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Abstract 
 
In the first part, we mined the data sets of gene expression that combined the human 
placenta genome across pregnancy from 4 to 40 gestational weeks. Our results showed 
a total of 5173 genes involved in different periods of placentation with peroxisome 
proliferator-activated receptor (PPAR) signaling pathway confirmed to mediate the 
constant decrease of placental lipids throughout pregnancy. In the second part, we 
investigated one of the PPARs, PPARγ, in the trophoblasts, the cells that play a major 
role in the placenta. The research was conducted on extravillous cytotrophoblasts 
(EVCTs) and villous cytotrophoblasts (VCTs), where PPARγ is strongly expressed. We 
explored the genome-wide effects of activated PPARγ on EVCTs and VCTs. From our 
microarray data, we provided a broad perspective of PPARγ-activated biological 
processes in human trophoblasts. In the third part, we attempted to figure out the 
relationship between PPARγ and hypoxia-inducible factor (HIF) targets in the human 
first-trimester placenta transcriptome in response to physiological increased in oxygen 
levels. By comparing the transcriptomes of human placentas at 8-10 gestational weeks 
(2-3% O2) and 12-14 gestational weeks (8% O2), we characterized the similarities and 
differences between the enrichment patterns, as well as those associated with HIF 
targets. However, an intersection between the targets of PPARγ and HIF showed no 
overlapped element. In the fourth part, we explored the relationship between the 
polymorphisms of PPARγ and the susceptibility to preeclampsia, a pregnancy disease. 
With clinical characteristics and genotyped polymorphisms of PPARγ from a total of 
1648 women, we applied eight machine learning algorithms to optimize predictive 
models. The decisive tree with the highest performance of accuracy and the area under 
receiver operating characteristic curve (AUC) was selected and displayed to show the 
procedure of preeclampsia prediction. To sum up, our findings support that PPARγ 
mediates the constant decrease of placental lipids throughout pregnancy through 
PPAR signaling pathway, provide a broad perspective of PPARγ-activated biological 
processes in EVCTs and VCTs through the analysis of transcriptomic signatures, and 
develop a pragmatic model for clinical practice with the polymorphisms of PPARγ. 
 

Keywords: Placenta; Trophoblasts; PPARγ; Sequencing; Bioinformatics; Machine 
learning; Preeclampsia 
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Résumé 
 
Le placenta est un organe transitoire indispensable au maintien de la grossesse et à la 
croissance du fœtus. La barrière placentaire permet les échanges en nutriments et en 
gaz entre le sang maternel et fœtal. La placentation commence dès l'implantation du 
blastocyste dans l'endomètre. Les aberrations de la structure et de la fonction 
placentaires ont un effet immédiat sur l'issue de grossesse. Le récepteur nucléaire 
PPARg est essentiel au cours des premières étapes de la placentation et est fortement 
exprimée dans les trophoblastes. Il joue un rôle important dans la différenciation des 
trophoblastes extravilleux et villeux et la mise en place de la vascularisation utéro-
placentaie. La létalité embryonnaire observée chez les souris PPARγ-/- peut être 
contrée par la transfection de PPARγ dans le trophoblaste.  
 
Dans le présent travail, nous avons apporté de nouvelles informations sur le rôle de 
PPARγ dans le développement placentaire humain d'un point de vue général à l'aide 
de technologies de séquençage, suivie de l'analyse en aval axée sur l'enrichissement des 
ensembles de gènes identifiés. 
 
Partie I 

 
Il est admis que PPARγ est indispensable pour la placentation et que sa délétion 
entraîne la mortalité de l’ embryon. Mais sa régulation est-elle un processus statique 
dans une durée déterminée, comme le premier trimestre, ou un agencement 
dynamique et ordonné tout au long de la gestation ? Et si nous mettions PPARγ en 
arrière-plan de toute la période de gestation, son importance peut-elle encore être 
détectée plutôt que d'être noyée par d'autres facteurs plus importants ? C'est-à-dire 
quelle est la vue d'ensemble de l'expression à l'échelle du génome placentaire humain 
depuis le tout début de l'âge gestationnel jusqu'au terme. 
 
Notre objectif est d'étudier les changements dynamiques dans l'expression des gènes 
tout au long de la placentation. Dans notre étude, les profils d'expression génique des 
placentas humains de 4 à 40 semaines de gestation ont été collectés. Une régression 
linéaire et une analyse de réseau de corrélation pondérée ont été appliquées pour le 
filtre génétique. L'analyse d'enrichissement génétique, y compris l'ontologie des gènes 
et les termes de la voie de l'Encyclopédie de Kyoto des gènes et des génomes, a été 
effectuée par clusterProfiler. Un graphique linéaire dessiné avec une expression 
génique mise à l'échelle et ajustée a été appliquée pour afficher les changements 
dynamiques. Nos résultats ont montré un total de 5173 gènes impliqués dans 
différentes périodes de la placentation. L'annotation en aval de ces gènes a révélé les 
processus et voies biologiques impliqués, parmi lesquels nous avons sélectionné la 
«voie de signalisation PPAR». Cette carte des voies montre les gènes impliqués dans le 
stockage et le métabolisme des lipides, y compris les membres de la famille FABP et 
LPL. De plus, l'expérience de coloration des lipides neutres sur des coupes placentaires 
a montré une diminution significative de la teneur en gouttelettes lipidiques dans les 
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placentas du premier trimestre par rapport aux placentas à terme. Notre étude fournit 
plus d'informations sur les processus biologiques et les voies à travers la placentation 
humaine. Ces résultats nous donnent de nouveaux indices pour déchiffrer les fonctions 
normales de la placentation et leurs dérèglements peuvent être liés à des maladies liées 
à la grossesse. À titre d'exemple, nos résultats montrent que la voie de signalisation 
PPAR médie une diminution constante des lipides placentaires tout au long de la 
grossesse. 
 
Partie II 

 
Le placenta est composé de divers types cellulaires, tels que des trophoblastes, des 
cellules mésenchymateuses, cellules de Hofbauer cellules endothéliales etc.  
 
Les trophoblastes, en tant que cellules qui constituent la partie principale du placenta, 
subissent des processus de différenciation cellulaire tels que l'invasion, la migration et 
la fusion. Des anomalies dans ces processus peuvent conduire à une série de maladies 
gestationnelles dont les mécanismes sous-jacents ne sont pas encore clairs. Une 
protéine qui s'est avérée essentielle à la placentation est le récepteur activé par les 
proliférateurs de peroxysomes γ (PPARγ), qui est fortement exprimée dans les noyaux 
des cytotrophoblastes extravilleux (EVCT) au cours du premier trimestre et des 
cytotrophoblastes villeux (VCT) tout au long de la grossesse. Ici, nous avons cherché à 
explorer les effets à l'échelle du génome de PPARγ sur les EVCT et les VCT via un 
traitement avec la rosiglitazone, un agoniste de PPARγ. Les EVCT et les VCT ont été 
purifiés à partir de villosités choriales humaines, cultivées in vitro et traitées à la 
rosiglitazone. Les transcriptomes des deux types de cellules ont ensuite été quantifiés 
à l'aide d'un profilage par microarray. Les gènes différentiellement exprimés (DEG) ont 
été filtrés et soumis à l'annotation de l'ontologie génique (GO) et à l'analyse des voies 
avec ClueGO. L'outil en ligne STRING a été utilisé pour prédire les interactions entre 
les protéines PPARγ et DEG, tandis que iRegulon a été utilisé pour prédire les sites de 
liaison des promoteurs PPARγ et DEG. Les termes GO et chemin ont été comparés 
entre les EVCT et les VCT avec ClusterProfiler. Les visualisations ont été préparées 
dans Cytoscape. À partir de nos données sur les puces à ADN, 139 DEG ont été détectés 
dans les EVCT traités à la rosiglitazone (RT-EVCT) et 197 DEG dans les VCT traités à 
la rosiglitazone (RT-VCT). L'analyse d'annotation en aval a révélé les similitudes et les 
différences entre les RT-EVCT et les RT-VCT en ce qui concerne les processus 
biologiques, les fonctions moléculaires, les composants cellulaires et les voies KEGG 
affectées par le traitement, ainsi que des sites de liaison prédits pour les interactions 
protéine-protéine et les interactions facteur de transcription-gène cible. Ces résultats 
fournissent une large perspective des processus activés par PPARγ dans les 
trophoblastes ; une analyse plus approfondie des signatures transcriptomiques des RT-
EVCT et des RT-VCT devrait ouvrir de nouvelles voies pour la recherche future et 
contribuer à la découverte de gènes ou de voies possibles ciblés par les médicaments 
dans le placenta humain. 
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Partie III 

 
Notre intérêt s'est concentré sur le rôle de PPARγ dans deux types de trophoblastes au 
cours du premier trimestre, mais n'oubliez pas que le premier trimestre comprend une 
période entre 8 et 10 semaines de grossesse où les niveaux d'oxygène dans 
l'environnement placentaire augmentent considérablement. Il peut être intéressant 
d'étudier s'il existe un lien entre PPARγ ou ses cibles et les gènes ou voies liées à 
l'oxygène. 
 
La tension physiologique en oxygène augmente considérablement dans 
l'environnement placentaire entre 8 et 14 semaines de gestation, entraînant des 
altérations significatives des processus biologiques dépendants de l'oxygène. Les 
anomalies de cette période peuvent conduire à une série de maladies gestationnelles, 
dont les mécanismes sous-jacents restent flous. Pendant que cette augmentation 
spectaculaire de l'oxygène se produit, les cytotrophoblastes villeux, les cellules qui 
constituent la partie principale du placenta, subissent une série de transformations 
fondamentales. Nous avons exploré ces changements au niveau de l'ARNm en 
comparant les transcriptomes des placentas humains à 8-10 semaines et 12-14 
semaines de grossesse. Au total, 20 échantillons ont été collectés et divisés également 
en quatre groupes en fonction du sexe et du terme. Les cytotrophoblastes ont été isolés 
et séquencés à l'aide de RNAseq. Dans l'ensemble de données traité, les gènes clés ont 
été identifiés à l'aide de deux méthodes différentes : DESeq2 et l'analyse de réseau de 
co-expression génétique pondérée (WGCNA), basée sur les packages R DESeq2 et 
WGCNA, respectivement. Nous avons également construit une base de données locale 
de cibles connues des sous-unités alpha et beta du facteur inductible par l'hypoxie 
(HIF) afin d'étudier spécifiquement les modèles d'expression susceptibles d'être liés à 
des changements en oxygène. Les modèles d'enrichissement génique dans et parmi les 
quatre groupes ont été analysés sur la base des annotations de l'ontologie génique (GO) 
et des voies KEGG à l'aide de clusterProfiler. À partir de nos résultats DESeq2, nous 
avons identifié 457 gènes clés qui étaient corrélés à l'âge gestationnel et 15 qui étaient 
corrélés au sexe, tandis qu'avec WGCNA, nous avons identifié 2015 et 233 gènes clés 
associés à l'âge et au sexe, respectivement. Le croisement de ces résultats avec la base 
de données locale des cibles HIF a généré un sous-ensemble de 466 gènes, dont 463 
étaient associés à l'âge et 3 étaient associés au sexe. Nous avons caractérisé les 
similitudes et les différences entre les schémas d'enrichissement révélés par les deux 
méthodes pour les deux conditions (âge et sexe), ainsi que ceux associés aux cibles HIF. 
Nos résultats offrent une large perspective des processus actifs dans les 
cytotrophoblastes lors de l'augmentation physiologique de la teneur en oxygène. 
 
Partie IV 

 
La recherche biologique fondamentale est intéressante, mais elle serait plus attrayante 
si nous pouvions appliquer les résultats à la pratique clinique, par exemple, la 
prédiction de maladies. Les polymorphismes (SNP), connus pour leur contribution à 
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la susceptibilité aux maladies, nous viennent à l'esprit puisque PPARγ est si critique 
pour la placentation et l’issu de grossesse. Ses SNP pourraient être utiles pour le 
diagnostic de certaines complications de la grossesse. 
 
Certains polymorphismes de PPARg augmentent la susceptibilité à certaines maladies 
métaboliques et complications de la grossesse. Par exemple, le dysfonctionnement 
placentaire associé à la prééclampsie a été lié à une perturbation de PPARγ dans 
laquelle le polymorphisme génétique pourrait jouer un rôle. Notre objectif était 
d'étudier les facteurs de risque génétiques de cette maladie et de construire un modèle 
pragmatique pour la prédiction de la prééclampsie. Les données ont été recueillies 
auprès d'un total de 1648 femmes de l'étude de cohorte mère-enfant EDEN. De 
nombreuses caractéristiques cliniques ont été enregistrées, ainsi que des données de 
génotype pour trois polymorphismes PPARγ : Pro12Ala, C1431T et C681G. Une analyse 
univariée a été réalisée pour comparer les 35 patientes prééclamptiques aux 1613 
femmes témoins. Des caractéristiques d'intérêt fortement corrélées ont été identifiées 
en utilisant trois méthodes de sélection de caractéristiques et de curation manuelle ; 
huit algorithmes d'apprentissage automatique différents ont ensuite été appliqués pour 
créer des modèles prédictifs. Les performances du modèle ont été évaluées sur la base 
de métriques de précision et de l'aire sous la courbe caractéristique de fonctionnement 
(AUC) du récepteur. Le polymorphisme C1431T de PPARγ était le seul facteur 
significativement associé à la prééclampsie (p < 0,05) dans les analyses univariées, 
avec un rapport de cotes allant de 4,90 à 8,75. Le processus de sélection des 
caractéristiques et de curation manuelle a également suggéré l'inclusion des variantes 
maternelles C1431T et C681G en tant que facteurs, ainsi que les caractéristiques 
cliniques associées à la grossesse ou aux délais d'accouchement, l'indice de masse 
corporelle, l'éducation et la consommation de cigarettes. Parmi les algorithmes 
d'apprentissage automatique testés, le modèle basé sur l'arbre boost a donné les 
meilleurs résultats, avec des valeurs de précision et d'AUC dans l'ensemble 
d'entraînement de 0,971 ± 0,002 et 0,991 ± 0,001, respectivement, et dans l'ensemble 
de test de 0,951 et 0,701, respectivement. Un organigramme de l'arbre final a été 
construit pour décrire la procédure de prédiction de la prééclampsie. Nos résultats 
montrent pour la première fois que la variante C1431T de PPARγ peut jouer un rôle 
dans la détermination de la susceptibilité à la prééclampsie. L'arbre de décision créé 
ici, basé sur de multiples facteurs prédictifs, y compris les variantes C1431T et C681G 
de PPARγ, les délais de grossesse ou d'accouchement, l'indice de masse corporelle, 
l'éducation et la consommation de cigarettes, pourrait avoir des applications dans la 
prédiction clinique de la prééclampsie aux stades très précoces de la grossesse. 
 
Pour résumer, nos résultats soutiennent que PPARγ médie la diminution constante 
des lipides placentaires tout au long de la grossesse via la voie de signalisation PPAR, 
fournit une large perspective des processus biologiques activés par PPARγ dans les 
EVCT et les VCT grâce à l'analyse des signatures transcriptomiques, et développe un 
modèle pragmatique pour la clinique avec les polymorphismes de PPARγ. 
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1 Introduction 

1.1 Human placenta 

1.1.1 General description of the human placenta 

All viviparous vertebrates develop a placenta, a system surrounding the fetus to 

facilitate some functions. The placenta acts as a substitute of the still immature 

embryonic and fetal organs in some functions partially or completely, which includes 

the aspects:  

1. Gas transfer (complete substitute of the lung) 

2. Excretory functions, water balance, pH regulation (complete substitute of the 

kidney) 

3. Catabolic and absorptive functions (complete substitute of the gut) 

4. Synthetic and secretory hormones of most endocrine glands (partially substitute of 

endocrine glands) 

5. Numerous metabolic and secretory substances of the liver (partially substitute of the 

liver) 

6. Hematopoiesis of the bone marrow (complete substitute during early stages of 

pregnancy) 

7. Heat transfer of the skin (partially substitute of the skin) 

8. Immunological interactions and protection (partially substitute of the immunity) 

The placental shapes vary in some species according to the comparative placentology 

from structural characteristics, including diffuse placenta (placenta membranacea), 

cotyledonary placenta, zonary placenta, discoid placenta (Fig. 1). While from the 

functional characteristics, the placental types have been delicately classified as 

epitheliochorial, endotheliochorial, and hemochorial (Fig. 2). 
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Figure 1 Placental types based on structural classification 

Fig. 1 Placental types based on structural classification. According to the types of 

interdigitations between the mother (red) and the fetus (blue), the placental shapes are 

classified as: (a) Diffuse placenta, (b) cotyledonary placenta, (c) zonary placenta, and 

(d) discoid placenta [1]. 

 

 

Figure 2 Placental types based on functional classification 

Fig. 2 Placental types based on functional classification. According to the tissue layers 

of the maternal-fetal interface, the placental shapes are classified as: epitheliochorial 

placenta, characterized by no invasion of the maternal tissues where chorionic 

epithelium (CE) is located in the uterine epithelium (UE); endotheliochorial placentas: 
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characterized by loss of the uterine epithelium and direct contact between the 

syncytiotrophoblast (Sy) and the interstitial matrix (IM) where situates the maternal 

capillaries (MC) and decidual cells (DC); and hemochorial placentas, characterized by 

eroded maternal endothelial cells and the substitute maternal blood (MB). BL: basal 

lamina; Cy: cytotrophoblast; FC: fetal capillaries. [1] 

 

According to the features of these classification systems, the mature human placenta is 

characterized by the hemochorial and discoidal type. But this typical performance 

doesn’t last for the whole duration of placentation due to the dramatic changes in the 

interface along with the gestational age. For example, the intervillous space is full of a 

clear fluid that is only secreted by the endometrial glands in the uterus, while the intra-

placental circulation is not yet established unless the end of the first trimester after 

which the placenta can be considered as hemochorial [1]. The variation in this duration 

might give rise to many of the complications of pregnancy [2] such as the oxygen 

concentration rises three-fold at the end of the first trimester. 

As common sense, the generally realized human placenta is the term form, a local and 

disk-like thickening of the membranous sac that is surrounded by two split 

membranes, the chorionic plate and the basal plate (Fig. 3).  Inside the membranes is 

the intervillous space where is filled with maternal blood with fetal villi floating. The 

villi are complex tree-like projections sprouting from the chorionic plate, with the 

trophoblast covered on the surface and fetal vessels located internally whereby the 

connection between the fetal circulatory system and maternal blood is built. At the 

placental margin, the basal plate and the chorionic plate fuse with each other to form 

the chorion laeve leaving no space for villi. 
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Figure 3 The normal and mature human placenta 

Fig. 3 The normal and mature human placenta is surrounded by the chorionic plate 

(CP, fetal side) and the basal plate (BP, maternal side) with the intervillous space (IVS) 

inside. The villous trees sprouting from the CP are submerged by the maternal blood 

full of the intervillous space where exchanges happen between the maternal spiral 

vessels and fetal villous trees. Abbreviations from left to right: M: myometrium; P: 

placental bed; BP: basal plate; S: septum; IVS: intervillous space; *: cell island; MZ: 

marginal zone; CL: chorion laeve; CP: chorionic plate; A: amnion; UC: umbilical cord 

[3]. 

 

1.1.2 Trophoblast 

The Origin of Trophoblast 
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After fertilization, the zygote continues to divide mitotically, which is known as 

cleavage. It afterward goes with the 8-cell stage on day 3 post-coitus (p.c.), and the 16-

cell stage which is known as the morula. After undergoing a transformation of 

compaction, the morula is compassed by a smoother spherical outline while 

intercellular clefts are surrounded by tight junctions across the apical regions. The 

morula cells are polarized with the favor of tight junctions that help cytoskeletal and 

other proteins to redistribute from the apical to basal domains or vice versa. As a 

consequence, ionic gradients can go into the center of the mass and expand it to form 

a blastocyst by day 4.5 p.c. Inside the blastocyst, asymmetrically division goes on in 

cells that two distinct populations with different cell components are formed with the 

outer trophoblast cells giving rise to the wall of the blastocyst, and the inner cell mass 

to the embryo [4]. The embryonic stage of development thus begins as soon as the 

blastocyst hatches from the zona pellucida and implants in the endometrium. In this 

process, the trophoblast is the first cell lineage to differentiate, followed by 

cytotrophoblast, syncytiotrophoblast, extravillous, and villous trophoblasts, etc. (Fig. 

4). 
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Figure 4 A schema of differentiation of fertilized egg 

Fig. 4 A schema of differentiation of fertilized egg [4]. 

 

Prelacunar Stage 

This first stage is defined after the implantation of the blastocyst when the blastocyst 

establishes close and stable contacts with the endometrium. The first step of 

implantation is called apposition, taking place around day 6–7 p.c., when it comes out 

of an outer layer of trophoblast from the wall of the blastocyst and of an inner layer of 

extra-embryonic mesoderm from the inner cell mass [5]. The inner cell mass gradually 

evolves into the embryo, umbilical cord, yolk sac, amnion, and part of the placenta. 

Following apposition, invasion happens in trophoblasts toward the endometrium with 

established cell-cell contacts between trophoblasts and uterine epithelial cells, in which 

the trophoblast cells migrate toward the endometrium and displace the endometrial 

cells [6].  

During this process, part of the trophoblast cells undergoes further differentiation from 

mononucleated cells into multinucleated masses of syncytiotrophoblast, while the rest 
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remaining mononucleated are called cytotrophoblast (Fig. 5a). In the following days, 

the blastocyst is gradually encompassed by the endometrium with the rebuild 

occurring nearby the site of implantation. In between the external blastocyst and the 

endometrium, it is filled with the rapidly increased mass of syncytiotrophoblast, which 

functions as a complete mantle over the blastocyst. The mantle will achieve such a 

substantial thickness of the syncytiotrophoblast that finger-like extensions are 

subsequently developed from the implantation pole and deeply invade into the 

endometrium. Notably, the syncytiotrophoblast has lost its generative potency after the 

differentiation, which is replenished continuously by the stem cell-like cytotrophoblast 

underneath owing to its proliferation and fusion. This duration, lasting from day 7 to 

day 8 p.c., when the syncytiotrophoblast is a rather solid mass, is defined as the 

prelacunar stage [7]. 

 

Lacunar Stage 

Around day 8 p.c., there appear small vacuoles within the mass of syncytiotrophoblast 

at the implantation pole, which form a system of lacunae (Figs. 5b&5c). The lacuna 

formation subsequently spreads over the whole surface of the chorionic sac. In the 

interior of the syncytiotrophoblastic mass, there exist the separating lamellae and 

pillars of syncytiotrophoblast, called the trabeculae. Their appearance defines the onset 

of the lacunar or trabecular stage of placentation, lasting from day 8 to day 13 p.c. By 

day 12 p.c., when the blastocyst is deeply implanted into the uterine epithelium, the 

cytotrophoblast cells underneath the syncytiotrophoblastic mantle enlarge and spread 

through the trabeculae as cellular columns [8]. Approximately 2 days later, they 

penetrate the tips of the trabeculae and amalgamate with each other to form a new 

layer called the cytotrophoblastic shell, which is interposed between the mantle and 

the endometrium. Therefore, the exterior of the blastocyst contains three layers in the 
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lacunae stage (Fig. 5c&5d): (1) the primary chorionic plate; (2) the lacunar system 

along with the trabeculae; and (3) the cytotrophoblastic shell, i.e., the precursor of the 

basal plate. 

Especially, in the lacunae stage, maternal erythrocytes can be observed in the lacunae 

despite few numbers. The dilation of venules containing maternal erythrocytes within 

superficial endometrium near the conceptus form sinusoids, which simplify the 

subsequent erosion of the syncytiotrophoblast into the sinusoids [8], resulting in the 

observation of erythrocytes. However, the connection to the maternal artery is not yet 

established unless the end of the first trimester [9, 10]. In this duration, the glandular 

secretion also contributes to the flourish of the blastocyst thanks to the erosion of the 

syncytiotrophoblast into the nearby necks of the endometrial glands [11]. 

Around day 14 p.c., the new layer of the cytotrophoblastic shell enables the interaction 

between cytotrophoblast cells and the endometrial tissues. On one hand, the shell 

contains large amounts of glycogen; on the other hand, the endometrium accumulates 

a population of differentiated pleomorphic cells, which are considered as extravillous 

trophoblast. Taken together, these preconditions make possible the adaptation of the 

maternal vessels to pregnancy conditions and the anchorage of the developing placenta 

during implantation and placentation [12].  

 

Early Villous Stages 

On about day 13 p.c., along with the increased cytotrophoblastic proliferation, side 

branches protrude from the trabeculae and into the lacunae (Fig. 5d&5e). These side 

branches are primary villi, composed of internal cytotrophoblast cells and its external 

derivatives, syncytiotrophoblast cells. The presence of the primary villi is taken as the 

onset of the villous stages. Subsequently, primary villi develop into primitive villous 

trees alongside its active proliferation, while the former trabeculae act as the stems 
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(Fig. 5e). The anchors of the primitive villous trees would be those villi keeping in touch 

with the trophoblastic shell, which is called anchoring villi. These villi are surrounded 

by a transformed lacunar system, which is known as the intervillous space. 

Two days later, the primary villi begin to transform into secondary villi because of the 

invasion from mesenchymal cells stemming from the extra-embryonic mesenchyme 

layer of the chorionic plate. The invasion spreads soon towards the villous tips in 

several days but spares the anchoring villi as the trophoblastic shell is not reachable 

[9]. Instead, these intact villi remain as cytotrophoblast cell columns until the late 

stages of pregnancy, and function as the source of extravillous trophoblast. However, 

not all the villi will end in that case. Part of the intact villi probably peel off the 

cytotrophoblast shell and become free-floating villi at the tips, which are called 

trophoblastic cell islands. 

Between days 18 and 20 p.c., the fetal capillaries appear for the first time in the 

mesenchyme of the villi as well as the primary chorionic plate. The endothelium of the 

fetal capillaries derives from hemangioblastic progenitor cells in the mesenchyme that 

are also the precursors of hematopoietic stem cells [13-15]. The appearance of 

capillaries in the villous stroma and its later derivatives represents the first tertiary villi, 

while the primary or secondary villi correspond to cell columns, cell islands, or newly 

formed villus from trophoblastic and villous sprouts. However, the placental and fetal 

circulations are established independently except for limited communications at the 

start of the fourth-week p.c.. Even though the beginning of the sixth-week p.c., the 

fetoplacental circulation still has a high resistance in between owing to the nucleated 

fetal erythrocytes [16]. This causes a relatively low oxygen concentration (<20 mmHg) 

with the fetoplacental during the first trimester [17, 18]. The low concentration of 

oxygen may benefit the development of the placenta by maintaining the pluripotent 
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state of cells and the embryo by minimizing the risk of oxygen-free radical-mediated 

teratogenesis [19, 20]. 

 

Figure 5 Schematic drawing of the typical stages of early placental development 

  

Fig. 5 Schematic drawing of the typical stages of early placental development. (a, b) 

Prelacunar stages. (c) Lacunar stage. (d) Transition from lacunar to the primary villous 

stage. (e) Secondary villous stage. (f) Tertiary villous stage. ac amniotic cavity, fp: fibrin 

plug, eec: extraembryonic coelom, eem: extraembryonic mesoderm, eg: endometrial 

gland, evt: extravillous trophoblast, cs: cytotrophoblastic shell, ivs: intervillous space, 

sa: spiral artery, syn: syncytiotrophoblast, v: uterine vein [9]. 
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Villus Regression and Formation of the Definitive Placenta  

Villi initially and continuously develop over the entire surface of the chorionic sac until 

the eighth-week p.c. [9]. Then the superficial pole of the villous mass connected to 

decidua capsularis initiates the formation of the smooth chorion or chorion leave, 

which is called villus regression, while the remainder at the deep pole the formation of 

the definitive placenta. Villus regression is resulted from the pump of the maternal 

arterial circulation into the placenta, especially in the center of the implantation site 

[21, 22], allowing for the flow in the early beginning (Fig. 6). The flow thus brings the 

intervillous space a threefold rise of the oxygen concentration [23], which will lead to 

oxidative stress in the peripheral villi [24]. Meanwhile, the formation of the definitive 

placenta results from the following steps, separately or collaboratively [25]: firstly, the 

cytotrophoblast and its syncytial fusion cause the syncytial sprouts which are taken as 

the primary villi containing only the trophoblast; secondly, these sprouts, owing to the 

invasion of villous mesenchyme, evolve into villous sprouts which are taken as the 

secondary villi; thirdly, the components of the definitive placenta, mesenchymal villi, 

are formed because of the formation of fetal vessels with the stroma. The steps repeat 

and thus expand the sprouts of the villi throughout the placentation. Notably, due to 

the appearance of capillaries within the villous stroma, the step of the tertiary villi 

formation is a complex process associated with the differentiation of various villous 

types. However, its complicated differentiation results in an enormous rise in villous 

surface area and wide spread of the villous membrane dividing the fetal and placental 

circulation [26, 27], which effectively advances placental maturation. 
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Figure 6 Schematic drawing of a gestational sac at the end of the second month 

Fig. 6 Schematic drawing of a gestational sac at the end of the second month (8–9 

weeks) showing the yolk sac (ys), amniotic cavity (ac), extraembryonic coelom (eec), 

placenta (p), decidua (d), and myometrium (m). Maternal blood flow (arrow) pumps 

into the periphery of the developing placenta, where the invasion of trophoblast and 

plugging of spiral arteries is least extensive. Due to the blood flow, bringing high levels 

of oxidative stress, the villi regress over the superficial pole of the sac (asterisk) and 

form the chorion laeve [28]. 

 

Basic Structure of the Villous Trees 

During placental development, villi types vary in functions but their basic structures 

are similar (Fig. 7). Generally, the villi are covered by the syncytiotrophoblast, beneath 

which is the cytotrophoblast, while the stromal core of the villi is separated by the 

trophoblastic basement membrane. The stroma contains connective tissue cells, 

connective tissue fibers, villous macrophages (Hofbauer cells), and ground substance, 

as well as the fetal vessels. 
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Figure 7 Basic structure of human placental villi 

Fig. 7 Basic structure of human placental villi. (a) Simplified sagittal plane of the 

uterus, placenta, and membranes in the human [29]. (b) Typical mature villous tree, 

consisting of a stem villus (1) and its extending immature intermediate villus (3), the 

side branches (2), and terminal villi (4). (c) Highly simplified light microscopic 

structure of terminal villi. (d) Schematic electron microscopic structure of the placental 

barrier (Source: Modified after Kaufmann (1983)). 

 

Syncytiotrophoblast 
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Microvillous Surface 

The syncytiotrophoblast is a continuous and highly polarized epithelial layer that 

extends over the surfaces of villi, the apical of which carries an abundant covering of 

microvilli. The existence of microvilli profoundly amplifies the surface area to function 

by a factor of five to sevenfold [30, 31]. The microvilli are supported by cytoskeletons 

including actin filaments, -actinin, and ezrin [32, 33], whose abnormality is related 

to placental diseases, such as preeclampsia [34].  

Functions 

The syncytiotrophoblast can secret the glycocalyx to cover the surface of the microvilli, 

which may prevent the intervillous space from thrombosis and function partially as 

immune barriers. The microvilli act as a semipermeable membrane, which can affect 

the placental transfer. As a transporting epithelium, a high density of transporter 

proteins exists in the apical membrane. For example, a non-ATP-dependent process, 

involving the GLUT family of proteins, can help to transfer glucose through the 

placenta, while an active process, involving amino acid transporters, mediates the 

amino acid exchange between the intra- and extra-cellular compartments. Herein also 

contains ionic and solute transporters. Except for transporters, several enzymes, 

phospholipids, and junctional complexes also can be found in the apical surface [35-

37]. As to the basal surface, which contacts directly with the cytotrophoblast or the 

trophoblastic basement membrane, contains only a lower number of transporter 

proteins than that of the apical surface [38]. 

Vasculosyncytial membranes 

Vasculosyncytial membranes exist on the surface of terminal villi, as is indicated by the 

name, representing the connection of fetal capillaries and the syncytiotrophoblast. It 

becomes ubiquitous after 32 weeks of gestation, the formation of whom is associated 

with a progressive reduction in the thickness of the villous membrane [26]. The 
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membranes are often sinusoidally dilated in the capillary, which results in its bulge 

against the villous surface, followed by the stretch of the syncytiotrophoblast and 

displacement of nuclei and organelles laterally. Therefore, the combined two ways, the 

reduction of thickness and the lack of organelles, aids gaseous exchange without many 

oxygen consuming. 

 

Villous Cytotrophoblast 

Villous cytotrophoblast, beneath the syncytiotrophoblast, can be identified by their 

position and also the appearance of their nucleus, which is larger generally rounder, 

and larger than that of the syncytiotrophoblast. Despite the general appearance, the 

different stages of differentiation of villous cytotrophoblast cells can be also 

distinguished from a range of morphological features. The shape of cells can be 

cuboidal, closely juxtaposed to form a complete layer in the first trimester, while 

flattened and separated in the later pregnancy [8, 39]. 

Villous cytotrophoblast cells constitute the germinative trophoblastic layer [40], which 

can proliferate and fuse to form the syncytiotrophoblast, the fusion of the two type of 

cells involves a rehearsal of events, including disintegration of cell membranes, and 

merge of cytoplasm, organelles, and nucleus into the syncytium. The nuclei number 

between the cytotrophoblast and the syncytiotrophoblast keeps a constant according 

to the stereological estimates, which suggests the fixed fusion rate of these two cell 

types across pregnancy [8]. The progress has been diagrammed below to indicate the 

critical cellular events during the fusion process (Fig. 8). 
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Figure 8 Schematic graph representing the differentiation of cytotrophoblast cells and the fusion process 

Fig. 8 Schematic graph representing the differentiation of cytotrophoblasts and the 

fusion process, and the formation of a syncytial knot [40]. 

 

Villous Macrophages 

Villous macrophages are a component of the stromal core, characterized by the 

morphology of being large and round. Their cytoplasm is highly vacuolated with many 

vacuoles during the first trimester. Villous macrophages are first observed on day 18 

p.c. in placenta villi, which are thought to be the offspring of hemangioblastic cells from 

the mesenchymal cells [14]. Its population can be augmented because of the 

macrophage proliferation during early pregnancy but rapidly increase with newly bone 

marrow-derived monocytes around 8 weeks of pregnancy when the establish of fetal 

circulation [41]. This owes to the close location near the trophoblastic basement 

membrane and the fetal capillaries, which indicates its association with regulating 

trophoblast differentiation and angiogenesis. The cells are easily identified with the 

loose morphology in early pregnancy but less evident with the over-condensed stromal 

core as well as the decreasing numbers in the later of pregnancy [42, 43]. As the free 
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connective tissue cells, villous macrophages account for the most, but there still exists 

a few other cells without macrophage character, including mast cells and plasma cells. 

As to their functions, immunological defense of the fetus and the prevention of vertical 

transmission of pathogens are the most important, as expected. 

 

1.1.3 Vasculogenesis and Angiogenesis 

 

Vasculature 

The umbilical cord is inserted into the chorionic plate with the umbilical arteries 

connected by Hytrl’s anastomosis. The branches of the umbilical arteries, with the 

concomitant veins, equally and widely spread over the chorionic plate, aiming to 

balance flow to the different placental territories. The penetration of the arteries in the 

chorionic plate terminates in the stromal core of stem villi. Along with the chorionic 

arteries, the fetal vascular tree is formed. The key component of arteries, smooth 

muscles, increases in accordance with its thickness as gestation advances [44], while 

the existence of outer muscle fibers, the myofibroblasts, and the elastic lamina is not 

clear. The endothelial cells of these vessels, displaying large numbers of caveolae, can 

be observed and strongly immunoreactive for nitric oxide synthase [45-47]. 

The lateral intercellular spaces between adjacent endothelial cells are connected by 

intercellular junctions that consist of tight and adherent junctions [8, 48], where the 

leaf-like cell membranes can fold into the lumen of the capillary. These junctional 

complexes thus serve as intercellular mechanical links and reconcile the permeability 

for paracellular transport. However, the capillaries are not initially surrounded by a 

basement membrane. Until the first trimester, a bundle of intermediate filaments 

begins to show up in the form of fibronectin close to the endothelial cells, while it shifts 

to type IV collagen, laminin, and fibronectin by the third trimester [37]. Additionally, 
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apart from the membrane, the endothelial cells are also surrounded from the very early 

stage by the pericytes, which share the common hemangioblastic progenitor cells as 

the endothelial cells. 

Notably, the endothelial cells in different origins show different properties. For 

instance, in the stem villous arteries and the villous capillaries, the latter owns lower 

immunoreactivity for nitric oxide synthase than the former [47]. Yet they can also share 

the same properties, like the susceptibility to oxidative stress. The endothelium of both 

exhibits high levels of nitro-tyrosine residues ensuing the period of hypoxia-

reoxygenation in vitro, which is highly related to the cases of intrauterine growth 

restriction and preeclampsia [49]. Meanwhile, following ischemia-reperfusion during 

vaginal delivery, high levels of stress can also lead to fluctuating levels of placental 

oxygenation secondary to mal-perfusion, thus affecting the development of the villous 

vasculature [50]. 

 

General Description of Placental Vasculogenesis and Angiogenesis 

Vasculogenesis and angiogenesis are the common steps happening in organs for vessel 

formation, to the placental vessels (Fig. 9). Vasculogenesis occurs from the de novo 

formation of blood vessels originating from mesodermal precursor cells. It begins 

within the mesenchymal layer of the secondary yolk sac in the conceptus. Later, 

vasculogenesis is restricted in mesenchymal villi, during their formation from 

immature intermediate villi. Angiogenesis involves the expansion of preexisting vessel 

beds and the creation of new vessel branches, which thus form the vessels in immature 

intermediate villi, stem villi, mature intermediate villi, and terminal villi. Placental 

angiogenesis can be further classified into two different types, branching angiogenesis 

and non-branching angiogenesis, regarding the mechanisms and geometry. Branching 

angiogenesis is a complex, multiply branched capillary formation, either through the 
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process of capillary sprouting or through intersusception. By contrast, nonbranching 

angiogenesis relates to elongating the existing capillary loops. 

 

Figure 9 Schematic graph representing of general mechanisms of vasculogenesis and angiogenesis 

Fig. 9 Schematic graph representing of general mechanisms of vasculogenesis and 

angiogenesis, with the regulating molecules. Ang: angiopoietins, FGF: fibroblast 

growth factor, PIGF: placental growth factor, VEGF: vascular endothelial growth factor 

[52]. 

 

Vasculogenesis (Day 15–32) 

Vasculogenesis can be observed firstly through morphological evidence of the cores of 

mesenchymal villi at 18-20 days p.c. [14, 15]. Hemangiogenic progenitor cells, 

associated with the trophoblastic basement membrane, differentiate in the villi from 

the fetal-derived mesenchymal cells [51]. These cells shape string-like polygonal cells 

tied by desmosomes and primitive tight junctions. The lumen formation is firstly 
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observed around day 23 p.c. while by day 28 p.c., clearly defined, long, polygonal 

capillary lumens can be shown in most villi with endothelial cells nearby becoming 

flattened. As soon as capillary lumens have been built, the first hematopoietic stem 

cells begin to delaminate from the primitive vessel walls and differentiate into other 

types. Even though the formation of these cells in situ, neither the circulation is 

possible under the condition of the isolated segments of most of the endothelial tubes, 

nor yet the anatomical connection through the cord into the embryonic circulation. As 

to allantoic vessels, they are structured also in forms of vasculogenesis, within the 

allantois [52], then spread from the embryonic to placental directions, and finally, 

connect the intraembryonic with placental vascular beds. 

 

Angiogenesis and Vascular Remodeling (Day 32 to Week 40) 

At around day 32 p.c., a primitive fetoplacental circulatory network has been 

established with the villous endothelial tubes in contact with each other as well as the 

fetal allantoic vessels (Fig. 10). Hereafter, an extensive and continuous remodeling of 

vessels goes on in the placental vascular network during pregnancy. In the first and 

early second trimesters, the vessels increase gradually in the number, volume, and 

surface area with the villi, with continuously sprouting blind-ending capillaries [27, 53, 

54], while the proliferation and elongation of endothelial cells will continue to increase 

the total surface area until term [55]. The construction is partially sustained by the 

angiopoietins secreted by pericytes around the endothelial cells and capillaries, which 

indicates the degree of maturity and stability of the network [56]. The pericytes and 

endothelial tubes also begin to form the basal lamina material around from about 6 

weeks p.c., while the complete encirclement of the capillary is not to show until the last 

10 weeks of pregnancy (Fig. 11) [14]. Besides, the differentiation of stem villi 

commences from the third month out of immature intermediate villi, along with the 
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expression of the cytoskeletal protein to form thin sheaths around endothelial tubes 

[57, 58]. In parallel, the superficial capillary net rarefies into a few largely unbranched 

para-vascular capillaries (Fig. 10). 

 

 

Figure 10 Showing angiogenesis and vascular remodeling of fetal vascular during villous development 

Fig. 10 Showing angiogenesis and vascular remodeling of fetal vascular during villous 

development. I: vasculogenesis of fetal capillary segments. II: A simple netlike capillary 

bed fused by the primitive vessel segments. III: Development of immature 

intermediate villi (iiv) from mesenchymal villi (mv) by branching angiogenesis from 

the preexisting capillary bed. IV: Transformation of the centrally located capillaries 
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into stem vessels (arteries and veins) and the regression of the peripheral capillaries. 

V: Further growth and elongation of capillary loops with three different types of 

terminal villi because of imbalanced branching or nonbranching angiogenesis. Green: 

collagen fibers, brown: vascular smooth muscle cell, blue: endothelial tubes, mv: 

mesenchymal villi, tv: terminal villous [14]. 

 

 

Figure 11 Vasculogenesis and angiogenesis in early and late placental villi 

Fig. 11 Vasculogenesis and angiogenesis in early and late placental villi [14]. For 

further details, see the text. 
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1.1.4 Oxygen 

 

Oxygen and Oxygen-Controlled Growth Factors as Regulators of Villous 

and vascular Development  

The oxygen concentration plays an important role in villous development since it is 

heavily dependent on angiogenesis. Research has indicated that oxygen, along with its 

allied oxidative stress, has powerful positive and negative influences on villous growth 

[59]. Placental development requires a huge amount of oxygen which accounts for at 

least 30% of the total consumed by the uteroplacental unit, with one-third for protein 

synthesis, one-third for transport, and the rest for other functions. Meanwhile, it’s 

important not to consume too much oxygen in the intervillous space for the sake of 

fetal development. This is controlled by minimizing the interposed trophoblast 

between the fetal capillaries and intervillous space with vasculosyncytial membranes, 

which are regulated by hypoxia. 

“Hypoxia” in the mother-placenta-fetus unit refers to delicate conditions of which 

compartment reference is being made. Because hypoxia is a dynamic regulating state 

among these three, for instance, when the mother is exposed to hypoxia, the placenta 

will adapt to guarantee sufficient oxygen in the fetus. The metabolic requirements thus 

become the only standard to define the hypoxia state, but not a low oxygen 

environment. The types of hypoxia thus can be defined into three classes depending on 

the compartments (Fig. 12) [60]: 1) Pre-placental hypoxia, with all involved, the 

mother, the placenta, and the fetus, which can be caused by maternal anemia [61-63], 

and cyanotic maternal cardiac diseases; 2) Uteroplacental hypoxia, with the placenta 

and the fetus involved and the mother in normal, which can be caused by preeclampsia 

with the preserved umbilical end-diastolic flow; 3) Post-placental hypoxia, with only 
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the fetus involved, which can be caused by intrauterine growth restriction with the 

absent umbilical end-diastolic flow. 

 

Figure 12 Defined types of hypoxia depending on the compartments 

Fig. 12 Defined types of hypoxia depending on the compartments. Preplacental 

hypoxia: the hypoxia of the mother, the placenta, and the fetus. Uteroplacental 

hypoxia: the hypoxia of the placenta and the fetus but not the mother. Post-placental 

hypoxia: the hypoxia of the fetus but not the mother and the placenta. Red point: 

oxygenation of maternal blood, blue point: oxygenation of fetal blood. The dense of 

points represents the oxygen concentration referencing to normal or abnormal [60]. 

 

While the classification provides a useful framework to consider the impact of oxygen 

on the placenta and the fetus, it spares further revisions to be more accurate in the 

following aspects. Firstly, the physiological adaptations of maternal circulation should 

be considered in the models since changes in maternal and placental blood flows can 
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be sufficient to guarantee an adequate exchange of substances for fetal development 

[64-66]. Secondly, the different types of hypoxia should be addressed according to the 

placental responses [67]: 1) Hypoxic or hypobaric hypoxia due to insufficiency of 

oxygen transfer across the mother’s lungs or living at high altitude, characterized by a 

low maternal arterial oxygen tension (PO2) and oxygen content; 2) Anemic hypoxia due 

to a reduced carrying capacity of the blood, characterized by a normal PO2 but low 

oxygen content; 3) Ischemic hypoxia due to reduced glucose and nutrient supply, 

characterized by injury of highly reactive oxygen species (ROS) resulted from the 

ischemia-reperfusion [49]. 

 

Oxygen Sensing in Placental Tissues 

There are at least five ways for the placenta to sense hypoxia and respond to the 

prevailing conditions at different physiological forms of hypoxia, including oxygen-

sensitive transcription pathways, ROS signaling pathways, oxygen-sensitive ion 

channels, ATP metabolites, and the unfolded protein response. 

• Oxygen-sensitive transcription pathways. It focuses on the hypoxia-inducible 

factors (HIFs), containing HIF-1 and HIF-2. HIF-1 is a heterodimer composed 

of the hypoxia-dependent HIF-1a subunit and the HIF-1b subunit (also referred 

to as ARNT, arylhydrocarbon receptor nuclear translocator). Functioning as a 

transcription factor, it targets genes ranging from erythropoietin, VEGF, glucose 

transporters, to glycolytic enzymes, etc., which protect the placenta from 

hypoxic situations [68, 69]. Notably, except for hypoxia, HIF-1 itself can also be 

regulated by a range of nonhypoxic factors such as nitric oxide, steroid 

hormones [70, 71], indicating consideration of the specific situation of the 

samples, as well as the location of HIF activity that happens. While HIF-1a may 

mediate acute responses, HIF-2a may contribute to longer-term adaptations to 
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milder oxidative stress [72, 73]. 

• ROS signaling pathways. It regulates placental development and function 

through a change in redox potential whose sensitive transcription factors 

include AP-1, SP-1, CREB, p53, Mash2, NF-kB, and STAT3, responding to the 

homeostatic balance of ROS [74-76]. The transcription factors can either 

modulate stress responses or regulate cell proliferation and differentiation. 

Activation of the ROS signaling pathways can activate the NF-kB, p38, and 

stress-activated protein kinase mitogen-activated protein kinase (SAPK MAPK) 

[77, 78], increasing secretion of pro-inflammatory cytokines. 

• Ion channels. Ion transport can be an active and oxygen-consuming process, 

which is thus oxygen-sensitive and energy-demanding. The membrane where 

ion channels situate will become more impermeable under the hypoxia 

condition. For instance, inhibition of K+ channels because of hypoxia leads to 

membrane depolarization, activating voltage-gated calcium channels [79].  

• ATP metabolites. ADP and AMP are the metabolites of ATP. The increased 

concentration of the latter act as a stimulus for the cytosolic enzyme AMP-

activated protein kinase (AMPK), which regulates a variety of metabolic 

pathways, such as glycogen synthesis, glycolysis, and fatty acid oxidation, and 

inhibits protein synthesis via the mTOR pathway. 

• The unfolded protein response. Oxidative stress and endoplasmic reticulum 

stress have a mutual influence on each other [80, 81]. The endoplasmic 

reticulum (ER) is a critical site for responses to various stress, including hypoxia, 

which is mediated mainly through the unfolded protein response [82-84]. It 

plays an important role in the homeostasis within the ER through suppressing 

mRNA translation and new peptides synthesis, upregulating ER chaperone 

proteins, synthesizing ER cisternae to increase the capacity, and stimulating the 
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proteasomal degradation pathway. 

 

Oxygen and Villous cells 

Villous cytotrophoblast was reported to be sensitive to oxygen. The number of villous 

cytotrophoblasts increases under the intrauterine hypoxia condition [61, 85]. The 

increased cytotrophoblast contributes to the boosting proliferation under 2% oxygen 

concentration, compared with 8% or 21% [86], and the shrinking fusion into the 

syncytiotrophoblast [87]. Apart from the influence from cytotrophoblast, villous 

syncytiotrophoblast itself is also sensitive to elevated or fluctuating oxygen levels, 

considering its booming and abundant syncytial sprouts under the low oxygen 

conditions [88] while the performance of oxidative stress under high oxygen conditions 

at the end of the first trimester [23, 24].  By contrast, the villous connective tissue reacts 

to the oxygen concentration in a different performance. The villous fibrosis is low, 

consistent with the low intervillous PO2 across the first trimester, and high in the 

second trimester with steeply increased oxygen levels [75]. 

 

Oxygen and Intervillous Circulation 

The flow of the intervillous circulation is determined largely by the flow inside the 

spiral arteries, which has been demonstrated by a computational model showing both 

the velocity and the volume of the blood flow [89]. Meanwhile, the trophoblast also 

functions to connect with the maternal blood, which is highly influenced by the degree 

of trophoblast invasion. Then it comes the influence of oxygen level. The results related 

to the effect of oxygen on the invasion are conflicting since the majority found the 

inhibition of either outgrowth or invasion of the trophoblast under reduced oxygen 

levels [90-94] while the other suggested hypoxia increases invasiveness [65, 95, 96].  
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Therefore, the situation between oxygen and the intervillous circulation should be 

carefully addressed on one side. The low oxygen levels during early pregnancy can 

promote the proliferation of cytotrophoblast cells and facilitate the extravillous 

trophoblast to invade into the maternofetal interface as the cytotrophoblastic shell. The 

success of the invasion will bring a plentiful supply of oxygen for the trophoblast cells, 

which again provides positive feedback for the further proliferation and invasion. 

However, on another side, the role of oxygen in trophoblast invasion maybe not the 

only factor since the other factors such as growth factors and cytokines can also affect 

the process, which is perhaps the reason for the paradox. 

 

1.2 PPARG 

1.2.1 PPARγ gene and protein structure 

 

PPARγ gene structure 

Eukaryotic genes are composed of intron and exon. In the human, there are more than 

30,000 genes. Genes can be translated to mRNA and then translated to protein. In the 

contrast, with the fair conditions, we can retro-translate the mRNA according to amino 

acid sequences. Meanwhile, we can also retro-translate the cDNA as we have known 

the mRNAs. This is called genetic central dogma. This character was determined by the 

structure of the gene. Eukaryotic genes include not only the nucleotides for coding 

proteins but also the non-coding nucleotides which might for transcript regulation. 

Generally, these protein-coding genes will be regulated by a different type of protein-

binding DNA sequence, which is called transcription control regions. In this area, many 

types of regulation elements were involved. 

Peroxisome proliferator-activated receptor-gamma, with gene synonyms NR1C3, 

PPARG, PPARG1, PPARG2, PPARγ, locates in chromosome 3: 12,287,368-12,434,356 
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forward strands in human (Fig. 13). This gene has 17 transcripts (splice variants), 339 

orthologues, 18 paralogues, is a member of 1 Ensembl protein family, and is associated 

with 45 phenotypes [97]. As to the 17 transcripts, 14 of them are of strength evidenced 

to transcribe and code protein, but for the rest 3 (PPARG-8, PPARG-213, PPARG-214) 

are still processed transcripts. In addition, except for PPARG-213 and PPARG-214, all 

the other transcripts can code proteins. Taking PPARG-205 for example, the box 

represents exon and line represents intron; hollowed box represents an untranslated 

region (UTR), while solid box represents coding regions of the transcript (also known 

as the coding sequences and CDS). There are 2 UTRs, 6 CDS, and 7 introns in the gene 

of PPARG. However, these components vary according to the variants of PPARγ. For 

example, PPARG-212 has only 1 UTR, 1 intron, and 1 CDS. These components of the 

variants have been proved by the human cDNAs detection as showing below in the 

figure. What should be emphasized is that the most involved PPARγ in the previous 

research are of 2 UTRs, 6 CDS, and 7 introns [98]. 

For the regulatory regions, the location of the first promoter is in chromosome 3: 

12,287,200-12,294,201. According to the location of PPARγ, this nearest promoter is 

located at the upstream site ≈of 200 base pairs. According to the figure, we can see that 

there are promoters, CTCF (CCCTC-binding factor) binding regions, enhancers, 

promoter flank regions, and transcription factor binding sites. 
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Figure 13 PPARγ Gene diagram from ENSEMBL 

 

Fig. 13 PPARγ Gene diagram from ENSEMBL 

In humans, the PPARγ gene will transcribe to RNA and then translated to PPARγ 

protein. Transcription is the first step. At the beginning of transcription, PPARγ gene 

double helix unwinds and is opened up for transcription. The mRNA of PPARγ is from 
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the forward strand of the PPARγ gene. The first RNA nucleotide is transcribed from 

the start site on the forward strand. The RNA polymerases are involved in the biological 

process, including initiation, promoter escape, elongation, and termination. For the 

initiation, RNA polymerase combined with transcription factors forms the RNA 

polymerase-promoter closed complex and binds to the PPARγ promoter. DNA double-

strands are opened up and transcribed to the first bond, then RNA polymerase will 

escape from the promoter, following the release of the RNA transcript. However, these 

transcripts are generally truncated, which need to be capped with RNA polymerase 

combined with transcription factors. Then the RNA polymerase will traverse according 

to the template DNA of PPARγ to elongate the RNA sequences with the addition of 

RNA nucleotides. Finally, the transcription will be terminated and 3’ -poly end will be 

added at the end of the RNA sequences. In addition, to form a mature mRNA of PPARγ, 

the pre-mRNA will need to be modified, such as splicing. With the existence of the 

mature mRNA of PPARγ, PPARγ protein will be translated. 

The genetic code mRNA recognizes the amino acid according to the three-nucleotide 

sequences of the mRNA. Then amino acids of PPARγ protein were transferred by 

ribosome which is made up of 40S subunit and 60S subunit. Each amino acid is added 

at one time to the end of the chain of the polypeptide. In detail, the 40S subunit firstly 

binds to the 5’- end of mRNA with the assistance of initiation factors, and this subunit 

combines with tRNA will bring the recognized amino acids moving to the large subunit 

of 60S, which leads to the translation elongation. The amino acid sequences form the 

primary structure of PPARγ protein and then are modified to form a more complicated 

spatial structure. However, as the existence of the PPARγ variants, the number of 

amino acids of PPARγ varies according to the nucleotide sequences. As the base pairs 

PPARγ vary from 428bp to 2029bp, the amino acids of PPARγ vary from 40aa to 477aa. 
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PPARγ protein structure 

Besides the primary structure of PPARγ protein, through further modification of the 

primary structure, PPARγ will constitute 4 main domains, A/B, C, D, and E/F domains. 

A/B domain, containing the N-terminal residue, is the least conserved domain, where 

the intrinsically disordered activation function 1 (AF1) was contained. The following 

domain is the most conserved C domain where the DNA binding domain (DBD) is 

included. DBD contains two C4 zinc fingers which can recognize the AGGTCA 

hexanucleotide motif. The D domain, also called the hinge domain, is located between 

the former domain and the latter one, which is related to nuclear localization, 

phosphorylation, and regulation. Then it comes to the E/F domain, also called ligand-

binding domain (LBD). In this domain, C-terminal residue is contained, as well as a 

large hydrophobic pocket and a ligand-dependent transactivation function.  

In detail, for the domain A/B, AF-1 is the site involved in ligand-independent 

coregulator binding, such as Map-kinase phosphorylation serine sites. This region 

greatly differs in different nuclear receptors according to its poor conserved 

characteristic. For the DBD in domain C, its conservation originates from the primary 

and tertiary structure of the protein. The folded two C4 zinc fingers are related to the 

recognition of specific DNA half-sites termed peroxisome proliferator response 

elements (PPRE). A C4 zinc finger is one type of zinc finger, because of its four cysteines 

in contact with the zinc ion. The existence of the zinc fingers of PPARγ distinguishes it 

from other DNA binding proteins, different from the intracellular receptors for non-

steroid hormones. PPARγ binds to nuclear receptors usually combining with RXR 

heterodimer. The D domain, as a flexible hinge allowing for rotation, links the DBD 

and LBD. For the LBD, the largest domain of PPARγ protein is the second most 

conserved domain as its secondary structure is more conserved than the primary amino 
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acid sequences. Ligand binding can stabilize the ligand-binding domain structure and 

facility the interaction with cofactors for chromatin remodeling and transcriptional 

machinery recruitment. Therefore, LBD is involved in four main functions: a second 

dimerization interface, a coregulator binding surface, the ligand-binding pocket, and 

activation function 2(AF2). The scale of the ligand-binding pocket varies from classic 

receptors, adopted orphan receptors, and true orphan receptors. PPARγ is a typically 

adopted orphan receptor for its larger ligand-binding pocket than the classic receptors. 

As a member of the ligand-dependent nuclear receptor superfamily, PPARγ regulates 

downstream target genes by forming a heterodimer with the nuclear receptor retinoid 

X receptor α (RXRα) and then binding to the PPRE of target genes. PPRE is composed 

of two copies of the core motif organized by one nucleotide (DR-1) and a 5’-extension 

A(A/T)CT as a direct repeat space. Thus PPARγ/RXR heterodimer can recognize PPRE 

and exhibit the following consensus sequences 5’-

A(A/T)CT(A/G)GGNCAAAG(G/T)TCA-3’, which can be partially recognized by DBD. 

The D or hinge domain links the DBD to LBD (E/F), which is related to nuclear 

localization and interaction with regulatory proteins. PKC phosphorylation sites are 

also included in this domain. Meanwhile, the C-terminal E/F domain or LBD carries a 

large hydrophobic pocket that functions to bind lipophilic ligands and achieves a 

ligand-dependent transactivation function (AF-2). 

 

1.2.2 Post-transcriptional modifications of PPARγ 

PPARγ protein is a transcription factor, a DNA-binding protein that can bind to a 

particular promoter to control the transcription of downstream genes. The DNA 

control elements bound by the transcription factor are often located not close to the 

promoters of the target genes, which in some cases can be tens of thousands of base 

pairs away from the upstream or downstream from the promoters. This also leads to a 
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possibility of non-single control of the elements by multiple factors, which allows 

complex and elaborate regulation in the gene expression. The regulators for the DNA-

binding domains can be activators or repressors according to the final effects. 

Activators connecting to a sequence-specific DNA-binding domain can contribute to 

transcription activation while repressors inhibit the transcription of genes, both 

through flexible protein domains. In contrast, mutations in these positions can 

alternate the final effects. That is, mutation of an activator-binding site decreases gene 

expression while mutation of a repressor-binding site is the opposite. 

Either activators or repressors conform to the general mechanisms to regulate 

associated protein-coding genes, such as histone acetylation [99], phosphorylation 

[100], sumoylation [101], and ubiquitination [102]. These post-transcriptional 

modifications function through the reversibly modified histones in order to regulate 

either the condensation of chromatin or the exposure of residues. The regulators 

function to modulate chromatin structure to open up the regions or close off them so 

that binding to promoters will be influenced, whose flexibility is consistent with the 

condensation of chromatin.  

For the acetylation, these processes happen often in the protein residues of the N-

terminal region and the C-terminal region of histone, called histone tails, especially for 

the histone H3 and H4 tails. Acetylation of these tails decreases the chromatin 

condensation, increasing the accessibility of proteins with the transcription initiation 

position while deacetylation performs oppositely. To be specific, the reversibly 

modified histone tails in nucleosomes locate in the TATA box and promoter-proximal 

region of the genes. Evidence shows that the N-terminal lysine of unacetylated histones 

are positively regulated and interact with DNA phosphates, as well as neighboring 

histone octamers, thus favoring the folding of chromatin into condensed, while 

hyperacetylated tails fail to assemble into a preinitiation complex on a promoter 
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because of the elimination of neutralized and electrostatic interactions with DNA 

phosphates in the lysine. For the phosphorylation, it usually occurs on the residues in 

the location of serine, threonine, and tyrosine via phosphor-ester bond formation or 

on histidine, lysine, and arginine via phosphor-amidate bonds, or aspartic acid and 

glutamic acid via mixed anhydride linkages, such as the histidine at 1 and 3 N-atoms of 

the imidazole ring [103, 104]. For the sumoylation, it alters the interactions between 

molecules related to targets by masking or adding interaction surfaces. The target 

proteins can cause different outcomes, including changes in localization, activity, and 

protein stability [105]. For ubiquitination, it mainly affects the degradation of proteins 

through the proteasome and lysosome, with which it coordinates the cellular 

localization of proteins, activates and inactivates proteins, and modulates protein-

protein interactions [106-108]. Notably, just as deacetylation, the modifications of 

phosphorylation, sumoylation, and ubiquitination can also be reversed, called de-

phosphorylation, de-sumoylation, and de-ubiquitination, which leads to the opposite 

effects on gene expression. 

Therefore, as a transcription factor, PPARγ shares as well these post-transcriptional 

modifications, which are intrigued by various substances. For example, 

phosphorylation of its serine 112 and 273 inhibits the transcriptional activity; 

sumoylation of its lysine 107 in the AF1 region and lysine 395 in the AF2 region 

stimulates PPARγ by restricting the interaction between the nuclear receptor co-

repressor of HDAC3 and PPARγ; ubiquitination of it leads to protein degradation 

following by treatment of TZDs, PPARγ agonist (Anbalagan et al. 2012; Christianson 

et al. 2008; Floyd and Stephens 2002; Hauser et al. 2000); acetylation of it leads to 

PPARγ activation following the treatment of pioglitazone [109]. 
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1.2.3 PPARγ and its ligands 

 

Natural agonists of PPARγ 

Selected fatty acids are confirmed to be natural modulators of PPARγ, even though they 

do not always activate PPARγ as well as the target gen transcription. Polyunsaturated 

fatty acids (PUFAs), mainly docosahexaenoic acid (DHA) and eicosapentaenoic acid, 

as natural agonists, can activate PPARγ and intrigue functional responses. DHA was 

reported to mediate the inhibition of tumor growth in human lung cancer cells. 

Meanwhile, delivery of DHA through albumin or enriched LDL with n-3 PUFAs to 

breast cancer cells, the proliferation of tumor cells will be diminished, combined with 

increased apoptosis [110-112]. Long-chain monounsaturated fatty acids (LC-MUFAs) 

with lengths more than 18 (i.e., C20:1 and C22:1 isomer combined) increases PPARγ 

expression to enhance obesity-related metabolism and decreases inflammation in 

white adipose tissue [113]. Apart from PUFAs, phytanic acid, common in the human 

diet, can also activate PPARγ in a way similar to omega-3 PUFA by increasing glucose 

uptake and insulin sensitivity [114]. 

 

PPARγ pharmacological agonists 

PPARγ mainly regulates lipid and glucose metabolism. As to the classical 

thiazolidinediones, including troglitazone, rosiglitazone, and pioglitazone, they can 

decrease levels of free fatty acid (FFA) and increase lipid storage in adipose tissue. 

Pioglitazone and rosiglitazone are used to treat patients with type 2 diabetes because 

of decreased hepatic glucose production and prolonged pancreatic β-cell function, 

which can prevent β-cells from apoptosis [115, 116]. While pioglitazone owns a positive 

effect in reducing cardiovascular complications by 16% in the main secondary endpoint 

compared with placebo treatment [117], rosiglitazone can controversially increase 
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myocardial infarction and cardiovascular-caused death with even only a short-term 

exposure [118]. The differences may result from the discrepant effects on lipid sub-

fractions [115]. To be specific, pioglitazone can decrease triglycerides and fasting 

plasma free fatty acids and increase HDL cholesterol without changing total cholesterol 

and LDL cholesterol, while rosiglitazone does augment HDL levels and total 

cholesterol and LDL fraction [119-121]. Notably, among the thiazolidinediones, 

troglitazone is the only one to be revealed of properties in tumor-promoting and pro-

angiogenic, which showed its positive effects on hepatic carcinogenesis and 

liposarcomas [122, 123]. 

Glitazones, as one of the synthetic ligands of thiazolidinediones, are of similar 

characters to synthetic ligands of thiazolidinediones and can function in the same way 

to improve insulin sensitivity by enhancing insulin and glucose parameters. 

Furthermore, activation of PPARγ by glitazones can attenuate systemic inflammation 

[124, 125] and reduce the growth of tumor cells and inhibit angiogenesis. For example, 

agonist RS5444 of PPARγ was reported to inhibit the growth of anaplastic thyroid 

cancer [126]. Despite its beneficial features in metabolic and anti-arteriosclerotic 

activity, etc., glitazones also show side effects, including weight gain, bone fractures, 

heart failure, edema, and increased risk of myocardial infarctions, which should be 

considered carefully for use, especially in diabetic patients with high lipid levels [127]. 

Meanwhile, new selective PPARγ modulators, such as S26948 [128] and INT131 [129] 

are currently under research and development. 

 

PPARα/γ dual agonists 

The new synthetic agonists - PPARα/γ dual agonists – have multi-functions lipid and 

glucose metabolism. They not only have a capacity of anti-diabetic but also can reduce 

the development of arteriosclerosis by inhibiting inflammatory and anticoagulant 
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action, improving endothelial function, decreasing plasma free fatty acids, and 

lowering blood pressure to benefit the vasculature. However, as same as the side effects 

with glitazones, PPARα/γ dual agonists show aftereffects of weight gain and edema 

[130, 131]. What's more, the clinical use was also strictly limited because of the 

increased risk of bladder cancer and hyperplasia (ragaglitazar and naveglitazar) [132], 

cardiovascular risk (muraglitazar) [133], and renal dysfunction (tesaglitazar). And the 

promising new product aleglitazar, which is shown to decrease HbA1c and reduce 

triglyceride and LDL, and increases HDL cholesterol, has been withdrawn, owing to its 

toxicity and lack of efficacy [134]. 

 

PPARγ antagonists 

Apart from the classical GW9662, which can prevent rosiglitazone-mediated PPARγ 

activation, and enhance rather than reverse rosiglitazone-induced growth inhibition 

[135], to satisfy the criteria of therapeutic efficacy with decreased side effects, new 

classes of compounds of PPARγ antagonists is proposed, including 13–16 (bexarotene, 

2-phenylamino pyrimidine, and N-biphenylmethylindole derivatives), which 

performed well antidiabetic activity in rodent models of diabetes [136, 137]. There is 

also another alternative to targeting PPARγ for the therapeutic intervention in insulin 

resistance and type-2 diabetes, for example, Diospyros bipindensis, some of whose 

secondary metabolites have been purified and identified to function, including 

plumbagin, betulinic acid, caniculatin, 4-hydroxy-5-methyl-coumarin and ismailin22 

[138]. 

Besides, novel ligands of PPARγ have also been synthesized, but their functions remain 

to decipher in the future. Here we list the compounds: PPARγ ligands: Synthetic 

compounds (thiazolidinedione salts) (US9126959B2), 5-hydroxy-4-phenyl-butenolide 

and derivatives (US9943501B2), Benzoate and phenylacetate (US20190000790A1), 
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and (E)-2-(5-((4-methoxy-2-(trifluoromethyl)quinolin-6-yl)methoxy)-2-((4-

(trifluoromethyl)benzyl)oxy)-benzylidene)-hexanoic acid (MTTB) and its derivatives 

(PPARγ antagonist) (US20170210711A1); PPARα/γ dual agonist: US20170121268A1 

[139]. 

 

Table 1. Natural peroxisome proliferator-activated receptors-γ ligands and synthetic 

agonists and antagonists. 

Table 1 Natural peroxisome proliferator-activated receptors-γ ligands and synthetic agonists and antagonists 

Natural Ligands Synthetic agonists Antagonists 

• fatty acids 

• oxidized low-density lipoprotein 

• 15-deoxy-12,14 prostaglandin J2 (15dPGJ2), 

• prostaglandin D2 

•9-and13-hydroxyoctadecadienoic acid 

(HODE) 

• Unsaturated fatty acids 

• 15- hydroxy- 

eicosatetraenoic acid 

• prostaglandin PGJ2 

• rosiglitazone 

• thiazolidinedione 

• ciglitazone 

• troglitazone 

• pioglitizone 

• GW1929 

• farglitazar 

• S26948 

• INT131 

 

• GW9662 

• T0070907 

• BADGE 

• G3335 

• Fmoc-Leu 

• betulinic acid 

 

1.2.4 PPARG and trophoblast cells 

 

Placentation is a complicated process involving a complex process of cell cooperation. 

Trophoblast cells, as the main part of the placenta, function mostly important in 

placentation, which contains secretion, maturation, fusion, proliferation, migration, 
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and invasion from the first trimester to the term. Here we introduce the processes that 

have been taken part in by PPARG and its heterodimers RXRα. 

 

Secretion 

PPARγ signaling pathway in trophoblast cells took part in regulating visfatin through 

the secretion of interleukin (IL)-6 in BeWo, which indicated that the secretion of 

inflammatory cytokines promoted by PPARγ activation might thus promote the energy 

metabolism in trophoblast cells and their growth [140]. Similarly, the treatment of 

PPARγ agonist rosiglitazone in the medium where trophoblast cells were cultured 

could enhance the secretion of the cytokines interferon (IFN)-γ and prostaglandin E2 

(PGE2) in trophoblast cells which were mediated by the MAPKs pathway [141]. 

Moreover, activation of PPARγ seemed to also affect the inflammation in HTR-

8/SVneo cells via the NF-κB pathway [142]. Apart from the inflammation cytokines, 

PPARγ can also promote hCG expression and secretion in trophoblast cells, leading to 

villous trophoblast differentiation [143]. 

 

Fusion, differentiation, and Maturation 

In the placenta, the fusion happens in the process when villous cytotrophoblast cells 

transform into the multinuclear syncytiotrophoblast cells. The formation of 

syncytiotrophoblast cells can be regulated by PPARγ/RXRα signaling directly through 

targeting syncytin-1 along with the MAPK or cAMP/PKA pathway [144]. In terms of 

villous cytotrophoblasts, activation of PPARγ by the agonist troglitazone induces the 

development of syncytiotrophoblasts in vitro [145]. Activation of PPARγ promotes the 

process that mononucleated villous cytotrophoblasts fuse into syncytiotrophoblast in 

vitro with an accumulation of neutral lipids, examined by oil red O staining [143]. 

Despite common sense that PPARγ and its heterodimeric nuclear receptor partner 
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RXRα can regulate fatty acid uptake [146], PPARγ can also promote villous trophoblast 

differentiation through promoting hCG expression and secretion in trophoblast cells 

[143]. Meanwhile, to knock down the PPARγ in mice embryos, the maturation of 

labyrinthine trilaminar trophoblast could be inhibited and occurred the deficiency of 

the vascular development in the placenta [147], while treating with PPARγ agonist 

rosiglitazone, it occurred a disorganization of the placental layers and an altered 

placental microvasculature [148]. 

 

Proliferation, Migration, and Invasion 

Notably, proliferation, migration, and invasion of trophoblast cells are not strictly 

separative steps. These steps can happen simultaneously and also are promoted by one 

single molecule, for example, ANGPTL4, as a direct transcription target of PPARγ, 

mediated the proliferation, migration, and invasion in HTR-8/SVneo cells [149]. 

Generally, these steps are influenced by different PPARγ ligands. Pioglitazone, the 

PPARγ agonist, could promote the migration of extravillous trophoblast cells by up-

regulating insulin-like growth factor (IGF) signaling pathway [150]. Synthetic and 

natural ligands that activate PPARγ could inhibit the invasion of the HIPEC 65 cell line 

without affecting proliferation [151-154]. However, the cell migration and invasion 

process might be decreased in a concentration-dependent manner concurrently in the 

extravillous cytotrophoblast cell line (HIPEC) as well as the primary extravillous 

cytotrophoblasts extracted from the first-trimester chorionic villi by either natural 

(15deoxy-Prostaglandin J2, oxidized lipids, etc.) or rosiglitazone [152, 155]. 

The invasion of trophoblast cells can also be affected by lots of factors. Activation of 

RXRα by 9-cis retinoic acid increased PPARγ-induced inhibition of trophoblast 

invasiveness [155]. Treatment with PPARγ or pan-RXR antagonists in extravillous 

cytotrophoblast cells promoted cell invasion. Inhibition of pregnancy-associated 
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plasma protein-A (PAPP-A) and the secretion of insulin-like growth factor (IFG), as the 

regulators of PPARγ, modulated trophoblast invasion [156]. Lysyl oxidase 1/2 

negatively regulated PPARγ target genes and thus affected trophoblast invasion or 

itself could also be served as a target of PPARγ to control cell invasion [157], as well as 

the target genes matrix metalloproteinase (MMP)-2 and MMP-9 [157, 158]. 

Particularly, the effects of PPARγ on trophoblast cells are cell type-depending since the 

effects varied in cell types and even in the ligand concentration. The different PPARγ 

ligands might influence the different part roles of transcriptional or post-

transcriptional levels, leading to various effects of interference in trophoblast invasion. 

Besides, our study also showed that PPARγ mediated the mono ethylhexyl phthalate 

(MEHP)-inhibited trophoblast invasion by disturbing the balance of MMP-9 and tissue 

inhibitors of metalloproteinase (TIMP)-1 expression in early pregnancy loss[159]. 

 

PPARγ and Energy Metabolism in the Trophoblast 

The placenta mediates the transport of nutrients from the mother to the fetus, which 

happens specifically in the villous trophoblast. The nutrients, including lipid from 

lipoproteins, glucose, and amino acids, are consumed to supply energy, synthesize 

hormones and promote fetus growth. PPARγ plays important role in the metabolism 

of fat, glucose, etc. in trophoblasts. 

PPARγ modulates fat storage, fat transport, and fat metabolism in trophoblasts that 

contain abundant lipid droplets. Associated with protein adipophilin, lipid droplets can 

be upregulated by PPARγ/RXR that promotes the synthesis of protein adipophilin 

[160]. The level of protein adipophilin increased due to the treatment of PPARγ 

agonists troglitazone, owing to the activation of PPARγ in the trophoblast [161]. The 

underlying mechanism might involve the enhanced uptake of free fatty acids, increased 

neutral lipids, and promoted expression of fatty acid transport protein 4 (FATP4) that 
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could be activated by the p38 MAPK pathway, as well as the decrease of FATP2 that 

affects RXR activation in trophoblasts [146, 162]. Besides, the lipids can conversely 

stimulate PPARγ activity by increased hCG in human trophoblasts treated with 

oxidized lipids such as 9S-hydroxy-10E,12Z-octadecadienoic acid (9-HODE), 13S-

hydroxy-9Z,11E-octadecadienoic acid (13-HODE), or 15S-hydroxy-5Z,8Z,11Z,13E-

eicosatetraenoic acid (15-HETE) [163]. 

PPARγ regulates glucose homeostasis in a way of multiple mechanisms. The energy 

metabolism of glucose can be verified by the fact that PPARγ agonists thiazolidinedione 

and pioglitazone promoted the expression of visfatin by IL-6 [140]. Meanwhile, 

Hyperglycemia could induce the apoptosis of human cytotrophoblast cells and the anti-

angiogenesis of vessel branches by upregulating PPARγ and p38 MAPK 

phosphorylation [164]. By contrast, under the condition of hyperglycemia, the invasion 

of cytotrophoblast cells decreased due to the activated PPARγ pathways, including 

inhibiting urokinase plasminogen activator (uPA) and plasminogen activator inhibitor 

1 (PAI-1) and enhancing the expressions of IL-6 and soluble fms-like tyrosine kinase-1 

(sFIt-1) [165]. Besides, PPARγ was necessary for normal insulin sensitivity and 

adipogenesis, whose absence leads death of embryo due to placental dysfunction [166] 

and whose presence in trophoblast cells could rescue embryonic lethality [167]. The 

expression of PPARγ increased with the treatment of insulin sensitizer in primary 

extravillous trophoblast [150], while adiponectin inhibited insulin-mediated amino 

acid uptake in the cultured cells [168]. 

 

1.3 Sequencing technique 

 

The rapid development of sequencing technologies over the past four decades has 

advanced a lot in the ability to detect genomics in individuals. DNA sequencing 
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gradually evolved from low throughput DNA fragment sequencing to high throughput 

next-generation sequencing (NGS) and third-generation sequencing techniques 

including rapid ways for genome-wide characterization and profiling of mRNAs, small 

RNAs, transcription factor regions, the structure of chromatin, and DNA methylation 

patterns [169]. Even single-cell sequencing technologies have also been rapidly 

developed for observing the multilayered status of single cells in different tissues. 

Sequencing technologies are widely used in molecular biology to study wide-genomes 

from different aspects. Information obtained using sequencing different technologies 

allows researchers to detect the expression of global genes under specific conditions, 

which indicates associations with diseases and phenotypes. 

The general strategy for the downstream analysis focuses on the enrichment of 

identified gene sets. With the detection of the expression of genes, the enrichment of 

the genes is conducted to figure out the critical biological functions. These functions 

are generally provided via matching to the Gene Ontology (GO) knowledgebase, which 

is the world's canonical and largest source of information on the functions of genes 

[170]. The GO knowledge base is widely regarded as a reference to guide further 

research as soon as the differentially expressed genes (DEGs) were enriched. GO terms 

represent the comprehensive aspect of the function of the genes and gene products. A 

series of complicated biological processes would be involved in the disease occurrence, 

owing to the outcome happening inside or between cells [171]. The processes were 

summed up in the GO knowledgebase which contains 44,085 terms, 7,931,218 

annotations, and 1,564,454 gene products to 4,743 different biological organisms as of 

February 2021. Among the terms, it contains 28748 biological process terms, 11153 

molecular function terms, and 4184 cellular component terms. The abundance and 

diversity of GO terms indicate the possibility of disease characterization, which means 

a more general way, at the biological process level, should not be underestimated in 



45 

 

clinical practice. Specifically, instead of linking a single gene or genes with diseases, it 

is potentially reasonable to use GO terms to predict diseases. Further research will be 

mostly focused on the study of specific mechanisms in order to discover valuable drug 

targets or seeking links between the DEGs and diseases for diagnosis and prognosis in 

clinical practice [172].  

 

1.4 Prospects 

 

The human placenta plays a pivotal role in development by regulating the exchange of 

nutrients, gas, and waste between the mother and the fetus. Placentation involves a 

complex interaction between growth, rates of blood flow, transporter protein 

expression, trans-membrane concentration gradients, and metabolic demands. An 

overview of the normal development of the human placenta at transcriptome level 

needs more details to illustrate the complicated biological processes during the three 

trimesters. Among the processes, the first trimester lays the foundation for all 

subsequent processes, which requires more studies, especially for the development of 

trophoblasts and the oxygen-related process. For the former, different trophoblast cell 

lineages that constitute the main part of the placenta begin to differentiate in this 

period, where PPARγ, located in the nuclei of EVCTs and VCTs, plays an important 

role. For the latter, the evolution of this process is complex and intricately regulated by 

O2 tension, especially in the period from 8 to 12 gestational weeks (GW). Oxygen, and 

the oxidative stress that accompanies it, play an important role in the positive or 

negative development and growth of chorionic villi, as well as the differentiation of 

villous cytotrophoblast. In our work, we applied various strategies to tackle the 

inadequate dataset, technology, and methodology.  
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1.5 Overview of the thesis 

Here we give the overview of our study which is composed of four parts. In the first 

part, we mined the gene expression across the human pregnancy, which allowed us to 

discover the importance of PPAR signaling pathway and confirmed the role of PPARγ 

in the whole pregnancy. Based on the results from the first parts, here come the ideas 

of part two and three. In part two, we selected PPARγ to activate in the human placental 

cells, the cytotrophoblast and extravillous cytotrophoblast, followed by the comparison 

of the enriched terms in the two types of cells. In part three, we were intrigued by the 

simultaneous occurrence of lipid metabolism and the increased oxygen level in the first 

trimester. We hypothesized that the lipid metabolism was probably related to the 

oxygen level increase. In part four, since we have confirmed the importance of PPARγ, 

we were wondering if we could use it to predict the pregnant disease. So, we collected 

the clinical information national wide and the variants of PPARγ in the cohort study, 

and used eight machine learning methods to build models and performed prediction. 

 

Figure 14 Overview of the thesis 

Fig. 14 Overview of the thesis. 
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Part I 
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2 Part One 

Lead-in 

The pregnancy will last about 40 gestational weeks in the human. In the other research, 

it’s common to study only a specific period, for example, the first trimester or the term 

of the placenta. However, the development of the human placenta is a dynamic process, 

to study a fixed period is not enough to get an overview of its development. In our 

proposal, we aimed to explore more information across the whole pregnancy by 

collecting the gene expression all over the gestational weeks. Instead of studying the 

partial biological process in a specific period, we choose to study the integral biological 

processes that happen throughout the whole period. Otherwise, the partial biological 

processes may play important role in that specific period but not the whole period. The 

idea to discover the process that can function throughout the pregnancy will be 

meaningful, which would pave a way for the treatment from the beginning to the end 

of the pregnancy. For example, we already know the importance of PPARγ in the 

human placenta, whose deficiency can lead to the mortality of an embryo. But is its 

regulation a static process in a specific duration, like in the first trimester, or a dynamic 

and ordered arrangement across the whole gestation period? What if we put PPARγ 

into the background of the whole gestation period, can its importance still be detected 

rather than be overwhelmed by the other more important stuff? Based on the proposal, 

we mined the dataset of gene expression across the pregnancy so as to discover the 

interesting and important processes. 
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2.1 Mining of combined human placenta genome across pregnancy, 

applied to PPAR signaling pathway 
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2.1.1 Abstract:  
 

Introduction: Overview of the human placental genome-wide expression from the 

very beginning gestational age to the term is lacked. Our aim is to investigate the 

dynamic changes in gene expression throughout placentation.  

mailto:thierry.fournier@parisdescartes.fr
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Methods: In our study, gene expression profiles of human placentas from 4 to 40 

gestational weeks were collected. Linear regression and weighted correlation network 

analysis were applied for gene filter. Gene enrichment analysis including gene ontology 

and Kyoto Encyclopedia of Genes and Genomes pathway terms were performed by 

clusterProfiler. Line graph drawn with scaled and adjusted gene expression was 

applied to display the dynamic changes. 

Results: Our results showed a total of 5173 genes involved in different period of 

placentation. Downstream annotation of these genes revealed the biological processes 

and pathways involved, among the intersection of which we selected “PPAR signaling 

pathway”. This pathway map shows the genes involved in lipid storage/metabolism, 

including FABP family members, LPL. Moreover, lipid staining experiment on 

placental sections showed a significant decrease in lipid droplets content in first 

trimester placentas compared to term placentas.  

Conclusion: Our study provides more information on biological processes and 

pathways across human placentation. These findings give us new clues for deciphering 

the normal functions of placentation and their mis-regulations may be linked to 

pregnancy-related diseases. As an example, our results show PPAR signaling pathway 

mediates constant decrease of placental lipids throughout pregnancy. 

 

Highlights: 

 

• This study shows human placental genome-wide expression from 4 to 40 

gestational week. 

• Linear regression and weighted correlation network analysis are combined to 

identify significant genes. 
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• Scaled and adjusted gene expression drawn in line graph displays the gene 

dynamic changes across placentation. 

• PPAR signaling pathway mediates lipids decrease during placentation. 

 

Figure 15 Graphical abstract 

Graphical abstract: Weighted correlation network analysis reveals dynamic changes of 

biological processes involved in human placentation. PPAR signaling pathway has been 

selected to show its role in mediating lipids decrease through placentation. 

 

Key words: WGCNA; Placenta; Bioinformatics; Microarray; Peroxisome Proliferator 

Activated Receptor (PPAR); Lipids 
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2.1.2 Introduction 
 

The placenta acts as a bridge between the developing fetus and the mother, functioning 

as an exchanger in gas, water, nutrients exchange. The placentation starts out upon the 

implantation of the blastocyst into the endometrium. The outer layer of the blastocyst, 

known as the trophoblast, forms the out layer of the placenta. This trophoblast further 

differentiates into two subtypes, known as villous cytotrophoblast (inner layer) who 

forms by fusion the syncytiotrophoblast (outer layer) and the extravillous 

cytotrophoblast who has the property to invade the maternal endometrium[173]. The 

syncytiotrophoblast is renewed by fusion of underlying villous cytotrophoblast 

throughout pregnancy [174]. 

 

Aberrations of placental structure and function lead to an immediate effect on the 

outcome of a pregnancy as well as an influence in the life-long health of the offspring 

[175]. For example, the abnormal invasion of extravillous trophoblast results in the 

dysfunction of uterine spiral artery remodeling, associating to the pregnancy-related 

disease pre-eclampsia[176]. Moreover, the placentation, owning to its complicated 

process, involves a complex interaction between growth, rates of blood flow, 

transporter protein expression, trans-membrane concentration gradients and the 

metabolic demands[176]. Therefore, it is necessary to have an overview of the normal 

development of human placenta. The findings may thus, provide more details of the 

alterations of placental structure and function in pregnancy-related diseases. 

 

In human placental transcriptome studies using microarray technology, groups 

comparison among first trimester, second trimester or term, is commonly used to 

uncover the alterations underneath. For example, Soncin et al [177] has conducted a 
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genome-wide expression profiling of human placental specimen from gestational week 

4 to 16. As well, Winn et al. [178] has provided the expression profiling of the human 

placenta from gestational week 14 to the term of pregnancy. These two expressions data 

were sequenced on Illumina and Affymetrix chips, respectively. With the gene 

expression profiles, moderated t statistic and adjusted P value were generally applied. 

In our study, we furtherly applied linear regression and 

weighted correlation network analysis (WGCNA) to explore the dynamic changes in 

gene expression during normal placentation. Reasonably, we combined the samples 

from the two studies mentioned above which indicated the normal placentation 

ranging from 4 to 40 weeks. Finally, we examined lipid content in placental tissues 

corresponding to the enrichment results. 

 

 

2.1.3 Materials and Methods 
 

Datasets 

 

The microarray profiling of GSE100051 and GSE5999 were retrieved from the Genome 

Expression Omnibus (GEO) database (ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 

GSE100051/GSE5999). GSE100051 profiled gene expression of human placenta from 

4 to 39 gestational weeks on Illumina HumanHT-12 V4.0 [177], while GSE5999 

profiled gene expression of human placenta from 14 to 40 weeks on Affymetrix Human 

Genome U133A&U133B [178]. To be convenient, in our study, we labeled microarray 

data in GSE100051 as “dataset1”, and U133A as “dataset2”, and U133B as “dataset3”. 

Additionally, we only retained the samples in first trimester and second trimester in 

dataset1, to be successive with dataset2&3.  
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Clustering analysis and construction of co-expression modules of human placenta 

microarray data 

 

Dataset1 includes the gene expression from first trimester, second trimester and term 

human placenta samples. A total of 11405 genes were detected in the microarray data. 

While 22217 genes were detected for dataset2 and dataset3. To clarify the sample 

combination methods, we chose the samples with same gestational weeks (14, 16, 39) 

from these datasets to exam the compatibility. Specifically, distance clustering, 

principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-

SNE) were used. After the classification of samples, linear regression method [179] was 

used to filter the significantly expressed genes (SEGs) with adjusted P value less than 

0.05. The WGCNA algorithm[180] was subsequently used to evaluate SEGs expression 

with the relevant WGCNA package (version: 1.68) in R (version: 3.6), accompanied 

with the clustering analysis of the human placenta samples in appropriate threshold 

values. To be specific, clustering analysis is the first step to detect outliers of samples. 

Secondly, the soft thresholding power value will be determined through a range of 

power value set (from 1 to 30) to reduce the background noise of the correlations in the 

adjacency matrix. The optimum power value will be selected according to the 

measurement of the scale independence which acts as a criterium under threshold 0.9. 

The accurate construction of co-expression modules depends on the adjacency matrix 

which shows the correlations of eigengenes from default unsigned network. The 

background noise of the adjacency matrix can be reduced with optimum soft 

thresholding power value. The minimum module size was set as 30 to give access to 

high reliability results. The modules were consequently constructed according to the 

power value provided by WGCNA package. 



55 

 

 

Analysis of co-expression modules for human placenta microarray data 

 

With the constructed modules, the clustering dendrogram was plotted corresponding 

to the genes. Heatmap of the gene co-expression values was performed to show the 

strength of the associations. Likewise, module-trait associations of the module 

eigengenes with the clinical trait (gestational weeks) were estimated by defining Gene 

Significance (GS) and module membership (MM). The former represents the absolute 

value of the correlation coefficient between the genes and the gestational weeks, while 

the latter was defined to calculate the correlation coefficient of the gene expression 

profile and the module eigengene. The selection threshold for significant modules: 

correlation value of modules was set as 0.6 combined with P value less than 0.05. 

 

 

Functional enrichment analysis of the co-expression modules and line graph drawing 

 

The significant modules for further inspection were selected with the criteria: the 

correlation coefficient exceeds 0.6 and P value is less than 0.05. Genes contained by 

the significant modules were submitted afterward for functional enrichment analysis. 

The clusterProfiler (version 3.9) was applied for gene enrichment analysis including 

gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms 

[181]. P value less than 0.05 was set as the threshold and top 15 terms were kept for 

visualization. Subsequently, we extracted the genes from selected pathway and 

performed the log2-transformation, followed by standardization (Z-scores 

transformation). That is, each expression of gene was adjusted by the mean and 
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standard deviation (𝑍 = 𝑥−�̅�𝑆 , where x is the raw expression value,  �̅� is the sample mean 

and S is the sample standard deviation). For the sake of combination and continuity of 

dataset1 and dataset2&3, the scaled gene expression in the overlapped gestational 

weeks (14w&16w) was set as a baseline value Δ (Δ = 𝑀𝑒𝑎𝑛1 − 𝑀𝑒𝑎𝑛2&3, where Mean1 

is the mean value from dataset1 in gestational weeks 14&16, Mean2&3 is from 

dataset2&3). Baseline value  was then added to each scaled gene expression in 

dataset2&3. The scaled and adjusted gene expression was hence drawn in line graph 

corresponding to gestational weeks. The Y coordinate of the line graph presents the 

relative scaled range instead of the absolute expression of genes. 

 

Lipid (Oil red O) staining 

 

First term (7-13wk of pregnancy) and term placental tissues were obtained with the 

patients’ written informed consent from Cochin Port-Royal, Antony, and Montsouris 

maternity units (Paris, France). Our protocol was approved by the local ethics 

committee (CPP 2015-mai-13909). Oil-red O staining was performed to detect the lipid 

droplet accumulation in the first trimester (early, n = 9; late, n = 9) and term placental 

(n = 5) tissues. Briefly, placental villi were frozen with cryomatrix gel (Thermoscientific, 

Runcorn, UK) under liquid nitrogen vapor. Frozen tissues were sectioned with 10 μm 

thickness. ORO working solution (150 mg O-red oil powder + 50 ml 100% isopropanol 

+ 80 ml distilled water) was added to the slides to cover the sections which 

subsequently incubated at room temperature for 7 min, followed by the counter stain 

of hematoxylin at room temperature for 30 s. After 2 h rinse under tap water flow, the 

sections were covered by glass slides with the mounting medium (Dako North America, 

Inc., CA, USA) and then examined under a light invert microscope (Olympus BX60, 
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Tokyo, Japan) at ×40 amplification. The intensity and number of lipid droplets were 

evaluated blindly by two persons. Ordered logistic regression method was applied to 

select the effective factors from gestational age, sex and smoking. 

 

Statistics 

 

Data are presented as means ± standard error. Statistical analysis was performed using 

one-way ANOVA combined with scheffe post-hoc for groups and ordered logistic 

regression for multivariate data. P value less than 0.05 was considered a statistically 

significant difference. 

 

2.1.4 Results 
 

1. Datasets evaluation and SEGs filter and soft thresholding power value selection 

 

To evaluate the possibility of combination analysis of dataset1&2&3, we performed the 

clustering analysis. Our sample compatibility test shows that these samples from 

different sequencing platforms or experiments are clustered in different groups in 

distance clustering (Figure 1A&1B), PCA analysis (Figure 1C) and t-SNE analysis 

(Figure 1D) and hence not suitable to combine directly. Therefore, we detected the gene 

set modules for these microarrays separately. For dataset1, all the gene expression from 

4 to 16 gestational weeks were processed by WGCNA. While 2583 SEGs in dataset2 and 

1536 SEGs in dataset3 were precedingly filtered using the linear regression analysis. 

These two sorts of SEGs were integrated, with the matched expression matrix (36 

samples) in datasets, and then submitted to WGCNA for clustering and selection. Our 

result shows no outlier samples in dataset1 and the optimum soft thresholding power 
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value is 4 according to the plot (Figure 2A). In dataset2, no outlier sample was shown 

and the optimum power value is 24 (Figure 2B) while no outliers in dataset3 and the 

optimum power value is 18 (Figure 2C). 

 

 

Figure 16 The results of sample compatibility test from different sequencing platforms or experiments 

Fig. 1. The results of sample compatibility test from different sequencing platforms or 

experiments. (A) Optimal number of clusters for samples in combined dataset 1&2&3 

according to K-means clustering algorithm. (B) K-means clustering for samples in 

dataset1, dataset2 and dataset3. (C) Samples PCA analysis for dataset1, dataset2 and 

dataset3. (D) Samples t-SNE dimensionality reduction for dataset1, dataset2 and 
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dataset3. PCA: principal components analysis; t-SNE: t-distributed stochastic 

neighbor embedding. 

 

 

Figure 17 Sample clustering and soft-thresholding power selection for microarray datasets 

Fig. 2. Sample clustering and soft-thresholding power selection for microarray 

datasets. Sample clustering is based on the Euclidean distance and the trait heatmap 

of samples includes gestational weeks and replication. Soft-thresholding power 

selection was determined through a range of power value set from 1 to 30. Graphs A, B 
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and C represent dataset1, dataset2 and dataset3, respectively. For each graph, the left 

panel shows the sample dendrogram and trait heatmap while the right panel shows the 

scale independence in which the threshold is set as 0.9 (red line) for value filter. 

 

2. Construction and analysis of co-expression modules of human placenta 

microarray data 

 

The original co-expression modules in R environment were constructed under the 

dynamic tree cut for branch cutting method. The number of genes contained in the 

original modules were shown in Table S1. After the construction of original modules, 

the modules with similarity were further merged to form the merged modules, along 

with the corresponding overview of the Topological Overlap Matrix (TOM) heatmap 

between genes (Figure S1). With the merged modules, interaction analysis between the 

module eigengene and gestational weeks was performed, as well as the scatterplots of 

GS vs. MM for merged modules. The results show that, under the selection threshold, 

the correlation coefficient of greenyellow, blue, pink and royalblue modules in dataset1 

(Figure 3A) and grey modules in dataset2 (Figure 3B) and grey modules in dataset3 

(Figure 3C) satisfy the criteria of correlation coefficient more than 0.6 and P value less 

than 0.05. 
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Figure 18 Heatmap of module-trait associations and scatterplots for merged modules 
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Fig. 3. Heatmap of module-trait associations and scatterplots for merged modules. 

Module-trait association heatmap for dataset1-3 in the left panels of graph A&B&C is 

composed of traits in columns and color modules in rows. The legend on left side of the 

heatmap represents the color module types and the legend on right side represents the 

value scale. According to the module-trait value, trait of gestational weeks along with 

the corresponding merged modules were selected to plot. Scatterplots based on gene 

significance score and module membership value were subsequently performed for 

dataset1-3, which were shown in the right side of the graph A&B&C, respectively. 

Correlation coefficient more than 0.6 and P value less than 0.05 were set as the 

inclusion criteria.  

 

3. Functional enrichment analysis of the co-expression modules 

 

Next, we integrated the genes within the significant modules. Before the submission, 

we combined the significant genes in dataset2 and dataset3 since they originated from 

the same samples. A total of 3651 genes in dataset1 and 1522 genes in dataset2&3 (1122 

in dataset2 and 400 in dataset3) were submitted separately to clusterProfiler for 

functional enrichment analysis. Top 15 biological process GO terms for dataset1 and 

dataset2&3 in bar plot are shown in Figure 4A&4B, respectively, while top 15 KEGG 

pathways for them in Figure 4C&4D, respectively. Furthermore, the intersection of GO 

terms and KEGG pathways between dataset1 and dataset2&3 are shown in upset plot 

(Figure 4E). GO terms and KEGG pathways in details are given in supplementary 

material (Table S2). 
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Figure 19 Functional enrichment analysis of the significant modules 

Fig. 4. Functional enrichment analysis of the significant modules. In the functional 

enrichment analysis, 3651 genes in dataset1 and 1522 genes in dataset2&3 (1122 in 

dataset2 and 400 in dataset3) were submitted to plot using clusterProfiler. A&B: Top 
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biological process GO terms in bar plot for dataset1 and dataset2&3, respectively. C&D: 

Top KEGG pathways in bar plot with its corresponding involved genes in heatmap for 

dataset1 and dataset2&3, respectively. E: The intersection of GO terms and KEGG 

pathways between dataset1 and dataset2&3 in upset plot. GO: gene ontology; KEGG: 

Kyoto encyclopedia genes and genomes pathway. 

 

4. PPAR signaling pathway and lipid droplets detection 

 

According to the intersection, we were interested in “lipid metabolic process” and 

“PPAR signaling pathway”, genes involved in PPAR signaling pathway were partly 

extracted and mapped to the pathway for the datasets (Figure 5A), which included 

FABP family members, PCK2, LPL, SLC27A2, ACSL1, PPARA, and PPARγ and its 

heterodimer RXRα. The scaled and adjusted gene expression of all these genes 

corresponding to gestational weeks were drawn in line graph, agreeing with the map 

(Figure 5B). According to previous analysis, these genes vary significantly in expression 

during gestational age. Among them, FABP family members and LPL show apparent 

up- and down- regulation in their expression (Figure 5B). To have an overview on 

human placenta lipid metabolism during pregnancy, we detect the lipid content on 

human placental sections. To do so, an Oil-red O staining experiment was performed 

on early (7-9w) and late (12-13w) first trimester and term tissue sections (Figure 5C). 

The results show an abundant of lipid droplets in first trimester placentas compared to 

a deficiency in term. To go further, a semi-quantitative analysis was performed to 

reveal the difference of lipid droplets in first trimester (7-9w, 12-13w) and term, and 

explore the correlation of the lipid droplet content with gestational age, sex and 

smoking. One-way ANOVA test combined with scheffe post-hoc shows significant 

difference between groups (p < 0.0001, Figure 5C). A negative correlation between first 
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trimester gestational age and the lipid droplets intensity was observed (p < 0.0001, 

Table 1). Data for ordered logistic regression analysis were provided in details in 

supplementary material (Table S3). 
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Figure 20 PPAR signaling pathway mapping and lipid droplets detection 

 

Fig. 5. PPAR signaling pathway mapping and lipid droplets detection. Genes involved 

in PPAR signaling pathway map in dataset1 and dataset2&3 showing in red text and 

rectangle (A) using clusterProfiler. The scaled and adjusted expression of involved 

genes responding to gestational weeks are presented in line graph (B). Lipid droplets 

were detected with Oil-red O staining in early (7-9w, n = 9) and late (12-13w, n = 9) 

first trimester and term human placenta (n = 5) tissues and graphed under 40 × 

magnification, with the comparison aside(C). PPAR: peroxisome proliferator-activated 

receptor; RXR: retinoid X receptor. ***: p < 0.0001. 

 

Table 1. Result of ordered logistic regression analysis 

Table 2 Result of ordered logistic regression analysis 

Factor Coefficient 
Standard 

Error 
t P>|t| [95% Conf. Interval] 

Gestational 

Age 

-

576.0346 
104.1833 

-

5.53 
0.000 

-

803.0306 

-

349.0386 
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Sex -292.2495 439.55 
-

0.66 
0.519 -1249.947 665.4477 

Smoking -279.8577 426.1765 
-

0.66 
0.524 -1208.417 648.7012 

Constant 

Term 
8220.114 1109.687 7.41 0.000 5802.314 10637.91 

 

 

2.1.5 Discussion 
 

In the past decades, the DNA microarray experiments were generally performed based 

on different types of tissues or cells, as well as for human placenta. However, most of 

the research solely performed the sequencing on a specific but short period, such as 

pre-eclampsia development in the first trimester [182], dose response of placenta to 

maternal choline intake in the third trimester[183], effects of PPARγ-agonist 

rosiglitazone on cytotrophoblasts in the first trimester and term [157, 184], comparison 

of gene expression profiles of the first (45-59 days) and second trimester (109-115 days) 

and term [185]. Different to the preceding studies, our research gave an overview of the 

human placental genome-wide expression from the very beginning gestational week 4 

to the term 40 by integrating the microarray data published by Soncin et .al [177] and 

Winn et al. [178]. 

 

Moreover, other than comparing different static stages with t-test, as the overall design 

of Winn et al.[178] in mid-trimester and term, we considered the dynamic change of 

gene expression along with the gestational weeks. Dynamic data, as Bar-Joseph [186] 

mentioned, indicates a strong autocorrelation between successive points, rather than 



69 

 

independent identically distributed samples in static data. Comparison from a static 

period to another might distort the actual role of a biological process serving different 

specialized functions in different stage [187]. For example, the surge of the oxygen 

tension in the placental villi only occurs in a narrow span during 10-12 weeks' gestation 

[59]. Therefore, the generalized linear regression was implemented, and the adjusted 

P-value associated with each gene was used as an indicator for is significance related 

to the response variable (gestational age). This statistic method helped to select more 

than 4000 significant probe sets for dataset2&3, far more than 505 in Winn’s study. It 

seems reasonable to have such huge number of SEGs during pregnancy since the 

structure and functions of human placenta should have adapted to a lot of dramatical 

modifications. 

 

Additionally, we considered the pairwise correlations between genes and co-expression 

gene sets, as well as the network topology of different networks as reported frequently 

[188-190]. Therefore, we used WGCNA with the default unsigned network to explore 

the whole genes in dataset1 and those selected genes in dataset2&3, which are 

correlated to gestational weeks. WGCNA is a method for construct correlation network, 

especially for analyzing large, high-dimensional data sets like DNA microarray[180]. 

As the WGCNA package noted, its application to differential expression is not 

recommended since it will invalidate the scale-free topology assumption. In our case, 

we applied it successfully in filtered SEGs which possibly because of the way they were 

defined by linear regression rather than direct comparison between groups. After all, 

with this combined method, we narrowed forward the scale of SEGs to 5173 in different 

period of placentation, compared to hundreds of differentially expression genes 

identified previously. Subsequently, these SEGs were submitted for further enrichment 

and we compared our top terms of the biological process, molecular function and 
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pathway with the original research [178], which indicates more detailed and abundant 

terms (Supplementary Material Figure S2). 

 

With respect to the terms, our results indicated the involvement of “PI3K-Akt signaling 

pathway”, which has reported to participate in the decidualization of trophoblast 

during early pregnancy[191]. As well, “Ras signaling pathway” has been reported to 

control the trophoblast stem cell survival by regulating the phosphorylation and 

destabilization of proapoptotic proteins[192]; “Rap1 signaling pathway” and “cAMP 

signaling pathway” regulate the placental cell fusion[193, 194]. Among the intersection 

of the top enriched terms in biological process and pathway, we selected “PPAR 

signaling pathway” for the further investigation since our team is devoted to studying 

the role of PPARs in human placental development.  

 

According to the PPAR signaling pathway map, the up- and down-stream genes of 

PPARs nuclear receptors, such as LPL, SLC27A2, ACSL1, FABPs, were well matched. 

We therefore enclosed these genes and PPARs and its heterodimer RXRα for graphing 

the time-guided lines. These line graphs drawn with the scaled and adjusted gene 

expression dynamically displayed the relative changes across the placentation. Our 

results show a continuous increase in LPL, FABP4, FABP5, and a continuous decrease 

in FABP7, ACSL1. As it reports, PPARs, as nuclear receptors, regulate gene expression 

through binding to PPAR response element, with which the target gene transcription 

will be promoted or inhibited [195]. In response to the knowledge, our previous study 

investigated the effects of rosiglitazone on trophoblast. Trophoblast treated with 

PPARγ agonist rosiglitazone have a significant up-regulation in FABP4, FABP5, and 

down-regulation in LPL, but no significance was shown in the rest [157], which is 

consistent with the performance of the line graph, indicating the critical role of PPARγ 
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in lipid metabolism during placental development. Indeed, in mouse, the PPARγ 

deletion leads to the absence of adipose tissue resulting in a series of metabolic 

phenotype related to dysfunctional lipid metabolism like hypermetabolism, 

hyperphagia etc. [196]. Previous enrichment analysis also shows the susceptibility of 

PPAR signaling pathway in first trimester placenta, related to lipid metabolism and 

other complex biological functions[197]. Therefore, we detected the neutral lipid 

droplets by ORO staining in first trimester and term placenta tissues, whose quantity 

commonly applied to indicate the expression of LPL, FABPs and PPARs [162, 198, 199]. 

Our results show the apparent decrease of lipid droplets from first trimester to term. 

Meanwhile, the negative correlation of first trimester gestational age and lipid droplets 

intensity was revealed by the ordered logistic regression statistic method. The role of 

“PPAR signaling pathway” in lipid metabolism throughout placentation hence suggests 

the reliability of our analysis. 

 

Last but not least, in our study, the decrease of lipid droplets throughout the gestation 

age seems own to up-regulation of FABPs which may further affect the activation of 

PPARγ. The activation of PPARγ up-regulates the expression of lipid metabolic genes 

such as LPL which can increase the metabolism of lipid droplets in cytotrophoblasts. 

However, other studies report the increase of FABPs expression resulted from the 

activation of PPARγ in in vitro cultured cytotrophoblasts, which results in lipids uptake 

and accumulation [200, 201]. Here, the paradoxical effect observed in our study and 

others might be explained by the fact that FABP4 could also downregulate PPARγ 

activity, as observed in adipocyte through ubiquitination and subsequent proteasomal 

degradation [202]. Therefore, we could hypothesize that there might be an 

interestingly dynamic regulation between FABPs and PPARγ activation which might 

lead to the similar function of FABP4 acting in term placenta as in adipocyte. Taking 
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for example, FABP4 is upregulated in case of preeclampsia, a major pregnancy-related 

disease [203]. 

 

To conclude, using new methods for the analysis of the global gene expression on 

human placenta from 4 to 40 gestational weeks, our study provides more significant 

genes, more information on biological processes and pathways, giving us new clues for 

deciphering the normal functions of placentation. Their mis-regulations may be linked 

to pregnancy-related diseases. Finally, we give an example that PPAR signaling 

pathway mediates constant decrease of placental lipids throughout pregnancy. 
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3 Part Two 

Lead-in 

In the last part, we have explored the important biological processes happening across 

the whole pregnancy, in which the PPAR signaling pathway was discovered. In the 

matched pathway map, PPARγ was found to be the key gene to regulate the 

downstream genes in the PPAR signaling pathway. Since PPARγ is the key gene for 

lipid metabolism and PPAR signaling pathway was the only pathway involved in the 

lipid metabolism in our enrichment, we detected the lipid droplet in the human 

placenta to verify the existence of PPARγ. The result confirmed the role of PPARγ in 

our study, but we found that the gene expression of PPARγ remained unchanged across 

the pregnancy. If it’s not the changing expression of genes or pathways, we proposed 

that PPARγ, as a nuclear receptor, must function in the form of protein, via activity 

change, to regulate the target genes, instead of changing its gene expression. In this 

part, we aimed to study the activity of PPARγ protein in the human placenta. The 

placenta is composed of various materials, such as trophoblasts, stroma, etc., while 

trophoblasts are the main element. The trophoblasts can be divided into villous 

cytotrophoblast and extravillous cytotrophoblast that are the most important cells in 

the human placenta. If the PPARγ is going to function in the human placenta, we 

believe the two cell types would play a key role in the process. We, therefore, decided 

to study the role of PPARγ protein in these two cell types and to find out the main genes 

or pathways that would have been regulated by PPARγ in the long period. 
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3.1.1 Abstract 

Trophoblasts, as the cells that make up the main part of the placenta, undergo cell 

differentiation processes such as invasion, migration, and fusion. Abnormalities in 

these processes can lead to a series of gestational diseases whose underlying 

mechanisms are still unclear. One protein that has proven to be essential in 

placentation is the peroxisome proliferator-activated receptor γ (PPARγ), which is 

expressed in the nuclei of extravillous cytotrophoblasts (EVCTs) in the first trimester 

and villous cytotrophoblasts (VCTs) throughout pregnancy. Here, we aimed to explore 

the genome-wide effects of PPARγ on EVCTs and VCTs via treatment with the PPARγ-

agonist rosiglitazone. EVCTs and VCTs were purified from human chorionic villi, 

cultured in vitro, and treated with rosiglitazone. The transcriptomes of both types of 

cells were then quantified using microarray profiling. Differentially expressed genes 

(DEGs) were filtered and submitted for gene ontology (GO) annotation and pathway 

analysis with ClueGO. The online tool STRING was used to predict PPARγ and DEG 

protein interactions, while iRegulon was used to predict the binding sites for PPARγ 

and DEG promoters. GO and pathway terms were compared between EVCTs and VCTs 

with ClusterProfiler. Visualizations were prepared in Cytoscape. From our microarray 

data, 139 DEGs were detected in rosiglitazone-treated EVCTs (RT-EVCTs) and 197 

DEGs in rosiglitazone-treated VCTs (RT-VCTs). Downstream annotation analysis 

revealed the similarities and differences between RT-EVCTs and RT-VCTs with respect 

to the biological processes, molecular functions, cellular components, and KEGG 

pathways affected by the treatment, as well as predicted binding sites for both protein-

protein interactions and transcription factor–target gene interactions. These results 

provide a broad perspective of PPARγ-activated processes in trophoblasts; further 

analysis of the transcriptomic signatures of RT-EVCTs and RT-VCTs should open new 
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avenues for future research and contribute to the discovery of possible drug-targeted 

genes or pathways in the human placenta. 

Key Words: Placenta; Cytotrophoblast; Extravillous; Peroxisome proliferator-

activated receptor-γ; Rosiglitazone; Microarray 

3.1.2 Introduction 
The human placenta serves as a critical bridge between mother and fetus, and thus 

plays a crucial role in maternal and fetal physiology. The placenta is composed mainly 

of trophoblast cells, which derive from the outer layer of the blastocyst. Certain 

trophoblasts can be further distinguished as villous cytotrophoblasts (VCTs), whose 

development progresses along with that of the placenta. In the process of embryo 

implantation and placenta formation, VCTs that invade the maternal uterus are known 

as extravillous cytotrophoblasts (EVCTs); these anchor the chorionic villi. Other VCTs 

differentiate and fuse to form the syncytiotrophoblast layer, which has critical 

functions in gas- and nutrient-exchange between the fetus and the mother. Defects in 

EVCT invasion and VCT differentiation and fusion contribute to a series of gestational 

diseases, such as fetus-related miscarriage [204], preterm birth [205], and pre-

eclampsia [206]. The causes of and mechanisms behind these diseases have been the 

focus of much research, but as yet remain unclear. 

 

As a member of the ligand-dependant nuclear receptor superfamily, PPARγ 

regulates many downstream target genes involved in lipid metabolism, cell 

differentiation, and tumorigenesis. PPARγ functions by forming a heterodimer with 

the nuclear receptor retinoid X receptor α (RXRα) and then binding to the PPAR 

response element (PPRE) of target genes [207]. It has been reported that a lack of 

PPARγ leads to defects in trophoblast differentiation and abnormal vasculogenesis in 

mice [147, 166], and PPARγ-/- embryonic lethality can be rescued via PPARγ 
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transfection in the trophoblast [167]. PPARγ thus appears to play a crucial but poorly 

understood role in placental development. 

 

To explore the role of PPARγ in biological processes, the PPARγ-agonist 

rosiglitazone has been widely applied to various tissues. In human placenta, 

rosiglitazone has been used for the study of placental metabolism [208, 209], 

inflammation [210, 211], antioxidant response [212, 213], and pre-eclampsia [149]. In 

vitro treatment with rosiglitazone has been shown to reverse inflammation of the 

placenta that is mediated by the PPARγ-NF-κB pathway [210]. Similarly, rosiglitazone 

can improve the survival rate of trophoblasts under oxidative stress via its effects on 

the PPARγ pathway [212]. Other investigations into the activity of this drug have 

identified new potential target genes of PPARγ [149, 214]. Taken together, these 

studies show the enormous potential and benefit of rosiglitazone use in studies of the 

placenta.  

 

In the human placenta, PPARγ is exclusively located in the nuclei of EVCTs during 

the first trimester and of VCTs throughout pregnancy [195, 215, 216]. To date, there is 

a lack of systematic research on the effects of PPARγ in these tissues and during these 

developmental periods. Our purpose here was to investigate the performance of 

PPARγ-activated trophoblasts by analyzing the transcriptomic signatures of 

rosiglitazone-treated EVCTs (RT-EVCTs) and VCTs (RT-VCTs), with the ultimate goal 

of identifying potential target genes or pathways and providing a broad knowledge base 

for future research. Specifically, we isolated EVCTs and VCTs from first-trimester and 

term human chorionic villi, respectively, cultured these cells with rosiglitazone, and 

quantified the transcriptome of each type of cell using microarray analysis. The 

procedure for this study is shown in Figure 1. 
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Figure 21 Summary of procedures 

Fig. 1. Summary of procedures. Extravillous cytotrophoblasts (EVCTs) and villous 

cytotrophoblasts (VCTs) were isolated from first-trimester and term placentas, 

respectively, treated with rosiglitazone, and analyzed using microarrays. Differentially 

expressed genes (DEGs) were filtered for quality control and submitted for annotation. 

Terms associated with DEGs and predictions of PPARγ-target genes were compared 

between the rosiglitazone-treated EVCTs and VCTs. PPARγ: peroxisome proliferator-

activated receptor γ. 
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3.1.3 Materials and Methods 

Ethics statement 

Placenta samples in this study were collected with patients’ written informed 

consent, in compliance with the Declaration of Helsinki. Placenta tissues were 

collected from women with normal pregnancies during the 8-9th gestational weeks and 

at term (39 gestational weeks). Our ethics committee (CCPRB Paris Cochin n° 18-05) 

approved the collection of placentas from legal and voluntary terminations of 

pregnancy in the first trimester as well as of the normal term placentas. 

Cell isolation and culture 

 As previously described [157], five effective first-trimester placentas were 

obtained for EVCT isolation. Villous tissues were rinsed and minced in Ca2+-, Mg2+-

free Hanks’ balanced salt solution for membrane removal. Mononucleated VCTs were 

isolated using digestion with trypsin-DNase and fractionation on a discontinuous 

Percoll gradient according to the protocol of Kliman et al. [217] and Alsat et al. [218]. 

In brief, villous tissues were digested in Hanks’ balanced salt solution, containing 5 IU 

of DNase I per ml, 4.2 mM MgSO4, 0.25% (wt/vol) trypsin powder (Difco), 100 IU/mL 

penicillin, 25 mM HEPES, and 100 μg/mL streptomycin (Biochemical Industry), and 

monitored under invert microscopy. The initial digested solution (consisting mostly of 

red blood cells) was discarded while the subsequent digested solution (clearly 

consisting of EVCTs) was retained for stratification. A discontinuous Percoll gradient 

(5–70% in 5% steps) was used to stratify the digested solutions; the middle layer 

(which included EVCTs) was retained for further analysis. The purified EVCTs were 

diluted with Dulbecco’s modified Eagle’s medium (DMEM), with 2 mM glutamine, 100 

IU/mL penicillin, 100 mg/mL streptomycin and 10% decomplemented fetal calf serum 
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(FCS), to a final density of 0.9 × 106 cells/mL in 60-mm-diameter plastic tissue culture 

dishes (TPP). In preparation for culturing, culture plates (Techno Plastic Products, 

Switzerland) were coated with Matrigel™ (7 µg/cm2; Collaborative Biomedical 

Products, Le Pont de Claix, France), then seeded with EVCTs at a density of 5×104 

cells/cm2. To maintain continuous culture conditions, DMEM-F12 medium was used 

that contained 10% heat-inactivated fetal calf serum (FCS), Glutamax, 100 µg/mL 

streptomycin, and 100 IU/mL penicillin (Invitrogen). Plates were incubated for 2 h at 

37°C and 5% CO2, then non-adherent EVCTs were rinsed off. At this point, fresh 

medium that contained either 1 µM rosiglitazone (Cayman) dissolved at 1 mM in 

ethanol (treatment) or 0.1% ethanol (vehicle) was added for another 24 h of incubation. 

 VCTs were isolated from five term placentas using the following procedure. 

Placentas were oriented with the maternal side facing upwards, and tissues were 

sampled at a depth of 1.5 cm, half the distance from the edge to the centre. Villous 

tissues were rinsed, minced, digested, and purified using the steps described above. 

Culture dishes containing 0.9×106 cells/mL were placed in a humidified incubator at 

37°C under 5% CO2 for 3 h. Non-adherent VCTs were rinsed off, fresh medium was 

added that contained either 1 µM rosiglitazone (Cayman) dissolved at 1 mM in ethanol 

(treatment) or 0.1% ethanol (vehicle), and dishes were incubated for another 24 h. 

Microarray experiments 

After 24 h of incubation, RT-EVCTs and control EVCTs were harvested for 

microarray experiments. Cell RNA was extracted using TRIzol® reagents (Invitrogen) 

and purified using RNeasy® Mini Kits (Qiagen). RNA integrity and purity were 

examined with a 2100 Bioanalyzer with the RNA 6000 LabChip kit (Agilent 

Technologies). The U133A 2.0 GeneChip (Affymetrix, Inc.) was used for gene 
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expression detection according to the method outlined in the manufacturer's manual. 

From the 22 000 probe sets on the gene chip, 14 500 genes were detected.  

 RT-VCTs and control VCTs were likewise harvested after 24 h of incubation for 

microarray experiments. VCT RNA extraction, purification, and quality control were 

performed as described above. The SHDZ gene chip (Stanford University) was used for 

gene detection as described in [219]: for each sample, the MessageAmp RNA kit 

(Ambion) was used, with 1 μg total RNA, for RNA amplification, and 3 μg amplified 

RNA were then labeled with Cy-dye using the 26 CyScribe first-strand cDNA labeling 

kit (Amersham Biosciences). Amplified RNA from rosiglitazone-treated VCTs was 

labeled with Cy5, and amplified RNA from control VCTs was labeled with Cy3. A 

Microcon YM 30 column (Millipore) was used to purify and concentrate the labeled 

mixture (Cy5 and Cy3) after additional modifications with human cot-1, yeast tRNA, 

and poly A. The probes were denatured and the mixture was hybridized at 65°C 

overnight in a sealed humidified hybridization chamber, then rinsed with 1XSSC, 

2XSSC, 0.03% SDS, and 0.2% SDS solutions for 2 min each. Arrays were scanned with 

a GenePrix 4000A microarray scanner (Axon Instruments). 

Data processing  

Since gene expression in EVCTs and VCTs was detected using different 

microarray platforms, different procedures were followed for data processing. For 

EVCT gene expression, which was quantified using the GeneChip (U133A 2.0, 

Affymetrix) application, data processing used the following filter thresholds: i) 

percentage of missing data was no more than 50%; ii) threshold to identify up- and 

downregulated genes for statistical comparison was set to a fold-change of 1.5; and iii) 

maximum false discovery rate (FDR) was set to 5% [157]. For VCT gene expression, 
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which was measured using the SHDZ GeneChip/Stanford University (GPL21609) 

application, data processing used the following filter thresholds: i) background-

corrected data were log2-transformed and subjected to the Loess normalization 

method [11]; ii) differentially expressed genes (DEGs) were determined via the 

significance analysis of microarrays (SAM) method [220]; and iii) the maximum false 

discovery rate (FDR) was set to 1%, without a fold-change threshold imposed [221]. 

GO and pathway enrichment analyses 

 ClueGo is a Cytoscape plug-in application for the functional classification of 

genes [222]. Our analysis used Cytoscape version 3.7.1 (The Cytoscape Consortium, 

New York, NY) and ClueGo version 2.5.4 (released 28 Feb 2019), with the simultaneous 

update of gene ontology (GO) terms. Using ClueGO, we recovered the GO terms 

associated with the dataset of all DEGs as well as of up- or downregulated DEGs only; 

this same application was also used for KEGG & Reactome pathway analysis. GO terms 

were compared between EVCTs and VCTs using the R package clusterProfiler (version 

3.9, synced to latest GO terms and pathways) [181]. For term comparison in 

clusterProfiler, 10 category terms for each group were selected for inclusion in charts. 

Instead, ClueGo analyses were based on approximately 30 terms per group in order to 

generate more detailed visualizations. P-values lower than 0.05 identified significant 

enrichment. 

Protein-Protein Interaction (PPI) network 

The STRING database (http://string-db.org) was used to analyze the interactions 

of DEG-encoded proteins and construct a PPI network. For this, the significant 

confidence score was set to greater than 0.4. Cytoscape was used to visualize and 

organize the PPI network. Proteins interacting with PPARγ or RXRα were indicated by 
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different colors, and shapes were used to represent different groups. Binding site 

interactions between transcription factors and target genes were predicted by the 

Cytoscape plug-in iRegulon (based on the TRANSFAC database; version 1.3). Putative 

regulatory regions were defined as 10 kb around transcription starting sites. The FDR 

was set to 0.1% to verify the interaction. Cytoscape was used to modify the resulting 

chart, with red indicating upregulated genes and blue indicating downregulated genes. 

3.1.4 Results 
 

1. Gene expression profiling of RT-EVCTs and RT-VCTs 

Microarrays were used to characterize gene expression in EVCTs and VCTs with or 

without rosiglitazone treatment. Our microarray data have been deposited in the Gene 

Expression Omnibus public repository (https://www.ncbi.nlm.nih.gov/geo/); EVCT 

microarray data under accession number GSE28426, VCT microarray data under 

accession number GSE137434). Gene expression profiles of the rosiglitazone-treated 

(TRT) samples of EVCTs and VCTs were normalized (Figure 1a). Four of the five 

independent RT-EVCT samples yielded consistent results, with one sample appearing 

slightly different; instead, all five independent RT-VCT samples yielded similar results. 

Next, DEGs were detected based on thresholds for both fold-change in expression 

levels and FDR. In RT-EVCTs, a total of 139 genes were identified as DEGs (p < 0.05), 

of which 114 genes were upregulated (red) and 25 genes were downregulated (blue). In 

RT-VCTs, a total of 197 genes were identified as DEGs (p < 0.05), of which 181 genes 

were upregulated (red) and 16 genes were downregulated (blue) (Figure 2b). 
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Figure 22 Microarray data normalization and DEG heatmap of RT-EVCTs and RT-VCTs 

Fig. 2. Microarray data normalization and DEG heatmap of RT-EVCTs and RT-VCTs. 

(a) RT-EVCT gene expression microarray was performed with the Affymetrix 

GeneChip while the RT-VCT microarray used the SHDZ/Stanford University chip. 

DEGs were detected based on the thresholds of 1.5-fold change and 5% FDR for the 

RT-EVCT microarray matrix; a threshold of 1% FDR was applied for the RT-VCT 

microarray matrix. The Loess normalization method was used to normalize both 

datasets. Box plots represent microarray data before and after normalization, with blue 

indicating data from RT-EVCTs and pink data from RT-VCTs. (b) Heatmaps of five 
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independent samples of RT-EVCTs and RT-VCTs. Upregulated DEGs are represented 

in red; downregulated DEGs in blue. DEGs: differentially expressed genes; RT-EVCTs: 

rosiglitazone-treated extravillous cytotrophoblasts; RT-VCTs: rosiglitazone-treated 

villous cytotrophoblasts; FDR: false discovery rate; TRT: treated. 

 

 

 

2. Gene ontology and pathway terms of all DEGs from RT-EVCTs and RT-VCTs  

The entire set of DEGs from RT-EVCTs and RT-VCTs were separated by cell-type 

of origin and submitted independently to ClueGO with the default parameters. GO and 

pathway enrichment were set up for analysis. DEGs were classified three ways: by GO 

biological process, GO molecular function, and GO cellular component. Enriched 

pathways were identified through a search of the KEGG and Reactome databases. The 

results are visualized in Figure 3. 

Among the DEGs identified in RT-EVCTs, the main GO biological processes 

represented were “negative regulation of epithelial cell apoptotic process”, “long-chain 

fatty-acyl-CoA biosynthetic process”, and “phosphatidylcholine biosynthetic process”. 

For the same group of DEGs, the GO molecular functions were mainly classified as 

“alpha-tubulin binding”, “wide pore channel activity”, “positive regulation of cold-

induced thermogenesis”, “glutathione transferase activity”, “long-chain fatty acid 

binding”, “regulation of cell adhesion mediated by integrin”, and “positive regulation 

of non-motile cilium assembly”. Finally, the GO cellular component that was most 

associated with these DEGs was “desmosome”. In the pathway enrichment analysis of 

RT-EVCTs, DEGs were mainly associated with the terms “HIF-1 signaling pathway”, 

“p53 signaling pathway”, “glutathione metabolism”, “NRAGE signals death through 



88 

 

JNK”, “PPAR signaling pathway”, “plasma lipoprotein assembly”, and “remodeling and 

clearance”.  

In the analysis of GO terms associated with the RT-VCT dataset, DEGs were mainly 

involved in the following biological processes: “regulation of receptor biosynthetic 

process”, “negative regulation of nucleotide metabolic process”, “cyclic nucleotide 

biosynthetic process”, and “negative regulation of B cell apoptotic process”. The 

molecular functions of this same group of DEGs were mainly linked to “negative 

regulation of DNA replication”, “regulation of protein deacetylation”, “ubiquitin-like 

protein conjugating enzyme activity”, “Hsp90 protein binding”, “negative regulation of 

intracellular protein transport”, and “positive regulation of phosphoprotein”. With 

respect to GO cellular components, DEGs were mainly associated with the terms 

“NuRD complex”, “cellular metabolic compound salvage”, and “immunological 

synapse”. Finally, the pathway enrichment analysis of RT-VCTs revealed that DEGs 

were mainly involved in “tight junction”, “regulation of HIF by oxygen”, “unfolded 

protein response”, “HIF-1 signaling pathway”, “nuclear receptor transcription 

pathway”, and “plasma lipoprotein remodeling”. 
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Figure 23 GO and pathway terms associated with all DEGs in RT-EVCTs and RT-VCTs 

Fig. 3. GO and pathway terms associated with all DEGs in RT-EVCTs and RT-VCTs. 

All DEGs were submitted separately according to their cell-type of origin to ClueGO 

with the default parameters. GO and pathway enrichment were set up for analysis. 

DEGs were classified three ways: by GO biological process, GO molecular function, and 

GO cellular component. The KEGG&Reactome database was consulted to determine 

pathway enrichment. An exhaustive list of all terms (including those not shown above) 

can be found in supplementary materials (Tables S1-S8). DEGs: differentially 

expressed genes; RT-EVCTs: rosiglitazone-treated extravillous cytotrophoblasts; RT-

VCTs: rosiglitazone-treated villous cytotrophoblasts; GO: gene ontology; KEGG: Kyoto 

encyclopedia of genes and genomes. 
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3. GO and pathway terms associated with upregulated DEGs in RT-EVCTs and RT-

VCTs  

DEGs that were upregulated in RT-EVCTs and RT-VCTs were submitted separately 

to ClueGO following the same procedure as described above. The results are visualized 

in Figure 4. In RT-EVCTs, upregulated DEGs were mainly associated with the GO 

biological processes “fatty acid derivative biosynthetic process” and “negative 

regulation of epithelial cell apoptotic process”, and the GO molecular functions 

“positive regulation of insulin secretion”, “temperature homeostasis”, “wide pore 

channel activity”, “nuclear receptor activity”, and “regulation of plasma lipoprotein 

particles levels”. The main GO cellular components implicated in the activity of these 

DEGs were “desmosome” and “intrinsic component of mitochondrial membrane”. 

Finally, the pathway enrichment analysis indicated that upregulated DEGs in RT-

EVCTs were mainly involved in the “p53 signaling pathway”, “HIF-1 signaling 

pathway”, “peptide hormone metabolism”, “PPAR signaling pathway”, “p57 NTR 

receptor-mediated signaling”, and “signaling by retinoic acid”. 

Instead, from the DEGs that were upregulated in RT-VCTs, no significant GO 

biological process was identified. In the classification of GO molecular functions, these 

DEGs were mainly linked with “positive regulation of cell cycle” and “mitotic DNA 

damage checkpoint”, and the most significant GO cellular component was 

“transcription factor complex”. In the pathway enrichment analysis, upregulated DEGs 

in RT-VCTs were mainly associated with the terms “mTOR signaling pathway”, “cell 

cycle checkpoints”, “DNA repair”, “developmental biology”, “metabolism”, and 

“vesicle-mediated transport”. 
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Figure 24 GO and pathway terms associated with DEGs that were upregulated in RT-EVCTs and RT-VCTs 

Fig. 4. GO and pathway terms associated with DEGs that were upregulated in RT-

EVCTs and RT-VCTs. These DEGs were submitted separately to ClueGO by their cell-

type of origin with the default parameters. GO and pathway enrichment were set up for 

analysis. Upregulated DEGs were classified three ways: by their GO biological process, 

GO molecular function, and GO cellular component. The KEGG&Reactome databases 

were consulted to determine pathway enrichment. All additional enrichment terms 

(not shown above) can be found in supplementary materials (Tables S1-S8). DEGs: 

differentially expressed genes; RT-EVCTs: rosiglitazone-treated extravillous 
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cytotrophoblasts; RT-VCTs: rosiglitazone-treated villous cytotrophoblasts; GO: gene 

ontology; KEGG: Kyoto encyclopedia of genes and genomes. 

 

 

4. GO and pathway terms associated with downregulated DEGs in RT-EVCTs and 

RT-VCTs 

DEGs that were downregulated in RT-EVCTs and RT-VCTs with respect to controls 

were submitted to ClueGO using the same procedure as described above. Results are 

visualized in Figure 5. In RT-EVCTs, downregulated DEGs were mainly associated with 

the GO biological process “positive regulation of small molecular metabolic process”; 

the GO molecular functions “membrane fusion”, “regulation of epithelial cell 

migration”, “response to estriol”, and “protein kinase binding”; and the GO cellular 

component “phosphorylase kinase complex”. From the analysis of pathway enrichment 

based on the KEGG&Reactome database, downregulated DEGs in RT-EVCTs appeared 

to be mainly associated with pathways linked with “glycogen breakdown”, “influenza 

infection”, “protein processing in endoplasmic reticulum”, and “regulation of actin 

cytoskeleton”.  

Instead, DEGs that were downregulated in RT-VCTs were mainly involved in the 

GO biological processes “cyclic nucleotide biosynthetic process”, “negative regulation 

of nucleotide metabolic process”, “ncRNA 3’-end processing”, and “O-glycan 

processing”;  the GO molecular functions “nuclear receptor activity”, “histone 

deacetylation”, “regulation of TOR signaling”, “Hsp90 protein binding”, “ion channel 

regulator activity”, “nuclear envelope organization”, and “peptidyl-threonine 

modification”; and the GO cellular component “organellar ribosome”. In the pathway 

enrichment analysis of RT-VCTs, downregulated DEGs were mainly associated with 

the “HIF-1 signaling pathway”, “transfer of ubiquitin from E1 to E3”, “cell-cell 
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communication”, “transcription regulation of RUNX3”, and “formation of NR-MED1 

coactivator complex”. 

 

Figure 25 GO and pathway terms associated with DEGs that were downregulated in RT-EVCTs and RT-VCTs, respectively 

Fig. 5. GO and pathway terms associated with DEGs that were downregulated in RT-

EVCTs and RT-VCTs, respectively, compared to controls. Downregulated DEGs of RT-

EVCTs (a, b) and RT-VCTs (c, d) were submitted to ClueGO separately, with the default 
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parameters. GO and pathway enrichment were set up for analysis. DEGs were 

classified three ways: by GO biological process, GO molecular function, and GO cellular 

component (a, c). Pathway enrichment was determined via comparison with the KEGG 

database (b, d). (a) The GO terms most-associated with DEGs that were downregulated 

in RT-EVCTs. (b) The pathways that were most enriched among the downregulated 

DEGs in RT-EVCTs. (c) The GO terms most-associated with DEGs that were 

downregulated in RT-VCTs. (d) The pathways that were most enriched among the 

downregulated DEGs in RT-VCTs. An exhaustive list of all associated terms (including 

those not pictured above) can be found in supplementary materials (Tables S1-S8). 

DEGs: differentially expressed genes; RT-EVCTs: rosiglitazone-treated extravillous 

cytotrophoblasts; RT-VCTs: rosiglitazone-treated villous cytotrophoblasts; GO: gene 

ontology; KEGG: Kyoto encyclopedia of genes and genomes. 

 

 

5. Comparison of GO terms associated with tissue-specific or tissue-generalist DEGs 

Next, we wanted to determine the extent to which the cellular processes affected 

by rosiglitazone treatment were specific to either EVCTs or VCTs, and which instead 

were present in both tissue types. To do this, we characterized the up- and 

downregulated DEGs of RT-EVCTs and RT-VCTs separately using clusterProfiler, 

using information from the GO and KEGG databases, as well as the Disease Ontology 

(DO) and Disease Gene Network (DisGeNET) databases. Terms appearing in at least 

three columns were thought important in both, while terms appearing only in the RT-

EVCT or RT-VCT dataset were labeled tissue-specific; significance was determined by 

p-values less than 0.05.  

In both RT-EVCTs and RT-VCTs, the GO biological processes “regulation of 

endothelial cell migration”, “non-canonical Wnt signaling pathway”, “receptor 
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metabolic process”, “negative regulation of protein phosphorylation”, and “metabolism 

process” appeared to play important roles. Instead, processes specific to RT-EVCTs 

included “glycogen catabolic process”, “cellular carbohydrate catabolic process”, 

“embryo implantation”, “fatty acid derivative biosynthetic process”, and “long-chain 

fatty-acyl-CoA biosynthetic process”, while those specific to RT-VCTs were 

“cytoplasmic mRNA processing body assembly”, “ribonucleoprotein complex 

biogenesis”, “positive regulation of phosphoprotein phosphatase activity”, and 

“negative regulation of nucleotide metabolic process” (Figure 6a). 

The GO molecular functions “nuclear hormone receptor binding”, “long-chain fatty 

acid binding”, “fatty acid binding”, “nuclear activity”, and “transcription factor activity” 

seemed to be important in both RT-EVCTs and RT-VCTs. Functions specific to RT-

EVCTs included “steroid hormone receptor binding”, “eicosanoid receptor activity”, 

“phosphatidylinositol phosphate kinase activity”, and “fatty acid ligase activity”, while 

those specific to RT-VCTs were “Wnt-activated receptor activity”, “cyclin-dependent 

protein kinase activity”, “transferase activity”, and “ubiquitin-specific protease 

activity” (Figure 6b). 

Both tissue types shared the significant GO cellular components “smooth 

endoplasmic reticulum”, “ruffle”, “transcription factor complex”, “apical plasma 

membrane”, “lumen”, and “cell-cell junction”. Instead, the component terms “beta-

catenin destruction complex”, “M band”, “integral component of lumenal side of 

endoplasmic reticulum membrane”, and “A band” were found only in RT-EVCTs, while 

“spliceosomal complex”, “Wnt signalosome”, “pronucleus”, “microtubule end”, and 

“autophagosome membrane” appeared to be specific to RT-VCTs (Figure 6c). 

Through a search of the KEGG database, the following pathways appeared to be 

important in both tissue types: “protein processing in endoplasmic reticulum”, 

“glucagon signaling pathway”, “Epstein-Barr virus infection”, “PPAR signaling 
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pathway”, “HIF-1 signaling pathway”, “progesterone-mediated oocyte maturation”, 

and “mTOR signaling pathway”. Pathway terms specific to RT-EVCTs included 

“primary immunodeficiency”, and “fatty acid metabolism”, while those specific to RT-

VCTs were linked with “bacterial invasion of epithelial cells”, and “parathyroid 

hormone synthesis, secretion, and action” (Figure 6d). 

From the Disease Ontology database, the terms “pre-eclampsia”, “HELLP 

syndrome”, “spinocerebellar ataxia”, “familial hyperlipidemia”, “lipid metabolism 

disorder”, and “musculoskeletal system cancer” were important in both EVCTs and 

VCTs. Terms specific to RT-EVCTs included “breast benign neoplasm”, “thoracic 

benign neoplasm”, “lipomatous cancer”, “amyloidosis”, and “vein disease”, while those 

specific to RT-VCTs were “alveolar rhabdomyosarcoma”, “osteopetrosis”, “giant cell 

tumor”, and “germ cell and embryonal cancer” (Figure 6e). 

From a search of the DisGeNET database, the terms “pre-eclampsia”, 

“hypertrophic cardiomyopathy”, “immunologic deficiency syndromes”, “diabetes 

mellitus”, “vascular inflammations”, “hematopoietic neoplasms”, “non-alcoholic fatty 

liver disease”, “vascular disease”, “ischemic cardiomyopathy”, and “triploidy 

syndrome” were significant for both tissue types. Instead, “chronic neutrophilic 

leukemia”, “glycogen storage disease”, and “myeloid, chronic, atypical, and BCR-ABL 

negative leukemia” were specific to RT-EVCTs, and “alport syndrome” and “aggressive 

non-Hodgkin lymphoma” were specific to RT-VCTs (Figure 6f). 
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Figure 26 Comparison of enriched GO terms between RT-EVCTs and RT-VCTs 

Fig. 6. Comparison of enriched GO terms between RT-EVCTs and RT-VCTs. Up- and 

downregulated DEGs of RT-EVCTs and RT-VCTs were submitted separately to 
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analysis in clusterProfiler, for a total of four groups. GO and pathway enrichment were 

set up for analysis. DEGs were classified by their associated (a) GO biological process, 

(b) GO molecular function, and (c) GO cellular component. DEGs were further 

compared with the (d) KEGG database to characterize pathway enrichment, (e) the 

Disease Ontology (DO) gene set, and (f) the Disease Gene Network (DisGeNET) 

database. For the purpose of visualization, the top ten categories of enriched terms 

were included for each gene set. A p-value less than 0.05 determined significance. 

DEGs: differentially expressed genes; RT-EVCTs: rosiglitazone-treated extravillous 

cytotrophoblasts; RT-VCTs: rosiglitazone-treated cytotrophoblasts; GO: gene 

ontology; KEGG: Kyoto encyclopedia of genes and genomes. 

 

 

6. PPARγ interactions with DEGs of RT-EVCTs and RT-VCTs  

Since the gene expression changes we observed here were caused by the activation 

of PPARγ by rosiglitazone, we next attempted to predict (i) the protein-protein 

interactions (PPI) of PPARγ with DEG-encoded proteins, and (ii) the transcription 

factor-target gene (TF-TG) interactions of PPARγ with DEG promoters. In RT-EVCTs 

(Figure 7, upper left panel), the following proteins appeared to interact directly with 

the PPARγ complex: MGLL, FABP5, HMOX1, SERPINE1, ABCG2, PHC1, VLDLR, 

INSIG1, DPP4, ANGPTL4, FAPB4, ACSL1, and CPT1A. Instead, ACSL5, PFKP, 

AKR1B1, LOX, GXTA4, SOWAHC, GJA1, SLC19A1, RUNX1, PERP, ENPEP, SLFN12, 

CDC42EP, and LIPG participated in secondary interactions. In RT-VCTs (Figure 7, 

upper right panel), the PPARγ complex interacted directly with MYOD1, MAPK8, 

HDAC2, GAPDH, APOB, ANGPTL4, and PDCD4, and secondarily with PDIA3, 

MAPK8IP2, NR4A1, GNG2, and CCR1. Our analysis of TF-TG interactions in RT-

EVCTs (Figure 7, lower left panel) predicted that the target genes of the PPARγ 
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complex were the upregulated DEGs DLC1, SEMA3C, ARL6IP5, PCTP, ISL1, ZNF395, 

SR1, DPP4, ALOX5AP, ANGPL4, CDC42EP4, GKN1, ATXN1, CAPN2, LPCAT3, 

SERPINE1, NET1, LPCAT3, CPT1A, RAB30, GADD45A, MMP19, FHL1, MMD, CCNE1, 

and ESRRG, as well as the downregulated DEGs ADAM12, GSTA4, PSG5 and DACT1. 

The same analysis of RT-VCTs (Figure 7, lower right panel) predicted that the target 

genes of the PPARγ complex were the upregulated DEGs CLIP1, GAPDH, and LPP, as 

well as the downregulated DEGs CELF2, ZNF512B, SLC39A10, WDR7, FURIN, 

RRBP1, ATXN1, MRPL4, INNPP4B, ZMYND8, BCL6, ASAP1, UBE2K, RORC, RGL2, 

ADCY3, FUT8, ANKRD11, SPTAN1, and BAZ2B. 

 

Figure 27 Interactions of the PPARγ & RXRα complex with DEGs of RT-EVCTs and RT-VCTs 
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Fig. 7. Interactions of the PPARγ & RXRα complex with DEGs of RT-EVCTs and RT-

VCTs. Predictions were made of protein-protein interactions between PPARγ and 

DEG-encoded proteins, as well as of the transcription factor-target gene (TF-TG) 

interactions of PPARγ with DEG promoters. The PPARγ and RXRα (heterodimeric 

nuclear receptor partner of PPARγ) complex, together with the DEGs recovered in this 

study, were submitted to the STRING online tool. Visualizations were modified in 

Cytoscope to depict hierarchical interactions and gene expression. For hierarchical 

protein-protein interactions, red text represents upregulated genes, blue text 

represents downregulated genes, blue circles represent direct interactions with the 

PPARγ complex, red circles represent second-level interactions, and grey circles 

represent plus-level interactions. TF-TG interactions of the PPARγ complex with DEG 

promoters were predicted by iRegulon based on the TRANSFAC database. Red circles 

represent upregulated DEGs and blue circles represent downregulated DEGs. PPARγ: 

peroxisome proliferator-activated receptor-γ; RXRα: retinoid x receptor-α; RT-

EVCTs: rosiglitazone-treated extravillous cytotrophoblasts; RT-VCTs: rosiglitazone-

treated villous cytotrophoblasts; DEGs: differentially expressed genes; PPI: protein-

protein-interaction; TF-TG: transcription factor-target gene. 

 

 

7. Expression of genes targeted by PPARγ in RT-EVCTs and RT-VCTs  

We next filtered our datasets to examine only the DEGs targeted directly by the 

PPARγ complex, based on the TF-TG predictions described above. The filtered RT-

EVCT database contained 26 upregulated and 4 downregulated DEGs (Figure 8a), 

while the filtered RT-VCT database contained 3 upregulated and 21 downregulated 

DEGs (Figure 8b). Only one target gene, ATXN1, was present in both datasets; it was 

upregulated in RT-EVCTs and downregulated in RT-VCTs (Figure 8). 
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Figure 28 Expression of genes targeted by PPARγ & RXRα in RT-EVCTs and RT-VCTs 

Fig. 8. Expression of genes targeted by PPARγ & RXRα in RT-EVCTs and RT-VCTs. 

Gene symbols were retrieved from the normalized gene expression matrix, together 

with the log2 fold-change values in each sample. With these values, boxplots were 

graphed for (a) RT-EVCTs and (b) RT-VCTs, with upregulation represented in red and 

downregulation in blue. The grey dashed box indicates the only gene found in both 

tissue types. PPARγ: peroxisome proliferator-activated receptor-γ; RXRα: retinoid x 

receptor-α; RT-EVCTs: rosiglitazone-treated extravillous cytotrophoblasts; RT-VCTs: 

rosiglitazone-treated cytotrophoblasts. 

 

3.1.5 Discussion 
 

The human placenta is a critical bridge between mother and fetus, facilitating 

nutrient exchange and various endocrine and immunological processes. As the cells 
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that form the main part of placenta, trophoblasts undergo extensive cell 

differentiation, including invasion, migration, and fusion. Abnormalities in these 

physiological processes can lead to a series of gestational diseases such as preeclampsia 

or intrauterine growth restriction. Specifically, both of these disorders appear to be 

associated with irregularities in the invasion of EVCTs into the maternal uterus, a 

biological process that is tightly controlled both spatially and temporally [223, 224]. 

However, the underlying mechanism linking EVCT invasion to gestational dysfunction 

has yet to be fully investigated. Our team has previously shown the critical influence of 

activated PPARγ on trophoblasts via treatment of the natural ligands of PPARγ or its 

specific agonist rosiglitazone [154, 157, 195, 225]. Rosiglitazone is the first synthetic 

chemical compound to be developed that demonstrates high selectivity for PPARγ (Kd 

approximately 40 nM); concentrations of up to 100 µM of this compound have been 

reported to activate only PPARγ (including the PPARα/β/δ complex [226]). Moreover, 

our previous research revealed that a concentration of only 1 μM rosiglitazone led to 

significant alterations in trophloblast differentiation, with more than 50% inhibition 

of EVCT invasion [154]. In this study we treated EVCTs and VCTs with 1 μM 

rosiglitazone in order to more fully understand the effects of PPARγ on gene expression 

in these tissues. 

Our microarray results for EVCTs were published previously with the aim of 

identifying significant DEGs for further study [157]. However, this work provided little 

information about the relative enrichment of pathways and processes among these 

DEGs, and did not include any comparisons with RT-VCTs. To more broadly determine 

the key genes, biological processes, and pathways affected by activated PPARγ in 

trophoblasts, in this study we also analyzed gene expression changes in VCTs using 

microarray profiling, and, through various approaches, identified the enriched 

processes that were linked with these DEGs in RT-EVCTs and RT-VCTs. We were thus 
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able to compare the similarities and differences between EVCTs and VCTs affected by 

activated PPARγ. In total, there were 139 DEGs in RT-EVCTs and 197 DEGs in RT-

VCTs, and these were associated with enrichment in more than 200 GO and pathway 

terms (Tables S1-S8). Of these terms, the most significant and relevant are depicted in 

the figures. The majority of the terms recovered in our analysis were consistent with 

reports from the existing literature. For example, the terms “long-chain fatty-acyl-CoA 

biosynthetic process”, “regulation of plasma lipoprotein particle levels”, “plasma 

lipoprotein remodeling”, and “PPAR signaling pathway” are all associated with “fatty 

acid transport” which in the placenta is known to demonstrate sex-specific differences 

due to the PPARγ-dependent response of genes involved in lipogenesis [227]. Signaling 

molecules and dynamic regulation of the cytoskelton are required in trophoblast 

invasion [228-230], which are related to such terms as “regulation of epithelial cell 

migration”, “regulation of actin cytoskeleton”, and “tight junction”. Among the specific 

pathways highlighted, the HIF-1 signaling pathway is known to participate in PPARγ-

mediated placental angiogenesis [213]; the P53 signaling pathway mediates 

trophoblast apoptosis via ligand-specific activation of PPARγ [145]; the JNK signaling 

pathway plays an essential role in blood-placental barrier formation [231, 232], as well 

as in EVCT migration and endothelial‐like tube formation [233]; and the mTOR 

signaling pathway regulates adipogenic proteins in the placenta, with mTOR acting as 

a decidual nutrient sensor in histotrophic nutrition, which is crucial to embryo viability 

as well as early placental and fetal development [234]. Furthermore, our results were 

also consistent with the post-transcriptional modifications involved in placentation, 

with the terms “positive regulation of phosphoprotein”, “regulation of protein 

deacetylation”, “histone deacetylation”, and “ubiquitin-like protein conjugating 

enzyme activity” all known from previous reports. Indeed, different subtypes of 

trophoblast vary in phosphorylation status depending on the stage of placental 
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development and differentiation. For example, EVCTs require 

Smad2/3 phosphorylation for differentiation while the absence of pSmad2C is 

necessary for VCTs [235]. Downregulation of histone deacetylase-9 can repress 

trophoblast migration and invasion [236], and likewise, inhibition of histone 

acetylation in human endometrial stromal cells limits trophoblast invasion [237]. 

Ubiquitination of amino acid transporters expressed specifically in the plasma 

membrane of the trophoblast can decrease amino acid uptake, leading to abnormal 

development of the placenta and restricted fetal growth [238, 239]. In addition, PPARγ 

can be phosphorylated through activation of the downstream ERKs 1/2 or p38/c-JNK 

pathways [100, 240]. Rosiglitazone blocks the acetylation of lysine residues of PPARγ 

at positions K268ac and K293ac [99]. Atypical poly-ubiquitination of PPARγ reduces 

proteasomal degradation and guarantees the stabilization of PPARγ [241, 242]. 

A major aim of this study was to compare patterns of enrichment between RT-

EVCTs and RT-VCTs. During EVCT invasion, non-invasive EVCTs undergo an 

epithelial-mesenchymal transition to acquire the invasive phenotype [243]. Invasive 

EVCTs then migrate away from the placenta up to the first third of the endometrium 

and colonize the maternal spiral arteries. We found a comparison of these two types of 

trophoblasts to be particulary compelling given the number of studies that have 

focused on their differences and similarities. For example, the transformation of non-

invasive EVCTs into invasive EVCTs involves expression differences in adhesion 

molecules, which manifest themselves when EVCTs escape from the anchoring column 

and invade into the endometrium (decidua, spiral arteries, and myometrium) [244]. 

Other studies have examined differences between EVCTs and VCTs with respect to 

hCG secretion for the normal maintenance of pregnancy [245] and placental cytokine 

secretion [246]. These biological processes are apparent in the terms recovered here 

that were associated with “regulation of endothelial cell migration”, “embryo 
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implantation”, “steroid hormone receptor binding”, “secretion and action”, and “pre-

eclampsia”. The main point is that these biological processes have all been reported to 

be regulated by PPARγ. For example, the activation of PPARγ has been found to 

prevent the TGF-β–induced epithelial-mesenchymal transition via inhibition of 

transcription of the E-cadherin and N-cadherin promoters [247]. Furthermore, PPARγ 

was reported to modulate basal levels of the hCGα and hCGβ subunits, resulting in 

differences in expression between EVCTs and VCTs [248]. Additional evidence has 

been obtained from studies with rosiglitazone; for example, treatment with 1 μM of the 

PPARγ agonist was found to decrease and increase, respectively, the number of 

transcripts of TGFβ2 and IL1β [225]. Such regulatory changes might be represented 

here by the terms “regulation of endothelial cell migration”, “Wnt signaling pathway”, 

“negative regulation of protein phosphorylation”, “transcription factor activity”, 

“PPAR signaling pathway”, and “HIF-1 signaling pathway”.  

In general, our datasets revealed an abundance of biological processes or pathways 

affected by PPARγ, many of which are consistent with previous reports. This 

concordance should increase confidence in our results and indicate avenues for further 

study. 

Finally, we attempted to predict the protein-protein interactions between the 

DEGs recovered here and PPARγ, in order to facilitate study of the mechanisms behind 

the molecular interaction. Our results provided evidence for direct protein-protein and 

protein-promoter interaction with the PPARγ complex. Among the proteins that 

appear to interact directly with PPARγ, several have been experimentally verified, 

including ANGPTL4 [249-251], ABCG2 [252], APOB [253], CCNE1 [254], CPT1B [255], 

FABP4 [256-259], HMOX1 [260], and SERPINE1 [261, 262]. Many of the TF-TG 

interactions, which were predicted using the position weight matrix algorithm, have 

not been previously reported and await further verification. Our interaction matrix 
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(Figure 7) also revealed more extensive upstream-to-downstream signaling pathways, 

such as the PPARγ-MAPK-MMP signaling pathway. Commonly, phosphorylated 

PPARγ stimulates the MAPK-activated pathway, leading to the activation of 

extracellular signal-regulated kinases (ERKs) that then induce the upregulation of 

matrix metalloproteinase (MMP) [263-265]. Here, only a single DEG, ATXN1, was 

found in both types of rosiglitazone-treated trophoblast; this gene was upregulated in 

RT-EVCTs and downregulated in RT-VCTs. It has been reported that the ATXN1 

protein family can regulate remodeling of the extracellular matrix [266], which 

indicates a potential involvement in trophoblast differentiation. In addition to the 

direct target genes predicted here, the genes in secondary relationships should be paid 

equal attention in terms of potential regulation by other target genes. For example, our 

previous research has shown the key role of LOX1, through secondary interactions, in 

cytotrophoblast invasion [157].  

 

Conclusions 

To our knowledge, our results reveal for the first time the widespread effects of 

PPARγ activation in EVCTs and VCTs, highlighting extensive changes in gene 

expression and the biological processes and pathways affected. This study provides a 

broad perspective of PPARγ-influenced biological processes in trophoblasts, and 

facilitates further study, particularly into potential drug-targeted genes or pathways in 

the human placenta. 

 

Data Availability 

Our microarray data have been deposited in the Gene Expression Omnibus public 

repository (https://www.ncbi.nlm.nih.gov/geo/); EVCT microarray data under 
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4 Part Three 

Lead-in 

This study is paralleled to the previous study because the scientific question was 

intrigued by the data mining study. In the previous research, we studied the activated 

PPARγ in two cell types in the human placenta because we discovered the PPAR 

signaling pathway and the core regulator, the PPARγ. And we validated the existence 

of PPARγ by detecting the lipid droplet in the human placenta. When we looked into 

the details of the lipid droplet in the first trimester, we found that the gestational age 

was negatively related to the amount of the lipid from gestational week 8-14. This 

period is just overlapped to the time when the environmental oxygen levels in the 

human placenta increase dramatically. Oxygen level change affects a lot of the cells in 

the human placenta with respect to differentiation, migration, invasion, etc. The 

evolution of these processes is complex and intricately regulated by O2 tension. 

Considering the overlapped period, we propose if there exists a connection between the 

oxygen level and the lipid metabolism in the first trimester. Namely, since oxygen-

related genes or pathways can be regulated by the hypoxia-inducible factor (HIF) and 

PPARγ can be regulated by its cofactors, if there exist the common elements among the 

HIF targets and PPARγ cofactors, regulation of PPARγ through its cofactors would be 

probably achieved by HIF which is sensitive to the oxygen change. In this part, we are 

going to sequence the samples collected from the early and late first trimester of the 

human placenta and try to classify the HIF targets from the filtered significant genes 

before comparing them with the PPARγ cofactors. 
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4.1.1 Abstract 

Physiological oxygen tension rises dramatically in the placenta between 8 and 14 weeks 

of gestation. Abnormalities in this period can lead to gestational diseases, whose 

underlying mechanisms remain unclear. We explored the changes at mRNA level by 

comparing the transcriptomes of human placentas at 8-10 gestational weeks and 12-14 

gestational weeks. A total of 20 samples were collected and divided equally into four 

groups based on sex and age. Cytotrophoblasts were isolated and sequenced using 

RNAseq. Key genes were identified using two different methods: DESeq2 and weighted 

gene co-expression network analysis (WGCNA). We also constructed a local database 
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of known targets of hypoxia-inducible factor (HIF) subunits alpha and beta to 

investigate expression patterns likely linked with changes in oxygen. Patterns of gene 

enrichment in and among the four groups were analyzed based on annotations of gene 

ontology (GO) and KEGG pathways. We characterized the similarities and differences 

between the enrichment patterns revealed by the two methods and the two conditions 

(age & sex), as well as those associated with HIF targets. Our results provide a broad 

perspective of the processes that are active in cytotrophoblasts during the rise in 

physiological oxygen, which should benefit efforts to discover possible drug-targeted 

genes or pathways in the human placenta. 

Keywords: Placenta; Trophoblast; Oxygen; RNAseq; WGCNA; DESeq2 

 

4.1.2 Introduction 

The human placenta plays a pivotal role in development by regulating the 

exchange of nutrients, gas, and waste between the mother and the fetus. Normal 

development of the placenta can be divided into three trimesters, of which the first lays 

the foundation for all subsequent processes. Indeed, at the very beginning of the first 

trimester, it is the yolk sac that first establishes the supply of oxygen and nutrients to 

the embryo, and this role is gradually taken over by the growing placenta. From day 13 

post-coitum, the placental villus begins to form and branch, and is subsequently 

infiltrated by the allantoic blood vessels [267]. This process involves interactions 

between fetal and maternal tissues and specifically involves the trophectoderm stem 

cells, which then evolve into several different trophoblast cell lineages that constitute 

the main part of the placenta [70, 268]. The evolution of this process is complex and 

intricately regulated by O2 tension, especially in the period from 8 to 12 gestational 
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weeks (GW) [269]. Defects in this process can lead to diseases of pregnancy such as 

spontaneous abortion, preterm birth, and preeclampsia [270, 271]. 

The oxygen tension in the intervillous space rises dramatically from 2–3% around 

8-10 GW to more than 6% after 12 weeks [269]. Oxygen, and the oxidative stress that 

accompanies it, plays an important role in the positive or negative development and 

growth of chorionic villi. Histopathological research has shown that villous 

cytotrophoblast thrives under the intrauterine hypoxia of the first trimester [85]. 

Instead, the hyperoxic state in the placenta inhibits capillary branching, the formation 

of sinusoids, and the differentiation of villous cytotrophoblast [272]. The increase in 

oxygen tension at 8-12 GW is driven by remodeling of the maternal spiral arteries by 

invasive extravillous trophoblast. The supply of blood flow allows a rapid increase in 

O2 tension in the intervillous space [70, 268], thus satisfying the high oxygen demands 

of the placenta, which represents at least 30% of the total amount of the utero-placental 

unit [273, 274]. 

Oxygen is consumed in the mitochondria, and recent research has uncovered 

sexually dimorphic aspects of this process, particularly in cases of placental 

mitochondrial dysfunction [275-277]. For example, male guinea pig placenta is more 

susceptible to respiratory complex chain disruption under gestational hypoxia [278]. 

It is well recognized that the placenta acts like an orchestrator, adapting 

morphologically and hormonally in response to variations in the environment [279]. 

Hypoxia (2–3% O2), as an ever-present challenge throughout the duration of 

pregnancy, functions as a two-edged sword for the development of the placenta. While 

suitable levels of hypoxia/low O2 tension induce the remodeling of maternal spiral 

arteries, extreme hypoxia disables the remodeling and can result in adverse conditions 

such as preeclampsia [270, 271] and insufficient hypoxia leads to over-consumption of 

the nutrients delivered into the intervillous space for the nourishment of the fetus 
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[176]. Taken together, these findings perhaps indicate the existence of different 

strategies for male and female placentas in coping with variable oxygen conditions. 

There are three conventional oxygen-sensitive pathways that regulate gene 

expression in the placenta under low O2 tension: hypoxia inducible factors (HIF), 

unfolded protein response (UPR), and mammalian target of rapamycin (mTOR). Their 

activation regulates gene expression, metabolic homeostasis, and cell survival [280]. 

Of these, the most studied signaling pathway is HIF, which is a heterodimeric 

transcription factor composed of two subunits, HIF-α and HIF-β (alias: ARNT, aryl 

hydrocarbon receptor nuclear translocator) [281]. HIF-α and HIF-β bind to specific 

promoter sequence elements to activate target gene transcription and thus enable 

many different cellular processes to respond to hypoxia during early placentation [282, 

283]. Interestingly, the response to hypoxia has been shown to differ between male and 

female placentas, particularly with respect to energy metabolism and angiogenesis. 

The female placenta was described to activate more protective mechanisms to increase 

the availability of nutrients for fetal metabolic development [275], whereas in 

preeclamptic pregnancies male placentas showed stronger reductions in pro-

angiogenic markers than female placentas did [284]. However, such patterns of sexual 

dimorphism are still poorly documented, and at a fundamental level, the steep increase 

in oxygen tension in the human placenta remains only incompletely understood. 

Here, we applied next-generation sequencing technology to sequence human 

villous cytotrophoblasts freshly isolated from placentas at either 8-10 GW or 12-14 GW 

with the goal of assessing changes in gene expression and the influence of placental sex 

differences in this key physiological period.   

 

4.1.3 Materials and Methods 
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Sample collection and ethics statement 

 

A total of 20 human placentas were collected from normal gravidas in the first 

trimester. To characterize the processes that accompany the increase in physiological 

oxygen tension from 8 to 14 GW, we investigated the early and late stages of this period, 

8-10 GW and 12-14 GW, respectively. Equal numbers of female and male placentas 

were collected for each stage. We used the letter “E” to represent “Early”, “L” for “Late”, 

“F” for “Female”, and “M” for “Male”. The final sample pool contained 5 “EF 

samples,“5”EM” samples, 5 “LF” samples, and 5 “LM” samples. All placental tissues 

were obtained from patients who voluntarily and legally chose to terminate pregnancy 

during the first trimester at the Cochin Port-Royal and Montsouris maternity units 

(Paris, France). These biological samples were obtained following informed written 

consent from patients and approval from our local ethics committee (CPP 2015-mai-

13909). 

 

Cytotrophoblast isolation and culture 

 

 The first step was to isolate villous cytotrophoblasts from each sample. To do this, 

we purified the villous tissues by mincing them into pieces with forceps, removing the 

membrane on the surface, and rinsing them with Ca2+-, Mg2+-free Hanks’ balanced salt 

solution. The pieces were then digested in Hanks’ balanced salt solution with 4.2 mM 

MgSO4, 0.25% (wt/vol) trypsin powder (Difco), 5 IU of DNase I per ml, 25 mM HEPES, 

100 IU/mL penicillin, and 100 μg/mL streptomycin (Biochemical Industry). Digestion 

was monitored by invert microscopy; the initial digested solution, which mainly 

consisted of red blood cells, was discarded and the subsequent digested solution, which 
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mainly consisted of villous cytotrophoblasts, was retained for stratification. The 

digested solution was slowly transferred to a discontinuous Percoll gradient (5–70% in 

steps of 5%) in order to stratify the mixed cells and debris. The layer containing the 

cytotrophoblasts was retained and washed using Dulbecco’s modified Eagle’s medium 

(F12/DMEM) that contained 100 IU/mL penicillin, 100 mg/mL streptomycin, and 2 

mM glutamine. Cells were counted using a TC20™ Automated Cell Counter (Biorad). 

For RNASeq experiments, 1.5×106 cells were transferred into a 1.5 ml Eppendorf tube. 

After centrifugation (a 10 s pulse at 14.000 rpm), the supernatants were discarded and 

the cell pellets were snap-frozen in liquid nitrogen and stored at -80°C until total RNA 

extraction, PCR, and RNAseq analyses were conducted. 

 

Fetal-sex determination by PCR 

 

 Fetal-sex determination was performed via PCR on stored cytotrophoblast cells, as 

described previously [285]. Genomic DNA (gDNA) was extracted using the 25mM 

NaOH/9.2 mM EDTA buffer. The sex of the placenta was genetically determined by 

PCR according to the sex-linked chromosome genes ZFX (GenBank Acc.No. 

NG_021253, NM_003410) and ZFY (GenBank Acc.No. NG_008113, NM_003411). 

The primers were ChrX-Y_F 5'-ATTTGTTCTAAGTCGCCATATTCTCT-3', ChrX_R 5'-

GAACACACTACT-GAGCAAAATGTATA-3', and ChrY_R 5'-

CATCTTTACAAGCTTGTAGACACACT-3'. Reagents for PCR reactions included gDNA 

(100-300ng) 10 µl 5×green GoTaq reaction buffer, 2 µl 10 mM dNTPs, 2.5 µl 10 µM 

ChrX-Y_F, 2.5 µl 10 µM ChrX_R, 2.5 µl 10 µM ChrY_R, 0.2 µl [5 u/µl] GoTaq DNA 

polymerase (Promega), and water to reach a total volume of 50 µl. Amplification was 

conducted in a Perkin Elmer Applied Biosystems GeneAmp PCR Thermal Cycler 

System 2700, with the following cycling parameters: initial denaturation at 94°C for 
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10min, 35 cycles of denaturation at 94°C for 45s, annealing at 50°C for 45s, and 

synthesis at 72°C for 30s, and an extension of 5 min at the end of the final cycle. 

Amplification products (10µl) were directly analyzed on 2% agarose gel and evaluated 

under UV light. Primers ChrX-Y_F/ ChrY_R were present only in male samples and 

primers ChrX-Y_F/ChrX_R were present in all tested samples. For validation, we also 

analyzed the expression of the sex-linked genes XIST and DDX3Y in the RNAseq 

dataset, following the procedures described in [286]. 

 

RNA-seq experiment and data processing 

 

RNAseq analyses were performed as described in [287]. The RNeasy Micro Kit 

(Qiagen) was used to extract total RNA from villous cytotrophoblasts isolated from 

placentas. DNAse was used to degrade genomic DNA, following the RNeasy Micro Kit 

protocol. RNA sequencing was performed by the Genom’IC lab facility of the Institut 

Cochin (Paris, France). RNA concentrations were quantified using a Nanodrop device 

(Thermo Fisher Scientific, USA) and the quality of the RNA was measured on an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). A total of 800 ng 

RNA sample was used to construct each RNAseq library using the TruSeq Stranded 

mRNA kit (Illumina). RNAseq libraries were quantified by RT-qPCR using the KAPA 

Library Quantification Kit for Illumina Libraries (KapaBiosystems, Wilmington, MA) 

and corresponding profiles were evaluated using the DNA High Sensitivity LabChip kit 

on an Agilent Bioanalyzer. RNAseq libraries were sequenced on an Illumina Nextseq 

500 instrument using 75 base-length reads and V2 chemistry, in paired-end mode. 

AOZAN software (ENS, Paris) was applied to demultiplex and characterize the raw data 

(based on FastQC module / version 0.11.5), and the obtained fastq sequence files were 

aligned using the STAR algorithm (version 2.5.2b). Raw reads were counted using 
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Featurecount (version Rsubread 1.24.1) and processed as follows: i) rows with reads 

equal to zero in more than 10 samples were excluded; ii) all read counts were increased 

by 1 and log2-transformed; and iii) data were normalized using the DESeq2 package 

[288]. 

 

Clustering analysis and construction of co-expression modules of human placental 

RNAseq data 

 

To detect outliers, sample clustering was performed based on Euclidean distance, 

principal component analysis (PCA), and t-distributed stochastic neighbor embedding 

(t-SNE). To identify differentially abundant genes, DESeq2 and WGCNA were applied 

separately and the results were then merged for a combined analysis. For DESeq2, gene 

expression was compared between the different groups and the criteria for defining key 

genes were a fold-change of 2 and a P-value less than 0.05. For WGCNA, normalized 

RNAseq reads from all samples were submitted directly to the WGCNA package 

(version: 1.68) [180] in R (version: 4.0.1) to evaluate correlations in gene expression. 

We initially assessed the optimal soft thresholding power value by using a range of 

power values from 1 to 20; the optimal value is the one for which the measurement of 

scale independence surpasses the threshold of 0.9. This optimal value was then used 

to reduce the background noise of the correlations in the adjacency matrix. The 

correlations of eigengenes from the adjacency matrix based on the default unsigned 

network were used to construct co-expression modules. The default minimum module 

size of 30 was used to increase the reliability of the results. 

 

Analysis of co-expression modules in human placental RNAseq data 
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Each module—a set of topologically correlated genes—was represented by a 

different color. A clustering dendrogram was created based on the correlations 

between the genes of different modules and a module-trait heatmap was constructed 

based on the correlations between the module eigengenes and traits of interest (sex 

and age, i.e., the difference between 8-10 GW and 12-14 GW). For each module, we 

created scatterplots of the modules’ eigengenes in which the x-coordinate represented 

module membership (the correlation coefficient between a gene’s expression profile 

and the module eigengene) and the y-coordinate represented gene significance (GS; 

the correlation coefficient between the genes’ expression and the traits of interest). 

Only correlation coefficients higher than 0.6, with a P-value less than 0.05, were 

included for analyses of module membership. 

 

Enrichment and differential abundance of key genes 

 

Venn diagrams were created to depict the intersections between different datasets 

using the online tool Draw Venn diagram 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). Enrichment in gene ontology 

(GO) terms and pathways was analyzed using the R package clusterProfiler [181] 

(version 3.9, synced to latest GO terms and pathways). The top 15 category terms for 

each group were assembled for comparison; those with a P-value lower than 0.05 were 

identified as being significantly enriched. WebGestalt was used to visualize the terms 

in volcano format and perform the network topology analysis [289]. Finally, to 

investigate the involvement of HIF (including both the alpha and beta subunits) in the 

biological processes under consideration, we retrieved all published or predicted 

targets of HIF-1α and HIF-1β from the literature and public databases using the R 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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package tftargets (https://github.com/slowkow/tftargets). These were then 

assembled into a local database of HIF targets. 

 

4.1.4 Results 

 

1. Identification of outliers in samples 

 

Our RNAseq dataset has been deposited in the Gene Expression Omnibus public 

repository (https://www.ncbi.nlm.nih.gov/geo/) under the accession number 

GSE163023 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163023). 

The quality report generated by FastQC indicated that the raw data were appropriate 

for further use: the majority of plots were well above phred score 30 (green region), the 

average quality was in single peak, a well overlapped single hump was shown in the 

center, and the data remained consistent before and after normalization (Figure S1-1). 

First, we retrieved the expression of XIST and DDX3Y in each sample and used this 

information to validate the sex designations obtained with PCR. The results of the two 

methods were in agreement for the vast majority of samples, with the exception of 

samples “LM5” and “EF3” (Figure 1a). Next, to evaluate the quality of the samples and 

detect outliers, we clustered the samples for classification. The optimal number of 

sample clusters was suggested to be two according to random k-means clustering (not 

shown), while the use of distance clustering identified sample “LM5” as an outlier 

(Figure 1b). “LM5” was also classified as an outlier according to separate PCA analyses 

of age and sex, while no difference was indicated by the t-SNE analysis (Figure 1c). 

“EF3” was identified as an outlier in a subsequent analysis of distance clustering in 

https://github.com/slowkow/tftargets
https://www.ncbi.nlm.nih.gov/geo/


120 

 

WGCNA (Figure 1d). Therefore, “LM5” and “EF3” were excluded from the dataset, and 

the remaining samples were subjected to further gene expression analyses.  

 

Figure 29 Sex determination and sample clustering 
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Fig. 1. Sex determination and sample clustering. (a) Expression of the sex-linked genes 

XIST and DDX3Y in samples. (b) Optimal number of clusters for samples and sample 

clustering according to K-means clustering algorithm. (c) PCA analysis and t-SNE 

dimensionality reduction of samples. (d) Sample re-clustering using WGCNA method 

without LM5. PCA: principal components analysis; t-SNE: t-distributed stochastic 

neighbor embedding; EF: early female; EM: early male; LF: late female; LM: late male; 

WGCNA: weighted gene co-expression network analysis. 

 

2. Identification of key genes and term enrichment using DESeq2 

 

The DESeq2 method, based on the DESeq2 R package, was applied to detect key 

genes that were differentially expressed between different groups. This analysis 

identified 15 key genes with expression differences in the comparison of Female versus 

Male, 457 key genes for Early versus Late, 45 key genes for LF versus LM, 41 key genes 

for EF versus EM, 157 key genes for EF versus LF, and 801 key genes for EM versus 

LM. The expression patterns were then used to construct heatmaps (Figure S2-1a-f). 

The Venn diagram in Figure 2a depicts the intersection of key genes among 

comparisons. These key genes were then submitted to analyses of enrichment and term 

comparison, specifically with respect to GO biological processes and KEGG pathways 

(Figure 2b-c). In addition, we also analyzed enrichment in GO cellular components and 

GO molecular functions, and these comparisons are detailed in the supplementary 

materials (Figure S2-2).  

For GO biological processes, the early-stage placentas demonstrated enrichment 

in aspects of organic development such as “camera-type eye development”, 

“lymphocyte differentiation”, and “hindbrain development”, while later-stage tissues 

were mainly enriched in processes related to biological regulation, such as “histone 
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demethylation”, “protein demethylation”, and “protein dealkylation”. When we instead 

compared the tissues based on sex, we found that the male and female placentas shared 

many of the same terms for cellular processes and biological regulation, such as 

“response to transforming growth factor beta”, “extracellular matrix organization”, and 

“response to forskolin”. We did, however, detect additional enrichment in males in 

certain processes related to organic development, such as “eye development”, 

“lymphocyte differentiation”, and “hindbrain development” (Figure 2b).  

For KEGG pathways, when we only examined the effect of age, we observed that early-

stage samples were characterized by enrichment in regulatory pathways such as the 

“notch signaling pathway”, “hippo signaling pathway”, and “calcium signaling 

pathways” while in late-stage samples, enrichment was noted in pathways associated 

with “staphylococcus aureus infection”, “estrogen signaling pathway”, and “RNA 

polymerase”. Instead, when we compared the male and female samples, we found that 

the sexes were very similar in their biological regulation; both sexes demonstrated 

enrichment in terms such as “regulation of lipolysis in adipocytes”, “endocrine 

resistance”, “cGMP-PKG signaling pathway”, “apelin signaling pathway”, and “PI3K-

Akt signaling pathway” (Figure 2c).  
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Figure 30 Identification of differentially expressed genes (DEGs) based on the DESeq2 method and assessment of term 

enrichment 

Fig. 2. Identification of differentially expressed genes (DEGs) based on the DESeq2 

method and assessment of term enrichment. (a) Venn diagram showing DEGs from 
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different comparisons. (b&c) Enrichment and comparison of GO terms and KEGG 

pathways, respectively, based on DEGs. The size of a point indicates the magnitude of 

enrichment; plum shading represents an association with age and coral shading 

represents an association with sex. “E” stands for “Early”, “L” for “Late”, “F” for 

“Female”, and “M” for “Male”. GO: gene ontology; KEGG: Kyoto encyclopedia of genes 

and genomes. 

 

3. Selection of key genes based on WGCNA method 

 

We also used the WGCNA method to detect key genes that demonstrated 

differences in expression between groups. The optimal soft thresholding power value 

was set as 16, which was the value at which measurements of scale independence 

exceeded the required threshold of 0.9 (Figure 3a). The original clustered modules, 

which each represented a set of eigengenes, and the merged modules are presented in 

a cluster dendrogram (Figure 3b). The correlation coefficients between the merged 

modules and the traits under consideration (age, sex) are shown in the form of a 

heatmap, in which red denotes a positive relationship and blue denotes a negative one 

(Figure 3c). Following our selection criteria (correlation coefficient higher than 0.6 and 

P value less than 0.05), the “blue” and “dark turquoise” modules were retained for their 

association with age (Figure 3d&3e), while the “steel blue” module was linked with sex 

(Figure 3f). Within the two modules associated with age, there were 2015 key genes, 

while the sex-related module contained 233. Figure S3 contains a heatmap depicting 

the expression of genes in the modules for each of the traits (Figure S3-1a&b). 
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Figure 31 Selection of key genes using the WGCNA method 

Fig. 3. Selection of key genes using the WGCNA method. (a) Soft-thresholding power 

selection from a range of power values from 1 to 20. (b) Cluster dendrogram of genes 

obtained through dissimilarity clustering based on consensus topological overlap. The 
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first row below the dendrogram represents the unmerged colored modules while the 

second depicts the merged colored modules. (c) Heatmap of correlation coefficients of 

the association between each module and each trait, with rows representing the 

modules and columns representing the traits. (d&e) Scatterplots for merged modules 

(blue, dark turquoise) associated with age. (f) Scatterplot for merged module (steel 

blue) associated with sex. The criteria for selecting merged modules were a correlation 

coefficient higher than 0.6 and a P value less than 0.05. WGCNA: weighted gene co-

expression network analysis. 

 

4. Comparison of enriched terms between DESeq2 and WGCNA 

 

To compare the two methods, we extracted the key genes from each 

(DESeq2_Sex: 15, DESeq2_Age: 457; WGCNA_Sex: 233, WGCNA_Age: 2015) and 

compared the patterns of enrichment in GO biological processes and KEGG pathways. 

The Venn diagram in Figure 4a shows the intersection among groups from different 

methods and conditions. Using the key sex-related (Figure 4b&4c) or age-related 

(Figure 4d&4e) genes highlighted by the two methods, we compared the resulting 

patterns of enrichment in GO biological processes and KEGG pathways revealed by 

each approach. We performed a similar analysis of enrichment with respect to GO 

cellular components and GO molecular functions, which is included in the 

supplementary materials (Figure S3-2). 

For GO biological processes, both methods revealed a relationship between sex 

and enrichment in “dosage compensation by inactivation of X chromosome” and 

“purine nucleotide catabolic process”. Instead, the WGCNA_Sex dataset highlighted 

enrichment in regulatory processes such as “histone lysine demethylation”, 

“demethylation”, and “histone demethylation”, and the DESeq2_Sex dataset was 
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mainly characterized by metabolic processes such as “nucleotide catabolic process”, 

“nucleotide phosphate catabolic process”, and “ribonucleotide catabolic process” 

(Figure 3b). With respect to age, both methods revealed enrichment in 

“hemidesmosome assembly”, “anion homeostasis”, and “reactive oxygen species 

metabolic process”, while the WGCNA_Age dataset was mainly characterized by 

cellular processes such as “protein localization to endoplasmic reticulum”, “protein 

targeting to membrane”, and “RP-dependent cotranslational protein targeting to 

membrane” and the DESeq2_Age dataset highlighted cellular processes such as 

“response to glucagon”, “anion transmembrane transport”, and “extracellular matrix 

organization” (Figure 3d). 

For KEGG pathways, there was no overlap between the WGCNA and DESeq2 

datasets for sex-related genes. The analysis of enrichment in the WGCNA_Sex dataset 

revealed the importance of metabolic processes such as “glycine, serine, and threonine 

metabolism”, and “cysteine and methionine metabolism” while the DESeq2_Sex 

dataset was characterized by biological processes such as “staphylococcus aureus 

infection”, and “estrogen signaling pathway” (Figure 3c). With respect to age-related 

genes, both methods highlighted enrichment in “Focal adhesion”, “PI3K-Akt signaling 

pathway”, and “Tight junction” while the WGCNA_Age dataset was mainly 

characterized by metabolic processes such as “glycan degradation”, 

“glycosaminoglycan biosynthesis”, and “lysosome” and the DESeq2_Age dataset 

featured regulatory pathways such as “oxytocin signaling pathway”, “morphine 

addiction”, and “inflammatory mediator regulation of TRP channels” (Figure 3e). 
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Figure 32 Comparison of enriched GO terms and KEGG pathways in separate sets of genes selected by DESeq2 and 

WGCNA 

Fig. 4. Comparison of enriched GO terms and KEGG pathways in separate sets of 

genes selected by DESeq2 and WGCNA. (a) Venn diagram showing overlap between 



129 

 

the two methods in the key genes associated with age- and sex-related differences. 

(b&c) Sex-associated enrichment in GO terms and KEGG pathways identified by the 

two methods. (d&e) Age-associated enrichment in GO terms and KEGG pathways 

identified by the two methods. The size of each point represents the magnitude of 

enrichment, plum shading represents an association with age and coral shading 

represents an association with sex. GO: gene ontology; KEGG: Kyoto encyclopedia of 

genes and genomes; WGCNA: weighted gene co-expression network analysis. 

 

5. Enrichment in HIF targets 

 

Because all samples were collected during a period in which cytotrophoblasts are 

adapting to an increase in O2 levels, we specifically investigated the involvement of HIF 

in the biological processes in these cells. HIF transcriptional activity depends on its 

alpha and beta subunits; we therefore assembled a database of all published or 

predicted targets of HIF-1α or HIF-1β from the literature and public databases (details 

in Supplementary Table S1). For HIF-1α, we retrieved a total of 2213 targets, of which 

170 corresponded to key genes identified by our analyses (Figure 5a). For HIF-1β, we 

retrieved a total of 3134 targets, of which 294 corresponded to key genes (Figure 5b). 

Of these 464 key genes, 461 were age-associated and 3 were sex-associated. Using the 

groups of HIF-1α or HIF-1β targets, we next performed network topology analyses of 

the GO biological processes associated with each group. For targets of HIF-1α, the 

resulting hierarchy of GO biological processes highlighted, in order, the terms “cellular 

macromolecule metabolic process”, “cellular nitrogen compound metabolic process”, 

“organic cyclic compound metabolic process”, and “negative regulation of metabolic 

process” (Figure 5c). For targets of HIF-1β, instead, the dominant hierarchy of terms 

featured “regulation of signal transduction of p53 class mediator”, “regulation of 
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macromolecule metabolic process”, “negative regulation of metabolic process”, 

“cellular catabolic process” and “macromolecule catabolic process”. 

Using clusterProfiler, we also analyzed enrichment in GO biological processes and 

KEGG pathways within each group of targets. Figures 5e&5g depict enrichment 

patterns for the alpha subunit, while Figures 5f&5h provide the same information for 

the beta subunit. With respect to GO biological processes, targets of HIF-1α 

demonstrated enrichment in terms that were mainly oriented around metabolic 

processes, such as “sterol metabolic process”, “cholesterol metabolic process”, and 

“alcohol metabolic process” (Figure 5e). Instead, targets of HIF-1β were mostly 

associated with terms linked with biological regulation such as “autophagy”, 

“regulation of signal transduction by p53 class mediator”, and “regulation of protein 

catabolic process” (Figure 5f). With respect to KEGG pathways, targets of the alpha 

subunit were associated with enrichment in regulatory pathways such as “human T-

cell leukemia virus 1 infection”, “lysosome”, and “p53 signaling pathway” (Figure 5g), 

while targets of the beta subunit were linked with pathways such as “lysosome”, 

“mTOR signaling pathway”, and “autophagy” (Figure 5h). 
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Figure 33 Enrichment patterns in HIF targets 

Fig. 5. Enrichment patterns in HIF targets. (a&b) Venn diagram showing intersections 

between key genes selected by DESeq2 or WGCNA and targets of HIF-1α or HIF-1β, 

respectively. (c&d) Network topology analysis for enriched GO biological processes 

associated with targets of HIF-1α or HIF-1β, respectively. (e&g) Enriched GO terms 

and KEGG pathways, respectively, associated with targets of HIF-1α (f&h) Enriched 

GO terms and KEGG pathways, respectively, associated with targets of HIF-1β. 

Significance was defined as P value less than 0.05. HIF: hypoxia-inducible factor; GO: 

gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; WGCNA: weighted 

gene co-expression network analysis. 

 



133 

 

6. Selection of GO terms and associated genes most-affected by HIF 

 

To identify the pathways and genes that were most-affected by HIF, we restricted 

our set of enriched terms by applying more stringent selection criteria: an FDR 

threshold less than 0.05 (-log10 of FDR more than 0.69) and log2 enrichment ratio 

higher than 2. Of all the GO terms and KEGG pathways that were linked with HIF 

targets, the only ones that met these criteria were two GO terms associated with HIF-

1β: “regulation of signal transduction by p53 class mediator” and “TOR signaling” 

(Figure 6a, in the top-right quadrant). Additional information regarding further 

evaluation of GO terms and KEGG pathways can be found in the supplementary 

materials (Figure S4). We then visualized the associations between these pathways and 

their target genes in a heatmap, with the y-axis representing the pathways and the x-

axis representing the genes involved (in red, Figure 6b). Expression data were 

extracted for the genes associated with these terms, and the changes with respect to 

age were plotted in violin graphs (Figures 6c&6d). 

 



134 

 

 

 

Figure 34 Selection of GO terms and associated genes that were most affected by HIF 

Fig. 6. Selection of GO terms and associated genes that were most affected by HIF. (a) 

Scatterplot of GO terms, with the y-axis representing -log10 FDR and the x-axis 

representing log2 enrichment ratio. (b) Heatmap of enriched GO terms among HIF 

targets, with GO terms on the y-axis and the genes associated with each term on the x-

axis. (c&d) Expression patterns in early and late placenta samples of genes linked to 

“regulation of signal transduction by p53 class mediator” (GO:0031929) and “TOR 

signaling” (GO:1901796), respectively. GO: gene ontology; HIF: hypoxia-inducible 

factors; FDR: false discovery rate. 

4.1.5 Discussion 
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The human placenta functions as a biological barrier between the mother and the 

fetus that facilitates the exchange of gases, nutrients, and wastes. Throughout 

pregnancy, perfusion of the chorionic villi by blood from the uterine spiral arteries is 

essential for placental development and therefore for the exchanges between maternal 

and fetal blood. Physiological obturation of the uterine spiral arteries by extravillous 

trophoblasts plugs in the early first trimester is critical for the growth of chorionic villi 

and development of feto-placental vasculatures. Moreover, the low physiological O2 

tension within the intervillous space before 10 GW limits the oxidative stress of the 

chorionic villi, which at this point do not express enzymes that protect from ROS. From 

10 to 12 GW, the trophoblastic plugs disintegrate, allowing oxygenated maternal blood 

into the intervillous space and dramatically raising the oxygen tension. Proper blood 

flow is thus shaped by oxygen conditions in early placentation, especially in the period 

from 8-12 GW when oxygen levels increase dramatically [269]. Oxygen levels also 

regulate the invasion of extravillous cytotrophoblasts into the maternal uterus [223, 

224]. Abnormalities in these early physiological processes can lead to pregnancy 

diseases such as spontaneous abortion, preterm birth, intrauterine growth restriction 

and preeclampsia [270, 271]. In our study, we focused on the development of normal 

villous cytotrophoblasts from 8-14 GW, using next generation sequencing technology 

to investigate changes in gene expression between the early (8-10 GW) and late (12-14 

GW) stage of this period. 

Although several sequencing datasets have been published for cytotrophoblasts in 

this period, they have all been focused on different hypotheses. Our data provide what 

is to our knowledge the first overview of the changes in gene expression that 

accompany the dramatic increase in oxygen levels from 8-14 GW. A search of publicly 

available GEO DataSets (https://www.ncbi.nlm.nih.gov/gds/) with the key words 

“human AND placenta” returned a total of 320 accessions that contained microarray 

https://www.ncbi.nlm.nih.gov/gds/


136 

 

or RNAseq data from Homo sapiens. Of these, however, only a few had performed 

tissue-specific sequencing or share even superficial similarities with our study [177, 

290-293]. For example, Sitras et al. [292] compared microarray-based transcriptomes 

of first trimester and term human placentas, but their analysis focused only on 

gestational age and did not investigate the effects of sex. Soncin et al. [177] performed 

genome-wide expression profiling of human placentas from 4 to 16 GW and at 39 GW 

with the goal of performing a comparative analysis of mouse and human placentas 

across gestation, but they did not specifically investigate oxygen-related mechanisms 

or sexual dimorphism. Of the studies that have examined the effects of hypoxia in 

human placentas, the samples that were sequenced—term trophoblasts [294], first 

trimester trophoblasts [295], and extravillous trophoblast cultured at different 

concentrations of oxygen [296]—all differed from the present study. 

To investigate sexual dimorphism in the gene expression of human placentas, 

Braun et al. [290] surveyed the human chorionic villus transcriptome from 11 to 16 GW 

for sex-linked signatures, with the goal of characterizing genes that are differentially 

expressed within the first window of increasing testis-derived androgen production in 

the male fetus. That study was similar to two others [291, 293] that also focused on sex-

based differences in the human placental transcriptome in the late first trimester, with 

minor differences in the cells or tissues examined. Here, we considered not only 

differences based on sex but also those based on age in our evaluation of the effect of 

oxygen tension. In sum, although previous studies have examined the same period of 

development as the present study, the purposes of their investigations differed 

substantially. Furthermore, no previous study has taken into consideration the 

limitations of the use of only one method in exploring these kinds of data. With respect 

to this kind of analysis, the Limma, edgeR or DESeq2 methods represent 

improvements over Student’s test, but ignore the data connections in the matrix that 
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arise as a result of topology [297]. To address these limitations, our analysis followed 

the example of several previous studies [298-301] and combined the methods of 

DESeq2 and WGCNA. 

With regard to gestational age, the results of our analysis of term enrichment were 

largely consistent with reports from the literature. For example, our results indicated 

the involvement of the “PI3K-Akt signaling pathway”, which has been implicated in the 

decidualization of trophoblasts in early pregnancy [191]; the “hippo signaling 

pathway”, which has been reported to control the self-renewal of cytotrophoblasts and 

protect against early pregnancy loss in humans [302]; the “cAMP signaling pathway” 

and “rap1 signaling pathway”, which regulate placental cell fusion [193, 194]; and the 

“notch signaling pathway”, which plays a critical role in the motility and differentiation 

of cytotrophoblasts [303]. Our analyses also highlighted the terms “estrogen signaling 

pathway” and “protein targeting to ER”, which may reflect reports that increased 

estrogen levels have a major role in regulating placental secretion of macrophage 

migration inhibitory factor, a proinflammatory cytokine involved in pregnancy [304]. 

Finally, we compared our data to those of Soncin et al. [177] by extracting the 

corresponding samples (8-10 GW and 12-14 GW) from GSE100051 and performing the 

DESeq2 analysis. This highlighted a total of 185 key genes (Figure S5b), representing 

enrichment in 145 terms of GO biological processes, compared to 387 in our study 

(Figure S5c&d). This discrepancy could be an indicator of a higher degree of resolution 

and accuracy in our study than in this earlier work. 

From the DESeq2 analysis that considered only differences related to sex, and not 

age, we obtained only 15 key genes. What was interesting, though, was that this number 

apparently increased after we divided the groups based on sex and compared the early 

and late stages separately (41 genes in early and 44 genes in late). That is, the difference 

between sexes was partly obscured in the age-mixed set of samples, which indicated 
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that, in the first trimester of pregnancy, gestational age exerted a stronger influence on 

the development of the placenta than sexual dimorphism did. This was similar to a 

report that age appeared to be more dominant than sex in affecting early fetal lung 

developments from 54-127 days post-conception [305]. When we examined these 85 

(41+44) key genes, we found that many of them related directly to the sex chromosome 

(either X-linked or Y-linked). Within this set of genes, we detected enrichment in GO 

terms that were mainly associated with catabolic processes, as well as the KEGG 

pathway “estrogen signaling pathway”, which was similar to previously published 

results [291]. When this approach was combined with WGCNA, the scope of enriched 

activities was extended to post-transcriptional modifications, such as “ubiquitination”, 

“demethylation”, and “dealkylation”, which was also consistent with previous research 

[306-309]. 

In the placenta, oxygen-sensitive pathways are regulated by the actions of HIF on 

downstream genes. We thus specifically examined the key genes highlighted by our 

analyses to identify potential HIF targets. Of the 248 key genes linked with sex-based 

differences, only 3 were HIF targets: FA complementation group C (FANCC), 

asparaginyl-tRNA synthetase 2 (NARS2), and RAB38; the latter two genes are known 

to be active in mitochondria, which could explain their potential correlations with 

oxygen metabolism. Overall, though, the small number of sexually dimorphic HIF 

targets could suggest that there is little difference in hypoxia-related biological 

processes between early male and female placentation. We thus excluded the sex-

related genes from our enrichment analyses and focused only on HIF targets that 

demonstrated age-related expression changes. For the targets of HIF-1α, enrichment 

analyses highlighted GO terms that were predominantly associated with metabolic 

processes, and to a lesser extent with biological regulation, while targets of HIF-1β 

demonstrated the opposite pattern. This could indicate the existence of 
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complementary roles for HIF-1α and HIF-1β under hypoxic conditions [310]. With 

respect to enriched KEGG pathways (e.g., “p53 signaling pathway”, “PI3K-Akt 

pathway”, “mTOR signaling pathway”, and “autophagy), our results were largely in 

accordance with previous studies. Inhibition of the mTOR signaling pathway has been 

linked to hypoxia-induced cellular energy conservation, i.e., a decrease in ATP 

consumption when oxygen is limited [280]. Autophagy plays a critical role in 

maintaining homeostasis by balancing HIF1α-mediated cellular energy consumption 

[311], and downregulation of the p53 signaling pathway was reported to drive 

autophagy in the syncytiotrophoblast [312]. Inhibition of the PI3K-Akt pathway 

predisposed first-trimester trophoblasts to oxygen-induced cell death [313]. From this 

set of terms, we wanted to select the most critical for further exploration; to do this, we 

restricted the FDR threshold to less than 0.05 (-log10 of FDR more than 0.69) and set 

the log2 enrichment ratio as more than 2. These stringent criteria filtered out all terms 

except the GO biological processes “regulation of signal transduction by p53 class 

mediator” and “TOR signaling”. If we relaxed the threshold for log2 enrichment ratio 

to 1, then many other terms also met the requirement, including “mTOR signaling 

pathway”, “autophagy”, and “adipocytokine signaling pathway”, which, as mentioned 

above, have all been shown to be involved in gene regulation under hypoxia. This could 

suggest that the other pathways highlighted by this analysis, such as “AMPK signaling 

pathway”, “adipocytokine signaling pathway”, and “FoxO signaling pathway” have 

potential for further study.  

Nevertheless, this study does present some shortcomings that should be 

addressed in the future. Firstly, we focused on patterns of sexual differentiation only 

in villous cytotrophoblasts from first-trimester placentas, while previous research has 

revealed such patterns in different cell types, such as trophoblast epithelium and 

villous vessel endothelium from term placenta [314]. Secondly, we encountered the 
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same problem as Soncin et al. [177], namely, that the collected samples did not cluster 

into distinct early and late groups (Figures 1c&S5a). This might be due to variations 

within groups or similarities between groups, which would have weakened the 

accuracy of the filtering process for key genes. Lastly, because we aimed only to provide 

an overview of the changes in a specific period of pregnancy, we did not conduct any 

manipulative experiments to verify the role of selected key genes, although we did 

compare the individual expression patterns of certain critical genes (see Figure 6). 

Conclusions 

In conclusion, our results provide a broad perspective of the biological processes 

that are active in trophoblasts during the surge in physiological oxygen availability, 

specifically with regard to differences over time and between the sexes, which should 

open new avenues for future research and contribute to the discovery of possible drug-

targeted genes or pathways in the human placenta. 

Supplementary Materials: The FastQC quality report for the dataset is in Figure 

S1, including information on phred scores, the average quality, the peaks and the 

normalization. Heatmaps of gene expression for the key genes identified by DESeq2 

for the comparisons of different groups are shown in Figure S2-1a-f. The enriched 

terms of GO cellular components and GO molecular functions for the DESeq2 

comparison are shown in Figure S2-2. From the WGCNA analysis, the expression of 

key genes in the modules is shown in separate heatmaps based on age and sex in Figure 

S3-1. The enriched terms of GO cellular components and GO molecular functions for 

the combined comparison are shown in Figure S3-2. Details of the evaluation of GO 

and KEGG pathway enrichment in the HIF targets are shown in Figure S4. A summary 

of dataset GSE100051 is shown in Figure S5, including the clustering of the collected 

samples, the expression of selected key genes, and a comparison of the terms. A 
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detailed list of sources for the targets of HIF-1α and HIF-1β retrieved from the 

literature and public databases can be found in Supplementary Table S1. 
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5 Part Four 

Lead-in 

In the first part, we have confirmed the importance of the PPAR signaling pathway as 

well as the existence of PPARγ. In the second part, we also discovered the involved 

genes and pathways that are important to placental development and that have been 

regulated by PPARγ. Even though we failed to find the common elements between the 

HIF targets and the PPARγ cofactors, it doesn’t affect the crucial role that PPARγ has 

functioned in the processes of placentation. Since we have known the significance of 

PPARγ in placentation, we were wondering if we could find a way to apply the PPARγ 

in real clinical practice. One way that occurred to our mind is to apply the single 

nucleotide polymorphisms (SNPs) of PPARγ in disease prediction. SNPs, known for 

their contribution to the susceptibility of diseases, can be used to predict diseases by 

combining with other clinical historical information from the previous research. 

Therefore, if PPARγ is that critical to embryo development, its SNPs should also be 

possible to be of some predictability for pregnant disease diagnosis. In this part, we are 

going to collect variants of PPARγ and the clinical information of the pregnant from 

the normal and preeclamptic. By selecting the important characteristics using different 

statistical methods and applying machine learning algorithms, we are going to build 

various models to predict the disease and choose the optimum for the following 

prediction. Meanwhile, we are going to build a practicable flowchart for clinical use. 

Just imagine, here comes a new arrival to the hospital, we just need to detect the 

variants of PPARγ and ask for some information, and then we can predict the 

occurrence of the disease. This would help a lot for the diagnosis and future treatment. 
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5.1.1 Abstract 
 
Introduction: Peroxisome proliferator-activated receptor γ (PPARγ) is essential for 

placental development, whose polymorphisms increase susceptibility to some 

pregnancy-related diseases. For example, the placental dysfunction associated with 

preeclampsia has been linked to disturbance in PPARγ in which genetic polymorphism 

could play a role. Our aim was to investigate the genetic risk factors for this condition 
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and build a pragmatic model for preeclampsia prediction. 

Methods: Data were collected from a total of 1648 women from the EDEN mother-

child cohort study. Numerous clinical characteristics were recorded, along with 

genotype data for three PPARγ polymorphisms: Pro12Ala, C1431T, and C681G. 

Univariate analysis was performed to compare the 35 preeclamptic patients to the 1613 

control women. Highly correlated characteristics of interest were identified by using 

three methods of feature selection methods and manual curation; eight different 

machine learning algorithms were then applied to create predictive models. Model 

performance was evaluated based on metrics of accuracy and the area under the 

receiver operating characteristic curve (AUC). 

Results: The C1431T polymorphism of PPARγ was the only factor that was 

significantly associated with preeclampsia (p < 0.05) in univariate analyses, with an 

odds ratio ranging from 4.90 to 8.75. The process of feature selection and manual 

curation also suggested the inclusion of maternal C1431T and C681G variants as 

factors, as well as clinical characteristics associated with pregnancy or delivery times, 

body mass index, education, and cigarette use. Of the machine-learning algorithms 

tested, the boost tree-based model performed the best, with accuracy and AUC values 

in the training set as 0.971±0.002 and 0.991±0.001, respectively, and in the testing set 

as 0.951 and 0.701, respectively. A flowchart of the final tree was constructed to depict 

the procedure for preeclampsia prediction. 

Conclusion: Our results show for the first time that the C1431T variant of PPARγ can 

play a role in determining susceptibility to preeclampsia. The decision tree created 

here—based on multiple predictive factors, including the C1431T and C681G variant of 

PPARγ, pregnancy or delivery times, body mass index, education, and cigarette use—

could have applications in the clinical prediction of preeclampsia in the very early 
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stages of pregnancy. 

 

Keywords: PPARγ; SNPs; machine learning; models; preeclampsia 

 

5.1.2 Introduction 
 

Preeclampsia, which is characterized by high blood pressure and concurrent 

proteinuria, is a complication of pregnancy that usually manifests after 20-25 weeks of 

pregnancy [315]. This disease is highly associated with morbidity and mortality for 

both the mother and the fetus because of its serious risks to fetal maturity and the 

maternal cardiovascular system [316]. Preeclampsia occurs in 5% to 7% of all pregnant 

women, leading to over 70 000 maternal deaths and 500 000 fetal deaths worldwide 

every year [317]. Between 2010 and 2016, an estimated 5.2% of pregnancies in France 

were affected by gestational hypertension, with 2% of pregnancies developing 

preeclampsia/eclampsia [318]. Many attempts have been made to accurately diagnose 

preeclampsia in the early stages; typically, these are based on strategies, such as 

analyses of metabolomic pathways and combined metabolomic-proteomic data [319-

321]. Currently, the most promising method for diagnosis of preeclampsia is the 

detection of combined biomarkers such as soluble FMS-like tyrosine kinase 1 (sFLT1), 

soluble Endoglin (sEng), and placental growth factor (PlGF) This has achieved 89% 

predictive accuracy in pregnancies < 32 gestational weeks, 75% in pregnancies < 37 

weeks, and 47% in pregnancies ≥ 37 weeks [322, 323]. Despite the advances that have 

been made, then, there is still clearly room for improvement. 

 

One novel diagnostic tool may be the use of genetic analysis. The protein product of 

the FLT1 gene, at locus rs4769613, has been identified as a pathogenetic factor for 
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susceptibility to preeclampsia in pregnancy [324], as has locus rs9478812, located in 

an intronic region of the protein PLEKHGI [325]. Another relevant candidate could be 

peroxisome proliferator-activated receptor γ (PPARγ), of which multiple variants have 

been implicated in the development of numerous disorders. For example, C1431T has 

been associated with susceptibility to obesity in the European population [326-328]; 

C161T (rs3856806) has been linked to the risk of essential hypertension and premature 

acute myocardial infarction [329-331]; C681G was associated with accelerated growth 

in young schoolchildren and increased adult height [332]; and the PPARγ rs3856806 

C-T substitution polymorphism was found to increase the risk of colorectal cancer 

[333]. Moreover, previous work by our group has demonstrated an association 

between two variants of PPARγ-- Pro12Ala and C1431T-- and gestational diabetes 

[334]. However, the association between PPARγ polymorphisms and the risk of 

preeclampsia has been merely investigated. 

 

PPARγ is a member of the nuclear hormone receptor subfamily that functions as a 

transcription factor by binding to target genes, many of which are involved in metabolic 

processes such as adipogenesis and lipogenesis, insulin sensitivity [335], and 

immunological processes such as inflammation and differentiation [336]. Complete 

knock-out of the PPARγ gene can lead to embryonic lethality [167], while deficiency 

results in insufficient trophoblast differentiation and abnormal vasculogenesis in mice 

[147]. It also suggested that PPARγ played a role in elevating blood pressure, 

proteinuria, endothelial dysfunction, platelet aggregation i.e., key features of 

preeclampsia in rats [337]. Given that single nucleotide polymorphisms (SNPs) in the 

PPARγ gene have been implicated in a wide range of diseases, we hypothesized that 

such variants may also play a role in preeclampsia. 
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In the current study, we aimed to investigate the association of the Pro12Ala, C1431T, 

and C681G polymorphisms of the PPARγ gene with the risk of preeclampsia. Together 

with clinical characteristics from our nation-wide EDEN cohort study [338], these data 

were used to build a model for preeclampsia prediction. The conventional way to build 

a model is to apply generalized linear models, which are easy and fast to implement. 

However, erroneous specification of model parameters or assumptions can lead to 

biases in the results. Here, instead, we applied new machine-learning methods that are 

able to fully consider complex relationships between the predictors and the outcome 

with the fine arguments tuning. In this way, potential bias can be, to some extent, 

diminished. A summary of the study procedure is shown in Figure 1. 

 

Figure 35 Schematic diagram of the study 

Figure 1. Schematic diagram of the study. Pregnant women from the EDEN 

mother-child cohort study who satisfied the inclusion and exclusion criteria were 
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recruited. The dataset was then randomly divided into two parts: a training set and a 

testing set, according to a 3:1 ratio. Three methods were used to evaluate the 

importance of highly correlated features within the training set: logistic regression, 

lasso regression, and the Boruta algorithm. Eight machine-learning models were then 

built, tuned, and trained on an oversampled training set with 5-fold cross-validation 

(CV); this was followed by validation on the testing set. The performance of the models 

was evaluated using metrics of accuracy and the area under the receiver operating 

characteristic curve (AUC). The final model was used to build a decisive procedure for 

predicting preeclampsia. GW: gestational week; PE: preeclampsia; SNPs: single 

nucleotide polymorphisms. 

 

5.1.3 Methods 
 

Study population 

The EDEN study (Study of pre-and post-natal determinants of children’s growth and 

development) is an ongoing mother-child cohort study that was set up in two locations 

in France, Nancy and Poitiers (France). A total of 2002 pregnant women were enrolled, 

and successfully delivered babies will be followed until their fifth birthday. More details 

about the EDEN study are available in [338]. The study received approval from the 

ethics committee (CCPPRB, N°02-70, 12 December 2002) of Kremlin Bicêtre and from 

CNIL (Commission Nationale Informatique et Liberté), the French data privacy 

institution. Written informed consent was obtained twice from parents, once at 

enrollment and again after the child’s birth. The study was approved by the ethics 

research committee (Comité Consultatif de Protection des Personnes dans la 

Recherche Biomédicale) of Bicêtre Hospital and by the Data Protection Authority 

(Commission Nationale de l’Informatique et des Libertés). All research was performed 
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in accordance with the relevant guidelines and regulations. Of the 2002 pregnancies, 

1648 met the inclusion/exclusion criteria (Figure 1) to be included in the present work. 

 

Socio-demographic and clinical features 

At 24-28 gestational weeks, each mother was clinically examined and asked to 

complete a self-administered questionnaire. Physical characteristics such as maternal 

weight and height were measured during the examination, while data on personal 

history such as weight before pregnancy, educational level, and smoking habits were 

collected during an initial interview. Additional clinical characteristics such as 

gestational age at delivery and the number of previous pregnancies were extracted 

from clinical records. Body mass index (BMI) was calculated according to the formula: 

BMI = kg/m2, where kg is the weight in kilograms and m2 is the height in meters 

squared. Data are presented as mean ± S.D. for continuous features and as percentages 

(N) for discrete factors. 

 

Genotyping 

Maternal blood samples were collected during pregnancy by up to two technicians and 

stored in -80°C freezers with alarm control. DNA was extracted from leukocytes using 

the QIAamp DNA Blood Mini Kit (QIAGEN) according to standard procedures. 

Genotyping of the Pro12Aa polymorphism was conducted using one of two techniques. 

For the first 729 women enrolled in the study, a LightCycler apparatus (Roche 

Diagnostics, Meylan, France) and hybridization probes were used, with Pro12Ala 

primers and probes designed and synthesized by TIB MOLBIOL (Berlin, Germany). 

The PCR mixture (10 µl total volume) contained 20 ng of DNA, 1X Fast Start DNA 

master hybridization probes, 0.5 µM of primers, 0.15 µM of probes, and 3 mM MgCl2. 

Melting curve analysis was applied to monitor SNP genotyping. For the second group 
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of women in the cohort (1024 mothers), TaqMan (Applied Biosystems, Foster City, CA) 

was used. Following similar reagent preparation, the results of TaqMan assays were 

read on a 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA), 

and alleles were called using the SDS software (Applied Biosystems, Foster City, CA). 

For the C1431T and C681G polymorphisms, TaqMan procedure was applied under the 

same standard operating protocol. DNA samples were amplified by PCR on a 96-well 

plate with the following cycling parameters: denaturation at 95°C for 10 min, and, 40 

cycles at 92°C for 15 sec, 60°C for 1min. The genotyping call rate of the three SNPs was 

above 98% in each case, including for with the duplicate controls. Details on the 

genotyping primers, probes, and PCR conditions are available from the corresponding 

author. 

 

Basic statistical analyses 

Maternal clinical characteristics were described separately in women with and without 

preeclampsia. Student’s t-test was used to compare continuous features between 

groups, while a chi-square test was used for discrete features. Fisher’s exact test was 

applied when any of the cell values of a contingency table were below five. Multivariate 

logistic regression was used to calculate the odds ratio for preeclampsia, followed by 

log-transformation. A p-value less than 0.05 was considered statistically significant. 

Since each SNP can represent either a major allele (M) or a minor allele (m), the 

genotype can be a major allele homozygote (MM), a heterozygote (Mm), or a minor 

allele homozygote (mm). Thus, we performed the comparison of allele frequencies 

among groups using one of three models: a dominant model (MM versus Mm + mm), 

a recessive model (MM + Mm versus mm), and a co-dominant model (MM + mm 

versus Mm). 
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Feature selection 

Following the random division of the original dataset into the training and validation 

sets, important features were selected in the training set using three algorithms: 

logistic regression, lasso regression, and the Boruta algorithm. Soft thresholds were 

determined based on the principle that the importance of the features should be more 

than the mean importance of all features. Therefore, the soft threshold was set as 0.5 

in lasso regression, 1 in logistic regression, and 2 with the Boruta method. The features 

that were highlighted by the three methods were then curated manually based on the 

preliminary screening of clinical characteristics using univariable logistic regression 

analysis, odds ratios, and clinical knowledge. 

 

Modeling and evaluation 

Using the features selected by the previous step, we chose eight widely used machine 

learning algorithms (elastic net regression, support vector machine, random forest, 

boost tree, decision tree, k-nearest neighbor, naïve Bayes, and multilayer perceptron) 

to build and evaluate models, along with argument tuning using the 1000-candidate 

maximum entropy design, an optimal design of argument combination based on 

Shannon's definition of entropy as the amount of information. Before modeling, the 

data in the training set were balanced to obtain a ratio of positive to negative cases of 

3:5. The balanced training set was subsequently resampled with five-fold cross-

validation, accompanied by two sets of repeats. To evaluate the performance of the 

models, the receiver operating characteristic (ROC) curves and the area under the 

receiver operating characteristic curve (AUC) values were used. Specifically, the closer 

the AUC value is to 1, the better the performance. The quality of each model was also 

evaluated using metrics of accuracy, sensitivity, specificity, and the adjusted F1-score 
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which were calculated based on the confusion matrix in Table 1 and equations 1-5. The 

testing set was retained for final validation. 

 

Table 1 Confusion matrix 

Table 3  Confusion matrix 

 
True Condition 

Condition positive Condition negative 

Predicted 

condition 

Predicted condition 

positive 
True positive (TP) False positive (FP) 

Predicted condition 

negative 
False negative (FN) True negative (TN) 

 

Accuracy = (TP + TN) / (TP + FN + TN + FP) (1) 

Sensitivity (Recall) = (TP) / (TP + FN) (2) 

Specificity = (TN) / (TN + FP) (3) 

Precision=TP/(TP+FP) (4) 

F1 = 2 × Precision × Recall / (Precision + Recall) (5) 

 

Applied R packages 

Statistical analyses, feature selection, and modeling were conducted in R software 

(version 4.0.4) with basic packages in Rstudio (PBC, Boston, MA, 

http://www.rstudio.com/), an integrated development environment for R. The 

distribution of missing data was visualized using the R package mice (version 3.11) 

[339], and imputation of missing data was carried out using the R package missForest 

(version 1.4) [340]. To account for the imbalance of positive and negative cases, the R 

package imbalance (version 1.0.2) was used to oversample the smaller population 

http://www/
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[341]. The Boruta algorithm, was executed using the Boruta package (version 7.0.0) 

[342]. Principal component analysis of features and individuals was carried out using 

FactoMineR (version 2.3) and visualized by factoextra (version 1.0.7) [343]. Machine-

learning model building was performed with the tidymodels series of packages 

(https://www.tidymodels.org/) written by the Rstudio team, including tidymodels 

(version 0.1.2), vip package (version 0.3.2), discrim (version 0.1.1), modelr (version 

0.1.8), yardstick (version 0.0.7), workflows (version 0.2.1), tune (version 0.1.2), 

rsample (version 0.0.8), recipes (version 0.1.15), and parsnip (version 0.1.4). For the 

reproducible codes, an R script with detailed comments is provided in the Supplement 

Materials (Text S1). 

 

5.1.4 Results 
 

1 Overview of maternal clinical characteristics 

Table 2 presents a summary of maternal clinical characteristics of the control and 

preeclampsia groups. The only factor that was significantly different between the two 

groups was maternal expression of the C1431T variant of PPARγ (Table 2). Instead, 

logistic regression and analysis of the log odds ratio found that expression of this 

variant in the mother played a significant role in the development of preeclampsia (p-

value less than 0.05; Figure 2). The value of the odds ratio value for maternal C1431T 

ranged from 4.90 to 8.75 (Supplementary Table S2). Similarly, a comparison of the 

three genotype models confirmed that the maternal C1431T variant was the only factor 

that made a significant difference (Table 3). Lastly, we impute missing values, which 

represented 9.14% of the full data set (supplementary Figure S1). A summary of the 

data before and after imputation, showing no differences between the imputed and 

non-imputation summary tables, was showed in Table S1. 

https://www.tidymodels.org/
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Table 2. Maternal and fetal clinical characteristics 

Table 4 Maternal and fetal clinical characteristics 

Clinical characteristics Factor name 
Controls 

N=1613 

Preeclampsia 

N=35 
p 

Maternal age at delivery (year) ageinc 29.6 ± 4.8 28.3 ± 6.1 0.232 

Maternal height (cm) c24_Height 163.0±6.23 165.0±6.35 0.108 

Maternal education (level) c24_edu 6.55±2.47 6.05±2.86 0.358 

BMI (kg/m2) bmi 23.2 ± 4.6 25.2 ± 5.8 0.067 

Primiparous primidelv 44 (703) 60 (21) 0.079 

Number of pregnancies ob_Nbpreg 1.35±1.49 1.37±1.77 0.956 

Number of deliveries ob_Nbdelv 0.834±0.971 0.657±0.906 0.261 

Obesity obese 9(137) 18(6) 0.109 

Cigarette use (no.) nbcig 1.48±3.44 1.09±3.37 0.524 

Maternal polymorphism 

(% (N)) 
    

P12A carrier12a_M 19.7 (333) 26.3 (10)  0.493 

C1431T carrier1431_M 21.3 (349) 42.9 (15) 0.004 

C681G carrier681_M 39.3 (663) 39.5 (15) 1 

 

 

 

 



157 

 

Table 3. Comparison for allele genotypes 

Table 5 Comparison for allele genotypes 

Clinical 

characteristics 

Controls 

N=1613 

Preeclampsia 

N=35 p1a p2b p3c 

c/c c/t t/t c/c c/t t/t 

genot1431_M 78.9(1272) 20.2(326) 0.9(15) 57.1(20) 40(14) 2.9(1) 0.004 0.29 0.008 

genot681_M 60.3(967) 35.2(565) 4.5(72) 60(21) 34.3(12) 5.7(2) 1 0.67 1 

genotp12a_M 80.4(1297) 18.7(301) 0.9(15) 74.2(26) 22.9(8) 2.9(1) 0.49 0.29 0.68 

a: p1 for the dominant model 

b: p2 for the recessive model 

c: p3 for the co-dominant model 

 

Figure 36 Clinical characteristics evaluation 

Figure 2. Evaluation of clinical characteristics. The log odds ratio of all 

characteristics, with corresponding p-values. Bars indicate mean and 95% confidence 

interval. 
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2 Feature selection using three methods: Boruta algorithm, lasso regression, and 

logistic regression 

The Boruta algorithm highlighted six features as important: education, maternal and 

C681G and C1341T variants, and obesity. When the inclusion criteria were relaxed 

slightly, delivery age, BMI, and maternal P12A variant were also included (Figure 3A). 

The features singled out by Lasso regression were maternal C1341T and C681G, and 

primary delivery (Figure 3B). The features identified as important by logistic 

regression were maternal carrying of C1341T, number of pregnancies, primary 

delivery, number of cigarettes, education, and BMI (Figure 3C). Therefore, the final 

features that included in the model-building process were maternal C681G and C1341T 

variants, obesity, BMI, number of pregnancies, primary delivery, number of cigarettes, 

and education.  
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Figure 37 Feature selection 

 

Figure 3. Feature selection. (A) Feature selection with the Boruta method. Blue 

boxplots indicate different weighted thresholds for selecting features. Red boxplots 

represent features that were found to be unimportant, while green boxplots are the 

opposite. Yellow boxplots show features that may be important depending on the 

criteria used. (B) Selection based on lasso regression with the soft threshold for 

importance as more than 0.5. (C) Selection based on logistic regression with the soft 

threshold for importance as more than 1. 

 

3 Modeling based on machine learning 
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With the selected features, we divided the data set into two parts, the training set, and 

the testing set. The training set was then balanced with respect to the incidence of 

preeclampsia, as described in the Methods. Supplementary Table S3 details the clinical 

characteristics of the original and split datasets; there were no differences between the 

training and testing set with respect to the representation of categorical factor and the 

mean and standard deviation of the numeric factors. There was a wide degree of 

overlap between the distribution of positive and negative cases in the training set 

before and after balancing (supplementary Figure S2D&E). The optimal combination 

of features was selected following a thorough process of tuning based on the optimal 

AUC of models (Supplementary Figure S6).  

The results of the eight final machine-learning models with respect to model accuracy 

and AUC are shown in Table 4 for both the training and testing sets. The optimal model 

was the boost tree, whose values for accuracy and AUC in the training set were 0.971 

and 0.991, respectively, and 0.951 and 0.701, respectively, in the testing set. The 

diagnostic performance of each of the machine-learning models (AUCs) is depicted in 

Figure 4. 

 

Table 4. Prediction of the 8 Models by ML Analysis 

Table 6 Prediction of the 8 Models by ML Analysis 

 Train Test 

Accuracy AUC Accuracy AUC 

Elastic Net Regression 0.661±0.005 0.695±0.006 0.857 0.784 

Random Forest 0.913±0.006 0.969±0.003 0.896 0.723 

Support Vector 

Machine 

0.772±0.003 0.847±0.004 0.862 0.545 
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Decision Tree 0.849±0.007 0.919±0.006 0.874 0.579 

K-Nearest Neighbor 0.826±0.006 0.917±0.006 0.801 0.725 

Naïve Bayes 0.693±0.005 0.787±0.007 0.930 0.619 

Boost Tree 0.971±0.002 0.991±0.001 0.951 0.701 

Multilayer Perceptron 0.899±0.007 0.919±0.006 0.811 0.670 

AUC, area under the receiver operating characteristic curve 

 

 

Figure 38 ROC curve of different algorithms 

Figure 4. ROC curve of different algorithms. (A) ROC curves with the training 

set. (B) ROC curves with testing set. The values were shown in the legends. AUC: area 

under the receiver operating characteristic curve; BT: boost tree; DT: decision tree; 

ENR: elastic net regression; KNN: k-nearest neighbor; MLP: multilayer perceptron; 

NB: naïve Bayes; RF: random forest; SVM: support vector machine; ROC: receiver 

operating characteristic. 

 

4 Prediction procedures of boost tree 

We then constructed the boost tree, along with a heatmap of scaled feature values,using 

the balanced training set (Figure 5). The clinical characteristics that were determined 
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to be important for prediction included the maternal PPARγ genotypes, primary 

delivery, number of pregnancies, obesity, BMI, and education. As expected from the 

univariate tests, the maternal C1431T variant was the first key branching node of the 

tree. Primary delivery and maternal C681G functioned as the second nodes, followed 

by the number of pregnancies and BMI, while education played a less important role 

in the final decision. For the decision branching, for genotypes, “1” represents no 

mutation in the allele, “2” means a single mutation, and “3” a double mutation; for 

primary delivery, “1” means “no” while “2” means “yes”; and for obesity, “1” means “no” 

while “2” means “yes”. The corresponding threshold values are shown on the branches. 

Integrated values of the clinical characteristics of individuals are presented in the 

heatmap, corresponding to both positive and negative end outcomes. The simplicity of 
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this procedure is intended to facilitate its possible use in clinical practice for the 

prediction of preeclampsia. 

 

Figure 39 Boost tree-heatmap for predicting preeclampsia 

Figure 5. Boost tree-heatmap for predicting preeclampsia. The leaves of 

boost tree contain the contributive features while branches contain the indicating 

values. The first row of the heatmap presents the outcomes while the rest presents the 

predictors. The colors present the scaled value of a sample on each feature. 

 

5.1.5 Discussion 
 

Preeclampsia is a common complication in pregnancy that contributes substantially to 

morbidity and mortality for both mothers and fetuses. Despite its severity, early 

diagnosis is often challenging, and there are notable deficiencies in existing counseling 
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and monitoring systems. The lack of adequate screening methods means that all 

women who are suspected to have preeclampsia must undergo a series of intensive 

tests, usually accompanied by time-consuming hospitalizations [344]. A newly 

proposed method for the diagnosis of preeclampsia relies on combined detection of 

biomarkers such as sFLT1, sEng, and PlGF, and performs well around 34 weeks 

gestation [345-347]. However, this method is not universally applicable, as 

preeclampsia occurring before 32 weeks accounted for only 17% of cases in France 

[318]. We thus aimed to develop a tool that could be used for earlier diagnosis of 

preeclampsia. In the present study, we first revealed a significant association between 

the C1431T polymorphism of PPARγ and preeclampsia, which is different with the 

previous conclusion that no association between PPARγ polymorphism and the 

occurrence of preeclampsia [348]. More importantly, we also built a decision tree that 

represents a possible diagnostic procedure for pragmatic preeclampsia prediction, 

which could benefit early diagnosis regardless of gestational age. 

 

Multiple reports have links variants of PPARγ with diseases such as coronary heart 

disease, cancer, metabolic syndrome, and, especially obesity and diabetes [334, 349-

352]. The PPARγ gene is located in human chromosome 3p25 and comprises 9 exons. 

One of the most common structural polymorphisms is a proline (Pro) to alanine (Ala) 

substitution, Pro12Ala (rs1805192), which results from the mutation of cytosine to 

guanosine [329]. Compared with the normal Pro allele, the Ala-substituted allele leads 

to a reduction in activity of PPARγ [353], which can be a high-risk factor for the 

occurrence of obesity and type 2 diabetes [354, 355]. In addition to the common 

Pro12Ala variant, the C1431T variant, located in exon 6 of PPARγ, has been associated 

with the susceptibility to leptin concentrations [326] and body mass index[327, 328], 

and the C681G variant was associated with accelerated growth in young schoolchildren 
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and increased adult height [332]. In our study, the presence of C1431T variant of 

PPARγ in the mother was shown to play a significant role in distinguishing between 

preeclamptic and normal pregnancies (chi-square test). Instead, no significant 

association was detected between Pro12Ala/C681G and preeclampsia in either the 

mother or the fetus. However, even though the chi-square test found no evidence of a 

link between C681G and preeclampsia, the inclusion of this variant in the final 

predictive model was found to improve both the accuracy and AUC values of the model. 

 

Machine-learning algorithms are widely used to obtain better prediction accuracy 

compared to conventional generalized linear models in decision-making scenarios. 

They offer alternative strategies for the diagnosis of diseases based on clinical 

characteristics [356-359]. Currently, there are eight machine-learning algorithms in 

wide use for modeling and building diagnostic procedures based on appropriate 

medical history [360, 361]. Several studies have compared different machine-learning 

methods for disease prediction under various clinical conditions, and the results have 

been mixed [362-364]; this suggests that the optimal algorithm may vary depending 

on context. In our study, we applied and compared the eight machine-learning 

algorithms, and in this process, we addressed two common challenges in modeling: 

insufficiency and overfitting of the models. For the former, we oversampled the 

positive cases to prevent inaccuracy due to the imbalance between positive and 

negative cases [365, 366]; both the balanced and unbalanced versions of the training 

and testing sets were evaluated. For the latter, we used different approaches for 

preprocessing our dataset and applied 5-fold CV to the training set, followed by 

validation on the testing set. 
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First, the original dataset was split into a training set and a testing set without 

balancing; in this case, the boost tree was the optimal model, with values of accuracy 

and AUC as 0.99 and 0.92 in the training set, and 0.98 and 0.77 in the testing set, 

respectively (Table S4 & Figure S3). We then repeated this procedure, but first 

balanced the original dataset before splitting it into the training set and testing set. The 

boost tree remained the optimal method with accuracy and AUC values of 0.957 and 

0.990 for the training set and 0.975 and 0.996 in the testing set, respectively (Table S5 

& Figure S4). We suspected that overfitting may have influenced this model owing to 

the internal relationship between the training set and the testing set that resulted from 

the data simulation. Lastly, we balanced the training set only by oversampling the 

positive cases, and kept the testing set as it was after the split of the original dataset. 

Those results are shown in Table 4 & Figure 4 that we presented above. Additionally, 

in the final model, we performed failure mode and effects analysis and calculated the 

F-score to verify the suitability of accuracy as a metric. We obtained high values for 

both training and testing sets (Table S6), which were generally in line with the accuracy 

values. However, the AUC value of the testing set in the final boost-tree model was not 

high enough to be considered as a convinced example, which we hypothesized due to a 

shortage of positive cases in the testing set. Further studies with larger datasets are 

needed to resolve this question. 

 

In our study, the boost tree consistently yielded the highest accuracy and AUC value 

for both the training and testing sets regardless of the methods used for preprocessing. 

For this reason, we used this approach to build a clinical flowchart for the evaluation 

of preeclampsia. This model outperformed both the screening methods currently 

recommended by the National Institute for Health and Care Excellence (a combination 

of maternal factors, uterine-artery pulsatility index, mean arterial pressure, and PlGF; 
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41% accuracy) and ACOG guidelines (94% accuracy) [367], and methods based on 

biomarkers such as soluble fms-like tyrosine kinase 1 (sFlt1) and PIGF (77% accuracy) 

[368]. In addition, our model can be used to evaluate women before they become 

pregnant, as all of the predictors can be examined pre-pregnancy; this thus facilitates 

earlier diagnosis than existing alternatives [319, 361, 367, 369, 370]. However, despite 

the high degree of accuracy achieved here, the clear procedure for prediction, and 

potential for earlier diagnosis, our model also has some deficiencies to improve. First, 

further studies in other regions or nations are needed since patterns of polymorphism 

can vary among populations, which can lead to inconsistent conclusions [371]. Second, 

certain clinical data were missing for some of our study subjects, and future studies on 

larger samples may be able to avoid this problem. Lastly, a larger number of positive 

cases should be included to balance the representation of preeclamptic and healthy 

pregnancies. Even though an appropriate algorithm was used to account for the 

imbalance here, it is possible that the difference between simulation and real cases may 

subtly influence the model performance. 

 

In conclusion, by comparing preeclamptic and healthy patients, our study reveals a 

significant role for a variant of PPARγ, C1431T. By combining data on this variant with 

information on several clinical characteristics, including the C681G variant of PPARγ, 

pregnancy or delivery times, body mass index, education, and cigarette use, we built 

an efficient boost-tree model that is able to predict preeclampsia in very early 

pregnancy. This model could be invaluable in screening high-risk pregnancies in 

clinical practice and could serve as a decision-making reference for clinicians. 
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6 Conclusions and Perspectives 

My Ph.D. project is studying the role of PPARγ in human trophoblast differentiation 

and placenta development. Indeed, PPARG is a nuclear receptor that is essential for 

placentation in mice and humans. In the first part, we mined the datasets downloaded 

from GEO database and confirmed the importance of the PPAR signaling pathway in 

placentation. In the second part, with the aid of the microarray technique, we 

sequenced the isolated placental cells, trophoblasts, that were treated with PPARγ 

agonist, rosiglitazone, in order to detect the differentially expressed genes or biological 

pathways that were affected by PPARγ. The change in lipid metabolism was then 

verified by lipid droplet detection throughout gestation age in placental tissues. We 

also additionally studied the potential relationship between hypoxia and PPARγ using 

the RNAseq technique since the placenta suffers from a dramatic increase of oxygen in 

the first trimester. Lastly, with respect to the importance of PPARγ, we considered the 

clinical practice of PPARγ in pregnant disease prediction. A series of single nucleotide 

polymorphisms of PPARγ were thus examined, along with the clinical characteristics, 

which were subsequently applied to the predictive model building via machine learning 

algorithms. To sum up, our study integrated the application of clinical data, sequencing 

data, computer science, and biological validation. 

 

The rapid development of nucleic acid sequencing technologies over the past four 

decades has improved the capacity to detect genomics in individuals. DNA sequencing 

gradually evolved from low throughput DNA fragment sequencing to high throughput 

next-generation (NGS) and third-generation sequencing techniques including rapid 

ways for genome-wide characterization and profiling of mRNAs, small RNAs, 



171 

 

transcription factor regions, the structure of chromatin, and DNA methylation patterns 

[169]. Recently, single-cell sequencing technologies have also been rapidly developed 

for observing the multilayered status of single cells. Single-cell sequencing has the 

power to elucidate genomic, epigenomic, and transcriptomic heterogeneity in cellular 

populations, and the changes at these levels, which is more accurate than general 

sequencing analysis with the measurement of only the average transcript expression in 

a cell population [372]. No matter how advanced the techniques are, their purpose is 

to detect the expression of genes, which is inevitable to perform the enrichment of the 

genes to figure out the critical biological functions. The further research was mostly 

focused on the study of specific mechanisms in order to discover valuable drug targets 

or seeking links between the DEGs and diseases for diagnosis and prognosis in clinical 

practice [172].  

 

These functions were generally provided via matching to the Gene Ontology (GO) 

knowledgebase, which is the world's canonical and largest source of information on the 

functions of genes [170]. The GO knowledgebase was widely regarded as a reference to 

guide further research as soon as the differentially expressed genes (DEGs) were 

enriched. GO terms represent the comprehensive aspect of the function of the genes 

and gene products. A series of complicated biological processes would be involved in 

the disease occurrence, owing to the outcome happening inside or between cells [171]. 

The processes were summed up in the GO knowledgebase which contains 44,085 

terms, 7,931,218 annotations, and 1,564,454 gene products to 4,743 different biological 

organisms as of February 2021. Among the terms, it contains 28748 biological process 

terms, 11153 molecular function terms, and 4184 cellular component terms. The 

abundance and diversity of GO terms indicate the possibility of disease 

characterization, which means a more general way, at the biological process level, 
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should not be underestimated in clinical practice. Specifically, instead of linking a 

single gene or genes with diseases, it is potentially reasonable to use GO terms to 

predict diseases.  

 

As the case of most studies, our work mainly focused on the role of a single gene, 

PPARγ, in placentation. With the help of the GO knowledgebase, we obtained a series 

of terms, with which we were guided to study the corresponding biological processes 

related to PPARγ and the normal or abnormal development of the human placenta. 

Interestingly, in this process, we found that the enriched GO terms varied in different 

types of cells and cells with different treatments. It means that it is one-sided to use 

GO knowledgebase in such a way with a single gene or genes being applied to link with 

diseases. We are therefore wondering if the terms could be used to characterize the 

status of cells which resulted from a series of combined biological processes. This work 

will be carried on in the future. 
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Annexes 

Part I: Supplementary materials 

Table S1_unsigned. The number of genes in the color modules in dataset1-3. 

Table 7 Table S1_unsigned. The number of genes in the color modules in dataset1-3. 

 

 

Table S1_signed. The number of genes in the color modules in dataset1-3. 

Table 8 Table S1_signed. The number of genes in the color modules in dataset1-3. 
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Table S2 Completed results of biological process and pathway analysis for 

differentially expressed genes with four sheets inside. 

Table 9 Table S2 Completed results of biological process and pathway analysis for differentially expressed genes with four 

sheets inside. 

 

 

Table S3 Characteristics of placenta used for logistic regression. 
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Table 10 Table S3 Characteristics of placenta used for logistic regression. 
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Figure 40 Fig. S1. Construction and visualization of co-expression modules and gene adjacency matrix. 

Fig. S1. Construction and visualization of co-expression modules and gene adjacency 

matrix. Clustering dendrograms of genes were performed according to the dynamic 

tree cutting method to form original modules which were further used to construct 

merged modules based on the similarity for dataset1-3, which were shown in the left 

panels of graph A&B&C, respectively. The heatmaps in the right panels subsequently 

depict the Topological Overlap Matrix (TOM) of selected genes in dataset1 (A) and all 

genes in dataset2 (B) and datset3 (C). Light color in heatmap means high overlap value 

and darker red color represents low overlap value. 
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Figure 41 Fig. S2. Comparison of the top terms of biological process, molecular function and pathway between the 

original research and our present study. 

Fig. S2. Comparison of the top terms of biological process, molecular function and 

pathway between the original research and our present study. GoBP: gene ontology 

biological process; GoMF: gene ontology molecular function; KEGG: kyoto 

encyclopedia genes and genome pathways. 

 

 

Part II: Supplementary materials 

Table Ss. An exhaustive list of all terms. 
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Tableau 1 Table Ss. An exhaustive list of all terms. 

Table 11 Table Ss. An exhaustive list of all terms. 

 

 

 

Part III: Supplementary materials 

Table S1. Datasets for extracting hypoxia-inducible factors (HIF) targets. 

Table 12 Table S1. Datasets for extracting hypoxia-inducible factors (HIF) targets. 

Dataset Gene Identifier 
Number of 

TF 

Number of TF 

Targets 
Reference 

TRED ENTREZ 133 7066 Jiang et al. 

ITFP HGNC Symbol/Alias 1974 67154 Zheng et al.  

ENCODE ENTREZ 157 20428 Encode 

Neph2012 HGNC Symbol/Alias 536 16484 Neph et al.  

TRRUST HGNC Symbol/Alias 748 8215 Han et al.  

Marbach2016 HGNC Symbol/Alias 643 1305782 Marbach et al.  
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Figure 42 Fig. S1. Quality report of raw data 

Fig. S1. Quality report of raw data. (a) Average quality of sequencing for each position 

within the reads and the distribution according to their average quality. (b) 

Representation of the average proportion of each base for all reads and distribution of 

readings according to their composition in GC. (c) Normalization of raw data: before 

and after. 
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Figure 43 Fig. S2. The heatmaps of gene expression for the key genes identified using DESeq2 

Fig. S2. The heatmaps of gene expression for the key genes identified using DESeq2 

under the comparison of different groups, including Female vesus Male (a), Early 

versus Late (b), EF versus EM (c), LF versus LM (d), EM versus LM (e), and EF versus 

LF (f). Alphabet “E” represents the abbreviation of “Early”, “L” for “Late”, “F” for 

“Female” and “M” for “Male” in groups. 
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Figure 44 Fig. S3. The enriched terms of GO cellular component (a) and GO molecular function (b) for the DESeq2 

method’s comparison 

Fig. S3. The enriched terms of GO cellular component (a) and GO molecular function 

(b) for the DESeq2 method’s comparison. Weighted points filled with plum represent 

the age difference and coral represent the sexual difference. Alphabet “E” represents 

the abbreviation of “Early”, “L” for “Late”, “F” for “Female” and “M” for “Male” in 

groups. GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes. 
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Figure 45 Fig. S4. The expressions of key genes in the modules are shown in heatmap separately 

Fig. S4. The expressions of key genes in the modules are shown in heatmap separately 

using WGCNA based on the traits of age (a) and sexes (b). WGCNA: weighted gene co-

expression network analysis. 
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Figure 46 Fig. S5. Comparison of enriched GO cellular component (CC) and GO molecular function (MF) 

Fig. S5. Comparison of enriched GO cellular component (CC) and GO molecular 

function (MF) based on genes selected by DESeq2 and WGCNA methods separately. 

(a&c) Enrichment and comparison of terms under age difference. (b&d) Enrichment 

and comparison of terms nder sexual difference. Weighted points filled with plum 

represent the age difference and coral represent the sexual difference. GO: gene 

ontology; WGCNA: weighted gene co-expression network analysis. 
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Figure 47 Fig. S6. Details of evaluation for the terms of GO and KEGG pathways for the HIF targets 

Fig. S6. Details of evaluation for the terms of GO and KEGG pathways for the HIF 

targets. (a) Scatterplot of GO_BP_alpha. (b) Scatterplot of GO_BP_beta. (c) 

Scatterplot of KEGG_alpha. (d) Scatterplot of KEGG_beta. Y coordinate represents -

log10 of FDR and x coordinate represents log2 enrichment ratio. GO: gene ontology; 

BP: biological process; HIF: hypoxia-inducible factor; KEGG: Kyoto encyclopedia of 

genes and genomes. 

 



213 

 

 

Figure 48 Fig. S7. Summary of dataset GSE100051 

Fig. S7. Summary of dataset GSE100051. The clustering of the collected samples from 

GSE100051 (a). The expressions of the selected key genes. (b) The comparison of the 

terms from GSE100051 and our results using the DESeq2 analysis (c&d). 

 

Part IV: Supplementary materials 
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Figure 49 Fig. S1. Overview of missing data in original data 

Fig. S1. Overview of missing data in original data. Columns represent clinical characteristics. 

Rows indicate the missing characteristics and the corresponding number of individuals. Pink 

grids represent missing values while blue grids represent observed values.  

 

Table S1. Imputation comparison for factor type features before and after. continued 

Table 13 Table S1. Imputation comparison for factor type features before and after. 

Features 
Number of 

missing values 

Imputation 

Before After 

Count of factors Count of factors 

preeclamp 0 0: 1613, 1: 35 0: 1613, 1: 35 

nn_Sex 3 1: 878, 2: 767 1: 879, 2: 769 

primidelv 2 0: 922, 1: 724 0: 924, 1: 724 

obese 29 0: 1476, 1: 143 0: 1505, 1: 143 
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genot681_C 479 11: 698, 12: 419, 22: 

52 

11: 1175, 12: 420, 22: 

53 

genot681_M 0 11: 997, 12: 577, 22: 

74 

11: 997, 12: 577, 22: 

74 

genotp12a_C 472 11: 946, 12: 219, 22: 

11 

11: 1418, 12: 219, 22: 

11 

genotp12a_M 0 11: 1323, 12: 309, 22: 

16 

11: 1323, 12: 309, 22: 

16 

genot1431_C 489 11: 880, 12: 264, 22: 

15 

11: 1369, 12: 264, 22: 

15 

genot1431_M 0 11: 1292, 12: 340, 22: 

16 

11: 1292, 12: 340, 22: 

16 

carrier681_M 0 0: 997, 1: 651 0: 997, 1: 651 

carrier12a_M 0 0: 1323, 1: 325 0: 1323, 1: 325 

carrier1431_M 0 0: 1292, 1: 356 0: 1292, 1: 356 

carrier681_C 522 0: 666, 1: 460 0: 1175, 1: 473 

carrier12a_C 522 0: 906, 1: 220 0: 1418, 1: 230 

carrier1431_C 522 0: 854, 1: 272 0: 1369, 1: 279 

 

Table S1. Imputation comparison for numeric type features before and after.  

Features 

Number of 

missing 

values 

Imputation 

Before After 

mean sd mean sd 

c24_Height 17 163.46 6.23 163.46 6.20 

c24_edu 29 6.54 2.48 6.53 2.47 
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ob_Nbpreg 0 1.35 1.49 1.35 1.49 

ob_Nbdelv 2 0.83 0.97 0.83 0.97 

bmi 29 23.27 4.63 23.26 4.60 

age_delv 1 29.55 4.86 29.55 4.86 

nbcig 56 1.47 3.44 1.48 3.39 
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Figure 50 Fig. S2. Clinical characteristics evaluation 

Fig. S2. Clinical characteristics evaluation. (A) The matrix of correlation coefficient for all the 

characteristics. The factorial characteristics were transformed to numerical type, accompanied 

by adding 0.1 to all the data in order to facilitate the calculation without 0. (B) A principal 

component analysis with factor analysis of mixed data (FAMD) for all the characteristics with 

detailed component proportions shown in the right. The first and second dimensions were 

chosen to draw the graph with colors presenting the contribution. (C) Distribution of 

individuals by FAMD. (D) Distribution of individuals by t-SNE in the dimensions before 

balancing. (E) Distribution of individuals by t-SNE in the dimensions after balancing. 

 

 

Table S2. Clinical characteristics for different data set related to factor features. 

continued 

Table 144 Table S2. Clinical characteristics for different data set related to factor features. 

Factor 

features 

Number 

of 

factors 

Total Train Test 

Count of factors Count of factors Count of factors 

nn_Sex 2 1: 879, 2: 769 1: 660, 2: 576 1: 220, 2: 192 
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primidelv 2 0: 924, 1: 724 0: 713, 1: 523 0: 211, 1: 201 

preeclamp 2 0: 1613, 1: 35 0: 1211, 1: 25 0: 402, 1: 10 

genot681_C 3 
11: 1175, 12: 420, 

22: 53 

11: 875, 12: 324, 22: 

37 

11: 300, 12: 97, 22: 

15 

genot681_M 3 
11: 997, 12: 577, 22: 

74 

11: 753, 12: 420, 22: 

63 

11: 244, 12: 157, 

22: 11 

genot1431_C 3 
11: 1369, 12: 264, 

22: 15 

11: 1027, 12: 196, 

22: 13 

11: 342, 12: 68, 22: 

2 

genot1431_M 3 
11: 1292, 12: 340, 

22: 16 

11: 973, 12: 250, 22: 

13 

11: 319, 12: 90, 22: 

3 

obese 2 0: 1505, 1: 143 0: 1120, 1: 116 0: 384, 1: 28 

 

Table S2. Clinical characteristics for different data set related to numeric features. 

Numeric 

features 
Total Train Test 

 mean sd mean sd mean sd 

c24_edu 6.53 2.47 6.50 2.48 6.59 2.43 

ob_Nbpreg 1.35 1.49 1.42 1.54 1.15 1.32 

bmi 23.26 4.60 23.40 4.67 22.93 4.43 

nbcig 1.48 3.39 1.57 3.49 1.24 3.07 

 

 

Table S3. Prediction of the 8 Models by ML Analysis (without balancing) 

Table 155 Table S3. Prediction of the 8 Models by ML Analysis (without balancing) 

 Train Test 
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Accuracy AUC Accuracy AUC 

Elastic Net Regression 0.98 0.70 0.98 0.76 

Random Forest 0.99 0.84 0.98 0.73 

Support Vector Machine 0.99 0.89 0.98 0.66 

Decision Tree 0.98 0.82 0.97 0.54 

K-Nearest Neighbor 0.97 0.66 0.95 0.51 

Naïve Bayes 0.99 0.74 0.97 0.63 

Boost Tree 0.99 0.92 0.98 0.77 

Multilayer Perceptron 0.98 0.82 0.95 0.55 

AUC, area under the receiver operating characteristic curve 

 

 

Figure 51 Fig. S3. ROC curve of different algorithms 

Fig. S3. ROC curve of different algorithms. (A) ROC curves with training set. (B) ROC curves 

with testing set. The values were shown in the legends. AUC: area under the receiver operating 

characteristic curve; BT: boost tree; DT: decision tree; ENR: elastic net regression; KNN: k-

nearest neighbor; MLP: multilayer perceptron; NB: naïve bayes; RF: random forest; SVM: 

support vector machine; ROC: receiver operating characteristic. 

 



220 

 

 

Table S4. Prediction of the 8 Models by ML Analysis (with total balancing before split) 

Table 166 Table S4. Prediction of the 8 Models by ML Analysis (with total balancing before split) 

 Train Test 

Accuracy AUC Accuracy AUC 

Elastic Net Regression 0.721 0.761 0.705 0.735 

Random Forest 0.911 0.966 0.913 0.973 

Support Vector Machine 0.783 0.864 0.743 0.807 

Decision Tree 0.863 0.926 0.819 0.892 

K-Nearest Neighbor 0.830 0.901 0.772 0.876 

Naïve Bayes 0.687 0.770 0.702 0.787 

Boost Tree 0.957 0.990 0.975 0.996 

Multilayer Perceptron 0.863 0.926 0.735 0.800 

AUC, area under the receiver operating characteristic curve 

 

  

Figure 52 Fig. S4. ROC curve of different algorithms 

  

Fig. S4. ROC curve of different algorithms. (A) ROC curves with training set. (B) ROC curves 

with testing set. The values were shown in the legends. AUC: area under the receiver operating 
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characteristic curve; BT: boost tree; DT: decision tree; ENR: elastic net regression; KNN: k-

nearest neighbor; MLP: multilayer perceptron; NB: naïve bayes; RF: random forest; SVM: 

support vector machine; ROC: receiver operating characteristic. 

 

Table S5. Prediction of the 8 Models by ML Analysis 

Table 177 Table S5. Prediction of the 8 Models by ML Analysis 

 Train Test 

Accuracy AUC Accuracy AUC 

Elastic Net Regression 0.658 0.707 0.920 0.780 

Random Forest 0.948 0.979 0.896 0.677 

Support Vector Machine 0.818 0.878 0.808 0.593 

Decision Tree 0.899 0.946 0.871 0.545 

K-Nearest Neighbor 0.818 0.924 0.796 0.681 

Naïve Bayes 0.704 0.846 0.947 0.632 

Boost Tree 0.971 0.995 0.954 0.700 

Multilayer Perceptron 0.899 0.946 0.782 0.521 

AUC, area under the receiver operating characteristic curve 
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Figure 53 ROC curve of different algorithms before and after balancing in fetal-feature-including models 

Figure S5. ROC curve of different algorithms before and after balancing in fetal-feature-

including models. (A&B) ROC curves with training set and testing set without balancing. 

(C&D) ROC curves with training set balanced only. (E&F) ROC curves with training set and 

testing set both balanced. The values were shown in the legends. AUC: area under the 

receiver operating characteristic curve; BT: boost tree; DT: decision tree; ENR: elastic net 

regression; KNN: k-nearest neighbor; MLP: multilayer perceptron; NB: naïve bayes; RF: 

random forest; SVM: support vector machine; ROC: receiver operating characteristic. 
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Figure 54 Fig. S6 Arguments tuning of machine learning methods 
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Fig. S6. We chose 8 widely used machine learning algorithms (elastic net regression, 

support vector machine, random forest, boost tree, decision tree, k-nearest neighbor, 

naïve Bayes, and multilayer perceptron) to test models in training set, along with 

argument tuning using the maximum entropy design with 1000 candidate values. 

These graphs show the grid research of the optimal combination of arguments from 

different algorithms. The area under the receiver operating characteristic curve (AUC) 

values were used to evaluate the performance of models, with the best being filtered. 

Text S1 The R script with detailed comments related to machine learning modeling. 

library(tidymodels) 
library(modelr) 
library(broom) 
library(discrim) 
library(factoextra) 
library(FactoMineR) 
# library(Factoshiny) 
# library(mice) 
library(missForest) 
library(Boruta) 
library(vip) 
library(imbalance) 
options(digits = 4) 
 
ppar <- readxl::read_xlsx(path = "eclaxir.xlsx") 
df_names <- read.csv("df_name.csv", header = TRUE) 
 
# 1 Preprocessing ---- 
 
pparg <- ppar %>%  
  select(c("preeclamp", 
           "c24_Height", "c24_edu", "ob_Nbpreg", "ob_Nbdelv", 
           "nn_Sex", "bmi","age_delv","primidelv", "nbcig","obese", 
           "genot681_C", "genot681_M", "genotp12a_C", "genotp12a_M", "genot1431_C", 
"genot1431_M", 
           "carrier681_M", "carrier12a_M", "carrier1431_M", "carrier681_C", 
"carrier12a_C","carrier1431_C")) 
 
# imputation 
 
set.seed(222) 
imp <- missForest(as.data.frame(pparg)) 
pparg_imp <- 
  imp$ximp %>% 
  as_tibble() %>%  
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  as.data.frame() 
 
 
# 2 Individual weight---- 
 
# PCA cluster for PE patients 
 
famd <- FAMD(pparg_imp[,-1], ncp = 10, graph = FALSE) # without preecalmpsia 
fviz_famd_var( 
  famd, 
  col.var = "contrib", 
  gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 
  repel = TRUE, 
  # Avoid text overlapping 
  ggtheme = theme_minimal() 
) 
fviz_screeplot(famd, addlabels = TRUE) 
 
ggplot( 
  data = as.data.frame(famd$ind$coord)[, 1:2] %>% 
bind_cols(pparg_imp$preeclamp) %>% rename(preeclamp = ...3), 
  aes(x = Dim.1, y = Dim.2, color = preeclamp) 
) + 
  geom_point(alpha = 0.5) + 
  scale_color_manual(values = c("steelblue","red")) + 
  theme_minimal() + 
  geom_hline( 
    yintercept = 0, 
    color = "black", 
    lty = 2, 
    size = 1 
  ) + 
  geom_vline( 
    xintercept = 0, 
    color = "black", 
    lty = 2, 
    size = 1 
  ) + 
  labs(color = "Preeclampsia") + 
  labs(title = "Individuals_FAMD") 
 
# t-SNE 
 
library(Rtsne) 
## Curating the database for analysis with both t-SNE and PCA 
pparg_imp$preeclamp <- factor(pparg_imp$preeclamp) 
 
## Executing the algorithm on curated data 
tsne <- 
  Rtsne( 
    pparg_imp, 
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    dims = 3, 
    perplexity = 30, 
    verbose = TRUE, 
    max_iter = 500 
  ) 
 
## Plot 
tsne$Y %>% as_tibble() %>%  
  rename(Dim.1 = V1, Dim.2 = V2, Dim.3 = V3) %>%  
  bind_cols(preeclamp = pparg_imp$preeclamp) %>% 
  ggplot(aes(Dim.1, Dim.2, color = preeclamp)) +  
  geom_point(alpha = 0.5) + 
  scale_color_manual(values = c("steelblue", "red")) + 
  labs(color = "Preeclampsia") + 
  labs(title = "Individuals_t-SNE") + 
  theme_minimal() 
 
# Odds ratio 
nogene_glm <- 
  glm(preeclamp ~ ., 
      data = pparg_imp %>% dplyr::select(-starts_with("genot")), 
      family = binomial) 
 
# Plot odds ratio 
ggplot(nogene_glm %>% tidy(conf.int = TRUE) %>% select(term) %>%  
         bind_cols(nogene_glm %>% tidy(conf.int = TRUE) %>% select(-term) %>% 
exp())) + 
  geom_errorbar(aes(xmin = conf.low, xmax = conf.high, y = term, col = "red"), size = 
0.8) + 
  geom_point(aes(y = term, x = estimate), shape = 18, size = 3) + 
  geom_vline(xintercept = 0, lty = 2, size = 1) + 
  #scale_x_log10() + 
  labs(title = "Odds Ratio with 95% Wald Confidence Limits", x = "Odds Ratio", y = "") 
+ 
  theme_minimal() + 
  theme(legend.position = "none") 
   
# Plot p values 
ggplot(nogene_glm %>% tidy(conf.int = TRUE), aes(y = term, x = p.value)) + 
  geom_point(size = 2) +  
  geom_vline(xintercept = 0.05, color = "red", lty = 2, size = 1) + 
  theme_minimal() + 
  annotate("text", x = 0.12, y = 1, label = "p=0.05", color = "red") + 
  labs(title = "P value of variables", x = "P value", y = "") 
 
 
# Data set split and balance---- 
set.seed(123) 
splits <- initial_split(pparg_imp, prop = 3 / 4, strata = preeclamp) 
pparg_train <- training(splits) 
pparg_test <- testing(splits) 
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# Oversampling 
imbalanceRatio(pparg_train %>% rename(Class = preeclamp)) 
# 0.02064 
 
set.seed(1212) 
pparg_os <- pparg_train %>%  
  rename(Class = preeclamp) %>%  
  map_if(is.factor, as.numeric) %>%  
  as.data.frame() %>%  
  oversample(ratio = 0.6, method = "RACOG", filtering = FALSE) %>%  
  mutate_at(vars(-c(c24_Height, c24_edu, ob_Nbdelv, ob_Nbpreg, bmi, age_delv, 
nbcig)), as.factor) 
 
pparg_train <- pparg_os %>% rename(preeclamp = Class) 
 
 
# 3 Feature selection ---- 
 
# correlation of variables 
library(corrplot) 
corrplot::corrplot(cor(pparg_imp[, colnames(pparg_imp) %in% quanti])) 
corrplot(cor( 
  pparg_imp %>%  
    select(-starts_with("genot")) %>%  
    # select(-preeclamp) %>%  
    map_if(is.factor, as.numeric) %>% 
    as_tibble() %>%  
    as.matrix() %>%  
    + 0.1, 
  method = "kendall" 
)) 
 
 
# 1) logistic regression, 2) penalized logistic regression, 3) Boruta 
 
# 1) logistic regression 
 
# to confirm mutation's role in predicting, remove genetic variables with 3 levels 
# keep carrier variables with 2 levels to exhibit the correlation 
lr_fit <-   
  glm(preeclamp ~ ., 
      data = pparg_train_fs, 
      family = binomial) 
# variable selection according to AIC principle 
library(MASS) 
stepAIC(lr_fit) 
 
vip(lr_fit, num_features = 30) +  
  geom_hline(yintercept = 1, col = "red", size = 1, lty = 2) + 
  labs(title = "Variables importance_logistic regression") + 
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  theme_minimal() 
# results 
# [1] "ob_Nbpreg", "primidelv", "c24_edu", "nn_Sex", "bmi", "carrier1431_M", 
"carrier1431_C", "nbcig" 
 
# 2) penalized logistic regression 
 
plr_mod <-  
  logistic_reg(mixture = 1) %>%  
  set_engine("glmnet") 
 
plr_recipe <-  
  recipe(preeclamp ~ ., data = pparg_train_fs) %>%  
  step_dummy(all_nominal(),-all_outcomes()) %>%  
  step_zv(all_predictors()) 
 
plr_wkflow <-  
  workflow() %>%  
  add_model(plr_mod) %>%  
  add_recipe(plr_recipe) 
 
plr_fit <- fit(plr_wkflow, data = pparg_train_fs) 
 
# importance plot 
plr_fit %>%  
  pull_workflow_fit() %>%  
  vip(num_features = 30) + 
  geom_hline(yintercept = 0.5, col = "red", size = 1, lty = 2) + 
  labs(title = "Variables importance_Lasso") + 
  theme_minimal() 
# results 
# [1] "carrier1431_M", "primidelv", "carrier1431_C", "carrier681_M" 
 
# 3) Boruta 
 
set.seed(111) 
boruta_train <- Boruta(preeclamp ~., data = pparg_train_fs, doTrace = 2) 
boruta_df <- attStats(boruta_train) 
 
plot(boruta_train, xlab = "", xaxt = "n") 
boruta_train$ImpHistory %>%  
  as_tibble() %>% filter(across(everything(), is.finite)) %>%  
  map(median) %>%  
  as_tibble() %>%  
  sort() %>%  
  colnames() %>%  
  axis(side = 1,las=2,labels = ., at = 1:ncol(boruta_train$ImpHistory), cex.axis = 0.7) 
  title("Variables importance_Boruta") 
 
getSelectedAttributes(boruta_train) 
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# [1] "c24_edu", "obese", (bmi), "carrier681_M", "carrier1431_M", "carrier681_C", 
"carrier1431_C" 
 
 
# 4 Machine learning models---- 
 
# to unit the results: 
# "ob_Nbpreg","primidelv","c24_edu","nn_Sex","bmi","nbcig","obese" 
# 
"carrier1431_M"("genot1431_M"),"carrier681_C("genot681_C)","carrier1431_C"("ge
not1431_C"),"carrier681_M"(genot681_M), 
 
pparg_train <- pparg_train %>%  
  
select(preeclamp,genot1431_M,genot681_M,primidelv,ob_Nbpreg,c24_edu,obese,b
mi,nbcig) 
#c(genot1431_C,genot681_C,nn_Sex,) 
pparg_test <- testing(splits) %>% 
  
select(preeclamp,genot1431_M,genot681_M,primidelv,ob_Nbpreg,c24_edu,obese,b
mi,nbcig) %>% 
  map_if(is.factor, as.numeric) %>% 
  as.data.frame() %>% 
  mutate_at(vars(-c(c24_edu, ob_Nbpreg, bmi, nbcig)), as.factor) 
 
set.seed(234) 
# val_set <- validation_split(data = pparg_train, 
#                             prop = 3/4, 
#                             strata = preeclamp) 
 
val_set <- vfold_cv(data = pparg_train, 
                    v = 5, 
                    repeats = 2, 
                    strata = preeclamp) 
 
# 1) MLR, 2) RF, 3) SVM, 4) DT, 5) KNN, 6) NB, 7) BT, 8a) MLP 
# BT, boost tree; DT, decision tree; KNN, k-nearest neighbor; MLR, multivariate 
logistic regression; 
# MLP, multilayer perceptron; NB, naïve Bayes; RF, random forest; 
# SVM, support vector machine. 
 
eval_sets <- metric_set(ppv,npv, accuracy, f_meas, mcc) 
 
# 0 logistic regression ---- 
 
lr_mod <-  
  logistic_reg() %>% # tuning 
  set_engine("glm") 
 
 
lr_wkflow <-  
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  workflow() %>%  
  add_model(lr_mod) %>%  
  add_formula(preeclamp ~ .) 
 
 
lr_res <- fit_resamples(lr_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_predictions(lr_res) 
collect_metrics(lr_res) 
 
# result 
# accuracy binary        0.677 
# roc_auc binary         0.720 
 
lr_fit <- fit(lr_wkflow, data = pparg_train) 
 
# train 
lr_pred_train <-  
  predict(lr_fit, new_data = pparg_train) %>%  
  bind_cols(predict(lr_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
 
lr_pred_train %>% accuracy(truth = preeclamp, .pred_class) 
lr_pred_train %>% roc_auc(truth = preeclamp, .pred_1) 
lr_auc_train <-  
  lr_pred_train %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "ENR(AUC=0.722)") 
# result 
# accuracy binary        0.671 
# roc_auc binary         0.722 
 
# test 
lr_pred_test <- 
  predict(lr_fit, new_data = pparg_test) %>% 
  bind_cols(predict(lr_fit, new_data = pparg_test, type = "prob")) %>% 
  bind_cols(pparg_test %>% select(preeclamp)) 
 
lr_pred_test %>% accuracy(truth = preeclamp, .pred_class) 
lr_pred_test %>% roc_auc(truth = preeclamp, .pred_1) 
lr_auc_test <- lr_pred_test %>% 
  roc_curve(truth = preeclamp, .pred_1) %>% 
  mutate(model = "MLR(AUC=0.829)") 
# result 
# accuracy binary        0.976 
# roc_auc binary         0.819 
 
# 1) Multivariate Logistic regression---- 
 
mlr_mod <-  
  logistic_reg(penalty = tune(), mixture = tune()) %>% # tuning 
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  set_engine("glmnet") 
 
mlr_recipe <-  
  recipe(preeclamp ~., data = pparg_train) %>%  
  step_dummy(all_nominal(), -all_outcomes()) %>%  
  step_zv(all_predictors()) 
 
mlr_wkflow <-  
  workflow() %>%  
  add_model(mlr_mod) %>%  
  add_recipe(mlr_recipe) 
 
# for tuning 
set.seed(100) 
mlr_tune <-  
  mlr_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    param_info = mlr_mod %>% parameters(), 
    grid = 1000, 
    metrics = metric_set(roc_auc) 
  ) 
 
show_best(mlr_tune, n = 5) 
select_best(mlr_tune, metric = "roc_auc") 
 
autoplot(mlr_tune) + theme_bw() + ggtitle("Parameters Tuning_Elastic Net 
Regression") 
ggsave("Parameteris Tuning_Elastic Net Regression.pdf", width = 8, height= 8) 
 
 
final_mlr_wkflow <- 
  mlr_wkflow %>%  
  finalize_workflow(mlr_tune %>% select_best(metric = "roc_auc")) 
 
 
mlr_res <- fit_resamples(final_mlr_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_predictions(mlr_res) 
collect_metrics(mlr_res) 
 
# result 
# accuracy binary        0.661 
# roc_auc binary         0.795 
 
mlr_fit <- fit(final_mlr_wkflow, data = pparg_train) 
 
# train 
mlr_pred_train <-  
  predict(mlr_fit, new_data = pparg_train) %>%  
  bind_cols(predict(mlr_fit, new_data = pparg_train, type = "prob")) %>%  
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  bind_cols(pparg_train %>% select(preeclamp)) 
 
mlr_pred_train %>% accuracy(truth = preeclamp, .pred_class) 
mlr_pred_train %>% roc_auc(truth = preeclamp, .pred_1) 
mlr_auc_train <-  
  mlr_pred_train %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "MLR(AUC=0.703)") 
eval_sets(mlr_pred_train, truth = preeclamp, estimate = .pred_class) 
# result 
# accuracy binary        0.671 
# roc_auc binary         0.703 
 
# test 
mlr_pred_test <-  
  predict(mlr_fit, new_data = pparg_test) %>%  
  bind_cols(predict(mlr_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
 
mlr_pred_test %>% accuracy(truth = preeclamp, .pred_class) 
mlr_pred_test %>% roc_auc(truth = preeclamp, .pred_1) 
mlr_auc_test <- mlr_pred_test %>%  
  roc_curve(truth = preeclamp, .pred_1) %>% 
  mutate(model = "MLR(AUC=0.784)") 
eval_sets(mlr_pred_test, truth = preeclamp, estimate = .pred_class) 
# result 
# accuracy binary        0.875 
# roc_auc binary         0.784 
 
# 2) random forest ---- 
 
cores <- parallel::detectCores() 
rf_mod <- 
  rand_forest(mtry = tune(), trees = tune(), min_n = tune()) %>% 
  set_engine("ranger", num.threads = cores, importance = "impurity", keep.inbag = 
TRUE) %>% 
  set_mode("classification") 
 
rf_recipe <- 
  recipe(preeclamp ~ ., data = pparg_train) # equals to "add_formula(preeclamp ~ ., 
data = pparg_train)" 
# step_dummy(all_nominal()) # for randomForest, it's unnecessary 
 
rf_wkflow <- 
  workflow() %>% 
  add_model(rf_mod) %>% 
  add_recipe(rf_recipe)  
 
# for tuning 
set.seed(100) 
rf_tune <-  
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  rf_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    param_info = rf_mod %>% parameters(), 
    grid = 1000, 
    metrics = metric_set(roc_auc), 
    control = control_grid(save_pred = TRUE) 
  ) 
 
show_best(rf_tune, n = 5) 
select_best(rf_tune, metric = "roc_auc") 
 
autoplot(rf_tune) + theme_bw() + ggtitle("Parameters Tuning_Random Forest") 
ggsave("Parameteris Tuning_Random Forest.pdf", width = 8, height= 8) 
 
 
final_rf_wkflow <-  
  rf_wkflow %>%  
  finalize_workflow(rf_tune %>% select_best()) 
 
rf_res <-  
  fit_resamples(final_rf_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
 
collect_metrics(rf_res) 
collect_predictions(rf_res) 
 
# result 
# accuracy binary        0.913 
# roc_auc binary         0.969 
 
# Roc curve for validation set 
rf_auc_train <-  
  rf_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "RF(AUC=0.969)") 
 
rf_fit <- fit(final_rf_wkflow, data = pparg_train) 
 
# train 
rf_pred_train <-  
  predict(rf_fit, new_data = pparg_train) %>%  
  bind_cols(predict(rf_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(rf_pred_train, truth = preeclamp, estimate = .pred_class) 
 
# test 
rf_pred <- 
  predict(rf_fit, new_data = pparg_test) %>% 
  bind_cols(predict(rf_fit, new_data = pparg_test, type = "prob")) %>% 
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  bind_cols(pparg_test %>% select(preeclamp)) %>%  
  bind_cols(predict(rf_fit, new_data = pparg_test, type = "conf_int")) 
eval_sets(rf_pred, truth = preeclamp, estimate = .pred_class) 
 
rf_pred %>% accuracy(truth = preeclamp, .pred_class) 
rf_pred %>% roc_auc(truth = preeclamp, .pred_1) 
rf_auc_test <- 
  rf_pred %>%  
  roc_curve(truth = preeclamp, .pred_1) %>% 
  mutate(model = "RF(AUC=0.723)") 
# result 
# accuracy binary        0.896 
# roc_auc binary         0.723 
 
# 3) Support vector machine ---- 
 
svm_mod <-  
  svm_rbf(cost = tune(), rbf_sigma = tune(), margin = tune()) %>%  
  set_engine("kernlab") %>%  
  set_mode("classification") 
 
svm_recipe <-  
  recipe(preeclamp ~ ., data = pparg_train) %>%  
  step_dummy(all_nominal(), -all_outcomes()) %>% 
  step_zv(all_predictors()) %>%  
  step_normalize(-all_nominal()) 
 
svm_wkflow <-  
  workflow() %>%  
  add_model(svm_mod) %>%  
  add_recipe(svm_recipe) 
 
set.seed(100) 
svm_tune <-  
  svm_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    param_info = svm_mod %>% parameters(), 
    grid = 1000, 
    metrics = metric_set(roc_auc), 
    control = control_grid(save_pred = TRUE) 
  ) 
   
show_best(svm_tune, n = 5) 
select_best(svm_tune, metric = "roc_auc") 
 
autoplot(svm_tune) + theme_bw() + ggtitle("Parameters Tuning_Support Vector 
Machine") 
ggsave("Parameteris Tuning_Support Vector Machine.pdf", width = 8, height= 8) 
 
final_svm_wkflow <-  
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  svm_wkflow %>%  
  finalize_workflow(svm_tune %>% select_best()) 
 
svm_res <-  
  fit_resamples(final_svm_wkflow, val_set, control = control_resamples(save_pred 
= TRUE)) 
collect_metrics(svm_res) 
# result for trains 
# accuracy binary        0.772 
# roc_auc binary         0.847 
 
# Roc curve for validation set 
svm_auc_train <-  
  svm_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "SVM(AUC=0.847)") 
 
svm_fit <- fit(final_svm_wkflow, data = pparg_train) 
 
# train 
svm_pred_train <-  
  predict(svm_fit, new_data = pparg_train) %>%  
  bind_cols(predict(svm_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(svm_pred_train, truth = preeclamp, estimate = .pred_class) 
 
# test 
svm_pred <-  
  predict(svm_fit, new_data = pparg_test) %>%  
  bind_cols(predict(svm_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
eval_sets(svm_pred, truth = preeclamp, estimate = .pred_class) 
 
svm_pred %>% accuracy(truth = preeclamp, .pred_class) 
svm_pred %>% roc_auc(truth = preeclamp, .pred_1) 
svm_auc_test <-  
  svm_pred %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "SVM(AUC=0.545)") 
# result for test 
# accuracy binary        0.862 
# roc_auc binary         0.545 
 
 
# 4) decision trees ---- 
 
dt_mod <-  
  decision_tree(tree_depth = tune(), min_n = tune(), cost_complexity = tune()) %>%  
  set_engine("rpart") %>%  
  set_mode("classification") 
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dt_wkflow <-  
  workflow() %>%  
  add_model(dt_mod) %>%  
  add_formula(preeclamp ~ .) 
 
set.seed(100) 
dt_tune <-  
  dt_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    grid = 1000, 
    param_info = dt_mod %>% parameters(), 
    metrics = metric_set(roc_auc), 
    control = control_grid(save_pred = TRUE) 
  ) 
 
show_best(dt_tune, n = 5) 
select_best(dt_tune, metric = "roc_auc") 
 
autoplot(dt_tune) + theme_bw() + ggtitle("Parameters Tuning_Decision Trees") 
ggsave("Parameteris Tuning_Decision Trees.pdf", width = 8, height= 8) 
 
final_dt_wkflow <-  
  dt_wkflow %>%  
  finalize_workflow(dt_tune %>% select_best()) 
 
dt_res <-  
  fit_resamples(final_dt_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_metrics(dt_res) 
# result for trains 
# accuracy binary        0.849 
# roc_auc binary         0.919 
 
# Roc curve for validation set 
dt_auc_train <-  
  dt_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "DT(AUC=0.919)") 
 
dt_fit <- fit(final_dt_wkflow, data = pparg_train) 
 
# train 
dt_pred_train <-  
  predict(dt_fit, new_data = pparg_train) %>%  
  bind_cols(predict(dt_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(dt_pred_train, truth = preeclamp, estimate = .pred_class) 
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# test 
dt_pred <-  
  predict(dt_fit, new_data = pparg_test) %>%  
  bind_cols(predict(dt_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
eval_sets(dt_pred, truth = preeclamp, estimate = .pred_class) 
 
dt_pred %>% accuracy(truth = preeclamp, .pred_class) 
dt_pred %>% roc_auc(truth = preeclamp, .pred_2) 
dt_auc_test <-  
  dt_pred %>%  
  roc_curve(truth = preeclamp, .pred_2) %>%  
  mutate(model = "DT(AUC=0.579)") 
# result 
# accuracy binary        0.874 
# roc_auc binary         0.579 
 
# 5) K-nearest neighbor ---- 
 
knn_mod <-  
  nearest_neighbor(neighbors = tune(), weight_func = tune(), dist_power = 
tune()) %>%  
  set_engine("kknn") %>%  
  set_mode("classification") 
 
knn_recipe <-  
  recipe(preeclamp ~ ., data = pparg_train) %>%  
  step_dummy(all_nominal(), -all_outcomes()) %>% 
  step_zv(all_predictors()) %>%  
  step_normalize(-all_nominal()) 
 
knn_wkflow <-  
  workflow() %>%  
  add_model(knn_mod) %>%  
  add_recipe(knn_recipe) 
 
set.seed(100) 
knn_tune <-  
  knn_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    grid = 1000, 
    param_info = knn_mod %>% parameters(), 
    metrics = metric_set(roc_auc), 
    control = control_grid(save_pred = TRUE) 
  ) 
 
show_best(knn_tune, n = 5) 
select_best(knn_tune, metric = "roc_auc") 
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autoplot(knn_tune) + theme_bw() + ggtitle("Parameters Tuning_K-Nearest 
Neighbor") 
ggsave("Parameteris Tuning_K-Nearest Neighbor.pdf", width = 8, height= 8) 
 
final_knn_wkflow <-  
  knn_wkflow %>%  
  finalize_workflow(knn_tune %>% select_best()) 
 
knn_res <-  
  fit_resamples(final_knn_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_metrics(knn_res) 
# result for trains 
# accuracy binary        0.826 
# roc_auc binary         0.917 
 
# Roc curve for validation set 
knn_auc_train <-  
  knn_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "KNN(AUC=0.917)") 
 
knn_fit <- fit(final_knn_wkflow, data = pparg_train) 
 
# train 
knn_pred_train <-  
  predict(knn_fit, new_data = pparg_train) %>%  
  bind_cols(predict(knn_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(knn_pred_train, truth = preeclamp, estimate = .pred_class) 
 
# test 
knn_pred <-  
  predict(knn_fit, new_data = pparg_test) %>%  
  bind_cols(predict(knn_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
eval_sets(knn_pred, truth = preeclamp, estimate = .pred_class) 
 
knn_pred %>% accuracy(truth = preeclamp, .pred_class) 
knn_pred %>% roc_auc(truth = preeclamp, .pred_1) 
knn_auc_test <-  
  knn_pred %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "KNN(AUC=0.725)") 
# result 
# accuracy binary        0.801 
# roc_auc binary         0.725 
 
# 6) naive Bayes ---- 
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nb_mod <-  
  naive_Bayes(smoothness = tune(), Laplace = tune()) %>%  
  set_engine("naivebayes") %>%  
  set_mode("classification") 
 
nb_recipe <-  
  recipe(preeclamp ~ ., data = pparg_train) %>%  
  step_zv(all_predictors()) 
 
nb_wkflow <-  
  workflow() %>%  
  add_model(nb_mod) %>%  
  add_recipe(nb_recipe) 
 
set.seed(100) 
nb_tune <-  
  nb_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    grid = 1000, 
    param_info = nb_mod %>% parameters(), 
    metrics = metric_set(roc_auc), 
    control = control_grid(save_pred = TRUE) 
  ) 
 
show_best(nb_tune, n = 5) 
select_best(nb_tune, metric = "roc_auc") 
 
autoplot(nb_tune) + theme_bw() + ggtitle("Parameters Tuning_Naive Bayes") 
ggsave("Parameteris Tuning_Naive Bayes.pdf", width = 8, height= 8) 
 
final_nb_wkflow <-  
  nb_wkflow %>%  
  finalize_workflow(nb_tune %>% select_best()) 
 
nb_res <-  
  fit_resamples(final_nb_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_metrics(nb_res) 
# result for trains 
# accuracy binary        0.693 
# roc_auc binary         0.787 
 
# Roc curve for validation set 
nb_auc_train <-  
  nb_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "NB(AUC=0.787)") 
 
nb_fit <- fit(final_nb_wkflow, data = pparg_train) 
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# train 
nb_pred_train <-  
  predict(nb_fit, new_data = pparg_train) %>%  
  bind_cols(predict(nb_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(nb_pred_train, truth = preeclamp, estimate = .pred_class) 
 
# test 
nb_pred <-  
  predict(nb_fit, new_data = pparg_test) %>%  
  bind_cols(predict(nb_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
eval_sets(nb_pred, truth = preeclamp, estimate = .pred_class) 
 
nb_pred %>% accuracy(truth = preeclamp, .pred_class) 
nb_pred %>% roc_auc(truth = preeclamp, .pred_1) 
nb_auc_test <-  
  nb_pred %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "NB(AUC=0.619)") 
# result 
# accuracy binary        0.930 
# roc_auc binary         0.619 
 
# 7) boost tree ---- 
 
bt_mod <-  
  boost_tree(tree_depth = tune(), 
             trees = tune(), 
             learn_rate = tune(), 
             mtry = tune(), 
             min_n = tune(), 
             loss_reduction = tune(), 
             sample_size = tune()) %>%  
  set_engine("xgboost") %>%  
  set_mode("classification") 
 
bt_wkflow <-  
  workflow() %>%  
  add_model(bt_mod) %>%  
  add_formula(preeclamp ~ .) 
 
set.seed(100) 
bt_tune <-  
  bt_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    grid = 1000, 
    param_info = bt_mod %>% parameters(), 
    metrics = metric_set(roc_auc), 
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    control = control_grid(save_pred = TRUE) 
  ) 
 
show_best(bt_tune, n = 5) 
select_best(bt_tune, metric = "roc_auc") 
 
autoplot(nb_tune) + theme_bw() + ggtitle("Parameters Tuning_Boost Tree") 
ggsave("Parameteris Tuning_Boost Tree.pdf", width = 8, height= 8) 
 
final_bt_wkflow <-  
  bt_wkflow %>%  
  finalize_workflow(bt_tune %>% select_best()) 
 
bt_res <-  
  fit_resamples(final_bt_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_metrics(bt_res) 
# result for trains 
# accuracy binary        0.967 
# roc_auc binary         0.991 
 
# Roc curve for validation set 
bt_auc_train <-  
  bt_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "BT(AUC=0.991)") 
 
bt_fit <- fit(final_bt_wkflow, data = pparg_train) 
 
# train 
bt_pred_train <-  
  predict(bt_fit, new_data = pparg_train) %>%  
  bind_cols(predict(bt_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(bt_pred_train, truth = preeclamp, estimate = .pred_class) 
 
# test 
bt_pred <-  
  predict(bt_fit, new_data = pparg_test) %>%  
  bind_cols(predict(bt_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
eval_sets(bt_pred, truth = preeclamp, estimate = .pred_class) 
 
bt_pred %>% accuracy(truth = preeclamp, .pred_class) 
bt_pred %>% roc_auc(truth = preeclamp, .pred_1) 
bt_auc_test <-  
  bt_pred %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "BT(AUC=0.701)") 
# result 
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# accuracy binary        0.954 
# roc_auc binary         0.700 
 
# plot boost tree 
library(treeheatr) 
heat_tree( 
  pparg_train, 
  target_lab = "preeclamp", 
  task = "classification", 
  label_map = c(`2` = "Positive", `1` = "Negative"), 
  feats = 
c("genot1431_M","genot681_M","primidelv","ob_Nbpreg","c24_edu","obese","bmi",
"nbcig"), 
  lev_fac = 1.2, 
  show = "heat-tree", 
  heat_rel_height = 0.25, 
  panel_space = 0.001 
) 
ggsave("Boost tree map.pdf", width = 8, height = 8) 
 
# Boost tree diagram 
 
library(DiagrammeR) 
xgb.plot.tree( 
  feature_names = c( 
    "genot1431_M", 
    "genot1431_C", 
    "genot681_M", 
    "genot681_C", 
    "primidelv", 
    "ob_Nbpreg", 
    "c24_edu", 
    "nn_Sex", 
    "obese", 
    "bmi", 
    "nbcig" 
  ), 
  model = xgb.fit.final 
) 
  
gr <- xgb.plot.multi.trees(xgb.fit.final,  
                     feature_names = c( 
                       "genot1431_M", 
                       "genot1431_C", 
                       "genot681_M", 
                       "genot681_C", 
                       "primidelv", 
                       "ob_Nbpreg", 
                       "c24_edu", 
                       "nn_Sex", 
                       "obese", 



243 

 

                       "bmi", 
                       "nbcig"), 
                     features_keep = 11, 
                     render = TRUE 
                    ) 
gr 
 
# 8) multilayer perceptron ---- 
 
mlp_mod <-  
  mlp(hidden_units = tune(), penalty = tune(), epochs = tune()) %>%  
  set_engine("nnet") %>%  
  set_mode("classification") 
 
mlp_recipe <-  
  recipe(preeclamp ~ ., data = pparg_train) %>%  
  step_dummy(all_nominal(), -all_outcomes()) %>% 
  step_zv(all_predictors()) %>%  
  step_normalize(all_predictors()) 
 
mlp_wkflow <-  
  workflow() %>%  
  add_model(mlp_mod) %>%  
  add_recipe(mlp_recipe) 
 
set.seed(100) 
mlp_tune <-  
  mlp_wkflow %>%  
  tune_grid( 
    resamples = val_set, 
    grid = 1000, 
    param_info = mlp_mod %>% parameters(), 
    metrics = metric_set(roc_auc), 
    control = control_grid(save_pred = TRUE) 
  ) 
 
show_best(mlp_tune, n = 5) 
select_best(mlp_tune, metric = "roc_auc") 
 
autoplot(nb_tune) + theme_bw() + ggtitle("Parameters Tuning_Multilayer 
Perceptron") 
ggsave("Parameteris Tuning_Multilayer Perceptron.pdf", width = 8, height= 8) 
 
final_mlp_wkflow <-  
  mlp_wkflow %>%  
  finalize_workflow(mlp_tune %>% select_best()) 
mlp_res <-  
  fit_resamples(final_mlp_wkflow, resamples = val_set, control = 
control_resamples(save_pred = TRUE)) 
collect_metrics(dt_res) 
# result for trains 
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# accuracy binary        0.849 
# roc_auc binary         0.919 
 
# Roc curve for validation set 
mlp_auc_train <-  
  mlp_res %>%  
  collect_predictions() %>%  
  roc_curve(preeclamp, .pred_1) %>%  
  mutate(model = "MLP(AUC=0.919)") 
 
mlp_fit <- fit(final_mlp_wkflow, data = pparg_train) 
 
# train 
mlp_pred_train <-  
  predict(mlp_fit, new_data = pparg_train) %>%  
  bind_cols(predict(mlp_fit, new_data = pparg_train, type = "prob")) %>%  
  bind_cols(pparg_train %>% select(preeclamp)) 
eval_sets(mlp_pred_train, truth = preeclamp, estimate = .pred_class) 
 
# test 
mlp_pred <-  
  predict(mlp_fit, new_data = pparg_test) %>%  
  bind_cols(predict(mlp_fit, new_data = pparg_test, type = "prob")) %>%  
  bind_cols(pparg_test %>% select(preeclamp)) 
eval_sets(mlp_pred, truth = preeclamp, estimate = .pred_class) 
 
mlp_pred %>% accuracy(truth = preeclamp, .pred_class) 
mlp_pred %>% roc_auc(truth = preeclamp, .pred_1) 
mlp_auc_test <-  
  mlp_pred %>%  
  roc_curve(truth = preeclamp, .pred_1) %>%  
  mutate(model = "MLP(AUC=0.670)") 
# result 
# accuracy binary        0.811 
# roc_auc binary         0.670 
 
# ROC curve combined plots---- 
 
# train 
p1 <-  
  bind_rows(mlr_auc_train,  
          rf_auc_train, 
          svm_auc_train, 
          dt_auc_train, 
          knn_auc_train, 
          nb_auc_train, 
          bt_auc_train, 
          mlp_auc_train) %>%  
  ggplot(aes(x = 1 - specificity, y = sensitivity, col = model)) +  
  geom_path(lwd = 1, alpha = 0.8) + 
  geom_abline(lty = 2) +  
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  coord_equal() +  
  scale_color_brewer(palette = "Set1") + 
  labs(col = "Models_Train") + 
  theme_bw() + 
  theme(legend.position = "bottom") + 
  ggtitle("ROC Curve_Train") 
 
p1 
 
ggsave("c1431t_Roc_curve_Train.pdf", width = 8, height = 6) 
 
# test 
p2 <-  
  bind_rows(mlr_auc_test,  
          rf_auc_test, 
          svm_auc_test, 
          dt_auc_test, 
          knn_auc_test, 
          nb_auc_test, 
          bt_auc_test, 
          mlp_auc_test) %>%  
  ggplot(aes(x = 1 - specificity, y = sensitivity, col = model)) +  
  geom_path(lwd = 1, alpha = 0.8) + 
  geom_abline(lty = 2) +  
  coord_equal() +  
  scale_color_brewer(palette = "Set1") + 
    labs(col = "Models_Test") + 
  theme_bw() + 
  theme(legend.position = "bottom") + 
  ggtitle("ROC Curve_Test") 
 
p2 
 
ggsave("c1431t_Roc_curve_Test.pdf", width = 8, height = 6) 
 

 


