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C.2 Proof of Correctness of the GOK-DFT Numerical

Results

Table C.1: Ground-state energy and two lowest singly excited-state energies (with spin
multiplicity 1S and 3S) of He, for various exchange-correlation functionals and basis sets.
∆SCF excitation energies for the electronic transition between the ground state and the
1S and 3S excited state are reported along with calculated and accurate references. All
energies are in hartree.

cc-pVDZ d-aug-cc-pVTZ
BLYP B3LYP BLYP

E0(
1S) −2.897 849 407 −2.907 051 315 −2.906 547 599

Accurate a −2.903 724 377
E1(

1S) −1.302 502 815 −1.289 467 230 −2.162 683 358
Accurate a −2.145 974 046
E1(

3S) −1.412 962 984 −1.418 071 546 −2.169 847 699
Accurate a −2.175 229 378

∆SCFΩ1(
3S) 1.484 886 423 1.488 979 769 0.736 699 899

Calculated b 1.484 882 330 1.488 978 475 0.736 645 506
Accurate a 0.728 494 998

∆SCFΩ1(
1S) 1.595 346 592 1.617 584 085 0.743 864 241

Accurate a 0.757 750 331

a obtained from [8].
b obtained from [40].

246



Appendix D

N-centered eDFT Supplementary
Material

D.1 N-centered eDFT Code Testing

In order to ensure the proper functioning of our eDFT Fortran code within the scope of
N -centered eDFT, we managed to verify the consistency of the data extracted from the self-
consistent eDFT calculation, such as individual-state energies and excitation energies.
Indeed, in N -centered eDFT we have seen that once the calculation has reached convergence
yielding the minimizing molecular orbitals with corresponding minimum ensemble energy,
ionization potentials can be extracted from the left N -centered ensemble calculation in two
different manners: from the ensemble energy and its derivatives with respect to the ensemble
weights

IN0 = −ε ξ−

N − 1

N
(1− α−N)

∂E ξ−

Hxc

∂α

∣∣∣∣∣
n ξ−
KS

, (D.1)

or from the weight-dependent LZ-shifted (Hartree-Fock or Kohn-Sham) molecular orbital
energies and the derivative of the weight-dependent Hartree-exchange-correlation functional

IN0 = − 1

N

[
E ξ− + (1− α−N)

dE ξ−

dα

]
. (D.2)

In the same manner, electron affinities can be extracted from right N -centered eDFT calcu-
lation in two different ways,

AN
0 = − 1

N

[
E ξ+ + (1− α +N)

dE ξ+

dα

]
, (D.3)

or

AN
0 = −ε ξ+

N+1 −
1

N
(1− α +N)

∂E ξ+

Hxc

∂α

∣∣∣∣∣
n ξ+

KS

. (D.4)
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Nevertheless, ionization potentials and electron affinities obtained from equations (D.1) and
(D.2), and (D.3) and (D.4), respectively, should be identical.
Derivatives of the ensemble energies with respect to the ensemble weights of equation (D.1)
and (D.3) were computed by use of a finite difference approximation in its symmetric differ-
ence quotient formulation.

D.1.1 Left and Right N-centered eDFT with Weight-Independent
LSDA

When weight-independent approximate functionals are used, excitation energies obtained
from equation (D.2) and (D.4) reduce to weight-dependent LZ-shifted molecular orbital en-
ergies, with no additional contribution arising from the explicit weight-dependency of the
approximate functional, as depicted in Figure D.1.
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1.15

1.20

1.25

Figure D.1: Checking the validity of left (left panel) and right (right panel) N -centered ensemble eDFT
calculations with the weight-independent LSDA functional in the cc-pVDZ basis set..

D.1.2 Left and Right N-centered eDFT with Weight-Dependent
CC-LSDA

Conversely, when a weight-dependent approximate functional is used, the weight derivative of
the Hxc-functional will contribute to improving predictions of excitation energies, as depicted
in Figure D.2.
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Figure D.2: Checking the validity of left (left panel) and right (right panel) N -centered ensemble eDFT
calculations with weight-dependent CC-LSDA functionals in the cc-pVDZ basis set. The “DD” term
refers to the aditional contribution arising from the weight-derivative of the approximate functional (see
equations (D.2) and (D.4)).

D.1.3 Single-Weight N-centered eDFT with Weight-Independent
Functionals

In the single-weight triensemble formulation of N -centered eDFT, fundamental gaps can be
extracted either from the derivative of the ensemble energy with respect to the ensemble
weight

ΩN
0 =

dEξ

dξ
, (D.5)

or from

ΩN
0 = ε ξ

N+1 − εξN +
∂Eξ

Hxc

∂ξ

∣∣∣∣∣
n ξ

KS

, (D.6)

as depicted in Figure D.3.
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Figure D.3: Checking the validity of single-weightN -centered triensemble eDFT calculations with weight-
independent approximations in the cc-pVDZ basis set.

D.2 Overview of Left and Right N-centered Results

with CC-Functionals

This section provides more detailed overviews of the left (see Table D.1) and right (see Table
D.2) N -centered eDFT results obtained with the weight-dependent CC-functionals compared
to the results obtained with standard weight-independent xc-functionals.
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D.2. Overview of Left and Right N -centered Results with CC-Functionals
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Appendix E

Résumé substantiel en français

Introduction

Cette thèse est consacrée à l’étude de la théorie de la fonctionnelle de la densité d’ensemble
(eDFT) à travers différents formalismes et leur application à des systèmes atomiques et
moléculaires : les ensembles PPLB pour la description de systèmes avec un nombre frac-
tionnaire d’électrons, les ensembles GOK pour accéder aux états excités, et les ensembles
N -centrés qui permettent d’extraire des énergies d’excitation chargée, sans altération du
nombre d’électrons. Nous évaluerons la performance des fonctionnelles standard d’échange-
corrélation vis-à-vis de l’extraction d’énergies d’excitation à travers l’eDFT. En particulier,
nous discuterons certaines des limitations les plus connues de ces approximations standard,
telles que l’absence de dérivée discontinue, la violation de la condition exacte de linéarité par
morceaux, la description des systèmes avec charge ou spin fractionnaires et leur impact dans
les processus de dissociation.

De la DFT à la DFT d’ensemble

Au cours des dernières décennies, la théorie de la fonctionnelle de la densité (DFT) s’est im-
posée comme une approche rigoureuse pour la description de l’état fondamental des systèmes
électroniques. Grâce à son faible coût computationnel et à l’élaboration d’approximations
sophistiquées pour la fonctionnelle d’échange-corrélation (xc-DFA), la DFT est devenue la
méthode de choix pour le calcul de structure électronique. Néanmoins, il subsiste nombre
de défis que la DFT ne parvient pas à surmonter. En réalité, ces carences ne sont pas le
fruit de la théorie elle-même mais plutôt du fait de défauts intrinsèques des approximations
utilisées. Il existe une formulation plus générale de la DFT pour les nombres fractionnaires
d’occupation qui permet la description de systèmes avec nombre fractionnaire d’électrons,
la PPLB-DFT. Cette formulation grand canonique de la DFT peut être mise en place à
l’aide d’un formalisme d’ensemble et permet une extraction directe d’énergies d’excitation
chargée et d’autres propriétés à partir d’un seul calcul de type DFT. Malheureusement,
l’incapacité des DFAs à reproduire la fameuse dérivée discontinue (DD) s’est avérée être par-
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Appendix E. Résumé substantiel en français

ticulièrement préjudiciable pour la prédiction d’énergies d’excitation chargée, telles que les
potentiels d’ionisation et les affinités électroniques, donnant lieu à des erreurs conséquentes,
et connue comme le problème du gap fondamental. Dans ce contexte, la DFT d’ensemble
(eDFT) offre une alternative très attrayante du fait de sa capacité à user de DFAs dépendantes
du poids de l’ensemble pour reproduire la DD via leur dérivée. La DFT est connue pour mon-
trer des limites vis-à-vis du calcul d’énergies d’excitation chargée et neutre. La procédure
standard pour accéder aux états excités neutralement dans le cadre de la DFT est à travers
son extension dépendante du temps, la TD-DFT. En effet, l’usage est de recourir à la TD-
DFT pour obtenir des prédictions acceptables pour les énergies de transition des niveaux
excités les plus bas, cela avec un coût computationnel relativement modéré. Bien que la TD-
DFT se soit avérée incroyablement fructueuse pour accéder aux énergies d’excitation neutre,
elle a également montré certaines limites lors de la description de certains phénomènes et
propriétés physiques. En cela, l’eDFT constitue une alternative prometteuse à la TD-DFT
pour le calcul des énergies d’excitation électroniques. En eDFT, il est possible d’extraire
n’importe quelle énergie d’excitation neutre d’un système électronique en un seul calcul à
l’aide d’un ensemble Gross-Oliveira-Kohn (GOK), et cela avec un coût computationnel et un
niveau d’approximation pour la fonctionnelle d’xc, similaires à ceux de la DFT standard. La
GOK-DFT est une alternative moins connue mais tout autant rigoureuse que la TD-DFT,
où le large choix de poids de l’ensemble et la dépendance en poids de la fonctionnelle xc
peuvent significativement influer sur la qualité des énergies calculées. En temps normal,
accéder aux énergies d’excitation chargée nécessite de faire varier le nombre d’électrons du
système, ce qui peut s’avérer problématique dans certains cas. Très récemment, un nou-
veau formalisme canonique a été développé, l’eDFT N -centrée, rendant possible l’extraction
d’énergies d’excitation chargée sans altération du nombre d’électrons. Le comportement des
DFAs standard dans le cadre de l’eDFT peut offrir une compréhension plus poussée de la
nature intrinsèque des erreurs systématiques dont elles souffrent, telles que la violation des
conditions exactes de linéarité par morceaux et de constance de l’énergie. En outre, la mau-
vaise description des systèmes avec charge et spin fractionnaires a prouvé avoir un impact
majeur dans la description des systèmes fortement corrélés ainsi que dans les processus de
dissociation et la prédiction de gaps d’énergie. Tout cela pourrait donner un nouvel essor au
développement futur de la DFT et à des applications émergentes jusqu’alors inaccessibles.

Le formalisme PPLB : la DFT généralisée aux systèmes

à nombres fractionnaires d’électrons

Lorsqu’un électron est continuellement retiré ou ajouté de/à un système à N électrons, ce
dernier se comporte comme un système ouvert avec un nombre fractionnaire d’électrons
N = N ±α, avec α l’écart fractionnaire de charge par rapport à la valeur entière centrale N

α ≡ |N − N|. (E.1)

De plus, les densités et énergies électroniques exactes de l’état fondamental de tels systèmes
dits ouverts consistent en des combinaisons linéaires des densités et des énergies, respective-
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ment, des états fondamentaux, sur lesquels sont basées les excitations chargées correspon-
dantes, c’est-à-dire les grandeurs physiques à N et (N ± 1) électrons.

Rappelons les expressions compactes des densités et énergies d’ensemble exactes associées
aux ensembles de type PPLB

nα(r) = (1− α)nN
0 (r) + αnN±1

0 (r) (E.2) Eα = (1− α)EN
0 + αEN±1

0 , (E.3)

où 0 ≤ α ≤ 1 est le poids de l’ensemble PPLB décrivant, pour les deux processus, l’écart de
charge physique par rapport au nombre entier central d’électron N .
Dans ce contexte, la configuration de poids α = 0 correspond au système neutre initial de N
électrons, tandis que le cas α = 1 correspond au système cationique/anionique, selon la na-
ture “gauche” (−) ou “droite” (+) de l’ensemble PPLB. Dans ces trois scénarios particuliers,
les calculs de DFT d’ensemble PPLB-DFT se réduisent à des calculs de DFT standard pour
état fondamental.

Une caractéristique importante du cadre PPLB-DFT est que le poids de l’ensemble et la
densité d’ensemble ne sont pas des quantités indépendantes. En effet, puisque le résultat de
l’intégration de la densité d’ensemble doit correspondre au nombre fractionnaire d’électrons
N = N ± α du système ouvert, un changement de poids α entrâınera automatiquement un
changement dans la densité. Ainsi, toutes les informations qui définissent l’ensemble sont
donc déjà englobées dans la densité d’ensemble, ce qui signifie que la fonctionnelle exacte,
c’est-à-dire la fonctionnelle garantissant la linéarité par morceaux de l’énergie d’ensemble, n’a
pas besoin de posséder une dépendance explicite en poids de l’ensemble pour calculer les pro-
priétés exactes du système ouvert. Bien évidemment, puisque la fonctionnelle exacte n’est pas
connue, nul n’est obligé de restreindre son cadre de travail au seul domaine des fonctionnelles
standards indépendantes du poids, et il est toujours possible d’explorer la faisabilité et la
pertinence de construire de meilleures approximations basées sur des fonctionnelles incluant
une dépendance explicite en poids de l’ensemble, comme cela a été fait au cours de cette thèse.

Puisque l’énergie d’ensemble exacte de l’état fondamental du système à N électrons est
supposée être linéaire par rapport au poids d’ensemble α, il est possible d’extraire facilement
les énergies individuelles des différents état fondamentaux {EN

0 ;EN±1
0 } ainsi que les diverses

énergies d’excitation, telles que le potentiel d’ionisation IN0 et l’affinité électronique AN
0 du

système référence à N électrons, et ce, directement à partir des énergies d’ensemble PPLB
“gauche” et “droite”, respectivement, Eα et de leurs dérivées respectives par rapport au
poids α, tel que
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Appendix E. Résumé substantiel en français

EN
0 = Eα − α

∂Eα

∂α

EN−1
0 = Eα + (1− α)

∂Eα

∂α

IN0 = EN−1
0 − EN

0 =
∂Eα

∂α

(E.4)

EN
0 = Eα − α

∂Eα

∂α

EN+1
0 = Eα + (1− α)

∂Eα

∂α

AN
0 = EN

0 − EN+1
0 = −∂Eα

∂α
.

(E.5)

En pratique, lorsque l’on effectue des calculs DFT ou eDFT, certaines des quantités pri-
maires auxquelles on a accès une fois la convergence obtenue sont les énergies orbitalaires de
Kohn-Sham {εi}. Par conséquent, il serait très pratique de pouvoir extraire les énergies in-
dividuelles et les énergies d’excitation mentionnées ci-dessus, directement à partir des quan-
tités d’ensemble de Kohn-Sham. Encore une fois, nous insistons sur le fait que, pour un
calcul de DFT d’ensemble, le set d’orbitales de Kohn-Sham sera dépendant du poids de
l’ensemble et sera optimisé par rapport à l’ensemble entier, et non pour un état spécifique
inclus dans l’ensemble. Pour cette raison, les prédictions d’énergies individuelles et d’énergies
d’excitations seront toutes obtenues à partir du même système d’ensemble de Kohn-Sham.
Rappelons les formules clés qui seront utilisées pour prédire les propriétés physiques des états
individuels et ainsi que les énergies d’excitation lors de calculs pratiques de type PPLB-DFT

EN
0 = EN,α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

− α
∂Eα

Hxc[n
α
KS]

∂α

EN−1
0 = EN−1, α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α

IN0 = −εαN +
∂Eα

Hxc[n
α
KS]

∂α
(E.6)

EN
0 = EN,α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

− α
∂Eα

Hxc[n
α
KS]

∂α

EN+1
0 = EN+1, α

0

+ Eα
Hxc[n

α
KS]−

∫
δEα

Hxc[n
α
KS]

δn(r)
nα

KS(r)dr

+ (1− α)
∂Eα

Hxc[n
α
KS]

∂α

AN
0 = −εαN+1 −

∂Eα
Hxc[n

α
KS]

∂α
.

(E.7)

Il est connu que les coûts énergétiques pour le retrait ou l’ajout d’un électron de/vers
l’état fondamental d’un système électronique neutre sont différents. Par conséquent, l’énergie
d’ensemble exacte EN d’un système ouvert doit être linéaire par morceaux par rapport à la
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variation continue du nombre d’électrons N .
Dans ce contexte, Perdew, Parr, Levy et Balduz ont dérivé deux propriétés fondamentales
exactes auxquelles une théorie en principe exacte, telle que la formulation Kohn-Sham de la
DFT, doit obéir lorsqu’elle est appliquée à un système dit ouvert.

� La courbe de l’énergie totale exacte par rapport au nombre d’électrons du système
ouvert, EN (N ), doit être constituée d’une série de lignes droites entre nombres entiers
successifs d’électrons N .

� Lors du franchissement d’un nombre entier d’électrons, le potentiel exact d’échange-
corrélation doit subir un “saut”, connu sous le nom de “dérivée discontinue”, ∆xc.
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Figure E.1: Violation de la condition exacte de linéarité par morceaux de l’énergie d’ensemble PPLB
exacte de Li par rapport au nombre d’électrons du système ouvert avec diverses méthodes et fonc-
tionnelles d’xc, dans la base cc-pVDZ. Les énergies d’ensemble PPLB auto-cohérentes obtenues sont
comparées aux énergies d’interpolation linéaire correspondantes, obtenues avec les mêmes méthodes et
fonctionnelles et basées sur les énergies fondamentales des états dits “purs” correspondants (points).

Ces deux contraintes exactes sont en fait intrinsèquement liées et la violation de l’une
entrâınera des conséquences immédiates sur l’autre, comme démontré dans ce travail.
En effet, l’utilisation d’une fonctionnelle approchée d’échange-corrélation dépourvue de dérivée
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discontinue engendrera un écart par rapport à la condition exacte de linéarité par morceaux
de l’énergie totale (voir Figures E.1 et E.2).
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Figure E.2: Violation de la condition exacte de constance par morceaux de l’énergie HOMO de Li par
rapport au nombre d’électrons N , en utilisant diverses méthodes et niveaux d’approximation d’xc, dans
la base cc-pVDZ. Les énergies orbitalaires HF/KS dépendantes du poids sont comparées à l’opposé
des potentiels d’ionisation et des affinités électroniques correspondants obtenus par différences d’énergie
totales (méthode ∆SCF) entre les énergies fondamentales des états purs successifs.

Compte tenu de cette problématique, nous explorons dans cette thèse la faisabilité de con-
cevoir une fonctionnelle d’échange-corrélation explicitement dépendante du poids de l’ensemble
et qui serait à même de corriger la courbure parasite des énergies d’ensemble de type PPLB
obtenues par les fonctionnelles standard indépendantes du poids en PPLB-DFT.
Ces fonctionnelles dénommées “CC” (Courbure-Corrigée) sont de la forme suivante

E α, eDFA
x [n] ≡ F α

x E α,DFA
x [n] , (E.8)

avec F α
x un facteur multiplicatif d’échange explicitement dépendant du poids de l’ensemble.

Ainsi, la conception de fonctionnelles possédant une propriété de dérivée discontinue, ou
capables de l’imiter artificiellement, peut permettre dans un premier temps de restaurer le
comportement linéaire par morceaux de l’énergie totale du système et d’améliorer du même
coup la prédiction de propriétés physiques telles que les énergies d’excitation (voir Figure
E.3).
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Figure E.3: Impact de la capacité des fonctionnelles CC à restaurer la condition exacte de linéarité par
morceaux de l’énergie totale d’un système ouvert sur la pertinence physique de la prédiction du gap
fondamental à partir de quantités d’ensemble. Les calculs ont été effectués sur Li dans la base cc-pVDZ
avec la fonctionnelle d’xc LSDA et son alter-ego CC dépendant du poids de l’ensemble. Un parallèle est
établi entre le rétablissement de la condition de linéarité par morceaux de l’énergie totale du système
ouvert (Figure de gauche) et l’amélioration de la prédiction du gap fondamental (Figure de droite).
Le gap fondamental correspondant obtenu par différences d’énergie totales (méthode ∆SCF) entre les
états purs correspondants avec le même niveau d’approximation est également reporté à des fins de
comparaison.

La GOK-DFT pour les états excités et les excitations

électroniques neutres

La DFT est une théorie de l’état fondamental conçue à l’origine pour décrire les systèmes
statiques (indépendants du temps) associés à un potentiel externe indépendant du temps
v(r). Néanmoins, à l’instar du théorème de Hohenberg-Kohn, le théorème de Runge-Gross a
prouvé l’existence d’une correspondance unique entre un potentiel externe v(r, t) et la den-
sité électronique n(r, t) d’un système évoluant dans un tel potentiel. Par conséquent, la DFT
a été généralisée pour inclure des potentiels externes dépendants du temps qui permettent
la description des états dits excités (neutralement) et de donner accès aux excitations qui
vérifient la conservation du nombre d’électrons du système, telles que les excitations optiques
à effets excitoniques. Il est à noter que, dans le même esprit, il existe également une extension
dépendante du temps de la théorie de Hartree-Fock, la TD-HF.
En pratique, l’application la plus courante de la TD-DFT se fait dans le régime de réponse
linéaire, qui évite de devoir résoudre l’équation de Schrödinger dépendante du temps. La
TD-DFT est très similaire à la DFT standard pour le calcul de l’état fondamental et consiste
à résoudre de manière auto-cohérente un ensemble de problèmes Kohn-Sham dépendants
du temps avec une difficulté supplémentaire provenant du fait que le potentiel d’échange-
corrélation est beaucoup plus subtil qu’en DFT standard en raison du fait qu’il doit englober
un effet “mémoire” dans sa dépendance à la densité électronique.
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En général, un moyen de contourner cette difficulté est d’utiliser la TD-DFT dans le cadre de
l’approximation adiabatique qui consiste à négliger cette caractéristique temporelle du poten-
tiel d’xc en utilisant à la place son analogue indépendant du temps utilisé en DFT pour l’état
fondamental. Malheureusement, l’approximation adiabatique, qui implique le recours à un
noyau d’échange-corrélation statique, restreint le domaine d’application de la TD-DFT à la
seule description d’états à excitation unique et, par conséquent, manque complètement les ex-
citations multiples dont la description nécessiterait un noyau d’xc dépendant de la fréquence.
La TD-DFT, dans le régime de la réponse linéaire et dans sa formulation adiabatique, s’est
imposée comme l’une des alternatives les plus prometteuses pour la description et le calcul
d’excitations neutres. Bien qu’elle puisse prédire avec une précision satisfaisante les énergies
d’excitation, elle souffre néanmoins de nombreuses carences qualitatives qui doivent encore
être surmontées. La TD-DFT a été très largement utilisée avec succès au cours des dernières
décennies, mais ne parvient pas à fournir une description appropriée d’un certain nombre de
phénomènes et de propriétés intéressantes telles que la description des états de Rydberg, des
excitations à transfert de charge ou des intersections coniques qui jouent un rôle clé dans
les mécanismes photochimiques. De plus, les excitations multiples sont complètement ab-
sentes des spectres obtenus par la TD-DFT. D’où la nécessité de développer une approche
plus générale applicable à tous types d’états excités et capable d’accéder à l’ensemble du
spectre énergétique d’un système électronique via un formalisme indépendant du temps et
nécessitant un faible coût de calcul.
En cela, le formalisme Gross-Oliveira-Kohn de la DFT d’ensemble peut constituer une alter-
native attrayante. En effet, la GOK-DFT est une théorie exacte et indépendante du temps qui
peut non seulement accéder à toutes sortes d’énergies d’excitation mais aussi aux énergies et
aux densités des état excités et, ce, à travers un seul calcul de type DFT grâce à l’utilisation
du formalisme d’ensemble. Néanmoins, un tel formalisme soulève un certain nombre de
questions qui restent encore sans réponse et doivent être investigués afin de pouvoir exploiter
pleinement cette méthode. Par exemple, les questions du choix optimal des valeurs de poids
de l’ensemble à utiliser et la nécessité de concevoir de nouvelles fonctionnelles approchées d’xc
dépendantes du poids demeurent cruciales. Par ailleurs, nous abordons également dans ce
travail la nécessité d’aller au-delà des fonctionnelles standard d’xc indépendantes du poids et
explorons la possibilité d’user de la méthode d’interpolation linéaire (LIM) comme alternative
pour obtenir des prédictions suffisamment précises pour les énergies d’excitation d’atomes et
de systèmes moléculaires.

Dans ce travail, nous avons tout d’abord considérer des ensemble à deux états incluant
l’état fondamental EN

0 ≡ E0 de systèmes électronique à N = 2 électrons ainsi que l’état
excité de type singulet le plus bas obtenu par excitation unique EN

1 ≡ E1 que nous avons
supposé être l’état excité de plus basse énergie. L’énergie associée à ce type de biensemble
GOK prend la forme suivante

Ew
1 = (1− w1)E0 + w1E1 . (E.9)

De même, nous avons également considéré un deuxième biensemble incluant cette fois l’état
fondamental du système ainsi que l’état excité de type singulet le plus bas obtenu par double
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excitation EN
2 ≡ E2. L’énergie de ce deuxième type de biensemble GOK s’écrit alors

Ew
2 = (1− w2)E0 + w2E2 . (E.10)

Enfin, nous avons défini et étudié le “triensemble” GOK incluant cette fois les trois états
électroniques les plus bas du système à N électrons, que nous avons supposé être l’état
fondamental, l’état singulet le plus bas obtenu par excitation unique et l’état singulet le plus
bas obtenu par double excitation.
Basé sur cette définition, nous avons tout d’abord distingué la configuration à deux poids
distincts

Ew = (1− w1 − w2)E0 + w1E1 + w2E2 , (E.11)

où w = {w1;w2}, et la configuration à poids unique qui est un cas particulier du triensemble
GOK précédant où w1 = w2 = w

Ew = (1− 2w)E0 + wE1 + wE2 . (E.12)

Il faut noter que, afin de garantir la validité du principe variationnel GOK, les poids de
l’ensemble doivent vérifier

0 ≤ w2 ≤
1

3
(E.13) w2 ≤ w1 ≤

1

2
(1− w2) . (E.14)

Par application du théorème de Hellmann-Feynman à la définition de l’énergie d’ensemble
GOK, les énergies d’excitation peuvent être exprimées, en principe exactement, en termes
d’énergies Kohn-Sham et de dérivées de la fonctionnelle d’échange-corrélation par rapport
aux poids de l’ensemble.

∂Ew

∂wI
= EI − E0 = Ew

I − Ew
0 +

∂Ew
Hxc[n]

∂wI

∣∣∣∣
n=nw

KS

. (E.15)

Dans cette définition, Ew
I est la Iième énergie totale auxiliaire Kohn-Sham dépendante du

poids, obtenue par sommation des énergies orbitalaires Kohn-Sham qui sont occupées dans
la description du Iième état de l’ensemble

Ew
I =

∑
p

nI
pε

w
p . (E.16)

Du fait que les fonctionnelles d’xc approchées indépendantes du poids de l’ensemble ne
parviennent pas à fournir des énergies d’ensemble GOK parfaitement linéaires (voir la Figure
E.4), les énergies d’excitation associées aux états simplement et doublement excités obtenues
par dérivation des énergies des biensembles et triensembles GOK par rapport aux poids w1 et
w2, respectivement, varient considérablement avec les poids, ce qui est très peu physique, par
opposition avec les références ∆SCF obtenues dans en DFT standard avec le même niveau
d’approximations, comme illustré dans la Figure E.5.
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0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

Figure E.4: Violation de la condition exacte de linéarité des énergies d’ensemble GOK de He obtenus
pour les biensembles GOK “simples” (traits continus bleus) et “doubles” (traits continus rouges) par
diverses méthodes et niveaux d’approximation d’xc dans la base cc-pVDZ. Les énergies d’ensemble GOK
auto-cohérentes (traits continus) sont comparées aux interpolations linéaires correspondantes (traits dis-
continus). Les zones ombrées mettent en évidence le domaine de validité restreint du principe variationnel
GOK.

262



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.62

1.64

1.66

1.68

1.70

1.72

1.74

0.200.250.300.350.40
1.626
1.628
1.630
1.632
1.634
1.636
1.638

Figure E.5: Variation de l’énergie d’excitation simple la plus basse de He en fonction du poids de
l’ensemble, obtenue à partir des triensembles GOK. Les énergies Kohn-Sham d’excitation simple obtenues
à partir des triensembles GOK sont reportées pour la configuration à poids unique (w1 = w2 = w), pour
différentes configurations de poids du triensemble à deux poids distincts ainsi que pour la configuration
équiensemble (w1 = w2 = 1

3), et sont comparées aux énergies d’excitation simple obtenues à partir
du biensemble GOK “simple” (w2 = 0), celle obtenue par la méthode d’interpolation linéaire (LIM)
appliquée au biensemble ou au triensemble, de manière équivalente, ainsi que la prédiction ∆SCF obtenue
avec le même niveau d’approximation. Les calculs ont été effectués dans le cadre de l’approximation
d’xc LSDA et dans la base cc-pVDZ.

En parfaite analogie avec ce qui a été fait dans le cas des ensembles PPLB, nous avons
conçu des fonctionnelles approchées d’échange dépendantes du poids et basées sur certaines
des fonctionnelles approchées standard conçues pour la DFT pour les états fondamentaux.
Cela, afin de corriger les erreurs de courbure des énergies d’ensemble GOK et d’améliorer la
qualité des énergies d’excitation.

E
w

i
, eDFA

x [n] ≡ F
w

i
x E

w
i
,DFA

x [n] , (E.17)

En parvenant à rétablir la condition exacte de linéarité de l’énergie des biensembles GOK
et, ainsi, la constance de leurs dérivées respectives par rapport aux poids, les fonctionnelles
CC parviennent à produire des prédictions beaucoup plus stables et précises des énergies
d’excitation, en accord avec les références ∆SCF correspondantes (voir la Figure E.6).
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Figure E.6: Variation de l’énergie d’excitation simple la plus basse de He en fonction de la varia-
tion du poids de l’ensemble, obtenue à partir du biensemble GOK “simple”. Les énergies Kohn-Sham
d’excitation fournies par les fonctionnelles standards indépendantes du poids et leurs analogues CC
dépendantes du poids sont reportées. Les énergies d’excitation simples complètes, incluant les contri-
butions supplémentaires “DD” venant des dérivées des fonctionnelles CC par rapport aux poids, sont
également reportées. À titre de comparaison, les prédictions LIM des approximations indépendantes et
dépendantes du poids sont également reportées. Enfin, les énergies d’excitation simple ∆SCF obtenues
avec le même niveau d’approximation sont reportées ainsi que l’énergie d’excitation simple exacte . Les
calculs ont été effectués dans la base cc-pVQZ avec diverses méthodes et niveaux d’approximations.

Le formalisme N-centré pour les excitations électroniques

chargées

Bien que la DFT soit aujourd’hui largement applicable à une grande variété de systèmes
à plusieurs électrons, principalement du fait des efforts considérables qui ont été consacrés
à la conception d’un large panel d’approximations, et bien qu’elle se soit imposée au cours
des dernières décennies comme une méthode fiable et relativement facile à mettre en oeuvre
avec un coût de calcul relativement faible dans de nombreux domaines scientifiques tels que la
physique, la chimie et la science des matériaux, elle souffre encore néanmoins de certaines limi-
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tations conséquentes. En effet, il existe encore quelques quantités spécifiques dont l’extraction
directe depuis des quantités Kohn-Sham (KS) obtenues par un calcul DFT ne parvient pas à
atteindre une précision satisfaisante par rapport aux références expérimentales de ces mêmes
quantités physiques. Par exemple, les potentiels d’ionisation, les affinités électroniques et, par
construction, les gaps fondamentalaux sont quelques exemples de propriétés qui demeurent
insaisissables du fait qu’elles soient mal prédites par les quantités Kohn-Sham résultant d’un
calcul DFT. Cependant, ces quantités peuvent toujours être évaluées au moyen de la méthode
∆SCF sous la forme de différences d’énergies totales des états fondamentaux des différentes
espèces neutres, anioniques et cationiques. En fait, ces propriétés physiques résultant de
processus impliquant une altération du nombre total d’électrons du système d’intérêt peu-
vent s’avérer assez difficiles à calculer dans certaines situations. Par exemple, dans le cas de
systèmes périodiques, tels que les solides cristallins, induire une variation du nombre total
d’électrons de l’édifice cristallin constitue une difficulté supplémentaire à surmonter en rai-
son du caractère périodique de tels systèmes. En effet, en raison des conditions aux limites
périodiques, un changement infinitésimal de la charge d’une cellule primitive impliquerait
un changement identique dans chaque réplique de la cellule primitive, entrâınant ainsi une
variation infinie du nombre total d’électrons de l’ensemble du système. D’où la nécessité de
surmonter cette difficulté technique et de trouver une alternative pour extraire les excita-
tions chargées tels que les gaps fondamentaux basés sur des quantités résultant de calculs
faisant uniquement intervenir le système neutre, sans qu’il soit impératif de faire varier la
charge totale du système. Bien sûr, de nombreuses efforts ont été fournis jusqu’à présent
pour améliorer la précision des prévisions des gaps fondamentaux fournis par les fonction-
nelles semi-locales conventionnelles dans le cadre de la KS-DFT. Par exemple, l’utilisation de
la fonctionnelle d’échange exact (EXX) combinée au potentiel effectif optimisé (OEP) pour
restaurer la fameuse dérivée discontinue manquante des fonctionnelles approchées standard
ou encore la possibilité d’aller au-delà du cadre Kohn-Sham et de recourir plutôt au formal-
isme Kohn-Sham généralisé (GKS), où le système d’électrons en interaction est associé à un
système fictif en interaction mais qui peut néanmoins être décrit par un unique déterminant
de Slater et associé à un opérateur non local dépendant des orbitales. Bien que le cadre GKS
ait permis une amélioration significative de la prédiction des gaps fondamentaux de solides
par rapport au schéma KS standard, pour les systèmes de taille finie, comme les atomes et
les molécules, elle reste malheureusement inefficace en raison de son incapacité à prendre en
compte suffisamment de contributions d’échange à longue distance.
Une autre alternative, suggérée par Kraisler et Kronik, consisterait en une généralisation
à l’aide d’un formalisme d’ensemble des termes de Hartree, d’échange et de corrélation.
Néanmoins, une idée très intéressante serait de pouvoir extraire des énergies d’excitation
chargées à l’aide d’une approche fondée sur les premiers principes et qui ne nécessiterait
qu’un faible coût de calcul de type DFT et l’utilisation exclusive de grandeurs associées au
système neutre, évitant ainsi toute altération du nombre d’électrons, ce qui le rendrait large-
ment applicable à des systèmes finis ou périodiques. Dans ce chapitre, nous avons étudié une
reformulation canonique exacte du problème du gap fondamental en DFT et nous l’avons
mise en pratique dans le cadre de systèmes atomiques simples.
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Appendix E. Résumé substantiel en français

Tout récemment, Senjean et Fromager ont introduit le concept d’ensembles N -centrés
pour obtenir des descriptions précises des processus d’excitation chargée à travers un for-
malisme canonique qui maintient constant artificiellement le nombre total d’électrons du
système et égal à une valeur entière spécifique dans le cadre de la DFT d’ensemble (eDFT).
Contrairement à l’approche grand canonique standard PPLB où le nombre d’électrons du
système physique ouvert est censé varier de manière continue, ce qui engendre un saut dis-
continu du potentiel exact d’échange-corrélation, connu sous le nom de dérivée discontinue,
à chaque franchissement d’un nombre entier d’électrons, dans le cadre canonique N -centré,
le potentiel exact d’xc n’est pas astreint à présenter une telle discontinuité.
Par conséquent, bien que l’absence de dérivée discontinue dans les approximations de l’énergie
d’xc couramment utilisées soit très préjudiciable pour la prédiction précise des excitations
chargées telles que le gap fondamental en PPLB-DFT standard et entrâıne souvent des er-
reurs conséquentes, en DFT d’ensemble N -centrée , cela reste sans conséquence et la capacité
des fonctionnelles approchées à produire des prédictions suffisamment précises pour les exci-
tations chargées sera plutôt du fait de la dépendance explicite au poids de l’ensemble de ces
fonctionnelles .
Dans ce chapitre, nous avons exploré différents choix d’ensembles N -centrés dans le but de
décrire les propriétés résultant des fluctuations de charge autour du nombre entier central
d’électrons N d’un système atomique neutre.
En cela, nous avons commencé par étudier les ensembles N -centrés “gauche” (−) et “droit”
(+) de densités et d’énergies d’ensemble

nξ±(r) = (1− α)nN
0 (r) +

Nα

N ± 1
nN±1
0 (r)

(E.18)

E ξ± = (1− α)EN
0 +

Nα

N ± 1
EN±1

0 , (E.19)

qui permettent d’extraire respectivement le potentiel d’ionisation et l’affinité électronique
d’un système électronique selon

IN0 = −ε ξ−

N − 1

N
(1−α−N)

∂E ξ−

Hxc

∂α

∣∣∣∣∣
n ξ−
KS

(E.20) AN
0 = −ε ξ+

N+1 −
1

N
(1− α +N)

∂E ξ+

Hxc

∂α

∣∣∣∣∣
n ξ+

KS

.

(E.21)

Dans la théorie exacte, les énergies d’ensemble exactes N -centrées, que l’on obtiendrait
avec la fonctionnelle exacte, devraient être parfaitement linéaires par rapport au poids de
l’ensemble,et donc du nombre d’électrons du système ouvert réel N .
Contrairement aux énergies d’ensemble PPLB exactes qui doivent produire les énergies ex-
actes des étast fondamentaux des systèmes neutre et cationique (ou anionique) lorsque α = 0
et α = 1, respectivement, les énergies d’ensemble N -centrées exactes doivent correspondre
à l’énergie exacte de l’état fondamental du système à N -électrons pour la configuration de
poids α = 0 mais doivent correspondre à des fractions spécifiques, préétablies par les fac-
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teurs d’échelle des poids N -centrés, des énergies exactes des états fondamentaux des systèmes
cationique ou anionique lorsque α = 1. Ainsi, selon la théorie exacte, l’énergie d’ensemble
N -centrée doit vérifier

E ξ±=0
0 = EN

0 (E.22) E
ξ±= N

N±1

0 =
N

N ± 1
EN±1

0 . (E.23)

Dans la théorie PPLB-DFT, nous avons vu que l’utilisation de fonctionnelles d’xc ap-
prochées à la place de la fonctionnelle exacte inconnue engendre deux conséquences : l’obtention
d’énergies approchées des états fondamentaux des systèmes neutre et cationique (ou anion-
ique), lorsque α = 0 et α = 1, respectivement, et une courbure supplémentaire dans l’énergie
d’ensemble obtenue pour toute autre configuration de poids, 0 < α < 1. Les énergies
d’ensemble PPLB et N -centrées “gauche” de l’atome de lithium obtenues avec différents
niveaux d’approximation sont reportées dans la Figure E.7 à des fins d’illustration.
En N -centré, des observations similaires peuvent être faites. Pour une fonctionnelle ap-
prochée donnée, l’énergie d’ensemble N -centrée obtenue présentera une courbure addition-
nelle mais, surtout, elle présentera une déviation conséquente de sa valeur finale théorique
qui devrait théoriquement être égale à une fraction spécifique de l’énergie de l’état fonda-
mental du système cationique (ou anionique) obtenue en DFT standard avec le même niveau
d’approximation, comme illustré sur la Figure E.7. Par conséquent, lorsqu’une fonctionnelle
approchée (DFA) est utilisée à la place de la fonctionnelle exacte, l’énergie d’ensemble N -
centrée résultante présentera les propriétés suivantes

E DFA, ξ±=0 = EN,DFA
0 (E.24) E DFA, ξ±= N

N±1 ̸= N

N ± 1
EN±1,DFA

0 . (E.25)

Cette déviation parasite peut s’expliquer par le fait que la plupart des fonctionnelles ap-
prochées s’avèrent ne pas être des opérations linéaires par rapport à la quantité à laquelle
elles s’appliquent, la densité électronique par exemple. En effet, lorsque α = 1, en raison du
facteur d’échelle multiplicatif N

N±1
, les densités d’ensemble N -centrée “gauche” et “droite” ne

se réduisent pas à une simple densité d’état fondamental et du fait de la non-linéarité de la
fonctionnelle approchée, l’application d’une fonctionnelle non linéaire à une densité à laque-
lle est appliqué un facteur multiplicatif ne résulte pas en l’application de ce même facteur à
l’énergie associée à cette densité, comme cela serait le cas si la fonctionnelle était linéaire,

E DFA, ξ±
[

N

N ± 1
n

]
̸= N

N ± 1
E DFA, ξ± [n] . (E.26)

En conséquence, la qualité des prédictions d’énergies fondamentales et d’énergies d’excitation
chargée obtenues par des calculs d’eDFT N -centrée “gauche” et “droite” vont s’avérer forte-
ment impactées par ces considérations, comme illustré dans la Figure E.8.
Là encore, la construction et le recours a des fonctionnelles approchées explicitement dépendantes
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du poids de l’ensemble peuvent permettre de corriger et d’améliorer la qualité des estimations
des grandeurs physiques calculées.
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Figure E.7: Comparaison entre les énergies d’ensemble PPLB “gauche” (trait continu bleu) et N -centrée
“gauche” (trait continu rouge) de Li obtenues avec des fonctionnelles d’xc standard indépendantes du
poids dans la base cc-pVDZ. Les interpolations linéaires des énergies d’ensemble PPLB (trait discontinu
bleu) et N -centrées (trait mixte rouge) mettent en évidence la courbure supplémentaire résultant de
l’utilisation de fonctionnelles approchées indépendantes du poids ainsi que la déviation finale de l’énergie
d’ensemble N -centrée par rapport à sa valeur théorique (trait discontinu rouge). Pour chaque niveau
d’approximation, l’énergie d’ensemble N -centrée “gauche” obtenue avec la fonctionnelle CC correspon-
dante dépendante du poids est également indiquée (trait continu rouge foncé).
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Figure E.8: Variation du potentiel d’ionisation de Li en fonction du nombre fractionnaire d’électrons du
système ouvert, extrait à partir d’un ensemble PPLB “gauche” et d’un ensemble N -centré “gauche” avec
diverses fonctionnelles d’échange-corrélation indépendantes et dépendantes du poids de l’ensemble dans
la base cc-pVDZ. Pour chaque approximation indépendante du poids, l’opposé de l’énergie HOMO PPLB
dépendante du poids (trait continu bleu) du système neutre est reporté, de même que l’opposé de l’énergie
HOMO N -centrée LZ-shiftée (trait continu rouge). L’opposé des énergies HOMO N -centrée non shiftée
(trait discontinu rouge foncé) et shiftée (trait mixte rouge foncé) obtenues avec des fonctionnelles CC
d’xc explicitement dépendantes du poids sont également reportées à des fins de comparaison. Enfin,
la prédiction complète du potentiel d’ionisation (trait continu rouge foncé) incluant la contribution
additionnelle de la dérivée (DD) de la fonctionnelle CC par rapport au poids de l’ensemble est également
reportée. Les potentiels d’ionisation obtenus par la méthode ∆SCF (trait discontinu noir) pour chaque
approximation standard indépendante du poids sont également reportés à des fins de comparaison.

Enfin, d’autres types d’ensemble N -centrés ont également été étudiés et mis en pratique,
parmi lesquels le triensemble à poids unique

Eξ = (1− 2ξ)EN
0 + ξEN−1

0 + ξEN+1
0 , (E.27)

avec 0 ≤ ξ ≤ 0.5 . Cet ensemble N -centré à trois états possède la particularité de permettre
une extraction directe du gap fondamental du système à N électrons en un unique calcul
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selon l’expression suivante

ΩN
0 =

dEξ
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= ε ξ
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∣∣∣∣∣
n ξ

KS
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Encore très récemment, des travaux ont été réalisés afin de bénéficier de la forte analogie entre
les formalismes de GOK-DFT et d’eDFT N -centrée en concevant des ensembles hybrides
GOK/N -centré qui incorporeraient à la fois des états à N électrons excités neutralement
et des états excités résultant d’excitations chargées. De tels ensembles permettraient ainsi
l’extraction simultanée d’énergies d’excitation chargée et neutre à partir d’un unique calcul
de DFT d’ensemble. Ces ensembles, proposés par Fromager et al., sont appelés ensembles
N -centrés étendus.

E η={α,w} = (1− α− w)EN
0 +

Nα

N − 1
EN−1

0 + wEN
1 , (E.29)

Les erreurs de charge et spin fractionnaires et leurs im-

plications dans les processus de dissociation asympto-

tiques

Le succès indéniable de la DFT est dû, dans une très large mesure, à la possibilité de recourir
à des fonctionnelles d’échange-corrélation approchées compte tenu du fait que la fonction-
nelle exacte demeure inconnue et hors de portée. Paradoxalement, la nature approchée des
fonctionnelles utilisées en pratique est également responsable de certaines des défaillances les
plus massives des calculs de DFT. Il est intéressant de noter que de telles défaillances ne sont
pas exclusives aux systèmes électroniques à grand nombre d’électrons ou complexes ou encore
à une classe donnée d’approximations, mais il s’agit en réalité d’erreurs systématiques assez
conséquentes qui se produisent même lors de la description de systèmes les plus élémentaires
présentant un ou deux électrons, que ce soit avec le niveau d’approximation le plus simple
ou le plus élaboré.
Par exemple, l’incapacité des fonctionnelles approchées à respecter la condition exacte de
linéarité par morceaux de l’énergie des systèmes à charge fractionnaire a été formalisée par
le concept d’erreurs de localisation et de délocalisation (ou erreurs de charge fractionnaire)
et s’est avéré être responsable d’une grande partie des déviations des propriétés calculées en
DFT par rapport aux résultats expérimentaux, telles que les prédictions de bande interdite
ou les limites de dissociation. Quant à la violation de la condition de constance pour les
spins fractionnaires, elle a donné lieu à l’erreur de corrélation statique (ou erreur de spin
fractionnaire) et reflète l’incapacité d’une fonctionnelle approchée à décrire correctement les
systèmes possédant des états fondamentaux dégénérés associés à différentes configurations
de spin. La corrélation statique (ou corrélation forte) englobe les situations où l’utilisation
d’un unique déterminant, telles que les théories Hartree-Fock et KS-DFT, ne parvient pas
à fournir une description appropriée de la matière et des comportements quantiques. Les
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erreurs de corrélation statique se sont révélées significatives dans les situations impliquant
des dégénérescences et quasi-dégénérescences, dans des systèmes dits fortement corrélés où
les interactions électroniques sont particulièrement difficiles à décrire, ou dans des situations
de rupture de liaisons chimiques. Il a été observé que la plupart des méthodes présentant
de petites erreurs de charge fractionnaire ont paradoxalement tendance à générer de grandes
erreurs de spin fractionnaire, et vice-versa. Par exemple, alors que l’ordre 2 de la théorie des
perturbations de Møller-Plesset (MP2) fournit de très faibles erreurs de charge fractionnaire,
elle présente également des erreurs de spin fractionnaire infinies. Ainsi l’élaboration d’une
méthode ou d’une approximation qui permettrait de fournir à la fois des erreurs marginales
pour la description des deux concepts de charge fractionnaire et de spin fractionnaire con-
stitue encore aujourd’hui un véritable défi pour les calculs de structures électroniques.
Les concepts de charge fractionnaire et de spin fractionnaire et leurs implications formelles
et pratiques sur les systèmes réels ont été largement étudiés par Mori-S´anchez, Cohen et
Yang dont les travaux ont fourni des informations éclairantes sur la nature intrinsèque de
certaines erreurs systématiques massives des fonctionnelles d’xc approchées dans le cadre
des théories HF et KS-DFT. De plus, ils sont parvenu à proposer une formulation unifiée
de ces deux concepts conduisant à la condition de “plan plat” que doit respecter l’énergie
exacte des systèmes électroniques présentant à la fois des charges fractionnaires et des spins
fractionnaires. Ces considérations peuvent s’avérer essentielles au développement futur de la
DFT et à l’élaboration d’une nouvelle gamme de fonctionnelles approchées qui permettraient
de pallier à ces deux erreurs fondamentales.

L’erreur de charge fractionnaire

Une conséquence concrète du principe de “préférence entière”, énoncé par Perdew , est que,
lors de l’étirement d’une molécule électriquement neutre celle-ci doit se dissocier en un en-
semble d’atomes neutres possédant un nombre entier d’électrons sur chacun. En pratique, de
nombreuses approximations échouent à obéir à cette propriété exacte très simple et prédisent
à tort que les systèmes moléculaires à plusieurs électrons se dissocient en des fragments
possédant des charges fractionnaires. Cette dissociation asymptotique fractionnaire bien que
dépourvue de réalité physique s’avère avoir des implications très concrètes.
D’un point de vue énergétique, cela signifie qu’avec les DFAs, un minimum global non
physique de l’énergie totale du système dissocié est atteint lorsque la charge totale est
délocalisée sur les divers fragments dissociés. Ce résultat erroné découle de l’incapacité
des approximations standards à fournir des descriptions appropriées des processus de trans-
fert de charge, aussi bien pour les systèmes moléculaires que pour les systèmes de l’état
solide. Il s’agit d’une conséquence directe de la violation de la condition exacte de linéarité
par morceaux de l’énergie, qui a été formalisée en termes d’erreurs de localisation et de
délocalisation des fonctionnelles approchées. De nombreux systèmes et approximations sont
connus pour présenter un tel comportement erroné, décrivant des atomes bien séparés mais
avec un nombre fractionnaire d’électrons sur chacun.

En nous inspirant des travaux de Kraisler et Kronik , nous avons abordé le problème de
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dissociation asymptotique fractionnaire en employant à la fois les approximations standard
indépendantes du poids de la DFT ainsi que nos fonctionnelles CC explicitement dépendantes
du poids et conçues pour le formalisme PPLB. En rétablissant la linéarité par morceaux de
l’énergie des fragments dissociés, les fonctionnelles CC dépendantes du poids pourraient être
en mesure d’empêcher les transferts de charge parasites entre les atomes bien séparés et de
fournir des descriptions appropriées des limites de dissociation des systèmes moléculaires.
L’énergie totale d’un tel système dissocié est dictée par un autre principe exact, le principe
de “séparabilité” qui stipule que l’énergie totale d’un système composé de sous-systèmes
bien séparés peut être obtenue par sommation des énergies des composés sous-jacents. En
conséquence, l’énergie totale d’une molécule diatomique neutre parfaitement dissociée est
donnée par

EA...B(q) = EA(NA + q) + EB(NB − q) . (E.30)

Ainsi, dans le cas du système modèle diatomique AB, les configurations q = −1, q = 0 et
q = 1 correspondent aux fragments dissociés A+ . . . B−, A . . . B et A− . . . B+, respectivement.
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Figure E.9: Énergie E(N ) en fonction de la variation du nombre fractionnaire d’électrons N pour Li
(Figure en haut à gauche) et F (Figure en haut à droite) et limite de dissociation E(q) en fonction de
la charge fractionnaire q pour Li. . .F (Figure du bas), avec B3LYP (trait continu bleu) et CC-B3LYP
(trait discontinu rouge) dans la base cc-pVDZ. Le point vert met en évidence le minimum parasite non
physique de l’énergie obtenue par les approximations standard de DFT.

Nous avons ainsi effectué des calculs auto-cohérents de DFT d’ensemble de type PPLB
pour un petit ensemble de systèmes atomiques avec différents niveaux d’approximation afin
d’obtenir les courbes d’énergie des sytèmes atomiques E(N ) en fonction de la variation con-
tinue du nombre d’électrons N , ces courbes étant nécessaires à la construction de l’équation
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(E.30). Par sommation de ces énergies atomiques, nous avons pu reconstruire les limites de
dissociation d’un petit ensemble de molécules diatomiques telles que LiF, CF et FH, comme
le montre la Figure E.9.
Dans le cas de la dissociation de la molécule LiF, la fonctionnelle d’xc B3LYP indépendante
du poids produit une courbe d’énergie convexe avec un minimum d’énergie parasite placé
en q = −0, 20. En revanche, la fonctionnelle d’xc dépendante du poids CC-B3LYP parvient
elle à produire une énergie beaucoup plus en accord avec la condition exacte de linéarité par
morceaux et possède un minimum correct localisé en q = 0, fournissant ainsi une description
physiquement conforme du processus de dissociation de la molécule.

L’erreur de spin fractionnaire

Contrairement aux électrons possédant un spin dit “pur”, les électrons à spin fractionnaire
sont associés à des configurations de spin non physiques, −1

2
< ms <

1
2
.

Figure E.10: Illustration de diverses configurations fractionnaires du spin d’un électron (−1
2 < ms >< 1

2)
vérifiant la conservation de la norme du spin total.

Il se trouve que la densité électronique d’un électron à spin fractionnaire peut être
modélisée à l’aide d’un formalisme d’ensemble. En effet, en mélangeant des densités électroniques
de spin “up”, nα(r), et de spin “down”, nβ(r), associées à des poids spécifiques et complémentaires
dans l’ensemble, (1−w) et w, respectivement, il est possible d’obtenir une densité d’ensemble
à deux états qui permet la description et l’étude d’un tel système électronique non conven-
tionnel

nw(r) = (1− w)nα(r) + w nβ(r) , (E.31)

avec le poids de l’ensemble vérifiant la condition 0 ≤ w ≤ 1.

De manière analogue à la condition exacte de linéarité par morceaux de l’énergie pour les
systèmes ouverts , Cohen, Mori-Sánchez et Yang ont prouvé l’existence d’une autre condition
exacte qui devrait être satisfaite par les fonctionnelles d’échange-corrélation dans le cadre du
calcul d’énergie des systèmes à spin fractionnaire. Cette condition exacte, connue sous le
nom de “condition de constance” pour les spins fractionnaires, s’applique notamment aux
systèmes possédant des états fondamentaux dégénérés en énergie associés à différentes con-
figurations de spin et indique que, pour un système donné à un électron, toute configuration
de spin fractionnaire doit être dégénérée en énergie avec les configurations associées à des
spins “purs”.
En complète analogie avec l’erreur de délocalisation pour les charges fractionnaires, la déviation
de l’énergie d’un système à spin fractionnaire par rapport à la condition exacte de constance
avec une fonctionnelle approchée donnée est connue sous le nom d’erreur de spin fractionnaire
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ou d’erreur de corrélation statique. En fait, de nombreuses méthodes de chimie quantique,
parmi lesquelles la théorie de Hartree-Fock et la théorie de la fonctionnelle de la densité,
échouent à livrer une description et des énergies conformes à la condition exacte de con-
stance pour les systèmes à spin fractionnaire, même dans le cas des systèmes les plus simples,
comme illustré dans la Figure E.11.
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Figure E.11: Énergies d’ensemble (Figure de gauche) et erreurs de spin fractionnaire (Figure de droite)
de l’atome d’hydrogène obtenues avec les formalismes “restricted” et “unrestricted” d’Hartree-Fock ainsi
qu’avec diverses fonctionnelles “unrestricted” standard de DFT, calculées dans la base cc-pVDZ.

5 10 15
-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

0.0 0.2 0.4 0.6 0.8 1.0
-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

Figure E.12: Énergies restricted (traits discontinus) et unrestricted (traits continus) de H+
2 en fonction

de la longueur de liaison R pour diverses configurations de spin fractionnaire (Figure de gauche) et limites
de dissociation restricted (Figure droite) de H+

2 avec un spin fractionnaire en fonction de la variation du
poids de l’ensemble, au niveau Hartree-Fock dans la base cc-pVQZ. Pour toutes les configurations à spin
fractionnaire considérées, les limites de dissociation de H+

2 (traits pointillés) sont également indiquées.
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Les calculs auto-cohérents de DFT d’ensemble mettent en lumière des défaillances signi-
ficatives des fonctionnelles approchées dans le cas de systèmes à spin fractionnaire. Il faut
noter que même les approximations et méthodes connues pour être exactes lorsque appliquées
à l’atome d’hydrogène avec un spin pur, tel que la méthode d’Hartree-Fock, souffrent d’erreurs
importantes lorsque appliquées à des systèmes à spin fractionnaire.
Dans un deuxième temps, nous avons choisi d’étudier le comportement d’un système moléculaire
à un électron avec un spin fractionnaire lors de sa dissociation au niveau HF. En fait, il a
été démontré que l’erreur de dissociation de certaines molécules étirées était une conséquence
directe de l’incapacité des fonctionnelles approchées à satisfaire la condition exacte de con-
stance pour les spins fractionnaires, comme illustré dans la Figure E.12 .

Conclusion

Divers formalismes d’ensemble ont été très largement discutés tout au long de cette thèse à
travers les formalismes de de Hartree-Fock et de la théorie de la fonctionnelle de la densité.
La performance des méthodes basées sur la densité d’ensemble en tant que variable de base
a été étudiée dans le cadre de la prédiction des énergies d’excitation chargée et neutre.
En particulier, la généralisation du formalisme KS-DFT aux états fondamentaux électroniques
avec des nombres d’occupation fractionnaires, la PPLB-DFT, a été étudiée en utilisant le
formalisme d’ensemble pour décrire le comportement de l’énergie de l’état fondamental d’un
système ouvert en fonction de la variation continue du nombre d’électrons. Dans ce contexte,
les énergies d’ensemble PPLB ont été calculées de manière auto-cohérente afin d’extraire des
potentiels d’ionisation et affinités électroniques de systèmes atomiques simples avec les ap-
proximations standard d’échange-corrélation indépendantes du poids. Cela a mis en évidence
l’incapacité des approximations standard à reproduire la fameuse dérivée discontinue du po-
tentiel exact, et par la même occasion d’obéir à la condition exacte de linéarité par morceaux
de l’énergie totale d’un système ouvert, avec des implications massives sur les prévisions de
bande interdite. Le problème du gap fondamental a été adressé de même que la possibilité
de recourir à des approximations explicitement dépendantes du poids de l’ensemble pour
reproduire la fameuse dérivée discontinue à travers leurs dérivées. Cela, afin de restaurer
la condition exacte de linéarité par morceaux de l’énergie et d’obtenir des prédictions plus
satisfaisants pour les propriétés physiques du système.

La deuxième question sur laquelle nous nous sommes concentrés était de savoir dans
quelle mesure la DFT pouvait permettre d’accéder aux états excités neutralement à travers
sa formulation d’ensemble exacte et indépendante du temps, la GOK-DFT. À cet égard, nous
avons considéré divers ensembles GOK à deux et trois états, intentionnellement conçus pour
extraire les énergies d’excitation simples et doubles de systèmes à deux électrons. La courbure
des énergies d’ensemble GOK a ainsi été étudiée ainsi que la construction de fonctionnelles
d’échange-corrélation dépendantes du poids destinées à corriger cette courbure. Dans ce con-
texte, les énergies d’excitation ont été extraites des ensembles GOK de diverses manières :
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par différenciation des énergies d’ensembles GOK par rapport aux poids des ensembles, pour
diverses valeurs de poids des ensembles, ou encore en utilisant la méthode d’interpolation
linéaire.
Dans ce travail, l’utilisation d’approximations dépendantes du poids de l’ensemble n’a été
discutée que dans le cadre d’ensembles élémentaires, néanmoins, nous pensons qu’explorer
des ensembles plus sophistiqués, incluant un plus grand nombre d’états et de poids, ainsi
que le développement d’approximations d’xc basées sur de multiples dépendances en poids
pourraient permettre de transformer la GOK-DFT en une méthode plus couramment utilisée
pour le calcul d’états excités neutralement et les énergies d’excitation neutres associées.
Dans ce contexte, les approximations standard de la DFT pour les états fondamentaux pour-
raient servir de points de départ dans le développement futur d’approximations dépendantes
du poids, spécifiquement conçues pour des applications sur les ensembles d’états. En ef-
fet, très récemment, des conditions exactes spécifiques aux fonctionnelles d’ensemble ont été
démontrées ont livrer des informations cruciales et très instructives à ce sujet.

Le problème du gap fondamental a ensuite été abordé à travers sa récente reformu-
lation canonique proposée par Senjean et Fromager, dans laquelle la difficulté de repro-
duire la fameuse dérivée discontinue du potentiel exact est entièrement transposée dans la
modélisation de la dépendance en poids de la fonctionnelle Hxc, offrant ainsi une formulation
unifiée, indépendante du temps et en principe exacte de DFT d’ensemble plus les excita-
tions chargées et neutres. Des calculs auto-cohérents d’ensembles N -centrés ont ainsi été
réalisés afin d’extraire les potentiels d’ionisation et les affinités électroniques de systèmes
réels. De même, les formulations N -centrées originales à deux poids distincts et à poids
unique, spécialement conçues pour l’extraction directe de gaps fondamentaux ont également
été étudiées. Les Courbures et déviations des énergies d’ensemble N -centrées par rapport
aux valeurs théoriques, obtenues avec des approximations standard de DFT indépendantes
du poids ont été misesen lumière, révélant l’impact néfaste de la non linéarité des fonc-
tionnelles approchées. Face à cette problématique, nous avons montré dans quelle mesure
les approximations explicitement dépendantes du poids de l’ensemble pouvaient bénéficier
de leurs dérivées pour pallier aux limitations des approximations standard et pour fournir
des prévisions plus satisfaisantes pour les propriétés physiques obtenues par un calcul de
DFT d’ensemble. Enfin, des ensembles hybrides GOK/N -centré récemment développés et
permettant l’extraction d’énergies d’excitation chargée et neutre à partir d’un même calcul
auto-cohérent de type DFT, ont également été étudiés et appliqués à des systèmes réels à
deux électrons.

La dernière problématique que nous avons choisi d’aborder dans cette thèse concerne les
erreurs liées à la description des charges fractionnaires et les erreurs de spin fractionnaire,
qui proviennent de l’incapacité des approximations standard à obéir aux conditions exactes
de linéarité par morceaux et de constance de l’énergie. Ainsi, nous avons montré que les er-
reurs de charge fractionnaire, également appelées erreurs de localisation et de délocalisation,
peuvent avoir un impact significatif sur les prévisions de bande interdite et peuvent être
responsables d’erreurs dans la description de processus de dissociation. Quant à l’erreur de
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spin fractionnaire, ou erreur de corrélation statique, nous avons montré que même dans le
cadre d’approximations connues pour être exactes pour les systèmes à un électron, telles que
la théorie de Hartree-Fock, elles échouaient à fournir des descriptions physiquement perti-
nentes des systèmes à spin fractionnaire. Les approximations dépendantes du poids peuvent
là encore fournir une alternative pour pallier à ces carences systématiques.

Au vu de ces considérations, nous pensons qu’il est nécessaire d’aller au-delà des approx-
imations élaborées dans le cadre de la DFT pour les états fondamentaux, afin d’exploiter
pleinement le potentiel de l’eDFT et d’en faire une méthode de calcul fiable et pertinente pour
une large gamme d’applications. Dans cette optique, le développement de nouvelles classes
de fonctionnelles approchées d’échange-corrélation incluant des dépendances explicites en
poids de l’ensemble, et spécifiquement conçues pour les calculs d’ensemble mériterait d’être
davantage étudié.

277





Bibliography

[1] A. Kramida et al. NIST Atomic Spectra Database (ver. 5.10), [Online]. Available:
https://physics.nist.gov/asd [2023, September 16]. National Institute of Stan-
dards and Technology, Gaithersburg, MD. 2022.

[2] E. J. Baerends, O. V. Gritsenko, and R. van Meer. “The Kohn–Sham gap, the funda-
mental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham
orbital energies”. In: Phys. Chem. Chem. Phys. 15 (39 2013), pp. 16408–16425. doi:
10.1039/C3CP52547C. url: http://dx.doi.org/10.1039/C3CP52547C.

[3] A. D. Becke. “Density-functional exchange-energy approximation with correct asymp-
totic behavior”. In: Phys. Rev. A 38 (6 Sept. 1988), pp. 3098–3100. doi: 10.1103/
PhysRevA.38.3098. url: https://link.aps.org/doi/10.1103/PhysRevA.38.3098.

[4] Axel D. Becke. “Density-functional thermochemistry. III. The role of exact exchange”.
In: The Journal of Chemical Physics 98.7 (1993), pp. 5648–5652. doi: 10.1063/1.
464913. eprint: https://doi.org/10.1063/1.464913. url: https://doi.org/10.
1063/1.464913.

[5] Sonia Conesa Boj and Simon Groeblacher. Bound and scattering states. 2021. url:
https://qm1.quantumtinkerer.tudelft.nl/7_scattering_states/.

[6] Alex Borgoo, Andy M. Teale, and Trygve Helgaker. “Excitation energies from ensemble
DFT”. In: AIP Conference Proceedings 1702.1 (Dec. 2015). 090049. issn: 0094-243X.
doi: 10.1063/1.4938857. eprint: https://pubs.aip.org/aip/acp/article-
pdf/doi/10.1063/1.4938857/12908246/090049\_1\_online.pdf. url: https:
//doi.org/10.1063/1.4938857.

[7] Jean-Luc Bredas. “Mind the gap!” In: Mater. Horiz. 1 (1 2014), pp. 17–19. doi: 10.
1039/C3MH00098B. url: http://dx.doi.org/10.1039/C3MH00098B.

[8] A Burgers, D Wintgen, and J -M Rest. “Highly doubly excited S states of the helium
atom”. In: Journal of Physics B: Atomic, Molecular and Optical Physics 28 (1995),
pp. 3163–3183. url: https://api.semanticscholar.org/CorpusID:250850579.

[9] K Burke. The ABC of DFT. Apr. 2007. url: https://dft.uci.edu/doc/g1.pdf.

279

https://physics.nist.gov/asd
https://doi.org/10.1039/C3CP52547C
http://dx.doi.org/10.1039/C3CP52547C
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevA.38.3098
https://link.aps.org/doi/10.1103/PhysRevA.38.3098
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://qm1.quantumtinkerer.tudelft.nl/7_scattering_states/
https://doi.org/10.1063/1.4938857
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.4938857/12908246/090049\_1\_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.4938857/12908246/090049\_1\_online.pdf
https://doi.org/10.1063/1.4938857
https://doi.org/10.1063/1.4938857
https://doi.org/10.1039/C3MH00098B
https://doi.org/10.1039/C3MH00098B
http://dx.doi.org/10.1039/C3MH00098B
https://api.semanticscholar.org/CorpusID:250850579
https://dft.uci.edu/doc/g1.pdf


Bibliography

[10] Hugh G. A. Burton et al. “Variations of the Hartree–Fock fractional-spin error for one
electron”. In: The Journal of Chemical Physics 155.5 (Aug. 2021), p. 054107. issn: 0021-
9606. doi: 10.1063/5.0056968. eprint: https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/5.0056968/14112752/054107\_1\_online.pdf. url: https:
//doi.org/10.1063/5.0056968.

[11] D. M. Ceperley and B. J. Alder. “Ground State of the Electron Gas by a Stochas-
tic Method”. In: Phys. Rev. Lett. 45 (7 Aug. 1980), pp. 566–569. doi: 10 . 1103 /
PhysRevLett.45.566. url: https://link.aps.org/doi/10.1103/PhysRevLett.45.
566.

[12] Filip Cernatic et al. “Ensemble Density Functional Theory of Neutral and Charged
Excitations”. In: Topics in Current Chemistry 380 (2021).

[13] M. K. Y. Chan and G. Ceder. “Efficient Band Gap Prediction for Solids”. In: Phys.
Rev. Lett. 105 (19 Nov. 2010), p. 196403. doi: 10.1103/PhysRevLett.105.196403.
url: https://link.aps.org/doi/10.1103/PhysRevLett.105.196403.

[14] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. “Challenges for Density Func-
tional Theory”. In: Chemical Reviews 112.1 (2012). PMID: 22191548, pp. 289–320.
doi: 10.1021/cr200107z. eprint: https://doi.org/10.1021/cr200107z. url:
https://doi.org/10.1021/cr200107z.

[15] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. “Fractional spins and static
correlation error in density functional theory”. In: The Journal of Chemical Physics
129.12 (Sept. 2008), p. 121104. issn: 0021-9606. doi: 10.1063/1.2987202. eprint:
https : / / pubs . aip . org / aip / jcp / article - pdf / doi / 10 . 1063 / 1 . 2987202 /

15419668/121104\_1\_online.pdf. url: https://doi.org/10.1063/1.2987202.

[16] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. “Insights into Current Limi-
tations of Density Functional Theory”. In: Science 321.5890 (2008), pp. 792–794. doi:
10.1126/science.1158722. eprint: https://www.science.org/doi/pdf/10.1126/
science.1158722. url: https://www.science.org/doi/abs/10.1126/science.
1158722.

[17] Renato Colle and Oriano Salvetti. “Approximate calculation of the correlation energy
for the closed shells”. In: Theoretica chimica acta 37 (1975), pp. 329–334.

[18] Prof. C.A. Coulson and Miss I. Fischer. “XXXIV. Notes on the molecular orbital treat-
ment of the hydrogen molecule”. In: The London, Edinburgh, and Dublin Philosoph-
ical Magazine and Journal of Science 40.303 (1949), pp. 386–393. doi: 10 . 1080 /
14786444908521726. eprint: https://doi.org/10.1080/14786444908521726. url:
https://doi.org/10.1080/14786444908521726.

[19] CRC Handbook. CRC Handbook of Chemistry and Physics, 85th Edition. Ed. by David
R. Lide. 85th ed. CRC Press, 2004. isbn: 0849304881. url: https://hbcp.chemnetbase.
com/.

280

https://doi.org/10.1063/5.0056968
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0056968/14112752/054107\_1\_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0056968/14112752/054107\_1\_online.pdf
https://doi.org/10.1063/5.0056968
https://doi.org/10.1063/5.0056968
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://link.aps.org/doi/10.1103/PhysRevLett.45.566
https://link.aps.org/doi/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.105.196403
https://link.aps.org/doi/10.1103/PhysRevLett.105.196403
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1063/1.2987202
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2987202/15419668/121104\_1\_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2987202/15419668/121104\_1\_online.pdf
https://doi.org/10.1063/1.2987202
https://doi.org/10.1126/science.1158722
https://www.science.org/doi/pdf/10.1126/science.1158722
https://www.science.org/doi/pdf/10.1126/science.1158722
https://www.science.org/doi/abs/10.1126/science.1158722
https://www.science.org/doi/abs/10.1126/science.1158722
https://doi.org/10.1080/14786444908521726
https://doi.org/10.1080/14786444908521726
https://doi.org/10.1080/14786444908521726
https://doi.org/10.1080/14786444908521726
https://hbcp.chemnetbase.com/
https://hbcp.chemnetbase.com/


Bibliography

[20] Killian Deur and Emmanuel Fromager. “Ground and excited energy levels can be ex-
tracted exactly from a single ensemble density-functional theory calculation”. In: The
Journal of Chemical Physics 150.9 (2019), p. 094106. doi: 10.1063/1.5084312. eprint:
https://doi.org/10.1063/1.5084312. url: https://doi.org/10.1063/1.
5084312.

[21] Killian Deur et al. “Exploring weight-dependent density-functional approximations for
ensembles in the Hubbard dimer”. In: The European Physical Journal B 91 (Mar. 2018).
doi: 10.1140/epjb/e2018-90124-7.

[22] P. A. M. Dirac. “Note on Exchange Phenomena in the Thomas Atom”. In:Mathematical
Proceedings of the Cambridge Philosophical Society 26.3 (1930), pp. 376–385. doi: 10.
1017/S0305004100016108.
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