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RÉSUMÉ EN FRANÇAIS

Cette thèse fait partie du projet ANR CQFD. Elle a été financée par Lannion Trégor-
Communauté (LTC) et la Région Bretagne (ARED).

La gestion des données en présence d’ontologies, que ce soit pour interroger les données
ou réaliser des tests de consistance des données, est un sujet très étudié dans les domaines
des bases de données, de l’intelligence artificielle ainsi que celui du web sémantique. Ces
tâches de gestion de données en présence d’ontologies consiste à exprimer des requêtes,
à la manière de celles qu’on soumet usuellement à des bases de données relationnelles,
sur des bases de connaissances, appelées Knowledge Base (KB) en anglais. Une base de
connaissances est une théorie de la logique du premier ordre formée d’un ensemble de
faits, appelé la base de données, qui modélise les données de l’application sous-jacente, et
d’un ensemble d’axiomes appelé l’ontologie qui modélise les connaissances du domaine de
l’application. La principale différence entre l’interrogation des bases de connaissances et
celle des bases de données classiques réside dans le fait que pour répondre aux requêtes,
il est nécessaire de tenir compte des données de la base de connaissances mais aussi de
celles qu’on peut déduire à partir des données et de l’ontologie.

Deux techniques majeures pour répondre aux requêtes dans les bases de connaissances
émergent de l’état de l’art. Toutes deux réduisent ce problème de calcul des réponses aux
requêtes à un simple problème d’interrogation de bases de données. La première technique
est celle de la réécriture de requête qui consiste à réécrire la requête exprimée sur la base
de connaissances en une requête reformulée qui tient compte des contraintes de l’ontologie.
Avec cette méthode, les réponses à une requête sont obtenues en exécutant la reformulation
directement sur la base de données originale de la base de connaissances. La deuxième
technique repose sur une procédure de matérialisation de la base de connaissances qui
consiste à compléter la base de données avec tous les faits qui peuvent être déduits des
données à l’aide de l’ontologie de la base de connaissances. Les réponses à une requête
en suivant cette méthode sont obtenues en exécutant la requête originale sur la base de
données augmentée des faits inférés. La combinaison de la technique de la réécriture avec
celle de la matérialisation, appelée approche hybride ou combinée, a également été étudiée.
Les deux techniques par réécriture et par matérialisation pour répondre aux requêtes sont

1



Résumé en Français

utiles et complémentaires. En effet, bien qu’il existe des cas simples d’interrogation de
bases de connaissances dans lesquels elles peuvent être mises en concurrence, il existe
des cadres formels plus expressifs de bases de connaissances dans lesquels une seule des
techniques peut être utilisée.

Dans cette thèse, on focalise sur le problème de répondre aux requêtes dans les bases
de connaissances par la technique de réécriture. Cette technique a été largement abordée
dans l’état de l’art s’intéressant au problème de gestion de données dans les bases de
connaissances, dans les contextes suivants :

— les requêtes sont des requêtes conjonctives (CQs) ;
— les bases de connaissances sont exprimées à l’aide de règles datalog±, de règles

existentielles, en logique de description et OWL ou RDF/S.
— les réécritures de requêtes sont exprimées comme des unions de requêtes conjonc-

tives (UCQ), ou comme des unions de requêtes semi-conjonctives (USCQ) ou encore
comme des jointures d’unions de requêtes conjonctives (JUCQ).

Plus précisément, la réécriture d’une requête q adressée à une base de connaissances
K consiste i) à produire une reformulation qO de la requête q en utilisant l’ontologie O
de K, puis ii) à évaluer qO sur la base de données D de K stockée dans un système
de gestion de bases de données relationnelles (SGBDR). Les reformulations des requêtes
qO peuvent être grandes et assez complexes à évaluer en pratique. En effet, la réécriture
d’une requête est dépendante de l’ontologie tout en étant indépendante des données. Cela
implique que qO doit s’adapter à toutes les bases de données possibles de K et ne peut
être spécifique à une base de données particulière de K.

Jusqu’à présent, de la même manière que l’optimisation sémantique des requêtes pro-
posée dans les bases de données déductives, l’optimisation des reformulations de requêtes
s’est concentrée sur l’étude de représentations des reformulations différentes (minimales
ou plus compactes par exemple) mais équivalentes et pouvant être évaluées plus rapide-
ment. Cependant, comme ces reformulations optimisées restent dépendantes de l’ontologie
et indépendantes des données, celles-ci demeurent compliquées à évaluer. Étant des va-
riantes syntaxiquement différentes mais sémantiquement équivalentes de la reformulation
non optimisée d’une requête, elles sont génériques à toutes les bases de données possibles
d’une base de connaissances, et pas uniquement adaptée à la base de données considérée
pour l’interrogation.

2
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Contributions

Cette thèse a pour but de contribuer à une gestion efficace de données dans les bases de
connaissances. Elle définit un nouveau cadre pour l’optimisation de la gestion des données
dans les bases de connaissances selon une approche par réécriture. Ce cadre repose sur
les algorithmes de réécriture optimisée de l’état de l’art qui reste dépendants de l’onto-
logie et indépendants des données. Ces derniers produisent des reformulations génériques
qui peuvent s’avérer très complexes à évaluer même dans les SGBDs les plus modernes.
L’originalité des travaux de cette thèse est d’optimiser les reformulations, obtenues grâce
aux outils de l’état de l’art, en les rendant dépendantes de la base de données de la base
de connaissances, tout en s’assurant que les réécritures optimisées fournissent l’ensemble
exact des réponses attendues, et ce, de manière efficace en termes de temps d’optimisation
et d’évaluation des requêtes.

Préliminaires

Dans cette section, on effectue un rappel des notions de base permettant l’étude du
problème de gestion de données décrites par les ontologies et notamment : les bases de
connaissances, les tâches de gestion de données et la technique employée pour répondre à
ces tâches par réécriture.

On considère des bases de connaissances de la logique du premier ordre, notées K,
exprimées à l’aide de règles datalog± ou de règles existentielles. Une base de connaissances
K est de la forme K = (O,D), où O est l’ontologie de K, et D sa base de données.
L’ontologie de K est un ensemble de règles de la forme ∀x̄(q1(x̄) → q2(x̄)), tel que q1

et q2 sont des CQs ayant le même ensemble x̄ de variables de réponse. Ces règles sont
soit positives de la forme ∀x̄(q1(x̄) → q2(x̄)), et elles permettent de dériver des faits
impliqués dans une base de connaissance, soit négatives, de la forme ∀x̄(q1(x̄) → ⊥), et
elles expriment des contraintes d’intégrité qui permettent de dériver des inconsistances
dans les bases de connaissances. La base de données D de K est un ensemble de faits
incomplets. En d’autres termes, ce sont des faits parmi lesquels des variables existentielles
sont présentes et représentent des valeurs manquantes ou inconnues. On note qu’une base
de connaissances peut être considérée comme une base de données relationnelle déductive
et incomplète interprétée selon l’hypothèse du monde ouvert (OWA, pour open-world
assumption en anglais).

3
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On s’intéresse aux deux tâches majeures de gestion de données : répondre aux requêtes
(QA pour query answering en anglais) et tester la consistance de la base de connaissances
(CC pour consistency checking en anglais). Une base de connaissances K est consistante
si et seulement si elle n’implique pas ⊥ (K ̸|= ⊥) où |= désigne la relation d’implication de
la logique du premier ordre. On remarque que, dans notre cadre théorique, l’inconsistance
ne peut résulter que de l’interaction entre la base de données et l’ontologie : une ontologie
seule est consistante car les règles négatives ont besoin de faits, éventuellement inférés,
pour dériver ⊥ dans une base de données, et une base de données seule est consistante
car elle est constituée de fait positifs uniquement.

On considère des requêtes de la logique du premier ordre de la forme q(x̄) = ϕ, où ϕ est
une formule logique dont l’ensemble des variables libres (non quantifiées) est exactement
le tuple x̄ de variables de réponses. L’arité d’une requête q(x̄) est la cardinalité de x̄ ; q(x̄)
est dite Booléenne si x̄ = ∅. Une réponse certaine à une requête q(x̄) d’arité n sur une
base de connaissances K est un tuple t̄ de n constantes de K tel que K |= q(t̄), où q(t̄)
est la requête booléenne obtenue en substituant x̄ par t̄ dans q ; quand q est booléenne, t̄
est le tuple vide ⟨⟩.

En ce qui concerne la technique employée pour les tâches de gestion des données
dans une base de connaissances K = (O,D), on considère, comme évoqué précédemment,
celle basée sur la réécriture des requêtes en utilisant les règles de O et qui produit une
requête reformulée directement exécutable sur la base D stockée dans un SGBD. On
s’intéresse à l’optimisation des cadres d’interrogation des bases de connaissances (LQ,LK),
où LQ définit un langage de requête et LK le langage de la base de connaissances, qui
ont la propriété d’être réécrivables. Un cadre d’interrogation (LQ,LK) pour une base de
connaissances K = (O,D) est dit réécrivable si pour toute requête q exprimée dans le
langage LQ, et pour toute ontologie O exprimée dans LK , il existe une reformulation
de q par rapport à O, telle que pour toute K consistante : ans(q,K) = eval(qO,D), où
eval(qO,D) est l’évaluation relationnelle de qO sur D.

Les cadres de gestion de données dans les bases de connaissances bénéficiant de la
propriété de réécrivabilité ont été très largement considérés dans l’état de l’art, notam-
ment pour des langages de reformulations comme les UCQ, les USCQ et les JUCQ. Une
propriété fondamentale des cadres de gestion de données dans les bases de connaissances
présentés ci-dessus, et sur lesquels notre travail repose, est que la reformulation d’une
requête qO est sémantiquement équivalente à la requête q selon O. En particulier, qO

est équivalente, quel que soit le langage utilisé pour l’exprimer, à l’union de toutes les
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requêtes conjonctives (CQs) maximalement contenues dans q selon O, soit à l’union de
toutes les spécialisations (sous formes de CQs) les plus générales de q selon O.

Un cadre d’optimisation pour la réécriture dans les
bases de connaissances

Comme expliqué précédemment, la définition de la réécriture est indépendante des
données : une seule reformulation qO permet de répondre à une requête conjonctive q

pour toutes les bases de données D d’une base de connaissances K ayant pour ontologie
O. La généralité de qO a pour conséquence de produire des reformulations de requêtes
qui sont complexes et difficiles à évaluer par les SGBDs en pratique. On s’intéresse alors
au problème de calcul de reformulations de requêtes qui soient dépendantes des données
d’une base de connaissances. Ces reformulations perdront de leur généricité au bénéfice
d’une meilleure efficacité lors l’exécution des requêtes. Quand une requête q est adressée à
une instance de KB K = (O,D) fixée, la base de données D représente une instance parmi
toutes les bases de données possibles à laquelle qO s’adapte. En particulier, dans les unions
des requêtes conjonctives maximalement contenues (et équivalentes) à qO, de nombreuses
requêtes conjonctives ne sont pas pertinentes par rapport à D car elles retournent des
ensembles vides de réponse dans D.

On propose un cadre d’optimisation pour la réécritures des requêtes dans les bases de
connaissances respectant les propriétés suivantes : la généralité de l’approche afin qu’elle
soit utilisable dans une majorité des cadres d’interrogation des bases de connaissance
bénéficiant de la propriété de réécrivabilité, le maintien de l’exactitude de l’ensemble
des réponses à une requête et l’efficacité de l’obtention des réécritures dépendantes des
données et de leur exécution pour améliorer la performance des tâches de gestion de
données dans les bases de connaissances considérées.

Notre cadre d’optimisation s’appuie sur une fonction Ω qui transforme une reformu-
lation d’une requête donnée qO, exprimée comme une combinaison de conjonctions de
disjonctions (ou inversement) de requêtes conjonctives, notée (∧,∨)-CQ, en une refor-
mulation optimisée par rapport à la base de données considérée D. Cette reformulation
optimisée est notée par la suite qK puisqu’elle est spécifique à une base de connaissances
K = (O,D) et donc à sa base D. Ω va alors effectuer une réécriture dite "bottom-up"
pour identifier et enlever les requêtes conjonctives imbriquées dans qO et sans réponse sur
D puis propager l’effet de leur suppression dans la requête reformulée. La reformulation
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de requêtes libérées des sous-requêtes sans réponse sur D qK ainsi obtenue, produit une
requête contenue dans qO mais dont l’évaluation fournira le même ensemble de réponses
que qO.

L’identification des requêtes conjonctives vides peut s’effectuer facilement (avec l’opé-
rateur exists du langage SQL) en interrogeant directement la base D stockée dans un
SGBD et de façon efficace. Ces systèmes sont en effet bien optimisés pour évaluer les re-
quêtes conjonctives. En revanche, identifier un grand nombre de sous-requêtes conjonctives
sans réponse dans les reformulations peut s’avérer coûteux en terme de temps, notam-
ment quand on utilise de grandes bases de données. Pour cela, Ω va s’appuyer sur des
résumés des bases de données définies comme des approximations homomorphiques des
bases de données qu’ils résument et dont la taille est significativement plus petite que la
base elle-même.

Une base de donnée S est un résumé d’une base de données si et seulement s’il existe
un homomorphisme σ de D vers S tel que σ associe les constantes de D avec des constantes
de S, et les variables de D avec des constantes ou des variables de S. On note que Dσ = S
où Dσ est la base de données obtenue à partir de D en remplaçant les termes (variables
ou constantes) dans D par leurs images dans S via σ. Concrètement, les résumés que
nous utilisons avec notre fonction Ω sont une adaptation de l’opération de quotient de la
théorie des graphes au cadre des bases de données relationnelles incomplètes considérée
dans ce travail. De par sa définition, le résumé S garantit qu’une requête sans réponse
sur S est également sans réponse sur D. Cette propriété est fondamentale dans notre
approche d’optimisation car elle assure de n’éliminer que les sous-requêtes inutiles d’une
reformulation et donc de maintenir un ensemble de réponse égal à celui que fournit qO.

Expérimentations

Pour valider le travail effectué durant cette thèse, nous avons réalisé des expérimen-
tations qui avaient pour but de mesurer le gain de performance apporté par notre cadre
d’optimisation. Pour construire nos bases de connaissance, nous avons utilisé un bench-
mark reconnu de l’état de l’art : extended LUBM benchmark. Il s’agit d’une adaptation
du benchmark LUBM à la logique de description DL-liteR. Notre intérêt s’est porté sur ce
benchmark car il s’agit de celui qui le plus utilisé dans la littérature pour la réécriture de
requêtes conjonctives dans les langages de reformulation UCQ, USCQ ou JUCQ. De plus,
ceci nous a donné l’opportunité de réutiliser des requêtes disponibles et considérées dans
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plusieurs articles de l’état de l’art. Nous avons généré plusieurs bases de données de taille
croissante allant de 1 million de tuples jusqu’à 150 millions de tuples. Nous avons utilisé
trois SGBDs : DB2 (v11.5.5), MySQL (v8.0.34) et PostgreSQL (v14.2), pour stocker les
bases et leurs résumés, et réaliser les expérimentations. Nous avons utilisé et adapté des
requêtes de l’état de l’art pour évaluer les performances de l’interrogation des données
(query answering) et du test de consistance (consistency checking) des bases générées.
Ces requêtes ont été reformulées dans les trois langages de reformulation UCQ, USCQ et
JUCQ, et ont été traitées selon trois stratégies d’interrogation : application de la méthode
de l’état de l’art par réécriture (LR/REF), optimisation de l’état de l’art en utilisant une
base de données (LR/DB), optimisation de l’état de l’art en utilisant un résumé de la
base de données (LR/S).

Les résultats de nos expérimentations sont les suivants : notre cadre d’optimisation
améliore la performance des reformulations dans le langage des UCQs jusqu’à trois ordres
de grandeur pour les requêtes d’interrogation de la base (QA) et quatre ordres de grandeur
pour les requêtes de test de consistance de la base (CC). Notre cadre d’optimisation n’a pas
d’effet négatif pour le cas des reformulations dans le langage des USCQs, et il améliore
généralement les reformulations dans le langage des JUCQs, et ce jusqu’à un ordre de
grandeur.

Au cours de cette thèse, nous avons également développé un prototype, appelé OPTI-
REF, qui utilise différents outils de réécriture de requête de l’état de l’art pour calculer
des reformulations qO dans les langages des UCQ, des USCQ et des JUCQ, puis optimise
ces reformulations en des requêtes qK à l’aide de résumés S ou des bases D qui sont stockés
dans un SGBD et enfin évalue la requête optimisée sur la base D. Cet outil bénéficie éga-
lement d’une interface graphique pour exprimer des requêtes sur les bases générées pour
nos expérimentations et d’un outil de visualisation des reformulations ainsi que des gra-
phiques présentant et comparant les résultats des différentes approches de reformulation
et des stratégies d’optimisation des réécritures.

État de l’art, conclusion et perspectives

Durant cette thèse nous avons conçu un nouveau cadre d’optimisation pour la ré-
écriture de requête dans les bases de connaissances. Notre cadre repose sur les travaux
d’optimisation de réécriture de requêtes proposés dans l’état de l’art jusqu’à présent.
Ces optimisations sont dépendantes de l’ontologie mais indépendantes des données : ils
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proposent des reformulations syntaxiquement différentes mais sémantiquement équiva-
lentes. La nouveauté de notre cadre d’optimisation est d’ajouter une étape complémen-
taire d’optimisation dépendante des données aux outils de reformulations proposés dans
l’état de l’art. Notre approche d’optimisation est générique dans le sens où elle s’applique
à plusieurs cadres d’interrogation de bases de connaissance pour lesquels la propriété de
réécrivabilité est vérifiée, et elle garantit la préservation de l’exactitude de l’ensemble
des réponses aux requêtes exprimées dans les bases de connaissances. Pour les cadres de
bases de connaissances que nous avons évalués, notre approche d’optimisation améliore
considérablement les performances temporelles de l’interrogation des bases pour les refor-
mulations de requêtes dans le langage des UCQs largement adoptées dans l’état de l’art,
et pour les JUCQs. Par ailleurs, une originalité de notre approche est qu’elle s’appuie sur
la fonction d’optimisation Ω qui réécrit une reformulation de requête en une reformulation
plus simple, en supprimant les sous-requêtes inutiles à son évaluation pour une base de
données à considérer. Les sous-requêtes inutiles sont rapidement identifiées à l’aide de
résumés de bases de données que nous avons conçus en adaptant l’opération de quotient
de graphe aux bases de données.

Plusieurs perspectives peuvent être considérées à l’issue de ce travail. Premièrement,
en ce qui concerne les résumés, nous avons utilisé des résumés qui sont des approximations
homomorphiques des bases de données originales, en adaptant l’opération de quotient aux
bases de données relationnelles. Nous avons aussi défini une relation d’équivalence pour
construire ces résumés. Une perspective intéressante serait d’étudier des résumés alterna-
tifs à celui que nous avons proposé, et qui pourrait améliorer les performances obtenues
dans le cadre la thèse. Une autre perspective serait d’étudier la maintenance de résumés
lors de l’ajout ou de la suppression de données dans la base de connaissances. Finale-
ment, nous pourrions également étudier la possibilité d’intégrer la phase d’optimisation
des requêtes dès la phase de calcul des reformulations, et non pas après obtention de ces
dernières.

8



INTRODUCTION

The work done in the context of this thesis is part of the ANR project CQFD and was
financed by both Lannion Trégor-Communauté (LTC) and Région Bretagne (ARED).

Context

In an era defined by its abundance of information, the relentless growth of data presents
both an opportunity and a challenge. As the volume and complexity of data continues to
rapidly expand, the need for effectively and efficiently managing, retrieving and exploiting
this asset grows with it. This challenge has lead to the convergence of two essential fields:
databases and knowledge representation & reasoning; a pivotal area of study that finds
its applications at the very heart of the Semantic Web.

Sir Tim Berners-Lee envisioned the Semantic Web to be an extension to the World
Wide Web that aims to make the web content more meaningful, so that both humans
and computers can understand it. The main idea is to add semantic meaning to web
content. This is achieved through the use of knowledge representation languages, notably
the W3C’s RDF and OWL standards, which offer a formal and structured knowledge
description of Web data that can be interpreted by machines. There is great potential
when it comes to the Semantic Web for it to change the way we manage and reason
on data which may lead to improving traditional web tasks such as search results, data
exchange or decision making. This field is however a work in process and there’s still great
room for improvement.

An essential challenge in this field is the efficient data management, especially query
answering. Many methods are being developed to provide accurate answers, efficiently, to
queries over Semantic data. In this thesis we therefore tackle the problem of performing
efficient management of data described by domain knowledge, as part of the work done
in the ANR CQFD project.
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Ontology-mediated query answering

Ontology-Mediated Query Answering (OMQA) [9] is a modern widely-investigated
data management problem in Artificial Intelligence, Databases and Semantic Web. It
involves asking database-style queries on a Knowledge Base (KB).

OMQA consists in answering queries over a knowledge base, in
order to improve the completeness of query answering with the use
of background domain knowledge.

Ontology-mediated Query Answering (OMQA)

A KB is a First Order (FO) theory made of a database, which is a set of facts that
models the application data, and an ontology, which is a set of axioms that holds on the
database and that models the application’s domain knowledge. OMQA has been mainly
studied for KBs expressed using datalog± [15] and existential rules [8], description logics [6]
thus OWL 1, or RDF 2

Performing query answering tasks on a KB involves reasoning on the KB’s database
using the KB’s ontology. The notable difference between this query answering setting
and the traditional database one is that OMQA must take into account both the explicit
facts stored in the KB’s database and the implicit facts that can be deduced from the
database using the ontology when computing answers to queries. To tackle this problem,
several methods were devised by the literature, which involve embedding the ontological
knowledge into either the data, the query or both.

There are currently two main OMQA techniques that are adopted by the literature.
Both of them attempt to reduce the problem of query answering on a KB to the standard
problem of query evaluation on relational databases.

The first technique is called FO-rewriting e.g., [19]. It involves rewriting an incoming
query asked on a KB into a so-called query reformulation. Using this method, the answers
to the initial query are obtained by evaluating the query reformulation on the KB’s
database.

1. https://www.w3.org/OWL
2. https://www.w3.org/RDF
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Language First-order logic syntax Relational algebra syntax
CQ q(x̄) = ∃ȳ ∧n

i=1 atomi q(x̄) = Πx̄(⋊⋉n
i=1 atomi)

UCQ q(x̄) = ∨n
i=1 CQi q(x̄) = ⋃n

i=1 CQi

JUCQ q(x̄) = ∧n
i=1 UCQi q(x̄) = Πx̄(⋊⋉n

i=1 UCQi)
SCQ q(x̄) = ∃ȳ ∧n

i=1
∨mi

j=1 atomj
i q(x̄) = Πx̄(⋊⋉n

i=1
⋃mi

j=1 atomj
i )

USCQ q(x̄) = ∨n
i=1 SCQi q(x̄) = ⋃n

i=1 SCQi

Table 1 – Main FO query languages used for FO-rewriting

Query reformulation language
KB language UCQ USCQ JUCQ datalognr

datalog±/existential rules [38, 39, 46] [60] [53, 40]
description logics/OWL [19, 54, 24, 61] [14] [55]
RDF/S [37, 11] [13]

Table 2 – Main related works on conjunctive query answering via FO-rewriting

The second technique is called materialization, e.g., [1]. It involves completing the KB’s
database with all the facts that can be deduced from it using the KB’s ontology. Using
this method, the answers to the initial query are obtained by evaluating the (original)
query on the augmented KB’s database.

The combination of FO-rewriting and materialization, called the combined or hybrid
approach, has also been investigated, e.g., [47].

Essentially, both FO-rewriting and materialization are useful because, although there
exist some simple OMQA settings in which they compete, e.g., [3], there also exist many
OMQA settings where only a single technique is applicable, e.g., [8].

In this thesis, we focus on FO-rewriting, which was introduced in [19]. This technique
has been largely studied in OMQA settings consisting of:

• Queries expressed as conjunctive queries (CQs),
• KBs expressed using datalog± and existential rules, description logics and OWL,

or RDF with RDFS schema (RDF/S),
• Query reformulations expressed as unions of conjunctive queries (UCQs) and non-

recursive datalog programs (datalognr) that unfold to UCQs, unions of semi-conjunctive
queries (USCQs), or joins of unions of conjunctive queries (JUCQs).

These languages and their respective syntaxes in both FO logic and relational algebra are
recalled in Table 1 above. The main related works in these OMQA settings is given in
Table 2 above. We consider all of these OMQA settings in this thesis.
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Figure 1 – Standard OMQA via FO-rewriting

Standard OMQA via FO-rewriting is illustrated in Figure 1 above. Given a query q

asked on a KBK composed of an ontologyO and a databaseD, OMQA using FO-rewriting
is performed over two steps:

1. Reformulation step: Rewrite q into a query reformulation qO that compiles the
axioms from O into q.

2. Query evaluation step: Compute the correct answers of q on K by evaluating
qO on an RDBMS that stores D.

Motivations

The goal of this thesis is to optimize OMQA via FO-rewriting. The idea on which
this thesis builds is that a query reformulation qO may be large and complex to evaluate,
e.g., [60, 14, 40]. We point out that FO-rewriting is indeed both ontology-dependent and
data-independent (recall Figure 1), hence the query reformulation qO must accommodate
to all the possible databases, i.e., all the ways databases may store answers to q according
to O, and cannot be specific to the particular database D of K.

So far, to the best of our knowledge, and similarly to semantic query optimization for
deductive databases, e.g., [22], query optimization for FO-rewriting has focused on study-
ing equivalent representations of query reformulations that can be evaluated faster: mini-
mal reformulations (e.g., [24, 46]), compact reformulations (e.g., [40, 60]) or cost-based re-
formulations (e.g., [13, 14]). However, because these optimizations are ontology-dependent
and data-independent, optimized query reformulations remain complex to evaluate. They
correspond to syntactically different but semantically equivalent variants of non-optimized
query reformulations. Consequently, these reformulations still need to accommodate to all
the possible databases, and not to just the fixed database at hand.

12
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The research question that this thesis addresses is therefore:

Can we optimize FO-rewriting by making it data-dependent?

Research Question

Main Contributions

The main contribution of this thesis is a novel optimization framework for OMQA via
FO-rewriting. It is illustrated in Figure 2 below. The black edges represent the standard
FO-rewriting used in the literature: solid edges are maintained within our framework,
dashed edges are discarded. The blue edges represent our contribution via the proposed
framework.

Figure 2 – Standard and optimized OMQA via FO-rewriting

This framework capitalizes on the ontology-dependent and data-independent query
optimization for FO-rewriting that have been studied so far in the literature (Reformula-
tion step in Figure 2). Its originality is to include complementary data-dependent query
optimization for FO-rewriting (Summarization and Optimization steps in Figure 2). Its
purpose is to optimize the query reformulation qO produced by any off-the-shelf FO-
rewriting algorithm into a query reformulation qK that is optimized for the particular
database D of K: qK is simpler than qO, as it just needs to accommodate to D, so that it
can be evaluated faster; at the same time it has the same answers as qO on D in order to
guarantee the correctness of query answering on K. Crucially, qO is optimized for D using
a summary S of D, which is a typically small approximation of D. This allows a trade-off
between optimization time and the extent to which qK is optimized for D.
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More specifically, in this thesis, we provide the following contributions:

Formalizing the problem

We formalize the problem of data-dependent optimization of a query reformulation
using the well-known notion of query containment [1]. To the best of our knowledge,
data-dependent optimization of OMQA via FO-rewriting has never been considered in
the literature.

The Ω optimization function

We devise an optimization function Ω that rewrites a query reformulation into a sim-
pler contained one, i.e., a simpler more specific one, with the same answers on a fixed
database. Containment and query answering correctness are ensured by appropriately
removing useless sub-queries from the query reformulation, i.e., sub-queries that do not
participate in producing answers on the given database while they may take time to be
evaluated.

Database summaries

We define a summary of a database, which is a (typically much smaller) homomorphic
database. A summary can be used by our Ω optimization function in place of the original
database to perform faster a sound but incomplete identification and removal of useless
sub-queries (i.e., some useless sub-queries may not be removed with a summary). Then,
we also adapt the quotient operation from graph theory [41] in order to build concrete
summaries of databases that are tailored to our needs: both small summaries for fast
optimization time and precise summaries to limit the incompleteness of identifying useless
sub-queries.

Experimental Evaluation

We experimentally evaluate our optimization framework on the well-established LUBM∃

benchmark for DL-liteR KBs. DL-liteR is the description logic that underpins the W3C’s
OWL2 QL profile for OMQA on large KBs [19]. We show that our optimization frame-
work significantly improves query answering time performance in general (up to 3 orders
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of magnitude), as well as consistency checking that turns out to be a simple case of query
answering in DL-liteR KBs (up to 4 orders of magnitude).

OptiRef tool

We discuss the implementation of our optimization framework, which implements the
Ω function and relies on database summaries we define. We also propose a tool which
allows users to visually examine query results from our experiments over a KB. We use
intuitive visualizations to highlight the results of evaluating a query over several DBMS
and several sizes as well as to show a breakdown of the query structure in a logical form.
This tool allows users to better understand and to assess the benefits of our framework.

Thesis Outline

This thesis is organized as follows:
— Chapter 1 gives a background on OMQA. It introduces the notion of knowledge

bases and data management tasks before going over the FO-rewriting technique
on which we focus in this thesis.

— Chapter 2 presents the motivations behind our work, before formally defining the
problem statement. This chapter then introduces the main contributions of our
work: the Ω optimization function and the database summaries.

— Chapter 3 is an overview of our experiments and main results.
— Chapter 4 discusses the implementation of our framework as well as the GUI in-

terface.
— Chapter 5 positions our work w.r.t. the state-of-the-art.

The work described in this thesis was published in the International Semantic Web
Conference (ISWC) in 2021 [44], the French Conference on Advanced Databases (BDA)
in 2022 [28, 29] and the ACM Web Conference (WWW) in 2023 and 2024 [30, 31].
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In this chapter, we delve into the basics of ontology-mediated query answering. First,
we define knowledge bases we consider (Section 1.1). Next, we discuss data management
tasks (Section 1.2) which are namely consistency checking (Section 1.2.1) as well as query
answering (Section 1.2.2). Finally, we focus on the FO-rewriting technique used for OMQA
(Section 1.3).

1.1 Knowledge bases

A KB is a formal representation of knowledge in the form of an FO theory. It is
composed of a database, which is a set of facts that models the application data, and
an ontology, which is a set of deductive constraints that holds on the database and that
models the application domain.

In this thesis, we consider FO KBs expressed using datalog± or existential rules [15,
17, 16, 18, 8], which we simply call rules hereafter. A KB K is of the form K = (O,D),
with O the KB’s ontology and D the KB’s database.

Ontology: An ontology is a finite set of rules of the form:

∀x̄(q1(x̄)→ q2(x̄)) or ∀x̄(q1(x̄)→ ⊥)
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In these rules, ⊥ denotes the FO constant false, and q1 and q2 are CQs (recall Table 1,
p. 11) with the same set x̄ of answer variables. From a modeling point of view, rules of
the form ∀x̄(q1(x̄) → q2(x̄)), which are said positive, are used to derive entailed facts in
the KB, while rules of the form ∀x̄(q1(x̄) → ⊥), which are said negative, are integrity
constraints used to derive inconsistencies in the KB.

Database: A database D is a finite set of incomplete facts, i.e., whose terms are con-
stants and existential variables modeling missing or unknown values [45, 1], which we
simply call facts from now.
The semantics of a KB K = (O,D) is that of the FO formula:

(∧
rule∈O rule) ∧ ∃v̄(∧

fact∈D fact)

where v̄ is the set of variables that appear in D.
We remark that a KB can be viewed as a deductive, incomplete relational database

interpreted under the so-called open-world assumption (OWA) [1], i.e., under standard
FO semantics. We recall that OWA departs from the closed-world assumption (CWA)
typically used for relational databases. Under CWA a fact not stored in the database is
considered to be false, while under OWA, a fact not stored in the database may be true
if it can be deduced, a.k.a. entailed, from the stored facts and the constraints that hold
on them.

Notation. We use small letters to denote constants, e.g., f, h, etc., and small italic
letters to denote variables, e.g., x, y, etc. Also, we omit quantifiers in rules to simplify the
notations since it follows from the FO semantics that existential variables solely appear
on the right-hand side of → 1.

A note on the running example. While the work presented in this thesis can be
applied to many KBs, to keep our running example simple, we choose to illustrate it
using DL-liteR KBs. DL-liteR is the description logic that underpins the W3C’s OWL2
QL standard for OMQA over large data volumes [63], due to a good balance between
expressiveness and computational complexity [19]. In Table 1.1 (p. 19), we use rules to
write DL-liteR ontology constraints. It is worth noting that standard description logics [6],
like DL-liteR, only use unary predicates called concepts and binary predicates called roles.

1. ∀x̄(∃ȳ ∧m
i=1 ai → ∃z̄ ∧n

j=1 bj)⇔ ∀x̄(¬(∃ȳ ∧m
i=1 ai) ∨ ∃z̄ ∧n

j=1 bj)⇔ ∀x̄(∀ȳ¬(∧m
i=1ai) ∨ ∃z̄ ∧n

j=1 bj)⇔
∀x̄∀ȳ(∧m

i=1ai → ∃z̄ ∧n
j=1 bj)
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Positive Rules Negative Rules
∀x(A1(x)→ A2(x)) ∀x(A1(x) ∧ A2(x)→ ⊥)
∀x(A1(x)→ ∃yR1(x, y)) ∀x∀y(A1(x) ∧R1(x, y)→ ⊥)
∀x(A1(x)→ ∃yR1(y, x)) ∀x∀y(A1(x) ∧R1(y, x)→ ⊥)
∀x∀y(R1(x, y)→ A1(x)) ∀x∀y(R1(x, y) ∧ A1(x)→ ⊥)
∀x∀y(R1(y, x)→ A1(x)) ∀x∀y(R1(y, x) ∧ A1(x)→ ⊥)
∀x∀y(R1(x, y)→ ∃zR2(x, z)) ∀x∀y∀z(R1(x, y) ∧R2(x, z)→ ⊥)
∀x∀y(R1(x, y)→ ∃zR2(z, x)) ∀x∀y∀z(R1(x, y) ∧R2(z, x)→ ⊥)
∀x∀y(R1(y, x)→ ∃zR2(x, z)) ∀x∀y∀z(R1(y, x) ∧R2(x, z)→ ⊥)
∀x∀y(R1(y, x)→ ∃zR2(z, x)) ∀x∀y∀z(R1(y, x) ∧R2(z, x)→ ⊥)
∀x∀y(R1(x, y)→ R2(y, x)) ∀x∀y(R1(x, y) ∧R2(y, x)→ ⊥)
∀x∀y(R1(x, y)→ R2(x, y)) ∀x∀y(R1(x, y) ∧R2(x, y)→ ⊥)

Table 1.1 – Positive and Negative DL-liteR rules

Example 1 (Running example). Let us consider the DL-liteR KB K = (O,D), where:

O = {r1 = ww(x, y)→ ww(y, x),
r2 = sup(x, y)→ ww(x, y),
r3 = PhD(x)→ sup(y, x),
r4 = sup(x, y) ∧ sup(y, z)→ ⊥}

and

D = {R(f), R(h), sup(f, w), sup(h, w), PhD(w), ww(f, h), R(u), ww(u, c), PhD(c)}.

The ontology O is made of four rules which state the following:
- r1 : working with (ww) someone is a symmetric relation,
- r2 : supervising someone (sup) is a particular case of working with someone,
- r3 : PhD students (PhD) are necessarily supervised by someone,
- r4 : you cannot supervise and be supervised simultaneously.
Meanwhile, the database stores nine facts which state the following:

- François (f) and Hélène (h) are researchers (R),
- u is an unknown researcher (R),
- Wafaa (w) and Cyrielle (c) are PhD students (PhD),
- François (f) and Hélène (h) supervise (sup) Wafaa (w),
- François (f) works with (ww) Hélène (h),
- u works with (ww) Cyrielle (c).
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For reading convenience, we also represent a database as a node-labeled and edge-
labeled graph: nodes are the terms of the database, a node n has label L iff L(n) is a fact
in the database, there exists an edge with label L from n1 to n2 iff L(n1, n2) is a fact in
the database.

The graph representation of the above database D is:

w

PhD

f

R
h

R

c

PhD
u

R

supsup

ww

ww

⋄

1.2 Data management tasks

We consider the two main data management tasks on KBs: consistency checking and
query answering.

1.2.1 Consistency checking

A KB K is consistent if and only if it does not entail ⊥, i.e., K ̸|= ⊥ where |= is the
FO entailment relation.

We remark that, in our setting, inconsistency may only result from interactions be-
tween both the ontology and the database. Clearly, a database alone is consistent because
it is a conjunction of positive facts, and an ontology alone is consistent because negative
rules need (entailed) facts to derive ⊥.

Example 2 (Cont.). K is consistent because ⊥ is not derivable from the only negative
rule r4 and the (entailed) facts for the sup relation: sup(f, w) and sup(h, w) in D plus
∃y1 sup(y1, w) and ∃y2 sup(y2, c) that respectively follow from PhD(w) and r3 and from
PhD(c) and r3.

Let us consider the KB K⊥ = (O,D⊥) where D⊥ is obtained by adding sup(c, w) to D.
Its graph representation is:
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w

PhD

f

R
h

R

c

PhD
u

R

sup

supsup

ww

ww

K⊥ is inconsistent because r4 derives ⊥ from sup(c, w) in D⊥ together with the entailed
fact ∃y2 sup(y2, c) that is derived from PhD(c) and r3. ⋄

1.2.2 Query Answering

We consider FO queries of the form q(x̄) = ϕ, where q is the query name, x̄ is the tuple
of answer variables of q, and ϕ is the FO formula modeling what q is asking for. The set
of the free (a.k.a. non-quantified or unbound) variables of ϕ exactly fits with the answer
variables. The arity of a query q(x̄) is the cardinality of x̄. q(x̄) is said Boolean if the set
of answer variables is empty, and then x̄ is the empty tuple ⟨⟩.

A certain answer to a query q(x̄) of arity n on a KB K is a tuple t̄ of n constants from
K such that K |= q(t̄), where q(t̄) is the Boolean query obtained by instantiating x̄ with
t̄ in q; when q is Boolean, t̄ = ⟨⟩. From now, we denote by ans(q,K) the answer set of q

on K and we remark that if q is Boolean then the answer is true when ans(q,K) = {⟨⟩}
and the answer is false when ans(q,K) = ∅.

Unless otherwise specified, we consider queries on KBs expressed in the FO query
language of conjunctive queries (CQ for short), a.k.a. select-project-join queries. CQ is
the most commonly-adopted language for querying KBs in the OMQA literature. A CQ is
a conjunction of atoms and each variable in the CQ is either free or existentially quantified.
The FO and relational algebra syntax of CQs is shown in Table 1 (p. 11).

Example 3 (Cont.). Let us consider the CQ asking for the supervisees who work with h
that must be a researcher: q(x) = ∃y R(h) ∧ ww(h, x) ∧ sup(y, x).

Its answer set on K is ans(q,K) = {w}: w is obtained from R(h) ∈ D, sup(f, w) ∈ D
or sup(h, w) ∈ D, and the fact ww(h, w) entailed from sup(h, w) ∈ D and r2.
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Its answer set on K⊥ is ans(q,K) = {f, h, w, c}, since K⊥ is inconsistent and therefore
entails q for every tuple made of a single constant. We point out here that asking queries
on an inconsistent KB is of little practical interest. ⋄

1.3 Data management technique

We focus on optimizing OMQA via FO-rewriting [19]. As we shall see soon, this tech-
nique can also be used for consistency checking, which is a particular case of query an-
swering in our KB setting.

FO-rewriting reduces query answering on KBs to query evaluation over relational
database in FO-rewritable OMQA settings. An OMQA setting is a pair (LQ,LK) of query
and KB languages. Such a setting is FO-rewritable if for any LQ query q and any LK

ontology O, there exists an FO query qO, called a reformulation of q w.r.t. O, such that for
any consistent KB K = (O,D): ans(q,K) = eval(qO,D), where eval(qO,D) the relational
evaluation of qO on D.

We remark that we only consider the practically relevant case of consistent KBs for
query answering, as discussed in the preceding example. Furthermore, each FO-rewriting
algorithm computes query reformulations in a fixed FO query dialect. Recall Table 2
(p. 11), for instance, where CQs are reformulated into UCQs, USCQs, JUCQs or datalognr

programs. We therefore term FO-rewriting setting a triple of query language LQ, KB
language LK and query reformulation language LR, denoted by (LQ,LK ,LR), such that
(LQ,LK) is an FO-rewritable OMQA setting for which query reformulations are expressed
in LR.

Moving forward, we focus on FO-rewriting settings with queries expressed in the lan-
guage of CQs and query reformulations expressed in the languages of UCQs, USCQs and
JUCQs. These setting are widely considered in the literature on FO-rewriting (e.g., Ta-
ble 2, p. 11). We remark that datalognr reformulations must be unfolded into UCQs
reformulations, which we consider, in order to be evaluated by RDBMSs.

A key property of the FO-rewriting settings that we consider, on which our work
relies, is that a query reformulation qO is equivalent to the CQ q w.r.t. the ontology O.
In particular, qO is equivalent, regardless of the language used to express it, to the union
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of all the CQs that are maximally-contained in q w.r.t. O, i.e., the union of all the most
general CQ specializations of q w.r.t. O. In practice, these maximally-contained queries
can also be seen as all the ways databases may store answers to q according to O.

We recall that:
• A query q′ is contained in a query q, noted q′ ⊆ q, if and only if for each database
D, eval(q′,D) ⊆ eval(q,D).

• A query q′ is contained in a query q w.r.t. an ontology O, noted q′ ⊆O q if and
only if for each KB K = (O,D), ans(q′,K) ⊆ ans(q,K).

• A query q′ is maximally-contained in a query q w.r.t. an ontology O if and only if
(i) q′ ⊆O q and (ii) for any other query q′′ ⊆O q, if q′ ⊆ q′′ then q′′ ⊆ q′ (i.e., q′

and q′′ are equivalent).

Notation. We omit the existential quantifications of variables to simplify the nota-
tion of queries: non-answer variables are existentially quantified in the query languages
we consider (recall Table 1). For instance, the CQ of Example 3 is now written q(x) =
R(h) ∧ ww(h, x) ∧ sup(y, x).

Example 4 (Cont.). The following query qUCQ is the UCQ reformulation of q w.r.t. O
computed by the Rapid tool [24]: it is the union of all the CQs that are maximally-contained
in q w.r.t. O.

qUCQ(x)=(R(h) ∧ ww(h, x) ∧ sup(y, x)) (1)
∨(R(h) ∧ ww(h, x) ∧ PhD(x)) (2)
∨(R(h) ∧ sup(h, x)) (3)
∨(R(h) ∧ ww(x, h) ∧ sup(y, x)) (4)
∨(R(h) ∧ ww(x, h) ∧ PhD(x)) (5)
∨(R(h) ∧ sup(x, h) ∧ sup(y, x)) (6)
∨(R(h) ∧ sup(x, h) ∧ PhD(x)) (7)

We remark that, within qUCQ, (1) is q itself as q is trivially contained in itself w.r.t. O
and (2) to (7) are CQs maximally-contained in q w.r.t. O that are obtained by specializing
q through one or several specialization steps. Each step uses either a positive rule in O in
a backward fashion or performs the unification of atoms. In our example:

(2) is obtained from (1) in one step by specializing sup(y, x) into PhD(x) using r3;
(3) is obtained from (1) in two steps by first specializing ww(h, x) into sup(h, x) using

r2 and then by unifying sup(h, x) and sup(y, x) into sup(h, x); the intermediate CQ
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Figure 1.1 – UCQ representation of the running example

R(h)∧ sup(h, x)∧ sup(y, x) does not appear in qUCQ because it is simply contained
in (3), thus redundant with it (it is actually equivalent to it);

(4) is obtained from (1) using r1;
(5) can be obtained either from (2) using r1 or from (4) using r3;
(6) is obtained from (4) using r2;
(7) can be obtained either from (4) using r2 or from (6) using r3.

The answer to q on K (i.e., w) results only from (3); this CQ is shown in blue. Figure 1.1
shows a graphical representation of this UCQ where nodes colored in gray represent the
CQs with no answer on D and the blue node represents the CQ (3) having the answer w
on D.

The following query qUSCQ is the USCQ reformulation of q w.r.t. O computed by the
Compact tool [60]; it is actually just an SCQ in this simple running example.

qUSCQ(x) =(R(h))
∧(ww(h, x) ∨ sup(h, x) ∨ ww(x, h) ∨ sup(x, h))
∧(sup(y, x) ∨ PhD(x))

USCQ query reformulations have been introduced to limit, to the extent possible, the
repetition of the same atoms across the CQs of UCQ reformulations. For instance, in
qUCQ, R(h) occurs 7 times, sup(y, x) and PhD(x) occur 3 times each, etc. By contrast,
in qUSCQ, each atom occurs only once. We note that the CQ (3) in qUCQ is equivalently
encoded here into the three pieces shown in blue in qUSCQ: R(h) ∧ sup(h, x) in qUCQ is
equivalent to R(h)∧ sup(h, x)∧ sup(y, x) where sup(y, x) is superfluous, which is encoded
in qUSCQ up to the distribution of the ∧’s over the ∨’s.
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Figure 1.2 – USCQ representation of the running example

Figure 1.2 is a graphical representation of this USCQ where nodes colored in gray
represent atoms with no answer on D and the blue nodes represent atoms (3) with an
answer on D.

The following query qJUCQ is a JUCQ reformulation of q w.r.t. O computed by the
GDL tool [14].

qJUCQ(x)=(R(h))∧
(
(ww(h, x) ∧ sup(y, x))
∨(ww(h, x) ∧ PhD(x))
∨(sup(h, x))
∨(ww(x, h) ∧ sup(y, x))
∨(ww(x, h) ∧ PhD(x))
∨(sup(x, h) ∧ sup(y, x))
∨(sup(x, h) ∧ PhD(x))

)
JUCQ reformulations have been introduced to limit the repetitions of sub-CQs across

the CQs of UCQ reformulations. A JUCQ reformulation of a query is obtained by:
(i) Choosing a set of possibly overlapping sub-CQs that covers the whole query
(ii) Joining their UCQ reformulations
Note that not all query covers can be chosen, we refer to [14] for details.
In contrast to UCQ and USCQ reformulations, there exists more than just a single

JUCQ reformulation for a given query (up to redundancy): the different sets of sub-CQs
that cover the query lead to different JUCQ reformulations. This allows for exploring a
space of equivalent JUCQ reformulations among which one with lowest estimated evalu-
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Figure 1.3 – JUCQ representation of the running example

ation cost, w.r.t. the RDBMS at hand, is chosen. qJUCQ results from joining the UCQ
reformulations of R(h) and of ww(h, x) ∧ sup(y, x). Here, R(h) appears only once (like
in qUSCQ) instead of 7 times (like in qUCQ) if it were distributed on the reformulations of
ww(h, x) ∧ sup(y, x) using ∧. Also, the CQ (3) in qUCQ is equivalently encoded into the
two pieces shown in blue in qJUCQ, up to the distribution of ∧ over the ∨’s.

Figure 1.3 is a graphical representation of this JUCQ where nodes colored in gray
represent the CQs with no answer on D and the blue nodes represent CQs (3) having an
answer on D. ⋄

Finally, consistency checking can be reduced to CQ answering in our KB setting be-
cause the negation of a negative rule r = ∀x̄(q1(x̄)→ ⊥) is precisely the Boolean CQ de-
noted by q¬r() = ∃x̄ q1(x̄) 2 that checks if r derives ⊥ [20]. In particular, a KB K = (O,D)
is consistent if and only if none of the negative rules in O derives ⊥ from the facts stored
in D plus the facts entailed from D using the positive rules in O, i.e., the negation of every
negative rule in O has no answer on the consistent KB consisting of the positive rules in
O and D. Recall that, for a Boolean query, an empty answer set means false, while an
answer set consisting of the empty tuple ⟨⟩ means true.

Formally, a KB K = (O,D) is consistent if and only if ∨
r∈O− ans(q¬r, (O+,D)) = ∅,

where O− and O+ denote the disjoint subsets of O consisting respectively of its negative
and positive rules. Therefore, in FO-rewritable OMQA setting that allows CQ answering,

2. ¬∀x̄(q1(x̄)→ ⊥)⇔ ¬∀x̄(¬q1(x̄) ∨ ⊥)⇔ ¬∀x̄¬q1(x̄)⇔ ∃x̄q1(x̄)
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K = (O,D) is consistent if and only if ∨
r∈O− eval(qO+

¬r ,D) = ∅, with qO+
¬r the reformulation

of q¬r w.r.t. O+ introduced above.

Example 5 (Cont.). Consider now that we want to check the consistency of K and K⊥

via FO-rewriting. Since r4 is the only negative rule in these KBs, the consistency of K
and K⊥ is checked using a reformulation of the negation of r4, i.e., a reformulation of the
Boolean CQ q¬r4() = sup(x, y) ∧ sup(y, z).

The UCQ, USCQ and JUCQ reformulations of q¬r4() w.r.t. O+, computed by the same
tools as in the preceding example, are:

qUCQ
¬r4 () = qJUCQ

¬r4 () = (sup(x, y) ∧ sup(y, z)) ∨ (PhD(y) ∧ sup(y, z))

qUSCQ
¬r4 () = (sup(x, y) ∨ PhD(y)) ∧ (sup(y, z))

We observe that due to the simplicity of q¬r4(), a JUCQ reformulation must be either
the UCQ one or the UCSQ one.

The KB K is checked consistent because:

eval(qUCQ
¬r4 ,D) = eval(qJUCQ

¬r4 ,D) = eval(qUSCQ
¬r4 ,D) = ∅.

Meanwhile the KB K⊥ is checked inconsistent because:

eval(qUCQ
¬r4 ,D⊥) = eval(qJUCQ

¬r4 ,D⊥) = eval(qUSCQ
¬r4 ,D⊥) = {⟨⟩}.

In the latter case, the empty tuple ⟨⟩ results from the sub-queries shown in blue. ⋄

1.4 Conclusion

In this chapter, we went over the basics of OMQA, which constitute the building blocks
of the work in this thesis. We also introduced OMQA via the FO-rewriting technique, on
which we focus in this thesis.

In the following chapters, we investigate how OMQA performances can be significantly
improved.
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In this chapter, we formally define our optimization problem and motivations behind
it, before moving on to propose an optimization framework for FO-rewriting, with the goal
of achieving higher efficiency for OMQA. We first examine FO-rewriting more closely, in
order to motivate the potential for optimization (Section 2.1), before formally stating the
problem we study in this thesis (Section 2.2). Next, we focus on defining the contribu-
tion of this thesis: an optimization framework for FO-rewriting, which builds on a query
optimization function Ω (Section 2.3) that relies on database summaries (Section 2.4).

2.1 Motivations

One of the main characteristics of FO-rewriting, as defined by the literature, is that
query answering is performed truly independently from the queried data: FO-rewriting
is data-independent. Under FO-rewriting, a query q is reformulated w.r.t. an ontology
O into a query reformulation qO such that for all databases D consistent with O,
ans(q, (O,D)) = eval(qO,D) holds. In other words, a single query reformulation qO is
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able to answer the query q on all the consistent KBs with ontology O. However, we point
out that when this query q is asked on a particular KB K = (O,D), the database D at
hand is just one of all the databases the reformulation qO accommodates to.

We argue that, although theoretically nice, the innate universality of qO makes it
unnecessarily complex, hence needlessly difficult to answer on a particular database D.
This generality of a query reformulation qO follows from the fact that it is equivalent to
the union of all the maximally-contained queries in the query q w.r.t. the ontology O
(see Section 1, p. 17), which can essentially be seen as all the ways databases may store
answers to q according to O. As a consequence, a query reformulation may be large and
complex to evaluate in practice [60, 13, 14]. For instance, the worst-case number of CQs
that are maximally-contained in a CQ q w.r.t. a lightweight RDFS, DL-liteR or datalog±0

ontology, is exponential in the size of the CQ q (number of atoms) [37, 11, 19, 39].
We therefore study the data-dependent optimization of a query reformulation for a

particular KB, in order to trade its universality for better OMQA performance. In partic-
ular, we stress that when the database D is fixed, within the union of all the maximally-
contained queries a query reformulation is equivalent to, many may have no answer on
D (i.e., D does not store answers to q w.r.t. O this way), in which case they are irrele-
vant to D, and constitute a significant overhead to query evaluation. Consequently, the
optimization we propose involves eliminating such irrelevant maximally-contained queries
from query reformulations, to expedite their evaluation.

Example 6 (Cont.). Within qUCQ, all the CQs contained in q w.r.t. O but the CQ (3)
are irrelevant to D, and similarly in qUSCQ and qJUCQ, where these CQs are encoded up
to the distribution of the ∧’s over the ∨’s. ⋄

2.2 Problem statement

Following the previous discussion, we would like to devise an optimization framework
for FO-rewriting that enjoys the following properties:

• Generality: to be used in as many FO-rewriting settings as possible,
• Correctness: to compute the exact answer set of a query,
• Effectiveness: to improve query answering time performance.
We propose a framework which relies on an optimization function Ω that turns a given

query reformulation qO into an optimized query reformulation for a given database D.
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Notation. This optimized query reformulation is hereafter noted qK, as it is specific
to the KB K = (O,D).

For the generality of our framework, the Ω function optimizes query reformulations
from the language of (∧,∨)-combinations of CQs (Definition 1 below). Our framework
thus applies to FO-rewriting settings with reformulation languages included in (∧,∨)-
combinations of CQs, e.g., UCQ, USCQ and JUCQ.

A (∧,∨)-combination of CQs, noted (∧,∨)-CQ, is either a CQ or a
conjunction or union of (∧,∨)-CQs.

Definition 1: (∧,∨)-combination of CQs

The Ω function computes an optimized query reformulation qK contained in qO (item (1)
in Problem 1 below) since qO is equivalent to a union of maximally-contained queries, in
which we remove those irrelevant to a given database D, and removing disjuncts from a
union makes it more specific. However, this containment relationship only ensures that
the answers to qK form a subset of the answers to qO on all the possible databases. For the
correctness of our framework, Ω therefore computes an optimized query reformulation
qK with same answers as qO on the particular database D (item (2) in Problem 1 below).

Finally, for the effectiveness of our framework, the Ω function optimizes qO for D
using a summary S of D (item (3) in Problem 1 below). This allows for a trade-off between
the number of removed irrelevant maximally-contained queries and Ω’s runtime, i.e., opti-
mization time. As we shall see in our experiments, the optimization time may be too high
to improve OMQA time performance when Ω identifies irrelevant maximally-contained
queries in qO with the database D instead of a typically much smaller summary S of it.

The above discussion can be summarized with the formal statement of the research
problem we studied in this thesis.
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Let qO be a (∧,∨)-CQ query reformulation and let D be a database. Define
an optimization function Ω and a summary S of D so that the optimization
of qO for D using S, denoted by qK and computed by Ω(qO,S), satisfies:

1. qK ⊆ qO,

2. eval(qK,D) = eval(qO,D),

3. τ(Ω(qO,S)) + τ(eval(qK,D)) ≤ τ(eval(qO,D)), with τ(·) the time to
compute · in a fixed experimental setup.

Problem 1: Optimization for OMQA via FO-rewriting

We remark that, above, item 1 cannot be safely removed from Problem 1 since, with
only items 2 and 3, qK may be an arbitrary query with the same answer(s) as qO. E.g.,
“Where does The Web Conference 2024 take place?” may be optimized by “Where does
Petra live?” just because they have the same answer, which is Singapore.

2.3 The Ω optimization function

The Ω function we define below, is a function that optimizes query reformulations
from all the query reformulation languages considered so far for OMQA via FO-rewriting
of CQs (i.e., UCQ, USCQ and JUCQ).

2.3.1 Rationale behind the Ω optimization function

When a query reformulation is seen as a (∧,∨)-combination of CQs, these subCQs are
parts of the maximally-contained CQs that the query reformulation models. Recall for
instance Example 4 (p. 23) where the maximally-contained CQ (3) in the UCQ reformu-
lation corresponds to the logical combinations of the subCQs shown in blue in the JUCQ
and USCQ reformulations.

Removing subCQs from a query reformulation seen as (∧,∨)-combinations of CQs
obviously removes all the maximally-contained queries these subCQs are part of, and
crucially for us, removing such subCQs with no answer on a particular database removes
maximally-contained queries that are irrelevant to this database. E.g., in Example 4,
removing from qUSCQ the subCQ sup(x, h) with no answer on D also removes from qUSCQ
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the two irrelevant maximally-contained CQs R(h) ∧ sup(x, h) ∧ sup(x, y) and R(h) ∧
sup(x, h) ∧ PhD(x): without sup(x, h), they cannot be recovered by distributing the ∧’s
over the ∨’s.

The Ω function optimizes a (∧,∨)-CQ query reformulation for a
given database by rewriting it from the bottom up to:

(i) Identify subCQs with no answer on this database.

(ii) Propagate the effect of removing such subCQs within the
query reformulation.

Rationale behind the Ω function

2.3.2 Identifying CQs with no answer on a database

Checking whether a single CQ has no answer on a database can be done easily (e.g., us-
ing exists in SQL) and efficiently in general since RDBMSs are highly-optimized for CQs,
e.g., [56]. However, doing the same check for all the subCQs in a query reformulation may
take significant time, especially when the database is large. To mitigate this issue, Ω
uses database summaries that are (typically small) homomorphic approximations of the
databases they summarize. Using such summaries instead of the databases allows for
trading completeness of identifying CQs with no answer for efficiency, while retaining
soundness.

A database S is a summary of a database D iff (i) there exists a
database-to-summary homomorphism σ from the terms a in D to
the terms in S, i.e., Dσ = S where Dσ is the database obtained
from D by replacing the terms in D by their images in S through
σ, such that (ii) σ maps constants in D to constants in S, while it
maps variables in D to constants or variables in S.

a. We recall that a term is either a variable or a constant in FO logic.

Definition 2: Summary of a database
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In the above definition, (i) ensures that S is a homomorphic approximation of D, while
(ii) ensures the soundness of identifying CQs with no answer on D using S established
by Theorem 1 below. We also note that a database is a particular summary of itself:
D = S holds when the database-to-summary homomorphism σ maps each term to itself,
i.e., when σ is the identity function.

LetD be a database and S a summary of it with the homomorphism
σ. Let q be a CQ asked on D and qσ the CQ obtained from q by
replacing its constants with their images through σ. If qσ has no
answer on S, then q has no answer on D.

Theorem 1

Proof. We prove the theorem by showing that its contrapositive holds, i.e., if q has some
answer on D, then qσ has some answer on S.
If q has an answer on D, then there exists a homomorphism h from q to D such that
h(q) ⊆ D where every free variable is mapped to a constant, every existential variable
is mapped to a constant or variable, and every constant is mapped to itself. Moreover,
the composition σ ◦ h is a homomorphism from q to S such that σ ◦ h(q) ⊆ S where,
by definition of a database summary, every free variable is mapped to a constant, every
existential variable is mapped to a constant or variable, and every constant is mapped to
its image through σ.
Let us now build a homomorphism g from qσ to S such that g(qσ) = σ ◦ h(q) ⊆ S: it
suffices that g maps every variable exactly as σ ◦ h does, while it maps every constant
to itself (constants have already been replaced by their image through σ in qσ). Since,
defined this way, g maps free variables to constants, qσ has an answer on S.

We emphasize that, as pointed out in the example below, if qσ has no answer on S,
then q certainly has no answer on D. On the other hand, if qσ has an answer on S, then
q may or may not have an answer on D.

Example 7 (Cont.). Let us consider the summary S of D with D-to-S homomorphism
σ such that σ(c) = σ(w) = p and σ(f) = σ(h) = r:

S = {R(r), sup(r, p), PhD(p), ww(r, r), ww(r, p)}.

34



2.3. The Ω optimization function

Let us consider now the CQs (1) and (5) in qUCQ, which we name q1 and q5 respectively.
By Theorem 1, since q1

σ(x) = R(r)∧ww(r, x)∧ sup(y, x) has an answer on the summary
S (ans(q1

σ,S) = {p}), then q1 may or may not have an answer on D (here, q1 has no
answer on D), while because q5

σ(x) = R(r)∧ww(x, r)∧PhD(x) has no answer on S, then
for sure q5 has no answer on D.

The graph representation below clearly illustrates the compression obtained from sum-
marizing D into S in our example.
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2.3.3 (∧,∨)-CQ evaluation on databases

The Ω function builds on Theorem 1 to optimize a (∧,∨)-CQ for a database D. It
rewrites a query while (i) identifying its subCQs with no answer on D using a summary
S of it ((1) in Definition 3 below) and (ii) performing a bottom-up removal of the largest
subqueries with no answer on D that these subCQs are the cause of ((2) and (3) in
Definition 3 below).
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Let q be a (∧,∨)-CQ asked on a database D and S be a summary
of D with the database-to-summary homomorphism σ.
The summary-based optimization of q for D using S is the (∧,∨)-
CQ obtained as the result of Ω(q,S), with Ω recursively defined as
follows.
Below, ∅ denotes the empty relation with appropriate arity.
The optimization of a CQ q is:

Ω(q,S) =
 ∅ if ans(qσ,S) = ∅

q otherwise
(1)

where qσ is the CQ obtained from q by replacing its constants by
their images through σ.
The optimization of a conjunction of subqueries ∧n

i=1 qi is:

Ω(
n∧

i=1
qi,S) =

 ∅ if ∃i ∈ [1, n] Ω(qi,S) = ∅∧n
i=1 Ω(qi,S) otherwise

(2)

The optimization of a disjunction of subqueries ∨n
i=1 qi is:

Ω(
n∨

i=1
qi,S) =

 ∅ if ∀i ∈ [1, n] Ω(qi,S) = ∅∨
1≤i≤n, Ω(qi,S) ̸=∅ Ω(qi,S) otherwise

(3)

Definition 3: Summary-based optimization of a (∧,∨)-CQ

In the above definition, the rewriting rule (1) directly follows from the soundness of
identifying CQs with no answer using a database summary (Theorem 1, p. 34), while the
two other rewriting rules (2) and (3) follow from the semantics of the ∧ and ∨ operators,
respectively.

The next theorem establishes the two semantic relationships between a (∧,∨)-CQ
and its summary-based optimization, which correspond to items 1 and 2 in Problem 1
(p. 32). In particular, it states the correctness of summary-based optimization for (∧,∨)-
CQ evaluation on a database.
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Let D be a database, S a summary of D, and q a (∧,∨)-CQ asked
on D. Then, Ω(q,S) ⊆ q and eval(q,D) = eval(Ω(q,S),D).

Theorem 2

Proof. Let us first prove Ω(q,S) ⊆ q.
We prove this by induction on the depth d of q defined as the maximal nesting of the ∧

and ∨ operators on top of CQs, with the induction hypothesis that Ω performs rewritings
(rules (1), (2) and (3) in Definition 3) that are contained in the rewritten query.

Base case, d = 0: rule (1) rewrites q either by (second case) itself or by (first case) ∅,
and clearly, q is contained in itself and ∅ is contained in q.

Induction step, d > 0: rule (2) rewrites a conjunction either by (second case) a con-
tained one (induction) or by (first case) ∅ that is by definition contained in the rewritten
conjunction; rule (3) rewrites a disjunction either by (second case) a contained one (in-
duction), or by ∅ (first case) that is by definition contained in the rewritten disjunction.
Let us now prove that eval(q,D) = eval(Ω(q,S),D).

Again, we prove this by induction on the depth d of q defined as the maximal nesting
of ∧ and ∨ operators on top of CQs, with the induction hypothesis that Ω performs
rewritings (rules (1), (2) and (3) in Definition 3) that are equivalent w.r.t. the database
D.

Base case, d = 0: rule (1) rewrites q either by (second case) itself or by (first case) ∅
if q has no answer on S, hence on D according to Theorem 1, i.e., q is equivalent to ∅ on
D.

Induction step, d > 0: rule (2) rewrites a conjunction either by (second case) an equiv-
alent one (induction) or by (first case) ∅ if a qi subquery has no answer on D (induction),
hence the conjunction is equivalent to ∅ on D; rule (3) rewrites a disjunction either by
(second case) an equivalent one (induction), or by ∅ (first case) if all its subqueries have
no answer on D, hence the disjunction is equivalent to ∅ on D.

Example 8 (Cont.). It can be easily checked that the summary-based optimization of
qUCQ, qUSCQ and qJUCQ for D using S corresponds to the following UCQ, USCQ and
JUCQ, respectively. We also show in purple the disjuncts that would have been additionally
removed if Ω had used D instead of S. However, as we shall see in our experiments, the
optimization time may not amortize when Ω uses a database instead of a summary of it.
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qUCQ
S (x) = Ω(qUCQ,S)=(R(h) ∧ ww(h, x) ∧ sup(y, x))

∨(R(h) ∧ ww(h, x) ∧ PhD(x))
∨(R(h) ∧ sup(h, x))

Figure 2.1 – Optimizing the UCQ from our running example

Figure 2.1 shows the transformation of qUCQ(x) into qUCQ
S (x); 4 empty CQs (in gray) were

discarded, leaving only 2 empty CQs in qUCQ
S (x).

qUSCQ
S (x) = Ω(qUSCQ,S) =(R(h))

∧(ww(h, x) ∨ sup(h, x) ∨ ww(x, h))
∧(sup(y, x) ∨ PhD(x))

Figure 2.2 – Optimizing the USCQ from our running example

Figure 2.2 shows the transformation of qUSCQ(x) into qUSCQ
S (x); one empty CQ (in gray)

was discarded, leaving only 3 empty CQs in qUSCQ
S (x).

qJUCQ
S (x) = Ω(qJUCQ,S)=(R(h))∧

(
(ww(h, x) ∧ sup(y, x))
∨(ww(h, x) ∧ PhD(x))
∨(sup(h, x))

)
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Figure 2.3 – Optimizing the JUCQ from our running example

Figure 2.3 shows the transformation of qJUCQ(x) into qJUCQ
S (x); 4 empty CQs (in gray)

was discarded, leaving only 2 empty CQs in qJUCQ
S (x).

Above, the optimized UCQ and JUCQ reformulations encode 3 contained CQs w.r.t. O
instead of 7, while the USCQ reformulation encodes 6 contained CQs w.r.t. O instead of
7.

For LR ∈ {UCQ, USCQ, JUCQ}, Ω(qLR ,S) ⊆ qLR holds since Ω makes unions more
specific by removing disjuncts, and eval(Ω(qLR ,S),D) = eval(qLR ,D) holds since both qLR

and Ω(qLR ,S) model the CQ (3) that produces the sole answer w.

Let us now consider consistency checking for the consistent KB K = (O,D), which is
checked using the Boolean CQ q¬r4 (recall Example 5).

The summary-based optimization of qUCQ
¬r4 , qUSCQ

¬r4 and qJUCQ
¬r4 for D using S are:

Ω(qUCQ
¬r4 ,S) = Ω(qJUCQ

¬r4 ,S) = ∅ and Ω(qUSCQ
¬r4 ,S) = qUSCQ

¬rC4 .

We remark that the optimized UCQ and JUCQ reformulations indicate that q¬r4 has no
answer on D without requiring any further access to D, while the USCQ reformulation
is not optimized by Ω and requires to be (fully) evaluated on D to find out that it has no
answer on D. ⋄

2.4 Database summarization

We now introduce the concrete database summaries that we use with the Ω opti-
mization function from the preceding section. They are defined by adapting the quo-
tient operation from graph theory [41] to the incomplete relational databases we consider
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in this work. The quotient operation has been widely investigated in the literature for
graph database summarization [50, 21]. Besides, it offers an elegant summarization tech-
nique by decoupling the summarization method, which basically fuses equivalent nodes,
from the high-level specification of equivalent nodes, defined by an equivalence relation 1,
e.g., bisimilarity [2].

Assuming we have an equivalence relation between database terms (the one we use
will be discussed shortly), we define a quotient database, i.e., a quotient-based summary,
as follows.

Let D be a database,≡ be some equivalence relation between terms,
and let c1

≡, . . . , ck
≡ denote, by a slight abuse of notation, both the

equivalence classes of the terms in D w.r.t. ≡ and the terms used
to represent these equivalence classes.
The quotient database of D w.r.t. ≡ is the database D≡ such that:

— R(cα1
≡ , · · · , cαn

≡ ) ∈ D≡ iff there exists R(term1, · · · , termn) ∈
D with termi ∈ cαi

≡ and 1 ≤ αi ≤ k, for 1 ≤ i ≤ n,
— the term cj

≡ in D≡, for 1 ≤ j ≤ k, is a variable if all the
equivalent terms in D it represents according to ≡ are vari-
ables, otherwise it is a constant.

Definition 4: Quotient database

The next proposition establishes that quotient databases can be used by the optimiza-
tion function Ω to identify CQs with no answer on databases. This proposition follows
from the fact that in the above definition, ≡ defines an implicit function that maps the
terms in D to the terms in D≡, which turns out to be the database-to-summary homo-
morphism σ in Definition 2 (p. 33) such that D≡ = Dσ, because the first and second items
in the above definition enforce respectively the conditions (i) and (ii) in Definition 2.

Quotient databases are database summaries.

Proposition 1

1. An equivalence relation is a binary relation that is reflexive, symmetric, and transitive.
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We now introduce the equivalence relation ≡Ω used to build our summaries, i.e., how
database terms are fused into summary terms. The rationale behind its definition is that,
similarly to ER or UML languages, ontology languages [6, 23, 17, 8] are centered on
concepts modeled by unary predicates, which are then interrelated using relationships
modeled by n-ary predicates (with n ≥ 2). We therefore choose to adopt a summarization
centered on the instances of concepts stored in a database: all the terms that are instances
of a same concept in a database are represented by a single term in the database summary
((i) in Definition 5 below), and all the concepts with common instances in the database
(i.e., that join) have the same single term that represents all their instances in the database
summary ((ii) in Definition 5 below).

As we shall see in our experiments, ≡Ω achieves a good tradeoff between size reduction
(≥90%) and completeness of identifying CQs with no answer on the summarized database
(≥92% on average).

≡Ω is the equivalence relation such that two terms term1 and term2

are equivalent within a database D, denoted by term1 ≡Ω term2,
iff (i) both term1 and term2 are instances of the same unary pred-
icate, i.e., concept, or (ii) there exists a term term3 in D such that
term1 ≡Ω term3 and term2 ≡Ω term3.

Definition 5: ≡Ω equivalence relation

Example 9 (Cont.). The summary S in Example 7 is actually the quotient database of D
w.r.t. ≡Ω: it defines two equivalence classes, one for the researchers in D, i.e., {f, h, u},
and one for the PhD students in D, i.e., {w, c}; these two classes are represented in S by
the constants r and p, respectively. ⋄

We discuss the need of summary maintenance in case of database updates in Chapter 5,
as well as how our particular summaries (quotient databases w.r.t. ≡Ω) can be efficiently
updated.

2.5 Conclusion

In this chapter, we discussed the limitations of FO-rewriting for OMQA: the universal-
ity of query reformulations creates an overhead which affects OMQA performance. This
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discussion lead us to define the problem statement: propose a framework that optimizes
query reformulations w.r.t. to the database the KB accommodates to, all while retaining
correctness, effectiveness as well as generality.

Next, we discussed the main contributions of our work. We defined the Ω optimiza-
tion function, which optimizes query reformulations by discarding from them irrelevant
subqueries w.r.t. to the database we are interested in. We also defined the database sum-
maries we use with our Ω function in place of the databases, to allow a tradeoff between
optimization time and the completeness of discarding irrelevant subqueries from query
reformulations.

The next chapters will focus on the experiments we conducted and to evaluate the
benefits of our optimization framework.
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We carried out a set of experiments to evaluate the performance improvements that our
work on optimizing FO-rewriting for query answering may bring in practice. We comment
on the results below.

First, we briefly describe our experimental setup (Section 3.1). Next, we comment on
our summarization technique (Section 3.2). Then, we discuss the results we obtained for
for query answering (Section 3.3) and consistency checking (Section 3.4).

Finally, we conclude on our findings (Section 3.5).

3.1 Experimental setup

We implemented our optimization framework in a prototype called OptiRef, using Java
14. OptiRef generates optimized reformulations over two steps, according to Figure 2:

(i) Summarization: OptiRef computes quotient databases w.r.t. the ≡Ω equivalence
relation (recall Section 2.4, p. 39).
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(ii) Optimization: OptiRef optimizes the query reformulations using the Ω function
(recall Section 2.3, p. 32). The optimization is made either with respect to the
original database or with respect to the summarized database (a.k.a. the quotient
database).

We used the Ω function for summary-based optimization of query reformulations in the
following FO-rewritable OMQA settings: (CQ, DL-liteR, UCQ), (CQ, DL-liteR, USCQ),
(CQ, DL-liteR, JUCQ).

In order to conduct our experiments, we had to rely on several tools. These tools
allowed us to build our KBs and store them and then perform query reformulations
according to the methods provided in the literature. These tools are detailed below.

Knowledge Bases (KB) For our KBs, we relied on the well-established extended
LUBM benchmark [51] a.k.a. LUBM∃. It is an adaptation of the Leight University bench-
mark [42], a.k.a. LUBM, to the DL-liteR description logic [19].

We chose this benchmark for two reasons. First, DL-liteR is the most expressive KB
language for which the reformulation of CQs into UCQ, USCQ and JUCQ reformulations
has been studied. Second, this benchmark is widely-considered in the OMQA literature
and provides opportunities to reuse and adapt many available queries to our needs.

The ontology We used the LUBM∃
n ontology with default value n = 20. In the

ontology name LUBM∃
n, ∃ indicates that incomplete facts can be derived using the positive

rules and n indicates that every unary relation a.k.a. concept in the original LUBM
ontology is specialized into n subconcepts in LUBM∃

n, e.g., Course, Professor, Student,
etc. The default value n = 20 is considered reasonably challenging and is widely adopted
in the literature (the higher the n value, the higher the number of contained queries
encoded in query reformulations).

The LUBM∃
20 ontology is made of 449 positive rules over 163 relations: 128 unary

relations or concepts, and 35 binary relations or relationships. We note that LUBM∃
n

ontologies do not contain negative rules, i.e., integrity constraints.

The data We used the EUGen (v0.1b) data generator provided with the Extended
LUBM benchmark to generate databases of increasing sizes. The tool generates synthetic,
repeatable and customizable data over the LUBM ontology. We are able to select the seed
for random number generation and the number of universities to consider, allowing us to
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generate random, potentially very large datasets.

RDBMSs We used the popular, commercial or open-source RDBMSs to store our
databases and their summaries, notably: DB2 (v11.5.5), MySQL Community (v8.0.34)
and PostgreSQL (v14.2). Our choice was based on the RDBMSs’ popularity as robust
systems and because they are commonly used in the OMQA literature.

Data Layout We adopted the data layout of [14], for both the databases and the
summaries, which was found to be the most efficient for evaluating query reformulations
on DL-liteR KB’s database. DL-liteR uses unary relations for concepts and binary relations
for relationships. As such, unary relations are stored as unary tables and binary relations
are stored as binary tables. Moreover, all the values stored in these tables are dictionary-
encoded into integers; the dictionary is stored as a binary table. Finally, for a database
summary, the database-to-summary homomorphism σ, which maps the database terms to
the summary terms, is stored as a binary table. For the above tables, each unary table has
an index on its unique attribute and each binary table has the two two-attributes indexes.

Query Reformulation Tools To compute query reformulations, we used the Rapid
(v0.93) [24], Compact (v1.0b6) [60] and GDL (v1.0) [14] FO-rewriting tools that respec-
tively compute UCQ, USCQ and JUCQ reformulations of CQs w.r.t. DL-liteR ontologies.
They load and keep in memory the ontology w.r.t. which CQs are reformulated.

While Compact and GDL are the only options to respectively compute USCQ and
JUCQ query reformulations, there are other tools besides Rapid that can be used to
compute UCQ query reformulations, e.g., Graal [7], Iqaros [61], Nyaya [62], Presto [55],
Requiem [54], etc. Choosing Rapid instead of another tool does not affect our conclusions,
as reformulation time is negligible w.r.t. both optimization and evaluation times: refor-
mulation is performed w.r.t. the in-memory ontology, while optimization and evaluation
is performed w.r.t. the on-disk data (summary and database).

Hardware We used Ubuntu 20.04.2 Linux server with Intel Xeon 4215R 3.20GHz CPU,
128GB of RAM, and 7TB of fast HDD.

Further implementation details will be provided in the next chapter.
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3.2 Database summarization

Database D |D| |S| size reduction (%) DB2 MySQL PostgreSQL
LUBM1M 1,186,832 93,440 92.127% 60 58 15

LUBM10M 10,793,976 843,526 92.185% 273 609 86
LUBM50M 53,328,357 4,159,768 92.2% 3,121 2,899 308

LUBM100M 106,596,211 8,315,828 92.199% 3,523 5,925 699
LUBM150M 159,899,201 12,474,239 92.199% 8,693 8,661 1,100

Table 3.1 – Characteristics of our databases, their summaries, and summarization time
per RDBMS (in seconds)

We generated five LUBM databases of increasing size: LUBM1M, LUBM10M,
LUBM50M, LUBM100M and LUBM150M. The name of a database indicates the number
of stored facts in millions. Databases are created such that LUBM1M ⊆ LUBM10M ⊆
LUBM50M ⊆ LUBM100M ⊆ LUBM150M, where ⊆ means set inclusion, so that query
answering becomes harder as data grows.

For database summarization, we relied on the union-find data structure for disjoint
sets [25], since equivalence classes of database terms w.r.t. ≡Ω are disjoint sets of equiva-
lent terms w.r.t. ≡Ω. This data structure supports two main operations, union and find,
in optimal constant amortized time complexity [57, 58], i.e., time complexity is almost
constant over a sequence of union or find operations. Union is used to state which values
must be in a same set, and results in merging the sets these values belong to. Find returns
the representative value of the set a given value belongs to.

We first compute the homomorphism σ from the database D to the summary S (Def-
inition 2) w.r.t. the ≡Ω equivalence relation (Definition 5, p. 41). Given a union-find data
structure for disjoint sets of integers, we use union to state that the (integer-encoded)
terms stored in each unary relation in D must be in a same set, as these terms are equiv-
alent w.r.t. ≡Ω (condition (i) in Definition 5). By definition of union, this ensures that
if unary relations share some terms, in which case all the terms of these relations are
equivalent w.r.t. ≡Ω (condition (ii) in Definition 5), then these terms end up in the same
set. Finally, since find returns a representative term for the set of equivalent terms a given
term belongs to, it models the homomorphism σ from the database D to its summary
S w.r.t. ≡Ω. The computation of σ is therefore linear in the size of the data: it needs
a worst-case number of calls to union in the size of D, each of which is performed in
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constant amortized time. Then, the summary S of the database D w.r.t. ≡Ω is computed
by rewriting D into S as per Definition 4 (p. 40): every fact in D is rewritten by replacing
each term by its image through σ, i.e., through find. The computation of S is therefore
linear in the size of the data: it needs a worst-case number of calls to find in the size of D
(one or two calls per fact), each of which is performed in constant amortized time.
Table 3.1 shows for each database D we generated:

• |D|: the size of D, or the number of facts contained in D
• |S|: the size of S, or the number of facts contained in S.
• The D-to-S size reduction given by the formula: 1− |S|/|D|
• The summarization time per RDBMS which includes the computation and storage

time of σ as well as the time needed to generate and store S.
We observe that ≡Ω achieves significant size reduction (≥ 90%) and that summarization
time scales linearly in the size of the data.

3.3 Query answering performance analysis

We now comment on the performance of queries of type query answering we used
throughout our experiments.

3.3.1 Queries

We used ten queries (CQs) adapted from [51, 14] to conduct our experiments on query
answering. This allowed us to obtain CQs having a a variety of numbers of maximally-
contained CQs w.r.t. O that query reformulations model (recall Section 1) and a variety of
numbers of answers. We also consider queries that contain both constants and variables.

The full list of queries we used in our experiments to evaluate query answering, in dlp
format, and their descriptions, is available in Table A.1 (p. 97).

For each database (LUBM1M, LUBM10M, LUBM50M, LUBM100M, LUBM150M),
and using each of the RDBMSs (DB2, MySQL, PostgreSQL), we processed every query
using three query answering strategies, per LR query reformulation languages, used by
FO-rewriting tools we considered:

• LR = UCQ for Rapid.
• LR = USCQ for Compact.
• LR = JUCQ for GDL.
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Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0
optim. ratio for UCQ/S 81.92 100 99.88 83.8 82.05 79.84 52.53 78.02 69.92 75
optim. ratio for USCQ/S 100 100 100 100 100 100 100 100 100 100
optim. ratio for JUCQ/S 100 100 100 94.12 100 97.33 88.89 78.89 100 100

Table 3.2 – Characteristics of QA queries with O = LUBM∃
20 and D = LUBM150M

LR/REF. The first strategy, denoted by LR/REF, simply consists in computing the LR

query reformulation with the FO-rewriting tool and then evaluating it using the RDBMS;
this is how OMQA is performed via FO-rewriting, hence the state-of-the-art baseline.

LR/DB. The second strategy, denoted by LR/DB, departs from LR/REF by optimizing
the query reformulation for the database D before evaluating it. For this strategy, our Ω
function optimizes the query reformulation using the database D.

LR/S. The last strategy, denoted by LR/S, is similar to LR/DB except that our Ω func-
tion optimizes the query reformulation for D using the summary S of D.

The main characteristics of our Query Answering (QA) queries are shown in Table 3.2
above. This table describes, for each query:

• The number of atoms making up the query.
• The number of CQs contained in the query w.r.t. O, regardless of the adopted

query reformulation language.
• The number of answers to the query on the KB, i.e., the size of ans(q,K).
• The optimization ratio for UCQ, USCQ and JUCQ obtained with LR/S, for D =

LUBM150M. We define it as the percentage of CQs with no answer on D that are
identified and removed by Ω using S. It is given by the following formula:

(number of CQs with NO answer on S / number of CQs with NO answer on D)

We note that the optimization ratio is 0% with LR/REF and 100% with LR/DB.
This is because, the baseline method is not optimized and using Ω over the database (as
opposed to its summary) allows us to identify all empty CQs.

We observe that optimization ratios are high in general, 92% on average with QA6 hav-
ing the lowest value of 52.53% using UCQ, thus our summaries are effective in identifying

48



3.3. Query answering performance analysis

CQs with no answers. Similar results are obtained on LUBM1M, LUBM10M, LUBM50M,
and LUBM100M.

Further details on QA queries characteristics, can be found in Appendix A.2 (p. 101).

3.3.2 Performance analysis

The query answering times we measured when processing the above-mentioned strate-
gies are reported for all the databases we considered: LUBM1M (Figure 3.1, p. 50),
LUBM10M (Figure 3.2, p. 51), LUBM50M (Figure 3.3, p. 52), LUBM100M (Figure 3.4,
p. 53) and finally LUBM150M (Figure 3.5, p. 54).

For a given strategy, the measured time is defined as optimization time (for LR/DB
and LR/S only) + evaluation time (recall item 3 in Problem 1, p. 32). Every reported
time is an average over 5 “hot” query runs, s.t. the first “cold” query run is discarded.
Times are reported in a logarithmic scale as follows:

• Each RDBMS data is reported independently s.t. the figures for DB2 are on the
top, in the middle for MySQL and on the bottom for PostgreSQL.

• Each query QAk (with 0 ≤ k ≤ 9) is represented by a set of 9 bars s.t. : For each
reformulation language (UCQ in green, USCQ in blue and JUCQ in red), the first
bar represents the reformulated query without optimization (LR/REF), the next
one represents the reformulated query optimized using the database D (LR/DB)
and the third bar represents the reformulated query optimized using S (LR/S).

We also note that missing bars indicate system errors, where the queries could not
be executed. For example, for DB2, regardless of the database size, the UCQ/REF light
green bars for QA0, QA1, QA2 are missing because the system throws the error: “The
[SQL] statement is too long or too complex.”

Additionally Appendix A.3 (p. 104) is a detailed breakdown of all performance results
we obtained when asking the queries on the different RDBMSs.

LR/S vs. the state-of-the-art baseline LR/REF

We now comment on the results we obtained when query reformulations are optimized
with Ω using the summary S of D.
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Figure 3.1 – Query answering times (ms, log scale) - LUBM1M
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Figure 3.2 – Query answering times (ms, log scale) - LUBM10M
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Figure 3.3 – Query answering times (ms, log scale) - LUBM50M
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Figure 3.4 – Query answering times (ms, log scale) - LUBM100M
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Figure 3.5 – Query answering times (ms, log scale) - LUBM150M
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Observations:

UCQ/S consistently (almost always) and significantly improves the
performance of UCQ/REF by up to 3 orders of magnitude.

Observation 1: UCQ/S vs UCQ/REF

With the exception of QA6 on PostgreSQL, we observe that the optimization of UCQs
using Ω w.r.t. S improves the performance of UCQ/REF by up to 3 orders of mag-
nitude. This is particularly true for queries with a large number of contained CQs. QA1,
for example, is a large query with 1949 contained CQs and zero answers on all instances
of D; it is very costly when asked on an RDBMS without optimization, however after
optimizing it with S its performance is always improved by at least one order of magni-
tude and in some instances by more than three orders of magnitude (e.g., on LUBM150M
using MySQL and PostgreSQL). We highlight that for this particular query the optimiza-
tion ratio is at 100%. Similarly, QA0 and QA2 to QA5, which have an optimization ratio
higher than 79%, perform significantly better after optimization w.r.t. to S.

It is also worth noting that, for some queries, the performance improvement of UCQ/S
is more significant when the database grows larger. We particularly observe that when
comparing the performances for QA8 and QA9 over LUBM1M and LUBM150M. These
queries are also the ones with the lowest number of contained CQs in our experiments
and an optimization ratio lower than 79 %.

In contrast, if we take a closer look at query QA6, we can note that it is a query
which contains 8 atoms and has 300 total contained CQs, only two of which produce the
final answer on D = LUBM150M . Also, as can be seen in Table A.1 (p. 97), it is the
only query that contains several constants which specify the name, phone number, email
address, etc. For these reasons, QA6 has a low optimization ratio, as we are only able to
dismiss around 52% of its contained CQs using S for LUBM150M. On PostgreSQL, this
low optimization ratio translates to a high optimization time which does not amortize and
therefore leads to a slightly worse performance for UCQ/S compared to UCQ/REF.
This is not the case for DB2 and MySQL.
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JUCQ/S frequently (around half the time) improves the performance of
JUCQ/REF by up to 1 order of magnitude.

Observation 2: JUCQ/S vs JUCQ/REF

Query answering performance frequently improves for JUCQs (in half of the cases over-
all), up to one order of magnitude (e.g., JUCQ/S for QA8 using PostgreSQL), otherwise
performance is marginally affected.

We remark that when the performance visibly degrades (e.g., QA9 on PostgreSQL) it
is just in the order of a few tens of ms.

Query answering performance is marginally affected for USCQs.

Observation 3: USCQ/S vs USCQ/REF

In the case of USCQs, we observe that query performance is marginally affected.
Although, Ω always completely discards empty queries from USCQs (optimization ratio
of 100%, see Table 3.2, p. 48), there is no significant difference between the bars of USCQ/S
and USCQ/REF as they exhibit similar performances.

Analysis: The previous observations can be explained with the two following facts, and
the optimization ratios obtained with our summaries (Table 3.2, p. 48).

1. Optimizing reformulations with Ω removes CQs with no answer from the top union
in UCQs and from the unions on which the top join is performed in JUCQs.
In USCQs, single-atom CQs are removed from unions on top of which joins are
performed, on top of which the top union is performed.

2. Removing CQs with no answer from a union improves its evaluation time (as it
may take time for an RDBMS to find out that a CQ has no answer), while it does
not change the size of its output hence the number of tuples to process after this
union.

Therefore:
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• Optimizing a UCQ reformulation with Ω speeds up its entire evaluation since Ω
optimizes its top union. Also, because our summaries allow high optimization ra-
tios for UCQ/S, query answering performance is significantly improved in general.
We remark that performance degrades for QA6 because the optimization time does
not amortize with a low optimization ratio (52.53% using LUBM150M).

• Optimizing a JUCQ reformulation with Ω speeds up the evaluation of its sub-UCQs
but does not affect the evaluation time of the top join (as the same tuples must be
joined). JUCQ reformulations are thus more difficult to optimize than UCQ ones.
This is why query answering performance is “only” frequently improved (in half of
the cases) and marginally affected otherwise, even with high optimization ratios
for JUCQ/S (84.34% on average using LUBM150M).

• Optimizing a USCQ reformulation with Ω only removes atomic CQs from its in-
ner unions while it does not take time for an RDBMS to figure out that these
atomic CQs are empty. The optimization thus marginally affects the evaluation
time of these inner unions, and the evaluation time of the subsequent joins and top
union is not affected. USCQ reformulations are thus more difficult to optimize than
UCQ and JUCQ ones. This is why query answering performance is marginally af-
fected in general, even with maximal optimization ratios for USCQ/S (100% using
LUBM150M).

LR/DB versus LR/REF and LR/S

We now comment on the results we obtained when query reformulations are optimized
with Ω using the database D (LR/DB), as opposed to using the summary S (LR/S),
compared with the baseline (LR/REF).
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Observations:

Query answering performance is marginally to significantly better with
UCQ/DB than with the baseline UCQ/REF, on small databases.
However, UCQ/DB may perform worse than UCQ/REF when the

database size grows.

Observation 4: UCQ/DB vs UCQ/REF

Depending on the RDBMS considered, UCQ/DB may perform better than UCQ/REF
up to 1 order of magnitude on DB2 (e.g., QA3) and two orders of magnitude on PostreSQL
(e.g., QA2).

When the database size grows, UCQ/DB may perform worse than UCQ/REF because
performing query optimization on D requires significant time which may not amortize.
We observe this on MySQL for queries QA2 and QA7, and on DB2 for QA4, QA5, QA8,
QA9. QA2 in particular has a significant number of contained CQs (1702), and without
optimization, its execution time on MySQL for LUBM150M is around 203 seconds. Mean-
while, optimizing QA2 w.r.t. D = LUBM150M on MySQL requires around 200 seconds
and then an additional 39 seconds to execute it making it less efficient than UCQ/REF.

UCQ/DB may perform better than UCQ/S, frequently on small
databases and rarely on on larger databases.

Observation 5: UCQ/DB vs. UCQ/S

When comparing the performance of UCQ/DB to UCQ/S, we observe the following:
UCQ/DB may perform better on smaller databases while UCQ/S performs better on
larger databases. For example, UCQ/DB performs better than UCQ/S onD = LUBM1M

using MySQL for queries: QA0, QA3, QA4, QA5, QA6, QA8, QA9. Meanwhile, on D =
LUBM150M using MySQL, UCQ/S performs better than UCQ/DB for all queries except
for QA6 (due to the low optimization ratio of 52.53%) and QA7 (UCQ/S and UCQ/DB
have a similar performance).

The reason behind this behavior is that, as the database size increases, UCQ/DB dedi-
cates increasingly more time to optimizing reformulations compared to UCQ/S. However,

58



3.3. Query answering performance analysis

this additional time may not pay off at evaluation time, especially when optimization ra-
tios are not low. In other words, when the reformulations of UCQ/S are only moderately
more complex than those of UCQ/DB.

JUCQ/DB performance is always worse than the baseline JUCQ/REF
and almost always worse than with JUCQ/S

Observation 6: JUCQ/REF vs. JUCQ/DB vs. JUCQ/S

Our experiments show that JUCQ/DB almost always worsens the query performance
time as compared to JUCQ/REF, sometimes up to several orders of magnitude (e.g., QA5
on MySQL). The only exceptions to this are QA7 and QA8 on PostgreSQL and DB2 as
JUCQ/DB performs similarly or better than JUCQ/REF. Also, in the case of QA7 on
DB2, JUCQ/DB performs better than both JUCQ/REF and JUCQ/S.

USCQ/DB performance is always worse than with the baseline
USCQ/REF and with USCQ/S.

Observation 7: USCQ/REF vs. USCQ/DB vs. USCQ/S

USCQ/DB always worsens the performance of USCQ/S, hence of USCQ/REF, because
with optimization ratios of 100% for USCQ/S for all the queries and all the databases,
USCQ/DB and USCQ/S produce the very same optimized reformulations, but in general
with higher optimization time if Ω uses D instead of S.

Analysis: These observations are explained by the following:
The extra-time spent by LR/DB w.r.t. LR/S in completely optimizing a query re-

formulation using the database (recall that optimization ratios are of 100% for LR/DB)
does not amortize: optimization time with LR/DB is in general significantly higher than
with LR/S, because a database is much larger than its summary, while at the same time
LR/DB provides a moderate gain in optimization ratios because they are already very
high with LR/S in general. This is why LR/DB performs worse than LR/S overall, and
worse than LR/REF when optimization time is higher than the time saved when the
optimized reformulation is evaluated.
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QA Performance Conclusion:

Our experiments show that our summaries can be computed fast (linear in data size),
small (<10% of data size) and effective in identifying CQs with no answer on a database
(92% on average). They also show that, when our Ω optimization function uses summaries,
OMQA time performance can be significantly improved (item 3 in Problem 1) for UCQ
reformulations in general and frequently for JUCQ reformulations, while performance is
marginally affected for USCQ ones.

3.4 Consistency checking performance analysis

We also experimentally studied the performance of our summary-based optimization
approach on consistency checking as it turns to be a particular case of query answering
in our KB setting (see Chapter 1). Consistency checking queries in our experimental
framework are reduced in size since DL-liteR description logic used to express negative
rules with 2 atoms only. Therefore, consistency checking is performed via FO-rewriting
of CQs made of two atoms (recall Section 1.3).The aim of this experimental phase is to
check whether our summary-based optimization approach brings further improvements to
the consistency checking time compared to those of the query answering.

3.4.1 Adding negative rules to O

We handcrafted 5 negative rules which we added to O, as LUBM∃
n ontologies do not

contain negative rules. They express inherent integrity constraints, such as persons and
organizations are disjoint or persons and publications are disjoint, all of which are satisfied
by the EUGen database generator:

• ∀x(Person(x) ∧Organization(x)→ ⊥)
• ∀x(Organization(x) ∧ Student(x)→ ⊥)
• ∀x(Organization(x) ∧ Publication(x)→ ⊥)
• ∀x(Professor(x) ∧Department(x)→ ⊥)
• ∀x(Professor(x) ∧ Publication(x)→ ⊥)

Each rule leads to two equivalent Ckc and Cki Boolean CQs, for 0 ≤ k ≤ 4, that
are used to check the performance of consistency checking when the negative rule k is
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Query C0c|C0i C1c|C1i C2c|C2i C3c|C3i C4c|C4i
#atoms 2 2 2 2 2

#contained CQs w.r.t. O 3,645 1,035 765 630 510
# answers in ans(q,K) 0|1 0|1 0|1 0|1 0|1
compl. ratio for UCQ/S 100|100 100|100 100|99.21 100|96.97 100|100
compl. ratio for USCQ/S 100|100 100|100 100|100 100|100 100|100
compl. ratio for JUCQ/S 100|100 100|100 100|99.21 100|96.97 100|100

Table 3.3 – Characteristics of CC queries with O = LUBM∃
20 and D = LUBM150M

satisfied or not (recall Section 2): Ckc is asked on every consistent database D shown in
Table 3.1, while Cki is asked on every inconsistent version of these databases (discussed
shortly).

The characteristics of these CQs are shown in Table 3.3:

• The number of atoms: they correspond to 2 in all cases because of the allowed rules
in DL-liteR (recall Table 1.1, p. 19).

• The number of contained CQs w.r.t. O that a reformulation must encode regardless
of the adopted query reformulation language.

• The number of answers on K = (O,D), which in this case is either 0 or 1 as they
are Boolean CQs.

Further details on CC queries characteristics, can be found in Appendix A.2 (p. 101).

3.4.2 Adding inconsistencies to databases

We built inconsistent versions of the databases in Table 3.1 as follows. For each Cki, we
randomly picked a CQ in its UCQ reformulation that models all the CQs contained in Cki

w.r.t. O, i.e., all the possible ways of looking for violations of the corresponding negative
rule k, which we use to insert an inconsistent fact. Additionally, we created five sets of
databases (with sizes ranging from 1M to 150M), each of which is inconsistent w.r.t. just a
given Cki as to avoid any biases. For instance, for the negative rule 0 stating that persons
and organizations are disjoint, we randomly picked within the UCQ reformulation of C0i

the CQ q() = Faculty(x) ∧University(x), based on which we randomly selected a faculty
f in D in order to add it as a university in D. We do that for all database sizes.

61



Chapter 3 – Experimental Results

3.4.3 Performance analysis

The consistency checking times we measured are reported for all the databases we
considered: LUBM1M (Figure 3.6, p. 63), LUBM10M (Figure 3.7, p. 64), LUBM50M
(Figure 3.8, p. 65), LUBM100M (Figure 3.9, p. 66) and finally LUBM150M (Figure 3.10,
p. 67).

We followed the same strategy as the one used to perform query answering experiments
(Recall Section 3.3, p. 47). Because in DL-liteR the left-hand side of a negative rule consists
of a conjunction of two atoms only, for the purpose of consistency checking the JUCQ
and UCQ reformulations of a query are equivalent. We therefore only report the results
of UCQ and USCQ using the 3 strategies: LR/REF, LR/DB and LR/S.

Similarly to query answering, every reported time is an average over 5 “hot” query
runs, i.e., the first “cold” query run is discarded. Times are reported per RDBMS, Ckc

and Cki for 0 ≤ k ≤ 4, query reformulation language, and according to the reformulation
strategy.

Finally, we note that UCQ/REF light green bars for C0c/C0i are missing for DB2
because the system throws the error “The [SQL] statement is too long or too complex.”
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Figure 3.6 – Consistency checking times (ms, log scale) - LUBM1M
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Figure 3.7 – Consistency checking times (ms, log scale) - LUBM10M
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Figure 3.8 – Consistency checking times (ms, log scale) - LUBM50M
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Figure 3.9 – Consistency checking times (ms, log scale) - LUBM100M
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Figure 3.10 – Consistency checking times (ms, log scale) - LUBM150M
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LR/S vs. the state-of-the-art baseline LR/REF

Observations:

UCQ/S consistently (almost always) and significantly improves the
performance of UCQ/REF by up to 4 orders of magnitude.

Observation 8: UCQ/S vs UCQ/REF

Similarly to our observations on query answering, we observe that UCQ queries optimized
with Ω using S are significantly improved, up to four orders of magnitude (e.g., C0c and
C0i on PostgreSQL and MySQL). The only exceptions being C3c on DB2 for LUBM1M
and LUBM50M.

Consistency checking query performance is marginally affected for
USCQs, regardless of the consistency of the database.

Observation 9: USCQ/S vs USCQ/REF

Analysis: We observe similar behaviors when it comes to query evaluation of consis-
tency checking queries, as compared to query answering queries. These observations can
be explained by the following:

Consistency checking queries are a simpler (particular case) of query answering queries.
But the size of their query reformulations are relatively high. In the case of UCQs, Ω is
able to completely and rapidly discard all irrelevant contained queries using the summary
S on consistent databases and most of them on inconsistent databases (>96.97% on
LUBM150M), which translates into a better performance.

LR/DB versus LR/REF and LR/S

Observations:

UCQ/DB may occasionally perform better than UCQ/REF but always
performs worse than UCQ/S.

Observation 10: UCQ/DB vs UCQ/REF and UCQ/S
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When using MySQL and PostgreSQL, UCQ/DB generally slightly improves the perfor-
mance of UCQ/REF. In contrast, when using DB2, UCQ/DB always performs worse than
UCQ/S; the only exception being C3c on DB2 for LUBM50M.

USCQ/DB may significantly worsen the performance of USCQ/REF.

Observation 11: USCQ/DB vs USCQ/S vs USCQ/REF

On both consistent and inconsistent databases, we observe that USCQ/DB generally
has a worse performance than both USCQ/REF and USCQ/S, especially when using
MySQL and PostgreSQL.

Analysis: Similarly to query answering, these observations can be explained because of
the extra-time spent by LR/DB w.r.t. LR/S in completely optimizing a query reformu-
lation using the database (recall that optimization ratios are of 100% for LR/DB) which
does not amortize.

CC Performance Conclusion:

Similarly to query answering, the UCQ and JUCQ reformulations of consistency check-
ing queries are significantly improved when using our Ω optimization function.

3.5 Conclusion

In this chapter, we discussed the results of our experiments. We showed that the
time performance of query answering and consistency checking via FO-rewriting, can be
significantly improved in general when UCQ and JUCQ reformulations are used.

In the next chapter, we discuss the implementation of our optimization framework in
our OptiRef prototype.
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In this chapter, we discuss the technical implementation of our work in the OptiRef
tool. First, we give an overview of the whole project (Section 4.1), then we discuss the
implementation (Section 4.2), before finally showcasing our OptiRef GUI (Section 4.3).

4.1 Overview

4.1.1 Achitecture

The technical work done in the context of this thesis was implemented according to
Figure 4.1 and can be divided into two main parts:

Front-end We designed the OptiRef GUI, which is a user-friendly visual interface that
allows users to visualize the outcome of our conducted experiments. It also provides users
with the capability of interacting with the KBs directly by asking custom queries.
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Figure 4.1 – OptiRef Architecture

Back-end We developed several modules that allow us to set up and handle KB databases
on our server:

• A module that generates databases from the raw data files and stores them in an
RDBMS.

• A module that introduces inconsistencies to databases.
• A module that creates a summary of a given database according to our equivalence

relation ≡Ω (Recall Section 2.4, p. 39).
• A module that handles query answering on our KBs according to the different

reformulation languages and to the optimization method considered.

4.1.2 Technologies

Back-end technologies Since most of the tools we rely on in our experiments are
available as Java libraries (e.g., Rapid, Compact,GDL), we used Java 14 to deploy these
tools and to develop our modules.
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Front-end technologies The OptiRef GUI interface is developed independently from
the back-end and uses the following technologies:

— PHP version 7.4.3 which allows the interface to communicate with the back-end
and fetch the data needed for the visualization.

— jQuery, Chartjs and D3.js which are the necessary Javascript tools needed to gen-
erate both simple and complex charts.

4.2 Implementation

4.2.1 Creating the datasets

From owl to integer-encoded databases To create the databases we used for our
experiments, we proceeded according to Figure 4.1 (p. 72).

We used the EUGen generator which allows us to create synthetic data in owl format
using the Univ-Bench ontology, and to generate datasets that can grow as large as needed,
depending on the number of universities we consider. We generated data for a total of
1200 universities, which turns out to be the equivalent of a little over 150 million database
tuples. Each university is represented by a set of around 20± owl files containing a varying
number of instances. Figure A.1 (p. 107) is an extract from the owl files we generated.

We consider a database of 150 million tuples to be reasonably large enough as to
allow us to fairly evaluate the different approaches we consider. It also allows us to better
observe the performance benefits brought forth by our proposed method.

After generating the complete set of .owl files, we selected subsets of them in order to
generate databases of increasing sizes. Five databases were generated s.t. : LUBM1M ⊆
LUBM10M ⊆ LUBM50M ⊆ LUBM100M ⊆ LUBM150M.

Database Name Database Size # Universities # Tuples in D
LUBM1M 1 million triples 9 1,186,832
LUBM10M 10 million triples 75 10,793,976
LUBM50M 50 million triples 373 53,328,357
LUBM100M 100 million triples 745 106,596,211
LUBM150M 150 million triples 1118 159,899,201

Table 4.1 – Size of LUBM databases

Table 4.1 shows the name of the database, its approximate size (or the order of mag-
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nitude), the number of universities it corresponds to and the number of tuples that are
actually in it.

To obtain the data layout from [14], we proceeded over several steps:

1. We convert our .owl files (e.g., Figure A.1, p. 107) into .dlp files (e.g., Figure A.2,
p. 108) using the owl2dlgp program, which is an easier format to handle data
in [59].

2. Using the .dlp files, we generate relational databases s.t. unary relations are mod-
eled using unary tables and binary relations are modeled using binary tables. All
values are encoded using a dictionary binary table.

3. We store the resulting databases in PostgreSQL, MySQL and DB2.

This method was used to generate all the databases for the purpose of our experiments.

4.2.2 The KB-Ref algorithm

Algorithm 1: optimization algorithm for OMQA via FO-rewriting
Input : a CQ q,

a LK KB K = (O,D),
a summary S of D, and
a query reformulation algorithm O−ref

for the FO-rewriting setting (CQ,LK ,LR) with LR in (∧,∨)-CQs
Output: a reformulation qK of q w.r.t. K

1 qO ← O−ref(q,O); // reformulation of q w.r.t. O
2 qK ← Ω(qO,S); // reformulation of q w.r.t. O that is optimized for D
3 return qK

We propose the KB-Ref algorithm which optimizes (∧,∨)-CQ reformulations of CQs
asked on KBs. This algorithm uses the Ω function we defined in Section 2.3 and the
summaries from Section 2.4 to compute an optimized version of an incoming query.

Given any off-the-shelf query reformulation algorithm O−ref for FO-rewriting, KB−ref
starts by using O−ref to compute a reformulation qO of a CQ q w.r.t. the ontology O of
a LK KB K = (O,D) (line 1). Then, it uses our Ω function to optimize the reformulation
qO for the database D of the KB K (line 2).
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4.3 OptiRef GUI

We developed the OptiRef GUI, which is a web-based interface designed for experi-
menting with FO-rewriting and its optimization. This tool provides an intuitive platform
for users to explore the intricacies of FO-rewriting, making it accessible to both novices
and experts. In this section, we present the tool in details in order to highlight its benefits.

A live demo of the GUI is available at: https://shaman.enssat.fr/optiref/.

Figure 4.2 – OptiRef GUI Settings

The landing page of our interface (Figure 4.2) is a settings page which allows users
to select the data they would like to visualize. Users can select the benchmark as well as
the database size from the set of databases we generated, and the RDBMS(s) over which
they were generated. They can also choose to either select a predefined and pre-computed
query or to write their own query for it to be processed directly on the database. Finally,
users can choose the reformulation language they are interested in visualizing and whether
they want to see the the results of optimized FO-rewriting w.r.t. to S (Summary-based
optimization) and/or w.r.t. to D (Database-based optimization).
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Figure 4.3 – OptiRef GUI Bar Chart: QA8 asked on PostgreSQL using LUBM150M

Figure 4.3 is a screen capture of what the user can visualize according to a chosen set
of parameters. In this case, we show the results of query QA8 asked on the LUBM 150M
database using PostgreSQL. For each of the reformulation languages (UCQ, USCQ and
JUCQ) we considered, the OptiRef tool reports the performance time in form of a bar
chart s.t. :

• The first bar represents the performance of the reformulated query before opti-
mization.

• The second bar represents the performance of the reformulated query after opti-
mization w.r.t. the database.

• The third bar represents the performance of the reformulated query after optimiza-
tion w.r.t. the summary.

Each bar is a sum of: reformulation time (TREF), optimization time (TOPTIM) and
evaluation time (TEVAL). Time is reported in a linear scale.

To further understand the benefits of our optimization framework, it is recommended
to discard the reformulation time (TREF), focusing only on the optimization time (TOP-
TIM) and the evaluation time (TEVAL), because in our framework, query reformulations
are considered as an input. This corresponds to the reported results in Chapter 3. The
interface allows us to therefore filter the parts of the bars we may consider as irrelevant to
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our analysis by clicking on the elements we would like to discard in the legend. Focusing
only on evaluation time (TEVAL) on the other hand may bias the analysis of the user:
LR/DB is evaluated faster than LR/S because it is the optimal version of an incoming
query, however the time to compute it is generally quite costly.

The bar chart on the left hand side, allows us to conduct a performance analysis over
the considered queries. We are able to compare the different reformulation languages from
the literature to each other: we conclude that UCQs generally have the worst performance.
We can also compare reformulation languages to their optimized versions: we observe that
optimizing the queries generally improves the performance of the query.

Furthermore, the statistics on the right hand side offer additional information about
the database we consider: the number of tuples it contains, the number of tuples in its
summary, the compression ratio and the time necessary to compute our summary.

A good use-case of OptiRef, is to examine the bars over three steps:
1. A first examination of the state-of-the art baseline (i.e., by leaving optimizations

unchecked) which corresponds to LR/REF in our experiments.
2. A next examination of the comparison between LR/REF and the optimization

w.r.t. the database, which corresponds to LR/DB in our experiments.
3. A last examination being a comparison between LR/REF, LR/DB and the opti-

mization w.r.t. the summary which which corresponds to LR/S in our experiments.
By doing so, we are able to first, visually compare the different FO-rewriting from the
literature to each other. Next we can see the performance benefits or drawbacks of using
the database when optimizing a query with the Ω function. Finally, we can examine the
benefits of using the summary when optimizing a query with the Ω function.

OptiRef also allows us to inspect queries in details when clicking on any of the bars,
e.g., clicking on the first UCQ bar for QA8 in Figure 4.3, p. 76 above shows a breakdown
of this UCQ according to the LR/REF strategy.

Figure 4.4 is an inspection of the UCQ reformulation of QA8, generated using Rapid,
that is obtained after clicking on the first UCQ bar from figure 4.3. We chose to represent
a UCQ in a tree format with a "Union" as the central root and a the CQs as the leaves.

In this example, the UCQ is a union of 144 CQs (leaf nodes) most of which are empty
and are color coded in red, and only 11 of which contribute to the final answer and are
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Figure 4.4 – UCQ/REF Reformulation Inspection of QA8

color coded in blue. Selecting any of the nodes allows the user to see the SQL query it
corresponds to, as illustrated by the figure.
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Figure 4.5 – UCQ/DB Reformulation Inspection of QA8
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Figure 4.6 – UCQ/S Reformulation Inspection of QA8

80



4.3. OptiRef GUI

If we were to optimize this UCQ w.r.t. the database, all of the red nodes will be
eliminated and we can see an improvement in the performance time (second UCQ bar
in figure 4.3). The resulting query is illustrated in figure 4.5, where all CQs represented
by green nodes are eliminated before evaluating the final query, represented by the blue
nodes on the database.

It is interesting, however, to note that the time necessary to evaluate this query after
optimization is relatively small while the time necessary to optimize it is relatively high:
the orange portion of the second UCQ bar in figure 4.3 is a clear representation of how
costly it is to optimize this query using the database.

Finally, by clicking on the third UCQ bar from figure 4.3, we can see the UCQ in-
spection illustrated in figure 4.6. The green, nodes in this figure represent the CQs we
were able to correctly identify as empty using our summary; they represent 69.92% of the
total number of empty CQs. This optimization corresponds to a significant improvement
in performance time as can be seen in figure 4.3.
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Figure 4.7 – USCQ/S Reformulation Inspection of QA7
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Figure 4.8 – JUCQ/S Reformulation Inspection of QA3
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Similarly, we created tree-style representations that allow users to visually inspect
both USCQs and JUCQs. Figure 4.7, p. 82, is a USCQ representation of query QA7 and
Figure 4.8, p. 83), is a JUCQ representation of query QA3. We notice that in general,
the nature of both USCQs and JUCQs are such that they contain a smaller number of
irrelevant subCQs compared to UCQs.

In general, using either the summary or the database with Ω, we are able to discard all
irrelevant subCQs from both JUCQs and USCQs. Using the database however requires
more time to process than using the summary.

The key take-outs a user should have from using the OptiRef tool to analyze the
FO-rewriting languages as well as their optimizations are the following:

• A visual inspection of the query forms clearly shows the number of irrelevant queries
they contain. UCQs in particular, generally contain a large number of irrelevant
subCQs: we observed over our experiments that less than 0.1% of the subCQs in a
UCQ contribute to producing the final answer. Meanwhile, at least 65% of subCQs
in a USCQ or a JUCQ contribute to producing the final answer.

• Optimizing FO-rewriting queries w.r.t. to the database produces a query reformu-
lation with no irrelevant subCQs; i.e., the most optimized version of the reformu-
lation, but it is costly to optimize using the database in practice.

• The summary is usually very small in size: less than 8% of the database size.
• Optimizing query reformulations w.r.t. to the summary significantly reduces the

number of empty subCQs. And, although it does not produce the most optimal
form of a query optimization, it manages to significantly improve query perfor-
mance overall.

4.4 Conclusion

In this chapter we went over the implementation of Optiref: it is a framework for
optimizing FO-rewriting as well as a GUI that allows users to interact and analyze results.
Its key benefits is that it allows us to better understand the performance improvement
brought forth by our work on FO-rewriting optimization.

In the next chapter we revisit the work done in the state of the art and position
ourselves w.r.t. it.
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In this chapter, we go over the work done in the literature related to this this. Namely,
we consider OMQA via FO-rewriting (Section 5.1), next we focus on database summaries
(Section 5.2), before finally discussing summary maintenance (Section 5.3).

5.1 OMQA via FO-rewriting

In this thesis, we focus on OMQA via the FO-rewriting technique with the goal of
optimizing it. We devised a novel optimization framework, which is complementary to,
and capitalizes on, the optimizations that have been proposed so far in the literature,
e.g., [24, 46, 40, 60, 13, 14]. These optimizations are both ontology-dependent and data-
independent. They exploit the ontology’s rules to find equivalent query reformulations that
can be evaluated faster on relational databases, similarly to semantic query optimization
that exploits the rules of deductive databases, e.g., [22]. In particular, the optimizations
for FO-rewriting has focused on studying logically minimal (i.e., non-redundant) query
reformulations (e.g., [24, 46]), syntactically compact query reformulations (e.g., [40, 60])
and query reformulations built according to their estimated evaluation cost on an RDBMS
(e.g., [13, 14]).

The novelty of our framework is to add a complementary data-dependent optimization
step to query reformulations produced by state-of-the-art FO-rewriting tools, e.g., [24,
60, 7, 61, 62, 55, 54, 14, 13]. To the best of our knowledge, data-dependent optimization
of OMQA via FO-rewriting has not been considered in the literature. This idea of data-
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dependent optimization originates from the preliminary work [10] that studies data layouts
for RDF data in order to efficiency evaluate the reformulations of conjunctive SPARQL
queries of [11]. In particular, [10] suggests the use of data summaries to speed up query
reformulation evaluation [12, 44].

Our framework is general enough to apply to many FO-rewriting settings, in particular
those in Table 2, and it guarantees the correctness of OMQA on the queried KBs. For
the FO-rewriting settings in which it was evaluated, it significantly improves OMQA time
performance for the prominently-adopted UCQ query reformulations, e.g., [38, 39, 46, 53,
40, 19, 54, 24, 61, 55, 37, 11], and for the JUCQ ones of [14, 13].

Finally, an originality of our framework is that it builds on the Ω optimization function
that rewrites a query reformulation into a simpler contained one, by pruning away sub-
queries that are useless to its evaluation on a given database. Notably, useless subqueries
are identified rapidly by using database summaries, which we devised for this particular
purpose by adapting the quotient operation [41] to databases.

5.2 Database Summaries

Database summaries are compact representations of databases. They have been widely
studied in the area of graph databases [50] and semantic web databases [21], where they
serve several purposes such as data exploration, data visualization, data compression, and
data management optimization.

The quotient operation has been used to summarize RDF KBs for the purpose of data
exploration, e.g., [36], and closer to our work, to summarize description logic databases
a.k.a. ABoxes for the purpose of data management optimization [34, 26, 27].

In particular, for the SHIN description logic, summaries have been used to conduct
consistency checking on ABoxes in [34] as well as to perform instance checking in [26],
which is a particular case of query answering; the SHER reasoner [27] implements these
results. We point out that the summaries of [34, 26, 27] have been built to perform the
particular tasks of consistency checking and query answering directly on them.

The summaries of this thesis depart from the above-mentioned ones because we de-
vised our summaries for a specific and novel task. In particular, we adapted the quotient
operation to relational databases and we defined the new equivalence relation ≡Ω for the
task of sound and fast identification of CQs with no answer on a database. ≡Ω departs
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from prior equivalence relations by being based on the instances of concepts that KB’s
databases describe with n-ary relationships between them, and not on bisimulation [43],
e.g., [52, 33], or cooccurrence of relationships [35, 36]. To the best of our knowledge,
summaries have not been used for the optimization of OMQA via FO-rewriting.

Finally, we note that the semantics of applying the quotient operation to ABoxes has
been characterized [32], regardless of particular description logic and equivalence relation,
in terms of the classical notions of subsumption, i.e., containment, and most specific concept
in description logics [6].

5.3 Summary Maintenance

Although the computation of our summaries is linear in the size of databases, the
summarization times we reported in our experiments show that it would be prohibitive
to redo full summarization upon updates. We therefore rely on incremental summary
maintenance.

We remark that the need for incremental maintenance is shared with the two other
OMQA techniques, materialization, e.g., [37, 49] and combined approach, e.g., [48, 47, 51],
though we need to maintain a summary that is a small and simple homomorphic approxi-
mation of the KB’s database, while materialization and combined approach need to main-
tain a large and complex (approximation of a) chase of the KB’s database, i.e., database
plus entailed facts.

The maintenance of our summaries has been studied in the context of a Research
Master’s (Master Recherche) internship [5]. By definition of a summary built with ≡Ω,
in the worst case, an insertion fuses two equivalence classes and a deletion splits an
equivalence class into several ones. Maintenance rewrites the affected summary facts,
i.e., in which some term moves from an equivalence class to another, based on the updated
homomorphism σ modeled with a union-find data structure (recall Section 3) that also
supports the delete operation in optimal constant amortized time complexity [4].

5.4 Conclusion

In this chapter, we pointed out how the contributions of this thesis build on, and
compare to the work done in the literature. Particularly, we went over the literature of
OMQA, database summaries and summary maintenance.
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CONCLUSION

Summary

In this thesis, we tackled the problem of improving the performance of OMQA,
a.k.a. query answering on knowledge bases, made of a database and an ontology. In
the literature, OMQA is performed using several methods; materialization which embeds
ontological knowledge into the database producing a saturated database, FO-rewriting
which embeds ontological knowledge into the query producing a reformulation of it, and
a combination of the two.

We focused on FO-rewriting for which we identified an essential weakness: it is ontology-
dependent and data independent. Being data independent means that FO-rewriting pro-
duces query reformulations that are general and do not take into consideration a given
instance of a database. In practice, these generic reformulations are costly for RDBMSs
to evaluate, and can be significantly improved.

We therefore devised a novel optimization framework for FO-rewriting, in order to
make it both ontology-dependent and data-dependent. Our framework builds on our Ω
optimization function that rewrites a query reformulation into a contained query with the
same answers on the queried KB’s database, which can be evaluated faster. For that, Ω
uses a summary of the database, which is a homomorphic approximation of it, computed
as its quotient w.r.t. the ≡Ω equivalence relation between database terms that we defined.

Using the LUBM∃ benchmark, we empirically showed that our framework significantly
improves OMQA time performance in general for the widely-adopted UCQ query refor-
mulations, e.g., [38, 39, 46, 53, 40, 19, 54, 24, 61, 55, 37, 11], and frequently for the JUCQ
ones of [14, 13], while performance is marginally affected for the USCQ ones of [60]. We
provided insight for that.

Finally, we implemented our proposed optimizing framework for OMQA via FO-
rewriting into a tool called OptiRef, which we used to conduct our experiments. We
additionally designed an intuitive and interactive Graphical User Interface (GUI) en-
abling users to visually explore both our query performance results and their associated
logical plans. This tool serves as a means to highlight the advantages inherent in our
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proposed OMQA optimization framework.

Perspectives

Our work on optimizing FO-rewriting can be pursued in several ways.
A first approach would be to experimentally evaluate the effect of our optimization

framework beyond DL-liteR. We envision conducting more experiments by using our
framework on different benchmarks that are not necessarily restricted by the expres-
sivity of DL-liteR, which we recall underpins the W3C’s standard for OMQA on large
data volume: the QL profile of OWL2.

Additionally, in this thesis we considered summaries that are homomorphic approx-
imations of databases. They are based on the quotient operation adapted from graph
databases. A perspective would be to study alternative database summaries for our frame-
work, which could further improve OMQA time performance: summaries could be ob-
tained either via the quotient operation and other equivalence relations than ≡Ω, or with
other procedures than the quotient operation.

Finally, in this thesis we focused on optimizing OMQA via FO-rewriting after query
reformulations were produced by algorithms from the literature. A perspective would
be to investigate how data-dependent query optimization can be done during the query
reformulation algorithms, as opposed to after it. The idea would be to integrate optimiza-
tion w.r.t. database summaries within query reformulation algorithms in order to directly
produce an optimized query reformulations.
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Appendix A

APPENDIX

A.1 Queries

A.1.1 Query Answering Queries

Table A.1 – List of queries used to evaluate query answering and their description.

Name Query Description
QA0 qa0(?0,?2) <- lubm:Student(?0),

lubm:takesCourse(?0,?1),
lubm:Subj1Course(?1),
lubm:teacherOf(?2,?1),
lubm:Professor(?2), lubm:headOf(?2,?3),
lubm:Subj1Department(?3),
lubm:memberOf(?0,?3)

A similar query to QA which spec-
ifies a type for the Courses and a
type for the Department

QA1 qa1(?0) <- lubm:Person(?0),
lubm:worksFor(?0,?1),
lubm:Department(?1),
lubm:takesCourse(?0,?2), lubm:Course(?2)

A query that looks for people (?0)
that work in a department (?1) and
take some courses(?2).

QA2 qa2(?0) <- lubm:Student(?0),
lubm:publicationAuthor(?1,?0),
lubm:Publication(?1),
lubm:teachingAssistantOf(?0,?2),
lubm:Course(?2)

A query that looks for students
(?0) that are authors of a publica-
tion(?1) and are teaching assistants
of some courses (?2).

Continued on next page
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Table A.1 List of queries used to evaluate query answering and their description. (continued)
Name Query Description
QA3 qa3(?0) <- lubm:Faculty(?0),

lubm:University(?1),
lubm:subOrganizationOf(?2,?1),
lubm:Subj3Department(?2),
lubm:memberOf(?0,?2),
lubm:name(?0,"AssociateProfessor2")

A query which looks for Faculty
members (?0) whose name is "As-
sociateProfessor2" and who are a
member a department (?2) of type
"Subj3Department". This depart-
ment is a sub-organization of a uni-
versity (?1).

QA4 qa4(?0) <- lubm:Faculty(?0),
lubm:degreeFrom(?0,?1),
lubm:University(?1),
lubm:subOrganizationOf(?2,?1),
lubm:Subj10Department(?2),
lubm:memberOf(?0,?2)

A query which looks for Faculty
members (?0) having a degree from
a certain university (?1) and who
are a members of a department (of
type "Subj10Department") that is a
sub-organization of that same uni-
versity.

QA5 qa5(?1,?4) <- lubm:Subj3Department(?1),
lubm:Subj4Department(?4),
lubm:Subj10Professor(?0),
lubm:memberOf(?0,?1),
lubm:publicationAuthor(?2,?0),
lubm:Professor(?3), lubm:memberOf(?3,?4),
lubm:publicationAuthor(?2,?3)

A query which looks for pairs of de-
partments (?1) and (?4) that share
at least one publication with au-
thors who are professors from each
of the respective departments.

QA6 qa6(?0,?1,?2) <- lubm:Professor(?0),
lubm:teacherOf(?0,?1),
lubm:worksFor(?0,?2), lubm:degreeFrom(?0,
"http://www.University870.edu"),
lubm:researchInterest(?0,"Research21"),
lubm:name(?0,"AssociateProfessor2"),
lubm:emailAddress(?0, "AssociatePro-
fessor2@Department1.University0.edu"),
lubm:telephone(?0,"xxx-xxx-xxxx")

A query which looks for a list of
professors (?0), classes (?1) and de-
partments (2) s.t. (?0) are teach-
ers of (?1) and (?0) work for (?2).
The degree, research interest, name,
email address and telephone num-
ber of (?0) are specified.

Continued on next page
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Table A.1 List of queries used to evaluate query answering and their description. (continued)
Name Query Description
QA7 qa7(?0,?2) <- lubm:Student(?0),

lubm:takesCourse(?0,?1),
lubm:Course(?1), lubm:teacherOf(?2,?1),
lubm:Faculty(?2), lubm:worksFor(?2,?3),
lubm:Subj5Department(?3),
lubm:memberOf(?0,?3)

A query which looks for pairs of stu-
dents (?0) and faculty members (?2)
where the students are enrolled in
courses taught by the faculty mem-
bers who work for the same depart-
ment that the students are members
of.

QA8 qa8(?0) <- lubm:Faculty(?0),
lubm:mastersDegreeFrom(?0,?1),
lubm:University(?1),
lubm:subOrganizationOf(?2,?1),
lubm:Subj10Department(?2),
lubm:memberOf(?0,?2)

A query which looks for a list
faculty (?0) that are members of
a department which is a sub-
organization of the university from
which they obtained their Masters
degree.

QA9 qa9(?1,?4) <- lubm:Subj3Department(?1),
lubm:Subj4Department(?4),
lubm:Subj3Professor(?0),
lubm:memberOf(?0,?1),
lubm:publicationAuthor(?2,?0),
lubm:Subj5Professor(?3),
lubm:memberOf(?3,?4),
lubm:publicationAuthor(?2,?3)

A query which looks for pairs of de-
partments (?1) and (?4) that share
at least one publication with au-
thors who are professors from each
of the respective departments. (A
similar query to QA5, but more spe-
cialized)
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A.1.2 Consistency Checking Queries

Name Query Description
QC0 qc0(?0) <- lubm:Person(?0), lubm:Organization(?0) A Person which is also an Orga-

nization
QC1 qc1(?0) <- lubm:Organization(?0), lubm:Student(?0) An Organization which is also a

Student
QC2 qc2(?0) <- lubm:Organization(?0), lubm:Publication(?0) An Organization which is also a

Publication
QC3 qc3(?0) <- lubm:Professor(?0), lubm:Department(?0) A Professor which is also a De-

partment
QC4 qc4(?0) <- lubm:Professor(?0), lubm:Publication(?0) A Professor which is also a Pub-

lication

Table A.2 – List of queries used to evaluate consistency checking and their description.
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A.2 Query Characteristics

In this section, we detail the computation of the optimization ratio for each of the
reformulation languages, for both QA and CC queries.

A.2.1 UCQ Queries

Here, we provide a breakdown of the numbers used to compute the optimization ratio
for QA queries using the UCQ language.

Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,760 1,950 1,702 1,152 720 496 300 184 144 32
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0

# CQs with an answer on D 6 0 40 16 29 0 3 2 11 0
# CQs with NO answer on D 2,754 1,950 1,662 1,136 691 496 297 182 133 32
# CQs with an answer on S 504 0 42 200 153 100 144 42 51 8
# CQs with NO answer on S 2,256 1,950 1,660 952 567 396 156 142 93 24

optim. ratio for UCQ/S 81.92 100 99.88 83.8 82.05 79.84 52.53 78.02 69.92 75

Table A.3 – QA queries characteristics - UCQ (O = LUBM∃
20 and D = LUBM150M)

Query C0c|C0i C1c|C1i C2c|C2i C3c|C3i C4c|C4i
#atoms 2 2 2 2 2

#contained CQs w.r.t. O 3,645 1,035 765 630 510
# answers in ans(q,K) 0|1 0|1 0|1 0|1 0|1

# CQs with an answer on D 0|5 0|5 0|4 0|2 0|2
# CQs with NO answer on D 3,645|3,640 1,035|1,030 765|761 630|628 510|508
# CQs with an answer on S 0|5 0|5 0|10 0|21 0|2
# CQs with NO answer on S 3,645|3,640 1,035|1,030 765|755 630|609 510|508

compl. ratio for UCQ/S 100|100 100|100 100|99.21 100|96.97 100|100

Table A.4 – CC queries characteristics - UCQ (O = LUBM∃
20 and D = LUBM150M)
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A.2.2 USCQ Queries

Here, we provide a breakdown of the numbers used to compute the optimization ratio
for QA queries using the USCQ language.

Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0

# contained CQs w.r.t. O (USCQ) 57 203 254 48 53 112 37 91 48 52
# CQs with an answer on D 48 176 194 33 36 86 29 77 33 38
# CQs with NO answer on D 9 27 60 15 17 26 8 14 15 14
# CQs with an answer on S 48 176 194 33 36 86 29 77 33 38
# CQs with NO answer on S 9 27 60 15 17 26 8 14 15 14

optim. ratio for USCQ/S 100 100 100 100 100 100 100 100 100 100

Table A.5 – QA queries characteristics - USCQ (O = LUBM∃
20 and D = LUBM150M)

Query C0c|C0i C1c|C1i C2c|C2i C3c|C3i C4c|C4i
#atoms 2 2 2 2 2

#contained CQs w.r.t. O 3,645 1,035 765 630 510
# answers in ans(q,K) 0|1 0|1 0|1 0|1 0|1

# contained CQs w.r.t. O (USCQ) 130 68 62 51 47
# CQs with an answer on D 92|93 52|53 33|33 45|46 26|27
# CQs with NO answer on D 38|37 16|15 29|29 6|5 21|20
# CQs with an answer on S 92|93 52|53 33|33 45|46 26|27
# CQs with NO answer on S 38|37 16|15 29|29 6|5 21|20

compl. ratio for USCQ/S 100|100 100|100 100|100 100|100 100|100

Table A.6 – CC queries characteristics - USCQ (O = LUBM∃
20 and D = LUBM150M)
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A.2.3 JUCQ Queries

Here, we provide a breakdown of the numbers used to compute the optimization ratio
for QA queries using the JUCQ language. It is worth noting that queries reformulated
using the JUCQ language correspond to UCQ reformulations in the context of CC queries.

Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0

# contained CQs w.r.t. O (JUCQ) 59 50 68 50 65 41 39 184 144 12
# CQs with an answer on D 53 108 74 33 39 96 31 4 29 10
# CQs with NO answer on D 9 23 13 17 27 150 9 180 12 3
# CQs with an answer on S 53 108 74 34 39 100 32 42 29 10
# CQs with NO answer on S 9 23 13 16 27 146 8 142 12 3

optim. ratio for JUCQ/S 100 100 100 94.12 100 97.33 88.89 78.89 100 100

Table A.7 – QA queries characteristics - JUCQ (O = LUBM∃
20 and D = LUBM150M)
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A.3 Execution Time

In this section, we provide a detailed breakdown of query evaluation times, broken
into: reformulation time, optimization time and execution time. We report on the values
for all queries using all RDBMSs.

A.3.1 UCQ Queries

Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0

PSQL Reformulation Time 1,038 501 320 135 62 96 388 88 22 28
PSQL Optimization Time 0 0 0 0 0 0 0 0 0 0

PSQL Execution Time 533,708.4 129,597 146,732 175,980.8 120,090.4 101,129.6 3,702.8 39,818.2 14,139 1,655.6
PSQL Reformulation Time /DB 1,042 452 292 108 41 119 63 93 27 27
PSQL Optimization Time /DB 42,517.4 63,298.8 71,068.4 17,874.8 25,114.2 9,874.6 3,436.4 14,965.6 12,220.4 1,176.6

PSQL Execution Time /DB 1,329.2 0 7,901.8 3,367.6 1,150.4 0 44.2 268.6 371.2 0
PSQL Reformulation Time /S 427 964 322 170 79 689 73 92 48 39
PSQL Optimization Time /S 11,235 1.4 2.6 78 307.8 510.4 2,678 187.4 29.4 21.4

PSQL Execution Time/S 17,310.4 0 9,634.4 22,281.2 4,501 5,509.6 1,784.6 20,435.6 1,122 181.6
MySQL Reformulation Time 324 794 339 129 40 105 69 88 33 39
MySQL Optimization Time 0 0 0 0 0 0 0 0 0 0

MySQL Execution Time 42,892.2 177,954.4 203,834.4 33,732.6 31,421.4 18,437.4 135 69,991.6 10,295.8 783.6
MySQL Reformulation Time /DB 269 523 295 139 46 106 64 97 32 26
MySQL Optimization Time /DB 39,110.8 177,528.4 199,927.2 28,287.4 29,786.4 12,304 0 57,844.6 10,045 3,304.2

MySQL Execution Time /DB 1,138 0 38,875.6 4,612.4 1,719.6 0 1 639.6 619 0
MySQL Reformulation Time /S 275 412 290 110 41 113 73 98 26 27
MySQL Optimization Time /S 21.4 1.2 0 3.8 3.2 12.8 1 2.4 0.8 0.4

MySQL Execution Time/S 19,918.4 0 41,193 20,855.4 5,147.8 6,076.4 61.8 61,873 1,707.8 752.6
DB2 Reformulation Time 433 709 591 169 44 146 91 349 37 31
DB2 Optimization Time 0 0 0 0 0 0 0 0 0 0

DB2 Execution Time -2 -2 -2 139,339.4 55,867.2 6,051.2 8.8 117,779.8 14,685.4 524.8
DB2 Reformulation Time /DB 417 1,081 472 167 70 144 80 489 38 35
DB2 Optimization Time /DB 108,840.6 123,661.6 85,351.4 3,520.4 68,278.4 8,574 1.2 16,926.2 40,727.6 1,484.2

DB2 Execution Time /DB 1,497.6 0 31,576 412.2 23,282.6 0 0 11,816.2 10,559.8 0
DB2 Reformulation Time /S 513 705 370 189 41 199 67 520 42 34
DB2 Optimization Time /S 4.8 0.8 2 39 0 1.6 0 2 0 0

DB2 Execution Time/S 15,037,8 0 36,676.2 2,099.6 11,590 791 4 108,200.8 16,012.2 296.2

Table A.8 – QA queries performance per RDBMS - UCQ (O = LUBM∃
20 and D =

LUBM150M)
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A.3.2 USCQ Queries

Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0

PSQL Reformulation Time 18 24 21 22 13 28 26 94 14 21
PSQL Optimization Time 0 0 0 0 0 0 0 0 0 0

PSQL Execution Time 14,194.8 47,356.8 82,776.4 9,039.4 11,823.4 23,662.8 2,104 72,965.2 9,308.4 15,026.8
PSQL Reformulation Time /DB 18 25 25 45 39 41 27 91 16 21
PSQL Optimization Time /DB 5,945.2 27,577.2 43,531.2 4,443.2 5,524 10,722 1,006.4 13,207.2 4,113.4 10,338.6

PSQL Execution Time /DB 14,224.2 47,029.2 93,601.4 8,919.2 11,872.6 23,939.8 2,038.2 72,783.8 9,583.2 14,997.4
PSQL Reformulation Time /S 18 27 22 25 14 46 24 86 14 23
PSQL Optimization Time /S 0 2,071.6 0 0 0 0 0 0 0 0

PSQL Execution Time/S 14,189.6 47,215.2 82,394.2 9,048.4 11,956.6 23,795 2,116.4 72,839 9,360.2 15,119.8
MySQL Reformulation Time 24 28 38 21 17 40 23 85 17 22
MySQL Optimization Time 0 0 0 0 0 0 0 0 0 0

MySQL Execution Time 59,745.2 187,456.4 223,490.8 223,186.2 42,258.8 60,565.2 9,332.2 122,053.8 36,010.4 62,064.8
MySQL Reformulation Time /DB 19 23 36 25 22 41 24 83 15 18
MySQL Optimization Time /DB 9,297.2 41,813.6 55,983.2 6,406.6 7,257 18,578.8 1,487 19,034 6,210.6 14,742

MySQL Execution Time /DB 59,725 187,263.4 222,905 226,038.2 42,208.8 59,693.4 9,359.4 120,912.6 36,099.2 61,837.6
MySQL Reformulation Time /S 18 26 44 23 16 38 23 88 23 19
MySQL Optimization Time /S 0 5,848.2 67.4 0 0 0 0 1.6 0 0.2

MySQL Execution Time/S 59,328.2 188,644.8 223,124.8 224,998.4 42,425.8 60,256.4 9,358.2 121,379 35,794.2 61,440
DB2 Reformulation Time 20 28 25 21 16 42 24 482 17 29
DB2 Optimization Time 0 0 0 0 0 0 0 0 0 0

DB2 Execution Time 5,326.2 11,838 89,883 3,055.4 3,942.6 53438,6 525.8 16,232.8 4,468.2 4.422.6
DB2 Reformulation Time /DB 18 24 21 25 13 34 28 345 14 19
DB2 Optimization Time /DB 0 0.8 1.6 0 0 33.8 0 0.4 0 0

DB2 Execution Time /DB 5,338 11,924.2 90,473 2,997.6 3,991.2 53,594.4 508 16,213.8 4,496.4 4,403
DB2 Reformulation Time /S 20 26 27 26 15 42 29 546 15 22
DB2 Optimization Time /S 0 0 0 0 0 0 0 1.4 0 0

DB2 Execution Time/S 5,376.2 11,806.4 90,738.8 3,000.2 3,960.6 51,832.8 523.8 16,156.6 4,437.4 4,371.2

Table A.9 – QA queries performance per RDBMS - USCQ (O = LUBM∃
20 and D =

LUBM150M)
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A.3.3 JUCQ Queries

Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9
# atoms 8 5 5 6 6 8 8 8 6 8

# contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31
# answers in ans(q,K) 36,922 0 521,041 1,076 102 0 2 1,309,926 21 0

PSQL Reformulation Time 33 21 25 26 24 64 210 91 11 28
PSQL Optimization Time 0 0 0 0 0 0 0 0 0 0

PSQL Execution Time 12,243.4 37,223.6 36,680.8 2,036.6 15,869.6 58,147.6 16 40,008.2 14,407.8 209
PSQL Reformulation Time /DB 54 37 34 26 24 40 202 93 18 27
PSQL Optimization Time /DB 5,936.6 12,004 16,563.6 1,287.2 11,840.8 27,125 472.4 16,970.2 12,331 5,475.8

PSQL Execution Time /DB 12,526 36,889.8 36,213.4 1,834.8 8484.4 45,134.2 14 8,916 370.8 512
PSQL Reformulation Time /S 49 34 33 26 23 41 199 88 18 27
PSQL Optimization Time /S 1.2 0 0 0 0 0 0.4 189.8 5.2 0

PSQL Execution Time/S 12,879.6 36,818.4 36,150.6 1,893.6 8,527 45,290.2 15.6 20,008.8 1,132 518.4
MySQL Reformulation Time 53 34 19 28 21 66 46 90 16 38
MySQL Optimization Time 0 0 0 0 0 0 0 0 0 0

MySQL Execution Time 58,873.4 112,386.2 120,772.6 12,518.8 39,366.2 210.6 7,717.2 66,205.6 285,077.8 2,489.8
MySQL Reformulation Time /DB 53 38 32 27 41 41 58 87 27 37
MySQL Optimization Time /DB 18,963.8 40,666.8 22,890.6 3,876 19,814 329,418 5,439 65,890.2 65,366.4 13,474.4

MySQL Execution Time /DB 58,730.2 113,225.2 120,841.4 12,224.2 36,473.4 450.4 7,804 16,437.4 292,771.4 2,751.8
MySQL Reformulation Time /S 52 37 18 26 40 114 55 108 19 58
MySQL Optimization Time /S 0 17.2 0 0 0 27.2 0 62.8 0 0.4

MySQL Execution Time/S 58,255.4 111,879.2 120,323 12,456.8 35,516.6 271.4 7,787.4 62,202.8 290,946.8 2,538.2
DB2 Reformulation Time 93 56 43 43 41 148 58 497 43 92
DB2 Optimization Time 0 0 0 0 0 0 0 0 0 0

DB2 Execution Time 5,518.4 3,689.6 17,324.6 3,110.6 3,980.8 3,325.8 529 117,732.6 18,111.6 1,118.2
DB2 Reformulation Time /DB 89 54 33 42 42 151 52 528 44 84
DB2 Optimization Time /DB 0 2.4 8.6 0.6 0 709.6 0 16,799.6 2,453 0

DB2 Execution Time /DB 5,269.6 3,616.6 17,744.2 3,028.8 3,879.8 3,260.4 510 11,627.4 18,059.8 1101.6
DB2 Reformulation Time /S 86 35 34 42 41 160 54 273 26 56
DB2 Optimization Time /S 0 0 0 0 0 0.2 0 61.2 0 0

DB2 Execution Time/S 5,312.8 3,618.4 17,315.4 3,033.2 3,970.4 3,318.6 517 106,222.4 17,976.2 1,099.6

Table A.10 – QA queries performance per RDBMS - JUCQ (O = LUBM∃
20 and D =

LUBM150M)
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A.4 Data

Figure A.1 – Raw Data in OWL format
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Figure A.2 – Raw Data in DLP format





Titre : Gestion efficace de données à l’aide d’ontologies expressives

Mot clés : Gestion de données, bases de connaissances, Optimisation de requêtes

Résumé :
Réponde à des requêtes à l’aide d’on-

tologies (OMQA) consiste à poser ces re-
quêtes sur des bases de connaissances (KB).
Une KB est un ensemble de faits (base
de données), qui est décrit par un domaine
de connaissance (ontologie). La technique
OMQA la plus étudiée est la réécriture FO
(FO-rewriting) ; elle consiste à reformuler une
requête pour y intégrer les connaissances
pertinentes de l’ontologie, avant de poser la
sur la base de données. Telles reformula-
tions peuvent alors être complexes et leur op-
timisation est cruciale pour l’efficacité. Nous
élaborons un nouveau cadre d’optimisation

pour la FO-rewriting : les requêtes conjonc-
tives (de type select-project-join) posées sur
des KBs en datalog± et en règles existen-
tielles, logique de description et OWL, ou
RDF/S. On optimise les requêtes produites
par les algorithmes de la littérature pour la
FO-rewriting, en calculant rapidement, à l’aide
du résumé de la base de données, des re-
quêtes plus simples (contenues) avec les
mêmes réponses et qui sont évaluées plus ra-
pidement par les SGBDs. On montre sur un
benchmark OMQA bien établi, que les per-
formances temporelles sont considérablement
améliorées par notre cadre d’optimisation, jus-
qu’à trois ordres de grandeur.

Title: Efficient ontology-based data management

Keywords: Data management, Knowledge bases, Query optimization

Abstract: Ontology-mediated query answer-
ing (OMQA) consists in asking database
queries on knowledge bases (KBs); a KB is
a set of facts called a database, which is
described by a domain knowledge called an
ontology. A main OMQA technique is FO-
rewriting, which reformulates a query asked
on a KB w.r.t. to the KB’s ontology; query
answers are then computed through the re-
lational evaluation of the query reformulation
on the KB’s database. Essentially, because
FO-rewriting compiles the domain knowledge
relevant to queries into their reformulations,
query reformulations may be complex and
their optimization is the crux of efficiency. We

devise a novel optimization framework for a
large set of OMQA settings that enjoy FO-
rewriting: conjunctive queries, i.e., the core
select-project-join queries, asked on KBs ex-
pressed in datalog± and existential rules, de-
scription logic and OWL, or RDF/S. We op-
timize the query reformulations produced by
any state-of-the-art algorithm for FO-rewriting
by computing rapidly, using a KB’s database
summary, simpler queries with same answers
that can be evaluated faster by DBMSs. We
show on a well-established OMQA benchmark
that time performance is significantly improved
by our optimization framework in general, up
to three orders of magnitude.
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