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Thèse présentée et soutenue à Palaiseau, le December 6, 2023, par

DAVID RIVERA-BETANCOUR

Composition du Jury :

Christos Charmousis

Directeur de recherche, Université Paris-Saclay Rapporteur
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Abstract

Nous étudions divers aspects et applications gravitationnelles de la dynamique carrollienne.

Les systèmes carrolliens se manifestent lorsque la vitesse de la lumière s’annule. Nous con-

struisons des équations dynamiques générales carrolliennes et galiléennes valables pour des

géométries carrolliennes/newtoniennes arbitraires, courbes et dépendantes du temps, l’accent

étant mis sur l’hydrodynamique. La présence d’un courant U(1) est aussi prise en compte.

Cette démarche suit deux approches : basée sur l’invariance de l’action sous Carroll/Galilée

et Weyl, ou par la prise d’une limite de grande/petite vitesse de la lumière dans le tenseur

énergie-impulsion relativiste et le courant U(1). La dynamique est régie par la conservation

d’un ensemble de moments qui résultent soit de la variation de l’action par rapport aux dif-

férentes composantes de la géométrie carrollienne/newtonienne, soit apparaissent à différents

ordres dans le développement en c du tenseur énergie-impulsion. Ces deux approches con-

cordent, mais il est montré que la procédure de limite est plus riche en raison de la possibilité

d’embrasser des situations avec des degrés de liberté supplémentaires. En fait, c’est cette lib-

erté qui nous permet de déterminer dans quelles conditions l’invariance hydrodynamique est

préservée lorsqu’on prend la limite de grande/petite vitesse de la lumière. Nous montrons que

dans la limite galiléenne standard l’invariance hydrodynamique est perdue, mais récupérée

en ajoutant deux degrés de liberté supplémentaires dans le développement en c du courant de

chaleur et des courants U(1). Dans le cas carrollien, l’invariance sous changement de repère

hydrodynamique survit lorsque le comportement du tenseur énergie-impulsion est inspiré

des fluides carrolliens holographiques. Nous présentons enfin l’analyse des courants associés

aux isométries carrolliennes/galiléennes. Dans le cas carrollien/galiléen, ces courants ne sont

pas toujours conservés et des conditions supplémentaires doivent être imposées.

La dérivation présentée pour la dynamique carrollienne transcende les fluides. Nous

étudions le champ scalaire conforme sur une géométrie carrollienne générale et analysons

les extensions carrolliennes de la théorie de Chern-Simons gravitationnelle à trois dimen-

sions. Dans cette analyse, on découvre des dynamiques électriques et magnétiques codées

à différents ordres en puissances de la vitesse de la lumière de l’action relativiste parente.

Deux actions supplémentaires apparaissent, nommées paramagnétique et paraélectrique,

respectivement.
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Dans l’esprit de la dualité jauge/gravité plate, nous étudions la dynamique des espace-

temps asymptotiquement plats d’un point de vue carrollien. Nous montrons que les espace-

temps à Ricci nul sont exprimés dans une jauge covariante vis-à-vis du bord nul. Cette jauge

est une extension de la jauge de Newman-Unti, valable pour constante cosmologique finie

ou nulle. Le cas plat correspond à une limite carrollienne au bord. L’espace de solutions à

Ricci nul résultant est constitué d’un ensemble infini de données carrolliennes. On y trouve

la géométrie conforme carrollienne, les moments en nombre fini de la théorie du bord et un

nombre infini de tenseurs arbitraires, obtenus en développant le tenseur énergie-impulsion

relativiste d’origine en série de Laurent. Tous obéissent aux équations de bilan de flux

carrolliennes. Pour les solutions de type Petrov algébrique, cette structure carrollienne

au bord permet de déterminer les charges gravitationnelles usuelles. Nous retrouvons le

développement multipolaire de la masse et du moment angulaire pour la famille de Kerr-

Taub-NUT. Nous étudions enfin comment le groupe d’Ehlers de type Möbius agit sur les

données du bord nul. Pour les espace-temps stationnaires, ce groupe se manifeste comme

une transformation locale des observables carrolliennes du bord nul. Pour la solution

de Kerr-Taub-NUT par exemple, la transformation de la masse/nut est une rotation de

l’énergie/Cotton.



Abstract

The purpose of this thesis is to study aspects of Carrollian dynamics and its application to

gravity with zero cosmological constant. Carrollian systems arise as the vanishing speed

of light (k) limit of Lorentzian theories. Here, general Carrollian and Galilean dynamical

equations valid for arbitrary curved and time dependent Carrollian/Newton-Cartan geometries

are constructed, with focus on fluid mechanics. In both cases the presence of a U(1) current

is considered. The latter is done in two approaches: Carrollian/Galilean and Weyl invariance

of the action, and by taking a large/small-k limit of the relativistic energy-momentum tensor

and the U(1) current. In both cases, the dynamic is given by the conservation of a set of

momenta that arise either as the variation of the action with respect to the different pieces of

the Carrollian/Newton-Cartan geometry or appear at different orders in the k-expansion of

the energy-momentum tensor. Although these two approaches agree, the limiting procedure

is shown to be richer due to the possibility of capturing more general situations with extra

degrees of freedom. In fact, it is this freedom that allows us to find under which conditions

hydrodynamic-frame invariance is preserved when taking the large/small-k limit. We show

that, although in the standard Galilean limit hydrodynamic-frame invariance is lost, it is

recovered by adding two extra degrees of freedom in the large-k expansion of the heat current

and U(1) currents. In the Carrollian case, hydrodynamic-frame invariance survives when the

behavior of the energy-momentum tensor is guided by holographic Carrollian fluid results.

We also present the analysis of the currents generated by Carrollian/Galilean isometries.

In the Carrollian/Galilean instances, these currents are not guaranteed to be conserved and

additional conditions must be imposed.

The presented derivation for Carrollian dynamics is not valid only for fluids. The

investigation of the scalar field on a general Carrollian spacetime is also presented, as well

as the analysis of three dimensional Carrollian gravitational Chern-Simons extensions. In

this analysis one finds electric and magnetic dynamics that are encoded at different orders

in powers of the speed of light of the relativistic action. We furthermore unravel two more

Carrollian Chern-Simons actions, dubbed paramagnetic and paraelectric, respectively.

In relation to a possible flat version of the gauge/gravity duality, we also study some

aspects of Ricci-flat dynamics from a Carrollian perspective. We show that Ricci-flat
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spacetimes can be expressed in a gauge covariant with respect to the null boundary. This

gauge is an extension of the Newman-Unti gauge which is valid for asymptotically anti-de

Sitter and flat spacetimes. The flat instance is reached as the vanishing cosmological constant

limit of the anti-de Sitter case, which corresponds to a Carrollian limit at the boundary.

Therefore, the resulting Ricci-flat solution space is reconstructed in terms of an infinite set

of boundary Carrollian data. These are composed by the Carrollian conformal geometry,

a finite set of momenta of the theory hosted at the boundary, and an infinite number of

arbitrary tensors, obtained by expanding the original energy-momentum tensor in Laurent

series, which obey Carrollian flux balance equations. We take advantage of the latter to define

gravitational charges by using Carrollian boundary techniques and restricting the spacetime

to the algebraically special Petrov type. With this construction we recover the mass and

angular momentum multipolar expansion for the Kerr-Taub-NUT family. We also learn how

the hidden Ehlers Möbius group acts on the boundary data at null infinity. We find that, for

stationary spacetimes, this group is manifested as a local transformation for the Carrollian

geometry and the boundary Carrollian observables. We reproduce the mass/nut rotation as

the energy/Cotton rotation for the Kerr-Taub-NUT solution.
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Nomenclature

(A,B,C, ...) are d +2 spacetime indices labeling {r, t,x}.

(µ,ν ,α, ...) are d +1 spacetime indices labeling {t,x}.

(i, j,k, ...) are d spatial indices labeling {x}.

D̂t is the temporal Carroll covariant derivative in d space dimensions.

D̂i is the spatial Weyl-Carroll covariant derivative in d space dimensions.

D̂t is the temporal Weyl-Carroll covariant derivative in d space dimensions.

∇̂i is the spatial Carroll covariant derivative in d space dimensions.

Dµ is the Weyl covariant derivative in d +1 spacetime dimensions.

∇A is the Levi-Civita connection in d +2 spacetime dimensions.

∇µ is the Levi-Civita connection in d +1 spacetime dimensions.

k is the speed of light.

In four spacetime dimensions: εABCD is the Levi-Civita symbol in four dimensions.

In three spacetime dimensions: εµνα is the Levi-Civita symbol in three dimensions.

In two space dimensions: εi j is the Levi-Civita symbol in two dimensions.





Chapter 1

Prologue

The discussion on Carrollian physics started first with the works of Lévy-Leblond [9] and Sen

Gupta [10], where a new group of symmetries (by then) called Carroll group is obtained as

the Inönü-Wigner contraction [11] of the Poincaré group. As opposed to the non-relativistic

contraction that one can use to find the Galilean group, the Carroll group is obtained through

a vanishing speed of light limit. For many years this peculiar contraction was thought as a

mere mathematical curiosity since no reasonable physical systems seemed to be compatible

with these symmetries. Indeed, in that limit, which we call in this thesis as Carrollian limit

(also known as ultralocal limit), the light cone collapses into a single line in the time axis

making space absolute. As a consequence all movement or signal propagation is forbidden,

even if particles have nonzero momentum. Despite of the latter Carrollian physics has

attracted interest from many different fields, specially its conformal extension. For instance,

it has lead to the discovery of new geometric structures which we now know as Carrollian

manifolds [12–21] specified by a degenerate metric and a vector field that generates its kernel.

Carrollian manifolds have been seen to appear by taking the vanishing speed of light limit

of a pseudo-Riemannian manifold, or as the geometry of null hypersurfaces embedded in

Lorentzian spacetimes in one dimension higher.

It has also been shown in [22, 23] that the conformal extension of the Carroll group is

isomorphic to the famous Bondi-Metzner-Sachs (BMS) group which rules the asymptotic

symmetries of Ricci-flat spacetimes at the null boundary [24–26]. The latter, together with

the fact that null geometries possesses Carrollian structures, might suggest a vanishing

cosmological version of the gauge/gravity [27, 28] duality, such as the renowned anti-de

Sitter/Conformal field theories (AdS/CFT) correspondence that relates gravity in asymp-

totically AdS spacetimes with the dynamics of a CFT defined on its timelike conformal

boundary. In Ricci-flat spacetimes the conformal boundary is null (Carrollian) and therefore,

if a similar holographic duality exists in this case, the theory living at the boundary of
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Ricci-flat spacetimes should be a Carrollian conformal field theory (CCFT) defined on a

Carrollian spacetime. This possibility of having a holographic correspondence for gravity

with vanishing cosmological constant and CCFTs is a recent and hot topic that is still under

scrutiny. Progress on the latter have been done in [29–37]. In this line, and inspired by

the fluid/gravity correspondence [38–41] that relates asymptotically AdS spacestimes with

relativistic conformal fluids in one dimension less, a duality between Ricci-flat spacetimes

and Carrollian conformal fluids defined at null infinity was proposed in [42]. In particular

it was shown that any Ricci-flat spacetime of algebraic special Petrov type can be recon-

structed in terms of the Carrollian geometric data and the Carrollian fluid variables, which

in the case worked out in [42], correspond only to the energy density of the Carrollian

hydrodynamic system. We will see in the Chapter 6 of this thesis that the reconstruction

of Ricci-flat spacetimes in terms of a set of Carrollian boundary data is not restricted to

the algebraically special spacetimes but applies for general asymptotically flat spacetimes.

In the general situation the number of Carrollian data necessary for the reconstruction of

the spacetime becomes infinite and part of these degrees of freedom will be constraint to

satisfy flux-balance equations [2]. Further investigations on Carrollian fluids have been

carried out in [43–45, 5, 46, 47]. There are more recent applications as, for example, the

emergence of Carrollian dynamics in black hole horizons [48–53], possible applications to

condensed matter systems [54, 55], cosmology and dark energy [56] and even the appearance

of Carrollian symmetries in tensionless string theory [57]. In particular, the first half of this

thesis is devoted to the study of Carrollian and Galilean fluid dynamics.

Hydrodynamics has been an important topic in physics, thoroughly investigated and

applied in many fields. Still, many questions remain to be answered. For instance we have

the ambiguity of choosing the hydrodynamic frame when dealing with relativistic fluids. This

is what is known as hydrodynamic frame invariance and it reflects the freedom to choose

freely the velocity of the fluid due to the impossibility to distinguish the mass flow from the

energy flow in relativistic hydrodynamic systems. The most common choices are the Landau-

Lifshitz frame, which consist in the formulation of non-perfect relativistic hydrodynamics

without heat current [58], and the Eckart frame for the description of non-perfect fluids

with heat current and imposing the perfect matter/charge current (U(1) current) [59]. These

hydrodynamic frame choices have some inconveniences when the formulation is implemented

in the truncated constitutive relations (the non-perfect pieces of the energy-momentum

tensor and the matter/charge current are expressed in terms of a gradient expansion of

the hydrodynamic variables, namely temperature, chemical potential and velocity). These

problems come as instability of the thermal equilibrium state and superluminal propagation
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of signals for non-gravitating relativistic fluids. A deep presentation of the latter can be found

in [60–63] and for recent progress in the subject, see [64–74].

The emergence of hydrodynamic-frame invariance is also related in a more different

context, being fluid gravity correspondence. In asymptotically AdS Einstein spaces, the

asymptotic isometries are related to the symmetries of a fictitious fluid flowing on its

conformal boundary [75–77]. In that case, the conformal boundary is timelike and the

dual fluid is relativistic. If one performs a local Lorentz transformation on the velocity of

the dual fluid, its action is reflected as part of the diffeomorphism on the gravitational side.

One could wonder what happen now if we move to asymptotically flat spacetimes with

a holographic Carrollian fluid dual. Do we still have hydrodynamic frame invariance in

the Carrollian boundary fluid that can be reflected in the bulk as diffeomorphisms? In a

different context, irrespective of any link to gravity, one can also wonder why there is no

hydrodynamic frame invariance when reaching Galilean fluids from a non-relativistic limit

of relativistic hydrodynamics, or under which conditions we can keep this property.

On the one hand we have Galilean fluid dynamics. The latter typically arises from the

non-relativistic limit of the relativistic fluid equations. It was first formulated in Euclidean

space with absolute time. Then, with the pass of the years, it was generalized to admit

more general situations describing non-perfect fluids flowing on curved and time dependent

spaces [78–84], with fluid equations covariant under Galielan diffeomorphisms given by the

transformation t ′ = t ′(t) and x′ = x′(t,x) [44, 85, 5] that respects the time/space splitting, the

time being absolute.

On the other hand, Carrollian fluids can be understood as fluids "flowing" on a Carrollian

manifold. As opposed to the Galilean situation, one way to obtain the Carrollian fluid

equations is through the vanishing speed of light limit of the relativistic hydrodynamic

equations. This approach was first discussed in [44] where the authors obtained the set of

Carrollian fluid equations in the absence of a U(1) current, and are fully covariant under

the diffeomorphisms t ′ = t ′(t,x) and x′ = x′(x), namely the Carrollian diffeomorphisms that

respects the time/space splitting, with the space being absolute.

One of the goals of this thesis is to extend the analysis of [44] for the construction of the

Galilean and Carrollian fluid equations in the presence of a conserved U(1) current using

two distinct approaches: The first one is based in the diffeomorphism invariance of the action

(Carrollian or Galilean). In this approach the dynamic is given in terms of conservation laws

for a set momenta [86] that are obtained through the variation of the action with respect

to the geometry. The second approach consist on a limiting procedure of the relativistic

fluid equations. This provides the set of conservation equations that the momenta must

satisfy, the latter constructed in terms of kinematic and thermodynamic variables. This
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procedure will allow us to study the fate of hydrodynamic-frame invariance in the Galilean

and Carrollian limits. We will see that the absence or presence of this property known in

relativistic non-perfect fluids, depends on the behavior of the fluid degrees of freedom with

respect to the scaling of the velocity of light. For example in the Galilean limit, we will see

that the only way to keep this property is by considering the presence of additional pieces

in the heat current and the non-perfect part of U(1) current that appear at O(k2) and O(1)

order respectively.

Additionally, we will study the construction of charges associated to Galilean and Carrol-

lian isometries. We will see that these charges are not necessarily conserved and we need

to impose additional conditions for them to be conserved: strong Carroll isometries or the

absence of some of the momenta.

One can also consider the Carrollian contraction of other Lorentz-invariant theories.

It was shown in [14] that electromagnetism in four spacetime dimensions allows for two

different Carrollian contractions, one named as electric contraction, and the other named

as magnetic contraction. In the electric contraction the dynamics is dominated by time

derivatives while space gradients dominate the magnetic dynamics. It was then shown in [87]

that these two contractions also apply to any Lorentz invariant theory where the guideline was

the Hamiltonian formalism. There, the difference between electric and magnetic dynamics

was found to rely on a different scaling of the fields with respect to the speed of light. In

this thesis we will investigate the (conformally coupled) scalar field and the gravitational

Chern-Simons action on Carrollian backgrounds. Our guideline will be the same employed

in the case of Carrollian fluids, namely Carrollian diffeomorphisms and Weyl invariance, and

a small-k expansion of the actions and equations of motion. At each power in the speed of

light, different Carrollian dynamics appear for both theories: electric and magnetic, and for

the Carrollian Chern-Simons we will find two additional actions at the 1/k3 and k3 powers in

the expansion. We call them paralectric and paramagnetic Carroll-Chern-Simons actions.

Coming back to the discussion on the relation between Ricci-flat spacetimes and Carrol-

lian fluid dynamics, there is yet another property of gravity that deserves to be studied in this

context. This is the action of hidden symmetries, present in vacuum Einstein’s equations,

onto the boundary configuration. Hidden symmetries have been studied for a long time

in the context of relativistic gravity theories. The latter was first started by Ehlers in [88],

where it was shown that in the presence of an isometry Einstein’s equations are invariant

under Möbius transformation. This can be seen after a reduction of the Ricci-flat spacetime

along the orbits of the Killing vector that generates its isometries. The latter opened the

door for solution-generating techniques applicable to vacuum Einstein’s equations [89] and

then generalized to more general situations with more commuting Killing vectors [90–92]
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and bigger hidden symmetries. In the same spirit as the mapping between the asymptotic

symmetries of the bulk and the conformal symmetries of the boundary, one could wonder

what would be the action of the Ehlers group on the conformal boundary. As mentioned

previously, Ricci-flat spacetimes can be reconstructed in terms of Carrollian data. The latter

requires an infinite set of functions that enters in the metric in a gauge that we will call

"covariant Newmann-Unti gauge". Then, what does the Ehlers transformation do to the

Carrollian boundary data? Part of this thesis will be devoted to answer this question. To this

end we will work in the resummable case (algebraically special class) whith solutions that

posses a timelike Killing vector whose congruence coincides with the boundary Carrollian

fiber ∂t (stationary spacetimes).

In gravity it is possible to construct charges associated to the asymptotic symmetries

group (BMS4). In fact, in Ricci-flat spacetimes one has an infinite set of charges (not

necessarily conserved). This is due to the infinite degrees of freedom necessary to reconstruct

the solution, as well as the infinite generators of the asymptotic symmetry group. These

"subleading" charges come also as electric-magnetic pairs and have been widely studied

in the literature [93–100]. Here we will perform the construction of the charges from a

purely boundary perspective where they are built using the boundary dynamics together with

Carrollian (conformal) isometries. In this construction the Cotton tensor of the boundary

(and its descendants in the flat limit) will play a prominent role and in fact, in relation to the

discussion on the boundary action of the Ehlers group, we will see that part of the Ehlers

group will correspond to an algebraic transformation that mixes the Cotton density and the

energy density of the boundary Carrollian fluid. In the bulk this is a mixing between the

Bondi mass (electric mass) and the nut (magnetic mass).

This thesis is based on the published works [1–5]. Some parts of this thesis are a

transcription of these articles while other parts are written specifically for this thesis to

facilitate the presentation of the results. The structure of this thesis goes as follows:

In Chapter 2 we will remind the necessary tools to go through the analysis and results

presented in this thesis. This includes the basics of relativistic hydrodynamics in the presence

of a matter current and an overview on hydrodynamic-frame invariance. We will present two

frames in which this analysis can be performed. One is the Zermelo frame which will be

suitable for taking the Galilean limit, while the other will be the Papapetrou-Randers frame

suitable for taking the Carrollian limit. A review about the Ehlers group and the Geroch

method will be also given which will be used in Chapter 6.

In Chapter 3 we derive the most general Galilean fluid equations on arbitrary curved and

time dependent backgrounds. The latter will be first based on Galilean covariance (Galilean

difffeomorphisms). In this context we will also investigate on the (non-) conservation laws
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associated to Galilean isometries. We then move to the limiting procedure. The latter

corresponds to taking k → ∞ in the Zermelo frame. This will allow us to go through the

analysis of hydrodynamic-frame invariance and find under which conditions it survives the

limit. This Chapter is partly based on the work [5].

In Chapter 4, following the steps for the Galilean case, we derive the most general

Carrollian fluid equations. The latter is derived from Carrollian covariance (Carrollian

diffeomorphisms) and a limiting procedure by taking k → 0 in the Papapetrou-Randers frame.

We also study the (non-) conservation laws associated to Carrollian isometries, as well as the

fate of hydrodynamic-frame invariance in the k → 0 limit. The results of this Chapter are

based on [5].

In Chapter 5 we will derive the Carrollian extensions of the (conformally coupled) scalar

field in arbitrary dimensions and the Carrollian versions of the gravitational Chern-Simons

theory in three spacetime dimensions. All this by following the steps presented in Chapter 4.

The derivations presented here are based on the works [1, 4].

In Chapter 6 we will study some aspects on the relation between Ricci-flat spacetimes

and Carrollian dynamics. The latter includes the reconstruction of Ricci-flat spacetimes,

the relation between bulk and boundary isometries, charges and dual charges and stationary

Ricci-flat solutions. We then show how the Ehlers group of symmetries that are present

in Einstein’s field equations translates to the boundary as a local transformation on the

Carrollian geometric data as well as the Carrollian fluid data. The results included in this

Chapter are based on our work [3, 2].

Finally in Chapter 7 a summary of the results obtained in this thesis are presented, as

well as possible future directions.



Chapter 2

Introductory material

2.1 Relativistic hydrodynamics

2.1.1 Energy-momentum and matter conservation

Fluid mechanics can be understood as the effective description of the dynamics of matter

with off-equilibrium thermodynamics at large enough length and time scales. This means that

a small portion of the fluid is big enough compared to the distances between the molecules

so one does not need to worry about the dynamics of the individual molecules. Deviations

from thermal equilibrium are small and thus the global thermal equilibrium temperature,

fluid velocity and chemical potential are promoted to slowly varied in time and space. It is

reasonable to assume local thermal equilibrium and use the laws of thermodynamics (see

App. A).

Part of the hydrodynamic description is governed by local conservation laws. When there

are no external forces, springs or sinks, these conservation laws are recast in the form of

d +2 equations given by the vanishing divergence of the energy-momentum tensor and the

matter current,

∇µT µν = 0, (2.1)

∇µJµ = 0 . (2.2)

Here we assume the d+1 spacetime is equipped with a metric gµν with Lorentzian signature

(−,+, . . . ,+). Both, the energy-momentum tensor and the matter current can be decomposed

along the congruence uµ , which corresponds to the velocity field of the fluid and it is
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normalized as uµuµ =−k2. Here k is the light velocity.1 This decomposition reads

T µν = (ε + p)
uµuν

k2
+ pgµν + τµν +

uµqν

k2
+

uνqµ

k2
, (2.3)

Jµ = ρ0uµ + jµ . (2.4)

The heat current qµ and the viscous stress tensor τµν are purely transverse, implying

uµqµ = 0, uµτµν = 0, uµTµν =−qν − εuν , ε =
1

k2
Tµνuµuν (2.5)

Similarly, we have for the non-perfect piece of the matter current jµ

uµ jµ = 0, ρ0 =− 1

k2
uµJµ . (2.6)

The kinematic properties of the fluid 2 are given by the irreducible decomposition of the

covariant derivative of the velocity field, namely

∇νuµ = ωµν +σµν +
1

d
Θhµν −

1

k2
aµuν , (2.7)

with

aµ = uν∇νuµ , Θ = ∇µuµ , (2.8)

σµν = ∇(µuν)+
1
k2 u(µaν)− 1

d Θhµν , (2.9)

ωµν = ∇[µuν ]+
1
k2 u[µaν ], (2.10)

the acceleration, the expansion, the shear and the vorticity, with hµν and Uµν the projectors

onto the space transverse and longitudinal to the velocity field,

hµν =
uµuν

k2
+gµν , Uµν =−uµuν

k2
. (2.11)

In the decomposition of T µν and Jµ at hand, different variables are present:

• ε is the energy density per unit of proper volume and ρ0 is the matter per unit of proper

volume, both as measured by an observer co-moving at velocity uµ ;

1We use k instead of c for the light velocity in order to avoid possible confusions with the Cotton density

(D.11), which is defined here with the letter c.
2Our conventions for (anti-) symmetrization are A(µν) =

1
2

(

Aµν +Aνµ

)

and A[µν ] =
1
2

(

Aµν −Aνµ

)

.
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• p is the local-equilibrium thermodynamic pressure. The latter obeys an equation of

state of the form p = p(T,µ0), where T and µ0 are the local temperature and chemical

potential;

• the tensors jµ , qµ and τµν capture the non-perfect nature of the fluid. In other words,

yields the information about the physics of the out of equilibrium state. These tensors

are usually expressed as a gradient expansion of the thermodynamic variables (T , µ0

and uµ ) giving the constitutive relations at each order in the expansion.

Besides the conservation of the energy-momentum tensor, the matter current and the

equation of state p = p(T,µ0), the description of a hydrodynamic system is accompanied

with the second law of thermodynamics, also known as the non-decreasing entropy flux

principle. The latter is realized by the condition

∇µSµ ≥ 0 , (2.12)

where Sµ is the entropy current. The latter does not have a microscopic definition but it is

also built order by order in the derivative expansion3. The generic form of the entropy current

is

Sµ =
1

T
(puµ −T µνuν −µ0Jµ)+Rµ = Σµ +Rµ , (2.13)

where Σµ is the universal piece of the current, and Rµ depends on the specific off-equilibrium

thermodynamic theory. Using (2.5), (2.6), (A.3) and (A.5), Σµ is rewritten as

Σµ = σuµ − µ0

T
jµ +

1

T
qµ =

σ

ρ0
Jµ − w

T ρ0

(

jµ − ρ0

w
qµ
)

(2.14)

with σ the entropy, w the relativistic enthalpy, and µ0 the relativistic chemical potential.

It is convenient, both for the relativistic dynamics and for its Galilean or Carrollian limits,

to consider the longitudinal and transverse projections of (2.1), possibly combined with

(2.2) and the thermodynamic laws (A.5), (A.6) and (A.8) in order to trade the energy for the

entropy. For the longitudinal projection, we find

−uν∇µT µν = u(ε)+
(

w+
τ

d

)

Θ+ τµνσµν +∇νqν +
aνqν

k2
, (2.15)

= T ∇νΣν +
τ

d
Θ+ τµνσµν +T jν∂ν

µ0

T
+qν

(

∂νT

T
+

aν

k2

)

, (2.16)

where τ = τµνgµν is the relativistic non-equilibrium pressure and u( f ) stands for uµ∂µ f .

3The first order is often referred to as classical irreversible thermodynamics, the second extended irreversible

thermodynamics, etc.
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The conservation of the energy-momentum tensor and the matter current are also the

result of the symmetries of the effective action S =
∫

dd+1x
√−gL of our hydrodynamic

system. Indeed, from this perspective the energy momentum tensor is defined as the variation

of the action with respect to the metric,

T µν =
2√−g

δS

δgµν
, (2.17)

while the matter current is defined through the variation of the action with respect to a U(1)

gauge field Bµ

Jµ =
1√−g

δS

δBµ
. (2.18)

If the action is invariant under diffeomorphisms generated by ξ= ξ µ(t,x)∂µ that trans-

form the geometry as

δξgµν =−Lξgµν , (2.19)

where Lξ is the Lie derivative along the vector ξ and whose action on the metric is

Lξgµν = ξ ρ∂ρgµν +gµρ∂νξ ρ +gνρ∂µξ ρ = ∇µξν +∇νξµ , (2.20)

the variation δξS is expressed as

δξS =
1

2

∫

M
dd+1x

√−gT µνδξgµν

=
∫

M
dd+1x

√−gξν∇µT µν −
∫

M
dd+1x

√−g∇µ (T
µνξν) . (2.21)

Therefore, the vanishing of δξS implies the conservation of the energy-momentum tensor.

Here, the last term in (2.21) is a boundary term.

Similarly, the conservation of the matter current (2.2) comes from the invariance of the

action under the U(1) transformation

δΛBµ =−∂µΛ (2.22)

with Λ = Λ(t,x). Hence, the variation δΛS yields

δΛS =
∫

M
dd+1x

√−gJµδΛBµ

=
∫

M
dd+1x

√−gΛ∇µJµ −
∫

M
dd+1x

√−g∇µ (J
µΛ) , (2.23)
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from which we can infer the conservation of the matter current by the requirement δΛS = 0.

Again, the last term in (2.23) is nothing but a boundary term.

When the vector field ξ generates an isometry of the spacetime, we can derive conserva-

tion laws associated to them. In such case ξ is a Killing vector which satisfies the Killing

equation

Lξgµν = 0. (2.24)

Hence, through a Noether procedure it is possible to define a current as

Iµ = ξ νTµν (2.25)

that is divergence free

∇µ Iµ = 0. (2.26)

Then we can use the Stokes and Gauss theorems

∫

W
dd+1x

√−g∇µ Iµ =
∮

∂W
∗I, (2.27)

where W is a domain inside M and ∗I is the M -Hodge dual of I = Iµdxµ (ε01...d = 1). One

can infer that

QI =
∫

Σd

∗I (2.28)

is a conserved quantity. Here, Σd is an arbitrary spacelike hypersurface embedded in M .

The same construction can be made for the presence of conformal isometries. In that

case the energy-momentum tensor is trace-free T µ
µ and the conformal Killing vectors satisfy

Lξgµν =
2

d +1
∇ρξ ρgµν . (2.29)

We will come back to this subject in chapters 3 and 4 when discussing about conservation

laws associated to Carrollian and Galilean (conformal) isometries.

2.1.2 Hydrodynamic-frame invariance

The freedom to chose a hydrodynamic-frame is rooted in the redundancy of the fluid data qµ

and jµ (no distinction between energy and mass flow). For instance, in Ekart’s formulation

of relativistic fluids [59], the frame is chosen such that the matter current remains perfect

( jµ = 0), while in the Landau and Lifshitz formulation the heat current qµ is set to zero. It is

more commonly known in the literature that the freedom to chose a hydrodynamic-frame

relies on the freedom to redefine the thermodynamic variables together with the velocity field,
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such that the energy-momentum tensor, the matter current and the entropy current remain

invariant. That is, we make

T (x)→ T ′(x), µ0(x)→ µ ′
0(x), uµ(x)→ u′µ(x), (2.30)

provided we modify accordingly ε(x), p(x), ρ0(x), qµ(x), τµν(x) and jµ(x) so that

T µν → T ′µν , Jµ → J′µ , Sµ → S′µ . (2.31)

The latter is actually a gauge symmetry, associated with a local Lorentz transformation of the

velocity field uµ , meaning that the velocity field has no first principle definition in relativistic

hydrodynamics. The way a hydrodynamic-frame transformation works goes as follows:

Suppose we transform the fluid velocity through a local Lorentz transformation, namely

u → u+δu, δu ·u = 0. (2.32)

We require that the energy-momentum tensor remains invariant under such transformation,

namely δT µν = 0. This implies that the various pieces within the decomposition of the

energy-momentum tensor (2.3) must transform as4

δε = − 2

k2
qµδuµ , (2.33)

δqν =
uν

k2
qµδuµ −wδuν − τνµδuµ , (2.34)

δ
(

phµν + τµν

)

=
p

k2

(

uµδuν +uνδuµ

)

+
1

k2

(

uµτνρ +uντµρ

)

δuρ

− 1

k2
(δuµqν +δuνqµ) . (2.35)

In the same way, the requirement δJµ = 0 implies

δρ0 = − 1

k2
Jµδuµ (2.36)

δ jµ =
1

k2
uµJνδuν −ρ0δuµ . (2.37)

4We cannot disentangle at this stage the transverse components p and τµν , as their separation relies on

thermodynamics (p is the equilibrium pressure, τµν stands for the non-equilibrium stress and its trace is the

non-equilibrium pressure).
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The entropy current and the thermodynamic relations are also hydrodynamic-frame

invariant, in particular the Gibbs-Duhem equation

w= T σ +µ0ρ0 ⇔ p = T sρ0 +µρ0 − eρ0. (2.38)

and the equation of state. Although not part of our main goal, the latter provides the necessary

tools for computing the local Lorentz transformations of the thermodynamic observables σ ,

p, T and µ0, all in terms of δuµ . The latter will not be analyzed here but for a more detailed

discussion on the subject is given in [65–74, 101].

The ambiguity in the definition of the fluid velocity, and hence in the temperature and

chemical potential, appears only when viscosity and heat conduction are present. Indeed,

when qµ , jµ and τµν vanish it is possible to consider the fluid moving with a precise velocity

(uµ is aligned with the matter current and it is also an eigenvector of the energy-momentum

tensor) and define a frame co-moving with the fluid [58, 102]. In fact, if one performs a local

hydrodynamic-frame transformation as given in (2.32), it will not preserve the perfect form

of the energy-momentum tensor and the matter current. In that case all those transformations

will generate non-perfect components in T µν and Jµ .

2.1.3 Weyl-invariant relativistic fluids

We now turn our attention to fluids which are invariant under Weyl transformations. Those

fluid configurations, which are known as conformal fluids, are important within the fluid/gravity

duality since they appear as the holographic duals of AAdS spacetimes [40, 38, 39] as well

as their Carrollian version known as Conformal Carrollian fluids, which are the holographic

duals of Ricci-flat spacetimes [42].

Weyl transformations act on the background metric and fluid velocity as

gµν → B−2gµν , uµ → Buµ , (2.39)

with B ≡ B(t,x). More general tensors are Weyl-covariant of weight w if they rescale

with some power of B. We can define a Weyl-covariant derivative Dµ that maintains the

canonical Weyl transformation of a Weyl-covariant tensor. This is achieved by the inclusion

of a Weyl connection one-form5

A =
1

k2

(

a− Θ

d
u

)

, (2.40)

5The explicit form of A is obtained by demanding Dµ uµ = 0 and uλ Dλ uµ = 0
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which transform as A → A− dlnB. The Weyl covariant derivative is metric-compatible,

implying

Dρgµν = 0, (2.41)
(

DµDν −DνDµ

)

f = w f Fµν , (2.42)

where the action on a weight-w scalar f is

Dλ f = ∇λ f +wAλ f , (2.43)

and

Fµν = ∂µAν −∂νAµ (2.44)

is the Weyl curvature (weight-0). For concreteness, the action of Dλ on a weight-w form vµ

and a weight-w tensor tµν is

Dλ vµ = ∇λ vµ +(w+1)Aλ vµ +Aµvλ −gµλ Aρvρ , (2.45)

Dλ tµν = ∇λ tµν +(w+2)Aλ tµν +Aµtλν +Aνtµλ −gµλ Aρtρν

−gνλ Aρtµρ . (2.46)

As usual, one defines the Weyl-covariant Riemann tensor through the commutator of the

Weyl-derivatives acting on vectors

(

DµDν −DνDµ

)

vρ = R
ρ

σ µνvσ +wvρFµν (2.47)

(vρ are the components of a weight-w vector) and the usual subsequent quantities. The

Weyl-covariant Ricci (weight 0) and scalar (weight 2) curvatures read

Rµν = Rµν +(d −1)
(

∇νAµ +AµAν −gµνAλ Aλ
)

+gµν∇λ Aλ −Fµν , (2.48)

R = R+2d∇λ Aλ −d(d −1)Aλ Aλ . (2.49)

We can also define the Weyl-invariant Schouten tensor as

Sµν = Rµν −
1

4
Rgµν = Rµν −

1

4
Rgµν +∇νAµ +AµAν −

1

2
Aλ Aλ gµν −Fµν (2.50)

and the Weyl invariant tensor

Sµν = 2u(µDλ

(

σ λ
ν) +ω λ

ν)

)

− R

2
uµuν +

(

σµλ +ωµλ

)

(

σ λ
ν +ω λ

ν

)

(2.51)
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which are going to be very useful when discussing on the Ricci-flat/Carrollian fluid duality

in Chapter 6.

When the dimension of the spacetime is three (d = 2), which is the dimension we will

use in Chapter 6, we can define other Weyl-covariant velocity-related quantities as

Dµuν = ∇µuν +
1

k2
uµaν −

Θ

2
hµν

= σµν +ωµν , (2.52)

Dνων
µ = ∇νων

µ , (2.53)

Dνην
µ = 2quµ , (2.54)

uλ Rλ µ = D
λ

(

σλ
µ −ωλ

µ

)

−uλ Fλ µ , (2.55)

uλ Dλ hµν = 0, (2.56)

of weights −1, 1, 0, 1 and −1 (the last one shows that the operator uλ Dλ respects transver-

sality). Here ηµν is defined as 6

ηµν =−uρ

k
ηρµν , (2.57)

obeying

ηµσ η σ
ν = hµν , ηµνηµν = 2. (2.58)

The scalar q is of weight 1 and defines the vorticity strength as

q2 =
1

2k4
ωµνωµν . (2.59)

The two-index tensor ηµν defines a duality map within the space of symmetric, transverse

(with respect to u) and traceless tensors. For a transverse tensor V µ , its dual is given as

∗V µ = ην
µVν , (2.60)

which is also transverse.

Similarly with a symmetric, transverse and traceless tensor Wµν , we define its dual as

∗Wµν = η
ρ

µWρν , (2.61)

which is symmetric, transverse and traceless. As a reminder, the above is valid for three

dimensional spacetimes.

6ηρµν =
√−gερµν .
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The fluid dynamics captured by (2.1) and (2.2) is Weyl-invariant as long as the energy–

momentum tensor and the matter current are Weyl-covariant such that

∇µT µν = DµT µν , ∇µJµ = DµJµ . (2.62)

The latter demands for the conformal weights of Tµν and Jµ to be d −1, and Tµν must be

traceless. For the energy-momentum tensor, these are consequences of the Weyl invariance

of the action. Indeed, given the infinitesimal Weyl transformation

δBgµν =−2lnBgµν , (2.63)

one can see that

δBS =−
∫

dd+1x
√−g lnBT µ

µ , (2.64)

implying T µ
µ = 0 for a Weyl invariant action. The weight of the energy momentum-tensor

can be inferred from (5.7).

In the decomposition (2.3) the latter condition reads −ε +d p+ τ
µ

µ = 0, usually split-

ted into the conformal global-equilibrium equation of state plus a condition on the piece

associated with dynamical irreversible phenomena:

ε = d p, τ
µ

µ = 0. (2.65)

The conformal weight of the gauge field Bµ , conjugate to Jµ , is w = 0 and it is inferred

from (2.18) in order to comply with the expected weight for Jµ . A summary of the weights

of the various physical quantities are given in the Tab. 2.1.

weight observables

d +1 ε , p
d qµ , ρ0

d −1 τµν , jµ
Table 2.1 Conformal weights.
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2.2 Fluids in Zermelo coordinates

2.2.1 Zermelo frame

There are different parametrizations one can chose for the metric of a pseudo-Rimannian

manifold of d +1 dimensions depending on what one is trying to achieve. For instance, one

can always assume the Arnowitt–Deser–Misner form of the metric

ds2 =−Ω2k2dt2 +ai j
(

dxi −widt
)(

dx j −w jdt
)

(2.66)

with ai j, wi and Ω functions of x=(kt,x)= {xµ ,µ = 0,1, . . . ,d} and x stands for {x1, . . . ,xd}.

These choice of gauge is well-suited to take the Galilean limit [44]. Indeed, Galilean

diffeomorphisms

t ′ = t ′(t), x′ = x′(t,x) (2.67)

have Jacobian

J(t) =
∂ t ′

∂ t
, ji(t,x) =

∂xi′

∂ t
, Ji

j(t,x) =
∂xi′

∂x j , (2.68)

and the transformation of the metric components are reduced as

a′i j = aklJ
−1k

i J−1l
j, w′k =

1

J

(

Jk
i wi + jk

)

, Ω′ =
Ω

J
. (2.69)

Then a Galilean limit for (2.66) exists under the condition that Ω depends only on time t,

making (2.66) stable under Galilean diffeomorphims. We call Zermelo metrics [103] to

the parameterization given by (2.66) with the restriction Ω = Ω(t), whose corresponding

Newton-Cartan structure reached in the k → ∞ limit is torsion free [104]. The latter is

equipped with an absolute, invariant Newtonian time
∫

dt Ω(t) =
∫

dt ′Ω′(t ′).

With the above gauge, any tensor component with an upper time index transform as

a Galilean density and thus is a scalar upon multiplication by Ω. In the same way the

components with lower spatial indices transform as Galilean tensors. As an example, the

transformation of the d +1 vector components V µ under a Galilean diffeomorphism leads

to7

V ′0 = JV 0, V ′
i =VkJ−1k

i . (2.70)

7When the indices are inverted, the transformations are of the connection type: V ′i = Ji
kV

k + JiV 0, V ′
0 =

1
J

(

V0 −VjJ
−1 j

k Jk
)

. For those, the tensorial structure is restored at the infinite-k limit, where indices are lowered

and raised with ai j and its inverse.
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As we mentioned previously, the fluid is flowing with a velocity field u with normalization

∥u∥2 =−k2. The latter is described as

uµ =
dxµ

dτ
⇒ u0 = γk, ui = γvi, (2.71)

where the Lorentz factor γ is expressed in the Zermelo frame as8

γ =
dt

dτ
=

1

Ω

√

1−
(

v−w
kΩ

)2
. (2.72)

Under a Galilean diffeomorphism (2.68), the transformation of uµ (see footnote 7) induces

the transformation

v′k =
1

J

(

Jk
i vi + jk

)

, (2.73)

meaning the velocity vi transform as a connection.

We can also extract the fundamental data for the non-perfect part of the matter current

ji, heat current qi and the stress tensor τkl by the conditions (2.5) and (2.6). Their other

components in Zermelo coordinates can be expressed as

j0 =

(

vi −wi
)

ji
kΩ2

, q0 =

(

vi −wi
)

qi

kΩ2
, τ00 =

(

vk −wk
)(

vl −wl
)

τkl

k2Ω4
,

τ0
j =

(

vk −wk
)

τk j

kΩ2
, (2.74)

which transform as tensors under Galilean diffeomorphisms.

2.2.2 Hydrodynamic-frame transformations and invariants

The fluid velocity is parameterized in (2.71) with d components vi. We can thus formulate the

relativistic hydrodynamic-frame transformations in terms of an arbitrary local transformation

on vi, that is, δvi(x). In the Zermelo frame, the Lorentz factor transforms as

δγ =
γ3

k2
δvi (vi −wi) , (2.75)

hence, the transformation of the velocity field u is given by

δu = γδvi
(

∂i +
γ2

k2
(vi −wi)

(

∂t + vk∂k

)

)

. (2.76)

8Expressions as v2 stand for ai jviv j, not to be confused with ∥u∥2 = gµν uµ uν .
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Using Eqs. (2.33), (2.34) and (2.35), together with (2.74) and (2.76), we find

δε = −2
γ

k2
δviqi, (2.77)

δqi = γδvk
( γ

k2
(vi −wi)qk −whki − τki

)

, (2.78)

δ
(

phi j + τi j
)

=
γ2

k2
δvk ((vi −wi)

(

τ jk + ph jk
)

+
(

v j −w j
)

(τik + phik)
)

− γ

k2
δvk (qih jk +q jhik

)

, (2.79)

where (see (2.11))

hik = aik +
γ2

k2
(vi −wi)(vk −wk) . (2.80)

When a matter current is available, the above is completed with (2.36), which gives

δρ0 =− γ

c2
δvi ji (2.81)

and

δ ji = δvk
(

γ2

c2
jk (vi −wi)− γρ0hki

)

. (2.82)

The transformations at hand are such that the energy–momentum tensor and the matter

current remain invariant. The latter define therefore invariants, which are simply the energy

density, the heat current, the stress tensor, the matter density and the matter non-perfect

current in a privileged frame, that we will call “at rest” or “proper”. In this privileged frame

we have then

T 00 =
εr

Ω2
, T 0

i =
1

kΩ
qri, Ti j = prai j + τri j (2.83)

with trace

T µ
µ =−εr +d pr +ai jτri j, (2.84)

and

J0 =
k

Ω
ρ0r, Ji = jri. (2.85)
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We can expressed the above invariants in terms of of the fluid data in the general frame as

εr = εγ2Ω2 +
2

k2
γqi
(

vi −wi)+
(

phi j + τi j
)

(

vi −wi
)(

v j −w j
)

k2Ω2
, (2.86)

qri = εγ2Ω(vi −wi)+ γΩq j

(

δ
j

i +

(

v j −w j
)

(vi −wi)

k2Ω2

)

+
(

phi j + τi j
) v j −w j

Ω
, (2.87)

prai j + τri j =
εγ2

k2
(vi −wi)

(

v j −w j
)

+
γ

k2

(

qi
(

v j −w j
)

+q j (vi −wi)
)

+phi j + τi j, (2.88)

and

ρ0r = ρ0Ωγ + ji
vi −wi

k2Ω
, (2.89)

jri = ji +ρ0γ
(

vi −wi) . (2.90)

It should be stressed that the above quantities are hydrodynamic-frame invariant but also co-

variant under Galilean diffeomorphisms. This latter property will be useful when considering

the Galilean limit.

2.2.3 Killings and conserved currents

Consider a Killing field on M satisfying (2.24)

ξ= ξ t∂t +ξ i∂i = ξ t̂et̂ +ξ ı̂eı̂, (2.91)

where we have introduced a somewhat more convenient frame and coframe

et̂ = υ=
1

Ω

(

∂t +w j∂ j
)

, eı̂ = ∂i, θt̂ = µ= Ωdt, θı̂ = dxi −widt, (2.92)

so that the metric (2.66) reads

ds2 =−k2
(

θt̂
)2

+ai jθ
ı̂θ ĵ. (2.93)

Hence

ξ t̂ = ξ tΩ, ξ ı̂ = ξ i −ξ twi, ξt̂ =−k2ξ t̂ , ξî = ai jξ
ĵ = ξi. (2.94)
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With these, the components of the conserved current (2.25) are9

I0 =
k

Ω
ι0r, Ii = iri, (2.95)

where

ι0r =
1

k2
ξ ı̂qri −ξ t̂εr, (2.96)

iri = ξ ĵ (prai j + τri j
)

−ξ t̂qri. (2.97)

The associated conserved charge is obtained using (2.28):

QI =
∫

Σd

√
aι0r

(

dx1 −w1dt
)

∧ . . .∧
(

dxd −wddt
)

−
∫

Σd

√
a

d

∑
i=1

(

dx1 −w1dt
)

∧ . . .∧ai jir jΩdt ∧ . . .∧
(

dxd −wddt
)

, (2.98)

where ai jir jΩdt is the ith factor in the exterior product of the last term.

2.3 Fluids in Papapetrou-Randers coordinates

2.3.1 Papapetrou-Randers frame

Another alternative gauge for a d +1-dimensional pseudo-Riemannian manifold is given by

ds2 =−k2
(

Ωdt −bidxi)2
+ai jdxidx j, (2.99)

where all functions depend on time and space. The latter is known as the Papapetrou–Randers

frame, and oppositely to Zermelo frame, this form is stable under Carrollian diffeomorphisms

t ′ = t ′(t,x) and x′ = x′(x) (2.100)

with Jacobian

J(t,x) =
∂ t ′

∂ t
, ji(t,x) =

∂ t ′

∂xi , Ji
j(x) =

∂xi′

∂x j . (2.101)

9We use the standard decomposition Iµ = ι0uµ + iµ with uµ iµ = 0 and ι0 =−uµ Iµ , and introduce ι0r as a

proper density, following the footsteps of the energy–momentum tensor and the matter current, Eqs. (2.83) and

(2.85).
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Under Carrollian diffeomorphisms, Ω and the d-dimensional metric ai j transform as in (2.69),

namely

Ω′ =
Ω

J
, a′i j = Ji

kJ j
l akl, (2.102)

while bi transform as a connection

b′k =

(

bi +
Ω

J
ji

)

J−1i
k. (2.103)

In the Papapetrou–Randers frame, any tensor component with a lower time index trans-

forms as a Carrollian density and provides a scalar upon division by Ω. For the components

with upper spatial indices, we find Carrollian tensors. Again, taking the example with the

d +1 vector components V µ , we see that it follows the following transformation rules under

Carrollian diffeomorphism:

V ′
0 =

V0

J
, V ′i =V kJi

k. (2.104)

Here, our fluid velocity is characterized once again by u0 = γk and ui = γvi with normaliza-

tion −k2 but this time, as we are going to see soon, we chose an appropriate parameterization

for the velocity vi. Papapetrou-Randers coordinates are well suited for taking Carrollian

limits. For instance, in the k → 0 limit of (2.99) one recovers a Carrollian structure with

degenerate metric ai j. Additionally, as mentioned previously, in a Carrollian limit particles

are forbidden of all movement meaning that the velocity vi has to be set to zero in this limit.

The same must happen if vi is now the velocity of an infinitesimal portion of a fluid. The

latter means that its scaling has to be of the form

vi = k2Ωβ i +O(k4) . (2.105)

Here β i is a Carrollian kinematic quantity of inverse velocity dimension. Therefore its defini-

tion has to be such that it transforms as a Carrollian vector. To that end the parameterization

of vi must be

vi =
k2Ωβ i

1+ k2β jb j
⇔ β i =

vi

k2Ω

(

1− v jb j
Ω

) , (2.106)

from which we can see that β i transforms as a Carrollian vector10

β i′ = Ji
jβ

j. (2.107)

10This is easily proven by observing that βi+bi =−Ωui
ku0

. We define as usual bi = ai jb j, βi = ai jβ
j, vi = ai jv j,

bbb2 = bibi, βββ 2 = βiβ
i and bbb ·βββ = biβ

i.
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Now in this parameterization the Lorentz factor reads

γ =
1+ k2βββ ·bbb

Ω
√

1− k2βββ 2
. (2.108)

In Papapetrou–Randers frame (2.99), the fundamental hydrodynamic variables are natu-

rally chosen as ji, q j and τkl . Using the transversality conditions (2.5) we find

j0 =−kΩβi ji, q0 =−kΩβiq
i, τ00 = k2Ω2βkβlτ

kl, τ i
0 =−kΩβkτ ik. (2.109)

These are all Carrollian tensors (or densities).

2.3.2 Hydrodynamic-frame transformations and invariants

Following the same pattern as for the Zermelo frame, we investigate the hydrodynamic-frame

transformations, namely, local Lorentz transformations captured here in the d components

δβ i(x). We obtain

δu0 = kδγ, δui = k2 hikδβk
√

1− k2βββ 2
(2.110)

with

δγ = k2γδβ i
(

bi

1+ k2βββ ·bbb +
βi

1− k2βββ 2

)

, (2.111)

and

hik = aik +
k2β iβ k

1− k2βββ 2
. (2.112)

Using the general transformation rules (2.33), (2.34) and (2.35) together with (2.109)

and (2.110) we find (w is the relativistic enthalpy (A.3))11

δε = −2
qiδβi

√

1− k2βββ 2
, (2.113)

δqi =
k2δβk

√

1− k2βββ 2

(

qkβ i
√

1− k2βββ 2
−whki − τki

)

, (2.114)

δ
(

phi j + τ i j) =
k2δβk

1− k2βββ 2

(

β i
(

ph jk + τ jk
)

+β j
(

phik + τ ik
))

− δβk
√

1− k2βββ 2

(

qih jk +q jhik
)

. (2.115)

11Notice in passing qµ δuµ = k2 qiδβi√
1−k2βββ 2

.
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Similarly, using Eq. (2.36), we obtain

δρ0 =− jiδβi
√

1− k2βββ 2
, (2.116)

and

δ ji =
k2δβk

√

1− k2βββ 2

(

jkβ i
√

1− k2βββ 2
−ρ0hki

)

. (2.117)

The energy–momentum tensor is by definition invariant under hydrodynamic-frame

transformations. This invariance can be characterized in terms of three canonical objects,

which are the energy density εr, the heat current qi
r and the stress tensor τ

i j
r , in the rest frame

T00 = εrΩ
2, T i

0 =−Ω

k
qi

r, T i j = pra
i j + τ

i j
r (2.118)

with trace

T µ
µ =−εr +d pr +ai jτ

i j
r , (2.119)

and

J0 =−kΩρ0r, Ji = ji
r. (2.120)

We can relate these invariants to the fluid data in an arbitrary frame encoded in β i. They read

εr =
ε

1− k2βββ 2
+

2βiqi
√

1− k2βββ 2
+ k2βiβ j

(

phi j + τ i j) , (2.121)

qi
r =

k2εβ i

1− k2βββ 2
+

q j
√

1− k2βββ 2

(

δ i
j + k2β iβ j

)

+ k2β j
(

phi j + τ i j) , (2.122)

pra
i j + τ

i j
r =

k2εβ iβ j

1− k2βββ 2
+

β iq j +β jqi
√

1− k2βββ 2
+ phi j + τ i j, (2.123)

and similarly for the components of the matter current we have

ρ0r =
ρ0

√

1− k2βββ 2
+βi ji, (2.124)

ji
r = ji +

k2ρ0β i
√

1− k2βββ 2
. (2.125)

2.3.3 Killings and conserved currents

Once again, in the presence of isometries, the Killing field takes the generic form (2.91), that

satisfies (2.24) on M in Papapetrou–Randers coordinates, where the frame and coframe are
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now12

et̂ = υ=
1

Ω
∂t , eı̂ = ∂i +

bi

Ω
∂t , θt̂ = µ= Ωdt −bidxi, θı̂ = dxi, (2.126)

so that the metric (2.99) becomes (2.93). The Killing components are

ξ t̂ = ξ tΩ−ξ ibi, ξ î = ξ i, ξt̂ =−k2ξ t̂ , ξî = ai jξ
ĵ = ξi +ξt̂bi, (2.127)

and thus, the components of the conserved current (2.25) read

I0 =−kΩι0r, Ii = iir, (2.128)

where

ι0r =
1

k2
ξı̂q

i
r −ξ t̂εr, (2.129)

iir = ξ ĵ

(

pra
i j + τ

i j
r

)

−ξ t̂qi
r. (2.130)

Using (2.28), one can express the conserved charge in the Papapetrou–Randers frame as

QI =
∫

Σd

√
aι0rdx1 ∧ . . .∧dxd −

∫

Σd

√
a

d

∑
i=1

dx1 ∧ . . .∧ iir
(

Ωdt −b jdx j)∧ . . .∧dxd, (2.131)

where in the exterior product of the second term, iir
(

Ωdt −b jdx j
)

is the ith factor.

2.4 Ehlers group and the Geroch method in General Rela-

tivity

In anticipation to the upcoming discussion on aspects of the Ricci-flat/Carrollian duality in

Chapter 6, we now turn our attention to the dynamic of gravitational fields.

The most successful theory for the description of gravity is General Relativity. In

this theory, gravitational forces are understood as the deformation of the geometry of the

spacetime sourced by the presence of matter/energy. The dynamical equations are given by

12Later on eı̂ will be alternatively displayed as ∂̂i.
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the Einstein’s equations13

RAB −
1

2
RgAB +ΛgAB = 8πGT (φ)

AB , (2.132)

where RAB is the Ricci-tensor, R is the scalar curvature 14, gAB is the metric of the spacetime,

Λ is the cosmological constant, and T φ
AB is the energy-momentum tensor of the matter content.

Here A,B, . . . ∈ {0, . . . ,3}
In the absence of a cosmological constant Λ and matter, vacuum Einstein’s field equations

are reduces to the vanishing of the Ricci tensor, namely RAB = 0. It has been known for

long that these equations are invariant under constant scalings of the metric and the action of

infinitesimal diffeomorphims [105]. The latter are not the only symmetries of Einstein’s field

equations and in fact more "hidden symmetries" arise upon dimensional reduction [106–112].

Here we focus on Ricci-flat spacetimes and we review the Geroch generalization of Ehlers

work following [89, 92].

Consider a four-dimensional pseudo-Riemannian manifold (M ,g) possessing a timelike

isometry15 generated by the Killing vector field ξ. For the latter we can define its norm

λ = ξ AξA, (2.133)

and twist

wA = ηABCDξ B∇Cξ D, (2.134)

where ηABCD =
√−gεABCD (ε0123 = 1). For a Ricci-flat spacetime,16 one can show that the

one-form twist w = wAdxA is closed, implying

w = dω (2.135)

with ω a scalar function.

A three-dimensional space S can be defined as the quotient M /orb(ξ). This coset space

is not necessarily a subspace of M unless ξ is hypersurface-orthogonal, which implies zero

13Einstein’s equations are obtained by varying the Einstein-Hilbert action SEH =
∫

M
dd+2x

√
g(R−2Λ) with

respect to the field gAB.
14The Ricci tensor is the subtrace of the Riemann tensor, namely RBC = RA

BAC with the Riemann tensor

defined as RA
BCD = ∂CΓA

BD−∂DΓA
BC+ΓA

ECΓE
BD−ΓA

EDΓE
BC, with ΓA

BC the Christoffel symbol. The scalar curvature

is the trace of the Ricci tensor, that is R = gABRAB
15The Geroch procedure is valid for both, timelike and spacelike isometries but here we consider the first to

avoid unnecessary multiplication of indices without shedding more light on our purpose.
16This property actually holds more generally for Einstein spacetimes [113].
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twist with S the orthogonal hypersurface. We can define a metric on the space S which is

induced by g of M . The latter reads

hAB = gAB −
ξAξB

λ
, (2.136)

which defines the projector onto S as

hB
A = δ B

A − ξ BξA

λ
. (2.137)

The fully anti-symmetric tensor for (2.136) is ηABC = −1√
−λ

ηABCDξ D.

Tensors of M that satisfy

ξ A1T
B1...Bq

A1...Ap
= 0 and LξT

B1...Bq
A1...Ap

= 0 , (2.138)

namely, tensors that are transverse and invariant with respect to ξ, are in one-to-one corre-

spondence with tensors on S . If T is a tensor of S , we can define the covariant derivative

D as the following projection onto S ,

DCT
B1...Bq

A1...Ap
= hL

ChM1

A1
. . .h

Mp
Ap

hB1
N1
. . .h

Bq
Nq

∇LT
N1...Nq

M1...Mp
(2.139)

with ∇ the Levi–Civita connection on (M ,g). The latter sets a relationship between the

Riemann tensor on M and the Riemann tensor on S through a generalized Gauss-Codazzi

equation given by

RABCD = h P
[AhQ

B]h
R
[ChS

D]

(

RPQRS +
2
λ (∇PξQ∇RξS +∇PξR∇QξS)

)

. (2.140)

Here the calligraphic letters refer to curvature tensors of S .

The Ricci-flat dynamics for gAB is recast in the present framework in terms of17

h̃AB = λhAB, (2.141)

as well as ω and λ viewed as fields on S , packaged in

τ = ω + iλ , (2.142)

17With our conventions, this metric is definite-negative.
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and obeying the equations18

R̃AB = − 2

(τ − τ̄)2
D̃(AτD̃B)τ̄ , (2.143)

D̃2τ =
2

τ − τ̄
D̃MτD̃Nτ h̃MN . (2.144)

Equation (2.143) is obtained through (2.140), while (2.144) is obtained by a direct com-

putation of the S -Laplacian acting on τ . Here D̃A and R̃AB are the Levi–Civita covariant

derivative and the Ricci tensor associated with the metric h̃AB displayed in (2.141).

Equations (2.143) (2.144) are the reduction of Einstein’s equations onto S and they yields

two important properties. The first one is that they are invariant under the transformation

keeping h̃AB unaltered and mapping τ into

τ ′ =
ατ +β

γτ +δ
,

(

α β

γ δ

)

∈ SL(2,R). (2.145)

From the latter one can infer the transformation of the triplet (λ ,ω,hAB) as

h′AB =
[

(ωγ +δ )2 + γ2λ 2
]

hAB , (2.146)

λ ′ =
λ

(ωγ +δ )2 + γ2λ 2
, (2.147)

ω ′ =
(ωα +β )(ωγ +δ )+αγλ 2

(ωγ +δ )2 + γ2λ 2
. (2.148)

This is the first instance where a hidden group of symmetries, being SL(2,R), arises upon

reduction with respect to an isometry [88]. The second property is that, after the action of

this group of symmetries which gives τ ′ = ω ′+ iλ ′ and h′AB = 1
λ ′ h̃AB as another solution of

(2.143) and (2.144), it is possible to reverse the reduction process in order to find a new four

dimensional Ricci-flat spacetime with an isometry [89, 92]. To this end, one has to show that

the S -two-form defined as

F ′
AB =

1

(−λ ′)3/2
η ′

ABCDCω ′ (2.149)

is closed. Thus, locally

F′ = dη′. (2.150)

18Equations (2.143) can be obtained by varying a three-dimensional sigma-model action defined on S .
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Then one can promote the one-form field η′, which is defined on S , to a field on M by

adding the necessary exact piece such that its normalization is

ξ Aη ′
A = 1. (2.151)

The above defines a new Killing field on M

ξ′ = λ ′η′ (2.152)

and then, a new four-dimensional metric is given by19

g′AB = h′AB +
ξ ′

Aξ ′
B

λ ′ . (2.153)

Before closing this section it is worth to mention some remarks. The SL(2,R) group is

hidden from the four-dimensional perspective of the Einstein’s field equations but it appears

explicitly in the three-dimensional reduced equations materialized here in (2.143) and (2.144)

(3d sigma model). The latter can be used to generate new solutions, but actually only part

of the group generates genuine new Ricci-flat solutions. A good ilustration of the latter is

the concrete example of Schwarzschild–Taub–NUT solutions with mass M and nut charge n.

The subgroup of rotations
(

cos χ sin χ
−sin χ cos χ

)

∈ SO(2)⊂ SL(2,R) induces rotations of angle 2χ

in the parameter space (M,n), while non-compact transformations
(

α β
0 1/α

)

∈ N ⊂ SL(2,R)

generates a constant scaling of the metric given by (M,n)→ (M/α,n/α).

19The consequence of Möbius transformations on the Weyl tensor has been investigated in Ref. [114].





Chapter 3

Galilean fluids

Having reviewed the basics on relativistic hydrodynamics and their different parameteriza-

tions, we are now ready to study the Galilean and Carrollian versions of fluid dynamics. In

this chapter we will start our analysis with Galilean fluids. This includes a brief review on

Newton-Cartan geometries, Galilean covariance, the derivation of Galilean fluid dynamics,

hydrodynamic-frame invariance and the construction of Noether charges. The same analysis

will be implemented for the case of Carrollian fluids in the subsequent chapter.

3.1 Galilean covariance and Newton-Cartan structures

3.1.1 Basics of Newton-Cartan

When describing non-relativistic fluid dynamics, the most natural geometric framework is

torsionless Newton-Cartan, see [115–117, 17, 104, 18, 19] for a complete presentation of the

subject. This geometries belong to a wide family which includes Bargmann and Leibnizian

structures. Here we consider a manifold M = R×S equipped with coordinates (t,x) and a

degenerate cometric

∂ 2
a = ai j ∂i∂ j, i, j . . . ∈ {1, . . . ,d}, (3.1)

as well as a clock form

µ= Ωdt. (3.2)

The above has a dual vector which is referred as the field of observers and is given by

υ=
1

Ω

(

∂t +w j∂ j
)

, (3.3)
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satisfying υ(µ) = 1. Here, ai j and wi are general functions of time and space whereas

Ω = Ω(t). The space independence of Ω makes the clock form defined in (3.2) exact,

ensuring the torsionless nature of the Newton-Cartan manifold. This guarantees the existence

of an absolute time
∫

dt Ω(t) =
∫

dt ′Ω′(t ′), invariant under Galilean diffeomorphisms (2.67).

The submanifold S corresponds to the d-dimensional Newtonian space, with positive

definite metric ai j which corresponds to the inverse of ai j. This is denoted as

dℓ2 = ai j(t,x)dxidx j, (3.4)

and observed from a frame with respect to which the locally inertial frame has velocity

w = wi∂i. In our set up, an infinitesimal fluid element or a particle moves with velocity

v = vi∂i with vi = dxi

dt . Under Galilean diffeomorphisms (2.67) with Jacobian (2.68), the

transformation rules are as in (2.69), (2.73), and

∂ ′
t =

1

J

(

∂t − jkJ−1i
k∂i

)

, (3.5)

∂ ′
j = J−1i

j∂i. (3.6)

The field of observers and the clock form remain invariant under Galilean diffeomorphisms,

namely

µ′ = µ, υ′ = υ. (3.7)

Galilean tensors carry only spatial indices i, j, . . . ∈ {1, . . . ,d}, which are lowered and

raised with ai j and ai j. They are covariant under Galilean diffeomorphisms (2.67). In general,

these tensors depend on time t and space x.

We can define connections on this geometry, which define covariant time and space

derivatives. These connections are not unique. There are different choices which are metric-

compatible and torsion-free, but here we will make the specific choice that naturally emerges

when this Newton-Cartan geometry is reached as an infinite-k limit of a pseudo-Rimannian

manifold in the Zermelo frame (2.66). Using this choice we have a sharp separation between

time and space materialized in S for which we obtain the spatial connection as

γ i
jk =

ail

2

(

∂ jalk +∂kal j −∂la jk
)

. (3.8)

In the large k expansion, the latter appears as the leading order of the spatial component of

the Christoffel symbol Γi
jk = γ i

jk +O(1/k2) in the Zermelo frame. The associated covariant

derivative is spelled ∇̂i, which has not to be confused with the spatial component of the

Levi-Civita covariant derivative ∇µ defined on the ascendent pseudo-Rimannian spacetime.
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This connection is spatially torsionless, satisfying

t̂k
i j = 2γk

[i j] = 0, (3.9)

and metric-compatible

∇̂ia jk = 0. (3.10)

We can define the curvature tensor on S as usual, by using the commutation relation of

covariant derivative ∇̂i as

[

∇̂k, ∇̂l

]

V i =
(

∂kγ i
l j −∂lγ

i
k j + γ i

kmγm
l j − γ i

lmγm
k j

)

V j = r̂i
jklV

j. (3.11)

We can also construct Galilean tensors from an object that is not a vectors but rather it

transforms as a connections,

A′k =
1

J

(

Jk
i Ai + jk

)

. (3.12)

For instance, the combination

1

Ω
∇̂(kAl)− 1

2Ω
∂ta

kl =− 1

2Ω

(

LAakl +∂ta
kl
)

(3.13)

(LA is the Lie derivative along A = Ai∂i) and

1

Ω
∇̂(kAl)+

1

2Ω
∂takl =

1

2Ω
(LAakl +∂takl) (3.14)

have tensorial transformation rules, and their trace transform as a Galilean scalar.1 We can

apply the above with w or v and define

γ̂w
i j =

1

Ω

(

∇̂(iw j)+
1

2
∂tai j

)

, γ̂v
i j =

1

Ω

(

∇̂(iv j)+
1

2
∂tai j

)

, (3.15)

where the upper indices refer to the vectors w and v, corresponding to the geometry and

fluid respectively. Here γ̂w
i j is purely geometrical and emerges in the large-k expansion of the

Christoffel symbol of the relativistic-spacetime in the Zermelo frame, given by

Γ0
i j = 1/(2kΩ)γ̂w

i j +O(0) . (3.16)

Both γ̂w
i j and γ̂v

i j coincide when the fluid is at rest in the locally inertial frame, namely

for vi = wi. Using these tensors one is able to define the shear tensors and the expansion

1Neither 1
Ω

∂t nor 1
Ω

LA acting on Galilean tensors give separately tensors because of (3.5) and Ai transform-

ing as (3.12).
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associated to wi and vi. We have the geometric Galilean shear

ξ w
i j =

1

Ω

(

∇̂(iw j)+
1

2
∂tai j

)

− 1

d
ai jθ

w, (3.17)

and the geometric Galilean expansion

θ w =
1

Ω

(

∂t ln
√

a+ ∇̂iw
i
)

, (3.18)

while for the fluid velocity vi we have the fluid Galilean shear

ξ v
i j =

1

Ω

(

∇̂(iv j)+
1

2
∂tai j

)

− 1

d
ai jθ

v, (3.19)

and the fluid Galilean expansion

θ v =
1

Ω

(

∂t ln
√

a+ ∇̂iv
i
)

. (3.20)

In the same way we defined the spatial covariant derivative, we can define a time and

metric-compatible covariant derivative that emerges in the Galilean expansion of ∇µ in the

time direction. For a scalar function this is defined as

1

Ω

D̂Φ

dt
= υ(Φ) =

1

Ω
∂tΦ+

w j

Ω
∂ jΦ, (3.21)

whereas for vectors one finds

1

Ω

D̂V i

dt
=

1

Ω
∂tV

i +
w j

Ω
∂ jV

i −V j∂ j
wi

Ω
+ γ̂wi

jV
j

=
1

Ω

(

∂tV
i +LwV i)+ γ̂wi

jV
j. (3.22)

In general, using the Leibniz rule one finds

1

Ω

D̂Ki...
j...

dt
=

1

Ω

(

∂tK
i...

j...+LwKi...
j...

)

+ γ̂wi
kKk...

j...+ · · ·− γ̂wk
jK

i...
k...−·· · , (3.23)

and as a consequence

1

Ω

D̂ai j

dt
=

1

Ω

D̂ai j

dt
= 0. (3.24)
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When considering fluids, one can also introduce the more physical material derivative

d

dt
= ∂t + vi∇̂i, (3.25)

which produces a scalar density (or a scalar upon division by Ω) when acting on a scalar

function. When acting on arbitrary tensors, it should be supported with the appropriate w

and/or v terms in order to keep the tensorial transformation properties. There are several

options to implement this but here we use the one defined in [44]. Hence, the material

derivative acting on a Galilean vector reads

1

Ω

DV i

dt
=

1

Ω

dV i

dt
− 1

Ω
V j∇̂ jw

i,
1

Ω

DVi

dt
=

1

Ω

dVi

dt
+

1

Ω
Vj∇̂iw

j, (3.26)

resulting in genuine tensors under Galilean diffeomorphisms. As opposed to (3.23), this

time-covariant derivative is not metric compatible and its action on the metric ai j gives

1

Ω

Dai j

dt
= 2γ̂w

i j. (3.27)

Space and time covariant derivatives do not commute with each other. The commutator

acting on scalars and vectors are

[

1

Ω

D̂

dt
, ∇̂i

]

Φ = −γ̂wk
i∂kΦ, (3.28)

[

1

Ω

D̂

dt
, ∇̂i

]

V j = −γ̂wk
i∇̂kV

j + r̂ j
ikV

k, (3.29)

where

r̂ j
ik =

1

Ω

(

∂tγ
j

ik + ∇̂i∇̂kw j − ∇̂iγ̂
w j

k +wl r̂ j
kli

)

. (3.30)

3.1.2 Conservation equations from symmetry

The conservation equations that describe the dynamics of our Galilean fluid can be derived

from symmetry principles. Indeed, one can consider the effective action that describes the

dynamics of a system defined on the geometry M = R×S discussed previously2. In this

case, the effective action is a functional of the geometric data ai j, Ω and wi as

S =
∫

dt ddx
√

aΩL . (3.31)

2This is not necessary restricted to fluid dynamics.
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Here we do not have the standard definition of a symmetric energy-momentum tensor. Instead,

we can define a set of Galilean momenta as the variation of the action (3.31) with respect to

the geometric data. These are

Πi j = − 2√
aΩ

δS

δai j , (3.32)

Pi = − 1√
aΩ

δS

δ wi

Ω

, (3.33)

Π = − 1√
aΩ

(

Ω
δS

δΩ
− wi

Ω

δS

δ wi

Ω

)

, (3.34)

which correspond to the energy-stress tensor, momentum and energy density respectively.

Therefore, the variation of the action in terms of the Galilean momenta reads

δS =−
∫

dt Ω

∫

ddx
√

a

(

1

2
Πi jδai j +Piδ

wi

Ω
+

(

Π+
wi

Ω
Pi

)

δ lnΩ

)

. (3.35)

The above set of momenta obey conservation equations, which arise as the consequence

of the invariance of the action under Galilean diffeomorphisms. Galilean diffeomorphisms

(2.67) are generated by vector fields on M of the form

ξ= ξ t∂t +ξ i∂i = ξ t̂υ+ξ ı̂∂i (3.36)

where the time component ξ t depends only on time. We also used ξ t̂(t) = ξ t(t)Ω(t) being

a Galilean scalar, and ξ ı̂(t,x) = ξ i − ξ twi corresponding to the components of a Galilean

vector. The variation under diffeomorphisms is implemented through the Lie derivative3.

Thus, for its action on the co-metric ai j we find

−δξai j = Lξai j =−2

(

∇̂(iξ ĵ)+ γ̂wi jξ t̂ +
1

Ω
w(ia j)k∂kξ t̂

)

, (3.37)

where the last term drops for Galilean diffeomorphisms due to the space independence of ξ t̂ .

For the field of observers we have

Lξυ=− 1

Ω

(

∂tξ
t̂ +Lwξ t̂

)

υ− 1

Ω

(

∂tξ
ı̂ +Lwξ ı̂)∂i, (3.38)

3The minus sign in (3.37) is conventional.
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from which, using (3.3), we infer

−δξΩ = LξΩ = ∂tξ
t̂ +Lwξ t̂ , δξwi =−Lξwi = ∂tξ

ı̂ +Lwξ ı̂. (3.39)

We can also find the action on the clock form. This is given by

Lξµ=
1

Ω

(

∂tξ
t̂ +Lwξ t̂

)

µ=
1

Ω

D̂ξ t̂

dt
µ= µµ, (3.40)

where we introduced

µ(t,x) =
1

Ω

D̂ξ t̂

dt
, (3.41)

not to be confused with the chemical potential nor the clock form.

With the latter we can now determine the diffeomorphic variation of the action. This

reads

δξS =
∫

dtddx
√

aΩ

{

−ξ t̂
[

1

Ω

D̂Π

dt
+θ wΠ+Πi jγ̂

wi j
]

+ ξ ı̂
[

1

Ω

D̂Pi

dt
+θ wPi +Pjγ̂

w j
i + ∇̂ jΠi j

]}

+
∫

dtddx
{

∂t

(√
a
(

Πξ t̂ −Pjξ
ĵ
))

+∂i

(√
awi
(

Πξ t̂ −Pjξ
ĵ
)

−
√

aΩΠi
jξ

ĵ
)}

. (3.42)

Invariance under Galilean diffeomorphisms requires the vanishing of δξ S. Here we ignore

the boundary term in the last integral of (3.42). Therefore, from the condition δξ S = 0 we

extract two conservation equations. The first one corresponds to the momentum equation

(

1

Ω

D̂

dt
+θ w

)

Pi +Pjγ̂
w j

i + ∇̂ jΠi j = 0 , (3.43)

which is associated to ξ ı̂(t,x).

The procedure to obtain the energy equation is more subtle due to the space independence

of ξ t̂ . Indeed, for the vanishing of the first term in the integral of (3.42) it is enough to require

(

1

Ω

D̂

dt
+θ w

)

Π+Πi jγ̂
wi j =−∇̂iΠ

i, (3.44)

where Πi is undetermined. The presence of ∇̂iΠ
i in (3.44) comes as a boundary term in the

variation of the action, i.e.
√

aΩξ t̂∇̂iΠ
i = ∂i

(√
aΩξ t̂Πi

)

, which vanishes inside the integral
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(3.42). As we going to see in the next sections, one can interpret Πi as the energy current

(also energy flux).

Besides Galilean covariance, one may also consider the action to be invariant under local

U(1) symmetry, which is parameterized by the function Λ(t,x) and acts on the components

of a gauge field B = B(t,x)dt +Bi(t,x)dxi as

δΛBi =−∂iΛ, δΛB =−∂tΛ. (3.45)

We can derive the conjugate momenta in the same way as we did in (3.32), (3.33) and (3.34).

We obtain the matter density and the matter current as

ρ = − 1√
a

δS

δB
, (3.46)

Ni =
1

Ω
√

a

(

wi δS

δB
− δS

δBi

)

. (3.47)

This allows to expressed the variation of the action as

δS =−
∫

dtddx
√

a
(

ρδB+
(

ΩNi +ρwi)δBi
)

. (3.48)

Therefore, under the action of a U(1) symmetry, the variation of the action reads

δΛS =
∫

dtddx
√

a
(

ρ∂tΛ+
(

ΩNi +ρwi)∂iΛ
)

= −
∫

dtddx
√

aΩΛ

(

1

Ω

D̂ρ

dt
+θ wρ + ∇̂iN

i
)

+
∫

dtddx
{

∂t
(√

aΛρ
)

+∂i
(√

aΛ
(

ΩNi +ρwi))} , (3.49)

where the last integral in (3.49) are boundary terms. Condition δΛS = 0 leads to the Galilean

continuity equation
(

1

Ω

D̂

dt
+θ w

)

ρ + ∇̂iN
i = 0 , (3.50)

where we have ignored the boundary terms in the variation of the action. The continuity

equation can be alternatively presented in an integral form, using Stokes and Gauss theorem
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as

∫

W
dtddxΩ

√
a

((

1

Ω

D̂

dt
+θ w

)

ρ + ∇̂iN
i
)

=
∮

∂W

√
aρ
(

dx1 −w1dt
)

∧ . . .∧
(

dxd −wddt
)

−
∮

∂W

√
a

d

∑
i=1

(

dx1 −w1dt
)

∧ . . .∧Niµ∧ . . .∧
(

dxd −wddt
)

,(3.51)

where W ⊂ M = R×S and Niµ is the ith factor in the exterior product of the last term.

From this we obtain a conserved charge expressed as an integral over an arbitrary hypersurface

Σd of M = R×S . It coincides with the relativistic Zermelo result captured e.g. in (2.98).

Although not compulsory, it is convenient to chose Σd ≡S i.e. a constant-t hypersurface.

We then find

QN =
∫

S
ddx

√
aρ, (3.52)

which fits the usual definition of charge in Galilean physics. Here, the conservation of the

charges implies their independence with respect to the time t . Time-independence appears

explicitly if one trades S in the integral (3.52) with V ⊂ S . Assuming for simplicity that

the boundary ∂V of that domain does not depend on t and using (3.50), the time evolution

of the matter/charge content of V is

1

Ω

d

dt

∫

V
ddx

√
aρ =−

∫

V
ddx∂i

(√
a

(

Ni +ρ
wi

Ω

))

=−
∫

∂V
⋆
(

N+ρ
w

Ω

)

, (3.53)

where ⋆ stands for the d-dimensional S -Hodge dual based on
√

a and on the antisymmetric

symbol εi1...id with ε1...d = 1. If the integral is performed over the entire S it vanishes

(assuming a reasonable asymptotic behaviour), and QN in (3.52) is conserved.

At this stage, (3.50) and the variables appearing there are independent of the energy

and momentum equations given in (3.44) and (3.43). We will see later when discussing the

limiting procedure that thermodynamics sets a relationship between the momentum Pi and

the current Ni.

3.1.3 Isometries and (non-)conservation laws

In (pseudo-)Riemaniann geometries, isometries are defined as diffeomorphisms generated by

vector fields leaving the metric invariant, i.e. they satisfy (2.24). The same can be defined in

Newton-Cartan geometries although in a different way due to the degeneracy of the co-metric.

As mentioned previously, the fundamental objects that define a Newton-Cartan geometry are

the co-metric and the clock form. Therefore, Galilean isometries are the diffeomorphisims

that leave the co-metric and the clock form invariant. We call those vectors of the type (3.36)
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as Galilean Killing fields and they are required to satisfy

Lξai j = 0, Lξµ= 0, (3.54)

Using expressions (3.37) and (3.40) for Galilean diffeomorphisms (ξ t̂ is only t-dependent),

we obtain the Galilean Killing equations

∇̂(iξ ĵ)+ γ̂wi jξ t̂ = 0,
1

Ω

D̂ξ t̂

dt
= 0. (3.55)

The above equations are solved by an infinite number of solutions and they refer to the

weak definition of Newton-Cartan geometries [23] defined only in terms of the degenerate

co-metric and the clock form. A strong definition exists and it requires to define an affine

connection that parallels transport the clock form and be metric-compatible. In that case, the

conditions for having a Galilean isometry are supplemented by the invariance of the affine

connection, reducing the set of solutions to a finite number [118].

Our Newton-Cartan structure is also accompanied with the field of observers (3.3) which

is dual to the clock form. There latter is not required to be invariant and its transformation

generated by the Galilean diffeomorphisms reads

Lξυ=− 1

Ω

(

∂tξ
ı̂ +Lwξ ı̂)∂i, (3.56)

for a generic Killing field ξ.

As an example, we can consider the Newton-Cartan manifold endowed with ai j = δ i j,

Ω = 1 and constant wi. The latter corresponds to the more familiar R×E3 spacetime, which

is flat for the connection introduced earlier. Then, the Galilean Killing equations (3.55) are

reduce to

∂tξ
t = 0 (3.57)

and

δ il∂lξ
j +δ jl∂lξ

i = 0 (3.58)

which are solved by an infinite number of solutions given by

ξ=
(

Ω
j

i (t)x
i +Z j(t)

)

∂ j +T ∂t (3.59)

with T a constant and Ωi j = Ω k
i δk j antisymmetric. By imposing invariance of the affine

connection (flat in this example) one fixes Ωi j to be constant and generates the so(d) rotations,

while Zi =V jt +X j is the generator of the Galilean boosts and T the time translations. The
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above form the (d + 2)(d + 1)/2-dimensional Galilean algebra gal(d + 1) [118]. In this

example, the transformation of the field of observers are found to be

Lξυ=−
(

V i +wkΩ i
k

)

∂i ̸= 0, (3.60)

showing that the boosts produce a displacement in the field of observers. Here wi describes

the constant velocity of the original inertial frame which is shifted under Galilean boosts.

In the presence of isometries, one should be able to derive the conservation laws associated

to them. This will take the Galilean form (3.50) with scalar κ and vecor Ki. These pieces are

built in terms of the momenta Π, Πi, Πi j, Pi that satisfy (3.43) and (3.44), and the components

of the Killing vector ξ t̂ and ξ ı. Their form are read off from the boundary terms in (3.42)

from which we extract

κ = ξ ı̂Pi −ξ t̂Π, (3.61)

Ki = ξ ĵΠi j −ξ t̂Πi. (3.62)

Then, the Galilean scalar

K =

(

1

Ω

D̂

dt
+θ w

)

κ + ∇̂iK
i (3.63)

should vanish on-shell making (3.63) a conservation equation for κ and Ki. Equations (3.62)

and (3.63) also arise as the leading terms in the non-relativistic expansion of the relativistic

Noether current Iµ = T µνξν and its conservation ∇µ Iµ = 0.

Using the conservation equations (3.43) and (3.44) we obtain the following result:

K = −Π

Ω

D̂ξ t̂

dt
+

Pi

Ω

(

∂tξ
î +Lwξ î

)

+Πi j

(

∇̂iξ ĵ + γ̂wi jξ t̂
)

(3.64)

=
Pi

Ω

(

∂tξ
ı̂ +Lwξ ı̂) . (3.65)

The above equations shows that, contrary as one would expect, in Newton-Cartan space-

times Galilean Killing vectors do not always define on-shell conservation laws for Galilean

dynamics. This is due to the presence of Pi which is conjugate to wi/Ω, and the fact that

wi transforms under diffeomeorphisms according to (3.39), even if this diffeomophism is

generated by a Killing vector. Still, one can impose conservation by requiring additional

constraints. For instance, for the Killing vector that satisfies

Lξυ≡ [ξ,υ] = 0 , (3.66)
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which we call strong Galilean Killing vector, makes K = 0. The generators of Galilean

boosts in R×E3 do not satisfy this strong Killing condition.

One can also consider the cases when, in the presence of an isometry, the right-hand

side of (3.65) is associated to a boundary term. In such case, κ and Ki can receive extra

contributions from the boundary term and then an effective set of κ ′ and Ki′ which are truly

conserved can be constructed. Still, this does not seem to be true always. For example, in the

flat space case we have

K = Pi

(

V i +wkΩ i
k

)

, (3.67)

which is not conserved unless the momentum Pi is a potential flow (also called irrotational,

see [58] §9). In that case Pi obeys

Pi =
(

∂t +w j∂ j
)

φi +∂iφ (3.68)

for a set of functions φ(t,x) and φi(t,x). One can then construct an effective set κ ′ = κ−φiW i

and Ki′ = Ki −φW i with W i = V i +wkΩ i
k such that they always satisfy the conservation

equation K ′ = 0. The motion of a free particle satisfies the above kind of conservation law

since in that case the momentum Pi is a total derivative (typically denoted by ẋ). See App. E

for more details. We will find a similar conclusion when studying the Carrollian case.

It is worth mentioning that when considering the non-relativistic expansion of the Noether

current Iµ = T µνξν and the conservation law ∇µ Iµ = 0, we can have instances with multiple

degrees of freedom appearing at each power in the expansion of k. In that case we have

several currents associated to Killing fields, and some of them can be conserved without any

additional constraint due to the accidental absence of Pi-like terms.

3.1.4 Weyl invariance, conformal isometries and (non-)conservation

laws

We can consider fluids involving massless excitations for which their observables possess

special scaling properties. We can introduce Weyl transformations acting as follow on the

fundamental geometric data of a Newton–Cartan geometry:

ai j → B2ai j, Ω → 1

B
Ω, wi → wi, wi →

1

B2
wi. (3.69)

Due to the space independence of Ω, the second term of (3.69) imposes B =B(t). Requiring

Weyl-invariance of the effective action S implies that the weights for the Galilean momenta

in (3.32), (3.33), (3.34) are as follows: the energy–stress tensor Πi j has weight d − 1, the
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momentum Pi has weight d, and the energy density Π has weight d +1. The energy flux Πi

introduced in (3.44) has also weight d. Furthermore, using (3.35) with δBS = 0 implies that

Π i
i = Π. (3.70)

On the matter sector, the gauge fields B and Bi are weight-zero, while ρ is weight-d and Ni,

d−1. Along the lines of [14, 23] a conformal isometry is generated by a vector field ξ which

satisfies

Lξai j = λai j, (3.71)

where

λ (t,x) =−2

d

(

∇̂iξ
ı̂ +θ wξ t̂

)

(3.72)

is obtained by taking the trace of (3.71). This set of partial differential equations are

insufficient for defining conformal Killing vectors. We require also the transformation of the

clock form is proportional to itself as given in (3.40). It is then natural to tune µ and λ so

that the scaling of the metric be twice the scaling of the clock form4 as

2µ +λ = 0. (3.73)

One can infer this scaling from the relativistic ascendant in Zermelo coordinates (2.66).

Requiring Lξgµν =−λgµν requires to set µ =−λ/2. This is a consistent Weyl-covariant

condition, leading to a reasonable set of conformal Killing fields.

Assuming Weyl invariance i.e. (3.70), and the presence of a conformal Killing field, the

conservation equations (3.43) and (3.44) can be used to compute K defined in (3.63), (3.61)

and (3.62), giving rise to

K =−Π

(

λ

2
+µ

)

+
Pi

Ω

(

∂tξ
ı̂ +Lwξ ı̂) . (3.74)

The extra condition (3.73) which defines the conformal Killing vectors of Newton–Cartan

spacetimes implies that

K =
Pi

Ω

(

∂tξ
ı̂ +Lwξ ı̂) ̸= 0 (3.75)

In the same way as the ordinary Killing fields, a conformal Killing vector does not guarantee

a conservation law for Weyl-invariant Galilean dynamics.

4More generally, one considers 2µ + zλ = 0, where z is the dynamical exponent i.e. minus the conformal

weight of Ω. Here, due to the close relationship of our Newton–Cartan spacetimes with relativistic ascendants,

the weight of Ω is inherited from the latter and z = 1. One also defines the level N = 2/z, which appears in the

conformal algebras emerging in flat Newton–Cartan spacetimes.
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3.2 Galilean hydrodynamics as a non-relativistic limit

3.2.1 Non-relativistic expansion

In the previous section, we found the equations (3.43), (3.44) and (3.50) that describe the

conservation properties of Galilean dynamics on a general curved and time-dependent space

S (the spatial section of a torsionless Newton–Cartan spacetime R×S ). These equations

are valid for any theory whose action is invariant under Galilean diffeomorphisms, in the same

way as in a relativistic theory, diffeomorphism invariance implies the conservation of the

energy-momentum tensor and U(1) invariance implies the conservation of the matter/charge

current.

In fluid dynamics we need more information. For instance, their set of momenta must

be expressed in terms of the velocity field v, the heat current Q, the stress tensor ΣΣΣ, and the

local-equilibrium thermodynamic variables such as e, p, h, ρ , µ , T and s, that obey further

thermodynamic laws (see App. A). The latter ultimately enters in the constitutive relations for

the non-perfect contributions. A systematic approach to obtain the Galilean fluid equations is

based on the large-k expansion of relativistic hydrodynamics in the Zermelo frame, which is

the natural gauge where Galilean covariance is explicit. This method was first introduced

in [44] where the authors assumed implicitly the Eckart frame without taking into account

the role of the matter current and the chemical potential. This section is meant to give a

generalization of this approach in the presence of a matter current togheter with a chemical

potential. The latter will allow the analysis on the non-relativistic hydrodynamic-frame

transformations, which relies in the behaviour of the various observables with respect to their

scaling with the velocity of light.

In the Zermelo frame (2.66), the dependence with respect to the velocity of light in the

geometric data is explicit. Hence, we can find the behaviour of all our kinematical quantities

with respect to the velocity of light. In particular, for the velocity of the fluid we have

u0 =
k

Ω
+O

(

1

k

)

, ui =
vi −wi

Ω
+O

(

1

k2

)

, (3.76)

and

σi j = ξ v
i j +O

(

1

k2

)

, (3.77)

Θ = θ v +O

(

1

k2

)

, (3.78)

ωi j =
1

Ω

(

∂[i(v−w) j]

)

+O

(

1

k2

)

, (3.79)
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are obtained from the non-relativistic expansion of (2.8), (2.9) and (2.10).

The non-relativistic limit of the thermodynamic variables are recalled in Appendix A.

Few comments regarding the mass/charge density are in order here. In the introduction

we defined the proper density ρ0 as the projection of the current (2.4) onto the observer’s

velocity. For instance, an observer at rest with respect to the fluid, i.e. running with velocity

u, finds

ρ0 =− 1

k2
Jµuµ . (3.80)

One can also define the density ρ which corresponds to the one that is measured by a fiducial

observer in Zermelo frame. This observer defines a local inertial frame5 and its velocity in

Zermelo frame is given by

uZ ≡ υ=
1

Ω

(

∂t +wi∂i
)

(3.81)

with vanishing acceleration

uµ
Z∇µuν

Z = 0 . (3.82)

Then, we obtain ρ as the projection of the current (2.4) onto the velocity (3.81). We find

ρ =− 1

k2
Jµuµ

Z =
Ω

k
J0 = Ωγρ0 + ji

vi −wi

k2Ω
, (3.83)

which coincides with the hydrodynamic-frame invariant ρ0r introduced in (2.89) (mat-

ter/charge density in the rest frame). This expression agrees with Ref. [44] only in the

Eckart frame, i.e. when ji = 0.

We notice that the behaviour of ρ0 in terms of ρ will depend on the behaviour of the

non-perfect piece ji. But, what could be the behaviour of the non-perfect current ji, the heat

current qi and the stress tensor τi j with respect to k? There is no a unique answer since it

depends on the microscopic properties of the system, which are captured by the different

transport coefficients appearing in the constitutive relations for ji, qi and τi j as derivative

expansions. For instance, in first order hydrodynamics one has

τ(1)i j = −2ησi j −ζ hi jΘ , (3.84)

q(1)i = −κh ν
i

(

∂νT +
T

k2
aν

)

, (3.85)

j(1)i = −h ν
i σT T ∂ν

µ0

T
, (3.86)

5This is precisely why it was stated earlier that a frame with velocity w = wi∂i was inertial in the Newton–

Cartan geometry (3.3), (3.4).



46 Galilean fluids

where η , ζ and κ are the shear viscosity, bulk viscosity and heat conductivity respectively

with κ = σTw
2

T ρ2
0

(see e.g. [65], where σT is referred to as the charge conductivity).

In order to perform the non-relativistic limit of fluid dynamics we must make some

assumptions regarding the scaling of the above quantities with respect to k. We can take

the reasonable assumption that η , ζ and κ are of dominant order 1, which implies that σT

is of order 1/k4 (due to w2). Since µ0 is of order k2 (rest-mass contribution in (A.4)) one

can conclude that τi j and qi are of order 1, while ji is of order 1/k2. These are the usual

assumptions taken in the literature (see for instance [58, 102]). One can be a little bit more

general and assume the behaviour of the non-perfect pieces as

τi j = −Σi j +O

(

1

k2

)

, (3.87)

qi = k2ri + ki +O

(

1

k2

)

, (3.88)

ji = ni +
mi

k2
+O

(

1

k4

)

. (3.89)

This choice will be made clear when discussing the hydrodynamic-frame invariance. For

ordinary non-relativistic fluids, ri and ni are expected to vanish. We will see that their

presence will disclose some interesting properties.

Inserting the expression (3.89) in (3.83), one finds6

ρ0 = ρ − 1

k2

(

ρ

2

(

v−w

Ω

)2

+
n · (v−w)

Ω

)

+O

(

1

k4

)

. (3.90)

The latter can in turn be used inside (A.2) leading to

ε = k2ρ +ρ

(

e− 1

2

(

v−w

Ω

)2
)

− n · (v−w)

Ω
+O

(

1

k2

)

, (3.91)

where the first term is the rest energy, the second is the internal energy corrected by the kinetic

energy with respect to the local inertial frame, and the third is a contribution originating from

the leading term in the matter current (3.89). One can notice from the above formulas that

the presence of ni amounts to the presence of a spring or a sink that create or consume matter.

This will be confirmed when reaching the conservation equation. This situation is usually not

considered except when discussing diffusion or similar phenomena (see for instance [58]).

6Although lim
k→∞

Ωγ = 1, we must keep terms of order 1/k2 because of the rest mass contributions.



3.2 Galilean hydrodynamics as a non-relativistic limit 47

3.2.2 Galilean momenta

In the non-relativistic limit approach, all the momenta defined in (3.32), (3.33), (3.34), (3.46)

and (3.47) will appear at different orders in the large-k expansion of the energy-momentum

tensor and the matter current (2.83) and (2.85) in Zermelo frame, all of them expressed in

terms of the fluid and thermodynamic variables. The latter includes the expression for the

energy flux Πi, which we found as an arbitrary function in (3.44) of the previous section.

Using Eqs. (2.86), (2.87), (2.88), (2.89), (2.90) and (3.83), we obtain

ρ0r = ρ, (3.92)

jri = Ni +
1

k2
pi +O

(

1

k4

)

, (3.93)

where we introduced the leading and subleading matter currents

Ni = ρ
vi −wi

Ω
+ni, (3.94)

pi = mi −
n · (v−w)(vi −wi)

Ω2
. (3.95)

The subleading terms in (3.93) must be kept because they are multiplied in the expansions by

the rest-mass term and contribute to the equations. As an anticipation for what is next, we

can set

Pi = ρ
vi −wi

Ω
+ ri. (3.96)

One can recognize Pi (defined generically in (3.33) – indices raised with ai j) as a slight

extension of the usual fluid momentum, while the matter current Ni (introduced in (3.47)) is

related to the former as

Ni = Pi +ni − ri. (3.97)

In the standard non-relativistic hydrodynamics, the equality Ni = Pi holds when ni = ri.

Similarly for the energy–momentum we have

εr = k2ρ +Π+O

(

1

k2

)

, (3.98)

qri = k2Pi +Πi + pi +O

(

1

k2

)

, (3.99)

prai j + τri j = Πi j +O

(

1

k2

)

(3.100)
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with

Πi j = ρ
(vi −wi)

(

v j −w j
)

Ω2
+ pai j −Σi j +2

(v(i −w(i)r j)

Ω
, (3.101)

Π = ρ

(

e+
1

2

(

v−w

Ω

)2
)

+
(2r−n) · (v−w)

Ω
, (3.102)

the explicit expressions for (3.32) and (3.34), and

Πi = ρ
vi −wi

Ω

(

h+
1

2

(

v−w

Ω

)2
)

− v j −w j

Ω
Σi j

+
ri

2

(

v−w

Ω

)2

+
r · (v−w)(vi −wi)

Ω2
+ ki −mi (3.103)

the explicit expression for the energy flux. The latter are the generalizations of the fluid

energy-stress tensor, energy density and energy current defined in [58] for arbitrary torsionless

Newton-Cartan geometries expressed in a covariant fashion. They all receive contributions

from the ni and ri, absent in standard Galilean fluids. The combination

Qi = ki −mi, (3.104)

inside the energy current, appears as the Galilean heat current. The latter receives contribu-

tions from both the relativistic heat current qi (3.88) and the non-perfect piece of the matter

current ji (3.89). For example, in the Landau–Lifshitz frame (qi = 0) the Galilean heat

current originates only from the relativistic non-perfect matter current, while in the Eckart

frame ( ji = 0) the contribution to the Galilean heat current comes exclusively from qi. One

can also notice that, in the absence of a matter current, the Landau–Lifshitz frame is not well

suited to take the Galilean limit since one will always arrive at a fluid with Qi = 0. In that

case the Eckart frame is the preferred choice [102].
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3.2.3 Hydrodynamic equations

We can now perform the large-k expansion of the relativistic fluid equations (2.1) and (2.2).

They read

kΩ∇µT µ0 = k2
(

C + ∇̂i
(

ri −ni)
)

+ ∇̂i p
i +E +O

(

1

k2

)

, (3.105)

∇µT µ
i = Mi +O

(

1

k2

)

, (3.106)

∇µJµ = C +
1

k2
∇̂i p

i +O

(

1

k4

)

, (3.107)

with

E =
1

Ω

D̂Π

dt
+θ wΠ+Πi jγ̂

wi j + ∇̂iΠ
i, (3.108)

Mi =
1

Ω

D̂Pi

dt
+θ wPi +Pjγ̂

w j
i + ∇̂ jΠi j, (3.109)

C =
1

Ω

D̂ρ

dt
+θ wρ + ∇̂iN

i. (3.110)

Therefore, the Galilean fluid equations are extracted by the vanishing of (3.105), (3.106) and

(3.107) at each order in the powers of k. For instance, from the order 1 of (3.107) we find the

continuity equation7

C = 0, (3.111)

while the 1/k2 order gives a divergence free condition in the subleading matter current (3.95)

∇̂i p
i = 0 . (3.112)

From the k2 order in (3.105) we obtain

∇̂i
(

ri −ni)= 0 (3.113)

which, by using (3.97), can be rewritten as

∇̂i
(

Ni −Pi)= 0 . (3.114)

7This is the typical equation describing phenomena where several fluid components are present but are not

separately conserved. Examples are diffusion or superfluid dynamics (e.g. [58]).
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At the order 1 of (3.105) we find

E = 0, (3.115)

which is the fluid energy equation. Finally, (3.106) provides the fluid momentum equation

Mi = 0 . (3.116)

We can also use (3.97) and (3.114) to recast the continuity equation as

C =
1

Ω

D̂ρ

dt
+θ wρ + ∇̂iP

i =
1

Ω

dρ

dt
+θ vρ + ∇̂ir

i =
1

Ω

dρ

dt
+θ vρ + ∇̂in

i = 0. (3.117)

The above results can be summarized as follows: the Galilean fluid equations (valid for

arbitrary backgrounds) found above are fully covariant under Galilean diffeomorphisms and

extend the standard hydrodynamic equations on flat Euclidean space with absolute time.

The momentum equation (3.116) coincides with (3.43), whereas the energy equation (3.115)

is (3.44). In the same way, the continuity equation (3.117) coincides with (3.50), once the

divergences of the matter current and the fluid momentum are equal (3.114). This requirement

is subsequent to the relationship (3.91), which finally relates the energy–momentum equations

with the matter equation.

In general, (3.117) is not a conservation law. Integrating inside a static domain V by

using (3.53) we find

1

Ω

d

dt

∫

V
ddx

√
aρ +

∫

∂V
ρ
⋆v

Ω
=−

∫

∂V
⋆n. (3.118)

Here, the density varies in time, not only because of the expansion or the contraction of V

captured by the term ρθ v, but also due to the flux of n through ∂V . n represents the flux of

matter due to the presence of a sink or a spring. This matter loss or gain goes along with the

heat loss or gain, as inferred in (3.113). In usual Galilean hydrodynamics the current ri and

ni are absent, making the fluid momentum and the matter current identical and forbidding

the presence of such springs and sinks. We will see below that this general Galilean fluid

configurations posses an interesting property, which is broken in ordinary non-relativistic

fluid dynamics: this is Galilean hydrodynamic-frame invariance.
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3.2.4 The fate of hydrodynamic-frame invariance in the non-relativistic

limit

As mentioned in the introduction, relativistic fluid equations are invariant under arbitrary

local transformations of the velocity u, which is captured by8 vi → vi +δvi(t,x), together

with the appropriate transformations of all the other dynamical quantities such that the

energy-momentum tensor and the matter current remain invariant. One could wonder if this

property survives in the Galilean limit.

The natural answer to this question would be negative. The velocity field and the matter

density are physical and observable quantities. A field redefinition of the velocity and the

dynamical variables that keeps the fluid equations invariant without altering the meaning of

the fields seems difficult.

This answer seems contradictory with the approach considered so far. After all the

Galilean momenta that enters in the hydrodynamic equations comes from a relativistic

hydrodynamic-frame invariant set of momenta. Naively, one would expect the Galilean

momenta being also invariant under hydrodynamic-frame transformations but one has to be

careful since those momenta are obtained after assuming some behavior with respect to k,

and this behaviour may or may not be stable under velocity transformations.

In order to give a precise answer to the above question, we examine the transformations

(2.77), (2.78), (2.79), (2.81) and (2.82) in the infinite-k limit, and their effect on the non-

relativistic quantities introduced through (3.87), (3.88), (3.89), (3.90) and (3.91). The latter

give rise to the following transformation rules of the fluid variables under the action of

8The infinitesimal local Lorentz transformations are parameterized with Lorentz boost and rotation gen-

erators, V i(t,x) and Ωi j(t,x) – antisymmetric, as follows: δvi =V i −V j (v j−w j)(vi−wi)
k2Ω2 +Ωi j (v j −w j). In the

Galilean limit the general local velocity transformation is thus δvi =V i +Ωi j (v j −w j) – Galilean boosts and

rotations.
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general local Galilean transformations:9

ai jδ p−δΣi j = − 2

Ω
r(iδv j), (3.119)

δ ri = − ρ

Ω
δvi, (3.120)

δki =
δvi

Ω

(v−w) ·n
Ω

+

+
δv j

Ω

(

vi −wi

Ω
r j −ρ

(vi −wi)(v j −w j)

Ω2
−ρhai j +Σi j

)

, (3.121)

δQi =
δv j

Ω

(

(

r j −n j
) vi −wi

Ω
−ρhai j +Σi j

)

, (3.122)

ρδe = (ni −2ri)
δvi

Ω
, (3.123)

δρ = 0, (3.124)

δni = − ρ

Ω
δvi, (3.125)

δmi =
δv j

Ω

(

n j −ρ
v j −w j

Ω

)

vi −wi

Ω
+

δvi

Ω

(v−w) ·n
Ω

. (3.126)

and thus

δ
(

ni − ri)= 0 . (3.127)

The above transformations implies the invariance of the fundamental Galilean momenta,

namely the fluid energy density, the fluid energy current, the fluid energy–stress tensor, the

fluid momentum, the matter density and the matter current, that satisfy

δΠ = 0, δΠi = 0, δΠi j = 0, δPi = 0, δρ = 0, δNi = 0. (3.128)

The above results imply that the general Galilean fluid equations are invariant under an

arbitrary local redefinition of the fluid velocity field vi(t,x).

Some comments are in order here. First, the non-relativistic matter density ρ is not

sensitive to the velocity v (as opposed to ρ0). This is not the case for the ordinary fluid

momentum Pi which depends explicitly on the velocity as ρ vi−wi

Ω
. In our configuration, the

invariance of the momentum Pi defined in (3.96) is saved due to the presence of ni. The same

goes for the energy density Π, the energy current Πi and the stress-energy tensor Πi j whose

invariance under local transformations of vi are guaranteed thanks to the presence of ni and ri.

This configuration is the one whose continuity equation does not express a truly conservation

9Notice the following useful formulas: δθ v = 1
Ω

∇̂iδvi and δξ v
i j =

1
Ω

(

∇̂(iδv j)− 1
d ai j∇̂kδvk

)

, whereas

δθ w = δξ w
i j = 0.
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law due to the fluxes ni and ri. Hence, for truly conserved ordinary non-relativistic fluids

the hydrodynamic-frame invariance is lost. For these fluids the behaviours of the relativistic

heat and matter currents are ql = kl +O
(

1/k2
)

and jl =
ml
k2 +O

(

1/k4
)

. These behaviours

are physical, but are unstable under velocity transformations.10

The summary of our findings goes as follows:

• As expected intuitively, ordinary non-relativistic hydrodynamics which enjoys conser-

vation of matter are not hydrodynamic-frame invariant.

• Hydrodynamic-frame invariance is restored once we include additional matter and

energy fluxes (due to a sink or spring), losing conservation of matter.

3.2.5 More general abstract equations

The large-k behaviours (3.92), (3.93), (3.98), (3.99) and (3.100) are the result of the physics

behind these momenta, which are captured in the behaviours of the transport coefficients and

reflected in the behaviour of (3.87), (3.88) and (3.89). We could even be more abstract and

consider order-k2 terms in the stress tensor τi j as we did in the heat and matter currents, and

possibly further powers. In order to consider such situation we will forget for the moment

the matter current. In that case the expansion of the components of the energy-momentum

tensor in the rest-frame read



















Ω2T 00 = εr = k2ρ +Π+O
(

1
k2

)

kΩT 0
i = qri = k4P̃i + k2Pi +Πi +O

(

1
k2

)

Ti j = prai j + τri j = k2Π̃i j +Πi j +O
(

1
k2

)

.

(3.129)

10The requirements ri = 0 or ni = 0 are not compatible with the transformations (3.120) or (3.125). Observe

however that a choice, stable under hydrodynamic-frame transformations, is ni = ri, thanks to (3.127). With

this, Pi = Ni and we are the closest possible to ordinary non-relativistic fluids, without genuine conservation

though.
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The latter produce a hierarchy of equations which are of the same sort of the ones that we

already derived. We found











































(

1
Ω

D̂
dt +θ w

)

Π+Πi jγ̂
wi j + ∇̂iΠ

i = 0
(

1
Ω

D̂
dt +θ w

)

ρ + Π̃i jγ̂
wi j + ∇̂iPi = 0

∇̂ jP̃ j = 0
(

1
Ω

D̂
dt +θ w

)

Pi +Pjγ̂
w j

i + ∇̂ jΠi j = 0
(

1
Ω

D̂
dt +θ w

)

P̃i + P̃jγ̂
w j

i + ∇̂ jΠ̃i j = 0.

(3.130)

What we have here is a multiplication of degrees of freedom which comes naturally due to the

existence of a parameter k that make it possible to organize a power expansion. In the analysis

of the local symmetries of the action, the derivation of the above set of equations would

be even more abstract since those extra momenta would need the inclusion of additional

conjugate variables, such as ãi j, w̃i, Ω̃ etc. We will not go any further in this regard but

we will keep the above structure of the equations in mind when we discuss the Carrollian

case. For the latter, and as opposed to the Galilean situation, there is no physical intuition

that we can use as a guideline (not a well understood thermodynamics). Only a small-k

expansion applies, as suggested by the only known application of Carrollian fluids, which is

flat holography [75–77, 42]. Then, the Carrollian equations that we can find will be express

in a similar fashion as (3.130).

Multiplication of degrees of freedom occurs also in the matter sector. On could indeed

assume that some matter current behaves like

Ω

k
J0 = ι0r = k2κ̃ +κ +O

(

1

k2

)

, Ii = irk = k4 ˜̃Ki + k2K̃i +Ki +O

(

1

k2

)

. (3.131)

Using these expansions in the relativistic divergence of the matter current Jµ in Zermelo

background we find

∇µ Iµ = k4 ˜̃K + k2 ˜K +K +O

(

1

k2

)

(3.132)

with


















˜̃K = ∇̂ j
˜̃K j

˜K =
(

1
Ω

D̂
dt +θ w

)

κ̃ + ∇̂ jK̃ j

K =
(

1
Ω

D̂
dt +θ w

)

κ + ∇̂ jK j,

(3.133)

which must vanish if ∇µ Iµ = 0.
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The latter can also be used when dealing with the components of a relativistic conserved

current (2.96) and (2.97) that is associated to isometries, where the components of the current

are constructed in terms of the contraction of the energy–momentum tensor with the Killing

field. We find






































κ = ξ ı̂Pi −ξ t̂Π

κ̃ = ξ ı̂P̃i −ξ t̂ρ

Ki = ξ ĵΠi j −ξ t̂Πi

K̃i = ξ ĵΠ̃i j −ξ t̂Pi

˜̃Ki =−ξ t̂ P̃i,

(3.134)

where κ and Ki are precisely as anticipated in (3.61) and (3.62). On-shell, namely assuming

(3.130) and using (3.55), we find for (3.133)



















˜̃K = 0

˜K = P̃i
Ω

(

∂tξ
ı̂ +Lwξ ı̂

)

K = Pi
Ω

(

∂tξ
ı̂ +Lwξ ı̂

)

,

(3.135)

in agreement with the result (3.65) for the last two. We can see that the first equation in

(3.135) vanishes indicating that even if a Killing field does not guarantee the conservation of

a Galilean current, a conservation might happen if the appropriate vector vanishes. The third

equation for K is the one that we already studied, which is non-conserved in general. The

equation for K̃ is conserved for the Galilean fluids studied previously (P̃i = 0) but is does not

bring any new conservation law. It is actually the continuity equation.

One might wonder how it is possible for the well defined conservation of the Noether

current ∇µ Iµ = 0, with Iµ = ξνT µν and ξ a Killing vector, break down in the infinite-k limit.

The answer to that question is captured by the very definition of a Galilean Killing, which

ultimately leaves non-vanishing terms in the divergence. The precise way this comes about is

exposed in App. F.

3.3 Massless carriers and Weyl covariance

3.3.1 The fluid equations

We consider can now a fluid that is made of a collection of massless particles. These sort

of systems could consider for example a gas of photons or some situations in condensed

matter, as in graphene [119]. These hydrodynamic systems can also have a conserved current
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and a chemical potential, but they will not be related with mass, but to some charge. Some

examples of this sort are mentioned in App. A together with their basic thermodynamic

properties.

The procedure to obtain their Galilean dynamics starting from relativistic hydrodynamics

goes in the same way as we did previously, where the difference relies on the behaviour of

the charge density and the energy density. Here, instead of (3.90), we can simply consider

ρ0 = ρ +O

(

1

k2

)

, ε = ρe+O

(

1

k2

)

, (3.136)

where e is the energy per charge unit and ρ is the charge volume density – as opposed to

proper volume – and ε= ρe the non-relativistic energy density (see also App. A). Since there

is no matter density we do not have terms like the rest mass and kinetic energy contributions

to ε . The goal is to find the fundamental variables as well as the dynamical equations, and

probe the behaviour of the latter under Galilean hydrodynamic-frame transformations.

We can extract the large-k behaviour of the energy-momentum and the conserved current

in the rest frame. Equations (2.86), (2.87), (2.88), (2.89) and (2.90), now give

ρ0r = ρ, jri = Ni +O

(

1

k2

)

(3.137)

with Galilean charge current

Ni = ρ
vi −wi

Ω
+ni. (3.138)

From the energy–momentum tensor we get

εr = Π+O

(

1

k2

)

, (3.139)

qri = k2Pi +Πi +O

(

1

k2

)

, (3.140)

prai j + τri j = Πi j +O

(

1

k2

)

, (3.141)
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where

Πi j = pai j −Σi j +2
(v(i −w(i)r j)

Ω
, (3.142)

Pi = ri, (3.143)

Π = ε+
2r · (v−w)

Ω
, (3.144)

Πi =
(

(ε+ p)ai j −Σi j
) v j −w j

Ω
+

+
ri

2

(

v−w

Ω

)2

+
r · (v−w)(vi −wi)

Ω2
+ ki, (3.145)

are the explicit expressions for (3.32), (3.33) and (3.34), as well as for the energy current Πi,

which will appear in the energy equation (3.44). The Galilean heat current receives now a

single contribution as

Ql = kl. (3.146)

For the fluid under consideration, the structure of the conservation equations goes as

kΩ∇µT µ0 = k2∇̂ jr
j +E +O

(

1

k2

)

, (3.147)

∇µT µ
i = Mi +O

(

1

k2

)

, (3.148)

∇µJµ = C +O

(

1

k2

)

, (3.149)

with E , Mi and C as in (3.108), (3.109), (3.110). At infinite k the hydrodynamic equations

are again (3.115), (3.116), (3.111), and we recover Eqs. (3.43), (3.44) and (3.50), as expected,

plus the extra equation

∇̂ jr
j = 0, (3.150)

which is absent when the vector r j originating from the k2 term of the relativistic heat current

vanishes. The difference with respect to the massive case studied previously relies in the

expression of the momenta, namely the energy–stress tensor, fluid current, fluid energy

density and fluid energy current (the charge current is the same as the matter current before).

We can now combine the above results in order to reach the heat and next the entropy

equations. Equivalently these are obtained as infinite-k limits of Eqs. (2.15) and (2.16). We
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find

E − vi −wi

Ω
Mi =

1

Ω

d

dt

(

ε+
(v−w) · r

Ω

)

+

(

ε+ p+
(v−w) · r

Ω
− Σ

d

)

θ v −ξ v
i jΣ

i j

+∇̂i

(

Qi − vi −wi

Ω

(v−w) · r
Ω

)

+
ri

Ω

D

dt

vi −wi

Ω
(3.151)

= 0.

For the entropy equation there are two options. If no conserved charge current exists, the

equation (3.111) is immaterial, the chemical potential vanishes and (A.19) gives dε= T dσ,

which can be substituted in (3.151). This happens e.g. for a gas of photons. If a conserved

charge current is available then ε can be traded for ρe, ε+ p for ρh, σ for ρs, and using

(A.18), (A.19) and (3.111) we obtain

1

Ω

dρe

dt
=

ρT

Ω

ds

dt
−ρhθ v −h∇̂in

i, (3.152)

which can be inserted back in (3.151) to get

ρT

Ω

ds

dt
+

1

Ω

d

dt

(

(v−w) · r
Ω

)

+

(

(v−w) · r
Ω

− Σ

d

)

θ v −ξ v
i jΣ

i j −h∇̂in
i

+∇̂i

(

Qi − vi −wi

Ω

(v−w) · r
Ω

)

+
ri

Ω

D

dt

vi −wi

Ω
= 0. (3.153)

Given the above Galilean hydrodynamic equations, one may reconsider their behaviour

under velocity local transformations. The absence of rest mass modifies the scalings with

respect to the speed of light, and possibly the invariance properties. Bringing together

the transformations (2.77), (2.78), (2.79), (2.81) and (2.82), and the scalings (3.87), (3.88),

(3.89) and (3.136), we find in the infinite-k limit that: δρ and δni are still as in (3.124) and

(3.125), while

ai jδ p−δΣi j = − 2

Ω
r(iδv j), (3.154)

δ ri = 0, (3.155)

δki = δQi

=
δv j

Ω

(

vi −wi

Ω
r j −ρhai j +Σi j

)

, (3.156)

δε = ρδe

= −2ri
δvi

Ω
. (3.157)
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These transformations guaranteed the invariance of the Galilean momenta as in (3.128),

which thus implies that for fluids consisting of massless particles, the Galilean fluid equations

given above are invariant under arbitrary hydrodynamic frame transformations.11

Thanks to (3.155), the hydrodynamic-frame invariance holds even when ri = 0, which is

the physically interesting situation, following the previous discussion on the behaviour of the

relativistic heat current. The momentum equation obtained from (3.109) simplifies in this

case as

Mi = ∂i p−∇ jΣ
j

i = 0. (3.158)

However, due to (3.125), hydrodynamic-frame invariance does not survive when ni is required

to vanish in the charge current, which is necessary for the continuity equation (3.110), (3.111)

to be a genuine conservation. The latter does not happen for the case of fluids without

conserved current (as a gas of photons). They are truly hydrodynamic-frame invariant in the

Galilean regime with entropy equation (for the physical situation where ri = 0)

T

Ω

dσ

dt
+

(

ε+ p− Σ

d

)

θ v −ξ v
i jΣ

i j + ∇̂iQ
i = 0. (3.159)

3.3.2 Weyl invariance

Fluids involving massless excitation are compatible with Weyl symmetry. This was discussed

in the first part of this chapter when presenting the basic features of Newton–Cartan geometry.

We will now consider this property from the prespective of the large-k limit in Zermelo

backgrounds.

The fundamental quantities of the Zermelo geometry (2.66) behave as follows under a

Weyl transformation:

ai j →
1

B2
ai j, wi → wi, wi →

1

B2
wi, Ω → 1

B
Ω , (3.160)

and since Ω depends only on time, the last term in (3.160) imposes B = B(t). The fluid

velocity field uµ has weight 1. This implies that the ordinary spatial fluid velocity vi

transforms as

vi → vi, vi →
1

B2
vi. (3.161)

Considering the latter, one could wonder for the existence of a Galilean Weyl-covariant

derivative, that acts on Galilean Weyl-covariant tensors. Here we examine the infinite-k

limit of the connection (2.40) and the corresponding Weyl-covariant derivative used in the

relativistic case. For a more rigorous analysis of the latter, see e.g. [120, 116, 117]. This

11Equations (3.151) and (3.153) are hydrodynamic-frame-invariant only on-shell.
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splits into time and space Weyl derivatives, associated with time and space Weyl connections,

inherited from the limit of the Weyl connection A given in (2.40). In this case we find

lim
k→∞

ΩkA0 =−θ v

d
, lim

k→∞
Ai = 0, (3.162)

where we notice that there is no spatial Weyl connection in the Galilean limit. The ordi-

nary Galilean spatial covariant derivative ∇̂i used here as the usual d-dimensional metric-

compatible and torsionless covariant derivative with connection coefficients (3.8) (possibly

time-dependent since generally ai j = ai j(t,x)) is already Weyl-covariant. This is because the

Weyl rescaling with B(t) leaves the Christoffel symbols (3.8) unaltered.

It is not the same for the Galilean time covariant derivative D
dt given in (3.26). The latter

is not Weyl-covariant but it can be promoted to a Weyl-covariant Galilean time derivative Dt

thanks to θ v, which transforms indeed as a connection. That is

θ v → Bθ v − d

Ω
∂tB. (3.163)

Consequently, if Si j...
kl... are the components of a weight-w Galilean tensor, then

1

Ω
DtS

i j...
kl... =

(

1

Ω

D

dt
+

w

d
θ v
)

Si j...
kl... (3.164)

are the components of Galilean tensor of weight w+1 . Observe that the components of the

Galilean shear given in (3.19) is of weight −1, namely it transform as

ξ v
i j →

1

B
ξ v

i j. (3.165)

The Weyl transformation (3.163) holds equally for θ w defined in (3.18), which also

implies that the geometric Galilean shear ξ w
i j defined in (3.17) transforms in the same way as

(3.165). One can therefore introduce an alternative Galilean Weyl-covariant time derivative
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defined in purely geometrical terms as12

1

Ω
D̂tΦ =

(

1

Ω

D̂

dt
+

w

d
θ w
)

Φ, (3.166)

1

Ω
D̂tVi =

(

1

Ω

D̂

dt
+

w+1

d
θ w
)

Vi, (3.167)

for weight-w Galilean scalars or forms, which can be generalized for any Galilean tensor by

using the Leibniz rule.

With the above tools and imposing Weyl invariance (3.70), the fundamental fluid equa-

tions (3.43), (3.44) and (3.50) can be recast as

1

Ω
D̂tPi +Pjξ

w j
i + ∇̂ jΠi j = 0, (3.168)

1

Ω
D̂tΠ+Πi jξ

wi j + ∇̂iΠ
i = 0, (3.169)

1

Ω
D̂tρ + ∇̂iN

i = 0. (3.170)

They are Weyl-covariant of weights d +1, d +2 and d +1.

When dealing with Galilean fluids, the Galilean momenta ρ , Ni, Pi, Π, Πi and Πi j

emerge in the large-k expansion of ρr0, jri, εr, qri and prai j + τri j (see Eqs. (3.137), (3.139),

(3.140), (3.141)). The weights inherited in this limiting procedure (the relativistic weights

are available in Tab. 2.1) are in agreement with those previously defined through the effective-

action definition of the momenta. These momenta are expressed in terms of the Galilean

velocity vi together with the usual fluid variables coming from the relativistic stress, heat

current and charge current.

From the expressions (3.142), (3.143), (3.144), (3.145), we infer that the forms ri, ki

(and thus Qi) have weight d, while ni and the Galilean stress Σi j have weight d − 1. The

Weyl condition13 (3.70) now reads ε = d p−Σ, with Σ = ai jΣi j. This condition splits into

the conformal equation of state

ε= d p, (3.171)

12This sort of Weyl-covariant derivative is insensitive to the fluid velocity and is thus better suited for

discussing hydrodynamic-frame invariance. Its relativistic ascendent is a Weyl connection AZ constructed, as

explained generally in footnote 5, with the vector field uZ = υ defined in (3.3) (and used in Sec. 3.2), which

has norm −k2 in the Zermelo background (2.66). This connection exists irrespective of the fluid velocity:

AZ = θ w

d Ωdt.
13Notice in passing that the Weyl-invariance requirement (3.70) determined from the effective action, is also

the large-k expression of the relativistic condition T µ
µ = 0
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accompanied with the Weyl-invariance requirement

Σ ≡ Σi ja
i j = 0. (3.172)

Other thermodynamic observables like e, T , µ or h have all weight 1, and s is weight zero.

It is worth mentioning that the above analysis is consistent because we have been referring

to fluids with microscopic massless degrees of freedom, and we have thus used (3.137),

(3.138), (3.139), (3.140), (3.141), (3.142), (3.143), (3.144), (3.145). If one had considered

fluids with massive carriers, conflicts would have appeared in the conformal weights, as for

example in (3.114) by setting a relationship among Ni and Pi, which in a Weyl-covariant

system are expected to have different weights (d +1 and d +2).

Hydrodynamic equations (3.151) and (3.159) are recast as

1

Ω
Dt

(

ε+
(v−w) · r

Ω

)

+
ri

Ω
Dt

vi −wi

Ω
−ξ v

i jΣ
i j

+∇̂i

(

Qi − vi −wi

Ω

(v−w) · r
Ω

)

= 0, (3.173)

ρT

Ω
Dt s+

1

Ω
Dt

(

(v−w) · r
Ω

)

+
ri

Ω
Dt

vi −wi

Ω
−ξ v

i jΣ
i j

−h∇̂in
i + ∇̂i

(

Qi − vi −wi

Ω

(v−w) · r
Ω

)

= 0. (3.174)

For more conventional conformal fluids with ri = 0 and no conserved charge we find

1

Ω
Dtε−ξ v

i jΣ
i j + ∇̂iQ

i =
T

Ω
Dtσ−ξ v

i jΣ
i j + ∇̂iQ

i = 0, (3.175)

which are Weyl-covariant of weight d +2. The Euler (transverse) equation (3.158) remains

unchanged and can be expressed in terms of the energy thanks to (3.171), or further using

(A.18). It reads

1

d
∂iε− ∇̂ jΣi j =

1

(d +1)
∂i(T σ)− ∇̂ jΣi j = 0 (3.176)

and it is Weyl-covariant of weight d +1.
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Carrollian fluids

4.1 Carroll structures and general Carrollian covariance

4.1.1 Basics on Carrollian structures

Carrollian structures can be thought as the dual of the Newton-Cartan structures. They

consists of a d +1 manifold M = R×S equipped with a degenerate metric (as opposed to

Newton-Cartan which has a degenerate co-metric) and vector field that generates the kernel.

These manifolds are described in terms of fibre bundles with one-dimensional fibre and a

d-dimensional base S base space. These structures also appear as the vanishing-k limit of a

pseudo-Riemannian geometry. A simple example is the ultra-relativistic limit of Minkowski

spacetime which gives as a result the flat Carroll structure given by: M = R×R
d , υ= ∂t

and gµνdxµdxν = δi jdxidx j with g(υ) = 0 . The Carroll group [9, 10] is the isometry group

of the this flat Carroll structure. Here we are going to be slightly more general. We are

not going to make any assumptions about isometries, but rather Carrollian diffeomorphisms

(2.100), which have the advantage of preserving the time/space splitting.

For concreteness, our manifold M will be equipped with coordinates (t,x) and a degen-

erate metric of the form

dℓ2 = ai j(t,x)dxidx j, i, j . . . ∈ {1, . . . ,d} (4.1)

with kernel generated by

υ=
1

Ω
∂t , (4.2)

which defines a field of observers. The above coordinate system is adapted to the fiber/base

splitting, which is respected by Carrollian diffeomeorphims (2.100). Additionally, just as the

example of Minkowski spacetime, this Carrollian structures is reached when performing the
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small-k limit of a pseudo-Riemannian spacetime parametrized in the Papapetrou-Randres

gauge (2.99). This Carrollian structure also possesses an Ehresmann connection, which is a

background gauge field bbb = bidxi, appearing in the dual of the kernel generator. The latter

defines the clock form

µ= Ωdt −bidxi, (4.3)

The scale factor Ω and the gauge components bi depend on t and x.

Under Carrollian diffeomorphisms (2.100) (the Jacobian is defined in (2.101)), the trans-

formation rules of the various geometric objects are as in (2.102), (2.103) as well as

∂ ′
t =

1

J
∂t , (4.4)

∂ ′
j = J−1i

j

(

∂i −
ji
J

∂t

)

, (4.5)

µ′ = µ, (4.6)

∂̂ ′
i = J−1 j

i ∂̂ j. (4.7)

where

∂̂i = ∂i +
bi

Ω
∂t , (4.8)

are the vector fields dual to the forms dxi, also spelled eı̂ in (2.126).

In general, Carrollian tensors depend on time t and space x. They carry indices i, j, . . . ∈
{1, . . . ,d}, which are lowered and raised with ai j and its inverse spatial co-metric ai j, and

transform covariantly under Carrollian diffeomorphisms (2.100) with Jacobian J j
i and J−1i

j

defined in (2.101). A Levi–Civita–Carroll connection can be introduced as

γ̂ i
jk =

ail

2

(

∂̂ jalk + ∂̂kal j − ∂̂la jk

)

. (4.9)

This choice of connection is not unique (see [23, 117, 17]), but it is obtained naturally in

the small-k expansion of a Levi–Civita connection in the Papapetrou–Randers coordinates

(2.99). It defines a spatial Carrollian covariant derivative ∇̂i which transform covariantly

under Carrollian diffeomorphisms.

The Levi–Civita–Carroll connection is spatially torsionless and metric-compatible, namely

it satisfies

t̂k
i j = 2γ̂k

[i j] = 0, ∇̂ia jk = 0. (4.10)

The vectors ∂̂i do not commute and define the Carrollian vorticity as

[

∂̂i, ∂̂ j

]

=
2

Ω
ϖi j∂t , ϖi j = ∂[ib j]+b[iϕ j] (4.11)
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with

ϕi =
1

Ω
(∂tbi +∂iΩ) . (4.12)

the Carrollian acceleration. The exterior derivative of the clock-form is given by

dµ= ϕidxi ∧µ−ϖi jdxi ∧dx j . (4.13)

So, the vanishing of the Carrollian acceleration and vorticity are sufficient and necessary

conditions for µ to be closed and define a family of hypersurfaces inside M = R×S as

τ(t,x) = const., where locally µ= dτ .

From (4.4) we see that the time derivative operator 1
Ω

∂t transform nicely under Carrollian

diffeomorphisms. However, it is not metric compatible due to the time dependence of the

metric ai j(t,x). Still, we can define a new Carrollian time derivative that, besides having a

good transformation property as 1
Ω′ D̂′

t =
1
Ω

D̂t , it satisfies

D̂ta jk = 0. (4.14)

This is achieved by introducing a temporal Carrollian connection

γ̂i j =
1

2Ω
∂tai j = ξi j +

1

d
ai jθ , (4.15)

which is a genuine symmetric Carrollian tensor splitted into a symmetric and traceless part

ξi j, called the Carrollian shear, and a traceful part ai jθ , where θ is the Carrollian expansion

defined as

θ =
1

Ω
∂t ln

√
a, (4.16)

The action of D̂t on scalars is ∂t

D̂tΦ = ∂tΦ, (4.17)

whereas on vectors or forms it acts as

1

Ω
D̂tV

i =
1

Ω
∂tV

i + γ̂ i
jV

j,
1

Ω
D̂tVi =

1

Ω
∂tVi − γ̂

j
i Vj. (4.18)

The latter can be generalized for any tensor by the Leibniz rule and allows to demonstrate

the metric compatibility (4.14).
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The commutators of Carrollian covariant spatial derivatives define further Carrollian

tensors (Φ and V i are a Carrollian scalar and a Carrollian vector). One finds1

[

∇̂i, ∇̂ j

]

Φ = ϖi j
2

Ω
∂tΦ, (4.19)

[

∇̂k, ∇̂l

]

V i =
(

∂̂kγ̂ i
l j − ∂̂l γ̂

i
k j + γ̂ i

kmγ̂m
l j − γ̂ i

lmγ̂m
k j

)

V j +
[

∂̂k, ∂̂l

]

V i (4.20)

= R̂i
jklV

j +ϖkl
2

Ω
D̂tV

i. (4.21)

Similarly, time and space derivatives do not commute, resulting in

[

1

Ω
D̂t , ∇̂i

]

V j = ϕi

((

1

Ω
D̂t +θ

)

V j − γ̂
j
kV

k
)

− γ̂ k
i ∇̂kV

j −dr̂ j
ikV

k (4.22)

with2

r̂ j
ik =

1

d

(

θϕiδ
j

k + ∇̂iγ̂
j
k −

1

Ω
∂t γ̂

j
ik

)

(4.23)

and

r̂ j
jk = r̂k =

1

d

(

∇̂ jγ̂
j
k − ∂̂kθ

)

, (4.24)

further Carrollian curvature tensors.

4.1.2 Diffeomorphism invariance and Carrollian dynamics

Similarly as we did in the Galilean case, we can consider a dynamical system on a Carrollian

manifold M = R×S , that is described by an action S =
∫

dt ddx
√

aΩL which is a func-

tional of ai j, Ω and bi. The variation of this action with respect to the Carrollian geometry

defines a set of Carrollian momenta [86, 121] (analogous to the definition of a relativistic

energy-momentum tensor). They are defined by

Πi j =
2√
aΩ

δS

δai j
, (4.25)

Πi =
1√
aΩ

δS

δbi
, (4.26)

Π = − 1√
a

(

δS

δΩ
+

bi

Ω

δS

δbi

)

, (4.27)

1In [44] an alternative tensor was defined as r̂i
jkl = R̂i

jkl +2γ̂ i
jϖkl with

[

∇̂k, ∇̂l

]

V i = r̂i
jklV

j +ϖkl
2
Ω

∂tV i.

2Notice that 1
Ω

∂t γ̂
j

ik =
(

∇̂i +ϕi

)

γ̂
j
k +
(

∇̂k +ϕk

)

γ̂
j
i −
(

∇̂ j +ϕ j
)

γ̂ik is a Carrollian tensor, even though γ̂
j

ik

is not.
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with δS
δΩ

=−√
a
(

Π+biΠ
i
)

. These are the energy–stress tensor, the energy current and the

energy density.

Diffeomorphisms are generated by vector fields of the form (2.91)

ξ= ξ t∂t +ξ i∂i =

(

ξ t −ξ i bi

Ω

)

∂t +ξ i
(

∂i +
bi

Ω
∂t

)

= ξ t̂ 1

Ω
∂t +ξ i∂̂i. (4.28)

Additionally, Carrollian diffeomorphisms (2.100) impose ξ i = ξ i(x). Variation under

diffeomorphisms is implemented through the Lie derivative, which acts on the metric ai j as

−δξai j = Lξai j = 2∇̂(iξ
ka j)k +2ξ t̂ γ̂i j . (4.29)

For the field of observers we have

Lξυ=−
(

1

Ω
∂tξ

t̂ +ϕiξ
i
)

υ= µυ, (4.30)

while for the clock form µ we find

Lξµ=

(

1

Ω
∂tξ

t̂ +ϕiξ
i
)

µ+
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

dxi. (4.31)

From the latter we can extract the transformation of Ω and the Ehresmann connection bi.

They read

−δξ lnΩ =
1

Ω
LξΩ =

1

Ω
∂tξ

t̂ +ϕiξ
i , (4.32)

−δξbi = Lξbi = bi

(

1

Ω
∂tξ

t̂ +ϕ jξ
j
)

−
(

∂̂i −ϕi

)

ξ t̂ +2ξ jϖ ji. (4.33)

Using the above diffeomorphic transformation rules, we can compute the variation of the

action. We find

δξS =
∫

dtddx
√

aΩ

(

1

2
Πi jδξai j +Πiδξbi −

1

Ω

(

Π+biΠ
i)δξΩ

)

. (4.34)
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Then, using (4.29) and (4.33) with ξ i = ξ i(x), we obtain

δξS =
∫

dtddx
√

aΩ

{

−ξ t̂
[(

1

Ω
∂t +θ

)

Π+
(

∇̂i +2ϕi

)

Πi +Πi jγ̂i j

]

+ ξ i
[(

∇̂ j +ϕ j

)

Π
j
i +2Π jϖ ji +Πϕi

]}

+
∫

dtddx
{

∂t

[√
a
(

ξ t̂ (Π+biΠ
i)−ξ jbiΠ

i
j

)]

+∂i

[√
aΩ

(

ξ t̂Πi −ξ jΠi
j

)]}

. (4.35)

Invariance under Carrollian diffeomorphisms implies δξS = 0 (we ignore boundary terms,

which correspond to the last integral in (4.35)). The vanishing of the variation of the action

give rise to two equations that have to be satisfied. The first one is associated to ξ t̂ and

corresponds to the energy equation given by

(

1

Ω
∂t +θ

)

Π+
(

∇̂i +2ϕi

)

Πi +Πi jγ̂i j = 0. (4.36)

The second one is associated to ξ i and corresponds to the momentum equation, expressed as

(

∇̂ j +ϕ j

)

Π
j
i +2Π jϖ ji +Πϕi =−

(

1

Ω
∂t +θ

)

Pi . (4.37)

The right hand side of (4.37) arise due to the time independence of ξ i. Hence, in

the second line of (4.35) one is free to add
√

aΩξ i
(

1
Ω

∂t +θ
)

Pi = ∂t
(√

aξ iPi
)

, which is a

boundary term and vanishes inside the integral.

We call the new vector Pi as momentum (analogous to what we have in the Galilean

case). We can see from this analysis that the momentum Pi is not defined through a variation

of the action with respect to some conjugate variable3.

It is worth mentioning the similarity that the above equations (4.36) and (4.37) share with

the Galilean ones given by (3.44) and (3.43). This is superficial because first, when dealing

with genuine fluid equations, the various momenta are expressed in term of kinematical

and thermodynamic parameters, which are completely different in both cases. For instance,

there is no velocity in the Carrollian case. The second major difference is the fact that the

conservation equations in both instances are the result of symmetries (Carrollian and Galilean

diffeomorphisms) which are distinct.

3The momentum Pi is obtained through variation with respect to an additional variable in [46].
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4.1.3 U(1) local invariance and conservation law

We can also consider an action on the Carrollian manifold which is invariant under a local

U(1) transformation associated with a gauge field B = B(t,x)dt +Bi(t,x)dxi as in (3.45).

Then, an additional conservation law is available, although it is not as useful as in the Galilean

case. In the Galilean instance we have that the thermodynamic law (A.2) sets a relationship

between a conserved charge and the energy. The latter is invalidated in the vanishing-k limit,

and plays no subsequent role in the fluid dynamics.

The conjugate momenta are again the charge density and the charge current:

ρ =
1√
a

(

δS

δB
− bi

Ω

δS

δBi

)

, (4.38)

Ni =
1

Ω
√

a

δS

δBi
(4.39)

with δS
δB =

√
a
(

ρ +biNi
)

. The gauge variation of the action gives

δΛS =
∫

dtddx
√

a
((

ρ +biN
i)δΛB+ΩNiδΛBi

)

(4.40)

= −
∫

dtddx
√

a
((

ρ +biN
i)∂tΛ+ΩNi∂iΛ

)

=
∫

dtddx
√

aΩΛ

(

1

Ω
∂tρ +θρ +

(

∇̂i +ϕi

)

Ni
)

−
∫

dtddx
{

∂t
(√

aΛ
(

ρ +biN
i))+∂i

(√
aΛΩNi)} . (4.41)

The U(1) invariance of the action S leads to a Carrollian continuity equation, expressed here

as
(

1

Ω
∂t +θ

)

ρ +
(

∇̂i +ϕi

)

Ni = 0. (4.42)

Using Stokes and Gauss theorems and the Carrollian continuity equation (4.42) we find

∫

W
dtddxΩ

√
a

((

1

Ω
∂t +θ

)

ρ +
(

∇̂i +ϕi

)

Ni
)

=
∮

∂W

√
aρdx1 ∧ . . .∧dxd

−
∮

∂W

√
a

d

∑
i=1

dx1 ∧ . . .∧Niµ∧ . . .∧dxd, (4.43)

where W ⊂ M = R×S and Niµ (µ given in (4.3)) is the ith factor in the exterior product

of the last term. Assuming a good behaviour for the fields, a conserved charge exists and

can be expressed as an integral over an arbitrary space-like hypersurface Σd of M = R×S .
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This conserved charge is identical to the relativistic Papapetrou–Randers result obtained e.g.

in (2.131). In a similar way as in the Galilean instance, it is suitable to chose Σd ≡ S i.e. a

constant-t hypersurface, and the charge then reads4

QN =
∫

S
ddx

√
a
(

ρ +biN
i) . (4.44)

Following the Galilean steps, time independence reveals by replacing S in (4.57) with

V ⊂ S , where the boundary ∂V does not depend on t. Using (4.42), the time evolution of

the matter/charge content of V is the following:

d

dt

∫

V
ddx

√
a
(

ρ +biN
i)=−

∫

V
ddx∂i

(√
aΩNi)=−

∫

∂V
Ω⋆N. (4.45)

If V is extended to the whole S the time dependence fades and we find that QN is conserved.

4.1.4 Isometries and (non-)conservation

Carrollian isometries are generated by Killing fields given by (4.28), which are required to

satisfy

Lξai j = 0, Lξυ= 0, (4.46)

since the metric (4.1) and the field of observers (4.2) are the fundamental geometric data in

the spacetimes at hand (see [14, 22, 23, 20]). For Carrollian diffeomorphisms (ξ i ≡ ξ ı̂ is

only x-dependent), equations (4.29) and (4.30) lead to

∇̂(iξ
ka j)k +ξ t̂ γ̂i j = 0,

1

Ω
∂tξ

t̂ +ϕiξ
i = 0. (4.47)

The above are the equations that reflect the invariance of a weak Carroll structure [22] and

possesses an infinite set of solutions. As we discussed previously in the Newton-Cartan

instance, we could choose a strong Carroll structure which is equipped with a field-of

observers-compatible and metric-compatible connection (as our choice in (4.9)), required to

be invariant under Carrollian isometries. This restricts the solution space of (4.47).

Contrary to the field of observers and the metric of the base space, the Ehresmann

connection is not required to be invariant. For a Carrollian Killing field ξ, using (4.47) inside

4It should be noticed that the presence of bi apparently breaks the manifest covariance, since according

to (2.103) the form of the integrand is respected only by coordinate transformations such that t ′ = t ′(t) i.e. a

subset of Carrollian diffeomorphisms. This actually just translates a feature of the hypersurface chosen for

computing the charge, which is otherwise an absolute constant. If the clock form is closed (see (4.13)), locally

µ= dτ one may alternatively choose the integration hypersurface Στ as τ(t,x) = constant. In this instance, we

obtain QN =
∫

Στ
ddx

√
aρ . Nevertheless, all choices of space-like hypersurface Σd lead to the same charge.
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(4.31) we find

Lξµ=
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

dxi. (4.48)

In order to have a good illustration of the above we can consider a flat Carroll spacetime,

consisting with a Carroll structure with ai j = δ i j the d-dimensional Euclidean metric, Ω = 1

and constant bi. The equations in (4.47) possess an infinite number of solutions for the

Killing field. This read

ξ=
(

Ω
j

i xi +X j
)

∂ j + f (x)∂t (4.49)

with constant and antisymmetric Ωi j = Ω k
i δk j generating the rotations in so(d), constant X j

for the space translations, and an arbitrary function of space f (x). If we additionally required

the affine connection of the strong Carroll structure to remain invariant under ξ, then the

function f (x) is restricted to be linear, e.g. f = T −Bixi with T generating time translations

and Bi being the Carroll boosts. The total number of solutions is now (d+2)(d+1)/2, which

is the dimension of the Carroll algebra carr(d +1). Also, for the Ehresmann connection we

find

Lξbi =−
(

Bi +Ω
j

i b j

)

̸= 0, (4.50)

showing a constant shift in the Ehresmann connection.

In principle we should manage to obtain the conservation laws associated to the Carrollian

isometries. The latter ultimately will be of the form of (4.42) with a Carrollian scalar κ and a

Carrollian vector Ki determined from the compondents of the Carrollian Killing fields ξ t̂ and

ξ ı̂, and from the Carrollian momenta, namely the energy density Π, the energy current Πi and

the energy–stress tensor Πi j, as well as the momentum Pi, and satisfying the conservation

equations (4.37) and (4.36). Assuming that such a conservation exists, the Carrollian scalar

K =

(

1

Ω
∂t +θ

)

κ +
(

∇̂i +ϕi

)

Ki (4.51)

should vanish on-shell. In the above, κ and Ki are obtained from the on-shell boundary terms

of δξS (see (4.35))5. They read

κ = ξ iPi −ξ t̂Π, (4.52)

Ki = ξ jΠ i
j −ξ t̂Πi. (4.53)

5We can also obtain κ and Ki from the small-k expansion of the relativistic-current components (2.128),

(2.129), (2.130).
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The scalar K can be determined using the conservation equations (4.37) and (4.36):

K = −Π

(

1

Ω
∂tξ

t̂ +ϕiξ
i
)

−Πi
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

+Πi
j

(

∇̂iξ
j +ξ t̂ γ̂

j
i

)

(4.54)

= −Πi
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

. (4.55)

The above result shows that in Carroll structures, a Killing field does not guarantee an

on-shell conservation law for Carrollian dynamics.6

This result is similar to what we found in the Galilean case. Here, the energy current Πi

is conjugate to bi (4.26) and bi does transform under diffeomorphisms (see (4.33)), even if

we are dealing with an isometry. Still, equation (4.55) suggest that a conservation law exists

for a restricted version of the Killing vectors such that

Lξµ= 0 . (4.56)

We call strong Carrolliang Killing vectors to the ones that satisfy the above condition

together with the first two Carrollian Killing equations given in (4.47).7 In general, these

strong Carroll isometries produce conserved currents, in agreement with general Nœther’s

theorem. Another instance where conservation is satisfied is when the right-hand side of

(4.55) originates from a boundary term (as for the corresponding Galilean equation (3.65)).

In that instance, conservation would occur with an effective Carrollian current given by κ ′

and Ki′, both getting corrections from boundary-term contributions.

Another possibility is requiring the vanishing of the energy flux Πi. To see this we can

go back to the simple example of flat Carroll spacetime. In that case one can notice that

Carrollian boosts in flat Carroll structures do not satisfy the extra condition Lξµ= 0 (see

(4.50)) since it creates a constant shift in the Ehresmann connection. This implies that no

conservation is necessarily associated with them. Then, in order to have a conservation law

associated to Carroll boost invariance, the vanishing of the energy flux Πi is required.

We can construct charges associated with the current (κ,KKK), which is going to be

important when discussing gravitational charges in Chapter 6. These charges are defined as

an integral at fixed t over the hypersurface Σd ≡ S

QK =
∫

S
ddx

√
a
(

κ +biK
i) , (4.57)

6The observation of this phenomenon was first introduced in [86].
7The Jacobi identity is used to show that the commutator of two ξs obeying Lξµ= 0, satisfies the same

condition.
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and obey the time evolution

dQK

dt
=
∫

S
ddx

√
aΩK −

∫

∂S
∗KKK Ω. (4.58)

The last term is of boundary type with ∗KKK the S -Hodge dual of Kidxi. Generally, one can

ignore it owing to adequate fall-off or boundary conditions on the fields. Again, only if the

current satisfies K = 0, the charge is conserved.

4.1.5 Weyl invariance, conformal isometries, and (non-)conservation

Carrollian manifolds can be covariant with respect to Weyl transformations. They act on

their geometric data as

ai j →
1

B2
ai j, Ω → 1

B
Ω, bi →

1

B
bi, (4.59)

where B =B(t,x) is an arbitrary function. When the action is Weyl-invariant, the Carrollian

momenta Πi j, Πi and Π defined in (4.25), (4.26) and (4.27) have conformal weights d +3,

d + 2 and d + 1. The momentum Pi appearing in (4.37) has also weight d + 2, and in the

matter sector, assuming the gauge field B and Bi be weight-zero, we can find from (4.38) and

(4.39) that the weights of the density ρ and the matter current Ni are d and d +1.

Requiring Weyl invariance for the effective action, namely δBS = 0, expression (4.34)

implies that

Π i
i = Π. (4.60)

We will see later in this chapter how to implement Weyl covariance through the appropriate

covariant derivatives for time and space, dubbed Weyl-Carroll derivatives.

Following [13, 14, 22, 23, 20] a conformal isometry is generated by a vector field ξ

satisfying

Lξai j = λai j, (4.61)

and

Lξυ= µυ, (4.62)

where

λ (t,x) =
2

d

(

∇̂iξ
i +θξ t̂

)

, (4.63)

and (see (4.30))

µ(t,x) =−
(

1

Ω
∂tξ

t̂ +ϕiξ
i
)

. (4.64)
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The latter is accompanied with the extra condition 2µ +λ = 0.

Assuming the existence of a conformal isometry, the conservation equations (4.36) and

(4.37) can be used for computing the Carrolian scalar K (4.51) with (4.52), (4.53) and

(4.60). This reads

K = Π

(

λ

2
+µ

)

−Πi
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

. (4.65)

One can see that even if 2µ +λ = 0 is satisfied, the Carrollian scalar K does not vanish

in general. The latter shows that a conformal Killing field does not generically provide a

conservation law in Weyl-invariant Carrollian dynamics.

As an example, one can consider again the standard flat Carroll spacetime (ai j = δ i j,

Ω = 1 and constant bi). Equations (4.61) and (3.73) are satisfied by an infinite number of

solutions, which for a strong Carroll structure read [22, 23, 20]

ξ= Y j(x)∂ j +
(

T (x)+
t

d
∂iY

i
)

∂t (4.66)

with T (x) an arbitrary function generating the supertranslations and Y i(x)∂ j being the

conformal Killing fields of Euclidean d-dimensional space, generating so(d +1,1). This is

the conformal Carroll algebra ccarr(d +1)≡ so(d +1,1)⋉ supertranslations, known to be

isomorphic to the Bondi–van der Burg–Metzner–Sachs algebra BMSd+2 [22, 23].

The clock form is found to transform as

Lξµ=

(

∂i
(

T −Y jb j
)

+
bi

d
∂ jY

j +
t

d
∂i∂ jY

j
)

dxi. (4.67)

The associated current is not conserved unless ∂ jY j =C0 and T = T0 +Y jb j − C0

d bixi, thus

linear in xi (C0 and T0 are constants). This excludes the d special conformal transformations

of so(d +1,1) and leaves the supertranslations with the time translation as unique freedom,

leading to a symmetry subgroup of finite dimension d2

2
+ d

2
+2.

4.2 Carrollian limit of relativistic hydrodynamics

We now study the vanishing-k limit of relativistic fluid dynamics on a pseudo-Riemannian

manifold, parameterized in the Papapetrou-Randers gauge (2.99). As in the Galilean instance,

Papapetrou-Randers gauge makes the k-dependence in the geometry explicit. The fluid

velocity is parameterized with the Carrollian vector β i introduced in (2.106), which in the
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small-k expansion behaves as

vi = k2Ωβ i +O
(

k4
)

. (4.68)

The fluid velocity vanishes at zero k as expected, but still the kinematical parameter β i with

dimensions of inverse velocity will remain as a Carrollian-fluid variable (they will appear in

the momenta). The behaviour of the components of the fluid congruence then read

u0 =−kΩ+O
(

k3
)

, ui = k2β i +O
(

k4
)

. (4.69)

We can also compute the small-k expansion of the kinematical quantities associated to ui.

For instance, the expansion and the shear behave as

Θ =
1

Ω
∂t ln

√
a+O

(

k2
)

= θ +O
(

k2
)

, (4.70)

σ i j =− 1

Ω

(

1

2
∂ta

i j +
1

d
ai j∂t ln

√
a

)

+O
(

k2
)

= ξ i j +O
(

k2
)

(4.71)

with ξ i j and θ defined for a Carrollian manifold in (4.15) and (4.16).

In order to obtain the Carrollian fluid equations in the limiting procedure, we need to

handle the behaviour of the energy-momentum tensor at small k. Therefore we need the

behaviour of the energy density ε , the pressure p, the heat current qi and the stress tensor τ i j.

We also need the behaviour of the current ji if present. To this end we consider an ansatz

motivated by the Carrollian fluid that appears in the Ricci-flat/Carrollian fluid duality [42].

In this ansatz we have8 9

ε = ε +O
(

k2
)

, (4.72)

p = p+O
(

k2
)

, (4.73)

qi = Qi + k2π i +O
(

k4
)

, (4.74)

τ i j = −Ξi j +O
(

k2
)

. (4.75)

This is similar to the Galilean counterpart (3.87) and (3.88), with the difference that the

energy is now of order 1, as for the case of a massless-carriers Galilean fluid.

For the components of the U(1) conserved current, we find

ρ0 = χ +O
(

k2
)

, jk = nk +O
(

k2
)

. (4.76)

8In the literature one can find a different behaviour for the energy-momentum pieces. See for instance [56]

where qi is assumed to behave as qi = k2π i +O(k4).
9We are using the same symbols for the leading terms in the energy density and pressure. This choice is

made here for simplicity since we will not use their subleading orders in this thesis.
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Here ρ0 is the proper density, namely the density measured by an observer with velocity uµ .

We could also consider a fiducial observer, who would play here the role of uZ in Zermelo

frame. This reads

uPR =
1

Ω
∂t . (4.77)

For this observer, the fluid density is − 1
k2 Jµuµ

PR = k
Ω

J0, which coincides with ρ0r given in

(2.124).

4.2.1 Carrollian momenta and conservation equations

With the data (4.72), (4.73), (4.74), (4.75), the invariant pieces of the relativistic energy–

momentum tensor defined in (2.118), (2.121), (2.122) and (2.123) read

qi
r = Πi + k2Pi +O

(

k4
)

, (4.78)

εr = Π+O
(

k2
)

, (4.79)

pra
i j + τ

i j
r = Πi j +O

(

k2
)

(4.80)

with

Π = ε +2βiQ
i, Πi = Qi, Πi j = Qiβ j +β iQ j + pai j −Ξi j, (4.81)

and

Pi = π i +β i
(

ε + p+βkQk
)

−βkΞki +
βββ 2

2
Qi. (4.82)

Equation (2.1) with the energy–momentum tensor at hand implies the following expres-

sions

k

Ω
∇µT µ

0 = E +O
(

k2
)

, (4.83)

∇µT µi =
1

k2

{(

1

Ω
D̂t +θ

)

Πi +Π jγ̂ i
j

}

+G i +O
(

k2
)

(4.84)

are zero at each oder in the small-k expansion with

E = −
(

1

Ω
D̂t +θ

)

Π−
(

∇̂i +2ϕi

)

Πi −Πi jγ̂i j, (4.85)

G j =
(

∇̂i +ϕi

)

Πi
j +2Πiϖi j +Πϕ j +

(

1

Ω
D̂t +θ

)

Pj +Piγ̂i j. (4.86)
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We recover the Carrollian momenta conservation equations (4.36) and (4.37) with the addition

of an extra equation for the energy current

(

1

Ω
D̂t +θ

)

Πi +Π jγ̂ i
j = 0. (4.87)

Equation (4.87) was absent when we derived the Carrollian conservation equations from

the symmetry analysis. Indeed, this equation appears as a boundary term that could not be

obtained through a variational principle, i.e.

Ω
√

aξi

[(

1

Ω
D̂t +θ

)

Πi +Π jγ̂ i
j

]

= ∂t
(√

aΠiξ
i) (4.88)

due to the time independence of ξ i(x). This is similar to what happens with the momentum Pi.

It appears as an arbitrary function in the boundary term of δξS when working in the framework

of a Carrollian manifold with Carrollian diffeomorphisms, but in the limiting procedure

appears explicitly and is expressed in terms of the kinematical and “thermodynamic–transport”

observables – β i and ε , p, Qi, π i, Ξi j in (4.82). Hence, getting the Carrollian dynamics as

a vanishing-k limit of relativistic hydrodynamics is richer. From the relativistic ascendant

prespective, (4.87) is a vestige of the original full diffeomorphism relativistic invariance.

We can also consider the case where a conserved U(1) current (not necessarily associated

to mass conservation) is present in the relativistic ascendant. If that is the case, we find, after

inserting (4.76) inside (2.124) and (2.125),

ρ0r = ρ +O
(

k2
)

, (4.89)

ji
r = Ni +O

(

k2
)

, (4.90)

with

ρ = χ +βin
i, Ni = ni, (4.91)

the matter Carrollian momenta explicitly determined in terms of β i, χ and ni. We can now

compute the divergence of (2.4) in the Papapetrou–Randers background (2.99). The result is

∇µJµ = J +O
(

k2
)

(4.92)

with

J =

(

1

Ω
∂t +θ

)

ρ +
(

∇̂ j +ϕ j

)

N j, (4.93)

and demanding the conservation, we recover the Carrollian continuity equation (4.42).
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4.2.2 Hydrodynamic-frame invariance

When relativistic hydrodynamics was introduced in Chapter 2, we saw that under an arbitrary

local transformation of the velocity field u, the fluid equations remain invariant providing the

appropriate transformations of fluid variables such that the energy-momentum tensor and the

U(1) current remain invariant10. The question now is what happens in the Carrollian limit.

From the analysis in the Galilean limit we learned that answering this question requires

some care, in particular with the assumed behaviour of the various observables with respect

to the speed of light (see (4.72), (4.73), (4.74), and (4.75)), which may or may not be

stable under Carrollian (or Galilean) hydrodynamic-frame transformations. In the Carrollian

instance we do not have physical intuition (as opposed to the Galilean case) for the latter.

However, there are concrete results from flat holography [76, 77] suggesting that Carrollian

hydrodynamic-frame invariace exist as a local boundary symmetry, which is reflected in the

bulk as a diffeomorphism transformation.

We start by analysing the fluid equations (4.85), (4.86) and (4.87). On one hand, all the

operators acting in the momenta are independent of the kinematic vector β i. On the other

hand the momenta Pi, Π, Πi and Πi j appear as the coefficients at each order in the small-k

expansion of the hydrodynamic-frame invariant relativistic momenta qr, εr and prai j + τ
i j
r .

Then, in order to make any conclusion about the fate of hydrodynamic-frame invariance in

the Carrollian limit, we must examine the stability of the scaling properties captured in (4.72),

(4.73), (4.74) and (4.75). Using the transformation rules set in the Papapetrou–Randers frame

(2.113), (2.114) and (2.115) we find the following transformations:

δη = −2δβiQ
i, (4.94)

δQi = 0, (4.95)

δπ i = δβ j
(

Ξi j − (η +ϖ)ai j +β iQ j) , (4.96)

δ
(

Ξi j −ϖai j) = δβk

(

Qia jk +Q jaik
)

. (4.97)

With the above transformation rules, the Carrollian densities, fluxes and the energy-stress

tensor defined in (4.81) and (4.82) remain invariant, namely

δΠ = 0, δΠi = 0, δΠi j = 0, δPi = 0 , (4.98)

10In the Papapetrou–Randers frame, the local transformations (2.32) are captured by β i → β i+δβ i(t,x) (see

Eqs. (2.71)), (2.106), (2.108)) parameterized as δβ i = Bi − k2B jβ jβ
i +Ωi jβ j. Infinitesimal Lorentz boosts are

associated with Bi(t,x), while infinitesimal rotations go along with the antisymmetric Ωi j(t,x). In the Carrollian

limit, the general transformation, which captures Carrollian boosts and rotations, reads: δβ i = Bi +Ωi jβ j.
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which implies the hydrodynamic-frame invariance of the Carrollian fluid equations (4.85),

(4.86) and (4.87).

The same procedure applies to study the hydrodynamic-frame transformation of the

Carrollian continuity equation (4.93). This demands an analysis on the behaviour of the

charge/mass density ρ0 and the current ji in the small-k expansion. The transformation

rules in Papapetrou–Randers frame are (2.116) and (2.117), whereas the invariant relativistic

momenta (4.89), (4.90) should be used together with the small-k behaviour (4.76). We find

δ χ = −δβin
i, (4.99)

δni = 0. (4.100)

Using (4.91), we show that

δρ = 0, δNi = 0. (4.101)

This result demonstrates the invariance of (4.93). Therefore, Carrollian fluid dynamics,

consisting in the energy, momentum and energy current equations (4.85), (4.86) and (4.87)

together with the Carrollian continuity equation (4.93), is hydrodynamic-frame invariant.

4.2.3 Weyl-invariant Carrollian fluids

Weyl-invariant fluids are important in flat holography since, in the Ricci-flat/Carrollian fluid

duality, they appear as the holographic duals hosted at the conformal null boundary [42]. On

a pseudo-Riemannian manifold with Papapetrou-Randers coordinates, the action of the Weyl

transformations, generated by B(t,x), in the fundamental geometric data is given as in (4.59).

From the zero-k limit of the tracelessness condition of the relativistic energy-momentum

tensor, we find the Weyl-invariance condition (4.60) by using using (2.119), (4.78), (4.79)

and (4.80). The set of Carrollian momenta (4.81), (4.82), (4.91) are expressed in terms of

fluid variables such as the inverse velocity β i, the energy density ε , the pressure p as well as

Qi, πi and Ξi j. Their conformal weights are11 1, d +1, d +1, d, d and d −1 and similarly

the weights of χ and ni are d and d +1. Condition (4.60) reads ε = d p−Ξi
i, which (as in

the Galilean case) is splitted as

ε = d p, Ξi
i = 0. (4.102)

11We mentioned in Sec. 4.1 that Πi j, Πi, Pi and Π have conformal weights d +3, d +2 , d +2 and d +1,

whereas the density ρ and the matter current Ni have weights d and d +1.
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We define Weyl–Carroll covariant time and space derivatives using θ and ϕi defined in

(4.16) and (4.12), which transform as connections

θ → Bθ − d

Ω
∂tB, ϕi → ϕi − ∂̂i lnB, (4.103)

as opposed to the Carrollian shear ξi j (4.15) and Carrollian vorticity ϖi j (4.11), which are

Weyl-covariant of weight −1. The action of the Carrollian Weyl-covariant time derivative on

a weight-w function Φ is

1

Ω
D̂tΦ =

1

Ω
D̂tΦ+

w

d
θΦ =

1

Ω
∂tΦ+

w

d
θΦ, (4.104)

and this is a scalar of weight w+1. On a weight-w vector, the action is

1

Ω
D̂tV

l =
1

Ω
D̂tV

l +
w−1

d
θV l =

1

Ω
∂tV

l +
w

d
θV l +ξ l

iV
i. (4.105)

These are the components of a Carrollian vector of weight w+ 1. The action of the time

Weyl-Carroll covariant derivative on the metric is

D̂takl = 0. (4.106)

For a weight-w scalar function Φ, we introduce the space Weyl-covariant Carrollian

derivative

D̂ jΦ = ∂̂ jΦ+wϕ jΦ, (4.107)

which has the same conformal weight. Similarly, for a vector with weight-w and components

V l we have

D̂ jV
l = ∇̂ jV

l +(w−1)ϕ jV
l +ϕ lVj −δ l

jV
iϕi. (4.108)

The Weyl–Carroll spatial derivative does not modify the weight of the tensor it acts on. The

action on any other tensor is obtained using the Leibniz rule. For instance, for a rank-two

tensor we have

D̂ jtkl = ∇̂ jtkl +(w+2)ϕ jtkl +ϕkt jl +ϕltk j −a jltkiϕ
i −a jktilϕ

i. (4.109)

Moreover, it is also metric-compatible, meaning

D̂ jakl = 0. (4.110)
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Time and space Weyl–Carroll covariant derivatives do not commute. Various geometric

tensors can be defined through their commutators, such as the Weyl-Carroll curvatures (see

App. C), which also arise in the small-k expansion of the relativistic Weyl curvature tensors

introduced in (2.47), (2.48), (2.49), and evaluated in a Papapetrou–Randers background.

Then, the Carrollian equations (4.36), (4.37) and (4.87) for a Weyl-invariant fluid can be

recast as

1

Ω
D̂tΠ+ D̂iΠ

i +Πi jξi j = 0, (4.111)

D̂iΠ
i
j +2Πiϖi j +

(

1

Ω
D̂tδ

i
j +ξ i

j

)

Pi = 0, (4.112)

1

Ω
D̂tΠ j +Πiξ

i
j = 0. (4.113)

These equations are Weyl-covariant of weights d +2, d +1 and d +1 (Pi is weight-d). They

are also manifestly hydrodynamic-frame invariant. The same goes for the matter sector,

(4.42) which is recast
1

Ω
D̂tρ + D̂ jN

j = 0, (4.114)

and is Weyl-covariant of weight d +1 and hydrodynamic-frame invariant.

4.2.4 More degrees of freedom

The main ingredient to obtain Carrollian fluid dynamics from the vanishing-k limit of

relativistic hydrodynamics was the assumption on the behaviour of the energy, pressure, heat

current and stress tensor given in (4.72), (4.73), (4.74) and (4.75) respectively. In the Galilean

case, we considered the situation involving extra degrees of freedom satisfying extended

systems of fluid equations which were reached at the infinite-k limit of the relativistic theory.

In the Galilean case, the latter was of limited use but it may play a more prominent role when

studying Carrollian fluids in the context of flat holography, where additional over-leading

terms are needed in the components of the boundary energy-momentum tensor [42].

Now we consider the behaviour for the fluid variables as

ε =
ζ

k2
+ ε +O

(

k2
)

, (4.115)

p =
φ

k2
+ p+O

(

k2
)

, (4.116)

qi =
ψ i

k2
+Qi + k2π i +O

(

k4
)

, (4.117)

τ i j = −Σi j

k2
−Ξi j +O

(

k2
)

, (4.118)
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while for the matter sector we consider

ρ0 =
ω

k2
+χ +O

(

k2
)

, jk =
mi

k2
+nk +O

(

k2
)

. (4.119)

With these scalings, the expansion of the components of the energy–momentum tensor

(2.121), (2.122), (2.123) becomes



















εr =
Π̃
k2 +Π+O

(

k2
)

,

qi
r =

Π̃i

k2 +Πi + k2Pi +O
(

k4
)

,

prai j + τ
i j
r = Π̃i j

k2 +Πi j +O
(

k2
)

,

(4.120)

with Carrollian momenta given by































































Π̃i = ψ i

Πi = Qi −β j
(

Σi j −φai j
)

+β i
(

ζ +β jψ
j
)

+ βββ 2

2
ψ i

Pi = π i −β j
(

Ξi j − pai j
)

+β i
(

ε +β jQ j
)

+ βββ 2

2

(

Qi + 3βββ 2

4
ψ i
)

+β iβββ 2
(

ζ +φ + 1
2
β jψ

j
)

Π̃ = ζ +2βiψ
i

Π = ε +2βiQi −βiβ j
(

Σi j −φai j
)

+βββ 2
(

ζ +βiψ
i
)

Π̃i j = ψ iβ j +β iψ j +φai j −Σi j

Πi j = Qiβ j +β iQ j + pai j −Ξi j +β iβ j (ζ +φ)+ βββ 2

2

(

ψ iβ j +β iψ j
)

,

(4.121)

Similarly, the matter current (Eqs. (2.124) and (2.125)) exhibits the following:

ρ0r =
ρ̃

k2
+ρ +O

(

k2
)

, jk
r =

Ñk

k2
+Nk +O

(

k2
)

(4.122)

with


























Ñ j = m j

N j = n j +β jω

ρ̃ = ω +βkmk

ρ = χ +βknk + βββ 2

2
ω.

(4.123)
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We use the above expansion in the conservation of the relativistic of the energy-momentum

tensor in the Papapetrou–Randers frame (2.99). We find

k

Ω
∇µT µ

0 =
F

k2
+E +O

(

k2
)

, (4.124)

∇µT µi =
X i

k4
+

H i

k2
+G i +O

(

k2
)

. (4.125)

From the divergence of the matter current we obtain

∇µJµ =
N

k2
+J +O

(

k2
)

. (4.126)

In these expressions, E , G j and J are again given in (4.85), (4.86) and (4.93), while the

new expressions are

F = −
(

1

Ω
D̂t +θ

)

Π̃−
(

∇̂i +2ϕi

)

Π̃i − Π̃i jγ̂i j, (4.127)

H j =
(

∇̂i +ϕi

)

Π̃i
j +2Π̃iϖi j + Π̃ϕ j +

(

1

Ω
D̂t +θ

)

Π j +Πiγ̂i j, (4.128)

X j =

(

1

Ω
D̂t +θ

)

Π̃ j + Π̃iγ̂i j, (4.129)

and

N =

(

1

Ω
∂t +θ

)

ρ̃ +
(

∇̂ j +ϕ j

)

Ñ j. (4.130)

Therefore, the Carrollian equations are given by E = F = G j = H j = X j = 0, and

J = N = 0 which describe the matter sector. All these equations are invariant under

hydrodynamic-frame transformations. This is because the differential operators are geomet-

ric and thus invariant, and also because the momenta Π̃, Π, Π̃i, Πi, Pi, Π̃i j, Πi j, ρ̃ , ρ , Ñi, Ni

are hydrodynamic-frame invariant, as shown in App. B.

4.2.5 Weyl-invariant Carrollian fluids

For this kind of systems with extra degrees of freedom, the analysis based on an effective

action would required to know the complete set of variables conjugate to the momenta Π, Πi,

Πi j and Π̃, Π̃i, Π̃i j, which is bigger than ai j, bi and Ω. Still, we can impose Weyl invariance

by studying the zero-k limit of T µ
µ = 0. Weyl invariance is here easier to impose as a zero-k
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limit by using (2.119) with (4.120) T µ
µ = 0. We find

T µ
µ =

1

k2

(

Π̃ i
i − Π̃

)

+Π i
i −Π+O

(

k2
)

= 0, (4.131)

which lead to

Π̃ i
i = Π̃, and Π i

i = Π. (4.132)

Using the explicit expressions of the momenta (4.121), the above conditions can be recast in

terms of Carrollian fluid observables. They are splitted in the same way as in (2.65), giving

global equlibrium equations of state and conditions for the dissipative terms. They read

ζ = dφ , Σi
i = 0, ε = d p, Ξi

i = βiβ jΣ
i j. (4.133)

The momenta Π̃, Π̃i, Π̃i j have the same conformal weights as the set Π, Πi, Πi j. This implies

that the extra variables ζ , φ , ψi and Σi j are of weight d +1, d +1, d and d −1, while for ω

and mi we find the weights d and d +1.

We use the definition of the time and space Weyl–Carroll covariant derivative to recast

the Carrollian fluid equations E = F = G j = H j = X j = 0 and J = N = 0 in a Weyl

covariant fashion as

J =
1

Ω
D̂tρ + D̂ jN

j, (4.134)

N =
1

Ω
D̂t ρ̃ + D̂ jÑ

j, (4.135)

and

E = − 1

Ω
D̂tΠ− D̂iΠ

i −Πi jξi j, (4.136)

F = − 1

Ω
D̂tΠ̃− D̂iΠ̃

i − Π̃i jξi j, (4.137)

G j = D̂iΠ
i
j +2Πiϖi j +

(

1

Ω
D̂tδ

i
j +ξ i

j

)

Pi, (4.138)

H j = D̂iΠ̃
i
j +2Π̃iϖi j +

(

1

Ω
D̂tδ

i
j +ξ i

j

)

Πi, (4.139)

X j =
1

Ω
D̂tΠ̃ j + Π̃iξ

i
j. (4.140)

Part of the above are the set of equations12 present in flat holography, relating Ricci-flat

spacetimes and Carrollian conformal fluids. See for example [75–77, 42]. They are covariant

12They are also known in the literature as flux balance equations. See for instance [35, 37].
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under Carrollian diffeomorphisms, covariant under Weyl rescalings and invariant under

hydrodynamic-frame transformations, which are local Carroll transformations corresponding

to local Carroll boosts and rotations.

4.2.6 Isometries and conformal isometries

As a last application of the above results, we can consider the behaviour of Noether currents

associated to (conformal) isometries. We insert the behaviour (4.120) inside the components

(2.128), (2.129) and (2.130) of the relativistic Noether current. We get

− 1

kΩ
I0 = ι0r =

˜̃κ

k4
+

κ̃

k2
+κ +O

(

k2
)

, Ik = ikr =
K̃k

k2
+Kk +O

(

k2
)

(4.141)

with (remember that ξ i ≡ ξ ı̂ is a function of x only for Carrollian diffeomorphisms)







































κ = ξ iPi −ξ t̂Π

κ̃ = ξ iΠi −ξ t̂Π̃

˜̃κ = ξ iΠ̃i

Ki = ξ jΠ i
j −ξ t̂Πi

K̃i = ξ jΠ̃ i
j −ξ t̂Π̃i .

(4.142)

Inserting (4.141) in the relativistic divergence of the Noether current Iµ in Papapetrou–

Randers background we find an extension of (4.51) in the form

∇µ Iµ =
˜̃K

k4
+

˜K

k2
+K +O

(

k2
)

(4.143)

with



















˜̃K =
(

1
Ω

∂t +θ
)

˜̃κ = 0

˜K =
(

1
Ω

∂t +θ
)

κ̃ +
(

∇̂i +ϕi

)

K̃i =−Π̃i
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

K =
(

1
Ω

∂t +θ
)

κ +
(

∇̂i +ϕi

)

Ki =−Πi
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

.

(4.144)

The above equations hold when ξ i and ξ t̂ are Carrollian Killings satisfying (4.47) (or

conformal Killings satisfying (3.73), (4.61), (4.63), (4.64)) and the equations of motion

E = F = G j = H j = X j = 0 are satisfied (see equations (4.136), (4.137), (4.138), (4.139),

(4.140) and (4.132) for the Weyl-covariant situation). We can see from (4.144) that one set

of the three current pieces is always conserved, while the other two are not.
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We see that a multiplication of degrees of freedom induced by additional pieces in the

behaviour of the relativistic energy–momentum tensor and the matter current, implies a

multiplication of the Noether currents (here three but possibly more if we consider more

terms in (4.120)) associated to the (conformal) isometries of the spacetime. In general, these

currents are not conserved unless we consider a more restricted set of (conformal) isometries

that satisfy Lξµ =
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

dxi = 0. The other alternative to render the

currents conserved is by imposing the vanishing of the appropriate piece in expansion of qi
r.

This is why ˜̃K = 0.



Chapter 5

Carrollian scalar field and gravitational

Chern-Simons

The two different approaches that we used to derive Carrollian fluid dynamics can also be

applied to other theories. Here we will investigate the Carrollian reduction of the scalar field

and the gravitational Chern-Simons theory and find their Carrollian dynamics.

5.1 Carrollian scalar field

5.1.1 Small-k expansion of the relativistic scalar field

Two different situations arise when considering the dynamics of a scalar field defined on a

Carrollian spacetime. These are given by the Lagrangian densities

Le =
1

2

(

1

Ω
∂tΦ

)2

−Ve(Φ), (5.1)

Lm = −1

2
ai j∂̂iΦ∂̂ jΦ−Vm(Φ), (5.2)

and they enter in the Carrollian action as SC =
∫

M dt ddx
√

aΩL . The indices “e” and “m”

stand for electric and magnetic and in both cases the action is Carrollian diffeomorphism

invariant. They refer to the origin of these actions from the ultralocal limit of the original

relativistic theory [87, 56]. Indeed starting from the action of a relativistic scalar field on a

Papapetrou–Randers background (2.99)

S =−
∫

M
dt ddx

√−g

(

1

2
gµν∂µΦ∂νΦ+V (Φ)

)

, (5.3)
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and assuming the expansion of the potential V (Φ) in terms of the speed of light as

V (Φ) =
1

k2
Ve(Φ)+Vm(Φ)+ O

(

k2
)

, (5.4)

we find

S =
1

k2
Se +Sm + O

(

k2
)

(5.5)

with Se and Sm the Carrollian actions with Lagrangian densities (5.1) and (5.2). The assump-

tion given in (5.4) makes possible to reach these two Carrollian diffeomorphism invariant

actions.

Due to the form of the metric (2.99), and to its behaviour under Carrollian diffeomor-

phisms, the decomposition of any relativistic tensor as a small-k expansion, provides a

Carrollian tensor for each term. If we insist in reaching a single Carrollian tensor at vanishing

k, then an appropriate rescaling by some power of k2 is necessary in order to select one out

of two options, if only two options are available as in the above scalar-field action (see [87],

were this procedure is illustrated in Hamiltonian formalism and for flat spacetime).

5.1.2 The case of conformally coupled scalar field

For a relativistic curved spacetime in d + 1 dimensions we can consider the following

potential:

V (Φ) =
d −1

8d
RΦ2. (5.6)

For a scalar field Φ of weight w = d−1
2

, this is a conformal coupling. Here the relativistic

energy–momentum tensor for (5.3) with (5.6) has the form (∇µΦ = ∂µΦ)

Tµν = − 2√−g

δS

δgµν
(5.7)

= ∇µΦ∇νΦ− 1

2
gµν∇αΦ∇αΦ+

d −1

4d

(

GµνΦ2 +gµν□Φ2 −∇µ∇νΦ2
)

= DµΦDνΦ− 1

2
gµνDαΦDαΦ+

d −1

4d

((

R(µν)−
R

2
gµν

)

Φ2 +gµνDαDαΦ2 −D(µDν)Φ
2

)

,

where Gµν is the Einstein tensor, Rµν and R the Weyl-covariant Ricci and scalar defined in

(2.48) and (2.49), together with the Weyl-covariant derivative Dµ . This energy–momentum

tensor is traceless when Φ is on-shell, and Weyl-covariant of weight d − 1. The action is

Weyl-invariant (up to boundary terms), whereas the equations of motion can be recast as

−DµDµΦ+
d −1

4d
RΦ = 0. (5.8)
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As a consequence of diffeomorphism invariance, the energy–momentum tensor obeys a

Weyl-covariant conservation equation given as

∇µT µν = DµT µν = 0. (5.9)

The interest for studying relativistic conformally coupled scalar fields is originally found

in inflationary models of cosmology.1 On the Carrollian side the motivation goes along the

lines of the flat extension of gauge/gravity holographic correspondence, where the boundary

is null infinity (endowed with a Carrollian structure).

The decomposition of the Ricci scalar R is

R =
1

k2

(

2

Ω
∂tθ +

1+d

d
θ 2 +ξi jξ

i j
)

+ r̂−2∇̂iϕ
i −2ϕ iϕi + k2ϖi jϖ

i j , (5.10)

which leads to the following expansion for the potential (5.6) as

V (Φ) =
1

k2
Ve(Φ)+Vm(Φ)+ k2Vnd(Φ) (5.11)

with

Ve(Φ) =
d −1

8d

(

2

Ω
∂tθ +

1+d

d
θ 2 +ξi jξ

i j
)

Φ2, (5.12)

Vm(Φ) =
d −1

8d

(

r̂−2∇̂iϕ
i −2ϕ iϕi

)

Φ2, (5.13)

Vnd(Φ) =
d −1

8d
ϖi jϖ

i jΦ2. (5.14)

In the last expression the index “nd” stands for “non-dynamical.” The reason is that when

the expression (5.11) of the potential is used in the relativistic action (5.3), it produces the

Carrollian electric and magnetic actions – with some boundary terms dropped here2, as well

1See e.g. [122] where more references are displayed.
2On the relativistic side we find: 1

2
gµν ∂µ Φ∂ν Φ + d−1

8d RΦ2 = 1
2
Dµ ΦDµ Φ + d−1

8d RΦ2 −
d−1

4
√−g ∂µ

(√−gAµ Φ2
)

.
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as a third action with no kinetic terms for Φ. 3

Se =
∫

dt ddx
√

aΩ

(

1

2

(

1

Ω
D̂tΦ

)2

− d −1

8d
ξi jξ

i jΦ2

)

, (5.15)

Sm =
∫

dt ddx
√

aΩ

(

−1

2
D̂iΦD̂ iΦ− d −1

8d
R̂Φ2

)

, (5.16)

Snd = −
∫

dt ddx
√

aΩ
d −1

8d
ϖi jϖ

i jΦ2 (5.17)

The Carrollian equations of motion for the two non-trivial cases are as follows:

1

Ω
D̂t

1

Ω
D̂tΦ+

d −1

4d
ξi jξ

i jΦ = 0 electric, (5.18)

−D̂iD̂
iΦ+

d −1

4d
R̂Φ = 0 magnetic . (5.19)

These equations are Weyl-covariant of weight w = d+1
2

.

5.1.3 Carrollian set of momenta

As we have shown in the previous chapter, we can compute the set of momenta that are

conjugate to the Carrollian geometric pieces. This give rise to an energy–stress tensor

Πi j, an energy flux Πi and an energy density Π, defined as in (4.25), (4.26) and (4.27) 4

with conformal weights d + 3, d + 2 and d + 1. Weyl invariance for the action translates

into condition (4.60) which is valid on-shell (as the tracelessness of the relativistic energy–

momentum tensor).

We can also introduce the momentum Pi (weight d) which does not appear upon variation

of the action. Still, as we saw in the previous chapter, it enters the conservation equations

that mirror the Carrollian diffeomorphism invariance. For Weyl-invariant dynamics these are

given by equations (4.111) and (4.112).

The conservation equations are satisfied when the field Φ is on-shell, and this allows to

determine the momentum.

3These results coincide with those obtained for d = 2 in Ref. [123], where the authors proceed with a

thorough investigation of the possible Weyl-compatible terms. The kinetic terms of the electric and magnetic

actions, (5.15) and (5.16), can also be compared to the corresponding results of [87]. They also agree up to the

magnetic constraint introduced in Ref. [87], which would read here Πi
m = 0 (see (5.21)). The latter guarantees

the invariance of the action under local Carrollian boosts, which we have not required a priori – Carrollian

invariance features here the covariance under Carrollian diffeomorphisms (2.100) of a theory defined on a

Carrollian spacetime (4.1) and (4.2).
4See also [121].
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Using Eqs. (4.25), (4.26) and (4.27), we obtain the following energy and momenta for

the Carrollian electric and magnetic actions:



















Π
i j
e = ai j

2

(

1
Ω

D̂tΦ

)2

+ d−1
4d

(

1
Ω

D̂t
(

ξ i jΦ2
)

−ai j
(

1
2
ξlkξ lkΦ2 + 1

Ω
D̂t

1
Ω

D̂tΦ
2
))

Πi
e = 0

Πe =
1
2

(

1
Ω

D̂tΦ

)2

− d−1
8d ξi jξ

i jΦ2,

(5.20)



















Π
i j
m = D̂ iΦD̂ jΦ− ai j

2
D̂lΦD̂ lΦ+ d−1

4d

((

R̂(i j)− R̂
2

ai j
)

Φ2 +ai jD̂lD̂
lΦ2 − D̂ (iD̂ j)Φ2

)

Πi
m =− 1

Ω
D̂tΦD̂ iΦ+ d−1

4d

(

D̂ i 1
Ω

D̂tΦ
2 − D̂ j

(

ξ i jΦ2
)

)

Πm = 1
2
D̂iΦD̂ iΦ+ d−1

4d

(

R̂
2

Φ2 − D̂iD̂ iΦ2
)

.

(5.21)

For the non-dynamical action we find



















Π
i j
nd =

d−1
4d

(

2ϖ liϖ
j

l − ai j

2
ϖlkϖ lk

)

Φ2

Πi
nd =

d−1
4d D̂ j

(

ϖ jiΦ2
)

Πnd =
3(d−1)

8d ϖi jϖ
i jΦ2.

(5.22)

They all obey (4.60), and conservation equations (4.111) and (4.112) are satisfied with the

electric momenta, assuming the field be on-shell, namely obeying (5.18), and deliver the

electric momentum

Pi
e = Πi

m. (5.23)

In a similar fashion for the magnetic dynamics, and using the equation of motion (5.19), we

obtain

Pi
m = Πi

nd. (5.24)

One might be puzzled at this stage by the interplay of Eqs. (5.23) and (5.24), which seem

to entail amongst electric, magnetic and non-dynamics. There is no doubt that electric and

magnetic Carrollian scalar dynamics resulting from Le and Lm are distinct, and can be

studied separately, on any Carrollian background. Likewise, the action Lnd =−Vnd is also

Carrollian-invariant, but is non-dynamical. What sets a deeper link between these dynamics,

which is not visible when treating them directly in the Carrollian framework, is that they all

emerge in the “small-k expansion” of a unique relativistic theory for the scalar field. This

was one possible guideline for obtaining the Carrollian scalar theories. It can also be applied

to the relativistic energy–momentum tensor a small-k expansion5 such that the Carrollian

momenta appear at each power of k in the components of the energy–momentum tensor. The

5The wording “expansion” is an abuse because the result is exact here.
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latter reads


















T i j = 1
k2 Π

i j
e +Π

i j
m + k2Π

i j
nd

− k
Ω

T i
0 = Πi

m + k2Πi
nd

1
Ω2 T00 =

1
k2 Πe +Πm + k2Πnd.

(5.25)

We can expand the relativistic conservation of energy–momentum (5.9) and recollect the

Carrollian conservation equations for the electric, the magnetic and the non-dynamical cases.

In this process Eqs. (4.111) and (4.112) arise for each case at a different k-order, and their

momenta Pi
e and Pi

m are naturally determined in terms of the next-order energy fluxes. This

explains the above results (5.23) and (5.24).

Now, for these Carrollian electric and magnetic dynamics, together with their set of

momenta, one can easily obtain the Noetherian currents and charges associated to (conformal)

isometries. The latter is explained in detail in [4], which is appended to this thesis, where we

compute the conformal isometric charges for the case of a scalar field propagating on the

null boundary of four-dimensional Robinson-Trautman spacetime.

5.2 Gravitational Chern-Simons and its Carrollian exten-

sions

5.2.1 Relativistic Cotton tensor and gravitational Chern-Simons action

The Cotton tensor is a three index object defined on Riemannian manifolds of arbitrary

dimension and partly antisymmetric that measures the deviation of a given geometry from

conformal flatness. In three dimensions, which is the framework of this section, one can

dualize this tensor and get the two-index symmetric tensor version as

Cµν = η
ρσ

µ ∇ρ

(

Rνσ − R

4
gνσ

)

. (5.26)

Here ds2 = gµνdxµdxν is the metric with signature (−++), ηµνσ =
√−gεµνσ (ε012 = 1),

∇ρ the associated Levi–Civita connection and Rνσ are the components of the Ricci tensor

with scalar R. The combination of the Ricci tensor and Ricci scalar inside the derivative

defines the Schouten tensor in three dimensions.

The Cotton tensor is Weyl-covariant, and conserved as a consequence of the second

Bianchi identity

∇ρCρ
ν = 0, (5.27)
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for any gµν . In fact, the Cotton tensor appears as the energy–momentum tensor of the

gravitational Chern–Simons action as

Cµν =
1√−g

δSCS

δgµν
(5.28)

where the gravitational Chern-Simons action is given by

SCS =
1

2k

∫

M
Tr

(

ω∧dω+
2

3
ω∧ω∧ω

)

, (5.29)

whit ω is the Levi–Civita connection one-form defined as ω
µ

ν = Γ
µ
ρνdxρ . In this picture

SCS is a functional of the metric and of its derivatives.

As we did for the relativistic scalar field, the idea is to derive the different Carrollian

Chern-Simons actions and their corresponding dynamics, namely the different Carrollian

Cotton momenta at different powers in the small-k expansion. For the latter we work with

the relativistic Chern-Simons action in a Papapetrou-Randers background (2.99) whose k

dependence is explicit and allows to perform a Carrollian reduction for every relativistic

tensor. On top of that, the Papapetrou–Randers metric (2.99) allows for the use of a con-

venient although non-orthonormal Cartan mobile frame
{

e0̂ =
1

kΩ
∂t ,eı̂ = ∂̂i

}

and coframe
{

θ0̂ =−kµ,θı̂ = dxi
}

. The hatted indices
{

0̂, ı̂
}

are meant to distinguish this frame from

the coordinate coframe
{

θ0 = dx0 = kdt,θi = dxi
}

and frame
{

e0 =
1
k ∂t ,ei = ∂i

}

. In order

to make the notation simpler and consistent with the conventions used in this thesis so far,

we will keep the hat exclusively on the time direction. For the Carrollian side, we will rather

use
{

et̂ =
1
Ω

∂t ,eı̂ = ∂̂i

}

and
{

θt̂ =−µ,θı̂ = dxi
}

, and ignore the hat on the spatial indices.

The relativistic (affine) connection one-form elements ω
µ

ν = Γ
µ
ρνθ

ρ with Γ
µ
ρν the Levi–

Civita connection coefficients read:

ω0̂i = k
(

ϕiµ+ϖi jdx j)− 1

k
γ̂i jdx j, (5.30)

ωi j =
(

k2ϖi j − γ̂i j
)

µ+ail γ̂
l
jkdxk (5.31)

with ω0̂i =−ωi0̂. These expressions contain the Carrollian vorticity and acceleration defined

in (4.11) and (4.12), as well as the Carroll-Levi-Civita connection coefficients and the

extrinsic curvature of the spatial section S defined in (4.9) and (4.15) respectively.

The above enter the Carrollian connection adopted here:

ω̂t̂
t̂ = ω̂t̂

i = ω̂i
t̂ = 0, ω̂i

j =−γ̂ i
jµ+ γ̂ i

jkdxk (5.32)
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(the hat signals this connection is Carrollian as opposed to the Riemannian displayed in

(5.30) and (5.31)).

It is worth mentioning that the Carrollian connection (5.32) has been designed so as to

define a parallel transport that respects the time-and-space splitting, as mentioned in the

previous chapter, embracing distinct time and space Carrollian covariant derivatives 1
Ω

D̂t and

∇̂i being both metric compatible.

5.2.2 Carrollian expansion and its dynamics

The Carrollian descendants of the Riemann and Ricci tensors in the Papapetrou-Randers

background (2.99) are obtaind by using the prescription already used previously for the

relativistic fluids and the scalar field. In a first step, this consists in reducing the relativistic

tensors with respect to Carrollian diffeomorphisms. Next, one expands the latter in powers of

k, and at each power one finds Carrollian tensors that transform covariantly with respect to

Carrollian diffeomorphisms. Following this prescription for the Riemann curvature two-form

of (2.99), which is generally defined as

Rµ
ν = dω

µ
ν +ω

µ
ρ ∧ω

ρ
ν =

1

2
Rµ

νρλ
θρ ∧θλ (5.33)

we find

R 0̂
i = k

[

k2 ∗ϖ2aik + ∇̂(iϕk)+ϕiϕk −2∗ϖη j(iγ̂
j

k) − 1

k2

(

1

Ω
D̂t γ̂ik + γ̂i jγ̂

j
k

)]

µ∧dxk

−k

[

∂̂i ∗ϖ +2ϕi ∗ϖ − 1

k2
ηmn∇̂mγ̂ni

]

1

2
ηkldxk ∧dxl, (5.34)

Ri
j = R̂i

j −η i
j

[

k2
(

∂̂k ∗ϖ +2ϕk ∗ϖ
)

+ηmnϕmγ̂nk

]

µ∧dxk

+η i
j

[

3k2 ∗ϖ2 +
1

2k2
ηmnηrsγ̂mrγ̂ns

]

1

2
ηkldxk ∧dxl, (5.35)

where various Carrollian tensors emerge besides the Carrollian curvature two-form defined

as

R̂ t̂
j = 0, R̂i

j = R̂i
k jµ∧dxk +

1

2
R̂i

jkldxk ∧dxl. (5.36)

No torsion is available for the relativistic Levi–Civita connection at hand. 6

We can obtain the Cotton Carrollian relatives by following the above pattern. The

reduction of Cµν is straightforward: Carrollian scalars and vectors emerge from C0̂0̂ and C0̂i,

while Ci j − C0̂0̂

2
ai j leads to symmetric and traceless Carrollian tensors. Their decomposition

6The torsion two-form is defined as T µ = dθµ +ω
µ

ν ∧θν = 1
2
T µ

νρθ
ν ∧θρ
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in powers of k is

1

k
C0̂0̂ = k2c(−1)+ c(0)+

c(1)
k2

+
c(2)
k4

, (5.37)

C0̂i = k2ψ i +χ i +
zi

k2
, (5.38)

C0̂0̂ai j

2k
− Ci j

k
= Ψi j +

X i j

k2
+

Zi j

k4
. (5.39)

With this, any Carrollian structure supplied with the connection at hand, is naturally endowed

with ten Weyl-covariant Carrollian Cotton descendants which are defined in App. D.

As for the conservation equation (5.27), we can obtain its Carrollian decompositions as

(see App. D)

∇ρCρ

0̂
= k2DCot +ECot +

FCot

k2
+

WCot

k4
= 0, (5.40)

and
1

k
∇ρCρi = k2I i

Cot +G i
Cot +

H i
Cot

k2
+

X i
Cot

k4
= 0. (5.41)

All these identities are Weyl-covariant with

DCot = − 1

Ω
D̂tc(−1)− D̂iψ

i, (5.42)

ECot = − 1

Ω
D̂tc(0)− D̂iχ

i +Ψi jξ
i j, (5.43)

FCot = − 1

Ω
D̂tc(1)− D̂iz

i +Xi jξ
i j, (5.44)

WCot = − 1

Ω
D̂tc(2)+Zi jξ

i j, (5.45)

and

I i
Cot =

1

2
D̂ ic(−1)+2∗ϖ ∗ψ i, (5.46)

G i
Cot =

1

2
D̂ ic(0)− D̂ jΨ

i j +2∗ϖ ∗χ i +
1

Ω
D̂tψ

i +ψ jξ
i j, (5.47)

H i
Cot =

1

2
D̂ ic(1)− D̂ jX

i j +2∗ϖ ∗zi +
1

Ω
D̂t χ

i +χ jξ
i j, (5.48)

X i
Cot =

1

2
D̂ ic(2)− D̂ jZ

i j +
1

Ω
D̂tz

i + z jξ
i j. (5.49)

Interpreting the Cotton Carrollian descendants is possible along the same lines as for the

ordinary Riemannian Cotton tensor. The main differences are that a Carrollian geometry has

a fibre-bundle structure and a wider freedom for its affine connection. This blurs to some
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extent the concept of conformal flatness, which is the feature emerging when the Cotton

vanishes in three-dimensional Riemannian manifolds, and more options emerge.

Vanishing geometric shear When ξi j = 0 the time dependence in the metric ai j is factorized

as ai j(t,x) = e2σ(t,x)āi j(x). Moreover, in two dimensions āi j(x) is necessarily propor-

tional to δi j, hence choosing complex coordinates, the metric on the two-dimensional

surface S is recast as

dℓ2 =
2

P2
dζ dζ̄ (5.50)

with P = P(t,ζ , ζ̄ ) a real function. Consequently, a subset of the Carroll–Cotton

tensors vanish, as it is inferred from Eqs. (D.17), (D.18), (D.21) and (D.24) , namely

c(1), c(2), zi and Zi j.

Vanishing Carrollian vorticity From ∗ϖ = 0 we find

dµ=φ∧µ. (5.51)

Using Fröbenius criterion we are instructed that µ is proportional to an exact form.

We can choose appropriately the time coordinate so that the Ehresmann connection b

vanishes, leading to

µ=−Ω(t,x)dt. (5.52)

The vanishing Carrollian Cotton tensors are now c(−1), c(0), ψi and Ψi j.

Vanishing Carrollian shear and vorticity This merges the two previous situations and the

Carrollian structure is of the form

dℓ2 =
2

P(t,ζ , ζ̄ )2
dζ dζ̄ , µ=−Ω(t,ζ , ζ̄ )dt. (5.53)

Despite the factorization of the metric and of the clock form, not all Carroll–Cotton

tensors are zero. We find indeed from (C.8), (C.5),

R̂ζ =
1

Ω
∂t∂ζ ln(ΩP), ˆA = 0, ˆK = 2P2∂ζ ∂ζ̄ ln(ΩP) (5.54)

(Rζ̄ is the complex conjugate of Rζ ), and using (D.20), (D.23) we obtain for the

Carroll–Cotton







χζ = i
2
D̂ζ

ˆK = i
Ω2 ∂ζ

(

(ΩP)2∂ζ ∂ζ̄ ln(ΩP)
)

Xζ ζ = iD̂ζ R̂ζ = i
Ω

1
(ΩP)2 ∂ζ

(

(ΩP)2∂t∂ζ ln(ΩP)
)

, Xζ ζ̄ = 0
(5.55)
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with χζ̄ = χ̄ζ and Xζ̄ ζ̄ = X̄ζ ζ . The tensors in (5.55) vanish if ΩP is constant. This

result could have been anticipated by noticing that the Papapetrou–Randers (see Eq.

(2.99)) pseudo-Riemannian ascendant of (5.53) is conformally flat provided ΩP be

constant.

So in short, in Carrollian geometry, “conformal flatness” concerns separately the base

and the fibre of the bundle M = R×S with distinct vanishing Carroll–Cotton tensors.

Now, expanding the Chern–Simons action (5.29) in powers of k in the Papapetrou–

Randers background (2.99) equipped with Levi–Civita connection (5.30) and (5.31), delivers

four distinct Carrollian avatars of the Chern–Simons dynamics,

SCS = k3Spm
CCS + kSm

CCS +
1

k
Se

CCS +
1

k3
Spe

CCS, (5.56)

possessing four sets of Weyl-covariant Carrollian momenta, obeying four sets of conformal

Carrollian conservation equations (4.111), (4.112). As for the relativistic gravitational Chern–

Simons action, these Carroll–Chern–Simons descendants are in general anomalous under

Carrollian diffeomorphisms and Weyl transformations with topological anomalies. The

completed analysis of this feature is given in detail in [1], which is appended to this thesis.

The Carrollian momenta and Carrollian conservation equations are precisely those recovered

in Sec. 5.2.1 when decomposing the Riemannian Cotton tensor and its divergence. This is

summarized as follows.

Paramagnetic Carroll–Chern–Simons This comes from the k3-order term in the Chern–

Simons action and it reads

Spm
CCS = 4

∫

M
dt d2x

√
aΩ∗ϖ3. (5.57)

The associated momenta are Π = 2c(−1), Πi = 2ψ i, ϒi j = 0 7 and Eqs. (4.136), (4.138)

are now

DCot = 0, I i
Cot = 0, (5.58)

see (5.42) and (5.46). From these equations we infer that the momentum Pi vanishes.

Magnetic Carroll–Chern–Simons The next order provides

Sm
CCS =

1

2

∫

M
µ∧
(

ω̂i
j ∧dxkD̂k ∗ϖ +∗ϖdω̂i

j

)

η
j
i+
∫

M
dt d2x

√
aΩ

[

∗ϖ∇̂iϕ
i −ϕ iD̂i ∗ϖ

]

.

(5.59)

7Here ϒi j corresponds to the traceless part of Πi j.
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Now Π = 2c(0), Πi = 2χ i, ϒi j =−2Ψi j and Eqs. (4.111), (4.112) are

ECot = 0, G i
Cot = 0, (5.60)

see (D.27) and (D.31), from which Pi = 2ψ i.

Electric Carroll–Chern–Simons The order 1/k goes as

Se
CCS =

1

2

∫

M
Tr

(

ω̂∧dω̂+
2

3
ω̂∧ ω̂∧ ω̂

)

+
∫

M
dt d2x

√
aΩ

[

ϕ iηkl∇̂kγ̂li (5.61)

+∗ϖηklη i jγ̂kiγ̂l j −∗ϖ

(

1

Ω
D̂t γ̂

i
i +2γ̂i jγ̂

i j
)

+ γ̂ i
kηkl

(

∇̂(lϕi)+ϕlϕi

)

]

with Π = 2c(1), Πi = 2zi, ϒi j =−2X i j and Eqs. (4.111), (4.112) are now

FCot = 0, H i
Cot = 0, (5.62)

see (5.44) and (D.33). The momentum is Pi = 2χ i.

Paraelectric Carroll–Chern–Simons Finally, the lowest power in k gives

Spe
CCS =−

∫

M
dt d2x

√
aηkl γ̂ i

kD̂t γ̂il =−
∫

M
dt d2x

√
a∗ξ i jD̂tξi j (5.63)

leading to Π = 2c(2), Πi = 0 and ϒi j =−2Zi j. Equations (4.111) and (4.112) reduce

to

WCot = 0, X i
Cot = 0, (5.64)

see (5.45) and (5.49), which exhibit Pi = 2zi.

The names given to the four Carroll–Chern–Simons actions follow the pattern already

used e.g. for the scalar field in [4, 124, 87].



Chapter 6

Carrollian perspective of Einstein

dynamics

In chapter 4 we derived the most general hydrodynamic equations of Carrollian fluids defined

on an arbitrary Carrollian background. It has been argued that these exotic dynamics emerges

when null hypersurfaces are under consideration, see for instance [20]. Then, it is natural

to expect that physical systems that are constrained to live on null hypersurfaces will be

of Carrollian nature. Two examples of the latter have been known in gravity: black hole

horizon dynamics [48, 50, 51] and flat holography [35, 37, 42]. In this chapter we will focus

in the emergence of Carrollian physics in the context of Ricci-flat/Carrollian fluid duality,

which maps Einstein dynamics to Carrollian fluid dynamics defined at the null boundary of

Ricci-flat spacetimes.

6.1 Bulk reconstruction of Ricci-flat spacetimes

6.1.1 Covariant Newman-Unti gauge

In general, four dimensional Ricci-flat spacetimes are expressed as an infinite series expansion

in powers of the radial coordinate. The latter is performed in a designated gauge which is

usually chosen to be Bondi or Newmann-Unti gauge. After the partial resolution of Einstein

equations and assuming the appropriate fall-off conditions for the metric components, one

is able to expressed the solution space in terms of an infinite set of functions that depend

on time and the angles and satisfy a set of evolution (or constraint) equations1. These set

of equations capture the evolution of the Bondi mass and the angular momentum aspect,

sourced by the news tensor encoding gravitational radiation [126]. Although powerful, Bondi

1A nice review of the later is given in [125].
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and Newmann-Unti gauges lack of a three dimensional boundary interpretation, which is

necessary four our purpose here. In this direction one could wonder if it is possible to

construct a gauge for the spacetime such that it is manifestly covariant with respect to the

three dimensional boundary.

The latter is known to be possible for Einstein spacetimes with negative cosmological

constant in the constext of the AdS/CFT correspondence. Asymptotically AdS spacetimes

can be expressed in the Fefferman-Graham gauge2 [128, 129]. Here, the timelike confor-

mal boundary is a three dimensional pseudo-Rimannian spacetime and the bulk solution is

expressed as an expansion in the radial coordinate, parameterized order by order in terms

of boundary tensors, covariant with respect to the boundary geometry. All these tensorial

objects are expressed in terms of two independent boundary tensors: the boundary metric

and the boundary energy-momentum tensor, which is covariantly conserved with respect to

the boundary Levi-Civita connection. Its covariance with respect to the conformal bound-

ary makes this choice of gauge suitable for holographic applications in the framework of

AdS/CFT correspondence.

In the Ricci-flat spacetimes the geometry of the boundary is completely different from

the asymptotically AdS case. The conformal boundary is null and therefore, it is endowed

with a Carrollian geometry whose structure is given by (4.1) and (4.2), with a coordinate

system adapted to the space/time splitting and respected by Carrollian diffeomorphisms

t ′ = t ′(t,x) and x′ = x′(x) . (6.1)

The Fefferman-Graham gauge is only valid for asymptotically AdS spacetimes and there

is no extension for Ricci-flat spacetimes (no smooth vanishing Λ limit). Of course one can

consider the Bondi or Newmann-Unti gauges to study asymptotically flat3 spacetimes, but one

disadvantage of this is the fact that they fail in being covariant with respect to the boundary

geometry since in those instances the geometry is locked4. An alternative is to consider

a generalization of the latter (gauge relaxation) that belongs to the Eddington-Finkelstein

type, namely possessing a light-like radial direction. The latter was first introduced in the

particular context of fluid/gravity correspondence [38–41, 130–133] relating asymptotically

AdS spacetimes with the dynamics of a relativistic conformal fluid in one dimension less.

So this gauge applies to both, asymptotically AdS and Ricci-flat spacetimes, and it is not

restricted to be used in the context of fluid/gravity duality. In this section we are not going to

2A construction of a Weyl covariant extension of the latter can be found in [127].
3Bondi and Newman-Unti gauges are also valid for asymptotically (A)dS spacetimes, see [126]
4Usually on those gauges the boundary the boundary geometry consists on base space restricted to be the

round sphere and with no Ehresmann connection.
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derive in full detail this alternative boundary covariant gauge but rather we will study on the

key ideas behind this bulk reconstruction and its properties. A fully detailed derivation of the

latter is given in [2]. 5

In this gauge the asymptotically AdS bulk spacetime is reconstructed in terms of the

boundary data given by: the boundary geometry with metric gµν , a boundary congruence

(or velocity field) uµ , and the energy-momentum tensor splitted in the energy density ε

as well, heat current qµ , and the viscous stress tensor τµν . Notice that for the boundary

data we are using hydrodynamic nomenclature. The holographic fluid interpretation is only

valid when constitutive relations exist for the out of equilibrium quantities such as the heat

current and the viscous stress tensor 6. Regardless of the latter, we consider here the heat

current and stress tensor as independent and arbitrary variables that may or may not give

rise to hydrodynamic modes, and consider these as the data of an "abstract fluid". Then the

reconstruction of the spacetime goes as follows: the above data enter in the bulk geometry

in an expansion of inverse powers of the radial coordinate. This is guided by the gauge

conditions

grr = 0 and grµdxµ =
u

k2
, (6.2)

and Weyl covariance implemented by the inclusion of the Weyl connection Aµ as defined

in (2.40). Here k2 = 1/ℓ2, being ℓ2 the AdS radius. The allowed boundary terms that enters

in the line element are selected by the resolution of Einstein’s equations. We find that the

reconstruction of the spacetime is of the form

ds2
bulk = 2

u

k2
(dr+ rA)+ r2ds2 + rCµνdxµdxν +

1

k4
Sµνdxµdxν

+
∞

∑
s=1

1

rs

(

f(s)
u2

k4
+2

u

k2
f(s)µdxµ + f(s)µνdxµdxν

)

, (6.3)

where S = Sµνdxµdxν is defined in (2.51). The tensor Cµν is the shear of the affine null

geodesic congruence tangent to ∂r. We will refer to the latter as "Bondi shear". The Bondi

shear is not free but, thanks to Einstein’s equations, it is set to be related to the shear of the

boundary congruence u by

k2Cµν =−2σµν , (6.4)

5In [2] we worked in the orthonormal frame rather than the natural frame used in this Chapter.
6As a starting point on this framework, the authors in [39] consider a boosted planar AdSd+2 black hole,

parameterized with the black hole temperature T and the velocity uµ of the black, which is mapped to a perfect

conformal fluid living on R
d,1.
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So it is transverse and traceless with respect to gµν and uµ . As we can see here, the Bondi

shear in the situation at hand (asymptotically AdS spacetime) is not dynamical, which

reflects the absence of gravitational radiation. We will see soon that, when reaching the

asymptotically flat instance through the vanishing k limit, Cµν will become a dynamical

and free piece of data that encodes part of the information about gravitational radiation.

Anticipating the latter, we can construct a boundary covariant, symmetric and traceless

news-like tensor as

Nµν = uλ Dλ Cµν . (6.5)

In (6.3), the functions f(s) are boundary scalars, f(s)µ are boundary transverse vectors,

and f(s)µν are boundary symmetric and transverse tensors. The conformal weights of these

objects are s+2, s+1 and s respectively. Again, Einstein’s equations dictate the form of

these objects. In particular, for s = 1 we find

f(1)
u2

k4
+2

u

k2
f(1)µdxµ + f(1)µνdxµdxν =

8πG

k4

(

εu2 +
4

3
u∆q+

2k2

3
∆τ

)

(6.6)

with ∆q = ∆qµdxµ and ∆τ= ∆τµνdxµdxν defined as

∆qµ = qµ − 1

8πG
∗cµ , ∆τµν = τµν +

1

8πGk2
∗cµν , (6.7)

where qµ is the boundary heat current, τµν the boundary viscous stress tensor 7, and cν

and cµν are the vector and traceless-symmetric tensor parts of the Cotton tensor (see the

Appendix D for decomposition of the Cotton tensor in three dimensions).

For the s = 2 order we find

f(2) =
8πG

3k2

(

σαβ ∆ταβ +Dα∆qα
)

+ cq, (6.8)

f(2)µ = −8πG

3k4
σµα∆qα +

4πG

k2

(

hµαDβ ∆ταβ +
8

3
q∗∆qµ

)

, (6.9)

f(2)µν = −4πG

k4

(

4

3
uαDα∆τµν +

2

3
hµαhνγD

(α∆qγ)− 1

3
hµνhαγDα∆qγ +2σ α

(µ ∆τν)α

)

− 1

2k4

(

8πGεσµν − c∗σµν

)

+
32πG

3k2
q∗∆τµν . (6.10)

7Here we keep the hear current and the viscous stress tensor arbitrary. When dealing with genuine boundary

fluids, these are also expressed in a derivative expansion of temperature and fluid velocity, together with the

corresponding transport coefficients.
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With the above, a subset of Einstein’s equations are solved up to relevant order as8

Err = O

(

1

r7

)

, Er0 = O

(

1

r5

)

, Eri = O

(

1

r5

)

, Ei j = O

(

1

r3

)

. (6.11)

The remaining equations give

1

8πG
Ett =

1

r2
∇µT µ

t +O

(

1

r3

)

,
1

8πG
Eti =

1

r2
∇µT µ

i +O

(

1

r3

)

. (6.12)

The latter implies that, for a conserved boundary energy-momentum tensor, equations in

(6.12) are solved up to 1/r3 order.

This gauge for the spacetime has the advantage of being valid also for asymptotically

flat spacetime. The latter can be reached by taking the k → 0 limit of (6.3). This vanishing

cosmological constant limit acts in the conformal boundary fluid as a Carrollian limit (seen

in the previous chapter) and was first discussed in [42] for the reconstruction of algebraically

special Ricci-flat spacetimes. So, this has two effects in the three dimensional boundary: (i)

in the k → 0 limit the timelike conformal boundary turns to a null conformal boundary; (ii)

in this limiting procedure the boundary energy momentum tensor is expanded in powers of

k, where at each power of k different Carrollian data appear that obey different evolution

equations. We take the expansion as

ε = ∑
n≥0

ε(n)k
2n, (6.13)

qi =
ζ i

k2
+Qi + k2π i + ∑

n≥2

k2nπ i
(n), (6.14)

τ i j = −ζ i j

k4
− Σi j

k2
−Ξi j − k2E i j − ∑

n≥2

k2nE i j
(n). (6.15)

Notice that we have terms with inverse powers of k. These terms might induced some

combinations of Carrollian tensors that are multiplied by factors like 1/kn, which diverge

when taking the vanishing-k limit. Therefore, extra conditions have to be imposed in order to

avoid these blow ups. Some of these conditions are

ζ i =
∗zi

8πG
, Qi =

∗χ i

8πG
, ζ i j =

∗Zi j

8πG
, Σi j =

∗X i j

8πG
, Ξi j =

∗Ψi j

8πG
. (6.16)

The above enforces five pieces of the energy momentum tensor to be completely determined

by the Carrollian geometry through the Cotton descendants (see App. D). Additionally, other

8Here EAB = RAB − 1
2
RgAB −3k2gAB
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conditions will imply to satisfy some flux balance equations of some Carrollian dynamical

fields, as we will see soon.

Now we have all the ingredients to expressed any Ricci-flat spacetime in what we call

covariant Newmann-Unti gauge. The latter is reached here as a vanishing cosmological

constant limit of an asymptotically AdS spacetime with line element (6.3). We find, up to

O(1/r2) order,

ds2
Ricci-flat = µ

[

2dr+
(

2rϕi −2∗D̂i ∗ϖ − D̂ jC
j
i

)

dxi −
(

rθ + ˆK
)

µ
]

+

(

r2 +∗ϖ2 +
CklC

kl

8

)

dℓ2 +
(

rCi j +∗ϖ ∗Ci j
)

dxidx j

+
1

r

(

8πGε(0)µ
2 − 4

3
µNidxi − 16πG

3
Ei jdxidx j

)

+
1

r2

(

2∗ϖν − D̂iN
i
)

µ2 − 1

r2
µ

(

1

3
N jC ji +

8

3
∗ϖ ∗Ni +8πGD̂ jE

j
i

)

dxi

+
1

r2

(

16πG

3
Fi j −4πGC k

(i E j)k

)

dxidx j +O

(

1

r3

)

. (6.17)

where the star designates a d = 2 Carrollian Hodge duality as defined in Appendix D, and

the tensor Fi j is defined as 9

Fi j =
1

Ω
D̂tE(2)i j −

1

2
D̂⟨iπ(2) j⟩+

3

8
ε(1)Ci j −

3

8πG
∗ϖ3 ∗Ci j. (6.18)

The gauge conditions for this line element are

grr = 0 and grµdxµ = µ , (6.19)

with µ = −Ωdt + bidxi the clock form of the boundary Carrollian geometry. As one can

see from the gauge conditions (6.19), the latter does not correspond neither to Bondi (since

there is no determinant condition) nor Newman-Unti10 (grt =−1 and gri = 0). Here the time

coordinate t corresponds to a retarded time and coincides at the boundary with the Carrollian

time used in (4.1) and (4.2).

All the tensors entering expression (6.17) are defined on the null conformal boundary,

which is Carrollian, and can be sorted as follows.

9We define the symmetric and traceless part of a Carrollian two-tensor sab as s⟨ab⟩ = s(ab)− 1
d s c

c δab (here

d = 2).
10In our modified Newman-Unti gauge, the affinely parameterized null geodesic congruence tangent to ∂r

has in general expansion and twist due to Ω and bi, making it non-hypersurface orthogonal as opposed to what

happen in the usual Newman-Unti gauge.
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Carrollian geometry The geometry of the null boundary is part of the bulk solution space,

parameterized by ai j, bi and Ω. The latter provides different Carrollian quantities

and attributes such as Carrollian connections, Carrollian curvature tensors, Carrollian

Cotton descendants (D.12), (D.13), (D.14), among others. ai j, bi and Ω are free data

whose only restriction is the vanishing of the Carrollian shear ξi j = 0 which arises as a

consequence of Einstein’s equations.

Bulk shear Additionally we have the symmetric and traceless boundary dynamic shear

Ci j(t,x) that we call Bondi shear. As we mentioned previously, in the flat limit, the

Bondi shear decouples and becomes a completely free function and sources the evolu-

tion equation of other tensorial data (as we will see for the Einstein’s/Carrollian fluid

equations). The dynamic shear carries part of the information of the bulk gravitational

radiation through the symmetric and traceless Bondi-like news tensor11

ˆNi j =
1

Ω
D̂tCi j. (6.20)

The latter makes the shear and news tensor be defined as truly boundary conformal

Carroll-covariant tensors of weights −1 and 0 respectively.

Carrollian fluid The boundary Carrollian fluid of asymptotically flat spacetimes corre-

sponds to the descendant of a relativistic conformal fluid dual to asymptotically AdS

spacetimes with conserved energy momentum tensor T µν . As mentioned previously,

our Carrollian fluid is reached at the vanishing velocity light limit of the relativistic

hydrodynamic equation ∇µT µν = 0, which corresponds to a vanishing cosmological

constant limit in the bulk. This Carrollian fluid is described in terms of the energy

density ε(0), two heat currents Qi and π i, and two the symmetric and traceless stress

tensors Σi j and Ξi j.12 These fluid data enter in the Carrollian momenta of the fluid

dynamics defined in the previous chapter as

Π = ε(0), Πi = Qi, Pi = π i, Π̃i j =−Σi j, Πi j =
ε(0)

2
ai j −Ξi j. (6.21)

The boundary Carrollian fluid is not free, as opposed to its relativistic ascendant, but

it is sourced by the shear, news and the Cotton descendants. These Carrollian fluid

11These definitions do not exactly coincide with the original shear and news defined in BMS gauge. They

vanish in Robinson–Trautmann spacetimes expressed in the gauge at hand, which is their defining gauge, and

correspond to a radiating solution.
12The other two pieces ζ i and ζ i j are set to zero thanks to the condition ξi j = 0.
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equations comes from the Einstein’s equations Rtt = 0 and Rti = 0. They read

1

Ω
D̂tΠ+ D̂iΠ

i =
1

16πG

[

D̂iD̂ j ˆN i j +C i jD̂iR̂ j +
1

2
Ci j

1

Ω
D̂t ˆN i j

]

,(6.22)

D̂ jΠ
i j +

1

Ω
D̂tP

i +2∗ϖ ∗Πi =
1

16πG

[

C i jD̂ j ˆK +∗C i jD̂ j ˆA −4∗ϖ ∗C i jR̂ j

− 1

2
D̂ j
(

D̂ jD̂kC
ik − D̂ iD̂kC jk

)

+C i jD̂k ˆN jk

+
1

2
D̂ j
(

C ik ˆN jk

)

− 1

4
D̂ i
(

C jk ˆN jk

)

]

(6.23)

with Π, Πi, Πi j, Π̃i j Pi as in Eqs. (6.21). The above Carrollian equations are often

referred to as flux-balance equations [35, 37] and describe the evolution of the inde-

pendent momenta Π = ε(0) and Pi = π i. These two independent data are related to the

Bondi mass and angular momentum aspects, M(t,x) and Ni(t,x) as

8πGε(0) = 2M+
1

4
C jk ˆN jk, (6.24)

8πGπ i = ∗ψ i −Ni (6.25)

with ψ i defined in (D.20). The other two fluid equations for the fluid configuration

at hand are the ones defined in (4.137) and (4.139) with vanishing Π̃ and Π̃i, and are

satisfied due to geometric identities of the Cotton descendants at zero ξi j (see App. D).

We can notice that in this fluid configuration Πi = Qi ̸= 0. The presence of a non

vanishing energy flux breaks local Carroll boost invariance on the boundary Carrollian

fluid associated to Ricci-flat spacetimes. This breaking give also account to grav-

itational radiation, which in the boundary-covariant gauge designed in (6.17) it is

not only encoded in the news tensor (6.20) but also in the Carrollian energy flux

Πi = Qi = 1
8πG ∗χ i and the Carrollian stress Π̃i j =−Σi j =− 1

8πG ∗X i j. As an example

we can consider Robinson-Trautman spacetimes, where the gravitational radiation is

exclusively captured in χ i and X i j.

All the above fluid related tensors appear at every order in the 1/r expansion of the

bulk spacetime, in the same spirit as in the case of bulk asymptotically AdS spacetimes

(in the Fefferman-Graham or in the modified Newman-Unti gauge).

Magnetic mass aspect Here we define a magnetic mass aspect which is denoted by ν

and appeas in the bulk line element (6.17) at order 1/r2. Its definition relies on the

vanishing k limit of the relativistic Cotton density c associated to the timelike conformal
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boundary. The latter read

ν =
1

2
lim
k→0

c =
1

2
c(0)−

1

4
D̂iD̂ j ∗C i j − 1

8
Ci j ∗ ˆN i j . (6.26)

We can subtract the radiative contribution of (6.26) to define the nut aspect

N = ν +
1

8
Ci j ∗ ˆN i j =

1

2
c(0)−

1

4
D̂iD̂ j ∗C i j (6.27)

that satisfies the following evolution equation:

1

Ω
D̂tN =−1

2
D̂iχ

i − 1

4

(

D̂iD̂ j ∗ ˆN i j −∗C i jD̂iR̂ j

)

. (6.28)

The above equation is derived by inserting (6.27) into the Bianchi identity (D.27), and

therefore is purely geometrical.

Further non-fluid degrees of freedom While asymptotically AdS spacetimes are recon-

structed in terms of a finite set of boundary data (boundary metric and energy-

momentum tensor), Ricci-flat spacetimes contain an infinite set of arbitrary degrees

of freedom besides the geometric and fluid data. These correspond to an infinite

number of Carrollian tensors that appear at all orders in the radial expansion, and

obey Carrollian evolution (or flux balance) equations. These are dubbed "Chthonian"

degrees of freedom. Part of this infinite set of Chthonian degrees of freedom that we

find up to order 1/r3 are the dynamic shear Ci j that appear at O(0), the symmetric

and traceless tensors Ei j and E(2)i j, and the transverse vector π(2)i. As we mentioned

before, some of the conditions necessary to avoid divergences in the line element due

to the k → 0 limit correspond to flux-balance equations. The flux-balance equation for

Ei j appears in this way and we find

1

Ω
D̂tEi j =

3

16πG

(

−1

3
D̂⟨iN j⟩−2πGε(0)Ci j +

ν

2
∗Ci j

)

. (6.29)

The flux-balance equations for E(2)i j and π(2)i are expected to appear at 1/r3 in the

same way.

All the above make (6.17) fully covariant with respect to the Carrollian boundary. The

latter can also be supplemented with the boundary-fluid hydrodynamic frame invariance by

relaxing even more the gauge. This has been done in three dimensional bulk in [76, 77, 134,

75].
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6.1.2 Resumming the series expansion

There are some cases where we can resumme the series expansion given in (6.17). Resumma-

tion occurs when additional conditions on the boundary data are imposed, enforcing specific

features for the bulk Weyl tensor. These conditions are the following:

1. the vanishing of the dynamic shear Ci j(t,x), implying the relation M = 4πGε(0);

2. all other non-Carrollian-fluid related degrees of freedom are discarded, as e.g. Ei j,

E(2)i j and π(2)i;

3. Ni in (6.25) is set to zero. This fixes the Carrollian momentum Pi with the Carrollian

Cotton descendant ψi as

π i =
1

8πG
∗ψ i. (6.30)

With the above conditions, the degrees of freedom necessary to reconstruct the bulk

spacetime are reduced to the ones describing the boundary Carrollian geometry (metric, field

of observers and Erhesmann connection), and the Carrollian fluid energy density (Bondi

mass). Then, the line element (6.17) is now resummed into an exact Ricci-flat spacetime of

algebraically special type13 whose expression is

ds2
res. = µ

[

2dr+2
(

rϕ j −∗D̂ j ∗ϖ
)

dx j −
(

rθ + ˆK
)

µ
]

+ρ2dℓ2

+
µ2

ρ2

[

8πGε(0)r+∗ϖc(0)
]

(6.31)

with

ρ2 = r2 +∗ϖ2. (6.32)

Here, Ricci-flatness is guaranteed by the Carrollian fluid equations (4.111) and (4.112)

which, due to the vanishing of Ci j, are genuine Carrollian conservation equations for the

momenta, without forcing terms in the right hand side. The set of momenta are now given by

Π = ε(0), Πi =
1

8πG
∗χ i, Pi =

1

8πG
∗ψ i, Π̃i j =− 1

8πG
∗X i j,

Πi j =
ε(0)

2
ai j − 1

8πG
∗Ψi j. (6.33)

The Carrollian Cotton tensors defined in App. D obey identical set of equations and the

geometric shear remains vanishing. The latter makes possible to further simplify equations

13See details and examples in [42].
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(4.111) and (4.112) into

1

Ω
D̂tε(0)+

1

8πG
D̂i ∗χ i = 0, (6.34)

D̂ jε(0)−
1

8πG
∗D̂ jc(0) = 0, (6.35)

where c(0) and χ i are given in geometric terms in (D.15) and (D.20), and ε(0) given by the

Bondi mass, as stressed in item 1.

One can anticipate, by looking at (6.34) and (6.35) as well as (D.27), that the energy

density ε(0) and the Carrollian Cotton scalar density c(0) play dual roles. We will formulate

this concretely in the coming sections when discussing the boundary action of the Ehlers

group. Still, by anticipating this observation, we can introduce the following Carrollian

complex scalar τ̂(t,x) and vector χ̂ j(t,x):

τ̂ = −c(0)+8πiGε(0), (6.36)

χ̂ j = χ j − i∗χ j. (6.37)

The above allows to recast the aforementioned equations as14

1
Ω

D̂t τ̂ = D̂ j χ̂
j, D̂ jτ̂D̂ jτ̂ = 0,

D̂ jτ̂D̂ j ˆ̄τ = 8
(

2∗ϖ ∗χi +
1
Ω

D̂tψi − D̂ jΨ ji

)(

2∗ϖ ∗χ i + 1
Ω

D̂tψ
i − D̂kΨki

)

.
(6.38)

We can also act with a second spatial derivative on (6.35) and use (C.1) to obtain

D̂ jD̂ jτ̂ = 2i

(

1

Ω
D̂t ∗ϖτ̂ − ˆA τ̂

)

. (6.39)

It is worth mentioning that the fluid equations (6.34) and (6.34) coincide with equations

(29.15) and (29.16) of [137]15. Indeed, complicated Einstein’s equations as the latter can be

easily tamed into simple fluid equations supplemented by a sort of "self duality requirements"

(relationship between Cotton and fluid data), by using the null boundary analysis studied in

this section, plus Carrollian geometric tools. The latter suggests that Carrollian covariance is

definitely the natural language for studying on properties of asymptotically flat spacetimes.

14The first equation in (6.38) is a flux-balance equation, driven exclusively by the Cotton vector χ̂ j displayed

in (6.37). The loss phenomenon concerns both the mass aspect ε(0) and the “magnetic-mass aspect” ν , as

captured in Eqs. (76) and (80) of [135] – see also App. D of [136].
15For that purpose, the following identifications are necessary: bζ =−L, ∗ϖ =−Σ, τ̂ = 2(M+ im), Ω = 1,

t = u, whereas their radial coordinate is r̃ = r− r0 with r0(t,ζ , ζ̄ ) the origin in the affine parameter of the

geodesic congruence tangent to ∂r.
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The solution space of the resummed Ricci-flat spacetime given by (6.31) is restricted to

be of algebraically special Petrov type. This is guaranteed thanks to the Goldberg-Sachs

theorem of the null, geodesic congruence tangent to ∂r, which in the resummed case, it is

shear-free. The latter is part of the canonical null tetrad introduced in [42] and [137], which is

parallelly transported along the null direction ∂r (thanks to the affine nature of r). In complex

coordinates ζ and ζ̄ , as given in Appendix D, the null tetrad is expressed in a Carrollian

fashion as


















k = ∂r

l = 1
2

(

8πGε(0)r+∗ϖc(0)
ρ2 − rθ − ˆK

)

∂r +υ

m = P
r−i∗ϖ

(

∂̂ζ̄ +
(

∗D̂ζ̄ ∗ϖ − rϕζ̄

)

∂r

)

(6.40)

with the usual relations k · l = −1, m · m̄ = 1 and ds2
res. = −2kl+2mm̄. In general, k is a

multiplicity-two principal null direction of the Weyl tensor, and by using the tetrad (6.40) we

find the following Weyl complex scalars:16































Ψ0 = Ψ1 = 0

Ψ2 =
iτ̂

2(r−i∗ϖ)3

Ψ3 =
iPχζ

(r−i∗ϖ)2 +O
(

1/(r− i∗ϖ)3
)

Ψ4 =
iX ζ̄

ζ

r−i∗ϖ +O
(

1/(r− i∗ϖ)2
)

.

(6.41)

All Ψs are spelled using the Carrollian descendants of the boundary Cotton tensor – as well

as their derivatives in the higher-order terms.

6.2 Bulk versus boundary isometries

In this chapter, the spacetimes that we are going to consider have at least one Killing vector

field. Along the lines of a three dimensional boundary interpretation of Ricci-flat spacetimes,

it is natural to wonder how bulk isometries are manifested on the boundary geometry, and

vice versa, how one could design bulk isometries from purely boundary considerations.

For the sake of clarity of the present analysis, we consider vector fields that do not have

components in ∂r, and whose other components depend only on the boundary coordinates

t and x. We could be more general and consider radial dependence by assuming a series

expansion in powers of r in every component, but this would make the calculations more

16In the instance of Petrov type D solutions, neither Ψ3 nor Ψ4 are necessarily zero, because l is not always a

principal null direction. One can reach another null tetrad through a Lorentz transformation such that l′ be a

principal direction of multiplicity two whereas k′ ∝ k, and hence Ψ′
3 = Ψ′

4 = 0.
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complicated without adding more value to our simple but concrete conclusion: bulk isometries

are mapped onto boundary Carrollian isometries generated by strong Killing vectors that

satisfy (4.56). For the same reason, from now on, we will work with algebraically special

Ricci-flat solutions which are given by the line element (6.31).

In order to reach the aforementioned conclusion in a simple way, we can adopt bulk

Cartan frame and co-frame aligned with the fiber (4.2) and the clock form (4.3) of the

boundary Carrollian structure. In this formalism we have

et̂ ≡ υ= 1
Ω

∂t , eı̂ ≡ ∂̂i = ∂i +
bi
Ω

∂t , er̂ ≡ ∂r,

θt̂ ≡−µ= Ωdt −bidxi, θı̂ ≡ dxi, θr̂ ≡ dr.
(6.42)

Then, the components for the resummed bulk metric (6.31) read

gt̂ t̂ =
1

ρ2 (8πGεr+∗ϖc)− rθ − ˆK , gt̂ i = ∗D̂i ∗ϖ − rϕi, gt̂r =−1,

gri = 0, grr = 0, gi j = ρ2ai j.
(6.43)

Assuming the bulk Killing vector of the form

ξ= ξ t(t,x)∂t +ξ k(t,x)∂k = ξ t̂(t,x)υ+ξ k(t,x)∂̂k, (6.44)

where ξ t̂ = Ωξ t − ξ kbk, we can determine the Lie derivative of the metric in terms of

boundary Carrollian objects as

Lξgrr = 0, Lξgrt̂ = µ, Lξgri = νi, (6.45)

Lξgi j = 2ρ2
(

∇̂(iξ
ka j)k +ξ t̂ γ̂i j

)

−2gt̂(iν j)+ai jξ
(

∗ϖ2
)

, (6.46)

Lξgt̂ i = −gt̂ iµ −gt̂ t̂νi − r
(

ξ(ϕi)+ϕ j∂̂iξ
j
)

+ξ
(

∗D̂i ∗ϖ
)

+
(

∗D̂ j ∗ϖ
)

∂̂iξ
j +ρ2ai j

1

Ω
∂tξ

j (6.47)

and

Lξgt̂ t̂ =−2gt̂ t̂ µ +2gt̂ i
1

Ω
∂tξ

i −ξ

(

1

ρ2
(8πGεr+∗ϖc)− rθ − ˆK

)

, (6.48)

with µ(t,x) given by (4.64) and

νi(t,x) =−
(

∂̂i −ϕi

)

ξ t̂ +2ξ jϖ ji . (6.49)
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Now, since we are considering Killing fields that are independent of the radial coordinate,

the Lie derivative of the metric must vanish at every order in the r expansion. This gives as a

result several conditions for the components of ξ. The first one is

∂tξ
i = 0 , (6.50)

which is expected for the generators of Carrollian diffeomorphisms. We also find, as a result

of the bulk Killing equations, the conditions

∇̂(iξ
ka j)k +ξ t̂ γ̂i j = 0, (6.51)

1

Ω
∂tξ

t̂ +ϕiξ
i = 0 , (6.52)

−
(

∂̂i −ϕi

)

ξ t̂ +2ξ jϖ ji = 0 , (6.53)

which corresponds to the Carrollian Killing equations plus the extra condition for strong

Carrollian Killing vectors. Thus, the bulk Killing field (6.44) is mapped onto a strong

Carrollian Killing vector. There are additional conditions that appear as the vanishing of the

Lie derivatives of other Carrollian tensors, but those conditions are guaranteed due to the

strong Killing requirements.

6.3 Tower of charges from the boundary perspective

The asymptotic symmetry group of Ricci-flat spacetimes (BMS4) allows to define an infinite

set of charges. A bulk construction of such leading and subleading gravitational charges has

been presented in [95, 94, 93, 97, 98] based on the asymptotic expansion of the Barnich-

Brandt charges [138]. These infinite set of charges (and dual charges) are not generally

conserved due to the presence of gravitational radiation.

The Carrollian approach for Ricci-flat spacetimes that was presented in the previous

sections allow us for an alternative construction of the gravitational charges and dual charges

from purely boundary considerations. That is, from the Carrollian dynamics emerging on

the boundary due to bulk Einstein’s equations, and the Carrollian conformal isometry group

(isomorphic to BMS4) available in the boundary theory. These charges are not conserved in

general due to gravitational radiation, which in this approach is encoded in the Carrollian

Cotton descendants (D.13), (D.14), and the Bondi shear Ci j.

Before presenting the Carrollian version of the bulk charges, two observations are worth

mentioning regarding Ricci-flat metric in either its general form (6.17) or its resummed

version (6.31). On the one hand, at every 1/r2s+1 order in the metric expansion, Einstein’s
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equations reveal Carrollian dynamics obeying (4.136), (4.137), (4.138) and (4.139) with

momenta Π(s), Πi
(s), Pi

(s), Π̃
i j
(s) and Π

i j
(s), and possibly a non-vanishing right hand side sourced

by the dynamic shear and news tensor. For every set of momenta, together with the Carrollian

conformal Killing vectors (D.34), we can construct a set of currents {κ(s),K
i
(s), κ̃(s), K̃

i
(s)}

following (4.142) and a set of charges {Q(s)T,Y , Q̃(s)T,Y} by using (4.57). The conservation

or non-conservation of these charges depend on K(s) and ˜K(s) (see (4.144)). For s = 0 (1/r

order), we obtain the set of Carrollian fluid momenta given in (6.21) and their corresponding

charges are leading. The s ≥ 1 set of momenta lead to subleading charges. These leading

and subleading charges are referred as electric charges since their conservation, if any, are

on-shell.

On the other hand, at every 1/r2s+2, the metric expansion reveals again Carrollian dynamics

but this time associated to the Cotton tensor descendants (see App. D for the expansion

of the Cotton pieces). That is, the set of equations (4.136), (4.137), (4.138) and (4.139)

with Cotton momenta ΠCot(s), Πi
Cot(s), Pi

Cot(s), Π
i j
Cot(s), Π̃

i j
Cot(s), which allows to construct the

set of currents {κCot(s),K
i
Cot(s), κ̃Cot(s), K̃

i
Cot(s)}, and charges {QCot(s)T,Y , Q̃Cot(s)T,Y} that we

labelled as magnetic since their conservation, if any, are realized off-shell.

Additionally, due to the relationship between the fluid and the Cotton data ((6.16) in the

general instance and (6.33) for the resummable instance), the two towers of charges Q̃(s)T,Y

and Q̃Cot(s)T,Y are equivalent to each other.

In this section we will restrict ourselves to the resummable case, namely the algebraically

special class of solutions, where the number of degrees of freedom that parameterize the

spacetime is finite and the construction of the subleading charges relies on the expansion of

1/ρ2. The latter brings two sets of charges.

6.3.1 Electric tower

The electric tower of charges are made out of s-th momenta Π(s), Πi
(s), Pi

(s), Π̃
i j
(s) and Π

i j
(s)

which, thanks to the 1/ρ2 expansion of the bulk metric, are nothing but equal to the set given

in (6.33) multiplied by a factor of ∗ϖ2s. They read

Π(s) = ∗ϖ2sε(0), Πi
(s) =

∗ϖ2s

8πG
∗χ i, Pi

(s) =
∗ϖ2s

8πG
∗ψ i, Π̃

i j
(s) =−∗ϖ2s

8πG
∗X i j,

Π
i j
(s) = ∗ϖ2s

(

ε(0)

2
ai j − 1

8πG
∗Ψi j

)

, (6.54)

where one can easily see that the s = 0 corresponds to the leading ones.

Therefore, the latter makes possible to define the set of s-th current pieces, κ(s), Ki
(s), κ̃(s)

and K̃i
(s) as the multiplcation of (4.142) with ∗ϖ2s.
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These set of Carrollian currents are not conserved in general and, using the Bianchi

identities given in (D.6), (D.7) and (D.8), we find the divergences (4.144), which contribute

the time evolution of the charges computed as in (4.57), and (4.58) as

˜K(s) = −s∗ϖ2s−2

(

∗ϖ ˆA κ̃ +
1

3
K̃i ∗ψi

)

, (6.55)

K(s) = −∗ϖ2s

8πG
∗χ i
(

D̂iξ
t̂ −2ξ jϖ ji

)

− s∗ϖ2s−2

(

∗ϖ ˆA κ +
1

3
Ki ∗ψi

)

(6.56)

with






























κ = 1
8πGξ i ∗ψi −ξ t̂ε(0)

κ̃ = 1
8πGξ i ∗χi

Ki =
ε(0)
2

ξ i − 1
8πG

(

ξ j ∗Ψi
j +ξ t̂ ∗χ i

)

K̃i =− 1
8πGξ j ∗X i

j,

(6.57)

and the Killing components ξ t̂ and ξ i defined as in (D.34) following (4.28).

From (6.55), we can easily see that the set {κ̃(0), K̃
i
(0)} give rise to a set of always

conserved charges Q̃(0),T,Y . These charges are given as the following surface integral over S

Q̃(0),T,Y =
∫

S
d2x

√
a
(

κ̃ +b jK̃
j)

= − 1

8πG

∫

S
d2x

√
a∗ξ i

(

χi −b jX
j
i

)

, (6.58)

and are purely geometrical since they only depend on the geometry of the null conformal

boundary (encoded in the Cotton pieces).

From (6.56) we can see that the set {κ(0),K
i
(0)} allows to define the set of leading charges

Q(0)T,Y as the surface integral

Q(0),T,Y =
∫

S
d2x

√
a
(

κ +b jK
j) (6.59)

= − 1

8πG

∫

S
d2x

√
aξ t̂ (8πGε(0)+bi ∗χ i)

+
1

8πG

∫

S
d2x

√
aξ i
(

∗ψi +4πGε(0)bi −b j ∗Ψ
j
i

)

.

The latter not only depend on the boundary geometry, but also on the energy density of the

boundary fluid. These charges are conserved in the presence of strong Carrollian Killing

fields. They could also be conserved for specific spacetime configurations. The rest of the
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electric tower of subleading charges for all s are constructed upon multiplying the integrands

of (6.58) and (6.59) by ∗ϖ2s (due to the expansion in 1/ρ2).

6.3.2 Magnetic tower

Similar to the electric case, here we have the s-th magnetic momenta ΠCot(s), Πi
Cot(s), Pi

Cot(s),

Π̃
i j
Cot(s) and Π

i j
Cot(s) whose definition in the configuration at hand is given by

ΠCot(s) = ∗ϖ2sc(0), Πi
Cot(s) = ∗ϖ2sχ i, Pi

Cot(s) = ∗ϖ2sψ i, Π̃
i j
Cot(s) =−∗ϖ2sX i j,

Π
i j
Cot(s) = ∗ϖ2s

(c(0)
2

ai j −Ψi j
)

. (6.60)

Again, the same factor appears in all magnetic currents κCot(s), Ki
Cot(s), κ̃Cot(s) and K̃i

Cot(s)

built out of the leading ones (s = 0) , namely



























κCot = ξ iψi −ξ t̂c(0)

κ̃Cot = ξ iχi

Ki
Cot =

c(0)
2

ξ i −ξ jΨi
j −ξ t̂ χ i

K̃i
Cot =−ξ jX i

j .

(6.61)

The divergence of the magnetic currents (4.144) read

˜KCot(s) = −s∗ϖ2s−2

(

∗ϖ ˆA κ̃Cot +
1

3
K̃i

Cot ∗ψi

)

, (6.62)

KCot(s) = −∗ϖ2sχ i
(

D̂iξ
t̂ −2ξ jϖ ji

)

−s∗ϖ2s−2

(

∗ϖ ˆA κCot +
1

3
Ki

Cot ∗ψi

)

. (6.63)

The evolution of the magnetic charges are also determined by the above divergences following

(4.57) and (4.58). For the set {κ̃Cot(0), K̃
i
Cot(0)} we find the geometric charges

Q̃Cot(0)T,Y =
∫

S
d2x

√
a
(

κ̃Cot +b jK̃
j

Cot

)

=
∫

S
d2x

√
aξ i
(

χi −b jX
j
i

)

, (6.64)

which are always conserved.
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From the set {κCot(0),K
i
Cot(0)}, we build the charges

QCot(0)T,Y =
∫

S
d2x

√
a
(

κCot +b jK
j

Cot

)

(6.65)

= −
∫

S
d2x

√
aξ t̂ (c(0)+biχ

i)+
∫

S
d2x

√
aξ i
(

ψi +
c(0)
2

bi −b jΨ
j
i

)

,

which are conserved off-shell for strong Carrollian Killings. It is also possible to have other

conserved magnetic charges in other specific configurations. Again, the rest of the magnetic

tower of subleading charges for all s are constructed upon multiplying the integrands of

(6.64) and (6.65) by ∗ϖ2s.

So far we have obtained the tower of electric and magnetic charges for the resummable

metric (6.31). Several observations are worth mentioning here regarding this towers of

charges. The first one is the fact that the set of geometrical charges Q̃(s),T,Y coincide with the

set Q̃Cot(s),T,Y for any s. Indeed, in d = 2, if ξ i are the spatial components of a conformal

Killing vector, so are ∗ξ i.17 Therefore, the set of ξ i are identical to the set of ∗ξ i. Because

of the latter, we call the aforementioned charges
{

Q̃(s)T,Y

}

≡
{

Q̃Cot(s)T,Y

}

"self dual". The

other two set of charges correspond to the electric {Q(s),T,Y} and magnetic {QCot(s),T,Y} ones,

which due to the insertion of ∗ϖ2s in the integrands (6.59) and (6.65), the subleading towers

have the status of multipolar moments (see the original works [139–142] as well as [143] for

a modern perspective). In particular, we will see in the next section that, when considering

stationary spacetimes, Q(s),T,Y and QCot(s),T,Y reproduce the mass and angular momentum

multipolar expansion for the Kerr-Taub-NUT family.

Among the above charges associated to Carrollian Conformal Killings (D.34), which

are not always conserved, one can find the ones that are associated to bulk isometries, if

present. As discussed in Sec. 6.2, these isometries are mapped to the boundary as strong

Carrollian isometries. These generates two electric and two magnetic towers of charges
{

Q(s), Q̃(s),QCot(s), Q̃Cot(s)

}

from which the four leading charges
{

Q(0), Q̃(0),QCot(0), Q̃Cot(0)

}

are always conserved, although part of them may be trivial.

6.4 Time-independent solutions

6.4.1 Some classes of stationary spacetimes

The final goal of this chapter is to analyze the action of the Ehlers hidden symmetry group of

Einstein’s dynamics onto the Carrollian boundary dynamics. To that end, a big part of the

17The proof of this statement is straightforward in complex coordinates, see footnote 6.
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above will be based on the Ehlers-Geroch reduction procedure which relies on the presence

of isometries.18 For the sake of the forthcoming analysis on the Ehlers group, from now

on we will restrict ourselves to spacetimes of algebraically special Petrov type possessing a

timelike Killing vector, which can be generally of the form (6.44). In stationary spacetimes,

this Killing field remains timelike in the asymptotic region. The latter allows us to choose

our Killing vector such that it coincides with the boundary vector υ defined in (6.42). This

implies that on the conformal boundary, our timelike Killing vector coincides with the fiber

of the boundary Carrollian structure. Moreover, we can set Ω = 1 through a Weyl rescaling,

bringing the timelike Killing vector to the simple form ∂t (a detailed description of this

setting is given in [144]). In this set up the solution space is much more reduced and in

particular does not consider spacetimes where the timelike Killing vector becomes spacelike

in the asymptotic region, as the Plebański–Demiański family (like the C-metric) [145] (see

also [137, 146]), which is algebraically special of Petrov type D.19 We could generalize

our analysis by considering more general Killing fields at the cost of making the algebraic

structure of the spacetime unstable under Ehlers transformation, which increases the technical

difficulty of the problem. Because of the latter and in order to make the discussion clear we

will restrict our analysis of the Ehlers-Geroch procedure for algebraically special Ricci-flat

spacetimes with a timelike isometry generated by the Killing vector ξ = ∂t , namely truly

stationary Ricci-flat spacetimes whose algebraic structure are stable under the action of the

Ehlers group.

With this choice, every Carroll tensor in the metric (6.31) becomes independent of the

time. For instance, time independece implies θ = 0 and ϕi = 0 since we have set Ω = 1. The

time independence of the spacetime also makes all the Weyl-Carroll-covariant derivatives to

become ordinary Levi-Civita derivatives. Thus, the only non-vanishing Carrollian tensors are

given in complex coordinates with P = P(ζ , ζ̄ ) (see App. D) as

∗ϖ =
iP2

2

(

∂ζ bζ̄ −∂ζ̄ bζ

)

, (6.66)

ˆK = K̂ = K = ∆ lnP, (6.67)

c(0) = (∆+2K)∗ϖ , (6.68)

χζ = i
2
∂ζ K, χζ̄ =− i

2
∂ζ̄ K, (6.69)

ψζ = 3i∂ζ ∗ϖ2, ψζ̄ =−3i∂ζ̄ ∗ϖ2, (6.70)

Ψζ ζ =
1

P2
∂ζ

(

P2∂ζ ∗ϖ
)

, Ψζ̄ ζ̄ =
1

P2
∂ζ̄

(

P2∂ζ̄ ∗ϖ
)

, (6.71)

18This procedure can be done for timelike and spacelike isometries. For the case of null isometries see [114].
19Their Weyl components are given in Eq. (6.41) – see also footnote 16.
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where ∆ f = 2P2∂ζ̄ ∂ζ f . In addition, we also have the energy density ε(0)(ζ , ζ̄ ) (Bondi mass

aspect), as well as another scalar given by

ϖ =
P2

2

(

∂ζ bζ̄ +∂ζ̄ bζ

)

, (6.72)

which is 1
2
∇ibi and should not be confused with the two-form Carrollian vorticity ϖ =

1
2
ϖi jdxi∧dx j, i.e. the Hodge-dual of the scalar ∗ϖ =−1

2
∇i ∗bi expressed explicitly in (6.66).

These two real twist scalars can be combined into the complex Carrollian twist

ϖ̂ = ∗ϖ + iϖ . (6.73)

In this stationary configuration, the equations of motion (6.34), (6.35) are recast as

∆K = 0, (6.74)

∂ζ τ̂ = 0. (6.75)

The first equation implies that the curvature K is required to be a harmonic function, that is,

it is of the form

K(ζ , ζ̄ ) =
1

2

(

k̂(ζ )+ ˆ̄k(ζ̄ )
)

, (6.76)

which puts some limitations on the function P(ζ , ζ̄ ) (still not all solutions for P in this

instance are known). We can also define the imaginary part of k̂ (for future use) as another

harmonic function

K∗(ζ , ζ̄ ) =
1

2i

(

k̂(ζ )− ˆ̄k(ζ̄ )
)

. (6.77)

The second equation (6.75), together with (6.36), show that the Cotton density −c(0) is

the real part of an arbitrary holomorphic function τ̂(ζ ), while the energy density 8πGε(0)
corresponds to the imaginary part of the latter. Thanks to (6.39), which in the stationary case

reduces to

∆τ̂ = 0 , (6.78)

both the Cotton and the energy density are required to be harmonic functions. Having c(0)
and K, it is always possible to determine the functions bζ and bζ̄ by using (6.68).

Although this chapter is not devoted to solve Einstein’s equations, we can illustrate and

sort some the classes of solutions based on the curvature K (the ones we will see can be

found in various chapters of [137, 146]). This separation goes as follows:
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Non-constant KKK This is the general case for an arbitrary harmonic curvature K. This is the

most obscure situation since, as we mentioned previously, very few known solutions of

Ps that possess a non-constant harmonic K are known in the literature 20. Still, if we

assume we have one, together with its holomorphic function k̂(ζ ), and specifying the

choice for the arbitrary function τ̂(ζ ), we can solve (6.68) whose expression is given

by (6.66) with Ehresmann connection

bζ (ζ , ζ̄ ) =
i ˆ̄τ(ζ̄ )

P2(ζ , ζ̄ )∂ζ̄
ˆ̄k(ζ̄ )

. (6.79)

Constant KKK This is the most common situation in the literature (the Kerr-Taub-NUT family

belongs to this class). It implies that k̂(ζ ) is also constant and the above solution

for bi is invalid. The constant K situation captures three instances: spherical, flat or

hyperbolic foliations, which corresponds to K = 1, K = 0 and K = −1 respectively.

Here the metric function P is parameterized as

P(ζ , ζ̄ ) = Aζ ζ̄ +Bζ + B̄ζ̄ +D (6.80)

with A, D arbitrary real constants and B an arbitrary complex constant. The curvature

K reads

K = 2(AD−BB̄). (6.81)

Within the constant K class, two cases must be treated separately.

K ̸= 0K ̸= 0K ̸= 0

As we mentioned previously, thanks to (6.78) the Cotton density is restricted to be an

harmonic function, namely it is expressed as c(0)(ζ , ζ̄ ) =− τ̂(ζ )+ ˆ̄τ(ζ̄ )
2

. Then, equation

(6.68) is solved for

∗ϖ(ζ , ζ̄ )=
c(0)(ζ , ζ̄ )

2K
+i

(

f̄ (ζ̄ )∂ζ̄ lnP(ζ , ζ̄ )− f (ζ )∂ζ lnP(ζ , ζ̄ )+
1

2

(

∂ζ f (ζ )−∂ζ̄ f̄ (ζ̄ )
)

)

,

(6.82)

20An example of solution with non-constant harmonic K is given in [137] whith (up to holomorphic coordinate

transformations) K =−3(ζ + ζ̄ ) realized with P = (ζ + ζ̄ )3/2
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where f (ζ ) is an arbitrary holomorphic function. The vorticity defined above is

reached with the Ehresmann connection (τ̂0 is a real constant)

bζ (ζ , ζ̄ ) =− ζ̄ (τ̂0 + iτ̂(ζ ))

2K(Bζ +D)P(ζ , ζ̄ )
+

f̄ (ζ̄ )

P2(ζ , ζ̄ )
. (6.83)

K = 0K = 0K = 0

In this case A = B = 0 so that P = D. Thus, given c(0)(ζ , ζ̄ ) =− τ̂(ζ )+ ˆ̄τ(ζ̄ )
2

and solving

(6.68) we get

∗ϖ(ζ , ζ̄ ) =
i

2

(

Z(ζ )− Z̄(ζ̄ )
)

− 1

4P2

(

ζ̄

∫ ζ

dz τ̂(z)+ζ

∫ ζ̄

dz̄ ˆ̄τ(z̄)

)

, (6.84)

with Z(ζ ) is an arbitrary holomorphic function, and

bζ (ζ , ζ̄ ) =
1

P2

∫ ζ̄

dz̄ Z̄(z̄)− ζ̄ 2

4P4

∫ ζ

dz(τ̂0 + iτ̂(z)) , (6.85)

with τ̂0 is a real integration constant.

The last two cases have in common the instance where c(0) = K = 0, realized with

vanishing τ̂ and constant P.

As stated before, in this thesis we are not going to solve and analyze Einstein’s equations

in full generality. Still, we will emphasize the subclass composed by the Kerr-Taub-NUT

family. In this class, the curvature K is constant and reached with B = 0. Therefore two

instances arises in this subclass: vanishing and non vanishing K, which are realized by

vanishing and non-vanishing A respectively.

• For non-vanishing K, the holomorphic function τ̂ is

τ̂ = 2i(M+ iKn), (6.86)

where M is the mass and n the nut charge, with both constants. The holomorphic

function f (ζ ) reads

f (ζ ) = iaζ (6.87)

with a the Kerr angular velocity. We find the Ehresmann connection by using (6.82)

and (6.83) with τ̂0 = 2M. It reads

bζ (ζ , ζ̄ ) =−iζ̄
( a

P2
− n

DP

)

(6.88)
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which gives the vorticity

∗ϖ(ζ , ζ̄ ) = n+a− 2Da

P
, (6.89)

where P = Aζ ζ̄ +D and K = 2AD.

• In the case of K = 0 (i.e. P = D constant), we can find the Ehresmann connection by

using (6.84) and (6.85) with τ̂0 = 2M.21 Here

τ̂ = 2iM (6.90)

and the holomorphic function Z(ζ ) is given as

Z = ia. (6.91)

The latter leads to

bζ (ζ , ζ̄ ) =−i
ζ̄ a

P2
(6.92)

with vorticity

∗ϖ =−a. (6.93)

In this case there is no magnetic charge, namely no nut charge.22

6.4.2 Multipolar expansion of the charges from the boundary perspec-

tive

We conclude this section on stationary spacetimes with the analysis of the gravitational

charges associated to the isometries of the spacetime. As we saw in the previous section,

gravitational charges can be computed exclusively from the null conformal boundary by

computing the boundary charges generated by the strong Carrollian Killing vectors. These

techniques are still in an early stage since a contact with standard methods still need to be

elaborated. Despite the latter, we will see that in the case at hand, the Carrollian approach

for the construction of the charges enables us to find the gravitational mass and angular

momentum multipolar expansion.

For a time independent Ricci-flat solution, a timelike isometry is generated by simply the

Killing vector ξ= ∂t , which is mapped on the null conformal boundary as a strong Carrollian

21Both for vanishing and non-vanishing K, τ̂0 has been tuned to ensure that M does not appear in bζ ,

displayed in (6.88) and (6.92). There is no principle behind this choice, it is simply in line with standard

conventions for the Kerr–Taub–NUT family. As a consequence, ϖ defined in (6.72) vanishes.
22Despite the absence of magnetic charges, the solution at hand belongs formally to the Taub–NUT family

(see Ref. [146], §12.3.2).
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Killing with components ξ t̂ = 1 and ξ i = 0. Then, the pairs κ , Ki, and κCot, Ki
Cot are given

by23

κ =−ε(0) , Ki =− 1

8πG
∗χ i , κCot =−c(0) , Ki

Cot =−χ i . (6.94)

The above allows to compute the pair of leading charges (s = 0) by using (6.59) and (6.65).

We find 24

Qem =
∫

S

dζ ∧dζ̄

iP2

(

8πGε(0)+ϖK
)

, Qmm =
∫

S

dζ ∧dζ̄

iP2

(

−c(0)+∗ϖK
)

, (6.95)

up to boundary terms and a factor −8πG in the first charge. These two charges are nicely

combined into

Qm = Qmm + iQem =
∫

S

dζ ∧dζ̄

iP2
(τ̂ + ϖ̂K) . (6.96)

Here the indices refer to magnetic mass (mm) and electric mass (em).

Now, the subleading electric and magnetic charges are obtain by the insertion of ∗ϖ2s in

the current components (6.94), defining thus the subleading pairs {κ(s),K
i
(s),κCot(s),K

i
Cot(s)}.

Then, the higher-s mass multipole moment is defiend as

Qm(s) =
∫

S

dζ ∧dζ̄

iP2
(τ̂ + ϖ̂K)∗ϖ2s . (6.97)

In the instance of the K = 1 with Kerr–Taub–NUT solution displayed in (6.86), (6.87),

(6.88), (6.89) with A = 1/2 and D = 1, the electric-magnetic mass multipole expansion is

given by

Qm(s) = 4πi(M+ in)

(

(n+a)2s+1 − (n−a)2s+1

a(2s+1)

)

, (6.98)

where M is the Bondi mass (here constant), n the NUT charge and a the angular velocity.

The isometry group of stationary Ricci-flat spacetimes might also contain the U(1)

group generated by additional rotational Killing fields 25. For the class of time independent

23The pairs κ̃ , K̃i, and κ̃Cot, K̃i
Cot vanish in the configuration at hand.

24The integrals can be performed by setting ζ = ZeiΦ , where 0 ≤ Φ < 2π and Z =
√

2tan Θ
2

, 0 <Θ < π for

S
2; Z = R√

2
, 0 < R <+∞ for E2; Z =

√
2tanh Ψ

2
, 0 < Ψ <+∞ for H2.

25This is a consequence of the rigidity theorem for stationary spacetimes [147] which is best presented in

[148, 149].
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spacetimes with constant curvature K, the available spacelike Killing vectors are

ξ1 = i
(

ζ ∂ζ − ζ̄ ∂ζ̄

)

, (6.99)

ξ2 =
i

2
√

|AD|

(

(

D−Aζ 2
)

∂ζ −
(

D−Aζ̄ 2
)

∂ζ̄

)

, (6.100)

ξ3 =
1

2
√

|AD|

(

(

D+Aζ 2
)

∂ζ +
(

D+Aζ̄ 2
)

∂ζ̄

)

, (6.101)

From the above, only ξ1 can be mapped onto the null boundary as a strong Carrollian Killing

vector, namely, ξ1 satisfies the strong Carrollian Killing equations (4.61), (4.62) and (4.56),

while ξ2 and ξ3 do not.

Therefore, we can find the tower of rotational electric and magnetic charges by using

(6.59) and (6.65) with ξ1. For the case of K = 1 we have

Qr(s) =
∫

S

dζ ∧dζ̄

iP2
6ζ ζ̄

(

n+ iM

P2
(a−nP)

(

n+a− 2a

P

)2s

− 2a

P2

(

n+a− 2a

P

)2s+1
)

(6.102)

with P = 1+ 1
2
ζ ζ̄ . This charge is non vanishing as long as the rotational parameter or the

NUT charge are present. For s = 0 we find the leading rotational charge as

Qr(0) =−8π [a(n+ iM)+3n(n− iM)] . (6.103)

Expressions (6.98) and (6.103) are in line with the results obtained in Refs. [139–142] (see

also [150], where the electric part of Qr(0) is given) using standard methods relying on the

bulk dynamics. They provide conserved moments since the divergences (6.56) and (6.63)

vanish.

6.5 Ehlers, Geroch and Carroll

Having developed the machinery for a Carrollian approach for the dynamics of Ricci-flat

spacetimes, we are now ready to unravel the action of the hidden Ehlers group (2.145) on

the boundary Carrollian data. To this end, we will focus on algebraically special Ricci-flat

spacetimes whose metric is written in the gauge (6.31) (the resummable class), and possesses

a timelike isometry generated by the Killing field ξ= ∂t , with Ω = 1.

The Geroch reduction is then performed along the orbits of ∂t following the steps

presented in Sec. 2.4. For the latter we have to compute the norm λ (2.133) and the twist

potential ω (2.135) associated to ∂t , such that we can build τ as defined in (2.142). The idea
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is to compute the aforementioned quantities by using the resummable covariant Newman-

Unti gauge (6.31) such that λ , ω , τ and hAB are expressed in terms of the boundary data at

each power of the 1/r expansion. In this way, by using the transformation laws given by

(2.145), one would be able to get the transformation for each boundary Carrollian geometric

and fluid quantity, encoded at different orders in the transformation of τ . Now, in order for

the latter procedure to make sense, one has to take into account the non-local nature of the

Ehlers-Geroch procedure. As we saw in Sec. 2.4, after the action of the Ehlers transformation

on τ → τ ′ and hAB → h′AB, a new Ricci-flat spacetime can be found by an oxidation procedure

following (2.150) and (2.152). In this way the new Ricci-flat solution is given by (2.153).

Nothing guarantees that the new solution will belong to the same class as the seed solution,

and actually it could also be expressed in a completely different gauge. Because of this, and

in order to obtain the transformations of the Carrollian data using the strategy suggested

earlier, we will impose that the new Ricci-flat solution, obtained by a Geroch procedure,

remain in the same gauge, and thus it will be also algebraically special. This requirement

will make the radial coordinate to transform by a shift (as we will see later) such that the

latter is true.

To begin with, we will adopt the Cartan frame as defined in (6.42), leading to the bulk

metric

gt̂ t̂ =
1

ρ2

(

8πGε(0)r+∗ϖc(0)
)

−K, gt̂ i = ∗∂i ∗ϖ , gt̂r =−1,

gri = 0, grr = 0, gi j = ρ2ai j
(6.104)

obtained using (6.43), and assuming t-independence. In this expression ∗ϖ , K and c(0) are

given in (6.66), (6.67) and (6.68). The Killing 1-form is then expressed as

ξ=

(

K − 1

ρ2

(

8πGε(0)r+∗ϖc(0)
)

)

µ+∗∂i ∗ϖdxi −dr . (6.105)

Then, the norm is given as

λ =
8πGε(0)r+∗ϖc(0)

ρ2
−K. (6.106)

For the twist we use equation (2.134), expressed here as

w =−⋆(ξ∧dξ) , (6.107)
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where “⋆” stands for the four-dimensional Hodge duality. The latter one-form is exact

on-shell, and its potential is expressed here as

ω =
8πGε(0) ∗ϖ − c(0)r

ρ2
+K∗, (6.108)

where K and K∗ satisfies

∂iK +η
j

i ∂ jK
∗ = 0 . (6.109)

Here, on-shellness is implemented through the boundary dynamics as summarized in Sec.

6.4, i.e. in the equations (6.75), (6.76) and (6.77).

Inserting the above results into (2.142) and using (6.36), we find

τ =
τ̂

r+ i∗ϖ
− ik̂ , (6.110)

with k̂ = K + iK∗.

In the same way, we can write the Geroch reduced and rescaled metric h̃AB = λhAB as

h̃ABdxAdxB =−
(

dr−∗∂k ∗ϖ dxk
)2

+λρ2ai jdxidxi, (6.111)

which, in holomorphic and anti-holomorphic coordinates as introduced in App. D, reads

h̃ABdxAdxB =−
(

dr− i∂ζ ∗ϖ dζ + i∂ζ̄ ∗ϖ dζ̄
)2

+
(τ − τ̄)(r+ i∗ϖ)(r− i∗ϖ)

iP2
dζ dζ̄ .

(6.112)

The above τ and h̃AB are solution of the reduced Einstein’s equations given in (2.143),

just as it should.

Now, we can expressed the complex scalar τ as an asymptotic series, namely we expand

the latter in powers of 1/r

τ =
+∞

∑
n=0

τ(n)

rn , (6.113)

where, by using the definition of (6.110), at each power in 1/rn we find

τ(0) =−ik̂ (6.114)

= K∗− iK ,

τ(1) = τ̂ (6.115)

=−c(0)+ i8πGε(0) ,
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and

τ(n+1) = τ(1) (−i∗ϖ)n . (6.116)

From Sec. 2.4, we know that the transformation of τ under the Ehlers group is as given

by (2.145). Additionally, if we require the new Ricci-flat solution generated by the Ehlers

transformation to be given in the same gauge, the form of the transformed τ ′ should follow

the structure

τ ′ =
τ̂ ′

r′+ i∗ϖ ′ − ik̂′ , (6.117)

where r = r′+R, with R ≡ R(t,x). The latter can also be expanded in powers of 1/r, so that

we have

τ ′ = τ ′(0)+
τ ′(1)

r′
− i∗ϖ ′τ ′(1)

r′2
+O

(

1

r′3

)

. (6.118)

Then, taking the transformation rule (2.145) together with the asymptotic expansions (6.113)

and (6.118), we find the following behaviour:

τ ′ =
α k̂+ iβ

γ k̂+ iδ
− τ̂

(γ k̂+ iδ )2

1

r′
(6.119)

− τ̂

(γ k̂+ iδ )2

(

δR+ γ
(

τ̂ − ik̂R
)

γik̂−δ
− i∗ϖ

)

1

r′2
+O

(

1

r′3

)

.

From the above, the derivation of the Ehlers transformation of the Carrollian data is straight-

forward. At order r0 we find the transformation of the complex curvature scalar

k̂′ = i
α k̂+ iβ

γ k̂+ iδ
, (6.120)

which leads to the transformation of P(ζ , ζ̄ ) as

P′ =
P

∣

∣γ k̂+ iδ
∣

∣

. (6.121)

The r−1 order reveals the transformation of τ̂ . The latter reads

τ̂ ′ =− τ̂
(

γ k̂+ iδ
)2

. (6.122)
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It is easy to see that the r−2 order will tell us the transformation rule of τ ′(2) =−i∗ϖ ′τ̂ ′.

Moreover, by using the transformation (6.122), we are just left with the relation

−i∗ϖ ′ =
δR+ γ

(

τ̂ − ik̂R
)

γik̂−δ
− i∗ϖ . (6.123)

In order for the latter transformation to be consistent, the right hand side must be purely imagi-

nary. This requirement enables to fix R(t,x), which in turn gives the following transformation

for the radial coordinate:

r′ = r+
i

2

(

γτ̂

γ k̂+ iδ
− γ ˆ̄τ

γ ˆ̄k− iδ

)

. (6.124)

Then we can find the transformation of the vorticity by using the latter in (6.123). We find

∗ϖ ′ =
γ

2

[

τ̂

γ k̂+ iδ
+

ˆ̄τ

γ ˆ̄k− iδ

]

+∗ϖ . (6.125)

These transformation rules leave (6.111) invariant (as it should) and they are local

transformation, providing a direct transformation for the boundary geometry given in (6.121).

The transformation of the energy density can by obtained more explicitly from (6.122) using

(6.36). We find

8πGε ′(0) =
8πGε(0)

(

(γK∗+δ )2 − γ2K2
)

−2c(0)γK (γK∗+δ )
(

γ2K2 +(γK∗+δ )2
)2

. (6.126)

Similarly, the transformation of the Cotton density is given as

c′(0) =
c(0)
(

(γK∗+δ )2 − γ2K2
)

+16πGε(0)γK (γK∗+δ )
(

γ2K2 +(γK∗+δ )2
)2

. (6.127)

All these rules are compatible with equations (6.67) and (6.68) and moreover, the transforma-

tions of the rest Carrollian Cotton tensors can be reached by using the above results combined

with Eqs. (6.69), (6.70) and (6.71).

The transformation of the Ehresmann connection can be inferred by applying the trans-

formation rules derived here into the expressions (6.79), (6.83) and (6.85), depending on the

nature of the scalar curvature K. In order to do so, for example in the constant k̂ instance, we

can notice that A, B, B̄ and D transform with a factor 1/|γ k̂+ iδ | such that the transformation



128 Carrollian perspective of Einstein dynamics

rule (6.121) is satisfied. In the same way, by looking at the transformation (6.125), we can

conclude that f (ζ ) is invariant under the action of the Ehlers group, while Z(ζ ) transforms

as

Z′(ζ ) = Z(ζ )+ i
γτ̂(ζ )

γ k̂+ iδ
. (6.128)

Once the Ehlers transformations of the Carrollian quantities are found, the reconstruction

of the new Ricci-flat spacetime is straightforward. The latter is done by using the resummable

metric (6.31) expressed with the transformed Carrollian data (except for the boundary set of

coordinates {t,ζ , ζ̄}). This is equivalent to the oxidation procedure followed in (2.150) and

(2.152) that brings the three dimensional dynamics captured by τ ′ and h′AB to four dimensions

captured by the new metric g′AB defined as in (2.153) with

η′ =−µ′− 1

λ ′

(

dr′− i∂ζ ∗ϖ ′ dζ + i∂ζ̄ ∗ϖ ′ dζ̄
)

, µ′ =−dt +b′ζ dζ +b′
ζ̄

dζ̄ . (6.129)

The new Killing vector of g′AB is obtained by the relation ξ′ = λ ′η ′, which in the case at

hand is again ∂t .

Before we conclude, let us take the example of the Kerr-Taub-NUT family treated at

the end of of Sec. 6.4. This solution is reached by the choices of P = 1
2
ζ ζ̄ + 1, K = 1

and K∗ = 0 (this was not explicitly demanded). From the SL(2,R) hidden group, only one

subgroup generates genuine new Ricci-flat solutions. The latter corresponds to the subgroup

of rotations
(

cos χ sin χ

−sin χ cos χ

)

∈ SL(2,R) . (6.130)

The latter induces a rotations in the
(

ε(0),c(0)
)

plane as

c′(0) = c(0) cos2χ −8πGε(0) sin2χ , (6.131)

8πGε ′(0) = 8πGε(0) cos2χ + c(0) sin2χ . (6.132)

The above is the boundary manifestation of the rotation in the (M,n) plane discussed at the

end of Sec. 2.4.



Chapter 7

Summary of the results and outlook

In this thesis we passed through the study of fluid dynamics on Galilean and Carrollian back-

grounds, to the investigation of some aspects of flat holography in connection to Carrollian

dynamics. From the fluid mechanics perspective, we constructed the most general fluid

equations on both, Galilean and Carrollian backgrounds, by using two distinct approaches:

one based on the symmetries of the theory, and the other as the large and vanishing speed of

light limits.

In the first approach we based our analysis on the local symmetries of the action, where in

particular we focused on Carrollian and Galilean diffeomorphisms, Weyl and U(1) invariance.

As a consequence of diffeomorphism invariance, the fluid equations are presented as conser-

vation laws of momenta which are constructed upon variation of the action with respect to the

geometry, except for two additional variables that enters the equations as arbitrary functions

that are not conjugate to any geometric data. These correspond to the energy flux Πi in the

Galilean case, and the momentum Pi in the Carrollian counterpart. The fluid equations are

also supplemented with the conservation of a matter/charge current, arising as a consequence

of U(1) invariance of the action. In the Galilean instance, it corresponds to the continuity

equation.

The second approach relied on the limiting procedure of the relativistic fluid equations

by taking k → ∞ in the Galilean case, and k → 0 for the Carrollian case. The latter was

performed in the appropriate set of coordinates for the relativistic geometry, being Zermelo

and Papapetrou-Randers for the Galilean and Carrollian cases respectively. This procedure

allowed us to find all the Galilean and Carrollian fluid equations in terms of momenta, which

only in this approach are expressed in terms of kinematical (the velocity vi in the Galilean

limit and the inverse velocity βi in the Carrollian limit) and thermodynamical quantities. A

huge advantage of this approach with respect to the symmetry based one is that it makes

possible to capture additional degrees of freedom by taking into account over-leading terms
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in the small/large k expansion of the heat and matter currents, as well as the viscous stress

tensor. This feature helped us to unravel the fate of hydrodynamic-frame invariance in the

Galilean and Carrollian limits. Indeed, hydrodynamic-frame transformations are sensitive to

the expansion of the observables with respect to the light velocity. As we saw in Sec. 3.2, by

working the Galilean limit of relativistic fluid dynamics with the standard behaviour at large k

of the fluid observables, hydrodynamic frame invariance is lost in the Navier-Stokes equations.

The only exception to this feature are Galilean fluids with massless energy carriers where

the absence of the rest mass energy term saves hydrodynamic-frame invariance. The other

possibility is when we considered extra degrees of freedom captured in the k2 contribution

of qi and the k0 contribution of ji (alternative behaviour). In that situation we saw that

hydrodynamic-frame invariance is restored at the price of giving up the continuity equation

as a conservation law. The resulting dynamics in this case is comparable with diffusion

processes or super fluids, where all the constituent are not conserved simultaneously.

For the Carrollian limit, the behaviour of the energy-momentum tensor and the U(1)

current at small velocity of light is not obvious. There is no a concrete answer to what

thermodynamic is in a Carrollian theory due to the absence of motion (no kinetic theory),

and therefore we do not have hints on how ε , p, qµ , jµ and τµν should behave at small k. For

that reason, we worked with the ansatz given in Eqs. (4.72), (4.73), (4.74) and (4.75), that

was guided by Carrollian fluids that are holographic duals to Ricci-flat spacetimes [42]. The

latter allowed us to handle the Carrollian limit of relativistic hydrodynamics, and in particular

we found that hydrodynamic-frame invariance persists for Carrollian fluid dynamics. This

is principally due to the fact that the energy density is not decomposed into a rest plus

kinetic contribution, just as in the Galilean case with massless carriers. In the flat holography

side, hydrodynamic-frame invariance is reflected in the bulk spacetime as residual bulk

diffeomorphisms. This is something that has been shown for the case of 3d bulk/2d boundary

in [75–77].

When considering Galilean/Carrollian isometries, an analogous set of currents, κ and Ki,

can be constructed as different combinations of momenta and Galilean/Carrollian Killing

vectors, reminiscent of the relativistic ascendant where the current is constructed as the

contraction of the energy-momentum tensor and the Killing vector. These currents satisfy

equations that, as we shown in Sections 3.1 and 4.1, do not correspond to conservation laws

in general. Different extra conditions must be imposed in order for these currents to be truly

conserved. One is by restricting the isometries to be "strong" Galilean and Carroll isometries,

which requires an extra Killing equations such as (3.66) in the Galilean case, and (4.56) in

the Carrollian counterpart. This extra condition is incompatible with Galilean/Carrollian

boosts. The second option is to impose the vanishing of Pi (Galilean) and Πi (Carrollian). In
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fact, the vanishing of the energy flux Πi in the Carrollian theory has been considered to be an

important condition in order for the theory to be Carroll boost invariant [43, 56], which is the

case in this situation.

The approach and some of the results obtained from the Carrollian extension of fluid

mechanics were also used to analyze the dynamics of (conformally coupled) scalar fields

and the gravitational Chern-Simons on arbitrary Carrollian backgrounds. In the small-k

expansion procedure, we find electric and magnetic dynamics as well as paraelectric and

paramagnetic dynamics for the Carroll Chern-Simons action at different powers of k, whose

equations of motions are Carrollian diffeomorphisms and Weyl covariant.

Now, in the context of the Ricci-flat/Carroll duality perspective, we constructed an

appropriate gauge for the four dimensional bulk spacetime that features covariance with

respect to the null conformal boundary. We called this gauge as the covariant Newman-Unti

gauge and it is reached by relaxing the Newman-Unti gauge conditions as described in (6.19).

This gauge is not only valid for asymptotically flat spacetimes but also for asymptotically AdS

spaces, where the gauge conditions are the ones in (6.2) and the spacetime is reconstructed in

terms of tensors covariant with respect to the timelike conformal boundary and built in terms

of the boundary geometry and the components of the boundary energy-momentum tensor.

The advantage of this gauge with respect to the well known Feffermann-Graham gauge (in

the AAdS case) is that it accepts a smooth limit for vanishing cosmological constant, here

parameterized in terms of k2. Then, the line element (6.17) can be reached as the k → 0

of (6.3), where the bulk spacetime (Ricci-flat) is reconstructed order by order in the 1/r

expansion in terms of the Carrollian geometry, the Carrollian fluid data plus other infinite set

of Carrollian tensors reminiscent of the small-k expansion of the boundary energy-momentum

tensor.

Resummation of (6.17) is possible and occurs when imposing conditions in the Carrollian

boundary, as explained in Sec. 6.1. This was the arena for the discussion on the towers of

gravitational charges and the Ehlers hidden symmetry of Einstein’s equations, all from the

Carrollian boundary perspective. Indeed, the Carrollian approach of Ricci-flat spacetimes

allowed us for the construction of the gravitational charges based on the strong Carrollian

isometries of the boundary. The latter defined towers of electric and magnetic towers

of charges, constructed in terms of Carrollian momenta of the boundary fluid, and the

components of the Carrollian Killing vectors. In the electric tower, the charges are constructed

in terms of the energy density, the Cotton heat currents and Cotton stress, and only the leading

charges are generally conserved, which happens on-shell. For the magnetic tower we found

that those are built in terms of the Cotton density, Cotton currents and Cotton stress, and the

conservation of the leading charges occur off-shell. In particular, for the Kerr-Taub-NUT
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family, the definition of charges presented here were shown to reproduce the mass and

angular momentum multipolar expansion, associated to the isometries generated by ξ= ∂t

and ξ= ∂φ respectively.

When a Ricci-flat spacetime possesses an isometry, one can show that the Einstein

equations are invariant under Möbius transformations (Ehlers group). The latter is revealed

by a dimensional reduction along the orbits of the Killing vector that generates the isometry.

These transformations can be used to generates new solutions, by starting from simpler

seed spacetimes. We exhibited the action of these transformation from a boundary-to-

bulk perspective. Indeed, when considering Ricci-flat spacetimes of the resummable class

with a timelike isometry generated by ∂t , the Ehlers group of transformations acts in the

Carrollian boundary as a local transformation that mixes the geometric boundary data with

the dynamical data (in this case the energy density of the boundary Carrollian fluid). These

transformed boundary data also enable to find new Ricci-flat solutions by reconstructing

the spacetime in the resummable covariant Newman-Unti gauge with the new boundary

variables. Moreover, in the configurations considered in Sec. 6.5 (resummable metric with

Killing vector ξ= ∂t) the new Ricci-flat spacetime remain in the same gauge, and therefore

it belongs to the algebraically special Petrov class, once the appropriate transformation in the

radial coordinate is considered.

The work presented here allows to explore interesting directions within the applications

of Carrollian physics, and actually some of the results presented here are first steps in under-

standing some aspects of the so called "flat holography". For instance, when we constructed

the relationship between the Ehlers transformations acting on Ricci-flat spacetimes with their

manifestation in the boundary, we assumed that the bulk spacetime was of the algebraically

special class and moreover, we restricted to time independent solutions. This excludes a

big portion of the solution space, including radiating solutions. It would be interesting to

complete the picture of the bulk-to-null boundary analysis of Ehlers transformations for

more general Ricci-flat spacetimes with more general isometries. This includes to take

into account what the action of the Ehlers group is on the infinite extra degrees of freedom

that parameterized the bulk spacetime, such as the bulk shear (among others) that encodes

gravitational radiation.

In the same way, the completion of the boundary construction of the towers of gravita-

tional charges requires to go beyond the resummable case, as well as its comparison with the

existing bulk approaches, such as the Godazgar-Godazgar-Pope definition of the charges. In

this regard one can wonder where the Newman-Penrose charges are in this boundary-to-bulk

set up. In some bulk approaches these charges appear in the tower of BMS subleading
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charges at 1/r3. A Carrollian approach of the latter will necessary need to go beyond 1/r2

order in the covariant Newman-Unti gauge.

Besides the achievements and the concrete follow ups this thesis has yield, some fun-

damental questions remain open and deserve special emphasis. The Carrollian techniques

we have developed have enabled us to recast many of the results accumulated in the sixties

in a language and a perspective typical of the holographic playground. Ricci-flat space-

times are reconstructed in terms of boundary Carrollian degrees of freedom, in a similar

way as the reconstruction of asymptotically anti-de Sitter spacetimes in terms of boundary

conformal-field-theory degrees of freedom. Although it would be inaccurate to call this bulk-

from-boundary reconstruction holography, its nature surely points toward the existence of a

possible flat extension of the standard AdS gauge/gravity correspondence, fueled in particular

by our recent observation on the central role of the energy-momentum tensor. To support

these ideas, a long route remains to be paved, and a wealth of questions to be answered.

What would the fundamental observables be in the dual Carrollian field theory? What is the

role played by the replicas of the energy–momentum tensor, namely the Chthonian data?

Where does the celestial holography programme [151] sit in the more general Carrollian

perspective? The celestial holography program relates gravitational S-matrix elements with

correlation functions of a two-dimensional seemingly exotic CFT. Can we do better using

boundary Carrollian field theory? 1 Supposing even we succeed, given the infinite number of

data necessary to reconstruct asymptotically flat spacetimes, would this correspondence still

qualify for holographic? Although the approach presented here does not provide clues for

answering these questions, our results on how to reach flat from AdS gives some confidence

in the vanishing-Λ limit of the AdS/CFT correspondence.

1Investigations on this direction have been done in [35, 37].





Appendix A

Thermodynamics

The Appendices A, B, C, D, E and F were extracted from [5, 3] and have been adapted to the

conventions used in this thesis.

Relativistic thermodynamics

We remind here the usual observables of global-equilibrium thermodynamics. These are

supposed to make sense also in local-equilibrium thermodynamics, as for fluids where the

absence of short wave-length modes is assumed. In this case they depend on time and space

and refer to measurements performed by an observer comoving with respect to the fluid.

Matter conservation is generically (but not necessarily) akin to the existence of massive

carriers in conserved number.

• The temperature T .

• The mass density ρ0 per unit proper volume.

• The entropy per unit proper volume σ , and the entropy per unit mass s (specific

entropy):

σ = sρ0. (A.1)

• The relativistic internal energy density per unit proper volume ε , which contains the

rest mass, and the specific energy per unit mass e:

ε =
(

e+ k2
)

ρ0. (A.2)

• The pressure p and the relativistic enthalpy w per unit proper volume:

w= ε + p. (A.3)
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• The relativistic chemical potential per unit mass (specific chemical potential) µ0. This

contains the rest-mass contribution, as opposed to µ:

µ0 = µ + k2. (A.4)

These quantities obey the grand-potential equation, sometimes referred to as the Gibbs–

Duhem equation:

w= T σ +µ0ρ0 ⇔ p = T sρ0 +µρ0 − eρ0. (A.5)

The energy density is a functional of two thermodynamic variables: ε = ε (σ ,ρ0). The

first law of thermodynamics reads:

dε = T dσ +µ0dρ0 ⇔ de = T ds− pd

(

1

ρ0

)

. (A.6)

The Gibbs–Duhem equation allows to exhibit the dependence of the enthalpy per unit proper

volume w=w(σ , p,ρ0)

dw= T dσ +dp+µ0dρ0, (A.7)

whereas a double Legendre transformation on ε infers the dependence of the grand potential

p = p(T,µ0)

dp = σdT +ρ0dµ0 = sρ0dT +ρ0dµ. (A.8)

We would like to mention the situations where no massive degrees of freedom are present

in the microscopic theory.1 A gas of photons is the prime example but other instances

exist in condensed matter, in particular when fermions are involved, as in graphene (see e.g.

[119]). In the latter case, as opposed to the gas of photons, there is a conserved quantity.

So ρ0 is non-vanishing, but it is not a mass density; ε = eρ0 and µ0 = µ , without rest-mass

contribution. These systems can be conformally invariant, and in that case the dependence

p = p(T,µ) is

p = T D f (µT ) (A.9)

in D = d +1 spacetime dimensions.2

Coming back to a system with massless carriers and no conserved charge, as for the gas of

photons, the above thermodynamic relationships simplify by setting µ = 0 and dropping the

rest-mass terms. Specific quantities are no longer significant in this instance. Fluid dynamics

1This happens effectively in the usual ultra-relativistic limit, meant to be relevant microscopically at high

temperature or high pressure.
2The precise bearing between conformal invariance, absence of mass and existence of conserved currents is

subtle and tight to the microscopic theory.
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of such systems does not involve any conserved current.3 The basic laws are summarized as

follows:


























w= T σ

dw= T dσ +dp

dε = T dσ

dp = σdT,

(A.10)

and when the system is furthermore conformal, p ∝ T D.

Several conserved charges might exist simultaneously in a thermodynamic system. They

would each be associated with a density and a chemical potential. Only one, if any, would

however enter the energy density (A.2).

Non-relativistic limit

The thermodynamic variables introduced earlier in the relativistic theory such as ρ0, ε , µ etc.

are referring to a comoving observer. Measurements performed by another observer, be this

an inertial observer in special relativity or some fiducial observer in a general gravitational

background, are more relevant for the Galilean framework, but are not equal and should

be spelled stricto sensu with some distinctive index. Their differences, however, are of

order 1/k2 and vanish in the infinite-k limit. In order to avoid inflation in notation, we

will keep the same symbols, e, T , p, s, µ , with the exception of ρ0, which becomes ρ for

the fiducial observer. The 1/k2 corrections amongst ρ0 and ρ (see (3.83)) play no role in

thermodynamics, but are indispensable in recovering Navier–Stokes equations as the Galilean

limit of the relativistic hydrodynamic equations.

In non-relativistic thermodynamics, it is customary to introduce the specific volume (not

to be confused with the velocity)

v =
1

ρ
, (A.11)

as well as specific enthalpy h = h(s, p) as

h = e+ pv, (A.12)

which also enters in

µ = h−T s. (A.13)

3This instance was discussed in the precise framework of relativistic fluid dynamics in [58] §134, footnote 1

and exercise 2.
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Using these definitions and the various relativistic laws mentioned above, we find the standard

expressions:

dh = T ds+ vdp, (A.14)

d(eρ) = ρT ds+hdρ, (A.15)

de = T ds− pdv, (A.16)

dµ = −sdT + vdp. (A.17)

Before closing this chapter, let us quote that Galilean thermodynamics can accommodate

fluids with massless energy carriers, as long as the macroscopic velocity is small compared

to k – although at the microscopic level the dynamics is ultra-relativistic. Again, a conserved

current may or may not exist. In such a case a current is available, ρ is the charge density

with4 ε= eρ the internal energy density and µ the chemical potential. The basic relationships

are now

w= p+ε= Tσ+µρ ⇔ p = T sρ +µρ − eρ, (A.18)

and


















dw= T dσ+dp+µdρ

dε= T dσ+µdρ

dp = σdT +ρdµ.

(A.19)

Equations (A.11), (A.12), (A.13), (A.14), (A.15), (A.16), (A.17) remain also valid, together

with (A.9) in case of conformal invariance.

If no conserved charge is present, the chemical potential vanishes (as does dµ) and the

relevant equations are expressed with w, ε and σ rather that hρ , eρ or sρ .

Carrollian thermodynamics

Carrollian thermodynamics is poorly understood. In most parts of this work dealing with the

fluid equations, we have kept the energy density ε and the pressure p unaltered in the limit

of vanishing velocity of light. Neither have we introduced any temperature, nor discussed

an entropy equation, and when a conserved current was assumed (as eluded in [101]), no

relationship was established or set among energy and conserved-charge densities. This is

minimalistic by default. Indeed, the shrinking of the light cone and the absence of particle

motion or signal propagation, raise fundamental questions regarding the origin – and even

4Notice the distinction: ε= lim
k→∞

ε = eρ , σ= lim
k→∞

σ = sρ . In order to avoid multiplication of symbols, we

keep w= hρ , p and µ both for the relativistic quantities and for their Galilean limits.
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the definition – of energy, pressure, entropy, temperature and thermalization processes. Even

the kinematic parameter of the fluid is an inverse velocity, which could point towards the

dynamics of instantonic space-filling branes, as mentioned in [44]. Obviously, this sort of

objects are tachyonic – like those introduced later in [56] – and we feel uneasy advocating any

sort of kinetic theory for setting up thermodynamic laws and deviations from equilibrium.





Appendix B

Carrollian momenta and

hydrodynamic-frame invariance

In Sec. 4.2.4 we obtained the Carrollian fluid equations under k2-scaling assumptions

involving more degrees of freedom than the standard ones: (4.115), (4.116), (4.117) and

(4.118) for the relativistic energy ε , pressure p, heat current qi and stress tensor τ i j, and

similarly for the matter sector with the matter density ρ0 and the non-perfect current ji in

(4.119). These equations involve the Carrollian momenta Π̃, Π, Π̃i, Πi, Pi, Π̃i j, Πi j, ρ̃ , ρ ,

Ñi, Ni, which were given in (4.121) and (4.123).

The aim of the present appendix is to show that these are hydrodynamic-frame-invariant.

Although hydrodynamic-frame invariance is built-in for the relativistic momenta (2.121),

(2.122), (2.123), (2.124) and (2.125), it is not guaranteed to persist in the vanishing-k limit

because it can be incompatible with the presumed small-k behaviour of the physical observ-

ables. This happens in the Galilean (infinite-k) limit, as we have witnessed in Sec. 3.2 for

the standard case i.e. with ni = 0 non-relativistic fluids, because δni ∝ δvi (see Eq. (3.125)).

Here it turns out to hold and in order to prove that we use the relativistic transformation

rules (2.113), (2.114), (2.115), (2.116) and (2.117) in the Papapetrou–Randers frame (2.99).

Using (4.115), (4.116), (4.117), (4.118) and (4.119), and expanding we find































δm j = 0

δn j =−δβ jω +δβkmkβ j

δω =−δβkmk

δ χ =−δβk

(

nk + βββ 2

2
mk
)

,

(B.1)
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and























































































δψ i = 0

δQi = δβ j
(

Σi j −φai j
)

−δβ iζ +δβ jψ
jβ i

δπ i = δβ j
(

Ξi j − (η +ϖ)ai j
)

+ βββ 2

2
δβ j

(

Σi j − (ζ +φ)ai j
)

+

δβ jβ
i
(

β j(ζ +φ)+Q j
)

+βββ 2β iδβ jψ j

δζ =−2δβiψ
i

δη =−2δβi

(

Qi + βββ 2

2
ψ i
)

δΣi j −δφai j = ψ iδβ j +ψ jδβ i

δΞi j −δϖai j = Qiδβ j +Q jδβ i +δβk
(

Σkiβ j +Σk jβ i
)

+ βββ 2

2

(

ψ iδβ j +ψ jδβ i
)

+δβkβ k
(

ψ iβ j +ψ jβ i
)

+β iβ jδφ .

(B.2)

It is straightforward to show that the variations of all momenta (4.121) and (4.123) vanish.
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More on Weyl-Carroll covariance

In Chapter 3 we saw that, in the presence of Weyl-Carroll covariance, we can define time

and space Weyl-Carroll derivatives. These derivatives enable to define other Weyl-Carroll

covariant objects through their commutators. They read

[

D̂i,D̂ j

]

Φ =
2

Ω
ϖi jD̂tΦ+wΩi jΦ, (C.1)

[

D̂k,D̂l

]

V i =
(

R̂ i
jkl −2ξ i

jϖkl

)

V j +ϖkl
2

Ω
D̂tV

i +wΩklV
i, (C.2)

where

R̂ i
jkl = r̂i

jkl −δ i
jϕkl −a jk∇̂lϕ

i +a jl∇̂kϕ i +δ i
k∇̂lϕ j −δ i

l ∇̂kϕ j

+ϕ i (ϕka jl −ϕla jk
)

−
(

δ i
ka jl −δ i

l a jk
)

ϕmϕm +
(

δ i
kϕl −δ i

l ϕk
)

ϕ j, (C.3)

Ωi j = ϕi j −
2

d
ϖi jθ , (C.4)

and ϕi j = ∂̂iϕ j − ∂̂ jϕi, are weight-0 Weyl-covariant tensors. Taking traces of (C.3) we get

R̂i j = R̂k
ik j, R̂ = ai jR̂i j (C.5)

with

R̂ = r̂+(d −1)
(

2∇̂iϕ
i − (d −2)ϕiϕ

i
)

, (C.6)

of weights zero and 2. The Weyl-covariant Carroll–Ricci tensor is not symmetric, R̂[i j] =

−d
2
Ωi j, and a weight-1 curvature form also appears with

[

1

Ω
D̂t ,D̂i

]

Φ = wR̂iΦ−ξ
j
iD̂ jΦ, (C.7)
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where

R̂i =
1

Ω
∂tϕi −

1

d

(

∂̂i +ϕi

)

θ . (C.8)
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Carrollian geometry in three dimensions

and Carrollian Cotton tensors

For d = 2, the S -Hodge duality is induced by1 ηi j =
√

aεi j. This duality is involutive on

Carrollian vectors as well as on two-index symmetric and traceless Carrollian tensors:

∗Vi = η l
iVl, ∗Wi j = η l

iWl j. (D.1)

This fully antisymmetric form can be used to recast some of the Carrollian curvatures

introduced previously. The Carroll–Ricci tensor is decomposed as

r̂i j = ŝi j + K̂ai j + Âηi j (D.2)

with

ŝi j = 2∗ϖ ∗ξi j, K̂ =
1

2
ai j r̂i j =

1

2
r̂, Â =

1

2
η i j r̂i j = ∗ϖθ , ∗ϖ =

1

2
η i jϖi j. (D.3)

Similarly

R̂i j = ŝi j + ˆK ai j + ˆA ηi j, (D.4)

where we have introduced two weight-2 Weyl-covariant scalar Gauss–Carroll curvatures:

ˆK =
1

2
ai jR̂i j = K̂ + ∇̂kϕk, ˆA =

1

2
η i jR̂i j = Â−∗ϕ, (D.5)

1We use here the conventions of Ref. [42], namely ε12 =−1, convenient when using complex coordinates

{ζ , ζ̄}. Notice that η ilη jl = δ i
j and η i jηi j = 2.
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and ∗ϕ = 1
2
η i jϕi j. These obey Carroll-Bianchi identities:

2

Ω
D̂t ∗ϖ + ˆA = 0, (D.6)

1

Ω
D̂t ˆK −ai jD̂iR̂ j − D̂iD̂ jξ

i j = 0, (D.7)

1

Ω
D̂t ˆA +η i jD̂iR̂ j = 0. (D.8)

Besides the various curvature tensors, which are second derivatives of the metric and the

Ehresmann connection, one defines third-derivative tensors, the descendants of the relativistic

Cotton tensor.

In a three dimensional pseudo-Riemannian geometry, the Cotton tensor is typically

defined as

Cµν = η
ρσ

µ ∇ρ

(

Rνσ − R

4
gνσ

)

, (D.9)

with ηµνρ =
√−gεµνρ a fully anti-symmetric tensor. The Cotton tensor measures the

deviation of the spacetime from being conformally flat. In the definition (D.9), it is symmetric,

Weyl-covariant of weight 1, and identically conserved, namely it satisfies

DµCµν = ∇µCµν = 0. (D.10)

Similar to the relativistic energy-momentum tensor, the Cotton tensor can be decomposed as

1

k
Cµν =

3c

2

uµuν

k2
+

c

2
gµν −

cµν

k2
+

uµcν

k2
+

uνcµ

k2
, (D.11)

with c the Cotton scalar density of weight 3, cµν the symmetric and traceless Cotton stress of

weight 1, and the Cotton current cµ of weight 2. The Cotton stress and the Cotton current are

purely transverse, obeying uµcµν = 0 and uµcµ = 0.

The Cotton tensor components can be expressed in terms of a power expansion of k,

packaging at every order its Carrollian-covariant versions of the Cotton pieces. We have

c = c(−1)k
2 + c(0)+

c(1)
k2

+
c(2)
k4

, (D.12)

ci = k2ψ i +χ i +
zi

k2
, (D.13)

ci j = k2Ψi j +X i j +
Zi j

k2
(D.14)
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where each of these Cotton pieces is given as

c(−1) = 8∗ϖ3, (D.15)

c(0) =
(

D̂iD̂
i +2 ˆK

)

∗ϖ , (D.16)

c(1) = D̂iD̂ j ∗ξ i j, (D.17)

c(2) = ∗ξi j
1

Ω
D̂tξ

i j, (D.18)

ψ i = 3η jiD̂ j ∗ϖ2, (D.19)

χ i =
1

2
η jiD̂ j ˆK +

1

2
D̂ i ˆA −2∗ϖ

(

R̂ i +2D̂ jξ
i j
)

+3D̂ j
(

∗ϖξ i j) , (D.20)

zi =
1

2
η i jD̂ jξ

2 − D̂ j
1

Ω
D̂t ∗ξ i j −∗ξ i

jD̂kξ jk, (D.21)

Ψi j = −2∗ϖ2 ∗ξ i j + D̂ iD̂ j ∗ϖ − 1

2
δ i jD̂kD̂

k ∗ϖ −η i j 1

Ω
D̂t ∗ϖ2, (D.22)

X i j =
1

2
ηkiD̂k

(

R̂ j + D̂lξ
jl
)

+
1

2
ηk jD̂ i

(

R̂k + D̂ lξkl

)

−3

2
ˆA ξ i j − ˆK ∗ξ i j +3∗ϖ

1

Ω
D̂tξ

i j, (D.23)

Zi j = 2∗ξ i jξ 2 − 1

Ω
D̂t

1

Ω
D̂t ∗ξ i j , (D.24)

where we defined

ξ 2 =
1

2
ξ i jξi j ⇔ ξ ikξ

j
k = ξ 2ai j . (D.25)

As a consequence of the relativistic conservation of the Cotton tensor, its Carrollian

descendants obey Carrollian conservation equations, similar to (4.136), (4.138) and (4.139).
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These equations are

1

Ω
D̂tc(−1)+ D̂iψ

i = 0 , (D.26)

1

Ω
D̂tc(0)+ D̂iχ

i −Ψi jξ
i j = 0, (D.27)

1

Ω
D̂tc(1)+ D̂iz

i −Xi jξ
i j = 0 , (D.28)

1

Ω
D̂tc(2)−Zi jξ

i j = 0 , (D.29)

1

2
D̂ic(−1)+2∗ϖ ∗ψi = 0 , (D.30)

1

2
D̂ic(0)− D̂ jΨi j +2∗ϖ ∗χi +

1

Ω
D̂tψi +ξi jψ

j = 0, (D.31)

1

2
D̂ic(1)− D̂ jXi j +2∗ϖ ∗zi +

1

Ω
D̂t χi +ξi jχ

j = 0 , (D.32)

1

2
D̂ic(2)− D̂ jZi j +

1

Ω
D̂tzi +ξi jz

j = 0 . (D.33)

These are purely geometrical identities valid in three-dimensional Carrollian structures given

by (4.1) and (4.2).

When the geometric Carrollian shear vanishes, the time dependence in the metric is

factorized as ai j(t,x) = e2σ(t,x)āi j(x). One then shows [42, 20] that the Carrollian conformal

isometry group is the semi-direct product of the conformal group of āi j(x) with the infinite-

dimensional supertranslation group. The former is generated by Y i(x), the latter by T (x),

and the Carrollian conformal Killing fields read:

ξT,Y =

(

T (x)−Y i(x)∂̂iC(t,x)+
1

2
C(t,x)∇̄iY

i(x)

)

eσ(t,x)

Ω
∂t +Y i(x)∂̂i (D.34)

with

C(t,x)≡
∫ t

dτ e−σ(τ,x)Ω(τ,x) . (D.35)

This result is valid in any dimension. At d = 2, āi j(x) is conformally flat and Y i(x) generate

so(3,1).2

The conservation of the Carrollian Cotton momenta (6.60) makes it possible to define two

infinite towers of Carrollian Cotton charges QCotT,Y and Q̃CotT,Y following (4.57), based on

the Carrollian Cotton currents κCot, Ki
Cot, κ̃Cot and K̃i

Cot (see (6.61)). According to (4.144), the

2The so(3,1) factor can also be promoted to superrotations (double Virasoro) if we give up the absolute

regularity requirement.
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latter are always conserved,3 whereas the former are only if χ iνi =−χ i
(

D̂iξ
t̂ −2ξ jϖ ji

)

= 0.

This occurs for special geometries (χ i = 0) or for the subset of strong Carrollian conformal

Killing fields (νi = 0) .

In d = 2, it is convenient to use complex spatial coordinates ζ and ζ̄ . With the permission

of the authors of [42], we reproduce here the appendix of that reference, summarizing the

useful formulas in this coordinate system. Using Carrollian diffeomorphisms (2.100), the

metric (4.1) of the Carrollian geometry on the two-dimensional surface S can be recast in

conformally flat form,

dℓ2 =
2

P2
dζ dζ̄ (D.36)

with P = P(t,ζ , ζ̄ ) a real function, under the necessary and sufficient condition that the

Carrollian shear ξi j displayed in (4.15) vanishes. We will here assume that this holds and

present a number of useful formulas for Carrollian and conformal Carrollian geometry. These

geometries carry two further pieces of data: Ω(t,ζ , ζ̄ ) and

bbb = bζ (t,ζ , ζ̄ )dζ +bζ̄ (t,ζ , ζ̄ )dζ̄ (D.37)

with bζ̄ (t,ζ , ζ̄ ) = b̄ζ (t,ζ , ζ̄ ). Our choice of orientation is inherited from the one adopted for

the relativistic boundary with aζ ζ̄ = 1/P2 and4

ηζ ζ̄ =− i

P2
. (D.38)

The first-derivative Carrollian tensors are the acceleration (4.11), the expansion (4.15)

and the scalar vorticity (4.11), (D.3):

ϕζ = ∂t
bζ

Ω
+ ∂̂ζ lnΩ, ϕζ̄ = ∂t

bζ̄

Ω
+ ∂̂ζ̄ lnΩ, (D.39)

θ =− 2

Ω
∂t lnP, ∗ϖ =

iΩP2

2

(

∂̂ζ

bζ̄

Ω
− ∂̂ζ̄

bζ

Ω

)

(D.40)

with

∂̂ζ = ∂ζ +
bζ

Ω
∂t , ∂̂ζ̄ = ∂ζ̄ +

bζ̄

Ω
∂t . (D.41)

3The conformal Killing fields (D.34), (3.2) depend explicitly on time. Inside the charges they define, when

conserved, this time dependence is confined, on-shell, in a boundary term, and hence drops – see concrete

examples in [4].
4This amounts to setting

√
a = i/P2 in coordinate frame and εζ ζ̄ =−1. The volume form reads d2x

√
a =

dζ∧dζ̄
iP2 .
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Curvature scalars and vector are second-derivative (see (D.3), (4.24)):5

K̂ = P2
(

∂̂ζ̄ ∂̂ζ + ∂̂ζ ∂̂ζ̄

)

lnP, Â = iP2
(

∂̂ζ̄ ∂̂ζ − ∂̂ζ ∂̂ζ̄

)

lnP, (D.42)

r̂ζ =
1

2
∂̂ζ

(

1

Ω
∂t lnP

)

, r̂ζ̄ =
1

2
∂̂ζ̄

(

1

Ω
∂t lnP

)

, (D.43)

and we also quote:

∗ϕ = iP2
(

∂̂ζ ϕζ̄ − ∂̂ζ̄ ϕζ

)

, (D.44)

∇̂kϕk = P2
[

∂̂ζ ∂t
bζ̄

Ω
+ ∂̂ζ̄ ∂t

bζ

Ω
+
(

∂̂ζ ∂̂ζ̄ + ∂̂ζ̄ ∂̂ζ

)

lnΩ

]

. (D.45)

Regarding conformal Carrollian tensors we remind the weight-2 curvature scalars (D.5):

ˆK = K̂ + ∇̂kϕk, ˆA = Â−∗ϕ, (D.46)

and the weight-1 curvature one-form (C.8):

R̂ζ =
1

Ω
∂tϕζ −

1

2

(

∂̂ζ +ϕζ

)

θ , R̂ζ̄ =
1

Ω
∂tϕζ̄ −

1

2

(

∂̂ζ̄ +ϕζ̄

)

θ . (D.47)

In the resummable case the non-vanishing three-derivative Cotton descendants are displayed

as: one scalar

c(0) =
(

D̂lD̂
l +2 ˆK

)

∗ϖ (D.48)

of weight 3 (∗ϖ is of weght 1), two vectors

χζ = i
2
D̂ζ

ˆK + 1
2
D̂ζ

ˆA −2∗ϖR̂ζ , χζ̄ =− i
2
D̂ζ̄

ˆK + 1
2
D̂ζ̄

ˆA −2∗ϖR̂ζ̄ , (D.49)

ψζ = 3iD̂ζ ∗ϖ2, ψζ̄ =−3iD̂ζ̄ ∗ϖ2, (D.50)

of weight 2, and two symmetric and traceless tensors

Xζ ζ = iD̂ζ R̂ζ , Xζ̄ ζ̄ =−iD̂ζ̄ R̂ζ̄ , (D.51)

Ψζ ζ = D̂ζ D̂ζ ∗ϖ , Ψζ̄ ζ̄ = D̂ζ̄ D̂ζ̄ ∗ϖ , (D.52)

5We also quote for completeness (useful e.g. in Eq. (D.46)):

K̂ = K +P2

[

∂ζ

bζ̄

Ω
+∂ζ̄

bζ

Ω
+∂t

bζ bζ̄

Ω2
+2

bζ̄

Ω
∂ζ +2

bζ

Ω
∂ζ̄ +2

bζ bζ̄

Ω2
∂t

]

∂t lnP

with K = 2P2∂ζ̄ ∂ζ lnP the ordinary Gaussian curvature of the two-dimensional metric (D.36).
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of weight 1. Notice that in holomorphic coordinates a symmetric and traceless tensor Si j has

only diagonal entries: Sζ ζ̄ = 0 = Sζ̄ ζ .

We also remind for convenience some expressions for the determination of Weyl–Carroll

covariant derivatives. If Φ is a weight-w scalar function

D̂ζ Φ = ∂̂ζ Φ+wϕζ Φ, D̂ζ̄ Φ = ∂̂ζ̄ Φ+wϕζ̄ Φ. (D.53)

For weight-w form components Vζ and Vζ̄ the Weyl–Carroll derivatives read:

D̂ζVζ = ∇̂ζVζ +(w+2)ϕζVζ , D̂ζ̄Vζ̄ = ∇̂ζ̄Vζ̄ +(w+2)ϕζ̄Vζ̄ , (D.54)

D̂ζVζ̄ = ∇̂ζVζ̄ +wϕζVζ̄ , D̂ζ̄Vζ = ∇̂ζ̄Vζ +wϕζ̄Vζ , (D.55)

while the Carrollian covariant derivatives are simply:

∇̂ζVζ =
1

P2
∂̂ζ

(

P2Vζ

)

, ∇̂ζ̄Vζ̄ =
1

P2
∂̂ζ̄

(

P2Vζ̄

)

, (D.56)

∇̂ζVζ̄ = ∂̂ζVζ̄ , ∇̂ζ̄Vζ = ∂̂ζ̄Vζ . (D.57)

Finally,

D̂kD̂
kΦ=P2

(

∂̂ζ ∂̂ζ̄ Φ+ ∂̂ζ̄ ∂̂ζ Φ+wΦ

(

∂̂ζ ϕζ̄ + ∂̂ζ̄ ϕζ

)

+2w
(

ϕζ ∂̂ζ̄ Φ+ϕζ̄ ∂̂ζ Φ+wϕζ ϕζ̄ Φ

))

.

(D.58)

Using complex coordinates, we can recast the conformal Killing vectors of a shear-free

Carrollian spacetime M in three dimensions, given in Eqs. (D.34) and (3.2). These are

expressed in terms of an arbitrary real function T (ζ , ζ̄ ), which encodes the supertranslations,

and the conformal Killing vectors of flat space dℓ̄2 = 2dζ dζ̄ . The latter are of the form

Y ζ (ζ )∂ζ +Y ζ̄ (ζ̄ )∂ζ̄ , reached with any combination of ℓm + ℓ̄m or i
(

ℓm − ℓ̄m
)

, where6

ℓm =−ζ m+1∂ζ , ℓ̄m =−ζ̄ m+1∂ζ̄ , (D.59)

obeying the Witt⊕Witt algebra:

[ℓm, ℓn] = (m−n)ℓm+n,
[

ℓ̄m, ℓ̄n
]

= (m−n)ℓ̄m+n, (D.60)

6Notice that combining (D.1) and (D.38), we find ∗
(

ℓm + ℓ̄m
)

=−i
(

ℓm − ℓ̄m
)

.
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and referred to as superrotations. Usually one restricts to so(3,1), generated by n = 0,±1.

The conformal Killing fields of M are thus

ξT,Y =

(

T −
(

Y ζ ∂̂ζ +Y ζ̄ ∂̂ζ̄

)

C+
C

2

(

∂ζY ζ +∂ζ̄Y ζ̄
)

)

1

P
υ+Y ζ ∂̂ζ +Y ζ̄ ∂̂ζ̄ (D.61)

with

C(t,ζ , ζ̄ )≡
∫ t

dτ P(τ,ζ , ζ̄ )Ω(τ,ζ , ζ̄ ). (D.62)

The structure so(3,1)⋉ supertranslations – or (Witt⊕Witt)⋉ supertranslations – is recov-

ered in
[

ξT,Y ,ξT ′,Y ′
]

= ξMY (T ′)−MY ′(T ),[Y,Y
′] (D.63)

with

MY ( f ) =
(

Y ζ ∂̂ζ +Y ζ̄ ∂̂ζ̄

)

f − f

2

(

∂ζY ζ +∂ζ̄Y ζ̄
)

. (D.64)



Appendix E

Free motion

Our results on the failure of conservation laws associated with some Galilean or Carrollian

(conformal) Killing vector fields are generic and rooted to the nature of the underlying

geometries. The same phenomenon occurs when studying free-particle motion in Newton–

Cartan spacetimes, or instantonic branes on Carrollian structures (see [44] for motivations on

the latter paradigm). For concreteness we will illustrate here the former case.

The stage is set with an action

S[x] =
∫

C
dt Ω(t)L (t,x,v), (E.1)

where L = ΩL is the Lagrangian – as opposed to the Lagrangian density. The generalized

Lagrange momenta are

pi =
∂L

∂ vi

Ω

(E.2)

and the energy E = ΩE with

E =
pivi

Ω
−L . (E.3)

The equations of motion are Euler–Langrange

1

Ω
ṗi −

∂L

∂xi = 0. (E.4)

The dot stands for the total derivative along the trajectory, which can act also as ∂t + vi∂i on

any tensor, and should not be confused with d/dt defined in (3.25) unless they act on scalars

(cf. ordinary vs. covariant spatial derivative).
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Consider Galilean diffeomorphisms generated by

ξ= ξ t∂t +ξ i∂i, (E.5)

where ξ t = ξ t(t) and

ξ t̂ = ξ tΩ, ξ ı̂ = ξ i −ξ twi, ξt̂ =−c2ξ t̂ , ξî = ai jξ
ĵ = ξi. (E.6)

Their effect on the dynamical variables is



















t → t +ξ t

xi → xi +ξ i

vi → vi +∂tξ
i + v j∂ jξ

i − vi∂tξ
t .

(E.7)

On the one hand, the invariance of the action is characterized as follows:

δS = 0 ⇔ ΩδL +L ∂tξ
t̂ =

dφ

dt
, (E.8)

where φ = φ(t,x) is an arbitrary function, that needs not be zero. On the other hand, one can

determine the on-shell variation of the Lagrangian density:

δL =−L

Ω
∂tξ

t̂ +
1

Ω

d

dt

(

piξ
i −E ξ t̂

)

. (E.9)

The simplest of Nœther’s theorems states that

δS = 0 ⇔ piξ
i −E ξ t̂ −φ = constant of motion. (E.10)

Suppose now that the motion is free on a Newton–Cartan spacetime featured by ai j, wi

and Ω. The Lagrangian density is

L =
1

2Ω2
ai j
(

vi −wi)(v j −w j) (E.11)

with

pi =
1

Ω
(vi −wi). (E.12)

Euler–Lagrange equations read:

(

1

Ω

D̂

dt
+ p j∇̂ j

)

pi + p jγ̂
w j

i = 0. (E.13)
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As an aside remark, the latter equation is the infinite-k limit of the spatial component of the

geodesic equation uµ∇µui = 0, in a Zermelo background. The time component uµ∇µu0 = 0

leads to
1

2Ω

dpi pi

dt
+ pi p jγ̂

wi j = 0, (E.14)

which is the energy equation, obtained by contracting (E.13) with pi.

We can now compute the generic variation of (E.11) under Galilean diffeomorphisms

acting as (E.7). We obtain the following:

δL = pi p j

(

∇̂(iξ ĵ)+ξ t̂ γ̂wi j
)

− pi p
i 1

Ω

D̂ξ t̂

dt
+ pi

(

1

Ω

D̂ξ î

dt
− γ̂wi

jξ
ĵ

)

. (E.15)

If ξ is a Killing field it satisfies (3.55), the first two terms drop and

δL = pi

(

1

Ω

D̂ξ î

dt
− γ̂wi

jξ
ĵ

)

(E.16)

does not vanish, exactly as in the Galilean fluid dynamics in the presence of an isometry. This

betrays the break down of conservation, unless the right-hand side of Eq. (E.16) happens to

be of the form (E.9), in which case Nœther’s theorem applies in its version (E.10).

As already emphasized repeatedly, this pattern works the same way in all situations we

have met, involving Galilean or Carrollian dynamics. In flat spacetimes (either Galilean or

Carrollian) boosts belong invariably to the class of isometries with non-vanishing Lagrangian

variation (see (3.60) and (4.50)). There is not much we could extract from this in fluid

dynamics (except for the case of flat-space potential flows), but for Galilean free-particle

motion on flat spacetime (ai j = δi j, Ω = 1, wi constants) the situation is simpler. We find

indeed:

δL =
(

ẋi −wi)
(

Vi +wkΩki

)

=
d

dt

(

xiVi −wiVit +wkxiΩki

)

. (E.17)

In this particular case, (E.10) applies and gives the general constant of motion as (see also

(3.59))

Vi
(

ẋit − xi)− T

2

(

ẋ2 −w2
)

+Xi
(

ẋi −wi)+Ωi jx
iẋ j. (E.18)

The boosts V i do not generate any useful first integral (the initial position xi
0), as opposed to

time translation T , space translations X i and rotations Ωi j, which lead to energy, momentum

and angular momentum conservations.





Appendix F

From conservation to (non)-conservation

Galilean law from infinite speed of light

Our starting point is a pseudo-Riemannian spacetime in Zermelo frame (2.66)

ds2 =−Ω2k2dt2 +ai j
(

dxi −widt
)(

dx j −w jdt
)

(F.1)

with an energy–momentum tensor T µν obeying ∇µT µν = 0, and a vector field

ξ= ξ t∂t +ξ i∂i = ξ t̂et̂ +ξ ı̂eı̂, (F.2)

where the frame and coframe are defined as in (2.92), and

ξ t̂ = ξ tΩ, ξ ı̂ = ξ i −ξ twi, ξt̂ =−k2ξ t̂ , ξî = ai jξ
ĵ = ξi. (F.3)

We define a current as in (2.25), Iµ = Tµνξ ν , and compute its on-shell divergence, using Eqs.

(2.83):

∇µ Iµ =−1

2
TµνLξgµν =−εr

Ω

D̂ξ t̂

dt
+
(

prai j + τri j
)

(

∇̂iξ ĵ +ξ t̂ γ̂wi j
)

+
1

k2
qri

(

1

Ω

D̂ξ î

dt
− γ̂wi

jξ
ĵ − k2ai j∂ jξ

t̂

)

. (F.4)
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This result is relativistic, expressed with Galilean derivatives though. It vanishes if



















1
Ω

D̂ξ t̂

dt = 0

∇̂(iξ ĵ)+ξ t̂ γ̂wi j = 0

1
Ω

D̂ξ î

dt − γ̂wi
jξ

ĵ − k2ai j∂ jξ
t̂ = 0,

(F.5)

which are simply the conditions for ξ be a Killing field of the pseudo-Riemannian manifold.

We would like now to consider the infinite-k limit of (F.4). At the first place, we must

provide the bahaviour of εr, qri and prai j + τri j for large k. This is typically of the form 1



















εr = Π+O (1/k2)

qri = k2Pi +Πi +O (1/k2)

prai j + τri j = Πi j +O (1/k2) ,

(F.6)

and (F.4) becomes:

∇µ Iµ = −Π

Ω

D̂ξ t̂

dt
+Πi j

(

∇̂iξ ĵ +ξ t̂ γ̂wi j
)

+

(

Pi +
Πi

k2

)

(

1

Ω

D̂ξ î

dt
− γ̂wi

jξ
ĵ − k2ai j∂ jξ

t̂

)

+O

(

1

k2

)

. (F.7)

For this expression to remain finite at infinite k, we must impose that2

∂ jξ
t̂ = 0, (F.8)

1More general behaviours have appeared in (3.98), (3.99), (3.100), or in (3.129). These choices wouldn’t

change our present argument though.
2One may refine the limiting procedure for the Killing fields, and reach the Galilean diffeomorphisms as

ξ t̂(t,x) = ξ t̂
G(t)+

1
k2 ν(t,x)+O

(

1
k4

)

. This would alter equation (F.11) as 1
Ω

D̂ξi
dt − γ̂

w j
iξ j −∂iν = 0. Similarly

the arbitrary function ν(t,x) would also appear in the large-k expansions of equations (2.96) and (2.97), altering

the Galilean currents (3.134). Ultimately, this would have no incidence on our conclusions about the interplay

between Galilean isometries and conservation. It may nevertheless provide a complementary view on the

large-k contraction of the relativistic diffeomorphisms, possibly in line with the approach followed in [152],

where a further duality relationship has been established among leading Galilean and subleading Carrollian

contributions (see footnote 4), and vice-versa.



159

which is the requirement that ξ generates a Galilean diffeomorphism. Conservation holds in

the limit if expression (F.7) vanishes, which is again a threefold condition:

1

Ω

D̂ξ t̂

dt
= 0, (F.9)

∇̂(iξ ĵ)+ξ t̂ γ̂wi j = 0, (F.10)

1

Ω

D̂ξ î

dt
− γ̂wi

jξ
ĵ = 0. (F.11)

Equations (F.9) and (F.10) are nothing but (3.55) i.e. the definition of a Galilean Killing field.

Equation (F.11) is an extra condition, absent for generic Galilean isometries. The latter do

not guarantee the existence of a conserved Galilean current unless (F.11) is satisfied. The

break down of the conservation is read off in

lim
k→∞

∇µ Iµ = Pi

(

1

Ω

D̂ξ î

dt
− γ̂wi

jξ
ĵ

)

=
Pi

Ω

(

∂tξ
ı̂ +Lwξ ı̂) , (F.12)

which agrees with (3.65) or (3.135). As stressed in Sec. 3.1.3, the failure might be only

apparent, if the term Pi
Ω

(

∂tξ
ı̂ +Lwξ ı̂

)

turns out to be a boundary term, that would then

contribute the Galilean current.

Carrollian law from zero speed of light

Here we will consider a pseudo-Riemannian spacetime in Papapetrou–Randers frame (2.99)

ds2 =−k2
(

Ωdt −bidxi)2
+ai jdxidx j. (F.13)

We assume a conserved energy–momentum tensor T µν and a vector field as in (F.2) with

ξ t̂ = ξ tΩ−ξ ibi, ξ î = ξ i, ξt̂ =−k2ξ t̂ , ξî = ai jξ
ĵ = ξi +ξt̂bi. (F.14)

The frame and coframe are defined in (2.126).

We now compute the on-shell divergence of the current (2.25) Iµ = Tµνξ ν , using Eqs.

(2.118):

∇µ Iµ =
1

2
T µνLξgµν =−εr

(

1

Ω
∂tξ

t̂ +ϕiξ
i
)

+
(

pra
i j + τ

i j
r

)(

∇̂iξ ĵ +ξ t̂ γ̂i j

)

−qi
r

(

(

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji −
1

k2Ω
ai j∂tξ

j
)

. (F.15)
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Although expressed with Carrollian derivatives, this is relativistic and vanishes if



















1
Ω

∂tξ
t̂ +ϕiξ

i = 0

∇̂i(ξ ĵ)+ξ t̂ γ̂i j = 0
(

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji − 1
k2Ω

ai j∂tξ
j = 0.

(F.16)

These conditions define a Killing field ξ on a pseudo-Riemannian manifold.

We would like now to consider the zero-k limit of (F.15). We must provide the behaviour

of εr, qi
r and prai j + τ

i j
r for small k, which is typically of the form (4.78), (4.79), (4.80)3



















εr = Π+O
(

k2
)

qi
r = Πi + k2Pi +O

(

k4
)

prai j + τ
i j
r = Πi j +O

(

k2
)

.

(F.17)

Equation (F.15) reads now:

∇µ Iµ = −Π

(

1

Ω
∂tξ

t̂ +ϕiξ
i
)

+Πi j
(

∇̂iξ ĵ +ξ t̂ γ̂i j

)

−
(

Πi + k2Pi)
(

(

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji −
1

k2Ω
ai j∂tξ

j
)

+O
(

k2
)

. (F.18)

Finiteness at zero k, demands4

∂tξ
i = 0, (F.19)

hence ξ generates a Carrollian diffeomorphism. Conservation holds in the limit if expression

(F.18) vanishes. This is occurs if

1

Ω
∂tξ

t̂ +ϕiξ
i = 0, (F.20)

∇̂(iξ ĵ)+ξ t̂ γ̂i j = 0, (F.21)
(

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji = 0. (F.22)

3More general behaviours have appeared in (4.120). The latter would not change our present conclusions

though.
4 Mirroring footnote 2, an option is to set ξ i(t,x) = ξ i

C(x)+ k2ν i(t,x)+O
(

k4
)

. With this, equation (F.22)

becomes
(

∂̂i −ϕi

)

ξ t̂ −2ξ
j

Cϖ ji − 1
Ω

ai j∂tν
j = 0, and further work would be necessary on equations. (2.129),

(2.130) and (4.142), that would not alter our final conclusions, but could shed light on the small-k contraction

of general diffeomorphisms.
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Equations (F.20) and (F.21) are as in (4.47) i.e. the definition of a Carrollian Killing field.

Equation (F.22) is an extra condition, absent for generic Carrollian isometries, which therefore

do not guarantee the existence of a conserved Carrollian current. The disruption to the

conservation is measured as

lim
k→0

∇µ Iµ =−Πi
((

∂̂i −ϕi

)

ξ t̂ −2ξ jϖ ji

)

, (F.23)

in agreement with (4.55) or (4.144).
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Abstract

In three-dimensional pseudo-Riemannian manifolds, the Cotton tensor arises as the variation of the
gravitational Chern–Simons action with respect to the metric. It is Weyl-covariant, symmetric, trace-
less and covariantly conserved. Performing a reduction of the Cotton tensor with respect to Carrollian
diffeomorphisms in a suitable frame, one discloses four sets of Cotton Carrollian relatives, which are
conformal and obey Carrollian conservation equations. Each set of Carrollian Cotton tensors is alter-
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1 Prologue

The Cotton tensor is defined on Riemannian manifolds of arbitrary dimension, carries three in-

dices and is partly antisymmetric. In three dimensions, which will be our framework, this tensor

was introduced by Émile Cotton in 1899 [1] and was formulated as a two-index symmetric tensor related

to the previous by Hodge duality:

𝐶𝜇𝜈 = 𝜂
𝜌𝜎
𝜇 ∇𝜌

(
𝑅𝜈𝜎 − 𝑅

4
𝑔𝜈𝜎

)
. (1)

Here d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 is the metric with signature (− + +), 𝜂𝜇𝜈𝜎 =
√−𝑔 𝜖𝜇𝜈𝜎 (𝜖012 = 1), ∇𝜌 the

associated Levi–Civita connection and 𝑅𝜈𝜎 are the components of the Ricci tensor with scalar 𝑅. The

combination of the latter objects inside the parentheses defines the Schouten tensor in three dimensions.

The Cotton tensor is Weyl-covariant, and conserved as a consequence of the first Bianchi identity

and the absence of Weyl tensor

∇𝜌𝐶𝜌𝜈 = 0, (2)

irrespective of the dynamics on 𝑔𝜇𝜈 . In fact, the Cotton tensor emerges as the “energy–momentum”

tensor of the gravitational Chern–Simons action:

𝐶𝜇𝜈 =
1

√−𝑔
𝛿𝑆CS

𝛿𝑔𝜇𝜈
, (3)

with

𝑆CS =
1

2𝑐

∫

M

Tr

(
ω ∧ dω + 2

3
ω ∧ω ∧ω

)
, (4)

whereω is the Levi–Civita connection one-form. In this picture 𝑆CS is a functional of the metric and of

its derivatives.

There are numerous instances where the Cotton tensor is encountered and plays a fine role in gravi-

tational physics. In four-dimensional asymptotically anti-de Sitter spacetimes, the Schouten tensor of the

conformal boundary appears explicitly at a subleading order in the Fefferman–Graham expansion of the

bulk metric, after the boundary metric and before the boundary energy–momentum tensor. The bound-

1



ary Cotton tensor itself arises as the leading term of the Fefferman–Graham expansion of the bulk Weyl

tensor. More explicitly, the Schouten tensor appears as a gauge field associated with conformal boosts

and the Cotton tensor as the corresponding field strength in non-linearly realized conformal group on

the boundary of AdS4 (super)gravity [2]. Its presence reveals that the boundary is not conformally flat or

equivalently that the bulk is asymptotically locally anti-de Sitter. Alongside, the Chern–Simons action

appears under specific circumstances as the leading-order effective action of the boundary theory, and

can serve alternatively for amending the standard boundary conditions imposed in anti-de Sitter holog-

raphy. These and other interesting properties, such as the role of the Cotton tensor and the occurence

of the Chern–Simons action in gravitational electric–magnetic duality, can be found in Refs. [3–9].

In an effort to design a bulk gauge that would be covariant with respect to the conformal boundary,

as the Fefferman–Graham gauge is, but at the same time be regular for vanishing cosmological constant,

as opposed to Fefferman–Graham, a modified version of the Newman–Unti gauge was reached [10–12],

inspired by fluid/gravity correspondence [13, 14]. In this gauge, the Cotton tensor appears explicitly in

the bulk metric, and its deeper role in the spacetime reconstruction— also recognized in [15] — is more

transparent.

The attempts for generalizing the gravitational holographic principle to asymptotically flat space-

times have abundantly fueled the interest forCarrollian geometries [16,17], namely for structures equipped

with a degenerate metric, as are null infinities. In this framework, one naturally wonders how the Cot-

ton tensor materializes within the various curvature attributes, what sort of dynamics it conveys, and

which role it plays in the bulk reconstruction from boundary data — now defined at null infinity. Some

of these questions were accurately answered in the seminal work [18], exhibiting some of the Carrollian

Cotton descendants, their dynamics inherited from (2), as well as their occurence in the flat exegesis of the

modified/covariantized Newman–Unti gauge. Further properties have been more recently elaborated

in [19], in relation to the null-boundary manifestation of Ehlers’ hidden Möbius group, or in defining

towers of gravito-magnetic charges exclusively from a Carrollian boundary perspective.

In the works cited earlier, the analysis of the Carrollian Cotton descendants was circumscribed to

Carrollian geometries with vanishing geometric shear, a requirement imposed by bulk Ricci flatness.

However, reaching the ultimate radiation-flux-balance equations for asymptotically flat spacetimes in a

limiting procedure from anti-de Sitter requires to start with a non-zero shear, as recently demonstrated

in [20]. The purpose of the present note is to present a comprehensive picture of the Carrollian Cot-

ton tensors, while providing at the same time the Carrollian descendants for the Chern–Simons action,

which are met in various facets of flat-asymptotic symmetries — see e.g. [21, 22].

Our strategy can be summarized as follows: choose an adapted frame, expand in powers of 𝑐2 and

read off the possible Carrollian dynamics (actions and equations of motion). These usually appear in

electric and magnetic, plus some secondary occasionally non-dynamical versions. As for their Rieman-

nian ascendant, diffeomorphism or local Lorentz/Carroll/Weyl invariances call for a cautious inspection

involving boundary terms. This is part of our agenda.
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2 Carrollian Cotton: intrinsic features and zero-𝑐𝑐𝑐 limit

Carroll basics are available in [23–34]. The underlying geometries consist of a 𝑑 + 1-dimensional

manifold M = R × S equipped with a degenerate metric and its kernel vector field. We will be

here restricted to 𝑑 = 2 and adopt a metric of the form

dℓ2 = 𝑎𝑖 𝑗 (𝑡, x)d𝑥𝑖d𝑥 𝑗 , 𝑖, 𝑗 . . . ∈ {1, 2}. (5)

The kernel of the metric is the field of observers, here

υ =
1

Ω
𝜕𝑡 . (6)

The dual clock form obeying µ(υ) = −1 reads

µ = −Ωd𝑡 + 𝑏𝑖d𝑥𝑖 , (7)

and incorporates an Ehresmann connection, which is the background gauge field b = 𝑏𝑖d𝑥𝑖 . Notice that

(5) is not the most general degenerate metric, which could a priori have components along d𝑡, supplying

𝜕𝑖 components to the field of observers (this option is sometimes chosen — see e.g. [20, 35]). Our choice

allows for a natural splitting of time and space coordinates, along the fibre and the base of the Carrollian

fibre bundle respectively, invariant under Carrollian diffeomorphisms 𝑡′ = 𝑡′(𝑡, x) and x′ = x′(x).
This remains nonetheless compatible with general covariance. Restoring explicitly the latter is possible

without any conflict with the dynamics at work here, at the expense of obfuscating the distinction of the

Carrollian framework with ordinary Riemannian situations.

The vector fields dual to the forms d𝑥𝑖 are

�̂�𝑖 = 𝜕𝑖 +
𝑏𝑖

Ω
𝜕𝑡 . (8)

They transform covariantly under Carrollian diffeomorphisms.1 More generally, Carrollian tensors de-

pend on time 𝑡 and space x. The metric being degenerate the spacetime indices cannot be lowered or

raised. This inconvenience can be handled by introducing a pseudo-inverse [25], but we take instead ad-

vantage of the time-and-space splittingmentioned previously, and consider tensors carrying only spatial

indices 𝑖, 𝑗 , . . . lowered and raised with 𝑎𝑖 𝑗 and its inverse 𝑎𝑖 𝑗 .2 These transform covariantly under Car-

rollian diffeomorphisms. The time index is omitted and the corresponding object is a Carrollian scalar.

Details can be found, e.g., in the appendices of Ref. [19], of which a minimal selection will be hosted in

the present publication.

1Defining the Jacobians as 𝐽 (𝑡, x) =
𝜕𝑡 ′
𝜕𝑡

, 𝑗𝑖 (𝑡, x) =
𝜕𝑡 ′

𝜕𝑥𝑖
, 𝐽𝑖
𝑗
(x) =

𝜕𝑥𝑖′

𝜕𝑥 𝑗 , the transformations follow: 𝑎𝑖 𝑗′ = 𝐽𝑖
𝑘
𝐽
𝑗

𝑙
𝑎𝑘𝑙 ,

Ω
′
=

Ω

𝐽 , 𝑏
′
𝑘
=

(
𝑏𝑖 + Ω

𝐽 𝑗𝑖

)
𝐽−1𝑖

𝑘
(connection-like transformation) and consequently υ′ = υ, µ′ = µ.

2Working with an orthonormal Cartan frame is yet another option adopted in [20]. In this perspective, the Carrollian
tensors carry again spatial indices solely, but are now organized in representations of the 𝑑-dimensional orthogonal local
group, subgroup of the local Carroll group, and are raised or lowered with the identity.
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A strong Carroll structure comes with a metric-compatible and field-of-observers-compatible

connection, which is not unique due to the metric degeneracy. Here, we use the connection in-

spired from an ascendant pseudo-Riemannian spacetime equipped with Papapetrou–Randers metric

d𝑠2 = −𝑐2
(
Ωd𝑡 − 𝑏𝑖d𝑥𝑖

)2 + 𝑎𝑖 𝑗d𝑥𝑖d𝑥 𝑗 . (9)

We should stress that in this metric the dependence with respect to the velocity of light 𝑐 is explicit,

leading thus to (5) at zero 𝑐. This feature plays a pivotal role in our subsequent analysis, since the Carrol-

lian Cotton descendants, the corresponding Chern–Simons actions and the conservation equations are

reached respectively from Eqs. (3), (4) and (2) by expanding in 𝑐. Such an expansion would receive extra

contributions if every function in (9) were itself provisioning various powers of 𝑐. This would not alter

the general form of the Carrollian equations, but the details would be different.3

The relativistic Papapetrou–Randers metric (9) infers a convenient although non-orthonormal Car-

tan mobile frame
{
e0̂ =

1

𝑐Ω
𝜕𝑡 , e𝚤 = �̂�𝑖

}
and coframe

{
θ0̂ = −𝑐µ, θ𝚤 = d𝑥𝑖

}
. The hatted indices

{
0̂, 𝚤

}

are meant to distinguish this frame from the coordinate coframe
{
θ0 = d𝑥0 = 𝑐d𝑡, θ𝑖 = d𝑥𝑖

}
and frame

{
e0 =

1

𝑐
𝜕𝑡 , e𝑖 = 𝜕𝑖

}
. In order to avoid cluttering of symbols and comply with the conventions used, e.g.,

in Ref. [19, 36, 37], we will keep the hat exclusively on the time direction. For the Carrollian side, we will

rather use
{
e𝑡 =

1

Ω
𝜕𝑡 , e𝚤 = �̂�𝑖

}
and

{
θ𝑡 = −µ, θ𝚤 = d𝑥𝑖

}
, and ignore the hat on the spatial indices.

The relativistic (affine) connection one-form elementsω𝜇
𝜈 = Γ

𝜇
𝜌𝜈θ

𝜌 with Γ𝜇𝜌𝜈 the Levi–Civita con-

nection coefficients read:

ω0̂𝑖 = 𝑐
(
𝜑𝑖µ +𝜛𝑖 𝑗d𝑥 𝑗

)
− 1

𝑐
�̂�𝑖 𝑗d𝑥

𝑗 , (10)

ω𝑖 𝑗 =
(
𝑐2𝜛𝑖 𝑗 − �̂�𝑖 𝑗

)
µ + 𝑎𝑖𝑙 �̂�𝑙𝑗𝑘d𝑥

𝑘 (11)

withω0̂𝑖 = −ω𝑖0̂. These expressions disclose two Carrollian tensors, the vorticity and the acceleration

𝜛𝑖 𝑗 = 𝜕[𝑖𝑏 𝑗 ] + 𝑏 [𝑖𝜑 𝑗 ] , 𝜑𝑖 =
1

Ω
(𝜕𝑡𝑏𝑖 + 𝜕𝑖Ω) , (12)

revealed inside

dµ = ϖ +φ ∧ µ = 𝜛𝑖 𝑗d𝑥
𝑖 ∧ d𝑥 𝑗 + 𝜑𝑖d𝑥𝑖 ∧ µ. (13)

We have also introduced the symmetric symbols

�̂�𝑖𝑗𝑘 =
𝑎𝑖𝑙

2

(
�̂� 𝑗𝑎𝑙𝑘 + �̂�𝑘𝑎𝑙 𝑗 − �̂�𝑙𝑎 𝑗𝑘

)
(14)

dubbed Carroll–Levi–Civita connection coefficients, and the Carrollian tensors

�̂�𝑖 𝑗 =
1

2Ω
𝜕𝑡𝑎𝑖 𝑗 = 𝜉𝑖 𝑗 +

1

𝑑
𝑎𝑖 𝑗𝜃, 𝜃 =

1

Ω
𝜕𝑡 ln

√
𝑎 , (15)

3Keeping 𝑐 explicit in the Papapetrou–Randers metric has been the ruling pattern in Refs. [36, 37]. Alternative approaches
for designing descendant Carrollian dynamics can be found e.g. in [38, 39].
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which define the geometric Carrollian shear (traceless) 𝜉𝑖 𝑗 and the Carrollian expansion 𝜃 (�̂�𝑖 𝑗 is the

extrinsic curvature of the spatial section S). All these enter the Carrollian connection adopted here:

ω̂𝑡
𝑡
= ω̂𝑡

𝑖 = ω̂𝑖
𝑡
= 0, ω̂𝑖

𝑗 = −�̂�𝑖 𝑗µ + �̂�𝑖𝑗𝑘d𝑥
𝑘 (16)

(the hat signals this connection is Carrollian as opposed to the Riemannian displayed in (10) and (11)).

It is important to stress that the Carrollian connection (16) has been designed so as to define a parallel

transport that respects the time-and-space splitting mentioned above, embracing distinct time and space

Carrollian covariant derivatives 1

Ω
�̂�𝑡 and ∇̂𝑖 . Both are metric-compatible: 1

Ω
�̂�𝑡𝑎𝑖 𝑗 = ∇̂𝑘𝑎𝑖 𝑗 = 0.

For 𝑑 = 2, the S-Hodge duality is induced by 𝜂𝑖 𝑗 =
√
𝑎 𝜖𝑖 𝑗 . This duality is involutive on Carrollian

vectors as well as on two-index symmetric and traceless Carrollian tensors:

∗𝑉𝑖 = 𝜂𝑙𝑖𝑉𝑙, ∗𝑊𝑖 𝑗 = 𝜂𝑙𝑖𝑊𝑙 𝑗 . (17)

In particular4

∗𝜛 =
1

2
𝜂𝑖 𝑗𝜛𝑖 𝑗 ⇔ 𝜛𝑖 𝑗 = ∗𝜛𝜂𝑖 𝑗 . (18)

Weyl transformations act as

𝑎𝑖 𝑗 →
1

B2
𝑎𝑖 𝑗 , 𝑏𝑖 →

1

B
𝑏𝑖 , Ω → 1

B
Ω (19)

with B = B(𝑡, x). The expansion 𝜃 and the acceleration 𝜑𝑖 transform as connections under these

rescalings:

𝜑𝑖 → 𝜑𝑖 − �̂�𝑖 lnB, 𝜃 → B𝜃 − 𝑑

Ω
𝜕𝑡B. (20)

They play the role of Weyl connections in time and space Carroll–Weyl covariant metric-compatible

derivatives.5 The weights of𝜛𝑖 𝑗 and 𝜉𝑖 𝑗 are −1; hence the connection transforms as follows:





ω0̂

𝑖 →
1

B

(
ω0̂

𝑖 + 𝑐�̂�𝑖 lnBµ − 1

𝑐
1

Ω
𝜕𝑡 lnB𝑎𝑖 𝑗d𝑥 𝑗

)

ω𝑖
𝑗
→ ω𝑖

𝑗
− 𝛿𝑖

𝑗
d lnB+ 𝜂𝑖

𝑗
∗�̂�𝑘 lnBd𝑥𝑘 ,

(21)

and similarly for the Carrollian connection:

ω̂𝑖
𝑗 → ω̂𝑖

𝑗 − 𝛿𝑖𝑗d lnB+ 𝜂𝑖 𝑗 ∗�̂�𝑘 lnBd𝑥𝑘 . (22)

4We use here the conventions of Ref. [18], namely 𝜖12 = −1, convenient when using complex coordinates {𝜁, 𝜁 }, where
dℓ2 =

2

𝑃2
d𝜁d𝜁 with 𝑃 = 𝑃(𝑡, 𝜁 , 𝜁) a real function. In this case 𝜂𝜁 𝜁 = −i/𝑃2,

√
𝑎 = i/𝑃2 and the volume form reads 1

2
𝜂𝑖 𝑗d𝑥𝑖 ∧

d𝑥 𝑗 = d2𝑥
√
𝑎 =

d𝜁∧d𝜁
i𝑃2

. Notice that 𝜂𝑖𝑙𝜂 𝑗𝑙 = 𝛿
𝑖
𝑗
and 𝜂𝑖 𝑗𝜂𝑖 𝑗 = 2 so that µ ∧ d𝑥𝑖 ∧ d𝑥 𝑗 = −𝜂𝑖 𝑗d𝑡 d2𝑥

√
𝑎 Ω = i 𝜂𝑖 𝑗d𝑡 d𝜁∧d𝜁

𝑃2
Ω.

5On the one hand, the Carrollian covariant derivatives act as ordinary derivatives on scalars, whereas on Carrollian vectors
𝑉 𝑖 we obtain: 1

Ω
�̂�𝑡𝑉

𝑖
=

1

Ω
𝜕𝑡𝑉

𝑖 + �̂�𝑖
𝑗
𝑉 𝑗 and ∇̂ 𝑗𝑉 𝑖 = �̂� 𝑗𝑉 𝑖 + �̂�𝑖𝑗𝑘𝑉

𝑘 . On the other hand Weyl–Carroll covariant derivatives

on weight-𝑤 fields are as follows: 1

Ω
D̂𝑡Φ =

1

Ω
�̂�𝑡Φ + 𝑤

𝑑
𝜃Φ, 1

Ω
D̂𝑡𝑉

𝑙
=

1

Ω
�̂�𝑡𝑉

𝑙 + 𝑤−1
𝑑
𝜃𝑉 𝑙 (both of weight 𝑤 + 1), and

D̂ 𝑗Φ = �̂� 𝑗Φ + 𝑤𝜑 𝑗Φ, D̂ 𝑗𝑉
𝑙
= ∇̂ 𝑗𝑉 𝑙 + (𝑤 − 1)𝜑 𝑗𝑉 𝑙 + 𝜑𝑙𝑉 𝑗 − 𝛿𝑙𝑗𝑉

𝑖𝜑𝑖 (with unaltered weights). More details on the latter are

given in [19, 36, 37].
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Curvature tensors are defined through the action of covariant-derivative commutators on various

fields. Considering for instance a Carrollian vector field 𝑉 𝑖 , we obtain for 𝑑 = 2:6

[
∇̂𝑖 ,

1

Ω
�̂�𝑡

]
𝑉 𝑗 = �̂�

𝑗

𝑖𝑘
𝑉 𝑘 + �̂� 𝑘

𝑖 ∇̂𝑘𝑉 𝑗 − 𝜑𝑖
1

Ω
�̂�𝑡𝑉

𝑗 , (23)

[
∇̂𝑘 , ∇̂𝑙

]
𝑉 𝑖 = �̂�𝑖 𝑗𝑘𝑙𝑉

𝑗 + ∗𝜛𝜂𝑘𝑙
2

Ω
�̂�𝑡𝑉

𝑖 , (24)

from which we further define

�̂�𝑘𝑖𝑘 𝑗 = �̂�𝑖 𝑗 = �̂�𝑎𝑖 𝑗 . (25)

One reaches the same tensors by computing the Carrollian curvature two-form starting from the con-

nection (16):7

R̂
𝑡
𝑗 = 0, R̂

𝑖
𝑗 = �̂�

𝑖
𝑘 𝑗µ ∧ d𝑥𝑘 + 1

2
�̂�𝑖 𝑗𝑘𝑙d𝑥

𝑘 ∧ d𝑥𝑙 . (26)

It should be emphasized that the last terms in the commutators (23), (24) (and (28), (29) below) betray

the presence of torsion in the Carroll (or the Carroll–Weyl) connection adopted here. This torsion is

encoded in the tensors 𝜑𝑖 ,𝜛𝑖 𝑗 , 𝜃 and 𝜉𝑖 𝑗 :

T̂
𝑡
= 𝜑𝑖µ ∧ d𝑥𝑖 − ∗𝜛𝜂𝑖 𝑗d𝑥𝑖 ∧ d𝑥 𝑗 , T̂

𝑖
= �̂�𝑖 𝑗d𝑥

𝑗 ∧ µ. (27)

Introducing torsion is the price to pay for maintaining metric compatibility, while ensuring the time-

and-space splitting and a non-trivial interplay between the base and the fibre. As a bonus, the field of

observers is parallelly transported, ∇̂υυ = 0, and the time fibres are geodesics for the Carrollianmanifold

M = R × S.

Likewise, we obtain the curvature tensors for the Carroll-Weyl connection:

[
D̂𝑖 ,

1

Ω
D̂𝑡

]
𝑉 𝑗 = Ŝ

𝑗

𝑖𝑘
𝑉 𝑘 − (𝑤 − 1)R̂𝑖𝑉 𝑗 + 𝜉 𝑘𝑖 D̂𝑘𝑉

𝑗 , (28)

[
D̂𝑘 , D̂𝑙

]
𝑉 𝑖 = Ŝ

𝑖
𝑗𝑘𝑙𝑉

𝑗 − (𝑤 − 1)Â𝜂𝑘𝑙𝑉 𝑖 + ∗𝜛𝜂𝑘𝑙
2

Ω
D̂𝑡𝑉

𝑖 , (29)

where 𝑤 stands for the weight of the vector field 𝑉 𝑗 . Furthermore, setting

R̂𝑖 =
1

Ω
𝜕𝑡𝜑𝑖 −

1

2

(
�̂�𝑖 + 𝜑𝑖

)
𝜃, Â = ∗𝜛𝜃 − 𝜂𝑖 𝑗 ∇̂𝑖𝜑 𝑗 (30)

6We set �̂�𝑖 𝑗𝑘 =

(
∇̂𝑖 + 𝜑𝑖

)
�̂� 𝑗𝑘 −

(
∇̂𝑘 + 𝜑𝑘

)
�̂�𝑖 𝑗 = −�̂�𝑘 𝑗𝑖 and �̂�𝑖 𝑗𝑘𝑙 = �̂�

(
𝑎𝑖𝑘𝑎 𝑗𝑙 − 𝑎𝑖𝑙𝑎 𝑗𝑘

)
, handier than 𝑟𝑖 𝑗𝑘 and 𝑟𝑖 𝑗𝑘𝑙

previously introduced in Refs. [19, 36, 37].
7The torsion and curvature two-forms are T𝜇 = dθ𝜇 +ω

𝜇
𝜈 ∧ θ𝜈 =

1
2
𝑇
𝜇
𝜈𝜌θ

𝜈 ∧ θ𝜌 andR
𝜇
𝜈 = dω𝜇

𝜈 +ω
𝜇
𝜌 ∧ω

𝜌
𝜈 =

1
2
𝑅
𝜇

𝜈𝜌𝜆
θ𝜌 ∧ θ𝜆.
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defines unambiguously the Carroll–Weyl curvature tensors Ŝ 𝑗
𝑖𝑘
and Ŝ𝑖

𝑗𝑘𝑙
.8 Tracing finally we obtain

Ŝ
𝑘
𝑖𝑘 𝑗 = Ŝ𝑖 𝑗 = K̂𝑎𝑖 𝑗 , K̂ = �̂� + ∇̂𝑘𝜑𝑘 . (31)

In summary, the independent Carroll–Weyl curvature tensors in 𝑑 = 2 are K̂, Â and R̂𝑖 of weights

2, 2 and 1. They obey

2

Ω
D̂𝑡 ∗𝜛 + Â = 0, (32)

1

Ω
D̂𝑡K̂ − 𝑎𝑖 𝑗D̂𝑖R̂ 𝑗 − D̂𝑖D̂ 𝑗𝜉

𝑖 𝑗
= 0, (33)

1

Ω
D̂𝑡Â + 𝜂𝑖 𝑗D̂𝑖R̂ 𝑗 = 0, (34)

the last two being the Carroll–Weyl–Bianchi identities.

Riemann, Ricci and Carrollian descendants of the Riemannian metric (9) are yield using the

prescription already exploited in Refs. [18,19]— or [36,37] for general energy–momentum tensors.

In a first step, this consists in reducing the relativistic tensorswith respect toCarrollian diffeomorphisms.

Next, one expands the latter in powers of 𝑐, and at each power bona-fide Carrollian tensors emerge.

Following this prescription for the Riemann curvature two-form of (9) we find

R
0̂
𝑖 = 𝑐

[
𝑐2 ∗𝜛2𝑎𝑖𝑘 + ∇̂(𝑖𝜑𝑘 ) + 𝜑𝑖𝜑𝑘 − 2 ∗𝜛𝜂 𝑗 (𝑖 �̂� 𝑗

𝑘 ) − 1

𝑐2

(
1

Ω
�̂�𝑡 �̂�𝑖𝑘 + �̂�𝑖 𝑗 �̂� 𝑗𝑘

)]
µ ∧ d𝑥𝑘

−𝑐
[
�̂�𝑖 ∗𝜛 + 2𝜑𝑖 ∗𝜛 − 1

𝑐2
𝜂𝑚𝑛∇̂𝑚�̂�𝑛𝑖

]
1

2
𝜂𝑘𝑙d𝑥

𝑘 ∧ d𝑥𝑙, (35)

R
𝑖
𝑗 = R̂

𝑖
𝑗 − 𝜂𝑖 𝑗

[
𝑐2

(
�̂�𝑘 ∗𝜛 + 2𝜑𝑘 ∗𝜛

)
+ 𝜂𝑚𝑛𝜑𝑚�̂�𝑛𝑘

]
µ ∧ d𝑥𝑘

+𝜂𝑖 𝑗
[
3𝑐2 ∗𝜛2 + 1

2𝑐2
𝜂𝑚𝑛𝜂𝑟𝑠 �̂�𝑚𝑟 �̂�𝑛𝑠

]
1

2
𝜂𝑘𝑙d𝑥

𝑘 ∧ d𝑥𝑙, (36)

where various Carrollian tensors emerge besides the Carrollian curvature two-form read off in (26). No

torsion is available for the relativistic Levi–Civita connection at hand.

The Riemannian scalar curvature 𝑅 reads:9

𝑅

2
= 𝑐2 ∗𝜛2 + �̂� −

(
∇̂𝑘 + 𝜑𝑘

)
𝜑𝑘 + 1

𝑐2

(
𝜉2 + 3

4
𝜃2 + 1

Ω
𝜕𝑡𝜃

)
, (37)

where 𝜉2 = 1

2
𝜉𝑖 𝑗𝜉𝑖 𝑗 . It captures variousCarrollian curvature scalars, which inferCarrollian avatars of the

Einstein–Hilbert action
∫
M

d𝑥3

𝑐

√−𝑔 𝑅. We will not elaborate on this aspect of Carrollian gravitational

dynamics that would deserve a thorough comparison with Refs. [38, 39].

Cotton Carrollian relatives are reached following the above pattern. The reduction of 𝐶𝜇𝜈 is

8Again those are slightly different from R̂
𝑗

𝑖𝑘
and R̂𝑖

𝑗𝑘𝑙
used earlier in [19, 36, 37]: Ŝ 𝑗

𝑖𝑘
= D̂ 𝑗𝜉𝑖𝑘 − D̂𝑘𝜉

𝑗
𝑖
+ 𝛿 𝑗

𝑖
R̂𝑘 − 𝑎𝑖𝑘R̂ 𝑗

and Ŝ𝑖
𝑗𝑘𝑙

= K̂
(
𝑎𝑖𝑘𝑎 𝑗𝑙 − 𝑎𝑖𝑙𝑎 𝑗𝑘

)
.

9For arbitrary 𝑑 we find: 𝑅 = 𝑐2𝜛𝑖 𝑗𝜛𝑖 𝑗 + �̂� − 2

(
∇̂𝑘 + 𝜑𝑘

)
𝜑𝑘 + 1

𝑐2

(
𝜉𝑖 𝑗𝜉𝑖 𝑗 + 𝑑+1

𝑑
𝜃2 + 2

Ω
𝜕𝑡 𝜃

)
.
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straightforward: Carrollian scalars and vectors emerge from𝐶 0̂0̂ and𝐶 0̂𝑖 , while𝐶𝑖 𝑗−𝐶 0̂0̂

2
𝑎𝑖 𝑗 leads

to symmetric and traceless Carrollian tensors. They are readily decomposed in powers of 𝑐 as follows:

1

𝑐
𝐶 0̂0̂

= 𝑐2𝛾 + 𝜀 + 𝜁

𝑐2
+ 𝜏

𝑐4
, (38)

𝐶 0̂𝑖
= 𝑐2𝜓𝑖 + 𝜒𝑖 + 𝑧𝑖

𝑐2
, (39)

𝐶 0̂0̂𝑎𝑖 𝑗

2𝑐
− 𝐶

𝑖 𝑗

𝑐
= Ψ

𝑖 𝑗 + 𝑋
𝑖 𝑗

𝑐2
+ 𝑍

𝑖 𝑗

𝑐4
. (40)

With this, any Carrollian structure supplied with the connection at hand, is naturally endowed with ten

Weyl-covariant Carrollian Cotton descendants. These are

• four weight-3 scalars:

𝛾 = 8 ∗𝜛3, 𝜀 =

(
D̂𝑙D̂

𝑙 + 2K̂

)
∗𝜛, 𝜁 = D̂𝑖D̂ 𝑗 ∗𝜉𝑖 𝑗 , 𝜏 = ∗𝜉𝑖 𝑗

1

Ω
D̂𝑡𝜉

𝑖 𝑗
; (41)

• three weight-2 forms:

𝜓𝑖 = 3𝜂 𝑗𝑖D̂
𝑗 ∗𝜛2, (42)

𝜒𝑖 =
1

2
𝜂 𝑗𝑖D̂

𝑗
K̂ + 1

2
D̂𝑖Â − 2 ∗𝜛

(
R̂𝑖 + 2D̂

𝑗𝜉𝑖 𝑗

)
+ 3D̂

𝑗
(
∗𝜛𝜉𝑖 𝑗

)
, (43)

𝑧𝑖 =
1

2
𝜂𝑖 𝑗D̂

𝑗𝜉2 − D̂
𝑗 1

Ω
D̂𝑡 ∗𝜉𝑖 𝑗 − ∗𝜉𝑖 𝑗D̂𝑘𝜉

𝑗𝑘
; (44)

• three weight-1 traceless and symmetric two-index covariant tensors:

Ψ𝑖 𝑗 = −2 ∗𝜛2 ∗𝜉𝑖 𝑗 + D̂𝑖D̂ 𝑗 ∗𝜛 − 1

2
𝑎𝑖 𝑗D̂

𝑘
D̂𝑘 ∗𝜛 − 𝜂𝑖 𝑗

1

Ω
D̂𝑡 ∗𝜛2, (45)

𝑋𝑖 𝑗 =
1

2
𝜂𝑘𝑖D̂

𝑘
(
R̂ 𝑗 + D̂

𝑙𝜉 𝑗𝑙

)
+ 1

2
𝜂𝑘 𝑗D̂𝑖

(
R̂
𝑘 + D̂𝑙𝜉

𝑘𝑙
)

−3
2
Â𝜉𝑖 𝑗 − K̂ ∗𝜉𝑖 𝑗 + 3

∗𝜛
Ω

D̂𝑡𝜉𝑖 𝑗 , (46)

𝑍𝑖 𝑗 = 2 ∗𝜉𝑖 𝑗𝜉2 −
1

Ω
D̂𝑡

1

Ω
D̂𝑡 ∗𝜉𝑖 𝑗 . (47)

As for the conservation equation (2), it supplies the following Carrollian decompositions:

∇𝜌𝐶𝜌
0̂
= 𝑐2DCot + ECot +

FCot

𝑐2
+ WCot

𝑐4
= 0, (48)

and
1

𝑐
∇𝜌𝐶𝜌𝑖 = 𝑐2I𝑖Cot + G

𝑖
Cot +

H
𝑖
Cot

𝑐2
+
X
𝑖
Cot

𝑐4
= 0. (49)
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All identities are Weyl-covariant with

DCot = − 1

Ω
D̂𝑡𝛾 − D̂𝑖𝜓

𝑖 , (50)

ECot = − 1

Ω
D̂𝑡𝜀 − D̂𝑖𝜒

𝑖 + Ψ𝑖 𝑗𝜉
𝑖 𝑗 , (51)

FCot = − 1

Ω
D̂𝑡 𝜁 − D̂𝑖𝑧

𝑖 + 𝑋𝑖 𝑗𝜉𝑖 𝑗 , (52)

WCot = − 1

Ω
D̂𝑡𝜏 + 𝑍𝑖 𝑗𝜉𝑖 𝑗 , (53)

and

I
𝑖
Cot =

1

2
D̂
𝑖𝛾 + 2 ∗𝜛 ∗𝜓𝑖 , (54)

G
𝑖
Cot =

1

2
D̂
𝑖𝜀 − D̂ 𝑗Ψ

𝑖 𝑗 + 2 ∗𝜛 ∗𝜒𝑖 + 1

Ω
D̂𝑡𝜓

𝑖 + 𝜓 𝑗𝜉𝑖 𝑗 , (55)

H
𝑖
Cot =

1

2
D̂
𝑖𝜁 − D̂ 𝑗𝑋

𝑖 𝑗 + 2 ∗𝜛 ∗𝑧𝑖 + 1

Ω
D̂𝑡 𝜒

𝑖 + 𝜒 𝑗𝜉𝑖 𝑗 , (56)

X
𝑖
Cot =

1

2
D̂
𝑖𝜏 − D̂ 𝑗𝑍

𝑖 𝑗 + 1

Ω
D̂𝑡 𝑧

𝑖 + 𝑧 𝑗𝜉𝑖 𝑗 . (57)

Interpreting the Cotton Carrollian descendants is possible along the same lines as for the or-

dinary Riemannian Cotton tensor. The main differences are that a Carrollian geometry has a fibre-

bundle structure and a wider freedom for its affine connection. This blurs to some extent the concept

of conformal flatness, which is the feature emerging when the Cotton vanishes in three-dimensional

Riemannian manifolds, and more options emerge.

Vanishing geometric shear From Eq. (15), when 𝜉𝑖 𝑗 = 0 the time dependence in the metric 𝑎𝑖 𝑗 is

factorized: 𝑎𝑖 𝑗 (𝑡, x) = e2𝜎 (𝑡 ,x) �̄�𝑖 𝑗 (x). Moreover, in two dimensions �̄�𝑖 𝑗 (x) is necessarily pro-

portional to 𝛿𝑖 𝑗 , hence choosing complex coordinates, the metric on the two-dimensional surface

S is recast as

dℓ2 =
2

𝑃2
d𝜁d𝜁 (58)

with 𝑃 = 𝑃(𝑡, 𝜁 , 𝜁) a real function. Consequently, a subset of the Carroll–Cotton tensors vanish,

as it is inferred from Eqs. (41), (44), (47): 𝜁 , 𝜏, 𝑧𝑖 and 𝑍𝑖 𝑗 .

Vanishing Carrollian vorticity In the Eq.(13), for ∗𝜛 = 0 we find :

dµ = φ ∧ µ. (59)

Using Fröbenius criterionwe are instructed thatµ is proportional to an exact form. We can choose

appropriately the time coordinate so that the Ehresmann connection b vanishes, leading to

µ = −Ω(𝑡, x)d𝑡. (60)
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The vanishing Carrollian Cotton tensors are now 𝛾, 𝜀, 𝜓𝑖 and Ψ𝑖 𝑗 (see (41), (42), (45)).

Vanishing Carrollian shear and vorticity This merges the two previous situations and the Carrol-

lian structure is of the form

dℓ2 =
2

𝑃(𝑡, 𝜁 , 𝜁)2 d𝜁d𝜁, µ = −Ω(𝑡, 𝜁 , 𝜁)d𝑡. (61)

Despite the factorization of the metric and of the clock form, not all Carroll–Cotton tensors are

zero. We find indeed from (30), (31),

R̂𝜁 =
1

Ω
𝜕𝑡𝜕𝜁 ln(Ω𝑃), Â = 0, K̂ = 2𝑃2𝜕𝜁 𝜕𝜁 ln(Ω𝑃) (62)

(R̂𝜁 is the complex conjugate of R̂𝜁 ), and using (43), (46) we obtain for the Carroll–Cotton:





𝜒𝜁 =
i
2
D̂𝜁 K̂ =

i
Ω2 𝜕𝜁

(
(Ω𝑃)2𝜕𝜁 𝜕𝜁 ln(Ω𝑃)

)

𝑋𝜁 𝜁 = iD̂𝜁 R̂𝜁 =
i
Ω

1

(Ω𝑃)2 𝜕𝜁
(
(Ω𝑃)2𝜕𝑡𝜕𝜁 ln(Ω𝑃)

)
, 𝑋𝜁 𝜁 = 0

(63)

with 𝜒𝜁 = �̄�𝜁 and 𝑋𝜁 𝜁 = �̄�𝜁 𝜁 . The tensors in (63) vanish if Ω𝑃 is constant. This result could

have been anticipated by noticing that the Papapetrou–Randers (see Eq. (9)) pseudo-Riemannian

ascendant of (61) is conformally flat provided Ω𝑃 be constant.

Concluding, in Carrollian geometry, “conformal flatness” concerns separately the base and the fibre

of the bundleM = R × S with distinct vanishing Carroll–Cotton tensors.

3 Carroll–Chern–Simons actions and transformation properties

General-covariant actions 𝑆 =
1

𝑐

∫
M
d𝑑+1𝑥

√−𝑔Lon Riemannian spacetimesM lead to covari-

antly conserved energy–momentum tensors 𝑇 𝜇𝜈 =
2√−𝑔

𝛿𝑆
𝛿𝑔𝜇𝜈

. When the action is furthermore

Weyl-invariant, 𝑇 𝜇𝜈 is Weyl-covariant of weight 𝑑 + 3 with 𝑇 𝜇𝜇 = 0 andD𝜇𝑇
𝜇𝜈

= ∇𝜇𝑇 𝜇𝜈 = 0.

The Chern–Simons action (4) is not invariant under frame transformations. The latter may be in-

duced by diffeomorphisms in coordinate frames or be more general (e.g., local Lorentz transformations

on orthonormal frames, when applicable):

θ → θ′ = Λθ, (64)

where θ is a columnmatrix encoding all θ𝜇s andΛ a square matrix with entriesΛ𝜇𝜈 . With this, genuine

tensors are invariant — their components transform with Λ
𝜇
𝜈 and Λ

−1𝜇
𝜈 though. The torsion (if any)

and curvature two-forms transform homogeneously

T
′
= ΛT, R

′
= ΛRΛ−1, (65)
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whereas the connection one-form acquires an extra non-homogeneous piece:10

ω′
= Λ (ω − X)Λ−1, X = Λ−1dΛ. (66)

Using

dω′
= Λ (dω + X ∧ω +ω ∧ X − X ∧ X)Λ−1 (67)

we find generally

Tr

(
ω′ ∧ dω′ + 2

3
ω′ ∧ω′ ∧ω′

)
= Tr

(
ω ∧ dω + 2

3
ω ∧ω ∧ω

)
+ dTr (X ∧ω) − 1

3
Tr (X ∧ dX) .

(68)

Let us focus on infinitesimal transformations of the form

Λ = 1 + Ξ ⇒ X = dΞ. (69)

Under the latter, the Chern–Simons action (4) transforms as

𝛿Ξ𝑆CS =
1

2𝑐

∮

𝜕M

Tr (dΞ ∧ω) = − 1

2𝑐

∮

𝜕M

Tr (Ξdω) , (70)

where we have assumed that 𝜕𝜕M = ∅. The last expression can be alternatively expressed in terms of the

curvatureR = dω+ω∧ω, and provides the anomaly, be it gravitational, Lorentz or mixed, depending

on the frame and the transformation performed.

In viewof theCarrollian applications, wewould like to elaborate on the behaviour (70) in Papapetrou–

Randers coframe
{
θ0̂ = −𝑐µ, d𝑥𝑖

}
, forCarrollian diffeomorphismsmapping {𝑡, x} onto {𝑡′(𝑡, x), x′(x)}.

This guarantees the form stability of the metric (9) and of the time-and-space splitting advertised earlier.

Under these transformations we find— see footnote 1:

Λ
0̂

0̂
= 1, Λ

0̂
𝑗 = 0, Λ

𝑖

0̂
= 0, Λ

𝑖
𝑗 = 𝐽

𝑖
𝑗 =

𝜕𝑥𝑖′

𝜕𝑥 𝑗
. (71)

Carrollian diffeomorphisms are generated by vector fields ξ = 𝜉 0̂(𝑡, x) 1

𝑐Ω
𝜕𝑡 + 𝜉𝑖 (x)�̂�𝑖 so that

Ξ
0̂

0̂
= 0, Ξ

0̂
𝑗 = 0, Ξ

𝑖

0̂
= 0, Ξ

𝑖
𝑗 = 𝜕 𝑗𝜉

𝑖 . (72)

With this, in the present framework, the Chern–Simons variation (70) reads:

𝛿ξ𝑆CS = − 1

2𝑐

∮

𝜕M

𝜕 𝑗𝜉
𝑖dω 𝑗

𝑖
. (73)

10In terms of connection coefficients the transformation reads: Γ𝜌′𝜇𝜈 = Λ
−1𝛼

𝜇Λ
−1𝛽

𝜈Λ
𝜌
𝛾Γ
𝛾

𝛼𝛽
− Λ

−1𝛼
𝜇e𝛼

(
Λ
𝜌
𝛾

)
Λ
−1𝛾

𝜈 .

For coordinate-frame transformations induced by diffeomorphisms,Λ is the Jacobian matrix J with entries 𝜕𝑥
𝜇′

𝜕𝑥𝜈
.
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Assuming a Levi–Civita connection (10), (11), and using Eq. (16), Eq. (73) is recast as:

𝛿ξ𝑆CS = −𝑐
2

∮

𝜕M

𝜕 𝑗𝜉
𝑖d

(
𝜛
𝑗

𝑖
µ
)
− 1

2𝑐

∮

𝜕M

𝜕 𝑗𝜉
𝑖dω̂ 𝑗

𝑖
. (74)

Being topological, the anomalous contributions (74) neither compromise the covariant conservation

of the Cotton tensor nor spoil its conformal properties. Regarding this last statement, one should no-

tice that Weyl rescalings are also anomalous. In the Papapetrou–Randers frame, using the Levi–Civita

connection (21) for infinitesimal transformations B = 1 + 𝜆, we find:

𝛿𝜆𝑆CS =
1

𝑐

∮

𝜕M

d𝑥𝑖 ∧
(
1

2
d𝑎𝑖 𝑗𝑎

𝑗𝑘 �̂�𝑘𝜆 +
(
𝜛𝑖 𝑗d𝑥

𝑗 + 𝜑𝑖µ
) 1

Ω
𝜕𝑡𝜆

)
. (75)

A more detailed analysis of the associated boundary dynamics should shed some light on the Weyl

anomaly, on a similar fashion as in [40].

Consider now a dynamical system on a Carrollian manifold M = R × S described with an

action 𝑆 =

∫
M
d𝑡 d𝑑𝑥

√
𝑎 ΩL, functional of 𝑎𝑖 𝑗 , Ω and 𝑏𝑖 . The associated Carrollian momenta,

which replace the corresponding relativistic energy–momentum tensor 𝑇 𝜇𝜈 are now (see [41, 42])





Π
𝑖 𝑗
=

2√
𝑎 Ω

𝛿𝑆
𝛿𝑎𝑖 𝑗

Π
𝑖
=

1√
𝑎 Ω

𝛿𝑆
𝛿𝑏𝑖

Π = − 1√
𝑎

(
𝛿𝑆
𝛿Ω

+ 𝑏𝑖
Ω

𝛿𝑆
𝛿𝑏𝑖

)
.

(76)

These are the energy–stress tensor, the energy current and the energy density. Invariance under Carrollian

diffeomorphisms impose two conservation equations [37], respectively in time and space directions

(
1

Ω
𝜕𝑡 + 𝜃

)
Π +

(
∇̂𝑖 + 2𝜑𝑖

)
Π
𝑖 + Π

𝑖 𝑗 �̂�𝑖 𝑗 = 0, (77)

(
∇̂ 𝑗 + 𝜑 𝑗

)
Π
𝑗

𝑖
+ 2Π

𝑗𝜛 𝑗𝑖 + Π𝜑𝑖 +
(
1

Ω
𝜕𝑡 + 𝜃

)
𝑃𝑖 = 0, (78)

involving a fourth Carrollian momentum dubbedmomentum current, 𝑃𝑖 . In the present formalism based

on the Carrollian data (5) and (7) the latter is not defined directly through a variation of the action with

respect to some conjugate variable. It is however inevitable, and this can be verified whenever a micro-

scopic action is available in terms of fundamental fields as, e.g., in [43].11

When the Carrollian action is Weyl-invariant Π𝑖 𝑗 , Π𝑖 , 𝑃𝑖 and Π are Weyl-covariant with weights

𝑑 + 3, 𝑑 + 2, 𝑑 + 2 and 𝑑 + 1, and obey the trace condition:

Π
𝑖 𝑗
= Υ

𝑖 𝑗 + Π

𝑑
𝑎𝑖 𝑗 , Υ

𝑖
𝑖 = 0. (79)

11In fact, one could chose a different description for the degenerate metric dℓ2, where d𝑥𝑖 are traded for d𝑥𝑖 − 𝑤𝑖d𝑡. The
Carrollian momenta conjugate to the variables 𝑤𝑖 would then be 𝑃𝑖 — see e.g. [44].
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Equations (77) and (78) are thus traded for

1

Ω
D̂𝑡Π + D̂𝑖Π

𝑖 + Υ
𝑖 𝑗𝜉𝑖 𝑗 = 0, (80)

1

𝑑
D̂ 𝑗Π + D̂𝑖Υ

𝑖
𝑗 + 2Π

𝑖𝜛𝑖 𝑗 +
(
1

Ω
D̂𝑡𝛿

𝑖
𝑗 + 𝜉𝑖 𝑗

)
𝑃𝑖 = 0. (81)

Expanding the Chern–Simons action (4) in powers of 𝑐 in the Papapetrou–Randers background

(9) equipped with Levi–Civita connection (10) and (11), delivers four distinct Carrollian avatars of

the Chern–Simons dynamics,

𝑆CS = 𝑐
3𝑆

pm
CCS + 𝑐𝑆

m
CCS +

1

𝑐
𝑆eCCS +

1

𝑐3
𝑆
pe
CCS, (82)

possessing four sets of Weyl-covariant Carrollian momenta of the type (76), (79), obeying four sets of

conformal Carrollian conservation equations (80), (81). As we have already anticipated, these Carroll–

Chern–Simons actions are in general anomalous under Carrollian diffeomorphisms and Weyl transfor-

mationswith topological anomalies. TheCarrollianmomenta andCarrollian conservation equations are

precisely those recovered in Sec. 2 when decomposing the Riemannian Cotton tensor and its divergence.

This is summarized as follows.

Paramagnetic Carroll–Chern–Simons This stems out of the 𝑐3-order term in the Chern–Simons

action:

𝑆
pm
CCS = 4

∫

M

d𝑡 d2𝑥
√
𝑎 Ω ∗𝜛3. (83)

The associated momenta are Π = 2𝛾 in (41), Π𝑖 = 2𝜓𝑖 in (42), Υ𝑖 𝑗 = 0 and Eqs. (80), (81) are now

DCot = 0, I
𝑖
Cot = 0, (84)

see (50) and (54). From these equations and comparison with (81) we infer that the momentum 𝑃𝑖

vanishes. For the paramagnetic Carroll–Chern–Simons action12 𝛿ξ𝑆
pm
CCS = 0 in agreement with

(74), where no term of order 𝑐3 is present. This action is also manifestly Weyl-invariant, in line

with (75).

Magnetic Carroll–Chern–Simons The 𝑐-order provides

𝑆mCCS =
1

2

∫

M

µ ∧
(
ω̂𝑖

𝑗 ∧ d𝑥𝑘D̂𝑘 ∗𝜛 + ∗𝜛dω̂𝑖
𝑗

)
𝜂
𝑗

𝑖
+
∫

M

d𝑡 d2𝑥
√
𝑎 Ω

[
∗𝜛∇̂𝑖𝜑𝑖 − 𝜑𝑖D̂𝑖 ∗𝜛

]
.

(85)

Now Π = 2𝜀 in (41), Π𝑖 = 2𝜒𝑖 in (43), Υ𝑖 𝑗 = −2Ψ𝑖 𝑗 in (45) and Eqs. (80), (81) are

ECot = 0, G
𝑖
Cot = 0, (86)

12The variation vanishes for covariant actions based on genuine scalarsΦ as 𝑆[Φ] =
∫
M

d𝑡 d2𝑥
√
𝑎 ΩΦ.
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see (51), (55) and (81), from which 𝑃𝑖 = 2𝜓𝑖 , Eq. (42). The Carrollian-diffeomorphism transforma-

tion of (85) is performed with the help of the rules for the connection (66) and its exterior differ-

ential (67) in the infinitesimal version (69) — µ, φ and ∗𝜛 are invariant, whereas 𝜂 𝑗
𝑖
transforms

ordinarily. Only the first integral contributes with

𝛿ξ𝑆
m
CCS = −1

2

∮

𝜕M

𝜕 𝑗𝜉
𝑖d

(
𝜛
𝑗

𝑖
µ
)
. (87)

Unsurprisingly this expression coincides with the magnetic (𝑐) order in (74).

Although the action (85) contains explicitly the Carrollian Weyl connection φ, it turns out to be

Weyl-invariant, as expected from (75), which features only the order 1/𝑐.

Electric Carroll–Chern–Simons The order 1/𝑐 is as follows:

𝑆eCCS =
1

2

∫

M

Tr

(
ω̂ ∧ dω̂ + 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
+
∫

M

d𝑡 d2𝑥
√
𝑎 Ω

[
𝜑𝑖𝜂𝑘𝑙∇̂𝑘 �̂�𝑙𝑖

+ ∗𝜛𝜂𝑘𝑙𝜂𝑖 𝑗 �̂�𝑘𝑖 �̂�𝑙 𝑗 − ∗𝜛
(
1

Ω
�̂�𝑡 �̂�

𝑖
𝑖 + 2�̂�𝑖 𝑗 �̂�

𝑖 𝑗

)
+ �̂�𝑖𝑘𝜂

𝑘𝑙
(
∇̂(𝑙𝜑𝑖) + 𝜑𝑙𝜑𝑖

)]
(88)

with Π = 2𝜁 in (41), Π𝑖 = 2𝑧𝑖 in (44), Υ𝑖 𝑗 = −2𝑋 𝑖 𝑗 in (46) and Eqs. (80), (81) are now

FCot = 0, H
𝑖
Cot = 0, (89)

see (52) and (56). Comparing with Eq. (81) we find themomentum 𝑃𝑖 = 2𝜒𝑖 , given in (43). As for the

magnetic case, the electric Carroll–Chern–Simons action transforms under Carrollian diffeomor-

phisms. Only the first integral in (88) is anomalous and its transformation is readily determined

using the generic expression (73) with the connection ω̂:

𝛿ξ𝑆
e
CCS = −1

2

∮

𝜕M

𝜕 𝑗𝜉
𝑖dω̂ 𝑗

𝑖
= −1

2

∮

𝜕M

𝜕 𝑗𝜉
𝑖
R̂
𝑗

𝑖
+ 1

2

∮

𝜕M

𝜕 𝑗𝜉
𝑖ω̂

𝑗

𝑘
∧ ω̂𝑘

𝑖 . (90)

This agrees with the order-1/𝑐 term in the variation (74), which is indeed the electric order. Under

a Weyl rescaling, the behaviour of (88) is

𝛿𝜆𝑆
e
CCS =

∮

𝜕M

d𝑥𝑖 ∧
(
1

2
d𝑎𝑖 𝑗𝑎

𝑗𝑘 �̂�𝑘𝜆 +
(
𝜛𝑖 𝑗d𝑥

𝑗 + 𝜑𝑖µ
) 1

Ω
𝜕𝑡𝜆

)
, (91)

also read off in (75), which contains a single order in 𝑐. This boundary term does not affect the

field equations, which are Weyl-covariant.

Paraelectric Carroll–Chern–Simons Finally, the order 1/𝑐3 gives

𝑆
pe
CCS = −

∫

M

d𝑡 d2𝑥
√
𝑎 𝜂𝑘𝑙 �̂�𝑖𝑘 �̂�𝑡 �̂�𝑖𝑙 = −

∫

M

d𝑡 d2𝑥
√
𝑎 ∗𝜉𝑖 𝑗D̂𝑡𝜉𝑖 𝑗 (92)
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leading to Π = 2𝜏 in (41), Π𝑖 = 0 and Υ𝑖 𝑗 = −2𝑍 𝑖 𝑗 in (47). Equations (80) and (81) reduce to

WCot = 0, X
𝑖
Cot = 0, (93)

see (53) and (57), which exhibit using (81) 𝑃𝑖 = 2𝑧𝑖 , Eq. (44). In the case at hand the action is Carroll-

diffeomorphism invariant, hence 𝛿ξ𝑆
pe
CCS = 0 in agreement with (74), which does not feature any

order-1/𝑐3 term. It is also Weyl-invariant.

The present analysis calls for several comments. We have reached four Carroll–Chern–Simons

actions following a precise guideline, which consists in choosing a Papapetrou–Randers back-

ground for a relativistic theory that enables a subsequent Carrollian reduction organized in powers of 𝑐.

The names given to the four Carroll–Chern–Simons actions follow the pattern already used for the scalar

field or the Einstein–Hilbert action in Refs. [38, 39, 43–45].13 As pointed out in the introduction, besides

electric and magnetic actions, non-dynamical replicas sometimes appear. This phrasing seems less ap-

propriate in the present context because we are dealing anyhow with topological actions, and the terms

paramagnetic and paraelectric are better qualified. It should be added in passing that the various pat-

terns used for reaching Carrollian actions — algebra design, algebra gauging, strict zero-𝑐 limit or our

reduction method— sometimes deliver different though equally consistent results (see also e.g. [47–51]).

Specific approaches for the search of Carrollian topological theories might also be devised, like Car-

rollian analogues of topological Riemannian terms [52]. In our scheme, the topological nature of the

Carroll–Chern–Simons descendants seems pledged by the original pseudo-Riemannian Chern–Simons

action. A Hamiltonian analysis would be suitable to address this aspect, together with the counting of

degrees of freedom in every instance, but it is lies beyond the scope of the present note.

A noticeable feature of ours is that all but the paraelectric dynamics break off-shell local Carroll-

boost invariance because of non-vanishing energy fluxes Π𝑖 . The latter emerge in the expansion of

the “heat current” 𝐶 0̂𝑖 and originate from the original relativistic theory.14 Examples of this sort are

numerous. Themagnetic Carrollian scalar dynamics naturally accommodates such a current, as opposed

to the electric instance, where it is absent [43]. One may choose to discard it at the expense of facing a

constrained theory [44, 45]. When the Carrollian manifold is the null-infinity conformal hypersurface

in asymptotically flat spacetimes, such currents are unavoidably generated by outgoing (or incoming)

gravitational radiation [18–20]. No alternative exists in those cases, other than accepting the physical

consequences, which are the non-conservation of charges [19, 37].

Extremums of the pseudo-Riemannian Chern–Simons action have vanishing Cotton tensor. These

are conformally flat three-dimensional pseudo-Riemannian spacetimes. In the Carrollian frame-

work, the nature of the extremums is different for each of the four available dynamics. We will not

perform a systematic resolution of the equations in each instance, but rather provide some generic fea-

13It was suggested in [46] to use type I and II for electric and magnetic, respectively; an alternative option could be time-like
and space-like.

14Not every Lorentz-boost-invariant relativistic theory is expected to lead to a Carroll-boost-invariant Carrollian relative,
as explained in the footnote 40 of [19].
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tures.

The paramagnetic Carroll–Chern–Simons dynamics (83) requires geometries with 𝛾 = 𝜓𝑖 = 0,

hence (using (41), (42)) with vanishing vorticity ∗𝜛. These geometries are equipped with a clock form

(60). Since the dynamics at hand is Weyl-invariant, Ω can be set to 1 by a Weyl transformation, which

further simplifies the clock form to µ = −d𝑡, thus leading to zero 𝜑𝑖 and Â. The fibre of the Carrollian

manifold is trivial but the basis metric 𝑎𝑖 𝑗 (𝑡, x) is utterly arbitrary.
Extremums of the magnetic Carroll–Chern–Simons action (85) are reached with 𝜀 = 𝜓𝑖 = Ψ

𝑖 𝑗
=

𝜒𝑖 = 0. The three first equations are satisfied with ∗𝜛 = 0 (see (41), (42) and (45)). This might not be

the most general solution, but it has the virtue of setting 𝑏𝑖 = 0 and �̂�𝑖 = 𝜕𝑖 , and as explained for the

paramagnetic action, Ω = 1 and 𝜑𝑖 = Â = 0. The last magnetic equation 𝜒𝑖 = 0 imposes thus (see

(43)) K̂ = �̂� = 𝐾 be a function of time only. This is a severe constraint on the metric 𝑎𝑖 𝑗 (𝑡, x), which
admits non trivial solutions besides those reached by introducing a factorized time dependence on a

two-dimensional metric with constant curvature having thus zero shear.15

The paraelectric instance (92) selects 𝜏 = 𝑧𝑖 = 𝑍 𝑖 𝑗 = 0. Using (41), (44) and (47) a typical solution

emerges with zero shear 𝜉𝑖 𝑗 , corresponding to three-dimensional Carrollian bundles with a base metric

proportional to the Euclidean metric as in (58), and arbitrary clock form and Ehresmann connection.

Finally, the electric Carroll–Chern–Simons dynamics (88) leads to 𝜁 = 𝑧𝑖 = 𝑋 𝑖 𝑗 = 𝜒𝑖 = 0. The two

first equations are satisfied with 𝜉𝑖 𝑗 = 0 (see Eqs. (41), (44))—we do not exclude less restrictive solutions.

This simplifies the base metric as in the paraelectric case, but further conditions remain stemming out

of (43) and (46). In holomorphic coordinates defined in (58) these conditions read:





𝜒𝜁 =
i
2
D̂𝜁 K̂ + 1

2
D̂𝜁 Â − 2 ∗𝜛R̂𝜁 = 0

𝑋𝜁 𝜁 = iD̂𝜁 R̂𝜁 = 0,
(94)

and set an interplay between the base and the fibre. Non-trivial solutions exist as the time-independent

instance with Ω = Ω(𝜁, 𝜁), 𝑏𝑖 = 𝑏𝑖 (𝜁, 𝜁) and 𝑎𝑖 𝑗 = 𝑎𝑖 𝑗 (𝜁, 𝜁). There 𝜃 = 0, 𝜑𝜁 = 𝜕𝜁 lnΩ, R̂𝜁 = 0,

Â = 0, 𝑋𝜁 𝜁 = 0, while ∗𝜛 =
iΩ𝑃2

2

(
𝜕𝜁

𝑏𝜁
Ω

− 𝜕𝜁
𝑏𝜁
Ω

)
and 𝜒𝜁 =

i
2Ω2 𝜕𝜁

(
Ω

2K̂

)
. The vanishing of the

latter delivers the family of shear-free Carrollian manifolds that define the null boundaries of stationary

algebraically special asymptotically flat spacetimes, as displayed in detail in Refs. [18, 19].

To conclude this section, we observe that for Carrollianmanifolds with closed clock formµ (i.e. van-

ishing vorticity and acceleration, following (13)), the paramagnetic and magnetic Carroll–Chern–Simons

actions vanish, whereas the electric action simplifies as 𝑆eCCS =
1

2

∫
M
Tr

(
ω̂ ∧ dω̂ + 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
. De-

manding the absence of torsion, Eq. (27), makes furthermore the paraelectric vanish, and trivializes to

some extent the electric action by removing time derivatives, and effectively downgrading the geometry

to its two-dimensional traits with no time dependence.

15An example is dℓ2 = 𝑘 (𝑡) e𝑏 (𝑦)d𝑥2 − 1

4𝐾 (𝑡 ) (𝑏
′ (𝑦))2 d𝑦2 with arbitrary 𝑏(𝑡), positive 𝑘 (𝑡) and 𝐾 (𝑡) < 0. For this metric

the shear does not vanish.
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4 In short

In the present note, we have considered strong Carroll structures equipped with a Carrollian connec-

tion designed to respect the time-and-space splitting inferred by the chosen Papapetrou–Randers frame.

In this setup, we have reached four distinct Carroll–Chern–Simons actions, expanding the original as-

cendant pseudo-Riemannian Chern–Simons in powers of 𝑐, which amounts to performing a reduction

under Carrollian diffeomorphisms. The variation of these actions with respect to the Carrollian geo-

metric data, i.e., the metric and the clock form, yield four sets of three Carrollian Cotton tensors, which

obey Carrollian conservation equations.

Two out of the four Carroll–Chern–Simons actions are truly invariant under Carrollian diffeomor-

phisms and Weyl transformations: the paramagnetic and paraelectric avatars. Extremizing the former

leads to Carrollian manifolds with trivial fibres, while the extremums of the latter capture Carrollian

geometries with conformally Euclidean spatial sections and arbitrary clock forms.

The magnetic and electric actions are more intruiguing. At the first place Carroll diffeomorphisms

are broken by boundary terms, and so are Weyl transformations for the electric case. In the pseudo-

Riemannian framework, and from a holographic perspective, these phenomena are likened to anoma-

lies. Our understanding of Carrollian dynamics is still too poor, let alone holography on boundaries of

Carrollian spacetimes, to venture into such interpretations. The question is however relevant.

The magnetic extremums embrace paramagnetic Carrollian manifolds with purely time-dependent

base curvature. Examples of such spaces do exist, but conceivable applications remain unexplored. Ex-

tremizing the electric action reveals Carrollian spacetimes with conformally Euclidean spatial sections

and a non-trivial interplay between the base and the fibre. These geometries are tailor-made for describ-

ing null infinity in Ricci-flat four-dimensional spacetimes.

Along with an effort to further understand the general solutions, the properties and the applications

of the Carroll–Chern–Simons actions at hand, one should not dismiss the importance of generalizing

our approach, possibly by consideringmore general Carrollian connections, or alternative techniques for

disclosing Carrollian dynamics. The physics at null infinity of asymptotically flat spacetimes can provide

a possible playground for challenging potential findings, another being that of black-hole horizons, as

already mentioned. Among the standard tools for analyses of this sort, one finds the search for charges

and conservation, encoded in the (conformal) Carroll group.
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1 Introduction

The solution space of Einstein’s equations and the corresponding asymptotic symmetries

are severely altered by the presence of a cosmological constant Λ.1 Firstly, asymptotically

flat spacetimes support incoming and outgoing gravitational radiation, which are harder

to accommodate in asymptotically anti-de Sitter — unless leaky boundary conditions are

assumed [2]. Secondly, the number of free functions on the boundary characterizing the

solution space is finite for non-zero Λ and infinite for Λ = 0. Hence, investigating the

holographic description of Ricci-flat spacetimes from the limit of Einstein spacetimes with

non-vanishing cosmological constant seems at best a futile task, limited to special cases

like three spacetime dimensions.

The purpose of the present work is to reconsider this statement in four dimensions

and show that expanding the anti-de Sitter energy-momentum tensor in Laurent series in

k2 = −Λ/3, one recovers the full Ricci-flat solution space in a 1/r-expansion together with

its evolution dynamics captured in flux-balance equations.

In order to perform the above analysis, a choice of gauge is required, as usual. Baring in

mind potential further developments towards flat holography, it is desirable to privilege null

infinity in the asymptotically flat instance, which plays the role of a conformal boundary

hosting all independent functions of the solution space, often referred to as degrees of

freedom in the following. The null boundary is a three-dimensional Carrollian manifold

and it is therefore convenient to select a bulk gauge making the corresponding boundary

general and Weyl covariance manifest. This has prompted to choose a modified version of

the Newman-Unti gauge [3]. This gauge is built upon an incomplete gauge fixing that is

expected to lead to an enhancement of the asymptotic symmetries with respect to more

customary gauges like the Bondi one, in analogy with what has been observed in three bulk

1See [1] for a recent review and further reading suggestions.
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dimensions in several examples of incomplete gauge fixings [4–13]. We will not pursue this

direction here, although it has attracted recent interest — see, e.g., [14, 15] where in the

latter reference the gauge under consideration was dubbed “differential Newman-Unti” —

and we will focus on the comparison between the space of solutions of Einstein’s equations

in the asymptotically anti-de Sitter and flat cases in the chosen gauge. Reference [3] has

set the stage for the gauge we will describe here, although it was originally circumscribed

to the restricted class of algebraically special solutions (for AdS, see [16–22]).

In a nutshell, the starting point is the anti-de Sitter case, where the solution space

admittedly consists of the boundary metric and the boundary energy-momentum tensor,

which is covariantly conserved as a consequence of bulk Einstein’s equations. The ana-

logue of the “Bondi shear” (sometimes referred to as “dynamical shear” later) is not an

independent piece of data because Einstein’s equations require it be proportional with a

k-dependent factor to the geometric shear of the gauge congruence — already part of the

solution space. We move to the asymptotically flat instance by sending k to zero, expanding

the energy-momentum tensor in powers of k2, trading the geometric shear for the dynami-

cal shear along the lines of [23], and requiring the bulk line element to remain finite. This

imposes further evolution equations for the new degrees of freedom at every order in the

radial 1/r expansion, which supplement the energy-momentum conservation in the zero-k

limit. The resulting infinite set defines the flux-balance equations, which can otherwise be

obtained directly by solving Einstein’s equations without cosmological constant.

Besides reaching the correct boundary Ricci-flat dynamics and tracing the AdS ori-

gin of the asymptotically flat solution space, the method presented here delivers Carroll-

covariant flux-balance equations revealing the entire freedom for the choice of the boundary

Carrollian geometry. The pattern involves the general and Weyl-covariant gauge mentioned

earlier, which naturally incorporates the Cotton tensor of the anti-de Sitter boundary, or

its Carrollian emanations in the asymptotically flat situation (see [24]). This tensor carries

information on the gravitational radiation and plays a pivotal role for the description of

magnetic charges [25].

We begin our presentation by defining the covariant Newman-Unti gauge for asymp-

totically anti-de Sitter spaces. Along the way, we review its boundary Weyl covariance, as

well as a useful decomposition of the boundary energy-momentum and Cotton tensors. We

then provide an on-shell expression of the line element up to order 1/r2, where r is a null

radial coordinate, infinite at the conformal boundary. The flat limit, following the prescrip-

tion summarized above, is carried out in the upcoming section, after a precise setting of the

boundary Carrollian structure consecutive to the zero-Λ limit. We show how the new de-

grees of freedom resulting from the expansion of the anti-de Sitter energy-momentum tensor

are sorted out, how they enter the metric and how flux-balance equations are reached. Two

appendices complement the main exposition, bringing about the necessary tools of Carrol-

lian geometry in arbitrary frames (strong Carroll structures, connections, curvatures) as

well as showing how such structures can be attained from pseudo-Riemannian geometries

at vanishing speed of light. A presentation of the Carrollian descendants of the Cotton

tensor closes this article.
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2 Einstein spacetimes in covariant Newman-Unti gauge

Choosing a boundary-covariant gauge. Due to the Fefferman-Graham ambient met-

ric construction [26–28], asymptotically locally anti-de Sitter four-dimensional spacetimes

are determined by a set of independent boundary data, namely a three-dimensional metric

ds2 = gµνdxµdxν and a rank-two tensor T = Tµνdxµdxν , symmetric (Tµν = Tνµ), traceless

(Tµ
µ = 0) and conserved:2

∇µTµν = 0. (2.1)

This construction is reached by setting a homonymous gauge, imposing fall-offs and solving

Einstein’s equations order by order in powers of the radial space-like coordinate.3 At every

order in this expansion, the line element is determined by a tensor G
(s)
µν , fixed by Einstein’s

equations in terms of gµν = G
(−2)
µν , Tµν = 3k

16πG
G

(1)
µν and their derivatives (here the conformal

boundary is located at ρ → +∞):

ds2
Einstein =

dρ2

(kρ)2
+
∑

s≥−2

1

(kρ)s
G(s)

µν (x)dxµdxν . (2.2)

The conservation (2.1) is itself a consequence of Einstein’s dynamics.

Fefferman-Graham’s gauge is covariant with respect to the three-dimensional pseudo-

Riemannian boundary M . It can also be modified so as to make it Weyl-covariant [30–33].

However, it does not admit a smooth vanishing-k limit. Alternative gauges are Bondi or

Newman-Unti [34–36], valid regardless of the cosmological constant, but not covariant with

respect to the boundary. Let us consider for concreteness the Newman-Unti gauge with

radial coordinate r.4 The line element reads:

ds2
bulk =

V

r
du2 − 2dudr +Gij

(

dxi − U idu
) (

dxj − U jdu
)

, (2.3)

where V , Ui and Gij are functions of all coordinates. They are treated as power series of

r, possibly including logarithms,5 with coefficients depending on boundary coordinates x:

the retarded time u and the angles x.

The bulk metric (2.3) is stable neither under boundary diffeomorphisms x → x′, nor

under Weyl rescalings r → rB(x), and these are the features we would like to implement in

a “covariantized” version of the gauge at hand. To this end, we trade −k2du for a boundary

one-form u = uµdxµ, which is an invariant object dual to a time-like vector field normalized

at −k2. As it will become manifest in section 3, where the timelike conformal boundary

2The covariant derivative ∇ stands for the boundary Levi-Civita connection. Indices µ, ν, . . . ∈ {0, 1, 2}

fill in the boundary natural frame, whereas i, j, . . . ∈ {1, 2} are associated with spatial sections.
3Residual symmetries constrain the possible terms entering each order in the radial expansion, thus

simplifying the process of solving Einstein’s equations. The constraints imposed by the boundary Weyl

symmetry were studied in the Fefferman-Graham gauge in [29] and will play an important role too in the

covariant Newman-Unti gauge discussed in the following.
4Both in Bondi and Newman-Unti, ∂r is tangent to a null geodesic congruence. In Newman-Unti gauge

this congruence is affinely parameterized, in contrast to Bondi. This enables to parallelly transport a

canonical null tetrad and make contact with Newman-Penrose formalism [37].
5Logarithms also appear in the Fefferman-Graham gauge when the boundary dimension is even [38, 39].
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will become a null manifold equipped with a Carrollian structure in the limit k → 0, our

parameterization has been chosen such that k =
√

−Λ/3 plays the role of effective boundary

velocity of light. Therefore, the previous substitution amounts to choosing a time-like

boundary congruence that could be interpreted as a hydrodynamic velocity field, if the

boundary energy-momentum tensor were associated with a fluid. This is not necessarily

so because the hydrodynamic regime requires constitutive relations, which are not obeyed

everywhere in the Einstein solution space. The subspace where this happens is the realm

of fluid/gravity correspondence [16, 17]. For convenience, we will nonetheless refer to u as

the “velocity field” and decompose the energy-momentum tensor accordingly.

Introducing a boundary congruence provides also the appropriate tool for addressing

Weyl invariance. In the spirit of the Fefferman-Graham ambient construction, the bulk

geometry should be insensitive to a Weyl rescaling of the boundary metric (weight −2)

and of the boundary velocity form (weight −1)

ds2 →
ds2

B2
, u →

u

B
, (2.4)

which should be reabsorbed into a redefinition of the radial coordinate: r → rB. This

requires to introduce a Weyl connection one-form A = Aµdxµ transforming as

A → A − d ln B, (2.5)

and suggests the following amendment to the Newman-Unti gauge

−dudr →
u

k2
(dr + rA), (2.6)

which is indeed Weyl-invariant, as well as being boundary-general-covariant.

We can follow the suggested pattern and recast (2.3), ignoring the logarithms,6 avoiding

the demarcation of angular and time directions, and reorganizing the expansion in terms

of boundary tensors according to their transversality with respect to the congruence u as

well as their conformal weights:

ds2
bulk = 2

u

k2
(dr + rA) + r2ds2 + rCµνdxµdxν +

1

k4
Fµνdxµdxν

+
∞
∑

s=1

1

rs

(

f(s)
u2

k4
+ 2

u

k2
f(s)µdxµ + f(s)µνdxµdxν

)

. (2.7)

In this expression f(s) are boundary scalars, f(s)µ boundary transverse vectors, f(s)µu
µ = 0,

and f(s)µν boundary symmetric and transverse tensors, f(s)µνu
µ = 0. Their conformal

weights are s + 2, s + 1 and s. The r2 term defines the boundary metric ds2, which is a

6Logarithms of the radial coordinate might or might not be required depending on the gauge chosen to

investigate the space of solutions. In some cases, like, e.g., when choosing the Fefferman-Graham gauge

in odd spacetime dimensions, they are necessary to reconstruct the full solution space. In other cases,

like, e.g., in asymptotically flat spacetimes in the Bondi gauge, they describe an independent sector of the

solution space that might be added or not to the polynomial expansion. Our case fits in the latter class and

performing a thorough investigation of the larger space of solutions including logarithms and analyzing its

interplay with residual symmetries (see, e.g., [2, 23, 40–42]) is not part of our present agenda.
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free piece of data in the spirit of [9–11, 13, 23]. As long as the bulk metric (2.7) is off-shell,

the boundary symmetric tensors Fµν (weight 0) and Cµν (weight −1) have no reason to be

transverse with respect to u. The latter is the shear of the affine null geodesic congruence

tangent to ∂r aka “Bondi” shear.7 Imposing Einstein’s equations will determine all the

boundary tensors introduced so far in terms of basic independent functions that define the

solution space. As we will see, this set of functions includes u as well as the boundary

metric ds2 and a rank-two symmetric, traceless and conserved tensor coinciding with the

energy-momentum tensor of the Fefferman-Graham gauge.

Before moving on to Einstein’s equations, a few comments are worth making to ap-

preciate the covariant Newman-Unti gauge (2.7). Introducing a normalized but otherwise

arbitrary boundary congruence amounts to the on-set of two degrees of freedom, i.e. to a re-

laxation of the original Newman-Unti gauge fixing. Incomplete gauge fixings might produce

enhancements of asymptotic symmetries and materialize in extra charges — not always in-

tegrable or conserved. They have been investigated mostly in three bulk dimensions [4–13],

where the introduction of an arbitrary congruence8 combined with the freedom of choosing

the boundary metric restores the boundary local Lorentz symmetry and its realization as

bulk diffeomorphisms, augmenting the asymptotic symmetry group [9–13]. Following [10],

an elegant way of taming this information without redundancy is to express the boundary

metric in an arbitrary orthonormal Cartan coframe,9

ds2 = ηABθ
AθB = −

(

θ0̂
)2

+ δabθ
aθb, (2.8)

and set

u = −kθ0̂. (2.9)

The dual frame vectors are {eA} =
{

e0̂, ea

}

with θB (eA) = δB
A . A possible parameterization

of the frame, which we will not use explicitly though, is displayed in eqs. (A.41), (A.42)

and (A.43).

We will not delve into the analysis of asymptotic symmetries in the present note.

Due to the partial relaxation of the gauge this complementary task is more intricate and

deserves a separate and thorough treatment [9–15].

In order to proceed with the covariant Newman-Unti gauge (2.7) and impose Einstein’s

equations, it is desirable to list the available tensors with the correct conformal weights at

7Strictly speaking, the Bondi shear is defined in the BMS gauge (in the expansion Gij = r2qij + O(r)

the two-dimensional metric qij is fixed to be the round sphere) with a prominent role in the asymptotically

flat instance. Normally it is related to the one introduced here by an inhomogeneous transformation.
8Whenever the energy-momentum tensor empowers a fluid interpretation, the conruence at hand is

interpreted as the fluid lines and its arbitrariness portrays the relativistic hydrodynamic-frame invari-

ance [43–45]. This feature is however strictly local because the bulk diffeomorphisms associated with the

boundary hydrodynamic-frame transformations are possibly charged. These properties have been thor-

oughly investigated in two boundary dimensions [9–11, 13] and would undoubtedly deserve a generalization

in higher dimensions, which is outside our scope here. It would better fit a broader study where frame

orthonormality would be downsized, probing general boundary linear transformations.
9We use A, B, . . . ∈

{

0̂, 1̂, 2̂
}

as boundary “flat” indices with a, b, . . . ∈
{

1̂, 2̂
}

. The parameterization of

the coframe in terms of 8 arbitrary functions, suitable for the Carrollian limit, is provided in appendix A,

eq. (A.43).
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each order s of the radial expansion. To achieve this, we need to cope with Weyl covariance

and decompose the energy-momentum tensor with respect to the chosen congruence.

Kinematics, Weyl covariance and transverse duality. Covariantization with re-

spect to Weyl transformations requires to introduce a connection one-form A = AAθ
A,

built on the congruence u = uAθ
A:

A =
1

k2

(

a −
Θ

2
u

)

, (2.10)

which transforms as anticipated in (2.5). In this expression a = aAθ
A and Θ are the

acceleration and expansion of the congruence u, defined together with the shear and the

vorticity as10

aA = uB∇BuA, Θ = ∇Au
A, (2.11)

σAB = ∇(AuB) +
1

k2
u(AaB) −

1

2
ΘhAB, (2.12)

ωAB = ∇[AuB] +
1

k2
u[AaB], (2.13)

where hAB is the projector onto the space transverse to the velocity field:

hAB =
uAuB

k2
+ ηAB (2.14)

(remember we work in an orthonormal Cartan mobile frame — metric displayed in (2.8)).

The above vectors are transverse, whereas the tensors are transverse and traceless.

The Weyl connection A enters the Weyl covariant derivative DA acting on a weight-w

tensor as e.g. a scalar Φ:

DAΦ = eA(Φ) + wAAΦ, (2.15)

or a form vA:

DBvA = ∇BvA + wABvA +AAvB − ηABA
CvC . (2.16)

The resulting tensors have weight w + 1.11 The form field u has weight −1 i.e. uA are

weight-zero, whereas ωAB and σAB have all weight 1. The explicit form of A (2.10) is

obtained by demanding

DAu
A = 0 and uC

DCuA = 0. (2.17)

10Our conventions for (anti-) symmetrization are: A(AB) = 1
2

(AAB + ABA) and A[AB] = 1
2

(AAB − ABA).
11Special caution is advised in comparing the present expressions with those appearing e.g. in

refs. [3, 45, 46], where a natural frame was used. When dealing with Weyl covariance in orthonormal

frame, the metric components have weight zero. Hence for any tensor, covariant and contravariant com-

ponents have the same weights. The coframe form elements, however, have weight −1, whereas the frame

vectors have weight +1. If a weight-w tensor has p contravariant and q covariant indices, its Weyl-covariant

derivative reads:

DCK A...
B... = ∇CK A...

B... + (w + p − q)ACK A...
B...

+
(

ηCDAA − δA
C AD − δA

DAC

)

K D...
B... + · · ·

−
(

ηCBAD − δD
C AB − δD

B AC

)

K A...
D... − · · ·

and this has now weight w + 1.
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The Weyl covariant derivative is metric-compatible with effective torsion:

DCηAB = 0, (2.18)

(DADB − DBDA) Φ = wΦFAB, (2.19)

where

F =
1

2
FABθ

A ∧ θB = dA (2.20)

is Weyl-invariant (FAB are weight-2). Metric compatibility and (2.17) imply

uC
DChAB = 0, (2.21)

infering that the operator uCDC respects transversality.

Commuting the Weyl-covariant derivatives acting on vectors, one defines the Weyl

covariant Riemann tensor

(DADB − DBDA)V C = R
C

DABV
D + (w + 1)V CFAB (2.22)

(V C are weight-w whereas V = V CeC has weight w + 1) and the usual subsequent quan-

tities. In three (boundary) spacetime dimensions, the covariant Ricci and the scalar (both

weight-2) curvatures read:

RAB = RAB + ∇BAA +AAAB + ηAB

(

∇CA
C −ACA

C
)

− FAB, (2.23)

R = R+ 4∇AA
A − 2AAA

A, (2.24)

where RAB is the Ricci tensor of the boundary Levi-Civita connection and R the corre-

sponding scalar curvature. The Weyl-invariant Schouten tensor is

SAB = RAB −
1

4
RηAB = RAB −

1

4
RηAB + ∇BAA +AAAB −

1

2
ACA

CηAB − FAB. (2.25)

It is customary to introduce the vorticity two-form

ω =
1

2
ωAB dxA ∧ dxB =

1

2

(

du +
1

k2
u ∧ a

)

, (2.26)

as well as the Hodge dual of this form, which is proportional to u:

kγu = ⋆ω ⇔ kγuA =
1

2
ϵABCω

BC . (2.27)

In this expression γ is a scalar of weight 1.

In three spacetime dimensions and in the presence of a vector field u, one naturally

defines a fully antisymmetric two-index tensor:12

η̂AB = −
uC

k
ϵCAB, (2.28)

obeying

η̂AC η̂
C

B = hAB, η̂AB η̂AB = 2. (2.29)

12This hatted two-index tensor should not be confused with Minkowski metric.
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With this tensor the vorticity reads:

ωAB = k2γη̂AB. (2.30)

The two-index tensor η̂AB defines a duality map within the space of symmetric, trans-

verse (with respect to u) and traceless tensors. If V A is transverse, so is

∗V A = η̂B
AVB. (2.31)

Similarly with a symmetric, transverse and traceless tensor WAB:

∗WAB = η̂C
AWCB (2.32)

is symmetric, transverse and traceless.

The energy-momentum tensor and the Cotton tensor. Given a normalized con-

gruence ∥u∥2 = −k2 we can decompose the energy-momentum tensor as in hydrodynamics:

TAB = (ε+ p)
uAuB

k2
+ pηAB + τAB +

uAqB

k2
+
uBqA

k2
, (2.33)

where

ε =
1

k2
TABu

AuB (2.34)

is the energy density and p the analogue of a perfect stress. The symmetric viscous stress

tensor τAB and the heat current qA are purely transverse:

uAτAB = 0, uAqA = 0, qB = −εuB − uATAB. (2.35)

In three dimensions, a conformal energy-momentum tensor has weight-1 covariant

components in the coordinate basis, and weight-3 components in the orthonormal frame.

Consequently, the pressure and energy density, the heat-current qA and the viscous stress

tensor τAB have all weight 3. Furthermore, since the splitting of the stress tensor into p

and τAB is arbitrary, we choose to implement the absence of trace as

ε = 2p, τ A
A = 0. (2.36)

Due to the absence of trace, the conservation equation (2.1) can be traded for

DCT
C
B = 0. (2.37)

In the gauge under consideration, the energy-momentum tensor comes along with the

boundary Cotton tensor. They both enter the bulk metric, playing dual, electric versus

magnetic, roles in various instances, as e.g. in the bulk Weyl tensor. The Cotton tensor is

generically a three-index tensor with mixed symmetries.13 In three dimensions, which is

13From the bulk viewpoint, the boundary energy-momentum and Cotton tensors play dual roles. Notice

that the energy-momentum tensor in (2.33) has an extra factor of k with respect to the Cotton tensor

in (2.40), due to their different dimensions.
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the case for our boundary geometry, the Cotton tensor can be dualized into a two-index,

symmetric and traceless tensor:14

CAB = ϵ CD
A DC (FBD + SBD) = ϵ CD

A ∇C

(

RBD −
R

4
ηBD

)

, (2.38)

where we recall that FBD and SBD are respectively the Weyl curvature and the Weyl-

covariant Schouten tensor defined in (2.20) and (2.25). The Cotton tensor CABθ
AθB is

Weyl-covariant of weight 1, and is identically conserved:

DCC
C

B = ∇CC
C

B ≡ 0, (2.39)

sharing thereby all properties of the energy-momentum tensor.

Following (2.33) we can decompose the Cotton tensor into longitudinal, transverse and

mixed components with respect to the congruence u:

1

k
CAB =

3c

2

uAuB

k2
+
c

2
ηAB −

cAB

k2
+
uAcB

k2
+
uBcA

k2
. (2.40)

Such a decomposition naturally defines the weight-3 Cotton scalar density

c =
1

k3
CABu

AuB, (2.41)

as the longitudinal component. The symmetric and traceless Cotton stress tensor cAB and

the Cotton current cA (also weight-3) are purely transverse:

c A
A = 0, uAcAB = 0, uAcA = 0, (2.42)

and obey

cAB = −khC
Ah

D
BCCD +

ck2

2
hAB, cB = −cuB −

uACAB

k
. (2.43)

One can use the definition (2.38) to further express the Cotton density, current and

stress tensor as ordinary or Weyl derivatives of the curvature. We find

c =
1

k2
uB η̂DC

DC (SBD + FBD) , (2.44)

cB = η̂CD
DC (SBD + FBD) − cuB, (2.45)

cAB = −hE
A

(

kϵ CD
B − uB η̂

CD
)

DC (SED + FED) +
ck2

2
hAB. (2.46)

Solving Einstein’s equations. Einstein’s equations are15

EMN ≡ Rbulk
MN −

1

2
Rbulkgbulk

MN − 3k2gbulk
MN = 0, (2.47)

and we must probe them in the covariant Newman-Unti gauge. Assuming a boundary

metric given in (2.8), the bulk line element (2.7) reads:

ds2
bulk = 2

u

k2
(dr + rA) + r2ds2 + rCABθ

AθB +
1

k4
FABθ

AθB

+
∞
∑

s=1

1

rs

(

f(s)
u2

k4
+ 2

u

k2
f(s)Aθ

A + f(s)ABθ
AθB

)

, (2.48)

14We use a plain font for the Cotton CAB versus a curly font for the shear CAB .
15We use M, N, . . . ∈ {r, boundary} as bulk indices.
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where all boundary tensors are now defined in the orthonormal frame at hand.16 The

summation over A and B in the last terms of (2.48) is actually reduced to a summation

over the transverse components a and b thanks to the transversality of f(s)A and f(s)AB

with respect to the velocity field (2.9).

We will limit here the analysis to the order 1/r2, which is sufficient for illustrating

accurately later the asymptotically flat pattern.

Order r The important output here is that the Bondi shear CAB is not free, but settled

by the shear of the congruence u, which is of geometric nature:

k2
CAB = −2σAB. (2.49)

On shell, the Bondi shear is thus manifestly traceless and transverse with respect to

u. Anticipating the usage of the present formalism in describing general solutions

of vacuum Einstein’s equations, we also introduce a news tensor (similarly defined

in arbitrary dimension). As opposed to the usual definitions, the present tensor is

boundary-covariant, Weyl-invariant, symmetric, traceless and transverse:

NAB = uC
DCCAB. (2.50)

Equation (2.49) will be assumed when moving to the next orders.

Order 1 Unsurprisingly from the Feffermam-Graham experience, we learn that FAB is

related to the boundary Weyl-invariant Schouten tensor displayed in eq. (2.25):17

FAB = 2uC
(

SC(A + FC(A

)

uB) + DAuC DBu
C ,

= 2u(ADC

(

σ C
B) + ω C

B)

)

−
R

2
uAuB +

(

σ2 + k4γ2
)

hAB + 2ω C
(A σB)C ,

(2.51)

where

γ2 =
1

2k4
ωABω

AB, σ2 =
1

2
σABσ

AB (2.52)

(γ was defined alternatively in eq. (2.27)). At this stage, the only independent and free

data are those defining the boundary geometry (as stressed in (2.9), the congruence

u is aligned with the observers at rest with respect to (2.8)).

Orders 1/r and 1/r2 At order 1/r new information is expected to come up in the form

of a boundary conformal energy-momentum tensor. In contrast with the Fefferman-

Graham gauge, the energy-momentum enters through its decomposition with respect

to the congruence u, i.e. ε, qA and τAB, rather than TAB. Furthermore, it comes

accompanied with the transverse-dual of the Cotton current and stress, ∗cA and

∗cAB, see eqs. (2.31), (2.32) and (2.45), (2.46) — yet another motivation to split the

16In this frame CAB has weight one, f(s), f(s)A and f(s)AB have all weight s + 2 whereas FAB is weight-2.
17The tensor defined in (2.51) is slightly different from the analogous tensor SAB introduced in [3],

eq. (2.42). It contains extra shear terms. The reason is that in ref. [3], when writing (2.41), the authors

wanted to stress that shear terms were present, but ultimately the shear was vanishing. The present

definition accounts for all shear terms.
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energy-momentum tensor as discussed earlier. This trait is new, both compared to

the Fefferman-Graham gauge, where the Cotton tensor does not appear explicitly at

any order, and with respect to standard Bondi or Newman-Unti gauges, where it is

present in disguise.18

The functions to be determined are f(1), f(1)A and f(1)AB, which must have conformal

weight 3. This leaves little freedom, given the available tensors. We find:

f(1)
u2

k4
+ 2

u

k2
f(1)Aθ

A + f(1)ABθ
AθB =

8πG

k4

(

εu2 +
4

3
u∆q +

2k2

3
∆τ

)

(2.53)

with ∆q = ∆qAθ
A and ∆τ = ∆τABθ

AθB defined as

∆qA = qA −
1

8πG
∗cA, ∆τAB = τAB +

1

8πGk2
∗cAB. (2.54)

The functions ε, qA and τAB, which merely parameterize the line element at this

stage, can be packaged in a symmetric and traceless tensor TAB as in (2.33), (2.36)

and, as we shall see shortly in (2.60), Einstein’s equations demand the conservation

of TAB, thus completing its identification as the boundary energy-momentum tensor

as in the Fefferman-Graham gauge.

We now ought to focus on the 1/r2 contribution to the line element (2.48), i.e., on

f(2)
u2

k4
+ 2

u

k2
f(2)Aθ

A + f(2)ABθ
AθB, (2.55)

where f(2), f(2)A and f(2)AB must have conformal weight 4. The analogy with

the Fefferman-Graham expansion suggests that no new free boundary functions

should appear without spoiling Einstein’s equations. Indeed, upon imposing (2.49)

and (2.51), one finds






















































Err = − 3
r5 ηABf

AB
(1) − 6

(

ηABf
AB
(2) + 3

2k2σABf
AB
(1)

)

1
r6 + O

(

1
r7

)

kEr0̂ =
(

−f(2) − 2k2ηABf
AB
(2) + 1

2hABDAfB
(1) − 5

2σABf
AB
(1) + cγ

)

1
r4 + O

(

1
r5

)

Era =
(

2f(2)a − 3
2haBDCf

BC
(1) + 1

k2 (σaB + 4ωaB) fB
(1)

)

1
r4 + O

(

1
r5

)

Eab =
(

−f(2)h
ab + cγhab + 4ω

(a
C f

b)C
(1) + 2k2η̂ a

C η̂ b
D fCD

(2) − 2uCDCf
ab
(1)

+ η̂ a
C η̂ b

D D
(C
f

D)
(1) + 1

k2

(

cη̂ a
C σCb − f(1)σ

ab
)

+ 4σ
(a

C f
b)C
(1)

)

1
r2 + O

(

1
r3

)

(2.56)

for the often referred to as constraint Einstein’s equations. These equations fix al-

gebraically all terms at the 1/r2 order in the expansion of the bulk metric, thus con-

firming the absence of any new free function. When rewritten in terms of the basic

18One could not stress enough the profound versatility of the boundary Cotton tensor. Together with

the boundary energy-momentum tensor, they control the asymptotic behaviour of the bulk Weyl tensor,

the electric versus magnetic gravitational characteristics, the duality issues, and are natural ingredients in

Newman-Penrose formalism. In the flat instance and in the current gauge, the Cotton tensor contributes

to the gravitational radiation along with the Bondi shear. A recent presentation of some of these features

is available in ref. [25].
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quantities parameterizing the space of solutions, the three coefficients in (2.55) read:

f(2) =
8πG

3k2

(

σCD∆τCD + DC∆qC
)

+ cγ, (2.57)

f(2)A = −
8πG

3k4
σAC∆qC +

4πG

k2

(

hACDD∆τCD +
8

3
γ ∗∆qA

)

, (2.58)

f(2)AB = −
4πG

k4

(

4

3
uC

DC∆τAB +
2

3
hAChBDD

(C∆qD) −
1

3
hABh

CD
DC∆qD

+2σ C
(A ∆τB)C

)

−
1

2k4
(8πGεσAB − c ∗σAB) +

32πG

3k2
γ ∗∆τAB. (2.59)

These expressions contain all possible combinations of the shear and of the vor-

ticity together with adequately projected Weyl covariant derivatives of the energy-

momentum and Cotton tensors,19 carrying the right tensorial structure and conformal

weight. Substituting eqs. (2.57), (2.58), (2.59) into the remaining Einstein’s equa-

tions (2.47) one obtains:

k

8πG
E0̂0̂ =

1

r2
DBT

B
0̂

+ O

(

1

r3

)

,
k

8πG
E0̂a =

1

r2
DBT

B
a + O

(

1

r3

)

(2.60)

(since TAB is traceless, DA ≡ ∇A, the Levi-Civita boundary connection for the frame

metric ηAB). The omitted terms contain the tensors f(3), f(3)A and f(3)AB. This con-

firms that no additional constraints are imposed on the quantities parameterizing the

solution space identified at the previous orders, i.e., the velocity field, the boundary

metric (frame in the present formalism) and the boundary energy-momentum tensor.

Higher orders and possible resummation The above pattern can be repeated ad nau-

seam at the cost of a substantial growth in admissible terms. The third order would

be interesting as it is expected to host the Newman-Penrose charges in the flat limit.

This is beyond our motivations, but raises the issue of resummability under condi-

tions of the series (2.7). This question is usually immaterial in Bondi or Newman-Unti

gauges, where due to the absence of boundary vorticity20 simple solutions such as

Kerr’s are embodied in the form of infinite series. In the covariant Newman-Unti

gauge, the explicit appearance of the boundary Cotton tensor allows to tune the bulk

Weyl tensor and select algebraically special Einstein spacetimes, for which the series

is resummable. This is achieved by imposing

σAB = 0, ∆qA = 0, ∆τAB = 0, (2.61)

which implies that

f(s)A = 0, f(s)AB = 0 (2.62)

19The covariant Newman-Unti gauge has often been referred to as the derivative-expansion gauge for this

reason. This was borrowed from the original fluid/gravity literature, where the derivative expansion was

inspired by the fluid constitutive relations.
20An explicit realization of the boundary frame of Newman-Unti gauge is displayed in (A.41), (A.42) with

∆i = 0, as mentioned earlier in this section. The boundary vorticity always vanishes then as it is proven

by comparing (A.45) with (A.46).
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and

f(2s+1) = (−)s8πGεγ2s, f(2s+2) = (−)scγ2s+1. (2.63)

The boundary metric is still a free variable, but only the energy density ε(x) remains

from the energy-momentum tensor, whose heat current and stress are fixed by those

of the Cotton:

qA =
1

8πG
∗cA, τAB = −

1

8πGk2
∗cAB. (2.64)

As a consequence, assuming that (2.1) is satisfied, one finds

ds2
res. Einstein = 2

u

k2
(dr + rA) + r2ds2 +

F

k4
+

u2

k4ρ2
(8πGεr + cγ) (2.65)

with

ρ2 = r2 + γ2 (2.66)

and F = FABθ
AθB given in (2.51) imposing zero shear. The Petrov analysis of (2.65)

has been discussed in refs. [3, 20].

3 The flat avatars

First things first. Handling the flat limit is a triptych. At the first place stands the

boundary geometry, which becomes Carrollian as the time-like conformal boundary of

asymptotically anti-de Sitter spacetimes is traded for the null infinity of their asymptoti-

cally flat relatives. Secondly, the energy-momentum tensor should be expanded in Laurent

series with respect to k2 and embrace all extra degrees of freedom of the flat solution space.

Finally comes the bulk line element that should remain finite in the zero-k limit, imposing

to this end constraints and evolution equations on the functions defining the solution space,

besides the Carrollian limit of the already available eqs. (2.1).

Given the relativistic boundary metric and the velocity field, (2.8) and (2.9), the start-

ing point of our analysis is the bulk line element (2.48), which we reproduce here bearing

in mind the transversality properties:

ds2
bulk = 2

u

k2
(dr + rA) + r2ds2 + rCabθ

aθb +
1

k4
FABθ

AθB

+
∞
∑

s=1

1

rs

(

f(s)
u2

k4
+ 2

u

k2
f(s)aθ

a + f(s)abθ
aθb

)

. (3.1)

The Carrollian limit of the boundary geometry is reached as follows:21

µ = lim
k→0

u

k2
= − lim

k→0

θ0̂

k
, θ̂a = lim

k→0
θa, (3.2)

so that the Carrollian degenerate metric spells

dℓ2 = lim
k→0

ds2 = δabθ̂
aθ̂b. (3.3)

21Carrollian quantities will often be distinguished with hats. However, in order to avoid cluttering of

indices and symbols, we do make the distinction amongst relativistic and Carrollian attributes, only when

it is necessary. This will not be the case e.g. for the Bondi shear and news.
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For the frame vectors, the prescription is

υ = lim
k→0

u = lim
k→0

ke0̂, êa = lim
k→0

ea. (3.4)

It should be stressed that the limit may not be necessary, because the parameterization of

the diads θa in terms of the natural-coframe components dxµ can be chosen so as not to de-

pend on k, and that θ0̂ could simply be dx0 = kdu in which case µ = −du (some further ex-

amples are displayed in appendix A, eqs. (A.3), (A.4), (A.7) and eqs. (A.41), (A.42), (A.43)).

This will be definitely our viewpoint here.

The kernel of the degenerate metric (3.3) is the field of observers υ, and µ is its dual

clock form embracing also the Ehresmann connection, as explained in appendix A. All

these obey

µ(υ) = −1, θ̂a(êb) = δa
b , θ̂a(υ) = 0, µ(êa) = 0. (3.5)

The Carrollian geometric data are part of the solution space of Ricci-flat spacetimes in the

flat covariant Newman-Unti gauge. Compared to the standard flat Newman-Unti gauge,

the extra piece of data is the clock form µ, which echoes the velocity congruence of the

AdS relative. More accurately, the additional piece of information carried by the covariant

Newman-Unti gauge is the boundary vorticity ∗ϖ, as discussed in appendix A, footnote 36.

The vanishing-k limit the AdS-boundary Weyl connection A is readily reached due to

its k-independence. As described explicitly in appendix A, one effortlessly expresses A in

Carrollian terms, eq. (A.53):

A = φaθ̂
a −

θ

2
µ (3.6)

with φa and θ given in (A.13) or (A.46) and (A.19). Therefore, the first two terms in (3.1)

have a well-defined limit without the need of imposing Einstein’s equations.

The next term in (3.1) plays an essential role in gravitational physics. Indeed, Ein-

stein’s equation (2.49), reproduced here for the spatial components — the only non-zero

due transversality combined with our choice of congruence u,

k2
Cab = −2σab, (3.7)

implies that σab = 0 at vanishing k. As explained in eq. (A.52), the latter translates in

Carrollian terms into

ξab = 0, (3.8)

where ξab is defined in (A.19) as the traceless component of the extrinsic curvature. On

the one hand, the geometrical shear ξab of the boundary Carrollian geometry must vanish
— an extrinsic-curvature condition for the conformal null boundary. On the other hand,

the dynamical shear Cab is free and carries information on the gravitational radiation. No

equation will constrain it or make it evolve, but it will source the evolution of other degrees

of freedom.

In summary, till the order r, the Ricci-flat bulk metric reads:

ds2
Ricci-flat

∣

∣

∣

r
= µ

[

2dr + r
(

2φaθ̂
a − θµ

)]

+ r2dℓ2 + rCabθ̂
aθ̂b, (3.9)
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where Cab(u,x) is an arbitrary traceless Carrollian tensor, referred to as the Bondi shear

(cf. the footnote 7). The Bondi news is another traceless Carrollian tensor obtained as the

Carrollian limit of eq. (2.50):

N̂ab = D̂υCab. (3.10)

In order to pursue the study of the next orders, we must be careful with the zero-k

limit. Both in the line element and in the conservation equations (2.1), the geometric

shear σab = ξab must be substituted by −k2

2 Cab on account of eq. (3.7) before the limit is

taken. Often this won’t have any effect and the term in consideration will drop. Sometimes,

however, due to the presence of negative powers of k, finite terms will survive or divergences

will impose further requirements.

The first and simplest application of the rule just stated concerns the order-1 term
F

k4 = 1
k4 FABθ

AθB. Expressing (2.51) in Carrollian terms we find:

F

k4
=
ξ2

k4
dℓ2 +

1

k2

(

3ξ2µ2 + 2D̂bξ
b
aµθ̂

a − 2 ∗ϖ ∗ξabθ̂
aθ̂b
)

+ ∗ϖ2dℓ2 − 2 ∗D̂a ∗ϖµθ̂a − K̂ µ2 − 5k2 ∗ϖ2µ2

=

(

C 2

4
+ ∗ϖ2

)

dℓ2 − K̂ µ2 − D̂bC
b
aµθ̂

a − 2 ∗D̂a ∗ϖµθ̂a

+ ∗ϖ ∗Cabθ̂
aθ̂b + k2

(

3

4
C

2 − 5 ∗ϖ2
)

µ2 (3.11)

with C 2 = 1
2C abCab and quantities like ξ2, ∗ϖ, K̂ defined in appendix B. The asterisk

stands for the relativistic congruence-transverse or Carrollian-basis duality introduced in

eqs. (2.28), (2.29), (2.31), (2.32) or (B.1), (B.2). Some terms drop in the zero-k limit but

no divergence occurs and we are left with a piece in the line element, which now contains
explicitly the Bondi shear :

lim
k→0

F

k4
=

(

C 2

4
+ ∗ϖ2

)

dℓ2 − K̂ µ2 − D̂bC
b
aµθ̂

a − 2 ∗D̂a ∗ϖµθ̂a + ∗ϖ ∗Cabθ̂
aθ̂b. (3.12)

Before moving on to the next order, which uncovers the method of expanding the anti-

de Sitter energy-momentum tensor as a mean of reconstructing Ricci-flat spacetimes, it is

fair to give credit to the authors of ref. [23], where the pioneering idea of substituting the

Bondi for the geometric shear with the accompanying power of the cosmological constant

was initiated.

Order 1/r and the advent of the energy-momentum tensor. Let us assume that

in the course of the bulk flat limit, the boundary energy-momentum tensor is analytic in

k2. It can thus be represented as a Laurent series about k = 0:

ε =
∑

n∈Z

k2nε(n), (3.13)

qa =
∑

n≥2

ζa
(n)

k2n
+
ζa

k2
+Qa + k2πa +

∑

n≥2

k2nπa
(n), (3.14)

τab = −
∑

n≥3

ζab
(n)

k2n
−
ζab

k4
−

Σab

k2
− Ξab − k2Eab −

∑

n≥2

k2nEab
(n). (3.15)
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Each function in these series (some have been singled out for reasons that will be clarified

later) is a Carrollian tensor (scalar, vector, or symmetric and traceless two-tensor) that

is possibly one of the boundary degrees of freedom, which we call Chthonian to recall

they encode the asymptotically flat Einstein dynamics probing the bulk metric in depth
from the boundary. These tensors are expected to obey flux-balance equations, which are

Carrollian avatars of vacuum Einstein’s equations, and that we will attain using anti-de

Sitter dynamics and imposing a regular behaviour at zero k.

As an introductory statement, it is important to stress that we have no proof for

the proclaimed analyticity. The latter is a working framework, resulting in a consistent

description of asymptotically flat spacetimes, and this end justifies the means. The rules

are simple: insert (3.13), (3.14), (3.15) in the line element (3.1) at each order, and impose

regularity at k = 0 after trading ξab for −k2

2 Cab. This process starts with 1/r, since this is

the first term sensitive to the energy-momentum tensor, but the substitution of Cab will

be performed systematically, in the line element, in Einstein’s equations, or in the further

definition of the complex mass aspect, without raising any order ambiguity.

At order 1/r we should probe (2.53), which spells

f(1)
u2

k4
+ 2

u

k2
f(1)aθ

a + f(1)abθ
aθb = 8πG

(

εµ2 +
4

3
µ

∆qa

k2
θ̂a +

2

3

∆τab

k2
θ̂aθ̂b

)

(3.16)

with ε given in (3.13) and

∆qa

k2
=
∑

n≥2

ζa
(n)

k2n+2
+

1

k4

(

ζa −
∗za

8πG

)

+
1

k2

(

Qa −
∗χa

8πG

)

+

(

πa −
∗ψa

8πG

)

+
∑

n≥2

k2n−2πa
(n), (3.17)

∆τab

k2
= −

∑

n≥3

ζab
(n)

k2n+2
−

1

k6

(

ζab −
∗Zab

8πG

)

−
1

k4

(

Σab −
∗Xab

8πG

)

−
1

k2

(

Ξab −
∗Ψab

8πG

)

−Eab −
∑

n≥2

k2n−2Eab
(n), (3.18)

where we have used (3.14), (3.15), the definitions (2.54) of ∆qa and ∆τab, as well as the

Carrollian Cotton tensors za, χa, ψa, Zab, Xab, Ψab displayed in (B.13), (B.14). Finiteness

in the flat limit sets up two sorts of requirements on the Carrollian descendants of the

energy-momentum tensor.

• Infinite subsets of Laurent coefficients are required to vanish:


















ε(n) = 0 ∀n < 0

ζa
(n) = 0 ∀n ≥ 2

ζab
(n) = 0 ∀n ≥ 3;

(3.19)

• Five Laurent coefficients are locked in terms of the Carroll Cotton tensors defined

in (B.17), (B.18), (B.20), (B.21), (B.22):

ζa =
∗za

8πG
, Qa =

∗χa

8πG
, ζab =

∗Zab

8πG
, Σab =

∗Xab

8πG
, Ξab =

∗Ψab

8πG
. (3.20)
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Hence a finite subset of energy-momentum Carrollian descendants are not indepen-
dent but are instead of geometric nature, determined by the boundary Carroll structure
via its Cotton tensor.

No more constraints show on the Chthonian degrees of freedom at 1/r order.

Defining

Na = ∗ψa − 8πGπa, (3.21)

we recast the order-1/r term (3.16) in the flat limit as:

lim
k→0

(

f(1)
u2

k4
+ 2

u

k2
f(1)aθ

a + f(1)abθ
aθb

)

= 8πGε(0)µ
2 −

4

3
µNaθ̂

a −
16πG

3
Eabθ̂

aθ̂b

≡ f̂(1)µ
2 + 2µf̂(1)aθ̂

a + f̂(1)abθ̂
aθ̂b. (3.22)

The latter expression calls for two remarks. Firstly, the Carrollian tensors ε(n≥1), π
a
(n≥2)

and Eab
(n≥2) are absent. We should refrain from interpreting this as a sign that those aren’t

genuine degrees of freedom. Some of them ought to appear in the line element in the

next orders and therefore participate in the dynamics. Only when one is guaranteed that

a Laurent coefficient is absent from the line element at any order, can we declare it is

irrelevant and set it consistently to zero. The order-1/r2 analysis will significantly underpin

this statement.

Secondly comes an important question: what is the dynamics of the boundary degrees
of freedom ε(0), Na and Eab that remain in the 1/r term of the bulk line element? Ensuing

our philosophy, this dynamics is encoded (i) in the zero-k limit of anti-de Sitter Einstein’s

equations and (ii) in the finiteness requirement of the line element. The latter has already

been exploited at the order under consideration, while the former is the energy-momentum

conservation (2.1) on which we will elaborate now. Our treatment consists in the four steps

summarized below.

1. In the frame at use, we consider the relativistic energy-momentum tensor conservation

equations (2.1) recast in Carrollian terms as in appendix A, eqs. (A.59) and (A.60),

which we redisplay here for convenience:

L = D̂υε+ D̂aq
a + ξabτ

ab = 0, (3.23)

T a =
1

d
D̂

aε+ D̂bτ
ab + 2qbϖ

ba +
1

k2

(

D̂υq
a + ξabqb

)

= 0. (3.24)

2. We insert in these equations the variables ε, qa and τab in their expanded

forms (3.13), (3.14) and (3.15), taking into account the finiteness requirements (3.19)

and (3.20).

3. The requirements (3.19) and (3.20) bring the Cotton tensor inside the boundary

energy-momentum conservation equations L = 0 and T a = 0. At this stage

we must exploit the Cotton identities {DCot = 0, Ia
Cot

= 0}, {ECot = 0,Ga
Cot

= 0},

{FCot = 0,Ha
Cot

= 0} and {WCot = 0,X a
Cot

= 0} set in appendix B — see
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eqs. (B.25), (B.26), (B.27), (B.28), (B.29), (B.30), (B.31), (B.32) — and recast for

our needs as:

D̂b ∗Ψab + 2 ∗ϖχa = D̂υ ∗ψa +
1

2
∗D̂

ac(0) − ∗ψbξ
ab, (3.25)

D̂b ∗Xab + 2 ∗ϖza − D̂υ ∗χa =
1

2
∗D̂

ac(1) − ∗χbξ
ab, (3.26)

D̂b ∗Zab − D̂υ ∗za =
1

2
∗D̂

ac(2) − ∗zbξ
ab. (3.27)

With this we reach the following:

L = k2
D̂aπ

a +
∑

n≥2

k2n
D̂aπ

a
(n) − ξab

(

k2Eab +
∑

n≥2

k2nEab
(n)

)

+D̂υε(0) +
∑

n≥1

k2n
D̂υε(n) −

1

8πG

(

∗Ψabξab − D̂a ∗χa
)

−
1

8πGk2

(

∗Xabξab − D̂a ∗za
)

−
1

8πGk4
∗Zabξab, (3.28)

and

T a = −D̂b

(

k2Eab +
∑

n≥2

k2nEab
(n)

)

+ 2 ∗ϖ

(

k2 ∗πa +
∑

n≥2

k2n ∗πa
(n)

)

+
1

2
D̂

aε(0)

+
1

2

∑

n≥1

k2n
D̂

aε(n) + D̂υ

(

πa +
∑

n≥2

k2n−2πa
(n)

)

+ ξa
b

(

πb +
∑

n≥2

k2n−2πb
(n)

)

−
1

8πG

(

D̂υ ∗ψa +
1

2
∗D̂

ac(0) − ∗ψbξ
ab

)

−
1

8πGk2

(

1

2
∗D̂

ac(1) − ∗χbξ
ab

)

−
1

8πGk4

(

1

2
∗D̂

ac(2) − ∗zbξ
ab

)

. (3.29)

4. Lastly we express the geometric Carrollian shear as ξab = −k2

2 Cab inside eqs. (3.28)

and (3.29). This is a juggernaut due to the heavy presence of ξab in the Car-

rollian Cotton tensors c(1), c(2), χa, za, Ψab, Xab and Zab — see their defini-

tions (B.15), (B.17), (B.18), (B.20), (B.21) and (B.22). This operation regularizes

the otherwise singular behaviour of the last lines in (3.28) and (3.29) at vanishing k,

which instead produce a wealth of finite terms, all rooted in the Carrollian Cotton
tensor.

The flat limit of the boundary energy-momentum conservation can now be safely

taken and yields:

lim
k→0

L = D̂υε(0) +
1

8πG
D̂a ∗χa −

1

16πG

(

D̂aD̂bN̂
ab + C

ab
D̂aR̂b +

1

2
CabD̂υN̂

ab

)

,

(3.30)
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and

lim
k→0

T a =
1

2
D̂b

(

δabε(0) +
1

8πG
ηabc(0)

)

+ D̂υ

(

πa −
1

8πG
∗ ψa

)

+
1

16πG

[

C
ab

D̂bK̂ + ∗C
ab

D̂bÂ − 4 ∗ϖ ∗C
ab

R̂b

−
1

2
D̂

b
(

D̂bD̂cC
ac − D̂

a
D̂

c
Cbc

)

+C
ab

D̂
c
N̂bc +

1

2
D̂

b
(

C
ac

N̂bc

)

−
1

4
D̂

a
(

C
bc

N̂bc

)

]

. (3.31)

Equations (3.30) and (3.31) are one of our main achievements and deserve further

discussion. We would like to insist that there is neither magic nor ambiguity in reaching

them. We have followed a plain zero-k limit informed about the regularity conditions (3.20),

which involve the Carrollian Cotton tensor and its identities, and instructed with Einstein’s

equation ξab = −k2

2 Cab. Although long and technical, the method reveals the central

role of the Cotton tensor: all terms responsible for the gravitational radiation, involving
among others the shear and the news tensors, originate from the Carrollian Cotton tensors.
Because of the vanishing ξab, only six of those remain — see appendix B: c(−1), c(0), ψ

a,

eqs. (B.15), (B.16), and χa, Ψab, Xab given in (B.35), (B.36), (B.37) for vanishing Carrollian

shear. They obey eqs. (B.38), (B.39), (B.40), (B.41) and (B.42).22 This means in particular

that once the bulk flat limit is reached i.e. the boundary Carroll structure has no geometric

shear, za and Zab vanish. The Carrollian energy-momentum tensors ζa and ζab do also

vanish by virtue of (3.20). Only Qa, Σab and Ξab survive, and (3.30), (3.31) lead to an

alternative writing of the conservation equations:

D̂υε(0) + D̂aQ
a =

1

16πG

(

D̂aD̂bN̂
ab + C

ab
D̂aR̂b +

1

2
CabD̂υN̂

ab

)

(3.32)

and

1

2
D̂

aε(0) − D̂bΞ
ab + 2 ∗ϖ ∗Qa + D̂υπ

a = −
1

16πG

[

C
ab

D̂bK̂ + ∗C
ab

D̂bÂ − 4 ∗ϖ ∗C
ab

R̂b

−
1

2
D̂

b
(

D̂bD̂cC
ac − D̂

a
D̂

c
Cbc

)

+ C
ab

D̂
c
N̂bc

+
1

2
D̂

b
(

C
ac

N̂bc

)

−
1

4
D̂

a
(

C
bc

N̂bc

)

]

. (3.33)

This latter form discloses a Carrollian conservation of the type (B.33), (B.34) with a right-
hand side though. This is thus a flux-balance equation, where the source is maintained

by the bulk gravitational radiation encoded in the shear and the news. Notice that the

above momentum πa coincides with P a in (B.34) and is dynamical, whereas the traceless

22The Carrollian Cotton identities described in appendix B as {DCot = 0, Ia
Cot = 0}, {ECot = 0, Ga

Cot = 0},

{FCot = 0, Ha
Cot = 0} and {WCot = 0, X a

Cot = 0} are obtained from the relativistic conservation (2.39) ex-

pressed as (B.23) and (B.24). We must not insert in these equations ξab = − k2

2
Cab before taking the flat

limit as they are agnostic about bulk Einstein’s equations. The Cotton identities at hand are of boundary-

geometric nature, and when the Carrollian shear vanishes, they just become simpler by setting ξab = 0.
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Carrollian stress Ξab is −Υab in (B.33), (B.34), and is dictated by the Cotton due to (3.20);

similarly Qa here is the energy flux Πa of (B.33), (B.34), also locked by the Cotton in (3.20).

Even in absence of Bondi shear Cab and news N̂ab, the presence of a non-vanishing en-

ergy flux betrays the breaking of local Carroll boost invariance (see the end of appendix B)

in the boundary Carrollian dynamics associated with Ricci-flat spacetimes. This break-

ing accounts for bulk gravitational radiation, which in the covariant Newman-Unti gauge

does not originate solely in the news (3.10) but is also carried by the Carrollian energy

flux Πa = Qa = 1
8πG

∗χa. In Robinson-Trautman spacetimes and in the present gauge,

the gravitational radiation is exclusively rooted in this Carrollian Cotton descendant —

see ref. [3].

Observe in passing the Carrollian Cotton identities (B.39) and (B.41), which we repli-

cate here for convenience:

D̂υc(0) + D̂aχ
a = 0, (3.34)

1

2
D̂

ac(0) − D̂bΨ
ab + 2 ∗ϖ ∗χa + D̂υψ

a = 0. (3.35)

They play dual roles with respect to eqs. (3.32) and (3.33), because the energy density ε(0)

carries information on the mass of the source, while c(0) endorses its nut charge (monopole-

like magnetic mass) (see e.g. [25] for a recent discussion on these electric-magnetic dual

observables). The two sets of equations are dissymmetric though: eq. (3.34) for instance is

driven exclusively by the Cotton vector χa — as opposed to its Carroll-dual ∗χa entering

the electric-mass equation (3.32) through Qa = 1
8πG

∗χa. Even though loss phenomena

concern both the electric and the magnetic masses, as captured e.g. in eqs. (76) and (80)

of [47] — see also appendix D of [48], the time evolution of the nut is not affected by Cab

and N̂ab, whereas that of the mass is, in line with an important distinction between these

aspects raised in [49].

A useful exercise, which we will not undertake here, would be to set up a precise

dictionary between the gauge at hand and the more conventional Newman-Unti or Bondi

gauges, regarding the radiation observables. We can nonetheless take a few steps towards

this end using the Carrollian tensor Na introduced in (3.21), reminiscent of the Bondi

angular-momentum aspect,23 and a Bondi mass aspect

M = 4πGε(0) −
1

8
C

ab
N̂ab. (3.36)

This definition is reached from eq. (2.39) of [23] valid in anti-de Sitter, at k = 0.24 What

distinguishes the energy density 4πGε(0) and the mass M is a radiative contribution.

We can attempt to define a magnetic-mass aspect starting from anti-de Sitter, where

the behaviour of the bulk Weyl tensor in the gauge used here exhibits the complex-mass

23As for the shear and the news, the physics conveyed by Na in the covariant Newman-Unti gauge,

is slightly different compared to the standard angular-momentum aspect. For the Kerr geometry, as an

example, in the gauge at hand Na = 0 and the angular momentum is carried by the Carrollian vorticity, as

opposed to plain Newman-Unti gauge, where the boundary vorticity is absent (see eq. (A.20)). This hints

towards the recent progress in defining a supertranslation-invariant angular momentum and comparing the

multiple routes to it (see e.g. [42, 50–53]).
24It coincides with (42) of [47] upon identifying M of this reference with our 4πGε(0).
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combination τ = −c+ 8πiGε (see [22]) with ε the AdS-boundary energy density and c the

Cotton scalar (longitudinal component with respect to the congruence u). We thus define

the complex mass aspect of Ricci-flat spacetimes in covariant Newman-Unti gauge as

τ̂ = lim
k→0

τ = −2ν + 8πiGε(0), (3.37)

where

ν =
1

2
lim
k→0

c =
1

2
c(0) −

1

4
D̂aD̂b ∗C

ab −
1

8
Cab ∗N̂

ab (3.38)

is the magnetic-mass aspect reached using (B.12) and (B.15) upon substitution of

ξab = −k2

2 Cab. Subtracting the radiative contribution as in (3.36), we define the nut aspect

N = ν +
1

8
Cab ∗N̂

ab =
1

2
c(0) −

1

4
D̂aD̂b ∗C

ab, (3.39)

where c(0) =
(

D̂aD̂
a+2K̂

)

∗ϖ is one of the four Carroll Cotton scalars displayed in (B.15).25

Following the case of asymptotically AdS spacetimes quoted earlier, the behaviour of the

bulk Weyl tensor in the Ricci-flat instance does also depend on the complex mass aspect

τ̂ , and we find indeed

Ψ2 =
iτ̂

2r3
+ O (1/r4) . (3.40)

The higher-order missing terms in (3.40) are absent in the resummable, algebraically special

solutions discussed in refs. [20, 22, 25]. Unsurprisingly, this expression coincides with

eq. (68c) of [47].

With the above definitions, eqs. (3.34), (3.32) and (3.33) become:26

D̂υN = −
1

2
D̂aχ

a −
1

4

(

D̂aD̂b ∗N̂
ab − ∗C

ab
D̂aR̂b

)

, (3.41)

D̂υM = −
1

2
D̂a ∗χa +

1

4

(

D̂aD̂bN̂
ab + C

ab
D̂aR̂b −

1

2
N̂abN̂

ab

)

, (3.42)

D̂υN
a−D̂

aM+∗D̂
aN =

1

2

[

C
ab

D̂bK̂ + ∗C
ab

D̂bÂ − 4 ∗ϖ ∗C
ab

R̂b −
1

2
∗D̂

a
D̂bD̂c ∗C

bc

−
1

2
D̂

b
(

D̂bD̂cC
ac−D̂

a
D̂

c
Cbc

)

+ C
ab

D̂
c
N̂bc +

1

2
D̂

b
(

C
ac

N̂bc

)

]

.

(3.43)

The first equation phrases the loss process of the nut aspect sustained by the Carroll-dual

news ∗N̂ab and the Carroll Cotton current χa. It is actually a geometric identity associated

with the Carroll structure — as is (3.35), which could have been reexpressed as well in

terms of the nut aspect. The last two flux-balance equations (3.42) and (3.43) for the

electric-mass and angular-momentum aspects are genuinely dynamical and coincide with

eqs. (2.53) and (2.50) of ref. [23], where the approach to asymptotic flatness via a limit

25Our definitions for ν and N match with −M̃ and −M̃ of [47], eqs. (53) and (55), for c(0) = 0 (no

magnetic monopole mass). This condition pertains to the use of the Bondi gauge in the quoted reference,

where no Ehresmann connection exists and thus ∗ϖ vanishes (as φa).
26All these computations call for abundant use of the Weyl-covariant-derivative commutators presented

in the appendix, eqs. (A.31), (A.32), (A.33), (A.36), (A.37) and (A.38).
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of vanishing cosmological constant was proposed, or else with (4.50) and (4.49) of [54],

obtained in a plain Ricci-flat context.27

Order 1/r2 and the next flux-balance equation. The Carrollian symmetric and trace-

less two-tensor Eab, descendant of the AdS-boundary stress, enters the line element at order
1/r. However, the fundamental Carrollian energy-momentum conservation equations (3.30)

and (3.31) fail to capture its dynamics. In a direct search of Ricci-flat spacetimes, Ein-

stein’s equations bring their share at each order and this is how the flux-balance equations

emerge for the Chthonian degrees of freedom as Eab. In the present method, Einstein’s

equations have already been imposed at the considered order. The bulk metric including

the term (2.55) with the f(2)s as in (2.57) (2.58) and (2.59) is thus on-shell — assuming (2.1)

is satisfied. However, this term is due to exhibit divergences at vanishing k. Removing

them will impose conditions involving the Chthonian degrees of freedom as well as their

longitudinal derivatives appearing explicitly in (2.59). This is how flat flux-balance equa-
tions are recovered in the transition from anti-de Sitter to asymptotically flat spacetimes,

and this is another laudable achievement of this note.

The protocol is by now well established: we ought to follow the four steps enumerated

earlier, starting with any tensor f(2) — and later on with other f(s). Let us open the study

with the scalar contribution f(2), eq. (2.57). With little effort we find:

lim
k→0

f(2) = 2 ∗ϖν −
1

3
D̂aN

a ≡ f̂(2). (3.44)

Next we consider the transverse vector f(2)aθ
a in (2.58):

lim
k→0

f(2)a = −
1

6
N b

Cba −
4

3
∗ϖ ∗Na − 4πGD̂bE

b
a ≡ f̂(2)a. (3.45)

Neither the limit (3.44) nor (3.45) introduce any new Chthonian degree of freedom

or impose any further condition on their evolution. As we will now see, the situation is

different for the transverse tensor (2.59) f(2)abθ
aθb. Using the numerous tools developed

in this work, we find:28

f(2)ab =
1

k2

(

16πG

3
D̂υEab +

1

3
D̂⟨aNb⟩ + 2πGε(0)Cab −

ν

2
∗Cab

)

+2πG

(

8

3
D̂υE(2)ab −

4

3
D̂⟨aπ(2)b⟩ + ε(1)Cab − 2C

c
(a Eb)c

)

− 2 ∗ϖ3 ∗Cab

+O
(

k2
)

. (3.46)

This result meets our expectations and allows us to draw significant conclusions.

27In the quoted section 2.5 of [23] µ = −du so that φa = ϖab = 0 (Bondi gauge with exp 2β0 = 1).

Furthermore our definition of Na is slightly different: Na
here = Na

there + 1
4

(

C
ab∇̂c

Cbc + 3
8
∇̂a
(

C
bc

Cbc

))

with

∇̂c being actually the ordinary two-dimensional Levi-Civita connection due to the absence of Ehresmann

connection in [23] (see eq. (A.29) where the Carroll-Weyl covariant derivative reduces to the ordinary one

when φa vanishes). This definition is in line with that of [55]. Likewise N̂
ab

here = Nab
TF there − lthere

2
C

ab

with lthere = θhere and for further use we also quote that Eab
here = − 3

16πG

(

Eab
there − 1

16
C

ab
C

cd
Ccd

)

. The

comparison with ref. [54] is reviewed in [23].
28We define the symmetric and traceless part of a Carrollian two-tensor sab as s⟨ab⟩ = s(ab) − 1

d
s c

c δab

(here d = 2).
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• The flat limit is singular unless the order-1/k2 contribution to f(2)ab is absent i.e.

D̂υEab =
3

16πG

(

−
1

3
D̂⟨aNb⟩ − 2πGε(0)Cab +

ν

2
∗Cab

)

, (3.47)

which is the sought-after Carrollian flux-balance equation for Eab, later referred to as

FBE(1) = 0. This equation matches with eq. (4e) of [47].29

• Assuming eq. (3.47) is fulfilled, the limit can be taken

lim
k→0

f(2)ab =
16πG

3

(

D̂υE(2)ab −
1

2
D̂⟨aπ(2)b⟩ +

3

8
ε(1)Cab −

3

4
C

c
(a Eb)c

)

− 2 ∗ϖ3 ∗Cab

≡ f̂(2)ab, (3.48)

and provides the last piece of the order-1/r2 term in the Ricci-flat line element.

• New Chthonian degrees of freedom enter the bulk metric at this order: E(2)ab, π(2)a

and ε(1) in the form of a symmetric and traceless Carrollian tensor

Fab = D̂υE(2)ab −
1

2
D̂⟨aπ(2)b⟩ +

3

8
ε(1)Cab −

3

8πG
∗ϖ3 ∗Cab. (3.49)

Their dynamics is unknown at this stage but will be unravelled in the course of the

analysis at order 1/r3.

We will close this paragraph exhibiting the explicit Ricci flat metric at the considered

order. To this end we use the results (3.1), (3.9), (3.12), (3.22), (3.44), (3.45), (3.48)

and (3.49):

ds2
Ricci-flat = µ

[

2dr +
(

2rφa − 2 ∗D̂a ∗ϖ − D̂bC
b
a

)

θ̂a −
(

rθ + K̂

)

µ
]

+

(

r2 + ∗ϖ2 +
C 2

4

)

dℓ2 + (rCab + ∗ϖ ∗Cab) θ̂
aθ̂b

+
1

r

(

8πGε(0)µ
2 −

4

3
µNaθ̂

a −
16πG

3
Eabθ̂

aθ̂b

)

+
1

r2

(

2 ∗ϖν −
1

3
D̂aN

a

)

µ2 −
1

r2
µ

(

1

3
N b

Cba +
8

3
∗ϖ ∗Na + 8πGD̂bE

b
a

)

θ̂a

+
1

r2

(

16πG

3
Fab − 4πGC

c
(a Eb)c

)

θ̂aθ̂b + O (1/r3) . (3.50)

This solution to vacuum Einstein’s equations is built upon the following boundary Carrol-

lian data: (i) a generic Carrollian structure with geometric shear ξab = 0 (but arbitrary

Ehresmann connection providing φa and ∗ϖ); (ii) a dynamical shear Cab, utterly free; (iii)

an energy density ε(0) i.e. a Bondi mass M , a heat current Na aka the Bondi angular

momentum aspect and a stress Eab, all satisfying the flux-balance equations (3.42), (3.43)

and (3.47);30 (iv) three more degrees of freedom E(2)ab, π(2)a and ε(1) encoded in Fab (3.49)

with evolution equations yet to be uncovered.

29For this we use the dictionary for ref. [47] set up in footnotes 24 and 25, together with the relations

−16πGEab
here = T ab

there and Na
here = Pa

there. Observe that eqs. (58) and (63) of [47] are also compatible with

further quantities introduced in [23] and mentioned in footnote 27.
30As pointed out earlier the nut aspect N — equivalently the magnetic mass ν — is in essence part of

the Carrollian structure and its evolution equation (3.41) is a geometric identity in disguise.
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Recursion and the fate of Chthonian degrees of freedom. All this has been

achieved as the limit of vanishing cosmological constant within general asymptotically

anti-de Sitter Einstein spacetimes, where infinitely many flat degrees of freedom originate

from the Laurent expansion of the anti-de Sitter boundary energy-momentum tensor about

k2 = −Λ/3 = 0 and constrained through evolution equations. Compared to the anti-de Sitter

solution space, the extra — Chthonian — functions are {χ(n≥2)}≡
{

ε(n−1≥1), π
a
(n≥2), E

ab
(n≥2)

}

.

It is natural to wonder whether these are truly independent functions. Answering this ques-

tion demands a higher-order analysis but some simple considerations allow to infer that

ε(n−1), πa
(n) and Eab

(n) could be repackaged in a single symmetric traceless tensor F ab
(n), having

the expected conformal weight.

Indeed, one should recall that the χ(n)s are all weight-3 and contribute to the f(s)s (of

weight s+ 2) through an appropriate number of longitudinal or transverse Weyl-covariant

derivatives uCDC or Da, powers of vorticity ωab or shear σab, all raising the weight by one

unit (in the Carrollian limit, the latter two bring a factor k2 with ∗ϖη̂ab or Cab). The

analysis of Einstein’s equations Err, Er0̂, Era and Eab in the radial expansion exhibits a

remarkable recursion structure for the f(s), f
a
(s) and fab

(s) — for s = 2 these equations are

sorted in (2.56). The latter are given in terms of quantities of order s − 1 along with one

transverse Weyl derivative, one power of vorticity, or one power of shear. Furthermore,

the scalar and the vector do not involve any net power of k2, whereas the tensor does:

fab
(s) = 1

k2

[

uCDCf
ab
(s−1) + · · ·

]

. This shows, on the one hand, that the scalar and vector

contributions to the line element remain finite in the Carrollian limit, and do not impose any

supplementary constraint. On the other hand, flux-balance equations originate exclusively

from the two-index term.

Owing to the fact that χ =
∑

m≥2 k
2mχ(m), the Chthonian degrees of freedom χ(m)

persist in the Carrollian limit of the fs if a power of k2 equal to or more negative than

−m is inherited from the AdS solution. Combined with the above recursive pattern, where

in particular negative powers appear solely in the tensor fab
(s), this suggests that once a

combination of χ(m) has emerged, such as F ab ≡ F ab
(2) in eq. (3.49) for χ(2) inside (3.46), only

this precise expression will appear in the subsequent orders, along with more derivatives,

powers of shear and vorticity, and increasing negative powers of k2. For instance, this

occurs for F ab
(1) ≡ Eab

(1) ≡ Eab in fab
(1) as in eq. (3.22), fab

(2) as in eq. (3.46), and likewise in

higher orders.

This scheme has two consequences. The first is that at order (s + 1), one new flux-

balance equation FBE(s) = 0 emerges, for the previously determined combination F ab
(s) of

the Chthonian functions χ(s), as it should for global evolution consistency. Schematically

this property is captured in the following:

fab
(s+1) =

s−1
∑

n=1

c(s,n)

k2(s−n+1)
D̂

s−n
υ FBE(n) +

c(s,s)

k2
FBE(s) + f̂ab

(s+1) + O
(

k2
)

, (3.51)

with c(s,n) some immaterial coefficients, the new equation being FBE(s) = 0. The second

consequence is that the triplet χ(s) counts as a single Chthonian degree of freedom materi-
alized in F ab

(s), the one appearing in the line element and obeying a flux-balance equation
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revealed at the next order in 1/r. The following generic structure of the solutions underpins

the above reasoning:31

• f̂(2s+1) contains (−)s8πGε(0) ∗ϖ2s and D̂af̂
a
(2s);

• f̂(2s+2) contains (−)s2ν ∗ϖ2s+1 and D̂af̂
a
(2s+1);

• f̂a
(s+1) contains D̂bf̂

ab
(s), ∗ϖ ∗ f̂a

(s), C a
bf̂

b
(s);

• f̂ab
(s+1) = c(s+1,s+1)F

ab
(s+1) + tensors based on objects of order s;

• F ab
(s+1) contains D̂s

υE
ab
(s+1), D̂s−1

υ D̂
⟨a
π

b⟩
(s+1), ε(s) ∗ϖs−1C ab, . . . ;

• FBE(s) = 0 is of the form D̂υF
ab
(s) =

{

D̂
⟨a
f̂

b⟩
(s),C

abf̂(s), . . .
}

,

where the dots stand for other possible admissible terms. As anticipated, the actual Chtho-

nian degrees of freedom capturing the flat dynamics are the emerging F ab
(s), which should

be substituted for the (s− 1)th derivatives of Eab
(s), π

a
(s) and ε(s−1) delivered by the anti-de

Sitter energy-momentum tensor.

A legitimate question one may finally ask in view of our analysis pertains to the

existence of other, possibly infinite, sets of Chthonian data originating from a Laurent

expansion of the AdS boundary metric (see e.g. [45, 56]). Direct exploration of Ricci-flat

solution spaces does not seem to support such an expectation, but a definite answer requires

a thorough investigation, which would bring us far from our main goal.

The flat resummation. The anti-de Sitter resummable instance presented in eq. (2.65)

can be realized in the flat limit, as it was shown in [3]. In this case all Chthonian functions

should vanish, together with Na, Eab and the shear C ab, leading ultimately to

ds2
res. Ricci-flat = µ

[

2dr +
(

2rφa − 2 ∗D̂a ∗ϖ
)

θ̂a −
(

rθ + K̂

)

µ
]

+
(

r2 + ∗ϖ2
)

dℓ2 +
1

r2 + ∗ϖ2

(

8πGε(0)r + ∗ϖc(0)

)

µ2. (3.52)

This captures all algebraically special Ricci-flat spacetimes provided ε(0) obeys (3.32)

and (3.33) which now read:

D̂υε(0) +
1

8πG
D̂a ∗χa = 0, (3.53)

D̂aε(0) −
1

8πG
∗D̂ac(0) = 0. (3.54)

Equations (3.53) and (3.54) coincide with eqs. (29.16) and (29.15) of [57].32 The latter are

rather complicated and it is remarkable they are tamed into simple conservation equations

31We remind that F ab
(1) ≡ Eab

(1) ≡ Eab, πa
(1) ≡ πa, and F ab

(2) ≡ F ab.
32For that purpose, the following identifications are necessary, in Papapetrou-Randers frame and complex

coordinates x =
{

ζ, ζ̄
}

with dℓ2 = 2
P 2(u,ζ,ζ̄)

dζdζ̄, υ = 1
Ω

∂u, µ = −Ωdu + badxa and êa = ∂̂a = ∂a + ba

Ω
∂u,

θ̂a = dxa: Ω = 1, bζ = −L, ∗ϖ = −Σ, τ̂ = 2(M + im), whereas their radial coordinate is r̃ = r − r0 with

r0(u, ζ, ζ̄) the origin in the affine parameter of the geodesic congruence tangent to ∂r.
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such as (3.53) and (3.54). Reaching this conclusion would have been inconceivable without

the null boundary perspective and the Carrollian tools, which are the appropriate language

for asymptotically flat spacetimes.

The algebraically-special nature of the metric (3.52) is proven using the Goldberg-Sachs

theorem with the null, geodesic, and shear-free in the resummed instance, bulk congruence

tangent to ∂r. The latter is part of the canonical null tetrad parallelly transported along

∂r (thanks to the affine nature of r) introduced in [3], which coincides with that of [57],

eq. (29.13a), as well as with the original ref. [37]. In complex celestial-sphere coordinates

ζ and ζ̄ (see footnote 32) the null tetrad reads:


















k = ∂r

l = 1
2

(

8πGε(0)r+∗ϖc(0)

r2+∗ϖ2 − rθ − K̂

)

∂r + υ

m = P
r−i∗ϖ

(

∂̂ζ̄ +
(

∗D̂ζ̄ ∗ϖ − rφζ̄

)

∂r

)

(3.55)

with k·l = −1, m·m̄ = 1 and ds2
res. Ricci-flat

= −2kl+2mm̄. Generically, k is a multiplicity-

two principal null direction of the Weyl tensor, and using the tetrad at hand we find the

following Weyl complex scalars: Ψ0 = Ψ1 = 0 and

Ψ2 =
iτ̂

2(r − i ∗ϖ)3
, Ψ3 =

iPχζ

(r − i ∗ϖ)2
+ O (1/(r−i∗ϖ)3) , Ψ4 =

iX ζ̄
ζ

r − i ∗ϖ
+ O (1/(r−i∗ϖ)2) .

(3.56)

Observe that neither Ψ3 nor Ψ4 vanish in the instance of Petrov type D solutions, because

l is not a principal null direction. Another tetrad is reached with a Lorentz transformation

suitably adjusted for l
′ be a principal direction of multiplicity two whereas k

′ ∝ k, and

Ψ′
3 = Ψ′

4 = 0. Unsurprisingly, all Ψs are spelled using the Carrollian descendants of the

boundary Cotton tensor — as well as their derivatives in the higher-order terms.

4 Outlook

Asymptotically anti-de Sitter and flat spacetimes subject to Einstein equations are distin-

guished mainly by two features. The first is gravitational radiation escaping at or arriving

from null infinity in the flat instance, which is absent under the usual boundary condi-

tions for anti-de Sitter. The second concerns the data required for a faithful depiction of

these geometries and of their dynamics imposed by Einstein’s equations: a finite versus an

infinite number for asymptotically AdS or flat.

In spite of the sharp distinctness of the solution spaces with non-vanishing and zero cos-

mological constant, the latter can be smoothly reached from the former in a procedure that

is the core of this work. It can be outlined in three steps, performed along with the process

of sending Λ to zero, which simultaneously transmutes the pseudo-Riemannian conformal

boundary of anti-de Sitter into a Carrollian descendant, carrying akin information.

• Bondi’s shear CAB is substituted on-shell for the geometric shear σAB.

• The anti-de Sitter boundary energy-momentum tensor TAB is Laurent-expanded in

powers of k2 = −Λ/3 about k2 = 0. This supplies an infinite number of replicas, which

account for the awaited flat, Chthonian, degrees of freedom.
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• The evolution (flux-balance) equations of the — now Carrollian — degrees of freedom

are reached using both the limit of the conservation of the energy and momentum, as

well as the requirement of finiteness for the line element in the flat limit. The latter

(i) selects the Chthonian variables ε(n≥1), π
a
(n≥2) and Eab

(n≥2) besides the standard

energy density ε(0), momentum πa and stress Eab, and we have argued that genuine

degrees of freedom are only the F ab
(n)s; (ii) freezes a few other components of the ex-

panded energy-momentum tensor in terms of the boundary Carrollian Cotton tensors
(

ζa, Qa, ζab,Σab,Ξab
)

; (iii) delivers the Chthonian dynamics, which is not captured

by the energy-momentum conservation but echoes flat Einstein equations.

The technical tour de force of our exploration shouldn’t shadow the conceptual af-

termath of our findings. These bring back the boundary energy and momentum at the

center of the asymptotically flat bulk reconstruction, besides the Bondi shear, under the

form of a Carrollian energy density, momentum and stress, together with an infinite tower

of replicas of the latter. Speculating over a flat extension of AdS gauge/gravity duality,

and owing to the key role played by the energy-momentum tensor in the latter, one is

led to several unescapable questions. What would the fundamental observables be in the

dual Carrollian field theory? What role would the replicas of the energy-momentum sector

play? What is the interplay between the Chthonian and the shear/news sector, which has

been investigated in celestial holography? Could this correspondence still be qualified as

holographic — given the seemingly infinite number of necessary data? Our approach does

not yet provide any cue for answering these questions, though it hands some confidence in

the zero-Λ limit, that could be inquired within the AdS/CFT correspondence. This last

point is probably the deepest our analysis conveys.

This is the big picture. Other questions merit equal attention, starting with the ones

related to symmetries and charges. What are the asymptotic symmetries in a partially

unfixed gauge like the covariant Newman-Unti introduced here? What sort of charges does

this extension carry? What is the precise combination of vorticity and angular-momentum

aspect that would define the physical angular momentum? How would logarithmic terms

in the radial expansion alter the analysis? In answering these questions, one could follow

recent works such as, e.g., [10, 13, 15] as well as [42, 50–52, 58]. In particular, one should

adress the Weyl invariance in conjunction with the boundary local Lorentz (or Carroll)

gauge invariance inherited from the onset of a velocity congruence or a clock form in the

boundary pseudo-Riemannian (or Carrollian) structure. In a similar fashion as the one

presented in this work, a careful analysis would allow to embrace both the anti-de Sitter

and flat cases.

Regarding the charges, a thorough comparison of our method with Newman-Penrose’s

would be a valuable practice, reasonably accessible thanks to the affinely parameterised

radial congruence ∂r present in the (covariant) Newman-Unti gauge. In the first place, this

would allow to extract the famous ten non-vanishing Newman-Penrose conserved charges —

we know that these are carried by the Chthonian stress tensor descendant Fab.
33 Secondly,

33Contact with the Newman-Penrose formalism beyond the algebraically special resummable metrics

mentioned at the end of section 3 starts with Ψ0
0 ∝ iE ζ̄

ζ , Ψ1
0 ∝ iF ζ̄

ζ , Ψ0
1 ∝ iNζ , Ψ0

2 ∝ iτ̂ (see (3.40)),
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one could recast these charges following their general Carrollian definition, as described

in refs. [25, 59], giving credit to this full-fledged boundary method for the charge com-

putation. Lastly, one may deepen concepts such as subleading charges or electric versus

magnetic charges and possible dualities involving the Carrollian Cotton tensors, as recently

undertaken in [25] from the Carrollian standpoint in the limited framework of resummable,

algebraically special Ricci-flat spacetimes, and more generally discussed in refs. [60–75].
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A Carrollian geometry in Cartan frame and arbitrary dimension

Frame and covariance. Carroll structures on M = R × S with a d-dimensional base

S were alluded to in section 3. They are equipped with a degenerate metric,

dℓ2 = δabθ̂
aθ̂b, (A.1)

as well as a frame and a coframe, {êû = υ, êa} and
{

θ̂û = −µ, θ̂a
}

obeying

µ(υ) = −1, θ̂a (êb) = δa
b , θ̂a (υ) = 0, µ(êa) = 0. (A.2)

Here υ is the field of observers, kernel of the degenerate metric, and µ the clock form (see

e.g. [76]).

Ψ0
3 ∝ iP χζ and Ψ0

4 ∝ iX ζ̄
ζ , where the adopted Carrollian frame is that of footnote 32. The higher-order

terms will involve derivatives of the Cotton tensors, of the energy density, the momentum and the stress,

as well as the infinite tower of Chthonian replicas F ab
(s).
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A convenient parameterization in terms of d+ (d+1)(d+2)
2 functions (i.e. 8 for d=2) is34

υ = γ
(

∂u + vi∂i

)

⇔ µ = −
du

γ
+ ∆i

(

dxi − vidu
)

, (A.3)

êa = e i
a

(

∂i + γ∆i

(

∂u + vj∂j

))

⇔ θ̂a = ea
i

(

dxi − vidu
)

(A.4)

with

Γ2
ij = δabe

a
ie

b
j ⇔ δab = e i

a e
j

b Γ2
ij (A.5)

and

ea
ie

j
a = δj

i , eb
je

j
a = δb

a, δabe i
a Γ2

ij = eb
j , δabe

a
iΓ

2ij = e j
b , (A.6)

where (Γ2)ikΓ2
kj = δi

j . Consequently, the degenerate metric assumes the form35

dℓ2 = Γ2
ij

(

dxi − vidu
) (

dxj − vjdu
)

. (A.7)

In this specific parameterization, which generalizes that of [10] in arbitrary dimension, the

bulk Newman-Unti gauge is recovered by setting ∆i = 0 in the boundary frame.36

Carrollian tensors have commonly spacetime indices. In the Cartan frame (A.1), (A.2),

their tensorial behaviour refers to the local Carroll group, as much as relativistic tensors

in an orthonormal Cartan frame are tamed according to the local Lorentz group. Here,

the metric being degenerate the spacetime indices cannot be lowered or raised. One way

to manage this inconvenience is by introducing a pseudo-inverse [83]. Our strategy has

been slightly different, and is hinged on separating time and space, since this is natural in

Carrollian manifolds due to the fibre structure. In the frame at hand, the method boils

down to considering tensors with solely spatial indices, organized in representations of the

d-dimensional orthogonal local group, subgroup of the local Carroll group, and raised or

lowered with δab or δab. The fibre null-time direction supports scalars without indices.37

This approach is in line with the boundary reconstruction of Ricci-flat spacetimes, where

the longitudinal/transverse decomposition of the fundamental tensors coincides with the

time/space reduction of the Carrollian tensors.

A strong Carroll structure comes with a metric-compatible and field-of-observers-

compatible connection, which is not unique due to the metric degeneracy. The connection

we use defines a parallel transport that respects the time/space splitting mentioned above,

34Here γ is an arbitrary function and must not to be confused with (2.27) which is related to the vorticity

of the timelike congruence u.
35The degenerate metric is often spelled dℓ2 = qµνdxµdxν in the Carrollian literature, and n = nµ∂µ

stands for the field of observers.
36The presence of γ ≡ exp(−2β0), which persists in the bulk line element as −2 exp(2β0)dudr, assesses

a slight redefinition of the radial coordinate before reaching stricto sensu Newman-Unti gauge. We are

cavalier with this detail because the counting from the point of view of the solution space matches: the

contribution of the boundary geometry is (d+1)(d+2)/2. The same holds for the anti-de Sitter ascendant.
37When working in natural frames, as in refs. [3, 9, 24, 25, 45, 46, 85], the tensor structure is based

instead on diffeomorphisms. The time/space splitting sought for is realized in Papapetrou-Randers frame,

i.e. setting vi = 0 in the formulas (A.3), (A.4), (A.7), because this frame is stable under the Carrollian

subset of diffeomorphisms, consisting of transformations u → u′(u, x) and x → x
′(x). Carrollian tensors

have again spatial indices and transform with the Jacobian matrices of Carrollian diffeomorphisms.
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embracing distinct time and space Carrollian covariant derivatives ∇̂υ acting as a scalar

and ∇̂a acting as a form. We set for this purpose

∇̂υυ = 0, ∇̂υêa = γ̂[ab]δ
bcêc, ∇̂êaυ = 0, ∇̂êa êb = γ̂c

abêc, (A.8)

from which we infer the resulting Carrollian affine connection one-form:38

ω̂û
û = ω̂û

b = ω̂a
û = 0, ω̂a

b = δacγ̂[cb]µ + γ̂a
cbθ̂

c (A.9)

At this stage γ̂[ab] and γ̂a
cb are arbitrary, although anticipating the next step (metric com-

patibility), we have imposed antisymmetry for the former.

The covariant time and space derivatives act on Carrollian scalars as time and space

directional derivatives. For Carrollian vectors ζ = ζaêa and forms ζ = ζaθ̂
a we obtain:

∇̂aζ
b = êa

(

ζb
)

+ γ̂b
acζ

c ⇔ ∇̂aζb = êa (ζb) − γ̂c
abζc, (A.10)

∇̂υζ
a = υ (ζa) − γ̂[ab]ζb ⇔ ∇̂υζa = υ (ζa) − γ̂[ab]ζ

b. (A.11)

Under a frame transformation, γ̂[ab] and γ̂a
cb transform as connection coefficients, i.e. with

inhomogeneous terms.

Field-of-observers-compatibility is built in (A.8). Metric-compatibility translates in

ω̂(ab) = 0. This imposes

γ̂(a|c|b) = 0, (A.12)

where the symmetrization acts on the two extreme indices. The latter can be utterly

determined by further imposing the absence of torsion in the spatial section, T c
ab = 0. In

order to implement this we can use the following parameterization of the dθ̂As:

dµ − φaθ̂
a ∧ µ −ϖabθ̂

a ∧ θ̂b = 0, dθ̂c + γ̂c
aµ ∧ θ̂a +

1

2
ĉc

abθ̂
a ∧ θ̂b = 0, (A.13)

or equivalently

[υ, êa] = φaυ − γ̂c
aêc, [êa, êb] = 2ϖabυ + ĉc

abêc. (A.14)

We have again foreseen the following action by introducing γ̂ab whose antisymmetric part

already appears in the affine connection one-form. Hence, the extra condition of the absence

of torsion in the spatial section combined with (A.12) delivers

γ̂a
bc =

1

2
(ĉa

bc + ĉ a
b c + ĉ a

c b) . (A.15)

Let us also point out the useful integrability conditions d2µ = d2θ̂a = 0 associated

with (A.13):






∇̂[cϖab] = φ[cϖab]

∇̂υϖab +ϖ c
a γ̂(cb) −ϖ c

b γ̂(ca) = ∇̂[aφb]

(A.16)

38Remember that ωA
B = ΓA

CBθC with ∇eA
eB = ΓC

ABeC . The torsion and curvature two-forms are

T C = dθC + ωC
A ∧ θA = 1

2
T C

ABθA ∧ θB and RA
B = dωA

B + ωA
C ∧ ωC

B = 1
2
RA

BCDθC ∧ θD. Tor-

sion and curvature tensors can alternatively be determined using the commutator of covariant derivatives:

[∇A, ∇B ] W C = RC
DABW D − T D

AB∇DW C .
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and






υ (ĉa
bc) − γ̂a

dĉ
d
bc − 2ĉa

d[bγ̂
d
c] + 2ê[b

(

γ̂a
c]

)

− 2γ̂a
[bφc] = 0

ê[d

(

ĉa
bc]

)

− ĉa
e[bĉ

e
cd] + 2γa

[bϖcd] = 0.
(A.17)

In summary, our strong Carroll connection is totally determined thanks to the infor-

mation stored inside the second of eqs. (A.13), by requiring the time-and-space splitting

and the absence of spatial torsion. The total torsion is non-zero though and we find:

T̂ û = φaµ ∧ θ̂a −ϖabθ̂
a ∧ θ̂b, T̂ a = δabγ̂(bc)θ̂

c ∧ µ. (A.18)

The torsion is thus encoded in three Carrollian tensors (i.e. transforming homogeneously),

featuring three properties of the null-time fibre materialized in υ: the acceleration φa, the

vorticity ϖab and the extrinsic curvature γ̂(ab), which can be further decomposed into the

geometric shear ξab (traceless) and the expansion θ:

γ̂(ab) = ξab +
θ

d
δab. (A.19)

We could consistently set the Carrollian torsion to zero. From the bulk perspective,

this would significantly impoverish the range of options the covariant Newman-Unti gauge

offers for Ricci-flat spacetimes, as discussed in section 3. It is opportune to recall that

in the frame-parameterization (A.3), (A.4), ordinary Newman-Unti gauge corresponds to

∆i = 0. In more intrinsic terms, this amounts to setting

dµ = φaθ̂
a ∧ µ ⇔ [êa, êb] = ĉc

abêc (A.20)

i.e. to discarding the vorticity.

We can finally determine the curvature of the Carrollian connection under considera-

tion using Cartan’s formula, cf. footnote 38:

R̂û
b = 0, R̂a

b = R̂a
cbµ ∧ θ̂c +

1

2
R̂a

bcdθ̂
c ∧ θ̂d (A.21)

with

R̂a
bcd = êc (γ̂a

db) − êd (γ̂a
cb) + γ̂e

dbγ̂
a
ce − γ̂e

cbγ̂
a
de − ĉe

cdγ̂
a
eb + 2ϖcdγ̂[eb]δ

ae, (A.22)

R̂a
cb =

(

∇̂a + φa
)

γ̂(bc) −
(

∇̂b + φb

)

γ̂(cd)δ
ad. (A.23)

One can trace the above and yield the Carroll-Ricci tensor and the Carroll scalar curvature:

R̂cd = R̂a
cad, R̂ = δcdR̂cd. (A.24)

Let us stress anew that the freedom in designing a Carrollian connection is rather wide

— see [76–79] or [80–82] for a review — even when conditions like Levi-Civita are im-

posed, which we haven’t. Our guideline has been to ensure that all information ultimately

stored in the Carrollian frame, connection, torsion and curvature coincides with that of the

relativistic, pseudo-Riemannian ascendant, as we will shortly see: φa, ϖab, γ̂ab and ĉc
ab.
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As a final comment, we would like to mention that Carrollian geometries may have

isometries and in particular conformal isometries. The latter play a central role when

considering the null conformal boundary, as they mirror bulk asymptotic symmetries. A

vector field ξ = ξûυ + ξaêa is a Carrollian Killing if the Lie derivative of the degenerate

metric and of the field of observers vanishes. This requirement generates three conditions:



















∇̂(aξb) + ξûγ̂(ab) = 0

υ
(

ξû
)

+ ξaφa = 0

∇̂υξa − γ̂(ab)ξ
b = 0.

(A.25)

In Papapetrou-Randers frame where υ = 1
Ω∂u and the degenerate metric has no time

legs, the last condition selects the Carrollian diffeomorphisms, ∂uξ
i = 0. In the Cartan

frame at hand all diffeomorphisms are permitted; the Killing fields are nonetheless further

constrained. As usual, strong Killing fields must also leave the clock form invariant, which

implies

êa

(

ξû
)

− φaξ
û + 2ϖabξ

b = 0. (A.26)

Bulk Killing fields of Ricci-flat spacetimes are mapped onto strong Killings of their null

boundary [25].

Weyl covariance. Following the pattern adopted for the affine connection, we introduce

here a Weyl connection that respects the time and space splitting, associated with two

Weyl-covariant derivatives. These act on weight-w Carrollian tensors and deliver Carrol-

lian tensors of weight w + 1.39 The Weyl connection is encoded in θ and φa, see (A.13)

and (A.19), and the Weyl-covariant derivatives are defined as follows:

• on scalars

D̂υΦ = υ(Φ) +
w

d
θΦ, D̂aΦ = êa(Φ) + wφaΦ; (A.27)

• on vectors v = vaêa

D̂υv
a = ∇̂υv

a +
w

d
θva, D̂av

b = ∇̂av
b + wφav

b + φbva − δb
av

cφc; (A.28)

• on rank-2 tensors t = tabθ̂
a ⊗ θ̂b:

D̂ctab = ∇̂ctab + wφctab + φatcb + φbtac − δactdbφ
d − δcbtadφ

d, (A.29)

D̂υtab = ∇̂υtab +
w

d
θtab. (A.30)

Using Leibniz’ rule one obtains the generalization for any conformal tensor.

39As already mentioned in footnote 11, when working in a Cartan frame the Weyl properties are slightly

modified and there is no contradiction with the results displayed in refs. [3, 9, 24, 25, 45, 46, 85], where a

Papapetrou-Randers frame was in use.
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The Riemann-Carroll-Weyl curvature is a weight-2 tensor defined through the com-

mutator of the Carrollian Weyl derivatives acting on Carrollian scalars Φ, vectors vc or

2-tensors tcd of weight w:40

[

D̂a, D̂b

]

Φ = 2ϖabD̂υΦ + wΩabΦ, (A.31)
[

D̂a, D̂b

]

vc = Ŝ
c
dabv

d + 2ϖabD̂υv
c + wΩabv

c, (A.32)
[

D̂a, D̂b

]

tcd = Ŝ
c
eabt

ed + Ŝ
d
eabt

ce + 2ϖabD̂υt
cd + wΩabt

cd, (A.33)

where

Ωab = êa (φb) − êb (φa) − ĉc
abφc −

2

d
ϖabθ (A.34)

is yet another weight-2 Carrollian tensor. From the Riemann-Weyl-Carroll tensor, we define

Ŝcd = Ŝ
a
cad, R̂ = δcd

Ŝcd, (A.35)

all weight-2.

We can further consider time and space derivatives:

[

D̂υ, D̂a

]

Φ = −ξb
aD̂bΦ + wR̂aΦ, (A.36)

[

D̂υ, D̂a

]

vb = −Ŝ
b
acv

c − ξc
aD̂cv

b + wR̂av
b, (A.37)

[

D̂υ, D̂a

]

tbc = −Ŝ
b
adt

dc − Ŝ
c
adt

bd − ξd
aD̂dt

bc + wR̂at
bc, (A.38)

revealing a clear pattern for any Carrollian conformal tensor. In these expressions

Ŝ
c
ab = −Ŝ

c
ba = D̂

cξab − D̂bξ
c
a + δc

aR̂b − δabR̂
c (A.39)

and R̂a are weight-two tensors. Note that in Cartan frame, both the shear ξab and the

vorticity ϖab have weight one, regardless of the position of the indices. In natural frame

ξij and ϖij have weight −1, but raising an index augments the weight by two units.

Relation with a relativistic ascendant. A Carrollian manifold as described earlier

can be reached from a pseudo-Riemannian geometry at zero velocity of light k. Following

the pattern proposed in eqs. (3.2), (3.3) and (3.4), we can express the metric (2.8) of the

pseudo-Riemannian ascendant as

ds2 = ηABθ
AθB = −

(

θ0̂
)2

+ δabθ
aθb = −k2

(

θ̂û
)2

+ δabθ̂
aθ̂b, (A.40)

where we have assumed that all k-dependence is explicit i.e. θa = θ̂a while θ0̂ = kθ̂û. The

relationship among the relativistic congruence (2.9) and the Carrollian fibre attributes,

field of observers and clock form, is υ = u = êû for the former and µ = u

k2 = −θ̂û for

the latter.

40The use of Ŝ is unconventional for a curvature, but is intended to avoid confusion with a slightly

different definition given as R̂ in [3, 25, 45, 46].
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If the Carrollian frame, coframe and degenerate metric are parameterized as in

eqs. (A.3), (A.4) and (A.7), then

e0̂ =
γ

k

(

∂u + vi∂i

)

⇔ θ0̂ = k

(

du

γ
− ∆i

(

dxi − vidu
)

)

, (A.41)

ea = e i
a

(

∂i + γ∆i

(

∂u + vj∂j

))

⇔ θa = ea
i

(

dxi − vidu
)

(A.42)

and the relativistic metric reads:

ds2 = −k2
(

du

γ
− ∆i

(

dxi − vidu
)

)2

+ Γ2
ij

(

dxi − vidu
) (

dxj − vjdu
)

,

= −
k2

γ2

(

du2 − 2γ∆idu
(

dxi − vidu
))

+
(

Γ2
ij − k2∆i∆j

) (

dxi − vidu
) (

dxj − vjdu
)

,

(A.43)

where the normalized vector congruence is

u = γ
(

∂u + vi∂i

)

. (A.44)

We will not explicitly operate with this frame, which coincides at vi = 0 with the

Papapetrou-Randers form employed in refs. [3, 9, 24, 25, 45, 46], where Ω = 1/γ, bi = ∆i

and aij = Γ2
ij .

At ∆i = 0, one recovers the boundary frame of bulk Newman-Unti anti-de Sitter gauge

(modulo a remark stated in footnote 36 and valid here), and

dθ0̂ = φaθ
a ∧ θ0̂, (A.45)

which resonates with the Carrollian relative (A.20). Hence the boundary vorticity vanishes

following eq. (A.46) below.

The pseudo-Riemannian manifold is equipped with a Levi-Civita connection. We

would like to express the latter in terms of the Carrollian tensors appearing in eqs. (A.9)

and (A.13) or (A.14). The purpose of this exercise is to provide the suitable tools for

reaching the k → 0 limit in relativistic dynamical equations such as (2.1). We reckon that

in the parameterization of
{

dθA
}

=
{

dθ0̂,dθa
}

, eqs. (A.13) and (A.14), hold:

dθ0̂ − φaθ
a ∧ θ0̂ + kϖabθ

a ∧ θb = 0, dθc +
1

k
γ̂c

aθ
a ∧ θ0̂ +

1

2
ĉc

abθ
a ∧ θb = 0. (A.46)

Thus the Levi-Civita affine connection one-form reads:

ωab = −

(

kϖab +
1

k
γ̂[ab]

)

θ0̂ + δadγ̂
d
cbθ̂

c

=
(

k2ϖab + γ̂[ab]

)

µ + δadγ̂
d
cbθ̂

c

= k2ϖabµ + ω̂ab,

(A.47)

and

ω0̂
a = φaθ

0̂ − kϖabθ
b +

1

k
γ̂(ab)θ

b = −k
(

φaµ +ϖabθ̂
b
)

+
1

k
γ̂(ab)θ̂

b (A.48)
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with γ̂c
ab as in (A.15). It has zero torsion and the curvature reads:

R0̂
a =

[

1

k

(

∇̂υγ̂(ab) + γ̂(ac)γ̂(bd)δ
cd
)

− k
(

ϖ c
a γ̂(cb) +ϖ c

b γ̂(ca) + ∇̂(aφb) + φaφb

)

+k3ϖ c
a ϖbc

]

θ̂b ∧ µ +
1

2

[

1

k

(

R̂bac − φbγ̂(ac) + φcγ̂(ab)

)

−k
(

∇̂aϖbc + φaϖbc + φbϖac − φcϖab

)

]

θ̂b ∧ θ̂c, (A.49)

Ra
b = R̂a

b + δad
[

φdγ̂(cb) − φbγ̂(cd) + k2
(

∇̂cϖdb + φcϖdb + φdϖcb − φbϖcd

)]

θ̂c ∧ µ

+
1

2
δae

[

1

k2

(

γ(ec)γ(bd) − γ(ed)γ(bc)

)

− γ(ec)ϖbd + γ(ed)ϖbc

−γ(bd)ϖec + γ(bc)ϖed + k2 (2ϖebϖcd −ϖedϖbc +ϖecϖbd)

]

θ̂c ∧ θ̂d, (A.50)

where we have used the Carrollian expressions available in (A.21), (A.22) and (A.23).

We would like now to make the contact with the Carrollian descendants. The rel-

ativistic congruence is u = −kθ0̂ see (2.9). Given the connection, we can determine its

kinematical properties: the expansion Θ, the acceleration aA, the shear σAB and the vor-

ticity ωAB as defined in eqs. (2.11), (2.12), (2.13). The latter tensors are all transverse (and

traceless for the last two) and have thus non-vanishing components in spatial directions

only (indices a, b, . . .). We find

Θ = θ = γ̂c
c, aa = k2φa, (A.51)

and

σab = ξab = γ̂(ab) −
θ

d
δab, ωab = k2ϖab. (A.52)

We can furthermore determine the Weyl connection (2.10) (where we must trade the 2

for d)

A = φaθ̂
a −

θ

d
µ, (A.53)

and its curvature (2.20):

F = dA =
1

2
Ωabθ̂

a ∧ θ̂b + R̂aθ̂
a ∧ µ, (A.54)

where Ωab and R̂a are defined in eqs. (A.34) and (A.36) — explicitly

R̂a = ∇̂υφa + ξabφ
b −

1

d
êa(θ). (A.55)

All the above quantities are relativistic, but expressed in terms of the Carrollian descen-

dants describing the properties of the manifold reached at vanishing-k.

We can finally convey the relativistic conservation equations (2.1) for an arbitrary

energy-momentum tensor TAB as in (2.33), stated in Carrollian language. Given the choice

of congruence, the transverse heat current and stress tensor have only spatial components:

– 35 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
8

qa and τab. We then define as usual the longitudinal and transverse components of the

conservation equations,

L = −uB∇CT
C

B = −k∇CT
C

0̂
= −∇CT

C
û, T a = ea

B∇CT
CB = ∇CT

Ca, (A.56)

and explicitly find:

L = υ(ε) + θε+
(

∇̂a + 2φa

)

qa +

(

ξab +
θ

d
δab

)

(

τab + pδab
)

, (A.57)

T a =
(

∇̂b + φb

) (

τab + pδab
)

+ φaε+ 2qbϖ
ba +

1

k2

(

∇̂υq
a +

d+ 1

d
θqa + ξabqb

)

. (A.58)

In the conformal case, assuming thus ε = dp and τ a
a = 0 and canonical conformal weights

d + 1 for ε, qa and τab (we are in Cartan’ frame and the weights do not depend on the

position of the indices), these equations are recast as:

L = D̂υε+ D̂aq
a + ξabτ

ab, (A.59)

T a =
1

d
D̂

aε+ D̂bτ
ab + 2qbϖ

ba +
1

k2

(

D̂υq
a + ξabqb

)

. (A.60)

As discussed extensively in refs. [45, 46], the outcome of the Carrollian limit depends on

the behaviour of ε, qa and τab with respect to k. The equations at hand will be conceivably

multiplied, leading to replicas. The same phenomenon occurs in the Galilean limit with the

emergence of the continuity equation out of the relativistic longitudinal equation, besides

the energy equation.

We would like to close this section with some formulas that are useful when considering

the zero-k limit, leading in particular to the flux-balance equation (3.47). In the following,

we reduce the Riemannian Levi-Civita and Weyl covariant derivatives in terms of the

Carrollian connections introduced earlier.

Levi-Civita We will present the vector and the rank-two tensor:

V = V AeA — V a provide the components of a Carrollian vector and

Vû = kV0̂ = −kV 0̂ a Carrollian scalar































k2∇0̂V
0̂ = kυ

(

V 0̂
)

+ k2φaV
a

k∇0̂V
b = ∇̂υV

b + kV 0̂φb + k2V aϖ b
a

k∇aV
0̂ = kêa

(

V 0̂
)

+
(

ξab + θ
d
δab + k2ϖab

)

V b

∇aV
b = ∇̂aV

b + 1
k

(

ξ b
a + θ

d
δb

a + k2ϖ b
a

)

V 0̂;

(A.61)

T = T ABeA ⊗ eB — T ab are farther interpreted as components of a Carrollian rank-

two tensor, T a
û = kT a

0̂
= −kT 0̂a and T a

û = kT a
0̂

= −kT a0̂ those of Carrollian
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vectors, while Tûû = k2T0̂0̂ = k2T 0̂0̂ gives a Carrollian scalar























































k3∇0̂T
0̂0̂ = k2υ

(

T 0̂0̂
)

+ k3φa

(

T a0̂ + T 0̂a
)

k2∇0̂T
b0̂ = k∇̂υT

b0̂ + k2φbT 0̂0̂ + k2φaT
ba + k3ϖ b

a T
a0̂

k∇0̂T
ab = ∇̂υT

ab + k
(

φaT 0̂b + φbT a0̂
)

+ k2
(

T acϖ b
c + T cbϖ a

c

)

k∇aT
b0̂ = k∇̂aT

b0̂ +
(

ξac + θ
d
δac + k2ϖac

)

T bc +
(

ξ b
a + θ

d
δb

a + k2ϖ b
a

)

T 0̂0̂

k2∇aT
0̂0̂ = k2êa

(

T 0̂0̂
)

+ k
(

ξac + θ
d
δac + k2ϖac

)

T c0̂ + k
(

ξac + θ
d
δac + k2ϖac

)

T 0̂c

∇aT
bc = ∇̂aT

bc + 1
k

(

ξ b
a + θ

d
δb

a + k2ϖ b
a

)

T 0̂c + 1
k

(

ξ c
a + θ

d
δc

a + k2ϖ c
a

)

T b0̂;

(A.62)

Weyl similarly:

V = V AeA






























k2D0̂V
0̂ = kD̂υV

0̂

kD0̂V
b = D̂υV

b + k2V aϖ b
a

kDaV
0̂ = kD̂aV

0̂ +
(

ξab + k2ϖab

)

V b

DaV
b = D̂aV

b + 1
k

(

ξ b
a + k2ϖ b

a

)

V 0̂;

(A.63)

T = T ABeA ⊗ eB























































k3D0̂T
0̂0̂ = D̂υ

(

k2T 0̂0̂
)

k2D0̂T
0̂b = D̂υ

(

kT 0̂b
)

+ k3T 0̂aϖ b
a

kD0̂T
ab = D̂υT

ab + k2
(

T cbϖ a
c + T acϖ b

c

)

k2DaT
0̂0̂ = D̂a

(

k2T 0̂0̂
)

+
(

ξab + k2ϖab

)

kT b0̂ +
(

ξab + k2ϖab

)

kT 0̂b

kDaT
0̂b = D̂a

(

kT 0̂b
)

+
(

ξac + k2ϖac

)

T cb +
(

ξ b
a + k2ϖ b

a

)

T 0̂0̂

DaT
bc = D̂aT

bc + 1
k

(

ξ b
a + k2ϖ b

a

)

T 0̂c + 1
k

(

ξ c
a + k2ϖ c

a

)

T b0̂.

(A.64)

B The Carrollian Cotton tensors in three dimensions

The Cotton tensor introduced in section 2 can be decomposed in terms of Carrollian de-

scendants, which obey Carrollian identities resulting from (2.39). In Papapetrou-Randers’

frame and for vanishing ξab a thorough exhibition is available in appendix C of [25]. The

Carrollian Cotton tensor will be investigated from a more general viewpoint in [24]. Here

we will summarize its properties in Cartan’ frame with ξab ̸= 0. Prior to this presentation

we need to spend some time on d = 2.

In three boundary spacetime dimensions, we pointed out that given a congruence

u, a transverse Hodge duality can be designed mapping transverse vectors to trans-

verse vectors and symmetric, traceless and transverse two-tensors onto similar objects,

eqs. (2.28), (2.29), (2.31), (2.32). This procedure is readily extended to a Carroll structure

M = R × S and the duality coincides with the Hodge duality in the 2-dimensional basis

S : Carrollian vectors are mapped onto Carrollian vectors and Carrollian symmetric and
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traceless two-tensors onto the same class. In the relativistic Cartan frame we use here the

antisymmetric pseudo-tensor is ϵABC or ϵABC with ϵ0̂1̂2̂ = −ϵ0̂1̂2̂ = 1, whereas using (2.9)

in (2.28) we find η̂AB = −ϵ0̂AB so that only η̂ab is non-zero with η̂1̂2̂ = −1. We adopt this

convention for the Carrollian object, without introducing any further symbol. Now (2.29)

translates into

η̂acη̂
c

b = δab, η̂abη̂ab = 2, (B.1)

and (2.31), (2.32) give

∗va = η̂b
avb, ∗wab = η̂c

awcb, (B.2)

for Carrollian vectors va and Carrollian symmetric, traceless tensors wab. We will often

use the following identities, generalizable to any tensor:

∗∗ va = −va, ∗vawa = −va ∗wa. (B.3)

The Carroll-Riemann, Carroll-Ricci and scalar (A.24) curvatures read:

R̂abcd = K̂ (δacδbd − δadδbc) , R̂ab = K̂δab, R̂ = 2K̂. (B.4)

The Carroll-Weyl-Riemann and Ricci tensors, the Carroll-Weyl-Ricci scalar (see (A.35)) as

well as the Carroll-Weyl tensor curvature (A.34) are

Ŝabcd = K̂ (δacδbd − δadδbc) , Ŝab = K̂ δab, Ωab = −Â η̂ab, (B.5)

expressed in terms of two weight-2 Weyl-covariant scalars:

K̂ = K̂ + ∇̂aφ
a, Â = ∗ϖθ − ∗ϕ (B.6)

with

∗ϖ =
1

2
η̂abϖab ⇔ ϖab = η̂ab ∗ϖ, (B.7)

and

∗ϕ =
1

2
η̂abϕab where ϕab = êa(φb) − êb(φa). (B.8)

These obey Carroll-Bianchi identities:

2D̂υ ∗ϖ + Â = 0, (B.9)

D̂υK̂ − D̂aR̂
a − D̂aD̂bξ

ab = 0, (B.10)

D̂υÂ + η̂ab
D̂aR̂b = 0. (B.11)

The Carroll reduction of the Cotton tensor is encrypted in the longitudinal, mixed

and transverse components (2.41) and (2.43), which encompass several weight-3 Carrollian

scalars, vectors and symmetric, traceless two-tensors, dubbed “Carrollian Cotton tensors.”

In Cartan’ frame we obtain

c = c(−1)k
2 + c(0) +

c(1)

k2
+
c(2)

k4
, (B.12)

ca = k2ψa + χa +
za

k2
, (B.13)

cab = k2Ψab +Xab +
Zab

k2
(B.14)

with
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• four Carroll scalars:

c(−1) = 8 ∗ϖ3, c(0) =
(

D̂aD̂
a + 2K̂

)

∗ϖ, c(1) = D̂aD̂b ∗ξab, c(2) = ∗ξabD̂υξ
ab;

(B.15)

• three Carroll vectors:

ψa = 3η̂ba
D̂b ∗ϖ2, (B.16)

χa =
1

2
η̂ba

D̂bK̂ +
1

2
D̂

a
Â − 2 ∗ϖ

(

R̂
a + 2D̂bξ

ab
)

+ 3D̂b

(

∗ϖξab
)

, (B.17)

za =
1

2
η̂ab

D̂bξ
2 − D̂bD̂υ ∗ξab − ∗ξa

bD̂cξ
bc, (B.18)

where we defined41

ξ2 =
1

2
ξabξab ⇔ ξacξ b

c = ξ2δab; (B.19)

• three Carroll traceless and symmetric two-index tensors:

Ψab = −2 ∗ϖ2 ∗ ξab + D̂
a
D̂

b ∗ϖ −
1

2
δab

D̂cD̂
c ∗ϖ − η̂ab

D̂υ ∗ϖ2, (B.20)

Xab =
1

2
η̂ca

D̂c

(

R̂
b + D̂dξ

bd
)

+
1

2
η̂cb

D̂
a
(

R̂c + D̂
dξcd

)

−
3

2
Â ξab − K̂ ∗ξab + 3 ∗ϖD̂υξ

ab, (B.21)

Zab = 2 ∗ξabξ2 − D̂υD̂υ ∗ξab. (B.22)

As for the conservation equations (2.39), expressing them as in (A.59), (A.60), they

yield

LCot = −k3DCot − kECot −
FCot

k
−

WCot

k3
= 0, (B.23)

T a
Cot = k3Ia

Cot + kGa
Cot +

Ha
Cot

k
+

X a
Cot

k3
= 0 (B.24)

with

DCot = −D̂υc(−1) − D̂aψ
a, (B.25)

ECot = −D̂υc(0) − D̂aχ
a + Ψabξ

ab, (B.26)

FCot = −D̂υc(1) − D̂az
a +Xabξ

ab, (B.27)

WCot = −D̂υc(2) + Zabξ
ab (B.28)

and

Ia
Cot =

1

2
D̂

ac(−1) + 2 ∗ϖ ∗ψa, (B.29)

Ga
Cot =

1

2
D̂

ac(0) − D̂bΨ
ab + 2 ∗ϖ ∗χa + D̂υψ

a + ξabψb, (B.30)

Ha
Cot =

1

2
D̂

ac(1) − D̂bX
ab + 2 ∗ϖ ∗za + D̂υχ

a + ξabχb, (B.31)

X a
Cot =

1

2
D̂

ac(2) − D̂bZ
ab + D̂υz

a + ξabzb. (B.32)

41Many identities of this sort are useful: ξac ∗ξ b
c = ξ2η̂ab, ∗ξac ∗ξ b

c = ξ2δab, ϖacϖ b
c = ∗ϖ2δab.
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The four couples of equations {DCot = 0, Ia
Cot

= 0}, {ECot = 0,Ga
Cot

= 0},

{FCot = 0,Ha
Cot

= 0} and {WCot = 0,X a
Cot

= 0} originate from the different orders

in k in which the conservation of the Cotton tensor (2.39) decomposes. These are purely
geometrical identities fulfilled on any three-dimensional Carroll structure M = R × S .
Moreover, they are typical Carrollian conservation equations obtained as a consequence of

general covariance applied to a Weyl-invariant action S = −1
2

∫

M
η̂abθ̂

a ∧ θ̂b ∧ µL defined

on M = R × S :

D̂υΠ + D̂aΠa + Υa
bξ

b
a = 0, (B.33)

1

2
D̂aΠ + D̂bΥ

b
a + 2 ∗ϖ ∗Πa + D̂υPa + ξ b

a Pb = 0. (B.34)

The momenta Π, Πa, Pb and Πa
b = Υa

b + 1
2Πδa

b are defined as variations of the action

with respect to the triad
{

µ, θ̂a
}

(the explicit computation is accessible in ref. [45] for the

Papapetrou-Randers frame,42 where the organizing pattern is the subgroup of Carrollian

diffeomorphisms instead of the subgroup of local orthogonal transformations in the tangent

space). These are the energy density, the energy flux, the momentum and the stress.

For Carroll structures with vanishing Carrollian shear, ξab = 0, met e.g. at null infinity

of asymptotically flat spacetimes, six out of the ten Carroll Cotton tensors survive: c(−1),

c(0), ψ
a as in eqs. (B.15), (B.16) and χa, Ψab, Xab. Using eqs. (B.17), (B.20), (B.21) we

find the simplified expressions of the latter:

χa =
1

2
∗D̂

a
K̂ +

1

2
D̂

a
Â − 2 ∗ϖR̂

a, (B.35)

Ψab = D̂
a
D̂

b ∗ϖ −
1

2
δab

D̂cD̂
c ∗ϖ − η̂ab

D̂υ ∗ϖ2, (B.36)

Xab =
1

2
∗D̂

a
R̂

b +
1

2
D̂

a ∗R̂
b. (B.37)

These tensors now obey

DCot = −D̂υc(−1) − D̂aψ
a = 0, (B.38)

ECot = −D̂υc(0) − D̂aχ
a = 0, (B.39)

and

Ia
Cot =

1

2
D̂

ac(−1) + 2 ∗ϖ ∗ψa = 0, (B.40)

Ga
Cot =

1

2
D̂

ac(0) − D̂bΨ
ab + 2 ∗ϖ ∗χa + D̂υψ

a = 0, (B.41)

Ha
Cot = −D̂bX

ab + D̂υχ
a = 0. (B.42)

On a Carroll manifold in Cartan frame, the degenerate metric is invariant under local

Carroll-group transformations. Invariance of the action under its local orthogonal subgroup

is in line with a symmetric Πab; invariance under local Carroll boosts demands Πa = 0. This

42Equations (B.33) and (B.34) were obtained for the first time in ref. [46]. They have been recently

rediscussed in [84].
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is not always met in Carrollian theories approached from relativistic theories at vanishing

speed of light (see e.g. [85]) — alternatively it can be imposed by hand as in [86]. The

Cotton tensor and the corresponding Chern-Simons dynamics [24] admirably illustrate this

feature, which persists in the flux-balance equations of Ricci flat spacetimes, powered by

gravitational radiation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

Hidden symmetries have a long history in relativistic theories of gravity, which started with

the seminal work of Ehlers in the late fifties [1]. It was shown in this article that in the

presence of an isometry, vacuum Einstein’s equations were invariant under Möbius trans-

formations. This observation triggered an important activity in several directions. In line

with the sixties’ renaissance of general relativity, it opened the way for solution-generating

techniques applicable to vacuum Einstein’s equations [2, 3]. This was soon generalized to

situations with more commuting Killing fields [4, 5] — and bigger hidden symmetry group,

providing the system with remarkable and unexpected integrability properties [6–14]. The

underlying deep origin for the above pattern was unravelled with the advent of higher-

dimensional supergravity theories, and is rooted in the reduction mechanism. This has

revealed a wide class of hidden groups, among which the exceptional play a prominent role

(see e.g. [15–17], or [18] for a more recent presentation and further references).

The integrable sector of Einstein’s equations is only a tiny fraction of their solution

space. Unveiling the latter, in conjunction with its asymptotic symmetries and conserved

charges, has been in the very early agenda of general relativity. It shares features with

– 1 –
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gauge theories because of general covariance, and has led Bondi to come out with his

homonymous gauge, where a systematic resolution of Einstein’s equations is possible as an

expansion in powers of a radial coordinate.1 This delivers a set of functions of time and

angular coordinates, obeying first-order time-evolution equations. For Ricci-flat spacetimes

(asymptotically locally flat) this set is infinite, but it is finite for Einstein spacetimes with

negative cosmological constant (asymptotically locally anti-de Sitter).

In modern language, the set of functions necessary for reconstructing the solution are

said to be defined on the conformal boundary of the spacetime. In the asymptotically flat

instance the conformal boundary is null infinity and features a Carrollian three-dimensional

hypersurface.2 Bulk Einstein dynamics is therefore traded for boundary effective Carrol-

lian conformal field dynamics. This statement is accurate when discussing Einstein’s equa-

tions. Whether it could be promoted to a holographic principle akin to the better known

AdS/CFT involving asymptotically anti-de Sitter spacetimes and conformal field theories

defined on their time-like conformal boundary is a timely subject, currently under scrutiny.

How do hidden symmetries such as Ehlers’ act on the Carrollian boundary data?

This is the central question we would like to address in the present work. The conformal

symmetries of the boundary reflect the asymptotic symmetries of the bulk. These define

for instance the BMS4 algebra (Bondi-van der Burg-Metzner-Sachs [27–29]), which is iso-

morphic to the conformal Carroll algebra in three dimensions ccarr(3) (see [30, 31]), and

emerges upon appropriate fall-off conditions. From this perspective, wondering how the

bulk hidden symmetries are embraced by the Carrollian boundary and what their interplay

is with BMS4 ≡ ccarr(3), is both natural and relevant.

There is yet another motivation for pursuing this analysis. Following Geroch [2, 3], the

action of some Ehlers subgroup is a duality rotation in the plane of gravitational electric and

gravitational magnetic charges, as are e.g. the mass and the nut charge. Ricci-flat space-

times possess in fact multiple infinities of charges (not necessarily conserved), incarnated in

pairs of electric and magnetic representatives, and originating from the infinitely many in-

dependent “subleading” degrees of freedom necessary for reconstructing the bulk solution,

as well as the infinitely many generators of the asymptotic symmetry group. This pic-

ture has been widely conveyed through the work of Godazgar-Godazgar-Pope [32–34] (see

also [35–39]) and amply deserves to be reconsidered in the light of hidden symmetries. The

remarkable fact is here that such an analysis can be conducted exclusively on the boundary,

where the charges are constructed (see e.g. [40]) using the boundary dynamics combined

with the three-dimensional-boundary Carrollian conformal isometries, the latter being al-

ways generated by the infinite-dimensional algebra BMS4 ≡ so(3, 1)+supertranslations [41].

Translating the Ehlers group on the null boundary forcedly exhibits a mapping among the

infinite towers of charges, which is obscured in a bulk approach. The boundary Carrollian

geometry provides the most suitable language for clarifying these properties.

1Other canonical gauges are Fefferman-Graham or Newman-Unti — see e.g. refs. [19, 20] for a review

and more complete reading suggestions on this subject.
2The original observation that triggered this “flat-holography” activity is described in refs. [21, 22]. A

more systematic analysis in four dimensions was presented in [23], which set the foundations for a Carrollian

description of the dual theory, and provides a more complete reference list. Up-do-date developments in

this vein are refs. [24–26].
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In the present work, we will analyse along the above lines the integrable sector of Ricci-

flat spacetimes possessing a time-like Killing field, whose congruence coincides with the

boundary Carrollian fiber. This sector is obtained by setting conditions on the boundary

data, which ultimately guarantee that the infinite series in powers of the radial coordinates

is resummed. The boundary conditions involve the Carrollian boundary Cotton tensor and

the Carrollian boundary momenta (see [23]), which both enter the boundary computation

of the charges associated with the solution at hand. They rephrase the special structure

of bulk Weyl tensor3 and unsurprisingly lead to algebraic Ricci-flat spacetimes. Although

this class leaves interesting cases aside, it captures the main feature of the Ehlers-group

boundary manifestation. The latter turns out to be an algebraic transformation mixing

e.g. the Carrollian Cotton scalar and the Bondi mass aspect. This mixing is transmitted to

other boundary observables, including the charges through their boundary expression, and

completes the picture of the bulk-and-boundary action of the hidden group. The action

of the Möbius group, generically non-local on the four-dimensional Ricci-flat metric, is

therefore local on the boundary — as it is on the three-dimensional sigma-model of the

reduction along the bulk Killing congruence.

The starting point of our study is a reminder on the Ehlers group and the Geroch

method, as they emerge in the reduction of Ricci-flat spacetimes along orbits of one-

dimensional groups of motions. We next move and describe the bulk-to-boundary rela-

tionship for four-dimensional Ricci-flat spacetimes. This requires the use of a gauge (we

call it “modified Newman-Unti” or “covariantized”) in which the three-dimensional Carrol-

lian boundary geometry is ostensible. The bulk metric in this gauge is manifestly covariant

with respect to the boundary Carrollian diffeomorphisms and to the boundary Weyl trans-

formations. The Carrollian boundary dynamics induced by the bulk Einstein’s equations

is the following item in our agenda, which further enables us to define sets of charges and

dual charges — electric and magnetic. Finally, using the available tools for a Ricci-flat

spacetime enjoying a time-like isometry, we translate the action of the bulk Möbius trans-

formations onto the boundary observables. This analysis is performed for the integrable

sector (resummable metrics) and is based on a specific class of time-like Killing fields.

Most of our investigation relies on rather unusual geometric tools, which have been

developed recently in the framework of Carroll structures. We have sorted them out in a

first appendix, valid for any dimension d+ 1. Carrollian dynamics and conservation prop-

erties, necessary for describing the boundary perspective as inherited from bulk Einstein’s

equations, is summarized in the second appendix. The third appendix is specific to three

dimensions with emphasis on the Carrollian Cotton tensors.

3The interplay between the bulk Weyl tensor, expanded in powers of the radial coordinate, and the

boundary Cotton plus energy-momentum tensors for Einstein spacetimes was disclosed in [42–44] — see

also [45]. There is no rigorous similar statement for the Ricci-flat instance since the Carrollian relatives of

the Cotton tensor have not yet been thoroughly investigated.
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2 Ehlers and Geroch

We remind here Geroch’ generalization of Ehlers’ work following [2]. We consider a four-

dimensional pseudo-Riemannian manifold (M, g) possessing an isometry generated by a

time-like4 Killing vector field ξ. The latter has norm and twist — here A,B, . . . ∈

{0, . . . , 3}:

λ = ξAξA, (2.1)

wA = ηABCDξ
B∇CξD, (2.2)

where ηABCD =
√

−g ǫABCD (ǫ0123 = 1). Assuming the spacetime be Ricci-flat,5 one shows

that the one-form w = wAdxA is closed so locally exact, hence

w = dω (2.3)

with ω a scalar function.

We define the three-dimensional space S as the quotient M/orb(ξ). This coset space is

not a subspace of M unless ξ is hypersurface-orthogonal, which would imply zero twist

with S the orthogonal hypersurface. A natural metric on S is induced by g of M:

hAB = gAB −
ξAξB

λ
, (2.4)

which defines the projector onto S as

hB
A = δB

A −
ξBξA

λ
. (2.5)

The fully antisymmetric tensor for (2.4) is ηABC = −1√
−λ

ηABCDξ
D.

Tensors of M, transverse and invariant with respect to ξ, are in one-to-one correspon-

dence with tensors on S. If T is a tensor of S, the covariant derivative D defined following

this correspondence,

DCT
B1...Bq

A1...Ap
= hL

Ch
M1

A1
. . . h

Mp

Ap
hB1

N1
. . . h

Bq

Nq
∇LT

N1...Nq

M1...Mp
(2.6)

with ∇ the Levi-Civita connection on (M, g), coincides with the Levi-Civita connection

on (S,h). This sets a relationship between the Riemann tensor on S and the Riemann

tensor on M, generalizing thereby the Gauss-Codazzi equations to the instance where ξ is

not-hypersurface orthogonal:

RABCD = h P
[Ah

Q
B]h

R
[Ch

S
D]

(

RP QRS + 2
λ

(∇P ξQ∇RξS + ∇P ξR∇QξS)
)

(2.7)

(the calligraphic letters refer to curvature tensors of S).

The Ricci-flat dynamics for gAB is recast in the present framework in terms of6

h̃AB = λhAB, (2.8)

4The described procedure goes through in the same fashion with space-like isometries, but keeping the

two options would bring unnecessary multiplication of indices without shedding more light on our purpose.
5This property actually holds more generally for Einstein spacetimes [46].
6With our conventions, this metric is definite-negative.
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as well as ω and λ viewed as fields on S, packaged in

τ = ω + iλ, (2.9)

and obeying the following equations:7

R̃AB = −
2

(τ − τ̄)2
D̃(AτD̃B)τ̄ ,

D̃2τ =
2

τ − τ̄
D̃MτD̃Nτ h̃

MN .

(2.10)

The first results from (2.7), while the second is obtained by a direct computation of the

S-Laplacian acting on τ . Here D̃A and R̃AB are the Levi-Civita covariant derivative and

the Ricci tensor associated with the metric h̃AB displayed in (2.8).

Equations (2.10) feature two important properties. The first, due to Ehlers [1], is the

invariance under transformations maintaining h̃AB unaltered and mapping τ into

τ ′ =
ατ + β

γτ + δ
,

(

α β

γ δ

)

∈ SL(2,R). (2.11)

This is the original instance where a hidden group, SL(2,R), reveals upon reduction with

respect to an isometry. The second, described by Geroch in [2, 3], is the method for

reversing the reduction process, and finding a Ricci-flat four-dimensional spacetime with an

isometry, starting from any solution of eqs. (2.10) encoded in ω′+iλ′ = τ ′ and h′
AB = 1

λ′ h̃AB.

To this end, one shows that the S-two-form defined as

F ′
AB =

1

(−λ′)3/2
η′

ABCDCω′ (2.12)

is closed. Thus, locally

F′ = dη′. (2.13)

The one-form field η′, defined on S, can be promoted to a field on M by adding the

necessary exact piece such that its normalization be

ξAη′
A = 1. (2.14)

This defines a new Killing field on M

ξ′ = λ′η′ (2.15)

and the new four-dimensional metric reads:8

g′
AB = h′

AB +
ξ′

Aξ
′
B

λ′
. (2.16)

7Equations (2.10) can be reached by varying a three-dimensional sigma-model action defined on S. This

is at the heart of many developments about integrability and hidden symmetries — see the already quoted

literature for more information.
8The consequence of Möbius transformations on the Weyl tensor has been investigated in ref. [47].
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Closing this executive reminder, we would like to add a remark. The SL(2,R) is

hidden from the four-dimensional perspective, but explicit in the three-dimensional sigma-

model, materialized here in eqs. (2.10). Nevertheless, part of this group is in fact visible

in four dimensions because it acts as four-dimensional diffeomorphisms; part is creating

genuinely different Ricci-flat solutions. This can be illustrated in the concrete example

of Schwarzschild-Taub-NUT solutions with mass M and nut charge n. The compact sub-

group of rotations
(

cos χ sin χ
− sin χ cos χ

)

∈ SO(2) ⊂ SL(2,R) induces rotations of angle 2χ in the

parameter space (M,n), while non-compact transformations
(

α β
0 1/α

)

∈ N ⊂ SL(2,R) act

homothetically, (M,n) → (M/α, n/α).

3 Ricci-flat spacetimes and Carrollian dynamics

3.1 Bulk reconstruction and resummable Ricci-flat metrics

Choosing a covariant gauge. Four-dimensional Ricci-flat metrics are generally ob-

tained as expansions in powers of a radial coordinate, in a designated gauge, usually Bondi

or Newman-Unti. Appropriate fall-offs are assumed, and the solution is expressed in terms

of an infinite set of functions of time and angles, obeying some evolution equations, mir-

roring Einstein’s equations (see [19] for details and further references). Can one define a

three-dimensional boundary, and describe covariantly this set of functions and their dy-

namics?

The answer to this question has been known to be positive for a long time in the

case of Einstein spacetimes. It is best formulated in the Fefferman-Graham gauge [48, 49]

— see also [50] for a Weyl-covariant extension of this gauge. The (conformal) boundary

is a three-dimensional pseudo-Riemannian spacetime, and every order in the expansion

brings a tensorial object with respect to the boundary geometry. All these are expressed in

terms of two independent tensors: the first and second fundamental forms of the boundary,

namely the boundary metric and the boundary energy-momentum tensor, which is covari-

antly conserved with respect to the associated Levi-Civita connection. This conservation

translates those of Einstein’s equations that have not been used in the process of taming

the expansion.

The boundary covariance of the Fefferman-Graham gauge makes it elegant and suit-

able for holographic applications in the framework of anti-de Sitter/conformal-field-theory

correspondence. Setting up a gauge that is covariant with respect to the boundary is

therefore desirable as part of the effort to unravel a similar duality for asymptotically flat

spacetimes. In this case, the conformal boundary is at null infinity and is endowed with a

Carrollian geometry [21, 22].

Carroll structures [30, 31, 41, 51–56] consist of a d+1-dimensional manifold M = R×S

equipped with a degenerate metric. The kernel of the metric is a vector field called field of
observers. We will adopt coordinates (t,x) and a metric of the form

dℓ2 = aij(t,x)dxidxj , i, j . . . ∈ {1, . . . , d} (3.1)

with kernel

υ =
1

Ω
∂t. (3.2)
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The coordinate system at hand is adapted to the space/time splitting. It is thus respected

by Carrollian diffeomorphisms

t′ = t′(t,x) and x′ = x′(x) (3.3)

with Jacobian

J(t,x) =
∂t′

∂t
, ji(t,x) =

∂t′

∂xi
, J i

j(x) =
∂xi′

∂xj
. (3.4)

The clock form is dual to the field of observers with µ(υ) = −1:

µ = −Ωdt+ bidx
i (3.5)

(Ω and bi depend on t and x) and incorporates an Ehresmann connection, which is the

background gauge field bbb = bidx
i.9 Carrollian tensors depend on time t and space x.

They carry indices i, j, . . . lowered and raised with aij and its inverse aij , and transform

covariantly under (3.3) with J j
i and J−1i

j defined in (3.4). The basics on Carrollian tensors

and Carrollian covariant derivatives are summarized in appendix A. In the following we

will focus on d = 2, corresponding to the three-dimensional conformal null boundary of a

four-dimensional asymptotically flat spacetime, and further information on this instance is

available in appendix C. The boundary Carrollian covariance is part of the bulk general

covariance, as inherited in the boundary geometry.

Fefferman-Graham gauge is only valid for Einstein spacetimes, on the one hand. On the

other hand, Bondi and Newman-Unti gauges, applicable to Ricci-flat spacetimes, are not

covariant with respect to the boundary, because the spatial section of the three-dimensional

null boundary is locked. An alternative, still of the Eddington-Finkelstein type i.e. with

a light-like radial direction, was introduced in the framework of fluid/gravity correspon-

dence [60, 61], and made more systematic in the subsequent works both in AdS [62–65]

and for Ricci-flat spacetimes [23]. It is a sort of modified and slightly incomplete Newman-

Unti gauge [57, 58, 66] (see also [67, 68] for other extensions of the Bondi or Newman-Unti

gauges). The time coordinate t is actually a retarded time (usually spelled u) and coincides

at the boundary with the Carrollian time used in (3.1), (3.2) and (3.5).

9A Carroll structure endowed with metric (3.1) and clock form (3.5) is naturally reached in the

Carrollian limit (c → 0) of a pseudo-Riemannian spacetime M in Papapetrou-Randers gauge ds2 =

−c2
(

Ωdt − bidxi
)2

+ aijdxidxj , where all functions are x-dependent with x ≡ (x0 = ct, x). It should

be noticed here that the degenerate metric could generally have components along dt, which would in turn

give ∂i components to the field of observers. In this instance, the above Carrollian diffeomorphisms (3.3)

play no privileged role, and plain general covariance is at work — without affecting the dynamics presented

in appendix B. This option is sometimes chosen (see e.g. [54] for a general approach, or [57–59] for an

application to three-dimensional Minkowski spacetime), but it is always possible to single out the time

direction supported by the fiber of the Carrollian structure, i.e. distinguish time and spatial sections with

no conflict with general covariance.
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We can summarize as follows the structure of the four-dimensional Ricci-flat solutions

in the advertised gauge, up to order 1/r2 (G is four-dimensional Newton’s constant):

ds2
Ricci-flat= µ

[

2dr −
(

rθ + K̂

)

µ +
(

2rϕi − 2 ∗D̂i ∗̟ − D̂jC
j
i

)

dxi
]

+Cij

(

rdxidxj − ∗̟ ∗dxidxj
)

+

(

r2 + ∗̟2 +
CklC

kl

8

)

dℓ2

+
1

r

[

8πGεµ2 +
32πG

3

(

πi −
1

8πG
∗ψi

)

dxiµ −
16πG

3
Eijdxidxj

]

+
1

r2

(

∗̟cµ2 + · · ·
)

+ O

(

1

r3

)

, (3.6)

where the star designates a d = 2 Carrollian Hodge duality as defined in eq. (C.1).10

As anticipated, this expression is neither in Bondi gauge (no determinant condition —

see [27, 28]), nor in Newman-Unti (grt = −Ω 6= −1 and gri = bi 6= 0, obtained using (3.5)

— see [69]).11 Delving into the details of this gauge would bring us outside the main

purpose of the present work. We will rather explain the various ingredients appearing in

the above expression and insist on their Carrollian-covariant nature. This includes the

account of the required boundary data and the description of the evolution equations they

obey so that the bulk metric be Ricci-flat.

All quantities entering expression (3.6) are defined on the conformal boundary and can

be sorted as follows (see also the appendices for further information).

Carrollian geometry. The conformal boundary itself is part of the solution space. It

is materialized in aij , bi and Ω, accompanied with all attributes such as Carrol-

lian connections and curvature tensors, Carrollian Cotton descendants etc. — see

appendices A and C. These are free data, without evolution equations, except for

the restriction of vanishing Carrollian geometric shear as a consequence of Einstein’s
equations: ξij = 0.12

Shear. The dynamic shear is a symmetric and traceless Carrollian boundary tensor Cij(t,x)

not to be confused with the geometric shear ξij(t,x).13 It is a boundary emanation of

the bulk ∂r-congruence shear, and is completely free, although it sources the evolu-

tion equations of other tensorial data. The dynamic shear carries information on the

bulk gravitational radiation through the symmetric and traceless Bondi-like news:

N̂ij =
1

Ω
D̂tCij . (3.7)

10Referring to the complex coordinates introduced in appendix C, we chose the orientation as inherited

from the parent Riemannian spacetime: η0ζζ̄ = Ω
√

a ǫ0ζζ̄ = iΩ

P 2 , where x0 = kt.
11In all quoted Eddington-Finkelstein type of gauges, ∂r is tangent to a null geodesic congruence. In

Newman-Unti and in modified Newman-Unti this congruence is affinely parameterized, in contrast to Bondi.

In modified Newman-Unti gauge, as opposed to the others, ∂r is not hypersurface-orthogonal. Indeed, the

metric-dual form to ∂r is µ, which has a twist because of Ω and bi, the defining features of the gauge at

hand: µ ∧ dµ = ∗̟ηijdxi ∧ dxj ∧ µ (we have used eqs. (A.5) and (C.3)).
12In BMS gauge, one would set bi = 0, Ω = 1, and aij the round sphere.
13In Einstein spacetimes these two shears are proportional with the cosmological constant as a factor. In

the asymptotically flat limit, the geometric shear is required to vanish, while the dynamic shear decouples.
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With these definitions, the shear and the news are supported by genuine boundary

conformal Carrollian-covariant tensors (weight −1 and 0), hence meeting the adver-

tised expectations.14

Carrollian fluid. The boundary Carrollian fluid of Ricci-flat spacetimes is the descendant

of the relativistic boundary fluid in Einstein spacetimes in the vanishing speed of light

limit, supported by the conserved energy-momentum tensor Tµν . It is described in

terms of the energy density ε, the heat currents Qi and πi, and the symmetric and

traceless stress tensors Σij and Ξij [70, 71]. The associated momenta of the fluid

dynamics in the sense of appendix B are as follows:

Π = ε, Πi = Qi, P i = πi, Π̃ij = −Σij , Πij =
ε

2
aij − Ξij . (3.8)

As opposed to the relativistic boundary fluid, however, the Carrollian fluid is not

free, but sourced by the shear, the news and the Carrollian Cotton descendants. Put

differently, its dynamical equations are (B.1), (B.2), (B.3) and (B.4) (at zero ξij) with

a non-vanishing right-hand side. These equations translate part of Einstein’s, which

furthermore impose15

Qi =
1

8πG
∗χi, Σij =

1

8πG
∗Xij Ξij =

1

8πG
∗Ψij . (3.9)

Three of the Carrollian fluid data are thus tuned in terms of the boundary ge-

ometry through the Carrollian Cotton descendants displayed in eqs. (C.12), (C.14)

and (C.15). Only two momenta remain independent (Π = ε and P i = πi) and subject

to two Carrollian-fluid evolution equations ((B.1) and (B.3) with zero ξij and external

force,16 often referred to as flux-balance equations) out of the four — the other two are

automatically satisfied owing to the Cotton equations (B.1), (B.2), (B.3) and (B.4)

14Notice that they do not exactly coincide with the original shear and news defined in BMS gauge. They

vanish in Robinson-Trautmann spacetimes expressed in the gauge at hand, which is their defining gauge,

although these solutions are radiating.
15The presence of a non-vanishing energy flux Πi = Qi betrays the breaking of local Carroll boost

invariance (see appendix B, footnote 40) in the boundary Carrollian dynamics associated with Ricci-flat

spacetimes. This breaking accounts for bulk gravitational radiation, which in the boundary-covariant

gauge designed here does not originate solely in the news (3.7) but is also encoded in the Carrollian

energy flux Πi = Qi = 1

8πG
∗χi and the Carrollian stress Π̃ij = −Σij = − 1

8πG
∗Xij obeying eq. (B.4)

or equivalently (C.19). In Robinson-Trautman spacetimes e.g., the gravitational radiation is exclusively

rooted in the latter Cotton descendants — see footnote 14 and ref. [23].
16We display for completeness these Carrollian equations, which coincide with eqs. (2.53) and (2.50) of

ref. [72], once translated from our gauge into the BMS gauge:

1

Ω
D̂tΠ+D̂iΠ

i =
1

16πG

(

D̂iD̂jN̂
ij +C

ij
D̂iR̂j +

1

2
Cij

1

Ω
D̂tN̂

ij
)

,

D̂jΠij +
1

Ω
D̂tP

i+2∗̟∗Πi =
1

16πG

[

C
ij

D̂jK̂ +∗C
ij

D̂jÂ −4∗̟∗C ij
R̂j −

1

2
D̂

j
(

D̂jD̂kC
ik −D̂

i
D̂

k
Cjk

)

+C
ij

D̂
k
N̂jk +

1

2
D̂

j
(

C
ik

N̂jk

)

−
1

4
D̂

i
(

C
jk

N̂jk

)

]

with Π, Πi, Πij , P i as in eqs. (3.8) and (3.9).
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with (C.16). These data are related to the Bondi mass and angular momentum

aspects, M(t,x) and N i(t,x):

8πGε = 2M +
1

4
C

jk
N̂jk, (3.10)

8πGπi = ∗ψi −N i (3.11)

with ψi given in (C.13).

Similarly to the expansion of Einstein spacetimes (in Fefferman-Graham or in the

present gauge), fluid-related tensors appear at every order and not exclusively for
1/r, as expression (3.6) might suggest.

Further degrees of freedom. Contrary to the asymptotically anti-de Sitter case, the

above fluid data are not the only degrees of freedom besides the boundary geometry.

An infinite number of Carrollian tensors are necessary to all orders in the radial

expansion, as Eij(t,x) in (3.6) at order 1/r, which obey Carrollian evolution — flux-

balance — equations similar to those already displayed in footnote 16. These are

dubbed “Chthonian” degrees of freedom.

We will not elaborate any further on the features of the expansion and the structure

of the various evolution equations. The covariantization with respect to boundary Carroll

diffeomorphisms and Weyl covariance is a powerful tool,17 rooted in the bulk general covari-

ance. It can be supplemented with the boundary-fluid hydrodynamic-frame invariance at

the expense of giving up radically the complete bulk gauge fixing. This requires a modified

and incomplete Newman-Unti gauge, and has been performed for three bulk dimensions in

refs. [57–59, 66].

Resumming the series expansion. In certain circumstances the series (3.6) can be

resummed. As advertised in the introduction, this occurs when conditions are imposed on

the boundary data, which enforce specific features for the bulk Weyl tensor:

1. the dynamic shear Cij(t,x) should vanish, implying in particular the relation M =

4πGε;

2. all non-Carrollian-fluid related degrees of freedom should be discarded, as e.g. Eij(t,x);

3. N i in (3.11) should be set to zero, which amounts to demanding the Carrollian

momentum P i = πi be tuned with respect to a Carrollian Cotton descendant:18

πi =
1

8πG
∗ ψi. (3.12)

17The expression (3.10) matches with eq. (42) of ref. [73], reached through a completely different logical

path. Similarly the Carroll Cotton scalar c given in (C.11) plays here the role of the dual mass aspect,

captured in (53) of the quoted reference.
18Although eq. (3.12), which secretly tunes the bulk Weyl tensor, bares some resemblance with a self-

duality condition, it isn’t as the Ricci-flat spacetimes at hand are Lorentzian rather than Euclidean and

this option is not available.
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In the configuration reached with the above conditions, the remaining degrees of free-

dom are those describing the boundary Carrollian geometry (metric, field of observers and

Ehresmann connection), and the Carrollian-fluid energy density i.e. the Bondi mass aspect.

Expression (3.6) is now resummed into an exact Ricci-flat spacetime of algebraically special

type:19

ds2
res. Ricci-flat = µ

[

2dr + 2
(

rϕj − ∗D̂j ∗̟
)

dxj −
(

rθ + K̂

)

µ
]

+ρ2dℓ2+
µ2

ρ2
[8πGεr + ∗̟c]

(3.13)

with

ρ2 = r2 + ∗̟2. (3.14)

Ricci flatness is guaranteed by the Carrollian fluid equations, which are now genuine con-

servation equations without forcing term (B.1), (B.2), (B.3) and (B.4), where the momenta

are (using (3.9) and (3.12))

Π = ε, Πi =
1

8πG
∗χi, P i =

1

8πG
∗ ψi, Π̃ij = −

1

8πG
∗Xij , Πij =

ε

2
aij −

1

8πG
∗Ψij .

(3.15)

The same equations are identically obeyed by the Carrollian Cotton tensors (C.16) and the

geometric shear is vanishing. We are therefore left with two independent equations, which

are (B.1) and (B.3):

1

Ω
D̂tε+

1

8πG
D̂i ∗χi = 0, (3.16)

D̂jε−
1

8πG
∗D̂jc = 0, (3.17)

where c and χi are given in geometric terms in (C.11) and (C.12), and ε is proportional to

the Bondi-mass aspect, as stressed in item 1 above. Equations (3.16) and (3.17) are those

displayed in footnote 16 with vanishing right-hand side.

From the above eqs. (3.16) and (3.17) as well as eq. (C.17) one can foresee that the

energy density ε and the Carrollian Cotton scalar c play dual roles. This will be formu-

lated concretely in section 4 with reference to the boundary action of the Möbius group.

Anticipating this argument, we introduce the following Carrollian complex scalar τ̂(t,x)

and vector χ̂j(t,x):

τ̂ = −c+ 8πiGε, (3.18)

χ̂j = χj − i ∗χj . (3.19)

The aforementioned equations are thus recast as20

1

Ω
D̂tτ̂ = D̂jχ̂

j , D̂j τ̂D̂
j τ̂ = 0,

D̂j τ̂D̂
j ˆ̄τ = 8

(

2 ∗̟ ∗χi +
1

Ω
D̂tψi − D̂

jΨji

)(

2 ∗̟ ∗χi +
1

Ω
D̂tψ

i − D̂kΨki

)

.
(3.20)

19Details and examples are available in [23].
20The first of eqs. (3.20) is flux-balance, driven exclusively by the Cotton vector χ̂j displayed in (3.19).

The loss phenomenon concerns both the mass aspect ε and the “magnetic-mass aspect” c, as captured in

eqs. (76) and (80) of [73] — see also appendix D of [75]. As opposed to ε, the time evolution (C.17) of the

magnetic-mass aspect is not altered by Cij and N̂ij , in line with [76].
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Acting with a second spatial derivative on (3.17) and using (A.19), we finally obtain

D̂
j
D̂j τ̂ = 2i

(

1

Ω
D̂t ∗̟τ̂ − Â τ̂

)

. (3.21)

Let us mention for completeness that eqs. (3.16) and (3.17) coincide with eqs. (29.16) and

(29.15) of [74].21 It is remarkable that complicated equations as the latter can actually be

tamed into a simple fluid conservation supplemented with a kind of self-duality requirement.

It would have been unthinkable to reach such a conclusion without the null boundary

analysis performed here and the corresponding Carrollian geometric tools. The latter

provide definitely the natural language for unravelling asymptotically flat spacetimes.

A last comment before closing this section concerns the algebraic-special nature of the

metric (3.13). This is proven thanks to the Goldberg-Sachs theorem using the null, geodesic

and, in the resummed instance, shear-free bulk congruence tangent to ∂r. The latter is part

of the canonical null tetrad parallelly transported along ∂r (thanks to the affine nature of

r) introduced in [23], which coincides with that of [74], eq. (29.13a), as well as with the

original ref. [77]. In complex celestial-sphere coordinates ζ and ζ̄, see appendix C, the null

tetrad reads:


















k = ∂r

l = 1
2

(

8πGεr+∗̟c
ρ2 − rθ − K̂

)

∂r + υ

m = P
r−i∗̟

(

∂̂ζ̄ +
(

∗D̂ζ̄ ∗̟ − rϕζ̄

)

∂r

)

(3.22)

with the usual relations k·l = −1, m·m̄ = 1 and ds2
res. Ricci-flat

= −2kl+2mm̄. Generically,

k is a multiplicity-two principal null direction of the Weyl tensor, and using the tetrad at

hand we find the following Weyl complex scalars:22



































Ψ0 = Ψ1 = 0

Ψ2 = iτ̂
2(r−i∗̟ )3

Ψ3 =
iP χζ

(r−i∗̟ )2 + O (1/(r−i∗̟ )3)

Ψ4 =
iX

ζ̄
ζ

r−i∗̟ + O (1/(r−i∗̟ )2) .

(3.23)

Unsurprisingly, all Ψs are spelled using the Carrollian descendants of the boundary Cotton

tensor — as well as their derivatives in the higher-order terms.

3.2 Bulk versus boundary isometries

The geometries under consideration possess at least one Killing vector field. A natural ques-

tion to address concerns the boundary manifestation of a bulk isometry. At the same time

such an analysis provides the recipe for designing bulk isometries from a purely boundary

perspective.

21For that purpose, the following identifications are necessary (in complex coordinates, as in appendix C):

bζ = −L, ∗̟ = −Σ, τ̂ = 2(M + im), Ω = 1, t = u, whereas their radial coordinate is r̃ = r − r0 with

r0(t, ζ, ζ̄) the origin in the affine parameter of the geodesic congruence tangent to ∂r.
22Neither Ψ3 nor Ψ4 vanish in the instance of Petrov type D solutions, because l is not a principal null

direction. Another tetrad is reached with a Lorentz transformation suitably adjusted for l
′ be a principal

direction of multiplicity two whereas k
′ ∝ k, and Ψ′

3 = Ψ′
4 = 0.

– 12 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
5

We will circumscribe our investigation to vector fields, which have no component along

∂r, and whose other components depend only on t and x. We could be more general without

much effort assuming e.g. an expansion in inverse powers of r for the missing component

and for the radial dependence of the others. However, this would unnecessarily sophisticate

our presentation without shedding more light on our simple and robust conclusion: the
bulk isometries at hand are mapped onto boundary Carrollian diffeomorphisms generated
by strong Killing vectors (a summary on Carrollian isometries is available in appendix B).

It is convenient for the subsequent developments to adopt bulk Cartan frame and

coframe aligned with the boundary (3.2), (A.2) and (3.5):

et̂ ≡ υ =
1

Ω
∂t, eı̂ ≡ ∂̂i = ∂i +

bi

Ω
∂t, er̂ ≡ ∂r,

θt̂ ≡ −µ = Ωdt− bidx
i, θı̂ ≡ dxi, θr̂ ≡ dr.

(3.24)

The components for the bulk metric (3.13) read (in order to avoid cluttering, we keep the

“hat” on the time indices only, where potential ambiguity exists):

gt̂t̂ =
1

ρ2
(8πGεr + ∗̟c) − rθ − K̂ , gt̂i = ∗D̂i ∗̟ − rϕi, gt̂r = −1,

gri = 0, grr = 0, gij = ρ2aij .

(3.25)

Assuming a bulk vector of the form

ξ = ξt(t,x)∂t + ξk(t,x)∂k = ξ t̂(t,x)υ + ξk(t,x)∂̂k, (3.26)

where ξ t̂ = Ωξt − ξkbk, we can determine the Lie derivative of the metric:

Lξgrr = 0, Lξgrt̂ = µ, Lξgri = νi,

Lξgij = 2ρ2
(

∇̂(iξ
kaj)k + ξ t̂γ̂ij

)

− 2gt̂(iνj) + aijξ
(

∗̟2
)

,

Lξgt̂i = −gt̂iµ− gt̂t̂νi − r
(

ξ (ϕi) + ϕj ∂̂iξ
j
)

+ ξ
(

∗D̂i ∗̟
)

+
(

∗D̂j ∗̟
)

∂̂iξ
j + ρ2aij

1

Ω
∂tξ

j ,

Lξgt̂t̂ = −2gt̂t̂µ+ 2gt̂i

1

Ω
∂tξ

i − ξ

(

1

ρ2
(8πGεr + ∗̟c) − rθ − K̂

)

(3.27)

with µ(t,x) and νi(t,x) given in (B.10). Observe that everything is expressed in terms of

boundary Carrollian geometric objects (see appendix A).

Since the Killing components are r-independent, the above Lie derivative vanishes if

and only if the coefficients of every power of r do. The independent conditions we reach

for this to occur are

∂tξ
i = 0 (3.28)

and (B.12), (B.13) and (B.17), which therefore map the bulk Killing field (3.26) onto a

boundary Carrollian strong Killing vector (see appendix B). Some apparent extra condi-

tions such as ξ
(

∗̟2
)

= 0 or ξ (ϕi) + ϕj ∂̂iξ
j = 0 are the vanishing of ξ-Lie derivatives of

some Carrollian tensors, which is guaranteed by the strong Killing requirement on ξ.
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3.3 Towers of charges and dual charges

The Carrollian dynamics emerging on the boundary as a consequence of bulk Einstein’s

equations, combined with the always available Carrollian conformal isometry group BMS4,

enables us to define a variety of charges. These are not necessarily conserved, but even in

that instance, their evolution properties are canonical and provide an alternative, tamed

picture of the dynamics. Furthermore, they should ultimately pertain to those charges

recently discovered and discussed from a bulk perspective [32–39], based as usual on the

asymptotic symmetries — also and unsurprisingly BMS4, under appropriate fall-off con-

ditions. Making the precise contact with those works would require a translation of our

findings into the Newman-Penrose formalism [77] beyond what we have already observed in

eqs. (3.23), namely Ψ0
2 = i

2 τ̂ , Ψ0
3 = iPχζ and Ψ0

4 = iX ζ̄
ζ . This would bring us far from our

goal, and we will limit ourselves to pointing out that the ten Newman-Penrose conserved

charges vanish here because the spacetimes are algebraically special. These charges would

have been otherwise associated with the s = 1 “non-tilde” class introduced below, involving

non-zero Eij and Ni in the non-algebraic instance.

Ricci-flat metrics, either in the general form (3.6) or in its resummed version (3.13),

exhibit two important features for the description of charges. Firstly, every order 1/r2s+1

reveals Carrollian dynamics of the type (B.1), (B.2), (B.3) and (B.4) with momenta Π(s),

Πi
(s), P

i
(s), Π̃ij

(s) and Πij
(s), and possibly with right-hand sides — non-conservation. Every

such set of momenta together with the Carrollian conformal Killings (C.20) lead to currents

κ(s), K
i
(s), κ̃(s), K̃

i
(s) and charges Q(s) T,Y and Q̃(s) T,Y , following (B.20) and (B.22). Their

conservation or evolution encoded in (B.21) depends on K(s), K̃(s) in (B.23). The set

associated with s = 0 corresponds to the fluid momenta (3.8) and its charges are leading;

the sets with s ≥ 1 reveal the subleading charges. Moreover, all these charges should be

referred to as electric because their conservation, if valid, occurs on-shell.

Secondly, the Carrollian Cotton tensors obey conservation equations (B.1), (B.2), (B.3)

and (B.4) with momenta (C.16), leading to two towers of Cotton charges QCot T,Y and

Q̃Cot T,Y , as discussed in appendix C. These charges are magnetic as the conservation of

the Cotton is an identity valid off-shell.23 Furthermore, the Carrollian Cotton tensors

are not exclusive to 1/r2: each order 1/r2s+2 brings its share of off-shell Carrollian dynamics

with momenta ΠCot (s), Πi
Cot (s), P

i
Cot (s), Π̃ij

Cot (s), Πij
Cot (s), currents κCot (s), K

i
Cot (s), κ̃Cot (s),

K̃i
Cot (s), and finally magnetic charges QCot (s) T,Y and Q̃Cot (s) T,Y .

Incidentally, it should be noticed that due to the relationships amongst the fluid and

the Cotton (eq. (3.9) in general plus eq. (3.12) in the resummable family), the electric

and the magnetic towers have a non-empty intersection: Q̃(s) T,Y and Q̃Cot (s) T,Y generally

coincide.

Let us for concreteness overview the situation in the resummable instance, eq. (3.13).

Expanding the resummed factor 1/ρ2, we find the following results.

Electric towers. These have sth momenta Π(s), Πi
(s), P

i
(s), Π̃ij

(s) and Πij
(s) equal to (3.15)

multiplied by ∗̟2s. The same factor will multiply the leading Carrollian current (s =

23We borrow here the phrasing electric and magnetic from refs. [76, 78].
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0 i.e. κ, Ki, κ̃, K̃i) and give the sth, κ(s), K
i
(s), κ̃(s) and K̃i

(s), following (B.22). Using

the Carroll-Bianchi identities (C.6), (C.7) and (C.8), we find the divergences (B.23),

which contribute the time evolution of the charges computed as in (B.20), using (B.21):

K̃(s) = −s ∗̟2s−2
(

∗̟Â κ̃+
1

3
K̃i ∗ψi

)

, (3.29)

K(s) = −
∗̟2s

8πG
∗χi

(

D̂iξ
t̂ − 2ξj̟ji

)

− s ∗̟2s−2
(

∗̟Â κ+
1

3
Ki ∗ψi

)

(3.30)

with






























κ = 1
8πG

ξi ∗ψi − ξ t̂ε

κ̃ = 1
8πG

ξi ∗χi

Ki = ε
2ξ

i − 1
8πG

(

ξj ∗Ψi
j + ξ t̂ ∗χi

)

K̃i = − 1
8πG

ξj ∗Xi
j ,

(3.31)

and the Killing components ξ t̂ and ξi read off in (C.20) following (B.6).

Regarding the charges and their evolution, only Q̃(0) T,Y =
∫

S
d2x

√
a
(

κ̃+ bjK̃
j
)

≡

Q̃T,Y are always conserved. These charges are purely geometric because they are

integrals over S 24

Q̃T,Y = −
1

8πG

∫

S

d2x
√
a ∗ξi

(

χi − bjX
j
i

)

, (3.32)

which do not involve the energy density ε, as opposed toQ(0)T,Y =
∫

S
d2x

√
a
(

κ+bjK
j
)

≡QT,Y spelled as

QT,Y =−
1

8πG

∫

S

d2x
√
a ξ t̂

(

8πGε+bi∗χ
i
)

+
1

8πG

∫

S

d2x
√
a ξi

(

∗ψi+4πGεbi−bj ∗Ψj
i

)

.

(3.33)

The latter are conserved for strong Carrollian Killings. Other charges might also be

conserved for specific Carrollian conformal Killings, or depending on the configura-

tion.

Magnetic towers. The sth magnetic momenta ΠCot (s), Πi
Cot (s), P

i
Cot (s), Π̃ij

Cot (s) and

Πij
Cot (s) are (C.16) multiplied by ∗̟2s. As for the electric case, this latter factor

will appear in all magnetic currents κCot (s), K
i
Cot (s), κ̃Cot (s) and K̃i

Cot (s) built out of

the leading s = 0:






























κCot = ξiψi − ξ t̂c

κ̃Cot = ξiχi

Ki
Cot

= c
2ξ

i − ξjΨi
j − ξ t̂χi

K̃i
Cot

= −ξjXi
j ,

(3.34)

24We use the property V i ∗Wi = − ∗V iWi — see (C.1).
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Their divergences (B.23) read:

K̃Cot (s) = −s ∗̟2s−2
(

∗̟Â κ̃Cot +
1

3
K̃i

Cot ∗ψi

)

, (3.35)

KCot (s) = − ∗̟2sχi
(

D̂iξ
t̂ − 2ξj̟ji

)

− s ∗̟2s−2
(

∗̟Â κCot +
1

3
Ki

Cot ∗ψi

)

. (3.36)

These determine the evolution (B.21) of the charges (B.20), from which we learn that

Q̃Cot (0) T,Y =
∫

S
d2x

√
a
(

κ̃Cot + bjK̃
j
Cot

)

≡ Q̃Cot T,Y are always conserved:

Q̃Cot T,Y =

∫

S

d2x
√
a ξi

(

χi − bjX
j
i

)

. (3.37)

For strong Carrollian Killing fields, QCot (0) T,Y =
∫

S
d2x

√
a
(

κCot + bjK
j
Cot

)

≡

QCot T,Y given by

QCot T,Y = −

∫

S

d2x
√
a ξ t̂

(

c+ biχ
i
)

+

∫

S

d2x
√
a ξi

(

ψi +
c

2
bi − bjΨj

i

)

(3.38)

are also conserved off-shell, as other magnetic charges are in specific situations.

Several comments are in order here concerning the above sets of charges obtained for the

resummable metrics (3.13). The tower of electric geometric charges Q̃(s) T,Y , constructed

upon multiplying the integrand of (3.32) by ∗̟2s, coincides with its magnetic counterpart

Q̃Cot (s) T,Y obtained likewise using (3.37). In d = 2, if ξi are the spatial components of a

conformal Killing field, so are ∗ξi.25 Hence the set of all ξis is identical to that of ∗ξis. The

associated charges could be called “self-dual,” and in total three distinct towers emerge: the

self-dual
{

Q̃(s) T,Y

}

≡
{

Q̃Cot (s) T,Y

}

, the electric
{

Q(s) T,Y

}

and the magnetic
{

QCot (s) T,Y

}

— the last two are reached by inserting ∗̟2s into the integrals (3.33) and (3.38). The

∗̟2s insertion pattern grants the subleading towers with the status of multipolar moments
(see the original works [79–82] as well as [83] for a modern perspective). Making this

statement precise would force us to deviate substantially from the analysis of the hidden

Möbius group. This could fit more naturally in a comprehensive comparison of the present

approach to subleading charges with the rich existing literature quoted earlier. Nonetheless,

the pertinence of the proposition will be illustrated in the example of Kerr solution, at the

very end of the forthcoming section 3.4.

Among the above towers of BMS4 charges, always present but not always conserved,

one finds those corresponding to the bulk isometries, whenever present. Indeed, as discussed

in section 3.2, bulk Killings of the form (3.26) are associated with boundary strong Carrol-

lian Killing vector fields. Combined as previously with the leading and subleading, electric

and magnetic momenta, they generate two electric and two magnetic towers of charges:
{

Q(s), Q̃(s), QCot (s), Q̃Cot (s)

}

. The four leading charges
{

Q(0), Q̃(0), QCot (0), Q̃Cot (0)

}

are

always conserved, but part of them may be trivial or not independent. The subleading are

neither necessarily conserved, nor always independent, and have the status of electric and

magnetic multipole moments.

25The proof of this statement is straightforward in complex coordinates, see footnote 50.
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3.4 Time-independent solutions

Reconstruction from the boundary. In view of the forthcoming Ehlers-Geroch re-

duction, we will now assume the existence of a time-like Killing vector field ξ in Ricci-flat

solutions of the resummable type (3.13). Such a vector could be generally of the form (3.26).

In stationary spacetimes, the field ξ remains time-like in the asymptotic region. Then, it

is possible to choose the field υ (3.2) of the modified Newman-Unti gauge such that υ ≡ ξ.

Setting further Ω = 1 brings the Killing to the simple form ∂t (see e.g. [77] for a detailed

description of the procedure). On the conformal boundary, the time-like Killing congru-

ence thus coincides with the fibre of the Carrollian bundle. This feature is absent for

spacetimes where a time-like Killing field exists but becomes space-like in the asymptotic

region. Examples of this sort are captured by the Plebański-Demiański family (like the

C-metric) [84] (see also [74, 85]), which is algebraically special of Petrov type D.26 These

include the black-hole acceleration parameter, which is responsible for the appearance of

another Killing horizon, creating a new asymptotic region where the Killing vector fails to

be time-like. Although interesting on its own right — of limited physical use, however —

the inclusion of this parameter would render the presentation too convoluted, in particular

because the action of the Ehlers group in this instance does not respect the algebraic fea-

ture of the spacetime. For the sake of clarity we will restrict our investigation to Killings

of the form ∂t, aligned with the fiber, i.e. to truly stationary spacetimes, which remain

algebraically special under Ehlers transformations.

With the present choice, none of the Carrollian building blocks of ds2
res. Ricci-flat

depends

on t. As a consequence (see appendices A and C) θ = 0 and ϕi = ∂i ln Ω. The latter can

be set to zero with a time-independent Weyl rescaling, which therefore amounts to setting

Ω = 1. This is an innocuous gauge fixing that will be assumed here because it allows to

severely simplify the dynamics. Backed with time independence, Carrollian Weyl-covariant

derivatives become ordinary Levi-Civita derivatives, and the only non-vanishing tensors are

the following, in complex coordinates with P = P (ζ, ζ̄) — see appendix C:

∗̟ =
iP 2

2

(

∂ζbζ̄ − ∂ζ̄bζ

)

, (3.39)

K̂ = K̂ = K = ∆ lnP, (3.40)

c = (∆ + 2K) ∗̟, (3.41)

χζ =
i

2
∂ζK, χζ̄ = −

i

2
∂ζ̄K, (3.42)

ψζ = 3i∂ζ ∗̟2, ψζ̄ = −3i∂ζ̄ ∗̟2, (3.43)

Ψζζ =
1

P 2
∂ζ

(

P 2∂ζ ∗̟
)

, Ψζ̄ζ̄ =
1

P 2
∂ζ̄

(

P 2∂ζ̄ ∗̟
)

, (3.44)

where ∆f = 2P 2∂ζ̄∂ζf . To these one should add the energy density (i.e. the Bondi mass

aspect) ε, as well as another scalar

̟ =
P 2

2

(

∂ζbζ̄ + ∂ζ̄bζ

)

, (3.45)

26Their Weyl components are given in eq. (3.23) — see also footnote 22.

– 17 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
5

which is 1
2∇ib

i and should not be confused with the two-form ̟ = 1
2̟ijdxi ∧ dxj , i.e. the

Hodge-dual of the scalar ∗̟ = −1
2∇i ∗bi displayed explicitly in (3.39). These two real twist

scalars are adroitly combined into the complex Carrollian twist

ˆ̟ = ∗̟ + i̟. (3.46)

The equations of motion (3.16), (3.17) (or in the form (3.20), (3.21) with τ̂ defined

in (3.18)) are recast as

∆K = 0, (3.47)

∂ζ τ̂ = 0. (3.48)

The first shows that the curvature is required to be a harmonic function i.e.

K(ζ, ζ̄) =
1

2

(

k̂(ζ) + ˆ̄k(ζ̄)
)

, (3.49)

and although k̂(ζ) is an arbitrary holomorphic function, the freedom is rather limited as K

must also be the Laplacian of lnP . Besides the constant-curvature cases, one solution has

been exhibited thus far [74] (up to holomorphic coordinate transformations): K = −3(ζ+ζ̄)

realized with P = (ζ+ ζ̄)3/2. We will not specify any particular choice for the moment. For

future use, we define the imaginary part of k̂(ζ) as another harmonic function

K∗(ζ, ζ̄) =
1

2i

(

k̂(ζ) − ˆ̄k(ζ̄)
)

. (3.50)

From eqs. (3.48) and (3.18), we infer that −c is the real part of an arbitrary holomorphic

function τ̂(ζ), whereas the imaginary part of the latter is 8πGε; both are harmonic func-

tions. Given c and K, we can proceed with eq. (3.41) and find ∗̟, from which it is always

possible to determine bζ and bζ̄ .

Although the focus of the present work is not to solve Einstein’s equations, we will

elaborate for illustrative purposes on the steps we’ve just described, without delving into

fine questions like completeness or gauge redundancy of the solutions. Note in passing how

remarkably the Carrollian boundary formalism is adapted to the framework of Ricci-flat

spacetimes, allowing to convey often complicated expressions in a very elegant manner,

and sorting naturally otherwise scattered classes of solutions (the ones we present can be

found in various chapters of refs. [74, 85]). Several distinct instances appear, which require

a separate treatment.

Non-constant KKK. This is the generic situation, although in practice the most obscure

regarding the interpretation of the bulk geometries. As already mentioned, very few

P s are expected to possess a non-constant harmonic curvature K, but assuming one

has one, accompanied by its holomorphic function k̂(ζ), and making a choice for

the arbitrary holomorphic function τ̂(ζ), eq. (3.41) can be solved for ∗̟, which is

expressed using (3.39) with Ehresmann connection

bζ(ζ, ζ̄) =
iˆ̄τ(ζ̄)

P 2(ζ, ζ̄)∂ζ̄
ˆ̄k(ζ̄)

. (3.51)
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Constant KKK. This implies that k̂(ζ) is also constant and the above solution is invalid.

The situation at hand is the most common, however, as it captures three standard

instances: spherical, flat or hyperbolic foliations. We can parameterize the function

P as follows:

P (ζ, ζ̄) = Aζζ̄ +Bζ + B̄ζ̄ +D (3.52)

with A, D arbitrary real constants and B an arbitrary complex constant, leading to

K = 2(AD −BB̄). (3.53)

Several cases emerge, which must be treated separately.

K 6= 0K 6= 0K 6= 0. Here c(ζ, ζ̄) = − τ̂(ζ)+ˆ̄τ(ζ̄)
2 is an arbitrary (possibly constant) harmonic func-

tion, and eq. (3.41) is solved with

∗̟(ζ, ζ̄) =
c(ζ, ζ̄)

2K
+i

(

f̄(ζ̄)∂ζ̄ lnP (ζ, ζ̄) − f(ζ)∂ζ lnP (ζ, ζ̄) +
1

2

(

∂ζf(ζ) − ∂ζ̄ f̄(ζ̄)
)

)

(3.54)

with f(ζ) an arbitrary holomorphic function. It is reached with the following

Ehresmann connection (τ̂0 is a real constant):

bζ(ζ, ζ̄) = −
ζ̄ (τ̂0 + iτ̂(ζ))

2K(Bζ +D)P (ζ, ζ̄)
+

f̄(ζ̄)

P 2(ζ, ζ̄)
. (3.55)

K = 0K = 0K = 0. This instance is obtained with A = B = 0 so that P = D. Now, given an

arbitrary harmonic function c(ζ, ζ̄) = − τ̂(ζ)+ˆ̄τ(ζ̄)
2 and an arbitrary holomorphic

function Z(ζ), we find

∗̟(ζ, ζ̄) =
i

2

(

Z(ζ) − Z̄(ζ̄)
)

−
1

4P 2

(

ζ̄

∫ ζ

dz τ̂(z) + ζ

∫ ζ̄

dz̄ ˆ̄τ(z̄)

)

, (3.56)

and (τ̂0 is a real integration constant)

bζ(ζ, ζ̄) =
1

P 2

∫ ζ̄

dz̄ Z̄(z̄) −
ζ̄2

4P 4

∫ ζ

dz (τ̂0 + iτ̂(z)). (3.57)

The last two cases have in common the instance where c = K = 0, realized with

vanishing τ̂ and constant P .

As already noticed, all solutions described in a unified fashion here can be found in the

earlier quoted literature under distinct labels.27 Discussing them would take us outside of

our objectives. We will only emphasize a notorious subclass, which is the Kerr-Taub-NUT

family. For the latter, the curvature K is constant (3.53) and realized e.g. with B = 0.

Two distinct instances emerge: vanishing and non-vanishing K, respectively obtained with

vanishing and non-vanishing A.

27It should be stressed that part of the present solution space originates in gauge freedom. In particular,

c(ζ, ζ̄) being Weyl-covariant of weight 3 (see appendix C), it can always be reabsorbed by a boundary Weyl

transformation, which is in turn neutralized by a bulk r-rescaling. Such a boundary transformation will

bring Ω back with non-vanishing ϕi, which we have set to zero, and this is the reason we cannot here restrict

to constant c and τ̂ .
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• For non-vanishing K, the holomorphic function τ̂ is

τ̂ = 2i(M + iKn), (3.58)

where M is the mass and n the nut charge, both constants. The holomorphic function

f(ζ) reads

f(ζ) = iaζ (3.59)

with a the Kerr angular velocity. Using eqs. (3.54) and (3.55) with τ̂0 = 2M we find:

bζ(ζ, ζ̄) = −iζ̄

(

a

P 2
−

n

DP

)

(3.60)

and

∗̟(ζ, ζ̄) = n+ a−
2Da

P
, (3.61)

where P = Aζζ̄ +D and K = 2AD.

• For K = 0 (i.e. P = D constant), we use eqs. (3.56) and (3.57) with τ̂0 = 2M ,28

τ̂ = 2iM (3.62)

and

Z = ia. (3.63)

This leads to

bζ(ζ, ζ̄) = −i
ζ̄a

P 2
(3.64)

and

∗̟ = −a. (3.65)

Observe the absence of nut charge in the present case.29

A remark on the rigidity theorem. The rigidity theorem asserts that under appropri-

ate hypotheses, the isometry group of stationary asymptotically flat spacetimes contains

R×U(1). This theorem is best presented in refs. [86, 87], where the necessary assumptions

are stated more accurately than in the original discussions (see e.g. [88]). Our framework

does embrace stationary spacetimes. However, we have been agnostic regarding analytic-

ity or regularity properties, which turn out to be fundamental for the applicability of the

theorem at hand. Hence, we have no reason to foresee any additional U(1) symmetry in

all reconstructed solutions of the present section.

Aside from mathematical rigor, we can recast the conceivable disruption of the rigidity

theorem from the boundary perspective, which has been our viewpoint. We have shown

in section 3.2 that a bulk Killing field is mapped onto a Carrollian strong Killing on the

28Both for vanishing and non-vanishing K, τ̂0 has been tuned to ensure that M does not appear in bζ ,

displayed in (3.60) and (3.64). There is no principle behind this choice, it is simply in line with standard

conventions for the Kerr-Taub-NUT family. As a consequence, ̟ defined in (3.45) vanishes.
29Despite the absence of magnetic charges, the solution at hand belongs formally to the Taub-NUT family

(see ref. [85], section 12.3.2).
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boundary. The generator of the desired U(1) is of the form (3.26) with no time leg30 i.e.

ξt = 0, and no time dependence in ξi as imposed by (3.28):

ξ = −
(

ξζbζ + ξζ̄bζ̄

)

∂t + ξζ ∂̂ζ + ξζ̄ ∂̂ζ̄ . (3.66)

A strong Carrollian Killing field must obey eqs. (B.12), (B.13) and (B.17). Here (B.13) is

identically satisfied, whereas (B.12) leads to

∂ζξ
ζ̄ = ∂ζ̄ξ

ζ = 0, ∂ζ
ξζ

P 2
+ ∂ζ̄

ξζ̄

P 2
= 0. (3.67)

Finally (B.17) reads:

P 2∂ζ

(

ξζbζ + ξζ̄bζ̄

)

+ 2i ξζ̄ ∗̟ = 0 (3.68)

plus its complex conjugate.

For arbitrary P (ζ, ζ̄), eqs. (3.67) have no solution, hence no extra Killing field is avail-

able. As mentioned earlier in the present section, the P s with harmonic curvature (required

in (3.47)) are very restricted and probably lack the necessary analyticity properties, ex-

plaining why the rigidity theorem is not applicable. This indeed happens in the quoted

example with P = (ζ + ζ̄)3/2.

Alternatively, considering P = Aζζ̄ + D with constant curvature K = 2AD, we find

three more solutions to the equations (3.67):

ξ1 = i
(

ζ∂ζ − ζ̄∂ζ̄

)

, (3.69)

ξ2 =
i

2
√

|AD|

((

D −Aζ2
)

∂ζ −
(

D −Aζ̄2
)

∂ζ̄

)

, (3.70)

ξ3 =
1

2
√

|AD|

((

D +Aζ2
)

∂ζ +
(

D +Aζ̄2
)

∂ζ̄

)

, (3.71)

closing in so(3), e2 and so(2, 1) algebras31 for positive, zero or negative K. Using (3.60)

and (3.61) one shows that for generic angular velocity a and nut charge n, only ξ1 obeys

the strong condition (3.68). This is then promoted to a bulk field generating the rotational

U(1) isometry of the Kerr-Taub-NUT family. For vanishing a and n, all three Carrollian

Killing fields are strong and the bulk Ricci flat solution is fully isotropic — Schwarzschild

or A-class metric, see [74, 85].

Charge analysis. We would like to close the present section with a brief account on

the charges of the Ricci-flat solutions under investigation. Gravitational charges disclose

the identity of a background and, as we have proposed in section 3.3, boundary Carrollian

geometry supplies alternative techniques for their determination and the study of their

conservation. These techniques are still in an incipient stage though, because the contact

with the standard methods still needs to be elaborated. Furthermore, non-radiating con-

figurations, in particular stationary and algebraically special, offer a limited playground

30We could keep non-vanishing ξt and perform a more thorough analysis. This would not alter the

conclusions, which are meant here to illustrate possible boundary faults in the rigidity theorem.
31The Lie brackets of the ξs are [ξ1, ξ2] = ξ3, [ξ3, ξ1] = ξ2 and [ξ2, ξ3] = K

|K|
ξ1. For vanishing K,

ξ2 = i

2

(

∂ζ − ∂ζ̄

)

and ξ3 = 1

2

(

∂ζ + ∂ζ̄

)

are the translation commuting generators of e2.
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in this programme. We would like nevertheless to summarize the situation, in view of the

follow-up discussion on Möbius hidden-group action, section 4.2.

The simplest non-vanishing charge is the electric curvature defined in (C.9):32

Qec =

∫

S

dζ ∧ dζ̄

iP 2
K. (3.72)

Divided by the volume of S , this is simply the average Gauss curvature. Note in passing

that the charges defined here are extensive, hence the integrals may reveal convergence

issues, in particular when S is non-compact. Normalizing with Vol =
∫

S

dζ∧dζ̄
iP 2 is the sim-

plest way to fix this divergence.33 Alternatively, S could be compactified — quotiented

by a discrete isometry group. We will leave this discussion aside, as it would be better ad-

dressed within attempts to make sense of Ricci-flat black holes with non-compact horizons

(see e.g. Ch. 9 of [85]).

The towers of charges introduced in section 3.3 are slightly simpler in the instance

under consideration. Indeed, the Carrollian conformal Killings used in expressions (3.31)

and (3.34) are (C.47) with

C(t, ζ, ζ̄) = tP (ζ, ζ̄) (3.73)

(see (C.48)). Observe also that K̃i = K̃i
Cot

= 0 so that K̃(s) = K̃Cot (s) = 0. Generically, K(s)

and KCot (s) are non-zero though, because the conformal Killing vectors are not necessarily

strong and due to the time dependence, here encoded exclusively in their component ξ t̂.

The corresponding charges are ultimately expressed as integrals of combinations of k̂, ˆ̄k, τ̂ ,
ˆ̄τ , ∗̟, ̟, and of their derivatives.34

For concreteness, we will illustrate the above with the distinctive strong Carrollian

conformal Killing field ∂t, i.e. the generator of the Ehlers-Geroch bulk three-dimensional

reduction. For this Killing field, the “tilde” Carrollian charges vanish. In example, for the

leading charges (s = 0 in the coding of section 3.3), we find35

Qem =

∫

S

dζ ∧ dζ̄

iP 2
(8πGε+̟K) , Qmm =

∫

S

dζ ∧ dζ̄

iP 2
(−c+ ∗̟K) , (3.74)

up to boundary terms with respect to (3.33) and (3.38) (and a factor −8πG for the former),

handily combined into

Qm = Qmm + iQem =

∫

S

dζ ∧ dζ̄

iP 2
(τ̂ + ˆ̟K) . (3.75)

The indices stand for magnetic and electric masses. These mass definitions carry some

arbitrariness since, as a consequence of time independence, each of the terms in the integrals

32Remember that here ξij = 0, and the geometry is t-independent with vanishing θ, ϕi, Â , R̂i as well as

Xij .
33The integrals can be performed by setting ζ = ZeiΦ, where 0 ≤ Φ < 2π and Z =

√
2 tan Θ

2
, 0 < Θ < π

for S
2; Z = R√

2
, 0 < R < +∞ for E2; Z =

√
2 tanh Ψ

2
, 0 < Ψ < +∞ for H2.

34Although the components bi of the Ehresmann connection enter the expression of the Carrollian

charges (B.20), upon integration by parts, they are traded for ∗̟ or ̟.
35Using (3.31) and (3.34) with ξt̂ = 1 and ξi = 0, we find κ = −ε, Ki = − 1

8πG
∗χi, κCot = −c and

Ki
Cot = −χi.

– 22 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
5

provide a separate well-defined charge. We will turn back to this when discussing the action

of the Möbius group, in section 4.2.

Following section 3.3, the subleading mass charges associated with the strong Carrollian

conformal Killing field ∂t are captured in

Qm (s) =

∫

S

dζ ∧ dζ̄

iP 2
(τ̂ + ˆ̟K) ∗̟2s (3.76)

and define the higher-s mass multipole moments. In the instance of the K = 1 Kerr-Taub-

NUT family displayed in eqs. (3.58), (3.59), (3.60), (3.61) with A = 1/2 and D = 1, we

find:

Qm (s) = 4πi (M + in)

(

(n+ a)2s+1 − (n− a)2s+1

a(2s+ 1)

)

. (3.77)

For this set of solutions, ξ1 in (3.69) is a strong Carrollian Killing vector, which brings

its own Carrollian rotational charges. Again the “tilde” (eqs. (3.32) and (3.37)) vanish

whereas the “non-tilde” (see. (3.31) and (3.34)) are combined in the complex higher-s

angular-momentum multipole moments

Qr (s) =

∫

S

dζ ∧ dζ̄

iP 2
6ζζ̄

(

n+ iM

P 2
(a− nP )

(

n+ a−
2a

P

)2s

−
2a

P 2

(

n+ a−
2a

P

)2s+1
)

(3.78)

with P = 1 + 1
2ζζ̄, which are non-zero if one rotation parameter a or n is present. We find

for example:

Qr (0) = −8π [a(n+ iM) + 3n(n− iM)] . (3.79)

Expressions (3.77) and (3.79) are in line with the results obtained in refs. [79–82] (see

also [89], where the electric part of Qr (0) is given) using standard methods circumscribed

to bulk dynamics. They provide conserved moments since the divergences (3.30) and (3.36)

vanish.

4 Ehlers transformations

4.1 Bulk reduction and Möbius action on the boundary

Our next and pivotal task is to unravel the action of the Ehlers group (2.11) on the

boundary Carrollian observables, using the expression of the bulk Ricci-flat metric (3.6)

assumed to possess a time-like Killing vector field. We will focus in the present work on

the restricted class of resummable metrics (3.13), as exploited in section 3.4, i.e. equipped

with a time-like Killing field ξ = ∂t and Ω = 1.

In order to proceed, we are called to follow the steps for the Geroch reduction described

in section 2, i.e. determine τ as defined in (2.9) for the metric (3.13) with λ and ω given

in (2.1), (2.2) and (2.3). These should be expanded in inverse powers of r and thus deliver

the boundary ingredients together with their transformations following (2.11). A remark

should be made before hand. The Geroch reduction is followed by an oxidation, which

defines the novel Ricci-flat solution. Nothing guarantees in this course that the oxidized
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metric will assume again the form (3.13). Actually it doesn’t and a redefinition of the

radial coordinate is necessary to bring it back into the expected original gauge.

It is convenient for the present mission to adopt the Cartan frame defined in (3.24),

leading to the bulk metric

gt̂t̂ =
1

ρ2
(8πGεr + ∗̟c) −K, gt̂i = ∗∂i ∗̟, gt̂r = −1,

gri = 0, grr = 0, gij = ρ2aij

(4.1)

obtained using (3.25), assuming t-independence and Ω = 1. In this expression ∗̟, K and

c are given in eqs. (3.39), (3.40) and (3.41). The Killing form reads:

ξ =

(

K −
1

ρ2
(8πGεr + ∗̟c)

)

µ + ∗∂i ∗̟dxi − dr, (4.2)

with norm

λ =
8πGεr + ∗̟c

ρ2
−K. (4.3)

For the twist we use eq. (2.2), expressed as

w = − ⋆(ξ ∧ dξ) , (4.4)

where “⋆” stands for the four-dimensional Hodge duality. The latter one-form is exact

on-shell and we find the following potential (eq. (2.3)):

ω =
8πGε ∗̟ − cr

ρ2
+K∗. (4.5)

On-shellness is implemented here through boundary dynamics as summarized in section 3.4,

i.e. in eqs. (3.48), (3.49) and (3.50).

Inserting the above results into eqs. (2.9) and using (3.18), we find

τ =
τ̂

r + i ∗̟
− ik̂. (4.6)

Likewise, we obtain the Geroch reduced and rescaled metric (2.8):

h̃ABdxAdxB = −
(

dr − ∗∂k ∗̟ dxk
)2

+ λρ2aijdxidxi. (4.7)

With this, τ given in (4.6) unsurprisingly solves the reduced Einstein’s equations (2.10).

The premier Ehlers transformation rules are (2.11) and the invariance of h̃AB. From

these follows the rest of the construction, i.e. the transformation of hAB and the oxida-

tion toward g′
AB. In the present framework, we have to some extent locked the gauge, via

the resummed bulk expression (3.13). Ehlers transformations are not designed a priori to

maintain this form, and they are generally expected to require further coordinate transfor-

mations. It is rather remarkable that, to this end, a local (i.e. celestial-sphere dependent)

shift in the radial coordinate suffices.
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Using for convenience holomorphic and antiholomorphic coordinates as introduced in

appendix C, expression (4.7) is recast as follows:

h̃ABdxAdxB = −
(

dr − i∂ζ ∗̟ dζ + i∂ζ̄ ∗̟ dζ̄
)2

+
(τ − τ̄)(r + i ∗̟)(r − i ∗̟)

iP 2
dζdζ̄. (4.8)

Combining (2.11) with (4.6), we obtain the following boundary transformations:

τ̂ ′ = −
τ̂

(

γk̂ + iδ
)2 , (4.9)

k̂′ = i
αk̂ + iβ

γk̂ + iδ
, (4.10)

ˆ̟ ′ = ˆ̟ +
γτ̂

γk̂ + iδ
(4.11)

and

P ′ =
P

∣

∣

∣γk̂ + iδ
∣

∣

∣

, (4.12)

plus the radial shift36

r′ = r +
i

2

(

γτ̂

γk̂ + iδ
−

γ ˆ̄τ

γ ˆ̄k − iδ

)

. (4.13)

These transformation rules leave indeed (4.8) invariant. As advertised earlier, they are

local, providing a direct transformation (4.12) of the boundary metric. The transformation

of the energy density ε is obtained from (4.9) using (3.18):

8πGε′ =
8πGε

(

(γK∗ + δ)2 − γ2K2
)

− 2cγK (γK∗ + δ)
(

γ2K2 + (γK∗ + δ)2
)2 . (4.14)

The transformation of c is inferred similarly:

c′ =
c
(

(γK∗ + δ)2 − γ2K2
)

+ 16πGεγK (γK∗ + δ)
(

γ2K2 + (γK∗ + δ)2
)2 . (4.15)

All these rules are compatible with eqs. (3.40) and (3.41). Finally the transformations of

the Carrollian Cotton tensors are reached using the above results combined with eqs. (3.42),

(3.43) and (3.44).

The transformation of the Ehresmann connection is obtained directly from the expres-

sions reached for the latter in (3.51), (3.55) and (3.57). To this end, observe that in the

constant-k̂ instance, A, B, B̄ and D transform with a factor 1/|γk̂+iδ| in order to comply

36One could alternatively adopt a new radial coordinate defined as r̃ = r + ̟ that is invariant under

Möbius transformations. This is actually mandatory in order to reach boundary SL(2,R)-covariant tensors

from the bulk, as we will discuss in section 4.2. It furthermore coincides with the radial coordinate of

ref. [74] section 29 provided r0 = −̟ (origin of the affine parameter along the geodesic congruence tangent

to ∂r — see footnote 21).
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with (4.12). Similarly, f(ζ) and Z(ζ), introduced in (3.54) and (3.56), must be respectively

invariant and transforming as

Z ′(ζ) = Z(ζ) + i
γτ̂(ζ)

γk̂ + iδ
, (4.16)

so that (4.11) be fulfilled.

Let us mention for completeness that once the Möbius transformation is performed on

the boundary, the reconstruction of the new Ricci-flat solution is straightforward using the

boundary-to-bulk formula (3.13), expressed with primed data — except for the unaltered

boundary coordinates
{

t, ζ, ζ̄
}

. This is equivalent to the oxidation procedure operated

from three to four dimensions along the lines of eqs. (2.12), (2.13), (2.14) and (2.15) with

η′ = −µ′ −
1

λ′

(

dr′ − i∂ζ ∗̟′ dζ + i∂ζ̄ ∗̟′ dζ̄
)

, µ′ = −dt+ b′
ζdζ + b′

ζ̄
dζ̄, (4.17)

finally leading to (2.16), which assumes the form (3.13) primed. The new bulk Killing

vector ξ′ = λ′η′ is again ∂t.

In the example of the Kerr-Taub-NUT family treated at the end of section 3.4, the

specific choices of P = 1
2ζζ̄ + 1, K = 1 and K∗ = 0 (this was not explicitly demanded) are

stable only under
(

cos χ sin χ
− sin χ cos χ

)

∈ SL(2,R). For this transformation, using (4.9) we find

M ′ + in′ = (M + in)e−2iχ. Observe that (4.11) will switch on a non-zero ̟ though, as

opposed to its original value in the family at hand (see footnote 28).

4.2 Charges and SL(2,R) multiplets

Carrollian charges have been introduced in section 3.3 and further discussed for stationary

and algebraic spacetimes in section 3.4. Two generic charges were found and displayed

in (3.72) and (3.75). The former is purely geometric and stands for the integrated curvature

of the celestial sphere; the latter carries genuine dynamic information captured in the

electric and magnetic masses. It is legitimate to wonder how these quantities behave under

Möbius transformations, and possibly tame them in SL(2,R) multiplets. Although ideally

this programme should be conducted for reductions along generic bulk Killing fields and

no special algebraic structure — these would be non-resummable, i.e. of the form (3.6),

and labelled by a possibly plethoric set of independent charges — we will pursue it here

for illustrative purposes in the restricted framework at hand.

The curvature charge Qec in (3.72) is invariant under Ehlers’ SL(2,R), and this is

inferred using the transformation laws (4.10) and (4.12). The mass charge Qm, eq. (3.75),

is not, but its transformation (see (4.9), (4.10) and (4.11)) suggests that it might belong

to some SL(2,R) multiplet or, more accurately, that it may be modified to this end — we

have this freedom owing to time independence. Actually, a slight amendment to the charge

Qm, namely

Q′
m =

∫

S

dζ ∧ dζ̄

iP 2
(τ̂ + 2 ˆ̟K) , (4.18)

is SL(2,R)-invariant. We can even go further and apply the following pattern to generate

SL(2,R) triplets. Suppose we identify a Carrollian two-form vvv transforming under SL(2,R)
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as

vvv → vvv′ = −vvv
(

γ ˆ̄k − iδ
)2
. (4.19)

This allows to design an SL(2,R) two-form triplet, i.e. a symmetric rank-two tensor, trans-

forming as
(

vvv′
3 vvv

′
2

vvv′
2 vvv

′
1

)

=

(

α β

γ δ

)(

vvv3 vvv2

vvv2 vvv1

)(

α γ

β δ

)

, (4.20)

where

vvv1 = vvv, vvv2 = iˆ̄kvvv, vvv3 = −ˆ̄k2vvv. (4.21)

The same holds for the complex-conjugate triplet: v̄vv1 = v̄vv, v̄vv2 = −ik̂v̄vv and v̄vv3 = −k̂2v̄vv. An

SL(2,R) triplet of charges is thus reached as

QI =

∫

S

vvvI , I = 1, 2, 3, (4.22)

and Q ≡ Q1Q3 −Q2
2 is invariant under Möbius transformations.

The above strategy can be readily applied. Two-forms transforming as in (4.19)

can be found, inspired by the structures of the charge (3.75) and of the Carrollian cur-

rents (3.31) and (3.34), given the expressions of the Carrollian twist (3.46), the Carrollian

curvature (3.40), and the Carrollian Cotton tensors (3.41), (3.42), (3.43) and (3.44). We

here exhibit two such Carrollian forms:

xxx = −
τ̂

2(k̂ + ˆ̄k)

dζ ∧ dζ̄

iP 2
, (4.23)

yyy = −

(

P

k̂ + ˆ̄k

)2

∂ζ k̂ ∂ζ̄ ˆ̟
dζ ∧ dζ̄

iP 2
. (4.24)

These lead along (4.22) to two triplets of charges, which do not carry more information

than the original (3.72) and (3.75) though — in the constant-k̂ paradigm, which is in fact

the most generic, these are K, M , n and possibly a, and the second triplet vanishes.

The last item in our Carrollian agenda is to setting the relationship amongst the

charges introduced here using purely boundary methods and those computed directly by

standard bulk techniques. This sort of question definitely deserves to be addressed in more

general situations than ours, i.e. in the presence of a large set of non-trivial surface charges

computed e.g. within covariant phase-space formalism [90]. Nonetheless some relevant

observations can be made here, in relation with the original discussion on charges of ref. [2],

in which the above two-forms (4.23) and (4.24) turn out to play a prominent role.

In ref. [2], an SL(2,R) triplet of bulk two-forms, leading to surface charges upon inte-

gration on the celestial sphere of M, is obtained by oxidizing the following two-form triplet

of S ≡ M/orb(ξ) (eqs. (18) and (16) of the quoted reference):

V1 =
1

(τ − τ̄)2
⋆3

h̃
(dτ + dτ̄) ,

V2 =
1

(τ − τ̄)2
⋆3

h̃
(τ̄dτ + τdτ̄) ,

V3 =
1

(τ − τ̄)2
⋆3

h̃

(

τ̄2dτ + τ2dτ̄
)

,

(4.25)
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where “⋆3
h̃
” stands for the three-dimensional Hodge-dual on S equipped with h̃AB displayed

in (4.8). It is remarkable that the asymptotic limit of this two-form triplet coincides with

those designed earlier from Carrollian boundary considerations. This statement is captured

in the following result:

lim
r̃→∞

(

V3 V2

V2 V1

)

=





−ˆ̄k2(xxx+ yyy) − k̂2(x̄xx+ ȳyy) iˆ̄k(xxx+ yyy) − ik̂(x̄xx+ ȳyy)

iˆ̄k(xxx+ yyy) − ik̂(x̄xx+ ȳyy) xxx+ yyy + x̄xx+ ȳyy



 , (4.26)

where r̃ = r + ̟ was introduced in footnote 36 as an SL(2,R)-invariant radial coordi-

nate, which must be used here in order to guarantee that the limit preserves the SL(2,R)

behaviour.

5 Conclusions

When a four-dimensional spacetime geometry is invariant under the action of a one-

dimensional group of motions, a reduction can be performed and vacuum Einstein dynamics

reveals a symmetry under Möbius transformations. Our main motivation was to exhibit

this action from a holographic perspective, namely on the three-dimensional boundary of

the Ricci-flat configuration at hand. We have successfully reached this goal for a class of

resummable or integrable metrics, which are algebraic in Petrov’ classification and possess a

time-like isometry. All of our findings can be extended to embody any Ricci-flat spacetime

possessing an isometry at the expense of an augmented technical difficulty due to (i) the

use of generic Killing vectors with Ehlers action ending outside the class of algebraically

special, resummable metrics (3.13),37 and (ii) the presence of an indefinitely increasing

number of independent boundary observables transforming under SL(2,R). The main fea-

tures of the boundary SL(2,R) action are however clearly captured by the simplest case

treated here and we will now summarize them.

At the heart of the boundary Möbius transformations one finds the Carrollian Cotton

tensors. The latter are a set of descendants of the original boundary pseudo-Riemannian

Cotton, reached in the zero-speed-of-light limit. One finds in particular a scalar c, which

is a dual-mass aspect, naturally combined with the Bondi mass aspect, another Carrol-

lian scalar identified with the boundary Carrollian fluid energy density ε. The Möbius

transformation hence mixes the geometric boundary variables i.e. those which determine

the boundary itself with the dynamical variables like the boundary fluid (this is one of

the infinite data, made redundant in the resummable situation studied here). Our analy-

sis reveals that this duality transformation on the boundary is algebraic i.e. local for the

metric, Ehresmann connection, field of observers, and for every other Carrollian boundary

data. This is an important achievement summarized in eqs. (4.9), (4.10), (4.11) and (4.12),

rooted in the decoupling of r close to the boundary.

An aside message this analysis conveys is the role of the Cotton tensor, which is man-

ifestly dual to the energy/momentum. Before the advent of flat holography and Carrollian

37See e.g. [91], where examples of space-like Killings are displayed with Ehlers groups connecting Petrov

special to Petrov general Ricci-flat spacetimes (more recent works in a similar spirit are refs. [92, 93]),

and [47] for a mathematical essay on the behaviour of the Weyl tensor under Ehlers’ Möbius group.
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physics, the boundary Cotton tensor had been recognized in AdS/CFT as an unavoidable

boundary trait carrying information on the bulk magnetic charges such as the nut [63, 64]

(see also [94]). The Möbius transformation (4.9) for the SO(2) ⊂ SL(2,R) subgroup was

actually anticipated as a relationship on the conformal pseudo-Riemannian boundary of

four-dimensional Einstein spacetimes [65, 95], in an attempt to relate electric and mag-

netic solutions to Einstein’s equations. Although such dual solutions exist irrespective of

the cosmological constant, the relevant subgroup of Ehlers’ breaks down for Λ 6= 0 [46].

The bulk duality relationship fades in this case, but persists asymptotically and reveals on

the conformal boundary. What we find here is a Λ-to-zero limit of this relationship.

Notwithstanding their role in boundary Ehlers duality manifestation, the Carrollian

Cotton tensors obey off-shell conservation properties and generate towers of magnetic

charges, some of them being conserved. This property is not exclusive to Ricci-flat space-

times and Carrollian boundaries. Einstein bulk spacetimes and pseudo-Riemannian bound-

aries do provide a conserved Cotton tensor, which contracted with any boundary conformal

Killing vector leads to a conserved current, hence a conserved charge. This powerful tool is

undermined by the limited — if any — number of conformal isometries on arbitrary three-

dimensional Riemannian spacetimes. The remarkable spin-off about Carrollian boundaries

is the existence of an infinite-dimensional conformal group, which makes this method of

charge determination a serious alternative to the more standard bulk asymptotic tech-

niques. Following the Cotton pattern, electric towers of charges are constructed with the

fluid dynamical data, which can only enjoy on-shell conservation — the same would hold in

AdS boundaries with the aforementioned limitation. On both electric and magnetic sides,

the towers of charges are multiplied ad nauseam, beyond their leading components.

Our present investigation on towers of charges designed from a boundary standpoint

is radically novel and deserves a systematic extension. It has been here confined in the

integrable case, where the infinite set of observables is redundant and shrinks to the elemen-

tary “leading” data — our tentative definition of subleading currents might have turned too

naive, hadn’t it reproduced successfully the multipole moments. Moreover, our main goal

being primarily on boundary Ehlers action, we have assumed a time-like bulk isometry,

which further reduces this set. Besides, the chosen time-like Killing field was aligned with

the fibre of the boundary Carrollian structure, which screens the black-hole acceleration pa-

rameter and avoids exploring head-on the uncharted subject of Carrollian reductions. The

latter is the mathematical tool to be developed for unravelling the bulk-to-boundary rela-

tionship of hidden symmetries in Ricci-flat spacetimes. It could encompass bulk reductions

along space-like isometries, which are interesting because they leave room for gravitational

radiation,38 probing the interplay between Ehlers Möbius group, time evolution and charge

non-conservation. Last, we did not address the question of the charge algebra and its po-

tential central extensions, or discussed other more general related physical aspects. All

this calls for a thorough comparison to alternative approaches such as those of refs. [32–39]

based on Newman-Penrose formalism — or to applications [83, 96–101].

38The Petrov-algebraic spacetimes (3.13) accommodate axisymmetric time-dependent solutions of the

Robinson-Trautman type, whose final state is the C-metric — see. [74] section 28.1.

– 29 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
5

In the chapter of charges, in spite of the various limitations just stated, we have

successfully described the Ehlers Möbius action, and discussed the organisation of available

charges in SL(2,R) multiplets. This enabled us to recover from a Carrollian viewpoint the

triplet of Komar charges inferred by Geroch in its original publication [2]. Again, this

result should be considered as a first step toward a methodical SL(2,R) taming of the

above towers of electric/magnetic currents and charges in more general situations. These

objects should include the boundary attributes of the bulk Weyl tensor, whose behaviour

under Möbius transformations has been addressed in [47].

The importance of the boundary covariantization — Carroll and Weyl — is yet another

feature we would like to stress, as it hasn’t been sufficiently appreciated in the literature.

This characteristic is absent from Bondi or Newman-Unti gauges, where the formalism

might suggest that the relevant part of the conformal boundary is its two-dimensional

spatial section — the celestial sphere. We heavily insist on the three-dimensional and

Carrollian nature of the boundary, which is made manifest in the gauge we have been

using. In ordinary AdS/CFT holography the Fefferman-Graham gauge is superior for this

reason. One should likewise use a truly boundary-covariant gauge in flat holography and

take advantage of it, as we modestly did for exhibiting the action of Ehlers’ group, or for

discussing the charges and their conservation. No boundary approach of this sort would

have been possible in the more conventional gauges. Correspondingly, flat holography

based on a purely celestial gauge is bound to be incomplete.

It is worth mentioning that Ehlers’ SL(2,R) group is the first and simplest example

of a hidden symmetry. As pointed out in the introduction (see the references proposed

there), more involved reductions reveal richer symmetries and the underlying dynamics is

captured by elegant sigma models in various dimensions. Recasting this knowledge in a

holographic fashion, we could possibly learn more, or at least differently, not only about

hidden symmetries but also on flat holography. Carrollian reductions might again be the

appropriate tool.

On a more speculative tone, our results suggest that a boundary analysis might reveal

more general or unexpected duality properties. The paradigm of anti-de Sitter spacetimes,

where the SL(2,R) is broken in the bulk but restored on the boundary, calls for a systematic

investigation that would complement the heuristic discussion of ref. [65], and possibly

uncover novel instances of boundary duality symmetries, associated e.g. with an asymptotic

Killing field rather than a plain reduction along Killing orbits. One could even be more

audacious and entertain the idea of a “boundary” analysis for half-flat spaces (this is

vaguely motivated by footnote 18), which have attracted some attention in relation with

w1+∞ symmetry (see the original works [104–106] and [107–111] for a recent emanation).

The main caveat foreseen here is the absence of Carrollian boundaries in Euclidean gravity,

but this could be evaded in the ultra-hyperbolic instance (2 + 2 signature).
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A Carrollian covariance in arbitrary dimension

Carroll structures on M = R × S were introduced in section 3.1 with emphasis on the

covariance properties they enjoy when the time coordinate is aligned with the fiber of the

structure. In the present appendix we will elaborate on this subject, treating in particular

Carrollian covariant and Weyl-covariant derivatives.

The Carrollian transformations (eqs. (3.3) and (3.4)) are connection-like (non-covariant)

for ∂i and bi, and density-like for ∂t and Ω:

∂′
j = J−1i

j

(

∂i −
ji
J
∂t

)

, b′
k =

(

bi +
Ω

J
ji

)

J−1i
k, ∂′

t =
1

J
∂t, Ω′ =

Ω

J
. (A.1)

The vector fields dual to the forms dxi are

∂̂i = ∂i +
bi

Ω
∂t (A.2)

and transform covariantly under (3.3) together with the metric (3.1), and the fields (3.2)

and (3.5):

υ′ = υ, µ′ = µ, ∂̂′
i = J−1j

i ∂̂j , aij′ = J i
kJ

j
l a

kl. (A.3)

The vectors ∂̂i and υ do not commute. They define the Carrollian vorticity and accelera-
tion:

[

∂̂i, ∂̂j

]

=
2

Ω
̟ij∂t,

[

υ, ∂̂i

]

=
1

Ω
ϕi∂t, ̟ij = ∂[ibj] + b[iϕj], ϕi =

1

Ω
(∂tbi + ∂iΩ) ,

(A.4)

similarly appearing in

dµ = ̟ijdxi ∧ dxj + ϕidx
i ∧ µ. (A.5)

A Carroll structure (strong definition) is also equipped with a metric-compatible and

torsionless connection. Due to the degeneration of the metric, such a connection is not

unique, but it can be chosen as the connection inherited from the parent relativistic space-

time (see footnote 9),

γ̂i
jk =

ail

2

(

∂̂jalk + ∂̂kalj − ∂̂lajk

)

, (A.6)

obeying γ̂k
[ij] = 0, ∇̂iajk = 0 and leading to the Levi-Civita-Carroll spatial covariant deriva-

tive ∇̂i.
39

39Details on the transformation rules can be found in the appendix A.2 of ref. [70].
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The ordinary time-derivative operator 1
Ω∂t acts covariantly on Carrollian tensors. How-

ever, it is not metric-compatible because aij depend on time and a temporal covariant

derivative is defined requiring 1
Ω′ D̂′

t = 1
ΩD̂t and D̂tajk = 0. To this end, we introduce a

temporal connection (a sort of extrinsic curvature of the spatial section S )

γ̂ij =
1

2Ω
∂taij = ξij +

1

d
aijθ, θ =

1

Ω
∂t ln

√
a , (A.7)

which is a symmetric Carrollian tensor spliting into the geometric Carrollian shear (trace-
less) and the Carrollian expansion (trace). The action of D̂t on any tensor is obtained

using Leibniz rule plus the action on scalars and vectors:

1

Ω
D̂tV

i =
1

Ω
∂tV

i + γ̂i
jV

j ,
1

Ω
D̂tVi =

1

Ω
∂tVi − γ̂ j

i Vj . (A.8)

The commutators of Carrollian covariant derivatives define Carrollian curvature ten-

sors:
[

∇̂k, ∇̂l

]

V i =
(

∂̂kγ̂
i
lj − ∂̂lγ̂

i
kj + γ̂i

kmγ̂
m
lj − γ̂i

lmγ̂
m
kj

)

V j +
[

∂̂k, ∂̂l

]

V i

= r̂i
jklV

j +̟kl
2
Ω∂tV

i,
(A.9)

where r̂i
jkl is the Riemann-Carroll tensor. The Ricci-Carroll tensor and the Carroll scalar

curvature are thus

r̂ij = r̂k
ikj 6= r̂ji, r̂ = aij r̂ij . (A.10)

Similarly, space and time derivatives do not commute:
[

1

Ω
D̂t, ∇̂i

]

V j = ϕi

((

1

Ω
D̂t + θ

)

V j − γ̂j
kV

k

)

− γ̂ k
i ∇̂kV

j − dr̂j
ikV

k (A.11)

with

r̂j
ik =

1

d

(

θϕiδ
j
k + ∇̂iγ̂

j
k −

1

Ω
∂tγ̂

j
ik

)

, r̂j
jk = r̂k =

1

d

(

∇̂j γ̂
j
k − ∂̂kθ

)

, (A.12)

further Carrollian curvature tensors.

The boundary geometry — be it pseudo-Riemannian or Carrollian — enjoy conformal

properties. Weyl transformations are defined through their action on elementary geometric

data

aij →
1

B2
aij , bi →

1

B
bi, Ω →

1

B
Ω (A.13)

with B = B(t,x) an arbitrary function. A Weyl-covariant derivative requires an appropriate

connection built on ϕi and θ defined in (A.4) and (A.7), which transform as

ϕi → ϕi − ∂̂i ln B, θ → Bθ −
d

Ω
∂tB. (A.14)

The Carrollian vorticity ̟ij (A.4) and the Carrollian shear ξij (A.7) are Weyl-covariant of

weight −1.

The Weyl-Carroll space and time covariant derivatives are metric-compatible and tor-

sionless. For a scalar function Φ and a vector V l of weight w, we find:

D̂jΦ = ∂̂jΦ + wϕjΦ, (A.15)

D̂jV
l = ∇̂jV

l + (w − 1)ϕjV
l + ϕlVj − δl

jV
iϕi. (A.16)
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The weights are not altered by the spatial derivative and D̂jakl = 0. One also defines

1

Ω
D̂tΦ =

1

Ω
D̂tΦ +

w

d
θΦ =

1

Ω
∂tΦ +

w

d
θΦ, (A.17)

1

Ω
D̂tV

l =
1

Ω
D̂tV

l +
w − 1

d
θV l =

1

Ω
∂tV

l +
w

d
θV l + ξl

iV
i, (A.18)

both are of weight w + 1. Furthermore D̂takl = 0, using Leibniz rule.

We finally obtain

[

D̂i, D̂j

]

Φ =
2

Ω
̟ijD̂tΦ + wΩijΦ, (A.19)

[

D̂k, D̂l

]

V i =
(

R̂
i
jkl − 2ξi

j̟kl

)

V j +̟kl
2

Ω
D̂tV

i + wΩklV
i, (A.20)

where

R̂
i
jkl = r̂i

jkl − δi
jϕkl − ajk∇̂lϕ

i + ajl∇̂kϕ
i + δi

k∇̂lϕj − δi
l∇̂kϕj

+ϕi (ϕkajl − ϕlajk) −
(

δi
kajl − δi

lajk

)

ϕmϕ
m +

(

δi
kϕl − δi

lϕk

)

ϕj , (A.21)

Ωij = ∂̂iϕj − ∂̂jϕi −
2

d
̟ijθ (A.22)

are weight-0 Weyl-covariant tensors. Tracing them we obtain:

R̂ij = R̂
k
ikj , R̂ = aij

R̂ij (A.23)

with

R̂ = r̂ + (d− 1)
(

2∇̂iϕ
i − (d− 2)ϕiϕ

i
)

, (A.24)

of weights zero and 2. The Weyl-covariant Carroll-Ricci tensor is not symmetric, R̂[ij] =

−d
2Ωij , and a weight-1 curvature form also appears with

[

1

Ω
D̂t, D̂i

]

Φ = wR̂iΦ − ξj
iD̂jΦ, (A.25)

where

R̂i =
1

Ω
∂tϕi −

1

d

(

∂̂i + ϕi

)

θ. (A.26)

B Conformal Carrollian dynamics and charges

A complete account on the subject of dynamics and charges with the present conventions is

available in refs. [70, 71]. We summarize here the necessary items, in particular regarding

the Weyl-covariant side, which is relevant on the holographic boundaries.

The basics are encoded into four Carrollian momenta, replacing the relativistic energy-

momentum tensor, which are obtained by varying some (effective) action with respect to

aij , bi and Ω (the fourth momentum is not necessarily obtained in this way — for details

see [71]). These are the energy-stress tensor Πij , the energy flux Πi, the energy density Π

as well as the momentum P i, of conformal weights d + 3, d + 2, d + 1 and d + 2. Extra

momenta can also emerge as more degrees of freedom may be present. This phenomenon
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occurs when studying the small-c limit of a relativistic energy-momentum tensor and the

corresponding conservation equations. Keeping things rather minimal with only Π̃ij the

equations read:40

1

Ω
D̂tΠ + D̂iΠ

i + Πijξij = 0, (B.1)

Π̃ijξij = 0, (B.2)

D̂iΠ
i
j + 2Πi̟ij +

(

1

Ω
D̂tδ

i
j + ξi

j

)

Pi = 0, (B.3)

D̂iΠ̃
i
j +

(

1

Ω
D̂tδ

i
j + ξi

j

)

Πi = 0 (B.4)

with

Π̃ i
i = 0, Π i

i = Π, (B.5)

as a consequence of the assumed Weyl invariance.

Equations (B.1), (B.2), (B.3) and (B.4) are the Carrollian emanation of the relativistic

conservation equation ∇µT
µν = 0. As for the relativistic instance, conformal isometries

lead to conserved currents and conserved charges. Let ξ be a d+ 1-dimensional vector

ξ = ξt∂t + ξi∂i =

(

ξt − ξi bi

Ω

)

∂t + ξi

(

∂i +
bi

Ω
∂t

)

= ξ t̂ 1

Ω
∂t + ξi∂̂i (B.6)

restricted to ξi = ξi(x), generator of a one-dimensional group of Carrollian diffeomorphisms

on M = R × S . Its action on the elementary geometric data (3.1), (3.2) and (3.5) is as

40Using the language of fluids, Π appears as the zero-c limit of the relativistic energy density, Πi and P i

are the orders one and c2 of the relativistic heat current, whereas Π̃ij and Πij are the orders 1/c2 and one of

the relativistic stress. A non-vanishing Carrollian energy flux Πi breaks local Carroll-boost invariance (see

e.g. [102]) and makes its dual variable i.e. the Ehresmann connection bbb = bidxi dynamical. This is neither

a surprise nor a caveat. On the one hand, Carrollian dynamics, i.e. dynamics on geometries equipped

with a degenerate metric, is often reached as a vanishing-c limit of relativistic dynamics and naturally

breaks local Carroll boosts, even when the original relativistic theory is Lorentz-boost invariant. Indeed,

invariance under local Lorentz boosts sets symmetry constraints on the components of the relativistic energy-

momentum tensor, but not on their behaviour with respect to c2, leaving the possibility of persisting energy

flux Πi and “over-stress” Π̃ij related through eq. (B.4). A similar phenomenon occurs in Galilean theories,

defined on spacetimes with a degenerate cometric, where the Galilean momentum is possibly responsible

for the breaking of local Galilean-boost invariance. On the other hand, it is fortunate that this happens in

the present instance (one of the very few known applications of Carrollian dynamics), when passing from

the relativistic boundary of asymptotically anti-de Sitter spacetimes to the Carrollian boundary of their

asymptotically flat relatives, as the Carrollian energy flux accounts for non-conservation properties resulting

from bulk gravitational radiation, whereas the Ehresmann connection is part of the Ricci-flat solution space.
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follows:41

Lξaij = 2∇̂(iξ
kaj)k + 2ξ t̂γ̂ij , (B.7)

Lξυ = µυ, (B.8)

Lξµ = −µµ + ν (B.9)

with ν = νidx
i and

µ(t,x) = −
(

1
Ω∂tξ

t̂ + ϕiξ
i
)

,

νi(t,x) = −
(

∂̂i − ϕi

)

ξ t̂ + 2ξj̟ji.
(B.10)

Due to the degeneration of the metric on M , the variation of the field of observers υ is not

identical to that of the clock form µ.

Isometries are generated by Killing fields of the Carrollian type (B.6), required to

obey [30, 31, 41, 51]:

Lξaij = 0, Lξυ = 0. (B.11)

i.e.

∇̂(iξ
kaj)k + ξ t̂γ̂ij = 0, (B.12)

1

Ω
∂tξ

t̂ + ϕiξ
i = 0. (B.13)

The clock form is not required to be invariant. Carrollian conformal Killing fields must

satisfy

Lξaij = λaij (B.14)

with

λ(t,x) =
2

d

(

∇̂iξ
i + θξ t̂

)

. (B.15)

This set of partial differential equations is insufficient for defining conformal Killing fields.

One usually imposes to tune µ versus λ (see [30, 31, 51] for a detailed presentation) so that

the scaling of the metric be twice that of the field of observers:

2µ+ λ = 2

(

1

d
D̂iξ

i −
1

Ω
D̂tξ

t̂

)

= 0 (B.16)

(the conformal weight of ξ t̂ is −1, that of ξi is zero). Again, the clock form is not involved.

If one demands the latter be invariant under the action of a Killing field, or aligned with

itself under the action of a conformal Killing, which in both cases amounts to setting

νi ≡ −D̂iξ
t̂ + 2ξj̟ji = 0 (B.17)

41The Lie derivative along ξ = ξt̂ 1

Ω
∂t + ξi∂̂i of a general Carrollian tensor reads:

LξS j...
i... =

(

ξt̂ 1

Ω
∂t + ξk∂̂k

)

S j...
i... + S j...

k... ∂̂iξ
k + · · · − S k...

i... ∂̂kξj − · · ·

=
(

ξt̂ 1

Ω
∂t + ξk∇̂k

)

S j...
i... + S j...

k... ∇̂iξ
k + · · · − S k...

i... ∇̂kξj − · · · .
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(this is a conformal rewriting of νi given in (B.10)), then the corresponding (conformal)

isometry generator will be referred to as (conformal) strong Killing vector field.42

Transformations generated by ordinary Carrollian Killing fields leave invariant geo-

metric markers that are built over the metric aij and Ω, such as the Carrollian expansion θ

or the shear ξij , encoded in γ̂ij , see (A.7). The Carrollian vorticity and acceleration given

in (A.5) are not left invariant, however, since

Lξdµ = dν, (B.18)

unless the Carrollian Killing field is strong (vanishing ν). Likewise, curvature invariance

does also require the strong condition. This applies in particular to the Carrollian Cotton

tensor discussed in d = 2 (see appendix C).

On a Carroll manifold a current has a scalar component κ as well as a Carrollian-vector

set of components Ki. The divergence takes the form (see [40, 71, 103])

K =

(

1

Ω
∂t + θ

)

κ+
(

∇̂i + ϕi

)

Ki. (B.19)

The charge associated with the current (κ,KKK) is an integral at fixed t over the basis S

QK =

∫

S

ddx
√
a
(

κ+ biK
i
)

, (B.20)

and obeys the following time evolution:

dQK

dt
=

∫

S

ddx
√
aΩK −

∫

∂S

∗KKK Ω. (B.21)

The last term is of boundary type with ∗KKK the S -Hodge dual of Kidx
i. Generally, one

can ignore it owing to adequate fall-off or boundary conditions on the fields.

Suppose that ξ is the generator (B.6) of a Carrollian diffeomorphism. It can be used

to create two currents out43 of Πij , Π̃ij , Πi, P i and Π [40, 71]:






























κ = ξiPi − ξ t̂Π

κ̃ = ξiΠi

Ki = ξjΠ i
j − ξ t̂Πi

K̃i = ξjΠ̃ i
j ,

(B.22)

If ξ is a (conformal) Carrollian Killing field, and assuming all momenta on-shell i.e.

eqs. (B.1), (B.2), (B.3) and (B.4) (with (B.5) satisfied in the conformal instance), one

finds the following Carrollian divergences (the conformal weights of κ and κ̃ are d, those

of Ki and K̃i, d+ 1, and −1 for νi):






K̃ = 1
ΩD̂tκ̃+ D̂iK̃

i = 0

K = 1
ΩD̂tκ+ D̂iK

i = Πiνi.
(B.23)

42Carroll boosts, which are the archetype isometries of flat Carrollian spacetimes, are not generated by

strong Killings [71].
43We stress here that if more momenta were present, more currents would be available.
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Two charges can be defined following (B.20): QK̃ and QK . The former is conserved,

whereas the latter isn’t for generic isometries unless the field configuration has vanishing

energy flux Πi, i.e. if local Carroll-boost invariance is unbroken. The breaking of local

Carroll-boost invariance hence appears as the trigger of non-conservation laws. This pecu-

liarity was risen in [40, 71] and further illustrated with concrete field realizations in [103]. In

four-dimensional Ricci-flat spacetimes, this boundary non-conservation is the consequence

of bulk gravitational radiation, as mentioned previously in footnote 40. Observe never-

theless that irrespective of the energy flux Πi, the (conformal) strong Killings introduced

earlier do lead to full conservation properties as a consequence of (B.17).

C Three dimensions and the Carrollian Cotton tensor

Three-dimensional boundaries (d = 2) outline the framework of the Ehlers and Geroch

investigation pursued in the main part of this article. Three dimensions have two remark-

able properties. At the first place, if the geometric Carrollian shear ξij defined in (A.7)

vanishes, which occurs for the Carrollian boundaries of Ricci-flat spacetimes as a conse-

quence of Einstein’s equations (see section 3.1), the Carrollian conformal isometry group

is infinite-dimensional: BMS4 ≡ ccarr(3) ≡ so(3, 1) ⋉ supertranslations [23, 41]. This

potentially generates infinite towers of charges, possibly conserved.

Secondly, three-dimensional Carrollian spacetimes possess a Carrollian Cotton tensor
obeying conservation dynamics. It appears as a set of Carrollian scalars, vectors and ten-

sors emerging in the small-c expansion of the relativistic Cotton Cµν , which is symmetric,

traceless, divergence-free and Weyl-covariant with weight 1. Reference [23] provides a com-

plete account of the Carrollian descendants as they emerge from the pseudo-Riemannian

Cotton tensor, in the absence of geometric Carrollian shear. Here we will circumscribe our

exhibition to the basic output.

For d = 2, the S -Hodge duality is induced by44 ηij =
√
a ǫij . This duality is involutive

on Carrollian vectors as well as on two-index symmetric and traceless Carrollian tensors:

∗Vi = ηl
iVl, ∗Wij = ηl

iWlj . (C.1)

This fully antisymmetric form can be used to recast some of the expressions introduced in

appendix A. The Carroll-Ricci tensor (A.10) is decomposed as

r̂ij = ŝij + K̂aij + Âηij (C.2)

with

ŝij = 2 ∗̟ ∗ξij , K̂ =
1

2
aij r̂ij =

1

2
r̂, Â =

1

2
ηij r̂ij = ∗̟θ, ∗̟ =

1

2
ηij̟ij . (C.3)

Similarly

R̂ij = ŝij + K̂ aij + Â ηij , (C.4)

44We use here the conventions of ref. [23], namely ǫ12 = −1, convenient when using complex coordinates

{ζ, ζ̄}. Notice that ηilηjl = δi
j and ηijηij = 2.
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where we have introduced two weight-2 Weyl-covariant scalar Gauss-Carroll curvatures:

K̂ =
1

2
aij

R̂ij = K̂ + ∇̂kϕ
k, Â =

1

2
ηij

R̂ij = Â− ∗ϕ. (C.5)

These obey Carroll-Bianchi identities:

2

Ω
D̂t ∗̟ + Â = 0, (C.6)

1

Ω
D̂tK̂ − aij

D̂iR̂j − D̂iD̂jξ
ij = 0, (C.7)

1

Ω
D̂tÂ + ηij

D̂iR̂j = 0. (C.8)

Thanks to the identities (C.7) and (C.8), the couples
{

K̂ ,−R̂i−D̂jξ
ij
}

and
{

Â,−∗R̂i
}

allow to define electric and magnetic curvature charges as in eqs. (B.19) and (B.20):

Qec =

∫

S

d2x
√
a
(

K̂ − bi

(

R̂
i + D̂jξ

ij
))

, Qmc =

∫

S

d2x
√
a
(

Â − bi ∗R̂
i
)

. (C.9)

Following (B.21), we find

dQec

dt
=

∫

∂S

∗
(

R̂RR + D̂DD · ξξξ
)

Ω,
dQmc

dt
= −

∫

∂S

R̂RR Ω. (C.10)

Upon regular behaviour, the boundary terms vanish and the curvature charges are both

conserved.

Besides the various curvature tensors, which are second derivatives of the metric and

the Ehresmann connection, one defines third-derivative tensors, the descendants of the

relativistic Cotton tensor. We will here limit our presentation to the instance ξij = 0,

which is the appropriate framework when solving Einstein’s equations in the bulk. This

reduces the number of tensors to five, a weight-3 scalar, two weight-2 forms and two weight-

1 two-index symmetric and traceless tensors:

c =
(

D̂lD̂
l + 2K̂

)

∗̟, (C.11)

χj =
1

2
ηl

jD̂lK̂ +
1

2
D̂jÂ − 2 ∗̟R̂j , (C.12)

ψj = 3ηl
jD̂l ∗̟2, (C.13)

Xij =
1

2
ηl

jD̂lR̂i +
1

2
ηl

iD̂jR̂l, (C.14)

Ψij = D̂iD̂j ∗̟ −
1

2
aijD̂lD̂

l ∗̟ − ηij
1

Ω
D̂t ∗̟2. (C.15)

As a consequence of the relativistic conservation of the Cotton tensor, its Carrollian de-

scendants obey eqs. (B.1), (B.2),45 (B.3) and (B.4) with

ΠCot = c, Πi
Cot = χi, P i

Cot = ψi, Π̃ij
Cot

= −Xij , Πij
Cot

=
c

2
aij − Ψij , (C.16)

45Equation (B.2), is trivially satisfied due to the vanishing of ξij . If ξij 6= 0, extra Cotton Carrollian

descendants are available, and the conservation dynamics is encoded in more momenta and equations — in

particular (B.2) is modified.
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which read

1

Ω
D̂tc+ D̂iχ

i = 0, (C.17)

1

2
D̂jc+ 2χi̟ij +

1

Ω
D̂tψj − D̂iΨ

i
j = 0, (C.18)

1

Ω
D̂tχj − D̂iX

i
j = 0. (C.19)

When the geometric Carrollian shear vanishes, the time dependence in the metric

is factorized as aij(t,x) = e2σ(t,x)āij(x). One then shows [23, 41] that the Carrollian

conformal isometry group is the semi-direct product of the conformal group of āij(x) with

the infinite-dimensional supertranslation group. The former is generated by Y i(x), the

latter by T (x), and the Carrollian conformal Killing fields read:

ξT,Y =

(

T (x) − Y i(x)∂̂iC(t,x) +
1

2
C(t,x)∇̄iY

i(x)

)

eσ(t,x)

Ω
∂t + Y i(x)∂̂i (C.20)

with

C(t,x) ≡

∫ t

dτ e−σ(τ,x)Ω (τ,x) . (C.21)

This result is valid in any dimension. At d = 2, āij(x) is conformally flat and Y i(x)

generate so(3, 1).46

The conservation of the Carrollian Cotton momenta (C.16) makes it possible to define

two infinite towers of Carrollian Cotton charges QCot T,Y and Q̃Cot T,Y following (B.20),

based on the Carrollian Cotton currents κCot, K
i
Cot

, κ̃Cot and K̃i
Cot

(see (3.34)). Accord-

ing to (B.23), the latter are always conserved,47 whereas the former are only if χiνi =

−χi
(

D̂iξ
t̂ − 2ξj̟ji

)

= 0. This occurs for special geometries (χi = 0) or for the subset of

strong Carrollian conformal Killing fields (νi = 0) .

In d = 2, it is convenient to use complex spatial coordinates ζ and ζ̄. With the permis-

sion of the authors of [23], we reproduce here the appendix of that reference, summarizing

the useful formulas in this coordinate system. Using Carrollian diffeomorphisms (3.3), the

metric (3.1) of the Carrollian geometry on the two-dimensional surface S can be recast in

conformally flat form,

dℓ2 =
2

P 2
dζdζ̄ (C.22)

with P = P (t, ζ, ζ̄) a real function, under the necessary and sufficient condition that the

Carrollian shear ξij displayed in (A.7) vanishes. We will here assume that this holds and

present a number of useful formulas for Carrollian and conformal Carrollian geometry.

These geometries carry two further pieces of data: Ω(t, ζ, ζ̄) and

bbb = bζ(t, ζ, ζ̄) dζ + bζ̄(t, ζ, ζ̄) dζ̄ (C.23)

46The so(3, 1) factor can also be promoted to superrotations (double Virasoro) if we give up the absolute

regularity requirement.
47The conformal Killing fields (C.20), (C.21) depend explicitly on time. Inside the charges they define,

when conserved, this time dependence is confined, on-shell, in a boundary term, and hence drops — see

concrete examples in [103].
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with bζ̄(t, ζ, ζ̄) = b̄ζ(t, ζ, ζ̄). Our choice of orientation is inherited from the one adopted for

the relativistic boundary (see footnote 10) with aζζ̄ = 1/P 2 is48

ηζζ̄ = −
i

P 2
. (C.24)

The first-derivative Carrollian tensors are the acceleration (A.4), the expansion (A.7)

and the scalar vorticity (A.4), (C.3):

ϕζ = ∂t
bζ

Ω
+ ∂̂ζ ln Ω, ϕζ̄ = ∂t

bζ̄

Ω
+ ∂̂ζ̄ ln Ω, (C.25)

θ = −
2

Ω
∂t lnP, ∗̟ =

iΩP 2

2

(

∂̂ζ

bζ̄

Ω
− ∂̂ζ̄

bζ

Ω

)

(C.26)

with

∂̂ζ = ∂ζ +
bζ

Ω
∂t, ∂̂ζ̄ = ∂ζ̄ +

bζ̄

Ω
∂t. (C.27)

Curvature scalars and vector are second-derivative (see (C.3), (A.12)):49

K̂ = P 2
(

∂̂ζ̄ ∂̂ζ + ∂̂ζ ∂̂ζ̄

)

lnP, Â = iP 2
(

∂̂ζ̄ ∂̂ζ − ∂̂ζ ∂̂ζ̄

)

lnP, (C.28)

r̂ζ =
1

2
∂̂ζ

(

1

Ω
∂t lnP

)

, r̂ζ̄ =
1

2
∂̂ζ̄

(

1

Ω
∂t lnP

)

, (C.29)

and we also quote:

∗ϕ = iP 2
(

∂̂ζϕζ̄ − ∂̂ζ̄ϕζ

)

, (C.30)

∇̂kϕ
k = P 2

[

∂̂ζ∂t

bζ̄

Ω
+ ∂̂ζ̄∂t

bζ

Ω
+
(

∂̂ζ ∂̂ζ̄ + ∂̂ζ̄ ∂̂ζ

)

ln Ω

]

. (C.31)

Regarding conformal Carrollian tensors we remind the weight-2 curvature scalars (C.5):

K̂ = K̂ + ∇̂kϕ
k, Â = Â− ∗ϕ, (C.32)

and the weight-1 curvature one-form (A.26):

R̂ζ =
1

Ω
∂tϕζ −

1

2

(

∂̂ζ + ϕζ

)

θ, R̂ζ̄ =
1

Ω
∂tϕζ̄ −

1

2

(

∂̂ζ̄ + ϕζ̄

)

θ. (C.33)

The three-derivative Cotton descendants displayed in (C.11)–(C.15) are a scalar

c =
(

D̂lD̂
l + 2K̂

)

∗̟ (C.34)

48This amounts to setting
√

a = i/P 2 in coordinate frame and ǫζζ̄ = −1. The volume form reads

d2x
√

a = dζ∧dζ̄

iP 2 .
49We also quote for completeness (useful e.g. in eq. (C.32)):

K̂ = K + P 2

[

∂ζ

bζ̄

Ω
+ ∂ζ̄

bζ

Ω
+ ∂t

bζbζ̄

Ω2
+ 2

bζ̄

Ω
∂ζ + 2

bζ

Ω
∂ζ̄ + 2

bζbζ̄

Ω2
∂t

]

∂t ln P

with K = 2P 2∂ζ̄∂ζ ln P the ordinary Gaussian curvature of the two-dimensional metric (C.22).
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of weight 3 (∗̟ is of weght 1), two vectors

χζ =
i

2
D̂ζK̂ +

1

2
D̂ζÂ − 2 ∗̟R̂ζ , χζ̄ = −

i

2
D̂ζ̄K̂ +

1

2
D̂ζ̄Â − 2 ∗̟R̂ζ̄ , (C.35)

ψζ = 3iD̂ζ ∗̟2, ψζ̄ = −3iD̂ζ̄ ∗̟2, (C.36)

of weight 2, and two symmetric and traceless tensors

Xζζ = iD̂ζR̂ζ , Xζ̄ζ̄ = −iD̂ζ̄R̂ζ̄ , (C.37)

Ψζζ = D̂ζD̂ζ ∗̟, Ψζ̄ζ̄ = D̂ζ̄D̂ζ̄ ∗̟, (C.38)

of weight 1. Notice that in holomorphic coordinates a symmetric and traceless tensor Sij

has only diagonal entries: Sζζ̄ = 0 = Sζ̄ζ .

We also remind for convenience some expressions for the determination of Weyl-Carroll

covariant derivatives. If Φ is a weight-w scalar function

D̂ζΦ = ∂̂ζΦ + wϕζΦ, D̂ζ̄Φ = ∂̂ζ̄Φ + wϕζ̄Φ. (C.39)

For weight-w form components Vζ and Vζ̄ the Weyl-Carroll derivatives read:

D̂ζVζ = ∇̂ζVζ + (w + 2)ϕζVζ , D̂ζ̄Vζ̄ = ∇̂ζ̄Vζ̄ + (w + 2)ϕζ̄Vζ̄ , (C.40)

D̂ζVζ̄ = ∇̂ζVζ̄ + wϕζVζ̄ , D̂ζ̄Vζ = ∇̂ζ̄Vζ + wϕζ̄Vζ , (C.41)

while the Carrollian covariant derivatives are simply:

∇̂ζVζ =
1

P 2
∂̂ζ

(

P 2Vζ

)

, ∇̂ζ̄Vζ̄ =
1

P 2
∂̂ζ̄

(

P 2Vζ̄

)

, (C.42)

∇̂ζVζ̄ = ∂̂ζVζ̄ , ∇̂ζ̄Vζ = ∂̂ζ̄Vζ . (C.43)

Finally,

D̂kD̂
kΦ = P 2

(

∂̂ζ ∂̂ζ̄Φ + ∂̂ζ̄ ∂̂ζΦ + wΦ
(

∂̂ζϕζ̄ + ∂̂ζ̄ϕζ

)

+ 2w
(

ϕζ ∂̂ζ̄Φ + ϕζ̄ ∂̂ζΦ + wϕζϕζ̄Φ
))

.

(C.44)

Using complex coordinates, we can recast the conformal Killing vectors of a shear-free

Carrollian spacetime M in three dimensions, given in eqs. (C.20) and (C.21). These are

expressed in terms of an arbitrary real function T (ζ, ζ̄), which encodes the supertranslations,
and the conformal Killing vectors of flat space dℓ̄2 = 2dζdζ̄. The latter are of the form

Y ζ(ζ) ∂ζ + Y ζ̄(ζ̄) ∂ζ̄ , reached with any combination of ℓm + ℓ̄m or i
(

ℓm − ℓ̄m
)

, where50

ℓm = −ζm+1∂ζ , ℓ̄m = −ζ̄m+1∂ζ̄ , (C.45)

obeying the Witt ⊕ Witt algebra:

[ℓm, ℓn] = (m− n)ℓm+n,
[

ℓ̄m, ℓ̄n
]

= (m− n)ℓ̄m+n, (C.46)

50Notice that combining (C.1) and (C.24), we find ∗
(

ℓm + ℓ̄m

)

= −i
(

ℓm − ℓ̄m

)

.
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and referred to as superrotations. Usually one restricts to so(3, 1), generated by n = 0,±1.

The conformal Killing fields of M are thus

ξT,Y =

(

T −
(

Y ζ ∂̂ζ + Y ζ̄ ∂̂ζ̄

)

C +
C

2

(

∂ζY
ζ + ∂ζ̄Y

ζ̄
)

)

1

P
υ + Y ζ ∂̂ζ + Y ζ̄ ∂̂ζ̄ (C.47)

with

C(t, ζ, ζ̄) ≡

∫ t

dτ P (τ, ζ, ζ̄) Ω(τ, ζ, ζ̄). (C.48)

The structure so(3, 1) + supertranslations — or (Witt ⊕ Witt) + supertranslations — is

recovered in
[

ξT,Y , ξT ′,Y ′

]

= ξMY (T ′)−MY ′ (T ),[Y,Y ′] (C.49)

with

MY (f) =
(

Y ζ ∂̂ζ + Y ζ̄ ∂̂ζ̄

)

f −
f

2

(

∂ζY
ζ + ∂ζ̄Y

ζ̄
)

. (C.50)
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We investigate the (conformally coupled) scalar field on a general Carrollian spacetime in arbitrary

dimension. The analysis discloses electric and magnetic dynamics. For both, we provide the energy and the

momenta of the field, accompanied by their conservation equations. We discuss the conservation and

nonconservation properties resulting from the existence of conformal isometries and the associated

charges. We illustrate those results for a scalar field propagating on the null boundary of four-dimensional

Ricci-flat Robinson-Trautman spacetimes.
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The Carroll group was discovered in the seminal works

of Lévy-Leblond [1] and Sen Gupta [2]. Its first applica-

tion, due to Henneaux, appeared 14 years later [3] and it

took almost 50 years for Carrollian physics to emerge as a

full-blown research area, ranging from differential geom-

etry to holographic duality. Carrollian physics is meant to

embrace phenomena occurring on a Carrollian spacetime,

such as hydrodynamics or, at a more fundamental level,

field dynamics. The simplest field is a scalar and it has

received some attention [4–11].

The aim of the present note is to present the dynamics of

a (conformally coupled) scalar on a general Carrollian

manifold, tame and illustrate scattered results, and unify

two distinct and complementary approaches. The first relies

on Carrollian structures and diffeomorphism invariance.

The second consists in reaching Carrollian geometry and

dynamics from a pseudo-Riemannian relative at vanishing

speed of light. The set of features we address includes:

(i) electric vs magnetic dynamics; (ii) action and equations

of motion; (iii) energy, momentum, and their conservation;

(iv) isometries and Noether’s theorem. The basic technical

tools are listed in the Appendix.

Carroll structures were introduced in [12–14] (see also

[15–20]). They consist of a (dþ 1)-dimensional manifold

M ¼ R ×S equipped with a degenerate metric and a

vector field, the kernel of the metric. For concreteness, we

will adopt coordinates ðt;xÞ and degenerate metrics of the

form

dl2 ¼ aijðt;xÞdxidxj; i; j… ∈ f1;…; dg ð1Þ

with a kernel generated by

υ ¼ 1

Ω
∂t; ð2Þ

which defines a field of observers. This coordinate system

is adapted to the space/time splitting, which is in turn

respected by Carrollian diffeomorphisms

t0 ¼ t0ðt;xÞ and x
0 ¼ x

0ðxÞ: ð3Þ

The Carrollian manifold incorporates an Ehresmann con-

nection, which is the background gauge field b ¼ bidx
i

appearing in the dual form of the field of observers (2),

defined such as μðυÞ ¼ −1:

μ ¼ −Ωdtþ bidx
i; ð4Þ

the clock form (Ω andbi depend on t andx). Thevector fields

dual to the forms dxi are

∂̂i ¼ ∂i þ
bi

Ω
∂t: ð5Þ

As shown in the Appendix, they transform covariantly under

Carrollian diffeomorphisms (3). A Carroll structure (strong

definition) is also equipped with a torsionless and metric-

compatible connection. This is not unique, due to the

degeneracy of the metric. We use here the connection

inherited from the parent relativistic spacetime.
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A Carroll structure endowed with metric (1) and clock

form (4) is naturally reached in the Carrollian limit (c → 0)

of a pseudo-Riemannian spacetime M in Papapetrou-

Randers gauge

ds2 ¼ −c2ðΩdt − bidx
iÞ2 þ aijdx

idxj; ð6Þ

where all functions are x dependent with x≡ ðx0 ¼ ct;xÞ.
The connection we use on the Carrollian side is given in

the Appendix, Eqs. (A4) and (A6). These are parts of the

Levi-Civita connection attached to (6), and decomposed in

powers of c.
The dynamics of scalar fields on an arbitrary Carrollian

spacetime, limited to two-derivative kinetic terms encom-

passes two distinct situations dictated by Carrollian covari-

ance. Their Lagrangian densities read

Le ¼
1

2

�

1

Ω
∂tΦ

�

2

− VeðΦÞ; ð7Þ

Lm ¼ −
1

2
aij∂̂iΦ∂̂jΦ − VmðΦÞ; ð8Þ

and enter the Carrollian action SC ¼
R

M
dtddx

ffiffiffi

a
p

ΩL. The

indices “e” and “m” stand for “electric” and “magnetic.”

They refer to the origin of these actions in the parent

relativistic theory [8,9]. Indeed starting from a relativistic

scalar field on a Papapetrou-Randers background (6)

S ¼ −

Z

M

dtddx
ffiffiffiffiffiffi

−g
p �

1

2
gμν∂μΦ∂νΦþ VðΦÞ

�

; ð9Þ

and assuming

VðΦÞ ¼ 1

c2
VeðΦÞ þ VmðΦÞ þOðc2Þ; ð10Þ

we find

S ¼ 1

c2
Se þ SmþOðc2Þ; ð11Þ

with Se and Sm the Carrollian actions with Lagrangian

densities (7) and (8). The existence of an expansion (10) for

the original relativistic potential in powers of c2 is a bona

fide assumption, necessary to reach two actions invariant

under Carrollian diffeomorphisms (3).
1

Due to the form of the metric (6), and to its sub-

sequent behavior under Carrollian diffeomorphisms, the

decomposition of any relativistic tensor as a (usually

truncated) Laurent expansion, provides a Carrollian tensor

for each term.
2
If we insist in reaching a single Carrollian

tensor at vanishing c, then an appropriate rescaling by some

power of c2 is necessary—in order, e.g., to select one out of

two options, if only two options are available as in the

above scalar-field action (see [8], where this procedure

is illustrated in Hamiltonian formalism and for flat

spacetime).

An insightful scalar potential for a relativistic curved

spacetime in dþ 1 dimensions is the following:

VðΦÞ ¼ d − 1

8d
RΦ2: ð12Þ

For a scalar field Φ of weight w ¼ d−1
2
, this is a conformal

coupling. Indeed, the relativistic energy-momentum tensor

for (9) with (12) has the form (∇μΦ ¼ ∂μΦ)

Tμν ¼ −
2
ffiffiffiffiffiffi

−g
p δS

δgμν
¼ ∇μΦ∇νΦ −

1

2
gμν∇αΦ∇α

Φ

þ d − 1

4d
ðGμνΦ

2 þ gμν□Φ
2 −∇μ∇νΦ

2Þ;

¼ DμΦDνΦ −
1

2
gμνDαΦDα

Φ

þ d − 1

4d

��

RðμνÞ −
R

2
gμν

�

Φ
2

þ gμνDαD
α
Φ

2 −D ðμDνÞΦ
2

�

; ð13Þ

where
3
Gμν is the Einstein tensor, Rμν and R the Weyl-

covariant Ricci and scalar defined in the Appendix

[Eqs. (A37) and (A38)], together with the Weyl-covariant

derivative Dμ. This energy-momentum tensor is traceless

when Φ is on shell, and with a Weyl-covariant of weight

d − 1. The action is Weyl invariant (up to boundary terms
4
),

whereas the equations of motion can be recast readily with

Weyl-covariant attributes:

−DμD
μ
Φþ d − 1

4d
RΦ ¼ 0: ð14Þ

As a consequence of diffeomorphism invariance, the

energy-momentum tensor obeys a Weyl-covariant conser-

vation equation, when the field Φ is on-shell:

∇μT
μν ¼ DμT

μν ¼ 0: ð15Þ

1
The actions associated with the Oðc2Þ terms are nondynam-

ical as no kinetic term appears at this order. This will be illustrated
in the subsequent analysis of a conformally coupled scalar, see
Eq. (16).

2
Phrased in more mathematical terms, the expansion in powers

of c2, amounts to reducing the representations of the full
diffeomorphism group, with respect to the Carrollian diffeo-
morphism subgroup.

3
We thank Konstantinos Siampos for a useful discussion on

this topic.
4
Equation (14) is also simply −□Φþ d−1

4d
RΦ ¼ 0.

DAVID RIVERA-BETANCOUR and MATTHIEU VILATTE PHYS. REV. D 106, 085004 (2022)

085004-2



The interest for studying relativistic conformally coupled

scalar fields is originally found in inflationary models of

cosmology.
5
On the Carrollian side the motivation is

entrenched in the attempts to generalize the gauge/gravity

holographic correspondence for asymptotically flat space-

times, where the boundary is null infinity, i.e., a Carrollian

manifold par excellence.

Inserting inside (12) the Carrollian decomposition of R
as displayed in the Appendix Eq. (A39), leads to

VðΦÞ ¼ 1

c2
VeðΦÞ þ VmðΦÞ þ c2VndðΦÞ; ð16Þ

with

VeðΦÞ ¼ d − 1

8d

�

2

Ω
∂tθ þ

1þ d

d
θ2 þ ξijξ

ij

�

Φ
2; ð17Þ

VmðΦÞ ¼ d − 1

8d
ðr̂ − 2∇̂iφ

i − 2φiφiÞΦ2; ð18Þ

VndðΦÞ ¼ d − 1

8d
ϖijϖ

ij
Φ

2: ð19Þ

In the last expression the index “nd” stands for “non-

dynamical.” The reason is that when the expression (16) of

the potential is used in the relativistic action (9), it produces

the Carrollian electric and magnetic actions—with some

boundary terms dropped here
6

Se ¼
Z

dtddx
ffiffiffi

a
p

Ω

�

1

2

�

1

Ω
D̂ tΦ

�

2

−
d − 1

8d
ξijξ

ij
Φ

2

�

;

ð20Þ

Sm ¼
Z

dtddx
ffiffiffi

a
p

Ω

�

−
1

2
D̂ iΦD̂

i
Φ −

d − 1

8d
R̂Φ

2

�

; ð21Þ

as well as a third one Snd ¼ −
R

dtddx
ffiffiffi

a
p

Ω
d−1
8d

ϖijϖ
ij
Φ

2,

which has no kinetic term for Φ.
7
The Carrollian equations

of motion for the two nontrivial cases are as follows:

1

Ω
D̂ t

1

Ω
D̂ tΦþ d − 1

4d
ξijξ

ij
Φ ¼ 0 electric; ð22Þ

−D̂ iD̂
i
Φþ d − 1

4d
R̂Φ ¼ 0 magnetic; ð23Þ

where the detailed expressions for the derivatives and

Carrollian tensors are available in the Appendix. These

equations are Weyl-covariant of weight w ¼ dþ1

2
.

Energy and momenta are part of the agenda when

discussing field dynamics. These are conjugate variables

to the geometric data, as is Tμν in (13) for a relativistic

theory, and inherit their conservation from the Carrollian

diffeomorphism invariance. In Carrollian geometries there

is no energy-momentum tensor, but instead an energy-

stress tensorΠij, an energy fluxΠi and an energy densityΠ,

defined as [4,22,23]

Π
ij ¼ 2

ffiffiffi

a
p

Ω

δSC
δaij

; ð24Þ

Π
i ¼ 1

ffiffiffi

a
p

Ω

δSC

δbi
; ð25Þ

Π ¼ −
1
ffiffiffi

a
p

�

δSC

δΩ
þ bi

Ω

δSC

δbi

�

; ð26Þ

with conformal weights dþ 3, dþ 2 and dþ 1. Requiring

Weyl invariance for the action translates into

Πi
i ¼ Π; ð27Þ

which is valid on shell (as the tracelessness of the

relativistic energy-momentum tensor).

A momentum Pi (weight d) is also defined but is not

conjugate to a geometric variable. It enters the conservation

equations that mirror the Carrollian diffeomorphism invari-

ance. For Weyl-invariant dynamics these are [23]

1

Ω
D̂ tΠþ D̂ iΠ

i þ Π
ijξij ¼ 0; ð28Þ

D̂ iΠ
i
j þ 2Π

iϖij þ
�

1

Ω
D̂ tδ

i
j þ ξij

�

Pi ¼ 0: ð29Þ

Conservation equations are satisfied when the field Φ

is on shell, and this allows us to determine the

momentum.

Using Eqs. (24)–(26), we obtain the following energy

and momenta for the Carrollian electric and magnetic

actions:

5
See, e.g., [21] where more references are displayed.

6
On the relativistic side we find: 1

2
gμν∂μΦ∂νΦþ d−1

8d
RΦ2 ¼

1

2
Dμ

ΦDμΦþ d−1
8d

RΦ
2 − d−1

4
ffiffiffiffi

−g
p ∂μð

ffiffiffiffiffiffi

−g
p

Aμ
Φ

2Þ.
7
These results coincide with those obtained for d ¼ 2 in

Ref. [7], where the authors proceed with a thorough investigation
of the possible Weyl-compatible terms. The kinetic terms of the
electric and magnetic actions, (20) and (21), can also be
compared to the corresponding results of [8]. They also agree
up to the magnetic constraint introduced in Ref. [8], which would
read here Πi

m ¼ 0 [see (31)]. The latter guarantees the invariance
of the action under local Carrollian boosts, which we have not
required a priori—Carrollian invariance features here the covari-
ance under Carrollian diffeomorphisms (3) of a theory defined on
a Carrollian spacetime (1) and (2).
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8

>

>

<

>

>

:

Π
ij
e ¼ aij

2
ð1
Ω
D̂ tΦÞ2 þ d−1

4d
ð1
Ω
D̂ tðξijΦ2Þ − aijð1

2
ξlkξ

lk
Φ

2 þ 1

Ω
D̂ t

1

Ω
D̂ tΦ

2ÞÞ
Π

i
e ¼ 0

Πe ¼ 1

2
ð1
Ω
D̂ tΦÞ2 − d−1

8d
ξijξ

ij
Φ

2

; ð30Þ

8

>

>

<

>

>

:

Π
ij
nd ¼ d−1

4d
ð2ϖliϖl

j − aij

2
ϖlkϖ

lkÞΦ2

Π
i
m ¼ − 1

Ω
D̂ tΦD̂

i
Φþ d−1

4d
ðD̂ i 1

Ω
D̂ tΦ

2 − D̂jðξijΦ2ÞÞ
Πm ¼ 1

2
D̂ iΦD̂

i
Φþ d−1

4d
ðR̂
2
Φ

2 − D̂ iD̂
i
Φ

2Þ
: ð31Þ

For the nondynamical action, which will turn useful in a

short while, we find

8

>

>

<

>

>

:

Π
ij
nd ¼ d−1

4d
ð2ϖliϖl

j − aij

2
ϖlkϖ

lkÞΦ2

Π
i
nd ¼ d−1

4d
D̂jðϖji

Φ
2Þ

Πnd ¼ 3ðd−1Þ
8d

ϖijϖ
ij
Φ

2

: ð32Þ

They all obey (27), and conservation equations (28) and

(29) are satisfied with the electric momenta, assuming the

field be on shell, i.e., obeying (22), and deliver the electric

momentum:

Pi
e ¼ Π

i
m: ð33Þ

In a similar fashion for the magnetic dynamics, and using

the equation of motion (23), we obtain

Pi
m ¼ Π

i
nd: ð34Þ

One might be puzzled at this stage by the interplay

Eqs. (33) and (34) seem to entail amongst electric,

magnetic, and nondynamics. There is no doubt that electric

and magnetic Carrollian scalar dynamics resulting from Le

and Lm are distinct, and can be studied separately, on any

Carrollian background. Likewise, the action Lnd ¼ −Vnd is

also Carrollian invariant with bona fide Carrollian

momenta, but is nondynamical. What sets a deeper link

between these dynamics, which is not visible when treating

them directly in the Carrollian framework, is that they all

emerge in the “small-c expansion” of a unique relativistic

theory for the scalar field. This was one possible guideline

for obtaining the Carrollian scalar theories. It can also be

applied to the relativistic energy-momentum tensor, and

will deliver in a similar expansion
8
the Carrollian momenta:

8

>

>

>

<

>

>

>

:

Tij ¼ 1

c2
Π

ij
e þ Π

ij
m þ c2Π

ij
nd

− c
Ω
Ti
0
¼ Π

i
m þ c2Πi

nd

1

Ω
2 T00 ¼ 1

c2
Πe þ Πm þ c2Πnd

: ð35Þ

The relationship between relativistic and Carrollian

dynamics can be thrust further. Following [23,24] we

can expand the relativistic conservation of energy momen-

tum (15) and recollect the Carrollian conservation equa-

tions for the electric, the magnetic and the nondynamical

cases. In this process Eqs. (28) and (29) arise for each case

at a different c order, and their momenta Pi
e and Pi

m are

naturally determined in terms of the next-order energy

fluxes. This explains the above results (33) and (34).

Conserved charges are fundamental ingredients for han-

dling a dynamical system. They often appear as the conse-

quence of symmetries. In a relativistic framework, if ξ is a

Killing field of the spacetimeM , then the current defined as

Iμ ¼ ξνTμν ð36Þ

has zero divergence and (S is a d-dimensional spatial

section of M and �I the M -Hodge dual of I ¼ Iμdx
μ)

QI ¼
Z

S

�I ð37Þ

is conserved. For Weyl-covariant dynamics this applies with

conformal Killing fields.

In a Carrollian spacetime a current has a scalar compo-

nent κ as well as a Carrollian-vector set of components Ki,

and the divergence takes the form

K ¼
�

1

Ω
∂t þ θ

�

κ þ ð∇̂i þ φiÞKi: ð38Þ

This result can be inferred
9
as from a relativistic compu-

tation, with a current Iμ such that

8
The wording “expansion” is an abuse because the result is

exact here.

9
See Ref. [23], where it is also shown how the current

components are retrieved without reference to a relativistic
ascendent.
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−
1

cΩ
I0 ¼ κ þ Oðc2Þ; Ik ¼ Kk þ Oðc2Þ; ð39Þ

leading in a Papapetrou-Randers background (6) to

∇μI
μ ¼ Kþ Oðc2Þ. Defining a charge associated with

the current ðκ;KÞ as an integral at fixed t over the basis

S of the Carrollian structure

QK ¼
Z

S

ddx
ffiffiffi

a
p

ðκ þ biK
iÞ; ð40Þ

we obtain the following time evolution:

dQK

dt
¼

Z

S

ddx
ffiffiffi

a
p

ΩK −

Z

∂S

⋆KΩ; ð41Þ

where ⋆K is the S -Hodge dual of Kidx
i. For vanishing

divergence K, this is conserved if one can ignore the

boundary term owing to adequate falloff or boundary

conditions on the fields. Notice that if K happens to be

identical to the Carrollian divergence of some potential

ðϕ;ϕÞ, then a conserved charge is obtained with

κ − ϕ, Ki − ϕi.

Suppose that ξ is the generator of a Carrollian diffeo-

morphism [see (A24) in the Appendix]. It can be used to

create a current out of Πij, Πi, Π, and Pi [4,23]:

κ ¼ ξiPi − ξt̂Π; Ki ¼ ξjΠj
i − ξt̂Πi: ð42Þ

For a Weyl-covariant system [Eq. (27)] with a conformal

Killing vector [see the defining conditions in the Appendix,

(A30) and (A31)], one obtains this:

K ¼ −Πiðð∂̂i − φiÞξt̂ − 2ξjϖjiÞ: ð43Þ

As opposed to the relativistic situation, a conformal Killing

field does not provide a conservation law in Weyl-invariant

Carrollian dynamics, unless it satisfies (the conformal

weight of ξt̂ is −1, that of ξi zero)

ð∂̂i − φiÞξt̂ − 2ξjϖji ≡ D̂ iξ
t̂ − 2ξjϖji ¼ 0: ð44Þ

This last condition amounts to further demanding the clock

form (4) be invariant under the action of the conformal

Killing [see Eq. (A27) in the Appendix]. In Carrollian

dynamics, symmetry is generated by a subalgebra of the

conformal isometry algebra.

Electric and magnetic Carrollian scalar fields with

conformal coupling have different behavior regarding

conservation. The former have vanishing energy flux

[see (30)] and lead thus to conserved charges Qe ¼
R

S
ddx

ffiffiffi

a
p ðκe þ biK

i
eÞ with

κe ¼ ξiΠmi − ξt̂Πe; Ki
e ¼ ξjΠi

ej; ð45Þ

where we have used (33). For the latter, Qm ¼
R

S
ddx

ffiffiffi

a
p ðκm þ biK

i
mÞ with [see (31) and (34)],

κm ¼ ξiΠndi − ξt̂Πm; Ki
m ¼ ξjΠi

mj − ξt̂Πi
m ð46Þ

is not conserved since, according to (43),

Km ¼ −Πi
mðð∂̂i − φiÞξt̂ − 2ξjϖjiÞ: ð47Þ

Conservation is attainable for field configurations such that

Π
i
m ¼ 0, which translates local Carroll-boost invariance

[17]. Following (31), this happens, e.g., when D̂ tΦ ¼ 0 in

backgrounds with vanishing geometric Carrollian shear

[ξij ¼ 0, defined in the Appendix, Eq. (A6)], which is

possibly compatible with the magnetic dynamics (23).

Conformal Killing fields on general Carrollian space-

times are obtained upon solving a set of complicated partial

differential equations and this is not an easy task. It is

remarkable that when the Carrollian shear [see (A6) in the

Appendix] ξij vanishes, the conformal Killing fields are

known [19]. Zero shear implies that the time dependence in

the metric is factorized: aijðt;xÞ ¼ B−2ðt;xÞãijðxÞ. This
drives the conformal algebra of the Carrollian structure to

the standard infinite-dimensional semidirect sum of the

conformal algebra of ãijðxÞwith supertranslations. For con-
formally flat ãijðxÞ, the latter coincides with ccarrðdþ 1Þ.
One recovers in particularBMSdþ2 ind ¼ 1 and2—possibly

in higher dimensions.
10

The Carrollian spacetimes emerging as null boundaries

of asymptotically locally flat solutions to Einstein equa-

tions turn out to satisfy the vanishing-shear condition.
11

That makes this class of Carrollian structures particularly

appealing and the forthcoming example will illustrate their

properties regarding the propagation of a conformally

coupled scalar field.

Robinson-Trautman spacetimes are four-dimensional,

time-dependent Ricci-flat solutions of algebraically special

Petrov type. They describe configurations emitting gravi-

tational radiation and settling down in the far future into a

Schwarzschild black hole.
12

Their null boundary is a

Carrollian manifold M ¼ R ×S , where S is equipped

with a conformally flat d ¼ 2 metric:

10
The standard conformal Carrollian algebra ccarrðdþ 1Þ is

also referred to as “level-2” ccarr2ðdþ 1Þ. More general level-N
algebras ccarrNðdþ 1Þ emerge in the presence of a dynamical
exponent z ¼ 2=N—see footnote 21. For d > 2 the BMS algebra
is finite-dimensional, whereas ccarrNðdþ 1Þ is not. Infinite-
dimensional extensions of the BMSdþ2 require adjustments in the
fall-off behaviors and have been considered in the literature (see,
e.g., [25] for a recent account and further reading suggestions).

11
See, e.g., [26], Eq. (3.40) at vanishing Λ (see also [27]). One

should not confuse the shear of the boundary Carrollian manifold,
with the Bondi shear which is another boundary Carrollian tensor,
nonvanishing in general and carrying information about the bulk
gravitational radiation.

12
The original solution is available in [28,29]. Robinson-

Trautman spacetimes have been discussed in the framework of
AdS=CFT in Refs. [30–33], and further in flat holography in
Refs. [27,34].
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dl2 ¼ 2

P2
dζdζ̄: ð48Þ

Here P ¼ Pðt; ζ; ζ̄Þ obeys a fourth-order partial-differential
equation known as Robinson-Trautman’s equation, which

also involves the Bondi mass aspect MðtÞ.13 The field of

observers and the clock form are (Ω ¼ 1, bi ¼ 0)

υ ¼ ∂t; μ ¼ −dt: ð49Þ

Hence, one can compute the basic geometric data
14
:

θ ¼ −2∂t lnP; φi ¼ 0; ϖij ¼ 0;

ξij ¼ 0; R̂ ¼ 4P2
∂ζ̄∂ζ lnP: ð50Þ

Although the Robinson-Trautman solutions have no

isometries, they have asymptotic symmetries, and these

are actually reflected in the conformal isometries of the

Carrollian boundary. Following [19], we find that the

conformal Killing fields of M are expressed in terms of

an arbitrary real function Tðζ; ζ̄Þ, which encodes the

supertranslations and the conformal Killing vectors Y ¼
Yζ

∂ζ þ Y ζ̄
∂ζ̄ of dl̃

2 ¼ 2dζdζ̄, which is flat space. The latter

generate soð3; 1Þ–or even a double copy of Witt algebras

referred to as “superrotations,” if we are ready to give up

invertibility. We find that Y is any combination of lm þ l̄m

or iðlm − l̄mÞ with

lm ¼ −ζmþ1
∂ζ; l̄m ¼ −ζ̄mþ1

∂ζ̄; ð51Þ

obeying Witt ⊕ Witt:

½lm;ln� ¼ ðm − nÞlmþn; ½l̄m; l̄n� ¼ ðm − nÞl̄mþn: ð52Þ

In this representation, soð3; 1Þ is generated by n ¼ 0;�1.

The conformal Killing fields of M are [see (A24) in the

Appendix]
15

ξT;Y ¼ ðT −MYðCÞÞ
1

P
∂t þ Yi

∂i; ð53Þ

where

Cðt; ζ; ζ̄Þ ¼
Z

t

dτPðτ; ζ; ζ̄Þ; ð54Þ

and MY is an operator acting on scalar functions

fðt; ζ; ζ̄Þ as

MYðfÞ ¼ Yk
∂kf −

f

2
∂kY

k: ð55Þ

The structure soð3; 1Þ ⨭ supertranslations—or ðWitt ⊕

WittÞ ⨭ supertranslations—is recovered in

½ξT;Y ; ξT 0;Y 0 � ¼ ξMY ðT 0Þ−MY0 ðTÞ;½Y;Y 0�: ð56Þ

We are now ready to discuss the dynamics of a

conformally coupled scalar field and its conserved charges.

The ultimate motivation for this study is flat holography

and the possible usefulness of the Carrollian dynamics for

describing modes that propagate all the way inside the bulk

towards the null boundary of asymptotically flat space-

times. The electric equation of motion (22) reads as follows

in the three-dimensional Carrollian spacetime under con-

sideration:

∂t

1

P
∂t

Φ
ffiffiffiffi

P
p ¼ 0: ð57Þ

Its general solution is given in terms of two arbitrary

functions fðζ; ζ̄Þ and gðζ; ζ̄Þ:

Φ ¼
ffiffiffiffi

P
p

ðCf þ gÞ: ð58Þ

With this, we can compute the energy density Πe and the

electric momentum Pi
e as in (33), using (30) and (31), and

combine them into the scalar component of the current (45)

associated with the conformal Killing fields (53):

κeT;Y ¼ P2

�

Yi

�

1

4
∂iðfgÞ − f∂ig

�

−
Tf2

2
−
1

4
∂iðYiCf2Þ

�

:

ð59Þ

This leads to the charges

QeT;Y ¼ −i

Z

S

dζ ∧ dζ̄

�

Yi

�

1

4
∂iðfgÞ − f∂ig

�

−
Tf2

2

�

−
1

4

Z

∂S

⋆YCf2P2: ð60Þ

On shell, the time dependence is exclusively encoded in

the last term through P (and C). This is a flux at infinity,

and thus vanishes upon appropriate falloff behavior of the

field f. Hence, the charges are indeed conserved.

The infinite number of conserved charges, awkward at

first glance, translates the separation of time and space

imposed by Carrollian symmetry. The field equation (57)

contains no spatial derivative, hence every locus ðζ; ζ̄Þ

13
Wewill not specifically use the Robinson-Trautman equation

[displayed in the aforementioned literature—footnote 12—e.g.,
Ref. [33], Eq. (2.35)] in our subsequent analysis, which is thus
valid for arbitrary Pðt; ζ; ζ̄Þ.

14
Conventions:

ffiffiffi

a
p ¼ i=P2 and ϵζ̄ζ ¼ 1.

15
The existence of conformal Killing fields for the Carrollian

structure at hand is remarkable. Actually, the relativistic ascend-
ent of this structure ds2 ¼ −c2dt2 þ 2

P2 dζdζ̄, appearing as the
conformal timelike boundary of AdS (anti–de Sitter)-Robinson-
Trautman spacetimes, has generically no conformal Killings. In
particular, it is not conformally flat because it has a nonzero
Cotton tensor, see [30–33].
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provides a decoupled degree of freedom. This often

happens in Carrollian field theory (as, e.g., in the magnetic

conformally stationary scalar field—see below), although

the general equations at hand (22) and (23) contain actually

both time and space derivatives—D̂ t and D̂ i contain

both—making the advertised decoupling less transparent.

The magnetic equation (23) is

4∂ζ∂ζ̄Φ ¼ Φ∂ζ∂ζ̄ lnP: ð61Þ

According to (47), magnetic charges are conserved with

those conformal Killing fields obeying the extra condition

(44), which leads to

T ¼ SPþMYðCÞ; ð62Þ

where S is a function of time only. Since P and C are time

dependent while T is not, Eq. (62) restricts severely the

allowed subset of S -conformal Killings Y, which may

even turn empty. Assuming this set is not empty, due to the

vanishing of the magnetic momentum Pi
m [see (34) with

(32)—here ϖij ¼ 0], Eq. (46) leads to a single conserved

charge based on κmS ¼ −SΠm with Πm given in (31):

QmS ¼ −S
R

S

dζdζ̄

P2 Πm. This charge is nothing but the total

energy, but it turns out to vanish here. Indeed, on shell, Πm

reads [Eqs. (23) and (31)] irrespective of the dimension and

of the geometric background:

Πm ¼ 1

2d
D̂ iðΦD̂

i
ΦÞ: ð63Þ

In the case under consideration (bi ¼ 0 and φi ¼ 0),

Πm ¼ P2

4
½∂ζðΦ∂ζ̄ΦÞ þ ∂ζ̄ðΦ∂ζΦÞ�, which is a divergence.

Hence QmS receives only an S -boundary contribution,

vanishing under appropriate falloff or boundary conditions.
16

It is worth stressing that Eq. (62) is extremely con-

straining. For instance, if the function Pðt; ζ; ζ̄Þ obeys the
Robinson-Trautman equation, it can awkwardly entangle

time and space dependence (see, e.g., [29]), leaving little

room for finding Tðζ; ζ̄Þ and Yiðζ; ζ̄Þ that satisfy (62). In

the simplest possible instance, which is flat space (P ¼ 1

and C ¼ t),
17
the two special conformal transformations of

the soð3; 1Þ are excluded (∂iY
i ¼ C0 constant), and only

constant time translations are allowed (T ¼ T0 constant,

and SðtÞ ¼ T0 þ C0t=2); this is a five-dimensional sub-

group of the infinite-dimensional BMS4.

When Π
i
m given in (31) vanishes, the magnetic charges

are all conserved, as inferred by Eq. (47). This occurs

in particular [the Carrollian geometric shear vanishes

here, see (50)] for conformally stationary scalars obeying
1

Ω
D̂ tΦ≡

ffiffiffiffi

P
p

∂t
Φ
ffiffiffi

P
p ¼ 0, thus of the form Φ ¼

ffiffiffiffi

P
p

gðζ; ζ̄Þ,
where gðζ; ζ̄Þ is further determined by solving the magnetic

equation of motion (61). The latter
18
may not be solvable in

a general Robinson-Trautman background Pðt; ζ; ζ̄Þ under
the present ansatz. If it is, the conserved magnetic charges

are found using Eqs. (46) and (53). On shell, these lead to

κmT;Y ¼ −ξtΠm ¼ P2

2
ðMYðCÞ − TÞð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ;

ð64Þ

which are integrated as in (40):

QmT ¼ i

2

Z

S

dζ ∧ dζ̄Tð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ −
1

4

Z

∂S

⋆XP2

ð65Þ

with

�Xζ ¼ CðYζð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ þ Y ζ̄ð3ð∂ζ̄gÞ2 − g∂2
ζ̄
gÞÞ − 1

2
Y ζ̄g2∂2

ζ̄
C

Xζ̄ ¼ CðY ζ̄ð∂ζg∂ζ̄g − g∂ζ∂ζ̄gÞ þ Yζð3ð∂ζgÞ2 − g∂2ζgÞÞ − 1

2
Yζg2∂2ζC

: ð66Þ

As in the electric case [see Eq. (60)], the time dependence is
confined into a boundary term, which ultimately drops,
taking with it all the dependence on the soð3; 1Þ vectors Y.
For a conformally stationary scalar field in Robinson-
Trautman background, the magnetic charges are nonzero
and conserved on shell without restriction on the Carrollian
conformal Killing vector ξ (the energy flux vanishes), but
they only depend on its supertranslation component

Tðζ; ζ̄Þ.
Concluding, we would like to summarize our results.

The present framework is set by a general Carrollian

spacetime and the systems under investigation are gen-

eral covariant with respect to Carrollian diffeomorphisms.

16
This property of vanishing scalar-field conserved magnetic

charges is actually valid more generally, in any dimension d, and
for a Carrollian background structure with bi ¼ 0. Indeed, this

implies ϖij ¼ 0, leading therefore to Qm ¼ −
R

S
ddx

ffiffiffi

a
p

ξt̂Πm.

For Killing fields obeying the extra condition (44), using (63) we
find that the on-shell integral is again a boundary term.

17
Notice in passing that the general solution of (61) is in this

case Φðt; ζ; ζ̄Þ ¼ fðt; ζÞ þ f̄ðt; ζ̄Þ, where fðt; ζÞ is arbitrary.
18
With Φ ¼

ffiffiffiffi

P
p

gðζ; ζ̄Þ, Eq. (61) reads 4P∂ζ∂ζ̄gþ 2ð∂ζP∂ζ̄gþ
∂ζ̄P∂ζgÞ þ g∂ζ∂ζ̄P ¼ 0 (also valid if P is traded for C).
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The Carrollian scalar field dynamics is either electric or

magnetic. The same holds for a conformally coupled scalar,

and the two options are rather different. The electric is

“timelike,” whereas the magnetic looks “spacelike,” and

they couple to distinct pieces of the Carrollian curvature.

We have determined the energy-stress tensor, the energy

flux, the energy density, and the momentum in both

situations, and shown that Carrollian conformal isometries

imply conservation laws in the electric instance but not in

the magnetic. The physical reason behind this cleavage is

rather easy to understand. A Carrollian (conformal) isom-

etry translates the invariance of the metric and the field of

observers, but not that of its dual clock form. Time

(supported by the field of observers) and space (associated

with the clock form) directions behave differently and this

ultimately reveals in the conservation properties of electric

versus magnetic dynamics. A similar phenomenon is

expected to occur in Newton-Cartan manifolds, where a

scalar field will also have electric and magnetic dynamics.
19

Isometries will guarantee conservation laws for the latter, as

opposed to the former, because the clock form is invariant

under the action of a Killing vector, while the field of

observers is not.

The above findings have been illustrated in the case of

the null boundary of Robinson-Trautman asymptotically

locally flat spacetimes, which are Carrollian with vanishing

geometric shear and vorticity. The electric conformally

coupled scalar field has been worked out thoroughly,

accompanied with its infinite tower of conserved charges.

For the magnetic dynamics, we have found that all charges

associated with the subalgebra of the conformal Carrollian

algebra satisfying the extra conservation condition

[Eq. (44)] vanish—i.e., amount to purely boundary terms.

Nonvanishing conserved magnetic charges appear for field

configurations with Π
i
m ¼ 0, and this happens, e.g., for

conformally stationary fields.

From our general discussion one should probably retain

the contrast between the infinite tower of conformal Killing

fields available in most Carrollian structures and the often

lesser conserved Carrollian charges. In this picture one

should not underestimate the role of the nonconserved

ones, usually infinite in number. When the Carrollian

structures are null boundaries of asymptotically flat space-

times, the presence of nonconserved charges betrays,

among others, gravitational radiation.

Even though we have focused our analysis on confor-

mally coupled scalar fields, ordinary scalars share these

properties—with Killings instead of conformal Killings.

The motivation behind conformal couplings lies in the role

these may play in flat holography—for scalar or more

general fields. This calls for a better understanding of the

classical dynamics, and above all of the quantum proper-

ties. The conservation of charges, the associated algebras

and the distinction of electric versus magnetic represent-

atives, should ultimately be translated into bulk language.

Our example of the null three-dimensional boundary of

Robinson-Trautman Ricci-flat spacetimes is meant to

illustrate this bridge, although discussed here in a primitive

fashion, revealing a generically trivial magnetic conserva-

tion as opposed to an infinite set of electric conserved

charges. How this reflects flat-holographic properties

remains in limbo.
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APPENDIX: CARROLLIAN MANIFOLDS

Under Carrollian diffeomorphisms (3) with Jacobian

Jðt;xÞ ¼ ∂t0

∂t
; jiðt;xÞ ¼

∂t0

∂xi
; JijðxÞ ¼

∂xi0

∂xj
; ðA1Þ

the transformations are noncovariant (connectionlike) for

∂i and bi, and densitylike for ∂t and Ω:

∂
0
j ¼ J−1ij

�

∂i −
ji

J
∂t

�

; b0k ¼
�

bi þ
Ω

J
ji

�

J−1ik;

∂
0
t ¼

1

J
∂t; Ω

0 ¼ Ω

J
: ðA2Þ

They are covariant for the other objects:

υ
0 ¼ υ; μ

0 ¼ μ; ∂̂
0
i ¼ J−1ji∂̂j; aij0 ¼ JikJ

j
la

kl: ðA3Þ

Carrollian tensors depend on time t and space x, carry

indices i; j;… lowered and raised with aij and its inverse

aij, and transform covariantly under Carrollian diffeo-

morphisms (3) with J
j
i and J−1ji defined in (A1). A

Levi-Civita-Carroll spatial covariant derivative ∇̂i is

defined with connection coefficients

19
The magnetic and electric scalar-field actions are, respec-

tively, Sm ¼ −
R

M
dtddx

ffiffiffi

a
p

Ωð1
2
aij∂iΦ∂jΦþ VmðΦÞÞ and Se ¼

R

M
dtddx

ffiffiffi

a
p

Ωðð1
Ω

D̂Φ
dt
Þ2 − VeðΦÞÞ in torsionless Newton-Cartan

geometries with degenerate cometric aij, clock form Ωdt, field of
observers 1

Ω
ð∂t þ wj

∂jÞ, and metric-compatible time derivative
1

Ω

D̂Φ
dt

¼ 1

Ω
∂tΦþ wj

Ω
∂jΦ.
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γ̂ijk ¼
ail

2
ð∂̂jalk þ ∂̂kalj − ∂̂lajkÞ; ðA4Þ

which emerge naturally in the vanishing-c limit of a Levi-

Civita connection in the Papapetrou-Randers coordinates

(6). This connection is torsionless and metric compatible
20
:

γ̂k½ij� ¼ 0, ∇̂iajk ¼ 0. The vectors ∂̂i do not commute and

define the Carrollian vorticity and acceleration:

½∂̂i; ∂̂j� ¼
2

Ω
ϖij∂t; ϖij ¼ ∂½ibj� þ b½iφj�;

φi ¼
1

Ω
ð∂tbi þ ∂iΩÞ: ðA5Þ

The usual time-derivative operator 1

Ω
∂t acts covariantly

on Carrollian tensors, but it is not metric compatible

because aij depend on time. A temporal covariant deriva-

tive is defined by requiring 1

Ω
0 D̂

0
t ¼ 1

Ω
D̂t and D̂tajk ¼ 0,

and is also inherited from the Papapetrou-Randers Levi-

Civita connection. To this end, we introduce a temporal

connection

γ̂ij ¼
1

2Ω
∂taij ¼ ξij þ

1

d
aijθ; θ ¼ 1

Ω
∂t ln

ffiffiffi

a
p

; ðA6Þ

which is a symmetric Carrollian tensor split into the

Carrollian shear (traceless) and the Carrollian expansion

(trace). The action of D̂t on scalars is ∂t whereas on vectors

or forms it is defined as

1

Ω
D̂tV

i ¼ 1

Ω
∂tV

i þ γ̂ijV
j;

1

Ω
D̂tVi ¼

1

Ω
∂tVi − γ̂i

jVj:

ðA7Þ

Generalization to any tensor uses the Leibniz rule.

The commutators of Carrollian covariant derivatives

define Carrollian curvature tensors. We keep it minimal

here with

½∇̂k; ∇̂l�Vi ¼ ð∂̂kγ̂ilj− ∂̂lγ̂
i
kjþ γ̂ikmγ̂

m
lj − γ̂ilmγ̂

m
kjÞVjþ½∂̂k; ∂̂l�Vi

¼ r̂ijklV
jþϖkl

2

Ω
∂tV

i: ðA8Þ

In this expression r̂ijkl should be called the “Riemann-

Carroll” tensor. The Ricci-Carroll tensor and the Carroll

scalar curvature are thus

r̂ij ¼ r̂kikj ≠ r̂ji; r̂ ¼ aijr̂ij: ðA9Þ

Weyl covariance under Weyl transformations

aij →
1

B2
aij; bi →

1

B
bi; Ω →

1

B
Ω; ðA10Þ

with B ¼ Bðt;xÞ an arbitrary function, requires a Weyl-

Carroll connection built on φi and θ defined in (A5) and

(A6), which transform as

φi → φi − ∂̂i lnB; θ → Bθ −
d

Ω
∂tB: ðA11Þ

The Carrollian vorticity ϖij (A5) and the Carrollian shear

ξij (A6) are Weyl covariant of weight −1.

The Weyl-Carroll space and time covariant derivatives

are torsionless and metric compatible. For a weight-w
scalar function Φ and a vector with weight-w components

Vl, the action is

D̂jΦ ¼ ∂̂jΦþ wφjΦ; ðA12Þ

D̂jV
l ¼ ∇̂jV

l þ ðw − 1ÞφjV
l þ φlVj − δljV

iφi: ðA13Þ

The Weyl-Carroll spatial derivative does not alter the

weight, and one checks that D̂jakl ¼ 0. Regarding time,

one defines

1

Ω
D̂ tΦ ¼ 1

Ω
D̂tΦþ w

d
θΦ ¼ 1

Ω
∂tΦþ w

d
θΦ; ðA14Þ

1

Ω
D̂ tV

l ¼ 1

Ω
D̂tV

l þ w − 1

d
θVl ¼ 1

Ω
∂tV

l þ w

d
θVl þ ξliV

i;

ðA15Þ

and both are of weight wþ 1. Similarly for any tensor by

Leibniz rule and in particular we find D̂ takl ¼ 0.

We now close this paragraph with the Weyl-Carroll

curvature tensors, appearing in the commutation of Weyl-

Carroll covariant derivatives. We find

½D̂ i; D̂j�Φ ¼ 2

Ω
ϖijD̂ tΦþ wΩijΦ; ðA16Þ

½D̂k;D̂ l�Vi ¼ ðR̂i
jkl − 2ξijϖklÞVjþϖkl

2

Ω
D̂ tV

iþwΩklV
i;

ðA17Þ

where we have introduced the following Carrollian,

weight-0 Weyl-covariant tensors:

R̂
i
jkl ¼ r̂ijkl − δijφkl − ajk∇̂lφ

i þ ajl∇̂kφ
i

þ δik∇̂lφj − δil∇̂kφj þ φiðφkajl − φlajkÞ
− ðδikajl − δilajkÞφmφ

m þ ðδikφl − δilφkÞφj; ðA18Þ
20
Details on the transformation rules can be found in Appen-

dix A. 2 of Ref. [24], together with further useful properties.
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Ωij ¼ ∂̂iφj − ∂̂jφi −
2

d
ϖijθ: ðA19Þ

Additionally, we define traces as

R̂ij ¼ R̂
k
ikj; R̂ ¼ aijR̂ij ðA20Þ

with

R̂ ¼ r̂þ ðd − 1Þð2∇̂iφ
i − ðd − 2Þφiφ

iÞ: ðA21Þ

Observe that the Weyl-covariant Carroll-Ricci tensor is not

symmetric: R̂½ij� ¼ − d
2
Ωij. Finally, we recall that

�

1

Ω
D̂ t; D̂ i

�

Φ ¼ wR̂iΦ − ξjiD̂jΦ; ðA22Þ

where

R̂i ¼
1

Ω
∂tφi −

1

d
ð∂̂i þ φiÞθ ðA23Þ

are the components of a Weyl-covariant weight-1 Carrollian

curvature one-form.

Isometries and conformal isometries are associated with

Killing and conformal Killing fields. Carrollian diffeo-

morphisms (3) are generated by vector fields

ξ ¼ ξt∂t þ ξi∂i ¼
�

ξt − ξi
bi

Ω

�

∂t þ ξi
�

∂i þ
bi

Ω
∂t

�

¼ ξt̂
1

Ω
∂t þ ξi∂̂i ðA24Þ

restricted to ξi ¼ ξiðxÞ. Their action operates with the Lie

derivative, and for the geometric data one finds

L ξaij ¼ 2∇̂ðiξ
kajÞk þ 2ξt̂γ̂ij; ðA25Þ

L ξυ ¼ μυ; ðA26Þ

L ξμ ¼ −μμ − ðð∂̂i − φiÞξt̂ − 2ξjϖjiÞdxi; ðA27Þ

with

μðt;xÞ ¼ −

�

1

Ω
∂tξ

t̂ þ φiξ
i

�

: ðA28Þ

The significant observation is here that due to the degen-

eration of the metric on M , the variation of the clock

form μ is not identical to that of the field of observers υ.

For further use, we also introduce the trace of (A25) divided

by d:

λðt;xÞ ¼ 2

d
ð∇̂iξ

i þ θξt̂Þ: ðA29Þ

Carrollian isometries are Carrollian diffeomorphisms

generated by Killing fields, obeying L ξaij ¼ 0 and

L ξυ ¼ 0. In the strong Carroll structure, this requirement

is completed with the invariance of the connection. For

conformal Carrollian isometries one demands

L ξaij ¼ λaij: ðA30Þ

This set of partial differential equations is insufficient for

defining conformal Killing vectors and one usually

imposes to tune μ versus λ so that the scaling of the metric

be twice that of the field of observers
21
:

2μþ λ ¼ 0: ðA31Þ

The projective structure associated with some Carroll

connection should also be preserved.

For a pseudo-Riemannian manifold M in dþ 1 dimen-

sions with metric gμν (weight-2), a Weyl-covariant deriva-

tive Dμ maintains the weight w of a Weyl-covariant tensor.

The corresponding connection uses a (weight-1) vector uμ

of norm−c2, as well as its expansionΘ and acceleration aμ:

A ¼ 1

c2

�

a −
Θ

d
u

�

: ðA32Þ

The Weyl covariant derivative is metric compatible with

ðDμDν −DνDμÞf ¼ wfFμν; Fμν ¼ ∂μAν − ∂νAμ;

ðA33Þ

where the action on a weight-w scalar f is

Dλf ¼ ∇λf þ wAλf: ðA34Þ

The action of Dλ on a weight-w form vμ is

Dλvμ ¼ ∇λvμ þ ðwþ 1ÞAλvμ þ Aμvλ − gμλA
ρvρ; ðA35Þ

and we obtain

ðDμDν −DνDμÞvρ ¼ Rρ
σμνv

σ þ wvρFμν: ðA36Þ

The Weyl-covariant Ricci (weight 0) and scalar (weight 2)

curvatures read

21
One usually considers in the literature 2μþ zλ ¼ 0, where z

is minus the conformal weight of Ω, referred to as the dynamical
exponent. Here, due to the relationship of the considered
Carrollian spacetimes with relativistic parents, the weight of Ω
is −1.
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Rμν ¼ Rμν þ ðd − 1Þð∇νAμ þ AμAν − gμνAλA
λÞ

þ gμν∇λA
λ − Fμν; ðA37Þ

R ¼ Rþ 2d∇λA
λ − dðd − 1ÞAλA

λ: ðA38Þ

Observe that Rμν is not symmetric.

If the metric is of the Papapetrou-Randers form (6), the

dependence with respect to the velocity of light c is explicit.
Thus every relativistic tensor, i.e., a tensor with respect to

the full diffeomorphism group, can be reduced with respect

to the Carrollian subgroup (3), and exhibits a finite number

of Carrollian tensors. We find

R ¼ 1

c2

�

2

Ω
∂tθ þ

1þ d

d
θ2 þ ξijξ

ij

�

þ r̂ − 2∇̂iφ
i

− 2φiφi þ c2ϖijϖ
ij; ðA39Þ

R ¼ 1

c2
ξijξ

ij þ R̂ þ c2ϖijϖ
ij: ðA40Þ

Actually, the Carroll and Weyl-Carroll connections intro-

duced earlier are also obtained from the ordinary Levy-

Civita and the Weyl connections of the pseudo-Riemannian

spacetime at hand, in the form of an exact, truncated

Laurent expansion.
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1 Introduction

Fluid dynamics is 19th century physics par excellence. It has been thoroughly investigated,

expanded and applied in various areas, but continues to raise questions and challenges, which

are sometimes conceptual. In relativistic fluids for example, the issue of hydrodynamic-frame

invariance is rather subtle. It reflects the freedom to choose arbitrarily the velocity of the

fluid, and is rooted in the impossibility to distinguish the mass flow from the energy flow in
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a relativistic system. This invariance was made popular by Landau and Lifshitz in their

formulation of dissipative relativistic hydrodynamics without heat current [1], as opposed

to the first formalism for relativistic fluids due to Eckart [2]. The freedom to set freely

the velocity field has drawbacks recognized long ago, when implemented in the linearized

(or, more generally, truncated) constitutive relations, which accompany the fluid equations

of motion. A comprehensive presentation of the subject can be found in [3–6], where the

main difficulties, namely causality, stability and shock structure, are discussed in length.1

More recent progress has been reported in [9–19], showing that the debate is still ongoing.

It is worth stressing that the above phenomenological descriptions of out-of-equilibrium

phenomena are enshrined by relativistic kinetic theory. In particular, the various quoted

formalisms — Eckart, Landau-Lifshitz or others — arise using the relativistic Boltzmann’s

equation. Further reading on this subject is proposed in [20–23].

Hydrodynamic-frame invariance has also emerged in a slightly more formal context.

The asymptotic isometries of the gravitational field in general relativity2 are related to the

symmetries of a fictitious fluid defined on the conformal boundary.3 When the gravitational

field is asymptotically anti-de Sitter, the boundary is time-like and the dual fluid is

relativistic. A local transformation of the fluid velocity amounts to a diffeomorphism on the

gravitational side. For an asymptotically flat gravitational field, the boundary is null and

the associated fluid is Carrollian [28]. Does the hydrodynamic-frame invariance survive in

that case and does it share the above relationship with the asymptotic isometries? Similarly,

and irrespective of any bearing to gravity, why is hydrodynamic-frame invariance lost in

ordinary Galilean fluids, where the velocity and the mass density are measurable quantities?

The purpose of the present work is to elaborate on properties of Galilean and Car-

rollian fluids, in the spirit and as a follow up of ref. [29]. This includes the discussion of

hydrodynamic-frame invariance, the addition of a conserved current and its associated

chemical potential, the interpretation of Galilean and Carrollian fluid equations as conser-

vation laws stemming out of appropriate diffeomorphism invariances, and the dearth of

conservation properties ensuing isometries.

The emergence of Carrollian physics goes back to the works of Lévy-Leblond [30]

and Sen Gupta [31]. The Carroll group is an ultra-relativistic contraction of Poincaré

group. It is dual to the better-known non-relativistic contraction, the Galilean group.4

Carrollian symmetry has triggered interest in several directions. On the mathematical side,

new geometric structures were discovered dubbed Carrollian manifolds [32–46], following

patterns similar to those leading to the Galilean duals i.e. the Newton-Cartan geometries.

From a more physical perspective, the connection of Carrollian symmetry with asymptotic

isometries of Ricci-flat gravitational backgrounds and in particular its role in the growing

subject of flat holography have attracted outmost attention [47–56].

1Modern textbooks on fluid mechanics are e.g. [7, 8].
2See e.g. the lecture notes [24] for a recent review and further references on this subject.
3This fluid is often referred to as “dual” or “holographic” — see refs. [25–27] for the precise symmetry

interplay and a complete bibliography of fluid/gravity holographic correspondence.
4On a purely semantic vein, the given names “relativistic, ultra-relativistic, non-relativistic” are all

unfortunate, as pointed out with brio by Jean-Marc Lévy-Leblond. Although it is probably too late to give

up the first, one should try to replace the others by Carrollian and Galilean. Incidentally, Niels Obers and

Stefan Vandoren rightfully insist on the ultra-local nature of the Carrollian limit.
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Ordinary, Galilean fluid dynamics is the non-relativistic limit of relativistic hydrodynam-

ics. It was originally circumscribed to three-dimensional Euclidean space with absolute time

i.e. to the strict Newtonian framework with full Galilean isometry. Efforts have been made

to evade this restriction [57–66] and finally reach the general equations describing a non-

relativistic viscous fluid moving on a space endowed with a spatial, time-dependent metric,

and covariant under Galilean diffeomorphisms such as t′ = t′(t) and x′ = x′(t,x) [29, 67].5

The more exotic Carrollian fluids are “flowing” on Carrollian manifolds and their

equations of motion are invariant under Carrollian coordinate transformations, t′ = t′(t,x)

and x′ = x′(x). Although particle motion is forbidden due to the shrinking of the light

cone, and despite the absence of a microscopic analysis based on thermodynamics or kinetic

theory, the dynamics for a continuous medium seems to make formally sense, involving an

“inverse velocity,” energy density, pressure etc. The first instance where Carrollian fluids

were quoted is ref. [70]. There, it was realized that contrary to a forty-year lore, Einstein

dynamics on black-hole horizons and the associated membrane paradigm were not related

to the Navier-Stokes equations, but instead to their Carrollian duals. This observation was

further discussed in [71], and aspects of Carrollian hydrodynamics were analyzed in [72–77].

It is fair to repeat that this sort of fluids lack of microscopic settlement and laboratory

applications. Nevertheless, their dynamical equations emerge in various instances where

null hypersurfaces are at work, and this justifies a thorough investigation.

The hydrodynamic equations for Galilean or Carrollian fluids were obtained in [29] as

limits of the fully covariant relativistic equations on general pseudo-Riemannian manifolds.

For the Galilean case, the suitable form of the metric was Zermelo, whereas Papapetrou-

Randers was better adapted to the Carrollian limit. These metrics are indeed form-invariant

under Galilean or Carrollian diffeomorphisms respectively (see [78] for further properties).

Our study is performed here in the presence of a conserved current, which contributes the

dynamics, and fosters the attainment of the Galilean continuity equation. The infinite

or vanishing velocity limits are accompanied with some assumptions on the behaviour

of the physical quantities such as energy density, heat current or stress tensor, including

important sub-leading terms. We show that the resilience or the failure of the relativistic

hydrodynamic-frame invariance in the non-relativistic or ultra-relativistic limits are closely

tied to those behaviours. In a nutshell our conclusions can be summarized as follows. For the

Carrollian case, the behaviours at vanishing velocity of light are suggested by the experience

acquired with holographic fluids, and turn out to be compatible with hydrodynamic-frame

invariance. This is no longer true in the Galilean limit, where the rules are dictated by

non-relativistic physics and disrupt this invariance, unless one concedes to give up matter

conservation and at the cost of altering the Navier-Stokes equations.

The relativistic hydrodynamic equations, namely the vanishing of the covariant energy-

momentum tensor divergence, translate the invariance of some effective action with respect

to general diffeomorphisms t′ = t′(t,x) and x′ = x′(t,x). Similarly, Galilean or Carrollian

equations can be reached upon imposing the corresponding diffeomorphism invariance on the

effective actions. The energy-momentum tensor is in these cases traded for other generalized

5See also [68, 69] for a discussion on symmetries.
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momenta adapted to the local symmetries at hand. Our analysis, performed along the lines

of [79], reveals subtleties and slightly differ in comparison with the large-c or small-c limits

of the relativistic theory. This betrays that when considering these limits, as opposed to

working with action principles directly in Newton-Cartan or Carrollian spacetimes, more

information is stored in the equations, and more constraints emerge due to the larger

original local invariance. Specifically, Galilean mass conservation (continuity equation) is

built in (as shown in [29]) irrespective of extra matter current conservation. This confirms

that the most striving and economical approach for reaching the dynamical equations is

indeed the one based on the limiting procedure, originally used in [29], which can be even

extended at wish for incorporating naturally more degrees of freedom, which would require

more conjugate variables in the Galilean or Carrollian action principles.

In order to deliver a comprehensive picture of the web of dynamics emanating upon

contractions of the plain relativistic group and their associate spacetimes, we briefly venture

out and explore the realm of Aristotelian geometries. Introduced by Penrose in [80],

they became suddenly popular because they do not possess any boost invariance (see

e.g. [74, 76, 81–83]). The absence of boosts6 features that both time and space are absolute

in these geometries. Hence motion and light cone are trivialized, and the notion of fluid

becomes even more questionable than in the Carrollian framework. Nonetheless, dynamics

can be defined from invariance principles — no limit involving the speed of light exists that

would connect Aristotelian spacetimes to relativistic theories — and is worth investigating

as it appears to stand at the intersection of Galilean and Carrollian physics.

When discussing dynamics in general, and fluid dynamics in particular, part of the

duty is to exhibit conserved quantities. These are generally the consequence of symmetries,

but this concept should be scrutinized on a case-by-case basis. In a relativistic theory, any

(conformal) Killing field provides a conserved current upon contraction with a (traceless)

conserved energy-momentum tensor. We prove that this is no longer systematically true for

Galilean or Carrollian hydrodynamics, and for instance, boosts present in flat space are not

spared — this would be circumvented in Aristotelian spacetimes if boosts were available.

Hence Nœtherian currents in Newton-Cartan or Carroll manifolds arise for a restricted

subset of isometries. This is an important spin-off of our study, that compromises former

attempts to describe hydrodynamics in flat Newton-Cartan or Carroll spacetimes on the

ground of Nœtherian conservation laws.

An executive outline of the present work is as follows. We remind the basics on relativis-

tic fluids in the presence of a conserved matter current with emphasis on hydrodynamic-frame

invariance. This analysis is further expanded into two distinct frames, the Zermelo and

Papapetrou-Randers, appropriate for the subsequent investigation about Galilean and Car-

rollian fluids. Galilean fluids are first studied from the conservation perspective mirroring

the Galilean-diffeomorphism invariance of Newton-Cartan spacetimes with emphasis on

the effect of isometries, when present in the background; next as the infinite-c limit of the

relativistic hydrodynamics in Zermelo frame. Hydrodynamic-frame invariance is revisited

and we move next to the Galilean massless case. The current analysis is repeated along

6The associated group is the static group, introduced in [84].
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cognate lines for Carrollian fluid dynamics with a paragraph specifically devoted to the

possible multiplication of degrees of freedom in the zero-c limit. Finally we describe the

case of Aristotelian fluids in a short section before concluding.

The subject of hydrodynamic-frame invariance and Carrollian fluids has been lately in

the spotlight. Some debatable statements have been promoted in the literature, and our

views are not always in line with those of other authors. Wherever necessary, we stress it

and provide the adequate elements to make the comparison clear and avoid confusion. Our

approach is meant to be a constructive criticism, and we intentionally supply a wealth of

technical details, some appended in four sections, to back-up our conclusions, sometimes at

the expense of considerably increased length.

2 Relativistic hydrodynamics

2.1 Basic concepts and general equations

Energy–momentum and matter conservation

Fluid mechanics is the description of irreversible off-equilibrium thermodynamics under the

assumption that the wave lengths of dynamical phenomena are large compared to typical

kinetic scales. It is thus legitimate to assume local thermal equilibrium and use the laws of

thermostatics (recalled in appendix A), although the definitions of temperature, chemical

potential, entropy etc. are possibly questionable, or at least ambiguous.

Without external forces and springs or sinks of matter, the basic requirements are

covariant energy-momentum and matter (rather than mass) macroscopic conservation,

encoded in the following d+ 2 equations:7

∇µT
µν = 0, (2.1)

∇µJ
µ = 0, (2.2)

where we assume the spacetime, of dimension d + 1, be equipped with a metric gµν .

The energy-momentum tensor and the matter current can be decomposed along a vector

congruence uµ playing the role of velocity field normalized as uµuµ = −c2:

Tµν = (ε+ p)
uµuν

c2
+ pgµν + τµν +

uµqν

c2
+
uνqµ

c2
, (2.3)

Jµ = ̺0u
µ + jµ. (2.4)

The viscous stress tensor τµν and the heat current qµ are purely transverse:

uµqµ = 0, uµτµν = 0, uµTµν = −qν − εuν , ε =
1

c2
Tµνu

µuν . (2.5)

They are expressed in terms of ui and their spatial components qi and τij with i = 1, 2, . . . , d.

Similarly is the imperfect particle current from its components ji, since

uµjµ = 0, ̺0 = −
1

c2
uµJµ. (2.6)

In the above expressions — see also appendix A

7Matter conservation could be multiple, or even absent as e.g. in a gas of photons, although no principle

forbids the existence of conserved currents in fluids made of massless carriers — see appendix A.
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• ε and ̺0 are the energy and the matter per unit of proper volume, as measured by an

observer moving at velocity uµ (comoving);

• ε and ̺0 are related and so are Tµν and Jµ;

• p is the local-equilibrium thermodynamic pressure obeying an equation of state of the

form p = p(T, µ0), where T and µ0 are the local temperature and chemical potential;

• the quantities ji, qi and τij capture the physical properties of the out of equilibrium

state, and are usually expressed as expansions in temperature, chemical potential and

velocity derivatives: the constitutive relations in their hydrodynamic expansion.

It is worth recalling that from the perspective of an effective action8 S= 1
c

∫

dd+1x
√

−gL,

the energy-momentum tensor is defined as

Tµν =
2

√
−g

δS

δgµν
, (2.7)

whereas for the matter current, a U(1) gauge field with components Bµ is needed:

Jµ =
1

√
−g

δS

δBµ
. (2.8)

On the one hand, invariance under diffeomorphisms generated by arbitrary vector fields

ξ = ξµ(t,x)∂µ as

δξgµν = −Lξgµν , (2.9)

where

Lξgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gνρ∂µξ

ρ = ∇µξν + ∇νξµ, (2.10)

implies the conservation equation (2.1). On the other hand, the matter-conservation equa-
tion (2.2) is a consequence of invariance under

δΛBµ = −∂µΛ (2.11)

with Λ = Λ(t,x).

It is important to stress at this early stage that we do not assume any isometry, neither

here, nor in the subsequent limiting geometries. The energy-momentum tensor and the

current should not be confused with any sort of Nœtherian currents, and their conservation

is a direct consequence of local invariances. This should be opposed to other approaches

presented in the quoted literature.

Isometries, conformal isometries and extra conservations

If ξ = ξµ∂µ is a Killing field it obeys

Lξgµν = 0. (2.12)

8As usual 1
c
dd+1x = dt ∧ dx1 ∧ . . . ∧ dxd.
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Hence, due to (2.1), the current defined as

Iµ = ξνTµν (2.13)

is divergence-free

∇µI
µ = 0. (2.14)

Using Stokes and Gauss theorems,
∫

W

dd+1x
√

−g ∇µI
µ =

∮

∂W
∗I, (2.15)

where W is a domain inside M and ∗I is the M-Hodge dual of I = Iµdxµ (ǫ01...d = 1), we

infer that

QI =
1

c

∫

Σd

∗I (2.16)

is conserved. Here, Σd is an arbitrary space-like hypersurface of M, and “conserved” means

that the value of QI is independent of the choice of Σd.9

When the energy-momentum is trace-free

Tµ
µ = 0, (2.17)

a conformal isometry suffices for producing a conservation, along the lines described above.

The conformal Killing satisfies

Lξgµν =
2

d+ 1
∇ρξ

ρgµν . (2.18)

Entropy current and entropy equation

The variational definitions of the energy-momentum tensor and the matter current as

conjugate momenta to some elementary background fields are elegant and general as we will

see in the forthcoming sections, but not indispensable. The physics of the fluid relies in fact

on the decomposition of these momenta into observable quantities, expressed themselves

as derivative expansions, and this requires more information than the knowledge of local

symmetries. To this, one should add that the entropy current Sµ is yet another physical

object, which has no variational definition of the sort (2.7) or (2.8). It has actually no

microscopic definition such as an expectation value of some observable, but is built order

by order in the derivative expansion,10 requiring among others that its divergence (or,

alternatively for theories which incorporate memory effects, the integrated divergence) be

non-negative. The generic form of the entropy current is

Sµ =
1

T
(puµ − Tµνuν − µ0J

µ) +Rµ = Σµ +Rµ, (2.19)

9If Σd belongs to a family of hypersurfaces defined as τ(t, x) = const., the conservation is expressed as
dQI

dτ
= 0. This needs not be so though, and the wording “conservation” is to some extent reductive, as no

reference to time is needed. Care should also be taken with the behaviour of the fields at spatial infinity and

if Σd has itself a boundary.
10The first order is often referred to as classical irreversible thermodynamics, the second extended irreversible

thermodynamics, etc.
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where Σµ is a kind of universal piece of the current, and Rµ depends on the specific

off-equilibrium thermodynamic theory. Using (2.5), (2.6), (A.3) and (A.5), Σµ is recast

as follows:

Σµ = σuµ −
µ0

T
jµ +

1

T
qµ =

σ

̺0
Jµ −

w

T̺0

(

jµ −
̺0

w
qµ

)

(2.20)

with σ the entropy, w the relativistic enthalpy (A.3) and µ0 the relativistic chemi-

cal potential.

It is convenient, both for the relativistic dynamics and for its Galilean or Carrollian

limits, to consider the longitudinal and transverse projections of (2.1), possibly combined

with (2.2) and the thermodynamic laws (A.5), (A.6) and (A.8) in order to trade the energy

for the entropy. For the longitudinal projection, we find:11

−uν∇µT
µν = u(ε) +

(

w+
τ

d

)

Θ + τµνσµν + ∇νq
ν +

aνq
ν

c2
, (2.21)

= T∇νΣν +
τ

d
Θ + τµνσµν + Tjν∂ν

µ0

T
+ qν

(

∂νT

T
+
aν

c2

)

, (2.22)

where τ = τµνgµν is the relativistic non-equilibrium pressure and u(f) stands for uµ∂µf .

We have also introduced the following kinematical tensors:12

aµ = uν∇νuµ, Θ = ∇µu
µ, (2.23)

σµν = ∇(µuν) +
1

c2
u(µaν) −

1

d
Θhµν , (2.24)

ωµν = ∇[µuν] +
1

c2
u[µaν], (2.25)

which are the acceleration, the expansion, the shear and the vorticity of the velocity

field, with hµν and Uµν the projectors onto the space transverse and longitudinal to the

velocity field:

hµν =
uµuν

c2
+ gµν , Uµν = −

uµuν

c2
. (2.26)

Relativistic hydrodynamic-frame invariance

The absence of sharp distinction between energy and mass flow in relativistic theories

brings some redundancy in the above fluid data such as qµ and jµ. In his seminal theory of

relativistic fluids [2], Eckart shed this redundancy by making the choice jµ = 0, whereas

Landau and Lifshitz [1] required instead qµ = 0. It is more generally admitted that one has

the freedom to redefine

T (x) → T ′(x), µ0(x) → µ′
0(x), uµ(x) → uµ′(x), (2.27)

provided we modify accordingly ε(x), p(x), ̺0(x), qµ(x), τµν(x) and jµ(x) so that the

energy-momentum tensor, the conserved current and the entropy current remain unaltered.

This is the gauge symmetry, associated with local Lorentz transformations, known as

11This is the generalization of eq. (127,5) in [1] for general gravitational backgrounds and in an arbitrary

hydrodynamic frame.
12Our conventions for (anti-) symmetrization are A(µν) = 1

2
(Aµν + Aνµ) and A[µν] = 1

2
(Aµν − Aνµ).
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hydrodynamic-frame invariance. It translates, that the velocity field has no first-principle

definition in relativistic hydrodynamics.13

It should be stressed here that irrespective of the aforementioned local Lorentz freedom,

dealing with out-of-equilibrium phenomena brings its share of indetermination. Once the

global equilibrium is abandoned, thermodynamic functions become local and their very

existence relies on local thermodynamic equilibrium. They are furthermore supposed to be

slow-varying for hydrodynamics to make sense. Nonetheless, even within these assumptions,

for non-perfect fluids, neither p(x), ε(x) and ̺0(x) appearing in the fluid equations, nor

T (x) and µ0(x) entering the constitutive relations need a priori to be identified with the

corresponding local-equilibrium thermodynamic quantities. We have made that choice here,

and we will not further discuss this side of hydrodynamic-frame invariance, but rather focus

on the kinematical aspects. More information can be found in the already quoted literature,

and in particular in [10–19].

Suppose we perform a local Lorentz transformation on the fluid, i.e. a transformation

on the velocity vector field

u → u + δu, δu · u = 0. (2.28)

One can transform accordingly the various pieces that appear in the decomposition of

Tµν (2.3) so that δTµν = 0:14

δε = −
2

c2
qµδuµ, (2.29)

δqν =
uν

c2
qµδuµ − wδuν − τνµδu

µ, (2.30)

δ (phµν + τµν) =
p

c2
(uµδuν + uνδuµ) +

1

c2
(uµτνρ + uντµρ) δuρ

−
1

c2
(δuµqν + δuνqµ) . (2.31)

Similarly, in the presence of a matter current, one requires δJµ = 0, and using (2.4)

one obtains:

δjµ = −uµδ̺0 − ̺0δuµ. (2.32)

The interplay between the energy-momentum tensor and the matter current is ensured

by the thermodynamic laws and the entropy current. The latter must also be hydrodynamic-

frame-invariant, as are the thermodynamic relations, in particular the Gibbs-Duhem equation

13In fact, the two extreme options embraced by Eckart and Landau-Lifshitz may not be achievable in all

systems. The former demands a time-like conserved current Jµ and selects a velocity field aligned with it.

The latter requires that the energy-momentum tensor has a time-like eigenvector with positive eigenvalue

and alignes the velocity with this eigenvector. In both cases, the defining assumption is reasonable, and the

output unique, leaving no residual hydrodynamic-frame invariance. The equivalence amongst these frames

relies on a deep interplay between the energy-momentum and the conserved current, when it exists. This

interplay reveals in thermodynamics and specifically in the entropy current. However, although equivalent,

the two frames are not equally suited for the non-relativistic limit, as we will see in section 3.2 (see also [8]).
14We cannot disentangle at this stage the transverse components p and τµν , as their separation relies on

thermodynamics (p is the equilibrium pressure, τµν stands for the non-equilibrium stress and its trace is the

non-equilibrium pressure).
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and the equation of state. These requirements provide the tools for computing δσ, δp, δT ,

and δµ0, in terms of the above variations already expressed with the basic data δuµ and δ̺0.

We will not delve in analyzing the effects induced on thermodynamic observables by the

local Lorentz transformations (for that see e.g. [10–19, 85]), but will conclude this discussion

with some remarks. At the first place, as already stressed, there is no microscopic definition

of the entropy current. Hydrodynamic-frame invariance serves therefore as a prerequisite

for completing expressions like (2.20), order by order in the derivative expansion. Secondly,

qµ, τµν and jµ are given in the form of constitutive relations, which are asymptotic series,

terminated at finite order. This blurs the fluid-frame invariance, and is at the heart of the

caveats mentioned in the introduction (stability and causality). Privileged hydrodynamic

frames unavoidably emerge, depending on the physical situation under consideration. Last

but not least, even when the previous items are under control (as in two dimensions [25]),

the question of global issues remains, in the lines discussed in refs. [25–27]: like any gauge

symmetry, hydrodynamic-frame invariance suffers from possible global breaking.

A remark on perfect fluids

For a perfect fluid, the heat current, the viscous stress tensor and the transverse part of the

matter current vanish. From an intrinsic view, given an energy-momentum tensor and a

matter current, these requirements are met if the matter current is an eigenvector of the

energy-momentum tensor, and if the transverse part of the energy-momentum tensor with

respect to this eigenvector is proportional to the projector orthogonal to the current. Given

the normalisation of the velocity, here aligned with the current, this provides unambiguously

̺0, p and ε (see (2.3), (2.4), (2.5) and (2.6)), and guarantees at the same time the absence

of jν , qν and τµν . The entropy current (2.19) in now given by (2.20) and is proportional to

the velocity. From (2.22) we infer it has zero divergence.

Formally, one could perform local hydrodynamic-frame transformations. However,

following the rules (2.28), (2.29), (2.30), (2.31) and (2.32), no transformation exists, which

preserves the perfect forms of the matter current and of the energy-momentum tensor.

They all generate non-perfect components, which should in this case be considered spurious

because they do not reflect any genuine microscopic interaction.15 In the absence of

dissipative phenomena and heat transport, energy is carried by matter and there is no

ambiguity in defining a physical fluid velocity, in line with the presentation of ref. [1].

Weyl-invariant fluids

A physical system such as a fluid can be invariant under Weyl transformations. Those act

on the background metric and fluid velocity as

ds2 → B−2ds2, uµ → Buµ, (2.33)

and more general tensors are Weyl-covariant if they rescale with some power of B (weight

w) — not to be confused with the relativistic enthalpy w). A Weyl-covariant derivative Dµ

15Although unphysical, this formal freedom is important from a holographic perspective, and was discussed

extensively in [25–27].
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maintains the canonical Weyl transformation of a Weyl-covariant tensor, and calls for a

Weyl connection one-form:16

A =
1

c2

(

a −
Θ

d
u

)

. (2.34)

The Weyl covariant derivative is metric-compatible:

Dρgµν = 0, (2.35)

(DµDν − DνDµ) f = wfFµν , (2.36)

where the action on a weight-w scalar f is

Dλf = ∇λf + wAλf, (2.37)

and

Fµν = ∂µAν − ∂νAµ (2.38)

is the Weyl curvature (weight-0). For concreteness, the action of Dλ on a weight-w form vµ

and a weight-w tensor tµν is

Dλvµ = ∇λvµ + (w + 1)Aλvµ +Aµvλ − gµλA
ρvρ, (2.39)

Dλtµν = ∇λtµν + (w + 2)Aλtµν +Aµtλν +Aνtµλ − gµλA
ρtρν − gνλA

ρtµρ. (2.40)

Commuting the Weyl-covariant derivatives acting on vectors, as usual one defines the

Weyl-covariant Riemann tensor

(DµDν − DνDµ) vρ = R
ρ
σµνv

σ + wvρFµν (2.41)

(vρ are the components of a weight-w vector) and the usual subsequent quantities. The

Weyl-covariant Ricci (weight 0) and scalar (weight 2) curvatures read:

Rµν = Rµν + (d− 1)
(

∇νAµ +AµAν − gµνAλA
λ
)

+ gµν∇λA
λ − Fµν , (2.42)

R = R+ 2d∇λA
λ − d(d− 1)AλA

λ. (2.43)

The fluid dynamics captured by (2.1) and (2.2) is Weyl-invariant under the necessary

and sufficient condition that the energy-momentum tensor and the matter current are

Weyl-covariant and such that

∇µT
µν = DµT

µν , ∇µJ
µ = DµJ

µ. (2.44)

This demands the conformal weights of Tµν and Jµ be d − 1, and Tµν be traceless. The

required weight for the energy-momentum tensor is the translation of Weyl invariance for

the underlying action, as one infers from eq. (2.7); this Weyl invariance also imposes the

16The explicit form of A is obtained by demanding Dµuµ = 0 and uλ
Dλuµ = 0. The Weyl connection

is not unique. Any weight-w conformal vector V is associated with a bona fide Weyl connection AV =
1

‖V‖2

(

(2−w)ΘV

d+1−w
V − aV

)

with ΘV and aV , the expansion and acceleration of V. An example of alternative

Weyl connection will be presented in section 3.4.
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weight observables

d+ 1 ε, p

d qµ, ̺0

d− 1 τµν , jµ

Table 1. Conformal weights.

absence of trace.17 In the decomposition (2.3) the latter condition reads −ε+ dp+ τµ
µ = 0,

usually split into the conformal global-equilibrium equation of state plus a condition on the

piece associated with dynamical irreversible phenomena:

ε = dp, τµ
µ = 0. (2.45)

Furthermore we learn from eq. (2.8) that the gauge field Bµ conjugate to Jµ is weight-zero

to comply with the expected weight for Jµ. We have summarized the weights of the various

physical quantities in the table 1.

2.2 Fluids in Zermelo coordinates

Zermelo frame

In a pseudo-Riemannian manifold M of d + 1 dimensions, one can always assume the

Arnowitt-Deser-Misner form of the metric

ds2 = −Ω2c2dt2 + aij

(

dxi − widt
) (

dxj − wjdt
)

(2.46)

with aij , w
i and Ω functions of x = (ct,x) = {xµ, µ = 0, 1, . . . , d} and x stands for

{x1, . . . , xd}. These coordinates are well-suited for the implementation of the Galilean

limit [29]. Indeed, Galilean diffeomorphisms

t′ = t′(t), x′ = x′(t,x) (2.47)

have Jacobian

J(t) =
∂t′

∂t
, ji(t,x) =

∂xi′

∂t
, J i

j(t,x) =
∂xi′

∂xj
, (2.48)

and the transformation of the metric components is nicely reduced:

a′
ij = aklJ

−1k
i J

−1l
j , w′k =

1

J

(

Jk
i w

i + jk
)

, Ω′ =
Ω

J
. (2.49)

This fits with the Newton-Cartan structure emerging at infinite c.

We call Zermelo metrics (see [78]) the restricted class of (2.46) for which Ω depends on

t only. This class is stable under Galilean diffeomorphisms because J in (2.49) does not

depend on spatial coordinates. The corresponding Newton-Cartan geometries reached in the

17We recall that δS =
∫

dd+1x
√

−g
(

1
2
T µνδgµν + JµδBµ

)

. Hence for an infinitesimal Weyl rescaling (i.e.

B close to the identity), δBS = −
∫

dd+1x
√

−g ln BT µ
µ .
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Galilean limit are torsion-free (see [42]) and they feature an absolute, invariant Newtonian

time
∫

dtΩ(t) =
∫

dt′ Ω′(t′).

The above reduction with respect to the Galilean diffeomorphisms (2.48), can be

completed as follows. Any tensor component with an upper time index transforms as a

Galilean density, and thus is a scalar upon multiplication by Ω. Similarly the components

with lower spatial indices transform as Galilean tensors. As an example, the transformation

of the d+ 1 vector components uµ under a Galilean diffeomorphism leads to18

u′0 = Ju0, u′
i = ukJ

−1k
i . (2.50)

A relativistic fluid moving in (2.46) is described by the components of its velocity u,

normalized as ‖u‖2 = −c2:

uµ =
dxµ

dτ
⇒ u0 = γc, ui = γvi, (2.51)

where the Lorentz factor γ is, in the Zermelo frame19

γ =
dt

dτ
=

1

Ω
√

1 −
(

v−w

cΩ

)2
. (2.52)

Under a Galilean diffeomorphism (2.48), the transformation of uµ (see footnote 18) induces

the expected transformation on vi:

v′k =
1

J

(

Jk
i v

i + jk
)

. (2.53)

Orthogonality conditions (2.5) and (2.6) imply that the fundamental data for the

non-perfect matter current, the heat current and the stress tensor are ji, qj and τkl. Other

components are e.g.

j0 =

(

vi−wi
)

ji
cΩ2

, q0 =

(

vi−wi
)

qi

cΩ2
, τ00 =

(

vk−wk
)(

vl−wl
)

τkl

c2Ω4
, τ0

j =

(

vk−wk
)

τkj

cΩ2
,

(2.54)

which transform as tensors under Galilean diffeomorphisms.

Hydrodynamic-frame transformations and invariants

The fluid velocity is parameterized in (2.51) with d components vi. We can thus formulate

the relativistic hydrodynamic-frame transformations in terms of arbitrary δvi(x). In the

Zermelo frame, we obtain:

δγ =
γ3

c2
δvi (vi − wi) , (2.55)

hence

δu = γδvi

(

∂i +
γ2

c2
(vi − wi)

(

∂t + vk∂k

)

)

. (2.56)

18When the indices are inverted, the transformations are of the connection type: u′i = J i
kuk + J iu0,

u′
0 = 1

J

(

u0 − ujJ−1j
kJk
)

. For those, the tensorial structure is restored at the infinite-c limit, where indices

are lowered and raised with aij and its inverse.
19Expressions as v

2 stand for aijvivj , not to be confused with ‖u‖2 = gµνuµuν .
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Using eqs. (2.29), (2.30) and (2.31) together with (2.54) and (2.56) we find:20

δε = −2
γ

c2
δviqi, (2.57)

δqi = γδvk

(

γ

c2
(vi − wi) qk − whki − τki

)

, (2.58)

δ (phij + τij) =
γ2

c2
δvk ((vi − wi) (τjk + phjk) + (vj − wj) (τik + phik))

−
γ

c2
δvk (qihjk + qjhik) , (2.59)

where (see (2.26))

hik = aik +
γ2

c2
(vi − wi) (vk − wk) . (2.60)

When a matter current is available, the above is completed with (2.32), which gives

δ̺0 = −
γ

c2
δviji (2.61)

and

δji = δvk

(

γ2

c2
jk (vi − wi) − γ̺0hki

)

. (2.62)

The transformations at hand translate the invariance of the energy-momentum tensor

and current components. The latter define therefore invariants, which are simply the energy

density, the heat current, the stress tensor, the matter density and the matter non-perfect

current in a privileged frame, that we will call “at rest” or “proper,”21 borrowing the

standard expressions of special relativity:

T 00 =
εr

Ω2
, T 0

i =
1

cΩ
qri, Tij = praij + τrij (2.63)

with trace

T µ
µ = −εr + dpr + aijτrij , (2.64)

and

J0 =
c

Ω
̺0r, Ji = jri. (2.65)

We find explicitly

εr = εγ2Ω2 +
2

c2
γqi

(

vi − wi
)

+ (phij + τij)

(

vi − wi
) (

vj − wj
)

c2Ω2
, (2.66)

qri = εγ2Ω (vi − wi) + γΩqj

(

δj
i +

(

vj − wj
)

(vi − wi)

c2Ω2

)

+ (phij + τij)
vj − wj

Ω
, (2.67)

praij + τrij =
εγ2

c2
(vi − wi) (vj − wj) +

γ

c2
(qi (vj − wj) + qj (vi − wi))

+ phij + τij , (2.68)

20Notice that qµδuµ = γδviqi.
21We call this frame “fiducial” in section 3.2 and show it is associated with an observer at velocity uZ = et̂

given in (3.3).
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and

̺0r = ̺0Ωγ + ji
vi − wi

c2Ω
, (2.69)

jri = ji + ̺0γ
(

vi − wi
)

. (2.70)

It should be stressed that the above quantities are hydrodynamic-frame invariant but

also covariant under Galilean diffeomorphisms. This latter property will be useful when

considering the Galilean limit.

Killings and conserved currents

Consider a Killing field on M satisfying (2.12)

ξ = ξt∂t + ξi∂i = ξ t̂et̂ + ξ ı̂eı̂, (2.71)

where we have introduced a somewhat more convenient frame and coframe

et̂ =
1

Ω

(

∂t + wj∂j

)

, eı̂ = ∂i, θt̂ = Ωdt, θı̂ = dxi − widt, (2.72)

so that the metric (2.46) reads:

ds2 = −c2
(

θt̂
)2

+ aijθ
ı̂θ̂. (2.73)

Hence

ξ t̂ = ξtΩ, ξ ı̂ = ξi − ξtwi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi. (2.74)

With these data, the components of the conserved current (2.13) are22

I0 =
c

Ω
ι0r, Ii = iri, (2.75)

where

ι0r =
1

c2
ξ ı̂qri − ξ t̂εr, (2.76)

iri = ξ ̂ (praij + τrij) − ξ t̂qri. (2.77)

The associated conserved charge is obtained using (2.16):

QI =

∫

Σd

√
a ι0r

(

dx1 − w1dt
)

∧ . . . ∧
(

dxd − wddt
)

−

∫

Σd

√
a

d
∑

i=1

(

dx1 − w1dt
)

∧ . . . ∧ aijirjΩdt ∧ . . . ∧
(

dxd − wddt
)

, (2.78)

where aijirjΩdt is the ith factor in the exterior product of the last term.

22We use the standard decomposition Iµ = ι0uµ + iµ with uµiµ = 0 and ι0 = −uµIµ, and introduce ι0r as

a proper or fiducial density, following the footsteps of the energy-momentum tensor and the matter current,

eqs. (2.63) and (2.65).
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2.3 Fluids in Papapetrou-Randers coordinates

Papapetrou–Randers frame

An alternative frame for a d+ 1-dimensional pseudo-Riemannian manifold M is defined as

ds2 = −c2
(

Ωdt− bidx
i
)2

+ aijdxidxj , (2.79)

where all functions are x-dependent — again x ≡ (x0 = ct,x). It is known as Papapetrou-
Randers, and this form is stable under Carrollian diffeomorphisms

t′ = t′(t,x) and x′ = x′(x) (2.80)

with Jacobian

J(t,x) =
∂t′

∂t
, ji(t,x) =

∂t′

∂xi
, J i

j(x) =
∂xi′

∂xj
. (2.81)

Under Carrollian diffeomorphisms, Ω and the metric transform as in (2.49) i.e.

Ω′ =
Ω

J
, a′ij = J i

kJ
j
l a

kl, (2.82)

while bi obeys a connection transformation

b′
k =

(

bi +
Ω

J
ji

)

J−1i
k. (2.83)

The Papapetrou-Randers frame realizes a reduction with respect to the Carrollian

diffeomorphisms (2.80). Any tensor component with a lower time index transforms as a

Carrollian density and provides a scalar upon division by Ω; the components with upper

spatial indices transform as Carrollian tensors. The d+ 1 vector components uµ transform

under a Carrollian diffeomorphism as

u′
0 =

u0

J
, u′i = ukJ i

k. (2.84)

One can again express the components of a velocity field normalized to −c2 as u0 = γc

and ui = γvi. It is furthermore convenient to parameterize vi as

vi =
c2Ωβi

1 + c2βjbj
⇔ βi =

vi

c2Ω
(

1 −
vjbj

Ω

) , (2.85)

because of future use in the Carrollian limit, and due to the simple Carrollian transformation

property this definition leads to23

βi′ = J i
jβ

j . (2.86)

Now the Lorentz factor reads:

γ =
1 + c2βββ · bbb

Ω
√

1 − c2βββ2
. (2.87)

In Papapetrou-Randers frame (2.79), the fundamental hydrodynamic variables are

naturally chosen as ji, qj and τkl. Using the transversality conditions (2.5) we find:

j0 = −cΩβij
i, q0 = −cΩβiq

i, τ00 = c2Ω2βkβlτ
kl, τ i

0 = −cΩβkτ
ik. (2.88)

These are all Carrollian tensors (or densities).

23This is easily proven by observing that βi + bi = − Ωui

cu0
. We define as usual bi = aijbj , βi = aijβj ,

vi = aijvj , bbb2 = bib
i, βββ2 = βiβ

i and bbb · βββ = biβ
i.
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Hydrodynamic-frame transformations and invariants

Following the same pattern as for the Zermelo frame, we investigate the hydrodynamic-frame

transformations, i.e. local Lorentz transformations captured here in the d components δβi(x).

We obtain

δu0 = cδγ, δui = c2 hikδβk
√

1 − c2βββ2
(2.89)

with

δγ = c2γδβi

(

bi

1 + c2βββ · bbb
+

βi

1 − c2βββ2

)

, (2.90)

and

hik = aik +
c2βiβk

1 − c2βββ2
. (2.91)

Using the general transformation rules (2.29), (2.30) and (2.31) together with (2.88)

and (2.89) we find (w is the relativistic enthalpy (A.3)):24

δε = −2
qiδβi

√

1 − c2βββ2
, (2.92)

δqi =
c2δβk

√

1 − c2βββ2

(

qkβi

√

1 − c2βββ2
− whki − τki

)

, (2.93)

δ
(

phij + τ ij
)

=
c2δβk

1 − c2βββ2

(

βi
(

phjk + τ jk
)

+ βj
(

phik + τ ik
))

−
δβk

√

1 − c2βββ2

(

qihjk + qjhik
)

. (2.94)

Similarly, using eq. (2.32), we obtain:

δ̺0 = −
jiδβi

√

1 − c2βββ2
, (2.95)

and

δji =
c2δβk

√

1 − c2βββ2

(

jkβi

√

1 − c2βββ2
− ̺0h

ki

)

. (2.96)

The energy-momentum tensor is by definition invariant under hydrodynamic-frame

transformations. This invariant can be nicely tamed in three canonical objects, which are

the energy density εr, the heat current qi
r and the stress tensor τ ij

r , in the fluid proper

hydrodynamic frame:25

T00 = εrΩ
2, T i

0 = −
Ω

c
qi

r, T ij = pra
ij + τ ij

r (2.97)

with trace

T µ
µ = −εr + dpr + aijτ

ij
r , (2.98)

24Notice in passing qµδuµ = c2 qiδβi√
1−c2βββ2

.

25In section 4.2 this frame is referred to as “fiducial” and is associated with an observer moving at velocity

uPR given in (4.72).
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and

J0 = −cΩ̺0r, J i = ji
r. (2.99)

It is easy to relate these invariants to the fluid data in an arbitrary frame encoded in βi.

We find

εr =
ε

1 − c2βββ2
+

2βiq
i

√

1 − c2βββ2
+ c2βiβj

(

phij + τ ij
)

, (2.100)

qi
r =

c2εβi

1 − c2βββ2
+

qj

√

1 − c2βββ2

(

δi
j + c2βiβj

)

+ c2βj

(

phij + τ ij
)

, (2.101)

pra
ij + τ ij

r =
c2εβiβj

1 − c2βββ2
+
βiqj + βjqi

√

1 − c2βββ2
+ phij + τ ij , (2.102)

and similarly

̺0r =
̺0

√

1 − c2βββ2
+ βij

i, (2.103)

ji
r = ji +

c2̺0β
i

√

1 − c2βββ2
. (2.104)

Killings and conserved currents

Consider a Killing field of the generic form (2.71), satisfying (2.12) on M in Papapetrou-

Randers coordinates, where the convenient frame and coframe are now26

et̂ =
1

Ω
∂t, eı̂ = ∂i +

bi

Ω
∂t, θt̂ = Ωdt− bidx

i, θı̂ = dxi, (2.105)

so that the metric (2.79) becomes (2.73). The Killing components are

ξ t̂ = ξtΩ − ξibi, ξ ı̂ = ξi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi + ξt̂bi, (2.106)

and those of the conserved current (2.13), following the familiar decomposition procedure

in a proper frame:

I0 = −cΩι0r, Ii = iir, (2.107)

where

ι0r =
1

c2
ξı̂q

i
r − ξ t̂εr, (2.108)

iir = ξ̂

(

pra
ij + τ ij

r

)

− ξ t̂qi
r. (2.109)

Using (2.16), one can express the conserved charge in the Papapetrou-Randers frame

as follows:

QI =

∫

Σd

√
a ι0rdx

1 ∧ . . .∧dxd −

∫

Σd

√
a

d
∑

i=1

dx1 ∧ . . .∧iir

(

Ωdt− bjdxj
)

∧ . . .∧dxd, (2.110)

where in the exterior product of the second term, iir
(

Ωdt− bjdxj
)

is the ith factor.

26Later on eı̂ will be alternatively displayed as ∂̂i.
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3 Galilean fluid dynamics

3.1 Newton-Cartan manifolds and general Galilean covariance

Newton–Cartan in a nutshell

The natural geometric framework for describing non-relativistic fluids is torsionless Newton-

Cartan — see e.g. [37–44] for a comprehensive presentation and further reading suggestions.

Newton-Cartan manifolds are members of a wide web including Bargmann spaces or

Leibnizian structures (see [34, 39, 40]). We will here consider a manifold M = R × S

equipped with coordinates (t,x) and a degenerate cometric27

∂2
a = aij ∂i∂j , i, j . . . ∈ {1, . . . , d}, (3.1)

as well as a clock form
θt̂ = Ωdt. (3.2)

The dual vector of the latter, referred to as a field of observers, is

et̂ =
1

Ω

(

∂t + wj∂j

)

. (3.3)

Here, aij and wi are general functions of (t,x) whereas Ω = Ω(t). This last feature makes

the clock form θt̂ in (3.2) exact and this qualifies for the torsionless nature of the Newton-

Cartan manifold. As pointed out in section 2.2, this guarantees the existence of an absolute

time
∫

dtΩ(t) =
∫

dt′ Ω′(t′), invariant under Galilean diffeomorphisms (2.47) — the only

allowed now. For completeness, one should emphasize that even in general, torsionfull

Newton-Cartan spacetimes the time interval is invariant but depends on the location x of

the clock:
∫

dtΩ(t,x). One still — abusively — call it absolute as a way to stress that the

differences are due to the location of the clock and not directly to its motion, if any. Motion

affects directly the measurements of spatial distances.

The submanifold S plays the role of d-dimensional Newtonian space, endowed with a

positive-definite metric, inverse of aij

dℓ2 = aij(t,x)dxidxj , (3.4)

and observed from a frame with respect to which the locally inertial frame has velocity

w = wi∂i (see footnote 39). A moving particle or a fluid cell will have velocity v = vi∂i with

vi = dxi

dt
. Under Galilean diffeomorphisms (2.47) with Jacobian (2.48), the transformation

rules are as in (2.49), (2.53), and

∂′
t =

1

J

(

∂t − jkJ−1i
k∂i

)

, (3.5)

∂′
j = J−1i

j∂i. (3.6)

The clock form and the field of observers remain invariant:

θt̂′ = θt̂, e′
t̂

= et̂. (3.7)

27We systematically omit the tensor product symbol ⊗ in the metric and in the cometric.
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Galilean tensors carry only spatial indices i, j, . . . ∈ {1, . . . , d}, which are lowered and

raised with aij and aij . They transform covariantly under Galilean diffeomorphisms (2.47)

with Jacobian J j
i and J−1i

j defined in (2.48).28 Tensors depend generically on time t and

space x. Connections can be defined on the geometries at hand, which lead to space

and time derivatives, covariant with respect to Galilean diffeomorphisms. These are not

uniquely defined (see the literature quoted above) as are torsion-free and metric-compatible

connections in Riemannian geometries. We will here make the specific choice, which naturally

emerges when the present geometry is reached as an infinite-c limit of a pseudo-Riemannian

manifold in the Zermelo frame (2.46) (see appendix A.1 of ref. [29]). This choice makes a

sharp separation between space materialized in S and time. Our spatial connection is

γi
jk =

ail

2
(∂jalk + ∂kalj − ∂lajk) . (3.8)

The associated covariant derivative is spelled ∇̂i, as opposed to ∇i, the spatial component

of the Levi-Civita covariant derivative ∇µ defined on the ascendent pseudo-Riemannian

spacetime.29 This connection is torsionless

t̂kij = 2γk
[ij] = 0, (3.9)

and metric-compatible

∇̂iajk = 0. (3.10)

Its Riemann, Ricci and scalar curvature tensors are defined as usual d-dimensional Levi-

Civita curvature tensors would be on S, except that they are t-dependent:
[

∇̂k, ∇̂l

]

V i =
(

∂kγ
i
lj − ∂lγ

i
kj + γi

kmγ
m
lj − γi

lmγ
m
kj

)

V j = r̂i
jklV

j . (3.11)

It is worth stressing that Galilean tensors can be constructed from an object which is

not a vector but rather transforming like a connection,

A′k =
1

J

(

Jk
i A

i + jk
)

. (3.12)

Indeed
1

Ω
∇̂(kAl) −

1

2Ω
∂ta

kl = −
1

2Ω

(

LAa
kl + ∂ta

kl
)

(3.13)

(LA is the Lie derivative along A = Ai∂i) and

1

Ω
∇̂(kAl) +

1

2Ω
∂takl =

1

2Ω
(LAakl + ∂takl) (3.14)

have tensorial transformation rules, and their trace is a scalar.30 We can apply this to w or

v (see (2.49) and (2.53)) and define

γ̂w
ij =

1

Ω

(

∇̂(iwj) +
1

2
∂taij

)

, γ̂v
ij =

1

Ω

(

∇̂(ivj) +
1

2
∂taij

)

, (3.15)

28For a vector e.g. the transformation is V ′k = Jk
i V i.

29In [29] the hat was not used in the Galilean covariant derivative, and this might have caused confusion.
30Observe that neither 1

Ω
∂t nor 1

Ω
LA acting on Galilean tensors give separately tensors because of (3.5)

and Ai transforming as (3.12).
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where the upper indices refer to the vectors w and v, corresponding to the geometry and

fluid respectively. The former is purely geometrical (and emerges in the large-c expansion of

the relativistic-spacetime Levi-Civita connection in Zermelo frame31); the latter is associated

with a fluid of velocity vi. They coincide for a fluid at rest in the locally inertial frame, i.e.

for vi = wi. From these tensors, one defines their traceless relatives and the traces: the

geometric Galilean shear

ξw
ij =

1

Ω

(

∇̂(iwj) +
1

2
∂taij

)

−
1

d
aijθ

w, (3.16)

and the geometric Galilean expansion

θw =
1

Ω

(

∂t ln
√
a + ∇̂iw

i
)

, (3.17)

as well as the fluid Galilean shear

ξv
ij =

1

Ω

(

∇̂(ivj) +
1

2
∂taij

)

−
1

d
aijθ

v, (3.18)

and the fluid Galilean expansion

θv =
1

Ω

(

∂t ln
√
a + ∇̂iv

i
)

. (3.19)

One similarly defines a time, metric-compatible covariant derivative (again emerging

in the Galilean expansion of the spacetime Levi-Civita covariant derivative in the time

direction of a Zermelo frame). For a scalar function Φ it is simply

1

Ω

D̂Φ

dt
= et̂(Φ) =

1

Ω
∂tΦ +

wj

Ω
∂jΦ, (3.20)

whereas for vectors one finds

1

Ω

D̂V i

dt
=

1

Ω
∂tV

i +
wj

Ω
∂jV

i − V j∂j
wi

Ω
+ γ̂wi

jV
j

=
1

Ω

(

∂tV
i + LwV

i
)

+ γ̂wi
jV

j . (3.21)

More generally, the Leibniz rule leads to

1

Ω

D̂Ki...
j...

dt
=

1

Ω

(

∂tK
i...

j... + LwK
i...

j...

)

+ γ̂wi
kK

k...
j... + · · · − γ̂wk

jK
i...

k... − · · · , (3.22)

and as a consequence

1

Ω

D̂aij

dt
=

1

Ω

D̂aij

dt
= 0. (3.23)

31As a general comment, valid both in the present section on Galilean dynamics as well as in the

next on Carrollian, the c-dependence of our relativistic metrics is always explicit and in line with the

Galilean (or Carrollian) reduction. Hence, every term in the power expansions is Galilean-covariant (or

Carrollian-covariant).
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In the presence of a fluid one can also introduce the more physical material derivative

d

dt
= ∂t + vi∇̂i, (3.24)

which produces a scalar density (or a scalar upon division by Ω) when acting on a scalar

function. When acting on arbitrary tensors, it should be supplemented with appropriate

w and/or v terms in order to maintain the tensorial transformation properties. Several

options exist and we here quote the most physical (see [29]):32

1

Ω

DV i

dt
=

1

Ω

dV i

dt
−

1

Ω
V j∇̂jw

i,
1

Ω

DVi

dt
=

1

Ω

dVi

dt
+

1

Ω
Vj∇̂iw

j , (3.25)

resulting in genuine tensors under Galilean diffeomorphisms. As opposed to (3.22), this

time-covariant derivative is not metric compatible:

1

Ω

Daij

dt
= 2γ̂w

ij . (3.26)

Space and time Galilean covariant derivatives do not commute. They define a Galilean

tensor, rooted in the Riemann tensor of the ascendent relativistic spacetime at finite velocity

of light. We find

[

1

Ω

D̂

dt
, ∇̂i

]

Φ = −γ̂wk
i∂kΦ, (3.27)

[

1

Ω

D̂

dt
, ∇̂i

]

V j = −γ̂wk
i∇̂kV

j + r̂j
ikV

k, (3.28)

and similarly for higher-rank Galilean tensors, where

r̂j
ik =

1

Ω

(

∂tγ
j
ik + ∇̂i∇̂kw

j − ∇̂iγ̂
wj

k + wlr̂j
kli

)

. (3.29)

Galilean diffeomorphisms and conservation equations

Without referring specifically to a fluid, one may consider an effective action describing

the dynamics of a system defined on the geometry M = R × S discussed previously. This

effective action is thus a functional of aij , Ω and wi: S =
∫

dt ddx
√
aΩL. The standard

relativistic energy-momentum tensor (2.7) is now traded for the following Galilean momenta,

namely the energy-stress tensor, the momentum and the energy density:

Πij = −
2

√
aΩ

δS

δaij
, (3.30)

Pi = −
1

√
aΩ

δS

δwi

Ω

, (3.31)

Π = −
1

√
aΩ

(

Ω
δS

δΩ
−
wi

Ω

δS

δwi

Ω

)

, (3.32)

32For a detailed and general presentation of Galilean affine connections see [39, 40].
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which can likewise be combined as δS
δΩ = −

√
a
(

Π + wi

Ω Pi

)

. These momenta are summarized

in the following variation — at least for the gravitational sector:

δS = −

∫

dtΩ

∫

ddx
√
a

(

1

2
Πijδa

ij + Piδ
wi

Ω
+

(

Π +
wi

Ω
Pi

)

δ ln Ω

)

. (3.33)

The above momenta obey conservation equations as a consequence of the assumed

invariance of the action under Galilean diffeomorphisms, which simultaneously guarantees

their Galilean-covariant transformation rules. Galilean diffeomorphisms (2.47) are generated

by vector fields on M whose time component depends only on t:

ξ = ξt∂t + ξi∂i = ξ t̂et̂ + ξ ı̂∂i (3.34)

(this is the same expression as (2.71)), where ξ t̂(t) = ξt(t)Ω(t) is a Galilean scalar, and

ξ ı̂(t,x) = ξi − ξtwi are the components of a Galilean vector. The variation under diffeomor-

phisms is implemented through the Lie derivative (the minus sign is conventional):

− δξa
ij = Lξa

ij = −2

(

∇̂(iξ ̂) + γ̂wijξ t̂ +
1

Ω
w(iaj)k∂kξ

t̂

)

, (3.35)

where the last term drops for Galilean diffeomorphisms. Furthermore

Lξet̂ = −
1

Ω

(

∂tξ
t̂ + Lwξ

t̂
)

et̂ −
1

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

∂i, (3.36)

from which, using (3.3), we infer

− δξΩ = LξΩ = ∂tξ
t̂ + Lwξ

t̂, δξw
i = −Lξw

i = ∂tξ
ı̂ + Lwξ

ı̂. (3.37)

Notice also the action on the clock form:

Lξθ
t̂ =

1

Ω

(

∂tξ
t̂ + Lwξ

t̂
)

θt̂ =
1

Ω

D̂ξ t̂

dt
θt̂ = µθt̂, (3.38)

where we introduced

µ(t,x) =
1

Ω

D̂ξ t̂

dt
(3.39)

not to be confused with the chemical potential introduced in thermodynamics.

We can now determine the variation of the action under Galilean diffeomorphisms:

δξS =

∫

dtddx
√
aΩ

{

−ξ t̂

[

1

Ω

D̂Π

dt
+ θwΠ + Πij γ̂

wij

]

+ ξ ı̂

[

1

Ω

D̂Pi

dt
+ θwPi + Pj γ̂

wj
i + ∇̂jΠij

]}

+

∫

dtddx
{

∂t

(√
a
(

Πξ t̂ − Pjξ
̂
))

+ ∂i

(√
a wi

(

Πξ t̂ − Pjξ
̂
)

−
√
aΩΠi

jξ
̂
)}

. (3.40)
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Requiring that δξS vanishes and ignoring the boundary terms (last two lines in eq. (3.40)),

we reach two equations. The momentum equation is the simplest because ξ ̂ being functions

of both t and x, their factor must vanish:

(

1

Ω

D̂

dt
+ θw

)

Pi + Pj γ̂
wj

i + ∇̂jΠij = 0. (3.41)

The energy equation is more subtle because ξ t̂ depends on t only. As a consequence it is

enough to require that its factor be the Galilean divergence of a vector:

(

1

Ω

D̂

dt
+ θw

)

Π + Πij γ̂
wij = −∇̂iΠ

i, (3.42)

where Πi is undetermined a priori. Indeed,
√
aΩξ t̂∇̂iΠ

i = ∂i

(√
aΩξ t̂Πi

)

, which leads to a

boundary term and vanishes inside the integral. One can interpret Πi as the energy current
(also energy flux).

Gauge invariance and matter conservation

Besides Galilean covariance, the action might also be invariant under a local U(1) symmetry,

parameterized by Λ(t,x) and acting on the components of a gauge field B = B(t,x)dt +

Bi(t,x)dxi as

δΛBi = −∂iΛ, δΛB = −∂tΛ. (3.43)

The conjugate momenta are now the matter density and the matter current:

̺ = −
1

√
a

δS

δB
, (3.44)

N i =
1

Ω
√
a

(

wi δS

δB
−

δS

δBi

)

(3.45)

with δS
δBi

= −
√
a
(

ΩN i + ̺wi
)

, and

δS = −

∫

dtddx
√
a
(

̺δB +
(

ΩN i + ̺wi
)

δBi

)

(3.46)

for the matter sector. The gauge variation of the action reads:

δΛS =

∫

dtddx
√
a
(

̺∂tΛ +
(

ΩN i + ̺wi
)

∂iΛ
)

= −

∫

dtddx
√
aΩΛ

(

1

Ω

D̺̂

dt
+ θw̺+ ∇̂iN

i

)

+

∫

dtddx
{

∂t

(√
aΛ̺

)

+ ∂i

(√
aΛ

(

ΩN i + ̺wi
))}

. (3.47)

Invariance of S leads to the Galilean continuity equation:

(

1

Ω

D̂

dt
+ θw

)

̺+ ∇̂iN
i = 0. (3.48)
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The continuity equation can be alternatively presented in an integral form, using Stokes

and Gauss theorems:33

∫

W

dtddxΩ
√
a

((

1

Ω

D̂

dt
+ θw

)

̺+ ∇̂iN
i

)

=

∮

∂W

√
a ̺
(

dx1 − w1dt
)

∧ . . . ∧
(

dxd − wddt
)

−

∮

∂W

√
a

d
∑

i=1

(

dx1 − w1dt
)

∧ . . . ∧N iθt̂ ∧ . . . ∧
(

dxd − wddt
)

, (3.49)

where W ⊂ M = R × S and N iθt̂ is the ith factor in the exterior product of the last term

(θt̂ is the clock form given in (3.2)). From this we obtain a conserved charge — under

the usual assumptions for the behaviour of the fields — expressed as an integral over an

arbitrary hypersurface Σd of M = R × S. It coincides with the relativistic Zermelo result

captured e.g. in (2.78).

Although not compulsory, it is convenient to chose Σd ≡ S i.e. a constant-t hypersurface.

We then find

QN =

∫

S

ddx
√
a ̺, (3.50)

which fits the usual definition of charge in Galilean physics. In this case, the conservation of

QN is often phrased as independence with respect to ordinary time t, although it is actually

a stronger statement, even in Newton-Cartan spacetimes, where there is a privileged time

direction (for the relativistic case, see the comment in footnote 9). Time-independence

appears explicitly if one trades S in the integral (3.50) with V ⊂ S. Assuming for simplicity

that the boundary ∂V of that domain does not depend on t and using (3.48), the time

evolution of the matter/charge content of V is

1

Ω

d

dt

∫

V

ddx
√
a ̺ = −

∫

V

ddx ∂i

(

√
a

(

N i + ̺
wi

Ω

))

= −

∫

∂V
⋆

(

N + ̺
w

Ω

)

, (3.51)

where ⋆ stands for the d-dimensional S-Hodge dual based on
√
a and on the antisymmetric

symbol ǫi1...id
with ǫ1...d = 1. If the integral is performed over the entire S it vanishes

(assuming a reasonable asymptotic behaviour), and QN in (3.50) is conserved.

Equation (3.48) and its variables are a priori independent of the energy-momentum equa-

tions (3.41), (3.42) and their variables. As we will see, thermodynamics sets a relationship

among the momentum Pi and the current Ni.

Isometries, conservation and non-conservation laws

In (pseudo-)Riemannian geometry, isometries are diffeomorphisms generated by vectors

leaving the metric invariant, i.e. requiring (2.12).34 Newton-Cartan spacetimes may also have

33Stokes theorem is valid irrespective of the metric. Gauss’ requires a dual exterior derivative d†, which

can be introduced consistently despite the cometric being degenerate. We will not elaborate on this matter

here. For the Carrollian case, this was discussed for d = 1 in ref. [26].
34For historical reasons, some authors use the name “Killing fields” for generators of isometries in a

(pseudo-)Riemannian manifold exclusively. We take the freedom here to call every isometry generator a

Killing field, be it for weak or strong, Newton-Cartan or Carrollian manifolds.
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isometries. Due to the degenerate cometric, however, their definition and the determination

of the Killing fields are more subtle. This subject has been abundantly discussed in the

literature. We will summarize the features important for our purpose regarding the Galilean

fluid dynamics.

The Killing fields are of the Galilean type (3.34) and are required to obey

Lξa
ij = 0, Lξθ

t̂ = 0, (3.52)

since the fundamental geometric data are the cometric (3.1) and the clock form (3.2). Using

expressions (3.35) and (3.38) for Galilean diffeomorphisms (ξ t̂ is only t-dependent), we

obtain the Galilean Killing equations:

∇̂(iξ ̂) + γ̂wijξ t̂ = 0,
1

Ω

D̂ξ t̂

dt
= 0. (3.53)

These equations generally admit an infinite number of solutions. The reason is that they

refer to the weak definition of Newton-Cartan spacetimes [36] in terms of the cometric and

the clock form, and express exclusively the invariance of these data. A strong definition
exists and requires additionally a symmetric affine connection, which is metric-compatible

and parallel-transports the clock form.35 Isometries are thus restricted to comply with

the strong definition, and leave the affine connection invariant. This reduces the set of

generators to a finite number [87].

Notice also that the fundamental geometric piece of data for a Newton-Cartan spacetime

is genuinely the clock form θt̂ rather than the field of observers et̂. The latter is not required

to have a vanishing Lie derivative along Killing vectors, and using (3.36) and (3.53) we

indeed find

Lξet̂ = −
1

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

∂i, (3.54)

for a generic Killing field ξ.

Consider as an example the Newton-Cartan manifold with aij = δij , Ω = 1 and wi

constant. This is our familiar R × E3 spacetime, which is flat for the connection introduced

earlier. Equations (3.53) possess an infinite number of solutions:

ξ =
(

Ω j
i (t)xi + Zj(t)

)

∂j + T∂t (3.55)

with T a constant and Ωij = Ω k
i δkj antisymmetric. Imposing the invariance of the affine

connection, one recovers [87] the (d+2)(d+1)/2-dimensional Galilean algebra gal(d+ 1) with

contant Ωij generating the so(d) rotations, Zj(t) = V jt+Xj for the Galilean boosts and

spatial translations, and T for the time translations. We find in particular that

Lξet̂ = −
(

V i + wkΩ i
k

)

∂i 6= 0, (3.56)

showing among others that the boosts produce a displacement in the field of observers. This

is expected because wi describes the constant velocity of the original inertial frame, which

35It turns out that the connection we have introduced in this section obeys these properties.
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is shifted during a Galilean boost, and nicely illustrates why it would have been unnatural

to impose the invariance of et̂ under the action of an isometry.

Assuming the existence of an isometry, we can now address the conservation law

that would take the Galilean form (3.48) with a Galilean scalar κ and a Galilean vector

Ki determined from the Killing components ξ t̂ and ξ ı̂, and from the Galilean momenta,

i.e. the energy density Π, the momentum Pi and the energy-stress tensor Πij defined in

eqs. (3.30), (3.31), (3.32), as well as the energy flux Πi, and satisfying the conservation

equations (3.41) and (3.42). The Galilean scalar

K=

(

1

Ω

D̂

dt
+ θw

)

κ+ ∇̂iK
i (3.57)

would then vanish on-shell. The components of the Galilean current κ and Ki are read off

in the boundary terms of δξS given in (3.40) and set on-shell:36

κ = ξ ı̂Pi − ξ t̂Π, (3.58)

Ki = ξ ̂Πij − ξ t̂Πi. (3.59)

Using the conservation equations (3.41) and (3.42) we obtain the following result:

K= −
Π

Ω

D̂ξ t̂

dt
+
Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

+ Πij

(

∇̂iξ ̂ + γ̂wijξ t̂
)

(3.60)

=
Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

. (3.61)

We have used the Killing equations (3.53) to reach (3.61) from (3.60), which shows that

in Newton-Cartan spacetimes, a Killing field fails to systematically support an on-shell
conservation law for Galilean dynamics. This could have been anticipated, actually. Indeed,

Pi is conjugate to wi/Ω (see (3.31)) and wi transforms under diffeomorphisms according

to (3.37), even when this diffeomorphism is generated by a Killing vector field. This is

precisely what eq. (3.61) conveys. Still, a conservation law exists for those Killing fields,

which happen to satisfy Lξet̂ ≡ [ξ, et̂] = 0 — using Jacobi identity, one checks that the

commutator of two such Killings leaves also et̂ invariant. As we mentioned earlier, ordinary

Galilean boosts in R × E3 do not, eq. (3.56). In other instances with multiple degrees of

freedom arising from a Laurent expansion in powers of c2 (see section 3.3), several currents

coexist in the presence of a Killing, and some can be conserved due to the accidental — as

opposed to a priori demanded — absence of a Pi-like component.

The above result sounds iconoclastic, in view of the robustness and generality of

Nœther’s theorems. In ref. [42], for instance, the existence of an isometry-related conserved

current in torsional Newton-Cartan spacetimes has not been demonstrated, not even

questioned — it was just assumed to be true. However, it is not ipso facto, for the simple

reason that isometries are less restraining in Newton-Cartan spacetimes, so that only a

36They are in fact inherited from the relativistic-current components i.e. as a large-c expansion of (2.76)

and (2.77), and the precise computation is performed at the end of section 3.3, eq. (3.129).
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restricted class of Galilean Killing fields might indeed be eligible for conservation laws —

boosts in flat spacetime aren’t.

One may naturally contemplate that ξ being a Killing field, the right-hand side

of eq. (3.61) is associated with a boundary term. If this happens, the boundary term

contributes the current components κ and Ki, leading to an effective κ′ and Ki′, truly

conserved. However, this does not seem to be the rule, not even in flat space, where

K= Pi

(

V i + wkΩ i
k

)

, obtained using eqs. (3.55) and (3.56).37

The same conclusion will be reached for Carrollian spacetimes in section 4.1, and

further discussed from the large-c perspective in the upcoming paragraphs, as well as in

appendix D.

Weyl invariance, conformal isometries, conservation and non-conservation laws

Fluids involving massless excitations have observables with remarkable scaling properties.

We can introduce Weyl transformations acting as follows on the fundamental geometric

data of a Newton-Cartan geometry:

aij → B2aij , Ω →
1

B
Ω, wi → wi, wi →

1

B2
wi. (3.62)

Since Ω is a function of t only, the second of (3.62) imposes B = B(t). Weyl-invariance

requirement of an effective action S leads to following weights for the Galilean momenta

in (3.30), (3.31), (3.32): the energy-stress tensor Πij has weight d− 1, the momentum Pi,

d, and the energy density Π, d+ 1. The energy flux Πi introduced in (3.42) has also weight

d. Furthermore, using (3.33) with δBS = 0 implies that

Π i
i = Π. (3.63)

On the matter sector, the gauge fields B and Bi are weight-zero, whereas ̺ is weight-d and

Ni, d− 1.

Weyl covariance can be implemented with the appropriate Galilean-Weyl covariant

derivatives for both time and space. These will be introduced latter in section 3.4, our

aim being here to foster on the case of conformal Killing fields and their possible role in

supporting conservation laws within Weyl-invariant Galilean dynamics.

Following [34, 36] a conformal isometry is generated by a vector field ξ satisfying

Lξa
ij = λaij , (3.64)

where

λ(t,x) =
2

d

(

∇̂iξ
ı̂ + θwξ t̂

)

. (3.65)

37For the conservation to occur in flat space, Pi should be a potential flow (also called irrotational, see [1]

section 9) i.e. obey Pi =
(

∂t + wj∂j

)

φi + ∂iφ for some set of functions φ(t, x) and φi(t, x) — scalar and

vector potentials. Then K =
(

∂t + wj∂j

)

φiW
i + ∂iφW i with W i = V i + wkΩ i

k and the conservation

works out ((3.57) vanishes) with current components κ − φiW
i and Ki − φW i. Notice that in contrast to

the present framework, the conservation is generally valid for free-particle motion on Newton-Cartan flat

spacetimes, as in that case the momentum is a total derivative (typically ẋi). Appendix C summarizes this

instance and provides the necessary details for making the statement sound.
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This set of partial differential equations is not sufficient for defining conformal Killing vectors

— again a consequence of the cometric degeneration. Besides, imposing a requirement similar

to (3.64) on the clock form θt̂ does not help since according to (3.38), the Lie derivative

of θt̂ is already proportional to θt̂ with factor (3.39). What is rather natural is to tune µ

versus λ so that the scaling of the metric be twice that of the clock form:38

2µ+ λ = 0. (3.66)

This is a consistent Weyl-covariant condition, leading to a reasonable set of conformal Killing

fields. Using the strong versus the weak definition of Newton-Cartan structures further

reduces the freedom for conformal isometries, and opens the Pandora box for investigating

conformal Galilean algebras in flat Newton-Cartan spacetimes: cga(d+1) and their multiple

variations. Discussing these in detail is beyond our scope and ample information can be

found in the quoted references.

Assuming Weyl invariance i.e. (3.63), and the presence of a conformal Killing field,

the conservation equations (3.41) and (3.42) can be exploited for computing K defined

in (3.57), (3.58) and (3.59):

K= −Π

(

λ

2
+ µ

)

+
Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

. (3.67)

The extra condition (3.66) defining the conformal Killing vectors of Newton-Cartan space-

times emerges naturally in the quest of conserved Galilean currents and gives K =
Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

6= 0. As for the ordinary Killings, a conformal Killing vector does not
guarantee a conservation law for Weyl-invariant Galilean dynamics.

3.2 Galilean hydrodynamics as a non-relativistic limit

Philosophy and large-c behaviour

Equations (3.41), (3.42) and (3.48) summarize the conservation properties of Galilean

dynamics on a general, curved and time-dependent space S, spatial section of a torsionless

Newton-Cartan spacetime R×S. They are general-Galilean-covariant and are a consequence

of this invariance, as much as the relativistic equations (2.1) and (2.2) reflect general

Riemannian covariance.

Fluid dynamics is more. Its description requires expressing the momenta in terms of

the velocity field v, the heat current Q, the stress tensor ΣΣΣ, together with local-equilibrium

thermodynamic variables such as e, p, h, ̺, µ, T and s, obeying further thermodynamic

laws (see appendix A), and ultimately entering the constitutive relations. A systematic

approach to this programme is based on the large-c expansion of relativistic hydrodynamics

in Zermelo frame, which is the natural pseudo-Riemannian ascendent of the present Galilean

framework. This method was applied successfully in [29], where the Eckart frame was

38More generally, one considers 2µ + zλ = 0, where z is the dynamical exponent i.e. minus the conformal

weight of Ω. Here, due to the close relationship of our Newton-Cartan spacetimes with relativistic ascendents,

the weight of Ω is inherited from the latter and z = 1. One also defines the level N = 2/z, which appears in

the conformal algebras emerging in flat Newton-Cartan spacetimes.
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implicitly assumed on the relativistic side, subsequently ignoring the role of the current

and the chemical potential. We will generalize it here in order to address the issue of the

non-relativistic hydrodynamic-frame invariance, which relies intimately on the behaviour of

the various observables.

The dependence with respect to the velocity of light is explicit in the relativistic

geometric data (see the metric (2.46)). This is our choice for making the bridge with

Newton-Cartan straightforward. As a consequence, the behaviour of kinematical observables

is also known — see (2.23), (2.24), (2.25), (2.51) and (2.52). We find in particular

u0 =
c

Ω
+ O (1/c) , ui =

vi − wi

Ω
+ O (1/c2) , (3.68)

and

σij = ξv
ij + O (1/c2) , (3.69)

Θ = θv + O (1/c2) , (3.70)

ωij =
1

Ω

(

∂[i(v − w)j]

)

+ O (1/c2) . (3.71)

The non-relativistic limit of thermodynamic variables is standard and is recalled in

appendix A. The precise relation of the Galilean density ̺ to the proper density ̺0 deserves

however a comment. Indeed, the density measured by an observer is the projection of the

current (2.4) onto the observer’s velocity. For instance, an observer at rest with respect to

the fluid, i.e. running with velocity u, finds

̺0 = −
1

c2
Jµu

µ. (3.72)

The density ̺ is the one measured by a fiducial observer of Zermelo frame. Since ̺ is the

“non-relativistic density,” this fiducial observer should have some “absolute” status. In

Minkowski spacetime we would have simply taken the inertial observer at rest in the inertial

frame at hand. In Zermelo it is natural to consider an observer with velocity uZ ≡ et̂ as

given in (3.3) because

uµ
Z
∇µu

ν
Z = 0, (3.73)

and thus this observer indeed defines a locally inertial frame.39 Hence we obtain

̺ = −
1

c2
Jµu

µ
Z

=
Ω

c
J0 = Ωγ̺0 + ji

vi − wi

c2Ω
, (3.74)

which naturally coincides with the hydrodynamic-frame invariant ̺0r introduced in (2.69).

This expression agrees with ref. [29] only in the Eckart frame, i.e. when ji = 0.

The behaviour of ̺0 in terms of ̺ at large c depends on the behaviour of ji and this

brings us to the heart of the discussion of the non-relativistic limit in hydrodynamics:

39This is precisely why it was stated earlier that a frame with velocity w = wi∂i was inertial in the

Newton-Cartan geometry (3.3), (3.4). Notice that the property (3.73) holds because Ω is a function of time

only, which is the emanation of the torsionless nature of the limiting Newton-Cartan structure, and enables

to define in turn an absolute Newtonian time in this Galilean limit. This framework, where no isometry is

assumed, is the closest we can go to the standard classical Newtonian physics on R × Ed with clock form dt.
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how do the stress tensor τij, the heat current qi and the non-perfect current ji behave at
large c? There is no absolute answer to these questions, it depends on the microscopic

properties of the system (the interactions in particular). These properties are encapsulated

in the transport coefficients appearing in the constitutive relations for τij , qi and ji as

derivative expansions. For instance, at first-derivative order τ(1)ij = −2ησij − ζhijΘ,

q(1)i = −κh ν
i

(

∂νT + T
c2 aν

)

and j(1)i = −h ν
i σTT∂ν

µ0

T
with a typical relationship among

the transport coefficients: κ = σT w2

T ̺2
0

(see e.g. ref. [10], where σT is referred to as the

charge conductivity). Under the reasonable assumption that η, ζ and κ (the shear and

bulk viscosities, and the heat conductivity) are of dominant order 1, σT is of order 1/c4

(due to w2). Since µ0 is of order c2 (rest-mass contribution in (A.4)) we conclude that τij

and qi are of order 1, whereas ji is of order 1/c2. For reasons that will become clear in the

discussion on hydrodynamic-frame invariance, we would like to be slightly more general at

this stage, and assume the following behaviour:

τij = −Σij + O (1/c2) , (3.75)

ql = c2rl + kl + O (1/c2) , (3.76)

jl = nl +
ml

c2
+ O (1/c4) . (3.77)

Following the above discussion, rl and nl are expected to vanish for ordinary non-relativistic

fluids. Their presence will disclose some interesting properties though.

Before we proceed with the Galilean fluid equations a comment should be made.

Considering several distinct orders in the expansion of the relativistic data amounts to allow

for a multiplication of the degrees of freedom in the Galilean limit (see the end of section 3.3).

This is accompanied with further dynamical (or possibly constraint) equations. Sometimes,

these degrees of freedom and their dynamics can emerge separately, by performing an

appropriate c2 rescaling in the relativistic data before taking the limit. This is how the

electric versus magnetic options occur, as e.g. in refs. [34, 101].

Inserting the expression (3.77) in (3.74), we find:40

̺0 = ̺−
1

c2

(

̺

2

(

v − w

Ω

)2

+
n · (v − w)

Ω

)

+ O (1/c4) . (3.78)

The latter can in turn be used inside (A.2) leading to

ε = c2̺+ ̺

(

e−
1

2

(

v − w

Ω

)2
)

−
n · (v − w)

Ω
+ O (1/c2) , (3.79)

where the first term is the rest energy, the second is the internal energy corrected by the

kinetic energy with respect to the local inertial frame, and the third is a contribution

originating from the leading term in the matter current (3.77). We already foresee that

this amounts to the presence of a spring or a sink that create or consume matter, and this

40Although lim
c→∞

Ωγ = 1, we must keep terms of order 1/c2 because of the rest mass contributions.
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will be confirmed when reaching the conservation equation. This situation is usually not

considered except when discussing diffusion or similar phenomena (see for instance [86],

chapter VI).

A last comment concerns the role of (A.2), or its large-c emanation (3.79). This

equation of thermodynamic nature, makes the bridge between energy-momentum and

matter conservations. As we will see soon, it establishes a relationship amongst Pi and Ni

respectively defined in (3.32) and (3.45) as the fluid momentum and the matter current.

Notice that if several charges and associated conserved currents are present, only one

will have a privileged relationship with the energy-momentum, being therefore affiliated

with mass conservation — and entering the thermodynamic relation (A.2), as mentioned in

appendix A.

Galilean momenta

The Galilean momenta defined earlier in (3.30), (3.31), (3.32), (3.44) and (3.45) will now

appear in the large-c expansion of the relativistic energy-momentum and current compo-

nents (2.63) and (2.65) in Zermelo frame, as explicit expressions in terms of the various

hydrodynamic and thermodynamic observables. This includes the energy current Πi intro-

duced in eq. (3.42) — and not a priori defined as a variation of the effective action with

respect to some conjugate variable. As we have already emphasized, the thermodynamic

laws set relationships amongst the energy-momentum and the matter.

Using eqs. (2.66), (2.67), (2.68), (2.69), (2.70) and (3.74), we obtain:

̺0r = ̺, (3.80)

jri = Ni +
1

c2
pi + O (1/c4) , (3.81)

where we introduced the leading and subleading matter currents

N i = ̺
vi − wi

Ω
+ ni, (3.82)

pi = mi −
n · (v − w) (vi − wi)

Ω2
. (3.83)

The subleading terms must be kept because they are multiplied in the expansions by the

rest-mass term and contribute the equations. Anticipating the next steps, we set

P i = ̺
vi − wi

Ω
+ ri. (3.84)

We recognize in Pi (defined generically in (3.31) — indices raised with aij) a slight extension

of the usual fluid momentum, while the matter current N i (introduced in (3.45)) is related

to the former as

N i = P i + ni − ri. (3.85)

The more standard equality N i = P i occurs when ni = ri.
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Similarly we find for the energy-momentum

εr = c2̺+ Π + O (1/c2) , (3.86)

qri = c2Pi + Πi + pi + O (1/c2) , (3.87)

praij + τrij = Πij + O (1/c2) (3.88)

with41

Πij = ̺
(vi − wi) (vj − wj)

Ω2
+ paij − Σij + 2

(v(i − w(i)rj)

Ω
, (3.89)

Π = ̺

(

e+
1

2

(

v − w

Ω

)2
)

+
(2r − n) · (v − w)

Ω
, (3.90)

Πi = ̺
vi − wi

Ω

(

h+
1

2

(

v − w

Ω

)2
)

−
vj − wj

Ω
Σ i

j

+
ri

2

(

v − w

Ω

)2

+
r · (v − w) (vi − wi)

Ω2
+ ki −mi, (3.91)

the explicit expressions for (3.30) and (3.32). Observe that we have split the order-1

contribution in (3.87) as Πi + pi. This is not arbitrary because pi, defined in (3.83), occurs

also as subleading term in the matter current (3.81), and these will annihilate in the final

equations, which will turn exactly as (3.41), (3.42) and (3.48). We recover in the above

formulas the fluid energy-stress tensor, energy density and energy current, as defined in

ref. [1] §§ 15 and 49, generalized though in a covariant fashion for arbitrary torsionless

Newton-Cartan geometries. They all receive exotic contributions from the ni and ri, absent

in standard Galilean fluids. The combination

Ql = kl −ml, (3.92)

inside the energy current, appears as the Galilean heat current. It receives contributions

from both the relativistic heat current qi and the relativistic non-perfect matter current

ji (see (3.76) and (3.77)). This is exactly how it should: in Landau-Lifshitz frame qi = 0

and the Galilean heat current originates exclusively from the relativistic non-perfect matter

current, whereas in Eckart frame where ji = 0 it is the other way around. A more complete

discussion on hydrodynamic frames will be brought off in a short while. As anticipated

in footnote 13, we can however notice that for fluids without conserved current, although

sensible, the Landau-Lifshitz hydrodynamic frame is not suited for the Galilean limit — it

leads to Qi = 0 and Eckart frame is always preferred [8].

41The energy current Πi defined in (3.91) differs slightly from the expression (3.44) of [29], even at

vanishing r. In that reference, neither were the momenta defined as variations of an effective action, nor was

the hydrodynamic-frame invariance a guide.
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Hydrodynamic equations

The fluid equations (2.1) and (2.2) translate the vanishing of

cΩ∇µT
µ0 = c2

(

C+ ∇̂i

(

ri − ni
))

+ ∇̂ip
i + E+ O

(

1

c2

)

, (3.93)

∇µT
µ
i = Mi + O

(

1

c2

)

, (3.94)

∇µJ
µ = C+

1

c2
∇̂ip

i + O

(

1

c4

)

, (3.95)

with

E=
1

Ω

D̂Π

dt
+ θwΠ + Πij γ̂

wij + ∇̂iΠ
i, (3.96)

Mi =
1

Ω

D̂Pi

dt
+ θwPi + Pj γ̂

wj
i + ∇̂jΠij , (3.97)

C=
1

Ω

D̺̂

dt
+ θw̺+ ∇̂iN

i. (3.98)

Two fluid equations emerge from (3.93) because of the presence of order-1 and order-c2

terms that should both be zero in the infinite-c limit. The latter should be taken after we

combine (3.95) with (3.94) as

cΩ∇µT
µ0 = c2∇̂i

(

ri − ni
)

+ E+ O (1/c2) , (3.99)

leading to

∇̂i

(

ri − ni
)

= 0, (3.100)

and

E= 0, (3.101)

which is the fluid energy equation. Using (3.85), eq. (3.100) is recast as

∇̂i

(

N i − P i
)

= 0, (3.102)

which is a constraint equation for the divergences of the matter current and the fluid

momentum. Finally, (3.94) provides the fluid momentum equation

Mi = 0, (3.103)

whereas (3.95) exhibits the continuity equation, which thanks to (3.102) also reads:42

C= 0, (3.104)

possibly recast in several forms

C=
1

Ω

D̺̂

dt
+ θw̺+ ∇̂iP

i =
1

Ω

d̺

dt
+ θv̺+ ∇̂ir

i =
1

Ω

d̺

dt
+ θv̺+ ∇̂in

i = 0. (3.105)

42This is the typical equation describing phenomena, where several fluid components are present but are

not separately conserved. Examples are diffusion or superfluid dynamics (e.g. [86], chapters VI and XVI,

eqs. (58,3) or (139,3)).
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We can now summarize our findings. The Galilean fluid equations on a general back-

ground are by essence fully covariant under Galilean diffeomorphisms (alternative views

about this statement are available in ref. [29]) and extend the standard hydrodynamic equa-

tions on flat Euclidean space with absolute time. The momentum equation (3.103) coincides

with (3.41), whereas the energy equation (3.101) is (3.42). Similarly, the continuity equa-

tion (3.105) is identified with (3.48), provided the matter current and the fluid momentum

have equal divergence (3.102). This requirement is subsequent to the relationship (3.79),

which finally relates the energy-momentum equations with the matter equation.

Strictly speaking, eq. (3.105) is not a conservation law. Integrated inside a static

domain V, the density ̺ varies in time, not only because of the expansion or the contraction

of V (term ̺θv), but also due to the flux of n through ∂V. Using (3.51) we find:

1

Ω

d

dt

∫

V

ddx
√
a ̺+

∫

∂V
̺
⋆v

Ω
= −

∫

∂V
⋆n. (3.106)

Allegedly, n appears as the flux of matter brought about by a sink or a spring. Furthermore,

eq. (3.100) transcribes that matter loss or gain goes along with heat loss or gain. In usual

Galilean hydrodynamics ri is required to vanish, which then forbids such spring or of

matter. At the same time, in those cases ni = 0, and the fluid momentum and matter

current are identical: Pi = Ni. The systems under investigation here are more general and

possess a remarkable property, which is broken in ordinary non-relativistic fluids: Galilean

hydrodynamic frame invariance.

The fate of hydrodynamic-frame invariance

The relativistic fluid equations are invariant under arbitrary unimodular transforma-

tions of the velocity field u, captured in43 vk → vk + δvk(t,x), provided they are ac-

companied with the transformations of all other dynamical quantities, as described in

eqs. (2.57), (2.58), (2.59), (2.61) and (2.62). Does this survive in the Galilean limit?

The intuitive answer to this question is no. The velocity field is a physical and observable

quantity and only variations by constant values in directions associated with isometries

of the underlying Galilean spacetime, if any, might leave the equations invariant. The

fluid density ̺ is also physical and has furthermore a microscopic definition in terms of an

observable expectation value. It is hard to imagine how one could maintain the continuity

equation invariant without altering the density. Although this might still be considered as

an abstract field redefinition,44 it would be at the expense of giving up the physical meaning

of the various quantities at hand.

The above intuitive answer seems to contradict the mathematical structure of the

equations describing the dynamics. Indeed, on the one hand the operators entering equa-

tions (3.96), (3.97) and (3.98) are velocity-independent; on the other hand, the momenta ̺,

43The infinitesimal local Lorentz transformations are parameterized with Lorentz boost and rotation

generators, V i(t, x) and Ωij(t, x) — antisymmetric, as follows: δvi = V i − V j (vj −wj)(vi−wi)
c2Ω2 + Ωij (vj − wj).

In the Galilean limit the general local velocity transformation is thus δvi = V i + Ωij (vj − wj) — Galilean

boosts and rotations.
44This point of view, slightly different from ours, is adopted to some extent in [63, 64]. We acknowledge a

rich exchange with P. Kovtun on that matter.
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Ni, Pi, Π, Πi and Πij , appear as coefficients in the expansion of the hydrodynamic-frame-

invariant relativistic momenta (3.80), (3.81), (3.86), (3.87) and (3.88). It is however too

naive to infer that the Galilean momenta are automatically invariant. They are obtained

assuming a behaviour of the stress, and of the heat and matter currents with respect to

c2 (eqs. (3.75), (3.76), (3.77), (3.78), (3.79)), and this behaviour may or may not be stable

under velocity transformations.

The precise answer calls for a thorough examination of the transformations (2.57), (2.58),

(2.59), (2.61) and (2.62) in the infinite-c limit, and of their effect on the non-relativistic

quantities introduced through (3.75), (3.76), (3.77), (3.78) and (3.79). We find the following

transformations under the action of general local Galilean boosts and rotations:45

aijδp− δΣij = −
2

Ω
r(iδvj), (3.107)

δri = −
̺

Ω
δvi, (3.108)

δki =
δvi

Ω

(v − w) · n

Ω
+
δvj

Ω

(

vi − wi

Ω
rj − ̺

(vi − wi)(vj − wj)

Ω2
− ̺haij + Σij

)

,

(3.109)

δQi =
δvj

Ω

(

(rj − nj)
vi − wi

Ω
− ̺haij + Σij

)

, (3.110)

̺δe = (ni − 2ri)
δvi

Ω
, (3.111)

δ̺ = 0, (3.112)

δni = −
̺

Ω
δvi, (3.113)

δmi =
δvj

Ω

(

nj − ̺
vj − wj

Ω

)

vi − wi

Ω
+
δvi

Ω

(v − w) · n

Ω
, (3.114)

and thus

δ
(

ni − ri
)

= 0 . (3.115)

In turn, this action translates into the invariance of the fundamental momenta, i.e. the fluid

energy density, the fluid energy current, the fluid energy-stress tensor, the fluid momentum,

the matter density and the matter current:

δΠ = 0, δΠi = 0, δΠij = 0, δP i = 0, δ̺ = 0, δN i = 0. (3.116)

These imply that the Galilean fluid equations are invariant under an arbitrary local redefi-
nition of the fluid velocity field vi(t,x).

This result is important but should be reckoned with great care. On the one hand,

the non-relativistic density ̺ is not sensitive to the velocity field v (in contrast with the

relativistic result (2.61)). On the other hand, the standard momentum ̺vi−wi

Ω does depend

on the velocity. The actual momentum emerging here, P i displayed in eq. (3.84), is therefore

invariant thanks to ni. Hence, the non-conservation of matter discussed previously saves

45Notice the following useful formulas: δθv = 1
Ω

∇̂iδvi and δξv
ij = 1

Ω

(

∇̂(iδvj) − 1
d

aij∇̂kδvk
)

, whereas

δθw = δξw
ij = 0.
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hydrodynamic-frame invariance. Put differently, this invariance is disabled upon demanding

a genuine conservation i.e. ni = 0: truly conserved, ordinary non-relativistic fluids are
not hydrodynamic-frame-invariant. For these fluids the behaviours of the relativistic heat

and matter currents are ql = kl + O (1/c2) and jl = ml

c2 + O (1/c4). Following our earlier

discussion these behaviours are physical, but are at the same time unstable under velocity

transformations.46

Although negative, our last conclusion makes clear the origin of the physically expected

breaking of velocity invariance in non-relativistic fluids obeying an authentic conservation

equation. In this respect, it is worth quoting a substantial literature on trials to explore

the symmetries of Navier-Stokes equations (i.e. first-derivative truncated Galilean fluid

equations) in their compressible or incompressible form. A nice overview is given in [69],

from which it comes out that most of these extra symmetries are probably accidental,

and bound to the specific truncation or system (compressible/incompressible), rather than

emanating from the original relativistic hydrodynamic-frame invariance.

Heat and entropy equations

As we have emphasized in section 2.1, the investigation of hydrodynamic-frame transforma-

tions should be completed with the analysis of the entropy current, which is also invariant

in the relativistic theory. We will not pursue this endeavour any further, which provides

ultimately the transformations δs, δp, δT , and δµ. Instead, we will combine the above

results in order to reach the non-relativistic entropy equation.

As a first step we can perform the usual combination E− vi−wi

Ω Mi, which leads to the

heat equation. It takes the following form:

1

Ω

d

dt

(

e̺+
(v − w) · (r − n)

Ω

)

+

(

h̺+
(v − w) · (r − n)

Ω
−

Σ

d

)

θv − ξv
ijΣij

+ ∇̂i

(

Qi −
vi − wi

Ω

(v − w) · (r − n)

Ω

)

+
ri

Ω

D

dt

vi − wi

Ω
−

1

2

(

v − w

Ω

)2

∇̂jr
j = 0.

(3.117)

This equation can be alternatively established within the relativistic framework, by consider-

ing −uν∇µT
µν as in (2.21), and its subsequent Galilean limit. Notice that due to the explicit

appearance of the velocity field (uν or vi), the equation at hand is hydrodynamic-frame

invariant only on-shell.

46The requirements ri = 0 or ni = 0 are not compatible with the transformations (3.108) or (3.113).

Observe however that a choice, stable under hydrodynamic-frame transformations, is ni = ri, thanks

to (3.115). With this, P i = N i and we are the closest possible to ordinary non-relativistic fluids, without

genuine conservation though.
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Assuming the thermodynamic properties47 of section A and using in particular eq. (A.15)

together with the continuity equation (3.105), eq. (3.117) is recast as follows:

̺T

Ω

ds

dt
+

1

Ω

d

dt

(

(v − w) · (r − n)

Ω

)

=

(

Σ

d
−

(v − w) · (r − n)

Ω

)

θv + ξv
ijΣij

− ∇̂i

(

Qi −
vi − wi

Ω

(v − w) · (r − n)

Ω
− ri

(

h+
1

2

(

v − w

Ω

)2
))

− ri

(

1

Ω

D

dt

vi − wi

Ω
+ ∇̂i

(

h+
1

2

(

v − w

Ω

)2
))

, (3.118)

which can also be reached from the relativistic equation (2.22) in the infinite-c limit. This

equation is intricate and can be somehow simplified by setting n = r, which does not spoil

the Galilean hydrodynamic-frame invariance (again realized on-shell):

̺T

Ω

ds

dt
=

Σ

d
θv + ξv

ijΣij − ∇̂i

(

Qi − ri

(

h+
1

2

(

v − w

Ω

)2
))

− ri

(

1

Ω

D

dt

vi − wi

Ω
+ ∇̂i

(

h+
1

2

(

v − w

Ω

)2
))

. (3.119)

The latter resembles the entropy equations found when studying diffusion phenomena or

dissipative processes in superfluids (see eqs. (58,6) and (140,4) in [86]). The combination

h + 1
2

(

v−w

Ω

)2
materializes a sort of effective chemical potential for the current r. For

vanishing r, (3.119) is the standard non-relativistic entropy equation in arbitrary Galilean

backgrounds. We will not pursue this discussion any longer.

3.3 A comment on Galilean conservation versus non-relativistic limit

The hidden local U(1)

We have so far pursued two distinct approaches. The first (section 3.1) relies on the

requirement of Galilean general covariance for a system defined on a (torsionless) Newton-

Cartan spacetime — possibly but not necessarily — obtained as an infinite-c limit of a

pseudo-Riemannian geometry in Zermelo frame. The second (section 3.2) amounts to

taking the c → ∞ limit after the general-covariance conservation has been imposed on the

relativistic system.

It is legitimate to wonder whether the two approaches are equivalent, in other words,

whether the conservation requirement and the c → ∞ limit commute.

In order to present a clean answer to this question, we must consider the simplest

possible situation. Aiming at this, we focus on the energy and momentum only (no matter)

and make no reference to their expressions in terms of fluid variables such as density,

thermodynamic quantities, velocity etc. Starting with a Newton-Cartan set up, we define

47This might turn naive due to the extra underlying degrees of freedom carried by the effective cre-

ation/destruction currents n and r. Investigating this issue in not in our agenda here.

– 38 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

the energy-stress Πij , the momentum Pi and the energy density Π as in (3.30), (3.31)

and (3.32). General Galilean covariance translates into two equations, (3.41) and (3.42),

which reveal a novel, a priori undetermined vector Πi, interpreted as the energy current.

Alternatively, one may work in a relativistic spacetime equipped with Zermelo coordi-

nates, and a full-fledged and conserved energy-momentum tensor Tµν with the following

large-c expansion:






















Ω2T 00 = εr = Π + O (1/c2)

cΩT 0
i = qri = c2Pi + Πi + O (1/c2)

Tij = praij + τrij = Πij + O (1/c2) .

(3.120)

This determines the energy current Πi as a subleading term with respect to the momentum
Pi in the expansion of the relativistic heat current. Furthermore, the expansion of the

relativistic equations is now







cΩ∇µT
µ0 = c2∇̂jP

j + E+ O (1/c2) = 0

∇µT
µ
i = Mi + O (1/c2) = 0.

(3.121)

with E and Mi given in eqs. (3.96) and (3.97). We recover, as in the first way, the Galilean

conservation equations (3.41) and (3.42), supplemented now by an extra constraint on the
current Pi:

∇̂jP
j = 0. (3.122)

The punch line of the current discussion is that taking the c → ∞ limit followed by the

general-covariance requirement is less restrictive than following the pattern in the reverse

order. With this latter order, not only the energy current is provided explicitly but the fluid

current obeys an extra constraint equation. The reason for this is simple. When the infinite-c

limit is the last step, the system secretly remembers the full diffeomorphism invariance

present at the first step, which contracts during the limit into the Galilean covariance

accompanied with a central extension [88]. This extra hidden local U(1) invariance accounts

for the supplementary equation (3.122). When the Galilean diffeomorphism invariance is

the second step, the x-independence of ξt leaves Πi undetermined, and no further equation

is found.

All this shows how the full — as opposed to (3.122) — continuity equation (3.105)

1

Ω

D̺̂

dt
+ θw̺+ ∇̂iP

i = 0, (3.123)

can emerge provided εr contains an extra c2̺ term, without introducing a relativistic

conserved current with a local U(1) symmetry, as in [29].48 When such an explicit U(1)

current is present, as in sections 3.1 and 3.2, it is promptly identified with the hidden one

through (3.102), originating in the deep relationship between energy and mass, eq. (A.2).

48With this method, however, the relativistic hydrodynamic frame is locked to Eckart’s since the Galilean

heat current Qi in (3.92) receives only the contribution ki.
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More general abstract equations

The large-c behaviours (3.80), (3.81), (3.86), (3.87) and (3.88) (or a simpler version of the

latter without ̺ (3.120)) are motivated by the physics standing behind these momenta,

captured in the behaviours of transport coefficients and materialized in (3.75), (3.76)

and (3.77). As an echo to the comments made when setting the latter, one could be more

abstract and consider order-c2 terms in the stress tensor τij as we have already introduced in

the heat and matter currents, and possibly further powers in those (rl and nl were already

beyond normalcy, but introduced as a mean of restoring hydrodynamic-frame invariance —

or demonstrating its breaking in genuine non-relativistic fluids). The net effect of this sort

of options is to bring the energy-momentum tensor in the form






















Ω2T 00 = εr = c2̺+ Π + O (1/c2)

cΩT 0
i = qri = c4P̃i + c2Pi + Πi + O (1/c2)

Tij = praij + τrij = c2Π̃ij + Πij + O (1/c2) ,

(3.124)

and produce at infinite c a genuine hierarchy of equations, which are replicas of those we

have already met:


















































(

1
Ω

D̂

dt
+ θw

)

Π + Πij γ̂
wij + ∇̂iΠ

i = 0
(

1
Ω

D̂

dt
+ θw

)

̺+ Π̃ij γ̂
wij + ∇̂iP

i = 0

∇̂jP̃
j = 0

(

1
Ω

D̂

dt
+ θw

)

Pi + Pj γ̂
wj

i + ∇̂jΠij = 0
(

1
Ω

D̂

dt
+ θw

)

P̃i + P̃j γ̂
wj

i + ∇̂jΠ̃ij = 0.

(3.125)

This sort of situation is the archetype of multiplication of degrees of freedom, mentioned

earlier. It comes naturally thanks to the existence of a parameter c, which makes it possible

to organize a Laurent expansion. It is more artificial to interpret this system as conservation

equations portraying local symmetries, because this would require introducing further

variables, conjugate to the new momenta, such as ãij , w̃i, Ω̃ etc. We will not elaborate

on that, but keep the structure in mind for comparison with the forthcoming analysis

of section 4.3 about Carrollian fluids. For the latter, no physical intuition can possibly

serve a as guide — basic thermodynamics is even missing. Only a blind 1/c2 expansion

applies, as suggested by the only known application field of Carrollian fluids, which is flat

holography [25–28]. Then the hierarchy obtained is dual to (3.125), and this plainly justifies

our present excursion from standard, physical non-relativistic fluids.

Multiplication of degrees of freedom occurs also in the matter sector. On could indeed

abstractly assume that some matter current behaves like

Ω

c
I0 = ι0r = c2κ̃+ κ+ O (1/c2) , Ik = irk = c4 ˜̃Kk + c2K̃k +Kk + O (1/c2) . (3.126)

Using these expansions in the relativistic divergence of the matter current Jµ in Zermelo

background we find:

∇µI
µ = c4 ˜̃

K+ c2K̃+ K+ O (1/c2) (3.127)
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with






















˜̃
K= ∇̂j

˜̃Kj

K̃=
(

1
Ω

D̂

dt
+ θw

)

κ̃+ ∇̂jK̃
j

K=
(

1
Ω

D̂

dt
+ θw

)

κ+ ∇̂jK
j ,

(3.128)

which must vanish if ∇µI
µ = 0.

As an aside application of the latter results, we can insert the behaviour (3.124) inside

the components (2.76) and (2.77) of a relativistic conserved current resulting from the

combination of the energy-momentum tensor with a Killing field. We find thus



















































κ = ξ ı̂Pi − ξ t̂Π

κ̃ = ξ ı̂P̃i − ξ t̺̂

Ki = ξ ̂Πij − ξ t̂Πi

K̃i = ξ ̂Π̃ij − ξ t̂Pi

˜̃Ki = −ξ t̂P̃i,

(3.129)

where κ and Ki are precisely as anticipated in (3.58) and (3.59). On-shell i.e. assum-

ing (3.125), and using (3.53) we find for (3.128)























˜̃
K= 0

K̃= P̃i

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

K= Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

,

(3.130)

in agreement with the result (3.61) for the last two. The first vanishes, and this shows that

even though the existence of a Killing field does not guarantee the conservation of a Galilean

current, such a conservation can occur if the appropriate vector vanishes. Ordinary Galilean

fluids as those studied in section 3.2 have P̃i = Π̃ij = 0 in (3.124) so that ˜̃Kj = 0. Hence

two currents survive, one with K 6= 0 (non-conserved) and another, which is conserved

(K̃= 0) but already known. Indeed, it is the very same that appears inside the ordinary

continuity equation, and no extra conservation arises as a consequence of isometries.

One might be legitimately skeptical about the validity of the above conclusion on

non-conservation: how can the bona fide law ∇µI
µ = 0 of a relativistic current Iµ = ξνT

µν

based on a Killing field ξ of a pseudo-Riemannian spacetime, break down suddenly in the

infinite-c limit? The answer is captured by the very definition of a Galilean Killing, which

ultimately leaves non-vanishing terms in the divergence. The precise way this comes about

is exposed in appendix D.1.

3.4 Massless carriers and Weyl properties

Generic hydrodynamic equations

Although massless particles are ultra-relativistic, a macroscopic collection of them forming a

fluid can be compatible with Galilean symmetries. The latter appear as a phenomenological
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emanation and are agnostic on their microscopic origin. Such a system can also have a

conserved current and a chemical potential, which are not related to mass, but to some

charge. Some examples of this sort are mentioned in appendix A (see ref. [89]) together

with their basic thermodynamic properties.

The difference with respect to the previous section (section 3.2) is the Galilean limit.

Here, instead of (3.78), we can simply consider

̺0 = ̺+ O (1/c2) , ε = ̺e+ O (1/c2) , (3.131)

where e is the energy per charge unit and ̺ is the charge volume density — as opposed

to proper volume — and ε = ̺e the non-relativistic energy density (see also appendix A).

Again, our goal is to find the fundamental variables as well as the dynamical equations,

and probe the behaviour of the latter under Galilean hydrodynamic-frame transformations.

Why do we expect this sort of system be potentially Galilean hydrodynamic-frame

invariant? A gas of photons, perhaps under some isotropy and homogeneity requirement

regarding interactions, gives no handle for measuring a global velocity. In other words,

we do not expect vi to enter the hydrodynamic equations. This reasoning is not a proof,

but a guideline to pursue here. For that, we will adopt again the behaviours (3.75), (3.76)

and (3.77) for the stress tensor, the heat and the charge currents, even though we are

aware that on physics grounds ri and ni are bound to vanish. For the charge current, the

subleading term ml turns out to be irrelevant here because of the absence of rest mass.

Equations (2.66), (2.67), (2.68), (2.69) and (2.70), now give:

̺0r = ̺, jri = Ni + O (1/c2) (3.132)

with Galilean charge current

N i = ̺
vi − wi

Ω
+ ni. (3.133)

From the energy-momentum tensor one obtains

εr = Π + O (1/c2) , (3.134)

qri = c2Pi + Πi + O (1/c2) , (3.135)

praij + τrij = Πij + O (1/c2) , (3.136)

which coincides with (3.120), where

Πij = paij − Σij + 2
(v(i − w(i)rj)

Ω
, (3.137)

P i = ri, (3.138)

Π = ε +
2r · (v − w)

Ω
, (3.139)

Πi = ((ε + p)aij − Σij)
vj − wj

Ω
+
ri

2

(

v − w

Ω

)2

+
r · (v − w) (vi − wi)

Ω2
+ ki, (3.140)

are the explicit expressions for (3.30), (3.31) and (3.32), as well as for the energy current

Πi, which will appear in the energy equation (3.42). The Galilean heat current receives now

a single contribution as

Ql = kl. (3.141)

– 42 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

For the fluid under consideration, the structure of the conservation equations is as

follows (actually as in (3.121) because the energy-momentum (3.134), (3.135), (3.136) is as

in (3.120)):

cΩ∇µT
µ0 = c2∇̂jr

j + E+ O (1/c2) , (3.142)

∇µT
µ
i = Mi + O (1/c2) , (3.143)

∇µJ
µ = C+ O (1/c2) , (3.144)

with E, Mi and C as in (3.96), (3.97), (3.98). At infinite c the hydrodynamic equations are

again (3.101), (3.103), (3.104), and we recover eqs. (3.41), (3.42) and (3.48), as expected,

plus the extra equation (same as (3.122))

∇̂jr
j = 0, (3.145)

which is absent when the unphysical vector rj originating from the c2 term of the relativistic

heat current vanishes. The difference with respect to the massive case studied in the

previous section dwells in the expression of the momenta (energy-stress tensor, fluid current,

fluid energy density and fluid energy current — the charge current is the same as the matter

current before).

We can now combine the above results in order to reach the heat and next the entropy

equations. Equivalently these are obtained as infinite-c limits of eqs. (2.21) and (2.22). We

find for the former

E−
vi − wi

Ω
Mi =

1

Ω

d

dt

(

ε +
(v − w) · r

Ω

)

+

(

ε + p+
(v − w) · r

Ω
−

Σ

d

)

θv − ξv
ijΣij

+ ∇̂i

(

Qi −
vi − wi

Ω

(v − w) · r

Ω

)

+
ri

Ω

D

dt

vi − wi

Ω
= 0. (3.146)

For the entropy equations there are two options. If no conserved charge current exists, the

equation (3.104) is immaterial, the chemical potential vanishes and (A.19) gives dε = Tdσ,

which can be substituted in (3.146). This happens e.g. for a gas of photons. If a conserved

charge current is available then ε can be traded for ̺e, ε + p for ̺h, σ for ̺s, and

using (A.18), (A.19) and (3.104) one obtains

1

Ω

d̺e

dt
=
̺T

Ω

ds

dt
− ̺hθv − h∇̂in

i, (3.147)

which can be inserted back in (3.146):

̺T

Ω

ds

dt
+

1

Ω

d

dt

(

(v − w) · r

Ω

)

+

(

(v − w) · r

Ω
−

Σ

d

)

θv − ξv
ijΣij − h∇̂in

i

+ ∇̂i

(

Qi −
vi − wi

Ω

(v − w) · r

Ω

)

+
ri

Ω

D

dt

vi − wi

Ω
= 0. (3.148)

Given the above Galilean hydrodynamical equations, one may reconsider their behaviour

under velocity local transformations. The absence of rest mass for the carriers modifies
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the scalings with respect to the speed of light, and possibly the invariance properties.

Bringing together the transformations (2.57), (2.58), (2.59), (2.61) and (2.62), and the

scalings (3.75), (3.76), (3.77) and (3.131), we find in the infinite-c limit that δ̺ and δni are

still as in (3.112) and (3.113), while

aijδp− δΣij = −
2

Ω
r(iδvj), (3.149)

δri = 0, (3.150)

δki = δQi

=
δvj

Ω

(

vi − wi

Ω
rj − ̺haij + Σij

)

, (3.151)

δǫ = ̺δe

= −2ri
δvi

Ω
. (3.152)

These transformations ensure the invariance of the Galilean momenta as in eqs. (3.116),

which thus implies that for fluids consisting of massless particles, the Galilean fluid equations
established above are invariant under arbitrary hydrodynamic frame transformations.49

One should stress that, thanks to (3.150), the hydrodynamic-frame invariance holds

even when ri = 0, which is the physically interesting situation, following our previous

discussion on the behaviour of the relativistic heat current. The momentum equation

obtained from (3.97) greatly simplifies in this case:

Mi = ∂ip− ∇jΣ j
i = 0. (3.153)

Nonetheless, due to (3.113), hydrodynamic-frame invariance does not resist when ni is

required to vanish in the charge current, which is necessary for the continuity equa-

tion (3.98), (3.104) to be a genuine conservation. This caveat, which opposes again

hydrodynamic-frame invariance to conservation, is evaded precisely for fluids without con-

served charge, as are photon gases, which are therefore truly hydrodynamic-frame-invariant

in the Galilean regime with entropy equation (for the physical situation where ri = 0)

T

Ω

dσ

dt
+

(

ε + p−
Σ

d

)

θv − ξv
ijΣij + ∇̂iQ

i = 0. (3.154)

Weyl invariance

Galilean groups can accommodate conformal extensions. The subject has generated an

abundant literature, part of which is already quoted here [33, 34, 38, 52, 53] — more can

be found in those references. The analysis of conformal symmetry in non-relativistic fluid

dynamics has been in the agenda of many groups. No real guiding principle has been followed

though, the search has been usually blind and the output often looks accidental.50 From

the fluid perspective on non-isometric and non-conformal-isometric backgrounds, conformal

49Equations (3.146) and (3.148) are hydrodynamic-frame-invariant only on-shell.
50Reference [69] makes better contact with the relativistic fluid equations, and provides a nice and critical

overview of the field.

– 44 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

symmetry is rather meant to be Weyl symmetry, which is expected to portray the dynamics

when no massive excitations are present. This instance was touched upon in section 3.1,

when presenting the basic features of Newton-Cartan geometry, and will be considered in

the present section from the perspective of the large-c limit in Zermelo backgrounds.

The fundamental quantities of the Zermelo geometry (2.46) behave as follows under a

Weyl transformation:

aij →
1

B2
aij , wi → wi, wi →

1

B2
wi, Ω →

1

B
Ω , (3.155)

and since Ω depends on time only, the last of (3.155) imposes B = B(t). The veloc-

ity components uµ have weight 1. This gathers the following for the ordinary spatial

fluid velocity:

vi → vi, vi →
1

B2
vi. (3.156)

With this at hand, one can wonder what is the Galilean Weyl-covariant derivative,

acting on Galilean Weyl-covariant tensors. From a purely mathematical perspective taming

the connections on Newton-Cartan (or Carrollian) geometries is a thriving subject (see

e.g. [38–40]). We will here answer modestly this question by examining the infinite-c

limit of the connection (2.34) and the corresponding Weyl-covariant derivative used in the

relativistic case. As we will also witness later in the Carrollian side, this splits into time

and space Weyl derivatives, associated with time and space Weyl connections, inherited

from the limit of A given in (2.34). Owing to the fact that

lim
c→∞

ΩcA0 = −
θv

d
, lim

c→∞
Ai = 0, (3.157)

there is no spatial Weyl connection in the Galilean limit. The ordinary Galilean spatial

covariant derivative ∇̂i used here as the usual d-dimensional metric-compatible and torsion-

less covariant derivative with connection coefficients (3.8) (possibly time-dependent since

generally aij = aij(t,x)) is thus Weyl-covariant on its own right. This is not a surprise

since a Weyl rescaling with B(t) leaves the Christoffel symbols (3.8) unaltered.

The Galilean time covariant derivative D

dt
given in (3.25) is not Weyl-covariant, though.

It can be promoted to a Weyl-covariant Galilean time derivative Dt thanks to θv, which

transforms indeed as a connection:

θv → Bθv −
d

Ω
∂tB. (3.158)

Consequently, if Sij...
kl... are the components of a weight-w Galilean tensor, then

1

Ω
DtS

ij...
kl... =

(

1

Ω

D

dt
+
w

d
θv

)

Sij...
kl... (3.159)

are the components of Galilean tensor with weight w + 1. Observe that the components of

the Galilean shear given in (3.18) is of weight −1:

ξv
ij →

1

B
ξv

ij . (3.160)
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The Weyl transformation (3.158) holds equally for θw defined in (3.17), and so does in

fact (3.160) for ξw
ij defined in (3.16). One can therefore introduce an alternative Galilean

Weyl-covariant time derivative, defined in purely geometrical terms:51

1

Ω
D̂tΦ =

(

1

Ω

D̂

dt
+
w

d
θw

)

Φ, (3.161)

1

Ω
D̂tVi =

(

1

Ω

D̂

dt
+
w + 1

d
θw

)

Vi, (3.162)

for weight-w Galilean scalars or forms, extendable by the Leibniz rule. For convenience,

both Dt and D̂t will be used in the following and should not be confused.

Equipped with the above tools and imposing Weyl invariance (3.63), the fundamental

equations (3.41), (3.42) and (3.48) are recast as follows:52

1

Ω
D̂tPi + Pjξ

wj
i + ∇̂jΠij = 0, (3.163)

1

Ω
D̂tΠ + Πijξ

wij + ∇̂iΠ
i = 0, (3.164)

1

Ω
D̂t̺+ ∇̂iN

i = 0. (3.165)

They are Weyl-covariant of weights d+ 1, d+ 2 and d+ 1.

When dealing with Galilean fluids, the Galilean momenta ̺, Ni, Pi, Π, Πi and Πij

emerge in the large-c expansion of ̺r0, jri, εr, qri and praij + τrij (see eqs. (3.132), (3.134),

(3.135), (3.136)). The weights inherited in this limiting procedure (the relativistic weights

are available in table 1) are in agreement with those previously defined through the effective-

action definition of the momenta. These momenta are expressed in terms of the Galilean

velocity vi together with the usual list of variables emanating from the relativistic stress,

heat current and charge/matter current.

From the expressions (3.137), (3.138), (3.139), (3.140), we infer that the forms ri, ki

(and thus Qi) have weight d, while ni and the Galilean stress Σij have weight d− 1. The

Weyl condition53 (3.63) now reads ε = dp− Σ. The stress being considered as a correction

to perfect fluids, absent at global thermodynamic equilibrium, this condition splits into the

conformal equation of state

ε = dp, (3.166)

accompanied with the Weyl-invariance requirement

Σ ≡ Σija
ij = 0. (3.167)

Other thermodynamic observables like e, T , µ or h have all weight 1, and s is weight zero.

51This sort of Weyl-covariant derivative is insensitive to the fluid velocity and is thus better suited for

discussing hydrodynamic-frame invariance. Its relativistic ascendent is a Weyl connection AZ constructed,

as explained generally in footnote 16, with the vector field uZ = et̂ defined in (3.3) (and used in section 3.2),

which has norm −c2 in the Zermelo background (2.46). This connection exists irrespective of the fluid

velocity: AZ = θw

d
Ωdt.

52We saw in section 3.1 that Πij has weight d − 1, Pi and Πi weight d, and Π weight d + 1; similarly ̺ is

weight-d and Ni weight d − 1.
53Notice in passing that the Weyl-invariance requirement (3.63) determined from the effective action, is

also the large-c expression of the relativistic condition T µ
µ = 0 discussed at the end of section 2.1, obtained

using (2.64) with (3.134), (3.135) and (3.136).
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It is important to stress that the above analysis is consistent because we have been

systematically referring to fluids with microscopic massless degrees of freedom, and have

thus used eqs. (3.132), (3.133), (3.134), (3.135), (3.136), (3.137), (3.138), (3.139), (3.140).

Had one considered fluids with massive carriers, conflicts would have appeared in the

conformal weights, as e.g. in eq. (3.102) setting a relationship among N i and P i, which in

a Weyl-covariant system are expected to have different weights (d+ 1 and d+ 2).

Hydrodynamic equations (3.146) and (3.154) are recast as

1

Ω
Dt

(

ε +
(v − w) · r

Ω

)

+
ri

Ω
Dt
vi − wi

Ω
− ξv

ijΣij

+ ∇̂i

(

Qi −
vi − wi

Ω

(v − w) · r

Ω

)

= 0, (3.168)

̺T

Ω
Dt s+

1

Ω
Dt

(

(v − w) · r

Ω

)

+
ri

Ω
Dt
vi − wi

Ω
− ξv

ijΣij

− h∇̂in
i + ∇̂i

(

Qi −
vi − wi

Ω

(v − w) · r

Ω

)

= 0. (3.169)

For more conventional conformal fluids with ri = 0 and no conserved charge we find

1

Ω
Dtε − ξv

ijΣij + ∇̂iQ
i =

T

Ω
Dtσ − ξv

ijΣij + ∇̂iQ
i = 0, (3.170)

which are Weyl-covariant of weight d+ 2. The Euler (transverse) equation (3.153) remains

unchanged and can be expressed in terms of the energy thanks to (3.166), or further

using (A.18):

1

d
∂iε − ∇̂jΣij =

1

(d+ 1)
∂i(Tσ) − ∇̂jΣij = 0. (3.171)

It is Weyl-covariant of weight d+ 1.

Besides expressing hydrodynamic equations for fluids based on massless microscopic

constituents in a Galilean general-covariant fashion, our present analysis exhibits one class

of physical fluids, where hydrodynamic-frame invariance survives the Galilean limit: the

conformal fluids without any conserved charge. This is in contrast to the more general

Galilean hydrodynamics studied in section 3.2, where hydrodynamic-frame invariance was

only emerging in exotic fluids, where matter conservation was not fulfilled. Furthermore,

under the physical assumption that the heat current remains of order 1 in the infinite-c

limit (ri = 0 in (3.76)), the energy density is insensitive to the choice of fluid velocity

(see (3.152)).

Conformal isometries and conservation laws

There is not much we can add on conservation laws that has not yet been processed.

Summarizing, the large-c expansion of the energy-momentum tensor (3.134), (3.135), (3.136),

combined with the components (2.76), (2.77) in the presence of a conformal Killing field

ξ, produces

ι0r = κ+ O (1/c2) , irk = Kk + O (1/c2) (3.172)
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with κ and Kk as in (3.58) and (3.59), defining a Galilean current. Using the Weyl-

invariance condition (3.63), the equations (3.163), (3.164), and the Galilean Killing equa-

tions (3.64), (3.66), the Galilean divergence (3.57) of this current turns out to satisfy (3.67).

As usual, conservation demands a symmetry wider than a conformal isometry, for which

∂tξ
ı̂ + Lwξ

ı̂ = 0.

4 Carrollian fluid dynamics

4.1 Carroll structures and general Carrollian covariance

Carrollian manifolds

Carroll structures are alternatives to Newton-Cartan spacetimes, introduced in [34–36].

They consist of a d+ 1-dimensional manifold M = R × S endowed with a degenerate metric

and a vector field, which is the kernel of the metric. These manifolds are described in

terms of fibre bundles54 with one-dimensional fibre and a d-dimensional base S thought of

as space, the fibre being time. The Carroll group [30, 31] emerges as the isometry group

of flat Carrollian structures, but our framework is here more general with no assumption

about isometries, but Carrollian diffeomorphisms instead; the Carrollian transformations are

realized locally, in the tangent space. These diffeomorphisms have the virtue of preserving

the time/space separation, as opposed to general diffeomorphisms.

For concreteness M will be equipped with coordinates (t,x) and we will restrict to

degenerate metrics of the form

dℓ2 = aij(t,x)dxidxj , i, j . . . ∈ {1, . . . , d} (4.1)

with kernel generated by

et̂ =
1

Ω
∂t, (4.2)

which defines a field of observers. This coordinate system is adapted to the fiber/base

splitting, which is in turn respected by Carrollian diffeomorphisms (2.80). It is also naturally

reached in the Carrollian limit of a pseudo-Riemannian spacetime in Papapetrou-Randers

gauge (2.79). The Carrollian structure naturally incorporates an Ehresmann connection,

which is a background gauge field bbb = bidx
i, appearing in the dual form of the kernel

generator (4.2):

θt̂ = Ωdt− bidx
i, (4.3)

the clock form. The scale factor Ω and the gauge components bi depend on t and x.

54Carrollian structures were defined as “ambient structures” in refs. [39, 40]. Notice that we use equally

the wording “manifolds,” “spacetimes” and “structures.” Mathematically the latter is more precise for it

embraces the various attributes. Depending on these attributes, it can be even refined into weak or strong

structure as we will see in the following.

– 48 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

Under Carrollian diffeomorphisms (2.80) (the Jacobian is defined in (2.81)), the trans-

formation rules of the various geometric objects are as in (2.82), (2.83) as well as

∂′
t =

1

J
∂t, (4.4)

∂′
j = J−1i

j

(

∂i −
ji
J
∂t

)

, (4.5)

θt̂′ = θt̂, (4.6)

∂̂′
i = J−1j

i ∂̂j , (4.7)

where

∂̂i = ∂i +
bi

Ω
∂t, (4.8)

are the vector fields dual to the forms dxi, also spelled eı̂ in (2.105).

For Carrollian manifolds it is customary to say that space is absolute, whereas time

isn’t, as opposed to their dual relatives, the Newton-Cartan spacetimes. This is again

somehow abusive, except when aij depends on space only, and it mostly refers to the form

of the Jacobian (2.81). It is rooted to the properties of the primitive Carrollian manifold

obtained as the c → 0 limit of Minkowski spacetime.

Carrollian tensors depend generically on time t and space x. They carry indices

i, j, . . . ∈ {1, . . . , d}, which are lowered and raised with aij and its inverse spatial cometric

aij , and transform covariantly under Carrollian diffeomorphisms (2.80) with Jacobian J j
i

and J−1i
j defined in (2.81). Following [29], we introduce a Levi-Civita-Carroll connection

with coefficients

γ̂i
jk =

ail

2

(

∂̂jalk + ∂̂kalj − ∂̂lajk

)

. (4.9)

This connection is not unique (see the already quoted literature [36, 40, 41]), but emerges

naturally in the vanishing-c limit of a Levi-Civita connection in the Papapetrou-Randers

coordinates (2.79). It defines a spatial Carrollian covariant derivative ∇̂i with tensorial

transformation properties under Carrollian diffeomorphisms (details on the transformation

properties can be found in the appendix A.2 of ref. [29]).55

The Levi-Civita-Carroll connection is torsionless and metric-compatible:

t̂kij = 2γ̂k
[ij] = 0, ∇̂iajk = 0. (4.10)

The vectors ∂̂i do not commute and define the Carrollian vorticity:

[

∂̂i, ∂̂j

]

=
2

Ω
̟ij∂t, ̟ij = ∂[ibj] + b[iϕj] (4.11)

with

ϕi =
1

Ω
(∂tbi + ∂iΩ) , (4.12)

55Important remark: many symbols are common to the Galilean and Carrollian sides investigated in the

present paper. The context should leave no room for confusion.
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the Carrollian acceleration. Notice that

dθt̂ = ϕidx
i ∧ θt̂ −̟ijdxi ∧ dxj , (4.13)

so that vanishing Carrollian acceleration and vorticity are necessary and sufficient conditions

for θt̂ be closed and define a family of hypersurfaces inside M = R × S as τ(t,x) = const.,

where locally θt̂ = dτ .

The ordinary time derivative operator 1
Ω∂t acts covariantly on Carrollian tensors.

However, it is not metric-compatible because aij depends on time. Hence one defines a new

Carrollian temporal covariant derivative by requiring covariance, i.e. 1
Ω′ D̂′

t = 1
ΩD̂t, and

D̂tajk = 0. (4.14)

This is achieved by introducing a temporal Carrollian connection

γ̂ij =
1

2Ω
∂taij = ξij +

1

d
aijθ, (4.15)

which is a genuine symmetric Carrollian tensor split into a traceless part, the Carrollian

shear, and the trace, which is the Carrollian expansion:

θ =
1

Ω
∂t ln

√
a . (4.16)

The action of D̂t on scalars is ∂t

D̂tΦ = ∂tΦ, (4.17)

whereas on vectors or forms it is defined as

1

Ω
D̂tV

i =
1

Ω
∂tV

i + γ̂i
jV

j ,
1

Ω
D̂tVi =

1

Ω
∂tVi − γ̂ j

i Vj . (4.18)

Leibniz rule generalizes the latter to any tensor and allows to demonstrate the

property (4.14).

The commutators of Carrollian covariant spatial derivatives define further Carrollian

tensors (Φ and V i are a Carrollian scalar and a Carrollian vector):56

[

∇̂i, ∇̂j

]

Φ = ̟ij
2

Ω
∂tΦ, (4.19)

[

∇̂k, ∇̂l

]

V i =
(

∂̂kγ̂
i
lj − ∂̂lγ̂

i
kj + γ̂i

kmγ̂
m
lj − γ̂i

lmγ̂
m
kj

)

V j +
[

∂̂k, ∂̂l

]

V i (4.20)

= R̂i
jklV

j +̟kl
2

Ω
D̂tV

i. (4.21)

Similarly, time and space derivatives do not commute:

[

1

Ω
D̂t, ∇̂i

]

V j = ϕi

((

1

Ω
D̂t + θ

)

V j − γ̂j
kV

k

)

− γ̂ k
i ∇̂kV

j − dr̂j
ikV

k (4.22)

56In [29] an alternative tensor was defined as r̂i
jkl = R̂i

jkl+2γ̂i
j̟kl with

[

∇̂k, ∇̂l

]

V i = r̂i
jklV

j +̟kl
2
Ω

∂tV
i.
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with57

r̂j
ik =

1

d

(

θϕiδ
j
k + ∇̂iγ̂

j
k −

1

Ω
∂tγ̂

j
ik

)

(4.23)

and

r̂j
jk = r̂k =

1

d

(

∇̂j γ̂
j
k − ∂̂kθ

)

, (4.24)

further Carrollian curvature tensors.

Carrollian dynamics and Carrollian diffeomorphisms

Consider now a dynamical system on a Carrollian manifold M = R × S described with an

(effective) action S =
∫

dtddx
√
aΩL, functional of aij , Ω and bi. The associated Carrollian

momenta, which replace the corresponding relativistic energy-momentum tensor (2.7) are

now (see [79, 90])58

Πij =
2

√
aΩ

δS

δaij
, (4.25)

Πi =
1

√
aΩ

δS

δbi
, (4.26)

Π = −
1

√
a

(

δS

δΩ
+
bi

Ω

δS

δbi

)

, (4.27)

with δS
δΩ = −

√
a
(

Π + biΠ
i
)

. These are the energy-stress tensor, the energy current and the

energy density.

Diffeomorphisms are generated by vector fields as in (2.71)

ξ = ξt∂t + ξi∂i =

(

ξt − ξi bi

Ω

)

∂t + ξi

(

∂i +
bi

Ω
∂t

)

= ξ t̂ 1

Ω
∂t + ξi∂̂i. (4.28)

Carrollian diffeomorphisms (2.80) are restricted to ξi = ξi(x). As usual, the variation under

diffeomorphisms is implemented through the Lie derivative and we find the following:

− δξaij = Lξaij = 2∇̂(iξ
kaj)k + 2ξ t̂γ̂ij − 2b(iaj)k

1

Ω
∂tξ

k, (4.29)

where the last term drops for Carrollian diffeomorphisms. Furthermore

Lξet̂ = −

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

et̂ = µet̂, (4.30)

and (the form θt̂ is defined in (4.3))

Lξθ
t̂ =

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

θt̂ +
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

dxi. (4.31)

From the latter we infer

−δξ lnΩ =
1

Ω
LξΩ =

1

Ω
∂tξ

t̂+ϕiξ
i,−δξbi =Lξbi = bi

(

1

Ω
∂tξ

t̂+ϕjξ
j

)

−
((

∂̂i−ϕi

)

ξ t̂−2ξj̟ji

)

.

(4.32)

57Notice that 1
Ω

∂tγ̂
j
ik =

(

∇̂i + ϕi

)

γ̂j
k +
(

∇̂k + ϕk

)

γ̂j
i −
(

∇̂j + ϕj
)

γ̂ik is a Carrollian tensor, even though

γ̂j
ik is not.

58The fluid energy density Π was spelled ee in [29].
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We can now move to the variation of the action under Carrollian diffeomorphisms:

δξS =

∫

dtddx
√
aΩ

(

1

2
Πijδξaij + Πiδξbi −

1

Ω

(

Π + biΠ
i
)

δξΩ

)

. (4.33)

Using (4.29) and (4.32) with ξi = ξi(x), we obtain (indices are here lowered with aij)

δξS =

∫

dtddx
√
aΩ

{

−ξ t̂

[(

1

Ω
∂t + θ

)

Π +
(

∇̂i + 2ϕi

)

Πi + Πij γ̂ij

]

+ ξi
[(

∇̂j + ϕj

)

Πj
i + 2Πj̟ji + Πϕi

]}

+

∫

dtddx
{

∂t

[√
a
(

ξ t̂
(

Π + biΠ
i
)

− ξjbiΠ
i
j

)]

+ ∂i

[√
aΩ

(

ξ t̂Πi − ξjΠi
j

)]}

. (4.34)

Ignoring the boundary terms (last two lines of (4.34)), δξS = 0 implies that the Carrollian

momenta defined previously in (4.25), (4.26), (4.27) are Carrollian-covariant, and leads to

two equations. The energy equation is simple because ξ t̂ depends on t and x:

(

1

Ω
∂t + θ

)

Π +
(

∇̂i + 2ϕi

)

Πi + Πij γ̂ij = 0. (4.35)

The momentum equation calls for a careful treatment. Indeed, ξi is a function of x only,

hence the factor in brackets in the second line of (4.34) needs not vanish, but rather

(

∇̂j + ϕj

)

Πj
i + 2Πj̟ji + Πϕi = −

(

1

Ω
∂t + θ

)

Pi (4.36)

because
√
aΩξi

(

1
Ω∂t + θ

)

Pi = ∂t

(√
a ξiPi

)

, which is a boundary term and vanishes inside

the integral.

The new vector Pi, which we will refer to as momentum, is not defined directly through

a variation of the action with respect to some conjugate variable. It is however inescapable,

and this can be verified whenever a microscopic action is available in terms of fundamental

fields leading to full-fledged equations of motion. In this instance, eqs. (4.35) and (4.36)

must be obeyed on-shell, and this procedure determines the momentum Pi (for a Carrollian

scalar field see [103]).

A plethora of comments and comparison to the existing literature is appropriate at

this point. The Carrollian equations at hand, which are ultimately the Carrollian fluid

equations, have been the source of confusion or misinterpretation, and unfortunately this is

not fading.

As a first and minor remark, the term in the right-hand side of (4.36) was missing

in [79, 90].59 More importantly, it has been claimed that both vectors, the energy current

Πi and the momentum Pi, should vanish [74, 77]. Systems where this happens are not

59More precisely, eq. (4.36) here is in disagreement with eq. (2.30) in [79] resulting from the invariance of

the action under Carrollian diffeomorphisms. It agrees however with eq. (4.4) in the same reference, reached

via a vanishing-c limiting procedure (see also our eq. (4.81)).
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excluded, but there is no principle that demands a priori such a property — as no reason

exist for the Galilean energy current and momentum to vanish.60

Another feature of the above equations (4.35) and (4.36) is their superficial resemblance

to eqs. (3.42) and (3.41). This is superficial because when coming to the genuine fluid equa-

tions, the various momenta are expressed in terms of kinematical and physical parameters,

which are different in the two instances (e.g. there is no “velocity” in Carrollian dynamics —

see next section for details on the Carrollian fluids). But even at the superficial level, the

resemblance is alleviated by the symmetries, which are undoubtedly distinct: Carrollian

versus Galilean. Nonetheless, confusion has settled for good in the literature around the

membrane paradigm, which was originally carefully stated [91], but has drifted in time

giving an overwhelming importance to Navier-Stokes equations, which are Galilean par

excellence, for the description of phenomena occurring in the vicinity of black-hole horizons,

which call for Carrollian physics (ref. [92] is a good example of abuse). Recently, efforts

were made to clarify this issue [70, 71].

A U(1) local invariance and conservation law

If the action on the Carrollian manifold is further invariant under a local U(1) associated

with a gauge field B = B(t,x)dt+Bi(t,x)dxi as in (3.43), then a further conservation is

available. This sort of conservation is not as useful as it was in the Galilean framework.

Indeed, the thermodynamic law (A.2) that sets the relationship between a conserved charge

and the energy (see also the discussion in section 3.3) is invalidated here by the vanishing-c

limit, and plays no subsequent role in the fluid dynamics.

The conjugate momenta are again the charge density and the charge current:

̺ =
1

√
a

(

δS

δB
−
bi

Ω

δS

δBi

)

, (4.37)

N i =
1

Ω
√
a

δS

δBi
(4.38)

with δS
δB

=
√
a
(

̺+ biN
i
)

. The gauge variation of the action is here:

δΛS =

∫

dtddx
√
a
((

̺+ biN
i
)

δΛB + ΩN iδΛBi

)

(4.39)

= −

∫

dtddx
√
a
((

̺+ biN
i
)

∂tΛ + ΩN i∂iΛ
)

=

∫

dtddx
√
aΩΛ

(

1

Ω
∂t̺+ θ̺+

(

∇̂i + ϕi

)

N i

)

−

∫

dtddx
{

∂t

(√
aΛ

(

̺+ biN
i
))

+ ∂i

(√
aΛΩN i

)}

. (4.40)

Invariance of S leads to a Carrollian continuity equation:
(

1

Ω
∂t + θ

)

̺+
(

∇̂i + ϕi

)

N i = 0. (4.41)

60As an aside comment, in flat as in AdS holography, the momentum Pi of the boundary fluid is mapped

onto the bulk angular-momentum aspect [28], and this is not expected to vanish. From a different perspective,

as already mentioned, microscopic systems such as the Carrollian scalar field exhibit non-vanishing Πi and

Pi [79, 103].
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Using Stokes and Gauss theorems (see also footnote 33) and the Carrollian continuity

equation (4.41) we find

∫

W

dtddxΩ
√
a

((

1

Ω
∂t+θ

)

̺+
(

∇̂i+ϕi

)

N i

)

=

∮

∂W

√
a̺dx1∧. . .∧dxd

−

∮

∂W

√
a

d
∑

i=1

dx1∧. . .∧N iθt̂∧. . .∧dxd,

(4.42)

where W ⊂ M = R × S and N iθt̂ (θt̂ given in (4.3)) is the ith factor in the exterior product

of the last term. Assuming a good behaviour for the fields, a conserved charge exists and

can be expressed as an integral over an arbitrary space-like hypersurface Σd of M = R × S.

This conserved charge is identical to the relativistic Papapetrou-Randers result obtained

e.g. in (2.110). As for the Galilean instance, it is suitable to chose Σd ≡ S i.e. a constant-t

hypersurface, and the charge then reads:61

QN =

∫

S

ddx
√
a
(

̺+ biN
i
)

. (4.43)

Following the Galilean steps, time-independence reveals by replacing S in (4.43) with V ⊂ S,

where the boundary ∂V does not depend on t, for convenience. Using (4.41), the time

evolution of the matter/charge content of V is the following:

d

dt

∫

V

ddx
√
a
(

̺+ biN
i
)

= −

∫

V

ddx ∂i

(√
aΩN i

)

= −

∫

∂V
Ω ⋆N. (4.44)

If V is extended to the whole S the time dependence fades and we find that QN is conserved.

Isometries, conservation and non-conservation

Isometries of Carrollian spacetimes are generated by Killing fields of the Carrollian

type (4.28), required to obey

Lξaij = 0, Lξet̂ = 0, (4.45)

because the metric (4.1) and the field of observers (4.2) are the fundamental geometric data

in the spacetimes at hand (see refs. [34–36, 45]). For Carrollian diffeomorphisms (ξi ≡ ξ ı̂ is

only x-dependent), eqs. (4.29) and (4.30) lead to

∇̂(iξ
kaj)k + ξ t̂γ̂ij = 0,

1

Ω
∂tξ

t̂ + ϕiξ
i = 0. (4.46)

61It should be noticed that the presence of bi apparently breaks the manifest covariance, since according

to (2.83) the form of the integrand is respected only by coordinate transformations such that t′ = t′(t) i.e. a

subset of Carrollian diffeomorphisms. This is actually innocuous, and merely translates a feature of the

hypersurface chosen for computing the charge, which is otherwise an absolute constant, as emphasized in

footnote 9 for the relativistic case, and further discussed in section 3.1 within the Galilean framework. If

the clock form is closed (see eq. (4.13)), locally θt̂ = dτ and one may alternatively choose the integration

hypersurface Στ as τ(t, x) kept constant. In this instance, we obtain QN =
∫

Στ
ddx

√
a ̺. Nevertheless, all

choices of space-like hypersurface Σd lead to the same charge.
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These equations refer to the invariance of a weak Carroll structure [35] and possess an

infinite set of solutions. As for the Newton-Cartan case discussed in section 3.1, strong
Carroll structures are further equipped with a torsionless metric-compatible connection,

which is also required to be invariant under Carrollian isometries. This constricts the

solution space of (4.46). Observe however that one does not demand the Ehresmann be

invariant, hence for a Carrollian Killing field ξ, using (4.46) inside (4.31) we obtain:

Lξθ
t̂ =

((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

dxi. (4.47)

The case of a Carroll spacetime with aij = δij , Ω = 1 and constant bi (standard

flat Carroll spacetime with our connection) provides a nice illustration of the above.

Equations (4.46) possess an infinite number of solutions:

ξ =
(

Ω j
i x

i +Xj
)

∂j + f(x)∂t (4.48)

with constant and antisymmetric Ωij = Ω k
i δkj generating the rotations in so(d), constant

Xj for the space translations, and an arbitrary function of space f(x). The latter is only

linear if the connection of the strong Carroll structure is required to remain invariant under

ξ: f = T − Bix
i, T generating time translations and Bi being the Carroll boosts. The

total number of solutions is now (d+2)(d+1)/2, which is the dimension of the Carroll algebra

carr(d+ 1). Besides, we find that

Lξθ
t̂ = −

(

Bi + Ω j
i bj

)

dxi 6= 0, (4.49)

exhibiting a constant shift in the Ehresmann connection.

We can now handle the conservation law that would take the Carrollian form (4.41)

with a Carrollian scalar κ and a Carrollian vector Ki determined from the components ξ t̂

and ξ ı̂ of a Carrollian Killing, and from the Carrollian momenta, i.e. the energy density Π,

the energy current Πi and the energy-stress tensor Πij defined in eqs. (4.25), (4.26), (4.27),

as well as the momentum P i, and satisfying the conservation equations (4.36) and (4.35).

If such a conservation exists, the Carrollian scalar

K=

(

1

Ω
∂t + θ

)

κ+
(

∇̂i + ϕi

)

Ki (4.50)

shall vanish on-shell. In fine, κ and Ki are disclosed in the on-shell boundary terms of

δξS (see (4.34)) — or likewise, inherited from the relativistic-current components (2.107),

(2.108), (2.109):62

κ = ξiPi − ξ t̂Π, (4.51)

Ki = ξjΠ i
j − ξ t̂Πi. (4.52)

62We anticipate here section 4.3, where eqs. (4.133) are obtained as a small-c expansions of (2.108)

and (2.109), leading to (4.134), which includes (4.51) and (4.52).
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The scalar K can be determined using the conservation equations (4.36) and (4.35):

K= −Π

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

− Πi
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

+ Πi
j

(

∇̂iξ
j + ξ t̂γ̂ j

i

)

(4.53)

= −Πi
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

. (4.54)

We have obtained (4.54) from (4.53) thanks to the Killing equations (4.46). This latter result

shows that in Carroll structures, a Killing field does not guarantee an on-shell conservation
law for Carrollian dynamics.63

The above result is expected as in the Galilean case, where a similar non-conservation

was proven: the energy current Πi is conjugate to bi (4.26) and bi does transform under

diffeomorphisms (see (4.32)), even when this diffeomorphism is an isometry. Nonetheless,

eq. (4.54) infers that a conservation law exists for the subalgebra of Killing vectors such

that Lξθ
t̂ = 0,64 in agreement with general Nœther’s theorem, for which isometry seems

insufficient and a stronger symmetry required. Incidentally, one cannot exclude that the

right-hand side of (4.54) originates from a boundary term (as for the corresponding Galilean

equation (3.61)). Conservation would then occur — put differently (4.50) would vanish

with effective Carrollian curent κ′ and Ki′, amended by the boundary-term contributions.

As we have emphasized slightly above, ordinary Carrollian boosts in flat Carroll
structures (aij = δij, Ω = 1, bi constants) do not satisfy the extra condition Lξθ

t̂ = 0

(see (4.49)), and thus no conservation law is necessarily associated with them. This property

was disregarded in refs. [74, 76, 77], where the authors took for granted that such a

conservation should exist in the primitive sense i.e. with K= 0 in (4.54).65 This assumption

led to the conclusion that Πi should always vanish, as we have already pointed out. A similar

reasoning in the Galilean case (see (3.61)) amounts to stating that the fluid momentum Pi

ought to vanish. This is a notoriously degenerate state, where either the fluid is absent, or

motion is absent — global equilibrium is reached. Having no intuition for Carrollian fluids,

we leave open a teensy possibility for a state with vanishing energy flux to make sense. Such

a state is by no means a consequence of any spacetime symmetry though.66 This feature

will be recast at the end of section 4.3, where besides the Carrollian current (4.51), (4.52),

more currents of the same sort appear, which may or may not be conserved as a consequence

of the vanishing of a vector, be it the energy flux Πi met here, or another vector emerging

in the small-c expansion of the relativistic heat current.

63Credit should be given to the authors of [79] for observing this phenomenon in a quite general framework.
64The Jacobi identity is used to show that the commutator of two ξs obeying Lξθ

t̂ = 0, satisfies the

same condition.
65Notice that conservation might be valid with non-vanishing K, if the latter is a generalized divergence.

In flat space we find K= Πi
(

Bi + Ω j
i bj

)

using eqs. (4.48) and (4.49). Under the assumption of potential

flow (we borrow the Galilean language) Πi = ∂̂iφ + ∂tφi with φ(t, x) and φi(t, x) the potential functions so

that K= ∂̂iφU i + ∂tφiU
i with U i = Bi + Ωijbj . In this very specific instance, there is a conserved Carrollian

current associated with boosts and rotations, and components κ − φiU
i and Ki − φU i making (4.50) vanish.

66Situations of this sort are not forbidden but are not demanded a priori. They may occur outside the

realm of fluids. For instance, a Carrollian scalar field has always vanishing energy flux in its electric edition,

and can be set to zero in magnetic some configurations [77, 79, 103]. However, this flux is generically

non-zero in the magnetic version, although configurations do exist for which it vanishes.

– 56 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

Weyl invariance, conformal isometries, conservation and non-conservation

As for the Newton-Cartan spacetimes, Weyl transformations can be investigated in Carrollian

manifolds. They act on their basic geometric data as

aij →
1

B2
aij , Ω →

1

B
Ω, bi →

1

B
bi, (4.55)

where B= B(t,x) is an arbitrary function. The Carrollian momenta Πij , Πi and Π defined

in (4.25), (4.26) and (4.27) inherit conformal weights d+3, d+2 and d+1 when the effective

action is presumed Weyl-invariant. The momentum P i appearing in (4.36) has also weight

d + 2, and in the matter sector, assuming the gauge field B and Bi be weight-zero, we

conclude from (4.37) and (4.38) that the density ̺ and the matter current N i have weights

d and d+ 1.

Requiring Weyl invariance for the effective action δBS = 0, expression (4.33) implies that

Π i
i = Π. (4.56)

In order to implement elegantly Weyl covariance, the appropriate covariant derivatives will

be introduced in section 4.2 for time and space, dubbed Weyl-Carroll. For the moment, we

wish to circumscribe our discussion and adapt to Carroll the pattern discussed in section 3.1

for Newton-Cartan spacetimes, Weyl-invariant dynamics and conformal isometries. This

will lead to the same conclusion as above: a conformal Killing field does not always provide
a conservation law in Weyl-invariant Carrollian dynamics.

Following [33–36, 45] a conformal isometry is generated by a vector field ξ satisfying

Lξaij = λaij , (4.57)

where

λ(t,x) =
2

d

(

∇̂iξ
i + θξ t̂

)

. (4.58)

The extra condition imposed for reaching an operational definition of conformal Killing

vectors is again (3.66) i.e. 2µ+ λ = 0 with (see (4.30))

µ(t,x) = −

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

. (4.59)

A dynamical exponent z, here equal to 1, can also be defined (see footnote 38), and the

distinction of weak versus strong Carroll structures supplements the discussion on the web

of conformal Killing fields.

Assuming the existence of a conformal isometry, the conservation equations (4.35)

and (4.36) can be used for computing the Carrolian scalar K (4.50) with (4.51), (4.52)

and (4.56):

K= Π

(

λ

2
+ µ

)

− Πi
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

. (4.60)

The defining equation (3.66) for conformal Killing vectors on Carrollian spacetimes ex-

pectedly arises in (4.60), but is insufficient to ensure K = 0. As anticipated, a plain
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conformal Killing field does not generically provide a conservation law in Weyl-invariant
Carrollian dynamics.

The same conclusion has been reached for Galilean spacetimes in section 3.1. It will be

further investigated from the small-c viewpoint in the following paragraphs, and finally in

appendix D.2.

As an example, let us again consider the standard flat Carroll spacetime (aij = δij ,

Ω = 1 and constant bi). Equations (4.57) and (3.66) possess an infinite number of solutions,

which for a strong Carroll structure read [35, 36, 45]:

ξ = Y j(x)∂j +

(

T (x) +
t

d
∂iY

i

)

∂t (4.61)

with T (x) an arbitrary function generating the supertranslations and Y i(x)∂j being con-

formal Killing fields of Euclidean d-dimensional space, generating so(d+ 1, 1). This is the

conformal Carroll algebra ccarr(d + 1) ≡ so(d + 1, 1) + supertranslations, also known as

BMSd+2 (for Bondi-van der Burg-Metzner-Sachs) [35, 36].67 We also find how the clock

form behaves:

Lξθ
t̂ =

(

∂i

(

T − Y jbj

)

+
bi

d
∂jY

j +
t

d
∂i∂jY

j

)

dxi. (4.62)

The associated current is not conserved since K in (4.60) does not generically vanish,68

unless ∂jY
j = C0 and T = T0 + Y jbj − C0

d
bix

i, thus linear in xi (C0 and T0 are constants).

This excludes the d special conformal transformations of so(d+ 1, 1) and leaves the super-

translations with the time translation as unique freedom, leading to a symmetry subgroup

of finite dimension d2

2 + d
2 + 2.

One should stress again that generally, Πi
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

with ξ a conformal

Killing field of a Carrollian manifold M, might be a boundary term possibly leading to

a conserved Carrollian current. This needs however to be appreciated case-by-case and

not premised.

4.2 Carrollian hydrodynamics from relativistic fluids — I

The small-c expansion

Following the pattern introduced in [29], we will now study the vanishing-c limit of relativistic

hydrodynamics on a pseudo-Riemannian manifold, in Papapetrou-Randers coordinates. As

for the Galilean case, all c-dependence in the geometry is explicit. In particular, the fluid

velocity is parameterized with βi introduced in (2.85), and for small c we obtain:

vi = c2Ωβi + O
(

c4
)

. (4.63)

67In the presence of a dynamical exponent defined via 2µ + zλ = 0 (in this case the Carrollian structure

is not inherited from the Carrollian limit of a pseudo-Riemannian spacetime), the algebra exhibits a level

N = 2/z: ccarrN (d + 1). Strictly speaking ccarr(d + 1) ≡ ccarr2(d + 1) is BMSd+2 for d = 1, 2 only, because for

higher d the BMS algebra is finite-dimensional, whereas ccarrN (d + 1) is not. Infinite-dimensional extensions

of the BMS algebra have been nevertheless presented in the literature (see e.g. [99] for a recent account and

further references).
68For general Carrollian fluids it has no a priori reason to vanish, and no Nœther current exists. Nonetheless,

one finds explicit dynamics where these currents are enforced (see e.g. [98] for the scalar electrodynamics),

and where the full conformal Carroll group is realized in terms of the associated conserved charges.
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The fluid velocity vanishes at zero c — this is not a surprise — but a kinematical parameter

with dimensions of an inverse velocity is bound to remain in as a Carrollian-fluid variable.

The full fluid congruence then reads:

u0 = −cΩ + O
(

c3
)

, ui = c2βi + O
(

c4
)

, (4.64)

whereas the expansion and the shear behave as

Θ =
1

Ω
∂t ln

√
a + O

(

c2
)

= θ + O
(

c2
)

, (4.65)

σij = −
1

Ω

(

1

2
∂ta

ij +
1

d
aij∂t ln

√
a

)

+ O
(

c2
)

= ξij + O
(

c2
)

(4.66)

with ξij and θ defined for a Carrollian manifold in (4.15) and (4.16).

In order to go on with the fluid equations, we should handle the behaviour of the

energy-momentum tensor at small c. This includes ε, p qi and τ ij . The matter current ji, if

present, plays no role since no relationship amongst ε and ̺ survives in the Carrollian limit.

In the absence of thermodynamic or transport hints for the behaviour of these quantities, we

will consider an ansatz motivated by the Carrollian fluids emerging in flat holography [28].

The simplest is

ε = η + O
(

c2
)

, (4.67)

p = ̟ + O
(

c2
)

, (4.68)

qi = Qi + c2πi + O
(

c4
)

, (4.69)

τ ij = −Ξij + O
(

c2
)

. (4.70)

This follows the pattern of the Galilean counterpart (3.75) and (3.76), except that the

energy is now of order 1, as for the case of a massless-carrier Galilean fluid. In section 4.3 we

will consider a Laurent expansion with order-1/c2 terms, as required in flat-holography fluids.

Although a conserved current is not essential in the discussion, we present it for

completeness with the following ansatz

̺0 = χ+ O
(

c2
)

, jk = nk + O
(

c2
)

. (4.71)

We recall that ̺0 is the proper density i.e. the density measured by an observer with

velocity uµ. We could consider a fiducial observer, who would play here the role of uZ in

Zermelo frame:

uPR =
1

Ω
∂t. (4.72)

This observer is not geodesic (unless ∂t it is a Killing field), but this is of secondary

importance since inertial frames play no role in the Carrollian limit. For this observer, the

fluid density is − 1
c2Jµu

µ
PR

= c
ΩJ0, which coincides with ̺0r given in (2.103).
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Carrollian momenta and hydrodynamic equations

With the data (4.67), (4.68), (4.69), (4.70), the invariant pieces of the relativistic energy-

momentum tensor defined in (2.97), (2.100), (2.101) and (2.102) read:

qi
r = Πi + c2P i + O

(

c4
)

, (4.73)

εr = Π + O
(

c2
)

, (4.74)

pra
ij + τ ij

r = Πij + O
(

c2
)

(4.75)

with

Π = η + 2βiQ
i, Πi = Qi, Πij = Qiβj + βiQj +̟aij − Ξij , (4.76)

and

P i = πi + βi
(

η +̟ + βkQ
k
)

− βkΞki +
βββ2

2
Qi. (4.77)

Equations (2.1) with the energy-momentum tensor at hand demand the follow-

ing expressions

c

Ω
∇µT

µ
0 = E+ O

(

c2
)

, (4.78)

∇µT
µi =

1

c2

{(

1

Ω
D̂t + θ

)

Πi + Πj γ̂ i
j

}

+ Gi + O
(

c2
)

(4.79)

be zero with

E= −

(

1

Ω
D̂t + θ

)

Π −
(

∇̂i + 2ϕi

)

Πi − Πij γ̂ij , (4.80)

Gj =
(

∇̂i + ϕi

)

Πi
j + 2Πi̟ij + Πϕj +

(

1

Ω
D̂t + θ

)

Pj + P iγ̂ij . (4.81)

Hence, we recover the Carrollian momenta conservation equations (4.35) and (4.36) (notice

the use of the Carrollian time covariant derivative (4.18)) augmented with an extra equation
on the energy current

(

1

Ω
D̂t + θ

)

Πi + Πj γ̂ i
j = 0. (4.82)

The whole Carrollian scheme of the present section, and eq. (4.82) in particular,

resonate with the discussion made on the Galilean side, section 3.3. This equation is

indeed absent when working directly in the framework of a Carrollian manifold with

Carrollian diffeomorphisms, as in section 4.1. It is in fact a boundary term that could

not be retrieved by a variational principle — as the Carrollian momentum P i appeared

to be necessary but undetermined. Getting the Carrollian dynamics as a zero-c limit of

relativistic hydrodynamics is richer.

On the one hand, equation (4.82) emerges as a vestige of the original full-diffeomorphism

relativistic invariance,69 and is the dual of the Galilean constraint equation (3.122) —

69Precise statements on this reminiscence of full diffeomorphisms are illusive. In particular, no central

extension can accompany the Carrollian contraction. According to ref. [84], the prerequisite for this to occur

is the existence of an absolute time i.e. Galilean or Aristotelian frameworks.
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remember that time and space play dual roles in the two limits considered here, interchanging,

among others, momentum and energy current. On the other hand, the momentum P i

is no longer undetermined, and stands for the subleading term of the relativistic heat

current (4.73), expressed explicitly in terms of the kinematical and “thermodynamic-

transport” observables — βi and η, ̟, Qi, πi, Ξij in (4.77).

This last observation calls for a comparison with the existing literature. At the first

place it should be accepted that the very concept of spacetime energy-momentum tensor

is loose in Carrollian (and Galilean) physics. This was clearly emphasized in the early

work [79], where the role of Carrollian momenta as a necessary replacement to the energy-

momentum tensor was proposed. It is stated again here, and one should moreover avoid

the latent confusion amongst momenta (or energy-momentum tensor, if any) as a response

of the system to geometry disturbances, and Nœtherian currents, which are generically

absent as no isometries have been assumed. Next, it is clear that nothing requires the

vanishing of neither the energy flux Πi, nor the momentum P i, irrespective of the approach

— Carrollian conservation or zero-c limit. This has been undermined in [74, 76, 77]. Finally,

the momenta are expressed in terms of an “inverse velocity” βi and not a velocity vi, since

no velocity is compatible with Carrollian physics due to the shrinking of the light cone. It

should be added that no matter density enters the momenta because no relationship exists

any longer between energy and mass. Equation (A.2) is obsolete in the Carrollian limit,

and it is fair to admit that Carrollian thermodynamics remains in limbo — as pointed out

in appendix A. This is sometimes overlooked.

From a more abstract viewpoint, a relation between energy and some other charge

(possibly, but not necessarily the mass) might appear only if a conservation exists that defines

this charge, independently of the conservation involving the energy. Such a conservation

may or may not be present for the relativistic fluids, and is emergent in the Galilean limit.

For the Carrollian case, if a U(1) conservation law of the type (2.2) is available in the

ascendent theory, we find, after inserting (4.71) inside (2.103) and (2.104):

̺0r = ̺+ O
(

c2
)

, (4.83)

ji
r = N i + O

(

c2
)

, (4.84)

with

̺ = χ+ βin
i, N i = ni, (4.85)

the matter Carrollian momenta explicitly determined in terms of βi. We can now compute

the divergence of (2.4) in the Papapetrou-Randers background (2.79). The result is

∇µJ
µ = J+ O

(

c2
)

(4.86)

with

J=

(

1

Ω
∂t + θ

)

̺+
(

∇̂j + ϕj

)

N j , (4.87)

and demanding the conservation, we recover the Carrollian continuity equation (4.41).
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Hydrodynamic-frame invariance

We discussed hydrodynamic-frame invariance in the framework of relativistic fluids, where

it states that the relativistic fluid equations remain invariant under arbitrary unimodular

transformations of the velocity field u, performed together with transformations of the energy

density, pressure, heat current and stress tensor — see e.g. (2.92), (2.93) and (2.94).70 The

question we want now to answer is again whether this invariance survives the Carrollian limit.

From the experience we have acquired in the Galilean section, answering requires a

careful analysis, and the output depends on several options. Assumptions are made about

the small-c behaviour of the various observables (see (4.67), (4.68), (4.69), and (4.70)) and

this behaviour may not be stable under Carrollian hydrodynamic-frame transformations.

As opposed to the Galilean situation, there is no physical intuition that can argue in favour

or against. There are however concrete results from flat holography [26, 27] suggesting

that Carrollian hydrodynamic-frame invariance should hold as a local boundary symmetry,

translating in a bulk diffeomorphism transformation.

As for the Galilean case, the operators entering (4.80), (4.81) and (4.82) are velocity-

independent, and the momenta Pi, Π, Πi and Πij appear as coefficients in the expansion of

the hydrodynamic-frame-invariant relativistic momenta (4.73), (4.74) and (4.75). In order

to conclude about hydrodynamic-frame invariance, we must investigate the stability of the

scaling properties encoded in (4.67), (4.68), (4.69) and (4.70), using the transformation

rules set in the Papapetrou-Randers frame (2.92), (2.93) and (2.94). We find the following:

δη = −2δβiQ
i, (4.88)

]δQi = 0, (4.89)

δπi = δβj

(

Ξij − (η +̟)aij + βiQj
)

, (4.90)

δ
(

Ξij −̟aij
)

= δβk

(

Qiajk +Qjaik
)

. (4.91)

Remarkably, under the frame transformations at hand, the Carrollian densities and fluxes

defined in (4.76) and (4.77) are invariant:

δΠ = 0, δΠi = 0, δΠij = 0, δP i = 0. (4.92)

Contrary to the Galilean massive case (section 3.2), but similarly to the Galilean massless

case (section 3.4), the energy-momentum-tensor dynamics and the current dynamics are

decoupled here. This decoupling holds in particular for hydrodynamic-frame invariance,

and we are invited to iterate the above course for matter dynamics. For matter, the

transformation rules in Papapetrou-Randers frame are (2.95) and (2.96), whereas the

invariant relativistic momenta (4.83), (4.84) should be used in conjunction with the small-c

70In the Papapetrou-Randers frame, the local unimodular transformations (2.28) are captured by βi →

βi + δβi(t, x) (see eqs. (2.51)), (2.85), (2.87)) parameterized as δβi = Bi − c2Bjβjβi + Ωijβj . Infinitesimal

Lorentz boosts are associated with Bi(t, x), while infinitesimal rotations go along with the antisymmetric

Ωij(t, x). In the Carrollian limit, the general transformation, which captures Carrollian boosts and rotations,

reads: δβi = Bi + Ωijβj .
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behaviour (4.71). The output is now

δχ = −δβin
i, (4.93)

δni = 0. (4.94)

Using (4.85), one shows that

δ̺ = 0, δN i = 0. (4.95)

This result demonstrates the invariance of (4.87). In conclusion, matter dynamics is
hydrodynamic-frame-invariant, establishing thereby that Carrollian fluid dynamics is
hydrodynamic-frame invariant.

Weyl-invariant Carrollian fluids

Carrollian fluids are fundamental ingredients of flat holography, where they appear in

their Weyl-invariant version [28]. On a Papapetrou-Randers frame, Weyl transformations

generated by B(t,x) act as they do on the fundamental data of a Carrollian spacetime,

eqs. (4.55). The Weyl-invariance condition (4.56) is here reached as the zero-c limit of

the relativistic Weyl-invariance condition Tµ
µ = 0 discussed at the end of section 2.1,

using (2.98), (4.73), (4.74) and (4.75). For Carrollian fluids, the various Carrollian mo-

menta (4.76), (4.77), (4.85) are expressed in terms of fluid variables such as the inverse

velocity βi, the energy density η, the pressure ̟ as well as Qi, πi and Ξij . Their conformal

weights are71 1, d+ 1, d+ 1, d, d and d− 1. Similarly the weights of χ and ni are d and

d+ 1. Condition (4.56) reads η = d̟ − Ξi
i, which is split as usual:

η = d̟, Ξi
i. (4.96)

The geometric tools necessary for handling Carrollian Weyl covariance were introduced

in appendix A.2 of [29] and we summarize them here. We define Weyl-Carroll covariant

time and space derivatives using θ and ϕi defined in (4.16) and (4.12), which transform

as connections

θ → Bθ −
d

Ω
∂tB, ϕi → ϕi − ∂̂i ln B, (4.97)

as opposed to the Carrollian shear ξij (4.15) and Carrollian vorticity ̟ij (4.11), which are

Weyl-covariant of weight −1. The action of the Carrollian Weyl-covariant time derivative

on a weight-w function Φ is

1

Ω
D̂tΦ =

1

Ω
D̂tΦ +

w

d
θΦ =

1

Ω
∂tΦ +

w

d
θΦ, (4.98)

and this is a scalar of weight w + 1. On a weight-w vector, the action is

1

Ω
D̂tV

l =
1

Ω
D̂tV

l +
w − 1

d
θV l =

1

Ω
∂tV

l +
w

d
θV l + ξl

iV
i. (4.99)

71We mentioned in section 4.1 that Πij , Πi, Πi and Π have conformal weights d + 3, d + 2, d + 2 and

d + 1, whereas the density ̺ and the matter current N i have weights d and d + 1.
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These are the components of a Carrollian vector of weight w + 1. Similarly for any tensor

by Leibniz rule and in particular we find:

D̂takl = 0. (4.100)

For a weight-w scalar function Φ, we introduce the space Weyl-covariant Carrol-

lian derivative

D̂jΦ = ∂̂jΦ + wϕjΦ, (4.101)

which has the same conformal weight. Similarly, for a vector with weight-w components V l:

D̂jV
l = ∇̂jV

l + (w − 1)ϕjV
l + ϕlVj − δl

jV
iϕi. (4.102)

The Weyl-Carroll spatial derivative does not modify the weight of the tensor it acts on.

The action on any other tensor is obtained using the Leibniz rule, as in example for

rank-two tensors:

D̂jtkl = ∇̂jtkl + (w + 2)ϕjtkl + ϕktjl + ϕltkj − ajltkiϕ
i − ajktilϕ

i. (4.103)

Moreover, it is metric-compatible:

D̂jakl = 0. (4.104)

Time and space Weyl-Carroll covariant derivatives do not commute. Their commutators

allow to define further geometric tensors such as the Weyl-Carroll curvature (spatial and

mixed space-time), which do also emerge in the small-c expansion of the relativistic Weyl

curvature tensors introduced in (2.41), (2.42), (2.43), and evaluated in a Papapetrou-Randers

background. More information is available in the already quoted reference [29].

With these derivatives, Carrollian equations (4.35), (4.36) and equation (4.82) read for

a conformal fluid:

1

Ω
D̂tΠ + D̂iΠ

i + Πijξij = 0, (4.105)

D̂iΠ
i
j + 2Πi̟ij +

(

1

Ω
D̂tδ

i
j + ξi

j

)

Pi = 0, (4.106)

1

Ω
D̂tΠj + Πiξ

i
j = 0. (4.107)

These equations are Weyl-covariant of weights d+2, d+1 and d+1 (Pi is weight-d). They are

also manifestly hydrodynamic-frame invariant. Similarly, for the matter sector, (4.41) reads:

1

Ω
D̂t̺+ D̂jN

j = 0, (4.108)

and is Weyl-covariant of weight d+ 1 and hydrodynamic-frame invariant.
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4.3 Carrollian hydrodynamics from relativistic fluids — II

More degrees of freedom

The behaviours (4.67), (4.68), (4.69) and (4.70) of energy, pressure, heat current and stress

tensor are required for matching the zero-c limit of hydrodynamic equations with the

Carrollian momenta conservation, while preserving hydrodynamic-frame invariance. At

the end of section 3.3, we contemplated exotic Galilean situations involving more degrees

of freedom and obeying extended systems of fluid equations reached at infinite c, such

as (3.125). Although of limited use in the non-relativistic framework, this sort of extensions

play a pivotal role when studying Carrollian fluids in flat holography, were more divergent

terms appear to be needed [28]. It is worth elaborating in this direction in the spirit of [29],

and consider in particular72

ε =
ζ

c2
+ η + O

(

c2
)

, (4.109)

p =
φ

c2
+̟ + O

(

c2
)

, (4.110)

qi =
ψi

c2
+Qi + c2πi + O

(

c4
)

, (4.111)

τ ij = −
Σij

c2
− Ξij + O

(

c2
)

. (4.112)

We can at the same time extend the matter sector with

̺0 =
ω

c2
+ χ+ O

(

c2
)

, jk =
mi

c2
+ nk + O

(

c2
)

. (4.113)

With the new scalings, the expansion of the energy-momentum tensor components

(2.100), (2.101), (2.102) is now






















εr = Π̃
c2 + Π + O

(

c2
)

,

qi
r = Π̃i

c2 + Πi + c2P i + O
(

c4
)

,

pra
ij + τ ij

r = Π̃ij

c2 + Πij + O
(

c2
)

.

(4.114)

The Carrollian momenta are displayed in (B.1). Similarly, the matter current (eqs. (2.103)

and (2.104)) exhibits the following:

̺0r =
˜̺

c2
+ ̺+ O

(

c2
)

, jk
r =

Ñk

c2
+Nk + O

(

c2
)

(4.115)

with ˜̺, ̺, Ñk and Nk given in (B.2).

Using the above expansions in the relativistic divergence of the energy-momentum

tensor on Papapetrou-Randers background (2.79) one obtains

c

Ω
∇µT

µ
0 =

F

c2
+ E+ O

(

c2
)

, (4.116)

∇µT
µi =

Xi

c4
+

Hi

c2
+ Gi + O

(

c2
)

, (4.117)

72In holographic Carrollian fluids, one keeps terms up to order 1/c4. The pattern is the same.
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while the divergence of the matter current reads:

∇µJ
µ =

N

c2
+ J+ O

(

c2
)

. (4.118)

In these expressions, E, Gj and J are given in (4.80), (4.81) and (4.87), whereas the new

expressions are

F= −

(

1

Ω
D̂t + θ

)

Π̃ −
(

∇̂i + 2ϕi

)

Π̃i − Π̃ij γ̂ij , (4.119)

Hj =
(

∇̂i + ϕi

)

Π̃i
j + 2Π̃i̟ij + Π̃ϕj +

(

1

Ω
D̂t + θ

)

Πj + Πiγ̂ij , (4.120)

Xj =

(

1

Ω
D̂t + θ

)

Π̃j + Π̃iγ̂ij , (4.121)

and

N=

(

1

Ω
∂t + θ

)

˜̺ +
(

∇̂j + ϕj

)

Ñ j . (4.122)

At zero c, the Carrollian energy and momenta equations are thus E= F= Gj = Hj = Xj =

0, and similarly J= N= 0 describe the matter sector. All these equations are invariant

under hydrodynamic-frame transformations because the differential operators are geometric

and thus invariant, and because the momenta Π̃, Π, Π̃i, Πi, P i, Π̃ij , Πij , ˜̺, ̺, Ñ i, N i also

are, as shown in appendix B.

Weyl-invariant Carrollian fluids

For the system under investigation, the use of an effective action is not convenient, as it

would require a complete set of variables conjugate to the momenta Π, Πi, Πij and Π̃, Π̃i,

Π̃ij , which is bigger than aij , bi and Ω. Weyl invariance is here easier to impose as a zero-c

limit of Tµ
µ = 0 discussed at the end of section 2.1, using (2.98) with (4.114):

Tµ
µ =

1

c2

(

Π̃ i
i − Π̃

)

+ Π i
i − Π + O

(

c2
)

= 0, (4.123)

leading to

Π̃ i
i = Π̃, Π i

i = Π. (4.124)

These conditions can be recast in terms of Carrollian-fluid observables using the explicit

expressions of the momenta (B.1). Splitting them again à la (2.45), into global-equilibrium

equations of state plus conditions for the dynamical irreversible components, we find

the following:

ζ = dφ, Σi
i = 0, η = d̟, Ξi

i = βiβjΣij . (4.125)

The conformal weights of Π̃, Π̃i, Π̃ij match those of Π, Πi, Πij ; those of the extra variables

ζ, φ, ψi and Σij are d+ 1, d+ 1, d and d− 1, while for ω and mi we find d and d+ 1.

Finally, using (4.124), the equations E = F = Gj = Hj = Xj = 0 and J = N = 0

become Weyl-covariant with

J=
1

Ω
D̂t̺+ D̂jN

j , (4.126)

N=
1

Ω
D̂t ˜̺ + D̂jÑ

j , (4.127)
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and

E= −
1

Ω
D̂tΠ − D̂iΠ

i − Πijξij , (4.128)

F= −
1

Ω
D̂tΠ̃ − D̂iΠ̃

i − Π̃ijξij , (4.129)

Gj = D̂iΠ
i
j + 2Πi̟ij +

(

1

Ω
D̂tδ

i
j + ξi

j

)

Pi, (4.130)

Hj = D̂iΠ̃
i
j + 2Π̃i̟ij +

(

1

Ω
D̂tδ

i
j + ξi

j

)

Πi, (4.131)

Xj =
1

Ω
D̂tΠ̃j + Π̃iξ

i
j . (4.132)

These equations are the seed for flat holography, see [25–28]. They are covariant un-

der Carrollian diffeomorphisms, covariant under Weyl rescalings and invariant under

hydrodynamic-frame transformations, which are local Carroll transformations (Carroll

boosts and rotations).

Isometries and conformal isometries

As a final application of the above results on multiplication of degrees of freedom, we

can insert the behaviour (4.114) inside the components (2.107), (2.108) and (2.109) of a

relativistic conserved current resulting from the combination of the energy-momentum

tensor with a Killing or a conformal Killing field. We obtain

−
1

cΩ
I0 = ι0r =

˜̃κ

c4
+
κ̃

c2
+ κ+ O

(

c2
)

, Ik = ikr =
K̃k

c2
+Kk + O

(

c2
)

(4.133)

with (remember that ξi ≡ ξ ı̂ is a function of x only for Carrollian diffeomorphisms)


















































κ = ξiPi − ξ t̂Π

κ̃ = ξiΠi − ξ t̂Π̃

˜̃κ = ξiΠ̃i

Ki = ξjΠ i
j − ξ t̂Πi

K̃i = ξjΠ̃ i
j − ξ t̂Π̃i,

(4.134)

where κ and Ki are precisely as anticipated in (4.51) and (4.52), and described in footnote 62.

Inserting (4.133) in the relativistic divergence of the matter current Iµ in Papapetrou-

Randers background we recover a multiplication of (4.50) in the form

∇µI
µ =

˜̃
K

c4
+

K̃

c2
+ K+ O

(

c2
)

(4.135)

with






















˜̃
K=

(

1
Ω∂t + θ

)

˜̃κ = 0

K̃=
(

1
Ω∂t + θ

)

κ̃+
(

∇̂i + ϕi

)

K̃i = −Π̃i
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

K=
(

1
Ω∂t + θ

)

κ+
(

∇̂i + ϕi

)

Ki = −Πi
((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

.

(4.136)
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The last equalities are obtained owing to the Carrollian Killing (4.46) (or conformal

Killing (3.66), (4.57), (4.58), (4.59)) conditions and the equations of motion E= F= Gj =

Hj = Xj = 0 (see eqs. (4.128), (4.129), (4.130), (4.131), (4.132) — and (4.124) for the

Weyl-covariant situation). One of the three currents is conserved as a consequence of the

(conformal) isometry, whereas the other two are not.

The multiplication of degrees of freedom induced by the behaviour of the energy-

momentum tensor (4.114), triggers a multiplication of currents in the presence of an

isometry (or a conformal isometry if the dynamics is Weyl-invariant) — here three, but

possibly more if more terms are present in (4.114). These currents are generically non-

conserved, as we already observed in section 4.1 for a single current (eqs. (4.54) or (4.60)),

unless the symmetry is stronger than a Carrollian (conformal) isometry i.e. if Lξθ
t̂ =

((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

dxi = 0. Alternatively each of those currents may or may not be

conserved, irrespective of the others, when an appropriate vector in the expansion of qi
r

vanishes, be it Πi or Π̃i, and this explains why ˜̃
K = 0 in the above paradigm, whereas

K̃ 6= 0 and K 6= 0.

As we emphasized at the end of section 3.3 in the Galilean framework, i.e. for infinite

c, it is puzzling that the conservation law ∇µI
µ = 0 of a relativistic current Iµ = ξνT

µν

produced by a Killing vector ξ of a pseudo-Riemannian spacetime, similarly fails when the

limit c-to-zero is taken. This is once again due to the nature of the Carrollian Killing fields;

details are available in appendix D.2.

5 Aristotelian dynamics

Aristotelian spacetimes

Aristotelian spacetimes were introduced in [80]. They are part of a rich web of geometric

structures, which incorporate Newton-Cartan and Carroll, among others. Their defining

feature is a manifold M = R × S of dimension d+ 1, endowed with a degenerate metric and

a degenerate cometric. The first implies that there is a symmetric rank-two tensor acting

on tangent-space elements

dℓ2 = ℓµν(t,x)dxµ dxν , µ, ν . . . ∈ {0, 1, . . . , d} (5.1)

with one-dimensional kernel, the field of observers

υ = υµ(t,x) ∂µ : ℓµνυ
µ = 0. (5.2)

The second translates into the existence of symmetric rank-two tensor acting on cotangent-

space vectors:

∂2
m = mµν(t,x) ∂µ ∂ν , (5.3)

where

µ = µν(t,x) dxν : mµνµν = 0, (5.4)

defines a clock form (one should say “anti-clock” because of the sign), such that

− υµµν +mµλℓλν = δµ
ν , υνµν = −1, mµνℓµν = d. (5.5)
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The topological structure M = R × S provides here a genuine, vertical and horizontal

foliation, as opposed to Carrollian manifolds, where it generally supports a fiber bundle over

a d-dimensional basis, and to Newton-Cartan were the fibration is defined over a line. In

other words, Aristotelian spacetimes lie in the intersection of Carrollian and Newton-Cartan

geometries with trivial Ehresmann connection for the Carrollian and trivial field of observers

for the Newton-Cartan.73

The vector υ and the covector µ are intrinsic geometric objects. Aristotelian trans-

formations are meant to leave them invariant and respect the associated foliation. This

forbids boosts, which is a characteristic feature of Aristotelian spacetimes translating into

the absolute nature of time and space. In practice it allows to adopt a convenient choice:74

dℓ2 = aij dxi dxj , ∂2
m = aij ∂i ∂j (5.6)

with aikakj = δi
j and

υ =
1

Ω
∂t, µ = −Ωdt, (5.7)

where aij and Ω are functions of t and x. Aristotelian diffeomorphisms act as

t′ = t′(t), x′ = x′(x) (5.8)

with Jacobian

J(t) =
∂t′

∂t
, J i

j(x) =
∂xi′

∂xj
. (5.9)

The transformations of the metric and kernel components are thus

a′
ij = aklJ

−1k
i J

−1l
j , Ω′ =

Ω

J
. (5.10)

Aristotelian manifolds can be equipped with covariant derivatives, which allow to obtain

genuine tensors under Aristotelian diffeomorphisms (5.8). As for the various spacetimes

met earlier, we will focus here on the simplest torsionless and metric-compatible space and

time connections, which naturally appear in the conservation equations.

The spatial connection is the same as the one introduced for the Galilean manifolds

in (3.8):

γi
jk =

ail

2
(∂jalk + ∂kalj − ∂lajk) . (5.11)

The associated covariant derivative is spelled ∇i since it needs not be distinguished from the

ordinary Levi-Civita derivative on a Riemannian d-dimensional manifold — it just depends

on time here. It is torsionless, because γi
jk are symmetric and also obeys ∇iajk = 0.75 Its

73Our definition of Aristotelian manifolds is that of [80], also used in [74, 76]. In refs. [39, 40] “Aristotelian”

is somewhat less restrictive. It is meant to be a Leibnizian structure and a Fröbenius-integrable distribution

associated with the absolute clock form (µ ∧ dµ = 0 obvious for (5.7)). The necessary extra ingredient

to match the more conventional picture we use is the field of observers υ (5.2) (or (5.7) in the concrete

realization), as described in Props. A.5 and A.6 of [40].
74This is not the most general choice, as (3.1)–(3.2) and (4.1)–(4.2) were not the most general either for

Newton-Cartan and Carrollian manifolds.
75For a more general discussion on compatible connections, see Props. A.17 and A.18 of [40].
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Riemann, Ricci and scalar curvature tensors are defined as usual d-dimensional Levi-Civita

curvature tensors would be, except that they are t-dependent.

The time derivative operator 1
Ω∂t is also promoted to an Aristotelian temporal metric-

compatible covariant derivative

Dtajk = 0, (5.12)

using

γij =
1

2Ω
∂taij = ξij +

1

d
aijθ. (5.13)

We have introduced the familiar by now traceless shear tensor ξij and expansion scalar

θ = 1
Ω∂t ln

√
a , which can be completed with the acceleration form

ϕi = ∂i ln Ω. (5.14)

The action of Dt is as in the Carrollian case, eqs. (4.17) and (4.18): DtΦ = ∂tΦ and

1

Ω
DtV

i =
1

Ω
∂tV

i + γi
jV

j ,
1

Ω
DtVi =

1

Ω
∂tVi − γ j

i Vj (5.15)

generalized using the Leibniz rule.

Time and space derivatives do not commute:

[

1

Ω
Dt,∇i

]

V j = ϕi

((

1

Ω
Dt + θ

)

V j − γj
kV

k

)

− γ k
i ∇kV

j − drj
ikV

k (5.16)

with76

rj
ik =

1

d

(

θϕiδ
j
k + ∇iγ

j
k −

1

Ω
∂tγ

j
ik

)

(5.17)

another Aristotelian curvature tensor, similar to the one introduced for our Carrol-

lian connection.

Dynamics from diffeomorphism invariance

Aristotelian fluids were introduced in [74], and mentioned as “self-dual” in [29]. They

received further attention [76] amid a soaring interest for non-boost-invariant dynamics [81–

83]. It is abusive though to call this “hydrodynamics” for two reasons. The first is shared

with the Carrollian instance: a fluid is meant to assimilate a phenomenological description

of a many-body system under local-equilibrium and slow-variation assumptions, and those

assumptions are non controllable in the Carrollian or Aristotelian framework due the absence

of a thermodynamic or kinetic theory — the elementary particle motion is forbidden in both

cases. Additionally, as opposed to Galilean or Carrollian manifolds, Aristotelian cannot

be obtained naturally as limits of pseudo-Riemannian spacetimes. Thus, no guide for the

would-be Aristotelian fluid equations exists that could be based on a limiting procedure,

and this is the second reason. The only safe way to reach a set of equations covariant

under Aristotelian diffeomorphisms (5.8) is to require this diffeomorphism invariance at

the level of an effective action, and study its conservation consequences for the conjugate

76Again 1
Ω

∂tγ
j
ik = (∇i + ϕi) γj

k + (∇k + ϕk) γj
i −
(

∇j + ϕj
)

γik is an Aristotelian tensor, even though

γj
ik is not.
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Aristotelian momenta. The latter remain however agnostic on a decomposition in terms of

kinematical (as vi for Galilean, βi for Carrollian) and kinetic (energy, pressure, heat and

stress) variables.

Starting again with an action S =
∫

dt ddx
√
aΩL on M = R × S, now functional of aij

and Ω, the Aristotelian momenta conjugate to those variables are

Πij =
2

√
aΩ

δS

δaij
, (5.18)

Π = −
1

√
a

δS

δΩ
. (5.19)

These are the energy-stress tensor and the energy density, and with those the variation of

the action in the gravitational sector is

δS = −

∫

dtΩ

∫

ddx
√
a

(

1

2
Πijδa

ij + Πδ ln Ω

)

. (5.20)

Aristotelian diffeomorphisms (5.8) are generated by vector fields

ξ = ξt∂t + ξi∂i = ξ t̂ 1

Ω
∂t + ξi∂i, (5.21)

where ξt = ξt(t) and ξi = ξi(x). The variation under diffeomorphisms is implemented as

usual with

− δξaij = Lξaij = 2∇(iξ
kaj)k + 2ξ t̂γij . (5.22)

Now

Lξυ = µυ, Lξµ = −µµ (5.23)

with

µ(t,x) = −

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

. (5.24)

Thus

− δξ ln Ω =
1

Ω
LξΩ = −µ. (5.25)

Using (5.22) and (5.25) in (5.20) with ξi = ξi(x), we obtain (indices are here lowered

with aij)

δξS =

∫

dtddx
√
aΩ

{

−ξ t̂

[(

1

Ω
∂t + θ

)

Π + Πijγij

]

+ ξi
[

(∇j + ϕj) Πj
i + Πϕi

]

}

+

∫

dtddx
{

∂t

[√
a ξ t̂Π

]

− ∂i

[√
aΩξjΠi

j

]}

. (5.26)

The boundary terms (last line of (5.26)) are ignored and δξS = 0 implies that the momenta

defined earlier in (5.18), (5.19) are Aristotelian-covariant. It leads to two equations: the

energy equation
(

1

Ω
∂t + θ

)

Π + Πijγij = − (∇i + 2ϕi) Πi, (5.27)
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and the momentum equation

(∇j + ϕj) Πj
i + Πϕi = −

(

1

Ω
∂t + θ

)

Pi. (5.28)

In these equations the energy current Πi and the momentum P i are undetermined.

They arise because ξt depends on time and ξi on space, exclusively. As a consequence,
√
aΩξ t̂ (∇i + 2ϕi) Πi = ∂i

(√
aΩξ t̂Πi

)

and
√
aΩξi

(

1
Ω∂t + θ

)

Pi = ∂t

(√
a ξiPi

)

, which are

boundary terms and vanish inside the integral.

Aristotelian dynamics stands at the intersection of Galilean and Carrollian. This is

expected from first principles and can be verified by comparing eqs. (5.27) and (5.28)

with (3.42)77 and (3.41) in the Galilean at wi = 0, as well as (4.35) and (4.36) in the

Carrollian bi = 0 instances. However, contrary to these, Aristotelian dynamics cannot be

reached as a limit of relativistic hydrodynamics. No kinematical parameter such as vi or

βi can be foreseen and no decomposition of the momenta à la (3.84), (3.89), (3.90), (3.91)

or (4.76), (4.77). Finally, hydrodynamic-frame invariance cannot be argued or disputed.

The presence of a matter/charge sector can be treated as in the previous families of

dynamics. We assume the existence of a gauge field B = B(t,x)dt+Bi(t,x)dxi associated

with a local U(1) transformation as in (3.43), and the conjugate momenta

̺ =
1

√
a

δS

δB
, (5.29)

N i =
1

Ω
√
a

δS

δBi
(5.30)

are the charge density and the charge current. The gauge variation

δΛS =

∫

dtddx
√
a
(

̺δΛB + ΩN iδΛBi

)

=

∫

dtddx

{

√
aΩΛ

(

1

Ω
∂t̺+ θ̺+ (∇i + ϕi)N

i

)

− ∂t

(√
aΛ̺

)

− ∂i

(√
aΛΩN i

)

}

(5.31)

is assumed to vanish, and this leads to

(

1

Ω
∂t + θ

)

̺+ (∇i + ϕi)N
i = 0. (5.32)

In integrated form, thanks to Stokes and Gauss theorems, this conservation reads (V ⊂ S, a

constant-time section, and ∂V does not depend on time):

d

dt

∫

V

ddx
√
a ̺ = −

∫

V

ddx ∂i

(√
aΩN i

)

= −

∫

∂V
Ω ⋆N (5.33)

77Notice that a term of the type 2ϕiΠ
i would also have been present in this Galilean energy equation if

we had considered a torsionfull Newton-Cartan spacetime, with Ω = Ω(t, x), as we assume in the present

Aristotelian case.
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with the conserved charge defined as an integral over the entire space S:

QN =

∫

S

ddx
√
a ̺. (5.34)

As for the Galilean or the Carrollian situations discussed in sections 3.1 and 4.1, one can

chose any space-like hypersurface Σd for the determination of the charge:

QN =

∫

Σd

√
a ̺dx1 ∧ . . . ∧ dxd +

∫

Σd

√
a

d
∑

i=1

dx1 ∧ . . . ∧N iµ ∧ . . . ∧ dxd, (5.35)

with the clock form µ given in (5.7), and N iµ at the ith position in the last exterior product.

Weyl invariance

Weyl invariance can also be present in Aristotelian dynamics. The reasoning is familiar,

starting from δBS = 0, we are lead to the condition

Π i
i = Π. (5.36)

The geometric tools for handling Weyl covariance are similar to those introduced in the

previous sections. The connections are θ and ϕi (see eqs. (5.13) and (5.14)) with

θ → Bθ −
d

Ω
∂tB, ϕi → ϕi − ∂i ln B. (5.37)

The action of the Aristotelian Weyl-covariant time derivative on any tensor increases its

weight by one unit. On a weight-w function Φ it is

1

Ω
DtΦ =

1

Ω
DtΦ +

w

d
θΦ =

1

Ω
∂tΦ +

w

d
θΦ, (5.38)

while on a weight-w vector, we find using (5.15)

1

Ω
DtV

l =
1

Ω
DtV

l +
w − 1

d
θV l =

1

Ω
∂tV

l +
w

d
θV l + ξl

iV
i. (5.39)

Similarly for any tensor by Leibniz rule and in particular we find Dtakl = 0.

A spatial Aristotelian-Weyl-covariant derivative can also be introduced, and does not

alter the conformal weight. For a weight-w scalar function Φ it acts as

DjΦ = ∂jΦ + wϕjΦ; (5.40)

for a vector we find

DjV
l = ∇jV

l + (w − 1)ϕjV
l + ϕlVj − δl

jV
iϕi. (5.41)

The action on any other tensor is obtained using the Leibniz rule, and in particular

Djakl = 0.

Time and space Aristotelian-Weyl covariant derivatives do not commute and curvature

tensors follow, which resemble those already quoted for the Carrollian or Galilean cases. We
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will not elaborate on this subject here, in particular because all these connections can be

generalized and studied in a more abstract geometric framework, as for example in [39, 40].

With the above tools, Aristotelian equations (5.27) and (5.28) read, under the assump-

tion of conformal dynamics (5.36):

1

Ω
DtΠ + DiΠ

i + Πijξij = 0, (5.42)

DiΠ
i
j +

(

1

Ω
Dtδ

i
j + ξi

j

)

Pi = 0. (5.43)

These equations are Weyl-covariant of weights d+ 2 and d+ 1 (Π and Πi
j have weight d+ 1,

whereas Πi and Pi are weight-d). Similarly, for the matter sector, (5.32) reads:

1

Ω
Dt̺+ DjN

j = 0, (5.44)

and is Weyl-covariant of weight d+ 1.

Isometries, conformal isometries and conservation laws

Isometries of Aristotelian spacetimes are generated by vectors fields (5.21) required to satisfy

Lξaij = 0 , Lξµ = 0 . (5.45)

The latter lead to a set of Killing equations for ξ t̂(t) and ξi(x):

∇(iξ
kaj)k + ξ t̂γij = 0,

1

Ω
∂tξ

t̂ + ϕiξ
i = 0. (5.46)

For conformal isometries, the generators must satisfy

Lξaij = λaij (5.47)

where λ is obtained by tracing the latter:

λ(t,x) =
2

d

(

∇iξ
i + θξ t̂

)

. (5.48)

As for the previous Galilean and Carrollian cases, the requirement (5.47) must be supple-

mented with the usual extra condition (3.66) 2µ+ λ = 0, in order to reach a well-defined

set of conformal generators — µ(t,x) is displayed in (5.24).

In the presence of isometries or conformal isometries, we can define an Aristotelian

current κ and Ki (as ̺ and N i in (5.29), (5.30)), following the previous definitions in

Newton-Cartan ((3.58) and (3.59)) or Carrollian spacetimes ((4.51) and (4.52)) — see also

the boundary terms in δξS (5.26) evaluated on-shell:

κ = ξiPi − ξ t̂Π, Ki = ξjΠ i
j − ξ t̂Πi. (5.49)

Going on-shell and using the Killing equations, or the conformal Killing equations when

the system is Weyl-invariant i.e. when (5.36) is satisfied, we find:

K=

(

1

Ω
∂t + θ

)

κ+ (∇i + ϕi)K
i = 0. (5.50)

Consequently, on Aristotelian structures, a (conformal) Killing field always supports an
on-shell conservation law for (Weyl-invariant) Aristotelian dynamics.
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6 Conclusions

Hydrodynamic equations for Galilean and Carrollian fluids on arbitrary backgrounds

were displayed in ref. [29]. The present work augments these achievements and points

towards an extensive set of features: (i) the fluid momenta conjugate to the geometric

variables that define the spacetime and their role in the dynamics; (ii) the inclusion of

a matter conserved current and its potential interplay with the energy and momentum

through thermodynamics; (iii) the hydrodynamic-frame invariance; (iv) the consequence

of isometries in terms of conservation. For this purpose, two distinct and complementary

approaches have been pursued.

The first relies on local symmetries, primarily diffeomorphism invariance, but also local

Weyl and U(1) gauge invariance. The energy and momenta are defined through geometry

and are conserved as a consequence of diffeomorphism invariance. They are different for the

relativistic, Galilean or Carrollian theories, and it should be stressed that only the relativistic
theory has an energy-momentum tensor Tµν with zero general-covariant divergence. In

Galilean dynamics there is an energy-stress tensor Πij , a momentum Pi and an energy

density Π, obeying a set of conservation equations, necessarily involving an extra variable,

the energy flux Πi, which is not conjugate to any available geometric piece of data. Similarly,

Carrollian dynamics goes through with an energy-stress tensor Πij , an energy flux Πi and

an energy density Π, whereas the momentum P i comes now aside.

The second approach consists in working within an appropriate coordinate system of

the relativistic theory, and reach the Galilean or Carrollian dynamics in the infinite or zero

speed-of-light limit. This method does not allow to retrieve Aristotelian dynamics, which is

neither a large-c nor a small-c limit, but offers the possibility to capture more degrees of

freedom by keeping overleading terms in the Laurent expansions. It is also better suited for

unravelling the subtleties in the contraction of the relativistic group of invariance, as the

persistence in the limit of a supplementary equation, absent in the direct approach. This is

for instance the continuity equation in the Galilean framework or a similar conservation

equation in the Carrollian, which betray that the relativistic diffeomorphism group valid

before the limit is bigger than the actual Galilean or Carrollian groups. Finally, only when

considering a limit from a relativistic system, can we express the various momenta in terms

of the relevant kinematical and thermodynamic variables. This is how the velocity appears

in the Galilean limit, whereas the inverse velocity arises as the relevant observable for

Carrollian fluids — particularly important for the latter, where the we have no handle or

hint from thermodynamics. The kinematical observables play a pivotal role in the further

analysis of hydrodynamic-frame invariance.

The energy-momentum variables entering the dynamical equations are variations of

some effective action with respect to geometric data. These are not any sort of Nœtherian

currents, which have no reason to exist since no isometry is assumed. Furthermore, even

when isometries are present, Nœtherian conservations appear only in relativistic dynamics.

In Galilean and Carrollian systems, conserved currents cannot be designed on the basis

of an isometry, unless the latter obeys an extra condition. This unexpected result should

be viewed as one of our main accomplishments. It jeopardizes Nœtherian descriptions
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of Galilean or Carrollian hydrodynamics on isometric backgrounds, and calls for extra

attention when studying charges in the framework of flat holography.

Focusing specifically on Galilean hydrodynamics, a few words should be devoted to

the extra conserved matter current introduced in the relativistic theory. As shown in [29],

this current is not necessary for recovering the continuity equation in the Galilean limit.

Additionally, its associated matter density defines the rest contribution to the energy density,

and their relationship is dictated by thermodynamics. This is how the chemical potential,

absent in [29] enters the dynamics. Most importantly, in the limiting process, this current

contributes to the Galilean heat current, as much as the relativistic heat current does,

confirming that both Eckart and Landau-Lifshitz hydrodynamic-frame choices are viable.

This brings us to a central theme of the present work: the hydrodynamic-frame invariance

in the Galilean limit.

The fluid velocity in the relativistic system is merely a book-keeping device. The effect

of modifying it by local Lorentz transformations propagates on the various observables

(heat current, stress tensor, thermodynamic variables) so as to keep the energy-momentum

tensor, the matter current and the entropy current invariant. When considering a limit on

the speed of light, the expansion of the observables matters on the possible preservation of

the hydrodynamic-frame invariance. Using the standard behaviour dictated by the physical

transport coefficients, this invariance does not survive in the Navier-Stokes equations. This is

not a surprise because the velocity and the matter density of a Galilean fluid are measurable

observables, protected by a symmetry supported by the conservation of mass — itself a

consequence of a central extension of the Galilean group emerging in a Poincaré-group

contraction. Adopting an alternative behaviour, with overleading terms in the heat current

saves the hydrodynamic-frame invariance at the expense of altering the continuity equation.

The resulting dynamics is reminiscent of diffusion processes or superfluids, where indeed all

species are not simultaneously conserved.

Fluids based on massless energy carriers are revealed as an exception to this Galilean

scheme. For these fluids, with or without a charge conservation, the behaviour of the

heat current, possibly but not necessarily with exotic terms, is compatible with Galilean

hydrodynamic-frame invariance. It should be emphasized that this holds irrespective of

Weyl invariance, which is not even a priori assumed. The deep reason of this feature is rather

the absence of a rest term in the energy density, behaving like c2 — and thereupon, the

inexistence of mass conservation, usually in conflict with hydrodynamic-frame invariance.

Although to some extent dual to Galilean, Carrollian fluids exhibit different features.

As opposed to the Galilean case, we have no inkling on what thermodynamics for these

systems is, due to the absence of motion and thus of kinetic theory. For the same reasons,

the energy density cannot be decomposed into rest plus kinetic contributions. Therefore, if

a conserved charge exists, it decouples from the hydrodynamic equations. More importantly,

no transport theory is available that would serve as a guide for the behaviour of the physical

observables (heat current and the stress tensor) when the speed of light gets extinct. Instead,

Carrollian fluids have been recognized as holographic duals of asymptotically flat spacetimes

— their unique successful application so far — and this gives a handle on the terms to keep

in the small-c expansion. With those, hydrodynamic-frame invariance is maintained in the

Carrollian limit, reflecting holographically residual bulk diffeomorphisms.
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Aristotelian dynamics was the last subject treated in this context. As we stressed

earlier, only the geometric method is applicable, based on Aristotelian diffeomorphisms.

The set of equations reached in this way appears as the intersection of Galilean (with

torsion though) and Carrollian dynamics. The reduction of the light cone onto points, the

degenerate nature of motion and the impossibility to bridge this theory with the relativistic

theory through a limit,78 leaves little room for a more in-depth discussion in terms of fluids.

All this summarizes our achievements, their relationships and the general context. This

activity, mostly based on classical physics and differential geometry, is part of a palette

of timely developments. The subject of hydrodynamic-frame invariance has been treated

here in a kinematic fashion, ignoring the entropy current and the constitutive relations.

This latter facet has come back in the forefront [11–19] (see also [63, 64]), and further

investigation of these physical features is certainly desirable in light of our more formal

results. In particular, certain aspects of the photon fluid deserve some attention, even at

an anecdotic level [93] with the notorious Planck-Ott paradox: does a moving body appear
cool? According to Israël about this paradox [5] “it is not yet quite dead,” and one indeed

finds articles where it is still debated [94]. On a less frivolous tone, relativistic and Galilean

hydrodynamics can be studied using Boltzmann equation, and this should also apply to

Carrollian fluids. More ambitiously, one may even try to root Boltzmann equation inside field

theory, which in turn would require mastering Galilean or Carrollian fields on general curved

spacetimes. At the classical level, some results are available [63–65, 79, 95–98, 100–103],

but the quantum theory remains elusive — see e.g. [104].

Besides the caveats plaguing hydrodynamic-frame invariance in relation with causality

or stability and rooted in the constitutive relations, this local gauge symmetry does also

disclose global issues. Local velocity transformations may leave the system with global

distinctnesses. To handle them, one should be able to design charges associated with the

energy and momenta, the matter current or the entropy current, possibly sensitive to global

properties. For relativistic or Carrollian fluids, those charges can be handled holographically

via a gravity dual, asymptotically anti-de Sitter or flat. They actually obey algebras, which

depend on the chosen hydrodynamic frame [25–27]. Extensions and refinements to this

analysis would be expedient.
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A A primer on thermodynamics

Relativistic thermodynamics

We remind here the usual observables of global-equilibrium thermodynamics. These are

supposed to make sense also in local-equilibrium thermodynamics, as for fluids where the

absence of short wave-length modes is assumed. In this case they depend on time and space

and refer to measurements performed by an observer comoving with respect to the fluid.

Matter conservation is generically (but not necessarily) akin to the existence of massive

carriers in conserved number.

• The temperature T .

• The mass density ̺0 per unit proper volume.

• The entropy per unit proper volume σ, and the entropy per unit mass s

(specific entropy):

σ = s̺0. (A.1)

• The relativistic internal energy density per unit proper volume ε, which contains the

rest mass, and the specific energy per unit mass e:

ε =
(

e+ c2
)

̺0. (A.2)

• The pressure p and the relativistic enthalpy w per unit proper volume:

w = ε+ p. (A.3)

• The relativistic chemical potential per unit mass (specific chemical potential) µ0. This

contains the rest-mass contribution, as opposed to µ:

µ0 = µ+ c2. (A.4)

These quantities obey the grand-potential equation, sometimes referred to as the Gibbs-

Duhem equation:

w = Tσ + µ0̺0 ⇔ p = Ts̺0 + µ̺0 − e̺0. (A.5)
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The energy density is a functional of two thermodynamic variables: ε = ε (σ, ̺0). The

first law of thermodynamics reads:

dε = Tdσ + µ0d̺0 ⇔ de = Tds− pd

(

1

̺0

)

. (A.6)

The Gibbs-Duhem equation allows to exhibit the dependence of the enthalpy per unit

proper volume w = w (σ, p, ̺0)

dw = Tdσ + dp+ µ0d̺0, (A.7)

whereas a double Legendre transformation on ε infers the dependence of the grand potential

p = p (T, µ0)

dp = σdT + ̺0dµ0 = s̺0dT + ̺0dµ. (A.8)

We would like to mention the situations where no massive degrees of freedom are present

in the microscopic theory.79 A gas of photons is the prime example but other instances

exist in condensed matter, in particular when fermions are involved, as in graphene (see

e.g. [89]). In the latter case, as opposed to the gas of photons, there is a conserved quantity.

So ̺0 is non-vanishing, but it is not a mass density; ε = e̺0 and µ0 = µ, without rest-mass

contribution. These systems can be conformally invariant, and in that case the dependence

p = p(T, µ) is

p = TDf (µ/T) (A.9)

in D = d+ 1 spacetime dimensions.80

Coming back to a system with massless carriers and no conserved charge, as for the gas

of photons, the above thermodynamic relationships simplify by setting µ = 0 and dropping

the rest-mass terms. Specific quantities are no longer significant in this instance. Fluid

dynamics of such systems does not involve any conserved current.81 The basic laws are

summarized as follows:






























w = Tσ

dw = Tdσ + dp

dε = Tdσ

dp = σdT,

(A.10)

and when the system is furthermore conformal, p ∝ TD.

Several conserved charges might exist simultaneously in a thermodynamic system. They

would each be associated with a density and a chemical potential. Only one, if any, would

however enter the energy density (A.2).

79This happens effectively in the usual ultra-relativistic limit, meant to be relevant microscopically at

high temperature or high pressure.
80The precise bearing between conformal invariance, absence of mass and existence of conserved currents

is subtle and tight to the microscopic theory.
81This instance was discussed in the precise framework of relativistic fluid dynamics in [86] section 134,

footnote 1 and exercise 2. The general thermodynamic aspects are presented in greater detail in [105]

section 60.
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Non-relativistic limit

The thermodynamic variables introduced earlier in the relativistic theory such as ̺0, ε, µ etc.

are referring to a comoving observer. Measurements performed by another observer, be this

an inertial observer in special relativity or some fiducial observer in a general gravitational

background, are more relevant for the Galilean framework, but are not equal and should be

spelled stricto sensu with some distinctive index. Their differences, however, are of order
1/c2 and vanish in the infinite-c limit. In order to avoid inflation in notation, we will keep

the same symbols, e, T , p, s, µ, with the exception of ̺0, which becomes ̺ for the fiducial

observer. The 1/c2 corrections amongst ̺0 and ̺ (see (3.74)) play no role in thermodynamics,

but are indispensable in recovering Navier-Stokes equations as the Galilean limit of the

relativistic hydrodynamic equations.

In non-relativistic thermodynamics, it is customary to introduce the specific volume

(not to be confused with the velocity)

v =
1

̺
, (A.11)

as well as specific enthalpy h = h (s, p) as82

h = e+ pv, (A.12)

which also enters in

µ = h− Ts. (A.13)

Using these definitions and the various relativistic laws mentioned above, we find the

standard expressions:

dh = Tds+ vdp, (A.14)

d (e̺) = ̺Tds+ hd̺, (A.15)

de = Tds− pdv, (A.16)

dµ = −sdT + vdp. (A.17)

Before closing this section, let us quote that Galilean thermodynamics can accommodate

fluids with massless energy carriers, as long as the macroscopic velocity is small compared

to c — although at the microscopic level the dynamics is ultra-relativistic. Again, a

conserved current may or may not exist. In case such a current is available, ̺ is the charge

density with83 ε = e̺ the internal energy density and µ the chemical potential. The basic

relationships are now

w = p+ ε = Tσ + µ̺ ⇔ p = Ts̺+ µ̺− e̺, (A.18)

and






















dw = Tdσ + dp+ µd̺

dε = Tdσ + µd̺

dp = σdT + ̺dµ.

(A.19)

82This is spelled wnr in footnote 1, section 134 of [86].
83Notice the distinction: ε = lim

c→∞
ε = e̺, σ = lim

c→∞
σ = s̺. In order to avoid multiplication of symbols,

we keep w = h̺, p and µ both for the relativistic quantities and for their Galilean limits.
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Equations (A.11), (A.12), (A.13), (A.14), (A.15), (A.16), (A.17) remain also valid, together

with (A.9) in case of conformal invariance.

If no conserved charge is present, the chemical potential vanishes (as does dµ) and the

relevant equations are expressed with w, ε and σ rather that h̺, e̺ or s̺.

Carrollian thermodynamics

Carrollian thermodynamics is poorly understood. In most parts of this work dealing with

the fluid equations, we have kept the energy density ε and the pressure p unaltered in

the limit of vanishing velocity of light. Neither have we introduced any temperature, nor

discussed an entropy equation, and when a conserved current was assumed (as eluded

in [85]), no relationship was established or set among energy and conserved-charge densities.

This is minimalistic by default. Indeed, the shrinking of the light cone and the absence of

particle motion or signal propagation, raise fundamental questions regarding the origin —

and even the definition — of energy, pressure, entropy, temperature and thermalization

processes. Even the kinematic parameter of the fluid is an inverse velocity, which could point

towards the dynamics of instantonic space-filling branes, as mentioned in [29]. Obviously,

this sort of objects are tachyonic — like those introduced later in [77] — and we feel uneasy

advocating any sort of kinetic theory for setting up thermodynamic laws and deviations

from equilibrium.

B Carrollian momenta and hydrodynamic-frame invariance

In section 4.3 we obtained the Carrollian fluid equations under c2-scaling assumptions

involving more degrees of freedom than the standard ones treated in section 4.2: (4.109),

(4.110), (4.111) and (4.112) for the relativistic energy ε, pressure p, heat current qi and

stress tensor τ ij , and similarly for the matter sector with the matter density ̺0 and the

non-perfect current ji in (4.113). These equations involve the Carrollian momenta Π̃, Π,

Π̃i, Πi, P i, Π̃ij , Πij , ˜̺, ̺, Ñ i, N i, which have the following expressions in terms of the

observables entering the already quoted c-expansions:























































































Π̃i =ψi

Πi =Qi−βj

(

Σij −φaij
)

+βi
(

ζ+βjψ
j
)

+ βββ2

2 ψ
i

P i =πi−βj

(

Ξij −̟aij
)

+βi
(

η+βjQ
j
)

+ βββ2

2

(

Qi+ 3βββ2

4 ψi
)

+βiβββ2
(

ζ+φ+ 1
2βjψ

j
)

Π̃ = ζ+2βiψ
i

Π = η+2βiQ
i−βiβj

(

Σij −φaij
)

+βββ2
(

ζ+βiψ
i
)

Π̃ij =ψiβj +βiψj +φaij −Σij

Πij =Qiβj +βiQj +̟aij −Ξij +βiβj (ζ+φ)+ βββ2

2

(

ψiβj +βiψj
)

,

(B.1)
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and






























Ñ j = mj

N j = nj + βjω

˜̺ = ω + βkm
k

̺ = χ+ βkn
k + βββ2

2 ω.

(B.2)

The aim of the present appendix is to show that these are hydrodynamic-frame-invariant.

Although hydrodynamic-frame invariance is built-in for the relativistic momenta (2.100),

(2.101), (2.102), (2.103) and (2.104), it is not guaranteed to persist in the vanishing-c limit

because it can be incompatible with the presumed small-c behaviour of the physical

observables. This happens in the Galilean (infinite-c) limit, as we have witnessed in

section 3.2 for the ordinary i.e. with ni = 0 non-relativistic fluids, because δni ∝ δvi (see

eq. (3.113)). Here it turns out to hold and in order to prove that we use the relativistic

transformation rules (2.92), (2.93), (2.94), (2.95) and (2.96) in the Papapetrou-Randers

frame (2.79). Using (4.109), (4.110), (4.111), (4.112) and (4.113), and expanding we find































δmj = 0

δnj = −δβjω + δβkm
kβj

δω = −δβkm
k

δχ = −δβk

(

nk + βββ2

2 m
k
)

,

(B.3)

and











































































































δψi = 0

δQi = δβj

(

Σij − φaij
)

− δβiζ + δβjψ
jβi

δπi = δβj

(

Ξij − (η +̟)aij
)

+ βββ2

2 δβj

(

Σij − (ζ + φ)aij
)

+ δβjβ
i
(

βj(ζ + φ) +Qj
)

+βββ2βiδβjψj

δζ = −2δβiψ
i

δη = −2δβi

(

Qi + βββ2

2 ψ
i
)

δΣij − δφaij = ψiδβj + ψjδβi

δΞij − δ̟aij = Qiδβj +Qjδβi + δβk

(

Σkiβj + Σkjβi
)

+ βββ2

2

(

ψiδβj + ψjδβi
)

+δβkβ
k
(

ψiβj + ψjβi
)

+ βiβjδφ.

(B.4)

It is straightforward to show that the variations of all momenta (B.1) and (B.2) vanish.

C Free motion

Our results on the failure of conservation laws associated with some Galilean or Carrollian

(conformal) Killing vector fields are generic and rooted to the nature of the underlying
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geometries. The same phenomenon occurs when studying free-particle motion in Newton-

Cartan spacetimes, or instantonic branes on Carrollian structures (see [29] for motivations

on the latter paradigm). For concreteness we will illustrate here the former case.

The stage is set with an action

S[x] =

∫

C

dtΩ(t)L(t,x,v), (C.1)

where L = ΩL is the Lagrangian — as opposed to the Lagrangian density. The generalized

Lagrange momenta are

pi =
∂L

∂ vi

Ω

(C.2)

and the energy E = ΩE with

E=
piv

i

Ω
− L. (C.3)

The equations of motion are Euler-Langrange

1

Ω
ṗi −

∂L

∂xi
= 0. (C.4)

The dot stands for the total derivative along the trajectory, which can act also as ∂t + vi∂i

on any tensor, and should not be confused with d/dt defined in (3.24) unless they act on

scalars (cf. ordinary vs. covariant spatial derivative).

Consider Galilean diffeomorphisms generated by

ξ = ξt∂t + ξi∂i, (C.5)

where ξt = ξt(t) and

ξ t̂ = ξtΩ, ξ ı̂ = ξi − ξtwi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi. (C.6)

Their effect on the dynamical variables is


















t → t+ ξt

xi → xi + ξi

vi → vi + ∂tξ
i + vj∂jξ

i − vi∂tξ
t.

(C.7)

On the one hand, the invariance of the action is characterized as follows:

δS = 0 ⇔ ΩδL+ L∂tξ
t̂ =

dφ

dt
, (C.8)

where φ = φ(t,x) is an arbitrary function, that needs not be zero. On the other hand, one

can determine the on-shell variation of the Lagrangian density:

δL= −
L

Ω
∂tξ

t̂ +
1

Ω

d

dt

(

piξ
i − Eξ t̂

)

. (C.9)

The simplest of Nœther’s theorems states that

δS = 0 ⇔ piξ
i − Eξ t̂ − φ = constant of motion. (C.10)
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Suppose now that the motion is free on a Newton-Cartan spacetime featured by aij , wi

and Ω. The Lagrangian density is

L=
1

2Ω2
aij

(

vi − wi
) (

vj − wj
)

(C.11)

with

pi =
1

Ω
(vi − wi). (C.12)

Euler-Lagrange equations read:
(

1

Ω

D̂

dt
+ pj∇̂j

)

pi + pj γ̂
wj

i = 0. (C.13)

As an aside remark, the latter equation is the infinite-c limit of the spatial component of the

geodesic equation uµ∇µui = 0, in a Zermelo background. The time component uµ∇µu
0 = 0

leads to
1

2Ω

dpip
i

dt
+ pipj γ̂

wij = 0, (C.14)

which is the energy equation, obtained by contracting (C.13) with pi.

We can now compute the generic variation of (C.11) under Galilean diffeomorphisms

acting as (C.7). We obtain the following:

δL= pipj

(

∇̂(iξ ̂) + ξ t̂γ̂wij
)

− pip
i 1

Ω

D̂ξ t̂

dt
+ pi

(

1

Ω

D̂ξ ı̂

dt
− γ̂wi

jξ
̂

)

. (C.15)

If ξ is a Killing field it satisfies (3.53), the first two terms drop and

δL= pi

(

1

Ω

D̂ξ ı̂

dt
− γ̂wi

jξ
̂

)

(C.16)

does not vanish, exactly as in the Galilean fluid dynamics in the presence of an isometry.

This betrays the break down of conservation, unless the right-hand side of eq. (C.16) happens

to be of the form (C.9), in which case Nœther’s theorem applies in its version (C.10).

As already emphasized repeatedly, this pattern works the same way in all situations we

have met, involving Galilean or Carrollian dynamics. In flat spacetimes (either Galilean or

Carrollian) boosts belong invariably to the class of isometries with non-vanishing Lagrangian

variation (see (3.56) and (4.49)). There is not much we could extract from this in fluid

dynamics (except for the case of flat-space potential flows, see footnotes 37 and 65), but for

Galilean free-particle motion on flat spacetime (aij = δij , Ω = 1, wi constants) the situation

is simpler. We find indeed:

δL=
(

ẋi − wi
) (

Vi + wkΩki

)

=
d

dt

(

xiVi − wiVit+ wkxiΩki

)

. (C.17)

In this particular case, (C.10) applies and gives the general constant of motion as (see

also (3.55))

Vi

(

ẋit− xi
)

−
T

2

(

ẋ2 − w2
)

+Xi

(

ẋi − wi
)

+ Ωijx
iẋj . (C.18)

The boosts V i do not generate any useful first integral (the initial position xi
0), as opposed

to time translation T , space translations Xi and rotations Ωij , which lead to energy,

momentum and angular momentum conservations.
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D From conservation to potential non-conservation

D.1 Galilean law from infinite speed of light

Our starting point is a pseudo-Riemannian spacetime in Zermelo frame (2.46)

ds2 = −Ω2c2dt2 + aij

(

dxi − widt
) (

dxj − wjdt
)

(D.1)

with an energy-momentum tensor Tµν obeying ∇µT
µν = 0, and a vector field

ξ = ξt∂t + ξi∂i = ξ t̂et̂ + ξ ı̂eı̂, (D.2)

where the frame and coframe are defined as in (2.72), and

ξ t̂ = ξtΩ, ξ ı̂ = ξi − ξtwi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi. (D.3)

We define a current as in (2.13), Iµ = Tµνξ
ν , and compute its on-shell divergence, using

eqs. (2.63):

∇µI
µ = −

1

2
TµνLξg

µν = −
εr

Ω

D̂ξ t̂

dt
+ (praij + τrij)

(

∇̂iξ ̂ + ξ t̂γ̂wij
)

+
1

c2
qri

(

1

Ω

D̂ξ ı̂

dt
− γ̂wi

jξ
̂ − c2aij∂jξ

t̂

)

. (D.4)

This result is relativistic, expressed with Galilean derivatives though. It vanishes iff























1
Ω

D̂ξt̂

dt
= 0

∇̂(iξ ̂) + ξ t̂γ̂wij = 0

1
Ω

D̂ξı̂

dt
− γ̂wi

jξ
̂ − c2aij∂jξ

t̂ = 0,

(D.5)

which are simply the conditions for ξ be a Killing field of the pseudo-Riemannian manifold.

We would like now to consider the infinite-c limit of (D.4). At the first place, we

must provide the bahaviour of εr, qri and praij + τrij for large c. This is typically of the

form (3.120)84























εr = Π + O (1/c2)

qri = c2Pi + Πi + O (1/c2)

praij + τrij = Πij + O (1/c2) ,

(D.6)

and (D.4) becomes:

∇µI
µ = −

Π

Ω

D̂ξ t̂

dt
+Πij

(

∇̂iξ ̂+ξ t̂γ̂wij
)

+

(

Pi+
Πi

c2

)

(

1

Ω

D̂ξ ı̂

dt
−γ̂wi

jξ
̂−c2aij∂jξ

t̂

)

+O(1/c2) .

(D.7)

84More general behaviours have appeared in (3.86), (3.87), (3.88), or in (3.124). These choices wouldn’t

change our present argument though.
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For this expression to remain finite at infinite c, we must impose that85

∂jξ
t̂ = 0, (D.8)

which is the requirement that ξ generates a Galilean diffeomorphism. Conservation holds

in the limit if expression (D.7) vanishes, which is again a threefold condition:

1

Ω

D̂ξ t̂

dt
= 0, (D.9)

∇̂(iξ ̂) + ξ t̂γ̂wij = 0, (D.10)

1

Ω

D̂ξ ı̂

dt
− γ̂wi

jξ
̂ = 0. (D.11)

Equations (D.9) and (D.10) are nothing but (3.53) i.e. the definition of a Galilean Killing

field. Equation (D.11) is an extra condition, absent for generic Galilean isometries. The

latter do not guarantee the existence of a conserved Galilean current. The break down of

the conservation is read off in

lim
c→∞

∇µI
µ = Pi

(

1

Ω

D̂ξ ı̂

dt
− γ̂wi

jξ
̂

)

=
Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

, (D.12)

which agrees with (3.61) or (3.130). As stressed in section 3.1, the failure might be only

apparent, if the term Pi

Ω

(

∂tξ
ı̂ + Lwξ

ı̂
)

turns out to be a boundary term, that would then

contribute the Galilean current.

D.2 Carrollian law from zero speed of light

We will here consider pseudo-Riemannian spacetime in Papapetrou-Randers frame (2.79)

ds2 = −c2
(

Ωdt− bidx
i
)2

+ aijdxidxj . (D.13)

We assume a conserved energy-momentum tensor Tµν and a vector field as in (D.2) with

ξ t̂ = ξtΩ − ξibi, ξ ı̂ = ξi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi + ξt̂bi. (D.14)

The frame and coframe are defined in (2.105).

We now compute the on-shell divergence of the current (2.13) Iµ = Tµνξ
ν , using

eqs. (2.97):

∇µI
µ =

1

2
Tµν

Lξgµν = −εr

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

+
(

pra
ij + τ ij

r

) (

∇̂iξ̂ + ξ t̂γ̂ij

)

− qi
r

(

(

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji −
1

c2Ω
aij∂tξ

j

)

. (D.15)

85Following the discussion on section 3.3, one may refine the limiting procedure for the Killing fields, and

reach the Galilean diffeomorphisms as ξt̂(t, x) = ξt̂
G(t) + 1

c2 ν(t, x) + O
(

1
c4

)

. This would alter eq. (D.11) as
1
Ω

D̂ξi

dt
− γ̂wj

iξj − ∂iν = 0. Similarly the arbitrary function ν(t, x) would also appear in the large-c expansions

of eqs. (2.76) and (2.77), altering the Galilean currents (3.129). Ultimately, this would have no incidence

on our conclusions about the interplay between Galilean isometries and conservation. It may nevertheless

provide a complementary view on the large-c contraction of the relativistic diffeomorphisms, possibly in line

with the approach followed in ref. [106], where a further duality relationship has been established among

leading Galilean and subleading Carrollian contributions (see footnote 87), and vice-versa.
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Although expressed with Carrollian derivatives, this is relativistic and vanishes iff






















1
Ω∂tξ

t̂ + ϕiξ
i = 0

∇̂i(ξ̂) + ξ t̂γ̂ij = 0
(

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji − 1
c2Ω

aij∂tξ
j = 0.

(D.16)

These conditions define a Killing field ξ on a pseudo-Riemannian manifold.

We would like now to consider the zero-c limit of (D.15). We must provide the bahaviour

of εr, q
i
r and pra

ij + τ ij
r for small c, which is typically of the form (4.73), (4.74), (4.75)86























εr = Π + O
(

c2
)

qi
r = Πi + c2P i + O

(

c4
)

pra
ij + τ ij

r = Πij + O
(

c2
)

.

(D.17)

Equation (D.15) reads now:

∇µI
µ = −Π

(

1

Ω
∂tξ

t̂ + ϕiξ
i

)

+ Πij
(

∇̂iξ̂ + ξ t̂γ̂ij

)

−
(

Πi + c2P i
)

(

(

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji −
1

c2Ω
aij∂tξ

j

)

+ O
(

c2
)

. (D.18)

Finiteness at zero c, demands87

∂tξ
i = 0, (D.19)

hence ξ generates a Carrollian diffeomorphism. Conservation holds in the limit if expres-

sion (D.18) vanishes. This is occurs if

1

Ω
∂tξ

t̂ + ϕiξ
i = 0, (D.20)

∇̂(iξ̂) + ξ t̂γ̂ij = 0, (D.21)
(

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji = 0. (D.22)

Equations (D.20) and (D.21) are as in (4.46) i.e. the definition of a Carrollian Killing

field. Equation (D.22) is an extra condition, absent for generic Carrollian isometries, which

therefore do not guarantee the existence of a conserved Carrollian current. The disruption

to the conservation is measured as

lim
c→0

∇µI
µ = −Πi

((

∂̂i − ϕi

)

ξ t̂ − 2ξj̟ji

)

, (D.23)

in agreement with (4.54) or (4.136).

86More general behaviours have appeared in (4.114). The latter wouldn’t change our present conclu-

sions though.
87 Mirroring footnote 85, an option is to set ξi(t, x) = ξi

C(x) + c2νi(t, x) + O
(

c4
)

. With this, eq. (D.22)

becomes
(

∂̂i − ϕi

)

ξt̂ − 2ξj
C

̟ji − 1
Ω

aij∂tν
j = 0, and further work would be necessary on eqs. (2.108), (2.109)

and (4.134), that would not alter our final conclusions, but could shed light on the small-c contraction of

general diffeomorphisms.
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We derive a covariant expression for the renormalized holographic entanglement entropy for conformal

field theories (CFTs) dual to quadratic curvature gravity in arbitrary dimensions. This expression is written

as the sum of the bare entanglement entropy functional obtained using standard conical defect techniques,

and a counterterm defined at the boundary of the extremal surface of the functional. The latter corresponds

to the cod-2 self-replicating part of the extrinsic counterterms when evaluated on the replica orbifold. This

renormalization method isolates the universal terms of the holographic entanglement entropy functional.

We use it to compute the standard C-function candidate for CFTs of arbitrary dimension, and the type-B

anomaly coefficient c for four-dimensional CFTs.

DOI: 10.1103/PhysRevD.104.086003

I. INTRODUCTION

Higher-curvature gravity theories have attracted consid-

erable attention in the literature for various reasons. This

is mainly due to their better ultraviolet (UV) completion

properties [1–5], what provides a promising scenario for

deciphering quantum gravity properties. Indeed, the low

energy effective action of string theory is characterized by

the presence of a series of higher-derivative terms added on

top of the Einstein-Hilbert action.

Quadratic curvature gravity (QCG) is one of the simplest

examples of a higher-curvature gravitational theory. Its

action is given by

IQCG ¼ 1

16πGN

Z

M

ddþ1x
ffiffiffiffiffiffi

jGj
p

ðR − 2Λ0 þ αR2

þ βR
μ
νR

ν
μ þ γGBÞ; ð1Þ

where the bare cosmological constant is Λ0 ¼ −
dðd−1Þ
2L2

0

, in

terms of the radius of anti–de Sitter (AdS) space L0. Here,

the scalar density GB stands for the Gauss-Bonnet term,

which reads GB ¼ R2 − 4Rν
μR

μ
ν þ R

μν
κλR

κλ
μν. The equation of

motion (EOM) of the theory (1) is fourth order in differ-

ential terms of the metric Gμν, when arbitrary couplings

ðα; β; γÞ are considered. However, if α ¼ β ¼ 0, i.e., the

Gauss-Bonnet term is the only modification considered,

then the EOM becomes second order [6], as the theory goes

back to the Lovelock class [7,8].

A larger family is that of generalized quasitopological

gravities that have sparked a lot of interest in recent years

[9–14]. Its main feature is the fact that the EOM is reduced

to second order when evaluated in a static and spherically

symmetric ansatz.

In dþ 1 ¼ 4 dimensions, of particular importance is the

point of the parametric space of QCG where α ¼ −1=ð2Λ0Þ
and β ¼ 3=ð2Λ0Þ. In this dimension, γ plays no role as the

Gauss-Bonnet term is not dynamical. It corresponds to

critical gravity, introduced in Ref. [15], a theory which

becomes trivial when evaluated on Einstein spacetimes [16].

Interestingly enough, for relaxed AdS asymptotic conditions,

this theory constitutes the gravitational dual of three-

dimensional logarithmic conformal field theory (CFT).

The holographic principle has a concrete realization in

the form of the AdS=CFT correspondence introduced in

Refs. [17–19]. In this context, higher-curvature gravity
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theories have been the subject of extensive study as toy

models due to the appealing properties of their dual field

theories. This class of theories probes a broader range of

CFTs than standard Einstein gravity. Indeed, the type-A and

type-B anomalies of their four-dimensional holographic

counterparts do not coincide, unlike in the Einstein case

[20,21]. Furthermore, the couplings of higher curvature

theories modify the ratio of shear viscosity η to entropy

density s of their hydrodynamic duals, with respect to the

value provided by Einstein gravity of η=s¼1=ð4πÞ [22–24],
as can be seen in five-dimensional Einstein-Gauss-Bonnet

theory [25]. This indicates that the Kovtun-Son-Starinets

bound is not universal in the sense that its value has explicit

dependence on the higher curvature couplings of the gravity

theory. However, as causality considerations further con-

strain said couplings [26], it is possible to obtain modified

Kovtun-Son-Starinets bounds applicable to classes of higher

curvature theories [27–29]. This is another example of how

the presence of higher curvature terms can break degener-

acies in holographic quantities, helping to pinpoint the

holographic dictionary more precisely.

A similar nontrivial behavior is present in the universal

terms of the entanglement entropy (EE) for CFTs dual to

higher-curvature gravity theories [30–35]. EE appears as a

useful tool to explore aspects of quantum entanglement

in strongly coupled field theories. In a quantum model

described by the density matrix ϱ, the EE between a

subsystem A and its complement Ac is given by the von

Neumann entropy of the reduced matrix ϱA ¼ trAcϱ,

SA ¼ −trAðϱA log ϱAÞ: ð2Þ

As many observables in field theory, EE is a UV divergent

measure. Its main characteristic is the fact that the leading

divergence always scales as the cod-2 area of the entangling

surface ∂A that separates the subsystem A with its comple-

ment, independently of its shape.
1
This is due to the UV

degrees of freedom which are localized at the vicinity of the

entangling surface [36–38].

Of great interest are the universal features associated to the

renormalization group (RG) flow of the quantum field theory

(QFT), in the expansion of the EE near ∂A. They correspond
to scheme-independent terms that probe the number of

effective degrees of freedom of the respective theory. In

odd dimensions, it is the finite part of the EE that can be

related to theF function that is monotonic along the RG flow

[39–41]. In even dimensions, one can identify the type-A

and type-B anomaly coefficients of the corresponding

field theory from the logarithmic term of the EE expansion.

As the type-A anomaly monotonically decreases when going

from ultraviolet to infrared (IR), it is a good C-function
candidate [42–44].

In principle, the calculation of the EE in QFT is rather

involved. Using the real-time formalism or the replica trick

in the path-integral quantization demands analytic tech-

niques that can be applied only for particular shapes of A, in
low enough dimensions [45].

Major progress was made in this direction by consider-

ing the AdS=CFT duality. Ryu and Takayanagi (RT)

conjectured that EE is given by a generalization of the

Bekenstein-Hawking formula for cod-2 surfaces which are

not the fixed point of a continuous isometry [46,47]. More

specifically, the EE of a spatial subregion A is given by the

area of a minimal homologous cod-2 surface Σ, i.e.,

SA ¼ AreaðΣÞ
4GN

: ð3Þ

The surface is embedded in the bulk solution of the dual

gravity theory and anchored at ∂A.
The proof behind the conjectured RT formula (3), came a

few years later by Lewkowycz and Maldacena [48]. The

central idea is the relation between holographic entangle-

ment entropy (HEE) and Euclidean gravity action, in the

saddle-point approximation of AdS=CFT. This is achieved
by constructing bulk solutions from a set of boundary

conditions that are not Uð1Þ invariant. As a consequence,

one may extend the replica symmetry, needed for the

calculation of the EE, to the bulk. In particular, the HEE is

given by the limit

SEE ¼ −lim
ϑ→1

∂ϑIE½MðϑÞ�; ð4Þ

where IE½MðϑÞ� denotes the Euclidean gravity action

evaluated on a conically singular manifold. The orbifold

MðϑÞ is constructed as the bulk gravity dual of the replica

CFTobtained through the standard replica trick in [48–50].

As the replica symmetry is discrete, MðϑÞ is a squashed

cone [having no Uð1Þ isometry], and it has an angular

deficit of 2πð1 − ϑÞ, such that ϑ ¼ 1

m
is related to the replica

index m.

As pointed out in Ref. [51], in the case of HEE in

Einstein-AdS gravity,
ð1−ϑÞ
4GN

can be identified with the

tension of a cosmic brane coupled to the ambient geometry

through the Nambu-Goto action. Thus, in the tensionless

limit (ϑ → 1), the area of the cosmic brane anchored at the

boundary gives the HEE, trivially recovering the RT

prescription [46]. However, Eq. (4) also holds for generic

gravity theories, such that upon evaluating the action on

the MðϑÞ orbifold, the correct entropy functional emerges

naturally. The most notable contributions in this direction

have been given by Dong [52], Camps [53], and Miao [54].

In the case of QCG, the evaluation of the arbitrary quadratic

curvature invariants on squashed cones was firstly done by

Fursaev, Patrushev, and Solodukhin in Ref. [50] using

distributional geometry techniques. In the present work we

1
This assumes local field theories and continuity of the fields

and their derivatives across the entangling surface.
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exploit the fact that, as the HEE functional depends only

on the gravity action under consideration, its renormaliza-

tion is inherited from the renormalization of the bulk

gravity action [55].

On previous papers, based on a renormalization scheme

defined by the addition of extrinsic counterterms, we showed

that for odd-dimensional CFTs dual to Einstein-AdS gravity,

the finite part of the HEE is the sum of the Euler character-

istic of the RT surface, and a curvature term on that surface

[56].
2
The coefficient of the Euler characteristic is matched

to the F term, a quantity that has been shown to be

monotonic along RG flows [30,31,39,40,49,58]. In particu-

lar, in three-dimensional CFTs, the F quantity is robust

under continuous deformations of the entangling region [59].

In the case of even-dimensional CFTs, the C-function
candidate is identified as the coefficient of the log part of

the EE. As shown in Ref. [60], this universal contribution

can be isolated when the HEE is written in terms of a

covariant functional which is the usual area term plus a cod-3

extrinsic boundary counterterm. The latter term cancels

power-law divergences in the HEE formula.

In this paper, we turn our interest to the case of QCG.

There, we will explicitly show that the same form of

extrinsic counterterms (only with a different coupling

constant) is able to isolate the universal part of the HEE

for CFTs dual to this type of higher curvature gravity

theories. This can be achieved by considering particular

shapes of entangling regions (i.e., spheres and cylinders),

where the C-function candidates and other holographic

quantities like the type-B anomaly coefficient c can be

directly obtained [20,21,61].

II. COUNTERTERMS OF A DIFFERENT SORT:

KOUNTERTERMS

In general relativity, it is straightforward to prove that

second derivatives in the normal coordinate appear in the

Lagrangian. One may think of an analogous system in

classical mechanics: a Lagrangian with a linear dependence

on the acceleration q̈, of the type Lðq; _q; q̈Þ ¼
q̈hðqÞ þ lðq; _qÞ, where q is the generalized coordinate.

An arbitrary variation of this action gives rise to a field

equation which is still of second order in the time

derivative, while producing a term that contains both δq
and δ _q at the boundary. The addition of a total derivative to

L leads to a surface term where only δq appears, what is a

feature of first-order Lagrangians. The above reasoning can

be mimicked in gravity, what implies that the bulk action

has to be augmented by the Gibbons-Hawking term at the

boundary, in order to ensure a well-defined action principle

for a Dirichlet boundary condition on the boundary metric

hab [62]. The introduction of a cosmological constant does

not modify the surface terms of the theory, but it does

change the asymptotic behavior of the metric, such that the

canonical momentum is no longer finite at the boundary.

In the early days of the AdS=CFT correspondence, the

renormalization of AdS gravity was achieved by the

addition of intrinsic counterterms, such that the Dirichlet

boundary condition was not spoilt [63–65]. It is then that,

by a proper rescaling of the metric hab, holographic

correlation functions are obtained as variations with respect

to the source at the conformal boundary gð0Þab.
However, it was later pointed out by Papadimitriou

and Skenderis [66] that a Dirichlet condition on the

boundary metric hab does not make sense in asymptotically

AdS (AAdS) spaces. As a matter of fact, the asymptotic

expansion of this field hab ¼
gð0Þab
z2

þ… reveals an infinite

conformal factor near the boundary. As a consequence,

the only way to have a well-posed variational principle in

AdS gravity is fixing instead the metric gð0Þab at the

conformal boundary. This argument implies that the addi-

tion of counterterms is required not only for canceling

divergent terms in the variation of the action, but also for

the consistency of the variational problem on gð0Þab.
Along the same line, we stress the fact that there is a

blissful accident in AdS gravity: the leading order in the

asymptotic expansion of the extrinsic curvature is (up to a

numerical factor) the same as the one in hab. Indeed, in the

Fefferman-Graham frame, Kab ¼ 1

l

gð0Þab
z2

þ…, what has

been recently emphasized in Ref. [67]. This simple obser-

vation means that one can express also variations of Kab in

terms of variations of gð0Þab. This also implies that one may

consider surface terms which depend on the extrinsic

curvature and act as counterterms, in the sense that they

cancel divergent contributions in the AdS gravity action.

So, even though they are plain incompatible with a

Dirichlet condition for the full boundary metric hab, they
can still reproduce the correct holographic stress tensor

varying with respect to gð0Þab.
The above reasoning, which opens the possibility to

look for an alternative sort of counterterms, is justified by

the lack of a closed expression for the series in arbitrary

dimensions. More than 20 years ago, evidence was

provided on the fact that topological terms were able to

regulate the variation of the AdS gravity action in even

dimensions [68,69], though based on the study of par-

ticular solutions. As for the Euclidean action, the addition

of the Euler term at the boundary of d ¼ 2n dimensions

renders it finite in AAdS solutions if the coupling is

adequately chosen [70]. However, it was not clear what

this prescription to renormalize AdS gravity had to do

with holographic renormalization and the addition of

standard counterterms.

A first step towards the understanding of this issue was

given in Ref. [70], where topological terms in the bulk are

equivalently written as the corresponding Chern form B2n−1

at the boundary,

2
In Ref. [57], the authors arrive at the same conclusion using

standard holographic renormalization techniques.
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B2n−1¼−2n

Z

1

0

ds
ffiffiffiffiffiffi

jhj
p

δ
a1���a2n−1
b1���b2n−1K

b1
a1

�

1

2
R

b2b3
a2a3 −s2K

b2
a2K

b3
a3

�

× � � �×
�

1

2
R

b2n−2b2n−1
a2n−2a2n−1 −s2K

b2n−2
a2n−2K

b2n−1
a2n−1

�

: ð5Þ

For the first time, counterterms which depend on Kab were

proposed to deal with the renormalization of AdS gravity.

Here, hab ¼ gabðz; xÞ=z2 is the induced metric at constant

Poincaré coordinate z, Rab
cd is the intrinsic Riemann curva-

ture tensor, Kab is the extrinsic curvature and δ
a1���a2n−1
b1���b2n−1 is the

generalized Kronecker delta. In this notation, the indices of

the generalized Kronecker delta are contracted with those of

the rest of the tensors in the integrand.

A similar structure at the boundary of dþ 1 ¼ 2nþ 1

dimensions was far more difficult to obtain. In particular,

due to the fact that there is no equivalent form in the bulk

for such boundary term. The extensive use of field-theory

tools in the context of anomalies (Chern-Simons and

transgression forms, homotopy operator, etc.) allows us

to make a concrete proposal for that case. The resulting

term, in essence, shares common properties with the Chern

form, as it is a given polynomial of the extrinsic and

intrinsic curvatures [71], but it did not exist in the

mathematical literature before. Its specific form is given

by the following expression:

B2n ¼ −2n

Z

1

0

ds

Z

s

0

dt
ffiffiffiffiffiffi

jhj
p

δ
a1���a2n−1
b1���b2n−1K

b1
a1

�

1

2
R

b2b3
a2a3 − s2K

b2
a2K

b3
a3 þ

t2

L2

eff

δ
b2
a2δ

b3
a3

�

× � � �

� � � ×
�

1

2
R

b2n−2b2n−1
a2n−2a2n−1 − s2K

b2n−2
a2n−2K

b2n−1
a2n−1 þ

t2

L2

eff

δ
b2n−2
a2n−2δ

b2n−1
a2n−1

�

; ð6Þ

where Leff is the effective AdS radius of the theory.

One may think that the renormalization procedure

described above, dubbed Kounterterms, may lead to a

variational principle which is at odds with the holographic

description of AdS gravity in terms of the boundary source

gð0Þab, as it seems to require a different boundary condition

on the extrinsic curvature. But the analysis portrayed above

gives a firmer ground to the addition of Kounterterms to the

gravitational action: the total action is consistent with a

holographic description, as its variation is both finite and

given in terms of δgð0Þab.
This simple reasoning suggests the resummation of the

counterterm series as an expression in terms of the extrinsic

curvature. As a matter of fact, an asymptotic expansion

of the term Bd reproduces the counterterms, once the

Gibbons-Hawking term is correctly isolated. This was first

sketched in Ref. [72] and analyzed in greater detail in a

recent paper [73].
3
In addition, earlier works in the

mathematical literature [74,75], indicate that the Chern

form is fundamental in defining the renormalized volume

of an Einstein space.

The Kounterterm method has been used to deal with the

construction of conserved quantities and the thermody-

namic description of black holes in Einstein-Gauss-Bonnet

AdS and, in general, Lovelock AdS gravity. Furthermore,

it has also linked the concept of conformal mass to the

addition of boundary terms in Einstein-Hilbert [76] and

higher-curvature gravity [77,78]. Evidence has been given

that Kounterterms can provide finite conserved charges in

QCG, as well [79–81].

In the present paper, we extensively use its properties to

deal with the problem of renormalization of HEE in QCG.

III. RENORMALIZED EE FROM

THE REPLICA ORBIFOLD

In this section, we compute the renormalized HEE in

CFTs dual to QCG. In order to determine the EE functional

from the bulk gravity Lagrangian we use the results by

Fursaev, Patrushev, and Solodukhin for the evaluation of

quadratic curvature invariants in conically singular mani-

folds [50]. The renormalization of HEE is then inherited

from the renormalization of the bulk action by the addition

of cod-1 Kounterterms and derived from a set of cod-2

relations with respect to the bulk and boundary dimensions.

In particular, it is a remarkable property of the Kounterterm

Bd—when evaluated on orbifolds—that the singular part

gives rise to the same structure in two dimensions lower

ðBd−2Þ. This self-replicating feature of Bd induces cod-3

Kounterterms on ∂Σ which renormalize the cod-2 Fursaev,

3
In Ref. [73], it was shown that, in Einstein-AdS gravity, the

Kounterterms are the resummation of the counterterms for
asymptotically conformally flat manifolds in arbitrary dimen-
sions. For a generic AAdS space, there is a mismatch between
counterterms and Kounterterms, consisting on terms which are
the dimensional continuation of conformal invariants at the
boundary. At the lowest order, this difference is a Weyl-squared
term, which is identically vanishing for a conformally flat
boundary. However, it may be the case that this condition is
relaxed by taking Weyl2 ¼ 0 instead, which would be the analog
of demanding local flatness (Rie ¼ 0Þ vs a vanishing Kretsch-
mann scalar for a given spacetime.
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Patrushev, and Solodukhin functional. Based on this construction, we determine the universal terms of the HEE for

this theory.

A. Curvature invariants on the cone

Now, we consider the expressions for the quadratic curvature invariants evaluated on squashed cones [without U(1)

isometry], as given in Refs. [50,82]. Following this procedure, we have

Z

MðϑÞ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R2 ¼
Z

MðϑÞnΣ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R2 þ 8πð1 − ϑÞ
Z

Σ

dd−1y
ffiffiffiffiffiffi

jσj
p

ðR̃þ 2RðiÞðiÞ − RðiÞðjÞðiÞðjÞ − 2KðiÞμ̄
½μ̄K

ðiÞν̄
ν̄�Þ þ…;

ð7Þ
Z

MðϑÞ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R
μ
νR

ν
μ ¼

Z

MðϑÞnΣ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R
μ
νR

ν
μ þ 4πð1 − ϑÞ

Z

Σ

dd−1y
ffiffiffiffiffiffi

jσj
p

�

RðiÞðiÞ −
1

2
KðiÞ

μ̄μ̄K
ðiÞ

ν̄ν̄

�

þ…; ð8Þ

Z

MðϑÞ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R
μν
κλR

κλ
μν ¼

Z

MðϑÞnΣ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R
μν
κλR

κλ
μν þ 8πð1 − ϑÞ

Z

Σ

dd−1y
ffiffiffiffiffiffi

jσj
p

ðRðiÞðjÞðiÞðjÞ −KðiÞ
μ̄ν̄K

ðiÞ
ν̄μ̄Þ þ…; ð9Þ

where the ellipsis denotes terms of higher order in (1 − ϑ), Σ is the fixed-point set of the replica symmetry (i.e., the cod-2

surface at the apex of the cone), i, j are indices normal to Σ, μ̄; ν̄ are indices in the world volume of Σ, KðiÞ
μ̄ν̄ is the extrinsic

curvature of the cod-2 foliation along the i direction, and summation is implied on repeated i, j indices.

We also consider the evaluation of the Ricci scalar and the GB term on the squashed cone, following the results of

Ref. [50]. We therefore have

Z

MðϑÞ
ddþ1x

ffiffiffiffiffiffi

jGj
p

R ¼
Z

MðϑÞnΣ
ddþ1x

ffiffiffiffiffiffi

jGj
p

Rþ 4πð1 − ϑÞ
Z

Σ

dd−1y
ffiffiffiffiffiffi

jσj
p

; ð10Þ

Z

MðϑÞ
ddþ1x

ffiffiffiffiffiffi

jGj
p

GB ¼
Z

MðϑÞnΣ
ddþ1x

ffiffiffiffiffiffi

jGj
p

GBþ 8πð1 − ϑÞ
Z

Σ

dd−1y
ffiffiffiffiffiffi

jσj
p

R̃: ð11Þ

B. Extrinsic counterterms on the cone

We begin our analysis of Kounterterms evaluated on

squashed cones by considering the topological origin of the

Chern form. When M is even dimensional, the existence

of extrinsic counterterms B2n−1 is guaranteed by the

Euler theorem

Z

M

d2nxE2n ¼ ð4πÞnn!χðMÞ þ
Z

∂M

d2n−1XB2n−1; ð12Þ

which unveils the dynamic equivalence to the topological

term in the bulk

E2n ¼
ffiffiffiffiffiffi

jGj
p

2
n

δ
ν1…ν2n
μ1…μ2nR

μ1μ2
ν1ν2 � � �Rμ2n−1μ2n

ν2n−1ν2n : ð13Þ

The above relation also identifies B2n−1 with the corre-

sponding Chern form, which appears as the correction to

the Euler characteristic in a manifold with boundary.

For the purposes of the current study, we highlight the

fact that the equivalence between bulk and boundary terms

can be generalized to manifolds with conical deficits.

Indeed, any Euler term E2n self-replicates in cod-2, that is,

Z

MðϑÞ
d2nxE2n ¼

Z

MðϑÞnΣ
d2nxE2n

þ 4πnð1 − ϑÞ
Z

Σ

d2n−2yE2n−2 ð14Þ

when constructed on an orbifold MðϑÞ [60,83]. This fact

implies that the self-replication property extends to the

Chern form, as well [56,84]

Z

∂MðϑÞ
d2n−1XB2n−1¼

Z

∂MðϑÞn∂Σ
d2n−1XB2n−1

þ4πnð1−ϑÞ
Z

∂Σ

d2n−3YB2n−3: ð15Þ

Unlike the Chern form, Kounterterms B2n for odd bulk

dimensions are not associated to the Euler density.

Therefore, the previous analysis for orbifolds cannot be

repeated verbatim. However, even though B2n−1 and B2n
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are different geometrical objects, it can be shown that, in

presence of squashed conical singularities,

Z

∂MðϑÞ
ddXBd ¼

Z

∂MðϑÞn∂Σ
ddXBd

þ 4π

�

dþ 1

2

�

ð1 − ϑÞ
Z

∂Σ

dd−2YBd−2;

ð16Þ

for either odd or even boundary dimension d [60].

The extrinsic counterterms Bd−2 (living in cod-3 respect

to the bulk space) cancel the divergences coming from the

set of points anchoring the surface Σ to the conformal

boundary. It has been shown that they correctly isolate the

universal terms of the entanglement and Rényi entropies for

CFTs which are dual to Einstein gravity [56,60,82,84]. In

that situation, the relation between EE and the notion of

renormalized area was made manifest.

In what follows, we seek to extend the renormalization

scheme for cod-2 surfaces to one of the simplest examples

of a higher-derivative gravity, such as QCG.

C. The Kounterterm-renormalized QCG action

We start by considering the generic renormalized QCG

action [80]

IrenQCG ¼ IQCG þ cd

16πGN

Z

∂M

Bd; ð17Þ

where Bd is the boundary Kounterterm defined in Eq. (16).

By solving the usual characteristic equation to find the

vacuum of the theory, we obtain the following relation for

the effective cosmological constant and its corresponding

effective AdS radius

−
1

2Λeff

þ Λ0

2Λ
2

eff

¼ ðd−3Þ
ðd−1Þ2 ½ðdþ1Þαþβ�þðd−3Þðd−2Þ

dðd−1Þ γ;

ð18Þ

where Λeff ¼ −
dðd−1Þ
2L2

eff

. Also, the coupling cd of the boun-

dary Kounterterm Bd is fixed by requiring the action of the

pure AdS solution (vacuum) to be finite, thus finding

cd ¼

8

>

>

<

>

>

:

ad
ð−1Þ

dþ1

2 Ld−1
eff

ðdþ1

2
Þðd−1Þ! if d odd

ad
ð−1Þ

d
2Ld−2

eff

2
d−3dððd

2
−1Þ!Þ2 if d even

; ð19Þ

where the auxiliary function ad reads

ad ¼ 1 −
2d

L2

eff

�

ðdþ 1Þαþ β þ ðd − 2Þðd − 1Þ
d

γ

�

: ð20Þ

Based on the preceding relations, we evaluate the QCG

action augmented with the boundary term (17) on the

squashed cone, obtaining

IrenQCG½MðϑÞ� ¼ IrenQCG½MðϑÞn∂Σ� þ ð1 − ϑÞSUnivQCG þ…: ð21Þ

When considering the Lewkowycz-Maldacena prescription

(4), applied to the renormalized action (17), SUnivQCG corre-

sponds to the universal part of the HEE for CFTs dual to

QCG, which is finite for odd-d and log-divergent for even-

d. Explicitly, the SUnivQCG functional is given by

SUnivQCG ¼ SQCG þ SKT; ð22Þ

where

SQCG¼
1

4GN

	

Area½Σ�þ
Z

Σ

dd−1y
ffiffiffiffiffiffi

jσj
p

�

2αðR̃þ2RðiÞðiÞ−RðiÞðjÞðiÞðjÞ−2KðiÞμ̄
½μ̄K

ðiÞν̄
ν̄�Þþβ

�

RðiÞðiÞ−
1

2
KðiÞμ̄

μ̄K
ðiÞν̄

ν̄

�

þ2γR̃

�


;

ð23Þ

and the corresponding curvature terms are defined after Eqs. (7)–(9). Alternatively, SQCG can be derived either following

the prescription provided by Dong in Ref. [52] or the one by Camps in Ref. [53].
4
For gravity theories with curvature

terms of cubic order or higher, these procedures give different HEE functionals, which is referred to as the splitting
problem [54,86–88].

On the other hand, the Kounterterm obtains the form

SKT ¼ cd

4GN

�ðdþ 1Þ
2

�
Z

∂Σ

Bd−2: ð24Þ

For this expression, the cod-2 boundary term reads

4
Furthermore, in Ref. [85], SQCG was computed using field redefinition in the gravity theory.
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Bd−2 ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

− ðd − 1Þ
R

1

0
ds

ffiffiffiffiffiffi

jσ̃j
p

δ
ā1���ād−2
b̄1���b̄d−2

k
b̄1
ā1

�

1

2
R̃

b̄2b̄3
ā2ā3

− s2k
b̄2
ā2
k
b̄3
ā3

�

× � � �

� � � ×
�

1

2
R̃

b̄d−3b̄d−2
ād−3ād−2

− s2k
b̄d−3
ād−3

k
b̄d−2
ād−2

�

; odd d

−ðd − 2Þ
R

1

0
ds

R

s
0
dt

ffiffiffiffiffiffi

jσ̃j
p

δ
ā1���ād−3
b̄1���b̄d−3

k
b̄1
ā1

�

1

2
R̃

b̄2b̄3
ā2ā3

− s2k
b̄2
ā2
k
b̄3
ā3
þ t2

L2

eff

δ
b̄2
ā2
δ
b̄3
ā3

�

× � � �

� � � ×
�

1

2
R̃

b̄d−4b̄d−3
ād−4ād−3

− s2k
b̄d−4
ād−4

k
b̄d−3
ād−3

þ t2

L2

eff

δ
b̄d−4
ād−4

δ
b̄d−3
ād−3

�

; even d

; ð25Þ

where the corresponding terms are defined after Eq. (5).

Having the renormalized EE functional at hand, we

evaluate it on certain configurations, i.e., sphere and

cylinder, whose universal terms encode significant infor-

mation for the corresponding CFT.

IV. HEE FOR SPHERES IN VACUUM CFT

The bulk dual to the vacuum state of a d-dimensional

CFT is pure AdSdþ1, whose metric in Poincaré coordinates

is given by

ds2 ¼ Gμνdx
μdxν ¼ L2

eff

z2
ðdt2 þ dz2 þ dr2 þ r2dΩ2

d−2Þ;

ð26Þ

where Ω
2

d−2 represents the angular directions of an Sd−2

sphere. For ball-shaped entangling regions of radius R in

the CFT, the bulk extremal surface is given by the spherical

hemisphere of the same radius [89], whose embedding is

described by

Σ∶ft ¼ const:; r2 þ z2 ¼ R2g: ð27Þ

For the following analysis, it is convenient to foliate pure

AdS with warped spherical hemispheres. In order to make

the extremal surface explicit, the change of coordinates

r ¼ X sinU, z ¼ X cosU is performed. After this change,

metric (26) reads

ds2 ¼ L2

eff

X2 cos2U
ðdt2 þ dX2 þ X2dU2 þ X2 sin2 UdΩ2

d−2Þ:

ð28Þ

In this metric, the hemispheres are the constant ðt; XÞ cod-2
hypersurfaces and the extremal one is located at X ¼ R.
Also, the nonzero components of the normal vectors to the

hypersurfaces read

n
ðXÞ
X ¼ n

ðtÞ
t ¼ Leff

X cosU
: ð29Þ

Therefore, the nonzero components of the projected

Riemann and Ricci tensors along these directions read

RðXÞðXÞ ¼ Rμνn
ðXÞ
μ n

ðXÞ
ν ¼ −

d

L2

eff

;

RðtÞðtÞ ¼ Rμνn
ðtÞ
μ n

ðtÞ
ν ¼ −

d

L2

eff

; ð30Þ

RðXÞðtÞðXÞðtÞ ¼ Rμνκλn
ðXÞ
μ n

ðtÞ
ν n

ðXÞ
κ n

ðtÞ
λ ¼ −

1

L2

eff

: ð31Þ

Regarding the extrinsic curvatures, since the foliation

defines a sphere, they identically vanish, i.e.,

KðXÞμ̄
ν̄ ¼ KðtÞμ̄

ν̄ ¼ 0: ð32Þ

In Poincaré coordinates, the induced metric reads

ds2σ ¼ σμ̄ν̄dy
μ̄dyν̄ ¼ L2

eff

z2

�

R2dz2

R2 − z2
þ ðR2 − z2ÞdΩ2

d−2

�

;

ð33Þ

which admits a Fefferman-Graham (FG)-like expansion

rlds2σ ¼
L2

eff

z2

�

1þ z2

R2
þ z4

R4
þOðz6Þ

�

dz2 þ σ̃āb̄dY
ādY b̄;

ð34Þ

σ̃āb̄ ¼
R2L2

eff

z2

�

1 −
z2

R2

�

Ωāb̄; ð35Þ

where Ωij is the metric of the (d − 2)-dimensional sphere.

The induced metric σ̃ij is fixed at the regulator z ¼ ϵ, i.e.,

when ϵ → 0.

Under the previous considerations, the quantities present

in Eq. (22) read
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Area½Σ� ¼ VolðSd−2ÞR
Z

zmax

ϵ

dzðR2 − z2Þd−32
�

Leff

z

�

d−1

;

ð36Þ

R̃ ¼ −
ðd − 1Þðd − 2Þ

L2

eff

; ð37Þ

RðiÞðiÞ ¼ −
2d

L2

eff

; ð38Þ

RðiÞðjÞðiÞðjÞ ¼ −
2

L2

eff

; ð39Þ

KðiÞμ̄
μ̄K

ðiÞν̄
ν̄ ¼ KðiÞμ̄

ν̄K
ðiÞν̄

μ̄ ¼ 0: ð40Þ

The cod-2 extrinsic curvatures vanish because the geometry

after the foliations describes a sphere.

Therefore, considering all the terms that appear in

Eq. (23), we have that the bare HEE SQCG is given by

SQCG ¼ 1

4GN

�

VolðSd−2ÞR
Z

zmax

ϵ

dzðR2 − z2Þd−32
�

Leff

z

�

d−1

þ
Z

Σ

dd−1
ffiffiffiffiffiffi

jhj
p

	

−
2α

L2

eff

½ðd − 1Þðd − 2Þ þ 4d − 2� − 2dβ

L2

eff

− γ
ðd − 1Þðd − 2Þ

L2

eff


�

; ð41Þ

which can be rearranged, using the definition of ad in

Eq. (20), to

SQCG ¼ adVolðSd−2Þ
4GN

Z

zmax

ϵ

dzRðR2 − z2Þd−32
�

Leff

z

�

d−1

;

¼ ad
Area½Σ�
4GN

: ð42Þ

Also, the HEE Kounterterm SKT of Eq. (24) can be

written as

SKT ¼ ad
cEHd
4GN

�ðdþ 1Þ
2

�
Z

∂Σ

Bd−2; ð43Þ

where cEHd ¼ cd
ad

is the Kounterterm coupling for Einstein-

AdS gravity. Thus, we have that

SUnivQCG ¼ ad

4GN

�

Area½Σ� þ cEHd

�ðdþ 1Þ
2

�
Z

∂Σ

Bd−2

�

;

SUnivQCG ¼ ad

4GN

AreaUniv½Σ�; ð44Þ

such that the universal part of the HEE for ball-shaped

entangling regions becomes proportional to the universal

part of the area of the minimal surface Σ.

Finally, using our results of Refs. [56,60], AreaUniv is

given by
5

AreaUniv ¼

8

>

>

<

>

>

:

ð−1Þd−12 2
d−1π

d−1
2 Ld−1

eff

ðd−1Þ! if d odd

ð−1Þd2−1 2π
d
2
−1
Ld−1
eff

ðd
2
−1Þ! logð2R

ϵ
Þ if d even;

ð45Þ

where ad was defined in Eq. (20). The explicit cancellation
of the IR divergences in the area functional and the

identification of the universal term are given in

Appendix B.

A. C-function candidates in CFTs dual to QCG

In order to characterize the properties of CFTs, such as

their central charges, it is useful to compute the C-function
candidates, which are quantities conjectured to decrease

along RG flows [39,40,42–44,58]. In the context of

AdS=CFT, these quantities can be computed by holographic

methods. For instance, in the case of ball-shaped entangling

regions, we can read out the C-function candidates for both

odd- and even-dimensional CFTs directly from the expres-

sion for SUnivQCG [30,31,49]. In particular, we have

SUnivQCG ¼
(

ð−1Þd−12 F if d odd

ð−1Þd2−14A logð2R
ϵ
Þ if d even

; ð46Þ

where

F ¼ ad
2
dπ

d−1
2 Ld−1

eff

8GNðd − 1Þ! ð47Þ

is the F quantity, defined in terms of the partition

function of the CFT evaluated on a sphere as

F ¼ ð−1Þd−12 log ðZCFT½Sd�Þ, and

5
Note the choice of 2R as the characteristic scale inside the

logarithm of the universal term. This choice allows us to absorb
the finite term as part of the logarithmically divergent term.
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A ¼ ad
π

d
2
−1Ld−1

eff

8GNðd2 − 1Þ! ; ð48Þ

is the type-A anomaly coefficient. They correspond to

quantities that are conjectured to be monotonic along RG

flows for odd- and even-dimensional CFTs, respectively

[30,31].
6
Therefore, the C-function candidate for CFTs dual

to QCG is proportional to the one of Einstein-AdS gravity,

but multiplied by an overall coefficient that depends on the

parameters of the theory ad. An identical behavior of the

universal terms has been found in other higher-curvature

theories of gravity such as Einstein cubic gravity, quasito-

pological gravity, and Lovelock theories, at least, at the

perturbative level [91].

The explanation behind this proportionality becomes

clear when Eqs. (44) and (45) are considered. Note that

the computation of SUnivQCG is simplified, for the case of ball-

shaped entangling regions, as the resulting functional is

proportional to the renormalized area AreaUniv of theminimal

surface in the bulk. This is due to the fact that for spheres, the

bare entropy functional becomes proportional to the area of Σ

what is the RT functional. Therefore, the C-function candi-

dates of both QCG and Einstein-AdS gravity correspond to

the universal terms of the area ofΣ, given by AreaUniv, up to a

factor that depends on the QCG couplings.

The fact that the entropy has to be proportional to the

area in the spherical case is universal, and can be inferred

directly from the Casini-Huerta-Myers map [41]. In par-

ticular, due to the conformal symmetry of the CFT, the EE

of the ball-shaped subregion can be mapped to the thermal

entropy of the CFT at a certain temperature that depends

on the replica index. This entropy can be computed, using

AdS=CFT, as the Wald entropy of a hyperbolic black hole

of constant curvature, which is trivially proportional to the

area of the black hole horizon.

Note also, that in the expression for the log universal

term of Eq. (46), one can consider the radius of the sphere R
as the characteristic size scale. In which case the loga-

rithmic term can be written as log R
ϵ
þ log 2. This extra log 2

appears in even d. Because of the robustness of the term in

different dimensions, it is suggestive to consider it as

coming from a topological term. Indeed, it can be written as

log ðχ½∂Σ�Þ, where χ½∂Σ� is the Euler characteristic of the

entangling surface in the CFT.

In the following section, we consider cylinder-shaped

entangling regions, from which it is possible to compute

the type-B anomaly coefficient in four-dimensional

CFTs [35,89].

V. HEE FOR A CYLINDER IN VACUUM CFT

In order to characterize the type-B anomaly of a CFT, it

is useful to consider the log part of the HEE for a cylindrical

entangling region. For instance, in the case of AdS5=CFT4,

this universal term is related to c (the type-B anomaly

coefficient) according to

SUnivEE ¼ −
cH

2l
log

l

ϵ
; ð49Þ

where l is the radius of the cylinder, H is its length along

the axis and ϵ is the usual UV cutoff in the CFT [35,89].

When computing the EE holographically, by comparing the

obtained result with the previous expression, it is possible

to identify the c coefficient in terms of the bulk gravity

quantities.

We start by considering the metric of pure AdS5
written as

ds2 ¼ Gμνdx
μdxν ¼ L2

eff

z2
ðdt2 þ dz2 þ dx2

3
þ dr2 þ r2dθ2Þ;

ð50Þ

where θ represents the angular direction of an S1 sphere.

For cylindrical entangling regions of radius l in the CFT,

with their axis extending infinitely along the x3 direction,

the bulk extremal surface, in the near-boundary region, is

described by the embedding

Σ∶

	

t ¼ const; r ¼ l

�

1 −
z2

4l2
þOðz4Þ

�


: ð51Þ

The normal vectors to the hypersurface read

n
ðXÞ
μ ¼ Leff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4l2 þ z2
p

�

0; 1; 0;
2l

z
; 0

�

;

n
ðtÞ
μ ¼

�

Leff

z
; 0; 0; 0; 0

�

: ð52Þ

In this case, the projected Riemann and Ricci tensors read

RðtÞðtÞ ¼ Rttn
ðtÞ
t n

ðtÞ
t ¼ −

4

L2

eff

; ð53Þ

RðXÞðXÞ ¼ Rrrn
ðXÞ
r n

ðXÞ
r þ Rzzn

ðXÞ
z n

ðXÞ
z ¼ −

4

L2

eff

; ð54Þ

RðXÞðtÞðXÞðtÞ ¼ Rztztn
ðXÞ
z n

ðtÞ
t n

ðXÞ
z n

ðtÞ
t þ Rrtrtn

ðXÞ
r n

ðtÞ
t n

ðXÞ
r n

ðtÞ
t

¼ −
1

L2

eff

: ð55Þ

6
Although the F and A theorems have been proven for arbitrary

(unitary) CFTs only in three and four dimensions, respectively, the
monotonicity of the a� charge of which they are particular cases is
conjectured to apply for arbitrary dimension. Furthermore, the
holographic version of the corresponding C theorem has been
proven for CFTs dual to Einstein gravity in arbitrary dimension.
For the case of CFTs dual to higher curvature gravities, the case of
Einsteinian cubic gravity was studied in [90]. Therefore, even
though the C theorem has not been proven in the generic case, the
corresponding C functions for CFTs dual to QCG are expected to
be monotonic along RG flows.
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The extrinsic curvature along the temporal axis vanishes,

i.e., K
μ̄
ν̄
ðtÞ ¼ 0. However, the foliation in the z coordinates

gives a nonzero extrinsic curvature whose components

read

Kz
z
ðXÞ ¼ −

z3

8l3Leff

þOðz5Þ; ð56Þ

K
x3
x3
ðXÞ ¼ −

z

2lLeff

þ z3

16l3Leff

þOðz5Þ; ð57Þ

Kθ
θ
ðXÞ ¼ z

2lLeff

þ 3z3

16l3Leff

þOðz5Þ: ð58Þ

The induced metric in the cod-2 manifold Σ reads

ds2σ ¼
L2

eff

z2

	�

1þ z2

4l2
þOðz4Þ

�

dz2 þ dx2
3

þ l2
�

1 −
z2

4l2
þOðz4Þ

�

2

dθ2



: ð59Þ

As in the spherical entangling region case, this expression

admits a FG expansion as well.

Based on these considerations, the geometric quantities

appearing in the EE functional in Eq. (23) are given by

Area½Σ� ¼
Z

2π

0

dθ

Z

H

0

dx3

Z

zmax

ϵ

dz
ffiffiffiffiffiffi

jhj
p

; ð60Þ

R̃ ¼ −
6

L2

eff

−
z2

2l2L2

eff

þOðz4Þ; ð61Þ

RðiÞðiÞ ¼ −
8

L2

eff

; ð62Þ

RðiÞðjÞðiÞðjÞ ¼ −
2

L2

eff

; ð63Þ

KðiÞa
aK

ðiÞb
b ¼ Oðz6Þ; ð64Þ

KðiÞa
bK

ðiÞb
a ¼

z2

2l2L2

eff

þOðz4Þ: ð65Þ

In even-dimensional CFTs, the finite part of the EE is

nonuniversal, and, therefore, upon evaluating the integral in

the Poincaré coordinate of the area functional, the upper

limit (at zmax) can be neglected. For the lower limit we

expand the metric determinant, finding

ffiffiffiffiffiffi

jσj
p

¼ lL3

eff

z3
−
L3

eff

8lz
þOðzÞ: ð66Þ

Now, plugging all these results into the functional, we

obtain

SQCG ¼ πHL3

eff

4lGN

�

a4
l2

ϵ2
−
b4

4
log

l

ϵ

�

þOð1Þ; ð67Þ

where we define the coefficient

b4 ¼ 1 −
4

L2

eff

ð10αþ 2β þ γÞ: ð68Þ

This factor differs from a4 defined in Eq. (20).

Finally, we check that the boundary term cancels the

power law term in Eq. (67). The induced metric at the

boundary z ¼ ϵ reads

ffiffiffi

σ̃
p

¼ lL2

eff

ϵ2
−
L2

eff

4l
þOðϵÞ; ð69Þ

yielding

SKT ¼ −
a4πHlL3

eff

4GNϵ
2

: ð70Þ

As we can see, the power law divergence in Eq. (67) is

indeed canceled by the Kounterterm.

Thus, up to a nonuniversal finite part, one has that for

the cylinder entangling region in d ¼ 4, the universal part

of the HEE is given by

SUnivQCG ¼ −b4
πHL3

eff

16lGN

log
l

ϵ
: ð71Þ

Finally, comparing this expression with that of Eq. (49),

we have that

c ¼ b4
πL3

eff

8GN

: ð72Þ

In the QCG case, it is evident from our results that the A and

c central charges are different. However, for Einstein-AdS

(b4 ¼ a4 ¼ 1), they coincide.

A. Extremal surface for the cylinder

In Refs. [35,89], it was shown that the hypersurface (51)

extremizes the HEE functional for Gauss-Bonnet theory.

In QCG, higher-order terms appear in the entanglement

entropy. However, the same embedding function yields the

extremal surface at order Oðz3Þ. In order to see this,

consider an arbitrary surface parametrized with r ¼ rðzÞ.
In d ¼ 4, the HEE functional for QCG reads
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SQCG ¼ πHLeff

4GN

Z

zmax

ϵ

dz
1

z3rðr02 þ 1Þ5=2 f2L
2

effr
2ðr02 þ 1Þ3 þ 16αrðr02 þ 1Þ½zðzþ 2rr0Þr00 − ðr02 þ 1Þðrð5þ 3r02Þ − zr0Þ�

− β½ðrðr03 þ r0 þ zr00Þ þ zðr02 þ 1ÞÞ2 þ 16r2ðr02 þ 1Þ3� − 4γrðr02 þ 1Þ½2zð2rr0 þ zÞr00 þ 2ð3r − 2zr0Þðr02 þ 1Þ�g:
ð73Þ

This expression is obtained once the terms given by

Area½Σ� ¼
Z

2π

0

dθ

Z

H

0

du

Z

zmax

ϵ

dz
ffiffiffiffiffiffi

jσj
p

¼ 2πHL3

eff

Z

zmax

ϵ

dz
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r02
p

z3
; ð74Þ

R̃ ¼ −
2zð2rr0 þ zÞr00 þ 2ð3r − 2zr0Þðr02 þ 1Þ

L2

effrðr02 þ 1Þ2 ; ð75Þ

RðiÞðiÞ ¼ −
8

L2

eff

; ð76Þ

RðiÞðjÞðiÞðjÞ ¼ −
2

L2

eff

; ð77Þ

KðiÞμ̄
μ̄K

ðiÞν̄
ν̄ ¼

½ðrr0 þ zÞðr02 þ 1Þ þ zrr00�2
L2

effr
2ðr02 þ 1Þ3 ; ð78Þ

KðiÞμ̄
ν̄K

ðiÞν̄
μ̄¼

½ðzþrr0Þ2þr2r02�ð1þr02Þ2þr2ðr0þr03−zr00Þ
L2

effr
2ð1þr02Þ3 ;

ð79Þ

are plugged into Eq. (23). The resulting functional (73)

constitutes a Lagrangian L ¼ Lðz; r; r0; r00Þ that contains

second-order derivatives of the dynamical function rðzÞ.
Because of this, the Euler-Lagrange equation needed to

find the extremal surface reads

∂L

∂r
−

d

dz

∂L

∂r0
þ d2

dz2
∂L

∂r00
¼ 0: ð80Þ

From this expression, an EOM containing fourth-derivative

terms in the function rðzÞ is found. However, the ansatz

r ¼ l

�

1 −
z2

4l2
þOðz4Þ

�

; ð81Þ

from Ref. [35] is verified to satisfy the EOM up to order

Oðz3Þ. Because of this, the extremal surface for QCG

coincides with that for Gauss-Bonnet gravity in this

perturbative regime. This is an expected result due to the

universality of the second term in the asymptotic expansion

of the embedding function, which is linked to the univer-

sality of the gð2Þij coefficient in the FG expansion in terms

of the Schouten tensor of gð0Þ, as discussed in Ref. [92].

The case for the cylindrical entangling region in d ¼ 4 is

interesting as it isolates the contribution from the type-B

anomaly in the universal part. The same should be the case for

higher-dimensional cylinders, as the coefficient obtained

should represent a linear combination of the couplings of

different conformal invariants.
7
However, the embedding

function is not known in the higher-dimensional case as it

would require knowledge of the subleading terms in the

expansion of Eq. (81), which are not universal. Furthermore,

the Kounterterm renormalization procedure has limitations

regarding the types of entangling surfaces that it can accom-

modate for dual bulk manifolds of dimension greater than

five. In particular, it requires the dimensional continuation of

cod-2 conformal invariants at the entangling surface tovanish.

For example, to the next-to-leading order, the method only

works for surfaces such that

W āb̄
āb̄

− k̂
ðīÞ
āb̄
k̂āb̄ðīÞ ¼ 0; ð82Þ

as shown in Ref. [60]. Here, W āb̄
āb̄

is the Weyl tensor of the

conformal boundary projected along the entangling surface

directions and k̂āb̄ is the traceless extrinsic curvature of ∂Σ
along the orthogonal directions. Equation (82) is trivially

satisfied for spheres, but not for cylinders or arbitrary shapes.
8

VI. DISCUSSION

The results for HEE for CFTs dual to QCG presented

here come as the natural blend between the Kounterterm

method applied to this gravity theory [79,80] and a

remarkable feature of the boundary term Bd when evaluated

in spacetimes with a conical defect, Eq. (16) [60]. In this

respect, we have recovered the universal part of the HEE

found in the literature regarding the computation of the

C-function candidates [91]. This function captures essential
properties of CFTs, which are given by the type-A anomaly

coefficient in the case of even d and by the generalized F
quantity (or a� charge) for odd d [31,49,94].

7
Although little is known about conformal invariants beyond

eight dimensions, one may think this computation would provide
information on the part of these invariants which is polynomial in
the Weyl tensor.

8
In bulk dimensions up to five, the Kounterterm procedure

works for arbitrary entangling regions. Furthermore, as proven
in [93], the procedure correctly renormalizes actions for gravity
theories of arbitrary order in the Riemannian curvature, and
therefore, it is expected to work for renormalizing HEE for CFTs
dual to said theories as well.
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The above calculation requires a ball-shaped entangling

region in the CFT, where for the case of pure AdS (dual to

the vacuum of the CFT), the embedding of the extremal

surface (27) for the QCG HEE functional (23) is explicitly

given. Then, the FG-like expansion of all the terms

involved in the functional can be obtained. In both even

and odd boundary dimension d, it can be seen that the

C-function candidate derived is proportional to the one for

Einstein-AdS gravity, but with an overall coupling-

dependent factor ad, whose form is given in Eq. (20).

We have also obtained the type-B anomaly coefficient c in
the case of four-dimensional CFTs. In order to perform this

computation, we have considered a cylindrical entangling

region in the CFT, and the near-boundary expansion (up to

cubic order in the Poincaré coordinate) of the embedding for

the minimal surface. In this situation, we have derived the

corresponding Euler-Lagrange equation for the embedding

function rðzÞ, by taking variations of the entropy functional

of Eq. (73). We have verified that the same embedding

function considered for Einstein-AdS gravity is also a

solution of the extremization equation in the QCG case,

in d ¼ 4, and up to cubic order. The condition for the

minimal surface obtained in this way contains higher-order

derivative terms in the dynamical variable (akin to the

acceleration). Thus, extra boundary conditions are required

beyond setting the border of the surface to coincide with the

entangling region. When the surface is extremal (i.e., the

intersection of the surface with the conformal boundary is

orthogonal), the boundary problem is completely fixed. This

is the case of the cylinder in d ¼ 4, due to the fact that the

entropy functional becomes proportional to the area up to

cubic order. In the result for the c coefficient we also find

agreement with the literature [91]. It is evident from the

expression obtained in Eq. (72), that the type-B anomaly

coefficient can be written as the one for Einstein-AdS

gravity, but multiplied with a factor b4, given in Eq. (68),

which incorporates the information on the couplings of QCG

theory. The fact that b4 is different from the a4 of Eq. (20)

allows for different central charges in four-dimensional

CFTs dual to QCG, unlike the Einstein-AdS case.

All in all, for both even- and odd-dimensional CFT

cases, the Kounterterm procedure allows us to isolate the

universal part of the HEE of the dual gravity theory. For

bulk dimensions lower than 6, the Kounterterm procedure

works on entangling regions of arbitrary shape. Also,

despite its limitations on the type of entangling regions

that can be renormalized in higher dimensions (as discussed

in the previous section), the Kounterterms prescription is

the only method available so far for renormalizing HEE in

higher curvature gravity theories.
9

In isolating the universal part of the HEE, we have

been able to express it as a covariant functional which

is given by the standard HEE functional plus an

extrinsic counterterm in cod-3 (24). In the particular

case of spherical entangling regions in pure AdS

(vacuum CFTs), the renormalized HEE functional

becomes proportional to the renormalized area (44),

which is logarithmically divergent for even d and finite

for odd d.
For a cylindrical entangling region in d > 4, the renor-

malized entropy functional is no longer proportional to

the renormalized cod-2 volume. However, in d ¼ 4, the

expressions coincide—up to the normalizable order—albeit

with a different proportionality constant than for the

spherical case.

We point out that the Kounterterm procedure is a

nonperturbative method, in the sense that nowhere it is

assumed that the couplings of the quadratic terms are

small. In other words, the prescription does not rely on the

linearization of the EOM such that the theory behaves like

Einstein gravity with a modified Newton’s constant. In

particular, Kounterterms give a consistent renormalization

prescription even at degenerate points, such as at the

single-vacuum point of Einstein-Gauss-Bonnet theory

(Chern-Simons AdS gravity in five dimensions). Thus,

the obtained form of the holographic central charges is

robust, and would hold in degenerate points of the

parametric space as well (in the case of Lovelock, see

Ref. [78]). Although we have not developed this point any

further in this work, it would certainly be interesting to

explore it in the near future.
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APPENDIX A: NOTATION AND CONVENTIONS

Here, we present the conventions used throughout the

paper in the Table I. In the first column, we provide a list of

objects defined on the different manifolds presented in the

first line.

9
The alternative renormalization procedure of [55], based on

holographic renormalization [95], was only applied for Einstein
and Einstein-Gauss-Bonnet gravity theories.
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APPENDIX B: DIVERGENCE CANCELLATION

FOR SPHERICAL ENTANGLING REGIONS

In this section, we present explicit computations and

show the cancellation of divergences in the Kounterterms

scheme for spherical entangling regions.

1. Three-dimensional case

For three dimensions, the universal part of the EE (22)

reduces to

SUnivQCG ¼ πR

2GN

Z

zmax

ϵ

dz

z2
ðL2

eff − 24α − 6βÞ þ c3

2GN

Z

∂Σ

B1;

ðB1Þ

where the auxiliary function c3 and the boundary term B1,

defined in Eqs. (19) and (25), respectively, read

c3 ¼
1

4
ðL2

eff − 24α − 6βÞ; ðB2Þ

B1 ¼ −2
ffiffiffi

σ̃
p

tr k dΩ1 ¼ −
2

ϵ
R½1þOðϵ2Þ�dΩ1: ðB3Þ

On the other hand, the determinant of the metric σ̃ is

given by

ffiffiffi

σ̃
p

¼ RLeff

ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
ϵ2

R2

r

¼ Leff

�

R

ϵ
−

ϵ

2R
−

ϵ3

R3
þOðϵ4Þ

�

:

ðB4Þ

Also, trk is the trace of the extrinsic curvature kāb̄ ¼
− 1

2
ffiffiffiffiffi

σzz
p ∂zσ̃āb̄ of the FG-like expansion (34), which reads

kāb̄ ¼ Leff

�

R2

ϵ2
−
1

2
−

ϵ2

8R2
þOðϵ4Þ

�

Ωāb̄: ðB5Þ

Since the inverse metric reads,

σ̃āb̄ ¼ 1

L2

eff

�

ϵ2

R2
þOðϵ4Þ

�

Ω
āb̄; ðB6Þ

then, the expansion of the trace yields

trk ¼ σ̃āb̄kāb̄ ¼
1

Leff

�

1þ ϵ2

2R2
þOðϵ4Þ

�

: ðB7Þ

In consequence, according to Eq. (24) and up to leading

order, the Kounterterm in this case reads

SKT ¼ −
πR

2GNϵ
½L2

eff − 24α − 6β� þOðϵÞ: ðB8Þ

Thus, upon performing the integral in Eq. (B1) on the

extremal surface, along the Poincar coordinate from z ¼ ϵ

to z ¼ R, one gets

SUnivQCG ¼ Sfinite þ ðL2

eff − 24α− 6βÞ
�

πR

2GNϵ
−

πR

2GNϵ

�

þOðϵÞ;

ðB9Þ

where Sfinite ¼ − π
2G

ðL2

eff − 24α − 6βÞ is the universal finite
part. Thus, it becomes manifest that upon taking the ϵ → 0

limit, SUnivQCG recovers the universal finite part and thus the

HEE is renormalized correctly.

2. Four-dimensional case

In the four-dimensional case, from Eq. (25) it can be seen

that the corresponding boundary term is given by

B2 ¼ −2Leff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − ϵ2
p

ϵ2
; ðB10Þ

and hence, the Kounterterm expanded around ϵ ¼ 0 reads

SKT ¼ −
a4πL

3

eff

2GN

�

R2

ϵ2
−
1

2

�

: ðB11Þ

On the other hand, the bare EE is given by

SQCG ¼ a4π

GN

Z

zmax

ϵ

dz RðR2 − z2Þ12
�

Leff

z

�

3

; ðB12Þ

¼ a4πL
3

eff

GN

�

coth−1
�

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − z2max

p

�

−
R

z2max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − z2max

q

�

þ a4πL
3

eff

2GN

�

R2

ϵ2
− log

R

ϵ
−
1

2
ð1þ log 4Þ

�

: ðB13Þ

Since the first line of (B13) vanishes in the limit zmax → R,
then, after adding the Kounterterm, the renormalized EE

reads

SUnivQCG ¼ −
a4πL

3

eff

2GN

log
2R

ϵ
: ðB14Þ

Notice that the Kounterterm isolates the logarithmic diver-

gence, whose coefficient is universal and related to the

TABLE I. Notation and conventions.

M ∂M Σ ∂Σ

Indices μ, ν, κ, λ a, b, c, d μ̄; ν̄; κ̄; λ̄ ā; b̄; c̄; d̄
Coordinates xμ Xa yμ̄ Y ā

Metric Gμν hab σμ̄ ν̄ σ̃ā b̄
Riemann tensor Rκλ

μν Rcd
ab R̃κ̄ λ̄

μ̄ ν̄ R̃
c̄ d̄
ā b̄

Extrinsic curvature Kab Kμ̄ ν̄ kā b̄
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type-A charge of the CFT. A part of the finite term is canceled and there is a piece left that is reabsorbed in the

logarithmic divergence.

3. Bare HEE in the arbitrary-dimensional case

For arbitrary dimensions, evaluating the quantities present in the EE expression using the metric (26) yields

SQCG ¼ 1

4GN

�

VolðSd−2ÞR
Z

zmax

ϵ

dzðR2 − z2Þd−32
�

Leff

z

�

d−1

þ
Z

Σ

dd−1
ffiffiffiffiffiffi

jhj
p

	

−
2α

L2

eff

½ðd − 1Þðd − 2Þ þ 4d − 2� − 2dβ

L2

eff

− γ
ðd − 1Þðd − 2Þ

L2

eff


�

; ðB15Þ

which can be rearranged, using definition of ad in Eq. (20), to

SQCG ¼ adVolðSd−2Þ
4GN

Z

zmax

ϵ

dzRðR2 − z2Þd−32
�

Leff

z

�

d−1

: ðB16Þ

After computing the integral and expanding around ϵ ¼ 0, the EE yields

SQCG ¼ SUnivQCG þ adVolðSd−2ÞLd−1
eff

4GN

�

1

d − 2

Rd−2

ϵd−2
−

d − 3

2ðd − 4Þ
Rd−4

ϵd−4
þOðϵ−ðd−6ÞÞ

�

: ðB17Þ

In the previous expression, the universal term is given by

SUnivQCG ¼

8

>

>

<

>

>

:

ð−1Þd−12 adð4πÞ
d−1
2 ðd−1

2
Þ!Ld−1

eff

4Gðd−1Þ! if d odd

ð−1Þd2−1 adπ
d
2
−1
Ld−1
eff

2GNðd2−1Þ!
log 2R

ϵ
if d even

; ðB18Þ

where zmax is set to the radius R and the volume of the sphere is given by

VolðSd−2Þ ¼ 2
dπ

d
2
−1ðd

2
Þ!

dðd − 2Þ : ðB19Þ

4. Cancellation of divergences for odd dimensions

Let us now focus on the Kounterterm. In the odd-dimensional case, the boundary form can be read, as before, from

Eq. (25). Since we are considering a spherical entangling region, the extrinsic curvature and the Riemann tensor read,

respectively,

kā
b̄
¼ 1

Leff

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − ϵ2
p δā

b̄
; R̃

ā1ā2
b̄1b̄2

¼ 1

L2

eff

ϵ2

R2 − ϵ2
δ
ā1ā2
b̄1b̄2

: ðB20Þ

Plugging these values into the boundary form, we find

Bd−2 ¼ −ðd − 1Þ
Z

1

0

ffiffiffiffiffiffi

jσ̃j
p

δ
ā1���ād−2
b̄1���b̄d−2

δ
b̄1
ā1

1

Leff

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − ϵ2
p

�

1

2L2

eff

ϵ2

R2 − ϵ2
δ
b̄2b̄3
ā2ā3

− s2
1

L2

eff

R2

R2 − ϵ2
δ
b̄2
ā2
δ
b̄3
ā3

�

× � � �

� � � ×
�

1

2L2

eff

ϵ2

R2 − ϵ2
δ
b̄d−3b̄d−2
ād−3ād−2

− s2
1

L2

eff

R2

R2 − ϵ2
δ
b̄d−3
ād−3

δ
b̄d−2
ād−2

�

: ðB21Þ

In this expression, we make use the relations

δ
ā1���ād−3
b̄1���b̄d−3

δ
b̄2b̄3
ā2ā3

¼ 2δ
ā1���ād−3
b̄1���d−3

δ
b̄2
ā2
δ
b̄3
ā3
; δ

ā1���b̄d−2
b̄1���b̄d−2

δ
b̄d−2
ād−2

¼ δ
ā1���ād−3
b̄1���b̄d−3

; δ
ā1���ād−3
b̄1���b̄d−3

δ
b̄1
ā1
� � � δb̄d−3ād−3

¼ ðd − 2Þ!: ðB22Þ
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Besides, writing explicitly the determinant
ffiffiffi

σ̃
p

given in Eq. (B4), the boundary form reads

Bd−2 ¼ −ðd − 1Þ!
Z

1

0

ds

�

R2

ϵ2

�

1 −
ϵ2

R2

��d−2
2 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − ϵ2
p

�

ϵ2

R2 − ϵ2
− s2

R2

R2 − ϵ2

�d−3
2

: ðB23Þ

This expression can be expanded around ϵ ¼ 0 as

Bd−2 ¼ −ðd − 1Þ!
Z

1

0

ds

�

ð−1Þdþ1

2 sd−3
Rd−2

ϵd−2
− ð−1Þdþ1

2 sd−5
d − 3

2

Rd−4

ϵd−4
þOðϵ−ðd−6ÞÞ

�

; ðB24Þ

which after the integration reads

Bd−2 ¼ −ðd − 1Þ!
�

ð−1Þdþ1

2

1

d − 2

Rd−2

ϵd−2
− ð−1Þdþ1

2

d − 3

2ðd − 4Þ
Rd−4

ϵd−4
þOðϵ−ðd−6ÞÞ

�

: ðB25Þ

Therefore the Kounterterm SKT, after using the definition cd in the odd-dimensional case from Eq. (20), becomes

SKT ¼ −
adVolðSd−2ÞLd−1

eff

4GN

�

1

d − 2

Rd−2

ϵd−2
−

d − 3

2ðd − 4Þ
Rd−4

ϵd−4
þOðϵ−ðd−6ÞÞ

�

: ðB26Þ

Therefore, adding the previous expression to the bare EE found in Eq. (B17), the renormalized EE reads

SUnivQCG ¼ Sfinite: ðB27Þ

5. Cancellation of divergences in even dimensions

Proceeding as in the odd-dimensional case, the extrinsic curvature and the Riemann tensor, given in Eq. (B20), are used

along with the identities

δ
ā1���ād−3
b̄1���b̄d−3

δ
ā2ā3
b̄2b̄3

¼ 2δ
b̄1���b̄d−3
ā1���ād−3δ

b̄2
ā2
δ
b̄3
ā3
; δ

ā1���ād−3
b̄1���b̄d−3

δ
b̄d−3
ād−3

¼ 2δ
ā1���ād−4
b̄1���b̄d−4

; δ
ā1���ād−4
b̄1���b̄d−4

δ
b̄1
ā1
� � � δb̄d−4ād−4

¼ ðd − 2Þ!
2

: ðB28Þ

After implementing all these relations and substituting
ffiffiffiffiffiffi

jσ̃j
p

the boundary form reads

Bd−2 ¼ −ðd − 2Þ2ðd − 3Þ!Leff

Z

1

0

ds

Z

s

0

dtbðt; s; ϵÞ; ðB29Þ

where the introduced function bðt; sÞ reads

bðt; s; ϵÞ ¼ Rd−2

ϵd−2

�

1 −
ϵ2

R2

�

d−2 R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − ϵ2
p

�

ϵ2

R2 − ϵ2
− s2

R2

R2 − ϵ2
þ t2

�d
2
−2

: ðB30Þ

If the function bðt; s; ϵÞ is expanded around ϵ ¼ 0, then

bðt; s; ϵÞ ¼ ðt2 − s2Þd2−2 R
d−2

ϵd−2
þ 1

2
ðt2 − s2Þd2−3½d − 4þ s2 − ðd − 3Þt2�R

d−4

ϵd−4
þOðϵ−ðd−6ÞÞ: ðB31Þ

In this expression, the convergence condition demands that the orderOðϵ−ðd−2ÞÞ term appears for d > 2. Likewise, the order

Oðϵ−ðd−4ÞÞ term appears when d > 4 and successively. Now, computing the integrals

Z

1

0

ds

Z

s

0

dtðt2 − s2Þd2−2 ¼ ð−1Þd22d−2ðd
2
− 1Þ!2

ðd − 2Þ2ðd − 2Þ! ; ðB32Þ
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Z

1

0

ds

Z

s

0

dtðt2 − s2Þd2−3½d − 4þ s2 − ðd − 3Þt2� ¼ −
ð−1Þd22d−2ðd − 3Þðd

2
− 1Þ!2

ðd − 2Þðd − 4Þðd − 2Þ! ; ðB33Þ

the boundary term reduces to

Bd−2 ¼ ð−1Þd2þ1
2
d−2Leff

��

d

2
− 1

�

!

�

2
�

1

d − 2

Rd−2

ϵd−2
−

d − 3

2ðd − 4Þ
Rd−4

ϵd−4
þOðϵ−ðd−6ÞÞ

�

þ ðd − 2Þ!Leff

2
Hd

2
−1: ðB34Þ

Notice that, in this expression, the last term is finite and it is written in terms of the ðd
2
− 1Þth harmonic

number Hd
2
−1 ¼

P
d
2
−1

i¼0

1

i
.

Once the boundary term is computed, the Kounterterm SKT is derived easily from Eq. (24) for the even-dimensional case,

obtaining

SKT ¼ −
adVolðSd−2ÞLd−1

eff

4GN

�

1

d − 2

Rd−2

ϵd−2
−

d − 3

2ðd − 4Þ
Rd−4

ϵd−4
þOðϵ−ðd−6ÞÞ

�

þ ðd − 2Þ!
2

Hd
2
−1: ðB35Þ

The structure of power-law divergences is the same as in the odd-dimensional case. However, in even-dimensional CFTs,

the bare EE (B17) differs in a finite term and in a log term, whose coefficient is the universal part of the EE. Following the

procedure in Ref. [60], the log term is successfully isolated in arbitrary even d, reading

SUnivQCG ¼ ð−1Þd2−1 adπ
d
2
−1Ld−1

eff

2GNðd2 − 1Þ! log
2R

ϵ
: ðB36Þ
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1 Introduction

Entanglement Entropy (EE) has attracted great interest in recent literature, as it appears

in areas of theoretical physics as diverse as quantum information, condensed matter and

quantum gravity. It also unveils unexpected links between these fields (see refs. [1–7] for

reviews on the subject).

In the context of gauge/gravity duality, the Ryu-Takayanagi (RT) formula [8] relates

the EE of a entangling subregion in a Conformal Field Theory (CFT) with the area of

a codimension-2 hypersurface immersed in Einstein-anti-de Sitter (AdS) spacetime. This

relation was proven in ref. [9].

This idea has inspired extensive work in the subject, full of appealing relations and

conjectures. Some concrete examples include the emergence of spacetime from the first law

of entanglement entropy [10] and the proposed solution of the firewall paradox [11]. In the

case of non trivial topologies, the entropy of de Sitter space was recently interpreted as the

holographic entanglement entropy between two disconnected conformal boundaries [12].

In the CFT side, in ref. [3] it was shown that EE is obtained at the limit of Rényi

entropy when the replica parameter m tends to the unity. The introduction of the replica

trick led Lewkowycz and Maldacena [9, 13] to consider a squashed-cone (d+1)-dimensional

replica orbifold M(α)
d+1. That is, in the bulk gravity side, a conically singular manifold

without U(1) symmetry. Here, α is a conical angular variable such that the cone has an

– 1 –
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angular deficit given by 2π(1− α), and related to the replica parameter by α = 1
m . Based

on these considerations, the EE is defined as

SEE = − lim
α→1

∂αIE

[

M(α)
d+1

]

, (1.1)

where IE

[

M(α)
d+1

]

is the Euclidean action evaluated on the orbifold M(α)
d+1. By definition,

Rényi entropy considers an integer replica parameter. The fact that it is related to the

aperture of the cone allows for non-integer values, such that the limit (1.1) is well defined.

In the particular case of IE being the Einstein-Hilbert (EH) action, the limit reproduces

the RT formula for the EE.

Let A be a smooth entangling region on a time slice of a d-dimensional CFT, the

general form of the EE is given by the expansion [14, 15]

SEE(A) = cd−2
ld−2

δd−2
+ cd−4

ld−4

δd−4
+ . . .+

{

c2
l2

δ2
+ suniv(A) log l

δ + c0 for even d,

c1
l
δ + (−1)(d−1)/2suniv(A) for odd d.

(1.2)

In this expression, {ci} are scheme-dependent coefficients. Thus, they are not physically

observable. In turn, δ and l are the energy cut-off of the theory and a characteristic scale

of the entangling region, respectively.

In even dimensions, suniv is a linear combination of local integrals on the entan-

gling surface, whose coefficients corresponds to the conformal anomaly of the theory (see

refs. [3, 16, 17] for examples). If the entangling surface is spherical, the only contribution

to suniv comes from the type A-anomaly. On the other hand, if it is cylindrical, the surviv-

ing contributions come from the B-type ones [6]. For odd-dimensional CFTs, the lack of

logarithmic term reflects the absence of conformal anomaly. Nevertheless, the finite part

is physically relevant. It is also shown to be highly non-local, as opposed to the even-

dimensional case. Interestingly, when computed for ball-shaped entangling regions, suniv is

equivalent to the free energy FSd of a CFT placed on S
d background [18, 19]. The sign is

introduced in order to maintain positivity regardless the dimension of the CFT [20].

In the particular case of CFT3 on S
3, the free energy is a monotonic function of the

energy under Renormalization Group (RG) flows [21–24]. For this reason, it is considered as

an F -function,1 a measure of the number of degrees of freedom of the effective field theory

at a certain energy scale [28, 29]. This fact makes the universal term suniv, evaluated at a

circular entangling surface, a valuable probe of the F -theorem.

For arbitrary entangling regions, physical information of the field theory can be ex-

tracted from its shape. Studies on smooth entangling regions with symmetry can be found

in refs. [30–32]. In the case of non-smooth entangling regions, the expansion (1.2) is mod-

ified and new universal contributions to EE emerge [33–38].

The shape dependence of EE is also studied perturbatively around maximally sym-

metric entangling regions in refs. [39–48]. More specifically, in refs. [30, 39], it is shown

1It has been proposed that the F -theorem holds also to higher dimensions, but no definite proof has

been provided [25–27].
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that the EE of a spherical entangling surface with deformations S
1
ǫ in a CFT adopts the

expansion

Sren
EE (S

1
ǫ ) = S

ren,(0)
EE (S1) + ǫ2S

ren,(2)
EE (S1) +O(ǫ3). (1.3)

Here, ǫ is a small deformation parameter and S
ren,(0)
EE is the renormalized EE of the unper-

turbed sphere. The linear term in ǫ vanishes as the sphere is a minimum of the universal

term amongst all shapes. The subleading term in expansion (1.3) is proportional to the

coefficient CT of the two-point function of the stress tensor

S
ren,(2)
EE (S1) ∝ CT , (1.4)

where

〈Tij(x)Tkl(0)〉 =
CT

x2d

[

Ii(kIl)j −
δijδkl
d

]

, (1.5)

and Iij = δij − 2
xixj

x2 . In the case of three-dimensional CFTs dual to Einstein gravity, the

coefficient is given by CT = 3L2

π3G
.

These holographic results for deformed entangling surfaces were extended to arbitrary

dimensions in refs. [30, 39]. They were later supported by field theory computations [43].

The connection between the renormalized EE and renormalized volume of dual RT

surface [49], provides a novel geometric interpretation on the origin of the shape-dependent

terms. When a bulk AdS4 spacetime is considered, the renormalized area of the RT surface

is associated to the Willmore energy of a closed manifold immersed on R
3 [32, 50]. A similar

connection between the Willmore energy and the renormalized volume have been provided

earlier in mathematical literature [51].

The Willmore energy is a geometrical quantity that measures the deviation of a closed

surface from sphericity in R
3 [52–54]. It has appeared in different fields of study, even be-

yond mathematics and physics. Applications of it can be found in biology, in order to study

elastic properties of cell membranes (along with its generalization, the Helfrich energy [55]).

It also applies to computer graphics [56] and mesh processing [57]. In the context of holo-

graphic EE, we propose it as a useful probe of the shape deformations of an entangling

region. As it is a functional invariant under conformal transformations of the ambient

metric, it induces a conformal structure. This will play an important role on our analysis.

Motivated by the results outlined above, in this paper, we study the shape dependence

of the EE and its connection to Willmore energy. This paper is organized as follows.

In section 2, we review Kounterterms renormalization scheme in connection to the

renormalized EE for a spherical entangling region developed in refs. [49, 58, 59]. This

quantity is found to be proportional to the renormalized volume of the RT surface. Fol-

lowing this idea, we provide additional examples and the corresponding interpretation of

the results.

In section 3, we focus on an entangling region which is a deformed disk in CFT3 to

compute holographically the renormalized EE following the scheme described in section 2.

We obtain a formula that reads

Sren
EE (A) = − πL2

2GN
χ(ΣRT) +

L2

8GN

∫

ΣRT

d2x
√
γF , (1.6)

– 3 –
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where L is the AdS radius. We show that the information on the shape deformation is

controlled by the trace of the AdS curvature F of the RT surface. The first term is a

topological contribution, given by the Euler characteristic χ(ΣRT), being non-local in the

same way as free energy of the corresponding theory on S
3.

In section 4, we derive the relation between renormalized EE and Willmore energy W
of the doubled minimal surface ΣRT, given by

Sren
EE (A) = − L2

8GN
W (2ΣRT) , (1.7)

when the RT surface is embedded in AdS4 bulk. This relation allows to map the strong

subadditivity property of EE to a constraint on the AdS curvature. We show that the

validity of the renormalized area formula holds for non-minimal surfaces, as well.

2 Renormalization of entanglement entropy from extrinsic counterterms

In this section, we review the cancellation of divergences that arise in the Einstein-Hilbert

action when evaluated in asymptotically AdS (AAdS) spacetimes. We apply the extrinsic

counterterms scheme, worked out in refs. [60–63]. This produces a finite Euclidean action

in order to obtain a renormalized entanglement entropy Sren
EE by means of the relation (1.1).

In that respect, Kounterterms is a prescription alternative to standard holographic renor-

malization developed in refs. [64–70].

Renormalized holographic EE has been computed for CFTs dual to Einstein-Hilbert

gravity in an arbitrary dimension [49, 58, 59, 71]. In these works, the universal con-

tribution to EE is successfully extracted, removing all scheme-dependent quantities. In

odd-dimensional CFTs, for spherical entangling surface, the renormalized EE corresponds

to the free energy of a CFT residing on S
d. In the case of even-dimensional CFTs, the only

nonvanishing term is the logarithmic divergence, whose coefficient is the Weyl anomaly of

the theory.

In what follows, we will restrict ourselves to odd d-dimensional CFTs, which correspond

to even-dimensional dual gravity theories on an AAdS (d+1)-dimensional spacetime. The

metric of this class of spacetimes is written in the Fefferman-Graham (FG) gauge as

ds2 = Gµνdx
µdxν =

1

z2

(

L2dz2 + gab (z, x) dx
adxb

)

, (2.1)

where z is the holographic radial coordinate. The singularity at z = 0, where the conformal

boundary is located, induces a conformal structure at asymptotic infinity. The conformal

boundary is endowed with a metric gab (z, x) which accepts an expansion of the form

gab (z, x) = g
(0)
ab (x) + z2g

(2)
ab (x) + . . .+ zdg

(d)
ab (x) + zdh

(d)
ab (x) log

(

z2
)

+ . . . . (2.2)

In the Kounterterms method, for even-dimensional manifolds M2n with 2n = d+1, the

renormalized Einstein-AdS action IrenE is achieved through the addition of the corresponding

n-th Chern form B2n−1, as

IrenE [M2n] =
1

16πGN

∫

M2n

d2nx
√

|G|(R− 2Λ) +
c2n

16πGN

∫

∂M2n

B2n−1, (2.3)

– 4 –
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where the coefficient c2n is defined as

c2n = (−1)n
L2n−2

nΓ(2n− 1)
, (2.4)

and the n-th Chern form reads

B2n−1 = −2n

∫ 1

0
dt
√
hδb1...b2n−1

a1...a2n−1
Ka1

b1

(

1

2
R̂a2a3

b2b3
− t2Ka2

b2
Ka3

b3

)

× . . .

· · · ×
(

1

2
R̂a2n−2a2n−1

b2n−2b2n−1
− t2K

a2n−2

b2n−2
K

a2n−1

b2n−1

)

. (2.5)

Here, hab = gab (z, x) /z
2 is the induced metric at a constant radius, R̂ab

cd is the intrinsic

Riemann curvature tensor, Ka
b the extrinsic curvature and δ

a1...a2n−1

b1...b2n−1
is the generalized

Kronecker delta.

Note that the Euler theorem for manifolds with a boundary takes the form,
∫

M2n

d2nx
√

|G|E2n = (4π)nΓ (n+ 1)χ [M2n] +

∫

∂M2n

B2n−1, (2.6)

expressing the equivalence of B2n−1 with the topological term

E2n =
1

2n
δ
ν1...ν2n
µ1...µ2n

Rµ1µ2
ν1ν2 · · ·Rµ2n−1µ2n

ν2n−1ν2n , (2.7)

up to the Euler characteristic of the manifold χ [M2n]. Using this result, we can rewrite

expression (2.3) exclusively in terms of bulk quantities as

IrenE =
1

16πGN

∫

M2n

d2nx
√

|G|(R− 2Λ + c2nE2n)−
(−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ [M2n] . (2.8)

In ref. [49], it was shown that the quantity inside the integral in the above formula can be

rewritten in terms of a polynomial of the tensor

Fµ1µ2
ν1ν2 = Rµ1µ2

ν1ν2 +
1

L2
δ
µ1µ2
ν1ν2 , (2.9)

known as AdS curvature. In doing so, the action adopts the form

IrenE =
1

16πGN

∫

M2n

d2nx
√

|G|L2n−2P2n(F )− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ [M2n] , (2.10)

where the polynomial of the AdS curvature introduced reads

P2n(F )=
1

2nnΓ(2n−1)

n
∑

k=1

(−1)k[2(n−k)]!2(n−k)

L2(n−k)

(

n

k

)

δ
ν1...ν2k
µ1...µ2k

Fµ1µ2
ν1ν2 · · ·Fµ2k−1µ2k

ν2k−1ν2k . (2.11)

The AdS curvature, of particular convenience in AdS gravity, measures the deviation of

the space with respect to global AdS. Notice that the renormalized action consists on the

addition of two terms: a topological one, given by the Euler characteristic of the manifold,

– 5 –
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and another one, characterized by the AdS curvature. This decomposition has been ear-

lier found on the mathematical literature [51] in connection to the concept of renormalized

volume. It reflects the equivalence between this quantity and renormalized EE, up to a pro-

portionality constant that depends on the dimension of the manifold [49]. This result will be

of central importance afterwards for the renormalized EE of deformed entangling surfaces,

as information on the deformation is entirely contained in the polynomial P2n−2(F).

Once we have the renormalized form of the Euclidean action IrenE , we evaluate it on the

conically singular manifoldM(α)
2n in order to use eq. (1.1). Properties of curvature invariants

defined on squashed cone manifolds like M(α)
2n have been developed in refs. [72–76]. For

our purposes, we recall the relations

R(α) = R+ 4π(1− α)δΣ, (2.12)

R(α)µν

ρσ = Rµν
ρσ + 2π (1− α)Nµν

ρσ δΣ (2.13)

where Nµν
ρσ = n(i)µn

(i)
ρn(j)νn

(j)
σ − n(i)µn

(i)
σn(j)νn

(j)
ρ is a linear combination of the i-th

normal vector to the surface Σ, n(i)µ. Here R(α) and R(α)µν
ρσ denote the Ricci scalar and

Riemann tensor evaluated at the orbifold, respectively. The unindexed tensors indicate the

regular part of the corresponding bulk tensor and δΣ is a (2n− 2)-dimensional Dirac delta

localized at the conical singularity. As a consequence,
∫

M
(α)
2n

d2nx
√
GδΣ =

∫

Σ

d2n−2y
√
γ, (2.14)

where Σ is the codimension-2 locus of the conical singularity and γ the induced metric on

the Σ hypersurface. We assigned the coordinate ya to parametrize the worldvolume of Σ.

In ref. [49], it was shown that the Einstein-AdS action evaluated on the orbifold consists

on the sum of a regular part and a term localized at the conical defect. The explicit form is

IrenE

[

M(α)
2n

]

=
L2n−2

16πGN

∫

M
(α)
2n \Σ

d2nx
√

|G|P2n(F )− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ
[

M(α)
2n \ Σ

]

+
1− α

4GN
Volren [Σ] +O

[

(1− α)2
]

, (2.15)

where M(α)
2n \ Σ is identified as the regular manifold M2n given by the α → 1 limit, and

Volren [Σ] = − L2n−2

2(2n− 3)

∫

Σ

d2n−2y
√
γP2n−2(F)− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ[Σ], (2.16)

is the renormalized volume of the codimension-2 manifold. The factor proportional to the

angular deficit

T =
1− α

4G
, (2.17)

can be regarded as the cosmic brane tension of the Nambu-Goto action, in the interpreta-

tion given by Dong [13].

– 6 –
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It is important to stress that the expression given for the renormalized volume in

eq. (2.16) is generic and not restricted to minimal hypersurfaces. In particular, for CFTs

which are dual to Einstein-AdS gravity, when Σ is minimal, corresponds to the RT surface.

When the limit α → 1 is taken in the renormalized action (2.15), the only surviving

term (1.1) is the one coming from the Nambu-Goto action

Sren
EE (A) =

Volren(ΣRT)

4GN
. (2.18)

On the l.h.s., A is a spatial entangling region in CFTd while on the r.h.s. appearing the

renormalized volume of the homologous RT surface ΣRT. Therefore, the computation of the

renormalized entanglement entropy depends on AdS curvature and the Euler characteristic

of the codimension-2 surface, attending to expression (2.16).

This calculation can be equivalently be interpreted as the renormalized volume of a ten-

sionless codimension-2 brane Σ embedded in a 2n-dimensional AAdS Einstein spacetime,

for a minimal surface Σ [13].

For a spherical entangling surface, the polynomial P2n−2 (F) vanishes identically. The

contribution to the holographic EE is coming uniquely from the topology of the RT surface,

which is an hemisphere. Because the Euler characteristic is χ[ΣRT] = 1, the finite part of

the EE of a ball-shaped surface takes the form

Sren
EE =

(−1)(d−1)/2

4GN

πd/2Ld−1

Γ(d/2)
, (2.19)

where we have re-expressed the result in terms of the odd-dimensional d of the CFT. Notice

that this result is in agreement with the universal part of the EE [6]. As shown by Casini,

Huerta and Myers in ref. [18], Sren
EE is equivalent to the free energy of a CFTd on a spherical

background S
d. This relation is of relevance for RG flows, as FSd is a monotonic function in

d = 3. Once the general picture has been discussed, we will illustrate explicitly the duality

AdS4/CFT3 in this context by particular examples.

2.1 Entanglement entropy in AdS4/CFT3 in the global coordinate patch

The use of the extrinsic counterterms in the renormalization of holographic EE has been

applied for spatial entangling regions embedded on a flat background, in the Poincaré-

AdS patch, in the context of gauge/gravity duality [58]. In particular, in what follows, we

study the EE of a polar cap-like entangling region immersed on an Einstein Static Universe

background (ESU), i.e., R× S
2 to account for properties of a CFT3. In this case, the dual

bulk geometry is given by global AdS4 spacetime, whose line element reads

ds2 = −
(

1 +
r2

L2

)

dt2 +

(

1 +
r2

L2

)−1

dr2 + r2dΩ2
2, (2.20)

where dΩ2
2 = dθ2 + sin2 θdφ2 is the metric of S2.

In the RT picture, the minimality condition for Σ, in order to be homologous to the

circular entangling surface at the boundary, amounts to the vanishing of the trace of the

extrinsic curvature K
(i)
ab along whichever normal direction to Σ. Here, the label index

– 7 –



J
H
E
P
0
9
(
2
0
2
0
)
1
7
3

i = {1, 2} represents these directions. Indeed the equations of motion of the surface can

be derived from the Nambu-Goto action. That, for the case of the Einstein-AdS gravity,

results in the condition [77, 78]

K(i) = 0. (2.21)

Considering that the two-dimensional orthogonal space is spanned along i = t, r, the in-

duced metric γ of Σ, is given by

ds2γ = −
(

1 +
r2

L2

)

dt2 +

(

r2 +
L2r′2

L2 + r2

)

dθ2 + r2 sin2 θdφ2 (2.22)

where we have parametrized the geometry with the embedding function r = r(θ) and

r′ = ∂θr(θ).

Solving the second order differential equation that results from eq. (2.21), we find that

the RT surface is characterized by [79–81] the function

r2(θ) =
L2 cos2 θ0

cos2 θ sin2 θ0 − sin2 θ cos2 θ0
. (2.23)

For this embedding, the polynomial P2 (F) in eq. (2.16) vanishes identically, as it is a

constant-curvature subspace. The only nonvanishing part is the topological one, for which

the universal part of the EE takes the form

Sren
EE = − πL2

2GN
. (2.24)

Thus, even though this time the spherical entangling surface is immersed in the curved

background of ESU metric, eq. (2.24) matches the one obtained for the flat case [58].

3 Renormalized entanglement entropy of a deformed disk

In this section, we calculate the finite contribution to the EE of a spatial entangling region

for a CFT3 on the ground state. To this end, we consider a deformed disk whose dual

geometry corresponds to global AdS4. The universal part of the holographic EE for such

region was first obtained in refs. [30, 39] for a general class of gravity theories. Such result

was later confirmed from field theory computations in ref. [43].

We shall study the deformation in two coordinate systems: polar coordinates (follow-

ing [30]) and spherical coordinates (in order to make contact with refs. [39] and [43]). Using

the Kounterterms, we make contact with the renormalized volume of the RT surface (2.16),

which contains both local (curvature) and global (topological) terms [59]. Our analysis be-

low allows us to track the origin of the shape-dependent contributions to the curvature

part in eq. (2.16).

3.1 Deformed disk in polar coordinates

Consider the Poincaré-AdS4 spacetime, written in polar coordinates as

ds2 =
L2

z2
(

−dt2 + dz2 + dρ2 + ρ2dφ2
)

. (3.1)

– 8 –
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We define the embedding function of the RT surface ΣRT by ρ(z, φ), where ρ and φ are the

radial and the angular coordinate at the boundary, respectively. The deformation breaks

the azimuthal symmetry of ΣRT. Hence, the simplification used in the section 2.1 is not

applicable. In this case, the codimension-2 induced metric reads

ds2γ =
L2

z2

[(

1 + ρ′
2
)

dz2 +
(

ρ2 + ρ̇2
)

dφ2 + 2ρ′ρ̇dzdφ
]

, (3.2)

where ρ′ = ∂zρ(z, φ) and ρ̇ = ∂φρ(z, φ). It is indeed easy to find the equations of motion

of the RT surface following eq. (2.21). If we consider the binormal directions as i = t, r,

we find that

K(r) z
z +K

(r) θ
θ = 0, (3.3)

provided that the temporal foliation is constant, what implies into K
(t) z

z = K
(t) θ

θ = 0.

This leads to the equations of motion

ρ
(

1 + ρ′2
)

mz2
− ∂z

(

ρ2ρ′

mz2

)

− 1

z2
∂φ

(

ρ̇

m

)

= 0, (3.4)

where we have introduced an auxiliary function

m = m(z, φ) =
√

ρ2
(

1 + ρ′2
)

+ ρ̇2 . (3.5)

In absence of deformations, the embedding function (3.4) is parametrized by a hemisphere

of unit radius, ρ2 = 1− z2. The shape can be deformed as linear perturbations around the

unitary circle of the form ρ(φ) = [1 + ǫf(φ)], where ǫ is the deformation parameter [30].

Altogether, we assume that its embedding in AdS4 geometry is given by the ansatz

ρ(z, φ) =
√

1− z2 [1 + ǫf(z, φ)] , (3.6)

for the separation of variables f(z, φ) = R(z)Φ(φ). The corresponding functions satisfy

the conditions R(0) = 1 and Φ(φ) = Φ(φ + 2π) at the conformal boundary. This is

a consequence of the homologous constraint on the RT surface, as it is anchored to the

conformal boundary z = 0. An additional condition comes from the fact that the maximum

reach of the embedding does not change when the RT surface is deformed, what leads to

R(1) = 0 [30, 82] (see figure 1).

Solving eq. (3.4) for R(z) and Φ(φ), we obtain

ρ(z, φ) =
√

1− z2

[

1 + ǫ
∑

ℓ

(

1− z

1 + z

)ℓ/2 1 + ℓz

1− z2
(aℓ cos(ℓφ) + bℓ sin(ℓφ))

]

, (3.7)

where ℓ is the degree of the harmonic function and labels the deformation with respect to

the circle.

Once we have obtained the embedding function (3.7), we are able to compute the

renormalized EE for the perturbed circle by using eq. (2.18). For Einstein gravity in four

dimensions this reads

Sren
EE

(

S
1
ǫ

)

= − πL2

2GN
χ(ΣRT) +

L2

8GN

∫

ΣRT

d2x
√
γF , (3.8)
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ǫ

ρ = ρ(z, φ)

Σ

φ

z

ρ

Figure 1. Time slice of minimal co-dimension two surface Σ with an elliptical deformation ǫ

(ℓ = 2).

where F is the trace of the AdS curvature tensor defined in (2.11). Replacing the embedding

function (3.7) into eq. (3.8), we obtain

Sren
EE

(

S
1
ǫ

)

= − πL2

2GN

[

1 + ǫ2
∑

ℓ

ℓ
(

ℓ2 − 1
)

4
(a2ℓ + b2ℓ ) +O(ǫ4)

]

, (3.9)

what is in agreement with the holographic computation for an arbitrary perturbation of a

circle performed in ref. [30].

3.2 Deformed disk in spherical coordinates

Consider now the Poincaré-AdS spacetime written in spherical coordinates as

ds2 =
L2

r2 cos2 θ

(

−dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2
)

. (3.10)

Polar and spherical coordinates are mapped into each other by the transformation

r =
√

ρ2 + z2, θ = arctan
ρ

z
. (3.11)

In this coordinate system, the embedding function of the minimal surface ΣRT is defined

by r = r(θ, φ), such that the induced metric is

ds2γ =
L2

r2 cos2 θ

[(

1 + r′
2
)

dθ2 +
(

1 + ṙ2
)

dφ2 + 2r′ṙdθdφ
]

, (3.12)

where we denoted r′ = ∂θr(θ, φ) and ṙ = ∂φr(θ, φ). The minimality condition (2.21) leads

to the equation for r(θ, φ),

1

mr3 cos2 θ

(

r′
2
sin2 θ + ṙ2

)

+ ∂θ

(

r′ tan2 θ

r2m

)

+
1

cos2 θ
∂φ

(

ṙ

r2m

)

= 0, (3.13)

with the corresponding function

m = m(θ, φ) = sin θ

√

1 +
r′2 + ṙ2

r2
. (3.14)
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CFT3

AdS4

ǫ

r = r(θ, φ)

Σ

φ

θ

z

x

y

Figure 2. Time slice of the extremal co-dimension two surface Σ with an elliptical deformation ǫ

(ℓ = 2).

From eq. (3.13), in the undeformed case, the parametrization of the embedding function of

the RT surface is given by the unit hemisphere, r2 = 1. In a similar fashion as in the pre-

vious parametrization, we consider the linear perturbation of the entangling region as [39]

r(θ, φ) = 1 + ǫf(θ, φ). (3.15)

For a choice f(θ, φ) = Θ(θ)Φ(φ), the boundary conditions correspond to a periodic func-

tion Φ with period 2π and Θ → 1 at the conformal boundary, i.e., Θ(π2 ) = 1. Here, the

maximal reach of the RT surface implies Θ(0) = 0 (see figure 2). Thus, eq. (3.13) for the

ansatz (3.15) leads to a solution of the form

r(θ, φ) = 1 + ǫ
∑

ℓ

tanℓ
θ

2
(1 + ℓ cos θ) [aℓ cos(ℓφ) + bℓ sin(ℓφ)] . (3.16)

For this embedding function, the nonvanishing AdS curvature component reads

Fθφ
θφ = −ǫ2

∑

ℓ

ℓ2(ℓ2 − 1)

πL2
(aℓ + bℓ) tan

(

θ

2

)2ℓ

cot4 (θ) +O(ǫ3). (3.17)

Introducing this expression into eq. (3.8), yields

Sren
EE

(

S
1
ǫ

)

= − πL2

2GN

[

1 + ǫ2
∑

ℓ

ℓ
(

ℓ2 − 1
)

4
(a2ℓ + b2ℓ ) +O(ǫ4)

]

, (3.18)

what matches exactly the result (3.9) of the previous subsection, and, in turn, agrees with

the formula for d = 3 in ref. [39].

3.3 Interpretation of the results

A quick analysis of the results above leads to the fact that the O
(

ǫ2
)

contribution is coming

only from the curvature part in formula (3.8). Indeed, the information on the deformation

– 11 –
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of the entangling region is only contained in the polynomial P2(F). As it shall be discussed

below, this behavior can be explained once the equivalence between the renormalized EE

and the renormalized volume of the RT surface (2.16), is taken into account.

Continuous perturbations on the hemisphere do not modify its topology, leaving intact

the Euler characteristic in eq. (2.16). As a consequence, its shape dependence is encoded

only on the local properties of the manifold, which are reflected in the polynomial in the

curvature (F term).

The term of the renormalized EE that is quadratic in the perturbation carries infor-

mation on entanglement susceptibility, associated to the change of shape of the entangling

region [43, 83–86]. This quantity contains universal information due to the coefficient CT

of the two-point correlation function of the energy-momentum tensor in a ground state of

the CFT3. Indeed, the subleading term of the formula (3.9), can equivalently be written as

S
ren,(2)
EE (S1ǫ ) =

π4CT

24

∑

ℓ

ℓ(ℓ2 − 1)
(

a2ℓ + b2ℓ
)

. (3.19)

This expression2 makes manifest the analogy between the entanglement susceptibility and

CT . A posteriori, one can say that the AdS curvature of a deformed entangling region is a

geometrical probe of CT .

The leading-order contribution is a shape-independent constant that corresponds to the

universal part of the EE of a circular entangling surface. This term is a topological number

which is identified as the free energy of a CFT3 in a S
3 background, using gauge/gravity

duality [18]. As mentioned in the Introduction, the latter quantity provides a realization

of the F -theorem. The matching to a notion of EE in terms of the Euler characteristic

provides firmer ground to a connection between the topology and the effective number of

degrees of freedom of the field theory.

4 Renormalized volume and Willmore energy

4.1 Minimal and non-minimal surfaces

The connection between quantum information theoretic measures and geometry can be

extended beyond EE. Dong in ref. [13] showed that a similar area formula is valid for the

calculation of the modular entropy. In this case, the codimension-2 hypersurface ΣT is not

minimal, but its location is determined by the minimization of the Nambu-Goto action of

a cosmic brane with tension T (2.17).

The prescription used in the present work for the cancellation of divergences in the

holographic EE of entangling surfaces is linked to the volume renormalization given in the

mathematical literature [51]. As shown in ref. [59], isolating the finite contribution of the

modular entropy amounts to the renormalization of the volume of ΣT

S̃ren
m =

Volren (ΣT )

4GN
. (4.1)

2In ref. [39], the proportionality constant differs by a factor π. This corresponds to a different normal-

ization for the spherical harmonics, leading to an overall factor 1/
√
π for each one of them.
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Interestingly enough, both quantities, EE and modular entropy, are described by the

same geometrical object, the renormalized volume of a codimension-2 hypersurface Σ. In

4D Einstein-AdS gravity, the corresponding renormalized volume of Σ is given by (2.16)

and reads

Volren (Σ) = −2πL2χ (Σ) +
L2

4

∫

Σ

d2y
√
γδcdab

(

Rab
cd +

1

L2
δ
ab
cd

)

. (4.2)

This expression matches the renormalized area expression given in ref. [87]. Notice that

this formula holds whether Σ is minimal or not. A physical example of minimal surface is

a soap film that spans between two wires. As there is no pressure difference between the

sides, the membrane has zero mean curvature. In turn, soap bubbles are non-minimal, due

to the difference of pressure at the interface [88, 89]. In the latter case, they are constant

mean curvature surfaces, and modelled by Helfrich energy [90].

For extremal surfaces, minimality condition amounts to the vanishing of the trace of

the extrinsic curvature of the surface Σ (2.21). For this reason, it is useful to rewrite

eq. (4.2) in terms of K
(i)
ab using the Gauss-Codazzi relation, for codimension-2 surfaces

Rab
cd = Rab

cd −K(i)a

cK
(i)b

d +K(i)a

dK
(i)b

c. (4.3)

Taking into account the antisymmetry of Kronecker delta, we find that

Volren (Σ) = −2πL2χ (Σ) +
L2

4

∫

Σ

d2y
√
γδcdab

[

Rab
cd + 2K(i)a

cK
(i)b

d +
1

L2
δ
ab
cd

]

. (4.4)

In addition, the Weyl tensor for Einstein-AdS spaces can be written as

Wαβ
µν = Rαβ

µν +
1

L2
δ
αβ
µν , (4.5)

what allows us to express the renormalized volume of Σ as

Volren (Σ) = −2πL2χ (Σ) +
L2

4

∫

Σ

d2y
√
γδcdab

[

W ab
cd + 2K(i)a

cK
(i)b

d

]

. (4.6)

In turn, the extrinsic curvature in eq. (4.6) can be decomposed into its trace K(i) and a

traceless part P
(i)
ab as

K
(i)

ab = P
(i)
ab +

1

2
γabK

(i). (4.7)

We can also replace the trace by the mean curvature H(i), which expresses a linear com-

bination of the eigenvalues of K
(i)

ab , that is, H(i) = K(i)/2. Armed with these tools, we

deduce that the renormalized volume in eq. (4.2) can be equivalently written as

Volren (Σ) = −2πL2χ (Σ) +
L2

2

∫

Σ

d2y
√
γ
[

W ab
ab + 2H(i)2 − P

(i)a
b P (i)b

a

]

. (4.8)

When a minimal two-dimensional surface Σmin is considered, the above relation reduces to

Volren (Σmin) = −2πL2χ (Σmin) +
L2

2

∫

Σmin

d2y
√
γ
[

W ab
ab − P

(i)a
b P (i)b

a

]

. (4.9)
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The last two equations are in agreement with the result of Alexakis and Mazzeo in ref. [51]

for the renormalized area of submanifolds. These equivalent expressions allow us to tell be-

tween the two prescriptions in eqs. (2.18) and (4.1): the RT surface satisfies the minimality

condition while the cosmic brane used in modular entropy not. Renormalized area relations

in eqs. (4.8) and (4.9) can be further simplified when considering entangling regions for a

vacuum CFT. Since its gravity dual is global AdS4 spacetime, which is conformally flat,

the bulk Weyl tensor vanishes identically.

4.2 Renormalized area and Willmore energy

The relation between renormalized EE and the renormalized area of the RT surface, has

two key ingredients. On one hand, the topology of the minimal surface, expressed by the

Euler characteristic, which captures global properties of ΣRT. On the other hand, the local

properties of ΣRT are dictated by the AdS curvature term inside the integral in eq. (2.9).

According to the analysis in section 3, the deformation in the shape of a disk entangling

region is encoded only at the curvature part of the renormalized EE, leaving the topological

contribution unchanged.

A functional with similar properties, called the Willmore energy, has been introduced

in mathematical literature [52–54]. It is defined for a smooth, closed and orientable surface

X embedded in R
3 and adopts the form,

W (X) =

∫

X

H2dS, (4.10)

where H is the mean curvature of X and dS is the area element of the 2D metric. Fur-

thermore, it acquires a minimal value when evaluated on spherical surfaces

W (X) ≥ 4π. (4.11)

Therefore, it measures the deviation of X from sphericity. It was conjectured by Willmore

that a new bound arises when the genus of X changes from zero to one. According to this,

the functional for the g = 1 submanifold has a bound

W (Xg=1) ≥ 2π2. (4.12)

The conjecture was proved recently in ref. [91]. These properties are fundamental for the

analysis below, where we establish the connection between Willmore energy and quan-

tum information theoretic measures, through the concept of renormalized volume of the

entangling surface.

Willmore energy is defined for a closed surface. Therefore, the first obstacle is the fact

formula (4.2) involves an open two-dimensional surface anchored to the boundary of an

AAdS space.

In order to overcome this problem, we generalize the field doubling method proposed in

ref. [32], for AAdS manifolds. In this case, we consider the embedding of the codimension-2

surface Σ and its reflection with respect to the z = 0 plane, Σ′. The intersection of Σ and

Σ′ is the entangling curve ∂A, at the conformal boundary, such that ∂Σ = ∂Σ′ = ∂A.
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Σ

CFT3 AdS4

∂Σ

A

Ā

t =const.

Σ

∂Σ′
= ∂Σ

Σ
′

R
3

Figure 3. The doubling of the minimal surface Σ is achieved by gluing a copy Σ′ so that they are

cobordant.

Continuity conditions at the interface situated at z = 0, require the two surfaces to be

immersed in a regular spacetime. In this case, its union produces a closed two-dimensional

surface 2Σ = Σ ∪ Σ′, which is embedded into the smooth spacetime G̃µν . A pictorial

representation of the method is shown in figure 3.

With this geometrical setup in mind, we examine the rescaling properties of the renor-

malized volume of Σ (4.8) under generic Weyl transformations of the ambient metric

Gµν = e2ϕG̃µν . Notice that, when ϕ = − log(z/L), one recovers the eq. (2.1). The Euler

characteristic is a topological invariant and does not change under metric rescalings. Thus,

we focus on the quantities which appear under the integral symbol in eq. (4.8).

By definition of the bulk line element in terms of the codimension-2 metric γab

Gµν =
(

n(i)µn(i)ν + eµae
ν
bγ

ab
)

, (4.13)

where n(i)µ are the corresponding normal vectors and eµa are the frame vectors, we have that

n(i)
µ = eϕñ(i)

µ, γab = e2ϕγ̃ab. (4.14)

Here, the quantities with tilde indicate an embedding with respect to the regular metric

G̃µν .
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On the other hand, the extrinsic curvature of Σ transforms as

K
(i)

ab = eϕ
(

K̃
(i)

ab + γ̃abñ
(i) · ∂ϕ

)

, (4.15)

where we have omitted the indices in the contraction ñ(i)c∂cϕ. This expression allows us

to write down the trace of K
(i)

ab as

K(i) = γabK
(i)

ab = e−ϕ
(

K̃(i) + 2ñ(i)∂ϕ
)

, (4.16)

and its traceless part as

P
(i)
ab = e−ϕP̃

(i)
ab . (4.17)

A Weyl transformation of the area element is given by d2y
√
γ = d2y

√
γ̃e2φ. Then, it is

straightforward to show that the following object is Weyl invariant
∫

Σ

d2y
√
γP

(i)a
b P (i)b

a =

∫

Σ

d2y
√

γ̃P̃
(i)a
b P̃ (i)b

a . (4.18)

In turn, the square of the trace of the extrinsic curvature is not Weyl invariant

∫

Σ

d2y
√
γK(i)2 =

∫

Σ

d2y
√

γ̃

[

K̃(i)2 + 4K̃(i)
(

ñ(i) · ∂ϕ
)

+ 4
(

ñ(i) · ∂ϕ
)2
]

. (4.19)

Altogether, the bulk Weyl tensor satisfies W a
bcd = W̃ a

bcd , what implies the relation

W ab
cd = e−2ϕG̃bmW̃ a

mcd = e−2ϕW̃ ab
cd . (4.20)

In doing so, the integral of the double subtrace of the Weyl tensor on the area element is

proved to be invariant
∫

Σ

d2y
√
γW ab

ab =

∫

Σ

d2y
√

γ̃W̃ ab
ab . (4.21)

Therefore, the renormalized volume (4.2), when expressed in terms of the smooth metric,

reads

Volren (Σ) =
L2

2

∫

Σ

d2y
√

γ̃

[

W̃ ab
ab +2H̃(i)2− P̃

(i)a
b P̃ (i)b

a +2K̃(i)
(

ñ(i) ·∂ϕ
)

+2
(

ñ(i) ·∂ϕ
)2
]

−

−2πL2χ (Σ) . (4.22)

This formula adopts a more compact form by taking Gauss-Codazzi eq. (4.3) and the

relations between bulk and codimension-2 curvature tensors [71]

P̃
(i)a
b P̃ (i)b

a = K̃(i)a

bK̃
(i)b

a − 2H̃(i)2,

K̃(i)a

bK̃
(i)b

a = R̃+ R̃abcdn
(i)an(i)cn(j)bn(j)d − 2R̃abn

(i)an(i)b − R̃+ 4H̃(i)2,

W̃ ab
ab = R̃ab

ab − 2S̃a
a ,

R̃ab
ab = R̃+ R̃abcdn

(i)an(i)cn(j)bn(j)d − 2R̃abn
(i)an(i)b,
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where S̃µ
ν is the Schouten tensor of G̃µν . Combining these expressions, we find that

P̃
(i)a
b P̃ (i)b

a = W̃ ab
ab + 2S̃a

a −R+ 2H̃(i)2, (4.23)

what leads to

Volren (Σ) = −2πL2χ (Σ) + L2

∫

Σ

d2y
√

γ̃

[

1

2
R+ K̃(i)

(

ñ(i) · ∂ϕ
)

+
(

ñ(i) · ∂ϕ
)2

− S̃a
a

]

.

(4.24)

Until now, we have treated the two-dimensional sheet Σ as an open surface anchored to

the z = 0 plane. As discussed above, Σ is also half of the closed surface 2Σ, we have

Volren (Σ) = −2πL2χ (Σ) +
L2

2

∫

2Σ

d2y
√

γ̃

[

1

2
R+ K̃(i)

(

ñ(i) · ∂ϕ
)

+
(

ñ(i) · ∂ϕ
)2

− S̃a
a

]

.

(4.25)

For the compact manifold 2Σ, the Euler theorem in two dimensions states that
∫

2Σ

d2y
√

γ̃R = 4πχ (2Σ) , (4.26)

as for the Euler characteristic, the relation

χ (2Σ) = 2χ (Σ) , (4.27)

holds without loss of generality. With all the above equations, we have

Volren (Σ) =
L2

2

∫

2Σ

d2y
√

γ̃

[

K̃(i)
(

ñ(i) · ∂ϕ
)

+
(

ñ(i) · ∂ϕ
)2

− S̃a
a

]

, (4.28)

what is equivalent to the renormalized area formula in eq. (4.2). As a matter of fact, it

is more general as it is valid for both minimal and non-minimal surfaces embedded in an

AAdS4 spacetime. Any constraint on the shape of Σ can be readily implemented as a

relation between the different terms in eq. (4.28).

For instance, minimality condition leads to

K(i) = 0 ⇒ K̃(i) = −2ñ(i) · ∂ϕ, (4.29)

when written in terms of the smooth metric G̃µν . As a consequence, when a minimal

surface Σmin is considered, the renormalized volume reduces to

Volren (Σmin) = −L2

2

∫

2Σmin

d2y
√

γ̃
[

H̃(i)2 + S̃a
a

]

. (4.30)

In particular, when Σmin is a spatial subregion of an AdS4 spacetime, which corresponds

to the conditions H̃(t) = 0 and S̃a
a = 0 (G̃µν is a locally flat space), the last equation reads

Volren (Σmin) = −L2

2

∫

2Σm

d2y
√

γ̃H̃2 = −L2

2
W (2Σmin) . (4.31)
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Therefore, it is made explicit the connection between the renormalized area and the Will-

more energy. The equivalence of these two geometric concepts lead to interesting inequal-

ities about the AdS curvature of the minimal surface.

Indeed, when the closed surface 2Σmin belongs to the topological class of the sphere

(g = 0), the combination of eqs. (4.2), (4.31) and (4.27) leads to the inequality
∫

Σmin

d2y
√
γF ≤ 0. (4.32)

For a toroidal closed surface (g = 1), the inequality in eq. (4.12) gives
∫

Σmin

d2y
√
γF ≤ −2π2. (4.33)

In this geometry, the bound is saturated by the Clifford torus [92]. Notice that in both

cases the integral of the trace of the AdS curvature is non-positive.

From a different starting point, Alexakis and Mazzeo arrived at the same type of

inequalities in ref. [51]. Note that our derivation of the Willmore energy from renormalized

volume relies on the existence of an AdS bulk. Thus, the bounds (4.32) and (4.33) cannot

be extended to other backgrounds. A generalization of these results to generic bulk and

boundary geometries can be seen in ref. [87].

5 Holographic entanglement entropy and Willmore energy

The connection between renormalized area and Willmore energy provide us insight on

surfaces immersed in a higher-dimensional manifold. In particular, the dependence of EE

on the geometry becomes manifest when taking a minimal surface Σmin.

For RT surfaces, the renormalized area of ΣRT is equivalent to the renormalized EE of

the subregion A, and the following formula holds

Sren
EE (A) = − L2

8GN
W (2ΣRT) . (5.1)

One can map the universal part of EE of an entangling region for a vacuum state of the

CFT3 to the Willmore energy of a closed geometry constructed by gluing two copies of the

RT surface.

Inequalities (4.11) and (4.12) set a bound to renormalized EE (5.1). For a doubled RT

surface which correspond to g = 0 [32], we get

Sren
EE (A) ≤ − πL2

2GN
, (5.2)

that means the finite part of the EE is maximized for a circular surface among all the

possible shapes within the same topological class. The same bound was obtained in ref. [51].

In a similar fashion, when the closed surface 2ΣRT is of genus g = 1, the finite term of

the EE satisfies

Sren
EE (A) ≤ −π2L2

4GN
. (5.3)
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Therefore, the sphere results as the global maximum of the EE between surfaces of genus

up to one. Astaneh, Gibbons and Solodukhin arrived at the same conclusion by extending

their study to higher dimensional surfaces of genus larger than one in ref. [92].

In section 3 we showed that a measure of the deformation of an entangling surface is

given by the trace of the AdS curvature, subjected to the inequalities (4.32) and (4.33).

This quantity is a holographic geometric probe of entanglement susceptibility in the dual

CFT. Interestingly enough, the susceptibility is negative as a consequence of the strong

subadditivity property of EE [43, 84, 86]. Hence, strong subadditivity imposes a restriction

on the curvature of the RT surface side which reads
∫

ΣRT

d2y
√
γ

(

R+
2

L2

)

≤ 0. (5.4)

An analogous constraint on the spacetime curvature was derived in ref. [85] in the context

of covariant EE in AdS3/CFT2.

5.1 F -theorem and Willmore energy

The universal term suniv of EE of a disk-like entangling region is a relevant quantity, as

it is identified with the free energy FS3 of a CFT3 on a spherical background S
3 [18]. In

addition, FS3 has been proven to be a F -function along the RG flows in d = 3 [21, 22],

what reflects the degrees of freedom of the theory.

Consider the EE of a spatial subregion A for a 3-dim CFT

SEE (A) =
Area (∂A)

δ
− suniv (A) , (5.5)

where δ is the regulator in eq. (1.2). By an adequate manipulation of eqs. (5.1) and (5.5),

it is straightforward to show that

suniv (A) =
L2

8GN
W (2ΣRT) , (5.6)

whereas combining eqs. (5.2) and (5.5), one can arrive at the inequality

suniv (A) ≥ πL2

2GN
= FS3 . (5.7)

One can assume that the Casini-Huerta-Myers (CHM) map linking the finite term in

the EE and the number of degrees of freedom of the theory is valid for any shape of the

entangling surface. On the other hand, the Wilsonian picture of the RG flows indicates

that the microscopic degrees of freedom depend on the energy of the theory. In this picture,

the energy acquire global characteristics as it affects the degrees of freedom independently

on their position and local properties on the manifold. Therefore, suniv (A) should depend

on global features of the entangling surface, namely the topological contribution of the

renormalized EE in eq. (5.1).

Furthermore, for surfaces within the same topological class only the ones having the

maximum renormalized area are adequate probes of the degrees of freedom of the theory.
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This can be seen as coming from their maximum capacity of information storage. Due

to the fact that the circle is the global maximum of the area among all 2D geometries of

different genus — as shown in eqs. (5.2) and (5.3) — it represents a strong candidate to a

proper measure of the degrees of freedom.

In addition, surfaces of maximal renormalized area with g > 0, are entangling regions

that cannot fully cover a spatial slice of the CFT in their maximum extension. Physically,

that means that they cannot account for all the degrees of freedom of the theory. In turn,

entangling regions of g = 0 can potentially cover the full manifold in its totality. Indeed,

the fact that the disk has the maximum renormalized area in the g = 0 topological class,

implies that is able to encode all the information in the theory.3

6 Discussion

In the present paper, we have studied the shape dependence of entanglement entropy in

3-dim CFTs which are holographically dual to Einstein-AdS gravity. The finite part of the

entanglement entropy is expressed as the renormalized volume of the RT surface (2.18) for

CFTs in odd dimensions. It consists on two contributions: a topological part, proportional

to the Euler characteristic of Σ (shape independent); and a curvature term, which encodes

the information of the deformation of the entangling region with respect to a constant-

curvature condition.

We have presented explicit computations on entangling regions with deformations for

3-dimensional CFTs, along the line of refs. [49, 58, 59]. We match the results found in

the literature given in refs. [30, 39]. Our analysis shows that the number of degrees of

freedom of the field theory is given by the topological part. In turn, the quadratic term in

the deformation is coming from the integral of the AdS curvature. This means, that the

AdS curvature of the RT surface carries information on the coefficients of the correlation

function of the dual CFT3. Future directions of this work considers its extension to higher

dimensions and to higher-curvature gravity theories.

We have also shown that Willmore energy arises as a special case of renormalized

volume formula of a two-dimensional surface. Indeed, expression (4.2) is general, as there

is no distinction between minimal and non-minimal surfaces. Demanding a minimal surface

in a constant time slice of global AdS4 bulk spacetime, makes eq. (4.2) equivalent to the

Willmore functional. The latter provides a lower bound, saturated by a circular entangling

surface. This also shows that renormalized EE of a disk-like entangling region is maximal

among all the shapes with the same perimeter. This is in consonance with the observations

made in ref. [30], which points out that the universal contribution suniv of the entanglement

entropy is minimized by a circular entangling surface. At the same time, we know that

suniv matches the free energy of a CFT3 on a spherical S3 background due to the Casini-

Huerta-Myers relation [18]. What we learnt here is that, as prescribed by eq. (5.6), suniv
can be equivalently seen as the Willmore energy of S2.

3We thank I.J. Araya for comments on this point.
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We provide a simple method to compute the energy in higher curvature gravity in asymptotically AdS

spacetimes in even dimensions. It follows from the combined use of topological terms added to the gravity

action, and the Wald charges derived from the augmented action functional. No additional boundary terms

are needed. As a consistency check, we show that the formula for the conserved quantities derived in this

way yields the correct result for the mass of asymptotically AdS black holes.
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I. INTRODUCTION

Higher-curvature corrections to Einstein-Hilbert action

are ubiquitous in effective field theory when gravity is

involved. In fact, a sensible theory of quantum gravity is

generically expected to yield such corrections, and string

theory, as an antonomastic example of this, does predict

them at next-to-leading order [1–3]. Higher-curvature

corrections, on the other hand, are interesting by their

own right: they have been studied for a long time and in

many different contexts, including mathematical aspects

of general relativity (GR) [4–6], cosmology [7], black

holes [8], massive gravity [9], supergravity [10], and

quantum gravity [11].

Regarding quantum gravity, it is well known that the

introduction of higher-order terms in the gravity action

suffices to render the theory renormalizable [11] but at the

price of introducing ghosts [9]. This is generically the case,

with a few notable exceptions [3]. Therefore, the absence of

ghosts and of other potential pathologies, such as causality

issues, can be used as a criterion to select the sensible

higher-order theory or ultraviolet completion to work

with [3,12,13].

In recent years, the interest in healthy higher-order

corrections to Einstein theory has been renewed. In

particular, there have been very interesting works studying

higher-curvature models in anti-de Sitter (AdS) space. Such

is the case of the so-called critical gravity (CG) theories

[14,15], which provide ghost-free models of gravity in

asymptotically AdS spacetimes in D ≥ 4 dimensions. In

D ¼ 3 dimensions, higher-curvature terms were also con-

sidered as a toy model of a consistent gravity theory [16].

Other recent works explore, for instance, the connection

between higher-curvature conformally invariant theories

and Einstein gravity in (A)dS in D ¼ 4 [17]. Other models

in D ≥ 4 dimensions studied recently, such as the so-

called (generalized) quasitopological gravity [18–23] and

Einstenian gravity [24,25], are also very interesting and

provide a new perspective on this old topic.

The computation of conserved charges in higher-

curvature theories in both asymptotically flat and asymp-

totically AdS spaces is an important problem that has been

addressed by many authors in the last 20 years; notably by
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Deser and Tekin, who found in Refs. [26,27] the higher-

derivative generalization of the Abbot-Deser method for

GR [28]. Other papers discussing conserved charges in

related contexts are [29–31], and of course others using the

covariant formalism of Ref. [32]; see references therein.

Recently, we proposed in [33] a novel definition of

gravitational energy for an arbitrary theory of gravity

including quadratic-curvature corrections to Einstein equa-

tions. We focused on the theory in D ¼ 4 dimensions and

in the presence of a negative cosmological constant. Unlike

some other methods considered in the literature, the method

proposed in [33] is intrinsically nonlinear and permits one

to deal with the boundary terms [34,35] in a systematic

way. It relies on the idea of adding to the gravity action

topological invariant terms, which suffice to regularize the

Noether charges and render the variational problem well

posed. More precisely, the method amounts to adding to the

action the bulk part of a topological invariant. This is an

idea that has been previously considered in [36,37] in the

case of second-order theories, such as Einstein-AdS grav-

ity. Here, we show how this method can be generalized to

generic quadratic-curvature theories in any even dimension.

The paper is organized as follows: In Sec. II, we will

introduce the action of generic quadratic-curvature gravity in

D ¼ 2n dimensions, including topological invariants that

will eventually serve to regularize the action. In Sec. III, we

provide the definition of gravitational energy and we use it to

compute the mass of black holes in asymptotically AdSD
space. Section IV contains our conclusions.

II. QUADRATIC-CURVATURE GRAVITY

IN D= 2n DIMENSIONS

The most general gravity action which adds up quadratic

corrections in the curvature to GR in even dimensions is

given by the expression

I ¼
Z

M

d2nx
ffiffiffiffiffiffi

−g
p �

R − 2Λ0

κ
þ αR

μ
νR

ν
μ þ βR2 þ γGB

�

þ α2n

Z

M

d2nxE2n: ð1Þ

Here,GB≡
ffiffiffiffiffiffi

−g
p ðRαβμνRαβμν−4RμνRμνþR2Þ is the Gauss-

Bonnet term, which in D > 4 is a dynamical term. The last

term in the integral (1) is, by contrast, the 2n-dimensional

topological Euler density, which reads

E2n ¼
ffiffiffiffiffiffi

−g
p

2
n

δ
½μ1���μ2n�
½ν1���ν2n�R

ν1ν2
μ1μ2 � � �Rν2n−1ν2n

μ2n−1μ2n : ð2Þ

This contribution accommodates the maximal number of

curvatures in 2n dimension, such that it does not contribute

to the field equations. InD ¼ 4, this invariant is the same as

the Gauss-Bonnet term.

We shall use the conventions in Ref. [27], where κ ¼
2VolðS2n−2ÞG2n in terms of the D-dimensional Newton’s

constant GD. In addition, in order to compare with existing

literature, we are considering the inclusion of a bare

cosmological constant Λ0 ¼ −ð2n − 1Þð2n − 2Þ=2l2 in

terms of the original AdS radius l. In our notation,

δ
½μ1���μp�
½ν1���νp� ¼ det ½δμ1ν1 � � � δ

μp
νp � is a totally antisymmetric product

of p Kronecker deltas.

Varying the action with respect to the metric, one obtains

the equations of motion (EOM), which correspond to

Einstein tensor plus fourth-order contributions coming

from curvature-squared terms; namely

0 ¼ 1

κ
Gμν þ 2βR

�

Rμν −
1

4
gμνR

�

þ ð2β þ αÞðgμν□ −∇μ∇νÞR

− γHμν þ α□Gμν þ 2α

�

Rμσνρ −
1

4
gμνRσρ

�

Rσρ; ð3Þ

where the part that is linear in the curvature, namely,

G
μ
ν ¼ R

μ
ν −

1

2
Rδ

μ
ν þ Λ0δ

μ
ν ; ð4Þ

is the usual field equation of GR, and the quadratic part

H
μ
ν ¼

1

8
δ
½μμ1μ2μ3μ4�
½νν1ν2ν3ν4� R

ν1ν2
μ1μ2R

ν3ν4
μ3μ4 ; ð5Þ

corresponds to the Lanczos tensor [4–6].

Vacuum states of the theory correspond to maximally

symmetric spaces, which satisfy the constant curvature

condition

R
μν
αβ ¼ −

1

l
2

eff

δ
½μν�
½αβ�: ð6Þ

Here, leff is the effective (A)dS radius. From the equation

of motion one can readily obtain an expression for the

effective (A)dS radius in terms of the couplings of the

theory. Using the standard relation between (A)dS length

and the corresponding cosmological constant Λeff ¼
−ð2n − 1Þð2n − 2Þ=2l2eff , one arrives at the equation

−
1

2κΛeff

þ Λ0

2κΛ2

eff

¼ ð2n − 4Þ
ð2n − 2Þ2 ð2nβ þ αÞ

þ γ
ð2n − 4Þð2n − 3Þ
ð2n − 2Þð2n − 1Þ : ð7Þ

Note that Λeff ¼ Λ0 in four dimensions. This is no longer

the case in D > 4, as higher curvature terms modify the

effective cosmological constant.

The surface term of the theory arises from integrating by

parts the variation of the gravitational action in order to
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construct the EOMs. Without loss of generality, one can

always split such contribution in the pieces that contain δg
and δΓ, respectively. They can be easily derived employing

Wald construction of Noether conserved quantities in

gravity theories [34]. Then, the surface term is cast in

the form

Θ
αðδg; δΓÞ ¼ 2E

αβ
μνg

νλδΓ
μ
βλ þ 2∇μE

αβ
μνðg−1δgÞνβ; ð8Þ

where the tensor E
αβ
μν ¼ δL=δR

μν
αβ is the derivative of the

Lagrangian density with respect to the Riemann tensor

which, for QCG theory, yields

E
αβ
μν ¼

1

2κ
δ
½αβ�
½μν� þ

1

2
αR

½α
½μδ

β�
ν� þ βRδ

½αβ�
½μν� þ

1

2
γδ

½αβμ3μ4�
½μνν3ν4�R

ν3ν4
μ3μ4

þ nα2n

2
n

δ
½αβμ3���μ2n�
½μνν3���ν2n�R

ν3ν4
μ3μ4 � � �Rν2nν2n

μ2n−1μ2n : ð9Þ

In what follows, we construct an energy definition for

QCG in even dimensions, as the natural generalization of

the procedure shown in Ref. [33].

III. ENERGY DEFINITION

In the literature, there is a plethora of different approaches

to deal with the general issue of defining energy for a given

gravity theory [38]. Here, we shall apply Wald formalism

[34,35], as the charges derived with such formalism for the

case of quadratic theories take a relatively simple form: For

a Lagrangian which is a function of the metric and the

Riemann curvature Lðgμν; RμναβÞ, the conserved quantity

associated to any Killing vector ξμ is expressed as a surface

integral in the codimension-2 surface Σ

Qα
W½ξ� ¼ 2

Z

Σ

dSβðEαβ
μν∇

μξν þ 2∇μE
αβ
μνξ

νÞ: ð10Þ

The use of Wald’s derivation of conserved quantities

from the gravitational bulk Lagrangian does not guarantee

by itself that the value of the energy is correct. This can be

seen in GR, where Wald charge coincides with the Komar

formula. So, even in the asymptotically flat case, the black

hole mass computed from (10) does not coincide with the

one obtained by the Hamiltonian method. The situation

worsens for AdS gravity, as the behavior of solutions turns

Komar integral divergent at the spatial infinity. These

facts imply that the charges (10) need to be corrected by

adding suitable boundary terms to the original Lagrangian.

Prescribing appropriate boundary conditions makes pos-

sible the integration of the conserved quantities, although

getting closed expressions for the charges is not always

guaranteed. In this regard, the covariant formalism [32],

which provides a robust method to compute conserved

charges in which the boundary terms are constructed

systematically, is particularly useful. As we will see, we

will obtain a result in agreement with that method.

The addition of topological terms to Einstein-Hilbert

action in GR with a negative cosmological constant

provides a remarkably simple method to circumvent the

drawbacks in the procedure described above. In four

dimensions, the consistent coupling of the Gauss-Bonnet

and Pontryagin terms allows us to express the gravitational

charges as the electric/magnetic part of the Weyl tensor

[39,40]. The formulas, which give rise to the correct energy

of different asymptotically AdS solutions, turn the dis-

cussions on background-substraction methods and the

inclusion of extra boundary terms in the Lagrangian

superfluous. In a previous work [33], we have shown that

the addition of the Gauss-Bonnet invariant to quadratic-

curvature gravity (QCG) action in D ¼ 4 also acts as a

regulator of the Noether charges in both Einstein and non-

Einstein sectors of the theory. Here, we extend this result

to an arbitrary even-dimensional QCG theory. A single

topological term added to the action suffices to render the

conserved charges finite. The information about the back-

ground of the corresponding sector of the theory is encoded

in the asymptotic value of the curvature, and gets reflected

in the coupling constant of the Euler topological term. In

other words, even in the higher-derivative theory it happens

that the addition of topological invariants to the action is

sufficient to regularize the conserved charges, making the

job of the otherwise needed boundary terms.

In QCG, due to Bianchi identity, the second part of the

integrand in Eq. (10) does not feature any term containing

γ. Altogether, the rest of ∇μE
αβ
μν vanishes identically for

Einstein spaces,

Rμν ¼ −
ð2n − 1Þgμν

l
2

eff

: ð11Þ

The gravity theory under analysis here admits a number

of analytic solutions with different asymptotic behavior,

such as asymptotically AdS, Lifshitz, etc. These different

asymptotic behaviors represent different sectors of the

theory. For the purpose of the present discussion, we will

consider solutions which are continuously connected to a

global AdS spacetime, which defines the background

configuration. We then fix the coupling of the Euler density

in terms of the parameters α, β, and γ by the following

criterion: The total surface term must vanish identically for

the vacuum state (6) corresponding to the class of solutions

we are interested in. This basic assumption implies a

well-posed variational principle, at least for global AdS

spacetime. In doing so, the coupling constant of the Euler

density reads

α2n ¼
ð−1Þnl2n−2eff

nð2n − 2Þ!κ

�

1þ 4κΛeff

2n − 2

�

2nβ þ α

þ γ
ð2n − 3Þð2n − 2Þ

2n − 1

��

: ð12Þ
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The quartic relation for the effective AdS radius in (7)

has a single root provided the derivative of it with respect to

l2eff is different from zero. Indeed, this degeneracy con-

dition poses an obstruction for the linearization of EOM

when the two maximally symmetric vacua of the theory

coincide. This is similar to what happens, e.g., in odd

dimensions with the Chern-Simons gravity theories [41].

The construction of conserved quantities is sensitive to

this issue, as linearized charges cannot be obtained for the

degenerate case. In relation to this, it is worth emphasizing

that the method of adding the Euler term (12) is not affected

by this consideration, as it does not rely on linear

perturbations of the geometry around a given background.

Once we have suitably identified the vacuum solution, we

can ask whether the massive deviations from the maximally

symmetric solution are such that the total surface integral

keeps being finite. This can be checked in concrete

examples.

The full charge is obtained as the surface integral

Qα½ξ� ¼
Z

Σ

dSβðqαβð1Þ þ q
αβ

ð2ÞÞ; ð13Þ

where q
αβ

ð1Þ and q
αβ

ð2Þ are the prepotentials

q
αβ

ð1Þ ¼ ∇μξν
�

1

κ
δ
½αβ�
½μν� þ αR

½α
½μδ

β�
ν� þ 2βRδ

½αβ�
½μν� þ γδ

½αβμ3μ4�
½μνν3ν4�R

ν3ν4
μ3μ4

þ nα2n

2
n−1

δ
½αβ���μ2n �
½μν���ν2n �

R
ν3ν4
μ3μ4 � � �R

ν2n−1ν2n
μ2n−1μ2n

�

;

and

q
αβ

ð2Þ ¼ 2∇μðαR½α
½μδ

β�
ν� þ 2βRδ

½αβ�
½μν�Þξν: ð14Þ

Now, we can consider a static black hole with standard

AdS asymptotics, whose metric is given by

ds2 ¼ −f2ðrÞdt2 þ 1

f2ðrÞ dr
2 þ r2dΩ2

2n−2; ð15Þ

where dΩ2

2n−2 is the metric on the unit (2n − 2)-sphere.

This discussion can be straightforwardly generalized to

topological black holes with planar or hyperbolic horizons.

The nonvanishing components of the Riemann curvature

for this static configuration are

Rtr
tr ¼ −

1

2
ðf2Þ00;

Rtn
tm ¼ Rrn

rm ¼ −
1

2r
ðf2Þ0δnm;

Rmn
kl ¼ 1 − f2

r2
δ
½mn�
½kl� ; ð16Þ

while the nonvanishing components of the Ricci tensor are

Rt
t ¼ Rr

r ¼ −
1

2r
½rðf2Þ00 þ 2ðn − 1Þðf2Þ0�;

Rn
m ¼ −

1

r2
½rðf2Þ0 − ð2n − 3Þð1 − f2Þ�δnm: ð17Þ

Here, the prime stands for derivatives with respect to r. In
the case of Boulware-Deser black holes [8] of Einstein-

Gauss-Bonnet gravity (α ¼ β ¼ 0), which is the working

example in QCG, the metric function f2ðrÞ takes the

asymptotic form

f2ðrÞ ≃ r2

l2eff

þ 1 −

�

r0

r

�

2n−3

þ � � � ; ð18Þ

with l
2

eff being a root of the polynomial equation

γð2n − 3Þð2n − 4Þ 1

l
4

eff

−
1

κl2eff
þ 1

κl2
¼ 0: ð19Þ

The ellipsis in (18) stands for higher powers of 1=r. In a

more general case, in which the couplings α and β are

nonzero and generic, a similar falloff is expected, with the

difference being the value of the AdS radius, which turns

out to be given by Eq. (7). For special relations between α,

β, and Λ0, a weakened version of the asymptotic condition

(18) might be possible. This has been extensively studied in

the literature. However, for generic values of the parameters

α and β, (18) is the expected behavior, as the quadratic

terms represent ultraviolet corrections. A more general case

could eventually involve two different metric functions

corresponding to gtt and g−1rr , each one with the asymptotic

behavior that respects the AdS asymptotics as given by

Eq. (18), what we discuss at the end of this section.

For static massive objects, the energy formula takes the

form

E¼Qt½∂t�

¼
Z

Σ

dSr∇
rξt

�

αðRt
tþRr

rÞþ
�

1

κ
þ2βR

�

δ
½rt�
½rt�

þγδ
½rtp1p2�
½rtm1m2�R

m1m2

p1p2
þnα2n

2
n−1

δ
½rtp1���p2n�
½rtm1���m2n�R

m1m2

p1p2
� � �Rm2n−3m2n−2

p2n−3p2n−2

�

:

ð20Þ

Given the form of the line element for the black hole (15),

explicit evaluation of the above energy also requires the

derivative of the timelike Killing vector, ∇rξt ¼ ðf2Þ0=2,
and the codimension-2 surface element dSr. If the local

coordinates on Σ are denoted by ym and the corresponding

line element of Σ is

r2dΩ2

2n−2 ¼ r2σmnðyÞdymdyn; ð21Þ

where σmn is the metric of the unit sphere, then we find

along the radial normal dSr ¼ r2n−2d2n−2y
ffiffiffi

σ
p

. In turn, the
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curvature expression in the square bracket can be recast

in terms of the metric function f2ðrÞ and its derivatives.

The result is

E ¼
Z

Σ

d2n−2y
ffiffiffi

σ
p 1

2
ðf2Þ0

�

1

κ
−
α

r
ðrðf2Þ00 þ 2ðn − 1Þðf2Þ0Þ

−
2β

r2
½r2ðf2Þ00 þ 4ðn − 1Þrðf2Þ0

− 2ðn − 1Þð2n − 3Þð1 − f2Þ�

þ 4γðn − 1Þð2n − 3Þ 1 − f2

r2

þ nα2nð2n − 2Þ!
�

1 − f2

r2

�

n−1
�

: ð22Þ

It is important to notice here that the Ricci tensor tends to a

constant value, namely R
μ
ν ≃ −ð2n − 1Þδμν=l2eff.

Replacing the asymptotic value of the metric function

and its derivatives and performing the integral on the

angular variables
R

Σ
d2n−2y

ffiffiffi

σ
p ¼ VolðS2n−2Þ, the expres-

sion for the energy takes the form

E ¼ VolðS2n−2Þ lim
r→∞

r2n−2ff0
�

1

κ
− ðαþ 2βÞðf2Þ00

− 2ðn − 1Þðαþ 4βÞ ðf
2Þ0
r

þ 4ðn − 1Þð2n − 3Þ 1 − f2

r2
ðβ þ γÞ

þ nα2nð2n − 2Þ!
�

1 − f2

r2

�

n−1
�

; ð23Þ

where the last term of this expression can be expanded as

�

1 − f2

r2

�

n−1

¼ ð−1Þn−1
l2n−2eff

þ ðn − 1Þ ð−1Þ
n−2

l2n−4eff

r2n−3
0

r2n−1
þ � � � :

ð24Þ

The remaining terms in the sum can be neglected as they

vanish in the limit r → ∞, in which the surface integral is

evaluated. Keeping all the coupling constants arbitrary, we

obtain the divergent expression

E ¼ VolðS2n−2Þ lim
r→∞

�

C

�

r2n−1

l
2

eff

þ ð2n − 3Þr2n−3
0

2

�

þ
�

2ð2n − 3Þγ þ nα2nð2n − 2Þ! ð−1Þ
n−2

2l
2n−4
eff

��

×
ð2n − 2Þr2n−3

0

l
2

eff

; ð25Þ

where we introduced the constant

C ¼ 1

κ
−

2

l
2

eff

ðð2n − 1Þðαþ 2nβÞ þ ð2n − 2Þð2n − 3ÞγÞ

þ nα2nð2n − 2Þ! ð−1Þ
n−1

l
2n−2
eff

:

Now it is clear that fixing the value of α2n as in Eq. (12),

which produces C ¼ 0 and regularizes the r2n−1 term,

makes the gravitational energy finite.

Finally, writing γ in terms of α and β [as given in Eq. (7)],

the energy is

E ¼
�

−1þ 8Λeffκ

ð2n − 2Þ2 ð2nβ þ αÞ þ 2Λ0

Λeff

� ð2n − 2Þr2n−3
0

4G2n

;

ð26Þ

which is the correct result for a black hole mass in QCG

theory with Λ0 ¼ 0, cf. [27], in our case generalized to

include the bare cosmological constant Λ0.

In the case when the metric component gtt in the ansatz is

replaced by a more general function −N2ðrÞf2ðrÞ that

respects the AdS asymptotics, the resulting formula for

the energy still yields a finite result. Here, in order to

compare with known results in the literature, we consider

the case N ¼ 1.

The above discussion shows the effect of the Euler

topological invariant added to the QCG action, which is

similar to the one in GR and Einstein-Gauss-Bonnet gravity

actions. Namely, without such term, the gravitational energy

is both divergent and yields an incorrect value for the finite

part in the mass computation. The addition of properly fixed

Euler coupling α2n resolves both issues at the same time.

IV. CONCLUSIONS

In this paper, we derived a general formula for the

conserved charges for asymptotically AdS black holes in

quadratic curvature gravity in 2n dimensions. The addition

of topological terms to the gravity action acts as a regulator

at the level of the surface term, and yields finite Wald

charges in AdS without need of extra boundary terms. It

remains an open question to know whether the method of

adding Euler characteristics can also be implemented in

order to compute conserved charges in sectors with other

asymptotic behaviors, such Lifshitz black holes, AdS-

waves, or spacetimes with weakened asymptotics in AdS.

In the past, the use of topological terms to regularize the

conserved quantities and the Euclidean action of a given

gravity theory has not only provided a powerful, yet simple

computational tool to understand physical properties of

black holes, but it has also unveiled remarkable features of

the gravitational action in critical points of the parameter

space in four dimensions such as critical gravity [14].

Indeed, the addition of the Gauss-Bonnet term to the critical

gravity action makes manifest the fact that the energy, the

entropy, and the action are zero for Einstein spaces [42,43].
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Implications of this procedure in the computation of

holographic correlation functions have been explored in

Ref. [44]. We expect that the addition of Euler terms will

make more clear certain properties of critical theories in

higher dimensions too.
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Titre : Aspects de la physique carrollienne
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Résumé : Nous étudions divers aspects et applica-

tions gravitationnelles de la dynamique carrollienne.

Les systèmes carrolliens se manifestent lorsque

la vitesse de la lumière s’annule. Nous construi-

sons des équations dynamiques générales carrol-

liennes et galiléennes valables pour des géométries

carrolliennes/newtoniennes arbitraires, courbes et

dépendantes du temps, l’accent étant mis sur l’hy-

drodynamique. La présence d’un courant U(1) est

aussi prise en compte. Cette démarche suit deux

approches : basée sur l’invariance de l’action sous

Carroll/Galilée et Weyl, ou par la prise d’une limite

de grande/petite vitesse de la lumière dans le ten-

seur énergie-impulsion relativiste et le courant U(1).

La dynamique est régie par la conservation d’un en-

semble de moments qui résultent soit de la variation

de l’action par rapport aux différentes composantes

de la géométrie carrollienne/newtonienne, soit appa-

raissent à différents ordres dans le développement en

c du tenseur énergie-impulsion. Ces deux approches

concordent, mais il est montré que la procédure

de limite est plus riche en raison de la possibi-

lité d’embrasser des situations avec des degrés de

liberté supplémentaires. En fait, c’est cette liberté

qui nous permet de déterminer dans quelles condi-

tions l’invariance hydrodynamique est préservée lors-

qu’on prend la limite de grande/petite vitesse de la

lumière. Nous montrons que dans la limite galiléenne

standard l’invariance hydrodynamique est perdue,

mais récupérée en ajoutant deux degrés de liberté

supplémentaires dans le développement en c du cou-

rant de chaleur et des courants U(1). Dans le cas car-

rollien, l’invariance sous changement de repère hy-

drodynamique survit lorsque le comportement du ten-

seur énergie-impulsion est inspiré des fluides carrol-

liens holographiques. Nous présentons enfin l’ana-

lyse des courants associés aux isométries carrol-

liennes/galiléennes. Dans le cas carrollien/galiléen,

ces courants ne sont pas toujours conservés et des

conditions supplémentaires doivent être imposées.

La dérivation présentée pour la dynamique carrol-

lienne transcende les fluides. Nous étudions le champ

scalaire conforme sur une géométrie carrollienne

générale et analysons les extensions carrolliennes

de la théorie de Chern-Simons gravitationnelle à

trois dimensions. Dans cette analyse, on découvre

des dynamiques électriques et magnétiques codées

à différents ordres en puissances de la vitesse de

la lumière de l’action relativiste parente. Deux ac-

tions supplémentaires apparaissent, nommées para-

magnétique et paraélectrique, respectivement.

Dans l’esprit de la dualité jauge/gravité plate, nous

étudions la dynamique des espace-temps asymptoti-

quement plats d’un point de vue carrollien. Nous mon-

trons que les espace-temps à Ricci nul sont exprimés

dans une jauge covariante vis-à-vis du bord nul. Cette

jauge est une extension de la jauge de Newman-

Unti, valable pour constante cosmologique finie ou

nulle. Le cas plat correspond à une limite carrollienne

au bord. L’espace de solutions à Ricci nul résultant

est constitué d’un ensemble infini de données car-

rolliennes. On y trouve la géométrie conforme carrol-

lienne, les moments en nombre fini de la théorie du

bord et un nombre infini de tenseurs arbitraires, obte-

nus en développant le tenseur énergie-impulsion re-

lativiste d’origine en série de Laurent. Tous obéissent

aux équations de bilan de flux carrolliennes. Pour

les solutions de type Petrov algébrique, cette struc-

ture carrollienne au bord permet de déterminer les

charges gravitationnelles usuelles. Nous retrouvons

le développement multipolaire de la masse et du

moment angulaire pour la famille de Kerr-Taub-NUT.

Nous étudions enfin comment le groupe d’Ehlers de

type Möbius agit sur les données du bord nul. Pour

les espace-temps stationnaires, ce groupe se mani-

feste comme une transformation locale des obser-

vables carrolliennes du bord nul. Pour la solution de

Kerr-Taub-NUT par exemple, la transformation de la

masse/nut est une rotation de l’énergie/Cotton.
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Abstract : The purpose of this thesis is to study as-

pects of Carrollian dynamics and its application to gra-

vity with zero cosmological constant. Carrollian sys-

tems arise as the vanishing speed of light (k) limit of

Lorentzian theories. Here, general Carrollian and Ga-

lilean dynamical equations valid for arbitrary curved

and time dependent Carrollian/Newton-Cartan geo-

metries are constructed, with focus on fluid mecha-

nics. In both cases the presence of a U(1) current

is considered. The latter is done in two approaches :

Carrollian/Galilean and Weyl invariance of the action,

and by taking a large/small-k limit of the relativis-

tic energy-momentum tensor and the U(1) current. In

both cases, the dynamic is given by the conservation

of a set of momenta that arise either as the varia-

tion of the action with respect to the different pieces

of the Carrollian/Newton-Cartan geometry or appear

at different orders in the k-expansion of the energy-

momentum tensor. Although these two approaches

agree, the limiting procedure is shown to be richer

due to the possibility of capturing more general situa-

tions with extra degrees of freedom. In fact, it is this

freedom that allows us to find under which conditions

hydrodynamic-frame invariance is preserved when ta-

king the large/small-k limit. We show that, although

in the standard Galilean limit hydrodynamic-frame in-

variance is lost, it is recovered by adding two ex-

tra degrees of freedom in the large-k expansion of

the heat current and U(1) currents. In the Carrollian

case, hydrodynamic-frame invariance survives when

the behavior of the energy-momentum tensor is gui-

ded by holographic Carrollian fluid results. We also

present the analysis of the currents generated by Car-

rollian/Galilean isometries. In the Carrollian/Galilean

instances, these currents are not guaranteed to be

conserved and additional conditions must be impo-

sed.

The presented derivation for Carrollian dynamics is

not valid only for fluids. The investigation of the sca-

lar field on a general Carrollian spacetime is also pre-

sented, as well as the analysis of three dimensional

Carrollian gravitational Chern-Simons extensions. In

this analysis one finds electric and magnetic dyna-

mics that are encoded at different orders in powers

of the speed of light of the relativistic action. We fur-

thermore unravel two more Carrollian Chern-Simons

actions, dubbed paramagnetic and paraelectric, res-

pectively.

In relation to a possible flat version of the

gauge/gravity duality, we also study some aspects of

Ricci-flat dynamics from a Carrollian perspective. We

show that Ricci-flat spacetimes can be expressed in

a gauge covariant with respect to the null boundary.

This gauge is an extension of the Newman-Unti gauge

which is valid for asymptotically anti-de Sitter and flat

spacetimes. The flat instance is reached as the vani-

shing cosmological constant limit of the anti-de Sit-

ter case, which corresponds to a Carrollian limit at

the boundary. Therefore, the resulting Ricci-flat solu-

tion space is reconstructed in terms of an infinite set

of boundary Carrollian data. These are composed by

the Carrollian conformal geometry, a finite set of mo-

menta of the theory hosted at the boundary, and an in-

finite number of arbitrary tensors, obtained by expan-

ding the original energy-momentum tensor in Laurent

series, which obey Carrollian flux balance equations.

We take advantage of the latter to define gravitatio-

nal charges by using Carrollian boundary techniques

and restricting the spacetime to the algebraically spe-

cial Petrov type. With this construction we recover

the mass and angular momentum multipolar expan-

sion for the Kerr-Taub-NUT family. We also learn how

the hidden Ehlers Möbius group acts on the boundary

data at null infinity. We find that, for stationary space-

times, this group is manifested as a local transforma-

tion for the Carrollian geometry and the boundary Car-

rollian observables. We reproduce the mass/nut rota-

tion as the energy/Cotton rotation for the Kerr-Taub-

NUT solution.
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