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1

INTRODUCTION

CONDENSED matter physics, whose modern origin can be attributed to
Einstein’s seminal works on the photoelectric effect [1] and on the heat ca-
pacity of solids [2], aims to investigate both the microscopic and macroscopic
properties of matter from the collective effects of a large number of parti-
cles, and notably to study the different phases of matter in the broadest sense.
Throughout the twentieth century, it became one of the most prolific field
of physics, and as a matter of fact, the subsection “cond-mat” on the arXiv
prepublication platform is today the most popular physics category.

Within the field of condensed matter, two branches have especially attracted
a lot of attention in the past fifty years. The first one is the field of disordered
systems, in which the effect of Anderson localization unveiled the fact that
a piece of metallic material can be turned into an insulating one by micro-
scopic disorder, the latter leading the electron wavefunctions to localize. The
second one is the physics of topological matter, which encompasses notably
the emblematic integer quantum Hall effect. In particular, it allows to rigor-
ously classify physical materials than can behave as insulating in their bulk,
but metallic on their surfaces or edges, thanks to symmetry protected topo-
logical surface or edge states, and to explain these intriguing new states of
matter through concepts borrowed from topology.

Interestingly, both Anderson localization and topological phases of matter
have the peculiarity, although developed in the context of condensed mat-
ter quantum electronic systems, of originating from wave phenomena [3, 4].
The emergence of these effects in solid-state physics is therefore solely the
result of the quantum wave-particle duality of electrons. Indeed, Anderson
localization and topological physics have been studied in fields far beyond
electronic systems, and as varied as acoustics [3, 5], shallow water waves [6–
8], cold atoms [9, 10] or photonics [11–15].

Another field which has been rapidly expanding in the past few decades is
the physics of strong light-matter coupling, which addresses the behavior of
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collective hybrid light-matter excitations known as polaritons. Whereas mat-
ter ordinarily weakly couples to the electromagnetic vacuum, the use of op-
tical cavities, i.e., of confined electromagnetic modes, allows one to enhance
the light-matter interaction. Once in what is known as the strong-coupling
regime, the hybridization of matter excitations with photons has been shown
to significantly modify material properties, in particular through a photon-
induced long-range coupling between matter degrees of freedom [16]. As
wave-like collective excitations, polaritons could in principle be subject to
the above-mentioned Anderson localization and topological phenomena.

The goal of the present thesis work is to combine these three active fields of
study by investigating the fate of Anderson localization as well as of topolog-
ical phases of matter and their related topological edge states, in the context
of strongly-coupled light-matter systems. A unique feature of our theoretical
approach is to focus on one-dimensional structures, and to model the light-
matter coupling through a microscopically derived Hamiltonian, which de-
scribes realistic multimode optical cavities.

With the aim of addressing this objective, we organized the remainder of the
manuscript as follows:

• Chap. 1 serves to provide a preliminary introduction to the different
fields of study under consideration in this manuscript, namely, An-
derson localization in disordered systems, the concept of topological
phases of matter, and the physics of strong-light matter coupling.

• Chap. 2 is dedicated to the theoretical framework we employ to model
the light-matter coupling. Through a Hamiltonian approach in the Cou-
lomb gauge, we derive a general model of a one-dimensional array of
dipolar emitters coupled to the confined electromagnetic modes of an
optical cavity.

• Chap. 3 contains our investigations on the fate of Anderson localization
in one dimension in the strong light-matter coupling regime. With the
help of the model developed in Chap. 2, we study both the eigenspec-
trum and the driven dissipative transport properties of a disordered
chain of dipoles strongly-coupled to a multimode cavity. An important
result of this chapter is the emergence of disorder-enhanced transport,
a phenomenon originating from the disorder-induced hybridization of
dark states into polaritons.

• Chap. 4 concerns our study of the interplay between topological phe-
nomena and strong light-matter coupling. Relying on the theory de-
veloped in Chap. 2, we analyze the properties of a dimerized chain
of dipolar emitters strongly-coupled to cavity photons. Such a system
represents a variation of the Su-Schrieffer-Heeger model of polyacety-
lene – a textbook model of a one-dimensional topological system – with
the addition of an effective, photon-mediated, dipole-dipole coupling.
We study the eigenspectrum of the system, its driven-dissipative trans-
port properties, and in particular the fate of its topological features.
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An important result of this chapter is the hybridization of the original
topological edge states into what we coin polaritonic edge states, which
present unusual properties, and emerge in the strong-coupling regime
only.

• Eventually, we draw conclusions on the effects of disorder and topol-
ogy in strongly coupled light-matter systems, and we place our work
in perspectives, discussing its limitations and proposing further studies
on the topic.

The results that we present, respectively, in the third and fourth chapters of
this manuscript have been published in the following articles:

• T.F. Allard, G. Weick, Disorder-enhanced transport in a chain of lossy dipoles
strongly coupled to cavity photons, Physical Review B 106, 245424 (2022)
[17]

• T.F. Allard, G. Weick, Multiple polaritonic edge states in a Su-Schrieffer-
Heeger chain strongly coupled to a multimode cavity, Physical Review B
108, 245417 (2023) [18]

During the time of the PhD, the following work, containing results which are
not presented in this manuscript, has also been published as a journal article:

• T.F. Allard, G. Weick, Quantum theory of plasmon polaritons in chains of
metallic nanoparticles: From near- to far-field coupling regime, Physical Re-
view B 104, 125434 (2021) [19].
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CHAPTER 1

PRELIMINARIES

In this preliminary chapter, we give a concise overview of the specific topics
addressed in this thesis. First, we introduce the fields of Anderson localiza-
tion and topological phases of matter. We note that a complementary prac-
tical introduction to these two topics, based on a hands-on examination of
celebrated toy models, will also be provided, respectively, in the beginning
of Chaps. 3 and 4. Then, the physics of strong light-matter coupling, with the
emergence of polaritonic hybrid states, is presented.

1.1 Disordered systems and Anderson localization . . . . . . . 6

1.2 Topological phases of matter . . . . . . . . . . . . . . . . . . 8

1.3 Strong light-matter coupling . . . . . . . . . . . . . . . . . . 12



6 Chapter 1. Preliminaries

1.1 Disordered systems and Anderson localization

From inevitable impurities, inhomogeneities or irregularities, disorder is ubi-
quitous in nature. This makes the perfect crystalline structure the exception
rather than the rule, and in most realistic cases, one has to deal with a certain
amount of randomness and disorder in its experiment. This naturally led to
a profound interest in the study of disordered systems. Among many fasci-
nating phenomena induced by the presence of disorder, such as the Griffiths
phase, glassy behavior, amorphous solids or the liquid-solid transition, one
of them, the effect of Anderson localization, is particularly universal and has
led to its own active field of research.1

In his seminal work published in 1958 [25], Anderson considered a tight-
binding model of an electron hopping in a three-dimensional (3d) disordered
lattice in the thermodynamic limit, so that on each site of the lattice the elec-
tron experiences a random potential energy, chosen within an interval of
width W. Once trapped on a lattice site, the electron can hop to the near-
est neighboring site through tunnelling.2

Such a system is sketched in Fig. 1.1(a), first in the case of no disorder on
the top panel. In that case, the electron wavefunction is a Bloch wave that is
extended in the lattice. What Anderson demonstrated is that if the disorder
strength W is large enough, the electron wavefunction becomes exponen-
tially confined to small regions of space, leading to a lack of diffusion and
a complete localization, as sketched in the bottom panel. Therefore, in that
case, the conduction of the system is not only diminished, but totally sup-
pressed.

While the decrease of conduction due to impurities can be intuitive, the pos-
sibility of a complete suppression is less. In particular, Anderson’s picture of
the behavior of an electron in a random potential dramatically contrast with
the one of small classical particles, for which it is well known, for instance
from Jean Perrin’s experiments, that disorder leads to diffusive motion [29].

The phenomenon is in fact even more striking in systems of smaller dimen-
sionality. Indeed, while a disorder-induced metal-to-insulator transition oc-
curs at a finite value of W in 3d systems, it has been shown that any infinites-
imal value of W leads, at the thermodynamic limit, to the exponential local-
ization of the wavefunction in both 1d [30] and 2d [31] systems.3 In Chap. 3,
we will conduct a comprehensive study of the 1d Anderson model.

1For a complete review, see, e.g., Refs. [20–23], while for a comprehensive historical re-
view see Ref. [24].

2It is noteworthy to mention that Anderson’s model only account for noninteracting,
short-ranged Hamiltonians. The inclusion of interactions [26] or of long-range couplings
[27] considerably modify the standard theory of Anderson localization.

3This dimensionality dependence can be phenomenologically understood from a naive
analogy with a classical random walk. Indeed, on one- and two-dimensional lattices, the
return probability ρ of a particle with random equiprobable hopping is 1 in the thermody-
namic limit. In contrast, in a three-dimensional random walk, one always has ρ < 1 [32].
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Figure 1.1: Anderson localization. (a) Sketch of the Anderson
model. Top panel: the lattice has a crystalline structure, so that
the electron propagation is governed by Bloch’s theorem and
the wavefunction is extended. Bottom panel: When the poten-
tial landscape felt by the electron is disordered and the disorder
strength W is large enough, the wave function localizes expo-
nentially in space. (b) Sketch of the interference phenomenon
underlying Anderson localization. The vertical red lines repre-
sent the wavefront of a plane wave propagating in a medium
with many impurities or defects, depicted as black dots. Once
the plane wave scatters on impurities, the rescattered wavelets
interfere coherently with each other. For a large enough amount
of impurities, the interference is destructive in the direction of
propagation so that the wavefunction amplitude decreases ex-

ponentially. Figure reproduced from Ref. [28].

It was later realized that Anderson localization arises solely from a subtle
wave interference mechanism, so that it is a universal effect that applies to
any wave propagating through a disordered medium. In the case of electrons
in solids, the interferences occur between multiple scattering paths of the
electrons. When these paths have widely separated initial and final positions,
destructive interferences occur, trapping the electron in its initial position.

A qualitative illustration of this phenomenon in a two-dimensional (2d) sce-
nario is depicted in Fig. 1.1(b). It presents a plane wave – the vertical red
lines denoting the wavefronts – propagating through a medium contain-
ing numerous impurities or defects represented by black dots. As the wave
propagates through the medium, it scatters off the impurities, breaking into
wavelets. These wavelets then interfere destructively with each other in the
direction of propagation, leading to an exponential decay of the wave ampli-
tude, which characterizes Anderson localization.

The universality of Anderson localization in wave physics has sparked re-
newed interest in its investigation over the past few decades. It has proven
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to be relevant in a variety of classical physics fields, from acoustics [3] to
oceanography [6], photonics [11], or even geology [33].

The study of Anderson localization in these classical application domains
may necessitate new theoretical considerations. Indeed, while electrons in
solids can be modeled under certain approximations with nearest-neighbor
couplings only, systems involving for instance polaritonic excitations natu-
rally give rise to longer-range coupling. This could possibly render the stan-
dard theory of Anderson localization inadequate, and it is partly what we
will endeavor to do in Chap. 3, where the focus will be on the interplay be-
tween disorder and polaritons.

1.2 Topological phases of matter

The second subject we will encounter in this manuscript is the physics of
topological phases of matter.4 In 1980, an experimental discovery by von
Klitzing, Dorda, and Pepper of a phenomenon which is now known as the
integer quantum Hall effect (IQHE), revealed that a 2d electron gas exposed
to a low temperature and a strong perpendicular magnetic field exhibits a
Hall conductance characterized by extremely precise quantized plateaus, so
precise that their value was until recently used for metrological purpose [42].
At the boundaries of this 2d electron gas, chiral edge states were predicted,
causing the material to be insulating within its bulk but metallic on its edges
[43]. Remarkably, both of these features, namely, the presence of an integer
invariant originating from bulk properties, and the presence of chiral edge
states, were found to exhibit an intriguing robustness against material im-
perfections, and there was in fact a deep connection between them, known
as the bulk-edge correspondence [44].

The investigation of the integer quantum Hall effect marked the beginning
of what would later be termed – in the broadest sense – as topological insu-
lators, a significantly larger concept that paved the way for an entirely new
branch of physics [36, 37]. A topological insulator is distinguished by its
peculiar behavior as an insulating material in the bulk which exhibits con-
ducting surface or edge states when placed in contact with a conventional
insulator, e.g., the vacuum. Here, the terminology “topological” originates
from the mathematical discipline of topology, which notably classifies ob-
jects that remain unchanged under continuous deformations. For instance,
a sphere and a cube can be smoothly deformed into each other, rendering
them topologically equivalent. Conversely, a sphere and a torus cannot un-
dergo such continuous deformations, establishing them as topologically dis-
tinct. To transition between these topologically distinct objects, a topological
phase transition, such as puncturing the sphere or filling the torus, has to
take place. Within this context, a global property characterizing the topology

4For a comprehensive introduction to the field, see, e.g., Refs. [34, 35]. For a more com-
plete review, see Refs. [36, 37], while for a concise introduction, we suggest the reader to
have a look at Refs. [38–41].
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of such geometric objects is their genus G, which takes a value of 0 for the
sphere and the cube, but of 1 for the torus. The quantity G serves as the topo-
logical invariant of the system, and thus manifests by definition robustness
against continuous deformations. In the case of topological phases of matter,
rather than geometric objects, it is Hamiltonians that are to be classified, and
their band structures – which originate typically from electrons propagating
in crystals – that undergo deformations. Following the previous discussion,
the IQHE phase discovered in 1980 can therefore be regarded as topologically
distinct from all previously recognized phases of matter [39].

To study topological insulators, we focus on Hamiltonians that exhibit a
gapped spectrum (there are also topological superconductors, for which the
band gap refers to the superconducting gap). The system’s topological in-
variant, computed from electron wavefunction properties, will then remains
robust under any changes to the band structure that do not close the gap. In
other words, the topological invariant remains unchanged as long as the ma-
terial remains insulating. Consequently, the edge or surface states associated
with the nontrivial topological phase are also robust against any continuous
deformation of the Hamiltonian band structure. In practice, this robustness
manifests as resistance against disorder, sometimes provided certain types
of symmetries of the system are preserved. Such a robustness of boundary
states is one of the compelling reasons why the physics of topological phases
draws significant attention from the community. Indeed, topological insu-
lators are sought after for numerous potential applications, particularly in
quantum or photonic technologies, such as lasing, spintronics, or quantum
computing.

An important breakthrough in the field of topological phases of matter has
been the complete classification of all phases in any dimension, achieved
through certain internal discrete symmetries of the Hamiltonian [45, 46]. This
classification of topological insulators, known as the “tenfold way”, is de-
picted in Tab. 1.1, which we will now briefly introduce.5

In 1996, Altland and Zirnbauer demonstrated that all Hamiltonians can be
classified according to two fundamental symmetries: time-reversal symme-
try (T ) and charge conjugation symmetry (C), the latter being also known
as “particle-hole” symmetry [55]. These two symmetries correspond to anti-
unitary transformations, meaning that they can be expressed as the product
of a unitary matrix U and of the complex conjugation operator K, and there-
fore that, importantly, they can take values of +1 or -1 once squared. To better
understand the meaning of these discrete symmetries, one can examine their
effect on the band structure of a Hamiltonian. On such a band structure,
time-reversal symmetry reverses the momentum of an eigenstate, implying

5We note that such a periodic table of topological phases has been originally introduced
for free fermions. Moreover, it only concerns short-ranged, non-interacting, Hermitian
Hamiltonians, but a number of investigations are currently underway to overcome these
limitations [47–49]. Finally, it does not either take into account crystalline symmetries [50–
52], which can lead to what is called higher order topological insulators [53], and notably
allowed the investigation of topological phases in thousands of crystals [54].



10 Chapter 1. Preliminaries

Symmetry Dimension
AZ class T C S 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 +1 Z 0 Z 0 Z 0 Z 0
AI +1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 +1 Z 0 0 0 Z 0 Z2 Z2
D 0 +1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 +1 +1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 +1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI +1 -1 +1 0 0 Z 0 Z2 Z2 Z 0

Table 1.1: The tenfold way. Altland-Zirnbauer (AZ) periodic
table of topological insulators (and superconductors) [45, 46].
The ten lines in the table represent the ten different Altland-
Zirnbauer (AZ) classes of Hamiltonian, labeled by their Car-
tan’s index. These classes are determined based on the presence
of time-reversal (T ), charge (C), and sublattice (S) symmetries.
The right part of the table presents the classification itself for
the first eight dimensions. In the table, a 0 entry indicates the
absence of a nontrivial topological phase for the given Hamil-
tonian class and dimension. On the other hand, a Z or Z2 entry
indicates the ensemble to which the topological invariant of the

system can belong.

a symmetry around momentum 0, while particle-hole symmetry, on the other
hand, reverses the momentum but also leads to a mirror symmetry between
the filled and empty bands. Those two symmetries, when distinguishing be-
tween the positive or negative sign of their square, leads to 9 different classes
of Hamiltonians. However, a last case is possible. Indeed, some Hamilto-
nians may possess neither T nor C symmetry independently, but instead a
combination of the two – known as chiral, or sublattice symmetry (S = CT )
– leading to a third symmetry, and to a tenth class of Hamiltonians. These 10
classes, known as Altland-Zirnbauer (AZ) classes, divide matter in 10 fun-
damentally different kinds. They are represented in the second, third, and
fourth columns of Tab. 1.1, in which in each cell a 0 signifies the absence of a
particular symmetry, and a 1 its presence, with + or − representing the sign
of the square of the latter symmetry.

To classify these Hamiltonians whether or not they may exhibit nontrivial
topology, Schnyder, Ryu, Furusaki, and Ludwig noticed that a topological
phase is a phase in which there exists boundary states that precisely do not
undergo Anderson localization [46, 56]. Indeed, edge or surface states being
conducting, i.e. delocalized, and presenting robustness against disorder, they
avoid localization, so that topological phases in dimension d can be classified
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as phases in dimension d− 1 avoiding Anderson localization.6 It is follow-
ing this approach that the filling of Tab. 1.1 has first been made possible [56],
and the result is presented in the right part of the latter table, where the 8
columns indicate the considered dimension. On the one hand, a 0 entry de-
notes the absence of a topological phase for the Hamiltonian in a given class
and dimension. On the other hand, when a topological phase is present, it
is indicated by the set to which its topological invariant belongs. Only two
types of topological invariants exist: Z invariants, which can take any inte-
ger values, and Z2 invariant, which are restricted to 0 or 1. It is worth noting
that the table exhibits a periodicity of dimension 8, a phenomenon known as
the “Bott Clock”, which explains why only the first 8 dimensions are repre-
sented. A Hamiltonian of a given AZ class presenting a topological phase in
dimension 1 will thus also present one – with the same type of invariant –
in dimension 9. This curious periodicity stems from the deep mathematical
structure underlying the classification [45].

Remarkably, one concludes from this analysis that topological phases are
characterized by the preservation – rather than by the breaking – of specific
symmetries. This is in stark contrast to non topological phases of matter,
where transitions, such as, e.g., the paramagnetic-ferromagnetic transition,
or the liquid-solid transition, can be described using Landau’s approach, in
which spontaneous symmetry breaking occurs [39].

To give some examples of the topological phases presented in Tab. 1.1, the
integer quantum Hall effect appears in dimension 2 and belongs to the class
A (no symmetries other than the unitarity of the Hamiltonian). Its edge states
are thus robust against any form of disorder, and its topological invariant,
the Hall conductance, can take any integer value, making it a Z topological
invariant. Another example is the quantum spin Hall effect [60], which falls
under class AII by possessing a fermionic time-reversal symmetry (T 2 =
−1). It has a Z2 topological invariant, and its topological properties remain
robust against perturbations that preserve the Hamiltonian within this class,
therefore, it is for instance not robust against a magnetic field which would
destroy T symmetry.

In this manuscript, importantly, we will focus specifically on one-dimensio-
nal (1d) topological physics, leaving the cases of larger dimensionality for fu-
ture research. In particular, our study will revolve around the Su-Schrieffer-
Heeger (SSH) model of polyacetylene [61], which exhibits all the three T , C,
and S symmetries. Depending on which symmetries we enforce, i.e., which
symmetries we consider to ensure the robustness of topological properties,

6Interestingly, this highlights the intricate interplay between the physics of Anderson
localization and topological phases. Another example is the fundamental role played by
disorder in the emergence of the IQHE, through the broadening of Landau levels. Moreover,
it has been shown that topological phases in the absence of crystalline and sublattice symme-
tries, such as the integer and spin quantum Hall effects, also have an obstruction to the full
localization of their bulk spectrum, leading to extended bulk states being robust to Anderson
localization [57]. Finally, we note that other intriguing features of this interplay also include
disorder-induced topological transitions [58], as well as topological phases characterized by
a fully localized bulk in the presence of disorder [59].
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the SSH model can thus belong to the classes AIII or BDI (the D class repre-
senting the Kitaev chain, a topological superconductor), leading to the pres-
ence of a Z topological invariant. The SSH model frequently serves as a
typical textbook example of 1d topology and will be thoroughly introduced
in Chap. 4.

Interestingly, much like Anderson localization, many topological phenom-
ena in physics have their underlying source in non-quantum phenomena.
More precisely, topological properties originate from geometric phase ef-
fects, which can notably be found in numerous wave physics systems, par-
ticularly those propagating through periodic media in which a well-defined
band structure exists [4]. Indeed, numerous classical systems exhibit proper-
ties which are analogous to those of certain electronic topological insulators,
so that the observation of topological edge states has spanned a wide range
of diverse fields, including acoustics [5], mechanics [62], active matter [63],
oceanographic waves [7], coordinated human movements (such as dance)
[64], cold atoms [10], photonics [14], and also polaritonics [65, 66], the latter
of which we will introduce in the following section.

1.3 Strong light-matter coupling

The interaction between light and matter, as we constantly experience it, has
been a subject of scientific research since the very beginning of the scientific
method, many centuries ago. An important milestone in the understand-
ing of the light-matter interaction came in the 1930s, with the establishment
of the theory of quantum electrodynamics (QED), which offered a compre-
hensive and precise theoretical framework for explaining its subtleties at the
most fundamental level. In particular, QED has notably elucidated phenom-
ena as important as the one of spontaneous emission, the latter playing a cru-
cial role in being at the origin of the vast majority of the light that surrounds
us every day [67].

While light and matter may initially appear as totally separate entities, there
is a situation in which they have a closely related behavior, known as the
strong light-matter coupling regime. In this regime, light and matter excita-
tions become indistinguishable, and behave as hybrid excitations, or quasi-
particles, known as polaritons. These quasiparticles, linear combination of
light and matter, were first introduced in the 1950s in the context of strong-
coupling of light with vibrational excitations, namely phonons, resulting in
phonon-polaritons [68, 69]. Subsequently, similar characteristics were pre-
dicted in the coupling of light with electronic degrees of freedom such as
excitons – a combination of an electron and a hole bound by the Coulomb
force – giving rise to exciton-polaritons [70, 71]. Since then, the field has not
stopped growing, with today the confirmed identification of over 70 different
types of polaritonic excitations [72]. Among them, plasmon-polaritons, exci-
tations at a metal-insulator interface, have attracted significant attention, as
well as exciton-polaritons, the latter having been extensively studied in the
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context of quantum wells embedded in microcavities [73], and of molecular
semiconductor films in optical resonators [74].

The mechanism underlying the existence of polaritons can be roughly un-
derstood from a simple classical perspective [75], notably by means of the
coupled oscillators analogy illustrated in Fig. 1.2(a). In this analogy, detailed
in Ref. [76], we consider two mechanical oscillators modeled as mass-spring
systems, each with a different resonance frequency ωA and ωB. Once linearly
coupled with a coupling strength g/2, the bare modes of the two oscillators
are renormalized into two new eigenexcitations of the combined system: an
anti-phase excitation, with frequency ω+, and an in-phase excitation, with
frequency ω−. In the context of the strong light-matter coupling, oscillator
A and B correspond, for instance, respectively, to photonic and matter exci-
tations, while the coupling g/2 denotes the rate of energy exchange between
them. The two new eigenmodes, which can be viewed as hybrid excitations
made of the bare oscillators A and B, are then referred to as polaritons. In-
terestingly, in many scenarios, both light and matter excitations can actually
be modeled as harmonic oscillators, and the light-matter coupling is linear,
rendering this naive analogy pretty realistic [76].

If we now look at the variation of the renormalized frequencies, ω+ and ω−,
as a function of the detuning between the two bare frequencies ∆ω = ωA −
ωB, we obtain the red curves shown in Fig. 1.2(b). In the latter figure, the
two light blue straight dashed lines, on the other hand, represent the bare
frequencies. We observe in such a plot what is known as an avoided crossing,
namely, the splitting of the two intersecting blue dashed lines into the two red
curves, a typical phenomenon of the physics of strongly-coupled systems,
commonly observed in the polaritonic band structure. Notably, when the
detuning ∆ω = 0, i.e., when the two resonators enter in resonance, the gap
between the two renormalized frequencies amounts exactly to g, twice the
coupling strength. In the context of polaritons, such a gap is known as the
Rabi splitting.

In order to properly describe a physical system, it is necessary to take into
account the effect of losses, which leads to consider the finite lifetimes of the
excitations. These loss rates, which we denote as κ for the photon (oscillator
A), and γ for the matter excitation (oscillator B), induce a linewidth to the
excitation, which is represented in Fig. 1.2(b) as a red blur surrounding the
lines. Then, in order to establish a well-defined strong-coupling regime, it is
essential for the energy exchange rate between the two oscillators to exceeds
the loss rates of the excitations, so that a coherent energy transfer between
the oscillators can take place. In other words, the linewidth of the excitations
must be smaller than the Rabi splitting, so that the two blurred red eigen-
modes in Fig. 1.2(b) must remain distinguishable from each other. This leads
one to commonly define the strong-coupling regime through the criterion
g > κ, γ.

In Fig. 1.2(c), we then illustrate the case of a more lossy system, with g <
κ, γ. In that case, the system is in the weak-coupling regime, the excitations
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Figure 1.2: Coupled oscillators analogy. (a) Sketch of two
mass-spring oscillators with frequency ωA and ωB, represent-
ing photonic and matter degrees of freedom. Once linearly cou-
pled through the coupling constant g/2, the combined system
hosts two eigenmodes: an anti-phase one, of frequency ω+, and
an in-phase one, of frequency ω−. They constitute hybrid exci-
tations made of a combination of the two bare modes, just as
polaritons that are hybrid light-matter excitations. (b)-(c) Fre-
quencies of the system as a function of the detuning between
the bare oscillators ∆ω = ωA − ωB. The splitting at zero-
detuning, g, is the Rabi splitting, and the blur surrounding the
red lines represents the excitation linewidths. While panel (b)
represents a scenario of strong-coupling, with a Rabi splitting
larger than the linewidths, (c) shows the weak-coupling regime,
with linewidths broader than the splitting, so that the two po-
laritons are no longer distinguishable. Figures adapted from

Ref. [77].

being lost before they can hybridize. We note that when the Rabi splitting
g becomes large enough, typically on the order of a non-negligible fraction
of the bare matter excitation frequency, the system enters the so-called ultra-
strong coupling regime. In that regime, this classical analogy is no longer
appropriate, as purely quantum phenomena, such as the population of the
ground state by virtual photons, may become relevant. In this manuscript,
we will not explore such an ultra-strong coupling regime, as we consider it
beyond the scope of our study, but we leave it for future investigations.

In order to experimentally reach the strong-coupling regime, physicists fre-
quently employ Fabry-Pérot-type mirror cavities to confine electromagnetic
modes within a finite volume. The mirrors reflect photons, enhancing their
interaction with the material inside the cavity and consequently increasing
their effect on matter excitations. Through a fine-tuning of the cavity, it is
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possible to select the resonant frequency of the cavity photons inside, so that
the detuning approaches 0, and to optimize the photon lifetime by increas-
ing the quality factor of the mirrors. The development of such cavity QED
as a field led notably to the study of polaritons in atomic and molecular sys-
tems. This is also the approach we will consider in this thesis, as it will be
theoretically introduced in detail in Chap. 2.

Polaritons offer significant advantages and are highly sought-after due to
their combination of photon and matter excitation properties. In particular,
they promise technological and fundamental advances in various fields, al-
lowing notably for polariton Bose-Einstein condensation [78], the study of
out-of-equilibrium universal behaviors [79], room temperature lasing [80],
superfluidity [81] or the manipulation and improvement of chemical reac-
tions [82]. Beside that, one of the key features of polaritons is their capability
for long-range transport with ballistic propagation.

This led a large amount of theoretical proposals [83–95] as well as experi-
ments using organic molecular semiconductors [96–110], quantum well semi-
conductors [111], plexcitons in arrays of plasmonic nanoparticles [112], or
transition-metal-dichalcogenides [113–115], to use strong light-matter cou-
pling in order to enhance energy and charge transport properties in matter,
such as electrical conductivity or photoconductivity [106], the latter being
of particular interest for photovoltaic solar-cell technologies. Interestingly,
dark states, i.e., matter states that are only weakly hybridized to photonic
degrees of freedom, can also show nontrivial transport properties induced
by the strong-coupling regime [87, 90, 91, 107].

These enhancements are directly attributed to the hybrid nature of collective
polaritonic excitations, enabling their delocalization throughout the system,
with strong coupling inducing an effective, photon-mediated long-range cou-
pling between matter excitations. Such a cavity-enhanced transport can be
particularly interesting when applied to disordered systems, a scenario we
will study extensively in Chap. 3.

Very recently, experimental studies have notably achieved to precisely track
polariton long-range transport using real-space time-resolved microscopy
techniques [109, 110]. We present these results in Figs. 1.3(a)-(b), which have
the advantage to offer clear visualizations of the phenomenon of cavity-en-
hanced transport. These experiments have been conducted at room temper-
ature using 2d films of excitonic materials, embedded between distributed
Bragg reflectors (DBR), which are Fabry-Pérot-like cavities made of alternat-
ing layers of material with different refractive indices. Using a pump-probe
setup, the difference of reflectivity intensity between the pumped and un-
pumped signals, ∆R, has been measured, and then normalized by the un-
pumped signal, R. Different pump-probe delay times have been used to track
the temporal evolution of the excitation.

In Fig. 1.3(a), dye molecular J-aggregates, an organic semiconductor, has
been used. We clearly observe the fast propagation of the polaritonic ex-
citation, travelling dozens of micrometers in a picosecond. In Fig. 1.3(b),



16 Chapter 1. Preliminaries

Figure 1.3: Polaritons transport. Real-space time-resolved
imaging of polariton transport, through differential reflec-
tivity measurements of pump-probe experiments. (a) Fast-
propagating exciton-polariton (EP) in a dye molecular film em-
bedded in a mirror cavity, reproduced from Ref. [109]. (b) Com-
parison between pure exciton and EP transports in a slab of
layered halide perovskite embedded in a mirror cavity, repro-

duced from Ref. [110].

layered halide perovskite, a particularly photosensitive semiconductor, has
been utilized. A comparison between bare exciton (top panels) and exciton-
polariton (bottom panels) propagations allow to clearly visualize polariton
advantages. Interestingly, as these molecular films are amorphous in nature
and hence highly disordered, they permit the study of disordered polaritons,
so that we will briefly come back to these type of experiments at the begin-
ning of Chap. 3.

In the study presented throughout the remaining of this manuscript, we will
demonstrate that such long-distance propagation features of polaritonic ex-
citations may hold significant potential in both disordered and topological
systems.
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CHAPTER 2

MODELLING THE LIGHT-MATTER COUPLING

In this chapter, we develop a fully microscopic quantum theory of a one-
dimensional array of dipolar emitters coupled to confined electromagnetic
modes. More precisely, after reviewing the quantization of the electromag-
netic field in the Coulomb gauge and its coupling to dipolar emitters, we
present our model of light-matter coupling in an optical cavity. Both the cases
of an infinite waveguide cavity and of a finite cuboidal cavity are examined.
In particular, we present the approximations that allow us to simplify the
model and handle the physical systems under study in Chaps. 3 and 4.

2.1 Quantization of the electromagnetic field in the Coulomb
gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 M dipolar emitters coupled to the vacuum electromag-
netic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Quasistatic coupling between the emitters . . . . . . 23

2.2.2 Minimal coupling . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Second quantization formalism . . . . . . . . . . . . . 25

2.3 Light-matter coupling in an infinite elongated cavity . . . . 27

2.3.1 Single cavity band approximation . . . . . . . . . . . 29

2.3.2 The emitter thermodynamic limit and photon Umk-
lapp processes . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 The diamagnetic A2 term . . . . . . . . . . . . . . . . 36

2.3.4 The rotating-wave approximation . . . . . . . . . . . 36

2.4 Dealing with a finite cuboidal cavity . . . . . . . . . . . . . 37

2.5 Single mode approximation . . . . . . . . . . . . . . . . . . 39

2.6 Conclusions to Chapter 2 . . . . . . . . . . . . . . . . . . . . 40



20 Chapter 2. Modelling the light-matter coupling

While Maxwell’s equations are basically sufficient to describe the light-matter
interaction in classical systems, including the strong light-matter coupling
regime, it is convenient to construct quantum mechanical models based on
the Hamiltonian formalism. It enables the use of quantum optics tools and
facilitates the gain of analytical insights into the problem, whereas solving
Maxwell’s equations usually requires complex numerical algorithms. There-
fore, we emphasize that although we present here a fully quantum theory, the
system under study – dipolar emitters (strongly) coupled to the electromag-
netic field – remains of purely classical nature, and no quantum effects are
considered. Although a classical formalism could have been employed, the
quantum Hamiltonian approach provides, in our view, greater transparency
and ease of implementation [19, 116–118].

2.1 Quantization of the electromagnetic field in the
Coulomb gauge

In the entire manuscript, we work in the Coulomb gauge, where the vector
potential A of the considered electromagnetic field is such that

∇ ·A = 0. (2.1)

Such gauge choice, common in quantum optics, notably implies that the vec-
tor potential, as well as the magnetic field, is purely transverse. Then, the
electric field E = −(1/c)∂tA−∇φ, where c is the speed of light in vacuum,
has a longitudinal part arising from the scalar potential φ, i.e., the source
charges only.1 Hence, the Helmholtz decomposition theorem is trivially ver-
ified [119]. Interestingly, this leads the scalar potential to be instantaneous,
i.e., static, and entirely contained in the electromagnetic field Hamiltonian.
The light-matter coupling is then described solely through the vector poten-
tial A, and contains all the retardation effects of the radiation field.

The quantization of the electromagnetic field follows from the fact that pho-
tonic modes can be seen as harmonic oscillators. Indeed, a Fourier expansion
of the vector potential, and the substitution of the Fourier coefficients by sec-
ond quantized, bosonic ladder operators, lead to [120–122]

A(r) = ∑
k,λ̂k

√√√√2πh̄c2

ω
ph
k

[
fλ̂k

k (r)cλ̂k
k + fλ̂k

k

∗
(r)cλ̂k

k

†
]

. (2.2)

In the above equation, ω
ph
k = c|k| represents the photonic dispersion and

fλ̂k
k (r) corresponds to the mode functions of the electromagnetic field, evalu-

ated at the position r = xx̂ + yŷ + zẑ.2 The mode functions fλ̂k
k (r) contain the

1Throughout the manuscript, we use cgs units.
2Throughout the manuscript, hats designate unit vectors.
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spatial dependence of the field mode with wavevector k and polarization λ̂k,
and therefore depend on the space geometry in which the field is quantized.
We recall that due to the massless nature of the electromagnetic field, there
are only two distinct photonic polarizations λ̂k = {1̂k, 2̂k}. These polariza-
tions follow the transverse conditions 1̂k · k = 2̂k · k = 0 and 1̂k · 2̂k = 0.

The bosonic field operators cλ̂k
k and cλ̂k

k

†
appearing in Eq. (2.2) respectively

annihilate and create a photon with wavevector k and polarization λ̂k. These
operators obey the bosonic commutation relations

[
cλ̂k

k , c
λ̂′k′
k′

†
]
= δk,k′δλ̂k,λ̂′k

, (2.3)

where δi,j denotes the Kronecker delta.

Importantly, in our present analysis, we are considering the quantization of
the electromagnetic field in a charge-free space. Under such a condition, both
the electric and magnetic fields are divergence-free and thus have no longi-
tudinal part, so that they can be written as E = E⊥ and B = B⊥. Therefore,
from the relations B = ∇×A and E⊥ = −(1/c)∂tA, the (source-free) quan-
tized electromagnetic field reads

E(r) = i ∑
k,λ̂k

√
2πh̄ω

ph
k

[
fλ̂k

k (r)cλ̂k
k − fλ̂k

k

∗
(r)cλ̂k

k

†
]

(2.4)

and

B(r) = ∑
k,λ̂k

√√√√2πh̄c2

ω
ph
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[(
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k (r)
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cλ̂k
k +

(
∇× fλ̂k

k

∗
(r)
)

cλ̂k
k

†
]

. (2.5)

Within such a second-quantized framework, the photonic Hamiltonian, cor-
responding to the source-free electromagnetic field, reads [120–122]

Hph =
1

8π

∫
d3r

[
|E⊥|2 + |B|2

]

= ∑
k,λ̂k

h̄ω
ph
k

[
cλ̂k

k

†
cλ̂k

k +
1
2

]
, (2.6)

so that it has been expressed as a sum of quantum harmonic oscillator Hamil-
tonians, one for each photonic mode. The familiar 1/2 term in the above
photonic Hamiltonian will be left out in the remaining of this manuscript, as
it merely represents a constant energy shift, thus having no incidence on the
equations of motion.

In the next section, we will introduce sources, specifically dipolar emitters,
into the system. Besides the minimal coupling between the emitters and the
electromagnetic field, it will add a longitudinal part to the electric field (2.4),
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Figure 2.1: Chain of emitters. Sketch of a generic chain ofM
dipolar emitters, all polarized along the same x direction, and
arranged along the z direction. Each given emitter labeled by i
has a resonance frequency ωi and is separated from its neighbor
to the right by a distance di. The average individual resonance
frequency is ω0, and the average distance between two dipoles

is d.

arising from the instantaneous scalar potential φ. This longitudinal part gives
rise to the quasistatic coupling between the dipoles.

2.2 M dipolar emitters coupled to the vacuum
electromagnetic field

We now consider the coupling ofM subwavelength dipolar emitters to the
vacuum electromagnetic field. Due to their subwavelength nature, we treat
them as dimensionless point dipoles without considering any internal de-
grees of freedom, so that they behave as classical oscillating dipoles.

These point dipoles represent a large variety of physical systems whose pri-
mary coupling mechanism is dipolar in nature and is governed by classical
electromagnetism. Indeed, such generic emitters model experimental plat-
forms as diverse as subwavelength plasmonic, dielectric or SiC nanoparticles
[19, 123–125], magnonic microspheres [126–128], microwave antennas [129],
semiconductor excitons [130], cold atoms [131–133], or any other two-level
emitters, as they behave as classical dipoles in the single excitation manifold
[134].

In particular, we consider all the emitters to be polarized along the same
direction σ̂ = x̂, and to be arranged in a long but finite one-dimensional
lattice along the z direction, as sketched in Fig. 2.1. Two different cases of
lattice will be discussed in this thesis. First, in Chap. 3 we study a simple
unipartite array of dipolar emitters, with a single dipole per unit cell. Second,
in Chap. 4, a dimerized, bipartite array is considered, thus with two dipoles
per unit cell. In both cases, we denote the average distance between two
units cells, i.e., the lattice constant in the case of a periodic array, as d. For
convenience, we present in this chapter only the simple array, therefore with
d being the average distance between two dipoles. The generalization to two
dipoles per unit cell is direct, and will be presented in Chap. 4.
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Each dipolar emitter, labeled by i, has a single dynamical degree of freedom,
its displacement vector hi = hi x̂. It oscillates at a resonance frequency ωi, has
an effective mass M, and its associated electric dipole moment is pi = −Qhi,
with −Q its effective charge. From these effective quantities, we define a
typical dipole length scale,3

a =

(
Q2

Mω2
0

)1/3

, (2.7)

where ω0 denotes the average resonance frequency of the considered dipolar
emitters. For the sake of simplicity, we consider in the following that all the
emitters have the same length scale a, while their resonance frequencies ωi
can be different.4

In order for the point dipole approximation to be valid, we consider the
dipole length scale to be much smaller than the average inverse wave num-
ber k−1

0 = c/ω0 associated with an individual dipolar mode, i.e., we require
that the dimensionless dipole strength k0a� 1. For these emitters to interact
with the electromagnetic field as point dipoles, we also need to consider the
long wavelength approximation for the photons, namely that |k|a� 1.

2.2.1 Quasistatic coupling between the emitters

The Hamiltonian corresponding to the set ofM uncoupled dipoles reads

H0
dp =

M
∑
i=1

[
Π2

i
2M

+
Mωih2

i
2

]
, (2.8)

where Πi is the conjugate momentum to the displacement hi of the ith dipole
excitation.

With the addition of dipolar emitters as sources, the Hamiltonian of the elec-
tromagnetic field reads [120–122]

Hem =
1

8π

∫
d3r

[
|E⊥ + E‖|2 + |B|2

]

= Hph +
1
2

∫
d3r ρφ, (2.9)

where a term corresponding to the longitudinal part of the electric field has
been added to the source free electromagnetic field Hamiltonian (2.6). In the

3As an example, in the case of spherical metallic nanoparticles hosting localized surface
plasmons, Q = eNe and M = meNe, where Ne is the number of valence electrons of charge
−e < 0 and mass me. The resonance frequency of the plasmon is then the Mie frequency of
the nanoparticle ω0 = (Nee2/mea3)1/2, with the dipole length scale a being the nanoparticle
radius.

4While considering varying effective masses Mi and charges Qi, along with the varying
resonance frequencies ωi, is formally more accurate, it complicates the derivation of the
model and does not change the physics under consideration in this manuscript.
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above equation, ρ denotes the source charge density, while φ is the scalar
potential. In the point dipole, long wavelength approximation, such an addi-
tional term corresponds to the Coulomb potential energy between the dipolar
emitters [120]

Vdip−dip
Coulomb =

1
2

M
∑

i,j=1
(i 6=j)

pi · pj − 3
(
pi · n̂ij

) (
pj · n̂ij

)

|ri − rj|3
, (2.10)

where ri is the location of the ith dipole, and n̂ij = (ri − rj)/|ri − rj|. Such
potential energy (2.10) accounts for the quasistatic dipole-dipole coupling,
decreasing with the inverse distance cubed, and solely containing dipolar
degrees of freedom.

2.2.2 Minimal coupling

While the longitudinal electric part of the interaction leads to the potential
energy (2.10), the transverse electric and magnetic part of the interaction en-
ters in the kinetic energy, through the minimal substitution of the momentum
[121]

Πi → Πi +
Q
c

A(ri). (2.11)

It fundamentally originates from a relativistic theory by the replacement in
the free Lagrangian of the usual derivatives with the covariant derivatives,
∂µ −→ Dµ = ∂µ + (iQ/c)Aµ, where Aµ is the four-vector gauge potential.
This replacement is required to preserve the U(1) gauge symmetry of elec-
tromagnetism, therefore, the light-matter coupling is fully determined by the
gauge invariance of the theory itself [135].

The total Hamiltonian of the system of emitters coupled to the electromag-
netic field thus read

H =
M
∑
i=1




(
Πi +

Q
c A(ri)

)2

2M
+

Mωih2
i

2


+ Vdip−dip

Coulomb + Hph, (2.12)

which we reorganize as

H = Hdp + Hph + HΠ·A + HA2 . (2.13)

In the above Hamiltonian, the first term on the right-hand-side (r.h.s.) ac-
counts for the dipolar degrees of freedom with quasistatic coupling and reads

Hdp = H0
dp + Vdip−dip

Coulomb, (2.14)

while the second term is the photonic Hamiltonian given in Eq. (2.6). The
third term on the r.h.s. of Eq. (2.13) is the so-called paramagnetic, Π · A
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Hamiltonian

HΠ·A =
M
∑
i=1

Q
Mc

Πi ·A(ri), (2.15)

which is linear in the vector potential and couples light and matter degrees
of freedom. Finally, the fourth term is the so-called diamagnetic, A2 Hamil-
tonian

HA2 =
M
∑
i=1

Q2

2Mc2 A2(ri), (2.16)

which is quadratic in the vector potential, and contains no matter, namely,
dipolar, degrees of freedom.

2.2.3 Second quantization formalism

While the electromagnetic field has been quantized in Sec. 2.1, we still need
to quantize the dipolar degrees of freedom. To this end, we introduce the
bosonic ladder operators

bi =

√
Mωi

2h̄
hi · x̂ + i

√
1

2h̄Mωi
Πi · x̂ (2.17)

and

bi
† =

√
Mωi

2h̄
hi · x̂− i

√
1

2h̄Mωi
Πi · x̂, (2.18)

which, respectively, annihilates and creates a dipolar excitation with effective
mass M, resonance frequency ωi and polarized along the x direction. They
obey the bosonic commutation relations

[
bi, bj

†
]
= δij. (2.19)

The displacement coordinate of the ith dipole and its conjugate momentum
thus read in second quantized form

hi =

√
h̄

2Mωi

(
bi

† + bi

)
x̂ (2.20)

and

Πi = i

√
h̄Mωi

2

(
bi

† − bi

)
x̂, (2.21)
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so that the dipolar Hamiltonian (2.14) can be rewritten as

Hdp =
M
∑
i=1

h̄ωi

(
bi

†bi +
1
2

)

+
M
∑

i,j=1
(i 6=j)

h̄Ωijηij

2

(
bi

† + bi

) (
bj

† + bj

)
. (2.22)

The first term on the r.h.s. of Eq. (2.22) corresponds to the sum ofM quantum
harmonic oscillators. As for the photonic Hamiltonian (2.6), in the remaining
of the manuscript we drop the irrelevant 1/2 term. The second term on the
r.h.s. accounts for the dipole-dipole Coulomb energy, in which the quasistatic
dipole coupling strength

Ωij =
Q2

2M√ωiωj|ri − rj|3

=
ω2

0
2√ωiωj

(
a

|ri − rj|

)3

, (2.23)

and the polarization-dependent factor

ηij = 1− 3
(
x̂ · n̂ij

)2

= 1. (2.24)

Indeed, due to the transverse polarization of the dipoles, being polarized
along the x direction and arranged in an array along the z direction, one has
ri − rj = rijẑ, so that n̂ij = ẑ.

This leads us to the total, second quantized Hamiltonian

H =
M
∑
i=1

h̄ωibi
†bi + ∑

k,λ̂k

h̄ω
ph
k cλ̂k

k

†
cλ̂k

k

+
M
∑

i,j=1
(i 6=j)

h̄Ωij

2

(
bi

† + bi

) (
bj

† + bj

)

+ ih̄
M
∑
i=1

∑
k,λ̂k

√√√√πQ2ωi

Mω
ph
k

(
bi

† − bi

) [
fλ̂k

k (ri)c
λ̂k
k + H.c.

]
· x̂

+
M
∑
i=1

∑
k,λ̂k

k′,λ̂′k′

h̄πQ2

M
√

ω
ph
k ω

ph
k′

[
fλ̂k

k (ri)c
λ̂k
k + H.c.

]
·
[
fλ̂′k′

k′ (ri)c
λ̂′k′
k′ + H.c.

]
,

(2.25)

which will be at the heart of the study done throughout the manuscript.
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Figure 2.2: Waveguide cavity. Sketch of the waveguide cavity
under consideration, with a cross section such that Ly � Lx,
and a length Lz that extends to infinity. Perfectly conducting
mirrors are considered in the x and y direction only, since the in-
finite extension in the z direction is equivalent to consider open

ends.

2.3 Light-matter coupling in an infinite elongated
cavity

In the remaining of this manuscript, we will be interested in the light-matter
coupling of dipolar emitters placed into an elongated mirror cavity, with one
spatial dimension larger than the two others. Namely, the optical structure
under consideration has spatial dimensions Lz � Ly � Lx. From the partic-
ular shape and boundary conditions of such a photonic cavity depend the
mode functions of the electromagnetic field and thus the vector potential
(2.2).

In this section, we rely on Ref. [136] and consider a cavity with periodic
boundary conditions in the z direction, and perfectly conducting mirror walls
on the x and y sides. It leads to the photonic wavevector

k =




kx
ky
kz


 =




πnx
Lxπny
Ly

2πnz
Lz


 , (2.26)

with nx, ny ∈ N, and nz ∈ Z. Moreover, we consider here the limit of an
infinitely long cavity, with a longitudinal size Lz = Lchain + 2dcav → ∞, with
Lchain the length of the chain of dipolar emitters, and dcav the distance be-
tween one end of the latter chain and one end of the cavity.

This limit is equivalent to an open, waveguide cavity, with open boundary
conditions in the z direction, as long as the distance dcav between the dipolar
emitters and the open ends is large enough. A sketch of such waveguide cav-
ity is presented in Fig. 2.2. It leads to the fact that the longitudinal wavenum-
ber kz is continuous, allowing us to coin in the following a triplet (nx, ny, kz)
a cavity mode, and a doublet (nx, ny) a cavity band.

Importantly, and as detailed for the specific systems under study in Chaps. 3
and 4, in the case of the emitters thermodynamic limit, i.e., when dealing
with an infinite chain of dipoles so that both Lchain → ∞ and Lz → ∞, and
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when the chain is periodic with the lattice constant d of the emitter array, the
quasiwavenumber q associated with the quasimomentum of the dipolar exci-
tation, which belongs to the first Brillouin zone [−π/d,+π/d], is conserved
with the longitudinal photonic wavenumber kz. This leads us to consider
here, in the case of a long but finite chain of dipole, that kz ∈ [−π/d,+π/d],
so that the cavity modes taken into account in our finite system match the
ones in the case of the above thermodynamic limit. We note that this requires
the cavity length Lz to be an even multiple of the lattice constant d.

In such a context, the photonic dispersion reads

ω
ph
k = ω

ph
nxnykz

= c

√(
πnx

Lx

)2

+

(
πny

Ly

)2

+ kz
2. (2.27)

Rewriting the photonic wavevector in spherical coordinates,

k = k




sin θk cos νk
sin θk sin νk

cos θk


 , (2.28)

allows one to write the two photons polarizations λ̂k = {1̂k, 2̂k} as

1̂k =




cos θk cos νk
cos θk sin νk
− sin θk


 and 2̂k =



− sin νk
cos νk

0


 , (2.29)

so that they satisfy the transversality conditions of Maxwell’s equations.

From the vanishing of the tangential component of the electric field and of
the normal component of the magnetic field at the x and y boundaries of the
cavity, one obtains the spatial profiles of the mode functions of the electro-
magnetic field [137]

fλ̂k,=
k (r) = C=




cos(kxx) sin(kyy)(x̂ · λ̂k)
sin(kxx) cos(kyy)(ŷ · λ̂k)
sin(kxx) sin(kyy)(ẑ · λ̂k)


 eikzz, (2.30)

with the normalization constant C= =
√

2/V if kx, ky, or kz = 0, and C= =

2/
√
V otherwise, V = LxLyLz being the volume of the cavity. Here, the par-

allel bars superscript = denotes the consideration of an infinite waveguide
cavity.

Diagonalizing the Hamiltonian (2.25) while considering the full electromag-
netic mode functions (2.30), with all the (nx, ny) bands, is a very challenging
task. However, under some assumptions, high energy photons can be ne-
glected, simplifying considerably the description.
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2.3.1 Single cavity band approximation

Our goal is to simplify the Hamiltonian (2.25), while still allowing the sys-
tem to enter in the strong light-matter coupling regime. For this purpose,
we follow Ref. [136] and place ourselves in a regime where only the lowest
frequency band, (nx, ny) = (0, 1), resonates with the dipolar modes, which
have an average frequency ω0.

Then, from the geometrical constraint Ly � Lx, all the band with nx 6= 0
are highly off-resonant with the dipole excitations. Indeed, even the low-
est mode with nx 6= 0 is associated with the irrelevant frequency ω

ph
100 =

(Ly/Lx)ω
ph
010 � ω

ph
010. Therefore, we restrict ourselves to cavity modes with

transverse wavenumber kx = 0. This yields from Eq. (2.28) that νk = π/2 or
3π/2, leading the mode functions (2.30) to simplify as

f=0nykz
(r) =

√
2
V




sin(πny
Ly

y)
0
0


 eikzz, (2.31)

where we drop the photon polarization index, since only λ̂k = 2̂k is relevant.

Now, for convenience, we consider that all the dipolar emitters are exactly
centered inside the cavity, so that the position of the ith dipole reads ri =
(Lx/2, Ly/2, zi). It implies from Eq. (2.31) that only the cavity modes with
odd ny = 1, 3, 5 . . . can couple to the dipolar excitations. From Eq. (2.27), we

have ω
ph
03kz
≥ 3ω

ph
010, so that we can ignore all the cavity modes ny > 1, con-

sidering them off-resonant with the dipolar modes. For this being consistent
with the above truncation of the cavity modes nx 6= 0 we fix the aspect ratio
of the cavity as Ly/Lx = 3.

Importantly, this approximation limits the allowed regime of parameters. It
amounts to consider an ultraviolet cutoff frequency

ω
ph
cutoff = 3ω

ph
010 = ω

ph
030 = ω

ph
100 = c

π

Lx

=
π

k0a
a

Lx
ω0, (2.32)

which depends on the dimensionless dipole strength k0a as well as on the
cavity height Lx. For our approximation to be reasonable, we need ω

ph
cutoff �

ω0, and we recall that the point dipole approximation requires k0a� 1.

We discuss the validity of such single band approximation in Fig. 2.3, where
we show the behavior of the cutoff frequency (2.32) as a function of the cavity
height Lx, as well as the one of the lowest cavity mode considered, ω

ph
010 ≡

ω
ph
0 . Two different values of the dimensionless dipole strength k0a = 0.05

and k0a = 0.10 are shown in panels (a) and (b), respectively.
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Figure 2.3: Cutoff frequency. Behavior of the cutoff frequency
(2.32), and of the lowest cavity frequency considered in our sin-
gle band approximation, ω

ph
010 ≡ ω

ph
0 , plotted in units of the

average dipole frequency ω0, as a function of the cavity height
Lx, and for dimensionless dipole strength fixed to (a) k0a = 0.05
and (b) k0a = 0.10. The horizontal grey dotted line corresponds
to the average dipole frequency ω0, while the vertical black
solid line in panel (b) points out our chosen upper bound for
the cavity height. As in the remaining of the manuscript, the

aspect ratio Ly/Lx = 3.

Fig. 2.3 reveals that the single band approximation becomes poorer as the
cavity height Lx increases, the cutoff frequency becoming increasingly close
to the average dipole frequency ω0, represented as a grey dotted line. Larger
values of k0a reduce the acceptable range of cavity height, while smaller
ones shift to larger Lx the regime where the considered band (nx, ny) =
(0, 1) resonates with the dipolar modes. In the remainder of the manuscript,
we choose to fix k0a = 0.1, which limits the acceptable values of the cav-
ity height Lx to Lx/a ∈ [3, 15], the upper bound of this approximation be-
ing represented as a vertical black solid line in Fig. 2.3(b). We note that
by limiting ourselves to such cavity heights, with fixed k0a = 0.1, we set
a parameter-independent lower bound on the cutoff frequency, which is of
about min[ωph

cutoff] ∼ 2ω0. Having fixed Ly = 3Lx, the cavity height Lx is the
only parameter left that handle the photonic degrees of freedom.

A comparison between the considered lowest band (nxny) = (0, 1) and the
higher frequency bands, at the upper bound of our approximation, with
Lx/a = 15, is proposed in Fig. 2.4. All the modes are represented in the
first Brillouin zone, characterized by the lattice constant d of the emitter ar-
ray. We recall that we take kz ∈ [−π/d,+π/d] in order to match the case of
the emitters thermodynamic limit, in which kz is conserved with the quasi-
momentum of the dipolar excitation along the periodic array. By increasing
the lattice constant d from d = 4a in Fig. 2.4(a) to d = 8a in Fig. 2.4(b), we
observe that, as expected, the shrink of the first Brillouin zone flattens the
dispersions, shifting downwards higher cavity modes. In both panels, how-
ever, we verify that higher cavity bands are highly off-resonant, even at the
upper bound of our considered regime of cavity heights Lx/a ∈ [3, 15]. An
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Figure 2.4: Lowest cavity bands. Comparison between the
lowest frequency band (nxny) = (0, 1) (yellow line), and higher
cavity bands (nxny) = (1, 0) (pink line), (1, 1) (red line), and
(0, 5) (dark red line), when considering the upper bound of our
single band approximation, where the cavity height Lx/a = 15.
The cavity bands are plotted in the first Brillouin zone charac-
terized by the lattice constant d of the emitter array, fixed to (a)
d = 4a and (b) d = 8a. The grey dotted line depicts the aver-
age bare dipole frequency ω0, and, as in the remainder of the

manuscript, the dimensionless dipole strength k0a = 0.1.

explicit analysis of the impact of higher cavity bands onto the system will be
proposed in Chap. 4, confirming their irrelevance.

Therefore, in the following we restrict ourselves to the above regime, so that
we can consider solely the coupling between dipolar emitters and the lowest-
frequency cavity band ω

ph
01kz
≡ ω

ph
kz

. Such single cavity band approximation
results in the consideration of the photonic Hamiltonian

Hph =
π/d

∑
kz=−π/d

h̄ω
ph
kz

c†
kz

ckz
, (2.33)

where the cavity dispersion (2.27) simplifies as

ω
ph
kz

= c

√(
π

Ly

)2

+ kz
2. (2.34)

To better exemplify the regime of parameter under consideration, we present
in Fig. 2.5 the behavior of the above photonic dispersion in units of ω0 when
increasing the cavity height Lx. As in Fig. 2.4, we represent the cavity modes
in the first Brillouin zone, characterized by the lattice constant d of the emit-
ter array. While for small values of Lx/a, the dispersion (2.34) stays high in
frequency, increasing the cavity height allows it to approach and enter in res-
onance with the average dipole frequency ω0, first for the lowest frequency
mode ω

ph
0 , and then for higher frequency modes ω

ph
kz
≥ ω

ph
0 . Comparing

Figs. 2.5(a) and 2.5(b), one observes that the shrinking of the first Brillouin
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Figure 2.5: Influence of the cavity height. Considered pho-
tonic dispersion (2.34) in the single band approximation, in
units of the average bare dipole frequency ω0, and plotted in
the first Brillouin zone characterized by the lattice constant d
of the emitter array, fixed to (a) d = 4a and (b) d = 8a. In-
creasing values of the cavity height Lx/a are shown, from dark
to light blue lines, and the grey dotted line shows the average

bare dipole frequency ω0.

zone allows a larger number of photonic modes to approach the average bare
dipolar frequency ω0 when d/a is large.

With our single band approximation now being detailed, we can simplify the
Hamiltonian (2.25). The vector potential (2.2) in an infinite waveguide cavity,
once restricted to the (nx, ny) = (0, 1) cavity band and λ̂k = 2̂k polarization,
reads

A=(z) =
π/d

∑
kz=−π/d

√√√√4πh̄c2

Vω
ph
kz

(
ckz

eikzz + c†
kz

e−ikzz
)

x̂, (2.35)

so that the paramagnetic Π ·A Hamiltonian (2.15) reduces to

H=
Π·A = ih̄

√
d
Lz

M
∑
i=1

π/d

∑
kz=−π/d

√
ωi

ω0
ξkz

(
bi

† − bi

) (
ckz

eikzzi + c†
kz

e−ikzzi
)

,

(2.36)
and, the diamagnetic, A2 Hamiltonian (2.16) simplifies as

H=
A2 =

h̄d
Lz

M
∑
i=1

∑
kz,k′z

ξkz ξk′z
ω0

[
ckz

eikzzi + c†
kz

e−ikzzi
] [

ck′z
eik′zzi + c†

k′z
e−ik′zzi

]
. (2.37)

In the above Hamiltonians, we introduced the light-matter coupling strength

ξkz = ω0

√√√√ 2πa3ω0

LxLydω
ph
kz

. (2.38)

We show in Fig. 2.6 the behavior of its largest value, ξ0, as a function of the
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Figure 2.6: Light-matter coupling strength. Largest value of
the light-matter coupling strength (2.38) as a function of the
cavity height Lx, and in units of the average bare dipole fre-
quency ω0 (blue line) and of the lowest photon mode ω

ph
0 (red

line). The lattice constant of the emitter array d = 4a. We note
that increasing such lattice constant just shifts downwards the

two curves.

cavity height Lx, and in units of the average bare dipole frequency ω0 (blue
line), as well as in units of the lowest photonic mode ω

ph
0 (red line).

Increasing the cavity height Lx reduces the light-matter coupling strength
in units of ω0. However, such behavior must be carefully considered. In-
deed, as observed in Figs. 2.3 [cf. panel (b) for the case with k0a = 0.1] and
2.5, increasing Lx also allows resonance between cavity and dipole excita-
tions. Therefore, counter-intuitively, while it reduces the light-matter cou-
pling strength (2.38) in units of ω0, increasing the cavity height allows for
more proximity in frequency between the dipolar and photonic subspaces,
and hence enhances the effects of the cavity photons onto the dipole excita-
tions. This behavior will be reversed in the limit of large cavity size Lx � a,
where our low-frequency, single cavity band approximation breaks down,
and where one recovers the regime of a dipolar chain coupled to vacuum
electromagnetic modes only, studied, e.g., in Refs. [19, 138].

In contrast, the light-matter coupling strength in units of the lowest photonic
mode (red line in Fig. 2.6) increases with the cavity height Lx. Importantly,
such light-matter coupling strength remains small in front of the bare dipolar
and photonic frequencies, so that ξ0 � ω0 and ξ0 � ω

ph
kz

.
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2.3.2 The emitter thermodynamic limit and photon Umklapp
processes

As explained at the beginning of Sec. 2.3, in Chaps. 3 and 4 we will encounter
the case of the emitter thermodynamic limit, dealing with an (infinitely) long
periodic chain of dipoles with lattice constant d. In that case, the longitudinal
photonic wavenumber kz is conserved with the crystal wavenumber q asso-
ciated with the dipolar excitation, so that both quantities can be represented
in the first Brillouin zone. The periodicity of the system implies a 2π/d peri-
odicity in the dispersion relations. When folding the photonic bands into the
first Brillouin zone kz = q ∈ [−π/d,+π/d], the requirement of such period-
icity leads to higher frequency bands, which are known as photon Umklapp
processes, or diffraction orders.

Taking into account these high frequency modes results in the emitter ther-
modynamic limit to modify the vector potential (2.2) as

A(rs
m) = ∑

k,l,λ̂k,l

√√√√2πh̄c2

ω
ph
k,l

[
fλ̂k,l

k,l (r
s
m)c

λ̂k,l
k,l + H.c.

]
, (2.39)

and the photonic Hamiltonian (2.6) as

Hph = ∑
k,l,λ̂k,l

h̄ω
ph
k,lc

λ̂k,l
k,l

†
cλ̂k,l

k,l . (2.40)

Here, the photonic dispersion relation reads

ω
ph
k,l = c|k−Gl|, (2.41)

where Gl = 2πlẑ/d (l ∈ Z) represents the set of reciprocal lattice vectors, so
that the dispersion (2.41) is 2π/d periodic in the kz direction.5 In the above

equations, the bosonic ladder operators cλ̂k,l
k,l and cλ̂k,l†

k,l respectively annihilate
and create a cavity photon with wavevector k, Umklapp band index l, and
transverse polarization λ̂k,l.

In the single cavity band approximation, which we introduced in the previ-
ous subsection, the photonic Hamiltonian (2.40) transforms into

Hph = ∑
kz,l

ω
ph
kz,lc

†
kz,lckz,l. (2.42)

The photonic dispersion in the single cavity band approximation (2.34) now
reads as

ω
ph
kz,l = c

√(
π

Ly

)2

+ kz
2
l , (2.43)

5Equivalently, for a finite emitter array, taking into account Umklapp processes results
in the consideration of wavenumbers |kz| > π/d.



2.3. Light-matter coupling in an infinite elongated cavity 35

−π −π/2 0 π/2 π

0

2

4

6

8

kzd

ω
p
h

k
z
,l
/ω

0

ωph
kz ,l=±1/ω0

ωph
10kz

/ω0

ωph
kz ,l=0/ω0

d = 4a

(a)

−π −π/2 0 π/2 π

kzd

d = 8a

(b)

Figure 2.7: Photon Umklapp processes. Photonic dispersion
(2.43) without photon Umklapp processes (l = 0, orange lines)
and for the first Umklapp bands (l ± 1, dark red lines), in units
of the average bare dipolar frequency ω0, and in the first Bril-
louin zone. The first neglected band (nx, ny) = (1, 0) is shown
in blue for comparison. The cavity height Lx/a = 15, and the
lattice constant d of the emitter array characterizing the Bril-
louin zone is fixed to (a) d = 4a and (b) d = 8a. The grey dotted

line shows the average bare dipole frequency ω0.

with the short form notation kzl = kz − 2πl/d.

In our modelling of the light-matter interaction of the present section, we re-
stricted ourselves to l = 0, and did not consider photon Umklapp processes,
characterized by l 6= 0. We show in Fig. 2.7 the full cavity dispersion (2.43)
in the first Brillouin zone, without photon Umklapp processes (l = 0, orange
lines) and with the first Umklapp bands (l = ±1, dark red lines). We com-
pare it to the first neglected band (ωph

10kz
, blue lines) at the limit of validity

of our single band approximation, with a cavity height Lx/a = 15. Two dif-
ferent lattice constants d = 4a and d = 8a are considered in Fig. 2.7(a) and
Fig. 2.7(b), respectively. In both cases, Umklapp bands remain higher in fre-
quency than the first neglected band for the most part of the Brillouin zone,
so that we can in principle safely neglect them in our study. This is consis-
tent with the fact that the latter are mostly irrelevant in the near-field regime,
when the lattice constant d� λ0 = 2π/k0 [19], a regime in which we remain
throughout this manuscript.

Importantly, however, at the edges of the Brillouin zone, around kz = ±π/d,
the first Umklapp bands l = ±1 are lower in frequency than the first ne-
glected band, especially in Fig. 2.7(b) when d = 8a. It is mainly in this
wavenumber region that photon Umklapp processes may lead to quantita-
tive effects on the system. This will lead us to reconsider such additional
bands in Chap. 4, in which both the edges of the Brillouin zone and the 2π/d-
periodicity of the dispersion relation play an important role on some of the
system properties.
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2.3.3 The diamagnetic A2 term

As demonstrated in Sec. 2.2, the diamagnetic, A2 Hamiltonian originates di-
rectly from the minimal coupling substitution. Neglecting the diamagnetic
term can thus lead to conceptual problems such as the loss of gauge invari-
ance but also unphysical ground states [139]. It is, however, frequently dis-
carded due to its quadratic nature in the light-matter coupling and several
well-known quantum optics models such as the Rabi or Dicke model do not
consider it. Interestingly, the notorious superradiant phase transition [140]
of the latter Dicke model arises precisely because the diamagnetic term is
neglected [141].6

For these and other reasons, the term has received a lot of interest in the
recent literature. Being comprised of photonic degrees of freedom only, it acts
as a photon self-energy term and dresses the photonic dispersion by inducing
what is usually referred to as a diamagnetic shift. Such frequency shift being
quadratic in the light-matter coupling strength, it is negligible in our model,
as can be deduced from Fig. 2.6. In fact, perceptible differences due to the
diamagnetic term such as gauge ambiguities were found in the context of
the ultra strong coupling (USC) or deep strong coupling (DSC) regime only
[147], in which we do not enter in this study.

Therefore, unless stated otherwise, we ignore the A2 Hamiltonian (2.37) in
the remainder of the manuscript.

2.3.4 The rotating-wave approximation

To further simplify the Hamiltonian (2.13), we use in the remainder, unless
stated otherwise, the rotating-wave approximation (RWA) [148]. It amounts
to neglect coupling terms in the Hamiltonian that do not conserve the num-
ber of excitation, i.e., terms as b†

i b†
j , bibj, b†

i c†
kz

, or bickz . The name of such
approximation stems from the interaction picture, in which the latter terms,
known as counter-rotating, oscillate quickly as compared to terms conserv-
ing the number of excitations, which are almost stationary, so that they are
said to be corotating with the uncoupled Hamiltonian. As long as the cou-
pling strength associated with these terms is much smaller than the uncou-
pled, bare frequencies, their contribution to the dynamics as well as to the
eigenspectrum and eigenvectors is weak. Indeed, the effects of the counter-
rotating terms become sizable once the coupling strength is large enough.
This is the sign of the entrance into the USC regime [149], which we do not
consider in this study.

In the case of the dipolar RWA, this translates into the conditions ωi + ωj �
Ωij and ωi + ωj � |ωi − ωj|, satisfied thanks to the inverse distance cube
decreases of the dipole coupling strength (2.23). This approximation leads

6We note that there is still a debate about whether or not it can be a no-go theorem [142–
145] for the phase transition to occur, and extensions of the model have been proposed to
observe the phenomenon [146].
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the dipolar Hamiltonian (2.22) to simplify as

HRWA
dp =

M
∑
i=1

h̄ωibi
†bi +

M
∑

i,j=1
(i 6=j)

h̄Ωij

2

(
bi

†bj + bi bj
†
)

. (2.44)

On the other hand, the light-matter RWA requires ωi + ω
ph
kz
� ξkz and ωi +

ω
ph
kz
� |ωi −ω

ph
kz
|, conditions that are fulfilled as observed in Figs. 2.3–2.6. It

leads the paramagnetic light-matter coupling Hamiltonian in the single band
approximation (2.36) to read

H=
Π·A = ih̄

√
d
Lz

M
∑
i=1

π/d

∑
kz=−π/d

√
ωi

ω0
ξkz

(
bi

†ckz
eikzzi − bi c†

kz
e−ikzzi

)
. (2.45)

Together with the neglection of the A2 Hamiltonian discussed in the previous
subsection, the RWA leads us to the approximated total polaritonic Hamilto-
nian of the coupled cavity-emitters system in a waveguide geometry

H=
pol = HRWA

dp + Hph + H=
Π·A, (2.46)

with the photonic Hamiltonian given in Eq. (2.33), and the dipolar Hamilto-
nian in the RWA given in Eq. (2.44). We will study in detail such polaritonic
Hamiltonian in the remainder of this manuscript, in particular in Chap. 4.

Finally, we note that other approximations not discussed here have also been
made in order to obtain the Hamiltonian (2.46), such as multipolar correc-
tions to the dipole-dipole coupling [150], as well as the effect of image charges
arising from the perfectly conducting mirrors [129]. The influence of such im-
age dipoles will be discussed in Appendix 4.C.

2.4 Dealing with a finite cuboidal cavity

While the infinite cavity considered in Sec. 2.3 models an open, waveguide
cavity, a set-up which is experimentally attractive, the open boundaries and
the continuous nature of the longitudinal photonic wavenumber kz compli-
cate the theoretical description when dealing with a finite number of emit-
ters. Therefore, it can be useful to consider, for convenience, a finite cuboidal
cavity, with closed walls in all the x, y and z directions, and a longitudinal
size Lz = Lchain + 2dcav 6→ ∞. Such a box cavity is sketched in Fig. 2.8,
where the walls in the z direction are highlighted as hatched areas. While,
as expected, it can have major effects on the physics around the edges of the
cavity, it impacts only weakly the bulk physics. In the emitters thermody-
namic limit Lz → ∞ and Lchain → ∞, however, any boundary conditions in
the z direction are equivalent.
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Figure 2.8: Cuboidal cavity. Sketch of the finite cuboidal cavity
under consideration in this section. While as in Fig. 2.2, the
cross section is such that Ly � Lx, here the longitudinal size Lz
is large but finite, and all the walls in the x, y and z direction

are considered as perfectly conducting mirrors.

The consideration of perfectly conducting mirrors on all cavity sides leads to
the photonic wavevector

k =




kx
ky
kz


 =




πnx
Lxπny
Ly

πnz
Lz


 , (2.47)

with nx , ny, and nz ∈ N, so that, importantly, the longitudinal photonic
wavenumber kz = πnz/Lz is here not continuous. Hence, the photonic dis-
persion in the single cavity band approximation (2.34) reads here

ω
ph
nz = c

√(
π

Ly

)2

+

(
πnz

Lz

)2

, (2.48)

where we made explicit the mode number index nz. We consider nz ∈ [1, Nz],
with Nz = Lz/d, so that max(kz) = πNz/Lz = π/d, and the photonic modes
(2.48) that couple to the emitters match the ones obtained previously consid-
ering the waveguide cavity as well as the emitters thermodynamic limit (see
the discussion in the beginning of Sec. 2.3).

The vanishing of the tangential component of the electric field and of the
normal component of the magnetic field at all the cavity boundaries leads
the modes functions of the electromagnetic field to read [137]

fλ̂k,�
k (ri) = C�




cos(kxx) sin(kyy) sin(kzzi)(x̂ · λ̂k)
sin(kxx) cos(kyy) sin(kzzi)(ŷ · λ̂k)
sin(kxx) sin(kyy) cos(kzzi)(ẑ · λ̂k)


 , (2.49)

with the normalization constant C� = 2/
√
V if kx, ky, or kz = 0, and C� =

2
√

2/V otherwise. Here, the box superscript � denotes the consideration of
a cuboidal (box) cavity. Such spatial profiles of the vector potential lead the
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paramagnetic Hamiltonian (2.15) to read,

H�Π·A = ih̄

√
d
Lz

M
∑
i=1

Nz

∑
nz=1

√
2ωi

ω0
ξπnz/Lz sin

(
πnz

Lz
zi

)(
b†

i cnz − bi c†
nz

)
, (2.50)

with ξπnz/Lz the light-matter coupling strength (2.38), and where both the
single cavity band approximation and the RWA have been used. Importantly,
we note that as compared to the case of an infinite waveguide cavity [see
Eq. (2.36)], here a sine function, highlighting the closed boundary conditions
in the z direction, has replaced complex exponentials.

For clarity, we rewrite such light-matter coupling Hamiltonian as

H�Π·A = ih̄
M
∑
i=1

Nz

∑
nz=1

ξ�inz

(
b†

i cnz − bi c†
nz

)
, (2.51)

where we defined the real-space light-matter coupling function as

ξ�inz
= ω0

√
4πa3ωi

Vω
ph
nz

sin
(

πnz

Lz
zi

)
. (2.52)

Therefore, the total polaritonic Hamiltonian in a cuboidal geometry reads

H�pol = HRWA
dp + Hph + H�Π·A (2.53)

with the dipolar Hamiltonian in the RWA (2.44) and the photonic Hamilto-
nian (2.33) derived, respectively, in Sec. 2.3.1 and Sec. 2.3.4. Such polaritonic
Hamiltonian will be at the heart of Chap. 3, as it allows for an exact numeri-
cal diagonalization of the full finite system, and as only the bulk of the chain
is of relevance in the latter chapter.

In Chap. 4, however, we will be in particular interested in edge physics,
so that in order to avoid any boundary effect, we will consider the infinite
waveguide cavity presented in Sec. 2.3. In the latter chapter, we discuss in
Sec. 4.8 how results from an infinite waveguide cavity can be recovered in the
case of a finite cuboid cavity, with cavity walls in the z direction far enough
from the ends of the emitter array.

2.5 Single mode approximation

While in our model, built similarly as what is sometimes coined the Hopfield
model of light-matter interaction [71], we consider dipolar emitters coupled
formally to an infinite number of cavity modes, most of the paradigmatic
models of quantum optics use the single mode approximation, where the
emitters are exactly at resonance with a single cavity mode.
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RWA # emitters # photonic modes
Quantum Rabi model [152] × 1 1

Jaynes-Cummings model [153] X 1 1
Dicke model [140] × many 1

Tavis-Cummings model [154] X many 1
Our model × /X many many

Table 2.1: Some paradigmatic models of light-matter interac-
tion using the single mode approximation (first four rows), as
well as our model introduced in this chapter (fifth row), classi-
fied according to whether they consider the rotating wave ap-
proximation (RWA) or not, and to the number of emitters and
photonic modes took into account. We note that our model
may take into account counter-rotating terms (see, e.g., Ap-
pendix 3.B), although we use the RWA throughout most of this

manuscript.

We list in the first four rows of Tab. 2.1 some of these renowned models of
light-matter interaction [151], while the fifth row lists our model developed
in this chapter. Importantly, the matter degrees of freedom in such quan-
tum optic models are two-level quantum system, i.e., spin−1/2 degrees of
freedom. Therefore, in contrast to our model of dipolar emitters, they may
present quantum effects. However, we note that the single-mode models
listed in Tab. 2.1 are commonly studied in the so-called single excitation man-
ifold, where only a single excitation, either in the emitters or in the cavity, is
considered. Interestingly, in this regime, although often presented as quan-
tum emitters, the two-level systems behave as classical dipolar emitters [134],
just as the ones we consider in our model. Notably, the Dicke and Tavis-
Cummings models, considering many matter degrees of freedom, are, in the
single excitation manifold, the closest models to the one we developed in this
chapter.

2.6 Conclusions to Chapter 2

In this chapter, we introduced from the ground up a microscopic quantum
model of the light-matter interaction between a generic one-dimensional as-
sembly of dipolar emitters and the confined electromagnetic modes of an op-
tical cavity. In particular, our Hamiltonian model has the specific feature of
taking into account the coupling of matter to multiple cavity modes, through
a spatially-dependent and dispersive light-matter coupling.

With the help of various approximations which we discussed in detail, such
as the neglections of high frequency cavity modes, of the diamagnetic A2

Hamiltonian, and of counter-rotating terms, we derived a concise Hamilto-
nian that captures the main physics at play, and that is suitable both for fast
numerical implementation and analytical investigation.
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Two different cases of boundary conditions for the cavity were considered:
an infinite cavity, equivalent to an open waveguide and resulting in the Ham-
iltonian (2.46), and a finite cuboidal cavity, resulting in the Hamiltonian (2.53).

Both models have advantages and drawbacks and will be used in the follow-
ing chapters. First, we will make use of the finite cuboidal cavity (2.53) in
Chap. 3 to study the interplay between disorder and strong light-matter cou-
pling. It has the benefits of allowing an exact diagonalization of the full po-
laritonic system. Second, we employ the waveguide cavity (2.46) in Chap. 4
to study the fate of topological phases in the strong light-matter coupling
regime. For such topological physics, the boundary conditions are of partic-
ular importance, justifying our use of the waveguide cavity which prevents
boundary effects.
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CHAPTER 3

DISORDER AND POLARITONS

In this chapter, we study the interplay between disorder and light-matter
coupling by considering a disordered one-dimensional chain of dipolar emit-
ters strongly coupled to a multimode optical cavity.

In the absence of light-matter coupling, a disordered one-dimensional chain
of dipolar emitters is subject solely to the Anderson localization of the eigen-
states. After reviewing this effect, in this chapter we embed the disordered
chain in a multimode optical cavity so that it can enter in the strong light-
matter coupling regime. To study the interplay between disorder and light-
matter coupling, we analyze both the eigenspectrum and the driven dissi-
pative transport properties of our polaritonic system. In the strong-coupling
regime, we find that increasing disorder leads almost uncoupled dark states
to acquire a photonic part, allowing them to inherit polaritonic long-range
transport characteristics. Crucially, we show that this disorder-enhanced
transport mechanism is increasingly noticeable when the considered dipoles
are lossier, but that no enhancement is observed over very long distances.

The results presented in this chapter are mostly part of the published arti-
cle T.F. Allard, G. Weick, Disorder-enhanced transport in a chain of lossy dipoles
strongly coupled to cavity photons, Physical Review B 106, 245424 (2022) [17].
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In the previous chapter, we presented how we model the coupling of generic
dipolar emitters to confined electromagnetic modes in an optical cavity, us-
ing a microscopically derived minimal coupling Hamiltonian. The aim of
the present chapter is to use such formalism to study the interplay between
disorder and strong light-matter coupling.

As introduced in Chap. 1, strongly-coupled systems give rise to polaritonic
hybrid light-matter eigenstates, which, from their partly photonic nature,
present efficient long-range transport characteristics [83–115], an effect that
has been dubbed cavity-enhanced transport. Interestingly, a significant por-
tion of the experiments on polariton propagation has been conducted us-
ing excitons in molecular amorphous semiconductors, materials which are
highly disordered by nature. The behavior of such disordered polaritons has
been the subject of early studies, with pioneering theoretical works [155–157]
revealing unexpected phenomena, such as a cavity-protection effect, wherein
polaritonic states exhibit greater robustness against disorder compared to
other excitations.

Such a behavior goes beyond the well-known theory of Anderson localiza-
tion which states (see Chap. 1) that in 1d and 2d systems, disorder makes all
the eigenstates exponentially localized, threfore suppressing transport [22,
25]. However, it is important to note that the 1d and 2d Anderson localization
is verified only for systems with short-range interactions, and the situation
becomes in fact highly nontrivial when dealing with long-range interactions,
as 1d systems can then exhibit extended states [27, 158–161]. Due to the fact
that polaritons are partly mediated by cavity photons, they effectively expe-
rience a longer range coupling than usual matter excitations, and as a result,
polaritonic excitations can be less affected by the suppression of transport
arising from Anderson localization.

In order to investigate the field of disordered polaritons, we will consider
in this chapter a finite disordered 1d chain of N dipolar emitters placed in-
side the finite cuboidal mirror cavity we introduced in Sec. 2.4. The sys-
tem we study is sketched in Fig. 3.1, and, as depicted in the figure, we take
into account disorder both in the individual resonance frequencies ωi of each
dipole, modeling possible inhomogeneities, and in the interdipole spacings
di, accounting for positional uncertainties.

As we discussed in Chap. 2, our versatile model of dipolar emitters allows the
description of a wide range of physical systems. In addition to, among oth-
ers, plasmonic, dielectric or SiC chains of nanoparticles, it describes in partic-
ular molecular and semiconductor excitons [130] for which most of the recent
experimental approaches on disordered polaritonic systems were performed
[98–110]. We show in Figs. 3.2(a)-(b) two recent implementations of molecu-
lar polaritonic systems of this kind. In panel (a), reproduced from Ref. [107],
distributed Bragg reflector (DBR) dielectric mirrors are used to create Fabry-
Pérot microcavities into which molecular aggregates, typically dyes and in
this case BODIPY molecules, are placed. Such dye molecules are naturally
disordered and host Frenkel excitons. The latter excitations act as dipolar
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Figure 3.1: Disordered chain of dipoles in a cavity. Sketch of
a disordered chain of N dipolar emitters polarized along the x
axis, arranged along the z direction, and embedded in the mid-
dle of the cuboidal cavity described in Sec. 2.4. Each oscillating
dipole on site i ∈ [1,N ] with random frequency ωi, is located
at a random distance di from its neighbor to the right. The av-
erage individual resonance frequency is ω0, while the average
interdipole spacing is d. Unless stated otherwise, the distance
between the first and last dipoles of the chain and the cavity

wall in the z direction is fixed to dcav = d is this chapter.

emitters, and can then strongly couple to the cavity. In panel (b), repro-
duced from Ref. [109], a dielectric DBR structure is coated with a dense film
of molecular organic semiconductor dyes, in that case TDBC J-aggregates.
The DBR hosts electromagnetic Bloch surface waves, which strongly couple
to the Frenkel excitons of the molecular layer to give rise to extended Bloch
surface wave polaritons (BSWP).

While from now on, much of the theoretical analysis of these experiments
have been based on the single-mode Tavis-Cummings model [83–91, 93], the
majority of materials used, such as Fabry-Pérot or plasmonic cavities, are in-
trinsically multimodal, so that it is of fundamental importance to go beyond
single-mode models and take into account the cavity dispersion as well as a
dispersive coupling, as pointed out in recent studies [92, 94, 95, 163–165].

Another interesting physical system our model could describe is a cold ato-
mic cloud trapped in an optical resonator, operating in the regime where
only a single excitation is present in the system, i.e., in the single excitation
manifold [162, 166]. Fig. 3.2(c), reproduced from Ref. [162], presents a recent
experimental realization of such a system, where, interestingly, controllable
frequency disorder has been achieved. 6Li atoms are confined at the antin-
odes of the cavity field, and a technique of crossed lasers illuminating the
atoms allows an energy shift ε of their excited states, with a quasi-random
intensity distribution ρa of tunable width W. We note that in such a particu-
larly controllable cold atom experiment, a fine tuning of the system parame-
ters allows its features to be described by single cavity mode models.
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Figure 3.2: Experimental possibilities. Possible experimen-
tal realizations of our model of disordered polaritons. (a) Dye
molecular aggregate, a naturally disordered organic semicon-
ductor supporting Frenkel excitons, embedded in a dielectric
mirror-based Fabry-Pérot cavity made of two distributed Bragg
reflector (DBR) structures. (b) Dielectric DBR structure, hosting
Bloch surface waves, strongly coupled to a coated dye molecu-
lar layer, giving rise to Bloch surface wave polaritons (BSWP).
(c) Cloud of cold 6Li atoms trapped in an optical resonator, sub-
ject to a random energy shift of their excited state induced by
crossed light-shifting beams. Panels (a), (b), and (c) have been

reproduced, respectively, from Refs. [107], [109], and [162].

Alongside the above-mentioned cavity-protection and cavity-enhanced tran-
sport effects, recent theoretical works [88, 90, 91] have shown that the pho-
tonic cavity can also lead to an improvement of the transport characteristics
when increasing the disorder strength, instead of an expected suppression.
This counterintuitive phenomenon was theoretically unveiled by consider-
ing a disordered single-mode Tavis-Cummings model, specifically a chain of
emitters coupled to a single cavity mode through a spatially homogeneous
coupling constant. Interestingly, in the past year, such enhanced transport in-
duced by disorder has been observed in experiments, either using cold atoms
as shown in Fig. 3.2(c) [162, 166], or in molecular systems in the context of vi-
brational strong coupling [167]. Therefore, the intricate interplay between
disorder and strong light-matter coupling at the heart of disordered polari-
tons appears to be highly nontrivial, but its understanding is crucial, both
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to better understand the experiments we discussed above and for the funda-
mental questions it raises.

In this chapter, we employ our model sketched in Fig. 3.1 to investigate dis-
ordered polaritons beyond the commonly studied single-mode disordered
Tavis-Cummings model, by incorporating an all-to-all quasistatic dipole-dip-
ole coupling as well as the coupling to a multimode cavity. Through this
framework, we demonstrate that disorder-enhanced transport can be read-
ily understood as a consequence of an hybridization between dark and po-
laritonic states, which arises due to the increase in bandwidth caused by
frequency disorder, the latter allowing new coupling between photons and
dark states. This mechanism of disorder-induced hybridization enables dark
states to inherit polaritonic properties, and thus to take advantage of cavity-
enhanced transport.

Importantly, our study reveals distinct transport regimes for chains of large
enough sizes, so that both cavity- and disorder-enhanced transport are only
observed at intermediate distances. Specifically, the short-range propaga-
tion of dark states, resulting from nearest-neighbor quasistatic dipole-dipole
coupling, cannot be enhanced through polaritonic hybridization. Only the
long-range propagation benefits from cavity- and disorder-enhanced trans-
port. Notably, no enhancement is observed over very long distances. Fur-
thermore, we show that accounting for dipolar losses is crucial, as it leads
the aforementioned effects of cavity- and disorder-enhanced transport to be
increasingly noticeable.

The present chapter is organized as follows: Section 3.1 summarizes known
results on a disordered chain of dipolar emitters, which, when considering
nearest neighbor couplings only, is reduced to the 1d Anderson model of
disordered systems. After reviewing Anderson localization in this celebrated
model, we explore the effect of the all-to-all quasistatic dipolar coupling. Sec-
tion 3.2 is then dedicated to the presentation of our Hamiltonian model for
the coupling of the latter chain of emitters to a cuboidal multimode opti-
cal cavity. In Sec. 3.3, we study the particular case of the ordered chain in
the emitter thermodynamic limit, in order to gain physical insights into the
model.

The disordered case is studied in Sec. 3.4, where we discuss the localization
properties of the system from an eigenspectrum analysis, and unveil the mix-
ing between dipolar and photonic degrees of freedom induced by the inter-
play between strong light-matter coupling and disorder. Such a mixing leads
to what is dubbed semilocalized eigenstates, and Sec. 3.5 is dedicated to the
study of the precise nature of these states in our multimode model. Then, in
Sec. 3.6, we study the transport along the chain in a driven-dissipative sce-
nario, considering both lossy dipoles and lossy cavity mirrors. We first study
the effects of strong coupling in an ordered chain, and then the interplay be-
tween disorder and cavity-enhanced transport in a disordered chain. Finally,
we summarize our results and draw conclusions in Sec. 3.7, and we discuss
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some details of our model, such as the rotating wave approximation (RWA)
and the effect of cavity losses, in the Appendices 3.A and 3.B.

3.1 Disordered chain of emitters

To model a bare disordered chain of dipolar emitters without any cavity, as
sketched in Fig. 2.1, we rely on the dipolar Hamiltonian in the RWA (2.44)
which we derived in the previous chapter.

To implement disorder, we consider the individual resonance frequencies ωi
in Eq. (2.44) as uncorrelated random variables distributed uniformly within
an interval [ω0 −W/2, ω0 + W/2], hence with an average resonance fre-
quency ω0, and a variance W2/12. Moreover, we also consider the inter-
dipole spacings di (see Fig. 3.1) as uncorrelated random variables distributed
uniformly within an interval [d(1− ∆), d(1 + ∆)], the average spacing being
d. This leads to randomness in the dipolar coupling strength Ωij between
two dipoles on sites i and j, given in Eq. (2.23). Indeed, it depends on the
separation distance between the dipoles, which reads

|ri − rj| = rij =
j−1

∑
l=i

dl. (3.1)

The average dipolar coupling strength between two neighboring dipoles is
then

Ω = Ωi,i+1 =
ω0

2

( a
d

)3
, (3.2)

where the bar denotes averaging over the disorder realizations.

We note that our microscopically derived model imposes restrictions on these
two disorder parameters. Indeed, on the one hand, the frequency disorder
strength W/ω0 is limited to values smaller than 2, to prevent the resonance
frequencies ωi to become negative. On the other hand, the dimensionless
structural or positional disorder strength ∆ is restricted to values smaller
than 1− 3a/d, in order for the spacings di between dipoles to be greater than
or equal to 3a, allowing us to safely neglect multipolar effects and describe
purely dipolar excitations [150].

In the remainder of this chapter, we choose an average spacing d = 4a, so that
the dipoles are coupled in the near-field regime. We note that this regime is
the most studied both experimentally [168–174] and theoretically [116, 117,
138, 175] for chains of plasmonic nanoparticles. Such a small interdipole
spacing leads to Ω/ω0 = 1/128.

3.1.1 The 1d Anderson model

In order to fully understand the effect of disorder on a chain of emitters, we
begin our study by revisiting the 1d Anderson model [25]. This paradig-
matic model can be derived from the dipolar Hamiltonian in the RWA (2.44)
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Figure 3.3: Anderson localization. Probability density
|Ψdp,n.n

i (n)|2 associated with three randomly chosen eigenstates
of the Hamiltonian (3.3), which describes a disordered chain
of emitters with nearest neighbor coupling only, and which is
equivalent to the 1d Anderson model of disordered systems. (a)
In the absence of disorder, the eigenstates are extended plane
waves. (b) For a nonzero disorder strength (here W/ω0 = 0.1),
the eigenstates become exponentially localized. In the figure,

the number of emitters N = 500.

by considering nearest neighbor coupling only, and by setting the structural
disorder ∆ to zero. In that case, one obtains the Hamiltonian

HRWA
dp,n.n. =

N
∑
i=1

h̄ωibi
†bi +

N−1

∑
i=1

h̄Ω
(

bi
†bi+1 + bibi+1

†
)

, (3.3)

which we numerically diagonalize to obtain, for each eigenstate n ∈ [1,N ],
the eigenvectors Ψdp,n.n.(n) = (Ψdp,n.n.

1 (n), . . . , Ψdp,n.n.
N (n)), which are nor-

malized as ∑Ni=1 |Ψ
dp,n.n.
i (n)|2 = 1, as well as the eigenfrequencies ω

dp,n.n.
n .

We present in Fig. 3.3 the result of such a diagonalization by plotting the
probability density |Ψdp,n.n

i (n)|2 of randomly chosen eigenstates, along the
sites i of a chain comprisingN = 500 emitters. In Fig. 3.3(a), an ordered chain
is considered by fixing the disorder strength W/ω0 = 0, so that all the bare
individual frequencies ωi = ω0. In that case, the Hamiltonian (3.3) reduces
to a tridiagonal Toeplitz matrix, allowing for an analytical diagonalization.
The eigenvectors are just plane waves and read

Ψdp,n.n
i (n) =

√
2

N + 1
sin
(

inπ

N + 1

)
, (3.4)

where we used open boundary conditions Ψdp,n.n
0 (n) = Ψdp,n.n

N+1 (n) = 0, as is
implicit in the Hamiltonian (3.3).

Adding disorder with a strength W/ω0 = 0.1 in Fig. 3.3(b), in which one
should note the logarithmic scale of the vertical axis, the plane waves be-
come exponentially localized. This phenomenon is precisely the Anderson
localization we briefly introduced in Chap. 1.
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Figure 3.4: Participation ratio in the Anderson model. (a)
Eigenfrequencies ω

dp,n.n.
n , in units of the average bare frequency

ω0 and in ascending order, as a function of the participation
ratio PR(n) [Eq. (3.5)], for increasing values of the disorder
strength W/ω0 = 0, W/ω0 = 0.01 and W/ω0 = 0.1, and for
a chain comprising N = 500 emitters. (b) Scaling of the par-
ticipation ratio with the system size N , for the same increasing
values of the disorder strength. In the figure, the data have been

averaged over 100 disorder realizations.

To better characterize the localization of an eigenstate n, we use the partici-
pation ratio (PR) defined as [176, 177]

PR(n) =

(
∑Ni=1 |Ψ

dp,n.n.
i (n)|2

)2

∑Ni=1 |Ψ
dp,n.n.
i (n)|4

=
1

∑Ni=1 |Ψ
dp,n.n.
i (n)|4

. (3.5)

The quantity (3.5) gives information about the typical number of sites i oc-
cupied by an eigenstate n. In 1d systems it is then related to the localization
length. Extended states are characterized by a PR scaling with the total num-
ber of sites N , while the PR of localized states is size-independent.

We show in Fig. 3.4 computations of the latter PR. To minimize fluctuations,
all the data have been averaged over 100 disorder realizations.

In Fig. 3.4(a) the eigenfrequencies ω
dp,n.n.
n of the Anderson Hamiltonian (3.3)

are plotted as a function of the PR, for increasing values of the disorder
strength W. In the absence of disorder, the PR can be computed in the ther-
modynamic limit using the expression of the eigenvectors (3.4). One finds
PR(n) = 2(N + 1)/3, just as the blue dots at a PR(n) = 334 for all n. Increas-
ing the disorder strength to W/ω0 = 0.01 (green dots) and to W/ω0 = 0.1
(red dots) teaches us two effects of the disorder on the system. First, as
the bare individual frequencies ωi span a range that grows linearly with W,
the bandwidth of the eigenspectrum similarly increases. Second, as the dis-
order strength increases, the eigenstates at the edges of the eigenspectrum
become localized first. In contrast, eigenstates located at the center, where
ω

dp,n.n.
n ∼ ω0, maintain a larger value of PR. Increasing further the disor-

der strength W while keeping a system of the same size would result in all
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eigenstates having a participation ratio PR ∼ 1.

To accurately distinguish between extended and localized states, it is essen-
tial to examine the scaling of the PR with the system size N . This is what
we do in Fig. 3.4(b), where we focus on an eigenstate in the middle of the
spectrum, while increasing values of the disorder strength W. In the case
of zero disorder (blue triangles), we recover the result PR(n) ∼ 2N/3. The
eigenstates being plane waves, their length scale grows with the system size,
confirming their extended character. For a disorder strength W/ω0 = 0.01
(green diamonds), two regimes of scaling are observed: The PR scales with
the system size for small systems, and then converges to a constant value
when N is large enough. This is explained by the fact that although disor-
der localizes the eigenstate, as demonstrated by the convergence of the PR
to a given value, the localization length is larger than the size of the system
for small values of N , here until N ∼ 100. For a larger disorder strength
W/ω0 = 0.1 (red dots), however, the PR remains constant. This indicates
that the localization length of the eigenstate is smaller than the system size
for all the values of N considered here.

In the case of the 1d system with nearest neighbor coupling only in consider-
ation here, we note that it has been demonstrated that the localization length
scales with the square of the disorder strength W [177]. Moreover, in the
thermodynamic limit N → ∞, any infinitesimal value of W leads to the lo-
calization of all the eigenstates, i.e., the PR always converges to a constant
value as the system size increases [30, 178].

3.1.2 Effect of the all-to-all quasistatic dipolar coupling

As we want to investigate the fate of Anderson localization in a chain of
dipolar emitters strongly-coupled to a cavity, we need to go beyond the 1d
Anderson model of Eq. (3.3). The first step to this aim is to incorporate the
quasistatic all-to-all dipolar coupling, arising from the nonretarded part of
the Coulomb interaction (2.10), which decays with the cube of the intersite
distance. This is achieved by considering the dipolar Hamiltonian (2.44). To
focus on the predominant frequency disorder strength W, we continue here
to fix the positional disorder strength ∆ to zero.

Through a similar numerical diagonalization as done in the previous subsec-
tion, one can directly obtain from the Hamiltonian (2.44) its eigenfrequencies
ω

dp
n and eigenvectors Ψdp(n).

We show in Fig. 3.5(a) the probability density |Ψdp
i (n)|2 of three randomly

chosen eigenstates along the sites i of a chain of N = 500 emitters, when
considering a disorder strength W/ω0 = 0.1. We observe, similarly as for
the Anderson model in Fig. 3.3(b), an exponential localization of the eigen-
states (note the logarithmic scale of the vertical axis). However, and impor-
tantly, instead of a full exponential decay, the eigenstates present in addition
a clear algebraic tail, characterized by a power-law exponent of 3. Such an
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Figure 3.5: Anderson model with all-to-all quasistatic dipo-
lar coupling. (a) Probability density |Ψdp

i (n)|2 associated with
three randomly chosen eigenstates of the dipolar Hamiltonian
(2.44), which describes a disordered chain of emitters with all-
to-all quasistatic dipolar coupling. The disorder strength is set
to W/ω0 = 0.1. (b) Scaling of the participation ratio with the
system sizeN , for increasing values of the disorder strength W,
and after averaging the data over 100 disorder realizations. In
the figure, we recall that no off-diagonal disorder is considered,

i.e., ∆ = 0.

additional tail of the eigenstates arises directly from the all-to-all quasistatic
dipolar coupling, as it decays with the same rate.

To characterize the localized or extended nature of the eigenstates, we anal-
yse in Fig. 3.5(b) the scaling of the PR with the system sizeN , focusing again
on an eigenstate in the middle of the spectrum. Interestingly, the figure is
almost identical to the one obtained for the Anderson model, Fig. 3.4(b),
the PR converging through a constant value once some disorder is present
in the system. Therefore, although presenting a power-law tail, the eigen-
states of the dipolar Hamiltonian with all-to-all quasistatic coupling are still
localized. This is explained by the fact that the dipolar all-to-all coupling is
formally short-range, since it decays with the inter-site distance r as a power-
law 1/rp, with p = 3 > D, where the dimension D = 1. Indeed, a formally
long-range interaction, which can modify the localized or extended character
of disordered eigenstates in 1d [27, 158–161], is defined as decaying with a
power-law exponent p < D.

3.2 Coupling to a multimode optical cavity

Having examined Anderson localization in a disordered chain of bare dipo-
lar emitters, we now explore the influence of the light-matter coupling by
placing this chain inside a finite cuboidal cavity with hard-wall boundary
conditions, as described in Sec. 2.4. Thus, the coupled cavity-emitters system
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is modeled by the polaritonic Hamiltonian (2.53), which expands as

H�pol =
N
∑
i=1

h̄ωibi
†bi +

N
∑

i,j=1
(i 6=j)

h̄Ωij

2

(
bi

†bj + bi bj
†
)

+
Nz

∑
nz=1

ω
ph
nz c†

nz cnz + ih̄
N
∑
i=1

Nz

∑
nz=1

ξ�inz

(
b†

i cnz − bi c†
nz

)
, (3.6)

with the dipole coupling strength Ωij, the photonic dispersion ω
ph
nz , and the

real-space light-matter coupling function ξ�inz
, given in Eqs. (2.23), (2.52), and

(2.48), respectively.

The z coordinate of the ith dipole, entering in the latter light-matter coupling
function, reads here zi = dcav + ∑i−1

l=1 dl. Since we are at first not interested in
any edge effects, we fix for simplicity, unless stated otherwise, the distance
to the cavity walls to dcav = d.

We note that in our microscopically derived model, the frequency disorder
W is present both in the on- and off-diagonal elements of the Hamiltonian,
as it enters in the dipole coupling strength (2.23) as well as in the light-matter
coupling function (2.52), through the emitter resonance frequencies ωi. This
differs from toy models of disordered systems, in which frequency and cou-
pling constants are independent parameters [25]. In such a particular case,
frequency disorder can be called “on-diagonal disorder”.

In the following, we will first study the properties of the spectrum and eigen-
states of the Hamiltonian (3.6), and then study the propagation along the
chain in a driven-dissipative transport scenario, considering losses both in
the dipoles and in the cavity mirrors.

3.3 Ordered chain in the thermodynamic limit

To gain insight on the model and for clarity, we begin by summarizing and
further discussing results recently obtained in Ref. [179] for the simple case
of an ordered chain in the thermodynamic limit, which can be solved analyt-
ically. Within the framework developed in Chap. 2 and Sec. 3.2, this implies
to consider the disorder parameters W = 0 and ∆ = 0, such that ωi = ω0 and
di = d.

By then going to the emitter thermodynamic limit N → ∞, both the lon-
gitudinal size of the cavity Lz = (N + 1)d → ∞ and of the dipole chain
Lchain = (N − 1)d → ∞, so that the system is translationally invariant, and
one can use periodic boundary conditions for both the dipole chain and the
cavity in the z direction. In that case, Lz ∼ Lchain ∼ N d, and the longitu-
dinal photon momentum kz = 2πnz/Lz, with nz ∈ Z, is conserved with
the quasimomentum associated to the dipolar excitation, q = 2πp/N d, with
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p ∈ [−N/2,+N/2]. Therefore, kz = q belongs to the first Brillouin zone
[−π/d,+π/d] characterized by the lattice constant d of the emitter array.

In this periodic situation, we label by m ∈ [1,N ] the unit cell in which a
single emitter i is enclosed. Since we consider in this chapter a unipartite
lattice, the labels i and m are equivalent. This leads the z coordinate of the ith
dipole inside the mth unit cell to simplify as zi = zm = md.

In this limit, translation invariance leads the boundaries of the cavity to be ir-
relevant, so that both the waveguide and box cavities are equivalent. Hence,
in this section, we place ourselves in the case of an infinite waveguide cavity
with periodic boundary conditions, as detailed in Sec. 2.3, and consider the
polaritonic Hamiltonian (2.46). Within the emitter thermodynamic limit, it
writes

H∞
pol =

∞

∑
m=1

h̄ω0bm
†bm +

∞

∑
m,m′=1
(m 6=m′)

h̄Ω
2

(
bm

†bm′ + bm bm′
†
)

+
π/d

∑
q=−π/d

h̄ω
ph
q c†

qcq

+
ih̄√
N

∞

∑
m=1

π/d

∑
q=−π/d

ξq

(
bm

†cqeiqmd − bm c†
qe−iqmd

)
. (3.7)

To diagonalize the Hamiltonian (3.7), we move into the wavevector space
through the Fourier transform

bm =
1√
N ∑

q
eimqdbq (m = 1, . . . ,N ). (3.8)

Using then the relation

N
∑

m=1
eim2π(p−p′)/N = N δp,p′ , (3.9)

the polaritonic Hamiltonian (3.7) becomes

H∞
pol = ∑

q
φ†

qHqφq, Hq = h̄

(
ω

dp
q iξq

−iξq ω
ph
q

)
, (3.10)

where Hq is the Bloch Hamiltonian, while φ†
q = (b†

q , c†
q) are the Bloch eigen-

vectors.

In the above expression, the photonic dispersion and the light-matter cou-
pling strength are given, respectively, in Eqs. (2.34) and (2.38), whereas ω

dp
q
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is the quasistatic dispersion of the collective dipolar excitation, i.e., the eigen-
spectrum of the dipolar Hamiltonian in the RWA (2.44) in the thermody-
namic limit. It reads

ω
dp
q = ω0 + Ω fq, (3.11)

with the lattice sum

fq = 2
∞

∑
m=1

cos(mqd)
m3 , (3.12)

that can be expressed in closed form in terms of the polylogarithm function
Lis(z) = ∑∞

m=1 zm/ms as fq = Li3(eiqd) + Li3(e−iqd).

Using a bosonic Bogoliubov transformation, one can readily diagonalize the
Hamiltonian (3.10) as

H∞
pol = ∑

q,τ
ω

pol
qτ β†

qτβqτ, (3.13)

where the two polaritonic bands are given by

ω
pol
qτ =

1
2

(
ω

ph
q + ω

dp
q

)
+ τ

√
ξ2

q + ∆2
q, (3.14)

with ∆q = (ω
ph
q − ω

dp
q )/2 being the light-matter detuning between the bare

photonic and dipolar dispersions. We hereafter refer to the high (low) fre-
quency band, labeled by the index τ = + (−), as the upper (lower) polariton
UP (LP)

Finally, the Bogoliubov operators diagonalizing the Hamiltonian (3.10) are
a linear combination of the dipolar and photonic ladder operators, βqτ =
uqτbq + vqτcq. The modulus squared of the two coefficients uqτ and vqτ, which
are normalized as |uqτ|2 + |vqτ|2 = 1, thus represent, respectively, the dipolar
part Dqτ and the photonic part Phqτ of the polaritonic eigenmodes. These
latter quantities read

Dqτ = |uqτ|2 =
1
2


1− τ

∆q√
ξ2

q + ∆2
q


 (3.15a)

and

Phqτ = |vqτ|2 =
1
2


1 + τ

∆q√
ξ2

q + ∆2
q


 . (3.15b)

The result of the diagonalization procedure in the emitter thermodynamic
limit with periodic boundary conditions is shown is Fig. 3.6, where we plot
the polaritonic dispersion ω

pol
qτ [see Eq. (3.14)] in the first Brillouin zone (BZ),

for cavity heights Lx = 7a [Fig. 3.6(a)] and Lx = 12a [Fig. 3.6(b)]. The
colormap represents the photonic part Phqτ of each eigenmodes, given in
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Figure 3.6: Polaritonic bandstructure. Dispersion relation ω
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qτ

[see Eq. (3.14)] of an infinite, ordered dipole chain coupled
to a cuboidal cavity with heights Lx/a = 7 (left panel) and
Lx/a = 12 (right panel), in units of the bare dipole frequency
ω0 and as a function of the reduced wavenumber qd in the first
Brillouin zone. The colormap represents the photonic weight
Phqτ of the mode [see Eq. (3.15b)], and the dotted grey line in
panel (b) indicates the value of ω

pol
±π/d,−. The blue and green

dashed lines represent the bare dipolar ω
dp
q [see Eq. (3.11)] and

the bare photonic ω
ph
q [see Eq. (2.34)] dispersions, respectively.

The orange, red, and blue symbols point out eigenstates that
will be studied in detail in the sequel. We recall that, as in the

remaining of this chapter, the interdipole spacing is d = 4a.

Eq. (3.15b). We also plot by blue and green dashed lines the dipolar ω
dp
q and

photonic ω
ph
q bare dispersions, given respectively in Eqs. (3.11) and (2.34).

We first notice that, as discussed in Chap. 2, increasing the cavity height Lx
(and hence Ly, since the aspect ratio is fixed to Ly = 3Lx) leads the bare

dispersions ω
dp
q and ω

ph
q to enter in resonance. It induces an increasingly

pronounced avoided crossing, typical of the strong-coupling regime.

When Lx becomes large enough, namely for Lx > ω0π/3ω
dp
q=0k0 which cor-

responds to Lx ' 10.3a with the parameters used in Fig. 3.6, the light-matter
detuning ∆q = (ω

ph
q − ω

dp
q )/2 can be smaller than 0, meaning that there is

a crossing between the bare dipolar and photonic dispersions, i.e., a given
wavenumber qres where the two bare excitations are at resonance. From this
point on, we can identify ξqres [see Eq. (2.38)] with half of the Rabi splitting
frequency. In the case of Lx/a = 12 shown in Fig. 3.6(b), the Rabi splitting
frequency ΩRS ' 0.12ω0.

From the colormap of Fig. 3.6, one observes that the hybridization between
light and matter degrees of freedom is enhanced by increasing the cavity
height Lx, in agreement with the entrance in the strong-coupling regime. The
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most hybridized states are the ones near the center of the BZ, for which the
detuning ∆q is around and below 0 [see expression (3.15b)]. In the following,
we will refer to these highly hybridized states as polaritons. On the other
hand, states that are apart from the center of the BZ, for which the detuning
∆q is positive, remain almost unhybridized. The states in the LP branch that
remain almost fully dipolar, namely with a photonic weight Phqτ . 0.1, will
be referred to as dark states1 (visible in black in Fig. 3.6). Unlike polaritons,
these dark states all have an eigenfrequency very close to that of the isolated
dipole frequency ω0.

Finally, we indicate by a grey dotted line in Fig. 3.6(b) the eigenfrequency
ω

pol
±π/d,− of the darkest, least coupled eigenmode of the LP branch, sitting at

the edge of the BZ. This highlights the fact that due to the dipolar coupling
between the emitters, which leads to the collective dispersion relation given
in Eq. (3.11), there are both LP eigenstates with a higher and lower eigenfre-
quency than that of the least coupled one, i.e., the bare dipolar band is not
flat.

In the next section, by studying the localization properties of the disordered
chain we will show that this at first sight trivial information becomes im-
portant, since the latter eigenstates presenting an eigenfrequency lower than
ω

pol
±π/d,− will be found to be particularly robust against disorder, while the

ones above the dotted line constitute what will later be called the dark state
band.

3.4 Localization properties of the finite disordered
chain

We now move to a numerical study of the eigenstates of the finite disor-
dered chain, considering the finite real space Hamiltonian (3.6). With the
longitudinal size of the cavity Lz ∼ N d, we consider the number of pho-
tonic modes Nz = N , so that max(kz) = π/d. This allows one to rewrite
the Hamiltonian (3.6) in a 2N × 2N matrix form using the basis vector
ϕ† = (b†

1 , . . . , b†
N , c†

1, . . . , c†
N ).

2 In this context, the dipolar and photonic parts
of a given eigenstate n ∈ [1, 2N ], that is, the real space counterparts of Dqτ

and Phqτ given in Eqs. (3.15), read

D(n) =
N
∑
i=1
|Ψi(n)|2 (3.16a)

and
Ph(n) = 1−D(n), (3.16b)

1In contrast to single cavity mode models such as the Tavis-Cummings one, in a realistic
multimode model there is no unambiguous definition of dark and polaritonic states [92], all
the eigenstates being hybridized.

2We note that we do not consider the situation of decoupling cavity modes [180–182],
which requires a block-diagonal Hamiltonian approach.
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with the 2N -component normalized eigenvector of the Hamiltonian (3.6)
Ψ(n) = (Ψ1(n), . . . , Ψ2N (n)), the firstN entries corresponding to the dipolar
subspace.

As in Sec. 3.1, we characterize the localization of an eigenstate n with the
participation ratio. Here, however, we sum over the dipolar subspace only,
so that the PR reads

PR(n) =

(
∑Ni=1 |Ψi(n)|2

)2

∑Ni=1 |Ψi(n)|4
. (3.17)

We insist on the fact that in this chapter, when we refer to an extended or
delocalized state, we mean delocalized at the scale of the system size, namely,
that the localization length is larger that the system. Indeed, no genuine finite
size scaling argument has been performed to confirm that such states are still
extended at the thermodynamic limit, as states that can be found, e.g., in
three-dimensional disordered systems featuring an Anderson transition. A
discussion about this possible ambiguity, including the scaling of the PR with
the system size for N ∈ [100, 5000], is proposed in the next Sec. 3.5.

Here and hereafter, we fix the interdipole spacing disorder ∆ to 0 and focus
only on the effects of the frequency disorder W. Due to the fact that the
individual frequencies ωi appear both on- and off-diagonal in the dipolar
Hamiltonian [see Eq. (3.6)], the frequency disorder affects the spectrum more
than the interdipole spacing one ∆, which is purely off-diagonal. All the
results shown here are then qualitatively the same with a spacing disorder
∆ 6= 0. The particular case of considering only off-diagonal disorder would
however not lead to important disorder-induced effects as we observe here.3

3.4.1 Disorder-induced mixing of dipolar and photonic wei-
ghts

To begin our study of a disordered chain of dipoles in a photonic cavity, we
place ourselves in the strong-coupling regime, namely with a cavity height
Lx/a = 12 [see Fig. 3.6(b) for the ordered counterpart], and we consider a
chain of N = 1000 dipolar emitters. We compute the average of the pho-
tonic part Ph(n) and of the participation ratio PR(n) of the eigenmodes n of
the system over 100 disorder realizations, for increasing frequency disorder
strength W. The result is shown in Figs. 3.7(a) and 3.7(b), as a function of
both the eigenfrequencies ω

pol
n which are ordered in ascending order, and

the disorder strength W.

3Nevertheless, considering only off-diagonal disorder leads to what is known as the
Dyson singularity in the density of states [183]. In the presence of coupling beyond nearest
neighbor, such singularity, located in the middle of the energy band, transforms into a fi-
nite peak comprising eigenstates that are slightly more localized than the surrounding ones
[184, 185]. We found (not shown) that in the presence of strong light-matter coupling, sim-
ilar conclusions may be drawn. A Dyson peak in the density of state is still present in the
strong coupling regime, and it comprises eigenstates that are slightly more localized and
more dipolar than the surrounding ones.
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Figure 3.7: Effect of disorder on the polaritonic system. Col-
ormaps of (a) the photonic weight Ph(n) and (b) the partici-
pation ratio PR(n) as a function of both the eigenfrequencies
ω

pol
n and disorder strength W in units of the average dipole

frequency ω0. The cavity height is Lx/a = 12, the number of
dipole is N = 1000, and the data have been averaged over 100

disorder realizations.

We first discuss the spectrum for weak disorder strengths W/ω0 ' 10−2,
which could correspond typically to experimental uncertainties obtained in
the fabrication of plasmonic nanoparticles, namely inhomogeneities in their
sizes [171, 173, 186], resulting in different resonance frequencies ωi [187–189].
In Fig. 3.7(a), we recognize the same behavior as with an ordered chain (see
Fig. 3.6), namely that the bottom of the LP branch is mainly photonic, visible
in orange, whereas the top is almost purely dipolar, visible in black around
ω

pol
n /ω0 = 1.0. Furthermore, the bottom of the UP branch is mainly dipo-

lar, while the rest of the band goes from predominantly photonic to almost
purely photonic states. By comparing these results to the PR in Fig. 3.7(b),
we observe that mainly photonic states have a very high PR, i.e., they are de-
localized along the chain, while the almost purely dipolar dark states show a
lower PR, hence being localized on a small number of sites. This expected be-
havior shows the cavity-protection effect, namely that polaritonic states are
more robust against disorder than purely dipolar states [155]. We note that
mainly dipolar states with a photonic weight Ph(n) ' 0.25, visible in purple
in Fig. 3.7(a), already benefit from this effect.

By now increasing disorder, we observe in Figs. 3.7(a) and 3.7(b), as expected,
an increase of the bandwidth of the polariton bands. This amounts to the
closing of the bandgap such that we cannot unambiguously distinguish be-
tween LP and UP branches anymore, so that the system is no longer strictly
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in the strong-coupling regime. Interestingly, the growing portion of the spec-
trum is the one containing the dark states, namely the top of the LP branch,
which in this sense behaves as an effective band. This observation agrees
with Ref. [89], where similar behavior has been encountered. All the states
outside this effective dark state band profit from the cavity-protection effect.
We note that the dark state band is bounded from below by the least cou-
pled, darkest mode, which, in the ordered chain picture, was marked as the
dotted grey line in Fig. 3.6. As shown by the grey dashed lines in Figs. 3.7(a)
and 3.7(b), the rate of expansion of the dark state band around ω0 is W/2,
that is, half the width of the rectangular distribution in which the individual
dipole frequencies ωi are randomly chosen. This is due to the fact that dark
states have eigenfrequencies which are almost unchanged by cavity photons,
so that they remain of the order of ωi.

When this broadening of the eigenfrequencies approximately reaches the bot-
tom of the LP branch, that is, when the disorder strength W & 0.3, fully
dipolar eigenstates which are totally localized with a PR(n) ' 1 appear in
the spectrum [see the black region at the bottom right of Figs. 3.7(a) and
3.7(b)]. In that respect and as detailed in the next subsection, for a given large
enough disorder strength W & 0.3 the model hosts three distinct phases as
can be seen from Figs. 3.7(a) and 3.7(b): an exponentially localized, dark state
phase composed of the eigenfrequencies ω

pol
n . ω

ph
q=0 (black region), a phase

of mostly photonic states, not yet affected by disorder due to their eigenfre-
quencies ω

pol
n & ω0 + W/2 (yellow-orange region), and a phase of mainly

dipolar polaritons with an intermediate PR, made of states in the dark state
band with eigenfrequencies ω

ph
q=0 . ω

pol
n . ω0 + W/2 (purple region).

The latter intermediate phase presents the most interesting properties. We
highlight them in Figs. 3.8(a) and 3.8(b), by showing horizontal cuts of
Figs. 3.7(a) and 3.7(b), for the eigenmodes corresponding to the eigenfrequen-
cies ω

pol
n /ω0 = 0.9, 1.0, and 1.06, plotted as orange, red, and blue solid lines,

respectively. These eigenstates are also indicated, respectively, by an orange
diamond, a red triangle, and a blue square in the ordered bandstructure of
Fig. 3.6(b). At weak disorder strength, they correspond, respectively, to a
mainly photonic polariton, a dark state, and a mainly dipolar polariton.

Crucially, we observe in Fig. 3.8(a) that by increasing the disorder strength,
the dark state at ω

pol
n /ω0 = 1.0 (red line) has a photonic weight which in-

creases linearly with the frequency disorder, at a rate around 0.25W/ω0, as
exemplified by the black dashed line. This disorder-induced gain of photonic
weight leads to the fact that no more dark states are present at the frequency
where they were present without disorder, i.e., around ω0, since disorder
hybridizes all of them to polaritons. Furthermore, the mainly photonic po-
lariton at ω

pol
n /ω0 = 0.9 (orange line) changes drastically in nature when the

disorder strength is increased, becoming a mainly dipolar polariton when its
frequency enters the dark state band, that is when W & 2|ωpol

n −ω0| = 0.2ω0.
Once in the dark state band, its photonic weight also follows a linear increase
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Figure 3.8: Effect of disorder: Emphasis on specific eigen-
states. Horizontal cuts of the panels (a)-(b) of Fig. 3.7 at the
eigenfrequencies ω

pol
n /ω0 = 0.9, 1.0, and 1.06, pointed out in

Fig. 3.7 by orange, red, and blue triangles, respectively.

with disorder strength. Finally, the same mechanism occurs for the mainly
dipolar polariton at ω

pol
n /ω0 = 1.06 (blue line). The corresponding PR values

in Fig. 3.8(b) reveal that once in the dark state band, the states show an inter-
mediate value of the PR, here PR(n) ' 6, which, as opposed to the photonic
weight, remains constant when the disorder strength increases. Importantly,
this means that the PR of these states does not fall to 1 with strong disorder
strength, in contrast to what is usually the case in 1d disordered systems.
This can be understood from the fact that the disorder-induced hybridiza-
tion of the dark states into polaritons allows them to inherit the polariton
robustness against localization, that is, the cavity-protection effect.

In order to better understand the mixing of dipolar and photonic weights
induced by disorder, we display in Fig. 3.9 the probability density |Ψi(n)|2
along the sites i of the chain for the same three eigenstates, for which the
same color code is used. It should be noted, however, that the results of
Fig. 3.9 correspond to a given disorder realization. Increasing values of the
disorder strength W/ω0 = 0.01, 0.1, and 1 are considered from left to right
panels.

In Figs. 3.9(a)-3.9(c), we present our results for the mainly photonic polari-
ton with eigenfrequency ω

pol
n /ω0 = 0.9. By increasing the disorder strength,

the state goes from delocalized and mostly photonic in panels (a) and (b),
to localized on multiple nonadjacent sites with a very small PR in panel
(c). In the following we term these states “semilocalized”, as recently pro-
posed by Botzung et al. in Ref. [87], where they unveiled similar phenomena
in a disordered Tavis-Cummings (TC) model. As studied in Refs. [87, 88,



3.4. Localization properties of the finite disordered chain 63

1 250 500 750 1000

10−6

10−3

100

Site i

|Ψ
i(
n
)|2

ωpol
n /ω0 = 1.06

1 250 500 750 1000

Site i

1 250 500 750 1000

Site i

10−6

10−3

100
|Ψ

i(
n
)|2

ωpol
n /ω0 = 0.9

10−6

10−3

100

|Ψ
i(
n
)|2

ωpol
n /ω0 = 1.0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

W/ω0 = 0.01 W/ω0 = 0.1 W/ω0 = 1

Ph = 0.78
PR = 6.7e+2

Ph = 0.73
PR = 4.7e+2

Ph = 0.41
PR = 5.7e+0

Ph = 0.0072
PR = 6.9e+1

Ph = 0.0021
PR = 1.8e+0

Ph = 0.15
PR = 3.7e+0

Ph = 0.33
PR = 6.5e+2

Ph = 0.14
PR = 1.2e+1

Ph = 0.12
PR = 7.4e+0

Figure 3.9: Effect of disorder: Shape of specific eigenstates.
Probability density |Ψi(n)|2 along the sites i of a chain of N =

1000 dipoles, for different eigenfrequencies ω
pol
n /ω0 = 0.9, 1.0,

and 1.06 (rows), and different disorder strength W/ω0 = 0.01,
0.1, and 1 (columns). In the figure, data are not averaged over

disorder realizations and the cavity height Lx/a = 12.

90], semilocalized states can be seen as localized states, that is, an exponen-
tial peak with a size-independent PR, with long tails that have increased so
that they are of the same order of magnitude as the original peak. In the
next Sec. 3.5, we discuss the nature of the semilocalized states present in our
model, and notably the differences with the ones found in Refs. [87, 88, 90].
In our model, these semilocalized states correspond to the purple region in
Figs. 3.7(a) and 3.7(b), i.e., they belong to the dark state band with eigenfre-
quencies ω

ph
q=0 . ω

pol
n . ω0 + W/2. They present a constant value of PR

of the order of 10, as well as a photonic weight increasing linearly with the
disorder strength.

In the second row of Fig. 3.9, we show the same quantities for a dark state
with eigenfrequency ω

pol
n /ω0 = 1.0. As one can see from panel (d), this

fully dipolar state already becomes affected by a weak disorder strength
W/ω0 = 0.01, but the exponential localization occurs only at a stronger
disorder strength W/ω0 = 0.1, visible in panel (e). We note that in addi-
tion to the exponential peak, exponentially localized states also include al-
gebraic tails with very small amplitude. By increasing further the disorder
strength to W/ω0 = 1 in panel (f), the state acquires a photonic weight and
becomes semilocalized. The same mechanism is visible in the third row of
Fig. 3.9 [panels (e)-(g)] for a mainly dipolar polariton with eigenfrequency
ω

pol
n /ω0 = 1.06, which, due to its polaritonic nature, remains unaffected at

weak disorder strength [see Fig. 3.9(g)].
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Figure 3.10: Effect of light-matter coupling for weak disor-
der strength. (a) Photonic weight Ph(n) and (b) participa-
tion ratio PR(n) as a function of both the reduced eigenfre-
quencies ω

pol
n /ω0 and cavity height Lx/a, for disorder strength

W/ω0 = 0.01. The data have been averaged over 100 disorder
realizations.

3.4.2 Influence of the light-matter coupling

Here we conclude the eigenspectrum analysis by studying the influence of
the light-matter coupling on the eigenstate properties discussed previously.
For that purpose, we compute the photonic weight [Eq. (3.16b)] and the PR
[Eq. (3.5)] of the eigenmodes as a function of both the eigenfrequencies or-
dered in ascending order, and the cavity height Lx that controls the light-
matter coupling.

We display in Fig. 3.10 the case of a weak disorder strength W/ω0 = 0.01.
As can be seen from panel (a), in the weak-coupling regime (Lx/a . 9) the
eigenstates are almost not hybridized and the LP branch corresponds only to
dark states. The corresponding PR in panel (b) shows that these dark states
are already localized, especially the modes near the band edges, whereas the
ones around the middle of the band present a higher PR. This behavior of
sharply localized band edges is usual in all 1d Anderson-like disordered sys-
tems [22]. In the insets of Fig. 3.10, we show a zoom around the modes which
interact the most with cavity photons, namely the ones at the center of the BZ
in the ordered chain picture (around q = 0 in Fig. 3.6). The inset of panel (a)
shows that theses modes have a higher photonic weight than the surround-
ing ones, being the most hybridized states. However, the inset of panel (b)
demonstrates that these states have a smaller PR than the surrounding ones,
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Figure 3.11: Effect of light-matter coupling for strong disor-
der strength. Same quantities as in Fig. 3.10, but for disorder
strength W/ω0 = 1. The data have been averaged over 100 dis-

order realizations.

hence being more localized, despite their larger photonic weight. This coun-
terintuitive behavior highlights the particularly nontrivial interplay between
localization and light-matter hybridization.

At larger cavity heights (Lx/a & 9), we see in Fig. 3.10 the emergence of po-
laritons at the bottom of the LP branch, with a high PR value. The existence of
these eigenstates is permitted by the strong enough band modification due to
the avoided-crossing, which allows eigenfrequencies smaller than the one of
the darkest mode [which was marked as the grey dotted line in Fig. 3.6(b)].4

In contrast, the top of the LP branch, that we previously coined the dark state
band, remains composed of almost fully dipolar states [see panel (a)]. Look-
ing at the corresponding PR in panel (b), one sees that the modes near the
band edges of this dark state band are more localized than the ones in the
middle, confirming the behavior of an effective band.

Then, in Fig. 3.11, we consider a larger disorder strength W/ω0 = 1. As we
increase the cavity height Lx/a, we observe an increase of the share of semilo-
calized states, visible in purple both in Figs. 3.7 and 3.11. The frequency range
occupied by these semilocalized states matches the part of the dark state

4This unusual transition, occurring here at a cavity height Lx/a ' 9.1, originates solely
from the 1/r3 quasistatic dipole-dipole coupling that leads to a dipolar band which is not flat.
Indeed, a flat dipolar dispersion, as considered in usual strong-coupling toy models, would
lead to eigenfrequencies that are smaller than the most uncoupled one for any nonzero value
of the light-matter coupling.
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band overlapping with the bare photonic band, thus being bounded from be-
low by the lowest bare photonic state ω

ph
q=0, which we represent as a function

of Lx/a as a grey dashed line. This demonstrates that in our model, semilo-
calization can be understood as eigenstates being mixed to photonic states by
the increase of the bandwidth induced by the frequency disorder. This per-
mits new coupling between dipolar and photonic degrees of freedom. States
with an eigenfrequency ω

pol
n . ω

ph
q=0, visible in black in Fig. 3.11, are the fully

dipolar exponentially localized states, namely, dark states subject to Ander-
son localization. Due to their eigenfrequencies being lower than the ones of
the photonic band, they cannot benefit from the disorder-induced mixing be-
tween dipolar and photonic degrees of freedom. On the other hand, states
not already reached by the dark state band, with ω

pol
n & ω0 + W/2, remain

mainly photonic and delocalized [see the orange/yellow regions in Fig. 3.11],
confirming the previous analysis of Fig. 3.7. Finally, we note that with such
a large value of the disorder strength (W/ω0 = 1), we are able to see semilo-
calized states already for a small cavity height Lx/a ' 7, a value from which
we considered the system being in the weak-coupling regime without dis-
order. The transition from dark to semilocalized states when increasing the
disorder strength is smooth, but with the above explanation, we understand
that for a given value of W, semilocalized states would be present only if
2|ωph

q=0 −ω0| .W, the light-matter coupling competing with disorder [87].

To conclude this section, by studying the eigenspectrum of our system, we
have shown that the bandwidth increase led by frequency disorder tends to
incorporate photonic states to the dark state band, leading to states that in-
crease their photonic weight and become semilocalized. Almost fully dipo-
lar dark states, such as the ones shown in panels (d)-(f) of Fig. 3.9, can thus
undergo first a transition from being delocalized along the chain to being
exponentially localized on a few sites, and then another transition to be-
ing semilocalized and turning into hybridized polaritonic states. As we will
show in Sec. 3.6 by performing transport simulations in a driven-dissipative
scenario, the latter hybridized states inherit long-range polaritonic transport
properties. This remarkable phenomenon thus leads to a disorder-enhanced
propagation along the chain, that is, to the decrease and then the re-increase
of the long-range transport properties for increasing disorder.

3.5 On the nature of the semilocalized eigenstates

In the previous section, we unveiled that at large disorder strength the
eigenstates of the Hamiltonian (3.6) can be of three very different types (cf.
Fig. 3.7): (i) dipolar with a PR of order 1, (ii) hybridized with a PR of or-
der 10, (iii) photonic with a PR of order N . By inspection of the probability
density |Ψi|2 of these states along the sites i ∈ [1,N ] of the chain, we found
that the dipolar ones are exponentially localized in the chain, with very small
power-law tails, so that we coin them as localized. The photonic states are ho-
mogeneously extended along the chain, and we term them delocalized at the
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scale of the system size, since their localization length is larger than the size
of the chain.

The hybridized states, however, are localized on multiple, noncontiguous
sites [see panels (c), (f), and (i) of Fig. 3.9, where N = 1000], so that we
coin them semilocalized, following Ref. [87] were similar features were ob-
served in a disordered TC model. In the context of disordered systems, such
neither localized nor delocalized states have been associated to multifractal,
nonergodic extended states, which are notably a feature of the critical point
of Anderson transitions [22]. Multifractal states have also been observed in
disordered Floquet systems [190] as well as in long-ranged disordered sys-
tems [191, 192]. Recently, Dubail et al. [90] unveiled the multifractal nature
of the semilocalized states present in a disordered TC model without any
short-range hopping, and where the light-matter coupling acts as an effec-
tive long-range hopping term.

In this section, we study the nature of the semilocalized states present in our
multimode light-matter coupling model, to ascertain whether they have the
same properties as in simplified single-mode models, or if their particular lo-
calization profile comes from finite-size effects. To this end, we first conduct
a scaling analysis of the participation ratio with the system size N , then we
perform a level statistics analysis, before we carry out a multifractal analy-
sis through the scaling of the generalized participation ratio with the system
size.

3.5.1 Scaling of the participation ratio

We show in Fig. 3.12 the scaling of the participation ratio PR(n) [defined in
Eq. (3.5)] with the number of dipolesN ∈ [100, 5000], for increasing values of
the disorder strength W/ω0 = 0.01, 0.1, and 1 from the left to the right panel.
We note that to minimize fluctuations, all the results have been averaged over
100 disorder realizations. Such a scaling is of crucial importance to correctly
conclude on the localization nature of the eigenstates. Indeed, the PR of a
localized state must remain independent of the system size, while the one of
an extended state should scale with the system size.

In Figs. 3.12(a) and 3.12(b), we display the results for the eigenstates corre-
sponding to the eigenfrequencies ω

pol
n /ω0 = 0.9, 1, and 1.06, i.e., the same

as the ones studied in Figs. 3.8 and 3.9. On the one hand, at small disorder
strength in panel (a), two polaritonic states (plotted by orange diamonds and
blue squares) show a PR increasing linearly with the number of dipoles N ,
precisely following the growth rate 2(N + 1)/3 plotted as a black dashed
line, which corresponds to maximally extended eigenstates in an ordered
(W = 0) system. On the other hand, the PR of the dark state, plotted by
red triangles, increases at small system sizes before it converges to a constant
value for large enough number of dipolesN , demonstrating its localized na-
ture despite its quite large localization length. At larger disorder strength
in panel (b), the PR of both the mainly dipolar polariton (blue squares) and
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Figure 3.12: Scaling of the participation ratio. Participation
ratio PR(n) [defined in Eq. (3.5)] as a function of the size of the
chainN , for the eigenmodes associated to the eigenfrequencies
ω

pol
n /ω0 = 0.9, 1.0, and 1.06, with increasing disorder strength

from the top to the bottom panel. Panel (c) shows in addition
the result for the eigenmodes associated to the eigenfrequen-
cies ω

pol
n /ω0 = 0.7 and 1.55. Extended states show a partic-

ipation ratio growing linearly with N , while localized states
present a constant participation ratio. The black dashed line
represents the maximum growth rate 2(N + 1)/3. The cavity
height Lx/a = 12, and the data have been averaged over 100

disorder realizations.

the dark state (red triangles) are drastically reduced and remain constant,
indicating localized states, as already seen in Figs. 3.9(e) and 3.9(h). The
mainly photonic polariton (orange diamonds) remains delocalized, although
presenting a slightly reduced PR.
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Finally, in Fig. 3.12(c), a larger disorder strength W/ω0 = 1 is considered and
in addition to the three eigenstates discussed above which are now semilocal-
ized, we also show the scaling of the PR of a mainly photonic polariton with
eigenfrequency ω

pol
n /ω0 = 1.55 (green circles) and of a fully dipolar dark

state with eigenfrequency ω
pol
n /ω0 = 0.7 (black crosses). In that context, one

can see that all of the three previously discussed eigenstates present a PR
that, after increasing at small sizes, converges to a constant value at larger
sizes, confirming the fact that such semilocalized states are not extended.
Moreover, the mainly photonic polariton (green circles) still has a growing
PR, showing that such a state having an eigenfrequency ω

pol
n > ω0 + W/2

remains extended. The eigenstates with frequencies ω
pol
n < ω

ph
q=0 newly al-

lowed by the large value of the disorder strength are totally localized with a
constant value of the PR around 1, as can be seen from the black crosses in
Fig. 3.12(c). We note that we have also checked (not shown) that the photonic
weight Ph(n) of the eigenstates is not affected when increasing the system
size, and is independent of the number of dipoles N .

3.5.2 Level statistics analysis

We propose here an analysis of the nature of the semilocalized states ob-
served in our model by means of level spacing statistics. To this end, we
follow Ref. [193] and compute the distribution of level spacing ratios

r̃n = min
(

rn,
1
rn

)
, (3.18)

with
rn =

sn

sn−1
, (3.19)

where sn = ω
pol
n+1 − ω

pol
n > 0 is the level spacing, the eigenfrequencies ω

pol
n

being sorted in ascending order. The average 〈r̃n〉 of such a level spacing ra-
tio over a given window of eigenstates n has been shown to display a univer-
sal value according to the level statistics [194]. Moreover, the average level
spacing ratio is scale invariant at the critical point of an Anderson transition.
This allows one to monitor such transition between an extended phase, with
statistics related to the random matrix ensembles, and a localized phase, with
eigenfunctions exponentially localized on random sites, not overlapping so
that the eigenvalues follow Poisson statistics [193, 195–197]. In contrast to
the standard level spacing distribution, the quantity (3.18) has the advantage
of not requiring any unfolding of the spectrum, since it is independent of the
local density of states [193, 194].

In Fig. 3.13, we show such one-parameter scaling for increasing number of
dipolesN , using the same parameters as in the previous subsection. The av-
eraging of the ratio (3.18) has been performed with 1/10 of the eigenstates of
the spectrum centered around the middle of the dark state band in the case of
an ordered chain, namely around the eigenfrequency ω

pol
n /ω0 = 0.9981. The
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Figure 3.13: Level statistics. Average of the level spacing ratio
〈r̃n〉 (see Eq. (3.18)) for eigenstates within the dark state band
as a function of the disorder strength, for increasing sizes of
the chain N . The grey dashed line shows the exact value for
Poisson statistics 〈r̃n〉PE = 2 ln 2− 1 ' 0.39. The cavity height
Lx/a = 12, and the data have been averaged over 100 disorder

realizations.

results were further averaged over 100 disorder realizations. As expected,
there is no common intersection point between all the curves, demonstrating
that there is no Anderson transition, as in usual 1d disordered systems. In-
stead, the average level spacing ratio converges to the exact value computed
for the localized phase with Poisson statistics, 〈r̃n〉PE = 2 ln 2− 1 ' 0.39 [194],
with diminishing disorder strength when the size of the system increases, as
in the original 1d Anderson model [196]. At small disorder strength, the
average ratio goes to 1, i.e., the value corresponding to an ordered system.
Therefore, as expected in 1d [196], there is no extended phase with statistics
related to random matrix ensembles.

Interestingly, when increasing further the disorder strength, we observe in
Fig. 3.13 a rise of the average level spacing ratio, which corresponds to the
semilocalization and hybridization of the dark states, as discussed in Sec. 3.4.
The ratio 〈r̃n〉 thus takes values between 〈r̃n〉PE and 〈r̃n〉 = 1/2, which corre-
sponds to semi-Poissonian statistics [198, 199]. Such behavior is in line with
the results obtained in a disordered TC model where multifractal semilocal-
ized states were found to follow statistics that range from Poissonian to very
close to semi-Poissonian, even at the thermodynamic limit [90].

Remarkably, however, in our multimode model we observe that increasing
the size of the system leads to the rise of the average level spacing ratio at
large disorder to be flattened, so that the ratio converges to the Poisson value
even at large disorder strength, as visible for the case ofN = 5000 displayed
by a black solid line in Fig. 3.13. Hence, for larger systems, a larger disorder
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strength is required to push the semilocalized states away from a Poisson
statistics. This suggests that for a fixed, finite disorder strength W/ω0 with
the parameters chosen here, namely d/a = 4 and Lx/a = 12, the semilocal-
ized states in our model would just follow a Poisson statistics at the thermo-
dynamic limit N → ∞, as usual localized states.

3.5.3 Generalized participation ratio and multifractal analy-
sis

To ascertain whether or not the semilocalized states of our multimode model
follow a multifractal structure as in single-mode models [90], here we con-
duct a multifractal analysis by analyzing the scaling with the system size N
of the generalized participation ratio, which is defined as [22]

PRq(n) =

(
∑Ni=1 |Ψi(n)|2

)q

∑Ni=1 |Ψi(n)|2q
∼
N→∞

N τq(n). (3.20)

While localized and delocalized eigenstates are characterized, respectively,
by a multifractal exponent τq = 0 (with q > 0) and τq = q− 1, any other
behavior of τq as a function of q implies multifractality [22]. We extract the
multifractal exponent τq from a logarithmic linear regression of the gener-
alized participation ratio (3.20) as a function of the system size N , that we
average over a frequency window ω

pol
n /ω0 ∈ [0.9 ; 1.4] corresponding to hy-

bridized, semilocalized states. To minimize fluctuations, data obtained with
system sizes N ∈ [102 ; 103] and N ∈ ]103 ; 3× 103] have been further aver-
aged over, respectively, 100 and 10 disorder realizations.

Figure 3.14 shows the resulting multifractal exponents extracted from differ-
ent scaling procedures, considering only system sizes N ∈ [102 ; 103] in blue,
N ∈ [103 ; 3× 103] in orange, andN ∈ [3× 103 ; 104] in green. In the inset we
exemplify such scaling behavior for the value q = 0.12, with numerical data
represented as grey circles, and the linear regressions with solid lines. We ob-
serve that when increasing the system size N , the multifractal exponents τq
are getting closer and closer to their value for localized states, namely τq = 0.

This drastically differs from the multifractal behavior found analytically at
the thermodynamic limit in a simplified disordered TC model (see Eq. (8) of
Ref. [90]) which we show as a black dashed line in Fig. 3.14. This suggests
that the semilocalized states of our multimode model are not related to multi-
fractal, nonergodic extended states at the thermodynamic limit. We note that
in a single-mode version of our model, namely considering the Hamiltonian
(3.6) with only the photonic mode nz = 1, the exponent τq shows the same
multifractal behavior as in the simplified disordered TC model considered in
Ref. [90].

To conclude, the analysis conducted in this section suggests that the hy-
bridized, semilocalized states present in our model through states localized
in multiple, noncontiguous sites of the chain [see panels (c), (f), and (i) of
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Figure 3.14: Multifractal analysis. Multifractal exponent of the
semilocalized states τq(n) [as defined in Eq. (3.20)] as a function
of q. The exponents have been extracted according to the proce-
dure explained in the text (see colored dots). The black dashed
line represents the analytical result found for a simplified dis-
ordered Tavis-Cummings model [90]. The inset exemplifies the
scaling procedure for the value q = 0.12, with the circles show-
ing numerical data. The cavity height Lx/a = 12 and the disor-

der strength W/ω0 = 1.

Fig. 3.9 where N = 1000], behave in the thermodynamic limit as usual lo-
calized states following Poissonian statistics. Therefore, in our multimode
model, the semilocalization properties of the dark states that are hybridized
through disorder fade out as the system size increases.

3.6 Driven-dissipative transport scenario

We now move to transport simulations in order to elucidate the fate of
the cavity-protection effect, as well as the disorder-induced mixing between
dipolar and photonic degrees of freedom and semilocalization in the propa-
gation characteristics along the chain. Crucially, unlike the recent studies of
Refs. [88, 90, 91], we study transport through an out-of-equilibrium driven-
dissipative scenario, which permits us to analyze the propagation of polari-
tonic excitations along the chain as a function of the driving frequency, and
to study the effect of dissipation, taking into account inevitable losses both in
the dipoles and in the mirror cavity.

For that purpose, we consider a driven-dissipative transport scenario by
adding to the polaritonic Hamiltonian given in Eq. (3.6) a driving term

Hdrive(t) = h̄ΩR f (t)
(

b†
1 + b1

)
, (3.21)
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which corresponds to a transversely polarized electric field with amplitude
E0 acting on the first dipole, with the Rabi frequency ΩR = E0

√
Q2/2Mh̄ω0,

and where f (t) is a time-dependent function that depends on the driving
frequency ωd. In the following, we consider a drive f (t) = sin(ωdt), cor-
responding to the first site of the chain being continuously illuminated by a
monochromatic electric field.

We assume that the propagation dynamics can be approximated by the Lind-
blad master equation for the density matrix

ρ̇ =
i
h̄

[
ρ, H�pol + Hdrive(t)

]
−∑

i

γi

2

({
b†

i bi , ρ
}
− 2bi ρb†

i

)

−∑
nz

κnz

2

({
c†

nz cnz , ρ
}
− 2cnz ρc†

nz

)
, (3.22)

where we consider two different phenomenological Markovian baths in or-
der to take into account both the damping rates γi of the dipole excitations,
typically coming from radiative and Ohmic losses, and the damping rates κnz

of the photons, arising from the imperfect cavity mirrors. In the remainder
of this manuscript, we assume that the dipolar losses are independent of the
dipole site, such that γi = γ, and that the cavity losses are independent of
the photon mode, i.e., κnz = κ.

In the following, we fix the cavity loss to κ/ω0 = 0.001. This is motivated
by the fact that all the qualitative propagation features found here are inde-
pendent of the value of κ, as long as it remains small enough, as is discussed
in Appendix 3.A. The value of the dipolar damping rate γ, however, is of
crucial importance and in order to illustrate its impact, we consider two dif-
ferent cases. The first one, γ/ω0 = 0.001, can be achieved experimentally in
platforms with small or highly controllable losses such as, e.g., microwave
resonators or dielectric and SiC nanoparticles. The second one, γ/ω0 = 0.02
represents the case of more lossy dipoles, which is naturally achieved in, e.g.,
nanoplasmonic setups where Ohmic losses are significant.

To study the transport properties along the chain of dipoles, we introduce
the dimensionless dipole moment pi = 〈bi + b†

i 〉 bared by the dipole i. The
latter quantity is directly proportional to the dipole moment at site i, pi =
−Q
√

h̄/2Mω0 pi. The associated power radiated in the far field by a dipole
at site i is then given by the classical Larmor formula [119]

Pi =
2ω4

0
3c2 (pi)

2 =
4πa2

3
(k0a)4 I0

(
pi

ΩR/ω0

)2

, (3.23)

where I0 = cE0
2/8π is the driving field intensity.

3.6.1 Steady-state solution of the Lindblad master equation

To obtain from the master equation (3.22) the steady-state solution for the
amplitudes of the dimensionless dipole moments |pi| along the sites i of the
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chain, we introduce a corresponding momentum πi = i〈bi − b†
i 〉, as well as

the equivalent quantities for the photonic degrees of freedom, pph
nz = 〈cnz +

c†
nz〉 and π

ph
nz = i〈cnz − c†

nz〉. Then, using the identity 〈Ȯ〉 = Tr {ρ̇O}, valid
for any operator O, we obtain from the master equation (3.22) the system of
coupled first order ordinary differential equations

ṗi = −ωiπi −
γi

2
pi +

N
∑

nz=1
ξinz pph

nz −∑
j 6=i

Ωijπj (3.24a)

ṗph
nz = −ω

ph
nz π

ph
nz −

κnz

2
pph

nz −
N
∑
i=1

ξinz pi (3.24b)

π̇i = ωi pi −
γi

2
πi +

N
∑

nz=1
ξinz π

ph
nz + ∑

j 6=i
Ωij pj

+ 2ΩR f (t) δ1,n (3.24c)

π̇
ph
nz = ω

ph
nz pph

nz −
κnz

2
π

ph
nz −

N
∑
i=1

ξinz πi. (3.24d)

Being interested in the stationary transport regime, we solve the above sys-
tem for the steady-state solution using the complex representation pi =
Aieiωdt, and f (t) = eiωdt. We note that the considered continuous periodic
drive leads to a vanishing time-averaged dipole moment 〈pi〉t. However, its
time-averaged amplitude 〈|pi|〉t is nonzero. This procedure yields to steady-
state solutions P = (|p1|, |p2|, . . . , |pN |) as

P =M−1
polD, (3.25)

where the N−dimensional driving vector is given by D = (2ΩR, 0, . . . , 0),
and the N ×N matrixMpol reads

Mpol =
[(

ωd − i
γ

2

) (
ωd − i

κ

2

)
1N −Mξ (1N −D2)Mt

ξ

]

× M̃−1
dp

[
ωd − iγ

2
ωd − iκ

2
1N +MξD0Mt

ξ

]
− M̃dp. (3.26)

In the above matrix equation, 1N is the N ×N identity matrix, the matrix
Mξ is defined by its elements as

[
Mξ

]
ij = ξij, where i, j = 1, . . . ,N , the diag-

onal matrices Dβ = Diag
(

Ωβ
1 , Ωβ

2 , . . . , Ωβ
N
)

, with the β-dependent function

Ωβ
nz =

(
ω

ph
nz

)β

(ω
ph
nz )

2 −
(
ωd − iκ

2

)2 , (3.27)
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and finally the matrix M̃dp is given by

M̃dp =Mdp −MξD1Mt
ξ , (3.28)

whereMdp is defined by its elements as

[
Mdp

]
ij = ωiδij + Ωij

(
1− δij

)
. (3.29)

We have checked (not shown) that such steady-state solutions |pi| are well
recovered after a finite time when one directly solves the system (3.24) using
a numerical ordinary differential equation (ODE) solver.

3.6.2 Cavity-enhanced transport in an ordered chain

In order to understand the underlying transport mechanisms of the system,
we begin our study by considering the ordered case (W/ω0 = 0), which,
due to the presence of polaritonic excitations, already features interesting
transport properties.

Indeed, cavity photon excitations having an intrinsically collective and delo-
calized character, they are naturally propagating at longer distances. More-
over, the light-matter coupling Hamiltonian (2.45) acts as an effective long-
range coupling between the dipoles. Being in the Coulomb gauge, it can be
seen as containing the retardation effects of the dipole-dipole interaction. In
the limit of an infinite cavity, i.e., in vacuum, it thus amounts to consider the
usual 1/r long-range dipole-dipole coupling term. Such a 1/r transport has
been studied in the past in ordered [138, 175, 200] and disordered [117] sys-
tems, showing the above-mentioned effect of long-range transport enhance-
ment by the light-matter coupling. In a finite cavity allowing for the strong-
coupling regime, it has been shown in the particular case of a single mode
Tavis-Cummings model [87, 88, 90] that under some approximations, the
light-matter coupling can be expressed as a distance-independent hopping
term. For the multimode cavity considered here, it consists in a longer but fi-
nite range effective coupling, for which we will unveil analytical expressions
in the next Chap. 4.

Here, we demonstrate that such an effective coupling induced by the strong-
coupling regime is directly visible through transport simulations. We be-
gin our analysis by comparing transport properties in systems with differ-
ent cavity heights.5 To this end, in Fig. 3.15 we show on a log-log scale the
steady-state amplitude of the dipole moment |pi| along the sites i of a chain
of N = 2500 dipoles, for cavity heights Lx/a = 7 (red lines) and Lx/a = 12
(blue lines). The amplitudes are given in units of ΩR/ω0, since |pi| ∝ ΩR/ω0.
Two different dipole losses are considered, γ/ω0 = 0.001 (solid lines) and
γ/ω0 = 0.02 (dotted lines), and the result corresponds to the driving of a

5Nevertheless, due to cavity confinement, the small heights Lx/a . 9 that lead here
to the weak-coupling regime are not comparable to the weak coupling of a dipole chain to
vacuum electromagnetic modes, recovered here for an infinite cavity.
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Figure 3.15: Energy transport in the weak- and strong-
coupling regimes. Steady-state amplitude of the dipole mo-
ment |pi| on site i in units of the reduced Rabi frequency ΩR/ω0
in an ordered (W/ω0 = 0) chain of N = 2500 dipoles, result-
ing from a monochromatic drive on the first dipole at a fre-
quency ωd/ω0 = 1.0, corresponding to a dark state. Results
are shown for different cavity heights Lx/a = 7 (red lines, weak
coupling) and Lx/a = 12 (blue lines, strong coupling), and dif-
ferent dipole losses γ/ω0 = 0.001 (solid lines) and γ/ω0 = 0.02
(dotted lines). The dashed (dotted) grey line represents the an-

alytical estimate (3.30) with γ/ω0 = 0.001 (γ/ω0 = 0.02).

dark state at frequency ωd/ω0 = 1.0. In the figure, the dashed and dotted
grey lines show the result in the case of a quasistatic dipole chain, without
any light-matter coupling, and only with nearest-neighbor quasistatic dipole
interaction. Such a decay has been computed analytically in Ref. [175] for
the root-mean-square of the dipole moment. Here, for the amplitude of the
dipole moment it translates into

|pi| =
2
π

ΩR

Ω

[√
1 +

( γ

4Ω

)2
− γ

4Ω

]i

, (3.30)

such that it follows an exponential decay |pi| ∝ e−id/ζ , with i being the dipole
site and ζ = d/arcsinh (γ/4Ω) the propagation length.

Remarkably, we observe from Fig. 3.15 that such an exponential decay is in
very good agreement with the propagation of both the weak (red lines) and
strong (blue lines) coupling regimes at short distances (i . 100) for small
losses (solid lines), and at very short distances (i . 10) for larger losses (dot-
ted lines). Therefore, strong coupling does not modify the short-range prop-
agation properties of the dark states, which are entirely attributable to the
nearest-neighbor quasistatic dipole-dipole coupling. The effect of the strong
light-matter coupling becomes visible only at larger distances and takes the
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form of a second, less steep exponential decay, occurring after sharp oscilla-
tions that signal a change of regime.

After the exponential laws, the propagation follows an algebraic decay with
slope ∼ 1/i3, visible as straight lines on the log-log scale of Fig. 3.15. Such
a power-law results from the 1/r3 quasistatic dipole-dipole coupling of the
dipolar Hamiltonian (2.44). It is hence also visible in the quasistatic case,
without light-matter interaction, when going beyond the nearest-neighbor
approximation performed in Eq. (3.30). Moreover, this behavior has also been
noticed in dipole chains coupled to vacuum electromagnetic modes [117, 175,
200]. Importantly, such an algebraic decay leads the cavity-enhanced trans-
port induced by strong coupling, that is, the second exponential regime, to be
effective only for specific system sizes. At too large distances, namely here
with dipole losses γ/ω0 = 0.02 for i & 300 (see the crossing between the
blue and red dotted lines), the algebraic decay becomes dominant and the
propagation is again similar for systems in the weak- and strong- coupling
regimes.

Now that we have studied the transport properties of a dark state in Fig. 3.15,
we move to the propagation of polaritons. To that purpose, in Fig. 3.16 we
fix the cavity height to Lx/a = 12 and we compare the propagation along
the chain between driving frequencies ωd/ω0 = 0.9, 1.0, and 1.06, which
correspond, respectively, to a mainly photonic polariton, a dark state, and a
mainly dipolar polariton. Note that states with the same eigenfrequencies
were already studied in the previous section, see Figs. 3.8 and 3.9, where the
same color code was used.

By looking at Fig. 3.16(a), where small dipole losses γ/ω0 = 0.001 are consid-
ered, it is clear that the amplitude of the dipole moment on the first site, |p1|,
is much smaller for polaritons (orange and blue lines) than for the dark state
(red line). This can be understood from the fact that the drive (3.21), as well
as the amplitude that we evaluate, are dipole-related quantities. The dark
eigenmodes can thus be more easily excited by the drive than the polaritons,
and the maximum amplitude resulting from a drive at a given frequency is
then related to the dipolar part of the associated eigenstate.

The first exponential is very steep for the polaritons, especially for the one
which is mainly photonic, in orange, leading to an inefficient short-range
transport. Indeed, the first exponential regime arising solely from the qua-
sistatic dipole-dipole interaction, it is less efficient for a state whose photonic
part is important, and for the polaritons it occurs on the first three sites only.
It is quickly supplanted by the second, photon-induced exponential which is
less and less steep when the photonic part of the driven state increases (from
red to blue to orange lines). Such second exponential decay allows for the
cavity-enhanced transport, and the long-range propagation of the polaritons
becomes better than the one of the dark state from i & 1000. We note that
the slight increase between the two exponentials arises from the change of
regime.
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Figure 3.16: Dark state versus polariton energy transport.
Same quantity as in Fig. 3.15, with dipole losses (a) γ/ω0 =
0.001 and (b) γ/ω0 = 0.02, but for a fixed cavity height Lx/a =
12 and different driving frequencies ωd/ω0 = 0.9, 1.0, and 1.06,
exciting respectively a mainly photonic polariton, a dark state,
and a mainly dipolar polariton. The grey dashed lines show the

analytical formula for ωd/ω0 = 1.0 given in Eq. (3.30).

By increasing the dipole losses to γ/ω0 = 0.02 in Fig. 3.16(b), we observe
that, crucially, it is mainly the first, dipole-induced exponential and thus the
dark state propagation that suffers from larger losses. Thereby, it leads to a
strong dominance of the polaritons at long distances, thanks to the second,
photon-induced exponential regime. The mainly photonic polariton driven
at ωd/ω0 = 0.9, in orange, here leads to a dipole moment amplitude at the
end of the chain, |pN |, which is 104 times larger than the one of the dark
state in red. Due to the algebraic decay, however, the propagation of the dark
state catches up the ones of the polaritons at a long enough distance, lead-
ing, importantly, to a size-dependency of the cavity-enhanced transport. For
example, the mainly dipolar polariton (blue curve) shows a cavity-enhanced
transport only from sites i ∼ 50 to i ∼ 1000.

To conclude this subsection, we have seen that the short-range transport is
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dominated by the nearest-neighbor quasistatic dipole-dipole coupling, that
leads to a first exponential decay which provides efficient dark state propa-
gation, but very poor polaritonic one. The medium and long-range transport
are, on the other hand, highly influenced by the strong light-matter coupling,
which leads to the appearance of a second exponential decay regime showing
the effect of cavity-enhanced transport. The steepness of this photon-induced
decay is flattened when the photonic part of the driven eigenstate increases,
leading polaritons to propagate efficiently at long distances. At larger dis-
tances, however, an algebraic decay independent of the nature of the eigen-
state cancels this transport enhancement. Crucially, the increase of dipole
losses lowers essentially the short-range propagation, and has less impact on
the photon-induced second exponential decay regime. This allows polari-
tons to better dominate medium and long-range transport when highly lossy
dipoles are considered.

In the next subsection, we study the propagation along the chain in the pres-
ence of disorder. We show that the same transport mechanisms are present,
with however, the crucial addition of the disorder-induced mixing between
dipolar and photonic weights, which we unveiled in Sec. 3.4. Indeed, the
dark states, that have been turned into semilocalized polaritonic states by
disorder, will inherit the polaritonic propagation properties, that is, cavity-
enhanced transport, that we discussed in this subsection.

3.6.3 Disorder-enhanced transport

The propagation along a disordered chain is presented in Fig. 3.17, where
the cavity height Lx/a = 12. We show on a log-log scale the steady-state
amplitude of the dipole moment |pi| along the sites i of the chain in units
of the reduced Rabi frequency, resulting from a drive at frequency ωd/ω0 =
1.0, for increasing disorder strength W. In Fig. 3.17(a), small dipole losses
γ/ω0 = 0.001 are considered.

In such a case, we observe that increasing the disorder strength from
W/ω0 = 0 (blue line) to W/ω0 = 0.01 (orange line) and W/ω0 = 0.1 (green
line) suppresses more and more the transport, especially affecting the first
exponential decay and the amplitude on the first site. Increasing further the
disorder to W/ω0 = 1 (black line), we observe an even weaker short-range
transport, but a stronger long-range one. Crucially, this long-range propa-
gation arises from a flatter second exponential decay. The steepness of the
latter decay being related to the photonic weight of the driven eigenstate,
this corroborates the disorder-induced gain of photonic weight of the dark
states around ω0 that we unveiled in Fig. 3.8(a).

This demonstrates the link between the observed disorder-enhanced trans-
port and the disorder-induced mixing between dark and photonic states,
such that at strong disorder strength (black line), the state driven at ωd/ω0 =
1.0 is not anymore an almost uncoupled dark state but an hybridized polari-
ton. It thus propagates very similarly to polaritons in the absence of disorder
(cf. the orange and blue lines in Fig. 3.16). We note that it also supports
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Figure 3.17: Disordered energy transport. Same quantity as in
Fig. 3.15, with driving frequency ωd/ω0 = 1.0 corresponding to
a dark state and dipole losses (a) γ/ω0 = 0.001 and (b) γ/ω0 =
0.02, but for a fixed cavity height Lx/a = 12 and increasing
disorder strength W. The data have been averaged over 100

disorder realizations.

the observations made when looking at the localization of the eigenstates for
increasing value of W in Fig. 3.9, where panels (d), (e), and (f) correspond,
respectively, to the orange, green, and black curves of Fig. 3.17.

When increasing the dipoles losses to γ/ω0 = 0.02 in Fig. 3.17(b), the dark
state transport is strongly reduced while the polaritonic one remains almost
unaffected. This enables an increasingly effective disorder-enhanced trans-
port when the considered dipoles are lossy. Here, it leads to a long-range
propagation that is stronger with disorder than without, up to four orders of
magnitudes of the steady state amplitude of the dipoles moment, around the
sites i ∼ 300-400.

To highlight the effect of disorder on long-range transport, we show in
Fig. 3.18 the evolution of the steady-state amplitude of the last dipole, |pN |,
of a chain of N = 500 dipoles when the frequency disorder is increased. We
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Figure 3.18: Advantage of loss in disordered long-range trans-
port. Steady-state amplitude of the last dipole moment of the
chain, |pN |, normalized by the one obtained without disorder,
and as a function of the disorder strength W in units of ω0. A
chain of N = 500 dipoles is considered, the driving frequency
ωd/ω0 = 1.0, the cavity height Lx/a = 12, and the data have

been averaged over 100 disorder realizations.

normalize the value of the amplitude |pN | by the one at the end of an or-
dered chain, |pN (W = 0)|. Small dipole losses γ/ω0 = 0.001 (solid line) as
well as larger ones γ/ω0 = 0.02 (dotted line) are considered, and the driving
frequency is ωd/ω0 = 1.0, just as in Fig. 3.17.

While the long-range transport is only slightly affected at small disorder
strength, it becomes suppressed when W increases, in agreement with the
eigenspectrum analysis of Sec. 3.4, where exponentially localized states were
observed (see Fig. 3.9). Then, increasing further the disorder strength leads
to the rise of the amplitude on the last dipole site, that is, to the disorder-
enhanced transport regime. With small dipole losses (solid line), this in-
crease does not exceed the value without disorder, remaining about 103 times
smaller. But crucially, by considering more lossy dipoles (dotted line), an am-
plitude of the last dipole moment about 103 times larger than without disor-
der can be observed with a disorder strength W/ω0 = 1.5. We note that from
W/ω0 = 1, the curves become essentially flat, indicating a regime where the
amplitude is no longer affected by disorder.

This is in line with what has been termed disorder-independent transport
in Ref. [88], where a study comparable to ours was carried out for a disor-
dered Tavis-Cummings model in a two-terminal, lossless transmission setup.
In our model, we explain this regime from the fact that once a state gained
enough photonic weight to inherit an almost flat, efficient polaritonic trans-
port up to the end of the chain, increasing further the disorder has no effect.

However, as well as the cavity-enhanced transport unveiled in Fig. 3.16, in



82 Chapter 3. Disorder and polaritons

our model, the size of the chainN is critical to observe the disorder-enhanced
and disorder-independent transport regimes. This is due to the complexity of
the propagation which is made of different regimes of decay, and especially
due to the algebraic tail appearing at very large distances. For example, in
Fig. 3.17(b), the highly disordered case with W/ω0 = 1 (black line) shows
an enhanced propagation only between the sites i ' 100 and i ' 2000. To
improve the transport at longer distances, a larger disorder strength should
be considered, such that the photonic weight of the driven eigenstate further
increases, leading to a flatter second exponential decay which can still domi-
nate the algebraic decay at the end of the chain. Remarkably, however, since
the disorder parameter W/ω0 cannot be arbitrarily increased [see the discus-
sion in Sec. 3.1], this points to the fact that the disorder-enhancement cannot
be reached for too long chains by tuning only the frequency disorder.

We note that the fact that disorder-enhanced transport, which is a con-
sequence of the presence of hybridized, semilocalized states, vanishes for
very large system sizes and is relevant at intermediate distances only (see
Fig. 3.17) is in line with our analysis of the nature of the semilocalized states
discussed in Sec. 3.5, the latter fading out when the size of the system in-
creases.

We illustrate this effect of size-dependence in Fig. 3.19, by computing the
steady-state amplitude of the dipole moment normalized by the one with-
out disorder, as a function of both the site i along the chain and the disor-
der strength W. The dipole losses γ/ω0 = 0.02 and the driving frequency
ωd/ω0 = 1.0, as in Fig. 3.17(b) and in Fig. 3.18 (dotted line).

In such a density plot, one can distinguish between the different regimes of
transport induced by disorder, according to the size of the chain, i.e., to the
site i. The white phase at the bottom of the plot shows that small disorder has
no effect even on large chains, while the blue phase shows the Anderson lo-
calization regime, with a reduced transport. The red phase, at the top right of
the plot, indicates the disorder-enhanced transport, especially where the am-
plitude of the dipole moment is larger with disorder than without. At short
distances, such a red phase is absent, showing that no disorder-enhanced
transport is achievable for small chains with the parameters considered here.
For larger distances, one remarks that the disorder required to enter in the red
phase goes linearly with the distance i, implying that a larger chain needs a
larger disorder strength.

Furthermore, it is interesting to note that decreasing the dipolar coupling
Ω can enhance the disorder-induced effects (not shown), allowing for a
disorder-enhanced transport for smaller disorder strength W, and operat-
ing at shorter distances. In view of our model, we understand this by the
fact that it would lead to a suppression of the first exponential decay, but
would have less impact on the second one, the latter being mediated by cav-
ity photons. The relative dominance of the polaritonic long-range transport
over the dark state one would thus be larger, in a similar fashion as with



3.6. Driven-dissipative transport scenario 83

Figure 3.19: Size dependence of disorder-enhanced transport.
Steady-state amplitude of the dipole moment |pi|, normalized
by the one obtained without disorder, as a function of both
the site i along the chain and the disorder strength W in units
of ω0. The dipole losses γ/ω0 = 0.02, the driving frequency
ωd/ω0 = 1.0, the cavity height Lx/a = 12, and the data have

been averaged over 100 disorder realizations.

the increase of dipole losses. At specific distances, a very small dipolar cou-
pling can also lead to a revival of Anderson localization appearing after the
disorder-enhanced and disorder-independent regimes, similarly to what was
observed in Ref. [88]. However, decreasing the dipolar coupling, i.e., increas-
ing the spacing d/a between the dipoles, would also go along with an overall
reduction of the propagation [175].

Finally, to study the effect of driving frequencies ωd/ω0 6= 1.0, we show on
Fig. 3.20 the steady-state amplitudes of the dipole moments in a density plot,
as a function of both the driving frequency and the site i along a chain of
N = 1000 dipoles. On panels (a), (b), and (c), we compare the propagation
in a chain with disorder strengths W/ω0 = 0, W/ω0 = 0.1, and W/ω0 = 1,
respectively. We consider lossy dipoles, with γ/ω0 = 0.02, for the purpose of
maximizing the dominance of the long-range polaritonic transport over the
dark state one.

In Fig. 3.20(a), without disorder, a bright yellow spot around ωd/ω0 = 1.0
demonstrates that the maximal amplitude is generated at short range by
driving a dark state, supporting the fact that these states are more easily
driven than polaritons. They present however inefficient long-range propa-
gation (see the purple and black spots). At the bottom of the spectrum, a clear
threshold can be seen around ωd/ω0 = 0.85, corresponding to the minimum
of the LP branch. The driven states below this threshold are not anymore
eigenmodes of the system and hence present poor transport properties. Fi-
nally, the orange strips above and below the bright spot around ωd/ω0 = 1.0
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Figure 3.20: Influence of the driving frequency. Density plots
of the steady-state amplitude of the dipole moment |pi| in units
of the reduced Rabi frequency ΩR/ω0, as a function of both
the site i and the driving frequency ωd/ω0. Three cases are
presented: (a) Without disorder, (b) W/ω0 = 0.1, and (c)
W/ω0 = 1. The dipole losses γ/ω0 = 0.02, the cavity height
Lx/a = 12, and the data have been averaged over 100 disorder

realizations.

correspond to hybridized polaritons, with poor short-range propagation but
very good long-range one, as already observed in Fig. 3.16.

By adding disorder, in Fig. 3.20(b), we clearly see the expansion of the effec-
tive dark state band around ωd/ω0 = 1.0. This expansion goes along with
a decrease of the transport efficiency, with the disappearance of the bright
yellow spot at short range and the enlargement of the black spot at longer
range. Polaritons outside the dark state band (orange strips), on the other
hand, remain not affected by disorder, displaying the effect of cavity protec-
tion of their transport against disorder. When further increasing the disorder
strength, in Fig. 3.20(c), all the frequencies up to ωd/ω0 = 1.5 belong to the
dark state band. All these now hybridized and semilocalized states have
approximately the same propagation characteristics. This, crucially, leads
to an improved long-range transport of the dark states around ωd/ω0 = 1.0,
which can be readily seen from the complete disappearance of the black spot.

We note that it also leads to a slightly enhanced short-range transport of
the mainly photonic polaritons, the latter gaining a dipolar weight from
the disorder-induced hybridization, allowing them to be more easily driven.
Their long-range transport is however reduced by disorder. In agreement
with what was observed in Sec. 3.4 through the fully dipolar and exponen-
tially localized states visible as the black regions in Figs. 3.7(a) and 3.7(b),
the eigenstates driven with a frequency essentially smaller than the lowest
bare photonic state ω

ph
q=0/ω0 ' 0.85 do not inherit polaritonic propagation

features, the light-matter coupling being not strong enough to let them be
coupled to photons by the disorder.
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Figure 3.21: Absorption spectra in the weak- and strong-
coupling regimes. Absorption spectrum as the sum of N =
1000 dipole moment amplitudes |pi| in units of the reduced
Rabi frequency ΩR/ω0, as a function of the reduced driving
frequency ωd/ω0. Results are shown without disorder for two
different cavity heights Lx/a = 7 (red lines, weak coupling)
and Lx/a = 12 (blue lines, strong coupling), and two different
dipole losses γ/ω0 = 0.001 (solid lines) and γ/ω0 = 0.02 (dot-

ted lines).

3.6.4 Absorption spectra from transport computations

Another observable that can be obtained from our driven-dissipative com-
putations are absorption spectra-like quantities. To access such quantities,
we consider that the sum of all the steady-state dipole moment amplitudes,
∑Ni=1 |pi|, is at first order proportional to the electric field absorbed by the
dipoles [201], so that its variation as a function of the driving frequency ωd
yields an absorption spectrum-like graph. Although they do not formally
represent absorption spectra, such graphs still allow us to extract meaningful
informations from our transport simulations, as discussed in the remainder
of this subsection.

We begin with the case of an ordered chain, and show in Fig. 3.21 the ab-
sorption spectrum for cavity heights Lx/a = 7 (blue lines) and Lx/a = 12
(red lines). Two different dipole losses γ/ω0 = 0.001 (solid lines) and
γ/ω0 = 0.02 (dotted lines) are considered.

While in the weak coupling regime, Lx/a = 7, the absorption spectrum is
bell-shaped and centered around the dark state eigenfrequencies at ωd/ω0 =
1.0, in the strong-coupling regime, Lx/a = 12, a rich structure appears. In
addition to the central peak, which is slightly higher, we observe high ab-
sorption for driving frequencies associated to hybridized polaritons (see the
dispersion in Fig. 3.6). These hybridized excitations are visible at the bottom
of the LP branch, starting around ωd/ω0 = 0.85, and in the UP branch, which
is visible as a second peak starting around ωd/ω0 = 1.05 and separated from
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Figure 3.22: Disordered absorption spectra in the strong-
coupling regime. Absorption spectrum for different disor-
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tained without disorder. The results are shown for a chain of
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izations.

the LP branch by a gap. The fast oscillations are peaks corresponding to the
different eigenfrequencies of the system, visible one by one due to the steep
slope in the dispersion in these frequency regions. We can hence precisely re-
cover the eigenmodes from this driven-dissipative scenario. However, the
absorption spectrum of Fig. 3.21 does not reflect the transport properties
along the whole chain, the sum over the amplitudes |pi| being obviously
dominated by the first few terms. It then provides information mostly about
the short-range propagation. This explains why the absorption is maximal
for the dark eigenstates, and decreases when the driving frequency rises to
more photonic eigenstates. Indeed, as discussed in the previous subsections,
the dark states present the most efficient transport at short distances.

By increasing the dipole losses, from the solid to the dotted lines, the central
peak is drastically reduced and the full width at half maximum is increased,
as expected. The polaritons at the bottom of the LP and UP branches are
less distinct from the dark states of the central peak, the latter being the most
affected by dipole losses. Crucially, however, the two bands are still distin-
guishable and separated by a gap despite the larger dipole losses, indicating
that the system is still in the strong-coupling regime.

The case of a disordered chain is shown in Fig. 3.22, where the sum of
the amplitudes of the dipole moments along the chain for a given disorder
strength, ∑Ni=1 |pi(W 6= 0)|, has been normalized by the maximum of the one
found without disorder, max[∑Ni=1 |pi(W = 0)|]. We choose a cavity height
Lx/a = 12 and we consider small dipole losses γ/ω0 = 0.001. By increasing
the disorder strength from W/ω0 = 0 (blue line) to W/ω0 = 0.01 (orange
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line), and to W/ω0 = 0.1 (green line), the absorption is more and more sup-
pressed for the driving frequencies corresponding to dark states, in a grow-
ing frequency window around ωd/ω0 = 1.0. This is in agreement with what
we observe in Sec. 3.4, namely that the effective dark state band grows with
the disorder strength W around ω0, while the polaritons outside the dark
state band, with ω

pol
n & ω0 + W/2, are not affected by disorder. The polari-

tons hence profit from this cavity-protection effect due to their eigenfrequen-
cies being far from ω0.

With a disorder strength W/ω0 = 1 (black line in Fig. 3.22), the dark state
band includes now frequencies up to 1.5 ω0. Due to the disorder-induced hy-
bridization mechanism, eigenstates at frequencies around 1.5 ω0 have gone
from almost purely photonic polaritons to semilocalized polaritonic states
with a significant dipolar part. This leads their absorption to become larger
than the one without disorder, the dipolar part allowing them to be more
easily excited and to acquire a better short-range propagation mediated by
the quasistatic dipole-dipole coupling. Interestingly, we thus observe here a
disorder-enhanced short-range transport, from almost fully photonic modes
acquiring a dipolar part from the increased disorder strength, and inheriting
efficient short-range dipolar transport.

3.7 Conclusions to Chapter 3

In this chapter, we took advantage of the model developed in Chap. 2 of dipo-
lar emitters coupled to an optical cavity through a multimode light-matter
coupling Hamiltonian to study a system of disordered polaritons. Impor-
tantly, this model goes beyond the typical single-mode coupling widely used
in quantum optics, and also takes into account the all-to-all 1/r3 quasistatic
dipole-dipole coupling.

In particular, we provided a study of the interplay between light-matter cou-
pling, dipolar coupling, and disorder, through the analysis of both the lo-
calization properties and the transport along a chain of disordered dipoles
strongly coupled to cavity photons. Crucially, losses in both the dipoles and
the mirrors are taken into account. The disorder was considered on the indi-
vidual resonance frequencies ωi of the dipoles.

In our multimode model, all the eigenstates are hybridized by the strong
light-matter coupling. However, we can distinguish the dark states, with
eigenfrequencies around the average bare dipole resonance frequency ω0
and almost zero photonic weight, and the polaritons, which have an eigen-
frequency highly renormalized by the coupling and a significant photonic
weight. We showed that at weak and medium disorder strengths, dark states
suffer from Anderson localization, becoming exponentially localized on a
few sites of the chain. On the other hand, the polaritons are more robust
against frequency disorder, and show a cavity-protection effect [155, 157].
Notably, the only states impacted by disorder are the ones located in the same
frequency window as the possible disordered individual dipole frequencies
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ωi, namely around ω0 ±W/2. Increasing the disorder strength leads this
frequency window to act as an effective dark state band, whose bandwidth
increases at a rate W/2.

At large disorder strength, we have shown that the states located both in
this dark state band and with an eigenfrequency larger than the lowest bare
photonic mode ω

ph
q=0 are subject to a disorder-induced hybridization with

photons, allowing new coupling between matter and photonic degrees of
freedom. Indeed, the photonic part of these states increases linearly with the
disorder strength and such states become semilocalized [87], i.e., localized in
multiple nonadjacent sites. The eigenfrequencies smaller than ω

ph
q=0, on the

other hand, cannot be hybridized through disorder, and suffer from the usual
Anderson exponential localization.

By studying the transport of an excitation along the chain in a driven-
dissipative scenario, we have shown that the strong light-matter coupling
regime leads to a second exponential decay in the propagation, following a
first one which is solely due to nearest-neighbor quasistatic dipole-dipole in-
teractions. The larger the photonic part of the driven state is, the poorer the
short-range propagation is, but the more flat this second exponential regime
is. At large frequency disorder, the dark states, which have become po-
laritons through the above-mentioned mechanism of disorder-induced hy-
bridization, inherit polaritonic transport properties, namely a poor short-
range transport but an efficient long-range one. Moreover, we have found
that this disorder-enhanced transport is not efficient over too long distances,
or at least requires very large disorder strength. Indeed, the amount of dis-
order required to enter into such a regime increases linearly with the system
size.

Crucially, we have shown that increasing the dipole losses impacts essen-
tially the short-range transport, mediated by the quasistatic dipole-dipole
coupling, which consequently increases the dominance of the polaritons at
longer range. In this way, we have found that by considering highly lossy
dipoles, a large frequency disorder can increase the long-range transport up
to a factor 104 as compared to the case without disorder, see, e.g., around the
site i = 400 in Fig. 3.17(b).

In terms of the power radiated by the dipoles, this phenomenon results in
a remarkable increase of up to 8 orders of magnitude [see Eq. (3.23)]. Such
a considerable enhancement of long-range transport could be useful partic-
ularly in the context of plasmonic nanoparticle chains, where experiments
have witnessed limited transport distances [168–174], notably due to large
Ohmic losses. Indeed, when considering plasmonic nanoparticles, the di-
mensionless dipole strength k0a = 0.1 used throughout this work corre-
sponds to nanoparticles with, e.g., radius a = 7.6 nm and average reso-
nance frequencies ω0 = 2.6 eV/h̄. Considering a driving field intensity I0 =
1 MW/cm2, corresponding to, e.g., a laser of power P0 = 7.1 mW focused
on a spot of size πλ2

0 ' 0.71 µm2, the power radiated in the far field by a
plasmonic nanoparticle with decay rate γ/ω0 = 0.02 around the site i = 400
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[see Fig. 3.17(b)] can then be increased from P400(W/ω0 = 0) ' 10−24 W
to P400(W/ω0 = 1) ' 10−16 W. While the ordered case leads to a very
small power which is clearly experimentally unreachable, a setup with sub-
femtowatt sensitivity should detect the radiated power at the end of a highly
disordered plasmonic chain.

Since the publication of our study [17], several experimental groups have
witnessed some of the phenomena we discussed in our model. In particular,
in Ref. [162], briefly introduced at the beginning of this chapter, the authors
clearly witnessed disorder-enhanced transport in an ensemble of cold atoms
strongly-coupled to an optical resonator. This observation is depicted in their
Fig. 2(g)-(j), which shows similar results as our Fig. 3.20. Moreover, Fig. 2(l)
of the same Ref. [162], which demonstrates the disorder-induced hybridiza-
tion of dark states by showing the increase of photonic weight of semilocal-
ized states as a function of disorder, presents a striking resemblance to our
Fig. 3.8(a), in which we show the same quantity. A similar phenomenon of
disorder-induced hybridization of dark states into polaritons has also been
unveiled in the context of vibrational strong coupling within a disordered
molecular ensemble [167].

Our model, which allowed to study the highly nontrivial interplay between
disorder and light-matter coupling, opens the way to explore more complex
systems which could be of larger dimensionality, operate in a stronger cou-
pling regime, or feature topological properties. In particular, this last option
is of great interest given its relevance to the growing field of topological pho-
tonics [14]. Indeed, combining disorder-robust topological edge states with
photon-mediated couplings is a key challenge in this domain. In this re-
gard, in the upcoming Chap. 4 we move into the realm of such topological
physics and employ our model to study the fate of a topological system once
strongly-coupled to a multimode cavity.
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APPENDICES TO CHAPTER 3

3.A Effects of cavity losses

In the main text of this chapter, we fixed the cavity loss rate to κ/ω0 = 10−3.
In this appendix, we motivate this choice by comparing in Fig. 3.23 the prop-
agation characteristics of an ordered chain for different values of cavity loss,
from κ/ω0 = 10−6 to κ/ω0 = 10−1. The amplitude of the steady-state
dipole moment |pi| in units of the reduced Rabi frequency ΩR/ω0 is shown
as a function of the dipole sites i along the chain. Two driving frequencies
ωd/ω0 = 1.0 and ωd/ω0 = 0.9 are shown in Figs. 3.23(a) and 3.23(b), respec-
tively. The dipole losses are fixed to γ/ω0 = 0.001, while the cavity height is
chosen as Lx/a = 12.

In both panels, the qualitative behavior is substantially the same for cavity
losses κ/ω0 = 10−6 (purple lines) and κ/ω0 = 10−3 (pink lines), justify-
ing the choice made in the previous analysis. We observe that considering
larger cavity losses κ/ω0 = 10−2 (red lines) does not qualitatively change
the results when driving a dark state in panel (a), showing the robustness
of dark state propagation against cavity losses. As expected, however, the
propagation of the mainly photonic polariton shown in Fig. 3.23(b) is more
affected by the increase of cavity losses. Crucially, by increasing further the
cavity loss rate to κ/ω0 = 10−1 (yellow lines), the second exponential regime,
that is, the cavity-enhanced transport, completely disappears in Fig. 3.23(a),
showing that the system is not anymore in the strong-coupling regime. The
dark state propagation is then very well described by the exponential regime
mediated solely by the nearest-neighbor quasistatic dipole-dipole coupling,
given by the analytical result of Eq. (3.30) and shown as a dashed grey line.

In the case of the mainly photonic polariton in Fig. 3.23(b), we observe simi-
lar results, namely that the long-range transport starts to become suppressed
for cavity losses κ/ω0 = 10−1. This transition from the strong- to the weak-
coupling regime is expected, since the latter large cavity loss rate is of the
order of the Rabi splitting frequency, ΩRS ' 0.12. We note that similar con-
clusions can be drawn when the dipole losses are fixed to a larger value.
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Figure 3.23: Effect of cavity losses. Steady-state amplitude of
the dipole moment |pi| as a function of the dipole sites i for
different values of the cavity loss parameter κ, in the case of
an ordered chain. Panels (a) and (b) correspond to the driving,
respectively, of a dark state with ωd/ω0 = 1.0 and of a mainly
photonic polariton with ωd/ω0 = 0.9. The grey dashed line
in panel (a) represents the exponential decay of Eq. (3.30). The
dipole losses γ/ω0 = 0.001, and the cavity height Lx/a = 12.

Finally, we recall that the cavity quality factorQ is typically of the order of the
inverse of the cavity loss rate in units of the average dipole frequency, ω0/κ.
This implies that the effects discussed in this work should be observed with
cavity quality factors as low as Q ∼ 102.

3.B Beyond the rotating wave approximation

While in all our analysis we used the RWA, presented in Sec. 2.3.4, in this
appendix we provide justifications for such an approximation. To this end,
we consider the effects of counter-rotating terms in both the eigenvalues and
transport properties of an ordered chain.
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Considering the counter-rotating terms, the polaritonic Hamiltonian (3.6)
that we employed until now in this chapter transforms into

H�,CR
pol = Hdp +

N
∑

nz=1
h̄ω

ph
nz c†

nz cnz

+ ih̄
N
∑
i=1

N
∑

nz=1
ξinz

(
b†

i − bi

) (
c†

nz + cnz

)
, (3.31)

where the dipolar Hamiltonian with counter-rotating terms is given in
Eq. (2.22).

In the limit of an ordered chain, similarly to what has been done in Sec. 3.3,
one can rewrite the Hamiltonian (3.31) in Fourier space using periodic
boundary conditions and diagonalize it using a Hopfield-Bogoliubov trans-
formation. The diagonalization leads to the polaritonic dispersion

wpol
qτ =

√√√√√Γ2
q + τ

√√√√Γ4
q − (wdp

q )2

[
(ω

ph
q )2 − 4

ξ2
q

ω0
ω

ph
q

]
, (3.32)

where we have introduced the quantity

Γ2
q =

1
2

[(
ω

ph
q

)2
+
(

wdp
q

)2
]

, (3.33)

with the bare photonic dispersion given in Eq. (2.34), and where

wdp
q = ω0

√
1 + 2 fq

Ω
ω0

(3.34)

is the dispersion of the dipolar Hamiltonian with counter-rotating terms
(2.22). Details on this diagonalization procedure can be found in the supple-
mentary material of Ref. [179], with the only difference that here we neglect
the diamagnetic A2-term (2.16) in the light-matter Hamiltonian.

In Fig. 3.24, we show a comparison between the polaritonic dispersions ob-
tained with (orange line) and without (green line) the RWA, given respec-
tively by Eqs. (3.14) and (3.32). We observe that the two band structures over-
lap almost perfectly, with very slight differences noticeable only around the
center of the Brillouin zone, where the light-matter coupling is maximal. This
is in agreement with the fact that our model does not allow the ultra-strong
coupling (USC) regime to be reached, since one enters into the latter regime
once the effects of the counter-rotating terms become sizable [149], which is
clearly not the case here. Fig. 3.24 also justifies a posteriori the neglection of
the diamagnetic A2-term (2.16) in the light-matter coupling Hamiltonian. In-
deed, as a matter of fact, perceptible differences in the eigenspectrum caused
by the absence of such a diamagnetic term were found in the context of the
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Figure 3.24: Polaritonic dispersion beyond the RWA. Polari-
tonic band structure of an ordered chain in the thermodynamic
limit, in units of the bare frequency ω0, and as a function of
the reduced wavenumber qd in the first Brillouin zone. In or-
ange, we show the dispersion used in Sec. 3.3, which is obtained
using the RWA and given by Eq. (3.14), and we compare it to
the one obtained without using the approximation, given by
Eq. (3.32) and shown in green. The considered cavity height is

Lx/a = 12.

ultra-strong or deep-strong coupling regime only [151].

However, in the case of driven-dissipative transport computations, special
attention has to be taken when using the RWA. Indeed, it has been shown
[202–206] that using the RWA along with a Lindblad master equation may
lead to inaccurate dynamics, especially when dropping the counter-rotating
terms directly in the Hamiltonian, as we have done in Sec. 3.6. In Fig. 3.25, we
thus compare our transport results obtained with (orange lines) and without
(green lines) neglecting the counter-rotating terms in the Hamiltonian enter-
ing in the Lindblad master equation (3.22). We show on a log-log scale the
amplitude of the steady-state dipole moment |pi| in units of the reduced Rabi
frequency ΩR/ω0, as a function of the dipole site i along the chain, when
driving a dark state with ωd/ω0 = 1.0 (solid lines), and a mainly photonic
polariton with ωd/ω0 = 0.9 (dotted lines). As can be seen from Fig. 3.25,
the propagation is qualitatively the same with and without the RWA. The
small differences arise essentially from the very slight frequency shift visible
in Fig. 3.24, implying the fact that using a given driving frequency ωd does
not drive an eigenstate with exactly the same photonic weight in the case of
employing or not the RWA in the computation.
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12, and the dipole and mirror losses are respectively fixed to
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CHAPTER 4

TOPOLOGY AND POLARITONS

In this chapter, a dimerized chain of dipolar emitters strongly coupled to a
multimode optical waveguide is studied.

Such a system mimicks a variation with an effective photon-mediated cou-
pling of the paradigmatic Su-Schrieffer-Heeger (SSH) model, which features
a nontrivial topological phase and hosts topological edge states. After sum-
marizing some of the main properties of the SSH model, we discuss the ef-
fects of the light-matter coupling, both on the topological phases and on the
edge states. In the strong-coupling regime, we observe the hybridization of
the dipolar topological edge states with cavity photons, leading to what we
coin polaritonic edge states. Although these states are not fully localized
on the edges, they present unusual properties, such as efficient edge-to-edge
transport characteristics, the occupancy of a large portion of the frequency
spectrum, and a strong tolerance to structural disorder.

The results in the present chapter are mostly part of the published article T.F.
Allard, G. Weick, Multiple polaritonic edge states in a Su-Schrieffer-Heeger chain
strongly coupled to a multimode cavity, Physical Review B 108, 245417 (2023)
[18]
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In addition to their fundamental interest, topological phases of matter have
aroused in recent years a lot of attention for their ability to host edge states
that are robust against perturbations [36, 37]. The appeal for these robust
edge states, together with the progress in engineering light-matter interac-
tion in many experimental platforms, have led to a growing interest in topo-
logical phenomena in photonic systems [13–15]. A newly developing field
is now the combination of topological photonics with the physics of strong
light-matter coupling, in which polaritonic excitations have shown attractive
properties [16].

The underlying effect of the strong light-matter interaction is an effective
long-distance coupling mediated by cavity photons. Recent experimental
findings have highlighted its significance in topological phenomena, partic-
ularly in the behavior of topological edge states [207]. Moreover, an active
literature has recently been devoted to extensions of one-dimensional topo-
logical models, such as the renowned Su-Schrieffer-Heeger (SSH) model [61],
by incorporating additional couplings [124, 128, 136, 208–225].

In this chapter, we go one step further by addressing the influence of strong
coupling between a multimode optical waveguide to a bipartite chain of
emitters. As in Chap. 3, we treat the emitters as ideal, classical dipoles, and
the coupling, derived in Chap. 2, is multimodal, dispersive and spatially-
dependent. Notably, we recall that the consideration of multiple photonic
modes has proven to be essential to correctly model cavity-induced effects
[17, 92, 94, 163–165], and it is here a key ingredient of our model. While a
preliminary investigation of the polaritonic SSH model has been carried out
in Ref. [136], highlighting the impact of the optical cavity on the topological
phases of the system, here, we focus on the fate of the edge states exhibited
by the system. To do so, we refine the model derived in Ref. [136] in order
to avoid any boundary effects that could influence the edge states. From the
hybridization of the dipolar and cavity photon excitations into polaritons,
we observe in the strong light-matter coupling regime the formal loss of the
in-gap edge states that are present in the topological phase of the original
SSH model, with their merging into the polaritonic bulk. Although this may
at first appear detrimental to the topological properties of the system, here
we demonstrate that, interestingly, bulk polaritons in resonance with the for-
mally lost edge states inherit a large edge localization, so that we coin these
new, cavity-induced states “polaritonic edge states”.

Originating from the diffusion of edge localization onto numerous bulk po-
laritons, we demonstrate that these exotic edge states present properties that
are of particular interest. Specifically, dissipative transport simulations al-
low us to unveil exceptional polaritonic edge state transport, as well as a
wide frequency range at which the latter states can be driven. Additionally,
the consideration of a disordered bipartite chain allows us to uncover the
remarkable tolerance of the polaritonic edge states to off-diagonal disorder.

The chapter is organized as follows. We start in Sec. 4.1 by introducing our
model to describe a dimerized chain of emitters, which, when considering
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nearest neighbor dipolar coupling only, mimicks a dipolar counterpart to
the SSH model of polyacetylene [61]. We summarize the properties of such
a paradigmatic model and then discuss the addition of all-to-all quasistatic
couplings between the emitters. We describe in Sec. 4.2 the strong coupling
of such a chain to a multimode waveguide cavity, and derive what we call the
polaritonic SSH Hamiltonian. From such a model, we then derive an effec-
tive bipartite Hamiltonian taking into account the photon-mediated effective
coupling between the emitters.

Our study of the polaritonic SSH model begins with the investigation of its
bulk spectrum in Sec. 4.3, first using the full Hamiltonian, and then the pre-
viously derived effective bipartite Hamiltonian. We take advantage of the
latter effective Hamiltonian to explore the topological phases of the polari-
tonic SSH model in Sec. 4.4, and to study the unusual multiple polaritonic
edge states that are present in its finite spectrum in Sec. 4.5. Then, in Secs. 4.6
and 4.7 we study, respectively, the transport properties and the robustness
to disorder of such polaritonic edge states. Finally, in Sec. 4.8 we discuss
the influence of the boundary conditions of the cavity, and we summarize
our results and discuss further perspectives of our work in Sec. 4.9. Appen-
dices 4.A, 4.B, and 4.C complement the discussion by veryfing the validity
of, respectively, the single cavity band approximation, the use of the effective
Hamiltonian, and the neglection of image dipoles.

4.1 Dimerized chain of dipoles and the SSH
model

We begin our study by generalizing the model ofM generic coupled dipo-
lar emitters presented in Sec. 2.2 to a bipartite array with 2 dipoles per unit
cell. Except in Sec. 4.7 where we will introduce disorder, we consider in this
chapter identical dipoles, all with the same bare resonance frequency ω0, and
arranged in an ordered bipartite array, with a lattice constant d. As in the
previous chapters, the chain is arranged in the z direction, and the dipoles
polarized transversely along the x direction.

A sketch of such a dimerized chain of emitters is provided in Fig. 4.1. N unit
cells, each containing 2 dipole sites which we label as A and B, are consid-
ered, so that the lattice is comprised of M = 2N dipoles.1 We denote the
intra-cell distance between dipoles as d1, and the inter-cell one as d2.

4.1.1 A bosonic counterpart to the SSH model

To model the chain of dipoles sketched in Fig. 4.1, we repeat the procedure
detailed in Sec. 2.2, but now differentiate between dipoles belonging to the
sublattices A and B.

1We consider a lattice with an even number of sites.
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Figure 4.1: Dimerized chain of emitters. Sketch of a dimerized
chain ofM = 2N dipolar emitters, all polarized along the same
x direction, and arranged along the z direction. The dipoles,
each with bare resonance frequency ω0, belong either to the A
or B sublattice and are separated by the alternating distances d1

and d2, so that the lattice constant d = d1 + d2.

We first consider nearest neighbor coupling only, so that there is no coupling
between dipoles belonging to the same sublattice. The corresponding nearest
neighbor dipolar Hamiltonian reads

HRWA
dp,n.n. = h̄ω0

N
∑

m=1

(
a†

mam + b†
mbm

)
+ h̄Ω1

N
∑

m=1

(
a†

mbm + amb†
m

)

+ h̄Ω2

N−1

∑
m=1

(
a†

m+1bm + am+1b†
m

)
, (4.1)

where we have neglected counter-rotating terms, as justified in Sec. 2.3.4.
In the expression above, the bosonic operators a†

m (b†
m) and am (bm) create

and annihilate, respectively, a dipolar excitation in the cell m ∈ [1,N ] and
sublattice A (B), polarized along the x axis and with resonance frequency
ω0. Due to the dimerized nature of the chain, two distinct nearest neighbor
dipolar coupling strengths are present and read

Ω1,2 =
ω0

2

(
a

d1,2

)3

, (4.2)

with the intra- and inter-cell dipole-dipole distances d1 and d2 defined in
Fig. 4.1. The difference between the latter distances encodes the dimerization
of the chain, and is quantified by the dimerization parameter

ε =
d1 − d2

d
. (4.3)

The Hamiltonian (4.1), which was first introduced in Ref. [226], represents a
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bosonic counterpart to the SSH model of polyacetylene [61]. The latter tight-
binding model, devised in 1979 to describe the electrical conductivity of poly-
acetylene polymers,2 is known as an emblematic model featuring topological
physics in one dimension, and behaves similarly to a topological insulator.3

It describes a single spinless electron hopping in a 1D staggered lattice.

Tuning the nearest neighbor couplings (4.2), which are equivalent to the hop-
ping energies of a spinless electron between neighboring sites in the SSH
model, allows us to tune the dimerization (4.3). A dimerization ε > 0 (ε < 0)
then corresponds to nearest neighbor couplings Ω1 < Ω2 (Ω1 > Ω2), which
are associated with a nontrivial (trivial) topological invariant. The only dif-
ference of the Hamiltonian (4.1) with the original SSH model, except the
bosonic nature of its excitations,4 is the addition of an on-site energy term
through the bare frequency ω0 of the dipoles, which just implies an overall
shift of the eigenfrequencies.

To diagonalize the Hamiltonian (4.1), we consider the thermodynamic limit
N � 1, so that translation invariance allows one to use periodic boundary
conditions and move into wavevector space through the Fourier transforms

am =
1√
N ∑

q
eimqdaq (4.4a)

and
bm =

1√
N ∑

q
eimqdbq. (4.4b)

In the above expression, the bosonic ladder operators a†
q (b†

q) and aq (bq) create
and annihilate, respectively, a dipolar excitation with resonance frequency ω0
polarized along the x axis on the A (B) sublattice. Their associated longitudi-
nal quasimomentum is q = 2πp/N d ∈ [−π/d,+π/d], in the Brillouin zone,
with p ∈ [−N/2,+N/2], exactly as for the unipartite chain in Chap. 3.

We note that the above Fourier transforms act on the cell index only, and do
not take into account the difference in real space position of the A and B sites.
This will allow the momentum-space Hamiltonian and its associated eigen-
states to be periodic in the Brillouin zone, however, both of them depend on
the choice of unit cell. Other conventions, which involve the precise posi-
tions of the A and B sites within the unit cell, have no such ambiguity but
lose their periodicity in the Brillouin zone [35, 227].

2We note that a somewhat similar, but different by its symmetries [227], one dimensional
toy model featuring topological properties was already explored in 1939 by Shockley [228].

3Strictly-speaking, the SSH model is not a typical topological insulator, as its topological
properties may be ill-defined at the thermodynamic limit [227]. However, it does model a
simple one dimensional system featuring symmetry-protected edge states.

4However, for the single-particle, spinless systems in study here, the quantum statistics
of the excitations are inconsequential.
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One can then rewrite the Hamiltonian (4.1) in its two band Bloch form,

HRWA
dp,n.n. = ∑

q
ψn.n.

q
†Hdp,n.n.

q ψn.n.
q , (4.5)

where the index τ = + (−) corresponds to the upper (lower) dipolar band,
with the eigenspinors ψn.n.

q = (aq, bq), and where the 2π/d periodic Bloch
Hamiltonian

Hdp,n.n.
q = h̄

(
ω0 Ω1 + e−iqdΩ2

Ω1 + eiqdΩ2 ω0

)
. (4.6)

Using a bosonic Bogoliubov transformation, one can diagonalize the above
Bloch Hamiltonian, and finds the dispersion relation

ω
dp,n.n.
qτ = ω0 + τ|Ω1 + e−iqdΩ2|, (4.7)

and the Bloch eigenspinor

|ψn.n.
qτ 〉 =

1√
2

(
1

τ eiφn.n.
q

)
, (4.8)

where the phase
φn.n.

q = arg(Ω1 + e−iqdΩ2). (4.9)

Such a q-dependent phase factor that discriminates between the upper and
lower components of the eigenspinors is typical of topologically nontrivial
systems [34].

Exactly as the original SSH Hamiltonian, the Hamiltonian (4.6) presents the
following symmetries.

• The (spinless) commuting anti-unitary time-reversal symmetry,

T Hdp,n.n.
q T = Hdp,n.n.

−q
∗
, [T ,Hdp,n.n.

q ] = 0, T 2 = +1, (4.10)

which is fulfilled since the coupling constants Ω1,2 are real.

• The anti-commuting unitary chiral (or sublattice) symmetry

S = σz, {S ,Hdp,n.n.
q } = 0, S2 = +1. (4.11)

• The anti-commuting anti-unitary charge (or particle-hole) symmetry

C = ST , {C,Hdp,n.n.
q } = 0, C2 = +1. (4.12)

• As well as the unitary inversion symmetry,

σxHdp,n.n.
−q σx = Hdp,n.n.

q , σx
2 = +1, (4.13)
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with the inversion center being in the middle of a unit cell, and which
is fulfilled since the emitters belonging to the A and B sublattices have
the same onsite frequency ω0.

In all of the above equations, we used the three Pauli matrices, that read

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. (4.14)

In regards with the Altland-Zirnbauer table of topological insulators [46],
which we briefly introduced in Chap. 1 (see Tab. 1.1), the SSH model can
thus be either in the AIII or BDI Altland-Zirnbauer class with a nontrivial
topological invariant in 1d, depending on which symmetry of the model we
enforce (the D class in 1d, on the other hand, represents the Kitaev chain).
In particular, from the particle-hole symmetry, or, similarly, from the inver-
sion symmetry, the SSH model presents a Z2 topological invariant,5 the Zak
phase, which can be readily computed as [226]

ϑZak = i
∫ +π/d

−π/d
dq 〈ψn.n

qτ |∂qψn.n
qτ 〉

=

{
0, Ω1 > Ω2 (ε < 0)
π, Ω1 < Ω2 (ε > 0) , (4.15)

and which is defined modulo 2π. Note that we do not display in Eq. 4.15 the
band index τ of the Zak phase as the result is band independent. To be more
specific, we note that, in contrast to the terminology used in most of the liter-
ature, Eq. (4.63) does not formally represent a Zak phase but rather π times
a winding number defined with respect to a specific choice of unit cell, as
discussed in detail in Ref. [227]. For simplicity, here we stay consistent with
most of the literature, and use such a strictly speaking wrong denomination.

Therefore, as expected, the dipolar SSH model (4.1) presents the same bulk
properties as the ones of the original SSH model, and features a topologi-
cal phase transition (TPT) at ε = 0 (Ω1 = Ω2), with a gap closing at the
edges of the Brillouin zone q = ±π/d [see the bandstructure (4.7)]. From the
bulk-edge-correspondence, a mathematically proven theorem for Hamiltoni-
ans belonging to Altland-Zirnbauer classes of the tenfold way [229], one then
expects from the nontrivial invariants (4.15) associated with both upper and
lower bands the presence of two degenerate topological edge states in the
spectrum of a finite chain, which are pinned at the gap closing frequency ω0.
These edge states will be there as long as one remains in the symmetry class
allowing the presence of the nontrivial topological invariant. Hence, they are
protected against any perturbation, such as disorder, that does not modify

5Note that from the S symmetry, one can also define a Z topological invariant, the wind-
ing number ν, which we will encounter in Sec. 4.4.2. In the SSH model, both are equivalent,
as values of the winding number larger than 1 require chiral-preserving coupling beyond
nearest neighbor.
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Figure 4.2: Finite eigenspectrum of the SSH model. Eigenfre-
quencies ω

dp,n.n.
n of the dipolar SSH Hamiltonian with nearest

neighbor coupling only [see Eq. (4.1)], in units of ω0 and in as-
cending order, as a function of the dimerization parameter ε.
As a color code, we show the logarithm of the probability den-
sity on the first site i = 1 of the chain associated with each
eigenstate n, so that eigenstates highly localized on the edges
appear as red. The chain is comprised of N = 50 dimers, i.e.,
100 dipoles, and, as in the remaining of this chapter, the lattice

constant is fixed to d = 8a.

the Hamiltonian symmetry class. For instance, off-diagonal positional disor-
der on the interdipoles distances, which respects the chiral symmetry, does
not destroy the topological edge states of the SSH model.

To verify such statements, we compute the finite eigenspectrum of the real-
space Hamiltonian (4.1) using an exact numerical diagonalization procedure.
The result is shown in Fig. 4.2 as a function of the dimerization parameter ε,
and for a dimerized chain comprising N = 50 dimers. In the figure, and as
in the remaining of this chapter, we fix the lattice constant value to d = 8a.
To highlight the presence or absence of edge states, we show in addition as
a color code the logarithm of the probability density on the first site on the
chain associated with each eigenstate n. We readily observe from Fig. 4.2
the mirror symmetry of the spectrum around the frequency ω0. Such a sym-
metric eigenspectrum is implied by the chiral symmetry as well as by the
particle-hole one. Moreover, we observe the closing of the bandgap when the
dimerization ε = 0, and the presence of two degenerate midgap edge states
with eigenfrequency ω0 as long as ε > 0, corroborating the above discussion
on the bulk-edge correspondence.

We also present in Fig. 4.3(a)-(b) the shape of these two topological edge
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Figure 4.3: Eigenstates of the SSH model. Probability density
|Ψn.n.

i (n)|2 along the sites i of a chain with dimerization ε = 0.25
and comprising N = 50 dimers, for (a)-(b) the two degenerate
topological midgap edge states, and (c)-(d) two standard delo-
calized bulk states. The red and blue dots represent, respec-

tively, sites belonging to the A and B sublattices.

states, in the case of a dimerization ε = 0.25, by plotting on a logarithmic
scale their probability density |Ψn.n.

i (n)|2 as a function of the dipole sites i
along the chain. The red (blue) points correspond to sites belonging to the A
(B) sublattice.

The two topological edge states are exponentially localized, with a localiza-
tion length ζ = ln(Ω1/Ω2). From the S symmetry of the model, they are
located either on the A or B sublattice exclusively.6 For comparison, we also
present in Fig. 4.3(c)-(d) the shape of two standard bulk eigenstates, that are
delocalized along the chain as plane waves.

4.1.2 All-to-all quasistatic coupling

While the dipolar Hamiltonian with nearest neighbor coupling only (4.1) is
an interesting toy model allowing to recover all of the usual topological prop-
erties of the SSH model, it does not take into account the all-to-all quasistatic
Coulomb interaction (2.10), which is essential for our modelling of coupled
dipolar emitters.

6We note that for large enough N the edge states are (numerically) degenerated, so that
one can choose to represent them either on one edge each, or as a superposition and therefore
both sharing the two edges of the chain.
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Such an additional coupling modifies both the spectrum and the symmetries
of the model. By considering it, the SSH Hamiltonian (4.1) becomes [210]

HRWA
dp = h̄ω0

N
∑

m=1

(
a†

mam + b†
mbm

)

+
N
∑

m=1

N
∑

m′=m

h̄Ω

(m′ −m + d1/d)3

(
a†

m bm′ + am b†
m′

)

+
N−1

∑
m=1

N
∑

m′=m+1

h̄Ω

(m′ −m− d1/d)3

(
b†

m am′ + bm a†
m′

)

+
N−1

∑
m=1

N
∑

m′=m+1

h̄Ω

(m′ −m)3

(
a†

m am′ + b†
m bm′ + am a†

m′ + bm b†
m′

)
,

(4.16)

with the dipolar coupling strength Ω being the same as already defined in
Chap. 3 in Eq. (3.2), with the dipolar coupling strength Ω being the same as
already defined in Chap. 3 in Eq. (3.2). The second and third lines of Eq. (4.16)
account for the all-to-all coupling between different sublattices, while the
fourth line couples emitters in the same sublattice. The above dipolar Hamil-
tonian can be reorganized in the more compact form

HRWA
dp = h̄ω0

N
∑

m=1

(
a†

mam + b†
mbm

)
+ h̄Ω

N
∑

m,m′=1
gm−m′

(
a†

m bm′ + am b†
m′

)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)

fm−m′
(

a†
m am′ + b†

m bm′ + am a†
m′ + bm b†

m′

)
, (4.17)

where we defined the all-to-all intra- and inter-sublattice sums as, respec-
tively,

fm−m′ =
1

|m−m′|3 (4.18a)

and
gm−m′ =

1
|m−m′ − d1/d|3 . (4.18b)

Using the same thermodynamic limit N � 1 and Fourier transform (4.4) as
in the previous subsection, one obtains the Bloch Hamiltonian

Hdp
q = h̄

(
ω0 + Ω fq Ωgq

Ωg∗q ω0 + Ω fq

)
, (4.19)

where the reciprocal counterparts of the dipolar intra- and inter-sublattice
sums (4.18) read

fq = 2
∞

∑
m=1

cos(mqd)
m3 (4.20a)
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Figure 4.4: Bandstructure of the dipolar SSH model. Dipo-
lar dispersion of the dimerized chain of dipoles, with (solid
lines) and without (dotted lines) dipolar coupling beyond near-
est neighbor. Both the cases of an open gap, with a dimerization
ε = 0.25 (blue lines) and of a closed gap, with a dimerization

ε = 0 (red lines) are shown.

and

gq =
∞

∑
m=0

[
eimqd

(m + d1/d)3 +
e−i(m+1)qd

(m + d2/d)3

]
, (4.20b)

respectively. A bosonic Bogoliubov transformation then leads to the eigen-
frequencies

ω
dp
qτ = ω0 + Ω fq + τ Ω|gq|, (4.21)

and Bloch eigenspinors

|ψqτ〉 =
1√
2

(
1

τ eiφq

)
, (4.22)

where the phase
φq = arg(gq). (4.23)

We note that without the inter-sublattice sum gq, we find the exact same rela-
tion as found in the case of an ordered unipartite chain as studied in Sec. 3.3
[cf. Eq. (3.11)]. This is consistent with the fact that without the A − B and
B− A inter-sublattices interactions the dimerized chain corresponds only to
a superposition of two isolated simple chains.

We display the two-band dispersion relation (4.21) in Fig. 4.4, in the first Bril-
louin zone and for dimerizations ε = 0 (red solid lines) and ε = 0.25 (blue
solid lines). For comparison, we also show the bandstructure obtained in the
nearest neighbor case [see Eq. (4.7), and Fig. 4.2 for the real-space counter-
part] as dotted lines.
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One first deduces from Fig. 4.4 that the addition of all-to-all dipole-dipole
couplings yields only a slight renormalization of the eigenfrequencies, the
solid and dotted lines being close in energy to each other. In both cases,
using the language of condensed matter electronic systems, we observe the
“metallic” phase when ε = 0, as red lines, with a gap closing at the edges
of the Brillouin zone, and the “insulating” phase, when ε 6= 0, as blue lines,
with an open gap between the upper and lower dipolar bands τ = ±. In
Ref. [210], the authors analyzed the bulk properties of the Bloch Hamiltonian
(4.19), and showed that the all-to-all quasistatic coupling does not interfere
with the bulk topological features. Notably, around the edges of the Brillouin
zone, one observes in the figure (half of) a massless Dirac cone when ε = 0
(red lines), and (half of) a massive Dirac cone when ε 6= 0 (blue lines). This
stems from the fact that both the nearest neighbor and all-to-all dispersions
Eqs. (4.7) and (4.21) are governed around q = ±π/d by a pseudorelativistic
1D Dirac-like spectrum [210, 226].

However, importantly, one notes from Fig. 4.4 the absence of mirror sym-
metry around the frequency ω0 between the upper and lower dipolar bands
when considering all-to-all coupling (solid lines), in contrast with the nearest
neighbor case (dotted lines). Such an asymmetry between the two bands
reveals the absence of particle-hole (C) and chiral (S) symmetries, these
latter being broken by the intra-sublattice sum (4.20a), which results in q-
dependent diagonal terms in the Bloch Hamiltonian (4.19). In regard to the
Altland-Zirnbauer classification Tab. 1.1, the dipolar Hamiltonian with all-
to-all quasistatic coupling (4.17) can therefore only belong to the classes A or
AI, which are topologically trivial in 1D.

One can wonder how, then, could the authors of Ref. [210] compute a quan-
tized topological invariant and observe a TPT at ε = 0, in all respects similar
to that of the original SSH model ?

First, the on-diagonal, chiral breaking term is small. Indeed, for a lattice
constant d = 8a, the first next-to-nearest neighbor coupling is associated to a
coupling strength Ω = 1/1024, while the smallest nearest neighbor coupling
strength is Ω1 = 1/250, when ε = 0.25. The dispersion is then only slightly
renormalized, as observed in Fig. 4.4, and in-gap edge states are still visible
in the finite spectrum.

Moreover, the interesting twist arises from the inversion symmetry (4.13),
which is still satisfied by the Hamiltonian (4.17). Indeed, one can show that
in 1D, inversion symmetry can solely leads to a quantized Z2 topological in-
variant [230], in agreement with what was observed in Ref. [210]. However,
such a topological invariant not being protected by chiral or particle-hole
symmetry, it does not lead to protected topological edge states. The break-
ing of chiral symmetry leads the edge states of the Hamiltonian (4.17) to not
being pinned exactly in the middle of the gap, to not being located on a sin-
gle sublattice only, and to not being formally robust to perturbation such as
positional disorder, in clear contrast with the topological edge states of the
original SSH model.
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Figure 4.5: SSH dipole chain in a waveguide cavity. Sketch of
the dimerized chain of oscillating dipoles depicted in Fig. 4.1,
but now placed in the middle of an optical waveguide cavity
with open ends, perfectly conducting mirrors in the x and y

planes, and lengths Lx, Ly, and Lz → ∞.

4.2 Coupling to a multimode optical cavity

Now that we understand the basic properties of the quasistatic dipolar SSH
chain (4.17), we investigate the effects of the light-matter coupling. Indeed,
from their dipolar nature, the emitters we consider always couple to a pho-
tonic environment, either with the photonic vacuum or with confined elec-
tromagnetic modes in an optical structure. Here we consider their coupling
to a multimode waveguide cavity, using the formalism proposed in Chap. 2.
The model under study in the following is then represented in Fig. 4.5. A
similar SSH chain embedded in a multimode cavity has been first studied in
Ref. [136], where the authors investigated in particular the topological phases
of the system. However, and importantly, while Ref. [136] considered hard
wall boundaries for the cavity in the three space directions, here we opt for
periodic boundary conditions in the z direction, so that we consider a fi-
nite dipole chain embedded into an infinite cavity with a longitudinal size
Lz = Lchain + 2dcav → ∞, as we described in Sec. 2.3.

We recall that this limit is equivalent to an open waveguide cavity, with open
boundary conditions in the z direction. Our motivation to consider such a
waveguide cavity is twofold. First, it may be experimentally more accessible
than a closed cuboidal cavity. Second, as we are in particular interested in
the properties of the edge states forming around the first and last dipole of
the chain, we wish to avoid any boundary effects due to the cavity walls at
the two ends of the chain. While this choice of boundary condition could be
viewed, at first sight, as a minor change, it in fact drastically affects the local-
ization of the eigenstates of the system at the two ends of the chain. Indeed,
the finite spectrum of the polaritonic SSH Hamiltonian in a waveguide cav-
ity, which we derive in the present section and study in Sec. 4.5, considerably
differs from what was found in Ref. [136]. A discussion on these boundary
effects is proposed in Sec. 4.8.

Moreover, in this chapter, unless otherwise specified, we take into account
in our model photon Umklapp processes, also known as diffraction orders,
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which we introduced in Sec. 2.3.2. The consideration of such additional pho-
tonic bands that are folded within the first Brillouin zone is here justified by
our wish to compute bulk topological quantities in Sec. 4.4, which formally
require periodicity in the first Brillouin zone. Additionnally, while Umklapp
processes do not qualitatively influence any of the results of our study, such
additional terms allow analytical simplifications of our model, as we shall
see in Sec. 4.2.3.

4.2.1 Polaritonic Hamiltonian

We extend the model of a 1D chain of generic dipolar emitters coupled to a
multimode waveguide cavity developed in Chap. 2 to the case of the bipartite
array sketched in Fig. 4.5, where we recall that all the emitters have the same
resonance frequency ω0 and are located at regular positions in an array with
lattice constant d. The only difference with Chap. 2 is that one has now to
distinguish between emitters in sublattices A and B, so that the Π · A light-
matter coupling Hamiltonian (2.15) reads here

HΠ·A =
Q

Mc ∑
s=A,B

N
∑

m=1
Πs

m ·A(rs
m). (4.24)

It couples the quantized conjugate momenta of emitters in the unit cell m and
sublattices s = A and s = B,

ΠA
m = i

√
Mh̄ω0

2

(
am

† − am

)
x̂ (4.25a)

and

ΠB
m = i

√
Mh̄ω0

2

(
bm

† − bm

)
x̂, (4.25b)

to the quantized vector potential A [see Eq. 2.39 in which we included Umk-
lapp processes] evaluated at the position of each dipole within the cavity

rs
m =

(
Lx

2
,

Ly

2
, zs

m

)
. (4.26)

Here, the z coordinate of a dipole in the unit cell m belonging to the A or B
sublattice reads

zA
m = (m− 1)d + dcav = md− d1/2 + ϑ (4.27a)

or
zB

m = (m− 1)d + dcav + d1 = md + d1/2 + ϑ, (4.27b)

respectively, where we defined the constant distance

ϑ = dcav + d1/2− d. (4.28)
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Considering the single band approximation (see Sec. 2.3.1), the rotating-wave
approximation (see Sec. 2.3.4) and a infinitely long waveguide cavity with
periodic boundary conditions in the z direction (see Sec. 2.3), the light-matter
coupling Hamiltonian (4.24) simplifies as

H=
Π·A = ih̄

N
∑

m=1

√
d
Lz

∑
q,l

ξq,l

[(
a†

m eiqlzA
m + b†

m eiqlzB
m
)

cq,l −H.c.
]

, (4.29)

with ql = q − 2πl/d, q being the longitudinal wavenumber of the cavity
photons, belonging to the first Brillouin zone, and l ∈ Z being the Umklapp
band index, or diffraction order. The light-matter coupling strength writes

ξq,l = ω0

√√√√ 2πa3ω0

dLxLyω
ph
q,l

, (4.30)

where the photonic dispersion ω
ph
q,l is given in Eq. (2.43). To get rid of the

constant phase qlϑ in the exponential functions of the Hamiltonian (4.29), we
redefine in the remainder the photon ladder operators as cq,l → cq,le−iqlϑ.

This leads the full polaritonic Hamiltonian we consider in this chapter to
write

H=
pol = h̄ω0

N
∑

m=1

(
a†

mam + b†
mbm

)
+ h̄Ω

N
∑

m,m′=1
gm−m′

(
a†

m bm′ + am b†
m′

)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)

fm−m′
(

a†
m am′ + b†

m bm′ + am a†
m′ + bm b†

m′

)

+ ih̄
N
∑

m=1

√
d
Lz

∑
q,l

ξq,l

[
eimqld

(
a†

m e−iχq,l + b†
m eiχq,l

)
cq,l −H.c.

]

+ ∑
q,l

h̄ω
ph
q,l c†

q,lcq,l, (4.31)

where the first two lines represent the dipolar Hamiltonian (4.17) presented
in the previous subsection, the third line the light-matter coupling Hamilto-
nian (4.29), and the last line corresponds to the cavity photon Hamiltonian
(2.33). We note that the phase χq,l = qld1/2 in Eq. (4.31) encodes the differ-
ent location in the unit cell of the dipolar excitations belonging to the A or
B sublattice. In the following, we refer to the Hamiltonian (4.31) as the full
polaritonic SSH Hamiltonian. Despite this appellation, we recall that several
approximations have been made, such as the neglection of multipolar correc-
tions to our point-dipole modelling, of counter-rotating terms, as well as the
effect of image dipoles originating from the perfectly metallic cavity walls.
Notably, a comprehensive study of the effect of the latter image dipoles is
conducted in Appendix 4.C, in which we show that they do not qualitatively
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change any of the results of our study.

4.2.2 Schrieffer-Wolff transformation and effective Hamilto-
nian

Since we are mainly concerned by how the strong light-matter interaction
renormalizes the dipolar subsystem, it can be advantageous to build an ef-
fective Hamiltonian out of the full polaritonic Hamiltonian (4.31). To this
end, we integrate out the photonic degrees of freedom of the Hamiltonian
(4.31) by performing the Schrieffer-Wolff unitary transformation [231]

H̃=
pol = eS=

H=
pole

−S= ' H=
pol + [S=, H=

pol] +
1
2
[S=, [S=, H=

pol]]. (4.32)

Here, using the fact that the quasistatic dipole-dipole coupling strength
Ω/ω0 � 1, the anti-Hermitian operator S= (i.e., S=† = −S=) can be de-
termined such that

[S=, HRWA
dp (Ω = 0) + Hph] = −H=

Π·A, (4.33)

so as to eliminate coupling terms of the order of Ωξ2
q,l/ω0

3 in the effective
Hamiltonian. Here, HRWA

dp (Ω = 0) corresponds to the dipolar Hamiltonian
(4.17) in the limit of zero dipolar coupling strength Ω. From the condition
(4.33), we find

S= = −i
N
∑

m=1

√
d
Lz

∑
q,l

ξq,l

ω
ph
q,l −ω0

[
eimqldcq,l

(
a†

me−iχq,l + b†
meiχq,l

)
+ H.c.

]
.

(4.34)

The dipolar and photonic subspaces are then perturbatively decoupled to
second order in the light-matter coupling strength,

H̃=
pol ' HRWA

dp + Hph +
1
2
[S=, H=

Π·A] ≡ H̃RWA,=
dp + H̃=

ph. (4.35)

Computing the commutator in Eq. (4.35) and focusing on the dipolar sub-
space, we obtain the effective bipartite Hamiltonian

H̃RWA,=
dp = h̄ω̃=

0

N
∑

m=1

(
a†

mam + b†
mbm

)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)

f̃=m−m′

(
a†

m am′ + b†
m bm′ + H.c.

)

+ h̄Ω
N
∑

m,m′=1
g̃=m−m′

(
a†

m bm′ + H.c.
)

. (4.36)
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Here, the onsite frequency ω0 and the intra- and intersublattice sums fm−m′

and gm−m′ are renormalized by the cavity photons [compare with Eq. (4.17)]
as

ω̃=
0 = ω0 −

d
2π

+∞

∑
l=−∞

∫ +π/d

−π/d
dq

ξ2
q,l

ω
ph
q,l −ω0

, (4.37a)

f̃=m−m′ = fm−m′ −
1
Ω

d
2π

+∞

∑
l=−∞

∫ +π/d

−π/d
dq

ξ2
q,l ei(m−m′)qld

ω
ph
q,l −ω0

, (4.37b)

and

g̃=m−m′ = gm−m′ −
1
Ω

d
2π

+∞

∑
l=−∞

∫ +π/d

−π/d
dq

ξ2
q,l ei(m−m′−d1/d)qld

ω
ph
q,l −ω0

, (4.37c)

where we used the fact that we consider an infinitely long cavity with
dcav → ∞, so that Lz → ∞, and we can take the continuous limit for the
quasimomentum q

2π

Lz

+π/d

∑
q=−π/d

→
∫ +π/d

−π/d
dq. (4.38)

We note that our perturbation theory provides a convenient way to take into
account the effect of all the Umklapp bands. Moreover, it allows a trans-
parent interpretation of the effects of the strong light-matter coupling, as the
above renormalized quantities account for an effective coupling between the
dipoles which is mediated by the cavity photons. However, as any perturba-
tive scheme, it limits the allowed regime of parameters of the model. Indeed,
as can be deduced from Eq. (4.34), such a perturbation theory breaks down
once the photonic and dipolar subspaces overlap, namely when ω

ph
q,l ≥ ω0.

This happens as soon as the cavity height Lx/a ≥ π/3k0a ≡ LSW
x /a ' 10.5.

In Appendix 4.B, we will check that our Schrieffer-Wolff approach qualita-
tively reproduces the results obtained from a diagonalization of the full po-
laritonic Hamiltonian (4.31), as long as the cavity height Lx . 10a.

Tuning the cavity transverse dimensions so that the photon dispersion (2.34)
approaches the two dipolar bands then allows one to enter in the strong light-
matter coupling regime. Hence, the Hamiltonian (4.36) can be viewed as
another variation of a dipolar SSH model, with hoppings being highly mod-
ified by the strong coupling to a multimode optical cavity. In the sequel of
this chapter, we therefore refer to such a model as the effective polaritonic
SSH model.

Although strong coupling does not fundamentally modify the symmetries of
the effective Hamiltonian [compare Eqs. (4.17) and (4.36)], it can significantly
increase the chiral-breaking, intrasublattice interaction (4.37b), which can be-
come dominant over the chiral-preserving, intersublattice one (4.37c). As we
will discuss in Sec. 4.3, this increased asymmetry between the two sublat-
tices strongly modifies the bulk spectrum. We will show in Sec. 4.4 that the
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topological phases of the effective Hamiltonian (4.36) are also affected by the
light-matter coupling.

4.2.3 Cavity-induced effective dipole-dipole couplings

Before investigating the bulk properties of the polaritonic SSH model, we
gain physical insight into the effect of the light-matter coupling on dipo-
lar excitations, by analytically evaluating the cavity-induced renormalized
quantities (4.37).

The renormalization terms appear as

d
2π

+∞

∑
l=−∞

∫ +π/d

−π/d
dq

ξ2
q,l

ω
ph
q,l −ω0

eiυqld =
2ω0a3

LxLy
I(υ), (4.39)

with integrals of the form

I(υ) =
+∞

∑
l=−∞

∫ +π/d

−π/d
dq

ω2
0 eiυqld

ω
ph
q,l (ω

ph
q,l −ω0)

=
∫ +∞

−∞
dq

ω2
0 eiυqd

ω
ph
q,0(ω

ph
q,0 −ω0)

, (4.40)

where υ = 0, υ = m− m′, or υ = m− m′ − d1/d. Surprisingly, we note the
simplification of the integral arising from the inclusion of all the Umklapp
bands l 6= 0. Neglecting such bands yields actually to an additional term in
Eq. (4.40), which takes the form of a very small oscillating algebraic tail in the
intra- and intersublattice coupling renormalizations.

The particular case of I(υ = 0) can be readily evaluated. It appears in the
cavity-renormalized onsite frequency [cf. Eq. (4.37a)], which therefore reads

ω̃0 = ω0 −
2ω0a2k0a

LxLy

ω0√
(ω

ph
0,0)

2 −ω02


arctan


 ω0√

(ω
ph
0,0)

2 −ω02


+

π

2


 .

(4.41)
Such renormalized frequency is slightly redshifted as compared with the bare
frequency ω0 (less than about 0.3 %). The difference increases with the cav-
ity height Lx as the photon frequency ω

ph
0,0 approaches the bare emitters fre-

quency ω0.

For the intra- and intersublattice coupling renormalizations, where υ equals,
respectively, m−m′ and m−m′ − d1/d, we use the fact that in our perturba-
tion theory the photonic frequency remains larger than the bare emitter one,
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so that we can rewrite the effective coupling integrals I(υ) as

I(υ) =
∞

∑
p=2

∫ +∞

−∞
dq


 ω0

ω
ph
q,0




p

eiυqd ≡
∞

∑
p=2
Jp(υ), (4.42)

which can be evaluated as an infinite sum of modified Bessel functions of the
second kind Kν(z),

Jp(υ) =

√
π(k0d)p

Γ(p/2)d

( |υ|Ly

2πd

) p−1
2

K p−1
2

(
|υ|πd

Ly

)
, (4.43)

where Γ(z) represents the gamma function. We note that in all the results
we present in this work involving the finite spectrum, namely, in Secs. 4.5,
4.6, and 4.7, we truncate such infinite sum to pmax = 100, having checked
the irrelevance of higher-order terms. Each term in the sum of Eq. (4.42)
corresponds to an nearly-exponential decay, and the sum is dominated by
the first, p = 2 term

J2(υ) =
(k0d)2Ly

2d2 exp
(
−|υ|πd

Ly

)
, (4.44)

a pure exponential decay with a clear dependence on the cavity width Ly =
3Lx.

To conclude this subsection, we demonstrated that the cavity renormal-
izes the quasistatic, power-law dipole-dipole couplings fm−m′ and gm−m′ of
Eq. (4.18) through the addition of a quasi-exponential decay, whose decay
length is governed by the cavity transverse dimensions Lx and Ly. Increas-
ing the cavity width and height, i.e., entering in the strong-coupling regime,
leads the latter exponential decay to fall on larger distances, so that the
cavity-induced effective dipole-dipole coupling becomes stronger. Such an
exponential decay induced by the strong-coupling regime allows for a large
effective dipole-dipole coupling at intermediate distances, and was notably
at the origin of the cavity-enhanced transport observed in Sec. 3.6. At very
long distances, however, the cavity-induced exponential decay will be super-
seded by the quasistatic power-law couplings (4.18), as also seen in Sec. 3.6.
In the next sections, we study how this additional dipole-dipole coupling
influences the properties of the polaritonic SSH model.

4.3 Bulk polaritonic Hamiltonian

We begin our study of the SSH chain embedded in a multimode optical cavity
by investigating its bulk properties, and in particular its bulk eigenspectrum.
To this end, we consider in this section the emitters thermodynamic limit,
assuming a chain composed ofN → ∞ dimers, in a similar fashion as what is
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done for the unipartite chain in Sec. 3.3. We first examine the full polaritonic
Hamiltonian (4.31), and then analyze the effective Hamiltonian (4.36).

4.3.1 Three-band polaritonic Hamiltonian

To gain physical insights into the polaritonic SSH model, we first study the
full Hamiltonian (4.31) without perturbation theory. Notably, this allows us
to unveil the genuine polaritonic properties of the model through an analy-
sis of Hopfield’s coefficients, investigating quantitatively the hybridization of
light and matter excitations. To this end, however, we neglect in this subsec-
tion Umklapp processes by considering only the l = 0 band, as the inclusion
of higher modes would results in the loss of analytical calculation, and does
not change qualitatively any of our conclusions.

In the emitters thermodynamic limitN → ∞, any boundary conditions in the
z direction of the cavity are equivalent, and the longitudinal size of the cavity
Lz ∼ N d → ∞. Moving into Fourier space through the Fourier transforms
(4.4), the full polaritonic Hamiltonian in the emitters thermodynamic limit,
and without Umklapp processes, can be written in its Bloch form as

H∞
pol = ∑

q
ϕ†

qH
pol
q ϕq , (4.45)

in the basis ϕq = (aq, bq, cq), and where the three-band polaritonic Bloch
Hamiltonian reads

Hq = h̄




ω0 + Ω fq Ωgq iξqe−iχq

Ωg∗q ω0 + Ω fq iξqeiχq

−iξqeiχq −iξqe−iχq ω
ph
q


 . (4.46)

Such three-band polaritonic SSH model has been studied in Ref. [136]. As
shown in the latter reference, a Hopfield-Bogoliubov transformation leads
the diagonal form

H∞
pol = ∑

qj
ω

pol
qj γ†

qjγqj, (4.47)

where the three-band polaritonic dispersion is the solution of a cubic equa-
tion and reads

ω
pol
qj =

2
(
ω0 + Ω fq

)
+ ω

ph
q

3
+

2Γq

3
cos

(
Φq + 2πsj

3

)
, (4.48)

where the function
sj = dj/2e+ (−1)j (4.49)

orders the frequency bands via the index j ∈ {1, 2, 3}, which labels, respec-
tively, the mostly photonic upper polariton band (UP), and the mostly dipo-
lar medium and lower polariton (MP and LP) bands.
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In the above equations (4.48)–(4.49), dxe is the ceiling function, and we intro-
duced the frequency

Γq =

√
3Ω2|gq|2 + 6ξ2

q +
(

ω
ph
q −ω0 −Ω fq

)2
, (4.50)

and the angle

Φq = arccos
(

1
Γ3

q

{
27Ω|gq|ξ2

q cos
(
φq + 2χq

)

+
(

ω
ph
q −ω0 −Ω fq

) [
9
(

ξ2
q −Ω2|gq|2

)
+
(

ω
ph
q −ω0 −Ω fq

)2
]})

.

(4.51)

The Hopfield-Bogoliubov operator diagonalizing the Hamiltonian (4.47),

γqj = Aqjaq + Bqjbq + Cqjcq, (4.52)

is a linear combination of the dipolar and photonic degrees of freedom. The
modulus squared of the Hopfield coefficients Aqj, Bqj and Cqj, normalized
as |Aqj|2 + |Bqj|2 + |Cqj|2 = 1, represent respectively the part of the polari-
tonic eigenmode that arises from the dipolar excitation on the A sublattice,
from the dipolar excitation on the B sublattice, and from the cavity photon
excitation. Their expression, which can be extracted from the diagonalization
procedure, write

Aqj =
1√

2 + ξ2
q |Ξqj|2

, (4.53a)

Bqj =
1√

2 + ξ2
q |Ξqj|2

ξ2
q −

(
ω

ph
q −ω

pol
qj

) (
ω0 + Ω fq −ω

pol
qj

)

Ωg∗q
(

ω
ph
q −ω

pol
qj

)
− ξ2

qe2iχq
(4.53b)

and

Cqj =
−iξqe−iχq

√
2 + ξ2

q |Ξqj|2
Ξqj, (4.53c)

with the frequency

Ξqj =
Ωg∗q − e2iχq

(
ω0 + Ω fq −ω

pol
qj

)

Ωg∗q
(

ω
ph
q −ω

pol
qj

)
− ξ2

qe2iχq
. (4.54)

From their modulus square, we define the dipolar and photonic parts

Dqj = |Aqj|2 + |Bqj|2 (4.55a)
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Figure 4.6: Three-band Hamiltonian dispersion. Bandstruc-
ture ω

pol
qj of the full three-band polaritonic Hamiltonian (4.45),

in units of ω0 and in the first Brillouin zone. The colorcode
represents the photonic weight Phqj of each eigenstate [see
Eq. (4.55b)], from black (dipolar states) to reddish (hybridized
polaritons) and yellow (photonic states). The green and blue
dashed lines show the bare photonic and dipolar dispersions,
given, respectively, in Eqs. (2.34) and (4.21). The cavity height
is (a) Lx/a = 8 and (b) Lx/a = 10, while in both panels the

dimerization ε = 0.25 [cf. Eq. (4.3)].

and
Phqj = |Cqj|2 (4.55b)

of a given polaritonic eigenmode, similarly to the quantities (3.15) defined
in Chap. 3.

The full polaritonic bandstructure (4.48) is shown in the first Brillouin zone in
Fig. 4.6, for a dimerization parameter ε = 0.25 and increasing cavity dimen-
sions [which, we recall, encode the light-matter coupling strength (2.38)]. We
represent as a colorcode the photonic weight (4.55b) associated with each
eigenstate, from black (fully dipolar dark state) to yellow (fully photonic
state). In the figure, we further plot for comparison the bare dipolar dis-
persion ω

dp
q [Eq. (4.21)] and the bare photonic one ω

ph
q [Eq. (2.33)] by blue

and green dashed lines, respectively.

At a cavity height Lx = 8a [see Fig. 4.6(a)], the bare dipolar and photonic
bands are only weakly renormalized into polaritonic bands, and the black
color of the LP and MP bands indicate that they are only comprised of dipo-
lar dark states. The effect of the light-matter coupling becomes stronger for
Lx = 10a [see Fig. 4.6(b)], once the bare photonic band approaches resonance
with the bare dipolar ones. In the latter case, we observe an avoided cross-
ing scheme between the UP and MP bands, a typical signature of the strong-
coupling regime. The redshift of the MP band causes a second avoided cross-
ing scheme, now between the MP and LP bands, which we highlight in the
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inset of panel (b). Importantly, we observe states in red and orange around
the center of the Brillouin zone where q = 0, demonstrating the presence of
hybridized polaritonic states, with mixed dipolar and photonic weights, not
only in the UP band, but also in the MP and LP bands.

4.3.2 Effective two-band Hamiltonian

While the full polaritonic Hamiltonian (4.31) is exact within the single band
approximation and neglection of Umklapp processes and allows for a good
physical understanding of the model through the photonic weight (4.53c)
[see Fig. 4.6], it has the drawbacks of hiding the direct effects of the cav-
ity onto the dipolar subspace, and to modify the typical SU(2) bipartite
SSH model into a more complicated SU(3) three-band Hamiltonian [136].
Therefore, we study here the bulk properties of the effective polaritonic SSH
Hamiltonian (4.36) which we derived in Sec. 4.2.2.

By performing a Fourier transformation on the Hamiltonian (4.36), and con-
sidering a number of dimers N → ∞, we obtain an effective two-band
Hamiltonian in reciprocal space H̃RWA,∞

dp = ∑q ψ†
qH̃qψq , with the Bloch

Hamiltonian

H̃q = h̄
(

ω0 + Ω f̃q Ωg̃q
Ωg̃∗q ω0 + Ω f̃q

)
, (4.56)

and the spinor creation operator ψ†
q = (a†

q , b†
q). The Bloch Hamiltonian (4.56)

has the exact same form as the one of the bare dipolar SSH Hamiltonian (4.19)
we studied in Sec. 4.1. Here, however, the reciprocal counterparts of the bare
dipolar inter- and intrasublattice sums fq and gq, given in Eq. (4.20) are renor-
malized by the cavity as, respectively,

f̃q = fq −
1
Ω

+∞

∑
l=−∞

ξ2
q,l

ω
ph
q,l −ω0

(4.57a)

and

g̃q = gq −
1
Ω

+∞

∑
l=−∞

ξ2
q,l e−2iχq,l

ω
ph
q,l −ω0

. (4.57b)

A Bogoliuobov transformation of the effective Bloch Hamiltonian (4.56) leads
to the eigenfrequencies

ω̃
dp
qτ = ω0 + Ω f̃q + τ Ω|g̃q|, (4.58)

where τ = + (−) denotes the high- (low-)energy band, and to the eigen-
spinors

|ψ̃qτ〉 =
1√
2

(
1

τ eiφ̃q

)
, (4.59)

where the phase
φ̃q = arg(g̃q). (4.60)
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Figure 4.7: Effective two-band Hamiltonian dispersion.
Green and blue solid lines: Effective polaritonic dispersions
ω̃

dp
q,τ=± from Eq. (4.58), in units of the bare dipole frequency ω0

and in the first Brillouin zone for cavity heights (a) Lx = 7a, (b)
Lx = LZak

x ' 9.4a, and (c) Lx = 10a. Gray and orange dashed
lines: Bare dipolar dispersion ω

dp
q [Eq. (4.21)] and photonic one

ω
ph
q [Eq. (2.34)], respectively. Inset of panel (b): Detail of the gap

closing at q = 0 taking place when Lx = LZak
x . Inset of panel (c):

Detail of the avoided crossing between the two dipolar bands
appearing from Lx > LZak

x . Only the lowest, l = 0, photonic
band is visible on the figure. In the figure, the dimerization
parameter ε = 0.25, the Umklapp index l ∈ [−lmax,+lmax] with
lmax = 100, and we recall that the dimensionless dipole strength

k0a = 0.1.

The renormalized dipolar dispersion (4.58) is shown in Fig. 4.7 in the first
Brillouin zone, for increasing cavity dimensions and for a dimerization pa-
rameter ε = 0.25 [cf. Eq. (4.3)]. The upper (τ = +) and lower (τ = −) bands
are displayed by green and blue solid lines, respectively.
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In Fig. 4.7(a), we consider a cavity height Lx = 7a. In such a case, similarly
as what we observed for the full polaritonic model in Fig. 4.6, the photonic
modes [not visible on the scale of Fig. 4.7(a)] are too high in energy to signif-
icantly renormalize the dipolar bands. Notably, only the upper polaritonic
effective branch (green solid line) is redshifted around the center of the Bril-
louin zone, while the lower one (blue solid line) is essentially unaffected by
the light-matter coupling. On the one hand, only the dispersion at the center
of the Brillouin zone is renormalized due to the fact that all the modes with
large wavenumber are out of resonance with the photons. On the other hand,
the asymmetric behavior between the two dipolar bands can be understood
physically from the fact that for the transverse dipole-dipole interaction at
play here, the antiparallel alignment of the dipole moments within a dimer
(↑↓) is energetically favored. It leads the low-energy band to behave as a
dark band, which only weakly couples to light, while the high-energy band,
which favors parallel alignment of the dipoles (↑↑), can significantly couple
to light and is thus referred to as being a bright band.

As we already observed in Fig. 4.6 for the full model, when increasing the
cavity height, the photonic modes become closer in energy from the bare
dipolar ones, so that the bright band (τ = +) is further renormalized in a
standard avoided-crossing scheme, while the dark one (τ = −) still remains
unaffected by the light-matter coupling. Here, within our effective two-band
Hamiltonian, such growing asymmetry between the bands makes clear the
broken chiral symmetry of the model, boosted by the cavity-induced renor-
malization of the intrasublattice sum f̃q in Eq. (4.57a). This is what allows
the bright modes around the center of the Brillouin zone to increasingly fill
the gap between the two bands. At a cavity height Ledge

x (not shown), whose
significance will become clearer in the next sections, approximately half of
the gap is filled. Through our effective two-band model, we find the latter
cavity height to be close to

Ledge
x

a
' π

3k0a
− 8k0a

f0 + g0 + 0.002ω0/Ω

(
d
a

)2

, (4.61)

where we approximated the middle of the gap to 0.998ω0. In the above equa-
tion, k0a = ω0a/c = 0.1 (see Sec. 2.3.1), and, importantly, g0 depends on the
dimerization parameter [see Eq. (4.20b)]. With the parameters of Fig. 4.7, one
has Ledge

x ' 8.7a.

At an even larger cavity height, the bright band fills entirely the energy gap
(for all q’s), so that the system is not anymore in an “insulating” phase, but
becomes “metallic” in the language of condensed matter electronic systems.
In our effective model, such transition occurs when ω̃

dp
q=0,τ=+ = ω̃

dp
q=π/d,τ=−,

at a cavity height coined in Ref. [136] as Lgap
x . Using the same parameters as

in Fig. 4.7, Lgap
x ' 9.3a > Ledge

x

Figure 4.7(b) displays our results for the cavity height Lx = LZak
x ' 9.4a,

where, importantly, the upper band (green line) touches the lower one (blue
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line) at q = 0, as highlighted in the inset where a zoom on the two curves
around the center of the Brillouin zone is shown. Such critical cavity height
LZak

x has been introduced in Ref. [136], and bears its name from the TPT that
arises here, and which is associated with a modification of the Zak phase.
Our effective two-band model allows us to easily interpret this result analyt-
ically. Indeed, from Eqs. (4.57)–(4.58), we have ω̃

dp
q=0,τ=+ = ω̃

dp
q=0,τ=− when

the renormalization of the sublattice sum (4.57b) due to the light-matter cou-
pling counteracts the original sublattice sum (4.20b), i.e., |g̃0| = 0. Consid-
ering only the lowest Umklapp index l = 0 for simplification, this arises for
the cavity height

LZak
x
a

=
π

3k0a
− 4k0a

g0

(
d
a

)2

. (4.62)

A detailed discussion of the unusual topological phases of our system is pre-
sented in the next Sec. 4.4.

In Fig. 4.7(c), we further increase the cavity height to Lx = 10a, so that the
proximity in energy of the photonic modes (orange line) redshifts the upper,
bright band (green line) into the lower, dark one (blue line). This results,
similarly as what we observed for the full model in Fig. 4.6(b), in another
avoided-crossing scheme, now between the two effective upper (τ = +) and
lower (τ = −) dipolar bands, as highlighted in the inset of Fig. 4.7(c), where a
zoom on the two curves is provided. Hence, as long as Lx > LZak

x the two ef-
fective bands anticross, so that the bandgap for a fixed wavenumber q is open
again. However, we emphasize that, as was already the case in Fig. 4.7(b), the
energy gap for all q’s is closed, so that the system is here “metallic”.

4.4 Topological phases of polaritons

To pursue the study of the bulk properties of the polaritonic SSH model, we
now analyze its topological phases. These latter have been partly investi-
gated in Ref. [136] for the full polaritonic Hamiltonian (4.46). Specifically,
the fate of the bulk-boundary correspondence under the strong light-matter
coupling regime was examined, that is, the accordance between bulk-related
topological invariants and the number of edge states in the finite-size system.
To deal with the particular three-band and SU(3) symmetry of the full model,
the authors of Ref. [136] had to use fairly unconventional techniques, such as
complicated numerical integrations and poor man’s approaches to build an
effective SU(2) two-band model.

Here, we use the Schrieffer-Wolff effective Hamiltonian (4.56) derived in the
previous sections to further investigate the topological phases of the polari-
tonic SSH model and deepen the results of Ref. [136].

In particular, we take advantage of our simpler effective two-band model
to analyze its topology through standard methods, which allows us to gain
physical insights and to make direct comparisons with the dipolar SSH
model with and without all-to-all quasistatic coupling [given, respectively,
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Figure 4.8: Zak phase diagram. Topological phase diagram
from the computation of the Zak phase ϑ̃Zak [see Eq. (4.63)] in
the (Lx, ε) parameter space. The green dotted, yellow dash-
dotted, and red dashed lines correspond, respectively, to Lx =

Ledge
x [see Eq. (4.61)], Lx = Lgap

x , and Lx = LZak
x [see Eq. (4.62)].

In the figure, the Umklapp index l ∈ [−lmax,+lmax] with lmax =
100.

in Eqs. (4.19) and (4.6)]. Moreover, we disclose original findings by exploring
both the ε < 0 and ε > 0 cases [see Eq. (4.3)], which, in the dipolar SSH
model, correspond respectively to the trivial and topological phases.

4.4.1 Inversion symmetry and Zak phase diagram

Despite its broken chiral symmetry ({H̃q, σz} 6= 0), the effective two-band
Hamiltonian (4.56) conserves inversion symmetry (σxH̃−qσx = H̃q), where
σx and σz denote the first and third Pauli matrix, respectively [see Eq. (4.14)].
Importantly, this ensures that the Zak phase [232, 233]

ϑ̃Zak = i
∫ +π/d

−π/d
dq 〈ψ̃qτ|∂qψ̃qτ〉 mod 2π (4.63)

is quantized, and defines a meaningful Z2 topological invariant of the model
[52, 230]. In the above definition of the Zak phase, |ψ̃qτ〉 are the eigenspinors
of the effective two-band Hamiltonian, given in Eq. (4.59). We evaluate
Eq. (4.63) using the Wilson-loop approach [234], which is gauge invariant
as well as suitable for numerical implementation.

Our results of such computation of the Zak phase (4.63) is shown in Fig. 4.8
as a phase diagram in the (Lx, ε) parameter space. Two TPTs between the
trivial (ϑ̃Zak = 0, white regions) and topological phases (ϑ̃Zak = π, blue
regions) are visible. A first one, induced by the variation of the dimerization
of the chain, is present at ε = 0 and indicated as a black solid line. Such a
transition characterizes the two topological phases of the original SSH model,
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and results from a bandgap closing at q = ±π/d. The second TPT, indicated
by a red dashed line, arises at Lx = LZak

x [see Eq. (4.62)], and is solely induced
by the strong light-matter coupling which leads to a bandgap closing at q = 0
[see Fig. 4.7(b)].

Due to this cavity-induced transition, the nontrivial and trivial phases of the
model in the weak-coupling regime (lower and upper left regions in Fig. 4.8),
which, notably, are similar to that of the original SSH model, are reversed in
the strong-coupling regime (lower and upper right regions in Fig. 4.8).

Importantly, the cavity-induced TPT happens once the system is already
metallic, since LZak

x (red dashed line in Fig. 4.8) is larger than Lgap
x (yel-

low dash-dotted line). Therefore, as will be discussed in the next section,
while the dimerization-induced TPT (solid black line) is associated with the
presence or absence of edge states as in the original SSH model, the cavity-
induced TPT (red dashed line) does not influence the presence (or absence)
of edge states. This led Ref. [136] to conclude on the breakdown of the bulk-
edge correspondence for this system.7 We note that as chiral symmetry is bro-
ken in the system, the bulk-edge correspondence from the tenfold way may
not be relevant to consider. Rather, it may be more pertinent to examine the
surface charge theorem, which is applicable to inversion-symmetric systems
[235]. Such a study is however out of the scope of the present manuscript.

Analogous behaviors have been observed theoretically in similar bipartite
systems, from driven ultracold fermions [208] to zigzag waveguide lat-
tices [209], toy models with next-nearest-neighbor hopping [211], plasmonic
nanoparticles in vacuum [212], or quantum antiferromagnets [214]. Using
zigzag waveguide lattices, the presence of a nontrivial quantized Zak phase
associated with the absence of edge states (that is, what we observe in our
model in the lower right region in Fig. 4.8) has been recently experimentally
detected [219]. The common feature of the systems studied in Refs. [208,
209, 211, 212, 214, 219] is that there is a coupling parameter breaking the
chiral symmetry, which, once enhanced, leads one of the bulk band to in-
creasingly fill the energy gap. In our polaritonic system, such parameter is
the transverse dimension of the cavity, which allows one to tune the effective
photon-mediated dipole-dipole coupling.

4.4.2 Winding number approach

To conclude our study of the topological phases of the polaritonic SSH model
(4.31), we provide a graphical treatment of its bulk topological properties. To
this aim, we take advantage of our two-band effective Hamiltonian (4.56) to
compute the winding number ν of the system. While such winding num-
ber is formally well-defined as a topological invariant for chiral-symmetric

7Note that in an (unphysical) model which would conserve chiral symmetry, i.e., Hamil-
tonian (4.56) with f̃q = 0, such cavity-induced TPT would not break the bulk-edge corre-

spondence, since Ledge
x = Lgap

x = LZak
x , so that the system remains in an “insulating" phase,

except at the critical transition point.



126 Chapter 4. Topology and polaritons

Hamiltonians only, it can still give us valuable information on the topologi-
cal phases of the system thanks to a graphical representation.

We rewrite the Bloch Hamiltonian (4.56) as

H̃q = h̄
(

ω0 + Ω f̃q Ωg̃q
Ωg̃∗q ω0 + Ω f̃q

)
= h̄(ω0 + Ω f̃q)12 + σ · d̃q, (4.64)

with the 2× 2 identity matrix 12, the Pauli vector σ = (σx, σy, σz), and the
winding vector

d̃q = h̄Ω|g̃q|



cos φ̃q
− sin φ̃q

0


 , (4.65)

where the phase φ̃q is given in Eq. (4.60).

The direction in which such winding vector points encodes the internal struc-
ture of the Bloch eigenstates (4.59) of the Hamiltonian (4.64), which, we re-
call, do not depend on the chiral-breaking couplings f̃q. Due to the 2π/d-
periodicity of the Bloch Hamiltonian, the winding vector d̃q traces out a
closed curve in the plane (dx, dy) when the wavenumber q runs through the
whole Brillouin zone [−π/d,+π/d]. The number of times such closed loop
winds counterclockwisely around the origin (0, 0) defines what is called the
bulk winding number ν of the curve, an integer that characterizes, as the Zak
phase (4.63), the topology of the Hamiltonian [34].

This graphical representation of the model topology is presented in Fig. 4.9,
as parametric plots of the winding vector (4.65) in the (dx, dy) plane. Four
different cases, corresponding to the four different frames observed in the
Zak phase diagram of Fig. 4.8, are considered. First, in panels (a) and (b) of
Fig. 4.9, the dimerization ε = 0.25, so that we place ourselves at the top of
the Zak phase diagram of Fig. 4.8. In panel (a), the weak-coupling regime
is considered, with a cavity height Lx = 7a, and we observe a bulk winding
number ν = 1, indicating a topologically nontrivial phase. In contrast, in
panel (b), the system is in the strong-coupling regime, with Lx = 10a, and a
value of ν = 0 is observed. As anticipated, such values of the bulk winding
numbers are in exact agreement with the computation of the Zak phase (4.63).

Then, in panels (c) and (d) of Fig. 4.9, the dimerization ε = −0.25, so that we
place ourselves at the bottom of the Zak phase diagram Fig. 4.8. While panel
(c) shows the winding vector for a cavity height Lx = 7a, panel (d) represents
the case of Lx = 10a. Here, the weak-coupling regime case presents a value of
ν = 0, while the strong-coupling regime ones a value of ν = 1. Again, this is
in exact agreement with the results of the Zak phase computation discussed
in Sec. 4.4.1.
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Figure 4.9: Winding number. Winding vector d̃q in the first
Brillouin zone [see Eq. (4.65)], and corresponding winding
number ν, i.e., the number of time the winding vector encircles
(counterclockwise) the origin (0, 0) marked by a red dot. The
four panels (a)-(d) show the four different topological phases
visible in Fig. 4.8. The considered parameters are ε = 0.25 in
panels (a),(b) and ε = −0.25 in panels (c),(d), while Lx = 7a in
panels (a),(c) and Lx = 10a in panels (b),(d). In the figure, the

Umklapp index l ∈ [−lmax,+lmax] with lmax = 100.

4.5 Multiple polaritonic edge states

We now move to a discussion of the properties of the finite polaritonic SSH
chain. We recall that we here consider a finite chain of dipoles embed-
ded in an infinitely-long waveguide cavity, in contrast to what was done in
Ref. [136]. This has a drastic impact on the edge states which we study in this
section, as we will show in Sec. 4.8.

To determine the spectral properties of the finite system, we write the real-
space effective bipartite Hamiltonian H̃RWA,=

dp , given in Eq. (4.36), in a 2N ×
2N matrix form using the basis vector ϕ† = (a†

1, . . . , a†
N , b†

1 , . . . , b†
N ), and we

numerically diagonalize it to obtain its polaritonic eigenfrequencies ω̃
dp
n and

eigenvectors Ψ(n) = (Ψ1(n), . . . , Ψ2N (n)), where n labels the eigenvalues in
ascending order.
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Figure 4.10: Finite polaritonic eigenspectrum. Real-space po-
laritonic eigenfrequencies ω̃

dp
n (in units of the bare dipole fre-

quency ω0) as a function of (a) the cavity height Lx and (b) the
dimerization parameter ε [Eq. (4.3)]. The color code associated
with each eigenstate n represents its probability density on the
first dipole site i = 1, so that it highlights the presence (red)
or absence (green or blue) of edge states. We fix the dimeriza-
tion parameter to ε = 0.25 in panel (a), while the cavity height
Lx = 10a in panel (b), and we consider a finite chain ofN = 250

dimers, i.e., 500 dipoles.

4.5.1 Eigenspectrum

We show the result of the procedure discussed above in Fig. 4.10, where the
eigenfrequencies are plotted as a function of the cavity height Lx in panel
(a) and as a function of the dimerization parameter ε in panel (b). As in
Fig. 4.2, we highlight the presence or absence of edge states through a color
code associated to each eigenstate n, which represents its probability density
|Ψ1(n)|2 on the first site of the chain, on a logarithmic scale.

In Fig. 4.10(a), we consider a dimerization ε = 0.25, corresponding to the
topological sector of the original as well as dipolar SSH model. On the left
of the figure, the weak light-matter coupling regime is considered, where
the two dipolar bands are only slightly renormalized by the cavity photons
[cf. Fig. 4.7(a) for the Fourier-space equivalent]. The blue color associated
with these two dipolar bands reveals no particular localization on the first
site of the chain. However, two (nearly degenerate) in-gap edge states are
visible in dark red, showing their pronounced localization on the first dipole
site. By comparison with the preceding discussion on the bulk topological
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invariant in Sec. 4.4 such a situation corresponds to the upper left region
of Fig. 4.8, where a nontrivial Zak phase is found. We have checked (not
shown) that for ε < 0, there are, as expected, no such edge states. In the
weak-coupling regime, the bulk-edge correspondence is thus fulfilled, two
edge states being present while the two dipolar bands each present a Zak
phase of ϑ̃Zak = π. Nevertheless, we emphasize that these two dipolar edge
states are not symmetry-protected topological edge states as the ones found
in the original, chiral-symmetric, SSH model. Indeed, we recall that due to
the quasistatic dipole-dipole coupling from Eq. (4.18a), the system does not
fulfill chiral symmetry, even in the absence of light-matter coupling.

By increasing the cavity height Lx in Fig. 4.10(a), the lower, dark band is not
affected by the light-matter coupling and its edge localization remains con-
stant. However, the upper band continuously fills the gap, as seen through
the avoided crossing scheme with the photonic band in the bulk spectrum
[cf. Figs. 4.7(b) and 4.7(c)]. As demonstrated using the full polaritonic model
in Fig. 4.6, the states filling the gap are genuine polaritons, arising from the
hybridization of the dipoles with cavity photons. The two dipolar edge
states, however, are only slightly redshifted in energy when increasing the
cavity height, mainly due to the renormalization of the bare frequency ω0
into ω̃0 ' 0.998ω0, [see Eqs. (4.37a) and (4.41) for an analytical expression
of the redshift]. Physically, we attribute this weak change to the fact that the
edge states are mainly dark.

As can be seen from Fig. 4.10(a), the fact that the dipolar edge states and
the upper bright band are not similarly shifted in energy as we increase the
cavity height allows the polaritons that comprise the latter band to reach the
edge state eigenfrequencies. Such merging of the dipolar edge states into the
bright band arises at a cavity height Ledge

x , marked as a green dotted line.
From this particular cavity height on, we observe the formal disappearance
of the two dipolar edge states. Nevertheless, all of the polaritons belonging
to the bright band with an eigenfrequency close to that of the edge states in-
herit their edge localization, as visible through the red spot on the right of
Fig. 4.10(a), which grows as the cavity height is further increased. We coin
these particular states “polaritonic edge states”. As we will see in the follow-
ing, such peculiar states share some of their properties with the original edge
states, but also of photonic states originating from the cavity.

From two very localized and nearly degenerated in-gap edge states in the
weak-coupling regime, we thus get in the strong-coupling regime numerous
polaritonic edge states that are present in a broad frequency range in the bulk
of the spectrum. We insist, however, on the fact that this transition from two
dipolar to multiple polaritonic edge states does not represent a TPT. Indeed,
it is not associated with a change of bulk topological invariant, as visible in
Fig. 4.8.

The above-discussed results contrast with what we observe while comput-
ing the bulk topological invariant in Sec. 4.4 Indeed, for cavity heights
Ledge

x < Lx < LZak
x , a nontrivial Zak phase of π is found (see the upper left
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region in Fig. 4.8), while numerous polaritonic edge states are present. Thus,
the bulk-edge correspondence in term of number of edge states is not any-
more satisfied. Moreover, the TPT visible as a red dashed line for Lx = LZak

x
does not interfere with the polaritonic edge states which we observe in the
finite spectrum of Fig. 4.10(a). We attribute the latter breakdown of the bulk-
edge correspondence to the fact that the TPT takes place in a system which is
already metallic, as LZak

x > Lgap
x , the gap having been closed by the complete

chiral symmetry breaking induced by the light-matter coupling.

In Fig. 4.10(b), we investigate the effect of the dimerization parameter ε,
and consider the strong light-matter coupling regime with a cavity height
Lx = 10a > LZak

x . We observe here the absence of edge states when ε < 0, as it
is the case in the usual or dipolar SSH model. Looking at the two right frames
of the Zak phase diagram in Fig. 4.8, the bulk invariant indicates however
a topological phase for ε < 0. Therefore, the bulk-edge correspondence is
again not verified here. We note that such situation (nontrivial bulk topolog-
ical invariant and absence of edge states) has been experimentally observed
in an SSH system that preserves inversion but breaks chiral symmetry [219],
similarly as here.

When ε > 0, we find ourselves in the case studied previously on the right
side of Fig. 4.10(a), and we observe that increasing the dimerization param-
eter ε enlarges the energy window in which polaritonic states inherit edge
localization.

4.5.2 Participation ratio and scaling with the system size

To study in detail the polaritonic edge states and to maximize the frequency
range where they appear, we consider in the following a dimerization ε =
0.25 and a cavity height Lx = 10a. To better characterize their localization
properties, we use the participation ratio (PR), already defined in Eq. 3.5,
and which, in the system studied in this chapter, reads

PR(n) =

(
∑2N

i=1 |Ψi(n)|2
)2

∑2N
i=1 |Ψi(n)|4

. (4.66)

We recall that such a quantity provides information on the typical number of
dipole sites i occupied by an eigenstate n.

Our results are displayed in Fig. 4.11 for a chain of N = 250 dimers, where
the eigenfrequencies are plotted as a function of the PR on a logarithmic scale,
with the color code representing again the probability density at the first site.
Interestingly, the PR of the polaritonic edge states, visible as colored dots
from light blue to dark red, follows a bell-shaped curve approximately cen-
tered around the eigenfrequency that corresponds to the edge states in the
weak-coupling regime (ω̃dp

n ' 0.998ω0). Within the parameters used in the
figure, we observe here 8 polaritonic edge states for which at least 5 % of the
probability density is found on the first site of the chain only, distributed in a
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Figure 4.11: Polaritonic edge states participation ratio. Real-
space polaritonic eigenfrequencies ω̃

dp
n /ω0 as a function of the

participation ratio PR(n), as defined in Eq. (4.66). The col-
orscale represents the corresponding probability density on the
first site, i = 1, of the chain. In the figure, the cavity height
Lx = 10a, the dimerization parameter ε = 0.25, and the chain is

comprised of N = 250 dimers.

frequency window of about 0.01ω0. However, their PR contrasts with that of
an edge state in the original SSH model or in the weak-coupling regime, here
taking large values in between about 40 and 200, instead of approximately 2.

This difference is illustrated in Fig. 4.12(a), where we plot the scaling of the
participation ratio PR(n) with the number of dimers N , for the 6 polaritonic
edge states with the lowest PR (colored dots), as well as for the two dipo-
lar edge states present in the weak-coupling regime [visible on the left of
Fig. 4.10(a)], for a cavity height Lx = 7a (dark red triangles). Extended states,
i.e., states with a localization length larger than the system, are characterized
by a PR scaling linearly with the number of dimersN , while the PR of states
that are formally localized must be size-independent. Following such classi-
fication, one observes in Fig. 4.12(a) that the polaritonic edge states are not
formally localized, their PR scaling with the system size, with a growth rate
approaching the maximal one for a bipartite chain, 4(N + 1)/3, shown as a
black dashed line.

Such scaling with the PR is drastically different from the one we observe in
the weak-coupling regime (dark red triangles), in which the edge states have
a constant PR of about 2, as it is the case in the original SSH model [34]. This
key difference between edge states in the weak- and strong-coupling regimes
originates solely from the fact that in the latter case, polaritonic edge states
feature a significant bulk part, induced by their hybridization with the cavity
photons, and are therefore no longer only localized on the ends of the dipole
chain, so that their localization length increases naturally with the size of the
chain.

Moreover, while for small chain sizes a clear difference in PR is visible be-
tween each polaritonic edge states, such a dissimilarity fades out when the
number of dimers N increases. We explain this behavior by the increasing
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Figure 4.12: Impact of the system size. Scaling of (a) the partic-
ipation ratio and (b) the probability density on the first site with
the number of dimers N . The dark red triangles correspond to
the dipolar edge states present in the weak-coupling regime,
with a cavity height Lx = 7a [cf. Fig. 4.10(a)]. The colored
dots correspond to the first six states with the lowest partici-
pation ratio in the strong-coupling regime, with a cavity height
Lx = 10a. The black dashed line in panel (a) shows the maxi-
mum growth rate of the PR for a bipartite chain, 4(N + 1)/3.

In the figure, the dimerization parameter ε = 0.25.

number of polaritonic edge states when the size of the chain increases. In-
deed, as the density of states with an eigenfrequency around ω̃0 increases,
the number of polaritonic states which resonate with the original edge states,
and hence which inherit their edge localization, grows. The 6 states we show
in Fig. 4.12(a) are therefore more and more similar as N increases.

In Fig. 4.12(b), we present our results for the scaling of the probability density
on the first site of the chain |Ψ1(n)|2 with the number of dimers N , for the
same states as in Fig. 4.12(a). In the weak-coupling regime, as in the original
SSH model, almost half of the probability density of the edge states is located
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Figure 4.13: Shape of the polaritonic edge states. Probabil-
ity density |Ψi(n)|2 along the sites i of a chain comprised of
N = 250 dimers, for the states n with (a) the first, (b) second,
(c) third, and (d) fourth lowest participation ratio. The red and
blue dots represent, respectively, sites belonging to the A and
B sublattices. The cavity height Lx = 10a and the dimerization

ε = 0.25.

on the first site of the chain (the other half being localized on the last site), in-
dependently of the system size. In the strong-coupling regime, however, the
situation is less usual. While for small system sizes, a fifth of the probability
density of some polaritonic edge states can be located on the first site of the
chain only, such fraction decreases and slowly tends towards a few percents,
when the chain becomes longer.

Similarly to the scaling of the PR, such a behavior is explained by the grow-
ing number of polaritonic edge states when the system size increases. This
leads the edge localization to be shared between more and more polaritonic
edge states. Interestingly, we will demonstrate in Sec. 4.6 that despite this dif-
fusion of the edge localization between numerous states, driven-dissipative
transport simulations with lossy dipoles, taking into account the linewidth
of the excitations, allow these polaritonic edge states to be probed.

4.5.3 Polaritonic edge states

To conclude this section, and before studying the transport properties of the
polaritonic edge states, we here discuss their shape in real space. For this
purpose, the probability density along a chain of N = 250 dimers is shown
in Fig. 4.13 in the strong-coupling regime (Lx = 10a) and for ε = 0.25, for the
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4 most localized states with the lowest PR. The probability density is repre-
sented on a logarithmic scale, while the horizontal axis has been truncated
to focus on the edges of the chain. The red (blue) points correspond to sites
belonging to the A (B) sublattice. One observes that these 4 polaritonic states
display a clear localization on their edges, with more than an order of mag-
nitude higher than their probability density in the bulk of the chain.

Two distinct regimes of spatial extensions are apparent on each of these
states. First, on the first few and last few sites, the states are exponentially lo-
calized on the edges, with for some of the states an alternation between sites
A and B, as is the case of the chirally-symmetric topological edge states of
the original SSH model. Second, in the bulk of the chain we observe a non-
negligible probability density, evenly distributed along the chain, similarly
to extended plane waves. While the first regime is reminiscent of topologi-
cal edge states of the original SSH model, the second demonstrates the po-
laritonic nature of these states, having inherited the delocalized, plane-wave
nature of the cavity photons.

4.6 Edge state transport

To relate the results obtained in Sec. 4.5 with measurable quantities, here we
investigate the transport of excitations in the polaritonic SSH model. Specif-
ically, we focus on the potential contribution of edge states on energy trans-
port throughout the chain, which has been recently unveiled experimen-
tally [236] and theoretically investigated with the help of a simplified Tavis-
Cummings model [223].

We use a similar approach to that used when studying transport of ordered
and disordered polaritons in Chap. 3 (see Sec. 3.6), and consider a driven-
dissipative scenario by adding the driving term

Hdrive(t) = h̄ΩR sin(ωdt)
(

a1 + a†
1

)
(4.67)

to the effective Hamiltonian (4.36). The equation above models the continu-
ous illumination of the first dipole site, which belongs to the A sublattice, by
a transversely polarized monochromatic electric field with amplitude E0 and
driving frequency ωd, with ΩR = E0

√
Q2/2Mh̄ω0 the corresponding Rabi

frequency. We assume that the dynamics can be described by the Lindblad
master equation for the density matrix

ρ̇ =
i
h̄

[
ρ, H̃RWA,=

dp + Hdrive(t)
]

− γ

2

N
∑

m=1

({
a†

mam + b†
mbm, ρ

}
− 2amρa†

m − 2bmρb†
m

)
. (4.68)

As in Sec. 3.6, the damping rate γ quantifies the influence of a phenomeno-
logical Markovian bath responsible for the dissipation of the dipolar emitters.
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Dissipation typically originates from radiative and Ohmic losses, and in this
chapter, we consider γ = 0.002ω0. Such a narrow linewidth can be achieved
experimentally using emitters with weak losses, such as, e.g., microwave res-
onators or dielectric and SiC nanoparticles [124, 129].

To characterize the excitation of an emitter belonging to the A (B) sublattice,
we introduce its dimensionless dipole moment pA

m = 〈am + a†
m〉 (pB

m = 〈bm +
b†

m〉). Solving the master equation (4.68), employing a similar method as the
one we detailed in Sec. 3.6.1, we obtain the steady-state amplitudes |pi| bared
by a dipole on the site i of the chain, which belongs either to the A or B
sublattice. We recall that these dimensionless amplitudes are proportional to
the square root of the power radiated in the far field by a dipole, through the
classical Larmor formula [119], as shown in Eq. (3.23).

Figure 4.14 displays our findings for the steady-state amplitudes |pi| of the
dipole moments, scaled by the Rabi frequency in units of the bare dipole
frequency, ΩR/ω0, and as a function of the sites i of a chain comprised of
N = 100 dimers. The first site is driven at a frequency ωd = 0.998ω0 ' ω̃=

0 ,
corresponding approximately to the edge state eigenfrequencies in the weak-
coupling regime. The propagation signals are shown in a log-linear plot for
both the weak- (Lx/a = 7) and strong-coupling (Lx/a = 10) regimes, by red
and blue symbols, respectively.

In Fig. 4.14(a) we consider a dimerization parameter ε = +0.25. Edge states
are clearly visible in both coupling regimes, through a large rise of the exci-
tation at the end of the chain, the dipole moment increasing there by one
order of magnitude. In the first few sites of the chain, the propagation
signal quickly decays for both coupling regimes, following an exponential
decay which is reminiscent of the nearest-neighbor dipole-dipole coupling
[175]. However, for longer distances, the transport characteristics are very
distinct. On the one hand, for Lx/a = 7 (red dots), we observe a steep quasi-
exponential decay, induced by the light-matter coupling, followed by an al-
gebraic tail decaying with the inverse distance cubed, arising from the qua-
sistatic dipole-dipole coupling. On the other hand, for Lx/a = 10 (blue dots),
the propagation follows an exponential decay with a large decay length, ren-
dering the decay profile nearly flat.

This second exponential decay originates solely from the cavity-induced ef-
fective dipole-dipole coupling (see Sec. 4.2). Such a decay is physically ex-
plained by the hybridization of the bright, upper dipolar band with cavity
photons, and stands for the polaritonic cavity-enhanced transport unveiled
in Chap. 3. It is the exact same phenomenon as we observed for ordered and
disordered polaritonic transport in Sec. 3.6, which gives rise to cavity- and
disorder-enhanced transport. The slope in a log-linear plot of such a cavity-
induced exponential decay is dictated by both the damping rate γ and the
cavity height Lx, becoming flatter as the latter increases. Therefore, the driv-
ing of the polaritonic edge states plotted as blue dots in Fig. 4.14(a) presents
interesting transport characteristics, allowing for efficient end-to-end edge
state transport, as opposed to what is observed in red for the dipolar edge
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Figure 4.14: Edge state transport. Steady-state amplitude of
the dipole moment |pi| (in units of ΩR/ω0) as a function of
the dipole site i, for a chain with dimerization (a) ε = +0.25
and (b) ε = −0.25. The red (blue) symbols correspond to the
weak- (strong-)coupling regime, with a cavity height Lx = 7a
(Lx = 10a). The propagation results from a monochromatic
drive on the first dipole site at a frequency ωd = 0.998ω0. The
chain is comprised of N = 100 dimers with damping rates

γ = 0.002ω0.

state. We note that for very long chains or more lossy dipoles, the algebraic
tail is also present in the polaritonic transport, as discussed in Chap. 3.

In Fig. 4.14(b), we study the propagation along the chain when the first dipole
is driven at the same frequency ωd = 0.998ω0, now for ε = −0.25. As dis-
cussed in the previous section, such negative value of the dimerization ε is
associated with the absence of edge states. The same transport regimes as
in Fig. 4.14(a) are observed, but no rise of the dipole moment is found at the
end of the chain. Moreover, there is an overall decrease of the dipole mo-
ment amplitudes along the chain as compared to the ε = +0.25 case. This is
in agreement with the so-called dimerization-assisted transport that has been
studied in detail in Ref. [223].
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Figure 4.15: End-to-end transport. Steady-state amplitude of
the last dipole moment of the chain |p2N | (in units of ΩR/ω0),
for increasing cavity heights Lx/a and driving frequencies

ωd/ω0. In the figure, N = 100, ε = 0.25, and γ = 0.002ω0.

To highlight the effect of the cavity on end-to-end transport, we display in
Fig. 4.15 a density plot of the normalized steady-state amplitude of the last
dipole moment of the chain, |p2N |/(ΩR/ω0), using a logarithmic scale, as a
function of both the cavity height Lx/a and the driving frequency ωd/ω0. A
chain ofN = 100 dimers with a dimerization ε = 0.25 is considered. Interest-
ingly, Fig. 4.15 has similarities with Fig. 4.10(a), which shows the probability
density of the eigenstates at one end of the chain as a function of the cavity
height, with a dimerization parameter also fixed to the same value as here.
Hence, we recover the properties of the spectrum in our transport simula-
tions.

The light orange layer on the right of Fig. 4.15 in the strong-coupling regime
corresponds to the driving of the polaritons that originate from the bright,
upper dipolar band which is continuously redshifted when the cavity height
is increased [as seen in Fig. 4.10(a)]. Owing from their polaritonic na-
ture, they feature enhanced transport characteristics, notably through the
cavity-induced exponential decay discussed above in Fig. 4.14, explaining
their large dipole moment amplitude at the end of the chain. In contrast,
when driving at a frequency corresponding to the bare dipolar bands in
the weak-coupling regime [around ωd/ω0 = 0.980 and ωd/ω0 = 1.015, cf.
Fig. 4.10(a)], only a small dipole moment is found on the last site of the chain,
demonstrating poor transport properties.

Examining driving frequencies around ωd/ω0 = 1 in Fig. 4.15, we observe
the presence of the edge states, which show a particularly large dipole mo-
ment at the end of the chain. Notably, in the weak-coupling regime, here for
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cavity heights Lx . Ledge
x ' 8.7a, the dipolar edge states appear as a dark or-

ange beam in the center left of Fig. 4.15. In the strong-coupling regime, here
for cavity heights Lx & Ledge

x , the polaritonic edge states are visible through
the bright yellow spot in the center right of Fig. 4.15. Crucially, we observe
that the latter bright spot spreads over a broad range of driving frequencies.

Therefore, in addition to allowing very efficient edge state transport between
the two ends of the chain, the cavity also largely broadens the edge state
frequency band. These two cavity-induced properties could lead to easier
edge state probing.

4.7 Robustness to disorder

To complement our study of the cavity-induced polaritonic edge states fea-
tured by the polaritonic SSH model (4.36), we now examine their robustness
to disorder. To achieve this, we use the formalism developed in Chap. 3,
where we included disorder, and apply it to the dimerized chain of emitters.

4.7.1 Off-diagonal positional disorder

We start by studying specifically the effect of disorder in the intra- and in-
terdimer spacings d1 and d2 (see Fig. 4.5). This corresponds to off-diagonal
disorder in our system. We assume these spacings to be uncorrelated random
variables uniformly distributed within the interval [d1,2(1− ∆), d1,2(1 + ∆)],
where the dimensionless parameter ∆ is the amplitude of the spacing fluc-
tuations and characterizes the disorder strength. At this stage, we do not
consider any disorder in the frequencies of the emitters.

Interestingly, the introduction of off-diagonal disorder in the system does
not break the chiral symmetry of the bipartite chain, so that it does not alter
the topological edge states of the original (chirally-symmetric) SSH model
[34]. However, as discussed in Secs. 4.1 and 4.2, due to the dipole-dipole
couplings beyond nearest-neighbors the polaritonic SSH model does not ful-
fill chiral symmetry, both in the weak- and strong-coupling regimes. On the
one hand, although being reminiscent of the chiral symmetry of the origi-
nal SSH model, the polaritonic edge states should therefore not present any
formal robustness against off-diagonal disorder. On the other hand, polari-
tons, through their photonic part, have been proven robust against disorder,
presenting a cavity-protection effect [155, 157], which we discussed in detail
in Chap. 3. The interplay between polaritonic edge states and disorder is
thereby highly nontrivial.

We clarify this point by presenting in Fig. 4.16 the disorder-averaged real-
space polaritonic eigenfrequencies ω̃

dp
n /ω0 as a function of the dimension-

less disorder strength ∆. These eigenfrequencies have been obtained through
a numerical diagonalization of the disordered version of the effective Hamil-
tonian (4.36), which we do not show here. In the figure, we consider a chain
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Figure 4.16: Effect of positional disorder. Real-space polari-
tonic eigenfrequencies ω̃

dp
n (in units of the bare dipole fre-

quency ω0) as a function of the dimensionless disorder strength
∆. The color code associated with each eigenstate n represents
its probability density on the first dipole site i = 1, so that it
highlights the presence (red) or absence (green or blue) of edge
states. A chain of N = 100 dimers with an average value of
the dimerization parameter ε = 0.1 embedded in a waveguide
cavity with height Lx = 10a is considered, and the data have

been averaged over 100 disorder realizations.

of N = 100 dimers with an average dimerization parameter ε = 0.1, embed-
ded in a cavity with height Lx = 10a. As in Fig. 4.10, the color code displays,
on a logarithmic scale, the probability density on the first dipole site i = 1
associated with each eigenstate n, so that it reveals the presence (red) or ab-
sence (green or blue) of states that are highly localized at the two ends of the
chain.

We observe in Fig. 4.16 the characteristic bandwidth widening as the dis-
order strength increases. Importantly, only the dipolar eigenstates, corre-
sponding to the eigenfrequencies of the bare dipolar bands, here around
ω̃

dp
n /ω0 = 0.990 and ω̃

dp
n /ω0 = 1.005, undergo this effect. In contrast, the

eigenfrequencies of the polaritonic states, that are highly renormalized by
the cavity photons, remain constant on average at small disorder strength.
The latter polaritons, showing the cavity-protection effect, are visible in
Fig. 4.16 through the yellow stripes in the lower left region of the figure, as
well as through the red stripes, showing the polaritonic edge states, around
ω̃

dp
n /ω0 = 1. Such robustness of the polaritons against disorder fades out

as they merge into the dipolar bands. As anticipated by the broken chiral
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symmetry, the polaritonic edge states (red stripes in Fig. 4.16) are therefore
not formally robust against off-diagonal disorder, but can survive at high
levels of disorder, with a large probability density of 0.1 on the first site up
to ∆ ' 0.25 with the parameters considered in the figure. We attribute this
tolerance to disorder both to their polaritonic nature and to their topologi-
cal origin, being reminiscent of the topologically-protected edge states of the
original, chiral-symmetric SSH model. Indeed, dipolar edge states present
in the weak-coupling regime, although not being polaritonic, also show re-
markable tolerance to off-diagonal disorder, up to the closing of the bandgap
induced by the bandwidth increase led by disorder (not shown).

Interestingly, once the off-diagonal disorder is strong enough to let the po-
laritonic edge states merge into the dipolar bands, the dipolar states with
eigenfrequencies close to that of the edge states inherit part of their edge lo-
calization, as apparent through the orange spot in the center right of Fig. 4.16.
This mechanism bears resemblance to what gives rise to the polaritonic edge
states, as we described in Sec. 4.5, i.e., the fact that edge and bulk states
are not similarly affected by the increase of a given parameter (here the off-
diagonal disorder strength ∆, in Sec. 4.5 the cavity height Lx).

4.7.2 Frequency disorder

We now investigate the impact of disorder in the bare individual frequencies
of the emitters. As in Chap. 3, we treat these bare frequencies as uncorrelated
random variables distributed uniformly within an interval [ω0 −W/2, ω0 +
W/2]. The dimensionless parameter W/ω0 therefore describes the frequency
disorder strength.

In Fig. 4.17, we present the disorder-averaged real-space polaritonic eigen-
frequencies ω̃

dp
n /ω0 as a function of the frequency disorder strength W/ω0,

obtained through a numerical diagonalization of a disordered version of the
effective Hamiltonian (4.36), which we do not show here. The color code as
well as the parameters used in the figure are the same as the ones used in the
preceding subsection in Fig. 4.16. However, we exclude here any positional
disorder by setting ∆ = 0.

We observe in Fig. 4.17 that already a small amount of disorder in the fre-
quencies, namely W/ω0 = 0.02 which corresponds to a 1% deviation, closes
the band gap. In contrast with what we observed for the positional disor-
der in Fig. 4.16, here the edge state localization is completely destroyed by
the closing of the band gap, and when the edge states merge into the dipo-
lar bands, no residual edge localization is found. This can be understood
by the fact that, unlike positional disorder which preserved chiral symmetry,
frequency disorder destroys all the symmetries of the Hamiltonian. Conse-
quently, both the edge states and the bulk bands are affected in the same
manner by the frequency disorder.
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Figure 4.17: Effect of frequency disorder. Same quantities as
in Fig. 4.16, but now as a function of the frequency disorder
strength W/ω0. In the figure, the dimensionless positional dis-
order strength ∆ = 0, the dimerization parameter ε = 0.1, the
cavity height Lx = 10a, a chain of N = 100 dimers has been
considered, and the data have been averaged over 100 disorder

realizations.

4.8 Influence of the cavity walls

As presented in Sec. 4.2, we considered here a finite dipolar chain embedded
in an infinite waveguide cavity. This amounted to consider a distance to
the cavity walls dcav → ∞, and is motivated by the fact that we are here
interested in edge states, forming at the two ends of the dipolar chain, so that
we want to avoid any possible boundary effect of the cavity walls in the z
direction.

In a previous study of an SSH dipolar chain coupled to a multimode cavity
[136], the authors considered a finite cuboidal cavity, with perfect mirrors in
the z direction located at a distance dcav = d − d1/2 of the two ends of the
emitter array.

In this section, we demonstrate that such a distance to the cavity walls has
a crucial impact on the formation of polaritonic edge states. Indeed, while
the bulk spectra are the same, the polaritonic edge states we studied in this
chapter are of a different nature from those observed in Ref. [136].



142 Chapter 4. Topology and polaritons

4.8.1 Schrieffer-Wolff transformation with a finite cuboidal
cavity

To compare the finite spectrum and eigenstates of a dipolar SSH chain in
an infinite waveguide cavity which we studied in Secs. 4.5, 4.6, and 4.7, to
the ones of a dipolar SSH chain in a finite cuboidal box cavity, as studied
in Ref. [136], we need to establish comparable models. To this aim, we start
by deriving an effective Hamiltonian using a cuboidal cavity, akin to the ef-
fective Hamiltonian derived for the waveguide cavity in Sec. 4.2.2. More-
over, alongside this whole section, we neglect Umklapp processes, as they
do not modify substantially the properties of the eigenspectrum and eigen-
states, and were not considered in Ref. [136].

By adapting to the dipolar SSH chain (4.17) the formalism describing the
light-matter coupling to a finite cuboidal cavity presented in Sec. 2.4, we ob-
tain the Hamiltonian

H�pol = h̄ω0

N
∑

m=1

(
a†

mam + b†
mbm

)
+ h̄Ω

N
∑

m,m′=1
gm−m′

(
a†

m bm′ + am b†
m′

)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)

fm−m′
(

a†
m am′ + b†

m bm′ + am a†
m′ + bm b†

m′

)

+ ih̄
N
∑

m=1

Nz

∑
nz=1

[
ξ A,�

mnz

(
a†

mcnz − amc†
nz

)
+ ξB,�

mnz

(
b†

mcnz − bmc†
nz

)]

+
Nz

∑
nz=1

h̄ω
ph
nz c†

nz cnz , (4.69)

with the dipolar coupling strength Ω [Eq. (2.23)], the bare dipolar intra- and
inter-sublattice sums fm−m′ and gm−m′ [Eq. (4.18)], and the photonic disper-
sion ω

ph
nz [Eq. (2.48)]. In the above expression, the mode-dependent light-

matter coupling functions acting on the A and B sublattices are

ξ A,�
mnz = ω0

√√√√ 4πa3ω0

LxLyLzω
ph
nz

sin
(

πnz

Lz
zA

m

)
(4.70a)

and

ξB,�
mnz = ω0

√√√√ 4πa3ω0

LxLyLzω
ph
nz

sin
(

πnz

Lz
zB

m

)
, (4.70b)

which depend, notably, on the coordinate zA
m or zB

m, given in Eq. (4.27), and
on the cavity length Lz = (N − 1)d + d1 + 2dcav. We recall that the number
of photonic modes Nz is chosen such that the largest photonic wavenumber
is max(kz) = πNz/Lz = π/d. This amounts to neglect Umklapp processes.
Here, for non-integer values of Nz, we truncate to Nz = bLz/dc, with the
help of the floor function bxc.
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Performing next a Schrieffer-Wolff transformation, as done in Sec. 4.2.2,
and focusing on the renormalized dipolar subspace, we obtain the effective
Hamiltonian

H̃RWA,�
dp =

N
∑

m=1

(
h̄ω̃A,�

m a†
mam + h̄ω̃B,�

m b†
mbm

)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)

[
f̃ A,�
m−m′

(
a†

m am′ + H.c.
)
+ f̃ B,�

m−m′

(
b†

m bm′ + H.c.
)]

+ h̄Ω
N
∑

m,m′=1
g̃�m−m′

(
a†

m bm′ + H.c.
)

. (4.71)

Here, the onsite frequency ω0 and the intra- and intersublattice sums fm−m′

and gm−m′ are renormalized by the cavity photons [compare with Eq. (4.17)]
as

ω̃A,�
m = ω0 −

Nz

∑
nz=1

(
ξ A,�

mnz

)2

ω
ph
nz −ω0

, (4.72a)

ω̃B,�
m = ω0 −

Nz

∑
nz=1

(
ξB,�

mnz

)2

ω
ph
nz −ω0

, (4.72b)

f̃ A,�
m−m′ = fm−m′ −

1
Ω

Nz

∑
nz=1

ξA,�
mnz ξ A,�

m′nz

ω
ph
nz −ω0

, (4.72c)

f̃ B,�
m−m′ = fm−m′ −

1
Ω

Nz

∑
nz=1

ξB,�
mnz ξB,�

m′nz

ω
ph
nz −ω0

, (4.72d)

and

g̃�m−m′ = gm−m′ −
1
Ω

Nz

∑
nz=1

ξ A,�
mnz ξB,�

m′nz

ω
ph
nz −ω0

. (4.72e)

We note that, in contrast to the renormalization induced by a waveguide cav-
ity [cf. Eq. (4.57)], here the A and B sites are modified unevenly, resulting in
an asymmetry between the two sublattices and a formal lack of inversion
symmetry within a single unit cell. This is in stark contrast to the effective
Hamiltonian (4.36) of a finite chain in a waveguide cavity, which presents an
inversion symmetry within each unit cell, in the sense that the same on-site
frequency is associated to the A and B dipole sites of a given dimer, as it is
the case when considering the thermodynamic limit for the bulk Hamilto-
nian [see the equal diagonal elements of the Bloch Hamiltonian Eq. (4.56)].

This observation highlights the fact that considering a cuboidal cavity to
study the real-space finite polaritonic SSH model, as done in Ref. [136], may
be misleading. Indeed, the real-space Hamiltonian with a cuboidal cavity
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Figure 4.18: Onsite frequency renormalization. (a) Detun-
ing (ω̃A,�

m − ω̃B,�
m )/ω0 between the renormalized frequencies

on the sites A and B [given, respectively, in Eqs. (4.72a) and
(4.72b)] of a given dimer m along the chain, illustrating the ef-
fect of the cavity walls in the z direction. (b) Value of the renor-
malized frequency on the sites A, ω̃A,�

m in units of ω0 and as a
function of the dimer number m along the chain. In both pan-
els, increasing values of the distance to the cavity walls dcav are
considered. The chain under consideration in the figure is com-
prised of N = 100 dimers, has a dimerization ε = 0.25, and is

embedded in a cavity of height Lx = 10a.

lacks, at least perturbatively, the same symmetries as the equivalent Fourier-
transformed polaritonic SSH model. Therefore, comparing the edge prop-
erties of the real space Hamiltonian (4.71), which presents a site-dependent
offset between the A and B on-site frequencies, with the bulk properties of
the Fourier space Hamiltonian (4.56), which has no such offset, may be am-
biguous. This potential issue supports our choice of using an infinite waveg-
uide cavity, which allows for an unambiguous comparison between Fourier-
transformed and real-space Hamiltonians.
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4.8.2 Effect of the distance to the cavity walls dcav

To investigate the influence of the distance to the cavity walls dcav on the
effective Hamiltonian (4.71), we examine in detail the renormalized onsite
frequencies ω̃A,�

m and ω̃B,�
m .

In Fig. 4.18(a), we display the difference between the renormalized frequen-
cies on the sites A and B of a given dimer m, ω̃A,�

m − ω̃B,�
m , in units of ω0 and

as a function of the dimer number m along the chain. Looking at the solid
line, which represents the case dcav = d− d1/2 considered in Ref. [136], we
observe a negligible difference for the dimers in the bulk of the chain, but
a sizeable one on the edges. Increasing the distance to the cavity walls to
dcav = 3d (dashed line) and dcav = 10d (dotted line) results in the detun-
ing between the A and B sites to fade out, so that the limit of a waveguide
cavity is restored with walls in the z direction far enough from the ends of
the chain. Furthermore, one observes a symmetry of Fig. 4.18(a) around the
center of the chain, showing that inversion symmetry of the whole system,
i.e., the symmetry between a site A of one end and a site B of the other end,
is still present.

By studying the value of the renormalized onsite frequency ω̃A,�
m along the

chain in Fig. 4.18(b), we similarly observe a drastic dissimilarity between the
bulk and the edges of the chain. Considering a distance dcav = d− d1/2 as
in Ref. [136] almost does not alter the bare onsite frequencies at the edges,
as visible through the green solid line which almost reaches the point where
ω̃A,�

m = ω0 in the first dimers of the chain. Increasing the distance dcav to
3d (dashed line) and 10d (dotted line) increases the renormalization, and ulti-
mately leads to recover the renormalized onsite frequency ω̃=

0 obtained using
the infinite waveguide cavity in Sec. 4.2.3, and depicted as a red solid line in
the figure.

The difference between the edge and bulk behavior of the renormalization on
the onsite frequencies illustrates in a clear manner the influence of the cavity
walls in the z direction. Indeed, the walls reduce the effect of the strong light-
matter coupling on the edges of the chain.

Moreover, the dissimilarity between the cavity-induced renormalized onsite
frequencies in the bulk and edges of the chain may be similar in consequences
to a defect at the edges. Such kind of defect at the end of a one-dimensional
system is known to lead to the presence of Tamm edge states. Interestingly,
such Tamm edge states have been previously identified in Ref. [179] in a reg-
ular chain embedded in a closed cuboidal cavity using a similar model as the
one employed here, but with walls in the z direction in close proximity with
the ends of the chain. We verified that Tamm states are also present in the
dimerized chain under study here, provided that we consider a closed box
cavity. Indeed, using an infinite waveguide cavity as done in Secs. 4.5, 4.6,
and 4.7 suppresses the impact of the walls in the z direction, and the system
does not host any Tamm edge states. As they constitute a boundary effect
only, we will not discuss Tamm states further in this manuscript.
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Figure 4.19: Influence of dcav. Eigenspectrum as a function of
the cavity height Lx/a, with a dimerization ε = 0.25. The color
associated to each eigenstate n indicates the logarithm of its
probability density on the first site |Ψ1(n)|2. A reddish (bluish)
color denotes a state highly (poorly) localized on the edges of
the chain. Panels (a)-(e), computed from the effective Hamil-
tonian (4.71) that considers a finite cuboidal cavity, show in-
creasing distances to the cavity walls dcav, with panel (a) corre-
sponding to the case considered in Ref. [136]. Panel (f) presents
the case of an infinite waveguide cavity, and is computed from
the effective Hamiltonian (4.36) with the l = 0 Umklapp index

only.
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To explore how the boundaries of the cavity affect the eigenstates and espe-
cially the polaritonic edge states of the Hamiltonian (4.71), we numerically
diagonalize the latter considering a dimerization ε = 0.25, and several val-
ues of the distance to the cavity walls dcav. For each value, we compute the
eigenfrequencies ω̃

pol
n as a function of the cavity height Lx, as we have done

in Fig. 4.10(a). The results are presented in Fig. 4.19. To identify edge localiza-
tion, a colorcode indicates the logarithm of the probability density |Ψ1(n)|2
of an eigenstate n on the first site of the chain, from blue (not localized on the
edges) to red (highly localized on the edges).

In panel (a) of Fig. 4.19, we consider a distance dcav = d− d1/2, as done in
Ref. [136]. With walls that close from the ends of the chain, edge states can
localize not only on the dipoles, but also on the cavity walls, so that they are
less affected by the strong light-matter coupling, and to diffuse much less in
the bulk. This leads, in the strong-coupling regime, to a persistence of the
edge states (see the straight red line) and to very few polaritons inheriting
edge localization.

Finally, increasing such a distance from dcav = d + d1/2 in Fig. 4.19(b) to
dcav = 10d in Fig. 4.19(e) makes visible an enhancement of the diffusion of
edge states into bulk polaritons in the strong-coupling regime, through the
spreading of a red spot in the eigenspectrum. Therefore, moving away the
cavity walls in the z direction leads to the formation of a growing number of
polaritonic edge states, and to all the exotic properties which we discussed in
Sec. 4.5. In Fig. 4.19(f), we show for comparison the results we obtained using
our waveguide cavity approach [as in Fig. 4.10(a)8]. The eigenspectrum is
undistinguishable from Fig. 4.19(e), demonstrating that as long as dcav & 10d
the boundary effects are insignificant, and the two approaches lead to the
same eigenspectrum and localization properties.

4.9 Conclusions to Chapter 4

In summary, in this chapter we have analyzed in detail the effect of strong
light-matter coupling on topological edge states, studying the eigenspec-
trum, the eigenstates, as well as the transport properties of a bipartite chain
of emitters (modelled as point dipoles) strongly coupled to a multimode
waveguide cavity. Such a system mimicks a variation of the celebrated two-
band Su-Schrieffer-Heeger model, with the addition of an effective dipole-
dipole coupling mediated by the cavity photons. We have found such cavity-
mediated coupling to take the form of an exponential decay whose decay
length increases as one enters in the strong-coupling regime.

We have shown that the effect of the strong light-matter coupling is to hy-
bridize and redshift the bright dipolar band into a polaritonic one, which

8Incidentally, we note that in Fig. 4.10(a), in contrast to Fig. 4.19(f), Umklapp processes
are took into account. By comparing the two figures, one observes the very weak effect of
Umklapp processes on the eigenspectrum.
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strongly breaks the chiral symmetry of the model, and which closes the en-
ergy gap and lead the system to become metallic. In this regime, a cavity-
induced topological phase transition, i.e., a change in the bulk topological
invariant of the system, is observed. We find that such a transition, which
takes place in a gapless regime, is not associated with the appearance nor
disappearance of edge states, leading the bulk-edge correspondence not to
be fulfilled.

In the topological sector of the original SSH model, the strong-coupling
regime leads the in-gap edge states to merge into the polaritonic bulk band.
We have unveiled that even if the formal in-gap edge states are thus de-
stroyed, all the polaritons entering in resonance with the edge states inherit
part of their localization properties. Edge localization in then diffused into
multiple polaritonic edge states that keep a delocalized bulk part and cover a
wide frequency range. Our results highlight the peculiar properties of these
polaritonic edge states, in particular, these latter taking advantage of their
polaritonic nature to allow efficient energy transport between the two ends
of the chain. Moreover, the broadening of the edge state frequency band
makes them sensitive to a wide range of driving frequencies. These two un-
usual cavity-induced effects on topological edge states may facilitate their
experimental detection.

Furthermore, by studying the impact of disorder on the interdipole spacings,
we have demonstrated the tolerance of the polaritonic edge states to disorder.
Thanks both to their polaritonic nature and topological origin, polaritonic
edge states being reminiscent of the symmetry-protected edge states of the
original SSH model, they can survive at high levels of off-diagonal disorder.
Finally, we compared our model of a waveguide cavity to the one of a closed
cuboid cavity considered in Ref. [136], and unveiled the major influence of
cavity walls in the z direction, the latter significantly altering the nature of
the edge states present in the system.

Our model, allowing a detailed numerical and partly analytical understand-
ing of the strong light-matter coupling effects on topological edge states,
could constitute a building block of a more general theory of topological po-
laritonics, essential to the successful implementation of topological photonic
technologies. A direct and attractive extension of our present model is its
generalization to ultra- and deep-strong light-matter couplings, these latter
allowing surprising quantum effects [149, 151, 237].
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APPENDICES TO CHAPTER 4

4.A Beyond the single cavity band approximation

To ascertain the validity of the single cavity band approximation, which we
introduced in Sec. 2.3.1 and consider throughout the manuscript, we investi-
gate in this appendix the eigenspectrum of the polaritonic SSH Hamiltonian
when considering the coupling of two different cavity bands to dipolar ex-
citations. Taking into account the (nx, ny) = (0, 3) cavity photon band, the
photonic Hamiltonian (2.33) becomes

H
ny={1,3}
ph = ∑

q

(
ω

ph
q c†

qcq + ω
ph,ny=3
q c†

q,ny=3cq,ny=3

)
, (4.73)

with the single cavity band photon dispersion ω
ph
q given in Eq. (2.34), and

where the bosonic ladder operator c†
q,ny=3 (cq,ny=3) creates (annihilates) a cav-

ity photon excitation with longitudinal wavenumber q and frequency

ω
ph,ny=3
q = c

√(
3π

Ly

)2

+ q2. (4.74)

The full polaritonic Hamiltonian (4.31) then becomes

H∞
pol,ny={1,3} = ∑

q
ϕ

ny={1,3}
q

†
Hpol,ny={1,3}

q ϕ
ny={1,3}
q , (4.75)
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Figure 4.20: Validity of the Schrieffer-Wolff effective Hamil-
tonian. Solid lines: Lowest MP (j = 2) and LP (j = 3) bands
of the full polaritonic dispersion ω

pol
qj [see Eq. (4.48)]. Dashed

lines: Lower (τ = −) and upper (τ = +) bands of the effec-
tive dispersion ω̃

dp
qτ [see Eq. (4.58)]. Two different cavity heights

Lx = 9a and Lx = 10a are considered in panels (a) and (b), and
in both panels the dimerization ε = 0.25.

where we use here the basis ϕ
ny={1,3}
q = (aq, bq, cq, cq,ny=3), and where the

4-band Bloch Hamiltonian reads

Hpol,ny={1,3}
q = h̄




ω
dp
q + Ω fq Ωgq iξqe−iχq −iξ

ny=3
q e−iχq

Ωg∗q ω
dp
q + Ω fq iξqeiχq −iξ

ny=3
q eiχq

−iξqeiχq −iξqe−iχq ω
ph
q 0

iξ
ny=3
q eiχq iξ

ny=3
q e−iχq 0 ω

ph,ny=3
q




.

(4.76)
In the above Bloch Hamiltonian, the light-matter coupling strength associ-
ated to the (nx, ny) = (0, 3) cavity mode reads

ξ
ny=3
q = ω0

√√√√ 2πa3ω0

LxLydω
ph,ny=3
q

. (4.77)

A numerical diagonalization procedure allows one to obtain the 4-band dis-
persion of the Hamiltonian (4.76). We verified that the three lowest bands
of such a 4-band dispersion are almost indistinguishable from the 3-band
dispersion Eq. (4.48). This supports our use of the single cavity band approx-
imation all along the manuscript.

4.B Validity of the effective two-band Hamilto-
nian

In this appendix, we verify the validity of the effective bipartite Hamilto-
nian (4.36) derived in Sec. 4.3.2. To this end, we compare in Fig. 4.20 the full
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polaritonic bandstructure ω
pol
qj [see Eq. (4.48)], represented as solid lines, to

the effective two-band dispersion ω̃
dp
qτ [see Eq. (4.58)], represented as dashed

lines and obtained by an integration of the cavity degrees of freedom. In the
figure, the dimerization ε = 0.25.

In Fig. 4.20(a), with a cavity height Lx = 9a, the two effective bands ω̃
dp
q,τ=±

(dashed lines), and the two lowest polaritonic ω
pol
q,j=2 (MP) and ω

pol
q,j=3 (LP)

bands are in almost perfect agreement. As highlighted in the inset, the ef-
fective dispersion slightly overestimates the band renormalization around
the center of the Brillouin zone, induced by the strong-coupling regime and
originating from the avoided crossing scheme with the photonic band. This
overestimation gets worse in Fig. 4.20(b), in which the cavity height is in-
creased to Lx = 10a, and thus approaches the value LSW

x /a = π/3k0a ' 10.5
for which the bare photonic and dipolar dispersions are in resonance so that
the Schrieffer-Wolff transformation breaks down. Indeed, the lowest eigen-
frequency of the effective Hamiltonian, ω̃

dp
q=0,τ=− ' 0.92ω0, while the one

of the full polaritonic Hamiltonian ω
pol
q=0,j=3 ' 0.97ω0. The Schrieffer-Wolff

transformation therefore induces an exaggeration of the effects of the cavity,
mimicking a larger value of the cavity height Lx/a.

While the effective Hamiltonian thus does not quantitatively reproduce the
bandstructure for cavity heights Lx approaching LSW

x , the qualitative behav-
ior is well replicated, and considering Lx = 10a in the effective model just
amounts to consider Lx ' 11a in the full polaritonic model. This validation
of the Schrieffer-Wolff transformation justifies our use of the effective Hamil-
tonian (4.36) in this chapter, and the case Lx = 10a is considered as the upper
bound of the effective model.

4.C Effect of image dipoles

Throughout all this manuscript, we neglected the effect of image dipoles oc-
curing from the cavity walls that are treated as perfectly reflecting mirrors.
Indeed, in order for the electric potential to be vanishing on the cavity walls,
which we consider as perfectly conducting metallic plates, effective, or “im-
age” dipoles must be considered. The latter are located outside of the cavity
and serve the only purpose of satisfying the proper boundary conditions of
the Poisson problem under consideration [119].

These additional dipoles couple to the real ones inside the cavity, and there-
fore induce a renormalization of the quasistatic dipolar eigenfrequencies.
While such a modification of the quasistatic dispersion is irrelevant in the
case of the disordered polaritons studied in Chap. 3 – all the observed effects
originating solely from the light-matter coupling – it could in principle be of
importance in the context of the Su-Schrieffer-Heeger model studied in this
Chapter, as the quasistatic dispersion hosts the topology of the model.
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In this appendix, we thus consider the image dipoles originating from the
waveguide cavity sketched in Fig. 4.5, and demonstrate that they are not
important for the regime of parameters considered in this study.

In the presence of the cavity walls, the quasistatic dipolar Hamiltonian in the
rotating wave approximation (4.17) transforms into

HRWA
dp,im = HRWA

dp + Hx
im + Hy

im, (4.78)

where the contribution of image dipoles originating from walls in the σ =
{x, y} direction reads

Hσ
im =

N
∑

m=1

N
∑

m′=1
∑
s

∑
s′

∑
k∈Z∗

ps
m · p̃

σ,s
m′k − 3

(
ps

m · n̂
σ,ss′
mm′k

) (
p̃σ,s′

m′k · n̂
σ,ss′
mm′k

)

2
∣∣∣rs

m − Rσ,s′
m′k

∣∣∣
3 .

(4.79)
Such a Hamiltonian is simply the sum of the Coulomb potential energy be-
tween all real and image dipoles, where one notes that the latter energy is
half the one between real dipoles [238].

In the above Hamiltonian (4.79), the index m labels the unit cell comprising
each pair of dipoles, and the index s = {A, B} the corresponding sublattice.
The position vector rs

m gives the location of a real dipole, as given in Eq. (4.26),
while image dipoles induced by the x and y cavity walls are located, respec-
tively, at the positions

Rx,s
mk =

(
(2k + 1)

Lx

2
,

Ly

2
, zs

m

)
, (4.80a)

and

Ry,s
mk =

(
Lx

2
, (2k + 1)

Ly

2
, zs

m

)
, (4.80b)

with the index k ∈ Z∗ labelling the image dipole σ coordinate, and where
zs

m being given in Eqs. (4.27). Furthermore, the unit vector n̂σ,ss′
mm′k = (rs

m −
Rσ,s′

m′k)/|rs
m − Rσ,s′

m′k|.
All the real dipoles inside the cavity are polarized along the x axis, so that
their dipole moments ps

m = −Qhs
m x̂ , where −Q is their effective charge, and

hs
m their displacement field. The polarization of the image dipoles, however,

depend on the cavity mirror location. Indeed, on the one hand, the reflection
of x-polarized dipoles on the cavity walls in the x direction induce image
dipoles which are also polarized along the x direction, so that their dipole
moments are p̃x,s

mk = −Qhs
m x̂. On the other hand, the cavity walls in the y

direction induce image dipoles with alternating opposite polarization signs,
so that their moments read p̃y,s

mk = −(−1)kQhs
m x̂.



4.C. Effect of image dipoles 153

The contributions from the walls in the x and y directions therefore read

Hx
im =

Q2

2

N
∑

m=1

N
∑

m′=1
∑
s

∑
s′

∑
k∈Z∗

hs
m hs′

m′

1− 3 (kLx)2

(kLx)2+(zs
m
−zs′

m′ )
2

[
(kLx)2 + (zs

m − zs′
m′)

2
]3/2 , (4.81a)

and

Hy
im =

Q2

2

N
∑

m=1

N
∑

m′=1
∑
s

∑
s′

∑
k∈Z∗

hs
m hs′

m′
(−1)k

[
(kLy)2 + (zs

m − zs′
m′)

2
]3/2 , (4.81b)

respectively. Using the quantization scheme for the displacement hs
m given

in Eq. (2.20), and discarding counter-rotating terms, one can then write the
dipolar Hamiltonian renormalized by the cavity mirrors in the rotating wave
approximation as

HRWA
dp,im = h̄ωim

0

N
∑

m=1

(
a†

mam + b†
mbm

)
+ h̄Ω

N
∑

m,m′=1
gim

m−m′

(
a†

m bm′ + am b†
m′

)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)

f im
m−m′

(
a†

m am′ + b†
m bm′ + am a†

m′ + bm b†
m′

)
. (4.82)

Such a renormalized Hamiltonian has the exact same form as the quasistatic
Hamiltonian in the absence of the mirrors [compare with Eq. (4.17)]. How-
ever, the change of boundary conditions induced by the consideration of
metallic cavity walls leads the bare frequency ω0, as well as the intra- and
inter-sublattice couplings fm−m′ and gm−m′ [given in Eqs. (4.18)] to be modi-
fied as

ωim
0 = ω0

[
1− 2

(
a

Lx

)3

ζ (3)− 3
4

(
a

Ly

)3

ζ (3)

]
, (4.83a)
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 , (4.83b)
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and

gim
m−m′ = gm−m′
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 , (4.83c)

respectively. Here, the typical dipole length scale a is defined in Eq. (2.7),
while ζ(3) ' 1.202 is Apéry’s constant. From these expressions, one can al-
ready understand the effect of image dipoles on the system. We expect the
influence of image dipoles to become increasingly noticeable as the size of
the cavity is reduced. Indeed, the closer the mirrors are, the closer are im-
age dipoles from real dipoles, and thus the stronger is the real-dipole-image-
dipole coupling. In our model, we fixed the cavity width Ly to Ly = 3Lx.
Therefore, the dominant contribution of image dipoles should originate from
mirrors in the x direction.

This is what we observe in the expressions (4.83), as the second terms in the
r.h.s. of Eqs. (4.83) account for the mirror in the x direction, while the third
terms account for the mirror in the y direction. The renormalization of the
bare frequency in Eq. (4.83a) increases as Lx/a and Ly/a decrease, while the
renormalization of the dipole-dipole couplings Eqs. (4.83b) and (4.83c) in-
creases as Lx/d and Ly/d decrease. While the bare frequency ω0 is redshifted
by image dipoles, the dipole-dipole couplings Eqs. (4.83b) and (4.83c) are
reduced, the cavity mirrors screening the quasistatic Coulomb interaction.
Therefore, the consideration of a small cavity leads to effectively increasing
the distance between neighboring emitters, decreasing the quasistatic dipole-
dipole coupling.

Considering now the light-matter coupling between the cavity photons and
the dipolar excitations, as presented in Sec. 4.2.1, and performing a Schrieffer-
Wolff transformation to isolate perturbatively the dipolar subspace, as de-
tailed in Sec. 4.2.2, we obtain the effective bipartite Hamiltonian

H̃RWA,im,=
dp = h̄ω̃im,=

0

N
∑

m=1

(
a†

mam + b†
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)

+
h̄Ω
2

N
∑

m,m′=1
(m 6=m′)
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(
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m bm′ + H.c.

)

+ h̄Ω
N
∑

m,m′=1
g̃im,=

m−m′

(
a†

m bm′ + H.c.
)

. (4.84)
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Here, the onsite frequency ω0 and the intra- and intersublattice sums fm−m′

and gm−m′ are renormalized both by the image dipoles and cavity photons
[compare with Eq. (4.17)] as

ω̃im,=
0 = ωim

0 −
d

2π

+∞

∑
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∫ +π/d

−π/d
dq
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ω
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, (4.85a)
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and
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ph
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. (4.85c)

Using the thermodynamic limit N � 1 and going into reciprocal space
through the Fourier transforms (4.4), one then obtains the effective two-band
Bloch Hamiltonian

Hdp,im
q = h̄

(
ωim

0 + Ω f̃ im
q Ωg̃im

q
Ωg̃im

q
∗

ωim
0 + Ω f̃ im

q

)
. (4.86)

The Bloch Hamiltonian (4.86) has the exact same form as the one derived
in Sec. 4.3.2 [cf. Eq. (4.56)], except that the cavity-renormalized intra- and
inter-sublattices f̃ im

q and g̃im
q are here additionally renormalized by the image

dipoles, and read, respectively,

f̃ im
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∑
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, (4.87a)

and
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ω
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, (4.87b)
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with the dipolar lattice sums only renormalized by image dipoles being given
by
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. (4.88b)

We note that in the absence of the waveguide cavity, such dipolar lattice
sums in Fourier space are given in Eqs. (4.20).

A Bogoliuobov transformation of the effective Bloch Hamiltonian (4.86) leads
to the eigenfrequencies

ω̃
dp,im
qτ = ωim

0 + Ω f̃ im
q + τ Ω|g̃im

q |, (4.89)

where τ = + (−) denotes the high- (low-)energy band.
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Figure 4.21: Effect of image dipoles on the polaritonic disper-
sion. Comparison between the effective polaritonic dispersion
with image dipoles ω̃

dp,im
qτ [panels (a)-(c)] and without image

dipoles ω̃
dp
qτ [panels (d)-(f), which reproduce Fig. 4.7]. In the

figure, the dimerization parameter ε = 0.25, the lattice con-
stant d = 8a, and the Umklapp index l ∈ [−lmax,+lmax] with

lmax = 100.

We plot the effective polaritonic dispersion (4.89) in Figs. 4.21(a)-(c), for in-
creasing cavity heights Lx = 7a, Lx = LZak

x , and Lx = 10a, where LZak
x is

defined as the height corresponding to the closing of the gap at q = 0. We
compare these bandstructures to the one obtained neglecting image dipoles,
as done in Fig. 4.7, and here reproduced in Figs. 4.21(d)-(f). As anticipated,
the effect of image dipoles on the eigenspectrum is almost unperceptible
for cavity heights Lx > d [compare Figs. (4.89)(b)-(c) and Figs. (4.89)(e)-(f)].
A slight redshifting is however visible for Lx = 7a [compare Fig. (4.89)(a)
and Fig. (4.89)(b)], along with a reduction of the bandwidth. Such a band-
width narrowing reflects the decrease of the quasistatic dipole-dipole cou-
pling. One also note the slight modification of the cavity height associated to
LZak

x .

Similar conclusions on the influence of image dipoles on the eigenspectrum
can be made analyzing the finite polaritonic spectrum ω̃

dp,im
n , by numerically
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Figure 4.22: Effect of image dipoles on the finite polaritonic
eigenspectrum. Same quantities as plotted in Fig. 4.10(a), but
here including the effect of image dipoles. The dimerization
parameter is fixed to ε = 0.25, and a finite chain of N = 100

dimers is considered.

diagonalizing the Hamiltonian Eq. (4.84). The results of such a diagonaliza-
tion for a finite chain of N = 100 dimers are shown in Fig. 4.22, in which the
eigenfrequencies are plotted as a function of the cavity height Lx, with a col-
orcode indicating the logarithm of the probability density on the first site of
the chain of each eigenstate. The same quantities have been shown neglect-
ing image dipoles in Fig. 4.10. Comparing Figs. 4.22 and 4.10, one notices the
increasing redshift and bandwidth narrowing of the spectrum as the cavity
height is reduced.

From this eigenspectrum analysis in both Fourier and real space, we con-
clude on the validity of the neglection of image dipoles. Indeed, aside from
a slight quantitative renormalization of the eigenfrequencies, no qualitative
changes are found for the cavity heights under consideration in this work.
We verified from a computation of the Zak phase (4.63) that the topological
invariant is not modified either. We note, however, that for extremely small
cavity heights Lx . d1,2, which we do not consider in this work, perceptible
modifications originating from image dipoles are found. Notably, the band-
width narrowing induced by the consideration of image dipoles leads to an
additional bandgap closing and re-opening at q = 0 for very small cavity
heights Lx between 2a and 5a. Such bandgap closing and re-opening is asso-
ciated with a change of topological invariant, as well as with the appearance
and disappearance of edge states. Indeed, such image-induced topological
phase transition occurs in a system in an “insulating” phase, i.e., with a finite
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Figure 4.23: Effect of image dipoles on edge state transport.
Same quantities as plotted in Fig. 4.14, but here including the ef-
fect of image dipoles. Panels (a) and (b) correspond to a dimer-
ization parameters ε = +0.25 and ε = −0.25, respectively,
while the red (blue) symbols correspond to transport in the
weak- (strong-)coupling regime, with a cavity height Lx = 7a
(Lx = 10a). The propagation results from a monochromatic
drive on the first dipole site at a frequency ωd = 0.990ω0. The
chain is comprised of N = 100 dimers with damping rates

γ = 0.002ω0.

energy gap, so that the bulk-edge correspondence is valid. This is in contrast
to the light-matter coupling-induced topological phase transition studied in
Sec. 4.4, which occurs in a “metallic” phase, and for which we observed a
change of topological invariant which is not associated to the appearance
nor disappearance of edge states.

Finally, to conclude our discussion on the validity of the neglection of im-
age dipoles, we study the transport properties of the edge states through a
driven-dissipative scenario, as we have done in Sec. 4.6.
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Fig. 4.23 displays our results for the steady-state amplitude of the dipole mo-
ment pim

i as a function of the dipole site i, when considering the full Hamil-
tonian (4.84). The parameters are the same as in Fig. 4.14, which shows the
same quantities but without considering the effect of image dipoles. Compar-
ing Figs. 4.23 and 4.14, we observe that all the qualitative transport features
are the same. Indeed, the two regimes of transport – a cavity-induced expo-
nential decay whose decay length depends on the cavity height, followed by
an algebraic tail with a 1/r3 power-law – are still present.

On the one hand, one observes that the effect of image dipoles on the po-
laritonic transport (blue lines) are unperceptible. On the other hand, in the
weak-coupling regime (red lines), image dipoles remove the unphysical os-
cillations between the exponential and algebraic regimes, smoothening the
curves, and allow the exponential decay to be neater (a tidy, straight line in
the log-lin plot of Fig. 4.23). We therefore conclude that the inclusion of im-
age dipoles in our model only leads to quantitative changes in the edge state
transport properties, so that their neglection is justified in order to simplify
our model, as our goal is to provide a model which is as simple as possi-
ble, analytically tractable, and that allows for not resource-hungry numerical
computations.
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GENERAL CONCLUSIONS AND OUTLOOK

In this thesis work, we have endeavored to contribute to the understand-
ing of the influence of the strong light-matter coupling regime on two ma-
jor fields of condensed matter physics: disordered systems and topological
phases of matter. To this end, we investigated the strong-coupling between
a multimode optical cavity and, firstly, a one-dimensional disordered sys-
tem in Chap. 3, and secondly, a one-dimensional topological system hosting
topological edge states in Chap. 4.

In both cases, we unveiled a tremendous impact of the strong light-matter
coupling on the system properties. In particular, we demonstrated the im-
portance of considering a multimode and dispersive cavity, and disclosed
that the specific effect of the strong-coupling of a chain of dipolar emitters to
such a cavity is an effective, photon-mediated, dipole-dipole coupling which
decays exponentially.

This photon-mediated coupling serves as the underlying mechanism for
most of the cavity-induced physical effects reported in this thesis. Indeed,
such an effective coupling is visible through the transport characteristics
along the system as an additional exponential decay, which follows the first
one induced by the nearest-neighbor quasistatic dipolar coupling. Most im-
portantly, its steepness is directly related to the light-matter coupling and to
the hybridization of the eigenstates between photonic and dipolar degrees
of freedom. The larger the photonic part of the polaritonic eigenstate is, the
poorer its short-range propagation, but the more flat this second exponential
regime, so that energy transport over longer distances is made possible by
the strong-coupling regime.

In Chap. 3, it is precisely this additional regime of exponential decay that en-
ables the phenomenon of cavity-enhanced transport of polaritons. Moreover,
along with the disorder-induced hybridization of dark states into polaritons,
it gives rise to the emergence of disorder-enhanced transport. In Chap. 4,
the pronounced breaking of the chiral symmetry in the system, which leads
to a cavity-induced topological phase transition characterized by a change of
the system’s topological invariant, and to the hybridization of the edge states
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into polaritonic edge states is also achieved through such a long-range effec-
tive coupling. Besides that, the latter photon-mediated decay plays a crucial
role in enhancing the transport properties of the polaritonic edge states, re-
sulting in efficient end-to-end energy transport within the system.

To conclude this manuscript, the work carried out in the course of this thesis
has also opened up some perspectives and raised new questions.1

In that respect, while our study has been focused on the individual interplay
between disorder and strong coupling, and topology and strong coupling,
it lacks a complete study of the full interplay between disorder and topol-
ogy in a strongly-coupled light-matter system. Indeed, knowing the fasci-
nating link between disorder and topology (see, for instance, the discussion
in footnote 6 on p.11), a specific study of disordered topological polaritons is
particularly exciting. Recent studies investigated in detail the properties of
the disordered SSH model with nearest neighbor coupling only [239], reveal-
ing intriguing disorder-induced topological transitions [240]. The extension
of these studies to the polaritonic SSH model we developed in Chap. 4, in
which we already briefly investigated the effect of disorder in Sec. 4.7, may
constitute an appealing and direct perspective of our work.

Furthermore, another attractive extension of our study would be to inves-
tigate the effect of dimensionality on all the phenomena we observed. In-
deed, while our analysis focused on one-dimensional systems, it is well es-
tablished that both Anderson localization and topological phases of matter
significantly depend on the dimensionality of the system under consider-
ation [22, 46]. Additionally, the impact of light-matter coupling on dipo-
lar emitters can be more pronounced in higher dimensions, in particular in
three-dimensional systems, where the realization of ultra- and deep-strong
light-matter coupling regimes has been successfully achieved solely through
the coupling to the vacuum electromagnetic field [186, 241].

These stronger regimes of light-matter coupling have been shown to give
rise to a host of intriguing phenomena, notably in the context of topologi-
cal phases of matter [207, 237, 242–244], and are now experimentally reach-
able [149, 151]. Importantly, in contrast with the strong-coupling one, the
ultra- and deep-strong coupling regimes may lead to quantum effects. This
highlights an important limitation of our study, namely that our model only
permits investigations up to the strong-coupling regime, and this limitation
was even more apparent in the context of the waveguide cavity examined
in Chap. 4, where some perturbative methods had to be employed. The
development of our theoretical framework in order to incorporate stronger
regimes of light-matter coupling is therefore another appealing perspective,
as it would in addition enable the quantum theory we employ to fully un-
leash its potential.

1In the words of John A. Wheeler: “We live on an island surrounded by a sea of igno-
rance. As our island of knowledge grows, so does the shore of our ignorance.”.
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RÉSUMÉ EN FRANÇAIS

Introduction

La physique de la matière condensée, dont l’origine moderne peut être at-
tribuée aux travaux pionniers d’Einstein sur l’effet photoélectrique [1] et sur
la capacité thermique des solides [2], vise à examiner les propriétés micro-
scopiques et macroscopiques de la matière à partir des effets collectifs d’un
grand nombre de particules, et notamment à étudier les différentes phases de
la matière au sens le plus large. Au cours du XXe siècle, elle est devenue l’un
des domaines les plus prolifiques de la physique, et, pour preuve, la sous-
section “cond-mat” de la plateforme de prépublication arXiv est aujourd’hui
la catégorie de physique la plus active.

Dans le domaine de la matière condensée, deux branches ont particulière-
ment attiré l’attention au cours des cinquante dernières années. La première
est le domaine des systèmes désordonnés, dans lequel l’effet de localisa-
tion d’Anderson a révélé qu’un morceau de matériau métallique peut être
transformé en un isolant par du désordre microscopique, ce dernier con-
duisant à la localisation des fonctions d’onde des électrons. La deuxième
est la physique des phases topologiques de la matière, qui englobe notam-
ment l’emblématique effet Hall quantique entier. Cette branche permit en
particulier de classer rigoureusement les isolants topologiques, des matéri-
aux pouvant se comporter comme isolants dans leur volume, mais comme
métalliques sur leurs surfaces ou bords, grâce à des états de surface ou de
bord topologiques pouvant être protégés par les symétries du matériaux.
L’étude des phases topologiques permit d’expliquer ces nouveaux états de
la matière à travers des concepts empruntés à la topologie.

De façon intéressante, à la fois la localisation d’Anderson et les phases
topologiques de la matière ont la particularité, bien qu’elles aient été
développées à l’origine pour l’étude de systèmes électroniques quan-
tiques, de provenir fondamentalement de phénomènes ondulatoires [3, 4].
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L’émergence de ces effets en physique de la matière condensée est donc le ré-
sultat de la dualité quantique onde-particule des électrons. En effet, la local-
isation d’Anderson et la physique topologique ont été étudiées dans des do-
maines bien au-delà des systèmes électroniques, aussi variés que l’acoustique
[3, 5], les ondes de surface en eau peu profonde [6–8], les atomes froids [9,
10] ou la photonique [11–15].

Un autre domaine qui s’est rapidement développé au cours des dernières
décennies est la physique du couplage fort lumière-matière, qui étudie le
comportement d’excitations hybrides collectives lumière-matière appelées
polaritons. Alors que la matière se couple ordinairement faiblement au
vide électromagnétique, l’utilisation de cavités optiques, c’est-à-dire du
confinement des modes du champ électromagnétique, permet d’amplifier
l’interaction lumière-matière. Une fois dans ce qui est appelé le régime
de couplage fort, il a été démontré que l’hybridation des excitations de la
matière avec les photons permet de modifier significativement les propriétés
des matériaux, notamment par l’intermédiaire d’un couplage à longue portée
entre les degrés de liberté de la matière qui est induit par les photons
[16]. En tant qu’excitations collectives ondulatoires, les polaritons pourraient
en principe être soumis aux phénomènes de localisation d’Anderson, ainsi
qu’aux phénomènes topologiques mentionnés ci-dessus.

L’objectif de cette thèse est de combiner ces trois domaines d’étude actifs
en examinant ce qu’il advient de la localisation d’Anderson ainsi que des
phases topologiques de la matière et de leurs états topologiques de bord as-
sociés, dans le contexte de systèmes lumière-matière fortement couplés. Une
caractéristique particulière de notre approche théorique est de se concentrer
sur des structures unidimensionnelles, et de modéliser le couplage lumière-
matière à l’aide d’un hamiltonien dérivé de manière microscopique qui décrit
des cavités optiques multimodes réalistes.

Afin d’adresser cet objectif, ce manuscrit a été organisé de la façon suivante :

• Le Chapitre 1 a pour but de fournir une introduction préliminaire aux
différents domaines d’étude considérés dans ce manuscrit, à savoir, la
localisation d’Anderson dans les systèmes désordonnés, le concept des
phases topologiques de la matière, et pour finir la physique du cou-
plage fort lumière-matière.

• Le Chapitre 2 est dédié au cadre théorique que nous utilisons pour
modéliser le couplage lumière-matière. À travers une approche hamil-
tonienne dans la jauge de Coulomb, nous dérivons un modèle d’un
réseau unidimensionnel d’émetteurs dipolaires couplés aux modes
électromagnétiques confinés d’une cavité optique multimode.

• Le Chapitre 3 contient nos investigations sur le devenir de la locali-
sation d’Anderson en une dimension dans le régime de couplage fort
lumière-matière. À l’aide du modèle développé dans le Chapitre 2,
nous étudions à la fois le spectre et les propriétés de transport sous
forçage et dissipation d’une chaîne désordonnée de dipôles fortement
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couplés à une cavité multimode. L’un des principaux résultats de ce
chapitre est l’émergence du transport amélioré par le désordre, un
phénomène découlant de l’hybridation induite par le désordre des états
sombres en polaritons.

• Le Chapitre 4 concerne notre étude de l’interaction entre les
phénomènes topologiques et le couplage fort lumière-matière. En
s’appuyant sur la théorie développée dans le Chapitre 2, nous
analysons les propriétés d’une chaîne d’émetteurs dipolaires dimerisée
fortement couplée aux photons de la cavité. Un tel système représente
une variation du célèbre modèle de Su-Schrieffer-Heeger du poly-
acétylène, avec l’ajout d’un couplage dipôle-dipôle effectif médié par
les photons. Nous étudions le spectre du modèle, ses propriétés de
transport sous forçage et dissipation, et en particulier le devenir de
ses caractéristiques topologiques. L’un des principaux résultats de ce
chapitre est l’hybridation des états topologiques de bord originaux en
ce que nous appelons des états de bord polaritoniques, ces derniers
présentant des propriétés inhabituelles et n’émergeant que dans le
régime de couplage fort.

• Enfin, nous tirons des conclusions sur les effets du désordre et de la
topologie dans les systèmes lumière-matière fortement couplés, et nous
plaçons notre travail en perspective, discutant ses limitations et pro-
posant des études futures sur le sujet.

Dans ce résumé de thèse en français, nous présentons succinctement chacun
des quatre chapitres ainsi que la conclusion décrites plus haut, en insistant
en particulier sur les parties introductives, et en reproduisant certains des
résultats les plus significatifs.

1 Préliminaires

1.1 Les systèmes désordonnés et la localisation d’Anderson

La présence inévitable d’impuretés, d’inhomogénéités ou d’irrégularités
rend le désordre omniprésent dans la Nature. Cela fait de la structure
cristalline parfaite l’exception plutôt que la règle, et dans la plupart des cas
réalistes, on doit composer avec une certaine quantité de hasard et de désor-
dre dans son expérience. Parmi de nombreux phénomènes fascinants induits
par le désordre, la localisation d’Anderson, de part son universalité, a con-
duit à son propre domaine actif de recherche.

Dans son travail précurseur publié en 1958 [25], Anderson a considéré un
modèle de liaisons fortes d’un électron se déplaçant dans un réseau désor-
donné. Sur chaque site du réseau, l’électron ressent une énergie potentielle
aléatoire, choisie dans un intervalle de largeur W. Une fois piégé sur un site,
l’électron peut sauter vers le site voisin le plus proche par effet tunnel.
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Figure 1: Localisation d’Anderson. Le panneau (a) montre un
schéma du modèle d’Anderson, tandis que le panneau (b) il-
lustre le phénomène d’interférence sous-jacent à la localisation

d’Anderson. Figure reproduite de la Ref. [28].

Un tel système est esquissé dans la Fig. 1(a). Dans le panneau supérieur, le
réseau a une structure cristalline, de sorte que la propagation de l’électron
est régie par le théorème de Bloch, qui implique une fonction d’onde éten-
due. Dans le panneau inférieur, le paysage de potentiel ressenti par l’électron
est désordonné. Lorsque la force du désordre W est suffisamment grande,
la fonction d’onde se localise exponentiellement dans l’espace, conduisant à
une absence de diffusion et à une suppression totale de la conduction, ren-
dant ainsi le matériau isolant. La vision d’Anderson du comportement d’un
électron dans un potentiel aléatoire contraste ainsi de manière drastique avec
celle de petites particules classiques, pour lesquelles il est bien connu, par ex-
emple à partir des expériences de Jean Perrin, que le désordre conduit à un
mouvement diffusif [29].

Il a par la suite été réalisé que la localisation d’Anderson découle unique-
ment d’un mécanisme subtil d’interférence des ondes, de sorte qu’elle est ap-
plicable à toute onde se propageant dans un milieu désordonné. Dans le cas
des électrons dans les solides, les interférences se produisent entre plusieurs
chemins de diffusion des électrons. Lorsque ces chemins ont des positions
initiales et finales largement séparées, des interférences destructrices se pro-
duisent, piégeant l’électron dans sa position initiale.

Une illustration qualitative de ce phénomène est faite dans la Fig.1(b). Les
lignes rouges verticales représentent le front d’onde d’une onde plane se
propageant dans un milieu avec de nombreuses impuretés, représentées par
des points noirs. Une fois que l’onde plane est diffusée par les impuretés, les
ondelettes sont rediffusées et interfèrent alors de manière cohérente les unes
avec les autres. Pour une quantité suffisamment importante d’impuretés,
l’interférence est destructive dans la direction de propagation, de sorte que
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l’amplitude de la fonction d’onde décroisse exponentiellement.

L’universalité de la localisation d’Anderson en physique des ondes a sus-
cité un regain d’intérêt pour son exploration au cours des dernières décen-
nies. Elle s’est révélée pertinente dans une grande variété de domaines de la
physique classique, de l’acoustique [3] à l’océanographie [6], la photonique
[11], ou même la géologie [33].

L’étude de la localisation d’Anderson dans ces domaines classiques peut né-
cessiter de nouvelles considérations théoriques. Alors que les électrons dans
les solides peuvent être modélisés, sous certaines approximations, avec des
couplages en proches voisins, les systèmes impliquant, par exemple, des ex-
citations polaritoniques donnent lieu à un couplage à plus longue portée,
ce qui pourrait rendre la théorie standard de la localisation d’Anderson in-
adéquate. C’est en partie ce à quoi nous nous attellerons dans le chapitre 3,
où l’accent sera mis sur l’interaction entre le désordre et les polaritons.

1.2 Les phases topologiques de la matière

Le deuxième sujet que nous aborderons dans ce manuscrit concerne la
physique des phases topologiques de la matière. En 1980, une découverte
expérimentale par von Klitzing, Dorda et Pepper [42] d’un phénomène au-
jourd’hui connu sous le nom d’effet Hall quantique entier a révélé qu’un gaz
d’électrons en deux dimensions, soumis à de basses températures et à un
fort champ magnétique perpendiculaire, présentait une conductance de Hall
caractérisée par des paliers quantifiés extrêmement précis, si précis que leur
valeur était jusqu’à récemment utilisée dans un contexte de métrologie. Aux
limites de ce gaz d’électrons bidimensionnel, des états de bord chiraux ont
été prédits, permettant au matériau de manifester des propriétés métalliques
à ses bords, bien qu’étant isolant dans son ensemble [43]. De manière re-
marquable, ces deux caractéristiques particulières, à savoir l’existence d’un
invariant entier provenant des propriétés de volume du matériau, et la
présence d’états de bord chiraux, ont montré une robustesse face aux im-
perfections et au désordre dans le matériau, et il se trouve qu’il existe en fait
une connexion profonde entre ces propriétés, connue sous le nom de cor-
respondance bord-volume [44].

L’étude de l’effet Hall quantique entier a marqué le début de ce qui sera
plus tard appelé, au sens large du terme, les “isolants topologiques”, un
concept bien plus vaste qui a ouvert la voie à toute une nouvelle branche
de la physique [36, 37]. Un isolant topologique se distingue par son com-
portement particulier en tant que matériau isolant dans son ensemble, mais
qui présente des états de surface ou de bord conducteurs lorsqu’il est placé
à l’interface d’un isolant conventionnel, typiquement le vide. Ici, le terme
“topologique” provient de la discipline mathématique de la topologie, qui
cherche notamment à classifier les objets restant inchangés lors d’une défor-
mation continue. Par exemple, une sphère et un cube peuvent se déformer
continûment l’un dans l’autre, les rendant topologiquement équivalents. In-
versement, une sphère et un tore ne peuvent pas subir de telles déformations
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continues, ce qui les établit comme topologiquement distincts. Pour passer
d’un de ces objets topologiquement distincts à un autre, une transition de
phase topologique, telle que percer la sphère ou remplir le tore, doit avoir
lieu. Dans ce contexte, une propriété globale caractérisant la topologie de ces
objets est leur genre G – autrement dit leur nombre de trou – qui prend une
valeur de 0 pour la sphère et le cube, mais de 1 pour le tore. La quantité
G sert d’invariant topologique du système et manifeste donc, par définition,
une robustesse face aux déformations continues. Dans le cas des isolants
topologiques en physique, plutôt que des objets géométriques, ce sont les
hamiltoniens que nous cherchons à classer, et leurs structures de bandes, qui
proviennent typiquement des électrons se propageant dans des cristaux, qui
subissent des déformations. De cette façon, l’effet Hall quantique entier dé-
couvert en 1980 peut être vue comme une phase de la matière topologique-
ment distincte de toutes les autres phases de la matières précédemment con-
nues.

Pour étudier les isolants topologiques, nous nous concentrons sur les hamil-
toniens dont le spectre contient une bande interdite, un bandgap (notons qu’il
y a aussi des supraconducteurs topologiques, où la bande interdite réfère au
gap supraconducteur). L’invariant topologique du système, calculé à par-
tir des propriétés des fonctions d’ondes des électrons, restera alors robuste
à toute déformation de la structure de bande qui ne ferme pas le bandgap.
En d’autres termes, l’invariant topologique ne change pas aussi longtemps
que le matériau reste isolant. En conséquence, les états de bord associés
avec la phase topologique non triviale sont également robustes à toute dé-
formation continue de la structure de bande de l’hamiltonien. En pratique,
cette robustesse se manifeste par une résistance au désordre, parfois à condi-
tion que certaines symétries du système soient préservées. Cette robustesse
des états de bord est une des raisons pour lesquelles la physique des phases
topologiques attire une si grande attention. En effet, de nombreuses appli-
cations potentielles ont été imaginées pour ces matériaux, particulièrement
pour les technologiques quantiques et photoniques, telles que les technolo-
gies laser, la spintronique, ou encore l’informatique quantique.

Une percée importante dans le domaine des phases topologiques de la
matière fut la classification complète de toutes les phases, quelque soit la
dimension du système, en 10 classes d’hamiltoniens satisfaisant ou non cer-
taines symétries discrètes du système, le “tenfold way” [45, 46]. En effet, en
1996, Altland et Zirnbauer ont démontré que tous les hamiltoniens peuvent
être classifiés sur la base de deux symétries fondamentales : la symétrie par
renversement du temps (T ), et la symétrie de charge (C), aussi connue sous
le nom de symétrie particule-trou [55]. Ces deux symétries correspondent à
des transformations anti-unitaires, ce qui signifie qu’elles peuvent être écrites
comme le produit d’une matrice unitaire U et de l’opérateur de conjugaison
complexe K. Cela implique, de façon importante, que ces symétries peuvent
possiblement prendre deux valeurs différentes une fois mises au carré: +1
ou −1. En distinguant entre le signe positif ou négatif de leur carré, et en
considérant également le cas où aucune symétrie n’est satisfaite, on obtient
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Symmetry Dimension
AZ class T C S 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 +1 Z 0 Z 0 Z 0 Z 0
AI +1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 +1 Z 0 0 0 Z 0 Z2 Z2
D 0 +1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 +1 +1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 +1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI +1 -1 +1 0 0 Z 0 Z2 Z2 Z 0

Table 1: Le “tenfold way”. Classification d’Altland-Zirnbauer
des isolants (et supraconducteurs) topologiques [45, 46].

ainsi 9 classes d’hamiltoniens différentes basées sur ces deux symétries fon-
damentales. Dans certains cas, enfin, les hamiltoniens peuvent également
ne posséder aucune des deux symétries T et C de manière indépendante,
mais une combinaison des deux, connue sous le nom de symétrie chirale, ou
symétrie de sous-réseau S = CT , amenant à une troisième symétrie, et à une
dixième classe d’hamiltoniens. Ces 10 classes, connues comme les 10 classes
d’Altland-Zirnbauer (AZ), divisent la matière en 10 types fondamentalement
différents. Ces 10 combinaisons de symétries sont représentées dans la par-
tie gauche de la Table 1, dans laquelle la classe est indiquée par son indice de
Cartan, et où un 0 signifie l’absence d’une symétrie, un 1 sa présence, et le
signe + ou − la positivité ou négativité du carré de ladite symétrie.

Pour classer ces hamiltoniens selon qu’ils puissent présenter ou non des
propriétés topologiques, Schnyder, Ryu, Furusaki et Ludwig ont remarqué
qu’une phase topologique pouvait être vue précisément comme une phase
dans laquelle il existait des états de bord qui échappent à la localisation
d’Anderson [46, 56]. En effet, les états de bord étant conducteurs, c’est-à-dire
délocalisés, et présentant une robustesse face au désordre, ils évitent la local-
isation. De cette façon, une phase topologique en dimension d peut être vue
comme une phase de dimension d− 1 évitant d’une certaine façon la locali-
sation d’Anderson. C’est en suivant cette approche que le remplissage de la
Table 1 a pu être réalisé pour la première fois [56], et le résultat est présenté
dans sa partie droite, où les 8 colonnes indiquent la dimension considérée
entre 1 et 8. Dans ce tableau, d’une part, un 0 indique l’absence d’une phase
topologique pour l’hamiltonien dans une classe et une dimension donnée.
D’autre part, lorsqu’une phase topologique est présente, elle est indiquée
par l’ensemble mathématique auquel appartient son invariant topologique.
Seulement deux types d’invariants topologiques sont possibles : soit des in-
variants Z, qui peuvent prendre toute valeur entière, soit des invariants Z2,
qui sont limités aux valeurs de 0 et 1. Enfin, il est intéressant de noter que
seules les 8 premières dimensions potentielles du système sont représentées
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dans le tableau. Cela vient du fait qu’il existe une périodicité de dimension
8, un phénomène appelé “Bott Clock”, de sorte que le tableau se répète à
l’infini passée cette dimension. Cette à priori curieuse périodicité provient
de la structure mathématique particulièrement profonde sous-jacente à cette
classification [45].

Dans ce manuscrit de thèse, nous nous concentrons sur la physique
topologique à une dimension. En particulier, notre étude tournera autour
du modèle de Su-Schrieffer-Heeger (SSH) du polyacétylène [61], qui possède
les trois symétries T , C et S . Selon les symétries que l’on considère pour as-
surer la robustesse des propriétés topologiques, le modèle SSH peut ainsi
appartenir aux classes AIII ou BDI d’Altland-Zirnbauer (la classe D, elle,
représente la chaîne de Kitaev, un supraconducteur topologique), et possède
un invariant topologique Z. Par sa simplicité apparente, le modèle SSH sert
souvent d’exemple typique de topologie à une dimension.

De manière intéressante, tout comme la localisation d’Anderson, les
phénomènes topologiques en physique ont leur origine sous-jacente dans des
phénomènes fondamentalement non quantiques. Plus précisément, les pro-
priétés topologiques proviennent d’effets de phases géométriques, qui peu-
vent être retrouvés dans de nombreux systèmes de physique des ondes, et
plus particulièrement dans ceux où une onde se propage dans un milieu
périodique, de sorte qu’une structure de bande puisse être définie [4]. En
effet, pléthore de systèmes classiques possèdent des propriétés topologiques
analogues à celles des isolants topologiques électroniques. Des états de bord
topologiques ont notamment été observés dans des domaines aussi variés
que l’acoustique [5], la mécanique [62], la matière active [63], l’océanographie
[7], les mouvements coordonnés d’êtres humains (tels que la danse) [64], les
atomes froids [10], la photonique [14], ainsi que dans la physique des polari-
tons [65, 66], que nous allons introduire dans la section suivante.

1.3 Le couplage fort lumière-matière

L’interaction entre la lumière et la matière, de par son omniprésence autour
de nous, a été un important sujet de recherche scientifique depuis le début
de la méthode scientifique il y a des siècles de celà. Une étape importante de
sa compréhension eut lieu dans les années 1930, avec l’établissement de la
théorie de l’électrodynamique quantique, qui offra un cadre théorique com-
plet et précis permettant d’expliquer ses subtilités au niveau le plus fonda-
mental. L’électrodynamique quantique permit notamment de comprendre
des phénomènes aussi important que l’émission spontanée, cette dernière
étant à l’origine de la grande majorité de la lumière que nous observons tous
les jours autour de nous [67].

Alors que la lumière et la matière peuvent apparaître initialement comme
des entités complètement différentes, il existe une situation où elles ont un
comportement étroitement lié, connu sous le nom de régime de couplage
fort lumière-matière. Dans ce régime, lumière et matière deviennent indistin-
guables et se comportent comme des excitations ou quasiparticules hybrides,
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Figure 2: Analogie des oscillateurs couplés. (a) Schéma de
deux oscillateurs de fréquence ωA et ωB. Une fois couplés
par une constante de couplage g/2, le système présente deux
modes propres de fréquences ω+ et ω−, qui constituent des
excitations hybrides faites d’une combinaison des deux excita-
tions découplées, tout comme les polaritons sont des excitations
hybrides lumière-matière. (b)-(c) Schéma d’un croisement évité
: (b) dans le régime de couplage fort, où les largeurs de bandes
des excitations sont plus faibles que la séparation de Rabi g, et
(c) dans le régime de couplage faible, où les largeurs de ban-
des sont plus grandes que la séparation de Rabi, de sorte que
les deux excitations ne sont plus distinguables l’une de l’autre.

Figures adaptées de la Ref. [77].

appelées polaritons. Ces quasiparticules, combinaisons linéaires de lumière
et de matière, ont d’abord été introduites dans les années 1950 dans le con-
texte du couplage fort entre de la lumière et des excitations vibrationnelles,
des phonons, résultant en des phonon-polaritons [68, 69]. Par la suite, des
caractéristiques similaires ont été prédites dans le couplage entre de la lu-
mière et des degrés de liberté électroniques comme des excitons – une com-
binaison entre un électron et un trou, liée par la force de Coulomb – don-
nant lieu à des exciton-polaritons [70, 71]. Depuis, le domaine n’a cessé de
grandir et aujourd’hui plus de 70 différent types d’excitations polaritoniques
ont été découvertes [72]. Parmi elles, les plasmon-polaritons, des excitations
aux interfaces métal-isolant, ont beaucoup attiré l’attention, tout comme les
excitons-polaritons. Ces derniers ont notamment été abondamment étudiés
dans le contexte des puits quantiques intégrés dans des microcavités [73],
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ainsi que dans celui des films de semiconducteurs organiques dans des ré-
sonateurs optiques [74].

Le mécanisme sous-jacent à l’existence des polaritons peut être grossière-
ment compris à partir d’une simple perspective classique [75], notamment au
travers de l’analogie des oscillateurs couplés, illustrée par la Fig. 2(a). Dans
cette analogie, détaillée dans la Ref. [76], on considère deux oscillateurs mé-
caniques, tels que des systèmes masses-ressorts, ayant chacun une fréquence
de résonance différente ωA et ωB. Une fois couplés linéairement avec une
constante de couplage g/2, les modes propres originaux des deux oscilla-
teurs découplés sont renormalisés en deux nouveaux modes propres du sys-
tème combiné : une excitation en phase, de fréquence ω+, et une excitation
en opposition de phase, de fréquence ω−. Dans le contexte du couplage fort
lumière-matière, les oscillateurs A et B correspondent respectivement, par
exemple, aux degrés de liberté photoniques et de matière. Le couplage g/2,
quant à lui, dénote le taux d’échange d’énergie entre les deux systèmes. Les
deux nouveaux modes propres peuvent être vus comme des excitations hy-
brides des deux oscillateurs originaux A et B, et sont donc les polaritons. De
manière intéressante, dans de nombreux scénarios, à la fois les excitations
de lumière et de matière peuvent être modélisées par des oscillateurs har-
moniques, et leur couplage est linéaire, ce qui rend cette analogie à priori
naïve plutôt réaliste [76].

Si nous étudions maintenant la variation des fréquences des modes propres
couplés ω+ et ω− en fonction de la différence entre les deux fréquences
originales, ∆ω = ωA − ωB, nous obtenons les tracés rouges de la Fig. 2(b).
Dans cette figure, les deux lignes bleues en pointillé correspondent, elles, aux
fréquences originales des oscillateurs A et B. On observe dans ce graphique
ce qu’on appelle un schéma de croisement évité, à savoir la séparation des
deux lignes bleues croisées en deux courbes rouges. C’est un phénomène
typique de la physique des systèmes fortement couplés, qui est couramment
observé dans la structure de bande des polaritons. On remarque notamment
que lorsque la différence ∆ω = 0, c’est à dire lorsque les deux oscillateurs en-
trent en résonance, l’écart entre les deux fréquences renormalisées est exacte-
ment égal à g, à savoir deux fois la constante de couplage. Dans le contexte
des polaritons, cet écart est appelé la séparation de Rabi.

Afin de décrire correctement un système physique, il est cependant néces-
saire de prendre en compte l’effet de la dissipation du système, qui implique
de considérer des excitations avec un temps de vie fini. Cette dissipation en-
traîne des pertes, que l’on note κ pour les photons (oscillateur A), et γ pour
les excitations de matière (oscillateur B). Ces pertes induisent une largeur de
bande aux excitations, qui est représentée sur la Fig. 2(b) comme un flou en-
tourant les courbes. Pour être formellement dans le régime de couplage fort,
il est alors essentiel que le taux d’échange d’énergie entre les deux oscilla-
teurs excède leurs taux de pertes, de sorte qu’un transfert cohérent d’énergie
puisse avoir lieu entre les deux oscillateurs. En d’autres termes, la largeur
de bande des excitations doit être plus faible que la séparation de Rabi, et
donc les deux courbes floues de la Fig. 2 doivent restées distinguables l’une
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de l’autre. Cela nous amène à définir le couplage fort lumière-matière via
le critère g > κ, γ. Dans la Fig. 2(c), nous illustrons ensuite le cas d’un sys-
tème avec plus de pertes, tel que g < κ, γ. Dans ce cas le système est dans
le régime de couplage faible, les excitations étant perdues avant qu’elles ne
puissent s’hybrider.

Afin d’atteindre expérimentalement le régime de couplage fort, les expéri-
mentateurs emploient généralement des cavités miroirs de type Fabry-Pérot,
qui confinent les modes électromagnétiques à l’intérieur d’un volume fini.
Les miroirs réfléchissent les photons, augmentant leur interaction avec le
matériau à l’intérieur de la cavité, et ainsi augmentant leurs effets sur les ex-
citations de matière. À l’aide d’un ajustement fin de la cavité, il est possible
de sélectionner la fréquence de résonance des photons à l’intérieur, de sorte
qu’ils entrent en résonance avec les excitations de matière. Il est également
possible d’optimiser le temps de vie des photons en ajustant le facteur de
qualité des miroirs de la cavité. Dans le chapitre 2, nous introduirons notre
cadre théorique permettant de décrire ce type de cavités optiques, qui seront
au centre de ce manuscrit.

Les polaritons offrent de nombreux avantages et sont activement étudiés
pour leurs propriétés mixtes lumière et matière. Ils promettent des per-
cées technologiques et des avancées fondamentales dans de nombreux do-
maines, en permettant notamment l’étude de condensat de Bose-Einstein
[78], de comportement hors équilibres universels [79], de technologies laser à
température ambiante [80], de superfluidité [81], ou encore de manipuler et
d’améliorer des réactions chimiques [82]. En plus de cela, une des caractéris-
tiques clés des polaritons est leur capacité à réaliser du transport d’énergie à
longue portée, via une propagation balistique.

Cette propriété de transport amena un grand nombre de propositions
théoriques [83–95] et d’expériences utilisant notamment des semiconduc-
teurs organiques moléculaires [96–110], des puits quantiques semiconduc-
teurs [111], des plexcitons dans des réseaux de nanoparticules plasmoniques
[112], ou encore des dichalcogénures de métaux de transitions [113–115], à
utiliser le couplage fort lumière-matière pour améliorer le transport d’énergie
ou de charge dans la matière, comme par exemple la conductivité électrique
ou la photoconductivité [106], cette dernière étant particulièrement intéres-
sante pour les technologies photovoltaïques. De façon intéressante, il a été
démontré que les états sombres, c’est-à-dire les états de matière qui ne sont
que faiblement hybridés aux degrés de libertés photoniques, ont également
des caractéristiques de transport intéressantes induites par le couplage fort
[87, 90, 91, 107].

Ces améliorations du transport sont attribuées à la nature hybride des ex-
citations collectives polaritoniques, permettant leur délocalisation dans tout
le système, le couplage fort induisant un couplage effectif à longue portée,
médié par les photons, entre les excitations de matière. Ce transport amélioré
par la cavité peut être particulièrement intéressant lorsqu’il est appliqué aux
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Figure 3: Transport polaritonique. Imagerie en temps réel
du transport de polaritons, via une mesure différentielle de la
réflectivité dans des expériences pompes-sondes. (a) Propa-
gation rapide d’exciton-polaritons (EP) dans un film molécu-
laire de colorant placé à l’intérieur d’une cavité miroir. Fig-
ure reproduite de la Ref. [109]. (b) Comparaison entre le trans-
port d’exciton purs (en haut) et d’EP (en bas) dans des couches
minces de perovskites halogénées incorporées dans une cavité

optique. Figure reproduite de la Ref. [110].

systèmes désordonnés, un scénario que nous étudierons en détails dans le
chapitre 3.

Très récemment, des études expérimentales ont réussi à suivre de manière
précise le transport à longue portée des polaritons, en utilisant des tech-
niques de microscopie en temps réel et dans l’espace réel [109, 110]. Nous
présentons ces résultats dans les figures 3(a)-(b), qui ont l’avantage de
permettre une visualisation claire du phénomène de transport amélioré par
la cavité. Ces expériences ont été réalisées à température ambiante, en uti-
lisant des films bidimensionnels de matériaux excitoniques, placés entre
deux réseaux de Bragg, des cavités optiques de type Fabry-Pérot consti-
tués d’une alternance de couches de matériaux d’indices de réfraction dif-
férents. En utilisant une configuration de type pompe-sonde, la différence
de l’intensité de réflexion entre le signal pompé et le signal sondé, ∆R, a
été mesuré, puis normalisé par le signal pompé, R. Différents temps de
délais entre la pompe et la sonde ont été utilisés pour suivre temporellement
l’évolution de l’excitation.

Dans la Fig. 3(a), des films moléculaires de colorants de type “J-aggregates”,
un semiconducteur organique, ont été utilisés. On observe très clairement
la rapide propagation de l’excitation polaritonique, qui traverse plusieurs
dizaines de micromètres en une picoseconde. Dans la Fig. 3(b), ce sont des
couches minces de pérovskites halogénées, un semiconducteur particulière-
ment photosensible, qui ont été utilisées. Une comparaison entre la propa-
gation d’excitons sans cavité (panneaux supérieurs) et avec cavité (panneaux
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inférieurs) permet de visualiser les avantages de transport permis par la cav-
ité. Il est intéressant de constater que les films moléculaires utilisés dans ces
deux expériences sont par nature amorphes, et donc fortement désordon-
nés. Ils permettent donc directement l’étude de l’interaction entre désordre
et couplage fort, de sorte que nous reviendrons à ces expériences au début
du chapitre 3.

Dans l’étude présentée dans le reste de ce manuscrit, nous allons démon-
trer que ces caractéristiques de propagation à longue portée des polaritons
présentent un potentiel intéressant à la fois pour les systèmes désordonnés
et pour les systèmes topologiques.

2 Modélisation du couplage lumière-matière

Dans ce chapitre, nous développons une théorie quantique microscopique, à
partir de zéro, d’une chaîne d’émetteurs dipolaires couplés aux modes con-
finés d’un champ électromagnétique dans une cavité optique. Bien que les
équations de Maxwell soient à priori suffisantes pour décrire l’interaction
lumière-matière et également le régime de couplage fort, il est intéressant
de construire un modèle quantique de cette interaction, en utilisant le for-
malisme hamiltonien. En effet, alors que résoudre directement les équations
de Maxwell amènent généralement à l’utilisation d’algorithmes numériques
complexes, un formalisme quantique nous permet d’utiliser les outils de
l’optique quantique, et de bien souvent gagner en intuition physique sur le
problème grâce à une théorie analytique transparente.

L’idée de départ de ce chapitre est de partir du potentiel vecteur A du champ
électromagnétique qui, dans la jauge de Coulomb, est purement transverse,

∇ ·A = 0, (1)

puis d’utiliser la seconde quantification pour quantifier le champ électromag-
nétique via une expansion en modes de Fourier du potentiel vecteur, de sorte
qu’il s’écrive alors [120–122]

A(r) = ∑
k,λ̂k

√√√√2πh̄c2

ω
ph
k

[
fλ̂k

k (r)cλ̂k
k + fλ̂k

k

∗
(r)cλ̂k

k

†
]

. (2)

Dans cette équation, ω
ph
k = c|k| représente la dispersion photonique, et les

fλ̂k
k (r) correspondent aux fonctions de modes du champ électromagnétique,

évalué à la position r. Ces fonctions de modes contiennent la dépendance
spatiale du mode de champ ayant un vecteur d’onde k et une polarisation
λ̂k, et ils dépendent ainsi de la géométrie de l’espace dans lequel le champ

est quantifié. Les opérateurs de champ bosoniques cλ̂k
k et cλ̂k

k

†
apparaissant

dans l’Eq. (2) respectivement annihilent et créent une excitation photonique
de vecteur d’onde k et de polarisation λ̂k.
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On considère ensuiteM émetteurs dipolaires sous-longueur d’ondes, polar-
isés dans la direction x, et alignés dans la direction z. On traite ces émetteurs
comme des dipôles idéaux, c’est à dire sans degrés de libertés internes, de
sorte qu’ils se comportent comme des dipôles oscillants classiques. Ce type
d’émetteurs dipolaires peut représenter en réalité une large gamme de sys-
tèmes physiques dont le couplage principal est de nature dipolaire, et dont
les propriétés sont gouvernées par l’électromagnétisme classique. En effet,
ils peuvent modéliser des plateformes expérimentales aussi variées que des
nanoparticules sous-longueur d’ondes plasmoniques, diélectriques ou SiC
[19, 123–125], des microsphères magnoniques [126–128], des antennes micro-
ondes [129], des excitons de semiconducteurs [130], ou encore des atomes
froids [131–133] ainsi que tout autre système d’émetteurs à deux niveaux,
ces derniers se comportant également comme des dipôles classiques dans le
sous-espace d’excitation unique [134].

L’hamiltonien décrivant un ensemble de ces émetteurs dipolaires non-
couplés s’écrit

H0
dp =

M
∑
i=1

[
Π2

i
2M

+
Mωih2

i
2

]
, (3)

où Πi est l’impulsion conjuguée au déplacement hi de la ième excitation
dipolaire, M la masse effective d’un émetteur, et ωi sa fréquence de réso-
nance.

Pour coupler ces dipôles au champ électromagnétique, on utilise le couplage
minimal en substituant l’impulsion via [121]

Πi → Πi +
Q
c

A(ri), (4)

où −Q est la charge effective d’un émetteur et c la vitesse de la lumière dans
le vide. Une telle substitution prend sont origine dans une théorie relativiste,
par le remplacement dans l’hamiltonien libre des dérivées usuelles par les
dérivées covariantes, ∂µ −→ Dµ = ∂µ + (iQ/c)Aµ, où Aµ est le quadrivecteur
potentiel. Ce remplacement est nécessaire pour préserver la symétrie de
jauge U(1) de l’électromagnétisme [135].

Enfin, l’hamiltonien du champ électromagnétique s’écrit, en unités cgs,

Hem =
1

8π

∫
d3r

[
|E⊥ + E‖|2 + |B|2

]

=
1

8π

∫
d3r

[
|E⊥|2 + |B|2

]
+

1
2

∫
d3r ρφ

= Hph + Vdip−dip
Coulomb (5)

où l’on a séparé, via le théorème de décomposition de Helmholtz, le champ
électrique en sa partie transverse E⊥ et sa partie longitudinale E‖, le champ
magnétique étant lui purement transverse. Dans la jauge de Coulomb, le
couplage lumière-matière est entièrement décrit par le potentiel vecteur et
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donc la partie transverse du champ électromagnétique, qui contient notam-
ment tous les effets de retard du champ. La partie longitudinale du champ
électromagnétique, amène quant à elle l’énergie potentielle d’interaction de
Coulomb Vdip−dip

Coulomb, autrement dit le couplage dipolaire quasistatique entre
les émetteurs, qui décroît avec le cube de la distance séparant les dipôles, et
s’écrit en fonction du potentiel scalaire φ et de la densité de charge ρ.

Via les relations B = ∇ × A et E⊥ = −(1/c)∂tA, on obtient ensuite
l’hamiltonien photonique en seconde quantification,

Hph = ∑
k,λ̂k

h̄ω
ph
k

[
cλ̂k

k

†
cλ̂k

k +
1
2

]
, (6)

qui correspond à une somme d’oscillateurs harmoniques quantiques, un
pour chaque mode photonique. Cela nous amène à l’hamiltonien total du
système que nous considérons dans ce manuscrit de thèse :

H =
M
∑
i=1




(
Πi +

Q
c A(ri)

)2

2M
+

Mωih2
i

2


+ Hem. (7)

En utilisant un formalisme de seconde quantification également pour les ex-
citations dipolaires, via des opérateurs d’échelle bosoniques de création et
d’annihilation d’excitations dipolaires b†

i et bi, on obtient l’hamiltonien sous
sa forme quantifiée :
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, (8)

qui sera au cœur de l’étude menée dans ce manuscrit. De façon importante,
l’hamiltonien (8) représente le couplage d’émetteurs dipolaires à une cavité
optique multimodale, ce qui va au-delà de la majorité de la littérature exis-
tante, qui considère le plus souvent des cavités optiques monomodales.

La suite de ce chapitre est alors dédié à la quantification précise du champ

électromagnétique, afin de trouver la forme des fonctions de modes fλ̂k
k – et

donc la forme du couplage lumière-matière – à l’intérieur d’une cavité miroir
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Figure 4: Chaîne désordonnée de dipôles dans une cavité.
Schéma d’une chaîne deN � 1 dipôles désordonnés, arrangés
selon la direction z, et placés au milieu d’une cavité optique
cuboïdale. Chaque dipôle i oscille à une fréquence de résonance
aléatoire ωi, et est séparé de son voisin de droite par une dis-
tance aléatoire di. La fréquence de résonance moyenne est ω0,

et la distance de séparation moyenne est d.

de forme allongée, d’abord infiniment allongée, puis de taille finie. On notera
que dans tous les cas, on obtient un couplage lumière-matière proportionnel
à 1/
√
V , avec V le volume de la cavité. Un ajustement précis du volume de

la cavité, et notamment de ses dimensions transverses, nous permettra alors
de modifier les fréquences de résonances de la cavité ainsi que le couplage
lumière-matière, et d’amener – ou non – le système dans le régime de cou-
plage fort. Ensuite, nous utilisons diverses approximations afin de simplifier
l’hamiltonien (8) pour pouvoir l’étudier dans les chapitres suivants.

3 Désordre et polaritons

Dans le chapitre précédent, nous avons présenté un formalisme permettant
de modéliser le couplage d’émetteurs dipolaires à des modes confinés du
champ électromagnétique dans une cavité optique multimodale. L’objectif
de ce présent chapitre est d’utiliser ce formalisme pour étudier l’interaction
entre le désordre et le couplage fort lumière-matière. Comme présenté au
chapitre 1, le couplage fort lumière-matière permet l’apparition d’excitations
propres hybrides, appelées polaritons, ayant des propriétés uniques. En par-
ticulier, les excitations polaritoniques sont connues pour présenter des carac-
téristiques de transport d’énergie à longue portée. De façon intéressante, une
grande partie des expériences conduites sur la propagation des polaritons
s’est faite en utilisant des excitons dans des semiconducteurs moléculaires
amorphes, des matériaux qui sont donc désordonnés par nature. L’étude de
ces polaritons désordonnés est donc importante d’un point de vue expéri-
mental, et elle a révélé des phénomènes inattendus, comme une robustesse
des polaritons face au désordre, ce qui va au-delà de la théorie de la local-
isation d’Anderson. De manière surprenante, dans des études théoriques
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récentes de systèmes polaritoniques désordonnés, une amélioration des car-
actéristiques de transport a même été prédite en augmentant la force du dé-
sordre, au lieu de la suppression attendue.

Jusqu’à aujourd’hui, l’analyse théorique de ces expériences de transport de
polaritons désordonnés, et notamment la prédiction de ce phénomène de
transport amélioré par le désordre, a été réalisé en utilisant des modèles
théoriques ne considérant qu’un seul mode photonique, tel que le modèle
de Tavis-Cummings. Cependant, les cavités optiques utilisées dans ces ex-
périences sont généralement multimodales, et il a été récemment pointé dans
des études qu’il était indispensable de considérer des photons et un couplage
dispersif, c’est-à-dire de modéliser une cavité multimodale, pour décrire cor-
rectement le transport de polaritons [17, 92, 94, 163–165].

Dans ce chapitre, nous utilisons alors les outils développés précédemment
pour étudier les polaritons désordonnés au-delà du modèle monomode de
Tavis-Cummings, en incorporant un couplage dipolaire quasistatique entre
tous les émetteurs, et le couplage à une cavité multimode. Le système con-
sidéré dans ce chapitre est schématisé dans la Figure 4, à savoirN émetteurs
dipolaires désordonnés – c’est à dire ayant des fréquences de résonance dif-
férentes, et des positions non régulières le long de la direction z – placés au
cœur d’une cavité optique allongée de taille finie, comportant des miroirs
métalliques parfaitement réfléchissants de tous les côtés.

Grâce à ce cadre théorique, nous démontrons dans ce chapitre de nombreux
résultats intéressants. L’un d’entre eux est que le phénomène de transport
amélioré par le désordre a pour origine l’hybridation entre les états pro-
pres sombres et polaritoniques du système. Cette hybridation se produit via
l’augmentation de la largeur de bande des états sombres induite par le désor-
dre – les polaritons étant eux non touchés par l’augmentation – qui permet
de nouveaux couplages entre les états sombres et les photons. Ce mécan-
isme, lorsque le système est dans le régime de couplage fort lumière-matière,
permet aux états sombres de se transformer en polaritons et donc d’hériter
les caractéristiques de transport à longue portée de ces derniers.

Ce résultat est notamment visible sur la Figure 5, où nous avons utilisé un
formalisme de Lindblad pour étudier le transport des excitations propres du
système le long de la chaîne. Il est important de noter que nous considérons
ici le système dans le régime de couplage fort lumière-matière, en ajustant
la taille de la cavité de façon à ce que les photons résonnent avec les émet-
teurs dipolaires. L’expérience simulée est le forçage du système à l’aide de
l’excitation sinusoïdale continue du premier site dipolaire, à une fréquence
de forçage donnée ωd/ω0. Des pertes du système ont été prises en compte, à
la fois pour les dipôles et pour les miroirs de la cavité, et la quantité représen-
tée dans la figure est l’amplitude du moment dipolaire |pi| d’un dipôle sur le
site i le long de la chaîne, calculée dans le régime stationnaire. Sur la figure,
la gauche des graphiques représente le début de la chaîne d’émetteurs, et la
droite des graphiques sa fin. Une couleur noire signifie une faible amplitude
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Figure 5: Transport amélioré par le désordre. Graphiques
à deux dimensions de l’amplitude du moment dipolaire en
régime stationnaire |pi|, en unités de la fréquence réduite de
Rabi ΩR/ω0, en fonction d’à la fois le site i le long de la chaîne
de dipôles et la fréquence de forçage utilisée ωd/ω0. Trois cas
sont présentés: (a) Sans désordre, (b) Désordre moyen W/ω0 =
0.1, et (c) Fort désordre W/ω0 = 1. Les pertes dipolaires con-
sidérées sont γ/ω0 = 0.02, celles de la cavité κ/ω0 = 0.002, le
système est pris dans le régime de couplage fort, en choisissant
une taille de cavité Lx = 12a et Ly = 3Lx, et les données désor-
données ont été moyennées sur 100 configurations du désordre.

de moment dipolaire et donc une faible excitation à cet endroit de la chaîne,
tandis qu’une couleur orangée ou jaune signifie une très forte amplitude.

On constate dans cette figure que l’augmentation du désordre conduit les
états dipolaires non couplés, situés autour d’une fréquence de résonance de
ω0, à hériter les caractéristiques de transport à longue distance des polari-
tons, situés eux autours des fréquences de résonance 0.9ω0 et au delà de ω0.
Ceci est en effet visible via le fait que la tâche noire présente sans désordre
au milieu à droite de la Fig. 5(a), qui correspond à une mauvaise propagation
à longue distance pour les états sombres, est remplacée à très fort désordre
dans la Fig. 5(c) par des bandes oranges, qui correspondent à de bonnes pro-
priétés de transport à longue distance.

En prenant en compte la dissipation dans le système, nous avons égale-
ment montré que ce mécanisme de transport amélioré par le désordre est de
plus en plus visible lorsque les dipôles considérés présentent plus de pertes.
D’autres résultats de ce chapitre sont par exemple le fait que les états som-
bres héritant une partie photonique deviennent des états dénommés semi-
localisés, qui, dans notre modèle de cavité multimode, ne présentent pas
de propriétés multifractales, ou encore que la propagation des polaritons
se réalise via une décroissance exponentielle, dont le taux de décroissance
dépend directement du poids photonique de l’excitation propre considérée.
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Figure 6: Chaîne SSH de dipôles dans une cavité guide
d’onde. Schéma d’une chaîne dimérisée de dipôles oscillants
placés au milieu d’une cavité optique guide d’onde n’ayant pas
de miroirs dans la direction z, mais des miroirs parfaitement

métalliques dans les directions x et y.

Ce dernier résultat implique notamment que le transport amélioré par la cav-
ité, tout comme le transport amélioré par le désordre, n’est valable que pour
certaines échelles de tailles du système.

De façon intéressante, depuis la publication de notre étude sur le sujet [17],
plusieurs groupes expérimentaux ont été témoins des phénomènes mention-
nés dans ce chapitre. En particulier, dans la référence [162], les auteurs ont
démontré l’existence de transport amélioré par le désordre dans un ensem-
ble d’atomes froids couplés fortement à une cavité optique. De plus, ils ont
précisément observé le mécanisme d’hybridation induit par le désordre, en
montrant une augmentation du poids photonique de certains états propres
du système lorsque le désordre augmentait. Enfin, des phénomènes simi-
laires d’hybridation induit par le désordre ont également été observés ex-
périmentalement dans le contexte du couplage fort vibrationnel, dans des
ensembles moléculaires [167].

4 Topologie et polaritons

Dans ce chapitre, nous utilisons le formalisme développé au Chapitre 2
pour étudier l’interaction entre le couplage fort lumière-matière et les phases
topologiques de la matière. Comme présenté au Chapitre 1, les phases
topologiques de la matière ont attiré beaucoup d’attention pour les états de
bord robustes qu’elles peuvent héberger [36, 37]. Récemment, l’attrait pour
ces états de bord, combiné aux progrès réalisés dans l’ingénierie du couplage
lumière-matière, ont amené à un intérêt grandissant pour les phénomènes
topologiques dans les systèmes photoniques [13–15]. La combinaison de la
photonique topologique et de la physique du couplage fort lumière-matière
en ce que nous appelons la polaritonique topologique est maintenant un nou-
veau domaine en développement, et sa compréhension, que nous nous ef-
forçons d’améliorer via l’étude présentée dans ce chapitre, pourrait s’avérer
essentielle à la mise en œuvre de technologies photoniques topologiques.

Comme nous l’avons vu précédemment, un effet direct du couplage fort
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lumière-matière est un couplage effectif à longue portée médié par les pho-
tons de la cavité, permettant aux excitations polaritoniques de présenter
des propriétés attrayantes telles qu’une propagation accrue. De récents
travaux expérimentaux ont souligné l’importance de ce couplage effectif sur
les phénomènes topologiques, et plus précisément sur le comportement des
états de bord [207]. De plus, une littérature très active a récemment été con-
sacrée aux extensions des modèles topologiques unidimensionnels, tel que le
célèbre modèle de Su-Schrieffer-Heeger (SSH) [61], en incorporant des cou-
plages supplémentaires [124, 128, 136, 208–225]. Ce modèle présente l’intérêt
particulier d’héberger une phase topologique non triviale, abritant des états
de bord topologiques.

Dans ce chapitre, nous allons au-delà de cette littérature existante en étudi-
ant l’influence du couplage fort entre une cavité optique multimode et une
chaîne dimérisée d’émetteurs, comme schématisé sur la Fig. 6, réalisant ainsi
ce que nous appelons un modèle SSH polaritonique. Comme au chapitre
précédent, nous traitons les émetteurs comme des dipôles classiques idéaux
et le couplage, dérivé du Chapitre 2, est multimodal, dispersif et dépendant
de l’espace. Nous rappelons notamment que la prise en compte de modes
photoniques multiples s’est avérée essentielle pour modéliser correctement
les effets induits par les cavités [17, 92, 94, 163–165], et il s’agit ici d’un ingré-
dient clé de notre modèle.

Alors qu’une étude préliminaire du modèle SSH polaritonique a été réalisée
dans la Ref. [136], mettant en évidence l’impact de la cavité sur les phases
topologiques du système, nous nous concentrons ici sur le sort des états
de bord du système. Pour ce faire, nous affinons le modèle dérivé dans la
Ref. [136], en considérant notamment une cavité guide d’onde afin d’éviter
tout effet de bords des miroirs de la cavité qui pourrait influencer les états de
bord topologiques. De plus, en intégrant les degrés de liberté photoniques
de la cavité à l’aide d’une transformation unitaire de Schrieffer-Wolff de
l’hamiltonien, nous décrivons théoriquement le système par un modèle ef-
fectif à deux bandes de sorte qu’il imite très exactement une variation du
modèle SSH avec un couplage effectif induit par la cavité. Grâce à ce nou-
veau formalisme théorique, nous sommes notamment en mesure d’extraire
la dépendance du couplage effectif induit par la cavité avec les dimensions
de cette dernière, et nous révélons sa décroissance exponentielle avec la dis-
tance.

Dans le régime de couplage fort lumière-matière, nous observons une forte
renormalisation du spectre en énergie ainsi qu’une totale brisure de la
symétrie chirale du système. Ceci conduit à la perte formelle des états de
bord topologiques, ces derniers se fondant dans la bande d’états polari-
toniques. Alors que cette perte formelle puisse à première vue sembler préju-
diciable aux propriétés topologiques du système, nous démontrons ici que,
de manière intéressante, les polaritons entrant en résonance avec les états de
bord formellement perdus héritent d’une partie des propriétés de localisation
sur les bords de ces derniers. Cette hybridation des états de bord dipolaires
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Figure 7: Spectre polaritonique dans l’espace réel. Fréquences
propres polaritoniques ω̃

dp
n /ω0 en fonction (a) de la hauteur de

la cavité Lx et (b) de la dimérisation de la chaîne ε. Le code
couleur représente la densité de probabilité sur le premier site

de chaque état propre du système.

avec les photons de la cavité amène de nombreux états mixtes, directement
induits par la cavité, que nous appelons “états de bord polaritoniques”.

Ce résultat est notamment visible dans la Figure 7, qui présente le résultat
d’une diagonalisation de l’hamiltonien du système donnant les fréquences
propres polaritoniques ω̃

dp
n /ω0, pour une chaîne de N = 500 dipôles. Sur la

figure, le code couleur associé à chaque état propre n indique le logarithme
de sa densité de probabilité sur le premier site i = 1 de la chaîne, de sorte
que la couleur souligne la présence (en rouge) ou l’absence (en vert ou bleu)
d’états de bord.

Dans le panneau (a), nous choisissons une dimérisation de la chaîne – carac-
térisée par le paramètre ε = (d1 − d2)/d, où d1, d2 et d sont définis dans la
Figure 6 – telle que le système sans cavité soit dans une phase topologique, et
nous faisons varier la dimension Lx de la cavité, et donc le couplage lumière-
matière. Sur la gauche de la figure, le système est dans un régime de cou-
plage faible, et l’on observe distinctement en rouge les deux états de bord
topologiques originaux, quasi-dégénérés, du modèle SSH. Lorsque le sys-
tème entre dans le régime de couplage fort, sur la droite de la figure, ces
deux états de bord originaux fusionnent avec les états polaritoniques, et l’on
observe la diffusion des états de bord originaux en une multitude d’états de
bord polaritoniques, dont nous voyons via le code couleur rouge qu’ils sont
toujours très fortement localisés sur les bords de la chaîne. Dans le panneau
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(b), nous fixons les dimensions de la cavité afin d’être en régime de couplage
fort, et nous faisons cette fois-ci varier la dimérisation de la chaîne. On ob-
serve ici un résultat analogue à celui du modèle SSH original, à savoir que les
états de bord, ici polaritoniques, n’apparaissent que pour une dimérisation
ε > 0.

Dans le reste de ce chapitre, ces états de bord polaritonique sont étudiés
en détails, et bien qu’ils ne soient pas entièrement localisés sur les bords,
nous montrons qu’ils présentent des propriétés intéressantes et inhabituelles.
En particulier, en raison de leur partie délocalisée due à leur nature polari-
tonique, ces multiples états de bord polaritoniques présentent des carac-
téristiques de propagation très efficaces notamment en configuration bord-
à-bord, que nous révélons à l’aide de simulations de transport d’énergie sous
forçage et dissipation. Par ailleurs, au lieu d’être dégénérés en énergie, ils
occupent une grande partie du spectre, ce qui permet de les sonder dans une
large gamme de fréquences de forçage. L’étude d’une chaîne dimérisée dé-
sordonnée nous permet également de dévoiler une forte tolérance des états
de bord polaritoniques au désordre sur les positions des dipoles, bien qu’ils
ne soient pas formellement protégés par la symétrie chirale. Ces effets de la
cavité sur les états de bord d’un système topologique pourraient notamment
faciliter la détection expérimentale de ces derniers. Enfin, d’autres résultats
de ce chapitre sont l’étude des transitions de phases topologiques induites
par la cavité à l’aide de notre modèle effectif à deux bandes, de l’influence
de la taille de la longueur de la chaîne considérée sur les propriétés des états
de bord polaritoniques, ou bien encore des effets importants de la distance
entre les bords de la chaîne dipolaire et les miroirs de la cavité optique selon
la direction z.

Conclusions et perspectives

Dans ce travail de thèse, nous nous sommes efforcés de contribuer à la com-
préhension de l’influence du régime de couplage fort lumière-matière sur
deux domaines majeurs de la physique de la matière condensée : les sys-
tèmes désordonnés et les phases topologiques de la matière. À cette fin,
nous avons étudié le couplage fort entre une cavité optique multimode et,
premièrement, un système désordonné unidimensionnel dans le chapitre 3,
et deuxièmement, un système topologique unidimensionnel hébergeant des
états de bord topologiques dans le chapitre 4.

Dans les deux cas, nous avons mis en évidence un impact considérable du
couplage fort lumière-matière sur les propriétés du système. En particulier,
nous avons démontré l’importance de prendre en compte une cavité mul-
timode et dispersive, et révélé que l’effet spécifique du couplage fort d’une
chaîne d’émetteurs dipolaires à une telle cavité est un couplage dipôle-dipôle
effectif, médié par les photons, qui décroît exponentiellement.

Ce couplage médié par les photons sert de mécanisme sous-jacent à la plu-
part des effets physiques induits par la cavité rapportés dans cette thèse.
En effet, un tel couplage effectif est visible à travers les caractéristiques de
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transport le long du système sous la forme d’une décroissance exponentielle
supplémentaire, qui suit la première induite par le couplage dipolaire quasi-
statique de plus proches voisins. Plus important encore, son taux de décrois-
sance est directement lié au couplage lumière-matière et à l’hybridation des
états propres entre les degrés de liberté photoniques et dipolaires. Plus
grande est la partie photonique de l’état propre polaritonique, plus mauvaise
est sa propagation à courte portée, mais plus plate est cette décroissance ex-
ponentielle induite par la cavité, de sorte que le transport d’énergie sur de
plus longues distances est rendu possible par le régime de couplage fort.

Dans le chapitre 3, c’est précisément ce régime supplémentaire de décrois-
sance exponentielle qui permet le transport amélioré des polaritons par la
cavité. Avec l’hybridation induite par le désordre des états sombres en po-
laritons, c’est également ce qui permet l’émergence d’un transport amélioré
par le désordre. Dans le chapitre 4, la rupture prononcée de la symétrie chi-
rale dans le système, qui conduit à une transition de phase topologique in-
duite par la cavité caractérisée par un changement de l’invariant topologique
du système, ainsi qu’à l’hybridation des états de bord originaux en états de
bord polaritonique, est également réalisée grâce à un tel couplage effectif. En
outre, cette décroissance médiée par les photons joue un rôle crucial dans
l’amélioration des propriétés de transport des états de bord polaritoniques,
résultant en un transport d’énergie bord-à-bord particulièrement efficace.

Pour conclure ce manuscrit, le travail réalisé au cours de cette thèse de doc-
torat a également ouvert des perspectives et soulevé de nouvelles questions.1

À cet égard, bien que notre étude se soit concentrée sur l’interaction individu-
elle entre le désordre et le couplage fort, et la topologie et le couplage fort,
elle ne comporte pas d’étude de l’interaction complète entre le désordre et la
topologie dans un système lumière-matière fortement couplé. Compte tenu
du lien fascinant entre le désordre et la topologie, une étude spécifique des
polaritons topologiques désordonnés serait particulièrement intéressante.

Une autre extension de notre étude consisterait à examiner l’effet de la di-
mensionnalité sur tous les phénomènes que nous avons théoriquement ob-
servés. En effet, bien que notre analyse se soit concentrée sur des systèmes
unidimensionnels, il est bien établi dans la littérature que la localisation
d’Anderson et les phases topologiques de la matière dépendent significative-
ment de la dimensionnalité du système [22, 46].

Enfin, une importante limitation de notre étude est sa restriction au régime
de couplage fort, notre modèle ne permettant pas l’analyse des régimes dits
“ultra-fort” et “profondément-fort” [149, 151]. Ces régimes de couplage où
l’interaction lumière-matière est encore plus prononcée peuvent en effet don-
ner lieu à une pléthore de phénomènes intrigants, notamment dans le con-
texte des phases topologiques de la matière [207, 237, 242–244]. De plus,
à la différence du régime de couplage fort, ceux-ci peuvent amener à des

1Pour citer John A. Wheeler : “Nous vivons sur une île entourée d’une mer d’ignorance.
À mesure que notre île de connaissances grandit, le rivage de notre ignorance grandit aussi.”.
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phénomènes essentiellement quantiques. Le développement de notre cadre
théorique afin d’incorporer ces régimes de couplage lumière-matière plus
forts représente ainsi une autre perspective particulièrement attrayante, qui
permettrait à la théorie quantique que nous employons dans le présent tra-
vail de thèse de libérer pleinement son potentiel.
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Disorder and topology in strongly

coupled light-matter systems

Résumé
Cette  thèse explore  sur  le  plan théorique l'influence du couplage  fort  lumière-matière sur deux
domaines majeurs de la physique de la matière condensée : les systèmes désordonnés et les phases
topologiques de la matière. Nous y étudions le couplage fort entre une cavité optique multimode et,
d’abord, une chaîne d'émetteurs dipolaires désordonnée, puis, une chaîne topologique d'émetteurs
dipolaires.  Dans les  deux cas,  nous  révélons  un impact  considérable  du couplage  fort  lumière-
matière sur les propriétés du système. En étudiant une chaîne désordonnée, nous révélons entre
autres que l'augmentation du désordre conduit les états sombres du système à acquérir une partie
photonique leur permettant d'hériter de caractéristiques de transport polaritoniques à longue portée.
En  considérant  une  chaîne  topologique  dite  de  Su-Schrieffer-Heeger,  nous  révélons  notamment
l'hybridation  des  états  de  bord  en  états  de  bord  polaritoniques  présentant  des  propriétés  de
transport bord-à-bord efficaces.
Mots clés : Couplage fort lumière-matière, polaritons, localisation d'Anderson, phases topologiques
de la matière, modèle de Su-Schrieffer-Heeger

Résumé en anglais (abstract)
This thesis explores theoretically the fate of Anderson localization, as well as of topological phases of
matter, in the strong light-matter coupling regime. We analyze the properties of one-dimensional
systems made of dipolar emitters strongly-coupled to a multimode optical cavity. By studying a
disordered chain of emitters, we find notably that, in the strong-coupling regime, increasing disorder
leads almost uncoupled dark states to acquire a photonic part, allowing them to inherit polaritonic
long-range  transport  characteristics.  Investigating  a  dimerized  chain  of emitters,  we  study  a
variation  of the  Su-Schrieffer-Heeger  model  of polyacetylene,  with  the  addition  of an  effective,
cavity-induced, dipole-dipole coupling. We unveil the hybridization of the original topological edge
states into polaritonic edge states that present unusual properties,  such as efficient edge-to-edge
transport characteristics.

Keywords:  Strong light-matter  coupling,  polaritons,  Anderson localization,  topological  phases of
matter, Su-Schrieffer-Heeger model
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