
HAL Id: tel-04586537
https://theses.hal.science/tel-04586537

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dialogue Patterns and Composite Intents Recognition in
Task-oriented Human-Chatbot Conversations

Sara Bouguelia

To cite this version:
Sara Bouguelia. Dialogue Patterns and Composite Intents Recognition in Task-oriented Human-
Chatbot Conversations. Computer Science [cs]. Université Claude Bernard - Lyon I, 2023. English.
�NNT : 2023LYO10106�. �tel-04586537�

https://theses.hal.science/tel-04586537
https://hal.archives-ouvertes.fr

THÈSE de DOCTORAT DE
L'UNIVERSITÉ LYON

École Doctorale N° 512
Mathématiques et Informatique (InfoMaths)

Discipline Informatique

publiquement le 27/06/2023 par :
Sara Bouguelia

Modèles de Dialogue et Reconnaissance
d'Intentions Composites dans les
Conversations Utilisateur-Chatbot

orientées Tâches

Devant le jury composé de :

Mme. Daniela GRIGORI Professeur Université Paris-Dauphine
Mme. Lynda TAMINE Professeur Université Paul Sabatier
M. Khalid BENABDESLEM MCF - HDR Université Lyon 1
Mme. Salima BENBERNOU Professeur Université Paris Descartes

Rapporteure
Rapporteure
Examinateur
Présidente

Mme. Barbara PERNICI Professeur École polytechnique de Milan Examinatrice

M. Boualem BENATALLAH Professeur Université de Dublin (DCU) Co-directeur
M. Hamamache KHEDDOUCI Professeur Université Lyon 1 Co-directeur

Université Claude Bernard – LYON 1

Président de l’Université M. Frédéric FLEURY

Président du Conseil Académique M. Hamda BEN HADID

Vice-Président du Conseil d’Administration M. Didier REVEL

Vice-Président du Conseil des Etudes et de la Vie Universitaire M. Philippe CHEVALLIER

Vice-Président de la Commission de Recherche M. Petru MIRONESCU

Directeur Général des Services M. Pierre ROLLAND

COMPOSANTES SANTE

Département de Formation et Centre de Recherche
en Biologie Humaine

Directrice : Mme Anne-Marie SCHOTT

Faculté d’Odontologie Doyenne : Mme Dominique SEUX
Faculté de Médecine et Maïeutique Lyon Sud - Charles Mérieux Doyenne : Mme Carole BURILLON
Faculté de Médecine Lyon-Est Doyen : M. Gilles RODE
Institut des Sciences et Techniques de la Réadaptation (ISTR) Directeur : M. Xavier PERROT
Institut des Sciences Pharmaceutiques et Biologiques (ISBP) Directrice : Mme Christine VINCIGUERRA

COMPOSANTES & DEPARTEMENTS DE SCIENCES & TECHNOLOGIE

Département Génie Electrique et des Procédés (GEP) Directrice : Mme Rosaria FERRIGNO

Département Informatique Directeur : M. Behzad SHARIAT

Département Mécanique Directeur M. Marc BUFFAT

Ecole Supérieure de Chimie, Physique, Electronique (CPE Lyon) Directeur : Gérard PIGNAULT

Institut de Science Financière et d’Assurances (ISFA) Directeur : M. Nicolas LEBOISNE

Institut National du Professorat et de l’Education Administrateur Provisoire : M. Pierre CHAREYRON

Institut Universitaire de Technologie de Lyon 1 Directeur : M. Christophe VITON

Observatoire de Lyon Directrice : Mme Isabelle DANIEL

Polytechnique Lyon Directeur : Emmanuel PERRIN

UFR Biosciences Administratrice provisoire : Mme Kathrin GIESELER

UFR des Sciences et Techniques des Activités Physiques et
Sportives (STAPS)

Directeur : M. Yannick VANPOULLE

UFR Faculté des Sciences Directeur : M. Bruno ANDRIOLETTI

Abstract

Dialogue Systems (or simply chatbots) are in very high demand these days. They enable

the understanding of user needs (or user intents), expressed in natural language, and on

fulfilling such intents by invoking the appropriate back-end APIs (Application Program-

ming Interfaces). Chatbots are famed for their easy-to-use interface and gentle learning

curve (it only requires one of humans’ most innate ability, the use of natural language).

The continuous improvement in Artificial Intelligence (AI), Natural Language Process-

ing (NLP), and the countless number of devices allow performing real-world tasks (e.g.,

making a reservation) by using natural language-based interactions between users and

a large number software enabled services.

Nonetheless, chatbot development is still in its preliminary stage, and there are several

theoretical and technical challenges that need to be addressed. One of the challenges

stems from the wide range of utterance variations in open-end human-chatbot interac-

tions. Additionally, there is a vast space of software services that may be unknown at

development time. Natural human conversations can be rich, potentially ambiguous,

and express complex and context-dependent intents. Traditional business process and

service composition modeling and orchestration techniques are limited to support such

conversations because they usually assume a priori expectation of what information

and applications will be accessed and how users will explore these sources and services.

Limiting conversations to a process model means that we can only support a small frac-

tion of possible conversations. While existing advances in NLP and Machine Learning

(ML) techniques automate various tasks such as intent recognition, the synthesis of

API calls to support a broad range of potentially complex user intents is still largely a

i

manual, ad-hoc and costly process.

This thesis project aims at advancing the fundamental understanding of cognitive ser-

vices engineering. In this thesis we contribute novel abstractions and techniques fo-

cusing on the synthesis of API calls to support a broad range of potentially complex

user intents. We propose reusable and extensible techniques to recognize and realize

complex intents during humans-chatbots-services interactions. These abstractions and

techniques seek to unlock the seamless and scalable integration of natural language-

based conversations with software-enabled services.

ii

Résumé

Les Systèmes de Dialogue (ou simplement chatbots) sont très demandés de nos jours. Ils

permettent de comprendre les besoins des utilisateurs (ou intentions des utilisateurs),

exprimés en langage naturel, et de répondre à ces intentions en invoquant les APIs

(Interfaces de Programmation d’Application) appropriées. Les chatbots sont connus

pour leur interface facile à utiliser et ils ne nécessitent que l’une des capacités les plus

innées des humains qui est l’utilisation du langage naturel. L’amélioration continue de

l’Intelligence Artificielle (IA), du Traitement du Langage Naturel (NLP) et du nombre

incalculable de dispositifs permettent d’effectuer des tâches réelles (par exemple, faire

une réservation) en utilisant des interactions basées sur le langage naturel entre les

utilisateurs et un grand nombre de services.

Néanmoins, le développement de chatbots est encore à un stade préliminaire, avec

plusieurs défis théoriques et techniques non résolus découlant de (i) la variations d’énoncés

dans les interactions humain-chatbot en libre échange et (ii) du grand nombre de ser-

vices logiciels potentiellement inconnus au moment du développement. Les conversa-

tions en langage naturel des personnes peuvent être riches, potentiellement ambiguës et

exprimer des intentions complexes et dépendantes du contexte. Les techniques tradi-

tionnelles de modélisation et d’orchestration de processus et de composition de services

sont limitées pour soutenir de telles conversations car elles supposent généralement

une attente a priori de quelles informations et applications seront accédées et com-

ment les utilisateurs exploreront ces sources et services. Limiter les conversations à

un modèle de processus signifie que nous ne pouvons soutenir qu’une petite fraction

de conversations possibles. Bien que les avancées existantes dans les techniques de

iii

NLP et d’apprentissage automatique (ML) automatisent diverses tâches telles que la

reconnaissance d’intention, la synthèse d’appels API pour prendre en charge une large

gamme d’intentions d’utilisateurs potentiellement complexes est encore largement un

processus manuel et coûteux.

Ce projet de thèse vise à faire avancer la compréhension fondamentale de l’ingénierie

des services cognitifs. Dans cette thèse, nous contribuons à des abstractions et des

techniques novatrices axées sur la synthèse d’appels API pour soutenir une large gamme

d’intentions d’utilisateurs potentiellement complexes. Nous proposons des techniques

réutilisables et extensibles pour reconnaître et réaliser des intentions complexes lors

des interactions entre humains, chatbots et services. Ces abstractions et techniques

visent à débloquer l’intégration transparente et évolutive de conversations basées sur

le langage naturel avec des services activés par logiciel.

iv

Contents

1 Introduction 1

1.1 Background, Motivations and Aims . 1

1.2 Research Issues . 4

1.2.1 Access to heterogeneous information sources 4

1.2.2 Support complex users-chatbots-services interactions 5

1.3 Contributions . 5

1.3.1 Reusable Abstractions and Patterns for Recognizing composi-
tional conversational flows . 6

1.3.2 Context Knowledge-aware Recognition of Composite Intents in
Task-oriented Human-Bot Conversations 7

1.3.3 Process-oriented Intents for Superimposition of Natural Language
Conversations over Composite Services 8

1.4 Thesis structure . 9

2 Background and State of the art 10

2.1 Background . 11

2.1.1 Dialogue systems . 11

2.1.2 Natural Language Understanding 15

2.1.3 Dialogue Management . 20

2.1.4 Natural Language Generation . 21

2.2 Dialogue Management in Task-oriented Chatbots 23

v

2.2.1 Handcrafted approaches . 23

2.2.2 Data-driven approaches . 26

2.2.3 Hybrid approaches . 30

2.3 Context Knowledge in Task-oriented Chatbots 31

2.3.1 User Context Knowledge . 32

2.3.2 System Knowledge . 37

2.4 Summary and Discussion . 41

2.4.1 Summary . 41

2.4.2 Discussion . 50

3 Composite Dialogue Patterns 52

3.1 Introduction . 53

3.2 Related work . 55

3.3 Human-Chatbot conversations . 56

3.4 State Machine Conversational Model . 58

3.5 Composite Dialogue Patterns . 60

3.5.1 Slot-value-flow pattern . 62

3.5.2 Nested-method pattern . 63

3.5.3 API-calls ordering pattern . 64

3.5.4 Entity-enrichment pattern . 65

3.6 Validation . 66

3.6.1 Methods . 66

3.6.2 Results . 69

3.7 Conclusion . 71

vi

4 Recognition of Composite Intents 73

4.1 Introduction . 74

4.2 Related work . 75

4.3 Context Knowledge Service . 77

4.3.1 Context Knowledge Model . 78

4.3.2 CK services . 81

4.4 Composite Intent Recognition Rules . 83

4.4.1 Functions . 84

4.4.2 Rules . 84

4.5 Validation . 87

4.5.1 Methods . 87

4.5.2 Results . 89

4.6 Conclusion . 92

5 Process-oriented Intents 93

5.1 Introduction . 94

5.2 Related work . 97

5.3 Preliminaries, Scenario and Requirements 98

5.3.1 Preliminaries . 98

5.3.2 Scenario . 99

5.3.3 Requirements . 101

5.4 Architecture . 102

5.4.1 Process Embedding Service . 102

5.4.2 Context Knowledge Services . 105

5.5 Process-aware User Intents . 106

5.5.1 Start New Process Instance . 107

vii

5.5.2 Follow-up on Process Status . 108

5.5.3 Task Update . 108

5.5.4 Canceling a Task . 109

5.6 Validation . 109

5.6.1 Process-oriented Intent Training Dataset Construction 110

5.6.2 Methods . 113

5.6.3 Results . 115

5.7 Conclusion . 117

6 Conclusion and Future Directions 118

6.1 Summary the Research Issues . 119

6.2 Summary of the Research Outcomes . 119

6.3 Future Research Directions . 120

viii

List of Figures

1.1 Research Approach. 9

2.1 Simple representation of a dialogue system. 12

2.2 Sample Eliza dialogue from Weizenbaum (1966) [112]. 13

2.3 Common components of task-oriented chatbot. 14

2.4 An utterance belongs to an intent and contains entities. 16

2.5 Example of Rivescript code. 17

2.6 Rules written by AIML (A) and Rivescript (B) scripting languages. 17

2.7 An excerpt of training dataset for classification-based intent recognition models. 19

2.8 Feature categories and examples used to define rules for entity extraction [59]. 20

2.9 Example of single-turn and multi-turn conversations. 21

2.10 Example of a template-based approach. 22

2.11 Dialogue management approaches. 24

2.12 Example of dialogue management modeled using a FSM. 24

2.13 Example of a Quick Reply. 25

2.14 Dialogue Policy Network [198]. 28

2.15 Dialogue State Tracking Knowledge. 32

2.16 Example Multimodal Conversation [20]. 36

2.17 Schema example for a wallet service [173]. 38

2.18 Domain specific slot-level schema graph [53]. 39

ix

2.19 Example of fact-centric questions conversation and its corresponding knowledge
subgraph [57]. 40

3.1 Types of human-chatbot conversations - from less to more natural [248]. . . . 57

3.2 Ask user composite intent-state to fulfill get-weather intent. 59

3.3 Example of multi-turn multi-intent conversation. After each turn, we
illustrate the intent, its slot-value pairs, and the API call(s). The red
slots/parameters are required input slots/parameters, the blue parame-
ters are output parameters, and the green values are inferred values from
different sources. 61

3.4 Slot-value-flow composite intent-state to fulfill book-taxi intent. 63

3.5 Nested-method composite intent-state to fulfill send-msg intent. 64

3.6 API-calls ordering composite intent-state to fulfill start-playlist intent. 65

3.7 Entity-enrichment composite intent-state to book-taxi intent. 66

4.1 Context knowledge graph related to the conversation scenario in Figure
3.3. For clarity purpose we do not represent all nodes and edges. 78

4.2 Rules of composite dialogue patterns introduced in Chapter 3. 86

5.1 Example of a Travel Booking Process Model. 98

5.2 Example of natural language conversation between a user and a process-
aware chatbot. Interaction acts in blue are triggered by the user and
those in green are triggered by the chatbot. 100

5.3 General architecture supporting our approach. 102

5.4 Process Knowledge Graph (P-KG). 103

5.5 Event Data Memory (EDM) Schema. 105

5.6 Rules to recognize and realize the identified process-oriented intents. . . 107

5.7 Crowdsourcing sub-task to provide paraphrases for the intent Canceling
a Task. 111

x

List of Tables

2.1 Summary of strengths and weaknesses of dialogue management approaches. 42

2.2 Summary of knowledge sources in task-oriented chatbots. 44

2.3 Summary of most well-known chatbot development tools [44]. 47

4.1 Examples of boolean functions to express triggers 85

4.2 Chatbot performance for each task according to relevant metrics. Val-
ues in bold denote best performance. Percentages denote the relative
performance with respect to the reference (optimal) scenario. 89

5.1 HP Interaction Act Detection Accuracy 113

5.2 Performance of experimental conditions for each task according to the
relevant metrics. Values in bold denote best performance. 116

xi

Publications

Conferences

• Sara Bouguelia, Auday Berro, Boualem Benatallah, Marcos Báez, Hayet Brabra,
Shayan Zamanirad, Hamamache Kheddouci, "Process-Oriented Intents: A Cor-
nerstone for Superimposition of Natural Language Conversations over Composite
Services," in ICSOC, 2022.

• Sara Bouguelia, Hayet Brabra, Boualem Benatallah, Marcos Baez, Shayan Za-
manirad, Hamamache Kheddouci, "Context knowledge-aware recognition of com-
posite intents in task-oriented human-bot conversations," in CAiSE, 2022 (Best
Paper Award).

• Sara Bouguelia, Hayet Brabra, Shayan Zamanirad, Boualem Benatallah, Mar-
cos Baez, Hamamache Kheddouci, "Reusable abstractions and patterns for recog-
nising compositional conversational flows," in CAiSE, 2021.

• Shayan Zamanirad, Boualem Benatallah, Carlos Rodriguez, Mohammadali Yagho-
ubzadehfard, Sara Bouguelia, Hayet Brabra, "State machine based human-bot
conversation model and services," in CAiSE, 2020.

Journals

• Hayet Brabra, Marcos Báez, Boualem Benatallah, Walid Gaaloul, Sara Bouguelia,
Shayan Zamanirad, "Dialogue management in conversational systems: a review
of approaches, challenges, and opportunities," in IEEE Transactions on Cognitive
and Developmental Systems (TCDS), 2021.

xii

1.1 BACKGROUND, MOTIVATIONS AND AIMS

Chapter 1

Introduction

Contents

1.1 Background, Motivations and Aims 1

1.2 Research Issues . 4

1.2.1 Access to heterogeneous information sources 4

1.2.2 Support complex users-chatbots-services interactions 5

1.3 Contributions . 5

1.3.1 Reusable Abstractions and Patterns for Recognizing composi-

tional conversational flows . 6

1.3.2 Context Knowledge-aware Recognition of Composite Intents

in Task-oriented Human-Bot Conversations 7

1.3.3 Process-oriented Intents for Superimposition of Natural Lan-

guage Conversations over Composite Services 8

1.4 Thesis structure . 9

1.1 Background, Motivations and Aims

In the past, the notion of having a virtual assistant or chat companion system with

adequate intelligence seemed like a far-fetched concept that only existed in the realm

of science fiction. However, with the emergence of conversational Artificial Intelligence

Page 1 of 148

1.1 BACKGROUND, MOTIVATIONS AND AIMS

(AI) and its instantiation in the form of messaging, this concept is no longer an illusion

[49,112]. The development of natural language processing (NLP) and machine learning

(ML) techniques has paved the way for the creation of human-computer conversation

systems that can act as our personal assistant or chat companion [49,53,258]. Building

dialogue systems, also known as virtual assistants, conversational agents, conversational

AI or simply chatbots, has become increasingly relevant in facilitating human-computer

interactions. These conversational AI based services enable the understanding of user

needs, expressed in natural language (text or voice), and on fulfilling such needs by

invoking the appropriate back-end services [248].

Dialogue systems have attracted increasing attention due to their promising potentials

and commercial values. Conversational AI is already recognized as a strategic priority

for modern enterprises [115]. Increasingly organizations have started or plan to use

capabilities arising from advances in conversational AI. This has led to the rise of

virtual personal assistants and sophisticated chatbots, which have become an integral

part of our daily lives. With popular personal assistants like Microsoft Cortana, Google

Assistant, Amazon Alexa, and Apple Siri being used by millions of users worldwide [62],

chatbots have gained immense popularity. Apart from the popular personal assistants,

many other chatbots are being developed, such as those allowing data scientists to

assemble data analytic pipelines (e.g., Analyza [66]) and those that act like humans

(e.g., Replika [93]). These chatbots have found applications in different domains such as

healthcare, finance, marketing, and customer support. We can use them for generating

source code, controlling home appliances, and even testing theories [37,71,75,141]. At

the time of writing, the company OpenAI [12] has developed a new chatbot, called

chatGPT [3], which has opened up new possibilities and revolutionize the way we

communicate and learn, making it easier and faster to access information and get the

help we need [117, 144]. In less than 2 months, the artificial intelligence ChatGPT

has reached 100 million monthly active users, making it the fastest-growing consumer

application in history [68, 117, 144]. Its success is a testament to the importance and

potential of chatbots in today’s and future world.

Nonetheless, despite the advances in various research areas and the greater availabil-

Page 2 of 148

1.1 BACKGROUND, MOTIVATIONS AND AIMS

ity of data and services, developing task-oriented chatbots remains a challenging task.

One of the key challenges is the translation of user utterances to intents. Human lan-

guage can be rich, potentially ambiguous, and express ambiguous and complex intents,

which poses a difficulty for chatbots to understand user requests accurately [37,71,108].

Furthermore, with the continuous development of software-enabled services and the

increasing availability of new APIs (Application Programming Interfaces), chatbot de-

velopment needs to scale in terms of how effectively they can be integrated with APIs.

However, from an engineering perspective, the integration of chatbots and software-

enabled services has not kept pace with the ability to deploy individual devices and

services [244]. The lack of effective support for a wide range of possibly complex user

intents and the inability to leverage the large and growing number of services hinder

the design and development of effective techniques that allow users to interact natu-

rally with software-enabled services. Current solutions for chatbot development rely

heavily on experts’ understanding of APIs and on the availability of massive amounts of

annotated data. Using existing NLP and ML techniques for recognizing complex user

intents will require laborious, costly and hard-to-acquire training datasets. In addition,

each time a new complex intent is identified, extending or producing a new dataset is

needed as well. Therefore, more advanced and flexible techniques are required to cater

for complex intent recognition and chatbot development. After all, the value of conver-

sational AI heavily depends on their ability to easily integrate and reuse concomitant

capabilities across a large number of heterogeneous and evolving APIs [244,248].

In this thesis, we contribute novel abstractions and techniques focusing on the synthesis

of API calls to support broad range of potentially complex user intents. We propose

reusable and extensible techniques to recognize and realize composite intents during

humans-chatbots-services interactions. The abstractions and techniques seek to unlock

the seamless and scalable integration of natural language-based conversations with

software-enabled services.

Page 3 of 148

1.2 RESEARCH ISSUES

1.2 Research Issues

In this section, we will discuss important issues regarding the management of complex

and composite interactions between users, chatbots, and services.

1.2.1 Access to heterogeneous information sources

Dialogue systems require access to information stored in various data sources and ser-

vices in order to fulfill user intent and provide relevant responses. This includes in-

formation from conversation history, user profiles, and external sources such as docu-

ments [108]. Such information is in many cases scattered across different, heterogeneous

and complex information silos [53, 227]. While existing techniques in information re-

trieval and indexing [76, 230, 234] have produced promising results that are certainly

useful, more advanced techniques that cater for managing information and complex in-

teractions between users, chatbots, and services are needed to effectively support users

requests.

A core challenge is the lack of latent knowledge about user intents and APIs (e.g.,

relationships between intents and APIs elements), which makes it hard to effectively

support dynamic synthesis of services and reason about potentially complex user in-

tents (e.g., ambiguous natural language user utterances, context-specific user tasks).

Incorrect inference of conversation flows arises from uncertainty about intent slot val-

ues and relationship between API elements across heterogeneous APIs (e.g., one intent

uses city as a parameter while another use location as a parameter). In this context,

there is a need for more advanced techniques that focus on augmenting intents with

knowledge that facilitates the superimposition of natural language conversations over

process and software-enabled services to effectively support users’ requests.

Page 4 of 148

1.3 CONTRIBUTIONS

1.2.2 Support complex users-chatbots-services interactions

Developing chatbots capable of handling complex conversations spanning multiple top-

ics and domains is an ongoing area of research. There are still major challenges, includ-

ing that building such chatbots requires rich abstractions to capture user intents that

may be context-depends and complex [37, 71]. For instance, the realization of a user

intent may require composition of multiple APIs to control IoT (Internet of Things) de-

vices using one user utterance. Imagine a scenario where a user wants to go to sleep and

says "I am going to sleep" to the chatbot. The chatbot recognizes this as a composite

intent and triggers multiple APIs to perform the necessary actions, such as turning off

the TV, lights, and any other devices that may interfere with sleep. The chatbot could

also adjust the temperature and humidity levels, set an alarm for the next morning,

and lock the doors for security. This example illustrates the potential of chatbots to

provide context-aware assistance in managing complex tasks, but it also highlights the

challenges of integrating multiple APIs and recognizing composite intents.

While existing advances in NLP and ML techniques have made significant progress in

automating various tasks such as intent recognition [50], the synthesis of API calls to

support broad range of potentially composite user intents remains largely a manual and

costly process [247]. In addition, using these techniques require massive amounts and

hard to acquire training datasets. The latent knowledge required to integrate intents

and APIs until now is rarely codified and used to recognize composite intents and

translate them into APIs and their compositions. Therefore, there is a need for more

advanced and flexible techniques that cater for composite intent recognition to build

robust virtual assistants and provide a better user experience.

1.3 Contributions

Our main goal is to support composite user intents by dynamically and incrementally

synthesizing executable conversation models from natural language conversations. To

achieve this, we build upon advances in ML and NLP techniques, as well as conver-

Page 5 of 148

1.3 CONTRIBUTIONS

sation modeling and knowledge graph approaches. We contribute innovative concepts

and techniques to enable automatic recognition and realization of composite and com-

plex user intents during natural language conversations with software enabled services.

The proposed concepts and techniques include: (i) reusable abstractions and patterns

for recognizing compositional conversational flows, (ii) context knowledge-aware recog-

nition of composite intents in task-oriented human-bot conversations, and (iii) process-

oriented intents for superimposition of natural language conversations over composite

services. We investigate and develop software architectures, prototypes, and evaluation

studies to assess the proposed models and techniques.

1.3.1 Reusable Abstractions and Patterns for Recognizing composi-

tional conversational flows

Natural user conversations can be rich, potentially ambiguous, and express composite

user intents. The latter may be context-dependent and complex. Therefore, its real-

ization may require the composition of multiple APIs (e.g., triggering multiple APIs to

control IoT devices using one user utterance) and sophisticated context management. A

key distinguishing feature of task-oriented conversational services is dialogue patterns,

the multi-turn interaction styles needed to fulfill user intents (e.g., a chatbot-to-user

question to resolve the value of a missing intent parameter, an invocation of an API by

the chatbot to resolve the value of a missing parameter, or extracting an intent param-

eter value from the user-chatbot conversation history). Instead of relying on low-level

scripting mechanisms to manage interactions, we argue that models for describing nat-

ural language interactions between users, chatbot, and services should be endowed with

intuitive constructs that can be used to specify a range of dialogue patterns. In [248],

we proposed the concept of conversation state machines as an abstraction to represent

and reason about dialogue patterns.

In this contribution, we propose to extend the conversation state machines model by

identifying and characterizing a set of composite dialogue patterns (e.g., data flow be-

tween API methods, nested API methods, dependency constraints between API meth-

Page 6 of 148

1.3 CONTRIBUTIONS

ods) to identify complex user intents. These composite dialogue patterns endow chatbot

platforms with reusable functionality to recognize compositional conversational flows

that would otherwise have to be implemented by bot developers (i.e., reduce the devel-

opment complexity).

1.3.2 Context Knowledge-aware Recognition of Composite Intents in

Task-oriented Human-Bot Conversations

Ideally, a virtual assistant should detect user intents and infer missing slot values with

the least possible interactions with the user (i.e., the virtual assistant asks the user for

a missing value only when it cannot infer it from other sources). A key challenge to

achieve this objective is devising robust intent recognition and slot inference despite

the potentially ambiguous and complex utterances. An utterance may not always

follow a simple conversation pattern, where the chatbot recognizes a basic intent and

infers all required slot values from the utterance. The user intent can be composite

and its realization may require the chatbot to break it down into a list of atomic

actions and infer potentially missing values from different sources, not directly from

the utterance. Existing NLP and ML techniques have produced promising and useful

results to recognize basic intents. However, ML based techniques rely on the availability

of massive amounts of annotated data. Using these techniques to recognize composite

intents requires laborious, costly and hard to acquire training datasets. In addition,

each time a new composite intent is identified, extending or producing a new dataset

is needed as well. Therefore, more advanced and flexible techniques that cater for

composite intent recognition are needed.

In this contribution, we propose reusable and extensible rule-based technique that uses

a sophisticated context service to recognize and realize composite intents. We believe

that our approach charts novel abstractions that unlock the seamless and scalable

integration of natural language-based conversations with software-enabled services. We

devise a novel composite intent recognition that allows the incremental acquisition

of rule templates to identify composite intents from basic dialogue acts and context

Page 7 of 148

1.3 CONTRIBUTIONS

features. The contextual knowledge required at run-time to recognize composite intents

and infer slot values from user-chatbot conversations is extracted from conversation

history, enriched entities, intents and API schemas and represented in graph structure.

1.3.3 Process-oriented Intents for Superimposition of Natural Lan-

guage Conversations over Composite Services

Integrating task-oriented conversational assistants and process-enabled automation in-

volves advanced machine learning, entity recognition, and NLP techniques. A key NLP

task in this context is intent recognition, i.e., (i) understanding user utterances in nat-

ural language and recognizing user intent corresponding to tasks that the user wants

to accomplish, (ii) extracting relevant intent input slot values from user utterances,

and (iii) trigger commands that process user intents and perform conversations with

users. Orchestrating human–machine conversations over composite services requires

rich abstractions and knowledge to: (i) interact with a multi-step processes using nat-

ural language utterances, (ii) automatically recognise nuanced, context sensitive and

possibly ambiguous process-aware user intents including starting a new task, inquiring

about task progress, switching from one task to another and exceptional behavior such

as canceling or updating tasks.

In this contribution, we focus on the superimposition of task-oriented assistants over

composite services. Specifically, we identify fine-grained Human-bot-Process (HP) in-

teraction acts (or process-oriented user intents) that are relevant to represent natural

language conversations between the user and multi-step processes. We devise an ap-

proach that combines recognition of these process-oriented intents from user utterances

with additional context and process knowledge to enable human users to perform tasks

by naturally interacting with service orchestrations.

Page 8 of 148

1.4 THESIS STRUCTURE

1.4 Thesis structure

The structure of the thesis follows the research approach presented in Figure 1.1 and

consists of five chapters. Chapter 2 provides essential background knowledge and re-

views state of the art approaches in the field. The next three chapters (Chapter 3,

4, and 5) present the related work to the study reported in each chapter to moti-

vate the research and illustrate its relevance. Specifically, Chapter 3 proposes and

presents reusable dialogue patterns for recognizing compositional conversational flows

to support increased complexity and expressivity during human-chatbot-services con-

versations. Chapter 4 proposes and presents a novel approach to recognize and realize

composite user intents. Chapter 5 proposes and presents the concept of Human-bot-

Process interaction acts. These interaction acts are relevant to represent natural lan-

guage conversations between the user and multi-step processes. Finally, Chapter 6

provides concluding remarks and discusses future research directions.

Chapter 2

Review of background and state of the art approaches

Chapter 3

Composite Dialogue
Patterns:

Reusable Abstractions and
Patterns for Recognizing

compositional conversational
flows

Chapter 5

Process-oriented Intents:
Process-oriented Intents for Superimposition of Natural

Language Conversations over Composite Services

Chapter 4

Recognition of Composite
Intents:

Context Knowledge-aware
Recognition of Composite
Intents in Task-oriented

Human-Bot Conversations

Chapter 6

Conclusion and Future Directions

Figure 1.1: Research Approach.

Page 9 of 148

1.4 THESIS STRUCTURE

Chapter 2

Background and State of the art

Contents

2.1 Background . 11

2.1.1 Dialogue systems . 11

2.1.2 Natural Language Understanding 15

2.1.3 Dialogue Management . 20

2.1.4 Natural Language Generation 21

2.2 Dialogue Management in Task-oriented Chatbots 23

2.2.1 Handcrafted approaches . 23

2.2.2 Data-driven approaches . 26

2.2.3 Hybrid approaches . 30

2.3 Context Knowledge in Task-oriented Chatbots 31

2.3.1 User Context Knowledge . 32

2.3.2 System Knowledge . 37

2.4 Summary and Discussion . 41

2.4.1 Summary . 41

2.4.2 Discussion . 50

Dialogue systems have garnered increasing attention in recent years due to their ability

to understand and respond to natural language inputs. This chapter is divided into

Page 10 of 148

2.1 BACKGROUND

four sections. In Section 2.1, we discuss the main concepts related to dialogue systems.

In Section 2.2, we delve into the state of the art and discuss dialogue management

techniques. In Section 2.3, we explore different knowledge sources used in task-oriented

chatbots for dialogue state tracking. In Section 2.4, we summarize dialogue management

approaches and knowledge sources in task-oriented chatbots and then we identify some

research issues.

2.1 Background

In this section, we discuss the background of dialogue systems. This section is divided

into four main parts: In Section 2.1.1, we define dialogue systems and their different

types. We then focus on task-oriented dialogue systems, which are the focus of this

thesis. In Section 2.1.2, we define intents and slots and present the natural language

understanding component, which is one of the main components of task-oriented dia-

logue systems. In Section 2.1.3, we define the dialogue management component, which

is another important component of task-oriented dialogue systems. Finally, in Section

2.1.4, we provide an overview of techniques used to generate human-like responses,

which is the third and final component of task-oriented dialogue systems. Overall, Sec-

tions 2.1.2, 2.1.3, and 2.1.4 provide a comprehensive overview of the three components

that make up a task-oriented dialogue system.

2.1.1 Dialogue systems

Dialogue systems, also known as chatbots, are programs that allow the user to converse

with a computer in natural language [34, 49]. These systems take a natural language

utterance (in form of text or voice) as input and generate an appropriate natural lan-

guage response (in form of text or voice) as output [49,112]. Figure 2.1 shows a simple

representation of a dialogue system. Dialogue systems are generally divided into two

categories [49, 112]: (i) non-task-oriented dialogue systems, and (ii) task-oriented dia-

logue systems. In what follows, we define each of these categories.

Page 11 of 148

2.1 BACKGROUND

Dialogue
System

Natural Language
Utterance

(text or voice)

Natural Language
Response

(text or voice)

INPUT OUTPUT

Figure 2.1: Simple representation of a dialogue system.

2.1.1.1 Non-task-oriented dialogue systems

Non-task-oriented dialogue systems are chit-chat systems that focus on conversing with

a human on open domains [49, 118]. They are designed for extended conversations

to mimic the unstructured conversations or "chats" characteristic of informal human-

human interactions [49,108]. They do not have a predefined goal for the conversation.

These systems are mainly designed for entertainment, but also for making task-oriented

dialogue systems more natural [29, 242]. For example, a study conducted by Bickmore

and Cassell [29] showed that people were much more motivated to buy real estate

through a task-oriented dialogue system that integrates some chit-chat about topics

unrelated to real estate than through a dialogue system that only engaged in task-

oriented conversations.

The first chatbot, called Eliza [216], emerged in 1966 from MIT (Massachusetts Insti-

tute of Technology). Eliza used a rule-based method where pre-defined outputs were

given based on identified patterns in the user utterance. This chatbot was created to

simulate psychotherapists1 by discussing with patients and reformulating most of their

statements into questions as shown in Figure 2.2. Recent chatbots include Replika [13]

and Mitsuku [11], which are designed to provide emotional support to users through

natural language interactions. A more recent chatbot, called ChatGPT [3], emerged

in 2022 from OpenAI company [12]. This ChatGPT is designed to assist users with

a wide variety of tasks, such as providing information, helping with making decisions,

or answering questions on a wide range of subjects, from general knowledge to specific

programming concepts. All these recent chatbots have been developed with advanced

1a person who treats mental conditions by verbal interaction.

Page 12 of 148

2.1 BACKGROUND

Men are all alike.

In what way

They’re always bugging us about
something or other.

Can you think of a specific example

Well my boyfriend made me come here.

Your boyfriend made you come here

He says I’m depressed much of the time.

I am sorry to hear you are depressed

Figure 2.2: Sample Eliza dialogue from Weizenbaum (1966) [112].

machine learning (ML) techniques and have the ability to handle more complex in-

teractions, making the conversation more natural. In general, three major approaches

have been developed for non-task-oriented dialogue systems: (1) rule-based methods,

(2) generative methods, and (3) retrieval-based methods.

1. Rule-based methods: These methods use a set of pre-defined rules to determine

how the chatbot should respond to a given utterance. The rules consist of defining

a set of pattern and response pairs. When a user utterance matches an existing

pattern, the chatbot sends the corresponding response [23,46,195,216].

2. Generative methods: These methods use machine learning techniques to generate

proper responses during the conversation. The chatbot is trained on a corpus, and

the goal is to generate responses that could have never appeared in the corpus [76,

89,207]. An example of these methods is sequence-to-sequence models [150,167],

which generate an entire response word by word during the conversation.

3. Retrieval-based methods: These methods learn to retrieve information from repos-

Page 13 of 148

2.1 BACKGROUND

itories (e.g., datasets of human-human conversations). They use selection algo-

rithms to select a proper response for the current conversation from a reposi-

tory [104,230,234].

Natural Language
Understanding (NLU)

Natural Language
Generation (NLG)

Dialogue State
Tracking (DST)

Dialogue Policy
(DP)

Dialogue
Management

User Context
Knowledge

System
Knowledge

Figure 2.3: Common components of task-oriented chatbot.

2.1.1.2 Task-oriented dialogue systems

Unlike non-task oriented dialogue systems, task-oriented dialogue systems2 aim to com-

plete specific tasks for users (e.g., send a message, schedule a meeting) based on the

information provided during the user-bot conversation. These chatbots allow users to

interact with software-enabled services in natural language to accomplish users’ goals.

A number of techniques have been proposed to build task-oriented chatbots, including

rule-based [23] and probabilistic models [100]. Main platforms such as Chatfuel [2]

and FlowXO [6] provide flow-based solutions to develop chatbots with zero coding

using user interface (UI) elements. Other platforms such as DialogFlow [5], Wit.ai [17],

Rasa [169], Amazon Lex [1] and IBM Watson Platform [10], on the other hand, provide

machine learning based solutions. In addition to these solutions, a variety of machine

learning models have emerged in research following two common architectures: pipeline

and end-to-end. End-to-end models, including end-to-end memory networks [253] and

sequence-to-sequence models [150], read directly from a user utterance and produce a

2Since this thesis focuses on task-oriented dialogue systems, in the rest of the
manuscript, the term "chatbot" refers to this type of dialogue system for simplicity.

Page 14 of 148

2.1 BACKGROUND

response. A pipeline-based model, on the other hand, is built with a set of components,

each responsible for a specific task [51, 174, 198]. Figure 2.3 shows these components

together with their interaction flow according to a pipeline architecture [50]. This

architecture has been widely adopted by most traditional dialogue systems and still

used underlying modern commercial and research systems [77].

In a pipeline architecture, the task-oriented chatbot first uses the Natural Language

Understanding (NLU) component to convert the user utterance into a structured rep-

resentation that can be used by chatbot [119]. We will detail this component in Section

2.1.2. Then, the information of this structured representation is fed into the second

component, which is the Dialogue Management component. The dialogue management

component aims to control the conversation flow, to check user inputs, and to choose

next actions to perform [34]. A typical dialogue management component has two sub-

components: the Dialogue State Tracking (DST) and the Dialogue Policy (DP) [34,49].

The DST decides how to infer missing information and maps a given structured rep-

resentation into a suitable dialogue state [227]. Based on the dialogue state, the DP

chooses the next action to perform (e.g., invoking an API method) [255]. In Section

2.1.3, we will discuss dialogue management component and in Section 2.2, we will unfold

existing techniques and approaches for DST and DP components. The last component,

the Natural Language Generation (NLG) component, aims to generate a human-like re-

sponse based on the outcome of the dialogue management component [119,184]. Later,

in Section 2.1.4, we will overview NLG techniques.

2.1.2 Natural Language Understanding

The Natural Language Understanding (NLU) component has two fundamental con-

cepts, which are intent recognition and entity recognition.

User Intents. One of the main objectives of chatbots is to respond to user intents.

An intent refers to the user’s goal or purpose. In general, intents are specified using

short names including a verb and a noun such as "schedule-meeting", "book-restaurant".

Intents are defined by bot developers before starting conversations with users. Then,

Page 15 of 148

2.1 BACKGROUND

"I am looking for a french restaurant in Paris"

Utterance

Entity
(food)

Entity
(city)

Intent: search-restaurant
verb noun

Figure 2.4: An utterance belongs to an intent and contains entities.

during the conversation, the chatbot has to recognize the intent based on the user’s

utterance. For example, the user utterance "Please, remind @Boualem that we have

meeting tomorrow by 10AM" corresponds to the intent "send-reminder". There are often

several different ways of expressing the same intent. For example, the two utterances

"I am looking for a restaurant" and "is there any place to eat" correspond to the same

intent, which is "search-restaurant". Thus, increasing the quality, variety, and quantity

of utterances can help to improve intent recognition.

Entities / Slots. In order to fulfill user intent, chatbots often need to extract impor-

tant information from the user’s utterances. Such information, known as entities or

slots, is used to provide a relevant response. For example, in the utterance "I am look-

ing for a french restaurant in Paris", the term "Paris" is an entity of type city. Figure

2.4 shows an example that illustrates the relationship between utterances, intents, and

entities. An utterance belongs to an intent and contains entities.

There are several approaches for recognizing user intents and extracting entities. In

the following sections, we will discuss existing approaches for NLU component.

2.1.2.1 Rule-based approaches

Rule-based approaches involve defining a set of handcrafted rules in the form of pat-

tern/response pairs as shown in Figure 2.5. These rules perform NLU, dialogue man-

agement, and NLG tasks at once by taking as input the user utterance and producing

the corresponding response.

Page 16 of 148

2.1 BACKGROUND

+ pattern: Hello
- response: Hi human!

+ pattern: my name is <name>
- response: Nice to meet you, <name>!

+ pattern: How are you?
- response: I am fine, how about you?

Figure 2.5: Example of Rivescript code.

The set of rules is fully specified by developers or domain experts by using various

languages. The first language that was used to develop chatbots is the Artificial In-

telligence Markup Language (AIML) [211]. It is based in XML (Extensible Markup

Language), and it is open-source. Eliza [217] and its successor Alice [211] are the first

chatbots that leverage AIML language. This language is built using two core units: cat-

egories and topics. Categories are blocks of rules consisting of a (i) pattern defining user

input (i.e., user utterance), and (ii) template defining chatbot response. On the other

hand, topics are collections of categories. Figure 2.6 shows an example of rules writ-

ten by AIML. Other rule-based languages include Rivescript [14] and Chatscript [4].

In RiveScript’s syntax, the symbol "+" indicates a user input, while "-" denotes the

chatbot response. This language provide clearer structure and easier to follow syntax

compared to AIML as shown in Figure 2.6.

+Hello chatbot
- Hi human!

+my name is <name>
- Nice to meet you, <name>!

+ How are you?
- I am fine, how about you?

<aiml>

<category>
<pattern>Hello chatbot</pattern>
<template>Hi human!</template>

</category>

<category>
<pattern>my name is *</pattern>
<template>
Nice to meet you <set name="name"><start/></set>
</template>

</category>

<category>
<pattern>How are you?</pattern>
<template>I am fine, how about you?</template>

</category>

</aiml> A B

Figure 2.6: Rules written by AIML (A) and Rivescript (B) scripting languages.

Page 17 of 148

2.1 BACKGROUND

Overall, rule-based approach can be a good choice for specific use cases where the

scope of the conversation is small and unlikely to grow. An important advantage of a

rule-based approach is that it is easy to implement and does not require any training

data. However, this approach is not robust to variations in the way people express

themselves, thus it lacks flexibility. Additionally, the rule-based approach requires

considerable effort from developers to encode rules. As the number of rules grows,

finding overlaps and conflicts between rules causes a laborious maintenance cost.

2.1.2.2 Machine learning-based approaches

Machine learning-based approaches can be classified into two categories: (i) classification-

based approaches and (ii) deep learning-based approaches.

Classification-based approaches. These approaches consider intent recognition as a

classification problem. They aim to analyze the user utterance and to determine which

pre-defined intent it belongs to. They involve training a machine learning model on

a large dataset of user utterances, each annotated with the corresponding intent and

entities (as shown in Figure 2.7). The model is then used to predict the intent and

extract entities of new user utterances. Different classification algorithms can be used

for recognizing user intents, such as Naive Bayes, MaxEntropy and Support Vector

Machine (SVM) [187]. For instance, RasaNLU [169], a natural language processing

service, uses SVM algorithm to recognize intent from user utterances.

Deep learning approaches. Deep learning has been utilized effectively for intent

recognition due to its consideration of long dependencies between words in utter-

ances [64, 206, 237]. These deep learning approaches convert utterances (from training

dataset) into a sequence of numbers where each number refers to an indexed word in

the vocabulary dictionary. This vocabulary dictionary is built from the training dataset

to store unique words. Then, the sequence of numbers is used by a neural network to

learn about the sequence pattern of words for each intent. Different variations of neu-

ral networks were used to recognize intents and extract entities. For example, works

like [95,106,191] applied convolutional neural networks (CNN) to automate features ex-

Page 18 of 148

2.1 BACKGROUND

{
"utterance: "Tell me what events I have scheduled in my calendar for the 13th of this month.",
"intent": "get-events",
"slots": [

{
"slot": "event_date",
"value": "13th of this month",
"start": 60,
"exclusive_end": 78

}
]

},

{
"utterance: "I need to pick up a rental car at 1 in the afternoon. Find me something in Sacramento, CA.",
"intent": "rental-car",
"slots": [

{
"slot": "pickup_city",
"value": "Sacramento, CA",
"start": 75,
"exclusive_end": 89

},
{

"slot": "pickup_time",
"value": "1 in the afternoon",
"start": 34,
"exclusive_end": 52

}
]

}

Figure 2.7: An excerpt of training dataset for classification-based intent recognition models.

traction for query classification. The work [171] used recurrent neural network (RNN)

approach for intent and entity extraction tasks. In [91], authors proposed to apply

recursive neural networks (RecNN) for training of intent recognition task.

Entity recognition is a task in natural language understanding that involves labeling

specific information, or slot , within an utterance. It is considered as a challenging

problem and is often approached as a sequence labeling problem, where a semantic

label is assigned to each word [49]. The goal is to take an utterance as input and

produce a sequence of slots, one for each word. Researchers have used various methods

to tackle this problem, including deep belief networks (DBNs) [64, 65] and recurrent

neural networks (RNNs) [156,185,239,240]. Named Entity Recognition (NER) models

are also used to extract entity values from sentences [130]. These models typically

use a combination of natural language processing techniques, including tokenization,

part-of-speech tagging, and chunking to identify named entities in text such as per-

son names and cities. Many different libraries and natural language processing tools

have pretrained NER models that can be imported, used and modified according to

requirements [190].

Page 19 of 148

2.1 BACKGROUND

Figure 2.8: Feature categories and examples used to define rules for entity extraction [59].

2.1.2.3 Hybrid approaches

These approaches combines both rule-based and machine learning-based methods for

natural language understanding task. For example, Dialogflow service [5] simultane-

ously uses both of rule-based grammar matching and machine learning matching al-

gorithms to recognize the intent by choosing the best result. The work [59] proposed

a chatbot to schedule meetings that utilize predefined rules (shown in Figure 2.8) in

addition to classification models to extract relevant information from emails such as

meeting duration or time options. This approach exploits both NER models and a

set of rules to extract entities from emails (e.g. date, meeting duration). In addition,

the work [59] uses crowdworkers to help the chatbot to classify the intent if the model

makes a mistake. In other words, if the chatbot is not able to classify an utterance into

the corresponding intent, a worker is asked to provide classification given the utterance.

Then, the provided class (from the worker) and the given utterance are used to re-train

the classification model.

2.1.3 Dialogue Management

Typically all existing chatbots are able to perform simple tasks that can be completed

with just one response, with no need for any further questions or exchanges. In other

words, these tasks are completed within a single-turn style conversation. A turn in

a conversation is marked by one back-and-forth interaction as shown in Figure 2.9.

This means that the user utterance carries all required information (i.e., slots values)

to fulfill the user intent (e.g., "Send a text to Sophia, tell her that I’ve just left so

I’ll be there in 10 minutes."). However, studies on human-bot dialogue patterns [107]

reveal that conversations are multi-turn, which means that there may exist missing

Page 20 of 148

2.1 BACKGROUND

Send a text to Sophia

Intent fulfilled

Turn 1

What would you like to say to Sophia?

Turn 2
Tell her that I’ve just left so I’ll be

there in 10 minutes.

Your text to Sophia has been sent.

Intent fulfilled

Your text to Sophia has been sent.

Send a text to Sophia, tell her that I’ve
just left so I’ll be there in 10 minutes.

Turn 1

Single-Turn
Conversation

Multi-Turn
Conversation

Figure 2.9: Example of single-turn and multi-turn conversations.

information (e.g., text) in user’s initial utterance (e.g., "Send a text to Sophia") that

needs to be inferred by the chatbot in order to fulfill the user intent. Figure 2.9

illustrates an example of single-turn and multi-turn conversations. To support multi-

turn conversations, the component dialogue management has been embedded within

chatbots. This component aims to keep track of conversation information that is entered

explicitly or implicitly and manages complex interactions with users [34,171]. In Section

2.2, we discuss main approaches that have been adopted to implement the dialogue

management models.

2.1.4 Natural Language Generation

Natural Language Generation (NLG) is another component in task-oriented chatbot

architecture (Figure 2.3). This component aims to generate a human-like response

based on the outcome of the dialogue management component [119, 184]. Two main

approaches are used to implement the NLG: (i) template-based approaches, and (ii)

generative approaches. In what follows, we discuss each of these approaches.

Page 21 of 148

2.1 BACKGROUND

2.1.4.1 Template-based approach

In the template-based approach, the domain experts define a set of templates, then these

pre-written templates are used to generate natural language responses [80, 197, 210].

These responses are generated by replacing placeholders in the templates with data re-

turned by the dialogue management (e.g., data obtained by invoking the OpenWeather

API to obtain weather forecast details). This approach is often used in specific tasks

such as get-weather, book-restaurant, and other such intents where the information to

be conveyed is predictable and structured [80]. An example is illustrated in Figure

2.10, where the template includes placeholders for the city, weather condition, and

temperatures, which are filled with data to generate the chatbot response.

NLG Template

Dialogue management ouput

Today's forecast for [city] is [weather_condition]. The high will be
[htemperature] degrees and the low will be [ltemperature] degrees.

city : Paris
weather_condition : cloudy
htemperature : 6
ltemperature : 2

Today's forecast for Paris is cloudy. The high will be 6
degrees and the low will be 2 degrees.

Response

Figure 2.10: Example of a template-based approach.

The template-based approaches are relatively simple to implement for specific domains.

However, the main drawback of these approaches is the cost to write and maintain

templates, and adapting them to new domains. In addition, these approaches may not

be able to handle unexpected input or generate novel responses, as the templates are

pre-determined [197,210].

2.1.4.2 Generative approach

The limitations of template-based approaches have prompted researchers to consider

generative approaches to implement NLG component [76, 89, 207]. These approaches

Page 22 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

consist of training machine learning models on a large dataset to produce sentences on

the fly. During the training, the model learns patterns and relationships between the

words and sentences in the dataset [149]. After the training, the model can generate

new sentences by sampling from the probability distribution of words it learned during

training. For example, given the two sentences "The cat jumped over the" and "The

dog chased after the", the model can learn that "cat" and "dog" are nouns that come

after "the", and "jumped" and "chased" are verbs that come before "over" and "after",

respectively. Thus, given the words ["under", "the", "ran", "mouse"], the model can use

the patterns it learned during the training phase and generate the new sentence "The

mouse ran under the".

Several models are used for generative approach such as neural network to predict the

next word given the preceding words in a sequence [27], RNN models based on the

Encode-Decoder architecture [56], and LSTM-based model [218] that takes as input a

dialogue act (i.e., sentence that serves a function in the dialogue such as inform or ask)

and generates a response based on the given dialogue act.

2.2 Dialogue Management in Task-oriented Chatbots

This section summarize the work on dialogue management approaches presented in

[34]. Based on the analysis of a wide range of literature, we uncovered three main

approaches that have been adopted to implement the dialogue management models

(i.e., Dialogue State Tracking (DST) and Dialogue Policy (DP)). Figure 2.11 shows the

three approaches, namely handcrafted approaches, data-driven approaches and hybrid

approaches. In what follows, we discuss each one of these approaches.

2.2.1 Handcrafted approaches

Handcrafted approaches rely on programs and models that are fully specified by chatbot

developers to track the dialogue state and define the policy (i.e., choose the next action

Page 23 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

Dialogue Management
Approaches

Handcrafted Approaches

Data-Driven Approaches

Hybrid Approaches

Finite State-based

Rule-based

Activity-based

Supervised Learning

Reinforcement Learning

Frame-based

Figure 2.11: Dialogue management approaches.

to do) [113]. We distinguish between four kinds of handcrafted approaches (illustrated

in Figure 2.11), namely rule-based (discussed in Section 2.1.2.1), finite state-based,

activity-based, and frame-based approaches.

2.2.1.1 Finite state-based approach

In finite state-based approach, the user is taken through the dialogue via following a

sequence of predetermined states [42,113,154]. Transitions between states are triggered

as a result of recognizing a pattern that matches a user utterance. For example, Figure

2.12 represents a dialogue management model defined using a finite state machine

(FSM), for a "flight booking" scenario. When the chatbot is in the "One-way trip"

state, it will choose the next state based on the user’s answer: (i) "Yes" moves to "Get

final confirmation" state, (ii) "No" moves to "Return date" state. Notable research

chatbots following this approach include Ava [110], Iris [71], Devy [36], Diasy [128] and

DialogOS [123].

Origin? Destina-
tion?

Departure
Date?

One-way
trip?

Return
date?

Get final
confirma-

tion

Origin
matched!

Destination
matched!

DepDate
matched!

RetDate
matched!

Rejection
matched!

Confirmation

matched!

Figure 2.12: Example of dialogue management modeled using a FSM.

Page 24 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

The finite state-based approach has the same advantages and limitations as a rule-

based. However, it comes with other shortcomings such as versatility and robustness

in situations where a user does not follow predefined sequences of states [155].

2.2.1.2 Activity-based approach

The activity-based approach allows the development of dialogue management model by

defining workflows [193]. While finite state-based approach is a declarative approach

that provides a high-level specification of the dialogue management behavior in terms of

possible states that may occupy during the conversation, the activity-based model is a

procedural approach that provides a concrete implementation of dialogue management

by precisely specifying the workflow that it may go through during the conversation.

I would like to buy an apparel

Hello! What would you like to buy?

What kind of apparel are you interested in?

Pants Shirts Jackets

Quick Reply

Figure 2.13: Example of a Quick Reply.

There are various platforms that developers can use to build activity-based chatbots

such as Chatfuel [2], FlowXO [6], and ManyChat [8]. These platforms provide canvas

design to draw conversations using visual elements such as Quick Reply. Quick replies

are short instant messages that contain possible user responses in the form of buttons

as shown in Figure 2.13. The workflow, which is defined by drawing elements in the

canvas, is then converted into a list of rules (e.g., Rivescript rules) to deploy a chatbot.

Page 25 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

2.2.1.3 Frame-based approach

This approach is based on the concept of frames, which are knowledge structures pre-

senting the different types of information that the chatbot is designed to acquire from

the user in order to fulfill a given task (e.g., book travel) [113]. A predefined frame may

include a dialogue domain (e.g., travel), an intent (e.g., book travel), and a collection

of required slots (e.g., destination, departure date). The goal of a frame-based chatbot

is to fill all required slots in its frame with accurate values. The chatbot asks questions

to the user until it can fill all slots needed to perform the desired task. It might attach

rules to slots to reduce monotony (e.g., if a user has specified a flight destination city,

the chatbot can automatically fill the hotel destination slot with the same value). Once

all required slots values of a frame are collected, the dialogue management reports back

the results of the action associated with the frame to the NLG. This latter relies on a

template-based generation to produce the final answer to the user [113].

Compared to finite state-based and activity-based approaches, the frame-based offers

more flexibility thanks to its ability to efficiently process over-informative inputs from

users while allowing them to fill in the slots in different orders and different combi-

nations. However, considerable testing efforts are needed to ensure that the chatbot

would not ask an inappropriate question under any conditions unforeseen at design

time. Despite that, the frame-based approach is still until now underlying modern

chatbots such as Apple Siri, Amazon Alexa, and the Google Assistant [113].

2.2.2 Data-driven approaches

In contrast to handcrafted approaches where the dialogue management logic has to be

defined by hand, data-driven approaches were proposed to learn the dialogue state and

the next action to do from data. They involve mainly machine learning approaches,

including supervised learning and reinforcement learning as shown in Figure 2.11. In

what follows, we discuss each one of these approaches.

Page 26 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

2.2.2.1 Supervised learning approaches

The supervised learning approach learns from a corpus of labeled data, then choose the

next action to do depending on what the model learned. A variety of supervised learning

models have recently been applied to the dialogue state tracking (DST), dialogue policy

(DP), or both as a single module exposed either independently from NLU and NLG

components or jointly leading to the emergence of so-called end-to-end chatbots [49,253].

In what follows, we first discuss supervised learning approaches for DST and then we

move on to those for DP.

Supervised learning based DST. Earliest supervised learning approaches to DST

rely on statistical models, including conditional random fields (CRF) [125, 177] and

maximum entropy models [157,220,221]. These approaches heavily rely on handcrafted

features to learn dialogue state representations. More recently, research has been relying

on neural-based approaches, which started to receive more attention, especially with

the adoption of deep learning models that have significantly contributed to dialogue

management performance improvement. Most of these approaches consider merging

NLU and DST into a single model that acts directly on user utterances to update

the dialogue state. Notable deep learning models that were initially adopted for DST

include multi-layer perceptrons (MLP) [98], recurrent neural networks (RNN) [99,159],

and convolutional neural networks [158]. They are used to learn feature representations

for user utterances and the associated slot-value pairs. More recent deep learning

models [54, 260] adopted graph neural networks (GNN) with attention mechanisms to

incorporate slot relations (e.g., similarity) in DST, as a solution to alleviate the data

sparsity problem.

We can classify the above DST approaches into two categories: (i) predefined ontology-

based where a predefined ontology is provided in advance to define all slots and their

values in each domain [54, 158], and (ii) open-vocabulary candidate-generation that

estimate the slot value candidates from conversation history and/or language under-

standing outputs, without any predefined ontology [84, 226, 260]. While predefined

ontology-based approaches have been shown to be accurate as they reason over a known

Page 27 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

candidate set of each slot, their applicability in practice is still threatened and depends

on the ontology coverage. Open-vocabulary approaches, on the other hand, provide

a key step toward a DST with zero-shot generalization, whereby adding new intents,

slots or even domains do not require the need for collecting new data.

Supervised learning based DP. There are two approaches to applying supervised

learning for the DP. The first one considers DP component as a pipelined module,

trained independently of DST and NLU modules. In this approach, the DP takes as

input the dialogue state to output the next chatbot action. The most widely used

supervised learning models to implement a DP are neural networks, bidirectional long

short-term memory (BLSTM), convolutional neural networks (CNN) or a combination

of the two above (i.e., BLSTM and CNN) [153,198,219]. For instance, in [198], authors

represented DP as a neural network with one hidden layer and an output layer consisting

of two softmax partitions and six sigmoid partitions (refer to Figure 2.14). For the

softmax outputs, one is for predicting dialogue acts (i.e., request, offer, confirm, select),

and the other for predicting the associated slots (e.g., food, pricerange, area, none).

The sigmoid partitions are used to determine a binary prediction for offer slots (i.e.,

slots the chatbot can mention, such as area, phone number and postcode).

Figure 2.14: Dialogue Policy Network [198].

The second approach is to implement a DP as an end-to-end model that reads directly

from a user utterance and produces a chabot action. The sequence-to-sequence model

is the main model used in this approach. Such a model is based on the encoder-decoder

Page 28 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

architecture which takes a sequence as input and generates another sequence as output.

In a chatbot, the source sequence is a user utterance along with a dialogue history, and

the target sequence is a corresponding action (e.g., API call, database query).

2.2.2.2 Reinforcement learning approaches

The reinforcement learning (RL) approach treats dialogue management as an opti-

mization problem. It focuses on optimizing the learning over time through experi-

encing with users by using a series of rewards or punishments and then the chatbot

chooses the next action that has the higher reward. Typically, the reward is defined

using a function that captures a set of dimensions, such as accomplishment of the task,

user satisfaction, dialogue duration. Dialogue management is generally modeled as

Markov Decision Process (MDP) [45, 77, 154], where there is a set of dialogue states

interconnected with transition probabilities. Another important approach to model

RL-based dialogue management is the Partially Observable Markov Decision Process

(POMDP). Compared to MDP that relies on the assumption that the dialogue state is

fully observable (i.e., is always known to the chatbot with certainty), POMDP caters

for unobserved dialogue states [101,138,243]. This makes it able to deal with uncertain-

ties in user utterances [138, 225]. More particularly, the dialogue state is defined as a

distribution over all possible states, including the wrong ones arising from an incorrect

interpretation or misunderstanding of user utterances.

Recently, research works [52,61,72,137] have applied deep learning models to enhance

the performance of RL methods. This leads to a new approach known as deep re-

inforcement learning (DRL). These improvements, however, made RL methods only

able to support simple conversations because they basically operate in flat state-action

space, hence they have been known as flat RL methods. According to numerous stud-

ies [40, 165], flat RL methods are not able to learn well and be data-efficient in large

domains and especially where the conversation tasks are complex. These challenges

motivate the study of the so-called Hierarchical RL [24] which is now being actively

explored in order to avoid the curse of state-action space. HRL provides a principled

Page 29 of 148

2.2 DIALOGUE MANAGEMENT IN TASK-ORIENTED CHATBOTS

approach for learning dialogue policies over complex conversation tasks by decomposing

complicated conversation tasks (e.g., travel planning) into a sequence of sub-tasks (e.g.,

book-flight, book-hotel). For example, in [165], authors proposed a dialogue manage-

ment that has two layers: a top-level layer selects which subtasks to complete, and a

low-level layer chooses primitive actions to execute the selected subtask.

Data-driven approaches, including supervised leaning and reinforcement learning based

models, contribute to reduce the development and maintenance cost of dialogue man-

agement by automatically learning the dialogue state and policies [154]. However, these

approaches heavily rely on the quantity and quality of data used for training models.

2.2.3 Hybrid approaches

Hybrid approaches combine either handcrafted or/and data-driven approaches in order

to capitalize on the benefits of each. In what follows we discuss (i) hybrid-based DST

approaches and (ii) hybrid-based DP approaches. Then, we discuss the advantages and

limits of these approaches.

Hybrid-based DST. Hybrid-based DST approaches can be summarized into two

categories: (i) combining a rule-based model with a supervised learning model, or (ii)

combining multiple supervised learning models. The first approach relies on applying

a rule-based model in parallel with a supervised learning model and taking the outputs

union of both as a final dialogue state [199, 208, 209]. The second hybrid-based DST

category combines the benefits of both using predefined ontology-based methods and

open-vocabulary methods that either dynamically generate a candidate set of slot values

or pointing them directly from input utterances [78, 84, 126, 212, 232, 252]. The aim is

to allow DST over unknown slot values that are not defined in a domain ontology. In

doing this, it seeks to mitigate the scalability issue suffered from the ontology-based

method and the low performance of the open-vocabulary method in certain cases.

Hybrid-based DP. There are two methods commonly adopted to learn the dialogue

policy using a hybrid approach. The first method consists of integrating a supervised

Page 30 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

learning model with handcrafted domain knowledge and rules. The motivation behind

this is that some simple operations like sorting a list of database results would be better

implemented in a few lines than using thousands of dialogues to learn them [223]. The

second method relies on applying multiple DP models simultaneously, whereby the

next system action is decided by the policy model that predicts it with the highest

confidence [170].

Overall, hybrid-based dialogue management approaches can be considered as an im-

portant step to improve the performance of dialogue management and increase its

capability to generalize. It has been proven that they can reach performances compa-

rable to purely machine learning models with less training data. While such a hybrid

approach may require an amount of developer effort, it can be seen as very useful in

practical settings where collecting realistic dialogues for a new domain can be expensive.

Approaches combining multiple ML/rule models can provide a potentially stronger di-

alogue management solution. However, applying multiple ML models at the same time

may amplify the need for training data and powerful resource settings.

2.3 Context Knowledge in Task-oriented Chatbots

The work presented in this thesis focuses on the dialogue state tracking (DST) compo-

nent, which is a crucial aspect of task-oriented chatbots. DST is responsible for un-

derstanding the user’s intent and extracting specific information (referred to as "slots")

required to complete a task. In order to accomplish this, chatbots rely on a variety of

external knowledge sources, including user context knowledge, crowdsourced informa-

tion, domain knowledge, and knowledge graphs.

There are two main types of knowledge used in task-oriented chatbots for state track-

ing: (i) User Context Knowledge, and (ii) System Knowledge as shown in task-oriented

chatbot architecture (Figure 2.3). User Context Knowledge refers to any information

extracted from the user side and leveraged by the chatbot to infer the dialogue state,

such as conversation context and user profile. System Knowledge, on the other hand,

Page 31 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

User Context Knowledge System Knowledge

Conversation context

User profiles

Environment context

Schema-guided DST

External knowledge

Structured knowledge (e.g., knowledge graphs)

Unstructured knowledge (e.g., documents)

Visual environment (e.g., images)
Working task (e.g., code development)

External environment (e.g., sensors)

Structural representation of intents, entities,
services, APIs and their relationships

Window-size conversation history
Whole conversation history

Emotion-awareness
User preferences

Personality-awareness

Composite Dialogue Patterns

Composite Dialogue Pattern are used to
recognize and realize complex intents.
This is the main contribution of this thesis.

NEW

Figure 2.15: Dialogue State Tracking Knowledge.

consists of the knowledge leveraged from the system side to infer the dialogue state.

This includes entities and relationships extracted from structured and unstructured

data sources, and knowledge graphs, as well as external knowledge such as domain-

specific or commonsense knowledge used to complement user context knowledge.

In order to effectively track the dialogue state, the DST component must be able to

combine and utilize both User Context Knowledge and System Knowledge. Figure 2.15

shows main user context and system knowledge types. In what follows, we discuss these

types of knowledge.

2.3.1 User Context Knowledge

User context knowledge can be defined as any information extracted from the user side

and leveraged to fulfill user intent. Existing context knowledge types mainly include

conversation context, user profiles, and environment context as shown in Figure 2.15.

In what follows, we present each one of these context knowledge types.

Page 32 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

2.3.1.1 Conversation context

Also known as conversation history, the conversation context includes information that

was discussed in the past conversation turns. This conversation context consists of

the whole or window-size of the dialogue history to predict the dialogue state. Deep

learning models including HRNN (Hierarchical Recurrent Neural Network) [85], LSTM

(Long-Short Term Memory) [79] and BERT (Bidirectional Encoder Representations

from Transformers) [250] are utilized to encode the dialogue history.

Some approaches [47, 96, 120, 160, 260] consider only the previous dialogue states to

predict the current state instead of taking the whole history. However, this renders

them only tailored in pairwise utterance exchanges. They are not very useful for long-

dependency dialogue state tracking [235].

Other approaches [86, 127, 178, 189, 227, 233, 251] leverage on the whole conversation

history from the first conversation turn up to the last one. In general, an LSTM

model over past conversation turns is commonly used to encode the conversation history

because of its ability to model long-term dependencies. Concatenating all conversation

turns implies one of the reasons that result in increased computational cost [235].

Addressing issues of both kinds of approaches, recent work [92,235] use fine-grain turns

instead of the last or the whole conversation turns. For example, granularity can be the

number of conversation turns spanning from a certain dialogue state in the conversa-

tion to the current one (e.g., the 3 or 4 last conversation turns) [235]. In [235], authors

conducted studies to explore how the conversation history at different granularities af-

fects the DST. The work presented in [235] showed that there are significant differences

in state tracking at different granularities. They found that the determination of the

granularity (i.e., number of turns to take into consideration to infer the dialogue state)

is according to the characteristics of the used model and dataset. For instance, models

with generative decoding, such as TRADE [227], prefer larger granularity because they

require more information to track the dialogue state [235].

More advanced approaches [105, 163, 241] focused first on the learning of slot depen-

Page 33 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

dencies from the history, allowing them to infer slot values from similar slots. Other

advanced approaches [71,94,139,175,204] leveraged linguistic patterns that are drawn

mainly from human-to-human conversations to handle some complex intents and infer

their slots. For example, IRIS [71] draws on dependent questions (i.e., one question

depends on the answer to some subsequent questions), and anaphora (i.e., expressions

that depend on previous expressions) to allow sequencing of intents. These approaches,

however, are not enough to capture complex intents that naturally emerge when con-

versing with services. For example, while the utterance "Can you book a table for 2

people at Mirazur restaurant for the next public holiday?" refers to a complex intent re-

quiring a composition of two actions (i.e., getting the next public holiday, then booking

the restaurant), it cannot be recognized by IRIS [71]. The reason is that IRIS can rec-

ognize composition based only on linguistic features (e.g., a composition is recognized

when a user answers with a new intent to the chatbot question for a missing slot).

2.3.1.2 User profiles

A user profile in chatbots is a data structure where the information related to a given

user is stored [182]. The information of a user profile can be general user attributes,

which include personal information (e.g., gender, age, current language, preferences,

hobbies), general statistics (e.g., the number of sessions, dialogues and dialogue turns,

the date of the last interaction with the chatbot), or usage statistics that correspond

to actions over the system that a user performs [43, 182, 228]. Typically, personalized

chatbot models use user profiles to be able to capture users’ personal preferences and

return personalized responses.

The first benchmark dataset for personalized chatbots was proposed by [111]. They

used a Memory-based neural networks model (MemNN) to encode the user profile [111].

They also extended the original MemNN by dividing the memory of the model into two

memories: (i) profile memory and (ii) conversation memory. Similarly, [145] introduced

a personalized MemNN, which learns distributed embeddings for user profiles and the

dialogue history from users with the same gender and age. Likewise, [249] proposed to

Page 34 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

incorporate a retrieval module into the MemNN model, which improves the performance

by retrieving the relevant responses from other users. The above approaches assume

that complete user profiles can be obtained by asking users to fill in all blanks in user

profiles, which may be unrealistic in practice.

Other approaches [129, 202, 203] focus on inferring missing information in user pro-

files (e.g., inferring information from previous conversations), then apply one of the

above models. However, these approaches have to train a model to infer missing user

profiles before starting the conversation, thus inference errors may happen during the

conversation. Recent work [164] proposed a cooperative MemNN, which introduces a

cooperative mechanism to enrich user profiles gradually as dialogues progress, which

improves response selection based on enriched profiles simultaneously. While the above

approaches focus on single-domain tasks, a recent work [214] proposed a generator-

reranker framework, using GPT-2 as generator and BERT as reranker, to support

personalization across a wide range of tasks in multi-task conversations.

Leveraging user profiles in task-oriented chatbots is an area that has more than what

we are discussing in this thesis [73,90,140,147,196]. For instance, there are empathetic

dialogue systems, which are proposed to improve the perception and expression of

emotional states and personal preferences [147]. Empathy refers to the capability to

imagine oneself in the other’s situation and to experience the emotions that she/he is

experiencing [162]. Emotion-awareness [132, 133] and personality-awareness [129] are

two key features that underpin empathetic dialogue systems [147].

2.3.1.3 Environment context

An environment context is related to the task that the user is working on and what the

chatbot can get from this environment without asking the user [20,38,116,161,186].

For example, a chatbot can retrieve information from a working task environment

[38,161]. In [38], authors proposed Devy chatbot to provide automated support in De-

vOps processes. Devy relies on domain-specific services that keep track of information

Page 35 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

related to the user task working environment (e.g., code development), including active

projects, issues, code reviewers, etc. The main goal is to infer the required slots for

performing DevOps actions without developer involvement. For instance, after a de-

veloper completes a code, she/he can say "I’m done". Thanks to the information it has

been able to keep from the user task environment, Devy is expected to complete auto-

matically the remaining DevOps actions including committing code changes, pushing

them to a remote repository, assigning reviewers, etc., without any intervention from

the developer side.

Figure 2.16: Example Multimodal Conversation [20].

Chatbots can also retrieve information from visual environment [20, 63, 124, 186, 205].

For example, in [20], authors proposed an approach to support multimodal conversation

and infer slots values from a shared visual context (e.g. a device screen) and fulfill user

intent. For instance, when a user browsing to shop for tables on a speech-enabled smart

TV says: "what is the price of the white round table?", the chatbot should be able to

identify the right product based on its visual characteristics and then responds with

the price [20]. Figure 2.16 shows an example of multimodal conversation. The user can

refer to visual entities by attributes such as color (e.g., "the white one") or shape (e.g.,

"airplane one"). She/he can also refer to the visual elements using associated metadata

such as prime-eligibility (e.g., "is it prime eligible?").

Another source of environment can be sensors. For example, in the work [186] authors

Page 36 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

proposed a museum chatbot that utilizes exhibition sensors to guide visitors to different

exhibits based on their current location within the museum. When a visitor asks the

chatbot "where does it go on?", the exhibition sensor data is used to determine their

current location and provide directions to the next exhibit on the tour. This allows the

chatbot to provide a more personalized and relevant experience for the visitor by using

sensor data to understand and respond to the visitor’s current context [186].

2.3.2 System Knowledge

System Knowledge consists of the knowledge leveraged from the system side to infer the

dialogue state. This include entities and relationships extracted from structured and

unstructured data sources, knowledge graphs, and external knowledge such as domain-

specific or commonsense knowledge used to complement user context knowledge. In

what follows, we first discuss end-to-end approaches (Section 2.3.2.1), then we discuss

DST approaches that leverage schemas for capturing the structural representation of

conversation data to predict the dialogue state (Section 2.3.2.2), finally we discuss DST

approaches that use external knowledge in addition to schemas to improve the chatbot

understanding (Section 2.3.2.3).

2.3.2.1 End-to-end approaches

Some chatbots use end-to-end systems [102] that rely on user context knowledge and

generative models to generate answers (e.g., question and answering services). These

systems consider NLU, DST, and DP as a single module. End-to-end models can be

considered as "black-boxes" that accept user utterances as input and return new system

states/actions as output. The sequence-to-sequence model [150] is the main model used

in this approach. Such a model is based on the encoder-decoder architecture which takes

a sequence as input and generates another sequence as output. In chatbots, the source

sequence is a user utterance along with a dialogue history, and the target sequence

is a corresponding action (e.g., API method call). The sequence-to-sequence model is

initially implemented using RNN with LSTM cells, where the hidden state of RNN is

Page 37 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

utilized as the representation of a dialogue state. This model is later augmented with an

attention mechanism to improve its ability to handle long-term dependency [150,257].

Using end-to-end memory networks is another alternative to build end-to-end models.

Compared to the pipelined policy, the key advantage of the end-to-end approach is

inferring the representation of the dialogue state which avoids the design of its related

features. However, this requires a lot of training data that may be expensive to collect.

Thus, schema-guided DST approaches were proposed.

Figure 2.17: Schema example for a wallet service [173].

2.3.2.2 Schema-guided Dialogue State Tracking approaches

Most of task-oriented chatbots leverage schemas capturing the structural representa-

tion of conversation data to predict the dialogue state. For instance, the work [173]

introduced a unified schema defining a service or API as a combination of intents and

slots. Figure 2.17 shows an example of this schema for a digital wallet service. A

BERT-based state tracking model then takes this schema as input to enable the recog-

nition of intents and inferring their slot-value pairs. The captured knowledge (i.e., the

unified schema), however, can only help in the recognition of basic intents.

Works like [53, 136, 229] use a slot-level schema graph that captures dependencies be-

Page 38 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

taxi-destination hotel-name hotel-book_people

taxi-departure

restaurant-name restaurant-food

restaurant-book_people

Figure 2.18: Domain specific slot-level schema graph [53].

tween slots. The aim is to allow the state tracking model to infer slot values from similar

slots. For instance, Chen et al. [53] proposed two step-based state tracking model that

first relied on a graph attention matching network (GAMT) to learn contextual fea-

tures for each slot by fusing information from both slot-domain schema graph and

utterance. Then it utilises a recurrent graph attention network that takes the obtained

slot features and a slot schema graph capturing relations amongst all slots, to infer

the slot value. An example of domain specific slot-level schema graph is represented

in Figure 2.18. The nodes of this schema graph consist of all slots (e.g., hotel-name,

taxi-destination). There is an edge between slots that belong to the same domain,

and slots that may share the same values. For example, in Figure 2.18, there is an

edge between taxi-destination and restaurant-name because a taxi-destination can be

a restaurant-name.

Other efforts like [135] leverage the backend database schema in state tracking model

to allow slot inference from the database entities. These methods, however, work with

chatbots integrated only with databases, where the inferred slot-value pairs are used

to frame the query.

To improve the accuracy of state tracking, chatbots use various additional sources

of knowledge to reason about potentially ambiguous user intents and match them to

underlying services (e.g., databases, APIs) that realize such intents. In the Section

2.3.2.3, we discuss another system knowledge type.

Page 39 of 148

2.3 CONTEXT KNOWLEDGE IN TASK-ORIENTED CHATBOTS

2.3.2.3 Content-based approaches

There are dialogue state tracking approaches that use external knowledge in addition

to schemas. External knowledge, including domain-specific or commonsense knowl-

edge, is usually used to complement user context knowledge with additional back-

ground [131,147,147]. Retrieving and representing a large-scale knowledge base remains

challenging [131]. This knowledge can be classified into two main categories based on

if the knowledge is structured or not.

Which actor voiced the Unicorn
in The Last Unicorn?

Mia Farrow

And Alan Arkin was
behind . . .?

Schmendrick

Who did the score?

Jimmy Webb

So who performed the songs?

America

Genre of this band’s music?

Folk rock, Soft rock

Figure 2.19: Example of fact-centric questions conversation and its corresponding knowledge
subgraph [57].

Structured knowledge allows a chatbot to represent and retrieve relational informa-

tion about different kinds of entities [147]. Examples of structured knowledge include

databases and knowledge graphs (KG) [57,58,136,229]. In this context, efforts like [57]

proposed an approach, called CONVEX (CONVersational KG-QA with context EX-

pansion), to handle incomplete fact-centric questions in a conversation. Figure 2.19

illustrates an example of such conversation, which is typically characterized by a com-

plete initial fact-centric question with an incomplete follow-ups, an initial and often

central entity of interest (e.g., "The Last Unicorn"), and slight shifts in focus (inquiry

of the band America’s genre). The proposed system answers such questions by using a

KG and maintaining context using entities and predicates seen in previous questions.

Page 40 of 148

2.4 SUMMARY AND DISCUSSION

Authors [57] use the initial question to identify a small subgraph of the KG for re-

trieving answers (example of such subgraph is represented in Figure 2.19). Then, they

dynamically expend the context in the form of a subgraph as the conversation proceeds.

The core of the approach is a graph exploration algorithm that expands a frontier to

find candidate answers for the current question.

Some other work [67,87,131,143,259] focused on unstructured knowledge, such as exter-

nal documents and online reviews, to retrieve more knowledge. Since this unstructured

knowledge is usually in the form of plain texts, sequence encoders [83] are mostly used

to encode this knowledge.

2.4 Summary and Discussion

In this section, we summarize the state of the art, then we discuss some research issues.

2.4.1 Summary

In this section, we summarize dialogue management approaches (Table 2.1), knowl-

edge sources in task-oriented chatbots (Table 2.2), and the most well-known chatbot

development tools (Table 2.3).

2.4.1.1 Summary: Dialogue Management in Task-oriented Chatbots

As shown in Table 2.1, dialogue management approaches can be classified into three

categories: handcrafted approaches, data-driven approaches, and hybrid approaches. In

what follows, we provide a summary of strengths and weaknesses of these approaches.

• Handcrafted approaches offer a simple way to design dialogue management

which is helpful for quickly creating chatbots. They work particularly well in

Page 41 of 148

2.4 SUMMARY AND DISCUSSION
Ta

bl
e

2.
1:

Su
m

m
ar

y
of

st
re

ng
th

s
an

d
w

ea
kn

es
se

s
of

di
al

og
ue

m
an

ag
em

en
t

ap
pr

oa
ch

es
.

M
et

ho
ds

Su
b-

M
et

ho
ds

St
re

ng
th

s
W

ea
kn

es
se

s

H
an

dc
ra

ft
ed

A
ll

M
et

ho
ds

-
E

as
y

to
im

pl
em

en
t

w
he

n
th

e
co

nv
-

er
sa

ti
on

sc
op

e
is

sm
al

l.

-
D

o
no

t
re

qu
ir

e
an

y
tr

ai
ni

ng
da

ta
.

-
E

na
bl

e
th

e
co

nv
er

sa
ti

on
tr

ac
ea

bi
lit

y.

-
R

eq
ui

re
hi

gh
de

ve
lo

pm
en

t
an

d
m

ai
nt

en
an

ce
co

st
.

-
H

av
e

lim
it

ed
sc

al
ab

ili
ty

an
d

ro
bu

st
ne

ss
.

-
D

o
no

t
co

ns
id

er
us

er
fe

ed
ba

ck
s

to
ad

ap
t

th
e

D
P.

D
at

a-
dr

iv
en

SL
M

od
el

s

-
Tr

ac
ki

ng
th

e
di

al
og

ue
st

at
e

an
d

ch
oo

si
ng

th
e

ne
xt

ac
ti

on
ca

n
be

fu
lly

au
to

m
at

ed
.

-
R

eq
ui

re
le

ss
eff

or
t

to
be

ad
ap

te
d

to
ne

w
do

m
ai

ns
.

-
A

bl
e

to
de

al
w

it
h

th
e

na
tu

ra
ll

an
g-

ua
ge

va
ri

at
io

ns
.

-
H

ea
vi

ly
re

ly
on

th
e

qu
an

ti
ty

an
d

qu
al

ity
of

tr
ai

ni
ng

da
ta

.

-
D

o
no

t
co

ns
id

er
us

er
fe

ed
ba

ck
s

to
ad

ap
t

th
e

di
al

og
ue

po
lic

y.

RLModels

F
la

t
R

L
-

C
an

ad
ap

t
to

di
ffe

re
nt

us
er

be
ha

vi
or

s.

-
A

bl
e

to
de

al
w

it
h

un
ce

rt
ai

nt
y

in
us

er

ut
te

ra
nc

es
.

-
Fe

at
ur

e-
en

gi
ne

er
in

g
of

st
at

e/
ac

ti
on

sp
a-

ce
s

ca
n

be
al

le
vi

at
ed

w
it

h
th

e
ad

op
ti

on

of
D

L
m

od
el

s

-
H

ea
vi

ly
re

ly
on

th
e

qu
an

ti
ty

an
d

qu
al

ity

of
tr

ai
ni

ng
da

ta
.

-
Li

m
it

ed
to

sm
al

l-s
ca

le
co

nv
er

sa
ti

on
do

m
ai

ns
.

H
R

L

-
H

ea
vi

ly
re

ly
on

th
e

qu
an

ti
ty

an
d

qu
al

ity

of
tr

ai
ni

ng
da

ta
.

-
R

eq
ui

re
s

do
m

ai
n-

sp
ec

ifi
c

kn
ow

le
dg

e
to

sp
ec

ify
go

od
ta

sk
hi

er
ar

ch
ie

s.

H
yb

ri
d

R
ul

e
an

d
M

L

-
R

ed
uc

e
th

e
le

ar
ni

ng
co

m
pl

ex
ity

an
d

th
e

am
ou

nt
of

tr
ai

ni
ng

da
ta

.

-
P

ro
vi

de
co

nt
ro

lo
ve

r
co

nv
er

sa
ti

on
flo

w
.

-
Su

ffe
r

fr
om

po
or

do
m

ai
n

po
rt

ab
ili

ty
.

M
ul

ti
pl

e
M

L
-

Im
pr

ov
e

pe
rf

or
m

an
ce

.
-

R
el

y
on

th
e

qu
an

ti
ty

an
d

qu
al

ity
of

tr
ai

ni
ng

da
ta

.

-
R

eq
ui

re
po

w
er

fu
lr

es
ou

rc
e

se
tt

in
g.

Page 42 of 148

2.4 SUMMARY AND DISCUSSION

conversation scenarios with clear structure and objectives. One important ad-

vantage of handcrafted methods is the conversation flow traceability which helps

to track the interpretation of user utterances and chatbot actions for further fix-

es/improvements. However, these methods lack flexibility because users cannot

express their utterances in any way they desire (i.e., there may not be a rule that

corresponds to the user utterance). In addition, these methods require a signifi-

cant amount of development and maintenance effort due to the need to manually

design features such as rules and interaction models.

• Data-driven approaches offer a cost-effective solution for developing and main-

taining dialogue management. By leveraging deep neural models and word em-

bedding techniques, these approaches can automatically learn policies and dia-

logue state features, such as slots and slot values, without the need for a pre-

defined ontology. This makes dialogue management more scalable and adaptable

to changing dialogue domains, as it can handle the addition of new slots and val-

ues not present in the training data. Despite their benefits, existing data-driven

approaches are heavily dependent on the quality and quantity of training data.

Additionally, they may not provide clear integration of API invocations.

• Hybrid approaches involving diverse combinations of handcrafted and data-

driven models can be considered as an important step to improve the performance

of dialogue management and increase its capability to generalize. In particular,

approaches combining ML model with a set of rules grant more flexibility to ap-

plication developers to control conversation flow and ensure that it is adequately

aligned with business rules. In addition, it has been proven that they can reach

performances comparable to purely ML models with less training data. While

such a hybrid approach may require an amount of developer effort, it can be seen

as very useful in practical settings where collecting realistic dialogues for a new

domain can be expensive. However, applying multiple ML models at the same

time may amplify the need for training data and powerful resource settings.

Page 43 of 148

2.4 SUMMARY AND DISCUSSION

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
kn

ow
le

dg
e

so
ur

ce
s

in
ta

sk
-o

ri
en

te
d

ch
at

bo
ts

.

K
no

w
le

dg
es

so
ur

ce
s

E
xa

m
pl

es
R

ef
er

en
ce

s

U
se

r
C

on
te

xt
K

no
w

le
dg

e

re
fe

rs
to

an
y

in
fo

rm
at

io
n

ex
tr

ac
te

d

fr
om

th
e

us
er

si
de

an
d

le
ve

ra
ge

d
by

th
e

ch
at

bo
t

to
in

fe
r

th
e

di
al

og
ue

st
at

e.

C
on

ve
rs

at
io

n
C

on
te

xt
in

cl
ud

es
in

fo
rm

at
io

n
th

at

w
as

di
sc

us
se

d
in

th
e

pa
st

co
nv

er
sa

ti
on

tu
rn

s.
[3

0,
36

,4
0,

41
,4

7,
60

,6
1,

71
,7

2,

82
,8

4,
86

,8
8,

92
,9

4,
96

,9
8,

99
,

10
5,

12
0,

12
5,

12
7,

12
8,

13
7,

13
9,

15
7–

16
0,

16
3,

16
5,

16
6,

17
0,

17
2,

17
5,

17
7,

17
8,

18
3,

18
8,

18
9,

19
4,

19
5,

19
9,

20
1,

20
4,

20
8,

20
9,

21
5,

22
0–

22
4,

22
7,

23
1,

23
3,

23
5,

23
6,

24
1,

25
1,

25
4,

25
6,

26
0]

U
se

r
P

ro
fil

es
is

a
da

ta
st

ru
ct

ur
e

w
he

re
th

e
in

fo
-

rm
at

io
n

re
la

te
d

to
a

gi
ve

n
us

er
is

st
or

ed
su

ch
as

us
er

pe
rs

on
al

in
fo

rm
at

io
n.

[4
3,

73
,9

0,
11

1,
12

9,
13

2,
13

3,

14
0,

14
5,

14
7,

16
2,

16
4,

18
2,

19
6,

20
2,

20
3,

21
4,

22
8,

24
9]

E
nv

ir
on

m
en

t
C

on
te

xt
is

re
la

te
d

to
th

e
ta

sk
th

at

th
e

us
er

is
w

or
ki

ng
on

an
d

w
ha

t
th

e
ch

at
bo

t
ca

n

ge
t

fr
om

th
is

en
vi

ro
nm

en
t

w
it

ho
ut

as
ki

ng
th

e
us

er

[2
0,

38
,6

3,
11

6,
16

1,
18

6,
20

5]

Sy
st

em
K

no
w

le
dg

e

co
ns

is
ts

of
th

e
kn

ow
le

dg
e

le
ve

ra
ge

d
fr

om

th
e

sy
st

em
si

de
to

in
fe

r
th

e
di

al
og

ue
st

at
e

su
ch

as
en

ti
ti

es
an

d
th

ei
r

re
la

ti
on

sh
ip

s.

Sc
he

m
a-

gu
id

ed
D

ST
ap

pr
oa

ch
es

le
ve

ra
ge

sc
he

-

m
as

ca
pt

ur
in

g
th

e
st

ru
ct

ur
al

re
pr

es
en

ta
ti

on
of

co
nv

er
sa

ti
on

da
ta

to
pr

ed
ic

t
th

e
di

al
og

ue
st

at
e.

[5
3,

13
5,

13
6,

17
3,

22
9]

Content-based

St
ru

ct
ur

ed
kn

ow
le

dg
e

su
ch

as
da

ta
ba

se
s

an
d

kn
ow

le
dg

e
gr

ap
hs

.
[5

7,
58

,1
36

,1
47

,2
29

]

U
ns

tr
uc

tu
re

d
kn

ow
le

dg
e

su
ch

as
ex

te
rn

al

do
cu

m
en

ts
an

d
on

lin
e

re
vi

ew
s.

[6
7,

87
,1

31
,1

43
,2

59
]

Page 44 of 148

2.4 SUMMARY AND DISCUSSION

2.4.1.2 Summary: Context Knowledge in Task-oriented Chatbots

Table 2.2 summarize main knowledge sources in task-oriented chatbots including user

context and system knowledge. In what follows, we provide a summary of each of these

knowledge sources.

• User Context Knowledge can be defined as any information extracted from

the user side and leveraged to fulfill user intent. Examples of this knowledge are:

– Conversation Context includes information that was discussed in the

past conversation turns. This conversation context consists of the whole

or window-size of the dialogue history to predict the dialogue state. We

noted that the conversation history has been the widely covered feature in

the DST state-of-art approaches. Leveraging the conversation history has

proven essential to hold complex and multi-turn conversations, as processing

missing information in the dialogue state may require the DST model to go

beyond multiple previous turns up to the last turn.

– User Profiles refer to the collection of information related to a given user

such as user personal information and preferences. This information is used

by the chatbot to personalize the conversation and improve the user ex-

perience by providing tailored responses. User profiles are created during

the initial conversation and updated over time to reflect changes in the

user’s preferences. Models such as memory-based neural networks model

(MemNN) and cooperative MemNN are used to enrich user profiles gradu-

ally as dialogues progress.

– Environment Context is related to the task that the user is working on

and what the chatbot can get from this environment without asking the

user. For example, a chatbot can retrieve information from a working task

environment (e.g., development environment), from a visual environment

(e.g., a video), or even from sensors (e.g., getting user location by using

sensors such as GPS).

Page 45 of 148

2.4 SUMMARY AND DISCUSSION

• System Knowledge consists of the knowledge leveraged from the system side

to infer the dialogue state. This include entities and relationships, and external

knowledge such as domain-specific or commonsense knowledge used to comple-

ment user context knowledge. Examples of this knowledge are:

– Schema-guided DST approaches leverage schemas capturing the struc-

tural representation of conversation data to predict the dialogue state. Typ-

ically, a schema consists of defining different elements (such as domains,

intents, slots and services) and relationships between these elements.

– Content-based approaches use external knowledge in addition to schemas.

External knowledge, including domain-specific or commonsense knowledge,

is usually used to complement user context knowledge with additional back-

ground. This knowledge can be classified into two main categories: struc-

tured knowledge such as knowledge graphs and databases and unstructured

knowledge such as external documents and online reviews. Leveraging ex-

ternal knowledge was the less covered feature in chatbots.

2.4.1.3 Summary: Chatbot development tools

Over the past decade, a number of companies have launched cloud-based NLU tools,

with the goal of enabling developers to enhance their existing NLU products or develop

new conversational assistants more easily. In this section, based on works [19, 44],

we summarize most well-known chatbot development tools as shown in Table 2.3. We

identify six main chatbot development platforms: (1) Google’s DialogFlow [5], (2) Rasa

[169], (3) Facebook’s wit.ai [17], (4) Microsoft LUIS [10], (5) IBM Watson Platform [7],

and (6) Amazon Lex [1]. In Table 2.3, we compare between these platforms based on

10 features, ranging from usability to pricing:

• Usability indicates the perceived ease of use of the platform. From high (simple

and intuitive for a developer) to low (difficult to use).

Page 46 of 148

2.4 SUMMARY AND DISCUSSION
Ta

bl
e

2.
3:

Su
m

m
ar

y
of

m
os

t
w

el
l-k

no
w

n
ch

at
bo

t
de

ve
lo

pm
en

t
to

ol
s

[4
4]

.

P
la

tf
or

m
U

sa
bi

lit
y

N
at

ur
al

L
an

gu
ag

es
P

ro
gr

am
m

in
g

L
an

gu
ag

es
P

re
-b

ui
ld

E
nt

it
ie

s
P

re
-b

ui
ld

In
te

nt
s

D
ef

au
lt

Fa
llb

ac
k

In
te

nt

A
ut

om
at

ic
C

on
te

xt
O

nl
in

e
In

te
gr

at
io

n

W
eb

ho
ok

/
SD

K
A

va
ila

bi
lit

y

P
ri

ce

D
ia

lo
g

F
lo

w
H

ig
h

25

11
,i

nc
lu

di
ng

Ja
va

an
d

R
ub

y

60
34

Y
es

Y
es

14
,i

nc
lu

di
ng

T
el

eg
ra

m

an
d

A
le

xa

W
eb

ho
ok

an
d

SD
K

s
Fr

ee

R
as

a
M

ed
iu

m
17

A
ny

pr
og

ra
m

m
in

g

la
ng

ua
ge

th
at

ca
n

ru
n

as
a

w
eb

se
rv

er

15
-

Y
es

N
o

20
,i

nc
lu

di
ng

Sl
ac

k,
F

B

M
es

se
ng

er

W
eb

ho
ok

an
d

SD
K

s
Fr

ee

W
it

.a
i

M
ed

iu
m

13
2

3

N
od

e.
js

,

P
yt

ho
n,

an
d

R
ub

y

22
Ze

ro
Y

es
N

o
Ze

ro
SD

K

Fr
ee

,

co
nt

ac
t

he
av

y

us
ag

e

L
U

IS
M

ed
iu

m
20

4,
A

nd
ro

id
,

P
yt

ho
n,

N
od

e.
js

,

an
d

C
#

13
20

Y
es

N
o

Ze
ro

W
eb

ho
ok

an
d

SD
K

s

Fr
ee

up

to
10

k

re
qu

es
ts

pe
r

m
on

th

W
at

so
n

P
la

tf
or

m
H

ig
h

13

6,
in

cl
ud

in
g

N
od

e.
js

an
d

Ja
va

7
Ze

ro
Y

es
Y

es
Ze

ro
SD

K

Fr
ee

up

to
10

k

re
qu

es
ts

pe
r

m
on

th

A
m

az
on

L
ex

L
ow

7

9,
in

cl
ud

in
g

Ja
va

an
d

G
o

93
15

Y
es

Y
es

3,
T

w
ili

o
SM

S,

F
B

M
es

se
ng

er
,

an
d

Sl
ac

k

SD
K

Fr
ee

fo
r

th
e

1s
t

ye
ar

(w
it

h

lim
it

s)

Page 47 of 148

2.4 SUMMARY AND DISCUSSION

• Natural Languages indicates how many natural languages the platform supports.

• Programming Languages indicates how many programming languages the plat-

form supports.

• Pre-build Entities reports how many pre-build entities the NLU tool offers.

• Pre-build Intents reports how many pre-build intents the NLU tool offers.

• Default Fallback Intent indicates whether the platform has a fallback mechanism

for intents which allows the proper classification of utterances that are not rec-

ognized as part of existing intents.

• Automatic Context indicates whether the platform can automatically manage the

context in a conversation.

• Online Integration indicates which third-party integrations are available.

• Webhook/SDK Availability indicates whether a developer can integrate his/her

chatbot with other software.

• Price indicates the pricing for using the platform.

The selected platforms utilize machine learning algorithms that are totally transparent

for the bot developers. While they share certain functionality such as being cloud-based

and supporting multiple programming languages and natural languages, they also differ

in other aspects. In what follows, we describe the main characteristics of each platform.

• Dialogflow is a NLU cloud platform owned by Google. It provides a free-to-

use conversational interface and supports different languages and programming

languages. It also provides context management to let developers control con-

versation flows. Moreover, DialogFlow offers a range of built-in integrations with

other chatbot-based platforms, including Telegram, Google Assistant, and Ama-

zon Alexa. In addition, developers can insert answers directly into the web inter-

face or use an ad-hoc server applications through the webhook mechanism enabled

by the DialogFlow APIs.

Page 48 of 148

2.4 SUMMARY AND DISCUSSION

• Rasa is an open-source machine learning framework for building chatbots that

offers a high degree of flexibility and customizability. Rasa is popular among

developers who prefer open-source tools and want full control over the chatbot’s

behavior and performance. Rasa has a large and active community of contributors

and users, and it offers various integrations and plugins to enhance the chatbot’s

functionality.

• Wit.ai is a NLU cloud platform owned by Facebook. It offers support for multi-

ple natural languages but only three programming languages. Unlike other NLU

tools, Wit.ai focuses on extracting entities from single sentences, functioning as

a NLU parser rather than a complete NLU platform. Wit.ai does not offer any

chatbot-based platform integration, web interface for handling conversations, or

context management tools. Therefore, developpers must realize any desired inte-

gration, conversational aspects, or other features within their own code.

• LUIS (Language Understanding Intelligent Service) is the NLU cloud platform

of Microsoft, part of the Azure cloud services. Being integrated into Azure, LUIS

shares the pricing schema with it and can access some additional features. It

supports various languages, but only four SDKs are available. LUIS is based on

the active learning technology and offers a set of programmatic REST APIs that

can be used to automate the application creation process.

• Watson Platform is the NLU cloud platform of IBM, part of IBM Bluemix

cloud services. Like LUIS, Waston Assitant shares Bluemix pricing schema and

may access to additional features. It supports multiple programming and natural

languages. Watson Platform utilizes two contexts (i.e., conversation history and

a corpus that is available to it) to gain a degree of confidence in interpreting

questions and for finding responses.

• Amazon Lex is the NLU platform part of the Amazon Web Services (AWS). It

shares the pricing schema with AWS and may access to additional features. It

supports various programming languages but only 7 natural languages. It pro-

vides the advanced deep learning functionalities of automatic speech recognition

Page 49 of 148

2.4 SUMMARY AND DISCUSSION

(ASR) for converting speech to text, and NLU functionalities to extract intents

and entities from user utterances.

2.4.2 Discussion

Despite the aforementioned achievements, creating scalable and robust dialogue man-

agement techniques that can emulate human-like conversations remains a deeply chal-

lenging problem. In this section, we will discuss some research issues in this field.

• Data control and quality. The success of data-driven and hybrid approaches

largely relies on the availability of high-quality training data, which still an open

issue. Obtaining high-quality training data requires effective methodologies and

processes for selecting, pipelining, tuning, and controlling data acquisition tasks.

This represents a key research area that has a significant impact on the perfor-

mance of dialogue management and subsequently improving the chatbots.

• Handling conversation breakdowns. Persistent concerns such as misunder-

standings, disagreements, inappropriate responses, complaints, and rejection of

offers can lead to breakdowns in conversations, resulting in negative impacts on

the user experience. Chatbots are currently incapable of managing these break-

downs due to the diverse nature of user utterances and the ambiguity of natural

language. To overcome this, it is crucial to endow dialogue management tech-

niques with efficient strategies that can detect and fix potential conversation

breakdowns automatically.

• Automated generation and formal verification of dialogue management

models. Handcrafted approaches are still the suitable choices for conversations

where user inputs can be known a prior and for any application domain where

determinism property is required. However, current approaches suffer from high

development and maintenance costs. Thus, having automated mechanisms that

better leverage existing resource models (such as ontologies, knowledge graphs,

business processes) is a key step toward semi or even fully automated generation

Page 50 of 148

2.4 SUMMARY AND DISCUSSION

of handcrafted dialogue management models. Furthermore, formal verification of

such models may still be required to ensure their reliability.

• Towards explainable conversations. Explainability is an important aspect to

make the conversation more human-like. In this context, the dialogue manage-

ment must be capable of justifying its actions and decisions. This is beneficial not

only for developers to evaluate their models but also for end-users to gain greater

transparency and ask questions about a chatbot’s decision-making process.

• Supporting composite user intents. Developing chatbots capable of han-

dling complex conversations spanning multiple topics and domains is an ongoing

area of research. However, building such chatbots presents significant challenges,

particularly in the need for rich abstractions to capture complex user intents, and

the integration of latent knowledge required to recognize composite intents and

translate them into APIs and their compositions. As of now, this knowledge is

rarely codified and utilized in chatbot development. In this context, there is a

need for more flexible techniques that cater for composite intent recognition.

In this thesis, we focus on addressing the research issue of supporting complex/compos-

ite user intents. While research from the previous efforts is certainly complementary

and some elements are adopted in our contributions, most of them do not focus on aug-

menting intents with knowledge that facilitates the superimposition of natural language

conversations over process and software-enabled services and use of such knowledge to

support dynamic synthesis of services. To the best of our knowledge, the work pre-

sented in this manuscript is the first to identify and characterize a set of composite

dialogue patterns to recognize and realize different classes of composite intents. We

proposed to build upon advances in ML techniques to enable the recognition of basic

intents, but contribute a new approach to recognize composite intents. This approach

will be detailed in the next chapters.

Page 51 of 148

2.4 SUMMARY AND DISCUSSION

Chapter 3

Composite Dialogue Patterns
Reusable Abstractions and Patterns for
Recognizing compositional conversational flows

Contents

3.1 Introduction . 53

3.2 Related work . 55

3.3 Human-Chatbot conversations 56

3.4 State Machine Conversational Model 58

3.5 Composite Dialogue Patterns 60

3.5.1 Slot-value-flow pattern . 62

3.5.2 Nested-method pattern . 63

3.5.3 API-calls ordering pattern . 64

3.5.4 Entity-enrichment pattern . 65

3.6 Validation . 66

3.6.1 Methods . 66

3.6.2 Results . 69

3.7 Conclusion . 71

The content of this chapter is an extension of the work presented in [33]. In this work,

we identified and characterized a set of composite dialogue patterns and extended a

conversational model [248] to represent them. These patterns endow bot platforms

Page 52 of 148

3.1 INTRODUCTION

with reusable functionality to recognise compositional conversational flows, that would

otherwise have to be implemented by bot developers.

The rest of this chapter is organized as follows: We start with an introduction in Sec-

tion 3.1. In Section 3.2 we discuss related work. In Section 3.3 we explain how human-

chatbot conversations are formulated. In Section 3.4 we present a conversational model

that we adopted and extended to represent the identified composite dialogue patterns.

In Section 3.5 we characterize these composite dialogue patterns in the adopted model.

Section 3.6 presents validation of the proposed patterns, and finally we provide a con-

clusion in Section 3.7.

3.1 Introduction

Task-oriented chatbots emerged as a paradigm to naturally access services and per-

form tasks through natural language conversations with software-enabled services and

humans [34]. They enable the understanding of user utterances, expressed in natural

language, and on fulfilling such needs by invoking the appropriate backend services

(e.g., APIs) [34]. Fulfilling a user request consists of: (1) understanding the user

utterance expressed in natural language (e.g., "what is the weather in Paris?"), (2)

recognizing the user intent corresponding to task(s) that the user wants to accomplish

(e.g., get-weather), (3) extracting relevant slot-value pairs (e.g., location: Paris),

(4) invoking the corresponding backend service that fulfills the user intent (e.g., call

OpenWeatherMap API method to get weather condition), and (5) returning a natural

language response (e.g., "we have light rain in Paris").

Ideally, a chatbot should detect intents and infer slot values with the least possible

interactions with the user (i.e., the chatbot asks the user for a missing value only when

it cannot infer it from other sources). A key challenge to achieve this objective is

devising robust intent recognition and slot inference despite the potentially ambiguous

and complex utterances. An utterance may not always follow a simple conversation

pattern, where the chatbot recognizes a basic intent and infers all required slot values

Page 53 of 148

3.1 INTRODUCTION

from the utterance, as in the previous example.

Natural user conversations can be rich, potentially ambiguous, and express composite

user intents [71, 245]. In a basic intent the chatbot infers all required slot values

from the user utterance and calls the corresponding service to fulfill the intent. The

realization of a composite intent, however, requires the chatbot to break it down into

a list of atomic actions and infer potentially missing values from different sources, not

directly from the utterance. For example, given the utterance "Can you book a table

for 2 people at Mirazur restaurant for the next public holiday?", the chatbot should

be able to infer the information such as number of people and restaurant name from

this utterance; however, it also needs to search when will the next holiday be. Also, a

human may omit required slot values in an utterance because some of this information

can be naturally inferred from other sources, such as conversation history, commonsense

knowledge, or user preferences [121]. Failing to support such composite intents can lead

to repetitive and less natural interactions affecting the user experience [109].

Traditional business process and service composition modeling and orchestration tech-

niques are limited to support such conversations because they usually assume a priory

expectations of what information and applications will be accessed and how users will

explore these sources and services. Limiting conversations to a process model means

that we can only support a small fraction of possible conversations [142]. While ex-

isting advances in Natural Language Processing (NLP) and Machine Learning (ML)

techniques automate various tasks such as intent and slot recognition [50], the synthesis

of API calls to support broad range of potentially complex user intents is still largely a

manual, ad-hoc, and costly process [247]. Our goal is to bridge this gap by dynamically

and incrementally synthesizing executable conversation model from NL conversations.

Informed by prior research and literature on conversational systems [50], in this chap-

ter, we identify and characterize different types of conversation patterns to translate

complex user utterances into operations that create composite (nested) states in a con-

versational state machine model [248]. These patterns mimics how a developer would

have constructed workflows, leveraging conversation knowledge (i.e., slot values and

Page 54 of 148

3.2 RELATED WORK

API element vectors), to realise some complex and decomposable user intents. More

specifically, contributions in this chapter are summarized as follows:

• We identified a set of reusable composite dialogue patterns that naturally emerge

when conversing with services.

• We extend an existing conversational model [248] to characterize state machine

transformation patterns to support complex user intents.

• We provide validation and evaluation of the composite dialogue patterns presented

in this chapter.

3.2 Related work

A number of techniques have been proposed to build task-oriented chatbots, including

rule-based [23] and probabilistic models [100]. Main platforms such as Chatfuel [2]

provide flow-based solutions to develop chatbots with zero coding using user interface

elements. Research in this context includes the work by Lopez et al. [142], who propose a

system that takes a business process model and generates a list of dialogue management

rules to deploy the chatbot. Other platforms such as DialogFlow [5], on the other hand,

provide ML based solutions. In addition to these solutions, a variety of ML models

have emerged in research following two common architectures: pipeline and end-to-end.

A pipeline-based model is built with a set of components, each responsible for a specific

task such as tracking of intent/slot during conversations [51,174]. End-to-end models,

including end-to-end memory networks [253] and sequence-to-sequence models [150],

read directly from a user utterance and produces a system action.

We identified a set of main limitations in the works above: First, rules-based approaches

lack flexibility and require considerable development effort. Second, the use of existing

probabilistic approaches and ML models such as memory networks becomes prohibitive

due to the need for collecting huge and high quality training data. Third, flow-based ap-

proaches require the explicit definition of workflow, which is clearly unrealistic in large

Page 55 of 148

3.3 HUMAN-CHATBOT CONVERSATIONS

scale and evolving environments. Furthermore, while ML approaches and platforms

provide sophisticated support in term of intent/entities recognition and state tracking,

they still far to handle conversations as either structured or unstructured processes.

This is because they do not yet automatically support complex and decomposable user

intents, where handling of intent requires information that is resulted from other in-

tents either already processed or need to be. In addition, handling conversations as

processes requires an advanced understanding of conversation context towards natural

and straightforward dialogue experiences.

Similar to our approach, some advanced techniques like Devy [36], Iris [71], and Lu et al.

[51] focus on more understanding of context especially by tracking required slots values

from conversations history. However, since these slots values are derived only from

conversation utterances they do not consider the knowledge of the heterogeneous APIs

being used to converse with a wide variety of software-enabled services. This aspect

is crucial to perform slot values inference accurately. In addition, these works do not

propose any pattern that automates the identification of composite conversation flows.

In summary, these efforts do not focus on augmenting conversations with knowledge

that is essential for the superimposition natural language interactions over large number

of evolving APIs. We therefore propose to consider API knowledge in the context and

extend a conversational model to support a set of composite dialogue patterns that

naturally emerge when conversing with services.

3.3 Human-Chatbot conversations

Conversations between a user and a chatbot are formulated as a sequence of utterances

and responses. The conversation proceeds as a back-and-forth exchange. For example,

a user might say to a chatbot, "Send a message to @Sophia, tell her that I’ve just left so

I’ll be there in 10 minutes". The chatbot would respond by "Your message to Sophia

has been sent". As we discussed in Chapter 2, in order to answer user utterances,

chatbots require to understand user intent (e.g., send-message) and extract slot-value

pairs expressed by user (e.g., (contact, Sophia) and (message, I’ve just left

Page 56 of 148

3.3 HUMAN-CHATBOT CONVERSATIONS

so I’ll be there in 10 minutes)) [49].

Studies on human conversation patterns [107,146,176] have shown that human-chatbot

conversations can be divided into three types as shown in Figure 3.1.

Single Turn
Single Intent

Multi Turn
Single Intent

Multi Turn
Multi Intent

- Conversation topic is limited to one
- User provides required information in separate utterances

- Conversation topic is limited to one
- User is forced to provide all required information at once

- User can talk to chatbot about multiple topics
- User provides required information in separate utterances

More natural
conversation

Less natural
conversation

Figure 3.1: Types of human-chatbot conversations - from less to more natural [248].

Single Turn - Single Intent. The interactions between the user and the chatbot

are straightforward. The user is expected to provide all required slot values in her/his

utterance to fulfill her/his intent, thus the chatbot responds with a single, straightfor-

ward answer. For example, a user might ask a chatbot for a restaurant "Show me some

Italian restaurants near the Tower of Pisa", and the chatbot would simply respond

with a list of options that match the user’s requested criteria. Each user utterance is

treated separately without using any knowledge from the conversation history. If any

slot value is missing in the user utterance (e.g., location), the chatbot will not be able

to fulfill the user intent. This type of conversation is single intent which means that the

user and the chatbot converse only about one specific intent (e.g., search-restaurant)

during the whole conversation.

Multi Turn - Single Intent. It is common for people to omit information in their

daily conversations. This could happen for a variety of reasons, such as assuming

the other person already knows the information, or simply forgetting to mention the

information. For example, while chatting with a friend we may ask, "Do you have any

suggestion for a good Italian restaurant?" without specifying the place where we are at

(e.g., "the Tower of Pisa"). In order to answer our question, the friend needs to get

more details by asking a question, "Where are you?". Similar to this example, chatbot

Page 57 of 148

3.4 STATE MACHINE CONVERSATIONAL MODEL

needs to collect information that is scattered across multiple utterances to fulfill user

intent. Thus, in this type of conversation, there are multiple turns to accomplish a

specific user intent. Dialogue management component is responsible to maintain the

conversation context and keep dialogue state to support multi-turn conversations.

Multi Turn - Multi Intent. Switching between intents or topics during conversations

is a natural behavior for people. This can happen for a variety of reasons, such as a

new idea or thought that comes up, or a desire to change the subject. Thus, in this

type of conversation the user’s intent continuously changes during the conversation.

However, participating in a multi-intent conversation where information is scattered

into multiple utterances, is a challenging task for chatbots. In the work [248], we

proposed a conversational model to support multi-intent and multi-turn conversations.

In the following sections, we first present this model (Section 3.4), then we explain how

we extend this model to support composite user intents (Section 3.5).

3.4 State Machine Conversational Model

In order to support multi-turn multi-intent conversations, we proposed in the work [248]

to represent User-Chatbot-Services conversations using an extended Hierarchical State

Machines (HSM) model [238]. HSM is a well-known model that have been widely used

to describe reactive behaviors of complex systems in a wide variety of areas [238]. This

model is defined as a state machine where states can be ordinary states or composite

states which are state machines themselves.

The proposed state machine based conversation model contains a set of states called

intent-states representing user intents (e.g., find-restaurant), their slots (e.g., city,

food) and actions such as API invocations (e.g., call Yelp-SearchBusinesses API

method) to realize them. Each intent-state characterizes the fulfillment of specific user

intent. Inside an intent-state, there can be nested states that represent situations that a

chatbot may occupy in a given conversation (e.g., a chatbot-to-user question to resolve

the value of a missing intent slot). Transitions between states are triggered when actions

Page 58 of 148

3.4 STATE MACHINE CONVERSATIONAL MODEL

2. infer

1. New intent

3. fulfilledAsk user
State

Get Weather
State

Figure 3.2: Ask user composite intent-state to fulfill get-weather intent.

are performed (e.g., a chatbot asks a question to a user to resolve a missing slot value)

or upon detecting a new intent (i.e., switch from one intent-state to another). In the

following, we describe the different types of states and transitions in this model:

Basic Intent State: We consider a state as a basic intent-state, when a user utterance

carries all the required slots’ values to fulfill the user intent. In other words, the chatbot

has everything needed to perform the required action (e.g., API call). For example,

given a user utterance (e.g., "what is the weather in Paris?") with an intent (e.g.,

get-weather), chatbot invokes an API (e.g. OpenWeatherMap API) and returns a

response to a user (e.g., "we have light rain in Paris").

Nested Intent State: If a user utterance (e.g., "what is the weather?") has a missing

slot value, the chatbot needs to infer this missing value (e.g., value of the slot location)

before it performs further actions to fulfill the intent. In this situation, the intent-

state becomes composite intent-state and relies on other nested states to complete the

intent. For example, as shown in Figure 3.2, the nested state Ask user is used by the

chatbot to ask the user for the missing value of the slot location related to the intent

get-weather.

New intent transition: This transition type refers to the movement between intent-

states. The state machine transits to a new intent-state if the new user utterance

corresponds to a new intent (i.e., detecting intent switch in conversations). For example,

assuming that the state machine is in send-msg intent-state, then the user asks for

Page 59 of 148

3.5 COMPOSITE DIALOGUE PATTERNS

cinema. The user utterance "I am also looking for cinema" triggers a transition to

move from the current intent-state send-msg to the new intent-state find-cinema.

Nested transition: This transition represents the movement of a state machine to a

nested state. The state machine moves to a nested state if there is a missing slot value.

The chatbot infers the missing value either from the context or by asking the user for

it (i.e., Ask user nested state). For example, in Figure 3.2, the transition infer is a

nested transition.

The motivation behind adopting the state machine conversational model is to reduce

the complexity that may be caused by the number of states that are needed to specify

interactions between users, chatbots, and services. Leveraging HSMs helps to factor out

the common behaviors to reuse them across many states [238]. Thus, HSMs provide a

very efficient way of sharing behavior so that they reduce the number of states needed

for specifying User-Chatbot-Services interactions. In the next section we explain how

we extend this conversational model to support a set of composite intents.

3.5 Composite Dialogue Patterns

In computer science, a pattern is defined as a reusable solution to a common problem

within a specific context [97,200,213]. For example, design patterns are templates that

can be applied to software design to solve recurring issues [97,200,213]. Every pattern

has three main elements [200], which are: a pattern name, a context (or also called a

problem), and a solution (or also called a description).

Pattern name. It is a descriptive term or label used to describe a specific problem

and its solution. The pattern name lets us design at a higher level of abstraction.

Context. The context (or also known as a problem) describes a recurring set of

situations in which the pattern can be applied. It explains the problem and its context.

Generally, the context describes when to apply the pattern.

Description. It provides an abstract description of the pattern that can be applied

Page 60 of 148

3.5 COMPOSITE DIALOGUE PATTERNS

Where are you?

INTENT: send-msg: (text, let’s meet at Poni restaurant), (tel, ?)

I am in Paris
Poni restaurant serves good french restaurant. The address is 2 Street Audran Paris.

Send a message to my friend Sofia, tell her: let’s meet at Poni restaurant.

I sent the message “let’s meet at Poni restaurant” to Sofia's phone number 078342505.

I am also looking for cinema
I found UCG cinema. The address is 17 Bd Macdonald Paris.

I need a taxi to commute between Poni restaurant and UCG cinema at 5pm.

Just one last thing, can you start the playlist called My Happy Melodies
Sure, starting playlist ...Done.

I booked a taxi from 2 Street Audran Paris to 17 Bd Macdonald Paris at 5pm.

INTENT: find-restaurant: (restaurant-area, ?), (food, french restaurant)

Oh, I also need a taxi to go from Eiffel Tower to 21 Rue Maximilien Paris at 7 pm

INTENT: find-restaurant: (restaurant-area, Paris), (food, french restaurant)
API-METHOD: Yelp-SearchBusines: (location, Paris), (term, french), (name, Poni), (address, 2 Street Audran Paris)

API-METHOD: contacts-get: (contact, Sofia), (phoneNbr, 078342505), (email, b.sofia@gmail.com)
twilio-SendMessages: (tel, 078342505) (msg, let’s meet at Poni restaurant)

INTENT: find-cinema: (cinema-area, ?)
API-METHOD: Yelp-SearchBusines: (location, Paris), (term, cinema), (name, UCG), (address, 17 Bd Macdonald Paris)

INTENT: book-taxi: (depAddress, ?), (destAddress, ?), (depTime, 5pm)
API-METHOD: taxicode-booking: (pickup, 2 Street Audran Paris), (destination, 17 Bd Macdonald Paris), (time, 5pm)

INTENT: start-playlist: (playlist_id, ?)
API-METHOD: Soptify-Search: (q, My Happy Melodies) (item, playlist) (spotify_id, 59ZbFPE)

 Soptify-Player: (spotify_id, 59ZbFPE)

I booked a taxi from 5 Av. Anatole France Paris to 21 Rue Maximilien Paris at 7pm.
INTENT: book-taxi: (depAddress, ?), (destAddress, 21 Rue Maximilien Paris), (depTime, 7pm)
API-METHOD: taxicode-booking: (pickup, 2 Street Audran Paris), (destination, 17 Bd Macdonald Paris), (time, 7pm)

I am looking for a good french restaurant.

Figure 3.3: Example of multi-turn multi-intent conversation. After each turn, we
illustrate the intent, its slot-value pairs, and the API call(s). The red slots/parameters
are required input slots/parameters, the blue parameters are output parameters, and
the green values are inferred values from different sources.

to resolve the problem. The solution does not describe a particular concrete design,

instead, the pattern provides an abstract description of a design problem.

Inspired by existing workflow management systems and linguistic theory, in this section,

we identify and characterize a set of reusable composite dialogue patterns that naturally

emerge when conversing with services. These patterns mimics how a developer would

have constructed workflows to realize some complex and decomposable user intents. In

what follows, for each composite dialogue pattern, (i) we explain the problem that led

us to propose the pattern, (ii) we give a description of the pattern, and (iii) we explain

Page 61 of 148

3.5 COMPOSITE DIALOGUE PATTERNS

through an example how we characterize the pattern in the conversational state machine

model presented in Section 3.4.

3.5.1 Slot-value-flow pattern

Context. People are not always precise during their conversations. Sometimes they

assume that their interlocutor already knows certain information from their previous

conversations. Retrieving information from previous conversations can be obvious to

human beings, however, it is difficult for chatbots to handle it. Incorrect inference of

conversation flows arises from uncertainty about slot values and relationship between

API elements across heterogeneous APIs (e.g., one API method uses city as a param-

eter while another use location as a parameter) and complex conversations. There

are several parameters among multiple heterogeneous APIs methods that can share

all or some of their values during the conversation [227]. Inspired by process models

and workflow management where some of process activities’ inputs are outputs from

previous ones [69], we propose to enhance the chatbot to infer missing slot values from

outputs of previous API calls.

Description. The composite pattern slot-value-flow allows the chatbot to resolve a

missing value of an intent slot by extracting it from values of other parameter calls

(e.g., an output parameter value of an already called API method). In other words,

this pattern allows resolving a missing value of an intent slot by extracting it from a

conversation history.

Example. Figure 3.4 illustrates an example of how the slot-value-flow pattern is

represented in the conversational state machine model. Considering the user utter-

ance "I need a taxi to commute between Poni restaurant and UCG cinema at 5pm"

in Figure 3.3, the chatbot detects two missing slots’ values (i.e., depAddress and

destAddress) in the intent book-taxi. The chatbot leverages a context knowledge

service to infer these missing values from the conversation history (e.g., it infers the

value of Taxi-depAddress from Restaurant-address value). The chatbot creates a

slot-value-flow composite intent-state in the conversational model as shown in Figure

Page 62 of 148

3.5 COMPOSITE DIALOGUE PATTERNS

2. infer

1. New intent

3. fulfilled
Conversation
Context State Book Taxi

State

Figure 3.4: Slot-value-flow composite intent-state to fulfill book-taxi intent.

3.4. This composite intent-state relies on the Conversation Context nested state to

infer the missing values and fulfill the intent book-taxi.

3.5.2 Nested-method pattern

Context. Sometimes, chatbots are repetitive and ask the user for missing information

that can be retrieved by calling an API method. Similar to what is done in functional

languages, some parameters are functions by themselves, which means that to get the

value of a parameter, we need to call another function. Thus, instead of asking the

user to provide missing information, the chatbot needs to check if it can retrieve it by

calling an API method.

Description. The composite pattern nested-method allows the chatbot to resolve a

missing value of an intent slot by triggering an API method to reuse its output values.

Example. Figure 3.5 illustrates how the nested-method pattern could be represented

in the conversational state machine model. Considering the user utterance "Send a

message to my friend Sofia, tell her: let’s meet at Poni restaurant" in Figure 3.3,

the chatbot detects that the value of tel slot is missing in the intent send-msg. The

chatbot does not have to ask the user for the phone number to send the message because

it can infer it by calling the API method contacts-get. Thus, the chatbot creates a

nested-method composite intent-state in the conversational model as shown in Figure

Page 63 of 148

3.5 COMPOSITE DIALOGUE PATTERNS

1. New intent

2. call

Nested Method
State

SendMsg
State

3. fulfilled

(contacts-get)

Figure 3.5: Nested-method composite intent-state to fulfill send-msg intent.

3.5. This composite intent-state relies on a nested state, called Nested Method State,

to infer the value of the phone number and fulfill send-msg intent.

3.5.3 API-calls ordering pattern

Context. In REST API design, some methods require an API generated string, called

“id”, as an input parameter to trigger methods. This id is an output of another

method in the same API. To support these methods, bot developers have to implement

an intermediately method that combines the sequence of API calls. Implementing new

methods may resolve the problem, but in some cases, bot developers are constrained

to implement multiple new methods that can combine more than two methods which

is time consuming for them.

Description. The composite pattern API-calls ordering allows the chatbot to au-

tomatically map a user intent to a sequence of API calls to satisfy order constraints

between methods of the same API.

Example. Figure 3.6 illustrates an example of how the API-calls ordering pattern is

represented in the conversational state machine model. Considering the user utterance

"can you start the playlist called My Happy Melodies" in Figure 3.3, the user wants to

start a playlist, but the API method Spotify-Player requires a spotify_id as input

to start the playlist which is missing. On the other hand, Spotify-Search is another

Page 64 of 148

3.5 COMPOSITE DIALOGUE PATTERNS

1. New intent

2. call

Dependent Method
State

Start Playlist
State

3. fulfilled

(Spotify-Search)

Figure 3.6: API-calls ordering composite intent-state to fulfill start-playlist intent.

Spotify API method that takes as input an item type (e.g., playlist, albums) and a

keyword (e.g., "My Happy Melodies") and returns an item Spotify Catalog information

(e.g., owner, Spotify id, etc.). Thus, the chatbot first needs to call Spotify-Search to

get the spotify_id then use this id to call Spotify-Player method. When the chatbot

detects an API-calls ordering pattern, it creates an API-calls ordering composite intent-

state in the conversational model as shown in Figure 3.6. This composite intent-state

relies on a nested state, called Dependent Method State, to infer the value of the id.

3.5.4 Entity-enrichment pattern

Context. Humans are not always precise; they might refer to an entity mention that

is common knowledge to inform a slot value. Thus, we believe that chatbots must have

access to external data services to understand this common knowledge.

Description. The composite pattern entity-enrichment allows the chatbot to resolve

a missing value of an intent slot from an external data service.

Example. Figure 3.7 illustrates an example of how the entity-enrichment pattern is

represented in the conversational state machine model. Considering the user utterance

"I also need a taxi to go from Eiffel Tower to 21 Rue Maximilien Paris at 7 pm" in

Figure 3.3, the chatbot detects that the value of depAddress slot is missing in the

intent book-taxi. The chatbot does not have to ask the user for the precise departure

Page 65 of 148

3.6 VALIDATION

2. infer

1. New intent

3. fulfilled
External data

service
State

Book Taxi
State

Figure 3.7: Entity-enrichment composite intent-state to book-taxi intent.

address because it can enrich the "Eiffel Tower" entity with additional information,

such as its address, from an external data service (e.g., Google-PlaceSearch).

3.6 Validation

In this section we describe a study aiming at understanding the need, benefits, and

effectiveness of supporting the proposed patterns. We investigate whether the proposed

patterns naturally occur when conversing with services and perform a comparative

analysis with alternative approaches focusing on the user experience.

3.6.1 Methods

Participants. Participants were recruited from our extended network of contacts,

including students, colleagues and research groups. Invitations were sent via email,

asking for volunteers to participate of the experiment. A total of 12 participants ac-

cepted to participate and completed the experiment as requested. This included master

students, PhD students and senior researchers.

Experimental design. We followed a within-subjects design1 to evaluate the proposed

dialogue patterns and supporting services. Participants were tasked with interacting

1Study materials and in-depth results available at https://tinyurl.com/25ad8jv6

Page 66 of 148

3.6 VALIDATION

with two different chatbots, which were developed to capture the following experimental

conditions:

− DF-Baseline : The baseline implements the standard conversational management

support of traditional chatbot development platforms. It is developed using the

underlying techniques of DialogFlow [5], including the DialogFlow NLU model,

conversational model, and the Input-Output context mechanism.

− SM-Patterns : It supports the new proposed composite dialogue patterns and

relies on the State Machine conversational model.

Besides the differences highlighted above, the two chatbots were built on the same

foundation. They supported 15 intents collected from the DSTC8 dataset [174]. The

DSTC8 dataset was chosen because it includes intents spanning multiple domains (e.g.,

Flights booking, Taxi booking, Finding places) which actually represents a challenging

task for today’s chatbots. In addition, these intents represent the most common tasks

that users request in daily life and involve sequencing, nesting, API constraint, entity

enrichment patterns as well. For the two chatbots, we use DialogFlow NLU service as

NLU model because it is one of the most complete NLU models [44] to train chatbots.

We devised four main tasks, each comprising representative scenarios that catered to

the proposed dialogue patterns:

T1 Slot-value-flow pattern: In this task2, we requested participants to pick at least

one of the following scenarios (a) planning a trip abroad, (b) planning a day

program, or (c) paying back to a friend. These scenarios required orchestrating

different services that would benefit from leveraging the ongoing context of the

conversation (e.g., same locations or date).

T2 Nested-method pattern: Here, we asked participants to schedule a doctor’s ap-

pointment on the first available spot. The dependency between the involved

2In the first task participants were asked to pick one of three available scenarios.
Here we focus on planning the day program, as it was performed by all participants.

Page 67 of 148

3.6 VALIDATION

services (e.g., need to identify the doctor and check his/her availability before

booking) favored the use of a nested-method pattern.

T3 API-calls ordering pattern: This task invited users to look for a restaurant with

good ratings, thus requiring them to interact with two services (search for restau-

rants, and obtain reviews) linking the output of one to the input of the second.

This scenario was designed to highlight the benefit of the automatically identify-

ing these associations to serve more natural dialogue pattern.

T4 Entity-enrichment pattern: In this task, we asked participants to book a taxi to

or from a known place (e.g., eiffel Tower) without giving the precise address. This

scenario was designed to highlight the benefit of automatically inferring values

from a external data services.

It is important to note that each scenario suggested the need for relevant services

without imposing any specific conversation style or order.

Procedure. The study was conducted online with the support of an online form

aggregating all the instructions. Before starting, participants provided their consent to

participate and for their interactions with the chatbots to be recorded. After providing

background information, participants then proceeded to perform the tasks with the two

chatbots in a randomised order to avoid positional bias. For each task, participants

were asked to describe the pros and cons of their experience with each chatbot, and

to specify which one provided the better experience and why. The duration of the

experiment was between 45-90 minutes.

Data processing and analysis. We performed a qualitative analysis of the experience

with each chatbot. We performed a thematic analysis [39] of the open-ended participant

feedback so as to identify emerging themes in their experience with the chatbots, and

better characterise the reasons behind their preferred design. The conversation logs

were also analysed to understand if participants naturally engage in conversations that

leverage the proposed dialog patterns.

Page 68 of 148

3.6 VALIDATION

3.6.2 Results

T1. Slot-value-flow pattern. The large majority of participants (9/12) reported

having a superior experience when interacting with the SM-Patterns chatbot as com-

pared to the DF-Baseline . The qualitative analysis of participant feedback revealed

two main reasons behind this preference. The dominant theme was the efficiency of

interactions (9 participants), with participants expressing the SM-Patterns chatbot

being “quicker in getting an answer" (P12) and being able to correctly infer missing

values (e.g., “I liked that it correctly understood my destination and I didn’t have to

input the address [from a previous turn]", P10). Another salient theme was the ability

to enable more natural conversations (6 participants), with participants explicitly

stating the “experience of the conversation [being] more natural and human-like" (P14).

Participants also suggested improvements, notably in terms of being transparent (2

participants) about what information the chatbot was inferring from the context (e.g.,

“render it clear what assumptions it is making, and allowing the user to accept / modify

the values", P1).

The analysis of the conversation logs showed that the majority of participants (9 par-

ticipants) engaged in conversations styles that took full advantage of this pattern,

successfully referencing the context at least twice. Interestingly, the participants who

showed preference towards the other chatbot engaged in conversation styles that to a

lesser degree benefited of the slot-value-flow pattern, and instead formulated utterances

that provided actual slot values in the requests (e.g., U: “I want a taxi to [address]")

instead of leveraging the context.

T2. Nested-intent pattern As in the previous task, the majority of participants

expressed their preference for SM-Patterns (9/12 participants). The qualitative anal-

ysis of the feedback identified four main themes behind this preference. Participants

referred to the chatbot’s ability to keep track of the user goal (6 participants),

stating that when engaging in a nested intent “[the chatbot] remembered that I wanted

to book appointment with a dentist (user goal)" (P4) while the baseline would “forget

totally [what] I wanted" (P3). Providing a natural flow was another emerging quality

Page 69 of 148

3.6 VALIDATION

attribute (4 participants), with participants expressing that the experienced “flow felt

natural" (P6) while the baseline would force them to plan ahead (e.g., “[DF-Baseline]

would force me to think ahead about what services to call and in what order, as if defin-

ing a plan, instead of just interacting naturally with the chatbot and reacting to the

information that is requested as the dialog progresses", P1). The chatbot was also per-

ceived as efficient (5 participants), requiring “less input for a correct answer" (P14),

while for a few it simply came down to being effective (2 participants), i.e., able to

complete their task with the conversation styles they engaged in “[SM-Patterns] was

able to answer to my questions" (P8).

An analysis of the conversation logs revealed that most participants (7/12) had natu-

rally described a nesting-intent pattern in their interactions. Looking into the conver-

sation logs of those who expressed preference for the baseline (3 participants) provided

further insights. Interestingly 2 of these participants had not actually engaged in a

nested-intent pattern, while the one who did had experienced problems in the formu-

lation of the nested intent (i.e., the framing of the nested intent was not recognised by

the NLU). Understandably, the preference of these participants was shaped by being

unable to benefit from the proposed pattern. This highlights the need for integrating

conversation repair strategies into this pattern.

T3. API-calls ordering pattern. All participants (12/12) reported having a bet-

ter experience with the SM-Patterns chatbot describing it as being “easier to follow

up on related services" (P1). Not surprisingly, the majority of participants (8 par-

ticipants) commented on the ability to hide technical details as one of the main

reasons for their preference, one participant citing that in the proposed scenario “it

successfully understood that I wanted a review from the selected restaurant without ask-

ing for the business ID" (P7), whereas the technical details of the service as exposed

by the baseline chatbot made it “difficult to understand for someone who doesn’t know

what that means" (P3). Providing a smooth conversation flow was another theme

that emerged from the feedback on SM-Patterns , with participants mentioning that

in comparison, interacting with the baseline chatbot felt like being “caught in a loop"

(P8). Some participants summarised the positive experience by simply stating that the

Page 70 of 148

3.7 CONCLUSION

chatbot was effective, working correctly or as expected (“it gave the reviews correctly",

P10).

The analysis of conversation logs showed that all but one participant (who deviated

from the proposed scenario) described interactions that benefited from the API-calls

ordering pattern. What this tells us is this pattern greatly aligns with the conversation

styles and expectations of users.

T4. Entity-enrichment pattern. The majority of participants expressed their pref-

erence for SM-Patterns (10/12 participants). The qualitative analysis of participant

feedback revealed main reasons behind this preference. Participants appreciated the

chatbot’s ability of inferring information from external services “[it] found the address

when I said Eiffel Tower" (P6). In contrast, participants reported having to copy &

paste previous values or google some information during their interactions with the

baseline chatbot.

The analysis of conversation logs showed that all but two participant described interac-

tions that benefited from the entity-enrichment pattern. These two participants spelled

the known place (e.g., “eiffel tower") incorrectly (e.g., “book a taxi to the eifeltower"),

which led to the failure of the pattern detection for inferring values from an external

data service. Therefore, handling mistakes when performing inferences is a situation

that needs to be addressed. A pattern that detects errors in user utterances and fix

them before doing the API call could support in this regard.

3.7 Conclusion

In this chapter we extended a conversational model to represent and reason about

composite user intents. We also identified and characterized different types of dialogue

patterns that endow bot platforms with reusable functionality to recognise composi-

tional conversational flows and reduce the development complexity.

In the next chapter, we will delve into techniques that enable automatic recognition of

Page 71 of 148

3.7 CONCLUSION

composite intents. These techniques will build on the concepts covered in this chapter,

enabling chatbots to better understand and respond to complex user requests.

Page 72 of 148

3.7 CONCLUSION

Chapter 4

Recognition of Composite Intents

Context Knowledge-aware Recognition of
Composite Intents in Task-oriented Human-Bot
Conversations

Contents

4.1 Introduction . 74

4.2 Related work . 75

4.3 Context Knowledge Service 77

4.3.1 Context Knowledge Model . 78

4.3.2 CK services . 81

4.4 Composite Intent Recognition Rules 83

4.4.1 Functions . 84

4.4.2 Rules . 84

4.5 Validation . 87

4.5.1 Methods . 87

4.5.2 Results . 89

4.6 Conclusion . 92

The content of this chapter is an extension of the work presented in [32]. In this

work, we propose a new approach to recognize and realize composite user intents. The

Page 73 of 148

4.1 INTRODUCTION

proposed approach relies on a new rule-based technique that leverages both (i) natural

language features extracted using existing NLP and ML techniques and (ii) contextual

knowledge to capture the different classes of composite intents.

The rest of this chapter is organized as follows: We start with an introduction in

Section 4.1. In Section 4.2 we discuss related work. In Section 4.3 we detail the context

knowledge service, a service that we propose to provide the dialogue management with

the required knowledge to support composite intent recognition. In Section 4.4, we

present a hybrid approach to recognize and realize composite intents. Section 4.5

presents validation of the proposed approach, and finally we provide a conclusion in

Section 4.6.

4.1 Introduction

Existing Natural Language Processing (NLP) and Machine Learning (ML) techniques

have produced promising and useful results to recognize basic intents [229]. ML based

techniques rely on the availability of massive amounts of annotated data. Using these

techniques to recognize composite intents requires laborious, costly and hard to acquire

training datasets. In addition, each time a new composite intent is identified, extending

or producing a new dataset is needed as well. Therefore, more advanced and flexible

techniques that cater for composite intent recognition are needed.

In the previous chapter, we focused on identifying and characterizing a set of composite

dialogue patterns that naturally emerge when conversing with services. In this chapter,

we focus on the recognition of complex intents in human-bot conversations.

We take the view that complex intent recognition could be significantly improved by

considering composite dialogue patterns in addition to basic intent features. We pro-

pose an approach that relies on (i) existing NLP and ML techniques to extract natu-

ral language features (e.g., basic intents, slots’ values) and (ii) a rule-based approach

that leverages these features together with contextual knowledge, enabled by compos-

ite dialogue patterns and other metadata, to define composite intent recognition rules.

Page 74 of 148

4.2 RELATED WORK

These rules capture in a generic way different classes of composite intents that may

be expressed in user utterances. They enable a higher-level of abstraction that offers

flexibility for an extensible library of composite dialogue patterns. When a new com-

posite intent class is identified, a new rule template is added to recognize intents of this

class from utterances. This approach requires to capture fairly complex context knowl-

edge in addition to basic intents in order recognize complex intents. Thus, there is a

need for advanced context representation and exploitation techniques that go beyond

conversation history to include information inference that leverage metadata such as

intent and API schemas (e.g, intents, slots, API methods) and relationships between

their elements. Our contributions in this work are summarized as:

• We propose a hybrid approach that combines (i) natural language features, (ii)

composite dialogue patterns, (iii) and contextual knowledge to capture different

classes of composite intents in a generic way.

• We propose a Context Knowledge Service (CKS) to provide the contextual knowl-

edge that is needed for defining the rules to recognize composite intents. This

CKS consists of (i) a context knowledge model represented as a knowledge graph

and (ii) a set of services facilitating the leverage of this knowledge.

• Empirical evidence showing the effectiveness and user experience of the CKS and

composite intent recognition approach. The user study showed that endowing

chatbots with the composite intent recognition allow less redundant and more

natural interactions, as perceived by users and confirmed by performance metrics.

4.2 Related work

The work presented in this chapter is related to the state tracking process that aims

to infer the dialogue state in terms of the user intent and its slot-value pairs during

conversations [173]. Depending on the leveraged knowledge sources, existing state

tracking approaches can be organized into history-based, schema-based, and linguistic

patterns (LPs) based.

Page 75 of 148

4.2 RELATED WORK

History-based approaches rely on the whole or window-size of the dialogue history

to predict the dialogue state. Deep learning models including HRNN (Hierarchical

Recurrent Neural Networks) [85], LSTM (Long-Short-Term-Memory) [79] and BERT

(idirectional Encoder Representations from Transformers) [250] are utilised to encode

the dialogue history. Other works [48, 179] leverage only on the previous dialogue

states to predict the current state instead of taking the whole history. More advanced

approaches [105, 163, 241] focused first on the learning of slot dependencies from the

history and then incorporated them into the state tracking model, allowing it to infer

slot values from similar slots. Most of the state tracking approaches either focused

on recognizing only basic intents or ignored their recognition at all. Similar to some

of these, we build upon advances in ML techniques to enable the recognition of basic

intents but contribute a new rule-based approach to recognize composite intents.

Schemas-based approaches leverage schemas capturing the structural representa-

tion of conversation data to predict the dialogue state. Works like [55], [136], and [229]

use a slot-level schema graph that captures dependencies between slots. The aim is

to allow the state tracking model to infer slot values from similar slots. Other efforts

like [135] leverage the backend database schema in state tracking model to allow slot

inference from the database entities. These methods, however, work with chatbots in-

tegrated only with databases, where the inferred slot-value pairs are used to frame the

query. Since our context knowledge model integrates API/Service schema, where each

intent is associated with its corresponding API method, our approach can handle flows

supported by software-enabled services.

The work [21] represents the dialogue state as a dataflow graph and the complex user

intent as a dataflow program. For each user utterance, a trained model allows predicting

the corresponding dataflow program. This approach relies on datasets where each

utterance must be annotated with the corresponding dataflow program; however, it is

not intuitive task to annotate utterances with programs.

The closest work to ours is [173] which introduced a unified schema defining an API

as a combination of intents and slots. A BERT-based state tracking model then takes

Page 76 of 148

4.3 CONTEXT KNOWLEDGE SERVICE

this schema as input to enable the recognition of intents and inferring their slot-value

pairs. The captured knowledge (i.e., the unified schema), however, can only help in the

recognition of basic intents. In our work, we devise a context knowledge service mainly

to capture the contextual knowledge that is required to recognize complex intents. In

addition to the conversation history and intent/slot schemas, this knowledge includes

API/Service schemas and enriched entities. The proposed approach exploits both this

knowledge and basic intent features to recognize the complex intents.

LPs-based approaches leverages linguistic patterns that are drawn mainly from hu-

man conversations to handle some complex intents and inferring their slots [71,175]. For

example, IRIS [71] draws on two existing LPs: dependent questions (i.e., one question

depends on the answer to some subsequent questions), and anaphora (i.e., expressions

that depend on previous expressions) to allow composition and sequencing of intents.

These approaches, however, are not enough to capture complex intents that naturally

emerge when conversing with services. For instance, while this utterance "Send the

message ‘I will be at UGC cinema at 3 pm’ to Sophia" refers to a complex intent

requiring a composition of two API methods (i.e., get-contact and send-message), it

cannot be recognized by IRIS. The reason is that IRIS can recognize composition based

only on linguistic features (e.g., a composition is recognized when a user answers with

a new intent to the chatbot request for a missing slot). In contrast to the LPs-based

approaches, we focus on using composite dialogue patterns that cater to the inherent

features in interactions between humans, chatbots, and services in addition to the lin-

guistic ones. These patterns are used to enable the contextual knowledge required by

our approach to recognize complex intents.

4.3 Context Knowledge Service

Context can be defined as any information that can be leveraged from previous turns

or other knowledge [108]. Maintaining the context is necessary in chatbots as it al-

lows to keep continuity in the dialogue and avoid repetition, making interactions more

natural [108]. However, inferring information from the context is challenging due to

Page 77 of 148

4.3 CONTEXT KNOWLEDGE SERVICE

Yelp-SearchBusiness
[API Method]

term
[Parameter]

location
[Parameter]

string
[Entity Type]input

input

iis-a

iis-a

businesses
[Parameter]

object
[Entity Type]iis-a

name
[Attribute]

ihas

address
[Attribute]

country
[Attribute]

city
[Attribute]

display_address
[Attribute]

string
[Entity Type]

hasplace
[Entity Type]

is-retrieved-by

is-asquery
[Parameter]

input

String
[Entity Type]

formatted_address
[Attribute]

place_id
[Attribute]

name
[Attribute]

has

is-realised-by

find-cinema
[Intent]

has
has

is-realised-by

find-restaurant
[Intent]

restaurant-area
[Slot]

same-ascinema-area
[Slot]

ihas

has

has

is-realised-by

send-msg
[Intent]

is-realised-by

has get-contact
[Intent]

string
[Entity Type]

msg
[Slot]

same-astext
[Slot]

name
[Slot]

has

is-realised-by

start-playlist
[Intent]

hashas

is-realised-by

search-items
[Intent]

output input input

Soptify-Search
[API Method]

input

depends-on
Soptify-Player
[API Method]

q
[Slot]

item_type
[Slot]

food
[Slot]

twilio-SendMessages
[API Method]

input
output
output

contacts-get
[API Method]

taxicode-booking
[API Method]

destination
[Parameter]

pickup
[Parameter]

inputinput
input

same-as

same-as

destAddress
[Slot]

depTime
[Slot]

time
[Parameter]

same-as

same-as

output
has

has
has

is-a

has

has

has

is-realised-by

BookTaxi
[Intent]has

contact
[Parameter]

email
[Parameter]

PhoneNbr
[Parameter]

playlist_id
[Slot]

item
[Parameter]

q
[Parameter]

spotify_id
[Parameter]

same-as
spotify_id

[Parameter]

city
[Attribute]

hashas

location
[Profile Attribute]

filtered-by

Google-Place Search
[External Service]

depAddress
[Slot]

Figure 4.1: Context knowledge graph related to the conversation scenario in Figure 3.3.
For clarity purpose we do not represent all nodes and edges.

multi-turn multi-intent conversations and heterogeneous APIs. To tackle this challenge,

we proposed in [32, 33] a Context Knowledge Service (CKS) to provide the dialogue

management with the required knowledge to support the recognition and realization of

composite intents. The CKS has two main components: A context knowledge model

(Section 4.3.1) and a set of services (Section 4.3.2) to leverage this knowledge.

4.3.1 Context Knowledge Model

The context knowledge model accomplishes the "magic behind the scenes" that enables

chatbot to drive the underlying patterns from conversations and infer the set of infor-

mation required in handling them. This context knowledge model consists of: (i) the

metadata of chatbot schema, user profile and external services and (ii) the data stored

as conversation progresses.

Metadata is represented as a context knowledge graph with a set of nodes and edges.

Figure 4.1 shows an excerpt of a context knowledge graph related to the conversa-

tion in Figure 3.3. We distinguish between 8 node types: Intents, Slots, Methods,

Page 78 of 148

4.3 CONTEXT KNOWLEDGE SERVICE

Parameters, Entity Types, Attributes, External Services, and Profile Attri-

butes. Methods refer to concrete API methods being invoked to fulfill user intents

(e.g., Yelp-SearchBusiness). Parameters designate either input or output parameters

of a method. Entity Types refer to the type of slots, parameters, and attributes

(e.g., string, person). External services refer to external data services (e.g., Google-

PlaceSearch) that can be used to retrieve certain attribute values. Often, a data service

has an input parameter that takes a text query, which in our case will be filled by the

entity mention (e.g., "Eiffel Tower").

The key intuition behind including external data services is to endow the chatbot with

the capability of enriching entities with additional information from these services.

However, an external data service may return several entities for a given mention.

Thus, having a mechanism that links the entity mention to its corresponding entity

in the data service is necessary. This is where the user profile comes into play. User

Profile Attribute such as location and preferences can be used as filters to select the

appropriate entity.

Furthermore, there are 9 edges types: is-realized-by, input, output, has, is-a,

depends-on, same-as, is-retrieved-by, and filtered-by. The edge is-realized-by

denotes that an intent is realized by an API method. The edges input and output

denote that a parameter is an input or an output of a method (e.g., "location" is an

input parameter of "Yelp-SearchBusiness" method). The edge input can also be de-

fined between an external service and its input parameter (e.g., "query" is an input

parameter of "Google-PlaceSearch" service). The edge has denotes that an intent has

a slot (e.g., "find-restaurant" intent has "restaurant-area" as slot), or an entity type

has an attribute (e.g., an "address" entity type has the attribute "city"). The edge

is-a is defined between a slot, an attribute or a parameter and an entity type (e.g.,

location parameter is a string). The edge depends-on denotes that an API method

depends on another method to get the required id parameter value. The same-as edge

is generated between slots, parameters, and attributes if they have the same type (e.g.,

"restaurant-area" slot is same-as "location parameter"). The edge is-retrieved-by is

defined between an entity type and an external service (e.g., the entity type "place"

Page 79 of 148

4.3 CONTEXT KNOWLEDGE SERVICE

can be retrieved by "Google-PlaceSearch" service). The edge filtered-by is defined

between an entity type and a profile attribute, meaning that entities of that entity type

can be filtered by the given attribute (e.g., "place" entities can be filtered by "location"

profile attribute).

The nodes and edges including is-realized-by, input, output, has, is-a are gen-

erated from the chatbot schema. We leverage on word embedding techniques to auto-

matically generate same-as edges [181]. More precisely, we compute the corresponding

vector embedding for each slot, parameter and attribute. Then, we measure the cosine

similarity between each pair of slots, parameters, and attributes [181]. If the similarity

of each pair exceeds a predefined threshold, a same-as edge is generated between them.

The generation of filtered-by edges is based on computing the cosine similarity be-

tween the vector embedding of each pair of entity type attributes and profile attributes.

If the similarity exceeds a predefined threshold, a filtered-by edge is added between

the entity type and the similar profile attribute. For example, assume that a user profile

is defined by this set of attributes (gender, location, dietary) and the entity type

place has the attribute city among others, a filter-by edge will be added between

place and only location since it is similar to city. We assume that the external data

services, the user profile attributes, and the edges is-retrieved-by and depends-on

are specified by the chatbot developer.

Data includes relevant information that should be memorized during user-chatbot

conversations for later reuse. Two memory structures are used to store this data: Local

Context Memory (LCM) and External Context Memory (ECM). The LCM keeps track

of all the traces related to each intent fulfillment. This includes the utterance, the

intent, the method call, alongside with its timestamp, its inputs, and its outputs. The

ECM, on the other hand, keeps track of all entities mentions in user utterances. It

also provides all information that external data services extract to enrich these entities

mentions. We structure ECM in terms of entities; each is associated with its mention

(e.g. "Eiffel Tower"), entity type (e.g., Place), and its retrieved attribute values. The

ECM is continuously updated as new entity mentions are detected or new attribute

Page 80 of 148

4.3 CONTEXT KNOWLEDGE SERVICE

values are retrieved.

4.3.2 CK services

The CKS features a set of services which are devoted to supporting the inference of slot

values and providing the contextual knowledge that is needed to recognize and realize

composite intents. In what follows, we define each of these services:

History search: This service allows inferring slot values from the conversation his-

tory. It is enabled by the endpoint "CKS/history? ms & u" which takes as inputs the

missing slot ms, and the utterance u and returns the value of the slot ms when possible.

First, the service extracts the relevant entity-mention pairs from the utterance. An

entity-mention is relevant if the extracted entity has an attribute same-as the missing

slot. Consider the user utterance "I need a taxi to commute between Poni restaurant

and UCG cinema", the entity-mention (restaurant, Poni) is relevant because the en-

tity restaurant has an attribute address same-as the missing slot taxi-depAddress.

Second, the service rewrites the utterance by replacing each mention with the corre-

sponding attribute’s value. For example, the previous utterance will be "I need a taxi

to commute between [Poni-address] and [UCG-address]". The rewriting is important to

know if the value of taxi-depAddress is the restaurant or the cinema address. The

service then extracts the missing value from the new utterance. If there is no relevant

entity-mention in the utterance, the service returns the most recent value of the pa-

rameters same-as the missing slot. For example, in utterance "I am also looking for

cinema", the slot’s value cinema-area is missing and there is no entity-mention, so the

service returns the value of the restaurant’s area.

Entity enrichment: This service allows enriching entity attributes from external data

services. It is enabled by the endpoint "CKS/invoke_external_service? s & em &

a". Consider the utterance "I also need a taxi to go from Eiffel Tower", the service

takes as inputs: the external data service s: Google-PlaceSearch, the entity-mention

em: (place, Eiffel Tower), and the attribute a: address and it returns the value

Page 81 of 148

4.3 CONTEXT KNOWLEDGE SERVICE

of the attribute a. To obtain the attribute value from the appropriate entity, three steps

are followed. First, the service invokes the external data service related to the given

entity-mention em, which returns a set of entities. Then, it filters the returned entities

by discarding any entity, whose similarity with the entity-mention em is less than a

predefined threshold and it does not contain the target attribute value. The similarity

is computed on the basis of the cosine distance between the embedding vectors of the

entity-mention em and the name of the entity returned by the external service. After

this step, if only one entity is returned, the service retrieves the target attribute value

from it. Otherwise, in order to identify the right entity, the service proceeds a second

filtering step based on the filter attributes related to the mention entity type in the

metadata. This filter step is expected to return one entity that matches the most of

filters while giving a high priority to the location filter. In other words, if the location

attribute is among the filter attributes, all entities that do not satisfy it will be discarded

despite that they may satisfy other attributes.

Nested method identification: This service allows identifying an API method that

needs to be invoked to obtain the missing slot value. It is enabled by the endpoint

"CKS/nested_method? ms & set_em". Consider utterance "Tell Sofia let’s meet at

Poni restaurant". The service takes as inputs the missing slot ms: tel, and the set of

detected entity-mentions set_em: {(person, Sofia)}. It then gets from the metadata

the methods that have an output parameter same-as the slot ms. For example, the

service gets the set of methods {contacts-get, businessDetails-get} where the

missing slot tel is the same-as one of the outputs of contacts-get (i.e., phoneNbr) and

also the same-as one of the outputs of businessDetails-get (i.e., phone). The service

relies on the detected entity-mentions to select the relevant method from the set of

methods. For example, in contrast to the method businessDetails-get, the method

contacts-get has an input parameter contact same-as to one of the detected entity

person. Thus, the service selects contacts-get as the nested method and returns it

along with its input values {(contact, Sofia)} and one of its outputs phoneNbr that

is same-as the missing slot tel.

Page 82 of 148

4.4 COMPOSITE INTENT RECOGNITION RULES

Dependent Method identification: This service allows identifying a dependent

method to get a value of an id. It is enabled by the endpoint "CKS/dependent _method?

i" where i is a given intent. This endpoint first gets the method m1 that realize the in-

tent i. Then, it gets the dependent method m2 where m1 depends on m2. For example, in

utterance "can you start the playlist called My Happy Melodies", the endpoint takes the

intent start-playlist as input and returns: the dependent method Spotify-Search,

its input parameters {q, item}, and its id output parameter spotify_id.

4.4 Composite Intent Recognition Rules

In this Section, we focus on the recognition and realization of composite intents in

human-chatbot conversations. We take the view that composite intent recognition

could be significantly improved by considering composite dialogue patterns in addition

to basic intent features. In [32], we proposed an approach that relies on (i) existing

NLP and ML techniques to extract natural language features (e.g., basic intents, slots’

values) and (ii) a rule-based approach that leverages these features together with con-

textual knowledge, enabled by composite dialogue patterns and other metadata, to

define composite intent recognition rules. These rules enable a higher-level of abstrac-

tion that offers flexibility for an extensible library of composite dialogue patterns. When

a new composite intent class is identified, a new rule template is added to recognize

intents of this class from utterances. In nutshell, these rules capture in a generic way

different classes of composite intents that may be expressed in user utterances.

We express a rule using a combination of natural language features (provided by di-

alogue act functions) and contextual knowledge (provided by context metadata func-

tions). In what follows, we first define functions that we use to specify the rules (Section

4.4.1), then we specify the rule of each dialogue pattern defined in Chapter 3 (Section

4.4.2).

Page 83 of 148

4.4 COMPOSITE INTENT RECOGNITION RULES

4.4.1 Functions

Functions are the primitives that we use to define the rules. We consider function input

and output types to be standard data types found in common programming languages.

This includes simple data types such as string and boolean; as well complex data

types such as Tuple or Set. Thus, we can leverage the standard operators designed

for these data types. We distinguish two types of functions: dialogue act functions to

capture natural language features and context metadata functions to capture contextual

knowledge. These functions are offered by the NLU and the CKS, respectively.

Dialogue Act functions are important to identify hidden actions in user or chatbot

messages. Whether the user is providing information, or asking a question, or the

chatbot is asking for a missing information, or providing suggestions, are all hidden acts

in user or chatbot messages. We focus on two dialogue act functions: INTENT_OF(),

which identifies the intent i expressed in a given utterance u, and SLOT_VALUE(), which

returns the value of a given slot s recognized in the utterance u or NULL if no value of

s is recognized in the utterance u.

Context Metadata functions are important to capture the contextual knowledge.

They allow to access and query the metadata graph defined in Section 4.3.1. For

example: GET_SAMEAS_PARA() is a metadata function that returns a set of parameters

that are the same-as a given slot s; DEPENDS_ON() returns a method name mb given a

method name ma where ma depends on mb, or it returns NULL if there is no dependent

method; GET_ATT() returns the set of attributes of a given entity e.

4.4.2 Rules

A rule consists of trigger and action clauses. The trigger clause specifies the conditions

that need to be verified to recognize composite intents. Then, the sequence of operations

specified in the action clause are executed to realize the related composite intent. The

following statement specify a rule:

Page 84 of 148

4.4 COMPOSITE INTENT RECOGNITION RULES

Table 4.1: Examples of boolean functions to express triggers

Functions Inputs Description
IS_NEW_INTENT() u: string returns true if the identified intent in the utterance

u is a new intent.
HAS_MISSING_SLOT() u: string

s: string
returns true if the value of the given slot s is not
recognized in the utterance u.

HAS_SAMEAS_PARA() s: string returns true if there is at least one parameter that
is the same-as the slot s.

EXIST_NESTED() s: string returns true if there is at least one output param-
eter that is the same-as the slot s.

IS_DEPENDENT() i: string returns true if the method that realize i depends
on another method.

HAS_SAMEAS_ATT() set_em: set
s: string

returns true if at least one entity in set_em has an
attribute that is the same-as the slot s.

Rule “name of the rule” when trigger then action

Triggers are expressed as boolean conditions over functions, including dialogue act and

metadata functions. Table 4.1 provides examples of boolean functions that are used

to define triggers. Conditions may be combined using conjunction operator (AND). The

action is a sequence of operations. For instance, an operation can be an assignment

of a value to a given variable, or an invocation of a CKS service. In what follows, we

describe the rule of each pattern introduced in Chapter 3:

Slot-value-flow Rule. Figure 4.2 shows the specification of the rule related to slot-

value-flow composite intent. The first condition checks if the identified intent i is a

new intent. The second condition checks if the value of the slot ms is missing (i.e., not

recognized in u). The third condition checks if there is at least one already fulfilled

parameter that is the same-as the slot ms. If the three conditions are satisfied, the

chatbot: (1) invokes the history search CKS service to get the missing value, (2) adds

this value to the set of slot-value pairs of the intent i, and (3) invokes the method that

realize the intent i.

Nested-method Rule. Figure 4.2 shows the specification of the rule related to nested-

method composite intent. The first two conditions are the same as slot-value-flow

rule. The third condition checks if there is at least one output parameter that is the

same-as the slot ms. If the conditions are satisfied, the chatbot: (1) invokes the nested

method identification CKS service to identify: the nested method mnes, its input values

Page 85 of 148

4.4 COMPOSITE INTENT RECOGNITION RULES

Figure 4.2: Rules of composite dialogue patterns introduced in Chapter 3.

set_ivnes, and its output parameter ones. Then, the chatbot (2) invokes the method

mnes to get the value of ones, (3) uses this value as a value for the slot ms, and (4)

invokes the method that realize the intent i.

API-calls ordering Rule. Figure 4.2 shows the specification of the rule related to

API-calls ordering composite intent. The first condition is similar to the first condition

of the slot-value-flow rule. The second condition checks if the method that realize the

intent i depends on another method. If the conditions are satisfied, the chatbot: (1)

invokes the dependent method identification CKS service to identify: the dependent

method mdep, its inputs set_idep, and the id parameter iddep. Then, the chatbot (2)

calls GET_VALUES_ASKUSER() to get the input values of the method mdep by extracting

them from the utterance, the history, or by asking the user. After getting the input

values, the chatbot (3) invokes mdep to get the value of iddep, (4) uses this value as a

value for the parameter id, and (5) invokes the method that realize the intent i.

Entity-enrichment Rule. Figure 4.2 shows the specification of the rule related to

entity-enrichment composite intent. The first two conditions are the same as slot-value-

flow rule. Given a set of entities mentions set_em, extracted from u, the third condition

checks if there is at least one attribute of an entity-mention that is the same-as the

Page 86 of 148

4.5 VALIDATION

slot ms. If the conditions are satisfied, the chatbot: (1) calls the metadata function

GET_REQUIREMENTS() to get the following information: the related service s, the entity-

mention em, and the attribute a. Note that this function chooses one entity-mention

from set_em based on the one that has an attribute same-as the slot ms. Then, the

chatbot (2) invokes the entity enrichment CKS service to get the value of the attribute,

(3) uses this value as a value for the slot ms, and (4) invokes the method that realize

the intent i.

4.5 Validation

The first objective of the study was to explore the effectiveness and limitations of (i)

the proposed CKS (i.e., its capability of inferring slots’ values correctly and reducing

unnecessary interactions) and (ii) the composite intent recognition approach (i.e., its

capability of recognizing correctly the composite dialogue patterns described in Chap-

ter 3). The second objective was to evaluate the user experience (i.e., naturalness,

repetitiveness, understanding) in interacting with a chatbot improved with CKS and

composite intent rules.

4.5.1 Methods

4.5.1.1 Experimental design

Participants were recruited via email from our extended network of contacts. The call

for volunteers resulted in a total of 20 participants. We prepared an evaluation scenario

that required participants to interact with a set of API methods through a chatbot to

plan an evening activity. Participants were asked to complete four different tasks in

this scenario (T1: checking the weather and searching for restaurants, T2: booking

a restaurant table, T3: booking a taxi, and T4: sending a confirmation message to

the travel partner). The tasks were designed to leverage the type of support provided

by the CKS, if the composite dialogue patterns were to be effectively recognized (T1:

Page 87 of 148

4.5 VALIDATION

inferring slot value from conversation history, T2: identifying dependent method, T3:

using an external data source, and T4: identifying nested method). We followed a

within-subjects design,1 tasking participants to interact with two chatbots representing

the following experimental conditions:

• DM-Baseline. The baseline implements a standard conversational management,

without composite dialogue patterns and CKS support.

• DM-CKS. This chatbot is implemented with the composite intent rules and CKS

support.

The two chatbots relied on the same NLU implementation (in DialogFlow [5]), bot

interface, and differed only in the composite intent rules and CKS support.

4.5.1.2 Procedure

The study was conducted online. Participants received a link to an online form that

included an informed consent, all the instructions, links to the chatbots and feedback

required. In the study, participants were introduced to the evaluation scenario and

tasks, and were asked to perform those tasks with the two chatbots. The order in

which the chatbots were presented to users was counterbalanced to avoid positional

bias. For each chatbot, participants were asked to provide open-ended feedback on the

pros and cons of their experience.

The last part of the study then asked participants about their preferred chatbot, the

reason why, and a quantitative feedback on their user experience. We adopted the user

experience questions from the Chatbot Usability Questionnaire (CUQ) [103]., to get

feedback on the perceived naturalness (i.e., ability of the chatbot to fulfill user tasks in

human-like conversations), repetitiveness (i.e., ability of the chatbot to avoid redundant

questions) and understanding (i.e., ability of the chatbot to interpret user requests).

The duration of the study was between 15-20 minutes.

1Study materials and in-depth results available at https://tinyurl.com/
study-materials

Page 88 of 148

4.5 VALIDATION

Table 4.2: Chatbot performance for each task according to relevant metrics. Values
in bold denote best performance. Percentages denote the relative performance with
respect to the reference (optimal) scenario.

Task (service) DM-Baseline DM-CKS
M1 (TURNS) M2 (PROMPTS) M3 (SLOTS) M1 (TURNS) M2 (PROMPTS) M3 (SLOTS) M4 (PATTERN)

T1 (history) 59.70% 21.18% 49.24% 98.04% 90% 96.97% 95%
T2 (dependent) 61.18% 42.11% 17.86% 92.86% 95.24% 95.24% 94.44%
T3 (external) 46.97% 32.39% 3.17% 91.18% 88.37% 95.24% 95%
T4 (nested) 52.97% 20% 39.41% 96.55% 80% 96.55% 95%
Mean 55.21% 28.92% 27.42% 94.66% 88.4% 96% 94.86%

4.5.1.3 Data analysis

We performed an analysis of conversation logs so as to assess the effectiveness of the

CKS and the composite intent rules (CIR). These are calculated in relation to optimal

conversation scenarios2 that we designed based on participants conversations. The

CKS effectiveness is calculated by considering the following metrics: number of (M1)

conversation turns, (M2) prompts asking for missing slot values, and (M3) missing slot

values correctly inferred. The effectiveness of the CIR (only available in DM-CKS)

is calculated by considering the number of (M4) composite intents correctly detected.

These metrics are calculated per user conversation, aggregated (mean) and then used

to compute the relative performance against the optimal scenario. We also performed

a qualitative analysis of open-ended responses and conversation logs to contextualise

the results from the metrics and identify limitations.

4.5.2 Results

4.5.2.1 Effectiveness of CKS and CIR

Table 5.2 shows the relative performance by task of both chatbots DM-Baseline and

DM-CKS in relation to the optimal reference scenario. For the four tasks, we can

see that DM-CKS chatbot experienced a boost in performance for M1 and M2 met-

rics (mean across tasks 94.66% and 88.4% respectively), approaching the efficiency in

terms of number of turns and prompts of the reference ideal scenario. This level of

2Scenarios assuming ideal accuracy of slot-value inference and intent recognition.

Page 89 of 148

4.5 VALIDATION

performance is possible due to the accuracy of the slot value inference (M3) performed

by the CKS services supporting each task – a mean relative performance across tasks

of 96%. In contrast, not having the support of the CKS services lead the DM-Baseline

chatbot to perform poorly in comparison, with the best performance being at around

37.18% for the metrics considered. These results provide evidence for the benefits and

effectiveness of the CKS support.

Table 5.2 also shows the relative performance of recognizing composite intent (M4) by

the chatbot DM-CKS in relation to the reference scenario. By analyzing the conversa-

tions, we noticed that the recognition error of the composite dialogue patterns is mostly

caused by the detection error of the correct intent by the NLU during the conversation.

For example, if the NLU detects the intent search-restaurant instead of book-taxi,

in the utterance "I want to go to this restaurant", this will lead to an error in detecting

the slot-value-flow pattern that takes the restaurant address as the destination address.

However, for the four tasks, we can see that DM-CKS chatbot is close to the reference

scenario with a mean relative performance across tasks of 94.86%.

4.5.2.2 User experience

All but one participant (19/20 participants) expressed a preference towards the DM-

CKS chatbot as opposed to the baseline. The one exception was due to NLU limitations

in recognizing user expressions that led to the enactment of the wrong services. The

feedback to the specific user experience questions, as well as the open-ended feedback,

highlighted the reasons behind the preference. Participants agreed with DM-CKS in-

teractions describing naturalness (14/20), less repetitiveness (16/20) and understanding

(15/20), whereas the baseline was poorly rated on these fronts (1/20).

Interestingly, these qualities were linked to the CKS support, such as the ability to infer

missing slot values from conversation history (e.g., "saying that the drop-off address was

the restaurant I have just booked was enough", P1), or from external services (e.g., "[it]

found the address when I said Eiffel Tower", P6). The ability to handle composite

intents also emerged as a defining feature (e.g., "[DM-CKS] is capable of undertaking

Page 90 of 148

4.5 VALIDATION

complex tasks and retaining previous information", P16). In contrast, participants

reported having to copy & paste previous values or google some information during

their interactions with the baseline chatbot.

4.5.2.3 Limitations

The conversation analysis revealed some limitations in supporting the natural language

interaction described by the users:

Enumerating entities when the number of entities is expected. In the context of T2,

when asked "For how many people do you want to book a table?", some participants

would respond with "For me and my friend". The chatbot could not infer the number

of seats from the participant’s utterance because it expected to extract a number. This

would be an acceptable answer in a natural conversation, and represent as a new type

of inference that needs to be considered.

Introducing typos when providing slot values. When booking a taxi in the context of

T3, some participants spelled "Eiffel tower" incorrectly (e.g., "book a Taxi from the

Eifeltower"), which led to the failure of the CKS service for inferring values from an

external data source. Handling mistakes when performing inferences is a situation that

needs to be addressed.

Coreferences in user utterances not resolved. Another reason why the slot value in-

ference failed at times are limitations inherent to the adopted coreference model. For

example, after booking a restaurant, a participant asked the chatbot "can you get me

a taxi there?". The NeuralCoref model [9] failed to replace "there" by the restaurant

present in the conversation context. Testing alternative coreference models, such as

Stanford’s CoreNLP [151], could improve the slot value inference mechanism.

Page 91 of 148

4.6 CONCLUSION

4.6 Conclusion

In this chapter, we proposed reusable and extensible rule-based technique that uses a

sophisticated context service to recognize and realize composite intents. We believe that

our approach charts novel abstractions that unlock the seamless and scalable integration

of natural language-based conversations with software-enabled services. We devised

a novel composite intent recognition that allows the incremental acquisition of rule

templates to identify composite intents from basic dialogue acts and context features.

The contextual knowledge required at run-time to recognize composite intents and

infer slot values from user-chatbot conversations is extracted from conversation history,

enriched entities, intents and API schemas and represented in graph structure.

While we focused on interactions between user, chatbot and simple services (Intent-

SingleAPI), other interactions with composite services (Intent-CompositeAPI) can be

captured. In the next chapter, we propose a new concept to represent natural language

conversations between the user, the chatbot, and composite services.

Page 92 of 148

4.6 CONCLUSION

Chapter 5

Process-oriented Intents

Process-oriented Intents for Superimposition of
Natural Language Conversations over Composite
Services
Contents

5.1 Introduction . 94

5.2 Related work . 97

5.3 Preliminaries, Scenario and Requirements 98

5.3.1 Preliminaries . 98

5.3.2 Scenario . 99

5.3.3 Requirements . 101

5.4 Architecture . 102

5.4.1 Process Embedding Service 102

5.4.2 Context Knowledge Services 105

5.5 Process-aware User Intents 106

5.5.1 Start New Process Instance 107

5.5.2 Follow-up on Process Status 108

5.5.3 Task Update . 108

5.5.4 Canceling a Task . 109

5.6 Validation . 109

Page 93 of 148

5.1 INTRODUCTION

5.6.1 Process-oriented Intent Training Dataset Construction 110

5.6.2 Methods . 113

5.6.3 Results . 115

5.7 Conclusion . 117

The content of this chapter is an extension of the work presented in [31]. This work

focuses on the superimposition of task-oriented assistants over composite services. We

propose Human-bot-Process interaction acts that are relevant to represent natural lan-

guage conversations between the user and multi-step processes. In doing so, we enable

human users to perform tasks by naturally interacting with service orchestrations in-

volving multiple actions.

The rest of this chapter is organized as follows: We start with an introduction in Sec-

tion 5.1. In Section 5.2 we discuss related work. Section 5.3 provides preliminaries,

a motivating scenario and requirements. In Section 5.4, we present the general archi-

tecture. Section 5.5 presents the characterization and recognition of process-oriented

intents. Section 5.6 presents validation of the proposed approach, and finally we provide

a conclusion in Section 5.7.

5.1 Introduction

Task-oriented conversational services (or simply chatbots) emerged as engines for trans-

forming online service-enabled digital assistance and powering natural interactions

between humans, services, and things [192]. Recently, organizations leveraged task-

oriented chatbots in a variety of assistance tasks, including healthcare, education and

e-commerce. For instance, the augmentation of process-enabled automation with AI-

enabled conversational assistants emerged as a promising technology to make process

automation even closer to users (e.g., customers, workers) [25, 35]. This evolution

promises to increase the benefits of automation by simplifying access and reuse of con-

comitant capabilities across potentially large number of evolving and heterogeneous

data sources, applications and things [18, 35]. Integrating AI-enabled task-oriented

Page 94 of 148

5.1 INTRODUCTION

conversational assistants and process-enabled automation involves advanced machine

learning, entity recognition, and Natural Language Processing (NLP) techniques [25].

A key NLP task in this context is intent recognition, i.e., (i) understanding user ut-

terances in natural language and recognizing user intent corresponding to tasks that

the user wants to accomplish, (ii) extracting relevant intent input slot values from user

utterances, and (iii) trigger commands that process user intents and perform conversa-

tions with users.

In the previous chapters, we proposed various techniques for the superimposition of

task-oriented conversational services on top of Application Programming Interfaces

(APIs) [32, 33, 248]. More precisely, we proposed conversation state machines to rep-

resent multi-turn and multi-intent conversations between users and API-enabled ser-

vices [248]. We identified and characterized a set of composite dialogue patterns that

naturally emerge when conversing with services [33]. We proposed a hybrid intent

recognition approach that combines (i) basic intents recognition from natural language

user utterances and (ii) contextual knowledge, including API schemas and API integra-

tion patterns (e.g., data flow between API methods, nested API methods, dependency

constraints between API methods), to recognize different classes of composite intents

like a sequence of API calls and nested API calls [32].

In this chapter, we focus on the superimposition of task-oriented assistants over com-

posite services. In doing so, we enable human users to perform tasks by naturally

interacting with service orchestrations involving multiple actions (e.g., sequence of API

methods). Orchestrating human–machine conversations over composite services re-

quires rich abstractions and knowledge to: (i) interact with a multi-step processes (e.g.,

accessible through a business process language engine or service middleware [69]) using

natural language utterances, (ii) automatically recognise nuanced, context sensitive and

possibly ambiguous process-aware user intents including starting a new task, inquiring

about task progress, switching from one task to another and exceptional behavior such

as canceling or updating tasks. Specifically, we identify fine-grained Human-bot-Process

(HP) interaction acts that are relevant to represent natural language conversations be-

tween user and multi-step processes. In a nutshell, interaction acts are dialogue acts

Page 95 of 148

5.1 INTRODUCTION

that characterise process-oriented intents1 in user utterances expressed in natural lan-

guage. For instance, a task creation interaction act involves creating a new process

instance that performs the requested task; a task cancellation interaction act involves

the cancellation of a previously performed task. These interaction acts should capture

both the expected (e.g., purchase a product) and exceptional behaviors (e.g., return

product) of a process. Our contributions in this work are summarized as follows:

• We propose Human-bot-Process interaction acts as abstractions to characterize

possible process-oriented intents in conversations between users and multi-step

processes.

• We identify common process-oriented intents. We believe that interactions with

process-aware chatbots require more fine-grained intents for accomplishing tasks,

such as initiating, analysing, monitoring and controlling process instances through

natural language utterances. We present these intents and describe their benefits

through practical scenarios.

• We devise an approach that combines user utterance features (e.g., user intents,

HP interaction acts) and process knowledge (e.g., process schema, process in-

stance correlation attributes, information about possible exceptions) to recognize

process-oriented intents from user utterances.

• We discuss both crowd-based and automatic paraphrasing strategies [168] to col-

lect utterance paraphrases and build a dialogue dataset to train process-oriented

intent recognition models.

• Empirical evidence showing the effectiveness of the proposed approach in rec-

ognizing these process-oriented intents as perceived by users and confirmed by

performance metrics.

1In the remainder of this chapter, we use HP interaction acts and process-oriented
intents interchangeably.

Page 96 of 148

5.2 RELATED WORK

5.2 Related work

A conversational business process chatbot enables process actors to interact with a

business process in natural language [22]. Interacting with a business process includes

intents such as obtaining information about the structure of the process (e.g., inputs and

outputs) or about the progress of a process in execution (e.g., which task is currently

being processed), or performing activities to advance the state of the process (e.g., API

calls, obtain information about the process) [22].

These chatbots were first applied to customer-facing businesses, which involved an-

swering customers’ questions about different businesses. Then, organizations started

adopting task-oriented chatbots to automate tasks in order to reduce the effort required

from customers and workers to do their tasks [75]. While today’s chatbots may auto-

mate some tasks, bot developers have recently started investigating the incorporation

of robotic process automation (RPA) to increase automation [180]. For instance, Devy

chatbot was proposed to provide automated support in DevOps processes [37]. Au-

thors in [152] developed a chatbot for agile software development teams which analyzes

teams’ project data to provide insights into their performance. In [141], authors pro-

posed an approach that automatically builds a chatbot from a process model to query

process structure, such as when the process ends for a particular actor. Another work

proposed a chatbot to query event data allowing users to get insights into specific

process executions and retrieve relevant data [122]. All these works are either about

domain-specific chatbots or about querying the process execution or structure but do

not focus on performing process tasks.

Other works propose approaches to interact with business processes and perform process

tasks through chatbots. For instance, Google proposes the use of a chatbot in so-

called communication-enabled business process applications (i.e., applications able to

orchestrate reactive and proactive communication events) [81]. However, no specific

details about the internals of the chatbot infrastructure are provided. The closest work

to ours is [114], which proposed a methodology that takes a business process model as

input and generates a chatbot to help the users interact with the process. Even though

Page 97 of 148

5.3 PRELIMINARIES, SCENARIO AND REQUIREMENTS

NO

YES

Do you want to
book a flight?

[Decision Point]

has-update-policy has-cancellation-policy

Flight Booking
[Activity]

YES

NO

Do you want to
book a hotel room?
[Decision Point]

has-cancellation-policy
has-update-policy

Hotel Booking
[Activity]

Send Booking
details

[Activity]

has-process-schema

is-realized-by

has-cancellation-policy

has-update-policy

Travel Booking
[Process]

Travel Booking Process graph

is-realized-by

Cancel Flight
Booking

[Process]

is-realized-by

Cancel Hotel
Booking

[Process]

BookTravel
[Method]

CancelTravel
[Method]

is-realized-by

Cancel Travel
Booking

[Process]

CancelFlight
[Method]

CancelHotel
[Method]

is-realized-by

Update Flight
Booking

[Process]

is-realized-by

Update Hotel
Booking

[Process]

UpdateFlight
[Method]

UpdateHotel
[Method]

is-realized-by

Update Travel
Booking

[Process]

UpdateTravel
[Method]

Figure 5.1: Example of a Travel Booking Process Model.

they provide a systematic way to develop chatbot, expanding the scope of the chatbot

would require significant coding overhead by developers. In addition, their work does

not focus on the recognition of process-oriented intents. In this chapter, we propose

a set of HP interaction acts to identify process operations from utterances and thus

enable users to perform tasks by naturally interacting with service orchestrations.

5.3 Preliminaries, Scenario and Requirements

In this section, we first introduce some process-related concepts and assumptions (Sec-

tion 5.3.1). Then, we present a scenario illustrating natural language interactions

between a user and multi-step processes (Section 5.3.2). Finally, we define a set of

requirements to enable chatbots to support these kinds of interactions (Section 5.3.3).

5.3.1 Preliminaries

A business process is a collection of coordinated tasks to achieve a concrete goal [69].

For example, a Travel Booking process can offer full vacation packages by combining

several tasks such as Flight and Hotel Bookings. The schema of a process can be

represented in a variety of forms, such as Petri nets, Event-Driven Process Chains

Page 98 of 148

5.3 PRELIMINARIES, SCENARIO AND REQUIREMENTS

(EPCs), and Business Process Model and Notation (BPMN) [69]. For simplicity, we

represent the process schema as a directed acyclic graph. Figure 5.1 shows an example

of a Travel Booking Process graph. The process graph nodes represent activities (e.g.,

Flight Booking) and decision points (e.g., do you want to book a flight?).

A process is associated with a set of exception handling policies. Exception handling

policies are directives that model exceptional situations together with a set of actions

that are used to handle exceptions (e.g., cancel a travel booking) [26]. In line with

service-oriented realization of business processes [26], in this chapter, we consider that

a process is realized by a composite service (e.g., sequence of API calls). Further-

more, a composite service is accessible through an API that includes: a main method

to invoke the normal process behavior (e.g., BookTravel method in Figure 5.1), and

exception handling methods to handle exceptional behaviors of a process (e.g., Cancel-

Travel method in Figure 5.1) or an activity (e.g., CancelHotel method in Figure 5.1).

We also consider that a process has a set of correlation attributes that uniquely identify

an instance (i.e., a specific occurrence or execution of a process) [69]. The values of

these correlation attributes act as a key that allow to identify a process instance in a

unique way. A system auto-generated ticket could be an example of such a correlation

attribute.

5.3.2 Scenario

We envision a scenario where a user is able to interact with multi-step processes using

natural language utterances (e.g., through a chatbot). Figure 5.2 shows an example of

a user-chatbot conversation in which the user is interacting with the Travel Booking

process illustrated in Figure 5.1. There are interactions that are triggered by the user

(e.g., user requests to start a task) and others by the chatbot (e.g., chatbot asks for

information needed to fulfill an activity).

In this scenario, the user initiates the conversation by requesting the creation of a new

instance of the Travel Booking process (message 1). In the beginning, the chatbot

does not expect the user to give all the information that is required for all activities.

Page 99 of 148

5.3 PRELIMINARIES, SCENARIO AND REQUIREMENTS

[START NEW PROCESS INSTANCE] 1. USER: I would like to plan a one-way trip from Paris to Montreal
[ASK FOR INFORMATION] 2. BOT: What is the departure date?
[PROVIDE INFORMATION] 3. USER: 10 July
[ASK FOR MORE INFORMATION] 4. BOT: Do you want to book a flight?
[PROVIDE INFORMATION] 5. USER: yes
[PROVIDE INFORMATION] 6. BOT: Here is the list of flights I found for the given date: [...].
[ASK FOR MORE INFORMATION] Which one do you prefer?
[PROVIDE INFORMATION] 7. USER: book the first flight on the list, the one with air Canada
[PROVIDE INFORMATION] 8. BOT: Done! I have booked flight tickets.
[ASK FOR MORE INFORMATION] Do you want to book a hotel room?
[PROVIDE INFORMATION] 9. USER: Yes, please
[ASK FOR MORE INFORMATION] 10. BOT: What is the check-out date from the hotel?
[PROVIDE INFORMATION] 11. USER: 5 august
[PROVIDE INFORMATION] 12. BOT: I found these hotel offers in Montreal from 10 July to 5 August: [...].
[ASK FOR MORE INFORMATION] Which one do you prefer?
[PROVIDE INFORMATION] 13. USER: book a simple room in Novotel Hotel
[PROVIDE INFORMATION] 14. BOT: Done! I have booked the hotel room. I sent you details about your travel booking by email.

[START NEW PROCESS INSTANCE] 15. USER: Can you help me to plan a one-way trip from Montreal to New York on 3 August.
[ASK FOR MORE INFORMATION] 16. BOT: Do you want to book a flight?

[PROVIDE INFORMATION] 17. USER: yes
[PROVIDE INFORMATION] 18. BOT: Here is the list of flights I found for the given date: [...].
[ASK FOR MORE INFORMATION] Which one do you prefer?

[PROVIDE INFORMATION] 19. USER: with Delta Air Lines
[PROVIDE INFORMATION] 20. BOT: Done! I have booked your flight ticket.
[ASK FOR MORE INFORMATION] Do you want to book a hotel room?

[PROVIDE INFORMATION] 21. USER: No, thanks

[PROVIDE INFORMATION] 22. BOT: I sent you details about your travel booking by email.

[FOLLOW-UP ON PROCESS STATUS] 23. USER: What is the status of my travel?
[ASK FOR INFORMATION] 24. BOT: What are the departure city and date of this travel?
[PROVIDE INFORMATION] 25. USER: Paris, 10 July
[PROVIDE INFORMATION] 26. BOT: The status of your travel from Paris to Montreal on 10 July is completed. You have booked
 a one-way flight on 10 July and a hotel from 10 July to 5 August.
[UPDATE AN INSTANCE] 27. USER: Please update my hotel booking for this travel. Change the check-out date to 3 August.
[PROVIDE INFORMATION] 28. BOT: Done! I updated your hotel booking in Montreal from 10 July to 3 August.

1-14
Book Travel

23-26
Inquire about
 travel status

27-28
Update a hotel

booking

15-22
Book Travel

Figure 5.2: Example of natural language conversation between a user and a process-
aware chatbot. Interaction acts in blue are triggered by the user and those in green are
triggered by the chatbot.

Instead, it asks for some information that is needed to start the process, such as the

departure date (message 2). Later, the chatbot may ask the user for more information

to perform an activity or even a decision point. For example, to perform the activity

Hotel Booking, the chatbot asks the user for the hotel check-out date (message 10).

Thus, the chatbot does not collect information from the user unless it needs it.

During normal process execution (e.g., booking travel): (i) the chatbot can ask for more

information to fulfill a task (message 10) or provide information about a performed

task (message 6), (ii) the user can provide information (message 11) or inquire about

task progress (message 23). As mentioned before, a process is associated with possible

run-time exceptions. For example, in message 27, the user wants to change the hotel

check-out date. This interaction (changing date) is triggered by the user and involves

the update of a previously performed task. However, exception interactions can also

be triggered by the chatbot. For example, assume that the airline company canceled

the user’s flight. The chatbot can trigger an interaction that involves notifying the user

about the cancellation and proposing alternatives such as changing the travel date. In

Page 100 of 148

5.3 PRELIMINARIES, SCENARIO AND REQUIREMENTS

this chapter, we focus on interactions from the user side.

5.3.3 Requirements

Having introduced the scenario and main concepts, we discuss some key requirements

to enable natural language interactions between users and multi-step processes. We

form an understanding of these requirements based on literature, our experience and

experimentation on a range of task-oriented conversation service and business process

tools and techniques [32,33,35,69,247,248].

R1 Identifying the corresponding process: The chatbot must be able to identify

the process to which the user refers to in their tasks. For example, in the pre-

vious scenario, the user refers to the Travel Booking process, however, the user

can switch between several processes (e.g., visa application process) during the

conversation.

R2 Identifying new process instance: The chatbot must be able to identify the

utterance that creates a new instance of a process. For example, in utterance 1,

the chatbot needs to understand that the user wants to start a new instance of

Travel Booking process.

R3 Recognizing process-aware user intents: The chatbot should be able to rec-

ognize possibly ambiguous process-aware user intents, including starting a new

task, inquiring about task progress, and exceptional behaviors such as canceling

or updating tasks.

R4 Handling context: The chatbot must keep track of process executions and must

be able to properly handle the context. For instance, context features are impor-

tant to identify if an utterance concerns the creation of a new process instance or

an inquiry regarding an existing process instance.

Page 101 of 148

5.4 ARCHITECTURE

5.4 Architecture

To support natural language conversations with processes, the chatbot needs a set of

services to initiate, monitor, and control task-related conversations. Figure 5.3 shows

the workflow between these services. The Natural Language Understanding (NLU)

service aims to extract HP interaction acts and slot-value pairs from the utterance.

Details on how to detect these interaction acts is presented in Section 5.6.1. The

Process Embedding Service (PES) aims to identify the process that corresponds to

the utterance. The Dialogue Manager (DM) service aims to infer the dialogue state

in terms of the user intent and its slot-value pairs. This DM relies on the Context

Knowledge Service (CKS) to recognize user intent and infer missing information. Once

the DM recognizes the intent and collects all required information, it performs the

corresponding action and sends the results to the Natural Language Generator (NLG).

The NLG uses then predefined templates to generate human-like responses to the user.

In what follows, we describe PES and CKS.

Process
Embedding

Service (PES)

Context
Knowledge

Service (CKS)

Natural Language
Understanding

(NLU)

Identifies process
Stores intent fulfillment
and infers information

Dialogue Manager
(DM)

Recognize and
realize intents

Natural Language
Generator (NLG)

Generates NL
reponses

Detects interaction act and
extracts slot-value pairs

Figure 5.3: General architecture supporting our approach.

5.4.1 Process Embedding Service

Our work builds upon the concept of Word Embedding API element vectors, which

has previously been used to facilitate the integration of APIs and chatbots [246]. In

this work, we propose a novel process embedding service (PES) that enables chatbots

Page 102 of 148

5.4 ARCHITECTURE

HAS

PROCESS

name Description

vector

HAS
PATH

vector

Path1

PATH

vector

Path2

ProcessX

ACTIVITY

vector

Activity1

name Description

ACTIVITY

vector

Activity2

name Description

Figure 5.4: Process Knowledge Graph (P-KG).

to identify processes from utterances during natural language conversations. The PES

has (i) a process knowledge model and (ii) a set of services to leverage this knowledge.

5.4.1.1 Process Knowledge Model

We propose to represent process elements (i.e., process, paths and activities) as vectors

in a vector space model to support natural language interaction with processes [181].

The process knowledge model is denoted as a process knowledge graph (P-KG) with

specific types of nodes and relationships. In particular, nodes can describe Processes,

Paths, and Activities, as shown in Figure 5.4. Part of the information in the P-

KG is the graph representation of what we find in the process model definition. Such

information typically includes the process name, the process description, activity name,

and activity description. This information is added to the P-KG both in textual form

and in vectorized representation as shown in Figure 5.4.

Furthermore, a Process node has 4 types of relationships: is-realized-by denotes

that a process is performed by an API method. For instance, in Figure 5.1, the

process Travel Booking is performed by the method BookTravel. The relationships

has-cancellation-policy and has-update-policy denote that a process has cancel

and update exception policies which are processes by themselves. The Process node

also has a process graph such as the one illustrated in Figure 5.1. The Activity node

can have cancel and update exception policies as well. For instance, in Figure 5.1, the

activity Hotel Booking has a cancellation policy Cancel Hotel Booking.

Page 103 of 148

5.4 ARCHITECTURE

5.4.1.2 Process Embedding Services

The PES features three services, which are devoted to (i) generating vector embeddings

for process elements, (ii) identifying the corresponding process of a given utterance, and

(iii) identifying the method that realizes a given process. In what follows, we describe

each of these services:

Vector generation Service: This service is used to construct vector embeddings

for process elements. It is enabled by the endpoint "PES/generate_vector? e" that

takes as input a process element e and generates its vector embedding. It generates:

(i) an activity vector by aggregating the information from activity name and its de-

scription; (ii) a path vector by aggregating vectors of activities in this path; and (iii)

a process vector by averaging the information from process name, process description

and all path vectors in this process.

Process Identification Service : This service aims to identify the corresponding

process of a given utterance. It is enabled by the endpoint "PES/sim? u" that takes

as input an utterance u and returns the process that corresponds to this utterance.

First, it generates the embedding vector of the utterance. Second, it calculates the

cosine similarity between this utterance vector and the vector of each process in the P-

KG. Then, according to a predefined threshold, the processes with similarities greater

than this threshold are kept and ordered. Finally, the service returns the process scoring

the highest similarity with the utterance.

Method Identification Service: This service aims to identify a process API method

that corresponds to a given process intent. It is enabled by the endpoint "PES/process_

method? p & i & a" that takes as input a process p (e.g., Travel Booking), a process

intent i (e.g., canceling a task), and an activity a (e.g., Hotel Booking), and returns

the corresponding API method (e.g., CancelHotel method). Note that the parameter

a is optional, if its value is not indicated, the endpoint returns the method related to

the process (e.g., CancelTravel method instead of CancelHotel method).

Page 104 of 148

5.4 ARCHITECTURE

process-name
correlated attributes
List of instances

instance-id
instance-status
List of activities

activity-name
activity-status
method-id
timestamp
inputs
outputs

List of processes

PROCESS

INSTANCE

ACTIVITY

Figure 5.5: Event Data Memory (EDM) Schema.

5.4.2 Context Knowledge Services

In Chapter 4, we proposed the context knowledge service (CKS) that enables to capture

contextual knowledge (from conversation history, external services, intent and API

schemas) to support the inference of intent slot values during conversations. This CKS

has a memory to keep track of all the traces related to each intent fulfillment for a

given user. This includes the utterance, the intent, the slot-value pairs, the method

call, alongside with its timestamp, its inputs, and its outputs.

In this chapter, we extend the CKS to include relevant information about process

instances that should be memorized during conversations for later reuse. More specif-

ically, we include a new memory structure, called Event Data Memory (EDM). This

memory keeps track of information about process execution traces (process instances).

Figure 5.5 shows the schema of EDM memory. It includes a list of processes where

each process has a name and a list of instances. An instance has an id, a status (e.g.,

pending, in-progress or completed), and a list of activities. An activity has a name, a

status, and the method call, alongside with its timestamp, its inputs, and its outputs.

We also extend the core CKS presented in Chapter 4 with two additional services

related to processes:

Process Instance Identification Service: This service returns the list of instances

for a given process. It is enabled by the endpoint "CKS/get_instances? p" that

Page 105 of 148

5.5 PROCESS-AWARE USER INTENTS

takes as input a process p and returns the list of instances of p.

Correlation attribute Value Retrieval Service: This service provides values of

correlation attributes for a given process instance id. It is enabled by the endpoint

"CKS/get_corr_att_val? i" that takes as input an instance id and returns an array

of attribute-value pairs corresponding to correlation attributes values of the instance i.

5.5 Process-aware User Intents

Based on requirements identified in Section 5.3.3, conversations regarding a given

process-aware task may involve several turns (e.g., starting a travel booking, later

inquiring about booking status, modifying travel dates, or canceling the booking). We

propose Human-bot-Process interaction acts to characterize a set of elementary user

intents in conversations between users and multi-step processes. Specifically, we derive

four types of process-oriented intents: start new process instance intent, follow-up on

process status intent, canceling task intent, and task update intent.

To recognize the process-oriented intents, we propose to reuse the hybrid approach

proposed in Chapter 4. This approach involves defining rules that combine the detection

of HP interaction acts from utterances with additional context and process knowledge,

allowing the recognition and realization of the process-oriented intents. The recognition

of these intents can be divided into three general steps: HP interaction act recognition,

process identification, and process instance recognition. In what follows, we describe

each of these steps:

Step 1: HP interaction act Recognition. The first step consists of detecting

the HP interaction act class (i.e., Start New Process Instance class, Follow-up on

Process Status class, Task Update class or Canceling a Task class) expressed in

the utterance u thanks to the NLU service. In Section 5.6.1, we explain how the NLU

service allows to detect these HP interaction acts.

Step 2: Process Identification. The second step consists of identifying the process

Page 106 of 148

5.5 PROCESS-AWARE USER INTENTS

Trigger

Action

(1)

(2)

(3)

(1)

(2)

(1)

(2)

(3)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(1)

(2)

Figure 5.6: Rules to recognize and realize the identified process-oriented intents.

p that corresponds to the utterance u. To identify processes from natural language

utterances, we use the Process Embedding Service (PES) presented in Section 5.4.1.2.

Step 3: Process Instance Recognition. This last step aims to identify the process

instance from the utterance u, then checks if the identified process instance already

exists or not. First, the chatbot invokes the Process Instance Identification CKS service

to retrieve the set of instances set_i of the process p. Then, it extracts the values of

correlation attributes of the instance that the user is referring to. Finally, it compares

the extracted values of correlation attributes with those of instances set_i to check if

the identified process instance already exists or not. For example, if the chatbot detects

canceling task interaction act, the process instance should exist to be able to cancel it.

In what follows, we describe the process-oriented intents and define their rules:

5.5.1 Start New Process Instance

This intent allows to identify whether the user utterance expresses a task that requires

the creation of a new process instance. In general, when users ask for a new task,

they provide general information describing this task, and sometimes they provide

more detailed information about this task. For example, in Figure 5.2 utterance 1,

Page 107 of 148

5.5 PROCESS-AWARE USER INTENTS

the user describes the task book travel and provides additional details about this travel

such as the departure and destination cities. The chatbot needs this information to

identify the process and to check if the utterance concerns the creation of a new process

instance. Figure 5.6 shows the specification of the rule related to start-new-process-

instance intent. This rule consists of trigger and action clauses. The trigger clause

defines three boolean conditions: (1) The condition IS_START() checks if the utterance

u expresses a start new instance HP interaction act. (2) The condition IS_SIM() is

expressed over the Process Identification PES service. This condition checks if the

process p corresponds to the utterance u. (3) The last condition EXIST_INSTANCE()

compares values of the correlation attributes with those of the existing instances to

check if the identified instance does not exist. If the conditions are satisfied, the chatbot

(1) invokes the Method Identification PES service to get the method m and (2) triggers

m to start the process execution.

5.5.2 Follow-up on Process Status

Follow-up on a process can be a complex task by itself, such as querying a process

execution history to get information about run time and performance of a task. We

focus on a specific type of follow-up which is following up on process status that allows

inquiring about process instance status (e.g., pending, in-progress or completed). For

example, in Figure 5.2 utterance 23, the user is inquiring about travel status. Figure

5.6 shows the specification of the rule related to follow-up-on-process-status intent. The

conditions are the same as those defined in the previous rule, except that this rule needs

to detect a follow-up HP interaction act and the process instance should exists. If all

conditions are satisfied, the chatbot (1) retrieves the corresponding instance and (2)

lists the status of this instance.

5.5.3 Task Update

This intent allows to identify whether the user wants to update an existing process

instance. For example, in Figure 5.2 utterance 27, the user wants to update the hotel

Page 108 of 148

5.6 VALIDATION

check-out date. A user can request to update an information in the whole process (e.g.,

update travel date), or a specific activity in the process (e.g., update the date of a

hotel booking). We model an activity as an input parameter of the intent task update,

thus the chatbot can extract from the user utterance the activity that the user wants

to update. For example, in utterance 27, the chatbot extracts hotel booking as a value

of activity parameter. Figure 5.6 shows the rule related to task-update intent. The

conditions are the same as those defined in the first rule, except that this rule needs to

detect a task update HP interaction act and the process instance should exists. If all

conditions are satisfied, the chatbot (1) retrieves the corresponding instance, (2) extract

the value of the activity parameter, (3) invokes the Method Identification PES service

to get the the corresponding method m and (4) triggers m to update the corresponding

task (i.e., activity or process).

5.5.4 Canceling a Task

This intent allows to identify whether the user utterance expresses a task cancellation

of an existing process instance. The user can request to cancel the whole process

(e.g., canceling travel bookings), or a specific task in the process (e.g., canceling hotel

booking). The steps to recognize and realize canceling task intent are the same as those

in the task update intent (Figure 5.6).

5.6 Validation

The first objective of the study was to explore the effectiveness of the chatbot improved

with Process Embedding Service (PES) and process-oriented intent rules, i.e., its ca-

pability of recognizing correctly the process-oriented intents and reducing unnecessary

interactions. The second objective was to assess the impact of enabling interaction

with a process as opposed to leaving users to orchestrate services themselves to fulfill

their goals. In what follows, we first discuss different strategies to collect utterance

paraphrases and build a dialogue dataset to train process-oriented intent recognition

Page 109 of 148

5.6 VALIDATION

models (Section 5.6.1), then we present the study method (Section 5.6.2), and finally

we discuss the results (Section 5.6.3).

5.6.1 Process-oriented Intent Training Dataset Construction

Due to lack of benchmark training datasets for process-oriented intents, we built train-

ing dataset of utterances about three processes (i.e., Plan Event, Book Travel and

Shopping) and four process-oriented intents. In this section, we discuss how we built

this dialogue dataset and explain how the NLU service allows to detect the HP inter-

action acts (i.e., start new process instance, canceling task, task update, and follow-up

on process status).

The accuracy of NLU detection models depends on the quality (and size) of the dataset

of utterances used for training these models. A well known approach to build dialogue

datasets involves expanding an initial set of seed utterances by means of paraphras-

ing [168]. Paraphrasing is a task that aims to reformulate a given utterance into another

with the same semantic meaning [168]. Crowdsourcing and automatic paraphrasing are

two popular strategies used to generate paraphrases [168]. In a crowdsourced para-

phrasing process, an initial seed utterance is presented as a starting point, and workers

are asked to paraphrase the seed to produce new utterances [168]. In an automated

paraphrasing, there are models that automatically generate paraphrases from a seed of

utterances [28,168]. To build the dialogue dataset, we first crowdsource a set of utter-

ances by starting with a seed that we provided. Then, we paraphrase the obtained set

of utterances using an automatic paraphrasing model to generate more utterances. In

what follows, we explain in detail each of these two steps.

5.6.1.1 Crowd-based paraphrasing

This first step aims to generate a set of utterances, for each of the three processes (i.e.,

Plan Event, Book Travel and Shopping) and each of the four process-oriented intents

(i.e., start new process instance, canceling task, task update, follow-up on process status),

Page 110 of 148

5.6 VALIDATION

Figure 5.7: Crowdsourcing sub-task to provide paraphrases for the intent Canceling a
Task.

starting from a seed of utterances that we provide.

We design three crowdsourcing tasks where each task is related to one of the three

processes. Each task provides: (i) a scenario describing the process and explaining

to the workers that there is a virtual assistant that allows them to interact with this

process, and (ii) four sub-tasks related to the four process-oriented intents. Each of

these sub-tasks prompts crowd workers to provide 3 paraphrases for a given seed of 2

utterances (refer to Figure 5.7 for an illustrative example of this sub-task).

We ran the three crowdsourcing tasks on the crowdsourcing platform Toloka [16] and

recruited workers who had passed an English test (set by the platform) and were ranked

top-60%. Each task was assigned to 10 workers, and each worker wrote 3 paraphrases

per intent (sub-task). Workers were paid 0.5 USD per task. This crowdsourcing step

yielded a dataset of 360 utterances where there are 120 utterances per process and 90

utterances per intent. Among these utterances, workers provide some utterances that

do not convey the requested intent. For example, one worker provides the utterance

“please abort booking of the conference center" for the intent task update instead of

canceling task. We have manually labeled the utterances as correct, if the utterance

conveys the requested intent, or not correct, otherwise.

Page 111 of 148

5.6 VALIDATION

5.6.1.2 Automatic paraphrasing

This second step expands the paraphrases generated through crowdsourcing by lever-

aging Empath service [70]. Empath is a knowledge base service for generating terms

(e.g., facebook, twitter) given a lexical category (e.g., social media).

In our approach, the utterance paraphrases are expanded as follows: First, (i) for each

utterance, we apply a Part-of-Speech tagging using spacy [15]. Then, (ii) for each

VERB or NOUN token in the paraphrase, we substitute the token with terms returned

by Empath when the token is used an input category. Empath allows increasing the

lexical diversity of the generated paraphrases. A new paraphrase is generated with

each term returned by Empath. For example, if the list of returned items contains

8 terms, we will generate 8 new paraphrases. A further filtering step is necessary to

discard semantically unrelated paraphrases. Thus, (iii) we compute a cosine similarity

score between the Universal Sentence Encoder (USE) embeddings [181] of the initial

utterance and the generated paraphrase to discard paraphrases with a cosine score

below a predefined threshold.

5.6.1.3 Recognizing Process-oriented intents using Classification Model

We split the dataset generated from the crowd-based paraphrasing step into 30% test

dataset and 70% train dataset (train-crowd). Then, we augment the train-crowd

dataset with more utterances by automatically generating paraphrases as described

in automatic paraphrasing step (train-hybrid).

We can use any classification model such as Naive Bayes and Support Vector Machine

(SVM) [148] to classify utterance into a corresponding process-oriented intent class. In

the current implementation, we use a Logistic Regression classifier [148] and we encode

the classifier input based on the distributional semantics of utterances using three

different word and sentence embedding models: Word2Vec, GloVe, and USE [181].

Page 112 of 148

5.6 VALIDATION

Table 5.1: HP Interaction Act Detection Accuracy

Start Follow-up Update Cancel Mean
Dataset crowd hyb crowd hyb crowd hyb crowd hyb crowd hyb
W2Vec 0.90 0.91 0.85 0.82 0.81 0.84 0.77 0.84 0.8325 0.8525
Glove 0.62 0.66 0.63 0.61 0.60 0.63 0.64 0.65 0.6225 0.6375
USE 0.94 0.97 0.89 0.94 0.87 0.90 0.90 0.93 0.9 0.935

Table 5.1 shows accuracy2 of process-oriented intent detection using only the crowd-

sourcing method as opposed to the hybrid method (i.e., crowd-based and automatic

paraphrasing methods). For the four process-oriented intents, we can see that the clas-

sifier achieved a great performance, however the USE model performed better accuracy

than Word2Vec and GloVe models. This can be explained by the fact that USE model

takes into account the context of the word in the sentence while Word2Vec and GloVe

models generate a word embedding independently of the context in the sentence. We

can also see that using hybrid method as opposed to the crowd method allows to pro-

duce better accuracy. For example the accuracy produced using USE model and the

hybrid method produced +3.5% of accuracy compared to the one produced using USE

model and only the crowd method. The datasets are available at the following link as

well as the scripts used for computing accuracy and generating paraphrases3.

5.6.2 Methods

5.6.2.1 Experimental design

We recruited participants via email from our extended network of contacts. The call

resulted in a total of 17 participants. The evaluation scenario consisted of planning a

trip to two different destinations, which involved i) booking flights, taxi and accommo-

dations, ii) buying a product needed for the two destinations, and iii) scheduling an

appointment at a local test centre. The scenario required participants to perform tasks

2We use F1-score to rate model’s accuracy. F1-score is defined as the harmonic
mean between precision and recall [148].

3Process Intent Recognition materials: https://tinyurl.com/DAR-Materials

Page 113 of 148

5.6 VALIDATION

associated with three underlying processes (Travel Booking, Shopping and Scheduling

an appointment), each processes coordinating two or more activities. Participants were

asked to complete 4 tasks in this scenario:

• T1 : starting new process instances.

• T2 : updating information of process instances.

• T3 : following up on process statuses.

• T4 : canceling process instances.

We followed a within-subjects design tasking participants to complete the above tasks

by interacting with two chatbots representing the following conditions:

• Baseline-chatbot. The baseline implements a standard conversational manage-

ment (provided by DialogFlow [5]), without rules, PES, and CKS support.

• Process-chatbot. This chatbot is implemented with PES and CKS support as well

as the rules. The aim is to assess the performance gain in chatbots in handling

process-oriented intents.

5.6.2.2 Procedure

The study was conducted online. Participants received a link to an online form that

included an informed consent, all the instructions and links to the two chatbots. After

reading the informed consent and agreeing to participate, participants were introduced

to the evaluation scenario and tasks (T1-T4). They were asked to perform those tasks

with the two chatbots, in a counter-balanced design (i.e., the order in which chatbots

were presented was randomized to counter ordering effects). After interacting with

each chatbot, participants were asked: to describe positive and negative aspects of the

chatbots, to select their preferred chatbot, to specify why, and provide quantitative

feedback on their experience along three dimensions: naturalness (ability to fulfill user

tasks in human-like conversations), repetitiveness (ability to avoid redundant questions)

and understanding (ability to interpret user requests).

Page 114 of 148

5.6 VALIDATION

5.6.2.3 Data analysis

We performed an analysis of conversation logs so as to assess the effectiveness of our

approach in recognizing the process-oriented intents. These are computed in relation to

optimal conversation scenarios4 that we designed based on participants conversations.

The effectiveness is calculated by considering the following metrics: number of (M1)

conversation turns, (M2) prompts asking for missing information, (M3) process cor-

rectly identified and (M4) process-oriented intents correctly recognized. These metrics

are calculated per user conversation, aggregated (mean) and then used to compute the

relative performance against the optimal scenario.

5.6.3 Results

5.6.3.1 Effectiveness

Table 5.2 shows the relative performance by task of both baseline-chatbot and process-

chatbot in relation to the optimal reference scenario. For the four tasks, we can see

that process-chatbot experienced a boost in performance M1 and M2 (mean across tasks

86,01% and 83,89% respectively), approaching the efficiency of the reference scenario in

terms of number of turns (M1) and prompts (M2), and thus reducing unnecessary inter-

actions. This level of performance is possible thanks to the PES and CKS services and

the defined process-oriented rules that allow to perform a mean relative performance

across tasks for process identification (M3) and intent recognition (M4) of 90,48% and

85,27% respectively. In contrast, not supporting the process-oriented rules leads the

baseline-chatbot to perform poorly in comparison, with the best performance being at

around 36,70% for the metrics considered.

By analyzing the conversations, we noticed that the recognition error of the process-

oriented intents by the process-chatbot is mostly caused by the detection error of the

correct HP interaction act during the conversation. However, for the four tasks, we

4Scenarios assuming ideal accuracy of process-oriented intent recognition.

Page 115 of 148

5.6 VALIDATION

Table 5.2: Performance of experimental conditions for each task according to the rele-
vant metrics. Values in bold denote best performance.

Baseline-chatbot Process-chatbot
Task M1 TURNS M2 PROMPTS M4 INTENT M1 TURNS M2 PROMPTS M3 PROCESS M4 INTENT

T1 (new) 54,14% 45,59% 51,75% 95,73% 91,67% 92,86% 88,68%
T2 (update) 31,58% 26,67% 25,00% 85,71% 80,00% 91,67% 83,33%
T3 (follow up) 47,15% 51,28% 27,86% 82,61% 88,89% 85,71% 85,71%
T4 (cancel) 27,27% 18,75% 33,33% 80,00% 75,00% 91,67% 83,33%
Mean 40,04% 35,57% 34,49% 86,01% 83,89% 90,48% 85,27%

can see that the process-chatbot is close to the reference scenario for process-oriented

intent recognition (M4) with a mean relative performance across tasks of 85,27%. These

results provide evidence for the benefits and effectiveness of handling process-oriented

rules during user-chatbot-process conversations. For the four tasks, we can also see

that process-chatbot experienced a boost in performance for M1, M2, M3 and M4

(mean across tasks 86.01%, 83.89%, 90,48% and 85,27% respectively), approaching the

efficiency of the reference ideal scenario in terms of number of turns, prompts, process

identification and intent recognition.

5.6.3.2 User experience

All but two participants (15/17 participants) expressed a preference towards the process-

chatbot as opposed to the baseline-chatbot. The two exceptions were due to interac-

tion acts detection that led to the enactment of the wrong services. The feedback to

the specific user experience questions, highlighted the reasons behind the preference.

The majority of participants reported that process-chatbot interactions described nat-

uralness (11/17), less repetitiveness (11/17) and understanding (12/17), whereas the

baseline-chatbot was poorly rated on these fronts (2/17).

The qualitative analysis of open-ended feedback identified specific qualities behind the

preference for process-chatbot. Participants commented its ability to guide and suggest

next steps (8 participants) (e.g., “[the chatbot] proposed [to] me directly the next action

to do without asking for it", P14), the ability to orchestrate operations with underlying

services (7 participants) (e.g., “[in this chatbot] services are already chained for what is

necessary to plan the trip", P12), and the ability to keep track of the context (6 partici-

Page 116 of 148

5.7 CONCLUSION

pants) (e.g., “[it] remembers previous answers and use them when asking a new request",

P5). A better user experience also emerged as a salient quality (10 participants) with

“fluid interactions" as the most common adjective.

5.7 Conclusion

In this chapter we proposed process-oriented intents that are relevant to represent nat-

ural language conversations between the user and multi-step processes. We devised an

approach that combines recognition of these process-oriented intents from user utter-

ances with additional context and process knowledge to enable human users to perform

tasks by naturally interacting with service orchestrations.

Our work also comes with its own limitations and space for possible improvements. To

detect all possible process-oriented intents, a more in-depth study is necessary, which

could involve analyzing various business process models. For instance, the intent of

"resuming a process instance" can be considered as a process-oriented intent triggered

by the user during a conversation between a human and a process-aware chatbot. A

user can initiate multiple process instances without completing them, such as starting

a travel request and stopping at a certain point. For example, the chatbot asks the

user to select a hotel, but the user does not respond and switches to another process.

Later, the user returns to the travel request and says "I choose the hotel [hotel-name]

for my travel to Lyon," and the chatbot needs to detect this as a resume intent.

Page 117 of 148

5.7 CONCLUSION

Chapter 6

Conclusion and Future Directions

Contents

6.1 Summary the Research Issues 119

6.2 Summary of the Research Outcomes 119

6.3 Future Research Directions 120

With the ongoing growth and development of task-oriented chatbots, there has been

a surge of interest among users in investigating chatbots usefulness. Nevertheless, the

capability of these chatbots to support composite user intents is a major challenge

and depends on gathering a massive amount of annotated data to recognize these

intents. This thesis identified and characterized a set of composite dialogue patterns

and proposed reusable and extensible techniques to recognize and realize composite

user intents in task-oriented human-bot conversations.

In this chapter we provide a summary of the undertaken research issues (Section 6.1)

and a summary of research outcomes (Section 6.2). We also discuss some future research

directions (Section 6.3).

Page 118 of 148

6.2 SUMMARY OF THE RESEARCH OUTCOMES

6.1 Summary the Research Issues

This thesis presented several novel concepts and techniques to fill critical gaps in con-

necting complex natural language utterances with conversational services. Chapter 2

provided background and identified open issues and the state-of-the-art of approaches

for context and dialogue management. In the first contribution (Chapter 3), we iden-

tified and characterized a set of composite dialogue patterns and extended a conversa-

tional model to represent them. In the second contribution (Chapter 4), we proposed

a reusable and extensible approach that uses a sophisticated context service to recog-

nize and realize composite intents. In the third study (Chapter 5), we focused on the

superimposition of task-oriented chatbots over composite services by introducing the

concept of Human-bot-Process interaction acts.

6.2 Summary of the Research Outcomes

The first outcome, introduced in chapter 3, consists of extending a conversational model

to represent and reason about composite user intents. We identified and characterized

a set of composite dialogue patterns to endow bot platforms with reusable functionality

to recognise compositional conversational flows and reduce the development complexity.

The second outcome, presented in chapter 4, consists of a novel reusable and extensible

approach that uses a sophisticated context service to recognize and realize composite

intents. This approach relies on (i) existing natural language processing and machine

learning techniques to extract natural language features and (ii) a rule-based approach

that leverages these features together with contextual knowledge, enabled by composite

dialogue patterns and other metadata, to capture different classes of composite intents

in a generic way. The contextual knowledge required at run-time to recognize compos-

ite intents is extracted from different sources including conversation history, enriched

entities, intents and API schemas and represented in graph structure. We believe that

the proposed approach charts novel abstractions that unlock the seamless and scalable

integration of natural language-based conversations with software-enabled services.

Page 119 of 148

6.3 FUTURE RESEARCH DIRECTIONS

Finally, the third outcome, introduced in chapter 5, consists of enabling the superimpo-

sition of task-oriented chatbots over composite services. We proposed process-oriented

intents that are relevant to represent natural language conversations between the user

and multi-step processes. We devised an approach that combines the recognition of

these process-oriented intents from user utterances with additional context and pro-

cess knowledge. This approach enables human users to perform tasks by naturally

interacting with service orchestrations.

6.3 Future Research Directions

While we addressed some issues in this thesis, there are still many further exciting chal-

lenges and opportunities in dialogue systems domain. We take the view that although

concrete user intents are application-specific, in many cases it is possible to capture in

a generic way different classes of user intents that may be composed during a conver-

sation of a user with a software service or process. In what follows, we present some

possible Human-AI-Service Intent Patterns that could be useful to improve chatbots

robustness and effectiveness.

Considering patterns that cater for human-AI interaction breakdowns (e.g., requesting

user to confirm an inferred slot value or to choose between several options), can be

one of the extensions. We argue that dialogue management systems should be endowed

with the ability to systematically manage human-bot communication breakdowns in ac-

cordance with high-level and configurable recovery strategies. In addition to composite

intent recognition, it is interesting to develop a robust breakdown recovery techniques

so that (i) relevant recovery strategies can be constructed systematically and incremen-

tally, and (ii) dialogue management systems continuously adapt behaviour of chatbots

by reasoning and acting upon recovery strategies.

While in this thesis we focused on the traditional intent slots values, it could be inter-

esting to improve chatbots with the ability to extract and understand subjective, or

Quality of Service (QoS), attribute values from user utterances. When people search for

Page 120 of 148

6.3 FUTURE RESEARCH DIRECTIONS

products (e.g., shoes) or services (e.g., restaurants), they are always facing situations

of choice. Studies show that when people make decisions (i.e., choose a product/ser-

vice), they are prone to rely on subjective information (e.g., delicious food, quietness,

friendly staff) rather than relying on objective information (e.g., food type, price range,

location) [134]. Subjectivity refers to the quality of being based on personal opinions,

feelings, or perspectives, rather than on objective facts or evidence [134]. For exam-

ple, when choosing a restaurant, people are attracted by restaurants that offer great

experiences, such as delicious food, quietness, or helpful waitstaff, in addition to ob-

jective information, such as specific types of food or location [74,134]. Extracting QoS

attributes for intent recognition is challenging because it requires an understanding of

contextual and subjective information (e.g., a user utterance that refers to booking a

quiet restaurant) compared to traditional intent slot values that are factual values (e.g.,

price of a book). To the best of our knowledge there is no dialogue dataset that an-

notates utterances with QoS attributes. Creating QoS recognition models will require

techniques information extraction from potentially noisy user conversations and social

data (e.g., from product reviews, comments, feedback and conversations).

Task-based chatbots often ask users to provide sensitive information, such as personal

identification. It is essential to ensure that these chatbots respect user privacy and

maintain confidentiality. Therefore, the development of privacy-aware task-oriented

chatbots is another important area of research. One possible approach for developing

privacy-aware chatbots is to use NLP techniques to reason about privacy-preserving

conversations. It involves analyzing the interaction between the user and the chatbot

in order to identify potential privacy risks and develop strategies to prevent them (e.g.,

obtaining user consent before collecting sensitive information, avoid asking unnecessary

questions).

Page 121 of 148

BIBLIOGRAPHY

Bibliography

[1] Amazon lex, https://aws.amazon.com/fr/lex/ - Last accessed on 2022-12-15

[2] Chatfuel, https://chatfuel.com/ - Last accessed on 2022-12-15

[3] Chatgpt, https://chat.openai.com/ - Last accessed on 2023-01-12

[4] Chatscript, https://github.com/ChatScript/ChatScript - Last accessed on

2022-12-17

[5] Dialogflow, https://dialogflow.com/ - Last accessed on 2022-12-15

[6] Flowxo, https://flowxo.com/ - Last accessed on 2022-12-15

[7] Ibm watson platform, https://assistant-eu-gb.watsonplatform.net/ - Last

accessed on 2022-12-15

[8] Manychat, https://manychat.com/ - Last accessed on 2022-12-17

[9] Manychat, https://github.com/huggingface/neuralcoref - Last accessed on

2022-12-17

[10] Microsoft luis, https://www.luis.ai/ - Last accessed on 2022-12-15

[11] Mitsuku, https://chat.kuki.ai/ - Last accessed on 2022-12-15

[12] Openai, https://openai.com/ - Last accessed on 2023-01-10

[13] Replika, https://replika.ai/ - Last accessed on 2022-12-15

[14] Rivescript, https://www.rivescript.com/ - Last accessed on 2022-12-17

Page 122 of 148

BIBLIOGRAPHY

[15] spacy, https://spacy.io/ - Last accessed on 2022-12-17

[16] Toloka, https://toloka.yandex.com/ - Last accessed on 2022-12-17

[17] Wit.ai, https://wit.ai/ - Last accessed on 2022-12-15

[18] Van der Aalst, W.M., Bichler, M., Heinzl, A.: Robotic process automation. Busi-

ness & information systems engineering 60, 269–272 (2018)

[19] Abdellatif, A., Badran, K., Costa, D.E., Shihab, E.: A comparison of natural

language understanding platforms for chatbots in software engineering. IEEE

Transactions on Software Engineering 48(8), 3087–3102 (2021)

[20] Agarwal, S., Jezabek, J., Biswas, A., Barut, E., Gao, B., Chung, T.: Building

goal-oriented dialogue systems with situated visual context 36(11), 13149–13151

(2022)

[21] Andreas, J., Bufe, J., Burkett, D., Chen, C., Clausman, J., Crawford, J., Crim,

K., DeLoach, J., Dorner, L., Eisner, J., et al.: Task-oriented dialogue as dataflow

synthesis. Transactions of the Association for Computational Linguistics 8, 556–

571 (2020)

[22] Baez, M., Daniel, F., Casati, F., Benatallah, B.: Chatbot integration in few

patterns. IEEE Internet Computing 25(3), 52–59 (2020)

[23] Banchs, R.E., Jiang, R., Kim, S., Niswar, A., Yeo, K.H.: AIDA: Artificial in-

telligent dialogue agent. In: Proceedings of the SIGDIAL 2013 Conference. pp.

145–147 (2013)

[24] Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-

ing. Discrete Event Dynamic Systems: Theory and Applications 13 (2003)

[25] Barukh, M.C., Zamanirad, S., Baez, M., Beheshti, A., Benatallah, B., Casati,

F., Yao, L., Sheng, Q.Z., Schiliro, F.: Cognitive augmentation in processes. pp.

123–137. Springer (2021)

[26] Benatallah, B., Sheng, Q.Z., Dumas, M.: The self-serv environment for web

services composition. IEEE internet computing 7(1), 40–48 (2003)

Page 123 of 148

BIBLIOGRAPHY

[27] Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model.

Advances in neural information processing systems 13 (2000)

[28] Berro, A., Fard, M.A.Y.Z., Baez, M., Benatallah, B., Benabdeslem, K.: An

extensible and reusable pipeline for automated utterance paraphrases (2021)

[29] Bickmore, T., Cassell, J.: Small talk and conversational storytelling in embodied

conversational interface agents. In: AAAI fall symposium on narrative intelli-

gence. pp. 87–92 (1999)

[30] Bohus, D., Rudnicky, A.I.: Ravenclaw: dialog management using hierarchical

task decomposition and an expectation agenda. In: INTERSPEECH (2003)

[31] Bouguelia, S., Berro, A., Benatallah, B., Báez, M., Brabra, H., Zamanirad, S.,

Kheddouci, H.: Process-oriented intents: A cornerstone for superimposition of

natural language conversations over composite services pp. 575–583 (2022)

[32] Bouguelia, S., Brabra, H., Benatallah, B., Baez, M., Zamanirad, S., Kheddouci,

H.: Context knowledge-aware recognition of composite intents in task-oriented

human-bot conversations pp. 237–252 (2022)

[33] Bouguelia, S., Brabra, H., Zamanirad, S., Benatallah, B., Baez, M., Kheddouci,

H.: Reusable abstractions and patterns for recognising compositional conversa-

tional flows pp. 161–176 (2021)

[34] Brabra, H., Báez, M., Benatallah, B., Gaaloul, W., Bouguelia, S., Zamanirad, S.:

Dialogue management in conversational systems: a review of approaches, chal-

lenges, and opportunities. IEEE Transactions on Cognitive and Developmental

Systems (2021)

[35] Brabra, H., Báez, M., Benatallah, B., Gaaloul, W., Bouguelia, S., Zamanirad, S.:

Dialogue management in conversational systems: a review of approaches, chal-

lenges, and opportunities. IEEE Transactions on Cognitive and Developmental

Systems (2021)

Page 124 of 148

BIBLIOGRAPHY

[36] Bradley, N., Fritz, T., Holmes, R.: Context-aware conversational developer assis-

tants. In: 2018 IEEE/ACM 40th International Conference on Software Engineer-

ing (ICSE). pp. 993–1003. IEEE Computer Society (2018)

[37] Bradley, N.C., Fritz, T., Holmes, R.: Context-aware conversational developer

assistants. In: Proceedings of the 40th International Conference on Software En-

gineering. pp. 993–1003 (2018)

[38] Bradley, N.C., Fritz, T., Holmes, R.: Context-aware conversational developer

assistants. In: Proceedings of the 40th International Conference on Software En-

gineering. pp. 993–1003 (2018)

[39] Braun, V., Clarke, V.: Successful Qualitative Research: A Practical Guide for

Beginners. SAGE (2013)

[40] Budzianowski, P., Ultes, S., Su, P.H., Mrkšić, N., Wen, T.H., Casanueva, I.,

Rojas-Barahona, L.M., Gašić, M.: Sub-domain modelling for dialogue manage-

ment with hierarchical reinforcement learning. In: Proceedings of the 18th Annual

SIGdial Meeting on Discourse and Dialogue. pp. 86–92 (2017)

[41] Bui, T.H., Poel, M., Nijholt, A., Zwiers, J.: A tractable hybrid ddn–pomdp

approach to affective dialogue modeling for probabilistic frame-based dialogue

systems. Natural Language Engineering 15(2), 273–307 (2009)

[42] Burgan, D.: Dialogue systems & dialogue management. Tech. rep., DST Group

Edinburgh: Edinburgh, Australia (2017)

[43] Callejas, Z., Griol, D., Engelbrecht, K.P., López-Cózar, R.: A clustering approach

to assess real user profiles in spoken dialogue systems. In: Natural interaction with

robots, knowbots and smartphones, pp. 327–334. Springer (2014)

[44] Canonico, M., De Russis, L.: A comparison and critique of natural language

understanding tools. Cloud Computing 2018, 120 (2018)

[45] Casanueva, I., Budzianowski, P., Su, P.H., Mrkšić, N., Wen, T.H., Ultes, S.,

Rojas-Barahona, L., Young, S., Gašić, M.: A benchmarking environment for

Page 125 of 148

BIBLIOGRAPHY

reinforcement learning based task oriented dialogue management. In: 31st Con-

ference on Neural Information Processing Systems (2017)

[46] Chakrabarti, C., Luger, G.F.: A semantic architecture for artificial conversations.

In: The 6th International Conference on Soft Computing and Intelligent Systems,

and The 13th International Symposium on Advanced Intelligence Systems. pp.

21–26 (2012)

[47] Chao, G.L., Lane, I.: Bert-dst: Scalable end-to-end dialogue state track-

ing with bidirectional encoder representations from transformer. arXiv preprint

arXiv:1907.03040 (2019)

[48] Chao, G.L., Lane, I.: Bert-dst: Scalable end-to-end dialogue state tracking with

bidirectional encoder representations from transformer. pp. 1468–1472 (09 2019)

[49] Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent

advances and new frontiers. Acm Sigkdd Explorations Newsletter 19(2), 25–35

(2017)

[50] Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent

advances and new frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (2017)

[51] Chen, L., al.: Schema-guided multi-domain dialogue state tracking with graph

attention neural networks. Proc. AAAI 2020 34, 7521–7528 (2020)

[52] Chen, L., Chen, Z., Tan, B., Long, S., Gasic, M., Yu, K.: Agentgraph: To-

ward universal dialogue management with structured deep reinforcement learn-

ing. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27,

1378–1391 (2019)

[53] Chen, L., Lv, B., Wang, C., Zhu, S., Tan, B., Yu, K.: Schema-guided multi-

domain dialogue state tracking with graph attention neural networks. In: Pro-

ceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 7521–7528

(2020)

Page 126 of 148

BIBLIOGRAPHY

[54] Chen, L., Lv, B., Wang, C., Zhu, S., Tan, B., Yu, K.: Schema-guided multi-

domain dialogue state tracking with graph attention neural networks. Proceedings

of the AAAI Conference on Artificial Intelligence 34(05), 7521–7528 (2020)

[55] Chen, L., Lv, B., Wang, C., Zhu, S., Tan, B., Yu, K.: Schema-guided multi-

domain dialogue state tracking with graph attention neural networks 34(05),

7521–7528 (2020)

[56] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder–

decoder for statistical machine translation. In: Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP). pp.

1724–1734. Association for Computational Linguistics (2014)

[57] Christmann, P., Saha Roy, R., Abujabal, A., Singh, J., Weikum, G.: Look before

you hop: Conversational question answering over knowledge graphs using judi-

cious context expansion. In: Proceedings of the 28th ACM International Confer-

ence on Information and Knowledge Management. pp. 729–738 (2019)

[58] Christmann, P., Saha Roy, R., Weikum, G.: Efficient contextualization using

top-k operators for question answering over knowledge graphs. arXiv e-prints pp.

arXiv–2108 (2021)

[59] Cranshaw, J., Elwany, E., Newman, T., Kocielnik, R., Yu, B., Soni, S., Teevan, J.,

Monroy-Hernández, A.: Calendar. help: Designing a workflow-based scheduling

agent with humans in the loop. In: Proceedings of the 2017 CHI Conference on

Human Factors in Computing Systems. pp. 2382–2393 (2017)

[60] Cuayahuitl, H.: Simpleds: A simple deep reinforcement learning dialogue system.

In: Dialogues with Social Robots (2017)

[61] Cuayáhuitl, H., Yu, S.: Deep reinforcement learning of dialogue policies with less

weight updates. In: INTERSPEECH (2017)

[62] Dale, R.: The return of the chatbots. Natural Language Engineering 22(5), 811–

817 (2016)

Page 127 of 148

BIBLIOGRAPHY

[63] Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J.M., Parikh, D.,

Batra, D.: Visual dialog. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. pp. 326–335 (2017)

[64] Deng, L., Tur, G., He, X., Hakkani-Tur, D.: Use of kernel deep convex networks

and end-to-end learning for spoken language understanding. In: 2012 IEEE Spo-

ken Language Technology Workshop (SLT). pp. 210–215. IEEE (2012)

[65] Deoras, A., Sarikaya, R.: Deep belief network based semantic taggers for spoken

language understanding. (2013)

[66] Dhamdhere, K., McCurley, K.S., Nahmias, R., Sundararajan, M., Yan, Q.: Ana-

lyza: Exploring data with conversation. In: Proceedings of the 22nd International

Conference on Intelligent User Interfaces. pp. 493–504 (2017)

[67] Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., Weston, J.: Wiz-

ard of wikipedia: Knowledge-powered conversational agents. arXiv preprint

arXiv:1811.01241 (2018)

[68] van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt:

five priorities for research. Nature 614(7947), 224–226 (2023)

[69] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of

business process management, vol. 1. Springer (2013)

[70] Fast, E., Chen, B., Bernstein, M.S.: Empath: Understanding topic signals in

large-scale text. In: Proceedings of the 2016 CHI conference on human factors in

computing systems. pp. 4647–4657 (2016)

[71] Fast, E., Chen, B., Mendelsohn, J., Bassen, J., Bernstein, M.S.: Iris: A conver-

sational agent for complex tasks. In: Proceedings of the 2018 CHI conference on

human factors in computing systems. pp. 1–12 (2018)

[72] Fatemi, M., El Asri, L., Schulz, H., He, J., Suleman, K.: Policy networks with two-

stage training for dialogue systems. In: Proceedings of the 17th Annual Meeting

of the Special Interest Group on Discourse and Dialogue. pp. 101–110. Association

for Computational Linguistics (2016)

Page 128 of 148

BIBLIOGRAPHY

[73] Feng, S., Lubis, N., Geishauser, C., Lin, H.c., Heck, M., van Niekerk, C., Gasic,

M.: Emowoz: A large-scale corpus and labelling scheme for emotion recognition

in task-oriented dialogue systems. In: Proceedings of the Thirteenth Language

Resources and Evaluation Conference. pp. 4096–4113 (2022)

[74] Gaci, Y., Ramírez, J., Benatallah, B., Casati, F., Benabdslem, K.: Subjectiv-

ity aware conversational search services. In: 24th International Conference on

Extending Database Technology (EDBT 2021) (2021)

[75] Galitsky, B.: Developing enterprise chatbots. Springer (2019)

[76] Gao, J., Galley, M., Li, L.: Neural approaches to conversational ai. In: The 41st

international ACM SIGIR conference on research & development in information

retrieval. pp. 1371–1374 (2018)

[77] Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. Foundations

and Trends in Information Retrieval (2018)

[78] Gao, S., Sethi, A., Agarwal, S., Chung, T., Hakkani-Tur, D.: Dialog state track-

ing: A neural reading comprehension approach (2019)

[79] Gao, S., Sethi, A., Agarwal, S., Chung, T., Hakkani-Tür, D.Z.: Dialog state

tracking: A neural reading comprehension approach. In: SIGdial (2019)

[80] Gatt, A., Krahmer, E.: Survey of the state of the art in natural language gener-

ation: Core tasks, applications and evaluation. Journal of Artificial Intelligence

Research 61, 65–170 (2018)

[81] Gaulke, D., Kornbluh, D.: Interactive user interface to communication-enabled

business process platforms method and apparatus (May 26 2015), uS Patent

9,043,407

[82] Gašić, M., Young, S.: Effective handling of dialogue state in the hidden informa-

tion state pomdp-based dialogue manager. ACM Trans. Speech Lang. Process.

7(3) (2011)

Page 129 of 148

BIBLIOGRAPHY

[83] Ghazvininejad, M., Brockett, C., Chang, M.W., Dolan, B., Gao, J., Yih, W.t.,

Galley, M.: A knowledge-grounded neural conversation model. In: Proceedings

of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

[84] Goel, R., Paul, S., Hakkani-Tür, D.: Hyst: A hybrid approach for flexible and

accurate dialogue state tracking. In: Interspeech (2019)

[85] Goel, R., Paul, S., Hakkani-Tür, D.: Hyst: A hybrid approach for flexible and

accurate dialogue state tracking. In: Interspeech (2019)

[86] Goel, R., Paul, S., Hakkani-Tür, D.: Hyst: A hybrid approach for flexible and

accurate dialogue state tracking. arXiv preprint arXiv:1907.00883 (2019)

[87] Gopalakrishnan, K., Hedayatnia, B., Chen, Q., Gottardi, A., Kwatra, S.,

Venkatesh, A., Gabriel, R., Hakkani-Tür, D., AI, A.A.: Topical-chat: Towards

knowledge-grounded open-domain conversations. In: INTERSPEECH. pp. 1891–

1895 (2019)

[88] Gordon-Hall, G., Gorinski, P.J., Lampouras, G., Iacobacci, I.: Show us the way:

Learning to manage dialog from demonstrations. In: The Eight Dialog System

Technology Challenge (DSTC-8) Workshop at AAAI (2020)

[89] Gozalo-Brizuela, R., Garrido-Merchan, E.C.: Chatgpt is not all you need. a state

of the art review of large generative ai models. arXiv preprint arXiv:2301.04655

(2023)

[90] Gu, J.C., Ling, Z.H., Wu, Y., Liu, Q., Chen, Z., Zhu, X.: Detecting speaker

personas from conversational texts. arXiv preprint arXiv:2109.01330 (2021)

[91] Guo, D., Tang, D., Duan, N., Zhou, M., Yin, J.: Dialog-to-action: Conversa-

tional question answering over a large-scale knowledge base. Advances in Neural

Information Processing Systems 31 (2018)

[92] Guo, J., Shuang, K., Li, J., Wang, Z., Liu, Y.: Beyond the granularity: Multi-

perspective dialogue collaborative selection for dialogue state tracking. arXiv

preprint arXiv:2205.10059 (2022)

Page 130 of 148

BIBLIOGRAPHY

[93] Hakim, F.Z.M., Indrayani, L.M., Amalia, R.M.: A dialogic analysis of compliment

strategies employed by replika chatbot. In: Third International Conference of

Arts, Language and Culture (ICALC 2018). pp. 266–271. Atlantis Press (2019)

[94] Han, T., Huang, C., Peng, W.: Coreference augmentation for multi-domain task-

oriented dialogue state tracking. arXiv preprint arXiv:2106.08723 (2021)

[95] Hashemi, H.B., Asiaee, A., Kraft, R.: Query intent detection using convolutional

neural networks. In: International Conference on Web Search and Data Mining,

Workshop on Query Understanding (2016)

[96] Heck, M., van Niekerk, C., Lubis, N., Geishauser, C., Lin, H.C., Moresi, M.,

Gašić, M.: Trippy: A triple copy strategy for value independent neural dialog

state tracking. arXiv preprint arXiv:2005.02877 (2020)

[97] Heer, J., Agrawala, M.: Software design patterns for information visualization.

IEEE transactions on visualization and computer graphics 12(5), 853–860 (2006)

[98] Henderson, M., Thomson, B., Young, S.: Deep neural network approach for the

dialog state tracking challenge. SIGDIAL- 14th Annual Meeting of the Special

Interest Group on Discourse and Dialogue, Proceedings of the Conference pp.

467–471 (2013)

[99] Henderson, M., Thomson, B., Young, S.: Word-based dialog state tracking with

recurrent neural networks. In: Proceedings of the 15th annual meeting of the

special interest group on discourse and dialogue (SIGDIAL). pp. 292–299 (2014)

[100] Henderson, M.S.: Discriminative methods for statistical spoken dialogue systems.

Ph.D. thesis, University of Cambridge (2015)

[101] Henderson, M.S.: Discriminative methods for statistical spoken dialogue systems.

Ph.D. thesis, University of Cambridge (2015)

[102] Hoegen, R., Aneja, D., McDuff, D., Czerwinski, M.: An end-to-end conversational

style matching agent. In: Proceedings of the 19th ACM International Conference

on Intelligent Virtual Agents. pp. 111–118 (2019)

Page 131 of 148

BIBLIOGRAPHY

[103] Holmes, S., Moorhead, A., Bond, R., Zheng, H., Coates, V., McTear, M.: Usabil-

ity testing of a healthcare chatbot: Can we use conventional methods to assess

conversational user interfaces? In: Proceedings of the 31st European Conference

on Cognitive Ergonomics. pp. 207–214 (2019)

[104] Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for

matching natural language sentences. Advances in neural information processing

systems 27 (2014)

[105] Hu, J., Yang, Y., Chen, C., He, L., Yu, Z.: Sas: Dialogue state tracking via

slot attention and slot information sharing. In: Proceedings of the 58th annual

meeting of the association for computational linguistics. pp. 6366–6375 (2020)

[106] Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-

tured semantic models for web search using clickthrough data. In: Proceedings

of the 22nd ACM international conference on Information & Knowledge Manage-

ment. pp. 2333–2338 (2013)

[107] Hutchby, I., Wooffitt, R.: Conversation analysis. Polity (2008)

[108] Jain, M., Kota, R., Kumar, P., Patel, S.N.: Convey: Exploring the use of a

context view for chatbots. In: Proceedings of the 2018 chi conference on human

factors in computing systems. pp. 1–6 (2018)

[109] Jain, M., Kumar, P., Kota, R., Patel, S.N.: Evaluating and informing the de-

sign of chatbots. In: Proc. of the 2018 Designing Interactive Systems Conference

(2018)

[110] John, R.J.L., Potti, N., Patel, J.M.: Ava: From data to insights through conver-

sations. In: CIDR-8th Biennial Conference on Innovative Data Systems Research

(2017)

[111] Joshi, C.K., Mi, F., Faltings, B.: Personalization in goal-oriented dialog. arXiv

preprint arXiv:1706.07503 (2017)

[112] Jurafsky, D.: Speech & language processing. Pearson Education India (2000)

Page 132 of 148

BIBLIOGRAPHY

[113] Jurafsky, D., Martin, J.H.: Speech and Language Processing: Chatbots

& Dialogue Systems. Third draft edn. (2020), https://web.stanford.edu/

~jurafsky/slp3/

[114] Kalia, A.K., Telang, P.R., Xiao, J., Vukovic, M.: Quark: a methodology to

transform people-driven processes to chatbot services. In: Service-Oriented Com-

puting: 15th International Conference, ICSOC 2017, Malaga, Spain, November

13–16, 2017, Proceedings. pp. 53–61. Springer (2017)

[115] Kaneshige, T., Hong, D.: Predictions 2019: This is the year to invest in humans,

as backlash against chatbots and ai begins. Forrester, November 8 (2018)

[116] Kar, R., Haldar, R.: Applying chatbots to the internet of things: Opportunities

and architectural elements. arXiv preprint arXiv:1611.03799 (2016)

[117] Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer,

F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., et al.: Chatgpt for

good? on opportunities and challenges of large language models for education.

Learning and Individual Differences 103, 102274 (2023)

[118] Khayrallah, H., Sedoc, J.: Smrt chatbots: Improving non-task-oriented dia-

log with simulated multiple reference training. arXiv preprint arXiv:2011.00547

(2020)

[119] Khurana, D., Koli, A., Khatter, K., Singh, S.: Natural language processing: State

of the art, current trends and challenges. Multimedia Tools and Applications pp.

1–32 (2022)

[120] Kim, S., Yang, S., Kim, G., Lee, S.W.: Efficient dialogue state tracking by selec-

tively overwriting memory. arXiv preprint arXiv:1911.03906 (2019)

[121] Kirby, S., Tamariz, M., Cornish, H., Smith, K.: Compression and communication

in the cultural evolution of linguistic structure. Cognition 141, 87–102 (2015)

[122] Kobeissi, M., Assy, N., Gaaloul, W., Defude, B., Haidar, B.: An intent-based

natural language interface for querying process execution data. In: 2021 3rd

International Conference on Process Mining (ICPM). pp. 152–159. IEEE (2021)

Page 133 of 148

BIBLIOGRAPHY

[123] Koller, A., Baumann, T., Köhn, A.: Dialogos: Simple and extensible dialog

modeling. Fachbereich Informatik (2018)

[124] Kottur, S., Moura, J.M., Parikh, D., Batra, D., Rohrbach, M.: Clevr-dialog:

A diagnostic dataset for multi-round reasoning in visual dialog. arXiv preprint

arXiv:1903.03166 (2019)

[125] Lee, S.: Structured discriminative model for dialog state tracking. In: Proceed-

ings of the SIGDIAL Conference. pp. 442–451. Association for Computational

Linguistics (2013)

[126] Lei, S., Liu, S., Sen, M., Jiang, H., Wang, X.: Zero-shot state tracking and

user adoption tracking on schema-guided dialogue. In: Dialog System Technology

Challenge Workshop at AAAI (2020)

[127] Lei, W., Jin, X., Kan, M.Y., Ren, Z., He, X., Yin, D.: Sequicity: Simplifying

task-oriented dialogue systems with single sequence-to-sequence architectures. In:

Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). pp. 1437–1447 (2018)

[128] Leo John, R.J., Patel, J.M., Alexander, A.L., Singh, V., Adluru, N.: A natural

language interface for dissemination of reproducible biomedical data science. In:

MICCAI-Medical Image Computing and Computer Assisted Intervention. pp.

197–205. Springer International Publishing (2018)

[129] Li, A.W., Jiang, V., Feng, S.Y., Sprague, J., Zhou, W., Hoey, J.: Aloha: Artificial

learning of human attributes for dialogue agents. In: Proceedings of the AAAI

Conference on Artificial Intelligence. vol. 34, pp. 8155–8163 (2020)

[130] Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity

recognition. IEEE Transactions on Knowledge and Data Engineering 34(1), 50–

70 (2020)

[131] Li, L., Xu, C., Wu, W., Zhao, Y., Zhao, X., Tao, C.: Zero-resource knowledge-

grounded dialogue generation. Advances in Neural Information Processing Sys-

tems 33, 8475–8485 (2020)

Page 134 of 148

BIBLIOGRAPHY

[132] Li, Q., Li, P., Ren, Z., Ren, P., Chen, Z.: Knowledge bridging for empathetic

dialogue generation. In: Proceedings of the AAAI Conference on Artificial Intel-

ligence. vol. 36, pp. 10993–11001 (2022)

[133] Li, S., Yan, H., Qiu, X.: Contrast and generation make bart a good dialogue emo-

tion recognizer. In: Proceedings of the AAAI Conference on Artificial Intelligence.

vol. 36, pp. 11002–11010 (2022)

[134] Li, Y., Feng, A.X., Li, J., Mumick, S., Halevy, A., Li, V., Tan, W.C.: Subjective

databases. arXiv preprint arXiv:1902.09661 (2019)

[135] Liao, L., Long, L.H., Ma, Y., Lei, W., Chua, T.S.: Dialogue State Tracking with

Incremental Reasoning. TACL 9, 557–569 (2021)

[136] Lin, W., Tseng, B., Byrne, B.: Knowledge-aware graph-enhanced GPT-2 for

dialogue state tracking. CoRR (2021)

[137] Lipton, Z.C., Gao, J., Li, L., Li, X., Ahmed, F., Deng, L.: Efficient exploration

for dialog policy learning with deep bbq networks\& replay buffer spiking. CoRR

abs/1608.05081 (2016)

[138] Lison, P.: A hybrid approach to dialogue management based on probabilistic

rules. Computer Speech and Language 34(1), 232 – 255 (2015)

[139] Liu, H., Chen, M., Wu, Y., He, X., Zhou, B.: Conversational query rewriting with

self-supervised learning. In: ICASSP 2021-2021 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). pp. 7628–7632. IEEE

(2021)

[140] Liu, Q., Chen, Y., Chen, B., Lou, J.G., Chen, Z., Zhou, B., Zhang, D.: You

impress me: Dialogue generation via mutual persona perception. arXiv preprint

arXiv:2004.05388 (2020)

[141] López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models

to chatbots. In: Advanced Information Systems Engineering: 31st International

Conference, CAiSE 2019, Rome, Italy, June 3–7, 2019, Proceedings 31. pp. 383–

398. Springer (2019)

Page 135 of 148

BIBLIOGRAPHY

[142] López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to

chatbots. In: Advanced Information Systems Engineering. Springer International

Publishing (2019)

[143] Lowe, R., Pow, N., Serban, I., Charlin, L., Pineau, J.: Incorporating unstructured

textual knowledge sources into neural dialogue systems. In: Neural information

processing systems workshop on machine learning for spoken language under-

standing (2015)

[144] Lund, B.D., Wang, T.: Chatting about chatgpt: how may ai and gpt impact

academia and libraries? Library Hi Tech News (2023)

[145] Luo, L., Huang, W., Zeng, Q., Nie, Z., Sun, X.: Learning personalized end-to-

end goal-oriented dialog. In: Proceedings of the AAAI Conference on Artificial

Intelligence. vol. 33, pp. 6794–6801 (2019)

[146] Łupkowski, P., Ginz, J.: A corpus-based taxonomy of question responses. IWCS

’13 (2013)

[147] Ma, Y., Nguyen, K.L., Xing, F.Z., Cambria, E.: A survey on empathetic dialogue

systems. Information Fusion 64, 50–70 (2020)

[148] Mahesh, B.: Machine learning algorithms-a review. International Journal of Sci-

ence and Research (IJSR).[Internet] 9, 381–386 (2020)

[149] Mairesse, F., Young, S.: Stochastic language generation in dialogue using factored

language models. Computational Linguistics 40(4), 763–799 (2014)

[150] Manning, C.D., Eric, M.: A copy-augmented sequence-to-sequence architecture

gives good performance on task-oriented dialogue. In: EACL (2017)

[151] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky,

D.: The stanford corenlp natural language processing toolkit. In: Proceedings

of 52nd annual meeting of the association for computational linguistics: system

demonstrations. pp. 55–60 (2014)

Page 136 of 148

BIBLIOGRAPHY

[152] Matthies, C., Dobrigkeit, F., Hesse, G.: An additional set of (automated) eyes:

chatbots for agile retrospectives. In: 2019 IEEE/ACM 1st international workshop

on bots in software engineering (BotSE). pp. 34–37. IEEE (2019)

[153] McLeod, S., Kruijff-Korbayova, I., Kiefer, B.: Multi-task learning of system di-

alogue act selection for supervised pretraining of goal-oriented dialogue policies.

In: Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue.

pp. 411–417. Association for Computational Linguistics (2019)

[154] McTear, M., Callejas, Z., Griol, D.: The Conversational Interface: Talking to

Smart Devices. Springer Publishing Company, Incorporated, 1st edn. (2016)

[155] McTear, M.F.: Spoken dialogue technology: Enabling the conversational user

interface. ACM Comput. Surv. 34(1), 90–169 (2002)

[156] Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-

network architectures and learning methods for spoken language understanding.

In: Interspeech. pp. 3771–3775 (2013)

[157] Metallinou, A., Bohus, D., Williams, J.D.: Discriminative state tracking for spo-

ken dialog systems. In: Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). pp. 466–475 (2013)

[158] Mrkšić, N., Ó Séaghdha, D., Wen, T.H., Thomson, B., Young, S.: Neural belief

tracker: Data-driven dialogue state tracking. In: Proceedings of the 55th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). pp. 1777–1788. Association for Computational Linguistics (Jul 2017),

https://www.aclweb.org/anthology/P17-1163

[159] Mrkšić, N., Séaghdha, D.O., Thomson, B., Gašić, M., Su, P.H., Vandyke, D.,

Wen, T.H., Young, S.: Multi-domain dialog state tracking using recurrent neural

networks (2015)

[160] Mrkšić, N., Séaghdha, D.O., Wen, T.H., Thomson, B., Young, S.: Neural belief

tracker: Data-driven dialogue state tracking. arXiv preprint arXiv:1606.03777

(2016)

Page 137 of 148

BIBLIOGRAPHY

[161] Murphy, G.C.: Beyond integrated development environments: adding context

to software development. In: 2019 IEEE/ACM 41st international conference on

software engineering: new ideas and emerging results (ICSE-NIER). pp. 73–76.

IEEE (2019)

[162] Nickerson, R.S., Butler, S.F., Carlin, M.: Empathy and knowledge projection.

The social neuroscience of empathy pp. 43–56 (2009)

[163] Ouyang, Y., Chen, M., Dai, X., Zhao, Y., Huang, S., Chen, J.: Dialogue state

tracking with explicit slot connection modeling. In: Proceedings of the 58th an-

nual meeting of the association for computational linguistics. pp. 34–40 (2020)

[164] Pei, J., Ren, P., de Rijke, M.: A cooperative memory network for personalized

task-oriented dialogue systems with incomplete user profiles. In: Proceedings of

the Web Conference 2021. pp. 1552–1561 (2021)

[165] Peng, B., Li, X., Li, L., Gao, J., Celikyilmaz, A., Lee, S., Wong, K.F.: Compos-

ite task-completion dialogue policy learning via hierarchical deep reinforcement

learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing. pp. 2231–2240. Association for Computational Linguistics

(2017)

[166] Perez, J., Liu, F.: Dialog state tracking, a machine reading approach using mem-

ory network. In: Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics. pp. 305–314. Association for

Computational Linguistics (2017)

[167] Prabhavalkar, R., Rao, K., Sainath, T.N., Li, B., Johnson, L., Jaitly, N.: A com-

parison of sequence-to-sequence models for speech recognition. In: Interspeech.

pp. 939–943 (2017)

[168] Ramírez, J., Baez, M., Berro, A., Benatallah, B., Casati, F.: Crowdsourcing

syntactically diverse paraphrases with diversity-aware prompts and workflows.

In: Advanced Information Systems Engineering: 34th International Conference,

Page 138 of 148

BIBLIOGRAPHY

CAiSE 2022, Leuven, Belgium, June 6–10, 2022, Proceedings. pp. 253–269.

Springer (2022)

[169] Rasa: https://rasa.com/ - Last accessed on 2022-12-15

[170] Rasa Technologies: The rasa core dialogue engine, https://rasa.com/docs/

rasa/core/about/- Last accessed on 2020-03-15

[171] Rastogi, A., Gupta, R., Hakkani-Tur, D.: Multi-task learning for joint language

understanding and dialogue state tracking. arXiv preprint arXiv:1811.05408

(2018)

[172] Rastogi, A., Hakkani-Tür, D., Heck, L.: Scalable multi-domain dialogue state

tracking. In: 2017 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU). pp. 561–568. IEEE (2017)

[173] Rastogi, A., Zang, X., Sunkara, S., Gupta, R., Khaitan, P.: Towards scalable

multi-domain conversational agents: The schema-guided dialogue dataset 34(05),

8689–8696 (2020)

[174] Rastogi, A., Zang, X., Sunkara, S., Gupta, R., Khaitan, P.: Towards scalable

multi-domain conversational agents: The schema-guided dialogue dataset. In:

Proceedings of the AAAI Conference on Artificial Intelligence. pp. 8689–8696

(2020)

[175] Rastogi, P., Gupta, A., Chen, T., Lambert, M.: Scaling multi-domain dialogue

state tracking via query reformulation. In: NAACL. pp. 97–105 (2019)

[176] Raux, A., Eskenazi, M.: A finite-state turn-taking model for spoken dialog sys-

tems. NAACL ’09 (2009)

[177] Ren, H., Xu, W., Zhang, Y., Yan, Y.: Dialog state tracking using conditional

random fields. In: Proceedings of the SIGDIAL 2013 Conference. pp. 457–461

(2013)

[178] Ren, L., Ni, J., McAuley, J.: Scalable and accurate dialogue state tracking via

hierarchical sequence generation. arXiv preprint arXiv:1909.00754 (2019)

Page 139 of 148

BIBLIOGRAPHY

[179] Ren, L., Ni, J., McAuley, J.: Scalable and accurate dialogue state tracking via

hierarchical sequence generation. In: EMNLP (2019)

[180] Rizk, Y., Bhandwalder, A., Boag, S., Chakraborti, T., Isahagian, V., Khazaeni,

Y., Pollock, F., Unuvar, M.: A unified conversational assistant framework for

business process automation. arXiv preprint arXiv:2001.03543 (2020)

[181] Ruder, S., Vulić, I., Søgaard, A.: A survey of cross-lingual word embedding

models. Journal of Artificial Intelligence Research 65, 569–631 (2019)

[182] San Segundo, R., Fernández, F., Ferreiros, J., Lucas, J., Salazar, J.: Managing

speaker identity and user profiles in a spoken dialogue system. Procesamiento del

lenguaje natural (43), 77–84 (2009)

[183] Sankar, G.R., Greyling, J., Vogts, D., du Plessis, M.C.: Models towards a hybrid

conversational agent for contact centres. In: Proceedings of the Annual Research

Conference of the South African Institute of Computer Scientists and Informa-

tion Technologists on IT Research in Developing Countries: Riding the Wave of

Technology. p. 200–209 (2008)

[184] Santhanam, S., Shaikh, S.: A survey of natural language generation techniques

with a focus on dialogue systems-past, present and future directions. arXiv

preprint arXiv:1906.00500 (2019)

[185] Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural lan-

guage call-routing. In: 2011 IEEE International conference on acoustics, speech

and signal processing (ICASSP). pp. 5680–5683. IEEE (2011)

[186] Schaffer, S., Gustke, O., Oldemeier, J., Reithinger, N.: Towards chatbots in the

museum. In: mobileCH@ Mobile HCI (2018)

[187] Sen, P.C., Hajra, M., Ghosh, M.: Supervised classification algorithms in ma-

chine learning: A survey and review. In: Emerging technology in modelling and

graphics, pp. 99–111. Springer (2020)

Page 140 of 148

BIBLIOGRAPHY

[188] Shah, P., Hakkani-Tur, D., Heck, L.: Interactive reinforcement learning for task-

oriented dialogue management. In: NIPS 2016 Deep Learning for Action and

Interaction Workshop (2016)

[189] Shan, Y., Li, Z., Zhang, J., Meng, F., Feng, Y., Niu, C., Zhou, J.: A contextual

hierarchical attention network with adaptive objective for dialogue state tracking.

In: Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics. pp. 6322–6333 (2020)

[190] Shelar, H., Kaur, G., Heda, N., Agrawal, P.: Named entity recognition approaches

and their comparison for custom ner model. Science & Technology Libraries 39(3),

324–337 (2020)

[191] Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: Learning semantic representations

using convolutional neural networks for web search. In: Proceedings of the 23rd

international conference on world wide web. pp. 373–374 (2014)

[192] Sheth, A., Yip, H.Y., Iyengar, A., Tepper, P.: Cognitive services and intelli-

gent chatbots: current perspectives and special issue introduction. IEEE Internet

Computing 23(2), 6–12 (2019)

[193] Singh, J., Joesph, M.H., Jabbar, K.B.A.: Rule-based chabot for student enquiries.

Journal of Physics: Conference Series 1228 (2019)

[194] Singh, S., Litman, D., Kearns, M., Walker, M.: Optimizing dialogue manage-

ment with reinforcement learning: Experiments with the njfun system. Journal

of Artificial Intelligence Research 16, 105–133 (2002)

[195] Smith, C., Crook, N., Boye, J., Charlton, D., Dobnik, S., Pizzi, D., Cavazza,

M., Pulman, S., de la Camara, R.S., Turunen, M.: Interaction strategies for an

affective conversational agent. In: Intelligent Virtual Agents (2010)

[196] Song, H., Wang, Y., Zhang, K., Zhang, W.N., Liu, T.: Bob: Bert over bert

for training persona-based dialogue models from limited personalized data. arXiv

preprint arXiv:2106.06169 (2021)

Page 141 of 148

BIBLIOGRAPHY

[197] Stent, A., Prasad, R., Walker, M.: Trainable sentence planning for complex

information presentation in spoken dialog systems. In: Proceedings of the 42nd

annual meeting on association for computational linguistics. p. 79. Association

for Computational Linguistics (2004)

[198] Su, P., Gasic, M., Mrksic, N., Rojas-Barahona, L.M., Ultes, S., Vandyke, D.,

Wen, T., Young, S.J.: Continuously learning neural dialogue management. CoRR

(2016)

[199] Sun, K., Zhu, S., Chen, L., Yao, S., Wu, X., Yu, K.: Hybrid dialogue state

tracking for real world human-to-human dialogues. In: Interspeech. pp. 2060–

2064 (2016)

[200] Tešanovic, A.: What is a pattern. Dr. ing. course DT8100 (prev.

78901/45942/DIF8901) Object-oriented Systems (2005)

[201] Thomson, B., Young, S.: Bayesian update of dialogue state: A POMDP frame-

work for spoken dialogue systems. Computer Speech and Language 24(4), 562

(Mar 2010)

[202] Tigunova, A.: Extracting personal information from conversations. In: Compan-

ion Proceedings of the Web Conference 2020. pp. 284–288 (2020)

[203] Tigunova, A., Yates, A., Mirza, P., Weikum, G.: Listening between the lines:

Learning personal attributes from conversations. In: The World Wide Web Con-

ference. pp. 1818–1828 (2019)

[204] Tseng, B.H., Bhargava, S., Lu, J., Moniz, J.R.A., Piraviperumal, D., Li, L., Yu,

H.: Cread: Combined resolution of ellipses and anaphora in dialogues. arXiv

preprint arXiv:2105.09914 (2021)

[205] Tu, T., Ping, Q., Thattai, G., Tur, G., Natarajan, P.: Learning better visual

dialog agents with pretrained visual-linguistic representation. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.

5622–5631 (2021)

Page 142 of 148

BIBLIOGRAPHY

[206] Tur, G., Deng, L., Hakkani-Tür, D., He, X.: Towards deeper understanding: Deep

convex networks for semantic utterance classification. In: 2012 IEEE international

conference on acoustics, speech and signal processing (ICASSP). pp. 5045–5048.

IEEE (2012)

[207] Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint

arXiv:1506.05869 (2015)

[208] Vodolán, M., Kadlec, R., Kleindienst, J.: Hybrid dialog state tracker (2015)

[209] Vodolán, M., Kadlec, R., Kleindienst, J.: Hybrid dialog state tracker with asr

features (2017)

[210] Walker, M.A., Rambow, O.C., Rogati, M.: Training a sentence planner for spoken

dialogue using boosting. Computer Speech & Language 16(3-4), 409–433 (2002)

[211] Wallace, R.: The elements of aiml style. ALICE A. I. Foundation (2003)

[212] Wang, Y., Shen, Y., Jin, H.: A bi-model approach for handling unknown slot

values in dialogue state tracking. In: IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). pp. 8019–8023 (2020)

[213] Wang, Y., Huang, J.: Formal modeling and specification of design patterns us-

ing rtpa. International Journal of Cognitive Informatics and Natural Intelligence

(IJCINI) 2(1), 100–111 (2008)

[214] Wang, Z.: Extracting and Inferring Personal Attributes from Dialogue. University

of Washington (2021)

[215] Wang, Z., Lemon, O.: A simple and generic belief tracking mechanism for the

dialog state tracking challenge: On the believability of observed information. In:

Proceedings of the SIGDIAL Conference. pp. 423–432. Association for Computa-

tional Linguistics, Metz, France (2013)

[216] Weizenbaum, J.: Eliza—a computer program for the study of natural language

communication between man and machine. Communications of the ACM 9(1),

36–45 (1966)

Page 143 of 148

BIBLIOGRAPHY

[217] Weizenbaum, J.: Eliza — a computer program for the study of natural language

communication between man and machine. Commun. ACM 26(1), 23–28 (1983)

[218] Wen, T.H., Gašić, M., Mrkšić, N., Su, P.H., Vandyke, D., Young, S.: Semanti-

cally conditioned LSTM-based natural language generation for spoken dialogue

systems. In: Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing. pp. 1711–1721. Association for Computational Linguistics

(2015)

[219] Wen, T.H., Vandyke, D., Mrkšíc, N., Gašíc, M., Rojas-Barahona, L.M., Su, P.H.,

Ultes, S., Young, S.: A network-based end-to-end trainable task-oriented dialogue

system. In: 15th Conference of the European Chapter of the Association for

Computational Linguistics, EACL 2017 - Proceedings of Conference. vol. 1, pp.

438–449 (2017)

[220] Williams, J.: A critical analysis of two statistical spoken dialog systems in public

use. In: Proceedings IEEE Workshop on Spoken Language Technology (SLT).

IEEE Spoken Language Technology Workshop (2012)

[221] Williams, J.: Multi-domain learning and generalization in dialog state tracking.

In: Proceedings of the SIGDIAL Conference. Association for Computational Lin-

guistics (2013)

[222] Williams, J.D.: Incremental partition recombination for efficient tracking of mul-

tiple dialog states. In: 2010 IEEE International Conference on Acoustics, Speech

and Signal Processing. pp. 5382–5385 (2010)

[223] Williams, J.D., Asadi, K., Zweig, G.: Hybrid code networks: practical and effi-

cient end-to-end dialog control with supervised and reinforcement learning. In:

Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (ACL) (2017)

[224] Williams, J.D., Poupart, P., Young, S.: Factored partially observable markov

decision processes for dialogue management pp. 76–82 (2005)

Page 144 of 148

BIBLIOGRAPHY

[225] Williams, J.D., Young, S.: Partially observable markov decision processes for

spoken dialog systems. Computer Speech & Language 21(2), 393 – 422 (2007)

[226] Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Trans-

ferable multi-domain state generator for task-oriented dialogue systems. In: ACL

(2019)

[227] Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Trans-

ferable multi-domain state generator for task-oriented dialogue systems. arXiv

preprint arXiv:1905.08743 (2019)

[228] Wu, C.S., Madotto, A., Lin, Z., Xu, P., Fung, P.: Getting to know you: User

attribute extraction from dialogues. arXiv preprint arXiv:1908.04621 (2019)

[229] Wu, P., Zou, B., Jiang, R., Aw, A.: Gcdst: A graph-based and copy-augmented

multi-domain dialogue state tracking. In: Findings of the Association for Com-

putational Linguistics: EMNLP 2020. pp. 1063–1073 (2020)

[230] Wu, Y., Li, Z., Wu, W., Zhou, M.: Response selection with topic clues for

retrieval-based chatbots. Neurocomputing 316, 251–261 (2018)

[231] Xu, G., Lee, H., Koo, M., Seo, J.: Optimizing policy via deep reinforcement

learning for dialogue management. In: 2018 IEEE International Conference on

Big Data and Smart Computing (BigComp). pp. 582–589 (2018)

[232] Xu, P., Hu, Q.: An end-to-end approach for handling unknown slot values in

dialogue state tracking. In: Proceedings of the 56th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers). pp. 1448–1457

(2018)

[233] Xu, P., Hu, Q.: An end-to-end approach for handling unknown slot values in

dialogue state tracking. arXiv preprint arXiv:1805.01555 (2018)

[234] Yan, Z., Duan, N., Bao, J., Chen, P., Zhou, M., Li, Z., Zhou, J.: Docchat: An

information retrieval approach for chatbot engines using unstructured documents.

In: Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). pp. 516–525 (2016)

Page 145 of 148

BIBLIOGRAPHY

[235] Yang, P., Huang, H., Mao, X.L.: Comprehensive study: How the context infor-

mation of different granularity affects dialogue state tracking? arXiv preprint

arXiv:2105.03571 (2021)

[236] Yang, X., Liu, J.: Dialog state tracking using long short-term memory neural

networks. In: INTERSPEECH (2015)

[237] Yann, D., Tur, G., Hakkani-Tur, D., Heck, L.: Zero-shot learning and cluster-

ing for semantic utterance classification using deep learning. In: International

Conference on Learning Representations (cited on page 28) (2014)

[238] Yannakakis, M.: Hierarchical state machines. In: TCS. pp. 315–330. Springer

(2000)

[239] Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., Shi, Y.: Spoken language

understanding using long short-term memory neural networks. In: 2014 IEEE

Spoken Language Technology Workshop (SLT). pp. 189–194. IEEE (2014)

[240] Yao, K., Zweig, G., Hwang, M.Y., Shi, Y., Yu, D.: Recurrent neural networks for

language understanding. In: Interspeech. pp. 2524–2528 (2013)

[241] Ye, F., Manotumruksa, J., Zhang, Q., Li, S., Yilmaz, E.: Slot self-attentive

dialogue state tracking. In: Proceedings of the Web Conference 2021. pp. 1598–

1608 (2021)

[242] Yoshino, T., Fukuchi, Y., Matsumori, S., Imai, M.: Chat, shift and perform:

Bridging the gap between task-oriented and non-task-oriented dialog systems.

arXiv preprint arXiv:2206.11813 (2022)

[243] Young, S., Gašić, M., Thomson, B., Williams, J.D.: Pomdp-based statistical

spoken dialog systems: A review. Proceedings of the IEEE 101(5), 1160–1179

(2013)

[244] Zamanirad, S.: Superimposition of natural language conversations over software

enabled services. Ph.D. thesis, University of New South Wales, Sydney, Australia

(2019)

Page 146 of 148

BIBLIOGRAPHY

[245] Zamanirad, S.: Superimposition of natural language conversations over software

enabled services (2019)

[246] Zamanirad, S.: Superimposition of natural language conversations over software

enabled services. Ph.D. thesis, University of New South Wales, Australia (2019)

[247] Zamanirad, S., Benatallah, B., Barukh, M.C., Casati, F., Rodriguez, C.: Pro-

gramming bots by synthesizing natural language expressions into api invocations.

In: 2017 32nd IEEE/ACM International Conference on Automated Software En-

gineering (ASE). pp. 832–837. IEEE (2017)

[248] Zamanirad, S., Benatallah, B., Rodriguez, C., Yaghoubzadehfard, M., Bouguelia,

S., Brabra, H.: Hierarchical state machine based conversation model and services.

Proc. CAiSE 2020

[249] Zhang, B., Xu, X., Li, X., Ye, Y., Chen, X., Wang, Z.: A memory network based

end-to-end personalized task-oriented dialogue generation. Knowledge-Based Sys-

tems 207, 106398 (2020)

[250] Zhang, J.G., Hashimoto, K., Wu, C.S., Wan, Y., Yu, P.S., Socher, R., Xiong, C.:

Find or classify? dual strategy for slot-value predictions on multi-domain dialog

state tracking (2019)

[251] Zhang, J.G., Hashimoto, K., Wu, C.S., Wan, Y., Yu, P.S., Socher, R., Xiong, C.:

Find or classify? dual strategy for slot-value predictions on multi-domain dialog

state tracking. arXiv preprint arXiv:1910.03544 (2019)

[252] Zhang, J.G., Hashimoto, K., Wu, C.S., Wan, Y., Yu, P.S., Socher, R., Xiong, C.:

Find or classify? dual strategy for slot-value predictions on multi-domain dialog

state tracking (2020)

[253] Zhang, Z., Huang, M., Zhao, Z., Ji, F., Chen, H., Zhu, X.: Memory-augmented

dialogue management for task-oriented dialogue systems. ACM Transactions on

Information Systems (TOIS) 37(3), 1–30 (2019)

Page 147 of 148

BIBLIOGRAPHY

[254] Zhang, Z., Huang, M., Zhao, Z., Ji, F., Chen, H., Zhu, X.: Memory-augmented

dialogue management for task-oriented dialogue systems. ACM Transactions on

Information Systems (TOIS) (2019)

[255] Zhang, Z., Li, X., Gao, J., Chen, E.: Budgeted policy learning for task-oriented

dialogue systems. arXiv preprint arXiv:1906.00499 (2019)

[256] Zhao, T., Eskenazi, M.: Towards end-to-end learning for dialog state tracking

and management using deep reinforcement learning. In: Proceedings of the 17th

Annual Meeting of the Special Interest Group on Discourse and Dialogue. pp.

1–10. Association for Computational Linguistics (2016)

[257] Zhao, T., Lu, A., Lee, K., Eskenazi, M.: Generative encoder-decoder models for

task-oriented spoken dialog systems with chatting capability. In: Proceedings of

the 18th Annual SIGdial Meeting on Discourse and Dialogue. pp. 27–36. Associ-

ation for Computational Linguistics (2017)

[258] Zhao, X., Wang, L., He, R., Yang, T., Chang, J., Wang, R.: Multiple knowledge

syncretic transformer for natural dialogue generation. In: Proceedings of The

Web Conference 2020. pp. 752–762 (2020)

[259] Zhou, K., Prabhumoye, S., Black, A.W.: A dataset for document grounded con-

versations. arXiv preprint arXiv:1809.07358 (2018)

[260] Zhu, S., Li, J., Chen, L., Yu, K.: Efficient context and schema fusion networks for

multi-domain dialogue state tracking. In: Findings of the Association for Com-

putational Linguistics. pp. 766–781. Association for Computational Linguistics,

Online (2020)

Page 148 of 148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

