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Abstract

Nous étudions divers aspects et applications gravitationnelles de la dynamique carrollienne.
Les systemes carrolliens se manifestent lorsque la vitesse de la lumiere s’annule. Nous con-
struisons des équations dynamiques générales carrolliennes et galiléennes valables pour des
géométries carrolliennes/newtoniennes arbitraires, courbes et dépendantes du temps, 1’accent
étant mis sur ’hydrodynamique. La présence d’un courant U(1) est aussi prise en compte.
Cette démarche suit deux approches : basée sur I’invariance de I’action sous Carroll/Galilée
et Weyl, ou par la prise d’une limite de grande/petite vitesse de la lumiere dans le tenseur
énergie-impulsion relativiste et le courant U(1). La dynamique est régie par la conservation
d’un ensemble de moments qui résultent soit de la variation de 1’action par rapport aux dif-
férentes composantes de la géométrie carrollienne/newtonienne, soit apparaissent a différents
ordres dans le développement en ¢ du tenseur énergie-impulsion. Ces deux approches con-
cordent, mais il est montré que la procédure de limite est plus riche en raison de la possibilité
d’embrasser des situations avec des degrés de liberté supplémentaires. En fait, c’est cette lib-
erté qui nous permet de déterminer dans quelles conditions I’invariance hydrodynamique est
préservée lorsqu’on prend la limite de grande/petite vitesse de la lumiere. Nous montrons que
dans la limite galiléenne standard 1’invariance hydrodynamique est perdue, mais récupérée
en ajoutant deux degrés de liberté supplémentaires dans le développement en ¢ du courant de
chaleur et des courants U(1). Dans le cas carrollien, I’invariance sous changement de repere
hydrodynamique survit lorsque le comportement du tenseur énergie-impulsion est inspiré
des fluides carrolliens holographiques. Nous présentons enfin 1’analyse des courants associés
aux isométries carrolliennes/galiléennes. Dans le cas carrollien/galiléen, ces courants ne sont
pas toujours conservés et des conditions supplémentaires doivent étre imposées.

La dérivation présentée pour la dynamique carrollienne transcende les fluides. Nous
étudions le champ scalaire conforme sur une géométrie carrollienne générale et analysons
les extensions carrolliennes de la théorie de Chern-Simons gravitationnelle a trois dimen-
sions. Dans cette analyse, on découvre des dynamiques électriques et magnétiques codées
a différents ordres en puissances de la vitesse de la lumiere de 1’action relativiste parente.
Deux actions supplémentaires apparaissent, nommées paramagnétique et paraélectrique,

respectivement.
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Dans I’esprit de la dualité jauge/gravité plate, nous étudions la dynamique des espace-
temps asymptotiquement plats d’un point de vue carrollien. Nous montrons que les espace-
temps a Ricci nul sont exprimés dans une jauge covariante vis-a-vis du bord nul. Cette jauge
est une extension de la jauge de Newman-Unti, valable pour constante cosmologique finie
ou nulle. Le cas plat correspond a une limite carrollienne au bord. L’espace de solutions a
Ricci nul résultant est constitué d’un ensemble infini de données carrolliennes. On y trouve
la géométrie conforme carrollienne, les moments en nombre fini de la théorie du bord et un
nombre infini de tenseurs arbitraires, obtenus en développant le tenseur énergie-impulsion
relativiste d’origine en série de Laurent. Tous obéissent aux équations de bilan de flux
carrolliennes. Pour les solutions de type Petrov algébrique, cette structure carrollienne
au bord permet de déterminer les charges gravitationnelles usuelles. Nous retrouvons le
développement multipolaire de la masse et du moment angulaire pour la famille de Kerr-
Taub-NUT. Nous étudions enfin comment le groupe d’Ehlers de type Mobius agit sur les
données du bord nul. Pour les espace-temps stationnaires, ce groupe se manifeste comme
une transformation locale des observables carrolliennes du bord nul. Pour la solution
de Kerr-Taub-NUT par exemple, la transformation de la masse/nut est une rotation de

1’énergie/Cotton.



Abstract

The purpose of this thesis is to study aspects of Carrollian dynamics and its application to
gravity with zero cosmological constant. Carrollian systems arise as the vanishing speed
of light (k) limit of Lorentzian theories. Here, general Carrollian and Galilean dynamical
equations valid for arbitrary curved and time dependent Carrollian/Newton-Cartan geometries
are constructed, with focus on fluid mechanics. In both cases the presence of a U(1) current
is considered. The latter is done in two approaches: Carrollian/Galilean and Weyl invariance
of the action, and by taking a large/small-k limit of the relativistic energy-momentum tensor
and the U(1) current. In both cases, the dynamic is given by the conservation of a set of
momenta that arise either as the variation of the action with respect to the different pieces of
the Carrollian/Newton-Cartan geometry or appear at different orders in the k-expansion of
the energy-momentum tensor. Although these two approaches agree, the limiting procedure
is shown to be richer due to the possibility of capturing more general situations with extra
degrees of freedom. In fact, it is this freedom that allows us to find under which conditions
hydrodynamic-frame invariance is preserved when taking the large/small-k limit. We show
that, although in the standard Galilean limit hydrodynamic-frame invariance is lost, it is
recovered by adding two extra degrees of freedom in the large-k expansion of the heat current
and U(1) currents. In the Carrollian case, hydrodynamic-frame invariance survives when the
behavior of the energy-momentum tensor is guided by holographic Carrollian fluid results.
We also present the analysis of the currents generated by Carrollian/Galilean isometries.
In the Carrollian/Galilean instances, these currents are not guaranteed to be conserved and
additional conditions must be imposed.

The presented derivation for Carrollian dynamics is not valid only for fluids. The
investigation of the scalar field on a general Carrollian spacetime is also presented, as well
as the analysis of three dimensional Carrollian gravitational Chern-Simons extensions. In
this analysis one finds electric and magnetic dynamics that are encoded at different orders
in powers of the speed of light of the relativistic action. We furthermore unravel two more
Carrollian Chern-Simons actions, dubbed paramagnetic and paraelectric, respectively.

In relation to a possible flat version of the gauge/gravity duality, we also study some

aspects of Ricci-flat dynamics from a Carrollian perspective. We show that Ricci-flat
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spacetimes can be expressed in a gauge covariant with respect to the null boundary. This
gauge is an extension of the Newman-Unti gauge which is valid for asymptotically anti-de
Sitter and flat spacetimes. The flat instance is reached as the vanishing cosmological constant
limit of the anti-de Sitter case, which corresponds to a Carrollian limit at the boundary.
Therefore, the resulting Ricci-flat solution space is reconstructed in terms of an infinite set
of boundary Carrollian data. These are composed by the Carrollian conformal geometry,
a finite set of momenta of the theory hosted at the boundary, and an infinite number of
arbitrary tensors, obtained by expanding the original energy-momentum tensor in Laurent
series, which obey Carrollian flux balance equations. We take advantage of the latter to define
gravitational charges by using Carrollian boundary techniques and restricting the spacetime
to the algebraically special Petrov type. With this construction we recover the mass and
angular momentum multipolar expansion for the Kerr-Taub-NUT family. We also learn how
the hidden Ehlers M&bius group acts on the boundary data at null infinity. We find that, for
stationary spacetimes, this group is manifested as a local transformation for the Carrollian
geometry and the boundary Carrollian observables. We reproduce the mass/nut rotation as

the energy/Cotton rotation for the Kerr-Taub-NUT solution.
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Nomenclature

(A,B,C,...) are d + 2 spacetime indices labeling {r,z,x}.

(u,v,a,...) are d + 1 spacetime indices labeling {¢,x}.

(i,],k,...) are d spatial indices labeling {x}.

D, is the temporal Carroll covariant derivative in d space dimensions.

9 is the spatial Weyl-Carroll covariant derivative in d space dimensions.

D is the temporal Weyl-Carroll covariant derivative in d space dimensions.

Vi is the spatial Carroll covariant derivative in d space dimensions.

Py is the Weyl covariant derivative in d + 1 spacetime dimensions.

V4  is the Levi-Civita connection in d + 2 spacetime dimensions.

V,  isthe Levi-Civita connection in d + 1 spacetime dimensions.

k is the speed of light.

In four spacetime dimensions: €4pcp is the Levi-Civita symbol in four dimensions.
In three spacetime dimensions: €y 1s the Levi-Civita symbol in three dimensions.

In two space dimensions: &; is the Levi-Civita symbol in two dimensions.






Chapter 1
Prologue

The discussion on Carrollian physics started first with the works of Lévy-Leblond [9] and Sen
Gupta [10], where a new group of symmetries (by then) called Carroll group is obtained as
the Inonii-Wigner contraction [11] of the Poincaré group. As opposed to the non-relativistic
contraction that one can use to find the Galilean group, the Carroll group is obtained through
a vanishing speed of light limit. For many years this peculiar contraction was thought as a
mere mathematical curiosity since no reasonable physical systems seemed to be compatible
with these symmetries. Indeed, in that limit, which we call in this thesis as Carrollian limit
(also known as ultralocal limit), the light cone collapses into a single line in the time axis
making space absolute. As a consequence all movement or signal propagation is forbidden,
even if particles have nonzero momentum. Despite of the latter Carrollian physics has
attracted interest from many different fields, specially its conformal extension. For instance,
it has lead to the discovery of new geometric structures which we now know as Carrollian
manifolds [12-21] specified by a degenerate metric and a vector field that generates its kernel.
Carrollian manifolds have been seen to appear by taking the vanishing speed of light limit
of a pseudo-Riemannian manifold, or as the geometry of null hypersurfaces embedded in
Lorentzian spacetimes in one dimension higher.

It has also been shown in [22, 23] that the conformal extension of the Carroll group is
isomorphic to the famous Bondi-Metzner-Sachs (BMS) group which rules the asymptotic
symmetries of Ricci-flat spacetimes at the null boundary [24-26]. The latter, together with
the fact that null geometries possesses Carrollian structures, might suggest a vanishing
cosmological version of the gauge/gravity [27, 28] duality, such as the renowned anti-de
Sitter/Conformal field theories (AdS/CFT) correspondence that relates gravity in asymp-
totically AdS spacetimes with the dynamics of a CFT defined on its timelike conformal
boundary. In Ricci-flat spacetimes the conformal boundary is null (Carrollian) and therefore,

if a similar holographic duality exists in this case, the theory living at the boundary of



2 Prologue

Ricci-flat spacetimes should be a Carrollian conformal field theory (CCFT) defined on a
Carrollian spacetime. This possibility of having a holographic correspondence for gravity
with vanishing cosmological constant and CCFTs is a recent and hot topic that is still under
scrutiny. Progress on the latter have been done in [29-37]. In this line, and inspired by
the fluid/gravity correspondence [38—41] that relates asymptotically AdS spacestimes with
relativistic conformal fluids in one dimension less, a duality between Ricci-flat spacetimes
and Carrollian conformal fluids defined at null infinity was proposed in [42]. In particular
it was shown that any Ricci-flat spacetime of algebraic special Petrov type can be recon-
structed in terms of the Carrollian geometric data and the Carrollian fluid variables, which
in the case worked out in [42], correspond only to the energy density of the Carrollian
hydrodynamic system. We will see in the Chapter 6 of this thesis that the reconstruction
of Ricci-flat spacetimes in terms of a set of Carrollian boundary data is not restricted to
the algebraically special spacetimes but applies for general asymptotically flat spacetimes.
In the general situation the number of Carrollian data necessary for the reconstruction of
the spacetime becomes infinite and part of these degrees of freedom will be constraint to
satisfy flux-balance equations [2]. Further investigations on Carrollian fluids have been
carried out in [43-45, 5, 46, 47]. There are more recent applications as, for example, the
emergence of Carrollian dynamics in black hole horizons [48—-53], possible applications to
condensed matter systems [54, 55], cosmology and dark energy [56] and even the appearance
of Carrollian symmetries in tensionless string theory [57]. In particular, the first half of this
thesis is devoted to the study of Carrollian and Galilean fluid dynamics.

Hydrodynamics has been an important topic in physics, thoroughly investigated and
applied in many fields. Still, many questions remain to be answered. For instance we have
the ambiguity of choosing the hydrodynamic frame when dealing with relativistic fluids. This
is what is known as hydrodynamic frame invariance and it reflects the freedom to choose
freely the velocity of the fluid due to the impossibility to distinguish the mass flow from the
energy flow in relativistic hydrodynamic systems. The most common choices are the Landau-
Lifshitz frame, which consist in the formulation of non-perfect relativistic hydrodynamics
without heat current [58], and the Eckart frame for the description of non-perfect fluids
with heat current and imposing the perfect matter/charge current (U (1) current) [59]. These
hydrodynamic frame choices have some inconveniences when the formulation is implemented
in the truncated constitutive relations (the non-perfect pieces of the energy-momentum
tensor and the matter/charge current are expressed in terms of a gradient expansion of
the hydrodynamic variables, namely temperature, chemical potential and velocity). These

problems come as instability of the thermal equilibrium state and superluminal propagation



of signals for non-gravitating relativistic fluids. A deep presentation of the latter can be found
in [60—63] and for recent progress in the subject, see [64—74].

The emergence of hydrodynamic-frame invariance is also related in a more different
context, being fluid gravity correspondence. In asymptotically AdS Einstein spaces, the
asymptotic isometries are related to the symmetries of a fictitious fluid flowing on its
conformal boundary [75-77]. In that case, the conformal boundary is timelike and the
dual fluid is relativistic. If one performs a local Lorentz transformation on the velocity of
the dual fluid, its action is reflected as part of the diffeomorphism on the gravitational side.
One could wonder what happen now if we move to asymptotically flat spacetimes with
a holographic Carrollian fluid dual. Do we still have hydrodynamic frame invariance in
the Carrollian boundary fluid that can be reflected in the bulk as diffeomorphisms? In a
different context, irrespective of any link to gravity, one can also wonder why there is no
hydrodynamic frame invariance when reaching Galilean fluids from a non-relativistic limit
of relativistic hydrodynamics, or under which conditions we can keep this property.

On the one hand we have Galilean fluid dynamics. The latter typically arises from the
non-relativistic limit of the relativistic fluid equations. It was first formulated in Euclidean
space with absolute time. Then, with the pass of the years, it was generalized to admit
more general situations describing non-perfect fluids flowing on curved and time dependent
spaces [78-84], with fluid equations covariant under Galielan diffeomorphisms given by the
transformation ¢’ = ¢'(¢) and x’ = x(z, x) [44, 85, 5] that respects the time/space splitting, the
time being absolute.

On the other hand, Carrollian fluids can be understood as fluids "flowing" on a Carrollian
manifold. As opposed to the Galilean situation, one way to obtain the Carrollian fluid
equations is through the vanishing speed of light limit of the relativistic hydrodynamic
equations. This approach was first discussed in [44] where the authors obtained the set of
Carrollian fluid equations in the absence of a U(1) current, and are fully covariant under
the diffeomorphisms ¢ = #'(z,x) and x' = x'(x), namely the Carrollian diffeomorphisms that
respects the time/space splitting, with the space being absolute.

One of the goals of this thesis is to extend the analysis of [44] for the construction of the
Galilean and Carrollian fluid equations in the presence of a conserved U (1) current using
two distinct approaches: The first one is based in the diffeomorphism invariance of the action
(Carrollian or Galilean). In this approach the dynamic is given in terms of conservation laws
for a set momenta [86] that are obtained through the variation of the action with respect
to the geometry. The second approach consist on a limiting procedure of the relativistic
fluid equations. This provides the set of conservation equations that the momenta must

satisfy, the latter constructed in terms of kinematic and thermodynamic variables. This
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procedure will allow us to study the fate of hydrodynamic-frame invariance in the Galilean
and Carrollian limits. We will see that the absence or presence of this property known in
relativistic non-perfect fluids, depends on the behavior of the fluid degrees of freedom with
respect to the scaling of the velocity of light. For example in the Galilean limit, we will see
that the only way to keep this property is by considering the presence of additional pieces
in the heat current and the non-perfect part of U(1) current that appear at &'(k*) and (1)
order respectively.

Additionally, we will study the construction of charges associated to Galilean and Carrol-
lian isometries. We will see that these charges are not necessarily conserved and we need
to impose additional conditions for them to be conserved: strong Carroll isometries or the
absence of some of the momenta.

One can also consider the Carrollian contraction of other Lorentz-invariant theories.
It was shown in [14] that electromagnetism in four spacetime dimensions allows for two
different Carrollian contractions, one named as electric contraction, and the other named
as magnetic contraction. In the electric contraction the dynamics is dominated by time
derivatives while space gradients dominate the magnetic dynamics. It was then shown in [87]
that these two contractions also apply to any Lorentz invariant theory where the guideline was
the Hamiltonian formalism. There, the difference between electric and magnetic dynamics
was found to rely on a different scaling of the fields with respect to the speed of light. In
this thesis we will investigate the (conformally coupled) scalar field and the gravitational
Chern-Simons action on Carrollian backgrounds. Our guideline will be the same employed
in the case of Carrollian fluids, namely Carrollian diffeomorphisms and Weyl invariance, and
a small-k expansion of the actions and equations of motion. At each power in the speed of
light, different Carrollian dynamics appear for both theories: electric and magnetic, and for
the Carrollian Chern-Simons we will find two additional actions at the 1/k* and k> powers in
the expansion. We call them paralectric and paramagnetic Carroll-Chern-Simons actions.

Coming back to the discussion on the relation between Ricci-flat spacetimes and Carrol-
lian fluid dynamics, there is yet another property of gravity that deserves to be studied in this
context. This is the action of hidden symmetries, present in vacuum Einstein’s equations,
onto the boundary configuration. Hidden symmetries have been studied for a long time
in the context of relativistic gravity theories. The latter was first started by Ehlers in [88],
where it was shown that in the presence of an isometry Einstein’s equations are invariant
under Mobius transformation. This can be seen after a reduction of the Ricci-flat spacetime
along the orbits of the Killing vector that generates its isometries. The latter opened the
door for solution-generating techniques applicable to vacuum Einstein’s equations [89] and

then generalized to more general situations with more commuting Killing vectors [90-92]



and bigger hidden symmetries. In the same spirit as the mapping between the asymptotic
symmetries of the bulk and the conformal symmetries of the boundary, one could wonder
what would be the action of the Ehlers group on the conformal boundary. As mentioned
previously, Ricci-flat spacetimes can be reconstructed in terms of Carrollian data. The latter
requires an infinite set of functions that enters in the metric in a gauge that we will call
"covariant Newmann-Unti gauge". Then, what does the Ehlers transformation do to the
Carrollian boundary data? Part of this thesis will be devoted to answer this question. To this
end we will work in the resummable case (algebraically special class) whith solutions that
posses a timelike Killing vector whose congruence coincides with the boundary Carrollian
fiber o; (stationary spacetimes).

In gravity it is possible to construct charges associated to the asymptotic symmetries
group (BMS4). In fact, in Ricci-flat spacetimes one has an infinite set of charges (not
necessarily conserved). This is due to the infinite degrees of freedom necessary to reconstruct
the solution, as well as the infinite generators of the asymptotic symmetry group. These
"subleading" charges come also as electric-magnetic pairs and have been widely studied
in the literature [93—100]. Here we will perform the construction of the charges from a
purely boundary perspective where they are built using the boundary dynamics together with
Carrollian (conformal) isometries. In this construction the Cotton tensor of the boundary
(and its descendants in the flat limit) will play a prominent role and in fact, in relation to the
discussion on the boundary action of the Ehlers group, we will see that part of the Ehlers
group will correspond to an algebraic transformation that mixes the Cotton density and the
energy density of the boundary Carrollian fluid. In the bulk this is a mixing between the
Bondi mass (electric mass) and the nut (magnetic mass).

This thesis is based on the published works [1-5]. Some parts of this thesis are a
transcription of these articles while other parts are written specifically for this thesis to
facilitate the presentation of the results. The structure of this thesis goes as follows:

In Chapter 2 we will remind the necessary tools to go through the analysis and results
presented in this thesis. This includes the basics of relativistic hydrodynamics in the presence
of a matter current and an overview on hydrodynamic-frame invariance. We will present two
frames in which this analysis can be performed. One is the Zermelo frame which will be
suitable for taking the Galilean limit, while the other will be the Papapetrou-Randers frame
suitable for taking the Carrollian limit. A review about the Ehlers group and the Geroch
method will be also given which will be used in Chapter 6.

In Chapter 3 we derive the most general Galilean fluid equations on arbitrary curved and
time dependent backgrounds. The latter will be first based on Galilean covariance (Galilean

difffeomorphisms). In this context we will also investigate on the (non-) conservation laws
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associated to Galilean isometries. We then move to the limiting procedure. The latter
corresponds to taking kK — o in the Zermelo frame. This will allow us to go through the
analysis of hydrodynamic-frame invariance and find under which conditions it survives the
limit. This Chapter is partly based on the work [5].

In Chapter 4, following the steps for the Galilean case, we derive the most general
Carrollian fluid equations. The latter is derived from Carrollian covariance (Carrollian
diffeomorphisms) and a limiting procedure by taking k — 0 in the Papapetrou-Randers frame.
We also study the (non-) conservation laws associated to Carrollian isometries, as well as the
fate of hydrodynamic-frame invariance in the k — 0 limit. The results of this Chapter are
based on [5].

In Chapter 5 we will derive the Carrollian extensions of the (conformally coupled) scalar
field in arbitrary dimensions and the Carrollian versions of the gravitational Chern-Simons
theory in three spacetime dimensions. All this by following the steps presented in Chapter 4.
The derivations presented here are based on the works [1, 4].

In Chapter 6 we will study some aspects on the relation between Ricci-flat spacetimes
and Carrollian dynamics. The latter includes the reconstruction of Ricci-flat spacetimes,
the relation between bulk and boundary isometries, charges and dual charges and stationary
Ricci-flat solutions. We then show how the Ehlers group of symmetries that are present
in Einstein’s field equations translates to the boundary as a local transformation on the
Carrollian geometric data as well as the Carrollian fluid data. The results included in this
Chapter are based on our work [3, 2].

Finally in Chapter 7 a summary of the results obtained in this thesis are presented, as

well as possible future directions.



Chapter 2

Introductory material

2.1 Relativistic hydrodynamics

2.1.1 Energy-momentum and matter conservation

Fluid mechanics can be understood as the effective description of the dynamics of matter
with off-equilibrium thermodynamics at large enough length and time scales. This means that
a small portion of the fluid is big enough compared to the distances between the molecules
so one does not need to worry about the dynamics of the individual molecules. Deviations
from thermal equilibrium are small and thus the global thermal equilibrium temperature,
fluid velocity and chemical potential are promoted to slowly varied in time and space. It is
reasonable to assume local thermal equilibrium and use the laws of thermodynamics (see
App. A).

Part of the hydrodynamic description is governed by local conservation laws. When there
are no external forces, springs or sinks, these conservation laws are recast in the form of
d + 2 equations given by the vanishing divergence of the energy-momentum tensor and the

matter current,

VT = 0 2.1)
Vb = 0. 2.2)

Here we assume the d + 1 spacetime is equipped with a metric gy, with Lorentzian signature
(—,4+,...,4). Both, the energy-momentum tensor and the matter current can be decomposed

along the congruence u*, which corresponds to the velocity field of the fluid and it is
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normalized as u,ut = —k?. Here k is the light velocity.! This decomposition reads
ubu” utq¥  u¥gt
T = (e+p) 2 +pgty + v + 2t (2.3)
JE = pout + jH. (2.4)
The heat current ¢ and the viscous stress tensor T#" are purely transverse, implying
Hg.=0 By =0 KTy = _ 1 Tyyutu” 2.5
u“qu =0, uty=0, uTyy=—qy—Euy, E—E‘Wuu (2.5)
Similarly, we have for the non-perfect piece of the matter current j,
e L
uju =0, po=——uJy. (2.6)

k2

The kinematic properties of the fluid ? are given by the irreducible decomposition of the
covariant derivative of the velocity field, namely

1
Vvl/l“ - w‘uv + G’uv + E®h‘uv - ﬁa“’uv 5 (2.7)
with
au - l/lvVvu‘u, @ - V‘uuu, (2.8)
Oy = Vulty) + lt(uay) — 5O hyuy, (2.9)
Oy = Viglty) + U ay], (2.10)

the acceleration, the expansion, the shear and the vorticity, with 4,y and Uy, the projectors

onto the space transverse and longitudinal to the velocity field,

uyu uyu
hﬂv=%+guv, Uyy = — ‘]izv. 2.11)

In the decomposition of T*" and J* at hand, different variables are present:

* ¢ is the energy density per unit of proper volume and py is the matter per unit of proper

volume, both as measured by an observer co-moving at velocity u*;

'We use k instead of ¢ for the light velocity in order to avoid possible confusions with the Cotton density
(D.11), which is defined here with the letter c.
2Qur conventions for (anti-) symmetrization are A(#v) = % (A“V —|—AV,J) and A[HV} = % (A“v —Avu).
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* pis the local-equilibrium thermodynamic pressure. The latter obeys an equation of
state of the form p = p(T, ), where T and L are the local temperature and chemical
potential;

* the tensors j*, g" and 7"V capture the non-perfect nature of the fluid. In other words,
yields the information about the physics of the out of equilibrium state. These tensors
are usually expressed as a gradient expansion of the thermodynamic variables (T, o

and u*) giving the constitutive relations at each order in the expansion.

Besides the conservation of the energy-momentum tensor, the matter current and the
equation of state p = p(T, L), the description of a hydrodynamic system is accompanied
with the second law of thermodynamics, also known as the non-decreasing entropy flux

principle. The latter is realized by the condition
VSt >0, (2.12)

where SH is the entropy current. The latter does not have a microscopic definition but it is
also built order by order in the derivative expansion®. The generic form of the entropy current
1s

S“:%(pu“—T“"uv—,qu“)—FR“:Z“+R“, (2.13)
where X is the universal piece of the current, and R* depends on the specific off-equilibrium
thermodynamic theory. Using (2.5), (2.6), (A.3) and (A.5), £* is rewritten as

) 1 o v o/, Po
s — gt Ho u+_u:_Ju__(ll__“> 2.14
S L Too V' " ? (2.14)
with o the entropy, tv the relativistic enthalpy, and iy the relativistic chemical potential.

It is convenient, both for the relativistic dynamics and for its Galilean or Carrollian limits,
to consider the longitudinal and transverse projections of (2.1), possibly combined with
(2.2) and the thermodynamic laws (A.5), (A.6) and (A.8) in order to trade the energy for the

entropy. For the longitudinal projection, we find

T v
—uy V" = u(e) + (w+ ) O+ 70+ Vag" + (2.15)
ovT
= TVVZV_|_C-Z@—I—T“VGI_LV—FTJ'VQV%_FC[V( ‘]: _|_i_;>7 (2.16)

where T = 7#Vg,y is the relativistic non-equilibrium pressure and u(f) stands for u*dy, f.

3The first order is often referred to as classical irreversible thermodynamics, the second extended irreversible
thermodynamics, etc.
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The conservation of the energy-momentum tensor and the matter current are also the
result of the symmetries of the effective action S = [ dd“x\/—_gf of our hydrodynamic
system. Indeed, from this perspective the energy momentum tensor is defined as the variation
of the action with respect to the metric,

_ 2 68
V=8 6guv7

while the matter current is defined through the variation of the action with respect to a U(1)

T+

(2.17)

gauge field By
1 oS

prm— —_ga.

If the action is invariant under diffeomorphisms generated by & = £#(z,x)d,, that trans-

H (2.18)

form the geometry as
Ocguv = —L8uv, (2.19)

where .Z; is the Lie derivative along the vector & and whose action on the metric is

Zrguv = EPOpguv + gupvEP + gvpduéP = V& + Vi &, (2.20)

the variation 0¢S is expressed as

1
&S = 5 ////ddﬂx\/—gT“v&ggﬂv

— / A x\/—g&, vV TH — / A x\/ gV, (THVEy) . (2.21)
M M

Therefore, the vanishing of ;S implies the conservation of the energy-momentum tensor.
Here, the last term in (2.21) is a boundary term.

Similarly, the conservation of the matter current (2.2) comes from the invariance of the
action under the U (1) transformation

SABy = —uA\ (2.22)
with A = A(t,x). Hence, the variation d,S yields

S = / 44+ x\/"gIM SrBy
M

= ////dde\/_—gAV“J“— ////ddﬂx«/_—gv” (JHA) (2.23)
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from which we can infer the conservation of the matter current by the requirement 95 = 0.
Again, the last term in (2.23) is nothing but a boundary term.

When the vector field & generates an isometry of the spacetime, we can derive conserva-
tion laws associated to them. In such case & is a Killing vector which satisfies the Killing
equation

Zrguv = 0. (2.24)

Hence, through a Noether procedure it is possible to define a current as
I# — évTuv (2.25)

that is divergence free
VIt =0. (2.26)

Then we can use the Stokes and Gauss theorems

/ A /g VIt = f «I, (2.27)
W oW

where % is a domain inside .# and *I is the .#-Hodge dual of I = I, dx* (&y;._4 = 1). One
can infer that

QI:/): ] (2.28)

is a conserved quantity. Here, X is an arbitrary spacelike hypersurface embedded in .Z .
The same construction can be made for the presence of conformal isometries. In that

case the energy-momentum tensor is trace-free T, u and the conformal Killing vectors satisfy

2

We will come back to this subject in chapters 3 and 4 when discussing about conservation

laws associated to Carrollian and Galilean (conformal) isometries.

2.1.2 Hydrodynamic-frame invariance

The freedom to chose a hydrodynamic-frame is rooted in the redundancy of the fluid data g*
and j* (no distinction between energy and mass flow). For instance, in Ekart’s formulation
of relativistic fluids [59], the frame is chosen such that the matter current remains perfect
(j* = 0), while in the Landau and Lifshitz formulation the heat current g* is set to zero. It is
more commonly known in the literature that the freedom to chose a hydrodynamic-frame

relies on the freedom to redefine the thermodynamic variables together with the velocity field,
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such that the energy-momentum tensor, the matter current and the entropy current remain

invariant. That is, we make
T(x) = T'(x), Mo(x)— uy(x), ut(x)—u*(x), (2.30)
provided we modify accordingly €(x), p(x), po(x), g*(x), T#"(x) and j*(x) so that
THY TV g R SH S SR (2.31)

The latter is actually a gauge symmetry, associated with a local Lorentz transformation of the
velocity field u*, meaning that the velocity field has no first principle definition in relativistic
hydrodynamics. The way a hydrodynamic-frame transformation works goes as follows:

Suppose we transform the fluid velocity through a local Lorentz transformation, namely
u—u+du, ou-u=0. (2.32)

We require that the energy-momentum tensor remains invariant under such transformation,
namely 67"V = 0. This implies that the various pieces within the decomposition of the

energy-momentum tensor (2.3) must transform as*

2

o = —ﬁq”&t“, (2.33)
oqy = Z—;q“(Su“ —1wduy — Tyy dut, (2.34)
) (phuv + ‘L'“v) = k% (u”&tv + uv5uu) + kiz (Mufvp + uvrup) Suf
—% (6utq¥ +6u'q") . (2.35)
In the same way, the requirement /J# = 0 implies
Spp = —%J;ﬁu” (2.36)
OJju %uﬂjv&tv — PoOuy. (2.37)

4We cannot disentangle at this stage the transverse components p and Tuv, as their separation relies on
thermodynamics (p is the equilibrium pressure, 7,y stands for the non-equilibrium stress and its trace is the
non-equilibrium pressure).
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The entropy current and the thermodynamic relations are also hydrodynamic-frame

invariant, in particular the Gibbs-Duhem equation
o =T06+ Hopo < p =Tspo+ 1LPo — ePo- (2.38)

and the equation of state. Although not part of our main goal, the latter provides the necessary
tools for computing the local Lorentz transformations of the thermodynamic observables o,
p, T and py, all in terms of du*. The latter will not be analyzed here but for a more detailed
discussion on the subject is given in [65-74, 101].

The ambiguity in the definition of the fluid velocity, and hence in the temperature and
chemical potential, appears only when viscosity and heat conduction are present. Indeed,
when g, j* and T*" vanish it is possible to consider the fluid moving with a precise velocity
(u* is aligned with the matter current and it is also an eigenvector of the energy-momentum
tensor) and define a frame co-moving with the fluid [58, 102]. In fact, if one performs a local
hydrodynamic-frame transformation as given in (2.32), it will not preserve the perfect form
of the energy-momentum tensor and the matter current. In that case all those transformations

will generate non-perfect components in 7Y and J*.

2.1.3 Weyl-invariant relativistic fluids

We now turn our attention to fluids which are invariant under Weyl transformations. Those
fluid configurations, which are known as conformal fluids, are important within the fluid/gravity
duality since they appear as the holographic duals of AAdS spacetimes [40, 38, 39] as well
as their Carrollian version known as Conformal Carrollian fluids, which are the holographic
duals of Ricci-flat spacetimes [42].

Weyl transformations act on the background metric and fluid velocity as
guv — B guy, ut — But, (2.39)

with # = %(t,x). More general tensors are Weyl-covariant of weight w if they rescale
with some power of . We can define a Weyl-covariant derivative &, that maintains the
canonical Weyl transformation of a Weyl-covariant tensor. This is achieved by the inclusion

of a Weyl connection one-form’

1 ®
A= (a— Eu) : (2.40)

3The explicit form of A is obtained by demanding Pyut =0 and u* Dy, uy =0
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which transform as A — A —dInZ. The Weyl covariant derivative is metric-compatible,

implying

(PuDy—DDu) f = wfFuy, (2.42)

where the action on a weight-w scalar f is

Df=Vf+wA,f, (2.43)

and

is the Weyl curvature (weight-0). For concreteness, the action of &, on a weight-w form v,
and a weight-w tensor 7,y is

Dvy = Vovpg+w+ DA v +Auvy —g“;LApvp, (2.45)

As usual, one defines the Weyl-covariant Riemann tensor through the commutator of the
Weyl-derivatives acting on vectors

(2uPy — Dy D) VP = H 5V + WP Fyy (2.47)

(VP are the components of a weight-w vector) and the usual subsequent quantities. The

Weyl-covariant Ricci (weight 0) and scalar (weight 2) curvatures read

Ry = Ruv+(d—1) (VoAu+Audy - guvAsA*) +guViA* — Fuy,  (248)
R = R+2dV,A* —d(d—1)A,A™. (2.49)

We can also define the Weyl-invariant Schouten tensor as
1 1 1 A
and the Weyl invariant tensor

i
S = 2uu (0  + 0yt ) = Tuu+ (o + o) (6,4 +o0,1) @5
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which are going to be very useful when discussing on the Ricci-flat/Carrollian fluid duality
in Chapter 6.

When the dimension of the spacetime is three (d = 2), which is the dimension we will
use in Chapter 6, we can define other Weyl-covariant velocity-related quantities as

1 S
@‘uuv - Vﬂ”\/"‘_u‘uav - Ehuv

k2
= Ouv+ Oy, (2.52)
20, = Vo', (2.53)
-@vnvu = 2quy, (2.54)
Ty = 7, (0hy—0hy) — iy, (2.55)
* Dy = 0, (2.56)

of weights —1, 1, 0, 1 and —1 (the last one shows that the operator u 9, respects transver-
sality). Here 1y is defined as 6

uP
Nuv = —Tnpuw (2.57)

obeying
MuoMy’ = hpv, N Mpy =2. (2.58)

The scalar g is of weight 1 and defines the vorticity strength as

5 1

q = ﬂwﬁww“v. (2.59)

The two-index tensor 1,y defines a duality map within the space of symmetric, transverse

(with respect to u) and traceless tensors. For a transverse tensor V#, its dual is given as
*WVH = nVNVv, (2.60)

which is also transverse.

Similarly with a symmetric, transverse and traceless tensor Wy, we define its dual as
Wy = 1", Woy, (2.61)

which is symmetric, transverse and traceless. As a reminder, the above is valid for three
dimensional spacetimes.

6npuv =+ —&&uv-
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The fluid dynamics captured by (2.1) and (2.2) is Weyl-invariant as long as the energy—
momentum tensor and the matter current are Weyl-covariant such that

VuTHY = 9,TH, VI = Gt (2.62)

The latter demands for the conformal weights of 7,y and Jy; to be d — 1, and 7},, must be
traceless. For the energy-momentum tensor, these are consequences of the Weyl invariance
of the action. Indeed, given the infinitesimal Weyl transformation

one can see that
8558 = — / dxy/—gin BT, ", (2.64)

implying T*, u = 0 for a Weyl invariant action. The weight of the energy momentum-tensor
can be inferred from (5.7).

In the decomposition (2.3) the latter condition reads —& +dp + " u = 0, usually split-
ted into the conformal global-equilibrium equation of state plus a condition on the piece
associated with dynamical irreversible phenomena:

e=dp, 1',=0. (2.65)

The conformal weight of the gauge field B, conjugate to J*, is w = 0 and it is inferred
from (2.18) in order to comply with the expected weight for J;,. A summary of the weights
of the various physical quantities are given in the Tab. 2.1.

weight | observables

d+1 E,p
d CIIJ’ Po
d—1 Tuvs Ju

Table 2.1 Conformal weights.
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2.2  Fluids in Zermelo coordinates

2.2.1 Zermelo frame

There are different parametrizations one can chose for the metric of a pseudo-Rimannian
manifold of d 4+ 1 dimensions depending on what one is trying to achieve. For instance, one

can always assume the Arnowitt—Deser—Misner form of the metric
ds? = —Q%K*dr* + a;; (dx’ — widr) (dx/ — w/dr) (2.66)

with @;;, w' and Q functions of x = (kt,x) = {x*,u =0, 1,...,d} and x stands for {x!,...,x?}.
These choice of gauge is well-suited to take the Galilean limit [44]. Indeed, Galilean

diffeomorphisms
t'=1t(t), x =x(t,x) (2.67)
have Jacobian Iy o o
t ; xt ; b
Jit) ==, jtx)=—=, Ji(t,x)=5= 2.68
and the transformation of the metric components are reduced as
d.=ayJ g1 wk= ! (J?‘w" + jk> o- (2.69)
1] 2 ]’ J 1 ? J

Then a Galilean limit for (2.66) exists under the condition that Q depends only on time ¢,
making (2.66) stable under Galilean diffeomorphims. We call Zermelo metrics [103] to
the parameterization given by (2.66) with the restriction Q = Q(t), whose corresponding
Newton-Cartan structure reached in the k — oo limit is torsion free [104]. The latter is
equipped with an absolute, invariant Newtonian time [dr Q(¢) = [di’ Q'(¢').

With the above gauge, any tensor component with an upper time index transform as
a Galilean density and thus is a scalar upon multiplication by Q. In the same way the
components with lower spatial indices transform as Galilean tensors. As an example, the
transformation of the d + 1 vector components V* under a Galilean diffeomorphism leads
to’

vO0=yv0 v/ =vJg 'k (2.70)

"When the indices are inverted, the transformations are of the connection type: V’ i = J,i vk 4 Jivo, Vé =

} (VO —=ViJ - ,{J k) . For those, the tensorial structure is restored at the infinite-k limit, where indices are lowered
and raised with a;; and its inverse.
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As we mentioned previously, the fluid is flowing with a velocity field u with normalization
|lul|? = —k>. The latter is described as

dxcM _ .
u“zﬂéuozyk, u' =, (2.71)

where the Lorentz factor 7 is expressed in the Zermelo frame as®

y= 1
o)’

(2.72)

Under a Galilean diffeomorphism (2.68), the transformation of u* (see footnote 7) induces
the transformation

1 .
=2 (4 ). (2.73)

meaning the velocity v/ transform as a connection.
We can also extract the fundamental data for the non-perfect part of the matter current
Ji» heat current g; and the stress tensor Ti; by the conditions (2.5) and (2.6). Their other

components in Zermelo coordinates can be expressed as

o Ui o G e (Foh) (o)
kQ2 kQ2 K2OA )
(Vk _ wk) T
= (2.74)

which transform as tensors under Galilean diffeomorphisms.

2.2.2 Hydrodynamic-frame transformations and invariants

The fluid velocity is parameterized in (2.71) with d components v'. We can thus formulate the
relativistic hydrodynamic-frame transformations in terms of an arbitrary local transformation

on V', that is, V" (x). In the Zermelo frame, the Lorentz factor transforms as

r

oy= k—25v’ (vi—wi), (2.75)

hence, the transformation of the velocity field u is given by

Su=y5 <8~+y—2 (vi—wj) (9 +k9, )) (2.76)
- i 2 i i t k . .

8Expressions as v* stand for a;;v'v/, not to be confused with ||u[|> = guyutu.
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Using Egs. (2.33), (2.34) and (2.35), together with (2.74) and (2.76), we find

se = —258vq, (2.77)
Sgi = yok (klz (vi —wi) qr — vohy; — ’L'ki) , (2.78)
8 (phij+1j) = Z—i&/k ((vi—=wi) (Tjk+ phjr) + (vi —w;) (T + phix))
—k—};&’k (gihji+qjhi) , (2.79)
where (see (2.11)) )
hir = ajx + 11/_2 (vi—wi) (Vi — wy). (2.80)

When a matter current is available, the above is completed with (2.36), which gives

e 2.81)
C
and
. 7.
§ji =&k (c—zjk (vi —wi) — ?’Pohkz) . (2.82)

The transformations at hand are such that the energy—momentum tensor and the matter
current remain invariant. The latter define therefore invariants, which are simply the energy
density, the heat current, the stress tensor, the matter density and the matter non-perfect
current in a privileged frame, that we will call “at rest” or “proper”. In this privileged frame
we have then

£ 1
T =5 Ti=1gti: Tj=paij+ T (2.83)
with trace
T,uu = _8r+dpr+aijfrij; (2.84)
and .
I = Zpor, Ji= ju- (2.85)

Q
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We can expressed the above invariants in terms of of the fluid data in the general frame as

(Vi - Wi) (V] - W])

2 . .
g = Syzﬂz—kk—zm,’ (v’—w’)+(phij+fij)

20?2
) (i —
i = eYQvi—wi)+7Qq; <5ij+( kz)Q(zl l)>
i — i
+ (Phij+ ;) —5—
ey’ Y
Pitij+Tij = 5 (vimwi) (vj=wj) + 25 (4 (v = w)) + a5 (vi—wi))
+phij+*c,-j,

and

Vi Wi

.kZQ.' ’
Ji = Jitpoy(v'—w).

Por = PoLY+ji

(2.86)

(2.89)
(2.90)

It should be stressed that the above quantities are hydrodynamic-frame invariant but also co-

variant under Galilean diffeomorphisms. This latter property will be useful when considering

the Galilean limit.

2.2.3 Killings and conserved currents

Consider a Killing field on . satisfying (2.24)
E=E10 80 =Elej+ Eley,
where we have introduced a somewhat more convenient frame and coframe
1 . . . ) .
&G =V=5 (8;—|—w18j) , =20, 0=pu=Qdr, 0 =dx'—wdr,
so that the metric (2.66) reads
2 2 (af)? in/
ds? = k2 (6) "+ a007.

Hence

E=e0, E=E8-&w, &=-K& &=a&=¢

(2.91)

(2.92)

(2.93)

(2.94)
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With these, the components of the conserved current (2.25) are’

ﬂ:am,g:m, (2.95)

where
or = k%éfqri—éfer, (2.96)
i = & (prayj+Tij) — Equi (2.97)

The associated conserved charge is obtained using (2.28):
0 — / Vatgr (dx! —wlde) A A (dxd —wddt>

/Ef): —wldt) A AdiTiQdr A /\(dx wddt>, (2.98)
d

i=1

where a'/i; ;€2dt is the ith factor in the exterior product of the last term.

2.3 Fluids in Papapetrou-Randers coordinates

2.3.1 Papapetrou-Randers frame

Another alternative gauge for a d + 1-dimensional pseudo-Riemannian manifold is given by
ds? = —k% (Qdt — bidx')” 4 ajdxdy (2.99)

where all functions depend on time and space. The latter is known as the Papapetrou—Randers

frame, and oppositely to Zermelo frame, this form is stable under Carrollian diffeomorphisms
t'=¢(,x) and x =x'(x) (2.100)

with Jacobian _
ar . ar ax"

J(t,x) = FIE Ji(%’QZwv J}(X)Zm-

(2.101)

9We use the standard decomposition I* = 1gut + i* with uti, = 0and 19 = —u*I,, and introduce 1o, as a
proper density, following the footsteps of the energy—momentum tensor and the matter current, Eqs. (2.83) and
(2.85).
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Under Carrollian diffeomorphisms, €2 and the d-dimensional metric a;; transform as in (2.69),

namely

Q . o
Q = - a =gl (2.102)

while b’ transform as a connection
[9) .
b, = (b,- +5 ji) J (2.103)

In the Papapetrou—Randers frame, any tensor component with a lower time index trans-
forms as a Carrollian density and provides a scalar upon division by Q. For the components
with upper spatial indices, we find Carrollian tensors. Again, taking the example with the
d + 1 vector components V¥, we see that it follows the following transformation rules under
Carrollian diffeomorphism:

7= ? Vi=Vvk]L, (2.104)

Here, our fluid velocity is characterized once again by u® = yk and u’ = 7' with normaliza-
tion —k? but this time, as we are going to see soon, we chose an appropriate parameterization
for the velocity v'. Papapetrou-Randers coordinates are well suited for taking Carrollian
limits. For instance, in the £ — O limit of (2.99) one recovers a Carrollian structure with
degenerate metric a;;. Additionally, as mentioned previously, in a Carrollian limit particles
are forbidden of all movement meaning that the velocity v' has to be set to zero in this limit.
The same must happen if ' is now the velocity of an infinitesimal portion of a fluid. The
latter means that its scaling has to be of the form

Vi=IPQB + O(kY). (2.105)

Here B’ is a Carrollian kinematic quantity of inverse velocity dimension. Therefore its defini-
tion has to be such that it transforms as a Carrollian vector. To that end the parameterization

of v/ must be

) k2Qﬁi ) vi
L 4
Vi=e———— & [ = < 2.106
e, 7P 20 (1—%’), o
from which we can see that B transforms as a Carrollian vector!®
B =TiB’. (2.107)
10This is easily proven by observing that 8 +b; = — ?;O' We define as usual b’ = a/b;, B; = a;; B/, vi = a;j»/,

b>=bb', B> = BB and b-B = b;f'.
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Now in this parameterization the Lorentz factor reads

1+k*B-b

T o/1-ep?

In Papapetrou—Randers frame (2.99), the fundamental hydrodynamic variables are natu-

(2.108)

rally chosen as j', ¢/ and 7¥. Using the transversality conditions (2.5) we find
jo=—kQBij', qo=—kOQBiq', 10 =KQBST", To= kOB (2.109)

These are all Carrollian tensors (or densities).

2.3.2 Hydrodynamic-frame transformations and invariants

Following the same pattern as for the Zermelo frame, we investigate the hydrodynamic-frame
transformations, namely, local Lorentz transformations captured here in the d components
3B%(x). We obtain

5u’ = k&, 5u":k2M (2.110)
e
with
5y:k2y6ﬁi(l+:2"ﬁ_b+1_%'2ﬁ2), 2.111)
and .
Wk = g'* + Epp* (2.112)

1 —k2B2
Using the general transformation rules (2.33), (2.34) and (2.35) together with (2.109)
and (2.110) we find (v is the relativistic enthalpy (A.3))'!

q'8p;
s¢ = —a 1P 2.113
J/1-12p2 @19
i k*8 By 4B’ ki ki
5q = \/1—k2ﬁ2<\/1—k2ﬁ2_mh e 2.114)
ij ij szﬁk i Jk jk J ik ik
5(17]1 +7 ) = 1_—W(B (Ph +7T )—f—B (Ph +7 ))
Sﬁk iy jk j 1,1k

Notice in passing g, Sut = k2 —LP_



24 Introductory material

Similarly, using Eq. (2.36), we obtain

'i5 i
Spo = —\/1]?52[32, 2.116)
and '

The energy—momentum tensor is by definition invariant under hydrodynamic-frame
transformations. This invariance can be characterized in terms of three canonical objects,

which are the energy density &, the heat current ¢’ and the stress tensor ’L'lfj , in the rest frame

Too=&Q% Ty'=-—a, T7=pa’+7’ (2.118)
with trace
T," = —&+dp+a;t, (2.119)
and
Jo=—kQpor, Ji=].. (2.120)

We can relate these invariants to the fluid data in an arbitrary frame encoded in B'. They read

£ 2Biq'

2 ij ij
= B (ph J 2.121
8I‘ 1—k2ﬁ2+\/1—7k2ﬁ2+k Blﬁ](p +T )7 ( )
i k*ef! q’

= iy 12BiB. 20 (hif 1 i

N BET: SR ey (8i+K2B'B)) +K2B; (ph + 1), (2.122)
. . KeBiBl i j Ji N N

pdi 17 = KPP PCEPT i (2.123)

B2 JT_iep?

and similarly for the components of the matter current we have

Po .
y = ———+ B/, 2.124
Po B Bij ( )

k*pof’

0 -i+ '
I i

2.3.3 Killings and conserved currents

(2.125)

Once again, in the presence of isometries, the Killing field takes the generic form (2.91), that
satisfies (2.24) on . in Papapetrou—Randers coordinates, where the frame and coframe are
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IlOW12

1 b; A S .
—0, ef:a,-+§’a,, 0" = u=Qdr —bdx', 0'=dx, (2.126)

=1V =
; Q

so that the metric (2.99) becomes (2.93). The Killing components are
E=EQ—Eby, E =6, &=-kE, &=a;l =E+Eb;, (2.127)

and thus, the components of the conserved current (2.25) read

Ip=—kQi, I'=1i, (2.128)
where
Lo
lor = ﬁéiqr_égra (2.129)
i = gf(prai-f+rfj>—§fq§. (2.130)

Using (2.28), one can express the conserved charge in the Papapetrou—Randers frame as

d
Q,:/ Vaigdx' Aoadx? — | VaY de' A A (Qdt —bidxd ) AL A, (2.131)
Xy Ly i=1

where in the exterior product of the second term, it (Qdr — b;dx/) is the ith factor.

2.4 Ehlers group and the Geroch method in General Rela-
tivity

In anticipation to the upcoming discussion on aspects of the Ricci-flat/Carrollian duality in
Chapter 6, we now turn our attention to the dynamic of gravitational fields.

The most successful theory for the description of gravity is General Relativity. In
this theory, gravitational forces are understood as the deformation of the geometry of the

spacetime sourced by the presence of matter/energy. The dynamical equations are given by

121 ater on e; will be alternatively displayed as 9,-.
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the Einstein’s equations'>

|
Rap — 5Rgas +Agan = 81GT.9) | (2.132)

where R4p is the Ricci-tensor, R is the scalar curvature 4, gap 1s the metric of the spacetime,
A is the cosmological constant, and TA¢B is the energy-momentum tensor of the matter content.
Here A,B,... € {0,...,3}

In the absence of a cosmological constant A and matter, vacuum Einstein’s field equations
are reduces to the vanishing of the Ricci tensor, namely R4p = 0. It has been known for
long that these equations are invariant under constant scalings of the metric and the action of
infinitesimal diffeomorphims [105]. The latter are not the only symmetries of Einstein’s field
equations and in fact more "hidden symmetries" arise upon dimensional reduction [106-112].
Here we focus on Ricci-flat spacetimes and we review the Geroch generalization of Ehlers
work following [89, 92].

Consider a four-dimensional pseudo-Riemannian manifold (., g) possessing a timelike

isometry!> generated by the Killing vector field &. For the latter we can define its norm
A= &, (2.133)

and twist

wa = NapcpEPVEEP, (2.134)

6

where Napcp = /—&€ascp (€0123 = 1). For a Ricci-flat spacetime,] one can show that the

one-form twist w = wydx? is closed, implying
w=dw (2.135)

with @ a scalar function.
A three-dimensional space . can be defined as the quotient . /orb(&). This coset space
is not necessarily a subspace of . unless & is hypersurface-orthogonal, which implies zero

3Einstein’s equations are obtained by varying the Einstein-Hilbert action Sgy = Lu dd“x\/g(R —2A) with
respect to the field gap.

14The Ricci tensor is the subtrace of the Riemann tensor, namely Rpc = RA pac With the Riemann tensor
defined as R, = oclg, — dpTac + Tac e, — T4 pTE ., with I3 - the Christoffel symbol. The scalar curvature
is the trace of the Ricci tensor, that is R = g"PRy5

15The Geroch procedure is valid for both, timelike and spacelike isometries but here we consider the first to
avoid unnecessary multiplication of indices without shedding more light on our purpose.

16This property actually holds more generally for Einstein spacetimes [113].
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twist with .7 the orthogonal hypersurface. We can define a metric on the space .’ which is
induced by g of .# . The latter reads

hap = 8aB — é‘fB , (2.136)
which defines the projector onto . as
W =88 — 52@‘. (2.137)
The fully anti-symmetric tensor for (2.136) is Napc = %nABcpéD .
Tensors of . that satisfy
ENTy o =0 and #T, , P =0, (2.138)

namely, tensors that are transverse and invariant with respect to &, are in one-to-one corre-
spondence with tensors on .. If T is a tensor of ., we can define the covariant derivative
2 as the following projection onto .%,

Bi.. M

By _ LM, p B By Ni...Ng
= hChA] "'hAp th "'thVLTMl...M,,

DTy, 4, (2.139)

with V the Levi—Civita connection on (.#,g). The latter sets a relationship between the
Riemann tensor on .7 and the Riemann tensor on .¥ through a generalized Gauss-Codazzi
equation given by

Aapcp = h[ihl%h[léh%] (RPQRS + /% (Vngngs + VpéRVQés)) . (2.140)

Here the calligraphic letters refer to curvature tensors of .7

The Ricci-flat dynamics for g4 is recast in the present framework in terms of!”
hap = Ahag, (2.141)
as well as w and A viewed as fields on ., packaged in

T=wm+il, (2.142)

7With our conventions, this metric is definite-negative.
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and obeying the equations'®

2 ~ =
L@AB = —m.@(AT.@B)T, (2143)

2 . ..
7k — ﬁ@MT@thMN. (2.144)

Equation (2.143) is obtained through (2.140), while (2.144) is obtained by a direct com-
putation of the .#-Laplacian acting on 7. Here 9, and %, are the Levi—Civita covariant
derivative and the Ricci tensor associated with the metric /45 displayed in (2.141),
Equations (2.143) (2.144) are the reduction of Einstein’s equations onto . and they yields
two important properties. The first one is that they are invariant under the transformation

keeping /14 unaltered and mapping 7 into

, at+p a B
T s (7 5) € SL(2,R). (2.145)

From the latter one can infer the transformation of the triplet (1, ®,h4p) as

Wy = [(07+68)°+7A hag, (2.146)
A
A= (@710 + A2’ (2.147)
(wo+ B)(wy+8) +ayA?
o = @110 T AT (2.148)

This is the first instance where a hidden group of symmetries, being SL(2,R), arises upon
reduction with respect to an isometry [88]. The second property is that, after the action of
this group of symmetries which gives v/ = @' +iA’ and 1y, = %EAB as another solution of
(2.143) and (2.144), it is possible to reverse the reduction process in order to find a new four
dimensional Ricci-flat spacetime with an isometry [89, 92]. To this end, one has to show that
the .#-two-form defined as

1
Fiz= Wm’mc@cw’ (2.149)
is closed. Thus, locally
F =dn'. (2.150)

18Equations (2.143) can be obtained by varying a three-dimensional sigma-model action defined on ..
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Then one can promote the one-form field n/, which is defined on .#, to a field on .#Z by

adding the necessary exact piece such that its normalization is

Eny = 1. (2.151)
The above defines a new Killing field on .#

g =1 (2.152)

and then, a new four-dimensional metric is given by!®

) SASH

gAB:hAB+T. (2.153)

Before closing this section it is worth to mention some remarks. The SL(2,R) group is
hidden from the four-dimensional perspective of the Einstein’s field equations but it appears
explicitly in the three-dimensional reduced equations materialized here in (2.143) and (2.144)
(3d sigma model). The latter can be used to generate new solutions, but actually only part
of the group generates genuine new Ricci-flat solutions. A good ilustration of the latter is
the concrete example of Schwarzschild—Taub—NUT solutions with mass M and nut charge n.

The subgroup of rotations ( cosy sin¥ ) € SO(2) C SL(2,R) induces rotations of angle 2

—sin) cosy
in the parameter space (M, n), while non-compact transformations <g 1? a) €N C SL(2,R)
generates a constant scaling of the metric given by (M,n) — (M/o,n/a).

19The consequence of Mébius transformations on the Weyl tensor has been investigated in Ref. [114].






Chapter 3

Galilean fluids

Having reviewed the basics on relativistic hydrodynamics and their different parameteriza-
tions, we are now ready to study the Galilean and Carrollian versions of fluid dynamics. In
this chapter we will start our analysis with Galilean fluids. This includes a brief review on
Newton-Cartan geometries, Galilean covariance, the derivation of Galilean fluid dynamics,
hydrodynamic-frame invariance and the construction of Noether charges. The same analysis

will be implemented for the case of Carrollian fluids in the subsequent chapter.

3.1 Galilean covariance and Newton-Cartan structures

3.1.1 Basics of Newton-Cartan

When describing non-relativistic fluid dynamics, the most natural geometric framework is
torsionless Newton-Cartan, see [115-117, 17, 104, 18, 19] for a complete presentation of the
subject. This geometries belong to a wide family which includes Bargmann and Leibnizian
structures. Here we consider a manifold .#Z = R x .¥ equipped with coordinates (z,x) and a

degenerate cometric
32 =d" 30, 1i,j...€{l,...,d}, (3.1

as well as a clock form
u = Qdr. (3.2)

The above has a dual vector which is referred as the field of observers and is given by

1 .
v=45 (0 +w’9)) , (3.3)
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satisfying v () = 1. Here, a/ and w' are general functions of time and space whereas
Q = Q(t). The space independence of Q2 makes the clock form defined in (3.2) exact,
ensuring the torsionless nature of the Newton-Cartan manifold. This guarantees the existence
of an absolute time [dr Q(¢) = [di’ Q(¢'), invariant under Galilean diffeomorphisms (2.67).

The submanifold . corresponds to the d-dimensional Newtonian space, with positive

definite metric a;; which corresponds to the inverse of a'/. This is denoted as
df? = a;;(t,x)dx’dx’, (34

and observed from a frame with respect to which the locally inertial frame has velocity
w = w'd;. In our set up, an infinitesimal fluid element or a particle moves with velocity
v =1'9; with v/ = & Under Galilean diffeomorphisms (2.67) with Jacobian (2.68), the

transformation rules are as in (2.69), (2.73), and

!/ 1 _ sky—1iy,
9 = J(at 7 ka,), (3.5)
o = g (3.6)

The field of observers and the clock form remain invariant under Galilean diffeomorphisms,
namely

/

W=upn v=u 3.7

Galilean tensors carry only spatial indices i, j,... € {1,...,d}, which are lowered and
raised with g;; and a'/. They are covariant under Galilean diffeomorphisms (2.67). In general,
these tensors depend on time ¢ and space X.

We can define connections on this geometry, which define covariant time and space
derivatives. These connections are not unique. There are different choices which are metric-
compatible and torsion-free, but here we will make the specific choice that naturally emerges
when this Newton-Cartan geometry is reached as an infinite-k limit of a pseudo-Rimannian
manifold in the Zermelo frame (2.66). Using this choice we have a sharp separation between
time and space materialized in .# for which we obtain the spatial connection as

4l
Vi = = (Qjaw + okar;— daj) - (3.8)
In the large k expansion, the latter appears as the leading order of the spatial component of
the Christoffel symbol F;k = yj.k + O(1/k?) in the Zermelo frame. The associated covariant
derivative is spelled V;, which has not to be confused with the spatial component of the

Levi-Civita covariant derivative V, defined on the ascendent pseudo-Rimannian spacetime.
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This connection is spatially torsionless, satisfying
Ak
1= 27/[51-} =0, (3.9)

and metric-compatible
Viaj = 0. (3.10)

We can define the curvature tensor on . as usual, by using the commutation relation of

covariant derivative @i as
[@kaﬁl} Vi = (akylij - alﬁj + '}’Ilcmylr;l - ﬁm%) Vj = fijklvj’ (3.11)

We can also construct Galilean tensors from an object that is not a vectors but rather it

transforms as a connections,

1 .
A=< (J{‘A’ + ]k> . (3.12)
For instance, the combination
l@(kAl) — L& ¥l = 1 (.,2” adl + 8akl> (3.13)
Q 207 20 \7A ' '

(Z) is the Lie derivative along A = A'9;) and

1.~ 1 1
_V(kAl) + —H,akl = —

0 0 70 (.,%Aakl + 8,ak,) (3.14)

have tensorial transformation rules, and their trace transform as a Galilean scalar.! We can
apply the above with w or v and define

aw 1 [« 1 oy | AN 1
Vi = 9 (V(iwj) + 5(9,ai,~> v Y= 9) (V(ivj) + E&aij) , (3.15)

where the upper indices refer to the vectors w and v, corresponding to the geometry and
fluid respectively. Here }Aff; is purely geometrical and emerges in the large-k expansion of the

Christoffel symbol of the relativistic-spacetime in the Zermelo frame, given by
Iy =1/(2kQ)9 + 0/(0). (3.16)

Both f/lvj” and )A/l‘; coincide when the fluid is at rest in the locally inertial frame, namely

for v/ = w'. Using these tensors one is able to define the shear tensors and the expansion

'Neither é&, nor é.ZA acting on Galilean tensors give separately tensors because of (3.5) and A’ transform-
ing as (3.12).
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associated to w' and v\. We have the geometric Galilean shear
w l (& 1 1 w
6 = 5 V(in) —+ Eala,-j — gaijﬂ , (317)
and the geometric Galilean expansion
w 1 & 0
6 zﬁ(&ln\/a—l—viw), (3.18)
while for the fluid velocity v we have the fluid Galilean shear
v l (& 1 1 v
6 ij: ﬁ V(iVj)—FEataij —Eaije y (319)
and the fluid Galilean expansion
v 1 S 0
0" =5 (8,ln\/5—|—V,-v>. (3.20)

In the same way we defined the spatial covariant derivative, we can define a time and

metric-compatible covariant derivative that emerges in the Galilean expansion of V; in the

time direction. For a scalar function this is defined as

1 DP 1 w/
T (D) = —0,P+ —9;d
o @ =gaPt59®,

whereas for vectors one finds

1 Dvi
Q dr

1 . L
=5 (VI + LV )+ 7V
In general, using the Leibniz rule one finds

and as a consequence N
1 ]5(1” . 1 Da,-j .
Qdr Q dr

1 . J . . i o
= AV RV Vg 4 Y

(atKlj ) +$WKZJ ) + ,j;wikKk--.jm 4o — ?Wk. i...k

(3.21)

(3.22)

., (3.23)

(3.24)
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When considering fluids, one can also introduce the more physical material derivative
— =0, +V'V,, (3.25)

which produces a scalar density (or a scalar upon division by ) when acting on a scalar
function. When acting on arbitrary tensors, it should be supported with the appropriate w
and/or v terms in order to keep the tensorial transformation properties. There are several
options to implement this but here we use the one defined in [44]. Hence, the material
derivative acting on a Galilean vector reads

1DV 1dvi 1 e o 1DV 1dy 1

- wo S AR /A VY
@ oa o V" aa —aa o™

(3.26)

resulting in genuine tensors under Galilean diffeomorphisms. As opposed to (3.23), this

time-covariant derivative is not metric compatible and its action on the metric a;; gives

1 Da;j ..
et R VI 2
Q dr Vi (3:27)

Space and time covariant derivatives do not commute with each other. The commutator
acting on scalars and vectors are

1D .
{ﬁg,v,} b = 9o, (3.28)
1D o], Wk i s yk
where !
=5 (A4 ViV =V W) (3.30)

3.1.2 Conservation equations from symmetry

The conservation equations that describe the dynamics of our Galilean fluid can be derived
from symmetry principles. Indeed, one can consider the effective action that describes the
dynamics of a system defined on the geometry .# = R x .7 discussed previously?. In this
case, the effective action is a functional of the geometric data a”/, Q and w' as

S— /dtddx\/EQZ. 3.31)

2This is not necessary restricted to fluid dynamics.
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Here we do not have the standard definition of a symmetric energy-momentum tensor. Instead,
we can define a set of Galilean momenta as the variation of the action (3.31) with respect to

the geometric data. These are

2 oS
Ty =~ ensar (3.32)
1 &S
P = _\/595_%” (3.33)
1 58S w' 3S

which correspond to the energy-stress tensor, momentum and energy density respectively.
Therefore, the variation of the action in terms of the Galilean momenta reads

58 = —/dtQ/ddx\/E (%HijSaij—kPiS% + <H+ %P,-) 51nQ) . (3.35)

The above set of momenta obey conservation equations, which arise as the consequence
of the invariance of the action under Galilean diffeomorphisms. Galilean diffeomorphisms

(2.67) are generated by vector fields on .# of the form
E=E0,+E0;=Ev+ &, (3.36)

where the time component &’ depends only on time. We also used &7(¢) = &' (1)Q(¢) being
a Galilean scalar, and {(¢,x) = &/ — E'w' corresponding to the components of a Galilean
vector. The variation under diffeomorphisms is implemented through the Lie derivative?.

Thus, for its action on the co-metric ¢/ we find
y , . NP .
—6:a" = La’ = -2 (V(fD +PIE 1 ﬁw(’af)k8k(:‘t) , (3.37)

where the last term drops for Galilean diffeomorphisms due to the space independence of éf .

For the field of observers we have

1 i i 1 i 7
Liv=—1 (28" + Lue v o (O +.A80 0, (3.38)

3The minus sign in (3.37) is conventional.
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from which, using (3.3), we infer
—5:Q=%Q =0 + L& Sw = —Lw' = 9E + L&l (3.39)

We can also find the action on the clock form. This is given by

K% —1(a§f+$§f) _10g7 _ (3.40)
=g\ we JH=5"4 H=HH, .
where we introduced .
1 DE?
(LX) = ——2> 341

not to be confused with the chemical potential nor the clock form.
With the latter we can now determine the diffeomorphic variation of the action. This

reads

;[ 1 DIT y
5&5 = /dlddX\/EQ.{—ét {5?+9WH+HU?W”}

Q dr !
+ / ara'x{a, (Va (g’ - pg))
+9; (\/c_zwi (Hgf—Pjgf) —ﬁgnij§f> } (3.42)

.[1DP, e
+& {__l +0"h +Pj?wf~+VfHu‘] }

Invariance under Galilean diffeomorphisms requires the vanishing of 8¢ S. Here we ignore
the boundary term in the last integral of (3.42). Therefore, from the condition 5:S = 0 we

extract two conservation equations. The first one corresponds to the momentum equation

1D o
(55 + 9W> P+ P+ VL =0, (3.43)

which is associated to £7(t, x).
The procedure to obtain the energy equation is more subtle due to the space independence
of J,‘f . Indeed, for the vanishing of the first term in the integral of (3.42) it is enough to require

A

1D . A .
(ﬁa + GW) H-I-Hijf/wu = —V,H’, (3.44)

where IT' is undetermined. The presence of V.IT in (3.44) comes as a boundary term in the
variation of the action, i.e. v/aQ&V,IT = o, (ﬁQ&f Hi>, which vanishes inside the integral
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(3.42). As we going to see in the next sections, one can interpret IT' as the energy current
(also energy flux).

Besides Galilean covariance, one may also consider the action to be invariant under local
U (1) symmetry, which is parameterized by the function A(z,x) and acts on the components
of a gauge field B = B(t,x)d + B;(t,x)dx’ as

OABi = —0diA, OpxB= —0A. (3.45)

We can derive the conjugate momenta in the same way as we did in (3.32), (3.33) and (3.34).
We obtain the matter density and the matter current as
1 &S
= ——— 3.46
N (3.46)
: 1 0S8 0S
N = —(w—— . 3.47
QJa (W 5B 63,-) (347)

This allows to expressed the variation of the action as

8 =— / dtd?x/a (pSB+ (QN'+ pw') 8B;) . (3.48)
Therefore, under the action of a U(1) symmetry, the variation of the action reads

SAS = / dtd?xv/a (pI A+ (QN'+ pw') diA)
1 Dp

= —/dtddx\/EQA <§E+9Wp+¢,N’>

+ / dtd?x {9, (vaAp) + d; (VaA (QN'+ pw')) } (3.49)

where the last integral in (3.49) are boundary terms. Condition 8.8 = 0 leads to the Galilean

continuity equation

(3.50)

Q dr

1D .
(——+9W)p+V,-N’:0

where we have ignored the boundary terms in the variation of the action. The continuity
equation can be alternatively presented in an integral form, using Stokes and Gauss theorem
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as

/ dtdde\/_<(———|—9W) p+VN’) :?{ Vap (dx' —wldr) A A (e —war )

ﬁW\FZ Lowldi) A AN A (A w351

i=1

where # C .# =R x . and N'u is the ith factor in the exterior product of the last term.
From this we obtain a conserved charge expressed as an integral over an arbitrary hypersurface
Yy of # =R x .. It coincides with the relativistic Zermelo result captured e.g. in (2.98).

Although not compulsory, it is convenient to chose £; = .7 i.e. a constant-# hypersurface.
We then find

Ov = /y ddx/ap, (3.52)

which fits the usual definition of charge in Galilean physics. Here, the conservation of the
charges implies their independence with respect to the time ¢ . Time-independence appears
explicitly if one trades .7 in the integral (3.52) with 7" C .. Assuming for simplicity that
the boundary 9% of that domain does not depend on ¢ and using (3.50), the time evolution

of the matter/charge content of 7" is

th/ddx\/_l)_ /ddxa( (N’+p .)>:—/M/*<N+pg), (3.53)

where « stands for the d-dimensional .¥’-Hodge dual based on y/a and on the antisymmetric
symbol &, ;, with & _4 = 1. If the integral is performed over the entire . it vanishes
(assuming a reasonable asymptotic behaviour), and Qp in (3.52) is conserved.

At this stage, (3.50) and the variables appearing there are independent of the energy
and momentum equations given in (3.44) and (3.43). We will see later when discussing the
limiting procedure that thermodynamics sets a relationship between the momentum P; and

the current N;.

3.1.3 Isometries and (non-)conservation laws

In (pseudo-)Riemaniann geometries, isometries are defined as diffeomorphisms generated by
vector fields leaving the metric invariant, i.e. they satisfy (2.24). The same can be defined in
Newton-Cartan geometries although in a different way due to the degeneracy of the co-metric.
As mentioned previously, the fundamental objects that define a Newton-Cartan geometry are
the co-metric and the clock form. Therefore, Galilean isometries are the diffeomorphisims
that leave the co-metric and the clock form invariant. We call those vectors of the type (3.36)
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as Galilean Killing fields and they are required to satisfy
ZLdl =0, Lu=0, (3.54)

Using expressions (3.37) and (3.40) for Galilean diffeomorphisms (éf is only #-dependent),
we obtain the Galilean Killing equations

1 DEF

VgD 4 priigl =, o1 =" (3.55)

The above equations are solved by an infinite number of solutions and they refer to the
weak definition of Newton-Cartan geometries [23] defined only in terms of the degenerate
co-metric and the clock form. A strong definition exists and it requires to define an affine
connection that parallels transport the clock form and be metric-compatible. In that case, the
conditions for having a Galilean isometry are supplemented by the invariance of the affine
connection, reducing the set of solutions to a finite number [118].

Our Newton-Cartan structure is also accompanied with the field of observers (3.3) which
is dual to the clock form. There latter is not required to be invariant and its transformation
generated by the Galilean diffeomorphisms reads

1 N o
Lv = -5 (&' + L&) oy, (3.56)

for a generic Killing field &.
As an example, we can consider the Newton-Cartan manifold endowed with a'/ = §%/,
Q =1 and constant w'. The latter corresponds to the more familiar R x E3 spacetime, which
is flat for the connection introduced earlier. Then, the Galilean Killing equations (3.55) are
reduce to
&' =0 (3.57)

and

819 ET + 8719, =0 (3.58)

which are solved by an infinite number of solutions given by
£ — (Qij ()% + 77 (z)) 9+ T, (3.59)

with T a constant and €;; = Qik Okj antisymmetric. By imposing invariance of the affine
connection (flat in this example) one fixes €;; to be constant and generates the so(d) rotations,
while Z! = V/t 4 X/ is the generator of the Galilean boosts and T the time translations. The
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above form the (d +2)(d + 1)/2-dimensional Galilean algebra gal(d + 1) [118]. In this

example, the transformation of the field of observers are found to be
Lo = — (vi +wkg,j) 9 #0, (3.60)

showing that the boosts produce a displacement in the field of observers. Here w' describes
the constant velocity of the original inertial frame which is shifted under Galilean boosts.
In the presence of isometries, one should be able to derive the conservation laws associated
to them. This will take the Galilean form (3.50) with scalar k and vecor K'. These pieces are
built in terms of the momenta IT, IT;, IT;;, P, that satisfy (3.43) and (3.44), and the components
of the Killing vector éf and &'. Their form are read off from the boundary terms in (3.42)

from which we extract

Kk = &p-& (3.61)
K = &M — & (3.62)
Then, the Galilean scalar .
1D w N
= =— V.K" .
H (th—i-Q)K-l— j (3.63)

should vanish on-shell making (3.63) a conservation equation for x and K’. Equations (3.62)
and (3.63) also arise as the leading terms in the non-relativistic expansion of the relativistic
Noether current /* = THVE, and its conservation V,I* = 0.

Using the conservation equations (3.43) and (3.44) we obtain the following result:

_ Obg P i (gl awijgl
A o= -5 - +§<at€ +.$w5)+HU(V€ +7 5) (3.64)
P; ; 7
= SaE+AE). (3.65)

The above equations shows that, contrary as one would expect, in Newton-Cartan space-
times Galilean Killing vectors do not always define on-shell conservation laws for Galilean
dynamics. This is due to the presence of P, which is conjugate to w'/Q, and the fact that
w' transforms under diffeomeorphisms according to (3.39), even if this diffeomophism is
generated by a Killing vector. Still, one can impose conservation by requiring additional
constraints. For instance, for the Killing vector that satisfies

Zv=[Ev]=0, (3.66)
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which we call strong Galilean Killing vector, makes 2" = 0. The generators of Galilean
boosts in R x [E3 do not satisfy this strong Killing condition.

One can also consider the cases when, in the presence of an isometry, the right-hand
side of (3.65) is associated to a boundary term. In such case, k and K’ can receive extra
contributions from the boundary term and then an effective set of k¥’ and K which are truly
conserved can be constructed. Still, this does not seem to be true always. For example, in the
flat space case we have

=P (v" n kak") : (3.67)

which is not conserved unless the momentum £; is a potential flow (also called irrotational,
see [58] §9). In that case P; obeys

P = (0, +w9;) ¢+ 99 (3.68)

for a set of functions ¢ (¢,x) and ¢;(¢,x). One can then construct an effective set k' = kK — ¢;W'
and K" = K' — W' with W = V/ 4w Q,’ such that they always satisfy the conservation
equation .#” = 0. The motion of a free particle satisfies the above kind of conservation law
since in that case the momentum £ is a total derivative (typically denoted by x). See App. E
for more details. We will find a similar conclusion when studying the Carrollian case.

It is worth mentioning that when considering the non-relativistic expansion of the Noether
current [* = THVE, and the conservation law V ul =0, we can have instances with multiple
degrees of freedom appearing at each power in the expansion of k. In that case we have
several currents associated to Killing fields, and some of them can be conserved without any
additional constraint due to the accidental absence of P;-like terms.

3.1.4 Weyl invariance, conformal isometries and (non-)conservation

laws

We can consider fluids involving massless excitations for which their observables possess
special scaling properties. We can introduce Weyl transformations acting as follow on the
fundamental geometric data of a Newton—Cartan geometry:
0 B 00w ow s 3.69

a’ — $a’, %%},w%w, w,—>%72w,. (3.69)
Due to the space independence of Q, the second term of (3.69) imposes Z = %(t). Requiring
Weyl-invariance of the effective action S implies that the weights for the Galilean momenta
in (3.32), (3.33), (3.34) are as follows: the energy—stress tensor II;; has weight d — 1, the
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momentum F; has weight d, and the energy density II has weight d + 1. The energy flux I1;
introduced in (3.44) has also weight d. Furthermore, using (3.35) with 645 = 0 implies that

1/ =11 (3.70)

1

On the matter sector, the gauge fields B and B; are weight-zero, while p is weight-d and N;,
d — 1. Along the lines of [14, 23] a conformal isometry is generated by a vector field & which
satisfies

Zral = Aa', (3.71)

where

At,x) = —3 (@,-g’# 9W§f> (3.72)

is obtained by taking the trace of (3.71). This set of partial differential equations are
insufficient for defining conformal Killing vectors. We require also the transformation of the
clock form is proportional to itself as given in (3.40). It is then natural to tune g and A so

that the scaling of the metric be twice the scaling of the clock form* as
2u+A=0. (3.73)

One can infer this scaling from the relativistic ascendant in Zermelo coordinates (2.66).
Requiring .£; g;v = —Aguy requires to set 4 = —A /2. This is a consistent Weyl-covariant
condition, leading to a reasonable set of conformal Killing fields.

Assuming Weyl invariance i.e. (3.70), and the presence of a conformal Killing field, the
conservation equations (3.43) and (3.44) can be used to compute . defined in (3.63), (3.61)
and (3.62), giving rise to

H =TI (% +u) + g (9E"+ L&D (3.74)

The extra condition (3.73) which defines the conformal Killing vectors of Newton—Cartan

spacetimes implies that
P 5 .
H = 5 (&' + L") #0 (3.75)

In the same way as the ordinary Killing fields, a conformal Killing vector does not guarantee

a conservation law for Weyl-invariant Galilean dynamics.

“More generally, one considers 24 + zA = 0, where z is the dynamical exponent i.e. minus the conformal
weight of Q. Here, due to the close relationship of our Newton—Cartan spacetimes with relativistic ascendants,
the weight of Q is inherited from the latter and z = 1. One also defines the level N = 2/z, which appears in the
conformal algebras emerging in flat Newton—Cartan spacetimes.
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3.2 Galilean hydrodynamics as a non-relativistic limit

3.2.1 Non-relativistic expansion

In the previous section, we found the equations (3.43), (3.44) and (3.50) that describe the
conservation properties of Galilean dynamics on a general curved and time-dependent space
< (the spatial section of a torsionless Newton—Cartan spacetime R x .#). These equations
are valid for any theory whose action is invariant under Galilean diffeomorphisms, in the same
way as in a relativistic theory, diffeomorphism invariance implies the conservation of the
energy-momentum tensor and U (1) invariance implies the conservation of the matter/charge
current.

In fluid dynamics we need more information. For instance, their set of momenta must
be expressed in terms of the velocity field v, the heat current Q, the stress tensor X, and the
local-equilibrium thermodynamic variables such as e, p, h, p, i, T and s, that obey further
thermodynamic laws (see App. A). The latter ultimately enters in the constitutive relations for
the non-perfect contributions. A systematic approach to obtain the Galilean fluid equations is
based on the large-k expansion of relativistic hydrodynamics in the Zermelo frame, which is
the natural gauge where Galilean covariance is explicit. This method was first introduced
in [44] where the authors assumed implicitly the Eckart frame without taking into account
the role of the matter current and the chemical potential. This section is meant to give a
generalization of this approach in the presence of a matter current togheter with a chemical
potential. The latter will allow the analysis on the non-relativistic hydrodynamic-frame
transformations, which relies in the behaviour of the various observables with respect to their
scaling with the velocity of light.

In the Zermelo frame (2.66), the dependence with respect to the velocity of light in the
geometric data is explicit. Hence, we can find the behaviour of all our kinematical quantities

with respect to the velocity of light. In particular, for the velocity of the fluid we have

k 1 Vi —W; 1
0o_ Xk L Vi i -
u —Q+ﬁ(k)7 u; 0 —|—ﬁ<k2>, (3.76)
and
y 1
1
® = 0'4+0 <k_2 ) (3.78)

1
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are obtained from the non-relativistic expansion of (2.8), (2.9) and (2.10).

The non-relativistic limit of the thermodynamic variables are recalled in Appendix A.
Few comments regarding the mass/charge density are in order here. In the introduction
we defined the proper density pg as the projection of the current (2.4) onto the observer’s
velocity. For instance, an observer at rest with respect to the fluid, i.e. running with velocity
u, finds

1
po =~ . (3.80)

One can also define the density p which corresponds to the one that is measured by a fiducial
observer in Zermelo frame. This observer defines a local inertial frame> and its velocity in
Zermelo frame is given by

1 .
mzvzzﬂ&+wﬂ) (3.81)

with vanishing acceleration
uy Vyuy =0. (3.82)

Then, we obtain p as the projection of the current (2.4) onto the velocity (3.81). We find

Q VWi
hmgzzdngﬂm+ﬁ7§7y (3.83)

1

P:—k—2

which coincides with the hydrodynamic-frame invariant pg, introduced in (2.89) (mat-
ter/charge density in the rest frame). This expression agrees with Ref. [44] only in the
Eckart frame, i.e. when j; = 0.

We notice that the behaviour of pg in terms of p will depend on the behaviour of the
non-perfect piece j;. But, what could be the behaviour of the non-perfect current j;, the heat
current ¢; and the stress tensor 7;; with respect to k? There is no a unique answer since it
depends on the microscopic properties of the system, which are captured by the different
transport coefficients appearing in the constitutive relations for j;, g; and 7;; as derivative
expansions. For instance, in first order hydrodynamics one has

Ty = —2n0i—Chi®, (3.84)
T

qmni = —xh;” <3VT‘|‘pav), (3.85)

Ji = —hﬁovTav%?, (3.86)

SThis is precisely why it was stated earlier that a frame with velocity w = w'd; was inertial in the Newton—
Cartan geometry (3.3), (3.4).
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where 7, { and k are the shear viscosity, bulk viscosity and heat conductivity respectively
GTm2
Tpg
In order to perform the non-relativistic limit of fluid dynamics we must make some

with Kk =

(see e.g. [65], where or is referred to as the charge conductivity).

assumptions regarding the scaling of the above quantities with respect to k. We can take
the reasonable assumption that 17, { and k are of dominant order 1, which implies that o7
is of order 1/ k* (due to w?). Since Uo is of order k2 (rest-mass contribution in (A.4)) one
can conclude that 7;; and ¢; are of order 1, while j; is of order 1/ k%. These are the usual
assumptions taken in the literature (see for instance [58, 102]). One can be a little bit more

general and assume the behaviour of the non-perfect pieces as

1
Tij = —Zij—i-ﬁ(k—z), (3.87)
1
g9 = kzri+ki+ﬁ(k—2>, (3.88)
- 1
Jji = n,-+ziz’+ﬁ(k—4>. (3.89)

This choice will be made clear when discussing the hydrodynamic-frame invariance. For
ordinary non-relativistic fluids, r; and n; are expected to vanish. We will see that their
presence will disclose some interesting properties.

Inserting the expression (3.89) in (3.83), one finds®

B 1{p/v=-w\> n-(v—w) 1
PO—P—k—2<E( %) ) + %) )-Fﬁ(y) (3.90)

The latter can in turn be used inside (A.2) leading to

’ 1/v—w\?\ n-(v—w) 1
e=k2p+p e—§< 3 ) —T-l—ﬁ(ﬁ), (3.91)

where the first term is the rest energy, the second is the internal energy corrected by the kinetic

energy with respect to the local inertial frame, and the third is a contribution originating from
the leading term in the matter current (3.89). One can notice from the above formulas that
the presence of n; amounts to the presence of a spring or a sink that create or consume matter.
This will be confirmed when reaching the conservation equation. This situation is usually not

considered except when discussing diffusion or similar phenomena (see for instance [58]).

6Although ]}im Qy = 1, we must keep terms of order 1/k* because of the rest mass contributions.
—o0
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3.2.2 Galilean momenta

In the non-relativistic limit approach, all the momenta defined in (3.32), (3.33), (3.34), (3.46)
and (3.47) will appear at different orders in the large-k expansion of the energy-momentum
tensor and the matter current (2.83) and (2.85) in Zermelo frame, all of them expressed in
terms of the fluid and thermodynamic variables. The latter includes the expression for the

energy flux I1;, which we found as an arbitrary function in (3.44) of the previous section.
Using Egs. (2.86), (2.87), (2.88), (2.89), (2.90) and (3.83), we obtain

por = P, (3.92)
1

. 1
Ji = Ni+ppi+ﬁ (k_4) , (3.93)

where we introduced the leading and subleading matter currents
—wh
Q
n-(v—w)(vi —wi)
Q2 '

vl

N = p +n, (3.94)

pi = m;— (395)
The subleading terms in (3.93) must be kept because they are multiplied in the expansions by
the rest-mass term and contribute to the equations. As an anticipation for what is next, we
can set ,

Q

One can recognize P; (defined generically in (3.33) — indices raised with al) as a slight

Vl

P =p + 7 (3.96)

extension of the usual fluid momentum, while the matter current N’ (introduced in (3.47)) is
related to the former as

N' =P +n' —7. (3.97)
In the standard non-relativistic hydrodynamics, the equality N’ = P’ holds when n’ = .

Similarly for the energy—momentum we have

1

& = k2p+n+ﬁ(p), (3.98)
1

G = k2P,-+n,-+p,~+ﬁ(p>, (3.99)

1
Praij+ Tij = H,-j+ﬁ<k—2) (3.100)
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with
(vi —wi) (v —w;) (v —w@r
I = p or— tpaij—Ti+2—— (3.101)
1 (v—w)\? (2r—m)-(v—w)
II = — .102
p <e~|—2( 0 ) >+ 0 , (3.102)
the explicit expressions for (3.32) and (3.34), and
- vimwi [, 1(v—w 2 vj—wjz
P PTg +§< o ) TTa Y
2
ri (V—w r-(v—w)(vi—w)
5 ki —m; 3.103
+2 ( %) ) + o2 + m ( )

the explicit expression for the energy flux. The latter are the generalizations of the fluid
energy-stress tensor, energy density and energy current defined in [58] for arbitrary torsionless
Newton-Cartan geometries expressed in a covariant fashion. They all receive contributions
from the n; and r;, absent in standard Galilean fluids. The combination

Q,‘ :k,‘—mi, (3.104)

inside the energy current, appears as the Galilean heat current. The latter receives contribu-
tions from both the relativistic heat current g; (3.88) and the non-perfect piece of the matter
current j; (3.89). For example, in the Landau—Lifshitz frame (¢; = 0) the Galilean heat
current originates only from the relativistic non-perfect matter current, while in the Eckart
frame (j; = 0) the contribution to the Galilean heat current comes exclusively from g;. One
can also notice that, in the absence of a matter current, the Landau—Lifshitz frame is not well
suited to take the Galilean limit since one will always arrive at a fluid with Q; = 0. In that

case the Eckart frame is the preferred choice [102].
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3.2.3 Hydrodynamic equations

We can now perform the large-k expansion of the relativistic fluid equations (2.1) and (2.2).
They read

A . . A . 1
kQV,TH = K2 (‘f—i-vi(r’—n’))+Vipl+(5’+ﬁ(ﬁ>, (3.105)
1
VT = ///,-+ﬁ<k—2), (3.106)
y | 1
Vult = C+5Vir'+0( 7 ), (3.107)
with
1 DII TR
(b@ == ag—FGWH‘i‘Hij?WZ'I‘i‘VjHl, (3108)
1 DP, i S
Mi = g TORHPY+ VI, (3.109)
1D o
— GOV (3.110)

Therefore, the Galilean fluid equations are extracted by the vanishing of (3.105), (3.106) and
(3.107) at each order in the powers of k. For instance, from the order 1 of (3.107) we find the

(3.111)

while the 1/k? order gives a divergence free condition in the subleading matter current (3.95)

continuity equation’

Vip' =0. (3.112)

From the k2 order in (3.105) we obtain
Vi(r=n')=0 (3.113)

which, by using (3.97), can be rewritten as

Vi (N' =P =0. (3.114)

This is the typical equation describing phenomena where several fluid components are present but are not
separately conserved. Examples are diffusion or superfluid dynamics (e.g. [58]).
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At the order 1 of (3.105) we find
a115)

which is the fluid energy equation. Finally, (3.106) provides the fluid momentum equation
M;=0. (3.116)
We can also use (3.97) and (3.114) to recast the continuity equation as

€ = é% +6%p +V;P = éi—’; +6'p+Vir = éi—‘; +60'p+Vini =0. (3.117)

The above results can be summarized as follows: the Galilean fluid equations (valid for
arbitrary backgrounds) found above are fully covariant under Galilean diffeomorphisms and
extend the standard hydrodynamic equations on flat Euclidean space with absolute time.
The momentum equation (3.116) coincides with (3.43), whereas the energy equation (3.115)
is (3.44). In the same way, the continuity equation (3.117) coincides with (3.50), once the
divergences of the matter current and the fluid momentum are equal (3.114). This requirement
is subsequent to the relationship (3.91), which finally relates the energy—momentum equations
with the matter equation.

In general, (3.117) is not a conservation law. Integrating inside a static domain ¥ by
using (3.53) we find

1d *V
—— | d%+/a +/ —:—/ *n. 3.118
th/// Vap avpr oV ( )

Here, the density varies in time, not only because of the expansion or the contraction of #’
captured by the term p 6", but also due to the flux of n through d%". n represents the flux of
matter due to the presence of a sink or a spring. This matter loss or gain goes along with the
heat loss or gain, as inferred in (3.113). In usual Galilean hydrodynamics the current 7' and
n' are absent, making the fluid momentum and the matter current identical and forbidding
the presence of such springs and sinks. We will see below that this general Galilean fluid
configurations posses an interesting property, which is broken in ordinary non-relativistic

fluid dynamics: this is Galilean hydrodynamic-frame invariance.
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3.2.4 The fate of hydrodynamic-frame invariance in the non-relativistic
limit

As mentioned in the introduction, relativistic fluid equations are invariant under arbitrary

local transformations of the velocity u, which is captured by® v/ — v/ + §v/(¢,x), together

with the appropriate transformations of all the other dynamical quantities such that the

energy-momentum tensor and the matter current remain invariant. One could wonder if this

property survives in the Galilean limit.

The natural answer to this question would be negative. The velocity field and the matter
density are physical and observable quantities. A field redefinition of the velocity and the
dynamical variables that keeps the fluid equations invariant without altering the meaning of
the fields seems difficult.

This answer seems contradictory with the approach considered so far. After all the
Galilean momenta that enters in the hydrodynamic equations comes from a relativistic
hydrodynamic-frame invariant set of momenta. Naively, one would expect the Galilean
momenta being also invariant under hydrodynamic-frame transformations but one has to be
careful since those momenta are obtained after assuming some behavior with respect to k,
and this behaviour may or may not be stable under velocity transformations.

In order to give a precise answer to the above question, we examine the transformations
2.77), (2.78), (2.79), (2.81) and (2.82) in the infinite-k limit, and their effect on the non-
relativistic quantities introduced through (3.87), (3.88), (3.89), (3.90) and (3.91). The latter
give rise to the following transformation rules of the fluid variables under the action of

8The infinitesimal local Lorentz transformations are parameterized with Lorentz boost and rotation gen-

erators, Vi(¢,x) and QU (t,x) — antisymmetric, as follows: v/ = Vi — Vj% +Q (v; —w;). In the
Galilean limit the general local velocity transformation is thus v/ = Vi + Q% (v; —w;) — Galilean boosts and

rotations.
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general local Galilean transformations:”

a,-j5p—52,~j = —ﬁr(,ﬁvj), (3-119)
5 = —%&i, (3.120)
_ 6vi(v—w)-n
ok; = o o +
v/ (vi—w; (vi—wi)(vj—wj)
o ( 0 r sz / —pha,-j+2ij ,  (3.121)
v/ Vi — W;
80, = o <rj_nj)—Q —pha;j+%;; |, (3.122)
pde = (ni—Zri)%, (3.123)
5p = 0, (3.124)
Sn = —%&i, (3.125)
o vl . vi—w;\ vi—w; Ovi(V—w)-n
om; = o (nj P4 ) o + o o (3.126)
and thus
§(n'—r')=0. (3.127)

The above transformations implies the invariance of the fundamental Galilean momenta,
namely the fluid energy density, the fluid energy current, the fluid energy—stress tensor, the

fluid momentum, the matter density and the matter current, that satisfy

SII=0, S8II'=0, 8MYV=0, SP'=0, Sp=0, SN =0. (3.128)

The above results imply that the general Galilean fluid equations are invariant under an
arbitrary local redefinition of the fluid velocity field v/(z,x).

Some comments are in order here. First, the non-relativistic matter density p is not
sensitive to the velocity v (as opposed to pg). This is not the case for the ordinary fluid

momentum P; which depends explicitly on the velocity as p ViEZW

. In our configuration, the
invariance of the momentum P, defined in (3.96) is saved due to the presence of n'. The same
goes for the energy density II, the energy current I1; and the stress-energy tensor I1;; whose
invariance under local transformations of v/ are guaranteed thanks to the presence of n’ and .

This configuration is the one whose continuity equation does not express a truly conservation

Notice the following useful formulas: §6" = LV;8v and 55,"} = é (6(,5\//) - ﬁa,‘jﬁﬁvk), whereas
06% = 55}; =0.
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law due to the fluxes n' and /. Hence, for truly conserved ordinary non-relativistic fluids
the hydrodynamic-frame invariance is lost. For these fluids the behaviours of the relativistic
heat and matter currents are ¢; = k; + & (1/k*) and j; = w+o(1/ k*). These behaviours
are physical, but are unstable under velocity transformations. '

The summary of our findings goes as follows:

* As expected intuitively, ordinary non-relativistic hydrodynamics which enjoys conser-

vation of matter are not hydrodynamic-frame invariant.

* Hydrodynamic-frame invariance is restored once we include additional matter and

energy fluxes (due to a sink or spring), losing conservation of matter.

3.2.5 More general abstract equations

The large-k behaviours (3.92), (3.93), (3.98), (3.99) and (3.100) are the result of the physics
behind these momenta, which are captured in the behaviours of the transport coefficients and
reflected in the behaviour of (3.87), (3.88) and (3.89). We could even be more abstract and
consider order-k? terms in the stress tensor 7, as we did in the heat and matter currents, and
possibly further powers. In order to consider such situation we will forget for the moment
the matter current. In that case the expansion of the components of the energy-momentum
tensor in the rest-frame read

Q2T00:er:k2p+n+ﬁ(kl2)
kQTC = gy = K*P+ KPP+ 1L+ O (,}Z) (3.129)
T;j = praij + Tij :kzﬁij—l-nij—l—ﬁ(k%) .

10The requirements 7 = 0 or n’ = 0 are not compatible with the transformations (3.120) or (3.125). Observe
however that a choice, stable under hydrodynamic-frame transformations, is n; = r;, thanks to (3.127). With
this, P' = N' and we are the closest possible to ordinary non-relativistic fluids, without genuine conservation
though.
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The latter produce a hierarchy of equations which are of the same sort of the ones that we

already derived. We found

~—~ < —~ "
~
I
S D O D D
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o~

W) H—FHij’}A/Wij + @iH" =0
W) p +TIL; 9 + VPl =0

glo glo

o~

3

(3.130)
W> Pt P+ VT = 0

o~ %

go glo

W> Pl —}—Pj?wji + @jﬁ,'j =0.

e

What we have here is a multiplication of degrees of freedom which comes naturally due to the
existence of a parameter k that make it possible to organize a power expansion. In the analysis
of the local symmetries of the action, the derivation of the above set of equations would
be even more abstract since those extra momenta would need the inclusion of additional
conjugate variables, such as @/, ', Q etc. We will not go any further in this regard but
we will keep the above structure of the equations in mind when we discuss the Carrollian
case. For the latter, and as opposed to the Galilean situation, there is no physical intuition
that we can use as a guideline (not a well understood thermodynamics). Only a small-k
expansion applies, as suggested by the only known application of Carrollian fluids, which is
flat holography [75-77, 42]. Then, the Carrollian equations that we can find will be express
in a similar fashion as (3.130).

Multiplication of degrees of freedom occurs also in the matter sector. On could indeed
assume that some matter current behaves like

Q 1 = _ 1
EJOZIOr:kzl?—I— K+ﬁ(ﬁ), Ii:irk:k4Ki+k2Ki+Ki+ﬁ(ﬁ>- (3.131)

Using these expansions in the relativistic divergence of the matter current J* in Zermelo

background we find
VIt :k4j+k2%+%+ﬁ<kiz) (3.132)
with .
A =V;Ki
A = (§2+0") R+ VK (3.133)
H = (éngeW) K+ VK,

which must vanish if V,/* = 0.
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The latter can also be used when dealing with the components of a relativistic conserved
current (2.96) and (2.97) that is associated to isometries, where the components of the current
are constructed in terms of the contraction of the energy—momentum tensor with the Killing
field. We find

(x=¢'P-¢m

k=EP—Elp

K; = &ML — &1, (3.134)
K=& — &P,

Ri- e,

where K and K; are precisely as anticipated in (3.61) and (3.62). On-shell, namely assuming
(3.130) and using (3.55), we find for (3.133)

A =0
A =B (9E+ %) (3.135)
% = % (aléf+$w§f) )

in agreement with the result (3.65) for the last two. We can see that the first equation in
(3.135) vanishes indicating that even if a Killing field does not guarantee the conservation of
a Galilean current, a conservation might happen if the appropriate vector vanishes. The third
equation for % is the one that we already studied, which is non-conserved in general. The
equation for K is conserved for the Galilean fluids studied previously (2 = 0) but is does not
bring any new conservation law. It is actually the continuity equation.

One might wonder how it is possible for the well defined conservation of the Noether
current V, I* = 0, with I* = &, T*" and & a Killing vector, break down in the infinite-k limit.
The answer to that question is captured by the very definition of a Galilean Killing, which
ultimately leaves non-vanishing terms in the divergence. The precise way this comes about is
exposed in App. F.

3.3 Massless carriers and Weyl covariance

3.3.1 The fluid equations

We consider can now a fluid that is made of a collection of massless particles. These sort
of systems could consider for example a gas of photons or some situations in condensed

matter, as in graphene [119]. These hydrodynamic systems can also have a conserved current
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and a chemical potential, but they will not be related with mass, but to some charge. Some
examples of this sort are mentioned in App. A together with their basic thermodynamic
properties.

The procedure to obtain their Galilean dynamics starting from relativistic hydrodynamics
goes in the same way as we did previously, where the difference relies on the behaviour of
the charge density and the energy density. Here, instead of (3.90), we can simply consider

1
po=p+ﬁ<p>, 8=pe+ﬁ<—>, (3.136)
where e is the energy per charge unit and p is the charge volume density — as opposed to
proper volume — and € = pe the non-relativistic energy density (see also App. A). Since there
is no matter density we do not have terms like the rest mass and kinetic energy contributions
to €. The goal is to find the fundamental variables as well as the dynamical equations, and
probe the behaviour of the latter under Galilean hydrodynamic-frame transformations.

We can extract the large-k behaviour of the energy-momentum and the conserved current
in the rest frame. Equations (2.86), (2.87), (2.88), (2.89) and (2.90), now give

1
Por =P, jri:Ni+ﬁ(p) (3.137)

with Galilean charge current
Vi

5 +n. (3.138)

N =p

From the energy—momentum tensor we get
1
g = H+ﬁ(ﬁ), (3.139)
1
Gri = Ha+m+ﬁ<P), (3.140)

1
PrGij+ Tiij = Hij—i-ﬁ(p), (3.141)
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where
(vi —wi)r))
P =/, (3.143)
I (v —
M= s 200v=w (3.144)
Q
A,
II;, = ((a+p)a,-j—2,~j) %) +
2
ri (V—w r-(v—w)(vi—w;)
ML A ki, 3.145
+2< o ) + o + ( )

are the explicit expressions for (3.32), (3.33) and (3.34), as well as for the energy current I1;,
which will appear in the energy equation (3.44). The Galilean heat current receives now a
single contribution as

Q1 =k. (3.146)

For the fluid under consideration, the structure of the conservation equations goes as

. 1
kQV, TH = kzvjrf+£+ﬁ(k—2), (3.147)
1
v, T = ///i+ﬁ(k—2), (3.148)
1
Vb = %+ﬁ(ﬁ), (3.149)

with &, .#; and € as in (3.108), (3.109), (3.110). At infinite k the hydrodynamic equations
are again (3.115), (3.116), (3.111), and we recover Egs. (3.43), (3.44) and (3.50), as expected,
plus the extra equation

Vri =0, (3.150)

which is absent when the vector 7/ originating from the k? term of the relativistic heat current
vanishes. The difference with respect to the massive case studied previously relies in the
expression of the momenta, namely the energy—stress tensor, fluid current, fluid energy
density and fluid energy current (the charge current is the same as the matter current before).

We can now combine the above results in order to reach the heat and next the entropy
equations. Equivalently these are obtained as infinite-k limits of Egs. (2.15) and (2.16). We
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find

Vi—W;

& — Mi

e)
o —
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(3.151)

For the entropy equation there are two options. If no conserved charge current exists, the
equation (3.111) is immaterial, the chemical potential vanishes and (A.19) gives de = T'do,
which can be substituted in (3.151). This happens e.g. for a gas of photons. If a conserved
charge current is available then ¢ can be traded for pe, € + p for ph, o for ps, and using
(A.18), (A.19) and (3.111) we obtain

é% = %g—phehlﬁinﬂ (3.152)

which can be inserted back in (3.151) to get

pTds 1d [((v—w)-r (v—w).r X A
el R AP At AP I L A Y v
oa o Q + O d ij "
~ - vi—w (v—w)-r rD v —w;
Vil O — —— =0. 3.153
+ <Q Q Q > Qdr Q ( )

Given the above Galilean hydrodynamic equations, one may reconsider their behaviour
under velocity local transformations. The absence of rest mass modifies the scalings with
respect to the speed of light, and possibly the invariance properties. Bringing together
the transformations (2.77), (2.78), (2.79), (2.81) and (2.82), and the scalings (3.87), (3.88),
(3.89) and (3.136), we find in the infinite-k limit that: 0p and Jn; are still as in (3.124) and
(3.125), while

aij5p— SZU = —ér(i(Svj), (3154)
or, = 0, (3.155)
oki = 060,
SV (v —w;
= o ( 0 rj—phaij+2ij) , (3.156)
0 = poe
= —2r,~6—v. (3.157)

Q
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These transformations guaranteed the invariance of the Galilean momenta as in (3.128),
which thus implies that for fluids consisting of massless particles, the Galilean fluid equations
given above are invariant under arbitrary hydrodynamic frame transformations.!!

Thanks to (3.155), the hydrodynamic-frame invariance holds even when r; = 0, which is
the physically interesting situation, following the previous discussion on the behaviour of the
relativistic heat current. The momentum equation obtained from (3.109) simplifies in this

case as
M;=dp—V,;E] =0. (3.158)

However, due to (3.125), hydrodynamic-frame invariance does not survive when n; is required
to vanish in the charge current, which is necessary for the continuity equation (3.110), (3.111)
to be a genuine conservation. The latter does not happen for the case of fluids without
conserved current (as a gas of photons). They are truly hydrodynamic-frame invariant in the
Galilean regime with entropy equation (for the physical situation where r; = 0)

T do Y v v owij LS i
- _ = _EV. V:0' = 0. .
oG +(s+p d)e i’ +ViQ =0 (3.159)

3.3.2 Weyl invariance

Fluids involving massless excitation are compatible with Weyl symmetry. This was discussed

in the first part of this chapter when presenting the basic features of Newton—Cartan geometry.

We will now consider this property from the prespective of the large-k limit in Zermelo
backgrounds.

The fundamental quantities of the Zermelo geometry (2.66) behave as follows under a

Weyl transformation:
1 i ; 1 1

aij%@aij, w —w, W,'%@W,’, Q—)EQ, (3.160)

and since Q depends only on time, the last term in (3.160) imposes % = Z(t). The fluid

velocity field u* has weight 1. This implies that the ordinary spatial fluid velocity V'
transforms as

ViVl v %vi. (3.161)

Considering the latter, one could wonder for the existence of a Galilean Weyl-covariant

derivative, that acts on Galilean Weyl-covariant tensors. Here we examine the infinite-k

limit of the connection (2.40) and the corresponding Weyl-covariant derivative used in the

relativistic case. For a more rigorous analysis of the latter, see e.g. [120, 116, 117]. This

""Equations (3.151) and (3.153) are hydrodynamic-frame-invariant only on-shell.
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splits into time and space Weyl derivatives, associated with time and space Weyl connections,

inherited from the limit of the Weyl connection A given in (2.40). In this case we find

v

lim QkA® = —6—, limA; =0, (3.162)
k—so0 d k—soo
where we notice that there is no spatial Weyl connection in the Galilean limit. The ordi-
nary Galilean spatial covariant derivative V; used here as the usual d-dimensional metric-
compatible and torsionless covariant derivative with connection coefficients (3.8) (possibly
time-dependent since generally a;; = a;;(¢,X)) is already Weyl-covariant. This is because the
Weyl rescaling with Z(t) leaves the Christoffel symbols (3.8) unaltered.

It is not the same for the Galilean time covariant derivative % given in (3.26). The latter
is not Weyl-covariant but it can be promoted to a Weyl-covariant Galilean time derivative %,
thanks to 0V, which transforms indeed as a connection. That is

0" — A6 — %8;%. (3.163)

Consequently, if Sl 4. are the components of a weight-w Galilean tensor, then

L ij. 1D w ij..
5%51 f. = <§E+EOV)SJ il (3.164)
are the components of Galilean tensor of weight w+ 1 . Observe that the components of the

Galilean shear given in (3.19) is of weight —1, namely it transform as
V= ig;v (3.165)
i e i .

The Weyl transformation (3.163) holds equally for 8" defined in (3.18), which also
implies that the geometric Galilean shear évfj defined in (3.17) transforms in the same way as
(3.165). One can therefore introduce an alternative Galilean Weyl-covariant time derivative
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defined in purely geometrical terms as'?
1 A 1D w
5 D = (554_59’”) P, (3.166)
1 . 1D w+l
oI = (5E+KE_W>W’ (3.167)

for weight-w Galilean scalars or forms, which can be generalized for any Galilean tensor by
using the Leibniz rule.

With the above tools and imposing Weyl invariance (3.70), the fundamental fluid equa-
tions (3.43), (3.44) and (3.50) can be recast as

1 A L A

5%3+5€%+WHU::Q (3.168)
1 A o

o ZM+1;e" + VIl = 0, (3.169)

1 A N .
P +ViNT = 0. (3.170)

They are Weyl-covariant of weights d+1,d +2 and d 4 1.

When dealing with Galilean fluids, the Galilean momenta p, N;, B, II, II; and IT;;
emerge in the large-k expansion of Py, jri, &, qr and pra;; + Tj (see Egs. (3.137), (3.139),
(3.140), (3.141)). The weights inherited in this limiting procedure (the relativistic weights
are available in Tab. 2.1) are in agreement with those previously defined through the effective-
action definition of the momenta. These momenta are expressed in terms of the Galilean
velocity V' together with the usual fluid variables coming from the relativistic stress, heat
current and charge current.

From the expressions (3.142), (3.143), (3.144), (3.145), we infer that the forms r;, k;
(and thus Q;) have weight d, while n; and the Galilean stress X;; have weight d — 1. The
Weyl condition!?® (3.70) now reads ¢ = dp — X, with £ = a'/%; ;- This condition splits into
the conformal equation of state

e =dp, (3.171)

12This sort of Weyl-covariant derivative is insensitive to the fluid velocity and is thus better suited for
discussing hydrodynamic-frame invariance. Its relativistic ascendent is a Weyl connection A constructed, as
explained generally in footnote 5, with the vector field uz = v defined in (3.3) (and used in Sec. 3.2), which
has norm —k” in the Zermelo background (2.66). This connection exists irrespective of the fluid velocity:
AZ =8 0dr.

I3Notice in passing that the Weyl-invariance requirement (3.70) determined from the effective action, is also
the large-k expression of the relativistic condition 7}, =0
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accompanied with the Weyl-invariance requirement
Y =Y;d7 =0. (3.172)

Other thermodynamic observables like e, T', 1 or h have all weight 1, and s is weight zero.

It is worth mentioning that the above analysis is consistent because we have been referring
to fluids with microscopic massless degrees of freedom, and we have thus used (3.137),
(3.138), (3.139), (3.140), (3.141), (3.142), (3.143), (3.144), (3.145). If one had considered
fluids with massive carriers, conflicts would have appeared in the conformal weights, as for
example in (3.114) by setting a relationship among N’ and P!, which in a Weyl-covariant
system are expected to have different weights (d + 1 and d + 2).

Hydrodynamic equations (3.151) and (3.159) are recast as

W,( i_vi;wi(v—g)-r) — 0, (3.173)
—Winl’+©,~(Qf—vigzwi(v_g)'r) — 0. (3.174)

For more conventional conformal fluids with * = 0 and no conserved charge we find

1 . . . T A
ﬁ.@,s— Vl-jZ”+V,-Q’:ﬁgtc—ﬁvijZ’J%—ViQ’:O, (3.175)

which are Weyl-covariant of weight d + 2. The Euler (transverse) equation (3.158) remains
unchanged and can be expressed in terms of the energy thanks to (3.171), or further using
(A.18). It reads

1 A 1 ..
“de— Vit = 3(To)—ViT; =0 3.176
P € I AT (To) j ( )

and it is Weyl-covariant of weight d + 1.



Chapter 4

Carrollian fluids

4.1 Carroll structures and general Carrollian covariance

4.1.1 Basics on Carrollian structures

Carrollian structures can be thought as the dual of the Newton-Cartan structures. They
consists of a d + 1 manifold .Z = R x . equipped with a degenerate metric (as opposed to
Newton-Cartan which has a degenerate co-metric) and vector field that generates the kernel.
These manifolds are described in terms of fibre bundles with one-dimensional fibre and a
d-dimensional base .% base space. These structures also appear as the vanishing-k limit of a
pseudo-Riemannian geometry. A simple example is the ultra-relativistic limit of Minkowski
spacetime which gives as a result the flat Carroll structure given by: .#Z =R xR?, v =9,
and gy ydxtdx¥ = &;;dx'dx/ with g(v) = 0. The Carroll group [9, 10] is the isometry group
of the this flat Carroll structure. Here we are going to be slightly more general. We are
not going to make any assumptions about isometries, but rather Carrollian diffeomorphisms
(2.100), which have the advantage of preserving the time/space splitting.

For concreteness, our manifold .# will be equipped with coordinates (7,x) and a degen-

erate metric of the form
df? = a;;(t,x)dx'd/,  i,j...€{1,...,d} 4.1)
with kernel generated by
1
= —0, 4.2
v Q (8] ( )

which defines a field of observers. The above coordinate system is adapted to the fiber/base
splitting, which is respected by Carrollian diffeomeorphims (2.100). Additionally, just as the

example of Minkowski spacetime, this Carrollian structures is reached when performing the
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small-k limit of a pseudo-Riemannian spacetime parametrized in the Papapetrou-Randres
gauge (2.99). This Carrollian structure also possesses an Ehresmann connection, which is a
background gauge field b = b;dx’, appearing in the dual of the kernel generator. The latter
defines the clock form

1= Qdr — b;dx’, (4.3)

The scale factor € and the gauge components b; depend on ¢ and x.
Under Carrollian diffeomorphisms (2.100) (the Jacobian is defined in (2.101)), the trans-

formation rules of the various geometric objects are as in (2.102), (2.103) as well as

0 = ;a,, 4.4)
1 Ji
2 = J lj (a,-—ja,), (4.5)
u/ = u7 (4.6)
o = J Yo 4.7)
where 5
0 =0+ ﬁ’at, (4.8)

are the vector fields dual to the forms dx, also spelled e; in (2.126).

In general, Carrollian tensors depend on time ¢ and space x. They carry indices i, j,... €
{1,...,d}, which are lowered and raised with a; ;j and its inverse spatial co-metric a, and
i

transform covariantly under Carrollian diffeomorphisms (2.100) with Jacobian Jl-j and J ! j

defined in (2.101). A Levi—Civita—Carroll connection can be introduced as

N ail ~ N A
')/J'. — 7 (ajalk + akalj — 8lajk) . 4.9)

This choice of connection is not unique (see [23, 117, 17]), but it is obtained naturally in
the small-k expansion of a Levi—Civita connection in the Papapetrou—Randers coordinates
(2.99). It defines a spatial Carrollian covariant derivative @i which transform covariantly
under Carrollian diffeomorphisms.
The Levi—Civita—Carroll connection is spatially torsionless and metric-compatible, namely
it satisfies
= 27/[;ﬂ =0, Viay=0. (4.10)

The vectors d; do not commute and define the Carrollian vorticity as

A A 2
[91',31} =q®Bij%  @ij = b + b (4.11)
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with |
¢ = ﬁ (8,b,~ + 8,~Q) . 4.12)

the Carrollian acceleration. The exterior derivative of the clock-form is given by
dp = @idx’ A — @;;dx’ Ad/ . (4.13)

So, the vanishing of the Carrollian acceleration and vorticity are sufficient and necessary
conditions for p to be closed and define a family of hypersurfaces inside .# =R x .7 as
7(t,x) = const., where locally p = dr.

From (4.4) we see that the time derivative operator é&, transform nicely under Carrollian
diffeomorphisms. However, it is not metric compatible due to the time dependence of the
metric a;; (¢,x). Still, we can define a new Carrollian time derivative that, besides having a

good transformation property as élA); = LD, it satisfies
Dy =0. (4.14)

This is achieved by introducing a temporal Carrollian connection

N 1 1

Yij:mataijzéij‘f‘gaijey (4.15)
which is a genuine symmetric Carrollian tensor splitted into a symmetric and traceless part
&ij, called the Carrollian shear, and a traceful part a;;6, where 6 is the Carrollian expansion
defined as

1
0= —-0Ina, (4.16)
Q
The action of D, on scalars is 9,
D,® = 0,®, (4.17)
whereas on vectors or forms it acts as
1

PR RSP B 1 N
§D,V’:§8tv’+y'jvf, ﬁD,vi:ﬁa,vi—y/vj. (4.18)

The latter can be generalized for any tensor by the Leibniz rule and allows to demonstrate
the metric compatibility (4.14).
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The commutators of Carrollian covariant spatial derivatives define further Carrollian

tensors (@ and V' are a Carrollian scalar and a Carrollian vector). One finds'
A A 2
[Vi,vj] ® = @599,
[ﬁk, @,] vi = (9kﬁj — O+ TPl — V,my;gj) Vg [ék, 9,] Vi
Al j 2 A i
Similarly, time and space derivatives do not commute, resulting in

1 ~ A . 1 A j N P - / ~J
[ﬁDt’vi] VI = o; ((ﬁDt + 9) v/ — Y]kvk> . yikaVJ _drjika

with?

—

N Y 1. .
rjl.k = E (9(1)16]5 +Vi’y/k_ 581‘%2)
and |
Po=fe= = (V7= d8).

further Carrollian curvature tensors.

4.1.2 Diffeomorphism invariance and Carrollian dynamics

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Similarly as we did in the Galilean case, we can consider a dynamical system on a Carrollian
manifold .# = R x ., that is described by an action S = [ df d%x\/aQ.Z which is a func-

tional of a;;, Q and b;. The variation of this action with respect to the Carrollian geometry

defines a set of Carrollian momenta [86, 121] (analogous to the definition of a relativistic

energy-momentum tensor). They are defined by

. 2 4S8

m - = °2
\/5Q5aij’

: 1 a8

= ——
\/EQSbl-’

Hoo L (85 bhss
 Va\sQ Qéb;)’

(4.25)

(4.26)

(4.27)

'In [44] an alternative tensor was defined as 7, = R, + 2@y with [@kﬁl} Vie P Vit ooV
2Notice that éa[% = (@i + (Pi) ?ik + (@k + (pk) ?ji — (@j 4 (pf> i« is a Carrollian tensor, even though ?l’k

is not.
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with g—g =—\a (H +bIT ) These are the energy—stress tensor, the energy current and the
energy density.

Diffeomorphisms are generated by vector fields of the form (2.91)
_ gt iy _ t ibi i bi _ gl 1 i9
£=80+89d=(¢& _55 d+& ai+§at —éaat‘l'gai- (4.28)

Additionally, Carrollian diffeomorphisms (2.100) impose & = £/(x). Variation under

diffeomorphisms is implemented through the Lie derivative, which acts on the metric g;; as
—3£aij = Zaa,-j = 2%(iékaj)k—|—25f’f/,‘j. 4.29)
For the field of observers we have
[P i
Lev=—(5a& + g Ju=pv, (4.30)
while for the clock form p we find
1 . . « 5 . .
Lop = (5@& + gol-él) wt (=) &~ 28 my ) ol 431)
From the latter we can extract the transformation of © and the Ehresmann connection b;.

They read

~5InQ = S £4Q= a8+ el (4.32)

1. . . . . .
—55'191' = g&b,‘ =b; <§&,‘g” + (P]f]) — <&l — (p,) gt +2§JGIJ-,-. (4.33)

Using the above diffeomorphic transformation rules, we can compute the variation of the
action. We find

1 .. . 1 .
8 S = / dtd?xy/aQ (511’-’ Sgaij + 118 — o (TT+ b;IT') 559) : (4.34)
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Then, using (4.29) and (4.33) with £/ = £7(x), we obtain

5S = /dtddx\/EQ {—Jgf Kéat + 9) I+ (@i+2goi> Hi+H"ff/,-j1
+&[(Vi+9)) I+ 2@+ Tl |
+ / drdx {0, |Va (& T+ b,IT) - Ein1 ) |
4o, [\/ag (gfni & ])] } . (4.35)

Invariance under Carrollian diffeomorphisms implies 8; S = 0 (we ignore boundary terms,
which correspond to the last integral in (4.35)). The vanishing of the variation of the action
give rise to two equations that have to be satisfied. The first one is associated to §f and

corresponds to the energy equation given by

1 . o
(53, + 9) I+ (Vi +2<p,-) IT + 1/ ;; = 0. (4.36)

The second one is associated to &' and corresponds to the momentum equation, expressed as

. . . 1
(v,- + goj) IV, 4+ 21V @;; + Ty = — (ﬁa’ + e) P, (4.37)

The right hand side of (4.37) arise due to the time independence of £/. Hence, in
the second line of (4.35) one is free to add /aQ&’ (é&, + 9) P. =0, (\/EﬁiPi), which is a
boundary term and vanishes inside the integral.

We call the new vector P’ as momentum (analogous to what we have in the Galilean
case). We can see from this analysis that the momentum P’ is not defined through a variation
of the action with respect to some conjugate variable?.

It is worth mentioning the similarity that the above equations (4.36) and (4.37) share with
the Galilean ones given by (3.44) and (3.43). This is superficial because first, when dealing
with genuine fluid equations, the various momenta are expressed in term of kinematical
and thermodynamic parameters, which are completely different in both cases. For instance,
there is no velocity in the Carrollian case. The second major difference is the fact that the
conservation equations in both instances are the result of symmetries (Carrollian and Galilean

diffeomorphisms) which are distinct.

3The momentum P! is obtained through variation with respect to an additional variable in [46].
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4.1.3 U(1) local invariance and conservation law

We can also consider an action on the Carrollian manifold which is invariant under a local
U(1) transformation associated with a gauge field B = B(¢,x)dz + B;(t,x)dx’ as in (3.45).
Then, an additional conservation law is available, although it is not as useful as in the Galilean
case. In the Galilean instance we have that the thermodynamic law (A.2) sets a relationship
between a conserved charge and the energy. The latter is invalidated in the vanishing-k limit,
and plays no subsequent role in the fluid dynamics.

The conjugate momenta are again the charge density and the charge current:

1 (88 b; 68
p = \/5(33_563,)’ (*3%)
;1 8S
N = ayass (439

with 95 = /a (p + b;N'). The gauge variation of the action gives
8AS = / dtd?xy/a ((p +biN') SpB + QN'GB;) (4.40)
= [ard's/a((p+biN') A+ QN'OA)
- /dtddx\/EQA <$8,p +0p+ (@i + <p,~) N")
- /dtddx {0 (VaA (p+biN')) + 9; (vaAQN') }. (4.41)

The U(1) invariance of the action S leads to a Carrollian continuity equation, expressed here
as

1 . .
<§a,+0) p+ (Vi+(pi>N —0. (4.42)

Using Stokes and Gauss theorems and the Carrollian continuity equation (4.42) we find
1 A .
/ drd?xQ/a ((—a,+ 9) p+(Vito) N’) - f Japdx' A A di
V4 Q oW

d
—74 VaY di' A ANWAL A, (4.43)
=
where # C .# =R x . and N'u (i given in (4.3)) is the ith factor in the exterior product
of the last term. Assuming a good behaviour for the fields, a conserved charge exists and

can be expressed as an integral over an arbitrary space-like hypersurface X; of #Z =R x .7.
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This conserved charge is identical to the relativistic Papapetrou—Randers result obtained e.g.
in (2.131). In a similar way as in the Galilean instance, it is suitable to chose £; = .7 i.e. a

constant-# hypersurface, and the charge then reads*

Ov = /y d'xva(p+biN') . (4.44)

Following the Galilean steps, time independence reveals by replacing . in (4.57) with
¥V C .7, where the boundary d¥ does not depend on 7. Using (4.42), the time evolution of

the matter/charge content of 7 is the following:

" / d‘xva(p +biN') = / dx9; (vaQN") / Q«N. (4.45)

If 7 is extended to the whole .& the time dependence fades and we find that Qy is conserved.

4.1.4 Isometries and (non-)conservation

Carrollian isometries are generated by Killing fields given by (4.28), which are required to
satisfy
fgaij = 0, fav = O, (4.46)

since the metric (4.1) and the field of observers (4.2) are the fundamental geometric data in
the spacetimes at hand (see [14, 22, 23, 20]). For Carrollian diffeomorphisms (éi = éi is
only x-dependent), equations (4.29) and (4.30) lead to

R - 1. l.
Virap+E =0, 59t§t+<,0i§ =0. (4.47)

The above are the equations that reflect the invariance of a weak Carroll structure [22] and
possesses an infinite set of solutions. As we discussed previously in the Newton-Cartan
instance, we could choose a strong Carroll structure which is equipped with a field-of
observers-compatible and metric-compatible connection (as our choice in (4.9)), required to
be invariant under Carrollian isometries. This restricts the solution space of (4.47).
Contrary to the field of observers and the metric of the base space, the Ehresmann

connection is not required to be invariant. For a Carrollian Killing field &, using (4.47) inside

“It should be noticed that the presence of b; apparently breaks the manifest covariance, since according
to (2.103) the form of the integrand is respected only by coordinate transformations such thatt’ =¢'(¢) i.e. a
subset of Carrollian diffeomorphisms. This actually just translates a feature of the hypersurface chosen for
computing the charge, which is otherwise an absolute constant. If the clock form is closed (see (4.13)), locally
p = dt one may alternatively choose the integration hypersurface ¥ as 7(¢,x) = constant. In this instance, we
obtain Qy = f):T d’x\/ap. Nevertheless, all choices of space-like hypersurface X, lead to the same charge.



4.1 Carroll structures and general Carrollian covariance 71

(4.31) we find
L= ((91' - (Pi> g - 25jwji> d'. (4.48)
In order to have a good illustration of the above we can consider a flat Carroll spacetime,
consisting with a Carroll structure with ¢’/ = 8"/ the d-dimensional Euclidean metric, Q = 1
and constant b;. The equations in (4.47) possess an infinite number of solutions for the
Killing field. This read
&= (@05 +X7) 3+ £(x)3, (4.49)

with constant and antisymmetric ;; = Qik Ok j generating the rotations in so(d), constant X J
for the space translations, and an arbitrary function of space f(x). If we additionally required
the affine connection of the strong Carroll structure to remain invariant under &, then the
function f(x) is restricted to be linear, e.g. f = T — Byx with T generating time translations
and B; being the Carroll boosts. The total number of solutions is now (d+2)(d + 1) /2, which
is the dimension of the Carroll algebra cart(d + 1). Also, for the Ehresmann connection we
find

b=~ (Bi+Q/b;) £0, (4.50)

showing a constant shift in the Ehresmann connection.

In principle we should manage to obtain the conservation laws associated to the Carrollian
isometries. The latter ultimately will be of the form of (4.42) with a Carrollian scalar x and a
Carrollian vector K determined from the compondents of the Carrollian Killing fields 5f and
&', and from the Carrollian momenta, namely the energy density IT, the energy current IT and
the energy—stress tensor IT, as well as the momentum P’, and satisfying the conservation

equations (4.37) and (4.36). Assuming that such a conservation exists, the Carrollian scalar
1 . .
H = (ﬁat+e) K+ (V,-+<p,~> K 4.51)

should vanish on-shell. In the above, x and K’ are obtained from the on-shell boundary terms
of 8¢S (see (4.35))°. They read

k = Ep-E, (4.52)
K' = & -er. (4.53)

>We can also obtain k and K’ from the small-k expansion of the relativistic-current components (2.128),
(2.129), (2.130).
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The scalar %" can be determined using the conservation equations (4.37) and (4.36):

= —n(éatéfﬂpié")—H"((éi—qn) §'-2¢/m;)
11, (V87 + ) (4.54)

= -1 ((34-0) & -28/;). (4.55)

The above result shows that in Carroll structures, a Killing field does not guarantee an
on-shell conservation law for Carrollian dynamics.®

This result is similar to what we found in the Galilean case. Here, the energy current IT’
is conjugate to b; (4.26) and b; does transform under diffeomorphisms (see (4.33)), even if
we are dealing with an isometry. Still, equation (4.55) suggest that a conservation law exists

for a restricted version of the Killing vectors such that
Zin=0. (4.56)

We call strong Carrolliang Killing vectors to the ones that satisfy the above condition
together with the first two Carrollian Killing equations given in (4.47).” In general, these
strong Carroll isometries produce conserved currents, in agreement with general Ncether’s
theorem. Another instance where conservation is satisfied is when the right-hand side of
(4.55) originates from a boundary term (as for the corresponding Galilean equation (3.65)).
In that instance, conservation would occur with an effective Carrollian current given by K’
and K7, both getting corrections from boundary-term contributions.

Another possibility is requiring the vanishing of the energy flux IT'. To see this we can
go back to the simple example of flat Carroll spacetime. In that case one can notice that
Carrollian boosts in flat Carroll structures do not satisfy the extra condition .-Z; u = 0 (see
(4.50)) since it creates a constant shift in the Ehresmann connection. This implies that no
conservation is necessarily associated with them. Then, in order to have a conservation law
associated to Carroll boost invariance, the vanishing of the energy flux IT is required.

We can construct charges associated with the current (x,K), which is going to be
important when discussing gravitational charges in Chapter 6. These charges are defined as
an integral at fixed ¢ over the hypersurface X; = .7

Ok = /y d‘xva(k+biK'), (4.57)

%The observation of this phenomenon was first introduced in [86].
"The Jacobi identity is used to show that the commutator of two &s obeying .%; i = 0, satisfies the same
condition.
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and obey the time evolution

dox _ / dx/aO A — / K Q. (4.58)
dr 7 0.7

The last term is of boundary type with *K the .#-Hodge dual of K;dx'. Generally, one can
ignore it owing to adequate fall-off or boundary conditions on the fields. Again, only if the

current satisfies .#” = 0, the charge is conserved.

4.1.5 Weyl invariance, conformal isometries, and (non-)conservation

Carrollian manifolds can be covariant with respect to Weyl transformations. They act on
their geometric data as
1 1 1
ajj — @aij, Q— EQ, b; — Ebi? (4.59)
where # = Z(t,x) is an arbitrary function. When the action is Weyl-invariant, the Carrollian
momenta IT/, TT' and IT defined in (4.25), (4.26) and (4.27) have conformal weights d + 3,
d+2 and d + 1. The momentum P’ appearing in (4.37) has also weight d +2, and in the
matter sector, assuming the gauge field B and B; be weight-zero, we can find from (4.38) and
(4.39) that the weights of the density p and the matter current N’ are d and d + 1.
Requiring Weyl invariance for the effective action, namely d4S = 0, expression (4.34)
implies that
1/ =TI (4.60)

We will see later in this chapter how to implement Weyl covariance through the appropriate
covariant derivatives for time and space, dubbed Weyl-Carroll derivatives.
Following [13, 14, 22, 23, 20] a conformal isometry is generated by a vector field &

satisfying
fgaij :laij, (4-61)
and
Zrv = v, (4.62)
where :
_ 2 (.l f
M%) =5 (V,g 1 0¢ ) : (4.63)
and (see (4.30))

1. . .
(e,x) = - (ﬁatéfﬂp,-él) | (464
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The latter is accompanied with the extra condition 2y + A = 0.

Assuming the existence of a conformal isometry, the conservation equations (4.36) and
(4.37) can be used for computing the Carrolian scalar ¢ (4.51) with (4.52), (4.53) and
(4.60). This reads

%:H(%—l—u) —Hi<<9i—goi> gf—zgfarj,-). (4.65)

One can see that even if 2u + A = 0 is satisfied, the Carrollian scalar .#" does not vanish
in general. The latter shows that a conformal Killing field does not generically provide a
conservation law in Weyl-invariant Carrollian dynamics.

As an example, one can consider again the standard flat Carroll spacetime (a”/ = 8%,
Q =1 and constant b;). Equations (4.61) and (3.73) are satisfied by an infinite number of

solutions, which for a strong Carroll structure read [22, 23, 20]
. t .
£=YI(x)d;+ (T(x) + Ea,r) J, (4.66)

with T(x) an arbitrary function generating the supertranslations and Y(x)d; being the
conformal Killing fields of Euclidean d-dimensional space, generating so(d + 1,1). This is
the conformal Carroll algebra ccare(d + 1) = so(d + 1, 1) x supertranslations, known to be
isomorphic to the Bondi—van der Burg—Metzner—Sachs algebra BMS,;, [22, 23].

The clock form is found to transform as

L= (a,. (T —Y'b)) +%8jyf+f—iaianf) dx'. (4.67)

The associated current is not conserved unless d;Y/ = Cpand T = Ty + Y’/b; — %bixi, thus
linear in x (Cy and Ty are constants). This excludes the d special conformal transformations
of so(d + 1,1) and leaves the supertranslations with the time translation as unique freedom,

leading to a symmetry subgroup of finite dimension % + % +2.

4.2 Carrollian limit of relativistic hydrodynamics

We now study the vanishing-k limit of relativistic fluid dynamics on a pseudo-Riemannian
manifold, parameterized in the Papapetrou-Randers gauge (2.99). As in the Galilean instance,
Papapetrou-Randers gauge makes the k-dependence in the geometry explicit. The fluid
velocity is parameterized with the Carrollian vector 8’ introduced in (2.106), which in the
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small-k expansion behaves as
V=K2QB + 0 (k). (4.68)

The fluid velocity vanishes at zero k as expected, but still the kinematical parameter 3’ with
dimensions of inverse velocity will remain as a Carrollian-fluid variable (they will appear in

the momenta). The behaviour of the components of the fluid congruence then read
w=—kQ+0 (), u =B +0 K. (4.69)

We can also compute the small-k expansion of the kinematical quantities associated to u'.

For instance, the expansion and the shear behave as

0= é&tln\/ﬁ+ﬁ(k2) =0+0(k), (4.70)
o'/ = —é (%B,aij + éaijatln \/5) +0 () =&+ 0 (k) (4.71)

with éij and 6 defined for a Carrollian manifold in (4.15) and (4.16).

In order to obtain the Carrollian fluid equations in the limiting procedure, we need to
handle the behaviour of the energy-momentum tensor at small k. Therefore we need the
behaviour of the energy density &, the pressure p, the heat current ¢’ and the stress tensor 7%/,
We also need the behaviour of the current j' if present. To this end we consider an ansatz
motivated by the Carrollian fluid that appears in the Ricci-flat/Carrollian fluid duality [42].

In this ansatz we have8 °
e = e+0(K), (4.72)
p = p+to(k), (4.73)
¢ = O+ +0(kY), (4.74)
o= —EV4+ 0 (k). (4.75)

This is similar to the Galilean counterpart (3.87) and (3.88), with the difference that the
energy is now of order 1, as for the case of a massless-carriers Galilean fluid.
For the components of the U (1) conserved current, we find

po=x+0(K*), jF=n+0(?). (4.76)

81n the literature one can find a different behaviour for the energy-momentum pieces. See for instance [56]
where ¢ is assumed to behave as ¢’ = k>’ + O/(k*).

We are using the same symbols for the leading terms in the energy density and pressure. This choice is
made here for simplicity since we will not use their subleading orders in this thesis.
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Here py is the proper density, namely the density measured by an observer with velocity u*.
We could also consider a fiducial observer, who would play here the role of uz in Zermelo
frame. This reads !

Upr = ﬁat' 4.77)

For this observer, the fluid density is —k%JuulﬁlR = éfo, which coincides with pg; given in
(2.124).

4.2.1 Carrollian momenta and conservation equations

With the data (4.72), (4.73), (4.74), (4.75), the invariant pieces of the relativistic energy—
momentum tensor defined in (2.118), (2.121), (2.122) and (2.123) read

gi = M+KPP+0 (K, (4.78)
& = I+0(k), (4.79)
pal 5 = MU+ 60 (k) (4.80)
with
M= 8+2[3[Qi, I = Qi7 M/ — Qiﬁj+ﬁin+paij _Eij7 (4.81)
and
S . B2 .
Pr=n+p <8+p+Bka> — B+ 70" (4.82)
Equation (2.1) with the energy—momentum tensor at hand implies the following expres-
sions
Ly, &+ 0 (K
qvul’y = &+ (), (4.83)
, 1 1. S ,
VT = k_z{(ﬁ t+9) H1+H]7/jl}+gl+ﬁ(k2) (4.84)

are zero at each oder in the small-k expansion with

1 . n . ..

. . : 1. o
g, = (Vi+ (p,-> IT; + 21T @ + T1g; + (ﬁDt + 9) Pj+P'§;j. (4.86)
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We recover the Carrollian momenta conservation equations (4.36) and (4.37) with the addition

of an extra equation for the energy current

1. . o
(ﬁDt + 9) II'+IIy,' = 0. (4.87)

Equation (4.87) was absent when we derived the Carrollian conservation equations from
the symmetry analysis. Indeed, this equation appears as a boundary term that could not be
obtained through a variational principle, i.e.

aag | (5biero) wmiy] =a, (vane) (4.3)

due to the time independence of £/(x). This is similar to what happens with the momentum P'.
It appears as an arbitrary function in the boundary term of 8; S when working in the framework
of a Carrollian manifold with Carrollian diffeomorphisms, but in the limiting procedure
appears explicitly and is expressed in terms of the kinematical and “thermodynamic—transport”
observables — 3 "and €, D, Qi, ml, B in (4.82). Hence, getting the Carrollian dynamics as
a vanishing-k limit of relativistic hydrodynamics is richer. From the relativistic ascendant
prespective, (4.87) is a vestige of the original full diffeomorphism relativistic invariance.

We can also consider the case where a conserved U (1) current (not necessarily associated
to mass conservation) is present in the relativistic ascendant. If that is the case, we find, after
inserting (4.76) inside (2.124) and (2.125),

por = p+O(K), (4.89)
ji = N+o(k), (4.90)

with
p=yx+pBn, N=n, (4.91)

the matter Carrollian momenta explicitly determined in terms of 8/, ¥ and n’. We can now
compute the divergence of (2.4) in the Papapetrou—Randers background (2.99). The result is

Vit = 7 +0 (i) (4.92)

with .
I = (ﬁat+9>p+<©,-+<pj)Nf, (4.93)

and demanding the conservation, we recover the Carrollian continuity equation (4.42).
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4.2.2 Hydrodynamic-frame invariance

When relativistic hydrodynamics was introduced in Chapter 2, we saw that under an arbitrary
local transformation of the velocity field u, the fluid equations remain invariant providing the
appropriate transformations of fluid variables such that the energy-momentum tensor and the
U(1) current remain invariant!?. The question now is what happens in the Carrollian limit.

From the analysis in the Galilean limit we learned that answering this question requires
some care, in particular with the assumed behaviour of the various observables with respect
to the speed of light (see (4.72), (4.73), (4.74), and (4.75)), which may or may not be
stable under Carrollian (or Galilean) hydrodynamic-frame transformations. In the Carrollian
instance we do not have physical intuition (as opposed to the Galilean case) for the latter.
However, there are concrete results from flat holography [76, 77] suggesting that Carrollian
hydrodynamic-frame invariace exist as a local boundary symmetry, which is reflected in the
bulk as a diffeomorphism transformation.

We start by analysing the fluid equations (4.85), (4.86) and (4.87). On one hand, all the
operators acting in the momenta are independent of the kinematic vector 8. On the other
hand the momenta F;, I1, I1; and II;; appear as the coefficients at each order in the small-k
expansion of the hydrodynamic-frame invariant relativistic momenta ¢,, £ and praij + ‘L'ﬁj .
Then, in order to make any conclusion about the fate of hydrodynamic-frame invariance in
the Carrollian limit, we must examine the stability of the scaling properties captured in (4.72),
(4.73), (4.74) and (4.75). Using the transformation rules set in the Papapetrou—Randers frame
(2.113), (2.114) and (2.115) we find the following transformations:

dn = -28B0', (4.94)
50" = 0, (4.95)
st = 8B (EY —(n+@)d’+B'Q)), (4.96)
5 (2 —wal) = 8B (Qiafk+QJ'a”<>. (4.97)

With the above transformation rules, the Carrollian densities, fluxes and the energy-stress

tensor defined in (4.81) and (4.82) remain invariant, namely

SII=0, SII'=0, &IV=0 6P =0, (4.98)

101n the Papapetrou—Randers frame, the local transformations (2.32) are captured by B/ — B+ 8B (z,x) (see
Egs. (2.71)), (2.106), (2.108)) parameterized as § 3 = B — szijﬁi + Qijﬁj. Infinitesimal Lorentz boosts are
associated with B'(z,x), while infinitesimal rotations go along with the antisymmetric Q" (z,x). In the Carrollian
limit, the general transformation, which captures Carrollian boosts and rotations, reads: 88’ = B' 4+ Q'3 .
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which implies the hydrodynamic-frame invariance of the Carrollian fluid equations (4.85),
(4.86) and (4.87).

The same procedure applies to study the hydrodynamic-frame transformation of the
Carrollian continuity equation (4.93). This demands an analysis on the behaviour of the
charge/mass density py and the current j’ in the small-k expansion. The transformation
rules in Papapetrou—Randers frame are (2.116) and (2.117), whereas the invariant relativistic
momenta (4.89), (4.90) should be used together with the small-k behaviour (4.76). We find

Sy = -8B, (4.99)
ont = 0. (4.100)

Using (4.91), we show that
8p=0, SN =0. (4.101)

This result demonstrates the invariance of (4.93). Therefore, Carrollian fluid dynamics,
consisting in the energy, momentum and energy current equations (4.85), (4.86) and (4.87)

together with the Carrollian continuity equation (4.93), is hydrodynamic-frame invariant.

4.2.3 Weyl-invariant Carrollian fluids

Weyl-invariant fluids are important in flat holography since, in the Ricci-flat/Carrollian fluid
duality, they appear as the holographic duals hosted at the conformal null boundary [42]. On
a pseudo-Riemannian manifold with Papapetrou-Randers coordinates, the action of the Weyl
transformations, generated by 8(¢,x), in the fundamental geometric data is given as in (4.59).
From the zero-k limit of the tracelessness condition of the relativistic energy-momentum
tensor, we find the Weyl-invariance condition (4.60) by using using (2.119), (4.78), (4.79)
and (4.80). The set of Carrollian momenta (4.81), (4.82), (4.91) are expressed in terms of
fluid variables such as the inverse velocity 8’, the energy density &, the pressure p as well as
Qi, m; and E;;. Their conformal weights are!! 1, d+1,d +1, d, d and d — 1 and similarly
the weights of y and n' are d and d + 1. Condition (4.60) reads € = dp — Eii, which (as in
the Galilean case) is splitted as

e=dp, E.=0. (4.102)

'\We mentioned in Sec. 4.1 that ITV, T, P! and IT have conformal weights d +3,d+2,d+2 and d + 1,
whereas the density p and the matter current N* have weights d and d + 1.
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We define Weyl—Carroll covariant time and space derivatives using 6 and ¢; defined in

(4.16) and (4.12), which transform as connections
d .
6 — #A0 — 58,%, 0 — @i — 0;In A, (4.103)

as opposed to the Carrollian shear &; j (4.15) and Carrollian vorticity @;; (4.11), which are
Weyl-covariant of weight —1. The action of the Carrollian Weyl-covariant time derivative on
a weight-w function ® is

1 A 1 4 w 1 w
5%613—5 ,CID-I—EQCD—ﬁa,CD-l- EG(I), (4.104)

and this is a scalar of weight w+ 1. On a weight-w vector, the action is

| N i 1 4 i w—1 l 1 i w i Ixsi

— = — — 0V =—9 -0 V. 4.105

Q.@,V 5 Vit ¥, Q,V + Vi+EWV ( )
These are the components of a Carrollian vector of weight w4 1. The action of the time

Weyl-Carroll covariant derivative on the metric is
Dray = 0. (4.106)

For a weight-w scalar function ®, we introduce the space Weyl-covariant Carrollian
derivative
D;® = 0, +wo,, (4.107)

which has the same conformal weight. Similarly, for a vector with weight-w and components
V! we have
GV =V +(w—1)pV' +¢'V;—8Vig. (4.108)

The Weyl-Carroll spatial derivative does not modify the weight of the tensor it acts on. The
action on any other tensor is obtained using the Leibniz rule. For instance, for a rank-two

tensor we have
Dt =V jt + (W +2)Qjtrr + it ji + Qityj — ajtii @' — ajty @' (4.109)
Moreover, it is also metric-compatible, meaning

A

_@jakl =0. (4110)
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Time and space Weyl-Carroll covariant derivatives do not commute. Various geometric
tensors can be defined through their commutators, such as the Weyl-Carroll curvatures (see
App. C), which also arise in the small-k expansion of the relativistic Weyl curvature tensors
introduced in (2.47), (2.48), (2.49), and evaluated in a Papapetrou—Randers background.

Then, the Carrollian equations (4.36), (4.37) and (4.87) for a Weyl-invariant fluid can be

recast as

1 4 a .
§@,H+.@,~H’+H’f§,~j = 0, “4.111)
A . 1 ~ _. .
@,’Hlj—f-znlmij—f-(ﬁ@tS;—i—élj)Pi = 0, 4.112)
1 A .
5.@,H,~+Hi§’j = 0. 4.113)

These equations are Weyl-covariant of weights d +2,d + 1 and d + 1 (P, is weight-d). They
are also manifestly hydrodynamic-frame invariant. The same goes for the matter sector,
(4.42) which is recast

1 ~ ~ .
2P+ PN =0, (4.114)

and is Weyl-covariant of weight d + 1 and hydrodynamic-frame invariant.

4.2.4 More degrees of freedom

The main ingredient to obtain Carrollian fluid dynamics from the vanishing-k limit of
relativistic hydrodynamics was the assumption on the behaviour of the energy, pressure, heat
current and stress tensor given in (4.72), (4.73), (4.74) and (4.75) respectively. In the Galilean
case, we considered the situation involving extra degrees of freedom satisfying extended
systems of fluid equations which were reached at the infinite-k limit of the relativistic theory.
In the Galilean case, the latter was of limited use but it may play a more prominent role when
studying Carrollian fluids in the context of flat holography, where additional over-leading
terms are needed in the components of the boundary energy-momentum tensor [42].

Now we consider the behaviour for the fluid variables as

e = k—i+e+ﬁ(k2), (4.115)
p = %ﬂﬁ@(;g)? (4.116)
J - %+Qi+k2ni+ﬁ(k4)’ 4.117)
i~ giio), 4.118)
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while for the matter sector we consider

(0]

_ g
=5 m

+x+0 (K, =

—H+M+ﬁ@%. (4.119)

Po

With these scalings, the expansion of the components of the energy—momentum tensor
(2.121), (2.122), (2.123) becomes

&=1+11+0(k),

=T R0 (1), (120

pal+ 5 =W 4TI+ 0 (k)

with Carrollian momenta given by

(

M=y

IV = O/ — B; (27 — pa'l) + B (C + Byyd) + By

P =n'—B; (B — pa’) + B’ (e + B;0’) +%2 (QiJr#‘l’i) +BB* (& + 90 +3Bw)
M={+2By

= e+2B,0' — Bif; (ZV — 9a') + B2 ({ + Biyr)

17 = y'BJ + By + ¢a'l — XV

11 = QBT+ B0/ + pall B + BRI (G +9) + & (BT + By,

(4.121)
Similarly, the matter current (Egs. (2.124) and (2.125)) exhibits the following:
_P +0 (k) 'k—N—k+Nk+ﬁ(k2) 4.122
pOr - k2 p ) .]r - k2 ( . )
with
(i = mi
N =n'+Bw
(4.123)
p= o+ Pt
_ k., B?
p=x+pn" +5o.




4.2 Carrollian limit of relativistic hydrodynamics 83

We use the above expansion in the conservation of the relativistic of the energy-momentum

tensor in the Papapetrou—Randers frame (2.99). We find

ko o u T )

§V”TO = k—2+é"+ﬁ’(k) (4.124)
j 2o )

VuTH = —p 45 +9 +0 (k) . (4.125)

From the divergence of the matter current we obtain

Vgt = % + 7+0(K). (4.126)

In these expressions, &, ¢; and _# are again given in (4.85), (4.86) and (4.93), while the

new expressions are

F = - (éf),w) - (@,-+2<pi> T - 11, (4.127)
H = ( +<p,) T, + 2'@;; + Mo, + (éf)ﬂre) I, + 1195, (4.128)
2 = ( )H +1T'9;5, (4.129)
and
N = (éat+e)p+(©,+goj)ﬁf. (4.130)
Therefore, the Carrollian equations are given by & = .% = ¥; = 7 = Z; = 0, and

FJ = A =0 which describe the matter sector. All these equations are invariant under
hydrodynamic-frame transformations. This is because the differential operators are geomet-

ric and thus invariant, and also because the momenta IT, IT, IT', IT/, P!, [T¥ IT¥, p, p, Ni, N'
are hydrodynamic-frame invariant, as shown in App. B.

4.2.5 Weyl-invariant Carrollian fluids

For this kind of systems with extra degrees of freedom, the analysis based on an effective
action would required to know the complete set of variables conjugate to the momenta IT, IT/,
I1¥ and I1, T/, 19, which is bigger than a;;, b; and Q. Still, we can impose Weyl invariance
by studying the zero-k limit of 7" u = 0. Weyl invariance is here easier to impose as a zero-k
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limit by using (2.119) with (4.120) T, = 0. We find

1 - . . .

Ty =5 (0 =) + 1] =TT+ & (k*) =0, (4.131)
which lead to

/=0, and II/=IL (4.132)

Using the explicit expressions of the momenta (4.121), the above conditions can be recast in
terms of Carrollian fluid observables. They are splitted in the same way as in (2.65), giving

global equlibrium equations of state and conditions for the dissipative terms. They read
(=d¢, X,=0, e=dp, E;=PBBTV. (4.133)

The momenta IT, [T, IT/ have the same conformal weights as the set I, [T, IT. This implies
that the extra variables {, ¢, y; and X, j are of weightd +1,d + 1, d and d — 1, while for @
and m' we find the weights d and d + 1.

We use the definition of the time and space Weyl—Carroll covariant derivative to recast
the Carrollian fluid equations & = % =¥, = ;= Z;=0and # = .4 =0in a Weyl
covariant fashion as

1

7 = ﬁ@tp+.@ij, (4.134)
N = é@,;ﬂ 7N, (4.135)
and

E = —é@tn—@ini—nﬁgﬁ, (4.136)
F = —é.@,ﬁ—@iﬁ"—ﬁﬁgﬁ, (4.137)
g = @in"j+2niw,-j+(é@,sﬁ&;)ﬂ, (4.138)
H; = @iﬁij+2ﬁia;ij+(é@ﬁ}%;)m, (4.139)
2 = é@tﬁﬁﬁ,—g;. (4.140)

Part of the above are the set of equations'? present in flat holography, relating Ricci-flat
spacetimes and Carrollian conformal fluids. See for example [75-77, 42]. They are covariant

12They are also known in the literature as flux balance equations. See for instance [35, 37].
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under Carrollian diffeomorphisms, covariant under Weyl rescalings and invariant under
hydrodynamic-frame transformations, which are local Carroll transformations corresponding

to local Carroll boosts and rotations.

4.2.6 Isometries and conformal isometries

As a last application of the above results, we can consider the behaviour of Noether currents
associated to (conformal) isometries. We insert the behaviour (4.120) inside the components
(2.128), (2.129) and (2.130) of the relativistic Noether current. We get

2 ok

1 2 k4K 2
gl = 1:k—4+k2+x+ﬁ(k) =i = k2+K+ﬁ(k) (4.141)

with (remember that £/ = £/ is a function of x only for Carrollian diffeomorphisms)

k=&R-EM

k=&ML — &M

k= E (4.142)
__£] ] t

Kl 5]Hjl 5 Hl
_ EJYT i e

Kl 5/1‘1]} _5 Hl

Inserting (4.141) in the relativistic divergence of the Noether current /* in Papapetrou—

Randers background we find an extension of (4.51) in the form

V! = %JF%JFJ%L@(!&) (4.143)
with
A = (50 +6) k=
A= (40,+0)k+ (V n <p,~) Ri— Tt <<9,~ _ go,-) gl 2§J'arj,~> (4.144)

H = (ﬁa, +6) K+ <Vi‘|‘ (Pi> K'=-Tr <<9" - ‘Pi> éf_zéjwﬁ> '

The above equations hold when &' and §’A are Carrollian Killings satisfying (4.47) (or
conformal Killings satisfying (3.73), (4.61), (4.63), (4.64)) and the equations of motion
E=F =9 = =Z; =0 are satisfied (see equations (4.136), (4.137), (4.138), (4.139),
(4.140) and (4.132) for the Weyl-covariant situation). We can see from (4.144) that one set

of the three current pieces is always conserved, while the other two are not.
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We see that a multiplication of degrees of freedom induced by additional pieces in the
behaviour of the relativistic energy—momentum tensor and the matter current, implies a
multiplication of the Noether currents (here three but possibly more if we consider more
terms in (4.120)) associated to the (conformal) isometries of the spacetime. In general, these
currents are not conserved unless we consider a more restricted set of (conformal) isometries
that satisfy Zrp = ((9, - q),) 28w j,-) dx’ = 0. The other alternative to render the
currents conserved is by imposing the vanishing of the appropriate piece in expansion of g'.
This is why A =0.



Chapter 5

Carrollian scalar field and gravitational
Chern-Simons

The two different approaches that we used to derive Carrollian fluid dynamics can also be
applied to other theories. Here we will investigate the Carrollian reduction of the scalar field
and the gravitational Chern-Simons theory and find their Carrollian dynamics.

5.1 Carrollian scalar field

5.1.1 Small-k expansion of the relativistic scalar field

Two different situations arise when considering the dynamics of a scalar field defined on a

Carrollian spacetime. These are given by the Lagrangian densities

g—llﬁq)zvcb 5.1
o = 3(goe) v 6.0

1 .. &
L = —5dIPO® V(). (5.2)

and they enter in the Carrollian action as Sc = [ , dt d¥x\/aQ.% . The indices “¢” and “m”
stand for electric and magnetic and in both cases the action is Carrollian diffeomorphism
invariant. They refer to the origin of these actions from the ultralocal limit of the original
relativistic theory [87, 56]. Indeed starting from the action of a relativistic scalar field on a

Papapetrou—Randers background (2.99)

S=— ///[ drdéx/—g (%gﬂvaﬂcpavclwv(@)) ; (5.3)
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and assuming the expansion of the potential V(@) in terms of the speed of light as

1

V(®) = 15Ve(®) + Vin(®) + € (), (5.4)
we find |
§= 7% +Sm+ 0 (k) (5.5)

with S and Sy, the Carrollian actions with Lagrangian densities (5.1) and (5.2). The assump-
tion given in (5.4) makes possible to reach these two Carrollian diffeomorphism invariant
actions.

Due to the form of the metric (2.99), and to its behaviour under Carrollian diffeomor-
phisms, the decomposition of any relativistic tensor as a small-k expansion, provides a
Carrollian tensor for each term. If we insist in reaching a single Carrollian tensor at vanishing
k, then an appropriate rescaling by some power of k> is necessary in order to select one out
of two options, if only two options are available as in the above scalar-field action (see [87],

were this procedure is illustrated in Hamiltonian formalism and for flat spacetime).

5.1.2 The case of conformally coupled scalar field

For a relativistic curved spacetime in d + 1 dimensions we can consider the following
potential:
d—1

For a scalar field @ of weight w = d—gl, this is a conformal coupling. Here the relativistic
energy—momentum tensor for (5.3) with (5.6) has the form (V,® = d,P)

2 5
V—g gty
d

1 —1
= VuOVy®@— Sy Vo®VI@+ = - (Guy®* + guyO®? — V, V, d?)
R

Tyy =

(5.7)

1 —
= .@'uq).@vq) - Eguv.@aq).@aq)+ - (<z@(”v) - ?g“v> CI)Z "‘guv.@a.@aq)z - @(“@v)q)z) 5

where Gy is the Einstein tensor, %,y and % the Weyl-covariant Ricci and scalar defined in
(2.48) and (2.49), together with the Weyl-covariant derivative Z,,. This energy—momentum
tensor is traceless when @ is on-shell, and Weyl-covariant of weight d — 1. The action is
Weyl-invariant (up to boundary terms), whereas the equations of motion can be recast as

~1
—%@“q>+d4—d§z’q>:o. (5.8)
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As a consequence of diffeomorphism invariance, the energy—momentum tensor obeys a

Weyl-covariant conservation equation given as

The interest for studying relativistic conformally coupled scalar fields is originally found
in inflationary models of cosmology.! On the Carrollian side the motivation goes along the
lines of the flat extension of gauge/gravity holographic correspondence, where the boundary
is null infinity (endowed with a Carrollian structure).

The decomposition of the Ricci scalar R is

1 /2 1+d ’ S .
R=5 (58,9 + %G%élyé’]) +F—2Vip' = 20" ¢+ K @,0 (5.10)

which leads to the following expansion for the potential (5.6) as

1
V(®) = 15Ve(®) + Vin(®) + Vg (D) (5.11)
with
d—1(2 14+d 3
Ve(®@) = W(§8t9+792+§ij5’1)®2, (5.12)
d—1/_ _~ :
V(@) = = (F=2Vig’ —20'p)) @2, (5.13)
-1 ..
Voa(®) = dg—dw,-jw”qﬂ. (5.14)

In the last expression the index “nd” stands for “non-dynamical.” The reason is that when
the expression (5.11) of the potential is used in the relativistic action (5.3), it produces the

Carrollian electric and magnetic actions — with some boundary terms dropped here?, as well

I'See e.g. [122] where more references are displayed.
20n the relativistic side we find:  3gMV9, P9, ® + TIRP? = JPHDYP + TLRD? -

19, (VsAre?).
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as a third action with no kinetic terms for ®. 3

/1~ \> d—1, .
S, — /dtddx\/EQ 5(5@@) i), (5.15)
; L a o a d=1 4,
- /dtd WaQ (—3 90905597, (5.16)
d—1_ .
Sy = — / drd'x /a0 ;019 (5.17)

The Carrollian equations of motion for the two non-trivial cases are as follows:

1 A~ 1 4 d—1 . .
59t§@z¢+ Wéjﬁ”d) = 0 electric, (5.18)
A A d—1 -
—9,9'®+ W;%’CI) = 0 magnetic. (5.19)

These equations are Weyl-covariant of weight w = d%l.

5.1.3 Carrollian set of momenta

As we have shown in the previous chapter, we can compute the set of momenta that are
conjugate to the Carrollian geometric pieces. This give rise to an energy—stress tensor
ITY, an energy flux IT' and an energy density IT, defined as in (4.25), (4.26) and (4.27) 4
with conformal weights d +3, d +2 and d + 1. Weyl invariance for the action translates
into condition (4.60) which is valid on-shell (as the tracelessness of the relativistic energy—
momentum tensor).

We can also introduce the momentum P; (weight d) which does not appear upon variation
of the action. Still, as we saw in the previous chapter, it enters the conservation equations
that mirror the Carrollian diffeomorphism invariance. For Weyl-invariant dynamics these are
given by equations (4.111) and (4.112).

The conservation equations are satisfied when the field & is on-shell, and this allows to

determine the momentum.

3These results coincide with those obtained for d = 2 in Ref. [123], where the authors proceed with a
thorough investigation of the possible Weyl-compatible terms. The kinetic terms of the electric and magnetic
actions, (5.15) and (5.16), can also be compared to the corresponding results of [87]. They also agree up to the
magnetic constraint introduced in Ref. [87], which would read here an =0 (see (5.21)). The latter guarantees
the invariance of the action under local Carrollian boosts, which we have not required a priori — Carrollian
invariance features here the covariance under Carrollian diffeomorphisms (2.100) of a theory defined on a
Carrollian spacetime (4.1) and (4.2).

4See also [121].
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Using Egs. (4.25), (4.26) and (4.27), we obtain the following energy and momenta for

the Carrollian electric and magnetic actions:

(17 = & (499)" + 4 (49 (£70%) — ¥ (16,8407 + 4914 5,9°))

I =0 (5.20)
(e =3 (1% ) — Gt &g,

(11 = 90910 — 4 9090+ L1 ((20) — Fa) 8> +01 5 9'0? — 5199 9?)

S 9@T D+ (5997 - 9 (69?)) (5.21)
=19@id+ 4} (ﬁ ®* - 5,90?).

I, =

l\)l'—

\

For the non-dynamical action we find

H;Jd = d4d (2031101 ja‘n,@”‘) P2
11, = 4519 (@7e7) 522
Ig = —3(02;;1) afijari/'d)z.
They all obey (4.60), and conservation equations (4.111) and (4.112) are satisfied with the
electric momenta, assuming the field be on-shell, namely obeying (5.18), and deliver the

electric momentum

Pi=TI . (5.23)
In a similar fashion for the magnetic dynamics, and using the equation of motion (5.19), we
obtain

PL=TI . (5.24)

One might be puzzled at this stage by the interplay of Eqgs. (5.23) and (5.24), which seem
to entail amongst electric, magnetic and non-dynamics. There is no doubt that electric and
magnetic Carrollian scalar dynamics resulting from %, and %}, are distinct, and can be
studied separately, on any Carrollian background. Likewise, the action .£;,q = —V,q is also
Carrollian-invariant, but is non-dynamical. What sets a deeper link between these dynamics,
which is not visible when treating them directly in the Carrollian framework, is that they all
emerge in the “small-k expansion” of a unique relativistic theory for the scalar field. This
was one possible guideline for obtaining the Carrollian scalar theories. It can also be applied
to the relativistic energy—momentum tensor a small-k expansion® such that the Carrollian

momenta appear at each power of k in the components of the energy—momentum tensor. The

>The wording “expansion” is an abuse because the result is exact here.
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latter reads
T4 = ST1Y +IT, + K211,
—§TH =TI + K°TIE (5.25)
32700 = 25 10e + I + KT,

We can expand the relativistic conservation of energy—momentum (5.9) and recollect the
Carrollian conservation equations for the electric, the magnetic and the non-dynamical cases.
In this process Egs. (4.111) and (4.112) arise for each case at a different k-order, and their
momenta P! and P! are naturally determined in terms of the next-order energy fluxes. This
explains the above results (5.23) and (5.24).

Now, for these Carrollian electric and magnetic dynamics, together with their set of
momenta, one can easily obtain the Noetherian currents and charges associated to (conformal)
isometries. The latter is explained in detail in [4], which is appended to this thesis, where we
compute the conformal isometric charges for the case of a scalar field propagating on the

null boundary of four-dimensional Robinson-Trautman spacetime.

5.2 Gravitational Chern-Simons and its Carrollian exten-

sions

5.2.1 Relativistic Cotton tensor and gravitational Chern-Simons action

The Cotton tensor is a three index object defined on Riemannian manifolds of arbitrary
dimension and partly antisymmetric that measures the deviation of a given geometry from
conformal flatness. In three dimensions, which is the framework of this section, one can

dualize this tensor and get the two-index symmetric tensor version as
po R
Cuv="u" Vp|Rvo— ngc . (5.26)

Here ds? = guvdxtdx is the metric with signature (— ++), Nuve = /—g€uvs (€012 = 1),
V, the associated Levi—Civita connection and Ry are the components of the Ricci tensor
with scalar R. The combination of the Ricci tensor and Ricci scalar inside the derivative
defines the Schouten tensor in three dimensions.
The Cotton tensor is Weyl-covariant, and conserved as a consequence of the second
Bianchi identity
V,CP, =0, (5.27)
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for any g,v. In fact, the Cotton tensor appears as the energy—momentum tensor of the

gravitational Chern—Simons action as

1 6SCS
cH =—— (5.28)
v =8 Sguv
where the gravitational Chern-Simons action is given by
1 2
Scs:—/ Tr{ wAdw+-wAwWAW |, (5.29)
2k ) u 3

whit w is the Levi—Civita connection one-form defined as w", = Fﬁvdxp. In this picture
Scs 1s a functional of the metric and of its derivatives.

As we did for the relativistic scalar field, the idea is to derive the different Carrollian
Chern-Simons actions and their corresponding dynamics, namely the different Carrollian
Cotton momenta at different powers in the small-k expansion. For the latter we work with
the relativistic Chern-Simons action in a Papapetrou-Randers background (2.99) whose k
dependence is explicit and allows to perform a Carrollian reduction for every relativistic
tensor. On top of that, the Papapetrou—Randers metric (2.99) allows for the use of a con-

venient although non-orthonormal Cartan mobile frame {e@ = ,}Q&, e = 9,} and coframe

{66 = —kp, 0l = dx’}. The hatted indices {0, i} are meant to distinguish this frame from
the coordinate coframe {6° = dx® = kdt,0" = dx'} and frame {eg = }J;,&; = J; }. In order
to make the notation simpler and consistent with the conventions used in this thesis so far,
we will keep the hat exclusively on the time direction. For the Carrollian side, we will rather
use {ef = é&,, e = 3,} and {Gf = 1,0/ = dxi}, and ignore the hat on the spatial indices.

The relativistic (affine) connection one-form elements w*, = ngep with Fﬁv the Levi—
Civita connection coefficients read:

o1

wy = k(gin+o;dy) _%%’jdxja (5.30)

wij = (K@i — ) n+anfiydd (5.31)

with wy; = —w,5. These expressions contain the Carrollian vorticity and acceleration defined

in (4.11) and (4.12), as well as the Carroll-Levi-Civita connection coefficients and the
extrinsic curvature of the spatial section . defined in (4.9) and (4.15) respectively.

The above enter the Carrollian connection adopted here:
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(the hat signals this connection is Carrollian as opposed to the Riemannian displayed in
(5.30) and (5.31)).

It is worth mentioning that the Carrollian connection (5.32) has been designed so as to
define a parallel transport that respects the time-and-space splitting, as mentioned in the
previous chapter, embracing distinct time and space Carrollian covariant derivatives éf)[ and

Vi being both metric compatible.

5.2.2 Carrollian expansion and its dynamics

The Carrollian descendants of the Riemann and Ricci tensors in the Papapetrou-Randers
background (2.99) are obtaind by using the prescription already used previously for the
relativistic fluids and the scalar field. In a first step, this consists in reducing the relativistic
tensors with respect to Carrollian diffeomorphisms. Next, one expands the latter in powers of
k, and at each power one finds Carrollian tensors that transform covariantly with respect to
Carrollian diffeomorphisms. Following this prescription for the Riemann curvature two-form
of (2.99), which is generally defined as

1
", =dwt, + ", AP, = ER“VMBP AO* (5.33)

we find

A ) T VS

A 1 N 1
—k [8,-*(D+2<pi*w— k—zn’"”Vm?m} En,ddx"Adxl, (5.34)
H. = A .—n' [kz (9 *@ +2 *w)+ M i | LA ik
J j j k Pk N P Yok | 1
; 1 |1
+1'; {3k2*62+@n’”"n”ymr7ns} Erlkldxk/\dxla (5.35)

where various Carrollian tensors emerge besides the Carrollian curvature two-form defined
as |
AR A A AL l
% =0, %’j:R‘kju/\dxk—kiR’jkldxk/\dx. (5.36)

No torsion is available for the relativistic Levi—Civita connection at hand. ©
We can obtain the Cotton Carrollian relatives by following the above pattern. The
reduction of C*V is straightforward: Carrollian scalars and vectors emerge from C" and C¥

. . 00 . . . ..
while CY — CTa’f leads to symmetric and traceless Carrollian tensors. Their decomposition

The torsion two-form is defined as 7* = dO* + wh, AOY = %T”VPG" NOP
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in powers of k is

1 a4 C(1 cp
L0 = e+ 2+ 0 (5.37)
= kzyﬂ'+x"+;—2, (5.38)
C()()aij Cii XU 7i)
Y i 2 .
T +or+ (5.39)

With this, any Carrollian structure supplied with the connection at hand, is naturally endowed
with ten Weyl-covariant Carrollian Cotton descendants which are defined in App. D.

As for the conservation equation (5.27), we can obtain its Carrollian decompositions as
(see App. D)

F V 46
VoCPy = Do+ bcor+ % + kﬁ"‘ —0, (5.40)
and ) )
1 ; , , T 2
LVpCP =2 T+ G+ =54+ 5 =0, (5.41)
All these identities are Weyl-covariant with
1. Sy
Dot = —5.%6‘(—1) -2y, (5.42)
1 A A .
bcot = —5%0(0) — ' + %8, (5.43)
1 A A iy
Feot = —5.@;6(1) - 97 —i—X,‘jé”, (5.44)
1 A »
Voo = —agtc(z) +Z;;8Y, (5.45)
and
i = 1 2@ xy' 5.46
Cot = > C(—1) T2xW*y, (5.46)
. 1 . ~ . . 1 ~ . iy
g(ljot = EglC(o) — @j‘PU +2x0xx' + agﬂlll + Wj&lj, (5.47)
. 1 . A s . 1 ~ . .
jféot = 5910(1) — @J'Xl] +2%® x7' + ﬁgt%l —I—nglj, (548)
. 1 . T g
%Clot = 5910(2) — QJZ’J + 5.@;21 —l—nglJ. (549)

Interpreting the Cotton Carrollian descendants is possible along the same lines as for the
ordinary Riemannian Cotton tensor. The main differences are that a Carrollian geometry has

a fibre-bundle structure and a wider freedom for its affine connection. This blurs to some
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extent the concept of conformal flatness, which is the feature emerging when the Cotton

vanishes in three-dimensional Riemannian manifolds, and more options emerge.

Vanishing geometric shear When &;; = 0 the time dependence in the metric a;; is factorized

as a;;(t,x) = e2°(X)

a;j(x). Moreover, in two dimensions @;;(x) is necessarily propor-
tional to §;;, hence choosing complex coordinates, the metric on the two-dimensional
surface .7 is recast as

2 _
de? = ﬁdCdC (5.50)

with P = P(r,{,{) a real function. Consequently, a subset of the Carroll-Cotton
tensors vanish, as it is inferred from Egs. (D.17), (D.18), (D.21) and (D.24) , namely
C(1)> €(2)> Zi and Zij.

Vanishing Carrollian vorticity From «@ = 0 we find

du=o@An. (5.51)

Using Frobenius criterion we are instructed that p is proportional to an exact form.
We can choose appropriately the time coordinate so that the Ehresmann connection b
vanishes, leading to

w=—Q(z,x)dr. (5.52)

The vanishing Carrollian Cotton tensors are now ¢(_yy, ¢(g), ¥; and ‘¥;;.

Vanishing Carrollian shear and vorticity This merges the two previous situations and the
Carrollian structure is of the form

-2
P(1,£,0)?

Despite the factorization of the metric and of the clock form, not all Carroll-Cotton
tensors are zero. We find indeed from (C.8), (C.5),

d¢? d¢dl, w=-9Q(@,¢, 0)dr. (5.53)

S ; p
R = 5Adn(QP), o =0, A =2P*J0zIn(QP) (5:54)

(9?5 is the complex conjugate of #), and using (D.20), (D.23) we obtain for the
Carroll-Cotton

Xe =390 = &g ((@PP9;9;n(@P))

Xeg =19 R; = & app 9 (QP)00;n(QP)) . X,z =0

(5.5%)
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with Xe = X¢ and ng = Xéé' The tensors in (5.55) vanish if QP is constant. This
result could have been anticipated by noticing that the Papapetrou—Randers (see Eq.
(2.99)) pseudo-Riemannian ascendant of (5.53) is conformally flat provided QP be
constant.

So in short, in Carrollian geometry, “conformal flatness” concerns separately the base
and the fibre of the bundle .#Z = R x . with distinct vanishing Carroll-Cotton tensors.

Now, expanding the Chern—Simons action (5.29) in powers of k in the Papapetrou—
Randers background (2.99) equipped with Levi—Civita connection (5.30) and (5.31), delivers
four distinct Carrollian avatars of the Chern—Simons dynamics,

Scs = k*S¢es +kSges + %Seccs + ;135%%9 (5.56)
possessing four sets of Weyl-covariant Carrollian momenta, obeying four sets of conformal
Carrollian conservation equations (4.111), (4.112). As for the relativistic gravitational Chern—
Simons action, these Carroll-Chern—Simons descendants are in general anomalous under
Carrollian diffeomorphisms and Weyl transformations with topological anomalies. The
completed analysis of this feature is given in detail in [1], which is appended to this thesis.
The Carrollian momenta and Carrollian conservation equations are precisely those recovered
in Sec. 5.2.1 when decomposing the Riemannian Cotton tensor and its divergence. This is
summarized as follows.

Paramagnetic Carroll-Chern—-Simons This comes from the k>-order term in the Chern—

Simons action and it reads
Sheg =4 /% dr d*xv/aQ +@>. (5.57)

The associated momenta are I1 = 2¢(_y), I’ =2y, Y =07 and Eqgs. (4.136), (4.138)
are now
Dot =0, o =0, (5.58)

see (5.42) and (5.46). From these equations we infer that the momentum P’ vanishes.
Magnetic Carroll-Chern-Simons The next order provides

1 . . N A A
Bos = 5/ HA <(I)lj AN Gy x @ + *&)’dd)’i) n’i—l—/ dr d*xv/aQ [*GfV,-(p’ — Q'Y x| .
(5.59)

"Here Y’/ corresponds to the traceless part of IT%/.
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Now IT=2¢(g), IT" = 2x', Y = —2%"/ and Egs. (4.111), (4.112) are
bcot=0, 4., =0, (5.60)

see (D.27) and (D.31), from which P! = 2y
Electric Carroll-Chern-Simons The order 1/k goes as

Seos = % //// Tr (w Add + %w ADA w) + ///{ dr d*x+/aQ {q)"nkl@m,- (5.61)
o't —+o (éﬁt?’} + 2%?") + 7 (Vg + q’l‘Pi)]
with IT = 2¢ ), IT" = 22/, Y/ = —2X"/ and Egs. (4.111), (4.112) are now
Fea =0, HE, =0, (5.62)

see (5.44) and (D.33). The momentum is P’ = 2)(i.

Paraelectric Carroll-Chern-Simons Finally, the lowest power in k gives
Sheg = — //// dr d®xv/an®9,.D, 5y = — ///1 dt d?x\/axEY D& (5.63)

leading to IT = 2¢ ), I = 0 and Y"/ = —2Z"/. Equations (4.111) and (4.112) reduce
to
Weor =0, 2o =0, (5.64)

see (5.45) and (5.49), which exhibit P! = 27

The names given to the four Carroll-Chern—Simons actions follow the pattern already
used e.g. for the scalar field in [4, 124, 87].



Chapter 6

Carrollian perspective of Einstein

dynamics

In chapter 4 we derived the most general hydrodynamic equations of Carrollian fluids defined
on an arbitrary Carrollian background. It has been argued that these exotic dynamics emerges
when null hypersurfaces are under consideration, see for instance [20]. Then, it is natural
to expect that physical systems that are constrained to live on null hypersurfaces will be
of Carrollian nature. Two examples of the latter have been known in gravity: black hole
horizon dynamics [48, 50, 51] and flat holography [35, 37, 42]. In this chapter we will focus
in the emergence of Carrollian physics in the context of Ricci-flat/Carrollian fluid duality,
which maps Einstein dynamics to Carrollian fluid dynamics defined at the null boundary of

Ricci-flat spacetimes.

6.1 Bulk reconstruction of Ricci-flat spacetimes

6.1.1 Covariant Newman-Unti gauge

In general, four dimensional Ricci-flat spacetimes are expressed as an infinite series expansion
in powers of the radial coordinate. The latter is performed in a designated gauge which is
usually chosen to be Bondi or Newmann-Unti gauge. After the partial resolution of Einstein
equations and assuming the appropriate fall-off conditions for the metric components, one
is able to expressed the solution space in terms of an infinite set of functions that depend
on time and the angles and satisfy a set of evolution (or constraint) equations'. These set
of equations capture the evolution of the Bondi mass and the angular momentum aspect,
sourced by the news tensor encoding gravitational radiation [126]. Although powerful, Bondi

LA nice review of the later is given in [125].
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and Newmann-Unti gauges lack of a three dimensional boundary interpretation, which is
necessary four our purpose here. In this direction one could wonder if it is possible to
construct a gauge for the spacetime such that it is manifestly covariant with respect to the
three dimensional boundary.

The latter is known to be possible for Einstein spacetimes with negative cosmological
constant in the constext of the AdS/CFT correspondence. Asymptotically AdS spacetimes
can be expressed in the Fefferman-Graham gauge? [128, 129]. Here, the timelike confor-
mal boundary is a three dimensional pseudo-Rimannian spacetime and the bulk solution is
expressed as an expansion in the radial coordinate, parameterized order by order in terms
of boundary tensors, covariant with respect to the boundary geometry. All these tensorial
objects are expressed in terms of two independent boundary tensors: the boundary metric
and the boundary energy-momentum tensor, which is covariantly conserved with respect to
the boundary Levi-Civita connection. Its covariance with respect to the conformal bound-
ary makes this choice of gauge suitable for holographic applications in the framework of
AdS/CFT correspondence.

In the Ricci-flat spacetimes the geometry of the boundary is completely different from
the asymptotically AdS case. The conformal boundary is null and therefore, it is endowed
with a Carrollian geometry whose structure is given by (4.1) and (4.2), with a coordinate

system adapted to the space/time splitting and respected by Carrollian diffeomorphisms

t'=1(t,x) and x =x'(x). (6.1)
The Fefferman-Graham gauge is only valid for asymptotically AdS spacetimes and there
is no extension for Ricci-flat spacetimes (no smooth vanishing A limit). Of course one can
consider the Bondi or Newmann-Unti gauges to study asymptotically flat> spacetimes, but one
disadvantage of this is the fact that they fail in being covariant with respect to the boundary
geometry since in those instances the geometry is locked*. An alternative is to consider
a generalization of the latter (gauge relaxation) that belongs to the Eddington-Finkelstein
type, namely possessing a light-like radial direction. The latter was first introduced in the
particular context of fluid/gravity correspondence [38—41, 130-133] relating asymptotically
AdS spacetimes with the dynamics of a relativistic conformal fluid in one dimension less.
So this gauge applies to both, asymptotically AdS and Ricci-flat spacetimes, and it is not
restricted to be used in the context of fluid/gravity duality. In this section we are not going to

2A construction of a Weyl covariant extension of the latter can be found in [127].

3Bondi and Newman-Unti gauges are also valid for asymptotically (A)dS spacetimes, see [126]

4Usually on those gauges the boundary the boundary geometry consists on base space restricted to be the
round sphere and with no Ehresmann connection.
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derive in full detail this alternative boundary covariant gauge but rather we will study on the
key ideas behind this bulk reconstruction and its properties. A fully detailed derivation of the
latter is given in [2]. °

In this gauge the asymptotically AdS bulk spacetime is reconstructed in terms of the
boundary data given by: the boundary geometry with metric g,v, a boundary congruence
(or velocity field) u*, and the energy-momentum tensor splitted in the energy density €
as well, heat current g#, and the viscous stress tensor 7. Notice that for the boundary
data we are using hydrodynamic nomenclature. The holographic fluid interpretation is only
valid when constitutive relations exist for the out of equilibrium quantities such as the heat
current and the viscous stress tensor ®. Regardless of the latter, we consider here the heat
current and stress tensor as independent and arbitrary variables that may or may not give
rise to hydrodynamic modes, and consider these as the data of an "abstract fluid". Then the
reconstruction of the spacetime goes as follows: the above data enter in the bulk geometry
in an expansion of inverse powers of the radial coordinate. This is guided by the gauge
conditions

u

il (6.2)

gr=0 and g, dxt=

and Weyl covariance implemented by the inclusion of the Weyl connection A, as defined
in (2.40). Here k> = 1//2, being ¢* the AdS radius. The allowed boundary terms that enters
in the line element are selected by the resolution of Einstein’s equations. We find that the
reconstruction of the spacetime is of the form
u
K2

2

> 1 u u
+ ; p (f(s)ﬁ +2pf(s)udxu +f(s)uvdx“dxv) , (6.3)

1
dsgux = 25 (dr4rA) +r2ds® 4+ r6,ydet dx¥ + ﬁSuvdx”dxv

where S = S;,ydx*dx" is defined in (2.51). The tensor €y is the shear of the affine null
geodesic congruence tangent to d,. We will refer to the latter as "Bondi shear". The Bondi
shear is not free but, thanks to Einstein’s equations, it is set to be related to the shear of the

boundary congruence u by

K%y = —20uy, (6.4)

3In [2] we worked in the orthonormal frame rather than the natural frame used in this Chapter.

%As a starting point on this framework, the authors in [39] consider a boosted planar AdS,, black hole,
parameterized with the black hole temperature 7' and the velocity u* of the black, which is mapped to a perfect
conformal fluid living on R%1,
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So it is transverse and traceless with respect to g,y and ut. As we can see here, the Bondi
shear in the situation at hand (asymptotically AdS spacetime) is not dynamical, which
reflects the absence of gravitational radiation. We will see soon that, when reaching the
asymptotically flat instance through the vanishing k limit, ¢}, will become a dynamical
and free piece of data that encodes part of the information about gravitational radiation.
Anticipating the latter, we can construct a boundary covariant, symmetric and traceless
news-like tensor as

Ny =t DGy (6.5)

In (6.3), the functions f(; are boundary scalars, f, are boundary transverse vectors,
and f),y are boundary symmetric and transverse tensors. The conformal weights of these
objects are s+ 2, s+ 1 and s respectively. Again, Einstein’s equations dictate the form of

these objects. In particular, for s = 1 we find

u? u 871G 4 2k?
f(1)ﬁ+2k—2f(1)udx“+f(1)uvdx“dxv e (811 +3uAq+ TAT> (6.6)

with Aq = Ag,dx* and At = AtyydxHdx” defined as

*Cpy, (6.7)

1
o ATy =Tuv g

Ag, =
T =9n" 382G
where g, is the boundary heat current, 7, the boundary viscous stress tensor 7 and ¢y
and cyy are the vector and traceless-symmetric tensor parts of the Cotton tensor (see the
Appendix D for decomposition of the Cotton tensor in three dimensions).
For the s = 2 order we find

8nG
foy = EVES (GaﬁAT P+ Duig ) +cq, (6.8)
87rG 47rG 8
47G (4 2 1
f(2)uv = _k_4 (gua@aATuv + ghuahv}/.@(aAQY) — gh“vhay.@aAqY+ 26(“aATv)a>
1 32nG
—5 (87Geoyy — cxopy) + TR AT (6.10)

"Here we keep the hear current and the viscous stress tensor arbitrary. When dealing with genuine boundary
fluids, these are also expressed in a derivative expansion of temperature and fluid velocity, together with the
corresponding transport coefficients.
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With the above, a subset of Einstein’s equations are solved up to relevant order as®

1 1 1 1
b=0(2). amo(2). amo(L). amo(2). e

The remaining equations give

1 1 1 1
é

G ,:r—zvuT“ﬁLﬁ(%), %ggizﬁvuﬂﬁﬁ(%). (6.12)
The latter implies that, for a conserved boundary energy-momentum tensor, equations in
(6.12) are solved up to 1/ r order.

This gauge for the spacetime has the advantage of being valid also for asymptotically
flat spacetime. The latter can be reached by taking the kK — 0 limit of (6.3). This vanishing
cosmological constant limit acts in the conformal boundary fluid as a Carrollian limit (seen
in the previous chapter) and was first discussed in [42] for the reconstruction of algebraically
special Ricci-flat spacetimes. So, this has two effects in the three dimensional boundary: (1)
in the kK — 0 limit the timelike conformal boundary turns to a null conformal boundary; (i1)
in this limiting procedure the boundary energy momentum tensor is expanded in powers of
k, where at each power of k different Carrollian data appear that obey different evolution

equations. We take the expansion as

e = Y gk, (6.13)
n>0
i Ci i 2 i 2n i
¢ = 5+0 +h Y K, (6.14)
n>2

3 giooxio i

= 2= EY —k°EY =Y kE] . (6.15)
“ k2 nzz:z (n)

Notice that we have terms with inverse powers of k. These terms might induced some
combinations of Carrollian tensors that are multiplied by factors like 1/k", which diverge
when taking the vanishing-k limit. Therefore, extra conditions have to be imposed in order to

avoid these blow ups. Some of these conditions are

*7 o oxyl

; VAl o xXl -
881G’ Q_87tG’

Cij_ Zl] El]:

&= ~ 81G’ ~ 817G’ 87G’

(6.16)

The above enforces five pieces of the energy momentum tensor to be completely determined
by the Carrollian geometry through the Cotton descendants (see App. D). Additionally, other

8Here &xp = Rap — 5Rgap — 3K*gas
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conditions will imply to satisfy some flux balance equations of some Carrollian dynamical
fields, as we will see soon.

Now we have all the ingredients to expressed any Ricci-flat spacetime in what we call
covariant Newmann-Unti gauge. The latter is reached here as a vanishing cosmological
constant limit of an asymptotically AdS spacetime with line element (6.3). We find, up to
O(1/r%) order,

ASRiccifat = M [Zd’”+ (2"(Pi — 2%+ — @fﬂ,) dx' — (rG + %7) u}

2 » G\ o
+(r+x*x0 +T d6* + (r'é;; + «@ %) dx'dx’!

1 4 . 16nG
+- 87'L'G8(0) le — —uNidx’ — "
r 3 3

E; jdx"dxf)

1 . 1 (1. 8 N
= (20@v— IN') 2—r—2p,<§NJ<€ﬁ+§*G)*Ni—i—SEG@jE]i)dx

r
1 /167G K i 1
(M50 anca ey, ) avad 4o (). (6.17)

where the star designates a d = 2 Carrollian Hodge duality as defined in Appendix D, and
the tensor F;; is defined as 9

1 A 1 ~ 3 3 3
The gauge conditions for this line element are
gr=0 and g dx*=np, (6.19)

with @ = —Qdt + b;dx’ the clock form of the boundary Carrollian geometry. As one can
see from the gauge conditions (6.19), the latter does not correspond neither to Bondi (since
there is no determinant condition) nor Newman-Unti!? (grr = —1 and g,; = 0). Here the time
coordinate ¢ corresponds to a retarded time and coincides at the boundary with the Carrollian
time used in (4.1) and (4.2).

All the tensors entering expression (6.17) are defined on the null conformal boundary,
which is Carrollian, and can be sorted as follows.

We define the symmetric and traceless part of a Carrollian two-tensor s, as S(ab)y = S(ab) — ésc‘ﬁah (here
d=2).

19T our modified Newman-Unti gauge, the affinely parameterized null geodesic congruence tangent to 9,
has in general expansion and twist due to Q and b;, making it non-hypersurface orthogonal as opposed to what
happen in the usual Newman-Unti gauge.
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Carrollian geometry The geometry of the null boundary is part of the bulk solution space,
parameterized by a;;, b; and Q. The latter provides different Carrollian quantities
and attributes such as Carrollian connections, Carrollian curvature tensors, Carrollian
Cotton descendants (D.12), (D.13), (D.14), among others. a;;, b; and Q are free data
whose only restriction is the vanishing of the Carrollian shear &;; = 0 which arises as a

consequence of Einstein’s equations.

Bulk shear Additionally we have the symmetric and traceless boundary dynamic shear
%ij(t,x) that we call Bondi shear. As we mentioned previously, in the flat limit, the
Bondi shear decouples and becomes a completely free function and sources the evolu-
tion equation of other tensorial data (as we will see for the Einstein’s/Carrollian fluid
equations). The dynamic shear carries part of the information of the bulk gravitational

radiation through the symmetric and traceless Bondi-like news tensor!!

A

Nii = = DG (6.20)

1
Q
The latter makes the shear and news tensor be defined as truly boundary conformal

Carroll-covariant tensors of weights —1 and 0O respectively.

Carrollian fluid The boundary Carrollian fluid of asymptotically flat spacetimes corre-
sponds to the descendant of a relativistic conformal fluid dual to asymptotically AdS
spacetimes with conserved energy momentum tensor 7%V, As mentioned previously,
our Carrollian fluid is reached at the vanishing velocity light limit of the relativistic
hydrodynamic equation V,T#" = 0, which corresponds to a vanishing cosmological
constant limit in the bulk. This Carrollian fluid is described in terms of the energy
density £(0), two heat currents Qi and 7', and two the symmetric and traceless stress
tensors X/ and Z%/.12 These fluid data enter in the Carrollian momenta of the fluid

dynamics defined in the previous chapter as
i i R ij ij_ &0 ij i
=¢gq, I'=Q, P=r, II"=-XY HJZTaf—:f. (6.21)

The boundary Carrollian fluid is not free, as opposed to its relativistic ascendant, but

it is sourced by the shear, news and the Cotton descendants. These Carrollian fluid

"These definitions do not exactly coincide with the original shear and news defined in BMS gauge. They
vanish in Robinson—-Trautmann spacetimes expressed in the gauge at hand, which is their defining gauge, and
correspond to a radiating solution.

12The other two pieces ¢’ and {/ are set to zero thanks to the condition &;; = 0.
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equations comes from the Einstein’s equations R;; = 0 and R;; = 0. They read

l 4 7R B [ 1 > O >ij 1 op 1 1~ >ij
N .. 1 ~ . . 1 oA A A oA A
@jHlf+§@zP’+2*w ' = 6nG [%lj@j%+*<€’j@jmf—4*w *C R

A A
— 9 (996"~ 9963 ) + €1 D A

—_ N

~ N 1 A N
+397 (" AM) =39 (€7 A) } (6.23)
with IT, TT', TT¥, T/ P! as in Eqgs. (6.21). The above Carrollian equations are often
referred to as flux-balance equations [35, 37] and describe the evolution of the inde-
pendent momenta IT = &) and P! = 7. These two independent data are related to the

Bondi mass and angular momentum aspects, M (¢,x) and N(z,x) as

|
8nGe) = 2M+ 6" Ny, (6.24)
8nGn’ = sy —N! (6.25)

with y' defined in (D.20). The other two fluid equations for the fluid configuration
at hand are the ones defined in (4.137) and (4.139) with vanishing IT and IT, and are

satisfied due to geometric identities of the Cotton descendants at zero &;; (see App. D).

We can notice that in this fluid configuration IT' = Q' # 0. The presence of a non
vanishing energy flux breaks local Carroll boost invariance on the boundary Carrollian
fluid associated to Ricci-flat spacetimes. This breaking give also account to grav-
itational radiation, which in the boundary-covariant gauge designed in (6.17) it is
not only encoded in the news tensor (6.20) but also in the Carrollian energy flux
=0 = % +x' and the Carrollian stress [T/ = —X¥ = —% *X'/. As an example
we can consider Robinson-Trautman spacetimes, where the gravitational radiation is

exclusively captured in ¥ and X%/

All the above fluid related tensors appear at every order in the 1/r expansion of the
bulk spacetime, in the same spirit as in the case of bulk asymptotically AdS spacetimes

(in the Fefferman-Graham or in the modified Newman-Unti gauge).

Magnetic mass aspect Here we define a magnetic mass aspect which is denoted by v
and appeas in the bulk line element (6.17) at order 1/72. Its definition relies on the

vanishing k limit of the relativistic Cotton density c¢ associated to the timelike conformal
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boundary. The latter read

919,46 — %cgi s (6.26)

FNg.

) 1
= lime =360~

We can subtract the radiative contribution of (6.26) to define the nut aspect

1 T | I ~ A -
N=v+ gfflj x N = 5€0) ~ Z.@i.@j *x6" (6.27)
that satisfies the following evolution equation:
1 ~ 1~ o 1A 5ij Ty
SIN =390 =7 (99+ N1 =619, . (6.28)

The above equation is derived by inserting (6.27) into the Bianchi identity (D.27), and

therefore is purely geometrical.

Further non-fluid degrees of freedom While asymptotically AdS spacetimes are recon-
structed in terms of a finite set of boundary data (boundary metric and energy-
momentum tensor), Ricci-flat spacetimes contain an infinite set of arbitrary degrees
of freedom besides the geometric and fluid data. These correspond to an infinite
number of Carrollian tensors that appear at all orders in the radial expansion, and
obey Carrollian evolution (or flux balance) equations. These are dubbed "Chthonian"
degrees of freedom. Part of this infinite set of Chthonian degrees of freedom that we
find up to order 1/7° are the dynamic shear %; ; that appear at ¢'(0), the symmetric

and traceless tensors Ejj and Ey);;, and the transverse vector 7;);. As we mentioned

ij>
before, some of the conditions necessary to avoid divergences in the line element due
to the k — 0 limit correspond to flux-balance equations. The flux-balance equation for

E;; appears in this way and we find

I A 3 I A \

The flux-balance equations for E(,);; and 7(); are expected to appear at 1 /r? in the

Same way.

All the above make (6.17) fully covariant with respect to the Carrollian boundary. The
latter can also be supplemented with the boundary-fluid hydrodynamic frame invariance by
relaxing even more the gauge. This has been done in three dimensional bulk in [76, 77, 134,
75].
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6.1.2 Resumming the series expansion

There are some cases where we can resumme the series expansion given in (6.17). Resumma-
tion occurs when additional conditions on the boundary data are imposed, enforcing specific

features for the bulk Weyl tensor. These conditions are the following:

1. the vanishing of the dynamic shear %;;(¢,x), implying the relation M = 4nGe(g);

2. all other non-Carrollian-fluid related degrees of freedom are discarded, as e.g. E;j,

E()j and Z);;

3. N'in (6.25) is set to zero. This fixes the Carrollian momentum P’ with the Carrollian

Cotton descendant y; as

_ 1 .
b= —— L 6.30
T SnG*w (6.30)

With the above conditions, the degrees of freedom necessary to reconstruct the bulk
spacetime are reduced to the ones describing the boundary Carrollian geometry (metric, field
of observers and Erhesmann connection), and the Carrollian fluid energy density (Bondi
mass). Then, the line element (6.17) is now resummed into an exact Ricci-flat spacetime of

algebraically special type'®> whose expression is

dst, = w[2dr+2 (rg;—x9yx@) ol — (10 +.4 ) | + pdl®

2
+% [87Ge gyr+ *@c(g)] 6.31)

with
p? =r?+xm°. (6.32)
Here, Ricci-flatness is guaranteed by the Carrollian fluid equations (4.111) and (4.112)

which, due to the vanishing of 4;;, are genuine Carrollian conservation equations for the

momenta, without forcing terms in the right hand side. The set of momenta are now given by

. . . 1 L 1 N
M=g,, II= i opi— iU = - xi
(0)» 872G X gnG Vo 87G
i = 80 i 1 i (6.33)
2 8nG

The Carrollian Cotton tensors defined in App. D obey identical set of equations and the

geometric shear remains vanishing. The latter makes possible to further simplify equations

13See details and examples in [42].
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(4.111) and (4.112) into

. 1 .
.@[8( ) + %.@l Y = 0, (6.34)

A 1 A

.@j&‘( ) % *.@jC(O) = 0, (6.35)

where ¢(g) and x" are given in geometric terms in (D.15) and (D.20), and €() given by the
Bondi mass, as stressed in item 1.

One can anticipate, by looking at (6.34) and (6.35) as well as (D.27), that the energy
density () and the Carrollian Cotton scalar density ¢ (g play dual roles. We will formulate
this concretely in the coming sections when discussing the boundary action of the Ehlers
group. Still, by anticipating this observation, we can introduce the following Carrollian

complex scalar £(¢,x) and vector £/ (t,x):
T = —C(o) + 87'CiG8(0), (6.36)
o= x—ixy. (6.37)

The above allows to recast the aforementioned equations as'*

A .

Sar=9;%, 919t =
PP A A (6.38)
9397 = <2*w*x,-+$@twi—.@f‘1’j, <2 oy + L %1// @‘P’”)
We can also act with a second spatial derivative on (6.35) and use (C.1) to obtain
PN 1 A ”
@J.@j%=2i<§@,*w%—,@%f> . (6.39)

It is worth mentioning that the fluid equations (6.34) and (6.34) coincide with equations
(29.15) and (29.16) of [137]'°. Indeed, complicated Einstein’s equations as the latter can be
easily tamed into simple fluid equations supplemented by a sort of "self duality requirements"
(relationship between Cotton and fluid data), by using the null boundary analysis studied in
this section, plus Carrollian geometric tools. The latter suggests that Carrollian covariance is

definitely the natural language for studying on properties of asymptotically flat spacetimes.

14The first equation in (6.38) is a flux-balance equation, driven exclusively by the Cotton vector %/ displayed
in (6.37). The loss phenomenon concerns both the mass aspect £() and the “magnetic-mass aspect” v, as
captured in Egs. (76) and (80) of [135] — see also App. D of [136].

SFor that purpose, the following identifications are necessary: by=—-L«w=-% 1= 2(M+im), Q =1,
t = u, whereas their radial coordinate is 7 = r — ro with ro(z, Z:' ) the origin in the affine parameter of the
geodesic congruence tangent to o,
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The solution space of the resummed Ricci-flat spacetime given by (6.31) is restricted to
be of algebraically special Petrov type. This is guaranteed thanks to the Goldberg-Sachs
theorem of the null, geodesic congruence tangent to d,, which in the resummed case, it is
shear-free. The latter is part of the canonical null tetrad introduced in [42] and [137], which is
parallelly transported along the null direction d, (thanks to the affine nature of r). In complex

coordinates { and Zj , as given in Appendix D, the null tetrad is expressed in a Carrollian

fashion as
k — ar
1=} (TR g — ) 5+ (6.40)
m= ﬁ (95 + <*925 *0 — r(p§> (9r>
with the usual relations k-1= —1, m-m = 1 and ds2; = —2kl+ 2mm. In general, k is a
multiplicity-two principal null direction of the Weyl tensor, and by using the tetrad (6.40) we
find the following Weyl complex scalars:'®
(
Yo=¥=0
Y2 = 5o (6.41)
Py, . .
ix,* P,
(Ws=—=4+0(1/(r—i*x@)?).

All Ws are spelled using the Carrollian descendants of the boundary Cotton tensor — as well

as their derivatives in the higher-order terms.

6.2 Bulk versus boundary isometries

In this chapter, the spacetimes that we are going to consider have at least one Killing vector
field. Along the lines of a three dimensional boundary interpretation of Ricci-flat spacetimes,
it is natural to wonder how bulk isometries are manifested on the boundary geometry, and
vice versa, how one could design bulk isometries from purely boundary considerations.

For the sake of clarity of the present analysis, we consider vector fields that do not have
components in d,, and whose other components depend only on the boundary coordinates
t and x. We could be more general and consider radial dependence by assuming a series

expansion in powers of r in every component, but this would make the calculations more

161p the instance of Petrov type D solutions, neither W3 nor W, are necessarily zero, because 1 is not always a
principal null direction. One can reach another null tetrad through a Lorentz transformation such that I’ be a
principal direction of multiplicity two whereas k' o< k, and hence ¥, =¥} = 0.
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complicated without adding more value to our simple but concrete conclusion: bulk isometries
are mapped onto boundary Carrollian isometries generated by strong Killing vectors that
satisfy (4.56). For the same reason, from now on, we will work with algebraically special
Ricci-flat solutions which are given by the line element (6.31).

In order to reach the aforementioned conclusion in a simple way, we can adopt bulk
Cartan frame and co-frame aligned with the fiber (4.2) and the clock form (4.3) of the

boundary Carrollian structure. In this formalism we have

1 _ A b; _
€7 U:§3,, ef:ai:ai—i‘ﬁlat, e;:&r,

. . A . A (6.42)

0= —u=Qdr—bdx', 0'=dx', 0 =dr.

Then, the components for the resummed bulk metric (6.31) read

U 0 _ N D L
8ii = 52 (8nGer+xoc) —r0 — %, g *@;*w rQ;, g 1, (6.43)
2i=0, g+=0, gij=p-a.
Assuming the bulk Killing vector of the form

E=E"(1,%)0, +EX(,x) 0k = ET(1,x)v + EX(1,x) 0, (6.44)

where & = Q&' — EKpy, we can determine the Lie derivative of the metric in terms of
boundary Carrollian objects as

Zegn =0, Ziga=U, ZLigri=Vi (6.45)
Lrgi; = 2p> (ﬁ(igka e+ ED j) — gV +agE (+@7) (6.46)
Le&i = —GMl—8xVi—T (E (o) + ¢19i§j)
4z <*@i*w) " <*@j *w) & +p2aijéa,§f (6.47)
and
S = 28l + 2g;ié8t§i - (% (8nGer+ «mc) —ro — ,;zf) , (6.48)

with p(¢,x) given by (4.64) and

Vi(t,X):—<§i—(pi) §f+2§jwj,~. (6.49)
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Now, since we are considering Killing fields that are independent of the radial coordinate,
the Lie derivative of the metric must vanish at every order in the r expansion. This gives as a

result several conditions for the components of &. The first one is
E =0, (6.50)

which is expected for the generators of Carrollian diffeomorphisms. We also find, as a result
of the bulk Killing equations, the conditions

Vi€ta+& = 0, (6.51)
1.

go& +es =0, (6.52)

—(&—@) g +28im; = 0, (6.53)

which corresponds to the Carrollian Killing equations plus the extra condition for strong
Carrollian Killing vectors. Thus, the bulk Killing field (6.44) is mapped onto a strong
Carrollian Killing vector. There are additional conditions that appear as the vanishing of the
Lie derivatives of other Carrollian tensors, but those conditions are guaranteed due to the

strong Killing requirements.

6.3 Tower of charges from the boundary perspective

The asymptotic symmetry group of Ricci-flat spacetimes (BMS,) allows to define an infinite
set of charges. A bulk construction of such leading and subleading gravitational charges has
been presented in [95, 94, 93, 97, 98] based on the asymptotic expansion of the Barnich-
Brandt charges [138]. These infinite set of charges (and dual charges) are not generally
conserved due to the presence of gravitational radiation.

The Carrollian approach for Ricci-flat spacetimes that was presented in the previous
sections allow us for an alternative construction of the gravitational charges and dual charges
from purely boundary considerations. That is, from the Carrollian dynamics emerging on
the boundary due to bulk Einstein’s equations, and the Carrollian conformal isometry group
(isomorphic to BMS,) available in the boundary theory. These charges are not conserved in
general due to gravitational radiation, which in this approach is encoded in the Carrollian
Cotton descendants (D.13), (D.14), and the Bondi shear ¢;;.

Before presenting the Carrollian version of the bulk charges, two observations are worth
mentioning regarding Ricci-flat metric in either its general form (6.17) or its resummed

version (6.31). On the one hand, at every 1//>*! order in the metric expansion, Einstein’s
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equations reveal Carrollian dynamics obeying (4.136), (4.137), (4.138) and (4.139) with
momenta ITy, H’@, P(is), fI’(JS ) and H’(JS ) and possibly a non-vanishing right hand side sourced
by the dynamic shear and news tensor. For every set of momenta, together with the Carrollian
conformal Killing vectors (D.34), we can construct a set of currents {K(S)’Kés)’ fc(s),lzgs)}
following (4.142) and a set of charges {Q(S) TY» Q(S) Ty} by using (4.57). The conservation
or non-conservation of these charges depend on Ji/( 5) and Jif(s) (see (4.144)). Fors =0 (1/r
order), we obtain the set of Carrollian fluid momenta given in (6.21) and their corresponding
charges are leading. The s > 1 set of momenta lead to subleading charges. These leading
and subleading charges are referred as electric charges since their conservation, if any, are
on-shell.

On the other hand, at every 1//%+2, the metric expansion reveals again Carrollian dynamics
but this time associated to the Cotton tensor descendants (see App. D for the expansion
of the Cotton pieces). That is, the set of equations (4.136), (4.137), (4.138) and (4.139)

with Cotton momenta Icq(5), IT P (5) Hgot(s)’ ﬁicfot

i
\ Cot(s)” ~ ¢ "
set of currents { Ko (5), Ki.o (s) Kot (5): Kéo (S)}, and charges {Qcot(5) 7,y Qcot (s) 7y } that we
labelled as magnetic since their conservation, if any, are realized off-shell.
Additionally, due to the relationship between the fluid and the Cotton data ((6.16) in the

general instance and (6.33) for the resummable instance), the two towers of charges Q( $TY

(s)° which allows to construct the

and Q¢ (s)T,y are equivalent to each other.

In this section we will restrict ourselves to the resummable case, namely the algebraically
special class of solutions, where the number of degrees of freedom that parameterize the
spacetime is finite and the construction of the subleading charges relies on the expansion of

1/p2. The latter brings two sets of charges.

6.3.1 Electric tower
The electric tower of charges are made out of s-th momenta H(S), Hés), P(is), I:Il(Js ) and I'Il(JS )
which, thanks to the 1/p? expansion of the bulk metric, are nothing but equal to the set given

in (6.33) multiplied by a factor of *@>*. They read

2s 2s 2s
s i _ *0 i T i o *O ij
Mo =078, My =526 % M= 826 ™Y "0~ 326 ™
y go .1 .
ij _ 2s (0) ij ij
H(S) = x0 (—2 a e «*PY |, (6.54)

where one can easily see that the s = O corresponds to the leading ones.
Therefore, the latter makes possible to define the set of s-th current pieces, ki), KES), K{s)
and K és) as the multiplcation of (4.142) with *®@>*.
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These set of Carrollian currents are not conserved in general and, using the Bianchi
identities given in (D.6), (D.7) and (D.8), we find the divergences (4.144), which contribute
the time evolution of the charges computed as in (4.57), and (4.58) as

N N
Ay = —se (*wm+§1<l*w,~>, (6:55)
2s o i . 1 .
Hy = _’;i’G sy (.@,-gf—zgfmﬁ)—s*wzs—z (*wmfx+§l{l*y/,~) (6.56)
with
K= gre& *vi—E'e()
K= gl * A
\ i Sg(OG)i 1 i i foni (6.57)
kK'=+5¢ —m(‘?*‘i’_ﬁi *%)
\ki: SHG‘SJ*XI

and the Killing components & and &/ defined as in (D.34) following (4.28).
From (6.55), we can easily see that the set {1?(0),[?{0)} give rise to a set of always

conserved charges Q(0)7T7y. These charges are given as the following surface integral over .

Qoyry = /dzx\/a (R+b;K’)
_ 2 J
_ SnG/ Prv/axg (1 -bix%), 6.58)

and are purely geometrical since they only depend on the geometry of the null conformal
boundary (encoded in the Cotton pieces).

From (6.56) we can see that the set { k(g), K EO)} allows to define the set of leading charges
Q(0)r,y as the surface integral

Qoyry = /dzx\/a K—I—b-Kj) (6.59)

2
_ 8ﬂG/dx\/_§ (87Geg) +bi+x')

—G /y d2xy/at! (*w +47Ge(g)bi — b *\Pf,.) .

The latter not only depend on the boundary geometry, but also on the energy density of the
boundary fluid. These charges are conserved in the presence of strong Carrollian Killing

fields. They could also be conserved for specific spacetime configurations. The rest of the
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electric tower of subleading charges for all s are constructed upon multiplying the integrands
of (6.58) and (6.59) by «®> (due to the expansion in 1/p?).

6.3.2 Magnetic tower

Similar to the electric case, here we have the s-th magnetic momenta Iy (y), H"COt (s)° Péot (s)?
ﬁgot (s) and Hgot (s) whose definition in the configuration at hand is given by
Mg = *@7c), Mo =*@>L,  Phyy = *07Y, ﬁgot(s) = —x@>XY,

Again, the same factor appears in all magnetic currents Kcoy(s)» Ko, (s)> Kcot(s) and K, )

built out of the leading ones (s = 0) , namely

Kcor = &' — éiC(O)

Kcot = gili
Kiy=SHE1 - &0, —&ly
(Keo = —E/XY;.

(6.61)

The divergence of the magnetic currents (4.144) read

_ - 1,
HCot(s)y = =S * @2 (*GLQ%KCM—F §K(’30t *l//,) , (6.62)
Heoris)y = —*07Y <@i€f_2§jwji)
~ 1 .
2 <*axoflccm + 3K *%) . (6.63)

The evolution of the magnetic charges are also determined by the above divergences following

(4.57) and (4.58). For the set {Kcy(0), K¢

Cot(o)} we find the geometric charges

QCOt(O) TY — /y d’xv/a (ffcot +b jkéot)

_ /y dxy/aE! (xi b jxf;) 7 (6.64)

which are always conserved.
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From the set { Kco(0), } we build the charges

Cot

Ocot(0)Ty = / d*xv/a <1<c0t+b-Kéot) (6.65)
= /defg o) +bix! +/ dzxfé w, )b b‘{”)

which are conserved off-shell for strong Carrollian Killings. It is also possible to have other
conserved magnetic charges in other specific configurations. Again, the rest of the magnetic
tower of subleading charges for all s are constructed upon multiplying the integrands of
(6.64) and (6.65) by *®@>*.

So far we have obtained the tower of electric and magnetic charges for the resummable
metric (6.31). Several observations are worth mentioning here regarding this towers of
charges. The first one is the fact that the set of geometrical charges Q(S)jT’y coincide with the
set Qcot(s),T’y for any s. Indeed, in d = 2, if &' are the spatial components of a conformal
Killing vector, so are #£%.!7 Therefore, the set of &' are identical to the set of £/ Because
of the latter, we call the aforementioned charges {Q(s) T7y} = {QCOt (s) T7y} "self dual". The
other two set of charges correspond to the electric {Qy) 7,y } and magnetic {Qcoy(s),r,y } ONES,
which due to the insertion of @2 in the integrands (6.59) and (6.65), the subleading towers
have the status of multipolar moments (see the original works [139-142] as well as [143] for
a modern perspective). In particular, we will see in the next section that, when considering
stationary spacetimes, Q(y) 7,y and Qcoy(s),7,y reproduce the mass and angular momentum
multipolar expansion for the Kerr-Taub-NUT family.

Among the above charges associated to Carrollian Conformal Killings (D.34), which
are not always conserved, one can find the ones that are associated to bulk isometries, if
present. As discussed in Sec. 6.2, these isometries are mapped to the boundary as strong
Carrollian isometries. These generates two electric and two magnetic towers of charges

{0(s):O(s)» Ocot (5): Ocor (5) } from which the four leading charges { Q (o), O(0)> Qcor (0)» Ocot (0) }
are always conserved, although part of them may be trivial.

6.4 Time-independent solutions

6.4.1 Some classes of stationary spacetimes

The final goal of this chapter is to analyze the action of the Ehlers hidden symmetry group of

Einstein’s dynamics onto the Carrollian boundary dynamics. To that end, a big part of the

"The proof of this statement is straightforward in complex coordinates, see footnote 6.
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above will be based on the Ehlers-Geroch reduction procedure which relies on the presence
of isometries.!® For the sake of the forthcoming analysis on the Ehlers group, from now
on we will restrict ourselves to spacetimes of algebraically special Petrov type possessing a
timelike Killing vector, which can be generally of the form (6.44). In stationary spacetimes,
this Killing field remains timelike in the asymptotic region. The latter allows us to choose
our Killing vector such that it coincides with the boundary vector v defined in (6.42). This
implies that on the conformal boundary, our timelike Killing vector coincides with the fiber
of the boundary Carrollian structure. Moreover, we can set 2 = 1 through a Weyl rescaling,
bringing the timelike Killing vector to the simple form o, (a detailed description of this
setting is given in [144]). In this set up the solution space is much more reduced and in
particular does not consider spacetimes where the timelike Killing vector becomes spacelike
in the asymptotic region, as the Plebanski—-Demianski family (like the C-metric) [145] (see
also [137, 146]), which is algebraically special of Petrov type D.'” We could generalize
our analysis by considering more general Killing fields at the cost of making the algebraic
structure of the spacetime unstable under Ehlers transformation, which increases the technical
difficulty of the problem. Because of the latter and in order to make the discussion clear we
will restrict our analysis of the Ehlers-Geroch procedure for algebraically special Ricci-flat
spacetimes with a timelike isometry generated by the Killing vector & = d;, namely truly
stationary Ricci-flat spacetimes whose algebraic structure are stable under the action of the
Ehlers group.

With this choice, every Carroll tensor in the metric (6.31) becomes independent of the
time. For instance, time independece implies 6 = 0 and ¢; = O since we have set Q = 1. The
time independence of the spacetime also makes all the Weyl-Carroll-covariant derivatives to
become ordinary Levi-Civita derivatives. Thus, the only non-vanishing Carrollian tensors are

given in complex coordinates with P = P({, £) (see App. D) as

iP?

@ = (3cbg = b ). (6.66)

K =K =K=AInP, (6.67)

c0) = (A+2K) @, (6.68)

Xe = 50K, X = —%&51(, (6.69)

Y =3i0g +@°, Y = 30 +@°, (6.70)

W= Pizag (P29, x@), Wpp = }%ag (P2og @), 6.71)

'8This procedure can be done for timelike and spacelike isometries. For the case of null isometries see [114].
19Their Weyl components are given in Eq. (6.41) — see also footnote 16.
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where Af = 2P285 d¢ f- In addition, we also have the energy density () (¢, ¢) (Bondi mass

aspect), as well as another scalar given by

P2
@ = 5 (9cbg +9gbe ) (6.72)

which is %V,-bi and should not be confused with the two-form Carrollian vorticity @ =
1@;;dx’ Adx/, i.e. the Hodge-dual of the scalar @ = —1V; xb expressed explicitly in (6.66).

These two real twist scalars can be combined into the complex Carrollian twist
O =*0 +i0. (6.73)
In this stationary configuration, the equations of motion (6.34), (6.35) are recast as

AK = 0, (6.74)
ot = 0. (6.75)

The first equation implies that the curvature K is required to be a harmonic function, that is,

it is of the form

K9 =5 (MO +kD), (6.76)

which puts some limitations on the function P({, 5 ) (still not all solutions for P in this
instance are known). We can also define the imaginary part of k (for future use) as another

harmonic function 1

K*(8,8) = 5 (MO k(D). (6.77)
The second equation (6.75), together with (6.36), show that the Cotton density —C(0) is
the real part of an arbitrary holomorphic function £({), while the energy density 8wGe )

corresponds to the imaginary part of the latter. Thanks to (6.39), which in the stationary case

reduces to
AT=0, (6.78)

both the Cotton and the energy density are required to be harmonic functions. Having c(q)

and K, it is always possible to determine the functions by and b Z by using (6.68).
Although this chapter is not devoted to solve Einstein’s equations, we can illustrate and

sort some the classes of solutions based on the curvature K (the ones we will see can be

found in various chapters of [137, 146]). This separation goes as follows:



6.4 Time-independent solutions 119

Non-constant K This is the general case for an arbitrary harmonic curvature K. This is the
most obscure situation since, as we mentioned previously, very few known solutions of
Ps that possess a non-constant harmonic K are known in the literature 2. Still, if we
assume we have one, together with its holomorphic function k(¢), and specifying the
choice for the arbitrary function 7(), we can solve (6.68) whose expression is given

by (6.66) with Ehresmann connection
SN PR Y - (6.79)

P2(£,8)agk(0)

Constant K This is the most common situation in the literature (the Kerr-Taub-NUT family
belongs to this class). It implies that IAC(C ) is also constant and the above solution
for b; 1s invalid. The constant K situation captures three instances: spherical, flat or
hyperbolic foliations, which corresponds to K = 1, K = 0 and K = —1 respectively.
Here the metric function P is parameterized as

P(§,8)=ALL+BC+BC+D (6.80)

with A, D arbitrary real constants and B an arbitrary complex constant. The curvature
K reads
K =2(AD — BB). (6.81)

Within the constant K class, two cases must be treated separately.

K#0

As we mentioned previously, thanks to (6.78) the Cotton density is restricted to be an

harmonic function, namely it is expressed as ¢ g (¢, é_’ )= —% Then, equation
(6.68) 1s solved for

. :C(O)(C,E)Jri

«@(£,8) =2 (f@aglnP(c,é)—f(é)aglnmc,m%(agf<c>—agf<é>)),

(6.82)

20 An example of solution with non-constant harmonic K is given in [137] whith (up to holomorphic coordinate
transformations) K = —3({ + §) realized with P = ({ + £)*2
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where f({) is an arbitrary holomorphic function. The vorticity defined above is

reached with the Ehresmann connection (7 is a real constant)

7 C (+it(0)) F(©)

be(,8) = — _ S8 (6.83)
: 2K(BE+D)P(C,T)  PA(L.D)

K=0

In this case A = B = 0 so that P = D. Thus, given c()(C, &)y=- HE(l) %@) and solving

(6.68) we get

00,8 =5 (1)~ 2(2) M%g@f+q&f) (6.84)

with Z({) is an arbitrary holomorphic function, and

/ 47z / dz (%0 +i%(2), (6.85)

with 1 is a real integration constant.

The last two cases have in common the instance where ¢(g) = K = 0, realized with
vanishing % and constant P.

As stated before, in this thesis we are not going to solve and analyze Einstein’s equations
in full generality. Still, we will emphasize the subclass composed by the Kerr-Taub-NUT
family. In this class, the curvature K is constant and reached with B = 0. Therefore two
instances arises in this subclass: vanishing and non vanishing K, which are realized by

vanishing and non-vanishing A respectively.

* For non-vanishing K, the holomorphic function 7 is
T =2i(M +iKn), (6.86)

where M is the mass and n the nut charge, with both constants. The holomorphic
function f () reads

f(&) =ial (6.87)

with a the Kerr angular velocity. We find the Ehresmann connection by using (6.82)
and (6.83) with Ty = 2M. It reads

be(£.8)=—i (%—%) (6.88)
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which gives the vorticity

*G(C,5)=n+a—2%, (6.89)

where P = A{C +D and K = 2AD.

* In the case of K =0 (i.e. P = D constant), we can find the Ehresmann connection by
using (6.84) and (6.85) with 7y = 2M 2! Here

7=2iM (6.90)
and the holomorphic function Z({) is given as
Z =ia. (6.91)

The latter leads to
be(£,8) =—i>5 (6.92)

with vorticity
*@ = —a. (6.93)

In this case there is no magnetic charge, namely no nut charge.?

6.4.2 Multipolar expansion of the charges from the boundary perspec-
tive

We conclude this section on stationary spacetimes with the analysis of the gravitational
charges associated to the isometries of the spacetime. As we saw in the previous section,
gravitational charges can be computed exclusively from the null conformal boundary by
computing the boundary charges generated by the strong Carrollian Killing vectors. These
techniques are still in an early stage since a contact with standard methods still need to be
elaborated. Despite the latter, we will see that in the case at hand, the Carrollian approach
for the construction of the charges enables us to find the gravitational mass and angular
momentum multipolar expansion.

For a time independent Ricci-flat solution, a timelike isometry is generated by simply the

Killing vector & = d;, which is mapped on the null conformal boundary as a strong Carrollian

2IBoth for vanishing and non-vanishing K, %, has been tuned to ensure that M does not appear in be,
displayed in (6.88) and (6.92). There is no principle behind this choice, it is simply in line with standard
conventions for the Kerr—Taub—NUT family. As a consequence, @ defined in (6.72) vanishes.

22Despite the absence of magnetic charges, the solution at hand belongs formally to the Taub-NUT family
(see Ref. [146], §12.3.2).
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Killing with components éf =1 and &' = 0. Then, the pairs k, K?, and kco, Kéot are given
by23
. 1 . . .
K= —¢€q) KE*@ﬁ?%Z Kcot = —¢(0), Keo=—X"" (6.94)
The above allows to compute the pair of leading charges (s = 0) by using (6.59) and (6.65).

We find 24

d¢ Andg
iP2

d¢ ndg
Oerm — /y o (876 +OK) . Q= /y (=) +*0K),  (6.95)
up to boundary terms and a factor —87G in the first charge. These two charges are nicely

combined into _
dg ndg
iP?

Here the indices refer to magnetic mass (mm) and electric mass (em).

Om = Omm +10em = /y (T+ de) . (6.96)

Now, the subleading electric and magnetic charges are obtain by the insertion of @2 in
the current components (6.94), defining thus the subleading pairs {y), Kés), KCot(s)» Kéot(s) b
Then, the higher-s mass multipole moment is defiend as

Om(s) = /y d ndg (£+OK) «0™ . (6.97)

In the instance of the K = 1 with Kerr—Taub—NUT solution displayed in (6.86), (6.87),
(6.88), (6.89) with A = 1/2 and D = 1, the electric-magnetic mass multipole expansion is
given by

2s+1 N\ 2s+1
(n+a) (n—a) ) | 6.98)

a(2s+1)

where M is the Bondi mass (here constant), n the NUT charge and a the angular velocity.

The isometry group of stationary Ricci-flat spacetimes might also contain the U(1)
group generated by additional rotational Killing fields 2°. For the class of time independent

2The pairs &, K, and Kcop, Kicoy vanish in the configuration at hand.
?The integrals can be performed by setting { = Ze'?, where 0 < @ < 2rand Z=v2tan $,0 < @ < 7 for

S?% 7 = %,0<R< o0 for E; Z = v2tanh £, 0 < ¥ < o for H.
Z3This is a consequence of the rigidity theorem for stationary spacetimes [147] which is best presented in

[148, 149].
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spacetimes with constant curvature K, the available spacelike Killing vectors are

& = (0o -C%). (6.99)
_ i AP 9 — (D — AP2) 9-

2 = s ((D AG%) o — (D AC)8§>, (6.100)
_ 1 2 =2 ~

&5 = m((D—I—AC)&C-i-(D-I-AC)&g), (6.101)

From the above, only & can be mapped onto the null boundary as a strong Carrollian Killing
vector, namely, & satisfies the strong Carrollian Killing equations (4.61), (4.62) and (4.56),
while &, and &3 do not.

Therefore, we can find the tower of rotational electric and magnetic charges by using
(6.59) and (6.65) with &;. For the case of K = 1 we have

dCAdE +iM 2 2s 2 ) 2s5+1
Qr(s):/y Cipz C6CC (” = (a—nP) (n—i—a—?a) —f%(n—ira—%l) )
(6.102)

with P =1+ %C é,_’ . This charge is non vanishing as long as the rotational parameter or the

NUT charge are present. For s = 0 we find the leading rotational charge as
Qr(O) = —871:[a(n—}—i]\/[)+3n(n—i]\/[)]. (6.103)

Expressions (6.98) and (6.103) are in line with the results obtained in Refs. [139-142] (see
also [150], where the electric part of O, q) is given) using standard methods relying on the
bulk dynamics. They provide conserved moments since the divergences (6.56) and (6.63)
vanish.

6.5 Ehlers, Geroch and Carroll

Having developed the machinery for a Carrollian approach for the dynamics of Ricci-flat
spacetimes, we are now ready to unravel the action of the hidden Ehlers group (2.145) on
the boundary Carrollian data. To this end, we will focus on algebraically special Ricci-flat
spacetimes whose metric is written in the gauge (6.31) (the resummable class), and possesses
a timelike isometry generated by the Killing field & = d;, with Q = 1.

The Geroch reduction is then performed along the orbits of o, following the steps
presented in Sec. 2.4. For the latter we have to compute the norm A (2.133) and the twist
potential @ (2.135) associated to dy, such that we can build 7 as defined in (2.142). The idea
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is to compute the aforementioned quantities by using the resummable covariant Newman-
Unti gauge (6.31) such that A, @, T and hyp are expressed in terms of the boundary data at
each power of the 1/r expansion. In this way, by using the transformation laws given by
(2.145), one would be able to get the transformation for each boundary Carrollian geometric
and fluid quantity, encoded at different orders in the transformation of 7. Now, in order for
the latter procedure to make sense, one has to take into account the non-local nature of the
Ehlers-Geroch procedure. As we saw in Sec. 2.4, after the action of the Ehlers transformation
on T — 7' and hap — K, 5, a new Ricci-flat spacetime can be found by an oxidation procedure
following (2.150) and (2.152). In this way the new Ricci-flat solution is given by (2.153).
Nothing guarantees that the new solution will belong to the same class as the seed solution,
and actually it could also be expressed in a completely different gauge. Because of this, and
in order to obtain the transformations of the Carrollian data using the strategy suggested
earlier, we will impose that the new Ricci-flat solution, obtained by a Geroch procedure,
remain in the same gauge, and thus it will be also algebraically special. This requirement
will make the radial coordinate to transform by a shift (as we will see later) such that the
latter is true.
To begin with, we will adopt the Cartan frame as defined in (6.42), leading to the bulk
metric
8n = # (87rG8(0)r+ *wc(o)) —K, g;=x0ix®, g, =—1,

(6.104)
gi=0, gr=0, gj=p’a

obtained using (6.43), and assuming 7-independence. In this expression *@, K and c(q) are
given in (6.66), (6.67) and (6.68). The Killing 1-form is then expressed as

1 .
&= (K— ? (SEGS(O)I’—F *GTC(O))) W+ xd; x@dx' —dr. (6.105)

Then, the norm is given as

B 87'L'G8(0)I’ + *(D'C(O)

) 5

- K. (6.106)

For the twist we use equation (2.134), expressed here as

w=—x(§AdE), (6.107)
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where “x” stands for the four-dimensional Hodge duality. The latter one-form is exact
on-shell, and its potential is expressed here as
87'EG8(0) *0 — co)r

0= 02 +K*, (6.108)

where K and K* satisfies
K +n,/0;K* =0. (6.109)

Here, on-shellness is implemented through the boundary dynamics as summarized in Sec.
6.4, i.e. in the equations (6.75), (6.76) and (6.77).
Inserting the above results into (2.142) and using (6.36), we find

ik, (6.110)

with k = K +iK*.

In the same way, we can write the Geroch reduced and rescaled metric hiup = Ahup as
- 2 .
fiapdidi® = — (dr_ ) *ardxk> + Apa;diidy, 6.111)

which, in holomorphic and anti-holomorphic coordinates as introduced in App. D, reads

r+i*®@)(r—i*xo) =
2 d¢dg.
(6.112)

The above 7 and ks are solution of the reduced Einstein’s equations given in (2.143),

] N
apddd® = — (dr—i0; * @ +idp @ al) + (T2

just as it should.
Now, we can expressed the complex scalar 7 as an asymptotic series, namely we expand

the latter in powers of 1/r

too f(”)
= 6.113
T ZO ot (6.113)
where, by using the definition of (6.110), at each power in 1/ we find
0 = ik (6.114)
—K*—iK,
) = ¢ (6.115)

= _C(O) -+ iSEGS(O) ,
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and
o) — ¢ (@), (6.116)

From Sec. 2.4, we know that the transformation of 7 under the Ehlers group is as given
by (2.145). Additionally, if we require the new Ricci-flat solution generated by the Ehlers
transformation to be given in the same gauge, the form of the transformed 7’ should follow

the structure
Al
/ T 7

V= ik 6.117)
where r = r' + R, with R = R(z,x). The latter can also be expanded in powers of 1/r, so that
wehme Y0 g

7 =70 4 PR +0 (ﬁ) ) (6.118)

Then, taking the transformation rule (2.145) together with the asymptotic expansions (6.113)
and (6.118), we find the following behaviour:

oo ak+ip % 1
vk+i6  (Yk+i8)2 7

% SR+ v (% —ikR) o L+ﬁ(i)
(’}//%—FIS)Z '}’1]%—5 7‘/2 7‘/3 .

From the above, the derivation of the Ehlers transformation of the Carrollian data is straight-

(6.119)

forward. At order r° we find the transformation of the complex curvature scalar

o iHktib (6.120)
Yk +1d

which leads to the transformation of P(&,§) as

P
| vk +i6|
The r—! order reveals the transformation of £. The latter reads
L (6.122)

(vk+i8)”
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It is easy to see that the 2 order will tell us the transformation rule of 7/?) = —ix@’'%’.

Moreover, by using the transformation (6.122), we are just left with the relation

SR+v(t—ikR)

—ix@ = _
Hk—5

—ix0. (6.123)

In order for the latter transformation to be consistent, the right hand side must be purely imagi-
nary. This requirement enables to fix R(¢,x), which in turn gives the following transformation

for the radial coordinate:

, if rt YT
SR (N AR . 6.124
’ r2(w+w ﬂ—ﬁ) (129

Then we can find the transformation of the vorticity by using the latter in (6.123). We find

A

2 7
A~ N + A
Yk+id6 vk —id

Y
o =L
W =3

+ 0 . (6.125)

These transformation rules leave (6.111) invariant (as it should) and they are local
transformation, providing a direct transformation for the boundary geometry given in (6.121).
The transformation of the energy density can by obtained more explicitly from (6.122) using
(6.36). We find

87Ge, ((yK* +8)2— 21<2) — 20 YK (YK* +8)

8nGe/y, = (6.126)
(0) 2
(762 + (v +6)?)
Similarly, the transformation of the Cotton density is given as
o (K +8)” — PK?) + 162G 7K (YK™ +9)

(K24 (e 1 6)2)°

All these rules are compatible with equations (6.67) and (6.68) and moreover, the transforma-
tions of the rest Carrollian Cotton tensors can be reached by using the above results combined
with Egs. (6.69), (6.70) and (6.71).

The transformation of the Ehresmann connection can be inferred by applying the trans-
formation rules derived here into the expressions (6.79), (6.83) and (6.85), depending on the
nature of the scalar curvature K. In order to do so, for example in the constant k instance, we
can notice that A, B, B and D transform with a factor 1/| vk + 6| such that the transformation
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rule (6.121) is satisfied. In the same way, by looking at the transformation (6.125), we can
conclude that f({) is invariant under the action of the Ehlers group, while Z({) transforms
ri(6)

Z'(¢) ZZ(C)+im- (6.128)

as

Once the Ehlers transformations of the Carrollian quantities are found, the reconstruction
of the new Ricci-flat spacetime is straightforward. The latter is done by using the resummable
metric (6.31) expressed with the transformed Carrollian data (except for the boundary set of
coordinates {r,,{}). This is equivalent to the oxidation procedure followed in (2.150) and
(2.152) that brings the three dimensional dynamics captured by 7’ and /), ; to four dimensions
captured by the new metric g/, , defined as in (2.153) with

1 . . = =
W= (dr’ 10, + @' dg +i0; *w’d<§> LW = —dr+ g+ b5l (6.129)

The new Killing vector of g/, is obtained by the relation & = A’'n’, which in the case at
hand is again 9.

Before we conclude, let us take the example of the Kerr-Taub-NUT family treated at
the end of of Sec. 6.4. This solution is reached by the choices of P = %(: 5 +1,K=1
and K* = 0 (this was not explicitly demanded). From the SL(2,R) hidden group, only one
subgroup generates genuine new Ricci-flat solutions. The latter corresponds to the subgroup
of rotations

( cosx smx > € SL(2,R). (6.130)

—sin)y cosy

The latter induces a rotations in the (8(0) , c(o)) plane as

Coy = ¢(0)cos2y — 8mGE(py sin2y , (6.131)
8nGely) = 8mGe()cos2y +c(g)sin2y. (6.132)

The above is the boundary manifestation of the rotation in the (M,n) plane discussed at the
end of Sec. 2.4.



Chapter 7
Summary of the results and outlook

In this thesis we passed through the study of fluid dynamics on Galilean and Carrollian back-
grounds, to the investigation of some aspects of flat holography in connection to Carrollian
dynamics. From the fluid mechanics perspective, we constructed the most general fluid
equations on both, Galilean and Carrollian backgrounds, by using two distinct approaches:
one based on the symmetries of the theory, and the other as the large and vanishing speed of
light limits.

In the first approach we based our analysis on the local symmetries of the action, where in
particular we focused on Carrollian and Galilean diffeomorphisms, Weyl and U(1) invariance.
As a consequence of diffeomorphism invariance, the fluid equations are presented as conser-
vation laws of momenta which are constructed upon variation of the action with respect to the
geometry, except for two additional variables that enters the equations as arbitrary functions
that are not conjugate to any geometric data. These correspond to the energy flux IT; in the
Galilean case, and the momentum P’ in the Carrollian counterpart. The fluid equations are
also supplemented with the conservation of a matter/charge current, arising as a consequence
of U(1) invariance of the action. In the Galilean instance, it corresponds to the continuity
equation.

The second approach relied on the limiting procedure of the relativistic fluid equations
by taking k — oo in the Galilean case, and k — O for the Carrollian case. The latter was
performed in the appropriate set of coordinates for the relativistic geometry, being Zermelo
and Papapetrou-Randers for the Galilean and Carrollian cases respectively. This procedure
allowed us to find all the Galilean and Carrollian fluid equations in terms of momenta, which
only in this approach are expressed in terms of kinematical (the velocity V' in the Galilean
limit and the inverse velocity f3; in the Carrollian limit) and thermodynamical quantities. A
huge advantage of this approach with respect to the symmetry based one is that it makes

possible to capture additional degrees of freedom by taking into account over-leading terms



130 Summary of the results and outlook

in the small/large k expansion of the heat and matter currents, as well as the viscous stress
tensor. This feature helped us to unravel the fate of hydrodynamic-frame invariance in the
Galilean and Carrollian limits. Indeed, hydrodynamic-frame transformations are sensitive to
the expansion of the observables with respect to the light velocity. As we saw in Sec. 3.2, by
working the Galilean limit of relativistic fluid dynamics with the standard behaviour at large k
of the fluid observables, hydrodynamic frame invariance is lost in the Navier-Stokes equations.
The only exception to this feature are Galilean fluids with massless energy carriers where
the absence of the rest mass energy term saves hydrodynamic-frame invariance. The other
possibility is when we considered extra degrees of freedom captured in the k> contribution
of ¢g; and the k° contribution of Ji (alternative behaviour). In that situation we saw that
hydrodynamic-frame invariance is restored at the price of giving up the continuity equation
as a conservation law. The resulting dynamics in this case is comparable with diffusion
processes or super fluids, where all the constituent are not conserved simultaneously.

For the Carrollian limit, the behaviour of the energy-momentum tensor and the U(1)
current at small velocity of light is not obvious. There is no a concrete answer to what
thermodynamic is in a Carrollian theory due to the absence of motion (no kinetic theory),
and therefore we do not have hints on how &€, p, g*, j* and T*" should behave at small k. For
that reason, we worked with the ansatz given in Eqgs. (4.72), (4.73), (4.74) and (4.75), that
was guided by Carrollian fluids that are holographic duals to Ricci-flat spacetimes [42]. The
latter allowed us to handle the Carrollian limit of relativistic hydrodynamics, and in particular
we found that hydrodynamic-frame invariance persists for Carrollian fluid dynamics. This
is principally due to the fact that the energy density is not decomposed into a rest plus
kinetic contribution, just as in the Galilean case with massless carriers. In the flat holography
side, hydrodynamic-frame invariance is reflected in the bulk spacetime as residual bulk
diffeomorphisms. This is something that has been shown for the case of 3d bulk/2d boundary
in [75-77].

When considering Galilean/Carrollian isometries, an analogous set of currents, K and K i
can be constructed as different combinations of momenta and Galilean/Carrollian Killing
vectors, reminiscent of the relativistic ascendant where the current is constructed as the
contraction of the energy-momentum tensor and the Killing vector. These currents satisfy
equations that, as we shown in Sections 3.1 and 4.1, do not correspond to conservation laws
in general. Different extra conditions must be imposed in order for these currents to be truly
conserved. One is by restricting the isometries to be "strong" Galilean and Carroll isometries,
which requires an extra Killing equations such as (3.66) in the Galilean case, and (4.56) in
the Carrollian counterpart. This extra condition is incompatible with Galilean/Carrollian

boosts. The second option is to impose the vanishing of P; (Galilean) and IT (Carrollian). In
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fact, the vanishing of the energy flux IT’ in the Carrollian theory has been considered to be an
important condition in order for the theory to be Carroll boost invariant [43, 56], which is the
case in this situation.

The approach and some of the results obtained from the Carrollian extension of fluid
mechanics were also used to analyze the dynamics of (conformally coupled) scalar fields
and the gravitational Chern-Simons on arbitrary Carrollian backgrounds. In the small-k
expansion procedure, we find electric and magnetic dynamics as well as paraelectric and
paramagnetic dynamics for the Carroll Chern-Simons action at different powers of k, whose
equations of motions are Carrollian diffeomorphisms and Weyl covariant.

Now, in the context of the Ricci-flat/Carroll duality perspective, we constructed an
appropriate gauge for the four dimensional bulk spacetime that features covariance with
respect to the null conformal boundary. We called this gauge as the covariant Newman-Unti
gauge and it is reached by relaxing the Newman-Unti gauge conditions as described in (6.19).
This gauge is not only valid for asymptotically flat spacetimes but also for asymptotically AdS
spaces, where the gauge conditions are the ones in (6.2) and the spacetime is reconstructed in
terms of tensors covariant with respect to the timelike conformal boundary and built in terms
of the boundary geometry and the components of the boundary energy-momentum tensor.
The advantage of this gauge with respect to the well known Feffermann-Graham gauge (in
the AAdS case) is that it accepts a smooth limit for vanishing cosmological constant, here
parameterized in terms of k%. Then, the line element (6.17) can be reached as the k — 0
of (6.3), where the bulk spacetime (Ricci-flat) is reconstructed order by order in the 1/r
expansion in terms of the Carrollian geometry, the Carrollian fluid data plus other infinite set
of Carrollian tensors reminiscent of the small-k expansion of the boundary energy-momentum
tensor.

Resummation of (6.17) is possible and occurs when imposing conditions in the Carrollian
boundary, as explained in Sec. 6.1. This was the arena for the discussion on the towers of
gravitational charges and the Ehlers hidden symmetry of Einstein’s equations, all from the
Carrollian boundary perspective. Indeed, the Carrollian approach of Ricci-flat spacetimes
allowed us for the construction of the gravitational charges based on the strong Carrollian
isometries of the boundary. The latter defined towers of electric and magnetic towers
of charges, constructed in terms of Carrollian momenta of the boundary fluid, and the
components of the Carrollian Killing vectors. In the electric tower, the charges are constructed
in terms of the energy density, the Cotton heat currents and Cotton stress, and only the leading
charges are generally conserved, which happens on-shell. For the magnetic tower we found
that those are built in terms of the Cotton density, Cotton currents and Cotton stress, and the

conservation of the leading charges occur off-shell. In particular, for the Kerr-Taub-NUT
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family, the definition of charges presented here were shown to reproduce the mass and
angular momentum multipolar expansion, associated to the isometries generated by & = o
and & = d, respectively.

When a Ricci-flat spacetime possesses an isometry, one can show that the Einstein
equations are invariant under Mobius transformations (Ehlers group). The latter is revealed
by a dimensional reduction along the orbits of the Killing vector that generates the isometry.
These transformations can be used to generates new solutions, by starting from simpler
seed spacetimes. We exhibited the action of these transformation from a boundary-to-
bulk perspective. Indeed, when considering Ricci-flat spacetimes of the resummable class
with a timelike isometry generated by d;, the Ehlers group of transformations acts in the
Carrollian boundary as a local transformation that mixes the geometric boundary data with
the dynamical data (in this case the energy density of the boundary Carrollian fluid). These
transformed boundary data also enable to find new Ricci-flat solutions by reconstructing
the spacetime in the resummable covariant Newman-Unti gauge with the new boundary
variables. Moreover, in the configurations considered in Sec. 6.5 (resummable metric with
Killing vector & = d;) the new Ricci-flat spacetime remain in the same gauge, and therefore
it belongs to the algebraically special Petrov class, once the appropriate transformation in the
radial coordinate is considered.

The work presented here allows to explore interesting directions within the applications
of Carrollian physics, and actually some of the results presented here are first steps in under-
standing some aspects of the so called "flat holography". For instance, when we constructed
the relationship between the Ehlers transformations acting on Ricci-flat spacetimes with their
manifestation in the boundary, we assumed that the bulk spacetime was of the algebraically
special class and moreover, we restricted to time independent solutions. This excludes a
big portion of the solution space, including radiating solutions. It would be interesting to
complete the picture of the bulk-to-null boundary analysis of Ehlers transformations for
more general Ricci-flat spacetimes with more general isometries. This includes to take
into account what the action of the Ehlers group is on the infinite extra degrees of freedom
that parameterized the bulk spacetime, such as the bulk shear (among others) that encodes
gravitational radiation.

In the same way, the completion of the boundary construction of the towers of gravita-
tional charges requires to go beyond the resummable case, as well as its comparison with the
existing bulk approaches, such as the Godazgar-Godazgar-Pope definition of the charges. In
this regard one can wonder where the Newman-Penrose charges are in this boundary-to-bulk

set up. In some bulk approaches these charges appear in the tower of BMS subleading
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charges at 1/r3. A Carrollian approach of the latter will necessary need to go beyond 1/r°
order in the covariant Newman-Unti gauge.

Besides the achievements and the concrete follow ups this thesis has yield, some fun-
damental questions remain open and deserve special emphasis. The Carrollian techniques
we have developed have enabled us to recast many of the results accumulated in the sixties
in a language and a perspective typical of the holographic playground. Ricci-flat space-
times are reconstructed in terms of boundary Carrollian degrees of freedom, in a similar
way as the reconstruction of asymptotically anti-de Sitter spacetimes in terms of boundary
conformal-field-theory degrees of freedom. Although it would be inaccurate to call this bulk-
from-boundary reconstruction holography, its nature surely points toward the existence of a
possible flat extension of the standard AdS gauge/gravity correspondence, fueled in particular
by our recent observation on the central role of the energy-momentum tensor. To support
these ideas, a long route remains to be paved, and a wealth of questions to be answered.
What would the fundamental observables be in the dual Carrollian field theory? What is the
role played by the replicas of the energy—momentum tensor, namely the Chthonian data?
Where does the celestial holography programme [151] sit in the more general Carrollian
perspective? The celestial holography program relates gravitational S-matrix elements with
correlation functions of a two-dimensional seemingly exotic CFT. Can we do better using
boundary Carrollian field theory? ! Supposing even we succeed, given the infinite number of
data necessary to reconstruct asymptotically flat spacetimes, would this correspondence still
qualify for holographic? Although the approach presented here does not provide clues for
answering these questions, our results on how to reach flat from AdS gives some confidence
in the vanishing-A limit of the AdS/CFT correspondence.

lInvestigations on this direction have been done in [35, 37].






Appendix A

Thermodynamics

The Appendices A, B, C, D, E and F were extracted from [5, 3] and have been adapted to the
conventions used in this thesis.

Relativistic thermodynamics

We remind here the usual observables of global-equilibrium thermodynamics. These are

supposed to make sense also in local-equilibrium thermodynamics, as for fluids where the

absence of short wave-length modes is assumed. In this case they depend on time and space

and refer to measurements performed by an observer comoving with respect to the fluid.

Matter conservation is generically (but not necessarily) akin to the existence of massive

carriers in conserved number.

The temperature 7.
The mass density pg per unit proper volume.

The entropy per unit proper volume o, and the entropy per unit mass s (specific
entropy):
O = sPop- (A.1)

The relativistic internal energy density per unit proper volume €, which contains the

rest mass, and the specific energy per unit mass e:
e = (e+k*) po. (A.2)
The pressure p and the relativistic enthalpy tv per unit proper volume:

w=¢+p. (A.3)
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* The relativistic chemical potential per unit mass (specific chemical potential) L. This

contains the rest-mass contribution, as opposed to U:
Ho = U+ k2. (A.4)

These quantities obey the grand-potential equation, sometimes referred to as the Gibbs—
Duhem equation:
o =T0+ topo < p =Tspo+ 1LPo— ePo- (A.5)

The energy density is a functional of two thermodynamic variables: € = € (0, pg). The

first law of thermodynamics reads:

1
de =Tdo + ppdpo < de = Tds — pd (p—) . (A.6)
0
The Gibbs—Duhem equation allows to exhibit the dependence of the enthalpy per unit proper
volume v =t (0, p,po)
dro = T'do +dp + todpo, (A.7)

whereas a double Legendre transformation on € infers the dependence of the grand potential

p=p(T, o)
dp = odT + poduy = spodT + podut. (A.8)

We would like to mention the situations where no massive degrees of freedom are present
in the microscopic theory.! A gas of photons is the prime example but other instances
exist in condensed matter, in particular when fermions are involved, as in graphene (see e.g.
[119]). In the latter case, as opposed to the gas of photons, there is a conserved quantity.
So pyp is non-vanishing, but it is not a mass density; € = epg and iy = U, without rest-mass
contribution. These systems can be conformally invariant, and in that case the dependence
p=p(T,u)is

p=TPf(uT) (A.9)

in D = d + 1 spacetime dimensions.”

Coming back to a system with massless carriers and no conserved charge, as for the gas of
photons, the above thermodynamic relationships simplify by setting 4 = 0 and dropping the

rest-mass terms. Specific quantities are no longer significant in this instance. Fluid dynamics

I'This happens effectively in the usual ultra-relativistic limit, meant to be relevant microscopically at high
temperature or high pressure.

’The precise bearing between conformal invariance, absence of mass and existence of conserved currents is
subtle and tight to the microscopic theory.
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of such systems does not involve any conserved current.> The basic laws are summarized as

follows:
w=7T0
div =Tdo +dp
(A.10)
de =Tdo
| dp=o0dT,

and when the system is furthermore conformal, p o< TP,
Several conserved charges might exist simultaneously in a thermodynamic system. They
would each be associated with a density and a chemical potential. Only one, if any, would

however enter the energy density (A.2).

Non-relativistic limit

The thermodynamic variables introduced earlier in the relativistic theory such as py, €, 1 etc.
are referring to a comoving observer. Measurements performed by another observer, be this
an inertial observer in special relativity or some fiducial observer in a general gravitational
background, are more relevant for the Galilean framework, but are not equal and should
be spelled stricto sensu with some distinctive index. Their differences, however, are of
order 1/ k% and vanish in the infinite-k limit. In order to avoid inflation in notation, we
will keep the same symbols, e, T, p, s, i, with the exception of py, which becomes p for
the fiducial observer. The 1/ k? corrections amongst py and p (see (3.83)) play no role in
thermodynamics, but are indispensable in recovering Navier—Stokes equations as the Galilean
limit of the relativistic hydrodynamic equations.

In non-relativistic thermodynamics, it is customary to introduce the specific volume (not
to be confused with the velocity)

po L (A.11)
P
as well as specific enthalpy h = h (s, p) as
h=e+ pv, (A.12)
which also enters in
pw=h—Ts. (A.13)

3This instance was discussed in the precise framework of relativistic fluid dynamics in [58] §134, footnote 1
and exercise 2.
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Using these definitions and the various relativistic laws mentioned above, we find the standard

expressions:
dh = Tds+vdp, (A.14)
d(ep) = pTds+hdp, (A.15)
de = Tds— pdv, (A.16)
du = —sdT +vdp. (A.17)

Before closing this chapter, let us quote that Galilean thermodynamics can accommodate
fluids with massless energy carriers, as long as the macroscopic velocity is small compared
to k — although at the microscopic level the dynamics is ultra-relativistic. Again, a conserved
current may or may not exist. In such a case a current is available, p is the charge density
with* & = ep the internal energy density and u the chemical potential. The basic relationships
are now

w=pte=To+up s p=Tsp+up—ep, (A.18)

and
dio =Tdo+dp+ udp

de =Tdo+ udp (A.19)
dp = odT + pdu.
Equations (A.11), (A.12), (A.13), (A.14), (A.15), (A.16), (A.17) remain also valid, together

with (A.9) in case of conformal invariance.
If no conserved charge is present, the chemical potential vanishes (as does dit) and the

relevant equations are expressed with to, € and o rather that 2p, ep or sp.

Carrollian thermodynamics

Carrollian thermodynamics is poorly understood. In most parts of this work dealing with the
fluid equations, we have kept the energy density € and the pressure p unaltered in the limit
of vanishing velocity of light. Neither have we introduced any temperature, nor discussed
an entropy equation, and when a conserved current was assumed (as eluded in [101]), no
relationship was established or set among energy and conserved-charge densities. This is
minimalistic by default. Indeed, the shrinking of the light cone and the absence of particle

motion or signal propagation, raise fundamental questions regarding the origin — and even

“#Notice the distinction: ¢ = 11m E=ep,0= 11m o = sp. In order to avoid multiplication of symbols, we

keep w = hp, p and u both for the relativistic quantltles and for their Galilean limits.
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the definition — of energy, pressure, entropy, temperature and thermalization processes. Even
the kinematic parameter of the fluid is an inverse velocity, which could point towards the
dynamics of instantonic space-filling branes, as mentioned in [44]. Obviously, this sort of
objects are tachyonic — like those introduced later in [56] — and we feel uneasy advocating any

sort of kinetic theory for setting up thermodynamic laws and deviations from equilibrium.






Appendix B

Carrollian momenta and

hydrodynamic-frame invariance

In Sec. 4.2.4 we obtained the Carrollian fluid equations under k>-scaling assumptions
involving more degrees of freedom than the standard ones: (4.115), (4.116), (4.117) and
(4.118) for the relativistic energy €, pressure p, heat current ¢’ and stress tensor 7%/, and
similarly for the matter sector with the matter density pg and the non-perfect current j' in
(4.119). These equations involve the Carrollian momenta I1, I, T, T, P!, T1, T1¥, P, P,
N, N', which were given in (4.121) and (4.123).

The aim of the present appendix is to show that these are hydrodynamic-frame-invariant.
Although hydrodynamic-frame invariance is built-in for the relativistic momenta (2.121),
(2.122), (2.123), (2.124) and (2.125), it is not guaranteed to persist in the vanishing-k limit
because it can be incompatible with the presumed small-k behaviour of the physical observ-
ables. This happens in the Galilean (infinite-k) limit, as we have witnessed in Sec. 3.2 for
the standard case i.e. with n’ = 0 non-relativistic fluids, because 8n' = 8V (see Eq. (3.125)).
Here it turns out to hold and in order to prove that we use the relativistic transformation
rules (2.113), (2.114), (2.115), (2.116) and (2.117) in the Papapetrou—Randers frame (2.99).
Using (4.115), (4.116), (4.117), (4.118) and (4.119), and expanding we find

(5mj =0
Sl = — 8B+ 8Pt B
n B Bim* B B.1)
S = —8Bmt
Sy = —8B (nk+%2mk),
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and

(Syi=0

80" = 5B; (1 - gal) — SBL + 5By’

5l = 8B, (2 — (N +@)all) + BL5B; (20 — (§ + ¢)all) +

SBiB' (B (§+¢)+0Q7) +B>B'SB v/

68 =28y

én = —28p; (Q"+ ’?w”)

SYii — 5¢aij — wigﬁj + wjgﬁi

ST — §@a'l = QI8BT + QISR+ 8y (ZBT + THB) + B (w5 B + yisp)
[ +0BB* (W'B/ +y/B) + BB/ 5.

(B.2)

It is straightforward to show that the variations of all momenta (4.121) and (4.123) vanish.
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More on Weyl-Carroll covariance

In Chapter 3 we saw that, in the presence of Weyl-Carroll covariance, we can define time
and space Weyl-Carroll derivatives. These derivatives enable to define other Weyl-Carroll

covariant objects through their commutators. They read

A oA 2 A

9.9 @ = =B+ W, (C.1)
A A . - . . 2 A . .

DDV = (B = 28500 ) VI 4 Bu 5 VWV, (C2)

where

‘@ijkl = 7 ijkl — 8o — a V19 +ap Vi@ + 8V,0;,— 5V,
+¢' (@raj — @raj) — (&aj — &jaj) ome™ + (801 — 8/ ¢r) @;,  (C3)

2
Qij = ¢ij— 50, (C4)

and @;; = éi(p ) — 9jq),-, are weight-0 Weyl-covariant tensors. Taking traces of (C.3) we get

A A A YN

%,'j = %kikj’ X = Cll]%,’j (C.S)

with
G =r+(d=1) (290"~ (d-2)pig') (C.6)

of weights zero and 2. The Weyl-covariant Carroll-Ricci tensor is not symmetric, 9?[1’ i =

—%Qi j» and a weight-1 curvature form also appears with

{é@t, 92,} = whid—E\9 @, (C.7)
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where 1 {
e@i = ﬁatfpi -

= (9,~+ qoi> 0. (C.8)
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Carrollian geometry in three dimensions
and Carrollian Cotton tensors

For d = 2, the .¥-Hodge duality is induced by' n; i = +/ag;;. This duality is involutive on

Carrollian vectors as well as on two-index symmetric and traceless Carrollian tensors:
! !
Vi=nVi, Wi =nW;. (D.1)

This fully antisymmetric form can be used to recast some of the Carrollian curvatures
introduced previously. The Carroll-Ricci tensor is decomposed as

Fij = Sij+ Kaij+Anj; (D.2)

with

1

N y 1. 1.
§ij:2*w*§ij7 Kzial]fij: 7, AZET]U?,'J':*UJO, *(D:En’-’w,-j. (D.3)

1
2
Similarly

Q,'j:fij—l—%}aij-i-jnij, (D.4)

where we have introduced two weight-2 Weyl-covariant scalar Gauss—Carroll curvatures:

P RPN PN PR BN N
:%/ZEGIJ%UZK-I-VHD]{, %:Enue@ij:A—*gD, (D.5)

l_We use here the conventions of Ref. [42], namely £, = —1, convenient when using complex coordinates
{¢, ¢} Notice that nln; = 5; and n'n;; = 2.
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and x¢@ = %n’j @;;j. These obey Carroll-Bianchi identities:

2 A A
59,*w+d = 0, (D.6)

1 ~ A A N oA s
5@,%—61‘].@1-%]-—.@1-.@]-5’/ = 0, (D.7)

|
ﬁgtﬂ—f—nl]@i%j = 0. (D.8)

Besides the various curvature tensors, which are second derivatives of the metric and the
Ehresmann connection, one defines third-derivative tensors, the descendants of the relativistic
Cotton tensor.

In a three dimensional pseudo-Riemannian geometry, the Cotton tensor is typically

defined as R
CI’LV f— nﬂpcvp (RVO' —_— ngo') 9 (D.9)

with nyvp = \/—g€uvp a fully anti-symmetric tensor. The Cotton tensor measures the
deviation of the spacetime from being conformally flat. In the definition (D.9), it is symmetric,

Weyl-covariant of weight 1, and identically conserved, namely it satisfies
DuCHY =V, CHY =0. (D.10)

Similar to the relativistic energy-momentum tensor, the Cotton tensor can be decomposed as

1 _ Bcuyuy ¢ Cuv  UuCy  UyCy

KT e T e e e

(D.11)

with ¢ the Cotton scalar density of weight 3, ¢, the symmetric and traceless Cotton stress of
weight 1, and the Cotton current ¢, of weight 2. The Cotton stress and the Cotton current are
purely transverse, obeying u*c,y = 0 and utcy, = 0.

The Cotton tensor components can be expressed in terms of a power expansion of k,

packaging at every order its Carrollian-covariant versions of the Cotton pieces. We have

c C
¢ = iR ten T g (D.12)
do= kzwi+x"+£—2, (D.13)

- . .. 7Zi
! = k‘P”—i—X”—i—ﬁ (D.14)
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where each of these Cotton pieces is given as

coy = 8x@, (D.15)
oy = (29" +2%) o, (D.16)
C(1> = .@i.@j*élj, (D.17)
1 ~ ..
cpy = *éi@%é”, (D.18)
v = 309’ (D.19)
1= 09 439 2@ (,@’+2@je§lf)+3@j (+®EY), (D.20)
. 1 .. 4 ~ 1 A .. A .
4= Enw_@jgt@jﬁ@,*gw—*glj_@kgfk, (D.21)
wi = _2*w2*§"1+92"@f*w—%5"@@"@—17"%@@% (D.22)
. 1 on /o oa 1 o ai/ A N
ij . ki Jj jl S kil [
XU = 00 (B + DEN) +SnM D (d+ ')
—%gfé"f—f*gffw*wé@,gi/, (D.23)
.. .. 1 ~ 1 4 ..
VAR 2*&152—5%5%*5”, (D.24)
where we defined
2 Ly ke J_ g2 ij
&7 =588 = &75 =c7d". (D.25)

As a consequence of the relativistic conservation of the Cotton tensor, its Carrollian
descendants obey Carrollian conservation equations, similar to (4.136), (4.138) and (4.139).
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These equations are

STyt = 0, (D.26)

e+ ix —WyET = 0, (D.27)
é@,c(l)ﬁ-@izi—Xﬁﬁ’j = 0, (D.28)

S 20 = 0, (D.29)

%@ic(_1)+2*w*wi Y (D.30)
%@ic(o)—.@j‘Pij—f—Z*Gf*Xi—f—é@tWi‘f’éij‘l/j = 0, (D.31)
%Aic(l)—@inj—l—2*a7*Zi+é@t%i—i‘gijlj = 0, (D.32)
%@ic(z)—@jZij+é@zZi+§iij = 0. (D.33)

These are purely geometrical identities valid in three-dimensional Carrollian structures given
by (4.1) and (4.2).

When the geometric Carrollian shear vanishes, the time dependence in the metric is
factorized as a;;(t,x) = e?°"¥)g;;(x). One then shows [42, 20] that the Carrollian conformal
isometry group is the semi-direct product of the conformal group of ;;(x) with the infinite-
dimensional supertranslation group. The former is generated by Y'(x), the latter by T (x),

and the Carrollian conformal Killing fields read:

ec(t,x)

o + Y (x)0; (D.34)

&ry = (T(x) —Y{(x)9,C(1,x) + %C(l,x)?ﬂ’(x))

with .
C(t,x) = / dte 2" Q (1,x). (D.35)

This result is valid in any dimension. Atd = 2, @;;(x) is conformally flat and Y'(x) generate
s50(3,1).2

The conservation of the Carrollian Cotton momenta (6.60) makes it possible to define two
infinite towers of Carrollian Cotton charges Qcor,y and Ocot 7.y following (4.57), based on
the Carrollian Cotton currents Kcot, Kéot, Kcot and Kéot (see (6.61)). According to (4.144), the

The s0(3,1) factor can also be promoted to superrotations (double Virasoro) if we give up the absolute
regularity requirement.
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latter are always conserved,? whereas the former are only if y’v; = — ' (.@iﬁf 26w ji> =0.
This occurs for special geometries (¥’ = 0) or for the subset of strong Carrollian conformal
Killing fields (v; =0) .

In d = 2, it is convenient to use complex spatial coordinates § and . With the permission
of the authors of [42], we reproduce here the appendix of that reference, summarizing the
useful formulas in this coordinate system. Using Carrollian diffeomorphisms (2.100), the
metric (4.1) of the Carrollian geometry on the two-dimensional surface . can be recast in
conformally flat form,

2 _
de? = ITdedC (D.36)

with P = P(t,¢, &) a real function, under the necessary and sufficient condition that the
Carrollian shear &;; displayed in (4.15) vanishes. We will here assume that this holds and
present a number of useful formulas for Carrollian and conformal Carrollian geometry. These

geometries carry two further pieces of data: Q(r, ¢, {) and

b=b¢(t,§,8)dC +bz(t,£,8)dC (D.37)

with bg (t,¢,8) = Z)C (t,¢,&). Our choice of orientation is inherited from the one adopted for
the relativistic boundary with a,z =1/ P? and*
i

e = (D.38)

The first-derivative Carrollian tensors are the acceleration (4.11), the expansion (4.15)
and the scalar vorticity (4.11), (D.3):

be - bf R
Q¢ = 8;5 + 8C InQ, (p(: = 8t§ + 85 InQ, (D.39)
2 iQP? (5 bz 5 b¢
with
A b‘; N b{:

3The conformal Killing fields (D.34), (3.2) depend explicitly on time. Inside the charges they define, when
conserved, this time dependence is confined, on-shell, in a boundary term, and hence drops — see concrete
examples in [4].

“This amounts to setting y/a = i/P? in coordinate frame and &7 = —1. The volume form reads dx/a =

d¢ndg
2
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Curvature scalars and vector are second-derivative (see (D.3), (4.24)):
2059, —3,9-
R=p <8Ca§ +9¢0¢ ) nP. A=iP? (9;9; — 30 ) InP (D.42)
1~ (1
C = —85 ( 8, h‘lP) I’;E = 585 (58, lnP> 3 (D43)
and we also quote:
*Q = iP2 (9{;@5 — 95([)4‘) s (D.44)
@k(pk = p? [égat% + 958;% + <9§95 + 9§9C> an] . (D.45)
Regarding conformal Carrollian tensors we remind the weight-2 curvature scalars (D.5):

X =K+Vior, o =A—=xo, (D.46)

and the weight-1 curvature one-form (C.8):

A

Ry = éa,(pc . % (ég + (Pg) 0, % a,q)C (a + (p§> (D.47)

In the resummable case the non-vanishing three-derivative Cotton descendants are displayed
as: one scalar

cwoy= (919" +27 ) +@ (D.48)

of weight 3 (x®@ is of weght 1), two vectors

Xe =3P H + 590 —2x0R;, Nz =—3DpH + 59 —2x0A;, (DA9)
Y =319 +@?, Y = —31@5 *®2, (D.50)

of weight 2, and two symmetric and traceless tensors

Xeo =Dy, Xz = —i9: %, (D.51)
lPCC :‘@C-@C*@ ‘Pgé:.@géé*w, (D.52)

SWe also quote for completeness (useful e.g. in Eq. (D.46)):

8t J/InP

A L[, be bebg  _bg be bcb
K=K+P a—+a€9+a, +2 de+2—= ac+2

with K = 2P28§ 8§ In P the ordinary Gaussian curvature of the two-dimensional metric (D.36).
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of weight 1. Notice that in holomorphic coordinates a symmetric and traceless tensor S;; has
only diagonal entries: S (E= 0=S ger
We also remind for convenience some expressions for the determination of Weyl—-Carroll

covariant derivatives. If ® is a weight-w scalar function
De® = @+ wp;®, ;P =P+ wp;d. (D.53)

For weight-w form components V; and Vé the Weyl—Carroll derivatives read:

DVe =VVe+w+2)0cVe,  TgVe =VeVe+(w+2)9; V5, (D.54)
DeVe =VeVe+worVe, DgVe=VeVe+weeVe, (D.55)

while the Carrollian covariant derivatives are simply:

~ 1 a ) n 1 4 5
ViV = 5590 (PVe) s ViVe =559 (P Vg), (D.56)
ViVe=0¢Ve, VeVe=0;V;. (D.57)

Finally,

DD D =P? <9§(§§Cb + égégcb +wd (9@' Pz + ééfpg) +2w ((p(:éécb + QDEC%CI) + W(pgq%q))) .

(D.58)

Using complex coordinates, we can recast the conformal Killing vectors of a shear-free

Carrollian spacetime .# in three dimensions, given in Eqgs. (D.34) and (3.2). These are

expressed in terms of an arbitrary real function 7'({, 5 ), which encodes the supertranslations,

and the conformal Killing vectors of flat space df> = 2d{ di:' . The latter are of the form
Y¢(&) de + Y¢ (&) 85, reached with any combination of £, + £, or i ({,, — ), where®

bn=—C""10g,  bw=—""10g, (D.59)
obeying the Witt & Witt algebra:

b)) = (m—n)lppp, [Em,fn] = (m—n)lyin, (D.60)

SNotice that combining (D.1) and (D.38), we find * (£, + ) = —i (€m — Im).
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and referred to as superrotations. Usually one restricts to so(3, 1), generated by n = 0, £1.
The conformal Killing fields of .# are thus

s s c A 1 N
Ery = <T - (YC(?C +YC8§> C+> (8§Y§ +85YC)) Su+¥i +¥5; (D)

with .
ct.6.0)= [ drP(r.0.00(.8.0). (D.62)
The structure s0(3, 1) x supertranslations — or (Witt & Witt) x supertranslations — is recov-
ered in
[&ry, &7 y1] = Epty (1) My (1) v.¥') (D.63)
with
My(f) = (Yéég + Yiég) f- g (8CY‘: + 85Y5) : (D.64)



Appendix E

Free motion

Our results on the failure of conservation laws associated with some Galilean or Carrollian
(conformal) Killing vector fields are generic and rooted to the nature of the underlying
geometries. The same phenomenon occurs when studying free-particle motion in Newton—
Cartan spacetimes, or instantonic branes on Carrollian structures (see [44] for motivations on
the latter paradigm). For concreteness we will illustrate here the former case.

The stage is set with an action

S[x] = L & Q1) L(1,%,v), (E.1)

where L = Q.7 is the Lagrangian — as opposed to the Lagrangian density. The generalized

Lagrange momenta are

¥
pi=— (E2)
Iq
and the energy E = Q& with .
piv'
&= —-Z. E.3
5 (E3)
The equations of motion are Euler-Langrange
1 0
—pi——=—=0. E.4
Qpl axl ( )

The dot stands for the total derivative along the trajectory, which can act also as d; +v'd; on
any tensor, and should not be confused with d/da: defined in (3.25) unless they act on scalars

(cf. ordinary vs. covariant spatial derivative).
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Consider Galilean diffeomorphisms generated by
£=¢8'9+E, (E.5)
where £ = &'(r) and
g=ga, &=g-gw, §=-2 G=ail=¢ (E.6)
Their effect on the dynamical variables is

r—t+E&
X x & (E.7)
Vi v+ 0, &N +119;EN —vig &L

On the one hand, the invariance of the action is characterized as follows:

8S=0c Q8.7 +. 20, = i{f (E.8)

where ¢ = ¢(z,x) is an arbitrary function, that needs not be zero. On the other hand, one can

determine the on-shell variation of the Lagrangian density:

1d ;
5.9 = ——a o (e -geh). E.9
The simplest of Ncether’s theorems states that
8S =0« p&l— & — ¢ = constant of motion. (E.10)

Suppose now that the motion is free on a Newton—Cartan spacetime featured by a'/, w'

and Q. The Lagrangian density is

1 . . .
£ = 2Qza,j( —w') (v —w) (E.11)
with |
Pi = 5(V,‘—W,‘). (E.12)

Euler-Lagrange equations read:

1D
<§a+p Vi )pl+pﬂ/ ;= 0. (E.13)
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As an aside remark, the latter equation is the infinite-k limit of the spatial component of the
geodesic equation u*Vu; = 0, in a Zermelo background. The time component u#V u’ =0

leads to ,
l

+pip; " =0, (E.14)

which is the energy equation, obtained by contracting (E.13) with p'.
We can now compute the generic variation of (E.11) under Galilean diffeomorphisms

acting as (E.7). We obtain the following:

S(ig] f awij ilf)f 1 DE wi g ]
62 =pip; (V(15ﬂ+5l}’ ]> —pip ﬁd_f +pi (ﬁ df -7 j5]>~ (E.15)

If & is a Killing field it satisfies (3.55), the first two terms drop and

NF A
8L =pi (éDd—f —?W"jiif> (E.16)
does not vanish, exactly as in the Galilean fluid dynamics in the presence of an isometry. This
betrays the break down of conservation, unless the right-hand side of Eq. (E.16) happens to
be of the form (E.9), in which case Ncether’s theorem applies in its version (E.10).

As already emphasized repeatedly, this pattern works the same way in all situations we
have met, involving Galilean or Carrollian dynamics. In flat spacetimes (either Galilean or
Carrollian) boosts belong invariably to the class of isometries with non-vanishing Lagrangian
variation (see (3.60) and (4.50)). There is not much we could extract from this in fluid
dynamics (except for the case of flat-space potential flows), but for Galilean free-particle
motion on flat spacetime (a;; = §;;, Q@ =1, w! constants) the situation is simpler. We find
indeed:

o d /. ) )
0. = (x’ — w’) (Vi +kak,~> =5 (lei —w'Vit + wklek,-> . (E.17)

In this particular case, (E.10) applies and gives the general constant of motion as (see also
(3.59))

V; ('t —x') — g (3% — W)+ X; (&' —w') +Q;x'i. (E.18)

The boosts V' do not generate any useful first integral (the initial position x6), as opposed to
time translation 7', space translations X I and rotations Q; j» which lead to energy, momentum

and angular momentum conservations.






Appendix F

From conservation to (non)-conservation

Galilean law from infinite speed of light
Our starting point is a pseudo-Riemannian spacetime in Zermelo frame (2.66)
ds? = —Q%k2dr* + a;; (dx' — w'dr) (dx/ — w/dr) (F1)
with an energy—momentum tensor 7#¥ obeying V,T*" = 0, and a vector field
£=&'0+ 80 =&+ &, (F2)
where the frame and coframe are defined as in (2.92), and
=g, =t &= E=a8=¢. (F3)

We define a current as in (2.25), I, = T;;v&", and compute its on-shell divergence, using Eqs.
(2.83):
& D!

Vult = —ETuV«Z&gW o a T (praij + Tuij) (Vléj +5’}/w”>

1 1155; owi g 12 ijy gf
+k_ZCIri (57—)/“}]'6]—]( Cljgjg > . (F4)
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This result is relativistic, expressed with Galilean derivatives though. It vanishes if

1 bel

do =0

VgD 4 Elgmii = @ (E.5)
ébdéi B ?Wijéf—kzaij&jéf =0,

which are simply the conditions for  be a Killing field of the pseudo-Riemannian manifold.
We would like now to consider the infinite-k limit of (F.4). At the first place, we must
provide the bahaviour of &, g;; and p;a;; + T;;; for large k. This is typically of the form 1

&=+ 0 (1/i?)
i = K*P,+ 11+ 0 (1) (F.6)
praij+ Tij =i+ O (1/82),

and (F.4) becomes:
v = IO (e gt o (g T (LDE g g
WS Tora e\ e Nt Jlate Ve TR
1
+ﬁ(ﬁ). (E7)

For this expression to remain finite at infinite k, we must impose that?

9;E =0, (F.8)

"More general behaviours have appeared in (3.98), (3.99), (3.100), or in (3.129). These choices wouldn’t
change our present argument though.

2One may refine the limiting procedure for the Killing fields, and reach the Galilean diffeomorphisms as
Elt,x)=E5(t)+ Lv(tx)+0 (k%) This would alter equation (F.11) as éDd—f" —§".&; — 9;v =0. Similarly
the arbitrary function v(z,x) would also appear in the large-k expansions of equations (2.96) and (2.97), altering
the Galilean currents (3.134). Ultimately, this would have no incidence on our conclusions about the interplay
between Galilean isometries and conservation. It may nevertheless provide a complementary view on the
large-k contraction of the relativistic diffeomorphisms, possibly in line with the approach followed in [152],
where a further duality relationship has been established among leading Galilean and subleading Carrollian
contributions (see footnote 4), and vice-versa.
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which is the requirement that & generates a Galilean diffeomorphism. Conservation holds in

the limit if expression (F.7) vanishes, which is again a threefold condition:

1 DE

5d_§ = 0, (F.9)
ViED L glgvii = o, (F.10)
1]5? wi g ]
. df gl = o (.11

Equations (F.9) and (F.10) are nothing but (3.55) i.e. the definition of a Galilean Killing field.
Equation (F.11) is an extra condition, absent for generic Galilean isometries. The latter do
not guarantee the existence of a conserved Galilean current unless (F.11) is satisfied. The

break down of the conservation is read off in

- 1 DE! i £] P; ? ;
I}gEOVHI”:B<§ o 7 Jf]> :§(9z5 + 2", (F.12)

which agrees with (3.65) or (3.135). As stressed in Sec. 3.1.3, the failure might be only
apparent, if the term g (0 &7+ ZwE") turns out to be a boundary term, that would then

contribute the Galilean current.
Carrollian law from zero speed of light
Here we will consider a pseudo-Riemannian spacetime in Papapetrou—Randers frame (2.99)
ds? = —k? (Qdt — bydv')” + a;jdx'dx/ (F.13)
We assume a conserved energy—momentum tensor 74" and a vector field as in (F.2) with
g=ga-&h, &=t §=-K G-/ =&+&h  (F14)

The frame and coframe are defined in (2.126).
We now compute the on-shell divergence of the current (2.25) I, = Ty, using Egs.
(2.118):

1 | R - THRAN A, P o
e (ﬁatét + (Pié’) + (pea’ + TrJ> (V@ﬁé’%j)

(/A " ' 1 '
—qi(@'—% gf_zzgfwﬁ—maiﬁ,é/) - (E15)
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Although expressed with Carrollian derivatives, this is relativistic and vanishes if

é&téf-l- @& =0
Viy+ & =0 (F.16)
(91' - (Pi> g 28T — 55aij0E7 =0.

These conditions define a Killing field & on a pseudo-Riemannian manifold.

We would like now to consider the zero-k limit of (F.15). We must provide the behaviour
of &, ¢' and pya’/ + 7/ for small k, which is typically of the form (4.78), (4.79), (4.80)>

&=T1+0 (k)
g =TI+ k2P + O (k*) (E17)
peal + 1 =11 + 0 (K?).

Equation (F.15) reads now:
Vat = —T1( sag et ) 107 (Vigi+ £)
u = o7 i iS; Yij

— (I + k2P ((91'_ (Pi> £ 28w — kzLQaijat‘gj) +0 (k). (F18)

Finiteness at zero k, demands®
E =0, (F.19)

hence & generates a Carrollian diffeomorphism. Conservation holds in the limit if expression

(F.18) vanishes. This is occurs if

1. .. .
GoE g = o (F.20)
Vg +EH = 0, (E21)
(95—([),’) éf—2§jﬁ)'ji = 0. (F.22)

3More general behaviours have appeared in (4.120). The latter would not change our present conclusions
though.

# Mirroring footnote 2, an option is to set &'(¢,x) = EL(x) +k?Vi(t,x) + & (k*). With this, equation (F.22)
becomes (9, — (pi> éf — 2§éa7 i — éai jB,vf =0, and further work would be necessary on equations. (2.129),
(2.130) and (4.142), that would not alter our final conclusions, but could shed light on the small-k contraction
of general diffeomorphisms.
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Equations (F.20) and (F.21) are as in (4.47) 1.e. the definition of a Carrollian Killing field.
Equation (F.22) is an extra condition, absent for generic Carrollian isometries, which therefore
do not guarantee the existence of a conserved Carrollian current. The disruption to the
conservation is measured as

lim V. = —IT ((9,- . (p,-) gf - 2§fwﬁ) : (F.23)

in agreement with (4.55) or (4.144).
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ABSTRACT

In three-dimensional pseudo-Riemannian manifolds, the Cotton tensor arises as the variation of the
gravitational Chern—Simons action with respect to the metric. It is Weyl-covariant, symmetric, trace-
less and covariantly conserved. Performing a reduction of the Cotton tensor with respect to Carrollian
diffeomorphisms in a suitable frame, one discloses four sets of Cotton Carrollian relatives, which are
conformal and obey Carrollian conservation equations. Each set of Carrollian Cotton tensors is alter-
natively obtained as the variation of a distinct Carroll-Chern-Simons action with respect to the degen-
erate metric and the clock form of a strong Carroll structure. The four Carroll-Chern-Simons actions
emerge in the Carrollian reduction of the original Chern-Simons ascendant. They inherit its anoma-
lous behaviour under diffecomorphisms and Weyl transformations. The extremums of these Carrollian
actions are commented and illustrated.
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1 Prologue

! I \iE COTTON TENSOR is defined on Riemannian manifolds of arbitrary dimension, carries three in-
dices and is partly antisymmetric. In three dimensions, which will be our framework, this tensor
was introduced by Emile Cotton in 1899 [1] and was formulated as a two-index symmetric tensor related

to the previous by Hodge duality:
po R
C/JV =MNu Vp Rys - ngo’ . (@)

Here ds? = guvdx#dx" is the metric with signature (— + +), Nyvo = =8 €uvo (€012 = 1), V,, the
associated Levi-Civita connection and R, are the components of the Ricci tensor with scalar R. The
combination of the latter objects inside the parentheses defines the Schouten tensor in three dimensions.

The Cotton tensor is Weyl-covariant, and conserved as a consequence of the first Bianchi identity

and the absence of Weyl tensor
V/)va = 0’ (2)

irrespective of the dynamics on g,,. In fact, the Cotton tensor emerges as the “energy-momentum”

tensor of the gravitational Chern-Simons action:

_ 1 6SCS
C/,n/ - \/T—g‘égﬂv s (3)

with . 5
SCS:—/Tr(w/\dw+—w/\w/\w, (4)

2c M 3

where w is the Levi-Civita connection one-form. In this picture Scg is a functional of the metric and of
its derivatives.

There are numerous instances where the Cotton tensor is encountered and plays a fine role in gravi-
tational physics. In four-dimensional asymptotically anti-de Sitter spacetimes, the Schouten tensor of the
conformal boundary appears explicitly at a subleading order in the Fefferman—Graham expansion of the

bulk metric, after the boundary metric and before the boundary energy-momentum tensor. The bound-



ary Cotton tensor itself arises as the leading term of the Fefferman-Graham expansion of the bulk Weyl
tensor. More explicitly, the Schouten tensor appears as a gauge field associated with conformal boosts
and the Cotton tensor as the corresponding field strength in non-linearly realized conformal group on
the boundary of AdS, (super)gravity [2]. Its presence reveals that the boundary is not conformally flat or
equivalently that the bulk is asymptotically locally anti-de Sitter. Alongside, the Chern-Simons action
appears under specific circumstances as the leading-order effective action of the boundary theory, and
can serve alternatively for amending the standard boundary conditions imposed in anti-de Sitter holog-
raphy. These and other interesting properties, such as the role of the Cotton tensor and the occurence
of the Chern-Simons action in gravitational electric-magnetic duality, can be found in Refs. [3-9].

In an effort to design a bulk gauge that would be covariant with respect to the conformal boundary,
as the Fefferman-Graham gauge is, but at the same time be regular for vanishing cosmological constant,
as opposed to Fefferman—-Graham, a modified version of the Newman-Unti gauge was reached [10-12],
inspired by fluid/gravity correspondence [13,14]. In this gauge, the Cotton tensor appears explicitly in
the bulk metric, and its deeper role in the spacetime reconstruction — also recognized in [15] — is more
transparent.

The attempts for generalizing the gravitational holographic principle to asymptotically flat space-
times have abundantly fueled the interest for Carrollian geometries [16,17], namely for structures equipped
with a degenerate metric, as are null infinities. In this framework, one naturally wonders how the Cot-
ton tensor materializes within the various curvature attributes, what sort of dynamics it conveys, and
which role it plays in the bulk reconstruction from boundary data — now defined at null infinity. Some
of these questions were accurately answered in the seminal work [18], exhibiting some of the Carrollian
Cotton descendants, their dynamics inherited from (2), as well as their occurence in the flat exegesis of the
modified/covariantized Newman-Unti gauge. Further properties have been more recently elaborated
in [19], in relation to the null-boundary manifestation of Ehlers’ hidden Mobius group, or in defining
towers of gravito-magnetic charges exclusively from a Carrollian boundary perspective.

IN THE WORKS CITED EARLIER, the analysis of the Carrollian Cotton descendants was circumscribed to

Carrollian geometries with vanishing geometric shear, a requirement imposed by bulk Ricci flatness.
However, reaching the ultimate radiation-flux-balance equations for asymptotically flat spacetimes in a
limiting procedure from anti-de Sitter requires to start with a non-zero shear, as recently demonstrated
in [20]. The purpose of the present note is to present a comprehensive picture of the Carrollian Cot-
ton tensors, while providing at the same time the Carrollian descendants for the Chern-Simons action,
which are met in various facets of flat-asymptotic symmetries — see e.g. [21, 22].

Our strategy can be summarized as follows: choose an adapted frame, expand in powers of ¢? and
read off the possible Carrollian dynamics