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Chapter 1

Introduction

The advancements in technology throughout the last century have made it
possible to create nanometric systems in the late 1980s, enabling the investi-
gation of a new physics regime called mesoscopic [1, 2]. This regime emerges
at low temperature on the nanoscale and corresponds to the study of an en-
semble of particles that exhibits quantum mechanical effects [3]. Mesoscopic
physics is of great importance in adressing present and future challenges
such as information transport, information storage or computation power
[4, 5].

Due to the nanoscopic size of mesoscopic samples, a new issue arises con-
cerning the microscopic fluctuations of sample properties with identical fab-
rication processes. These fluctuations, which are due to imperfections in the
material, can considerably affect the properties of the samples, like the su-
perconducting gap [6], the quantum transport in systems like graphene [7],
disordered metals [8, 9] or semiconductor heterostructures [10].

In parallel to the miniaturization of electronic devices, the computational
power, storage, and memory has been increasing exponentially. This ad-
vancement allowed the development of a new kind of algorithm based on
what is called artificial intelligence (AI), which uses experience to learn how
to solve highly complex problems. In the case of supervised learning, the
problem corresponds to the prediction of an output based on a given input.
The experience corresponds to an ensemble of examples composed of in-
put/output pairs. Then, during the learning procedure, the parameters of
the neural network (that can be seen as a complex function) are optimized to
fit the known outputs [11].

In recent years, AI has become an important tool for researchers helping
them to solve a multitude of problems. Most of them can be solved man-
ually or with the help of a classical algorithm and aim to either accelerate
(To save time or money) [12, 13] or automate (task only doable by a human
being) [14, 15] tasks that can already be done nowadays. Furthermore, artifi-
cial intelligence made it possible to solve problems that could not have been
solved otherwise like the inverse problem [16, 17]. An important category of
problems that can be solved with the aid of machine learning is image pro-
cessing. Leveraging machine learning, it is possible to automatically extract
information from large image datasets solely utilizing the pixels contained
within the images, making this method remarkably versatile. Thus, image
processing can be applied from large length scales, like in astrophysics with
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images from telescopes [18, 19], as well as small length scales with electronic
microscope images [14, 20].

In the following study, we will apply image processing techniques to in-
vestigate the quantum transport of a high-mobility electron gas confined in
a two-dimensional plane. Such systems are present in GaAs/AlGaAs het-
erostructures [21] and are broadly used for the research on nanostructures [4,
22, 23]. The high-mobility property is due to the presence of layers that sep-
arate the electron gas from the ionized dopants [24]. However, those ionized
dopants are at the origin of small-angle scattering of the electrons. The weak-
ness of the disorder effects comes from the relatively long correlation length
and the amplitude variation that is weaker than the Fermi energy. The aim
of the project is to characterize this disorder using the transport properties.
A technique called scanning gate microscopy (SGM) allows us to observe the
local transport properties using a scanning tip with negative bias voltage and
measuring the conductance of the sample for all the positions of the tip [25,
26]. At the end, experimentalists obtain an image where a pixel corresponds
to the conductance of the sample when the tip is located at the position of
the pixel. It has been proposed that this image shows an approximation of
the electron flow [25]. In the case where the electron flow goes through a
constriction, one can observe a branch pattern in the image [27]. It has been
demonstrated that this branching pattern is due to the disorder present in the
sample. It is therefore theoretically possible to extract disorder characteristics
from the SGM images.

The applications of machine learning techniques to the disorder char-
acterization from electronic transport properties has been studied recently.
Such methods have been used to adjust device parameters to compensate for
uncontrolled disorder effects in the case of a double quantum dot nanostruc-
ture [28]. It has also been suggested that properties of the disorder between
the fingers of a QPC can be extracted from SGM data using cellular neural
networks [29] or a swarming algorithm [30]. A proof of principle consisting
to determine the disorder from a Majorana nanowire system has also been
performed recently [17].

In order to treat this interdisciplinary problem, we introduce separately
concepts of artificial intelligence, emphasising on deep learning concepts in
chapter 2, and the basics of quantum transport including a presentation of
the scanning gate microscopy in chapter 3. Since we have faced considerable
time constraints while simulating SGM images, in the first part of the study
we used a less time-consuming signal to compute, which is the partial local
density of states (PLDOS). In our first paper, we used this signal to obtain
global characterization parameters of the potential as detailed in chapter 4
and to unveile the full potential landscape as presented in chapter 5. After
completing the proof of principle concerning the ability of neural networks to
give a precise characterization of the potential from the PLDOS, we decided
to apply our method on a real sample, where the electronic transport infor-
mation used to determine the disorder is the SGM. We describe the sample
and the model used to create the dataset in the chapter 6, the analysis with ar-
tificial intelligence is presented in chapter 7. Finally, in chapter 8, we present
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our conclusions and outlooks of the study.

Related publications

• G. J. Percebois and D. Weinmann Deep neural networks for inverse prob-
lems in mesoscopic physics: characterization of the disorder configuration from
quantum transport properties, Phys. Rev. B 104, 075422 (2021)

• G. J. Percebois, A. Lacerda-Santos, B. Brun, B. Hackens, X. Waintal and
D. Weinmann Reconstructing the potential configuration in a high-mobility
semiconductor heterostructure with scanning gate microscopy, SciPost Phys.
15, 242 (2023).
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Chapter 2

Artificial intelligence and deep
learning

"A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

T. Mitchell (1997) [31]

Thanks to the significant improvement in storage capacity and compu-
tational power, it has become possible to develop a new class of powerful
and efficient algorithms known as machine learning. These algorithms are
capable of solving a diverse range of complex tasks. Over the past few years,
machine learning algorithms have revolutionized numerous domains, span-
ning from industry to scientific research. They find applications in various
fields such as self-driving cars, speech recognition, medicine, finance, and
language translation.

Recently, machine learning has emerged as a powerful tool in many sci-
entific research areas. For example in biology, machine learning is used to
sequence DNA [32] or predicting protein structures [33]. It can also be used
as a tool to reduce greenhouse gas emissions by reducing the transport activ-
ity or forecasting electricity supply and demand [34].

The efficiency of machine learning algorithms has captured the attention
of physicists, who have found numerous applications to physics problems
[35–37]. Indeed, this tool allows scientists to tackle problems with new per-
spectives. The diversity of applications of machine learning resides in the
diversity of learning methods that can be used. We can distinguish three im-
portant categories of training methods: (i) the supervised learning, (ii) the
unsupervised learning and (iii) the reinforcement learning.

The process of supervised learning involves training a neural network,
which can be viewed as a complex function with an output that depends
on the input and a set of parameters known as weights. This is achieved
by utilizing labeled examples, where the label represents the desired output.
During the training process, the algorithm optimizes the weights of the neu-
ral network in order to make the best possible correspondence between the
input and the output by minimizing the difference between the prediction
and the expected output label. Supervised learning algorithms in machine
learning are commonly used for tasks such as classification or regression.
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In physics, a well-known classification task involves identifying different
phases of matter, like gel and fluid in soft matter [38] or topological phases
[39] and magnetic phases [40, 41], in condensed matter. In the example of
magnetic phases, it can correspond to the paramagnetic and ferromagnetic
phase of the Ising model. Applying machine learning to the Ising model al-
lows to determine the critical temperature, which corresponds to the phase
transition. This can be achieved by representing the lattice by a two dimen-
sional array that will be the input of the neural network. Then, systems with
very low temperatures are labeled as ferromagnetic, while those with very
high temperatures are labeled as paramagnetic. After training the neural
network, one can apply it to a range of temperatures that includes the critical
temperature and observe in which category the neural network classifies the
system.

Another application of classifier is the prediction of the topology of a ma-
terial from its chemical composition and symmetry properties [42]. This task
does not require utilization of machine learning, and could be done with a
numerical density functional theory (DFT) calculation. In this specific case,
machine learning is just used to get a prediction in a shorter amount of time
compared to the time needed for a DFT calculation.

Neural networks performing regression tasks can be used to obtain infor-
mation on the properties of quantum many-body systems like the potential
or hopping amplitude from observables [43].

The unsupervised learning consists in creating an algorithm that learns
from unlabeled data. One important application of this approach is to iden-
tify similarities among examples within the training data. The samples with
common underlying properties will be part of the same cluster. The deter-
mination of these clusters is based on computing distances between samples,
which correspond to their similarity rates.

An example of application of unsupervised learning is classifying states
according to their topological properties without knowledge of the under-
lying topological invariant [44]. This example is applied to the XY model
where the topological invariant is the winding number. The algorithm learns
the topological phase transition, which cannot be identified by a local order
parameter.

Another interesting application of unsupervised learning, is to train a
neural network to reproduce the input. In this case, the neural network has
a peculiar architecture called autoencoder. This architecture has the property
to compress the input (i.e. in the middle of the neural network there is less
information than at the input) thanks to a bottleneck shape of the neural net-
work architecture. The layer in the middle of the bottleneck corresponds to
the latent space and has the property to contain only the relevant features of
the input. Such neural networks can be used to denoise data [45] or tuning
semiconductor quantum devices using the property of the latent space [46].

Contrary to supervised and unsupervised learning, reinforcement learn-
ing is a distinct category of machine learning that does not require training
data. Instead, in reinforcement learning, an agent interacts with an environ-
ment [47, 48]. At a time t, the agent has to choose to do one action among
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a given list of possible actions. Each action is associated with a reward, and
through learning, the agent aims to select the action that maximizes its cu-
mulative reward. Thus, the agent is trained by performing actions in the
environment. The reward associated for each possible action depends on the
policy of the agent.

This machine learning approach can be useful in physics. For example, if
one wants to stabilize a quantum state in a cavity, it is possible to use such an
algorithm that tunes parameters like the drive amplitude or the frequency of
the drive depending on the current quantum states [49, 50]. Reinforcement
learning can also be applied to semiconductor quantum devices for tuning
the gates voltages of samples [51] or finding specific transport features [52].

Recently, the utilization of physics informed neural networks [53] has
been increasing. These neural networks have the properties to take into ac-
count the physics governing the dataset. This technique can be applied to
systems submitted to nonlinear differential equations. They can be especially
interesting when the training data set is relatively small. Indeed, the final re-
sult of the neural network has to be physically consistent which considerably
decreases the number of output possibilities.

In recent years, a new field of research known as quantum machine learn-
ing has been emerging. In this domain, neural networks are no longer nu-
merical calculations but applications of unitary operators on quantum states
[54]. An example of application is the quantum autoencoder, which can be
used to compress quantum information. The compression can be the decline
of the number of qubits to encode the information [55] or encoding the in-
formation in a qudit of dimension d to a qudit of dimension n < d [56]. In
the latter example the training is performed using an optical setup. The set of
parameters, which were previously represented as matrix elements, now cor-
respond to the angles of rotation of half-wave and quarter-wave plates. This
kind of compression can have a significant impact in the field of quantum
computation and simulation, where quantum resources are highly valuable.

The following study specifically focuses on supervised deep learning al-
gorithms, which possess two key properties: a supervised learning proce-
dure and the utilization of deep neural networks. This chapter is dedicated
to providing an introduction to all the essential concepts required to under-
stand the work performed throughout the thesis. In the first part, we describe
the basics of neural networks and the training procedure. The second part is
dedicated to exploring neural networks specifically optimized for image pro-
cessing.

2.1 Basics on neural networks

2.1.1 Neural network as a function

Deep neural networks are defined as artificial neural networks (ANNs) com-
posed of multiple layers [11, 57, 58]. These layers can be decomposed into
three parts, the input and the output layer, where the number of neurons
corresponds to the number of input and output values. Between those two
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Input Layer

z′ = Σ f (z′)

Hidden Layer Output Layer

y

FIGURE 2.1: Representation of a perceptron. The input layer is
composed of N neurons which are connected to the single neu-
ron of the single hidden layer. The two operations performed
in the neuron of the hidden layer are decomposed. The first op-
eration corresponds to computing the weighted sum of the val-
ues of input neurons according to Eq. 2.1 and the second one is
the application of an activation function. The inset represents a

dense neural network with several hidden layers.

layers, we have the hidden layers which perform nonlinear transformations
of the input information. Those operations are not visible by the user. This
model is based on the neural network of the brain in which the signal is trans-
mitted and analyzed through the neuronal connections. In general many
concepts used in AI are inspired by brain science [59]. In an ANN, a neuron
receives numbers from neurons of the previous layer, performs operations
and then transmits the resulting number to the neurons of the next layer. The
building block of an ANN, called perceptron, is a neural network with only
one hidden layer containing one neuron. In Fig 2.1, the neuron of the hidden
layer takes the set of inputs x and performs two operations, the first one is

z′ = wTx + b (2.1)

where w is the set of weights and b the bias, both associated to this neuron.
The second operation is the application of a so-called activation function z =
f (z′) that is present to add non-linearity. For the perceptron y = z. Examples
of activation functions are given in Sec. 2.1.2.

It becomes then possible to extend this concept to a multiple-layer fully
connected neural network as depicted in the inset of Fig. 2.1. The value of
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the neurons on the l-th layer is given by the vector zl = f (z′l), where

z′l = [wT
l ] zl−1 + bl. (2.2)

Here [wl] is a matrix of weights where the element w
ji
l corresponds to the

weight that connects the j-th neuron of the (l − 1)-th layer to the i-th neuron
of the l-th layer. bl corresponds to the vector of biases of the l-th layer. The
activation function applied on z′l is the same for all neurons in the layer (and
is often the same through all the computational pipeline except for the output
layer).

2.1.2 Activation function

The activation functions are present to add non-linearity through the neural
network. The latter are non-linear, differentiable and often monotonous. One
of the most widely used activation functions is the rectified linear unit (ReLU)
function [60, 61]

f (z′) = max(0, z′) (2.3)

that is efficient in numerous cases. The non-saturated property has the ad-
vantage to avoid the exploding and vanishing gradient issues and to acceler-
ate the convergence speed. However, in some cases, one may encounter what
is known as the "dying ReLU" problem, which refers to situations where the
output of the neural network becomes independent of the input because the
outputs after the application of the ReLU function is 0 for a majority of the
neurons in the network. To avoid this problem, one can use the Leaky ReLU
function [62]

f (z′) =
{

z′, z′ ≥ 0
αz′, z′ < 0

(2.4)

where the value of α is typically between 0 and 1. Other interesting activation
functions are the sigmoid and the hyperbolic tangent

f (z′) =
1

1 + e−z′ , f (z′) = tanh
(

z′
)

, (2.5)

that returns a number in the finite interval [0, 1] and [−1, 1], respectively. It
can be observed that such activation functions can be employed at the end of
a neural network when it is desired to constrain the values of output neurons
within specific intervals.

2.2 Training procedure

In this section, we restrict the discussion to the supervised learning method.
The training process of such a supervised learning algorithm consists in find-
ing the best set of parameters {wl, bl} that makes the model (i.e. the func-
tion provided by the ANN) fit, as much as possible, the desired output for
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the data of the training set.

2.2.1 Organizing the data

When dealing with a machine learning problem, it is crucial to organize the
data by applying two important procedures: data splitting and normaliza-
tion.

In order to train and evaluate a neural network, one has to split the dataset
in three parts. First, approximately 10% to 20% of the data needs to be set
aside as the test set. The purpose of this test set is to assess the accuracy of the
best model once it has been identified. To find this best model, we split again
the remaining data in two categories. The training set (70% to 80%) is used
only to train the model i.e. finding the best set of weights of a neural network
with a given architecture. The validation set (10% to 20%) corresponds to
a set of data that are used to evaluate the model during the training. The
latter set is useful to find the best architecture for the neural network, as well
as identifying hyperparameters (a specific kind of parameters that remain
fixed during training and are defined when creating the neural network).
Examples of hyperparameters include the number of layers and the choice of
loss function.

The normalization of the data is crucial in machine learning [63]. It allows
the neural network to deal with numbers which are all of the same order of
magnitude and make the training more efficient. It can take the form of pre-
treatment where we normalize the set of data X all at once. It is also possible
to use specific layers at the begining of the neural network to normalize the
data. The two main kinds of normalization are the min-max scaling

X̂ =
X − min(X)

max(X)− min(X)
(2.6)

which is useful when the data distribution is unknown but is affected by
outliers. The second one is the standardization

X̂ =
X − mean(X)

std(X)
(2.7)

where mean(X) means the average of X and std(X) concern the standard
deviation of the data X. This method is more efficient when dealing with
data that have a normal distribution.

2.2.2 Loss function

The optimization of the weights and biases corresponds to the minimization
of the difference between the expected output Ye and the prediction Yp done
by the neural network. This difference is evaluated through the so-called loss
function L(Ye, Yp) [11]. The loss function plays a crucial role in the training
process. It has to be chosen depending on the kind of problem we want to
solve (regression or classification). For instance, when performing a classifi-
cation between two categories, the output can have a value between 0 and 1.
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In this case, an example of loss function is the binary cross-entropy

L(Ye, Yp) = − 1
N

N

∑
i=1

[

Ye
i log

(

Y
p
i

)

− (1 − Ye
i ) log

(

1 − Y
p
i

)]

. (2.8)

where N is the number of computed values. For regression, it can be any
number1 and we can use for example the mean squared error

L(Ye, Yp) =
1
N

N

∑
i=1

(Ye
i − Y

p
i )

2. (2.9)

We bring to light the dependency of the prediction Yp on the input X and
the current set of parameters of the neural network {wl}. This allows us
to rewrite the loss function as L(Ye, Yp) = L(Ye, X, {w}). It becomes then
clear that the minimization of the loss function corresponds to finding the
minimum in the hyperspace of the loss function where each dimension cor-
responds to one of the parameters (weight or bias). The search of these min-
imum is done by performing a gradient descent and the gradient of the loss
function is determined through the backpropagation algorithm that is de-
tailed in the next section.

2.2.3 Backpropagation

The procedure of the backpropagation algorithm [64] is as follows: If one
wants to evaluate the gradient of the loss function with respect to the weight
w

ij
l , one has first to evaluate the gradient of the output with respect to the

neuron of the last hidden layer and then evaluate the gradient of the neuron
of the last hidden layer with respect to the neurons of the second last hidden
layer and so on until evaluating the gradient of the j-th neuron of the l-th
layer with respect to w

ij
l . A simple example is depicted in Fig. 2.2, where we

want to compute ∂L/∂w21
1 . The latter value is given by

∂L

∂w21
1

=
∂L

∂Y

∂Y

∂w21
1

(2.10)

=
∂L

∂Y

∂Y

∂h1
2

∂h1
2

∂w21
1

+
∂L

∂Y

∂Y

∂h2
2

∂h2
2

∂w21
1

(2.11)

=
∂L

∂Y

∂Y

∂h1
2

∂h1
2

∂h2
1

∂h2
1

∂w21
1

+
∂L

∂Y

∂Y

∂h2
2

∂h2
2

∂h2
1

∂h2
1

∂w21
1

. (2.12)

In this example, we observed that all the paths from the output to the
given neuron have to be considered. In the general case, the dependency of

1We note that it is often convenient in machine learning to normalize the data which
makes it possible and sometimes more efficient to use a classification loss function like the
binary cross-entropy for regression tasks.
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FIGURE 2.2: Schematic neural network. Backwards paths from
output to w21

1 correspond to dot and dashdotted paths.

the loss function on a given parameter w
ji
l located on layer l writes

∂L

∂w
ji
l

=
∂L

∂Y

[

∑
δ∈P

∂Y

∂h
δL−1
L

l−1

∏
k=L−1

∂h
δk+1
k+1

∂h
δk
k

]

∂h
j
l

∂w
ji
l

, (2.13)

where P represents all the paths that go from the output back to hl
l. The en-

semble neurons corresponding to the path P is {h
δl
l }, where δl is the neuron

of layer l that corresponds to the path.

2.2.4 Gradient descent and optimizers

Once the gradient is determined, one has to update the weights in order to
reduce the loss function as follows

w(t) = w(t−1) − η∇w(t)L (2.14)

where t corresponds to the iteration variable and η is an hyperparameter
called the learning rate2. We notice that a large value of the learning rate
could lead to a faster convergence, but can also lead to the overshoot of an
optimum minimum of the loss function. However, it is generally not advis-
able to set an excessively small learning rate as it can result in significantly
increased training time. Fortunately, there are very efficient algorithms with
adaptive learning rate. One of the most common optimizers is Adam [65]
which "combine the advantages of [...]: AdaGrad [66], which works well with sparse

2Unlike other hyperparameters, the learning rate can be modified during training if we
use a callback mechanism (This notion will be discussed in Sec. 2.2.5) during the training
the allows to decrease the learning by a given factor if the precision gets stuck on a plateau.
However, in this case, we have new hyperparameters like the initial learning rate or the
decreasing factor.
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gradients, and RMSProp [67], which works well in on-line and non-stationary set-
tings" 3. Using Adam [65], the gradient descent (2.14) becomes

w(t) = w(t−1) − η
m̂t√

v̂t + ǫ
(2.15)

where ǫ = 10−7 (by default on Keras4 [69]) is an infinitely small number to
avoid the division by zero. The terms m̂t and v̂t correspond to

m̂t =
mt

1 − β1
and v̂t =

vt

1 − β2
. (2.16)

where β1 = 0.9 and β2 = 0.999 (by default on Keras) are the first and the
second decay rates, respectively. The term

mt = β1mt−1 + (1 − β1)
(

∇w(t)L
)

. (2.17)

takes into account the average of previous gradient values with an exponen-
tial weight. While the term

vt = β2vt−1 + (1 − β2)
(

∇w(t)L
)2 (2.18)

takes into account the exponential moving average. The terms mt and vt have
been redefined in Eq. 2.16 because of their initialization at 0, those parameters
are often biased towards 0 since β1 and β2 ≈ 1.

The iteration stops when the set of weights has converged. It is observed
that Adam outperforms the majority of the other optimizers in terms of con-
vergence speed and training cost [65].

2.2.5 Overview over the whole training algorithm

In this section, we concatenate all the notions seen previously to have an
overview of the easiest general procedure to apply in order to find and eval-
uate a reasonable model. In a second part, we also detail the training proce-
dure.

At the very beginning, one is highly recommended to first to pre-process
the data, which means, first normalize them 5 and then split them in three
parts which corresponds to the training, validation and test set. Once the
data are prepared, we train several different models and observe their per-
formance on the validation set. The model with the highest performance is
then tested on the test set. A more rigorous method concerning the choice of
the model is described in the following section. This last step is important
to ensure that the selected model has the expected performance on unseen
data, and is not just the best one to fit only the data of the validation set. Of

3Citation from [65]
4Keras is a high-level application programming interface (API) of the machine learning

TensorFlow [68] platform
5if we do not use a normalization layer after the input layer of the ANN
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course, if there is no bias on the splitting part and if we have a sufficiently
large validation set, such a problem is unlikely to occur.

Since the gradient descent cannot reach a minimum of the loss function
in a single step, even with a large training step, we have to perform sev-
eral updates applying (2.15) until reaching the convergence of the weights.
One training iteration over all the training set is called an epoch. The num-
ber of epochs is also an hyperparameter 6. Another hyperparameter is the
mini-batch, it corresponds to the number of samples of the training set that
is shown "in the same time" to the neural network. In other words, one itera-
tion of weights update will take into account one mini-batch of samples. We
note that this parameter has an important impact on the convergence of the
neural network. The whole training procedure is detailed on Alg. 1.

In some cases, it can be interesting to perform actions during the training.
Although we cannot perform action manually during the training, it is possi-
ble to define a set of automatic actions that have to be executed between the
different epochs. Those automatic actions are the callbacks. For example, it is
convenient to save the neural network after each epoch7. The method allows
to keep the neural network that has the best performance on the validation
set which can be interesting if the weight values have changed such that the
loss function left an interesting local minimum. To avoid the resulting de-
crease in performance, it is also possible to stop the training when the model
is no longer improving. This method can also help to avoid overfitting (recur-
rent issue in machine learning that is explained in the following paragraph).
Another callbacks that we use in the study is the automatic reduction of the
learning rate. Indeed, when the model is not improving significantly, we can
reduce the learning rate by a chosen factor, which can help to improve the
performance of a model.

Algorithm 1 Neural network training

Initialize the neural network Net
(

X, {w(t)}
)

for the number of epochs do
for the number of mini-batches in one epoch do

Forward pass the mini-batch through the neural network and evaluate
the loss function L
Perform backpropogation to find ∇{w(t)}L

Use the optimizer to determine {w(t+1)}
end for
Evaluate the neural network on the validation set
if callbacks then

Perform callback statements
end if

end for

6The number of epochs is indeed fixed before the training process. It is nonetheless pos-
sible to stop the training before reaching the fixed number of epochs using a callback.

7One can incorporate a condition to save the neural network only if it outperforms the
previous best model on the validation set thus far.
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During the training process, the neural network is evaluated on both the
training and validation set. This evaluation corresponds to the difference
between the expected and predicted output of the neural network. Quantita-
tively, it is computed through the metric function(s) that can be the same one
as the loss function or other(s). One has to pay attention to the evolution of
the performance of the neural network on the training set and the validation
set. In the general case, the performance improves for both sets of data until
reaching a convergence. However, in some cases the performance on the val-
idation set increases until finding a maximum and then begins to decrease
while the performance on the training set is still increasing or converging.
This particular case is called overfitting. It means that the neural network
overfits the training data but has bad performance on unseen data.

To prevent the overfitting, several methods can be used. One of the most
common ones is the dropout layer [70]. This layer disconnects some neurons
(each neuron concerned by the dropout layer has a probability p to be discon-
nected during one epoch). The choice of the disconnected neurons changes
at each epoch. We note that, once the training is done, all the neurons are
reconnected.

2.2.6 Finding the best model with k-fold cross-validation and

grid search

We notice the empirical nature of the procedure to find the best neural net-
work. Indeed, it currently does not exist any precise recipe to tune the neu-
ral network to the optimal configuration. However, it exists tedious proce-
dures to find a correct tuning of the neural network. One of them consists
in defining a set of values for each of the parameters that we want to deter-
mine. Then, all the models that correspond to all the possible combinations
are tested to find the one with the highest accuracy. This method requires a
considerable amount of computation time. In order to use this method, one
must have already an idea of parameters that work well. Otherwise, it is, for
example, preferable to use a random search that picks random values in a
bounded domain for each parameter. To test the model, we first have to split
the entire dataset in two parts, the test set and the training set (see in Fig. 2.3).
The test set is kept for the very end of the procedure in order to evaluate the
chosen model on unseen data. The rest is used to find the best model and to
train the selected one.

The grid search method is often used with a precise evaluation procedure
for the model. Indeed, in some cases, the accuracy variation from one model
to another can be relatively small and can be biased by the finite size of the
set of data used to evaluate the model. As depicted in Fig. 2.3, the k-fold
cross-validation [71] consists to split the training set in k folds of equal size
and use k − 1 fold to train the model while the remaining fold is used for the
evaluation. We repeat this operation k times where each time the evaluation
fold is never the same and we average the precision for the given model over
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Dataset

Train set Test set

Models to evaluate

for grid search

k-fold cross-validation

Split 1 fold 1 fold 2 fold k

Split 2 fold 1 fold 2 fold k

Split k fold 1 fold 2 fold k

Average precision on the k splits

Determine
the best model

Train the
best model

Final evaluation

Loop on all
the models

FIGURE 2.3: Schematic representation of the procedure to de-
termine the best model among a list of models using the k-fold
validation technique. In the k-fold cross-validation section, the
green folds correspond to the training data while the blue folds

are the validation data.

the k trainings8. At the end, we use the whole training set to train the best
model and evaluate it on the test set.

2.3 Convolutional neural networks

In the previous section, we have presented the general learning procedure
of neural networks. Now, we focus on neural network architectures that are
more specific for image processing. This machine learning category has lit-
erally been the object of a famous challenge called ImageNet [72] which is the
name of the database used for the challenge. One of most significant events of
this challenge happened in 2012 with the utilization of convolutional neural
networks (CNN) that allowed to shatter the previous performance of other
kinds of algorithms [73]. The main feature of CNNs is to process the image
while keeping the spatial coherence of it [11, 74, 75].

CNNs are generally composed of two parts: the convolution part at the
beginning of the network which is followed by a part composed of dense
layers that allows to perform a regression or a classification. The two parts
are merged by flattening the last convolution layer which becomes a dense
layer. In the following study, we also use an encoder-decoder network that is
designed to take an image as input and produce another image as output.
We note that this category of neural networks does not have dense layers.

8We note that we can use more than one fold for this procedure, but the set of evaluation
folds has never to be the same
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FIGURE 2.4: Example of a convolution operation. The green
matrix represents the initial image, the red one correponds to

the filter and the blue one is the result of the convolution.

This section is dedicated to the presentation of those neural networks by
mainly explaining the working procedure of convolutional and pooling lay-
ers. We also briefly discuss the architecture of an encoder-decoder and the
role of the graphical processing unit (GPU) in the training process.

2.3.1 Convolution layer

The convolution layer is a function that returns feature maps. Each of these
feature maps corresponds to the input images of the convolution layer, on
which we apply filters (also called kernels). As in the dense layer, we also
add a bias to the result and apply an activation function f . The convolution
operation that corresponds to one filter w applied to one image x without
activation function nor bias is depicted in Fig. 2.4 which shows that for the
pixel (i, j), the output y is given by

yij =
k1

∑
α

k2

∑
β

wαβxα+i−1,β+j−1 (2.19)

where k1 and k2 correspond to the size of the kernel, in the example k1 =
k2 = 3. In practice, many filters are used in parallel such that the input and
the output of a convolution layer are in general not single images but a set
of images that all are feature maps. In that case, the formula that returns the
n-th feature map of the l-th layer is

y
(l)
n,ij = f







N
(l−1)
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s

k
(l)
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∑
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k
(l)
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∑
β

w
(l)
ns,αβy

(l−1)
s,α+i−1β+j−1 + bn






(2.20)

where N
(l−1)
f is the number of feature map in the previous convolution layer

and bn is the bias corresponding to the n-th feature map.
For CNNs, the weights are the values of the filter and the bias. The train-

ing process for CNN is similar to the one of a classical neural network pre-
sented above.
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The main difference between a dense layer and a convolution layer is the
number of connected neurons. Indeed, in CNN all the pixels of the feature
maps between one layer and the next one are not connected to each other
which reduces the number of parameters and makes the training faster. This
architecture of neural networks allows also to keep processing the informa-
tion in two-dimensions which keeps a spatial information. This is not possi-
ble with a dense neural network.

When using convolution layers, one has to fix new hyperparameters that
do not exist for dense layers:

• Kernel size: corresponds to the size (in pixel) of the filter.

• Number of filters: corresponds to the number of feature maps in out-
put of the concerned convolution layer.

• Padding: number of pixel line added (with the value 0) at the edge of
the image on which the filter is applied. It can be used to keep the same
image dimension after the convolution layer.

• Stride: corresponds to the number of pixels that the filter moves be-
tween two consecutive convolution operations. (Impact the dimension
of the output feature maps).

The aim of the succession of convolution layer is to detect the main fea-
tures of an image which are necessary for the classification or the regression.
However, in order to keep only the relevant information, one has to reduce
the dimension of the images through the convolution part. This operation is
performed using a pooling (or downsampling) layer, explained in the next
section.

2.3.2 Pooling layer

The pooling layer plays a dual role in the network: it reduces the dimen-
sion of an image and contributes to the non-linearity, alongside the activa-
tion function. Additionally, by reducing the amount of information, it helps
mitigate overfitting.

To decrease the image size, the pooling layer partitions the image in equal
size rectangles (that are often squares) which correspond to an ensemble of
pixels. Then, the pooling layer applies a function on each of those rectangles
in order to obtain a single number. The function can be a simple average of
all the numbers in the rectangle for instance. The most famous function is
the maxpooling which corresponds to the max() function. An example of
the application of maxpooling corresponds to the first operation depicted in
Fig. 2.5.

2.3.3 Encoder-decoder

In the majority of applications discussed in this thesis, we need to use a CNN
that predicts an image from another image. The encoder-decoder architec-
ture serves as a fundamental framework for addressing such problems. The
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FIGURE 2.5: Example of a pooling and Upsampling operation.
The left green matrix represents the initial image, the pink one
corresponds to the results of the pooling operation on the left
matrix. The ensemble of pixels in the red dashed square of the
left matrix felt the max() function to become the pixel in the
pink matrix highlighted by the red dashed square. The right
green matrix corresponds to the result of an upsampling oper-
ation applied to the pink center matrix. The pixel highlighted
by the blue square in the pink matrix becomes the ensemble of

pixels of the right matrix in the blue dashed square.

first part of the neural network is similar to the CNN described before with a
succession of convolution and pooling layers, which decrease the size of the
image but increase the number of feature maps. The difference appears in the
second part, where we do no longer have dense layers but an architecture
symmetric to the first part. Indeed, the second part is composed of a suc-
cession of convolution layers and upsampling layers. Contrary to a pooling
layer, an upsampling layer increases the dimension of the image by creating
a rectangle (that is often a square) composed of several pixels with the same
value from the original image. An example of an application of upsampling
layer is depicted by the second operation present in Fig. 2.5.

It is worth noting that such image translation using a neural network is
a common task in AI. However, in the large majority of cases, the input and
output images exhibit shared local features. For example, extracting a road
map from a satellite image, or segmentation tasks. In these cases, it is fre-
quent to use a neural network with a peculiar architecture called a U-net [76]
introduced in 2015 for biomedical image processing. The specificity of this
architecture is an additional connection between the convolution layers of
the encoder part to the convolution layers (with the same image dimension)
of the decoder part. We will not use U-net architecture because of the absence
of shared local features between the input and output image in our case.

2.3.4 Training acceleration using a GPU

The training process of a neural network is generally time-consuming. How-
ever, one can accelerate the training using a GPU [77]. Indeed, GPUs have
two interesting features when performing data science. The first one is the
parallel architecture with an important number of threads. This property
allows the GPU to be efficient for matrix and convolution operations. The
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second interesting property is the consequent bandwidth of the GPU that al-
lows to handle a large amount of data [78]. In the framework of this thesis,
we used an Nvidia RTX 5000 GPU for the training process.

2.4 Adversarial training

When performing image translation, one can also use Generative Adversar-
ial Neural networks (GANs) [79, 80]. This training procedure involves in-
corporating an additional loss function. This second loss function has the
specificity to be a neural network (discriminator) itself that is continuously
trained and improved during the training procedure. However, in our case,
we do not use such an architecture for the generation of original data but
just to perform image translation. The latter image translation task is per-
formed by the neural network called generator. If we consider only the thick
black lines of Fig. 2.6, we have the classical training procedure. Considering
now all the solid lines, we see in addition the training of the generator by the
discriminator. The training of the discriminator is depicted by the dashed
lines. The discriminator is trained to give 1 when the two input images are
the same (switch on red dashed line) and 0 when they are different (switch
on green dashed line), even for tiny differences. Therefore, when training
the generator, the value given by the discriminator when considering the ex-
pected and predicted image corresponds to a loss value. Due to the training
of the discriminator, we expect to have a loss value that remains bad, even
when the generator quality prediction is increasing, in order to obtain the
best performance possible.
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FIGURE 2.6: Sketch of the training procedure of a generative
adversarial network. The two neural networks (generator and
discriminator) are depicted by blue squared. The input(s) (out-
put) of the neural networks is depicted by a small rectangle
(triangle). Thick black dashed lines represent the training pro-
cedure of a classical neural network. All the solid black lines
represent the training procedures of the generator. The dashed
lines correspond to the training of the discriminator. A switch
is depicted by the black dots. When the latter is connected to

the green (red) dashed line, the expected value zexp is 0 (1).
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Chapter 3

Quantum transport in
two-dimensional electron gases

The progress made in the domain of miniaturization of electronic devices at
the end of the last century enabled the creation of systems that are sufficiently
small to exhibit quantum effects. In particular, for two-dimensional electron
gases (2DEGs), nanostructured samples based on high-mobility modulation-
doped heterostructures are a staple of condensed matter experiments [81, 82].
Although those heterostructures exhibit a high mobility and a large transport
mean free path up to tens of micrometers, the disorder created by the ionized
dopants still affects the quantum transport properties [83]. In particular, the
branching pattern in the electron flux [26], observed in SGM experiments, is
a consequance of the weak disorder seen by the electrons.

In this chapter we describe the state of the art of electronic quantum trans-
port [3, 84, 85] and explain the basics of the quantum transport simulations
we use in this thesis. Then, we describe the model of the heterostructure and
a model of the disorder present in it. Finally, we present the quantum point
contact (QPC) nanostrucure and the scanning gate microscopy experiment
which produces the transport data that we will use in the following chapters
to infer the disorder potential landscape.

3.1 Landauer - Büttiker formalism

3.1.1 Two-terminal systems

One can consider a system composed of a scattering region (S) connected to
two reservoirs R1 and R2 with chemical potential µ1 and µ2, respectively. The
connection is made by leads L1 and L2 with a perfect contact (see Fig. 3.1).
We suppose that we apply a voltage V between the two reservoirs, such that
µ1 − µ2 = eV.

In this approach we consider asymptotically-free quantum states, which
are present in the leads and the reservoirs. Thus, in the reservoir we consider
a free electron gas with a dispersion relation

ǫ =
h̄2k2

2me
(3.1)
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FIGURE 3.1: Two-terminal system composed of a scatterer S
connected to two reservoirs R1 and R2 through leads L1 and L2,
respectively. The outgoing (incoming) states are labeled by an

upper index (+) or (-).

where k is the magnitude of the wave vector, h̄ is the reduced Planck con-
stant and me is the electron mass. The leads are also considered disorder-free
and quasi one-dimensional. In case of hard-wall boundary conditions in the
transverse direction at y = 0 and y = W, the dispersion relation of the ath

channel in a lead ǫ = ǫa + ǫka
is the sum of the transverse ǫa and longitudinal

ǫka
energy

ǫa =
h̄2

2me

(πa

W

)2
ǫka

=
h̄2k2

a

2me
(3.2)

where ka is the longitudinal (x direction) wave-vector in the lead which sat-
isfies k2 = (πa/W)2 + k2

a. The corresponding transversal (y direction) wave
function is given by

φa(y) =

√

2
W

sin
(πa

W
(y − W)

)

, (3.3)

while the longitudinal wave functions are defined by

ψka
(x) = A

(+)
a eikax + A

(−)
a e−ikax, x ∈ L1 (3.4)

ψka
(x) = B

(−)
a eikax + B

(+)
a e−ikax, x ∈ L2 (3.5)

where the coefficients A
(+,−)
a and B

(+,−)
a correspond to the incoming (+) and

outgoing (-) waves of channel a and are related through the scattering matrix
S such that

(

A
(−)
a

B
(−)
a

)

= S

(

A
(+)
a

B
(+)
a

)

. (3.6)

Then, a complete basis of incoming (−) and outgoing (+) wave functions in
leads 1 and 2 with an energy ǫ is given by

ϕ
(∓)
1,ǫ,a(r) =

1√
2πh̄va

e±ikaxφa(y), x ∈ L1 (3.7)
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ϕ
(∓)
2,ǫ,a(r) =

1√
2πh̄va

e∓ikaxφa(y), x ∈ L2. (3.8)

with the prefactor 1/
√

2πh̄va that corresponds to the unit-flux normalization.
va corresponds to the longitudinal velocity of mode a. In the presence of a
scatterer (of length Ls at x = 0), an incident flux from one reservoir only in a
fixed channel leads to the scattering states

Ψ
(+)
1,ǫ,a(r) =

{

ϕ
(−)
1,ǫ,a(r) + ∑

N
b=1 rba(ǫka

)ϕ
(+)
1,ǫ,b(r), x ≪ −Ls/2

∑
N
b=1 tba(ǫka

)ϕ
(+)
2,ǫ,b(r) x ≫ Ls/2

(3.9)

Ψ
(+)
2,ǫ,a(r) =

{

ϕ
(−)
2,ǫ,a(r) + ∑

N
b=1 r′ba(ǫka

)ϕ
(+)
2,ǫ,b(r), x ≫ Ls/2

∑
N
b=1 t′ba(ǫka

)ϕ
(+)
1,ǫ,b(r) x ≪ −Ls/2

(3.10)

where N is the number of propagating channels and the ka dependent N × N
matrices r (r′) and t (t′) correspond to the reflection and transmission matrices
for particles entering the scatterer from lead l = 1 (l = 2) and define the
scattering matrix

S =

(

r t′

t r′

)

(3.11)

of dimension 2N × 2N. The unitarity of the S-matrix (SS† = 1) implies the
current conservation. We define the reflection and transmission coefficient
as R = ∑a,b |rab(ǫka

)|2 and T = ∑a,b |tab(ǫka
)|2, respectively. They fulfill

the relation R(ǫka
) + T (ǫka

) = N. The scattering wave functions satisfy the
relation

∫

dr Ψ
(+)∗
l,ǫ,a (r)Ψ

(+)

l̄,ǭ,ā
(r) = δll̄δ(ǫ − ǭ)δaā (3.12)

and then constitute an orthonormal basis.
Now, we use the current density operator for the state l, ǫ, a

jx
l,a,ǫ(r) =

eh̄

2ime

[

Ψ
(+)∗
l,ǫ,a (r)

∂

∂x
Ψ
(+)
l,ǫ,a(r)− Ψ

(+)
l,ǫ,a(r)

∂

∂x
Ψ
(+)∗
l,ǫ,a (r)

]

− e2

me
A(r)Ψ

(+)∗
l,ǫ,a (r)Ψ

(+)
l,ǫ,a(r) (3.13)

to determine the electrical current flowing along the x-axis in this system. In
the absence of a magnetic field, we obtain

jx
l,a,ǫ(y) =

eh̄

2ime
∑
bb′

t∗ba(ǫka
)tb′a(ǫka

)

2πh̄
√

vbvb′
(ikb + ikb′) φ∗

b (y)φb′(y)e
i(kb−kb′ )x. (3.14)
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Using the orthogonality property of φb(y) when integrating over the y
section, we obtain the current associated to the scattering state (l, a, ǫ)

Il,a,ǫ =
e

h

N

∑
b=1

Tba(ǫ) (3.15)

where h = 2πh̄ is Planck’s constant and Tba = |tba|2. Finally, the electrical
current from reservoir l writes

Il =
∫ +∞

0
dǫ

N

∑
a=1

2πh̄vaρa(ǫ)Il,a,ǫ f (µl, T; ǫ) (3.16)

where the factor 2πh̄va comes from the change of the normalization to a flux
measured in particles arriving to the scatterer per unit time [84]. f (µl, T; ǫ) =

1/
[

1 + e(ǫ−µl)/kBT
]

is the Fermi-Dirac distribution associated to the reservoir
l of chemical potential µl. kB is the Boltzmann constant and T is the temper-
ature. The one-dimensional density of lead modes including the spin degen-
eracy factor is ρa(ǫ) = 1/(πh̄va). We finally obtain

Il = ηl
2e

h

∫ +∞

0
dǫT (ǫ) f (µl, T; ǫ) (3.17)

where T (ǫ) = ∑ab Tba(ǫ) is the energy-dependent transmission coefficient.
The current direction is taken into account through the prefactor ηl which is
equal to 1 for l = 1 and -1 for l = 2. Finally, the conductance of the system is

G(V, T) =
I(V)

V
=

2e2

h

1
eV

∫ +∞

0
dǫT (ǫ) ( f (µ1, T; ǫ)− f (µ2, T; ǫ)) (3.18)

where V is the bias voltage applied on the system (eV = µ1 − µ2). Consid-
ering the linear regime i.e. weak bias voltage µ1 ≈ µ2, one can perform a
Taylor expansion where the first order term of the conductance is

G(V → 0, T) =
2e2

h

∫ +∞

0
dǫT (ǫ)

(

− ∂ f

∂ǫ
(µ, T; ǫ)

∣

∣

∣

∣

µ=µ1

)

(3.19)

where we have

− ∂ f

∂ǫ
(µ, T; ǫ)

∣

∣

∣

∣

µ=µ1

=
1

2kBT

1
1 + cosh [(ǫ − µ1)/kBT]

. (3.20)

Since quantum transport experiments are frequently performed at low
temperature, one can be interested in another Taylor expansion in the tem-
perature, which gives
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G(V → 0, T) =
2e2

h

1
2

∞

∑
k=0

1
(kBT)2k

T (ǫ)(2k)|ǫ=µ1

(2k)!

∫ +∞

−∞
du

u2k

1 + cosh u
(3.21)

where T (n) is the n-th derivative of the transmission coefficient with respect
to the energy at ǫ = µ1. Thus, we notice that the thermal corrections are non
zero only when we have a non-vanishing even derivative of the transmission
coefficient with respect to the energy. We note that in the extreme case where
T = 0, the conductance writes

G(V → 0, T = 0) =
2e2

h
T (µ1), (3.22)

where 2e2/h = G0 is the quantum of conductance.

3.1.2 Multi-terminal systems

One can generalize the Landauer formula to multi-terminal systems [86]. In
this part we note T αβ

ab the transmission probability from mode b in lead β to
mode a in lead α. Then, at low bias voltage, the current contribution out of
the reservoir α

Iαα =
2e

h

∫

dǫ [Nα(ǫ)−Rα(ǫ)] f (µα, T; ǫ), (3.23)

where Nα(ǫ) = ∑a∈α 1 is the number of open channels in terminal α at en-
ergy ǫ and Rα(ǫ) is the reflection factor. The current contribution due to the
contact between lead α and β is

Iαβ =
2e

h

∫

dǫT αβ(ǫ) f (µβ, T; ǫ), (3.24)

where T αβ = ∑ab T
αβ

ab (ǫ) is the transmission factor. The total current flowing
in lead α writes

Iα
tot =

2e

h

∫

dǫ

[

(Nα(ǫ)−Rα(ǫ)) f (µα, T; ǫ)− ∑
β 6=α

Tαβ(ǫ) f (µβ, T; ǫ)

]

(3.25)

In thermodynamic equilibrium, we have f (µα, T; ǫ) = f (µβ, T; ǫ), which
implies that Iα

tot = 0 and leads to

Nα(ǫ) = Rα(ǫ) + ∑
β 6=α

Tαβ(ǫ). (3.26)
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3.2 Quantum transport simulations

Our quantum transport simulations are carried out numerically using a Pyth-
on package called KWANT [87]. This package is based on a tight-binding
model which, in a two-dimensional square lattice with site indices (i, j) and
lattice parameter a, is described, in absence of a magnetic field, by the Hamil-
tonian

H = ∑
i,j

Ui,j |i, j〉 〈i, j|

− t [|i + 1, j〉 〈i, j|+ |i, j〉 〈i + 1, j|+ |i, j + 1〉 〈i, j|+ |i, j〉 〈i, j + 1|] . (3.27)

Ui,j = 4t + V(rij) corresponds to the onsite energy of the site (i, j) which has
for coordinate (x, y) = (ai + aj). The potential in the onsite term corresponds
to the external electrostatic field of the system created y the gates, the impuri-
ties, and the Hartree part of the electron-electron interaction. We also define
t = h̄2/(2m∗a2) the hopping term. In the absence of the potential term V, the
Hamiltonian (3.27) leads to plane-wave solutions ψ(x, y) = eikxxeikyy and the
dispersion relation

E(kx, ky) = 2t
(

2 − cos (kxa)− cos
(

kya
))

. (3.28)

The Fermi energy is then given by

EF = 2t (1 − cos (kFa)) . (3.29)

This energy dispersion approximates the parabolic energy distribution when
λF ≫ a. We consider that the tight-binding approach is a good approxima-
tion for a continuous model when λF ≥ 6a.

KWANT uses the scattering states corresponding to the Hamiltionian and
computes the scattering matrix.

One can also add a magnetic field B within the Landau gauge, using the
Peierls substitution that consists to change the hopping term in the following
way [88]

tij(φ) = teiφ(xi−xj)(yi+yj)/2 (3.30)

with φ = Bea2/h̄ the magnetic flux per lattice cell.
In order to perform the quantum transport simulation with KWANT, one

has first to define the system (see Fig. 3.2) which is composed of (i) (black
dots) the scattering part (size, onsite energy with associated potential V(rij),
nearest neighbor interaction) and (ii) (red dots) the leads that connect the
system. Then one can compute the scattering matrix for instance in order to
obtain the conductance or directly compute the wave functions in order to
obtain the PLDOS.
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FIGURE 3.3: Left panel: Sketch of the heterostructure with de-
tailed layer stacking. The energy diagram of this heterostruc-
ture is depicted in the right panel. In the latter figure, we
observe the potential minimum at z = 0 where the 2DEG is

present. Figure from [91].

semi-classical trajectories) of the electrons and by consequence, the electronic
transport properties of the material [93].

3.4 Potential simulation

3.4.1 Background disorder potential

As presented in Sec. 3.3, at equilibrium a part of the dopants is ionized and
about 10% of the electrons arising from those dopants compose the 2DEG
[92]. Hence, the electrons in the 2DEG are subjected to the electrostatic po-
tential due to the positive charges of the ionized dopants. Then, the bare
background Coulomb potential at position r is

V
(bare)
dop (r) = − e2

4πǫrǫ0

ndop

∑
i=0

1
|ri − r| , (3.32)

where ǫr = 12.9 is the relative permittivity of GaAs, ǫ0 is the dielectric con-
stant and ri are the positions of the ndop ionized dopants. Those positions
are not known and cannot be found experimentally. In a theoretical model-
ing of the system, realistic configurations can be generated by placing ion-
ized dopants at random positions. With a large number of random disorder
configurations, this technique allows us to cover a large space of the possi-
ble configurations, including correlated distributions of the dopants as it is
probably the case in real samples [83]. We note that this potential does not
take into account the electron-electron interactions.

Considering the need to implement the disorder in the following sections,
we have to take into account the amount of time required to simulate such a
disorder. If one wants to directly use Eq. 3.32, one has to perform the sum
over a very large number of ionized dopants (≈ 104). However, using the
Fourier transform, it is possible to sum only on a few hundred terms [91]. In
this derivation, we consider only the fluctuating part of the potential. The
Fourier transform of this fluctuating part is
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V
(bare)
dop (q) = − e2

4πǫrǫ0
C(q)

2πe−qs

q
(3.33)

in case where all the dopants are all located within a plane parallel to the
2DEG, and located at a distance s from the 2DEG. C(q) is a complex Fourier
coefficient representing the Fourier transform of the charge distribution. Con-
sidering the influence of the Thomas-Fermi screening of the impurities by the
electrons, the potential can be expressed as

Vdop(q) = −4πE∗
Rya∗BC(q)

e−qs

q + qTF
, (3.34)

where we have the product of the effective Bohr-radius with the effective
Rydberg energy is

E∗
Rya∗B =

e2

8πǫrǫ0

and qTF = 2/a∗B is the Thomas-Fermi factor. Coming back to the real space,
the potential writes

Vdop(r) = −
E∗

Rya∗B
π

∫

dq
e−qs

q + qTF
C(q)e−iqr. (3.35)

The random position of the positive charges is taken into account through the
Fourier coefficients C(q), which satisfy C(q) = C∗(−q) in order to ensure
that Vdop(r) is real. The real and the imaginary part are random numbers
that follow a normal distribution with variance σ2 = ndop/2.

It becomes now clear that the potential is characterized by two parame-
ters: the distance s that separates the 2DEG from the doping layer and the
density of dopants Nd = ndop/LW (L corresponds to the length and W to the
width of the sample). In order to observe the influence of those two terms on
the potential characterization, we focus on the auto-correlation value of the
potential

C(R) = 〈V(~r)V(~r + ~R)〉~r,θR
= 〈V(~r)V(~r + ~R)〉Conf. (3.36)

If the sample is spatially infinite, the average on the space and θR corre-
sponds to the average on the configurations. For simplicity 〈...〉Conf → 〈...〉.
When using the potential given by Eq. 3.35, we find

C(R) =
(E∗

Rya∗B)
2

π2

∫

d2~q
∫

d2~q′
e−(q+q′)s

(q + qTF)(q′ + qTF)
〈C(~q)C(~q′)〉e−i(~q+~q′)·~re−i~q·~R.

(3.37)
The average product of the Fourier coefficients can be determined by

the Fourier transform combined with the property of the randomness of the
dopant location 〈C(~r)C(~r′)〉 = Ndδ(~r −~r′), which gives
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〈 C(~q)C(~q′)〉 =
∫

d2~r
∫

d2~r′〈C(~r)C(~r′)〉e−i~q′·~r′e−i~q·~r = Nd(2π)2δ(~q + ~q′)

(3.38)
We now plug this in the correlation formula 3.37, which gives

C(R) = 8π(E∗
Rya∗B)

2Nd

∫ +∞

0
dq q

e−2qs

(q + qTF)2 J0(qR), (3.39)

where J0(x) = (2π)−1
∫

dθeix cos θ is the Bessel function of the first kind.
From this auto-correlation function one can derive two important parame-
ters: the correlation length ξ that we define through

C(ξ) = C(0)
2

(3.40)

and the root mean square of the potential (RMSP)

Π =
√

〈V2〉 =
√

C(0) = E∗
Rya∗B

[

8πNd

∫ qc

0
dq q

e−2qs

(q + qTF)2

]1/2

. (3.41)

.
One can obtain the analytic expression for the RMSP

Π2 = E∗
Rya∗B16π2Nd f (2qTFs) (3.42)

with
f (x) = ex(1 + x)Γ(0, x)− 1 (3.43)

where Γ(a, x) is the incomplete gamma function. In case of 2qTFs ≫ 1, one
can make the approximation f (x) ≈ 1/x2 [91].

Since Nd is a prefactor in the formula (3.39) for C(R), ξ depends only on
s as observed in the lower panel of Fig. 3.4, while

√

〈V2〉 depends on both s
and Nd. The dashed black lines in the upper panel of Fig. 3.4 represent the
equi-root mean square of the potential. This means that two different sets of
(s, Nd) can lead to the same value of Π. We note that for the plotted realistic
range of s the correlation length is proportional to the latter.

Considering the simulation part, the potential is computed on a discrete
lattice with parameter a of size nx × ny = LW/a2. The q-space is discretized
with step widths

∆qx =
2π

L
and ∆qy =

2π

W
. (3.44)

The discrete vectors of the two-dimensional q-space are denoted qj. The
integer j labels the vector such that −qj = q−j and q0 =~0. Then the potential
on a discrete lattice writes

Vdop(r) = −E∗
Rya∗B

∆qx∆qy

π ∑
j>0

e−qjs

q + qTF
C(qj)e

−iqjr. (3.45)



3.4. Potential simulation 33

20 30 40 50 60 70 80
25

50

75

100

125

150

s [nm]

ξ
[n
m
]

0.002

0.004

0.006

0.008

0.01

N
d
[n
m

−
2
]

0

0.1

0.2

0.3

0.4

Π
/E

F

Π = 0.07

Π = 0.12

Π = 0.16

Π = 0.21

FIGURE 3.4: Upper panel: Root mean square of the potential as
function of the density of dopants and the distance s. Lower
panel: Correlation length as a function of the distance s be-
tween the two-dimensional electron gas and the doping layer.
The black dashed lines depict the equi-root mean square of the
potential value. The dots represents the parameters of the dis-

order potential represented in Fig. 3.5

One can rewrite the Fourier coefficients C(qj) = rje
−iφj where rj = |C(qj)|

and φj = arg
(

C(qj)
)

. This new definition of C(qj) allows us to express the
background potential with a sum only over the positive values of j

Vdop(r) = −E∗
Rya∗B

2∆qx∆qy

π ∑
j>0

e−qjs

q + qTF
rj cos

(

qjr + φj

)

(3.46)

Due to the exponential decay factor, we can fix a cutoff by considering
that terms above this cutoff yield negligible contributions to the potential
value. Then the sum is performed over all qj ≤ 3.5/s.

Examples of disorder potentials are depicted in Fig. 3.5. One can easily
observe the influence of the distance s on the correlation length. Moreover,
we can observe an illustration of the degeneracy of the RMSP in the figure.
The potential of the middle and right panel have both different values of
both, s and Nd (see red and yellow dots on Fig. 3.4), but the same RMSP.

One can also find the electrostatic potential by generating random (ion-
ized) dopant positions and solving the Poisson equation numerically. This
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are both on the same equi-potential root mean square line and

are represented by red and yellow dots, respectively.

method will be used in the context of a more realistic model and will be de-
tailed in chapter 6.

3.4.2 Simulation of the top gates

To perform the quantum transport simulations with quantum point contact
(QPC) top gates, one has to describe the gate-induced electrostatic potential
seen by the electrons. We use the model of Ref. [94], that defines the potential
(without screening) of a finite gate rectangle defined by x1 < x < x2 and
y1 < y < y2 as

Urect(x1, x2, y1, y2)

AQPC
= g (x − x1, y − y1) + g (x − x1, y2 − y)

+ g (x2 − x, y − y1) + g (x2 − x, y2 − y) , (3.47)

where AQPC is the potential value under the gate far from the edges and the
function g(u, v) is defined as

g(u, v) =
1

2π
arctan

(uv

sR

)

with R =
√

u2 + v2 + s2. (3.48)

The QPC gate potential is composed of two rectangular gates with edges at
xleft

1 , xleft
2 , yleft

1 , yleft
2 and x

right
1 , x

right
2 , y

right
1 , y

right
2 , such that

UQPC = Urect(xleft
1 , xleft

2 , yleft
1 , yleft

2 ) + Urect(x
right
1 , x

right
2 , y

right
1 , y

right
2 ). (3.49)

We note that this formula does not include the screening of the electrons.
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3.4.3 Simulation of the tip

To simulate the tip, we used the approximation shown numerically already
in the early days of scanning gate microscopy [95], in which the potential
created by a charged AFM tip on the 2DEG can be expressed as

Vt(r) = Atip × L3
t

(

L2
t + |r − rt|2

)3/2 , (3.50)

where rt is the coordinate of the tip in the 2DEG plane. Lt is the typical
decay length of the tip potential and is of the same order of magnitude as
the distance between the tip and the 2DEG. Atip is the potential in the center.
We note that a more precise expression for modeling the tip potential taking
into account the Thomas-Fermi screening is given in Ref. [96]. However, the
most important features concerning the tip modeling are the radius of the
depletion disc and the potential tails. We also note that this formula does not
include the screening of the electrons.

3.5 Conductance through a quantum point contact

We now consider a QPC [97]. The latter corresponds to a tiny constriction
(≈ 100 nm) in the 2DEG as depicted in Fig. 3.6 from the experiment of Ref. [1].
The constriction is created by applying a negative voltage to two metallic fin-
ger gates located on top of the heterostrucure. The electrostatic field creates
a depletion in the 2DEG, which means that the potential due to the gate is
higher than the Fermi energy. Such an experiment has been realized for the
first time in 1988 by Van Wees et al. [1] and Wharam et al. [98] and has shown
the quantization of the conductance appearing at very low temperature (0.6 K
in [1]). As depicted in Fig. 3.6, we can observe the stair-like evolution of the
conductance while decreasing the magnitude of the gate voltage (The higher
the magnitude of the voltage, the smaller the constriction.). The conductance
plateaus are located at integer multiples of twice the conductance quantum.

This result can be easily understood using the two-terminal Landauer for-
mula (3.22) and considering the QPC as a narrow ideal quantum wire. In the
linear regime and the zero temperature limit, the transmission probability
between a mode a and b is close to a delta function i.e. |tab|2 = δab. Using
Eq. 3.22, we obtain

G =
2e2

h
Nqpc (3.51)

where Nqpc is the number of modes propagating through the constriction,
that is, the modes with transverse energy below EF. One of the most impor-
tant properties, that has been brought into light with this experiment and its
theoretical understanding is the finite value of the conductance even for a
perfect conductor.

In the following part we will apply the Landauer formula to an easy ana-
lytically tractable model called the "saddle point model" in order to observe
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T = 300 mK (lower panel).

is 10−3G0. Considering these small corrections, for all the studies performed
in this thesis, we do not take into account the thermal corrections.

3.6 Scanning gate microscopy

During the last decades of the 20th century, electronic transport in 2DEGs
has been the subject of a large number of investigations. However, it is only
since the very beginning of the 21st century that the electron flow could be
properly studied with a scanning probe technique called scanning gate mi-
croscopy (SGM) [25, 26]. In those first experiments, the SGM has been used
to image the electron flow after passing through a QPC. It has shown the
emergence of a branching pattern describing the electron flow. Studies have
shown that this branching pattern is due to the presence of disorder in the
heterostructure (see Fig. 3.8b) [26, 27, 101] even when the disorder potential
is much weaker than the Fermi energy. Consequently, a distinct relationship
emerges between the SGM signal and the disorder potential.

In order to image the electron flow, experimentalists use an atomic force
microscope (AFM) tip on the system as depicted in Fig. 3.8a. The tip is lo-
cated at a few tens of nanometers above the surface of the heterostructure
and a negative voltage Vt is applied to it. The aim of the tip is to deplete the
electron gas (in a circle shaped region of radius rdep) and thereby to change
the transport properties of the 2DEG. A map of the spatially resolved trans-
port properties is realized by measuring the conductance through the sample
for different positions of the tip. The first SGM experiments pointed out the
correspondence between the electron flow and the SGM signal. Indeed when
the tip is depleting a region with an important electron flux, many electrons
are scattered back to the QPC, resulting in a decrease in conductance.
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a) b)

I

Vtip

VQPC

V

FIGURE 3.8: a): Skecth of SGM experiment with the QPC gate
and the metallic tip. b): Electron flow through a QPC at T =

1.7 K obtained by SGM [26]

Another interesting observation is the emergence of interference fringes
in the branches. Several studies attempt to provide explanations of this phe-
nomenon [27, 102]. The interference can be caused by three different pro-
cesses where two of them are limited by the distance between the QPC and
the tip that has to be smaller than the thermal coherence length. One of the
explanations concerns the case where the QPC gate voltage is such that the
conductance of the sample is not located on a plateau. In this situation, the
wave is partially reflected and can interfere with the transmitted part that has
been backscattered by the tip. This mechanism gives rise to circular-shaped
interference patterns. In case of SGM experiments performed on the conduc-
tance plateau, another interference mechanism occurs which is characterized
by a checkerboard pattern. In this mechanism, the directly backscattered
wave interferes with waves that are reflected off the QPC. We note that the
second described mechanism does not necessitate an hypothesis on the pu-
rity of the sample contrary to the first mechanism. The last proposed mecha-
nism, that can occur at a distance from the QPC higher than the thermal co-
herence length, is based on the interference between the wave backscattered
by the tip and the wave backscattered by impurities that cause backscattering
of electrons. Thus, within this method, the interference fringes emerge only
in presence impurities. For these three mechanisms the fringes are separated
by a distance equal to half the Fermi wavelength.

The main advantage of the SGM is to study the electronic transport of an
electron gas that is buried below an insulating layer under the free surface of
the sample such that a scanning tunneling microscopy experiment cannot be
used to access its properties. This buried electron gas is typically present in
the heterostructures used to create high-mobility electron gases.

SGM has been used to study diverse nanostructured systems like QPC
[25, 103], Aharonov–Bohm rings [104, 105], cavities [106–108] or even sys-
tems allowing to investigate the Braess Paradox [109]. Then, investigations
have been performed to determine the possible existing link between the
SGM image and the local density of states of the electrons arising from their
wave function [93, 107, 110]. Indeed, it has been shown that under the fol-
lowing strong constraints: (i) low temperatures, (ii) in the case of perfect
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respectively. Both quantities are computed at EF = 10 meV
.

transmission (e.g., if the energy corresponds to a conductance plateau) and
(iii) very weak disorder, the SGM response can be proportional to the partial
local density of states (PLDOS) at the Fermi energy of the electrons arising
from the QPC [93]

ρqpc,EF(r) = 2π

Nqpc

∑
a=1

|ψqpc(+),EF,a(r)|2 (3.55)
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Fig. 3.9 illustrates an example of a numerical simulation where the SGM
and the PLDOS have been computed under identical conditions and using
the same disorder configuration. For this example, the QPC has been imple-
mented using Eq. 3.49. The spatial position of the metallic gates is indicated
by the black dashed lines.

In the example of Fig. 3.9, we can observe similar branch patterns in the
two images. The main difference lies in the presence of interference fringes
in the SGM map2 3.

2A weaker interference pattern is also observed in the PLDOS image, although it arises
from artifacts of the model that inadequately capture the corners of the sample with respect
to the leads.

3We also notice that the colormaps of the images are inversed. This is due to the expla-
nation stating that when the tip is scanning a region with a high electron flux, it induces a
decrease in the conductance.
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Chapter 4

Global characterization of the
disorder inside a heterostructure

The research presented in this chapter corresponds to the starting point of
our application of AI to characterize the disorder in a heterostructure due to
the ionized dopants. Since we did not know about the possibility of a neural
network to extract information on the disorder from any electronic transport
data, we started with the most basic problem, which is the prediction of a
global characterization of the disorder. Therefore, it was then unnecessary to
study a highly realistic system, but a simplified one that is described in more
detail in Sec. 4.1. From this model, we generated random potential land-
scapes that have been used to compute the associated PLDOS images. Those
data, required to train the neural network, are presented in Sec. 4.2. For the
same reason that led to the usage of a simplified model for the samples, we
used a standard CNN architecture that has been optimized to solve our prob-
lem, as detailed in Sec. 4.3. The prediction made by the neural network on
the global parameters is discussed in Sec. 4.4. Finally, we took advantage of
the simplification of the problem (i.e. the characterization by only two pa-
rameters of the disorder) to go beyond the black box model that is the neural
network, trying to better understand the decisions of the AI as discussed in
Sec. 4.5. The main results of this chapter are published in our Ref. [16].

4.1 Model of the sample

The aim of this section is to present a simplified model for nanostructured
samples consisting of GaAs/AlGaAs heterostructures, where we consider
only: (i) the source/drain electrodes, (ii) QPC gates, (iii) the disorder due
to a doping layer and (iv) the Thomas-Fermi screening. For this study, we
focus only on a region of the 2DEG located between the QPC and the drain
electrodes of dimensions (L × W = 1.28 µm × 0.96 µm). In this model, the
QPC is represented as a narrow source electrode of width Wqpc = 100 nm
that corresponds to the QPC opening, see Fig. 4.1. We fixed the Fermi energy
at 5.6 meV. This energy corresponds to λF = 65.5 nm (which is a typical value
for high-mobility heterostructures [107]), we then fixed the lattice parameter
for our tight binding calculations to 5 nm, more than ten times smaller than
the Fermi wavelength.
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FIGURE 4.1: Sketch of the system geometry used for the sim-
ulations. The quantum point contact is simulated by the small

source electrode.

The disorder corresponds to the electrostatic potential created by the ion-
ized dopants that are randomly positioned in a two-dimensional plane par-
allel to the 2DEG and separated by a distance s from the 2DEG. The disorder
potential is computed for the grey part of Fig. 4.1, implemented following the
description of Sec. 3.4.1. The simulated potentials used in this chapter have
the following properties: the distance s is between 40 nm and 70 nm and the
dopant density is between 6 × 1011 cm−2 and 15 × 1011 cm−2. An example of
PLDOS-potential pair is shown in Fig. 4.2

This chapter is dedicated to the preliminary study of the project, where
the main purpose is to determine the possibility for an artificial intelligence
algorithm to extract properties concerning the disorder from spatial transport
properties. As a consequence of this, to obtain the most realistic system is
not the highest priority here, and we prefer a convenient one for a proof of
principle study. This is the reason why we will not use the SGM as electronic
transport data but the PLDOS, in order to be able to create a large dataset
with limited numerical resources in a reasonable amount of time.

4.2 Presentation of the dataset

For the study, we simulated 72,000 samples. Each sample corresponds to a
distinct microscopic disorder configuration, characterized by a different set
of Fourier coefficients. The parameters s and Nd are randomly chosen from a
uniform distribution within the ranges specified in Sec. 4.1. The input, which
is the PLDOS, is computed through KWANT for all the samples and the out-
put is either the set of parameters (s, Nd) or (ξ, Π). Examples of potentials
with their corresponding parameters are depicted in Fig. 3.5, while the PL-
DOS with its associated potential is shown in Fig. 3.9. Moreover, thanks to
the reflection symmetry of the system geometry with respect to the y-axis,
one can perform data augmentation to double the number of samples by
simply adding the reflected image of the disorder configuration and of the
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given in Sec. 4.1.

PLDOS. The data augmentation is applied exclusively to samples present in
the training set. As a result, the test set only contains samples that have real
differences in disorder configuration. We end up with 132,000 samples in the
training (and validation) set and 6,000 samples in the test set.

4.3 Architecture of the neural network

The main objective of this study is to determine whether an artificial intel-
ligence algorithm can effectively characterize the global disorder within a
heterostructure based on electronic transport properties as input data. Given
the qualitative nature of this goal, achieving the highest possible quantitative
precision, which may involve creating a highly complex neural network, is
not of the highest importance.

Since we want to perform a regression on two parameters with an im-
age (the PLDOS data) as input, one can start from a common CNN architec-
ture used for classification and then tune the hyperparameters to solve our
problem. This tuning is performed using a grid-search and the k-fold cross-
validation (These methods are detailed in section 2.2.6). Our architecture,
depicted in Fig. 4.3, initially consists of three convolution blocks. Each block
is composed of two convolution layers followed by one pooling layer. Then,
the last set of feature maps is flattened and is followed by two dense layers
before the output layer. The grid search is used to determine the (i) number
of filters, (ii) the size of the kernel, (iii) the number of neurons in the dense
layer and (iv) the dropout rate. For all of these hyperparameters, we have
selected a set of values that we intend to test. The table in Fig. 4.3 lists the
top 6 configurations along with their average error obtained using a 10-fold
cross-validation. We note that for the study, we used the set (ξ, Π) as output
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Rank Nb filters Kernel size Neurones 〈MSE〉 σMSE

1 (16, 32, 64) (5, 5, 3) (100, 20) 0.114 0.004

2 (16, 32, 64) (5, 5, 3) (200, 50) 0.117 0.003

3 (16, 32, 64) (5, 3, 3) (200, 50) 0.120 0.005

4 (16, 32, 64) (5, 3, 3) (100, 20) 0.125 0.005

5 (8, 16, 32) (5, 3, 3) (100, 20) 0.130 0.007

6 (8, 16, 32) (5, 5, 3) (200, 50) 0.132 0.004

FIGURE 4.3: Top of the figure: List of the top 6 configurations of
hyperparameters ranked by their average mean squared error
(MSE) obtained using a 10-fold cross-validation. The number
of filters and the kernels are represented by 3 numbers, which
correspond to the three convolution blocks, respectively. The
number of neurons is represented by two numbers that corre-
spond to the number of neurons contained in the two dense
layers, respectively. For each configuration, the dropout rate is
0. The best neural network architecture is represented on the
bottom of the figure. This model contains about 5 million pa-

rameters.

parameters. The other set of parameters consistently yields higher errors,
however the ranking remains unchanged.

The results presented in the table of Fig. 4.3 were obtained using 50,000
training (and validation) samples. Each training was performed with over 12
epochs.

Regarding the result of the grid-search, we obtain a set of parameters that
seems to perform a bit better than the others. It is important to note that
certain hyperparameters, such as batch normalization, batch size, optimizer,
loss function, etc., were not included in this study due to the long time re-
quired for the procedure. Batch normalization, optimizer and loss function
have been studied on less configurations and have shown a systematic dif-
ference in all the models (e.g. the optimizer Adam is always better than RM-
Sprop). Concerning the batch size, we also decided to study it afterwards to
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test more than three or four different values. Finally, we decided to use the
optimizer Adam with a learning rate of 10−3, the mean squared error as loss
function, a batch size of 64 and we do not use batch normalization.

After performing this whole study to tune the hyperparameters, we used
our whole training set to train the neural network. However, we still keep
some samples as a validation set to prevent overfitting during the training
process. We have observed that increasing the number of epochs does not
lead to further improvement in model performance. It comes now to test the
neural network on unseen data.

4.4 Prediction of the global parameters

We now train and use the neural network with the optimized architecture
described in Sec. 4.3. In the first scenario, the input is the PLDOS and the
output is the two parameter set (Nd, s), the dopant density and the distance
between the doping layer and the 2DEG. When testing the performance on
the test set, we notice a large difference of precision between the two param-
eters. Concerning s, on average1, the prediction differs from the expected
value by 3.2 % while the average error of the parameter Nd is 14.9%. In the
second scenario, we observe a significant improvement of the prediction ac-
curacy when using the set (ξ, Π) composed of the correlation length and the
amplitude of the potential as output. Indeed, ξ is predicted with an aver-
age error of 2.8 % and Π with an average error of 5.7 %. The reason of the
difference of accuracy between the two sets of parameters is detailed below.

From these results, it clearly appears that the electronic transport infor-
mation, in our case the PLDOS, contains information about the potential. In
this study, the predicted information consists of a set of two numbers that
characterizes the potential disorder. However, despite these findings, perfect
accuracy is not achieved. Therefore, it would be interesting to investigate the
source of deviation from exact values. This could be attributed to factors such
as a lack of training data, an undersized neural network or the PLDOS does
not give the possibility to characterize the potential with a higher accuracy.

Fig. 4.4 is obtained by performing 30 trainings for each training set size.
Thanks to the power law shown in Fig. 4.4, it could be possible to improve
the precision by increasing the dataset size. However, the quantity of addi-
tional examples for the training set would be enormous for only a small im-
provement. The coefficients of the power law for s and ξ are almost identical
(-0.141 and -0.135), which is not the case for Nd and Π where the coefficient
of Nd is 50 % higher than the one of Π. Thus, the dataset size hardly explains
the difficulty for the neural network to predict the parameter Nd.

Fig. 4.5 shows that the precision does not improve when using a neural
network with more parameters. This suggests that the number of parameters
in the neural network is not the limiting factor.

1The average corresponds to the mean absolute value error on all samples of the test set
for ten different trainings.
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FIGURE 4.6: The two upper (lower) figures in blue (red) repre-
sent the confusion matrices for parameters ξ, Π, (Nd, s). Every
element of the matrices corresponds to the percentage of sam-
ples from the test set that have been predicted as belonging to
a certain value interval while in reality belonging to another or

the same (in the diagonal) value interval.

Eq. 3.42 in the regime 2qTFs ≫ 12, we obtain

Nd ∝ Π2s2, (4.1)

Thus for a constant value of Π we have to lowest order in the deviations ∆Nd
and ∆s

∆Nd

Nd
= 2

∆s

s
. (4.2)

It is thus clear from Fig. 4.7 that the error of prediction between the two pa-
rameters is correlated following the black dashed line. This implies that the
neural network has a tendancy to determine the parameters s and Nd such
that the RMSP computed from the predicted parameters corresponds to the
one computed from the expected parameters. Moreover, the parameter ξ is
proportional to s (see Fig. 3.4). We can conclude that the branch pattern of the
PLDOS depends clearly on Π and ξ: if Π is high, the branches will generally

2qTF = a−1 and s ∈ [8a, 12a] with the lattice parameter a = 5 nm
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mean square corresponds to the expected root mean square.
The inset represents the distribution of the relative errors of the
potential root mean square ∆Π/Π and the correlation length

∆ξ/ξ.

be shorter while if ξ is high, the splitting will be less frequent. Then, the den-
sity of dopants can be determined only through the impact of the RMSP on
the PLDOS, but the latter depends also on s. When using the set parameter ξ
and Π, we observe a consequent decrease of the error and of the correlation
between the error of prediction of the two parameters. We conclude that AI
can be able to indicate which are the best parameters to describe a system.
Despite the previous discussion that highlighted the bias in the predictions,
when examining the error distribution (orange histogram in Fig. 4.7), we ob-
serve a concentration of errors around 0 for both parameters.

The analysis of the neural network prediction led to a partial comprehen-
sion of the learning procedure. In the next section, we discuss in more detail
what part of the input has been relevant for the predictions made by the neu-
ral network.
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4.5 Beyond the black box

The comprehension of AI algorithms is currently an active research field
[111–113]. The growing interest in this domain is explained by the impor-
tance to provide an idea on the degree of confidence of a model. Indeed,
when it comes to use AI algorithms in real life, it is essential to understand
the working procedure of the neural network3.

Before trying to understand the working procedure of a model, we first
want to determine what part of the PLDOS image contains the information
needed for the prediction. Our study consists in training a model with im-
ages where a part of the information is hidden and to observe how the preci-
sion varies on average as a function of the rate of hidden information. In the
second part, we will focus on one model and try to determine what part of
the image has been relevant for the prediction of the model. To achieve that,
we use the method of the Integrated gradient [111] developed by Google. The
latter method has the advantage to be easy to apply on a regression task.

4.5.1 Where is the information?

In this section, we study the impact of hiding a part of the input data on the
average precision of the model that has been trained on those data. As it
seems obvious that the form of the branches is important for the prediction,
we are going to focus on two parameters. The first one is a cutoff value η
under which the value of the PLDOS will be set to 0. Thus, the new PLDOS
image created with the parameter η is

ρ̄qpc,ǫ(r) = ρqpc,ǫ(r)Θ(ρqpc,ǫ(r)− η), (4.3)

with Θ the Heaviside function. It will allow to state on the importance of
the region of space where the PLDOS is weak enough such that no branches
are present. The other parameter β is a coefficient ranging from 0 to 1, that
corresponds to the fluctuation of the PLDOS inside the branches. A value
of 0 corresponds to the original image and a value of 1 corresponds to an
image where the PLDOS is constant all over the branch. Concerning the
images where we change the β parameter, one has first to define a cutoff
value below which the PLDOS is too weak to be considered as a branch.
However, there is no perfect method to determine this value. Therefore, we
just fixed empirically this number to η = 0.01 in order to keep as much of
the branches as possible without obtaining too large branches. In the case of

3To illustrate the importance of that, we can mention the algorithm supposed to detect
camouflaged enemy tanks asked by the US army. Researchers have trained a neural network
with a set of pictures, half of them with the presence of a tank and the other half without.
When the US army received the algorithm they noticed that the neural network seemed to
answer randomly. It turns out that the images of the training set were biased by the weather.
Pictures with tanks have been taken during cloudy days and pictures without tanks have
been taken during sunny days. [114]. The neural network had learned to recognize clouds
rather than tanks.
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variation of the parameter β, the PLDOS is defined as

ρ̃qpc,ǫ(r) =
[

ρqpc,ǫ(r) +
(

max(ρqpc,ǫ(r))− ρqpc,ǫ(r)
)

β
]

Θ(ρqpc,ǫ(r)− 0.01).
(4.4)

In the following part, it is important to keep in mind that for images where
we vary the β parameter, the image already went through a cutoff filter.

The results of this study are presented in Fig. 4.8. This figure depicts the
evolution of the average error on the test set for the two parameters Π and ξ
as a function of β for the left panels and η in the right panels. We first notice
that the error of the two parameters evolves with the same tendency. Only
the evolution of the magnitude is a bit different. The error increases more for
the Π parameter than for ξ. When comparing the impact of the two parame-
ters, we have to keep in mind that for all the values β the image already felt a
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cutoff η = 0.01. Then we have to ignore the range 0 to 0.01 of the parameter
η. From the figure, it seems that increasing the cutoff has less impact than
making the intensity of the branches uniform. This leads to say that the vari-
ation of the PLDOS inside the branch is a more important determining factor
than the weak PLDOS signal in the rest of the space. However, we should be
careful with this conclusion. Indeed, it is complicated to compare the rate of
hiding information on the range of the two parameters previously described.
In other words, the variation of β seems to have more impact on the accuracy
than the variation of the cutoff.

Now that we have insights about the location of the information in the
input images, in the next part, we study the working procedure of one neural
network, using a tool developed by Google to explain the prediction of the
neural network.

4.5.2 Integrated gradient method

One can distinguish two categories called: interpretable and explainable ma-
chine learning. An interpretable model has the property to be understable by
a human being just by knowing the parameters of the model (e.g. a decision
tree is an interpretable model). By opposition, an explainable model needs
additional tools to understand their working procedure. In our case, we are
performing explainable machine learning with the so-called integrated gra-
dient method.

The main principle of this method is to study the variation of the neural
network response fnn(x) (where x is the input image) while varying the pixel
values xi. However, due to the so-called saturation problem [115], one has to
sum the gradient over the images x′ + α(x − x′) for α ranging from 0 to 1. x′

is called the baseline image. The integrated gradient method is defined as

φIG
i ( fnn, x, x′) = (xi − x′i)×

∫ 1

α=0

∂ fnn(x′ + α(x − x′))
∂xi

dα. (4.5)

The baseline is an initial image that is supposed to contain no information
that allows the neural network to process correctly the image (e.g. a white
or black image). In Eq. 4.5, an issue appears due to the first term. If a pixel
of the original image has a value close to the one of the baseline, the value
of φIG

i will be low no matter the importance of this pixel. The solution used
to tackle this problem consists in defining the baseline image as the origi-
nal image on which we apply a Gaussian noise. Nevertheless, the response
highly depends on the randomness of the baseline. In order to decrease this
dependency, we average the response over different baseline images which
differ only by the random Gaussian noise. This corresponds to the expected
gradient [115]

φEG
i ( fnn, x; B) =

〈

φIG
i ( fnn, x, x′)

〉

x′∈B
(4.6)

where B is the set of baseline images. After training a model on 125,000 sam-
ples, one can compute the expected gradient for the two parameters. We note
fΠ ( fξ) the function that corresponds to the neural network and that returns
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the value of the parameter Π (ξ). With the chosen model, one can observe in
Fig. 4.9 that φEG

i ( fΠ, x; B) and φEG
i ( fξ , x; B) are quite similar. This property

is present in all the trained models we observed. However, the following
properties are specific to the studied model. First, we can be surprised by
the asymmetry of the highlighted pixels. The right part of the image seems
more important than the left part. Also, the upper left corner is systemati-
cally highlighted. Those two last properties are not easy to explain and may
correspond to a local minimum in the training process that has been able to
give good results while not all the parameters have been well used. If the
observations discussed so far do not allow to understand how the model has
determined the value of Π and ξ, the following could give us some insights.
It appears that some highlighted pixels correspond to branches of weak elec-
tron density. This means that by changing the value of the density inside
those branches, the result can be considerably modified.

Even if this last observation seems nice and convincing, we have to keep
in mind that the integrated gradient method is not perfect and depends on
external parameters besides the model itself. Moreover, some other models
seem to focus on another part of the image (e.g. ≈ 200 nm after the QPC
or the region around the main branch(es)) and the observations are based on
the visual interpretation of a human being.

The presented methods have shown some element of comprehension on
the location of information in the image and we learned a bit about the learn-
ing procedure of the model. However, the explainable artificial intelligence
domain is still in expansion and the results given by the various existing
methods cannot be blindly accepted.
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Chapter 5

Determination of the full potential
landscape from the PLDOS

In chapter 4, we presented a proof of principle that basic information on the
disorder potential can be extracted from the PLDOS. We now move forward
to a more ambitious goal which consists in using an artificial intelligence ap-
proach to solve completely the inverse problem by determining the full po-
tential landscape. In this section, we use the model as described in Sec. 4.1.
The only difference is the assumption on our knowledge of the sample. Previ-
ously, the two experimental parameters s and Nd were the unknown param-
eters of the potential and thus the targets for the neural network. In our new
study, we create the dataset with the same globals properties as the studied
sample. In other words, Nd and s are no longer unknown parameters of the
system (In the dataset: s = 50 nm and Nd = 1 × 1012 cm−2). The remaining
unknown feature is the set of positions of the dopants. In our model, the in-
formation on the dopant positions is hidden either in the potential landscape
image or in its Fourier coefficients. We show in Sec. 5.1 that it is then possible
to predict the potential by performing a regression on the Fourier coefficients,
and in Sec. 5.2 that one can even directly obtain the value of the potential for
each point of space. In order to give more information to the neural network,
we also created an architecture that can receive three PLDOS images as input
as discussed in Sec. 5.3. Finally, in Sec. 5.4, we present a study of a system
without QPC which does not present a branch pattern in order to generalize
our approach. The main results of this chapter are published in Ref. [16].

5.1 Regression on the Fourier coefficients

5.1.1 Architecture of the neural network

In this section we focus on determining the full potential disorder landscape
by performing a regression on the Fourier coefficients. The neural network
still takes the PLDOS image as input, but the neurons in the output layer
correspond to all the Fourier coefficients used to create the potential. Each
Fourier coefficient is represented by two output neurons, one for the real
part and another for the imaginary part. Thus, the architecture of the current
neural network is very similar to the one used previously to characterize
the disorder potential with only two parameters. As depicted in the lower
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Rank Nb filters Kernel size Neurones 〈MSE〉 σMSE

1 (128, 256, 256) (5, 5, 3) 800 0.055 0.010

2 (128, 256, 256) (5, 3, 3) 800 0.070 0.005

3 (128, 256, 512) (5, 3, 3) 800 0.095 0.019

4 (64, 128, 256) (7, 5, 3) 800 0.111 0.016

5 (64, 128, 256) (5, 5, 3) 800 0.116 0.019

6 (64, 128, 256) (5, 5, 3) 1600 0.138 0.018

FIGURE 5.1: Top of the figure: List of the six best configurations
of hyperparameters evaluated with 10-fold cross-validation.
The numbers of filters and kernels are represented by 3 num-
bers, which correspond to the three convolution blocks, respec-
tively. The number of neurons is represented by two numbers
that correspond to the number of neurons contained in the two
dense layers, respectively. For each configuration, the dropout
rate is 0. The best neural network architecture is represented on
the bottom of the figure. This model contains about 5 million

parameters.

panel of Fig. 5.1, the first part of the network is composed of a sequence
of convolution blocks. The output of the last convolution layer is flattened
and connected to one dense layer before the output layer. We note a small
difference concerning the number of dense layers with the global architecture
of the model of Chap. 4. Indeed, the current model has only one hidden
dense layer because the presence of two successive hidden dense layers leads
often the training to be stuck in a local minimum.

In order to obtain high quality results, one has to use a large neural net-
work. It is then difficult to perform the grid search and k-fold cross valida-
tion method due to the long training time and the high memory required.
To perform the study, we used 80,000 samples that went through a standard
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5× 10−1

FIGURE 5.2: Mean squared error summed over all the Fourier
coefficients in the prediction of the Fourier coefficients as a
function of the training set size. The markers are box plots
where the horizontal bars inside boxes correspond to the me-
dian values. The vertical edge of the boxes corresponds to quar-
tiles, and white dots are outliers. The inset represents the me-
dian values in log-log scale where the grey dashed line repre-

sents a power-law fit.

normalization. Then, we empirically determined a range of hyperparame-
ters that allows to have a satisfactory prediction. To perform a fine tuning,
we choose 9 models that already give good results and evaluate them. To
perform this evaluation we shuffle and split the dataset, keeping 90% for the
training and 10% for testing. The average results of the latter procedure, re-
peated 5 times, are presented in Fig. 5.1.

The parameters that do not appear in the architecture of Fig. 5.1 are the
learning rate set to 10−4, the optimizer for the gradient descent which is Adam
and the chosen loss function is root mean squared. We also note the presence
of batchnormalization which is especially efficient because of the normal dis-
tribution of the Fourier coefficient.

5.1.2 Accuracy of the predicted Fourier coefficients

Before training the neural network, we have performed data augmentation
by using the symmetry as explained in Sec. 4.2. The symmetry operation on
the Fourier coefficients is a switch of the sign of qy. Thus, the inverse Fourier
coefficients become

Cinv ((qx, qy)j

)

= C
(

(qx,−qy)j

)

. (5.1)

This data augmentation increases the number of samples up to 150,000
(135,000 samples for the training set, 5,000 for the validation set and 10,000
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for the test set). Fig. 5.2 shows the mean squared error as a function of train-
ing set size. Since each point of the figure correspond to 30 trainings, we
limited the figure to 80,000 samples in the training set, due to the compu-
tation time. Thus, for the largest training set size, we already reach a very
high precision rate that would be complicated (and not interesting for most
usages) to increase. From the power-law fit, we obtain an exponent of −1.24,
meaning that to divide the mean squared error by two, one has to add 100,000
samples to the current training set.

The results presented above correspond to the mean squared error aver-
aged over all the Fourier coefficients composed of real and imaginary part
(i.e. 1/Ncoeff ∑Ncoeff

|C(q)|2 with Ncoeff the number of Fourier coefficients).
Thus, it does not contain any information on the variation of the prediction
error that can exist between Fourier coefficients associated to different vec-
tors~q of the reciprocal space.

To study such a dependence, we compute the average error of all the
samples on each Fourier coefficient individually. In the two upper panels
of Fig. 5.3, the latter average error is depicted in colorscale for each Fourier
coefficient located in their corresponding q-vector coordinates in the recipro-
cal space. First, we note the similarity of the average prediction error made
for the real and imaginary parts by the neural network. The dependency of
the error on the magnitude of the vector ~q visible in the two upper panels is
highlighted in the lower panel of Fig. 5.3 (blue dots). In that figure, one can
observe the exponential increase of the error with |~q|. This can be explained
by taking into account the decaying exponential factor in Eq. 3.46. Indeed,
we note that the larger is the magnitude of the vector ~q, the weaker is the in-
fluence of the corresponding term of the potential. Thus, it becomes difficult
for the neural network to determine the Fourier coefficient that corresponds
to a term that has almost no impact on the disorder configuration.

The accuracy of the neural network in the prediction of the Fourier coeffi-
cients with the PLDOS as input cannot be better than when using the poten-
tial itself as input. In the case where the accuracy is the same, that means that
the PLDOS contains the whole information on the disorder. The lower panel
of Fig. 5.3 depicts the evolution of the error with the magnitude of ~q when
the potential is used as input (red dots). When performing the exponential
fit, we observe that reduce the pre-factor of the exponential by a factor 20
using the potential as input1. Similarly to Chap. 4, we observe a significant
decrease of the error when using the potential as input and thus a loss of
information on the disorder in the PLDOS image.

One can also evaluate the performance of the neural network by recon-
structing the potential ypred from the predicted coefficients and to compare
it to the expected disorder potential yexp. In order to calculate the difference
between two images, we use the Pearson correlation coefficient (PCC)

rP =
∑

Np
i=1

(

ypred,i − ȳpred
) (

yexp,i − ȳexp
)

√

∑
Np
i=1

(

ypred,i − ȳpred
)2
√

∑
Np
i=1

(

yexp,i − ȳexp
)2

, (5.2)

1The factor in the exponential is about the same in the two cases.
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ponential fits.

where the sums run over the Np pixels of the images while ȳpred and ȳexp
are the mean values of the two images. Using the PCC to evaluate our best
model2 trained with 135,000 samples, we obtain the histogram of the PCC for
the samples of the test set shown in the upper panel of Fig. 5.4. Fitting the
histogram with a skew normal function

γ(x; ζ, ω, θ, β) = β
1

ω
√

2π
e−

(x−ζ)2

2ω2

[

1 + erf
(

θ
x − ζ

ω
√

2

)]

, (5.3)

where erf(x) is the error function, we find that the peak is at rP = 0.987.
Considering the distribution, we note that 99 % of the predictions will have

2best model over 10 trainings
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ple of the correlation coefficient described before and the error
performed on the Fourier coefficients. The images of the lower
panel are examples of expected (left) and predicted (right) po-
tentials that correspond to a correlation coefficient indicated in

the upper panel.
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FIGURE 5.5: Ratio of the Pearson coefficients between the re-
constructed potentials from the expected and predicted Fourier
coefficients as a function of the maximum magnitude of the vec-

tor~q considered in the sum scaled by the actual cutoff.

a PCC higher than 0.976. Examples of potential reconstruction are depicted
in the lower panel of Fig. 5.4 where the left (right) images represent the ex-
pected (predicted) potentials. The three examples have different PCC and
correspond to the categories of accuracy labeled a, b and c in the histogram.
One can notice the reliability of the prediction even for the worst cases. It is
also interesting to notice the correlation between the error in the coefficients
and the PCC between the reconstructed potential and the expected one. The
correlation between these quantities exists but is not as clear as one can ex-
pect. This is probably due to the difference of impact in the potential recon-
struction of the Fourier coefficients associated to different magnitudes of ~q
while the MSE considers all the coefficients equally.

To sum up, the neural network has more trouble to predict Fourier coeffi-
cients associated to high |~q| values and in the same time those coefficients
have a limited impact on the potential. Therefore, one can study which
Fourier coefficients impact negatively the reconstructed potential. For this
we compare the PCC r

exp
P measured between the potential computed from

all the exact Fourier coefficients and computed with the exact Fourier coef-
ficients associated to |~q| < |~qmax| and the PCC r

pred
P measured between the

potential computed from all the exact Fourier coefficients and computed with
the predicted Fourier coefficients associated to |~q| < |~qmax|. Fig. 5.5 shows the
ratio of these two PCCs as a function of |~qmax|. We notice the convex shape of
the decreasing ratio, which indicates that the higher |~q|, the smaller is the im-
pact of predicted Fourier coefficient. This means that the decreasing impact
on the potential of a Fourier coefficient for a high |~q| is more important than
the exponentially increasing error with |~q|. However, we notice that the ra-
tio decreases in a very short range implying that the ratio is almost constant
and thus that all predicted Fourier coefficients have almost the same impact
on the reconstructed potential. Therefore, we do not expect increasing the
precision of the neural network by a smart weighting of the loss function
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depending on the Fourier coefficient represented by the output layer.
In this section, we have seen that one can determine the potential using a

neural network that is trained to predict the Fourier coefficients. The advan-
tage of this method is to obtain a reconstructed potential that has a physical
meaning. However, this method works only for disorders that are described
by Eq. 3.46. Moreover, since the end of the neural network is composed of
dense layers, the training is very time consuming. In the following section we
use a different neural network that allows to overcome the issues discussed
above.

5.2 Encoder-decoder neural network

5.2.1 Architecture of the neural network

In this section, we tackle the same inverse problem of training a neural net-
work to give the disorder potential from the PLDOS in a more direct way.
Instead of performing a regression on the Fourier coefficients and then re-
construct the potential landscape, we directly perform the regression on the
potential landscape image. The easiest way to solve this task with AI is to
use a convolutional encoder-decoder (CED) (detailed in Sec. 2.3.3). The ar-
chitecture of the network will be composed of two parts: The encoder, that
decreases the resolution of the image (with the pooling layers) while the
number of feature maps increases. Then, the decoder increases the size of
the image (with the upsampling layers) while reducing the number of fea-
ture maps to finish with an image that has the same dimension as the input
image. In order to determine the neural network architecture and the hyper-
parameters, we perform a k-fold cross-validation with 20,000 samples. We
choose the range of the parameter values close to a satisfactory set of param-
eters. The 6 best configurations are detailed in the upper panel of Fig. 5.6.
We note that hyperparameters like the number of filters in the convolution
layers and the number of convolution layers do not appear in the table of
Fig. 5.6 because they are identical for the 6 best configurations. As before,
the amount of time required to perform the cross-validation on all parame-
ters is too important. Then we fixed some parameters on common values:
the learning rate is equal to 10−3, the chosen optimizer is Adam. We cannot
ignore that the results presented in the table of Fig. 5.6 are very close and
their difference is typically in the order of magnitude of the statistical error.
Hence, the ranking gives just a rough idea of the best neural networks and
allows us to choose a neural network architecture and the associated hyper-
parameters based on a quantitative information. We keep in mind that all of
the presented configurations could give about the same results for the rest
of the study. Nevertheless, the k-fold cross-validation has been performed
on about 60 models and allowed to bring to light which ones are the best
configurations.

The lower panel of Fig. 5.6 depicts the architecture of the selected config-
uration and includes the information that is not present in the table.
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Rank Kernel size Dropout Batch 〈rP〉 σrP

1 (5, 5, 3) (0.0, 0.0, 0.0) 8 0.984 0.001

2 (5, 5, 5) (0.0, 0.0, 0.0) 8 0.983 0.003

3 (5, 5, 3) (0.1, 0.1, 0.1) 8 0.983 0.001

4 (7, 5, 3) (0.1, 0.1, 0.1) 8 0.982 0.002

5 (5, 5, 5) (0.1, 0.1, 0.1) 8 0.981 0.003

6 (5, 5, 3) (0.0, 0.0, 0.0) 16 0.980 0.004

FIGURE 5.6: Top of the figure: List of the six best configurations
of hyperparameters evaluated with 10-fold cross-validation.
The size of the kernels is represented by 3 numbers, which
correspond to the three convolution blocks, respectively. The
dropout is also represented by 3 numbers that correspond to
the value of the dropout layer located at the end of each con-
volution block. The best neural network architecture is repre-
sented at the bottom of the figure. Each box represents a layer
and the meaning of the color of the box is depicted directly in

the figure. This model contains about 550,000 parameters.

5.2.2 Average error in real space

In order to perform the following study, it is first important to know if the size
of our training set is large enough to not expect a significant improvement
in the quality of prediction of our neural network by adding a reasonable
amount of training samples. To perform such a study, we train 20 neural
networks with training set sizes from 15,000 samples to 90,000 samples and
observe the evolution of the distribution of the averaged Pearson coefficients
between the predicted potentials and the exact ones for the samples of the
test set. We note that we doubled the size of our training set by performing
the data augmentation exploiting the symmetry of the set up as described in
the previous section.

In Fig. 5.7, we show the decrease of the error (1 − rP) of prediction per-
formed by the neural networks with respect to the training set size. In the
inset of the figure, we can observe the power-law of the median value. From
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FIGURE 5.8: Upper panel: distribution of the correlation coef-
ficient of samples from the test set between the expected po-
tential and the one reconstructed from the predicted coeffi-
cients. The blue dashed line represents the fit of the distribu-
tion. The lower panels are examples of expected (left) and pre-
dicted (right) potentials that correspond to a correlation coeffi-

cient indicated in the upper panel.

edges of the sample. This is due to the combined effect of the absence of in-
formation beyond the edges of the sample and the weak average intensity of
the PLDOS at this location. Then, we can state that the rate of information
carried by the PLDOS on the disorder depends on the intensity of this latter
quantum transport information. We also note that the region near the QPC
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FIGURE 5.9: Root of the average squared local error in the real
space potential (scaled by the root mean square of the poten-
tial used for the generation of samples), calculated by averag-
ing over the test samples. The left and right panel corresponds
to the methods of the encoder-decoder and the Fourier coeffi-

cients, respectively.

does not respect the latter statement. Indeed, the error is higher in this re-
gion, which we explain by the presence of a high intensity of the PLDOS no
matter the disorder because of the proximity with the QPC.

In Fig. 5.9, we can also compare the mean spatial error on the sample
averaged over the test set for the current method that uses a CED (left panel)
and the method that performs a regression on the Fourier coefficients (right
panel). Note that the range of the color code is not the same for the two
images. The regression method that predicts the Fourier coefficients leads to
about the same distribution of the error as the CED method, but with more
variations in this distribution which is due to the non-local impact of the
Fourier coefficients.

5.2.3 Variation of the prediction accuracy when varying the

disorder characteristics

From the previous results, we can state that our artificial intelligence method
using a convolutional encoder-decoder is able to determine almost the ex-
act disorder potential from the PLDOS. This statement belongs only in the
case where the neural network has been trained with PLDOS-potential pairs,
where the potential characteristics used for the training are the same as the
ones we want to determine. However, the disorder characteristics of a sam-
ple elaborated in a laboratory can have some deviations from the one ex-
pected. It is therefore interesting to determine the variation of the accuracy
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FIGURE 5.10: Average correlation evaluated for small test sets
composed of 100 samples with different disorder characteris-
tic s. The error bar depicts the standard deviation of the Pear-
son coefficient on a test set. The red (blue) dots depict the
quality of a neural network that has been trained with sam-
ples which have a value s ∈ [40 nm, 70 nm] (s = 50 nm).
The insets show examples of PLDOS-potential pairs for s =

27.5 nm, 50 nm, 75 nm

of our model with the deviation of the potential characteristics between the
one used to train the model and the one used to test it. To perform such an
analysis, we use the fact that the parameter that has the strongest impact on
the potential landscape is the distance s between the 2DEG and the doping
layer, as seen in Sec. 3.4.1. To study the dependence of the accuracy on that
parameter, we created several test sets with different values of s which are
each composed of 100 samples.

In Fig. 5.10, we plot the performance of two neural networks on the above
described datasets. The neural network associated with the red dots corre-
sponds to the neural network trained on samples that have a parameter s
between 40 nm and 70 nm. This dataset is the one used in Sec. 4 but with the
potential as output. The blue dots depict the performance of a neural net-
work trained with samples having the parameter s equal to 50 nm. We can
first observe the superiority of the neural network trained on a range of pa-
rameters s compared to the one trained with a single value of s even for that
specific value s = 50 nm. Unexpectedly, we observe that the neural network
trained with the same global characteristic s = 50 nm shows a peak of perfor-
mance around s = 42.5 nm. The other remark concerns the asymmetry of the
average accuracy. Indeed, the performance of the neural network decreases
faster for a decreasing s than for an increasing s. This can be explained by
the increase of the pattern complexity of the potential landscape when s is
decreasing due to the decrease of the correlation length of the potential. We
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can also notice from the inset that the PLDOS does not behave the same way
at very low s than at the other values of s. Indeed, due to the higher impact
of the disorder at low s, the electrons are more localized spatially. Neverthe-
less, this decrease of performance at low s is not a severe issue considering
that the studied heterostructures are used for their high-mobility properties
meaning that the disorder is not supposed to be strong.

From this study, we can state that it is more interesting to train a neural
network with samples that do not have fixed parameters. We also observed
that the convolutional encoder-decoder is rather resistant to a small varia-
tion of the disorder characteristics. Even for neural networks trained with
samples having the same characteristics, the loss of precision is not too im-
portant.

5.2.4 Image translation through the network

Besides all the previous study, it is difficult to get insights about the work-
ing procedure of the neural network. When the neural network is applied to
data for which the output is unknown, we have no possibility to check the
prediction of the neural network, it is therefore important that we can trust
our model. However, it is very complicated to find a method to interpret the
working procedure of the neural network as explained in Sec. 4.5. This is
especially true when performing an image translation as we are doing. The
first reason for that is the fact that the image translation performed by a neu-
ral network is not a common problem when the input and output images are
very different 3. Thus, in this section we restrict our study to the visualization
and the interpretation of the image translation through the neural network.

3The image translation often performed with GANs concerns problems where the input
and output images share the same pattern like transforming a satellite image to a road map.
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FIGURE 5.11: Example of three PLDOS images passing through
the layers of the neural network. The top layer correponds to
the inputs, then each line corresponds to a layer of the neural
network and depicts the feature maps having the best correla-
tion coefficient with the expected output. Finally, the lowest

line corresponds to the outputs.

Fig. 5.11 depicts this image translation for three PLDOS images of the
test set. The input is represented in the first line, then each line corresponds
to feature maps, of the indicated layer, which have the best PCC with the
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expected output. This choice allows to depict only one feature map, even
if it may not be the most relevant choice for layers close to the input. For
aesthetic reasons, we did not show all the hidden layers, only the ones with
significant changes are depicted. It is important to note that all the maps have
their own color code. We can also remark expected general features like the
variation of the resolution due to the max pooling and also the presence of
a large number of pixels with the lowest value 0 in the hidden layer because
of the ReLU activation function. We also note that minima and maxima can
be inverted from one layer to another (layer 7 to layer 10) and considering all
the feature maps, in a given layer, we can have feature maps with opposite
minima and maxima. From Fig. 5.11, we also can observe a more interesting
phenomenon. Indeed, we can see that at the beginning of the translation the
PLDOS intensity becomes higher in areas that correspond to a minimum of
the predicted potential 4 5. From the figure, it is hard to have more insight on
the prediction of the potential at regions where the fluctuation of the PLDOS
is weak. We can just observe details arising in those regions while the image
passes through the neural network. This information can arise from other
feature maps. In any case, we have noticed earlier in Sec. 5.2.2, that the
disorder potential is predicted with a good accuracy even when the PLDOS
signal is weak.

Since we have no possibilities to have quantified results for this study,
we decided not to investigate the interpretation of the prediction more than
what we have already done.

5.3 Magnetic field

Up to now, we considered a neural network that takes one PLDOS image as
input to determine the full potential disorder. However, nothing forces us
to use only one PLDOS image to determine this disorder. Indeed, one can
compute the PLDOS under different experimental conditions. For example,
we can change the QPC opening or apply a magnetic field on the sample,
resulting in different PLDOS images associated to the same disorder poten-
tial. In this section, we will use the magnetic field to obtain three different
PLDOS images, one without magnetic field and two with a magnetic field
that has the same magnitude but opposite signs 6 as depicted in Fig. 5.12.
One of the objectives of this project is to observe the modification of the real
space error as depicted in Fig. 5.9. Indeed, we previously stated that the av-
erage distribution of the error in the real space is correlated with the average

4From the results of Sec. 5.2.2 we can consider that the expected and predicted potential
are identical for this study.

5This result arises from a more detailed study where all the feature maps of a large num-
ber of samples have been observed. It is therefore not biased by our choice of the feature
map.

6In the case of the PLDOS, we can expect three different images, however that is not
the case when performing an SGM experiment. Due to the time reversal symmetry, the
conductance in a two-terminal setup has to be even in magnetic field, such that two SGM
experiments with a magnetic field of the same magnitude but opposite sign would give the
same result.
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FIGURE 5.12: Example of three PLDOS images arising from the
same disorder configuration but under the effect of a negative
(positive) magnetic field in the left (right) panel, and no mag-

netic field in the middle panel.

distribution of the PLDOS. Therefore, we can expect that feeding the neural
network simultaneously with the three PLDOS images described before can
improve the accuracy especially on the edge of the sample.

To add the magnetic field in the quantum transport simulation we use
the Peierls substitution as described in Sec. 3.2. The magnitude of the mag-
netic field B is chosen such that the branches of the electron flow are mainly
present in the right or left region of the sample as depicted in Fig. 3.2. How-
ever, the magnetic field has to be low enough to avoid the quantum Hall
regime. Thus, we fixed the cyclotron radius

rc =

√
2m∗EF

|q|B (5.4)

to 420 nm which is about half the width of the simulated sample. Therewith,
the magnitude of the magnetic field is equal to 0.15 T.

5.3.1 Three images input neural network architecture

To perform this study, we use a convolutional neural network that takes three
images as input and gives one image as output. To simplify our study and
allow us to compare the peformence with the one-image approach, we use
almost the same neural network architecture as before. The difference comes
in the encoder part. Previously, we got a single encoder that takes one im-
age as input and gives feature maps in the latent space. In this section, we
have 3 encoders that take one image each, process the image and give feature
maps in the latent space. All the feature maps from the 3 encoders are then
merged and processed by the decoder that gives the predicted potential. The
details of this architecture are depicted in Fig. 5.13. We note that this new
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FIGURE 5.13: Architecture of the neural network with the three
inputs. The end of the three branches is followed by the merg-
ing of the pooling layers. This model contains about 1.3 million

parameters.

architecture does not change the training procedure. An important change is
the number of parameters of the neural network. Indeed, the neural network
with three inputs has about twice as many parameters as the single input
neural network 7.

5.3.2 Advantage of the multi-input neural network

Fig. 5.14 depicts the average performance over 20 trainings for the one input
(red dots) and the three input (blue dots) neural network as a function of the
training set size. We notice a large advantage for the 3 input neural network,
especially for small training sets. While it could be tempting to use the differ-
ence of number of weights in the two models to explain such a difference, we
observe in Fig. 5.14 that a single input neural network, with almost the same
number of weights as the three input neural network 8 (green dots) does not
perform better than the single neural network with less weights.

It appears that the difference of performance is not due to the larger num-
ber of parameters in the three input neural network but to the increase of
information that has been used to determine the disorder potential. One can
also observe the difference between the two neural networks on the error
and its dependence on the position of the sample. As expected, when train-
ing single input neural networks, the distribution of the error depends on
the presence or not of magnetic field as shown in the left and middle pan-
els of Fig. 5.15. The lowest average error region seems to correspond to the

7This implies a 50% longer training time for the 3 input neural network.
8To increase the number of weights, we just increase the number of feature maps in the

convolution layers.
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FIGURE 5.14: Evolution of the average Pearson correlation co-
efficient over 20 trainings with the size of the training set. Blue
(red) dots represent the neural network with 3 inputs (1 input)
depicted in Fig. 5.13 (Fig. 5.6). The green dots represent the per-
formance of a single input neural network with a higher num-

ber of training parameters.

highest average PLDOS intensity. Therefore, when using a three input neu-
ral network which takes the PLDOS of the 2DEG for ~B = −Bêz,~0 and Bêz,
the distribution of the error becomes more uniform (the increase of the er-
ror on the edge disappears) and leads to an increase in the accuracy of the
prediction.

When applying this artificial intelligence method to a real sample, it can
be interesting to collect electronic transport data in different experimental
conditions to give as much information as possible to the neural network. In
this study, we specifically chose the magnetic field in order to cover different
regions of the space but other parameters can be used.

5.4 Potential prediction without branch pattern in

the PLDOS

So far we have focused on one system, the 2DEG with electrons injected
through a quantum point contact. The reasons why we choose this sys-
tem are the large number of experiments using this setup and the presence
of branches in the electron flow that depends on the disorder [101]. How-
ever, the PLDOS depends on the disorder no matter the presence of a branch
pattern or not. It could then be interesting to see if the previously studied
method works also for other kinds of systems. Therefore, we decided to
study the simplest system that does not present a branch pattern which is
the wire connected to a source and a drain on its two sides (see Fig. 5.16).
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FIGURE 5.15: Root of the average squared local error in the real
space potential (scaled by the root mean square of the potential
used for the generation of samples), calculated from an average
over the test samples. Left panel: single input neural network
trained with PLDOS at ~B = Bêz, middle panel: single input
neural network trained with PLDOS at ~B = ~0 and right panel:
3 inputs neural network trained with PLDOS at ~B =~0 and ~B =

±Bêz.

The gray scattering region has a dimension of 500 nm × 1000 nm. The dis-
tance between the 2DEG and the doping layer has been set to s = 35 nm,
which implies a small correlation length of the potential. The dopant density
is fixed at 1 × 1012 cm−2. The Fermi energy of the 2DEG is 2.1 meV. An ex-
ample of PLDOS computed for this system is depicted in the lower panel of
Fig. 5.16. The dataset is composed of 36,000 samples.

For simplicity, we keep the same neural network architecture as the one
depicted in Fig. 5.6. When training the neural network, we observe a higher
probability for the neural network to be stuck in a non-optimized local min-
imum 9. However, the results have about the same accuracy as the previous
model of Sec. 5.2 when applied to a system with QPC. An example of the
distribution of the error is depicted in Fig. 5.17. The average PCC is almost
identical in both cases when averaging over several trainings.

9The phenomenon disappears when we decrease the number of filters on the convolution
layers.
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We conclude from this result that the disorder can also be extracted from
transport data when there is no QPC and no branching.
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Chapter 6

Realistic simulation of an
experimental sample

We have shown in Chap. 4 and 5 that one can extract information about the
disorder of a simulated heterostructure sample from its transport properties
using an artificial intelligence. It becomes now essential to apply the previ-
ous result on a real sample. In order to obtain a result close enough to real-
ity and in a reasonable amount of time, we chose a sample with convenient
characteristics. The main expected characteristics of such a sample are the
availability of very-low temperature SGM data in order to not be obliged to
perform the conductance computation for several energy values and an SGM
that can be resized with a reasonably small amount of pixels which implies a
reasonable amount of conductance computations per SGM map.

In artificial intelligence, the performance of prediction of an algorithm
depends on the quality of the training data. Thus, we use a new method to
compute the electrostatic environment that is more realistic than before. We
use a Poisson Thomas-Fermi solver (PTFS) that is developed in Grenoble in
the theory group of the Pheliqs lab [116]. It allows to perform more precise
simulations by taking into account the electrostatic interaction between the
different charge sources. The quantum properties of the 2DEG are taken into
account to compute the electrostatic potential seen by the electrons.

In this chapter, we describe the experimental sample in Sec. 6.1, followed
by the description of the model used to simulate the sample in Sec. 6.2. The
latter section is also dedicated to describe the approximations of the model
and the comparison with the fast-to-compute model used to create a pre-
training dataset in order to perform transfer learning. The last section 6.3 is
dedicated to the presentation of the datasets used for the training. A part of
the results present in this chapter arises from [117].

6.1 Presentation of the sample

6.1.1 Properties of the experimental sample

The chosen sample is the one used in Ref. [96], which has been measured in
Louvain-La-Neuve. An electron microscopy image of the sample is shown
in the left panel of Fig. 6.1. The 2DEG, located in an Al0.3Ga0.7As/GaAs
heterostructure, has a density of ns = 2.53 × 1011 cm−2 and a mobility of



78 Chapter 6. Realistic simulation of an experimental sample

FIGURE 6.1: Left panel: Electron microscopy of the sample. The
QPC corresponds to the gap between the lowest gate fingers
and the red rectangle depicts the scanning zone. Right panel:
Conductance of the studied sample as a function of the QPC
gate voltage. The red dots depicts the value at which the SGM

is performed. Data provided by B. Brun.

µ = 3.25 × 106 cm2 V−1 s−1. The 2DEG is placed 67 nm below the surface
under the following stacking of layers (from 2DEG to surface of the sample):

• AlGaAs 30 nm (spacer)

• AlGaAs 15 nm (Si doped [4.8 × 1024 m−3])

• AlGaAs undoped 5 nm

• GaAs 7 nm (capping)

• Hafnium oxyde 10 nm

The Fermi wavelength that has been experimentally determined, using
interference fringes, is about λF = 40 nm, which is close to the value derived
from ns: λF =

√
2π/ns = 49.8 nm, assuming parabolic dispersion. The QPC

is realized by applying a negative voltage on two metallic gates that have a
width of 150 nm, an opening of 250 nm and a thickness of 105 nm. The SGM
scan has been performed in a cryostat with a base temperature set to 100 mK.
The metallic tip used for the SGM is placed 30 nm above the heterostructure
and has a curvature radius of 50 nm. The voltage applied on the tip is main-
tained to −6 V during the scan, creating a depletion radius rdep = 60 nm.
A small excitation is also applied to the tuning fork at its bar resonance fre-
quency (∼ 32 kHz), resulting in a vibrating tip. More details concerning the
tip are presented in Ref. [118]. The scan is performed in a rectangular zone
of dimension 520 nm × 260 nm located at 100 nm in front of the QPC and
depicted by the red rectangle in the left panel of Fig. 6.1.

The conductance is measured with the four contacts lock-in technique at
low frequency (77 Hz). For this sample and experimental set up, four SGM
maps are measured at different QPC gate voltages that correspond to the
following value of conductance: 1.0 G0, 1.3 G0, 1.7 G0, 2.0 G0 (red dots in
right panel of Fig. 6.1). The experimental SGM maps are depicted in Fig. 6.2.
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FIGURE 6.2: SGM maps experimentally measured. Note that
the images are rotated by π/2 compared to left panel of Fig. 6.1.

Data provided by B. Brun.

6.1.2 Realistic model

To model the experimental sample described in Sec. 6.1.1, we consider the
heterostructure (depicted in the left panel Fig. 6.3) as a stacking of four dif-
ferent layers in the vertical (z) direction. The first one is the substrate that
is represented as a block of dielectric material with a relative permittivity
ǫr = 12. Then, we have the 2DEG located at z = 0. The AlGaAs/GaAs stack-
ing is modeled as another block of dielectric material (ǫr = 12) where the
dopants are represented by positive charges. Their positions are randomly
chosen from a Poisson distribution in a 15 nm thick region that begins 30 nm
above the 2DEG. Finally, the Hafnium oxyde is represented by a layer with
a dielectric permittivity of ǫr = 20. All the electrostatic computations are
performed using the PTFS that is detailed in the next section.
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6.2 Electrostatic simulations

6.2.1 Presentation of the PESCADO python package

In order to have the most reliable model, we decided to use PESCADO a Pois-
son solver which gives more realistic simulations than those performed with
the model of Sec. 4.1. This python package developed in Grenoble [116] al-
lows to solve the Poisson equation

∆U =
̺(U)

ǫ
(6.1)

iteratively. U denotes the electric potential, ̺(U) the charge density and ǫ is
the dielectric constant. The basic principle is to compute the electric potential
U from the charge density and then compute the new charge density from the
previously determined U until reaching a convergence for those two quan-
tities. The charge density can be rewritten as ̺(U) = en(µ = eU), where
n(µ) is the charge density that depends on µ, the electrochemical potential.
The electron density corresponds to the Integrated Local Density of States
(ILDOS)

n(µ) =
∫ µ

ρ(E)dE (6.2)

that depends on the local density of states ρ(E) which is obtained by solving
the Schrödinger equation. However, in case of an infinite 2DEG discretized
with a lattice parameter a, the density of states is constant and is equal to

ρ(E) = a2 m∗

πh̄2 (6.3)

for positive values of µ, otherwise the density of states is equal to 0, as de-
picted in Fig. 6.4. Thus, the ILDOS is equal to 0 for negative values of µ and
for positive values, we have n(µ) = ρµ.

In practice, the space is discretized in sites. Depending on the local elec-
trostatic properties, we observe three different kinds of site. The first one
corresponds to a region of space where the charge value is fixed (e.g. the
metallic gates) and is called Dirichlet. When we have region of space without
charges (n(µ) = 0) like in the depleted regions of the 2DEG, we have what
we call the Neumann sites. Finally, the last kind of site corresponds to region
of space where PESCADO solves the Helmholtz equation. In the 2DEG, the
sites are flexible and can either be Neumann or Helmoltz (depleted or car-
rying charges, respectively) depending on the electro-chemical potential as
depicted in Fig. 6.4. For positive values of µ, the sites carries a charge en(µ).

The algorithm works as follows: The electric potential U is computed
from the initial charge distribution that we fixed. Then, the charge distribu-
tion is computed from the potential U determined previously. When com-
puting this charge distribution, the flexible sites can change between Neu-
mann or Helmoltz. The iteration is programmed to stop when all the sites
have a fixed property (i.e. when two charge distribution computations do
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FIGURE 6.4: Right panel: evolution of the density of states as a
function of the electro-chemical potential. Left panel: electron
density as a function of the electro-chemical potential. For µ <
0 the site is depleted and has Neumann boundary conditions

while for µ > 0, the boundary condition becomes Helmoltz.

not change the property of any sites).

6.2.2 Electrostatics of the model

The electrostatic simulations are performed in three dimensions where the
value of the charge and the potential are computed at each point of a pre-
defined meshing. That meshing is characterized by the lattice parameter.
Obviously, the accuracy of the computation increases when the lattice pa-
rameter decreases. To perform the computation, we use a lattice parameter
that is not equal in the parallel and perpendicular direction, with respect to
the 2DEG plane.

For simplicity the parallel lattice parameter a‖ is the same for the elec-
trostatic simulation of PESCADO and the quantum transport computation of
KWANT. Hence, this parameter has to be much smaller than λF. We also
notice that this parameter has an impact on the both, PESCADO and KWANT

computation time2. Therefore, we set a‖ = 6 nm, which implies a difference
of 2% for the conductance computation with our reference case a‖ = 5 nm, as
depicted in Fig. 6.53. However, the CPU-time of a conductance calculation in
the inset of Fig. 6.5 indicates that when using a parallel lattice parameter of
6 nm instead of 5 nm, we reduce the computation time in KWANT by almost
a factor of 2. About the same factor of reduction is found for the PESCADO

computation.

2The computation time of KWANT is more crucial than in the previous model of Sec. 4.1
since one sample does no longer need one computation for the PLDOS but several thou-
sands computation, each corresponding to the conductance for one tip position. On the
contrary, the potential is calculated only once for each disorder configuration, thanks to the
approximations described in Sec. 6.2.4

3We do not consider lowering a‖ below 4 nm because of the enormous computational
resources required by PESCADO for our sample size (not doable on a workstation with 32GB
of memory, thus hard to perform the generation of thousands of samples in a reasonable
amount of time, even with a cluster.).
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FIGURE 6.5: The upper panel depicts a slice of the sample in the
y − z plane. Each point represents a site of the Poisson Solver.
The color of the points is the same as in Fig. 6.3. The lower
panel represents the relative variation of the conductance cal-
culated for a sample without disorder but with QPC and tip for
different values of the parallel lattice parameter. The inset de-
picts the time required to perform a conductance computation

with KWANT on a workstation.

In the direction perpendicular to the 2DEG, we have a non-uniformity
of the medium. The bottom of the sample is (i) the GaAs substrate (high
thickness compared to the other layers. In the simulation this thickness is
set to 125 nm in order to be converged enough), on which we have (ii) the
stacking of the different layers and on top we have (iii) the vacuum or the
gates (of thickness 100 nm). To take into account the different properties of
the different regions, the perpendicular lattice parameter varies. In region
(ii) (i.e. 0 < z < h + hQPC), the lattice parameter is set to 5 nm, to reproduce
as close as possible the different layer thicknesses and to allow a computation
in a reasonable amount of time. The region (iii) (i.e. z > h+ hQPC) is far from
the 2DEG and has less impact on the potential seen by the electron gas. Thus,
in this region the lattice parameter has been set to 20 nm. The region (i) (i.e.
z < 0) begins near the 2DEG and ends far from it. Thus, we decided to
fix the lattice parameter as a quadratic function of z. To sum up, the lattice
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parameter is defined as

a‖ = 6 nm, a⊥ =







2m2 + 3, z < 0
5, 0 < z < h + hQPC
20 z > h + hQPC

(6.4)

where m is an integer. A slice of the y − z plane of the sample showing the
location of the sites is depicted in the upper panel of Fig. 6.5.

As presented in Sec. 6.1.2, the different elements to take into account in or-
der to perform the electrostatic computation are the gates (The QPC and the
tip are both regions of sites with Dirichlet boundary conditions.), the charges
(that come from the ionized dopants) and the permittivity of the materials.
Concerning the last element, the dielectric permittivity has been set follow-
ing the model shown in Fig. 6.3. The dopants charges are placed in the doped
region of the sample (see Fig. 6.3). Since the space is discretized for the com-
putation, one has to fix the charge value for each cell of the doped region. To
spread the charge in the cells, we use the Poisson distribution with the pa-
rameter λ that is equal to the average number of charges per cells 4. The latter
parameter is determined from the volumic density of dopants ndop, with the
relation λ = ndopa⊥a2

‖, where a⊥ and a‖ are the lattice parameters perpendic-
ular and parallel to the 2DEG, respectively. In our model, we consider that
all the supplementary electrons of the dopants are located in the 2DEG. Thus,
we obtain the following relation ndop = ns/ddop where ddop is the width of
the doping layer, which is equal to 15 nm. Finally, we obtain a mean volumic
dopant density ndop = 1.69 × 1023 m−3.

When adding the QPC gates on top of the heterostructure, even at zero
QPC voltage the electron density of the 2DEG is not uniform anymore. To
compensate this effect, we apply an offset voltage Voff on the gates. The value
that allows to reach a uniform density is Voff = 0.162 V.

Since we have to create a large amount of samples to train the neural
network, we have to optimize the algorithm. For this purpose, we can re-
duce the number of iterations performed by PESCADO. Indeed, the algorithm
stops the iteration process when all the sites stay with the same boundary
conditions (i.e. depleted or not depleted) two times in a row, thus, one can
start with an initial boundary condition distribution close to the expected
one. This initial boundary condition can easily compute in the absence of
disorder. The difference in the iteration process is depicted in Fig. 6.6. We
observe that without an initial guess (first line) the number of iterations is
much more important than with an initial guess (second line). On average,
the initial guess allows to win 3 iterations. A second method to reduce the
number of iterations is to stop them when the potential has already suffi-
ciently converged. This implies to stop the process even when the number
of sites that change boundary condition from the previous iteration δ is not
equal to 0 but still very low, as in the last iterations in Fig. 6.6. The sites that

4We also can be interested in having no disorder, which corresponds to a uniform charge
density in the whole layer. In that case, all the cells carry a density of charge eλ.
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FIGURE 6.6: In the upper part, the images depict the bound-
ary condition (black for Neumann, yellow for Helmoltz) of the
sites in a region focused on the QPC. The upper line depicts
all the iterations (until the last change of site boundary condi-
tions) when we have no optimized initial guess. The sites that
have changed their boundary condition from the previous it-
eration are highlighted by the red color and their number δ is
indicated. The second line corresponds to the iterations when
having an initial guess. The lower panel depicts, in blue, the
evolution of the correlation error 1 − rP of the potential and the
charge distribution (left axis) compared to the converged ones,
for an example of disorder configuration. In this example, we
did not used the optimal initial condition. The evolution of the
deviation of the conduction (right axis) between the sample at
iteration i and the sample when it is completely converged is

depicted in red.

are still changing are close to the depletion limit, but in practice, it just corre-
sponds to a value of the potential that is close to EF and not a critical change
in the potential landscape. Therefore, we fixed that the iteration loop has to
stop when the correlation of the potential and the charge distribution at it-
eration N is correlated at least at 99.99 % with the potential and the charge
distribution found at iteration N − 1. In the lower panel of Fig. 6.6, we show
the convergence of the charge distribution, the correlation and the deviation
between the conductance measured at iteration N and the one of the sample



86 Chapter 6. Realistic simulation of an experimental sample

completely converged, for one example of disorder configuration5. We ob-
serve that the charge distribution converges less rapidly than the potential.
The vertical black dashed line represents the iteration at which the algorithm
fulfills the 99.99% of correlation condition. In this case, the iteration stops
when the conductivity of the sample is equal to the conductivity of the con-
verged one within 10−4G0. On average, we observe that we perform one
iteration less than what we would have done without this condition. This
approximation leads to a decrease of the computation time by 25% on the
PESCADO part, when starting from an initial guess.

When performing quantum transport simulations, the contact regions of
the sample with the ideal leads are extended by 10 site lines on which the
potential decays linearly to 0 in order to avoid reflection at the entrance of
the leads.

With the defined geometry, and using the cluster of X. Waintal’s group,
composed of 23 nodes, each with 48 cores and 128 GB of RAM, we can com-
pute in parallel 69 potentials in 2600 seconds6.

6.2.3 Calibration of the gate voltage

In order to perform the electrostatic computation, one has to fix the values of
the gate potentials. The two gates used in this study are the ones of the QPC
and the tip.

The value of the tip voltage Vtip is fixed to −6 V for all experimental mea-
surements (if we ignore the noise). However, due to the potentially small
differences between the experiment and the simulation, we decided to set
the tip voltage such that the depletion radius induced by the tip corresponds
to the one of the experiment which is 60 nm. This condition on the deple-
tion radius allows to take care of the effect of the tip on the 2DEG even if
the combination of the announced tip voltage and tip distance (from the sur-
face of the heterostructure) are slightly different from the real one. Thus,
the transport properties computed from the simulated sample are as simi-
lar as possible to the ones of the experiment. In the right panel of Fig. 6.7,
we plot the variation of the depletion radius as a function of the gate voltage
applied to the tip which is located 30 nm above the surface of the heterostruc-
ture. The depletion radius is determined from the depleted area in the 2DEG
which corresponds to the area of a unit cell multiplied by the number of sites
without charge. The simulated data (red dots) are fitted by the black dashed
line that corresponds to a square root function. Thus, we deduce that the
depletion area is linear with the voltage of the tip. From the data shown in
this figure, we obtain a depletion radius of 60 nm for Vtip = −5.77 V which is
close to the experimental value.

Concerning the QPC gate voltage Vg, it is fixed such that the dataset is
composed of samples with a given range of values of unperturbed conduc-
tance. Since we want to apply our neural network to the experimental SGM

5This figure does not change much from one disorder configuration to another.
6Only 6 to 7 cores have been used in each node because 7 jobs use all the 128 GB of RAM.

Calculation times have been estimated using the Pescado version dating from 18/07/2023.
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FIGURE 6.7: Left panel depicts the median (red dots) conduc-
tance over 30 samples with different disorder configurations as
a function of the QPC gate voltage. The error bars depict the
first and third quartile. Right panel represents the depletion
radius as a function of the tip voltage. The black dashed line
represents the fit which is a squared root function. The blue

dashed lines represent the point where rdep = 60 nm.

map, we want a neural network that is trained on samples with a conduc-
tance included in the range that goes from 1G0 and 2G0. However, we are
interested in having a slightly higher weight of samples with conductance
1G0. Thus, we hope having a particularly good accuracy for the experiment
close to G = 1G0. From the information of the left panel of Fig. 6.7, we decide
to use a QPC gate voltage of Vg = −0.82 V. We note that this gate voltage
does not take into account the offset voltage. Thus, the voltage set to the gate
is equal to Vg + Voff.

6.2.4 Approximation on the electrostatic potential for quan-

tum transport simulations

The generation of simulated sample data is performed in two steps. First,
we generate the electrostatic potential by using the PTFS from the Python
package called PESCADO [116]. After generating a potential, we perform the
electronic transport simulation with KWANT [87]. To compute one point of
the SGM map, we need the potential that corresponds to a given disorder
configuration (i.e. the dopant positions), the effect of the QPC and the effect
of the tip located at a given position. To obtain the full SGM map, one has to
compute the conductance for different tip positions (with the same disorder
configuration). In other words, in a rigorous approach, we have to use for
each of the tip positions the PTFS in each disorder realization. However,
this is a very time consuming task, that sums up to an enormous amount of
numerical resources for an entire dataset with a large number of realizations.

To tackle this problem, we have two possibilities. Method 1: We sum
the potential induced by the tip Utip on a sample without disorder (i.e. for
uniform dopant density) to the potential of the QPC and the dopants UQPC,dis
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rations.

computed by PESCADO, meaning that the full potential with this method is

U
(1)
full = Utip + UQPC,dis. (6.5)

Considering a data set of size Nsample and a number of tip positions Ntip, we
have to use the PTFS Nsample + 1 times (The +1 corresponds to the tip without
disorder calculation). Considering a dataset composed of 2,650 samples, this
method requires 28 hours of computational time.

For the method 2, the potential is computed in two parts. We compute the
potential that includes the disorder and the QPC gates UQPC,dis. In parallel,
we compute the potentials of the QPC and the tip for all tip positions UQPC,tip
without disorder. Still without disorder, we also compute the potential UQPC
of the QPC alone. The complete potential that includes the disorder, the QPC
and the tip is then approximated as

U
(2)
full = UQPC,dis − UQPC + UQPC,tip. (6.6)

In this approximation, the number of times that we have to use the PTFS is
equal to Nsample + Ntip + 1 (The +1 corresponds to the QPC without disor-
der calculation). Since we have 2795 tip positions which is about the number
of samples in the dataset, it is a non-negligible increase of computation ef-
fort compared to method 1. However, it is still much lower than the exact
method that would require to use the PTFS Nsample × Ntip times. Consid-
ering a dataset composed of 2,650 samples, the method 2 requires 57 hours
against about 9 years for the exact method. Those two methods are com-
pared in Fig. 6.8 where we show the deviation of conductance computed
using the potential with the tip within the method 1 and method 2 from the
results of a full calculation without approximation. For those computations,
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same disorder configuration.

we fixed ytip = 0 nm. Each point corresponds to a different xtip position
where xtip = 0 nm corresponds to the beginning of the scanning region. The
data plotted in Fig. 6.8 correspond to an average over 23 disorder configu-
rations. We observe that the difference between the two methods is more
critical when the tip is closer to the QPC, which corresponds to the region
where the coupling between the gates is most important. We note that we
do not show the error bar from the statistics in the figure. This is due to
the importance of the disparity of the results. In order to make a reasonable
approximation for the potential calculation, we will perform the simulation
using method 2.

An example of the method 2 is depicted in Fig. 6.9, where we illustrate the
decomposition of the potential corresponding to Eq. 6.6. One can see small
differences between the exact potential and the one computed in method 2.
This figure depicts a case where the tip is close to the QPC and thus corre-
sponds to one of the worst cases. Other examples are depicted in Fig. A.1.
In these figures, the result of the approximation is very close to the exact
computation.

In the following chapter, we use a verification method of a potential pre-
diction by neural networks that consists in computing the SGM map from
that potential for a given conductance Gtarget (without tip) and compare it
to the experimental SGM data of that value of conductance. In this case, we
have to reconstruct a potential that takes into account the disorder, the tip
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and the QPC. Therefore, we have to change UQPC,tip, by adjusting the QPC
gate voltage to obtain the desired conductance (without tip). In this case,
UQPC,tip becomes UQPC,tip(G

target) which is determined by

UQPC,tip(G
target) = UQPC,tip + (ν − 1)UQPC (6.7)

where the factor ν is determined such that the conductance of νUQPC is equal
to Gtarget. Thus, it allows to compute the SGM map without using the PTFS
no matter the desired conductance Gtarget.

When performing the SGM simulations from a predicted potential, we are
facing a second issue. Indeed, the latter predicted potential corresponds only
to a part of the full potential map 7. Thus, we fix the disorder potential to 0
everywhere in the sample excepted for the scanned region where we put the
predicted potential. In order to avoid the discontinuity of the potential, at the
edges of the predicted potential we add 30 nm wide strips with a linear decay
to reach 0 fluctuations. It is important to note that this technique assumes that
no important impurities are present in the electron flux between the QPC and
the scanning region.

6.2.5 Advantage of the PESCADO computation

Considering the significant increase of computation time of the potential us-
ing the PTFS, one has to test the improvement of the quality of the simulation
by using PESCADO compared to a much faster-to-compute model. The latter
model defined the full potential

Uf
full = U

′
dis + U

′
QPC + U

′
tip (6.8)

as a simple sum of the different elements. U
′
dis corresponds to the disorder

potential implemented using the Fourier transform as explained in Sec. 3.4.1,
with the parameters of the current system. U

′
QPC is the potential of the gates

and is implemented using Eq. 3.49. Finally, U
′
tip is the potential of the tip

described in Eq. 3.50. The parameters Atip and AQPC are defined using the
experimental information of the depletion radius of the tip and the conduc-
tance of the sample (without tip), respectively. However, the decay length of
the tip Lt, which is a parameter of the tip potential of Eq. 3.50, is one other
unknown parameter that is hard to determine. As an approximation, we
fix this parameter equal to the distance tip-2DEG. In Fig. 6.10, we show the
difference between the potential computed from Eq. 6.8 and the one com-
puted from Eq. 6.6. In the left part of the figure, we show the potential of
the QPC and the tip obtained with the two methods for two different tip
positions (Each line corresponds to one of the tip positions) in absence of
disorder8. We observe that the potential of the gate computed by PESCADO

7The neural network is trained to determine the potential only in the region where the tip
scanned the sample

8In the absence of disorder Eq. 6.6 corresponds to U
(2)
full = UQPC,tip
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FIGURE 6.10: Example of potentials used for the SGM. The two
lines represent different tip positions. The left part depicts the
no disorder case while the right part shows the potential for
randomly chosen disorder configuration. The two parts are
composed of two columns where the left image corresponds to
the fast-to-compute method while the right columns depict the

potential computed with the approximative method 2.

decreases on a smaller length scale than the simple superposition of the po-
tentials. This is due to the screening of the electrons that is took into account
only with PESCADO. Thus, when the tip is close to the QPC, the potential of
the tip is more prominent with the fast-to-compute method. However, we
have to be careful about this comparison because the parameter Ltip is ap-
proximately set. In the right part, the same tip positions are depicted, but we
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add a randomly generated disorder configuration9. We note that in the pres-
ence of disorder the two methods give less different results. Nevertheless,
the results are more realistic using the method 2.

6.3 Description of the dataset

In the previous section, we have shown that the method used to create the po-
tential and quantum transport computation considerably increases the am-
ount of time required for the creation of the training data. Thus, it is no
longer possible to create a dataset that contains the same order of magnitude
of samples than for the model of Sec. 4.1. However, to not decrease too much
the accuracy of the neural network, we use transfer learning from a neural
network trained on a dataset that is much faster to create. However, in order
to be efficient, this dataset has to be such that the neural network solves a
problem close to the one at hand.

In our case, this large dataset is composed of potentials computed as in
Sec. 3.4.1 with the QPC gate implemented from Eq. 3.49. All the parameters
are chosen such that they fit the experimental data. The gate voltage is set in
order to have samples with a conductance that is between 0.75G0 and 1.25G0.
Since the disorder of Sec. 3.4.1 considers only the delta doping, we set the
delta doping layer at the center of the doping layer of the real experiment,
which corresponds to z = 42.5 nm 10. The density of ionized dopants in this
layer is exactly the same as the electron density measured experimentally in
the 2DEG. Using this potential generation method, we gain about a factor 50
in the time required for producing potentials.

Concerning the quantum transport information, we use the PLDOS be-
cause it is obtained in a single computation for the whole scan area while it
still has a qualitative similarity with the SGM (as shown in Fig. 3.9). Then,
the computation is about Ntip times faster than the one of the SGM. To per-
form this simulation, we use a lattice parameter of 6 nm. The source and the
drain are placed as depicted in Fig. 6.3.

At the end we obtain a dataset for the pre-training, composed of 54,000
PLDOS-potential pairs, that is doubled using the data augmentation describ-
ed in Sec. 4.2.

The realistic SGM dataset is composed of much less samples. Indeed,
due to the significant difference in CPU-time required, we have been able
to generate only 2,650 SGM-potential pairs in a reasonable amount of time.
One example of this SGM-potential pair is depicted in Fig. 6.11. As for the
pre-training dataset, we perform the data augmentation that allows to dou-
ble the number of samples. Since the QPC gate voltage has been fixed, the

9We note that it is not possible to have the same disorder configuration with the two
methods because for one method we select Fourier coefficients and for the other the dopant
positions. For the comparison, we compute with PESCADO the potential of a sample without
gates and use it as U

′
dis.

10We note that this distance between the doping layer and the 2DEG corresponds to a
correlation length of the potential of about 70 nm
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FIGURE 6.11: Example of a pair of training data. The SGM (in-
put) is depicted in the right panel while the potential (output)
is represented in the left panel. The inset represents the cumu-
lative distribution of transmissions for samples of the dataset.

unperturbed conductance of the sample varies due to the disorder. The cu-
mulative distribution of the conductances of the samples that compose the
dataset is depicted in the inset of Fig. 6.11. We note that in Sec. 5.2.3, we have
shown that varying a parameter in the dataset can lead to an increase in the
neural network performance. In our case this parameter is the unperturbed
conductance of the sample11.

11Since the scanning size is not very much larger than the correlation length, we also have
small fluctuations in the disorder potential amplitude and correlation length from one sam-
ple to another.
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Chapter 7

Disorder potential prediction for
an experimental sample

Using the simulated experimental-like samples of the previous chapter, one
can create and train a neural network to determine the disorder potential
from an SGM image. In this chapter, we apply our method on the real sam-
ple of Ref. [96] and predict its disorder landscape with the best possible ac-
curacy. However, it is not possible to evaluate directly the reliability of the
prediction since the real disorder is not accessible. Thus, we tackle the two
following challenges: creating a neural network with good performance and
to evaluate indirectly its performance.

Sec. 7.1 is dedicated to the presentation of the neural network architecture.
The performance of the neural network on the test set data is described in
Sec. 7.2. The similarity between the simulated SGM data and the real ones
is increased using a method described in Sec. 7.3. The proposed indirect
prediction methods are discussed in Sec. 7.4. Finally, the disorder potential
predicted by the neural network from the experimental SGM is shown in
Sec. 7.5. A part of the results present in this chapter arises from [117].

7.1 Neural network architecture

The data described in Chap. 6 are used to train an artificial neural network
that determines the potential landscape (output) from the SGM-response (in-
put). However, in view of the large disorder configuration space, a dataset
that contains only 2650 samples can be considered as small. To increase the
performance of our neural network, we use the method of transfer learn-
ing. For this purpose, we use the large dataset composed of PLDOS-potential
pairs described in Sec. 6.3. Thus, the neural network is already trained to per-
form a task close to the wanted one and the main difference is supposed to
be located in the encoder part due to the difference of input only.

Since the data are 2D arrays (for the input and the output), we use a neu-
ral network with the same kind of convolutional encoder-decoder structure
as the one described in Sec. 5.3. The architecture has been determined with a
grid search evaluated through an 8-fold cross-validation over 2450 samples.
Before directly training on the dataset composed of SGM-potential pairs, we
first trained the neural network on the large dataset composed of the 50,000
PLDOS-potential pairs. For each neural network architecture, we performed
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Rank Number of filters Kernel size Batch BatchNorm Frozen layers 〈rP〉 σrP

1 (64, 128, 256) (3, 3, 3) 4 True Alm. all 0.9213 0.0043

2 (64, 128, 256) (3, 3, 3) 4 False Half 0.9198 0.0037

3 (64, 128, 256) (3, 3, 3) 8 True Alm. all 0.9198 0.0038

4 (64, 128, 256) (3, 3, 3) 4 False None 0.9196 0.0042

10 (64, 128, 256) (5, 3, 3) 8 False Half 0.9121 0.0040

20 (32, 64, 128) (3, 3, 3) 16 False None 0.9196 0.0042

FIGURE 7.1: Top of the figure: List of different configurations
of hyperparameters evaluated with 8-fold cross-validation, in-
cluding the four best ones. The size of the kernels and the num-
ber of filters are represented by 3 numbers, which correspond
to the three convolution blocks, respectively. The number of
frozen layers during the second training is given in the sixth
columns. Half means that the second half of the neural net-
work is frozen (i.e. the decoder) and almost all (Alm. all) means
that almost all the layers are frozen except the first convolution
block. The best neural network architecture is represented on
the bottom of the figure. Each box represents a layer and the
meaning of the color of the box is depicted directly in the fig-

ure. This model contains about 1.7 million parameters.

such a pre-training and then perform the 8 trainings on SGM-potential data.
The different tested hyperparameters with the cross-validation are (i) num-
ber of filters, (ii) kernel size, (iii) utilization of batchnormalization, (iv) pres-
ence of dropout layer, (v) number of trainable layers after the pre-training
and (vi) the batch size. This grid search led to the evaluation of several tens
of models.

From the results of the grid search, we observe that the six best architec-
tures are very close. The difference between those models is present in the
presence of Batchnormalization layers and the number of frozen layers for
the transfer learning. Thus, the choice of the neural network among these six
best architectures is quite arbitrary considering the statistic error. It is inter-
esting to note that the number of frozen layers has almost no impact on the
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final average performance. The retained model from the grid search corre-
sponds to the 1st model of the table of Fig. 7.1. The details of the architecture
are given in the lower panel. The selected optimizer is Adam and the loss
function is the binary cross-entropy. We note that for the training we use the
following callbacks: Reducing learning rate on plateau, Early stopping and also
the ModelCheckpoint to save only the model that corresponds to the epoch
where the latter model has performed the best on the validation data.

When comparing the performance of the described model with the per-
formance of the same model but with an adversarial training (see Sec. 2.4),
we do not observe a significant difference. However, we suspect training is-
sues from the discriminator. Indeed, even if the results of the discriminator
seem to be correlated with the mean squared error, the output changes in a
very small range. Therefore, we decide to use a simple encoder-decoder.

7.2 Performance of the neural network

7.2.1 Pre-training

We call pre-training, the training with the large PLDOS dataset before per-
forming the transfer learning with SGM data. The aim of this preliminary
step is to obtain a neural network able to predict the potential landscape from
local quantum properties. Thus, when pre-training the neural network, we
do not aim to reach the best possible accuracy. However, we have to be care-
ful to not underestimate this step. Indeed, one has to train over a sufficiently
large number of epochs in order to reach the convergence. We also observed
that the size of the pre-training set has no important impact beyond a few
thousands of samples.

In order to quantify the accuracy of the models, we compute the aver-
age PCC1 c̄ep between the expected and predicted disorder potential over all
samples of the test set.

When performing the pre-training with the 50,000 PLDOS-potential pairs
with data augmentation, the performance of the model is above 99 % when
the input consists of the PLDOS data. This performance is consistent with
the results presented in Sec. 5.2.2.

7.2.2 Performance on simulated SGM data

In this section the models are tested over 200 SGM-potential samples that
have not been used during the cross-validation. We note that without the
transfer learning method, the training of the neural network does not con-
verge with a training set containing less than 2,000 samples (or 1,000 with
data augmentation).

1In this chapter, we denote the PCC between two images F(i) and F(j) by cij. In particular,
when computing the average PCC between expected and predicted disorder over a test set,
we use the symbol c̄ep.
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FIGURE 7.2: Left panel: evolution of the average correlation
factor (over 30 trainings with a different splitting between train
and test set) with the training set size Ntrain. Blue (red) dots rep-
resent the cases where the neural network is fed with SGM as
input and with transfer learning and with (without) data aug-
mentation. The black solid line corresponds to algorithmic fit
with the coefficient -0.305. The green dots correspond to the
case where the PLDOS is used as input in both training and
testing. In the three cases, the architecture of the neural net-
works is the same. Right panel: distribution of the correlation
predicted on the test set in the case of training with SGM and
data augmentation for Ntrain = 2450. The inset represents the
Pearson correlation coefficient as a function of the conductance

(without tip) for all the 200 samples of the test set.

The left panel of Fig. 7.2 depicts the average PCC between the expected
and the predicted potential over the test set c̄ep as a function of the number of
training samples. Focusing only on the blue dots that correspond to a neural
network trained with data augmentation and with SGM as input, we can ob-
serve the slow improvement of the accuracy of the prediction with training
set size due to the logarithmic evolution2. Even if we consider a large train-
ing set of 10,000 samples (which implies a large mount of time to create such
a training set), we cannot expect to reach a significantly better accuracy than
with the current training set composed of about 2,500 samples. It is therefore
not useful to waste numerical resources to create a huge dataset. However,
we can still perform data augmentation that will not have a huge impact on
the performance (especially when the dataset is already important) but it is a
costless operation. When comparing the training with (blue dots) and with-
out (red dots) the data augmentation in the left panel of Fig. 7.2, we observe
that the accuracy of the neural network for a given training set size without
the data augmentation is the same as in the case where only half of the data
has been used for the training but performing the data augmentation. Thus,
the proposed data augmentation that artificially doubles the number of sam-
ples is as efficient as creating a dataset with twice the number of samples.

2We consider the logarithmic evolution of the precision in a range that goes to reachable
dataset sizes and not infinity.
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Besides computing the SGM response of the 2650 disorder potentials sim-
ulated with the method of Chap. 6, we have also computed their PLDOS.
Therefore, one can compare, in Fig. 7.2, the evolution of the accuracy with
the training set size when using the SGM (blue dots) and the PLDOS (green
dots) as input in training and testing. In the presented data, the neural net-
work with SGM is pre-trained on a large PLDOS dataset while it is not the
case for the neural network trained directly with PLDOS. It clearly appears
that unveiling the potential from the PLDOS is an easier task than from the
SGM. This phenomenon could be induced by the loss of locality of the sig-
nal within the SGM technique that is performed with a tip that has a large
depletion radius.

For the case of SGM input with data augmentation, the distribution of
the PCC between the expected potential and the real one cep is depicted in
the right panel of Fig. 7.2 where we can observe an asymmetric distribution,
similar to the one presented in Chap. 5, with a mean correlation c̄ep = 0.90.
The asymmetric distribution indicates that a poor prediction accuracy is a
rare event. The inset of Fig. 7.2 shows a plot of the cep versus the unperturbed
conductance of the sample G. It appears that the accuracy of our model is
independent of G.

In the following sections, the starting point will be the use of SGM as
input with pre-training and data augmentation.

7.3 Smoothing of simulated SGM response to ap-

proach experimental data

During the scanning of the sample with the tip, a small excitation is applied
to the tuning fork, resulting in a vibrating tip. Consequently, the depletion
spot at the 2DEG level experiences a fast "breathing" motion, and the experi-
mental SGM image in the end is a convolution of the different depletion spot
radii. This effect is at the origin of a smoothing of the conductance fringes
that we can observe by comparing a typical simulated SGM-response with-
out tip vibration (Fig. 6.11) and the experimental SGM maps (Fig. 6.2). This
could account for the blurring of the experimental maps requiring the appli-
cation of a Gaussian filter on the simulated SGM-response to reproduce the
data3.

In order to take this issue into account, we train our neural network with
a new additional data augmentation which works as follows: Before feeding
the neural network with the simulated data to train it, we apply a Gaussian
filter which corresponds to the convolution of the SGM image with a Gaus-
sian bump of width σ that is randomly chosen from a normal distribution
with a width ησ. The width of the Gaussian filter is different for all the sam-
ples and changes for each epoch.

3The main source of difference between the simulation and the experiment in the SGM-
response is the vibrating tip effect. To a lesser extent, the non-zero temperature, during the
experimental measurements, is also responsible for the difference between the experiments
and the simulations.
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FIGURE 7.3: Average correlation over the test set and over 40
trained models of the predicted disorders with the exact one
as a function of the width σ of the Gaussian filter applied on
the test set. Each color represents a blurring data augmentation
with a different ησ that is given by the colorcode. The data cor-
respond to the dots and the lines are just guides to the eye. The

inset represents a zoom of the main panel for low σ values.

While the application of a Gaussian filter on the simulated data allows
to get closer to the appearance of the experimental data, it seems important
to evaluate the predictive power of the neural network on the simulated test
set that has also been blurred with a Gaussian filter σ. Fig. 7.3 represents
the evolution of the prediction performance with the parameter σ. The lat-
ter evaluations have been performed by averaging the PCC between the ex-
pected and predicted potential c̄ep over all the samples of the test set. Due
to the statistic variations, we perform another average over the performance
of 40 trained models. This procedure has been repeated for different val-
ues of ησ that corresponds to the colorcode of the data. We observe that the
precision at low σ value decreases with increasing value of ησ. However,
the drop of precision appears for larger value of σ when using a data aug-
mentation with a large value of ησ. This dropping takes place for values of
width 5.5 nm < σ < 10 nm depending on the value of ησ. Even if there is no
obvious possibility to estimate the value of σ that fits the best with the exper-
imental data, we observe in Fig. B.1 of App. B that σ ≈ 6 nm approximates
the vibrating tip effect.

7.4 Evaluation of prediction quality without the

expected potential

7.4.1 Quantitative method

When applying the neural network to an experimental SGM map to deter-
mine the disorder of a semi-conductor heterostructure, there is no possibility
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FIGURE 7.4: The four upper panels depict simulated SGM im-
ages of a sample with fixed disorder but under different gate
voltages with the indicated unperturbed conductances. The
black arrows represent the passage through the neural network.
The four panels below the SGM images correspond to the po-
tential predictions of the neural network. The lower image is
the exact disorder potential that corresponds to all four SGM
images. For the example i = 0, the blue arrows link images
among which are computed the Pearson correlation coefficients

cij and cie.

to compare the prediction to the real disorder. To get an estimate of the pre-
diction quality, we propose an indirect method to determine the reliability of
the predicted disorder.

The indirect evaluation consists in the comparison of the predictions from
several SGM scans that are obtained from the same sample under different
experimental conditions. In our case, the varying parameter is the gate volt-
age of the QPC, with four different values that are available. The sample
disorder, and thus the expected prediction from the SGM maps, should re-
main the same if the sample stayed in the cryostat at low temperature during
the whole series of measurements. It is then possible to compute this PCC cij

between two predictions i and j, as depicted in Fig. 7.4 for the example i = 0
and j = {1, 2, 3}. We denote c̄i = 1/3 ∑j 6=i cij, the average correlation of the
prediction i with the others that can be used as an indicator for the quality of
the predictions. When dealing with simulated data, we can also compute the
correlation coefficient ce

i between the predicted and the expected potential.
Therefore, based on simulated data, we establish a link between cie and c̄i.
An example of this method is depicted in Fig. 7.4 for i = 0.

Due to the randomness of the initialization of a neural network, one can
observe that neural networks with the same architecture and trained with
the same dataset can give slightly different results. Therefore, we have to
choose a set of predictions (composed of the 4 potentials determined by a
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FIGURE 7.5: The real Pearson correlation coefficients cie as a
function of the one computed indirectly c̄i. The six panels show
the results for different simulated samples. The crosses corre-
spond to the differently initialized neural networks. The black
solid lines correspond to linear fits of the data. The coefficient r

gives the correlation between cie and c̄i.

neural network from the 4 experimental SGM maps) arising from neural net-
works that have been trained on the same dataset but with a different initial
state. In order to study the impact of the choice of the neural network, we
trained 40 neural networks and evaluate them by computing the quantity
cie and c̄i for 20 samples and for the 40 training. The panels in Fig. 7.5 de-
pict an ensemble of points (cie, c̄i) that corresponds to the 40 trainings (one
training corresponds to a cross). Each panel represents a different sample.
Depending on the sample, we observe a more or less important correlation
r between the quantities cie and c̄i. In average, the correlation is about 40%
over 20 tested samples. Therefore, when predicting a disorder with several
neural networks, we select the one with the highest values of c̄i. However,
the differences are small and we do not expect a significant improvement on
the prediction quality.

Considering only the model that provides the best performance for the 40
trainings, we now study the relation between the two coefficients cie and c̄i.
From the 4 SGM maps computed for the 4 unperturbed conductance values
for each of the 20 disorder configurations without taking care of the blurring
filter, we obtain 80 (cie, c̄i) points presented in the left panel of Fig. 7.6. It
clearly appears that the two quantities are correlated. Thus, one can perform
the linear fit to establish the relation

cie = αc̄i (7.1)
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FIGURE 7.6: Left panel: the correlation of the predicted poten-
tial with the exact one for 20 different simulated samples and
four different gate voltages, plotted versus the average correla-
tion with the prediction for the three other gate voltages (see
Fig. 7.4 for an example). The red line represents a linear fit
ce

i = αc̄i to the data with α = 0.96. Right panel: cumula-
tive density function of the deviation between the real corre-
lation coefficient cie and the one obtained by averaging cij. The
black crosses represent the distribution obtained from the first
20 samples of the test set. The red curve represents the cumu-
lative skew normal function Φ of Eq. (7.2) with x = αc̄i = cie
and parameters ζ = −0.049, ω = 0.064, and θ = 6.996 that fits
the data. The inset represents the corresponding skew normal
function. The dashed blue line represents the point of the fit

where αc̄i = cie.

where α = 0.96. In addition, the right panel of Fig. 7.6 depicts the cumulative
distribution function of the indirect evaluation of the PCC αc̄i around the real
one cie. The skewed distribution of the predicted correlation around the real
one (see Fig. 7.6) is very well fitted by the skew normal distribution

γ(x; ζ, ω, θ) =
1

ω
√

2π
e−

(x−ζ)2

2ω2

[

1 + erf
(

θ
x − ζ

ω
√

2

)]

, (7.2)

where erf(x) is the error function. The solid red line in the right panel of
Fig. 7.6 corresponds to the associated cumulative density function. Although
the linear fit between cie and c̄i does not correspond to a perfect matching
between the two quantities and is not correctly defined for the point c̄i = 1,
we observe (in the right panel of Fig. 7.6) that a large proportion (84%) of the
indirect PCC evaluation deviate by less than 5% from the real PCC.

The value of α < 1 can be explained by the absence of branches in a given
area of the scanning zone, no matter the gate voltage of the QPC. Indeed, in
the absence of SGM signal in a given region, one expects that the precision of
the disorder prediction decreases in that zone [16]. Therefore, the prediction
can be the same when passing SGM with different gate voltages through the
neural network, but it can nevertheless be different from the real disorder.

When considering the blurring data augmentation, the value of α that we
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FIGURE 7.7: Upper panel: Evolution of the average coefficient
α over the 40 models as a function of the blurring width σ ap-
plied to the test set data for different values of training data
augmentation ησ that is depicted by the colorcode. The (upper)
inset represents the average correlation between expected and
predicted disorder potential over all the test set samples and
over the 40 models for the case σ = 6 nm. Lower panel: root
mean squared error between the estimated correlation and the
real one computed using the α coefficient of the upper panel.

The inset focuses on σ = 6 nm.

consider depends on the estimated σ value and the parameter ησ used for the
data augmentation. We studied the effect of ησ used for the training data on
test set samples blurred with the fixed estimated value σ. The upper panel
of Fig. 7.7 shows that. While α is higher for low ησ at low estimated σ the
dependence is inverted for high values of σ. Focusing on the estimated value
σ = 6 nm that corresponds to the inset of the upper panel of Fig. 7.7, we
observe that the highest average prediction c̄ep is reached when using ησ =
4.8 nm. We note that the distribution used for the data augmentation, which
is a Gaussian centered in 0 and with a width ησ is an arbitrary choice. The
lower panel of Fig. 7.7 shows the evolution of the root mean squared of the
difference between the expected and predicted accuracy

√

〈(αc̄i − cie)2〉 as a
function of the estimated width σ. We observe the opposite behavior than for
the factor α. Focusing on σ = 6 nm, we observe that the root mean squared
error for ησ = 4.8 nm corresponds to one of the lowest values. Therefore, we
perform the data augmentation for ησ = 4.8 nm.
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FIGURE 7.8: Qualitative verification method. The two upper
panels represent the original SGM-response. The potential in
the lower left panel is predicted from the SGM at G = 1 G0 by
a neural network. The lower right panel represents the recon-
structed SGM at G = 2 G0 from the predicted potential. The two
right panels are the SGM-response that have to be compared.

7.4.2 Qualitative method

It is also possible to compute the SGM signal from the predicted potential
and to compare the result to the original experimental data. To avoid to be
skewed by the model used to compute the quantum transport properties,
one can compute the SGM in a different experimental condition (e.g. adding a
magnetic field or changing the gate voltage) and compare to the experimental
data corresponding to this new experimental condition. An example of this
procedure is depicted in Fig. 7.8 for a difference of unperturbed conductance.

However, as shown in Fig. 7.9, we observe no obvious correlation be-
tween the similarity of the potentials (the predicted one and the expected
one) and the similarity of the SGM images (the SGM computed from the pre-
dicted potential and from the expected potential), both evaluated through
the Pearson correlation coefficient (5.2). The hypotheses to explain these re-
sults are: (i) The lack of information on the disorder between the QPC and
the scanning zone (for the SGM reconstruction, we consider no potential fluc-
tuation due to the disorder there) that can lead to a large difference between
the original SGM signal and the reconstructed one, even if the predicted po-
tential is correct. And (ii), the Pearson coefficient compares two images pixel
per pixel, meaning that a small shift of a branch or a phase difference of the
interference fringes can lead to a significant decrease in the correlation coef-
ficient. Thus, the value of the coefficient is mainly dependent on much less
relevant features like the cross-talk4 and leads to a better cSGM

ep for samples
whose unperturbed conductance is not on a quantization plateau as shown

4A possibility to avoid this phenomenon could be to use the structural similarity index
measure (SSIM), however using this index does not allow to observe a clear correlation be-
tween the potential similarities and the SGM similarities.
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FIGURE 7.9: Correlation coefficient between the expected and
predicted potential versus the correlation coefficient between

the original and the reconstructed SGM response.

in Fig. 7.9. This evaluation method cannot give any quantitative information
but can be considered qualitatively.

7.5 Prediction from real images

Having trained the neural network using the Gaussian filtering together with
data augmentation and transfer learning methods as described above, opti-
mized and tested on the set of simulated data, we are finally in position to
use it for the prediction of the disorder potential in the experimental sample
of Ref. [96].

The experimental SGM-responses (reshaped to the same resolution as the
simulated ones5) is presented in the first line of Fig. 7.10.

The disorder potential predictions made by the neural network are de-
picted in the second line of Fig. 7.10, and the associated value c̄i is given in
the images of the predictions. We take the results with the highest correla-
tions coefficient c̄i = 0.905, which is the data associated to the conductance
G = 1.7 G0 .

In order to ensure the reliability of the results, we plot the results of the
selected model only (i.e. we do not perform the average on the 40 models).
Fig. 7.11 represents the performance of the model on the test set for different
bluring width. The α coefficient determined for this model is 0.97. Consider-
ing the latter coefficient, we can observe the distribution of the error between
the predicted and expected correlation coefficient in case of σ = 6 nm.

Using Eq. 7.1 with α = 0.97, we finally estimate the correlation between
the predicted potentials of the third column in Fig. 7.10 and the real one equal

5Due to the limitation of computational time, we have not performed simulations with
the same resolution as the one of the experiments.
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FIGURE 7.10: The top line represents the four experimental
SGM maps obtained at the indicated QPC conductance values.
The second line shows the corresponding predictions of the dis-
order potential obtained from the trained neural network when

fed with the experimental SGM data as input.

to about 87 %. We note that the variation between the predicted potential and
the real one is of the order of the variation between the four predictions.

It is possible to perform a qualitative verification of the relevance of the
predicted potential by reconstructing the SGM response from the predicted
potential of the four SGM maps corresponding to different unperturbed con-
ductance values. From each of the predicted potentials, we computed the
SGM for the four different values of unperturbed conductance6 G. The re-
sults are depicted in Fig. 7.127. We note that despite the difference of the pre-
dicted potentials, all the reconstructed SGM maps corresponding to the same
conductance value are very similar. Thus, we can suggest that the variation
between the predicted potentials has no important impact on the branch pat-
tern. With this method we are not able to say which predicted potential is
the best one. However, from the appearing similarities between the original
and reconstructed SGM, we conclude that the predicted potentials are close
to the real one.

6In reality, the unperturbed conductance values used for the simulation are a bit different
from the original ones. Indeed, the unperturbed conductance indicated in the experimental
SGM scans can be slightly modified by the presence of the tip setup. Thus, we performed
the simulation for the following values of unperturbed conductance 0.85 G0, 1.0 G0, 1.85 G0
and 2.1 G0.

7In some cases this method is not reliable. However, from the SGM images it appears
that the electron flow has not felt a significant impact from the disorder outside the scanning
zone.
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Chapter 8

Conclusions

The work presented in this manuscript follows the chronological order of
research conducted over the past three years. Due to the uncertainty to ob-
tain positive results about the extraction of the disorder information with
machine learning methods from quantum transport information, we initially
addressed a simplified problem. Encouraged by the positive outcomes of the
initial study, we moved on to the more challenging problem of extracting
all the information about the disorder potential. Finally, we determined the
complete disorder potential landscape of a real sample. The latter study was
conclusive enough to determine the disorder with a reasonable precision and
also to propose suggestions for the experimental part of the study as well as
an optimized protocol concerning the creation and the evaluation of a deep
learning algorithm able to determine the disorder.

8.1 Proof of principle

Due to the absence of intuition about the possibility of extracting the disor-
der from quantum transport information, we initiated a preliminary study
focused on a simplified problem. The first simplification involves utilizing
a transport-related signal that is non-measurable experimentally. This ap-
proach aims to accelerate dataset generation and limit CPU-time to a reason-
able amount for a proof of principle. Indeed, the PLDOS allowed to perform
the simulation fast enough to create a complete dataset in a few weeks. This
property of the PLDOS gave us a valuable flexibility for the preliminary stud-
ies.

Global parameters

The first step of the investigation was the extraction of global parameters that
characterize the disorder from the PLDOS (Chap. 4). We observed a signif-
icant difference in the prediction quality for the two sets of parameters that
we tried to recover. The set composed of uncorrelated parameters, namely
the amplitude and the correlation length of the potential fluctuations, has
been easier to determine than the other set composed of correlated parame-
ters which are the experimentally relevant ones, the density of dopants and
their distance from the 2DEG (see Fig. 4.7). We also took advantage of the
simplicity of the problem to apply explainable machine learning techniques
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to understand the working procedure of the neural network. However, it has
been complicated to perform a quantitative study in that direction, using im-
ages like the ones present in Fig. 4.9, we only obtain an intuition about the
part of the PLDOS image that seems to be most relevant for the prediction of
the disorder.

Complete disorder determination

In order to determine the complete disorder potential landscape, in Chap. 5
we kept using the PLDOS as input for our neural network. However, we
modified the output to be either the Fourier coefficients used to create the
corresponding disorder or directly the disorder landscape in real space.

Concerning the Fourier coefficients, using a large training set and an op-
timized network architecture, we observed a correlation between the impact
of the term associated to one Fourier coefficient in the potential landscape
and the accuracy of the neural network for the prediction of that Fourier co-
efficient. When reconstructing the potential landscape from the predicted
Fourier coefficients, we obtained an average correlation between the pre-
dicted and expected potential of about 98.7% (see Fig. 5.4).

When using directly the real-space value of the disorder potential as out-
put, using an appropriate and optimized model with convolutional encoder-
decoder architecture, we observed that the neural network is even more ef-
ficient with an average performance of 99.7 % (see Fig. 5.8). Based on these
remarkable results, we can deduce that almost all the information about the
disorder is captured within the PLDOS. Averaging the spatial accuracy, we
noticed a small decrease of performance on the edges of the potential image
(see Fig. 5.9), which corresponds to the location where the electron density is
weaker on average and an absence of information on the PLDOS beyond the
edge of the image. Taking advantage of the simplicity of the neural network,
we observed the image translation through the neural network, as depicted
in Fig. 5.11, with the hope to understand its working procedure. However,
no quantitative information could be extracted from this study. Addition-
ally, it has been shown that constructing a dataset composed of samples with
properties that vary within a parameter range, including the desired prop-
erty of interest but not necessarily identical to the target sample, can lead to
improved efficiency.

Addition of information for the disorder determination

In order to increase the performance of the neural network (especially for
small training sets), one can feed the neural network with several PLDOS
images computed from the same disorder but corresponding to different ex-
perimental conditions. Thus, the neural network has more information to
process. In this study, we observed that using PLDOS data computed for dif-
ferent values of the magnetic field significantly increases the precision. This
enhancement was particularly pronounced at the edge of the sample, result-
ing in nearly uniform average spatial precision, as shown in Fig. 5.15.
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8.2 Disorder determination for an existing sample

The last part of the study extends the machine-learning approach towards
a prediction of the disorder in a real sample from experimentally accessible
SGM data. This study confronts two fundamental challenges: predicting the
disorder using a small dataset that contains less local data than the PLDOS,
and evaluating our disorder prediction in the absence of knowledge about
the actual disorder.

Regarding the dataset, we made a particular effort to simulate a real-life
sample as realistically as possible. Chap. 6 is dedicated to the presentation
of these simulations. Thus, we expect that the deviation between the disor-
ders shown to the neural network and the real one are small enough to not
have a significant impact on the prediction quality. Moreover, we used trans-
fer learning, from a PLDOS-disorder pairs dataset, and data augmentation,
using the symmetry of the problem, to cope with the small dataset size. We
also took into account the vibrating tip effect present in the experimental data
by blurring, with different intensity, the simulated SGM images used for the
training of the neural network. When using those data to train the neural
network, we observed an average correlation of 90 %.

The proposed indirect evaluation method consists in evaluating the re-
sults through the average Pearson coefficient computed between the disor-
ders predicted from experimental SGM data of the same sample but per-
formed within different experimental conditions (i.e. the predicted disorder
should be the same). An example of this method is shown in Fig. 7.4. Analy-
sis of simulated data allowed to observe a clear correlation between the latter
average Pearson coefficient and the experimentally unavailable Pearson co-
efficient between the expected and predicted potential.

From the described dataset, and the indirect evaluation method, it has
been possible to predict the disorder from the four experimental SGM im-
ages, each performed at a different gate voltage of the QPC. The four predic-
tions share identical features and the best prediction has been estimated hav-
ing a correlation coefficient of about 87% with the real disorder. These predic-
tions are depicted in Fig. 7.10. When computing the SGM associated to the
predicted disorders, one can observe qualitative similarities in the branch-
ing pattern. This correspondence corresponds to an additional proof of the
reliability of the predicted disorder (see Fig. 7.12).

8.3 General method for unveiling the disorder po-

tential in a heterostructure

The main result presented in this manuscript is the methodology for deter-
mining the disorder in a heterostructure.

For the experimental part, we recommend to perform the SGM experi-
ments at the lowest possible temperature and avoiding as much as possible
the vibrating tip effect. We suggest to perform the SGM in different exper-
imental conditions that will be used as input of the neural network and for
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the validation of the result. The resolution of the SGM image should be con-
sistent with the estimated correlation length of the potential. The aim of this
proposition is to avoid the waste of time by obtaining images with an ex-
cessive resolution that do not contain significantly more information than an
appropriate lower resolution.

In order to be efficient in the creation of the dataset, we suggest to use
transfer learning from PLDOS-disorder pairs for pre-training the neural net-
work and data augmentation. This approach allows us to use a reasonable
amount of SGM-disorder pairs for the last training step. While we recom-
mend to use several inputs for the neural network, it is important to keep
a reasonably small number of simulated data due to the significant compu-
tational power required for generating simulated SGM data under various
experimental conditions. One has also to ensure that for the pre-training,
the properties of the PLDOS and SGM-response remain similar under the
given experimental conditions, which is not the case in a magnetic field, for
instance.

Concerning the neural network architecture, we demonstrated that a sim-
ple encoder-decoder can be efficient enough to obtain high-quality results.
However, we did not explore all the state-of-the-art architectures to solve the
problem and it is possible that a more sophisticated neural network can im-
prove the results.

The evaluation of the reliability of the predicted disorder is a difficult is-
sue. Here, we propose a method based on the average correlation coefficient
between the prediction of the disorder originating from different SGM maps
measured on the same sample. To use this method, one has to establish the
link between this coefficient and the actual correlation between the real and
predicted disorder using simulated data. In parallel, one has to evaluate the
average error of this method. It is also possible in some cases to compute the
SGM-response from the predicted disorder in another experimental condi-
tion. However, this method does not allow to quantify the prediction accu-
racy.

8.4 Perspectives

In order to develop a machine learning algorithm for determining disorder
in heterostructures with QPC nanostructures under more general conditions,
one could train a neural network with a large dataset composed of various
QPC shapes, a complete range of correlation lengths of the disorder, and
other relevant factors. In addition to such an algorithm, it would be interest-
ing to propose another algorithm which can create a relatively small dataset
(a few hundred samples) based on predefined nanostructure geometry and
heterostructure information. Thus, it would be possible to create a dataset in
a relatively short amount of time (a few days) and perform transfer learning
from the pre-trained neural network. Such a program could be at the origin
of a better comprehension of the experiment and more generally the disorder
configuration in high-mobility 2DEGs.
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Predictive simulation of a real sample

The disorder prediction combined to the recent advancements in the field of
predictive charge distribution of a GaAs-based nanoelectronic device [119]
would allow to simulate almost exactly the electrostatic potential of a real
sample. Such a performance could prove to be a powerful tool for a deeper
comprehension of the physics of nanodevices. Indeed, it could be possible to
quantitavely simulate the main effects that led to the experimental observa-
tion, using a model of quantum transport including the precise microscopic
disorder realization of the sample used in the experiment.

Disorder analysis before performing the experiment

The rapid prediction of disorder configurations in real samples can serve as a
valuable tool for experimentalists. They can observe the disorder of a cooled
sample and decide to keep the observed configuration if the latter allows
to perform the experiment in the best conditions. However, if the disorder
configuration is not satisfying enough to perform the experiment, one can
perform a new thermal cycle by warming up and then cooling down the
sample to obtain a new disorder configuration.

Study of the dopant distribution

By training an algorithm with several kinds of distributions concerning the
dopant location, one can determine the distribution present in the sample.
In the study, we considered only random location without any correlation.
Other hypotheses exist and state that the dopant positions are correlated due
to the Coulomb interaction [83].

Application to other kinds of systems

SGM experiments have also been performed on graphene samples. The con-
ductance of such systems behaves in a different manner than that of a het-
erostructure when using an invasive tip [120]. This results in a large differ-
ence between SGM images obtained from those two systems. Nevertheless, it
can be interesting to perform a similar study with graphene in order to deter-
mine the disorder. It is important to consider that the origin of the disorder
in these systems is fundamentally distinct.
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Appendix A

Examples of potential construction

The approximation corresponding to Eq. 6.6 allows to perform the electro-
static computation in a relatively short amount of time. A detailed example
of the approximation method is depicted in Fig. 6.9 and represents a situa-
tion where the tip is close to the QPC, which corresponds to one of the worst
cases. In Fig. A.1, other examples of potentials computed with and without
this approximation are shown. In the depicted examples, we observe that the
results given by the approximation method are close to the exact ones.
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Appendix B

Gaussian Filter examples

Examples of simulated SGM maps computed from a predicted potential of
the real sample are depicted in Fig. B.1, where each line (except the first one)
corresponds to a different width of the Gaussian filter. We observe that blur-
ring with a width σ = 6 nm seems to be the most realistic choice.
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Appendix C

Résumé en français

C.1 Introduction

Grâce à l’évolution des techniques de fabrication d’échantillons électroniques,
les structures de ces derniers ont vu leur taille diminuer jusqu’à atteindre
la taille du micron. Cette miniaturisation a entraîné l’apparition des pro-
priétés quantiques des électrons dans les mesures de courant à basse tem-
pérature. Un type d’échantillon fréquemment utilisé dans le domaine du
transport quantique sont les heterostructures semi-conductrices contenant
un gaz d’électron bi-dimensionel à haute mobilité. Dans le cadre de l’étude
menée durant la thèse, nous nous focalisons uniquement sur ce type de matéri-
aux. Pour de tels échantillons, il a été observé une fluctuation des propriétés
électroniques entre différents échantillons ayant cependant suivi le même
processus de fabrication. Cette fluctuation est due aux propriétés micro-
scopiques de l’échantillon. En effet, les électrons du gaz proviennent de
dopants ionisés distribués de façon non contrôlée dans une des couches du
matériau. Lors de la création de ces échantillons, seule la densité de dopants
peut être fixée par les expérimentateurs mais leur position est désordonnée et
inconnue. L’ensemble de ces dopants ionisés crée un champ électrostatique
qui dépend de la configuration de la localisation des dopants. Ce champ
électrostatique crée donc un potentiel électrostatique qui influe sur le com-
portement des électrons. In fine, les propriétés électroniques sont affectées
par ce potentiel électrostatique irregulier qui provient du désordre inconnu
des dopants.

L’objectif des travaux de recherche présentés dans cette thèse est de dévelop-
per une méthode pour déterminer ce désordre. Pour cela, nous utilisons des
algorithmes d’intelligence artificielle qui utilisent des données de transports
électroniques qu’il est possible de mesurer expérimentalement sur les échan-
tillons mentionnés précédemment. Ces données sont issues de l’expérience
de microscopie à grille locale (MGL). Cette dernière consiste à perturber lo-
calement le champ électrostatique à l’aide d’une pointefine placée au-dessus
de l’échantillon et sur laquelle une tension négative est appliquée. Une fois
la perturbation appliquée, on mesure une quantité appelée conductance (in-
verse de la résistance). Ce procédé est appliqué pour un grand nombre
de positions de pointe. Lorsque l’on reporte les données de conductance
sur le plan où la pointe s’est déplacée, nous obtenons une image de MGL.
L’objectif est donc de déterminer la valeur du champ électrostatique créé
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par les dopants ionisés à chaque position où la pointe a été placée ce qui
correspond aussi à une image. L’algorithme d’intelligence artificielle utilise
l’image MGL comme donnée d’entrée dans le but de déterminer l’image du
potentiel de désordre.

Les motivations concernant la détermination du désordre sont multiples.
Tout d’abord, une parfaite connaissance du désordre couplé à une modéli-
sation réaliste de l’environnement électrostatique permettrait de pouvoir ef-
fectuer des simulations de transport électroniques sur de vrais échantillons.
Il serait ainsi possible de vérifier certaines théories en les comparant aux
mesures expérimentales ce qui n’est pas possible actuellement. De plus,
la détermination du désordre permettrait d’en apprendre davantage sur les
propriétés du désordre comme par exemple la mise en évidence d’une cor-
rélation entre les positions des dopants ionisés. Une dernière application,
qui pourrait avoir un impact considérable sur la partie expérimentale, est
le "choix" du désordre. Plus précisément, il s’agirait pour l’expérimentateur
de déterminer le désordre présent dans l’échantillon et de voir si ce dernier
pourrait être gênant ou non pour l’expérience. Dans le cas où le désordre ne
serait pas favorable à l’expérience, l’expérimentateur pourrait alors réchauf-
fer l’échantillon à température ambiante et le refroidir à quelques centaines
de millikelvin ce qui aurait pour impact de changer la configuration du dé-
sordre.

Afin de déterminer le désordre présent dans une heterostructure sur laque-
lle a été effectuée une mesure de MGL, nous avons commencé par déterminer
quelques caractéristiques du désordre sur des échantillons simulés puis nous
avons graduellement complexifié le problème pour atteindre l’objectif fixé.
Afin de résumer le travail effectué, nous allons en premier lieu poser les
bases d’intelligence artificielle et de transport quantique nécessaire à la pleine
compréhension du projet dans la section C.2. Dans la section C.3, nous abor-
derons la première partie de l’étude qui a servi de preuve de principe con-
cernant la réalisation d’un tel projet et a été à l’origine d’une première pub-
lication [16]. L’utilisation de notre algorithme sur un échantillon réel sera
détaillée dans la section C.4. Finalement, les conclusions du projet seront
présentées dans la section C.5.

C.2 Pré-requis

C.2.1 Description du système

L’échantillon étudié est une heterostructure semi-conductrice composée de
GaAs/AlGaAs. Cet échantillon est constitué d’un empilement de différents
matériaux, avec une interface contenant un gaz d’électrons libre dans un es-
pace bi-dimensionnel. Ces électrons proviennent de dopants ionisés qui se
situent à une distance donnée du gaz d’électrons permettant ainsi d’obtenir
une forte mobilité dans le gaz d’électrons. Le champ électrostatique créé par
les dopants ionisés affecte le comportement des électrons.

En plus d’être affectés par le champ électrostatique provenant des dopants,
les électrons sont aussi soumis aux champs des grilles placées à la surface
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FIGURE C.1: Panneau de gauche : Schéma de l’hétérostructure
avec un empilement détaillé des couches. Le diagramme
d’énergie de cette hétérostructure est représenté dans le pan-
neau de droite. Nous observons le minimum de potentiel à

z = 0 où se trouve le 2DEG. Figure tirée de [91].

de l’hétérostructure. Dans toute notre étude, nous nous focalisons sur un
système contenant un point de contact quantique (PCQ). Pour réaliser un
PCQ dans le gaz d’électrons, il est nécessaire d’utiliser des grilles position-
nées comme montré sur l’encart de la figure C.2. Sur ces grilles est appliqué
un potentiel electrostatique négatif afin de repousser les électrons du gaz bi-
dimensionnel créant ainsi ce qui est appelé des zones de déplétions. Les élec-
trons sont donc obligés de passer par une zone de constriction qui se situe
entre les région déplétées. De tels systèmes ont été l’objet d’un grand nom-
bre d’études dont notamment célèbre pour avoir mis en évidence la quan-
tification de la conductance à la fin des années 80. En observant le pan-
neau de droite de la figure C.2, nous observons cette quantification à travers
l’évolution en "escalier" de la conductance en fonction de la tension appliquée
aux grilles du PCQ. En l’absence de quantification, l’évolution de la conduc-
tance n’aurait pas dû présenter de sauts. En effet, plus la tension de grille
baisse (en valeur absolue), plus la constriction dans le gaz devient grande
et plus la conductivité augmente de manière proportionnelle. La structure
en escalier, qui provient de la quantification de la conductance, apparaît car
lorsque l’on baisse la tension de grille (en valeur absolue), la conductance
reste constante jusqu’à un certain seuil où elle bondit brusquement. Cet effet
est dû à la quantification de l’énergie transverse des électrons dans le PCQ.

La dernière grille qui est utilisée pour l’expérience est la pointe qui scanne
la surface de l’échantillon. Sur cette pointe, on applique une tension négative
qui vient perturber la trajectoire des électrons. Cette perturbation crée une
bosse de potentiel sur laquelle diffuse les électrons. Sur la figure C.3, nous
pouvons observer une image de scan de MGL, à savoir la conductance en
fonction de la position de la pointe, où nous observons un motif de branche.
Sur ces branches, nous observons une forte diminution de la conductance
par l’effet de pointe. Ceci s’explique facilement si l’on associe ces branches
au flux des électrons. En effet, si la pointe est positionnée au-dessus d’un
flux d’électrons important et créant une réflexion de ce flux d’électrons vers
le PCQ, alors le courant à travers le PCQ aura diminué de façon conséquente
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FIGURE C.4: Représentation d’un perceptron. La couche
d’entrée est composée de N neurones qui sont connectés au
seul neurone de l’unique couche cachée. Les deux opéra-
tions effectuées dans le neurone de la couche cachée sont dé-
composées. La première opération correspond au calcul de la
somme pondérée des valeurs des neurones d’entrée, et la deux-
ième est l’application d’une fonction d’activation non linéaire.
L’encart représente un réseau neuronal dense avec plusieurs

couches cachées.

de neurones : la couche d’entrée (verte), les couches cachées (orange) et la
couche de sortie (bleue). Le calcul effectué dans la couche caché ecorrespond
à la combinaison linéaire

z′ = wTx + b (C.1)

où w correspond au vecteur de poids qui relie le neurone de la couche cachée
aux neurones de la couche d’entrée. b correspond à un biais qui est ajouté aux
résultats. En plus de cette combinaison linéaire, les neurones de la couche
caché appliquent une fonction non-linéaire f (z′). Dans le cas d’un réseau de
neurones profonds, nous observons la présence de plusieurs couches cachées
et plusieurs neurones sur chacune de ces couches comme montré sur l’encart
de la figure C.4. Les valeurs des neurones présents sur la couche l sont don-
nées par la formule

z′l = [wT
l ] zl−1 + bl. (C.2)

Ici, [wl] est une matrice de poids où l’élément w
ji
l correspond au poids qui

connecte le neurone j de la couche (l − 1) au neurone i de la couche l. bl

correspond au vecteur des biais de la couche l.
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L’entraînement d’un réseau de neurones consiste à déterminer l’ensemble
des poids {w} qui permettent au réseau de neurones de faire correspondre
la bonne sortie à la bonne entrée. Pour cela, il faut premièrement initialiser
les poids du réseau de neurones, ce qui se fait souvent en les choisissant
aléatoirement. Par la suite, nous allons montrer au réseau de neurones des
entrées avec les sorties qui correspondent. Pour chaque exemple, le réseau de
neurones calcule de combien il s’est trompé à l’aide d’une fonction appelée
fonction coût. Ensuite, il évalue la variation de cette fonction coût en fonction
de la variation des poids. Pour finir, il redéfinit ses poids de manière a min-
imiser le plus possible la fonction coût. Ce processus est répété jusqu’à attein-
dre un ensemble de poids optimal. Étant donné que pendant l’entraînement,
nous montrons au réseau de neurones à la fois l’entrée et la sortie, nous par-
lons d’apprentissage supervisé.

Dans le cadre de notre étude, nous allons traiter des images comme don-
nées d’entrée. Afin d’analyser des images, nous utilisons des couches dites
convolutionelles. La particularité de ces couches est que contrairement aux
couches décrites précédemment, appelées couches denses, les couches con-
volutionnelles ne connectent pas tous les neurones de la couche l avec tous
les neurones de la couche l − 1. Ceci est dû au fait que chaque couche con-
volutionelle contient un paquet d’images et les neurones correspondent aux
valeurs de tous les pixels de toutes les images. Ainsi, le nombre de connex-
ions devient rapidement gigantesque. Dans les couches convolutionelles, les
connections entre les couches sont très peu denses, mais sont placées de façon
très optimisée.

Il arrive aussi fréquemment qu’on utilise une première partie du réseau
de neurones composé de couches convolutionnelles de façon à traiter une
image puis d’aplatir la dernière couche convolutionelle de façon à mettre des
couches denses pour déterminer un ou plusieurs scalaires.

C.3 Preuve de principe

C.3.1 Modèle

Afin de faire une preuve de principe concernant la possibilité de déterminer
des informations sur le désordre à partir de données de transport, nous allons
utiliser un modèle du système étudier, qui sera simplifié de façon à générer
des données dans un court intervalle de temps. Pour cette étude, le potentiel
correspond à celui d’une couche de dopants de largeur infinitésimale située
à une distance s du plan contenant le gaz d’électrons. Au lieu de sommer
la contribution électrostatique de tous les dopants, ce qui revient à calculer
104 termes pour chaque pixel de l’image de potentiel, nous considérons la
transformée de Fourier de ce potentiel définie par

Vdop(r) = −E∗
Rya∗B

∆qx∆qy

π ∑
j>0

e−qjs

q + qTF
C(qj)e

−iqjr. (C.3)
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FIGURE C.5: Le panneau de gauche représente un potentiel
de désordre de Coulomb choisi aléatoirement qui correspond
aux paramètres présents dans la figure. Le panneau de droite

représente la DPLE calculée à partir de ce désordre.

E∗
Ry et a∗B sont respectivement l’énergie de Rydberg et le rayon de Bohr ef-

fectif. Les coefficients de Fourrier C(qj) sont des nombres complexes aléa-
toires qui sont choisis suivant une loi normale dont l’écart-type dépend de
la densité de dopants Nd. Cette méthode nous permet d’effectuer sur 250
fréquences 1. Notons aussi que cette méthode en compte l’écrantage des élec-
trons présents dans le gaz à travers le terme qTF. Un example de ce potentiel
est présent sur le panneau gauche de la Fig. C.5. D’après la formule (C.3), le
potentiel peut être définit par les paramètre s et Nd, mais il est aussi possible
de caractériser ce potentiel par une longueur de corrélation ξ définie comme

C(ξ) = C(0)
2

, (C.4)

où C(R) est la fonction d’auto-corrélation C(R) = 〈V(~r)V(~r + ~R)〉 du poten-
tiel, et par l’amplitude des fluctuations de potentiel calculé à travers la racine
de la valeur moyenne du potentiel au carré (RMPC)

Π =
√

〈V2〉. (C.5)

Sachant que nous souhaitons uniquement faire une preuve de principe,
nous utilisons une information de transport, qui est beaucoup plus rapide
à simuler que l’expérience de MGL, et qui correspond à la densité partielle
locale d’états (DPLE). En effet, afin d’obtenir une image de DPLE un seul cal-
cul suffit contre un nombre de calculs égal au nombre de pixels pour la MGL.

1Dû à la décroissance exponenetielle du poids des coefficients de Fourier, l’image de po-
tentiel a convergé après avoir pris en compte 250 fréquences.
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FIGURE C.6: Schéma de la géométrie du système utilisée pour
les simulations. Le point quantique est simulé par la petite élec-

trode de source.

Tous les calculs sont obtenus dans le cadre du modèle de liaisons fortes qui
est implémenté par le package python appelé KWANT [87]. Par souci de ra-
pidité des calculs, nous nous plaçons à température nulle. Le système du
PCQ est modélisé par la figure C.6. Un exemple de DPLE calculée à partir
d’un potentiel de désordre est présent sur le panneau de gauche de la fig-
ure C.5.

C.3.2 Caractérisation du potentiel par deux paramètres

En guise d’échauffement dans l’extraction d’informations du potentiel de dé-
sordre, nous allons tout d’abord tenter d’obtenir un ensemble de paramètres
qui caractérise le désordre, à savoir (Nd, s) ou (Π, ξ). Ces paramètres seront
donc les sorties du réseau de neurones alors que l’entrée sera l’image de
DPLE. Après avoir entraîné le réseau de neurones avec 140,000 échantillons,
nous évaluons le réseau de neurones avec des échantillons que le réseau de
neurones n’a jamais vus durant l’entraînement. En ce qui concerne l’ensemble
(Nd, s), le réseau commet une erreur relativement importante de 15% sur la
densité de dopants et une erreur de 3% sur la distance s. Nous constatons
que l’erreur faite sur ces deux quantités est corrélée d’après la figure C.7
où chaque point représente un échantillon utilisé pour l’évaluation. Cette
corrélation s’explique par l’écart de la RMPC correspondant aux paramètres
prédis par rapport à la RMPC calculée depuis les paramètres souhaités. En
effet, on observe sur la figure C.7 que la pente de la corrélation est superposée
aux échantillons pour lesquels aucune erreur n’a été faite sur la RMPC. Ce ré-
sultat est surprenant car il montre que l’algorithme a appris par lui-même à
reconnaître les paramètres naturels du problème (On peut considérer que les
paramètres s et ξ sont similaires car ils sont proportionnels.). Ainsi en util-
isant maintenant l’ensemble de paramètres (Π, ξ), le réseau de neurones a
beaucoup plus de facilité à déterminer ces paramètres. En effet, dans ce cas
l’erreur sur ξ est légèrement inférieur à 3% et d’environ 5% pour le paramètre
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en pointillés noirs représente la ligne théorique linéarisée dans
le plan ∆Nd/Nd versus ∆s/s pour laquelle la racine carrée
moyenne prédite correspond à la racine carrée moyenne atten-
due. L’encart représente la distribution des erreurs relatives de
la racine carrée moyenne du potentiel ∆Π/Π et de la longueur

de corrélation ∆ξ/ξ.

Π. De plus, la correlation entre les erreurs commises sur ces deux paramètres
à très largement diminué (voir encart de la figure C.7).

C.3.3 Détermination de l’image du potentiel observé par les

électrons

Nous allons maintenant nous attaquer à un problème plus compliqué qui
consiste à déterminer la carte du potentiel électrostatique subi par les élec-
trons. Pour cela, nous utilisons un réseau de neurones particulier qui per-
met de donner une image en sortie tout en prenant une image en entrée.
Ce réseau s’appelle un encoder-decoder convolutionnel. Nous entraînons le
réseau de neurones avec comme donnée d’entrée, l’image de DPLE et en im-
age de sortie la carte du potentiel (Un exemple du jeu de données correspond
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à l’image C.5). Cette fois-ci, nous testons le réseau de neurones en calculant
le coefficient de corrélation entre l’image prédite et l’image souhaitée. Ce
coefficient de corrélation est défini comme

rP =
∑

Np
i=1

(

ypred,i − ȳpred
) (

yexp,i − ȳexp
)

√

∑
Np
i=1

(

ypred,i − ȳpred
)2
√

∑
Np
i=1

(

yexp,i − ȳexp
)2

, (C.6)

où les sommes portent sur les Np pixels des images, tandis que ȳpred et ȳexp
sont les valeurs moyennes des deux images. La distribution des coefficients
de corrélations pour tous les échantillons utilisés pour l’évaluation du réseau
de neurones est présentée sur la figure C.8. On peut apercevoir que tous les
potentiels prédits ont une corrélation supérieure à 99% avec les potentiels
souhaités. Cette impressionnante précision nous permet d’obtenir une pré-
diction qui est toujours très proche de la réalité même dans le pire des cas
comme présenté dans l’exemple c) de la figure C.8. Notons que ce réseau de
neurones est relativement rapide à entraîner car il est composé uniquement
de couches convolutionelles. Ainsi, cette architecture se prête parfaitement
à la détermination du potentiel depuis une image contenant des données de
transport.

Nous avons aussi montré qu’il était possible d’améliorer la performance
de tels réseaux de neurones en utilisant plusieurs images de données de
transport en entrée qui correspondent au même désordre, mais qui sont obtenus
dans des conditions expérimentales différentes. Dans l’étude, nous avons fait
changer la valeur du champ magnétique présent durant l’expérience simulée.

C.4 Application de la méthode à un vrai échantil-

lon expérimental

C.4.1 Présentation de l’échantillon et du modèle

Afin d’utiliser notre méthode, nous avons choisi un échantillon qui permet
d’être simulé dans un temps raisonnable. En l’occurrence, il s’agit d’un échan-
tillon qui a été mesuré à très basse température (pour pouvoir être approx-
imé comme température nulle) et qui est plutôt petit ce qui impacte posi-
tivement le temps de calcul. En revanche, étant donné qu’il s’agit d’un vrai
échantillon, il n’est pas possible d’utiliser la DPLE en guise de données de
transport car elle n’est pas accessible expérimentalement. Nous devons donc
utiliser les images MGL qui sont plus longues à simuler. En plus de cela,
nous allons aussi utiliser des simulations du potentiel qui sont plus réalistes
en résolvant l’équation de Poisson qui prendra aussi en compte l’écrantage
de Thomas-Fermi. Dans le cas de l’échantillon choisi, nous avons 4 cartes
de MGL qui ont été obtenues dans des conditions expérimentales différentes
qui sont des valeurs de voltages de grilles de PCQ différentes. Ces cartes
de MGL sont présentées sur la figure C.9. Afin de réduire au maximum
le temps de simulation, nous avons fait plusieurs approximations comme
dans l’implémentation du potentiel de la pointe par exemple, et nous avons
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FIGURE C.8: Panneau supérieur : distribution du coefficient
de corrélation des échantillons de l’ensemble de test entre le
potentiel attendu et celui prédit par le réseau de neurones en-
traîné. La ligne bleue en pointillés représente l’ajustement de
la distribution. Les panneaux inférieurs sont des exemples de
potentiels attendus (à gauche) et prédits (à droite) correspon-
dant à un coefficient de corrélation indiqué dans le panneau

supérieur.

aussi utilisé un ordinateur parallèe très puissant où nous avons pu utiliser
23 nœuds composés chacun de 48 cœurs. Malgré tout cela, le temps de sim-
ulation ne nous a pas permis de créer un ensemble de données de plusieurs
dizaines de milliers d’échantillons comme dans l’étude de la preuve de principe.
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FIGURE C.9: Cartes SGM mesurées expérimentalement. Don-
nées fournies par B. Brun.

Ici, nous avons simulé 2,650 échantillons au total. Ainsi, il a fallu utiliser
quelques astuces pour entraîner un réseau de neurones avec aussi peu de
données. Les deux astuces utilisées sont l’augmentation de données (en
utilisant la symétrie du système on peut doubler le nombre de données) et
l’apprentissage par transfert. Ce dernier correspond à entraîner un réseau de
neurones avec un grand ensemble de données qui est très proche de l’ensemble
de données finales. Puis nous utilisons ce réseau de neurones pré-entraîné
pour l’entraîner cette fois sur l’ensemble de données finales qui contient moins
d’échantillons.

C.4.2 Résultats

Après avoir entraîné le réseau de neurones avec les astuces décrites ci-dessus,
nous allons prédire le potentiel et déterminer la précision de la prédiction.
Cette dernière étape est en réalité compliquée. En effet, il n’est pas possible
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de comparer le désordre prédit au désordre présent dans l’hétérostructure
car ce dernier n’est pas accessible par l’expérience. Nous allons alors déter-
miner la fiabilité de la prédiction d’une autre manière en utilisant une méth-
ode basée sur la comparaison de prédictions différentes validée avec des don-
nées simulées. Dans cette méthode, nous utilisons le fait que les potentiels
de désordre des quatre cartes de MGL sont identiques car la seule différence
provient de la tension appliquée sur la grille. Il est donc possible d’évaluer la
qualité de la prédiction en comparant la ressemblance des potentiels prédits
pour chacune des cartes de MGL. L’image C.10 correspond à un exemple où
l’on tente d’estimer la qualité de la prédiction 0. Nous pouvons y voir qu’il
est possible de calculer 3 coefficients de corrélation entre la prédiction 0 d’un
côté et les prédictions 1, 2 et 3 de l’autre côté. En moyennant les 3 coeffi-
cients, nous obtenons ce que nous pouvons appeler le coefficient moyen. En
parallèle, puisqu’il s’agit d’échantillons simulés, nous pouvons calculer le co-
efficient de correlation exact entre la prédiction et le potentiel souhaité. Ainsi
pour chaque configuration de désordre, il est possible d’obtenir 4 paires de
coefficients exacts et coefficients moyens. En étudiant plusieurs dizaines de
configurations de désordres, nous avons pu observer une claire corrélation
entre ces quantités. Il est donc possible de déterminer le coefficient exact à
partir du coefficient moyen. En utilisant cette méthode, la qualité de la pré-
diction du potentiel de désordre présent dans l’hétérostructure est estimée à
70%.

Afin d’augmenter la précision du réseau de neurones, nous allons pren-
dre en compte la présence de la vibration de la pointe durant les mesures. En
effet, ces vibrations ont changé la façon dont la pointe est venue perturber
le transport des électrons. Ainsi, la carte de MGL obtenue par l’expérience
correspond à une convolution de cartes MGL correspondant aux différentes
perturbations engendrées par la pointe. Afin de simuler la présence de la
vibration de la pointe, nous pouvons à nouveau faire une augmentation de
données en convoluant l’image de MGL avec des Gaussiennes de différentes
largeurs. Avec ce nouvel élément pris en compte dans l’entraînement, il est
désormais possible d’obtenir des nouvelles prédictions plus précises car elles
sont maintenant estimées comme étant justes avec une corrélation autour de
85%. Ces prédictions sont présentées sur la figure C.11.

C.5 Conclusion

En raison de l’incertitude d’obtenir des résultats positifs pour l’extraction
d’informations sur le désordre à partir de données de transport quantiques
avec des méthodes d’apprentissage automatiques, une étude préliminaire a
été entreprise en se concentrant sur un problème simplifié. Encouragés par
les résultats positifs de cette étude initiale, nous avons abordé le problème
plus complexe de l’extraction de toutes les informations sur le potentiel de
désordre. Enfin, nous avons déterminé le paysage complet du potentiel de
désordre d’un échantillon réel.

Dans cette démarche, une première étape a consisté à extraire les paramètres
globaux caractérisant le désordre à partir de la DPLE. Cette étude a révélé
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FIGURE C.10: Les quatre panneaux supérieurs représentent des
images SGM simulées d’un échantillon avec un désordre fixe
mais sous différentes tensions de grille avec les conductances
non perturbées indiquées. Les flèches noires représentent le
passage à travers le réseau de neurone. Les quatre panneaux
en dessous des images de MGL correspondent aux prédictions
de potentiel du réseau neuronal. L’image inférieure est le po-
tentiel de désordre exact qui correspond à ces quatre images de
MGL. Pour l’exemple i = 0, les flèches bleues relient les images
parmi lesquelles sont calculés les coefficients de corrélation cij

et cie.

des différences significatives dans la qualité des prédictions entre deux en-
sembles de paramètres, l’un non corrélé et l’autre corrélé.

La détermination complète du paysage de désordre a été réalisée en util-
isant la DPLE comme entrée pour un réseau neuronal. Les résultats obtenus
étaient remarquables, avec une corrélation moyenne de près de 99,7% lors
de l’utilisation du paysage de désordre en espace réel en sortie. Nous avons
aussi montré la possibilité d’augmenter la précision du réseau de neurones
en fournissant à ce dernier plusieurs informations de transport correspon-
dant au même désordre mais obtenues dans des conditions expérimentales
différentes.

Pour finir, une méthodologie pour déterminer le désordre dans une hétérostruc-
ture a été développée. Grâce aux méthodes proposées, il a été possible de
déterminer le désordre avec une précision très satisfaisante. Afin d’améliorer
la précision, des recommandations pour les expériences SGM ont été fournies,
suggérant des conditions expérimentales optimales, la résolution d’images
appropriées et l’utilisation de transfert d’apprentissage. Une méthode pour
l’évaluation de la fiabilité des prédictions sans connaître le potentiel exact a
également été proposée.
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