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Introduction en français

Une représentation du groupe fondamental d’une surface S de caractéristique d’Euler
négative dans un groupe de Lie G peut être vue comme un G-fibré principal sur S, ce qui
permet d’utiliser des outils topologiques et géométriques pour étudier ces représentations.
Les fibrés obtenus à partir des représentations ont la propriété particulière d’avoir des
changements de cartes localement constants. Ce type de fibrés est appelé un G-système
local sur la surface S. La représentation correspondant à un G-système local est appelée
représentation de monodromie. Habituellement, il est plus intéressant d’étudier l’espace de
modules des représentations à conjugaison près (ou de manière équivalente les systèmes
locaux à transformation de jauge près), que l’on appelle variété de caractères. Cependant,
prendre le quotient par l’action de G par conjugaison résulte généralement en un espace
non-Hausdorff. Il existe deux solutions à ce problème : prendre le quotient GIT qui nécessite
des outils de géométrie algébrique, ou prendre le quotient Hausdorff à la place. Ces deux
solutions coïncident lorsque G est un groupe réductif complexe, ce qui est l’un des cas
couverts par le travail présenté ici. Un exemple classique de cette approche est l’espace de
Teichmüller de la surface S qui peut être identifié à une composante connexe de l’espace
de modules des PSL2(R)-systèmes locaux sur S. Il s’agit d’un exemple très particulier où
une composante connexe entière de la variété de caractères est constituée uniquement de
représentations fidèles et discrètes. Trouver des composantes connexes similaires dans la
variété de caractères d’autres groupes de Lie est devenu un domaine très fructueux appelé
théorie des espaces de Teichmüller supérieurs. Pour une exposition détaillée sur le sujet,
voir [Wie18,FM22,GW18,BIW10].

Dans [FG06], Vladimir Fock et Alexander Goncharov introduisent les variétés amassées pour
étudier les systèmes locaux en utilisant une structure algébrique appelée algèbre amassée
introduite par Sergei Fomin et Andrei Zelevinsky dans [FZ02] quelques années auparavant.
La théorie introduite par Fock et Goncharov décrit les G-systèmes locaux sur une surface
ciliée, où G est un groupe de Lie semi-simple réel déployé. Les surfaces ciliées sont une classe
très générique de surfaces hyperboliques contenant les surfaces épointées et des polygones
idéaux, voir la Section 2.1 pour une définition précise. Les surfaces ciliées sont toujours
non-compactes, et leurs groupes fondamentaux sont des groupes libres. Une propriété
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6 INTRODUCTION EN FRANÇAIS

essentielle des surfaces ciliées est qu’elles admettent toutes des triangulations idéales. Une
triangulation idéale ∆ d’une surface ciliée S est un ensemble maximal de classes d’homotopie
d’arcs sur S deux à deux sans intersections et non homotopes, ne s’auto-intersectant pas,
dont les extrémités sont des pointes. De manière similaire aux coordonnées de Penner sur
l’espace de Teichmüller décoré, les coordonnées de Fock-Goncharov nécessitent des données
additionelles au système local : un cadrage ou une décoration (voir les sections 2.2.2 et 2.2.3
pour des définitions précises). Soit G un groupe de Lie semi-simple et réel déployé, B un
sous-groupe de Borel et U le radical unipotent de B.

Définition. Un cadrage d’un G-système local L est la donnée pour chaque pointe de S d’une
classe de G/B (appelée drapeau) stabilisée par la monodromie de L autour d’une petite
boucle autour de la ppointe. Une décoration d’un G-système local L est la donnée pour
chaque pointe d’une classe de G/U (appelée drapeau décoré) stabilisée par la monodromie
de L autour d’une petite boucle autour de la pointe.

Les travaux de Fock et Goncharov reposent sur la définition d’un atlas spécial sur l’espace
de modules des systèmes locaux encadrés (resp. décorés) sur une surface ciliée, appelé
X -coordonnées (resp. A-coordonnées). Cet atlas spécial a une carte associée à chaque
triangulation idéale de la surface ciliée et les changements de cartes peuvent être calculés avec
une suite de mutations élémentaires, chacune étant une transformation birationnelle. Deux
triangulations quelconques sont reliées par une suite finie de flips (changement de diagonale
dans un quadrilatère), de sorte qu’il suffit de calculer les changements de cartes pour deux
triangulations qui diffèrent d’un flip pour pouvoir calculer les changements de cartes de
n’importe quelle triangulation vers n’importe quelle autre. La combinatoire de la suite de
mutations conduisant à un flip de la triangulation est décrite par un carquois inscrit sur la
surface, et les formules de mutations sont données par la structure d’algèbre amassée. En
particulier, ces transformations birationnelles préservent la positivité des coordonnées. Une
représentation est dite positive si toutes ses coordonnées dans n’importe quelle triangulation
(donc dans toutes) sont positives. Cette notion de positivité étend la définition donnée
par George Lusztig dans [Lus94]. Dans le cas G = PGLn(R), les coordonnées X sont des
birapports et des triple rapports de diverses droites construites en utilisant le cadrage du
système local. Dans le cas G = SLn(R), les coordonnées A sont des volumes de diverses bases
construites en utilisant la décoration du système local. L’un des principaux résultats de leur
théorie est l’identification entre la composante de Hitchin de la variétédes caractères et le
sous-ensemble des représentations positives. Ils montrent également que les représentations
positives sont fidèles et discrètes, et donc que les composantes de Hitchin sont des espaces
de Teichmüller supérieurs.

La théorie des coordonnées de Fock-Goncharov s’applique aux groupes de Lie semisimples
réels déployés G, et le cadrage doit être pris dans la variété des drapeaux complets G/B
où B est le sous-groupe de Borel de G. Une autre classe connue d’espaces de Teichmüller
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supérieurs est l’espace des représentations maximales. Les représentations maximales ont
été définies par Marc Burger, Alessandra Iozzi et Anna Wienhard dans [BIW10] pour les
surfaces non fermées. Il s’agit de représentations dans un groupe de Lie hermitien de type
tubulaire non compact pour lequel le nombre de Toledo, qui est une généralisation du nombre
d’Euler pour les représentations dans PSL2(R), prend sa valeur maximale. Dans [BIW10],
Burger-Iozzi-Wienhard montrent que les représentations maximales sont fidèles et discrètes,
et qu’elles satisfont une propriété de positivité, mais le cadrage dans ce cas est à valeurs
dans une variété de drapeaux partiels, comme l’espace des sous-espaces lagrangiens lorsque
G = Sp2n(R). Contrairement aux composantes de Hitchin qui sont contractiles, l’espace
des représentations maximales n’est en général ni connexe ni simplement connexe. Pour
les groupes de Lie qui sont à la fois réels déployés et hermitiens (c’est-à-dire Sp2n(R)),
l’ensemble des représentations maximales contient strictement la composante de Hitchin.
Une grande classe de groupes de Lie hermitiens de type tubulaire peut être exprimée comme
des groupes symplectiques à coefficients dans une algèbre involutive (voir [ABR+22] ou
Section 2.7.2 pour plus de détails). Dans le cas symplectique, le nombre de Toledo peut
être calculé en utilisant l’indice de Kashiwara-Maslov, voir [AGRW22]. Dans [AGRW22],
Daniele Alessandrini, Olivier Guichard, Eugen Rogozinnikov et Anna Wienhard ont construit
des généralisations non-commutatives des coordonnées de Fock-Goncharov X et A pour
les représentations symplectiques, et ont montré que le lieu de positivité est exactement
l’ensemble des représentations maximales. Ces coordonnées généralisées sont à valeurs dans
des anneaux de matrices carrées, et sont donc génériquement non-commutatives. Cependant,
elles admettent une forte structure de type "amassée", comme des cartes birationelles
(non-commutatives) entre les coordonnées associées aux triangulations différant d’un flip.

Afin de disposer d’un cadre général pour étudier à la fois les représentations positives et
les représentations maximales, Guichard-Wienhard ont introduit dans [GW18,GW22] la
notion de Θ-positivité. Cette notion dépend de la donnée d’un sous-groupe parabolique
PΘ d’un groupe de Lie semi-simple G qui est déterminé par le choix d’un sous-ensemble
Θ de racines restreintes de G. Toutes les paires (G,P ) n’admettent pas une structure
Θ-positive, et toutes les paires admettant une structure positive sont classifiées dans [GW18].
Il existe quatre familles de structures Θ-positives. La première est celle où G est réel
déployé et P = B est le sous-groupe de Borel de G (c’est-à-dire quand Θ est l’ensemble de
toutes les racines), et les représentations Θ-positives sont exactement les représentations
positives introduites par Fock-Goncharov. La seconde famille est celle où G est un groupe
de Lie hermitien de type tubulaire et P est associé à la dernière racine du système de
Dynkin de type Bn, et dans ce cas les représentations Θ-positives coïncident avec les
représentations maximales. Les deux ”nouvelles” familles sont respectivement celle des
groupes localement isomorphes à SO(p, q) avec p ̸= q et celle qui contient une classe de
groupes de Lie exceptionnels. Dans ces deux derniers cas, le sous-groupe parabolique est
associé à un sous-ensemble strict de racines. Dans [GLW21], Guichard-Labourie-Wienhard
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ont montré que les représentations Θ-positives sont PΘ-Anosov, donc fidèles et discrètes.
La conjecture selon laquelle les représentations Theta-positives forment des espaces de
Teichmüller supérieurs est encore ouverte dans le cas général au moment de l’écriture de ce
manuscrit, mais elle a été démontrée pour une grande classe d’exemples, voir [GLW21,BP21].

L’idée principale du travail présenté ici est d’étudier l’espace de modules d’un système local
encadré ou décoré sur une surface ciliée, mais avec un cadrage ou une décoration associé
à n’importe quel sous-groupe parabolique d’un groupe de Lie semi-simple ou réductif. En
particulier, nous cherchons des coordonnées qui partagent certaines propriétés calculatoires
avec les coordonnées de Fock-Goncharov, à savoir une description combinatoire qui permet le
calcul de formules de mutation de flips à partir d’une suite de mutations élémentaires. Dans
ce travail, nous nous concentrons sur un groupe de Lie de type A, à savoir SLn(R) (ou plutôt
GLn(R), comme nous l’expliquerons ci-dessous). Pour des raisons techniques, nous devrons
nous limiter aux sous-groupes paraboliques de GLn(R) dont le sous-groupe de Levi est de
la forme GLd(R)k, avec n = kd. Cela correspond à un sous-groupe parabolique conjugué
au sous-groupe des matrices triangulaires supérieures où tous les blocs diagonaux sont des
carrés de taille d. Pour ce faire, nous remplaçons le corps R par une R-algèbre de dimension
finie R. Dans tout ce travail, nous nous intéressons principalement au cas où R =Mn(R)
est une algèbre de matrices carrées à coefficients réels. Ce faisant, nous obtiendrons des
coordonnées qui sont à valeurs dans une certaine algèbre de matrices carrées, et qui sont donc
génériquement non-commutatives. Ceci s’accompagne de plusieurs difficultés techniques.
La première de ces difficultés est la définition même des coordonnées de type X : l’une des
définitions possibles du birapport (resp. du triple rapport) s’étend au cas non-commutatif,
donnons d’abord ces définitions :

Définition. Soit L1, L2, L3, L4 quatre droites dans R2, transverses deux à deux. Soit πi,j la
restriction de la projection canonique πi,j : Lj → R2/Li pour tous i, j ∈ {1, 2, 3, 4} distincts.
Le birapport des quatre droites est alors le suivant

[L1 : L2 : L3 : L4] = π−1
4,1 ◦ π4,3 ◦ π

−1
2,3 ◦ π2,1.

Définition. Soit (L1, P1), (L2, P2), (L3, P3) trois drapeaux complets dans R3 avec dimFi = 1
et dimPi = 2 pour i = 1, 2, 3, transverses deux à deux. Soit πi,j la restriction de la projection
canonique πi,j : Lj → R2/Pi pour tous ß, j ∈ {1, 2, 3} distincts. Alors le triple rapport du
triple des drapeaux est

r = π−1
3,1 ◦ π3,2 ◦ π

−1
1,2 ◦ π1,3 ◦ π

−1
2,3 ◦ π2,1.

Dans ces deux définitions, l’application L1 → L1 est identifiée à un scalaire car sa matrice
ne dépend pas du choix d’une base de L1. Cependant, cette identification n’est plus possible
si la dimension de L1 est plus grande. La généralisation correcte de X serait alors la classe
de conjugaison des applications définies ci-dessus, mais nous perdrions les formules de
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mutation, car on ne peut pas ajouter ou multiplier les classes de conjugaison. Cependant, ces
”coordonnées X généralisées” conservent une partie du comportement de leur contrepartie
commutative. En faisant attention à ces difficultés techniques, nous les étudions dans la
Section 3.1.2.

Lorsque l’on considère les drapeaux décorés, la situation est toutefois très similaire dans le
cadre commutatif et dans le cadre non-commutatif. Le besoin d’une base pour exprimer
les applications ci-dessus est couvert par la décoration. Les définitions du birapport et
du rapport triple indiquent également de bons candidats pour les A-coordonnées non-
commutatives. En effet, nous voulons que les A-coordonnées déterminent les X -coordonnées
de la configuration de drapeaux, et dans le cas commutatif, les définitions ci-dessus donnent
les formules habituelles concernant les X -coordonnées et les A-coordonnées, étant donné que
les A-coordonnées sont définies comme les matrices des cartes πi,j dans les bases données
par la décoration des drapeaux. Cependant, cette affirmation n’est valable qu’au rang 2.
Ceci nous amène à la difficulté technique suivante découlant de la non-commutativité : il
n’y a pas de déterminant pour les matrices à valeurs dans un anneau générique, donc pas de
groupe spécial linéaire SLn. Puisque nous ne pouvons pas travailler avec SLn, nous devons
travailler dans le groupe général linéaire GLn qui, même sur un anneau commutatif, n’est pas
un groupe de Lie semi-simple, mais un groupe réductif. Par conséquent, les A-coordonnées
non-commutatives que nous définirons dans les Sections 3.3 et 3.2 ne se réduiront pas
directement aux coordonnées A de Fock-Goncharov dans le cas commutatif. Au lieu de cela,
nous obtenons une généralisation des coordonnées de Fock-Goncharov aux GLn(R)-systèmes
locaux. Une autre difficulté technique rencontrée est la nécessité de travailler avec des
systèmes locaux tordus pour définir les A-coordonnées. Ces systèmes locaux tordus sont
définis non pas sur S mais sur le fibré tangent unitaire T ′S de S, avec pour condition d’avoir
la monodromie autour de la fibre de T ′S → S égale à − Id.

Maintenant que nous avons de bons candidats pour les A-coordonnées généralisées, plusieurs
questions se posent. Premièrement, existe-t-il des relations entre les coordonnées définies
par rapport à une triangulation fixée ? Deuxièmement, comment calculer les formules de
mutations reliant les coordonnées correspondant à deux triangulations différentes ? Pour
répondre à ces deux questions, nous utilisons un outil introduit en 2014 par Davide Gaiotto,
Gregory W. Moore et Andrew Neitzke dans [GMN13] appelé réseaux spectraux. Il s’agit
d’un outil combinatoire utilisé pour étudier les systèmes locaux encadrés en permettant la
définition d’une procédure appelée abélianisation (et son inverse appelée non-abélianisation).
Cette procédure transforme un fibré vectoriel plat de rang n sur une surface ciliée S en
un fibré en droites plat sur un certain revêtement ramifié à n feuilles Σn de S appelé
surface spectrale. Il s’agit d’un outil très important en physique théorique pour étudier une
certaine classe de théories quantiques des champs topologiques, mais nous n’utiliserons pas
tout le potentiel des réseaux spectraux dans ce travail. Initialement, les réseaux spectraux
étaient définis comme le graphe critique d’une différentielle quadratique holomorphe sur
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S relevée à la surface spectrale. Cependant, une description géométrique et combinatoire
existe et sera plus pratique à utiliser dans notre étude. Pour cela, nous utilisons une
description combinatoire de la surface spectrale introduite par Alexander Goncharov et
Maxim Kontsevich dans [GK22] que nous rappelons dans la Section 2.3.1, et nous ajoutons la
définition d’un réseau spectral adapté à cette surface spectrale dans la section 2.3.3. Ensuite,
nous devons étendre la définition de la procédure de non-abélianisation pour travailler avec
des systèmes locaux tordus. Cette partie est un travail commun avec Eugen Rogozinnikov
dans [KR22] dans le cas n = 2, et se généralise immédiatement à n ≥ 3. Cette extension
est décrite dans la section 2.4. Le processus de non-abélianisation lui-même fonctionne
exactement de la même manière que le fibré sur la surface spectrale soit un fibré en droites
ou un fibré de rang supérieur. Une fois cela fait, nous décrivons une construction inverse au
processus de non-abélianisation appelée abélianisation (partielle), qui transforme un fibré
vectoriel plat encadré de rang nd sur la surface ciliée S en un fibré vectoriel plat de rang d
sur la surface spectrale. Nous la décrivons plus précisément dans la section 2.5. Cela nous
permet de décrire la topologie d’un sous-ensemble (en raison des hypothèses de généricité)
ouvert de l’espace de modules des GL2(R)-systèmes locaux encadré sur une surface ciliée
S, où R est une R-algèbre de dimension finie, par exemple l’anneau des matrices n× n à
coefficients réels.

Théorème. L’espace de modules des GL2(R)-systèmes locaux encadrés tordus sur S qui
sont ∆-génériques par rapport à une triangulation ∆ est homéomorphe à l’espace de modules
des R×-systèmes locaux tordus sur Σ2 qui est homéomorphe à (R×)1−4χ(S)+2p+

∑
ni/R× où

R× agit diagonalement par conjugaison sur (R×)1−4χ(S)+2p+
∑
ni .

Cette construction nous permet également d’étudier les systèmes locaux symplectiques dans
la Section 2.7 car une matrice dans le groupe symplectique s’écrit naturellement comme une
matrice par bloc. Il s’agit d’un travail commun avec Eugen Rogozinnikov dans [KR22]. Pour
cela, nous devons traduire la donnée de la forme symplectique présente dans un système
local symplectique sur S en une donnée supplémentaire dans le système local abélianisé.
Comme corollaire, nous obtenons aussi une description topologique de l’espace de modules
des systèmes locaux encadrés maximaux.

Théorème. Si A est hermitien, alors l’espace de modules des Sp2(A, σ)-systèmes locaux
encadrés tordus maximaux sur S est homéomorphe à :(

(Aσ+)
−2χ(S)+p × (A×)−2χ(S)+2p−1+

∑
ni

)
/A×

où A× agit par conjugaison sur (A×)−2χ(S)+2p−1+
∑
ni et par congruence sur (Aσ+)

−2χ(S)+p.

Dans le chapitre 3, nous nous concentrons sur la définition et l’étude d’une généralisation
non-commutative des A-coordonnées de Fock-Goncharov. Nous commençons par étudier
le cas particulier des GL2(R)-systèmes locaux, étant donné que de nombreuses difficultés
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techniques apparaissant au rang supérieur ne sont pas présentes en rang 2. Dans ce
cas, nous montrons que l’algèbre non-commutative introduite par Arkady Berenstein et
Vladimir Retakh dans [BR18] a une représentation par des fonctions rationnelles à valeurs
matricielles sur l’espace de modules des GL2(R)-systèmes locaux tordus, que nous appelons
A-coordonnées. Comme pour les coordonnées commutatives de Fock-Goncharov, il existe une
famille de fonctions associées à chaque triangulation de la surface, et il existe des formules
de mutations qui expriment les fonctions associées à une triangulation comme des fonctions
rationnelles non-commutatives de fonctions associées à une autre triangulation. Cependant,
il y a une différence fondamentale avec les coordonnées commutatives de Fock-Goncharov
: les fonctions associées à une triangulation fixée ont des relations entre elles, appelées
relations triangulaires. Le terme ”coordonnées” est donc un abus de langage.

Définition. Soit S une surface ciliée. Nous définissons la R-algèbre unitaire AS engendrée
par les symboles xγ et x−1

γ pour tous les arcs idéaux γ sur S (avec la convention xγ = 1 si γ
est trivial) avec les relations :

• ∀γ ∈ E(S), x−1
γ xγ = xγx

−1
γ = 1

• ∀f : P3 → S triangle,
xγ1,3x

−1
γ2,3xγ2,1 = xγ1,2x

−1
γ3,2xγ3,1

.

• ∀f : P4 → S quadrilateral,

xγ4,2 = xγ4,3x
−1
γ1,3xγ1,2 + xγ4,1x

−1
γ3,1xγ3,2

and
xγ2,4 = xγ2,3x

−1
γ1,3xγ1,4 + xγ2,1x

−1
γ3,1xγ3,4

Dans le cas R = Md(R), l’espace X des GL2(R)-systèmes locaux décorés tordus sur S
est une variété algébrique et le sous-ensemble X∆ des systèmes locaux ∆-génériques est
un sous-ensemble ouvert et dense de X. Chaque A-coordonnée associée à ∆ peut être
considérée comme une fonction rationnelle sur X∆ à coefficients dansMd(R).

Théorème. Soit S une surface ciliée. La carte

ψ :
AS → Rat(X,Md(R))
xγ 7→ aγ

est un homomorphisme d’algèbre.

Pour le démontrer, nous devons calculer à la fois les relations triangulaires et les formules
de mutations. En rang 2, nous pouvons calculer les deux en utilisant les réseaux spectraux.
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Les relations triangulaires apparaissent naturellement dans le processus d’abélianisation :
les A-coordonnées sont des holonomies de certains chemins dans le système local abélianisé,
et les relations triangulaires correspondent à des holonomies de chemins contractiles, et sont
donc triviales. Pour les formules de mutation, nous profitons du fait que le système local
sur la surface de base S ne dépend pas de la triangulation, alors que la surface spectrale
et le système local abélianisé en dépendent. Ensuite, en effectuant des abélianisations
correspondant à deux triangulations différentes et en identifiant les bons termes, nous
pouvons exprimer les A-coordonnées correspondant à une triangulation en termes de A-
coordonnées correspondant à l’autre triangulation. La même technique peut être utilisée
pour montrer qu’étant donné une triangulation spécifique ∆, toutes les autres coordonnées
A peuvent être écrites comme un polynôme de Laurent non-commutatif des coordonnées
associées à ∆. Cette propriété est connue sous le nom de phénomène de Laurent (non-
commutatif) et est la généralisation non-commutative d’une propriété bien connue des
algèbres amassées commutatives.

Théorème. Soit n ≥ 3 et S le disque fermé avec n pointes sur le bord. Soit i, j ∈ {1, . . . , n},
i ̸= j. Alors, pour toute triangulation ∆ de S et tout GL2(R)-système local tordu décoré L
qui est ∆-générique et tel que (F (i), F (j)) est générique, la coordonnée aγi,j est un polynôme
de Laurent non-commutatif dans les coordonnées (aγ)γ∈∆ associées à la triangulation ∆.

Nous étudions également dans les sections 3.1.4 et 3.1.5 un type de coordonnées intermédiaire
entre les X -coordonnées et les A-coordonnées, qui donnent une représentation d’une sous-
algèbre de AS introduite dans [BR18]. Les A-coordonnées présentées ici se restreignent aux
coordonnées symplectiques non-commutatives introduites dans [AGRW22] lorsqu’elles sont
définies sur un système local symplectique avec une décoration symplectique.

Nous généralisons ensuite ces coordonnées à des configurations de drapeaux dans Rn dans
la Section 3.2 et à des GLn(R)-systèmes locaux tordus dans la Section 3.3. La raison
pour laquelle nous avons divisé ceci en deux sections différentes est une difficulté technique
provenant des systèmes locaux tordus. En effet, la généralisation que nous décrivons nécessite
des données supplémentaires aux drapeaux décorés habituels. Nous appelons ces données
supplémentaires un extra-décoration.

Definition. Soit (A(1), . . . , A(k)) un k-uplet de drapeaux en position générique. Une extra-
décoration de l’ensemble k de drapeaux est constitué des données d’une décoration de chaque
drapeau A(i) ainsi que des données pour chaque i1, . . . , ik ∈ N tel que i1+· · ·+ik = (k−1)n+1

d’un élément bi1,...,ik ∈ Rn qui engendre librement A(1)
i1
∩ · · · ∩A(k)

ik
.

Pour une configuration de drapeaux dans Rn, la définition ne pose pas de problème, mais
pour un système local tordu, ces bases devraient être des sections plates du système local
tordu le long de petites boucles situées à l’intérieur de la surface. Cependant, ces petites
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boucles ont une monodromie − Id car nous travaillons avec des systèmes locaux tordus, il
n’est donc possible de définir que ces sections qu’au signe près. Nous définissons une version
légèrement modifiée des carquois habituels associés aux algèbres amassées commutatives,
pour prendre en compte le fait qu’une extra-décoration dépend de la triangulation choisie,
et doit donc muter en même temps que les coordonnées elles-mêmes. Nous ne décrivons que
les mutations nécessaires à un flip, car il nous manque une interprétation géométrique des
autres mutations pour les décrire.

Cette définition des coordonnées A non-commutatives est légèrement différente de celle
introduite par Goncharov-Kontsevich dans [GK22]. En effet, les coordonnées de Goncharov-
Kontsevich peuvent être écrites comme des quotients de deux des coordonnées introduites
dans ce travail. En d’autres termes, lesA-coordonnées présentées ici donnent une factorisation
des coordonnées de Goncharov-Kontsevich. Une autre différence est que les coordonnées de
Goncharov-Kontsevich ne nécessitent qu’une décoration (au sens usuel) des systèmes locaux,
alors que les coordonnées présentées ici nécessitent cette extra-décoration. La combinatoire
des coordonnées présentées dans ce travail est beaucoup plus proche de la combinatoire d’une
algèbre amassée, avec des mutations dictées par un carquois sous-jacent. En tant que telles,
les coordonnées de Goncharov-Kontsevich peuvent être considérées comme ”intermédiaires”
entre les A-coordonnées présentées ici et les X -coordonnées non-commutatives. Il est
intéressant de noter que pour n = 2 (c’est-à-dire pour G = GL2(R)) les coordonnées de
Goncharov-Kontsevich coïncident avec les A-coordonnées introduites ici, les différences entre
les deux types de coordonnées apparaissant pour n ≥ 3.

Le travail présenté dans le chapitre 3 est un pas vers une définition de structures amassées
(éventuellement non-commutatives) sur les espaces de modules des G-systèmes locaux
encadrés dans les variétés de drapeaux partiels G/P pour des groupes de Lie plus généraux
et des sous-groupes paraboliques plus généraux que ce qui est déjà connu. Bien qu’il n’y ait
pas de réduction directe des coordonnées présentées ici aux coordonnées sur SO(p, q) ou
sur les groupes de Lie exceptionnels avec leur sous-groupe parabolique PΘ (les deux classes
restantes de structures Θ-positives), les constructions présentées dans ce manuscrit devraient
aider à comprendre la combinatoire attendue des coordonnées amassées non-commutatives
dans un cas général.
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Introduction

A representation of the fundamental group of a surface S with negative Euler characteristic
into a Lie group G can be seen as a principal bundle over S, allowing topological and
geometrical tools to be used to study those representations. The bundles obtained from
representations have the special property that the changes of charts are locally constant. This
kind of bundle is called a G-local system on the surface S. The representation corresponding
to a G-local system is called the monodromy representation. Usually we are more interested
in the moduli space representations up to conjugation (or equivalently local systems up to
gauge transformation), which is called the character variety. However, taking the quotient
by the action of G by conjugation results usually in a non-Hausdorff space. There are two
workarounds to this problem: taking a GIT quotient which require algebraic geometry tools,
or taking the Hausdorff quotient instead. Both these solutions coincides when G is a complex
reductive group which is one of the case covered in the work presented here. A classical
example of this approach is the Teichmüller space of the surface S which can be identified
with a connected component in the moduli space of SL2(R)-local systems on S. This is a very
special example where an entire connected component of the character variety is constituted
of only discrete and faithful representations. Finding similar connected components in
the character variety of other Lie groups has become a very fruitful domain called higher
Teichmüller theory. For a detailed account on the subject, see [Wie18,FM22,GW18,BIW10].

In [FG06], Vladimir Fock and Alexander Goncharov introduce cluster varieties to study
local systems using an algebraic structure called cluster algebras introduced by Sergei
Fomin and Andrei Zelevinsky in [FZ02] a few years before. The theory introduced by Fock
and Goncharov describes G-local systems over a ciliated surface, where G is a split-real
semisimple Lie group. Ciliated surfaces are a very generic class of hyperbolic surfaces
containing punctured surfaces and ideal polygons, see Section 2.1 for a precise definition.
Ciliated surfaces are always non-compact, and their fundamental groups are free groups.
A key property of ciliated surfaces is that they all admit ideal triangulations. An ideal
triangulation ∆ of a ciliated surface S is a maximal set of (homotopy classes of) pairwise non-
intersecting and non-homotopic, not self-intersecting arcs on S with endpoints on punctures.
Similarly to Penner’s coordinates on the decorated Teichmüller space, Fock-Goncharov
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coordinates require additional data to a local system: a framing or a decoration (see Section
2.2.2 and 2.2.3 for precise definitions). Let G be a semisimple split-real Lie group, B be a
Borel subgroup and U be the unipotent radical of B.

Definition. A framing of a G-local system L is the data for each puncture of a coset in
G/B (called a flag) stabilized by the monodromy of L around a small loop around the
puncture. A decoration of a G-local system L is the data for each puncture of a coset in
G/U (called a decorated flag) stabilized by the monodromy of L around a small loop around
the puncture.

The work of Fock and Goncharov revolves around defining a special atlas on an open dense
subset of the moduli space of framed (resp. decorated) local systems on a ciliated surface,
called X -coordinates (resp. A-coordinates). This special atlas has a chart associated to
each triangulation of the ciliated surface and the changes of charts can be computed with
a sequence of elementary mutations, each being a birational map. Any two triangulation
are related by a finite sequence of flips, so it is enough to compute the change of charts
for two triangulations that differ from a flip to be able to compute change of charts
from any triangulation to any other. The combinatorics of the sequence of mutations
leading to a flip of the triangulation is described by a quiver embedded on the surface,
and the mutations formulas are given by the cluster algebra structure. In particular, these
birational transformations preserve the positivity of the coordinates. A representation is
said to be positive if all of its coordinates in any (hence all) triangulation are positive.
This notion of positivity extends the definition given by George Lusztig in [Lus94]. In
the case G = PGLn(R), the X -coordinates are cross ratios and triple ratios of various
lines constructed using the given framing of the local system. In the case G = SLn(R),
the A-coordinates are volumes of various bases constructed using the given decoration
of the local system. One of the main result of their theory is the identification between
the Hitchin component and the subset of positive representations. They also show that
positive representations are discrete and faithful, hence that Hitchin components are higher
Teichmüller spaces.

The theory of Fock-Goncharov coordinates hold for split-real semisimple Lie groups G,
and the framing has to be taken in the complete flag variety G/B where B is the Borel
subgroup of G. Another known class of higher Teichmüller space is the space of maximal
representations. Maximal representations were defined by Marc Burger, Alessandra Iozzi
and Anna Wienhard in [BIW10] for non-closed surfaces. They are representations in a
non-compact hermitian Lie group of tube type for which the Toledo number, which is a
generalization of the Euler number for representations into PSL2(R), takes its maximal
value. In [BIW10], Burger-Iozzi-Wienhard show that maximal representations are discrete
and faithful, and that they satisfy a positivity property, but the framing in this case takes
value in a partial flag variety, like the space of lagrangian subspaces when G = Sp2n(R).
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Unlike Hitchin components which are contractible, the space of maximal representations is
in general neither connected nor simply connected. For Lie groups that are both split-real
and Hermitian (i.e Sp2n(R)), the set of maximal representations strictly contains the Hitchin
component. A large class of hermitian Lie group of tube type can we expressed as symplectic
groups over involutive algebras (see [ABR+22] or Section 2.7.2 for more details). In the
symplectic case, the Toledo number can be computed using the Kashiwara-Maslov index,
see [AGRW22]. In [AGRW22], Daniele Alessandrini, Olivier Guichard, Eugen Rogozinnikov
and Anna Wienhard constructed non-commutative generalizations of Fock-Goncharov X
and A coordinates for symplectic representations, and showed that the positivity locus is
exactly the set of maximal representations. These generalized coordinates take values in
square matrix rings, hence are non-commutative. However, they admits strong ”cluster-
like” structure, like (non-commutative) birational maps between coordinates associated to
triangulations differing from a flip.

In order to have a general framework to study both positive representations and maximal
representations, Guichard-Wienhard introduced in [GW18,GW22] the notion of Θ-positivity.
This notions depend on the data of a parabolic subgroup PΘ of a semisimple Lie group
G which is determined by the choice of a subset Θ of restricted roots of G. Not every
pair (G,P ) admits a Θ-positive structure, and all the pairs admitting a positive structure
are classified in [GW18]. There are four families of Θ-positive structure. The first one is
when G is split-real and P = B is the Borel subgroup of G (i.e. when Θ is the set of all
roots), and Θ-positive representations are exactly the positive representations introduced by
Fock-Goncharov. The second family is G hermitian Lie group of tube type and P is the last
root of the Dynkin system of type Bn, and in this case the Θ-positive representations coincide
with the maximal representations. The two ”new” family are respectively for groups locally
isomorphic to SO(p, q) with p ≠ q and for some class of exceptional Lie groups. In both
those last cases, the parabolic subgroup is associated to a strict subset of roots. In [GLW21],
Guichard-Labourie-Wienhard showed that Θ-positive representations are PΘ-Anosov, hence
discrete and faithful. The conjecture that Θ-positive representations form higher Teichmüller
spaces is still open in the general case at the time of writing, but has been shown for large
class of examples, see [GLW21,BP21].

The main idea behind the work presented here is to study the moduli space of framed
or decorated local system on a ciliated surface, but with a framing/decoration associated
to any parabolic subgroup of a semisimple or reductive Lie group. In particular, we are
interested in finding coordinates that share some computational properties with Fock-
Goncharov coordinates, namely a combinatorial description that allows the computation
of flip mutation formulas from a sequence of elementary mutations. In this work we focus
on A-type Lie group, namely SLn(R) (or rather GLn(R), as we will explain below). For
technical reasons, we will need to restrict to parabolic subgroups of GLn(R) whose Levi
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subgroup is of the form GLd(R)k, with n = kd. This corresponds to a parabolic subgroup
conjugated to the subgroup of blockwise upper-triangular matrices where all the diagonal
blocks are square of size d. The way we do this is by replacing the field R by a finite
dimensional R-algebra R. In all this work, we are mainly interested in the case R =Mn(R)
of square matrices with real coefficients. Doing so will result in coordinates which take
values in some square matrix algebra, thus being generically non-commutative. This comes
with several technical difficulties. The first of these difficulties is the very definition of cluster
X -coordinates: one of the possible definition of the cross ratio (resp. the triple ratio) extend
to the non-commutative case, let us first give those definitions.

Definition. Let L1, L2, L3, L4 be four lines in R2, pairwise transverse. Let πi,j denote the
restriction of the canonical projection πi,j : Lj → R2/Li for all i, j ∈ {1, 2, 3, 4} distinct.
Then the cross-ratio of the four lines is

[L1 : L2 : L3 : L4] = π−1
4,1 ◦ π4,3 ◦ π

−1
2,3 ◦ π2,1.

Definition. Let (L1, P1), (L2, P2), (L3, P3) be three complete flags in R3 with dimFi = 1
and dimPi = 2, pairwise transverse. Let πi,j denote the restriction of the canonical projection
πi,j : Lj → R2/Pi for all i, j ∈ {1, 2, 3} distinct. Then the triple-ratio of the triple of flags is

r = π−1
3,1 ◦ π3,2 ◦ π

−1
1,2 ◦ π1,3 ◦ π

−1
2,3 ◦ π2,1.

In both those definitions, the map L1 → L1 is identified with a scalar because its (1 by
1) matrix does not depend on the choice of a basis of L1. However, this identification
is no longer possible if the dimension of L1 is higher. The correct generalization of X
would then be the conjugacy class of the maps defined above, however we would lose the
mutation formulas, as one cannot add or multiply conjugacy classes. Still, those ”generalized
X -coordinates” retain some of the behavior of their commutative counterpart. Being careful
with those technical difficulties, we discuss those in Section 3.1.2.

When considering decorated flags however, the situation is very similar in the commutative
setting and in the non-commutative setting. The need for a basis is covered by the
decoration. The definitions of cross-ratio and triple-ratio also indicate good candidates for
the non-commutative A-coordinates. Indeed, we want the A-coordinates to determine the
X -coordinates of the configuration of flags, and in the commutative case the definitions
above give the usual formulas relating X -coordinates and A-coordinates, given that the A-
coordinates are defined as the matrices of the maps πi,j in the bases given by the decoration
of the flags. However this statement only holds in rank 2. This lead us to the next technical
difficulty arising from non-commutativity: there is no determinant for matrices with values in
a general ring, hence no special linear group SLn. Since we can’t work with SLn, we need do
work in the general linear group GLn which even over a commutative ring is not a semi-simple
Lie group, but a reductive one. As a consequence, the non-commutative A-coordinates we
will define in Section 3.3 and 3.2 will not directly reduce to Fock-Goncharov’s A-coordinates
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in the commutative case. Instead, what we get is a generalization of Fock-Goncharov
coordinates to GLn(R)-local systems. Another technical difficulty arising is the need to
work with twisted local systems to define A-coordinates. These twisted local systems are
defined on the unit tangent bundle T ′S of S, with the extra condition of having monodromy
around the fiber of T ′S → S equal to − Id.

Now that we have good candidates for generalized A-coordinates, several questions arise.
First, are there relations between the coordinates defined with respect to a fixed triangulation?
Second, how to compute the mutations formulas relating the coordinates with respect to
two different triangulations? To answer both questions, we make use of a tool introduced in
2014 by Davide Gaiotto, Gregory W. Moore and Andrew Neitzke in [GMN13] called spectral
networks. This is a combinatorial tool used to study framed local systems by allowing the
definition of a procedure called abelianization. This procedure transform a flat rank n vector
bundle over a ciliated surface S into a line bundle over a certain ramified n-covering Σn of S
called the spectral surface. This is a tool of great importance in theoretical physics to study a
certain class of topological quantum field theories, but we won’t make use of all the potential
of spectral networks in this work. Initially, spectral network were defined as the critical
graph of a holomorphic quadratic differential on S lifted to the spectral surface. However, a
geometric and combinatorial description exists and will be more convenient to work with in
our study. For this, we use a combinatorial description of the spectral surface introduced by
Alexander Goncharov and Maxim Kontsevich in [GK22] which we recall in Section 2.3.1, and
we add the definition to a spectral network adapted to this spectral surface in Section 2.3.3.
Then, we need to extend the definition of the non-abelianization procedure to work with
twisted local systems. This part is a joint work with Eugen Rogozinnikov in [KR22] in the
case n = 2, and generalizes immediately to n ≥ 3. This extension is described in Section 2.4.
The non-abelianization process itself works exactly the same whether the the bundle over
the spectral surface is a line bundle or a higher rank bundle. Once this is done, we describe
an inverse construction to the non-abelianization process called (partial) abelianization,
which transform a framed flat rank nd vector bundle over the ciliated surface S into a flat
rank d vector bundle over the spectral surface. We describe it more precisely in Section 2.5.
This allow us to describe the topology of a subset (due to genericity assumptions) of the
moduli space of framed GL2(R)-local system over a ciliated surface S, where R is a finite
dimensional R-algebra, such as the ring of n× n matrices with real coefficients.

Theorem. The moduli space of framed (twisted) GL2(R)-local systems on S that are ∆-
generic with respect to a fixed triangulation ∆ is homeomorphic to the moduli space of
(twisted) R×-local systems on Σ2 which is homeomorphic to (R×)1−4χ(S)+2p+

∑
ni/R× where

R× acts diagonally by conjugation on (R×)1−4χ(S)+2p+
∑
ni .

This construction also allow us to study symplectic local systems in Section 2.7 as a matrix
in the symplectic group naturally writes as a two by two block matrix. This is a join
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work with Eugen Rogozinnikov in [KR22]. For this, we need to translate the data of the
symplectic form present in a symplectic local system on S into an additional data in the
abelianized local system. As a corollary we also get a topological description of the moduli
space of maximal framed local systems.

Theorem. If A is Hermitian, then the moduli space of framed (twisted) maximal Sp2(A, σ)-
local systems on S is homeomorphic to:(

(Aσ+)
−2χ(S)+p × (A×)−2χ(S)+2p−1+

∑
ni

)
/A×

where A× acts componentwisely by conjugation on (A×)−2χ(S)+2p−1+
∑
ni and by congruence

on (Aσ+)
−2χ(S)+p.

In Chapter 3, we focus on defining and studying a non-commutative generalization of Fock-
Goncharov’s A-coordinates. First we study the special case of GL2(R)-local systems, since
a lot of technical difficulties appearing in higher rank are not present in rank 2. In this case,
we show that the non-commutative algebra introduced by Arkady Berenstein and Vladimir
Retakh in [BR18] have a representation as matrix valued rational function on the moduli
space of decorated twisted GL2(R)-local systems, which we call A-coordinates. Similarly to
commutative Fock-Goncharov coordinates, there is a family of functions associated to each
triangulation of the surface, and there are mutations formulas that express the functions
associated to a triangulation as non-commutative rational functions of functions associated
to another triangulation. However, there is a fundamental difference with commutative
Fock-Goncharov coordinates: the functions associated to a fixed triangulations have relations
between them, called triangle relations. The term ”coordinates” is thus an an abuse of
terminology.

Definition. Let S be a ciliated surface. We define the unitary R-algebra AS generated by
the symbols xγ and x−1

γ for all homotopy class of arcs γ joining two punctures on S (with
the convention xγ = 1 if γ is trivial) with the relations:

• ∀γ ∈ E(S), x−1
γ xγ = xγx

−1
γ = 1

• ∀f : P3 → S triangle,
xγ1,3x

−1
γ2,3xγ2,1 = xγ1,2x

−1
γ3,2xγ3,1

• ∀f : P4 → S quadrilateral,

xγ4,2 = xγ4,3x
−1
γ1,3xγ1,2 + xγ4,1x

−1
γ3,1xγ3,2

and
xγ2,4 = xγ2,3x

−1
γ1,3xγ1,4 + xγ2,1x

−1
γ3,1xγ3,4
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We define the non-commutative A-coordinates associated to a decorated GL2(R)-local
system L as follows: for each ideal arc γ on S (i.e. a homotopy class of arc joining two
punctures) from p to q, let γ∗L be the pullback of L|γ . This is a trivial flat R2-bundle over
[0, 1] and the decoration of L induces two flat R-subbundles Fp and Fq of γ∗L. We define

aγ : Fp → R2/Fq

to be the restriction of the canonical projection to Fp, identified with its matrix in the
bases induces by the decoration. In the case R =Md(R), the space X of decorated twisted
GL2(R)-local systems on S is an algebraic variety and the subset X∆ of ∆-generic local
systems is an open dense subset of X. Each A-coordinate associated to ∆ can be seen as a
rational function on X∆ with coefficient inMd(R).

Theorem. Let S be a ciliated surface. The map

ψ :
AS → Rat(X,Md(R))
xγ 7→ aγ

is an algebra homomorphism.

To show this, we need to compute both the triangle relations and the mutations relations
associated with flips of the triangulation. In rank 2, we can compute both with the use of
spectral networks. The triangle relations appear naturally in the abelianization process:
the A-coordinates are holonomies of certain paths on the abelianized local system, and the
triangle relations correspond to holonomies of contractible paths, hence are trivial. For the
mutation relation, we take advantage of the fact that the local system on the base surface S
does not depend on the triangulation, while the spectral surface and the abelianized local
system do. Then by doing abelianizations corresponding to two different triangulations
and identifying the right terms, we can express the A-coordinates corresponding to one
triangulation in terms of the A-coordinates corresponding to the other one. The same
technique can be used to show that given a specific triangulation ∆, any other A-coordinates
can be written as a non-commutative Laurent polynomial of coordinates associated to
∆. This property is known as (non-commutative) Laurent phenomenon and is the non-
commutative generalization of a well known property of commutative cluster algebras.

Theorem. Let n ≥ 3 and let S be the closed disk with n punctures on the boundary.
Let i, j ∈ {1, . . . , n}, i ̸= j. Then for every triangulation ∆ of S and every decorated
twisted GL2(R)-local system L that is ∆-generic and such that (F (i), F (j)) is generic, the
A-coordinate aγi,j is a non-commutative Laurent polynomial in the A-coordinates (aγ)γ∈∆
associated to the triangulation ∆.

We also study in Section 3.1.4 and 3.1.5 a type of coordinates in-between the X -coordinates
and the A-coordinates, which yield a representation of a subalgebra of AS introduced
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in [BR18]. The A-coordinates presented here restrict to the non-commutative symplectic
coordinates introduced in [AGRW22] when defined over a symplectic local system with a
symplectic decoration.

We then generalize these coordinates to configurations of flags in Rn in Section 3.2 and
to twisted GLn(R)-coordinates in Section 3.3. The reason we split this in two different
sections is because of a technical difficulty arising from twisted local systems. Indeed, the
generalization we describe require additional data to the usual decorated flags. We call that
additional data an extra-decoration.

Definition. Let (A(1), . . . , A(k)) be a k-tuple of flags in generic position (recall Section 1.2
for the definition of flags in generic position). An extra-decoration of the k-tuple of flags is
the data of a decoration of each flag A(i) together with the data for every i1, . . . , ik ∈ N such
that i1+ · · ·+ ik = (k− 1)n+1 of an element bi1,...,ik ∈ Rn that freely span A(1)

i1
∩ · · · ∩A(k)

ik
.

For a configuration of flags in Rn this is easy to define, but for a twisted local system, these
bases should be sections of the local system along small loops sitting in the interior of the
surface. However these small loops have monodromy − Id because we are working with
twisted local systems, so this is only possible to define those section up to sign. We define a
slightly altered version of the usual quivers associated to commutative cluster algebras, to
take into account the fact that an extra-decoration depends on the triangulation chosen,
so should mutate alongside the coordinates themselves. We only describe the mutations
necessary to a flip, as we lack a geometric interpretation of a general mutation to describe it.

This definition of non-commutative A-coordinates is slightly different than the one introduced
by Goncharov-Kontsevich in [GK22]. Indeed, the Goncharov-Kontsevich coordinates can
be written as quotients of two of the coordinates introduced in this work. In other words,
the A-coordinates presented here gives factorization of Goncharov-Kontsevich coordinates.
Another difference is that Goncharov-Kontsevich coordinates only require a decoration of
the local systems, whereas the coordinates presented here require this additional extra-
decoration. The combinatorics of the coordinates presented in this work are much closer to
the combinatorics of a cluster algebra, with mutations dictated by an underlying quiver. As
such, Goncharov-Kontsevich coordinates can be thought as ”in-between” the A-coordinates
presented here and non-commutative X -coordinates. It is worth noting that for n = 2 (i.e.
for G = GL2(R)) the Goncharov-Kontsevich coordinates coincide with the A-coordinates
introduced i this work, the differences between the two types of coordinates arising for n ≥ 3.

The work presented in Chapter 3 is a step toward the definition of (possibly non-commutative)
cluster structures on moduli spaces of G-local systems with framing in partial flag varieties
G/P for more general Lie groups and more general parabolic subgroups than what is already
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known. While there is no direct reduction from the coordinates presented here to coordinates
on SO(p, q) or exceptional Lie groups with their parabolic subgroup PΘ (the two remaining
classes of Θ-positive structures), the constructions present in this manuscript should help to
understand the expected combinatorics of non-commutative cluster coordinates a general
case.
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Chapter 1

Algebra and flags

The purpose of this first chapter is to collect basic definitions about flags in free modules over
non-commutative algebras. The main example of such non-commutative algebras that we
will be interested throughout this work is the algebra of square matrices over a commutative
field. This chapter contains elementary linear algebra results that will serve as ground level
results in the rest of this manuscript.

1.1 Algebra vocabulary

Let R be a finite dimensional unitary associative R-algebra and R× the group of invertible
elements of R. For n ≥ 2 we consider Rn as a right R-module. LetMn(R) be the ring of
all n × n-matrices with entries in R, and GLn(R) be the group of all invertible matrices
ofMn(R). We see Rn as the set of column vectors with coefficients in R, so that GLn(R)
acts on Rn by left multiplication.

The work presented here could be generalized to a larger class of ring R, but we are
formulating it here with R a finite dimensional R-algebra so that R has a ”nice” free module
theory. In particular, under this assumption a free R-module M has a unique rank k,
meaning that when there exists a non-negative integer k such that M ≃ Rk, then this
integer k (called the rank of M) is unique. Moreover, if N is a free submodule of M , then
the rank of N is necessarily lesser or equal to k, with equality if and only if N =M .

Definition 1.1.1. Let 0 ≤ k ≤ n. A k-dimensional subspace of Rn is a R-submodule
F isomorphic to Rk that is a direct factor of Rn, i.e. Rn ≃ F ⊕ Rn−k. A 1-dimensional
subspace of Rn will sometimes be called an R-line. We denote the space of R-lines of Rn

by P(Rn).

25



26 CHAPTER 1. ALGEBRA AND FLAGS

Remark 1.1.2. If F is a i-dimensional subspace of Rn, then the quotient Rn/F is isomorphic
to Rn−i. However a R-submodule F satisfying F ≃ Rk and Rn/F ≃ Rn−k for some
1 ≤ k ≤ n− 1 is not necessarily a k-dimensional subspace.

We denote by x+F the image of an element x ∈ Rn by the canonical projection Rn → Rn/F .

Definition 1.1.3. We make the following definitions:

• An n-tuple (x1, . . . , xn) for x1, . . . , xn ∈ Rn is called basis of Rn if the map

Rn → Rn

(a1, . . . , an) 7→
∑n

i=1 xiai

is an isomorphism of right R-modules.

• An element x ∈ Rn is called regular if it freely spans an R-line of Rn.

• Regular elements x1, . . . , xk ∈ Rn for k ≤ n are called linearly independent if they
freely span a k-dimensional subspace of Rn, i.e. there exists xk+1, . . . , xn such that
(xi)1≤i≤n is a basis of Rn.

• A k-dimensional subspace F and a (n−k)-dimensional subspace G are called transverse
if F ⊕G = Rn as right R-modules.

Remark 1.1.4. Let x ∈ Rn. The map

mx :
R → Rn

a 7→ xa

is an isomorphism of right R-module if and only if x is regular, and if x is not regular then
the kernel of mx is a R-subalgebra of R.

In this work, we are mainly interested in the case when R is the algebraMd(K) of square
matrices of size d ≥ 2 over a commutative field K, or a subalgebra of it. The right R-module
Rn is isomorphic to the right R-module Mnd,d(K) of matrices with nd rows and d columns
with coefficients in K as a column of n square matrices of size d with coefficients in K is
equivalent to a nd×d matrix with coefficients in K. We may consider an element e of Rn as a
d-tuple (e1, . . . , ed) of vectors in Knd. The group R× is then GLd(K) and the group GLn(R)
is identified with GLnd(K). An R-submodule of Rn spanned by k elements e1, . . . , ek is a
k-dimensional subspace if and only if the family of kd vectors (e11, . . . , e1d, e

2
1, . . . , e

k
d) is of rank

kd because the vector space in Knd spanned by (e11, . . . , e
1
d, e

2
1, . . . , e

k
d) is then kd-dimensional

and admits a supplement that is (n− k)d-dimensional. The family (e11, . . . , e
1
d, e

2
1, . . . , e

k
d) is

then a basis of the R-module it spans. A regular element is a family e = (e1, . . . , ed) of rank
d. Note that if K = R or K = C then R× is dense in R and GLn(R) is dense inMn(R).
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1.2 Configuration of flags

One of the reasons the notion of flags became central in the study of character varieties is
because of its relations with Hitchin components. Indeed, studying the action of a split
real Lie group on a space of (complete) flags proved to be useful to determine faithful
and discreteness properties, see [FG06, Gui08]. The goal of this work is to work with
partial flags instead of complete ones. A partial flag in Rnd with subspaces of dimensions
(0, d, 2d, . . . , (n − 1)d, nd) is the same as a complete flag in Md(R)

n, which lead to the
following definitions.

Definition 1.2.1. A (complete) flag F in Rn is a sequence F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn
where every Fi is a i-dimensional subspace of Rn. A decoration of a flag F is the data of
(f1, . . . , fn) such that fi ∈ Fi/Fi−1 freely spans Fi/Fi−1 for all 1 ≤ i ≤ n.

Definition 1.2.2. A k-tuple of flags (F (1), . . . , F (k)) is said to be in generic position if :

• For every i1, . . . , ik ∈ N such that i1 + · · · + ik = (k − 1)n + r with 0 ≤ r ≤ n, the
R-submodule F (1)

i1
∩ · · · ∩ F (k)

ik
⊂ Rn is a r-dimensional subspace of Rn

• For every i1, . . . , ik ∈ N such that i1 + · · ·+ ik = (k − 1)n+ 1 and for all 1 ≤ m ≤ k,
the canonical projection πm : F

(1)
i1
∩ · · · ∩ F (k)

ik
→ F

(m)
im

/F
(m)
im−1 is an isomorphism.

The group GLn(R) acts naturally on the space of k-tuple of flags in Rn in generic position.
We denote by ConfR,k(n) the quotient of this space by the GLn(R) action.

1.3 Kashiwara-Maslov map and the exchange relation

This section contains most of the generic linear algebra results that will play a fundamental
role in the definition of both our non-commutative A-coordinates (Section 3.1.2 and 3.2)
and the abelianization procedure (Section 2.5).

Let (A,B,C) be a triple of flags in generic position. For all i, j, k ∈ N such that i +
j + k = 2n + 1, we define the following maps by restriction of the canonical projections
Ai → Ai/Ai−1, Bj → Bj/Bj−1 and Ck → Ck/Ck−1:

aAi,j,k : Ai ∩Bj ∩ Ck → Ai/Ai−1

aBi,j,k : Ai ∩Bj ∩ Ck → Bj/Bj−1

aCi,j,k : Ai ∩Bj ∩ Ck → Ck/Ck−1

Remark 1.3.1. If i = 1, then j = k = n and Ai ∩ Bj ∩ Ck = A1. Then the map aA1,n,n :
A1 → A1 is the identity. Notice also that if k = n, then i + j = n + 1 and the maps
aAi,j,n : Ai ∩Bj → Ai/Ai−1 and aBi,j,n : Ai ∩Bj → Bj/Bj−1 do not depend on the flag C.
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For i, j, k ∈ N such that i+ j + k = 2n+ 2, we define the 2-dimensional subspace Pi,j,k =
Ai ∩Bj ∩ Ck. There is a map

Ai−1 ∩Bj ∩ Ck ⊕Ai ∩Bj−1 ∩ Ck ⊕Ai ∩Bj ∩ Ck−1 → Pi,j,k
(x, y, z) 7→ x+ y + z

and we denote by Ki,j,k its kernel. This space is endowed with three canonical projections

pAi,j,k : Ki,j,k → Ai−1 ∩Bj ∩ Ck,

pBi,j,k : Ki,j,k → Ai ∩Bj−1 ∩ Ck,

pCi,j,k : Ki,j,k → Ai ∩Bj ∩ Ck−1

Lemma 1.3.2. The maps pAi,j,k, p
A
i,j,k and pAi,j,k defined above are isomorphisms. In particular

Ki,j,k is a R-line.

Proof. We will show that pAi,j,k is an isomorphism, the other case being similar. First, note
that the R lines Ai−1 ∩Bj ∩ Ck, Ai ∩Bj−1 ∩ Ck and Ai ∩Bj ∩ Ck−1 have pairwise trivial
intersection. Indeed, (Ai−1 ∩Bj ∩ Ck) ∩ (Ai ∩Bj−1 ∩ Ck) = Ai−1 ∩Bj−1 ∩ Ck = 0 because
(i− 1) + (j − 1) + k = 2n and the triple (A,B,C) is in generic position. Then we have

Pi,j,k = Ai ∩Bj−1 ∩ Ck ⊕Ai ∩Bj ∩ Ck−1

because both terms are free R-module of rank 2 and the right-hand side is a submodule
of the left-hand side. So given x ∈ Ai−1 ∩ Bj ∩ Ck, there exists a unique pair (y, z) ∈
Ai ∩ Bj−1 ∩ Ck ⊕ Ai ∩ Bj ∩ Ck−1 such that x = y + z, i.e. (x,−y,−z) ∈ Ki,j,k. So
pAi,j,k(x,−y,−z) = x and pAi,j,k is an isomorphism.

Proposition 1.3.3. Let i, j, k ∈ N such that i + j + k = 2n + 2. The following diagram
anti-commutes, i.e. aCi−1,j,k ◦ pAi,j,k = −aCi,j−1,k ◦ pBi,j,k:

Ai−1 ∩Bj ∩ Ck
aCi−1,j,k

''

Ki,j,k

pAi,j,k
77

pBi,j,k

''

Ck/Ck−1

Ai ∩Bj−1 ∩ Ck

aCi,j−1,k

77

Proof. Let (x, y, z) ∈ Ki,j,k. Then

aCi−1,j,k(p
A
i,j,k(x, y, z)) = aCi−1,j,k(x) = x+ Ck−1

and
aCi,j−1,k(p

B
i,j,k(x, y, z)) = aCi−1,j,k(y) = y + Ck−1.

Since x+ y + z = 0 and z ∈ Ai ∩Bj ∩ Ck−1 ⊂ Ck−1, we have x+ Ck−1 = −y + Ck−1.
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More generally for all i, j, k ∈ N such that i + j + k = 2n + 2, the following diagram
anti-commutes, i.e. the monodromy around each cell is equal to − Id:

Ai−1 ∩Bj ∩ Ck
aCi−1,j,k

uu

aBi−1,j,k

))

Ck/Ck−1 Bj/Bj−1

Ki,j,k

pAi,j,k

OO

pBi,j,k

uu

pCi,j,k

))

Ai ∩Bj−1 ∩ Ck

aCi,j−1,k

OO

aAi,j−1,k ))

Ai ∩Bj ∩ Ck−1

aBi,j,k−1

OO

aAi,j,k−1uu

Ai/Ai−1

In particular, we have

(aBi−1,j,k)
−1 ◦ aBi,j,k−1 ◦ (aAi,j,k−1)

−1 ◦ aAi,j−1,k ◦ (aCi,j−1,k)
−1 ◦ aCi−1,j,k = − Id .

In the case n = 2 a flag is just a R-line and the map µB,CA := aA2,2,1(a
B
2,2,1)

−1aB1,2,2 : C1 →
R2/C1 is called the Kashiwara-Maslov map of the triple of R-lines (A1, B1, C1). Proposition
1.3.3 imply that µB,CA = −µC,BA .

When n = 2 we can also describe an additional relation between these isomorphisms for a
configuration of 4 flags in generic position:

Proposition 1.3.4. Let F1, F2, F3, F4 be four R-lines in R2 in generic position. For all
i ̸= j ∈ {1, 2, 3, 4} let aj,i : Fi → R2/Fj be the restriction of the canonical projection
R2 → R2/Fj to Fi. These maps are isomorphisms and we have the following relation:

a2,4 = a2,3a
−1
1,3a1,4 + a2,1a

−1
3,1a3,4.

Proof. These maps are isomorphisms because of the genericity condition. Let b ∈ F4 freely
spanning F4. Since F1 ⊕ F3 = R2 by genericity again, there exists x1 ∈ F1 and x3 ∈ F3

such that b = x1 + x3. The left-hand term is then a2,4(b) = b+ F2. The first term of the
right-hand side is

a2,3a
−1
1,3a1,4(b) = a2,3a

−1
1,3(b+ F1)

= a2,3a
−1
1,3(x1 + x3 + F1)

= a2,3a
−1
1,3(x3 + F1)

= a2,3(x3)

= x3 + F2
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and similarly the second term is

a2,3a
−1
1,3a1,4(b) = x1 + F2

hence the relation.

Lastly, we describe an additional relation in the case n = 3.

Proposition 1.3.5. Let (A,B,C,D) be four flags in R3 in generic position. The following
diagram anti-commutes:

R3/(A2 ∩B2 ⊕ C2 ∩D2)

))

B2 ∩ C2

55

))

A2 ∩D2

R3/(A2 ∩ C2 ⊕B2 ∩D2)

55

where all the maps are restrictions of the canonical projections. All these maps are
isomorphisms. We call the top map

T+
AD,BC : B2 ∩ C2 → A2 ∩D2

and the bottom map
T−
AD,BC : B2 ∩ C2 → A2 ∩D2

Proof. Let b freely spanning B2 ∩ C2. By genericity we have

A2 ∩B2 ⊕ C2 ∩D2 ⊕A2 ∩D2 = R3

since A2 ∩B2 ⊕A2 ∩D2 = A2 because A2 ∩B2 and A2 ∩D2 are two transverse R-lines in
A2 which is a 2-dimensional subspace, and A2 ∩ (C2 ∩D2) is trivial by genericity. Similarly,
we have

A2 ∩ C2 ⊕B2 ∩D2 ⊕A2 ∩D2 = R3

so there exists unique x ∈ A2∩C2, y ∈ B2∩D2, x′ ∈ A2∩B2, y′ ∈ C2∩D2 and z, z′ ∈ A2∩D2

such that

b = x+ y + z

= x′ + y′ + z′

We want to show that z + z′ = 0. We have y + z ∈ D2 but since y + z = b − x ∈ C2, we
have y + z ∈ C2 ∩D2. Similarly x′ + z′ ∈ A2 ∩ C2. So

b = x+ (y + z) = (x′ + z′) + y′
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are two decomposition of b in A2 ∩ C2 ⊕ C2 ∩D2, so they must coincide. This means that
x = x′ + z′, so b = x′ + z′ + y + z. So z + z′ = b− x′ − y ∈ B2, and z + z′ ∈ A2 ∩D2 which
means that z + z′ = 0 since A2 ∩D2 ∩B2 = 0.
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Chapter 2

Local systems and partial
(non-)abelianization

In this chapter, we give all the definitions of framed and decorated local systems we need
in this work. To understand the combinatorial properties of the non-commutative cluster
coordinates we will define in Chapter 3, we start from a geometrical point of view. In
2014 Davide Gaiotto, Gregory W. Moore and Andrew Neitzke introduce in [GMN13] a
combinatorial tool called spectral networks to describe a procedure called abelianization and
its inverse called non-abelianization. The purpose of these constructions is to transform a
flat vector bundle over a surface into a flat line bundle over a ramified covering of the surface.
In this line bundle, many of the geometric invariant of the initial bundle can be seen. This is
true in particular for the Fock-Goncharov coordinates of the initial bundle, which we find as
monodromies of some special curves in the associated line bundle, see [GMN14,HN16]. The
main idea behind this chapter is that the abelianization procedure can be carried ”partially”,
i.e. transforming a vector bundle of high rank over a surface into a vector bundle of lower
rank over a ramified covering but not necessarily a line bundle. In this lower rank bundle,
looking at the monodromies of the curves representing the Fock-Goncharov coordinates in
the abelian case should naturally give rise to non-commutative analogs of Fock-Goncharov
coordinates. However since we want to define non-commutative cluster A-coordinates, we
need to work with twisted local system, as introduced in [FG06]. Thus, the first step is
to extend the construction of Gaiotto-Moore-Neitzke to twisted local system. This is a
joint work with Eugen Rogozinnikov in [KR22], together with a direct application of this
construction to the study of symplectic local systems and maximal representations.

33
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2.1 Ciliated surfaces, topological and combinatorial data

To study local system on surfaces, we first need to describe the kind of surfaces we want to
consider. The construction of cluster coordinates on moduli spaces of local system in [FG06]
uses a very general class of surfaces called ciliated surfaces . Since our goal is to extend this
construction we will naturally deal with the same kind of surfaces.

Let S a smooth compact orientable surface with boundary. Let P ⊂ S be a finite non-empty
set such that every connected component of the boundary ∂S of S contains at least one
point in P. We call the elements of P punctures. We split the set of all punctures in two
subsets: the set of external punctures Pext = P ∩ ∂S and the set of internal punctures
Pint = P\Pext. Let S = S\P. We call a surface S obtained this way a ciliated surface. A
ciliated surface will be called hyperbolic if it is not the sphere with one or two (internal)
punctures nor the closed disk with one or two external punctures and no internal punctures.
Every hyperbolic ciliated surface admits a hyperbolic metric of finite volume with totally
geodesic boundary, but the choice of such a metric does not matter in this work. For every
such hyperbolic structure, all the internal punctures are cusps and all boundary curves
are (infinite) geodesics. Once equipped with a hyperbolic structure as above, the universal
covering S′ of S can be seen as a closed convex subset of the hyperbolic plane H2 with
totally geodesic boundary, which is invariant under the natural action of π1(S) on H2 by
the holonomy representation. Punctures of S are lifted to points of the ideal boundary of
H2 which we call punctures of S′ and denote their set by P ′ ⊆ ∂∞S′ ⊆ ∂∞H2. Notice, if S
does not have boundary, then S′ is the entire H2.

Example 2.1.1. An important example of a ciliated surface is the k-gon for any integer
k ≥ 3 which is a (closed) disk with k external punctures and no internal punctures. In the
following, a 3-gon will be called a triangle and a 4-gon will ce called a quadrilateral.

Later on we will need to replace the base surface S with its unit tangent bundle (see
Section 2.2.3). Let TS the tangent bundle of S and TS\ {0} the tangent bundle without
the zero section. The group R∗

+ of positive real numbers acts on TS\ {0} by scalar
multiplication. With a slight abuse of terminology, we call unit tangent bundle the quotient
T ′S = (TS\ {0}) /R∗

+. This is a bundle over S of fiber S1. We will write an element of T ′S
as an ordered pair (x, v) with x ∈ S and v a non-zero vector in TxS, identified with the
half-line it spans. Every smooth path γ : [0, 1]→ S lifts to a path

T ′γ = (γ, γ′) : [0, 1]→ T ′S.

We fix an orientation on S. In the figures, the surface S will be oriented clockwise. For
every internal puncture p ∈ Pint we choose a neighborhood Vp of p in S such that Vp is
diffeomorphic to an open disk with one internal puncture, and such for p ̸= q two distinct
punctures the neighborhoods Vp and Vq are disjoint. We fix a smooth oriented loop βp
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around p in Vp such that βp is homotopic to p and the orientation of βp is such that p is on
its right. We call T ′βp = (βp, β

′
p) the lift of βp to T ′S.

For every external puncture p ∈ Pext we choose a neighborhood Vp of p in S such
that Vp is diffeomorphic to

{
(x, y) ∈ R2|x2 + y2 < 1, x ≥ 0, (x, y) ̸= (0, 0)

}
(we call such

a neighborhood a punctured half-disk). We choose the neighborhoods Vp to be pairwise
disjoints. We also choose a smooth path βp inside Vp going from one of the boundary
components surrounding p to the other one, again oriented such that p is on its right. We
also denote by T ′βp its lift to T ′S.

An ideal triangulation (which we will simply call triangulation) of S is a maximal set of
(homotopy classes of) pairwise non-intersecting and non-homotopic, not self-intersecting
arcs

{
γi : [0, 1]→ S

}
i∈I such that ∀i ∈ I, ∀t ∈ [0, 1], γi(t) ∈ P ⇔ t ∈ {0, 1}. By maximality,

the complement in S of a triangulation ∆ is a disjoint union of open disks which we call
triangles of ∆. Note that the boundary components of S (i.e. the connected components of
∂S\Pext) are arcs present in every triangulation of S. We call those external edges of the
triangulation, and we call the other arcs internal edges. Note that the endpoints of edges
of ∆ are punctures. For a triangle t of ∆ with vertices p, q, r ∈ P we will sometimes write
t = (p, q, r) even though the data of the vertices does not in general determine the triangle t.

Remark 2.1.1. It is well known (see [Hat91]) that any two triangulations of S can be related
by a finite sequence of flips. A flip is the change of triangulation obtained by changing the
diagonal of a quadrilateral that is part of the triangulation.

2.2 Framed and decorated local systems

2.2.1 Local systems

Let X be a smooth manifold and let n ≥ 1.

Definition 2.2.1. A GLn(R)-local system on X is a Rn-bundle L over X with locally
constant transitions functions, i.e. there exists an open covering X =

⋃
i∈I Ui such that

L|Ui

αi≃ Ui ×Rn and for every i, j ∈ I such that Ui ∩ Uj ̸= ∅ (up to refining the covering we
can assume Ui ∩ Uj to be connected), there exists gi,j ∈ GLn(R) such that the following
diagram commutes:

(Ui ∩ Uj)×Rn

αi

��

Id×gi,j
// (Ui ∩ Uj)×Rn

αj

��

L|Ui∩Uj

Id // L|Ui∩Uj

Remark 2.2.2. This is the same as a locally constant sheaf on X of fiber Rn.
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Given a local system L on X, we will denote by L|Y its restriction to a subset Y ⊂ X and
by Lx its fiber above x ∈ X.

Definition 2.2.3. Let U be an open subset of X. A regular Rk-subbundle or k-dimensional
subbundle F of a GLn(R)-local system L over U is a subbundle of L|U such that for every
p ∈ U there exists a neighborhood Up of p and a trivialization

Φp : F|Up → Up ×Rn

such that Φp(F |Up) = Up ×G where G is an k-dimensional subspace in Rn.

A section v : U → F is regular if its span vR is a regular R1-subbundle of F|U .

Definition 2.2.4. Let L1 and L2 be two GLn(R)-local systems over X. A morphism
φ : L1 → L2 of vector bundles is a morphism of local systems if there exists an open covering
X =

⋃
i∈I Ui such that both L1 and L2 are trivial over Ui and such that the family of linear

maps (g(x) : Rn → Rn)x∈Ui induced by Ui × Rn ≃ L1|Ui

φ−→ L2|Ui ≃ Ui × Rn is locally
constant.

The following results relate those geometrical objects to more algebraic objects, namely
representations of groups. These are well-known results, the reader can find the proofs
in [Del70].

Proposition 2.2.5. A GLn(R)-local system on a simply connected manifold X is isomorphic
to the trivial bundle X ×GLn(R).

Proposition 2.2.6 (Riemann-Hilbert correspondence). The set of GLn(R)-local systems on
X up to isomorphism is in 1:1 correspondence with the set of representations ρ : π1(X)→
GLn(R) up to the action of GLn(R) by conjugation.

Definition 2.2.7. Let L be a GLn(R)-local system on X, and let γ : [0, 1]→ X be a path
on X. Let x = γ(0) and y = γ(1). The bundle γ∗L is trivial since [0, 1] is simply connected,
we fix an isomorphism γ∗L ≃ [0, 1]×Rn. Hence we can define an isomorphism of R-module

φγ : Lx → Ly

such that φγ(v) = v′ if and only if γ∗(v) = (0, v′′) and γ∗(v′) = (1, v′′) for some v′′ ∈ Rn.
We call the map φγ the parallel transport of L along γ. This map only depends on the
homotopy class of γ. The parallel transport along a path will sometimes be called the
holonomy of L along γ, and in the special case when the path is a loop we will instead call
the parallel transport the monodromy of L around γ.

Definition 2.2.8. Let L be a GLn(R)-local system on X, and let γ : [0, 1]→ X be a path
on X. Let x = γ(0) and y = γ(1). The bundle γ∗L is trivial since [0, 1] is simply connected,
we fix an isomorphism γ∗L ≃ [0, 1]×Rn. Hence we can define an isomorphism of R-module

φγ : Lx → Ly
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such that φγ(v) = v′ if and only if γ∗(v) = (0, v′′) and γ∗(v′) = (1, v′′) for some v′′ ∈ Rn.
We call the map φγ the parallel transport of L along γ. This map only depends on the
homotopy class of γ.

2.2.2 Framed local systems

The framework of Fock-Goncharov requires to work with additional data to a local system
on a surface. We will add to the local system the data of a flag at each puncture to get
a framed local system. This impose a monodromy condition on the local system around
internal puncture.

Let S be an hyperbolic ciliated surface.

Definition 2.2.9. Let L a GLn(R)-local system on S. A framing of L is the data of for each
puncture p of n+ 1 subbundles F (p)

0 ⊂ · · · ⊂ F (p)
n of L|βp , with F (p)

i being a i-dimensional
subbundle of L|βp . The data of a GLn(R)-local system together with a framing is called a
framed GLn(R)-local system on S.

Remark 2.2.10. For every puncture p, F (p)
0 is the zero section of L|βp and F (p)

n = L|βp .
Remark 2.2.11. For a GLn(R)-local system on a hyperbolic ciliated surface S to admit a
framing, the monodromy around βp for every internal puncture p must be upper triangular
in some basis.

Remark 2.2.12. Let L be a framed local system on S. Let ∆ be a triangulation of S and let
t be a triangle of ∆. Since L|t is trivial we have in any fiber Lx over x ∈ t a triple of flags
given by the parallel transport of F (p), F (q) and F (r).

Definition 2.2.13. Let L be a framed GLn(R)-local system on a ciliated surface S, and let
∆ be a triangulation of S. We say that the framing of L is ∆-generic if for every triangle
t = (p, q, r) of ∆ and for any point x ∈ t, the triple of flags defined by parallel transport of
F (p), F (q) and F (r) to Lx is in generic position.

Note that in a contractible subset of S like a triangle t in a triangulation ∆ of S, for every
x, y ∈ t and F ⊂ Lx all the parallel transports of F from x to y in t define the same subspace
F ′ ⊂ Ly. Given a triangulation, a framing of L can thus be extended to a triple of flags in
every fiber of L.

2.2.3 Twisted and decorated local systems

The data of a framed local system is enough to carry the abelianization/non-abelianization
constructions, but the moduli space of framed local system in the commutative setting
carry X -coordinates, which are less well behaved in the non-commutative setting. To define
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A-coordinates, we need even more additional data, called a decoration: a basis of the graded
of each flags of the framing. Very few local systems on a ciliated surface admit a decoration,
hence we need to consider a slight modification of local systems called twisted local systems,
introduced in [FG06] and used in numerous work in the field like [GRW22] or [GK22].

Definition 2.2.14. Let S be a ciliated surface and let T ′S be its unit tangent bundle. A
twisted GLn(R)-local system on S is a GLn(R)-local system on T ′S such that the monodromy
around the loop going once around the fiber of T ′S → S is − Id.

We define a framing of a twisted local system the same way as for not twisted ones, except
the flag subbundles are now taken above the lifted peripheral paths T ′βp. More precisely,
let L a twisted GLn(R)-local system on S. A framing of L is the data for each puncture
p of n + 1 subbundles F (p)

0 ⊂ · · · ⊂ F
(p)
n of L|T ′βp such that for all 0 ≤ i ≤ n, F (p)

i is a
i-dimensional subbundle. The data of a GLn(R)-local system together with a framing is
called a framed twisted GLn(R)-local system on S.

Note that since the monodromy of a twisted local system L around a fiber of T ′S → S is
− Id, it preserves any subspace of a fiber of L. Thus as in the non-twisted case, given a
triangulation of S we can define a triple of flags in every fiber of L.

Again, we define ∆-generic framing for twisted local system in a similar way to before.
Let L be a framed twisted GLn(R)-local system on a ciliated surface S, and let ∆ be a
triangulation of S. We say that the framing of L is ∆-generic if for every triangle t = (p, q, r)
of ∆ and for any point x ∈ t, the triple of flags defined by parallel transport of F (p), F (q)

and F (r) to Lv is in generic position, where v ∈ T ′
xS.

The fundamental group of T ′S is an extension of π1(S) by π1(S1) = Z:

0→ Z→ π1(T
′S)→ π1(S)→ 0

and this sequence splits because π1(S) is a free group. We denote by πs1(S) the quotient of
π1(T

′S) by the subgroup 2Z ⊂ Z = π1(S1).

Proposition 2.2.15. The set of twisted GLn(R)-local systems on S up to isomorphism
is in one-to-one correspondence with the set of representations ρ : πs1(S) → GLn(R) such
that ρ(δ) = − Id up to the action of GLn(R) by conjugation, where δ is the loop going once
around the fiber of T ′S → S in any direction.

Remark 2.2.16. If the ciliated surface S does not have any internal puncture, S embeds
into T ′S via the choice of any non-vanishing vector field agreeing with the paths T ′βp for
all internal puncture p. Thus, twisted GLn(R)-local system and GLn(R)-local system are
equivalent on surfaces without internal punctures.

Definition 2.2.17. Let L be a framed twisted GLn-local system on S. A decoration of L
is the data for every puncture p and for every 1 ≤ i ≤ n of a flat section b(p)i of F (p)

i /F
(p)
i−1
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along T ′βp that freely spans F (p)
i /F

(p)
i−1. The data of a framed twisted GLn(R)-local system

together with a decoration is called a decorated twisted GLn(R)-local system.

Remark 2.2.18. For a twisted GLn(R)-local system on S to admit a decoration, the
monodromy around every loop T ′βp must be upper triangular unipotent in some basis.

2.3 Spectral data

In this section we introduce the necessary tools for the abelianization/non-abelianization
construction, namely the spectral surface in Section 2.3.1 which is a type of ramified covering
and the spectral network in Section 2.3.3. We also define a few special curves on the spectral
surface that will be useful in Section 3.3 to define the cluster coordinates.

2.3.1 Ramified coverings

We first introduce some vocabulary about ramified coverings. We will only consider finite
ramified covering.

Definition 2.3.1. Let X, X̃ be two smooth manifolds and let n ≥ 2. A continuous surjective
map π : X̃ → X is called a n-fold (topological) ramified covering if there exists a nonempty
finite set B ⊂ X such that π|π−1(X\B) : π

−1(X\B)→ X\B is a n-fold covering and every
b ∈ B has strictly less than n preimages. The subset B above is called the branch locus of
π, and a point b ∈ B is called a branch point . If a branch point b ∈ B has exactly n − 1
preimages we call it a simple branch point, and if all the branch points are simple the
ramified covering is called simple. Given a branch point b ∈ B, a preimage b̃ ∈ π−1(b) is
called a ramification point if in a neighborhood U of b̃ the map π|U\b̃ : U\b̃→ π(U)\b is a
k-fold covering with k ≥ 2.

In this section we will give a combinatorial construction of the spectral surface for bundles
of rank n ≥ 2 introduced in [GK22] by A. Goncharov and M. Kontsevich. We recall the
construction of the spectral cover given in [GK22] and introduce a few notations, and we
will use this construction in Section 2.3.3 to construct a spectral network associated to
this simple ramified n-covering. Let S a ciliated surface, endowed with a triangulation ∆.
For every integer n ≥ 2 we define a bipartite graph Γn on S by gluing for all triangles
t of S elementary pieces Γ

(t)
n described as follows. We can fix for each triangle t of ∆ a

diffeomorphism φt between t and the euclidean triangle T in R3 that is the convex hull
of the points of coordinates (0, n + 1, n + 1), (n + 1, 0, n + 1) and (n + 1, n + 1, 0). This
euclidean triangle T can be decomposed into smaller triangles as in Figure 3.1.
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Figure 3.1: From left to right, a 3-subdivision, a 4-subdivision and a 5-subdivision of a
triangle.

The vertices of those smaller triangles are the point of coordinates (a, b, c) with a+ b+ c =
2n+ 2 and a, b, c are non-negative integers, and each smaller triangle is one of two types:
upward triangles have vertices (a−1, b, c), (a, b−1, c), (a, b, c−1) with a+ b+ c = 2n+3 and
downward triangles have vertices (a+1, b, c), (a, b+1, c), (a, b, c+1) with a+ b+ c = 2n+1.
We call this subdivision into smaller triangles a n+ 1-subdivision of T. On each side of T
there are n+ 1 smaller upward triangles. There is a black vertex of Γ(t)

n on every point of
coordinates (a, b, c) with a+ b+ c = 2n+ 2 and a, b, c positive integers (i.e. every vertex of
smaller triangles except for the vertices of the big triangle T). There is a white vertex of
Γ
(t)
n inside every downward small triangle. Then for every downward small triangle, there is

an edge in Γ
(t)
n between the white vertex inside it and the three black vertices at the vertices

of the downward small triangle, see Figure 3.2.

Figure 3.2: The graphs Γ
(t)
2 , Γ(t)

3 and Γ
(t)
4 restricted to a triangle t of ∆.

Then for every pair of triangles t and t′ that share an edge e of the triangulation, we identify
the corresponding black vertices of Γ(t)

n and Γ
(t′)
n on e, see Figure 3.3.
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Figure 3.3: The gluing of Γ(t)
3 and Γ

(t′)
3 for two adjacent triangles t and t′.

The white vertices are trivalent and the black vertices are either univalent, bivalent or
trivalent: the univalent and bivalent black vertices will be called external and the trivalent
black vertices will be called internal. The graph Γn is embedded into S so every vertex inherits
a cyclic order on the edges incident to it from the orientation of S. Let γ = (v1, . . . , vr)
be a path on Γn and 1 < i < r. We say γ turns left (resp. turns right) at vi if the edges
(vi−1, vi) and (vi, vi+1) (resp. (vi, vi+1) and (vi−1, vi)) are consecutive in that order with
respect to the cyclic ordering at vi. Since the graph Γn is embedded into S, a path in Γn
will be identified with its image in S.

A zig-zag path on Γn is a path (v1, . . . , vr) that turns right at every white vertex and turns
left at every black vertex. In particular, every oriented edge of Γn belong to exactly one
maximal zig-zag path. Since the graph Γn is finite, a zig-zag path can be extended either to
a cycle on Γn, every extensions of this cycle being periodic, or to a path connecting two
boundary components of S. From the construction of Γn, we get the following proposition:

Proposition 2.3.2. Let γ be a zig-zag path on Γn. Then the image of γ in S is either:

• homeomorphic to an oriented circle S1, and S\γ has two connected component, one
being homeomorphic to an open disk with one puncture. We denote this connected
component Sγ and the puncture inside it sγ. The puncture sγ is on the right of the
path γ.

• a path without self-intersection, and S\γ has two connected component, one being
homeomorphic to a punctured half-disk. We denote this connected component Sγ and
the puncture inside it sγ.

Let γ a zig-zag path on Γn and Sγ the closure in S of Sγ . The boundary of Sγ is the image
of γ in S, in particular it does not contain any punctures so Sγ is homeomorphic to either a
closed disk with one puncture in its interior or a closed punctured half-disk.

Lemma 2.3.3. Let n ≥ 2. For every puncture s of S, there is exactly n zig-zag paths
γ
(1)
s , . . . , γ

(n)
s in Γn such that s = s

γ
(i)
s

for all 1 ≤ i ≤ n. Moreover, up to reordering, for all

1 ≤ i < j ≤ k we have γ(i)s ⊂ Sγ(j)s
.
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Figure 3.4: The three zig-zag paths γ(1)s , γ
(2)
s and γ(3)s in Γ

(t)
3 that circle around the puncture

s. The subset of t above a path γ(i)s is contained in S
γ
(i)
s

.

We define Σn as the topological surface obtained by gluing punctured disks to Γn: along
every zig-zag path γ in Γn we glue a copy of Sγ . We define π : Σn → S as follows: the image
of a point in Γn is the immersion in S, and every cell Sγ is endowed with a map Sγ → S
given by the inclusion. For all puncture s of S, we denote by si the puncture inside S

γ
(i)
s

in
Σn.

Proposition 2.3.4. The map π : Σn → S is a is a surface, and a ramified n-fold covering
with simple ramification points. The ramification points are the internal black vertices of Γn,
we denote the set of all ramification points in Σn by B, and the set of branch points of S by
B = π(B).

Proof. Every edge of Γn is part of exactly two zig-zag paths so Σn is a topological surface in
the neighborhood of a point in the interior of every edge of Γn and in the neighborhood of an
external black vertex. Every white vertex is on the boundary of exactly three zig-zag paths,
each cell Sγ being glued to a pair of adjacent edges (see Figure 3.5). The neighborhood of a
white vertex is then a surface. In all these case, we also see that the covering π is regular.
In the neighborhood of every internal black vertex Σn is also a surface, but the covering π
is simply ramified at every internal black vertex (see Figure 3.5).

Figure 3.5: The neighborhood of a white vertex, an internal black vertex and an external
black vertex, together with the different cells glued in the neighborhood of those vertices.

Note that the map π|Σn\B : Σn\B → S\B is a local diffeomorphism. In the neighborhood
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Ub of a ramification point b ∈ B the surface Σn is diffeomorphic to a disk and the map π is

locally of the form D → D
z 7→ z2

.

Figure 3.6: The 3-fold ramified covering of a triangle of S. The wavy blue lines are branch
cuts.

Note that inside a triangle t of ∆ with vertex s, q, r, each white vertex v of Γn is uniquely
determined by the triple of integers (iq, ir, is) such that v ∈ γ(iq)q ∩ γ(ir)r ∩ γ(is)s . This triple
satisfies iq + ir + is = 2n+ 1.

In the case n = 2, we can describe more precisely the ramified covering. Let S be an
hyperbolic ciliated surface and let ∆ be a triangulation of S. We can endow S with a
Euclidean structure with conical points by choosing for each triangle t of ∆ an orientation
preserving diffeomorphism φt : T → t where T is the Euclidean triangle in R2 = C with
vertices 1, j = e

2iπ
3 and j2. Then for each gluing of two triangles (not necessarily distinct)

in S, glue the corresponding Euclidean triangles with the composition of a rotation and a
translation. The conical points of this structure are exactly the points in P, meaning that
this structure once restricted to S is smooth. Let B = {φt(0) | t triangle of ∆} ⊂ S. There
is one point of B in the interior of each triangle of T . With this data, we can construct a
two-fold branched covering π : Σ2 → S such that the branched points are precisely elements
of B and Σ2 has a Euclidean structure as follows. Let H be the Euclidean hexagon with
vertices the sixth roots of unity in C. Then the map z 7→ z2 is a ramified covering from H to
T that has exactly one ramification of order 2 at the point 0. Then take as many copies of H
as there are triangles in T and for each gluing of two triangles (not necessarily distinct) in
S, glue the corresponding Euclidean hexagons on both edges that are mapped to the glued
edge in S with rotation and a translation (see Figure 3.7). The surface obtained is Σ2.

This defines a two-fold ramified covering π : Σ2 → S with ramification points at B, and
the conical points of Σ2 are a subset of π−1(P). This means the map π restricted to
Σ2 = Σ2 \ π−1(P) is a smooth two-fold branched covering from Σ2 to S, with simple
ramifications on points of B. The lift ∆∗ := π−1(∆) of ∆ to Σ2 induces a hexagonal tiling
of Σ2 such that in every hexagon there is exactly one element of π−1(B).



44 CHAPTER 2. LOCAL SYSTEMS AND PARTIAL (NON-)ABELIANIZATION

Figure 3.7: The ramified two-fold covering of two glued triangles. The preimages of p are p1
and p2, same for q, r, s. The branched points are the blue crosses. The two outer edges with
an arrow are glued according to arrow orientation.

Remark 2.3.5. Since the map π is a local diffeomorphism on Σ2 \ π−1(B), it induces the
tangent (differential) map dπ : T (Σ2 \ π−1(B))→ T (S \B) that factorizes to unit tangent
bundles T ′(Σ2 \ π−1(B))→ T (S \B)′. In order to simplify the notation, we will sometime
write π∗ : TΣ2 → TS and π∗ : T ′Σ2 → T ′S instead of dπ.

Remark 2.3.6. The unit tangent bundle of H (resp. T) is canonically identified to H× S1
(resp. T× S1) as H (resp. T) is a subset of R2. With this identification, the preimages by
dπ of (x, v) ∈ T ′S are of the form (x1, v

′) and (x2,−v′) where x1 and x2 are the preimages
of x by π.

The following proposition describe the topology of the ramified covering Σ2:

Proposition 2.3.7. Let S be a compact orientable surface with k ≥ 0 boundary components
C1, . . . , Ck and let P be a finite set of points (called punctures) of S such that for all
i ∈ {1, . . . , k}, ni = #(Ci ∩ P) > 0. Let ke (resp. ko) be the number of components of ∂S
with an even (resp. odd) number of punctures, such that k = ke+ ko. Let p = #(P \ ∂S), let
g be the genus of S and let S = S \P. Then the two-fold ramified covering Σ2 = Σ2 \π−1(P)
of S is a surface that verifies:

• Σ2 is a compact orientable surface of genus

g′ =
1

2

(
2p+ 2ke + 3ko + 8g − 6 +

k∑
i=1

ni

)
,

• for each of the ke boundary components C of S with aneven number n of punctures,
π−1(C) is the union of two distinct boundary components in Σ2, each with n punctures,

• for each of the ko boundary components C of S with an odd number n of punctures,
π−1(C) is one boundary component in Σ2 with 2n punctures,
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• Σ2 has 2p internal punctures.

Proof. First, note that the formula given above defines an integer because 3ko +
∑
ni is

always even. It is clear from the construction that Σ2 is compact and orientable, and that Σ2

has 2p internal punctures. To compute the number of boundary components of Σ2, we will
glue to each boundary component of S a disk with the corresponding number of puncture
on the boundary to get a surface Ŝ with no boundary, only internal punctures. Since a
disk with one (resp. two) puncture on the boundary does not admit an ideal triangulation,
we glue a disk with one (resp. two) puncture on the boundary and one internal puncture
instead. In the corresponding ramified covering Σ̂2 of Ŝ, we then remove the lifts of the
interior of the glued disks to obtain Σ2. The result follows from the following lemma:

Lemma 2.3.8. If S is a closed disk with n ≥ 3 punctures on the boundary and no internal
puncture, Σ2 has either one boundary component with 2n punctures if n is odd or two
boundary components with n punctures each if n is even. If S is a disk with one internal
puncture and one puncture on the boundary, Σ2 has one boundary component with two
punctures. If S is a disk with one internal puncture and two punctures on the boundary, Σ2

has two boundary components with two punctures each.

Proof. The two cases with an internal puncture can be computed individually. Let S be
a disk with n ≥ 3 punctures on the boundary. Let ∆ be a triangulation of S and Σ2 the
corresponding ramified covering. Let γ be a loop homotopic to the boundary of the disk
going around all the n− 2 branched points in S. Let x be the base point of γ, and x1, x2 the
lifts of x to Σ2. Let γ̃ the lift of γ starting at x1. If γ̃ is a loop then there are two lifts of the
boundary of S to Σ2, and if γ̃ is a path from x1 to x2 then the lift of the boundary of S is
connected in Σ2. The loop γ is homotopic to the concatenations of loops γ1, . . . , γ⌊n−2

2
⌋, γ

′

based at x such that each γi goes around two branched points in S and γ′ is either trivial if
n− 2 is even or goes around one branched point if n− 2 is odd. Then γ̃ is the concatenation
of the lifts γ̃1, . . . , γ̃⌊n−2

2
⌋, γ̃

′. Since the γ̃i are loops based at p1 and γ̃′ is either trivial or a
path from p1 to p2 (depending on the parity of n), we get the result.

The Euler characteristic of S is

χ(S) = 2− 2g − k = 2− 2g − ko − ke

and the Euler characteristic of Σ2 is

χ(Σ2) = 2− 2g′ − ko − 2ke.
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The number of branched points is the same as the number of triangles in ∆, which is
−2χ(S) + 2p+

∑
ni. Riemann-Hurwitz formula gives us:

χ(Σ2) = 2− 2g′ − ko − 2ke = 2χ(S)−

(
−2χ(S) + 2p+

k∑
i=1

ni

)

= 4χ(S)− 2p−
k∑
i=1

ni

= 8− 8g − 2p− 4ko − 4ke −
k∑
i=1

ni

We can then solve for g′ to get the result.

Remark 2.3.9. To precisely describe the topology of Σn for n ≥ 3 we would need to
understand first the topology of the ramified covering of a disk with external punctures. We
haven’t found a convenient description of these coverings yet.

We denote by θ : Σ2 → Σ2 the covering involution, i.e. the map swapping the two preimages
of a regular point, and fixing ramification points. The following result is a direct consequence
of the above proposition.

Corollary 2.3.10. The fundamental group π1(Σ2) is a free group of rank

1− χ(Σ2) + 2p = 1− 4χ(S) + 4p+
∑

ni.

Let b ∈ Σ2 be a ramification point of the covering π : Σ2 → S. Let α1, . . . , αs : [0, 1]→ S be
free generators of the fundamental group π1(S, π(b)) that do not pass through other branch
points. The fundamental group π1(Σ2, b) is the free group freely generated by the following
collection of loops on Σ2:

• For every generator αi, there are two closed lifts γ1i and γ2i = θ ◦ γ1i on Σ2 based at b
(in total 2− 2χ(S) + 2p curves);

• For every ramification point b′ ̸= b in Σ2, we fix a simple segment on S connecting
π(b) and π(b′) and take the lift of this segment on Σ2. It is a closed loop ξ based at b
(in total −2χ(S) + 2p− 1 +

∑
ni curves).

The fundamental group π1(T ′Σ2, b̃) where b̃ ∈ T ′Σ2 is a lift of b to T ′Σ2 is generated by lifts
of curves described above and the curve going once around the fiber of T ′Σ2 → Σ2 at b̃.
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2.3.2 Decorating loops and joining paths

We want to fix for every white vertex of Γn a small loop going twice around it, in both S
and Σn. These loops will support sections of the local system which will be used to define
the A-coordinates of a local system on S in Section 3.3. However for consistency reasons,
white vertices of Γn adjacent to a same external black vertex should be grouped together.
This creates three different types of white vertices:

• White vertices that are not adjacent to any external black vertex, for which all three
coordinates are at most n− 1

• White vertices adjacent to exactly one external black vertex, for which exactly one of
the three coordinates is equal to n. The white vertices adjacent to bivalent external
black vertices are grouped two-by-two.

• White vertices adjacent to two external black vertices, for which two coordinates are
equal to n and the last coordinate is 1. In this case the white vertex is on the path
γ
(1)
p for some puncture p. We call those peripheral white vertices.

We fix the following paths on Σn, corresponding to each kind of white vertex in Γn:

• For every white vertex v that is not adjacent to any external black vertex, let βv be a
small loop going twice around v, with positive orientation.

• For every pair of white vertices v and v′ adjacent to the same external black vertex b
(and not adjacent to any other external black vertex), let βv = βv′ be a loop going
twice around the three vertices v, v′ and b, with positive orientation.

• For every puncture p of S, let βp be a small smooth deformation of γ(1)p in S. For
every lift pi of p to Σn, let βpi be the preimage of βp by π going around pi. For every
white vertex v on γ(1)p , we set βv = βp1 .

We call all the paths T ′βv and T ′βpi the decorating curves of Σn.

Figure 3.8: All projections on S of the decorating curves on a quadrilateral for n = 3.
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Remark 2.3.11. Notice that in the last case, the path βp is not a loop if the puncture p is
external, and if βp is a loop, it goes only once around p and not twice as in the other cases.
This is due to the fact we are working with twisted local systems on S and Σn, see Section
2.2.3.

Remark 2.3.12. All decorating curves βv going twice around a vertex or a group of vertices
are obtained by choosing a smooth loop β̃v : S1 → Σn going once around, and βv = β̃v ◦ τ
where τ : S1 → S1 is the two-fold cover of the circle over itself. In particular, the image of
every βv in Σn is diffeomorphic to a circle.

This construction is equivalent to contracting each group of white vertices and external
black vertices to a single white vertex, and taking a loop β̃v around that new white vertex
v. Doing so will create a white vertex at every puncture. If this new white vertex v is a
puncture we set βv = β̃v and if not, we set βv = β̃v ◦ τ .

The cover Σn → S is regular in the neighborhood of punctures, white vertices and external
black vertices, so by taking the images of the paths above by π : Σn → S we obtain similar
paths π(βv) on S. Notice that for all puncture p and every pi ∈ π−1(p), π(βpi) = βp.

For every white vertex v of Γn and for every puncture p of S that is a vertex of the triangle
containing v and such that v /∈ γ(1)p , let pi be the lift of p to Σn such that v ∈ γ(i)p . Fix
a smooth path γp,v : [0, 1] → Σn without self-intersection such that T ′γp,v(0) ∈ T ′βv and
T ′γp,v(1) ∈ T ′βpi , as in Figure 3.9. If v is peripheral, T ′γp,v intersects T ′βv only once. If
v is not peripheral, then T ′γp,v intersects T ′βv twice, so there exists x1, x2 ∈ S1 such that
T ′γp,v(1) = T ′βv(x1) = T ′βv(x2), and x1, x2 satisfy τ−1(x1) = τ−1(x2). We call those paths
γp,v joining paths.

For each white vertex v, we get a finite collection of points E(v) on the circle S1 given by
all x ∈ S1 such that T ′βv(x) = T ′γp,v(0) for some puncture p. This set E(v) inherit the
cyclic ordering of S1. In the next sections, it will be convenient to view this cyclic ordering
as a bijection σ : E(v) → E(v) satisfying σ#E(v) = Id, which sends an element x ∈ E(v)
to the next element in the cyclic order. If v is not peripheral, #E(v) is even and we have
T ′βv(x) = T ′βv(σ

#E(v)/2(x)) for all x ∈ E(v) because βv loops twice around v. We denote
the union of all the images in Σn of the sets βv(E(v)) for v a white vertex of Γn by E∆(Σn),
and its projection on S by E∆(S) = π(E∆(Σn)).
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Figure 3.9: The decorating curve βv around a non-peripheral white vertex v ∈ γ(i)p ∩γ(j)q ∩γ(k)r ,
together with the joining paths and the images of the points in E(v) on βv. The points in
E(v) are x1 < · · · < x6 < x1 and satisfy βv(xi) = βv(xi+3) for i = 1, 2, 3.

Figure 3.10: All decorating curves and the paths joining them in the lift of a triangle to Σ3.

2.3.3 Spectral networks

Spectral networks are tools introduced by Davide Gaiotto, Gregory W. Moore and Andrew
Neitzke in [GMN13] to study local systems by breaking them down into a smaller rank local
system on a ramified covering of the initial surface. In this section we give a combinatorial
definition of finite spectral networks, which will be sufficient for our work. For a general
account on spectral networks, see [GMN13,GMN14,HN16].

Let S be a ciliated surface, let n ≥ 2 and let π : Σn → S be the ramified covering constructed
in Section 2.3.1. We first recall the definition of a spectral network.

Definition 2.3.13. A small spectral network associated with the ramified covering π : Σn →
S is a finite set W of paths [−1, 1]→ Σn (called lines of the spectral network) satisfying:

• ∀α ∈ W, α(−1), α(1) ∈ π−1(P), α(0) ∈ B and if t /∈ {−1, 0, 1}, then α(t) /∈ P ∪ B
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• ∀α ∈ W, ∀t ∈ [−1, 1], π(α(t)) = π(α(−t))

• ∀b ∈ B, there are exactly 3 lines α1, α2, α3 ∈ W passing through b, and locally around
b the lines look like so:

• ∀α, α′ ∈ W with α ̸= α′, α(]− 1, 0[) ∩ α′(]0, 1[) ̸= ∅.

Remark 2.3.14. Each line α of a spectral network goes through exactly one ramification
point b of Σn, and we say this ramification point b is associated to α, or that b is the branch
point of α.

Remark 2.3.15. The general construction of a spectral network given in [GMN13] describe
more general spectral networks. Generically they have infinitely many lines and are dense
on the surface. However we will only need the very small class of spectral networks defined
above.

We can now construct a small spectral network on Σn associated with the n-fold ramified
covering π : Σn → S. For this, we will describe the spectral network on the covering of
a triangle of S, the complete spectral network on Σn being the union of all the spectral
networks on the coverings of the triangles. First, notice that every puncture p of S is
unramified, i.e. |π−1(p)| = n. Those n lifts p1, . . . , pn of p each lies in one of the punctured
disks S

γ
(i)
p

defined in Lemma 2.3.3, and inherit the order given by the inclusion of these

punctured disks p1 < · · · < pn, where pi < pj if γ(i)p ⊂ Sγ(j)p
. Let t be a triangle of S and p

a vertex of this triangle, and let 2 ≤ i ≤ n. There are i− 1 internal black vertices on the
boundary of S

γ
(i)
p
∩ t and there are i− 1 white vertices on the boundary of S

γ
(i−1)
p
∩ t. Each

of those black vertices is connected to exactly one of those white vertices via an edge of Γ(t)
n ,

and those black vertices are ramification points. On Σn, we define for each of those black
vertices a line of the spectral network as follows: let vb be an internal black vertex on the
boundary of S

γ
(i)
p
∩ t and vw the white vertex on the boundary of S

γ
(i−1)
p
∩ t associated to vb.

Let c1 a path from pi to vb in S
γ
(i)
p
∩ t, let c2 be the path from vb to vw obtained by following

the edge of the graph Γ
(t)
n , and let c3 be the path from vw to pi−1 in S

γ
(i−1)
p
∩ t. The line of
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the spectral network is the concatenation α = c3.c2.c1 : [−1, 1]→ Σn, parameterized such
that α(0) = vb.

Remark 2.3.16. Notice that every line of this spectral network goes from the i-th preimage
pi of a puncture p to the (i− 1)-th preimage pi−1 for some 2 ≤ i ≤ n.

Example 2.3.1. Note that in the case n = 2, every puncture of Σ2 is either at the end of
every line of the spectral network containing it, in which case we call it a sink , or at the
beginning of every line of the spectral network containing it, in which case it is called a
source. This way, every point of P have two preimages, one source and one sink. For each
hexagon H of π−1(∆), the three lines going through the ramification point in H are the three
Euclidean segments going from the source to the sink for each of the three puncture in T.

Figure 3.11: Picture of the spectral network on each triangle of the triangulation in the case
n = 2. Here the sources are p2, q2, r2 and the sinks are p1, q1, r1.

Figure 3.12: The small spectral network on the lift of a triangle to Σ3.

Proposition 2.3.17. The set W of all paths on Σn constructed as above is a small spectral
network associated to the n-fold ramified covering π : Σn → S.

Proof. With the right coice of parametrization, every line p : [−1, 1] → Σn defined above
satisfy π(p(t)) = π(p(−t)) for t ∈ [−1, 1], π(p(−1)) = π(p(1)) is a puncture in S and p(0)
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is an internal black vertex, i.e. a ramification point. Every internal black vertex is part of
three zig-zag paths, so it is on the boundary of three cells of the form S

γ
(i)
s

. There is three
line of W going through every black vertex, with alternating directions (see Figure 3.13).

Figure 3.13: The intersection of three lines of the spectral network at an internal black
vertex.

Each edge of Γn incident to an internal black vertex is followed by exactly one line of W,
and the edges incident to an external black vertex do not meet any lines of W. There are
no intersection between lines of W inside a punctured disk of the form S

γ
(i)
s

, so the only
intersections between lines of W except those at ramification points lies on white vertices of
Γn. That means all those intersections happen between lines having already crossed their
ramification points, thus the set W is a small spectral network.

We can endow the neighborhood Ub of a ramification point b ∈ B defined in Section 2.3.1
with an Euclidean structure such that the three lines of the spectral network going through
b are straight lines with respect to this structure, so that locally the figure looks like the one
in rank two (Figure 2.3.13). The Euclidean structure on Ub defines a flat connection ∇ on
TUb given by the restriction of the standard flat connection on R2. Since it is a bilinear map
on the space of sections of TUb (denoted Γ(TUb)), this connection induces a flat connection
(which we also call ∇) on the unit tangent bundle

∇ : Γ(T ′Ub)× Γ(T ′Ub)→ Γ(T ′Ub).

Remark 2.3.18. A consequence of Remark 2.3.6 is that when n = 2, we can assume the
neighborhood Ub of a ramification point b ∈ B to be the whole hexagon tile containing it in
Σ2.

2.4 Partial non-abelianization

In this section we describe in detail the non-abelianization procedure introduced by Gaiotto-
Moore-Neitzke in [GMN13]: we want to construct from a framed GLn(R)-local system on S
a R×-local system on Σn. Since we will need to work with twisted local systems to define
A-coordinates, we first need to extend the spectral network lifting rule to work with paths
on the unit tangent bundle of a surface. This construction is a joint work with Eugen
Rogozinnikov in [KR22] in the case n = 2, and is presented here in the general case.
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2.4.1 The spectral network map

Lifting paths to a ramified covering is not homotopy invariant: a contractible loop around a
branch point b ∈ B is lifted as two paths on Σ that are not loops, thus not homotopic to the
lift of the trivial loop. The goal of this section is to construct a path-lifting map denoted by
SN , which depends on the spectral network W, from paths on T ′S to paths on T ′Σ such
that SN is well-defined on homotopy classes.

We will use the symbol ≈ to represent homotopy (with fixed extremities) of paths.

Let S be a ciliated surface, ∆ an ideal triangulation of S and π : Σn → S the n-fold
branched covering constructed in Section 2.3.1. Let W be the spectral network adapted to
this covering constructed in Section 2.3.3. Every path α :]− 1, 1[→ Σn of W is smooth. We
can thus lift the paths of W to

T ′α :
]− 1, 1[ → T ′Σn

t 7→ (α(t), α̇(t))
.

We will call this set of paths in T ′Σn a tangent spectral network and denote it T ′W.

Let Ub ⊂ Σn be the neighborhood of a ramification point b endowed with an Euclidean
structure. Note that the Euclidean structure on Ub allows us to identify T ′Ub with Ub × S1.
In the following, a path γ on T ′Ub ≃ Ub × S1 will be written as a couple (x, v) where x
is the projection of γ on Ub ⊂ Σn and v is the projection of γ on S1. Note that S1 has a
natural orientation given by the one on Σn. For all θ ∈ S1, define s+θ to be the (homotopy
class of the) path in S1 going from θ to −θ following the orientation of S1, and s−θ going
from θ to −θ in the opposite direction. For a path v on S1, we will denote −v the image
of v under the involution θ 7→ −θ. The path −v goes from −v(0) to −v(1). In particular,
we have s−θ = −s+θ (where s+θ denote the path obtained by reversing the direction of s+θ )
and (−s+θ ).s

+
θ = δ+θ (resp. (−s−θ ).s

−
θ = δ−θ ) where δ+θ : t 7→ θ+ 2iπt (resp. δ−θ : t 7→ θ− 2πt)

is the path going once around S1. When the context is clear, we will omit the subscript
describing the starting point of the paths s± and δ±. The paths δ± satisfy δ− = δ+ and if v
is a path on S1 from θ1 to θ2, we write δ±.v ≈ v.δ±, meaning that δ±θ2 .v ≈ v.δ

±
θ1

.

Definition 2.4.1. Let X be a topological space. The path algebra of X (denoted
Z[Path(X)]) is the free abelian group generated by homotopy classes of paths [0, 1]→ X,
together with a product given by concatenation of paths: if γ1(0) ̸= γ2(1) then γ1.γ2 = 0
and if γ1(0) = γ2(1) then γ1.γ2 is the path obtained by going through γ2 then γ1.

Remark 2.4.2. The path algebra of a topological space is in general a ring without a unit
element.

Definition 2.4.3. Now let X be a smooth surface. Define the twisted path algebra of X as

TPA(X) = Z[Path(T ′X)]/I
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where I is the two-sided ideal generated by the elements ex,θ + δx,θ for (x, θ) ∈ T ′X, with

ex,θ :
[0, 1] → T ′X

t 7→ (x, θ)
and δx,θ :

[0, 1] → T ′X
t 7→ (x, θ + 2πt)

.

Remark 2.4.4. Given any non-empty subset E ⊂ T ′X, the subset

{γ1 + · · ·+ γr + I | for all 1 ≤ i ≤ r, endpoints of γi are in E} ⊂ TPA(X)

is a subring of TPA(X) because composition of paths preserves the set of endpoints. We
will denote TPAE(X) this subring.

We first describe the path lifting rule for a path on S, and then we will extend the construction
to paths on T ′S. Since there is a projection T ′S → S, we want the lift to T ′Σn of a path
γ on T ′S to project onto the lift to Σn of the projection x of γ to S. Let x be a path on
S intersecting only once (and not at its endpoints) the spectral network W and not going
through a branch point. Let α ∈ W be the path such that π(α) intersects x and let b ∈ B
be the ramification point associated to α. Up to homotopy, we can assume the intersection
between x and α to be in Ub. Among the n standard lifts x1, . . . , xn of x to Σn, two of
them intersect once α in Ub, one of them intersecting α(]− 1, 0[) and the other intersecting
α(]0, 1[). Suppose x1 is the one intersecting α(]−1, 0[) and x2 is the one intersecting α(]0, 1[).
We can then define a new path x′ on Σn as the concatenation of 5 paths x′1, . . . , x′5 defined
as follows:

• x′1 is the part of x1 from its starting point to the intersection point with α

• x′2 is the part of α from the intersection with x1 to the ramification point b

• x′3 is a constant path at the ramification point b point (it will be useful in the next
paragraph when we will consider the lifted spectral network T ′W)

• x′4 is the part of α from b to the intersection with x2

• x′5 is the part of x2 from the intersection with α to its endpoint.

The spectral lifts of x to Σn is the collection x1, . . . , xn, x′.

We now extend the path lifting rule to paths on T ′Σn. Let γ : t 7→ (x(t), v(t)) be a path on
T ′S such that the path x on S intersects only once the spectral network on the projection
π(α) of a line α ∈ W at a time t0 ∈ ]0, 1[. Let b be the ramification point associated
to α. Up to homotopy, we can assume that the intersection of x and α is in Ub. Let
γ1 = (x1, v1), . . . , γn = (xn, vn) be the n standard lifts of γ to T ′Σn, with γ1 and γ2 being
the two lifts such that x1 and x2 intersect the spectral network. Note that γ1 and γ2 do not
intersect T ′W in general, but x1 and x2 intersect α ∈ W . Let x′ be the path on Σn obtained
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Figure 4.14: The path x′ added by the intersection of the lifts x1 and x2 of x with α

with the construction above. We now want a continuous map v′ : [0, 1]→ S1 which coincide
with the standard lifts v1 and v2 when x′ coincides with either x1 or x2. Without loss of
generality, suppose x is smooth at the intersection point with α and that the intersection is
transverse. Then x1 and x2 are also smooth at their intersection points with α. We say the
intersection of x1 with α is positively oriented if (ẋ1(t0), α̇(t0)) agrees with the orientation
on Σ, negatively oriented if not.

Remark 2.4.5. The positivity of the intersection of a path (x, v) in T ′Σ with a line of the
spectral network is determined using the derivative of the underlying path x, and does not
depend on the vector field v on x.

Let v′ be the concatenation of 5 paths v′1, . . . , v′5 defined as follows:

• v′1 is the part of v1 from its starting point to the intersection point with α

• v′2 is obtained by parallel transport with respect to the flat connection ∇ on Up from
the vector v1(t0) along the path x′2

• v′3 is the path s+
v′2(0)

in T ′
bΣn ≃ S1 if the intersection of x1 with α is positively oriented,

and s−
v′2(0)

if the intersection is negatively oriented.

• v′4 is obtained by parallel transport with respect to ∇ from the vector v2(t0) = −v1(t0)
along the path x′4

• v′5 is the part of v2 from the intersection with α to its endpoint

Remark 2.4.6. The resulting path v′ on S1 is homotopic to (−v21).s
±
v1(t0)

.v11 where v11 = v1|[0,t0]
and v21 = v1|[t0,1]. Note that for all path w on S1 from θ0 to θ1, we have

s±θ1 .w ≈ (−w).s±θ0

so the path v′ is homotopic to s±v1(1).v1.
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Figure 4.15: The path (x′, v′) added by the intersection with α. The intersection of x1 with
α is positively oriented if Σn is oriented clockwise.

Let γ′ = (x′, v′) and let SN(γ) be the element γ1 + · · ·+ γn + γ′ ∈ TPA(Σn). Let γ be a
path in T ′S. We can write γ as a concatenation of smaller paths γ1, . . . , γr, each having a
projection to S intersecting at most once the spectral network and for each of these small
paths, apply the construction above to obtain SN(γ1), . . . , SN(γr) (if γi have a projection
to S which does not intersect the spectral network, define SN(γi) to be the sum of the n
standard lifts of γi). Define the lift of γ with respect to the spectral network W to be the
product SN(γ) = SN(γ1) . . . SN(γr) ∈ TPA(Σ).

Theorem 2.4.7. Let γ1 and γ2 be two homotopic paths in T ′S. Then SN(γ1) = SN(γ2).
In particular, the map

SN :
TPA(S) → TPA(Σ)

γ 7→ SN(γ)

is well-defined.

Remark 2.4.8. The map SN is not defined on the whole twisted path algebra of S as paths
with endpoints on a line of the spectral network can not be lifted consistently, but we will
never need to lift such paths. The subset of TPA(S) (resp. TPA(Σn)) of elements where
no term has an endpoint on W is a subring (see Remark 2.4.4), and with a slight abuse of
notation we will still denote it TPA(S) (resp. TPA(Σn)) instead of TPA(S)S\π(W) (resp.
TPA(Σn)Σn\W).

The theorem is a consequence of the two following lemmas:

Lemma 2.4.9. Let γ = (x, v) be a path in T ′S that intersects exactly twice the same line α
of the spectral network and no other line ofW, as in Figure 4.16. Then SN(γ) = γ1+· · ·+γn
where γ1, . . . , γn are the n standard lifts of γ to T ′Σn.

Proof. Let t1 < t2 be the two elements of the interval [0, 1] such that x(t1) and x(t2) are
on α. Let (x(1), v(1)) = γ(t1) and (x(2), v(2)) = γ(t2), and let γ1 = (x1, v1) and γ2 = (x2, v2)
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Figure 4.16: A loop intersecting twice the same line of W

the two standard lifts of γ such that x1 and x2 intersect α, γ1 being the lift such that x1
intersects α(]− 1, 0[). Then SN(γ) = γ1 + γ2 + · · ·+ γn + γ′ + γ′′ where γ′ = (x′, v′) is such
that x′ follow α from x

(1)
1 to x(1)2 and γ′′ = (x′′, v′′) is such that x′′ follows α from x

(2)
1 to

x
(2)
2 .

Figure 4.17: Spectral network lift of γ

In order to prove the lemma, we need to show that the two paths γ′ and γ′′ added by the
intersections with the spectral network cancel each other in TPA(Σ), i.e. that γ′ + γ′′ = 0.
For this, we need to show that γ′′.γ′ is homotopic to an odd power of δx1(0),v1(0). The paths
x′ and x′′ are homotopic on Σ so the concatenation x′′.x′ is trivial. What is left is to show
that v′′.v′ is homotopic to an odd power of δ+.

Suppose the intersection of x1 with α at x(1)1 is positive, the other case being symmetric.
Then the intersection of x1 with α at x(2)1 is negative. Then by remark 2.4.6, v′ ≈ s+.v1 and
v′′ ≈ s−.v1, so we have

v′′.v′ ≈ v1.s−.s+.v1
≈ v1.δ+.v1
≈ δ+.

Lemma 2.4.10. Let m be a point in S in a small neighborhood of a branch point b but not
on a line of W and θ ∈ T ′

mS. Let γ be a path homotopic to em,θ in T ′S that loops around
the branch point b in S, intersecting exactly once each of the three lines of W going out of b,
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as in Figure 4.18. Then SN(γ) = em1,θ1 + · · ·+ emn,θn where (m1, θ1), . . . , (mn, θn) are n
lifts of (m, θ) in T ′Σn.

Figure 4.18: A small loop around a branch point.

Proof. Suppose the path γ is looping around b in the direction given by the orientation of
Σn, the other case being symmetric. Then all the intersections of the standard lifts of γ
with the spectral network in Σn are positive. By applying the spectral network lifting rule
to γ, we get n+ 6 paths: the n standard lifts γ1 = (x1, v1), . . . , γn = (xn, vn) (with x1 and
x2 intersecting W as before), and 6 additional paths γ′1, . . . , γ′6 shown in Figure 4.19. Let
α1, α2 and α3 be the three line of W intersected by γ, in that order. Let γ1 be the standard
lift of γ intersecting α1 before the branch point, and let (m1, θ1) be its starting point and
(m2, θ2) be its endpoint. We will label the spectral network lifts γ′i = (x′i, v

′
i) of γ as follows:

• γ′1 follows γ1 until the intersection with α3, then α3, then γ2 until its end

• γ′2 follows γ2 until the intersection with α2, then α2, then γ1 until its end

• γ′3 follows γ2 until the intersection with α2, then α2, then γ1 until the intersection
with α3, then α3, then γ2 until its end

• γ′4 follows γ1 until the intersection with α1, then α1, then γ2 until its end

• γ′5 follows γ1 until the intersection with α1, then α1, then γ2 until the intersection
with α2, then α2, then γ1 until the intersection with α3, then α3, then γ1 until its end

• γ′6 follows γ1 until the intersection with α1, then α1, then γ2 until the intersection
with α2, then α2, then γ1 until its end.

The paths x′1, x′4 and x′5 are homotopic to the trivial path em1 , x′6 is homotopic to x1, x′2 is
homotopic to em2 and x′3 is homotopic to x2. Since γ is homotopic to em,θ and x is looping
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Figure 4.19: All 6 paths added by intersections with the spectral network, together with the
standard lifts γ1 and γ2. On the upper left picture are the paths homotopic to trivial paths,
and on the other are the remaining lifts, grouped as pairs of paths canceling each other in
TPA(Σ).

around b in the direction given by the orientation of Σ, we have v1 ≈ s−θ1 and v2 ≈ s−θ2 .
Using the same reasoning, we get the following:

v′1 ≈ s+.v1 ≈ eθ1
v′2 ≈ s+.v2 ≈ eθ2

v′3 ≈ s+.s+.v2 ≈ δ+.v2
v′4 ≈ s+.v1 ≈ eθ1

v′5 ≈ s+.s+.s+.v1 ≈ δ+θ1
v′3 ≈ s+.s+.v1 ≈ δ+.v1
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So in TPA(Σ), we have:

γ2 + γ′3 = 0

γ1 + γ′6 = 0

γ′1 + γ′5 = 0

γ′4 = em1,θ1

γ′2 = em2,θ2

so
SN(γ) = γ1 + γ2 + γ′1 + γ′2 + γ′3 + γ′4 + γ′5 + γ′6 = em2,θ2 + em2,θ2 .

2.4.2 Twisted path algebras and representations

Let X be an hyperbolic ciliated surface and n ≥ 1. If L is a twisted GLn(R)-local system
on X and γ is a path on T ′X, the flat connection defines a holonomy map mγ from Lγ(0)
to Lγ(1). Moreover, by definition of a twisted local system the path δx,θ induces the linear
map − Id on Lx,θ. Thus, if γ = γ1 + · · ·+ γr + I ∈ TPA(X) where all the γi ∈ Path(T ′X)
have the same extremities, the holonomy map mγ = mγ1 + · · · +mγr : Lγ(0) → Lγ(1) is
well-defined (if there is more than one term in γ the holonomy map mγ may not be an
isomorphism). However, if γ1 and γ2 do not have the same extremities, it is not possible to
associate an element of Mn(R) to γ1 + γ2, which is a problem we need to solve in order
to consider representations of TPA(X). To make a link between twisted local systems and
representations of TPA(S), we first need to modify the ringMn(R) to solve this issue of
endpoints. Since multiplication in TPA(X) is zero for paths whose extremities do not match,
we need a ring with the same behavior.

Definition 2.4.11. Let A be a unital ring and E ⊂ X any non-empty subset. Let AE be
the ring A(E×E) of finite formal sums of elements of the form a(p,q), a ∈ A, p, q ∈ E, endowed
with the multiplication defined as follows:

• ∀a, b ∈ A,∀x, y, z ∈ E, a(x,y).b(y,z) = (a.b)(x,z)

• ∀a, b ∈ A,∀x, y, z, t ∈ E, y ̸= z, a(x,y).b(z,t) = 0

The elements of this ring are copies of elements of A indexed by pairs of points in E, thought
as ”endpoints” of these elements. The sum of two elements is a formal sum except when
the indices match, it then agrees with the sum in A. The multiplication of two elements
is made so it agrees with the composition of paths: multiplication of two elements with
”non-composable” indices is zero and multiplication with ”composable” indices agrees with
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the one on A, and the index of the result is the composition of the indices. Given two rings
A and B, a ring homomorphism φ : AE → BE is called a graded ring homomorphism if for
all a ∈ A and for all x, y ∈ E, φ(ax,y) = bx,y for some b ∈ B.

The ring AE contains many isomorphic copies of A as subrings: for all x ∈ E,

Ax :=
{
a(x,x) | a ∈ A

}
is a subring of AE isomorphic to A. Note however that the ring AE is not unital if E is
infinite, but contains many idempotent elements.

Let TPA∆(S) = TPAE∆(S)(S) be the subring of TPA(S) of paths with endpoints in
E∆(S) described in Remark 2.4.4, where E∆(S) is defined in Section 2.3.2. Similarly, let
TPA∆(Σn) = TPAE∆(Σn)(Σn). For any unital ring A, let A∆,S = AE∆(S) and A∆,Σn =
AE∆(Σn). In the following, X will denote either the surface S or its ramified covering Σn.
Since E∆(S) and E∆(Σ) are finite, TPA∆(X) and A∆,X are unital, the units elements being
respectively ∑

x∈E∆(X)

ex

and ∑
x∈E∆(X)

1(x,x).

There is then a diagonal embedding

AE∆(X) → A∆,X

(ax)x∈E∆(X) 7→
∑

x∈E∆(X)(ax)(x,x)
.

Remark 2.4.12. For every x ∈ E∆(X), there is an injective group homomorphism

πs1(X,x)→ TPAx(X)× ⊂ TPA∆(X)

where TPAx(X)× denotes the group of invertible elements of TPAx(X).

Two elements a, b ∈ A∆,X are said conjugated if there exists an invertible element u in
AE∆(X) such that b = u.a.u−1. This is an equivalence relation.

Proposition 2.4.13. Let R be a finite dimensional R-algebra. Let ∆ be a triangulation of
a hyperbolic ciliated surface S and let X be either the surface S or its ramified covering Σn.
There is a 1:1 correspondence between the set of twisted GLn(R)-local systems on X up to
isomorphism and the set of graded ring homomorphisms TPA∆(X)→Mn(R)∆,X up to the
action of GLn(R)

E∆(X) by conjugation.
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Proof. Given a twisted GLn(R)-local system L on X, for all x ∈ E∆(X) choose a basis of
the fiber of L over x. The map

φ :
TPA∆(X) → Mn(R)∆,X∑

γ 7→
∑

(HolL(γ))(t(γ),s(γ))

is a ring homomorphism, where s(γ) (resp. t(γ)) is the source (resp. the target) of γ (which
are in E∆(X)), and HolL(γ) is the holonomy of γ in L in the corresponding bases. The
conjugacy class of φ does not depend on the choices of the bases.

Conversely, let φ be the conjugacy class of a representation TPA∆(X)→Mn(R)∆,X , and
let x ∈ E∆(X). Then TPAx(X) contains an isomorphic copy of πs1(X,x) and the restriction
of φ to πs1(X,x) yield a representation πs1(X,x) → GLn(A) mapping δ±x to − Id, which
define a unique isomorphism class of twisted GLn(A)-local system by Proposition 2.2.15,
having holonomies described by φ. By construction, those are inverse.

2.4.3 Partial non-abelianization of twisted local systems

In Section 2.4.1, we constructed an algebra homomorphism SN : TPA(S) → TPA(Σn).
This homomorphism restricts to a graded ring homomorphism

SN : TPA∆(S)→ TPA∆(Σn)

as mentioned in Remark 2.4.4. Let γ ∈ TPA∆(S) be a path from p to q, p, q ∈ E∆(S), and
let p1, . . . , pn be the lifts of p to Σn labeled as in Section 2.3.1, and q1, . . . , qn the lifts of q.
Then

SN(γ) =
∑

1≤i,j≤n
γj,i

where γj,i is the sum of all terms of SN(γ) from pi to qj (γj,i may be 0). Instead of a
formal sum, it will be more convenient to see SN(γ) as a n by n matrix with coefficients in
TPA∆( Σn). The definition of the multiplication on TPA∆(Σn) makes it so the map:

SNn :

TPA∆(S) → Mn(TPA∆(Σn))

γ 7→

γ1,1 . . . γ1,n
...

. . .
...

γn,1 . . . γn,n


is a ring homomorphism. We also have a ring homomorphism πR :Mn(R∆,Σn)→Mn(R)∆,S
such that for all p, q ∈ P and for all (a(i,j))1≤i,j≤n ∈ Rn

2 ,

πR

a
(1,1)
q1,p1 . . . a

(1,n)
q1,pn

...
. . .

...
a
(n,1)
qn,p1 . . . a

(n,n)
qn,pn

 =

a
(1,1) . . . a(1,n)

...
. . .

...
a(n,1) . . . a(n,n)


q,p

.



2.4. PARTIAL NON-ABELIANIZATION 63

Note that we can always write an element ofMn(R∆,Σn) as the sum of elements of the forma
(1,1)
q1,p1 . . . a

(1,n)
q1,pn

...
. . .

...
a
(n,1)
qn,p1 . . . a

(n,n)
qn,pn


(possibly with some coefficients equal to 0), with a(i,j) ∈ R for all 1 ≤ i, j ≤ n. Lastly given
any ring homomorphism φ : R1 → R2 between two rings R1 and R2, we will denote by
Mn(φ) :Mn(R1)→Mn(R2) the morphism obtained by applying φ to each entry of the
matrix.

Proposition 2.4.14. Let E be a twisted R×-local system over Σn and let φ : TPA∆(Σn)→
R∆,Σn the corresponding ring homomorphism given by Proposition 2.4.13. Then the ring
homomorphism

ψ = πR ◦Mn(φ) ◦ SNn : TPA∆(S)→Mn(R)∆,S

corresponds to a twisted GLn(R)-local system on S, together with a ∆-generic framing.

Proof. Let E be a twisted R×-local system on Σn, and let L be the twisted GLn(R)-local
system obtained on S. We need to show that L admits a flat section on any peripheral
curve βp on S corresponding to an internal puncture, i.e. that the monodromy along βp is
upper triangular in some basis. Let p ∈ Pint and p1, . . . , pn the lifts of p to Σn, labeled as
in Section 2.3.1. Let q ∈ E∆(S) ∩ βp and q1, . . . , qn the lifts of q to Σn, qi ∈ βpi . We will
assume βp is a loop based on q. The fiber Lq of L over q can be identified with the direct
sum Eq1 ⊕ · · · ⊕ Eqn of the fibers of E over q1 to qn. Every line of the spectral network W
crossed by βp on S lifts to a line from pi to pi−1 for some 2 ≤ i ≤ n on Σn. This means that
the lifts added by the spectral network all go from qi to qj with j < i, so the image of βp
via SN : TPA∆(S)→Mn(TPA∆(Σ)) is upper triangular. Then ψ(βp) ∈Mn(R)∆,S which
is the monodromy of βp is also upper triangular. For each 1 ≤ k ≤ n, the k-dimensional
subspace F (p)

k = Eq1⊕· · ·⊕Eqk ⊂ Lq is preserved by the peripheral monodromy which means
that the parallel transport of F (p) along βp defines a framing F (p) ⊂ Lβp around p. This
framing is ∆-generic because for every triangle t = (p, q, r) of ∆ and every triple i, j, k ∈ N
such that i+ j + k = 2n+ 1, the map

F
(p)
i ∩ F (q)

j ∩ F (r) → F
(p)
i /F

(p)
i−1

is the holonomy of the path γp,v on Σn defined in Section 2.3.2, thus is an isomorphism.

The twisted GLn(R)-local system L on S obtained from a twisted R×-local system E on
Σn via this construction is called the partial non-abelianization of E . In the next part, we
define an inverse construction.
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2.5 Partial abelianization

2.5.1 Partial abelianization of generic framed local systems

Let S be a ciliated surface and let ∆ be an ideal triangulation of S. Let n ≥ 2. Let
π : Σn → S be the ramified n-fold covering constructed in section 2.3.1. Let L be a
∆-generic framed twisted GLn(R)-local system.

We construct the line bundle E on Σn as follows. Let p be a puncture of S and let 1 ≤ i ≤ n.
Let S

γ
(i)
p

be the punctured disk defined in Lemma 2.3.3. On S
γ
(i)
p

the line bundle E is the
pullback of the bundle F pi /F

p
i−1 by π. Let t = (p, q, r) be a triangle of ∆. Let v be a white

vertex of Γ(t)
n of coordinates (i, j, k), and let Ui,j,k be a small contractible neighborhood of v

together with the three edges incident to v in Σn that does not contain any black vertex of
Γn (see Figure 5.20).

Figure 5.20: The neighborhood Ui,j,k of a white vertex of coordinates (i, j, k) in Σn.

The line bundle E on T ′Ui,j,k is the pullback of the subbundle F (p)
i ∩ F (q)

j ∩ F (r)
k via π. On

the intersection of T ′Ui,j,k with T ′S
γ
(i)
p

, the transition function is given by the isomorphism

F
(p)
i ∩ F (q)

j ∩ F (r)
k → F pi /F

p
i−1

which is well defined in every point of the intersection T ′Ui,j,k ∩ T ′S
γ
(i)
p

.

This defines a line bundle E on Σn minus the set of all black vertex of Γn. To extend E to
Σn, we need to check that the monodromy of E along a smooth loop without self-intersection
going around a black vertex of Γn ⊂ Σn is − Id. When the black vertex v is external this is
immediate because the line bundle E is trivial around v. When the black vertex v is internal,
the monodromy of such a loop around v is − Id as computed in Proposition 3.2.4.

This construction of E has locally constant transition function so it defines a twisted R×

local-system E on Σn, which we call the partial abelianization of L. By construction, the
partial abelianization and the partial non-abelianization processes are inverse.

Proposition 2.5.1. Let L be a ∆-generic framed twisted GLn(R)-local system, let E be the
partial abelianization of L. Let L′ be the partial non-abelianization of E and let E ′ be the
partial abelianization of L′. Then L ≃ L′ and E ≃ E ′.
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2.5.2 Partial abelianization of generic decorated local systems

Applying the construction of Section 2.5.1 to a decorated twisted GLn(R)-local system, we
get an R×-local system E → T ′Σn. Moreover, the existence of sections b(p)i over T ′βp for
all p ∈ P and for all 1 ≤ i ≤ n induces that the holonomies of E around internal punctures
of Σn are all trivial, i.e. the bundle E is trivial over the punctured disk around p bordered
by βp. That means that the local system E → T ′Σn can be uniquely extended to the local
system over T ′Σn. For simplicity, slightly abusing the notation, we will write E → T ′Σn
this new local-system.

A decoration of L provides additionally a parallel section of E|T ′βp . We call the set of all
those parallel sections a decoration of the twisted R×-local system E .

Theorem 2.5.2. The partial abelianization and partial non-abelianization processes define a
bijection between the set of decorated twisted R×-local systems on Σn with trivial monodromy
around punctures up to isomorphism and the set of decorated ∆-generic twisted local systems
on S up to isomorphism.

2.6 Topology of the moduli space of framed GL2(R)-twisted
local systems

In this section, we focus on the special case n = 2. We describe the topology of the moduli
space of framed twisted GL2(R)-local systems on S that are ∆-generic with respect to a
fixed triangulation ∆.

As we have seen, framed twisted GL2(R)-local systems on S that are ∆-generic with
respect to a fixed triangulation ∆ are in 1:1-correspondence with twisted R×-local systems
on Σ2. Since Σ2 has punctures, the space of twisted and non-twisted R×-local systems
are homeomorphic. So we obtain the following theorem, using the same notations as in
Proposition 2.3.7:

Theorem 2.6.1. The moduli space of framed (twisted) GL2(R)-local systems on S that are
∆-generic with respect to a fixed triangulation ∆ is homeomorphic to the moduli space of
(twisted) R×-local systems on Σ2 which is homeomorphic to (R×)1−4χ(S)+2p+

∑
ni/R× where

R× acts diagonally by conjugation on (R×)1−4χ(S)+2p+
∑
ni .

Remark 2.6.2. In [GRW22] the authors prove the same result using different techniques.
They define local systems on some appropriate graphs over S and parametrize them using
coordinates that are similar to Fock-Goncharov’s GLn-cluster X -coordinates [FG06].
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2.7 Symplectic local systems

Involutive algebras are an important class of non-commutative algebras. Over involutive
algebras, generalizations of many classical groups can be constructed (e.g. orthogonal groups,
symplectic groups). In this chapter which is a joint work with Eugen Rogozinnikov, we
define algebras with anti-involutions and symplectic groups over such algebras that were
introduced and studied in [ABR+22]. Further, we introduce framed twisted symplectic
local system and characterize them in terms of partial abelianization introduced before. As
a result of this construction, we describe the topology of the moduli space of framed or
decorated twisted maximal symplectic local systems.

2.7.1 Involutive algebras

Let A be a unital associative, possibly non-commutative finite-dimensional R-algebra.

Definition 2.7.1. An anti-involution on A is a R-linear map σ : A→ A such that

• σ(ab) = σ(b)σ(a);

• σ2 = Id.

An involutive R-algebra is a pair (A, σ), where A is a R-algebra and σ is an anti-involution
on A.

Example 2.7.1. The set of n× n matrices with real or complex coefficients endowed with
the transposition is an involutive algebra.

Definition 2.7.2. Two elements a, a′ ∈ A are called congruent , if there exists b ∈ A×

such that a′ = σ(b)ab. We call the action of A× on A by b 7→ (a 7→ σ(b)ab) the action by
congruence.

Definition 2.7.3. An element a ∈ A is called σ-symmetric if σ(a) = a. An element a ∈ A
is called σ-anti-symmetric if σ(a) = −a. We denote

Aσ := FixA(σ) = {a ∈ A | σ(a) = a},

A−σ := FixA(−σ) = {a ∈ A | σ(a) = −a}.

Definition 2.7.4. The closed subgroup

U(A,σ) = {a ∈ A× | σ(a)a = 1}

of A× is called the unitary group of A. It is a Lie group whose Lie algebra agrees with A−σ.
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Definition 2.7.5. Let (A, σ) be an R-algebra with an anti-involution. We define two set of
squares:

Aσ+ :=
{
a2 | a ∈ (Aσ)×

}
, Aσ≥0 :=

{
a2 | a ∈ Aσ

}
.

Remark 2.7.6. Since the algebra A is unital, we always have the canonical copy of R in A,
namely R · 1 where 1 is the unit of A. We will always identify R · 1 with R. Moreover, since
σ is linear, for all k ∈ R, σ(k · 1) = kσ(1) = k · 1, i.e. R · 1 ⊆ Aσ and R>0 · 1 ⊆ Aσ+.

Definition 2.7.7. A unital associative finite dimensional R-algebra with an anti-involution
(A, σ) is called hermitian if for all x, y ∈ Aσ, x2 + y2 = 0 implies x = y = 0.

Remark 2.7.8. In [ABR+22] it is shown that, if (A, σ) is a Hermitian algebra, then Aσ+ is an
open proper convex cone in Aσ, where proper means that the set does not contain (affine)
lines.

If (A, σ) is Hermitian, for an element a ∈ Aσ the signature can be defined, which is a
bounded function sgn: Aσ → Z that is invariant under congruence by elements of A×. The
elements of maximal signature are precisely the elements of Aσ+. For more details about the
signature see [ABR+22].

When (A, σ) = (Mn(R), ·T ), the set Aσ is the set of symmetric matrices, Aσ≥0 is the set of
positive symmetric matrices and Aσ+ is the set of positive definite symmetric matrices. The
signature of a symmetric matrix with p positive eigenvalues and q negative eigenvalues (and
any multiplicity of 0 as eigenvalue) is p− q.

2.7.2 Symplectic groups over non-commutative algebras

Let A be a unital associative finite dimensional R-algebra with an anti-involution σ. We
consider A2 as a right A-module over A.

Definition 2.7.9. Let ω(x, y) := σ(x)TΩy with Ω =

(
0 1
−1 0

)
. The group

Sp2(A, σ) := Aut(ω) = {g ∈M2(A) | σ(g)TΩg = Ω}

is the symplectic group Sp2 over (A, σ). The form ω is called the standard symplectic form
on A2.

We have

Sp2(A, σ) =

{(
a b
c d

)
| σ(a)c, σ(b)d ∈ Aσ, σ(a)d− σ(c)b = 1

}
⊆ GL2(A)

We can also determine the Lie algebra sp2(A, σ) of Sp2(A, σ):

sp2(A, σ) =

{(
x z
y −σ(x)

)
| x ∈ A, y, z ∈ Aσ

}
⊆M2(A).
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Remark 2.7.10. In [ABR+22] is shown that, if A is a Hermitian algebra, then Sp2(A, σ) is a
Hermitian Lie group of tube type.

Let (x, y) be a basis of A2. We say that this basis is isotropic if ω(x, x) = ω(y, y) = 0. We
say that this basis is symplectic if furthermore ω(x, y) = 1.

Let x ∈ A2 be a regular isotropic element (recall the definition of a regular element in
Section 1.1). We call the set xA := {xa | a ∈ A} an isotropic A-line. The space of all
isotropic A-lines is denoted by Is(ω).

2.7.3 Symplectic local systems

We consider a twisted GL2(A)-local system L → T ′S. We say that L is a twisted Sp2(A, σ)-
local system (or just twisted symplectic local system) if the transition functions between
trivializations of L preserve the standard symplectic 2-form on A2, i.e. belong to Sp2(A, σ).
We then get a well defined symplectic form ω : L × L → A on T ′S.

A framing of a parabolic twisted symplectic local system is called isotropic if the A-line
defining the framing in a neighborhood of every puncture is isotropic with respect to the
field of the form ω. A decoration ((b

(p)
1 )p∈P , (b

(p)
2 )p∈P) of a twisted symplectic local system

is called symplectic if ω(b(p)1 , b
(p)
1 ) = 0 and ω(b(p)1 , b

(p)
2 ) = 1.

Remark 2.7.11. Since b(p)2 ∈ L/b(p)1 A, we need to check that symplectic decorations are
well defined. Notice that if ω(b(p)1 , b

(p)
1 ) = 0, then the expression ω(b(p)1 , b

(p)
2 ) is well-defined.

Indeed, let b̃(p)2 and (b̃
(p)
2 )′ be two lifts of b(p)2 to A2. Then (b̃

(p)
2 )′ = b̃

(p)
2 + b

(p)
1 a for some

a ∈ A. Further,

ω(b
(p)
1 , (b̃

(p)
2 )′) = ω(b

(p)
1 , b̃

(p)
2 + b

(p)
1 a) = ω(b

(p)
1 , b̃

(p)
1 ) =: ω(b

(p)
1 , b

(p)
2 ).

It is always enough to choose b(p)1 for every p ∈ P. Then b(p)2 becomes uniquely defined.

A framed twisted symplectic local system is a twisted symplectic local system with an isotropic
framing. A decorated twisted symplectic local system is a twisted symplectic local system
with a symplectic decoration.
Remark 2.7.12. For a twisted symplectic local system to admit a framing (resp. a decoration),
the monodromy around every internal puncture must stabilize (resp. fix) an isotropic A-line.
Remark 2.7.13. Notice, that since ω is a parallel form of even degree, the parallel transport
of ω around the fiber of T ′S is trivial.

Let π : Σ2 → S be the ramified two-fold covering defined in Section 2.3.1. Let E → T ′Σ2

be an A×-local system over the spectral covering Σ2 of S that is obtained by the partial
abelianization procedure.

Let θ : Σ2 → Σ2 be the covering involution. Slightly abusing the notation, we also denote
θ = θ∗ : T

′Σ2 → T ′Σ2.
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Remark 2.7.14. Notice that θ does not have fixed points in T ′Σ2, even though it has fixed
points in Σ2.

We consider the pull-back of E with respect to θ and denote it by E ′ := θ∗E . To simplify
the notation, we will identify E ′p and Eθ(p) for all p ∈ Σ2. We denote by Pγ : Eγ(0) → Eγ(1),
P ′
γ = Pθ◦γ : Eθ(γ(0)) → Eθ(γ(1)) the parallel transport along γ : [0, 1]→ Σ2 in E and E ′. We

denote by PSα : Lα(0) → Lα(1) the parallel transport along α : [0, 1]→ S in L.

Definition 2.7.15. Let V and V ′ be two right A-modules. A map b : V × V ′ → A is called
an A-sesquilinear pairing between V and V ′ if it is additive in each argument and if for all
v ∈ V , v′ ∈ V ′, and for all a, a′ ∈ A, b(va, v′a′) = σ(a)b(v, v′)a′. An A-sesquilinear paring b
is non-degenerate if for every regular v ∈ V there exists v′ ∈ V ′ such that b(v, v′) ∈ A× and
for every regular v′ ∈ V ′ there exists v ∈ V such that b(v, v′) ∈ A×.

We denote by B(E , E ′)→ T ′Σ2 the vector bundle of all A-sesquilinear parings between E
and E ′. A section β ∈ Γ(T ′Σ2, B(E , E ′)) is called parallel if

βγ(0)(x, y) = βγ(1)(Pγ(x), P
′
γ(y)) = βγ(1)(Pγ(x), Pθ◦γ(y))

for every γ : [0, 1]→ T ′Σ2 and for every x ∈ Eγ(0), y ∈ E ′γ(0) = Eθ(γ(0)).

Remark 2.7.16. Notice that if β ∈ Γ(T ′Σ2, B(E , E ′)) is parallel and βp is non-degenerate for
one p ∈ T ′Σ2, then βp is non-degenerate for all p ∈ T ′Σ2.

Theorem 2.7.17. Let L be a framed twisted GL2(A)-local system on S and let E be the partial
abelianization of L over Σ2. Then L is an Sp2(A, σ)-local system if and only if there exists
a non-degenerate parallel section β ∈ Γ(T ′Σ2, B(E , E ′)) such that βp(x, y) = −σ(βθ(p)(y, x))
for every p ∈ T ′Σ2, for every x ∈ Ep and for every y ∈ Eθ(p).

Proof. (⇒) Assume, L is an Sp2(A, σ)-local system. That means, there exists a field of
standard symplectic forms ω on L → T ′S, such that for every α : [0, 1]→ T ′S and for every
v, w ∈ Lα(0),

ωα(0)(v, w) = ωα(1)(P
S
α (v), P

S
α (w)).

Let γ : [0, 1]→ T ′Σ2 be a smooth path such that γ(0), γ(1) do not project to points on lines
of the spectral network on Σ2, and x ∈ Eγ(0) and y ∈ Eθ(γ(0)) regular elements. We consider
γ′ = θ ◦ γ and α = π ◦ γ = π ◦ γ′. Moreover, (π∗(x), π∗(y)) is an isotropic basis of Lα(0).
We can define

βγ(0)(x, y) := ωα(0)(π∗(x), π∗(y)).

Since ω is non-degenerate and skew-Hermitian, β is non-degenerate and sesquilinear
pairing. Moreover, we have βγ(0)(x, y) = −σ(βθ(γ(0))(y, x)) because ωα(0)(π∗(x), π∗(y)) =
−σ(ωα(0)(π∗(y), π∗(x))).
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If γ does not intersect lines of the spectral network, then β along γ is parallel because in
this case PSα = Pγ ⊕ Pσ◦γ
If γ is a small segment intersecting a line of spectral network, then

ωα(1)(P
S
α (π∗(x)), P

S
α (π∗(y))) = ωα(1)(π∗(Pγ(x)) + π∗(Pγ̃(x)), π∗(Pθ◦γ(y)))

where γ̃ is a lift of α going along a line of spectral network from γ(0) to θ(γ(1)). But
elements Pγ̃(x), Pθ◦γ(y) ∈ Eθ(γ(1)), therefore, ω(π∗(Pγ̃(x)), π∗(Pθ◦γ(y))) = 0. So

βγ(0)(x, y) = ωα(0)(π∗(x), π∗(y))

= ωα(1)(P
S
α (π∗(x)), P

S
α (π∗(y)))

= ωα(1)(π∗(Pγ(x)), π∗(Pθ◦γ(y)))

= βα(1)(Pγ(x), Pθ◦γ(y)),

i.e. β is parallel and extends also along lines of the spectral network on Σ2.

Finally, let p ∈ T ′Σ2. Let x ∈ Ep and y ∈ Eθ(p) regular elements. Then (π∗(x), π∗(y))
is an isotropic basis of Lπ(p), i.e. β(x, y) = ω(π∗(x), π∗(y)) ∈ A×. So the pairing β is
non-degenerate.

(⇐) Assume, there exists a non-degenerate parallel sesquilinear pairing β. Let p ∈ T ′Σ2

that does not project to a point on a line of the spectral network on Σ2. We define for every
x ∈ Ep, y ∈ Eθ(p):

ωπ(p)(π∗(x), π∗(y)) := βp(x, y).

Because (π∗(x), π∗(y)) is a basis of Vπ(p), ω extends by sesquilinearity on Vπ(p) if we assume

ωπ(p)(π∗(x), π∗(x
′)) = ωπ(p)(π∗(y), π∗(y

′)) = 0

for all x, x′ ∈ Ep and y, y′ ∈ Eθ(p). Since β is non-degenerate, ω is non-degenerate as well.

Since βp(x, y) = −σ(βθ(p)(y, x)), we get

ωπ(p)(π∗(y), π∗(x)) = βθ(p)(y, x) = −σ(βp(x, y)) = −σ(ωπ(p)(π∗(x), π∗(y))).

Further, ω is parallel. Indeed, let α : [0, 1] → T ′S be a path such that the projections of
α(0) and α(1) to S are not on the lines of the spectral network. Let x, y ∈ Lα(0). Let
α1, α2 := θ ◦ α1 are two standard lifts of α to T ′Σ2. Then x = π∗(x1) + π∗(x2) and
y = π∗(y1) + π∗(y2) where x1, y1 ∈ Eα1(0) and x2, y2 ∈ Eα2(0). If the projection of α to Σ2

does not intersect the spectral network, then the projection T ′Σ2 → T ′S and the parallel
transport along α and α1, α2 commute. So ω is parallel because β is parallel.

Assume now that the projection of α intersects the spectral network once. We denote by
α3 the additional lift of α along the spectral network. Without loss of generality, assume
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α3(0) = α1(0) and α3(1) = α2(1). Notice that the path θ ◦ (α3.α1).α3.α1 is homotopic to
the fiber of T ′Σ2 → Σ2. Therefore, Pθ◦α1.α3 = −Pθ◦α3.α1 . Therefore,

ωα(1)(P
S
α (x), P

S
α (y)) = ωα(1)(P

S
α (x), P

S
α (y))

= ωα(1)(P
S
α (π∗(x1)) + PSα (π∗(x2)), P

S
α (π∗(y1)) + PSα (π∗(y2)))

= ωα(1)(π∗(Pα1(x1) + Pα3(x1) + Pα2(x2)),

π∗(Pα1(y1) + Pα3(y1) + Pα2(y2)))

= ωα(1)(π∗(Pα1(x1), π∗(Pα3(y1) + Pα2(y2))))

+ ωα(1)(π∗(Pα3(x1) + Pα2(x2)), π∗(Pα1(y1)))

= βα1(1)(Pα1(x1), Pα3(y1) + Pα2(y2)) + βα2(1)(Pα3(x1)

+ Pα2(x2), Pα1(y1))

= βα1(1)(Pα1(x1), Pα3(y1)) + βα1(1)(Pα1(x1), Pα2(y2))

+ βα2(1)(Pα3(x1), Pα1(y1)) + βα2(1)(Pα2(x2), Pα1(y1))

= βα1(1)(Pα1(x1), Pα2(y2)) + βα2(1)(Pα2(x2), Pα1(y1))

+ βα1(0)(x1, P(θ◦α3).α1
(y1) + P(θ◦α1).α3

(y1))

= βα1(1)(Pα1(x1), Pα2(y2)) + βα2(1)(Pα2(x2), Pα1(y1))

+ βα1(0)(x1, Pθ◦α3.α1(y1) + Pθ◦α1.α3(y1))

= βα1(1)(Pα1(x1), Pα2(y2)) + βα2(1)(Pα2(x2), Pα1(y1))

= βα1(0)(x1, y2) + βα2(0)(x2, y1)

= ωα(0)(x, y).

So ω is parallel and extends also along lines of the spectral network on S.

Finally, let p ∈ Σ2 and x ∈ Ep, y ∈ Eθ(p) such that βp(x, y) = 1, then ω(π∗(x), π∗(y)) = 1.
So ω is a field of standard symplectic forms.

2.7.4 Topology of the moduli space of framed twisted symplectic local
systems

We keep the same notation as in Proposition 2.3.7. Our goal in this section is to prove the
following theorem:

Theorem 2.7.18. The moduli space of framed (twisted) Sp2(A, σ)-local systems on S that
are ∆-generic with respect to a fixed triangulation ∆ is homeomorphic to:(

((Aσ)×)−2χ(S)+2p−1+
∑
ni × (A×)1−χ(S)+p

)
/A×

where the group A× acts componentwisely by conjugation on (A×)1−χ(S)+p and by congruence
on ((Aσ)×)−2χ(S)+2p−1+

∑
ni .
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Proof. We use the 1:1-correspondence between framed twisted Sp2(A, σ)-local systems on S
that are transverse to a fixed triangulation ∆ and twisted A×-local systems on Σ2 equipped
with a non-degenerate parallel pairing β as in Theorem 2.7.17.

Let b̃ ∈ T ′Σ2 such that it projects to a ramification point b ∈ Σ2. Let α1, . . . , αs : [0, 1]→ S
are free generators of the fundamental group π1(S, π(b)). Let γ1i , γ

2
i are closed lifts of αi to

T ′Σ2 such that θ ◦ γ1i = γ2i and γ1i is based at b̃. Notice, that then γ2i is based at θ(b̃).

Let s+
b̃

be as before the path from b̃ to θ(b̃) going along the fiber at b in the positive direction

and s−
θ(b̃)

:= s+
b̃

the path from θ(b̃) to b̃ going along the fiber at b in the negative direction.
If the context is clear, we just write s+ or s− to simplify the notation.

Let x ∈ Eb̃. Then on one hand: βb̃(x, Ps+(x)) = −σ(βθ(b̃)(Ps+(x), x)). On the other hand,
since β is parallel:

βb̃(x, Ps+(x)) = βθ(b̃)(Ps+(x), Ps+(Ps+(x)))

= βθ(b̃)(Ps+(x),−x)

= − βθ(b̃)(Ps+(x), x).

So we obtain:

βb̃(x, Ps+(x)) = −βθ(b̃)(Ps+(x), x) = −σ(βθ(b̃)(Ps+(x), x)) =: a0 ∈ Aσ.

Let now γ be a loop based at b̃ and

a0 = βb̃(x, Ps+(x)) = βb̃(Pγ(x), Pθ◦γPs+(x)).

For every x ∈ Eb̃, Pγ(x) = xaγ where aγ ∈ A×. Let Pθ◦γPs+(x) = Ps+(x)a
′
γ for a′γ ∈ A×.

Then
a0 = σ(aγ)βb̃(x, Ps+(x))a

′
γ = σ(aγ)a0a

′
γ ,

a′γ = a−1
0 σ(a−1

γ )a0.

Let γ and s−.(θ ◦ γ).s+ are different generators of π1(T ′Σ2, b̃) (this corresponds to curves
γ1i and γ2i of Lemma 2.3.10 case (1) lifted to T ′Σ2). In particular, they are not homotopic.
Then aγ and a0 determine uniquely a′γ .

Let γ : [0, 1] → T ′Σ2 and θ ◦ γ : [0, 1] → T ′Σ2 are two lifts to T ′Σ2 of a segment in S
connecting π(b) and π(b′) where b′ is another ramification point on Σ2. Let b̃ := γ(0) and
b̃′ := γ(1). In this case, ξb̃′ := ξ := s−

θ(b̃)
.θ(γ).s+

b̃′
.γ and s−.(θ ◦ ξ).s+ are homotopic in T ′Σ2.

Therefore, aξ = a−1
0 σ(aξ)a0, i.e. a0aξ ∈ Aσ. Moreover, an easy calculation shows that

a0aξ = βb̃′(y, Ps+
b̃′
y) where y = Pγ(x).
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So the symplectic local system provides us elements ai ∈ A× corresponding to Pγ1i , a0 ∈ A
σ

and a0aξ ∈ Aσ for every ξ as in (2) of Lemma 2.3.10 (lifted to T ′Σ2). These elements are
well-defined up to a common conjugation of all ai and common congruence of all a0 and
a0aξ by an element of A×.

Conversely, if elements ai, a0, aξ as above are given, then a twisted A×-local systems on Σ2

equipped with a non-degenerate parallel pairing β can be reconstructed uniquely. Equivalent
local system correspond to a common conjugation of all ai and common congruence of all
a0 and a0aξ by an element of A×.

2.7.5 Symplectic local system over Hermitian algebras

Let A be a Hermitian algebra. Let A, B, C be a triple of generic isotropic A-lines. The
Kashiwara-Maslov index of the triple (A,B,C) is the signature of the element ω(x, µB,CA (x)) ∈
(Aσ)× for a regular x ∈ A where µB,CA is the Kashiwara-Maslov map defined in Section 1.3. In
fact, this signature does not depend on x ∈ A, and it is invariant under cyclic permutations
of the triple (A,B,C) and it changes the sign by transposition of the elements of the triple.

Let L be a framed symplectic twisted local system on S. Let t ⊂ S be a triangle of the
triangulation ∆ that is incident to punctures p, q, r and the orientation of the triangle
agrees with the orientation of the triple (p, q, r). Let H = π−1(t) ⊂ Σ2 be the hexagon that
covers t. Let b be the ramification point in H, let b̃ be a lift of b in T ′H and let s+ be a
path in T ′H going from b̃ to θ(b̃) along the fiber in the positive direction.

The following proposition is immediate:

Proposition 2.7.19. Let z ∈ T ′t. The Kashiwara-Maslov index of (F (p)
1 (z), F

(q)
1 (z), F

(r)
1 (z))

agrees with the signature of the element βb̃(x, Ps+(x)) ∈ A
σ for a regular x ∈ Eb̃.

Definition 2.7.20. Let L be a framed twisted Sp2(A, σ)-local systems on S. We say that
L is maximal if for some triangulation ∆ of S, for all triangle t of ∆ the Kashiwara-Maslov
index of the triple of isotropic A-lines associated to t is maximal.

The following proposition is proven in [BIW10]:

Proposition 2.7.21. Twisted maximal Sp2(A, σ)-local systems on S are ∆-generic with
respect to any triangulation ∆ of S.

Theorem 2.7.22. If A is Hermitian, then the moduli space of framed (twisted) maximal
Sp2(A, σ)-local systems on S is homeomorphic to:(

(Aσ+)
−2χ(S)+p × (A×)−2χ(S)+2p−1+

∑
ni

)
/A×

where A× acts componentwisely by conjugation on (A×)−2χ(S)+2p−1+
∑
ni and by congruence

on (Aσ+)
−2χ(S)+p.
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Proof. Following the notation of the proof of Theorem 2.7.18, notice that the signature
of a0 ∈ Aσ agrees with the Kashiwara-Maslov index of the oriented triangle where the
ramification point π(b) ∈ S lies, and the signature of a0aξb̃′ ∈ A

σ agrees with the Kashiwara-
Maslov index of the oriented triangle where the ramification point π(b′) ∈ S lies. A twisted
symplectic local system is maximal if and only if Kashiwara-Maslov indices of all oriented
triangles are maximal. So we obtain the statement of the theorem.

Remark 2.7.23. The results of this and previous sections agree with the results from [GRW22]
obtained using different techniques (see also Remark 2.6.2).



Chapter 3

Cluster A-coordinates

In this chapter we present an attempt at the construction of a non-commutative generalization
of the Fock-Goncharov cluster A-coordinates introduced in [FG06] in the type A, i.e. for
SLn(R)-local systems. Note however that many Lie groups does not admit a definition
over a non-commutative algebra: this is the case in particular of SLn for which there is
no analog over a non-commutative ring, thus forcing us to deal with GLn instead. We
cannot yet express the mutation formulas for any mutation, we only describe those which are
necessary to describe a flip in the triangulation chosen. We lack a geometric interpretation
of a general mutation to extend the formula to any mutation in a given quiver. Still, the
coordinates presented here have some convenient characteristics to justify the name of cluster
A-coordinates. First, they admit a nice description using (slightly altered) quivers which
make their computation easy when changing the underlying triangulation. Second, they
coincide with the non-commutative algebra introduced by Arkady Berenstein and Vladimir
Retakh in [BR18] in the case n = 2, while also providing a quiver combinatorial description
of the mutation formulas.

The coordinates introduced here are closely related to the cluster coordinates introduced
by Alexander Goncharov and Maxim Kontsevich in [GK22]. The Goncharov-Kontsevich
coordinates are products of two of the coordinates presented here. Another way to put it is
to say that the coordinates presented here describe a factorization of each of the Goncharov-
Kontsevich. It is worth noting that both coordinates systems coincide with the algebra
defined by Berenstein-Retakh in the case n = 2. These two different definition of ”cluster
A-coordinates” both have their advantages and drawbacks. The Goncharov-Kontsevich
coordinates describe the moduli space that is the most natural generalization of the A-
moduli space introduced by Fock-Goncharov in [FG06], namely the moduli space of twisted
decorated GLn(R)-local systems on an hyperbolic ciliated surface. However, they present
some differences with the commutative Fock-Goncharov coordinates: the combinatorial
description of the mutations sequences uses a bipartite graph instead of a quiver, and the

75
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mutation formulas do not coincide with the usual commutative ones when the ring R is
commutative. A goal of the work presented here is to give a solution to both of those
problems, and to see what is the trade-off to have coordinates that fits on a quiver with
mutations formulas as close to the commutative ones as possible.

3.1 Rank 2

In rank 2 most of the technical difficulties arising from our definition of non-commutative
cluster coordinates do not appear. We show in Section 3.1.2 that the non-commutative
cluster algebra AS introduced in [BR18] can be realized as the ring of non-commutative
rational functions on the moduli space of decorated twisted GL2(R)-local systems over
an hyperbolic ciliated surface S. Furthermore, the mutation formulas can be explicitly
computed using spectral networks, which allow us to give a geometric and topological proof
of an algebraic property of this algebra: the non-commutative Laurent phenomenon. We
also give in Section 3.1.5 a representation of a subalgebra QS of AS introduced in [BR18],
and give a presentation of the subalgebra QS .

3.1.1 The rank 2 cluster algebra

Arkady Berenstein and Vladimir Retakh introduced in [BR18] a non-commutative algebra
associated to any hyperbolic ciliated surface that have some properties that can be thought
as generalizations of properties of (commutative) cluster algebras. This algebra arose from
the study of non-commutative Plücker coordinates constructed with a non-commutative
algebra tool called quasideterminants introduced in [GGRW05]. In this section we recall
some definitions and properties of these algebras introduced in [BR18], and in Section 3.1.2
we will give a geometric representation of these non-commutative algebras.

Let S be an hyperbolic ciliated surface, endowed with a hyperbolic metric with totally
geodesic boundary. In this section, an arc of S is a (homotopy class) of path γ : [0, 1]→ S
such that γ(0), γ(1) ∈ P and γ(]0, 1[) ⊂ S. We will denote by E(S) the set of all arcs of S.
Two arcs γ1 and γ2 are composable if γ1(1) = γ2(0).

Given two hyperbolic ciliated surfaces S1 and S2 with puncture set P1 and P2 respectively, a
map f : S1 → S2 is a morphism of ciliated surface if it extends to an orientation-preserving
local homeomorphism f : S1 → S2 such that f−1(P2) = P1.

For n ≥ 3, we will call a n-gon a closed disk with n external punctures, and will denote it
by Pn. The punctures of a n-gon are cyclically ordered from 1 to n. A triangle of S is a
morphism P3 → S of ciliated surface and a quadrilateral of S is a morphism P4 → S of
ciliated surface. Given a morphism f : Pn → S, we will denote by γi,j the image of the arc
from the puncture j to the puncture i in Pn by f .
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Definition 3.1.1. We define the unitary R-algebra AS generated by the symbols xγ and
x−1
γ for all arcs γ ∈ E(S) (with the convention xγ = 1 if γ is trivial) with the relations:

• ∀γ ∈ E(S), x−1
γ xγ = xγx

−1
γ = 1

• ∀f : P3 → S triangle,
xγ1,3x

−1
γ2,3xγ2,1 = xγ1,2x

−1
γ3,2xγ3,1

• ∀f : P4 → S quadrilateral,

xγ4,2 = xγ4,3x
−1
γ1,3xγ1,2 + xγ4,1x

−1
γ3,1xγ3,2

and
xγ2,4 = xγ2,3x

−1
γ1,3xγ1,4 + xγ2,1x

−1
γ3,1xγ3,4

For ∆ a triangulation of S, we define A∆ the subalgebra of AS generated by the set of all
xγ for γ ∈ E(S) and x−1

γ for γ ∈ ∆. When S is the n-gon, we will sometimes write An
instead of APn .

The study of the subalgebra A∆ for a fixed triangulation ∆ of S is considerably easier
than the study of AS . Given a group G and a commutative field K, the group algebra of
G denoted by KG is the vector space freely spanned by the elements of G, together with
the multiplication obtained by extending the multiplication on G by linearity. Any element
x ∈ KG can be written as

x =
∑
w∈G

λww

where all λw ∈ K but a finite number are zero, and Supp(x) is the finite set of w ∈ G such
that λw ̸= 0. The following definition is used in [BFR19] and will be used later in Theorem
3.1.12.

Definition 3.1.2. A cyclically pinched 1-relator group is a finitely generated group G that
writes as an amalgamated product

G = F1 ∗
w1=w2

F2

where F1 and F2 are finitely generated free groups and wi ∈ Fi is a non-trivial element for
i = 1, 2.

Theorem 3.1.3. Let S be an hyperbolic ciliated surface and let ∆ be a triangulation of S.
Then the algebra A∆ is isomorphic to the group algebra RG of G, where G is :

• A finitely generated free group if S has at least one boundary component or if S is a
sphere with 3 internal punctures

• A cyclically pinched 1-relator torsion free group otherwise.

Proof. See [BR18], Theorem 3.26.
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3.1.2 Coordinates on decorated GL2-local systems

In this section we show that the algebra introduced in 3.1.1 can be realized as non-
commutative rational functions on the moduli space of decorated twisted GL2(R)-local
systems on an hyperbolic ciliated surface S. Additionally, many algebraic computations can
be done with purely topological/geometrical tools, namely spectral networks.

Let S be an hyperbolic ciliated surface and let ∆ be a triangulation of S. Let Σ = Σ2 and
π : Σ→ S be the ramified covering constructed in Section 2.3.1. Then for every arc γ of ∆
from p ∈ P to q ∈ P we can bend it so that T ′γ intersect T ′βp and T ′βq as in Figure 1.1,
i.e. βp and γ are tangent at their intersection point.

Let E∆(S) ⊂ T ′S be the set of intersection points between ∆ and the lifted decoration
curves T ′βp. This means that now each edge of the triangulation ∆ is endowed with two
special points (one for each extremity) lying on the peripheral curves associated to its
endpoints. For every edge γ ∈ ∆ of the triangulation, let τγ be the path in T ′S with
extremities in E∆(S) obtained by restricting γ to the part in between the two special points
on it. Note that since this is applied to all the oriented arcs of the triangulation, the chosen
representative for τγ and τγ are such that T ′(τγ .τγ) is homotopic to a fiber T ′S → S (see
Figure 1.1).

Figure 1.1: The bending of an edge of the triangulation. In red are the peripheral decoration,
in blue and green are the oriented edges of the triangulation, the crosses are the points in
E∆(S) and the thicker part of the edges in between the peripheral curves are the paths τγ
and τγ

We also apply the same construction in Σ to equip each edge of the hexagonal tiling π−1(∆)
with two special points, and denote E∆(Σ) the set of all special points in T ′Σ. Note that
both E∆(Σ) and E∆(S) are finite sets, and that the restriction of dπ : T ′Σ → T ′S is 2:1
from E∆(Σ) to E∆(S).
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Since the points in E∆(Σ) lie on peripheral curves associated with punctures, they inherit
the source/sink naming from the puncture.

Let L be a decorated twisted GL2(R)-local system on the surface S, and assume L is
∆-generic. Let γ ∈ ∆ be an edge from p ∈ P to q ∈ P. We can trivialize the GL2(R)-local
system L over T ′τγ and the 1-dimensional subbundles F (p)

1 and F
(q)
1 are transverse. The

natural projection
aγ : F

(p)
1 → L/F (q)

1

is an isomorphism, and we can identify it with its (1 by 1) matrix in the bases b(p)1 and
b
(q)
2 . We thus obtain a family (aγ)γ∈∆ of elements of R× which we call non-commutative
A-coordinates of L. The name “coordinates” is a slight abuse, since they are not independent.

Proposition 3.1.4. For every oriented triangle (γ1, γ2, γ3) of ∆, we have

aγ3a
−1
γ2
aγ1 = aγ1a

−1
γ2 aγ3 (1.1)

Proof. This is a direct corollary of Proposition 1.3.3. The minus sign appearing in the
relation from Proposition 1.3.3 is canceled out by the minus sign appearing from the fact the
local system is twisted. Indeed, the path τγ3τγ2τγ1τγ1τγ2τγ3 is homotopic to a loop going
once around the fiber of T ′S → S.

The coordinates of a decorated twisted GL2(R)-local system are the holonomies of its
abelianized system E along the lifts of the arcs τγ , γ ∈ ∆. Indeed, for each puncture p ∈ P ,
the two lifts of p to Σ are a sink p1 and a source p2. In the neighborhood of p1, the bundle
E is the pullback of F (p)

1 and in the neighborhood of p2 the bundle is the pullback of L/F (p)
1 .

Now for an arc γ ∈ ∆ from p ∈ P to q ∈ P, the lifts of τγ to Σ join a sink and a source.
Denote γ1 the lift from p1 to q2 and γ2 the lift from p2 to q1. Then aγ is the holonomy of E
along T ′τγ1 and aγ is thus the holonomy of E along T ′τγ2 .

Let G be the graph embedded in T ′Σ with vertices the points of E∆(Σ) and edges the arcs τγ ,
γ ∈ π−1(∆) oriented from sink to source and portions of lifts of peripheral curves connecting
two different points of E∆(Σ). To each oriented edge of this graph a coordinate is associated,
and we assign to the edges with reversed orientation the inverse of this coordinate. The
monodromy of E around a peripheral curve is trivial because L is decorated, so given a path
on G, its holonomy in E is well-defined and only depends on the edges of the form τγ of
the path. Then the triangle relation (1.1) imply that the monodromy of the abelianized
system E restricted to the graph G is trivial around every hexagonal tile. Note that since Σ
is obtained by gluing the hexagons back to G, the data of a family (aγ)γ∈∆ of invertible
elements of R satisfying the relations 1.1 give rise to a twisted local system on Σ.

We now want to compute the ”change of charts” induced by a flip in the triangulation. Let
∆1 and ∆2 be two triangulations differing only by one flip. Let p1, p2, p3, p4 be the four (not
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necessarily distinct) punctures at the vertices of the quadrilateral supporting the flip, in the
cyclic order such that ∆1 \∆2 = {γ1,3, γ3,1} and ∆2 \∆1 = {γ2,4, γ4,2} where γi,j is the arc
of the quadrilateral going from pj to pi. Using the path-lifting map constructed in Section
2.4.1, we can compute the relations between the A-coordinates associated to ∆1 and the
A-coordinates associated to ∆2.

Proposition 3.1.5. Let L a decorated twisted GL2(R)-local system that is both ∆1-generic
and ∆2-generic. Then its A-coordinates with respect to ∆1 and ∆2 satisfy the following
exchange relations:

aγ2,4 = aγ2,1a
−1
γ3,1aγ3,4 + aγ2,3a

−1
γ1,3aγ1,4

aγ4,2 = aγ4,1a
−1
γ3,1aγ3,2 + aγ4,3a

−1
γ1,3aγ1,2

Remark 3.1.6. This way we retrieve with a geometric argument the relation given in
Proposition 1.3.4.

Proof. For i ∈ {1, 2, 3, 4}, let p′i, p
′′
i be the two lifts of pi to Σ where p′i is the sink and

p′′i is the source. Let s ∈ E∆1(S) ∩ E∆2(S) be the intersection of T ′βp2 and γ2,1 and let
t ∈ E∆1(S) ∩ E∆2(S) be the intersection of T ′βp4 and γ3,4. Let δ be a path in T ′S from s
to t as in Figure 1.2.

Figure 1.2: The path δ on S with triangulation ∆1 on the left and with triangulation ∆2 on
the right.

The holonomy of L along γ does not depend on the triangulation.

Let Σ1 and W1 be the ramified covering and the spectral network associated to the
triangulation ∆1 and Σ2,W2 the ones associated to ∆2. The corresponding path-lifting
maps will be denoted SN1 and SN2, and the corresponding partial abelianizations of L will
be denoted E1 and E2.
First, let’s lift δ to Σ2 using SN2. Let s1, s2 be the lifts of s to Σ2, s1 being the sink and s2
the source. Similarly, let t1, t2 the lifts of t, t1 being the sink and t2 the source. We get

SN2(δ) = δ1 + δ2 + δ′1 + δ′2 + δ′3

where δ1 is a standard lift from s1 to t2, δ2 is a standard lift from s2 to t1, δ′1 is a lift from s2
to t2 added by the spectral network, δ′2 is a lift from s2 to t1 added by the spectral network
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and δ′3 is a lift from s1 to t1 added by the spectral network (see Figure 1.3). The path δ1 is
the only lift going from s1 to t2, and its holonomy in E2 in the corresponding bases is aγ4,2
since it is homotopic to τγ4,2 precomposed with a piece of βp2 and postcomposed with a
piece of βp4 , both of which have trivial holonomies. Since L is the partial non-abelianization
of E2, this means that the map F (p2)

1 → L/F (p4)
1 obtained by trivializing L along δ is exactly

aγ4,2 .

Figure 1.3: All the lifts of δ to Σ2 using SN2.

Now we will lift δ to Σ1 using SN1. Let s1, s2 be the lifts of s to Σ1, s1 being the sink and
s2 the source. Similarly, let t1, t2 the lifts of t, t1 being the sink and t2 the source. We get

SN1(δ) = δ1 + δ2 + δ′1 + δ′2 + δ′3

where δ1 is a standard lift from s1 to t2, δ2 is a standard lift from s2 to t1, δ′1 is a lift from s1
to t1 added by the spectral network, δ′2 is a lift from s1 to t2 added by the spectral network
and δ′3 is a lift from s2 to t2 added by the spectral network (see Figure 1.4). The paths
going from s1 to t2 are δ1 and δ′2, and their holonomies in E1 in the corresponding bases are
respectively aγ4,3a−1

γ1,3aγ1,2 and aγ4,1a−1
γ3,1aγ3,2 . These are obtained by retracting the paths on

the graph Γ, as the oriented edges of Γ have holonomies given by the A-coordinates. Since
L is also the partial non-abelianization of E1, this means that the map F

(p2)
1 → L/F (p4)

1

obtained by trivializing L along δ must be equal to the holonomy of δ1 + δ′2, which give the
formula:

aγ4,2 = aγ4,1a
−1
γ3,1aγ3,2 + aγ4,3a

−1
γ1,3aγ1,2

The formula for aγ2,4 is obtained similarly.

The proposition above yield a geometric realization of the non-commutative algebra AS
introduced in [BR18]. Let S be an hyperbolic ciliated surface and let ∆ be a triangulation
of S. We now focus on the case R =Md(R). In this case, the space X of decorated twisted
GL2(R)-local systems on S is an algebraic variety and the subset X∆ of ∆-generic local
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Figure 1.4: All the lifts of δ to Σ1 using SN1.

systems is an open dense subset of X. Each A-coordinate associated to ∆ can be seen as a
rational function on X∆ with coefficient inMd(R).

Corollary 3.1.7. Let S be an hyperbolic ciliated surface. The map

ψ :
AS → Rat(X,Md(R))
xγ 7→ aγ

is an algebra homomorphism.

Using the same type of arguments as above, we can give a topological/geometrical proof of
the Laurent phenomenon for the cluster algebra of a polygon:

Theorem 3.1.8. Let n ≥ 3 and let S be the closed disk with n punctures on the boundary.
Let i, j ∈ {1, . . . , n}, i ̸= j. Then for every triangulation ∆ of S and every decorated
twisted GL2(R)-local system L that is ∆-generic and such that (F (i), F (j)) is generic, the
A-coordinate aγi,j is a non-commutative Laurent polynomial in the A-coordinates (aγ)γ∈∆
associated to the triangulation ∆.

Proof. All the edges of the form γi,i+1, with i ∈ P ordered cyclically, belong to every
triangulation of S so the result is immediate if j ∈ {i− 1, i+ 1}. Now let i, j ∈ {1, . . . , n},
i ≠ j ± 1. Let ∆0 be a triangulation of S containing the edges γi,j , γi,j−1 and γi−1,j . Such
a triangulation always exists when i ̸= j ± 1. Let s ∈ E∆0(S) ∩ E∆(S) be the intersection
of βj and γj−1,j and let t ∈ E∆0(S) ∩ E∆(S) be the intersection of βi and γi−1,i. Let δ be
the path from s to t drawn in Figure 1.5.

As we have seen in the proof of the flip relation (Proposition 3.1.5) and keeping the same
notations, in the spectral network lift of δ with respect to the triangulation ∆0 the only
term from s1 to t2 has the holonomy aγi,j in the partial abelianization of L with respect to
∆0. This means that the map F (j) → L/F (i) obtained by trivializing L on δ is aγi,j .
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Figure 1.5: The path δ in the triangulation ∆0. Only the quadrilateral (i− 1, i, j − 1, j) is
drawn.

Let E be the partial abelianization of L with respect to ∆. In spectral network lift of δ with
respect to the triangulation ∆, let δ′ = δ′1 + · · ·+ δ′r be the sum of all paths from s1 to t2.
Each δ′k has a holonomy in E that is a monomial in the coordinates (a±1

γ )γ∈∆ as it retracts
on the graph G. Since L is the partial non-abelianization of E , the map F (j) → L/F (i)

obtained by trivializing L on δ is equal to the sum of the holonomies of the δ′k in E , so it is
a Laurent polynomial in the A-coordinates (aγ)γ∈∆.

Using these A-coordinates, we can describe precisely the changes on the abelianized R×-local
system on Σ = Σ2 induced by a flip in the triangulation. We use the same notations as in
Proposition 3.1.5. Let L be a framed twisted GL2(R)-local system on S that is transverse
with respect to two triangulations ∆1 and ∆2. Let E1 (resp. E2) be the R×-local system
on Σ obtained by abelianizing L with respect to ∆1 (resp. ∆2). These changes on the
abelianized local system are supported in the lift CQ of the quadrilateral Q surrounding the
flip, which is homeomorphic to a cylinder with four punctures on each boundary components
in Σ. Let γ be a loop on T ′Σ. If γ crosses only one of the two boundary component of CQ
then the monodromies of γ in E1 and E2 are equal. Suppose γ crosses exactly once each of
the two boundary components of CQ. Let γQ be the loop going around CQ with the same
orientation as the boundary of CQ containing the sinks lifts of p2 and p4 (we refer to this
boundary as the positive one, and the other one as negative).
Remark 3.1.9. We think of the holonomy of γQ in E as a generalization in the non-
commutative setting of Fock-Goncharov’s X -coordinate of the quadrilateral Q. If R = R,
the holonomy of γQ is the cross-ratio of the four lines in R2 given by the framing of L.

Up to homotopy, we can assume γ is going through at least one point x0 ∈ E∆1(Σ)∩E∆2(Σ)
on one of the eight external edges of the hexagon tiling of Q. We also choose a representative
of γQ based at x0. Let b be a basis of the fiber of E1 over x0. Since x0 is not in the interior
of the cylinder supporting the flip in Σ, the fibers of E1 and E2 over x0 are the same. Let
Y1 ∈ R× (resp. Y2) be the holonomy of γ in E1 (resp. E2), and let X be the holonomy of γQ
in both E1 and E2.
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Proposition 3.1.10. If the part of γ inside CQ goes from the positive boundary to the
negative boundary, then

Y2 = Y1(1 +X).

If the part of γ inside CQ goes from the negative boundary to the positive boundary, then

Y2 = Y1(1 +X−1)−1

Remark 3.1.11. The element 1 +X−1 ∈ R is invertible because of the transversality of L
with respect to ∆2.

We have shown that a representation A∆ → R give rise to a ∆-generic decorated twisted
GL2(R)-local system on S. We now want to show a partial converse result: that there is no
additional relations satisfied by the A-coordinates. For this, we will focus on R =Md(R).
A group G is called residually finite if for all g ∈ G\ {1}, there exists a finite index normal
subgroup H not containing g, or equivalently if there exists a finite group Gg and a morphism
φg : G→ Gg such that the image of g by φg is non-trivial. All the finitely generated free
groups are residually finite. Indeed, a rank n free group Fn = ⟨x1, . . . , xn⟩ embeds into
F2 = ⟨a, b⟩ via the map

Fn → F2

xi 7→ abi
.

In turn, F2 embeds into SLn(Z) ⊂ Isom+(H2) via the group homomorphism defined by

a 7→
(
1 2
0 1

)
and b 7→

(
1 0
2 1

)
.

Given any non-trivial M ∈ SL2(Z), there exists an integer N ≥ 2 such that the image of M
in the group SLn(Z/NZ) is non-trivial. This hows that SLn(Z) is residually finite, hence Fn
is too.

The following theorem is due to Baumslag in [BFR19].

Theorem 3.1.12. A cyclically pinched 1-relator group is residually finite.

Let S be an hyperbolic ciliated surface and let ∆ be a triangulation of S. We now focus
on the case R = Md(R). In this case, the space X of decorated twisted GL2(R)-local
systems on S is an algebraic variety and the subset X∆ of ∆-generic local systems is an
open Zariski-dense subset of X. Each A-coordinate associated to ∆ can be seen as a
rational function on X∆ with coefficient in Md(R). Let ψd : A∆ → Rat(X∆,Md(R)) be
the representation defined in Proposition 3.1.7.

Theorem 3.1.13. The family of representations (ψd : A∆ → Rat(X∆,Md(R)))d≥2 is
asymptotically injective, i.e. ⋂

d≥2

Ker(ψd) = {0} .
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Proof. Combining the Theorem 3.1.3 and 3.1.12, the algebra A∆ is isomorphic to RG where
G is a residually finite group. Let x ∈ A∆\ {0}. We can write

x =
∑

w∈Supp(x)

λww.

Since G is residually finite, for all w,w′ ∈ Supp(x) distinct there exists a finite group Gww′−1

and a morphism φww′−1 : G→ Gww′−1 such that φww′−1(ww′−1) ̸= 1. Let

G̃ =
∏

w,w′∈Supp(x),w ̸=w′

Gww′−1

and let
φ̃ =

∏
w,w′∈Supp(x),w ̸=w′

φww′−1

be the morphism associated. It satisfies φ̃|Supp(x) is injective because for any w,w′ ∈ Supp(x)

distinct, φ̃(ww′−1) ̸= 1 so φ̃(w) ̸= φ̃(w′). The map φ : RG = A∆ → RG̃ satisfies φ(x) ̸= 0.
The algebra RG̃ acts on itself by left multiplication, providing an embedding RG̃→ End(RG̃).
Since G̃ is finite, the algebra RG̃ is finite dimensional so End(RG̃) is isomorphic toMd(R)
where d = |G|. Since φ̃(x) ̸= 0, φ̃(x) acts non trivially on RG̃, hence is mapped to an
non-zero element of Md(R). This yield a representation f : A∆ → Md(R) such that
f(x) ̸= 0, so x /∈ Ker(φd).

3.1.3 A-coordinates for symplectic local systems

Recall the definition of symplectic local systems given in Section 2.7. Since Sp2(A, σ) is
a subgroup of GL2(A), the A-coordinates defined in section 3.1.2, a twisted symplectic
local system have well-defined A-coordinates, and because of the additional structure of
symplectic local systems, they satisfy additional relations. The following proposition is
immediate:

Proposition 3.1.14. Let S be an hyperbolic ciliated surface and let ∆ be a triangulation of
S. Let L → S be a ∆-transverse decorated symplectic local system. Let γ be an arc of the
triangulation ∆ from p ∈ P to q ∈ P. Then aγ = ω(b

(q)
1 , b

(p)
1 ). In particular aγ = −σ(aγ).

Proof. By definition of non-commutative A-coordinates, b(p)1 ∈ F (p)
1 projects to b(q)2 aγ ∈

L/F (q)
1 , i.e. for some lift b̂(q)2 ∈ A2 of b(q)2 , b(p)1 = b̂

(q)
2 aγ + b

(q)
1 r for some r ∈ R. Therefore,

ω(b
(q)
1 , b

(p)
1 ) = ω(b

(q)
1 , b̂

(q)
2 aγ + b

(q)
1 r) = ω(b

(q)
1 , b̂

(q)
2 )aγ = aγ .

From Proposition 1.1 follows:
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Corollary 3.1.15. For each oriented triangle t = (γ1, γ2, γ3) of ∆, we have

βt := aγ3a
−1
γ2
aγ1 ∈ Aσ.

If A is Hermitian, the signature of βt agrees with the Kashiwara-Maslov index of t. Furthermore
if βt ∈ Aσ+ for all oriented triangles t of ∆, then the decorated local system is maximal.

3.1.4 A subalgebra of AS

In [BR18], Berenstein and Retakh define a subalgebra Qn of An and give a representation
of both An and Qn in terms of quasideterminants. Our goal in this section is to define a
subalgebra QS of AS that coincides with Qn when S = Pn, and to give a presentation of
QS similar to the presentation of Qn given in [BR18], Theorem 2.14. We follow a similar
approach to the original proof of Berenstein and Retakh. For this, we write the algebra
AS as a quotient of an algebra defined similarly to An, except over an ”infinite polygon”,
namely the universal cover of S in H2.

Let S be an hyperbolic ciliated surface, endowed with a hyperbolic metric with totally
geodesic boundary. Let π : S̃ → S be the universal cover of S, seen as a closed convex totally
geodesic subspace of H. We have S = Γ\S̃ where π1(Σ) ≃ Γ ⊂ PSL2(R) acts properly
discontinuously on S̃ ⊂ H. We endow P1R with the canonical cyclic order, and we see
P1R = ∂H as the boundary of the hyperbolic plane H. Let Λ = π−1(P) ⊂ P1R be the
Farey set of S̃, i.e. the preimage of all punctures of S. A pair (p, q) ∈ Λ2 with p ≠ q is
identified with the oriented geodesic in H from p to q. The surface S̃ admits (infinite) ideal
triangulations, in particular any pullback of a triangulation of S.

Definition 3.1.16. Let QS be the subalgebra of AS spanned by the elements yα,α′ = x−1
α xα′

with α and α′ composable arcs on S. Given a triangulation ∆ of S, we denote by Q∆ the
subalgebra of QS spanned by the elements yα,α′ = x−1

α xα′ with α and α′ composable arcs
in ∆.

Definition 3.1.17. We define the unitary R-algebra AΛ generated by the symbols xp,q and
x−1
p,q for p, q ∈ Λ (with the convention xp,p = 1 for all p ∈ Λ) with the relations:

• ∀p, q ∈ Λ, x−1
p,qxp,q = xp,qx

−1
p,q = 1

• ∀p, q, r ∈ Λ, xp,qx
−1
r,qxr,p = xp,rx

−1
q,rxq,p

• ∀(p, q, r, s) cyclically ordered, xp,r = xp,qx
−1
s,qxs,r + xp,sx

−1
q,sxq,r

For ∆ a triangulation of S̃, we define A∆ the subalgebra of AΛ generated by the set of all
xp,q for p, q ∈ Λ and x−1

p,q for (p, q) ∈ ∆. We define QΛ the subalgebra of AΛ generated by
the elements yrp,q = x−1

r,pxr,q for p, q, r ∈ Λ, r ̸= p, q.
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Definition 3.1.18. A filtered set is a nonempty set I together with a (partial) order ⩽,
with the additional property that every pair of elements has an upper bound.

Let (I,⩽) a filtered set. Let (Ai)i∈I be a family of unitary algebras and let (fi,j)i,j∈I with
fi,j : Ai → Aj algebra homomorphisms such that fii = IdAi and fi,j ◦ fk,i = fk,j . We call
((Ai)i∈I , (fij)i,j∈I) a direct system. We denote by (lim

−→
Ai, (fi)i∈I) the direct limit of the

system, which is defined by the following universal property: for all algebra B and for all
families of algebra homomorphisms (gi)i∈I such that for all i ⩽ j ∈ I, gi = gj ◦ fij , there
exists a unique homomorphism φ : lim

−→
Ai → B such that the following diagram commutes:

Ai

fi
!!

fij
//

gi

$$

Aj

fj
}}

gj

yy

lim
−→

Ai

φ

��

B

This direct limit is isomorphic to (⊔
i∈I

Ai

)
/ ∼,

where the equivalence relation ∼ is defined by (i, ai) ∼ (j, aj) ⇔ ∃k ∈ I, i ⩽ k, j ⩽
k, fi,k(ai) = fj,k(aj). In particular, for all a ∈ lim

−→
Ai, there exists i ∈ I and ai ∈ Ai such

that a = fi(ai).

Let P be the set of all finite subsets of Λ. Endowed with the inclusion, it is a filtered set. Let
lim
−→
AP be the direct limit of the system ((AP)P∈P , (jP,P ′)P⊂P ′∈P), where jP,P ′ : AP → AP ′

is the algebra homomorphism induced by the inclusion P ⊂ P ′ (i.e. ∀p, q ∈ P, jP,P ′(xp,q) =
xp,q).

Theorem 3.1.19. The inclusions AP → AΛ for P ∈ P induce an algebra isomorphism

lim
−→
AP ≃ AΛ.

Proof. Let P ∈ P. Let jP : AP → lim
−→
AP be the direct limit map associated to P , and let

fP : AP → AΛ be the algebra homomorphism induced by the inclusion P ⊂ Λ. This algebra
homomorphism is well defined because Σ̃ contains all the triangles and the quadrilaterals
of P . The morphisms fP then satisfy fP = fP ′ ◦ jP,P ′ for all P ⊂ P ′ ∈ P. By universal
property, there exists an algebra homomorphism φ : lim

−→
AP → AΛ such that φ ◦ jP = fP

for all P ∈ P. For p, q ∈ Λ, we define ψ(xp,q) = jP (xp,q) ∈ lim
−→
AP , where P ∈ P contains
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p and q. This definition does not depends on the choice of P by the property of direct
limits. Moreover, for all triangle or quadrilateral of S̃, there exists P ∈ P containing it. So
ψ : AΛ → lim

−→
AP is a well defined algebra homomorphism. By construction, the morphisms

φ and ψ are inverse one of each other.

AP

jP
##

jP,P ′
//

fP

%%

AP ′

jP ′
{{

fP ′

yy

lim
−→
AP

φ

��

AΛ

ψ
OO

The following lemmas recall a few elementary properties of direct limits, they are stated
here without proof.

Lemma 3.1.20. Let (I,⩽) be a filtered set. Let ((Ai)i∈I , (fij)i,j∈I) be a direct system
and let (Bi)i∈I a family of subalgebras Bi ⊂ Ai such that fij(Bi) ⊂ Bj. Then the maps
Bi → lim

−→
Aj induce an identification of the limit lim

−→
Bi of the system ((Bi)i∈I , (fij |Bi)i,j∈I)

with a subalgebra of lim
−→

Ai.

Corollary 3.1.21. For all triangulations ∆ of S̃, the subalgebra A∆ of AΛ is identified with
the direct limit lim

−→
A∆P

with P ∈ P which admits a triangulation ∆P such that ∆P ⊂ ∆.
We then have an isomorphism A∆ ≃ RF∞, where F∞ is the free group freely spanned by a
countable infinite set of generators.
The subalgebra QΛ of AΛ is identified with the direct limit lim

−→
QP with P ∈ P.

Lemma 3.1.22. Let P be a polygon. The subalgebra QP of AP is generated by the elements
yrp,q with p, q, r ∈ P distinct, with the relations:

1. ∀p, q, r ∈ P pairwise distinct, yrp,qyrq,p = 1

2. ∀p, q, r ∈ P pairwise distinct, yrp,qy
p
q,ry

q
r,p = 1

3. ∀p, q, r, s ∈ P pairwise distinct, ysp,qysq,rysr,p = 1

4. ∀(p, q, r, s) ∈ P pairwise distinct cyclically ordered, yqp,s = yrp,qy
p
q,s + yrp,s

Proof. See [BR18], Theorem 2.14.
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Lemma 3.1.23. Let 0 Ii Ai Qi 0
mi πi be a family of short exact sequences indexed

by i ∈ I, with ((Ai)i∈I , (fij)i,j∈I) a direct system such that fij ◦ mi(Ii) ⊂ mj(Ij). Let
gij = fij |Ii : Ii → Ij and hij : Qi → Qj the map induced by πj ◦ fij. Then we have a short
exact sequence 0 lim

−→
Ii lim

−→
Ai lim

−→
Qi 0.

Corollary 3.1.24. The subalgebra QΛ of AΛ is generated by the elements yrp,q with p, q, r ∈ Λ
distinct, with the relations:

1. ∀p, q, r ∈ Λ distinct, yrp,qyrq,p = 1

2. ∀p, q, r ∈ Λ distinct, yrp,qy
p
q,ry

q
r,p = 1

3. ∀p, q, r, s ∈ Λ distinct, ysp,qysq,rysr,p = 1

4. ∀(p, q, r, s) ∈ Λ distinct cyclically ordered, yqp,s = yrp,qy
p
q,s + yrp,s

Given two algebras A and B, we denote by A ∗B their free product.

Proposition 3.1.25. Let f : Λ→ Λ be a map without fixed points. Let FΛ be the free group
generated by ci, i ∈ Λ and let RFΛ be its group algebra. Then the map:

AΛ → (RFΛ) ∗ QΛ

xij 7→ ci ∗ yif(i),j
is an algebra isomorphism.

Proof. Let φ :
AΛ → (RFΛ) ∗ QΛ

xij 7→ ci ∗ yif(i),j
. Firs we show that φ is well defined. Let i, j, k ∈ Λ.

We have

φ(xijx
−1
kj xki) = ci ∗ yif(i),j ∗ (ck ∗ y

k
f(k),j)

−1 ∗ ck ∗ ykf(k),i
= ci ∗ yif(i),j ∗ (y

k
f(k),j)

−1 ∗ c−1
k ∗ ck ∗ y

k
f(k),i

= ci ∗ yif(i),j ∗ y
k
j,f(k) ∗ y

k
f(k),i

= ci ∗ yif(i),j ∗ y
k
j,i

= ci ∗ yif(i),j ∗ y
i
j,k ∗ y

j
k,i

= ci ∗ yif(i),k ∗ y
j
k,i

φ(xikx
−1
jk xji) = ci ∗ yif(i),k ∗ (cj ∗ y

j
f(j),k)

−1 ∗ cj ∗ yjf(j),i
= ci ∗ yif(i),k ∗ (y

j
f(j),k)

−1 ∗ c−1
j ∗ cj ∗ y

j
f(j),i

= ci ∗ yif(i),k ∗ y
j
k,f(j) ∗ y

j
f(j),i

= ci ∗ yif(i),k ∗ y
j
k,i.
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Let (i, j, k, ℓ) ∈ Λ cyclically ordered.

φ(xjkx
−1
ik xiℓ + xjix

−1
ki xkℓ) = cj ∗ yjf(j),k ∗ (ci ∗ y

i
f(i),k)

−1 ∗ ci ∗ yif(i),ℓ
+ cj ∗ yjf(j),i ∗ (ck ∗ y

k
f(k),i)

−1 ∗ ck ∗ ykf(k),ℓ
= cj ∗ yjf(j),k ∗ y

i
k,f(i) ∗ y

i
f(i),ℓ + cj ∗ yjf(j),i ∗ y

k
i,f(k) ∗ y

k
f(k),ℓ

= cj ∗ yjf(j),k ∗ y
i
k,ℓ + cj ∗ yjf(j),i ∗ y

k
i,ℓ

= cj ∗ yjf(j),k ∗ (y
i
k,ℓ + yjk,i ∗ y

k
i,ℓ)

= cj ∗ yjf(j),k ∗ y
j
k,ℓ

= cj ∗ yjf(j),ℓ
= φ(xjℓ)

So φ is well defined. Let ψ1 :
RFΛ → AΛ

ci 7→ xi,f(i)
and let ψ2 : QΛ → AΛ be the canonical

inclusion. Let
ψ = ψ1 ∗ ψ2 : (QFΛ) ∗ QΛ → AΛ.

We now show that φ and ψ are reciprocal inverse. We have (ψ ◦ φ)(xij) = ψ(ci ∗ yif(i),j) =
xi,f(i)y

i
f(i),j = xij . Moreover, (φ ◦ ψ)(ci) = φ(xi,f(i)) = ci ∗ yif(i),f(i) = ci and (φ ◦ ψ)(ykij) =

φ(ykij) = (ck ∗ ykf(i),i)
−1 ∗ ck ∗ ykf(i),j = yki,f(i) ∗ y

k
f(i),j = ykij . So φ is an isomorphism with

inverse ψ.

Corollary 3.1.26. With the same notation as above,

AΛ → QΛ

xij 7→ yif(i),j

is a surjective algebra homomorphism, and its kernel is spanned by the elements xf(i),i − 1
with i ∈ Λ.

Let AS and QS be the algebras defined in Section 3.1.1. For all p, q ∈ Λ distinct, we denote
by (p, q) the oriented geodesic of S̃ from p to q and π(p, q) the image of this geodesic in S.
Let ∆ be a triangulation of S and let ∆̃ be the lift of ∆ to S̃. Since π maps a polygon of S̃
to a polygon of S, π induces a surjective algebra homomorphism π∗ : AΛ → AS defined by
π∗(xp,q) = xπ(p,q).

The action of Γ = π1(S) is orientation-preserving, so it preserves the cyclic order on Λ. An
element γ ∈ Γ induces an algebra automorphism AΛ given by γ · xp,q = xγ(p),γ(q).

Proposition 3.1.27. The kernel of π∗ : AΛ → AS is generated by the elements (γ ·x)−x
with γ ∈ Γ and x ∈ AΛ. In particular, we have an isomorphism

AS ≃ AΛ/ ((γ · x)− x)
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Proof. For all x ∈ AΛ and γ ∈ Γ, we have (γ ·x)−x ∈ kerπ∗. Let φ : AΛ/ ((γ · x)− x)→ AΣ

be the morphism induced by π∗. Let

ψ :
AΛ → AΛ/ ((γ · x)− x)
xα 7→ xα̃

, where α = π(α̃) is an arc of S.

This defines an algebra homomorphism: on one hand if α̃′ is another lift of α by π, then
there exists γ ∈ Γ such that α̃′ = γ · α̃ so xα̃ = xα̃′ and the definition of ψ(xα) does not
depend on the choice of the lift of α. On the other hand, if P is a n-gon of S, then there
exists a n-gon P̃ of S̃ such that π(P̃ ) = P . This allows to deduce that ψ preserves the
relations of AΛ, hence defines an algebra homomorphism. By construction, φ and ψ are
inverse, so φ is an isomorphism.

Theorem 3.1.28. Let I ⊂ QΛ be the ideal spanned by the elements γ · y − y, γ ∈ Γ, y ∈ QΛ

and yrγ(p),q − y
r
p,q, p, q, r ∈ Λ distinct with γ ∈ StabΓ(r). Then QS ≃ QΛ/I.

Proof. The kernel of the morphism

φ :
QΛ → QS
yrp,q 7→ yπ(p,r),π(r,q)

satisfies I ⊂ kerφ, so we get a morphism

φ :
QΛ/I → QS
yrp,q 7→ yπ(p,r),π(r,q)

.

Let f : Λ → Λ without fixed point such that for all γ ∈ Γ and for all p ∈ Λ, f(γ(p)) ∈
γ.StabΓ(p) · f(p). One can construct such a function by choosing for each puncture p of
S a lift p0 ∈ Λ, then choosing f(p0) ∈ Λ and extending f to the orbit of p by Γ with the
choice of an element of StabΓ(p) for each point in the orbit of p. Indeed, if γ(p) = γ′(p),
then γ′−1γ ∈ StabΓ(p) so γ′.StabΓ(p) = γ.StabΓ(p).

Moreover as shown in Corollary 3.1.26, the map

ψ′ :
AΛ → QΛ/I

xp,q 7→ ypf(p),q

is an algebra homomorphism. We now show that the ideal ((γ ·x)−x) is contained in its kernel.
Let p, q ∈ Λ and let γ ∈ Γ. We have yγ(p)f(γ(p)),γ(q) = γ · yp

γ−1(f(γ(p))),q
and γ−1(f(γ(p))) ∈

StabΓ(p) · f(p), so there exists γ′ ∈ StabΓ(p) such that γ−1(f(γ(p))) = γ′(f(p)). Then
γ · yp

γ−1(f(γ(p))),q
= γ · ypγ′(f(p)),q, and since γ · ypγ′(f(p)),q =

←−
yrp,q so ψ′(xp,q) = ψ′(γ · xp,q). So

ψ′ is an algebra homomorphism AΛ/((γ · x) − x) → QΛ/I, whose composition with the
isomorphism AS → AΛ/((γ · x)− x) from Proposition 3.1.27 yield a morphism

ψ :
AS → QΛ/I

xα 7→ ypf(p),q with α = π(p, q)
.
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We now show that ψ|QΣ
= φ−1.

(ψ ◦ φ)(yrp,q) = ψ(yπ(p,r),π(r,q))

= ψ(x−1
π(r,p)xπ(r,q))

= yrf(r),p
−1
yrf(r),q

= yrp,f(r)y
r
f(r),q

= yrp,q

Let α, α′ be two arcs of S with α(1) = α′(0), and let (p, r) and (r, q) be lifts of α and α′

respectively, sharing an endpoint r ∈ Λ. We have

(φ ◦ ψ)(yα,α′) = φ(ψ(x−1
α xα′))

= φ(yrf(r),p
−1
yrf(r),q)

= φ(yrp,f(r)y
r
f(r),q)

= φ(yrp,q)

= yα,α′

So φ : QΛ/I → QS is an isomorphism.

Corollary 3.1.29. The algebra QS is generated by the elements yα,α′ with α, α′ composable
arcs of S with the following relations:

1. yα,α = 1 for all α arc of S

2. yα,α′yα′,α = 1 for all α, α′ composable arcs of S

3. For all triangle (α, α′, α′′) of S:

yα,α′yα′′,αyα′,α′′ = 1

4. For all α, α′, α′′ such that α(1) = α′(1) = α′′(1):

yα,α′yα′,α′′yα′′,α = 1

5. ∀f : P4 → S quadrilateral,

yα12,α24 = yα13,α32yα21,α14 + yα13,α34
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Proof. Let Q be the algebra defined with the presentation above. We have a morphism

φ :
QΛ → Q
yrp,q 7→ yπ(p,r),π(r,q)

because the relations of QΛ given by Corollary 3.1.24 are satisfied by φ. This morphism
induces φ : QΛ/I → Q. By composing it with the isomorphism of Theorem 3.1.28, we get a
morphism φ′ : QΣ → Q. The relations of Q are satisfied in QΣ, so we have a morphism

ψ :
Q → QΣ

yα,α′ 7→ yα,α′

and ψ and φ′ are inverse.

3.1.5 Coordinates on semi-decorated GL2-local systems

We now give a representation of the subalgebra QS as coordinates on GL2-local systems on
S with a new type of additional data in between a decoration and a framing.

Definition 3.1.30. Let S be an hyperbolic ciliated surface and let L be a twisted GL2(R)-
local system on S. A semi-decoration of L is the data of a framing (F (p))p∈P together with
a regular section b(p)1 freely spanning F (p)

1 for each puncture p ∈ P.

Remark 3.1.31. For a twisted GL2(R)-local system on S to admit a semi-decoration, its
monodromies around each internal punctures must fix a R-line in R2. One can obtain a
semi-decorated local system from a decorated one by forgetting about the sections (b

(p)
2 )p∈P

spanning the quotients L/F (p)
1 .

Let L be a ∆-generic semi-decorated GL2(R)-local system on S. Let α, α′ ∈ ∆ be composable
edges. Let p ∈ P be the start of α′ and q ∈ P be the end of α. The map

a−1
α ◦ aα′ : F

(p)
1 → F

(q)
1

is well defined. We denote by qα,α′ its (1 by 1) matrix in the respective bases of F (p)
1 and

F
(q)
1 given by the semi-decoration. We call those elements the Q-coordinates of L.

Let R =Md(R). Let S be an hyperbolic ciliated surface and let ∆ be a triangulation of S.
The space Q of semi-decorated twisted GL2(R)-local systems on S is an algebraic variety
and the subset Q∆ of ∆-generic local systems is an open Zariski-dense subset of Q. Each
Q-coordinate associated to ∆ can be seen as a rational function on Q∆ with coefficient in
Md(R). As a corollary of 3.1.7, we get:

Corollary 3.1.32. Let S be an hyperbolic ciliated surface and let ∆ be a triangulation of S.
The map

ψQ :
Q∆ → Rat(Q∆,Md(R))
yα,α′ 7→ qα,α′

is an algebra homomorphism.
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3.2 Coordinates on extra-decorated configurations of flags

We want extend theA-coordinates defined in Section 3.1 for GL2(R)-local systems to GLn(R)-
local systems. Because of some technical difficulties related to twisted local system, it will be
more convenient to introduce first those A-coordinates in the case of a configuration of flags
where those technical difficulties do not arise. The mutations formulas of the coordinates
defined in this section are meant to be the closest possible to both the commutative case,
with a quiver to break down the mutation of a flip into smaller mutations, and the non-
commutative rank 2 case described above. For this, it is natural to introduce a new kind of
decoration on a configuration of flags, which we call an extra-decoration since it contains a
decoration in the sense introduced in Section 1.2 plus additional data. This new kind of
decoration depends on the choice of a triangulation, so the mutation rules must include a way
to ”mutate” an extra-decoration associated to a triangulation to one associated to another
triangulation. The coordinates introduced can be expressed in terms of quasideterminants
(see Section 3.2.7). It should be noted however that these coordinates fail to satisfy the
non-commutative Laurent phenomenon in general, however other situations in which non-
commutative Laurent phenomenon arise in small rank also fail to satisfy it in higher rank.
These coordinates also fail to satisfy the pentagon relation because the extra-decoration
itself does not satisfy it, so the coordinates that depends on this extra-decoration cannot
satisfy it either.

3.2.1 Extra-decorated configurations of flags

Definition 3.2.1. Let (A(1), . . . , A(k)) be a k-tuple of flags and let ∆ be a triangulation
of the k-gon. If for all triangle (i, j, k) of ∆, (A(i), A(j), A(k)) is a triple of flag in generic
position, the k-tuple (A(1), . . . , A(k)) is called ∆-generic. The group GLn(R) acts naturally
on the space of ∆-generic k-tuple of flags in Rn. We denote by Conf∆R,k(n) the quotient of
this space by the GLn(R) action.

Definition 3.2.2. Let (A(1), . . . , A(k)) be a k-tuple of flags in generic position (recall Section
1.2 for the definition of flags in generic position). An extra-decoration of the k-tuple of flags is
the data of a decoration of each flag A(i) together with the data for every i1, . . . , ik ∈ N such
that i1+ · · ·+ ik = (k− 1)n+1 of an element bi1,...,ik ∈ Rn that freely span A(1)

i1
∩ · · · ∩A(k)

ik
.

Definition 3.2.3. Let ∆ be a triangulation of the k-gon. Let (A(1), . . . , A(k)) be a ∆-generic
k-tuple of flags. A ∆-extra-decoration of (A(1), . . . , A(k)) is the data for each triangle (i, j, k)
of ∆ of an extra-decoration of the triple (A(i), A(j), A(k)). The data of a ∆-generic k-tuple
of flags together with a ∆-extra-decoration is called a ∆-extra-decorated k-tuple of flags.
The group GLn(R) acts naturally on the space of ∆-extra-decorated k-tuple of flags in Rn.
We denote by DecConf∆k (n) the quotient of this space by the GLn(R) action.
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3.2.2 Coordinates on the configuration space of extra-decorated triple or
quadruple of flags

Let (A,B,C) be a triple of flags in generic position. Recall from Section 1.3 that we defined
for all i, j, k ∈ N such that i + j + k = 2n + 1 the following maps by restriction of the
canonical projections Rn → Ai/Ai−1, R

n → Bj/Bj−1 and Rn → Ck/Ck−1:

aAi,j,k : Ai ∩Bj ∩ Ck → Ai/Ai−1

aBi,j,k : Ai ∩Bj ∩ Ck → Bj/Bj−1

aCi,j,k : Ai ∩Bj ∩ Ck → Ck/Ck−1

Given an extra-decoration of the triple of flags (A,B,C), we identify these linear maps
with their matrices in the corresponding bases. We call these elements of R× the (non-
commutative) A-coordinates of the extra-decorated triple of flags.

A reformulation of Proposition 1.3.3 is the following:

Proposition 3.2.4. The A-coordinates satisfy the following relations, called triangle
relations:

∀i, j, k ∈ N s.t. i+j+k = 2n+2, aAi,j,k−1.
(
aBi,j,k−1

)−1
.aBi−1,j,k = −aAi,j−1,k.

(
aCi,j−1,k

)−1
.aCi−1,j,k

3.2.3 Quiver and mutations

Let P be a polygon and ∆ a triangulation of P . Let Q be the An−1-type quiver on P
associated to the triangulation ∆, see Figure 2.6. More precisely, we see any triangle t
as the Euclidean triangle in R3 with vertices of coordinates (n, 0, 0), (0, n, 0) and (0, 0, n).
The An−1-type quiver of the triangle is the quiver with vertex the points of t with integer
coordinates except for the vertices of t itself, and a vertex of coordinates (a, b, c) has outgoing
arrows to (a+1, b− 1, c), (a, b+1, c− 1) and (a− 1, b, c+1) and ongoing arrows from vertex
(a+ 1, b, c− 1), (a− 1, b+ 1, c) and (a, b− 1, c+ 1), provided those vertex belong to t and
that the edge is not contained in an edge of t. The quiver Q is planar, and every vertex
has the same number of edges going in and going out of it. Note that these two properties
are preserved during the mutation sequence that leads to a flip in the triangulation. To
handle the fact we are working with GLn and not SLn or PGLn –and our coordinates being
non-commutative– we need to make a few adjustments to the usual mutation rules.
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Figure 2.6: From left to right, the quivers of type A1, A2, A3 on a triangle.

First, we want to allow pairs of vertices v and v′ with arrows both from v to v′ and from v′

to v, although only in some precise situations.

Definition 3.2.5. Let Q = (Q0, Q1) be a cyclic quiver, i.e. a quiver with n vertices
Q0 = {v1, . . . , vn} and n − 1 arrows Q1 = {(vi, vi+1)|1 ≤ i ≤ n} forming a cycle, with
vn+1 = v1. An quiver!internal oriented triangulation of Q is a set of arrows Q′

1 such that
(Q0, Q1∪Q1∪Q′

1) is the graph of a polygon with an oriented triangulation, where Q1 denote
the set of reversed edges of Q1.

See Figure 2.7 for an example of a cyclic quiver with an internal oriented triangulation.

Figure 2.7: A cyclic quiver with 6 vertices with an internal oriented triangulation.

Definition 3.2.6. A triangulated quiver is a planar quiver Q embedded in an oriented
polygon P such that:

• Q has no trivial loop

• every edge of P has at least one vertex of Q

• The subset of vertices of Q that are on an edge of P are called frozen
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• Each vertex of Q has as many arrows going in and going out of it. We define the
valency of a vertex v, denoted by val(v), to be the number of arrows going to v if v is
not frozen and this number plus one if v is frozen

• There are two types of arrows in Q, we call them either plain or dashed

• At each vertex of Q, there exists a pairing between arrows going in and arrows going
out, such that each pair of paired arrows is part of an oriented triangle for which the
orientation agrees with the orientation on P (in the following, an oriented cycle in
a quiver will always suppose matching orientation with P ), and there are no edges
inside such oriented triangles

• If an arrow v → v′ is dashed, then there is another dashed arrow v′ → v and those are
the only arrows between v and v′

• Each oriented cycle of plain arrows of Q has an internal oriented triangulation of
dashed arrows, and every dashed arrow belongs to one such triangulation

• If there is a plain arrow v → v′, then there is no arrow v′ → v.

• There is at most one arrow from a vertex v to another vertex v′

When we say ”arrow” without specifying if its dashed or plain it means any arrow of the
quiver regardless of their nature, same for triangles and oriented cycles.

A notable difference with the usual quiver of cluster algebras is that we allow pairs of
opposite arrows between two vertices, but only inside the oriented plain cycles. The set of
all plain arrows in a triangulated quiver is a quiver in the usual sense. The dashed arrows
are here to carry an additional information: a triangulation of the oriented cycles of plain
arrows.

Proposition 3.2.7. Let P be a polygon, let ∆ be a triangulation of P and let n ≥ 1. The
An-type quiver associated with (P,∆) is a triangulated quiver (without any dashed arrow).

Figure 2.8: A triangulated quiver with one oriented plain cycle of length 4.
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At every vertex v of a triangulated quiver, we will assign r variables a1(v), . . . , ar(v) ∈ R×

where r is the valency of v. Notice there is exactly r oriented triangles t1, . . . , tr containing
v in Q if v is not frozen. If v is frozen, then there is r − 1 oriented triangles t1, . . . , tr−1

containing v in Q, and we set tr to be the boundary containing v. The labeling on
t1, . . . , tr is set to agree with the cyclic ordering induced by the orientation of P . To get
consistent mutation formulas, we will think of those r variables a1(v), . . . , ar(v) as ”in
between” the oriented triangles containing v. More precisely, we choose a cyclic order on
the set of those r variables together with the oriented triangles containing v such that
a1(v) < t1 < a2(v) < · · · < tr−1 < ar(v) < tr < a1(v). We call the choice of those variable
together with the cyclic order an affectation of Q, and we will denote by V the set of all the
variables.

Around every oriented triangle t, the situation looks like the one in Figure 2.10.

Notice that in the case when one (or more) of the arrow of the oriented triangle t is dashed,
then there are variables located ”in between” the two opposite dashed arrows, see Figure 2.9.

Figure 2.9: An affectation on a quiver containing a triangulated oriented quadrilateral.

Definition 3.2.8. Let Q be a triangulated quiver, together with an affectation V . Let t be
an oriented triangle of Q. The affectation around t gives 6 variables a1, a2, b1, b2, c1, c2 as in
Figure 2.10. We define two elements which we call triangle elements at a:

R+
t,a = b1a

−1
2 c1 and R−

t,a = c2a
−1
1 b2.

We define similarly R±
t,b and R±

t,c. An affectation of a triangulated quiver Q is said to satisfy
the triangle relations at an oriented triangle t if the variables satisfy the following relation,
which we call triangle relation at t:

R+
t,x = −R−

t,x

where x is any of the three vertices of t. If the affectation satisfies the triangle relation for
every oriented triangle of Q, it is said to satisfy the triangle relations.
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Figure 2.10: An affectation around an oriented triangle of Q.

Remark 3.2.9. At every oriented triangle of Q there is three equivalent triangles relations,
one for each vertex. Also note that the triangle elements are always invertible elements of R.

Definition 3.2.10. A non-commutative seed is the data of:

• A triangulated quiver Q

• An affectation V of Q satisfying the triangle relations. We call those elements of R
the A-coordinates of the seed.

To alleviate the notations, we will just refer to non-commutative seeds as seeds.

Definition 3.2.11. Let (Q,V) be a seed. Let x be a vertex of Q of valency 2. We say that
x is mutable (or that the ▷◁-mutation at x is admissible) if none of the arrows incident to x
are dashed and if the elements

x′1 = d2x
−1
1 a2 + c1x

−1
2 b1

x′2 = b2x
−1
1 c2 + a1x

−1
2 d1

are invertible in R, where the variables ai, bi, yi, zi are defined as in Figure 2.11. If x is
mutable, the ▷◁-mutation of (Q,V) at x is a new seed (Q′,V ′) = µ▷◁,x(Q,V) defined as
follows:

• The new quiver Q′ is obtained by reversing the direction of the arrows incident to x
and adding the four plain arrows needed to complete the triangles created. If this
process creates a pair of plain arrows between two vertex with opposite directions,
then if this pair lies inside an oriented plain cycle of the quiver we change the pair of
arrows to be dashed, and if not we remove the pair of arrows.

• The two A-coordinates x1, x2 at the vertex x are replaced by the new variables x′1 and
x′2 defined above. The new cyclic ordering at the vertex x is described on Figure 2.11.
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The result of an admissible ▷◁-mutation is still a seed, i.e. satisfies the triangle relations:
only two triangles are modified by the mutation, and using the same notation as in Figure
2.11 the two new triangle relations are:

R+
t′1,a

= x′1a
−1
2 c2

= (d2x
−1
1 a2 + c1x

−1
2 b1)a

−1
2 c2

= d2x
−1
1 c2 + c1x

−1
2 b1a

−1
2 c2

= R+
t2,x

+ c1(R
−
t1,b

)−1c2

= −R−
t2,x
− c1(R+

t1,b
)−1c2

= −c1x−1
2 d1 − c1a−1

1 b2x
−1
1 c2

= −c1a−1
1 (b2x

−1
1 c2 + a1x

−1
2 d1)

= −c1a−1
1 x′2

= −R−
t′1,a

and a similar computation shows

R+
t′2,b

= −R−
t′2,b
.

Figure 2.11: The situation before and after the ▷◁-mutation at the vertex x.

Remark 3.2.12. We can express the new triangle elements in term of the previous triangle
elements and the unchanged A-coordinates. Using the same notations as in Figure 2.11, we
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have:

(R+
t′1,x

)−1 = (c2x
′−1
2 a1)

−1

= a−1
1 x′2c

−1
2

= a−1
1 (b2x

−1
1 c2 + a1x

−1
2 d1)c

−1
2

= a−1
1 b2x

−1
1 + x−1

2 d1c
−1
2

= (R+
t1,b

)−1 + (R+
t2,d

)−1

and

R+
t′1,a

= x′1a
−1
2 c2

= d2x
−1
1 c2 + c2x

−1
2 b1a

−1
2 c2

= R+
t2,x

+ c1(R
−
t1,x

)−1c2

The other triangle elements are obtained using similar formulas.

Proposition 3.2.13. Let (Q,V) be a seed, let x be a mutable vertex of Q and let (Q′,V ′) =
µ▷◁,x(Q,V). Then x is mutable in (Q′,V ′) and µ▷◁,x(Q′,V ′) = (Q,V).

Proof. Let x′′1 be the variable of µ▷◁,x(Q′,V ′) at the location of x1. We have:

x′′1 = a2x
′−1
1 d2 + c2x

′−1
2 b2

= a2(d2x
−1
1 a2 + c1x

−1
2 b1)

−1d2 + c2(b2x
−1
1 c2 + a1x

−1
2 d1)

−1b2

= (x−1
1 + d−1

2 c1x
−1
2 b1a

−1
2 )−1 + (x−1

1 + b−1
2 a1x

−1
2 d1c

−1
2 )−1

= (x−1
1 − x

−1
1 c2d

−1
1 b1a

−1
2 )−1 + (x−1

1 − x
−1
1 a2b

−1
1 d1c

−1
2 )−1

=
(
(1− c2d−1

1 b1a
−1
2 )−1 + (1− a2b−1

1 d1c
−1
2 )−1

)
x1

To conclude, we need a general identity on non-commutative algebras:

Lemma 3.2.14. Let x ∈ R× such that 1 + x ∈ R×. Then we have:

(1 + x−1)−1 + (1 + x)−1 = 1.

Proof.

(1 + x−1)−1 + (1 + x)−1 = x(1 + x)−1 + (1 + x)−1

= (1 + x)(1 + x)−1

= 1
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Since the number of coordinates associated to a vertex depends on its valency and the
valency can change during the sequence of mutation of a flip, we need a second type of
mutation that changes the valency of a vertex.

Definition 3.2.15. Let (Q,V) be a seed. Let a and d two vertex of Q with a pair of
dashed arrows between them. Let b, c ∈ Q0 such that the oriented triangle containing a→ d
(resp. d → a) is t1 = c → a → d → c (resp. t2 = a → b → d → a), see Figure 2.12. The
�-mutation of (Q,V) at the pair of arrows a ↔ d is a new seed (Q′,V ′) = µ�,a↔d(Q,V)
defined as follows:

• The pair of dashed arrow is part of an internal triangulation of a plain oriented cycle.
The new quiver Q′ is obtained by doing a flip of this edge in the internal triangulation:

Q′
1 = (Q1 \ {a→ d, d→ a}) ∪ {b→ c, c→ b} .

The new arrows are also dashed.

• The valency of a and d is decreased by 1 so the variables a3 and d3 in between the
removed dashed arrows are also removed. We then need to add two new variables in
between the new pair of dashed arrows. The new added variable are:

b3 = R+
t1,c

= a1c
−1
2 d3 and c3 = R+

t2,b
= d1b

−1
2 a3.

See Figure 2.12.

Figure 2.12: The situation before and after the �-mutation in an oriented quadrilateral of
Q.
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Again, the result of a �-mutation is a seed, i.e. satisfies the triangle relations. The new
triangle relations are:

R+
t3,a

= b1a
−1
2 c3

= b1a
−1
2 d1b

−1
2 a3

= b1(R
−
t2,d

)−1a3

= −b1(R+
t2,d

)−1a3

= −b1b−1
1 d3a

−1
3 a3

= −d3
= −c2a−1

1 a1c
−1
2 d3

= −c2a−1
1 b3

= −R−
t3,a

and similarly we have
R+
t4,d

= −R−
t4,d

.

Proposition 3.2.16. Let (Q,V) be a seed, let a, d be a pair of vertices of Q with a pair of
dashed arrows between them and let (Q′,V ′) = µ�,a↔d(Q,V). We use the same notations as
in Figure 2.12. Then µ�,b↔c(Q

′,V ′) = (Q, Ṽ), where Ṽ is the same affectation as V except
for ã3 = −a3 and d̃3 = −d3.

Proof. The coordinate ã3 is by definition equal to R+
t3,d

= c1d
−1
2 b3. By replacing b3 by R+

t1,c
,

we have:

ã3 = R+
t2,d

= c1d
−1
2 b3

= c1d
−1
2 a1c

−1
2 d3

= −a3d−1
3 c2c

−1
2 d3

= −a3

Remark 3.2.17. The �-mutation not being involutive is a consequence of the arbitrary choice
of R+ instead of R− in the definition of the new variables. There is no canonical choice that
would solve this problem, however when we will deal with twisted local systems (see Section
2.2.3) these coordinates will be defined up to sign anyway.
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3.2.4 Coordinates on configurations of flags

Let (A,B,C) be an extra-decorated triple of flags in Rn. Let Q be the standard An−1-type
quiver in a triangle (see Figure 2.6). The quiver Q is a triangulated quiver on a disk with 3
external punctures (with clockwise orientation). We label those three punctures pA, pB, pC
(in that order) and think of the flags A,B,C as associated to their corresponding puncture.
Every vertex of Q is determined by a triple of non-negative integers (i, j, k) such that
i+ j + k = 2n, where i (resp. j, k) is the distance of the vertex to the puncture pA (resp.
pB, pC). This labeling is different from the one used in Section 3.2.3, a vertex of coordinates
(a, b, c) with Section 3.2.3 notations will have coordinates (i, j, k) = (n− a, n− b, n− c) in
this new notation. We denote the vertex with coordinates (i, j, k) by vi,j,k. The two vertices
closest to pA are v1,n−1,n and v1,n,n−1. Frozen vertices of Q are the vertices for which one of
the three coordinates is n.

Every non-frozen vertex vi,j,k of Q has valency three, and the three oriented triangles
containing vi,j,k are:

ti,j,k,A = vi,j,k → vi−1,j+1,k → vi−1,j,k+1 → vi,j,k

ti,j,k,B = vi,j,k → vi,j−1,k+1 → vi+1,j−1,k → vi,j,k

ti,j,k,C = vi,j,k → vi+1,j,k−1 → vi,j+1,k−1 → vi,j,k

We assign to vi,j,k the coordinates aAi+1,j,k, a
B
i,j+1,k, a

C
i,j,k+1 constructed in Section 3.2.2 with

the following cyclic order:

aAi+1,j,k < ti,j,k,C < aBi,j+1,k < ti,j,k,A < aCi,j,k+1 < ti,j,k,B < aAi+1,j,k

To remember this, ti,j,k,A is the triangle the closest to pA and aAi,j,k+1 is the coordinate the
furthest from pA, with a similar statement for the other triangles/coordinates.

Every frozen vertex vi,j,k of Q has valency two and is part of one oriented triangle t of
Q. Suppose vi,j,k is on the boundary between pA and pB (which means that k = n and
i+ j = n), the other cases being symmetric. Let bA,B be the side of t between pA and pB.
We assign to vi,j,n the variables aAi+1,j,n and aBi,j+1,n with the following cyclic ordering:

aAi+1,j,n < t < aBi,j+1,n < bA,B < aAi+1,j,n.

As an immediate corollary from Proposition 3.2.4, we have:

Proposition 3.2.18. The set of variables described above is an affectation of Q and satisfy
the triangle relations.
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Let P be a k-gon (k ≥ 3) and ∆ be a triangulation of P . Let Q be the quiver obtained
by gluing together the An−1-type quiver of each triangle of ∆ along internal edges of
∆. The vertices on the internal edges of ∆ are no longer frozen. Let (A(1), . . . , A(k)) ∈
DecConf∆k (n). Inside each triangle (i, j, k) of ∆, the triple (A(i), A(j), A(k)) is extra-decorated.
The affectation described above is compatible with the gluing of the quivers along edges of
∆. Indeed, for every pair of triangles (t1, t2) sharing an edge e, the variables affected to the
vertices on e are identical in Qt1 and Qt2 , where Qt1 (resp. Qt2) is the quiver inside t1 (resp.
t2). For every vertex v on e, the oriented triangle in Qt1 (resp. Qt2) replaces the boundary
of the triangle t1 (resp. t2) regarding the cyclic order of the variables and oriented triangles
at v.

Remark 3.2.19. Let (Q,V) be the seed described above. The complement of Q in P has two
types of connected components:

• interior of oriented triangles, which carry triangle relations

• interior of cycles with opposite orientation to P (including the regions containing an
edge of P ) which carries variables, all corresponding to maps with the same starting
space. In this case we will say this common starting space is associated to this region.
The four regions surrounding the two oriented triangle containing a vertex of valency
2 (as in Figure 2.11) are associated to four R-lines spanning a 2-dimensional subspace.
The five regions surrounding a pair of vertices with a pair of dashed arrows are
associated to five R-lines obtained from intersections of four 2-dimensional subspaces
spanning a 3-dimensional subspace.

As a corollary to Proposition 1.3.4, doing a ▷◁-mutation at a mutable vertex yield a new
set of coordinates on the same extra-decorated configuration of flags. However, doing a
�-mutation replaces an anti-oriented region with another one. This means that for two
triangulations ∆1 and ∆2 differing from a flip, we need a map from one ∆1-extra-decoration
of a configuration of flags to a ∆2-extra-decoration of the same configuration of flags. For
this, we use the isomorphism T+

AD,BC defined in 1.3.5. This isomorphism transports the
vector spanning the R-line associated to the region in-between a pair of dashed arrows to
a vector spanning the R-line associated to the region in between the new pair of dashed
arrows after the �-mutation (See Figure 2.14).

Remark 3.2.20. A configuration of k ∆-extra-decorated flags is equivalent to a ∆-extra-
decorated local system (see Section 3.3 for the definition) on a disk with k external punctures
and no internal puncture. Since on surfaces with no internal punctures twisted and non-
twisted local systems are equivalent, we will show that the set of A-coordinates determines
the configuration as a corollary of the fact that the A-coordinates of a local system can
reconstruct it.
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Figure 2.13: The flip mutation sequence for an A1-type quiver.

3.2.5 Flip mutation sequence

Let P be a quadrilateral with a triangulation ∆, let n ≥ 2 and let Q be the An−1-type
quiver on P . We now describe a sequence of mutations that transform Q into the An−1-type
quiver Q′ associated with the other triangulation ∆′ of P . The sequence of mutations is the
same as the standard one described in [FG06] Section 10.3, except that at every step we
need to apply all the possible �-mutations. We now describe the mutation sequence more
precisely. Let (A,B,D,C) be the vertices of P , such that the internal edge of ∆ is (B,C).
The frozen vertices of Q lies on the edges of P , thus are uniquely determined by a quadruple
(a, b, d, c) of integers such that only two of these integers are non-zero, and the remaining
two add to n. The two non-zero coordinates indicate the edge of P the vertex is on, and
their value indicate its location on the edge. For example, with n = 4, the frozen vertex of
coordinates (1, 3, 0, 0) is the vertex on the edge AB that is the closest to A. For all pair of
positive integers (k, ℓ) with k + ℓ = n, there are k × ℓ mutable vertices of Q that lies in the
interior the rectangle embedded in P whose vertices are (k, ℓ, 0, 0), (k, 0, 0, ℓ), (0, ℓ, k, 0) and
(0, 0, k, ℓ). We denote this set of vertices of Q by Vk,ℓ. For 1 ≤ k ≤ n− 1, the k-th step is
doing the ▷◁-mutation at every vertex of Vk,n−k, then doing once every possible �-mutation.
The flip mutation sequence is the result of the n− 1 steps. See Figures 2.13, 2.14 and 2.15.

3.2.6 Pentagon relation

Let P be a pentagon and ∆ a triangulation of P . Let Q be the An−1-type quiver associated
to (P,∆). The pentagon relation states that after having done the mutations corresponding
to five flips (without doing twice the same flip in a row) in Q, the quiver Q and the
triangulation ∆ are back to their initial state. However, given a quintuplet (A,B,C,D,E)
of flags in generic position and a ∆-extra-decoration the A-coordinates associated to this
configuration of flags is not back in their initial values after such a sequence of mutation. The
reason for this is that the extra-decoration itself changes during the sequence of mutation
that lead to a flip in the triangulation, namely during every �-mutation. In fact, after the
five flips of the pentagon relation, the basis of a subspace Ai∩Bj ∩Ck with i+ j+k = 2n+1
is in general not mapped to a basis of the same subspace. This is easily seen for n = 3:
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Figure 2.14: The flip mutation sequence for an A2-type quiver. The anti-oriented cycles are
labeled with the R-line associated to them.
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Figure 2.15: The flip mutation sequence for an A3-type quiver. The first two groups of
mutations correspond to the first step, the third and fourth groups of mutations correspond
to the second step and the last group of mutations correspond to the third step.
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after doing the flips corresponding to the pentagon relation as in Figure 2.16, the vector
spanning A2∩C2 is mapped to a vector spanning A2∩D2 and conversely the vector spanning
A2 ∩D2 is mapped to a vector spanning A2 ∩ C2. In general, the pentagon flip sequence
acts non-trivially on the extra-decoration of a fixed configuration of flags in generic position.

Figure 2.16: The sequence of flips corresponding to the pentagon relation.

3.2.7 Quasideterminants

In this section we show that the A-coordinates of an extra-decorated configuration of
flags in Rn are quasideterminants. A general introduction to quasideterminants can be
found in [GGRW05]. To get this representation of A-coordinates as quasideterminants, it
is necessary to fix a basis of the ambient space. In this section, Rn is endowed with its
canonical basis (e1, . . . , en).

Definition 3.2.21. Let M ∈ GLn(R) and let 1 ≤ i, j ≤ n. If the (j, i)-th coefficient of
M−1 is invertible, we call its inverse the (i, j)-th quasideterminant of M . Otherwise, we say
the quasideterminant does not exists. Given a matrix M of size n× n with coefficients in R
and 1 ≤ i, j ≤ n, we denote by |M |i,j the (i, j)-quasideterminant of M if it exists.

Let P be a k-gon, k ≥ 2. Let ∆ be a triangulation of P and let (A(1), . . . , A(k)) ∈
DecConf∆k (n). To realize A-coordinates as quasideterminants we need to add a technical
hypothesis on the configuration (A(1), . . . , A(k)): we suppose (A(1), . . . , A(k), F opp) is in
generic position, where F opp is the opposite standard flag, i.e. F oppi = Ren ⊕ · · · ⊕Rei+1.

Let 1 ≤ i ≤ k. Let (a
(i)
1 , . . . , a

(i)
n ) be the decoration of the flag A(i), i.e. a(i)j freely spans

A
(i)
j /A

(i)
j−1 for all 1 ≤ j ≤ n. For all 1 ≤ j ≤ n, choose a lift a(i)j of a(i)j to Aj ⊂ Rn (note that
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a
(i)
1 = a

(i)
1 ). Denote by M (i) the matrix whose columns are (a

(i)
1 | . . . |a

(i)
n ). Let 1 ≤ r ≤ n

and denote by M (i)
r the r× r submatrix of M (i) with the first r rows and the first r columns.

Since the (p, q)-quasideterminant is invariant under columns operations except for adding
a multiple of the q-th column to another, the quasideterminant m(i)

r = |M (i)
r |r,r does not

depend on the choice of the lifts a(i)j . Note that the fact that (A(i), F opp) is generic ensure

the submatrix M (i)
r is invertible, however its (p, r)-quasideterminants may not exist. Still,

generically m(i)
r exists for all 1 ≤ r ≤ n and is invertible. Thus, we can consider a modified

basis (ã
(i)
1 , . . . , ã

(i)
n ) of the flag A(i) given by ã

(i)
j = a

(i)
j (m

(i)
j )−1. Let M̃ (i) be the matrix

whose columns are (ã
(i)
1 | . . . |ã

(i)
n ). This matrix satisfies |M̃ (i)

r |r,r = 1.

Let (i, j, k) be a triangle of ∆, and let p, q, r such that p+ q + r = 2n+ 1. Let bp,q,r be the
basis of A(i)

p ∩ A(j)
q ∩ A(k)

r given by the extra-decoration. Then the matrix of aA(i)

p,q,r in the
bases bp,q,r and ã(i)p is

aA
(i)

p,q,r =
∣∣∣(ã(i)1 | . . . |ã

(i)
p−1|bp,q,r

)∣∣∣
p,p
.

3.3 Coordinates on extra-decorated local systems: the general
case

In this section we extend the construction of A-coordinates defined in Section 3.2 to twisted
local systems on ciliated surfaces. Everything works similarly, except for one thing: the data
of an extra-decoration on a twisted local system induce a technical sign difficulty. Indeed,
because of the definition of the partial abelianization procedure, it is natural to assign the
additional bases needed to an extra-decoration to the white vertices of the graph Γn. This
is the purpose of the decorating curves introduced in Section 2.3.2. However, since the local
system is twisted, the monodromy of a loop going once around a white vertex of Γn is − Id
so a section of a line bundle over such a loop is only defined up to sign. We deal with this
difficulty by instead taking a pair of sections summing to zero. Most A-coordinates become
then a pair of coordinates with opposite signs. Then being careful with the cyclic ordering
around the white vertices, we can still compute the mutations for those coordinates.

In all this section, all triangulations of an hyperbolic ciliated surface S will be without
self-folded triangles, i.e. triangles with two edges identified together in S.

3.3.1 Decoration and extra-decoration

Let k ≥ 2 and let S be a ciliated surface. Let L be a framed twisted GLn(R)-local system
on S, and let ∆ be a triangulation of S. Recall the decorating paths defined in Section
2.3.2. Let v be a white vertex of Γn and let i such that v ∈ γ(i)p . We use parallel transport
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along the path π(T ′γp,v) to transport the i-dimensional subbundle F (p)
i along T ′βv. Since

the monodromy around the loop going once around v is − Id, this defines a subbundle of
L|T ′βv . If v and v′ are grouped together, i.e. βv = βv′ , then the paths T ′γp,v and T ′γp,v′ are
homotopic so the respective parallel transport of F (i)

p induce the same subbundle over T ′βv.

Definition 3.3.1. Let L be a decorated twisted GLn(R)-local system on S and let ∆ be a
triangulation of S. Let v be a white vertex of Γn. Let p, q, r be the punctures at the vertex
of the triangle t of ∆ containing v. Let 1 < i, j, k < n such that v ∈ γ(i)p ∩γ(j)q ∩γ(k)r (i.e. the
coordinates of v in the triangle t are (i, j, k)). The three subbundles F (p)

i , F
(q)
j , F

(r)
k are well

defined along π(T ′βv), so we can define the 1-dimensional subbundle F (p)
i ∩ F (q)

j ∩ F (r)
k ⊂

L|π(T ′βv) which we denote by Fv or Fi,j,k. A ∆-extra-decoration of L with respect to the
graph Γn is the data for each white vertex v of Γn of a flat section bv of Fv that freely
spans Fv. The data of a decorated twisted GLn(R)-local system on S together with a
∆-extra-decoration is called a ∆-extra-decorated twisted GLn(R)-local system on S.

A ∆-extra-decoration of a twisted GLn(R)-local system depends on the graph Γn, which
depends on the triangulation ∆.

3.3.2 A-coordinates

Let S be a ciliated surface, ∆ a triangulation of S, n ≥ 2 and Γn the associated bipartite
graph. Let L be a ∆-extra-decorated twisted GLn(R)-local system on S. Let E be the
abelianized R×-local system on Σn constructed in Section 2.5. The decoration and ∆-extra-
decoration of L induce along all the decorating curves of Σn a flat section of E . Indeed by
construction, E is isomorphic to Fv in the neighborhood of a non-peripheral white vertex v
in Σn, and isomorphic to F (p)

i /F
(p)
i−1 in the neighborhood of the i-th lift pi of a puncture p.

Let v be a white vertex of Γn, p, q, r the punctures at the vertices of the triangle containing
v and (i, j, k) the coordinates of v in the triangle (p, q, r). Without loss of generality suppose
i > 1. Let γp,v be a joining path from T ′βpi to T ′βv. The fiber of E above the end point
T ′γp,v(1) has a single basis given by the decoration of L, namely b(p)i .

If the vertex v is peripheral, for instance if v is on γ(1)q , then the fiber of E above T ′βv also
have a single basis given by the decoration, namely b(q)1 . Let a(p)i,j,k be the holonomy in E of

the path T ′γp,v in the bases b(q)1 and b(p)i . The A-coordinate associated to the couple (p, v)
is the singleton

a
(p)
i,j,k =

{
a
(p)
i,j,k

}
.

If the vertex v is not peripheral, then the fiber of E above the starting point T ′γp,v(0)
have two bases given by bv(x1) and bv(x2), where x1, x2 ∈ E(v) are such that T ′γp,v(0) =
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T ′βv(x1) = T ′βv(x2). They satisfy bv(x1) + bv(x2) = 0. Let a(p)i,j,k(xr) be the holonomy in E
of the path T ′γp,v in the bases bv(xr) and b(p)i for r = 1, 2. The A-coordinate associated to
the couple (p, v) is the pair

a
(p)
i,j,k =

{
a
(p)
i,j,k(x1), a

(p)
i,j,k(x2)

}
.

This pair satisfies a(p)i,j,k(x1) + a
(p)
i,j,k(x2) = 0 but there is no canonical choice of a ”positive”

coordinate.

Note that on a white vertex v of coordinates (i, j, k) in the triangle (p, q, r) the map
σ : E(v) → E(v) defined in Section 2.3.2 induce a cyclic order on the A-coordinates
associated to (p, v), (q, v) and (r, v). Again, we see this cyclic order on the coordinates as a
map σ such that σ#E(v) = Id. For instance if x1 ∈ E(v) is such that T ′γp,v(1) = x1 and
σ(x1) = x2 = T ′γq,v(1) then σ(a(p)i,j,k(x1)) = a

(q)
i,j,k(x2).

Proposition 3.3.2. Let S be a ciliated surface, ∆ a triangulation of S, n ≥ 2 and
t = (p, q, r) a triangle of ∆. Let L be a ∆-extra-decorated twisted GLn(R)-local system on S.
Let i, j, k ∈≤ n+ 1 s.t. i+ j + k = 2n+ 2 and let a(q)i−1,j,k ∈ a

(q)
i−1,j,k, a

(p)
i,j,k−1 ∈ a

(p)
i,j,k−1 and

a
(r)
i,j−1,k ∈ a

(r)
i,j−1,k. The A-coordinates satisfy the following relations, called triangle relations:

σ(a
(q)
i−1,j,k).

(
a
(q)
i−1,j,k

)−1
.σ(a

(p)
i,j,k−1).

(
a
(p)
i,j,k−1

)−1
.σ(a

(r)
i,j−1,k).

(
a
(r)
i,j−1,k

)−1
= 1

Proof. These coordinates correspond to holonomies of paths in the R×-twisted local system
E on Σn. The left-hand term correspond to the holonomy along a contractible loop in T ′Σn,
thus is trivial.

3.3.3 Quiver and twisted affectations

Let Q be a triangulated quiver on S. To account for the A-coordinates being defined up
to sign, we slightly alter the definition of an affectation of Q. For this, the cycles in the
quiver that are oriented with the opposite orientation to S will carry additional variables.
Unfortunately, dealing with this sign indeterminacy greatly complexify the notations, even
though the situation is very similar to the case of configurations of flags exposed in Section
3.2.3. All the following definitions are adaptations of the definitions in Section 3.2.3 to the
case where many of the coordinates are defined ”up to sign”.

Definition 3.3.3. Let S be a marked surface. An triangulated quiver on S is a quiver Q
embedded in S such that:

• Q has no trivial loops
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• The (possibly empty) subset of vertices of Q lying on the boundary of S are called
frozen.

• Each vertex of Q has as many arrows going in and going out of it. We define the
valency of a vertex v, denoted by val(v), to be the number of arrows going to v if v is
not frozen and this number plus one if v is frozen

• There are two types of arrows in Q, they are called either plain or dashed

• At each vertex of Q, there exists a pairing between arrows going in and arrows going out,
such that each pair of arrows is part of an oriented triangle for which the orientation
agrees with the orientation on S (in the following, an oriented cycle in an embedded
quiver will always suppose matching orientation with the surface), and there are no
edges inside such oriented triangles

• If an arrow v → v′ is dashed, then there is another dashed arrow v′ → v and those are
the only arrows between v and v′

• Each oriented cycle of plain arrows of Q has an internal oriented triangulation of
dashed arrows, and every dashed arrow belongs to one such triangulation

• If there is a plain arrow v → v′, then there is no arrow v′ → v

• There is at most one arrow from a vertex v to another vertex v′

Definition 3.3.4. Let Q be a triangulated quiver on S. The complement of Q in S is a
disjoint union of open disks, open punctured half-disks and open punctured disks, all with
an oriented boundary. We call a cycle in Q with opposite orientation to the one on S which
is the boundary of a disk without puncture an anti-cycle of Q.

Remark 3.3.5. Let Q be a triangulated quiver on S. Similarly to Remark 3.2.19, the
complement of Q in S has three types of connected components:

• interior of oriented triangles, which carry triangle relations

• interior of cycles with opposite orientation to S (including the regions that contain
portions of the boundary of S without punctures), which will carry coordinates with
sign indeterminacy

• Punctured disks or half-disks on the boundary of S, which will carry coordinates with
well-defined signs

A twisted affectation of Q is an affectation of Q, except the variables a1(v), . . . , ar(v) ∈ R×

affected to a vertex v of Q are replaced by sets a1, . . . , ar of cardinal either 1 or 2. Moreover,
we add the data of the sign indeterminacy: for each anti-cycle c = (v1, . . . , vr) of Q and for
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each vertex vk of c there is exactly one coordinate aik(vk) in the interior of c, i.e. such that
tk < aik(vk) < tk+1 where tk (resp. tk+1) is the triangle of Q containing (vk−1, vk) (resp.
(vk, vk+1)). We set for each vertex vk of c a bijection σk : aik(vk)→ aik−1

(vk−1) such that
σr = τk, where τk is either Id : aik(vk) → aik(vk) if #aik(vk) = 1 or the transposition if
#aik(vk) = 2, and where σr is a slight abuse of notation made by omitting the subscript k
of the corresponding variable.

Remark 3.3.6. For any consecutive coordinates a → b inside an anti-cycle the product
σ(a)a−1 does not depend on the choice of a ∈ a. Indeed, the choice of a ∈ a will change the
sign of both a and σ(a) ∈ b. To simplify the notation in the formulas, we will write ba−1

instead of σ(a)a−1. Similarly, we will write ab−1 instead of aσ(a)−1. These products are
equal to Goncharov-Kontsevich coordinates defined in [GK22].

Remark 3.3.7. When defining the map σ, it is sufficient to define the image of one element
inside every coordinate. Indeed, either in every coordinate there is at most two elements,
and knowing the image of one element is enough to determine a bijection between sets of
cardinal 1 or 2.

Definition 3.3.8. Let Q be a triangulated quiver on S and V a twisted affectation of Q.
We say V satisfies the triangle relations if for every oriented triangle t of Q, we have

(c1b
−1
2 )(a1c

−1
2 )(b1a

−1
2 ) = 1

where the variable are defined as in Figure 3.17.

A twisted seed is the data of a couple (Q,V) where Q is a triangulated quiver on S and V is
a twisted affectation on Q satisfying the triangle relations.

Figure 3.17: The variable around an oriented triangle of Q.

Definition 3.3.9. Let (Q,V) be a twisted seed on S. Let x be a non-frozen vertex of Q
of valency 2 and let a, b, c, d be the surrounding vertices as in Figure 3.18. Let b1 ∈ b1

and c2 ∈ c2. We say that x is mutable (or that the ▷◁-mutation at x is admissible) if the
elements

x′1(b1) = c1x
−1
2 b1 + d2x

−1
1 σ(b1)

x′2(c2) = b2x
−1
1 c2 + a1x

−1
2 σ(c2)
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are invertible in R, were the variables ai,bi, ci,di,xi are defined as in Figure 3.18. If x is
mutable, we set

x′
1 =

{
x′1(b1) | b1 ∈ b1

}
x′
2 =

{
x′2(c2) | c2 ∈ c2

}
Note that if there are two elements in b1 (resp. c2), then there are also two elements in x′

1

(resp. x′
2).

Figure 3.18: The situation before and after the ▷◁-mutation at the vertex x.

Remark 3.3.10. Each of the element in x1 (resp. x2) depends on the choice of an element in
b1 (resp. c2). However the coordinate x′

1 (resp. x′
2) which is either a singleton or a pair

depends only on b1 (resp. c2).

Definition 3.3.11. Let (Q,V) be a twisted seed on S. Let x be a non-frozen vertex of Q of
valency 2. If x is mutable, the ▷◁-mutation of (Q,V) at x is a new seed (Q′,V ′) = µ▷◁,x(Q,V)
defined as follows:

• The new quiver Q′ is obtained by reversing the direction of the arrows incident to x
and adding the four plain arrows needed to complete the triangles created. If this
process creates a pair of plain arrows between two vertex with opposite directions,
then if this pair lies inside an oriented plain cycle of the quiver we change the pair of
arrows to be dashed, and if not we remove the pair of arrows.

• The two A-coordinates x1,x2 at the vertex x are replaced by the new variables x′
1 and

x′
2 defined above. The new cyclic ordering at the vertex x is described on Figure 3.18.

• The new map σ′ is defined as follows:

σ′(a1) = σ2(a1) ∈ c1, a1 ∈ a1
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σ′(d2) = σ2(d2) ∈ b2, d2 ∈ d2

σ′(b1) = x′1(b1), σ
′(x′1(b1)) = σ(b1)

σ′(c2) = x′2(c2), σ
′(x′2(c2)) = σ(c2)

and σ′ coincides with σ for any coordinate y /∈ {a1,d2,b1, c2,x
′
1,x

′
1}.

Definition 3.3.12. Let (Q,V) be a seed on S. Let a and d two vertex of Q with a pair
of dashed arrows between them. Let b, c ∈ Q0 such that the oriented triangle containing
d→ a (resp. a→ d) is t1 = d→ a→ b→ d (resp. t2 = a→ d→ c→ a), see Figure 3.19.
The �-mutation of (Q,V) at the pair of arrows a↔ c is a new seed (Q′,V ′) = µ�,a↔d(Q,V)
defined as follows:

• The pair of dashed arrow is part of an internal triangulation of a plain oriented cycle
of length 4. The new quiver Q′ is obtained by doing a flip of this edge in the internal
triangulation:

Q′
1 = (Q1 \ {a→ d, d→ a}) ∪ {b→ c, c→ b} .

The new arrows are also dashed.

• The valency of a and c is decreased by 1 so the variables a3 and d3 in between the
removed dashed arrows are also removed. We then need to add two new variables in
between the new pair of dashed arrows, see Figure 3.19. The new added variable are:

c3(a3) = d1b
−1
2 a3 = a2b

−1
1 σ(a3), a3 ∈ a3

b3(d3) = a1c
−1
2 d3 = d2c

−1
1 σ(d3), d3 ∈ d3

• The new map σ′ is defined as follows:

σ′(c3(a3)) = b3(σ(a3)) ∈ b3

σ′(b3(d3)) = c3(σ(d3)) ∈ c3
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Figure 3.19: The situation before and after the �-mutation in an oriented quadrilateral of
Q.

Proposition 3.3.13. If (Q,V) is a twisted seed on S, then the pair (Q′,V ′) obtained after
any admissible ▷◁-mutation or any �-mutation is a twisted seed on S.

3.3.4 Twisted affectation associated to an extra-decorated twisted local
system

Let S be a ciliated surface and let ∆ be a triangulation of S. Let n ≥ 2 and let Q be the
An−1-type quiver on (S,∆). Let t be a triangle of ∆ and let (p, q, r) be the punctures at
the vertices of t. Let L be a ∆-extra-decorated twisted local system on S.

Inside t, every vertex of Q is determined by a triple of positive integers (i, j, k) such that
i + j + k = 2n and i, j, k ≤ n, where i (resp. j, k) is the distance of the vertex to the
puncture p (resp. q, r). We denote the vertex with coordinates (i, j, k) by vi,j,k. The two
vertices closest to p are then v1,n−1,n and v1,n,n−1.

Every non-frozen vertex vi,j,k of Q that is not on an edge of t has valency three, and the
three oriented triangles containing vi,j,k are:

tpi,j,k = vi,j,k → vi−1,j+1,k → vi−1,j,k+1 → vi,j,k

tqi,j,k = vi,j,k → vi,j−1,k+1 → vi+1,j−1,k → vi,j,k

tri,j,k = vi,j,k → vi+1,j,k−1 → vi,j+1,k−1 → vi,j,k

We assign to vi,j,kthe coordinates a
(p)
i+1,j,k,a

(q)
i,j+1,k,a

(r)
i,j,k+1 with the following cyclic order:

a
(p)
i+1,j,k < tri,j,k < a

(q)
i,j+1,k < tpi,j,k < a

(r)
i,j,k+1 < tqi,j,k < a

(p)
i+1,j,k
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To remember this, tpi,j,k is the triangle the closest to p and a
(p)
i,j,k+1 is the coordinate the

farthest from p, with a similar statement for the other triangles/coordinates.

If one of the edges of t is a boundary component then the vertices of Q that lies on this
edge are frozen. Suppose vi,j,k is on the boundary between p and q (which means that
k = n and i+ j = n), the other cases being symmetric. Then vi,j,n is part of exactly one
oriented triangle tri,j,n of Q. Let bp,q be the boundary between p and q. We assign to vi,j,n
the variables a

(p)
i+1,j,n and a

(q)
i,j+1,n with the following cyclic ordering:

a
(p)
i+1,j,n < tri,j,n < a

(q)
i,j+1,n < bA,B < a

(p)
i+1,j,n.

It remains to assign variables to non-frozen vertices that lie on an edge of t, which is then
an edge shared by two triangles t = (p, q, r) and t′ = (q, p, s), so the cyclic order on the
punctures is (p, s, q, r). Such a vertex v has coordinates (i, j, n) in t with i + j = n and
coordinates (j, i, n) in t′. The two oriented triangles of Q containing v are tri,j,n in t and

t′sj,i,n in t′. We assign to v the variables a
(p)
i+1,j,n(t) = a

(p)
j,i+1,n(t

′) and a
(q)
i,j+1,n(t) = a

(q)
j+1,i,n(t

′)
with the following cyclic ordering:

a
(p)
i+1,j,n(t) < tri,j,n < a

(q)
i,j+1,n < t′sj,i,n < a

(p)
i+1,j,n(t).

As an immediate corollary from Proposition 3.3.2, we have:

Proposition 3.3.14. The set of variables described above is an affectation of Q and satisfy
the triangle relations.

Remark 3.3.15. The coordinates defined by Goncharov and Kontsevich in [GK22] are
products of two of the A-coordinates described here, as in Remark 3.3.6. As such, they do
not require an extra-decoration but only a decoration, and the sign indeterminacy doesn’t
appear. However, the mutations formulas described in [GK22] are closer to the mutations
formulas for Q-coordinates described in Section 3.1.5.



Further considerations

Here is a non-exhaustive list of directions in which expand the work presented in this
manuscript, as well as question arising naturally:

• Is it possible to have a geometric interpretation of the A-coordinates obtained by
mutations of the quiver that are not part of the flip sequence? Without such
interpretation, we would need another approach to define a generalization of Berenstein-
Retakh algebra for coordinates on GLn(R)-local systems.

• Is there similar non-commutative coordinates on local systems for other Lie groups
and/or other parabolic subgroups? A particularly interesting case of this would be
for G = SO(p, q), p ̸= q with a framing which takes values in the flag variety G/PΘ,
where PΘ is the parabolic subgroup such that (G,PΘ) admits a Θ-positive structure.
Such coordinates would mix both commutative and non-commutative behaviors.

• Is there an additional structure on the space of A-coordinates, such as the symplectic
structure on the space of Fock-Goncharov A-coordinates or the non-commutative
2-form on the space of Goncharov-Kontsevich coordinates?

• Is it possible to describe the elementary mutations as ”mutations” of the spectral
surface and of the spectral network, such that the intermediary A-coordinates arising
in the middle of the flip mutation sequence would be also holonomies of certain paths
in the abelianized local system?

• Does the partial abelianization procedure also hold for local systems whose group is
not of type A? Generalizations of spectral networks and abelianization already exists
for such groups, see [IM21].
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A-sesquilinear pairing, 43
non-degenerate, 44

R-line, 3
GLn(R)-local system, 11

k-dimensional subbundle, 11
framed
∆-generic, 13

framing, 12
morphism, 12
regular Rk-subbundle, 11
regular section, 11
twisted, 13
∆-extra-decoration, 85
∆-generic, 13
decoration, 14
framing, 13
semi-decoration, 67

A-coordinates, 53, 69
σ(-anti)-symmetric, 41
k-dimensional subspace, 3
n-subdivision of a triangle, 15
(ideal) triangulation, 11

anti-involution, 41
arc, 50

composable, 50

basis, 4
branch point, 14

ciliated surface, 10
morphism, 50

congruence, 41
cyclically pinched 1-relator group, 51

decorating curves, 22
direct system, 60

edge
dashed, 71
external, 11
internal, 11
plain, 71

filtered set, 60
flag, 5

configuration
∆-extra-decoration, 68
∆-generic, 68
extra-decoration, 68
generic position, 5

decoration, 5
flip, 11

group algebra, 51

hermitian algebra, 41

internal/external puncture, 10
involutive R-algebra, 41
isotropic

A-line, 42
element, 42
framing, 43

joining paths, 23

Kashiwara-Maslov map, 7

linearly independent elements, 4
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mutation
▷◁-mutation, 73, 89
�-mutation, 76, 90
admissible, 73, 88

parallel transport, 12
partial abelianization, 39
partial non-abelianization, 38
positively oriented intersection, 30
punctured half-disk, 10

quasideterminant, 83
quiver

affectation, 72
anti-cycle, 87
internal oriented triangulation, 70
oriented cycle, 71, 87
triangulated, 70, 86
twisted affectation, 87

ramified covering, 14
rank, 3
regular element, 4
residually finite group, 58

seed, 73
twisted, 88

signature, 42
sink, 26
source, 26
spectral lifts, 29
spectral network, 24

line, 24
symplectic

basis, 42
decoration, 43
group, 42

transverse subspaces, 4
triangle, 11, 50
triangle elements, 72
triangle relation, 69, 72, 86

twisted path algebra, 28
twisted symplectic local system, 43

decorated, 43
framed, 43

unit tangent bundle, 10
unitary group, 41

vertex
mutable, 73
peripheral white, 22
valency, 71, 86
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