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– Nicole BÄUERLE, Professeure, Karlsruhe Institute of Technology

– Mireille BOSSY, Directrice de Recherche, INRIA Sophia-Antipolis
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Résumé

Dans cette thèse, nous étudions l’apprentissage par renforcement à champ moyen (MFRL)
avec une perspective de contrôle optimal. Nous nous intéressons au cas où un grand nombre
d’agents majoritairement symétriques interagissent via leurs états pour atteindre un objectif, en
optimisant généralement un critère. Les agents peuvent être en concurrence ou en collaboration
les uns avec les autres.

Dans le premier chapitre de la thèse, nous proposons une introduction générale à
l’apprentissage par renforcement à champ moyen. Nous introduisons quelques idées fondamentales
de l’apprentissage par renforcement, des jeux à champ moyen et du contrôle à champ moyen qui
sont des prérequis pour la suite. Nous avons également besoin des notions d’équilibre de Nash, de
fonction valeur et de limite champ moyen, que nous introduisons avec quelques techniques pour
résoudre des modèles sans incertitude et sans apprentissage. Ensuite, nous motivons
l’apprentissage multi-agent par renforcement dans la limite champ moyen, à la fois compétitif et
collaboratif. Pour évaluer la portée de nos résultats, nous mettons en évidence les difficultés de
cette voie de recherche. Enfin, une vue intuitive de nos principales contributions est donnée.

Le but du deuxième chapitre de la thèse est de démontrer que le bruit commun peut servir
comme un bruit d’exploration pour apprendre la solution d’un jeu à champ moyen. Ce concept
est illustré ici à travers un modèle linéaire quadratique, pour lequel une forme appropriée de bruit
commun a déjà été prouvée d’être capable à restaurer l’existence et l’unicité. Nous allons encore
plus loin et prouvons que la même forme du bruit commun peut forcer la convergence de
l’algorithme d’apprentissage appelé !fictitious play", sans aucune structure potentielle ou
monotone supplémentaire. Plusieurs exemples numériques sont fournis pour soutenir notre
analyse théorique.

L’objet du troisième chapitre est de traiter une méthode Q-learning pour les processus de
décision Markoviens, définis sur des espaces continus. L’algorithme s’appuie sur des idées de
régression par noyau, qui ont été introduites à l’origine dans la littérature, mais nous améliorons
l’analyse en rendant les arguments rigoureux et quantitatifs. Le cœur de notre travail est
d’analyser la convergence de l’algorithme et, en particulier, de clarifier l’impact des propriétés de
non-dégénérescence des transitions des processus de décision Markoviens sur le taux de
convergence. À titre de résultat clé, nous parvenons à surmonter la malédiction de la dimension
en supposant que la fonction valeur-action est suffisamment régulière (par rapport à la dimension
effective). Comme application, nous illustrons comment cette approche s’applique à
l’apprentissage par renforcement pour des problèmes de contrôle à champ moyen (ou processus de
décision Markoviens à champ moyen) définis sur les espaces des états finis. Dans ce contexte, les
transitions sont en effet non-dégénérées en présence d’une forme appropriée de bruit commun. En
particulier, très similaire à l’analyse réalisée au chapitre précédent, le bruit commun peut servir
comme un bruit d’exploration supplémentaire dans l’apprentissage à champ moyen pour des
modèles sans bruit commun.

Nous concluons la thèse par deux problèmes ouverts à poursuivre en forme de pistes de travail,
dans le même esprit que les résultats présentés jusqu’à ici.

Mots clés: jeux à champ moyen, contrôle à champ moyen, processus de décision Markoviens,
équilibre de Nash, Q-learning, bruit d’exploration, bruit commun
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Abstract

In this thesis we study Mean Field Reinforcement Learning via an optimal control perspective.
We are interested in cases where a large number of mostly symmetrical agents interact through
their states in order to achieve some objective, mostly optimizing some criterion. The agents can
compete or collaborate with each other.

In the first chapter of the thesis, we offer a general introduction to mean field reinforcement
learning. We introduce some basic ideas of Reinforcement Learning, Mean Field Games and Mean
Field Control that are prerequisites for the rest. We also need the notions of Nash equilibrium,
value function and mean field limit, that we introduce along with some techniques for solving
models when there is no uncertainty and no learning. Next, we motivate Multi Agent
Reinforcement Learning in the mean field limit both competitive and collaborative. To put our
results in perspective we highlight the difficulties of this research path. Finally an intuitive
overview of our main contributions is given.

The goal of this second chapter of the thesis, is to demonstrate that common noise may serve
as an exploration noise for learning the solution of a mean field game. This concept is here
exemplified through a toy linear-quadratic model, for which a suitable form of common noise has
already been proven to restore existence and uniqueness. We here go one step further and prove
that the same form of common noise may force the convergence of the learning algorithm called
‘fictitious play’, without any further potential or monotone structure. Several numerical examples
are provided in order to support our theoretical analysis.

The purpose of the third chapter is to address a Q-learning method for Markov decision
processes defined over continuous spaces. The algorithm relies upon ideas for kernel regression,
that have originally been introduced in the literature but we refine the analysis making the
arguments rigorous and quantitative. The very thrust of our work is to analyse the convergence of
the algorithm and in particular to clarify the impact of the non-degeneracy properties of the
transitions of the Markov decision processes onto the rate of convergence. As a key result, we
succeed to overcome the curse of dimensionality by assuming that the action value function is
regular enough (with respect to the effective dimension). As an application, we illustrate how this
approach applies to reinforcement learning for mean field control problems (or mean field Markov
decision processes) defined on finite state spaces. In this setting, the transitions are indeed
non-degenerate in presence of a convenient form of common noise. In particular, very similar to
the analysis achieved in the previous chapter, the common noise can serve as an additional
exploration noise in mean field learning for models without common noise.

We conclude the thesis, with two open problems for future investigation in the same spirit as
the results presented so far.

Key words: Mean Field Games, Mean Field Control, Markov Decision Process, Nash
Equilibrium, Q-learning, Exploration Noise, Common Noise
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Ιθάκη

Κ.Π ΚΑΒΑΦΗ

Σα βγεις στον πηγαιμό για την Ιθάκη,

να εύχεσαι να ΄ναι μακρύς ο δρόμος,

γεμάτος περιπέτειες, γεμάτος γνώσεις.

Τους Λαιστρυγόνας και τους Κύκλωπας,

τον θυμωμένο Ποσειδώνα μη φοβάσαι,

τέτοια στον δρόμο σου ποτέ σου δεν θα βρεις,

αν μέν΄ η σκέψις σου υψηλή, αν εκλεκτή

συγκίνησις το πνεύμα και το σώμα σου αγγίζει.

Τους Λαιστρυγόνας και τους Κύκλωπας,

τον άγριο Ποσειδώνα δεν θα συναντήσεις,

αν δεν τους κουβανείς μες στην ψυχή σου,

αν η ψυχή σου δεν τους στήνει εμπρός σου.

Να εύχεσαι να ΄ναι μακρύς ο δρόμος.

Πολλά τα καλοκαιρινά πρωιά να είναι

που με τι ευχαρίστηση, με τι χαρά

θα μπαίνεις σε λιμένας πρωτοϊδωμένους·

να σταματήσεις σ΄ εμπορεία Φοινικικά,

και τες καλές πραγμάτειες ν΄ αποκτήσεις,

σεντέφια και κοράλλια, κεχριμπάρια κι έβενους,

και ηδονικά μυρωδικά κάθε λογής,

όσο μπορείς πιο άφθονα ηδονικά μυρωδικά·

σε πόλεις Αιγυπτιακές πολλές να πας,

να μάθεις και να μάθεις απ΄ τους σπουδασμένους.

Πάντα στον νου σου να ΄χεις την Ιθάκη.

Το φθάσιμον εκεί είν΄ ο προορισμός σου.

Αλλά μη βιάζεις το ταξίδι διόλου.

Καλύτερα χρόνια πολλά να διαρκέσει·

και γέρος πια ν΄ αράξεις στο νησί,

πλούσιος με όσα κέρδισες στον δρόμο,

μη προσδοκώντας πλούτη να σε δώσει η Ιθάκη.

Η Ιθάκη σ΄ έδωσε τ΄ ωραίο ταξίδι.

Χωρίς αυτήν δεν θα ΄βγαινες στον δρόμο.

΄Αλλα δεν έχει να σε δώσει πια.

Κι αν πτωχική την βρεις, η Ιθάκη δεν σε γέλασε.

΄Ετσι σοφός που έγινες, με τόση πείρα,

ήδη θα το κατάλαβες οι Ιθάκες τι σημαίνουν.
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Ithaque
C. P. CAVAFY

traduction de Marguerite Yourcenar

Quand tu partiras pour Ithaque,
souhaite que le chemin soit long,
riche en péripéties et en expériences.
Ne crains ni les Lestrygons, ni les Cyclopes,
ni la colère de Neptune.
Tu ne verras rien de pareil sur ta route si tes pensées restent hautes,
si ton corps et ton âme ne se laissent effleurer
que par des émotions sans bassesse.
Tu ne rencontreras ni les Lestrygons, ni les Cyclopes,
ni le farouche Neptune,
si tu ne les portes pas en toi-même,
si ton cœur ne les dresse pas devant toi.

Souhaite que le chemin soit long,
que nombreux soient les matins d’été,
où avec quelles délices, quelle joie, tu pénètreras
dans des ports vus pour la première fois.
Fais escale à des comptoirs phéniciens,
et acquiers de belles marchandises
nacre et corail, ambre et ébène,
et mille sortes d’entêtants parfums.
Acquiers le plus possible de ces entêtants parfums.
Visite de nombreuses cités égyptiennes,
et instruis-toi avidement auprès de leurs sages.

Garde sans cesse Ithaque présente à ton esprit.
Ton but final est d’y parvenir,
mais n’écourte pas ton voyage
mieux vaut qu’il dure de longues années,
et que tu abordes enfin dans ton ı̂le aux jours de ta vieillesse,
riche de tout ce que tu as gagné en chemin,
sans attendre qu’Ithaque t’enrichisse.

Ithaque t’a donné le beau voyage
sans elle, tu ne te serais pas mis en route.
Elle n’a plus rien d’autre à te donner.

Même si tu la trouves pauvre, Ithaque ne t’a pas trompé.
Sage comme tu l’es devenu à la suite de tant d’expériences,
tu as enfin compris ce que signifient les Ithaques.
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Ithaka
C. P. CAVAFY

translated by Edmund Keeley

As you set out for Ithaka
hope your road is a long one,
full of adventure, full of discovery.
Laistrygonians, Cyclops,
angry Poseidon—don’t be afraid of them
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians, Cyclops,
wild Poseidon—you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.

Hope your road is a long one.
May there be many summer mornings when,
with what pleasure, what joy,
you enter harbors you’re seeing for the first time
may you stop at Phoenician trading stations
to buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfume of every kind—
as many sensual perfumes as you can
and may you visit many Egyptian cities
to learn and go on learning from their scholars.

Keep Ithaka always in your mind.
Arriving there is what you’re destined for.
But don’t hurry the journey at all.
Better if it lasts for years,
so you’re old by the time you reach the island,
wealthy with all you’ve gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.
Without her you wouldn’t have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you’ll have understood by then what these Ithakas mean
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Jung, Boris Schminke and Sveta, Mehdi Zäıdi, Ryan Cotsakis, Dimitris Zekakos Xipolias, Dimitris
Rountos, Thomas and Zeta Oikonomakou, Guilia Mezadri, Kleopatra Rizou, Sofia Athanasiou,
Grigoris Liaskas, Panagiotis Kakalmanos and Nina Kazakou, Alejandro Orozco, Maria Protop-
sali, Pavlos and Evi Lampadari, Alexandros and Maria Petreli, Eleftheria Tsitsa and Charalampos
Posonidis, Sotiris Mpourmpos, Giorgos Ritsos, Giorgos and Dimitris Asimakakis, Sensi Mattia and
Alexandra Polymenopoulou.

Last but not least, my biggest, ”bestest” ευχατιστώ goes to my family and Valia for the love
and affection throughout my life. There are no words to describe my gratitude.

x



Preface

This thesis tries to target mathematical problems that are motivated by Reinforcement Learning
but also on the opposite side to offer mathematical insights about solutions to Reinforcement
Learning problems, especially in the Multi Agent case. Even though mean field models are all
around us, people interact in a ”mean field” way every day and examples can be found in other
sciences rather easily, the mathematical treatment of the subject is quite advanced and technical
and thus not accessible for the non-specialized readers. For this reason, while the contributions
themselves might be quite technical, I provide a long, informative and non-technical introduction,
focusing on the intuition behind the models and the ”whys” rather than the ”hows”. My intension
is to provide a useful document, reference for specialized and non-specialized readers.

In the introduction I try to give an overview of some main ideas, their connections as well as
motivation for the research line presented in this thesis. To streamline the text, we start with
problem definition, move on to description of the main tools available for solutions and conclude
with the challenges and limitations that we face. Throughout this line, I look forward to highlight
the answers that our contributions bring as well as the new questions they generate.

I hope, through reading this thesis the non-specialised reader would get an appreciation for the
techniques employed and some perspective about potential applications and synergies of mathe-
matics and artificial intelligence. For the experts we have reserved specific introductions in each
chapter that makes them self-contained and as independent as possible.

Last, in the final chapter of the thesis I provide two research questions that I find interesting,
along with references and some strategies. While the methods are not new for standard stochastic
control problems and reinforcement learning, the adaptation to the space of probability measures
is and thus opens new questions and requires new tools to be developed.
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Chapter 1

Introduction

In this thesis we are going to discuss about mathematics related to Artificial Intelligence (AI)
and more specifically to Mean Field Reinforcement Learning (MF-RL). We focus our attention in
situations where there is a plethora of identical/ symmetrical agents that interact, either to compete
in a game or collaborate to solve collectively a problem, we refer to the first case as a Mean Field
Game and to the second one as a Mean Field Control.

In the next sections of this introductory chapter we will provide more details for the non
specialist reader as a non technical introduction to the domain of our research. Our goal is to
explain the great importance of MF-RL among AI paradigms especially for our modern world and
elaborate on the main challenges that this line of research faces as we propose novel solutions and
deepen our understanding of AI.

1.1 What are we talking about in this thesis?

1.1.1 Deus Ex Machina

In ancient greek drama (called tragodia), whenever there was an impasse in the plot it was a
common playwriting technique to make a god appearing out of nowhere in order to give a solution
to the problem. Nowadays, Artificial Intelligence seems to preform a similar task offering solutions
to problems that previously were consider impossible. Consequently, there has been enormous
interest for AI followed by an explosion of research articles, books, conferences. To satisfy interest
from the general public, educational/review articles appear even on daily newspapers.

Here however, we do not attempt a general introduction to AI and refrain from entering into
a discussion about defining what it is and what is not. The reader can think of all the different
approaches and algorithms as generic that can be applied to specific problems and in general dealing
with an ideal agent/robot that performs a task.

In our version of Reinforcement Learning, the aforementioned ideal agent/robot/computer
tries to achieve a goal of either minimization of a cost or maximization of a reward while interacting
with an unknown environment, key notions are the state of the agent and the action she chooses.
Usually the interaction of the agent with the environment reveals her state (which is unknown
and thus the greater difference with the other major paradigms of Machine Learning) and the
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instantaneous reward or cost see Figure 1.1. One additional key notion is a policy that essentially
is a function that tells the agent what to do on each given state.

EnvironmentAgent

action at

state xt

reward rt

Figure 1.1: Standard Reinforcement Learning paradigm

We could roughly separate the development of RL in two 3 periods, even though the boundaries
are not so distinct.

1. Early Work (1950s-1960s): The foundations of reinforcement learning can be traced back
to the work of Richard Bellman, who developed dynamic programming techniques in the
1950s. His work laid the mathematical foundations for solving sequential decision-making
problems. However, the computational limitations of the time made it challenging to apply
these methods to complex real-world problems.

2. Temporal Difference Learning (1980s): In the 1980s, researchers such as Christopher
Watkins, Andrew Barton, Richard Sutton, Dimitris Bertsekas and John Tsitsiklis made sig-
nificant contributions to reinforcement learning leading to the introduction of the concept
of temporal difference (TD) learning, which became a fundamental building block for RL
algorithms.

3. Deep Reinforcement Learning (2010s): The field of reinforcement learning gained signif-
icant attention and progress with the advent of deep learning techniques. Deep reinforcement
learning (DRL) involves training neural networks as efficient functions approximations. This
led to groundbreaking achievements, such as AlphaGo by DeepMind, which demonstrated
superhuman performance in the game of Go.

Although impressive progress has been achieved in the last 20-30 years, still many challenges remain.
We could articulate 3 major types:

1. Curse of dimensionality: as it was called by Bellman himself. When the state space and
or the action space is large e.g. in chess the number of legal positions is 1043 and for the legal
actions based on a position the average is 30 ´ 35, it’s clear that just keeping everything in
memory and trying to test all possible paths for the evolution of the game is impossible and
even if it was, it would have been highly inefficient.

2. Sample efficiency: RL algorithms often need a large number of interactions with the envi-
ronment to learn effective policies, which can be impractical or costly in real-world scenarios.
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When we use RL to solve games that can be simulated with minimum to no cost, sample
efficiency is not really and issue but in robotic control like drones or autonomous vehicles
samples can be scares or too costly to obtain.

3. Generalization: In this category we group various types of challenges. In the case of multi-
agent systems we need to generalize the knowledge of the system and find policies that could
be applied by the whole population. In the case of multi-environment systems we need to learn
in one environment and generalize to others. Even in single environment and agent cases we
might need to scale our solution or incorporate new elements for example in financial market
models.

1.1.2 Reinforcement Learning as a Stochastic Control problem

During the early years of development RL was known mostly as stochastic optimal control and
the term appeared later by Richard S. Sutton in the late 70s. In fact one of the most celebrated
techniques that are being used to solve RL problems and inspired lot’s of other methods, dynamic
programming principle is due to R. Bellman from the 50s.

While stochastic control mainly aims to optimize a function given some underlying stochastic
dynamics to achieve a specific target, when we control part of the drift and of volatility in the
diffusion we need to take into account that our actions will not only affect how we steer the system
but also the intensity of the future perturbations and this plays a role in the techniques employed to
solve the problem. However, in the case of a reinforcement learning problem where we don’t known
the whole state space (or part of it) or the dynamics, or the cost/benefit function, the situation is
quite different because we need to explore in order to get an optimal solution.

Our goal in this section is to provide an introduction to RL as a stochastic control problem and
draw some interpretations that will be useful throughout the thesis. For more details on stochastic
control we refer to the classical book of Jong and Zhou [119]. Dynamic Programming Principle is
a fundamental technique we will use repetitively throughout the introduction and the thesis.

For a standard stochastic control problem we are given some dynamics for the state process Xt

that is being controlled by at,

dXt “ bpXt, atqdt` σpXt, atqdWt, X0 “ x,

where x is a random variable. Our target is to minimize the total discounted cost which we can
represent in the form of a state value function over the set of all admissible controls1,

V pt, xq “ inf
aPAadm

E
”

ż T

t
e´γps´tqcpXs, asqds

ˇ

ˇ Xt “ x
ı

with γ P r0, 1s the discount rate, we suppose also that the terminal cost is zero.

1we call admissible controls all the controls that either respect some constrain or simply allow us to reach our
target. Clearly the set can depend on the x
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When the model is known, i.e. b, σ, c are known functions a well known approach to solve the
problem is to use Bellman’s Dynamic Programming Principle (DPP)

V pt, xq “ inf
aPAadm

E
”

ż t`h

t
e´γscpXs, asqds` e

γhV pt` h,Xt`hq
ˇ

ˇ Xt “ x
ı

@ 0 ď t ď s ď t` h ď T, x P R

V pT, xq “ 0 @ x P R

roughly DPP says that we can ”construct” the value function by playing optimally step by step
in a backwards manner. In each step we play optimally over rt, t ` hs and discount the value of
rt ` h, T s. Using Itô’s formula on the dynamic programming equation we can derive a PDE that
helps us ”design” optimal controls, the famous Hamilton Jacobi Bellman Equation,

γV pt, xq “ BtV pt, xq ` min
aPAadm

!

bpx, aqBxV pt, xq `
1

2
σ2px, aqB2

xxV pt, xq ` cpx, aq
)

,

V pT, xq “ 0 @ x P R

which holds for all x, t, a in a backwards sense.
In this approach, the optimal control can be ”synthesised” using the value function from the

HJB equation as follows:

1. By solving HJB, we know for all pairs px, tq the value of the control which minimizes the
expression above. That is a deterministic function a “ rapt, xq that we call a feedback control
or policy as they are commonly called in RL.

2. Next, we solve the dynamics of Xt when she is controlled by rapt, xq

dX˚t “ b
`

X˚t ,rapt,X
˚
t q
˘

dt` σ
`

X˚t ,rapt,X
˚
t q
˘

dWt, X˚0 “ x.

then ra˚pt,X˚t q is the optimal feedback control or optimal policy.

Unfortunately, when we don’t know the model i.e. the functions b, σ, c, this procedure cannot
work and we have to rely on trials to learn the values of the actions.

A central notion in this approach is the exploratory policy, which allows us to explore the states
or the actions and thus gather samples for learning. In fact, at this point we are in a crossroads
regarding the type of learning we want to achieve, we can either focus on learning the functions
involved in the stochastic control problem and then use the standard approach described so far,
which is proposed as a model based method where we form a model for the dynamics and for the
instantaneous cost and update it accordingly. The first part of thesis is going to be in this direction
and the introduction of the corresponding chapter will provide much more details.

One of the main critiques in the model based approach is model bias i.e. the assumption
that the learned dynamics sufficiently and accurately approximates the real dynamics. An optimal
control learned under dynamics b, σ and cost c is not guaranteed to be optimal under even mildly
modified bε, σε, cε . In simulated environments like games it’s easy to overcome this restriction since
there is stability in the simulator of the game e.g. the legal positions in chess are always the same.

However in real life situations when we want to use RL, the dynamics might change as structural
changes happen in the environment and thus we need to incentivise the algorithm to continue to
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adapt in the environment. This goes back to the generalisation issue described in the previous
section. For RL to escape the ”lab” and move towards real world situations there is still progress
to be done in this direction.

Nevertheless, we have tools to partially answer this challenge in a satisfactory way for quite a
vast range of examples, we can incorporate model uncertainty. There are several ways to do
this and to lighten the exposition and keep as close as possible the reference to stochastic control
formulation we choose to follow [112, 93]. Essentially, we consider uncertainty in the dynamics
or the cost as a measure on the space of continuous functions. This is consistent with a weak
formulation of the stochastic control problem. Learning is translated as changing the measure over
the dynamics and the cost. This yields relaxed controls which are essentially distributions of actions
2.

Another way to interpret the use of relaxed controls for exploration is if we consider each action
ait as an trial for exploration that yields a state Xi

t , and in order to learn the evolution of the states
or the cost we need to average a large number of trials. To explain further this idea consider that we
are given a distribution Ut with a density utpaq over the space of admissible controls Aadm, then we
sample taitu

N
i“1 „ Ut with each control ai being standard. Consequently we can define its controlled

state Xi that should evolve according to an SDE similar to the first one for the time being r0, T s
and assuming that the Brownian Motions are independent of the state and action process for all i

dXi
t “ bpXi

t , a
i
tqdt` σpX

i
t , a

i
tqdW

i
t , Xi

0 “ x, @ i “ 1, ..., N,

and costs

ż T

0
e´γtcpXi

t , a
i
tqdt @ i “ 1, ..., N,

then to estimate the cost or the dynamics all we have to do is average the N samples

1

N

N
ÿ

i“0

Xi
t “ x`

1

N

N
ÿ

i“1

ż t

0
bpXi

t , a
i
tq dt`

1

N

N
ÿ

i“1

ż t

0
σpXi

t , a
i
tq dW

i
t

and when N Ñ8

ErXu
t s “ x` E

”

ż t

0

ż

Aadm
bpXu

t , aqutpaqda dt
ı

and similarly for the cost

1

N

N
ÿ

i“1

ż T

0
e´γtcpXi

t , a
i
tqdt Ñ

NÑ8
E
”

ż T

0

ż

Aadm
e´γtcpXu

t , aqutpaqda dt
ı

.

This prompts us to define the exploratory formulation

dXu
t “

ż

Aadm
bpXu

t , aqutpaqda dt`

ż

Aadm
σpXu

t , aqutpaqda dWt, Xu
0 “ x, u P PpAadmq,

2In game theory or RL they are very often called mixed strategies
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and the corresponding value function

V pt, xq “ inf
aPAadm

E
”

ż T

t

ż

Aadm
e´γps´tqcpXu

s , aqutpaqda ds |X
u “ x

ı

.

Then we can follow with our strategy from classical control dealing with the HJB equation
and defining the optimal controls. In [112] the authors solve the problem while using an entropy
penalization to encourage exploration and in [93] they treat the unregularized problem.

The other option that we have instead of building a model, is to directly use observations of
states, actions and rewards to learn the value function. This method is called model free and
it is one of the most developed in the RL community so far. In this category falls the celebrated
Q-Learning algorithm for which the second part of the thesis is devoted, where we present some
new results that deepen our understanding for the properties of the convergence of the algorithm.

1.1.3 Mean Field Games

Mean Field Games started with the seminal works of Lasry Lions [82] and independently from Huang
Cains Malhamé [72] in 2006 and ever since they have known tremendous success and popularity.
Even though MFGs can describe a large variety of phenomena from physics to economics and
biology, for the sake of clarity we will mostly focus on the game aspect, as it is the most relevant
for what is going to follow.

In the first part of the thesis we will deal with the problem of learning equilibria of MFGs in
the presence of uncertainty. We imagine a large number of symmetrical players playing a game,
i.e. each agent optimizing a functional while competing with the rest of the population, this form
of ”competition” can be described as interactions either through states and/or actions. Usually we
call such cases finite population games. In classical game theory we mostly study a game between
2 players (or a handful) that we try to gradually extend to several, a procedure known to be hard,
especially in cases of games with continuous spaces. MFGs comes to tackle exactly that difficulty,
instead of solving the game player by player, we look at the limit situation where the number of
agents goes to infinity and a representative agent appears, thus resorting to aggregate quantities
and population distribution instead of individually coupled optimization problems.

Since this part of the introduction is intended for the non-specialized we will keep the discussion
mostly informal, focusing on the intuition and leave precise statements for the main body of the
thesis, also in all stated problems the reader should always consider the most smooth case, assuming
as smoothness and boundedness needed for the problems to be wellposed.

Individual agent’s problem: fully general case

Suppose that we have N agents that play a dynamic continuous game i.e. a strategic game in
continuous time with continuous state and action sets. Let us denote Xi

t the state of the individual
agent and ait her action, both taking values in compact subsets of the reals, and with the initial
state of each agent xi to be an L2pRq random variable and the evolution in time to be described by
an SDE, where W i

t is each players individual noise (a Brownian Motion) and W 0
t is a systemic noise

that affects all the players (again a Brownian Motion). Each agent has a running cost function
f i and a terminal one gi both of them depend on the state and action of the player i but also on
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the states and actions of the rest of the players tX´it u, ta
´i
t u (the notation here means all players

except i). The goal of each player is to minimize the expected average cost over the time horizon
r0, T s.

inf
aiPAi

J i
`

ai, ta´iu
˘

“ inf
aiPAi

E
”

ż T

0
f i
`

Xi
t , a

i
t, tX

´i
t u, ta

´i
t u

˘

dt` gi
`

Xi
T , tX

´i
T u

˘

ı

subject to

dXi
t “ bi

`

Xi
t , a

i
t, tX

´i
t u, ta

´i
t u

˘

dt` σi
`

Xi
t , a

i
t, tX

´i
t u, ta

´i
t u

˘

dW i
t ` σ0

`

Xi
t , a

i
t, tX

´i
t u, ta

´i
t u

˘

dW 0
t

Xi
0 “ xi

for i “ 1, ..., N

This problem is an extremely difficult one to solve and except for very specific cases there is no
general solution. A classical technique to solve stochastic control problems like the aforementioned
is to try to solve a PDE, the Hamilton - Jacobi - Bellman (HJB) equation through which we
reconstruct optimal solutions. Unfortunately, this approach will yield a system of N fully coupled
PDEs that there is no hope to solve.

Fortunately, not all hope is lost, within the previous class of problems we can identify a subclass
of solvable ones that satisfy 2 hypotheses:

H1. Symmetry Each cost function J ipai, ta´iuq is a symmetric function of ta´iu

H2. Weak interactions between players The influence of each player is diminishing as the
N Ñ8

Whenever these two assumptions are satisfied we call the game an N -player symmetric game
and for the rest of the thesis we refer to these type of games as N -player game, and abusing a bit
the notation we could write a reformulation of the problem as

Individual agent’s problem: symmetrical case

inf
aiPAi

E
”

ż T

0
f
`

Xi
t , a

i
t, µ̄

N
t

˘

dt` g
`

Xi
T , µ̄

N
T

˘

ı

subject to

dXi
t “ b

`

Xi
t , a

i
t, µ̄

N
t

˘

dt` σ
`

Xi
t , a

i
t, µ̄

N
t

˘

dW i
t ` σ0

`

Xi
t , a

i
t, µ̄

N
t

˘

dW 0
t

Xi
0 “ xi

µ̄Nt “
1

N

N
ÿ

i“0

δXi
t

We droped also the dependence of the empirical distribution on the actions for the sake of brevity
in what follows but there is also a big body of research for MFGs of controls.

Remark 1.1.1. Whenever we write bpx, µq essentially me mean bpx, µq “
ş

rbpx, dyqµpdyq, moreover

dXi
t “ bpXi

t , µ̄
N
t qdt` σpX

i
t , µ̄

N
t qdW

i
t “

1

N

N
ÿ

j“0

rbpXi
t , X

j
t qdt`

1

N

N
ÿ

j“0

rσpXi
t , X

j
t qdW

i
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and we carry over this notational convention to the rest of the functions.

Remark 1.1.2. In principle we would like to exploit our assumptions to define limits when N Ñ8

for J i and Xi since the problem at the limit is much easier to be solved, so the key question is:
how to pass to the limit?

We will not attempt to answer the question rigorously since it is out of the scope of this
introduction and we refer the interested reader to the original works of Snitzman [105] and McKean
[88] or books about mean field games [26, 30, 31]. To provide a sketch of the basic idea behind
what is call ”propagation of chaos” we start with a standard uncontrolled diffusion of the form

dXi,N
t “

1

N

N
ÿ

j“0

rbpXi,N
t , Xj,N

t qdt` dW i

Xi,N
0 “ x0

where we look at N particles and letting N Ñ 8 each particle Xi,N has a natural limit X̄i
t , it is

an identical copy of a ”nonlinear” process Xt, as it was called early in the literature, with

dXt “

!

ż

bpXt, yqµtpdtq
)

dt` dWt

X0 “ X0 and µt the law of Xt

Remark 1.1.3. Whenever we have common noise in the dynamics as it was the case earlier, we
need to modify the previous construction into what is called ”conditional propagation of chaos”
where µt is now the conditional law of the process given the common noise. The intuition remains
the same about the distribution of particles just we add them in an ambient space that is subject it
self to random perturbations, e.g. immersing the cloud of particles into a viscous fluid or a current
inside a fluid, for more details see [31, Chapters 1, 2]

Now to provide a limit for the cost functions on the N player game, we consider J i,N to be
uniformly bounded and continuous and then by Ascoli-Arzela theorem we can find a convergent
subsequence such that J ik Ñ J̄ i.e.

lim
kÑ8

sup
XPSN

ˇ

ˇJ ikpXq ´ J̄pµ̄Xq
ˇ

ˇ “ 0

Thus, with another slight abuse of notation we can state the problem at the limit N Ñ 8, as
the problem of a representative agent that tries to minimize a cost that depends on the distribution
of the other agents, given the dynamics that also depend on the distribution of the agents.

The representative’s agent’s problem

inf
aPA

J̄pa;µq “ inf
aPA

E
”

ż T

0
f
`

X̄, at, µt
˘

dt` g
`

X̄T , µT
˘

ı

subject to

dX̄t “ b
`

X̄t, at, µt
˘

dt` σ
`

X̄t, at, µt
˘

dWt ` σ0

`

X̄t, at, µt
˘

dW 0
t

X0 “ x

µt “ LpXt|FW 0
t q the conditional distribution of Xt given W 0

t

(1.1.1)

8



Since we have define our problem and before we discuss ways to solve the problem we should
provide a notion of solution. Inspired by traditional game theory we call an action profile a˚ a
Nash equilibrium for the finite game if there is no other that yield a lower cost, i.e.

J i,N pa˚q ď J i,N pai, a˚,´iq for all ai P Ai

And for the MFG we define an equilibrium as µt “ LpXa˚
t |FW 0

t q for all t P r0, T s, we usually
call this consistency condition because in the limit of infinitely many players non of them can
influence significantly the distribution µ and thus consider it fixed when solving the minization
problem.

Remark 1.1.4. When there is no common noise pµtq0ďtďT is a deterministic flow of measures,
while in the presence of common noise, the flow becomes stochastic and thus we need to take extra
steps to ensure compatibility and for the corresponding σ-algebras, see [31, Chapter 1]

To make our solution strategy more explicit we articulate the following steps:

1. Solve the optimal control problem mina J̄pa;µq subject to the dynamics of Xt when the
environment µt is fixed.

2. Design the optimal control α˚pt, xq (possibly in feedback form depending on the formulation
of the problem) and the optimal state process Xα˚

t

3. Find a fixed point of the map Φpµq “
`

LpXα˚
t q

˘

0ďtďT

Finally, we are ready to conclude our short description of the MFGs by reviewing some solution
methods. They will provide a basis for the next chapter of the thesis. In a similar fashion to the
stochastic control of the previous section, we can define the value function of our control problem
V pt, xq and with her a corresponding HJB equation when the flow pµtq0ďtďT is fixed. For the
moment we will make a small detour to present an idea from deterministic optimal control that
would serve as the basic intuitive guideline for the Stochastic HJB that we will need for our MFG
solution.

1.1.3.1 Detour to Optimal Control and Potryangin’s Maximum Principle

Let us say for a moment that we have a look at the following problem for a single agent/regulator
under deterministic dynamics that evolve in R

$

’

’

’

&

’

’

’

%

min
aPAadm

Jpaq “

ż T

0
f0pXt, atqdt

subject to

9Xt “ fpXt, atq, X0 “ x P R

with f, f0 : RˆAadm Ñ R smooth nonlinear functions representing the dynamics and the running
cost respectively. Consider also the dynamic cost

X0
t “

ż t

0
f0pXs, asqds.

9



Our goal is to solve the problem inspired by some geometrical intuition. First let’s define the
extended system

9xt “

„

X0
t

Xt



, fpxt, atq “

„

f0pX0
t , atq

fpXt, atq



,

the system now resides in R2 since we extended its dimension. If we assume that the control is
constant ut for all t P r0, T s then we can have a linearization of the extended system

9bt “ Bxfpxt, atq, b0 “ b, at constant (1.1.2)

that will describe the tangent vectors at xt for all t. Next from this tangent vector we can study
all the vectors pt that have the property xbt, pty “ const., in words their inner product is constant.
It turns out that these vectors reside in a hyperplane and the vectors pt are perpendicular to xt.
The evolution of pt can be described by

9pt “ ´Bxfpxt, atq

pT “ 0,
(1.1.3)

we call vectors pt co-states and the terminal condition is zero because there was no terminal cost
in our example.

Remark 1.1.5. When the control is not constant, system (1.1.2) is not anymore the linearization
of the states but instead a first approximation to the evolution of the perturbation in the state.

aεt “

#

a˚t for t P rs´ ε, s` εs

b otherwise

xεs “ x
a˚

s ` ε
`

fpxa
˚

s , bq ´ fpxa
˚

s , a˚s q
˘

`Opεq,

the system will evolve from time s to T under (1.1.2) and the costate system will continue to describe
the evolution of the vectors in the ”attached” hyperplane.

Remark 1.1.6. The equation of the co-states (1.1.3) should be understood in a backwards sense
since we fix the terminal value that we need to obtain (the derivative of the terminal cost precisely)
in ordinary differential equations time reversions are not a problem, we can always make the trans-
formation t ÞÑ T ´ t. The real difference will be apparent when we have a look at the stochastic
version of the problem where we would need the solution to be adapted to the filtration generated by
the noise.

We made this short discussion and the remark so far, to motivate the definition of the Hamil-
tonian as

Hpx, a, pq “ xp,fy “ p1fpx, aq ` p2f
0px, aq

Remark 1.1.7. In the usual form of the PMP the Hamiltonian appears with p2 “ 1 and this is
because we can renormalize p2 since it is a positive constant.
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Now we are ready to state Pontryangin’s Maximum principle

Theorem 1.1.8. If px˚, a˚q is an optimal (extended) state-action pair, then there exits a continuous
function p solving (1.1.3) with

9x˚t “ ∇pHpx
˚
t , a

˚
t , ptq

9pt “ ∇xHpx˚t , a˚t , ptq
Hpx˚t , a

˚
t , ptq “ max

c PAadm
Hpx˚t , c, ptq ” 0

and pt ‰ 0 for all t P r0, T s with p0 ď 0

The PMP helps identifying the optimal control within a class of optimal controls. The main
difference with DPP from the previous section is that with PMP we assume existence of an optimal
control while with DPP we prove existence in feedback form.

Remark 1.1.9. In the present setting we could extend our model problem to include Browninan
noise of constant intensity without hardly changing anything

dxt “ fpxt, atqdt` dWt, x0 “ x P R.

Obviously we lose the interpretation of the systems with the hyperplanes and the tangent vectors
since there is no more smoothness because of the noise but nevertheless the rest that is based on
a first order approximation works. The Hamiltonian is going to be of the same shape tho only
major difference concerns the co-states that essentially encodes the shadow price of the states will
be stochastic to reflect the stochastic nature of the forward dynamics. In this case it is no longer
possible to reverse the time without destroying the adeptness of the solution to the filtration of the
noise and thus we need to add an extra term that will account for that. Our problem remains the
same we want pT to be fixed at the terminal time, only that now pt is a stochastic process that
evolves according to the dynamics

dpt “ ´∇xHpxt, pt, atq ` qtdWt

pT “ 0,
(1.1.4)

to make up for this adaptiveness we add another process qt that is part of the solution and is
implicitly defined and we call (1.1.4) a Backward Stochastic Differential Equation (BSDE). For
more details see [119, Chapter 6]

Remark 1.1.10. The situation where we have control over the intensity of the Brownian motion
(diffusion part) is substantially different both in terms of interpretation and in terms of applied
techniques. To make things more concrete

dxt “ fpxt, atqdt` σpxt, atqdWt, x0 “ x P R,

now our current decisions (control at) not only affect the direction we steer (drift) but also the
intensity of the noise we are facing. So except for shadow price of the dynamics (steering) we need
to account for the uncertainty (or risk) for the Brownian motion when we balance our decisions.

11



This makes the first order approximations insufficient, and we need to rely on second order ones.
In this way, we add a second BSDEs in a similar fashion as in the previous remark.

dPt “ ´
!

2Bxfpxt, atqPt ` Bxσ
2pxt, atqPt ` 2Bxσ

2pxt, atqQt ` BxxHpxt, at, pt, qtq
)

dt`QtdWt.

For more details and a version of Stochastic PMP we refer to [119]

1.1.3.2 Solution strategies for MFGs with common noise

Coming to our MFG with common noise we would like to proceed as with classical dynamic pro-
gramming. We need a HJB equation to design optimal feedback controls and an equation that
describes the evolution of the conditional distribution (essentially a density). Given the dynamics
of (1.1.1) we can write the stochastic Fokker-Planck equation using Itô’s rule on a test function
ϕpXt, tq and taking the conditional expectation with respect to the initial condition and common
noise W 0

t this results in a Stochastic PDE since the dW 0
t will survive the conditioning

dµt “

"

´Bx
`

bpXt, µt, atqµt
˘

`
1

2
Bxx

´

`

σ2pXt, µt, atq ` σ
2
0pXt, µt, atq

˘

µt

¯

*

dt´ Bxpσ0pXt, µt, atqµtqdW
0
t

µ0, given initial distribution on R,
(1.1.5)

the way we should understand this equation is in the sense of distributions, for any test function
ϕ P C80 pRˆ r0, T sq.

Next, we need to define a value function and a DPP, since as we explained earlier when the
representative agent solves the optimization problem and the flow of measure is fixed, the value
function depends only on t, x. But when we want to apply Itô’s rule to expand the value function
we notice that utpXtq0ďtďT is indeed a random field because of the random flow of measures µt

3

that enters in the coefficients of Xt and thus we need an adapted form of Itô’s rule, it is known
by various names Itô-Kunita formula or Itô-Wentzell and for precise statements we refer to [31,
Section 1.4.2] [101] and [95]

utpxq “ essinf
aPAadm

E
”

ż T

t
f
`

Xs, as, µs
˘

ds` g
`

XT , µT
˘ ˇ

ˇ X0 “ x
ı

,

with essential infimum to guarantee that the result remains a random variable, and for the DPP

utpxq “ essinf
aPAadm

E
”

ż t`h

t
f
`

Xs, as, µs
˘

dt` ut`hpXt`hq

ˇ

ˇ

ˇ
Xt “ x

ı

,

we can derive the stochastic HJB in a heuristic way if we consider

utpxq ě E
”

ż t`h

t
f
`

Xs, as, µs
˘

dt` ut`hpXt`hq
ˇ

ˇ Xt “ x
ı

(1.1.6)

3that we still keep fixed as in the usual
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and since utpXtq is indeed random and adapted to the filtration generated by the common noise
W 0
t for any fixed x, the best we can hope is for it to be a semimartingale

dutpxq “

ż T

t
Φspxqds´

ż T

t
ΨspxqdW

0
t uT pxq “ gpx, µT q (1.1.7)

where in this BSDE the intuition behind term Ψt follows Remark 1.1.9 and it’s part of the
definition of the solution. We can now expand utpXtq by Itô-Wentzell’s formula

dutpXtq “

"

BxutpXtqbpXt, µt, atq `
1

2
BxxutpXtq

´

σ2pXt, µt, atq ` σ
2
0pXt, µt, atq

¯

` BxΨpXtqσ0pXt, µt, atq ` Φtpxq

*

dt` BxutpXtqσpXt, µt, atqdWt

` BxutpXtqσ0pXt, µt, atqdW
0
t `ΨtpxqdW

0
t ,

that means

ut`hpXt`hq ´ utpxq “

ż t`h

t

!

BxutpXtqbpXt, µt, atq `
1

2
BxxutpXtq

`

σ2pXt, µt, atq

` σ2
0pXt, µt, atq

˘

` BxΨpXtqσ0pXt, µt, atq ` Φtpxq
)

dt`

ż h`h

t
BxutpXtqσpXt, µt, atqdWt

`

ż h`h

t

!

BxutpXtqσ0pXt, µt, atq `Ψtpxq
)

dW 0
t ,

and

E
”

ut`hpXt`hq ´ utpxq
ˇ

ˇ

ˇ
FW 0,x
t

ı

“ E
”

ż t`h

t

!

BxutpXtqbpXt, µt, atq `
1

2
BxxutpXtq

`

σ2pXt, µt, atq ` σ
2
0pXt, µt, atq

˘

` BxΨpXtqσ0pXt, µt, atq ` Φtpxq
)

dt
ˇ

ˇ

ˇ
FW 0,x
t

ı

,

going back to (1.1.6)

0 ď E
”1

h

ż t`h

t

!

f
`

Xs, µs, as
˘

` BtutpXtq ` BxutpXtqbpXt, µt, atq `
1

2
BxxutpXtq

`

σ2pXt, µt, atq

` σ2
0pXt, µt, atq

˘

` BxΨpXtqσ0pXt, µt, atq ` Φtpxq
)

dt
ˇ

ˇ

ˇ
FW 0,x
t

ı

,

letting h Ñ 0 and taking the inf we can identify process Φtpxq and get from (1.1.7) the form
of SHJB equation

dutpxq “ ´HpXt, a
˚, BxutpXtq, BxxutpXtq, BxΨtpXtqqdt`ΨtpXtqdW

0
t

uT pxq “ gpx, µT q
(1.1.8)
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with the Hamlitonian H being

Hpx, a˚, p, P, qq “ inf
aPAadm

!

f
`

x, µ, a
˘

` p ¨ bpx, µ, aq `
1

2
P ¨

`

σ2px, µ, aq ` σ2
0px, µ, aq

˘

` q ¨ σ0px, µ, aq
)

Nevertheless, this is not the only possible derivation for the stochastic HJB equation, in the next
section we will see a HJB equation for a value function that depends on the measure argument, the
so called master equation and we can derive the SHJB equation from the master equation following
a strategy presented by P.L. Lions in his lectures at College de France [84] and appear in the notes
[23, Section 7].

Remark 1.1.11. Solving the system (1.1.5)-(1.1.8) apart from being notoriously difficult to be
solved will give us an optimal control in a˚ “ αpt,Xa˚

t , µt, BxutpX
a˚
t q that is going to be a random

field and this is a very important remark for appreciation of the results that we want to obtain in
this thesis. This will be more apparent in later parts of the introduction.

Another approach to solve (1.1.1) would be using the Pontryagin’s Maximum Principle but
we refrain from providing all the details here since the first chapter of the thesis will follow this
approach for a Linear Quadratic case and instead we refer to [31] for a general approach.

To conclude this Section we would like to recap our solution strategy. Finding Nash equilibrium
for MFG is in a nutshell the same as finding a fixed point for the flow pLpXα˚

t q0ďtďT of conditional
distributions from the optimal control problem and we derived a SPDE system to characterize
these optimizers. For analysis of the equations themselves and their solvability we refer to classical
references in the field [31, 26] in Section 1.3 we will highlight some challenges that mean field models
face and especially models with common noise.

1.1.4 Mean Field Control

While MFGs mostly describe large competitive games we would like to use a similar framework
to describe large collaborative games. We could imagine agents to collaborate in order to solve a
common problem or perform a task such as drones delivering goods, putting in order warehouses
or reaching specific areas. In domains like economics or finance, we could also imagine a central
planner wanting to optimize some aspect of the economy, manipulating aggregate quantities, or a
regulator for the financial markets.

There are two ways to interpret problems that involve the law of a process, either we can imagine
some stochastic process that we control individually and its law appears in the cost functional that
we want to minimize, that could be the easiest case. Or have a look at the mean field limit of a
particle system, i.e. a MKV equation where we lose some of the nice properties enjoyed by standard
SDEs with smooth coefficients. In either way the important remark here is that we are dealing with
a ”real” optimal control problem, set on the space of measures as we will demonstrate shortly while
in contrast in MFGs we were looking mostly at a fix point problem for the measure flow pµtq0ďtďT .

For the sake of brevity and to minimize the technical burden we will start with a simplified
version of an MFC problem to motivate our approach and then comment on the considerably more
involved case of common noise. Let’s have a look at the following control problem
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inf
a

"

E
ż T

0
fpXt,LpXtq, atqdt

*

subject to

dXt “ bpXt, atqdt` σpXtqdWt, X0 “ x,

(1.1.9)

in equation (1.1.9) we notice that the law of Xt enters in the running cost and thus this is what
really distinguish the MFC from a standard optimal control problem, adjustments of the drift affect
the law of the process and thus the cost, so we need to take this into account when designing optimal
controls.

In fact we can reformulate (1.1.9) to reflect more an optimal control of the law of the process.
Assuming enough smoothness of bpx, aq, σpx, aq so the law of Xt has a smooth density that satisfies
the Fokker-Planck

Btµtpxq ´
1

2
B2
xx

`

σpxqµtpxq
˘

` Bx
`

bpx, aqµtpxq
˘

“ 0, µ0 “ Lpxq (1.1.10)

we notice that the initial condition is being fixed as the law of the initial state (which is herself
an L2pRq random variable). Now our problem reads as

inf
a

"
ż T

0

ż

R
fpx, µtpxq, αpt, xqqµtpxqdxdt

*

subject to

Btµtpxq ´
1

2
B2
xx

`

σpxqµtpxq
˘

` Bx
`

bpx, aqµtpxq
˘

“ 0, µ0 “ Lpxq.

(1.1.11)

It’s a ”standard” deterministic optimal control problem with a fixed initial condition just it
is not classical because it is stated on the space of probability measures. We can define an value
function for problem (1.1.11) staring at time t from µ4

upt, µq “ inf
a

!

ż T

t

ż

R
fpx, µspxq, αps, xqqµspxqdx ds

ˇ

ˇ µt “ µ
)

next we can write a Dynamic programming principle for the value function

upt, µq “ inf
a

!

ż t`h

t

ż

R
fpx, µspxq, αps, xqqµspxqdx ds` upt` h, µt`hq

ˇ

ˇ µt “ µ
)

. (1.1.12)

Now using the classical strategy of deterministic optimal control we can derive a HJB equation
by Taylor’s expansion of upt` h, µt`hq ´ upt, µq for which we need to define a notion of derivative
on the space of probability measures.

4we remind the reader of our common notation abuse of measures and densities for this section
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1.1.4.1 Derivatives of probability measures

Motivated by the DPP on the space of probability measures we would need to consider the intro-
duction of derivatives for smooth functions of probability measures. Practically this is not an easy
task as the space of probability measures, say for the sake of concreteness that we work on P2pRq
(i.e. measures with bounded second moments) is not a Hilbert space and thus we cannot simply
apply generalized notions of derivatives from functional analysis that work on Hilbert spaces. We
either need to work with the existing topological structure of the space, which is sufficiently nice
because pP2pRq, dW1q is a compact topological space, with dW1 the 1-Wasserstein distance. Or
somehow ”place” our smooth functions of measures into a suitable Hilbert space. The first strategy
would lead to the notion of linear functional derivative, while the second to Lion’s derivative.

Linear functional derivative

Definition 1.1.12. We say that u : P2 Ñ R has a Linear Functional derivative, δu
δm : P2pRqˆRÑ

R that is a continuous and bounded differential operator with the property

upµq ´ upµ0q “

ż 1

0

ż

R

δu

δm

`

kµ` p1´ kqµ0

˘

pxqd
“

µ´ µ0

‰

pxqdk

In plain words the definition says that the difference between upµq and upµ0q is the integral of
the derivative evaluated in the segment between two measures µ, µ0. For the definition to be better
understood we could give a simple (trivial) example

Example 1.1.13. Suppose upµq “
ş

R ϕpxqµpdxq with ϕ P C1pRq then

δu

δm
pµqpxq “ ϕpxq ` constant

This example although its simplicity is educative because it illustrates that the notion of Linear
functional derivative is not unique and is only determined up to a constant. This is something that
the Lion’s derivative takes into account.

First Order Lion’s derivative

Following the ideas of P.L. Lions from his lectures in college de France we introduce the lifting
of a function defined on the space of probability measures, P2pRq to the space of random variables,
so to L2pΩ,F ,P;Rq over a probability space pΩ,F ,Pq, Ω being Polish and P atomless.

rupXq “ upLpXqq

Consequently we can use Fréchet differentiation to define a notion of derivative (for a refresher
of the notion see [121]). We adopt the definition from [23]

Definition 1.1.14. We say that u : P2 Ñ R is differentiable at µ0 P P2 if there exists X0 P

L2pΩ,F ,Pq such that LpX0q “ µ0 and ru is Fréchet differentiable at X0 with DrupX0q its derivative
and

rupX0 ` hq ´ rupX0q “ DrupX0qphq ` }h}L2Ophq for all h P L2pΩ,F ,Pq.

16



Furthermore, u is C1 in a neighbourhood of µ0 if there exists X0 P L2pΩ,F ,Pq such that LpX0q “ µ0

and DrupX0q : L2pΩ,F ,Pq Ñ
`

L2pΩ,F ,Pq
˘˚
” L2pΩ,F ,Pq is continuous.

In fact, from Riesz representation theorem if DrupX0q exists, we can identify it with an element
of L2pΩ,F ,Pq, that we should call DrupX0q with the property

DrupX0qphq “ xDrupX0q, hy “ ErDrupX0qhs, for any h P L2pΩ,F ,Pq.

Now Theorem 6.2 in [23] says that if ru is differentiable at X0 then it must be also at any
X P L2pΩ,F ,Pq in the neighbourhood of X0 such that LpXq “ µ0, thus the law of DrupX0q is
independent of X0. This is what makes the definition of the derivative intrinsic (some people call
this derivative the intrinsic one) . But we can say more about DrupX0q, according to Theorem 6.5
[23]

DrupX0q “ ξpX0q for ξ P L2pΩ,F , µ0q, µ0 ´ a.e.

we will call the representative of the equivalent class of ξ as Bµ and use the notation

upµq ´ upµ0q “ ErBµupLpX0qqpX0qpX ´X0qs ` }X ´X0}L2Op}X ´X0}L2q

To illustrate the above construction we can revisit Example 1.1.13 to compute the Lion’s deriva-
tive.

ψptq “ rupX ` thq “ ErϕpX ` thqs, ψ1p0q “ DrupXqphq “ Erϕ1pXqhs.

Thus we can identify the Bµupµq with ϕ1pxq.

Remark 1.1.15. Comparing the Linear functional derivative with Lion’s derivative for Example
1.1.13 we can see a relationship of the form

Bx
δu

δm
pµqp¨q “ Bµupµqp¨q

This relationship is more general than our simple example and is thoroughly analysed in [30, Chapter
1]. For a notion of gradient BxBµupµq ( ∇xBµupµq in higher dimensions) for see the following
remarks.

Remark 1.1.16. Very often we will use the notation Bµupµtq omitting the second variable but the
reader should always keep in mind that both measure derivatives are elements of the product space
P2 ˆ R (or Rd).

Remark 1.1.17. The Fréchet derivative DrupX0qphq should be interpreted as a generalized direc-
tional derivative in the direction of h. As it is a functional of with two arguments it is within our
interest to define a form of gradient with respect to the directional variable h that we will refrain
form using the common symbol ∇ and instead follow [30, 31] and denote it with BvBµupµqpvq to
avoid confusion with state variables and its derivatives usually denoted by x.

Second order Lion’s derivative

Let us denote D2
rupX0q the second order Fréchet derivative of ru in a neighbourhood of X0 then

completely analogously to the first order case, we would need 2 directions, lets call them h1, h2 to
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compute the derivative since D2
rupX0qph1qph2q “ D

`

DprupX0qph1qq
˘

ph2q with the operator D being
symmetric. Then we need to repeat the steps we did before to properly define B2

µµupµtqpvqpv
1q but

with some twist because of the directional sense that the derivative includes and the fact that we
need to define µ0 almost everywhere the first derivative in direction h1 and then again to define
B2
µµupµtqph1q, µ0-almost everywhere the second, for more details see [30, Section 5.6.2]. Finally, in

a way that resembles a lot the chain rule we write

d

dt
DrupX0 ` thq

ˇ

ˇ

ˇ

t“0
“ BvBµu

`

LpX0q
˘

pX0qh` Ē
”

B2
µµu

`

LpX0q
˘

pX0qpX̄0qh̄
ı

,

where the bar over expectation, X and h, denotes copies of the original ones in a copied space
that was introduced to do deal with the identification second directional derivative as best explained
in the aforementioned reference.

1.1.4.2 The master equation

Going back to our strategy of deriving a HJB equation of the value function in DPP (1.1.12), we
can expand u using the first order derivative and assuming smoothness is both arguments

upt` h, µt`hq “ upt, µq ` h Btupt, µq ` h

ż

R

δu

δm
pt, µqpxqBtµtpxqdx

with the convention ”Btµt “
dµt
dt ” and using the Fokker-Planck equation

upt` h, µt`hq “ upt, µq ` h Btupt, µq ` h

ż

R

δu

δm
pt, µqpyq

´1

2
B2
xx

`

σpxqµtpxq
˘

´ Bx
`

bpx, aqµtpxq
˘

¯

dx

then use integration by parts to pass the derivatives to δu
δmpt, µq and Remark 1.1.15

upt` h, µt`hq “ upt, µq ` h Btupt, µq ` h

ż

R

ˆ

1

2
σ2BvBµupt, µqpxq ` Bµupt, µqpxqbpx, aq

˙

µtpxqdx

finally we can conclude using the common strategy that the HJB equations reads as

$

’

&

’

%

Btupt, µq `

ż

R

ˆ

H˚pt, x, µ, Bµupt, µq, α
˚pt, xqq `

1

2
σ2BvBµupt, µqpxq

˙

µpxqdx

upT, µq “ 0

with the Hamiltonian

Hpt, x, µ, p, aq “ fpx, µ, aq ` p ¨ bpx, aq

Solvability of this master equation on the space of probability measures is an important issue.
This will be a major point of discussion later see Section 1.3
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1.1.4.3 MFC with common noise

In order to discuss the MFC problem with common noise, we need to take into account the the
stochastic nature of the Fokker-Planck equation and thus we need to apply a formal version of
Itô’s rule for smooth functions of measures. We will refrain from giving all the details or even the
form of it and instead first write the value function in order to discuss a particularity that there
exists because of the stochastic nature of the flow pµtq0ďT and then provide the form of the second
order master equation. All the details can be found in [31, Section 3.3-4] and in [26, Chapter 4 and
Appendix A].

We keep the our simplified version of dynamics and our smoothness assumptions

dXt “ bpXt, atqdt` dWt ` dW
0
t , X0 “ x, (1.1.13)

the Stochastic Fokker- Planck is

dµαt “

"

´Bx
`

bp¨, αpt, ¨qqµαt
˘

`
1

2

´

`

σ2 ` σ2
0qBxxµ

α
t

¯

*

dt´ Bxpσ0µ
α
t qdW

0
t

µα0 “ Lpxq,
(1.1.14)

and the value function for an initial condition of the state process ξ that is distributed according
to µ

upt, µq “ ErV pt, ξ, µqs “ inf
a

Er
ż T

t
fpXa

t ,LpXa
t |Wtq, atqdt` gpX

a
t ,LpXa

T |WT qq|X
a
t “ ξ „ µs “

with DPP for V pt, ξ, µq

V pt, ξ, µq “ inf
a

#

E
”

ż t`h

t
fpXa

s ,LpXa
s |Wsq, asqds` upt` h,LpXt`h|Wt`hqq

ˇ

ˇ

ˇ

ˇ

Xa
t “ ξ „ µ

ı

+

,

Then supposing V pt, ξ, µq is smooth enough in all 3 arguments we can use Itô’s formula [31,
Equation 4.37] to get a HJB equation on the space of probability measures. Neither the shape
not the equation herself is in the scope of this thesis so do not even attempt to state her (since it
would involve terms that need to be explained and make our previous analysis more refined). We
are more interested in the philosophy behind the derivation and the principles to be followed.

1.2 Why Mean Field Reinforcement Learning is a great deal?

In this section we would like to talk about the motivation for this thesis. In recent years there has
been big success for RL that attracted attention from a greater public outside academia. In 2006
AlphaGo developed by DeepMind was able to beat the world champion Go player, Lee Sedol, in a
five-game match and later defeated the world’s number one ranked player, Ke Jie. This of course
fuelled the interest from the public as in can be seen from Figure 1.2, this was a starting point of
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Figure 1.2: Google searches for the term reinforcement learning, as a percentage of the maximum
number of clicks. With data from Google Trends, https://trends.google.com/trends/explore?hl=el

an exponential increase in the public’s attention especially after the launch of ChatGPT in late
2022 and the general interest in artificial intelligence.

Naturally after 2016, the interests started to expand into various cases that could be solved
by RL and extensions to multi agent system, see Figure 1.3. While MFGs have attracted a lot
of attention and they have their own proper community there has been huge leverage from the
side of RL to solve cases where under some of the assumptions of MFGs we saw in Section 1.1.3
considerable simplifications can be mades and thus solve the cases.

Modern technological advances call for coordination or competition between large numbers of
identical agents, coordinating floats of transporting drones or drones performing auxiliary tasks
in agriculture or robots putting in order warehouses, even agents agents avoiding congestion in
communication networks or financial markets can be modelled as MARL.

On more reason that motivated us in this thesis was the opportunity to harness the power of
approximation techniques from RL theory to investigate numerically issues arising directly from
Mean Field theory, e.g. kernels approximation for solving the master equation in continuous space
without space discretization. For more details in this direction see the next Section 1.4

Of course our main motivation for this thesis was to solve concrete problems that contribute in
the general progress of AI, but before we dive into the challenges we aim at overcoming with our
work we should give an informal but informative introduction into what we really mean by MARL.
In order to avoid this introduction becoming a book herself we aim only at highlighting the main
ideas in relation with the results presented later in the thesis, for a non technical introduction with
applications we refer to [123], for a more technical review of the state of the art both in RL and
and MARL we refer to [70] and [83]
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Figure 1.3: Comparison between Google searches for the terms: multi agent reinforcement learning
and mean field games, as a percentage of the maximum number of clicks. With data from Google
Trends, https://trends.google.com/trends/explore?hl=el

1.2.1 Learning in Games

Let’s come back for a moment to a finite game, to clarify what we mean by learning before we
advance into the mean field regime again. Suppose we are talking for a 2 player zero sum game
pR,C “ ´Rq, if the players are aware of the payoff functions, and the actions then all they have to
do is to compute their min-max strategies and follow them forever to arrive in a Nash equilibrium
if it exists. Now the question that concerns us is if we can arrive in a Nash equilibrium when
the players interactions are distributed and thus take decisions when they don’t know the payoff
matrix of the game and can only estimate payoffs based on their interactions. To make things more
concrete we will discuss a particular case of a learning algorithm, fictitious play that we will use
also on the first part of the thesis. We borrow the following definition and example from Daskalakis
[43]

Definition 1.2.1. Fictitious play is the completely uncoupled player interaction in which in ev-
ery round each player plays a best response to the opponent’s historical (empirical) strategy. The
following algorithm describes this procedure

• Round 1

– row player i1, column player j1, arbitrary

– row player receives Rej1, column player receives eTi1C with ej1 , ei1 the coordinates on the
payoff matrix

• Round 2
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– row player plays i2 “ argmax
i

teTi Rej1u, column player plays j2 “ argmax
j

teTi1Ceju

– row player receives Rej2, column player receives eTi2C

• Round n

– row player plays in “ argmax
i

teTi Rj1yn´1u, yn´1 “
1

n´1

ÿ

kďn

ejk ,

column player plays jn “ argmax
j

txTn´1Ceju, xn´1 “
1

n´1

ÿ

kďn

eik ,

– row player receives Rejn, column player receives eTinC

Example Assume the payoff matrix

R “

¨

˝

2 1 0
2 0 3
´1 3 ´3

˛

‚, C “ ´R “

¨

˝

´2 ´1 0
´2 0 ´3
1 ´3 3

˛

‚

and at round 1 both row and column players choose arbitrarily pi1, j1q “ p1, 3q and both receive 0
as payoff. We summarise the first three rounds of the game in the following table

Round i j eT1 Ryn eT2 Ryn eT3 Ryn xTnCe1 xTnCe2 xTnCe3

1 1 3 0 3 -3 -2 -1 0

2 2 3 0 6 -6 -4 -1 -3

3 2 2 1 6 -3 -6 -1 -6

we would like to emphasize with this simple example that the players have to take decisions based on
the estimates they have for the payoff of their actions and thus learning is translated into making
more accurate predictions for the potential payoffs. An important variant of the deterministic
fictitious play that we presented here is the stochastic fictitious play where the agent is allowed to
randomize her action whenever she is indifferent between choices, an important consideration is the
intensity of the noise in the system that have to be carefully chosen for more details see Fundenberg
and Levine [58]. Reminiscent of that is Our version of fictitious play for MFGs in the first part is
reminiscent of stochastic fictitious play, using a suitable randomization through the common noise
see Section 1.4.3.

1.2.2 Introducing MARL

For this thesis, Mean Field Reinforcement Learning refers to a (competitive or collab-
orative) game between a representative agent and an infinite population of agents as
explained in Section 1.1.3. Similar to the previous section we will separate the analysis into
competitive and collaborative MARL.

We assume that we are already in the mean field regime as described in Section 1.1.3, conse-
quently we have a representative agent and an infinite population of agents that either compete or
collaborate. The representative agent is in a state X P X Ď R and the population at µ, then the
agent picks actions a from an action set A and ”nature” (or a black box as we will call it later)
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returns the state of the agent X 1, the state of the population µ some aggregate cost c, thus we
can have a sequence of transitions pXt, at, µtq Ñ pXt`1, at`1, µt`1, ct`1q if the dynamics of Xt and
the cost functional are known we can resort to techniques from Section 1.1.3 to solve the problem,
otherwise as explained in Section 1.1.2 we have two ways to develop solutions, either model based
where we construct and eventually learn a model for the dynamics and the cost or model free
where we learn directly the optimal values from the sequence of the transitions.

1.2.2.1 Competitive MARL: the MFG with learning case

In this section, we consider the case of the competition between agents, and as in the MFG paradigm
we need to find a fixed point for the flow of distributions of the states pµtq0ďtďT since each agent
considers the µt fixed when solving the optimization problem. We opt for a model based approach
since this is also the approach followed in the first part of the thesis, while in the next section we
deploy a model free method to motivate the later parts of the thesis. Our model based approach is
a natural extension of Section 1.1.2 and it was introduced by Guo et al [62].

To start let’s consider the standard MFG problem without common noise.

inf
aPA

Jpa;µq “ inf
aPA

E
”

ż T

0
f
`

Xt, at, µt
˘

dt` g
`

XT , µT
˘

ı

,

subject to

dXt “ b
`

Xt, at, µt
˘

dt` σ
`

Xt, at, µt
˘

dWt

X0 “ x,

µt “ LpXtq the consistency condition,

(1.2.1)

obviously the case that we are concerned is when f, g, b, σ are unknown. One more point that
merits discussion is the available information for the representative agent for designing (optimal)
policies here again there are two possible ways, either the flow µt is being observed and the policy
depends on it (population dependent policy) or population agnostic policies that does not
depend on the mean field. The first one is more relevant into theoretical cases and offers better
chances for generalization while the second one is more realistic since we cannot expect a single
agent to be able to observe the whole population and is also the benefit of passing to the mean
field regime in games.

Coming back to the question of how we can learn (1.2.1) we can sample actions from a distri-
bution of actions as in Section 1.1.2 assume Ut a distribution of controls with N trials tatu

N
i“1 „ Ut

we call the density of Ut, πt : RÑ PpAq a mixed strategy or a randomized policy (with some abuse
of notation) for each i of the N trials we can describe the evolution of the dynamics as

dXi
t “ bpXi

t , a
i
t, µtqdt` σpX

i
t , a

i
t, µtqdW

i
t , Xi

0 “ x for i “ 1, ..., N,

notice that the environment is the same for each sampled action and the Brownian Motions in-
dependent, the formulation is completely analogous for the cost. As in the Section 1.1.2 we are
interested in the average over the N samples that permits us to write the exploratory formulation

dXπ
t “

ż

A
bpXπ

t , a, µtqπpaqda dt`

ż

A
σpXπ

t , a, µtqπpaqda dWt, Xπ
0 “ x
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and the corresponding value function

V pt, xq “ inf
πPPpAq

E
”

ż T

t

ż

A
f
`

Xπ
s , a, µs

˘

πpaqda ds
ˇ

ˇ

ˇ
Xπ
t “ x

ı

V pT,Xq “ gpXπ
T , µT q

with the flow pµtq0ďtďT fixed. In [62] the value function is regularised by Shannon’s and cross
entropy on the randomized action to enhance exploration. Then to solve the MFG MARL we need
to employ a similar strategy as in the MFG case from the previous Section

1. Solve the optimization problem using an appropriate method (DPP or SMP) under the fixed
environment µ and initial state x to obtain the optimal randomized policy π˚

2. Implement π˚ for all agents and update the state of population to µ1 “ LpXπ˚q

3. Repeat the previous steps until the distance between µ1 and µ becomes smaller than some
threshold.

1.2.2.2 Collaborative MARL: the Mean Field Markov Decision Process derived from
an MFC

In accordance with the point of view of this thesis, we will present the case where we are already
in the mean field regime and we will neglect how we arrived there, however this point is thoroughly
discussed in [91, 36, 61, 11] . As explained in Section 1.1.4 MFCs are the ideal framework to study
collaborative games since the whole population have a common objective, are symmetrical and
nobody can individually affect the mean of the population (weak interactions). If the players of
the game are fully aware of the model data b, σ, f, g then they can resort to techniques presented in
Section 1.1 in order to compute the optimal controls (even if for the moment we have said nothing
about the solvability of the master equation). On the other hand when the model is not available
and only observations of states, actions, costs and possibly of the mean field term (distribution)
are given to the agents then they can either reconstruct a model (model based) as we explained
so far or try directly to learn the optimal values for corresponding state-action-mean field pairs
(model free).

In this subsection we will present the MFC with learning using a model free approach since this
is our main motivation for the third part of the thesis. We will discuss cases both with common
noise and without since we can use one united framework to describe both.

The MFC with learning

As usual we start with our state space X Ď R being a compact subset of the reals, the same for
the action space A Ď R and PpX q the space of probability measures on X . The space of probability
measures for the actions require a separate, more delicate, treatment and cannot simply be PpAq
as Remark 3.4 from [91] informs us. Instead we set

Dpµq “ tLpx, aq P PpX ˆAq : Lpxq “ µ P PpX q and a P Au,
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in words, the set of all probability measures on X ˆA that have first marginal µ then we can set

Γ “ tpµ, αq P PpX q ˆ PpAq : µ P PpX q and α P Dpµqu. (1.2.2)

To avoid confusion we will follow the nomenclature: pµ, αq mean field state and action that always
respect (1.2.2), px, aq representative’s state and action or simply state action. We would like
our random policies to be measurable functions from state distributions to mean field action
distributions, πn : PpX q :Ñ P

`

PpAq
˘

and in particular for a mean field state action pµ, αq P
PpX q ˆ PpAq at we demand Lpα|µq “ πpµq and πpµqpDpµqq “ 1 i.e. the policy gives all its weight
on µ. For the deterministic policies we have πn : PpX q Ñ PpAq with πnpµq P Dpµq.

Based on our description of the mean field state - action pair we define the instantaneous cost
function

fpµ, αq “

ż

XˆA
rfpx, a, αqαpdx, daq

where rf is the cost for the representative agent, and f the aggregate cost for the system. It is obvious
that f is symmetric for all agents. We will assume also that she is bounded and continuous.

Next, we deal with transitions for our representative agent and the mean field system. For the
representative agent we have

xn`1 “ F pxn, an,Lpxn|Fε0,ξ
n q, εn, ε

0
nq, x0 “ ξ „ µ̄ P PpX q, (1.2.3)

where pεiq0ďiďn is sequence of idiosyncratic noise and pε0
i q0ďiďn is one of common noise. Finally

Lpxn|Fε0,x0
n q is the conditional law given the randomness of the initial condition and common noise.

We should notice that (1.2.3) is a discrete time implicit analog of (1.1.13). For a more precise
definition in terms of the technical details we refer to Section 2.2 of [36] . For the transitions of the
mean field state we have

µn`1 “ F̄ pµn, αn, ε
0
nq, µ0 “ µ̄, (1.2.4)

with F̄ being the pushforward of the distribution of common noise through the measurable
function F . In fact we should interpret 1.2.4 as the analogue of (1.1.14). The interpretation is
actually the same, the common noise in the dynamics makes the flow of conditional distributions
random. Of course this creates implications in the definitions that again we refer to [36, 91]. In
short, with absence of common noise we have a deterministic Mean Field MDP in the spirit of [61].

Example 1.2.2 (Two stage stochastic model). 1. The population start from a initial distribu-
tion µ0 P PpX q

2. The central planner chooses α0 P PpAq

3. The population transitions to µ1 “ F̄ pµ0, α0, ε
0
0q

4. Having observed µ1 the central planner chooses α1

The problem is to find a feedback function πpµ0, µ1q “
`

π0pµ0q, π1pµ1q
˘

such that given F̄ pµ0, α0, ε
0
0q

and the second stage cost function fpµ1, π1pµ1qq the central planer minimizes the following quantity
for every µ0, α0
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V πpµ0q “

ż

PpX q
fpµ1, π1pµ1qqP pµ0, α0, dµ1q, (1.2.5)

Equivalently with (1.2.5) we can break Dynamic programming into two steps, first we choose

V1pµ1q “ inf
α1

 

fpµ1, α1q
(

and then

V2pµ0q “ inf
α0

 

ż

PpX q
V1pµ1qP pµ0, α0, dµ1q

(

,

then we would like

inf
π

ż

PpX q
V πpµ0q “ inf

π0
inf
π1

ż

PpX q
fpµ1, π1pµ1qqP pµ0, α0, dµ1q

“ inf
π0

ż

PpX q
inf
α1

fpµ1, α1qP pµ0, α0, dµ1q

“ V2pµ0q.

(1.2.6)

Example 1.2.2 with formulation (1.2.6) helps us articulate several issues that we need to address
in our framework.

1. The transition kernel P should be understood as the push-forward of the distribution of the
common noise though the measurable function F̄ , which itself asks for F̄ to be measurable
with respect to the filtration of the common noise.

2. F̄ , f needs to be measurable with respect to the σ-algebra that we equip PpX q and PpAq for
mean field states and actions respectively in order for the integral to be well defined.

3. The inftfpµ1, α1qu is not necessarily Borel-measurable even if f is

4. In order to be able to exchange the integral and the inf in (1.2.6) we need to be able to find
Borel-measurable policies such that

fpµ1, πδpµ1qq ď inf
α1

fpµ1, α1q ` δ

Putting together pΓ, f, F̄ , γq we can define a Mean Field Markov Decision Process for the Col-
laborative MARL in the spirit of classical Markov Decision Process for RL, [104, Chapter 3]

To conclude this section we give the state value function for the MFMDP and a DPP.

V πpµ̄q “ E
α„π

r

N
ÿ

n“0

γnfpµn, αnq | µ0 “ µ̄s (1.2.7)

and the optimal state value function as

V ˚pµ̄q “ inf
πPΠ
tV πpµ̄qu (1.2.8)
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for the DPP we can introduce the Bellman optimality operator

T V pµ̄q “ inf
α0PDpµ̄q

"

fpµ̄, α0q ` γErV pF̄
`

µ̄, α0, ε
0
0q
˘

| µ0 “ µ̄s

*

(1.2.9)

We can prove that T is a contraction on the space of lower semicontinuous value functions with
Borel measurable policies see [36]

1.3 Main Challenges

In this section, we would like to zoom out and come back to the broader picture we have drawn
so far, in order to articulate some major challenges that have been the main motivation for this
thesis. In Section 1.1.1 we started with some general challenges that RL face and here we would
like to specify a bit further in relation with the models presented so far.

1.3.1 Curse of Dimensionality

It has been evident that the general case of N player continuous games is almost impossible to
solve except in very specific cases, since we are dealing with a system of N coupled HJB equations.
By solving usually in this thesis we mean computing Nash equilibria. Nevertheless we can still
rely on the theory of MFGs - MFCs for the case of symmetrical weakly interacting agents. The
major issue we face is solving numerically the master equation. This is challenging for two main
reasons:

1. The equation is a PDE on the state of probability measures, involving derivatives of measures.
The space itself might have nice properties, such that a form of differential calculus can be
introduced but it lacks a Lebesgue measure that could make easier a standard theory of
integration.

2. The space of probability measures is infinite dimensional and necessarily we need some finite
dimensional approximation for probability measures since there is not computer that can run
algorithms involving infinite dimensional quantities. This finite dimensional approximation
can yield a problem that can be quite high dimensional, introducing a discretisation cost
see Chapter 4

The same interpretation holds for MARL whether we take a model based approach where we
write a master equation involving our approximated problem data b, σ, f or for a model free for
iterations of the Bellman equation.

In a nutshell, the success of the mean field approach is in reducing the mathematical complexity
of problems using the distribution of the agents but one way or another we have to make some
choices when we design models to take into account the curse of dimensionality.

1.3.2 Efficient exploration

In order to learn the value function in any form of RL problem model based or model free we
need to explore the state and action space, and we need to do it in an optimal way since usually
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we cannot wait until we have fully explore to start exploiting our knowledge. Also in most real
life cases exploration can have a ”physical” cost that we don’t necessarily take into account in
simulated environments or we want to mix learning in simulated environments but incorporating
online learning from real data as is most often seen in finance.

So far, in Sections 1.1.2, 1.2.2.1 we presented an exploratory stochastic control framework for
RL problems that in literature so far appears to relay on entropy to randomize the choice of actions.
In the case of Linear Quadratic models that we will mostly discuss in this thesis the addition of
entropy destroys the convex structure of the cost and thus the uniqueness of the solution.

In contrast, we know from training of neural networks that artificial noise can be beneficial
for training and robustness of the network see for example [122]. Similar ideas have already been
extended to (non-mean field) deep reinforcement learning in [102]. Drawing inspiration from these
works we propose our scheme of exploration by noise for the MFGs using common noise as an
exploration noise. The main challenge in this approach is to find the right type of noise to add
to the system. When we are dealing with Linear Quadratic models the choice of a finite dimen-
sional additive noise is almost inevitable , however in more complicated models the choice of the
appropriate noise is a serious challenge.

Another important issue that is connected to the efficient exploration is uniqueness of solu-
tion or Nash equilibria for competitive games and social (Pareto) optima for collaborative games.
Especially in the case of MARL that this thesis is concerned we know that the rule is the existence
of multiple equilibria that can potentially create instability of approximation methods. It is also
known that uniqueness when relaxed controls (random policies) are used holds only under stringent
convexity assumptions [78].

Last but not least, we could comment that various forms of regularization have been proposed
either by entropy (to smoothen the max or min of actions) or to penalise the growth of value
functions or convexify the cost (or reward) function.

1.3.3 Observability - population dependent / population agnostic policies

In classical control, the observability problem pertains to whether or not the states of a system
can be fully determined or observed based on the information available from the system’s output
or measurements. In MARL there is one major question to be answered Which information is
available to agent to take decisions?

The major benefit of MFGs and MFCs presented in Section 1.1 is that they simplify this
information structure since the representative agent has only need to observe the mean field state
of the population to design optimal actions on a given state. The optimal feedback functions of
the mean field regime form an approximate ε-Nash equilibrium for the symmetric N-player game.

Formally, if we assume that each agent has global information we define

ᾱjt “
1

N

N
ÿ

k‰j

δαkt
, αkt „ πkp¨|st, µ̄

k
t , ᾱ

k
t´1q

where µ̄ is the empirical mean state of the population, and ᾱ of actions. However, this benefit
is no longer granted if we assume that each agent has only local information and we come to the
question raised in Section 1.2.2.1 of population dependent versus population agnostic policies.
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1.3.4 Model based vs Model free Reinforcement Learning

Throughout this introduction, we exemplified both model based and model free RL methods to
solve problems, here we would like to compare the two and articulate some possible shortcomings
of each one that might make it more adapted to specific problems than other.
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Model based

1. Efficient Exploration: Once the model is learned, the agent can use it for planning.
It can simulate possible trajectories in the model and evaluate different actions and
policies without interacting with the real environment. This makes the method more
sample efficient reducing the need for a large number of real-world interactions. The
learned model can be used to plan exploratory actions more efficiently.

2. Stability: Model-based methods can be more stable and require less fine-tuning, as
they rely on known dynamics, which can lead to more predictable learning.

3. Major Challenge: Model bias, As explained in Section 1.1.2 building an accurate
model can be challenging, especially in complex, high-dimensional, or unknown environ-
ments. Errors in the model can lead to suboptimal policies.

Model free

1. Robustness to Model Errors: Model-free methods are often more robust to errors
in the model because they do not rely on a perfect representation of the environment
dynamics.

2. Simplicity and Applicability: Model-free methods are relatively simple and can be
applied to a wide range of RL problems without needing a model of the environment.

3. Major Challenge: Exploration Efficiency, Model-free approaches can require a
large number of real-world interactions to learn a good policy, making them less sample-
efficient compared to model-based methods.

1.4 The contributions of this thesis

At this point, after we explained what are the objects, the types of problems we aim at dealing
with in this thesis and why we think they are important, it’s high time to elaborate on our point
of view for the way we will address the problems.

On the one hand we explained intuitively a mathematical approach to games with many sym-
metrical and weakly interacting players, collaborative or competitive. these represent obviously
cases where the ”model” is known and we can do computations based on it. However, the (theoret-
ical) analysis that needs to be done and all the notions introduced so far e.g. HJB equation on the
space of probability measures or infinite dimensional FBSDEs, appear naturally and correspond to
”physical” objects that encode and decode hypotheses for problems coming from ”real life”.

On the other hand, starting from an algorithmic point of view, we aim to solve concrete prob-
lems, develop successful algorithms and then follow with a theory that generalizes or sets the
foundations for a more systematic approach of a broader class of problems.

In some sense, we try to marry these two extremes and advocate for a systematic and rigorous
approach to Mean Field Reinforcement Learning. This thesis reflects the effort to translate the
intuition that we gain studying the theoretical aspects of the problem into actionable plans for
algorithms or in general solution methods.
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1.4.1 Towards explainable and trustworthy AI

The first contribution of this thesis is a conceptual one since using mathematics we bring trans-
parency to optimal decision making in MARL.

Rigorous mathematical analysis provides foundations for safe and explainable algorithms.
When we discuss Nash equilibria or social optima in MARL essentially we study where the system
will converge and under which assumptions that rule out dangerous situations for humans, e.g.
for floats of delivery drones to collide with humans or collide with themselves. Furthermore, by
studying the error bounds of the algorithms we can define the precision we want to obtain when
executing tasks by artificial agents.

The study of common noise, as part of the model or as artificial noise for exploration can
enhance model’s robustness in unexpected or unusual situations.

1.4.2 AI inspiring new solutions to mathematical problems

One key motivation for using common noise in our competitive MARL comes from inspection of a
simple control problem with noise. The most straightforward thing we could do, when we are given
a control problem would be to approximate the feedback function of the inputs. This approximation
can be done by a neural network as it was first done by the seminal work of Han and E [67].

To make things more concrete we focus on a linear quadratic example, adopting the same
notation as in Section 1.1.2

$

’

’

’

&

’

’

’

%

min
aPAadm

E
”

ż T

0

1

2
pX2

t ` a
2
t qdt`

1

2
X2
T

ı

subject to

dXt “ atdt` σdWt, X0 “ x

(1.4.1)

We know already the shape of the Value function and of the optimal feedback, that is going
to be affine. In order to profit from the approximative power of Artificial Neural Networks (ANN)
there are two possible strategies, either we approximate directly the controls in what is usually
referred to as Policy Iteration Methods or approximate the value function that usually is called
Value Iteration Methods. For the first part of the thesis we choose a Policy iteration method
while later we switch for Value Iteration. The reasons for this choice will be clear soon.

In the case of (1.4.1) we can follow 2 paths to mimic the strategy of [67]

1. Suppose that we solve the problem in a class of affine functions and then try to learn the
coefficients, ηt, ht

a‹t “ ´ηtX
‹
t ´ ht

2. Approximate the whole feedback function as an nonlinear function of the input.

at “ αpt,Xtq

For both strategies we discretise in time problem (1.4.1) and then use sequentially in time the
states to pass them through the neural network (ANN) to synthesise the control and then calculate
the cost as shown in Figure 1.4
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Figure 1.4: Sequential structure of Policy Iteration for Stochastic Control

The reader should note that by ANN we can use either strategy, postulating the affine form
or approximating the whole feedback function. Now to train ANN5 we need Monte Carlo samples
that we denote by tXiuMi“0 and in vector form with some abuse of notation the training should
happen as in the Figure 1.5

The effect of the noise is very important for the method and it is a crucial observation for
solving MFGs by Policy Iteration methods. As it will be more clear in the Introduction of Chapter
2 we need a noise that will randomize sufficiently the flow of (conditional) probability measures to
be able to catch the fixed point.

5at this stage we don’t assume any specific architecture and for illustration purposes we use fully connected feed
forward NN. Furthermore, the network can be the same at each time step or different
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Figure 1.5: Feedforward NN for feedback controls

1.4.3 A novel Fictitious Play-type scheme for a model with common noise

Going back to our initial intention to tackle first competitive MARL we propose a novel Fictitious
Play scheme for a Linear Quadratic variant of (1.2.1) with the law of the process replaced by a
conditional mean given the common noise. We switch notation to agree more with Chapter 2 and
let Bt be the idiosyncratic noise and Wt the common noise
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min
aPAadm

E
”

ż T

0

1

2

ˆ

`

Xt ` fpmtq
˘2
` a2

t

˙

dt`
1

2

`

XT ` gpmT q
˘2
ı

subject to

dXt “ atdt` σdBt ` εdWt, X0 “ x

with consistency condition

mt “ ErXt|FW
t s.

(1.4.2)

Now again as in Sections 1.1.3, 1.2.2.1 our goal is to solve the optimal control when then
mt is fixed and then find a fixed point for the flow of conditional expectations. To this end we
can transform (1.4.2) to an equivalent FBSDE system using Pontryagin’s Maximum Principle and
taking conditional expectation. Using the affine shape of the optimal control a‹t “ ´ηtXt ` ht we
get

dmt “
 

´ηtmt ´ ht
(

dt` εdWt, m0 “ ErX0s

dht “
 

´fpmtq ` ηtht
(

dt` εktdWt, hT “ gpmT q,

where kt is the process that makes ht adapted to the filtration of Brownian Motion as briefly
explained in Section 1.1.3.1 and Remark 1.1.9
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Next we can introduce a shifted Brownian Motion that will help us define the our Fictitious
Play

dW
h{ε
t “

1

ε
htdt` dWt,

and the probability measure Ph whose density is

Ep1
ε
hq “ exp

´

´
1

ε

ż T

0
htdWt ´

1

2ε2

ż T

0
h2
tdt

¯

.

Now, when mt and ht are two progressively-measurable processes with respect to the filtration
generated by εWt, we have a look at the new cost functional:

Eh{ε
”

ż T

0

1

2

ˆ

`

Xt ` fpmtq
˘2
` a2

t

˙

dt`
1

2

`

XT ` gpmT q
˘2
ı

subject to

dXt “ atdt` σdBt ` εdW
h{ε
t ,

(1.4.3)

where the common noise, W
h{ε
t is the shifted one. For reasons that will become clear when we want

to compare the costs for the optimal control we also introduce the notation

Jεpα;m;hq :“ Eh{ε
”

RX0
`

α;m; εW h{ε
˘

ı

, (1.4.4)

with

RX0
`

α;m; εW h{ε
˘

“

ż T

0

1

2

ˆ

`

Xt ` fpmtq
˘2
` a2

t

˙

dt`
1

2

`

XT ` gpmT q
˘2

(1.4.5)

We call (1.4.3) original MFG problem characterized by the FBSDE system

dmt “
 

´ηtmt ´ ht
(

dt` εdW
h{ε
t , m0 “ ErX0s

dht “
 

´fpmtq ` ηtht
(

dt` εktdW
h{ε
t , hT “ gpmT q,

(1.4.6)

to distinguish it from the one coming from our learning method.

We are now ready to introduce our first version of fictitious play as an adaptation of the one
presented in Section 1.2.1 due to [24]. Consider the two step iterative learning procedure, whose
description at rank n goes as follows:

Harmonic best action For a proxy mn :“ pmn
t q0ďtďT of the conditional mean pmtq0ďtďT of the

in-equilibrium population and a proxy hn :“ phnt q0ďtďT of the opposite6 of the FtW -adapted
intercept of the equilibrium feedback in a‹t “ ´ηtXt´ht, solve the stochastic control problem
in the fixed environment pmt

n, hnt q to obtain the best response αn`1 “ α˚pt, xq

6The opposite comes from the sign ´ in the formula of the optimal feedback.
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min
aPA

Eh
n{ε

”

ż T

0

1

2

ˆ

`

xt ` fpm
n
t q
˘2
` a2

t

˙

dt`
1

2

`

xT ` gpm
n
T q
˘2
ı

subject to

dxt “ atdt` σdBt ` εdw
hn{ε
t , x0 “ x

(1.4.7)

Harmonic update Given hn`1, the optimal trajectory of the above minimization problem is

Xn`1
t “ X0 ´

ż t

0

`

ηsX
n`1
s ` hn`1

s

˘

ds` σBt ` εW
hn{ε
t . (1.4.8)

We then let

mn`1
t “ E

“

Xn`1
t |FW

t

‰

, (1.4.9)

together with

mn`1
t “

1

n` 1

n`1
ÿ

k“1

mk
t “

1

n` 1
mn`1
t `

n

n` 1
mn
t . (1.4.10)

The reader can identify the form of (2.1.22) as the standard fictitious play update rule introduced
at Section 1.2.1 for the nth round.

The rationale behind this strategy relies on Girsanov’s transformation, to change dynamically
the form of the common noise ( with respect to the rank of the iteration of fictitious play). Precisely,
this permits to decouple the two forward and backward equations, as clearly shown if we write the
equation for mn`1 as an equation with respect to the historical common noise. To see this we start
from (2.1.20) changing back to the original common noise Wt and taking conditional expectation :

dmn`1
t “ ´

`

ηtm
n`1
t ` hn`1

t ´ hnt
˘

dt` εdWt, m0 “ ErX0s,

then we sum and divide by n` 1 to arrive in

dmn`1
t “ ´

´

ηtm
n`1
t `

1

n` 1

“

hn`1
t ´ h0

t

‰

¯

dt` εdWt, m0 “ ErX0s. (1.4.11)

The forward equation then becomes asymptotically autonomous provided that hn`1 can be bounded
independently of n, which we succeed to prove in Section 2. Following our standard strategy so far
we can use Pontryagin’s Maximum Principle for problem (2.1.19) to write a backward equation for
hn

dhn`1
t “

 

´fpmn
t q ` ηth

n`1
t

(

dt` εktdW
hn{ε
t , hn`1

T “ gpmn
T q, (1.4.12)

Then our first major results reads as follows

Theorem 1.4.1. The learning FBSDE (2.1.23)-(1.4.12) converges to the decoupled original
FBSDE system under the historical probability measure P,
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dmt “
 

´ηtmt

(

dt` εdWt, m0 “ ErX0s

dht “
 

´fpmtq ` ηtht ` ktht
(

dt` εktdWt, hT “ gpmT q,
(1.4.13)

with an explicit bound on rate of convergence

Eh{ε
„

sup
0ďtďT

´

ˇ

ˇmt ´m
n
t

ˇ

ˇ

2
`
ˇ

ˇht ´ h
n
t

ˇ

ˇ

2
¯



ď C
1

n2
expp

C

ε2
q

for a constant C that depends on the dimension, terminal time T , and the regularity of f and g.

In plain words, Theorem 1.4.1 addresses the strong error of the scheme under the measure Ph,
we can also addresses the weak error of the scheme by comparing the law of the learning scheme
with the law of the original MFG equilibrium

Theorem 1.4.2. The weak error of the scheme for the Fortet-Mourier distance satisfies:

sup
F

ˇ

ˇ

ˇ
Eh

n{ε
”

F
`

mn,hn
˘

ı

´ Eh{ε
”

F
`

m,h
˘

ıˇ

ˇ

ˇ
ď

1

n
exp

`

C
ε2

˘

, (1.4.14)

the supremum in the left-hand side being taken over all the functions F on Cpr0, T s;RˆRq that are
1-Lipschitz continuous and bounded by 1. The constant C depends on the same parameters as the
one in Theorem 1.4.1

Observing closely both bounds of Theorems 1.4.1 and 1.4.2 we see that they depend dramatically
on ε and they completely deteriorate when εÑ 0 which interests us in practice since we want our
scheme to provide a selection of equilibria. Also in practice, for what is going to come next we want
to be able to lower the intensity of our exploration noise once we have learned the system without
destroying the structure of our method.

For these reasons we need to compensate in our scheme with a parameter that we can tune
according to the intensity of noise meaning that away from zero it wouldn’t cause problems and
close to zero it would compensate for the blow-up of the bounds. It turns out that the most effective
way to achieve this goal is to modify the learning rate of the scheme where we can pass from a
Harmonic version in (2.1.22) to a Geometric one as follows

mn`1
t “

$p1´$´1q

1´$´pn`1q

n`1
ÿ

k“1

$´kmk
t “

$´np1´$´1q

1´$´pn`1q
mn`1
t `

´

1´
$´np1´$´1q

1´$´pn`1q

¯

mn
t , (1.4.15)

with the obvious convention
1

n` 1
“
$´np1´$´1q

1´$´pn`1q
.

For our compensation to be effective we need to scale with $ also the initial condition $X0 and
the intercept $hn. The new tilted harmonic fictitious play, along with the rest of the details and
the new bounds for the main results are presented in 2.

Now we are ready to introduce one of the major contributions of the thesis, restoration of a
common noise for an MFG without common noise as action randomization that can help explore
possible solutions of the game.
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1.4.4 Exploration noise

Our set-up is going to be similar to the previous Section with the difference that our original
MFG is the one without common noise, i.e.
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min
aPAadm

E
”

ż T

0

1

2

ˆ

`

Xt ` fpmtq
˘2
` a2

t

˙

dt`
1

2

`

XT ` gpmT q
˘2
ı

subject to

dXt “ βtdt` σdBt, X0 “ x

βt “ at ` ε 9Wt

with consistency condition

mt “ ErXt|FW
t s.

(1.4.16)

To elaborate on our model we need to compare (1.4.2) with (1.4.16), in both cases the individual
(representative) player choses her actions at and in case of (1.4.2) the resulting state dynamics are
subjected to common noise while in (1.4.16) the action themselves are subject to noise. This major
difference yields two major revisions that have to be done in our fictitious play scheme based on
action randomization.

First, 9Wt is not differentiable and we need to consider a mollification of the noise. We consider
a piecewise affine interpolation with time discretisation parameter p, for reasons that are explained
in 2 so we end up with a time discretised p-MFG.

Second, patq0ďtďT Ñ pat ` ε 9Wtq0ďtďT turns the control into an unbounded process and even if
we are able to solve any anticipativity and measurability issues by our piecewise interpolation we
still need to modify the cost to keep everything in order.

One last comment about the comparison of (1.4.2) with (1.4.16) is the fact that we need to
keep the same consistency condition for our MFG solutions otherwise the system will not feel the
common noise, we have various comments along 2 for the cases when the common noise is zero
in the original MFG. Figure 1.6 illustrates the relationship between original MFG (without
common noise), learning MFGs (with common noise) and the approximate solution that
comes as output of the fictitious play algorithm

MFG without
common noise

MFG with
common noise

Approximate solution

exploration

ε > 0

fictitious play

n, p ↑ ∞

exploitation

ε ↓ 0 vs. n, p ↑ ∞

Figure 1.6: Exploration vs. exploitation.

To make it clear, we introduce a family of regular processes ppW p
t q0ďtďT qpě1 such that, almost
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surely (under P),
lim
pÑ8

sup
0ďtďT

|Wt ´W
p
t | “ 0,

and, for any p ě 1, the paths of pW p
t q0ďtďT are continuous and piecewise continuously differentiable

and assume the following piecewise affine interpolation:

W p
t :“Wτpptq `

ppt´ τpptqq

T

`

Wτpptq`T {p ´Wτpptq

˘

, (1.4.17)

where, by definition, τpptq :“ tpt{T upT {pq. In words τpptq is the unique element of pT {pq ¨ N such
that τpptq ď t ă τpptq ` T {p “ τppt ` T {pq, namely τpptq “ `T {p, for t P r`T {p, p` ` 1qT {pq and
` P t0, ¨ ¨ ¨ , p´ 1u. The initialization is similar to the previous section pm0

t , h
0
t “ pErX0s, 0q´ďtďT

For an FW
t -adapted and continuous environment m “ pmtq0ďtďT , the cost functional is turned

into the following discrete time version

rJppα;mq “
1

2
E
„

ˇ

ˇXT ` gpmT q
ˇ

ˇ

2
`

ż T

0

!

ˇ

ˇXτpptq ` fpmτpptqq
ˇ

ˇ

2
` |αt ` ε 9W p

t |
2
)

dt



, (1.4.18)

where the expectation is taken over both the idiosyncratic and exploration (common) noises.
In the presence of the randomization, the cost functional might become very large as p tends

to 8, even for a control α of finite energy. This prompts us to renormalise rJp. As a result of the
adaptability constraint, we indeed have

E
ż T

0
αt ¨ 9W p

t dt “ 0, and E
ż T

0
| 9W p

t |
2dt “ d p,

So, we must subtract to the cost a diverging term to recover the original cost functional. The
effective cost must be equation (1.4.18) ´1

2ε
2d p, so we recover the right cost

Jppα;mq :“ rJppα;mq ´ 1
2ε

2d p

“
1

2
E
„

ˇ

ˇXT ` gpmT q
ˇ

ˇ

2
`

ż T

0

!

ˇ

ˇXτpptq ` fpmτpptqq
ˇ

ˇ

2
` |ατpptq|

2
)

dt



.
(1.4.19)

We can define again the shifted Brownian Motion as in the previous subsection, let W h{ε:

W
h{ε
t “Wt `

1

ε

ż t

0
hsds.

We compute the p-piecewise linear interpolation W p,h{ε of W h{ε:

W
p,h{ε
t “W

p,h{ε
τpptq

`

ż t

τpptq
dW p

s `
1

ε

ż t

τpptq
hsds,

from which we deduce that

W
p,h{ε
t “W p

t `
1

ε

ż t

0
hsds, t P r0, T s. (1.4.20)

38



For the sake of brevity we will omit the rest of the details to define properly our Fictitious
Play, it can be found in the corresponding Section 2.2.2. Instead we give the main theorem for the
convergence of the learning scheme to the original (decoupled) MFG system and the exploitability
of the output of the algorithm for defining the approximate solution.

Theorem 1.4.3. There exists a threshold c ą 0, depending on d, T , the norms }f}1,8 and }g}1,8
such that, for pε2 ě c, the scheme
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hn`1
`T {p “

rhn`1
p``1qT {p `

T
$pfpm

n
p``1qT {pq1t`ďp´2u

´ T
p

´

η
ppq
p``1qT {p `

T
p 1t`ďp´2u

¯

rhn`1
`T {p ´ ε

ż p``1qT {p

`T {p
kn`1
s dW$hn{ε

s ,

mn`1
p``1qT {p “ E

“

X
ppq,n`1,$
`T {p |σpW q

‰

“ E$h
n{ε

“

X
ppq,n`1,$
`T {p |σpW q

‰

,

together with

mn`1
t “

$p1´$´1q

1´$´pn`1q

n`1
ÿ

k“1

$´kmk
t “

$´np1´$´1q

1´$´pn`1q m
n`1
t `

´

1´ $´np1´$´1q

1´$´pn`1q

¯

mn
t .

(1.4.21)

converges to pmppq, rhppq{$,kppq{$q, where pmppq, rhppq,kppqq is the unique solution of the decoupled
discrete-time FBSDE system:

m
ppq
p``1qT {p “ m

ppq
`T {p ´

T
p η
ppq
`T {pm

ppq
`T {p ` ε

`

Wp``1qT {p ´W`T {p

˘

,

rh
ppq
`T {p “

rh
ppq
p``1qT {p `

T
p f

`

m
ppq
p``1qT {p

˘

1t`ďp´2u

´ T
p

´

η
ppq
p``1qT {p `

T
p 1t`ďp´2u

¯

rh
ppq
`T {p ´

ˆ
ż p``1qT {p

`T {p
kppqs ds

˙

rh
ppq
`T {p

´ ε

ż p``1qT {p

`T {p
kppqs dWs, ` P t0, ¨ ¨ ¨ , p´ 1u,

m
ppq
0 “ EpX0q, rh

ppq
T “ g

`

m
ppq
T

˘

,

(1.4.22)

with an explicit bound on the rate of convergence, namely

essupωPΩ

”

sup
`“0,¨¨¨ ,p

´

|m
ppq
`T {p ´m

n
`T {p|

2 ` |$´1
rh
ppq
`T {p ´ h

n
`T {p|

2
¯ı

ď $´2n exp
`

Cε´2
˘

, (1.4.23)

for a constant C that also depends on d, T , }f}1,8, }g}1,8.
Moreover, if we extend mppq by continuous interpolation to the entire r0, T s and if we call

hppq the piecewise constant extension of rhppq to the entire r0, T s, then, up to a modification of the
constant C, the weak error of the scheme for the Fortet-Mourier distance satisfies

sup
F

ˇ

ˇ

ˇ
E$h

n{ε
”

F
`

mn,hn
˘

ı

´ Eh
ppq{ε

”

F
`

mppq, $´1hppq
˘

ıˇ

ˇ

ˇ
ď $´n exp

`

Cε´2
˘

, (1.4.24)

the supremum being taken over all the functions F on Cpr0, T s;RdˆRdq that are bounded by 1 and
1-Lipschitz continuous.
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We come now to the discussion on the exploitability of the output of the learning scheme. It
refers to the extent to which an agent can take advantage of the behaviors of other agents in
the environment to achieve its own objectives. Exploitability becomes relevant when considering
how well an agent can adapt and respond to the strategies employed by its peers. An agent with
low exploitability is less susceptible to being taken advantage of by others, as it can effectively
anticipate and counter their actions. Reducing exploitability is a common goal in the design of
MARL algorithms, as it contributes to the stability and effectiveness of multi-agent systems.

To make things precise we consider the strategy αppq,n,˛ defined by

α
ppq,n,˛
t :“ ´η

ppq
τpptq

X
ppq,‹
τpptq

´$hnt , (1.4.25)

where we recall

dX
ppq,‹
t “ ´η

ppq
τpptq

X
ppq,‹
τpptq

dt` σdBt ` εdW
p
t

“ α
ppq,n,˛
t dt` σdBt ` εdW

p,$hn{ε
t , X

ppq,n,˛
0 “ X0.

(1.4.26)

we have also
E$h

n{ε
”

X
ppq,‹
t |σpW q

ı

“ E
”

X
ppq,‹
t |σpW q

ı

“ m
ppq
t . (1.4.27)

Theorem 1.4.4. Assume that the law of the initial condition has sub-Gaussian tails, i.e. Ppt|X0| ě

ruq ď a´1 expp´ar2q, for some a ą 0 and for any r ą 0. Then, there exist two positive constants c
and C, only depending on the parameters a, d, T , }f}1,8, }g}1,8, such that, for any ε P p0, 1s, any
integer p ě 1 satisfying pε2 ě c and any integer n ě 1,

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě E$h
n{ε
”

RX0
`

αppq,n,˛;mppq; 0
˘

ı

´ Cε´ Cp´1 ´ exppCε´2q$´n,
(1.4.28)

the infimum in the left-hand side being taken over FX0,B,W
t -progressively measurable and square-

integrable processes pαtq0ďtďT .
The difference between the term in the left-hand side and the first term in the right-hand side

of (2.2.81) is called the P$hn{ε-mean exploitability of the policy αppq,n,˛. (Obviously, this difference
is non-positive.)

We would like to make the following comments to clarify Theorem 2.2.27

Remark 1.4.5. Both the costs of pα,mppqq and pαppq,n,˛,mppqq are computed according to the
time-continuous original model without common noise (even though the control αppq,n,˛ is piecewise
constant and random as an output of the scheme).

Remark 1.4.6. The bound that is given for the mean exploitability depends on the three parameters
ε, n and p. Typically, we want to choose ε small and p large, which is well understood: the
equilibrium pmppq,αppq,n,˛q is learnt for the p-discrete MFG with an ε-common noise; if ε is large
or p is small, the equilibrium that is learnt cannot be a ‘good’ approximate equilibrium of the
original MFG. This is exactly what the terms ´Cε and ´C{p say in (2.2.81). As for the last term
in (2.2.81), it becomes smaller and smaller as n increases.
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1.4.5 Quantitative Bounds for Kernel Based Q-Learning

Now we shift our attention to a model-free approach, namely Q-learning. Our ultimate goal being
to address learning a Mean Field MDP in the spirit of 1.2.2.2 we will develop first some bounds
that help us to analyse the exploration-exploitation tradeoff.

We start with our state and actions spaces S and A respectively, being compact subsets of Rd
with dimensions dS and dA, D “ dS ` dA. Switching to a reward instead of a cost, we assume a
reward function R : S ˆAÑ R that is bounded and has bounded derivatives of order D. Assume
also a transition kernel P : S ˆ A Ñ P

`

S
˘

, where we require the mapping P to be measurable

(which means here that ps, aq ÞÑ Ppps, aq, Eq is measurable for the standard Borel σ-fields and for
any E P BpSq).

Assumptions (Cost and Transition Kernel).

1. The function R is bounded and has bounded derivatives of any order up to 5ptdS{2u` 1q.

2. For any given h ą 0, there exists η, η1 ą 0 such that, for any balls BS of RdS and BA of RdA,
of radius greater than h each and respectively included in S and A,

ηhD ď P
´

 `

sn`1, an`1

˘

P BS ˆBA
(

|Fn
¯

ď η1hD. (1.4.29)

3. For any function ϕ : S Ñ R, whose derivatives up to a certain order k P t1, ¨ ¨ ¨ , 5ptdS{2u`1qu
are bounded by a certain constant C, the function

ps, aq P S ˆA ÞÑ

ż

S
ϕps1qP

`

ps, aq, ds1
˘

also has bounded derivatives up to k, with bounds only depending on C.

Remark 1.4.7. The assumptions are to guarantee the contraction for the Bellman operator that
will be defined later.

Remark 1.4.8. The order 5ptdS{2u ` 1q is here found from Sobolev embedding theorems, which
play a great role in the proof of our final result especially when we compare the distance between
MDPs and which draw a clear connection between the dimension of the state and action spaces and
the required regularity on the data.

A policy π is a measurable function π : S Ñ A. Under a policy π, the value of a state s is

V πpsq :“ E
”

8
ÿ

k“0

γkR
`

sk, πpskq
˘ ˇ

ˇ s0 “ s
ı

,

where psnqně0 is the Markov chain associated with the transition kernel s P S ÞÑ Ppps, πpsqq, ¨q P
PpSq, and the action value function of a pair ps, aq P S ˆA is

Qπps, aq :“ Rps, aq ` E
”

8
ÿ

k“1

γkR
`

sk, πpskq
˘ ˇ

ˇ s0 “ s
ı

,
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with the optimal ones being respectively

V ‹psq :“ sup
π

V πpsq, and V ‹psq “ sup
aPA

Q‹ps, aq, @s P S,

with

Q‹ps, aq “ Rps, aq ` γ

ż

S
V ‹ps1qP

`

ps, aq, ds1
˘

, @ps, aq P S ˆA.

In order to learn the optimal value we can repeat the usual strategy we have mentioned through-
out this introduction, Dynamic programming. In RL this is usually known as value iteration and
for discrete time, space problem over a finite horizon it can be solved explicitly by iterations of the
form

V ‹n psq “ sup
aPA

!

Rps, aq ` γErV ‹n`1psn`1q
ˇ

ˇ psn, anq “ ps, aqs
)

, for n “ N ´ 1, ..., 1, 0,

starting from a terminal value VN . When the time horizon is infinite as in our case we let N Ñ8

and get V ‹ “ T ‹V ‹ for T being the Bellman operator

`

T πU
˘

psq “ R
`

s, πpsq
˘

` γ

ż

S
Ups1qP

`

ps, πpsq, ds1
˘

,

`

T ‹U
˘

psq “ sup
π

 

T πUpsq
(

,
(1.4.30)

where U is a test function from S to R.

Assumptions (Cost and Transition Kernel). We assume that the value function has bounded
derivatives of order up to 5ptdS{2u` 1q.

Except for discrete time-space this strategy is also very much dependent on the dimension, since
as the spaces grow larger so does the computational requirements, in a phenomenon called ”curse of
dimensionality” that we have mentioned several times already. For the method to become feasible
we need

1. Temporal Difference (TD) learning

2. Function approximation to deal with the continuous nature of the underlying spaces.

We refrain from giving all the details here and instead refer to the classical textbook [104] and the
Introduction of Chapter 3

For the TD part we make the choice for Q-Learning algorithm [115, 104], central to this method
is the TD-update or target that we use to update the value function. Our target is Rps, aq `
γ supa1PA Qps1rss, a1q, where s1rss is the random state that is reached from s and is being sampled
from the distribution Ppps, aq, ¨q. Then, the update rule takes the form

Qn`1ps, aq “ Qnps, aq ` α

ˆ

Rps, aq ` γ sup
a1PA

Qnps1rss, a1q ´Qnps, aq

˙

, (1.4.31)
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where α is a learning rate in p0, 1q.

For the function approximation we choose kernel regression [69, Chapter 6] . The main idea is
that instead of discretising the spaces over some grid, we can use kernel to average the information
of the nearby points. In fact kernel regression is a smooth variant of k-nearest neighbours algorithm
where we define a kernel that provides the smooth averaging of our data points. Central to this
method is the choice of kernel, since it dictates the shape based on which we select the points that
influence our estimator and its size which we denote as h, called bandwidth.

To explain the idea a bit further, say that we interact with the (unknown) environment and
obtain a sample ps, aqn “ ts0, a0, s1, ..., sn, anu of size n, we want to define K : RdS ˆ RdA Ñ R a
smooth non-negative compactly supported function such that based on our sample ps, aqn and for
any function f : S ˆAÑ R at a point ps, aq at depth n we can define the operation

Ah,nfps, aq :“
n
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

fpsk, akq
řn
k“0 Kh

`

s´ sk, a´ ak
˘ , (1.4.32)

provided the denominator is not zero and if the denominator is zero, we return 0 for Ah,nfps, aq,
more details an motivation about the choice and the use of Ah,n see Introduction of Chapter 3, for
examples of regression kernels see [69, Chapter 6]. For the moment what is important for us to
motivate our choice is that Ah,n preserves the smoothness of the functions it is applied to f and
the contraction property of (1.4.30) when used on top of T .

To apply the kernel approximation on the action value function we notice the recursion

Ah,nfps, aq “ αnps, aqfpsn, anq `
`

1´ αnps, aq
˘

Ah,n´1fps, aq, (1.4.33)

with

αnps, aq “

$

’

&

’

%

Kh

`

s´ sn, a´ an
˘

řn
j“0 Kh

`

s´ sj , a´ aj
˘ if

n
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

ą 0

0 otherwise

. (1.4.34)

then we adapt the update rule (1.4.31) and let (for n ě 1)

pQnps, aq “ pQn´1ps, aq ` αn´1ps, aq
´

Rpsn´1, an´1q ` γsupa1PA pQn´1psn, a
1q ´ pQn´1ps, aq

¯

. (1.4.35)

Thus, we arrive in

pQnps, aq “

$

’

&

’

%

řn´1
j“0 Kh

`

s´ sj , a´ aj
˘

yj
řn´1
j“1 Kh

`

s´ sj , a´ aj
˘ if

řn´1
j“1 Kh

`

s´ sj , a´ aj
˘

ą 0

0 otherwise

, (1.4.36)

where

yj “ Rpsj , ajq ` γ sup
aPA

pQjpsj`1, aq,

is the TD-target.
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Remark 1.4.9. We can refine the upper boundedness assumption of the transition kernel. We let
ρ ą 1 be the smallest real such that the support of K is in Bpo, ρq “ ρBp0, 1q, we assume that there
exists another constant η1 ą 1 such that, for any D-dimensional ball of radius 3ρh,

P
´

 `

sn`1, an`1

˘

P B2ρh

(

|Fn
¯

ď η1hD. (1.4.37)

To wrap-up everything, we present a pseudo code of the algorithm

Algorithm 1: Kernel Based Q-Learning

input : Type of kernel K , bandwidth h, discount γ, number of iteration n
output: Approximate Action Value Function pQn

1 initialization:;

2 pQ0ps, aq “ 0 @ps, aq ;
3 set inital state s0;
4 for k in n do
5 Choose action ak;
6 Get: reward rk, next state s1;

7 Compute yk “ rk ` γ max
aPĀ

pQkps
1, aq using (1.4.35) ;

8 Store in memory psk, ak, ykq;
9 k “ k ` 1;

10 sk “ s1;

Given the nature of memory based approximations, essentially all we need is just successive
iterations sk, ak, yk, sk`1, ¨ ¨ ¨

Our main result is the rate of convergence, pQh,nps, aq to Q‹ps, aq in probability when n becomes
large and h small, for all s, a in S ˆA

Theorem 1.4.10. There exists a constant C, depending on the various parameters underpinning
the aforementioned assumptions, such that, for an error threshold ε ą 0, we can find hε and nε such
that the sup distance between pQhε,nε and Q‹ is less than Cp1` | lnpεq|qε on an event of probability
greater than 1´ CεD. The number nε that is necessary to do so is less than exppC| lnpεq|3q.

To highlight our contribution and explain our result we provide a short description of the proof
strategy. The result is based on a proof device, the Action Replay Process, first conceived by
Watkins [115], which is an artificial MDP constructed based on the original one in such a way that
for n big enough the transitions and expected rewards of the two MDPs are close. For the sake of
brevity we will omit all technical details and focus on the intuition, in Section 3.2.2 we provide all
the necessary details.

To introduce ARP, assume we have a realization of the original MDP, ps, aqnPN
7, then we

construct a homogeneous Markov process pΛk,Σk, BkqkPN on an auxiliary probability space pΞ,Gq
with values in NˆSˆA such that the first component denotes the level at which the process starts
and the transitions only allow the time component to decrease. For the transitions assume that on
a given level pn, s, aq P Nˆ S ˆA we flip a ”bias” coin and with probability αnps, aq as in (1.4.34),

7in fact, the realization should include rewards, but for simplicity we omit them
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we accept the level and record it, i.e. we get reward rn while with probability 1´αnps, aq we discard
the level, decrease the time component by one and flip the bias coin for the next level pn´1, s1, a1q.
This process is repeated until the time component reaches zero where the ARP terminates at an
arbitrary state that might differ at each realization.

Formally we call Pps,aq the probability measure under which, the process pΛk,Σk, BkqkPN is a

homogeneous Markov chain with transition probabilities pΠps,aq
`

pn, s, aq, ¨
˘

nPN,sPS,aPA, namely

Pps,aq

´!

pΛk`1,Σk`1, Bk`1q P E
)

|GpΛ,Σ,Bqk

¯

“ Πps,aq
`

pΛk,Σk, Bkq, E
˘

, (1.4.38)

for E a Borel subset of N ˆ S ˆ A, where GpΛ,Σ,Bq “ pGpΛ,Σ,Bqk qkPN is the filtration generated by
pΛk,Σk, BkqkPN. The reader can find the precise description of Πps,aq describing the ” biased coin
flips” in Section 3.2.2 and also in [114].

To conclude the definition of ARP as an MDP we give its state and action value functions

V ARP,‹pn, sq “ sup
π

Eps,aq

„

1tτě1u

8
ÿ

k“0

γkR
`

Σk, πpΛk,Σkq
˘

| pΛ0,Σ0q “ pn, sq



,

with the supremum being taken over time dependent strategies π from Nˆ S into A. The variable
τ should be implicitly understood as the ARP having at least one transition before termination.
Finally, following Lemma (3.2.2) of Section 3.2.2 the expectation Eps,aq should be understood as

Eps,aq

”

R
`

Λ1,Σ1, B1

˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

“

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

R
`

k, sk`1, ak`1

˘

řn
l“1 Kh

`

s´ sl, a´ al
˘ .

The optimal action-value function QARP,‹ is the solution of

QARP,‹
`

n, s, a
˘

“ Rps, aqPps,aq
`

tτ ě 1u | pΛ0,Σ0, B0q “ pn, s, aq
˘

` γ Eps,aq

”

sup
a1PĀ

QARP,‹
`

Λ1,Σ1, a
1
˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

,
(1.4.39)

Since our description of the ARP is complete we can articulate the steps we take to prove our
main theorem and highlight our contributions

1. ARP and kernel based action value function have the same optimal values.

2. Maximal inequalities for the covering times of ARP. We cover S ˆ A by J subsets
B1, ..., BJ called cells, the covering time is the time the MDP need to visit all cells. Let Tk be
the first time after ` when each set has been visited at least k times by the process psn, anqně0:

Tk “ min

#

n ě ` : min
1ďjďJ

n
ÿ

i“`

1Bj
`

si, ai
˘

ě k

+

,

with the convention that T0 “ `´ 1. We use the coupon collector to obtain upper and lower
bounds for T1.This is a novel interpretation used in our proof.
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3. If ARP starts at a level `n the probability of going below `0 is small. Identifying the
event where that happens is crucial for the final convergence in probability because intuitively
when n increases the ARP has sufficiently many levels to learn the transitions of the original
MDP. To see this consider the ARP making the transition from level n at state s to E a Borel
subset of S using a, at a level m that is

Πps,aq

´

pn, s, aq, E
¯

“

n´1
ÿ

m“0

Πps,aq

´

pn, s, aq, pm,Eq
¯

so at the aforementioned event we can concentrate our attention on Πps,aq

´

pn, s, aq, ds1
¯

in-

stead of looking at every transition of the ARP.

4. Control the distance between the transition kernels of ARP and MDP on a
Sobolev space of smooth test functions. In fact, we don’t need just the supremum over
all test functions, but also the supremum over all initial point s, a, which makes the dimension
of the space coming into play. To preserve the rate of convergence in higher dimensions we
demand extra smoothness from our test functions. The novelty of our contribution here lies
in the rigorous treatment of the distance between MDPs and in tracking the influence of the
choice of tests functions to the final rate of convergence .

1.4.6 Application to finite state MFMDP

We come now to a mean field toy model with finite states to apply the result of the previous section.
Suppose that S and A are finite sets with 3 nodes each. Then we identify the space of probability

measures PpSq with the 3-dim probability simplex S3. In the mean field limit, as explained already
in Section 1.2.2.2 we are dealing with a ”lifted” MDP, set on the space probability measures
PpSq ” S3, i.e. a continuous space that fits the description of the previous section. If the transitions
of the representative agent are given by

Xn`1 “ F pXn, µn, αn, U
1
n`1, U

0
n`1q

with

µn “ LpXn

ˇ

ˇ U0
nq

(1.4.40)

where we denote pU1
k qkě0 and pU0

k qkě0 two independent sequences of iid random variables from a
Uniform over r0, 1s, with U0 being a common noise.

Now let us describe some possible models for transition from pµ, aq to E Ă S3

1. Suppose that Xn`1 is distributed conditional on the common noise, according to a random
measure µ P S3 that is sampled uniformly.

2. Suppose a sequence pε0
nqně1, independent of the two sequences pU0

nqně1 and pU1
nqně1, such

that each ε0
n is Bernoulli(p) distributed for p P p0, 1q. Then, we may consider the case where,

with probability 1´εn, the agent follows the ‘original’ dynamics (1.4.40) but without common
noise, i.e. Xn`1 “ F pXn, µn, αn, Un`1q and with probability ε0, it is resampled uniformly on
the whole space.
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3. Suppose µ P S3 and Z0 random variable with a smooth density ϕ such that µ`Z0 to belong
in the prob simplex, then Xn`1 is resampled according to µ` Z0.

Now, for a measurable kernel P
0

: S3ˆS3 Ñ PpS3q that would correspond to the dynamics of a
mean field (1.4.40), we can construct the following (new) kernel P (by means of the same principles
as those underpinning the aforementioned examples 1 and 3):

P
`

pµ, αq, E
˘

“ p
λpEq

λpSq
` p1´ pq

ż

RdS

ˆ
ż

S3
1E

`

q ` p1´ qqz ` y
˘

P
0`
pµ, αq, dz

˘

˙

ϕpyqdy, (1.4.41)

where λ the Lebesgue measure and p P p0, 1q. One may start from P
0

and then consider P as a
randomized version of it, just used for the purpose of learning.

For this example, the Bellman equation reads as

V pµq “ sup
αPS3

”

Rpµ, αq ` γ

ż

S3
V pµ1qP

`

pµ, αq, dµ1
¯ı

“ sup
αPS3

”

Rpµ, αq ` γp1´ pq

ż

R|S |

ˆ
ż

S3
V
`

q ` p1´ qqz ` y
˘

P
0`
pµ, αq, dz

˘

˙

ϕpyqdy
ı

`
γp

λpS3q

ż 3

S
V pµ1qdµ1.

There may be several types of conditions under which the value function V is regular in µ
(which is a prerequisite in our main theorem). In particular we show in the end of Chapter 3 how

we can apply our result to learn the value function associated with a transition kernel P
0
.
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Chapter 2

Exploration noise for learning linear
quadratic Mean Field Games

2.1 Introduction

2.1.1 General context.

Since their inception fifteen years ago in the seminal works of Lasry and Lions [80, 81, 82], Lions [85]
and Huang et al. [72, 74, 73], mean field games (MFGs) have met a tremendous success, inspiring
mathematical works from different areas like partial differential equations (PDEs), control theory,
stochastic analysis, calculus of variation, toward a consistent and expanded theory for games with
many weakly interacting rational agents. Meanwhile, the increasing number of applications has
stimulated a long series of works on discretization and numerical methods for approximating the
underlying equilibria (which we also call solutions); see for instance Achdou et al. [2, 1], Achdou
and Capuzzo-Dolcetta [3] and Achdou and Laurière [5] for discretization with finite differences;
Carlini and Silva [28, 29] for semi-Lagrangian schemes; Benamou and Carlier [17] and Bricenõ
Arias et al. [9, 8] for variational discretization; and Achdou and Laurière [4] for an overview. These
contributions often include numerical methods for solving the discrete schemes such as the Picard
method, Newton method, fictitious play. We review the latter one in detail in the sequel. Recently,
other works have also demonstrated the possible efficiency of tools from machine learning within
this complex framework: standard equations for characterizing the equilibria may be approximately
solved by means of a neural network; see for instance Carmona and Laurière [33, 34]. Last (but not
least), motivated by the desire to develop methods for models with partially unknown data, several
authors have integrated important concepts from reinforcement learning in their studies; we refer
to Carmona et al. [35, 36], Elie et al. [54] and Guo et al. [63].

The aim of our work is to make one new step forward in the latter direction with a study at
the frontier between the theoretical analysis of MFGs and the development of appropriate forms
of learning. In particular, our main objective is to provide a proof of concept for the notion of
exploration noise, which is certainly a key ingredient in machine learning. For the reader who
is aware of the MFG theory, our basic idea is to prove that common noise may indeed serve for
the exploration of the space of solutions and, in the end, for the improvement of the existing
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learning algorithms. For sure, this looks a very ambitious program since there has not been, so far,
any complete understanding of the impact of the common noise onto the shape of the solutions.
However, several recent works clearly indicate that noise might be helpful for numerical purposes.
Indeed, in a series of works, Bayraktar et al. [15], Delarue [47], and Foguen Tchuendom [56], it
was shown that common noise could help to force uniqueness of equilibria in a certain number
of MFGs. This is a striking fact because nonuniqueness is the typical rule for MFGs, except in
some particular classes with some specific structure; see for instance the famous uniqueness result of
Lasry and Lions [80] for games with monotonous coefficients and Carmona and Delarue [30, chapter
3]. Conceptually, the key condition for forcing uniqueness is that, under the action of the (hence
common) noise, the equilibria can visit sufficiently well the state space in which they live. This
makes the whole rather subtle because, in full theory, the state space is the space of probability
measures, which is typically infinite-dimensional. In this respect, the main examples for which
such a smoothing effect has been rigorously established so far are piq a linear quadratic model
with possibly nonlinear mean field interaction terms in the cost functional (Foguen Tchuendom
[56]), piiq a general model with an infinite dimensional noise combined with a suitable form of
local interaction in the dynamics (Delarue [47]); and piiiq models defined on finite state spaces and
forced by a variant of the Wright-Fisher noise used in population genetics literature (Bayraktar et
al. [15]).

In order to prove the possible efficiency of our approach, we here restrict the whole discussion to
the first of the three aforementioned instances. We provide below a long informative introduction
in which we present the model in detail together with the related literature and our own results.
The guideline of this introduction is the following. We specify the model in Subsection 2.1.2, both
without and with common noise. In particular, we recall therein the various known characterizations
of the equilibria in both cases. In Subsection 2.1.3, we provide a brief review of the existing learning
procedures and we exemplify the form of the so-called fictitious play for the linear-quadratic model
studied in the paper. The thrust of our paper is to introduce a variant of the fictitious play, which
we refer to as the tilted fictitious play and whose convergence can be proven in the presence of
common noise under more general conditions than those of the standard fictitious play (within the
class of linear-quadratic MFGs introduced in Subsection 2.1.2). This tilted fictitious play is defined
in Subsection 2.1.4. Although the tilted fictitious play can be regarded as a theoretical learning
scheme, we explain in Subsection 2.1.5 how it can be adapted to statistical learning. Notably, in
this adaptation, the common noise serves as an exploration noise for learning the equilibria of the
underlying MFG. This interpretation of the common noise in terms of exploration is in fact one
key point of the paper. Exploitation is then briefly addressed in Subsection 2.1.6. Therein, we
present the main bounds that we are able to prove for the mean exploitability of the policy that
is returned by the tilted fictitious play. Finally, we provide an overview of our numerical results
in Subsection 2.1.7, and we conclude the introduction by providing a comparison with the existing
literature in Subsection 2.1.8. The main assumption and notation are given in Subsection 2.1.9.
The organization of the paper is also presented in Subsection 2.1.9.

2.1.2 Our model.

In this subsection, we expose the linear-quadratic class of MFGs that is addressed in the paper,
without and with common noise. We insist in both cases on the form of the equilibrium feedbacks.
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As made clear in (2.1.5), those feedbacks are necessarily affine. Moreover, for any of them, the
intercept in the affine structure is characterized by a backward stochastic differential equation
(BSDE), which is recalled in (2.1.6) and which plays a key role in the subsequent analysis.

To make it clear, the MFG that we consider below comprises the state equation

dXt “ αtdt` σdBt ` εdWt, t P r0, T s, (2.1.1)

together with the cost functional

J
`

α;m
˘

“
1

2
E
„

ˇ

ˇRXT ` gpmT q
ˇ

ˇ

2
`

ż T

0

!

ˇ

ˇQXt ` fpmtq
ˇ

ˇ

2
` |αt|

2
)

dt



. (2.1.2)

Above, Xt is the state at time t of a representative agent evolving within a continuum of other
agents. It takes values in Rd, for some integer d ě 1, and evolves from the initial time 0 to the
terminal time T according to the equation (2.1.1). Therein, B “ pBtq0ďtďT and W “ pWtq0ďtďT

are two independent d-dimensional Brownian motions on a complete probability space pΩ,A,Pq,
and σ ě 0 and ε ě 0 account for their respective intensity in the dynamics. Whereas B is thought
as a private (or idiosyncratic) noise felt by the representative player only (and not by the others),
the process W is said to be a common or systemic noise as all the others in the continuum also
feel it. The initial condition (also called initial private state) X0 may be random and, in any case,
X0 is independent of the pair pB,W q. The process α “ pαtq0ďtďT is a so-called control process,
which is usually assumed to be progressively-measurable with respect to the augmented filtration
F generated by pX0, σB, εW q (when σ or ε are zero, the corresponding process is no longer used
to generate the filtration). The key fact in MFG theory is that the representative player aims at
choosing the best possible α in order to minimize the cost functional J in (2.1.2). The leading
symbol E in the definition of J is understood as an expectation with respect to all the inputs
pX0,B,W q. If there were no dependence on the extra term m “ pmtq0ďtďT in f and g, the
minimization of J would reduce to a mere linear-quadratic stochastic control problem driven by
Q and R, with the latter being two d-square matrices1. The essence of MFGs is that pmtq0ďtďT

accounts for the flow of marginal statistical states of the continuum of players surrounding the
representative agent. In full generality, each mt should be regarded as a probability measure hence
describing the statistical distribution of the other agents at time t. For simplicity, we here just
assume mt to be the d-dimensional mean of the other agents at time t; consistently, f “ pf1, ¨ ¨ ¨ , fdq
and g “ pg1, ¨ ¨ ¨ , gdq are Rd-valued functions defined on Rd. However, the notion of mean should be
clarified, because of the distinction between the two private and common noises. From a modelling
point of view, this mean should result from a law of large numbers taken over players that would be
subjected to independent and identically distributed (i.i.d.) initial and private noises (consistently
with our former description of B) but to the same common noise W . Because of this, pmtq0ďtďT

is itself required to be a stochastic process, progressively-measurable with respect to the filtration
generated by εW . When ε “ 0, the filtration becomes trivial and, accordingly, pmtq0ďtďT is
assumed to be deterministic. The notion of Nash equilibrium or MFG solution then comes through
a fixed point argument. In short, pmtq0ďtďT is said to be an equilibrium if the minimizer pX‹t q0ďtďT

1We could take Q and R as e ˆ d matrices, for a general e ě 1 and then f and g as being e-dimensional. For
simplicity, we feel easier to work with e “ d.
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of (2.1.1)–(2.1.2) satisfies:
mt “ E

“

X‹t | εW
‰

, t P r0, T s, (2.1.3)

with the conditional expectation becoming an expectation if ε “ 0 (whence our choice to use εW
as random variable in the conditioning, as this notation allows us to distinguish easily between
the two cases without and with common noise). Throughout, f and g are typically assumed to be
bounded and Lipschitz continuous functions. When ε “ 0, this is enough for ensuring the existence
of solutions to the fixed point (2.1.3), but uniqueness is known to fail in general, except under some
additional conditions. For instance, the Lasry-Lions monotonicity condition, when adapted to this
setting, says that uniqueness indeed holds true if Q:f and R:g (with : denoting the transpose) are
non-decreasing in the sense that (see [45])

@x, x1 P Rd, px´ x1q ¨
`

Q:fpxq ´Q:fpx1q
˘

ě 0, px´ x1q ¨
`

R:gpxq ´R:gpx1q
˘

ě 0, (2.1.4)

with ¨ denoting the standard inner product in Rd. When ε ą 0, existence and uniqueness hold
true, even though the coefficients are not monotone (see [56]). This is a very clear instance of the
effective impact of the noise onto the search of equilibria.

The reason why the MFG (2.1.1)–(2.1.2)–(2.1.3) becomes uniquely solvable under the action of
the common noise may be explained as follows. In short (and this is the rationale for working in
this set-up), the linear-quadratic structure of (2.1.1) forces uniqueness of the minimizer to (2.1.2)
when m is fixed. Even more the optimal control is given in the Markovian form

α‹t “ ´ηtX
‹
t ´ ht, t P r0, T s, (2.1.5)

where η “ pηtq0ďtďT is the d ˆ d-matrix valued solution of an autonomous Riccati equation that
only depends on Q and R and that is in particular independent of the input m. In other words,
only the intercept phtq0ďtďT in the above formula depends on the inputs f , g, R, Q and m. The
characterization of h is usually obtained by the (stochastic if ε ą 0) Pontryagin principle, namely
h solves the Backward Stochastic Differential Equation (BSDE)

ht “ R:gpmT q `

ż T

t

 

Q:fpmsq ´ ηshs
(

ds´ ε

ż T

t
ksdWs, t P r0, T s. (2.1.6)

When ε “ 0, the above stochastic integral disappears and the equation (2.1.6) becomes a mere
Ordinary Differential Equation (ODE) but set backwards in time. When ε ą 0, the solution is the
pair ph,kq, which is required to be progressively measurable with respect to the filtration generated
by W . Existence and uniqueness are well-known facts in BSDE theory. By taking the conditional
mean given W in (2.1.1), we deduce that solving the MFG problem thus amounts to find a pair
pm,hq satisfying the forward-backward stochastic differential equation (FBSDE):

dmt “ ´
`

ηtmt ` ht
˘

dt` εdWt, m0 “ EpX0q,

dht “ ´
`

Q:fpmtq ´ ηtht
˘

dt` εktdWt, hT “ R:gpmT q.
(2.1.7)

Unique solvability was proven in [44, 86]. The smoothing effect of the noise manifests at the level of
the related system of Partial Differential Equations (PDEs), which is sometimes called the master
equation of the game:

Btθεpt, xq `
ε2

2 ∆2
xxθεpt, xq ´

`

ηtx` θεpt, xq
˘

¨∇xθεpt, xq `Q
:fpxq ´ ηtθεpt, xq “ 0, (2.1.8)
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with θεpT, ¨q “ R:gp¨q as a boundary condition at the terminal time, θε being a function from r0, T sˆ
Rd Ñ Rd. When ε ą 0, the PDE is uniformly parabolic and hence has a unique classical solution
(with bounded derivatives). When ε “ 0, it becomes an hyperbolic equation and singularities may
emerge, precisely when the solutions to (2.1.7) (which are nothing but the characteristics of (2.1.8))
cease to be unique.

2.1.3 Learning procedures

We now provide an overview of the existing methods that can be used for solving the standing
MFG numerically, or at least for decoupling the two forward and backward equations in (2.1.7).
In particular, we spend some time here recalling the definition of the so-called fictitious play, see
(2.1.9) and (2.1.10).

In our setting, numerical solutions to the MFG may be found by solving either the FBSDE
(2.1.7) or the nonlinear equation (2.1.8). For sure, independently of any applications to MFGs,
there have been well-known numerical methods for the two objects, see for instance (and for a tiny
example) Beck et al. [16], Bender and Zhang [18], Cvitanić and Zhang [42], Delarue and Menozzi
[46], E et al. [53], Huijskens et al. [75], Ma et al. [87], and Milstein and Tretyakov [90]. In
Delarue and Menozzi [46], Huijskens et al. [75], Ma et al. [87], and Milstein and Tretyakov [90], the
problem is solved by constructing an approximation of θε by means of a backward induction. This
is a typical strategy in the field, which is fully consistent with the dynamic programming principle
that holds true for uniquely solvable mean field games (see [31, chapter 4]). Although formulated
differently, Bender and Zhang [18] also relies on a backward induction. In comparison with Bender
and Zhang [18], Delarue and Menozzi [46], Huijskens et al. [75], Ma et al. [87], and Milstein and
Tretyakov [90], the works Beck et al. [16], Cvitanić and Zhang [42], and E et al. [53] proceed in a
completely different manner because the backward equation therein is reformulated into a forward
equation with an unknown initial condition; the goal is then to tune both the initial condition and
the martingale representation term of the backward equation in order to minimize, at terminal
time, the distance to the prescribed boundary condition. Those methods have the following main
limitation within a learning prospect for MFGs: they require the coefficients f , g, Q and R entering
the model to be explicitly known. Even more, they make no real use of the control structure (2.1.2)
that underpins the game.

In fact, Delarue and Menozzi [46], Huijskens et al. [75], Ma et al. [87], and Milstein and
Tretyakov [90] suffer from another drawback because all these works involve a space discretization
that consists in approximating the function θε at the nodes of a spatial grid. Accordingly, the
complexity increases with the physical dimension d of the state variable. In particular, similar
strategies would become even more costly for a more general mean field dependence than the one
addressed in (2.1.2). Indeed, in the general case, the spatial variable is no longer the mean but the
whole statistical distribution (which is an infinite dimensional object). For sure, the latter raises
challenging questions that go beyond the scope of this paper because we cannot guess of a numerical
method that would directly allow to handle the infinite dimensional statistical distribution of the
solution. However, this is an objective that should be kept in mind. Say for instance that particle
or quantization methods would be natural candidates to overcome such an issue, see for instance
Chaudru de Raynal and Garcia Trillos [100] and Crisan and McMurray [41].

Whatever the method, the true difficulty is to decouple (2.1.7), because the two forward and
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backward time directions are conflicting. One of our basic concern here is thus to take benefit of
the noise in order to define an iterative scheme that decouples (2.1.7) efficiently. At the same time,
because the very structure of a MFG corresponds very naturally to the precepts of reinforcement
learning, we want to have a method that may work with unknown coefficients f , g, Q and R, and
that may benefit from the observation of the cost if it is available. In this regard, we ask our scheme
to have a learning structure that should manifest in a sequence of steps of the form

1. computation of a best action,

2. update of the state variable,

and hence that would be adapted to real data. Surprisingly, this is not an easy question, even
though the equation (2.1.7) is well-posed. As demonstrated in the recent work [38], naive Picard
iterations may indeed fail. They would consist in solving inductively the backward equation

dhn`1
t “ ´

`

Q:fpmn
t q ´ ηth

n`1
t

˘

dt` εkn`1
t dWt, hn`1

T “ R:gpmn
T q. (2.1.9)

for a given proxy mn :“ pmn
t q0ďtďT of the forward equation and then in plugging the solution

hn`1 :“ phn`1
t q0ďtďT into the forward equation

dmn`1
t “ ´

`

ηtm
n`1
t ` hn`1

t

˘

dt` εdWt, mn`1
0 “ EpX0q. (2.1.10)

Intuitively, the reason why it may fail is that the updating rule mn ÞÑ mn`1 is too ambitious.
In other words, the increment may be too high and smaller steps are needed to guarantee the
convergence of the procedure.

A more successful strategy is known in MFG theory (and more generally in game theory) under
the name of fictitious play, see [24, 54, 59, 65, 66, 97, 96]. It is a learning procedure with a
decreasing harmonic step of size 1{n at rank n of the iteration. Having as before a proxy mn for
the state of the population at rank n of the learning procedure, hn`1 is computed as above. Next,
the same forward equation as before is also solved, but the solution is denoted by mn`1, namely

dmn`1
t “ ´

`

ηtm
n`1
t ` hnt

˘

dt` εdWt, mn`1
0 “ EpX0q, (2.1.11)

and then the updating rule is given by

mn`1
t “

1

n` 1
mn`1
t `

n

n` 1
mn
t , t P r0, T s. (2.1.12)

Very importantly, both the Picard iteration and the fictitious play have a learning interpretation.
In both cases, the backward equation (2.1.9) provides the best response αn`1,‹ to the minimization
of the functional α ÞÑ Jpα;mnq, which has indeed the same form as in (2.1.5):

αn`1
t “ ´ηtX

n`1
t ´ hn`1

t , t P r0, T s,

where pXn`1,‹
t q0ďtďT is obtained implicitly by solving the corresponding state equation (2.1.1).

Equivalently, the above formula gives the form of the optimal feedback function to the minimization
of the functional α ÞÑ Jpα;mnq (bearing in mind that the feedback function may be here random
because of the common noise).
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In fact, the fictitious play has been addressed so far in the following two main cases: potential
MFGs ([24]) and MFGs with monotone coefficients (here, Q:f and R:g are non-decreasing; see [54,
59, 65, 66, 96] within a general setting). Also, except in the recent work [96] (whose framework is
a bit different because the fictitious play is in continuous time), the analysis has just been carried
out in the case ε “ 0, i.e., when there is no common noise. Here, it is certainly useful to recall that
potential MFGs are a class of MFGs for which there exists a potential, namely a functional J pαq
associated with the same state dynamics as in (2.1.1)–(2.1.2), such that any minimizer of J is a
solution of the MFG. In our setting, the shape of J pαq is

J
`

α
˘

“ E
„

G
`

LpXT |εW q
˘

`

ż T

0

1

2

”

F
`

LpXt|εW q
˘

` |αt|
2
ı

dt



, (2.1.13)

where LpXt|εW q denotes the conditional law of Xt given the common noise and

Gpµq “ 1

2

ż

Rd
|Rx|2dµpxq `G

`

µ̄
˘

, Fpµq “ 1

2

ż

Rd
|Qx|2dµpxq ` F

`

µ̄
˘

, (2.1.14)

with G and F denoting primitives of R:g and Q:f (if any). In particular, the model is always
potential when d “ 1, but there is no potential structure when d ě 2, unless Q:f and R:g both
derive from (Euclidean) potentials, meaning that pQ:fqi “ BF {Bxi and pR:gqi “ BG{Bxi.

2.1.4 Tilted harmonic and geometric fictitious plays

This subsection contains one of the main novelties of the paper. For reasons that are explained
below, we introduce two variants of the fictitious play, which we call ‘tilted harmonic’ and ‘tilted
geometric’. The definition of the geometric version (which is the version that is effectively addressed
in the paper) consists of the four equations (2.1.24)–(2.1.20)–(2.1.21)–(2.1.25) below and differs
significantly from (2.1.11)–(2.1.12).

Consistently with our agenda, our goal is indeed to prove that the fictitious play may converge
thanks to the presence of the common noise (i.e., ε ą 0). Seemingly, the above discussion about
the potential structure of our model in dimension d “ 1 demonstrates that this question becomes
especially relevant in dimension greater than or equal to 2 (the results from [24] could be easily
adapted to this setting, even in the presence of the common noise). In fact, as shown in Subsection
2.3.5, the question is also interesting in dimension d “ 1 in cases when equilibria are not unique.

However, this program is more challenging than it seems because we are not able, even in the
presence of the common noise, to prove the convergence of the fictitious play stated in (2.1.9) and
(2.1.11). Instead, we take benefit of the noise in order to reformulate the two equations (2.1.9) and
(2.1.11) into a new system obtained by a mere shift of the common noise. By Girsanov theorem,
the new shifted common noise has the same law as the original one but under a tilted probability
measure. Using the harmonic updating rule (2.1.12), this so-called tilted harmonic scheme is then
shown to converge (in the case ε ą 0).

In order to state the new fictitious play properly, we thus need to allow for another form of
common noise in (2.1.1). For a process h “ phtq0ďtďT , progressively-measurable with respect to
the filtration generated by W , we thus introduce the shifted Brownian motion

W h{ε “

ˆ

W
h{ε
t :“Wt `

1

ε

ż t

0
hsds

˙

0ďtďT

,
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together with the tilted probability measure Ph whose density with respect to P is

E
`

1
εh

˘

:“ exp

ˆ

´
1

ε

ż T

0
ht ¨ dWt ´

1

2ε2

ż T

0
|ht|

2dt

˙

. (2.1.15)

Accordingly, for any two frozen continuous paths n :“ pntq0ďtďT and w :“ pwtq0ďtďT , we define
the non-averaged cost functional

Rx0
`

α;n; εw
˘

:“
1

2

„

ˇ

ˇRxT ` gpnT q
ˇ

ˇ

2
`

ż T

0

!

ˇ

ˇQxt ` fpntq
ˇ

ˇ

2
` |αt|

2
)

dt



, (2.1.16)

where

xt “ x0 `

ż t

0
αsds` σBt ` εwt, t P r0, T s, (2.1.17)

the latter being nothing but the integral version of (2.1.1), when W is replaced by the frozen
trajectory w. Now, when m and h are two progressively-measurable processes with respect to the
filtration generated by εW , we have a look at the new cost functional2:

Jεpα;m;hq :“ Eh
n{ε
”

RX0
`

α;m; εW h{ε
˘

ı

. (2.1.18)

We now define the first version of our titled fictitious play according to a two step iterative learning
procedure, whose description at rank n goes as follows:

Harmonic best action For a proxy mn :“ pmn
t q0ďtďT of the conditional mean m “ pmtq0ďtďT

of the in-equilibrium population (as given by the forward component of (2.1.7)) and a proxy
hn “ phnt q0ďtďT of the opposite3 of the FW -adapted intercept of the equilibrium feedback in
(2.1.5) (as given by the backward component of (2.1.7)), solve

αn`1 “ argminαEh
n{ε
“

RX0
`

α;mn; εW hn{ε
˘‰

, (2.1.19)

the infimum being taken over all F-progressively measurable (Rd-valued) controls α.

The optimal feedback being of the same linear form as in (2.1.5) (the proof is given below),
we may call hn`1 “ phn`1

t q0ďtďT the opposite of the resulting intercept.

Harmonic update Given hn`1, the optimal trajectory of the above minimization problem is

Xn`1
t “ X0 ´

ż t

0

`

ηsX
n`1
s ` hn`1

s

˘

ds` σBt ` εW
hn{ε
t , t P r0, T s. (2.1.20)

We then let4

mn`1
t “ E

“

Xn`1
t |W

‰

, t P r0, T s, (2.1.21)

2The reader should observe that, when there is no common noise and when α is progressively-measurable with
respect to FX0,B and m is deterministic, ErRpα;m; 0qs coincides with the original cost Jpα;mq in (2.1.2).

3The opposite comes from the sign ´ in the formula (2.1.5) of the optimal feedback.
4The reader will find in Remark 2.2.2 a useful comment about the definition of pmn`1

t q0ďďT : the conditional
expectation can be equivalently taken under Phn

. This comes from the fact the Girsanov density is measurable with
respect to the σ-field σpW q generated by W .
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together with

mn`1
t “

1

n` 1

n`1
ÿ

k“1

mk
t “

1
n`1m

n`1
t ` n

n`1m
n
t , t P r0, T s. (2.1.22)

For sure the rationale behind this strategy relies on Girsanov’s transformation. Under the tilted
probability measure Ph{ε, the process W h{ε is a new Brownian motion, with the same law as the
original (or historical) common noise under P. However, the main trick here is to dynamically
change the form of the common noise (dynamically with respect to the rank of the iteration in
the fictitious play). Precisely, this permits to decouple the two forward and backward equations,
as clearly shown if we write the equation for mn`1 as an equation with respect to the historical
common noise (the proof is given in (2.2.6) below):

mn`1
t “ m0 ´

ż t

0

´

ηsm
n`1
s ` 1

n`1

“

hn`1
s ´ h0

s

‰

¯

ds` εWt, t P r0, T s. (2.1.23)

The forward equation then becomes asymptotically autonomous provided that hn`1 can be bounded
independently of n, which we succeed to prove in Section 2.2. In turn, the scheme can be easily
shown to converge (notice however that we are not able to prove the convergence of the standard
non-tilted fictitious play outside any further potential or monotonicity assumption, even in the
presence of the common noise). Moreover, the rate can be proved to decay (at least) like Op1{nq,
with Op¨q standing for the ‘big O Landau notation’. Unfortunately, the best estimate we have
for the constant driving the term Op1{nq blows up exponentially fast with 1{ε2. Although the
numerical experiments that are reported below indicate that the rate may decrease faster than 1{n
and grow slower than exppOp1{ε2qq, the theoretical guarantee that is hence available for the version
of the fictitious play comprising the four equations (2.1.19)–(2.1.20)–(2.1.21)–(2.1.22) is thus rather
poor when the viscosity parameter ε tends to 0. This prompts us to provide a variant of the scheme,
with an updating step (in equation (2.1.21)) that is different from 1{pn` 1q and that yields a more
favourable trade-off between n and ε´2 (or equivalently that allows for a cheaper choice of n when ε
is small). In order to clarify things, we refer below to the scheme (2.1.19)–(2.1.20)–(2.1.21)–(2.1.22)
as the ‘tilted harmonic fictitious play’.

In a nutshell, the key point is to perform the following modifications in each of the two steps of
the fictitious play, with the new version being called ‘geometric’ for reasons that become obvious
in the next few lines:

Geometric best action With the same notation as before, use $X0 as initial private state, $α
as control, and P$hn{ε and W$hn{ε as tilted probability measure and tilted noise, where the
rate $ is a fixed real that is typically chosen in the interval p1,

?
2s. In words, replace (2.1.19)

by
αn`1 “ argminαE$h

n{ε
“

R$X0
`

$α;mn;$εW$hn{ε
˘‰

. (2.1.24)

Geometric update Accordingly, in (2.1.20), replace εW
hn{ε
t by εW

$hn{ε
t , and next use the up-

dating formula:

mn`1
t “

$p1´$´1q

1´$´pn`1q

n`1
ÿ

k“1

$´kmk
t “

$´np1´$´1q

1´$´pn`1q m
n`1
t `

´

1´ $´np1´$´1q

1´$´pn`1q

¯

mn
t , (2.1.25)
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for t P r0, T s.

Here is the main idea. In comparison with (2.1.20), the optimal trajectory of (2.1.24) is

Xn`1
t “ X0 ´

ż t

0

`

ηsX
n`1
s ` hn`1

s

˘

ds` 1
$σBt ` εW

$hn{ε
t , t P r0, T s. (2.1.26)

The above differs from (2.1.20) because the intensity of the idiosyncratic noise is σ{$. Fortunately,
this term disappears when taking conditional expectations given the common noise, as done in the
formula (2.1.21). (In fact, one can also recover σ as intensity by considering $Xn`1 as optimal
trajectory, but with $X0 as initial condition.) Moreover, it must be stressed that the common
noise right above is εW$hn{ε, whereas it is εW hn{ε in (2.1.20). This says that, under the historical
probability measure P, (2.1.26) rewrites

Xn`1
t “ X0 ´

ż t

0

`

ηsX
n`1
s ` hn`1

s ´$hns
˘

ds` 1
$σBt ` εWt, t P r0, T s. (2.1.27)

The presence of the factor $ in the last term of the drift makes it possible to use the geometric
updating formula (2.1.25). In particular, this is our result to show (see §2.2.1.2 below) that, under
the initialization h0 “ 0, (2.1.23) becomes

mn`1
t “ m0 ´

ż t

0

´

ηsm
n`1
s `

p1´$q$´n

1´$´pn`1qh
n`1
s

¯

ds` εWt, t P r0, T s. (2.1.28)

The reader may easily compare with (2.1.23). Whereas the difference (with a standard decoupled
Ornstein-Uhlenbeck process) decreases like Op1{nq in (2.1.23), it decreases like Op$´nq in (2.1.28).
In the end, this gives a geometric rate of convergence (in the parameter n). Although this does not
change the presence of a leading constant of size exppOp1{ε2qq, this makes it possible, in order to
reach a given theoretical guarantee, to choose a value of n (much) lower than in the tilted harmonic
fictitious play. Our main statement in this regard is Theorem 2.2.4. Also, it is worth adding that,
under the obvious convention that

p1´$´1q$´n

1´$´pn`1q
“

1

n` 1
(2.1.29)

when $ “ 1, the updating rule (2.1.22) coincides with (2.1.25). For this reason, we sometimes
speak about the harmonic scheme (2.1.19)–(2.1.20)–(2.1.21)–(2.1.22) as a particular case of the
geometric scheme when $ “ 1. (Notice however that, although it could be easily adapted to the
case $ “ 1, see Remark 2.2.6, the statement of Theorem 2.2.4 does not formally apply to $ “ 1
and even if it did, the statement would be in fact trivial.) Last but not least, we stress that, in
the definition of the geometric best action, the tilted noise is biased, with $ ´ 1 as bias. This is
an important feature of the scheme and this is the reason why we feel important to distinguish the
best action (2.1.24) from the best action (2.1.19) and to call the former ‘geometric’ and the second
‘harmonic’.

For sure, the reader may want to reformulate the tilted fictitious play for a more general MFG,
with a structure that would no longer be linear-quadratic. Whereas the theory of MFG with an
additive finite-dimensional common noise (such as W “ pWtq0ďtďT ) is by now well-established (see
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for instance the book Carmona and Delarue [31]), the real interest for addressing the same tilted
form of the fictitious play but in a wider setting is however not clear to us. Indeed, aforementioned
known theoretical results on the smoothing effect of the common noise (see Delarue [47]) require
in general an infinite dimensional noise of a much more complicated structure than the additive
finite-dimensional noise pWtq0ďtďT used in (2.1.28). For this reason, we have decided to restrict
the whole exposition to the linear-quadratic setting, even though (2.1.24), (2.1.20), (2.1.21) and
(2.1.25) could be recast, for the same additive finite-dimensional noise, within a larger framework.
Outside the class of linear-quadratic games, the main changes are the following ones. First, the
optimal feedback in (2.1.20) is no longer affine. Second, the mean field fixed point can no longer be
formulated in terms of the sole conditional expectation, as it is done in (2.1.20), but involves the full
statistical law of Xn`1

t given W . Third (and subsequently), the rule (2.1.25) must be reformulated
in terms of the full statistical distributions and not only in terms of their means. We leave the
details to the reader. Needless to say, obtaining a relevant extension of the tilted fictitious play for
general MFGs remains a very interesting but highly challenging objective.

2.1.5 Exploration

We now explain how the common noise in the tilted fictitious play can be regarded as an exploration
noise for the original MFG without common noise.

For sure, changing the common noise as we have done in the cost functional (2.1.24) (see
also (2.1.19)) raises indeed many practical questions5. In order to understand this properly, we
should follow the presentation given in Carmona et al. [35, 36] and think of R as being a
black-box representing a decentralized unit. For instance, the box may regulate the consump-
tion/production/storage of energy of a single individual connected to a smart grid, see for instance
Alasseur [7] and the references therein; the box may also be an autonomous car moving in a flock
of vehicles, see for instance Huang et al. [71].

The black-box operation is described in Figure 2.1. In this picture, the decentralized black-box
receives four inputs: piq the control, as tuned by the individual operating the black-box; piiq the
initial private state X0; piiiq the two idiosyncratic and independent noises; pivq the state of the
population. In this representation, the only input that can be tuned by the individual operating
the black-box is the control itself.

However, this picture makes sense only if the original model itself is subjected to a common
noise. In the absence of common noise, we thus need to restore a form of common noise in order
to conciliate our tilted fictitious play with the above picture. This comes through the notion of
exploration. Below, we thus regard the common noise as a way to explore the space of possible
solutions. This amounts to say that the original mean field game is no longer the mean field game
with common noise, but the mean field game without common noise, i.e. ε “ 0. Consistently,
the individual operating the black-box can restore the presence of a common noise by modifying
her/his control accordingly. Formally, any control α, as chosen above by a tagged individual, is

5The reader may find it reminiscent of the weak formulation of MFGs introduced in Carmona and Lacker [32],
but this is substantially different because the Girsanov transformation is here applied to the common noise (and not
to the idiosyncratic one).
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Decentralized control

Common and id-
iosyncratic noises

State of the
population

Decentralized
black-box

Output

Initial private state

Figure 2.1: Black-box operation for an MFG with a common noise. In the four input arrows, only the plain
line can be tuned. Given the input state of the population, the private initial state X0 and the realizations
of the two noises, the decentralized black-box returns an output, in the form of a cost depending on the
input state and on the realizations of the noises.

then subjected to an additional randomization of the form

α “ pαtq0ďtďT ÞÑ

ˆ

αt ` ε 9Wh
t

˙

0ďtďT

,

where h is given as an information on the whole state of the population, in addition to m. Figure
2.1 becomes the new Figure 2.2 below. In this new figure, the decentralized black-box is exactly
the same as the decentralized black-box appearing in Figure 2.1 in the absence of the common
noise therein. In clear, the black-box takes as inputs the following three features: a time-dependent
flow of actions impacting the dynamics of a single individual, the initial private state X0 and the
time-dependent flow of probability measures characterizing the state of the environment. As for the
output, the black-box returns the realization RX0 of the cost to a single individual, for the given
action, the given realization of the initial condition and the given environment (see (2.1.16)). In
particular, it is worth mentioning that the common randomization does not impact the operation
performed by the black-box, which is an important fact from the practical point of view. What
changes in the presence of the common randomization is the form of the input that is inserted in
the black-box: the input at time t is ‘corrupted’ by ε 9Wh

t . In particular, the reader should agree
that Figure 2.2 is consistent with the definitions (2.1.19) and (2.1.24) of the best actions in our two
tilted fictitious plays, up to a slight but subtle difference between (2.1.19) and (2.1.24): in order
to compute (2.1.24), the initial private state X0 in the black-box must be free (as made clear in
the caption), in the sense that it can be changed for the purpose of the experiment. This is an
important feature because the non-averaged cost functional R in the geometric fictitious play is
initialized from $X0 (and not X0), see (2.1.24). We feel that this additional assumption on the
model is affordable in practice.

Now, if we had to think of a (possibly infinite) cloud of players, the actions of all of them would
be corrupted by the same realization of the noise. Assume indeed that, given the same two proxies
mn and hn as in (2.1.19) and (2.1.24), the players choose some common feedback function (which
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is exactly what happens for an MFG equilibrium). The resulting action of each of them is then
randomized by the same realization of the common noise and, subsequently, the black-box returns
the (non-averaged) cost to each player. If the players are driven by independent copies of pBtq0ďtďT
(which fits the fact that pBtq0ďtďT is an idiosyncratic noise) and by independent copies of $X0

(which fits the fact that $X0 is the new initial private condition in the $-geometric scheme), then
the empirical mean cost to all the players should be regarded as the conditional expectation of the
cost R$X0 given W . Assuming that the common noise is observable (which makes perfect sense
if it is sampled by some experimenter), we can compute Ep$hn{εq and then multiply it with the
conditional expectation of the cost. Sampling the common noise as many times as desired, we get
an empirical approximation of the mean cost under P$hn{ε in (2.1.24). Although this picture may
look rather naive, it is in fact the basis of a numerical method that is detailed next, see Figure 2.3
for a primer.

Decentralized control

Idiosyncratic noise

State of the
population

Decentralized
black-box

Output

Common ran-
domization

Initial private state

Figure 2.2: Black-box operation for an MFG without a common noise, but subjected to a common ran-
domization of the control. In the five input arrows, only the plain lines (corresponding to yellow boxes)
can be tuned. Given the input state of the population and the realizations of the two noises, the decentral-
ized black-box returns an output, in the form of a (random) cost depending on the input state and on the
realizations of the noises.

This concept faces however obvious mathematical difficulties, because the new control after
randomization is no longer of finite energy. We solve this issue by replacing the time derivative
of W by finite differences or, equivalently, by replacing W “ pWtq0ďtďT by its piecewise linear
interpolation along a mesh of r0, T s, say of uniform step T {p, for a given integer p ě 1. We
denote this interpolation by W p “ pW p

t q0ďtďT . Accordingly, the return of the black-box should be
renormalized, letting

Rp,x0pα;m; εwq :“ Rx0pα` ε 9w;m; 0q ´ 1
2ε

2p, (2.1.30)

for a piecewise-affine path w, affine on each r`T {p, p` ` 1qT {pq for ` P t0, ¨ ¨ ¨ , p ´ 1u. Our second
main statement, see Theorem 2.2.17, is to prove that the geometric fictitious play that is hence
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obtained by replacing W by W p and Rx0pα;mn; εW hnq by Rp,x0pα;mn; εW p,hnq, with

W p,hn

t “Wt `
1

ε

ż t

0
hnsds, t P r0, T s, (2.1.31)

converges, when the number n of iterations tends to 8, to the solution of the discrete-time version,
with T {p as step size, of the mean field game with εW p as common noise. Implicitly, this requires
to force α and hn to be constant on any subdivision of the mesh, but we feel more appropriate not
to detail all the ingredients here. We refer the reader to Subsection 2.2.2 for a complete description.
Importantly, the state dynamics over which the return Rp is computed write

Xt “ $X0 `

ż t

0
$αsds` σBt ` εW

p,$hn{ε
t

“ $X0 `

ż t

0

´

$αs ` ε 9W p,$hn{ε
s

¯

ds` σBt, t P r0, T s.

(2.1.32)

In this approach, the control after randomization is thus given by $α` ε 9W p,$hn{ε, which clarifies
the meaning of the common randomization in Figure 2.2. In the end, this fits well the concept of
exploration, as stated by Sutton and Barto [104, chapter 1, p. 1]: ‘The learner is not told which
actions to take, but instead must discover which actions yield the most reward by trying them’.
Noticeably, our form of randomization (2.1.32) can be restricted to controls in semi-feedback form,
meaning that the instantaneous control in (2.1.20) can be chosen as the image of the current state
of Xn`1 by a time-space random function adapted to the filtration generated by W . In particular,
thinking of the mean field game as a game with infinitely many agents, all of them are then
understood to play (at each iteration of the fictitious play) the same random semi-feedback function.
This makes a subtle difference with standard exploration methods for multi-agent reinforcement
learning in which the random control of each agent carries its own noise. Last but not least, it
must be noticed that the algorithm runs from the sole observations of the returns of the black-box,
and in particular without any further detailed of the cost coefficients f , g, Q and R, provided we
use a reinforcement learning method to solve the black-box.

Importantly, it must be emphasized again that in the two Figures 2.1 and 2.2 the decentralized
black-box does not return the expected cost, but only the realization of the cost for the given
realizations of the noises. At each step of the fictitious play, the optimization of the expected
cost is formally performed over all the possible trajectories of the independent and common noises,
bearing in mind that the control is adapted to both noises and that the state of the population
is adapted to the common noise. This is stylized in the form of Figure 2.3. Therein, this is our
choice to represent the possible trajectories of the two noises in the form of an infinite sequence of
realizations from an i.i.d. sample of the idiosyncratic and common noises (and similarly for the ini-
tial condition), this formal representation being very convenient for introducing next the numerical
implementation. In clear, assuming that we have two independent families pBi “ pBi

tq0ďtďT qiě1

and pW j “ pW j
t q0ďtďT qjě1 of (d-dimensional) independent Brownian motions and, independently,

a family pXi
0qiě1 of i.i.d. initial conditions, we are given at rank n of the iterative process repre-

sented in Figure 2.3 two collections of proxies pmn,jqjě1 and phn,jqjě1 of i.i.d. continuous paths
with values in Rd, with each mn,j and hn,j being assumed to be adapted with respect to W j . We
then consider a collection of i.i.d. Rd-valued control processes αi,j “ pαi,jt q0ďtďT , with each αi,j
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being assumed to be adapted with respect to pXi
0,B

i,W jq. Each αi,j and each hn,j are assumed
to be constant on each r`T {p, p` ` 1qT {pq for ` P t0, ¨ ¨ ¨ , p ´ 1u, where p stands as before for the
discretization parameter. For a given outcome ω in the probability space carrying all the processes,
we then choose as inputs of the black-box (corresponding to Rp,$X0 in (2.1.30)) the noise Bipωq,
the environment mn,jpωq and the control $αi,jpωq perturbed by the additional randomization
ε 9W p,$hn,j{ε,jpωq. All these inputs are represented by the green boxes in Figure 2.3. As made clear
by the red boxes on Figure 2.3, the black-box returns a cost that depends on i, j (in Figure 2.3,
we use the notation 7i and 7j to refer to the various inputs and outputs associated with Bipωq
and W jpωq). Multiplying by Ep$hn,j{εqpωq and averaging over i, j, we hence get the averaged cost
that appears in the right-hand side of (2.1.24). This makes it possible to optimize with respect to
the control α (or equivalently with respect to pαi,jqi,jě1) and thus to compute the optimal control
αn`1 that appears in the left-hand side of (2.1.24) (up to the time-discretization procedure that
we feel better not to address at this early stage of the paper): this is the yellow box in Figure
2.3. Once the optimal control has been computed, we may follow the arrows connecting the three
blue boxes in Figure 2.3: for each pair pi, jq, we can compute the realization Xn`1,i,jpωq of the
optimal state. Averaging with respect to i, we get mn`1,jpωq and then, following the updating rule
(2.1.25), we can update the state of the environment: the new state is mn`1,jpωq. The new value
of hn`1,jpωq is directly taken from the affine form of αn`1,jpωq, see (2.1.5).

2.1.6 Exploitation

We now summarize the outline of the exploitation analysis that is achieved in the paper. In
particular, we present the main bound that we can prove next for the so-called exploitability of the
(geometric) tilted fictitious play (the meaning of which is explained below).

In reinforcement learning, this is indeed a common practice to distinguish exploration from
exploitation. Whereas exploration is intended as a way to visit the space of actions, exploitation
is related to the error that is achieved by the learning method. When the learning addresses a
stochastic control problem, the analysis goes through the loss, which is the (absolute value of the)
difference between the best possible cost and the cost to the strategy returned by the algorithm.
Because we are dealing with a game, we use here the concept of approximated Nash equilibrium
to define the exploitability. In brief, the point is to prove that the output of the algorithm is a
%-Nash equilibrium, for % ą 0 and to define the exploitability as the infimum of those %. In our case,
the situation is a bit more subtle because the learning procedure returns a random approximated
equilibrium; ideally, we should associate with it a random exploitability. However, the analysis
would be too difficult. Instead, we follow (2.1.24) and average the cost with respect to the common
noise. We then define the notion of approximated equilibrium with respect to this averaged cost.
The resulting exploitability can then be decomposed as the sum of two terms:

• The ‘error’ resulting from the approximation, learnt by our fictitious play, of the discrete-time
mean field game with step size T {p and with common noise of intensity ε. The implementation
of the algorithm involves n iterations and a piecewise linear approximation of the Brownian
motion W with T {p steps. For fixed6 ε P p0, 1s and p P N, this error tends to 0 as n tends to

6For convenience, we assume ε to be less than 1 in the analysis. Obviously, the results would remain true for
ε ą 1, but the various constants in our analysis could then depend on any a priori upper bound on ε.
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Realization of
common noise #j

Realization of
idiosyncratic noise #i

Control adapted
to noises #i, j

Decentralized
black-box

Cost #i, j

Averaging over
i, j of costs #i, j

New private
state #i, j

Averaging over
i of states #i, j

New popula-
tion state #j

Initial private state
State of the popu-
lation adapted to
common noise #j

inputs return

expectation

optimal state

optimization

Figure 2.3: Black-box (in red) inserted at the core of a learning step. Expectations are formally written
as means over a sequence of realizations from an i.i.d. sample of initial conditions and of idiosyncratic and
common noises. For any respective realizations #i (#i reading ‘number i’) and #j (#j reading ‘number j’)
of the idiosyncratic and common noises plugged into the black-box, we compute the corresponding state of
the population (that depends on the realization #j of the common noise) and we choose the control (that
is adapted to the realizations #i, j of the two noises and of the initial condition). The inputs are thus in
green, except the control which is subjected to optimization (hence in yellow, as a mixture of green and red).
The return (in red) of the black-box depends on the realizations #i, j. The expectation is formally obtained
by averaging with respect to #i, j. Once the optimizer has been found, we compute (in blue) the optimal
states, depending on the realizations #i, j. The output state of the population after one learning step is
obtained by averaging over i.
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8, with an explicit rate %ε,ppnq.

• The ‘error’ resulting from the common noise and discrete-time approximation of the original
time-continuous mean field game without common noise. Intuitively, the (unique) solution
of the time-discrete mean field game with common noise produces a random approximated
Nash equilibrium of the original mean field game whose accuracy gets finer and finer as p
increases and ε decreases.

In fact, this principle can be put in the form of a more general stability result that permits to
evaluate in the end the trade-off between exploration and exploitation. When X0 has sub-Gaussian
tails, the exploitability is bounded by

O

ˆ

exppCε´2q$´n ` ε` 1
p

˙

, (2.1.33)

see Theorem 2.2.27. For fixed values of n and p (the latter two parametrizing the complexity of
the algorithm and the required memory7), we are hence able to tune the intensity of the noise.

To our mind, this result demonstrates the interest of our concept, even though it says nothing
about the equilibria that are hence selected in this way when ε tends to 0. In fact, the latter
is a difficult question, which has been addressed for instance in [45] (for the same model as in
(2.1.1)–(2.1.2), but with d “ 1 and for some specific choices of f and g) and [37] (for finite state
potential games); generally speaking, this problem raises many theoretical questions that are out of
the scope of this paper and we just address it here through numerical examples (see the subsection
below). The diagram (2.4) right below hence summarizes the balance between exploitation and
exploration in our case. In words, the geometric tilted fictitious play allows us to learn a solution
of the discrete-time MFG with step size T {p and with common noise (or, equivalently, exploration
noise) of intensity ε ą 0 by choosing n large enough. The equilibrium that is hence learnt is an
approximate equilibrium of the original MFG (in continuous time and without common noise).
For a small intensity ε, the exploitability is small if n and p are large enough, hence the trade-off
between ε and pn, pq.

MFG without
common noise

MFG with
common noise

Approximate solution

exploration

ε ą 0

fictitious play

n, p Ò 8

exploitation
ε Ó 0 vs. n, p Ò 8

Figure 2.4: Exploration vs. exploitation.

For sure, our analysis of exploitation is carried out in the ideal case when the underlying
expectations in (2.1.24) are understood in the theoretical sense and when the optimal control

7We feel better not to give any order of complexity and memory in terms of n and p. This would have no sense
because the integration and optimization steps are not discretized here.

65



problem at each step can be computed perfectly. We do not address here the approximation of those
theoretical expectations by empirical means nor the numerical approximation of the optimizers.

2.1.7 Numerical examples

We complete the paper with some numerical examples that demonstrate the relevance of our con-
cept. The numerical implementation requires additional ingredients that are explained in detail
in Section 2.3. Obviously, the main difficulty is the encoding of the decentralized black-box, as
represented in Figures 2.2 and 2.3. As clearly suggested by the latter figure, expectations are then
approximated by averaging the costs over realizations from a finite i.i.d. sample of idiosyncratic
and common noises. In this regard, the principle highlighted by Figure 2.3 is the same, but the
optimization step needs to be clarified. Although we do not provide any further theoretical jus-
tification of the accuracy of the numerical optimization that is hence performed, we feel useful
to stress that controls are chosen in a semi-feedback form, namely of the same linear form as in
(2.1.5). Numerically, the coefficient ηt is hence parameterized in the form of a coefficient that is
only allowed to depend on time; and the intercept ht is sought as a function of the current mean
state of the population. This latter function is parameterized in the form of a finite expansion along
an Hermite polynomial basis, our choice for Hermite polynomials being dictated by the Gaussian
nature of the trajectories in (2.1.28), or in the form of a neural network. In our numerical exper-
iments, both the linear coefficient and the coefficients in the regression of the intercept along the
given class of functions are found by ADAM optimization method. The results exposed in Section
2.3 demonstrate the following features:

1. For a given value of the intensity of the common noise (say ε “ 1), we run examples in
dimension d “ 2. Both the (tilted) harmonic and geometric fictitious play converge well,
without any significant differences between the two of them on the examples under study.
Solutions are compared to numerical solutions of (2.1.7) found by a BSDE solver that uses
explicitly the shape of the coefficients f , g, Q and R and that does not use the observations
of the cost.

2. We also run examples in higher dimension, namely d “ 12 and d “ 20. Obviously, this raises
challenging questions in terms of complexity, in particular for regressing hn`1 in (2.1.20)
by means of a suitable basis. Although we show numerically that neural networks may
behave well in these examples, the main difficulty in the higher dimensional setting comes
from the various Monte-Carlo estimations on which Figure 2.3 implicitly relies. Indeed, the
variance of the cost in (2.1.24) may increase fast with the dimension. This phenomenon has
an impact on the behavior of the algorithm, which may fail to converge as clearly illustrated
in some of the examples below. Next, we address one simple reduction variance method,
which returns much better results in dimension d “ 12 and d “ 20 and which demonstrates
that the algorithm may remain relevant in this more challenging framework at the price of
some marginal modifications. In light of these results, we believe that it would be highly
valuable to provide a more exhaustive analysis of the possible strategies for reducing the
variance underpinning the various Monte-Carlo computations. We hope to address this point
in future contributions.
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3. The standard fictitious play, with idiosyncratic noise but without common noise, may fail to
converge, meaning that, not only there may not be any known mathematical guarantee sup-
porting the convergence, but even more, for one of the examples we treat below in dimension
d “ 2, the cost returned by the algorithm has an oscillatory behavior that is not observed in
presence of the common noise. Even though we do not have a mathematical explanation for
these observations, this is a crucial point of the paper as it demonstrates numerically that the
common noise helps the algorithm to converge. From a conceptual point of view, this is a key
observation. Of course, it would be very much desirable to have a table of comparison, with
a mathematical description of the behavior of the algorithm without and with common noise
and for various types coefficients. This looks however out of reach of the existing literature.
Still, it is worth observing that, in dimension 1, the usual algorithm is known to converge
because the model is potential, see [24], and that, in this setting, we have not observed any
numerical oscillatory behavior similar to the two dimensional one (for the same types of coef-
ficients). We elaborate on this point in §2.3.3.1. We also feel useful to recall from the previous
Subsection 2.1.6 that, from a theoretical point of view, we are able to provide explicit bounds
for the rate of convergence, which is another substantial contribution of our work. Indeed,
as explained in the forthcoming §2.2.1.3, we know a few results only in which the rate of
convergence of the fictitious play without common noise is addressed explicitly.

4. In order to study the behavior of our fictitious play when the intensity ε of the common
noise becomes small, we focus on a one-dimensional MFG that has multiple equilibria when
there is no common noise. This case is highly challenging. Not only theoretical bounds like
(2.1.33) are especially bad when ε is small, but also additional numerical issues arise in the
small noise regime. In particular, the variance of the various estimators suffer from the same
drawback as in the high-dimensional setting and may be very large. However, we here show
that, numerically, the geometric tilted fictitious play run with a high rate $ and a small
intensity ε is able to select quite quickly the same equilibrium as the one predicted in [45, 37].
In contrast, the standard fictitious play (without common noise) also converges but may not
select the right equilibrium (for the same choice of parameters). Also, it is worth observing
that, in this experiment, the geometric variant of the titled fictitious play performs better
than the harmonic one, which is consistent with our theoretical analysis. By the way, in
the first arXiv version [48] of this work (in which we just studied the harmonic variant), we
complemented the numerical analysis with a preferential sampling method in order to reduce
the underlying variance and hence obtain a better accuracy in the selection of an equilibrium.
This would be an interesting question to address the possible interest of such a preferential
sampling method when combined with the geometric variant of the algorithm. We leave this
for future works.

In the end, the numerical experiments carried out here confirm the relevance of the tilted scheme.
However, it is fair to say that it is more subtle to demonstrate the superiority of the geometric
variant over the harmonic variant, even if the experiment (4) reported above clearly points in
that direction. In our opinion, the geometric variant has the great merit of offering theoretical
convergence guarantees that are affordable numerically. However, the experiments described in
Section 2.3 show that the harmonic variant is also numerically relevant. Numerical results could
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probably be optimized by combining the two approaches, so as to benefit from the advantages of
both.

It should be stressed that our numerical experiments are run under Tensorflow, using a pre-
implemented version of ADAM optimization method in order to compute an approximation of the
best response in (2.1.24). Accordingly, the optimization algorithm itself relies explicitly on the
linear-quadratic structure of the mean field game through the internal automatic differentiation
procedure (used for computing gradients in descents). In this sense, our numerical experiments use
in fact more than the sole observations of the costs. Anyhow, this does not change the conclusion:
descent methods, based on accurate approximations of the gradients, do benefit from the presence
of the common noise. For instance, the construction of accurate approximations of the gradient
is addressed in Carmona and Laurière [35, 36] (within a slightly different setting), in which a
model-free reinforcement learning method is fully implemented8.

2.1.8 Comparison with existing works

Exploration and exploitation are important concepts in reinforcement learning and related optimal
control.

In comparison with the discrete-time literature, there have been less papers on the analysis
of exploration/exploitation in the time continuous setting. In both Murray and Paladino [93] and
Wang et al. [111], the randomization of the actions goes through a formulation of the corresponding
control problem in terms of relaxed controls. In Murray and Paladino [93], the authors address
questions that are seemingly different from ours, as the objective is to allow for a model with
some uncertainty on the state dynamics. Accordingly, the cost functional is averaged out with
respect to some prior probability measure on the vector field driving the dynamics. Under suit-
able assumptions on this prior probability measure, a dynamic programming principle and a then
a Hamilton-Jacobi-Bellman are derived. In fact, the paper Wang et al. [111], which addresses
stochastic optimal controls, is closer to the spirit of our work. Therein, relaxed controls are com-
bined with an additional entropic regularization that forces exploration. In case when the control
problem has a linear-quadratic structure, quite similar to the one we use here (except that there is
no mean field interaction), the entropic regularization is shown to work as a Gaussian exploration.
Although our choice for working with a Gaussian exploration looks consistent with the result of
Wang et al. [111], there remain however some conceptual differences between the two approaches:
In the theory of relaxed controls, the drifts in the dynamics are averaged out with respect to the
distribution of the controls; In our paper, the dynamics are directly subjected to the randomized
action. In this respect, our work is closer to the earlier contribution of Doya [52].

Recently, the approach initiated in Wang et al. [111] has been extended to mean field games.
In Guo et al. [118] and Firoozi and Jaimungal [55], the authors study the impact of an entropic
regularization onto the shape of the equilibria. In both papers, the models under study are linear-
quadratic and subjected to a sole idiosyncratic noise (i.e., there is no common noise). However,
they differ on the following important point: in Firoozi and Jaimungal [55], the intensity of the
idiosyncratic noise is constant, whilst it depends on the standard deviation of the control in Guo et

8The reader may find in Munos [92] a nice explanation about the distinction between model-free and model-based
reinforcement learning. In any case, our algorithm is not model-based: It would be model-based if we tried to learn
first f , g, Q or R. We refer to §2.3.3.3 for a discussion about the possible numerical interest to learn Q and R first.
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al. [118]. In this sense, Firoozi and Jaimungal [55] is closer to the set-up that we investigate here.
Accordingly, the presence of the entropic regularization leads to different consequences: In Guo et
al. [118], the effective intensity of the idiosyncratic noise grows up under the action of the entropy
and this is shown to help numerically in some learning method (of a quite different spirit than
ours). In Firoozi and Jaimungal [55], the entropy plays no role on the structure of the equilibria,
which demonstrates, if needed, that our approach here is substantially different.

Within the mean field framework, there have been several recent contributions on reinforcement
learning for models featuring a common noise. In Carmona et al. [35], the authors investigate the
convergence of a policy gradient method for a discrete time linear quadratic mean field control
problem (and not an MFG) with a common noise. In comparison with (2.1.2), the cost functional
itself is quadratic with respect to the mean field interaction. The linear quadratic structure then
allows us to simplify the search for the optimal feedbacks, in the form of two linear functions, one
linear function of the mean state of the population and one linear function of the deviation to the
mean state. Accordingly, the problem is rewritten in terms of two separate (finite-dimensional)
linear-quadratic control problems, one with each of the two linear factors. Convergence of the
descent for finding the optimizers is studied for a model free method using a black-box simulating
the evolution of the population. This black-box is comparable to ours. Importantly, non-degeneracy
of the very first inputs of the common noise is used in the convergence analysis. In another work
(Carmona et al. [36]), the same three authors have developed a model free Q-learning method for
a mean field control problem in discrete time and finite space. The model may feature a common
noise, but the latter has no explicit impact onto the convergence analysis carried out in the paper.
Last, in Elie et al. [54] and Perrin et al. [96], the authors deal with discrete and continuous time
learning for MFGs using fictitious play and introducing a form of common noise. Their analysis
is supported by various applications and numerical examples (including a discussion on the tools
from deep learning to compute the best responses at any step of the fictitious play). The analysis
also relies on the notion of exploitability. As the common noise therein is not used for exploratory
reasons, the coefficients are assumed to satisfy the monotonicity Lasry-Lions condition in order to
guarantee the convergence of the fictitious play.

After the publication of the first arXiv version [48] of our paper, several related works by other
authors were released. For instance, the authors of Muller et al. [mueller] address Policy Space
Response Oracles (PSRO) within the mean field framework in order to approximate Nash equilibria
but also relaxed equilibria that are said to be correlated. In particular, the authors explain how
to implement PSRO via regret minimization in order approximate correlated equilibria. In Hu
and Laurière [hu:hal-03656245], the authors provide a very nice survey of recent developments
in machine learning for stochastic control and games. Last, it is also fair to quote Hambly et
al. [hambly], in which the authors address the global convergence of the natural policy gradient
method to the Nash equilibrium in a general N -player linear-quadratic game. Noticeably, the proof
of convergence therein requires a certain amount of noise.

2.1.9 Main assumption, useful notation and organization.
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2.1.9.1 Assumption

Throughout the analysis, σ in (2.1.1) is a fixed non-negative real. The intensity ε of the common
noise is taken in r0, 1s. Most of the time, it is implicitly required to be strictly positive, but we
sometimes refer to the case ε “ 0 in order to compare with the situation without common noise. As
we are mainly interested with the case when ε is small, we assume ε to be in r0, 1s in any case. As
for the coefficients f and g, they are assumed to be bounded and Lipschitz continuous. We write

}f}1,8 “ sup
xPRd

|fpxq| ` sup
x,x1PRd:x­“x1

|fpxq ´ fpx1q|

|x´ x1|
ă 8,

and similarly for g.

2.1.9.2 Notation

The notation Id stands for the d-dimensional identity matrix. For a random variable Z with values
in a Polish space S, we denote by σpZq the σ-field generated by Z. For a process Z “ pZtq0ďtďT
with values in a Polish space S, we denote by FZ the augmented filtration generated by Z. In
particular, the notation FW is frequently used to denote the augmented filtration generated by the
common noise when ε P p0, 1s. We recall that F “ FpX0,σB,εW q.

Also, for a filtration G, we write SdpGq for the space of continuous and G-adapted processes
Z “ pZtq0ďtďT with values in Rd that satisfy

E
”

sup
0ďtďT

|Zt|
2
ı

ă 8.

2.1.9.3 Organization of the paper

The mathematical analysis is carried out in Section 2.2. Subsection 2.2.1 addresses the error as-
sociated with the scheme (2.1.24)–(2.1.20)–(2.1.21)–(2.1.25) without any time discretization, see
Theorem 2.2.4. Similar results, but with the additional time discretization that makes the explo-
ration possible, are established in Subsection 2.2.2, see in particular Theorem 2.2.17. In Subsection
2.2.3, we make the connection with the original mean field game without common noise. In particu-
lar, we prove that our learning procedure permits to construct approximate equilibria to the original
problem. The bound (2.1.33) for the exploitability is established in Theorem 2.2.27. Following our
agenda, we provide the results of some numerical experiments in Section 2.3. The method is tested
on some benchmark examples that are presented in Subsection 2.3.1. The implemented version of
the algorithm is explained in Subsection 2.3.2. The results, for a fixed intensity of the common
noise, are exposed in Subsection 2.3.3. In the final Subsection 2.3.5, we provide an example that
illustrates the behavior of the algorithm for a decreasing intensity of the common noise.

2.2 Theoretical results

The theoretical results are presented in three main steps. The general philosophy, as exposed in
Figure 2.1, is addressed in Subsection 2.2.1. The analysis of the algorithm under a time-discrete
randomization of the actions is addressed in Subsection 2.2.2. Lastly, the dilemma between explo-
ration and exploitation is investigated in Subsection 2.2.3.
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2.2.1 Tilted fictitious play with common noise

Throughout the subsection, the intensity ε P p0, 1s of the common noise and the learning parameter
$ are fixed. We take $ in p1,

?
2s (we refer to Remark 2.2.11 for the need to have $ close to 1).

2.2.1.1 Construction of the learning sequence

We here formalize the scheme introduced in (2.1.20)–(2.1.21)–(2.1.24)–(2.1.25). We hence construct
a sequence of proxies pmnqně0 and phnqně0. The two initial processes m0 and h0 are two FW -
adapted continuous processes with values in Rd. Typically, we choose m0 “ pm0

t “ EpX0qq0ďtďT

and h0 “ ph0
t “ 0q0ďtďT . Assuming that, at some rank n, we have already defined pm1, ¨ ¨ ¨ ,mnq

and ph1, ¨ ¨ ¨ ,hnq, each in SdpFW q, we call

αn`1,$ :“ argminαE$h
n{ε
”

R$X0

´

$α;mn;$εW$hn{ε
¯ı

, (2.2.1)

the infimum being taken over controlled processes α that are F-progressively and that satisfy
E$hn{ε

şT
0 |α

n`1,$
t |2dt ă 8. Above, the processmn “ pmn

t q0ďtďT is defined in terms of pm0, ¨ ¨ ¨ ,mnq

through the formulas m0 :“m0 (if n “ 0) and

mn
t :“

$p1´$´1q

1´$´n

n
ÿ

k“1

$´kmk
t , t P r0, T s, (2.2.2)

if n ě 1, with the latter being consistent with the geometric updating rule (2.1.25). The following
lemma, the proof of which is deferred to Subsection 2.2.1.5, explains how the next proxy mn`1 can
be computed through the best response of the control problem (2.2.1):

Lemma 2.2.1. Under the above assumptions, the process αn`1,$ writes

αn`1,$
t “ ´

´

ηtX
n`1,$
t ` hn`1

t

¯

, t P r0, T s,

where

piq η “ pηtq0ďtďT solves the Riccati equation:

9ηt ´ η
2
t `Q

:Q “ 0, t P r0, T s ; ηT “ R:R; (2.2.3)

piiq hn`1 “ phn`1
t q0ďtďT P SdpFW q solves the backward SDE:

dhn`1
t “

`

´ 1
$Q

:fpmn
t q ` ηth

n`1
t

˘

dt` εkn`1
t dW

$hn{ε
t , t P r0, T s,

hn`1
T “ 1

$R
:g
`

mn
T

˘

;
(2.2.4)

piiiq Xn`1,$ “ pXn`1,$
t q0ďtďT solves the forward SDE:

dXn`1,$
t “ ´

´

ηtX
n`1,$
t ` hn`1

t

¯

dt` 1
$σdBt ` εdW

$hn{ε
t , t P r0, T s; Xn`1,$

0 “ X0.
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The statement makes it possible to let

mn`1
t :“ E

“

Xn`1,$
t |σpW q

‰

, t P r0, T s; mn`1
0 “ EpX0q, (2.2.5)

and then, consistently with (2.2.2),

mn`1
t :“ $p1´$´1q

1´$´pn`1q

n`1
ÿ

k“1

$´kmk
t “

$´np1´$´1q

1´$´pn`1q m
n`1
t `

´

1´ $´np1´$´1q

1´$´pn`1q

¯

mn
t . (2.2.6)

Remark 2.2.2. Notice that because the density Ep$hn{εq is σpW q-measurable, we also have

mn`1
t “ E$h

n{ε
“

Xn`1,$
t |σpW q

‰

, t P r0, T s,

which is a direct consequence of Bayes’ rule, see [JacodProtter].

Remark 2.2.3. Although each mn depends in an obvious manner on $, this is our choice not to
add $ as a label in the notation. The reason is that the limit is independent of $, as clarified in
§2.2.1.2 below. Similarly, we do not put $ in the notation hn: as shown in Theorem 2.2.4, the
limit is independent of $ up to a rescaling by $. This is in contrast with the quantities Xn,$

and αn,$: the limits depend on $ in a non-trivial manner, which we also make clear in the next
paragraph.

On another matter, it must be noticed that Lemma 2.2.1 remains valid when $ “ 1. As explained
in Introduction, see (2.1.29), the updating rate in (2.2.6) must then be understood as 1{pn`1q and,
accordingly, the formula (2.2.2) coincides with the harmonic updating rule (2.1.22). This remark
is important in order to compare the two harmonic and geometric schemes.

2.2.1.2 Main statement

As noticed in the introduction, it is especially convenient to reformulate the dynamics of Xn`1,$

under the historical probability. Quite clearly, we can write:

dXn`1,$
t “ ´

´

ηtX
n`1,$
t ` hn`1

t ´$hnt

¯

dt` 1
$σdBt` εdWt, t P r0, T s; Xn`1,$

0 “ X0, (2.2.7)

and then

dmn`1
t “ ´

´

ηtm
n`1
t ` hn`1

t ´$hnt

¯

dt` εdWt, t P r0, T s; mn`1
0 “ EpX0q. (2.2.8)

By dividing (2.2.8) by $n`1, then summing over the index n and eventually multiplying by $p1´
$´1q{p1´$´pn`1qq, we get:

dmn`1
t “ ´

´

ηtm
n`1
t `

p1´$´1q$´n

1´$´pn`1q h
n`1
t

¯

dt` εdWt, t P r0, T s. (2.2.9)

By coupling with the backward equation in the statement of Lemma 2.2.1 (when reformulated
under the historical probability), we obtain the forward-backward system:

dmn`1
t “ ´

´

ηtm
n`1
t `

p1´$´1q$´n

1´$´pn`1q h
n`1
t

¯

dt` εdWt,

dhn`1
t “

´

´ 1
$Q

:f
`

mn
t

˘

` ηth
n`1
t

¯

dt`$kn`1
t hnt dt` εkn`1

t dWt, t P r0, T s,

hn`1
T “ 1

$R
:g
`

mn
T

˘

.

(2.2.10)

Our main result in this regard is the following statement:
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Theorem 2.2.4. The scheme (2.2.10) converges to the decoupled version of the FBSDE system:

dmt “ ´ηtmtdt` εdWt,

dh$t “
´

´ 1
$Q

:fpmtq ` ηth
$
t `$k

$
t h

$
t

¯

dt` εk$t dWt, t P r0, T s,

m0 “ EpX0q, hT “
1
$R

:gpmT q,

(2.2.11)

with an explicit bound on the rate of convergence, namely

essupωPΩ

”

sup
0ďtďT

´

|mt ´m
n
t |

2 ` |h$t ´ h
n
t |

2
¯ı

ď $´2n exp
`

C
ε2

˘

, (2.2.12)

for a constant C that depends on d, T and the norms }Q:f}1,8 and }R:g}1,8.

Moreover, up to a modification of the constant C, the weak error of the scheme for the Fortet-
Mourier distance satisfies:

sup
F

ˇ

ˇ

ˇ
E$h

n{ε
”

F
`

mn,hn
˘

ı

´ E$h
${ε

”

F
`

m,h
˘

ı
ˇ

ˇ

ˇ
ď $´n exp

`

C
ε2

˘

, (2.2.13)

the supremum in the left-hand side being taken over all the functions F on Cpr0, T s;Rd ˆ Rdq that
are bounded by 1 and 1-Lipschitz continuous.

Importantly (and this is the interest of the result), the solution pmt, $h
$
t q0ďtďT of the system

(2.2.11) should be regarded as a solution of the (original) MFG with common noise (2.1.1)–(2.1.2)–
(2.1.3), whenever the latter is formulated in the weak form. Indeed, for m “ pmtq0ďtďT and h :“
$h$ “ p$h$t q0ďtďT as in (2.2.11), the optimal path pXtq0ďtďT associated with the minimization
problem

infαEh{ε
”

RX0

´

α;m; εW h{ε
¯ı

(2.2.14)

has exactly m “ pmtq0ďtďT as conditional expectation given the common noise, which follows from
an obvious adaptation of Lemma 2.2.1. Namely,

mt “ E
“

Xt |σpW q
‰

, t P r0, T s,

where pXtq0ďtďT is the optimal trajectory to the latter cost functional. As before, this can be
rewritten as

mt “ Eh{ε
“

Xt |σpW q
‰

, t P r0, T s.

Indeed, under Ph{ε, the process pm,hq satisfies the following forward-backward system, which
characterizes the conditional expectation of the optimal trajectory to (2.2.14):

dmt “ ´ηtmtdt´ htdt` εdW
h{ε
t ,

dht “
`

´Q:fpmtq ` ηtht
˘

dt` εktdW
h{ε
t , t P r0, T s,

m0 “ EpX0q, hT “ R:gpmT q.

(2.2.15)
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To derive the above system, it suffices to write it first under P:

dmt “ ´ηtmtdt` εdWt,

dht “
`

´Q:fpmtq ` ηtht ` ktht
˘

dt` εktdWt, t P r0, T s,

m0 “ EpX0q, hT “ R:gpmT q.

(2.2.16)

By the changes of variable (with the first one being already defined in the paragraph preceding
(2.2.14))

h$t “
1
$ht, k$t :“ 1

$kt, t P r0, T s, (2.2.17)

we indeed recover (2.2.11). As we claimed, this identifies the pair pm,h “ $h$q as an equilibrium
of the original MFG (2.1.1)–(2.1.2)–(2.1.3).

Noticeably, the two systems (2.2.15) and (2.2.16) provide two distinct representations of the
solution θε to the PDE (2.1.8). The connection between the two is given by the identities

ht “ θεpt,mtq, t P r0, T s ; kt “ ∇xθεpt,mtq, t P r0, T q, (2.2.18)

which holds true under both P and Ph{ε. By a standard application of the maximum principle
(for PDEs), θε is bounded in terms of d, T , }Q:f}1,8 and }R:g}1,8, and, by Lemma 2.2.8 right
below, ∇xθε is also bounded in terms of d, ε, T , }Q:f}1,8 and }R:g}1,8. The relationships stated
in (2.2.18) show in fact how to construct easily a solution to (2.2.15) and (2.2.16) by solving first for
pmtq0ďtďT in the forward equation and then by expanding pθεpt,mtqq0ďtďT . The hence constructed
solution pht, ktq0ďtďT to the backward equation in (2.2.16) (equivalently (2.2.15)) is bounded. In
turn, uniqueness to the backward equation in (2.2.16) (equivalently (2.2.15)) is easily shown to
hold true in the class of bounded processes pht, ktq0ďtďT . Similarly, (2.2.11) has a unique solution,
which is then obtained by the change of variable (2.2.17).

Remark 2.2.5. The reader will observe that, in the equation (2.2.7) for the optimal trajectory in the
fictitious play, the intensity of the idiosyncratic noise is σ{$. This is different from the intensity of
the idiosyncratic noise underpinning the controlled trajectories in the MFG (2.1.1)–(2.1.2)–(2.1.3),
which is σ. In particular, the sequence of processes pXn,$qně1, defined in Lemma 2.2.1 (see also
(2.2.7)), cannot be ‘a good approximation’ of the process X that minimizes (2.2.14). Although this
looks paradoxal with the result stated in Theorem 2.2.4, it must be clear that, implicitly, the two
bounds (2.2.12) and (2.2.13) rely on the fact that the dynamics for the MFG equilibrium m does
not depend on σ.

Remark 2.2.6. Our construction of a fictitious play with a geometric learning rate, proportional
to $´n (see (2.2.6)), as opposed to the harmonic learning rate 1{pn`1q that is used in the standard
version of the fictitious play, could be easily extended to other (neither harmonic nor geometric)
rates. There are two key principles that should be followed: the first one is to make appear, in
the dynamics (2.2.8), a difference between the component hn`1 of the scheme at iteration n ` 1
and the component hn of the scheme at iteration n, and the second one is to define the tilted
measure depending on the form of the finite difference (which is exactly the case in (2.2.1)). What
is remarkable in this approach is that the tilted measure has a bias. Whereas it would be natural
to take the tilted measure as Phn{ε, it is here taken as P$hn{ε with $ ­“ 1. The reader will easily
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see that, in order to recover the ‘non-biased’ setting (which formally corresponds to $ “ 1), one
needs to replace $hnt by hnt in (2.2.7) and (2.2.8). By summing over n as in (2.2.9), we would then
obtain 1{pn` 1q as learning rate in (2.2.6). In other words, the ‘non-biased’ regime corresponds to
the harmonic fictitious play.

Although Theorem 2.2.4 does not cover the case $ “ 1, the interested will easily check that the
proof that is given below also works when $ “ 1. Then, the bound in (2.2.12) must be replaced
by exp

`

Cε´2
˘

{n2. Similarly, (2.2.13) must be replaced by exp
`

Cε´2
˘

{n. In fact, the same remark
applies to the forthcoming Theorems 2.2.17 and 2.2.27.

Remark 2.2.7. We notice for later purposes that the backward equation in (2.2.15) can be ‘solved’
explicitly. Indeed, calling pPtq0ďtďT the solution of the linear differential equation 9Pt “ ´Ptηt, for
t P r0, T s with P0 “ Id as initial condition, where Id is the d-dimensional identity matrix, it holds

d
“

Ptht
‰

“ ´PtQ
:f
`

mt

˘

dt` εPtktdW
h{ε
t ,

or equivalently,

Ptht “ PTR
:g
`

mT

˘

`

ż T

t
PsQ

:f
`

ms

˘

ds´ ε

ż T

t
PsksdW

h{ε
s , t P r0, T s.

2.2.1.3 Discussion about the rate of convergence

Beside any specific application to learning, this is another of our contributions to provide an explicit
bound for the rate of convergence of our variant of the fictitious play for mean field games with
common noise. We feel worth to point out that, to the best of our knowledge, there are very few
results on the rate of convergence for the fictitious play in the absence of common noise, whether the
mean field game be potential or monotone (as we already explained, no result is available without
common noise outside the potential or monotone cases, except [96] which is for a time-continuous
version of the fictitious play). In most of the existing references, the analysis indeed involves an
additional compactness argument which complicates the computation of the rate. Still, the reader
can find in [59] an explicit rate for the exploitability for a monotone and potential game set in
discrete time; the bound is of order Op1{

?
nq (hence weaker than ours). In [96], a bound is shown,

also for the exploitability, but for the time-continuous version of the fictitious play, when the game
is monotone; it is of order Op1{nq, and is also weaker than ours in the geometric setting but is
hence comparable to ours in the harmonic framework.

In comparison, the thrust of our analysis is to provide a scheme with a geometric decay. Obvi-
ously, this must be tempered, due to the presence of the multiplicative constant exppCε´2q. When
the intensity ε is away from zero, the effective decay is really good, but when ε gets close to 0 (which
is the typical regime when we use the common noise as an exploration noise), the exponential factor
really matters. Of course the bound for the error may be rewritten as follows:

exp
`

´n lnp$q ` C
ε2

˘

,

which says that n should be chosen on a scale larger than ε´2. We think that this is numerically
affordable. In comparison (see Remark 2.2.6), if one had to work with the standard fictitious play
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(i.e., with a harmonic learning rate), the same analysis would lead to a bound of order exppCε´2q{n,
which is obviously much worse. In the first arXiv version [48] of this work, dedicated to the analysis
of the sole harmonic regime, we claimed that this was possible to remove the exponential factor,
but there was a clear mistake in the computations: for convenience reasons, we decided not to
indicate the dependence upon ε in the various tilted measures, as a consequence of which we forgot
a factor 1{ε in some of the main estimates.

The presence of the exponential factor comes from the following lemma, whose proof is deferred
to the end of the subsection:

Lemma 2.2.8. There exists a constant C1, only depending on d, T , }Q:f}1,8 and }R:g}1,8, such
that

|∇xθεpt, xq| ď
C1

ε2
, t P r0, T q, x P Rd,

with θε the solution of the PDE (2.1.8).

The above L8 bound for the gradient is known to be sharp, but it looks rather poor because
the estimate is precisely given in L8. Also, one may hope for better estimates in different norms.
In other words, θε may indeed become very steep, but maybe only on some localized parts of
the space. This is the point where things become highly subtle because the process mn becomes
localized itself as the diffusion coefficient ε tends to 0. So, the challenging question is to decide
whether it may stay or not in parts of the space where the gradient is high. As exemplified in
the analysis performed in Delarue and Foguen [45], this may be a challenging question, even in
dimension 1. Unless we make additional assumptions on the model (assuming for instance that
θε is smooth independently of ε, which is for example the case when T is small enough), we must
confess that we are not able to provide a more relevant bound for the gradient of θε (which bound
gives in the end a bound for the process k in (2.2.15), see (2.2.18)).

It must be also stressed that (2.2.13) provides a bound for the so-called weak error of the scheme
and is fully relevant from the practical point of view. In our context, the strong error, as addressed
in (2.2.12), does not provide the same information. Indeed, because the two densities Ep1

εhq and
Ep$ε h

nq become singular when ε tends to 0, the passage from the strong to the weak error is not
direct.

Remark 2.2.9. The reader may wonder about the scope of Theorem 2.2.4 in the higher dimensional
framework. This question will be addressed from a purely numerical prospect in the forthcoming
Section 2.3, see in particular Subsection 2.3.4. From a more theoretical point of view, the same
question can be addressed by investigating the dependence of the constant C in (2.2.13) upon the
dimension d. Whereas we cannot provide a sharp (or at least reasonable) bound in full generality,
we show below that, even in simple cases when the matrices Q and R reduce to the d ˆ d identity
matrix and the coefficients f and g are diagonal, i.e. each coordinate i of f (respectively g) writes
f ipxq “ f0pxiq (respectively gipxq “ g0pxiq) for a function f0 : R Ñ R (respectively g0 : R Ñ R),
with xi denoting the ith coordinate of x, then the exponential factor in (2.2.12) and (2.2.13) is
typically exppCOp

?
dqε´2q, for C independent of d.
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2.2.1.4 Proof of Theorem 2.2.4

The proof relies on the following lemma, whose proof is also deferred to the end of the subsection.

Lemma 2.2.10. There exists a constant C2 ą 0, only depending on d, T , }Q:f}1,8 and }R:g}1,8,
such that, P almost surely,

|ht| ď C2 ; |hnt | ď C2, t P r0, T s, n ě 1.

Proof of Theorem 2.2.4. Throughout, C is a generic constant that is allowed to vary from line to
line, as long as it only depends on d, T , }Q:f}1,8 and }R:g}1,8.

First Step. Invoking Lemma 2.2.10 and recalling that $ P p1,
?

2s, we then have
ˇ

ˇ

ˇ

p1´$´1q$´n

1´$´pn`1q h
n`1
t

ˇ

ˇ

ˇ
ď C$´n, t P r0, T s, (2.2.19)

from which we deduce (consider the difference between (2.2.9) and the forward equation in (2.2.11))
that

sup
0ďtďT

ˇ

ˇmn
t ´mt

ˇ

ˇ ď C$´n. (2.2.20)

We now make the difference between the backward equations in (2.2.10) and (2.2.11). We obtain

d
`

hn`1
t ´ h$t

˘

“ ´ 1
$

´

Q:f
`

mn
t q ´Q

:f
`

mtq

¯

dt` ηt
`

hn`1
t ´ h$t

˘

dt`$kn`1
t

`

hnt ´ h
$
t

˘

dt

`$
`

kn`1
t ´ k$t

˘

h$t dt` ε
`

kn`1
t ´ k$t

˘

dWt, (2.2.21)

hn`1
T ´ h$T “

1
$

”

R:g
`

mn
T

˘

´R:g
`

mT

˘

ı

.

In particular, rewriting the above equation under W h{ε “W$h${ε, we get

d
`

hn`1
t ´ h$t

˘

“ ´ 1
$

´

Q:f
`

mn
t q ´Q

:f
`

mtq

¯

dt` ηt
`

hn`1
t ´ h$t

˘

dt`$kn`1
t

`

hnt ´ h
$
t

˘

dt

` ε
`

kn`1
t ´ k$t

˘

dW
h{ε
t , t P r0, T s. (2.2.22)

Then, taking the square, using (2.2.20) and Lemmas 2.2.8 and 2.2.10, expanding by Itô’s formula
and applying Young’s inequality, we get

d
ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
ě ´C$´2ndt´ C

ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
dt´ C

ˇ

ˇkt
ˇ

ˇ

ˇ

ˇhnt ´ h
$
t

ˇ

ˇ

ˇ

ˇhn`1
t ´ h$t

ˇ

ˇdt

´ C
ˇ

ˇkn`1
t ´ k$t

ˇ

ˇ

ˇ

ˇhnt ´ h
$
t

ˇ

ˇ

ˇ

ˇhn`1
t ´ h$t

ˇ

ˇdt

` ε2
ˇ

ˇkn`1
t ´ k$t

ˇ

ˇ

2
dt` 2ε

`

hn`1
t ´ h$t

˘

¨
“`

kn`1
t ´ k$t

˘

dW
h{ε
t

‰

ě ´C$´2ndt´ C
ε2

ˇ

ˇhnt ´ h
$
t

ˇ

ˇ

2
dt´ C

ε2

ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
dt

` 2ε
`

hn`1
t ´ h$t

˘

¨
“`

kn`1
t ´ k$t

˘

dW
h{ε
t

‰

,

(2.2.23)

for t P r0, T s and for a constant C as in the statement. For a free parameter λ ą 1, we obtain

d
”

exp
`

C
ε2
λt
˘ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
ı

ě exp
`

C
ε2
λt
˘

´

Cpλ´1q
ε2

ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
´ C$´2n ´ C

ε2

ˇ

ˇhnt ´ h
$
t

ˇ

ˇ

2
¯

dt
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` 2ε exp
`

C
ε2
λt
˘`

hn`1
t ´ h$t

˘

¨
“`

kn`1
t ´ k$t

˘

dW
h{ε
t

‰

. (2.2.24)

And then, integrating from t to T , taking conditional expectation under Ph{ε given Ft and recalling
that hn`1

T “ R:gpmn
T q{$ and h$T “ R:gpmT q{$, we get, for any t P r0, T s,

exp
`

C
ε2
λt
˘ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
`

Cpλ´1q
ε2

Eh{ε
„
ż T

t
exp

`

C
ε2
λs
˘ˇ

ˇhn`1
s ´ h$s

ˇ

ˇ

2
ds |Ft



(2.2.25)

ď C$´2n
´

exp
`

C
ε2
λT

˘

`

ż T

t
exp

`

C
ε2
λs
˘

ds
¯

` C
ε2
Eh{ε

„
ż T

t
exp

`

C
ε2
λs
˘ˇ

ˇhns ´ h
$
s

ˇ

ˇ

2
ds |Ft



.

Next, we choose λ “ 4. This yields

ε2

3C exp
`

4C
ε2
t
˘
ˇ

ˇhn`1
t ´ h$t

ˇ

ˇ

2
` Eh{ε

„
ż T

t
exp

`

4C
ε2
s
˘
ˇ

ˇhn`1
s ´ h$s

ˇ

ˇ

2
ds |Ft



ď
ε2p1`T q

3 $´2n exp
`

4C
ε2
T
˘

` 1
3E
h{ε

„
ż T

t
exp

`

4C
ε2
s
˘ˇ

ˇhns ´ h
$
s

ˇ

ˇ

2
ds |Ft



.

(2.2.26)

The above holds true for almost every ω P Ω (under P and Ph{ε) and for every t P r0, T s. By a
standard induction argument, using in addition Lemma 2.2.10, we deduce that, for a deterministic
constant C 1 depending on the same parameters as C, for almost every ω P Ω, for every t P r0, T s
and for every n ě 1,

Eh{ε
„
ż T

t
exp

`

4C
ε2
s
˘
ˇ

ˇhns ´ h
$
s

ˇ

ˇ

2
ds |Ft



ď C 1 exp
`

4C
ε2
T
˘

n
ÿ

k“0

3´k$´2pn´kq

“ C 1 exp
`

4C
ε2
T
˘

$´2n
n
ÿ

k“0

`

$2

3

˘k

ď C 1 exp
`

4C
ε2
T
˘

n
ÿ

k“0

`

2
3

˘k
ď C 1 exp

`

4C
ε2
T
˘

$´2n,

(2.2.27)

where we used, in the last line, the fact that $ P p1,
?

2s. Because ε is less than 1, we can easily
remove the constant C 1 by increasing the constant C. And then, by (2.2.25), we obtain (2.2.12).

Second Step. We now turn to the proof of (2.2.13). In fact, it is a direct consequence of Pinsker’s
inequality, which says that

dTV

`

Ph{ε,P$h
n{ε
˘

ď
?

2Eh{ε
”

ln
´ Eph{εq
Ep$hn{εq

¯ı1{2
,
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where dTV in the left-hand side is the total variation distance. Now,

ln
´ Eph{εq
Ep$hn{εq

¯

“ ln
´Ep$h${εq
Ep$hn{εq

¯

“ ´$
ε

ż T

0

`

h$s ´ h
n
s

˘

¨ dWs ´
$2

2ε2

ż T

0

`

|h$s |
2 ´ |hns |

2
˘

ds

“ ´$
ε

ż T

0

`

h$s ´ h
n
s

˘

¨ dWh{ε
s ` $2

ε2

ż T

0

`

h$s ´ h
n
s

˘

¨ h$s ds´ $2

2ε2

ż T

0

`

|h$s |
2 ´ |hns |

2
˘

ds

“ ´$
ε

ż T

0

`

h$s ´ h
n
s

˘

¨ dWh{ε
s ` $2

2ε2

ż T

0

ˇ

ˇh$s ´ h
n
s

ˇ

ˇ

2
ds.

And then, by (2.2.12),

dTV

`

Ph{ε,P$h
n{ε
˘

ď C
ε$

´n exp
`

C
2ε2

˘

. (2.2.28)

Modifying the constant C, we can easily get rid of the multiplicative constant 1{ε in the right-
hand side. By (2.2.12) again, for any function F that is 1-bounded and 1-Lipschitz on the space
Cpr0, T s;Rd ˆ Rdq,

ˇ

ˇ

ˇ
Eh{ε

”

F
`

mn,hn
˘

ı

´ Eh{ε
”

F
`

m,h
˘

ıˇ

ˇ

ˇ
ď $´n exp

`

C
ε2

˘

,

and then, by (2.2.28), we get (2.2.13).

Remark 2.2.11. The reader can deduce from the display (2.2.27) the reason why we assumed $
to be less than

?
2. In fact, even though $ were larger, the geometric decay would remain less than

3´n because of the factor 1{3 in (2.2.26). Here, the factor 1{3 must be understood as 1{pλ´ 1q for
λ “ 4. For sure, it would be tempting to choose 1{pλ´ 1q “ 1{$, but this would lead to λ “ $` 1.
The resulting exponential factor exppCε´2λsq in (2.2.25) would become much too high with $.

2.2.1.5 Proof of the auxiliary statements

It now remains to prove Lemmas 2.2.1, 2.2.10 and 2.2.8 and Remark 2.2.9.

Proof of Lemma 2.2.1. The proof mainly follows from the stochastic Pontryagin principle, see for
instance [119, chapter 3]. Here, the stochastic Pontryagin principle provides a necessary and suffi-
cient condition on the dynamics of the optimal control because the cost coefficients are convex in
the spatial variable. However, the very fist step of the proof is to get rid of the parameter $ in the
cost functional R$X0p$α;mn;$εW$hn{εq (see (2.2.1)).

For a control α, the controlled dynamics driven by $X0, $α and the common noise $εW$hn{ε

write

dX$,α
t “ $αtdt` σdBt `$εdW

$hn{ε
t , t P r0, T s ; X$,α

0 “ $X0.

Dividing by $, we can write X$,α
t in the form X$,α

t “ $Xα
t , with (the notation Xα

t is in fact a
bit abusive because the dynamics below still depend on $)

dXα
t “ αtdt`

1
$σdBt ` εdW

$hn{ε
t , t P r0, T s ; Xα

0 “ X0.
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Accordingly, the cost in (2.2.1) can be rewritten in the form

E$h
n{ε
“

R$X0
`

$α;mn;$εW$hn{ε
˘‰

“
1

2
E$h

n{ε

„

ˇ

ˇ

ˇ
$Xα

T ` g
`

mn
T q

ˇ

ˇ

ˇ

2
`

ż T

0

´

$2|αt|
2 `

ˇ

ˇ$Xα
t ` f

`

mn
t

˘ˇ

ˇ

2
¯

dt



“
$2

2
E$h

n{ε

„

ˇ

ˇ

ˇ
Xα
T `

1
$g

`

mn
T q

ˇ

ˇ

ˇ

2
`

ż T

0

´

|αt|
2 `

ˇ

ˇXα
t `

1
$f

`

mn
t

˘ˇ

ˇ

2
¯

dt



The leading parameter $2 can be easily removed (because it does not change the minimizer). Next,
the stochastic Pontryagin principle says that the optimal trajectory to the cost functional in the
above right-hand side –and thus the optimal trajectory to the cost functional (2.2.1) (but up to the
rescaling factor $)– is

dXn`1
t “ ´

`

ηtX
n`1
t ` hn`1

t

˘

dt` 1
$σdBt ` εdW

$hn{ε
t , t P r0, T s ; Xn`1

0 “ X0,

with pηtq0ďtďT and hn`1 as in the statement.

Proof of Lemma 2.2.10. The proof is a straightforward consequence of the two equations for h and
hn`1 under (respectively) the probability measures Ph{ε and P$hn{ε, see (2.2.15) and (2.2.4). One
can make the argument especially clear by using the formulation presented in Remark 2.2.7 together
with the fact that the coefficients f and g are bounded.

Proof of Lemma 2.2.8. In (2.1.8), we perform the change of variable

θεpt, xq “ ϕε
`

t
ε2
, x
ε2

˘

, pt, xq P r0, T s ˆ Rd.

We get

1
ε2
Btϕε

`

t
ε2
, x
ε2

˘

` 1
2ε2

∆2
xxϕε

`

t
ε2
, x
ε2

˘

´ 1
ε2

`

ηtx` θεpt, xq
˘

¨∇xϕε
`

t
ε2
, x
ε2

˘

`Q:fpxq ´ ηtθεpt, xq “ 0.

Multiplying by ε2 and changing pt, xq into pε2t, ε2xq, we obtain

Btϕεpt, xq `
1
2∆2

xxϕεpt, xq ´
´

ηtε
2x` θε

`

ε2t, ε2x
˘

¯

¨∇xϕεpt, xq

` ε2Q:f
`

ε2x
˘

´ ε2ηtθε
`

ε2t, ε2x
˘

“ 0.

Above, pt, xq belongs to r0, T {ε2sˆRd. The terminal condition is ϕεpT {ε
2, xq “ gpε2xq. Moreover, by

Lemma 2.2.10, the function θε can be bounded independently of ε. Then, for t at distance less than
1 from T {ε2, we get a bound for ∇xϕε from standard estimates for systems of nonlinear parabolic
PDEs, as used in [44]. When t is at distance greater than 1 from T {ε2, we get a bound for ∇xϕε
from interior estimates for systems of nonlinear parabolic PDEs, see for instance [MR2053051].
The result follows.
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Proof of Remark 2.2.9. We now add a few lines in order to prove the complementary Remark 2.2.9.
When R and Q are the identity matrices, the solution η of the Riccati equation (2.2.3) becomes an
homothecy (which we identify with a real-valued function). In turn, if the functions f and g are
‘diagonal’, in the sense of Remark 2.2.9, then the solution θε to the PDE (2.1.8) is also diagonal,
namely θiεpt, xq “ θ0,εpt, xiq, with θ0 : r0, T s ˆ RÑ R being the solution of the 1d-equation:

Btθ0,εpt, x0q `
ε2

2 B
2
x0x0θ0,εpt, x0q ´

`

ηtx0 ` θ0,εpt, x0q
˘

Bx0θ0,εpt, x0q ` f0px0q ´ ηtθ0,εpt, x0q “ 0,

for pt, x0q P r0, T s ˆ R, and with the terminal boundary condition θ0,εpT, x0q “ g0px0q.
In particular,

sup
pt,xqPr0,T sˆRd

ˇ

ˇ∇xθεpt, xq
ˇ

ˇ

2
“ d sup

pt,x0qPr0,T sˆR

ˇ

ˇBx0θ0,εpt, x0q
ˇ

ˇ

2
.

So, if we take for granted the fact that we cannot get better than C0{ε
2 for the right-hand side,

then the bound for the left-hand side becomes C0d{ε
4. Returning back to (2.2.23), the constant C

therein grows like
?
d with d, which completes the proof of the claim.

2.2.2 The common noise as an exploration noise

Following the agenda explained in the introduction, we now regard the common noise as an explo-
ration noise for an MFG without common noise. In words, ε is set equal to 0 in the original MFG
(2.1.1)–(2.1.2)–(2.1.3) and this is only in the choice of the controls that we restore the presence of
the common noise, in the form of a randomization.

2.2.2.1 Presentation of the model

In the absence of common noise, the state dynamics merely write

dXt “ βtdt` σdBt, t P r0, T s.

However, we want β “ pβtq0ďtďT to be subjected to a random exploration of the form

βt “ αt ` ε 9Wt, t P r0, T s,

where α “ pαtq0ďtďT is the control effectively chosen by the agent (or by the ‘controller’) and ε is
(strictly) positive (and is kept fixed throughout the subsection). In this expansion, p 9Wtq0ďtďT is
formally understood as the time-derivative of pWtq0ďtďT . Obviously, the latter does not exist as a
function, which makes the above decomposition non tractable. However, it prompts us to introduce
a variant based upon a mollification of the common noise. To make it clear, we introduce a family
of regular processes ppW p

t q0ďtďT qpě1 such that, almost surely (under P),

lim
pÑ8

sup
0ďtďT

|Wt ´W
p
t | “ 0,

and, for any p ě 1, the paths of pW p
t q0ďtďT are continuous and piecewise continuously differentiable.

Throughout this subsection and the next one, we use the following piecewise affine interpolation:

W p
t :“Wτpptq `

ppt´ τpptqq

T

`

Wτpptq`T {p ´Wτpptq

˘

, (2.2.29)
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where, by definition, τpptq :“ tpt{T upT {pq. In words τpptq is the unique element of pT {pq ¨ N such
that τpptq ď t ă τpptq ` T {p “ τppt ` T {pq, namely τpptq “ `T {p, for t P r`T {p, p` ` 1qT {pq and
` P t0, ¨ ¨ ¨ , p´ 1u. It is worth observing that the time derivative of W p writes in the form of finite
differences of W , which explains our definition of W p as a linear interpolation. We elaborate on
this observation in Remark 2.2.12 below.

For an FW -adapted and continuous environment m “ pmtq0ďtďT , the cost functional, as origi-
nally defined in (2.1.2), is turned into the following discrete time version

rJppα;mq :“
1

2
E
„

ˇ

ˇR:XT ` gpmT q
ˇ

ˇ

2
`

ż T

0

!

ˇ

ˇQ:Xτpptq ` fpmτpptqq
ˇ

ˇ

2
` |αt ` ε 9W p

t |
2
)

dt



,

where the expectation is taken over both the idiosyncratic and exploration (common) noises.
Above, we require α to be progressively-measurable with respect to the filtration Fp,X0,B,W :“
pσpX0, pBτppsq,Wτppsqqsďtqq0ďtďT and to be constant on any interval r`T {p, p` ` 1qT {pq, for ` P
t0, ¨ ¨ ¨ , p ´ 1u. The above minimization problem can be regarded as a discrete-time control prob-
lem. The need for a time discretization is twofold: piq On the one hand, it permits to avoid any
anticipativity problem, since the linear interpolation at a time t ­“ τpptq anticipates on the future
realization of the exploration noise; piiq On the other hand, it is more adapted to numerical pur-
poses. To the best of our knowledge, the formulation of rJppα;mq in the form of a cost functional
featuring an additive randomization of the control is new.

In the presence of the randomization, the cost functional might become very large as p tends
to 8, even for a control α of finite energy. This prompts us to renormalize rJp. As a result of the
adaptability constraint, we indeed have

E
ż T

0
αt ¨ 9W p

t dt “ E
p´1
ÿ

`“0

ż p``1qT {p

`T {p
αt 9W p

t dt “

p´1
ÿ

`“0

E
”

α`T {p ¨
`

Wp``1qT {p ´W`T {p

˘‰

“ 0,

with the last line following from the fact that α`T {p is FW`T {p-measurable. Also, sinceW p is piecewise
linear, we have

E
ż T

0
| 9W p

t |
2dt “

p´1
ÿ

`“0

ż p``1qT {p

`T {p
E
”

ˇ

ˇ

p

T

`

Wp``1qT {p ´W`T {p

˘
ˇ

ˇ

2
ı

dt “ d p
T

p

p2

T 2

T

p
“ d p.

So, we must subtract to the cost a diverging term to recover the original cost functional. To make
it clear, the effective cost must be

Jppα;mq :“ rJppα;mq ´ 1
2ε

2d p

“
1

2
E
„

ˇ

ˇR:XT ` gpmT q
ˇ

ˇ

2
`

ż T

0

!

ˇ

ˇQ:Xτpptq ` fpmτpptqq
ˇ

ˇ

2
` |ατpptq|

2
)

dt



.
(2.2.30)

Noticeably, we recover (up to the time discretization) the same cost functional J as in (2.1.2), which
explains why we have removed the tilde over the symbol Jp. Anyway, Jpp¨;mq and rJpp¨;mq have
the same minimizers.

Before we provide the form of the corresponding fictitious play, we need to clarify the notion of
tilted measure. We assume that we are given a process h “ phtq0ďtďT that is piecewise constant
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and Fp,W -adapted, with Fp,W :“ FW p
: For the same p as before, the process h is constant on each

interval pr`T {p, p`` 1qT {pqq`“0,¨¨¨ ,p´1 and each h`T {p is Fp,W
`T {p -measurable, with Fp,W

`T {p “ σpW p
s , s ď

`T {pq. Then, as before, we can let W h{ε:

W
h{ε
t “Wt `

1

ε

ż t

0
hsds.

We compute the p-piecewise linear interpolation W p,h{ε of W h{ε:

W
p,h{ε
t “W

p,h{ε
τpptq

`
ppt´ τpptqq

T

`

W
h{ε
τpptq`T {p

´W
h{ε
τpptq

˘

“W
p,h{ε
τpptq

`
ppt´ τpptqq

T

`

Wτpptq`T {p ´Wτpptq

˘

`
1

ε

ppt´ τpptqq

T

T

p
hτpptq

“W
p,h{ε
τpptq

`
ppt´ τpptqq

T

`

Wτpptq`T {p ´Wτpptq

˘

`
1

ε

`

t´ τpptq
˘

hτpptq

“W
p,h{ε
τpptq

`

ż t

τpptq
dW p

s `
1

ε

ż t

τpptq
hsds,

from which we deduce that

W
p,h{ε
t “W p

t `
1

ε

ż t

0
hsds, t P r0, T s. (2.2.31)

For sure, under the probability Eph{εq ¨ P, the process W p,h{ε is the piecewise linear interpolation
of W h{ε and the latter is a Brownian motion. Also,

9W
p,h{ε
t “ 9W p

t `
1

ε
ht,

which permits to say that the trajectories controlled by pαt ` ε 9W p
t q0ďtďT satisfy

dXt “
`

αt ´ ht
˘

dt` σdBt ` εdW
p,h{ε
t ,

which coincides with (2.1.1). Importantly, since h is piecewise constant, Eph{εq can be expressed
in terms of the sole h and W p.

Remark 2.2.12. We feel useful to comment more on our choice to work with the linear inter-
polation pW p

t q0ďtďT of pWtq0ďtďT . While it may look somewhat arbitrary, this choice is in fact
dictated by the structure of the model and the form of the final result that is provided next. Indeed,
the main result of this subsection, see Theorem 2.2.17 below, yields a bound for the weak error (in
a convenient sense) between the solution of a time-discrete version of the mean field game (with
a common noise) and the corresponding time-discrete variant of the fictitious play, with the time
mesh being given by pkT {pqk“0,¨¨¨ ,p.

Obviously, working with a discrete-time version of the game makes perfect sense from a practical
point of view. Here, it is also especially adapted to our objective. As we already explained, we want
to regard the instantaneous value of the control at time t as being corrupted, at least formally, by
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the time derivative of the common noise. Because the latter derivative does not exist as a true
function, our strategy is to work instead with finite differences of the common noise. This is one
first reason for working with pW p

t q0ďtďT , because the linear interpolation is completely characterized
by the finite differences of pWtq0ďtďT at times 0, T {p, 2T {p, ¨ ¨ ¨ , T . Another related reason is that,
for h a piecewise constant process that is Fp,W -adapted, the relationship (2.2.31) holds true because
W p and W p,h are piecewise linear. This is another strong case for working with the piecewise
linear interpolation because (2.2.31) makes it possible to apply Girsanov theorem directly, with the
latter being the key ingredient of the whole analysis.

In a nutshell, given the class of time-discrete games we address for approximating the original
game (using in particular finite differences to perturb the controls), the linear interpolation is the
most natural one to reconstruct time-continuous dynamics from time-discrete observations. As
such, the linear interpolation does not directly impact the bound on the weak error that is stated
below, because the weak error is defined a priori within the given class of approximating games,
regardless of the choice of the interpolation. However, working with the linear interpolation makes
the proof much easier.

2.2.2.2 Fictitious play

The analysis from the previous paragraph leads to the following new scheme, which should be
regarded as the discrete-time analogue of the scheme presented in Subsection 2.2.1.1. Fix a real
$ P p1,

?
2s and an integer p ě 1 and, for the same initialization m0 “ pm0

t “ EpX0qq0ďtďT and
h0 “ ph0

t “ 0q0ďtďT as in the continuous-time setting, assume that we have defined two families
of proxies pm1, ¨ ¨ ¨ ,mnq and ph1, ¨ ¨ ¨ ,hnq with the additional assumption that each process hk is
constant on each interval r`T {p, p` ` 1qT {pq, for ` P t0, ¨ ¨ ¨ , p ´ 1u and k P t1, ¨ ¨ ¨ , nu. And we
assume each pmk

`T {p, h
k
`T {pq to be measurable with respect to Fp,W

`T {p if ` P t0, ¨ ¨ ¨ , pu. Then, we solve

for

αppq,n`1,$ “ argminα

ˆ

E$h
n{ε
”

Rp,$X0

´

$α`$ε 9W p,$hn{ε;mn; 0
¯ı

´ 1
2d$

2ε2p

˙

“ argminα

ˆ

E$h
n{ε
”

Rp,$X0

´

$α;mn;$εW p,$hn{ε
¯ı

˙

,

(2.2.32)

with the same measurability rules as those explained above and where Rp,x0 is the obvious discrete-
time version of Rx0 , namely

Rp,x0pα;n; εwq “
1

2

„

ˇ

ˇRxT ` gpnT q
ˇ

ˇ

2
`

p´1
ÿ

`“0

!

ˇ

ˇQx`T {p ` fpn`T {pq
ˇ

ˇ

2
`
ˇ

ˇα`T {p
ˇ

ˇ

2
)



, (2.2.33)

where xp``1qT {p “ x`T {p ` pT {pqα`T {p ` σpBp``1qT {p ´B`T {pq ` εpwp``1qT {p ´w`T {pq. As before, mn
t

in (2.2.32) is mn
t “

$p1´$´1q

1´$´n
řn
k“1$

´kmk
t .

The first step here is to solve the optimization problem (2.2.32). Very similar to Lemma 2.2.1,
we can provide an explicit form for the optimal feedback through the solution of the following
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time-discrete Riccati equation:

p

T

´

η
ppq
p``1qT {p ´ η

ppq
`T {p

¯

´ η
ppq
p``1qT {pη

ppq
`T {p `Q

:Q
´

Id ´
T

p
η`T {p

¯

“ 0,

` P t0, ¨ ¨ ¨ , p´ 2u ;
p

T

´

η
ppq
T ´ η

ppq
pp´1qT {p

¯

´ η
ppq
T η

ppq
pp´1qT {p “ 0 ; η

ppq
T “ R:R.

(2.2.34)

The analysis of the latter (see the earlier reference [51]) goes through the auxiliary Riccati equation

p

T

´

P
ppq
p``1qT {p ´ P

ppq
`T {p

¯

´ P
ppq
p``1qT {p

´

Id `
T

p
P
ppq
p``1qT {p

¯´1
P
ppq
p``1qT {p `Q

:Q “ 0, (2.2.35)

for ` P t0, ¨ ¨ ¨ , p´ 1u, with P
ppq
T “ R:R as boundary condition. The Riccati equation (2.2.35) can

be solved inductively: the solution is symmetric and non-negative9 , which guarantees that the
inverse right above is well-defined. Then,

η
ppq
`T {p “

´

Id `
T

p
P
ppq
p``1qT {p

¯´1
P
ppq
p``1qT {p, ` P t0, ¨ ¨ ¨ , p´ 1u, (2.2.36)

solves (2.2.34). Notice that the above left-hand side is symmetric and non-negative because the
two matrices in the right-hand side commute.

Lemma 2.2.13. Under the above assumptions, the minimization problem (2.2.32) has a unique
solution αppq,n`1,$, which writes

α
ppq,n`1,$
t “ ´

ˆ

η
ppq
τpptq

X
ppq,n`1,$
τpptq

` rhn`1
τpptq

˙

, t P r0, T s, (2.2.37)

where rhn`1 solves the backward SDE:

drhn`1
t “

!

´ 1
$E

”

Q:f
`

mn
τpptq`T {p

˘

|Fp,W
τpptq

ı

1ttďpp´1qT {pu

`

´

η
ppq
τpptq`T {p

`
T

p
Q:Q1ttďpp´1qT {pu

¯

rhn`1
τpptq

)

dt

`$kn`1
t hnt dt` εkn`1

t dWt, t P r0, T q,

rhn`1
T “ 1

$R
:g
`

mn
T

˘

.

(2.2.38)

Accordingly, the optimal path Xppq,n`1,$ solves (up to a rescaling factor $) the forward SDE:

dX
ppq,n`1,$
t “ α

ppq,n`1,$
t dt` 1

$σdBt ` εdW
p,$hn{ε
t , t P r0, T s; Xn`1

0 “ X0. (2.2.39)

9Symmetry is obvious. Non-negativity is a bit more demanding. Assuming that P
ppq
p``1qT {p is non-negative, non-

negativity of P
ppq
`T {p is proved as follows. For any vector x P Rd, we have

`

P
ppq
`T {px

˘

¨ x “
`

P
ppq
p``1qT {px

˘

¨ x´ T
p

`

P
ppq
p``1qT {px

˘

¨

”

`

Id `
T
p
P
ppq
p``1qT {p

˘´1
P
ppq
p``1qT {px

ı

` T
p
|Qx|2

ě
`

P
ppq
p``1qT {px

˘

¨ x´
`

P
ppq
p``1qT {px

˘

¨ x`
`

P
ppq
p``1qT {px

˘

¨

”

`

Id `
T
p
P
ppq
p``1qT {p

˘´1
x
ı

,

and the right-hand side is obviously non-negative.
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Remark 2.2.14. Although it is not indicated in the notations rhn, hn, kn and mn, it should be
clear to the reader that the latter four processes depend on p, $ and ε.

Remark 2.2.15. The convergence of pP
ppq
τpptq

q0ďtďT to pηtq0ďtďT in Lemma 2.2.1 is obvious.

By the symmetric and non-negative structure of the matrices pP
ppq
` q`“0,¨¨¨ ,p, we can easily get

uniform bounds on the latter. In turn, we can regard the equation (2.2.35) as an Euler scheme for
a matricial differential equation driven by a Lipschitz vector field. The rate of convergence is linear
in p. By (2.2.36), we deduce that

sup
0ďtďT

|η
ppq
t ´ ηt| ď

C

p
, (2.2.40)

for a constant C independent of p, but possibly depending on the dimension d. Typically, the bound

on pP
ppq
` q`“0,¨¨¨ ,p should depend on the norms of Q:Q and R:R and is thus expected to depend on d in

a polynomial way. In turn, stability arguments for finite difference equations say that those bounds

should propagate to the constant C in the above estimate for the distance between pη
ppq
t q0ďtďT and

pηtq0ďtďT . However, this argument may not be sharp: when Q and R are the identity matrix, the
Riccati equation (2.2.35) reduces to a scalar equation and the constant C should just scale like

?
d.

Remark 2.2.16. The backward SDE (2.2.38) is in fact a mere discrete-time equation. Indeed,

rhn`1
`T {p “

rhn`1
p``1qT {p `

T
$pQ

:fpmn
p``1qT {pq1t`ďp´2u

´ T
p

´

η
ppq
p``1qT {p `

T
pQ

:Q1t`ďp´2u

¯

rhn`1
`T {p ´ ε

ż p``1qT {p

`T {p
kn`1
s dW$hn{ε

s ,
(2.2.41)

for ` P t0, ¨ ¨ ¨ , p´ 1u. Taking conditional expectation given FW`T {p, we can solve for

´

Id `
T
p η
ppq
p``1qT {p `

T 2

p2
Q:Q1t`ďp´2u

¯

rhn`1
`T {p.

It is easy to deduce rhn`1
`T {p. We get

rhn`1
`T {p “

´

Id `
T
p η
ppq
p``1q{p `

T 2

p2
Q:Q1t`ďp´2u

¯´1

ˆ E$h
n{ε

„

rhn`1
p``1qT {p `

T
$pQ

:f
`

mn
p``1qT {p

˘

1t`ďp´2u |FW`T {p



,
(2.2.42)

which proves, by induction, that rhn`1
`T {p is Fp,W

`T {p -measurable. It suffices to observe that, for Z an

Fp,W
p``1qT {p-measurable random variable, the conditional expectation of Z given FW`T {p is in fact Fp,W

`T {p -

measurable.

Taking for granted Lemma 2.2.13 (the proof is given at the end of the subsection), we put

hn`1
t :“ rhn`1

τpptq
, (2.2.43)

which satisfies the required measurability constraints thanks to Remark 2.2.16. Then, we let

mn`1
t :“ E

“

X
ppq,n`1,$
t |σpW q

‰

“ E$h
n{ε

“

X
ppq,n`1,$
t |σpW q

‰

, t P r0, T s, (2.2.44)
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together with

mn`1
t “

$p1´$´1q

1´$´pn`1q

n`1
ÿ

k“1

$´kmk
t “

$´np1´$´1q

1´$´pn`1q m
n`1
t `

´

1´ $´np1´$´1q

1´$´pn`1q

¯

mn
t . (2.2.45)

Importantly, notice that

mn`1
`T {p “ E

“

X
ppq,n`1,$
`T {p |σpW pq

‰

“ E
“

X
ppq,n`1,$
`T {p |Fp,W

`T {p

‰

, ` P t0, ¨ ¨ ¨ , pu,

which proves in particular that the left-hand side is Fp,W
`T {p -measurable.

The analogue of Theorem 2.2.4 becomes:

Theorem 2.2.17. There exists a threshold c ą 0, depending on d, T , the norms }f}1,8 and }g}1,8
and the norms |Q| and |R| of the matrices Q and R, such that, for pε2 ě c, the scheme (2.2.43)–
(2.2.45) converges to pmppq, rhppq{$,kppq{$q, where pmppq, rhppq,kppqq is the unique solution of the
decoupled discrete-time FBSDE system:

m
ppq
p``1qT {p “ m

ppq
`T {p ´

T
p η
ppq
`T {pm

ppq
`T {p ` ε

`

Wp``1qT {p ´W`T {p

˘

,

rh
ppq
`T {p “

rh
ppq
p``1qT {p `

T
pQ

:f
`

m
ppq
p``1qT {p

˘

1t`ďp´2u

´ T
p

´

η
ppq
p``1qT {p `

T
pQ

:Q1t`ďp´2u

¯

rh
ppq
`T {p ´

ˆ
ż p``1qT {p

`T {p
kppqs ds

˙

rh
ppq
`T {p

´ ε

ż p``1qT {p

`T {p
kppqs dWs, ` P t0, ¨ ¨ ¨ , p´ 1u,

m
ppq
0 “ EpX0q, rh

ppq
T “ R:g

`

m
ppq
T

˘

,

(2.2.46)

with an explicit bound on the rate of convergence, namely

essupωPΩ

”

sup
`“0,¨¨¨ ,p

´

|m
ppq
`T {p ´m

n
`T {p|

2 ` |$´1
rh
ppq
`T {p ´ h

n
`T {p|

2
¯ı

ď $´2n exp
`

Cε´2
˘

, (2.2.47)

for a constant C that also depends on d, T , }f}1,8, }g}1,8, |Q| and |R|.
Moreover, if we extend mppq by continuous interpolation to the entire r0, T s and if we call

hppq the piecewise constant extension of rhppq to the entire r0, T s, then, up to a modification of the
constant C, the weak error of the scheme for the Fortet-Mourier distance satisfies

sup
F

ˇ

ˇ

ˇ
E$h

n{ε
”

F
`

mn,hn
˘

ı

´ Eh
ppq{ε

”

F
`

mppq, $´1hppq
˘

ıˇ

ˇ

ˇ
ď $´n exp

`

Cε´2
˘

, (2.2.48)

the supremum being taken over all the functions F on Cpr0, T s;RdˆRdq that are bounded by 1 and
1-Lipschitz continuous.

The following comments are in order:

• In (2.2.46), mppq and rhppq are implicitly understood as mppq “ pm
ppq
`T {pq`“0,¨¨¨ ,p and rhppq “

ph
ppq
`T {pq`“0,¨¨¨ ,p, with m

ppq
`T {p and h

ppq
`T {p being Rd-valued and Fp,W

`T {p -measurable for each ` P

t0, ¨ ¨ ¨ , pu.
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• The process kppq is understood as pk
ppq
s q0ďsďT . It is Rdˆd-valued and FW -progressively mea-

surable.

Existence and uniqueness of a solution to (2.2.46) is in fact ensured by the following proposition,
whose proof is deferred to §2.2.2.5. The statement also explains the need for a threshold on the
product pε2 in the two bounds (2.2.47) and (2.2.48).

Proposition 2.2.18. There exists a constant c, depending on d, T , }f}1,8, }g}1,8, |Q| and |R|,

such that for pε2 ě c, the backward equation in (2.2.46) admits a unique solution prh
ppq
`T {pq`“0,¨¨¨ ,p,

with rh
ppq
`T {p P L

2pΩ,Fp,W
`T {p ,P;Rdq for each ` P t0, ¨ ¨ ¨ , pu.

The process pk
ppq
t q0ďtďT is FW -progressively measurable and is square integrable over r0, T s ˆΩ

(Ω being equipped with P).

We also feel useful to clarify the meaning of the continuous interpolation of mppq in (2.2.48). In
fact, the definition is similar to (2.2.29):

m
ppq
t :“ m

ppq
τpptq

`
ppt´ τpptqq

T

`

m
ppq
τpptq`T {p

´m
ppq
τpptq

˘

, t P r0, T s. (2.2.49)

Moreover, the definition of the piecewise constant extension of rhppq is similar to (2.2.43):

h
ppq
t :“ rh

ppq
τpptq

, t P r0, T s. (2.2.50)

It is worth noting that pmppq,hppqq (hence extended to the entire r0, T s as above) is the unique
solution of the following two-step fixed point problem, which is nothing but the discrete-time version
of the MFG with common noise addressed in Theorem 2.2.4:

piq The solution of

argminα

ˆ

Eh
ppq{ε

”

Rp,X0

´

α` ε 9W p,hppq{ε;mppq; 0
¯ı

´ 1
2d ε

2p

˙

, (2.2.51)

which is also

argminα

ˆ

Eh
ppq{ε

”

Rp,X0

´

α;mppq; εW p,hppq{ε
¯ı

˙

(2.2.52)

is given by

α
ppq,‹
t “ ´

ˆ

η
ppq
τpptq

X
ppq,‹
τpptq

` h
ppq
t

˙

, t P r0, T s, (2.2.53)

where

dX
ppq,‹
t “ ´η

ppq
τpptq

X
ppq,‹
τpptq

dt` σdBt ` εdW
p
t

“ α
ppq,‹
t dt` σdBt ` εdW

p,hppq{ε
t , t P r0, T s,

(2.2.54)

with X0 as initial condition.
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piiq The process obtained by taking the conditional expectation of Xppq,‹ given σpW pq, namely

pErXppq,‹t |σpW pqsq0ďtďT , solves the forward equation in (2.2.46), i.e.,

E
“

X
ppq,‹
`T {p |σpW

pq
‰

“ m
ppq
`T {p, ` “ 0, ¨ ¨ ¨ , p. (2.2.55)

Indeed, by a straightforward adaptation of Lemma 2.2.13, the system (2.2.46) can be shown to
characterize the solution to the fixed point problem associated with the two items piq and piiq right
above. This proves in particular that the discrete-time MFG constructed on the top of the cost
functional (2.2.51) has a unique solution when pε2 ě c, which is given by Proposition 2.2.18.

Remark 2.2.19. As made in clear in the forthcoming proof of Proposition 2.2.18, there is another
conceivable extension for rhppq (in addition to the extension defined in (2.2.50)). Indeed, very similar
to (2.2.38), given hppq (from (2.2.50)), one can define the extension of rhppq to the entire r0, T s as
the solution of the BSDE:

drh
ppq
t “

!

´E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|Fp,W
τpptq

ı

1ttďpp´1qT {pu

`

´

η
ppq
τpptq`T {p

` T
pQ

:Q1ttďpp´1qT {pu

¯

h
ppq
t

)

dt

` k
ppq
t h

ppq
t dt` εk

ppq
t dWt, t P r0, T q,

rh
ppq
T “ R:g

`

m
ppq
T

˘

.

(2.2.56)

Consistency of this extension is explained in the proof of Proposition 2.2.18. The time-continuous
process rhp defined as the solution of (2.2.56) coincides at times p`T {pq`“0,¨¨¨ ,p with the solution

prh
ppq
`T {pq`“0,¨¨¨ ,p of (2.2.46). Moreover, the process kppq in (2.2.56) coincides with kppq in (2.2.46).

Remark 2.2.20. Similar to the proof of Theorem 2.2.4, the proof of Theorem 2.2.17 also shows
that

dTV

`

P$h
n{ε,Ph

ppq{ε
˘

ď $´n exp
`

Cε´2
˘

.

Remark 2.2.21. Following Remark 2.2.9 about the scope of Theorem 2.2.4 to the higher dimen-
sional setting, we could think of tracking the dependence of the constant C (in (2.2.11) and (2.2.12)),
which is here independent of p, upon the dimension d. Although we prefer not to address this ques-
tion in full detail, we insist on the fact that the conclusion of Remark 2.2.9 also holds true here,
meaning that the constant C cannot be better than OpexppOp

?
dqqq in simple cases when Q and R

are the identity matrices and f and g are diagonal. Intuitively, we cannot expect a constant that
would be, asymptotically in d and uniformly in p, better than the constant appearing in the state-
ment of Theorem 2.2.4, as otherwise we could take the limit p Ñ 8 in the statement of Theorem
2.2.17 and then get a better estimate in Theorem 2.2.4.

2.2.2.3 Analysis of the convergence

Conditioning on W in (2.2.39) and recalling the two notations (2.2.43) and (2.2.44), we obtain

dmn`1
t “ ´

´

η
ppq
τpptq

mn`1
τpptq

` hn`1
t

¯

dt` εdW
p,$hn{ε
t , t P r0, T s; mn`1

0 “ EpX0q.
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Thanks to (2.2.45), the identity (2.2.9) becomes

dmn`1
t “ ´

`

η
ppq
τpptq

mn`1
τpptq

`
p1´$´1q$´n

1´$´pn`1q h
n`1
t

˘

dt` εdW p
t , t P r0, T s. (2.2.57)

As in the analysis of (2.2.10), the second term in the middle disappears asymptotically at a geo-
metric rate. This follows from the next result, which is an improved version of Lemma 2.2.10 and
which is also used next in place of Lemma 2.2.8 (the latter relying on a Markovian structure that
is not satisfied here):

Lemma 2.2.22. With pmn, rhnq being defined as in (2.2.38), (2.2.44) and (2.2.45) and pmppq, rhppqq
as in (2.2.46) and (2.2.56), there exists a constant C1, only depending on d, T , }f}1,8, }g}1,8, |Q|
and |R|, such that, P almost surely,

|hnt | ď C1, t P r0, T s, n ě 1 ; |rh
ppq
t | ď C1, t P r0, T s. (2.2.58)

Moreover, for the same constant C1, there exists δ P p0, 1s, depending on the same parameters as
C1, such that, with probability 1 under P,

@t P r0, T s, Eh
ppq{ε

„

exp

ˆ

δε2

ż T

t
|kppqs |

2ds

˙

|FWt


ď C1. (2.2.59)

The proof of Lemma 2.2.22 is deferred to §2.2.2.5. Taking for granted the statement, we now
complete the proof of Theorem 2.2.17.

Proof of Theorem 2.2.17. Taking for granted Proposition 2.2.18, we assume that the system (2.2.46)
has a unique solution. Implicitly, this requires pε2 ě c, but this is indeed one of the assumption of
Theorem 2.2.17.

First Step. For any integer n ě 1, we thus compare pmn`1, rhn`1q and pmppq, rhppq{$q, with the
latter two ones being extended to the entire r0, T s as explained in (2.2.49) and (2.2.56). To do so,
we first notice that

dm
ppq
t “ ´η

ppq
τpptq

m
ppq
τpptq

dt` εdW p
t , t P r0, T s.

By (2.2.57) and (2.2.58),

d
`

mn`1
t ´m

ppq
t

˘

“ ´η
ppq
τpptq

`

mn`1
t ´m

ppq
t

˘

dt´O
`

$´n
˘

dt, t P r0, T s,

where |Op$´nq| ď C$´n for a constant C as in the statement of Theorem 2.2.17. We easily get

sup
0ďtďT

|mn`1
t ´m

ppq
t | ď C$´n. (2.2.60)

Second Step. We turn to the difference rhn`1 ´ rhppq{$. We rewrite (2.2.38) as

drhn`1
t “

!

´ 1
$E

”

Q:f
`

mn
τpptq`T {p

˘

|Fp,W
τpptq

ı

1ttďpp´1qT {pu

`

´

η
ppq
τpptq`T {p

` T
pQ

:Q1ttďpp´1qT {pu

¯

hn`1
t

)

dt

`$kn`1
t

`

hnt ´
1
$h

ppq
t

˘

dt` εkn`1
t dW

hppq{ε
t , t P r0, T s.
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Similarly, we rewrite (2.2.56) as

d
`

1
$
rh
ppq
t

˘

“

!

´ 1
$E

”

Q:f
`

m
ppq
τpptq`T {p

˘

|Fp,W
τpptq

ı

1ttďpp´1qT {pu

`

´

η
ppq
τpptq`T {p

`
T

p
Q:Q1ttďpp´1qT {pu

¯

`

1
$h

ppq
t

˘

)

dt

` ε
$k

ppq
t dW

$hppq,${ε
t , t P r0, T q,

1
$
rh
ppq
T “ 1

$R
:g
`

m
ppq
T

˘

.

Forming and squaring the difference between the two equations and using (2.2.60) (together with
Remark 2.2.15, which gives a bound for ηppq independent of p), we deduce (very like as in (2.2.22)
and (2.2.23))

d
”

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
ı

ě ´C$´2ndt´ C
ˇ

ˇhn`1
t ´ 1

$h
ppq
t

ˇ

ˇ

2
dt´ C

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
dt

´ C|k
ppq
t |

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

ˇ

ˇhnt ´
1
$h

ppq
t

ˇ

ˇdt´ C
ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

ˇ

ˇkn`1
t ´ 1

$k
ppq
t

ˇ

ˇdt

` ε2
ˇ

ˇkn`1
t ´ 1

$k
ppq
t

ˇ

ˇ

2
dt` ε

`

hn`1
t ´ 1

$
rh
ppq
t

˘

¨
“`

kn`1
t ´ 1

$k
ppq
t

˘

dW
hppq{ε
t

‰

,

with the constant C being allowed to vary from line to line as long as it depends on the same
parameters as those indicated in the statement of Theorem 2.2.17. With δ as in (2.2.59), this leads
to

d
”

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
ı

ě ´C$´2ndt´ C
ˇ

ˇhn`1
t ´ 1

$h
ppq
t

ˇ

ˇ

2
dt´ C

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
dt

´ C
δε2

ˇ

ˇhnt ´
1
$h

ppq
t

ˇ

ˇ

2
dt´

`

δε2|k
ppq
t |

2 ` C
ε2

˘ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
dt

` ε2

2

ˇ

ˇkn`1
t ´ 1

$k
ppq
t

ˇ

ˇ

2
dt` ε

`

hn`1
t ´ 1

$
rh
ppq
t

˘

¨
“`

kn`1
t ´ 1

$k
ppq
t

˘

dW
hppq{ε
t

‰

.

Using the fact that, by convention, ε is taken in p0, 1q, we can get rid of the last term on the first
line (which is dominated by the last term on the second line). Then, letting

E
ppq
t :“ exp

ˆ
ż t

0

`

δε2|kppqs |
2 ` C

δε2

˘

ds

˙

, t P r0, T s, (2.2.61)

and assuming without any loss of generality that δ P p0, 1q, we obtain

d
”

E
ppq
t

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
ı

ě ´CE
ppq
t

”

$´2n `
ˇ

ˇhn`1
t ´ 1

$h
ppq
t

ˇ

ˇ

2
` 1

δε2

ˇ

ˇhnt ´
1
$h

ppq
t

ˇ

ˇ

2
ı

dt` ε2

2 E
ppq
t

ˇ

ˇkn`1
t ´ 1

$k
ppq
t

ˇ

ˇ

2
dt

` εE
ppq
t

`

hn`1
t ´ 1

$h
ppq
t

˘

¨

”

`

kn`1
t ´ 1

$k
ppq
t

˘

dW
hppq{ε
t

ı

. (2.2.62)
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Then, using in addition the fact that rhn`1
T ´ rh

ppq
T {$ “ rgpm

n
T q ´ gpm

ppq
T qs{$, we get

E
ppq
t

ˇ

ˇrhn`1
t ´ 1

$
rh
ppq
t

ˇ

ˇ

2
` ε2

2 E
hppq{ε

„
ż T

t
Eppqs

ˇ

ˇkn`1
s ´ 1

$k
ppq
s

ˇ

ˇ

2
ds |FWt



ď CEh
ppq{ε

„

E
ppq
T $´2n `

ż T

t
Eppqs

”

$´2n `
ˇ

ˇhn`1
s ´ 1

$h
ppq
s

ˇ

ˇ

2
` 1

δε2

ˇ

ˇhns ´
1
$h

ppq
s

ˇ

ˇ

2
ı

ds |FWt


.

Take now t “ `T {p, for some ` P t0, ¨ ¨ ¨ , p´ 1u. Then, with C and δ as above,

E
ppq
`T {p

ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2

ď CEh
ppq{ε

„

E
ppq
T $´2n `

ż T

`T {p
Eppqs

”

ˇ

ˇhn`1
s ´ 1

$h
ppq
s

ˇ

ˇ

2
` 1

δε2

ˇ

ˇhns ´
1
$h

ppq
s

ˇ

ˇ

2
ı

ds |FW`T {p



ď C exp

ˆ

δε2

ż `T {p

0
|kppqs |

2ds

˙

Eh
ppq{ε

„

exp

ˆ

δε2

ż T

`T {p
|kppqs |

2ds

˙

|FW`T {p



ˆ

ˆ

exp
`

C T
δε2

˘

$´2n ` T
p

p´1
ÿ

k“`

exp
`

C kT
pδε2

˘

essup
ωPΩ

”

ˇ

ˇhn`1
kT {p ´

1
$h

ppq
kT {p

ˇ

ˇ

2
` 1

δε2

ˇ

ˇhnkT {p ´
1
$h

ppq
kT {p

ˇ

ˇ

2
ı

˙

.

By (2.2.59), we have a bound for the expectation on the penultimate line. Also, recalling the form

of E
ppq
`T {p in (2.2.61), we can divide both sides of the inequality by exppδε2

ş`T {p
0 |k

ppq
s |

2dsq. We get

exp
`

C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2

ď C exp
`

C T
δε2

˘

$´2n ` CT
p

p´1
ÿ

k“`

exp
`

C kT
pδε2

˘

essup
ωPΩ

”

ˇ

ˇhn`1
kT {p ´

1
$h

ppq
kT {p

ˇ

ˇ

2
` 1

δε2

ˇ

ˇhnkT {p ´
1
$h

ppq
kT {p

ˇ

ˇ

2
ı

.

For CT {p ď 1{2 (which assumption is consistent with the lower bound pε2 ě c), we get (for a
possibly new value of C)

exp
`

C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2
ď A` `

CT
p

p´1
ÿ

k“``1

exp
`

C kT
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
kT {p ´

1
$h

ppq
kT {p

ˇ

ˇ

2
,

with the notation

A` :“ C exp
`

C T
δε2

˘

` CT
pδε2

p´1
ÿ

k“`

exp
`

C kT
pδε2

˘

essupωPΩ
ˇ

ˇhnkT {p ´
1
$h

ppq
kT {p

ˇ

ˇ

2
.

By the discrete version of Gronwall’s lemma, we obtain (for a possibly new value of C):

exp
`

C `T
pδε2

˘

essupωPΩ
ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2

ď CA` ď C exp
`

C T
δε2

˘

` CT
pδε2

p´1
ÿ

k“`

exp
`

C kT
pδε2

˘

essupωPΩ
ˇ

ˇhnkT {p ´
1
$h

ppq
kT {p

ˇ

ˇ

2
.

(2.2.63)
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And then, for some real λ ą 0,

p´1
ÿ

`“0

exp
`

λ `T
pδε2

˘

exp
`

C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2

ď C exp
`

C T
δε2

˘

p´1
ÿ

`“0

exp
`

λ `T
pδε2

˘

$´2n

` CT
pδε2

p´1
ÿ

k“0

ˆ k
ÿ

`“0

exp
`

λ `T
pδε2

˘

˙

exp
`

C kT
pδε2

˘

essup
ωPΩ

ˇ

ˇhnkT {p ´
1
$h

ppq
kT {p

ˇ

ˇ

2

ď C
exppλT {ppδε2qq´1

exp
`

pC ` λq T
δε2

˘

$´2n

` CT
pδε2

exppλT {ppδε2qq
exppλT {ppδε2qq´1

p´1
ÿ

k“0

exp
`

pC ` λq kT
pδε2

˘

essup
ωPΩ

ˇ

ˇhnkT {p ´
1
$h

ppq
kT {p

ˇ

ˇ

2
.

Now,

T
pδε2

exppλT {ppδε2qq
exppλT {ppδε2qq´1

“ T
pδε2

1
1´expp´λT {ppδε2qq

“ 1
λϕ

`

λT
pδε2

˘

,

where
ϕpxq “ x

1´expp´xq , x ą 0.

Clearly, ϕpxq Ñ 1 as x Ñ 0. Take now λ “ 6C and pε2 large enough so that ϕp λT
pδε2

q “ ϕp6CT
pδε2

q is
less than 2. We have

p´1
ÿ

`“0

exp
`

7C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2

ď 1
3

p´1
ÿ

`“0

exp
`

7C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`T {p ´
1
$h

ppq
`T {p

ˇ

ˇ

2
` C

1´expp´6CT {ppδε2qq
exp

`

7C T
δε2

˘

$´2n.

Here, we notice that (assuming without any loss of generality that C ě 1)

C
1´expp´6CT {ppδε2qq

“
pδε2

6T ϕ
´

6CT
pδε2

¯

ď
pδε2

3T

and then,

p´1
ÿ

`“0

exp
`

7C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
`T {p ´ h

ppq,$
`T {p

ˇ

ˇ

2

ď 1
3

p´1
ÿ

`“0

exp
`

7C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`T {p ´ h
ppq,$
`T {p

ˇ

ˇ

2
` C 1p exp

`

7C T
δε2

˘

$´2n,

for a constant C 1 depending on the same parameters as C. The above inequality is very similar to
(2.2.26). Similar to (2.2.27), we obtain

p´1
ÿ

`“0

exp
`

7C `T
pδε2

˘

essup
ωPΩ

ˇ

ˇhn`1
`T {p ´

1
$h

ppq
`T {p

ˇ

ˇ

2
ď C 1p exp

`

7C T
δε2

˘

$´2n,
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for a possibly new value of C 1. Back to (2.2.63), we obtain (2.2.47). Inequality (2.2.48) is proven
as (2.2.13).

2.2.2.4 Convergence to the MFG

We now study the distance between pmppq,hppqq and pm,hq (see (2.2.11)) as p tends to 8. While
this looks a natural question, the following result, which is given for reader’s interest only, has a
secondary role in our study. The limit p Ñ 8 will be addressed in the next subsection but from
another point of view.

Proposition 2.2.23. With pmppq, rhppqq as in the statement of Theorem 2.2.17 (with the same
extension as in Remark 2.2.19) and with pm,hq as in the statement of Theorem 2.2.4 and (2.2.14),
there exists a constant C, only depending on d, T , }f}1,8, }g}1,8, |Q| and |R|, such that

sup
0ďtďT

E
”

|ht ´ rh
ppq
t |

2
ı

ď exp
´

C
ε2

¯

lnppq
p .

Proof. For an integer p ě 1, we write

dm
ppq
t “ ´η

ppq
τpptq

m
ppq
τpptq

dt` εdW p
t , t P r0, T s.

We notice that

ˇ

ˇm
ppq
t ´m

ppq
τpptq

ˇ

ˇ ď C T
p |m

ppq
τpptq

| ` ε sup
0ďs´τpptqďT {p

|Ws ´Wτpptq| (2.2.64)

ď C T
p sup

0ďsďT
|mppqs | ` ε max

k“0,¨¨¨ ,p´1
sup

kT {pďsďpk`1qT {p
|Ws ´WkT {p|, t P r0, T s.

Moreover,

d
`

m
ppq
t ´mt

˘

“ ´
`

η
ppq
τpptq

m
ppq
τpptq

´ ηtmt

˘

dt` dpW p
t ´Wtq

“ ´
`

η
ppq
τpptq

m
ppq
τpptq

´ η
ppq
t m

ppq
t

˘

dt´
`

η
ppq
t ´ ηt

˘

m
ppq
t dt´ ηt

`

m
ppq
t ´mt

˘

dt

` dpW p
t ´Wtq.

By combining the last two displays with (2.2.40), we deduce from Gronwall’s lemma that

|m
ppq
t ´mt| ď C T

p sup
0ďsďT

|mppqs | ` ε sup
0ďsďT

|Ws ´W
p
s |

` ε max
k“0,¨¨¨ ,p´1

sup
kT {pďsďpk`1qT {p

|Ws ´WkT {p|

ď C T
p sup

0ďsďT
|mppqs | ` Cε max

k“0,¨¨¨ ,p´1
sup

kT {pďsďpk`1qT {p
|Ws ´WkT {p|,

(2.2.65)

for t P r0, T s. By Lemma 2.2.8 (the proof of which also provides a bound for the time-derivative of
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θε) and (2.2.17)–(2.2.18) and by the analogue of (2.2.64) but for m, we also have

|hτpptq ´ ht| “
ˇ

ˇθε
`

τpptq,mτpptq

˘

´ θε
`

t,mt

˘ˇ

ˇ

ď C
ε2

´

T
p ` |mτpptq ´mt|

¯

ď C
ε2

´

T
p `

T
p sup

0ďsďT
|ms| ` ε max

k“0,¨¨¨ ,p´1
sup

kT {pďsďpk`1qT {p
|Ws ´WkT {p|

¯

ď C
ε2

´

T
p `

T
p sup

0ďsďT
|mppqs | ` ε max

k“0,¨¨¨ ,p´1
sup

kT {pďsďpk`1qT {p
|Ws ´WkT {p|

¯

.

(2.2.66)

Next, we rewrite the first term in the right-hand side in (2.2.46) as (which follows from the last
paragraph in Remark 2.2.16)

E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|Fp,W
τpptq

ı

“ E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|FWτpptq
ı

.

Meanwhile,

ˇ

ˇ

ˇ
E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|FWτpptq
ı

´Q:f
`

mt

˘

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|FWτpptq
ı

´Q:f
`

m
ppq
τpptq

˘

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Q:f

`

m
ppq
τpptq

˘

´Q:f
`

mt

˘

ˇ

ˇ

ˇ
.

By the first line in (2.2.64),

ˇ

ˇ

ˇ
E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|FWτpptq
ı

´Q:f
`

m
ppq
τpptq

˘

ˇ

ˇ

ˇ
ď C

´

T
p sup

0ďsďT
|mppqs | ` ε

b

T
p

¯

.

Together with (2.2.65), this gives

ˇ

ˇ

ˇ
E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|FWτpptq
ı

´Q:f
`

mt

˘

ˇ

ˇ

ˇ

ď C

ˆ

T
p sup

0ďsďT
|mppqs | ` ε max

k“0,¨¨¨ ,p´1
sup

kT {pďsďpk`1qT {p
|Ws ´WkT {p| ` ε

b

T
p

˙

.

By the above display and by (2.2.66), we can rewrite the equation for h in (2.2.16) in the form:

dht “
!

´E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|FWτpptq
ı

1ttďpp´1qT {pu

`

´

η
ppq
τpptq`T {p

` T
pQ

:Q1ttďpp´1qT {pu

¯

hτpptq

)

dt` etdt` kthtdt` εktdWt,

for t P r0, T s, where

|et| ď C1tpp´1qT {pătďT u ` Cε
b

T
p (2.2.67)

` C
´

T
p `

T
p sup

0ďsďT
|mppqs | ` ε max

k“0,¨¨¨ ,p´1
sup

kT {pďsďpk`1qT {p
|Ws ´WkT {p|

¯

.
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Next, by (2.2.46),

d
“

ht ´ rh
ppq
t

‰

“

´

η
ppq
τpptq`T {p

` T
pQ

:Q1ttďpp´1qT {pu

¯

`

hτpptq ´
rh
ppq
τpptq

˘

dt` etdt

`
`

ktht ´ k
ppq
t
rh
ppq
t

˘

dt` ε
`

kt ´ k
ppq
t

˘

dWt, t P r0, T s.

Then, proceeding as in (2.2.22) and (2.2.23) (using Lemma 2.2.8),

d|ht ´ rh
ppq
t |

2 ě ´C|ht ´ rh
ppq
t |

2dt´ C|hτpptq ´
rh
ppq
τpptq

|2dt´ 2|ht ´ rh
ppq
t ||et|dt

´ C|ht ´ rh
ppq
t | |kt ´ k

ppq
t | ´ C|kt||ht ´

rh
ppq
t |

2dt` ε2|kt ´ k
ppq
t |

2dt

` 2ε
`

ht ´ rh
ppq
t

˘

¨
“`

kt ´ k
ppq
t

˘

dWt

‰

ě ´ C
ε2
|ht ´ rh

ppq
t |

2dt´ ε2|et|
2dt´ C|hτpptq ´ h

ppq
τpptq

|2dt

` 2ε
`

ht ´ rh
ppq
t

˘

¨
“`

kt ´ k
ppq
t

˘

dWt

‰

.

There is one small subtlety here to handle the last term on the penultimate line because it is indexed
by time τpptq (and not t). The strategy is to take expectation on both sides in the above inequality
and then to integrate in time between τpptq and t for a given t P r0, T q. As for the dynamics of the
expectation, we have

dE
“

|ht ´ rh
ppq
t |

2
‰

ě ´ C
ε2
E
“

|ht ´ rh
ppq
t |

2
‰

dt´ E
“

|et|
2
‰

dt´ CE
“

|hτpptq ´ h
ppq
τpptq

|2
‰

dt. (2.2.68)

By (2.2.67), notice that

E
“

|et|
2
‰

ď C1tpp´1qT {pătďT u `
C
p2
` CE

”

max
k“0,¨¨¨ ,p´1

sup
kT {pďsďpk`1qT {p

|Ws ´WkT {p|
2
ı

. (2.2.69)

We admit for a while that

E
”

max
k“0,¨¨¨ ,p´1

sup
kT {pďsďpk`1qT {p

|Ws ´WkT {p|
2
ı

ď C lnppq
p . (2.2.70)

And then, by integrating (2.2.68) between τpptq and t and by invoking boundedness of the two

processes h and rhppq (see Lemmas 2.2.10 and 2.2.22), we deduce that

E
“

|hτpptq ´
rh
ppq
τpptq

|2
‰

ď CE
“

|ht ´ rh
ppq
t |

2
‰

` C
ε2

ż t

τpptq
E
“

|ht ´ rh
ppq
t |

2
‰

ds` C lnppq
p

ď CE
“

|ht ´ rh
ppq
t |

2
‰

`
C lnppq
ε2p

.

Inserting the above estimate into (2.2.68) and then invoking (2.2.69), we obtain

dE
“

|ht ´ rh
ppq
t |

2
‰

ě ´ C
ε2
E
“

|ht ´ rh
ppq
t |

2
‰

dt´ C
´

1tpp´1qT {pătďT u `
lnppq
ε2p

¯

dt.

By Gronwall’s lemma (and by (2.2.65), which allows us to control the terminal condition), we get

E
“

|ht ´ rh
ppq
t |

2
‰

ď exp
´

C
ε2

¯

C lnppq
ε2p

, t P r0, T s.
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Changing the value of C, we easily complete the proof of the statement.
It remains to check (2.2.70). We have, for any r ą 0,

P
´!

max
k“0,¨¨¨ ,p´1

sup
kT {pďsďpk`1qT {p

|Ws ´WkT {p|
2 ě r

)¯

“ 1´ P
´!

max
k“0,¨¨¨ ,p´1

sup
kT {pďsďpk`1qT {p

|Ws ´WkT {p|
2 ă r

)¯

“ 1´ P
´!

sup
0ďsďT {p

|Ws|
2 ă r

)¯p

ď 1´
`

1´ expp´cprq
˘p
ď p expp´cprq,

for a constant c only depending on T . Replacing r by lnppqr{p, we easily deduce that

E
”

max
k“0,¨¨¨ ,p´1

sup
kT {pďsďpk`1qT {p

|Ws ´WkT {p|
2
ı

ď C lnppq
p ,

which is (2.2.70).

2.2.2.5 Proof of auxiliary results

Proof of Lemma 2.2.13.
First Step. We first notice that, for a given choice of pmn,hnq, the problem (2.2.32) has at

least one minimizer. Indeed, the cost α ÞÑ E$hn{εrRp,$X0p$α ` $ε 9W p,$hn{ε;mn; 0qs is lower
semicontinuous with respect to α when the latter is identified with a collection of random variables
pα0, ¨ ¨ ¨ , αpp´1qT {pq P ˆ

p´1
`“0L

2pΩ,Fp,X0,B,W
`T {p ,P$hn{ε;Rdq, with the product space being equipped

with the weak topology. The identification is made possible by the fact that the controls α
are chosen to be piecewise constant. Moreover, the cost functional blows up when the L2-norm
of α tends to 8. The minimization problem can hence be restricted to a bounded subset of
ˆ
p´1
`“0L

2pΩ,Fp,X0,B,W
`T {p ,P$hn{ε;Rdq, the latter being obviously compact for the weak topology. Ex-

istence of a minimizer easily follows.
We check below that any critical point of the cost functional is a solution of the forward-

backward system (2.2.37)–(2.2.38). Since the latter is uniquely solvable, this indeed provides a
characterization of the minimizer.

Second Step. In order to prove that critical points solve (2.2.37)–(2.2.38), we follow the usual
lines of the Pontryagin principle. Although the result is certainly not new, we feel better to provide
the complete proof, since the formulation we use is tailor-made to our needs. We start to notice
that, under the probability P$hn{ε, the path driven by the control $α and the initial condition
$X0 reads p$Xtq0ďtďT with

dXt “ αtdt`
1
$σdBt ` εdW

p,$hn{ε
t , t P r0, T s.

We then introduce an additive perturbation of the cost and hence replace α “ pαtq0ďtďT by
α`δβ “ pαt`δβtq0ďtďT in the above expansion, with α and β being identified as before as elements
of ˆp´1

`“0L
2pΩ,Fp,X0,B,W

`T {p ,P$hn{ε;Rdq. We then write Xδ “ pXδ
t q0ďtďT in order to emphasize the
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dependence of X upon δ. When δ “ 0, we merely write X instead of X0. The formal derivative
with respect to δ at δ “ 0 reads

d
`

BXt

˘

“ βtdt, t P r0, T s ; BX0 “ 0.

In turn, the derivative of the cost E$hn{εrRp,$X0p$rα` δβs `$ε 9W p,$hn{ε;mn; 0qs, with respect
to δ, is

d

dδ

!

E$h
n{ε
”

Rp,$X0

´

$α`$ε 9W p,$hn{ε;mn; 0
¯ı)

|δ“0

“ $2Eh
n

„

´

RXT `
1
$g

`

mn
T

˘

¯

¨RBXT

`

ż T

0

!´

QXτpptq `
1
$f

`

mn
τpptq

˘

¯

¨QBXτtppq ` ατpptq ¨ βτpptq

)

dt



.

We now solve the BSDE (under P$hn{ε)

dYt “ ´
`

Q:QXτpptq `
1
$Q

:fpmn
τpptq

q
˘

dt` ZBt dBt ` Z
W
t dW

$hn{ε
t , t P r0, T s,

YT “ R:RXT `
1
$R

:g
`

mn
T

˘

.

By discrete integration by parts, we have

E$h
n{ε
“

YT ¨ BXT

‰

“

p´1
ÿ

`“0

E$h
n{ε
”´

Yp``1qT {p ´ Y`T {p

¯

¨ BX`T {p ` Yp``1qT {p ¨

´

BXp``1qT {p ´ BX`T {p

¯ı

“ T
p

p´1
ÿ

`“0

E$h
n{ε
”

´

´

Q:QX`T {p `
1
$Q

:fpmn
`T {pq

¯

¨ BX`T {p ` Yp``1qT {p ¨ β`T {p

ı

.

Rewriting the above sum as an integral, we obtain

d

dδ

!

E$h
n{ε
”

Rp,$X0

´

$α`$ε 9W p,$hn{ε;mn; 0
¯ı)

|δ“0

“ $2E$h
n{ε

„
ż T

0

´

Yτpptq`T {p ` ατpptq

¯

¨ βτpptqdt



,

which means that the optimizer (which we merely write αn`1 without specifying the indices p and
$) satisfies

αn`1
`T {p “ ´E

$hn{ε
”

Y n`1
p``1qT {p |F

p,X0,B,W
`T {p

ı

“ ´Y n`1
`T {p `

T
p

´

Q:QXn`1
`T {p `

1
$Q

:fpmn
`T {pq

¯

, (2.2.71)

for ` P t0, ¨ ¨ ¨ , p´ 1u, where

dXn`1
t “ αn`1

t dt` 1
$σdBt ` εdW

p,$hn{ε
t ,

dY n`1
t “ ´

`

Q:QXn`1
τpptq

` 1
$Q

:fpmn
τpptq

q
˘

dt` Zn`1,B
t dBt ` Z

n`1,W
t dW

$hn{ε
t , t P r0, T s,

Y n`1
T “ R:RXn`1

T ` 1
$R

:gpmn
T q.
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Importantly, we stress that, by construction, Xn`1
τpp¨q

is pFp,X0,B,W q0ďtďT -adapted. We then let, for

the same solution ηppq as in (2.2.34)–(2.2.36),

rhn`1
`T {p “ E$h

n{ε
”

Y n`1
p``1qT {p |F

X0,B,W
`T {p

ı

´ η
ppq
`T {pX

n`1
`T {p

“ Y n`1
`T {p ´

T
p

´

Q:QXn`1
`T {p `

1
$Q

:fpmn
`T {pq

¯

´ η
ppq
`T {pX

n`1
`T {p,

(2.2.72)

for ` P t0, ¨ ¨ ¨ , p´ 1u. We obtain, for ` P t0, ¨ ¨ ¨ , p´ 2u,

rhn`1
p``1qT {p ´

rhn`1
`T {p “ ´

T
p

´

Q:QXn`1
p``1qT {p `

1
$Q

:f
`

mn
p``1qT {p

˘

¯

´ T
p η
ppq
`T {pα

n`1
`T {p

´

´

η
ppq
p``1qT {p ´ η

ppq
`T {p

¯

Xn`1
p``1qT {p `

ż p``1qT {p

`T {p
kn`1,B
s dBs `

ż p``1qT {p

`T {p
kn`1,W
s dWhn

s ,

for some square integrable and FX0,B,W -progressively measurable processes kn`1,B and kn`1,W .

Above, we used the fact that W
p,$hn{ε
τpptq`T {p

´W
p,$hn{ε
τpptq

“ W
$hn{ε
τpptq`T {p

´W
$hn{ε
τpptq

. Now, using (2.2.71)

and conditioning on Fp,X0,B,W
τpptq

in (2.2.72), we obtain

αn`1
`T {p “ ´η

ppq
`T {pX

n`1
`T {p ´ E$h

n{ε
”

rhn`1
`T {p |F

p,X0,B,W
`T {p

ı

, ` P t0, ¨ ¨ ¨ , p´ 1u,

which permits to write

Xn`1
p``1qT {p “ Xn`1

`T {p `
T
p α

n`1
`T {p `

1
$σ

´

Bp``1qT {p ´B`T {p

¯

` ε
´

W
$hn{ε
p``1qT {p ´W

$hn{ε
`T

¯

“

´

Id ´
T
p η
ppq
`T {p

¯

Xn`1
`T {p ´

T
pE

$hn{ε
”

rhn`1
`T {p |F

p,X0,B,W
`T {p

ı

` 1
$σ

´

Bp``1qT {p ´B`T {p

¯

` ε
´

W
$hn{ε
p``1qT {p ´W

$hn{ε
`T

¯

.

(2.2.73)

Modifying the processes kn`1,B and hn`1,W and using in addition the first equation for ηppq in
(2.2.34), we end-up with

rhn`1
p``1qT {p ´

rhn`1
`T {p “ ´

T
p$Q

:fpmn
p``1qT {pq `

T
p

´

η
ppq
`T {p ` ρ

ppq
`T {p

¯

E$h
n{ε
”

rhn`1
`T {p |F

p,X0,B,W
`T {p

ı

`

ż p``1qT {p

`T {p
kn`1,B
s dBs `

ż p``1qT {p

`T {p
kn`1,W
s dWhn

s ,
(2.2.74)

for ` P t0, ¨ ¨ ¨ , p´ 2u, where

ρ
ppq
`T {p “

T
p$Q

:Q`
´

η
ppq
p``1qT {p ´ η

ppq
`T {p

¯

.

By recalling that mn
p``1qT {p is Fp,W

p``1qT {p-measurable and by modifying the process kn`1,W accord-

ingly, we can rewrite (2.2.74) in the form

rhn`1
p``1qT {p ´

rhn`1
`T {p “ ´

T
pE

$hn{ε
”

1
$Q

:fpmn
p``1qT {pq |F

p,W
`T {p

ı

` T
p

´

η
ppq
`T {p ` ρ

ppq
`T {p

¯

E$h
n{ε
”

rhn`1
`T {p|F

p,X0,B,W
`T {p

ı

`

ż p``1qT {p

`T {p
kn`1,B
s dBs `

ż p``1qT {p

`T {p
kn`1,W
s dWhn

s ,

(2.2.75)
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for ` P t0, ¨ ¨ ¨ , p´ 2u. When ` “ p´ 1, we deduce from (2.2.72) and (2.2.73) that

rhn`1
pp´1qT {p

“ R:RE$h
n{ε
“

Xn`1
T |FX0,B,W

pp´1qT {p

‰

` 1
$R

:E$h
n{ε
“

g
`

mn
T

˘

|FX0,B,W
pp´1qT {p

‰

´ η
ppq
pp´1qT {pX

n`1
pp´1qT {p

“

”

R:R
´

Id ´
T

p
η
ppq
pp´1qT {p

¯

´ η
ppq
pp´1qT {p

ı

Xn`1
pp´1qT {p

` 1
$R

:E$h
n{ε
“

g
`

mn
T

˘

|FX0,B,W
pp´1qT {p

‰

´ T
pR

:RE$h
n{ε
”

rhn`1
pp´1qT {p|F

p,X0,B,W
pp´1qT {p

ı

,

which yields, using the boundary condition in (2.2.34) together with the fact that mn
T is FWT -

measurable

rhn`1
pp´1qT {p “

1
$R

:E$h
n{ε
“

g
`

mn
T

˘

|FWpp´1qT {p

‰

´ T
pR

:RE$h
n{ε
”

rhn`1
pp´1qT {p|F

p,X0,B,W
pp´1qT {p

ı

. (2.2.76)

We now recall that, by construction, rhn`1
`T {p is FX0,B,W

`T {p -measurable. Arguing as in Remark 2.2.16,

we can prove inductively (over `) that rhn`1
`T {p is in fact Fp,W

`T {p -measurable. As a consequence, kn`1,B

has to be zero. By combining (2.2.75) and (2.2.76), we hence recover BSDE (2.2.38).

Proof of Lemma 2.2.22. The bound (2.2.58) on hn is a direct consequence of (2.2.42), which yields:

essupωPΩ|
rhn`1
`T {p| ď

`

1` C1
p

˘

”

essupωPΩ|
rhn`1
p``1qT {p| `

C1
p

ı

, ` P t0, ¨ ¨ ¨ , p´ 1u,

for C1 as in the statement. Observing that essupωPΩ|
rhn`1
T | is bounded by C1, we get the result by

means of a straightforward backward induction. The bound on rhppq is proven in a similar way.
In order to prove the second claim in the statement (see (2.2.59)), we invoke [76, Theorem 2.2].

Indeed, we notice that the Phppq{ε-martingale
ˆ

ε

ż t

0
kppqs dWhppq{ε

s

˙

0ďtďT

has a finite BMO norm, see for instance (2.1) with p “ 2 in the book [76] by Kazamaki. The proof
is as follows. Rewriting (2.2.56) in the form

drh
ppq
t “

!

´E
”

Q:f
`

m
ppq
τpptq`T {p

˘

|Fp,W
τpptq

ı

1ttďpp´1qT {pu

`

´

η
ppq
τpptq`T {p

`
T

p
Q:Q1ttďpp´1qT {pu

¯

h
ppq
t

)

dt` εk
ppq
t dW

hppq{ε
t , t P r0, T q,

rh
ppq
T “ R:g

`

m
ppq
T

˘

,

we easily deduce that, for any stopping τ ,
ˇ

ˇ

ˇ

ˇ

Eh
ppq{ε

”

ż T

τ
εkppqs dWhppq{ε

s

ˇ

ˇFWτ
ı

ˇ

ˇ

ˇ

ˇ

ď C1,

for a possibly new value of C1. We conclude by means of [76, Theorem 2.2].
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Proof of Proposition 2.2.18. The equation for prh
ppq
`T {pq`“0,¨¨¨ ,p in (2.2.46) can be rewritten in the

form:

”

Id `
T
p

´

η
ppq
p``1qT {p `

T
pQ

:Q1t`ďp´2u

¯ı

rh
ppq
`T {p

“ E
„

E
`

1
ε
rh
ppq
`T {p

˘

´

rh
ppq
p``1qT {p `

T
pQ

:f
`

m
ppq
p``1qT {p

˘

1t`ďp´2u

¯

ˇ

ˇFW`T {p



,
(2.2.77)

for ` P t0, ¨ ¨ ¨ , p´ 1u, with the shorten notation

E
`

1
ε
rh
ppq
`T {p

˘

:“ exp
´

´1
ε
rh
ppq
`T {p ¨

`

Wp``1qT {p ´W`T {p

˘

´ T
2ε2p

|rh
ppq
`T {p|

2
¯

.

The challenge is thus to find, for each ` P t0, ¨ ¨ ¨ , p´ 1u, a variable rh
ppq
`T {p P L

2pΩ,Fp,W
`T {p ,P;Rdq that

solves (2.2.77), when rh
ppq
p``1qT {p is given in L2pΩ,Fp,W

p``1qT {p,P;Rdq.
In order to do so, we consider the mapping

Φ` : L2pΩ,Fp,W
`T {p ,P;Rdq Q y ÞÑ

”

Id `
T
p

´

η
ppq
p``1qT {p `

T
pQ

:Q1t`ďp´2u

¯ı´1

ˆ E
„

E
`

1
εy
˘

´

rh
ppq
p``1qT {p `

T
pQ

:f
`

m
ppq
p``1qT {p

˘

1t`ďp´2u

¯

ˇ

ˇFp,W
`T {p



and then look for a fixed point to it.

Following the second step of Lemma 2.2.10 (see in particular (2.2.28)), we have, for any two
y, y1 P L2pΩ,Fp,W

`T {p ,P;Rdq, with probability 1 under P,

dTV

´

Py
`

¨ |Fp,W
`T {p

˘

,Py1
`

¨ |Fp,W
`T {p

˘

¯

ď
?

2
´

1
2ε2

T
p |y ´ y

1|2
¯1{2

ď
`

T
pε2

˘1{2
|y ´ y1|,

where Py “ Epyq ¨ P (and similarly for y1). Above, Pyp¨ |Fp,W
`T {p q should be understood as a regular

conditional probability of Py on pΩ,Fp,W
p``1qT {pq given Fp,W

`T {p (and similarly for y1).

Recalling that rh
ppq
p``1qT {p ` rT {psQ

:fpm
ppq
p``1qT {pq1t`ďp´2u is bounded (by a constant independent

of ε, ` and p), we deduce that there exists a constant c (depending on the same parameters as those
quoted in the statement) such that, with probability 1 under P,

|Φ`py
1q ´ Φ`pyq| ď c 1?

pε |y
1 ´ y|.

And then,

E
“

|Φ`py
1q ´ Φ`pyq|

2
‰

ď c2

pε2
E
“

|y1 ´ y|2
‰

,

which proves that Φ` is a contraction in L2pΩ,Fp,W
`T {p ,P;Rdq when

?
pε ą c. By (backward) induction

on ` (following the proof of Lemma 2.2.22), we know that each rh
ppq
`T {p is bounded in L8 by a constant

C (depending on the same parameters as those quoted in the statement).
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Once rh
ppq
`T {p has been found in (2.2.46), it remains to find the process pk

ppq
s q`T {pďsďp``1qT {p.

This can be done by solving the following standard BSDE (with the pair process pY ,Zq “
pYs, Zsq`T {pďsďp``1qT {p as unknown, taking values in Rd ˆ Rdˆd):

dYs “ ´Q
:f
`

m
ppq
p``1qT {p

˘

1t`ďp´2uds`
´

η
ppq
p``1qT {p `

T
pQ

:Q1t`ďp´2u

¯

rh
ppq
`T {pds

` Zsrh
ppq
`T {pds` εZsdWs,

for s P r`T {p, p``1qT {ps, with the boundary condition Yp``1qT {p “
rh
ppq
p``1qT {p (at time p``1qT {p). Ex-

istence and uniqueness of a solution is standard because rh
ppq
`T {p is in L8. Following the last sentence in

Remark 2.2.16 (about measurability of the conditioning of an Fp,W
p``1qT {p-measurable random variable

given FW`T {p), we deduce that Y`T {p coincides with rh
ppq
`T {p and eventually pZsq`T {pďsďp``1qT {p solves the

equation with pk
ppq
s q`T {pďsďp``1qT {p as unknown in (2.2.46). Uniqueness of this choice can be easily

checked by observing (from Itô’s isometry) that, for another solution, say pk
ppq,1
s q`T {pďsďp``1qT {p,

ε2E
ż p``1qT {p

`T {p

ˇ

ˇkppqs ´ kppq,1s

ˇ

ˇ

2
ds ď CE

„ˇ

ˇ

ˇ

ˇ

ż p``1qT {p

`T {p

`

kppqs ´ kppq,1s

˘

ds

ˇ

ˇ

ˇ

ˇ

2

ď CT
p E

„
ż p``1qT {p

`T {p

ˇ

ˇkppqs ´ kppq,1s

ˇ

ˇ

2
ds



,

for a possibly new choice of the constant C. Uniqueness easily follows if CT {p ă ε2.

2.2.3 Exploitation versus exploration

We now address the exploitability, when we play the equilibrium strategy given by the fictitious
play.

2.2.3.1 Approximate Nash equilibrium formed by the solution of the MFG with com-
mon noise

We first prove (which is easier) that the solution of the p-discrete MFG with common noise (as
defined in the statement of Theorem 2.2.17 and in (2.2.52)–(2.2.55)) forms an approximate Nash
equilibrium of the game without common noise. In order to do so, we recall from (2.2.53) that
αppq,‹ is the equilibrium strategy of the p-discrete MFG associated with the cost functional (2.2.52)
and that the optimal trajectory is given by (2.2.54).

We claim:

Proposition 2.2.24. There exists a constant C, only depending on the parameters d, T , }f}1,8,
}g}1,8, |Q|, |R| and Er|X0|

2s, such that, for any integer p ě 1,

inf
α

Eh
ppq{ε

”

Rp,X0
`

α;mppq; 0
˘

ı

ě Eh
ppq{ε

”

Rp,X0
`

αppq,‹;mppq; 0
˘

ı

´ Cε,

the infimum being taken over Fp,X0,B,W “ pσpX0, pBτppsq,Wτppsqqsďtqq0ďtďT -progressively measur-
able and square-integrable process pαtq0ďtďT that is piecewise constant on any interval r`T {p, p``
1qT {pq, for ` P t0, ¨ ¨ ¨ , p´ 1u.
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We start with the following lemma:

Lemma 2.2.25. There exists a constant C, only depending on d, T , }f}1,8, }g}1,8, |Q| and
|R|, such that, for any integer p ě 1 and any Fp,X0,B,W -progressively measurable and square-
integrable process α “ pαtq0ďtďT that is piecewise constant on any interval r`T {p, p`` 1qT {pq, for
` P t0, ¨ ¨ ¨ , p´ 1u,

ˇ

ˇ

ˇ

ˇ

Eh
ppq{ε

”

RX0
`

α;mppq; εW p,hppq{ε
˘

ı

´ Eh
ppq{ε

”

RX0
`

α;mppq; 0
˘

ı

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

1` E
“

|X0|
2
‰1{2

` Eh
ppq{ε

„
ż T

0
|αt|

2dt

1{2˙

ε.

The symbol E instead of Ehppq{ε for the L2 moment of the initial condition is fully justified by
the fact that X0 is F0-measurable.

Proof. For the same initial condition X0 and the same α as in the statement, we let

dX
ppq,ε
t “ αtdt` σdBt ` εdW

p,hppq{ε
t , t P r0, T s.

In particular, we write Xppq,0 “ pX
ppq,0
t q0ďtďT when there is no common noise. Then, we obviously

have
sup

0ďtďT
|Xε

t ´X
0
t | ď Cε sup

0ďtďT
|W

p,hppq{ε
t | ď Cε sup

0ďtďT
|W

hppq{ε
t |.

Meanwhile, we observe that

Eh
ppq{ε

”

sup
0ďtďT

`

|Xε
t |

2 ` |X0
t |

2
˘

ı

ď C

ˆ

1` E
“

|X0|
2
‰

` Eh
ppq{ε

„
ż T

0
|αt|

2dt

˙

.

Recalling (2.2.33), we get the result.

The next lemma says that we can easily restrict ourselves to controls with a finite energy.

Lemma 2.2.26. There exists a constant A, only depending on the parameters d, T , }f}1,8, }g}1,8,
|Q|, |R| and Er|X0|

2s such that, for any ε P p0, 1s, any integer p ě 1 and any Fp,X0,B,W -progressively
measurable and square-integrable process α “ pαtq0ďtďT that is piecewise constant on any interval
r`T {p, p`` 1qT {pq, for ` P t0, ¨ ¨ ¨ , p´ 1u,

Eh
ppq{ε

„
ż T

0
|αt|

2dt



ě A

ñ Eh
ppq{ε

”

Rp,X0
`

α;mppq; 0
˘

ı

ě Eh
ppq{ε

”

Rp,X0
`

0;mppq; εW p,hppq{ε
˘

ı

` 1.

Proof. It suffices to observe that

Eh
ppq{ε

”

Rp,X0
`

α;mppq; 0
˘

ı

ě
1

2
Eh

ppq{ε

„
ż T

0
|αt|

2dt



.

Meanwhile,

Eh
ppq{ε

”

Rp,X0
`

0;mppq; εW p,hppq{ε
˘

ı

ď C.

The proof is easily completed.
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We now complete the

Proof of Proposition 2.2.24. By Lemma 2.2.26, we can reduce ourselves to the set EA of processes
α (as in the statement of Proposition 2.2.24) such that

Eh
ppq{ε

„
ż T

0
|αt|

2dt



ď A.

We then apply Lemma 2.2.25, which says that

sup
αPEA

ˇ

ˇ

ˇ
Eh

ppq{ε
”

Rp,X0
`

α;mppq; εW p,hppq{ε
˘

ı

´ Eh
ppq{ε

”

Rp,X0
`

α;m; 0
˘

ıˇ

ˇ

ˇ
ď Cε.

The proof is easily completed, using (2.2.52)–(2.2.53), from which we get that, for any α P EA,

Eh
ppq{ε

”

Rp,X0
`

αppq,‹;mppq; εW p,hppq{ε
˘

ı

ď Eh
ppq{ε

”

Rp,X0
`

α;mppq; εW p,hppq{ε
˘

ı

ď Eh
ppq{ε

”

Rp,X0
`

α;mppq; 0
˘

ı

` Cε.

This completes the proof.

2.2.3.2 Approximate Nash equilibrium formed by the return of the fictitious play

We now state a similar result, but for the approximation returned by the fictitious play subjected
to the ε-randomization and to the p-discretization. Throughout this paragraph, hn`1 and mn`1

are as in (2.2.43) and (2.2.44). We recall that these two processes depend on p (although it is not
indicated in the notation).

The point is then to consider the strategy αppq,n,˛ defined by

α
ppq,n,˛
t :“ ´η

ppq
τpptq

X
ppq,‹
τpptq

´$hnt , (2.2.78)

where we recall (see (2.2.54))

dX
ppq,‹
t “ ´η

ppq
τpptq

X
ppq,‹
τpptq

dt` σdBt ` εdW
p
t

“ α
ppq,n,˛
t dt` σdBt ` εdW

p,$hn{ε
t , t P r0, T s; X

ppq,n,˛
0 “ X0.

(2.2.79)

Following (2.2.44), we have

E$h
n{ε
”

X
ppq,‹
t |σpW q

ı

“ E
”

X
ppq,‹
t |σpW q

ı

“ m
ppq
t , t P r0, T s. (2.2.80)

In other words, the conditional state under the candidate strategy is the environment itself, which
is a pre-requisite in mean field games. Notice that αppq,n,˛ and hn and do depend on ε.

Theorem 2.2.27. Assume that the law of the initial condition has sub-Gaussian tails, i.e. Ppt|X0| ě

ruq ď a´1 expp´ar2q, for some a ą 0 and for any r ą 0. Then, there exist two positive constants
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c and C, only depending on the parameters a, d, T , }f}1,8, }g}1,8, |Q| and |R|, such that, for any
ε P p0, 1s, any integer p ě 1 satisfying pε2 ě c and any integer n ě 1,

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě E$h
n{ε
”

RX0
`

αppq,n,˛;mppq; 0
˘

ı

´ Cε´ Cp´1 ´ exppCε´2q$´n,
(2.2.81)

the infimum in the left-hand side being taken over FX0,B,W -progressively measurable and square-
integrable processes pαtq0ďtďT .

The difference between the term in the left-hand side and the first term in the right-hand side
of (2.2.81) is called the P$hn{ε-mean exploitability of the policy αppq,n,˛. (Obviously, this difference
is non-positive.)

We feel useful to comment on the meaning and scope of Theorem 2.2.27. We first observe that,
in the functional R that appears in RX0pα;mppq; 0q and RX0pαppq,n,˛;mppq; 0q, on both sides of the
main inequality (2.2.81), there is no time discretization and no common noise (since the third input
is 0). In other words, both the costs to pα,mppqq and pαppq,n,˛,mppqq are computed according to the
time-continuous original model without common noise (even though the control αppq,n,˛ is piece-
wise constant and random as an output of the scheme). In particular, for a given realization of the
common noise W (which does manifest here because α, αppq,n,˛, mppq and hn depend on W ), the
conditional expectations E$hn{εrRX0pα;mppq; 0q |σpW qs and E$hn{εrRX0pαppq,n,˛;mppq; 0q |σpW qs

coincide with the costs Jpαp¨, ¨,W q;mppqpW qq and Jpαppq,n,˛p¨, ¨,W q;mppqpW qq, for J as in (2.1.2)
(with the expectation in the latter being just performed over pX0,Bq). In particular, the nota-
tions αp¨, ¨,W q, αppq,n,˛p¨, ¨,W q and mppqpW q are used here to emphasize that, in the computation
of J , the realization of the common noise is kept frozen in the inputs αp¨, ¨,W q, αppq,n,˛p¨, ¨,W q and
mppqpW q. In turn, the two expectations in (2.2.81) can be rewritten as E$hn{εrJpαp¨, ¨,W q;mppqp¨,W qqs

and E$hn{εrJpαppq,n,˛p¨, ¨,W q;mppqp¨,W qqs, with the expectation E$hn{ε being now taken under the
sole common noise. This can be rephrased quite simply: Theorem 2.2.27 provides a bound for the
P$hn{ε-mean exploitability associated with the original MFG, the mean being here taken with re-
spect to the tilted law of the common noise (i.e., the law of W under P$hn{ε). The bound that is
given for the mean exploitability depends on the three parameters ε, n and p. Typically, we want
to choose ε small and p large, which is well understood: the equilibrium pmppq,αppq,n,˛q is learnt
for the p-discrete MFG with an ε-common noise; if ε is large or p is small, the equilibrium that
is learnt cannot be a ‘good’ approximate equilibrium of the original MFG. This is exactly what
the terms ´Cε and ´C{p say in (2.2.81). As for the last term in (2.2.81), it becomes smaller and
smaller as n increases. This is also consistent with the intuition: the mean exploitability becomes
small when the number n of iterations of the fictitious play is large. For sure, there is a price to
pay: as ε tends 0, the impact of the common noise becomes smaller and n has to be chosen larger
to attain the same accuracy for the mean exploitability.

The reader must also realize that, differently from what is done in (2.2.32), the environment
used in the cost functional is the conditional state of the reference particle when using the strategy
αppq,n,˛. This looks subtle, but this makes a big difference in the analysis. Indeed, if we had to follow
(2.2.32) and thus use mn as environment in the cost functional, then the resulting minimizing path
would NOT be typical of the environment, meaning that its (theoretical) conditional expectation
(under P$hn{ε or P) given the common noise would NOT match mn. Differently, our choice to
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use mppq as environment in the statement of Theorem 2.2.27 allows for the following property: the
dynamics (2.2.79) are typical of the environment, meaning that the environment is exactly given
by the conditional state given the realization of the common noise, which is exactly what (2.2.80)
says. In this framework, Theorem 2.2.27 asserts that, by deviating unilaterally from the rest of the
population, a reference player could hardly increase her cost, at best by a remainder that is small
when p and n are large and ε is fixed.

We end-up this discussion with the following two observations, which may echo possible ques-
tions of the reader. First, one may wonder about the practical implementation of (2.2.79), as it
requires to know the value of ηppq. In fact, as it is clarified in the next section, any efficient method
that would be used in the implementation of the fictitious play should learn, at the same time, the
solution to the Riccati equation (2.2.34), even though the coefficients f and g are not known. This
is somehow a pre-requisite in the implementation of the fictitious play. Second, the fact that the
dynamics (2.2.79) are independent of n (under the historical measure) may be rather intriguing.
Of course, one must recall in this regard that, on a statistical point of view, the dynamics that
truly matter are in fact those computed under the tilted probability measure. Indeed, the two
costs in (2.2.81) are averaged under the tilted measure. Should we represent those costs in terms
of an infinite cloud of particles, then all the particles forming the approximate Nash equilibrium
provided by Theorem 2.2.27 should be subjected to a common noise that would be sampled under
the tilted probability measure. This is exactly the point where the dependence on n manifests.

We start with the following refinement of Theorem 2.2.17:

Lemma 2.2.28. With the same notation as in the statement of Theorem 2.2.17, there exist two
positive constants c and C, only depending on the parameters a, d, T , }f}1,8, }g}1,8, |Q| and |R|,
such that, for any ε P p0, 1s, any integer p ě 1 satisfying pε2 ě c and any integer n ě 1,

Eh
ppq{ε

”

sup
0ďtďT

|α
ppq,n,˛
t ´ α

ppq,‹
t |2

ı

ď $´2n exppCε´2q,

where we recall that αppq,‹ is the equilibrium strategy of the p-discrete MFG with an ε common
noise, as given by (2.2.53).

Proof of Lemma 2.2.28. We recall from (2.2.53) and (2.2.78) that

α
ppq,n,˛
t ´ α

ppq,‹
t “ $hnt ´ h

ppq
t , t P r0, T s,

and the bound in the statement follows from Theorem 2.2.17.

We now turn to

Proof of Theorem 2.2.27.

First Step. Recalling the shape of the optimizer αppq,n`1,˛ in (2.2.78)–(2.2.79) , together with
the fact that hn`1 is bounded, uniformly in n ě 1, see Lemma 2.2.22 (recalling that C1 therein is
independent of n, as mentioned in the statement), we deduce that

ˇ

ˇ

ˇ
E$h

n{ε
”

RX0
`

αppq,n,˛;mppq; 0
˘

ıˇ

ˇ

ˇ
ď C,
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where the constant C is independent n. In the rest of the proof, the value of C may vary from line
to line provided it remains independent of n. Then, we must invoke the fact that the problem

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

is a linear quadratic-problem in a random environment. Similar to the minimization problem
studied in Lemma 2.2.1, its solution is given in feedback form. If we call pαn`1 the minimizer, it
reads

pαnt “ ´
`

ηt pX
n
t `

phnt
˘

, t P r0, T s, (2.2.82)

with
d pXn

t “ ´
`

ηt pX
n
t `

phnt
˘

dt` σdBt, t P r0, T s; pXn
0 “ X0, (2.2.83)

and where

dphnt “
´

´Q:f
`

m
ppq
t

˘

` ηtph
n
t

¯

dt` εpknt dW
$hn{ε
t , t P r0, T s,

phnT “ R:g
`

m
ppq
T

˘

.
(2.2.84)

We start with a series of results whose proof is given in the last step below. We first claim that,
for each k P t0, ¨ ¨ ¨ , pu, phnkT {p is FW p

kT {p-measurable. Moreover,

essupωPΩ sup
0ďtďT

|phnt | ď C. (2.2.85)

As a result, with probability 1 under P$hn{ε (and also under P),

sup
0ďtďT

| pXn
t | ď C

´

1` |X0| ` sup
0ďtďT

|Bt|
¯

,

sup
0ďtďT

|pαnt | ď C
´

1` |X0| ` sup
0ďtďT

|Bt|
¯

,
(2.2.86)

which implies

E$h
n{ε
”

sup
0ďtďT

ˇ

ˇ pXn
t

ˇ

ˇ

2
ı

ď C. (2.2.87)

and
RX0

`

pαn;mppq; 0
˘

ď C
´

1` |X0|
2 ` sup

0ďtďT
|Bt|

2
¯

. (2.2.88)

Second Step. By the first step,

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

“ E$h
n{ε
”

RX0
`

pαn;mppq; 0
˘

ı

.

Here,

E$h
n{ε
”

RX0
`

pαn;mppq; 0
˘

ı

“ 1
2E

$hn{ε

„

|R: pXn
T ` gpm

ppq
T q|

2 `

ż T

0

!

|Q: pXn
t ` fpm

ppq
t q|

2 ` |pαnt |
2
)

dt



,
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and the purpose is to lower bound the above cost by Rp,X0ppαppq,n;mppq; 0q for some well-chosen
Fp,X0,B,W -progressively measurable and piecewise constant control pαppq,n and with Rp,X0 as in
(2.2.33). In order to do so, we let

ph
ppq,n
τpptq

:“ p
T E

$hn{ε

„
ż τpptq`T {p

τpptq

phnsds |Fp,X0,B,W
τpptq



, t P r0, T s, (2.2.89)

which allows us to define by induction:

pX
ppq,n
pk`1qT {p :“ pX

ppq,n
kT {p ´

T
p ηkT {p

pX
ppq,n
kT {p ´

T
p
ph
ppq,n
kT {p ` σ

`

Bpk`1qT {p ´BkT {p
˘

, (2.2.90)

for k P t0, ¨ ¨ ¨ , p´ 1u (with X0 as initial condition). We prove in the fourth step below that

E$h
n{ε
”

sup
k“0,¨¨¨ ,p

ˇ

ˇ pXn
kT {p ´

pX
ppq,n
kT {p

ˇ

ˇ

2
ı

ď C
p , (2.2.91)

and

sup
0ďtďT

E$h
n{ε
”

ˇ

ˇ pXn
t ´

pX
ppq,n
τpptq

ˇ

ˇ

2
ı

ď C
p , (2.2.92)

for a constant C as in the statement of Theorem 2.2.27. By (2.2.40), we then also have

sup
0ďtďT

E$h
n{ε
”

ˇ

ˇηt pX
n
t ´ η

ppq
τpptq

pX
ppq,n
τpptq

ˇ

ˇ

2
ı

ď C
p , (2.2.93)

Together with (2.2.87), we deduce from the latter displays that

1
2E

$hn{ε
”

|Q: pXn
t ` fpm

ppq
t q|

2
ı

ě 1
2E

$hn{ε
”

|Q: pX
ppq,n
τpptq

` f
`

m
ppq
τpptq

˘

|2
ı

´ E$h
n{ε
”´

|Q:
`

pXn
t ´

pX
ppq,n
τpptq

˘

| ` |fpm
ppq
t q ´ fpm

ppq
τpptq

q|

¯

|Q: pX
ppq,n
τpptq

` fpm
ppq
τpptq

q|

ı

ě 1
2E

$hn{ε
”

|Q: pX
ppq,n
τpptq

` fpm
ppq
τpptq

q|2
ı

´ C?
p . (2.2.94)

Proceeding similarly for the other terms in the cost functional, we obtain

E$h
n{ε
”

RX0
`

pαn;mppq; 0
˘

ı

ě 1
2E

$hn{ε

„

|R: pX
ppq,n
T ` gpm

ppq
T q|

2

`

ż T

0

!

|Q: pX
ppq,n
τpptq

` fpm
ppq
τpptq

q|2 ` |η
ppq
τpptq

pX
ppq,n
τpptq

` phnt |
2
)

dt



´ C?
p ,

and by conditioning the last term in the integral by Fp,X0,B,W
τpptq

, we deduce from (2.2.89) and

Jensen’s inequality that

E$h
n{ε
”

RX0
`

pαn;mppq; 0
˘

ı

ě 1
2E

$hn{ε

„

|R: pX
ppq,n
T ` gpm

ppq
T q|

2

`

ż T

0

!

|Q: pX
ppq,n
τpptq

` fpm
ppq
τpptq

q|2 ` |pα
ppq,n
t |2

)

dt



´ C?
p ,

(2.2.95)
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where

pα
ppq,n
t “ ´η

ppq
τpptq

pX
ppq,n
τpptq

´ ph
ppq,n
τpptq

,

for t P r0, T s. Clearly, the above conditioning is licit because the process p pX
ppq,n
kT {pqk“0,¨¨¨ ,p is

pFp,X0,B,W
kT {p qk“0,¨¨¨ ,p-progressively measurable. By the way, we deduce from the latter that the

process ppα
ppq,n
t q0ďtďT is Fp,X0,B,W -progressively measurable, square-integrable and piecewise con-

stant on any interval r`T {p, p` ` 1qT {pq, for ` P t0, ¨ ¨ ¨ , p ´ 1u. In turn, the right-hand side in
(2.2.95) can be rewritten

E$h
n{ε
”

Rp,X0
`

pαppq,n;mppq; 0
˘

ı

´ C?
p .

We deduce that, for any % ą 1,

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě E$h
n{ε
”

Rp,X0
`

pαppq,n;mppq; 0
˘

1tRp,X0 ppαppq,n;mppq;0qď%u

ı

´ C?
p .

Using the upper bound on dTV

`

Phppq{ε,P$hn{ε
˘

(see Remark 2.2.20), we obtain

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě Eh
ppq{ε

”

Rp,X0
`

pαppq,n;mppq; 0
˘

1tRp,X0 ppαppq,n;mppq;0qď%u

ı

´ % exppCε´2q$´n ´ C?
p .

And then, by (2.2.88) and the sub-Gaussian property of the law of X0, we obtain

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě Eh
ppq{ε

”

Rp,X0
`

pαppq,n;mppq; 0
˘

ı

´ C exp
`

´η%
˘

´ % exppCε´2q$´n ´ C?
p ,

(2.2.96)

for some η ą 0. Finally, by Proposition 2.2.24,

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

(2.2.97)

ě Eh
ppq{ε

”

Rp,X0
`

αppq,‹;mppq; 0
˘

ı

´ Cε´ C exp
`

´η%
˘

´ ρ exppCε´2q$´n ´ C?
p .

Third Step. We now revert the computations achieved in the second step. Following (2.2.95)
and then (2.2.94) and the proof of Lemma 2.2.25, the cost on the last line can be lower bounded
as follows:

Eh
ppq{ε

”

Rp,X0
`

αppq,‹;mppq; 0
˘

ı

“ 1
2E
hppq{ε

„

|R:X
ppq,‹,0
T ` gpm

ppq
T q|

2 `

ż T

0

!

|Q:X
ppq,‹,0
τpptq

` fpm
ppq
τpptq

q|2 ` |α
ppq,‹
t |2

)

dt



ě 1
2E
hppq{ε

„

|R:X
ppq,‹
T ` gpm

ppq
T q|

2 `

ż T

0

!

|Q:X
ppq,‹
t ` fpm

ppq
t q|

2 ` |α
ppq,‹
t |2

)

dt



´ C?
p ´ Cε,
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where Xppq,‹,0 on the second line denotes the time-continuous continuous process defined by

X
ppq,‹,0
t “ X

ppq,‹,0
kT {p `

`

t´ kT
p

˘

α
ppq,‹
kT {p ` σ

`

Bt ´BkT {p
˘

, t P rkTp ,
pk`1qT

p s, k P t0, ¨ ¨ ¨ , p´ 1u.

In particular, Xppq,‹,0 is the time-continuous process driven by αppq,‹ when there is no common
noise. Notice that Xppq,‹,0 differs from the process Xppq,‹ that appears on the third line and that
is defined in (2.2.54).

In turn, by Proposition 2.2.28 and for ρ as in (2.2.97),

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě Eh
ppq{ε

”

RX0
`

αppq,‹;mppq; 0
˘

ı

´ Cε´ C exp
`

´η%
˘

´ ρ exppCε´2q$´n ´ C?
p

ě Eh
ppq{ε

”

RX0
`

αppq,n,˛;mppq; 0
˘

ı

´ Cε´ C exp
`

´η%
˘

´ ρ exppCε´2q$´n ´ C?
p

ě Eh
ppq{ε

”

RX0
`

αppq,n,˛;mppq; 0
˘

1tRX0 pαppq,n,˛;mppq;0qď%u

ı

´ Cε´ C exp
`

´η%
˘

´ ρ exppCε´2q$´n ´ C?
p .

And then, as in the derivation of (2.2.96),

inf
α

E$h
n{ε
”

RX0
`

α;mppq; 0
˘

ı

ě E$h
n{ε
”

RX0
`

αppq,n,˛;mppq; 0
˘

1tRX0 pαppq,n,˛;mppq;0qď%u

ı

´ Cε´ C exp
`

´η%
˘

´ ρ exppCε´2q$´n ´ C?
p

ě E$h
n{ε
”

RX0
`

αppq,n,˛;mppq; 0
˘

ı

´ Cε´ C exp
`

´η%
˘

´ ρ exppCε´2q$´n ´ C?
p .

Choosing η% “ ´ lnpεq and modifying the value of C, we complete the proof.

Fourth Step. It now remains to prove some auxiliary results that are used in the previous steps.
We start with the analysis of phn in (2.2.84). We recall from (2.2.43) that, that, for each

t P r0, T s, hnt is pσppW p
k qkďttp{T uT {pqq0ďtďT -measurable. Hence, from (2.2.78) and (2.2.79), each

m
ppq
t is pσppW p

k qkďrtp{T sT {pqq0ďtďT -measurable (notice the use of the ceil part instead of the floor
part in the time index of the filtration). Further, we notice from (2.2.84) and Remark 2.2.7 that

PkT {pph
n
kT {p “ E$h

n{ε

„

PTR
:g
`

m
ppq
T

˘

`

ż T

kT {p
PsQ

:f
`

m
ppq
t

˘

dt |FWkT {p



, k P t0, ¨ ¨ ¨ , pu.

Following the analysis of (2.2.42), the left-hand side is FW p

kT {p-measurable. Noting that each Pt, for

t P r0, T s, is invertible, we deduce that phnkT {p is FW p

kT {p-measurable, which property is used below.

And then, (2.2.85) follows from the above representation of pPkT {pph
n
kT {pqk“0,¨¨¨ ,p (with a similar

representation of Ptph
n
t for any t P r0, T s). The two bounds in (2.2.86) easily follow.

We now turn to the proof of (2.2.91) and (2.2.92). By (2.2.90) , we know that

pX
ppq,n
pk`1qT {p “

pX
ppq,n
kT {p ´

T
p ηkT {p

pX
ppq,n
kT {p ´

T
p
ph
ppq,n
kT {p ` σ

`

Bpk`1qT {p ´BkT {p
˘

, k P t0, ¨ ¨ ¨ , p´ 1u.
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Meanwhile, recalling (2.2.83), we write

pXn
pk`1qT {p “

pXn
kT {p ´

ż pk`1qT {p

kT {p

“

ηs pX
n
s `

phns
‰

ds` σ
`

Bpk`1qT {p ´BkT {p
˘

“ pXn
kT {p ´

ˆ

T
p ηkT {p

pXn
kT {p `

ż pk`1qT {p

kT {p

phnsds

˙

´ T
p
pAnk ` σ

`

Bpk`1qT {p ´BkT {p
˘

,

with

pAnk “
p
T

ż pk`1qT {p

kT {p

“

ηs pX
n
s ´ ηkT {p

pXn
kT {p

‰

ds. (2.2.98)

And then,

pX
ppq,n
pk`1qT {p ´

pXn
pk`1qT {p “

pX
ppq,n
kT {p ´

pXn
kT {p ´

T
p ηkT {p

`

pX
ppq,n
kT {p ´

pXn
kT {p

˘

´

ż pk`1qT {p

kT {p

“

ph
ppq,n
τppsq

´ phns
‰

ds` T
p
pAnk .

By discrete Gronwall’s lemma, there exists a constant C (depending on the same parameters as in
the statement of Theorem 2.2.27) such that

sup
`“0,¨¨¨ ,p

ˇ

ˇ pX
ppq,n
`T {p ´

pXn`1
`T {p

ˇ

ˇ ď C

p´1
ÿ

`“0

ˆˇ

ˇ

ˇ

ˇ

ż p``1qT {p

`T {p

“

ph
ppq,n
τppsq

´ phns
‰

ds

ˇ

ˇ

ˇ

ˇ

` T
p

ˇ

ˇ pAn`
ˇ

ˇ

˙

.

And then,

E$h
n{ε
”

sup
k“0,¨¨¨ ,p

ˇ

ˇ pX
ppq,n
kT {p ´

pXn
kT {p

ˇ

ˇ

2
ı

ď C T
p

p´1
ÿ

`“0

E$h
n{ε

„

p2

T 2

ˇ

ˇ

ˇ

ˇ

ż p``1qT {p

`T {p

“

ph
ppq,n
τppsq

´ phns
‰

ds

ˇ

ˇ

ˇ

ˇ

2

`
ˇ

ˇ pAn`
ˇ

ˇ

2


.

(2.2.99)

Here, we observe from (2.2.89) that

T
p

p´1
ÿ

`“0

p2

T 2E$h
n{ε

„ˇ

ˇ

ˇ

ˇ

ż p``1qT {p

`T {p

“

ph
ppq,n
τppsq

´ phns
‰

ds

ˇ

ˇ

ˇ

ˇ

2

“
p
T

p´1
ÿ

`“0

E$h
n{ε

„ˇ

ˇ

ˇ

ˇ

E$h
n{ε

„
ż p``1qT {p

`T {p

phnsds |FW p

`T {p



´

ż p``1qT {p

`T {p

phnsds

ˇ

ˇ

ˇ

ˇ

2

ď

p´1
ÿ

`“0

ż p``1qT {p

`T {p
E$h

n{ε
”

ˇ

ˇphns ´ E$h
n{ε
“

phns |FW
p

`T {p

‰ˇ

ˇ

2
ı

ds.

(2.2.100)

By (2.2.84), we have, for ` P t0, ¨ ¨ ¨ , p´ 1u and for s P r`T {p, p`` 1qT {ps,

phns “
phn`T {p `

ż s

`T {p

“

´Q:f
`

mppqr
˘

` ηrph
n
r

‰

dr ` ε

ż s

`T {p

pknr dW$hn{ε
r .
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Taking the conditional expectation given FW p

`T {p under P$hn{ε, we obtain

E$h
n{ε
“

phns |FW
p

`T {p

‰

“ phn`T {p ` E$h
n{ε

„
ż s

`T {p

“

´Q:f
`

mppqr
˘

` ηrph
n
r

‰

dr |FW p

`T {p



,

and then

E$h
n{ε
”

ˇ

ˇphns ´ E$h
n{ε
“

phns |FW
p

`T {p

‰ˇ

ˇ

2
ı

ď C
p2
` Cε2E$h

n{ε

ˆ
ż s

`T {p
|pknr |

2dr

˙

.

Finally, by (2.2.100),

T
p

p´1
ÿ

`“0

p2

T 2E$h
n{ε

„ˇ

ˇ

ˇ

ˇ

ż p``1qT {p

`T {p

“

ph
ppq,n
τppsq

´ phns
‰

ds

ˇ

ˇ

ˇ

ˇ

2

ď C
p2
`

p´1
ÿ

`“0

ż p``1qT {p

`T {p
E$h

n{ε

ˆ
ż s

`T {p
ε2|pknr |

2dr

˙

ds

ď C
p2
` C

p E
$hn{ε

ˆ
ż T

0
ε2|pknr |

2dr

˙

.

Taking the square in (2.2.84) and using (2.2.85), we can prove that

E$h
n{ε

ˆ
ż T

0
ε2|pknr |

2dr

˙

ď C.

Back to (2.2.98) and (2.2.99), we get

E$h
n{ε
”

sup
k“0,¨¨¨ ,p

ˇ

ˇ pX
ppq,n
kT {p ´

pXn
kT {p

ˇ

ˇ

2
ı

ď C
p ,

which is (2.2.91).
By (2.2.83), we easily obtain (2.2.92).

2.3 Numerical experiments

This section is devoted to several numerical experiments based on our learning algorithm. We first
provide in Subsection 2.3.1 a theoretical analysis of a benchmark example that we use throughout
the section. In Subsection 2.3.2, we present several variants of the implemented version of the
algorithm. We also explain how to compute a reference solution. Then, we study in Subsection
2.3.3 the numerical behavior of the algorithm when the intensity ε of the common noise is equal to
1. In Subsection 2.3.4, we explain some of the difficulties that arise in the large dimension setting.
Finally, in Subsection 2.3.5, we address the small viscosity regime. In both Subsections 2.3.3 and
2.3.5, we discuss the influence of the parameter $. In particular, we compare the two harmonic
($ “ 1) and geometric ($ ą 1) versions of the algorithm. In this regard, it is worth recalling
Remark 2.2.6: all our results hold for the harmonic version of the fictitious play with the geometric
decay $´n being replaced by 1{n.
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2.3.1 A benchmark example

As a particular instance of the cost functional J in (2.1.2), we focus here on

J
`

α;m
˘

“
1

2
E
„

ˇ

ˇXT ` gpmT q
ˇ

ˇ

2
`

ż T

0
|αt|

2dt



, (2.3.1)

which implicitly means that f “ 0. The examples that are addressed below are in dimension d “ 1,
d “ 2, d “ 12 and d “ 20, with T “ 1 in any cases. For simplicity, we also work with X0 “ 0.

In dimension d “ 1, we choose

gpxq “ cospκxq, x P R, (2.3.2)

for a free positive parameter κ that we tune from smaller to larger values. Obviously, the Lipschitz
constant of g becomes larger with κ. Accordingly, the coupling between the two forward and
backward equations in (2.1.7) becomes stronger as κ gets larger, which makes it more difficult to
solve, especially when ε “ 0. We illustrate this in Lemma 2.3.1 below: it says that, when ε “ 0,
(2.1.7) is uniquely solvable when |κ| ă 2. Even more, the analysis performed in [38] shows that the
more standard (and obviously simpler) Picard scheme (2.1.9)–(2.1.10) would converge when κ is
small, whether there is a common noise or not. Our result is thus especially relevant when κ gets
larger.

In dimension 2, we work with a similar terminal cost g “ pg1, g2q:

g1px1, x2q “ cospκx1q cospκx2q, g2px1, x2q “ sinpκx1q sinpκx2q, x1, x2 P R, (2.3.3)

where, as in dimension 1, κ is a free positive parameter that we tune from smaller to larger values.
As we just said, we also address higher dimensional examples, with d “ 12 or d “ 20. In order

to encode the function g in a systematic manner, we then choose:

gipxq “ cos

ˆ d
ÿ

j“1

Θi,jxj

˙

x P Rd, i “ 1, ¨ ¨ ¨ , d, (2.3.4)

for a fixed square matrix Θ of size dˆ d, whose choice depends on the examples. For instance, we
may take Θi,j “ pi` jq{p2dq. The impact of Θ is then quite similar to the impact of κ in the low
dimensional case as it induces highly oscillatory phenomena, which make the coupling in (2.1.7)
stronger.

Regardless of the choice of g, the Riccati equation (2.2.3) associated with (2.3.1) writes

9ηt ´ η
2
t “ 0, t P r0, 1s ; η1 “ 1, (2.3.5)

the solution of which is given by

ηt “
1

2´ t
, t P r0, 1s. (2.3.6)

Obviously, the solution to (2.2.3) is here identified with a scalar-valued function while, formally, it
takes values in the set of square dˆ d matrices. This follows from the fact that Q and R in (2.2.3)
are just the identity matrix. Numerically, this makes both the code and the analysis slightly easier,
but the resulting restriction on the scope of the results is in fact limited, the real challenge being
to learn hn in (2.2.32).
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2.3.1.1 Solutions without common noise

Even though this is not needed for all the examples we handle below, we feel useful to have a
preliminary discussion about the shape of the solutions when there is no common noise, keeping
in mind that, originally, the true model of interest is the MFG without common noise. Recalling
(2.1.7), we indeed have that, whenever there is no common noise (i.e., ε “ 0), the equilibria are
given as the solutions of the deterministic system

9mt “ ´
`

ηtmt ` ht
˘

, 9ht “ ηtht, t P r0, 1s ; h1 “ gpm1q, (2.3.7)

with m0 “ 0, which prompts us to perform the changes of variable:

rmt “
mt

2´ t
, rht “ p2´ tqht, t P r0, 1s. (2.3.8)

We then have that pmt, htq0ďtď1 solves (2.3.7) if and only if

9
rmt “ ´

1

2´ t
ht “ ´

1

p2´ tq2
rht,

9
rht “ 0, t P r0, 1s ; rh1 “ g

`

rm1

˘

,

from which we deduce the following simpler characterization (recalling that m0 “ 0)

rm1 “ ´g
`

rm1

˘

ż 1

0

dt

p2´ tq2
“ ´

gprm1q

2
. (2.3.9)

There are as many equilibria as solutions to the equation x “ ´gpxq{2. We thus have the following
obvious lemma:

Lemma 2.3.1. When ε “ 0 and regardless of the dimension, the solutions of the MFG associated
with the cost functional (2.3.1) are given by the roots rm1 of the equation 2x` gpxq “ 0 and then by
the changes of variable (2.3.8). In particular, if the Lipschitz constant of the function g is strictly
less than 2, then the MFG has one and only one solution.

2.3.1.2 Potential structure when ε “ 0

Following (2.1.13) and (2.1.14), we may associate a mean field control problem with the MFG (with
ε “ 0) if the function g derives from a potential G. The cost functional is given by

J pαq “ E
„

1

2
|X1|

2 `G
`

EpX1q
˘

`
1

2

ż 1

0
|αt|

2dt



,

where, in the right-hand side,

X1 “

ż 1

0
αtdt.

The analysis of the minimization problem infα J pαq is straightforward. Indeed, by an obvious
convexity argument, we observe that

J pαq ě J
ˆ

E
ż 1

0
αtdt

˙

,
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where, in the right-hand side, it is obviously understood that the argument of J is a constant
control. This shows that the minimizers are deterministic and constant in time. Using the generic
notation β for

ş1
0 αtdt, the problem is thus to minimize

J pβq “ β2 `Gpβq, β P R.

Of course, we observe that any minimizer of J is also a solution of the equation β “ ´gpβq{2: we
recover the fact that any solution to the mean field control problem is an MFG solution. Obviously,
the converse may not be true. Accordingly, the set of solutions to the mean field control problem
may be strictly included in the set of equilibria of the corresponding mean field game. This principle
is illustrated by Figure 2.5 below with g as in (2.3.2): For all the values of κ P t2, 3, ¨ ¨ ¨ , 10u, the
potential J has a unique minimizer; but, for κ P t7, 8, 9, 10u, the derivative of J has several zeros,
hence proving that the MFG has several solutions.

(a) Evolution of J with κ. (b) Evolution of d
dβJ with κ.

Figure 2.5: Minimizers of the mean field control problem and equilibria of the mean field game for
κ P t2, ¨ ¨ ¨ , 10u when d “ 1 and gpxq “ cospκxq: Solutions of the mean field control problem are
the minimizers of J ; Solutions of the mean field game are the roots of d

dβJ .

Interestingly, the recent contribution [37] says that, when the MFG is potential, the equilibria
that are not associated with a minimizer of the potential should be ruled out. Equivalently, only
the MFG solutions that minimize (globally) the potential should be selected. Even more, the guess
(which has been rigorously established in [37, 45] but in different settings that the one addressed
here) is that the minimizers of the potential are precisely those that appear by forcing uniqueness
with a common noise and then by tuning down the intensity of the common noise. We check this
prediction numerically in Subsection 2.3.5, by using our learning method.

2.3.2 Algorithms for a fixed intensity of the common noise

We here explain how to implement the fictitious play in the two benchmark examples (2.3.2) and
(2.3.3) along the lines of Figure 2.3. Throughout the subsection, the intensity of the common noise
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is fixed. For simplicity, the intensity of the common noise is chosen as ε “ 1 and the intensity of
the independent noise is chosen as σ “ 0 or 1. Numerical experiments are discussed in the next
subsection.

2.3.2.1 Numerical reference solution

We first explain how to compute a reference solution by solving numerically the decoupled forward-
backward equation (2.2.11). Observe that there is no contradiction in using a numerical method
for testing our learning algorithm: the numerical method relies on the explicit knowledge of the
coefficient g, whereas the learning algorithm is intended to work on the sole observations of the
costs.

The numerical method we use is tailor-made to our problem. Indeed, we observe that the
solution to the backward equation in (2.2.15) writes

ht “ Eh
„

exp

ˆ

´

ż 1

t
ηsds

˙

g
`

m1

˘
ˇ

ˇFWt


, t P r0, 1s, (2.3.10)

where pmtq0ďtď1 is an Ornstein-Uhlenbeck process (with independent coordinates)

dmt “ ´ηtmtdt` dWt, t P r0, 1s ; m0 “ 0. (2.3.11)

We then employ a Picard scheme for solving the fixed point equation (2.3.10), by iterating

href,n`1
t “ Eh

ref,n

„

exp

ˆ

´

ż 1

t
ηsds

˙

g
`

m1

˘
ˇ

ˇFWt


, t P r0, 1s, (2.3.12)

Numerically, we use a time grid ttk “ k{puk with p uniform steps (for the same p as the one used in
the learning method, which makes the comparison easier) and, following the seminal work of [60],
we employ a regression method in order to approximate the conditional expectation appearing in
the right-hand side. Precisely, we find, at each iteration n of the Picard sequence and at each node
tj ą 0 of the time mesh, an approximation of the conditional expectation in the right-hand side of
(2.3.12) in the form of a (deterministic) function of mtj (the forward component in (2.3.12)), with
the deterministic function being chosen in a given class of functions from Rd into itself. The point
is then to choose a convenient class within which the regression is achieved.

Here, we address two approaches, already reported in the literature. The first one consists in
performing regression on linear combinations of Hermite polynomials. It is inspired from [20], which
offers (in a somewhat more complicated framework) some theoretical bounds on the regression
error. The second approach is taken from the work [53], which paved the way for a systematic
use of neural networks in the computation of numerical solutions to nonlinear PDEs and related
Markovian BSDEs. The point in this second approach is thus to approximate the conditional
expectation in (2.3.12), at time t “ tj , by means of a neural network with mtj as entry.

For the sake of completeness, we provide of a short overview of the shape of the functions within
these two classes.

Using Hermite polynomials. The real-valued components of the regression functions are taken in
the linear span of tHd

` p¨{σtj qu|`|ďD, where σtj is the common standard deviation of the coordinates
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of mtj (which is explicitly computable) and tHd
` p¨qu|`|ďD is the collection of Hermite polynomials

of dimension d (d “ 1, 2 in our case) and of degree less than D, for a given integer D (here ` is a
d-tuple of integers and |`| is the sum of its entries). We recall that, when d “ 1,

H1
` pxq “

p´1q`
?

2``!
ex

2 d

dx`
re´x

2
s, x P R.

When d “ 2,
H2
p`1,`2q

px1, x2q “ H1
`1px1qH

1
`2px2q, x1, x2 P R.

Using a neural network. For a number of layers L, the functions used for the regression have the
form ψL`1˝ϕL˝ψL ¨ ¨ ¨˝ψ2˝ϕ1˝ψ1, with ψ`, for each ` “ 1, ¨ ¨ ¨ , L`1, being an affine function from
Rd`´1 to Rd` , where d0 “ dL`1 “ d. For each ` “ 1, ¨ ¨ ¨ , L, ϕ` is a function from Rd` into itself that
maps px1, ¨ ¨ ¨ , xd`q onto pςpx1q, ¨ ¨ ¨ , ςpxd`qq for some activation function ς (which, for simplicity,
is taken to be the same for any `). The activation function is fixed a priori. Standard examples
for it are the ReLu or Sigmoid functions. We then call neurons of the networks the coefficients
encoding the linear mappings pψ`q`“1,¨¨¨ ,L`1. In clear, the principle is to tune, for each `, matrices
A` P Rd`´1ˆd` and vectors B` P Rd` in the decomposition of ψ` as

ψ`pxq “ A`x`B`, x P Rd`´1 .

Neural networks are notoriously known to (possibly) behave well in higher dimension. Below, we
provide examples with d “ 12 and d “ 20.

Given a finite dimensional class C of regression functions (obtained by Hermite polynomials or
neural networks), we use the following algorithm for the the computation of a reference solution.

Algorithm 1. [Reference solution]

Input: Introduce ∆tkw
pjq with j P t1, ¨ ¨ ¨ , Nu and k P t1, ¨ ¨ ¨ , pu, a collection of N realizations of

independent Gaussian variables N p0, Idq.

Task: For each i, compute pm
pjq
tk
qj“0,¨¨¨ ,p the realizations of the Euler scheme associated with (2.3.11)

and driven by the simulations
ˆ

w
pjq
tk
“

1
?
p

”

∆t1w
pjq ` ¨ ¨ ¨ `∆tkw

pjq
ı

˙

k“1,¨¨¨ ,p

.

Loop: One iteration consists of one Picard iteration. The input at iteration number n is encoded in

the form of an array ph
n,pjq
tk

qj,k with entries in Rd. The following procedure returns the next
input for iteration number n` 1.

(a) Look for ph
n`1,pjq
tk

qj,k in terms of ph
n,pjq
tk

qj,k by solving, for each k “ 0, ¨ ¨ ¨ , p ´ 1, the
minimization problem

min
hPC

1

N

N
ÿ

j“1

En,pjqk

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´

p´1
ÿ

s“k

ηts

˙

gpm
pjq
1 q ´ h

`

m
pjq
tk

˘

ˇ

ˇ

ˇ

ˇ

2

,
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with

En,pjqk “ exp

ˆ

´

p´1
ÿ

s“k

h
n,pjq
ts ¨∆tsw

pjq ´
1

2p

p´1
ÿ

s“k

|h
n,pjq
ts |2

˙

.

(b) To enforce some stability, update each coordinate of ph
n`1,pjq
tk

qj,k by projecting it onto
r´1, 1s.

Remark 2.3.2. For instance, when Hermite polynomials are used, the minimization step in Algo-
rithm 1 can be rewritten as

min
c“pc`q|`|ďD

1

N

N
ÿ

j“1

En,pjqk

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´

p´1
ÿ

s“k

ηts

˙

gpm
pjq
1 q ´

ÿ

|`|ďD

c`H
d
`

`

1
σtk
m
pjq
tk

˘

ˇ

ˇ

ˇ

ˇ

2

,

where each c` in c “ pc`q|`|ďD is in Rd. (When k “ 0, only c0, where |0| “ 0, matters and it is
given by a mere empirical mean.)

Here, the coordinates in (2.3.11) have the same marginal variances because pηtq0ďtďT is scalar-
valued (or equivalent is a d-diagonal matrix). This is no longer true when R and Q in (2.1.2)
are general matrices. In such a case (and more generally when the components are not centered),
the components of pmtq0ďtďT are no longer independent and the ‘normalized’ Hermite polynomials
tHd

` p¨{σtkqu|`|ďD used above should be instead replaced by tHd
` pK´1{2pmtkqp¨´Epmtkqqu|`|ďD, where

Kpmtj q is the covariance matrix of mtk and K1{2pmtkq is any root of it (e.g., as given by the Cholesky
decomposition).

2.3.2.2 Numerical approximation by fictitious play

We now address the implementation of the fictitious play according to the principle stipulated
by Figure 2.3. The black-box therein is discretized in a suitable manner. It is used to solve
numerically the optimization problem (2.2.32), and then to implement the updating rule (2.2.45)
for the environment. Since Lemma 2.2.13 says that the corresponding optimal law has an affine
Markov feedback form, we can perform the optimization in (2.2.32) over closed loop controls that
are affine in the state variable, with the linear coefficient being a scalar only depending on time and
with the intercept possibly depending on the environment. From the practical point of view, this
choice is fully justified if the model is expected to be linear-quadratic in the space/action variables
(as it is in (2.1.1)–(2.1.2), with Q and R being scalars), but this does not require the coefficients Q,
R, f and g to be known explicitly. Mathematically, this writes as follows. We can restrict ourselves
to controls α “ pαtkqk“1,¨¨¨ ,p of the form

αtk “ atk´1
Xtk´1

` Ctk´1
, (2.3.13)

where atk´1
is a scalar and Ctk´1

is a d-dimensional random vector (which is typically adapted to the
increments p∆t`wq`ďk´1, but the measurability properties of which are specified in a finer manner
right below). In comparison with the formula (2.2.37), atk´1

should be understood as a proxy for
´ηtk´1

and Ctk´1
as a proxy for the intercept therein. Part of the numerical difficulty is thus to have

a tractable regression method for capturing the randomness of Ctk´1
. Recalling that the intercept
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h in the solution of the mean field game with common noise is a function of the environment
pmtq0ďtď1, see (2.2.18), a key point in our numerical method is to look for Ctk´1

as a σpmtk´1
q-

measurable random variable, where mtk´1
is the current proxy for the state of the environment

at time tk´1. Numerically, we use a regression method, very much in the spirit of Algorithm 1:
either we use a regression based on a d-dimensional linear combination of Hermite polynomials of
degree less than D, for a fixed value of D, or we use a neural network with L layers and with
a prescribed numbers of neurons. Of course, the reader may wonder about another approach to
(2.3.13), in which we optimize over general (possibly non-affine) controls in Markov feedback form.
In fact, while this seems an attractive way to bypass any a priori knowledge about the shape of
the model, this approach requires an extra step for updating the intercept h at the next iteration
of the fictitious play. Intuitively, the new intercept value can be found by linearly regressing the
controls on the states. At this point, however, we assert that the presence of this additional step
in the numerical procedure can only be fully justified if the linear-quadratic structure of the model
is known. This makes the advantage of not postulating (2.3.13) very limited.

We now make this construction explicit when σ “ ε “ 1 and the postulate (2.3.13) is in force,
noticing that the algorithm must rely on simulations for the independent and common noises.
Throughout, the learning parameter $ is arbitrary: it may be strictly greater than 1 (in which case
we are using the geometric variant of the fictitious play) or equal to 1 (in which case we are using
the harmonic variant). Below, we call M the number of particles (given a realization of the common
noise) and N the number of simulations of the whole system (or equivalently of the common noise),
with i denoting the generic label for a particle and j denoting the generic label for a realization.
We are thus given a collection

∆tkb
pi,jq, ∆tkw

pjq, i P t1, ¨ ¨ ¨ ,Mu, j P t1, ¨ ¨ ¨ , Nu, k P t1, ¨ ¨ ¨ , pu, (2.3.14)

of realizations of independent N p0, Idq Gaussian variables. At iteration number n of the fictitious

play, the current proxy for the environment is thus given in the form of a collection pm
n,pjq
tk

qj,k,
with j running from 1 to N and k running from 0 to p. Similarly, the proxy for the intercept in

the optimal law (2.2.37) is given in the form of a collection ph
n,pjq
tk

qj,k, also with j running from
1 to N and k running from 0 to p ´ 1. The fact that the two proxies are independent of i is
fully consistent with the fact that mn and hn in Remark 2.2.16 are adapted to the realization of
the common noise. Following our introductory discussion, we solve, as an approximation of the
stochastic control problem (2.2.32), the minimization problem:

min

"

1

N

N
ÿ

j“1

ˆ

En,pjq 1

M

M
ÿ

i“1

„

1

2p

p
ÿ

k“1

$2|α
pi,jq
tk
|2 `

1

2

ˇ

ˇ

ˇ
$x

pi,jq
1 ` g

´

m
n,pjq
1

¯ˇ

ˇ

ˇ

2
˙*

, (2.3.15)

where

En,pjq “ exp

˜

´$

c

1

p

p´1
ÿ

k“0

h
n,pjq
tk

¨∆tk`1
wpjq ´

$2

2p

p´1
ÿ

k“0

|h
n,pjq
tk

|2

¸

.

Moreover, in the minimization problem, α
pi,jq
tk

, x
pi,jq
tk

are required to be of the form

x
pi,jq
tk

“ x
pi,jq
tk´1

`
1

p
α
pi,jq
tk

`
1

$
?
p

∆tkb
pi,jq, ` “ 1, ¨ ¨ ¨ , p ; x

pi,jq
0 “ x0,

α
pi,jq
tk

“ atk´1
x
pi,jq
tk´1

` C
pjq
tk´1

`$h
n,pjq
tk´1

`
?
p∆tkw

pjq, k “ 1, ¨ ¨ ¨ , p.

(2.3.16)
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In particular, px
pi,jq
tk
qk“0,¨¨¨ ,p solves the following Euler scheme:

x
pi,jq
tk

“ x
pi,jq
tk´1

`
1

p

´

atk´1
x
pi,jq
tk´1

` C
pjq
tk´1

`$h
n,pjq
tk´1

¯

`
1

$
?
p

∆tkb
pi,jq `

1
?
p

∆tkw
pjq, k “ 1, ¨ ¨ ¨ , p.

Moreover, C
pjq
tk

is required to be of the form

C
pjq
tk
“ htk

`

m
n,pjq
tk

˘

, (2.3.17)

for a function htk within one of the two classes C described in Subsection 2.3.2.1, depending on
whether we use Hermite polynomials or neural networks. As already explained, neural networks
may provide better results in higher dimension (or, to put it differently, Hermite polynomials may
be of an intractable complexity in higher dimension).

As before, we feel useful to exemplify (2.3.17) within each of the two aforementioned case.

Using Hermite polynomials. In this case, we use a slightly modified form of (2.3.17), as we

also center m
n,pjq
tk

by means of the empirical mean in the argument of the Hermite polynomials.
Definition (2.3.17) thus becomes:

C
pjq
tk
“

ÿ

|`|ďD

ctkp`qH
d
`

ˆ

`

Untk
˘´1

´

m
n,pjq
tk

´
1

N

N
ÿ

r“1

m
n,prq
k

¯

˙

, (2.3.18)

where ckp`q P Rd and Untk is the diagonal matrix obtained by taking the roots of the diagonal of the
empirical covariance matrix:

Σn
tk
“

1

N

N
ÿ

j“1

´

m
n,pjq
tk

´
1

N

N
ÿ

r“1

m
n,prq
tk

¯

b

´

m
n,pjq
tk

´
1

N

N
ÿ

r“1

m
n,prq
tk

¯

.

Remark 2.3.3. Following Remark 2.3.2, we can define Untk (in a more general fashion) as the

upper triangular matrix given by the Cholesky decomposition of Σn
tk

in the form Σn
tk
“ pUntkq

:Untk .

The minimization problem in (2.3.15) is thus defined (when using Hermite polynomials) over
a “ patkqk P Rp and c “ pctkp`qqk,` P pRdqpˆL, where L is the number of distinct d-tuples of
(non-negative) integers whose sum is less than D.

Using neural networks. With the same definition as in Subsection 2.3.2.1, (2.3.17) takes the
form

C
pjq
tk
“ ψL`1

tk
˝ ϕLtk ˝ ψ

L
tk
¨ ¨ ¨ ˝ ψ2

tk
˝ ϕ1

tk
˝ ψ1

tk

`

m
n,pjq
tk

˘

. (2.3.19)

Typically, the number of layers L, the dimensions of the various layers and the activation functions
are the same for any time tk, k “ 0, ¨ ¨ ¨ , N´1. In other words, we can write ϕLtk “ ϕL, ϕL´1

tk
“ ϕL´1,

¨ ¨ ¨ . Each ψ`tk , for ` “ 1, ¨ ¨ ¨ , L` 1, writes as

ψ`tkpxq “ A`kx`B
`
k, x P Rd`´1 .

The minimization problem in (2.3.15) is thus defined over a “ patkqk P Rp, A “ pA`kqk,` and
B “ pB`

kqk,`, with A`k P Rd`´1ˆd` and B`
k P Rd` .
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We can summarize the algorithm in the following form. It has the same form whether we work
with the harmonic ($ “ 1) or geometric ($ ą 1) version of the fictitious play.

Algorithm 2. [Learning with two noises, σ “ ε “ 1]

Input: Take as input the realizations (2.3.14), which are the same at any iteration of the algorithm.

Loop: At rank n` 1 of the fictitious play:

(a) Take as input the proxies pmn,j
tk
qj,k and phn,jtk qj,k for (respectively) the environment and

the intercept.

(b) Solve the minimization problem (2.3.15) over a “ patkqk in (2.3.16) and h “ phtkqk in
(2.3.17). Call an`1 “ pan`1

tk
qk and hn`1 “ phn`1

tk
qk the optimal points (returned by any

optimization method).

(c) With an`1 “ pan`1
tk
qk and hn`1 “ phn`1

tk
qk, associate px

n`1,pi,jq
tk

qi,j,k as in (2.3.16) and

pC
n`1,pjq
tk

qk,j as in (2.3.17).

(d) Update the proxies by letting

m
n`1,pjq
tk

“
1

M

M
ÿ

i“1

x
n`1,pi,jq
tk

, m
n`1,pjq
tk

“ πn`1p$q ˆm
n`1,pjq
tk

`
`

1´ πn`1p$q
˘

ˆm
n,pjq
tk

,

h
n`1,pjq
tk

“ ´C
n`1,pjq
tk

,

where πnp$q “

#

1{n if $ “ 1,
$´pn´1qp1´$´1q

1´$´n
if $ ą 1.

Remark 2.3.4. The construction of Algorithm 2 relies on the various noises (2.3.14). In fact, it is
worth mentioning that the algorithm can be reformulated in a similar manner when the increments
p∆tkb

pi,jqqi,j,k defining the idiosyncratic noises are assumed to just depend on pi, kq (equivalently
they are equal for the same value of i but for two different values of j). As before, the resulting
random variables p∆tkb

piqqi“1,¨¨¨ ,M,k“1,¨¨¨ ,p are required to be independent and identically distributed.
Obviously, the smallest family p∆tkb

piqqi“1,¨¨¨ ,M,k“1,¨¨¨ ,p is of a cheapest numerical cost. How-
ever, it creates additional correlations between the particles: for two different indices j and j1, the
corresponding two empirical means over i P t1, ¨ ¨ ¨ , Nu in (2.3.15) are dependent, with the corre-
lations vanishing asymptotically as N tends to 8. Even though we do not provide any bound for
the numerical error in this section, it is worth mentioning that the presence of additional correla-
tions would make the Monte-Carlo error harder to estimate. As reported below, we tested the two
approaches. For the range of parameters we used, we have not seen any major difference.

In some of the numerical examples below, we will use variants of Algorithm 2. We first focus on
the shape of the algorithm when σ “ 0, recalling that our results do not require the presence of an
idiosyncratic noise. Implicitly, we then have a single particle only, i.e. M “ 1. Moreover, ∆tkb

pi,jq

no longer appears in (2.3.16). We then have the following variant of Algorithm 2, which is of lower
complexity:

Algorithm 3. [Learning with common noise only, σ “ 0, ε “ 1]
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Input: Take as input the realizations p∆tkw
pjqqj,k in (2.3.14), which are the same at any iteration of

the algorithm.

Loop: At rank n` 1 of the fictitious play, apply the same loop as in Algorithm 2, but with M “ 1
and with ∆tkb

p1,jq “ 0 in (2.3.16).

We end up our presentation with the case when there is no common noise, i.e. σ “ 1 and ε “ 0.
In that case, our strategy no longer applies. The point is thus to implement the standard version

of the fictitious play. Accordingly, there is no Girsanov density in (2.3.15) and α
pi,jq
tk

in (2.3.16)
merely writes

α
pi,jq
tk

“ atk´1
x
pi,jq
tk´1

` Ctk´1
, k “ 1, ¨ ¨ ¨ , p.

with Ctk being a deterministic d-dimensional vector (which is independent of j). In particular,

there is no need to use the proxy phn,jtk qj,k for the intercept. Equivalently, we can assume that
N “ 1 and htk in (2.3.17) to be a mere constant function (i.e., the function htk is identified with
htkp0q). The rest of the algorithm is similar. It may be written as follows.

Algorithm 4. [Learning with idiosyncratic noise only, σ “ 1, ε “ 0]

Input: Take as input the realizations p∆tkb
pi,1qqk in (2.3.14), which are the same at any iteration of

the algorithm.

Loop: At rank n` 1 of the fictitious play:

(a) Take as input the proxy pmn
tk
qk for the environment and the intercept.

(b) Solve the minimization problem (2.3.15) over a “ patkqk in (2.3.16) and h “ phtkq in
(2.3.17), with En,pjq “ 1 in (2.3.15) and with the last line in (2.3.16) being replaced by

α
pi,1q
tk

“ atk´1
x
pi,1q
tk´1

` htk´1
p0q, k “ 1, ¨ ¨ ¨ , p.

Call an`1 “ pan`1
tk
qk and hn`1p0q “ phn`1

tk
p0qqk the optimal points.

(c) With an`1 “ pan`1
tk
qk and hn`1 “ phn`1

tk
p0qqk, associate px

n`1,pi,1q
tk

qi,k as in (2.3.16) (with
the same prescription as above).

(d) Update the proxy by letting

m
n`1,p1q
tk

“
1

M

M
ÿ

i“1

x
n`1,pi,1q
tk

, m
n`1,p1q
tk

“ πn`1p$qm
n`1,p1q
tk

`
`

1´ πn`1p$q
˘

m
n,p1q
tk

,

with πnp$q being defined as in Algorithm 2.

In all the numerical experiments, we use ADAM optimizer (as implemented in TensorFlow)
in order to solve the optimization step in Algorithms 2, 3 and 4. We recall from the discussion
in Subsection 2.1.7 that the code in TensorFlow relies on some automatic differentiation and thus
makes an explicit use of the linear-quadratic form of the coefficients. In this sense, our numerical
implementation requires part of the model to be known, but, as we already explained in Subsection
2.1.7, this does not really affect the scope of our conclusions: Provided the optimization method
used in Algorithms 2, 3 and 4 is sufficiently accurate, the whole works well and demonstrates the
interest for exploring the state space by means of the common noise.
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2.3.3 Numerical experiments in low dimension

The numerical examples that we provide below are here to illustrate several features of our form
of fictitious play. In all the examples treated in this subsection, we choose d “ 2, f ” 0 and
g as in (2.3.3) with κ “ 10. The intercept hn in (2.2.32) is approximated by means of Hermite
polynomials, as explained in Subsection 2.3.2.1. Similar conclusions to the ones that are reported
here could be drawn if the regression of hn`1 onto mn (see (2.3.17)) was done by using a neural
network. For brevity, we feel however more appropriate to restrict the exposition of the numerical
results obtained with neural networks to the higher dimensional setting only, which is done in the
next section.

It is worth mentioning that, whatever the method that is used, our aim is to demonstrate,
numerically, the positive impact of the common noise, but not to compare the numerical rates of
convergence obtained in the numerical experiments with the bounds obtained in the theoretical
analysis. The reason is that the algorithms we present below include additional features (like
numerical optimization methods and regressions) that are not addressed in the theoretical analysis.
This makes difficult any precise comparison. Also, it is fair to say that the time of execution of the
full algorithm becomes quite long (several hours for the longest experiments), even for low values
of n and p (n less than 50 and p less than 100).

As for the parameter $, we address its influence in several manners. To do so, we implement
both the harmonic and geometric variants of the fictitious play. Even in the harmonic regime (i.e.,
$ “ 1), we can easily see the impact of the common noise, especially when the latter has intensity 1
(which is our choice in this subsection). Obviously, this is very good. A related observation is that,
although our theoretical guarantees (given by the analogues of Theorems 2.2.4 and 2.2.17 in the
harmonic regime, see Remark 2.2.6) just provide a harmonic decay when $ “ 1, the observed rate
of convergence may be better. In particular, the difference with the geometric version is rather tiny
on the examples that are tested in this subsection, for a common noise with intensity 1 (as we will
see in the forthcoming Subsection 2.3.5, the picture is different when the viscosity is small). There
are even situations where, for numerical reasons, the harmonic variant has better results than the
geometric one. For sure, this could be rather surprising for the reader (and even disappointing in
some sense), but it is clear that our (theoretical) estimates rely on rather generic properties of the
dynamics in hand. Obviously, there might be more subtle features of the equations that should be
taken into account in order to explain the behavior of the algorithm as the number n of iterations
of the fictitious play increases. Having a sharp understanding of the algorithm when n is large and,
at the same time, ε is small is even more difficult. As we already explained, the constant exppCε´2q

that appears in all of our estimates is certainly non-optimal in many situations.

2.3.3.1 Evolution of the learnt cost with one type of noise only

We first test the influence of each of the two types of noises onto the behavior of the algorithm.
We thus compare the evolution of the cost learnt by the harmonic and geometric fictitious plays in
three scenarios (Figure 2.6): In the first scenario, there is an independent noise, but no common
noise (Algorithm 4); in the second scenario, there is a common noise but no independent noise and
$ “ 1 (Algorithm 3, harmonic fictitious play); in the third scenario, there is a common noise but
no independent noise and $ “ 1.1 (Algorithm 3, geometric fictitious play).
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(a) With independent but no
common noise

(b) With common but no inde-
pendent noise, $ “ 1

(c) With common but no inde-
pendent noise, $ “ 1.1

Figure 2.6: Harmonic and geometric fictitious plays. Comparison of the learnt cost depending on
the type of noise and the value of $. In x-axis: number of iterations; In y-axis; learnt cost.

The experiments are computed with: n “ 20 learning iterations, p “ 30 time steps, M “ 4ˆ105,
N “ 1, σ “ 1 and ε “ 0 in case (A) and n “ p “ 20, M “ 1, N “ 4ˆ 105, σ “ 0, ε “ 1 and D “ 4
in cases (B) and (C). In ADAM method, the learning rate is 0.01, with 15 epochs and one batch.

In plots (B) and (C), the orange line is the theoretical equilibrium cost as computed by the
BSDE method explained in Subsection 2.3.2.1. In plot (A), there is no computed reference cost.
As we already explained, there might not be a unique equilibrium and the notion of reference cost
no longer makes sense. Notice by the way that the equilibrium cost in cases (B) and (C) is not an
equilibrium cost in case (A) because the problems are different (as being set over different forms
of dynamics). Anyway, the conclusion is clear: the learnt cost exhibits an oscillatory behavior in
case (A), whereas it does not in cases (B) and (C). This is an evidence of the numerical impact
of the common noise onto the behavior of the fictitious play. Of course, it would be desirable to
have more theoretical guarantees on the possible divergence of the fictitious play in absence of
the common noise. Unfortunately, we are not aware of such results. In our numerical experiments
(including some that are not reported here), we have been able to reproduce the oscillatory behavior
characterizing the pane (A) in Figure 2.6 in other two-dimensional examples without common noise,
meaning that, for a given batch (even of large size), the learnt (or training) cost may feature some
non-trivial oscillations. However, we have not been able to reproduce10 a similar phenomenon
in dimension 1 (in which case the fictitious play is known to converge), even when the MFG is
known to have multiple equilibria. As for panes (B) and (C), it is worth observing that the results
are consistent. As announced, the convergence is fast, even in case (B), for which our theoretical
guarantees just provide a harmonically decaying bound for the error.

10To be complete on this point, the experiments that we did are for a class of coefficients of the same nature as in
the 2d example, in particular with a terminal boundary condition exhibiting oscillations of the same frequency, see
(2.3.2) with κ between 1 and 10.
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2.3.3.2 Error in the optimal path/intercept with common noise and no independent
noise

We now compute the error achieved by the learning algorithm. Using the same notation as in the
statement of Theorem 2.2.17, we focus on the following L2 error:

„

E
ż 1

0

´

|mn
t ´m

ppq
t |

2 ` |$hnt ´ h
ppq
t |

2
¯

dt

1{2

.

Focusing here on the time-averaged error is obviously more advantageous from the numerical point
of view, but it is sufficient to do so in order to demonstrate the efficiency of the algorithm and
also to identify some of its limitations. Notice also that the expectation in the above error is
taken under the non-tilted expectation. This looks a reasonable choice because ε is here equal to
1. In particular, the Girsanov density Ephq and its inverse have bounded moments of any order
(independently of n), as a consequence of which integrating under either measure should not make
a big difference.

Numerically, the error is approximated by

„

1

Np

N
ÿ

j“1

p´1
ÿ

k“0

´

|m
n,pjq
tk

´m
‹,pjq
tk

|2 ` |h
n,pjq
tk

´$h
‹,pjq
tk

|2
¯

1{2

, (2.3.20)

where pm
n,pjq
tk

qj,k and ph
n,pjq
tk

qj,k are the returns of Algorithm 2 or 3 (depending on the value of

σ) and pm
‹,pjq
tk

qj,k and ph
‹,pjq
tk

qj,k are the reference solutions computed with Algorithm 1 (with a
sufficiently high number of Picard iterations: 10 in practice).

We perform the first experiment by running Algorithm 3 (no idiosyncratic noise), but assuming
that the solution pηtq0ďtď1 to the Riccati equation (2.3.5) is known, see (2.3.6): In Algorithm 3,
atk is replaced by ηtk . This amounts to say that the coefficients Q and R in (2.1.2) are explicitly
known. The evolution of the error with the number of iterations is plotted in Figure 2.7, Plot (A)
when $ “ 1 (harmonic fictitious play) and Plot (C) when $ “ 1.1 (geometric fictitious play).
We perform the second experiment by running Algorithm 3, but without assuming any further
knowledge of the solution of the Riccati equation (2.3.5). The evolution of the error with the
number of iterations is plotted in Figure 2.7, Plot (B) when $ “ 1 and Plot (D) when $ “ 1.1.

The experiments are computed with: n “ 20 learning iterations, p “ 30 time steps, M “ 1,
N “ 4 ˆ 105, σ “ 0, ε “ 1 and D “ 4. On Plots (A) and (C), the error is less than 0.01 after
iteration 3.

The main conclusion one may draw from the comparison of these plots is quite clear: when
randomness only comes from the common noise, it is very difficult for the optimization method

to distinguish between atk´1
x
p1,jq
tk´1

and C
pjq
tk´1

in (2.3.16). In this matter, there is also a difference
between Plots (B) and (D), from which we deduce that the harmonic fictitious play behaves better
than the geometric one in the absence of independent noise. Comparison of plots (A) and (C), which
are very close, suggests that the difference between (B) and (D) mostly comes from the accuracy of
the estimate patk´1

qk“1,¨¨¨ ,p of the solution to the Riccati equation (2.2.34). Our guess is that the
presence of an additional biais in (2.3.16) (due to the fact that $ ą 1) makes the estimation more

difficult. On the contrary, when $ “ 1, there is no bias and the term C
pjq
tk´1

`$h
n,pjq
tk´1

in (2.3.16) is
very close to 0. We think that this should help for the identification of patk´1

qk“1,¨¨¨ ,p.
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(a) Riccati known, $ “ 1 (b) Riccati unknown, $ “ 1

(c) Riccati known, $ “ 1.1 (d) Riccati unknown, $ “ 1.1

Figure 2.7: Comparison of the error returned by Algorithm 3 (common noise only), depending on
whether the solution to the Riccati equation is known or not. On the top line, $ “ 1. On the
bottom line, $ “ 1.1.

2.3.3.3 Error in the optimal path/intercept with both noises

We now proceed with the same analysis but putting the two noises. As the total number of
simulated paths is N ˆM , this may be however rather costly. We proceed below by freezing the
quantity N ˆM .

(a) M “ 4 ˆ 104, N “ 1, time
(cpu): 4867

(b) M “ 2 ˆ 104, N “ 20, time
(cpu): 4096

(c) M “ 104, N “ 40, time (cpu):
8409

Figure 2.8: Comparison of the error returned by Algorithm 2, depending on the number of parti-
cles/realizations, $ “ 1.

The experiments are run with the harmonic version of the fictitious play (i.e., $ “ 1), with:
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n “ 10 learning iterations, p “ 30 time steps, σ “ 1 and ε “ 1; 4000 units in cpu time is around
1h. The conclusion is that idiosyncratic noises demonstrate to be useful from the numerical point
of view, even though the results stated in Section 2.2 remain the same whatever the value of σ.
A careful inspection of the numerical results shows that, in fact, idiosyncratic noises provide a
better fit of the solution to the Riccati equation, which is fully consistent with the conclusion of
the previous paragraph. In turn, we guess that a model-based method, in which Q and R would be
learnt first, and then the solution to the Riccati equation would be learnt separately, would make
sense in this specific setting.

When $ “ 1.1, we observe a phenomenon similar to the one reported in Figure 2.7: the estimate
is less accurate with the geometric version of the fictitious play. Again, we believe that this is due
to the learning of the solution to the Riccati equation. In presence of a bias, the letter seems
more difficult to catch. To wit, we have plotted in Figure 2.9, Plot (A), the error for the geometric
version of the fictitious play (here, $ “ 1.1) and for the same parameter as in Plot (C) in Figure 2.8:
n “ 10, p “ 30, σ “ 1 , ε “ 1, M “ 104 and N “ 40. In order to stress that the drawback observed
on Plot (A) does not contradict our theoretical results, we have plotted in the same Figure, Plot
(B), the results when the solution to the Riccati is known (which is a bit different from what is
done in Figure 2.7 because there is here an additional idiosyncratic noise which requires additional
Monte-Carlo approximations). It is clear that, in the latter case, the result is better. Possibly,
this opens the door for refined procedures in which one first estimates the solution to the Riccati
equation.

(a) M “ 104, N “ 40, Riccati unknown (b) M “ 104, N “ 40, Riccati known

Figure 2.9: Algorithm 2, $ “ 1.1, depending on whether Riccati is known or not.

2.3.3.4 Validation

The reader could worry about a possible overfitting in our numerical experiments. Actually, in
order to validate our results, we can learn the coefficients an and cn in Algorithm 2 for a first
series of data in (2.3.14). In brief, this first series of data is used to learn the equilibrium feedback.
Then, we can use a second series of data (say, of the same size) in (2.3.14) in order to compute the
error. In clear, given this second series of data, we can implement Algorithm 1 and then compute
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the resulting error (2.3.20) when pm
n,pjq
tk

qj,k and ph
n,pjq
tk

qj,k therein are obtained from the formulas
(2.3.16) and (2.3.18) by using the coefficients an and cn returned by the first series of data and then
by implementing the Euler scheme with respect to the second series of data. The resulting plots are
very similar to those represented in Figure 2.8 (e.g., when $ “ 1). For this reason, we feel useless
to insert them here. Intuitively, what happens is that there are sufficiently many realizations of
the common noise in our experiments to guarantee, in the regression (2.3.15), a convenient form of
averaging with respect to all these realizations.

2.3.4 Experiments in higher dimension

The challenge in higher dimension is twofold. The very main one is to provide an efficient regression
of hn`1 ontomn (recall (2.3.17)). We already reported this difficulty and, as we already announced,
we handle it here by using neural networks. The second issue is directly related with the computa-
tional cost. Intuitively, all the tensors that enter the code include an axis corresponding to all the
possible coordinates of the noises and the states. When the dimension increases, the size of those
tensors increase accordingly, which impacts the computational effort. In all the examples below,
σ “ ε “ 1. For simplicity, we just present the result in the case $ “ 1 because the difficulties that
we report below are the same in the case $ ą 1.

2.3.4.1 Results with Algorithm 2.

In the examples below, we reduce part of the complexity by labelling the increments of the indepen-
dent noises ∆tkb

pi,jq in (2.3.14) by the sole i, which allows us to save memory. We refer to Remark
2.3.4 for more details about this. We also limit ourselves to batches carrying N “ 103 realizations
of the common noise and M “ 102 realizations of the independent noise. These numbers are a
bit less than those used in the lower dimensional setting (compare for instance with Figure 2.8).
However, differently from what we did in the previous subsection, we now use several batches. In
the experiments below, the batches are indexed by an index, called batch. For a given value i of
this index batch, we simulate one stack, say Gcomris, of N “ 103 realizations of the common noise
and then a number mind of sub-batches (or sub-stacks) containing, each, M “ 102 realizations of
the independent noise. Those sub-batches are denoted Gindri, js, for j “ 1, ¨ ¨ ¨ ,mind. The batches
contain independent realizations. In the experiments below, mind “ 10.

When we start experiments with a new value i of the index batch, we perform several runs
of ADAM. All these runs use the same batch Gcomris of common noises. We then repeat several
times the following episode: we do a first run with the first batch Gindri, 1s of independent noises,
and then a second one with the second batch Gindri, 2s, and so on and so forth up until the batch
Gindri,minds of index mind. We repeat those episodes several times: 4 times in the experiments ran
below. Our choice to proceed in such a way is dictated by the fact that the number N is pretty low,
hence the desire to have more batches for the independent noises. As for the choice N " M , it is
dictated by our wish to have the lowest possible fluctuations with respect to the common noise, as
the main object that we want to learn here is h in (2.3.17), the input of which is measurable with
respect to the common noise only. In our experiments, the index batch is running over t1, ¨ ¨ ¨ , 20u.
We have chosen to pass once on the realizations of the common noise.

For some choices of the matrix Θ in (2.3.4), our results are bad. In order to appreciate this
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observation, it is worth recalling that our strategy relies on a change of measure based on the
Girsanov density Ephnq, see (2.1.15). In our code, the training cost is precisely estimated under this
new probability measure, as made clear in (2.3.15). Drawing a parallel with preferential sampling in
Monte Carlo methods, one may then guess that the variance resulting from the empirical estimate
of the loss in (2.3.15) may dramatically deteriorate as the dimension increases. Indeed, if h in
(2.1.15) has all its coordinates constant equal to 1, then

E
”

Ephq2
ı

“ exp
´

ż T

0
|hs|

2ds
¯

“ exppdq.

Even more, the fact that the control appearing in (2.3.15) contains a finite difference of the common
noise (see (2.3.16) ) says that the typical size of the variance may be of order p2 exppdq.

In order to validate numerically this intuition, we consider the case when the matrix pΘi,jq1ďi,jďd

in (2.3.4) is given by Θi,2ipmodqd “ ´10, Θi,3ipmodqd “ 10 and Θi,j “ 0 otherwise, where 2ipmodqd
is the rest of the Euclidean division of 2i by d (and similarly for 3ipmodqd). We then represent in
Figure 2.10 the evolution of the variance of the term

Ephq
ż T

0
| 9W p,h

t |2dt, (2.3.21)

when h therein is computed numerically by the FBSDE solver described in Subsection 2.3.2.1. We
expect this term to give the worst contribution to the global variance. As shown by the plot in
Figure 2.10, the log variance becomes higher at multiples of 6 (because of the choice Θ) and the
plot even suggests that the variance could blow up exponentially fast along the subsequence 6, 12,
18, 24...

Figure 2.10: Evolution of the log variance of the loss with the dimension for Θi,2ipmodqd “ ´10,
Θi,3ipmodqd “ 10 in (2.3.4). Dimension is in x-axis. Log variance is in y-axis.

We thus chose to run Algorithm 2 with d “ 12 with aforementioned values of M and N and
with p “ 20 time steps. The results are reported in Figure 2.11 below. We clearly observe that
the learnt cost blows-up. Subsequently, the training error does not vanish, with the training error
being here computed as in (2.3.20) but solely for the h part, that is

„

1

Np

N
ÿ

j“1

p´1
ÿ

k“0

|h
pjq
tk
´ h

‹,pjq
tk

|2
1{2

. (2.3.22)
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(a) Evolution of the costs (b) Evolution of the errors

Figure 2.11: Results in dimension d “ 12 for Θi,2ipmodqd “ ´10, Θi,3ipmodqd “ 10 in (2.3.4).
Harmonic variant of the fictitious play ($ “ 1).

In the plot, we also include a prediction cost and a prediction error, which are computed on a
batch different from the batches used for training (but of the same size). Given a new batch for the
common and independent noises, we can indeed use the neural network returned by the training
phase to compute, for this new batch, a prediction of the cost (together with a prediction of h), but
under the historical probability measure P (in order to avoid any variance issues). The prediction
is thus constructed as follows. Given the returns patkqk“0,¨¨¨ ,p´1 and phtkqk“0,¨¨¨ ,p´1 of the neural
network for the affine feedback, see (2.3.13) and (2.3.17), we implement the following Euler scheme:

x
pi,jq
tk

“ x
pi,jq
tk´1

`
1

p
α
pi,jq
tk

`
1
?
p

∆tkb
piq `

1
?
p

∆tkw
pjq, ` “ 1, ¨ ¨ ¨ , p ; x

pi,jq
0 “ x0,

α
pi,jq
tk

“ atk´1
x
pi,jq
tk´1

` htk´1
pm

pjq
tk´1

q, k “ 1, ¨ ¨ ¨ , p,

with m
pjq
tk´1

“M´1
řM
i“1 x

pi,jq
tk´1

.
The predicted cost is then

1

N

N
ÿ

j“1

1

M

M
ÿ

i“1

„

1

2p

p
ÿ

k“1

|α
pi,jq
tk
|2 `

1

2

ˇ

ˇ

ˇ
x
pi,jq
1 ` g

´

m
n,pjq
1

¯
ˇ

ˇ

ˇ

2


,

and the predicted error is (2.3.22).
While their role is rather limited at this stage, the two prediction cost and error play a more

important role in the next paragraph.

2.3.4.2 Variance reduction.

The issue reported in the previous paragraph calls for the implementation of a variance reduction
method. The method that is addressed in this new paragraph aims at reducing the variance
associated with the dominant term (2.3.21). The key point is to return back to (2.2.30), to write
the normalization factor ´d ε2p{2 as the expectation

εEhn
ż T

0
αt 9W p,hn

t dt´
ε2

2
Ehn

ż T

0

ˇ

ˇ 9W p,hn

t

ˇ

ˇ

2
dt, (2.3.23)
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which is indeed equal to ´d ε2p{2, and then to approximate the above two expectations by two
empirical means. Intuitively (and this is the computation achieved in (2.2.30)), the resulting
estimator of the cost coincides with the estimator that would be computed if we had to solve (the
reader may compare the following cost with (2.2.32), with $ “ 1 for simplicty)

argminαEh
n“Rp

`

α;mn; εW p
˘‰

, (2.3.24)

which is implicitly set over the dynamics

dXt “ αtdt` σdBt ` εdW
p,hn

t , t P r0, T s. (2.3.25)

Here, we have two formulations depending on the line that is used in (2.2.32): piq We have the
formulation (2.3.24)–(2.3.25), which is based on the second line in (2.2.32); piiq And we have the
formulation based on the top line in (2.2.32) when the corrector ´d ε2p{2 therein is replaced by
the empirical mean deriving from (2.3.23). Interestingly, the two formulations do not have the
same practical interpretation. Indeed, the formulation piq does not fit the principle of Figure 2.2
in introduction since the common randomization therein does not impact the control directly, but
impacts the dynamics. Differently, the formulation piiq based on the empirical corrector associated
with (2.3.23) preserves the principle of Figure 2.2 since the corrector can be computed separately
from the control. Of course, it has a practical price: implicitly, computing the correction empirically
makes sense only if the dependence of the running cost upon the control is known. In other words,
part of the model must be known.

Figure 2.12 below provides an estimate of the variance of the (random) cost in (2.3.24) when
hn is replaced by the numerical solution h of the FBSDE solver described in Subsection 2.3.2.1
and when Θ is computed as in Figure 2.10. As the reader can notice, the growth is slower (than in
Figure 2.10).

Figure 2.12: Evolution of the log variance of the corrected optimal cost (2.3.24). with the dimension
for Θi,2ipmodqd “ ´10, Θi,3ipmodqd “ 10 in (2.3.4). Dimension is in x-axis. Log variance is in y-axis.
Harmonic variant of the fictitious play ($ “ 1).
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The estimator for (2.3.23) writes as in (2.3.15), namely

ε

N

N
ÿ

j“1

ˆ

En,pjq 1

M

M
ÿ

i“1

„

1

2p

p
ÿ

k“1

α
pi,jq
tk

¨

´

h
n,pjq
tk

` p∆tk`1
wpjq

¯

˙

´
ε2

2N

N
ÿ

j“1

ˆ

En,pjq 1

2p

p
ÿ

k“1

ˇ

ˇ

ˇ
h
n,pjq
tk

` p∆tk`1
wpjq

ˇ

ˇ

ˇ

2
˙

.

The results are represented in Figure 2.13 for the same choice of d and Θ as in Figure 2.11.
Obviously, they are much more convincing than in Figure 2.7. On the left pane (A), the reference
cost is computed by solving first the FBSDE described in Subsection 2.3.2.1 on a series of batches
and then by averaging the corresponding costs over the batches. In contrast, the empirical cost is
computed by solving the FBSDE and the associated cost on the batch on which the training loss
is computed. The fact that the reference and empirical costs do not coincide shows that there is,
in between, some additional Monte-Carlo error that is distinct from the learning procedure.

(a) Evolution of the losses (b) Evolution of the errors

Figure 2.13: Results in dimension d “ 12 for Θi,2ipmodqd “ ´10, Θi,3ipmodqd “ 10 in (2.3.4).
Harmonic variant of the fictitious play ($ “ 1).

The prediction cost and error are computed on a series of 10 batches (of the same size as before).
The cost and the error that are plotted are obtained by averaging out on the batches. We observe
a small bias between the training and prediction errors that would deserve further experiments.
Anyway the main message is clear: the plots after variance reduction are much better than before
variance reduction.

We now provide another example, with a new choice of Θ, that exhibits a less trivial evolution
of the prediction error. Namely, we choose Θ “ pθi,j “ pi ` jq{p2dqqi,j . The results in Figure 2.14
may be summarized as follows: the relative error on the cost is less than 0.03 and the prediction
error is less than 0.2. As for the latter, it must be recalled that the prediction error writes as a
d-dimensional norm, see (2.3.22). In particular, the mean square error per coordinate is less than
0.22{d. Here, d “ 12 and the mean error per coordinate is less than 0.06. We address the same
example in Figure 2.15 in dimension d “ 20. The absolute error on the cost is good, except at
iterations 11 and 13, but even for these two the relative error is less than 0.05. The prediction error
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is between 0.22 and 0.25 after iteration 6, except at iterations 11 and 13, where the prediction error
reaches 0.32. In any case, the mean error per coordinate is less than 0.07 after iteration 6.

(a) Evolution of the losses (b) Evolution of the errors

Figure 2.14: Results in dimension d “ 12 for Θ “ pθi,j “ pi ` jq{p2dqqi,j in (2.3.4). The reference
loss is around 12.17 and the prediction loss at iteration 14 is 11.84. The prediction error at iteration
14 is around 0.19. Harmonic variant of the fictitious play ($ “ 1).

(a) Evolution of the losses (b) Evolution of the errors

Figure 2.15: Results in dimension d “ 20 for Θ “ pθi,j “ pi ` jq{p2dqqi,j in (2.3.4). The reference
loss is around 19.47 and the prediction loss at iteration 14 is 19.45. The prediction error at iteration
14 is around 0.22. Harmonic variant of the fictitious play ($ “ 1).

2.3.5 Small viscosity

The next question in our numerical experiments is to address the behavior of the algorithm as the
viscosity tends to 0. As made clear in the analysis performed in Section 2.2, the influence of the
small viscosity may manifest in an exponential manner and this was our original motivation to
design a geometrically converging scheme.

Beyond the theoretical challenge raised by the possible occurrence of singularities in the vanish-
ing viscosity limit (an example of which is given by Lemma 2.2.8), small viscosity may also create
additional numerical instability phenomena. As a main example, high variances may occur in the
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computations of empirical measures under the tilted probability measure. Obviously, this follows
from the fact that the Girsanov density driving the change of reference measure in the algorithm
becomes highly singular as the viscosity tends to 0. We reported a similar drawback in the pre-
vious subsection, but in the large dimensional framework. In the first arXiv version [48] of this
work, the observation of this phenomenon prompted us to introduce a method at the intersection
between annealed simulating and preferential sampling, which we illustrated on a specific example
that is recalled below. While this method is performing well (we revisit it in the framework of the
geometric fictitious play in this subsection), it requires to repeat the scheme for several values of
the viscosity and it is thus rather costly.

Instead, we here show that the geometric fictitious play can quickly return a very accurate
numerical solution to the vanishing viscosity property problem (at least in the example addressed
in the first arXiv version [48]). This is a very striking exemplification of our approach. It clearly
demonstrates the benefits of choosing a higher value of the rate $ and therefore of working with the
geometric variant (instead of the harmonic variant) of the fictitious play. Our numerical experiment
based on the aforementioned benchmark model. We choose a variant of g in (2.3.2), with d “ 1:

gpxq “ cos
`

κpx´ x0q
˘

´ 2x0, (2.3.26)

with κ “ 10 and where x0 is a root of the equation

cos
`

κx0

˘

“ 2x0.

Numerically, we find that a choice is x0 « ´0.384. The motivation for such an x0 is that 0 is
a solution of (2.3.9). In other words, 0 is an equilibrium. Even more, we observe that, if the
viscosity is zero, then the iterative sequence defined through the two updating rules (2.1.9) and
(2.1.10) remains in pmn,hnq “ p0,´2x0q for any n ě 1 if m0 is chosen as 0. In other words, the
standard fictitious (without any exploration) play converges (as predicted by the theory since this
1-dimensional MFG is potential, see §2.3.1.2) and chooses the 0-equilibrium. In order to compare
with the prediction method exposed in §2.3.1.2, we have plotted the corresponding potential (which
is given by a primitive G of g). The plots are given in Figure 2.16. We observe that 0 is just a local
minimizer of the potential and that the global minimizer is around ´0.5.

Our geometric fictitious play is able to rule out the 0-equilibrium and to retain the other one.
In order to check this numerically, we have used three values for $: $ “ 4, $ “ 1.5 and $ “ 1.
As for the other parameters, we have chosen σ “ 0 (no idiosyncratic noise, but Riccati is known),
M “ 2 ˆ 104 (number of Monte-Carlo simulations) and p “ 100. In all the experiments, ε is set
equal to 0.2. The algorithm is initialized from the local minimizer. Our regression on the Hermite
polynomials goes up to polynomials of degree 6. The results are presented in Figures 2.17, 2.18 and
2.19. Therein, we have plotted the histogram, under the tilted probability measure and at the end
of each episode, of the terminal conditional mean of the system. Even though the regime $ “ 4 is
outside the scope of Theorem 2.2.4 (because we assumed $ P p1,

?
2s), the result with this choice

is quite impressive: the right equilibrium is selected in five iterations only. When $ “ 1.5, ten
iterations are necessary. When $ “ 1, the results are satisfactory with around fifteen iterations
but it is clear that the histogram features a kind of residual variance, which makes the selection
less obvious. We believe that these plots are a strong case for supporting our results.
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Figure 2.16: Equilibrium predicted by the potential rule: Potential G on the left pane; Zeros of the
function g in the right pane.

Figure 2.17: Selection of a solution by vanishing viscosity: histogram under the tilted measure of
the terminal mean for ε “ 0.2 and $ “ 4. Equilibrium is clearly selected in 5 iterations.

For sure, the reader may wonder about the same plots if we decrease the value of ε (say ε “ 0.1).
It is fair to recognize that the results are not so good when ε “ 0.1. To our mind, this is due to the
variance issues that we reported above: the Girsanov change of reference may induce high variances.
Numerical observations seem to indicate that those issues may even get worse when increasing the
value of $ (which is not so easy to explain from a theoretical point of view because the integrand
$hn in (2.2.1) is close to the true solution h, regardless of the value of $). One possible strategy
to reduce the underlying variance would be to implement the same preferential sampling argument
as in the first arXiv version [48], but it is fair to say that it is difficult to obtain a plot that is as
good as the one obtained in Figure 2.17. For this reason, we feel better to address this possible
extension in a future work.
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Figure 2.18: Selection of a solution by vanishing viscosity: histogram under the tilted measure of
the terminal mean for ε “ 0.2 and $ “ 1.5. Equilibrium is selected in 10 iterations.

Figure 2.19: Selection of a solution by vanishing viscosity: histogram under the tilted measure of
the terminal mean for ε “ 0.2 and $ “ 1. Equilibrium is selected in more than 10 iterations, with
a non-trivial residual variance.
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Chapter 3

Some quantitative bounds for
Q-learning in continuous spaces and
an application to Mean Field MDP
with finite states

3.1 Introduction

Since its conception by Watkins in 1989 [114] , Q-learning has been one of the prominent algorithms
for solving Reinforcement Learning (RL) problems. In the typical case of RL, an agent being in a
given state, interacts with an environment performing actions that yield rewards and update her
state. Usually (but not exclusively) the agent has some target that she wants to obtain, possibly
in an optimal way.

The standard Q-learning is a model-free algorithm, meaning that it does not require to repre-
sent the underlying system dynamics in form of a model. Instead, the algorithm learns through
interaction with the environment, progressively refining its decision-making strategy based on re-
ceived feedback. Q-learning uses real or simulated data (sequences of states, actions and rewards)
to approximate the value function of dynamic programming as a function of the initial state. Fur-
thermore, the algorithm is recursive the sense that each new piece of information is used to update
the current estimates.

Even though Q-learning figures in all majors Reinforcement Learning textbooks, still up until
this day it attracts considerable attention, with various new variants appearing in the literature.
Its convergence has been demonstrated early by Watkins [115] using a prototypical proof device
and later by Tsitsiklis [109] using stochastic approximation on more general assumptions. However
little has been known on an explicit rate of convergence in the general case of a continuous space,
this fact is one of the main motivations of our work. One key idea in this regard is the notion
of exploration: the true Q-function (which we also call the action value function) can be well
approximated on the whole state and action spaces provided that the space-action observations
visit sufficiently well the ambient spaces. Implicitly, this requires a form of non-degeneracy in the
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transition kernels governing the occurrence of observations.

The first main contribution of this article is a new proof that follows globally the steps of the
initial proof of Watkins [115] for discrete states and of Carden [27] for continuous spaces but instead
provides an exact bound for the convergence in probability of the approximate value function to the
optimal one. Our motivation for addressing models with continuous spaces comes from our original
desire to study reinforcement learning for mean field control. In line with the analysis carried out in
the previous chapter for linear-quadratic mean field, this is indeed here our objective to provide a
sharp exploration-exploitation analysis for mean field learning, at least when learning is performed
by tabulating theQ-function. In particular, we want here to interpret the non-degeneracy properties
that are required on the transition kernels as properties that derive from a common noise that we
regard in the end as an exploration noise. In this way, our work here complements the study from
the previous chapter and offers a new example of ‘exploration through common noise’.

In fact, one key point in the construction of Carden is to use a Nadaraya-Watson kernel in or-
der to extend the empirical Q-function (or approximated Q-function) from the observations to the
whole space. Similar to [27] (see also [115]), our analysis of the resulting approximated Q-function
is indeed based on the so-called Action Replay Process (ARP) of Watkins (see Section 3.2.2 for
a definition), which is an auxiliary Markov decision process whose Q-function coincides with the
estimator returned by the Nadaraya-Watson regression. In this regard and in comparison with the
aforementioned references [27, 115], there are several main differences in our work: piq We show
that we can get rates that remain tractable in the high-dimensional setting by assuming that the
coefficients and the true Q-function are sufficiently smooth. This is consistent with standard meth-
ods from numerical analysis in which smoothness of the data is used to decrease the underlying
complexity; piiq We use tools from stochastic analysis and in particular from the theory of martin-
gales to show that the ARP features averaging properties that we prove useful to get bounds (in a
convenient topology) between the transition kernel of the ARP and the original transition kernel;
piiiq We use thorough bounds for the coupon collector problem to derive maximal inequalities for
the covering times of ARP, i.e. the time it needs to visit every partition of the state-action space.

In what follows we start by introducing some notation to clarify the objects that we are going
to study and provide some context for our methodological choices. We end this introductory
section with a discussion about the results of the article in contrast with related works and further
organisation of the rest.

3.1.1 Set-up

In this subsection, we introduce basic notations that will be used throughout the chapter. We
consider two bounded open subsets S and A of RdS and RdA respectively, for dS and dA two positive
integers, with both S and A satisfying a uniform interior cone condition with Lipschitz boundary
(see [6, Chapter 4] and [107] for various reformulations). In brief, S and A are (respectively)
the state and action spaces of the Markov decision process under study. (We refer to [12] for a
textbook on Markov decision processes and to [11] for a focus in the mean field framework). Below,
s is frequently used to denote a generic element of S and a to denote a generic element of A.
Moreover, we use the notation D for D :“ dS ` dA.

Moreover, we consider (on a probability space pΩ,F ,Pq) a stochastic process psn, anqně0 with
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values in S ˆA, adapted to some filtration pFnqně0, which is understood as the sequence of states
(psnqně0) occupied and actions (panqně0) played by the observer. We assume the following two
properties property:

Assumption (Kernel Bounds). For any given h ą 0, there exists η, η1 ą 0 such that, for any
balls BS of RdS and BA of RdA, of radius greater than h each and respectively included in S and
A,

ηhD ď P
´

 `

sn`1, an`1

˘

P BS ˆBA
(

|Fn
¯

ď η1hD. (3.1.1)

Assumption (Markov Transition Kernel). In line with the description of our objective, the
process psnqně0 must coincide with the observations of a Markov Decision Process (MDP for short)
driven by the sequence of actions panqně0. The transition kernel of the MDP is denoted:

P : S ˆAÑ P
`

S
˘

ps, aq ÞÑ
´

P
`

ps, aq, ¨
˘

: E P BpSq ÞÑ P
`

ps, aq, E
˘

¯

,
(3.1.2)

where BpSq is the Borel σ-field on S. As usual with Markov kernels, we require the mapping P
to be measurable (which means here that ps, aq ÞÑ Ppps, aq, Eq is measurable for the standard Borel
σ-fields and for any E P BpSq). In fact, more assumptions are made below on the regularity with
respect to ps, aq, using a convenient distance on PpSq.

This notations makes it possible to reformulation part of the identity(3.1.1). For any n ě 0, we
have

P
´

 

sn`1 P E
(

|Fn
¯

“ P
´

`

sn, an
˘

, E
¯

, E P BpSq. (3.1.3)

Importantly, the combination of (3.1.1), (??) and (3.1.3) puts a constraint on the transition kernel
P: from (3.1.1) and (??), the latter is required to feature some non-degeneracy properties; in words,
mass must cover the whole space (this is (3.1.1)) and cannot be concentrated (this is (??)). This is a
key assumption in our analysis. In the forthcoming Section 3.2, we will reinterpret these conditions
as conditions put on an additional exploration noise inserted in the dynamics for the purpose of
learning. As far the action process panqně0, assumptions (3.1.1) and (??) are in fact less stringent
on the model: whereas the dynamics of psnqně0 are prescribed by the transition kernel P under
study, the actions panqně0 can be chosen exogenously by the ‘observer’. In particular, the observer
may be able to choose actions that satisfy the non-degeneracy constraints. We will come back to
these important points next.

Here comes now the reward function. At each step n, we receive a random reward rn depending
on the state sn and the action an. Whereas more general structures would be conceivable, we
require (throughout the analysis) that rn has the following structure:

Assumption (Reward). There exists a bounded continuous function R : S ˆ A Ñ R such that
rn “ Rpsn, anq for any n ě 0. In fact, more conditions will be put next on the regularity of R. Very
briefly, R is assumed to have bounded derivatives up to the order 5ptdS{2u` 1q, which is the price
to pay to obtain tractable convergence rates for the learning algorithm that is presented in the next
subsection.
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As we already alluded to several times, we can wrap-up the previous in the definition of a
Markov Decision Process:

Definition 3.1.1. For a real γ P p0, 1q, the 6-tuple pS,A,P, R, γq forms a Markov decision process,
with S as state space, A as action space, P as transition kernel, R as reward and γ as discount
factor.

A policy π is a measurable function π : S Ñ A. Under a policy π, the value of a state s is

V πpsq :“ E
”

8
ÿ

k“0

γkR
`

sk, πpskq
˘ ˇ

ˇ s0 “ s
ı

,

where psnqně0 is the Markov chain associated with the transition kernel s P S ÞÑ Ppps, πpsqq, ¨q P
PpSq, and the action value function of a pair ps, aq P S ˆA is

Qπps, aq :“ Rps, aq ` E
”

8
ÿ

k“1

γkR
`

sk, πpskq
˘ ˇ

ˇ s0 “ s
ı

“ Rps, aq ` γE
“

V πps1q|s0 “ s
‰

.

Solving the MDP is to find a policy π‹ such that its value function V ‹ :“ V π‹ satisfies

V ‹psq ě V πpsq, s P S,

for any other policy π.

We recall that V ‹ solves the Bellman equation

V ‹psq “ sup
aPA

”

Rps, aq ` γ

ż

S
V ‹ps1qP

`

ps, aq, ds1
˘

ı

,

which equation is sometimes formalized as a fixed point for the Bellman optimality operator defined
as follows

`

T πU
˘

psq “ R
`

s, πpsq
˘

` γ

ż

S
Ups1qP

`

ps, πpsq, ds1
˘

,

`

T ‹U
˘

psq “ sup
π

 

T πUpsq
(

,
(3.1.4)

where U is a test function from S to R. We refrain from detailing the functional space in which
those test functions are taken. Below, we always assume that the value function V ‹ is sufficiently
smooth (examples are given in [12]). What is clear is that if T ‹U maps continuous functions
on continuous functions, then T ‹ forms a contraction on the space of continuous functions on S.
Indeed, it is trivial to observe that, for any two continuous functions U and U 1 on S,

sup
sPS

ˇ

ˇ

`

T ‹U ´ T ‹U 1
˘

psq
ˇ

ˇ ď sup
π

sup
sPS

ˇ

ˇ

`

T πU ´ T πU 1
˘

psq
ˇ

ˇ

ď γ sup
sPS

ˇ

ˇ

`

U ´ U 1
˘

psq
ˇ

ˇ.

This argument is used several times in the sequel and is very powerful. The main question here is
in fact connected with the choice of the functional space underpinning the contraction and this, in
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turn, is connected with the regularity properties of the kernel P, which we feel better to present
later on in the chapter.

Next, we associate with V ‹ the optimal action-value function:

Q‹ps, aq “ Rps, aq ` γ

ż

S
V ‹ps1qP

`

ps, aq, ds1
˘

, ps, aq P S ˆA. (3.1.5)

And we make the following two observations:

1. Since V ‹ ě V π for any policy π, one must have

Q‹ps, aq ě Qπps, aq @ps, aq P S ˆA.

2. From the optimal action-value function we can recover the optimal policies by

π‹psq “ argmax
aPA

Q‹ps, aq,

provided that we can select in this manner a measurable maximizer. Again we refrain from
entering this discussion. We refer for instance to [21] for general results in this direction.

3.1.2 Value iteration and motivation for a kernel based approach

We now address possible strategies for approximating Q‹, which is the real objective in practice.
In this regard, it is fair to say that, whenever we have access to full information for the trajectories,
or the spaces involved are small and finite, we can directly implement the fixed point iterations
underpinning to the Bellman optimality operator (3.1.4) (which we already explained to form a
strict contraction in sup norm). For instance, when the problem is set in a finite time horizon N P N
(and is thus time dependent), the value iteration takes the form backward induction, initialized
from the value function VN at time N :

V ‹n psq “ sup
aPA

!

E
“

Rpsn, anq ` γErV ‹n`1psn`1q
ˇ

ˇ psn, anq “ ps, aqs
‰

)

, for n “ N ´ 1, ..., 1, 0,

with the analogue of the aforementioned infinite time horizon problem being V ‹ “ T ‹V ‹.
In most reinforcement learning problems this strategy fails because it scales very badly with

dimension, which phenomenon is usually referred to as ‘curse of dimensionality’. A possibly efficient
way to learn the optimal value function is the so called temporal difference (TD) learning. In short,
updates of the value function are computed ‘on the go’, which results in a significantly faster
procedure.

Central to this method is the TD-update or target that we use to update the value function.
In the Q-learning method addressed in the article, the target is Rps, aq ` γ supa1PA Qps1rss, a1q,
where s1rss is the random state that is reached from s, that is s1rss is sampled from the distribution
Ppps, aq, ¨q. Then, the update rule takes the form

Qn`1ps, aq “ Qnps, aq ` α

ˆ

Rps, aq ` γ sup
a1PA

Qnps1rss, a1q ´Qnps, aq

˙

, (3.1.6)
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where α is a learning rate in p0, 1q, possibly depending on the rank of the iteration and on the pair
ps, aq at which the approximation Qn`1 is computed. Intuitively, we then expect that, under some
averaging properties and for a well chosen sequence of learning rates,

Qn`1ps, aq „ Qnps, aq ` α

ż

S

ˆ

Rps, aq ` γ sup
a1PA

Qnps1, a1q ´Qnps, aq

˙

P
`

ps, aq, ds1
˘

,

which is the very close to the Bellman equation for Q‹.
However, the very first issue here is that the problem is a continuous one. Due to that, we

need to apply some form of function approximation on top of Q-learning in order to handle the
continuous inputs, but this might not be so easy. Indeed, it is well known from [104] when function
approximation, bootstrapping (TD learning) and off policy TD control are combined, they form
a ‘deadly triad’ that can possibly create divergences in the learning scheme, see also [108] for an
example of divergence occurring under linear function approximation. In contrast, we follow [27]
and make the choice for kernel approximation. The main motivation for this comes from the fact
that kernel regression is non-expanding operation and thus does not cause any additional divergence
in the Bellman operator. For a general discussion on kernel regression, we refer to [69].

The regression relies on the following:

Assumption (Regression Kernel). We call K : RdS ˆ RdA Ñ R a smooth non-negative
compactly supported function that is (strictly) positive on the D-dimensional ball Bp0, 1q of center
0 and of radius 1. We denote by }K }8 its L8 norm and we let λK “ infBp0,1qK . We let % ą 1
be the smallest real such that the support of K is in Bpo, ρq “ ρBp0, 1q.

For a bandwidth h that represents the radius at which estimation is performed, we use the
notation Kh for

Khps, aq “ K
´ s

h
,
a

h

¯

, ps, aq P S ˆA. (3.1.7)

We can refine the upper boundedness assumption of the transition kernel, assuming that there
exists another constant η1 ą 1 such that, for any D-dimensional ball of radius 3ρh,

P
´

 `

sn`1, an`1

˘

P B2ρh

(

|Fn
¯

ď η1hD. (3.1.8)

Here is now how the regression kernel is used in (3.1.6). For a given realization psn, anq0ďnďN as
in the previous subsection, we then introduce the sequence of updating ratios αn : SˆA Q ps, aq ÞÑ
αnps, aq and n P N, defined by

αnps, aq “

$

’

&

’

%

Kh

`

s´ sk, a´ ak
˘

řn
j“0 Kh

`

s´ sj , a´ aj
˘ if

n
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

ą 0

0 otherwise

. (3.1.9)

Implicitly, αn is a random field (as it depends on the realization of psn, anqně0). Notice also that
we feel better not to include the parameter h in the notation at this stage of the analysis since h
is fixed.

The following definition is the basis for clarifying the rule (3.1.6):
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Definition 3.1.2. Given an integer n ě 0 and given a realization psk, akq0ďkďn satisfying the
properties highlighted in Subsection 3.1.1, the kernel approximation of a function f : S ˆAÑ R at
a point ps, aq and at depth n is given by

Ah,nfps, aq :“
n
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

fpsk, akq
řn
k“0 Kh

`

s´ sk, a´ ak
˘ , (3.1.10)

provided the denominator is not zero. If the denominator is zero, we return 0 for Ah,nfps, aq. The
approximation satisfies the recursion property:

Ah,nfps, aq “ αnps, aqfpsn, anq `
`

1´ αnps, aq
˘

Ah,n´1fps, aq. (3.1.11)

The recursion property is reminiscent of (3.1.6). It can be proven as follows:

n
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

fpsk, akq
řn
k“0 Kh

`

s´ sk, a´ ak
˘

“ αnps, aqfpsn, anq `
n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

fpsk, akq
řn
k“0 Kh

`

s´ sk, a´ ak
˘

“ αnps, aqfpsn, anq `
`

1´ αnps, aq
˘

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

fpsk, akq
řn´1
k“0 Kh

`

s´ sk, a´ ak
˘ ,

at least when all the denominators are non-zero. When one of them is zero, the proof is straight-
forward.

A key property is that the weights entering the definition of Ah,nf is an element of the simplex of
dimension n´ 1 (i.e., the weights form a convex combination), from which we deduce the following
two properties:

1. Whenever
řn
k“0 Khps ´ sk, a ´ akq ą 0 and f is Lipschitz with Lipschitz constant L, the

distance between f and Ah,Nf is less than Lh, namely

|Ah,Nfps, aq ´ fps, aq| “

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘`

fpsn, anq ´ fps, aq
˘

řn
k“0 Kh

`

s´ sk, a´ ak
˘

ˇ

ˇ

ˇ

ˇ

ď Lh. (3.1.12)

2. The operator Ah,N preserves the sup-norm which guarantees that, in turn, the contraction
property of the Bellman optimality operator under a kernel approximation is preserved. We
write this in the form

}Ah,NT ‹U ´Ah,NT ‹U 1}8 ď γ}U ´ U 1}8, (3.1.13)

where U and U 1 are functions on S with the required form of regularity.

As stated in [94] , the moral behind is that kernel regression approximation offers a convenient
‘plug-in’ estimate of the value functions. This motivates our choice for kernel based Q-learning. In
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clear, we can define the Nadaraya-Watson estimator for the Q-function. First, we adapt the update
rule (3.1.6) and let (for n ě 1)

pQnps, aq “ pQn´1ps, aq ` αn´1ps, aq
´

Rpsn´1, an´1q ` γsupa1PA pQn´1psn, a
1q ´ pQn´1ps, aq

¯

. (3.1.14)

Thus, by the recursion formula (3.1.11), we have

pQnps, aq “

$

’

&

’

%

řn´1
j“0 Kh

`

s´ sj , a´ aj
˘

yj
řn´1

0“1 Kh

`

s´ sj , a´ aj
˘ if

řn´1
0“1 Kh

`

s´ sj , a´ aj
˘

ą 0

0 otherwise

, (3.1.15)

where
yj “ Rpsj , ajq ` γ sup

aPA

pQjpsj`1, aq. (3.1.16)

Notice that the computation of pQn requires n ` 1 observations from the Markov decision process
(as the latter starts from time 0). At the initial time, we choose pQ0 ” 0.

Last but not least, to rephrase [27]: equation (3.1.14) is the right one for comparing with TD
learning, but equation (3.1.15) is the useful one for numerical purposes.

To wrap-up everything, we present a pseudo code of the algorithm in an episodic fashion to be
closer to existing methods of implementation in reinforcement learning community.

Algorithm 2: Kernel Based Q-Learning

input : Type of kernel K , bandwidth h, discount γ, number of iteration n
output: Approximate Action Value Function pQn

1 initialization:;

2 pQ0ps, aq “ 0 @ps, aq ;
3 set inital state s0;
4 for k in n do
5 Choose action ak;
6 Get: reward rk, next state s1;

7 Compute yk “ rk ` γ max
aPĀ

pQkps
1, aq using (3.1.15) ;

8 Store in memory psk, ak, ykq;
9 k “ k ` 1;

10 sk “ s1;

Given the nature of memory based approximations, essentially all we need is just successive
iterations sn, an, yn, sn`1, ¨ ¨ ¨

For sure, a natural question concerns the choice of an at each iteration. In this regard, it should
be stressed that the ε-greedy strategy (that consists in sampling an uniformly with probability ε
and, otherwise, in choosing it as the minimizer of the current approximation of the Q-function does
not satisfy the assumption (Upper Bound Kernel), because it may induce accumulation of mass
phenomena. This is clearly a drawback of our proof which entirely relies on the mixing properties
of the kernels, as stated in the two assumptions (Lower Bound Kernel) and (Upper Bound
Kernel). Instead, one may just sample an: this satisfies the conditions prescribed in our analysis.
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In our analysis below, there is only one episode. We refer to Section 3.5 for numerical aspects
in which several episodes are run.

3.1.3 Summary of main results

It is well known that memory based techniques can approximate any function with arbitrary pre-
cision, at the expense of memory. However, memory costs may take a dramatic turn in high
dimension. In the current framework, one wants in particular to return a relevant approximation
of the function Q‹, but with a rather reasonable number of observations. In contrast, the work of
Carden [27] asserts that one can reach any desired accuracy provided that the number of observa-
tions is large enough. This result may be however intractable in practice if the required number of
observations is much too large. Intuitively, such a picture may indeed happen when the dimensions
dS and dA become larger and larger. Here, we are able to resolve the curse of dimensionality, from
which these methods usually suffer by resorting to smoother functions in the appropriate Sobolev
spaces.

This prompts us to let the following two assumptions:

Assumption (Regularity Cost and Transition Kernel). We assume that the function R has
bounded derivatives of any order up to the order 5ptdS{2u ` 1q. And, we assume that, for any
function ϕ : S Ñ R, whose derivatives up to a certain order k P t1, ¨ ¨ ¨ , 5ptdS{2u` 1qu are bounded
by a certain constant C, the function

ps, aq P S ˆA ÞÑ

ż

S
ϕps1qP

`

ps, aq, ds1
˘

also has bounded derivatives up to k, with bounds only depending on C.

The order 5ptdS{2u`1q here, is found from Sobolev embedding theorems, which play a great role
in the mathematical analysis that is provided next and which draw a clear connection between the
dimension of the state and action spaces and the required regularity on the data. (As we already
mentioned several times, this is our choice to impose (very) strong assumptions on the coefficients
in order to get tractable rates of convergence with an affordable complexity.)

In parallel, we also assume:

Assumption (Regularity Value Function) We assume that the function V ‹ has bounded deriva-
tives of any order up to the order 5ptdS{2u` 1q.

Obviously, this assumption is implicit. In general, one cannot directly deduce that V ‹ is smooth
from the simple fact that the data are smooth. However, we have additional structural conditions
under which V ‹ is indeed smooth. We provide examples in Subsection 3.2.6.

In clear, the main objective of the article is to address the rate convergence of pQh,nps, aq to
Q‹ps, aq when n becomes large and h becomes small. Our main result in this regard can be
summarized through the following meta-statement:

Main Meta-Statement. There exists a constant C, depending on the various parameters un-
derpinning the aforementioned assumptions, such that, for an error threshold ε ą 0, we can find
hε and nε such that the sup distance between pQhε,nε and Q‹ is less than Cp1 ` | lnpεq|qε on an
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event of probability greater than 1 ´ CεD. The number nε that is necessary to do so is less than
exppC| lnpεq|3q.

A more rigorous statement is given in Theorem 3.2.8 and Proposition 3.2.10 below (it is fair
to say that the latter result is stated in the framework of mean field control, but the spirit is very
much the same). Notice that Proposition 3.2.10 in fact includes the case when the original kernel
P does not satisfy the non-degeneracy properties states in Assumptions (Kernel Lower Bounds)
and (Kernel Upper Bounds). The idea in this case is to add an additional exploration noise.
What Proposition 3.2.10 says is that the function Q‹ (for the model that does not satisfy the non-
degeneracy properties) can be approximated with the same rate before and for the same order of
observations as in the meta-statement but on an event of probability greater than 1´Cε (instead
of 1´ CεD). This difference quantifies the exploration-exploitation trade-off in this setting.

3.1.4 Literature review

Obviously our work inherits from the classical works on the field, see for instance [99, 104], both
in the way the problem is formulated and in the way the solution strategy is implemented. At the
same time we distinguish ourselves in a few important points. Here we avoid a general literature
review since the literature on the subject is quite vast and mature. Instead we focus on few selected
contributions that relate best to our work and put it into perspective.

In [94], the authors provide a complete analysis of kernel based reinforcement learning with
respect to Approximate Value Iteration (AVI) methods. In a reinforcement learning problem de-
fined on continuous states and discrete actions, they prove consistency of the estimates of the value
function when a kernel regression operator similar to (3.1.10) is used. They decompose the ap-
proximation error in terms of a bias and a variance term (that is very often the case when kernel
methods are used, see [69, Chapter 6]) and choose an optimal ‘shrinkage rate’ for the bandwidth of
the kernels h to reduce bias and variance. In contrast, in our analysis we keep h fixed throughout
the proof but adapted to the data of the problem. In particular, the final estimates reported in the
statement of the Meta-Theorem is for an h that is chosen in terms of the regularity of the value
function and the size of the spaces involved. In this regard, it is worth insisting on the fact that
our proof gives a clear insight on the averaging effect underlying the learning procedure.

In the family of kernel based reinforcement learning and specifically kernel based Q-learning in
continuous state and action spaces, we mention [77] where the authors use a Reproducing Kernel
Hilbert Space (RKHS) approach. Instead of ‘plug-in’ approximation by kernel regression, they
resort to a regularized Bellman equation whose fixed point is identified via a reformulation of a
functional descent in a RKHS. The authors highlight the nested expectation nature of Q-learning
that they treat via a two timescale stochastic approximation approach. The resulting algorithm
is a variant of Q-learning in which the authors control the complexity by imposing a memory
compression by sparse projection to lower dimensional subspaces. Similarly to their approach, we
assume here that the Q-function belongs to a suitable (Hilbert) space of regular functions, as result
of which we can control the complexity. As far as the algorithm is concerned, the update rule we
use for the value function is quite different and allows us to analyse the error per iteration. In
particular, we are here able to bound directly the distance (at each iteration) between the learnt
and true Q-functions.
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Last, we mention [50], which also addresses kernel based reinforcement learning. The authors
use an episodic model-based optimistic algorithm called Kernel-UCBVI (Upper Confidence Bound
Value Iteration) to solve continuous MDPs under relatively weak assumptions. Even though their
algorithm and approach are completely different (model based vs model free), we feel that their
mathematical analysis of the convergence is very much of the same flavor as our work. The authors
derive concentration inequalities for the transition kernels applied to the value function, in their
notation |p pP kn ´ PnqV

˚
n |

1, which is reminiscent of the computations exposed in Subsection 3.2.5
below. However the form of Value Iteration is different because of the added exploration bonuses
which relay on counts of visits for state action pairs and thus their final regret relies on the convering
dimension instead of the physical one and is not directly comparable to ours.

3.1.5 Organisation

We present a strategy of proof together with some refined versions of the main meta-statement
in the subsequent Section 3.2. Therein, we also expose the application to mean field control, in
agreement with the objective of this manuscript, and we give some further directions of research.
The core is of the proof is exposed in Sections 3.3 and 3.4. Section 3.5 is dedicated to some
numerical illustration. In Section 3.6, we give the proofs of some auxiliary results.

3.2 General structure of the proof

The purpose of this section is to present the main steps of the proof towards the main result of this
chapter. The main intuition follows from the original works by Watkins (and co-author) [114, 115].

3.2.1 Definition and transitions of the Action Replay Process

The analysis relies on the notion of ‘Action Replay Process’ (ARP), in a strategy similar to the
original one conceived by Watkins (and Dayan) [114, 115] in the discrete setting and then extended
by Carden [27] to continuous spaces.

The construction of the ARP is as follows. We associate with a realization ps, aq “ psn, anqnPN
of the Markov decision process introduced in Definition 3.1.1 a new Markov decision process whose
transitions explicitly depend on the realization ps, aq (and are thus random) and whose Q-function
coincides exactly with the function pQnps, aq defined in (3.1.14). In the latter, the additional param-
eter n is seen as part of the state variable since the ARP lives on an extended space comprising the
time variable. As we will see next, the ARP is in fact a Markov process with values in Nˆ S ˆA,
with the key feature that the transitions only allow the time component to decrease. States with
a time component that is equal to 0 are absorbing.

Definition 3.2.1. Let ps, aq “ psn, anqnPN be a realization of the Markov decision process satisfying
Definition 3.1.1 and (3.1.3) Then, for an element pn, s, aq P N ˆ S ˆ A, we define a probability
measure

Πps,aq
`

pn, s, aq, ¨
˘

1where pP kn is the transition kernel that is identified via a weighted sum of Dirac measures, for weights similar to
(3.1.9)
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on Nˆ S ˆA as follows. If n “ 0, then Πps,aq
`

p0, s, aq, ¨
˘

is the Dirac point mass at p0, s, aq.
If n ě 1, we consider a sequence pU1, ¨ ¨ ¨ , Unq of independent random variables with uniform

distribution on p0, 1q. Then, for pαkps, aqq0ďkďn´1 being defined as in (3.1.9), we call τ the following
random time

τ “ max
!

k P t1, ¨ ¨ ¨ , nu : αk´1ps, aq ą Uk

)

,

with τ being equal to 0 if all the events in the maximum are empty, and we define the transition
probability Πps,aqppn, s, aq, ¨q as the law of

´

τ´ 1, sτ, aτ

¯

if τ ě 1,
´

0, s, a
¯

if τ “ 0.

It should be noticed that, under the condition
řn´1
k“0 Khps ´ sk, a ´ akq ą 0, we necessarily

have τ ě 1 since αkps, aq “ 1 for at least one k P t0, ¨ ¨ ¨ , n ´ 1u. Indeed, if we call k the smallest
integer such that Khps´ sk, a´ akq ą 0, then, necessarily, αkps, aq “ 1. On the opposite, τ “ 0 if
řn´1
k“0 Khps ´ sk, a ´ akq “ 0. In particular, it should be observed that Πps,aqppn, s, aq, ¨q is always

well-defined, even though the trajectory ps, aq has not visited the neighborhood of ps, aq. Moreover,
we emphasize that the states that the process reaches upon termination are arbitrary and might
differ at each realisation.

Observe also that the transitions starting from a time component n ě 1 only depend on the
observations of psk, akq at times k “ 0, ¨ ¨ ¨ , n´ 1. Below, we denote by Pps,aq a probability measure
on an auxiliary probability space pΞ,Gq together with a process pΛk,Σk, BkqkPN also constructed on
pΞ,Gq with values in NˆSˆA such that, under Pps,aq, the process pΛk,Σk, BkqkPN is a homogeneous

Markov chain with transition probabilities pΠps,aq
`

pn, s, aq, ¨
˘

nPN,sPS,aPA, namely

Pps,aq

´!

pΛk`1,Σk`1, Bk`1q P E
)

|GpΛ,Σ,Bqk

¯

“ Πps,aq
`

pΛk,Σk, Bkq, E
˘

, (3.2.1)

for E a Borel subset of N ˆ S ˆ A, where GpΛ,Σ,Bq “ pGpΛ,Σ,Bqk qkPN is the filtration generated by
pΛk,Σk, BkqkPN.

The following lemma clarifies the semi-group induced by the ARP, with the relationship below
playing a key role in the subsequent analysis.

Lemma 3.2.2. Let ψ : NˆS ˆAÑ R be a bounded and measurable function. Then, for any fixed
realization ps, aq of the Markov process psn, anqně0, for any n P N, for any ps, aq P S̄ ˆ Ā, such that

n´1
ÿ

l“0

Kh

`

s´ sl, a´ al
˘

ą 0, (3.2.2)

the following identity holds true:

Eps,aq

”

ψ
`

Λ1,Σ1, B1

˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

“

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

ψ
`

k, sk`1, ak`1

˘

řn
l“1 Kh

`

s´ sl, a´ al
˘ .

otherwise, whenever
řn´1
l“0 Kh

`

s´ sl, a´ al
˘

“ 0,

Eps,aq

”

ψ
`

Λ1,Σ1, B1

˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

“ ψp0, s, aq.
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Proof. We fix the initial condition pn, s, aq P N ˆ S ˆ A of the ARP. Then, following Definition
3.2.1, we introduce the stopping time

τ “ max
!

k P t1, ¨ ¨ ¨ , nu : αk´1ps, aq ą Uk

)

,

for the same sequence pU1, ¨ ¨ ¨ , Unq as therein. We recall that τ ě 1 under the condition (3.2.2).
Moreover,

Pps,aq

´

 

τ “ k
(

¯

“

”

n´1
ź

j“k

`

1´ αjps, aq
˘

ı

αk´1ps, aq, k P t1, ¨ ¨ ¨ , nu,

with the convention that the product is equal to 1 if k “ n. Then, for ψ as in the statement,

Eps,aq

”

ψ
`

Λ1,Σ1, B1

˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

“ Eps,aq

”

ψ
`

τ´ 1, sτ, aτ
˘

ı

,

and

Eps,aq

”

ψ
`

τ´ 1, sτ, aτ
˘

ı

“

n
ÿ

k“1

„ˆn´1
ź

j“k

`

1´ αjps, aq
˘

˙

αk´1ps, aqψ
`

k ´ 1, sk, ak
˘



“

n´1
ÿ

k“0

„ˆ n´1
ź

j“k`1

`

1´ αjps, aq
˘

˙

αkps, aqψ
`

k, sk`1, ak`1

˘



.

For a given j such that αjps, aq ą 0 (which implies in particular that
řj
l“0 Khps´ sl, a´ alq ą 0),

we have

1´ αjps, aq “

řj´1
l“1 Kh

`

s´ sl, a´ al
˘

řj
l“1 Kh

`

s´ sl, a´ al
˘
,

and then, for a given k such that αkps, aq ą 0,

n´1
ź

j“k`1

`

1´ αjps, aq
˘

“

řk
l“0 Kh

`

s´ sl, a´ al
˘

řn´1
l“0 Kh

`

s´ sl, a´ al
˘ ,

so that
n´1
ź

j“k`1

`

1´ αjps, aq
˘

αkps, aq “
Kh

`

s´ sk, a´ ak
˘

řn´1
l“0 Kh

`

s´ sl, a´ al
˘ .

If αkps, aq “ 0, the equality still holds true (recalling that the denominator in the right-hand side
cannot be 0 in our setting). In the end, we can write

Eps,aq

”

ψ
`

τ´ 1, sτ, aτ
˘

ı

“

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

ψ
`

k, sk`1, ak`1

˘

řn
l“1 Kh

`

s´ sl, a´ al
˘ ,

which completes the proof when (3.2.2) holds true.
When (3.2.2) does not hold, the identity follows from the fact that Πps,aqppn, s, aq, ¨q is the delta

mass at p0, s, aq.
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3.2.2 Q-function associated with the ARP

In order to complete our description of the ARP as an MDP, we now associate with it the following
optimization problem:

V ARP,‹pn, sq “ sup
π

Eps,aq

„

1tτě1u

8
ÿ

k“0

γkR
`

Σk, πpΛk,Σkq
˘

| pΛ0,Σ0q “ pn, sq



,

with the supremum being taken over strategies π from Nˆ S into A (be careful that strategies are
time dependent), and where the variable τ in the first line is implicitly understood as in Definition
3.2.1.

Following (3.1.5), the optimal action-value function QARP,‹ is the solution of

QARP,‹
`

n, s, a
˘

“ Rps, aqPps,aq
`

tτ ě 1u | pΛ0,Σ0, B0q “ pn, s, aq
˘

` γ Eps,aq

”

sup
a1PĀ

QARP,‹
`

Λ1,Σ1, a
1
˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

,
(3.2.3)

In fact, the effective connection with V ARP,‹ is not used in the rest of the analysis, and we can
regard (3.2.3) as an autonomous equation. As shown in the proof of Lemma 3.2.3, any solution to
(3.2.3) must satisfy QARP,‹

`

0, s, a
˘

“ 0. The values of QARP,‹pn, s, aq, for n ě 1, are then given by
the recursion formula (which follows from Lemma 3.2.2):

QARP,‹pn, s, aq “ Rps, aq ` γ
n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

řn
l“1 Kh

`

s´ sl, a´ al
˘ sup
a1PA

QARP,‹pk, sk`1, a
1q, (3.2.4)

whenever (3.2.2) is satisfied (recalling that τ is necessarily greater than 1 under the standing
condition (3.2.2)). When the latter does not hold, we have QARP,‹pn, s, aq “ QARP,‹p0, s, aq “ 0.
This solves the equation. Measurability can be argued as in the first step of the proof of Lemma
3.2.3 below.

To conclude this introductory section we can show that the ARP and the kernel based algorithm
of Section 2 have (almost) the same optimal Q-values (this should be not a big surprise in light
of (3.2.4), which is very close to (3.1.15)). The following lemma is indeed a reformulation of [27,
Lemma 1]:

Lemma 3.2.3. We have

sup
nPN

sup
ps,aqPS̄ˆĀ

ˇ

ˇ

ˇ
QARP,˚pn, s, aq ´ pQnps, aq

ˇ

ˇ

ˇ
ď Ch.

Proof. First Step. By a straightforward induction, we see that, for any n P N, the function
ps, aq ÞÑ pQnps, aq is continuous, which proves in particular that the function s ÞÑ supa1PĀ

pQnps, a
1q

is measurable.
Next, the very key point is to reformulate the right-hand side in (3.1.15) as an expectation with

respect to the variable τ introduced in Definition 3.2.1. Indeed, if

n´1
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

ą 0, (3.2.5)
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then

pQnps, aq “

řn´1
j“0 Kh

`

s´ sj , a´ aj
˘

Rpsj , ajq
řn´1
j“1 Kh

`

s´ sj , a´ aj
˘ ` γ

řn´1
j“1 Kh

`

s´ sj , a´ aj
˘

supa1PA pQj´1psj , a
1q

řn´1
j“0 Kh

`

s´ sj , a´ aj
˘ .

We now invoke Lemma 3.2.2. On the event
 
řn´1
l“0 Kh

`

s´ sl, a´ al
˘

ě 1
(

,

pQnps, aq “

řn´1
j“0 Kh

`

s´ sj , a´ aj
˘

Rpsj , ajq
řn´1
j“1 Kh

`

s´ sj , a´ aj
˘

` γEps,aq

”

sup
a1PĀ

pQΛ1

`

Σ1, a
1
˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

.

Here, we observe from (3.1.12) and from the Lipschitz regularity of the function R that

ˇ

ˇ

ˇ

ˇ

Rps, aq ´

řn´1
j“0 Kh

`

s´ sj , a´ aj
˘

Rpsj , ajq
řn´1
j“1 Kh

`

s´ sj , a´ aj
˘

ˇ

ˇ

ˇ

ˇ

ď Ch.

We easily deduce from (3.2.3) (recalling again that τ is necessarily greater than 1 under the standing
condition (3.2.5)) that

sup
ps,aqPS̄ˆĀ

ˇ

ˇ

ˇ
QARP,‹pn, s, aq ´ pQnps, aq

ˇ

ˇ

ˇ
ď Ch` γ sup

nPN
sup

ps,aqPS̄ˆĀ

ˇ

ˇ

ˇ
QARP,‹pn, s, aq ´ pQnps, aq

ˇ

ˇ

ˇ
, (3.2.6)

under the condition (3.2.5), i.e.
řn´1
j“0 Khps´ sj , a´ ajq ą 0.

Second Step. Now, if (3.2.5) fails, that is

n´1
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

“ 0,

then, by construction,

γEps,aq

”

sup
a1PA

QARP,‹
`

Λ1,Σ1, a
1
˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

“ γ sup
a1PA

QARP,‹
`

0, s, a1
˘

,

and
QARP,‹

`

n, s, a
˘

“ γ sup
a1PA

QARP,‹
`

0, s, a1
˘

.

In particular, when n “ 0, we have that

QARP,‹
`

0, s, a
˘

“ γ sup
a1PĀ

QARP,‹
`

0, s, a1
˘

,

which yields
QARP,‹

`

0, s, a
˘

“ 0,

and then
QARP,‹

`

n, s, a
˘

“ 0,

151



(under the condition
řn´1

0“1 Khps´ sj , a´ ajq “ 0). By definition of pQnps, aq, we thus have (under
the same condition as before) that

QARP,‹
`

n, s, a
˘

“ pQnps, aq.

Conclusion. Back to (3.2.6), we get

sup
pn,s,aqPNˆS̄ˆĀ

ˇ

ˇ

ˇ
QARP,‹pn, s, aq ´ pQnps, aq

ˇ

ˇ

ˇ
ď Ch` γ sup

nPN
sup

ps,aqPS̄ˆĀ

ˇ

ˇ

ˇ
QARP,˚pn, s, aq ´ pQnps, aq

ˇ

ˇ

ˇ
,

from which the result easily follows.

3.2.3 Repeated covering times

The purpose of this subsection is to provide two results that revisit some of the arguments intro-
duced in [27] about covering times of the process psn, anqnPN and in particular to give quantitative
bounds for those covering times. Intuitively, the covering time is the time duration that is needed
for the MDP to visit all the cells that are attached to the kernel based algorithm. This is a very
important concept in probability theory and this is exactly the point where we can quantify the
impact of the mixing properties of the noise.

The results are rather technical, but they have the great advantage to be explicit. Also they
depend on a series of parameters that may be interpreted as follows:

1. ` below is a time at which we start to study the covering times;

2. m is time duration over which we study the covering times;

3. h is the bandwidth in the kernel Kh, see (3.1.7);

4. J counts the number of cells of radius h in the domain S ˆA and is order h´D;

5. η and η1 are the mixing parameters in (3.1.1) and (??);

6. β and δ are two macroscopic free parameters whose values are fixed in the end only.

Using these parameters, the following statement provides a quantitative version of Lemma 2 in
[27]:

Proposition 3.2.4. Assume that η1hD ď 1 and J ě 9. There exists a universal constant C, such
that, for any δ P p0, 1{2q and β ą e2, and for any integers ` ě 0 and m ě 1,

P
ˆ"

inf
ps,aqPS̄ˆĀ

``m
ÿ

j“`

αj
`

s, a
˘

ě Ap`,mq

*˙

ě 1´ εpmq,

Ap`,mq :“
λK

}K }8

η

2βη1 lnpJq
ln
´ ``m{2

`` 2m1{2`δE
1{2´δ
η,J,h

¯

,

εpmq :“ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

` exp
´

´
plnpJqq2p1´δqpηhDmq2δ

C

¯

,
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where η and η1 are as in (3.1.1) and (??), and

Eη,J,h :“
lnpJq ` 1

ηhD
. (3.2.7)

Remark 3.2.5. The following remarks are in order:

• In the rest of the analysis, we want to have Ap`,mq large and εpmq small. This is possible
to achieve by letting m tend to 8 when all the other parameters are fixed. As m is here
understood as the number of observations of the Markov chain psn, anqnPN, choosing m large
is however costly.

When m is fixed, but ` increases, the lower bound decreases. This comes from the fact that the
denominator in the definition of the Nadaraya-Watson estimator increases with the number
of observations.

• In this respect, it is interesting to note that, when ` and m are fixed, the two terms Ap`,mq
and εpmq depend in a somewhat dramatic way on the parameter η in the lower bound (3.1.1)
and on the bandwith h in Kh. Indeed, when we would like Ap`,mq to be large and εpmq to be
small. This is difficult to achieve when h is small whilst the accuracy of the Nadaraya-Watson
estimator gets better when h decreases. This makes the difficulty of the analysis.

Proposition 3.2.4 allows us to control the dynamics of the time component pΛnqně0 of the ARP.
In short, we want pΛnqně0 to remain as large as possible: intuitively, the larger Λn, the more
accurate the mixing properties of the sequence psk, akq0ďkďΛn . This is the purpose of the following
statement to clarify this fact:

Proposition 3.2.6. Let `0 and n be two integers greater than 1. For J, h, β and δ as in the

statement of Proposition 3.2.4 and for an additional real Γ0 ě 1 such that Γ
p1´2δq{p1`2δq
0 Eη,J,h ě 4,

let
`n “

Y

`0

´

1` Γ
p1´2δq{p1`2δq
0 Eη,J,h

¯n]

. (3.2.8)

Then, there exists an event Dpnq P F , with

Dpnq “
n´1
č

k“0

"

inf
ps,aqPS̄ˆĀ

`k`1
ÿ

j“`k

αj
`

s, a
˘

ě Ap`k, `k`1 ´ `kq

*

for Ap`k, `k`1 ´ `kq as in Proposition 3.2.4, and

P
`

Dpnq
˘

ě 1´ exp
`

Cβ2
˘

nJ
´

η1hD
¯β{2´1

´min
“

n,
C

δ

‰

exp
´

´
plnpJqq4`2δ0 Γ

2δp1´2δq{p1`2δq
0

C

¯

,

such that, for any realization ps, aq “ psn, anqnPN (of the Markov process defined in the previous
subsection) that belongs to Dpnq, we have, for any integer p P N,

Pps,aq

´

 

Λp`n ă `0
(

|GpΛ,Σ,Bqp

¯

ď n exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´Γ

p1´2δq2{r2p1`2δqs
0

16

¯

˙

,

on the event tΛp ě `nu.
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Very intuitively, `n plays in the end the role of available observations of the sequence ps, aq and
`0 is some threshold above which we want the time component of the ARP to stay. The parameter
Γ0 will be chosen in the end.

Proofs of Propositions 3.2.4 and 3.2.6 are given in Section 3.3.

3.2.4 Distance between the transition probabilities

We here introduce another key result. It is related to [27, Lemma 5], but it provides a quantitative
bound of the phenomenon spotted therein. Meanwhile, it also clarifies the proof, as the results
from [68] invoked in [27, Lemma 5] are just stated for a fixed choice of test functions (whilst the
estimate of the distance below implicitly requires to address a supremum over a collection of test
functions); moreover, the assumptions used in [68] involve additional stationarity properties, which
we do not use here.

In short, the ARP provides a form of averaging, which, in the proof below, manifests in the form
of diffusive bounds for martingales. The non-trivial point is to transform those diffusive bounds
into a result for the distance between the transitions kernel of the original MDP and that of the
ARP. In this regard, a key question is about the distance that should indeed equip the space of
probability measures. While [27] makes use of the Wasserstein distance, already existing proofs
for the rate of convergence, in the same Wasserstein distance, of the law of large numbers (see
in particular [57] and the references therein) show that the resulting speed of convergence would
dramatically suffer from the dimension. Instead, our approach here is to reduce the space of test
functions from Lipschitz to much more regular functions. Although this requires to work with very
strong assumptions on the coefficients, this allows us to preserve reasonable rate of convergence and
related complexity, even in higher dimension. This approach is taken from the analysis of central
limit theorems for particle systems, see for instance [89, 106].

Our space of test functions is defined as the Sobolev space H5ptdS{2u`1qpSq. In short, this is the
space of functions with square-integrable Sobolev derivatives up to the order 5ptdS{2u` 1q, see for
instance the book [6] by Adams and Fournier. We denote by } ¨ }H5ptdS{2u`1qpSq the corresponding

norm. We write the dual space as H´5ptdS{2u`1qpSq. It is a Sobolev space of negative distributions
equipped with the norm

}q}H´5ptdS{2u`1qpSq “ sup
ϕ:}ϕ}

H´5ptdS{2u`1q
pSq
ď1
xϕ, qy, (3.2.9)

where the bracket in the right-hand side is seen as the usual duality bracket. One very key prop-
erty is that, by Sobolev embedding (which holds true under the standing regularity of the do-
main, see [6]), any function in H5ptdS{2u`1qpSqq is bounded. In particular, any probability measure
on S can be regarded as an element of the dual space H´5ptdS{2u`1qpSq. The restriction of the
norm } ¨ }H´5ptdS{2u`1qpSq to the space of probability measures induces a distance that is denoted by
dH´5ptdS{2u`1qpSq.
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Our objective is to address

dH´5ptdS{2u`1qpSq

´

Πps,aq
`

pn, s, aq, ¨
˘

,P
`

ps, aq, ¨
˘

¯

“ sup
}ϕ}

H´5ptdS{2u`1q
pSq
ď1

A

ϕ,Πps,aq
`

pn, s, aq, ¨
˘

´ P
`

ps, aq, ¨
˘

E

.
(3.2.10)

We then notice from assumption (Regularity Cost and Transition Kernel) and from Sobolev
embedding theorem that there exist two constants c and C such that

dH´5ptdS{2u`1qpSq

´

P
`

ps, aq, ¨
˘

,P
`

ps1, a1q, ¨
˘

¯

ď sup
}ϕ}1,8ďc

A

ϕ,P
`

ps, aq, ¨
˘

´ P
`

ps1, a1q, ¨
˘

E

ď C
`

|s´ s1| ` |a´ a1|
˘

,

where, for a continuously differentiable function ϕ on S ˆ A, }ϕ}1,8 denotes the supremum norm
of |ϕ| ` |∇ϕ|. This plays a key role is the proof of the following result.

Proposition 3.2.7. Under the standing assumption, for any real θ P p0, 1{2q, we can find two
constants C and Cθ, not depending on the discretization parameters (but possibly depending on the
domains, on the dimensions, on the choice of K ) and with Cθ being allowed to depend on θ, with
the following property: for any fixed realization ps, aq of the process ps`, a`q`ě0, for any integers
n ě 1 and L ě 2, and any real ε ą 0 and β ě e2,

P
ˆ

ď

jěn

!

dH´5ptdS{2u`1q

´

Πps,aq
`

pj, s, aq, ¨
˘

,P
`

ps, aq, ¨
˘

¯

ě Enpθq
)

X

!

n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L
)

˙

ď Cθ
`

εh
˘´D

L´1{θ`1 ` C
1

βη1εDh2D
exp

´

´βη1hDpn´ 1q
¯

`
C

ηhD
exp

´

´
ηhD

C
pn´ 1q

¯

,

where

Enpθq “ C

ˆ n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

˙´p1´θq{2

` Ch` Cβε
η1

η

`

1` lnpJq
˘

.

Proof of the above result is given in Section 3.4.

3.2.5 Main statement

We now provide a rigorous version of the main Meta-Theorem.

Theorem 3.2.8. Under the standing assumptions, we can find a constant C (not depending on the
parameters of the algorithm but possibly depending on all the data entering the assumptions) such
that, for any ε P p0, 1q and for a number of observations

n ě exp
`

C
η1

η
| lnpεq|3

˘

,
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we have

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pn, s, aq
ˇ

ˇ ď C
”

1´
´

1`
η1

η

¯

lnpεq
ı

ε` Cη´3{8ε1{8`7D{8,

on an event of probability greater than

1´ C
`

η1
˘β{2´1

ε2D ´ C
´

1` η´4ε6D ` pη1q´4ε4D
¯

ε.

Proof. The proof is splitted into several steps.

First Step. We recall the equation for the optimal action value function. For any pn, s, aq P
Nˆ S ˆA,

QARP,‹
`

n, s, a
˘

“ Rps, aqPps,aq
`

tτ ě 1u | pΛ0,Σ0, B0q “ pn, s, aq
˘

` γ Eps,aq

”

sup
a1PĀ

QARP,‹
`

Λ1,Σ1, a
1
˘

| pΛ0,Σ0, B0q “ pn, s, aq
ı

.

Similarly, the original MDP satisfies:

Q‹ps, aq “ Rps, aq ` γ

ż

S
sup
a1PA

Q‹
`

s1, a1
˘

P
`

ps, aq, ds1
˘

,

which implies (using the fact that the function R is bounded)

ˇ

ˇ

ˇ
QARP,‹pn, s, aq ´Q‹ps, aq

ˇ

ˇ

ˇ
ď CPs,a

`

tτ “ 0u | pΛ0,Σ0, B0q “ pn, s, aq
˘

` γ

ż

S
sup
a1PA

ˇ

ˇ

ˇ
QARP,‹

`

n1, s1, a1
˘

´Q‹ps1, a1q
ˇ

ˇ

ˇ
Πs,a

`

pn, sq, pdn1, ds1q
˘

` γ

ˇ

ˇ

ˇ

ˇ

ż

S
sup
a1PA

Q‹
`

s1, a1
˘

”

P
`

ps, aq, ds1
˘

´Πs,a

`

pn, sq, pdn1, ds1q
˘

ı

ˇ

ˇ

ˇ

ˇ

.

We show in the second step of the proof of Proposition 3.2.6 that

Ps,a

`

tτ “ 0u | pΛ0,Σ0, B0q “ pn, s, aq
˘

ď exp

ˆ

´ inf
ps1,a1qPS̄ˆĀ

n´1
ÿ

j“0

αj
`

s1, a1
˘

˙

.

And then, seeing n as the initial value Λ0, we reformulate the above inequality as

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ0, s, aq
ˇ

ˇ ď C exp

ˆ

´ inf
ps1,a1qPSˆA

Λ0´1
ÿ

j“0

αj
`

s1, a1
˘

˙

` γEs,a

”

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ1, s, aq
ˇ

ˇ |GpΛ,Σ,Bq0

ı

` γ}Q‹p¨q}H5ptdS{2u`1qpSq sup
ps,aqPSˆA

›

›P
`

ps, aq, ¨
˘

´Πs,a

`

pΛ0, s, aq, ¨
˘›

›

H´5ptdS{2u`1qpSq
.
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By induction, we get, for any ` P t0, ¨ ¨ ¨ ,mu,

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ0, s, aq
ˇ

ˇ ď γ``1Es,a

”

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ``1, s, aq
ˇ

ˇ |GpΛ,Σ,Bq0

ı

` C
ÿ̀

k“0

γkEs,a

„

exp

ˆ

´ inf
ps1,a1qPS̄ˆĀ

Λk´1
ÿ

j“0

αj
`

s1, a1
˘

˙

|GpΛ,Σ,Bq0



` }Q‹p¨q}2,D
ÿ̀

k“0

γk`1Es,a

”

sup
ps,aqPSˆA

›

›P
`

ps, aq, ¨
˘

´Πs,a

`

Λk, s, aq, ¨
˘›

›

H´5ptdS{2u`1qpSq
|GpΛ,Σ,Bq0

ı

.

In particular, for ` “ m,

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ0, s, aq
ˇ

ˇ

ď γmEs,a

”

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ`, s, aq
ˇ

ˇ |GpΛ,Σ,Bq0

ı

` C
m
ÿ

k“0

γkEs,a

„

exp

ˆ

´ inf
ps1,a1qPS̄ˆĀ

Λk´1
ÿ

j“0

αj
`

s1, a1
˘

˙

|GpΛ,Σ,Bq0



` }Q‹p¨q}2,D

m
ÿ

k“0

γk`1Es,a

”

sup
ps,aqPSˆA

›

›P
`

ps, aq, ¨
˘

´Πs,a

`

Λk, s, aq, ¨
˘
›

›

H´5ptdS{2u`1qpSq
|GpΛ,Σ,Bq0

ı

“: T1 ` T2 ` T3.

Second Step. We now handle each of the three terms in conclusion of the first step. We start
with T1. From the boundedness of the action-value functions, we clearly have

T1 ď Cγm “: e1.

As far as T2 is concerned, we deduce from the fact that pΛkqkě0 is non-increasing that, for
k P t0, ¨ ¨ ¨ ,mu,

Es,a

„

exp

ˆ

´ inf
ps1,a1qPSˆA

Λk´1
ÿ

j“0

αj
`

s1, a1
˘

˙

|GpΛ,Σ,Bq0



ď Es,a

„

exp

ˆ

´ inf
ps1,a1qPSˆA

Λm´1
ÿ

j“0

αj
`

s1, a1
˘

˙

|GpΛ,Σ,Bq0



ď Ps,a

`

tΛm ă `0u |GpΛ,Σ,Bq0

˘

` exp

ˆ

´ inf
ps1,a1qPSˆA

`0´1
ÿ

j“0

αj
`

s1, a1
˘

˙

ď Ps,a

`

tΛm ă `0u |GpΛ,Σ,Bq0

˘

` e exp

ˆ

´ inf
ps1,a1qPSˆA

`0
ÿ

j“0

αj
`

s1, a1
˘

˙

,

where `0 is as in the statement of Proposition 3.2.6. Using the same notation as in the latter
statement and combining with Proposition 3.2.4 (with ` “ 0 and m “ `0 therein), we have, under
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the condition tΛ0 ě `mu,

T2 ď e2 :“ Cpm` 1q exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´Γ

p1´2δq2{r2p1`2δqs
0

16

¯

˙

` C exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´ `

1{2´δ
0

4E
1{2´δ
η,J,h

¯

˙

,

on an event F2 with probability

PpF2q

ě 1´ exp
`

Cβ2
˘

pm` 2qJ
´

η1hD
¯β{2´1

´min
“

m` 1,
C

δ

‰

exp
´

´
plnpJqq4`2δ0 Γ

2δp1´2δq{p1`2δq
0

C

¯

´ exp
´

´
plnpJqq2p1´δqpηhD`0q

2δ

C

¯

.

At last, we handle T3. Observing that any probability measure has a universally bounded norm
} ¨ }H´5ptdS{2u`1qpSq (as a consequence of Sobolev’s embedding theorem), we deduce that

Es,a

”

sup
ps,aqPSˆA

›

›P
`

ps, aq, ¨
˘

´Πs,a

`

Λk, s, aq, ¨
˘›

›

2,´D
|GpΛ,Σ,Bq0

ı

ď CPs,a

`

tΛm ă `0u |GpΛ,Σ,Bq0

˘

` C sup
jě`0

sup
ps,aqPSˆA

›

›P
`

ps, aq, ¨
˘

´Πs,a

`

j, s, aq, ¨
˘›

›

H´5ptdS{2u`1qpSq
.

By changing the value of C in the definition of e2, we obtain

T3 ď e2 ` e3,

on F2 X F3, where, by Proposition 3.2.7,

e3 :“ E`0pθq,

and

PpF3q

ě 1´ Cθ
`

εh
˘´D

L´1{θ`1 ´ C
1

βη1εDh2D
exp

´

´βη1hDp`0 ´ 1q
¯

´
C

ηhD
exp

´

´
ηhD

C
p`0 ´ 1q

¯

´ P
´!

`0
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L
)¯

,

where L is a free parameter.
Here, we claim that, for a universal constant c ą 0 (the proof is given next),

P
´!

`0
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L
)¯

ď exp
`

´cη2`0h
2D

˘

, (3.2.11)
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when
2}K }8

λK

L

`0
ď

1

2
ηhD. (3.2.12)

Choosing L to get equality in the above inequality, we obtain

PpF3q ě 1´ Cθη
´1{θ`1ε´Dh´D{θ`

´1{θ`1
0 ´ exp

`

´cη2`0h
2D

˘

´ C
1

βη1εDh2D
exp

´

´βη1hDp`0 ´ 1q
¯

´
C

ηhD
exp

´

´
ηhD

C
p`0 ´ 1q

¯

.

It remains to see that, on F3, we have implicitly

`0
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ě L.

Therefore, recalling the statement of Proposition 3.2.7, we obtain

e3 “ E`0pθq ď C
`

ηhD`0
˘´p1´θq{2

` ch` Cβε
η1

η

`

1` lnpJq
˘

.

Collecting all the terms, we end up with

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ0, s, aq
ˇ

ˇ

ď Cγm ` C
`

ηhD`0
˘´p1´θq{2

` ch` Cβε
η1

η

`

1` lnpJq
˘

` Cpm` 1q exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´Γ

p1´2δq2{r2p1`2δqs
0

16

¯

˙

` C exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´ `

1{2´δ
0

4E
1{2´δ
η,J,h

¯

˙

,

(3.2.13)

on tΛ0 ě `mu X F , where

PpF q ě 1´ exp
`

Cβ2
˘

pm` 1qJ
´

η1hD
¯β{2´1

´min
“

m` 1,
C

δ

‰

exp
´

´
plnpJqq4`2δ0 δ

2δp1´2δq{p1`2δq
0

C

¯

´ exp
´

´
plnpJqq2p1´δqpηhD`0q

2δ

C

¯

´ Cθη
´1{θ`1ε´Dh´D{θ`

´1{θ`1
0 ´ exp

`

´cη2`0h
2D

˘

´
1

βη1εDh2D
exp

´

´βη1hDp`0 ´ 1q
¯

´
C

ηhD
exp

´

´
ηhD

C
p`0 ´ 1q

¯

.

(3.2.14)

Third Step. We now tune the various parameters.
We first recall the meaning of each of them:
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1. The parameter m is an arbitrary integer that plays the role of a threshold in the various
truncations appearing in the expansions of T1, T2 and T3 in the first step. We may choose
it freely. In the bound (3.2.13), m appears through the factor Cγm and in the form a linear
factor in the penultimate term. In (3.2.14), m also plays the role of a linear factor. Last but
not least, m appears in the choice of the initial condition `m, as we required Λ0 to be greater
than `m.

2. In connection with the role of m, the parameter `m represents the number of observations
that are needed in the end. This is a quantity that can be tuned by the observer, but, for
obvious practical reasons, its value must be chosen in a minimal way depending on the choices
for the other parameters.

3. In fact, the parameter `m is related to `0, m and Γ0 through the formula (3.2.8). The largest
m, `0 and Γ0, the largest `m, but at the cost of an increase of complexity. The parameter `0
appears repeatedly in the two inequalities (3.2.13) and (3.2.14), with rates that are polynomial
or exponential. The parameter Γ0 also appears in various exponential terms.

4. The polynomial rates in the previous item are dictated by the exponent θ. The latter comes
from the statement of Proposition 3.2.7. It is required to be in p0, 1{2q. Similarly, the exponent
δ comes from Propositions 3.2.4 and 3.2.6 and is required to belong to p0, 1{2q.

5. The parameter ε also appears in the statement Proposition 3.2.7. The smallest ε, the smallest
its contribution in (3.2.13), but the largest its impact in (3.2.14).

6. The parameter β arises in the statement of Proposition 3.2.4. It must be greater than e2.
The highest β, the highest the error in (3.2.13). The impact on (3.2.14) is more subtle. When
β is large, the factor phDqβ{2´1 is typically expected to be small (see below for the choice of
h) and the factor exppCβ2q becomes large. Clearly, β should not be too large.

7. As far as h and J are concerned, we recall that h is the bandwidth in the kernel Kh. Typically,
it is small. And J is connected with the numbers of balls of radius h that are need to cover
the domain S ˆ A. We should think it as h´D up to a scaling factor that depends on the
diameter of the domain.

8. The parameter γ is directly connected with the optimization problem: it is the discount
factor. The parameters η and η1 reflects the non-degeneracy (or, simply, the presence) of the
noise underpinning the dynamics.

In order to choose all these parameters together with proceed as follows. We fix two tolerance
thresholds Tolerror and Tolprob that we do not want to exceed in both the error (3.2.13) and the
probability (3.2.13) (up to the operation x ÞÑ 1 ´ x). Also choose β “ e2 ` 1 and θ “ δ “ 1{4,
consistently with the observations that we have just made in the above description .

By (3.2.13) , we then choose

m “
P ln

`

Tolerror

˘

lnpγq

T

, h “ ε “ Tolerror,
1
16Γ

1{12
0 “ exp

´

´
2βη1}K }8

ηλK
lnpJq ln

`

Tolerror

˘

¯

,
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and `0 as the maximum between `a and `b where

ε´Dh´9D`´3
a “ Tolprob, `b “ Γ

p1´2δq{p1`2δq
0 Eη,J,h

We get

`a “ Tol
´1{3
prob ε

´D{3h´3D, hD`a “ Tol
´1{3
prob ε

´D{3h´2D.

We obtain

exp
`

´cη2`0h
2D

˘

ď Cη´3{2εDh3DTolprob,

exp
`

´βη1hDp`0 ´ 1q
˘

ď C
`

η1
˘´3

εDh6DTolprob,

exp
`

´
ηhD

C
p`0 ´ 1q

˘

ď C 1η´3εDh6DTolprob.

As far as the first four terms in (3.2.14) are concerned,

exp
`

Cβ2
˘

pm` 1qJ
`

η1hD
˘β{2´1

ď C ln
`

Tolerror

˘`

η1
˘β{2´1`

hD
˘β{2´2

,

min
“

m` 1,
C

δ

‰

exp
´

´
plnpJqq4`2δ0 Γ

2δp1´2δq{p1`2δq
0

C

¯

ď C`´3
a ď CTolprobε

Dh9D,

exp
´

´
plnpJqq2p1´δqpηhD`0q

2δ

C

¯

ď Cη´3εDh6DTolprob, ,

η´1{θ`1ε´Dh´D{θ`
´1{θ`1
0 ď η´3h5DTolprob.

As for (3.2.13), we have

`

ηhD`0
˘´p1´θq{2

ď Cη´3{8Tol
1{8
probε

D{8h3D{4,

pm` 1q exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´Γ

p1´2δq2{r2p1`2δqs
0

16

¯

˙

ď C ln
´

Tolerror

¯

Tolerror,

exp

ˆ

´
λK

}K }8

η

2βη1 lnpJq
ln
´ `

1{2´δ
0

4E
1{2´δ
η,J,h

¯

˙

ď CTolerror.

We end up with

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pΛ0, s, aq
ˇ

ˇ

ď C
”

1´
´

1`
η1

η

¯

ln
´

Tolerror

¯ı

Tolerror ` Cη
´3{8Tol

1{8
probTol7D{8error ,

(3.2.15)

on an event of probability greater than

1´ C
`

η1
˘β{2´1

ln
´

Tolerror

¯

TolDpβ{2´2q
error ´ C

´

1` η´4Tol6Derror ` pη
1q´4Tol4Derror

¯

Tolprob. (3.2.16)
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Now,

`m ď `0

ˆ

1` Γ
1{3
0

| lnpTolerrorq|

ηTolDerror

˙| lnpTolerrorq|

“ maxp`a, `bq

ˆ

1` Γ
1{3
0

| lnpTolerrorq|

ηTolDerror

˙| lnpTolerrorq|

ď Tol
´1{3
prob Tol´10D{3

error

ˆ

1` exp
`

C
η1

η
| lnpTolerrorq|

2
˘ | lnpTolerrorq|

ηTolDerror

˙| lnpTolerrorq|`1

,

(3.2.17)

which is enough to complete the proof.

Fourth Step. We now prove (3.2.11). We have

P
´!

`0
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L
)¯

“ P
´!

`0
ÿ

k“1

Kh

`

s´ sk, a´ ak
˘

ď 2}K }8L
)¯

Here,

!

`0
ÿ

k“1

Kh

`

s´ sk, a´ ak
˘

ď 2}K }8L
)

Ă

!

`0
ÿ

j“1

1B
`

sj , aj
˘

ď
2}K }8

λK
L
)

,

where B is the ball of center ps, aq and of radius ρh. By the lower bound for the transition kernel,

P
´!

`

sj`1, aj`1

˘

P B
)

|Fj
¯

ě ηhD.

Therefore, the sum
`0
ÿ

j“1

1B
`

sj , aj
˘

is stochastically lower bounded by
`0
ÿ

i“1

εi,

where pε1, ¨ ¨ ¨ , ε`0q are independent and identically distributed Bernoulli random variables with
parameter ηhD, which implies that

P
´!

`0
ÿ

j“1

1B
`

sj , aj
˘

ď
2}K }8

λK
L
)¯

ď P
´!

`0
ÿ

j“1

εj ď
2}K }8

λK
L
)¯

“ P
´! 1

`0

`0
ÿ

j“1

εj ď
2}K }8

λK

L

`0

)¯

.

Assume now that
2}K }8

λK

L

`0
ď

1

2
ηhD.
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By Hoeffding inequality (see [49, Chapter 2, Section 4]), we obtain

P
´!

`0
ÿ

j“1

1B
`

sj , aj
˘

ď
2}K }8

λK
L
)¯

ď exp
`

´cη2`0h
2D

˘

,

for a universal constant c ą 0.

3.2.6 Example from mean field control

Our main example is taken from mean field control (see for instance [11, 30]). In this situation,
we assume that S is the space of probability measures over a finite set, denoted by S . In this
situation, the Markov decision process psnqně0 is implicitly understood as describing the evolution
of a large cloud of N agents who cooperate in order to maximise a common reward assigned to the
collectivity (or to minimise a common energy).

A prototype for such a situation is the case when agent i P t1, ¨ ¨ ¨ , Nu in the population obey
dynamics of the form

Xi
n`1 “ F

`

Xi
n, µ̄

N
n , α

i
n, U

i
n`1, U

0
n`1

˘

, (3.2.18)

where F is map (common to all the agents) from S ˆ S ˆ A ˆ r0, 1s ˆ r0, 1s into S . Above, the
notation µ̄Nn is the standard notation for the empirical measure of the cloud of agents at time n,
namely

µ̄Nn :“
1

N

N
ÿ

j“1

δ
Xj
n
.

Moreover, in (3.2.18), quantities ppUk` qk“0,¨¨¨ ,N q`ě0 are independent random variables with uniform
distribution on r0, 1s. The interpretation of those samples is as follows: the variable U in`1 (indexed
by the same label i as the player itself) should be thought as an idiosyncratic noise to which agent
i is subjected. Importantly, this noise does not impact directly the rest of the collectivity (it does
impact indirectly the other players through the mean field interaction term). As made clear below,
idiosyncratic noises do not randomize the state of the population: we drew a similar observation
in the chapter dedicated to mean field games. Differently, the variable U0

n`1 is the same in the
dynamics of all the players. This noise is said to be common and should induce in the end a form
of randomization of the population.

Last but not least, the variable αin in (3.2.18) denotes the action chosen by player i at time n,
based upon the observations made up until time n. Whereas this would be in fact very welcome for
practical purposes, we refrain from entering a lengthy discussion on the quantities that are indeed
observable in practice. This is somehow outside the scope of the chapter.

In mean field control, players cooperate to maximize a global reward. With the notations we
introduced before, this common reward may be expressed as

E
” 1

N

N
ÿ

i“1

ÿ

kě0

γkRpXi
k, α

i
kq

ı

,

expectation being taken with respect to all the noises. Typically, players are assumed to start from
independent and identically distributed initial conditions.
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Then, the key idea is to take the limit N Ñ 8 and to address directly the same problem but
when the population is infinite. Inspired by mean field theory in statistical physics, the ansatz is
the following: one may directly optimize over the state of the population, and the latter should
coincide with the theoretical distributional state of any agent in the population (which, in the
optimal state, are expected to be exchangeable). Intuitively, the question is thus to derive the
dynamics for the evolution of the population from the relation (3.2.18). Thinking of the action αin
as a function (through a policy π) of the private state Xi

n and of the state of the population µ̄Nn ,
one postulates that, given the state sn of the (now infinite) population at time n, the state sn`1 is
given by

sn`1 “

´

sn bUnifpr0, 1sq
¯

˝

´

px, uq ÞÑ F
`

x, sn, πpx, snq, u, U
0
n`1

˘

¯´1
. (3.2.19)

Obviously, this identity may be rewritten in terms of transition probabilities on the space S. For
ps, aq P S ˆA and for v P r0, 1s, we define

Pps, aq
`

E
˘

“ P
´!´

sbUnifpr0, 1sq
¯

˝

´

px, uq ÞÑ F
`

x, s, a, u, U0
˘

¯´1
P E

)¯

,

with U0 being uniformly distributed on r0, 1s. The mean field control problem is nothing but the
Markov decision process associated with the kernel P. It is also worth emphasizing that (3.2.19)
corresponds to the dynamics psn “ LpXn|pU

0
k q1ďkďnqqně0 of the conditional marginal laws (given

the common noise) of a typical agent in the population obeying the following rule

Xn`1 “ F
`

Xn,LpXn|pε
0
k, U

0
k q1ďkďnq, αn, U

1
n`1, U

0
n`1

˘

, n ě 0. (3.2.20)

As far as the control parameter is concerned, the set A may be itself the space of probability
measures PpA q over some finite set A or it may a more general ‘continuous’ set. When A is
understood as PpA q, it means that players are allowed to play random strategies.

We now give several examples for the form of the common noise. These are important in order
to obtain a model that satisfies our assumptions:

1. Call G : r0, 1s Ñ S “ PpS q a random variable with uniform distribution (when r0, 1s is
equipped with the Lebesgue measure) and then call H : r0, 1s ˆ PpS q Ñ S a mapping such
that, for any µ P PpS q, the image of the Lebesgue measure on r0, 1s by u P r0, 1s ÞÑ Hpu, µq
is µ-distributed (see [30, Chapter 5] for the construction). Then, for pU0

nqně1 and pU1
nqně1,

two independent sequences of independent and identically distributed random variables as
above, with the first one representing the common noise and the second one representing the
idiosyncratic noice, we may consider the dynamics

Xn`1 “ H
`

U1
n`1, GpU

0
n`1q

˘

, n ě 0.

Then, any Xn`1 is distributed (conditional on the common noise) according to a measure on
S that is sampled randomly (uniformly) on S.

2. For sure, the above example may be generalized. For instance, if F : SˆS ˆAˆr0, 1s Ñ S is
given (notice that this one is independent of the common noise), one may consider in addition
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a sequence pε0
nqně1, independent of the two sequences pU0

nqně1 and pU1
nqně1, such that each

ε0
n is Bernoulli(p) distributed for p P p0, 1q. Then, we may consider the dynamics:

Xn`1 “ εn`1H
`

U1
n`1, GpU

0
n`1q

˘

` p1´ εn`1qF
`

Xn,LpXn|pε
0
k, U

0
k q1ďkďnq, αn, U

1
n`1

˘

, n ě 0.

This corresponds to the case where, with probability 1 ´ εn, the agent follows the ‘original’
dynamics (3.2.20) (without common noise), and with probability ε0, it is resampled uniformly
on the whole space.

3. There is another way to extend the first example. We consider a smooth density function
ϕ from RdS Ñ R with a support that is localized around 0. We call Z0 a random variable
distributed according to ϕ. We observe that, for a probability measure s P S such that

inf
i“1,¨¨¨ ,|S |

si ě q,

for some q ą 0 (and with s1, ¨ ¨ ¨ , s|S | denoting the weights of the probability measure s on
the set S ), the random variable s`Z0 remains a probability measure (if the support of ϕ is
sufficiently concentrated around 0). In order to clarify this, denote by c the smallest radius
of the ball containing the support of ϕ. Then, for any s P S and for q ě c, we have

P
´

 

q1` p1´ qqs` Z0 P S
(

¯

“ 1,

where 1 is (here) the vector p1{|S |, ¨ ¨ ¨ , 1{|S |q. This says that

Xn`1 “ H
´

Un`1, q1` p1´ qqLpXn|pZ
0
kq1ďkďnq ` Z

0
n`1

¯

,

is also a model with common noise, when pZ0qkě1 are independent copies of Z0.

For sure, all the examples may be reformulated in terms of the sole kernel P. In fact, what
really matters is the practical meaning of the various types of transformation Hp. . . q presented
right above:

1. In examples (1) and (2), the transformation H is used to lower bound the density of the
law LpXn|pU

0
k q1ďkďnq. In clear, with probability p, one picks up randomly (with uniform

distribution) an element of S. Therefore, for any Borel subset E Ă S,

P
`

ps, aq, E
˘

ě p
LebSpEq

LebSpSq
, (3.2.21)

where LebS is the Lebesgue measure on S. This fits the constraint (3.1.1) (at least for the
marginal in space).

2. In example (3), one has

P
`

ps, aq, E
˘

ď supϕˆ LebSpEq, (3.2.22)

which fits (??).
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Now, for a measurable kernel P
0

: SˆAÑ PpSq that would correspond to the dynamics of a mean
field control problem (obtained for instance by means of (3.2.20)), we can construct the following
(new) kernel P (by means of the same principles as those underpinning the aforementioned examples
1 and 3):

P
`

ps, aq, E
˘

“ p
LebSpEq

LebSpSq
` p1´ pq

ż

RdS

ˆ
ż

S
1E

`

q ` p1´ qqz ` y
˘

P
0`
ps, aq, dz

˘

˙

ϕpyqdy. (3.2.23)

It satisfies (3.2.21) and (3.2.22) (with respect to possibly different multiplicative constants).

For this example, we now address the Bellman equation. It reads

V psq “ sup
aPA

”

Rps, aq ` γ

ż

S
V ps1qP

`

ps, aq, ds1
¯ı

“ sup
aPA

”

Rps, aq ` γ

ż

R|S |

p1´ pq

ż

R|S |

ˆ
ż

S
V
`

q ` p1´ qqz ` y
˘

P
0`
ps, aq, dz

˘

˙

ϕpyqdy
ı

`
γp

LebSpSq

ż

S
V ps1qds1.

There may be several types of conditions under which the value function V is regular in s (which

is a prerequisite in our main theorem). A very basic example is: R and P
0

are smooth and have a
separated structure in ps, aq. We exemplify the application of our main result to the above example
in the next subsection.

3.2.7 The common noise as an exploration noise

In the previous subsection, we have given some examples of noises in the framework of mean field
control that would induce a form of exploration consistent with the two conditions (3.1.1) and
(??). In fact, in this discussion, we have just addressed the randomization of the state variable
(i.e., the law of the state in a mean field control problem). In fact, both (3.1.1) and (??) also
require to address the ‘transitions’ of the action variable. In this regard, it must be stressed that,
in the algorithm (2), we can only choose an to be randomly distributed on the whole space. Whilst
this may open some questions from the practical point view about the accuracy of such a strategy,
this fits in fact the mathematical analysis that we have exposed in this section. Very briefly, the
reader will notice from the reading of the forthcoming Section 3.3 that our strategy for proving
Propositions 3.2.4 and 3.2.6 is greatly inspired from the so-called coupon collector problem (see for
instance [13]) in which new coupons are discovered with a purely random strategy. In this sense,
the ratio η1{η can be understood as the ratio (up to a multiplicative constant) }ϕ}8{p appearing in

(3.2.21) and (3.2.22). This leads us to the following observation: in (3.2.23), one may start from P
0

and then regard P as a randomized version of it just used for the purpose of learning. This point
of view is very close to the one considered in the chapter dedicated to mean field games.

To make this clear, we have the following statement:

Lemma 3.2.9. Within the mean field control framework (as described in the previous subsection)
and with the same notation as in (3.2.23), call V ‹,0 (resp. Q‹,0) the value function (resp. the action
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value function) associated with the kernel P
0

and with the cost R. Assume that V ‹,0 is Lipschitz
continuous in s. Then,

sup
ps,aqPSˆA

|Q‹,0ps, aq ´Q‹ps, aq| ď C
`

p` q
˘

,

where q denotes the radius of the support of ϕ.

Before we give the proof of Lemma 3.2.9, we now provide the meaning of it. Typically, }ϕ}8 is
of order q´dS . We thus deduce that (3.2.15), (3.2.16) and (3.2.17) hold true with

η “ p, η1 “ q|S |´1.

In particular, we obtain

Proposition 3.2.10. In the example (3.2.23), choose

p “ qdS “ ToldSerror,

then the bounds (3.2.15), (3.2.16) and (3.2.17) give

sup
ps,aqPSˆA

ˇ

ˇQ‹ps, aq ´QARP,‹pn, s, aq
ˇ

ˇ ď C
”

1´ ln
´

Tolerror

¯ı

Tolerror,

on an event of probability greater than

1´ CTolerror ´ CTolprob.

This requires

n ě exp
`

C| lnpTolerrorq|
3
˘

observations and this yields an approximation of the original Q‹,0 action-value function at order
Tolerror (when the value functions are Lipschitz continuous).

Obviously, the thrust of this result is that the dimensions of the state and action spaces just
come through the various constants.

We now prove:

Proof of Lemma 3.2.9. Given the expressions of Q‹,0 and Q‹, it suffices to prove the same bound
but for V ‹,0 and V ‹.

The main point is to observe from (3.2.23) that

W1

´

P
`

ps, aq, ¨
˘

,P
0`
ps, aq, ¨

˘

¯

ď C
`

p` q
˘

,

where W1 is the standard Wasserstein distance

W1pµ, νq “ sup
ϕ

ż

S
ϕd

`

µ´ ν
˘

, µ, ν P PpSq,

the supremum being taken over all the Lipschitz continuous (and hence bounded) functions on S
with 0 mean. Back to the Bellman equation, we deduce that

sup
sPS

ˇ

ˇV ‹psq ´ V ‹,0psq
ˇ

ˇ ď γ sup
sPS

ˇ

ˇV ‹psq ´ V ‹,0psq
ˇ

ˇ` C
`

p` q
˘

,

from which the result easily follows.
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3.2.8 Further prospects

Here are some possible directions of research:

1. It is clear that the various constants appearing in the rates of convergence depend on the
geometries of the space and action domains. We think it possible to specify the explicit
dependence upon the diameters of those domains. Intuitively, the rates should be better on
smaller domains. As an application of this, we hope to be able to design some refinement of
the method close to the optimal policy, in order to get better accuracy of the action value
function in the neighborhood of the latter.

2. In connection with mean field control, one should come back to the original problem with a
finite number of players and then see how the Q-function that is learnt for the limiting (over
the size of the population) problem provides a relevant approximation of theQ-function for the
particle system. This question looks very close to questions related to the rate of convergence
of the value functions in mean field control problem, see for instance [CecchinFinite, 25,
26].

3. In connection with the previous item, one should also wonder about the practical implementa-
tion of the common noise when dealing with the particle system. Assuming for instance that
the system represents a flock of bots, one understands that, in order to realize the common
noise, one may need to reshuffle the locations of the bots. Whereas the mean field control
problem features a lot of symmetries, there might be in fact a break of symmetry when real-
locating new positions to the bots: one may guess that there should exist an additional cost
that one should pay for reallocating the positions of the bots (in addition to the effective fea-
sibility of the operation). Possibly, we could address this question by introducing additional
transport costs (in connection with questions of optimal transportation).

3.3 Proofs of the estimates for the repeated covering times

The purpose of this section is to prove Propositions 3.2.4 and 3.2.6.

3.3.1 Proof of Proposition 3.2.4

The proof of Proposition 3.2.4 relies on the following lemma:

Lemma 3.3.1. Let d ě 1 be an integer and E Ă Rd be an open subset satisfying a uniform
(interior) cone condition. Then, there exist two constants, c0 and C0, only depending on E, such
that, for any δ ą 0, there exist an integer J , with c0δ

´d ď J ď C0δ
´d, J elements pxjqj“1,¨¨¨ ,J , J

pairwise disjoint balls pBjpc0δqqj“1,¨¨¨ ,J , of radius c0δ each and respectively of centers pxjqj“1,¨¨¨ ,J ,
and J balls pBjpC0δqqj“1,¨¨¨ ,J , of radius C0δ each and respectively of centers pxjqj“1,¨¨¨ ,J , such that

J
ď

j“1

Bjpc0δq Ă E Ă
J
ď

j“1

BjpC0δq.
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Intuitively, Lemma 3.3.1 says that we can partition S̄ ˆ Ā into subsets that have (up to a
multiplicative to constant) the same volume as a ball of radius h. This property plays a key role
in the proof of Proposition 3.2.4: when h is not too small, assumption 3.1.1 provides a uniform
lower bound for the probability of reaching each of these subsets. If the interior cone condition
were not satisfied, we could think, as counter-examples, of domains with arbitrarily thiner tubes of
fixed length where the process psn, anqně0 would go with arbitrarily low probability.

The proof of Lemma 3.3.1 is postponed to the end of the subsection. We now directly turn to:

Proof of Proposition 3.2.4. We recall the notation D “ dS ` dA, which we use throughout the
proof.

By means of Lemma 3.3.1 in dimension dS and dA respectively (with c0δ “ h in both cases,
but with c implicitly depending on the dimension), we can cover S ˆ A by J subsets (called
cells) B1, ¨ ¨ ¨ , BJ , with the properties that (using obvious notation similar to the notation of the
statement of Lemma 3.3.1) cD`1

0 h´D ď J ď C0c
D
0 h

´D and that Bj contains, for each j “ 1, ¨ ¨ ¨ , J ,
the product of two balls of radius h, one in dimension dS and one in dimension dA. For any
j “ 1, ¨ ¨ ¨ , J , we denote by B1j by the D-dimensional ball with the same center as Bj and with
radius 3%h. Without any loss of generality, we can assume J ě 3.

We notice from (3.1.1) that, for an arbitrary n ě 0,

1 “ P
´

 

psn, anq P S ˆA
(

¯

ě

J
ÿ

j“1

P
´

 

psn, anq P Bj
(

¯

ě

J
ÿ

j“1

ηhD “ ηJhD ě ηcD`1
0 . (3.3.1)

We use the two bounds ηJhD ď 1 in the proof. The bound ηc
pD`1q
0 ď 1 is just given for information

but we don’t use it: as a main drawback, the constant c0 depends on the geometry of the domain
S ˆA.

Throughout the proof, we denote by ` a time from which the process psn, anqně0 is considered.
Moreover, for ps, aq P S ˆA, we call ps, aq the unique index j P t1, ¨ ¨ ¨ , Ju such that ps, aq P Bj .

First Step. Let Tk be the first time after ` when each set has been visited at least k times by
the process psn, anqně0:

Tk “ min

#

n ě ` : min
1ďjďJ

n
ÿ

i“`

1Bj
`

si, ai
˘

ě k

+

, (3.3.2)

with the convention that T0 “ `´ 1. We prove below that each Tk is almost surely finite.

Elaborating on the first steps of Carden’s proof, we get, for any integer n ě 1 and any ps, aq P
S ˆA,

Tn
ÿ

i“`

αi
`

s, a
˘

“

n
ÿ

k“1

Tk
ÿ

i“Tk´1`1

αi
`

s, a
˘

ě
λK

}K }8

n
ÿ

k“1

ˆ

max
1ďjďJ

Tk´1
ÿ

i“0

1B1j

`

si, ai
˘

˙´1

, (3.3.3)

where we used the fact that, between Tk´1 ` 1 and Tk, the process psi, aiqiě1 passed at least once
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by the cell containing ps, aq. In words, there exists a least one i P tTk´1 ` 1, ¨ ¨ ¨ , Tku, such

αi
`

s, a
˘

“ λK

ˆi´1
ÿ

j“0

K
`

s´ sj , a´ aj
˘

˙´1

ě λK

ˆTk´1
ÿ

j“0

}K }81B%hps,aq
`

sj , aj
˘

˙´1

“
λK

}K }8

ˆTk´1
ÿ

j“0

1B1
`

sj , aj
˘

˙´1

,

where, in the first line, we denoted by B%hps, aq the D-dimensional ball of center ps, aq and of radius
%h and where, in the second line, we denoted by B1 the ball B1ps,aq. The fact that we can pass

from the ball B%hps, aq in the first line to the ball B1 in the second line is justified as follows: Since
ps, aq P Bps,aq, it holds that

B%hps, aq Ă
!

ps1, a1q P S̄ ˆ Ā : dist
´

ps1, a1q, Bps,aq

¯

ď %h
)

Ă B1ps,aq “ B1.

In order to get the second inclusion, we used the triangular inequality together with the fact that
Bps,aq is included in the D-dimensional ball of center psps,aq, aps,aqq and of radius

?
2h ă 2%h.

For comparison, the reader should observe that, in Carden’s paper, the weaker lower bound is
used in lieu of (3.3.3):

αi
`

s, a
˘

ě λK

ˆTk´1
ÿ

j“0

}K }8

˙´1

.

Although the above is sufficient to prove the convergence of the learning algorithm introduced in
Carden, it leads in fact to very poor quantitative bounds, whence the need for the refined version
(3.3.3).

Second Step. While most of the proof is dedicated to the obtention of an upper bound for the
random variables pTkqkě1, we start with a lower bound for T1. The motivation is the following: in
order to handle (3.3.3), we need an averaging result for the sum

řTk´1
i“0 1B1j psi, aiq, which requires

Tk (and thus T1 when k “ 1) to be large enough.

In fact, both the methods to get a lower bound for T1 and an upper bound for the variables
pTkqkě1 are very much inspired by the coupon collector problem. Here, the coupon collector problem
we use to lower bound T1 is associated with iterated discoveries of new cells of the form pB1jqj“1,¨¨¨ ,J .
We let τ 11 :“ ` (this is understood as the first discovery time of a new cell). By induction and as
long as i P t2, ¨ ¨ ¨ , Ju, we define τ 1i as the discovery time of the ith new cell:

τ 1i :“ min

$

&

%

n ą τ 1i´1 : psn, anq R

τ 1i´1
ď

k“1

B1psk,akq

,

.

-

. (3.3.4)

For a given i P t2, ¨ ¨ ¨ , Ju and for k ě `, we have, on the event tτ 1i´1 ď k ă τ 1iu (which belongs to
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Fk),

P
´

 

τ 1i “ k ` 1
(

|Fk
¯

ď P
ˆ

ď

jRppsi,aiqq1ďiďk

B1j |Fk
˙

ď
ÿ

jRtpsτl ,aτl q,1ďlďi´1u

P
´

B1j |Fk
¯

ď η1
´

J ´ pi´ 1q
¯

hD “ η1JhD
´

1´
i´ 1

J

¯

.

(3.3.5)

So, conditional on Fτ 1i´1
, t1i :“ τ 1i ´ τ 1i´1 is stochastically bounded from below by a geometric

random variable of parameter minp1, η1JhDr1´pi´1q{Jsq. We deduce that T1 is stochastically lower
bounded by

řJ
i“1

rt1i, where rt11, ¨ ¨ ¨ ,rt
1
J are independent random variables of geometric distributions,

with pminp1, η1JhDr1´ pi´ 1q{Jsqq1ďiďJ as parameters of success. We then apply Lemma 3.6.2 in
the appendix. We get that there exists a universal constant C such that, for any r ą 0,

P
´

J
ÿ

i“1

rt1i ă
J lnpJ{r2rη1sq

2rη1

¯

ď exp
`

1` Cr2
˘

´2rη1

J

¯r{2
,

with rη1 “ η1JhD, which is less than J since η1hD ď 1, and then

P
´

T1 ď

Q

´
lnp2η1hDq

2η1hD

U¯

“ P
´

T1 ď

Q lnp1{r2η1hDsq

2η1hD

U¯

ď exp
`

1` Cr2
˘

´

2η1hD
¯r{2

. (3.3.6)

Back to (3.3.3), we now provide an upper bound for the sequence

ˆ

1

n

n´1
ÿ

i“0

1B1
`

si, ai
˘

˙

ně1

,

for a given cell B1 of the type B1j for j P t1, ¨ ¨ ¨ , Ju. Thanks to (??), we know that the above mean
can be dominated by

ˆ

1

n

n
ÿ

i“1

εi

˙

ně1

,

where pεnqně1 is a sequence of independent and identically distributed Bernoulli random variables
with parameter η1hD, in the sense that

1B1
`

si, ai
˘

ď εi`1, i ě 0.

We then deduce from Lemma 3.6.1 that, for β ą e2,

P
ˆ

ď

něr´ lnpη1hD{2q{t2η1hDus

! 1

n

n
ÿ

k“1

εk ě βη1hD
)

˙

ď
`

η1hD
˘β{2´1

. (3.3.7)

Therefore,

P
ˆ

ď

něr´ lnpη1hD{2qs{t2η1hDu

! 1

n

n
ÿ

k“1

1B1
`

si, ai
˘

ě βη1hD
)

˙

ď
`

η1hD
˘β{2´1

,
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and then,

P
ˆ

ď

j“1,¨¨¨ ,J

ď

něr´ lnpη1hD{2qs{t2η1hDu

! 1

n

n´1
ÿ

k“0

1B1j

`

si, ai
˘

ě βη1hD
)

˙

ď J
`

η1hD
˘β{2´1

.

Combining with (3.3.6) and recalling that η1 ě 1, we get (for a new value of C)

P
ˆ

ď

j“1,¨¨¨ ,J

ď

něT1

! 1

n

n´1
ÿ

i“0

1B1j

`

si, ai
˘

ě βη1hD
)

˙

ď exp
`

Caβ2
˘

J
´

η1hD
¯β{2´1

.

Back to (3.3.3), we get, for n ě 1,

P
ˆ"Tn

ÿ

i“`

αi
`

s, a
˘

ě
λK

}K }8

1

βη1hD

n
ÿ

k“1

1

Tk

*˙

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

. (3.3.8)

Third Step. As made clear in (3.3.8), the next step is to provide a lower bound 1{Tk and thus
to upper bound Tk. Once again, the argument is very much inspired from the coupon collector
problem, but there are some subtle differences from the second step, which requires some care.

Following the previous step, we first explain how to upper bound T1. To do so, we define the
analogue of τ 11 in (3.3.4) but with respect to the balls pBjqj“1,¨¨¨ ,J instead of pB1jqj“1,¨¨¨ ,J . We thus
let τ1 “ ` and, as as long as i P t2, ¨ ¨ ¨ , Ju, we define by induction τi as the discovery time of the
ith new cell:

τi “ min

#

n ą τi´1 : psn, anq R

τi´1
ď

k“1

Bpsk,akq

+

.

For i ě 1 and k ě 0, we have, on the event tτi´1 ď k ă τiu,

P
´

 

τi “ k ` 1
(

|Fk
¯

ě P
ˆ

ď

jRp`psi,aiqq1ďiďk

Bj |Fk
˙

“
ÿ

jRt`psτj ,aτj q,1ďjďi´1u

P
´

Bj |Fk
¯

ě η
´

J ´ pi´ 1q
¯

hD “ ηJhD
´

1´
i´ 1

J

¯

.

Here, we recall from (3.3.1) that ηJhD ď 1. So, conditional on Fτi´1 , ti :“ τi´τi´1 is stochastically
bounded from above by a geometric random variable of parameter ηJhDp1´pi´1q{Jq. We deduce
that T1 ´ ` is stochastically dominated by

J
ÿ

i“1

rti,

where rt1, ¨ ¨ ¨ ,rtJ are independent random variables of geometric distributions, with ηJhDp1´ pi´
1q{Jq1ďiďJ as parameters of success. We now let

W1 “

J
ÿ

i“1

rti,
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and use a concentration inequality on W1 stated in Lemma 3.6.2 in the appendix. We deduce from
item piq therein that there exists a universal constant C such that, for any r P p0, 1q,

E
”

exp
´

rηhD
“

W1 ´ EpW1q
‰

¯ı

“ E
”

exp
´

r
ηJhD

J

“

W1 ´ EpW1q
‰

¯ı

ď exp
`

C
r2

1´ r

˘

, (3.3.9)

where ĂW1 is obtained from W1 from a constructive manner and satisfies W1´1{pηhDq ď ĂW1 ďW1.

Back to the first step, we can now (stochastically) bound the conditional law of the increment
Tk ´ Tk´1 given FTk´1

by the law of a new coupon collector problem as defined in the second and
third step. We deduce that

Tk ď ``
k
ÿ

j“1

Wj , k ě 1, (3.3.10)

where pWkqkě1 is a collection of independent random variables of the same law as W1. And then,

n
ÿ

k“1

1

Tk
ě

n
ÿ

k“1

ˆ

``
k
ÿ

j“1

Wj

˙´1

,

which prompts us to define, for any κ ą 0, the event:

Anpκq “

"

max
1ďkďn

„ k
ÿ

j“1

pĂWj ´ ErĂW1sq



ă κ

*

, (3.3.11)

where pĂW1, ¨ ¨ ¨ ,ĂWnq are independent and identically distributed random variables obtained by

means of Lemma 3.6.2 and satisfy Wi ´ 1{pηhDq ď ĂWi ďWi.

We notice that

ErW1s “

J
ÿ

i“1

Errtis “
J

ηJhD

J
ÿ

i“1

1

J ´ pi´ 1q
“

1

ηhD

J
ÿ

i“1

1

i
.

It is well-known that

lnpJq “

ż J

1

1

x
dx ď

J
ÿ

i“1

1

i
ď

ż J

1

1

x
dx` 1 “ lnpJq ` 1,

and then,
lnpJq

ηhD
ď ErW1s ď

lnpJq ` 1

ηhD
“ Eη,J,h. (3.3.12)

In the end, we obtain, on the event Anpκq,

@k P t1, ¨ ¨ ¨ , nu,
k
ÿ

j“1

Wj ď

k
ÿ

j“1

ĂWj `
k

ηhD
ď κ` k rEη,J,h, rEη,J,h :“

lnpJq ` 2

ηhD
. (3.3.13)
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Fourth Step. (Good event analysis.) We now use (3.3.10). We deduce that, on Anpκq, for
all k P t1, ¨ ¨ ¨ , nu,

Tk ď ``
k
ÿ

j“1

Wj ď `` κ` k rEη,J,h. (3.3.14)

Then,

n
ÿ

k“1

T´1
k ě

n
ÿ

k“1

ˆ

``
k
ÿ

j“1

Wj

˙´1

ě

n
ÿ

k“1

´

`` κ` k rEη,J,h

¯´1
ě

ż n

1

1

`` κ` x rEη,J,h
dx

“
1

rEη,J,h
ln
´`` κ` n rEη,J,h

`` κ` rEη,J,h

¯

.

Therefore, intersecting with the event introduced in (3.3.8), we obtain

inf
ps,aqPS̄ˆĀ

Tn
ÿ

j“`

αj
`

s, a
˘

ě
λK

}K }8

1

βη1hD rEη,J,h
ln
´`` κ` n rEη,J,h

`` κ` rEη,J,h

¯

,

on the event

rAnpκq :“ Anpκq X

"Tn
ÿ

i“`

αi
`

s, a
˘

ě
λK

}K }8

1

βη1hD

n
ÿ

k“1

1

Tk

*

.

Recalling the definition of rEη,J,h in (3.3.13) and using (3.3.14), we have, on rAnpκq, for all ps, aq P
S ˆA,

``tκ`n rEη,J u
ÿ

j“`

αjps, aq ě
λK

}K }8

η

βη1plnpJq ` 1q
ln
´`` κ` n rEη,J,h

`` κ` rEη,J,h

¯

ě
λK

}K }8

η

2βη1 lnpJq
ln
´`` κ` n rEη,J,h

`` κ` rEη,J,h

¯

(3.3.15)

where we used the fact that J ě 3, we have lnpJq ě 1 and 2 lnpJq ě 2, which implies 2 lnpJq ě
lnpJq ` 1.

Fifth Step. (Bad event analysis.) We bound PpAnpκqAq from above. Let

Vk “
k
ÿ

j“1

ĂWj , Mk “ Vk ´ kErĂW1s, k ě 1 ; τ “ min
 

k ě 1 : Mk ě κ
(

.

Note that pMkq1ďkďn is a martingale and, thus, for any r P p0, 1q, pexpprηhDMk{2qq1ďkďn is a
submartingale. Hence, by Doob’s martingale inequality and by (3.3.9),

P
`

Anpκq
A
˘

“ P
`

tτ ď nu
˘

ď inf
rPp0,1q

”

exp
´

´nrκη
hD

2

¯

E
”

exp
´

rη
hD

2
Mn

¯ıı

ď inf
rPp0,1{2q

”

exp
´

´nrκη
hD

2
` Cn

r2

2

¯ı

“ inf
rPp0,1{2q

”

exp
´Cn

2

”

r ´
κηhD

2Cn

ı2
´
κ2η2h2D

8Cn

¯ı

.

(3.3.16)
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In particular, if κηhD ă Cn, then

P
`

Anpκq
A
˘

ď exp
´

´
κ2η2h2D

4Cn

¯

. (3.3.17)

If κηhD ě Cn, then, by choosing r “ 1{2 in the second line of (3.3.17), we get

P
`

Anpκq
A
˘

ď exp
´

´κη
hD

4
`
Cn

8

¯

ď exp
´

´κη
hD

4
` κη

hD

8

¯

“ exp
´

´κη
hD

8

¯

. (3.3.18)

And then, we can combine (3.3.17) into

P
`

Anpκq
A
˘

ď exp
´

´min
”κηhD

8
,
κ2η2h2D

4Cn

ı¯

, (3.3.19)

which holds true whatever the value of κ.

Conclusion. We take an integer m ě 12 rEη,J,h and, for a fixed δ P p0, 1{2q, we let n ě 1 (n being
an integer) such that

`

n1{2`δ ` n
˘

rEη,J,h ď m ă

”

`

n` 1
˘1{2`δ

` n` 1
ı

rEη,J,h.

We observe that
m ă 2pn` 1q rEη,J,h ď 4n rEη,J,h.

Then,

5 ď
m

2 rEη,J,h
´ 1 ď n ď

m

rEη,J,h
.

We then take κ “ n1{2`δ
rEη,J,h in (3.3.11). Using the fact that rEη,J,h ď κ{2 and rEη,J,h ď p4{3qEη,J,h

(because J ě 9 implies lnpJq ě 2 and then p4{3qrlnpJq`1s “ lnpJq`1`plnpJq{3`1{3q ě lnpJq`2)
together with (3.3.8), (3.3.12), (3.3.15) and (3.3.19), we end-up with

P
ˆ"

inf
ps,aqPSˆA

``m
ÿ

j“`

αj
`

s, a
˘

ě
λK

}K }8

η

2βη1 lnpJq
ln

ˆ

``m{2

`` 2m1{2`δE
1{2´δ
η,J,h

˙*˙

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

´ exp
´

´min
”

plnpJq ` 1qn1{2`δ

8
,
plnpJq ` 1q2n2δ

4C

ı¯

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

´ exp
´

´
plnpJq ` 1qn2δ

maxp8, 4Cq

¯

.

For a new choice of C, we obtain

P
ˆ"

inf
ps,aqPS̄ˆĀ

``m
ÿ

j“`

αj
`

s, a
˘

ě
λK

}K }8

η

2βη1 lnpJq
ln

ˆ

``m{2

`` 2m1{2`δE
1{2´δ
η,J,h

˙*˙

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

´ exp
´

´
plnpJqq2p1´δqpηhDmq2δ

C

¯

.

The bound remains trivially true when m ă 12 rEη,J,h ď 16Eη,J,h: it suffices to observe that the
logarithm inside the probability becomes negative.
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We now end-up the subsection with the proof of Lemma 3.3.1.

Proof of Lemma 3.3.1. We start with the following obvious remark: it suffices to make the proof
for δ small enough. We then recall the following two results:

1. From [116], the set E can be decomposed into the countable union of closed dyadic cubes
pQjqjPN, with pairwise disjoint interiors, such that

?
ddiampQjq ď dist

`

Qj , BE
˘

ď 4
?
ddiampQjq, j P N,

where BE denotes the boundary of E and dist is here used to denote the (Euclidean) distance
between two subsets of Rd. Below, we call xj the center of each cube Qj .

2. From [6], there exist δ ą 0 and a finite collection of J cones pCjq1ďjďJ such that, for any
x P E with distpx, BEq ă δ, x ` Cj Ă E. In particular, assuming without loss of generality
that the heights of the cones are greater than δ, we can find a (small) constant c ą 0, only
depending on E, such that, for any x P E with distpx, BEq ă δ, there exists a cube Q of
radius cδ such that Q Ă E, distpx,Qq ă δ and distpQ, BEq ą 18

?
dcδ.

We now combine 1 and 2. For a fixed x P E with distpx, BEq ă δ, we call j the index such that
the center xQ of the cube Q (as in item 2) belongs to the interior of Qj (as in item 1). If the radius
of Qj is less than cδ, then

dist
`

Qj , BE
˘

ě dist
`

xQ, BE
˘

´ diam
`

Qj
˘

“ dist
`

Q, BE
˘

´ 2cδ ě 16
?
dcδ,

which implies (from the first item) that the diameter of Qj is greater than 4
?
dcδ ě 4δ, hence

obtaining a contradiction.

Moreover, again by the first item,

diampQjq ď dist
`

Qj , BE
˘

ď dist
`

xQ, BQ
˘

` dist
`

Q, BE
˘

ď dist
`

xQ, BQ
˘

` dist
`

x, BE
˘

` dist
`

x,Q
˘

ď p2` cqδ,

from which we deduce that

|x´ xj | ď distpx,Qq ` cδ ` |xQ ´ xj | ď p3` 2cqδ.

For a well-chosen C, we get that x belongs to the ball BjpCδq of center xj and of radius Cδ, Also,
diampQjq ě 2cδ

Observe now that if x P E but distpx, BEq ě δ, then x P Qj for some j. If diampQjq ă 2cδ, then
the first item yields distpQj , BEq ď 8

?
dcδ and, in turn, distpx, BEq ď 10

?
dcδ. Assuming without

any loss of generality that 10
?
dc ă 1, we get a contradiction. So, we deduce that diampQjq ě 2cδ.

This prompts us to call J “ tj : diampQjq ě 2cδu. Our analysis shows that

ď

jPJ
Bjpcδq Ă E Ă

ď

jPJ
BjpCδq.
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For those j P J for which diampQjq ě 4cδ, we can use the dyadic structure to divide them into
new dyadic cubes diameters less than or equal to 4cδ. For simplicity, we still denote the resulting
cubes by Qj . We then clearly have

|J |cdδd|Bdp0, 1q| ď |E| ď |J |C
dδd|Bdp0, 1q|,

where |Bdp0, 1q| is the volume of the d-dimensional ball.

3.3.2 Proof of Proposition 3.2.6

Proof. Since the Markov process pΛn,Σn, BnqnPN is homogeneous, we can assume that p “ 0.

First Step. We first explain the choice of `n in the statement. In order to do so, we let

Γ :“ Γ0E
p1`2γq{p1´2γq
η,J,h . Then, using the fact that `0 ě 1 and Γp1´2γq{p1`2γq ě 4, we have, for any

k ě 0,

`k`1 ´ `k ě `0

´

1` Γp1´2γq{p1`2γq
¯k`1

´ `0

´

1` Γp1´2γq{p1`2γq
¯k
´ 2

ě `0

´

1` Γp1´2γq{p1`2γq
¯k”

1` Γp1´2γq{p1`2γq ´ 3
ı

ě
Γp1´2γq{p1`2γq

2
`0

´

1` Γp1´2γq{p1`2γq
¯k
ě

Γp1´2γq{p1`2γq

2
`k.

By the same argument,

`k`1 ´ `k ď `0

´

1` Γp1´2γq{p1`2γq
¯k`1

´ `0

´

1` Γp1´2γq{p1`2γq
¯k
` 1

ď
`

`k ` 1tkě1u

˘

Γp1´2γq{p1`2γq ` 1 ď 3
Γp1´2γq{p1`2γq

2
`k

Second Step. For an integer k ě 0, we deduce from Definition 3.2.1 that, for any two integers
` ě 1 and L ě 0, on the event tΛk ě `` Lu,

Pps,aq

´

 

Λk`1 ă `
(

|GpΛ,Σ,Bqk

¯

ď

Λk
ź

j“``1

´

1´ αj
`

Σk, Bk
˘

¯

ď exp

ˆ

´ inf
ps,aqPSˆA

``L
ÿ

j“``1

αj
`

s, a
˘

˙

,

with the convention that
ś0
j“1r¨ ¨ ¨ s “ 1 and, equivalently, that

ř0
j“1r¨ ¨ ¨ s “ 0. Therefore, for a
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fixed integer n ě 1 (as in the statement) and for k P t1, ¨ ¨ ¨ , nu,

Pps,aq

´

 

Λk ă `n´k
(

|GpΛ,Σ,Bqk´1

¯

ď Pps,aq

´

 

Λk´1 ă `n`1´k

(

|GpΛ,Σ,Bqk´1

¯

`Pps,aq

´

 

Λk ă `n´k,Λk´1 ě `n`1´k

(

|GpΛ,Σ,Bqk´1

¯

ď Pps,aq

´

 

Λk´1 ă `n`1´k

(

|GpΛ,Σ,Bqk´1

¯

`Eps,aq

„

exp

ˆ

´ inf
ps,aqPSˆA

`n`1´k
ÿ

j“`n´k`1

αj
`

s, a
˘

˙

1tΛk´1ě`n`1´ku
|GpΛ,Σ,Bqk´1



.

By induction, we obtain that, on the event tΛ0 ě `nu,

Pps,aq

´

 

Λn ă `0
(

|GpΛ,Σ,Bq0

¯

ď

n´1
ÿ

k“0

exp

ˆ

´ inf
ps,aqPSˆA

`n`1´k
ÿ

j“`n´k`1

αj
`

s, a
˘

˙

ď e
n´1
ÿ

k“0

exp

ˆ

´ inf
ps,aqPSˆA

`n`1´k
ÿ

j“`n´k

αj
`

s, a
˘

˙

.

Third Step. Using the same notation as in Proposition 3.2.4, we now define the collection of
events

"

inf
ps,aqPSˆA

`k`1
ÿ

j“`k

αj
`

s, a
˘

ě Ap`k, `k`1 ´ `kq

*

, k “ 0, ¨ ¨ ¨ , n´ 1.

We then make use of the first step. We know that

1

2
Γp1´2δq{p1`2δq`k ď `k`1 ´ `k ď

3

2
Γp1´2δq{p1`2δq`k.

Recalling that

Ap`k, `k`1 ´ `kq “
λK

}K }8

η

2βη1 lnpJq
ln
´ `k ` p`k`1 ´ `kq{2

`k ` 2p`k`1 ´ `kq1{2`δE
1{2´δ
η,J,h

¯

,

we get

Ap`k, `k`1 ´ `kq ě
λK

}K }8

η

2βη1 lnpJq
ln
´ Γp1´2δq{p1`2δq`k

4`k ` 12 Γ1{2´δ`
1{2`δ
k E

1{2´δ
η,J,h

¯

.

Recall now that Γ “ Γ0E
p1`2δq{p1´2δq
η,J,h ě 4 ě 1, with Γ0 ě 1. Therefore, since `k ě 1,

4`k ` 12Γ1{2´δ`
1{2`δ
k E

1{2´δ
η,J,h ď 16Γ

1{2´δ
0 Eη,J,h`k.

We deduce that

Ap`k, `k`1 ´ `kq ě
λK

}K }8

η

2βη1 lnpJq
ln
´Γ

p1´2δq2{r2p1`2δqs
0

16

¯

.
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It remains to see from Proposition 3.2.4 and from the conclusion of the first step that

P
ˆ"

inf
ps,aqPSˆA

`k`1
ÿ

j“`k

αj
`

s, a
˘

ě Ap`k, `k`1 ´ `kq

*˙

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

´ exp
´

´
plnpJqq2p1´δqpηhDr`k`1 ´ `ksq

2δ

C

¯

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

´ exp
´

´
plnpJqq2p1´δqpηhD`kq

2δΓ2δp1´2δq{p1`2δq

22δC

¯

ě 1´ exp
`

Cβ2
˘

J
´

η1hD
¯β{2´1

´ exp
´

´
plnpJqq2p2`kδqpηhDq´2kδ`2δ0 Γ

2pk`1qδp1´2δq{p1`2δq
0

22δC

¯

.

We observe that, in the exponential right above, lnpJq ě 1, ηhD ď 1, `0 ě 1 and Γ0 ě 1.
Now we introduce the event

Dpnq “
n´1
č

k“0

"

inf
ps,aqPSˆA

`k`1
ÿ

j“`k

αj
`

s, a
˘

ě Ap`k, `k`1 ´ `kq

*

and using the inequality ab ě pa ` bq{2 for a, b ě 1, we deduce that (choosing a new value of the
constant C):

P
ˆ

Dpnq

˙

ě 1´ exp
`

Cβ2
˘

nJ
´

η1hD
¯β{2´1

´ exp
´

´
plnpJqq4`2δ0 Γ

2δp1´2δq{p1`2δq
0

C

¯

n´1
ÿ

k“0

exp
´

´
plnpJqq2kδpηhDq´2kδΓ

2kδp1´2δq{p1`2δq
0

C

¯

We then use the following inequality, that holds true for a ą 1,

n´1
ÿ

k“0

exp
`

´ak
˘

ď 1`

ż `8

0
exp

`

´ax
˘

dx “ 1`
1

lnpaq

ż `8

0
exp

`

´ey
˘

dy,

where we performed the change of variable ax “ ey ô x “ y{ lnpaq. Since lnpJq ě lnp3q ą 1, we
deduce that, for a new value of C,

P
ˆ

Dpnq

˙

ě 1´ exp
`

Cβ2
˘

nJ
´

η1hD
¯β{2´1

´min
“

n,
C

δ

‰

exp
´

´
plnpJqq4`2δ0 Γ

2δp1´2δq{p1`2δq
0

C

¯

.

3.4 Distance Between MDPs: Proof of Proposition 3.2.7

The proof of Proposition 3.2.7 is split into two parts. In the first one, we address the distance
between Πps,aqppn, s, aq, ¨q and Ppps, aq, ¨q for fixed s and a. In the second part, we take the supremum
over ps, aq.

Throughout the section, we use repeatedly the notations (3.2.9) and (3.2.10).
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3.4.1 Distance between transition kernels for fixed s and a

We first address the distance between Πps,aqppn, s, aq, ¨q and Ppps, aq, ¨q for fixed s and a

Lemma 3.4.1. For any real θ P p0, 1{2q, we can find two constants C and Cθ, with the second one
allowed to depend on θ, with the following property: for any fixed realization ps, aq of the process
psn, anqně0, for any integer n ě 1, any integer L ě 2 and any ps, aq P S ˆA,

P
ˆ

ď

jěn

`

Fjpθq
˘A
X

!

n´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L
)

˙

ď CθL
´1{θ`1,

where

Fjpθq “

"

dH´5ptdS{2u`1qpSq

ˆ

Πps,aqppn, s, aq, ¨q,Ppps, aq, ¨q

˙

ď C

„ˆn´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

˙´p1´θq{2

` h

*

.

In fact, it must be noted that the set Fjpθq can be reformulated in a more explicit way. Indeed,
we know from Lemma 3.2.2 that, under the condition (3.2.2),

Πps,aqppn, s, aq, ¨q “
n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

δk,sk`1
, ak`1

řn´1
l“0 Kh

`

s´ sl, a´ al
˘ , (3.4.1)

which yields

Fjpθq “

"

sup
}ϕ}

H5ptdS{2u`1q
pSq
ď1

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘‰

řn
k“1 Kh

`

s´ sk, a´ ak
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

ď C

„ˆn´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

˙´p1´θq{2

` ch

*

.

When condition (3.2.2) is not satisfied, the right-hand side in the definition of Fjpθq is infinite
and the inequality is trivially satisfied.

Proof. The spirit of the proof is to show a form of averaging, which we do here by using martingale
techniques. This is completely different from the approach used in [27].

First Step. For a given bounded and measurable test function ϕ : S Ñ R, we define the following
process:

Mnrϕs “
n´1
ÿ

l“0

Kh

`

s´ sl, a´ al
˘

”

ϕ
`

sl`1

˘

´ E
´

ϕ
`

sl`1

˘

|Fl
¯ı

,

where the pair ps, aq is fixed throughout the proof.
Obviously, the process pMnrϕsqně0 is a martingale with respect to the filtration pFnqně0. We

observe that

E
”

ϕ
`

sl`1

˘

|Fl
ı

“
“

Pϕ
‰

psl, alq,
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where Pϕ is a shorten notation for the semi group induced by the transition kernel P, namely

“

Pϕ
‰

ps1, a1q “

ż

S
ϕ
`

σ
˘

P
`

ps1, a1q, dσ
˘

“ E
”

ϕps1q | ps0, a0q “ ps
1, a1q

ı

.

Assume now on that }ϕ}H5ptdS{2u`1qpSq ď 1. Then, by Sobolev embedding theorem, ϕ has a bounded

derivative and, by assumption (Regularity Cost and Transition Kernel), the function ps, aq ÞÑ
rPϕsps, aq is also Lipschitz continuous (with a know Lipschitz constant).

By (3.1.12), we deduce that, under the condition (3.2.2),

sup
}ϕ}

H5ptdS{2u`1q
pSq
ď1

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

l“0

Kh

`

s´ sl, a´ al
˘

E
´

ϕ
`

sl`1

˘

|Fl
¯

řn´1
l“0 Kh

`

s´ sl, a´ al
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

“ sup
}ϕ}

H5ptdS{2u`1q
pSq
ď1

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

l“0

Kh

`

s´ sl, a´ al
˘“

Pϕ
‰

psl, alq
řn´1
l“0 Kh

`

s´ sl, a´ al
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

ď Ch.

(3.4.2)

By combining (3.4.2) with (3.4.1), we understand that it now remains to study

sup
}ϕ}

H5ptdS{2u`1q
pSq
ď1
|Mnrϕs|.

Obviously, this is the core of the proof.

Second Step. Our first step in the analysis of the above quantity is to study pMnrϕsqně1 for a
given choice of ϕ. Part of the difficulty will be to collect all the ϕ’s in a single estimate.

In this step, ϕ is a mere bounded and measurable function. It is not required to be smooth.
This point is important for the rest of the proof. We then introduce the following new sequence of
stopping times:

S0 :“ 0,

S` :“ inf

"

k ě S`´1 ` 1 :
k
ÿ

j“S`´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

ě 1

*

, ` ě 1.
(3.4.3)

By Proposition 3.2.4, it is quite easy to see that, almost surely, S` ă 8 for any ` P N. We come
back to this point in the fourth step below. At this stage, it suffices for the reader to know that
there is no issue with the definition of the sequence pS`q`ě0.

Using these notations, we have

MS`´1rϕs “
ÿ̀

l“1

Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

ϕ
`

sj`1

˘

´ E
´

ϕ
`

sj`1

˘

|Fj
¯ı

.

We claim that pMS`´1rϕsq`ě0 (with the convention that M´1rϕs “ 0) is a martingale with respect
to the filtration pFS`q`ě0. Next, we estimate the martingale by means of Burkolder-Davis-Gundy’s
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inequality. This requires to address first the form of the quadratic variation. The key point in this
regard is to use the fact that

Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

ď 1, (3.4.4)

which allows us to get a simple bound for the jumps pMS``1´1rϕs ´MS`´1rϕsq`ě0:

ˆ Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

ϕ
`

sj`1

˘

´ E
´

ϕ
`

sj`1

˘

|Fj
¯ı

˙2

ď

Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

ϕ
`

sj`1

˘

´ E
´

ϕ
`

sj`1

˘

|Fj
¯ı2

ď 2}ϕ}8

Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

|ϕ|
`

sj`1

˘

` E
´

|ϕ|
`

sj`1

˘

|Fj
¯ı

.

We are now given an exponent q ą 1. By discrete-time Burkolder-Davis-Gundy’s inequality ([22]),
we can find a universal constant Cq depending on q such that

E
„

max
1ďlď`

ˇ

ˇ

ˇ
MSl´1rϕs

ˇ

ˇ

ˇ

2q


ď Cq}ϕ}
q
8E

„
ˇ

ˇ

ˇ

ˇ

ÿ̀

l“1

Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

|ϕ|
`

sj`1

˘

` E
´

|ϕ|
`

sj`1

˘

|Fj
¯ı

ˇ

ˇ

ˇ

ˇ

q

ď Cq}ϕ}
q
8`

qE
„ˆ

`´1
S`´1
ÿ

j“0

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

|ϕ|
`

sj`1

˘

` E
´

|ϕ|
`

sj`1

˘

|Fj
¯ı

˙q

.

Using the fact that

S`´1
ÿ

j“0

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

“
ÿ̀

l“1

Sl´1
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

ď `, (3.4.5)

we obtain (for a new value of Cq)

E
„

max
1ďlď`

ˇ

ˇ

ˇ
MSl´1rϕs

ˇ

ˇ

ˇ

2q


ď Cq}ϕ}
2q´1
8 `qE

„

`´1
S`´1
ÿ

j“1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

”

|ϕ|
`

sj`1

˘

` E
´

|ϕ|
`

sj`1

˘

|Fj
¯ı



.

And then, for a new choice of Cq,

E
„

max
1ďlď`

ˇ

ˇ

ˇ
MSl´1rϕs

ˇ

ˇ

ˇ

2q


ď Cq}ϕ}
2q´1
8 `qE

„

`´1
S`´1
ÿ

j“1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

|ϕ|
`

sj`1

˘



. (3.4.6)
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Third Step. In order to clarify, we introduce, for ` ě 2, the following two (random) probability
measures:

µ`pEq “

ˆS`´1
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

˙´1 S`´1
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

1E
`

sj`1

˘

,

ν`pEq “

ˆS`´1
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

˙´1 S`´1
ÿ

j“0

Kh

`

s´ sj , a´ aj
˘

E
”

1E
`

sj`1

˘

|Fj
ı

,

where E is a generic Borel subset of S.

Back to (3.4.1), we notice that

µ` “ Πps,aq
`

pS` ´ 1, s, aq, ¨
˘

.

Back to (3.4.2), we notice the first sum therein (at time n “ S`) is equal to

S`´1
ÿ

l“0

Kh

`

s´ sl, a´ al
˘

E
´

ϕ
`

sl`1

˘

|Fl
¯

řS`´1
l“0 Kh

`

s´ sl, a´ al
˘

“

ż

S
ϕdν`.

Back to the definition of the stopping time Sl in (3.4.3) of the second step, we notice that

S`´1
ÿ

j“0

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

ě
ÿ̀

l“0

Sl
ÿ

j“Sl´1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

´
ÿ̀

l“0

1

2}K }8
Kh

`

s´ sSl , a´ aSl
˘

ě `´
1

2
p`` 1q “

1

2
p`´ 1q.

(3.4.7)

Therefore, for a test function ϕ as in the second step,

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

ď 2p`´ 1q´1
ˇ

ˇ

ˇ
MS`´1rϕs

ˇ

ˇ

ˇ
.

For ` ě 2, `´ 1 ě `{2 and then, by (3.4.6) and then (3.4.7),

E
„ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

2q

ď Cq`
´2qE

„

max
1ďlď`

ˇ

ˇ

ˇ
MSl´1rϕs

ˇ

ˇ

ˇ

2q


ď Cq}ϕ}
2q´1
8 `´qE

„

`´1
S`´1
ÿ

j“1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

|ϕ|
`

sj`1

˘



ď Cq`
´q}ϕ}2q´1

8 E
„
ż

S
|ϕ|dµ`



.

(3.4.8)
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Next, we take ϕ in the Sobolev space H5ptdS{2u`1qpSq with }ϕ}H5ptdS{2u`1qpSq ď 1 and we call

peiqiě0 an orthonormal basis of H3ptdS{2u`1qpSq. We take for granted the following two properties:
ÿ

iě0

ˇ

ˇ

`

ϕ, eiqH3ptdS{2u`1qpSq

ˇ

ˇ ď C,

ÿ

iě0

›

›ei
›

›

L8pSq
ď C,

(3.4.9)

for a constant C depending on the geometry of S. The demonstration of the above two bounds is
left for the appendix 3.6.3. Then,

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

ď
ÿ

iě0

ˆ

ˇ

ˇ

`

ϕ, eiqH3ptdS{2u`1qpSq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

S
eidµ` ´

ż

S
eidν`

ˇ

ˇ

ˇ

ˇ

˙

,

and then, by Hölder inequality and for ϕ satisfying }ϕ}H5ptdS{2u`1qpSq ď 1,

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

2q

ď

ˆ

ÿ

iě0

ˇ

ˇ

`

ϕ, eiqH3ptdS{2u`1qpSq

ˇ

ˇ

2p{pp`1q
˙qpp`1q{p

ÿ

iě0

ˇ

ˇ

ˇ

ˇ

ż

S
eidµ` ´

ż

S
eidν`

ˇ

ˇ

ˇ

ˇ

2q

ď

ˆ

ÿ

iě0

ˇ

ˇ

`

ϕ, eiqH3ptd{2u`1qpSq

ˇ

ˇ

˙qpp`1q{p
ÿ

iě0

ˇ

ˇ

ˇ

ˇ

ż

S
eidµ` ´

ż

S
eidν`

ˇ

ˇ

ˇ

ˇ

2q

with 1{p`1{q “ 1 (and so pp`1q{p2pq`1{p2qq “ 1). Above, we used the bound }ϕ}H3ptdS{2u`1qpSq ď

}ϕ}H5ptdS{2u`1qpSq ď 1. Taking the supremum over ϕ in the unit ball of }ϕ}H5ptdS{2u`1qpSq and then

invoking (3.4.9) first and (3.4.8) next, we deduce that

E
„

sup
}ϕ}

H5ptdS{2u`1q
pSq
ď1

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

2q

ď Cqpp`1q{p
ÿ

iě0

E
„ˆˇ

ˇ

ˇ

ˇ

ż

S
eidµ` ´

ż

S
eidν`

ˇ

ˇ

ˇ

ˇ

2˙q

ď Cq`
´q

ÿ

iě0

E
„
ż

S
|ei|dµ`



ď Cq`
´q,

for a constant Cq depending on q.

Fourth Step. By Markov inequality, the conclusion of the third step yields, for ` P N, for any
θ P p0, 1{2q,

P
„"

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

ě `´p1´θq{2
*

ď Cq`
´qθ{2. (3.4.10)

And then, for qθ ą 2 and another integer L P N,

P
„

ď

`ěL

"

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

ě `´p1´θq{2
*

ď Cq,θL
´qθ{2`1,
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the constant Cq,θ being also allowed to depend on θ. This prompts us to introduce the collection
of events

E`pθq “

"

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

ż

S
ϕdµ` ´

ż

S
ϕdν`

ˇ

ˇ

ˇ

ˇ

ă `´p1´θq{2
*

, ` P N.

On the event
Ş

kěLEkpθq and for ` ą L ě 2, we have, for any n P tS`´1, ¨ ¨ ¨ , S` ´ 1u and for any

bounded (measurable) test function ϕ : S Ñ R,

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

ϕ
`

sk`1

˘

řn
k“1 Kh

`

s´ sk, a´ ak
˘ ´

ż

S
ϕdµ`

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

ϕ
`

sk`1

˘

řn´1
k“0 Kh

`

s´ sk, a´ ak
˘ ´

S`´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

ϕ
`

sk`1

˘

řS`´1
k“0 Kh

`

s´ sk, a´ ak
˘

ˇ

ˇ

ˇ

ˇ

ď 2}ϕ}8

S`´1
ÿ

k“S`´1

Kh

`

s´ sk, a´ ak
˘

řS`´1
k“0 Kh

`

s´ sk, a´ ak
˘

ď 2}ϕ}8p`´ 1q´1,

where we used (3.4.4) and (3.4.7) in the last line. Proceeding similarly with Erϕpsk`1q|Fks instead
of ϕpsk`1q, we obtain, for any n P tS`´1, ¨ ¨ ¨ , S` ´ 1u,

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘

´ E
`

ϕ
`

sk`1

˘

|Fk
˘‰

řn
k“1 Kh

`

s´ sk, a´ ak
˘ ´

ż

S̄
ϕd

`

µ` ´ ν`
˘

ˇ

ˇ

ˇ

ˇ

ď 4}ϕ}8p`´ 1q´1.

And then, using (3.4.9), we get

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘

´ E
`

ϕ
`

sk`1

˘

|Fk
˘‰

řn´1
k“0 Kh

`

s´ sk, a´ ak
˘

ˇ

ˇ

ˇ

ˇ

ď sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

ż

S
ϕd

`

µ` ´ ν`
˘

ˇ

ˇ

ˇ

ˇ

` Cp`´ 1q´1,

for a possibly new constant C (the value of which is allowed to vary from line to line), independent
of q.

And, since we are on
Ş

`ěLE`pθq,

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘

´ E
`

ϕ
`

sk`1

˘

|Fk
˘‰

řn´1
k“0 Kh

`

s´ sk, a´ ak
˘

ˇ

ˇ

ˇ

ˇ

ď `´p1´θq{2 ` C`´1.

And then, by (3.4.2), we get, for n P tS`´1, ¨ ¨ ¨ , S` ´ 1u

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘‰

řn´1
k“0 Kh

`

s´ sk, a´ ak
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

ď `´p1´θq{2 ` C`´1 ` Ch,

(3.4.11)
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where we used, in the derivation of the very last term in the right-hand side, (3.4.9) in order to upper
bound }ϕ}1,8 by C when }ϕ}H5ptdS{2u`1q ď 1. By (3.4.5), we know that, for n P tS`´1, ¨ ¨ ¨ , S` ´ 1u,

n
ÿ

j“1

1

2}K }8
Kh

`

s´ sj , a´ aj
˘

ď `,

which yields, by combination with (3.4.11),

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘‰

řn
k“1 Kh

`

s´ sk, a´ ak
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

ď

ˆn´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

˙´p1´θq{2

` C

ˆn´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

˙´1

` Ch.

(3.4.12)

We now observe that, if
n´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L,

then, by (3.4.5), n ą SL ´ 1, since

SL´1
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L.

Therefore, if we are on the event

č

`ěL

E`pθq X

" n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L

*

,

then (3.4.12) holds true. By using the asumption L ě 1, we even have the simpler bound

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘‰

řn
k“1 Kh

`

s´ sk, a´ ak
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

ď C

ˆ n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

˙´p1´θq{2

` Ch,

(3.4.13)

for a possibly new value of the constant C. We thus recover the definition of Fnpθq in the statement
by choosing q “ 2{θ2 in (3.4.10). Our analysis says that

č

`ěL

E`pθq X

" n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L

*

Ă
č

jěn

Fjpθq.
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Alternatively,

ď

jěn

´

Fjpθq
A
¯

Ă
ď

`ěL

´

E`pθq
A
¯

Y

!

n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ď L
)

,

and, then,

ď

jěn

´

Fjpθq
A
¯

X

!

n
ÿ

k“1

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L
)

Ă
ď

`ěL

´

E`pθq
A
¯

.

We then end-up the proof by using (3.4.10).

3.4.2 Taking the supremum over s and a

As the reader can notice in Lemma 3.4.1, the value of ps, aq is fixed. We here want to take the
supremum over ps, aq. This is done thanks to the following lemma, which allows us to reduce the
analysis to points ps, aq in a finite lattice. The reader will easily deduce Proposition 3.2.7 from
Lemmas 3.4.1 and 3.4.2.

Lemma 3.4.2. For ε ą 0, consider a lattice N of S ˆ A that is εh-dense in the sense that any
ps, aq P S ˆA in distance at most εh from N . Then, with η1 as in (??), for any β ě 1 and θ ą 0,
there exists a constant C as in the statement of Proposition 3.2.7 (in particular C is independent
of the lattice) such that

P
„

č

jěn

"

sup
ps,aqPSˆA

sup
ps1,a1qPN :|ps1,a1q´ps,aq|ďεh

dH´5ptdS{2u`1qpSq

ˆ

Πps,aqppn, s, aq, ¨q,Πps,aqppn, s
1, a1q, ¨q

˙

ď Cβε
η1

η

`

1` lnpJq
˘

*

ě 1´
1

βη1εDh2D
exp

´

´βη1hDpn´ 1q
¯

´
C

ηhD
exp

´

´
ηhD

C
pn´ 1q

¯

.

Proof. First Step. The first step is to address the following probability:

P
ˆ"

inf
ps,aqPSˆA

n´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L

*˙

.

It is worth observing that the event inside the probability symbol appears in the statement of
Lemma 3.4.1, but without the infimum. Back to the proof of Proposition 3.2.4 and using the same
notation as therein (with ` “ 1), we observe that

"

inf
ps,aqPSˆA

n´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L

*

Ą

"

min
1ďjďJ

n´1
ÿ

k“0

λK

2}K }8
1Bj

`

sk, ak
˘

ě L` 1

*

Ą
 

Tr2}K }8pL`1q{λK s ď n
(

,

187



with Tr2}K }8pL`1q{λK s being defined in (3.3.2). Now, by (3.3.14) in the proof of Proposition 3.2.4
(using the same notation as therein),

Tr2}K }8pL`1q{λK s ď 1` κ`
Q2}K }8pL` 1q

λK

U

rEη,J,h, (3.4.14)

on the event Ar2}K }8pL`1q{λK spκq defined in (3.3.11). What really matters is the bound we have

for PpAr2}K }8pL`1q{λK spκq
Aq, see (3.3.19). We deduce that

P
`

Ar2}K }8pL`1q{λK spκq
A
˘

ď exp
´

´min
”κηhD

8
,

κ2η2h2D

4Cr2}K }8pL` 1q{λK s

ı¯

.

We now choose κ “ rp2}K }8pL` 1q{λK qs
rEη,J,h, recalling from (3.3.13) that

rEη,J,h “
lnpJq ` 2

ηhD
.

We obtain

P
`

Ar2}K }8pL`1q{λK spκq
˘

ě 1´ exp
´

´
r2}K }8pL` 1q{λK splnpJq ` 2q

C

¯

,

for a new value of the constant C. So, if we can choose L such that

L` 1 “

Z

λK

2}K }8

Y n´ 1

2 rEη,J,h

]

^

, (3.4.15)

then

2
Q2}K }8pL` 1q

λK

U

rEη,J,h ď n´ 1.

Since L` 1 ě 1, then L` 2 ď 2pL` 1q and

L` 1 ě
λK

4}K }8

Y n´ 1

2 rEη,J,h

]

.

Also, we necessarily have n´ 1 ě 2Eη,J,h and thus

L` 1 ě
λK

8}K }8

n´ 1

rEη,J,h
.

Therefore, by (3.4.14), and for n ě 2,

P
ˆ"

inf
ps,aqPSˆA

n´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ą L

*˙

ě 1´ exp
´

´
ηnhD

C

¯

, (3.4.16)

for a new value of the constant C. Inserting into the statement of Lemma 3.4.1, we obtain, for
L ě 1 and n ě 2,

P
ˆ

ď

jěn

`

Fjpθq
˘A

˙

ď Cθ

´Eη,J,h
n

¯1{θ´1
` exp

´

´
ηnhD

C

¯

,
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for any ps, aq P SˆA, where Cθ. Above, we replaced rEη,J,h by CEη,J,h, which is licit if J ě 3. In fact,

if L “ 1 or if there is no way to define L according to (3.4.15), then, necessarily, n´ 1 ď C 1 rEη,J,h,

for a new constant C 1. If n ě 2, this implies n ď 2C 1 rEη,J,h and we can increase the value of
the constant C right above so that the right-hand side becomes (in that regime of parameters)
greater than 1, in which case the inequality is also satisfied. In other words, we can take the above
inequality for granted for any value of L,

And then,

P
ˆ

ď

jěn

`

rFjpθq
˘A

˙

ď Cθ

´Eη,J,h
n

¯1{θ´1
` exp

´

´
ηnhD

C

¯

,

where

rFjpθq :“

"

sup
}ϕ}

H5ptdS{2u`1q pSqď1

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Kh

`

s´ sk, a´ ak
˘“

ϕ
`

sk`1

˘‰

řn
k“1 Kh

`

s´ sk, a´ ak
˘ ´

“

Pϕ
‰

ps, aq

ˇ

ˇ

ˇ

ˇ

ď C
´Eη,J,h

n

¯p1´θq{2
` Ch

*

,

The reader may compare the above definition with the definition of Fjpθq in the statement. In
short, we have inserted Eη,J,h{n in the right-hand side. Here as well, the proof directly follows from
(3.4.16) if L ě 2. If L “ 1 or if L cannot be defined as in (3.4.15), then we call easily increase the
value of CS by recalling that the elements of H5ptd{2u`1qpSq are necessarily bounded by a constant
only depending on the geometry of S.

Second Step. The next step is to address

dH´5ptdS{2u`1qpSq

ˆ

Πps,aqppn, s, aq, ¨q,Πps,aqppn, s
1, a1q, ¨q

˙

for two points ps, aq, ps1, a1q in S ˆA.

We consider N an εh-net covering S ˆ A: for any point of S ˆ A, we can find a point of the
net at distance less than εh. Then, for ps, aq P S ˆA, we find ps1, a1q P N such that

ˇ

ˇps1, a1q ´ ps, aq
ˇ

ˇ ď εh.

Then, for any k P t1, ¨ ¨ ¨ , nu, we get

ˇ

ˇ

ˇ
Kh

`

s´ sk, a´ ak
˘

´Kh

`

s1 ´ sk, a
1 ´ ak

˘

ˇ

ˇ

ˇ
ď }K }1,8ε.

Notice that this is }K }1,8 in the above right-hand side and not }Kh}1,8. The estimate follows
from the fact that }Kh}1,8 “ }K }1,8{h. If |ps1 ´ sk, a

1 ´ ak
˘

| ě εh` %h, then the left-hand side is
zero since the support of Kh is included in the ball Bp0, %hq. Therefore, we can write

ˇ

ˇ

ˇ
Kh

`

s´ sk, a´ ak
˘

´Kh

`

s1 ´ sk, a
1 ´ ak

˘

ˇ

ˇ

ˇ
ď }K }1,81

t|ps1´sk,a1´ak

˘

|ďεh`%hu
ε.
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And then for any bounded test function ϕ : S Ñ R,

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0

Kh

`

s´ sk, a´ ak
˘

ϕ
`

sk
˘

řn´1
k“0 Kh

`

s´ sk, a´ ak
˘ ´

n´1
ÿ

k“0

Kh

`

s1 ´ sk, a
1 ´ ak

˘

ϕ
`

sk
˘

řn´1
k“0 Kh

`

s1 ´ sk, a1 ´ ak
˘

ˇ

ˇ

ˇ

ˇ

ď 2ε}ϕ}8}K }1,8

řn´1
k“0 1t|ps1´sk,a1´akq|ďεh`%hu
řn´1
k“0 Kh

`

s1 ´ sk, a1 ´ ak
˘ ,

(3.4.17)

from which we deduce that

sup
ps,aqPSˆA

sup
ps1,a1qPN :|ps1,a1q´ps,aq|ďεh

dH´5ptdS{2u`1qpSq

ˆ

Πps,aqppn, s, aq, ¨q,Πps,aqppn, s
1, a1q, ¨q

˙

ď Cε sup
ps1,a1qPN

řn´1
k“0 1t|ps1´sk,a1´akq|ďεh`%hu

řn´1
k“0p2}K }8q

´1Kh

`

s1 ´ sk, a1 ´ ak
˘ ,

for a constant independent of n (but depending on the details of K ).

From the first step (see (3.4.16)), we already know that, if we can define L as in (3.4.15), then

P
ˆ"

inf
ps1,a1qPSˆA

n´1
ÿ

k“0

1

2}K }8
Kh

`

s´ sk, a´ ak
˘

ě
λK

32}K }8

n

Eη,J,h

*˙

ě 1´ exp
´

´
ηnhD

C

¯

.

We now follow the derivation of (3.3.7) in the proof of Proposition 3.2.4 (which relies on Lemma
3.6.1, see in particular (3.6.1)). With η1 as in (??), for any β ě e2,

P
ˆ"n´1

ÿ

k“0

1t|ps´sk,a´akq|ď3%hu ě 3Dβη1n%DhD
*˙

ď exp
`

´βη1nhD
˘

.

Then,

P
ˆ"

sup
ps1,a1qPN

n´1
ÿ

k“0

1t|ps1´sk,a1´akq|ď3%hu ď 3Dβη1n%DhD
*˙

ě 1´ Ch´Dε´D exp
`

´βη1nhD
˘

.

We deduce that, for ε ď 2%,

P
„"

sup
ps,aqPSˆA

sup
ps1,a1qPN :|ps1,a1q´ps,aq|ďεh

dH´5ptdS{2u`1qpSq

ˆ

Πps,aqppn, s, aq, ¨q,Πps,aqppn, s
1, a1q, ¨q

˙

ď Cβεη1hDEη,J,h

*

ě 1´ Ch´Dε´D exp
`

´βη1nhD
˘

´ exp
´

´
ηnhD

C

¯

.
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We deduce that

P
„

č

jěn

"

sup
ps,aqPSˆA

sup
ps1,a1qPN :|ps1,a1q´ps,aq|ďεh

dH´5ptdS{2u`1qpSq

ˆ

Πps,aqppn, s, aq, ¨q,Πps,aqppn, s
1, a1q, ¨q

˙

ď Cβε
η1

η

`

1` lnpJq
˘

*

ě 1´ Ch´Dε´D
ÿ

jěn

exp
`

´βη1hDj
˘

´
ÿ

jěn

exp
´

´
ηhDj

C

¯

ě 1´
1

βη1εDh2D
exp

´

´βη1hDpn´ 1q
¯

´
C

ηhD
exp

´

´
ηhD

C
pn´ 1q

¯

.

3.5 Numerical Results

As numerical example to illustrate our results, we present a linear model set on the 1-d torus
S “ T1

`

r0, πs
˘

for the states and actions A “ r´π
2 ,

π
2 s. The main motivation behind this particular

example comes from the fact that it has an analytical solution that we can compute explicitly and
thus have strict comparisons for our algorithm. Because our main theoretical result concerns an
infinite MDP, we made the choice here for a periodic example whose structure is the closest analog
to an infinite MDP. Let us define the dynamics

xn`1 “ pxn ` an ` σεn`1q mod π, x0 “ x,

where εn „ N p0, 1q.
The task we give to our agent is to minimize the associated running cost

cpx, aq “ cosp2xq ` 1` γCσ ` cosp2x` 2aq

where Cσ “ e2σ2
and γ the usual discount factor.

The value function is

V pxq “ Er
ÿ

ně0

γncpx, aq
ˇ

ˇ x0 “ xs

and the Bellman operator

V pxq “ min
a

!

cpx, aq ` γE
“

V px1q
‰

)

Now to compute the optimal value function analytically, we suppose that V pxq is even, V p´xq “
´V pxq and belongs to the Banach space of continuous periodic functions of the interval r0, πs. Let

V pxq “
1

2
α0 `

ÿ

n‰0

αn cospnxq, (3.5.1)
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be the standard development of V pxq in Fourier series with coefficients tαnuně0 given by the known
formulas. We plug (3.5.1) in the fixed point equation

1

2
α0 `

ÿ

n‰0

αn cospnxq “ cosp2xq ` 1` γCσ `min
a

!

cosp2x` 2aq ` γE
“1

2
α0 `

ÿ

n‰0

αn cospnx1q
‰

)

1

2
α0 `

ÿ

n‰0

αn cospnxq “ cosp2xq ` 1` γCσ ` γ
1

2
α0 `min

a

!

cosp2x` 2aq ` γE
“

ÿ

n‰0

αn cos
`

npx` a` σεq
˘‰

)

.

(3.5.2)

We work the term inside the expectation

E
“

ÿ

n‰0

an cos
`

npx` a` σεq
˘‰

“
ÿ

n‰0

αnE
“

cos
`

npx` aq
˘

cospσεq ´ sinp2x` 2aq sinpσεq
‰

“
ÿ

n‰0

αn cos
`

npx` aq
˘

Cσ,

where in the second equality we used the fact that Ersinpσεqs « 2σ
ş8

´8
ε 1?

2π
e´

ε2

2 dε (given by a

Taylor expansion of sinpσεq) and in the final the definition of Cσ. Now turning to the computation
of min we have

min
a

!

cosp2x` 2aq `
ÿ

n‰0

αnCσ cos
`

npx` aq
˘

)

,

which yields a˚ “ π
n ´ x.

Plugging everything in (3.5.2) we can identify the coefficients of the Fourier representation of
the Value function as follows

1

2
α0 “ γCσ ` 1´ cosp

2π

n
q ` γ

1

2
α0 ´ γCσ

ÿ

n‰0

αn

ÿ

n‰0

αn cospnxq “ cosp2xq,

where from the second we get n “ 2, α2 “ 1, then α0 “ 0. So finally the state value function

V pxq “ cosp2xq,

and the action value function

Qpx, aq “ cpx, aq ` ErV px1qs “ cosp2xq ` 1` p1` γCσq cosp2x` 2aq ` γCσ,

and
a˚pxq “

π

2
´ x.
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Figure 3.1: Theoretical Q function

For a visualisation of Q function see Figure 3.1
For our simulations to learn the optimal value function, we use a discretisation of the actions

using Na “ 100 points for estimating min and argmin using grid search and 106 iterations. At
each iteration we choose uniformly a random action and observe the next state and the cost. Then
we update our estimator of the value function according to Algorithm 2 and Equation 3.1.16 for
the TD target. We emphasise that we just consider the data stored in memory as sequences
sn, an, yn, sn`1, an`1, yn`1 where the total number of data points is the total number of iterations
of our RL loop (i.e. 106). The choice of our kernel is Epanechnikov Kernel function

K pxq “

#

3
4p1´ x

2q if x P r´1, 1s

0 otherwise,

and for the rest of our parameters, the size of the bandwidth h “ 0.2, σ “ 1 and γ “ 0.1. First we
compare the results for the convergence of the pQh to Q

The supnorm and L2 errors respectively for the plot at 106 iterations over a 100ˆ 100 discreti-
sation grid are as follows:

1. } pQh ´Q}8 “ 1.7678

2.
´

ş1
0

ş1
0 |

pQhpx, aq ´Qpx, aq|
2dxda

¯
1
2
“ 0.2986
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Figure 3.2: Approximated Q function at different iterations. From top left, clockwise: initial, 104,
2 ˚ 104, 9 ˚ 104 and 106

The main issues of the approximation that increase the supnorm error is the scale of pQh and
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some areas around the boundary that is a common symptom of Kernel regression, see also the
remarks that are following.

For the optimal control the issue with the boundary becomes even more evident

Figure 3.3: Approximated optimal policy

The L2 error for the optimal policy is 0.037

Remark 3.5.1. h should be proportional to σ2 in a sense that if h ą σ2 the estimator will be flatter
since the bandwidth of data for the kernel will be too wide, this corresponds to higher bias. On the
other hand, for Na to have a positive effect on the error as Na goes up also h needs to go down
but not too fast, since setting h too small makes the estimator’s variance going up and bias going
down.

Remark 3.5.2. As h Ó we need increasingly more observations to make up for the lost information
in the kernel matrix where zeros start to appear more often. Notice how the final plot of Figure 3.2
is much smoother than the previous with much less observations.

Remark 3.5.3. It is well known that kernel methods have issues close to the boundaries and the
estimation can be well off, one standard way in the literature to correct boundary issues is local
regression see [69, Chapter 6].

3.6 Appendix

We here collect a series of results that are useful for our analysis.

3.6.1 Deviation inequalities for Bernoulli random variables

The following inequality is a direct consequence of Cramer inequality for Bernoulli variables:

Lemma 3.6.1. Let pεnqně1 be a sequence of independent and identically distributed random vari-
ables on t0, 1u of parameter p P p0, 1s. Then, for any a ě e2,

P
ˆ

ď

něN

! 1

n

n
ÿ

k“1

εk ě ap
)

˙

ď

´p

2

¯a{2´1
,
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with N “ r´ lnpp{2q{p2pqs.

Proof. We first notice that, without any loss of generality, we can assume ap ď 1 as otherwise the
bound is trivial.

Then, we use the following standard Cramer inequality for Bernoulli random variables (see for
instance [49]). For any a P p0, 1{ps, we get

P
ˆ

ď

něN

! 1

n

n
ÿ

k“1

εk ě ap
)

˙

ď
ÿ

něN

exp
!

´n
”

ap lnpaq ` p1´ apq ln
´1´ ap

1´ p

¯ı)

.

Here p1´ apq{p1´ pq ě 1´ ap, and

`

1´ ap
˘

ln
´1´ ap

1´ p

¯

ě
`

1´ ap
˘

ln
`

1´ ap
˘

ě ´ap.

where we used the fact that, for u P r0, 1s,

p1´ uq ln
`

1´ u
˘

` u “
“

p1´ uq ln
`

1´ u
˘

´ p1´ uq
‰

´ r´1s “ ´

ż 1

1´u
lnpxqdx ě 0.

Therefore,

P
ˆ

ď

něN

! 1

n

n
ÿ

k“1

εk ě ap
)

˙

ď
ÿ

něN

exp
!

n
”

´ap lnpaq ` ap
ı)

. (3.6.1)

Then, for a ě e2,

P
ˆ

ď

něN

! 1

n

n
ÿ

k“1

εk ě ap
)

˙

ď
ÿ

něN

exp
`

´nap
˘

ď

ż `8

N´1
expp´apxqdx “

1

ap
exp

´

´appN ´ 1q
¯

.

Since a ě 1, we get, for the value of N chosen in the statement,

P
ˆ

ď

něN

! 1

n

n
ÿ

k“1

εk ě ap
)

˙

ď

´p

2

¯a{2´1
.

This completes the proof.

3.6.2 Coupon collector

Lemma 3.6.2. For an integer J ě 1, let

W1 “

J
ÿ

i“1

rti,

with prtiq1ďiďJ being a sequence of independent variables, with each rti following a geometric distri-
bution of parameter minp1, η1p1´ pi´ 1q{Jqq, for some η1 ď J .
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Then, there exists a universal constant C such that
piq for any ε P p0, 1q,

E
”

exp
´

p1´ εq
η1

J

“

W1 ´ EpW1q
‰

¯ı

ď exp
´

1` C
p1´ εq2

ε

¯

,

and we can find a measurable map F from Rˆr0, 1s into R such that, for any r0, 1s-valued uniformly

distributed random variable U , the random variable ĂW1 :“ F pW1, Uq satisfies W1´J{η
1 ď ĂW1 ďW1

and

E
”

exp
´

p1´ εq
η1

J

“

ĂW1 ´ EpĂW1q
‰

¯ı

ď exp
´

C
p1´ εq2

ε

¯

;

piiq for any r ą 0,

E
”

exp
´

r
η1

J

“

EpW1q ´W1

‰

¯ı

ď exp
`

1` Cr2
˘

;

piiiq for any r ą 0,

P
´

W1 ď
J lnpJ{r2η1sq

2η1

¯

ď exp
`

1` Cr2
˘

´2η1

J

¯r{2
.

Proof. First Step. We first notice that the parameter of rti becomes (strictly) less than 1 for i
satisfying η1r1 ´ pi ´ 1q{Js ă 1, namely Jp1 ´ 1{η1q ă i ´ 1 ô i ą Jp1 ´ 1{η1q ` 1. Below, we let
Jη1 “ rJp1´ 1{η1qs` 1. Since η1 ď J , we have Jp1´ 1{η1q ď J ´ 1 and thus Jη1 ď J . Clearly,

η1

J

J
ÿ

i“1

“

rti ´ Errtis
‰

“
η1

J

J
ÿ

i“Jη1

“

rti ´ Errtis
‰

.

Second Step. In this step, we prove the claim piq in the statement. For i P tJη1 , ¨ ¨ ¨ , Ju, we
recall that rti “ tYiu ` 1, where Yi is an exponential random variable of parameter λi such that
1´ expp´λiq “ η1p1´ pi´ 1q{Jq ô λi “ ´ lnp1´ η1 ` η1pi´ 1q{Jq. Therefore,

E
”

exp
´

p1´ εq
η1

J

J
ÿ

i“Jη1

“

rti ´ Errtis
‰

¯ı

ď E
”

exp
´

1` p1´ εq
η1

J

J
ÿ

i“Jη1

“

Yi ´ ErYis
‰

¯ı

“ expp1q
J
ź

i“Jη1

E
”

exp
´

p1´ εq
η1

J

“

Yi ´ ErYis
‰

¯ı

,

where we used the fact that J ´ Jη1 ` 1 ă J{η1. Now,

E
”

exp
´

p1´ εq
η1

J

“

Yi ´ ErYis
‰

¯ı

“ λi exp
´

´p1´ εq
η1

Jλi

¯

ż 8

0
exp

´

p1´ εq
η1

J
x´ λix

¯

dx

“ λi exp
´

´p1´ εq
η1

Jλi

¯´

λi ´ p1´ εq
η1

J

¯´1

“ exp
´

´p1´ εq
η1

Jλi
´ ln

”

1´ p1´ εq
η1

Jλi

ı¯

.
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Using the inequality ´ lnp1´uq ě u, for u P p0, 1q, we emphasize that λi ě η1r1´pi´ 1q{Js, which
gives λi ě η1{J and then p1´ εqη1{rJλis ď 1´ ε. Now, we notice that, for u P r0, 1´ εs,

ln
`

1´ u
˘

“ ´

ż 1

1´u

1

x
dx “ ´u`

ż 1

1´u

x´ 1

x
dx ě ´u´

1

ε

ż 1

1´u
p1´ xqdx ě ´u´

1

2ε
u2. (3.6.2)

And then,

E
”

exp
´

p1´ εq
η1

J

“

Yi ´ ErYis
‰

¯ı

ď exp
´

pη1q2p1´ εq2

2J2λ2
i ε

¯

ď exp
´

p1´ εq2

2pJ ´ pi´ 1qq2ε

¯

.

Taking the product over i P tJη1 , ¨ ¨ ¨ , Ju, we easily complete the proof of the two inequalities in the
first claim. In this regard, we observe that, for each i, Yi may be constructed in a canonical way
from rti. Indeed, one has, for any integer k ě 1 and any x P r0, 1s,

P
´

pk ` 1q ´ Yi ě x | tYiu “ k
¯

“ P
´

k ď Yi ď k ` 1´ x | k ď Yi ď k ` 1
¯

“
1´ expp´λixq

1´ expp´λiq
.

The second line right above gives the cumulative distribution function of the law of rti ´ Yi given
rti. In particular, calling Fi the corresponding quantile function, we may let Yi “ rti ´ FipUiq for Ui
any r0, 1s-valued uniformly distributed random variable. Letting ĂW1 :“W1´

řJ
i“Jη1

FipUiq for any

independent r0, 1s-valued uniformly distributed random variables pUJη1 , ¨ ¨ ¨ , UJq, this provides the
form of F in item piq.

Third Step. We now prove the claim piiq. The procedure is very similar to the proof of piq
except that, due to the reversed sign in the exponential, the integrability properties are stronger.
In clear, for any r ą 0,

E
”

exp
´

r
η1

J

“

ErYis ´ Yi
‰

¯ı

“ λi exp
´

r
η1

Jλi

¯

ż 8

0
exp

´

´r
η1

J
x´ λix

¯

dx

“ λi exp
´

r
η1

Jλi

¯´

λi ` r
η1

J

¯´1

“ exp
´

r
η1

Jλi
´ ln

”

1` r
η1

Jλi

ı¯

.

We now use the following analogue of (3.6.2). Recall indeed that, for u ą 0,

lnp1` uq “

ż u

0

1

1` x
dx “ u´

ż u

0

x

1` x
dx ě u´

u2

2
.

Then,

E
”

exp
´

r
η1

J

“

ErYis ´ Yi
‰

¯ı

ď exp
´

pη1q2r2

2J2λ2
i

¯

ď exp
´ r2

2pJ ´ pi´ 1qq2

¯

.

198



Taking the product over i P tJη1 , ¨ ¨ ¨ , Ju, we can easily follow the argument of the first claim. We
get

E
”

exp
´

r
η1

J

“

EpW1q ´W1

‰

¯ı

ď exp
`

r ` Cr2
˘

;

Using Young’s equality, we upper bound r by 1{2` r2{2 and then complete the proof.

Third Step. We observe that

E
J
ÿ

i“1

rti “ Jη1 ´ 1`
J
ÿ

i“Jη1

J

η1pJ ´ pi´ 1qq
“ Jη1 ´ 1`

J

η1

J´Jη1`1
ÿ

i“1

1

i
ě
J lnpJ ´ Jη1 ` 1q

η1
.

We know from the first step that Jη1 ď Jp1´ 1{η1q ` 2 and then J ´ Jη1 ` 1 ě J{η1 ´ 1 ě J{p2η1q
since J ě η1. Since Jη1 ě 1, we get

EpW1q “ E
J
ÿ

i“1

rti ě
J lnpJ{r2η1sq

η1
ě
J lnpJ{r2η1sq

η1
.

From claim piiq, we deduce that, for any r ą 0,

P
´

EpW1q ´W1 ě
J lnpJ{r2η1sq

2η1

¯

“ P
´

r
”

EpW1q ´W1

ı

ě r
J lnpJ{r2η1sq

2η1

¯

ď exp
`

1` Cr2
˘

´2η1

J

¯r{2
.

Therefore,

P
´

W1 ď
J lnpJ{r2η1sq

2η1

¯

ď exp
`

1` Cr2
˘

´2η1

J

¯r{2
.

3.6.3 Sobolev embeddings and bases

We establish the Sobolev embedding like properties (3.4.9). For two reals k ě 0 and m ě tdS{2u`

1, the embedding im`k,k from Hm`kpSq into HkpSq is Hilbert-Schmidt (and thus compact). In
particular, by composition of Hilbert-Schmidt operators, the embedding H2m`kpSq into HkpSq is
trace class (or 1-Schatten). As such, there exists an orthonormal basis peiqiě1 of H2m`kpSq, it holds

ÿ

iě0

}ei}HkpSq ă 8. (3.6.3)

If we now choose k “ m, then classical Sobolev embedding theorem implies that
ÿ

iě0

}ei}L8pSq ă 8.

In fact, by duality, the adjoint mapping i˚m`k,k is also an Hilbert-Schmidt fromHkpSq intoHm`kpSq.
We thus have that the mapping

`

i2m`k,m`k, i
˚
2m`k,3m`k

˘

: H2m`kpSq Ñ Hm`kpSq ˆH3m`kpSq

h ÞÑ
`

i2m`k,m`kphq, i
˚
2m`k,3m`kphq

˘
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is Hilbert-Schmidt. Similarly,

`

im`k,k, i
˚
3m`k,4m`k

˘

: Hm`kpSq ˆH3m`kpSq Ñ HkpSq ˆH4m`kpSq

ph1, h2q ÞÑ
`

im`k,kph1q, i
˚
3m`k,4m`kph2q

˘

is Hilbert-Schmidt. Therefore, by composition

`

i2m`k,k, i
˚
2m`k,4m`k

˘

: H2m`kpSq Ñ HkpSq ˆH4m`kpSq

h ÞÑ
`

i2m`k,kphq, i
˚
2m`k,4m`kphq

˘

is trace class. We deduce that there exists an orthonormal basis peiqiě1 of H2m`kpSq such that

ÿ

iě0

b

}i2m`k,kpeiq}
2
HkpSq

` }i˚2m`k,4m`kpeiq}
2
H4m`kpSq

ă 8.

Equivalently,
ÿ

iě0

}i2m`k,kpeiq}HkpSq `
ÿ

iě0

}i˚2m`k,4m`kpeiq}H4m`kpSq ă 8. (3.6.4)

We now choose k “ m. For ϕ P H5mpSq, with }ϕ}H5mpSq ď 1, we have

ÿ

iě0

ˇ

ˇ

ˇ

`

i5m,3mϕ, ei
˘

H3mpSq

ˇ

ˇ

ˇ
“ Cm

ÿ

iě0

ˇ

ˇ

`

ϕ, i˚5m,3mei
˘

H5mpSq

ˇ

ˇ

ď Cm
ÿ

iě0

›

›i˚5m,3mpeiq
›

›

H5mpSq
ď Cm,

for a new value of the constant Cm in the last line. This is the first line in (3.6.3) The second line
in (3.6.3) (for the same basis) follows from (3.6.3) and (3.6.3).
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Chapter 4

Perspectives for future research

In this final part of the thesis we will present two open problems that have not been addressed
so far in the literature, along with some methodology and tools to potentially solve them. Both
of them are connected and stem from practical applications related to collaborative MARL and in
our opinion demonstrate how AI can fuel further research in mathematics.

4.1 How to make an implementable MFMDP

It is common practice in order to solve collaborative MARL, to define a Mean Field Markov Decision
Process (MFMDP) to model the interactions of the representative player of the population with the
environment and then try to learn the optimal value function of the MFMDP. Value Iteration is such
an iterative algorithm that computes the optimal state value function by iteratively improving its
estimate until convergence. The optimal policy can then be derived from the optimal value function.

In the case of single agent classical RL in Euclidian spaces, the algorithm requires either function
approximation or states discretisation, which results to the well known Approximate Value Iteration
(AVI). For the MFMDP on continuous spaces this is not enough because we are dealing with a
problem that is set on the space of probability measures.

The standard single agent MDP can be implemented as a computer environment that anyone
can interact with and thus solve by classical RL algorithms. Such an implementation can be
found for example in gymnasium [64], and is very valuable for the development of the respective
community. This is also part of our motivation for the research question we are proposing.

In a nutshell, our intention is to construct an approximate, finite dimensional MFMDP that we
can simulate autonomously and then learn via classical algorithms of RL. The error between the
theoretical model and the implementable one, is one part due to distribution approximation and one
part due to construction of a finite-dimensional simulator for the dynamics. Our main result would
be a quantification of this approximation error. We believe that by designing a methodology to
create implementable MFMDPs we bring value to communities of RL and MFGs since we facilitate
their interaction and collaboration.
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4.1.1 Literature Review

So far examples of MFMDPs come from either exclusively finite state models, [36, 61], or continuous
state ones with space discretisation [36, 14] relying on a theoretical model to provide the mean field
transitions.

For the sake of brevity we focus our attention on [14] which is the closest to what we have
in mind. The authors rely on several layers of approximation to construct a finite model that
gives the optimal policy which is also optimal for the infinite population game. In one approach,
direct aggregation of perfectly observable measures, at each step the best response is computed for
all discretised states and approximated mean field states (empirical measure and nearest neighbor
aggregation). Then, implementing the best response, the new mean field state is observed and
accordingly approximated to introduce a new iteration. In a second approach, instead of direct
observation of the whole mean field they have access to the distribution of n-players from the
population and construct the best response given this observation. In both cases, the algorithm
relies on the infinite population model for each iteration and thus it cannot be directly implemented
is a form of a simulated MFMDP.

4.1.2 Tools

In order to construct our finite MFMDP we need two types of approximations, one for the distri-
butions and one for the dynamics.

One possible choice for the first type is minimization of the Cramér distance

dCppµ, νq “

ˆ
ż

X
|Fµpxq ´ Fνpxq|

pdx

˙
1
p

, (4.1.1)

Fµ, Fν the distribution of µ, ν. for the p “ 1 in d “ 1 it is the same as the 1-Wasserstein distance.
There exists as well a useful dual formula,

dCppν, µq “

ˆ
ż

|Fµpxq ´ Fνpxq|
pdx

˙
1
p

“ sup
ϕ

!

ż

ϕpxqdFµ ´

ż

ϕpxqdFν

)

,

where the sup is taken over all absolutely continuous functions ϕpxq “
şx
a ϕ

1ptqdt with }ϕ1}Lq ď 1
and 1

p `
1
q “ 1.

The Cramér distance has the benefit that can be computed efficiently numerically and preserves
all the nice topological properties of Wasserstein. This minimization is quite flexible since it doesn’t
require an a priori fixed discretisation lattice. For some examples and algorithms see [10].

Another possible choice could be the method developed by Pham and Warin in [98]. There the
authors approximate a functional V : µ P P2pRdq Ñ V p¨, µq P L2pµq using neural networks that get
either a piecewise-constant density called bin approximation or another neural network on which
acts the measure µ. The authors provide also details about data generation, training and examples
of mean field models, which except from inspiration offer a valuable testbed for benchmarking.

We would like to comment that we don’t necessarily see these tools as competing but rather as
complementary where for example we could try to use Cramér distance as a form of preprocessing
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for the discretisation of distributions that enter the network. After all neural networks are known
for their flexibility and modularity.

Other tools that we could combine are cubature methods, Voronoi diagram projections and
particle filters, all of them requiring further investigation.

4.1.3 Strategy/Methodology

The main idea is to define the infinite-dimensional MFMDP and an approximated finite-dimensional
counterpart that we will learn afterwards by conventional methods. In practice and in accordance
with what has been investigated so far in the thesis, we would like to have a first layer of approxi-
mation of type

ˇ

ˇV ˚pµq ´ pV ˚pµKq
ˇ

ˇ ď
ˇ

ˇV ˚pµq ´ V ˚pµKq
ˇ

ˇ`
ˇ

ˇV ˚pµKq ´ pV ˚pµKq
ˇ

ˇ

where V ˚ is the value optimal value function of the infinite model and pV ˚ the one from the finite,
with µ and µK accordingly. Under standard assumptions V ˚ can be proven to be continuous
(especially due to regularity of rewards) and thus the first term is going to be easy to control, while
in the second we expect to see the influence of approximating the transitions.

For a second layer of approximation, we learn the finite model by some RL algorithm whether
is would be model based or model free.

ˇ

ˇ pV ˚pµKq ´ pV ˚n pµ
Kq

ˇ

ˇ

4.1.4 Difficulties

From the two layers of approximation, second one is more standard since the literature both the-
oretically and numerically is very well developed however the problem could possibly be high
dimensional. The main difficulty and the novelty of the work would be to approximate
effectively the transitions.

In MFRL this problem is well known and usually falls under the umbrella of optimization with
a mean field oracle where the oracle gives the transitions of mean field state. Instead, our intension
is the constructed MFMDP to be oracle free where we don’t assume anymore access to the model
which gives the transitions1.

This problem, in the case of an MFG is treated the recent work [120] where in a finite state
model the occupancy measure is used to approximate the consistency condition for the distribution
of the population. Of course the use of occupancy measure create a dependency of the derived
policies on the history of visits for the states and thus non-Markovianity. However for standard RL
with finite spaces it has been shown that this fact doesn’t create problems since there always exists
a Markovian policy that has the same occupancy measure as the non-Markovian. Very recently,
[79] this property has been shown to hold also for continuous state MDPs. We would like to explore
this opportunity and adapt their arguments in our set-up.

1not to be mistaken with model free
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4.2 How to solve directly a continuous MFMDP, without state
discretisation

The main motivation behind this research question is similar to the previous chapter of the thesis
we would like to approximate the continuous MDP without passing from state discretisation and
in addition have an efficient numerical implementation. On the one hand we have seen that using a
kernel approximation for the value we respect the contraction property for the Bellman operator, on
the other if we want to have an efficient implementation we necessarily have to constrain complexity
since the memory requirements can grow pretty fast.

In our opinion combining, a stochastic approximation point of view with kernels would be
beneficial for a MFMDP since off policy stochastic approximation (like Q-learning see [109]) requires
to sample a large number of trajectories and then learn the optimal value. This combines very well
with recent advancements like [98] and Langevin [40] so we can have efficient ways to sample
probability measures that we then use in our kernels for an optimal representation. Note, that this
strategy is different than what we proposed in the first research question where the interaction with
the implementable MFMDP will provide the data for learning.

Since the approach is quite novel for mean field problems we refer to the literature review on
the previous chapter of the thesis for kernel based approximation on single agent RL. We feel it is
better first to detail our strategy and present our tools as we go since this time the idea is more
complex and requires several steps to be complete.

4.2.1 Literature review

The only relevant references to our research question we were able to find while preparing this
chapter was [39] and [113].

In [113] which appeared first chronologically, the authors consider a problem with continuous
states, centralised actions for a finite space and instead of the whole mean field state they access
only N agents distributed according to the mean field state µ. They assume to have access to
a data set with uniform coverage. To represent the measures that enter into Q function they
use a mean embedding into a Reproducing Kernel Hilbert Space (RKHS) and then a Mean Field
Fitted-Q-Iteration (FQI) for updating the Q function.

In [39] the authors consider a multi-agent MDP where each agent has a local state and take local
actions and the transitions depend upon these local quantities as well as the mean field state. In
contrast with [113] they assume weak coverage over their dataset. They use as well mean embedding
for the distributions and an algorithm based on the pessimism principle.

Both publications provide interesting implementations that should be taken into account for
possible benchmarks of our work.

4.2.2 Strategy/Methodology and Tools

We start by assuming that the action value function belongs in some Reproducing Kernel Hilbert
Space H , so Q can be represented by an infinite sum of kernels2, then revise a gradient descent on

2which we later turn into a finite via the representer’s theorem
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the RKHS to identify the fixed point of the Bellman operator. It’s not hard to prove existence of
such a space of functionals on the space of probability measures for d “ 1. For a general introduction
to RKHS see [103] and for an implementation of the strategy on single agent continuous MDP [77]

The first step is to rewrite the Bellman operator as an equation that we want to solve for all
pairs µ, α in the respective domain

lpQq “ Rpµ, αq ` Ermax
α1

Qpµ1, α
1qs `Qpµ, αq

We take the square and integrate with respect to an arbitrary everywhere dense density over
PpXq ˆ PpAq to account for all initial conditions.

LpQq “
1

2
Eµ,αrl2pQqs “

ż

PpXqˆPpAq

1

2
l2pQqPpdµ, dαq. (4.2.1)

For technical reasons we need to add a penalisation so the final cost of the descent would be

JpQq “ LpQq `
ρ

2
}Q}2H

Now, it is pretty clear that in order to differentiate the cost (in Fréchet sense) we need it to be
smooth, which could be done by replacing the max for a softmax, i.e. considering the Regularized
Bellman operator. The major problem is that this procedure is not standard for measures and we
have to give meaning to an operation like that.

There is one more remark to make before we deal with implementing the functional descent.
Equation (4.2.1) involves a nested expectation problem that can be translated as follows ”in order
to obtain samples of the gradient ∇QJ we require two different queries to a simulation
oracle: one to approximate the inner expectation over the transition dynamics defined
by µ1 “ F pµ, α, ε0q, and one for each initial pair µ, α which defines the outer expectation”.
As proposed in [77] we can resort to a two timescales stochastic approximation.

Following with the implementation of the descent, we apply some form of discretisation to
probability measures to obtain finite-dimensional objects that we can store in memory and deal
with the sampling issues. Here again we think that some Cramér distance, quantization bins or
Langevin dynamics [40] could give us the solution to the problem.

Last, comes the question of constraining the complexity. This can be in form of decreasing the
memory requirements or compressing the memory representations of the functionals. In the first
category we mention the classical Nyström method [117] while in the second we refer to techniques
of representation learning [19] for a general review and [110] for a method adapted to kernels.

4.2.3 Difficulties

On the theoretical side, in order to design the learning scheme we need a proper definition of
a regularized Bellman operator for the Mean Field Value function that for the moment remains
largely open.

On the practical side, we need efficient simulation of samples µ, α, µ1 and to balance the memory
requirements. This balance is by no means easy since the error will depend on the discretisation of
the distributions that will be one of the crucial factors for the memory requirements. Nevertheless
we are optimistic that a form of representation learning or compression will be able bring the scale
into balance.
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