
HAL Id: tel-04587370
https://theses.hal.science/tel-04587370

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing new tools for efficient homomorphic
encryption

Samuel Tap

To cite this version:
Samuel Tap. Constructing new tools for efficient homomorphic encryption. Cryptography and Security
[cs.CR]. Université de Rennes, 2023. English. �NNT : 2023URENS103�. �tel-04587370�

https://theses.hal.science/tel-04587370
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

········

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Samuel TAP
Construction de nouveaux outils pour un chiffrement
homomorphe efficace

Constructing new tools for efficient homomorphic encryption

Thèse présentée et soutenue à Paris, le 19 décembre 2023
Unité de recherche : IRISA, UMR 6074

Rapporteurs avant soutenance :

Louis GOUBIN Professeur des Universités, Université de Versailles Saint-Quentin-en-Yvelines
Matthieu RIVAIN Chercheur, CryptoExperts

Composition du Jury :

Présidente : Caroline FONTAINE Directrice de Recherche, CNRS
Examinateurs : Anne CANTEAUT Directrice de Recherche, INRIA

Pierre-Alain FOUQUE Professeur des Universités, Université de Rennes
Co-encadrant : Pascal PAILLIER Chercheur, Zama
Dir. de thèse : Teddy FURON Directeur de Recherche, INRIA

Invités :

Ilaria CHILLOTTI Chercheuse
Damien LIGIER Chercheur

ACKNOWLEDGEMENT

Completing this PhD journey has been a profound and transformative experience, made
possible by the support, guidance, and encouragement of many remarkable individuals.

First and foremost, I extend my deepest gratitude to my PhD advisor, Teddy Furron,
for engaging in thought-provoking discussions and providing invaluable advice that has
significantly shaped my academic and personal growth.

I am immensely thankful to my company supervisor, Pascal Paillier, for not only
offering me the opportunity to pursue this PhD but also for being a constant source of
inspiration through countless discussions and brainstorming sessions. Pascal’s unwavering
support, his eagerness to listen, and his thorough review of my work have been pivotal
in my development. His cheerful disposition and motivation have been a beacon of light
throughout this journey.

My heartfelt thanks go to my main co-authors: Jean-Baptiste Orfila, Damien Ligier,
and Ilaria Chillotti. The journey we embarked on together, from the late nights working
on paper submissions to our work-cations in the mountains, has been nothing short of
extraordinary. Your advice, mentorship, and the camaraderie we shared have not only
enriched my PhD experience but have also helped me grasp the essence of being a re-
searcher.

Special thanks to Rand Hindi, the CEO of my company, for believing in me and my
ideas, and for providing a perfect working environment. His interest in my work and
results has been a source of great motivation.

I am grateful to Zama’s Concrete team. The work we did togather has been instru-
mental in seeing the practical application of my research and has enriched my perspective
by allowing me to interact with individuals from diverse backgrounds. A special mention
goes to Quentin Bourgerie, Rudy Sicard, Jad Khatib, and Mayeul Debellabre, with whom
I had the privilege to design our product and work closely on the optimizer. I also want
to express my gratitude to Loris Bergerat for being one of my main co-authors; working
with someone as dedicated and insightful as him has been a truly enjoyable and rewarding
experience.

I owe a debt of gratitude to Patrick Bas and Timothée Pecatte, two individuals who

3

provided invaluable assistance at key moments of my education. The former, one of my
teachers, introduced me to the field of cryptography and ignited my passion for this
domain. His support was crucial in keeping me motivated during the challenging times
of my studies. The latter, a friend whose love for mathematics has been a source of
inspiration and motivation, showed me the true beauty of math and encouraged me to
share this passion with others.

Last but certainly not least, I thank my parents and my family, who have been my
pillars of support. Their unwavering belief in me and their encouragement have been my
guiding lights, nurturing my interests in mathematics and technology from an early age.

This thesis is not only a reflection of my hard work but also a testament to the
contributions and faith of each individual mentioned above. To all of you, I am eternally
grateful.

4

TABLE OF CONTENTS

Acronyms 16

Résumé en Français 19

1 Introduction 27

2 Preliminaries 33
2.1 The Security of FHE . 33

2.1.1 (G)LWE Problems . 34
2.1.2 Attacks on (G)LWE . 36
2.1.3 Lattice Estimator . 37

2.2 The Morphology of FHE Ciphertexts . 38
2.2.1 LWE, RLWE & GLWE Ciphertexts 38
2.2.2 Lev, RLev & GLev Ciphertexts . 40
2.2.3 GSW, RGSW & GGSW Ciphertexts 41

2.3 TFHE and Its Variants . 41
2.3.1 Additions . 42
2.3.2 Key Switches . 48
2.3.3 PBS & Its Building Blocks . 55
2.3.4 Other LUT Evaluation Algorithms 66
2.3.5 TFHE’s Limitations . 73

2.4 Encodings . 76
2.4.1 Modular Arithmetic with a Single LWE ciphertext 76
2.4.2 Modular Arithmetic with Several LWE ciphertexts 80

2.5 Optimization for FHE . 85
2.5.1 TFHE . 86
2.5.2 Other Schemes . 87
2.5.3 Limitations . 88

5

TABLE OF CONTENTS

3 Noise Methodology 89
3.1 Security Oracle . 90

3.1.1 Motivation . 90
3.1.2 Method . 92

3.2 Noise Model . 95
3.2.1 FHE Operator & Noise Model . 96
3.2.2 Noise Bound . 98

3.3 FFT-related Noise . 100
3.3.1 Issues with the FFT . 101
3.3.2 Experimental Noise Formula . 102

4 Optimization for FHE 105
4.1 Optimization Problem . 106

4.1.1 Cost Model . 106
4.1.2 Guarantees . 108
4.1.3 Foundations of the Optimization Framework 109

4.2 Solving the FHE-to-TFHE Translation Problem 111
4.2.1 Graph Transformations . 112
4.2.2 Pre-Optimization . 114
4.2.3 CJP Atomic Pattern: Further Simplifications 117
4.2.4 Full-fledge problem . 120
4.2.5 Failure Probability: From the AP to the Entire Graph 121

4.3 Comparison of FHE Operators . 123
4.3.1 LUT Evaluation for Different Precisions 124
4.3.2 Keyswitch Position in an Atomic Pattern 127

4.4 Other applications . 130
4.4.1 Optimal PBS Insertion within a Dot Product 130
4.4.2 Consensus-friendly TFHE . 132
4.4.3 Several Evaluation Keys . 133

5 New FHE Operators 137
5.1 Generalized PBS . 138
5.2 Many-LUT PBS . 141
5.3 Rounded PBS . 146
5.4 LWE Multiplication . 149

6

TABLE OF CONTENTS

5.4.1 Single LWE Multiplication . 153
5.4.2 Variants of the LWE Multiplication 154

6 Without Padding Programmable Bootstrap 159
6.1 WoP-PBS: First Attempt . 160

6.1.1 WoP-PBS from sign correction . 160
6.1.2 WoP-PBS from LUT Splitting . 163
6.1.3 Large Precision Without Padding (Programmable) Bootstrapping . 166

6.2 WoP-PBS: Second Attempt . 169
6.2.1 LUT Evaluation over Large Integers 170
6.2.2 Comparison Between A(WoP-PBS), A(CJP21) and A(GBA21) 177
6.2.3 Comparison Between A(WoP-PBS) and A(LMP21) 179
6.2.4 Failure Probability Analysis . 180

7 Homomorphic Integers 185
7.1 Small Integers . 186

7.1.1 Boolean Arithmetic . 186
7.1.2 Arithmetic Modulo a Power of 2 . 188
7.1.3 From Modular Arithmetic to Exact Integer Arithmetic 189

7.2 Big Integers . 192
7.2.1 Generalization of the Radix Approach 192
7.2.2 Supporting Larger Integers using a Hybrid Representation 197
7.2.3 Tree PBS Approach on Radix-Based Modular Integers 198
7.2.4 Benchmarks with the WoP-PBS . 199

8 TFHE on New Problems 207
8.1 Partial GLWE Secret Keys . 208

8.1.1 Advantages of Partial GLWE Secret Keys 209
8.1.2 LWE-to-LWE Key Switch . 215

8.2 Shared Randomness . 217
8.2.1 Advantages for LWE-to-LWE Key Switch 219
8.2.2 Stair Key Switch . 222

8.3 Combining Partial Keys & Shared Randomness 225
8.3.1 Combining Both Techniques . 225
8.3.2 Some Higher Level Applications . 226

7

TABLE OF CONTENTS

8.3.3 Parameters & Benchmarks . 229
8.3.4 Partial GLWE Secret Key . 230
8.3.5 Secret Keys with Shared Randomness 231
8.3.6 Combining Both . 232

9 Conclusion 237

A Appendix 259
A.1 Noise Analysis of the GLWE Multiplication 259

A.1.1 Notation. 259
A.1.2 Uniform distributions in a fixed interval. 260
A.1.3 Secret keys probability distributions. 260
A.1.4 Tensor product . 266
A.1.5 Bi-Distributed Error Polynomials 274
A.1.6 Relinearization . 276

A.2 Noise Analysis of the Generalized PBS . 279
A.3 Noise Analysis of the Packing Key Switch 286
A.4 Noise Analysis of the Sample Extract . 287
A.5 Noise Analysis of the GLWE-to-GLWE Key Switch 288
A.6 Noise Analysis of the Secret Product GLWE-to-GLWE Key Switch 290
A.7 Noise Analysis of the Partial Key External Product 292
A.8 Noise Analysis of the Shrinking Key Switch 294
A.9 Noise Analysis of the GLWE Key Switch with Partial Keys with Shared

Randomness . 296
A.10 Parameters for the Partial Keys with Shared Randomness 298

8

LIST OF FIGURES

2.1 Plaintext binary representation with p = 8 = 23 (cyan), π = 2 (dark blue)
such that 2π · p ≤ q, the error e (red). The white part is empty. The MSB
are on the left and the LSB on the right. 77

2.2 Plaintext binary representation with a base β = 4 = 22 (green), a carry
subspace (cyan), a carry-message modulo p = 16 = 22+2 (cyan+green)
such that 0 < β < p, the error e (red), and a bit of padding is displayed in
the MSB (dark blue). The white part is empty. So the plaintext modulo is
32 = 22+2+1. This means that we have 2 bits in the carry subspace (set to
0 in a fresh ciphertext), that will contain useful data when one computes
leveled operations. 78

2.3 Example of a bivariate LUT evaluation with shift, key switch (KS) and PBS. 80
2.4 Plaintext representation of a fresh radix-based modular integer of length

κ = 3 working modulo Ω = (22)3 with msg = m0 +m1 ·β0 +m2 ·β0 ·β1. The
symbol ∅ represents the padding bit needed for the PBS. For each block
we have m̃i = Encode (mi, pi, q). For all 0 ≤ i < κ we have βi = 4, pi = 16,
κ = 3 and Ω = 43. 82

3.1 Output of code example 3.1 . 91

4.1 A(CJP21) atomic pattern type, composed of a dot product (DP), a key switch
(KS) and a programmable bootstrap (PBS) 114

4.2 Study of the feasible set of G1 = {A(p1, ν1)} and G2 = {A(p2, ν2)} with
p1 = 21, p2 = 28 and ν1 = ν2 = 28 and pfail ≈ 2−14. The cost (in log2) is
displayed on the x-axis. 118

4.3 Comparison of the cost of AP type A(CJP21) and AP of type A(GBA21) with
2 and 3 blocks. 125

4.4 A(CGGI20) atomic pattern type, composed of a layer of key switches (KS),
a dot product (DP) and a programmable bootstrap (PBS) 127

9

LIST OF FIGURES

4.5 A(KS-free) atomic pattern type, composed of a dot product (DP) and a pro-
grammable bootstrap (PBS) . 128

4.6 Comparison of the AP types A(CJP21), A(CGGI20) and A(KS-free). 129

5.1 Modulus switching operation in the generalized PBS (Algorithm 17): on top
of the figures we illustrate the data (m̄, m, e), on the bottom the dimensions
(κ, 2N , ϑ). 139

5.2 Plaintext after the modulus switching from the generalized PBS (Algo-
rithm 17) where κ ≥ 0: on top of the figure we illustrate the data(m, β,
m′), on the bottom the dimensions (2N , ϑ). 140

5.3 Overview of the rounded PBS (Algorithm 19). 146

6.1 Cleartext evaluation of the new WoP-PBS (toy example). The values mi,j

(for i, j ∈ {0, 1, 2, 3}) are bits. We split the LUT L into 4 smaller LUTs
(L0,0, L0,1, L1,0, L1,1) to be evaluated in the CMux tree. The output LUT
of this tree is given as input to the operation selecting the right output
of a LUT (corresponding to the blind rotation). The output L[m] is the
element of the LUT L corresponding to the input message m. The Bit
Extract blocks correspond to the lines 2 to 11 in Algorithm 30 and the
CMux tree followed by a blind rotation corresponds to the vertical packing
on line 12 (Algorithm 13). 170

6.2 In this figure, we evaluate a LUT over a few encrypted inputs. We compare
the AP type A(WoP-PBS), corresponding to the WoP-PBS introduced in Al-
gorithm 30 (1, 2 and 4 blocks), with the AP type A(GBA21), corresponding
to the Tree-PBS [GBA21] (2 and 3 blocks). As a baseline, the AP of type
A(CJP21) is also plotted. 178

6.3 In this figure, we compare the cost of the AP typesA(WoP-PBS) andA(LMP21).
The first one corresponds to DP followed by our new WoP-PBS (Algo-
rithm 30), and the second one to DP-KS followed by the WoP-PBS from
[LMP21]. 181

6.4 Cost comparison for the same AP of type A(CJP21), with respect to the
following failure probabilities: pfail ∈ {2−14, 2−20, 2−35, 2−50}. 182

6.5 Cost comparison for the same AP of type A(WoP-PBS), with respect to the
failure probabilities pfail ∈ {2−14, 2−20, 2−35, 2−50}. 183

10

LIST OF FIGURES

7.1 Hybrid approach visualisation combining CRT representation on the top
level and radix representation below. 198

8.1 Illustration of simplified key switch procedures between three LWE secret
keys with shared randomness. 219

8.2 Comparison in terms of estimated computation time using the optimization
framework introduced in Chapter 4 (see Section 4.3), of the traditional CJP
atomic pattern (Definition 30), our baseline, with three variants of CJP
based on partial secret keys. Details can be found in Section 8.3.4 and exact
plotted values can be found in Tables A.4, A.5 and A.6 in Appendix A.10. 230

8.3 Comparison in terms of estimated computation time using the optimization
framwork introduced in Chapter 4 (see Section 4.3), of traditional CJP,
our baseline, with two variants of CJP based on secret keys with shared
randomness. Details can be found in Section 8.3.5 and exact plotted values
can be found in Tables A.4, A.5 and A.6 in Appendix A.10. 231

8.4 Comparison in terms of estimated computation, between traditional CJP,
our baseline, and two variants of CJP based on both partial secret keys and
secret keys with shared randomness. Details can be found in Section 8.3.6
and exact plotted values can be found in Tables A.4, A.5 and A.6 in Ap-
pendix A.10. 232

8.5 Comparison in terms of size of total public key material, between traditional
CJP, our baseline, and two variants of CJP based on both partial secret
keys and secret keys with shared randomness. Details can be found in
Section 8.3.6 and exact plotted values can be found in Tables A.4, A.5
and A.6 in Appendix A.10. 233

8.6 Comparison in terms of computing time, between traditional CJP, our base-
line, and two variants of CJP based on both partial secret keys and secret
keys with shared randomness. Details can be found in Section 8.3.6 and ex-
act plotted values can be found in Tables A.4, A.5 and A.6 in Appendix A.10.234

8.7 Comparison in terms of computing time, between traditional CJP, our base-
line, and two variants of CJP based on both partial secret keys and secret
keys with shared randomness. Details can be found in Section 8.3.6 and ex-
act plotted values can be found in Tables A.4, A.5 and A.6 in Appendix A.10.234

11

LIST OF TABLES

2.1 Comparison between secret key types in terms of public knowledge. 36

3.1 Best values of (α, β) for λ = 128, q = 264, binary secret key coefficient and
Gaussian noise distribution . 95

5.1 Parameters depending on the GLWE multiplicative depth and the precision.
This table was generated in May 2021 with α = 0.05287332817861731 and
β = 4.551576767993042 (as defined in Section 3.1). 150

6.1 Parameter sets of a WoP-PBS2 followed by a GLWE multiplication for
different precisions and for 128 bits of security. In the table, KS means
Key Switching, BR means Blind Rotation and Relin means Relinearization.
This table was generated in May 2021 with α = 0.05287332817861731 and
β = 4.551576767993042 (as defined in Section 3.1). 163

7.1 Generalization of TFHE gate bootstrapping. 192
7.2 Optimized parameters for the AP of type A(CJP21). 200
7.3 Optimized parameters for the AP of type A(WoP-PBS). 201
7.4 Benchmarks for 16-bit and 32-bit homomorphic integers based on the radix

approach. The star (∗) means that a PBS is not required to compute the
operation. 203

7.5 Benchmarks for 16-bit homomorphic integers based on the CRT approach
and 32-bit integers are computed with a hybrid approach. We use the fol-
lowing CRT bases: Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and Ω = 25 · 35 · 54 · 74 ≈ 232. 204

7.6 Benchmarks for 16-bit and 32-bit homomorphic integers based on the native
CRT approach. We use the CRT bases: Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and
Ω = 3 · 11 · 13 · 19 · 23 · 29 · 31 · 32 ≈ 232. 206

A.1 Variance and expectation of si, s2
i and sisj with si and sj independently

drawn from the distribution D and D is either uniform binary, uniform
ternary or Gaussian. 260

13

LIST OF TABLES

A.2 General formula applied to polynomials with binary, ternary and Gaussian
distributions. These formulae are true for N a power of 2, N ̸= 1. 263

A.3 General formula applied to polynomials with binary, ternary and Gaussian
distributions. 266

A.4 Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness
secret keys. Note that we use log2 (ν) = p. Sizes are given in MB and times
in milliseconds. 299

A.5 Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness
secret keys. Note that we use log2 (ν) = p. Sizes are given in MB and times
in milliseconds. 300

A.6 Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness
secret keys. Note that we use log2 (ν) = p. Sizes are given in MB and times
in milliseconds. 301

14

LIST OF TABLES

15

ACRONYMS

A(WoP-PBS) type of atomic pattern introduced in Definition 34. 7, 10, 13, 177–183, 200–204

A(CGGI20) type of atomic pattern introduced in Definition 33 inspired by [Chi+20a]. 9,
10, 127–129

A(CJP21) type of atomic pattern introduced in Definition 30 inspired by [CJP21]. 7, 9, 10,
13, 113–117, 122, 124–135, 177–182, 200, 202–204, 217

A(GBA21) type of atomic pattern introduced in Definition 32 inspired by [GBA21]. 7, 9,
10, 124–126, 177–179

A(KS-free) type of atomic pattern composed of a dot product and a PBS. 10, 128, 129,
217

A(LMP21) type of atomic pattern introduced in Section 6.2.3 inspired by [LMP21]. 7, 10,
179–181

AP atomic pattern. 9, 10, 13, 112–114, 121, 122, 124, 125, 127–132, 134, 135, 178, 181,
200–202

BSK bootstrapping key. 135

CRT Chinese Remainder Theorem. 11, 80, 81, 83–85, 177, 192, 197–199, 202, 204, 205,
239

DAG directed acyclic graph. 106, 108–113, 120, 121, 133–135

DP dot product. 10, 113, 114, 121, 127–132, 180, 181

FFT Fast Fourier Transform. 54, 89, 101–103, 132, 133

FHE fully homomorphic encryption. 29, 33, 80, 86, 96, 97, 106–114, 120, 121, 123, 129,
130, 132–135, 205, 237, 238

16

Acronyms

GCD Greatest Common Divisor. 131

GGSW generalized GSW [GSW13], see Definition 9. 46, 57, 66, 102, 171, 176

GLev collection of GLWE ciphertexts, see Definition 8. 46

GLWE General Learning With Errors. 17, 34, 35, 38–40, 42, 43, 45, 47, 49, 53–57, 66,
77, 90, 92, 94, 97–99, 101, 102, 106, 108, 109, 117, 133, 134, 143–145, 156, 157, 169,
176

KS key switching. 10, 109, 112, 114, 121, 126–129, 132, 134, 135, 171, 173, 176, 180, 181

KSK key switching key. 134, 135

LSB least significant bit(s). 79, 102, 132, 146, 186, 189, 191

LUT lookup table. 9, 10, 66, 69, 79, 80, 82–85, 120, 126, 169–171, 177–180, 189, 193,
198, 199, 202, 205, 237

LWE Learning With Errors. 33–35, 38, 39, 46, 49, 51, 53–55, 66, 79, 82–84, 89–95, 97,
106, 108, 109, 117, 132–134, 137, 143–145, 153, 156, 159, 160, 162, 169–171, 176,
187–189, 191, 199, 205, 208

MS modulus switching. 128

MSB most significant bit(s). 9, 78, 79, 102, 133, 146, 170, 177, 187, 189, 191, 194

PBS programmable bootstrapping. 7, 9, 63, 79–85, 109, 112–115, 120, 121, 124, 126, 127,
129–134, 169–171, 173, 175–177, 179, 180, 186, 187, 193, 194, 198, 199, 204, 205

RLWE ring learning with errors. 39, 54

WoP-PBS without padding programmable bootstrapping. 10, 84, 121, 169–171, 177–
181, 203–205

17

RÉSUMÉ EN FRANÇAIS

Dans notre vie de tous les jours, nous produisons une multitude de données à chaque
fois que nous accédons à un service en ligne. Certaines sont partagées volontairement et
d’autres à contrecœur. Ces données sont collectées et analysées en clair, ce qui menace
la vie privée de l’utilisateur et empêche la collaboration entre entités travaillant sur des
données sensibles. Un exemple classique en apprentissage automatique consiste à prédire
si un cancer du sein est bénin ou non basé sur des tests médicaux. Bien que cela soit par-
faitement faisable, en pratique, les hôpitaux ne peuvent pas utiliser une telle technologie
car ils ne peuvent pas partager des données aussi sensibles avec un tiers non-fiable. Dans
ce contexte, le chiffrement complètement homomorphe (Fully Homomorphic Encryption)
apporte une lueur d’espoir en permettant d’effectuer des calculs sur des données chiffrées
ce qui permet de les analyser et de les exploiter sans jamais y accéder en clair.

En 1978, Rivest, Adleman et Dertouzos [RAD78] furent les premiers à questionner
l’existence des privacy homomorphisms, des fonctions qui peuvent être utilisées pour
chiffrer des données tout en étant capables de réaliser des opérations sur celles-ci. Depuis,
la réponse à cette question a été apportée : ces fonctions existent et un pan entier de la
recherche en cryptologie se focalise sur ce sujet. Les schémas cryptographiques définis par
ces fonctions sont appelés schémas de chiffrement homomorphe ou schémas de chiffre-
ment complètement homomorphe. Dans ce contexte, complètement reflète la capacité de
calculer n’importe quelle fonction sur une donnée chiffrée. Bien qu’il y ait différentes
manières de créer des schémas complètement homomorphes, effectuer des calculs efficace-
ment sur des données chiffrées est toujours un problème ouvert. En théorie, les schémas
de ce type peuvent révolutionner notre manière d’interagir avec la technologie en garantis-
sant la confidentialité de nos données tout en nous laissant la possibilité d’utiliser celles-ci
dans le monde numérique. En pratique, ces techniques doivent être suffisamment efficaces
pour ne pas gâcher l’expérience utilisateur et nous avons besoin d’outils permettant à un
utilisateur profane de les utiliser. Dans cette thèse, notre considération première a été
d’aider à combler l’écart entre ces découvertes scientifiques innovantes et leurs utilisations
en pratique. Pour cela, nous avons introduit de nouvelles techniques qui surpassent les

19

techniques à l’état de l’art ainsi que de nouveaux outils qui simplifient l’utilisation en
pratique de cette nouvelle technologie.

Chiffrement Complètement Homomorphe. Les premiers schémas de chiffrement
homomorphe étaient uniquement capables d’évaluer un certain type d’opération sur des
chiffrés. Par exemple, en utilisant la primitive RSA [RSA78], il est possible de calculer
un nombre infini de multiplications modulaires. La question de l’existence des schémas
complètement homomorphes a longtemps été un problème ouvert et une réponse fut finale-
ment apportée par Gentry en 2009 lorsqu’il publia la première instantiation d’un schéma
complètement homomorphe [Gen09].

Une caractéristique commune au schéma introduit par Gentry et à tous les autres
schémas est que les chiffrés contiennent de l’aléatoire appelé bruit. La vaste majorité des
opérations homomorphes fait augmenter le bruit et s’il n’est pas contrôlé, le bruit peut
compromettre le message, ce qui entraîne des résultats incorrects après le déchiffrement.
Ce phénomène limite le nombre d’opérations qui peuvent être effectuées sur des chiffrés.
L’idée révolutionnaire de Gentry qui rend le chiffrement complètement homomorphe pos-
sible est une technique appelée bootstrapping qui permet de réduire le bruit en utilisant
uniquement des informations publiques, appelées clef de bootstrapping. De cette manière,
il n’y a plus de limitation sur le nombre maximal d’opérations qui peuvent être effectuées
et le schéma devient complètement homomorphe. Le principal défaut de la méthode in-
troduite par Gentry est que le bootstrap est très lent (plusieurs minutes) et que la clef de
bootstrapping est très grande (plusieurs gigabytes). Au cours de ces dix dernières années,
des alternatives au schéma de Gentry ont été introduites mais le bootstrap reste le goulot
d’étranglement en terme de temps d’exécution.

Pour concevoir un schéma cryptographique, il faut garantir que pour retrouver le mes-
sage, un attaquant doit résoudre un problème mathématique difficile et suffisamment
étudié. En évaluant le coût pour le résoudre à l’aide des meilleures techniques exis-
tantes, il est possible d’estimer la sécurité du nouveau schéma, c’est-à-dire le nombre
d’opérations (additions, multiplications, etc.) qu’il faut réaliser. De nos jours, les schémas
complètement homomorphes les plus utilisés sont BGV [BGV12], B/FV [Bra12; FV12],
HEAAN [Che+17], GSW [GSW13], FHEW [DM15] et TFHE [Chi+20a]. Bien que le boot-
strapping soit possible dans tous ces schémas, la plupart l’évite le plus possible car il reste

20

une opération très coûteuse. Les schémas BGV, B/FV et HEAAN ont choisi d’adopter
une approche à niveaux, ce qui consiste à choisir des paramètres suffisamment grands
pour tolérer le bruit produit durant le calcul sans que cela modifie le résultat. Ainsi,
il faut connaître la totalité du calcul ou circuit pour choisir des paramètres qui don-
neront une évaluation correcte. Ces schémas profitent de l’encoding SIMD [SV14] pour
remplir un chiffré avec plusieurs messages et réaliser des opérations en parallèle sur tous
ces messages en même temps. L’approche à niveaux est particulièrement pratique quand
le même circuit doit être évalué sur plusieurs messages et si celui-ci n’est pas trop profond.

Cet état de fait a changé en 2015 lorsque Ducas et Micciancio ont introduit FHEW
capable de réaliser le bootstrapping en moins d’une seconde pour de petits entiers. En
2016, Chillotti, Gama, Georgieva and Izabachène ont publié TFHE [Chi+16a], une ver-
sion améliorée de FHEW avec un bootstrapping très efficace comparé aux autres schémas
complètement homomorphes (dizaine de millisecondes). Le bootstrapping de FHEW et
TFHE n’est pas seulement rapide mais il est aussi programmable. Cela signifie qu’il est
possible d’évaluer une fonction arbitraire sur un chiffré tout en réduisant le bruit. Depuis
la publication de TFHE, de nombreux papiers scientifiques proposent des alternatives ou
des améliorations au bootstrapping mais il reste des problèmes ouverts. Bien que cette
opération soit particulièrement rapide, elle reste l’opération la plus coûteuse de TFHE.
Dans cette thèse, nous nous focalisons particulièrement sur TFHE et nous introduisons de
nombreuses techniques permettant de l’améliorer en enlevant certaines de ces contraintes
ainsi que des techniques alternatives pour réduire le bruit qui sont plus efficaces dans
certains contextes.

Un des problèmes majeurs des schémas complètement homomorphes est de trouver
des paramètres cryptographiques efficaces pour un cas d’utilisation précis. Ces paramètres
doivent à la fois garantir la sécurité des données et être assez petits pour permettre une
exécution efficace en terme de temps d’exécution, de mémoire ou de consommation én-
ergétique. Résoudre ce problème est fondamental si nous voulons que ces schémas soit
adoptés à grande échelle. Nous décrivons dans cette thèse une méthode d’optimisation
qui apporte une solution concrète à ce problème.

21

Bootstrapping de TFHE. TFHE [Chi+16a] est particulièrement intéressant parce
qu’il offre une technique de bootstrapping programmable. Malheureusement, en pratique,
celle-ci souffre de plusieurs restrictions. Premièrement, bien qu’elle soit rapide, cette tech-
nique de bootstrapping reste le goulot d’étranglement en terme de temps d’exécution. En
effet, le bootstrap prend en entrée un unique petit message (moins de 8 bits) et plus cet
entier est grand, plus le bootstrap est coûteux. De plus, supporter des fonctions arbitraires
lors du bootstrapping ajoute une contrainte supplémentaire : le bit de poids fort d’un mes-
sage doit être connu. Cette contrainte nous empêche la construction d’une arithmétique
modulaire efficace car nous devons nous assurer que ce bit n’est pas compromis durant
tout le calcul.

Nos Contributions. Le premier schéma complètement homomorphe a été inventé il y
a presque quinze ans et il semble être une solution adaptée pour garantir la confidentialité
des données tout en permettant à un tiers de les exploiter. Toutefois, ces techniques n’ont
toujours pas été adoptées par l’industrie et les utilisateurs. Dans cette thèse, nous nous
sommes posé les questions suivantes :

Quels sont les freins à l’adoption des schémas complètement homomorphes ?
Est-ce que créer des algorithmes cryptographiques efficaces est suffisant pour garantir

l’adoption de cette technologie ?

Plus généralement, nous nous sommes demandé :

Comment pouvons-nous rendre les schémas complètement homomorphes plus
pratiques ?

Cette thèse est un résumé de nos tentatives durant ces trois dernières années pour
trouver des réponses satisfaisantes à ces questions.

Dans le chapitre 3, nous introduisons les premiers composants de notre méthode
d’optimisation que sont l’oracle de sécurité et les modèles de bruit. Un oracle de sécurité
estime la variance de bruit minimale à utiliser au moment du chiffrement pour satisfaire
une certaine sécurité. Un modèle de bruit est une collection de formules de bruit, des
fonctions prédisant la distribution du bruit après des calculs. Ce modèle est utilisé pour
estimer la distribution du bruit tout au long du calcul, ce qui est crucial pour garantir
l’exactitude de celui-ci. Nous expliquons aussi comment corriger une formule théorique en

22

prenant en compte l’implémentation en pratique des algorithmes.

Dans le chapitre 4, nous introduisons notre méthode d’optimisation qui permet de
sélectionner automatiquement les meilleurs paramètres pour exécuter homomorphique-
ment un graphe de calcul donné. Cette méthode résoud un des facteurs bloquants ma-
jeurs à l’adoption du chiffrement homomorphe. Notre méthode d’optimisation modélise le
problème de sélection des paramètres comme un problème d’optimisation que nous pou-
vons simplifier et résoudre en utilisant des techniques classiques d’optimisation, comme
le branch-and-bound.

Grâce à notre méthode d’optimisation, nous pouvons aussi comparer des algorithmes
homomorphes différents qui réalisent la même opération sur les messages en satisfaisant
des compromis différents entre le bruit et le temps d’exécution. De nombreuses compara-
isons sont présentées dans cette thèse et mettent en lumière la relation entre la taille des
messages et le temps d’exécution. En particulier, à l’issue de ce travail, il est clair qu’il
est plus efficace de représenter un grand entier sur plusieurs chiffrés plutôt que sur un seul.

Dans le chapitre 5, nous introduisons de nombreux nouveaux algorithmes homomor-
phes. Nous avons étudié l’impact de chacun de ces algorithmes sur le bruit et sur le coût
du calcul. Tout d’abord, nous avons généralisé le bootstrap de TFHE pour qu’il soit capa-
ble d’évaluer de multiples fonctions en même temps, sans conséquences sur le bruit ou sur
le coût. Ensuite, nous expliquons comment évaluer une fonction sur une entrée arrondie.
Finalement, nous avons étudié la multiplication de BFV [Bra12; FV12] et nous l’avons
incluse à l’arsenal des opérateurs disponibles dans TFHE. Grâce à cet algorithme, nous
obtenons une multiplication efficace entre chiffrés et sans avoir recourt à un bootstrapping.

Dans le chapitre 6, nous donnons trois nouveaux algorithmes permettant de réaliser un
bootstrapping programmable sans avoir besoin de connaître le bit de poids fort du message.
Les deux premières versions sont construites grâce à la multiplication précédemment in-
troduite et sont parallélisables. Grâce à ces deux algorithmes, nous pouvons décomposer
homomorphiquement un message en plusieurs morceaux. En combinant ces nouveaux
algorithmes avec ceux de l’état de l’art, nous expliquons comment réduire le bruit et
comment appliquer une fonction sur des chiffrés de grande précision. Le troisième boot-
strapping introduit dans ce chapitre est capable d’appliquer une fonction multivariée sur
des chiffrés. Cette méthode permet d’appliquer des fonctions arbitraires sur des grands

23

messages représentés sur plusieurs chiffrés. Elle est particulièrement efficace sur les entiers
de grande précision (plus de 8 bits).

Dans le chapitre 7, nous étudions comment créer des arithmétiques entières efficaces
avec TFHE. Tout d’abord, nous généralisons la technique utilisée pour évaluer des circuits
booléens avec TFHE. Pour cela, nous utilisons les algorithmes introduits précédemment,
en particulier la multiplication entre chiffrés. Grâce à cette nouvelle méthode, il est pos-
sible de calculer efficacement des opérations sur des entiers ou des entiers modulaires.
Finalement, en utilisant le dernier bootstrapping introduit dans le chapitre précédent,
nous décrivons une arithmétique efficace sur des grands entiers représentés de différentes
manières. Nous illustrons notre propos avec de nombreuses mesures de temps d’exécution
des principales opérations possibles sur les entiers.

Dans le chapitre 8, nous introduisons deux nouveaux types de clefs secrètes ainsi que de
nouveaux algorithmes adaptés à celles-ci. Les clefs partielles sont particulièrement utiles
pour les entiers de grande précision (plus de 8 bits). Le deuxième type de clef appelé clefs
partagées permet de réduire le coût de conversion entre différents types de chiffrés. Ces
conversions étant fondamentales au bon fonctionnement de TFHE, ce nouveau type de
clef est particulièrement intéressant.

Tous les algorithmes et leurs variantes sont testés et leur temps d’exécution est mesuré
en utilisant notre méthode d’optimisation précédemment décrite.

Publications. La plupart du contenu des chapitres 5, 6 et 7 a été publié à la conférence
Asiacrypt 2021 [Chi+21]. La méthode d’optimisation introduite dans le chapitre 4 ainsi
que le reste des chapitres 6 et 7 a été publié dans Journal of Cryptology [Ber+23a]. Les
nouveaux types de clefs secrètes introduits dans le chapitre 8 seront soumis prochainement.
En plus du travail présenté dans ce manuscrit, nous avons publié un papier focalisé sur la
librairie Concrete à WAHC 2021 [Chi+20b] ainsi qu’un papier à WAHC 2023 [Dah+23].
Trois demandes de brevet ont été déposées sur des sujets détaillés dans cette thèse.

Conclusions. Le chiffrement complètement homomorphe est à un stade embryonnaire
de son développement. Au début de la thèse, il y avait relativement peu de projets focalisés
sur la création d’outils permettant à un profane d’utiliser cette technologie en pratique. En
outre, ces projets sont souvent des initiatives individuelles et ne sont pas maintenus dans

24

le temps. Pour utiliser ces outils, des connaissances techniques en chiffrement homomor-
phe sont nécessaires pour obtenir de bonnes performances et garantir l’exactitude d’un
calcul et la sécurité des données. Tant qu’il n’existera pas d’outils mis à jour régulière-
ment capables de garantir de lui-même la sélection de paramètres sécurisés, efficaces et
qui permettent une exécution exacte, le chiffrement homomorphe ne se démocratisera pas.
La méthode d’optimisation que nous introduisons dans cette thèse est une des pierres an-
gulaires d’un tel outil. Cette méthode est déjà intégrée dans un projet qui a pour but de
transformer un graphe de calcul en un exécutable capable de réaliser des opérations sur
des données chiffrées.

Le calcul utilisant le chiffrement homomorphe est plus lent qu’un calcul classique. En
pratique, cela signifie qu’il n’est pas encore envisageable d’utiliser cette technologie dans
des scénarios où il est nécessaire d’avoir une réponse issue d’un calcul complexe en temps
réel. Dans cette thèse, nous introduisons de nombreuses nouvelles techniques avec de
meilleures performances que celles de l’état de l’art. Avec nos contributions, l’écart entre
l’exécution de calcul sur données chiffrées et sur données en clair n’a jamais été aussi faible.

Tout le travail réalisé durant cette thèse contribue à rendre le chiffrement homomorphe
plus pratique et accessible aux utilisateurs profanes. Nous espérons sincèrement que ces
résultats seront utilisés pour accélérer l’adoption généralisée du chiffrement homomorphe
qui garantira la confidentialité de nos données tout en nous permettant de profiter de tout
les services et les avantages que notre ère digitale peut nous offrir.

25

Chapter 1

INTRODUCTION

In our everyday life, we leave a trail of data whenever we access online services. Some
are given voluntarily and others reluctantly. Those data are collected and analyzed in
the clear which leads to major threats on the user’s privacy and prevents collaborations
between entities working on sensitive data. For instance, an emblematic machine learning
use case consists in predicting whether a breast cancer is benign or malignant given some
medical analysis. While this is totally doable, hospitals cannot use such technology as
they can not share the patient information to a untrusted third-party. In this context,
Fully Homomorphic Encryption brings a light of hope by enabling computation over en-
crypted data which removes the need to access data in the clear to analyze it and exploit it.

In 1978, Rivest, Adleman and Dertouzos [RAD78] were the first to question the
existence of privacy homomorphisms, functions that can be used to encrypt some data
while preserving the ability of performing operations over them. Since then, this question
has been answered, such functions exist and an entire area of research in cryptology
focuses on this subject. Cryptographic schemes defined by such privacy homomorphisms
are called Homomorphic Encryption schemes (HE) or Fully Homomorphic Encryption
schemes (FHE). Fully stands for the ability to compute arbitrary functions over encrypted
data. While there are several ways to build an FHE scheme, the question of efficiently
computing over encrypted data is still an open problem. In theory, using such schemes
can revolutionize our way to interact with the technology by guaranteeing the privacy of
our data while still being able to use them in the digital world. In practice, we need these
techniques to be sufficiently efficient to not hinder the user experience and we need a set of
tools to make it accessible to non-expert users. In this thesis, our primary focus was to help
filling the gap between these innovative scientific discoveries and their practical use. To do
so, we introduced several new techniques that are more efficient than the state-of-the-art
techniques and some new tools to automatize the usage in practice of this new technology.

27

Chapter 1 – Introduction

Fully Homomorphic Encryption. The first HE schemes were only able to perform
a unique operation over ciphertexts. For instance, with the well-known RSA primi-
tive [RSA78], we can only compute an unbounded number of modular multiplications.
The question of the existence of FHE schemes has been an open question for a long time
and was finally answered by Gentry in 2009 when he published the first instantiation of
an FHE scheme [Gen09].

A common feature in Gentry’s original cryptosystem and in all subsequent FHE
schemes is that ciphertexts contain some randomness called noise. The vast majority
of homomorphic operations make this noise grow and if not controlled, the noise can
compromise the encrypted plaintext, which induces incorrect results at decryption
time. This fact inherently limits the number of operations that can be performed on
ciphertexts. The groundbreaking idea of Gentry, which made FHE possible, was a
technique called bootstrapping enabling to reduce the noise when needed using only
public information called bootstrapping key. The bootstrapping eliminates the limitation
on the maximal number of operations that can be performed and the scheme becomes
fully homomorphic. The main drawback of Gentry’s method is that the bootstrap
is very slow (tens of minutes) and the public material needed is very big (several
gigabytes). Over the last ten years, alternatives to Gentry’s scheme were introduced but
the bottleneck in term of execution time of every single one of them was still the bootstrap.

When designing a cryptographic scheme, one needs to guarantee that to recover the
message, an attacker should solve a well-known hard mathematical problem. By estimat-
ing the cost of executing the state-of-the-art techniques to solve it, one can estimate the
security of its new scheme i.e., the number of operations (additions, multiplications, etc.)
to execute. Nowadays, the most practical FHE schemes are based on the hardness as-
sumption called Learning With Errors (LWE), introduced by Regev in 2005 [Reg05], and
on its ring variant (RLWE) [Ste+09; LPR10].

The (R)LWE-based schemes mainly used are BGV [BGV12], B/FV [Bra12; FV12],
HEAAN [Che+17], GSW [GSW13], FHEW [DM15] and TFHE [Chi+20a]. Even if boot-
strapping is possible for all these schemes, most of them actually avoid it because the
technique remains a bottleneck. In particular, this is the case of BGV, B/FV and CKKS.
These schemes adopt a leveled approach, which consists in choosing parameters that are
large enough to tolerate all the noise produced during the computation. The circuit needs
to be known beforehand in order to choose parameters that will lead to a correct evalua-

28

tion. These schemes take advantage of SIMD encoding [SV14] to pack many messages in
a single ciphertext and perform the homomorphic evaluations in parallel on all of these
messages at the same time, and they naturally perform homomorphic multiplications be-
tween ciphertexts. The leveled approach is very convenient when multiple inputs have to
be evaluated with the same circuit as long as the evaluated circuit is not too deep.

This state of affairs changed in 2015 when Ducas and Micciancio introduced the
FHEW cryptosystem [DM15] achieving bootstrapping in less than a second for small
integer messages. In 2016, Chillotti, Gama, Georgieva and Izabachène introduced
TFHE [Chi+16a], an improved version of FHEW with a very fast bootstrapping
operation compared to the other FHE schemes (tens of milliseconds). In addition
to this breakthrough in terms of efficiency, the bootstrap of FHEW and TFHE are
programmable. It means that the bootstrap can be used to evaluate an arbitrary function
over a ciphertext while reducing the noise. Since the publication of TFHE, lots of research
have been carried out to improve it but open problems are still pending. While being fast,
the bootstrap remains the costliest operator of TFHE. In this thesis, we focus primarily
on this scheme and introduce a wide range of techniques to improve this bootstrap by
removing some of its constraints. We also provide new bootstrapping techniques that are
more efficient in some contexts.

One of the main problems of any FHE scheme remains to find good cryptographic
parameters for a given use case. Such parameters need to both be secure and make the
whole homomorphic processing as efficient as possible, in terms of either computational
cost, memory or hardware resources. Solving this problem is fundamental if we aim for
a large scale adoption of FHE schemes. In this thesis, we introduced an optimization
framework that solves this problem.

TFHE’s PBS. TFHE [Chi+16a] is particularly interesting because it offers an efficient
bootstrapping technique that is programmable. Unfortunately, in practice, the bootstrap-
ping operation still has some restrictions.

First and foremost, while being fast, the bootstrapping technique remains the main
bottleneck in terms of execution time. The bootstrap takes as input a single ciphertext
encrypting a small integer message (say at most 8 bits). Unfortunately, the bigger the
integer, the less efficient the bootstrap. Supporting arbitrary functions in the bootstrap

29

Chapter 1 – Introduction

adds another restriction to TFHE: the most significant bit of a message must be known
which prevents us from having an efficient modular arithmetic and forces us to always
make sure that it is not overwritten during a computation.

Our contributions. The first FHE scheme was invented nearly fifteen years ago and
it seems to be the perfect solution to guarantee the privacy of data while still permitting
a third party to exploit it. However, there is still no mass adoption of FHE by companies
and users. In this thesis, we asked ourselves the following questions:

What are the missing tools/technologies that hinder the adoption of FHE?

Are efficient cryptographic algorithms enough to lead to a widespread adoption?

and more generally:

How can we make FHE more practical?

This thesis is a summary of the attempts made during the course of the last three
years to find satisfying answers to these questions.

The manuscript starts with a thorough state-of-the-art on FHE and more specifically
on TFHE in Chapter 2. We recall some notions on the security of the LWE and GLWE
problems, introduce the different types of ciphertexts and the main building blocks of
TFHE and its variants. We also recall the different attempts at optimization for FHE.
In Chapter 3, we focus on the noise, a key concept in FHE and explain how it is related
to the correctness of a computation. In Chapter 4, we introduced our optimization
framework for FHE that automatically selects the best LWE or GLWE instances for
a given use case and, more generally, sets every degree of freedom available in any
TFHE algorithm. In Chapters 5 and 6, we detail the new algorithms we found that
remove some of the existing limitations of TFHE and improve the state of the art. In
Chapter 7, we explain how to use the different techniques introduced in the previous
chapters in combination with the state-of-the-art techniques to build efficient arithmetics
over ciphertexts. In Chapter 8, we introduce two new types of secret keys and several
new algorithms leveraging these new keys which lead to significant improvements in
term of execution time. Finally, we summarize in the conclusion our main contributions
and expose the new questions that have arisen during the course of this work. This
thesis contains an annex where most of the noise analysis is presented in detail for both
state-of-the-art algorithms and for the new algorithms introduced in this work.

30

Publications. Most of the contents of Chapter 5 and parts of Chapters 6 and 7 were
published at the conference Asiacrypt 2021 [Chi+21]. The optimization framework ex-
plained in Chapter 4 and parts of Chapters 6 and 7 have been published in Journal of
Cryptology [Ber+23a]. The new types of secret keys introduced in Chapter 8 are soon
to be submitted. In addition to the work presented in this thesis, we published a paper
focusing on the Concrete Library at the workshop WAHC 2021 [Chi+20b] and a paper on
Threshold-FHE at WAHC 2023 [Dah+23]. During the course of this work, three patent
applications were filled on subjects detailed in this thesis.

Learnings. FHE is at an early stage of development. At the beginning of this thesis,
there were already a few projects focusing on giving a non-expert user the ability to use
FHE in real use cases. Unfortunately, these projects are often private initiatives and not
maintained in the long run. To use those tools, some knowledge on FHE is needed to
achieve secure, efficient and correct computations. As long as there are no maintained
tools that target non-FHE experts and that guarantee efficiency, security and correctness,
we will not see a widespread adoption of FHE. The optimization framework we introduce
in this thesis is a corner stone of such a tool. It is already integrated in a bigger project1

that takes as input a crypto-free graph of computation and outputs a binary executable
ready to be run on encrypted data.

Furthermore, FHE computation is slower than classical computation. It means that
for now, FHE must be excluded from pipelines that require real-time responses. In this
thesis, we introduce lots of new algorithms that improve the state of the art in terms
of efficiency. With these new techniques, the gap between cleartext computation and
encrypted computation has become smaller than ever.

All the work carried out in this thesis contributes to make FHE more practical and
accessible to non-expert users. We sincerely hope that our results will be used to speed
up the adoption of FHE which will eventually guarantee the privacy of our data while
allowing us to benefit from everything our digital era has to offer.

1. https://github.com/zama-ai/concrete

31

https://github.com/zama-ai/concrete

Chapter 2

PRELIMINARIES

In this chapter, we provide a summary of the state of the art needed to put our research
into perspective.

First, we give some details on the GLWE and the LWE problems. The security of most
of the FHE schemes in use today relies on the hardness of those mathematical problems.
We present the main attacks against those problems and introduce the lattice estimator,
a tool actively maintained by the community to estimate the security of lattice-based
cryptosystems.

Then, we introduce the different types of ciphertexts that are used by every FHE
scheme based on (G)LWE. It includes (G)LWE ciphertexts, (G)Lev ciphertexts and
(G)GSW ciphertexts.

Next, we review the main building blocks of TFHE and some of their recent improve-
ments. We cover basic operations (addition, multiplication by an integer, etc.) and more
complex algorithms (several key switch variants, the Programmable Bootstrap, etc.). Some
of the limitations of TFHE are also discussed.

Then, we explain the different encoding methods compatible with TFHE, covering the
traditional encoding and two more recent encodings (CRT and radix encodings).

Finally, we address the state of the art of optimization techniques for FHE, the goals
of the different approaches and explain how TFHE stands out compared to other FHE
schemes.

2.1 The Security of FHE

The most used FHE schemes rely on the hardness of the Learning With Errors problem
and its variants introduced two decades ago by Regev in [Reg05] and later extended
in [Reg09]. Some FHE schemes rely on other problems. For instance, [Dij+10] relies on the
Approximate GCD problem [How01] and [LTV12; Bon+22] rely on the NTRU problem.
These schemes are not discussed in this thesis.

33

Chapter 2 – Preliminaries

First, we introduce the Learning With Errors problem and the General Learning With
Errors problem. We then provide a brief description of the main attacks on those problems
and finally describe the lattice estimator, the reference tool to estimate the security of
lattice-based cryptosystems.

2.1.1 (G)LWE Problems

In 2005, Regev introduced the LWE problem and a simple cryptosystem based on it.
Informally, given an LWE instance, it is believed to be hard to extract the key. An LWE
instance is a system of noisy linear equations i.e., linear equations perturbated with a
small randomness called noise. Without the noise, those linear equations can be easily
solved using linear algebra techniques, for instance Gaussian elimination.

In the definition of the LWE problem below, Zq refers to the ring Z/qZ.

Definition 1 (Learning With Errors (LWE)) Let n ∈ N be the LWE dimension. Let
q ∈ N be the ciphertext modulus. Let s⃗ = (s0, · · · , sn−1) ∈ Znq be a secret, where for
all 0 ≤ i < n, si is sampled from a given distribution D (Zq), and let χ be an error
distribution. We define (⃗a, b = ∑n−1

i=0 ai · si + e) ∈ Zn+1
q to be a sample from the learning

with errors distribution LWEq,n,χ,D(Zq), such that a⃗ = (a0, . . . , an−1) ←↩ U (Zq)n, meaning
that all {ai}i∈[[0,n−1]] are sampled uniformly from Zq, and the error or noise e ∈ Zq is
sampled from χ.

The decisional LWEq,n,χ,D(Zq) problem [Reg05] consists in distinguishing independent
samples from U (Zq)n+1 from the same amount of samples from LWEq,n,χ,D(Zq).

The search problem consists in finding s⃗ given an arbitrary number of samples from
the learning with error distribution LWEq,n,χ,D(Zq).

In [Reg05], Regev shows that both the decisional problem and the search problem
are reducible to one another. The hardness of each of those problems depends on the
parameters (q, n) and on the noise distribution χ and the secret key distribution D (Zq).
The hardness of an LWE instance is described by a value λ which is called the security
level. For an attacker to break an LWE instance with a security level λ, he should perform
at least 2λ operations. More precisely, breaking an LWE instance with a security level λ

should take as many (or more) computational resources than those required to break a
blockcipher with a λ-bit key1. In practice, λ = 128 is the default value to guarantee long
term security of a particular instance.

1. https://csrc.nist.gov/projects/post-quantum-cryptography/

34

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

2.1. The Security of FHE

Several variants of the LWE problem were introduced in the following years [Ste+09;
LPR10; BGV12; LS15]. Below, we defined the General Learning With Errors (GLWE)
problem [BGV12; LS15]. We use the ring Rq,N defined as Rq,N = Zq [X] /

〈
XN + 1

〉
with

N a power of two.

Definition 2 (General Learning With Errors (GLWE)) Let N ∈ N be a polyno-
mial size (chosen as a power of 2). Let k ∈ N be a GLWE dimension. Let q ∈ N be a
ciphertext modulus. Let S⃗ = (S0, · · · , Sk−1) ∈ Rk

q,N be a secret, where Si = ∑N−1
j=0 si,jX

j is
sampled from a given distribution D (Rq,N) for all 0 ≤ i < k, and let χ be an error distri-
bution. We define (A⃗, B = ∑k

i=0 Ai·Si+E) ∈ Rk+1
q,N to be a sample from the general learning

with errors distribution GLWEq,N,k,χ,D(Rq,N), such that A⃗ = (A0, . . . , Ak−1) ←↩ U (Rq,N)k,
meaning that all the coefficients of Ai are sampled uniformly from Zq, and the error (noise)
polynomial E ∈ Rq,N is such that all the coefficients are sampled from χ.

The decisional GLWEq,N,k,χ,D(Rq,N) problem [LS15; BGV12] consists in distinguish-
ing m independent samples from U (Rq,N)k+1 from the same amount of samples from
GLWEq,N,k,χ,D(Rq,N), where S⃗ ∈ Rk

q,N follows the distribution D.
The search problem consists in finding s⃗ given an arbitrary number of samples from

the learning with error distribution GLWEq,N,k,χ,D(Rq,N).

If we choose N = 1 and k = n, the GLWE distribution GLWEN,k,χ,D(Rq,N) is the
same as the LWE distribution LWEn,χ,D(Zq). If we choose N > 1 and k = 1, the GLWE
distribution is called the RLWE distribution [Ste+09; LPR10]. The GLWE problem can
be seen as a generalization of both the LWE problem and the RLWE problem.

In general, the secret key distribution D (Rq,N) is such that the polynomial coeffi-
cients are usually either sampled from a uniform binary distribution, a uniform ternary
distribution or a Gaussian distribution ([Bou+23; App+09]).

In the definition below, we focus on more specific secret keys.

Definition 3 (Secret Keys With Fixed Hamming Weight (FHW)) A fixed
Hamming weight (FHW) binary (resp. ternary) GLWE secret key of hamming weight
h ∈ N is a GLWE secret key such that its polynomial coefficients are in {0, 1} (resp.
{−1, 0, 1}) and contains exactly h non-zero coefficients. We note these two distributions
FHW (h, {0, 1}) and FHW (h, {−1, 0, 1}) respectively. Such keys come along with public

post-quantum-cryptography-standardization/evaluation-criteria/
security-(evaluation-criteria)

35

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

Chapter 2 – Preliminaries

knowledge: the dimension k ∈ N, the polynomial ring Rq,N (including the polynomial size
N ∈ N), the distribution (binary or ternary), the hamming weight h.

This type of secret keys is in use in FHE schemes such as CKKS [Che+17], because
it offers a smaller value for the worst-case noise growth. Table 2.1 summarizes public
knowledge for different secret key types used in FHE.

Key Type Size Ring Distribution Hamming Weight
Uniform Binary k Rq,N U ({0, 1}) unknown
Uniform Ternary k Rq,N U ({−1, 0, 1}) unknown

Gaussian k Rq,N N
(
µ, σ2) unknown

Small Uniform k Rq,N U (Zα) unknown
Uniform k Rq,N U (Zq) unknown

FHW Binary k Rq,N FHW (h, {0, 1}) h
FHW Ternary k Rq,N FHW (h, {−1, 0, 1}) h

Table 2.1: Comparison between secret key types in terms of public knowledge.

2.1.2 Attacks on (G)LWE

We already introduced the LWE problem (Definition 1) and the GLWE problem (Defi-
nition 2) and we noticed that the hardness of the problem depends on some parameters
(q, k, N) and some distributions. In this section, we give an overview of the main attacks
currently known on LWE and GLWE.

Attacks on LWE.

We recall the attacks against LWE which are important to consider in the selection of
secure parameters. These attacks and the associated references are used in the lattice
estimator [APS15].

The first kind of attacks is called LWE primal attacks and was first formulated
in [Alk+16a] and later studied and verified in [Alb+17b; Dac+20b; PV21]. It consists
of using lattice reduction to solve an instance of uSVP (unique Shortest Vector Problem)
generated from LWE samples. The most common way to perform this reduction is to use
the BKZ algorithm [SE94] to reduce a lattice basis by using an SVP (Shortest Vector
Problem) oracle. So, according to this attack, the security of an LWE instance is based
on the cost of lattice reduction for solving uSVP. In [Alk+16a], the authors propose to
analyze the hardness of RLWE as an LWE problem. All the research on this attack tend

36

2.1. The Security of FHE

to find the best cost of solving uSVP in order to find the closest model of security for
LWE and by extension for RLWE.

The second type of attack is the LWE dual attacks. It is explained in [MR09b]. It
consists of solving an instance of the SIS (Short Integer Solution) problem in the dual
lattice of the lattice formed by LWE samples. It means that the security of an LWE instance
is based on the cost of solving the SIS problem. In [Alb17a], Albrecht ported the classical
dual attack to a small secret key setting and in [Che+19b], the authors introduced a new
hybrid of dual and meet-in-the-middle (MITM) attack.

The third kind of attacks is the coded-BKW attacks, which are based on the algo-
rithm BKW (Blum, Kalai and Wasserman [BKW03]). This attack is explained in [GJS15a;
KF15b]. The BKW algorithm is a recursive dimension reduction for LWE instances.
In [GJS15a], the authors make use of these attacks against RLWE.

Attacks on RLWE/GLWE.

In the last decade, some attacks (for example [CDW17; PHS19; BR20; Ber+23c]) tried
to take advantage of the polynomial ring structure of RLWE and GLWE to solve the id-
SVP (ideal-Shortest Vector Problem). However, none of these attacks is as efficient as the
LWE attacks presented before. It means that when one wants to efficiently attack a GLWE
instance, they actually use LWE attacks so the security of GLWEq,N,k,χ,D(Rq,N) is estimated
from the security of LWEq,k·N,χ,D(Zq).

Other Attacks.

Some other attacks are not based on a reduction to a classical problem but on the leakage
of some fraction of the coordinates of the NTT transform of the RLWE secret. It is the
case of the article [Dac+18] which proposes a more direct attack against RLWE under
this leakage assumption.

2.1.3 Lattice Estimator

The lattice estimator is an initiative launched by Martin R. Albrecht, Rachel Player and
Sam Scott [APS15]. The goal of the paper was to give an extensive survey of the known
attacks on LWE/GLWE. Parts of the paper are outdated as a significant amount of work
has been ongoing in the field since its publication. A more up-to-date version is available
in Player’s thesis [Pla18].

37

Chapter 2 – Preliminaries

One of the contributions of this work was to deliver a tool written in Sage to help
researchers estimate the security of particular LWE or GLWE instances using state of the
art attacks. Since the publication of the paper, several attacks were improved and added
to the tool2.

The current version of the lattice estimator takes into account the attacks described
in Section 2.1.2 and an additional attack leveraging Gröbner bases: Arora-GB, described
in [AG11; Alb+14].

A code example using the lattice estimator is given later in Chapter 3 and Code
Example 3.1 with the useful part of the output in Figure 3.1. This example can be tweaked
to estimate the security of arbitrary LWE/GLWE instances.

In this thesis, we heavily rely on the lattice estimator to build our noise oracles (see
Section 3.1) that are one of the main building blocks of our optimization framework (see
Chapter 4).

2.2 The Morphology of FHE Ciphertexts

In this section, we describe several kinds of ciphertexts. The security of those ciphertexts
relies on the hardness of the problems introduced in Definitions 1 and 2.

First, we recall the LWE and the GLWE ciphertexts which are the more common and
low-level type of ciphertexts. GLev and GGSW ciphertexts are then defined as special
collections of GLWE ciphertexts.

2.2.1 LWE, RLWE & GLWE Ciphertexts

The most common type of ciphertexts in TFHE as described in [Chi+20a] is the LWE
ciphertext. The security of an LWE ciphertext relies on the LWE problem (Definition 1).

Definition 4 (LWE Ciphertext) Let q ∈ N be a ciphertext modulus. Let n ∈ N be an
LWE dimension. Given an encoded message m̃ ∈ Zq and a secret key s⃗ = (s0, · · · , sn−1) ∈
Znq , with elements either sampled from a uniform binary distribution, uniform ternary
distribution or Gaussian distribution, an LWE ciphertext of m̃ under the secret key s⃗ is
defined as the tuple:

ct =
(

a0, · · · , an−1, b =
n−1∑
i=0

ai · si + m̃ + e

)
∈ LWEs⃗(m̃) ⊆ Zn+1

q (2.1)

2. https://github.com/malb/lattice-estimator

38

https://github.com/malb/lattice-estimator

2.2. The Morphology of FHE Ciphertexts

such that {ai}n−1
i=0 are integers sampled from the uniform distribution in Zq, e is a noise

(error) in Zq sampled from a Gaussian distribution χσ. The parameter n ∈ Z>0 represents
the number of elements in the LWE secret key.

Inside most FHE algorithms, we use another type of ciphertexts, GLWE ciphertexts,
that are seen as a generalization of the LWE ciphertexts. The security of a GLWE ci-
phertext relies on the hardness of the GLWE problem introduced in Definition 2. In
Definition 5, we use Rq,N = Zq [X] /

〈
XN + 1

〉
with N a power-of-two.

Definition 5 (GLWE Ciphertext) Given an encoded message M̃ ∈ Rq,N and a secret
key S⃗ = (S0, · · · , Sk−1) ∈ Rk

q,N , with coefficients either sampled from a uniform binary,
uniform ternary or Gaussian distribution, a GLWE ciphertext of M̃ under the secret key
S⃗ is defined as the tuple:

CT =
(

A0, · · · , Ak−1, B =
k−1∑
i=0

Ai · Si + M̃ + E

)
∈ GLWES⃗(M̃) ⊆ Rk+1

q,N

such that {Ai}k−1
i=0 are polynomials in Rq,N with coefficients sampled from the uniform

distribution in Zq and E is a noise (error) polynomial in Rq,N , with coefficients sam-
pled from a Gaussian distributions χσ. The parameter k ∈ Z>0 represents the number of
polynomials in the GLWE secret key.

If we set N = 1 and k = n in Definition 5, we obtain the same type of ciphertext as in
Definition 4. In the special case where N = 1, the security of the encryption relies on the
hardness of the LWE problem (Definition 1) and not on the GLWE problem (Definition 2).
By convention all along this thesis, we will write an LWE ciphertext, an LWE secret key
and a message with a lower case, e.g. ct, s⃗ and m. On the contrary, we use upper case for
a GLWE ciphertext, a GLWE secret key and a polynomial message when N > 1, e.g. CT,
S⃗ and M .

Another special case of Definition 5 is when we set k = 1 and N > 1. This ciphertext
is called an RLWE ciphertext.

Remark 1 (Encoding of a Message) In Definition 4 (respectively Definition 5), we
encrypt an encoding m̃ of a message m (respectively an encoding M̃ of a message M). We
will see in Section 2.4 how to encode a message for TFHE. One of the major difference
between TFHE and other FHE schemes is the encoding step. Regardless of the encoding,

39

Chapter 2 – Preliminaries

we can use Definitions 4 and 5 to encrypt ciphertexts for other FHE schemes based on
(G)LWE.

Definition 6 (GLWE Decryption) Given a secret key S⃗ = (S0, · · · , Sk−1) ∈ Rk
q,N and

a GLWE encryption CT of M̃ under the secret key S⃗ as defined in Definition 5, the
decryption of CT is defined as:

M = B −
k−1∑
i=0

Ai · Si

= M̃ + E ⊆ Rq,N

(2.2)

The decryption of a GLWE ciphertext is the modular addition between the encoded
message M̃ and the noise polynomial E. In [Chi+20a], M is called the phase of CT and
is noted ϕ

(
CT, S⃗

)
.

Throughout the rest of this thesis, we will sometimes use ciphertexts that are trivially
encrypted. The definition below explains what a trivial encryption is.

Definition 7 (Trivial Encryption) Given an encoded message M̃ ∈ Rq,N and a secret
key S⃗ = (S0, · · · , Sk−1) ∈ Rk

q,N , a trivial GLWE encryption of M̃ under the secret key S⃗

is defined as the tuple:

CT =
(
0, · · · , 0, B = M̃

)
∈ GLWES⃗(M̃) ⊆ Rk+1

q,N

Of course, as the mask polynomials and the noise polynomial are set to 0, these ci-
phertexts are not secure as there is no encryption. They are mainly used to simplify the
notation in some algorithms referring to an input that can be either a ciphertext or a
plaintext.

2.2.2 Lev, RLev & GLev Ciphertexts

Using Definition 5, we can build more complex types of ciphertexts that are useful to
define the public material used in some FHE algorithms. For instance, the keyswitching
key in Algorithm 1 can be defined with the help of GLev ciphertexts. Informally, a GLev
ciphertext is just a collection of GLWE ciphertexts.

40

2.3. TFHE and Its Variants

Definition 8 (GLev Ciphertext) Given a ciphertext modulus q, a decomposition base
B ∈ N∗ and a decomposition level ℓ ∈ N∗, a GLev ciphertext of a plaintext M ∈ Rq,N

under a GLWE secret key S⃗ ∈ Rk
q,N is defined as follows:

CT = (CT0, . . . , CTℓ−1) ∈ GLevS⃗(M)B,ℓ ⊆ R
ℓ×(k+1)
q,N (2.3)

such that
∀0 ≤ j < ℓ, CTj ∈ GLWES⃗

(
q

Bj+1 M
)
⊆ Rk+1

q,N .

A GLev ciphertext with N = 1 is a Lev ciphertext and in this case we consider the
parameter n = k for the size of the LWE secret key. A GLev ciphertext with k = 1 and
N > 1 is a RLev ciphertext.

2.2.3 GSW, RGSW & GGSW Ciphertexts

Using the GLev ciphertexts introduced in Definition 8, we can redefine another type of
ciphertexts, the GGSW ciphertexts that can also be used to describe the public material
of some FHE algorithms, for instance the bootstrapping key (Algorithm 17). Informally, a
GGSW ciphertext is a collection of GLev ciphertexts. It was first introduced in [GSW13].

Definition 9 (GGSW Ciphertexts [GSW13; Chi+21]) Given a decomposition base
B ∈ N∗ and a decomposition level ℓ ∈ N∗, a GGSW ciphertext of a plaintext M ∈ Rq,N

under a GLWE secret key S⃗ ∈ Rk
q,N is defined as follows:

CT =
(
CT0, . . . , CTk

)
∈ GGSWS⃗(M) ⊆ R

(k+1)×ℓ×(k+1)
q,N (2.4)

such that
∀0 ≤ i ≤ k, CTi ∈ GLevB,ℓ

S⃗
(−Si ·M) ⊆ R

ℓ×(k+1)
q,N .

with the convention Sk = −1.
A GGSW ciphertext with N = 1 is a GSW ciphertext, and a GGSW ciphertext with

k = 1 and N > 1 is a RGSW ciphertext.

2.3 TFHE and Its Variants

TFHE [Chi+16a; Chi+17; Chi+20a] is an (G)LWE-based FHE scheme which differenti-
ates from the other (G)LWE-based cryptosystems because it supports a very efficient boot-

41

Chapter 2 – Preliminaries

strapping technique. TFHE was originally proposed as an improvement of FHEW [DM15],
a GSW [GSW13] based scheme with a fast bootstrapping for the evaluation of homo-
morphic Boolean gates. Apart from improving the bootstrapping of FHEW, TFHE also
introduces new techniques in order to support more functionalities and to improve the ho-
momorphic evaluation of complex circuits. The efficiency of TFHE comes in part from the
choice of a small ciphertext modulus which allows to use CPU native types to represent
a ciphertext both in the standard domain and in the Fourier domain.

In this document, we use different notations compared to the original TFHE pa-
pers [Chi+16a; Chi+17; Chi+20a]. In these, the message and ciphertext spaces are ex-
pressed by using the real torus T = R/Z. In the TFHE library [Chi+16b], T is imple-
mented by using native arithmetic modulo 232 or 264, which means that they work on Zq
(with q = 232 or q = 264). This is why we prefer to use Zq instead of T, as already adopted
in [Chi+20b]. It is made possible because there is an isomorphism between Zq and 1

q
Z/Z

as explained in [Bou+20, Section 1].
First, we recall the basic operations that can be performed over ciphertexts, the ad-

dition and the multiplication by a known integer. Then, we detail several variants of
the key switch operation. Next, we cover every building block that composes the Pro-
grammable Bootstrapping operation (PBS). Finally, we describe other techniques used to
homomorphically evaluate lookup tables.

2.3.1 Additions

The first and simplest operation that can be done over ciphertexts is the addition. We will
use this theorem to show how to analyze the noise after an operation over ciphertexts,
see Proof 1.

Informally, the method consists in encrypting ciphertexts using Definition 5, perform-
ing the operation that we want to study, decrypting the result using Definition 6 and
expressing the output noise as a function of the cryptographic parameters and of the
input noise. As noise analyses are long even for a simple operation, we put most of them
in the appendices.

Theorem 1 (GLWE addition) Let S⃗ = (S0, · · · , Sk−1) a GLWE secret key. Let CT1 =
(A0,1, · · · , Ak−1,1, B1) and CT2 = (A0,2, · · · , Ak−1,2, B2) be two GLWE ciphertexts en-
crypted under the GLWE secret key S⃗ and with noise polynomials that are sampled
from two centered Gaussian distributions χσ1 = N (0, σ2

1) and χσ2 = N (0, σ2
2) with

42

2.3. TFHE and Its Variants

(σ1, σ2) ∈ N2
>0, two standard deviations. We further assume χσ1 and χσ2 to be statis-

tically independent.
The noise of the GLWE ciphertext defined as

CT3 = CT1 + CT2 = (A0,1 + A0,2, · · · , Ak−1,1 + Ak−1,2, B1 + B2) ∈ Rk+1
q

follows a centered Gaussian distribution χ√σ1+σ2 = N (0, σ2
1 + σ2

2).

Proof 1 (Theorem 1) Let S⃗ = (S0, · · · , Sk−1), a GLWE secret key. Let CT1 and
CT2 be two GLWE ciphertexts such that ∀j ∈ {1, 2}, CTj = (A0,j, · · · , Ak−1,j, Bj) ∈
GLWES⃗(M̃j) ⊆ Rk+1

q with ∀j ∈ {1, 2}, Bj = ∑k−1
i=0 Ai,j · Si + M̃j + Ej. We assume that

E1 (respectively E2) is a polynomial with coefficients sampled from a centered Gaussian
distribution χσ1 = N (0, σ2

1) (respectively χσ2). For i ∈ {1, 2}, σi ∈ N>0 and represents a
standard deviation.

Let us define CT3 = CT1 + CT2 ⊆ Rk+1
q . In the following, [·]q represents the modular

reduction of each coefficient of the polynomials. We have

CT3 = (A0,3, · · · , Ak−1,3, B3)
=
(
[A0,1 + A0,2]q , · · · , [Ak−1,1 + Ak−1,2]q , [B1 + B2]q

)
Now, let us decrypt CT3 using Definition 6.

M3 = B3 −
k−1∑
i=0

Ai,3 · Si

= B1 + B2 −
k−1∑
i=0

(Ai,1 + Ai,2) · Si

=
�����������k−1∑
i=0

(Ai,1 + Ai,2) · Si + M̃1 + M̃2 + E1 + E2 −
�����������k−1∑
i=0

(Ai,1 + Ai,2) · Si

= M̃1 + M̃2 + E1 + E2︸ ︷︷ ︸
noise of CT3

Assuming that the noise coefficients of E1 and E2 are independent, each coefficient of
the noise polynomial of CT3 follows a Gaussian distribution N (0, σ2

1 + σ2
2).

□

With the help of Theorem 1, we can observe that after the addition, the variance of
the noise is larger than the noise variances of the input ciphertexts. This remark is not
only valid for the addition, in fact, most of the operations performed over ciphertexts will

43

Chapter 2 – Preliminaries

increase the variance of the noise, with the exception of the rotation (Theorem 3) and
the bootstrapping operations (see Section 2.3.3). In this thesis, we will sometimes say
that a first ciphertext contains more noise than a second ciphertext, it means that the
variance of the noise in the first ciphertext is larger than the noise variance of the second
ciphertext.

Before explaining how to multiply a GLWE ciphertext with a polynomial, let us see
what happens when we multiply a GLWE ciphertext with X. To do that, we first need
to recall some interesting properties of Rq,N = Zq [X] /

〈
XN + 1

〉
.

Theorem 2 (Rotation in Rq,N) Let P ∈ Rq,N be a polynomial such that P =∑N−1
i=0 piX

i and ω ∈ Z.
Posing ω = ω mod 2N , we have ω ∈ J0, 2N − 1K. In Rq,N , we have

XN = −1

X2N = 1

Xω = Xω

(2.5)

When ω ∈ [[0, N − 1]], we have:

P ·Xω =
N−1∑
j=ω

pj−ω ·Xj −
ω−1∑
j=0

pN+j−ω ·Xj (2.6)

Proof 2 (Theorem 2) The first equations are direct consequences of the definition of
the ring Rq,N .

For the last equation, we have:

P ·Xω = P ·Xω

=
N−1∑
j=0

pj ·Xj ·Xω

= Xω ·
N−1−ω∑
j=0

pj ·Xj + Xω ·
N−1∑

j=N−ω
pj ·Xj

=
N−1∑
j=ω

pj−ω ·Xj + XN︸︷︷︸
−1
·
ω−1∑
j=0

pN+j−ω ·Xj

=
N−1∑
j=ω

pj−ω ·Xj −
ω−1∑
j=0

pN+j−ω ·Xj

□

44

2.3. TFHE and Its Variants

Now, let us recall the multiplication between a GLWE ciphertext and a power of X.

Theorem 3 (Multiplication between a GLWE Ciphertext and a Power of X)
Let S⃗ = (S0, · · · , Sk−1) be a GLWE secret key. Let CTin be a GLWE ciphertext encrypted
under the GLWE secret key S⃗, so that the coefficients of E are independently sampled
from a centered Gaussian distribution χσ. Let ω ∈ N such that 0 ≤ ω ≤ N − 1.

Each noise coefficient of the GLWE ciphertext CTout = Xω · CTin follows a centered
Gaussian distribution χσ.

Proof 3 (Theorem 3) Let CTin =
(
A⃗, B

)
∈ GLWES⃗ (M) with A⃗ ∈ Rk

q and B =〈
A⃗, S⃗

〉
+ M̃ + E with E = ∑N−1

j=0 ej · Xj and for 0 ≤ j ≤ N − 1, ej is drawn from a
centered Gaussian distribution χσ. Let ω ∈ N such that 0 ≤ ω ≤ N − 1.

We pose CTout = Xω · CTin and study the noise in CTout.

ϕ
(
CTout, S⃗

)
= Xω ·B −

k−1∑
i=0

Ai · Si ·Xω

= Xω ·
(
k−1∑
i=0

Ai · Si + M + E

)
−

k−1∑
i=0

Ai · Si ·Xω = M ·Xω + E ·Xω

Using Theorem 2, we have

E ·Xω =
N−1∑
j=ω

ej−ω ·Xj −
ω−1∑
j=0

eN+j−ω ·Xj

Since, for 0 ≤ j ≤ N −1,±ej is drawn from a centered Gaussian χσ, we conclude that
each noise coefficient of CTout follows a centered Gaussian distribution χσ.

□

As we can add GLWE ciphertexts together (Theorem 1) and multiply them by powers
of X (Theorem 3), we can also define the product between a GLWE ciphertext and an
integer polynomial.

Theorem 4 (Multiplication between a GLWE Ciphertext and a Polynomial)
Let S⃗ = (S0, · · · , Sk−1) be a GLWE secret key. Let CTin be a GLWE ciphertext encrypted
under the GLWE secret key S⃗. The coefficients of E are independently sampled from a
centered Gaussian distribution χσ. Let D ∈ Z[X] s.t. D = ∑N−1

i=0 di ·X i.
Each noise coefficient of the GLWE ciphertext CTout = D · CTin follows a centered

Gaussian distribution χν·σ where ν is the 2-norm of D defined as ν2 = ∑N−1
i=0 d2

i .

45

Chapter 2 – Preliminaries

Proof 4 (Theorem 4) Let CTin =
(
A⃗, B

)
∈ GLWES⃗ (M) with A⃗ ∈ Rk

q and B =〈
A⃗, S⃗

〉
+ M̃ + E with E = ∑N−1

j=0 ej ·Xj. Let D ∈ Z[X] s.t. D = ∑N−1
i=0 di ·X i.

Setting CTout = D · CTin, we study the noise in CTout.

ϕ
(
CTout, S⃗

)
= D ·B −

k−1∑
j=0

(D · Aj) · Sj

= D ·M + D · E︸ ︷︷ ︸
noise of CTout

Moreover,

D · E =
N−1∑
j=0

ej ·Xj

 ·
N−1∑
j=0

dj ·Xj

=

N−1∑
i=0

X i ·

 i∑
j=0

ei−j · dj + XN︸︷︷︸
reduction

·
N−1∑
j=i+1

eN+i−j · dj

=

N−1∑
i=0

X i ·

 i∑
j=0

ei−j · dj −
N−1∑
j=i+1

eN+i−j · dj

=
N−1∑
i=0

X i ·

N−1∑
j=0

(−1)αi,j eαi,j ·N+i−j︸ ︷︷ ︸
ϵi,j

·dj

︸ ︷︷ ︸

eout,i

with αi,j =

0 if i− j ≥ 0

1 otherwise

As ∀ 0 ≤ j < N, ej follows a centred Gaussian distribution χσ, we immediately have
that each coefficient of D · E follows a centered Gaussian distribution χν·σ with ν the
2-norm of {di}N−1

i=0 defined as ν2 = ∑N−1
i=0 d2

i .
□

Remark 2 (Several Noise Distributions) If we assume that for i ∈ {0, · · · , N − 1},
we have ei ←↩ N (0, σ2

i), we get that ϵi,j ←↩ N
(
0, σ2

αi,j ·N+i−j

)
. Finally, with eout,i the ith

coefficient of D · E, we have:

eout,i ←↩ N

0,
N−1∑
j=0

σ2
αi,j ·N+i−j · d2

j

Remark 3 (GLev and GGSW Additions) Theorems 1 and 4 can be trivially ex-
tended for LWE, GLev and GGSW ciphertexts.

46

2.3. TFHE and Its Variants

Using Theorem 1 and Theorem 4, we can define the dot product.

Theorem 5 (Homomorphic Dot Product) Let cti ∈ LWEs⃗ (m̃i) ⊆ Zn+1
q for 0 ≤

i ≤ α − 1 be a list of LWE ciphertexts under s⃗ = (s0, · · · , sn−1) an LWE secret key
so that noises are sampled independently from a centered Gaussian distribution χσ. Let
{ωi}0≤i≤α−1 ∈ Zα be arbitrary integers.

A homomorphic dot product is a dot product between a vector of LWE ciphertexts and
a vector of integers, resulting in an LWE ciphertext ctout i.e.,

ctout =
α−1∑
i=0

cti · ωi (2.7)

The noise in the output ciphertext follows the distribution χν·σ = N (0, ν2σ2) with
ν2 = ∑α−1

i=0 ω2
i , the squared 2-norm.

Thus, given a dot product between a vector of ciphertexts with the same (Gaussian)
noise distribution and a vector of integers, we only need the 2-norm ν to characterize the
output noise of a dot product.

Proof 5 (Theorem 5) The proof is just a composition of the formulae in Theorems 1
and 4.

□

We saw with Theorem 1 that we can add ciphertexts encrypted under the same GLWE
keys. Let us see what happens when we try to add ciphertexts encrypted under different
keys. Let CT1 and CT2 be two GLWE ciphertexts with CT1 (respectively CT2) encrypted
under a GLWE secret key S⃗1 (respectively S⃗2). Let us define CT3 such that CT3 = CT1 +
CT2. We have

CT3 = (A0,1 + A0,2, · · · , Ak−1,1 + Ak−1,2, B1 + B2)

with

B1 + B2 =
k−1∑
i=0

Ai,1 · Si,1 +
k−1∑
i=0

Ai,2 · Si,2 + M̃1 + M̃2 + E1 + E2

As one can see, it is no longer possible to decrypt CT3 because we do not have access
to (A0,1, · · · , Ak−1,1) and (A0,2, · · · , Ak−1,2) anymore. In the following, we introduce the

47

Chapter 2 – Preliminaries

concept of key switch. A key switch allows to change the key of a ciphertext without
having to know the secret key. This operation can be useful if we want to add ciphertexts
that are encrypted under different keys.

2.3.2 Key Switches

As explained above, a key switch allows to homomorphically change the key of a ci-
phertext. Given a ciphertext CTin ∈ GLWES⃗in

(
M̃
)

we can use a key switch to obtain a
ciphertext CTout ∈ GLWES⃗out

(
M̃
)
. S⃗out can have different parameters than S⃗in, for instance

the polynomial size N and the GLWE dimension k could be different. Several algorithms
allow to perform a key switch in the state of the art. We will describe the main versions
here. Every version needs some public material to perform the key switch, namely the
keyswitching key. Intuitively, the keyswitching key is composed of the key S⃗in encrypted
under S⃗out.

First, we introduce the radix decomposition: this algorithm is used as a sub-routine
in every key switch algorithm and in other FHE algorithms as well. We then provide a
summary of the existing key switch techniques.

Radix Decomposition

Several ways exist to perform a radix decomposition. Here, we focus on the classical way
to do it as described in [Chi+20a]. We refer the reader to [Joy21] for a more complete
analysis of the impact of the decomposition algorithm. In particular, Joye introduces a
new decomposition that behaves asymptotically better than other known decompositions.

Definition 10 Let B ∈ N∗ be a decomposition base and ℓ ∈ N∗ be a decomposition level.
The decomposition algorithm with respect to B and ℓ is noted dec(B,ℓ). It takes as input
an integer x ∈ Zq and outputs a vector of integers (x1, · · · , xℓ) ∈ Zℓq such that

〈
dec(B,ℓ)(x),

(
q

B
· · · q

Bℓ

)〉
=
⌊
x · B

ℓ

q

⌉
· q

Bℓ
∈ Zq.

dec(B,ℓ)(x) is referred to as the decomposition vector of x. In [Chi+20a], (x1, · · · , xℓ)
are defined as the unique integers satisfying

⌊
x · B

ℓ

q

⌉
· q

Bℓ
=

ℓ∑
i=1

xi ·
q

Bi
with xi ∈

s
−B

2 ,
B

2

s
.

48

2.3. TFHE and Its Variants

In [Joy21], a balanced decomposition algorithm is introduced where xi ∈
q
−B

2 , B
2
y
,

which is better for the noise propagation as it gives a centered distribution for the {xi}ℓi=1.

Usually, the decomposition is performed starting from the most significant bits. When
applying the decomposition on a vector of integers, the result is a vector of decomposition
vectors of integers.

Note that it is possible to decompose an integer polynomial P ∈ Rq with this algorithm
i.e.,

〈
dec(B,ℓ)(P),

(q

B
· · · q

Bℓ

)〉
=
⌊

P · B
ℓ

q

⌉
· q

Bℓ
∈ Rq

resulting in a vector of polynomials. Applying this kind of decomposition on a vector
of polynomials, we get a vector of vectors of polynomials.

LWE Key Switch

Algorithm 1: CT← KS(ct, KSK)

Context:

s⃗ = (s0, · · · , sn−1) : the input LWE secret key
S⃗ = (S0, . . . , Sk−1) : the output GLWE secret key

Input:

ct ∈ LWEs⃗ (m̃) = (a0, · · · , an−1, b)
KSK =

{
CTi ∈ GLevB,ℓ

S⃗
(si)

}
0≤i≤n−1

: keyswitching key from s⃗ to S⃗

Output: CT ∈ GLWES⃗ (m̃)
1 begin
2 CT ∈ GLWES⃗ (m̃)← (0, · · · , 0, b)−∑n−1

i=0

〈
CTi, dec(B,ℓ) (ai)

〉
3 end

Using Theorem 1 and Definition 10, Algorithm 1 defines the LWE key switch as in-
troduced in [Chi+17, Algorithm 1]. The output ciphertext is a GLWE ciphertext which,
of course, can also be an LWE ciphertext when N = 1.

Theorem 6 (LWE Key Switch) Let ct ∈ LWEs⃗ (m̃) ∈ Zn+1
q be an LWE ciphertext

encrypting m̃ ∈ Zq, under the LWE secret key s⃗ = (s0, . . . , sn−1) ∈ Znq , with noise sampled
from χσ. Let S⃗ be a GLWE secret key such that S⃗ = (S0, . . . , Sk−1) ∈ Rk+1

q . Let KSK ={
CTi ∈ GLevB,ℓ

S⃗
(si) ∈ Rℓ×(k+1)

q

}
0≤i≤n−1

be a key switching key from s⃗ to S⃗ with noise
sampled from χσKSK.

49

Chapter 2 – Preliminaries

The variance of the noise after the key switch is

VarKS = σ2 + n ·
(

q2

12B2ℓ −
1
12

)
·
(
Var(si) + E2(si)

)
+ n

4 · Var(si) + n · ℓ · σ2
KSK ·

B2 + 2
12 .

(2.8)

The algorithmic complexity of Algorithm 1, referred to as the cost is

Cost (KS)(ℓ,n,k,N) = nCost (dec)(ℓ) + ℓn(k + 1)NCost (mul)
+ ((ℓn− 1)(k + 1)N)Cost (add) .

(2.9)

The size (in bits) of the key switching key Size (KSK) is computed with the following
formula:

Size (KSK) := n · ℓ · (k + 1) ·N · ⌈log2(q)⌉

Proof 6 (Theorem 6) The proof of the noise variance is detailed in Appendix A.3.
□

Remark 4 (Cost of an Algorithm) In Theorem 6, we provide a cost function for the
key switch. This function is used to estimate the running time of Algorithm 1 on a single
thread. To define it, we count the number of low-level operations (additions, multiplica-
tions, castings between integer types, etc.) in the algorithm. Cost functions are especially
useful for the optimization framework introduced in Chapter 4. More details are given in
Section 4.1.1.

Remark 5 (Public function in Key Switch) It is possible to leverage the key switch
algorithm to also compute a public function f : Zαq → Zq on several input ciphertexts
{cti}α−1

i=0 . f must verify the following properties:

• ∀(x, y) ∈
(
Zαq
)2

, f(x + y) = f(x) + f(y)

• ∀s ∈ Z,∀x ∈ Zαq , f(s · x) = s · f(x)

• ∃R, ∀(x, y) ∈
(
Zαq
)2

, |f(x)− f(y)| < R|x− y|

To do that, one needs to compute

CT ∈ GLWES⃗ (m̃)←
(
0, · · · , 0, f

(
{bi}α−1

i=0

))
+

n−1∑
i=0

〈
CTi, dec(B,ℓ)

(
f
(
{ai,j}α−1

j=0

))〉
.

50

2.3. TFHE and Its Variants

In [Chi+20a], this is called a Public Functional Key Switching, see [Chi+17, Algo-
rithm 1].

We now specify in Algorithm 2, a GLWE key switch that works the same way as the
LWE key switch of Algorithm 1. The dot product between the keyswitching key and the
polynomial decompositions can be performed using the FFT which significantly speeds
up the execution time of the GLWE key switch compared to the LWE key switch.

Algorithm 2: CTout ← GlweKeySwitch(CTin, KSK)

Context:

S⃗in ∈ Rkin
q,N : the input GLWE secret key

S⃗in = (Sin,0, · · · , Sin,kin−1)
S⃗out ∈ Rkout

q,N : the output GLWE secret key
ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition

Input:

CTin = (A0, · · · , Akin−1, B) ∈ GLWES⃗in

(P) ⊆ Rkin+1
q,N , with P ∈ Rq,N

KSK =
{

CTi

}
0≤i≤kin−1 , with

CTi ∈ GLevB,ℓ

S⃗out
(Sin,i) , for 0 ≤ i ≤ kin − 1

Output: CTout ∈ GLWES⃗out
(P)

/* Keep the B part */
1 Set CTout := (0, · · · , 0, B) ∈ Rkout+1

q,N

2 for i ∈ J0; kin − 1K do
/* Decompose the mask */

3 Update CTout = CTout −
〈

CTi, dec(B,ℓ) (Ai)
〉

4 return CTout

Private LWE Key Switch

We saw in Remark 5 that it was possible to compute a public linear function on several
ciphertexts when doing a key switch. Here, we want to apply a private linear function.
To keep this function private, we need to hide it in the keyswitching key. We show in
Algorithm 3 how to do that for one input ciphertext and refer to [Chi+17, Algorithm 2]
for a version with several input ciphertexts. In the definition of the keyswitching key, we
impose sn = −1 by convention.

Theorem 7 (LWE Private Key Switch) Let f be a linear function from Zq → Zq
such that ∃R ∈ Z,∀x ∈ Zq, f(x) = R ·x. Let ct ∈ LWEs⃗ (m̃) ∈ Zn+1

q be an LWE ciphertext

51

Chapter 2 – Preliminaries

Algorithm 3: CT← PrivateKS(ct, KSK)

Context:

s⃗ = (s0, · · · , sn−1) : the input LWE secret key
S⃗ = (S0, . . . , Sk−1) : the output GLWE secret key
sn = −1

Input:

ct ∈ LWEs⃗ (m̃i) = (a0, · · · , an−1, b)
KSK =

{
CTi ∈ GLevB,ℓ

S⃗
(f(si))

}
0≤i≤n

: keyswitching key from s⃗ to S⃗

Output: CT ∈ GLWES⃗ (m̃)
1 begin
2 CT ∈ GLWES⃗ (m̃)← −

〈
CTn, dec(B,ℓ) (b)

〉
−∑n−1

i=0

〈
CTi, dec(B,ℓ) (ai)

〉
3 end

encrypting m̃ ∈ Zq under the LWE secret key s⃗ = (s0, . . . , sn−1) ∈ Znq , with noise sampled
respectively from χσ. Let S⃗ be a GLWE secret key such that S⃗ = (S0, . . . , Sk−1) ∈ Rk+1

q .
Let KSK =

{
CTi ∈ GLevB,ℓ

S⃗
(f(si)) ∈ Rℓ×(k+1)

q

}
0≤i≤n

be a key switching key from s⃗ to S⃗

with noise sampled from χσKSK and sn = −1 by convention.
The variance of the noise after the private key switch is:

VarPrivateKS = R2σ2 + (n + 1) ·
(

q2

12B2ℓ −
1
12

)
·
(
Var(si) + E2(si)

)
+ n + 1

4 · Var(si) + (n + 1) · ℓ · σ2
KSK ·

B2 + 2
12

(2.10)

The algorithmic complexity of Algorithm 3, referred to as the cost is

Cost (PrivateKS)(ℓ,n,k,N) = (n + 1) Cost (dec)(ℓ) + ℓ (n + 1) (k + 1)NCost (mul)
+ ((ℓ(n + 1)− 1)(k + 1)N)Cost (add)

(2.11)

The size (in bits) of the private LWE key switching key Size (KSK) is computed with
the following formula:

Size (KSK) := (n + 1) · ℓ · (k + 1) ·N · ⌈log2(q)⌉

Proof 7 (Theorem 7) The proof of Theorem 6 given in Appendix A.3 can be easily
adapted to prove Theorem 7 using the fact that ∀x ∈ Zq, f(x) = R · x.

□

52

2.3. TFHE and Its Variants

Packing Key Switch

The packing key switch enables to pack several LWE ciphertexts (Definition 4) into one
GLWE ciphertext (Definition 5). It takes as input a set of α LWE ciphertexts as well as
a set of α indices. Given the set of indices {ij}α−1

j=0 , we have

CTout ∈ GLWES⃗

α−1∑
j=0

mj ·X ij

← PackingKS({ctj}α−1
j=0 , {ij}α−1

j=0 , KSK)

where ctj is an LWE encryption of mj ∈ Zq.
The packing key switch can be described easily with the help of the LWE key switch

(Algorithm 1 and Theorem 6), the multiplication by a power of X (Theorem 3) and the
addition (Theorem 1). In short, it takes as input several LWE ciphertexts, keyswitches
them using Algorithm 1, multiplies each of them by a power of X and finally adds the
keyswitched ciphertexts together. Theorem 8 gives the noise variance and the cost of this
operation.

Theorem 8 (LWE-to-GLWE Packing Key Switch) We start with the simplest case
where we pack a single LWE ciphertext. Let ctin ∈ LWEs⃗ (m̃) ∈ Zn+1

q be an LWE ciphertext
encrypting m̃ ∈ Zq under the LWE secret key s⃗ = (s0, . . . , sn−1) ∈ Znq , with noise sampled
from χσ. Let S⃗ ′ be a GLWE secret key such that S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk+1

q . Let KSK ={
CTi ∈ GLevB,ℓ

S⃗′ (si) ∈ Rℓ×(k+1)
q

}
0≤i≤n−1

be a key switching key from s⃗ to S⃗ ′ with noise
sampled from χσKSK.

There are two different variances after a packing key switch: one for the coefficient we
just filled written Varfill and another for the empty coefficients Varemp. Those variances are
estimated by:

Var(1)
fill = σ2 + n

(
q2

12B2ℓ −
1
12

)(
Var(si) + E2(si)

)
+ n

4 Var(si) + nℓσ2
KSK

B2 + 2
12

Var(1)
emp = nℓσ2

KSK
B2 + 2

12

(2.12)

When we pack 1 ≤ α ≤ N LWE ciphertexts, we have Var(α)
fill = Var(1)

fill + (α− 1) ·Var(1)
emp

and Var(α)
emp = α · Var(1)

emp The cost of the algorithm is:

Cost (PackingKS)(α,ℓ,n,k,N) = αnCost (dec)(ℓ) + αℓn(k + 1)NCost (mul)
+ ((αℓn− 1)(k + 1)N + α)Cost (add)

(2.13)

53

Chapter 2 – Preliminaries

Proof 8 (Theorem 8) In the proof, we express the decryption of the resulting ciphertext,
obtaining the message added to the noise so we can estimate the two variances. The
detailed computation leading us to the aforementioned noise formulae are provided in
Appendix A.3.

□

Fast Keyswitch

In [Che+20], the authors introduce an LWE key switch that leverages the FFT. The
algorithm is described with RLWE ciphertexts but can be easily extended with GLWE
ciphertexts. The first step of the algorithm is to convert an LWE ciphertext into a GLWE
ciphertext, then perform a GLWE keyswitch (Algorithm 2) and finally compute a sample
extract (see below Algorithm 5). The algorithm is presented in Algorithm 4.

Algorithm 4 is very efficient because the GLWE key switch can leverage the FFT. The
main drawback is that the algorithm takes as input an LWE ciphertext with a power-of-
two LWE dimension. In Chapter 8, we will introduce a new type of secret key and we will
be able to adapt Algorithm 4 to remove the need of a power-of-two LWE dimension.

Algorithm 4: ctout ← FFTLweKeySwitch(ctin, KSK)

Context:

s⃗in ∈ ZN
q : the input LWE secret key s.t. s⃗in = (sin,0, · · · , sin,N−1)

S⃗in ∈ ZN
q : the polynomial version of s⃗in s.t. S⃗in =

∑N−1
i=0 siX

−i

s⃗out ∈ ZN
q : the output LWE secret key s.t. s⃗out = (sout,0, · · · , sout,N−1)

S⃗out ∈ Rq,N : the polynomial version of s⃗out s.t. S⃗out =
∑N−1

i=0 sout,iX
i

ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition

Input:

ctin = (a0, · · · , aN−1, b) ∈ LWEs⃗in (m̃) ⊆ ZN+1

q

KSK =
{

CTi

}
0≤i≤kin−1 , with

CTi ∈ GLevB,ℓ

S⃗out
(Sin,i) , for 0 ≤ i ≤ kin − 1

Output: ctout ∈ LWEs⃗out (m̃)
/* Convert the input LWE into a GLWE */

1 CT1 ∈ R2
q,N ←

(∑N−1
i=0 aiX

i, b
)

/* Apply the GLWE key switch (Algorithm 2) */
2 CT2 ∈ R2

q,N ← GlweKeySwitch (CT1, KSK)
/* Sample Extract the result with Algorithm 5 */

3 ctout ∈ ZN+1
q ← SampleExtract (CT2, 0)

4 return ctout

54

2.3. TFHE and Its Variants

2.3.3 PBS & Its Building Blocks

In this section, we define the building blocks of TFHE’s PBS as described in [Chi+16a;
Chi+17; Chi+20a]. To do so, we need to introduce computational steps called the sample
extract, the modulus switch and the external product. On top of the external product,
we build the cmux. Using the cmux, we explain how to perform a blind rotate and finally,
using the modulus switch, the blind rotate and the sample extract, we define the PBS
algorithm.

Sample Extract

Algorithm 5: ct← SampleExtract (CT, α)

Context:

s⃗ = (s0, · · · , skN−1) : the output LWE secret key
S⃗ = (S0, . . . , Sk−1) : the input GLWE secret key
∀0 ≤ i ≤ k − 1, Si = ∑N−1

j=0 si·N+jX
j

M̃ = ∑N−1
i=0 m̃i ·X i : a polynomial message

∀0 ≤ i ≤ k − 1, Ai = ∑N−1
j=0 ai,jX

j

B = ∑N−1
j=0 bjX

j

Input:

CT ∈ GLWES⃗
(
M̃
)

= (A0, · · · , Ak−1, B)
α ∈ {0, · · · , N − 1}

Output: ct ∈ LWEs⃗ (m̃p)
1 begin
2 b′ ← bp
3 for 0 ≤ i ≤ k − 1 do
4 for 0 ≤ j ≤ α do
5 a′i·N+j ← ai,α−j
6 end
7 for α + 1 ≤ j < N do
8 a′i·N+j ← −ai,N+α−j
9 end

10 end
11 ct ∈ LWEs⃗ (m̃p)← (a′0, · · · , a′kN−1, b′)
12 end

The sample extract is an operation taking as input a GLWE ciphertext (Defini-
tion 6) CT ∈ GLWES⃗

(∑N−1
i=0 m̃iX

i
)

and outputting an LWE ciphertext (Definition 4)
ct ∈ LWEs̄ (m̃p) as output with 0 ≤ p ≤ N−1. The output ciphertext ct will be encrypted

55

Chapter 2 – Preliminaries

using a flattened representation of the input GLWE key S⃗. We explain in Definition 11
what a flattened GLWE secret key is.

Definition 11 (Flattened Representation of a GLWE Secret Key) A GLWE se-
cret key S⃗ =

(
S0 = ∑N−1

j=0 s0,jX
j, · · · , Sk−1 = ∑N−1

j=0 sk−1,jX
j
)
∈ Rk

q,N can be flattened
into an LWE secret key ¯⃗s = (s̄0, · · · , s̄kN−1) ∈ ZkN in the following manner: s̄iN+j := si,j,
for 0 ≤ i < k and 0 ≤ j < N .

A version of the sample extract for RLWE ciphertexts was introduced in [Chi+20a,
Section 4.2] and can be easily extended to GLWE ciphertexts as we did in Algorithm 5.
Informally, the sample extract consists in simply rearranging some of the coefficients of
the GLWE input ciphertext to build the output LWE ciphertext encrypting one of the
coefficients of the input polynomial plaintext.

Theorem 9 (Sample Extract) Let 0 ≤ α ≤ N − 1 be an index. Let CT ∈
GLWES⃗

(∑N−1
i=0 miX

i
)

be a GLWE ciphertext (Definition 6) with coefficients sampled from
χσ. After the sample extract (Algorithm 5), we obtain a ciphertext ct ∈ LWE¯⃗s (mα) en-
crypted with ¯⃗s, the flattened representation of S⃗ (Definition 11).

The variance after the sample extract is:

VarSampleExtract = σ2 (2.14)

It means that the sample extract does not add any noise.
The cost of the sample extract is:

Cost (SampleExtract) = (k + 1) ·N · Cost (Copy) (2.15)

In practice, most of the time we can neglect the cost of the sample extract as it is very
fast compared to the other FHE algorithms.

Proof 9 (Theorem 9) A proof of a more generic algorithm is given in Appendix A.4,
taking ϕ = k ·N gives the proof of Theorem 9.

□

Modulus Switch

The modulus switch takes as input an LWE ciphertext with some ciphertext modulus
q and outputs a ciphertext modulus w while preserving the underlying plaintext. The

56

2.3. TFHE and Its Variants

Algorithm 6: ctout ← MS (ctin)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
N : a polynomial size

Input: ctin ∈ LWEs⃗(m̃) = (a0, · · · , an−1, an = b) ⊆ Zn+1
q

Output: ctout ∈ LWEs⃗
(⌊

m̃·2N
q

⌉)
⊆ Zn+1

2N

1 begin
2 for 0 ≤ i ≤ n do
3 a′i ←

[⌊
ai·2N
q

⌉]
2N

4 end
5 ctout ←

(
a′0, · · · , a′n−1, b′ = a′n

)
6 end

algorithm is described in Algorithm 6. In the context of TFHE’s PBS, w = 2 ·N with N

the polynomial size of the ring Rq,N .

Theorem 10 (Modulus Switch) Let q and w be two ciphertext moduli. Let s⃗ be an
LWE secret key such that s⃗ = (s0, · · · , sn−1). Let ctin be an LWE ciphertext (Definition 4)
such that ctin ∈ LWEs⃗ (m̃) ⊆ Zn+1

q .
The output of the sample extract (Algorithm 5) is a ciphertext ctout such that ctout ∈

LWEs⃗ (m̃) ⊆ Zn+1
w .

The variance of the noise of ctout is:

Var(MS) = w2σ2
in

q2 + 1
12 −

w2

12q2 + n

24 + nw2

48q2 . (2.16)

The cost of the modulus switch is:

Cost (MS)n,q,w = (n + 1) · Cost (Round)(q,w) . (2.17)

Proof 10 (Theorem 10) The proof for a more generic algorithm is detailed in Ap-
pendix A.2. Taking ϑ = 0 and κ = 0 gives the variance claimed above.

□

External Product.

In Algorithm 7, we describe the external product. The external product takes as inputs
a GGSW ciphertext (Definition 9) encrypting Q ∈ Rq,N and a GLWE ciphertext (Def-
inition 5) encrypting P and returns a GLWE ciphertext of Q · P . It is very similar to

57

Chapter 2 – Preliminaries

Algorithm 7: CTout ← ExternalProduct
(
CTin, CT

)

Context:

S⃗ ∈ Rk
q,N : the input secret key

Q ∈ Rq,N

CTin = (A0, · · · , Ak−1, B) ∈ Rk+1
q,N

CTi,j ∈ GLWES⃗

(
q

Bj+1 ·Q · Si

)
, for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ ℓ− 1

CTk,j ∈ GLWES⃗

(
q

Bj+1 ·Q
)

, for 0 ≤ j ≤ ℓ− 1
ℓ ∈ N : the number of levels in the decomposition
B ∈ N : the base in the decomposition

Input:

CTin ∈ GLWES⃗ (P) , with P ∈ Rq,N

CT =
{

K⃗i = (CTi,0, · · · , CTi,ℓ−1)
}

0≤i≤k

Output: CTout ∈ GLWES⃗ (Q · P)
/* Decompose the B part */

1 CTout ←
〈

K⃗k, dec(B,ℓ) (B)
〉

2 for i ∈ J0; k − 1K do
/* Decompose the mask */

3 CTout ← CTout −
〈

K⃗i, Decomp(B,ℓ) (Ai)
〉

4 return CTout

the private key switch (Algorithm 3); in fact, the external product is a private key switch
with a GLWE ciphertext as input instead of an LWE ciphertext and with the constraint
that the input key is the same as the output key. Later, we present an algorithm that
generalizes both the external product and the private key switch (Algorithm 38).

Theorem 11 (External Product) Let CTin ∈ GLWES⃗ (P) ∈ Rk+1
q,N be a

GLWE ciphertext encrypting P ∈ Rq,N , under the GLWE secret key S⃗ =
(S0, . . . , Sk−1) ∈ Rk+1

q,N , with noise sampled from χσ. Let Q ∈ Rq,N and CT ={
CTi ∈ GLevB,ℓ

S⃗
(Q · Si) ∈ Rℓ×(k+1)

q

}
0≤i≤k−1

be a GGSW (Definition 9) with noise sampled
from χσBSK and Sk = 1.

In the special case where Q is a constant polynomial with a message drawn uniformly
in {0, 1}, the variance after the external product is:

58

2.3. TFHE and Its Variants

Var (ExternalProduct) = ℓ · (k + 1) ·N · B
2 + 2
12 · σ2

2+

+ σ2
1

2 + q2 −B2ℓ

24B2ℓ ·
(
1 + kN ·

(
Var (si) + E2 (si)

))
+ kN

8 · Var(si) + 1
16 · (1− kN · E(si))2

(2.18)

where E(si) and Var (si) are the expected value and the variance of the secret key
coefficients.

The cost of the algorithm is:

Cost (ExternalProduct)(ℓ,k,N) = (k + 1)NCost (dec)(ℓ) + ℓ(k + 1)Cost (FFT)
+ (k + 1)ℓ(k + 1)NCost (multFFT)
+ (k + 1)(ℓ(k + 1)− 1)NCost (addFFT)
+ (k + 1)Cost (iFFT)

(2.19)

Proof 11 (Theorem 11) The proof of the noise after an external product is detailed in
Appendix A.2.

□

Remark 6 (Internal Product [DM15]) One of the main improvements of
TFHE [Chi+20a] compared to FHEW [DM15] is the use of the external product
instead of an internal product. Informally, the internal product takes two GGSW
ciphertexts (Definition 9) instead of one GLWE ciphertext and one GGSW ciphertext.
It outputs one GGSW ciphertext instead of a GLWE ciphertext. The internal product is
composed of several external products. In practice, the noise after an internal product is
the same as after an external product. As there are several external products, the cost of
the internal product is higher than the one of an external product.

CMUX.

The CMUX is a homomorphic selector. Given two GLWE ciphertexts (Definition 5) en-
crypting two polynomials P0 and P1 and a GGSW ciphertexts (Definition 9) encrypting
a bit β, the CMUX returns a GLWE encryption of P0 if β = 0 and a GLWE encryp-
tion of P1 if β = 1 i.e. it returns a GLWE encryption of Pβ. Intuitively, the algorithm
homomorphically computes Pβ = (P1 − P0) · β + P0.

59

Chapter 2 – Preliminaries

Algorithm 8: CTout ← CMUX
(
CT0, CT1, CT

)

Context:

S⃗ ∈ Rk
q,N : the input GLWE secret key

β ∈ {0, 1}
CTin = (A0, · · · , Ak−1, B) ∈ Rk+1

q,N

CTi,j ∈ GLWES⃗

(
q

Bj+1 · β · Si

)
, for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ ℓ− 1

CTk,j ∈ GLWES⃗

(
q

Bj+1 · β
)

, for 0 ≤ j ≤ ℓ− 1
ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition

Input:

CT0 ∈ GLWES⃗ (P0) , with P0 ∈ Rq,N

CT1 ∈ GLWES⃗ (P1) , with P1 ∈ Rq,N

CT =
{

K⃗i = (CTi,0, · · · , CTi,ℓ−1)
}

0≤i≤k

Output: CTout ∈ GLWES⃗ (Pβ)
/* External Product using Algorithm 7 and Theorem 11 */

1 CTout ← ExternalProduct
(

(CT1 − CT0) , CT
)

+ CT0

2 return CTout

This algorithm is built on top of the external product (Algorithm 7 and Theorem 11)
and is the cornerstone of TFHE’s PBS. The algorithm is detailed in Algorithm 8 and in
the following theorem, we give the noise formula for a CMUX.

Theorem 12 (CMUX) Let ∀i ∈ {0, 1}, CTi ∈ GLWES⃗ (Pi) ∈ Rk+1
q,N be two GLWE

ciphertexts encrypting respectively P0 ∈ Rq,N and P1 ∈ Rq,N , under the GLWE se-
cret key S⃗ = (S0, . . . , Sk−1) ∈ Rk+1

q,N , with noise sampled from χσ. Let β ∈ {0, 1}. Let
CT =

{
CTi ∈ GLevB,ℓ

S⃗
(β · Si) ∈ Rℓ×(k+1)

q

}
0≤i≤k

be a GGSW (Definition 9) with noise sam-
pled from χσBSK.

The variance after the cmux is:

Var (CMUX) = ℓ · (k + 1) ·N · B
2 + 2
12 · σ2

2+

+ σ2
1

2 + q2 −B2ℓ

24B2ℓ ·
(
1 + kN ·

(
Var (si) + E2 (si)

))
+ kN

8 · Var(si) + 1
16 · (1− kN · E(si))2

(2.20)

where E(si) and Var (si) are the expected value and variance of the secret key coeffi-
cients.

60

2.3. TFHE and Its Variants

Algorithm 9: ctout ← BlindRotate (ctin, BSK, CTf)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the LWE input secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
Pf ∈ Rq : a r-redundant LUT for x 7→ f(x)
f : Z→ Z : a function
m̃ : encoded value of the message m

Input:

ctin ∈ LWEs⃗(m) = (a0, · · · , an−1, an = b) ∈ Zn+1

2N

BSK =
{
CTi ∈ GGSWB,ℓ

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

CTf ∈ GLWES⃗′ (Pf) ∈ Rk+1
q

Output: CTout ∈ GLWES⃗′ (Pf ·X−m)
1 begin
2 CTout ← CTf ·X−b
3 for 0 ≤ i ≤ n− 1 do
4 CT0 ← CTout
5 CT1 ← CTout ·Xai

6 CTout ← CMUX
(
CT0, CT1, CTi

)
7 end
8 end
9 return CTout

The cost of the algorithm is:

Cost (ExternalProduct)(ℓ,k,N) = (k + 1)NCost (dec)(ℓ) + ℓ(k + 1)Cost (FFT)
+ (k + 1)ℓ(k + 1)NCost (multFFT)
+ (k + 1)(ℓ(k + 1)− 1)NCost (addFFT)
+ (k + 1)Cost (iFFT) + 2 · (k + 1) NCost (add) .

(2.21)

Proof 12 (Theorem 12) The proof of the noise after a cmux in the context of a PBS
is detailed in Appendix A.2.

□

Blind Rotate

The blind rotate algorithm is one of the three main building blocks of the PBS. It consists
in rotating a lookup table homomorphically. Given a GLWE ciphertext CT encrypting a
polynomial P and an LWE ciphertext encrypting an encoded value m̃ of a message m, it

61

Chapter 2 – Preliminaries

returns a GLWE ciphertext encrypting P ·X−m ∈ Rq,N . Using Theorem 2, we know that
the constant term of P ·X−m is the m-th coefficient of P if 0 ≤ m < N .

We need to introduce the concept of redundant lookup table. The motivation behind
those lookup tables will be explained in the next part when we will introduce the PBS.

Definition 12 (Redundant Lookup Table) A redundant LUT is a lookup table en-
coding a function f , whose entries are redundantly represented inside the coefficients of
a polynomial in Rq,N . In practice, the redundancy consists in a r times (with r a system
parameter) repetition of the entries f(i) of the LUT with a certain shift. We call mega-cell
each block of successive redundant values in a r-redundant lookup table:

Pf = X−r/2 ·
N/r−1∑
i=0

X i·r ·

r−1∑
j=0

f̃(i) ·Xj

 (2.22)

with f̃(i) an encoded value of a message f(i). The redundancy is used to perform the
rounding operation during bootstrapping.

We described the blind rotate in Algorithm 9 and in Theorem 13.

Theorem 13 (Blind Rotate) Let ctin ∈ LWEs⃗(m̃) be an LWE ciphertext (Definition 4)
encrypting an encoded value m̃ of a message m such that ctin = (a0, · · · , an−1, an =
b) ∈ Zn+1

2N and s⃗ = (s0, · · · , sn−1) ∈ Znq . Let CTf ∈ GLWES⃗′ (Pf) ⊆ Rk+1
q,N , a GLWE

ciphertext encrypting an r-redundant LUT for f : Z → Z (Definition 12) with S⃗ ′ =(
S ′0, . . . , S ′k−1

)
∈ Rk

q,N . Let BSK a collection of GGSW ciphertexts (Definition 9) such

that BSK =
{
CTi ∈ GGSWB,ℓ

S⃗′ (si)
}n−1

i=0
. The noises in BSK are drawn fom a distribution

χσBSK.
Algorithm 9 outputs a ciphertext CTout ∈ GLWES⃗ (Pf ·X−m) where m is the input

message.
In a PBS, CTf is a trivial encryption of Pf (Definition 7). In this context, the variance

of the noise in CTout is:

Var(PBS) = n · ℓ · (k + 1) ·N · B
2 + 2
12 · Var(BSK)+

+ n · q
2 −B2ℓ

24B2ℓ ·
(
1 + kN ·

(
Var (si) + E2 (si)

))
+ nkN

8 · Var(si)

+ n

16 · (1− kN · E(si))2

(2.23)

62

2.3. TFHE and Its Variants

The cost of the blind rotate is:

Cost (BlindRotate)(n,ℓ,k,N) = n · Cost (CMUX)(ℓ,k,N) (2.24)

Proof 13 (Theorem 13) The proof of Equation (2.23) is given in Appendix A.2. The
proof extends to the case where CTf is not a trivial encryption.

□

Remark 7 (Interest of the Modulus Switch in the PBS) To make the blind rotate
work (Algorithm 9), we need 2N to be equal to the ciphertext modulus of the input cipher-
text, which is impractical for q = 264. As the cost of the blind rotate depends on N , we
want N as small as possible. To this end, we perform a modulus switch before a blind
rotate to reduce the ciphertext modulus. This operation adds a lot of noise but allows to
choose polynomial sizes way smaller than the size of q.

Programmable Bootstrap (PBS).

We have introduced in the previous parts all the building blocks needed to explain the
PBS. We call Programmable Bootstrap [Chi+20a; Chi+20b; CJP21], or PBS, an FHE
algorithm that enables to reset the noise in a ciphertext to a fixed level (when certain
conditions are fulfilled) and to homomorphically evaluate, at the same time, a lookup-table
on the encrypted message. Such an operator takes as input an LWE ciphertext encrypting
a message m, a bootstrapping key BSK (i.e., a list of GGSW ciphertexts encrypting the
elements of the LWE secret key used to encrypt the message m), an (trivial) encryption
of a r-redundant lookup table Pf (Definition 12), and outputs an LWE ciphertext with
a fixed level of noise encrypting the message Pf [m] when the process is successful. The
algorithm outputs the correct output up to a failure probability that can be estimated
using the variance of the noise and that we note pfail.

The PBS is composed of three major steps: the modulus switch (Algorithm 6 and The-
orem 10), the blind rotate (Algorithm 9 and Theorem 13) and the sample extract (Algo-
rithm 5 and Theorem 9).

Theorem 14 (Programmable Bootstrap (PBS)) Let s⃗ = (s0, · · · , sn−1) ∈ Znq be a
binary LWE secret key. Let S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q,N be a GLWE binary secret key
such that S ′i = ∑N−1

j=0 s′i·N+j · Xj, and s⃗′ = (s′0, · · · , s′kN−1) be the corresponding binary

63

Chapter 2 – Preliminaries

LWE secret key. Let Pf be an r-redundant LUT for a function f : Zq → Zq as defined in
Definition 12.

Then Algorithm 10 takes as input an LWE ciphertext ctin ∈ LWEs⃗(m̃) ∈ Zn+1
q with

noise distribution χσin and with m̃ an encoded value of a message m ∈ Zp such that
m̃ = ∆in · m with ∆in = q

2p , a bootstrapping key BSK =
{
CTi ∈ GGSWB,ℓ

S⃗′ (si)
}n−1

i=0
from

s⃗ to S⃗ ′ and a (possibly trivial) GLWE encryption of Pf , and returns an LWE ciphertext
ctout under the secret key s⃗′, encrypting f̃(m) i.e., an encoded value of the message f(m)
with a probability 1− pfail if and only if

• the input noise has variance σ2
in <

∆2
in

4·z∗(pfail)2 − q2

12w2 + 1
12 −

nq2

24w2 − n
48 , where z∗ (pfail)

is the standard score (Definition 22) associated to the failure probability pfail and
w = 2N ,

• for an arbitrary f , we need m < q
2 .

The output noise after the PBS is estimated by the formula:

Var(PBS) = nℓ(k + 1)N B2 + 2
12 Var(BSK) + n

q2 −B2ℓ

24B2ℓ

(
1 + kN

2

)

+ nkN

32 + n

16

(
1− kN

2

)2 (2.25)

The cost of Algorithm 10 is:

Cost (GenPBS)(n,ℓ,k,N) = Cost (ModulusSwitching)(n) + Cost (BlindRotate)(ℓ,k,N)

+ Cost (SampleExtract)(N)

(2.26)
The size (in bits) of the traditional bootstrapping key Size (BSK) is computed with the

following formula:

Size (BSK) := n · ℓPBS · (k + 1)2 ·N · ⌈log2(q)⌉

Proof 14 (Theorem 14) A more generic proof of Equation (2.25) is detailed in Ap-
pendix A.2. Taking κ = 0 and ϑ = 0 gives the claimed formula.

□

64

2.3. TFHE and Its Variants

Remark 8 (Negacyclic Function) The second condition in Theorem 14 which states
that we need m < q

2 can be removed if the function f has the following property:

f
(

x + q

2

)
= −f(x),∀x ∈ Zq (2.27)

In this case, the function f is said to be negacyclic.
For odd message modulus (see Definition 13), we can also remove this condition.

Algorithm 10: ctout ← PBS (ctin, BSK, CTf ,)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq : the output LWE secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
∀0 ≤ i ≤ k − 1, S ′i = ∑N−1

j=0 s′i·N+jX
j ∈ Rq

Pf ∈ Rq : an r-redundant LUT for x 7→ f(x)
f : Z→ Z : a function

Input:

ctin ∈ LWEs⃗(m̃) = (a0, · · · , an−1, an = b) ∈ Zn+1

q

BSK =
{
CTi ∈ GGSWβ,ℓ

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

CTf ∈ GLWES⃗′ (Pf) ∈ Rk+1
q

Output: ctout ∈ LWEs⃗′

(
f̃ (m)

)
if we respect the requirements of Theorem 14

1 begin
/* modulus switching (Algorithm 6) */

2 ctMS ← ModulusSwitch (ctin)
/* blind rotate of the LUT (Algorithm 9) */

3 CT← BlindRotate (CTf , ctMS, BSK) ;
/* sample extract the constant term (Algorithm 5) */

4 ctout ← SampleExtract (CT, 0)
5 end

Remark 9 (Key Switch and PBS) More often than not, we apply a key switch before
a PBS. Later in this manuscript (see Figure 4.6), we will examine in detail the optimal way
to combine these two algorithms. For simplicity, we will sometimes refer to the sequential
combination of a key switch and a PBS as KS-PBS.

65

Chapter 2 – Preliminaries

2.3.4 Other LUT Evaluation Algorithms

In the previous part, we introduced the PBS (Algorithm 10 and Theorem 14) and its
building blocks (Algorithms 5, 6 and 9 and Theorems 9, 10 and 13). The key features of
a PBS is to reduce the noise and to evaluate a lookup table simultaneously.

In the literature, other algorithms also allow to perform a noise reduction and a lookup
table evaluation. In this section, we describe some of them.

Circuit Bootstrap

In [Chi+17, Alg. 6], a technique called circuit bootstrapping was introduced. Let s⃗ be an
LWE secret key, S⃗ ′ be a GLWE secret key and s⃗′ the flattened version of S⃗ ′ (Definition 11).
It takes as input an LWE ciphertext (Definition 4) ct ∈ LWEs⃗ (m̃) and converts it into a
GGSW ciphertext (Definition 9) CT ∈ GGSWB,ℓ

S⃗′ (m), and reduces the noise at the same
time.

The circuit bootstrapping is composed of a series of ℓ PBS steps to create ℓ ciphertexts
{cti}0≤i≤ℓ−1 encrypting m · q

Bi+1 for 0 ≤ i ≤ ℓ − 1 under the key s⃗′, the flattened key of
S⃗ (Definition 11). Then, we perform k + 1 private key switches on each cti to obtain
{CTi,j}0≤j≤k

0≤i≤ℓ−1 such that CTi,j is encrypting −m · q
Bi+1 · S ′j with the key S⃗ ′ and with

S ′k = −1. The collection of those ciphertexts is a GGSW ciphertext encrypting m.
The circuit bootstrap is described in Algorithm 11. The PBSs are computed using

Algorithm 10 and Theorem 14 and the private key switch using Algorithm 3 and Theo-
rem 7. (BPBS, ℓPBS) represents the decomposition parameters for the PBS, (BKSK , ℓKSK)
for the private key switch and (BCB, ℓCB) for the final GGSW ciphertext (Definition 9).

Using Theorems 7 and 14, we can find the noise variance after the circuit bootstrap.

Vertical & Horizontal Packing

The authors of TFHE also proposed two operators to evaluate LUTs in a leveled way
i.e. without reducing the noise, called horizontal and vertical packing. They both take
as input a p-bit message msg, encrypted as a list of p GGSW ciphertexts each encrypt-
ing one of its bits. They also take as input α LUTs L0 = [l0,0, · · · , l0,2p−1], . . . Lα−1 =
[lα−1,0, · · · , lα−1,2p−1]: the goal is to compute the result of the evaluation of the LUTs
on the input message, i.e., return encryptions of l0,msg, . . . , lα−1,msg. Both operators use
cmuxes (Algorithm 8 and Theorem 12), either as a tree or in a blind rotation, to com-
pute the LWE result (that can be a GLWE in horizontal packing). Horizontal packing

66

2.3. TFHE and Its Variants

Algorithm 11: CTout ← CircuitBootstrap
(

ctin, BSK, {KSKj}k
j=0

)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq : the output LWE secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
∀0 ≤ i ≤ k − 1, S ′i = ∑N−1

j=0 s′i·N+jX
j ∈ Rq

Pfi ∈ Rq : an r-redundant LUT for x 7→ fi(x)
fi : Z→ Z : a function s.t. fi(x) = x · q

Bi+1
CB

, ∀0 ≤ i < ℓCB

CTfi ∈ GLWES⃗′ (Pfi) ⊆ Rk+1
q : a trivial encryption of Pfi

∀0 ≤ j ≤ k, gj : x 7→ S ′j · x with S ′k = −1;
Input:

ctin ∈ LWEs⃗(m̃) = (a0, · · · , an−1, an = b) ∈ Zn+1
q

BSK =
{
CTbsk,i ∈ GGSWBPBS ,ℓPBS

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

{KSKj}kj=0 =
{{

CTksk,i ∈ GLevBksk,ℓksk
S⃗′ (gj(s′i))

}
0≤i≤n

}k
j=0

: a private key switching key

Output: CTout ∈ GGSWS⃗′ (m) if we respect the requirements of Theorem 14
1 begin

/* ℓCB PBS (Algorithm 10) */
2 for 0 ≤ i < ℓCB do
3 cti ← PBS (ctin, BSK, CTfi)
4 end

/* (k + 1) · ℓCB private key switch (Algorithm 3) */
5 for 0 ≤ i < ℓCB do
6 for 0 ≤ j ≤ k do
7 CTi,j ← PrivateKS (cti, KSKj)
8 end
9 end

10 CTout ← {CTi,j}0≤i<ℓCB ,0≤j≤k
11 end

67

Chapter 2 – Preliminaries

Algorithm 12: CTout ← CMUX−Tree
({

CTi

}log2(p)−1

i=0
, {li}p−1

i=0

)

Context:

S⃗ ∈ Rk

q,N : the input GLWE secret key
ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition
p = 2log2(p) ∈ N : p is a power of two

Input:
{
∀0 ≤ i ≤ log2(p)− 1, CTi ∈ GGSWB,ℓ

S⃗
(mi) s.t. m =

∑log2(p)−1
i=0 mi · 2i

{Li}p−1
i=0 : a collection of lookup tables

Output: CTout ∈ GLWES⃗ (Lm)
/* Initilization */

1 for 0 ≤ i ≤ p− 1 do
2 L

(0)
i ← Li

/* CMUX tree with Algorithm 8 */
3 for 0 ≤ h < log2(p) do
4 for 0 ≤ i ≤ 2log2(p)−h−1 − 1 do
5 L

(h+1)
i ← CMUX

(
L2i, L2i+1, CTh

)
6 CTout ← L

log2(p)
0

7 return CTout

Algorithm 13: CTout ← VPLut
({

CTi

}p−1

i=0
, {li}2p−1

i=0

)

Context:

S⃗ ∈ Rk
q,N : the input GLWE secret key

ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition
N : polynomial size of Rq,N

p : a power of two

Input:
{
∀0 ≤ i ≤ log2(p)− 1, CTi ∈ GGSWB,ℓ

S⃗
(mi) s.t. m =

∑log2(p)−1
i=0 mi · 2i

{Li}
p
N−1
i=0 : a collection of lookup table

Output: CTout ∈ GLWES⃗ (Lm)
/* CMUX tree (Algorithm 12) on part of the input GGSW ciphertexts */

1 CTtmp ← CMUX − Tree
({

CT
}log2(p)−N−1

i=0
, {Li}

p
N−1
i=0

)
/* Final Blind Rotate (Algorithm 9) */

2 CTout ← BlindRotate
((

20, 21, · · · , 2log2(N)−1, 0
)

,
{

CT
}log2(p)−1

i=log2(p)−N
, CTtmp

)
3 return CTout

68

2.3. TFHE and Its Variants

is interesting when many LUTs should be evaluated in parallel, while vertical packing
is interesting when a single (large) LUT needs to be evaluated. They are two extremes
of a trade-off for the evaluation of homomorphic LUTs and a mixed solution has been
proposed generalizing both of them.

In Algorithm 12, we explain how to compute a tree of cmuxes. We assume the message
m to be in Zp i.e., m can be represented by log2(p) bits. Intuitively, a cmux tree is used
to select one of the input lookup tables using a list of GGSW ciphertexts encrypting the
bits of the message m. On each layer, we select half of the lookup tables with cmuxes
using one of the GGSW ciphertexts.

With a toy example, we show how to use a cmux tree to evaluate the identity
function on a message in Z4. For the sake of simplicity, let us assume that the lookup
tables have only one non zero coefficient on the constant term and that Li = i for
0 ≤ i ≤ p − 1 i.e., each lookup table represents an element of the message space
Zp. Let us assume that p = 4, m = 2 i.e., m0 = 0 and m1 = 1. On the first layer,
we will select the right lookup tables with a GGSW ciphertext encrypting m0. We
compute CMUX

(
L0, L1, GGSWB,ℓ

S (m0)
)
, we obtain a GLWE ciphertext CT0 encrypting

Lm0 = L0 = 0. We do the same with L2 and L3 and obtain another GLWE ciphertext
CT1 of L2 = 2. On the next layer, we compute CMUX

(
CT0, CT1, GGSWB,ℓ

S (m1)
)

and
we obtain CT1 which is an encryption of 2. Thus, at the end of the cmux tree, we
have applied the identity function on the input message m. If one wants to evaluate an
arbitrary function, the only modification to do is to encode different values in the lookup
tables.

In Algorithm 13, we present the vertical packing algorithm, which is faster than a
simple cmux tree under certain conditions. Intuitively, instead of evaluating the cmux
tree with every GGSW ciphertexts encrypting bits of the message, we do it on a subset
of the GGSW ciphertexts. After the cmux tree, we have an encrypted lookup table and
we need to select the right coefficient in this lookup table with a blind rotate and the rest
of the GGSW ciphertexts.

Regarding the noise, in a cmux tree, the noise behaves in the same way as in a chain
of cmuxes. Therefore, to estimate the noise of the vertical packing, one can directly use
the analysis of Appendix A.2 to come up with the formula.

69

Chapter 2 – Preliminaries

Multi-Output PBS [CIM19]

A multi-output version of the PBS is described in [CIM19] allowing the evaluation of
multiple (negacyclic) functions {fi}i over one encrypted input. Each function fi is en-
coded as a LUT in a polynomial Pi. One can find a shared polynomial Q such that we
can decompose each Pi as Q · P ′i . This operation is called PolyFactor and so we have
(Q, {P ′i}) = PolyFactor ({Pi}). Then we compute CTout ← PBS(ctin, BSK, Q) and multiply
CTout by each P ′i and sample extract the resulting ciphertexts. One would have obtained
the evaluation of each function.

One drawback of this method is that the noise inside the i-th output ciphertext depends
on P ′i and is bigger than the output noise of a bootstrap. We will see later on (Chapter 4)
how to compare FHE algorithms that have different output noises. To find the variance
of the noise in Algorithm 14, we can use the formula in Theorem 14 and in Theorem 4.
To prevent having a dependency on the lookup table in the variance, we can compute an
upper bound of the values in P ′i as done in [CIM19].

Remark 10 (Encrypted Lookup Table) The PBS (Algorithm 10 and Theorem 14)
works on an encrypted GLWE ciphertext CTf that can be a trivial encryption (Defini-
tion 7) or a classical GLWE ciphertext (Definition 5).

For Algorithm 14, it is not possible to use an encrypted LUT. The algorithm only
works with a trivial encryption of Q and P ′i .

Tree-PBS [GBA21]

A recent paper [GBA21] revisits the bootstrapping. It gives two algorithms, the tree-PBS
and the chain-PBS and a few optimizations to perform programmable bootstrapping on
large-precision ciphertexts encrypting one message decomposed in a certain base. Those
algorithms could be used to homomorphically compute multivariate functions if we call
them with the appropriate lookup tables.

The key idea in those algorithms is to split the message inside several ciphertexts using
a radix encoding (see Section 2.4). We assume that an encoded value m̃ of a message
m ∈ Zp is defined as m̃ = ∆in · m with ∆in = q

2p . Then, it uses the [CIM19]-PBS in
combination with packing key switch and bootstrap to evaluate the function over the
message. The algorithm in the special case where the message is only split in two is
summarized in Algorithm 15. The variance of the noise can be found by composing the
variance of Theorems 7 and 14.

70

2.3. TFHE and Its Variants

Algorithm 14: {ctout,i}α−1
i=0 ← CIM19−PBS

(
ctin, BSK, {Pi}0≤i≤α−1 ,

)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq : the output LWE secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
∀0 ≤ i ≤ k − 1, S ′i = ∑N−1

j=0 s′i·N+jX
j ∈ Rq

Input:

ctin ∈ LWEs⃗(m̃) = (a0, · · · , an−1, an = b) ∈ Zn+1

q

BSK =
{
CTi ∈ GGSWβ,ℓ

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

{Pi}0≤i≤α−1 ∈ Rα
q,N : polynomial of encoded values

Output: ctout,i ∈ LWEs⃗′ (Pi[m]) ,∀0 ≤ i ≤ α− 1 if we respect the requirements of
Theorem 14

1 begin
/* Factorize the lookup table */

2 Q, {P ′i}
α−1
i=0 ← PolyFactor

(
{Pi}α−1

i=0

)
/* PBS with Algorithm 10 */

3 CTtmp ∈ GLWES⃗′ (Q)← PBS (ctin, BSK, (0, · · · , 0, Q))
/* Leveled multiplications and sample extract (Algorithm 5) */

4 for 0 ≤ i ≤ α− 1 do
5 CTout,i ∈ GLWES⃗′ (Q · P ′i)← CTtmp · P ′i
6 ctout,i ← SampleExtract (CTout,i, 0)
7 end
8 end

71

Chapter 2 – Preliminaries

Algorithm 15: ctout ← Tree−PBS ({ctin,0, ctin,1} , BSK, CTf , KSK)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq : the output LWE secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
∀0 ≤ i ≤ k − 1, S ′i = ∑N−1

j=0 s′i·N+jX
j ∈ Rq

Pfi ∈ Rq : an r-redundant LUT for x 7→ fi(x)
m ∈ Zp

Input:

ctin,i ∈ LWEs⃗(m̃i) ⊆ Zn+1
q ,∀i ∈ {0, 1} s.t. m = m1||m0

BSK =
{
CTi ∈ GGSWβ,ℓ

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

KSK =
{
CTi ∈ GLevBksk,ℓksk

S⃗′ (si)
}

0≤i≤n
: a key switching key from s⃗′ to S⃗ ′

∀0 ≤ i ≤ p− 1, Pfi ∈ Rq,N : a collection of lookup tables

Output: ctout ∈ LWEs⃗′

(
f̃ (m)

)
if we respect the requirements of Theorem 14

1 begin
/* First layer of CIM-PBS with Algorithm 14 */

2 {cttmp,i}p−1
i=0 ← CIM9−PBS

(
ctin,0, BSK, {Pfi}

p−1
i=0

)
/* packing the output of first layer */

3 L ←

cttmp,0, · · · , cttmp,0︸ ︷︷ ︸
N
p

elements

, · · · , cttmp,p−1, · · · , cttmp,p−1︸ ︷︷ ︸
N
p

elements

4 CTL ← PackingKS (L, {0, · · · , N − 1} , KSK)

/* second layer with several PBS (Algorithm 10) */
5 ctout,i ← PBS (ctin,1, BSK, CTL)
6 end

72

2.3. TFHE and Its Variants

To use Algorithm 15 with more than two inputs, one can still use [CIM19]-PBS for the
first layer. The PBS will extract the constant term i.e. the coefficient that is of interest.
Then we can use the packing key switch to build p lookup tables. Next, we use the PBS
with an encrypted lookup table to select one coefficient for each LUT. Finally, we can
use the packing key switch again to build a lookup table and apply a last PBS with an
encrypted lookup table. For efficiency reasons, it could be useful to replace the PBS of
the second layer by a circuit bootstrap (Algorithm 11) and several external products.

[LMP21]-WoP-PBS

One of the constraints of the PBS (second condition in Theorem 14) is to have a message
smaller than q

2 . With this constraint, it is harder to use the PBS with real use cases. This
was for long a big restriction. We introduce in Section 6.1 and Algorithms 27 and 28 the
first known Without-Padding PBS (WoP-PBS) i.e. a PBS working without condition 14.
After our first construction, a WoP-PBS was also introduced in [LMP21] that we describe
in Algorithm 16. The variance of the noise after the WoP-PBS of [LMP21] is the same as
the variance after a PBS (Theorem 14).

In this thesis, we compare [LMP21]-WoP-PBS with another WoP-PBS that we describe
in Section 6.2 and Algorithm 30.

2.3.5 TFHE’s Limitations

In the previous sections, we introduced the main building blocks of TFHE. A wide range
of operations can be performed using those algorithms but some limitations must be
acknowledged. Let us summarize the different existing limitations.

Limitation 1 (Padding Bit in PBS) We saw in Theorem 14 (Condition 2) that we
need the encrypted plaintext to have its Most Significant Bit (MSB) set to zero (or at
least known) to perform a correct bootstrap (Algorithm 10). The only exceptions are when
the univariate function evaluated is negacyclic or when the message modulus is odd as
explained in Remark 8. This limitation prevents us from leveraging the native modulo q

and sustains a consistent modular arithmetic over the messages.

Limitation 2 (Maximal Precision in PBS) One cannot bootstrap efficiently a mes-
sage with a large precision (e.g., more than 8 bits). The number of bits of the message we
bootstrap is strictly related to the dimension N of the ring chosen for the PBS. This means

73

Chapter 2 – Preliminaries

Algorithm 16: ctout ← LMP22−PBS (ctin, BSK, KSK, f)
Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq : the output LWE secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
∀0 ≤ i ≤ k − 1, S ′i = ∑N−1

j=0 s′i·N+jX
j ∈ Rq

m ∈ Zp
∆ = q

p

β : a correction for the noise s.t. β ≤ ∆
4

f0 : Z2q → Z2q : a function s.t. f0(x) =
(
q
⌊
x
q

⌋
− q

2

)
mod 2q

f1 : Z2q → Z2q : a function s.t. f1(x) =
 αf

(⌊
x
∆

⌉)
if x < q

−αf (⌊(2q − x)/∆⌉) otherwise
CTf0 ∈ GLWES⃗′(Pf0) : an encryption of a LUT (Definition 12)f0

CTf1 ∈ GLWES⃗′(Pf1) : an encryption of a LUT f1
Input:

ctin ∈ LWEs⃗(m̃) = (a0, · · · , an−1, an = b) ∈ Zn+1
q

f : Zp → Zp : a function we want to evaluate
BSK =

{
CTi ∈ GGSWβ,ℓ

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

KSK =
{
CTi ∈ GLevBksk,ℓksks⃗ (s′i)

}
0≤i≤kN−1

: a key switching key from s⃗′ to s⃗

Output: ctout ∈ LWEs⃗′ (Pf [m]) if we respect the requirement 14 of Theorem 14
1 begin

/* Noise correction */
2 cttmp ← ctin + (0, · · · , 0, β)

/* To increase the message/ciphertext space */
3 cttmp ← cttmp mod 2q

/* PBS with Algorithm 10 */
4 cttmp ← cttmp − PBS (cttmp, BSK, CTf0)

/* Noise correction */
5 cttmp ← cttmp + β − q

2
/* Keyswitch with Algorithm 1 */

6 cttmp ← Keyswitch (cttmp, KSK)
/* PBS with Algorithm 10 */

7 ctout ← PBS (cttmp, BSK, CTf1)
8 end

74

2.3. TFHE and Its Variants

that the more we increase the precision, the more we have to increase the parameter N ,
and the slower the computation ends up.

Limitation 3 (Multi-threaded PBS) The PBS algorithm is not easily parallelizable.
Indeed, it is a series of loops working on an accumulator. Some variants of the
PBS [Zho+18; JP22] offer ways to have a multi-threaded PBS but as a drawback, the
bootstrapping key size increases exponentially and the noise after this bootstrapping is
bigger than with a traditional PBS (Algorithm 10).

Limitation 4 (Native LWE Multiplication) There exists no native multiplication
between two LWE ciphertexts. Currently, there are two approaches to multiply LWE ci-
phertexts:

• use two programmable bootstrappings (Algorithm 10) to evaluate the function x 7→ x2

4
so we can build the multiplication x · y = (x+y)2

4 − (x−y)2

4 ;

• use 1 or more TFHE circuit bootstrappings (Algorithm 11) in order to convert one
of the inputs into a GGSW ciphertext (if not given as input) and then performing
an external product (Algorithm 7).

Since both techniques make use of the PBS, they both suffer from Limitations 1 and 2.

Limitation 5 (Homomorphic Decomposition) Because of Limitations 1 and 2, it
seems impractical, in an efficient manner, to homomorphically split a message contained
in a single ciphertext into several ciphertexts containing smaller chunks of the original
message (apart from the trivial, but inefficient, binary case).

Limitation 6 (Several LUTs in one PBS) The PBS can evaluate only a single func-
tion per call. Using the [CIM19]-PBS (Algorithm 14), we can evaluate multiple lookup
tables at the same time, but the output will have an additional amount of noise which
depends on the function evaluated.

Limitation 7 (Gate Bootstrapping) TFHE’s gate bootstrapping represents a very
easy solution for evaluating homomorphic Boolean circuits. However, this technique re-
quires a PBS for each binary gate, which results in a costly execution. Furthermore, when
we want to apply a similar approach to the arithmetic circuit with larger integers (more
than 1 bit), TFHE does not provide a solution.

75

Chapter 2 – Preliminaries

Limitation 8 (Circuit Bootstrap) TFHE’s circuit bootstrapping (Algorithm 11) re-
quires ℓ PBSs followed by many key switches, which is significantly time consuming.

Limitation 9 (GLWE Secret Key Size) There is no fine-grained control over the size
of a GLWE secret key. In a GLWE secret key, there are k ·N coefficients with N a power
of two and k an integer greater than one. We cannot choose to use an arbitrary number
of secret key coefficients.

Limitation 10 (Noise Plateau) When encrypting a ciphertext, if we use a noise vari-
ance so small that when we draw random noise from this distribution, the noise is most
of the time set to 0, we take the risk of having ciphertexts without noise. That is why we
enforce a minimal value for the variance of the noise which depends on a given security
level and a given ciphertext modulus q (see Section 3.1 for the details).

So when one increases n (or kN), they eventually reach a plateau in terms of noise
variance i.e. there is an LWE dimension nplateau ∈ N such that for any LWE dimension
greater than nplateau, we still need to take the same noise variance if we want the security
to hold.

In this thesis, we successfully removed the limitations listed above by introducing new
algorithms, new tools and new encodings to make TFHE more practical.

2.4 Encodings

In this section, we introduce several ways to encode a message before encrypting it. Given
a message, we can encode it into one or several values. First, we explain how to encode
a message to be encrypted in a single LWE ciphertext. Then, we show how to encode a
single message into several encoded values using the CRT and the radix encodings.

2.4.1 Modular Arithmetic with a Single LWE ciphertext

In [Chi+20a], the authors extensively explained how to use TFHE with Boolean messages,
and noticed that it also supports small integer messages i.e. messages with at most 10 bits
of precision. In this section, we explain how to generalize the encoding to support small
integers.

Before applying the encryption procedure in Definitions 4 and 5, we need first to
encode the message. The following definition explains how to do that.

76

2.4. Encodings

Definition 13 (GLWE Encode & Decode) Let q ∈ N be a ciphertext modulus, and
let p ∈ N a message modulus, and π ∈ N the number of bits of padding3. We have 2π ·p ≤ q

and 2π · p is the plaintext modulus. Let M ∈ Rp be a message. We define the encoding of
M as:

M̃ = Encode (M, 2π · p, q) = ⌊∆ ·M⌉ ∈ Rq (2.28)

with ∆ = q
2π ·p ∈ Q the scaling factor (see a visual example in Figure 2.1).

To decode, we compute the following function:

M = Decode
(
M̃, 2π · p, q

)
=
⌊

M̃

∆

⌉
∈ Z2π ·p (2.29)

In practice M̃ contains a small error term E = ∑N−1
i=0 ei ·X i ∈ Q[X]/(XN + 1), so we

can rewrite M̃ = ∆ ·M + E ∈ Zq. The decoding algorithm fails if and only if there is at
least one i ∈ [[0, N − 1]] such that |ei| ≥ ∆

2 . We can note this probability as

Pr
(
N−1⋃
i=0
|ei| ≥

∆
2

)
= Pr

(
Decode

(
M̃, 2π · p, q

)
̸= M

)
. (2.30)

∅ p e

MSB LSB

Figure 2.1: Plaintext binary representation with p = 8 = 23 (cyan), π = 2 (dark blue)
such that 2π · p ≤ q, the error e (red). The white part is empty. The MSB are on the left
and the LSB on the right.

The encoding introduced in Definition 13 can be modified in order to include a carry
space on the left of the plaintext space. The core idea is to have enough room in a
ciphertext encrypting an integer message modulo β ∈ N to store more than just the
message but also potential carries coming from leveled operations such as addition or
multiplication with a known integer.

To give an example, let us assume that we have two messages m0 = 3 and m1 = 2.
m0 and m1 can be written on 2 bits as m0 = 112 and m1 = 102. However, the sum of
m0 and m1 can not be written on 2 bits as m0 + m1 = 1012 = 5. We saw in Theorem 14

3. For simplicity we use a power of 2 for the padding, but this is not a necessary condition.

77

Chapter 2 – Preliminaries

that we need the message to be less than q
2 to have the correct output after a PBS. If we

perform several additions, we are at risk of overwriting the padding bit and thus failing
the following PBS. To mitigate this risk, we introduce a carry space, a dedicated space to
absorb the additional bits of information after performing additions and multiplications
(Theorem 1, Theorem 4). Once the carry space is full, we need to bootstrap in order to
encode again the message and clean the carry space to provide for future additions.

In practice, we split the traditional plaintext space into three different parts: the
message subspace storing an integer modulo β ∈ Z (we call β the base), the carry subspace
containing information overlapping β, and a bit of padding (or more) often needed for
bootstrapping. In this context, we refer to the carry-message modulo as the subspace
including both the message subspace plus the carry subspace, and we note it p ∈ N.
Figure 2.2 shows a visual example.

∅ p

β

e

MSB LSB

Figure 2.2: Plaintext binary representation with a base β = 4 = 22 (green), a carry
subspace (cyan), a carry-message modulo p = 16 = 22+2 (cyan+green) such that 0 < β <
p, the error e (red), and a bit of padding is displayed in the MSB (dark blue). The white
part is empty. So the plaintext modulo is 32 = 22+2+1. This means that we have 2 bits in
the carry subspace (set to 0 in a fresh ciphertext), that will contain useful data when one
computes leveled operations.

Remark 11 (Boolean Encoding in TFHE) In [Chi+20a], TFHE is described with
Boolean encoding. With the Boolean encoding, we have β = 2, p = 4 and π = 0 with
π the number of bits of padding as defined in Definition 13.

The functions evaluated are all negacyclic (Remark 8) so we do not need a bit of
padding to guarantee the correctness of the PBS (Theorem 14 and Algorithm 10).

Thanks to the carry bit, we can perform linear combinations between two ciphertexts
before a bootstrap. With linear combinations and bootstraps, we can support every logical
gate with two inputs.

In order to keep track of the worst-case message in a ciphertext – i.e., check if there is
still room to perform more operations – we use a metadata that we call degree of fullness.

78

2.4. Encodings

Definition 14 The degree of fullness, that we note deg, of an LWE ciphertext ct encrypt-
ing a message 0 ≤ m < p, is equal to deg (ct) = µ

p−1 ∈ Q, where µ is the known worst
case for m, i.e., the largest integer that m can be, such that 0 ≤ m ≤ µ < p. To ensure
correctness, the degree of fullness should always be a quantity included between 0 and 1,
where deg (ct) = 1 means that the carry-message subspace is full in the worst case.

We take advantage of the carry subspace to compute leveled operations and to avoid
bootstrapping. In practice, the carry subspace acts as a buffer to contain the carry in-
formation derived from leveled operations (additions, multiplication by an integer) and
the degree of fullness acts as a measure that indicates when the buffer cannot support
additional operations: once this limit is reached the carry subspace is emptied by boot-
strapping. To be able to perform a leveled operation between two LWE ciphertexts of
that type, they need to have the same base β, carry-message p and ciphertext modulus
q. We now list the operators one can compute over such encrypted integers:

• homomorphic addition between two encrypted integers (Theorem 1);

• multiplication by a small integer constant (Theorem 4);

• homomorphic opposite, requiring a correction term;

• homomorphic subtraction, composed as an opposite and an addition;

• homomorphic univariate function evaluation, computed with the PBS algorithm;

• homomorphic multivariate function evaluation, computed by using a trick that was
already proposed in [Cle+22]. If the degrees of the ciphertexts allow it, the idea
is to concatenate two messages m1 and m2 (or more) respectively encrypted in ct1

and ct2 by re-scaling the first one with constant multiplication to µ2 + 1 (where
µ2 is the worst possible value that can be reached by the m2) and adding it to
ct2 and finally computing a PBS on the concatenation. Once the two messages are
concatenated in a single ciphertext, the bivariate LUT L can be simply evaluated
as a univariate LUT L′ on the concatenation of m1 and m2. A visual example is
proposed in Figure 2.3;

• homomorphic multiplication between two ciphertexts, computed by using the mul-
tivariate approach just described, for both the LSB multiplication (i.e. m1 · m2

mod β) and the MSB multiplication (i.e.
⌊
m1·m2
β

⌋
). If instead we want to compute

79

Chapter 2 – Preliminaries

the multiplication without any modular reduction, we can use well known techniques
in TFHE literature such as in [Chi+20b] (see Limitation 4);

• homomorphic carry/message extraction, computed through PBS.

Inputs:

∅

0 0 0

β ∅

0 0 0

β

Shift: 0 0 0 0 0 0

Addition: 0

Result LUT: 0 0 0

×β

+

KS-PBS

.

Figure 2.3: Example of a bivariate LUT evaluation with shift, key switch (KS) and PBS.

Remark 12 (Noise Growth) Generally with FHE, one has to monitor the noise growth
in order to guarantee the correctness of successive operations (Definition 13). However,
with the concept of carry buffer, we can chose parameters such that the noise is always
under a certain level if the degree of fullness has not reached the maximal value allowed.
When we approach this value for the degree, a bootstrapping operation is performed and
the noise is reduced at the same time. We give more details in Section 7.2.4.

2.4.2 Modular Arithmetic with Several LWE ciphertexts

In the state of the art, several approaches using many ciphertexts to represent a single
message are proposed. We can split these approaches into two main categories: the radix
and the CRT (Chinese Reminder Theorem) representations.

The radix representation consists in decomposing a message into several chunks ac-
cording to a decomposition base. It is very similar to the representation in base 10 we
use in our daily lives, where to represent a large number we use several digits. Then the
idea is to put each digit into a separate ciphertext and to define the new encryption of
the large message as the list of these ciphertexts.

80

2.4. Encodings

The CRT approach consists in representing a number x modulo a large integer Ω =∏κ
i=0 ωi, where the ωi moduli are pairwise co-prime, as the list of its residues xi = x

mod ωi. Each residue is then encrypted into a different ciphertext and, as for the radix-
based approach, the new encryption of the large message modulo Ω is the list of these
ciphertexts.

In order to use these two approaches in TFHE, the digits (for the radix-based ap-
proach) and the residues (for the CRT-based approach) need to be quite small (generally
less than 8 bits).

The approach of splitting a message into multiple ciphertexts has already been pro-
posed for binary radix decomposition in FHEW [DM15] and TFHE [Chi+20a], and for
other representations in [BST20], [GBA21], [KO22], [Cle+22] and [LMP21]. However,
none of them takes advantage of carry buffers to make the computations more efficient
between multi-ciphertext encrypted integers by avoiding bootstrapping as much as pos-
sible. In [GBA21] they propose two approaches to evaluate the PBS over these multi-
ciphertexts inputs, namely the tree-based (Algorithm 15) and chained-based approaches
(that we shorten as Tree-PBS and Chained-PBS). The Chained-PBS method is general-
ized in [Cle+22] to any function in exchange for a larger plaintext space.

The idea of using the CRT approach is mentioned in [KS21] but unfortunately no
details are provided. The authors do not change the traditional TFHE encoding to fit
the CRT representation. Later on, we provide detailed algorithms to describe the use of
the CRT in the plaintext space with two different approaches (with or without carry
buffers, along with their respective encoding). Concerning bootstrapping, they describe
how to trivially construct polynomials for the blind rotation, which allows them to only
evaluate a narrow set of functions (every CRT element being mapped to an output CRT
element).

Breaking down a message into several ciphertexts is the first step towards larger pre-
cision messages but this method has some limitations. In particular, the radix approach
does not allow to represent messages with arbitrary moduli. The modulus has to be se-
lected as a product of a certain base (or bases). We will see in Section 7.2.1 how to remove
this constraint. The CRT approach is limited on the maximal number that could be rep-
resented, because there exist a very limited amount of primes or co-prime integers smaller
than 8 bits.

While arithmetic operations can be evaluated quite straightforwardly for these repre-

81

Chapter 2 – Preliminaries

sentations, the bootstrapping and generic LUT evaluation is very inefficient, and the only
known technique is the Tree-PBS (Algorithm 15) proposed by [GBA21]. This technique
becomes very inefficient as the number of ciphertexts encrypting a single large message
increases.

Radix-based large integers

The radix-based approach consists in encrypting a large integer modulo Ω = ∏κ−1
i=0 βi as

a list of κ ∈ N LWE ciphertexts. Each of the κ ciphertexts is defined according to a pair
(βi, pi) ∈ N2 of parameters, such that 2 ≤ βi ≤ pi < q, which respectively corresponds to
the message subspace and the carry-message subspace involved with the modular arith-
metic, as described in Section 2.4.1. Figure 2.4 gives a visual representation out of a toy
example.

∅
0

p0

0 0
β0

· · ·
e0

ct0 = LWE(m̃0)

∅
0

p1

0 0
β1

· · ·
e1

ct1 = LWE(m̃1)

∅
0

p2

0 0
β2

· · ·
e2

ct2 = LWE(m̃2)

Figure 2.4: Plaintext representation of a fresh radix-based modular integer of length κ = 3
working modulo Ω = (22)3 with msg = m0 +m1 ·β0 +m2 ·β0 ·β1. The symbol ∅ represents
the padding bit needed for the PBS. For each block we have m̃i = Encode (mi, pi, q). For
all 0 ≤ i < κ we have βi = 4, pi = 16, κ = 3 and Ω = 43.

In practice, the restriction for Ω is that it has to be a product of small bases. Indeed,
TFHE-like schemes do no scale well when one increases the precision, so the best practice
is to keep pi ≤ 28.

Definition 15 (Radix Encoding) To encode a message msg ∈ ZΩ, one needs to de-
compose it into a list of {mi}κ−1

i=0 such that

msg = m0 +
κ−1∑
i=1

mi ·

i−1∏
j=0

βj

 . (2.31)

Then we can independently call the Encode function (Definition 13) on each mi. We
have m̃i = Encode (mi, 2π · pi, q) with π the number of bits of padding.

Finally we can encrypt each m̃i into an LWE ciphertext using Definition 4.
To decode, we simply recompose the integer from the mi values using Equation (2.31).

82

2.4. Encodings

To compute operations over radix-based integers, we must be sure that the messages
are encoded and encrypted with the same parameters. The majority of the arithmetic
operations can be computed by using a schoolbook approach (homomorphically mixing
linear operations and PBS) and by keeping the degree of fullness (Definition 14) smaller
than 1 in each block. When carries are full, they need to be propagated to the next block:
this is done by extracting the carry and the message and adding the carry to the next
block.

When it comes to computing a generic LUT over a radix-based modular integer, the
only known approach from the literature is the Tree-PBS from [GBA21], which becomes
more and more inefficient as the number of blocks goes increasing.

CRT-based large integers

The CRT-based approach consists in encrypting a large integer modulo Ω = ∏κ−1
i=0 βi as

a list of κ LWE ciphertexts, and we require each pair βi and βj ̸=i of bases to be co-
prime. Each of the κ ciphertexts is defined according to a pair {βi, pi}0≤i<κ such that
2 ≤ βi < pi < q.

Definition 16 (CRT Encoding) Let q be a ciphertext modulus. In order to encode a
message msg ∈ ZΩ, one needs to compute {mi}κ−1

i=0 such that

∀ 0 ≤ i < κ, msg = mi mod βi (2.32)

with 2 ≤ βi < pi < q and pi as defined in Definition 13. We have EncodeCRT (msg) =
(m0, · · · , mκ−1).

Then we can independently encode (Definition 13) and encrypt (Definition 4) each mi

into an LWE ciphertext. To decode, we simply need to compute the modular reduction in
base βi and perform a CRT recombination.

With this CRT encoding, we have to empty the carry buffers when they are (almost)
full. Indeed, when using TFHE’s PBS, the bit of padding needs to be preserved. We only
need to call the message extraction algorithm described in Section 2.4.1 when needed.

All the arithmetic operations can be performed independently on the blocks by using
the operators described in Section 2.4.1. Concerning the evaluation of a LUT, the only
known way in the literature to compute it on CRT-based large integers, is the technique
proposed by [KS21], which can be used only when the LUT to evaluate is CRT-friendly.

83

Chapter 2 – Preliminaries

A CRT-friendly LUT is a LUT L that can be independently evaluated in each compo-
nent, i.e., L such that EncodeCRT (L (msg)) = (L0 (m0) , · · · , Lκ−1 (mκ−1)). For generic
LUT evaluations, once again, the only technique known in the literature is the Tree-PBS
by [GBA21].

Native CRT. In TFHE, we can also encode CRT integers by using no padding bit
and no carry buffer (so no degree of fullness either), and by encoding the message mi

as
⌊
q
βi
·mi

⌉
. By doing so, additions and scalar multiplications become native and do not

require any PBS, except for noise reduction. To compute additions one can use the LWE
addition on each residue, and to compute a scalar multiplication by α, one can decompose
α with the CRT basis into smaller integers, and compute scalar multiplications with them.
Without the bit of padding, the PBS can be evaluated only with a WoP-PBS algorithm.
However, to evaluate a generic LUT, the problem is still open. We will provide a solution
in the next sections.

PBS with p Not a Power of Two. No details, nor analysis have been provided yet
in the literature about computing a PBS when the plaintext space is not a power of two.
We bring some clarity to this question in this paragraph.

When one wants to compute a traditional PBS evaluating a non-negacyclic function, it
is required to have a bit of padding, which forces the plaintext space to be even. However
the algorithm works the same with an odd p, the only difference lies in the way the
r-redundant LUT is built (Definition 12). This also brings a slight modification in the
evaluation of the error probability when computing such PBS.

Theorem 15 (Non-Power-Of-Two Lookup Table) If we use a non-power-of-two en-
coding, we need to modify the definition of the lookup table. Let L : Zp → Zp′ be the lookup
table we want to evaluate such that x 7→ L[x] = yx. We define the r-redundant lookup
table L̃ represented as a polynomial as:

L̃ = X−⌊
N
2·p⌉ ·

(
N−1∑
i=0

⌊
q

p′
· y⌊ i·pN ⌋

⌉
·X i

)
(2.33)

Proof 15 (Theorem 15) With such a LUT, and p not a power of 2, we end up with
two possible sizes for the mega-cases of the r-redundant LUT: either

⌊
N
p

⌋
or

⌈
N
p

⌉
. For

the correctness study, we will take the worst case scenario, i.e., considering
⌊
N
p

⌋
. The

encoding function (Definition 13) enables to have messages centered in the mega-cases

84

2.5. Optimization for FHE

when it comes to PBS, it means that the probability of going into the wrong mega-case
during a PBS in the worst-case scenario is when the error eMS is greater in absolute value
than

⌊
N
p

⌋
where eMS is the error in the PBS after the modulus switch and before the blind

rotation. Thanks to noise formulae, it is easy to estimate the variance of eMS. Since it is
close to a Gaussian distribution, we can use a confidence interval to infer the probability
to get into the wrong mega-case. □

Limitations

The radix and CRT approaches discussed in this section are a first step towards solving
the precision problem in TFHE-like schemes. However, they come with some limitations
that are listed below.

Limitation 11 (Limited Choice of Radix Modulus) The radix approach is limited
to the modulo Ω that can be expressed as a product of bases. If the modulus is for instance
a large prime, no solution is known.

Limitation 12 (Limited Choice of CRT base) The CRT approach suffers from the
CRT requirements, i.e., co-prime bases, and the precision limitation we have in practice
with TFHE (Limitation 2). Indeed, there are a limited number of primes between 2 and
128. It means that this approach is good when Ω is composed of small enough co-prime
factors but for the rest of the possible Ω we need other solutions.

Limitation 13 (Generic LUT with Radix & CRT Encoding) For both the radix
and the CRT approach, the only way to evaluate a generic LUT is the Tree-PBS, which
does not scale well with the number of blocks, and so it is still inefficient in practice.

In Sections 6.2 and 7.2, we provide solutions to overcome all these limitations.

2.5 Optimization for FHE

In Section 2.2, we saw that we needed to select some parameters to encrypt ciphertexts.
For instance, we need to pick a GLWE dimension k and a polynomial size N to encrypt a
GLWE ciphertext (Definition 5). In Section 2.3, we introduced some FHE algorithms and
some of them come with additional degrees of freedom that need to be set. For instance
in Algorithm 1, we need a decomposition base B and a level of decomposition ℓ. In the

85

Chapter 2 – Preliminaries

different theorems, we saw that those parameters influence both the cost of the operation
and the noise growth (see Theorem 6). For lack of an alternative, those parameters are
chosen by hand which makes it hard to guarantee correctness and efficiency.

In [Via+22], the authors distinguished four types of optimization:

Program Transformation it consists in mapping a program to an FHE program follow-
ing some FHE programming rules (for instance, removing every if-then-else branch-
ing). In this step, we can leverage the batching capabilities of the cryptographic
scheme when available.

Circuit Optimization once we have an FHE compatible graph, we can apply several
transformations to it to reduce the number of some FHE operations (for instance,
reducing the multiplicative depth of the circuit).

Cryptographic Optimization it consists in choosing the GLWE (or LWE) instance
that we will use and more generally set every degree of freedom available inside the
FHE circuit.

Target Optimization once we have a fully-parametrized circuit, we can compile it into
machine code, leveraging every feature of the target machine (for instance, using
AVX512 to speed up operations).

In the literature, a few compilers [Dat+20][GKT22] for FHE schemes have been pro-
posed: they mainly optimize the circuit to make it as FHE friendly as possible i.e. they
focus on program transformation and circuit optimization.

We try to solve a different problem by focusing on cryptographic optimization and we
aim to provide a generic approach to automatically select the best parameters according to
a given cost model for an arbitrary graph of FHE operators while guaranteeing correctness
and security. To the best of our knowledge, no one has ever presented a result on the
optimization of parameters for an FHE scheme including a bootstrapping with a flexibility
towards multi-precision plaintexts before our contribution [Ber+23a].

We suggest this paper [VJH21] for more information and for a comparison of all
existing FHE compilers.

2.5.1 TFHE

Cingulata [CDS15] is the first attempt at a compiler for TFHE and was proposed in 2015.
It takes an arithmetic circuit described in C++ and translates it into a Boolean circuit.

86

2.5. Optimization for FHE

Then, the Boolean circuit is converted into an FHE circuit composed of gate bootstraps as
described in TFHE [Chi+20a] (we give details on this approach in Section 7.1.1). Cingulata
uses the TFHE library [Chi+16b] to execute the circuit with a hardcoded parameter set.
Therefore, it does not try to find optimal parameters for the circuit at hand.

Another framework called Encrypt-Everything-Everywhere (E3) was introduced in
[Chi+18]. Like Cingulata, it takes C++ code as input and supports TFHE but does
not provide any parameters. The user is responsible for selecting adequate parameters.

In [Gor+21], the authors introduce a transpiler in the same spirit as Cingulata. The
C++ code is translated to a Boolean circuit and various optimization techniques to
simplify it are applied. Once again, the parameters used were the one of the TFHE
library [Chi+16b].

Concurrently to the work we did (see Chapter 4), in [Kle22], Klemsa proposes an
approach to automatize the setup of parameters for TFHE with particular attention in
efficiently using resources during the bootstrapping step. Klemsa noticed a link between
the size of the public materials (key switch keys and bootstrap keys) and the running time
of a computation. Using the size of the public keys as a surrogate of the execution time,
he was able to reach good improvements on simple examples. This tool allows to find
parameters for a graph composed of additions (Theorem 1), multiplications by integers
(Theorem 4), one key switch (Theorem 6) and one PBS (Theorem 14).

2.5.2 Other Schemes

The majority of existing FHE optimizers target other homomorphic schemes than TFHE.
Each scheme comes with its own set of constraints and features and those are reflected in
the optimization methods.

Schemes such as BGV, B/FV or HEAAN have the tendency to avoid bootstrapping
in favor of leveled operations (additions, multiplications). This is due to the fact that
these schemes are parametrized with a fixed number of levels, and every multiplication
consumes one of the levels. Once all the levels are consumed, no more multiplications can
be performed and decryption or bootstrapping is required. The bootstrapping in those
schemes is different than what we describe as a bootstrapping in TFHE, it will not reduce
the noise but add more available levels. In this context, there exists a line of work aiming
to reduce the multiplicative depth of the circuit to be homomorphically evaluated [CAS17;
ACS20; Lee+20a] by those schemes. This is not an approach used in TFHE-like schemes,
where the multiplicative depth is not a measure taken into account, since the non-linear

87

Chapter 2 – Preliminaries

operations are performed by using a bootstrapping.
Schemes like HEAAN [Che+17] have batching and SIMD capabilities that TFHE does

not have. Informally, it allows to evaluate a circuit on different inputs in one run. Thanks
to that, those schemes can achieve very good amortized execution times. Those features
influence the way the optimization problem is tackled. During the optimization, one of
the goal is to maximize the batching capacity to have an amortized execution as small as
possible. As TFHE does not support these features, this is not a goal during the selection
of the parameters.

The noise management for HEAAN is quite different than the noise management for
TFHE, the former providing approximate results. By definition, HEAAN is not designed
to deal with exact computations: the encoding itself does not allow exact representations
of messages. Furthermore, to evaluate a function with HEAAN, one needs to approximate
it with polynomials. If one can settle for approximate arithmetic, those schemes are very
efficient. TFHE has been built with another objective in mind: doing efficient and exact
arithmetic.

2.5.3 Limitations

To sum up this study of optimization techniques for FHE, we can define the two following
existing limitations.

Limitation 14 (Automatic Parameter Selection) No tools exists that automatically
sets the degrees of freedom needed to perform computations over ciphertexts. A user needs
to manually choose a (G)LWE instance and its associated parameters (GLWE dimension,
polynomial size, LWE dimension). He also needs to choose the degrees of freedom available
in most of the algorithms, for instance the decomposition base B and the maximum level
of the decomposition ℓ in Algorithm 1.

Limitation 15 (Comparing State-of-the-Art FHE Algorithms) In Section 2.3.4,
we introduced alternatives to TFHE’s PBS (Algorithm 10). Those variants have a different
cost and noise trade-off than TFHE’s PBS i.e., for a given set of parameters, the noise of
the output ciphertext will be different than the noise after a PBS. Similarly, for the same
parameters, the cost of computing a PBS or one of its variant will not be the same.

Due to these different noise/cost trade-offs, we cannot easily compare FHE algorithms.

88

Chapter 3

NOISE METHODOLOGY

As explained in Sections 2.1 and 2.2, a ciphertext contains some randomness called noise
which is needed for security. In particular, the noise distribution must be carefully picked.
In this thesis, we consider the noise distribution to be a discrete centered Gaussian distri-
bution, therefore we only need to express the noise variance to fully characterize the noise
distribution.

Originally, the LWE problem, recalled in Definition 1, was introduced with a contin-
uous Gaussian distribution [Reg05] and later extended to discrete Gaussian distribution.
Sometimes, to simplify the proofs, we use continuous Gaussian distributions instead of dis-
crete Gaussian distributions. This holds as long as the standard deviation of each discrete
Gaussian distribution is greater than the smoothing parameters introduced in [Duc13,
Definition 3.13].

To choose the variance of the Gaussian distribution, we rely on the lattice estima-
tor [APS15] described in Section 2.1.3. Once we have chosen this noise variance, we still
need to track the noise distribution throughout an FHE computation because when per-
forming computations over ciphertexts, the noises evolve and the value of this noise is
closely linked to the correctness of the computation as explained in Definition 13.

In this chapter, we explain how to build a new tool relying on the lattice estimator
to find the minimal noise variance at encryption time to guarantee a security level λ,
given a ciphertext modulus q, an LWE dimension n, a noise distribution and a secret
key distribution. Then, we introduce a key concept in FHE that we call a noise model
(Definition 20) that allows to track the noise distribution throughout a computation.
Finally, we explain how to improve the bootstrapping theoretical noise formula by taking
into account the noise introduced by the use of the FFT within the algorithms.

89

Chapter 3 – Noise Methodology

3.1 Security Oracle

The security of a GLWE-based scheme depends on the distribution of the secret key
(for example binary, ternary or Gaussian with a variance σ2), the product between the
GLWE dimension and the polynomial size (i.e., n = k · N), the noise distribution, and
the ciphertext modulus (often denoted by q).

To estimate the security level offered by some given parameters one can use the lattice
estimator [APS15] which is the reference tool used to estimate the security of a lattice-
based cryptographic scheme (see Section 2.1.3). This tool aims to help researchers to
quickly find secure parameters by taking into account well-known attacks, e.g., the primal
and dual attacks, the Coded-BKW attacks and the Arora-GB attack on LWE. More
details on the different attacks are given in Section 2.1.

First we will give a code example that uses the lattice estimator to estimate the security
of an LWE instance and explain why it is not suited for our needs. Finally, we will explain
how to build what we call a security oracle (Definition 17) using the lattice estimator.

3.1.1 Motivation

In code example 3.1, we give a simple script calling the lattice estimator to estimate
the security of an LWE instance with the ciphertext modulus q = 264, binary secret key
coefficients, a centered Gaussian noise distribution χσ with standard deviation σ = 2−18 ·q
and with an LWE dimension n = 750. Executing the code example 3.1 outputs the
estimated security of the LWE instance for several attack models. The security level λ

is the minimum of those predicted security levels. In the example below, we found that
the given instance has 123 bits of security. The useful part of the output of the lattice
estimator is given in Figure 3.11.

1 from estimator import *
2 from estimator.lwe_parameters import LWEParameters
3 from estimator.nd import NoiseDistribution, stddevf
4

5 TFHE_new_parameter_set = LWEParameters(
6 n=750,
7 q=2 ** 64,

1. Estimated with the commit cf36315e7718b1e2e3de271b705697943ebaecf4, 9 of May 2023

90

3.1. Security Oracle

8 Xs=NoiseDistribution.UniformMod(2),
9 Xe=NoiseDistribution.DiscreteGaussian(stddev=2 ** (64 - 18))

10)
11

12 LWE.estimate(TFHE_new_parameter_set, red_cost_model = RC.BDGL16)

Code Example 3.1: Call to the lattice-estimator to estimate the security of a given LWE
instance

Figure 3.1: Output of code example 3.1

As said above, this tool is crafted to find the security level of a given LWE instance.
Later, we will want to automatically find secure cryptographic parameters and, to do so,
we need a slightly different tool. Instead of defining an LWE instance and checking its
security, we want to choose a security level, partially define an instance and use the tool to
set the remaining degrees of freedom such that the LWE instance has at least the targeted
security level. More formally, assuming a secret key distribution (binary, for example) and
a noise distribution (Gaussian, for example), the lattice-estimator provides a function f

such that
f : (q, n, σ2)→ λ,

with q, a ciphertext modulus, n, an LWE dimension, σ2, a variance of the Gaussian
noise distribution at encryption time and λ, the security level for an LWE instance with
(n, σ2, q). For our purpose, we need a function g that takes the ciphertext modulus q, the
LWE dimension n and the security level λ and outputs the minimal variance σ2 of the
Gaussian noise distribution at encryption time required for the LWE instance to have at
least a security level λ. Formally, we want g such that

g : (q, n, λ)→ σ2.

We can find the right function g for different secret key and noise distributions. In the

91

Chapter 3 – Noise Methodology

following, those functions are called security oracles.

Definition 17 (Security Oracle) Given a ciphertext modulus q, the product n = k ·N ,
a level of security λ, a noise distribution and a secret key distribution, the security oracle
outputs the minimal noise variance σ2

min needed in GLWE encryption for it to be secure
with the required level of security λ. More formally, for a given noise distribution χe and
a secret key distribution χs, we define the function Σχe,χs

min such that

Σχe,χs
min : (q, k ·N, λ)→ σmin

When the noise distribution is a Gaussian distribution and the secret key distribution is
a binary distribution, we simply note this function Σmin.

When instantiating a new LWE (or GLWE) instance, we can use those security oracles
to find the minimal variance needed at encryption time for a given ciphertext modulus
q and LWE dimension n (respectively GLWE dimension k and polynomial size N) to
guarantee the security.

Remark 13 (Relationship between the LWE Dimension and the Noise Variance)
As a general rule of thumb, to keep the same security level when increasing the product
k · N , we can decrease the minimal noise needed inside a ciphertext. Following this
intuition, with a fixed ciphertext modulus q and a fixed security level λ, the function
h(n) = Σmin (q, n, λ) should be a decreasing function.

In the subsections below, we will explain how to build a security oracle using the
lattice-estimator. An open-source implementation of this method is available online2.

3.1.2 Method

The easiest way to build Σmin would be to reverse the way the lattice-estimator estimates
the security of an LWE instance and find an analytic formula linking the ciphertext
modulus, the LWE dimension and the minimal variance of the noise. The issue is that
the output of the lattice-estimator is the result of non-trivial optimizations and there is
no existing analytical formulae linking those parameters.

2. https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves, commit
3a884f5 made on the eighth of August 2023

92

https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves

3.1. Security Oracle

By doing a reasonable amount of queries to the lattice-estimator, we can create our
own analytical formulae to approximate the relationship between the LWE dimension,
the ciphertext modulus and the minimal noise variance at encryption time.

Acquisitions

Let λ be a target security level, q a ciphertext modulus, χe a noise distribution and χs a
secret key distribution.

First, we define a set of standard deviations we want to consider. In our work, we took
all the powers of two smaller than the ciphertext modulus q i.e. σ ∈ {21, 22, · · · , 2⌊log2(q)⌋}.
For each of these standard deviations σ, we are looking for the smallest LWE dimension
n such that f(q, n, σ2) ≥ λ.

To do so, we initialize a guess value for the LWE dimension and call the lattice-
estimator to estimate the security. If the security is below the target security level, we
increase the LWE dimension and start again. On the contrary, if the security is above the
target security level, we decrease a bit the LWE dimension. The algorithm stops when
the estimated security level is close enough to the requested λ.

We can repeat this process for different noise distributions, different secret key distri-
butions and different security levels.

Remark 14 (Choosing the Guess Value) If we have an outdated noise oracle and
we want to correct it with the latest state-of-the-art attacks, we can still use it to find a
guess value. On the contrary, if this is the first time building a noise oracle, we can pick
the guess value at random or take an LWE dimension found previously for a greater or
smaller standard deviation or for a different security level.

In the code example 3.1, we found that the LWE instance is 123 bits secure. To find
parameters for 128 bits of security, we increase the LWE dimension, for instance n← n+8
and re-run the estimation. With this new dimension, we reach 124.5 bits of security, which
is still not enough. We can continue the algorithm until we eventually reach n = 780 which
gives λ = 128.2 bits of security.

Fitting

Once we have lots of tuples (n, q, λ, σ2), we do some data visualization to find the form
of the security oracle formula we were looking for. We plot the LWE dimension n on the
x-axis and Σmin(q, n, λ) on the y-axis. Looking at the curves, we find the following formula:

93

Chapter 3 – Noise Methodology

Σmin(q, n, λ) = 2−α·n+β (3.1)

with α and β two real numbers that need to be set. The formula correctly models
the security oracle with one notable exception: when the noise is so small that it can no
longer be represented as an integer. In fact, if the noise is small enough, the security level
drops rapidly to zero as a very small noise variance would lead to noise-less ciphertexts
which is not secure at all. To mitigate this risk, we will later enforce the minimal standard
deviation to be at least σmin = 22

q
. Therefore, we do not need to do the acquisitions of

tuples (n, q, λ, σ2) where σ < σmin (or we can remove them before doing the fitting). We
choose to enforce the noise standard deviation to be greater than σmin to be above the limit
used by other schemes. In [GHS12], the authors use a standard deviation of 3.2

q
following

the analysis from [MR09a]. By setting σmin = 22

q
, we have 3.2

q
< σmin which guarantees

that our LWE or GLWE instances will at least be as secure as the ones chosen by other
schemes.

We can then perform a least square polynomial fitting using NumPy [Har+20] to find
the best (α, β). Formally, given a list of acquisitions {(ni, q, λ, σ2

i)}i∈I with I a list of
indexes, we solve the following minimization problem:

(α∗, β∗) = min
(α,β)∈R2

∑
i∈I

(
2−α·ni+β − σi

)2
(3.2)

Once we find the best (α, β), we are almost done. The final formula for Σmin(q, n, λ)
needs to take into account the remark above about very small noises. It gives the following
formula

Σmin(q, n, λ) = max
(
2−α·n+β · q, 22

)
(3.3)

with α and β defined as in Equation (3.2). We provide in Table 3.1 the best (α, β)
values for λ ∈ {80, 112, 128, 192}, q = 264, binary secret key coefficients and Gaussian
noise distribution. The fitting was done using the lattice estimator on the commit made
on January 5, 20233.

Remark 15 In the process above, we stop when finding an LWE dimension n such that
f (q, n, σ2) ≥ λ. In practice, we may want to add a safety margin λ + ∆λ to prevent
current parameters from being outdated too soon. During the course of this work, the

3. https://github.com/malb/lattice-estimator/tree/f9f4b3c69d5be6df2c16243e8b1faa80703f020c

94

https://github.com/malb/lattice-estimator/tree/f9f4b3c69d5be6df2c16243e8b1faa80703f020c

3.2. Noise Model

λ α β

80 0.04045822621883835 1.7183812000404686
112 0.029881371645803536 2.6539316216894946
128 0.026599462343105267 2.981543184145991
192 0.018894148763647572 4.2700349965659115

Table 3.1: Best values of (α, β) for λ = 128, q = 264, binary secret key coefficient and
Gaussian noise distribution

security oracles were built at least three times to take into account updates of the lattice
estimator.

Verification

Once we have a security oracle fully determined thanks to the method explained above,
we can run several tests to make sure that our security oracle is sound. The most straight-
forward test is to compare the variances predicted by the security oracles with the ac-
quisitions obtained previously. Finally, we can define a list of standard deviations and
LWE dimensions and compare the security oracle predictions against those of the lattice
estimator. Those verifications can be launched manually or automatically triggered each
time a commit is pushed on the lattice estimator repository.

Remark 16 (Noise Plateau (Limitation 10)) In Limitation 10, we introduced the
concept of a noise plateau. Using Equation (3.1) and Table 3.1, we find nplateau = 2443 for
128 bits of security and q = 264.

3.2 Noise Model

In the FHE world, a small randomness called noise is embedded inside the ciphertexts to
guarantee security as we saw in Section 3.1. We also saw in Definition 13 that in order to
correctly decode an encoded message M̃ , we should guarantee the noise to be less than
∆
2 where ∆ is the scaling factor. If this inequality is not verified, the decoding algorithm
fails and we are not able to recover the message. The issue is that the exact value of this
noise must remain a secret to prevent an attacker from removing it from the ciphertext.
If an attacker is able to do that repeatedly, the secret key can be recovered using linear
algebra techniques.

95

Chapter 3 – Noise Methodology

On the contrary, the distribution of the noise can be publicly known without impacting
the security which is why, instead of tracking the exact value of the noise, we track
the distribution of this noise. To check that the noise is below the threshold, from the
distribution, we can build a confidence interval and be sure that up to a given probability
the noise will lie in it.

During the encryption, we use the security oracle introduced in Definition 17 to select
the noise distribution. Knowing this distribution, we can easily built a confidence interval.
In real use-cases, between encryption and decryption, we perform some operations, for
instance additions, multiplications, LUT evaluations and so on. Almost all operations
performed on a ciphertext will increase its noise. Therefore, to check that the correctness
inequality is verified, we must be able to track the impact of any operation on the noise
distribution.

First, we explain what a noise formula (Definition 19) and a noise model (Definition 20)
are. Informally, a noise formula is associated with an FHE operator (Definition 18) and
models the evolution of the output noise variance using the input noise variance(s) and
some cryptographic parameters. Finally, we refine the concept of noise bound (Defini-
tion 21) which is an upper bound for the noise variance that guarantees the correctness
of the computation. We give some concrete formula to compute the noise bound in the
special case of the Gaussian noise distribution (Theorem 16).

3.2.1 FHE Operator & Noise Model

First, we formalize what an FHE operator is.

Definition 18 (FHE & Plain operator) An FHE operator O is an implementation of
an FHE algorithm, on a given piece of hardware, taking as input some ciphertexts and
potentially some plaintexts and returning one or more ciphertexts.

A plain operator is a function mapping one or several integers into an output list of
one or more integers.

Any FHE operator is associated with a plain operator and the FHE operator must com-
pute the same operation as its associated plain operator under some (noise) constraints.

As an example, the key switch is an FHE operator taking as input one ciphertext
encrypted with a key s⃗1 and outputs a ciphertext encrypted with a different key s⃗2. The
plain Operator associated with the Keyswitch is the identity function. The PBS, the
Sample Extract or the CMUX are other examples of FHE Operators.

96

3.2. Noise Model

Definition 19 (Noise Formula) An FHE operator is associated with a noise formula
which models the noise evolution between its input and output ciphertexts. A noise formula
for a given homomorphic operator takes as input the variances of the input ciphertexts
noise distributions, some cryptographic parameters involved in the computation, as well as
the plaintext values used in the operator and outputs the variance of the output ciphertexts.

The encryption operator has a special noise formula that we call security oracle (Defi-
nition 17). Most of the time, the noise formula of an FHE Operator depends on the LWE
(or GLWE) instance i.e., on the LWE dimension n (respectively on the GLWE dimension
k and the polynomial size N). It can also depend on other parameters that are specific
to this operator. For example, in the key switch (Algorithm 1), the noise also depends on
the decomposition parameters β and ℓ.

Definition 20 (Noise Model) A noise model is a collection of noise formulae associ-
ated with their FHE operators (Definition 18). The noise formulae inside a noise model
can be freely combined to estimate the noise of sequences of FHE operators. In particular,
those formulae take the input noise variances and some parameters and estimate the out-
put noise variances. The formulae of a noise model heavily depend on the hypothesis made
during the proofs. For instance, in some cases it can be sound to assume independence
between some random variables as long as the dependency is negligeable (if it exists at all).
A Noise model can be a distribution-based model or a bound-based model. A distribution-
based model contains formulae giving the exact (or a good-enough approximation) of the
noise distribution whereas a bound-based model gives upper and lower bounds on the noise
value.

Remark 17 (Average and Worst Case) In the literature, the distribution-based
model is often called average case and the bound-based model worst case.

Using the noise model, we can define confidence intervals for the noise i.e., intervals
where noise values lie with a given probability. When we are working with a bound-based
noise model, building a confidence interval with a probability of 1 is easy since we know
explicit bounds on the noise, we can just take the interval defined by those bounds. Now,
if we want to work with a distribution-based noise model, we need to carefully build the
confidence interval and for that, we introduce the noise bound (Definition 21).

Remark 18 (Hamming Weight and Bound-based Model) For efficiency, we want
to have confidence intervals as tight as possible. In fact, the smaller the confidence interval

97

Chapter 3 – Noise Methodology

is, the smaller some parameters will be. With a bound-based noise model, we must assume
the worst case (in terms of noise) for the secret key coefficients i.e., assuming that every
coefficient is a one. In order to tighten the confidence interval, we can fix the Hamming
weight of the secret key. If we were to enforce half of the coefficients to be zeros and the
other half to be ones, the confidence interval predicted by a bound noise model would be
tighter than the ones without fixing the Hamming weight as we would know exactly the
number of zeros and ones.

3.2.2 Noise Bound

Thanks to a noise model (Definition 20), we can track the noise distributions throughout
a computation. To guarantee correctness, we saw in Definition 13 that we need to enforce
the noise to be smaller than ∆

2 with ∆ the scaling factor. As we only have access to the
noise variances, we need to transform this inequality between the actual noise values and
the scaling factor in an inequality between a noise variance and the scaling factor.

Definition 21 (Noise Bound) Let CT ∈ GLWES⃗
(
M̃
)

a GLWE ciphertext of an en-
coding M̃ of M with a message modulus p and π padding bits. Let the noise inside CT
have a standard deviation σ and mean zero. The noise bound tα(π, p) for a given failure
probability α is the largest integer satisfying:

σ ≤ tα (π, p)⇒ Pr
(
Decode

(
M̃, 2π · p, q

)
̸= M

)
≤ α

In Definition 21, the noise bound depends on the number of bits of padding π and on
the precision p but it can also depend on other values, for instance it could depend on the
degree of fullness (Definition 14) later defined in this thesis.

Remark 19 (Centered Noise Distribution) Definition 21 assumes that the cipher-
text has a centered noise distribution. It must be noticed that having a centered noise
distribution helps to keep the variance as tight as possible all along the computation. For
instance, during the proofs, we must estimate the variance of product of independent ran-
dom variables. Let us take X, Y1 and Y2, three random variables, with X following an
arbitrary distribution with 0 mean, Y1 following a Gaussian distribution N (µ, σ2) and Y2

following a Gaussian distribution N (0, σ2) with µ ∈ R \ {0} and σ2 ∈ R+. Let i ∈ {1, 2}
and let us assume that X and Yi are independent. We have

Var (X · Yi) = Var (X) · Var (Yi) + Var (X) · E (Yi)2 + Var (Yi) ·����E (X)2

98

3.2. Noise Model

As E (Y1)2 > 0 = E (Y2)2 , we have Var (X · Y1) > Var (X · Y2) which proves our point.

Sometimes, we face non-centered noise distribution due to the algorithms themselves.
In this case, we can subtract the mean of the noise distribution to the ciphertext to center
the distribution back to zero.

It must also be noticed that everything described in this thesis could be easily adapted
to non-centered distributions.

In Definition 21, we gave a generic definition of the noise bound. In practice, with
TFHE, the noise is almost always following a Gaussian distribution or can be approxi-
mated by a Gaussian distribution. The theorem below gives the formula to compute the
noise bound for a Gaussian noise distribution.

Definition 22 (Standard Score) Let A ←↩ N (0, σ2) (centered normal distribution),
let pfail be a failure probability and let erf be the error function erf (z) 7→ 2√

π

∫ z
0 e−t

2dt.
We define the standard score z∗ for pfail as z∗(pfail) =

√
2 · erf−1 (1− pfail) and we have:

Pr(A ̸∈]− z∗σ, z∗σ[) ≤ pfail.

Let t ∈ R, we have z∗(pfail) · σ ≤ t⇒ Pr (A ̸∈]− t, t[)) ≤ pfail

Theorem 16 (Gaussian Noise & Noise Bound) Let CT a GLWE ciphertext that
contains a noise polynomial E = ∑N−1

i=0 eiX
i ∈ Rq such that ∀ 0 ≤ i ≤ N − 1, ei ∼

N (0, σ2). We have an explicit formula for the noise bound tα(π, p) = ∆
2·κ with κ = z∗ (pfail),

the standard score (Definition 22) for pfail = 1− N
√

1− α i.e.,

σ ≤ tα ⇒ Pr
(
Decode

(
M̃, 2π · p, q

)
̸= M

)
≤ α

When the input ciphertext is an LWE ciphertext i.e., N = 1, we have pfail = 1 −
N
√

1− α = α.

Proof 16 (Theorem 16) Let E, tα and pfail as defined in Theorem 16. Let us assume
σ ≤ tα. Immediately using Definition 22 and Equation 2.30, we have Pr

(
|ei| ≥ ∆

2

)
≤

99

Chapter 3 – Noise Methodology

pfail = 1− N
√

1− α. Thus

Pr
(
Decode

(
M̃, 2π · p, q

)
̸= M

)
= Pr

(
N−1⋃
i=0
|ei| ≥

∆
2

)

= 1− Pr
(
N−1⋂
i=0
|ei| <

∆
2

)

= 1−
N∏
i=1

Pr
(
|ei| <

∆
2

)
by indep. of {ei}i∈[[1,N]]

= 1−
N∏
i=1

(
1− Pr

(
|ei| ≥

∆
2

))

≤ 1− (1− pfail)
1
N = α

□

Remark 20 (Arbitrary Noise Distribution & Noise Bound) With TFHE, most
of the time, the output distribution of an FHE Operator is a Gaussian distribution (or
can be approximated by it). If we were to manipulate arbitrary distribution, we could still
build confidence intervals but they can not be always as tight as the one we built assum-
ing Gaussian distribution. For instance, we can use Chebyshev’s inequality: for a random
variable E of variance σ2 and 0 mean, for κ ∈ R∗ we have Pr (|E| ≥ κ · σ) ≤ 1

κ2 .

To conclude, using the noise bound (Definition 21), we can guarantee a correct de-
coding up to a given probability using only the distribution of the noise which can be
publicly estimated. The tightness of the noise model (Definition 20) is crucial to build
tight confidence intervals.

3.3 FFT-related Noise

To guarantee the correctness of a computation, we rely on a tight noise model (Defini-
tion 20) and on the noise bound (Definition 21). For this to work, we need the noise
formulae to reflect exactly the behavior of the noise throughout the computation. In the-
ory, we could settle for looser formulae, as long as the bounds (in the case of a bound noise
model) or the variances of the distributions (in the case of a distribution noise model)
are conservative. We cannot settle for optimistic formulae i.e., formulae that give a lower
bound on the noise as this could impact the correctness.

100

3.3. FFT-related Noise

One major example of mismatch between theoretical formulae and experimental obser-
vations is the case of the external product (Algorithm 7) which is one of the main building
blocks of the PBS (Algorithm 10). During an external product, we need to perform poly-
nomial multiplications and additions in Rq. If we were using a schoolbook multiplication
method, the cost of these operations would be in O (N2) with N the polynomial size.
We could also use the Karatsuba algorithm which has a cost in O

(
N log2(3)

)
. Instead, the

external product is implemented using a Fast Fourier Transform (FFT) which allows to
compute a polynomial multiplication in O (N log2 N). The use of the FFT in the PBS is
one of the reasons that makes it the fastest known bootstrapping algorithm. However, the
speed of the FFT comes with some drawbacks: the noise formula of the external product
does not match real-life experiments because of the noise introduced by the FFT. We
identified three issues with the way the FFT is used.

In this section, we explain the issues with the FFT in the context of the TFHE
bootstrapping and explain how to build an experimental corrective formula to correctly
model the noise growth inside a PBS.

3.3.1 Issues with the FFT

First, by definition, floating-point arithmetic is approximate. During the FFT computa-
tion, we accumulate some errors due to the fact that we are limited by machine precision to
represent the twiddle factors4 and intermediate values throughout the Fourier transform.
It must be noted that the order of the operations performed during the FFT influences
the error because we loose associativity and distributivity between additions and multi-
plications when composing floating-point operations.

Then, when casting the coefficients of a GLWE ciphertext with q = 264 (represented by
64-bits unsigned integers) to floating-point numbers float64 (or double-precision floating-
point), a modulus switching of sorts happens. As a matter of fact, a float64 is composed of
53 bits for the mantissa, 1 bit for the sign and 11 bits for the exponent [20]. When casting
an integer on 64 bits as a floating point number, under the hood, a rounding happens and
discards the 11 least significant bits of the input integer. This loss of information can be
represented by an error added to the ciphertext. This error is very similar to the noise
added by a modulus switch.

Finally, once we have operands in the Fourier domain, we perform the modular multi-

4. A twiddle factor is a constant coefficient that is multiplied to the data during an FFT.

101

Chapter 3 – Noise Methodology

plications and several modular additions. All these operations happen in the FFT domain,
so we cannot perform the reduction modulo q needed to discard the useless MSB and keep
the LSB. In fact, the opposite happens, due to the floating-point arithmetic, the MSB will
be kept and we will loose the LSB. When we leave the FFT domain, we will discard those
MSB but the LSB are lost. This loss of information can be seen as a new, deterministic
error added to the ciphertext.

A thorough analysis of the FFT and of the computations happening in the Fourier
domain could give us a corrective formula to patch the external product formula and
make it match the experiments. In our work, we decided to use experiments to come up
with a corrective formula which would guide us in our theoretical analysis. The theoretical
analysis is still an ongoing subject and will not be discussed here.

3.3.2 Experimental Noise Formula

The first step to build this corrective formula is to estimate the noise after an external
product on a wide range of parameters. For instance, we can choose the GLWE dimension k

in [[1, 6]], the polynomial size in {28, 29, · · · , 217}, the maximum level of the decomposition
ℓ in [[1, 64]] and the logarithm of the decomposition base in [[1, 64]]. We can define the
Cartesian product of each of those sets and called it P . At this stage, we can choose to
work on the full set P or on a random subset of it. We set the encryption variance for the
input GLWE ciphertext and for the GGSW ciphertext using the noise oracle introduced
in Definition 17.

For every set of parameters in P , we compute a given number of external products and
compute the experimental variance. For some parameters, we do not need to compute the
experiments. If the theoretical variance is greater or equal to the variance of an uniform
distribution, we can remove this set of parameters from P as this set of parameters will
never be used. The parameters, number of samples, theoretical and experimental variances
are stored in a text file to be exploited later.

Once we have everything, we apply almost the same process as during the building
of the noise oracles (Section 3.1). Basically, we do some data visualizations to have an
intuition on the formula which gives us the following formula where ω is a value that must
be found:

FftError (k, N, β, ℓ) = 2ω · ℓ · β2 ·N2 · (k + 1)

Then, we apply a least square fitting to find the best ω. We find that the best value

102

3.3. FFT-related Noise

is ω ≈ 19.4. Intuitively, the noise added by the FFT should be scaled in the same way
as the noise introduced by the casting from 64-bit unsigned integers (with q = 264) to
64-bit floating-point numbers. As the number of bits for the mantissa in the floating point
representation is 53, we expect the variance of the noise to be scaled around 2 ·(64−53) =
22. With ω = 19.4 = 22− 2.6, we conclude that the intuition is close to the reality.

Remark 21 (Implementation) We used the Concrete Framework5 written in Rust to
perform the noise acquisitions and we used Python to do the fitting and find the best ω.

Notice that the formula is only valid for this FFT implementation.

We can add some margins by rounding up ω. Using the corrective formula, we can
verify with experiments that the predicted noise is now at least as big as the experimental
noise. Now that we have a noise model that matches the experiments, we can safely use
our noise model to find correct parameters. This will be the whole topic of Chapter 4.

5. https://github.com/zama-ai/concrete

103

https://github.com/zama-ai/concrete

Chapter 4

OPTIMIZATION FOR FHE

We introduced in Chapter 3 the definition of an FHE operator which is an implementation
of an FHE algorithm on a given piece of hardware (Definition 18). We also gave the
definition of a noise formula, a formula associated with an FHE operator that takes as
input the cryptographic parameters and the input noise distribution and predicts the noise
distributions of the output ciphertexts (Definition 19). A collection of noise formulae
is called a noise model (Definition 20) and is used to track the noise throughout an
FHE computation. The variance of the noise in a ciphertext must not exceed the noise
bound (Definition 21 and Theorem 16), a threshold that guarantees the correctness of a
computation up to a given failure probability.

Most of the time, there is a trade-off between the time needed to perform an FHE
operation and the amount of noise in a ciphertext: the larger the parameters are, the
slower the execution is and the smaller the noise variance is. Finding the sweet spot where
we have an execution as fast as possible while still guaranteeing a noise variance below
the noise bound is tricky. In this chapter, we introduce the blueprint for an optimizer
framework that automatizes the search for cryptographic parameters according to this
trade-off.

First, we formalize the optimization problem as a minimization under constraints
problem, introduce some key concepts and the guarantees we want to have during the
parameter selection. Then, we explain how to simplify this problem in order to efficiently
solve it. To do so, we introduce the concept of atomic pattern types (Definition 28).
Using all this, we explain how to truly compare FHE operators that compute the same
plain operator (Definition 18). This comparison method will be used in the next chapters
to prove the interest of the new algorithms introduced in this thesis. Finally, we give
additional applications using our optimizer framework. For instance, we introduce an
efficient way to deal with several evaluation keys (bootstrapping keys, key switching keys)
and to insert PBS evaluation inside sequences of leveled operations.

105

Chapter 4 – Optimization for FHE

4.1 Optimization Problem

To compute over ciphertexts, one needs to select cryptographic parameters. If the compu-
tation involves LWE ciphertexts, we need to set the LWE dimension n and when we use
GLWE ciphertexts we need to set their polynomial size N and their GLWE dimension
k. In this thesis, those parameters are called macro-parameters. In addition, some FHE
operators (Definition 18) come with degrees of freedom that one also needs to set. As
an example, to perform a key switch and to generate the key switching key, we need to
choose a base B and a level ℓ. Those parameters are called micro-parameters, because
they are only used locally, inside an FHE operator.

Micro and macro parameters have an impact on the cost and on the noise added during
the evaluation of an FHE operator, so they need to be carefully picked. In practice, one
needs to find parameters not only for one FHE operator (see definition later on), but for
a graph of FHE operators. We focus on a special case of graph, a directed acyclic graph
(DAG). A vector containing values for both the micro and macro parameters needed for
a given DAG is called a parameter set. The more degrees of freedom in a DAG there are,
the larger the parameter set is and the harder the parameter search is. The question we
answer in this chapter is:

For a given graph of FHE operators, how to find parameters such that the evaluation is
the fastest while preserving both correctness and security?

To answer this question, first, we introduce the concept of a cost model (Definition 23),
we use it to estimate the total cost of a graph of FHE operators (Definition 24). The cost
model serves as a surrogate of the execution time using algorithmic complexities. Then, we
detail the guarantees of our optimization framework: security, correctness and efficiency.
Finally, we introduce some key concepts to build our framework, for instance the noise
feasible set (Definition 26) and formalize the optimization problem as a minimization
problem under constraints (Equation (4.1)).

4.1.1 Cost Model

One of our main goals is to find parameters that would lead to an efficient FHE computa-
tion. To do so, one needs to compare different parameter sets in terms of execution time
and select the best one. This requires a way to predict the execution time according to
a given parameter set. A trivial way would be to benchmark the execution of the circuit

106

4.1. Optimization Problem

with every possible set of parameters in order to rank them. While this method would
give us an exact metric to compare parameter sets, it would be very costly as there are
lots of parameters to consider, especially if the circuit is large. Another downside is that
the estimated cost would heavily depend on the machine on which we made the exper-
iments. If we were working with another machine, we would need to run again all the
benchmarks. Even on the same machine, benchmarks are precise up to a certain point,
due to the inherent variability of any computation and the values we would obtain would
be good estimates but not perfect ones.

Luckily, we have a more efficient method to rank parameter sets according to their
cost. Instead of using the execution time as a metric, we can build a surrogate of the
execution time that will give us the possibility to rapidly rank parameter sets on any
machine. In this context, a surrogate is an approximation of the real metric we want to
study but is simpler to evaluate and good enough to yield satisfying results. We call this
surrogate a Cost Model.

Definition 23 (Cost Model) An FHE operator (Definition 18) is associated with one
or several cost formulae. A cost formula is a surrogate for the metric one wants to mini-
mize, it could be an approximation of the execution time, the power consumption, or the
price (of running the FHE operator in an on-demand cloud computing platform). The
cost model is the collection of cost formulae for a given metric. A cost function is noted
Cost (·).

For all the experiments and benchmarks in this thesis, we will consider a cost model
that approximates the execution time on a single thread machine using the algorithmic
complexities of each FHE operator (Definition 18). As some FHE operators have a negli-
gible cost compared to other operators, sometimes we assume they are free. It is the case
of the sample extract (Theorem 9) in a PBS (Theorem 14).

It means that we count the number of additions, multiplications, cast operations be-
tween integer types, and the asymptotic cost of the FFT in each algorithm and use those
as a surrogate of the execution time. For instance, the operation ∑α

i=1 Mi · CTi, where
Mi ∈ Rq are polynomials and CTi = (Ai, Bi) ∈ R2

q are RLWE ciphertexts, will have a
cost of:

3 α N log(N)︸ ︷︷ ︸
to FFT domain

+ 2 α N︸ ︷︷ ︸
complex ×

+ (α− 1) N︸ ︷︷ ︸
complex +

+ 2 N log(N)︸ ︷︷ ︸
to standard domain

In the first term, we have 3α forward FFT (α polynomials and α RLWE ciphertexts

107

Chapter 4 – Optimization for FHE

composed of two polynomials) and the asymptotic cost of the FFT is N log2(N) which
gives a cost of 3αN log2(N). Once all polynomials are in the Fourier domain, we need to
perform 2αN multiplications and (α−1)N additions. Finally, we perform a backward FFT
on the RLWE ciphertext. With this cost model, we assume the cost of a multiplication
between complex numbers and integers to be the same than the cost of an addition between
integers and between complex numbers. While this hypothesis is false, in practice, it is
close enough to provide efficient parameter sets.

4.1.2 Guarantees

As explained in the introduction of this chapter, we want to create a tool that automati-
cally finds the best trade-off between the cost and the noise of an FHE DAG to overcome
Limitations 14 and 15.

Our framework takes as input a graph of FHE operators, a level of security and a
correctness probability, and outputs a parameter set that will guarantee:

1. the desired level of security,

2. the desired correctness probability,

3. the smallest cost possible.

The first guarantee is easy to reach using the security oracle introduced in Defini-
tion 17. We can build it using the lattice estimator [APS15] as explained in Section 3.1.
To reach the required security level for a given LWE dimension (or GLWE dimension
and polynomial size), a given key distribution and a given ciphertext modulus, one can
always increase the amount of noise at encryption time (or evaluation and public key
generation). Using this, one does not need to find the best encryption noise, one can
simply look for the best LWE dimension (or GLWE dimension and polynomial size) and
take the minimal encryption noise given by the security oracle. In the end, one is sure to
provide enough security as the noise is chosen with respect to other ciphertext parameters.

To guarantee the correctness of a computation (guarantee 2), one needs to rely on
the noise model (Definition 19) of each FHE operator in the graph. We explained in
Definition 13 and in Section 3.2 that the noise inside a ciphertext must remain below
some threshold in order to ensure correct decoding. If the noise grows too much, the
message will be tampered by the noise and the decryption algorithm will not yield the

108

4.1. Optimization Problem

correct result. In order to guarantee the correctness, one needs to track the noise at each
step of the computation using the noise model (Definition 20) and choose parameters in
a way that the noise remains small enough.

The last guarantee is to have a cost as small as possible. For that, one needs to use
the cost model introduced in Definition 23 and select the parameters that minimize this
cost among the ones that satisfy guarantees 1 and 2. Naturally, the more realistic the cost
model is, the better the parameters will be in practice.

4.1.3 Foundations of the Optimization Framework

We start by explaining the core ideas to ensure the three aforementioned guarantees.
As said above, one needs to choose the macro-parameters among a set of possible

values. For example, the polynomial size N is often chosen as a power of 2. One wants
to narrow it down to a finite set, and a practical yet wide enough space for TFHE could
be PN = {28, 29, · · · , 217} and we call it the search space of N . In the same manner, the
LWE dimension n could be selected in Pn = [[256, 2048]] and the GLWE dimension in
Pk = [[1, 6]]. To reduce the size of Pn, we can consider a subset of it, for instance, we could
use Pn = {i ∈ [[256, 2048]] | i mod 4 = 0}.

In the definition Definition 24, we introduce the concept of FHE DAG. A directed
acyclic graph (DAG) is a directed graph with no cycles.

Definition 24 (FHE DAG) Let G = (V, L) be a DAG of FHE operators (Defini-
tion 18). We define V = {Oi}1≤i≤α as the set of vertices, each of them being an FHE
operator. We define L as the set of edges, each of them associated with the message mod-
ulus p ∈ N of the encrypted message i.e. L ⊂ {{x, y, p} |(x, y) ∈ V 2, p ∈ N}. When there
is no possible confusion regarding L, we will simply write G = V . We note Cost (G, x) the
cost of running the FHE graph G with the parameter set x.

For a given FHE DAG G, one also needs to set the micro parameters. For ex-
ample, the decomposition base B for a KS or a PBS can be selected in PB =
{Bi | Bi = 2i,∀i ∈ [[1, ⌊log2(q)⌋]]} and the level of the decomposition ℓ in Pℓ =
[[1, ⌊log2(q)⌋]]. As (B, ℓ) are used to do a radix decomposition of each integer com-
posing the input ciphertext as explained in Section 2.3.2, we have in practice that
ℓ · log2 (B) ≤ log2(q) so we will consider (B, ℓ) as one unique variable in PB,ℓ =
{(B, ℓ) | ℓ · log2 (B) ≤ log2(q),∀ (log2 (B) , ℓ) ∈ [[1, ⌊log2(q)⌋]]2}.

109

Chapter 4 – Optimization for FHE

In the end, one needs to choose a set of parameters in the Cartesian product of the
search spaces of all the micro and macro parameters of a graph G. This space is noted PG
and is called the search space of G.

Definition 25 (Search Space) Let G be an FHE DAG with its associated micro and
macro parameters {xi}i∈I and a set of indexes I. Each parameter xi must be picked in a
dedicated search space Pi.

The search space of G is defined as the cartesian product of these search spaces i.e.,

PG =
∏
i∈I
Pi.

In the rest of the paper, this set is simply called P when there is no ambiguity on the
graph.

Every ciphertext involved during the evaluation of an FHE DAG must have a noise
variance smaller than its associated noise bound (Definition 21) in order to guarantee the
correctness of the computation. With these constraints, we define the noise feasible set,
a subset of the search space P where every set of parameters will guarantee a correct
computation.

Definition 26 (Noise Feasible Set) Let G be an FHE DAG such that G = (V, L) with
L = {(·, ·, pi)}i∈[[1,|L|]], and let α ∈ [0, 1] be a failure probability. Let {σi : P 7→ R}1≤i≤|L|

be the standard deviation of the noise in the ciphertexts transiting on every edge of
G. Let {tα (pi)}1≤i≤|L| be the noise bounds associated to each precision. For every edge
i, we must have σi(x) ≤ tα (pi). This defines a subset of the search space P: Si =
{x ∈ P|σi(x) ≤ tα (pi)}. The intersection of all those sets is the noise feasible set S: the
set of parameter sets that will lead to a correct computation. We have:

S =
⋂
i∈I
Si = {x ∈ P|∀i ∈ [[1, |L|]], σi(x) ≤ tα (pi)}

By choosing a set of parameters that is in the noise feasible set, we are sure to sat-
isfy the correctness (Guarantee 2). In this noise feasible set, we want to find the set of
parameters minimizing the cost of the FHE DAG. Formally, we want:

arg min
x∈P

Cost (G, x) s.t. x ∈ S (G) (4.1)

110

4.2. Solving the FHE-to-TFHE Translation Problem

The problem of finding efficient and correct FHE parameters is then a minimization
problem under constraints. We can naturally use optimization techniques to solve it. The
issue is that the complexity of the problem is dependent on the size of the FHE DAG
which can rapidly become unrealistic for large DAGs. In the next section, we introduce
several non trivial simplifications before even starting the optimization.

Remark 22 (Other Feasible Sets) As we defined a feasible set for the noise, we can
also define other feasible sets for other constraints. For instance, we could define a feasible
set to limit the size of the evaluation keys (key switching keys, bootstrapping keys, ...),
to limit the size of the required bandwidth (size of the ciphertexts) or even to add some
constraints between parameters.

Remark 23 (MINLP Optimization) It is far from being simple to solve the optimiza-
tion problem described in Equation (4.1). In practice, the noise variances are represented
by real values because their domain of definition is too big to be represented with integers
(when q ≥ 264) and the cost is represented by an integer. The cost formulae we use are
quite simple but the noise formulae are not and are highly non-linear. This means that
the optimization problem is a mixed-integer non-linear problem and it cannot be solved
with an analytical approach as it is NP-hard [KM78].

Remark 24 (Multi-Objective Optimization) We described the optimization problem
where we want to minimize one metric, the cost, under security and correctness con-
straints. We could want to add another metric, for instance the size of the public material
and do a multi-objective optimization to extract interesting trade-off between the cost and
the size of the public material. The user can then chose the trade-off that best suits their
needs.

4.2 Solving the FHE-to-TFHE Translation Problem

In this section, we explain how to solve the optimization problem introduced in Equa-
tion (4.1). We introduce a way to re-write the graph with higher level building blocks (see
Definition 28) that we can compare before beginning the optimization (Definition 29).
This helps decreasing the complexity of the resolution. Then, we study the feasible set
of a simple graph composed of a dot product (Theorem 5), a key switch (Theorem 6)
and a PBS (Theorem 14) and explain in detail how to further simplify the optimization

111

Chapter 4 – Optimization for FHE

by removing decomposition parameters (B, ℓ) that are always part of sub-optimal solu-
tions. Next, we introduce the full-fledge optimization problem, taking as input a plain
DAG (Definition 31), doing the translation to the FHE world and outputting a fully
parametrized FHE DAG. Finally, we explain how to extend the concept of failure proba-
bility to a whole graph, in order to guarantee the correctness of a computation not at an
FHE operator level but at the level of the whole graph.

4.2.1 Graph Transformations

To simplify the optimization problem, we present an analysis that can be applied on any
FHE DAG. The idea is to subdivide it into subgraphs with the constraint that to compute
the noise distribution of a ciphertext in one of these subgraphs, we do not need to know
the noise distribution of a ciphertext in another subgraph. The starting point is to note
that there are some FHE operators that output ciphertexts with a noise independent of
the input noise for some well-chosen parameters and with some success probability. This
motivates us to distinguish those FHE operators from the rest:

Definition 27 (FHE Operator Categories) We divide the FHE operators (Defini-
tion 18) into two categories regarding their respective noise formulae:

1. an operator which outputs a noise independent of the input noise with a given prob-
ability, such as the PBS in our context;

2. an operator which adds some noise to the input noise, such as a KS or a dot product;

Using this distinction, for any FHE DAG, we can identify subgraphs that are inde-
pendent from others. Now that we have several independent subgraphs, we want to find
a way to compare them together. To do so, we define the notion of atomic pattern types
to regroup subgraphs of FHE operators called atomic patterns that we know how to com-
pare. For instance, two atomic patterns of the same type can represent the same subgraph
but with different message moduli p or different numbers of inputs.

Definition 28 (Atomic Pattern Type) An Atomic Pattern (AP) type A(·) corre-
sponds to a subgraph of FHE operators that outputs one or several ciphertexts with a
noise independent of the input noise.

An Atomic Pattern A is a particular instance of an AP type A(·). When an AP A ∈ A(·)

is instantiated with a parameter set x, we write A (x). From A (x), one can estimate its

112

4.2. Solving the FHE-to-TFHE Translation Problem

total cost using a cost model and one can also estimate the amount of noise at any edge
of its FHE subgraph. From these noise distributions, we can estimate the probability of
correctly computing the atomic pattern with the parameter set x.

Once we have identified the atomic pattern types in a graph G = (V, E), we can build
an FHE DAG G ′ = (V ′, E ′) such that each FHE operator in V ′ is an atomic pattern
i.e., V ′ = {Ai(·)}i∈[[1,|V ′|]]. This new graph is equivalent to the input graph and now we
can express the feasible set of G ′ with the feasible sets of each atomic patterns. Formally,
we have S (G) = ⋂

i∈[[1,|V ′|]] S (Ai (·)). We leverage the fact that we can compare the noise
between atomic patterns of the same type to efficiently find the atomic patterns that have
the smallest feasible sets. We will describe this procedure for a noise feasible set, but this
can be extended to another kind of feasible set, for instance, the evaluation key sizes.

As we can compare two AP of the same type even without a given set of parameters,
we can introduce the notion of domination between AP.

Definition 29 (AP Domination) Let G be an FHE DAG. Let A and A′ be two atomic
patterns of G. The AP A dominates the AP A′ if any x ∈ P(G) satisfying the noise
constraints of A also satisfies the constraints of A′. More formally, we have S (A) ⊂ S (A′)
i.e., S (A)⋂S (A′) = S (A). A′ is said to be dominated by A.

For all AP types in a graph G, for all APs of the same type, we can simply keep
the ones that are not dominated by any other AP. Indeed, we can discard the APs that
are dominated because their constraints will be satisfied if the constraints of one of their
dominant AP is satisfied.

With TFHE, we mainly use three FHE operators: the homomorphic dot product (DP),
the key switch and the programmable bootstrapping. The key switch is generally com-
puted before the PBS (as in [CJP21]). Naturally, we define our first concrete atomic
pattern type A(CJP21) with these three FHE operators.

Definition 30 (A(CJP21) Atomic Pattern Type) We define a first atomic pattern type
A(CJP21) as a subgraph composed of a dot product (DP, Theorem 5), followed by a key
switch (Algorithm 1 and Theorem 6) and a final PBS (Algorithm 10 and Theorem 14).
This subgraph is illustrated in Figure 4.1.

In the dot product, we assume every input to be the output of a bootstrapping. In
Theorem 5, we saw that the 2-norm ν and the input variance are sufficient to compute
the output noise of a dot product if every input ciphertext has the same Gaussian noise

113

Chapter 4 – Optimization for FHE

Figure 4.1: A(CJP21) atomic pattern type, composed of a dot product (DP), a key switch
(KS) and a programmable bootstrap (PBS)

distribution. Hence, an atomic pattern A1 of type A(CJP21) is entirely characterized by two
values: the 2-norm ν and its noise bound t. We will denote it by A1 = A (ν, t). When the
atomic pattern A1 is instantiated with a parameter set x, we write A1(x) = A (ν, t) (x).

Remark 25 (Freshly Encrypted Input in DP) In Definition 30, we do not consider
the fact that some of those inputs could be freshly-encrypted ciphertexts and not output of
a bootstrap. Everything we describe below can be easily modified to take that into account.

Remark 26 (Cost of A(CJP21)) To simplify the problem, we assume the cost of the dot
product to be negligible compared to the other FHE operators. Here, we assume the cost
of an atomic pattern A to be the sum of the cost of every FHE operator inside it, i.e., the
cost of a PBS and the cost of a KS.

4.2.2 Pre-Optimization

It is easy to compare the noise in atomic patterns of type A(CJP21) using the following
property which is a special case of Definition 29.

Theorem 17 (AP Domination) Let’s consider A1, A2 two APs of a type A(CJP21) that
includes a homomorphic DP, ν1, ν2 two 2-norms such that ν1 ≤ ν2 and t1, t2 two noise
bounds where t2 ≤ t1. We have A1 = A(ν1, t1) and A2 = A(ν2, t2).

Then, we have:
S (A(ν2, t2)) ⊂ S (A(ν1, t1))

i.e.,

S (A(ν2, t2))
⋂
S (A(ν1, t1)) = S (A(ν2, t2))

114

4.2. Solving the FHE-to-TFHE Translation Problem

A1 is said to be dominated by A2.

Proof 17 (Theorem 17) A1 and A2 share the same type. Let x∗ ∈ S (A(ν2, t2)), we
have

ν2
2σ2

BR(x∗) + σ2
KS(x∗) + σ2

MS(x∗) ≤ t2
2

with σBR, σKS and σMS the standard deviations after the blind rotate, the key switch and
the modulus switch. Immediately, we have

ν2
1σ2

BR(x∗) + σ2
KS(x∗) + σ2

MS(x∗) ≤ ν2
2σ2

BR(x∗) + σ2
KS(x∗) + σ2

MS(x∗) ≤ t2
2 ≤ t2

1

So, x∗ ∈ S (A(ν1, t1)).
□

Given a graph G = {Ai}i∈I of atomic patterns of type A(CJP21), we can apply Theo-
rem 17 to simplify the construction of S (G). In fact, we do not need to build each S (Ai)
as some of them are included in others. From our input graph G, we construct a new
graph Gpareto = Pareto (G) = {A′i}i∈Ipareto

containing only non-dominated atomic patterns
using the same theorem (Pareto comes from Pareto front, a well known concept in opti-
mization). It follows that Gpareto contains at most as many atomic patterns as there are
different noise bounds in the graph.

An interesting property of Gpareto is that S (G) = S (Gpareto) i.e., if one solves the
optimization problem (Equation (4.1)) using S (Gpareto) instead of S (G), we will get the
same optimal solution. This is interesting because to compute S (G) = ⋂

i∈I S (Ai) we need
to build |I| search spaces and with Gpareto, we only need to build |Ipareto| search spaces and
most of the time |I| ≫ |Ipareto|.

Another useful observation is that in an atomic pattern of typeA(CJP21) (and in most of
the atomic pattern types defined in this manuscript), the noise is strictly increasing until
the end of the modulus switching step in the final PBS. As the noise bound is assumed
to be constant inside one atomic pattern, we do not need to check that the noise satisfies
the noise bound t after the dot product or after the key switching, we only need to do it
after the modulus switch. If we note σMS,1, the standard deviation of the noise after the
modulus switching in an atomic pattern A1, we have S (A1) = {x ∈ P|σMS,1 (x) ≤ t}.

As we assume the cost of a dot product to be negligible, the cost of an atomic pattern
of type A(CJP21) can be computed from the cost of the key switch (Theorem 6) and of
the bootstrap (Theorem 14). As those costs only depend on the cryptographic set of

115

Chapter 4 – Optimization for FHE

parameters and not on (ν, t), it means that the cost of an atomic pattern of type A(CJP21)

is the same for any (ν, t).
For a graph G = {Ai}i∈I , we have Cost (G, x) = ∑

i∈I Cost (Ai, x) for x a solution in
the search space P and we know that for any (i, j) ∈ I2, Cost (Ai, x) = Cost (Aj, x), so
instead of minimizing the cost of running the total graph G, we can settle for minimizing
the cost of one atomic pattern of type A(CJP21).

To sum up, for a given graph G, instead of solving equation 4.1, we can build a new
graph Gpareto as described above and solve the following problem which will give us the
same value but will be easier to compute.

arg min
x∈P

Cost (·, x) s.t. x ∈ S (Gpareto) (4.2)

The above problem is greatly simplified but still depends on the input graph G =
{A (νi, ti)}i∈I . When we first tried to apply our optimization framework on real-life use
cases, we implemented a prototype in Python. The resolution was taking too much time
(around half an hour), so we looked for ways to pre-compute parameter sets that work
for a wide range of applications. Given a graph G, we will be able to immediately select
the best set of parameters in those pre-computed sets. In the following, we explain how
to efficiently pre-compute good parameter sets.

A simple way to do that is to introduce another special graph Gworst, that we call the
worst-case atomic pattern. It is defined as Gworst = {A (maxi∈I νi, mini∈I ti)}. This graph
is reduced to only one atomic pattern that may or may not be present in the input graph
G. Using Theorem 17, we know that S (Gworst) ⊂ S (G). So if we solve equation 4.2 on
Gworst, we end up with a feasible solution for G. Using this new graph, we are able to
pre-compute sets of cryptographic parameters for different values of (ν, t). Given a graph
G, we will select the set of parameters for the worst case atomic pattern Gworst of G.

Above, we found a feasible solution and intuitively, this solution is close to the optimal
one. To have bounds on the optimality of the solution for a graph G = {Ai}i∈I , we can
use another particular graph Gbest defined as Gbest = {A(ν∗, t∗)} with t∗ = mini∈I ti and
ν∗ = max {νi|A (νi, t∗) ⊂ G} i.e., a graph composed of the atomic pattern of the graph G
that has the smallest noise bound and the highest 2-norm for this noise bound. If the worst-
case atomic pattern is the same as the best-case atomic pattern, the method described
above yields an optimal solution as S (Gpareto) = S (Gworst) = S (Gbest). If they are different,
we can deduce a bound of optimality: as Gbest ⊂ G, we know that S (G) ⊂ S (Gbest). Solving

116

4.2. Solving the FHE-to-TFHE Translation Problem

equation 4.2 for Gbest gives us a lower bound on the cost of the optimal solution of equation
4.2 for G and solving equation 4.2 for Gworst gives us an upper bound.

4.2.3 CJP Atomic Pattern: Further Simplifications

Let us look more closely at the feasible set of type A(CJP21).

Study of the Feasible Set

For this experiment, we use the following ranges for each micro and macro parameters.
The polynomial size N is taken in PN = {28, 29, · · · , 217}. The LWE dimension n is
selected in Pn = [[512, 1024]] and the GLWE dimension in Pk = [[1, 6]]. The logarithm of
the decomposition base log2(B) and the maximum level of decomposition ℓ are defined
in [[1, 64]].

For an atomic pattern A of type A(CJP21), the search space P (G) has an approximate
size of 239. Now, let us consider the decomposition parameters as a couple as described
above i.e., with (log2(B), ℓ) ∈ {(log2(B), ℓ) ∈ [[1, 64]]2| log2(B) · ℓ ≤ log2(q)} with q = 264,
the ciphertext modulus. With this additional constraint, the search space is smaller, with
an approximate size of 230.

We conducted an experiment for two simple graphs G1 = {A(p1, ν1)} and G2 =
{A(p2, ν2)} with p1 = 21, p2 = 28 and ν1 = ν2 = 28. For every parameter set in P (G1)
(respectively P (G2)), we test if it is in the feasible set S (G1) (respectively S (G2)). Then,
for every set of parameters that is feasible, we estimate the cost of the graph using our
cost model (Definition 23). We display the results in Figure 4.2.

As we can see, for G2, thanks to the optimizer, we find parameters that give a cost 16
times smaller than the average cost for every feasible parameter sets and 8 times faster
than the median cost. The feasible set S (G2) represents approximately 1

512 of P (G2) i.e.,
0.2% of P (G2). For G1, we find parameters that give a cost 256 times smaller than the
average cost for every feasible parameter sets and 64 times faster than the median cost.
The feasible set S (G1) represents approximately 1

8 of P (G1) i.e., 12.5% of P (G1).
This study justifies the interest of having an FHE Optimizer. The larger the precision

is, the harder it is to find feasible parameters. The smaller the precision is, the greater
the gain is between an average solution and the optimal one.

117

Chapter 4 – Optimization for FHE

(a) Feasible set of G1 = {A(p1, ν1)} (b) Feasible set of G2 = {A(p2, ν2)}

Figure 4.2: Study of the feasible set of G1 = {A(p1, ν1)} and G2 = {A(p2, ν2)} with p1 = 21,
p2 = 28 and ν1 = ν2 = 28 and pfail ≈ 2−14. The cost (in log2) is displayed on the x-axis.

Pareto Front

To further reduce the size of the search space, we can remove some pairs (B, ℓ) from the
search space.

Let’s study the special case of the key switch. Note that everything explained here
is adaptable to the PBS. Looking at the noise formula (Definition 19) of the key switch,
we learn that the key switch adds a term of noise to the input ciphertext. This new
error term does not depend on the input noise but it depends on various parameters: the
macro-parameters and the decomposition parameters. Informally, we only want to keep
the decomposition parameters that satisfy a different cost and noise trade-off.

More formally, for every set of macro-parameters (k, N, n) and for every level, we iter-
ate over the decomposition base and compute the noise and the cost of the key switch. If
the decomposition micro-parameters (B, ℓ) yield a noise smaller than the noises computed
previously but has a greater cost, we can keep the pair as it satisfies a different noise-cost
trade-off. If the decomposition parameters (B, ℓ) yield a cost smaller than the costs com-
puted previously but has a bigger noise, in the same way, we can also keep the pair. After
repeating this procedure for every possible macro parameter, we have a list of decomposi-
tion parameters each of them satisfying a different trade-off. There are 278 possible pairs
in {(log2(B), ℓ) ∈ [[1, 64]]2| log2(B) · ℓ ≤ log2(q)} with q = 64 and approximately 50 pairs
are left after this filtering.

118

4.2. Solving the FHE-to-TFHE Translation Problem

Branch and Bound

To solve the optimization problem introduced in Equation (4.1), we can use a branch
and bound algorithm. One can see the branch and bound as a smart exhaustive search.
To make it work, we need to define noise and cost oracles. Given a subset of a search
space, the noise oracle estimates the probability of finding a feasible solution in this set.
It cannot guarantee that there is a feasible solution but it can guarantee that there is no
feasible solution. In this scenario, there is no need to iterate over the parameter sets in
this space as none of them will be feasible. The noise oracle is useful to quickly prune part
of the search space. In practice, the noise oracle computes a lower bound on the noise for
every parameters in the set at hand and compares this lower bound with the noise bound
(Definition 21). If the lower bound of the noise does not meet the constraint, we are sure
that there are no feasible solution in this set.

In the same way, we can build a cost oracle that takes as input a subset of the search
space and computes a lower bound on the cost. If this lower bound is greater than the
cost of previously found solutions, we can remove this set from the search as it would
yield sub-optimal solutions.

Thanks to those two oracles, we divide the search space in smaller spaces at each step,
apply the oracles on each of them and discard the ones that only contain sub-optimal or
non-feasible parameter sets.

Concretely, building the cost oracle is easy as the cost formulae are increasing functions
of all their parameters. We can then easily compute a minimum of the cost of a set by
taking the minimal values of each variable and applying the cost formula. It is trickier to
build efficient noise oracles as the formulae are non-monotonic. We build naive oracles by
using the following property with f and g two positive functions:

min
x∈Rα

(f(x) + g(x)) ≥ min
x∈Rα

f(x) + min
x∈Rα

g(x)

and

min
x∈Rα

f(x) · g(x) ≥
(

min
x∈Rα

f(x)
)
·
(

min
x∈Rα

g(x)
)

A prototype of branch-and-bound following the blueprint explained in this section has
been developed in Python.

119

Chapter 4 – Optimization for FHE

4.2.4 Full-fledge problem

In Definition 24, we introduced the notion of FHE DAG. Such structure is filled with nodes
symbolizing FHE operators or subgraphs of FHE operators. In real-life applications, one
owns a graph of computations and wants to deploy an FHE scheme to compute the same
graph but over encrypted data. It means that the problem we eventually address is way
more complicated than what we previously explained in Section 4.1. Instead of taking a
graph of FHE operators, we take as input a crypto-free graph and find simultaneously,
the best FHE DAG and its associated cryptographic parameters which guarantee that it
behaves as the input DAG but over encrypted inputs. The following definition formalizes
this notion.

Definition 31 (Plain DAG) Let G =
(
V , E

)
be a DAG of plain operators (Defini-

tion 18). We define V =
{
Oi
}

1≤i≤α
as the set of vertices, each of them being a plain

operator that can be additions, subtractions, multiplications, LUT evaluation, etc. We de-
fine E as the set of edges, each of them associated with a given message modulus as well
as a label which is either private or public. Private means that the associated message
should be encrypted and public means that the associated message can be publicly known.
When the set of edges, denoted by E, is not relevant, we will represent the graph simply
by its set of vertices, using the notation G = V . This implies that in such contexts, the
graph G is understood solely through its vertices.

We note SFHE
(
G
)

the set of all possible FHE graphs computing the same functionality
than the plain DAG G.

Our optimization framework takes as input a plain DAG G, a level of security, and a
correctness probability. It outputs an FHE DAG G as well as a parameter set x for G.
Remember that most of the FHE operators in G introduce some cryptographic parameters,
for instance a local polynomial size N ∈ N or a local base B ∈ N. It implies that the total
number of possible parameter sets is exponentially huge and we want x to be the best
of them all. Also remember that for a same plain operator, for instance a homomorphic
multiplication, there are several possible strategies to translate it into an FHE subgraph.
In this example, we could use the leveled multiplication that will be introduced later
(Algorithm 22) or two PBS as in [Chi+20b] (see Limitation 4). Those different ways to
translate a plain operator into an FHE one make the problem more complex as the size of
SFHE

(
G
)

depends on the list of known translation rules between plain and FHE operators.

120

4.2. Solving the FHE-to-TFHE Translation Problem

The output of our optimization framework is an FHE DAG G and its associated
parameter set x and must fulfill Guaranties 1 (security), 2 (correctness), 3 (efficiency) in
addition to a last one:

4. the FHE DAG computes the plain functionality described in the plain DAG.

The full-fledge problem we want to solve is the following:

(
Ĝ, x̂

)
= argmin G,xCost (G, x) s.t.

 G ∈ SFHE
(
G
)

x ∈ S (G)
(4.3)

To build SFHE
(
G
)
, we use simple translation rules between plain operators and FHE

operators (Definition 18). To compute a lookup table or a function, we can use a KS
and a PBS from [Chi+20a] if the precision of the message is between 1 and 8 bits or the
WoP-PBS described later in Algorithm 30 for larger precisions. A complete comparison
on the efficiency of the different algorithms to perform a LUT evaluation is available in
Section 4.3 and in Section 6.2. A multiplication between ciphertexts can be replaced by
one of the methods previously introduced. A DP can be replaced by the same DP working
over ciphertexts. We will explain in 4.4.1 how to do a better transformation by optimally
inserting PBS in the DP.

4.2.5 Failure Probability: From the AP to the Entire Graph

In the previous section, all failure probabilities were associated with one single FHE
operator (at least those where there is effectively a risk such as a PBS). We want to
extend our framework to work directly with the failure probability of the entire graph.

Observe that it is easy to have an upper bound on the graph failure probability given
individual AP failure probabilities. Let G = {Ai}i∈I be an FHE DAG and let’s assume,
without loss of generality, that G has an unique output ct (m̃out) and that inside each
atomic pattern there is only one place where the noise is at its highest. For every i ∈ I,
let ct (m̃i) be the ciphertext for which the noise is the highest in Ai. Then, the failure
probability for the whole graph is bounded by:

pfail (G) = Pr (Decode (ct (m̃out)) ̸= mout) ≤ 1−
∏
i∈I

(
1− pfail(Ai)

)
(4.4)

with pfail (Ai) = Pr (Decode (ct (m̃i)) ̸= mi), ∀i ∈ I. By applying the domination con-
cept presented in Theorem 17, when an atomic pattern A1 is dominated by an atomic

121

Chapter 4 – Optimization for FHE

pattern A2, we can find a relationship between pfail (A1) and pfail (A2).

We start by exposing a simpler case where two APs are compared, before generalizing
the method to a whole graph. Let α be the failure probability that we want to guarantee for
every atomic pattern, and let κ = z∗ (α) be its associated standard score. Let (ν1, ν2) ∈ R2

s.t. ν1 ≤ ν2, and let (p1, p2) be two precisions s.t. p1 ≤ p2, which means that t1 =
q

21+p1+1·κ = ∆1
2κ ≥ t2 = q

21+p2+1·κ = ∆2
2κ . Let A1 = A (ν1, t1) and A2 = A (ν2, t2) be two

atomic patterns of type A(CJP21).

As ν1 ≤ ν2 and t1 ≥ t2, A1 is dominated by A2 (Theorem 17). It means that if we
have |e2| < ∆2

2 , we know that with high probability |e1| < ∆1
2 where e1 ←↩ N (0, σ2

1)
(respectively e2 ←↩ N (0, σ2

2)) is the maximal noise in A1 (respectively A2).

Following Definition 21, we know that σ2 ≤ t2 ⇒ Pr
(
|e2| ≥ ∆2

2 = κ · t2
)
≤ α. It

follows that, if this inequality is verified, we will also have Pr
(
|e1| ≥ ∆1

2

)
= pfail (A1) ≤ α

(Theorem 17).

At this point, we look for an estimation of the failure probability pfail (A1) as a function
of pfail (A2). The noise inside an atomic pattern of type A(CJP21) is maximal after the
modulus switching. With our noise model we have that:

∀i ∈ I, σ2
i = σ2

BR · ν2
i + σ2

KS + σ2
MS

With σ2 ≤ t2 and σ1 ≤ t1, we have:

σ2
1 ≤ t2

2 − (ν2
2 − ν2

1) · σ2
BR ≤ t2

1

With the previous inequality, we have found a noise bound tighter than before and we
can compute its associated standard score κ1.

Let us assume that there exists a real number D ∈ R∗ such that, for every possible
set of parameters x, σ2

BR (x) ≥ D, i.e., D = minx σ2
BR (x). Using the previous inequality,

we have:

σ2
1 ≤ t2

2 − (ν2
2 − ν2

1) · σ2
BR

≤ t2
2 − (ν2

2 − ν2
1) ·D

=
(

∆1

2 · κ1

)2

≤ t2
1

122

4.3. Comparison of FHE Operators

and so we have:

κ1 = ∆1

2 ·
D · (ν2

1 − ν2
2) +

(
∆2

2κ

)2
− 1

2

. (4.5)

Using Definition 22, we have pfail (A1) ≤ 1− erf
(
κ1
2

)
. To find an adequate D, one can

iterate over every possible set of parameters x and find the minimal value for σBR (x). In
particular, if ν1 = ν2, we have κ1 ≥ ∆1

∆2
· κ.

Using the relationship above, we have a simple algorithm to find parameters that
satisfy a given failure probability for a whole graph G = {Ai}i∈I . Let pfail (G) be the
failure probability we want to guarantee for the whole graph, and let δfail be its associated
tolerance. The algorithm will output a failure probability pfail (A) that can be used as
described in the sections above and we are sure to achieve a failure probability p̃fail (G)
such that

∣∣∣∣p̃fail (G)− pfail (G)
∣∣∣∣ < δfail.

First, we build Gpareto = {Ai}i∈I′ ← Pareto (G), as defined in Section 4.2.2. Then, we
set pfail (Adominant) ← 1 − (1− pfail (G))

1
|I′| . At this stage, we can apply what is described

above to find the probability of failure of the dominated atomic patterns i.e., compute
∀i ∈ I ∖ I ′, pfail (Adominated,i). Then, using equation 4.4, we can compute

p̃fail (G) ≈ 1− (1− pfail (Adominant))|I
′| ·

∏
i∈I∖I′

(1− pfail (Adominated,i))

If
∣∣∣∣p̃fail (G)− pfail (G)

∣∣∣∣ > δfail, we need to decrease or increase pfail (Adominant) and to
repeat the rest of the algorithm until we meet the condition.

4.3 Comparison of FHE Operators

The atomic pattern types give us a powerful tool to compare several variants of the
bootstrap existing in the FHE literature and more generally, to compare different ways
to perform the same plain operation. As different bootstrapping techniques have different
cost-noise trade-offs, it is hard to compare them. Indeed, it is not possible to analytically
compare the cost and the noise formulae of different bootstraps as they do not share any
common ground (number, types and values of parameters).

In practice, we want to execute arithmetic circuits with a lot of leveled operations
(addition, multiplication by an integer) and lookup table evaluations. We can see an

123

Chapter 4 – Optimization for FHE

arithmetic circuit as a graph of atomic patterns. Most of those atomic patterns will have
input ciphertexts coming from other atomic patterns and not freshly encrypted cipher-
texts. The naive way to compare different bootstrapping techniques is to define a set of
those circuits and find which variant is the best one to efficiently compute them in FHE.
As there is too many circuits to test, this technique is not realistic. In practice, we want
to define a few simple circuits and compare the different techniques on those.

Following the observation above, we define an atomic pattern type for each bootstrap-
ping technique such that each atomic pattern type performs the same plain operations.
Then, for each atomic pattern type, we define simple graphs only composed of one atomic
pattern. To simulate the fact that the atomic pattern is part of a bigger graph composed
of chains of atomic patterns, we add the constraint that the input noise of each atomic
pattern is defined as the output noise of the atomic pattern. With this trick, we can truly
compare the cost of different atomic patterns that can perform the same plain operations
and decide which technique is faster.

In this section, we compare different ways to perform lookup table evaluations and we
study the optimal place of the key switch in an atomic pattern. Other comparisons using
the optimization framework will be detailed throughout this thesis.

4.3.1 LUT Evaluation for Different Precisions

In Section 2.3, we recalled the tree-PBS introduced in [GBA21]. In Section 2.4, we ex-
plained that this algorithm was the only known solution to apply arbitrary functions on
messages encoded with a radix or a CRT encoding. Let us see how this algorithm scales
with the precision of the message. To compare it against the PBS, we need to define
another atomic pattern type A(GBA21).

Definition 32 (A(GBA21) Atomic Pattern Type) We define a second atomic pattern
type A(GBA21) as a subgraph composed of a dot product (Theorem 5), a key switch (Theo-
rem 6) and the tree-PBS (Algorithm 15) introduced in [GBA21]. As in Definition 30, we
assume that every input of the dot product are ciphertexts with independent noises. An
atomic pattern AP of type A(GBA21) is entirely characterized by two values: the 2-norm ν

and its noise bound t.

To compare the PBS of [Chi+20a] in A(CJP21) and the tree-PBS in A(GBA21), we solve
Equation (4.2) for the two types of atomic patterns on for 4 distinct 2-norms and for

124

4.3. Comparison of FHE Operators

message modulus in {21, · · · , 224}, and finally plot the results in Figure 4.3. The padding
bit is not included in the message precision.

Figure 4.3: Comparison of the cost of AP type A(CJP21) and AP of type A(GBA21) with 2
and 3 blocks.

In this experiment, we choose P (N) = {21, · · · , 218}, the search space of the polyno-
mial size N . We set q = 264 and we used a probability of failure pfail ≈ 2−35 and one bit
of padding (i.e. π = 1).

Remark 27 (Noise Bound) For A(CJP21), the noise bound (Definition 21) is defined as
t (p, 1) = q

21+1·p·z∗(pfail) .
For A(GBA21), the noise bound needs to be computed differently because this AP with

2 blocks (respectively 3 blocks) involves η2 (respectively η3) PBS, all sources of potential
failures.

ηi = i · p
i−1 − 1
p− 1 + 1, with i the number of blocks

To guarantee a global failure probability for one A(GBA21), the noise bound needs to be
computed from the number ηi of PBS. We start by computing the failure probability needed
for one PBS defined as p′i = 1− (1− pfail)

1
ηi and from it we can finally compute the noise

125

Chapter 4 – Optimization for FHE

bound for each PBS t (p, 1) = q

21+1·p·z∗(p′
i) . A generalization of this approach is explained

in Section 4.2.5.

The first takeaway is that TFHE’s bootstrapping (in atomic pattern A(CJP21), blue/•
curve) can only handle messages up to 11 bits of precision. By using these parameters sets,
the cost of this atomic pattern with regards to the precision is an exponential function
in two parts. For precisions above 4 to 5 bits (padding bit not included), adding a bit
of precision more than doubles the cost, indeed the polynomial size doubles for every
additional bit of precision. TFHE PBS does not scale well with the precision, to maximize
efficiency, it should not be used when the messages have more than 5 bits of precision.

For A(GBA21), we used on the first layer the multi-value PBS (Algorithm 14) introduced
in [CIM19] and we used PBS over encrypted lookup tables [Chi+20a] on the other layers.
The tree-PBS of [GBA21] takes as input a vector of ciphertexts each containing part of
the message as explained in Section 2.4. The red/+ curve (respectively green/▼ curve)
represents the cost to compute a tree-PBS over 2 ciphertexts (respectively 3 ciphertexts)
each one containing a chunk of the message. Using this, we can reach precisions that
are not feasible with the bootstrapping from [Chi+20a]. Above 11 bits, we cannot find
parameters that will guarantee the correctness of A(CJP21). Regarding the tree-PBS with
2 blocks, it becomes interesting in terms of cost with 6 bits of precision or more, and offers
parameters up to 16 bits of precision. For higher precisions, no feasible solution could be
found. The tree-PBS with 3 blocks provides a way to go above that and we found solutions
for precisions up to 21 bits. It is more efficient than the other two starting at 10 bits of
precision. It is important to notice that even if solutions exist, computing A(GBA21) over
message of 21 bits costs more than 220 times the cost of the [Chi+20a] PBS over Boolean
messages.

To conclude this comparison, [Chi+20a]’s bootstrapping used as in [CJP21] (i.e., with
a KS before and not after) is the best way to apply a function over messages of small
precision (1 to 5 bits). For precision above 11 bits, we have to use the tree-PBS in [GBA21].
But as we can see in the figures, we need an algorithm more efficient than [GBA21] when
it becomes too expensive, i.e., above 9 bits, especially if one wants to build efficient
operations over larger homomorphic integers with TFHE and still being able to compute
LUTs on them. We introduce a new more efficient algorithm to perform LUT evaluations
over large integers in Section 6.2 using Algorithm 30.

126

4.3. Comparison of FHE Operators

4.3.2 Keyswitch Position in an Atomic Pattern

In some contexts it is possible to analytically compare two AP types before beginning
the optimization, i.e., for all suitable sets of parameters, one of the AP types is always
better than the other. For instance, in the gate bootstrapping described in [Chi+20a],
an unlimited number of sequences of PBS, KS and DP is described. However one can
analytically prove that it is always best to have the KS right before the PBS. We introduce
a new atomic pattern type A(CGGI20).

Figure 4.4: A(CGGI20) atomic pattern type, composed of a layer of key switches (KS), a
dot product (DP) and a programmable bootstrap (PBS)

Definition 33 (A(CGGI20) Atomic Pattern Type) We define a third atomic pattern
type A(CGGI20) as a subgraph composed of a layer of key switches (Theorem 6), a dot
product (Theorem 5) and a PBS (Theorem 14). This subgraph is illustrated in Figure 4.4.

As in Definitions 30 and 32, we assume that the inputs of the dot product are cipher-
texts with independent noises. We can describe an atomic pattern of type A(CGGI20) by the
pair (ν, t) with ν, the 2-norm and t the noise bound (Definition 21).

The following theorem formalizes the comparison between an atomic pattern of type
A(CJP21) and an atomic pattern of type A(CGGI20).

Theorem 18 (Relation Between A(CJP21) and A(CGGI20)) We consider two 2-norms
ν1, ν2 ∈ R+ such that ν1 ≤ ν2, two noise bounds t1, t2 ∈ N such that t2 ≤ t1 and two AP:
A1 ∈ A(CJP21) and A2 ∈ A(CGGI20). We have S (A2 (ν2, t2)) ⊆ S (A1 (ν1, t1)).

Proof 18 (Theorem 18) Let’s start with the observation that A(CJP21) and A(CGGI20)

share the same search space P because they are built with the same operators. For a

127

Chapter 4 – Optimization for FHE

parameter set x ∈ P, the maximum noise variance in an AP of type A(CJP21) is σ2
out,1 (x) =

σ2
in (x) ·ν2 +σ2

KS (x)+σ2
MS (x) where σ2

KS (x) is the noise added by the KS and σ2
MS (x) is the

noise added by the MS. Similarly, the maximum noise variance in an AP of type A(CGGI20)

is σ2
out,2 (x) = (σ2

in (x) + σ2
KS (x)) · ν2 + σ2

MS (x).
We consider x̄ ∈ S (A2 (ν2, t2)), so we have σ2

out,2 (x̄) = (σ2
in (x̄) + σ2

KS (x̄)) · ν2
2 and

σ2
out,2 (x̄) ≤ t2

2. The simplest non-trivial DP possible is when we only have one input
ciphertext multiplied by 1, so we have 1 ≤ ν. Since variances are positive and 1 ≤ ν1 ≤ ν2,
we have:

t2
1 ≥ t2

2 ≥ σ2
out,2 (x̄) = σ2

in (x̄) · ν2
2 + σ2

KS (x̄) · ν2
2 + σ2

MS (x̄)
≥ σ2

in (x̄) · ν2
2 + σ2

KS (x̄) + σ2
MS (x̄)

≥ σ2
in (x̄) · ν2

1 + σ2
KS (x̄) + σ2

MS (x̄) = σ2
out,1 (x̄)

So we have t2
1 ≥ σ2

out,1 (x̄), meaning that x̄ ∈ S (A1 (ν1, t1)), so S (A2 (ν2, t2)) ⊆
S (A1 (ν1, t1)). □

Figure 4.5: A(KS-free) atomic pattern type, composed of a dot product (DP) and a pro-
grammable bootstrap (PBS)

The same result can be found by solving Equation (4.1) for atomic pattern types
A(CJP21) and A(CGGI20). The curves are shown on Figure 4.6 for precisions up to 11 bits
and for four different 2-norm ν. In this figure, we also added the comparison withA(KS-free),
the atomic pattern type composed of a DP and a bootstrapping from [Chi+20a] (without
any key switch as illustrated in Figure 4.5). The cost of an atomic pattern of type A(KS-free)

is plotted as the green/▼ curve. The blue/• curve represents the cost of A(CJP21) and the
red/+ curve is the cost of A(CGGI20).

As we can see, the smallest cost is the one of A(CJP21) which confirms what we found
theoretically by comparing A(CJP21) and A(CGGI20) in Theorem 18. We also notice that for
precisions larger than 8 bits, there are no feasible parameters for A(CGGI20). This is due to

128

4.3. Comparison of FHE Operators

the fact that the noise of the key switch is amplified by the DP in A(CGGI20) whereas it is
not in A(CJP21). On the contrary, for very small precisions, A(CJP21) and A(CGGI20) are very
similar in terms of efficiency. The difference increases as soon as we increase the 2-norm
factor ν. It means that for Boolean TFHE (gate bootstrapping described in [Chi+20a]),
having the key switch after the bootstrap does not worsen the cost by much, but it is not
the case for larger precisions. This figure also illustrates the usefulness of the key switching
as A(KS-free) is always the worst atomic pattern type in terms of cost. Furthermore, for
A(KS-free) no solution is found for precisions larger than 7 bits. To conclude, one always
wants to compute the KS right before the PBS as in AP of type A(CJP21).

Remark 28 (Mixing Different AP Types in an FHE Graph) We consider an
FHE graph G containing two types of AP: type A(CJP21) and type A(CGGI20). We can apply
the AP domination (Theorem 17) on every atomic pattern of each type. At the end of this
procedure, we end up with a few AP of type A(CJP21) and a few AP of type A(CGGI20). To
further simplify the problem, we can use Theorem 18 to compare the remaining atomic
patterns of A(CJP21) with the atomic patterns of A(CGGI20).

Figure 4.6: Comparison of the AP types A(CJP21), A(CGGI20) and A(KS-free).

129

Chapter 4 – Optimization for FHE

4.4 Other applications

In this section, we describe several improvements we designed for our optimization frame-
work. First, we explain how to easily insert programmable bootstraps inside dot products.
Then, we explain how to mitigate the stochastic property of the FFT to build a Consensus-
friendly TFHE i.e., a way to instantiate TFHE which guarantees that a circuit executed
on different hardware targets but with the same input ciphertexts and public material
produces the same output ciphertexts. Finally, we offer an efficient way to find several
keyswitching keys for a given circuit.

4.4.1 Optimal PBS Insertion within a Dot Product

In Section 4.2.4, we suggested to translate a plain DP into an FHE DP. Here, we explain
how to automatically insert a PBS during a DP wherever it is interesting with regards to
the cost model. It can sound counterintuitive as the PBS can be a very costly operator,
hence inserting PBSs will increase the total cost of the computation. However when the
2-norm of a DP operator is high, the parameters must be large enough to still guarantee
the correctness of the computation and those large parameters will have an impact on the
cost. We need our framework to choose whether it is interesting to split the DP operator
or not to end up with more PBSs but with smaller cryptographic parameters.

The following theorem explores this approach.

Theorem 19 (DP Splitting) Let A (ν, t) be an AP of type A(CJP21) with a noise bound
t and including a DP of 2-norm ν. Let Ã (ν, t, d) the same AP than A but where its DP
is split into d + 1 sub-DP of approximately the same 2-norm and connected together with
PBS. It actually breaks an AP into d + 1 APs of the same type organised in two layers (d
followed by a last one connecting them all).

Let G = {A (νi, t)}0≤i<Y such that ν0 < ν1 < ... < νY−1. Let d⃗∗ = (d∗0, · · · , d∗Y−1) and
d⃗′ =

(
d′0, · · · , d′Y−1

)
be two different possible splitting solutions. We define the following

two FHE graphs: G∗ =
{
Ã (νi, t, d∗i)

}
0≤i<Y

and G ′ =
{
Ã (νi, t, d′i)

}
0≤i<Y

.
If every coordinate of d⃗∗ is inferior or equal (coordinate wise) to the ones from d⃗′ and

S (G∗) = S (G ′), then, d′ cannot be the optimal solution.

Proof 19 (Theorem 19) As every coordinate of d⃗∗ is inferior or equal to the ones from
d⃗′, there are strictly more atomic patterns in G ′ than in G∗. It means that ∀x ∈ S (G∗) =
S (G ′) , Cost (G∗, x) < Cost (G ′, x).

130

4.4. Other applications

Thus, we have

min
x∈S(G∗)

Cost (G∗, x) < min
x∈S(G′)

Cost (G ′, x)

To conclude, G ′ cannot be an optimal solution as G∗ is a strictly better one.
□

Let us study how to choose d, the additional number of atomic patterns after the
splitting. We consider a graph G = {A(νi, t)}0≤i<α composed of AP of type A(CJP21)

which involves a DP operator. We introduce a new AP type and translate every AP of
type A(CJP21) into this new AP type A∗ ∈ A(CJP21∗) which has the exact same subgraph
than AP type A(CJP21) except that the DP is split into several sub-DP connected with
PBS as explained in Theorem 19. This AP has a new parameter di describing the splitting
of the DP for the i-th AP, i.e., how many sub-DP we will have. Note that a graph G∗

with fixed values di can be viewed as a graph G̃∗ of AP type A(CJP21).
Formally, Equation (4.3) can be written again:

(
Ĝ, x̂

)
= arg min

d⃗∈D
Cost

(
G∗
d⃗
, x∗

)
s.t.

 G∗
d⃗

= {A∗(νi, t, di)}0≤i<α

x∗ solution of Equation (4.1) on G∗
d⃗

(4.6)

Several ways can be imagined to split a DP. One could be to group public weights of
the DP into di sets such that their 2-norm is approximately the same. This will yield the
best result if we keep neglecting the cost of the DP. Inserting a PBS adds extra operations
to perform, but it will also reduce the 2-norm of the initial DP.

To find how to split in two a dot product with a 2-norm ν and with weights {ωi}i∈J ,
we can solve the following problem

min
ωi,1,Λ

max(ν1, ν2) s.t.

ωi = ωi,1Λ + ωi,2

GCD (ωi,1, Λ) = 1

∀j ∈ {1, 2} , νj =
√∑

i ω
2
j,1

(4.7)

This will yield two sets of weights {ωi,1}i∈J and {ωi,2}i∈J with ν2
1 = ∑

i∈J ω2
i,1 ≈ ν2

2 =∑
i∈J ω2

i,2. Those sets of weights can be used to optimally split a dot product as explained
in Theorem 5. Those sets of weights for different values of the splitting factor d can be
precomputed before beginning the optimization of the whole problem.

131

Chapter 4 – Optimization for FHE

If the weights {ωi}i∈J are unknown but we know that they follow a uniform distribution
between −2p and 2p, we have a trivial way yet very efficient (regarding the noise) to split
a DP into d + 1 DPs. We can radix-decompose as defined in Section 2.3.2 all the DP
weights with the level being equal to d + 1 and the log2 of the base B is equal to p+1

d+1 .
Here each Λi is equal to a power of B.

4.4.2 Consensus-friendly TFHE

Two implementations of the same FHE algorithm that do not involve the FFT will output
the same result as long as they operate over the same inputs (same ciphertexts and same
public material). For instance, different implementations of a DP or an LWE-to-LWE KS
will produce the same outputs.

However, implementations that leverage the FFT output different ciphertexts depend-
ing on the FFT algorithm used. To highlight this, we made an experiment with the tra-
ditional parameter set of TFHE-lib [Chi+16b] for the bootstrapping. We use the same
secret keys, the same bootstrapping key and the same input ciphertexts, but two different
implementations of the PBS with their respective FFT implementations.

We computed the difference on the resulting ciphertexts for the two different imple-
mentations, we call this value the FFT error of the ciphertexts, which is different from
the noise needed for security in the plaintext. We observed that the ciphertexts had the
same most significant bits but their least significant bits were different. We also re-run the
experiment with different parameters: more levels and larger polynomials in the bootstrap-
ping key. The messages encrypted were still correct but the ciphertexts were completely
different i.e., re-randomized.

From those experiments, we can conclude that for a given parameter set and a cipher-
text with a given input FFT error, the PBS with a given FFT either resets the FFT error
to a minimal level or outputs the maximum amount of FFT error, i.e., a re-randomization
of the ciphertext. It means that an FHE circuit containing a DP, a KS and a PBS will
not output the exact same ciphertext if it is run on the same inputs with different imple-
mentations. This is not compatible with use-cases where one actually needs to guarantee
reproducibility across different implementations.

Thankfully, it is possible to ensure the reproducibility by tweaking a bit our opti-
mization framework as well as the PBS algorithm. The idea is to use a new AP type
that is identical to type A(CJP21) but with an extra rounding step at the end (right after
the PBS). This rounding procedure aims to remove the LSB of the ciphertexts that are

132

4.4. Other applications

different from an implementation to the other. This rounding increases the noise in the
plaintext and it adds a new parameter to optimize: the location of the rounding. The
higher in the MSB we round, the more noise we add, but also the more FFT error we
remove. Note that this rounding will either keep the same amount of FFT error (when
the output FFT error is maximal, i.e., the ciphertexts are completely different) or cancel
it entirely depending on the parameter for the rounding and the input FFT error.

We can add to the optimization framework a new constraint related to the maximum
FFT error we want to consider. We can do that easily with an additional feasible set
Sother (G). The condition could be represented as Sother (G) = {x ∈ P|∀i,EPBSi (x) = 0} ⊂
P , with EPBSi(x) the FFT error of the output ciphertext coefficients of a bootstrapping
after the rounding. This approach relies on the fact that we have a model for the FFT
error in the output of the PBS in terms of ciphertext coefficients.

Some cryptographic observations can help reduce the size of the parameter space. In
particular, we must have q

2BℓPBS
PBS

> errorFFT (x) where (ℓPBS,BPBS) are the decomposition
parameters of the PBS.

This optimization enables to set a limit in terms of FFT error in the ciphertext coeffi-
cients that an implementation of the FFT introduces. Then, we can optimize for a given
FFT error model, some noise model, and some cost model targeting a common architec-
ture for instance. The result of the optimization can be used to compute the same circuit
on the same ciphertexts with the same public keys, but with a different implementation of
the same FHE algorithms and we will end up with the exact same ciphertext as output.

This feature enables many miners in a blockchain for instance, to compute the same
circuit on the same inputs and have a consensus without a need to decrypt anything. It
guarantees that the result came out of the desired FHE DAG and not another circuit
designed by an attacker.

4.4.3 Several Evaluation Keys

In previous results on atomic pattern type A(CJP21), we assumed that we only have one
public key material per FHE operator for the whole FHE DAG as we were only looking
for one polynomial size, one GLWE dimension and one LWE dimension.

Restricting the number of public keys helps to have small total public key material.
It also has an impact on the complexity of the optimization problem because as a result,
parameters are shared across the entire FHE DAG. The downside is that we cannot speed
up parts of the FHE DAG that have a higher noise bound or fewer leveled operations

133

Chapter 4 – Optimization for FHE

(smaller 2-norm) with smaller and faster parameters.
In this section we describe a simple optimization problem: one LWE secret key s⃗ and

one GLWE secret key S⃗ ′ (for the PBS) that can be viewed as a bigger LWE secret key
s⃗′, along with X different key switching keys going from s⃗′ to s⃗. These key switching keys
can use a different base B and/or a different number of levels ℓ. In this context, we want
to find parameters for a graph G of Y APs of type A(CJP21).

There are many ways to solve this problem. A naive solution is to consider different
parameters for each KS and to let every KS have its own (B, ℓ) and to add the constraint
that they can have at most X values. This approach increases exponentially the search
space of the optimization problem, so we will not consider it.

A second solution, which is straightforward though not the most efficient one, is to
introduce a new variable δ for each KS. This value δ stores the associated KSK identifier.
This is a new parameter to optimize for each KS, we have ∀i ∈ [1, Y] δi ∈ [1, X]. So our
additional search space, defined by the problem of finding which KSK is used by which
KS, is of size XY .

We designed a third solution to solve the problem. Starting from now, we will sort our
KSK (KSK0, KSK1, · · ·) such that a KS with KSKi adds less noise than using KSKi+1 for
all 0 ≤ i. Ranking the noise added by the key switching keys is useful for the following
theorem.

Theorem 20 (Optimal KSK) Let KSK0 and KSK1 two KS keys with decomposition
parameters selected through the resolution of the optimization problem. Without loss of
generality, let us assume that a KS using KSK0 adds strictly less noise than the one using
KSK1, then the KS with KSK0 will be slower than the KS with KSK1.

Proof 20 (Theorem 20) The two keys must have different parameters for the base
and/or the number of level, because the noise added is different by hypothesis. If the opti-
mization has selected two distinct keys it means that they both satisfy a different cost/noise
trade-off. Then, if a KS with KSK1 is slower than a KS with KSK0 and generates more
noise, KSK1 will always be worse (both in terms of noise and cost) than KSK0 which
contradict the fact that the optimization has selected those two distinct keys. □

Let us consider the following toy example where t ∈ N is a noise bound (Defini-
tion 21) and G = {A0 (ν0, t) , A1 (ν1, t) , A2 (ν2, t)} is an FHE DAG (Definition 24) such

134

4.4. Other applications

that ν0 < ν1 < ν2. This graph has the same noise bound t for each AP and they are
all of type A(CJP21). Let us have two possible key switching keys and let us assume that
δ⃗ = (δ0, δ1, δ2) = (0, 1, 0) is the optimal solution i.e., we use KSK0 for A0 and A2, and
KSK1 for A1. We will show that it cannot be so. We can use Theorem 17 to infer that
S (A (ν2, t)) ⊆ S (A (ν1, t)) ⊆ S (A (ν0, t)), and Theorem 20 to infer that a KS with KSK1

is faster than a KS with KSK0. It is then straightforward to see that if (0, 1, 0) is a solu-
tion, then (1, 1, 0) (KSK0 for A2 and KSK1 for A0 and A1) is also a solution but a faster
one. This example can be extended to an arbitrary number of AP sharing the same noise
bound and for an arbitrary number of key switching keys as described in the Theorem 21
below.

Theorem 21 (Several KSK) Let G = {A (νi, t)}0≤i<Y an FHE graph only composed of
AP type A(CJP21) such that ν0 < ν1 < ν2 < · · · < νY−1. We consider that we can have X

KSK. The optimal δ⃗ = (δ0, · · · , δY−1) has the property that for all 0 ≤ i < Y − 1 there is
δi ≥ δi+1.

Proof 21 (Theorem 21) Let us assume that there exists an i∗ such that δi∗ < δi∗+1 and
that ∀i ∈ [[0, Y − 1]] \ {i∗} , δi∗ ≥ δi∗+1.

Following the same logic as in the toy example above, we can use Theorem 17 and we
find that

S (A (νY−1, t)) ⊆ · · · ⊆ S (A (ν1, t)) ⊆ S (A (ν0, t)) .

Let δ⃗′ such that ∀i ∈ [[0, Y − 2]] \ {i∗} , δ′i = δi and δ′i∗ = δi∗+1. As S (Ai∗+1) ⊆ S (Ai∗),
δ′ is a feasible solution.

Using Theorem 20, we know that KSKY is faster than KSKY−1 which is faster than
KSKY−2 and so on. It means that KSKδi∗+1 is faster than KSKδi∗ .

To conclude δ⃗′ is a better solution than δ⃗, so δ⃗ cannot be the optimal solution.
□

Using Theorem 21, we can solve the optimization problem without considering those
δ⃗ that cannot be an optimal solution of Equation (4.1).

We can consider an FHE DAG with different noise bounds, and apply what we just
described for each of the different noise bounds. The same approach works to enable
several BSKs in the optimization. Indeed, BSKs can also be sorted according to the
amount of noise they produce in their output ciphertexts.

135

Chapter 4 – Optimization for FHE

Conclusion. In this chapter, we introduced our optimization framework and its build-
ing blocks. We formalized the optimization problem in a way that satisfies the guarantees
we want to have, we explained different simplifications to reduce the complexity of this
problem and we introduced the concept of atomic pattern. Using this concept, we ex-
plained how to correctly compare bootstrapping techniques and more generally different
atomic pattern types. We also introduced several additional applications that extend our
optimization framework.

In the next chapter, we will introduce new FHE operators that remove some limitations
explained in Section 2.3. To find parameters for those new algorithms, we will use the
optimization framework described in this chapter. We will also use the method explained
in Section 4.3 to compare our new methods against the state of the art.

136

Chapter 5

NEW FHE OPERATORS

In Section 2.3, we introduced the main building blocks of TFHE. In this chapter, we
describe new algorithms that improve these building blocks.

First, we introduce a generalized version of the modulus switch (Algorithm 6) on which
we can build a generalized version of the PBS (see Algorithm 17). The modulus switch
as described in Algorithm 6 applies by default the rounding on the most significant bits
of the plaintext. With this new version of the PBS, we can choose exactly which part of
the plaintext we want to extract.

In Limitation 6, we saw that the only existing technique to evaluate several lookup ta-
bles over the same input at the same time was the [CIM19]-PBS, recalled in Algorithm 14.
With the help of the generalized PBS, we define a new algorithm (Algorithm 18) that
can do the same without any additional cost but with a slightly bigger noise which is
independent of the lookup tables compared to the PBS.

In Limitation 2, we explained that TFHE bootstrap (Algorithm 10 and Theorem 14)
was very slow for messages with more than 8 bits of precision as the polynomial size N

is directly constrained by the number of bits of precision. We introduce in Algorithm 19,
the rounded PBS that takes as input a message with high precision (more than 8 bits),
rounds it to a smaller message and evaluates a lookup table on it. This algorithm is a
good alternative to the PBS when the function we want to evaluate is independent from
the least significant bits of the message.

In Limitation 4, we recalled that there is no native multiplication algorithm between
LWE ciphertexts. The only existing methods are very costly and based on several PBSs
(Algorithm 10 and Theorem 14) or on circuit bootstraps (Algorithm 11) and external
products (Algorithm 7 and Theorem 11). In this chapter, we introduce an LWE multi-
plication and several variants that are inspired by the GLWE multiplication algorithm
from [FV12].

137

Chapter 5 – New FHE Operators

5.1 Generalized PBS

Algorithm 17: ctout ← GenPBS (ctin, BSK, CTf ,κ, ϑ)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq : the output LWE secret key
S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q : a GLWE secret key
∀0 ≤ i ≤ k − 1, S ′i = ∑N−1

j=0 s′i·N+jX
j ∈ Rq

Pf ∈ Rq : an r-redundant LUT for x 7→ f(x)
∆out ∈ Zq : the output scaling factor
f : Z→ Z : a function
(β, m′) = PTModSwitchq(m, ∆in,κ, ϑ) ∈ {0, 1} × N

Input:

ctin ∈ LWEs⃗(m ·∆in) = (a0, · · · , an−1, an = b) ∈ Zn+1
q

BSK =
{
CTi ∈ GGSWβ,ℓ

S⃗′ (si)
}n−1

i=0
: a bootstrapping key from s⃗ to S⃗ ′

CTf ∈ GLWES⃗′ (Pf ·∆out) ∈ Rk+1
q

(κ, ϑ) ∈ Z× N : define along with N the chunk of the plaintext to bootstrap
Output: ctout ∈ LWEs⃗′

(
(−1)β · f (m′) ·∆out

)
if we respect the requirements of

Theorem 22
1 begin

/* modulus switching */
2 for 0 ≤ i ≤ n do
3 a′i ←

[⌊
ai·2N ·2κ−ϑ

q

⌉
· 2ϑ

]
2N

4 end
/* blind rotate of the LUT (Algorithm 9) */

5 CT← BlindRotate (CTf , {a′i}ni=0, BSK) ;
/* sample extract the constant term (Algorithm 5) */

6 ctout ← SampleExtract (CT, 0)
7 end

We propose a more versatile algorithm for the PBS (Algorithm 10) where we are able
to bootstrap a precise chunk of bits of the encrypted plaintext, instead of only the MSB
as described in TFHE [Chi+20a], and to also apply several function evaluations at once.
We describe this generalization in Algorithm 17. We introduce two new parameters, κ and
ϑ, which redefine the modulus switching step of the TFHE PBS. In particular, κ defines
the number of MSB that are not considered in the PBS, while 2ϑ defines the number of
functions that can be evaluated at the same time in a single generalized PBS.

138

5.1. Generalized PBS

The two parameters κ and ϑ are illustrated in Figure 5.1, where input represents
the plaintext (with noise) which is encrypted inside the input ciphertext of the modulus
switching, and output illustrates the plaintext (with noise) that is encrypted inside the
output ciphertext (after modulus switching). The first κ MSB will not impact the follow-
ing steps of the generalized PBS and ϑ bits will be set to 0 in order to encode 2ϑ functions
in the LUT stored in Pf (see Section 5.2 and Algorithm 18 for more details). Observe
that the case (κ, ϑ) = (0, 0) corresponds to the original TFHE PBS.

Input:

m̄ m e

κ 2N
ϑ

Output:

m

2N
ϑ

Figure 5.1: Modulus switching operation in the generalized PBS (Algorithm 17): on top
of the figures we illustrate the data (m̄, m, e), on the bottom the dimensions (κ, 2N , ϑ).

We also define the plaintext modulus switching function written PTModSwitch to re-
cover the plaintext of the encrypted output of a modulus switching algorithm. Let m ∈ Zp
be a message, ∆ ∈ Zq its scaling factor (as defined in Definition 13), κ ∈ Z and ϑ ∈ N
the parameters of a modulus switching. We define q′ = q

∆2κ . The case where κ ≥ 0 is
illustrated in Figure 5.2. We define (β, m′)← PTModSwitchq(m, ∆,κ, ϑ) ∈ {0, 1} × N as
follows:

If κ ≥ 0 :

m′ = m mod q′

2

if m mod q′ < q′

2 , β = 0, else β = 1
Else :

m′ = m

β is a random bit

Note that for the sake of simplicity, we provide the generalized PBS noise formula
only for binary secret keys. However, Appendix A.2 provides formulae as well as proofs
for other key distributions (binary, ternary and Gaussian).

Theorem 22 (Generalized PBS) Let s⃗ = (s0, · · · , sn−1) ∈ Znq be a binary LWE secret
key. Let S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q be a GLWE binary secret key such that S′
i=
∑N−1

j=0 s′
i·N+j ·

Xj, and s⃗′ = (s′0, · · · , s′kN−1) be the corresponding binary LWE secret key. Let Pf be a
r-redundant LUT for a function f : Z→ Z (Definition 12) and ∆out be the output scaling

139

Chapter 5 – New FHE Operators

Output:

m

β m′

2N
ϑ

Figure 5.2: Plaintext after the modulus switching from the generalized PBS (Algorithm 17)
where κ ≥ 0: on top of the figure we illustrate the data(m, β, m′), on the bottom the
dimensions (2N , ϑ).

factor. Let (κ, ϑ) be the two integer variables defining (along with N) the window size to be
modulus switched, such that q2ϑ

∆in2κ < 2N , and let (β, m′) = PTModSwitchq(m, ∆in,κ, ϑ) ∈
{0, 1} × N.

Then Algorithm 17 takes as input an LWE ciphertext ctin ∈ LWEs⃗(m · ∆in) ∈ Zn+1
q

with noise distribution χσin, a bootstrapping key BSK=
{

CTi∈GGSWB,ℓ

S⃗′ (si)
}n−1

i=0
from s⃗ to S⃗ ′ and

a (possibly trivial) GLWE encryption of Pf · ∆out, and returns an LWE ciphertext ctout

under the secret key s⃗′, encrypting the message (−1)β ·f (m′) ·∆out with probability 1−pfail

if and only if the input noise has variance σ2
in <

∆2
in

4·z∗(pfail)2 − q′2

12w2 + 1
12 −

nq′2

24w2 − n
48 , where

z∗ (pfail) is the standard score (Definition 22) associated to the failure probability pfail,
w = 2N · 2−ϑ and q′ = q · 2−κ.

The output noise after the generalized PBS is estimated by the formula:

Var(PBS) = nℓ(k + 1)N B2 + 2
12 Var(BSK) + n

q2 −B2ℓ

24B2ℓ

(
1 + kN

2

)

+ nkN

32 + n

16

(
1− kN

2

)2 (5.1)

The cost of Algorithm 17 is the same as the complexity of the TFHE PBS [Chi+20a],
i.e.,

Cost (GenPBS)(n,ℓ,k,N) = Cost (ModulusSwitching)(n) + nCost (CMUX)(ℓ,k,N)

+ Cost (SampleExtract)(N) (5.2)

with

Cost (ModulusSwitching)(n) = (n + 1)Cost (Scale&Round) (5.3)

140

5.2. Many-LUT PBS

Cost (CMUX)(ℓ,k,N) = (k + 1)Cost (Rotation)(N) + 2(k + 1)NCost (Add)
+ nCost (ExternalProduct)(ℓ,k,N) (5.4)

Cost (ExternalProduct)(ℓ,k,N) = (k + 1)NCost (dec)(ℓ) + ℓ(k + 1)Cost (FFT)
+ (k + 1)ℓ(k + 1)NCost (multFFT)
+ (k + 1)(ℓ(k + 1)− 1)NCost (addFFT)
+ (k + 1)Cost (iFFT)

(5.5)

Proof 22 (Theorem 22) In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate its variance. The detailed
proof of this theorem is provided in Appendix A.2. □

In the next section, we use the generalized PBS to build a variant of the PBS that is
able to evaluate several lookup tables on the same input at the same time.

5.2 Many-LUT PBS

Using the generalized PBS, we are able to extract any chunk of the encrypted plaintext
with ϑ, κ and N (see Section 5.1). When possible, one can define a smaller chunk for
the plaintext by trimming the bound in the LSB using a ϑ > 0. It means that after the
modulus switching there are ϑ LSB set to 0. More formally, after the modulus switching,
a plaintext m∗ will be of the form m∗ = m ·∆ + e · 2ϑ ∈ Zq.

Thank to the ϑ LSB set to 0 in the plaintext, one can evaluate 2ϑ functions at the cost
of only one GenPBS (Algorithm 17) without increasing the noise compared to a regular
TFHE PBS. The procedure is described in Algorithm 18.

The shape of the LUT polynomial is set accordingly to the ϑ parameter so that it
contains up to 2ϑ functions. As for the TFHE bootstrap, one needs to have redundancy in
the LUT to remove the input noise as explained in Definition 12. Each block of functions
(i.e., the sequence of fi, i ∈ [0, 2ϑ − 1] coefficients) is repeated all along the polynomial.
The LUT can be built as follows:

141

Chapter 5 – New FHE Operators

Algorithm 18: ct1, . . . , ct2ϑ ← PBSmanyLUT(ctin, BSK, P(f1,...f2ϑ), ∆out,κ, ϑ)
Context:

s⃗ = (s0, . . . , sn−1) ∈ Znq
s⃗′ = (s′0, . . . , s′kN−1) ∈ ZkNq
S⃗ ′ =

(
S ′(0), . . . , S ′(k−1)

)
∈ Rk

q

∀0 ≤ i ≤ k − 1, S ′(i) = ∑N−1
j=0 s′i·N+jX

j ∈ Rq

f0, . . . , f2ϑ−1 : Z→ Z
(β, m′) = PTModSwitchq(m, ∆,κ, ϑ) ∈ {0, 1} × N
CT(f0,...,f2ϑ−1) ∈ GLWES⃗′

(
P(f0,...,f2ϑ−1) ·∆out

)
(might be a trivial encryption)

Input:

ctin ∈ LWEs⃗(m ·∆in) = (a0, · · · , an−1, an = b) ∈ Zn+1
q

BSK =
{
BSKi ∈ GGSW(B,ℓ)

S⃗′ (si)
}

0≤i≤n−1
P(f0,...,f2ϑ−1) : a redundant LUT for : x 7→ f0(x)|| . . . ||f2ϑ−1(x)
(κ, ϑ) ∈ Z× N : defined along with N the window size

Output: ct0, . . . , ct2ϑ−1 such that ctj ∈ LWEs⃗′

(
(−1)β · fj(m′) ·∆out

)
1 begin

/* modulus switching */
2 for 0 ≤ i ≤ n do
3 a′i ←

[⌊
ai·2N ·2κ−ϑ

q

⌉
· 2ϑ

]
2N

4 end
/* blind rotate of the LUT (Algorithm 9) */

5 CT← BlindRotate
(
CT(f0,··· ,f2ϑ−1), {a′i}0≤i≤n, BSK

)
;

/* sample extract the first 2ϑ terms (coeffs. from 0 to 2ϑ − 1) */
6 for 0 ≤ j ≤ 2ϑ − 1 do
7 ctj ← SampleExtract (CT, j)
8 end
9 end

142

5.2. Many-LUT PBS

P(f0,...,f2ϑ−1) = X
N
2p

p−1∑
j=0

XjN
p

N

p2ϑ
−1∑

k=0
Xk·2ϑ

2ϑ−1∑
i=0

fi(j)X i,

with p = q
∆in·2κ+1 , a power-of-two. By doing so, one can sample-extract at the end 2ϑ

coefficients which leads to 2ϑ output ciphertexts, one for each evaluated function. By
neglecting the computational cost of the ϑ sample extracts, the cost is the same than for
a PBS evaluating only one function. The noise is also not impacted.

This method is particularly efficient when the polynomial size is constrained by the
desired output noise. If the polynomial size is chosen large enough, there will be bits set
to zero between the modulus switching noise and the message. With the Many-LUT PBS,
we can exploit these bits to compute different functions on the same input ciphertext.

Theorem 23 (Many-LUT PBS) Let s⃗ = (s0, · · · , sn−1) ∈ Znq be a binary LWE secret
key. Let S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q be a GLWE secret key such that S′
i=
∑N−1

j=0 s′
i·N+jX

j∈Rq,
and s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq be the corresponding LWE key. Let P(f0,...f2ϑ−1) ∈ Rq be
an r-redundant LUT for the functions x 7→ f0(x)|| . . . ||f2ϑ−1(x) and ∆out ∈ Zq be the
output scaling factor. Let (κ, ϑ) ∈ Z × N be the two integer variables defining (along
with N) the window size to be modulus switched, such that q2ϑ

∆in2κ <2N, and let (β, m′) =
PTModSwitchq(m, ∆in,κ, ϑ).

Then, Algorithm 18 takes as input an LWE ciphertext ctin = (a0, · · · , an−1, an = b) ∈
LWEs⃗(m · ∆in), with noise distribution χσin, a bootstrapping key BSK=

{
CTi∈GGSWB,ℓ

S⃗′ (si)
}n−1

i=0

from s⃗ to S⃗ ′ and a (trivial) GLWE encryption of Pf ·∆out, and returns 2ϑ LWE ciphertexts
{ctj}j∈[0,2ϑ−1] under the secret key s⃗′ encrypting the messages (−1)β · fj (m′) · ∆out with
probability 1− pfail if and only if the input noise has variance verifying Theorem 22.

The cost of the algorithm is:

C(n,ℓ,k,N,ϑ)
PBSmanyLUT = Cost (GenPBS)(n,ℓ,k,N) + 2ϑCost (SampleExtract)(N) (5.6)

Proof 23 (Theorem 23) The proof is mainly the same as the one from the GenPBS
(provided in Appendix A.2). Let p = q

∆in·2κ+1 be the number of possible values for each
fi, i ∈ [0, 2ϑ − 1]. Let m ∈ [0, p − 1] be a plaintext value. The polynomial P(f0,··· ,f2ϑ−1)

143

Chapter 5 – New FHE Operators

encodes the following LUT:..., f0(m), ..., f2ϑ−1(m), ..., f0(m), ..., f2ϑ−1(m)︸ ︷︷ ︸
N/p elements

, f0(m+ 1), ..., f2ϑ−1(m+ 1), ..., f0(m+ 1), ..., f2ϑ−1(m+ 1)︸ ︷︷ ︸
N/p elements

, ...

︸ ︷︷ ︸

p blocks

From the GenPBS, all ϑ bits are set to 0. Then, by construction of the LUT, for i ∈
[0, 2ϑ − 1], LUT(f0,··· ,f2ϑ−1)[m∗ + i] = fi(m′).

□

Remark 29 (Comparison with [CIM19]) A technique to evaluate many LUTs at the
same time by performing a single TFHE bootstrapping (plus a bunch of polynomial multi-
plications per LUT) has been already proposed in [CIM19] (recalled in Algorithm 14) and
used in [GBA21] (Algorithm 15). Their technique does not impose a strong constraint on
the polynomial size used for the bootstrapping, however it results in a larger output noise,
which strictly depends on the function being evaluated. If the noise constraints at the out-
put of the bootstrapping are a problem, the technique of [CIM19] will require to increase
the polynomial size.

Our new PBSmanyLUT is a better alternative to this technique in some situations
because the output noise will be independent from the evaluated function. But this comes
at the cost of enlarging the space for the evaluation of the different LUTs (i.e., ϑ bits on
the modulus switching to evaluate 2ϑ functions so a large enough polynomial size N must
be chosen). If we already are working with large polynomials, there is no computation
overhead nor extra noise terms when replacing a GenPBS by a PBSmanyLUT.

Improving the Circuit Bootstrapping In TFHE [Chi+17], a technique called circuit
bootstrapping was introduced, we recalled it in Algorithm 11. With this technique, we can
convert an LWE ciphertext (Definition 4) into an GGSW ciphertext (Definition 9).

The authors of [Chi+17] observe that a GGSW ciphertext, encrypting a message
µ ∈ Z (µ is binary in their application) under the secret key S⃗ = (S0, . . . , Sk−1, Sk = −1),
is composed by (k+1)ℓ GLWE ciphertexts encrypting µ·Si· qBj , for 0 ≤ i ≤ k and 1 ≤ j ≤ ℓ.
As already mentioned in Section 2.3, the goal of circuit bootstrapping (Algorithm 11) is
to build one by one all the GLWE ciphertexts composing the output GGSW. In order to
do that, it performs the following two steps:

• The first step performs ℓ independent TFHE PBS to transform the input LWE

144

5.2. Many-LUT PBS

encryption of µ into independent LWE encryptions of µ · q
Bj

.

• The second step performs a list of (k + 1)ℓ private key switchings from LWE to
GLWE to multiply the messages µ · q

Bj
obtained in the first step by the elements of

the secret key Si, and so to obtain the different lines of the output GGSW.

Here, we propose a faster method based on the PBSmanyLUT algorithm (Algo-
rithm 18). In a nutshell, the idea is to replace the ℓ PBSs of the first step by only one
PBSmanyLUT (that costs exactly the same as a one of the ℓ original PBSs and do not
increase the noise). Since the most costly part of the circuit boostrapping is due to the
PBS part, the overall cost is then roughly reduced by a factor ℓ. In [Chi+17], ℓ = 2, so
we have an improvement of a factor 2 on the PBS part, without any impact on the noise.

Theorem 24 Consider the circuit boostrapping algorithm as described in [Chi+17, Alg.
11] and recalled in Algorithm 11. The ℓ independent bootstrappings (line 2) can be replaced
by:

{cti}i∈[1,ℓ] ← PBSmanyLUT(ctin, BSK, P ·XN/2ρ+1
, 1,κ = 0, ρ = ⌈log2(ℓ)⌉)

∀i ∈ [1, ℓ], cti +
(⃗
0, q

2Bi
)

with P (X) =
N
2ρ−1∑
i=0

2ρ−1∑
j=0

q

2Bj
X2ρ·i+j.

Proof 24 (Theorem 24) By calling PBSmanyLUT with ρ = ⌈log2(ℓ)⌉, we are able to
compute ℓ PBS in parallel. The polynomial P represents the LUT: q

2B1 , . . . ,
q

2Bℓ
, 0, . . . , 0︸ ︷︷ ︸

2ρ elements

,
q

2B1 , . . . ,
q

2Bℓ
, 0, . . . , 0︸ ︷︷ ︸

2ρ elements

, . . . ,
q

2B1 , . . . ,
q

2Bℓ
, 0, . . . , 0︸ ︷︷ ︸

2ρ elements

︸ ︷︷ ︸

N ′=N/2ρ elements

In the end, for i ∈ [1, ℓ], cti ∈ LWES⃗(± q

2Bi
), where the sign depends on the plaintext

value. By adding the trivial ciphertext
(

0⃗,
q

2Bi

)
to the cti, we either get cti ∈ LWES⃗(q

Bi
)

or LWES⃗(0), as expected.
□

145

Chapter 5 – New FHE Operators

m′ β e
·24

β e
PBS

β e′

subtraction

m′ e + e′

Figure 5.3: Overview of the rounded PBS (Algorithm 19).

5.3 Rounded PBS

As explained in Limitation 2 and illustrated on Figure 4.3, the PBS (Algorithm 10) does
not scale well with large precisions.

Some lookup tables are independent from the least significant bits of the message. For
example, to compute the sign of a message, we do not need the LSB of the message. In
some use-cases, we can settle for a lookup table evaluation on a rounding of the input
message, for instance, when evaluating a neural network in FHE, we do not care about
exact computation. Unfortunately, with the PBS, there is a dependency between the input
message precision and the polynomial size N .

In this section, we describe a way to round a message before a lookup table evaluation.
By rounding the message before the lookup table evaluation, we are sure that the PBS
will depend on the precision after rounding and not on the input message precision.

We introduce our new technique in Algorithm 19. In this algorithm, KS-PBS denotes
a key switch followed by a PBS. It can be broken down into the following steps illustrated
in Figure 5.3. First, we extract the least significant bits of the message that we want
to discard. To do so, we start with the least significant bit of the message. We multiply
the ciphertext by a power of 2 which puts the LSB of the input message in the MSB
position. Then, we apply a PBS with the right lookup table to shift the bit back to the
least significant bits. Note that, we do not need to have a bit of padding to apply the
right-shift lookup table on a one-bit message. Next, we subtract this ciphertext with the
original ciphertexts, which will remove the LSB of the original message. We repeat this
process until we have removed all the undesired least significant bits. Finally, we apply a
PBS on the rounded ciphertext to evaluate the lookup table.

Theorem 25 (Rounded-PBS) Let s⃗ = (s0, · · · , sn−1) ∈ Znq be a binary LWE secret key.
Let S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q be a GLWE binary secret key such that S′
i=
∑N−1

j=0 s′
i·N+j ·X

j,

146

5.3. Rounded PBS

Algorithm 19: ctout ← Round-PBS(ctin, PUB, L)

Context:

∆in : scaling factor for the input ciphertext ctin

∆out : scaling factor for the input ciphertext ctout

δ : bits to remove from the message in ctin

starting from ∆in with ∆out = 2δ ·∆in

(κ, ϑ) ∈ N× N parameters of the modulus switching in the
generalized PBS (Algorithm 17)

Input:

ctin encrypting min

PUB : public keys required for the whole algorithm
L ∈ Zω : a LUT

Output: ctout encrypting L
[⌊

min
2δ

⌉]
1 ct′in ← ctin +

(
0, · · · , 0, ∆out

2
)

2 for j ∈ J0; δ − 1K do
/* Extract the LSB of the message with generalized PBS (Algorithm 17) */

3 ϵ = q
4

4 αj = ∆in·2j

2
5 Lj = [−αj , · · · ,−αj]
6 cj ← KS-PBS

((
ct′in · 2δ−1−j

)
+ (0, · · · , 0, ϵ) , PUB, Lj , (κ=log2(∆in)+j,ϑ=0)

)
7 c′j ← ci + (0, · · · , 0, αi,j)

/* Subtract the extracted bit from the original ciphertext */
8 ct′in ← Sub(ct′in, c′j)

/* Apply the LUT on the rounded message (Algorithm 17) */
9 ctout ← KS-PBS (ct′in, PUB, L,κ = 0, ϑ = 0)

10 return ctout

147

Chapter 5 – New FHE Operators

and s⃗′ = (s′0, · · · , s′kN−1) be the corresponding binary LWE secret key. Let Lf be an r-
redundant LUT (Definition 12) for a function f : Z→ Z, ∆in be the input scaling factor
and ∆out be the output scaling factor. Let (κ, ϑ) be the two integer variables defining
(along with N) the window size to be modulus switched, such that q2ϑ

∆in2κ < 2N , and let
(β, m′) = PTModSwitchq(m, ∆in,κ, ϑ) ∈ {0, 1} × N. Let δ, the number of bits to remove
in the input message prior to the LUT evaluation, so that we have ∆out = 2δ ·∆in.

Then Algorithm 19 takes as input an LWE ciphertext ctin ∈ LWEs⃗′(m · ∆in) ∈ ZkN+1
q

with noise distribution χσin, a bootstrapping key BSK=
{

CTi∈GGSWB,ℓ

S⃗′ (si)
}n−1

i=0
from s⃗ to S⃗ ′, a

keyswitching key KSK=
{

CTi∈GLevB,ℓ
s⃗ (s′

i)∈Rℓ×(n+1)
q

}
0≤i≤kN−1

from s⃗′ to s⃗ with noise sampled from
χσKSK and a (possibly trivial) GLWE encryption of Pf ·∆out, and returns an LWE ciphertext
ctout under the secret key s⃗′, encrypting the message f

(⌊
m
2δ
⌉)
·∆out with a probability 1−pfail

if and only if the input noise has a variance verifying

σ2
in <

(
∆2

in
4Γ2 − q′2

12w2 + 1
12 −

nq′2

24w2 − n
48

)
· 22−2δ

σ2
in < ∆2

out
4Γ2 − q2

12w2 + 1
12 −

nq2

24w2 − n
48 − δ · σ2

PBS

(5.7)

where Γ is the standard score (Definition 22) associated with the failure probability
pfail, w = 2N · 2−ϑ, q′ = q · 2−κ and σ2

PBS = Var (PBS).

The output noise after the rounded PBS is

Var (Rounded-PBS) = Var (PBS) . (5.8)

The cost of Algorithm 19 is

Cost (Rounded-PBS) = (δ + 1) · (Cost (GenPBS) + Cost (KS)) . (5.9)

Proof 25 (Theorem 25) In line 1, we use a trick to replace a round by a floor.

Let us prove that
⌊
min
2δ
⌉

=
⌊
min+2δ−1

2δ
⌋
.

Define m̄ and m such that min = m̄ · 2δ + m with 0 ≤ m < 2δ.

We have ⌊
min

2δ
⌉

=

m̄ if m
2δ < 0.5

m̄ + 1 otherwise

148

5.4. LWE Multiplication

We also have ⌊
min + 2δ−1

2δ

⌉
= m̄ +

⌊
m

2δ + 1
2

⌋

=

m̄ if m
2δ + 1

2 < 1 i.e., m
2δ < 0.5

m̄ + 1 otherwise

The rest of the proof is trivial using Proof 30 and Appendix A.2.
□

Remark 30 (Non power-of-two message modulus) In Algorithm 19, we give the al-
gorithm for a power-of-two message modulus. It could easily be tweaked to work with a
non power-of-two message modulus similarly to Algorithm 30.

Remark 31 (Faster Rounded-PBS) Algorithm 19 introduces an efficient way to com-
pute a LUT on a rounded message. If we look carefully at the constraints in Equation (5.7),
we notice that the second constraint is almost always dominated by the first constraint. If
we want to have a faster algorithm, we could use different parameters for the PBS (Al-
gorithm 17) in the bit extraction part of the algorithm and for the final PBS to evaluate
the lookup table. The input ciphertext of this new variant of Algorithm 19 is assumed to
be an output of the final PBS. We first keyswitch it to encrypt it with the same secret key
as the one at the output of the PBSs in the bit extraction part. We then apply the same
algorithm. The keyswitch could be replaced by the FFT keyswitch introduced in [Che+21].

5.4 LWE Multiplication

We first recall the multiplication algorithm for GLWE ciphertexts in Algorithm 20. It
is composed of a tensor product followed by a relinearization and is widely used in the
literature [FV12; Che+17] (we recall the GLWE [BGV12] algorithm, instead of the more
limited RLWE version). We thoroughly study its noise growth and provide a formal noise
analysis where Var(S) is the variance of a GLWE secret key polynomial S ∈ Rq, Var(S ′even)
(resp. Var(S ′odd)) is the variance of even (resp. odd) coefficients in S2 and Var(S ′′) is the
variance of coefficients in Si ·Sj which is the product between two independent secret key
polynomials Si, Sj ∈ Rq. We provide concrete cryptographic parameters depending on
the precision (number of bits of the message) and the multiplicative depth in Table 5.1.
Those parameters are obtained using the optimization framework described in Chapter 4.

149

Chapter 5 – New FHE Operators

Algorithm 20: CT← GLWEMult (CT1, CT2, RLK)

Context:

S⃗ = (S0, . . . , Sk−1) ∈ Rkq : a GLWE secret key
∆ = min (∆1,∆2) ∈ Zq
PT1 = M1∆1 ∈ Rq

PT2 = M2∆2 ∈ Rq

Input:

CT1 ∈ GLWE

S⃗
(PT1) =

(
A1,0, · · · , A1,k−1, B1

)
⊆ Rk+1

q

CT2 ∈ GLWE
S⃗

(PT2) =
(
A2,0, · · · , A2,k−1, B2

)
⊆ Rk+1

q

RLK =
{

CTi,j ∈ GLev(B,ℓ)
S⃗

(Si · Sj)
}0≤j≤i

0≤i≤k−1
: a relinearization key for S⃗

Output: CT ∈ GLWE
S⃗

(PT1·PT2
∆

)
⊆ Rk+1

q

1 begin
/* Tensor product */

2 for 0 ≤ i ≤ k − 1 do

3 T ′
i ←

[⌊
[A1,i·A2,i]

Q

∆

⌉]
q

4 end
5 for 0 ≤ i ≤ k − 1, 0 ≤ j < i do

6 R′
i,j ←

[⌊
[A1,i·A2,j +A1,j ·A2,i]

Q

∆

⌉]
q

7 end
8 for 0 ≤ i ≤ k − 1 do

9 A′
i ←

[⌊
[A1,i·B2+B1·A2,i]

Q

∆

⌉]
q

10 end

11 B′ ←
[⌊

[B1·B2]Q
∆

⌉]
q

/* Relinearization */

12 CT←
(
A′

0, · · · , A
′
k−1, B

′
)

+
∑k−1

i=0

〈
CTi,i, dec(B,ℓ)

(
T ′
i

)〉
+
∑0≤j<i

0≤i≤k−1

〈
CTi,j · dec(B,ℓ)

(
R′
i,j

)〉
13 end

Precision 1 2 3 4 5 6 7 8 9 10 11 12
Max. depth 32 16 16 8 8 8 8 4 4 4 4 4

log2(N) 12 11 12 11 11 12 12 11 11 11 12 12
log2(B) 8 5 8 12 10 8 8 20 17 15 17 17

ℓ 8 10 8 4 5 8 8 2 3 3 3 3

Precision 13 14 15 16 17 18 19 20 21 22 23 24
Max. depth 4 2 2 2 2 2 2 2 2 2 2 2

log2(N) 12 11 11 11 11 11 11 11 12 12 12 12
log2(B) 8 30 30 20 20 20 20 20 20 20 20 20

ℓ 8 1 1 2 2 2 2 2 2 2 2 2

Table 5.1: Parameters depending on the GLWE multiplicative depth and the preci-
sion. This table was generated in May 2021 with α = 0.05287332817861731 and β =
4.551576767993042 (as defined in Section 3.1).

150

5.4. LWE Multiplication

Theorem 26 (GLWE multiplication) Let CT1 ∈ GLWES⃗ (PT1) ∈ Rk+1
q and CT2 ∈

GLWES⃗ (PT2) ∈ Rk+1
q be two GLWE ciphertexts, encrypting respectively PT1 = M1∆1 ∈

Rq and PT2 = M2∆2 ∈ Rq, under the same secret key S⃗ = (S0, . . . , Sk−1) ∈ Rk
q , with

noises sampled respectively from χσ1 and χσ2. Let RLK=
{

CTi,j∈GLev(B,ℓ)
S⃗

(Si·Sj)∈Rℓ×(k+1)
q

}0≤j≤i

0≤i≤k−1

be a relinearization key for the GLWE secret key S⃗, with noise sampled from χσRLK.

Algorithm 20 computes a new GLWE ciphertext CT encrypting the product PT1 ·
PT2/∆ ∈ Rq where ∆ = min (∆1, ∆2) (a scaling factor), under the secret key S⃗, with
a noise variance VarGLWEMult estimated by the following noise formula (Definition 19):

VarGLWEMult = N

∆2

(
∆2

1||M1||2∞σ2
2 + ∆2

2||M2||2∞σ2
1 + σ2

1σ2
2

)
+ N

∆2

(
q2 − 1

12
(
1 + kNVar(S) + kNE2(S)

)
+ kN

4 Var(S) + 1
4 (1 + kNE(S))2

)
(σ2

1 + σ2
2)

+ 1
12 + kN

12∆2 ·
(
(∆2 − 1) ·

(
Var(S) + E2(S)

)
+ 3 · Var(S)

)
+k(k − 1)N

24∆2 ·
(
(∆2 − 1) ·

(
Var(S ′′) + E2(S ′′)

)
+ 3 · Var(S ′′)

)
+ kN

24∆2 ·
(
(∆2 − 1) ·

(
Var(S ′odd) + Var(S ′even) + 2 · E2(S ′mean)

)
+ 3 · (Var(S ′odd) + Var(S ′even))

)
+kℓNσ2

RLK ·
(k + 1)

2 · B
2 + 2
12 + kN

8 · ((k − 1) · Var(S ′′) + Var(S ′odd) + Var(S ′even))

+kN

2

(
q2

12B2ℓ −
1
12

)(
(k − 1) · (Var(S ′′) + E2(S ′′mean)) + Var(S ′odd) + Var(S ′even) + 2E2(S ′mean)

)
(5.10)

Let k∗ = k(k + 1)
2 and k+ = (k + 1)(k + 2)

2 .

The cost (Definition 23) of the algorithm is

Cost (GLWEMult)(k,ℓ,n,N) = Cost (TensorProduct)(k,N) + Cost (Relin)(k,ℓ,N) (5.11)

where

Cost (TensorProduct)(k,N) = 2(k + 1)Cost (FFT) + k+Cost (iFFT)
+ (k + 1)2NCost (multFFT) + k∗NCost (addFFT) ,

(5.12)

151

Chapter 5 – New FHE Operators

Cost (Relin)(k,ℓ,N) = Nℓk∗Cost (dec) + k∗ℓCost (FFT) + k∗ℓ(k + 1)NCost (multFFT)
+ (k∗ℓ− 1)(k + 1)NCost (addFFT) + (k + 1)Cost (iFFT) .

(5.13)

Proof 26 (Theorem 26) The detailed computation leading us to the aforementioned
noise formula is provided in Appendix A.1. In the proof, we compute the decryption of
the resulting ciphertext, obtaining the message plus the noise in order to estimate its
variance.

□

Algorithm 20 can be adapted in order to perform a GLWE square: the square is more
efficient since R′i,j and A′i are computed with a single multiplication instead of two. For
more details, we refer to Algorithm 21.

Algorithm 21: CT← GLWESquare(CTin, RLK)

Context:

S⃗ = (S0, . . . , Sk−1) : a GLWE secret key
∆ = min ({∆i}})
PT =

∑N−1
i=0 mi∆iX

i

Input:

{
CTin ∈ GLWE

S⃗
(PT) = (A0, · · · , Ak−1, B)

RLK =
{

CTi,j ∈ GLev(B,ℓ)
S⃗

(
S(i) · S(j)

)}0≤j≤i

0≤i≤k−1
: a relinearization key for S⃗

Output: CT ∈ GLWE
S⃗

(
PT2

∆

)
1 begin

/* Tensor product */
2 for 0 ≤ i ≤ k − 1 do

3 T ′
i ←

[⌊
[A2

i]
Q

∆

⌉]
q

4 end
5 for 0 ≤ i ≤ k − 1, 0 ≤ j < i do

6 R′
i,j ←

[⌊
[2·Ai·Aj]

Q

∆

⌉]
q

7 end
8 for 0 ≤ i ≤ k − 1 do
9 A′

i ←
[⌊

[2·Ai·B]Q
∆

⌉]
q

10 end

11 B′ ←
[⌊

[B2]
Q

∆

⌉]
q

/* Relinearization */

12 CT←
(
A′

0, · · · , A
′
k−1, B

′
)

+
∑k−1

i=0

〈
CTi,i, dec(B,ℓ)

(
T ′
i

)〉
+
∑0≤j<i

0≤i≤k−1

〈
CTi,j · dec(B,ℓ)

(
R′
i,j

)〉
13 end

152

5.4. LWE Multiplication

Using Algorithm 20 or Algorithm 21, we build an LWE multiplication and several
variants where we perform efficiently several products or even a sum of several products.

5.4.1 Single LWE Multiplication

We now define Algorithm 22 to homomorphically multiply two LWE ciphertexts, which
removes Limitation 4.

It requires the sample extract (Algorithm 5 and Theorem 9). This algorithm does not
impact the noise in a ciphertext and consists in simply rearranging some of the coefficients
of the GLWE input ciphertext to build the output LWE ciphertext encrypting one of the
coefficients of the input polynomial plaintext. The sample extract algorithm is described
in [Chi+20a, Section 4.2] for RLWE inputs, and can be easily extended to GLWE ones as
we did in Algorithm 5.

It also requires a packing key switch described in Section 2.3.2. It takes as input several
LWE ciphertexts, key switches them using the LWE Keyswitch (Algorithm 1), rotates
them (Theorem 3) and finally adds the keyswitched ciphertexts together (Theorem 1).

Theorem 8 provides some details on this procedure and gives the noise (Definition 19)
and cost formulae (Definition 23).

Algorithm 22: ctout ← LWEMult (ct1, ct2, RLK, KSK)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq : the input LWE secret key
s⃗′ = (s′

0, · · · , s
′
kN−1) ∈ ZkNq : the output LWE secret key

S⃗′ =
(
S′

0, . . . , S
′
k−1

)
∈ Rkq : a GLWE secret key

∀0 ≤ i ≤ k − 1, S′
i =
∑N−1

j=0 s′
i·N+jX

j ∈ Rq

∆out = max(∆1,∆2) ∈ Zq

Input:

ct1 ∈ LWEs⃗(m1 ·∆1) ∈ Zn+1

q

ct2 ∈ LWEs⃗(m2 ·∆2) ∈ Zn+1
q

RLK : a relinearization key for S⃗′ as defined in algorithm 20

KSK =
{

CTi ∈ GLevB,ℓ
S⃗′ (si)

}
0≤i≤n−1

: a key switching key from s⃗ to S⃗′

Output: ctout ∈ LWE
s⃗′ (m1 ·m2 ·∆out) ∈ ZkN+1

q

1 begin
/* KS from LWE to GLWE (Section 2.3.2) */

2 CT1 ∈ GLWE
S⃗′ (m1 ·∆1)← PackingKS({ct1}, {0},KSK) ;

3 CT2 ∈ GLWE
S⃗′ (m2 ·∆2)← PackingKS({ct2}, {0},KSK) ;

/* GLWE multiplication (Algorithm 20) */
4 CT ∈ GLWE

S⃗′ (m1 ·m2 ·∆out)← GLWEMult(CT1,CT2,RLK)

/* Sample extract the constant term (Algorithm 5) */
5 ctout ∈ LWE

s⃗′ (m1 ·m2 ·∆out)← SampleExtract (CT, 0)
6 end

Now, we have everything to build the LWE multiplication described in Algorithm 22

153

Chapter 5 – New FHE Operators

and in Theorem 27.

Theorem 27 (LWE Multiplication) Let ct(1) ∈ LWEs⃗ (m1 ·∆1) and ct(2) ∈
LWEs⃗ (m2 ·∆2) be two LWE ciphertexts, encrypting respectively m1 ·∆1 and m2 ·∆2, both
encrypted under the LWE secret key s⃗ = (s0, . . . , sn−1), with noise sampled respectively
from χσ1 and χσ2. Let KSK =

{
CTi ∈ GLevB,ℓ

S⃗′ (si)
}

0≤i≤n−1
a key switching key from s⃗ to

S⃗ ′ where S⃗ ′ =
(
S ′0, . . . , S ′k−1

)
, with noise sampled from χσKSK. Let RLK be a relinearization

key for S⃗ ′, defined as in Theorem 26.
Algorithm 22 computes a new LWE ciphertext ctout, encrypting the product m1 ·m2 ·

∆out, where ∆out = max(∆1, ∆2), under the secret key s⃗′. The variance of the noise in
ctout can be estimated by replacing the variances σ1 and σ2 in the GLWE multiplication
(Equation (5.10), Theorem 26) with the variance estimated after a packing key switch
(Equation (2.12), Theorem 8). The cost is

Cost (LWEMult)(ℓKS,ℓRL,n,k,N) = 2 · Cost (PackingKS)(1,ℓKS,n,k,N)

+ Cost (GLWEMult)(k,ℓRL,n,N)

+ Cost (SampleExtract)(N) .

(5.14)

Proof 27 (Theorem 27) The cost formula is easy to obtain using Algorithm 22. For
the noise formulae, we refer to Appendices A.1, A.3 and A.4.

□

5.4.2 Variants of the LWE Multiplication

It is possible to use the LWE multiplication introduced in Algorithm 22 to compute with
a single multiplication several products, or several squares, or a sum of several products,
or even a sum of several squares. These four functionalities can be easily achieved by
slightly modifying Algorithm 22.

Packed Products

The PackedMult algorithm takes as input two sets of LWE ciphertexts
{
ct(1)
i

}
0≤i<α

and{
ct(2)
i

}
0≤i<α

such that for j ∈ {1, 2} and for 0 ≤ i < α, ct(j)
i ∈ LWEs⃗(m(j)

i ·∆j).
Its goal is to compute LWE encryptions of the products m

(1)
i · m

(2)
i · ∆out, where

∆out = max(∆1, ∆2). The algorithm is described in Algorithm 23.

154

5.4. LWE Multiplication

Algorithm 23:
{

ct(out)
i

}α−1

i=0
← PackedMult

({
ct(1)

i

}α−1

i=0
,
{

ct(2)
i

}α−1

i=0
, RLK, KSK

)

Context:

s⃗ = (s0, · · · , sn−1) : the input LWE secret key
s⃗′ = (s′

0, · · · , s
′
kN−1) : the output LWE secret key

S⃗′ =
(
S′

0, . . . , S
′
k−1

)
: a GLWE secret key

∀0 ≤ i ≤ k − 1, S′
i =
∑N−1

j=0 s′
i·N+jX

j

α : such that α2 ≤ N
∆out = max(∆1,∆2)

Input:

∀0 ≤ i < α, ct(1)

i ∈ LWEs⃗(m
(1)
i ·∆1)

∀0 ≤ i < α, ct(2)
i ∈ LWEs⃗(m

(2)
i ·∆2)

RLK : a relinearization key for S⃗′ as defined in Algorithm 20
KSK : a key switching key from s⃗ to S⃗′ as defined in Algorithm 22

Output:
{

ct(out)
i ∈ LWE

s⃗′

(
m

(1)
i ·m

(2)
i ·∆out

)}α−1

i=0
1 begin

/* KS from LWE to GLWE (Section 2.3.2) */
2 L1 = {0, 1, 2, · · · , α− 1};
3 L2 = {0, α, 2α, · · · , (α− 1)α};
4 CT1 ← PackingKS({ct(1)

i }
α−1
i=0 ,L1,KSK) ;

5 CT2 ← PackingKS({ct(2)
i }

α−1
i=0 ,L2,KSK) ;

/* GLWE multiplication (Algorithm 20) */
6 CT← GLWEMult(CT1,CT2,RLK)

/* Sample extractions (Algorithm 5) */
7 for 0 ≤ i < α do
8 ct(out)

i ∈ LWE
s⃗′

(
m

(1)
i ·m

(2)
i ·∆out

)
← SampleExtract (CT, i · (α+ 1))

9 end
10 end

155

Chapter 5 – New FHE Operators

First, we use a packing key switch (Section 2.3.2) to pack the two input sets into
two GLWE ciphertexts. To do so, we use two sets of indexes L1 and L1 such that
L1 = {0, 1, 2, · · · , α − 1} and L2 = {0, α, 2α, · · · , (α − 1)α}. Then, the resulting GLWE
ciphertexts are multiplied with the GLWE multiplication recalled in Algorithm 20. Finally
all the coefficients at indexes i · (α + 1) (for 0 ≤ i < α) are extracted with Algorithm 5.

Sum of Products

Algorithm 24: ctout ← PackedSumProducts({ct(1)
i }

α−1
i=0 , {ct(2)

i }
α−1
i=0 , RLK, KSK)

Context:

s⃗ = (s0, · · · , sn−1) : the input LWE secret key
s⃗′ = (s′

0, · · · , s
′
kN−1) : the output LWE secret key

S⃗′ =
(
S′

0, . . . , S
′
k−1

)
: a GLWE secret key

∀0 ≤ i ≤ k − 1, S′
i =
∑N−1

j=0 s′
i·N+jX

j

α : such that α ≤ N
∆out = max(∆1,∆2)

Input:

∀0 ≤ i < α, ct(1)

i ∈ LWEs⃗(m
(1)
i ·∆1)

∀0 ≤ i < α, ct(2)
i ∈ LWEs⃗(m

(2)
i ·∆2)

RLK : a relinearization key for S⃗′ as defined in algorithm 20
KSK : a key switching key from s⃗ to S⃗′ as defined in algorithm 22

Output: ctout ∈ LWE
s⃗′

(∑α−1
i=0 m

(1)
i ·m

(2)
i ·∆out

)
1 begin

/* KS from LWE to GLWE (Section 2.3.2) */
2 L1 = {0, 1, 2, · · · , α− 1};
3 L2 = {α− 1, α− 2, α− 3, · · · , 0};
4 CT1 ← PackingKS({ct(1)

i }
α−1
i=0 ,L1,KSK) ;

5 CT2 ← PackingKS({ct(2)
i }

α−1
i=0 ,L2,KSK) ;

/* GLWE multiplication (Algorithm 20) */
6 CT← GLWEMult(CT1,CT2,RLK)

/* Sample extraction (Algorithm 5) */

7 ctout ∈ LWE
s⃗′

(∑α−1
i=0 m

(1)
i ·m

(2)
i ·∆out

)
← SampleExtract (CT, α− 1)

8 end

The PackedSumProducts algorithm also takes as input two sets of LWE
ciphertexts

{
ct(1)
i

}
0≤i<α

and
{
ct(2)
i

}
0≤i<α

such that for j ∈ {1, 2} and for
0 ≤ i < α, ct(j)

i ∈ LWEs⃗(m(j)
i · ∆j). Its goal is to compute an LWE encryption

of the sum of products ∑α−1
i=0 m

(1)
i · m

(2)
i · ∆out, where ∆out = max(∆1, ∆2). The

PackedSumProducts is described in Algorithm 24.

First, the two input sets are packed with a packing key switch into two GLWE cipher-
texts with two sets of indexes L1 = {0, 1, 2, · · · , α−1} and L2 = {α−1, α−2, α−3, · · · , 0}
respectively. Then, the resulting GLWE ciphertexts are multiplied with the GLWE mul-

156

5.4. LWE Multiplication

tiplication recalled in Algorithm 20. Finally, the coefficient at index α − 1 is extracted
using Algorithm 5.

It is also possible to compute squares and a sum of squares by computing a GLWE
multiplication between a GLWE ciphertext and itself.

Packed Squares

Algorithm 25:
{

ct(out)
i

}α−1

i=0
← PackedSquares

(
{cti}α−1

i=0 , RLK, KSK
)

Context:

s⃗ = (s0, · · · , sn−1) : the input LWE secret key
s⃗′ = (s′

0, · · · , s
′
kN−1) : the output LWE secret key

S⃗′ =
(
S′

0, . . . , S
′
k−1

)
: a GLWE secret key

∀0 ≤ i ≤ k − 1, S′
i =
∑N−1

j=0 s′
i·N+jX

j

α : such that 2α ≤ N

Input:

∀0 ≤ i < α, cti ∈ LWEs⃗(mi ·∆)
RLK : a relinearization key for S⃗′ as defined in Algorithm 20
KSK : a key switching key from s⃗ to S⃗′ as defined in Algorithm 22

Output: {ct(out)
i ∈ LWE

s⃗′ (m2
i ·∆)}α−1

i=0
1 begin

/* KS from LWE to GLWE (Section 2.3.2) */
2 L = {20 − 1, 21 − 1, 22 − 1, · · · , 2α−1 − 1};
3 CT← PackingKS({cti}α−1

i=0 ,L,KSK) ;
/* GLWE Square (Algorithm 21) */

4 CT← GLWESquare(CT,RLK)
/* Sample extractions (Algorithm 5) */

5 for 0 ≤ i < α do
6 ct(out)

i ∈ LWE
s⃗′

(
m2
i ·∆

)
← SampleExtract

(
CT, 2i+1 − 2

)
7 end
8 end

The PackedSquares algorithm takes as input a single set of LWE ciphertexts {cti}0≤i<α

such that for 0 ≤ i < α, cti ∈ LWEs⃗(mi ·∆). Its goal is to compute LWE encryptions of
the squares m2

i ·∆. The PackedSquares is described in Algorithm 25.

First, the input set is packed with a packing key switch into a GLWE ciphertext with
the set of indexes L = {20 − 1, 21 − 1, 22 − 1, · · · , 2α−1 − 1}. Then, the resulting GLWE
ciphertext is squared by using the GLWE square algorithm described in Algorithm 21.
Finally all the coefficients at indexes 2i+1 − 2 (for 0 ≤ i < α) are extracted with Algo-
rithm 5.

157

Chapter 5 – New FHE Operators

Sum of Squares

Algorithm 26: ctout ← PackedSumSquares
(
{cti}α−1

i=0 , RLK, KSK
)

Context:

s⃗ = (s0, · · · , sn−1) : the input LWE secret key
s⃗′ = (s′

0, · · · , s
′
kN−1) : the output LWE secret key

S⃗′ =
(
S′

0, . . . , S
′
k−1

)
: a GLWE secret key

∀0 ≤ i ≤ k − 1, S′
i =
∑N−1

j=0 s′
i·N+jX

j

α : such that 2α ≤ N

Input:

∀0 ≤ i < α, cti ∈ LWEs⃗(mi ·∆)
RLK : a relinearization key for S⃗′ as defined in algorithm 20
KSK : a key switching key from s⃗ to S⃗′ as defined in algorithm 22

Output: ctout ∈ LWE
s⃗′

(∑α−1
i=0 m2

i · 2∆
)

1 begin
/* KS from LWE to GLWE (Section 2.3.2) */

2 L1 = {0, 1, 2, · · · , α− 1};
3 L2 = {2α− 1, 2α− 2, 2α− 3, · · · , α};
4 CT← PackingKS({cti}α−1

i=0 ||{cti}α−1
i=0 ,L1||L2,KSK) ;

/* GLWE square (Algorithm 21) */
5 CT← GLWESquare(CT,RLK)

/* Sample extraction (Algorithm 5) */

6 ctout ∈ LWE
s⃗′

(∑α−1
i=0 m2

i · 2∆
)
← SampleExtract (CT, 2α− 1)

7 end

The PackedSumSquares algorithm takes as input a single set of LWE ciphertexts
{cti}0≤i<α such that for 0 ≤ i < α, cti ∈ LWEs⃗(mi · ∆). Its goal is to compute a LWE
encryption of the sum of squares ∑α−1

i=0 m2
i ·2∆. The PackedSumSquares is described in

Algorithm 26.

To achieve this goal, the input set is packed with a packing key switch into a
GLWE ciphertext with redundancy, using two indexes sets L1 = {0, 1, 2, · · · , α − 1} and
L2 = {2α − 1, 2α − 2, 2α − 3, · · · , α}. Then, the resulting GLWE ciphertext is squared
using the GLWE square algorithm described in Algorithm 21. Finally the coefficient at
index 2α− 1 is extracted with Algorithm 5.

Notice that we could also compute packed products and a packed sum of products
with a GLWE squaring algorithm by changing L, L1 and L2 and also extracting differ-
ent coefficients. Also note that for these four algorithms, there are restrictions regard-
ing the maximum value that α can take each time. The noise analysis of PackedMult,
PackedSumProducts, PackedSquares and PackedSumSquares can be deduced from the re-
sults of Theorem 27.

158

Chapter 6

WITHOUT PADDING PROGRAMMABLE

BOOTSTRAP

In Limitation 1, we explained that we need to have a bit of padding to perform a correct
PBS (Algorithm 10 and Theorem 14) with an arbitrary lookup table evaluation. The only
exception is when the function is negacyclic (Remark 8), in this case, we do not need a
bit of padding. When working with Boolean messages, this is not an issue as we can use
negacyclic functions only. If we want to support integer messages, we need to guarantee
that we have a bit of padding before applying a PBS.

This constraint makes it difficult to use TFHE in practice. To guarantee a bit of
padding, we need the degree of fullness introduced in Section 2.4 to track the maximum
value of the message and make sure that it does not overwrite the most significant bit.
If we are able to remove this constraint, we could create lots of new FHE algorithms,
for instance, we could apply a function on the least significant bits of a message without
having to pay the price of a function on the whole message.

In this chapter, we present 3 ways to build a Without Padding Programmable Boot-
strapping (WoP-PBS).

The first two constructions leverage the LWE multiplication we introduced in Sec-
tion 5.4 (Algorithm 22 and Theorem 27) and the generalized PBS introduced in Sec-
tion 5.1 (Algorithm 17 and Theorem 22). Intuitively, we use the multiplication to correct
the sign after the lookup table evaluation. Before those constructions, there was no way
to compute a PBS without a bit of padding. On top of those new algorithms, we overcome
Limitation 5 by introducing a way to homomorphically change the encoding of a message
to have a radix encoding as described in Section 2.4.

Then, we introduce another WoP-PBS by leveraging this time the circuit bootstrap
recalled in Algorithm 11, the PBS (Algorithm 17) and the vertical packing (Algorithm 13).
This algorithm can be easily tweaked to support several LUT evaluations which, with
the PBSmanyLUT introduced in Algorithm 18 and Theorem 23, overcome Limitation 6.

159

Chapter 6 – Without Padding Programmable Bootstrap

The new WoP-PBS scales particularly well with the precision of the message, and we
will use it in the description of our homomorphic integers (see Chapter 7). With it,
applying arbitrary functions over radix or CRT encoded messages becomes possible, thus
overcoming Limitation 13.

All those new algorithms can be parallelized to leverage a multi-thread execution
environment which overcomes Limitation 3.

6.1 WoP-PBS: First Attempt

In this section, we describe the first known WoP-PBS which means a PBS without a bit
of padding. Having a bit of padding is troublesome when using TFHE in practice because
we cannot leverage the native reduction modulo q of the scheme to build an FHE modular
arithmetic as explained in Limitation 1.

In this section, we give two WoP-PBS algorithms (Algorithms 27 and 28) that are built
on top of the LWEMult (Algorithm 22).

6.1.1 WoP-PBS from sign correction

A big constraint with the TFHE PBS is the negacyclicity of the rotation of the LUT. It
implies the need for a padding bit (as mentioned in Limitation 1). We propose a solution
to remove that requirement, by using the aforementioned LWE multiplication (Algo-
rithm 20) and the generalized PBS (Algorithm 17). This new bootstrapping is called the
programmable bootstrapping without padding (WoP-PBS) and a first version is described
in Algorithm 27 and in Theorem 28.

Theorem 28 (PBS Without Padding (V1)) Let s⃗ = (s0, · · · , sn−1) ∈ Znq be a binary
LWE secret key. Let S⃗ ′ =

(
S ′0, . . . , S ′k−1

)
∈ Rk

q be a GLWE secret key such that S′
i=∑N−1

j=0 s′
i·N+jX

j∈Rq, and s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq be the corresponding binary LWE key.
Let Pf ∈ Rq (resp. P1 ∈ Rq) be an r-redundant LUT (Definition 12) for the function
f : Z 7→ Z, (resp. the constant function x 7→ 1) and ∆out ∈ Zq be the output scaling factor.
Let CTf be a (possibly trivial) GLWE encryption of Pf ·∆out and CT1 be a trivial GLWE
encryption of P1 ·∆out. Let (κ, ϑ) ∈ Z× N be the two integer parameters defining (along
with N) the chunk of the plaintext that is going to be bootstrapped, such that q2ϑ

∆in2κ <2N, and
let (β, m′) = PTModSwitchq(m, ∆in,κ, ϑ) ∈ {0, 1} × N.

160

6.1. WoP-PBS: First Attempt

Algorithm 27: ctout ←WoP-PBS1(ctin, BSK, RLK, KSK, Pf , ∆out,κ, ϑ)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq
s⃗′ = (s′0, · · · , s′kN−1) ∈ ZkNq
S⃗ ′ =

(
S ′(0), . . . , S ′(k−1)

)
∈ Rk

q

∀0 ≤ i ≤ k − 1, S ′(i) = ∑N−1
j=0 s′i·N+jX

j ∈ Rq

f : Z→ Z : a function
P1 ∈ Rq : a redundant LUT for x 7→ 1
(β, m′) = PTModSwitchq(m, ∆,κ, ϑ) ∈ {0, 1} × N
CTf ∈ GLWES⃗′ (Pf ·∆out) ∈ Rk+1

q (might be a trivial encryption)
CT1 ∈ Rk+1

q : a trivial encryption of P1 ·∆out
Input:

ctin ∈ LWEs⃗(m ·∆in) = (a0, · · · , an−1, an = b) ∈ Zn+1
q

BSK =
{
BSKi ∈ GGSW(β,ℓ)

S⃗′ (si)
}

0≤i≤n−1
: a bootstrapping key from s⃗ to S⃗ ′

RLK =
{
CTi,j ∈ GLev(β,ℓ)

S⃗′

(
S ′i · S ′j

)}0≤j≤i

0≤i≤k−1
: a relinearization key for S⃗ ′

KSK =
{
CTi ∈ GLev(β,ℓ)

S⃗′ (s′i)
}

0≤i≤kN−1
: a key switching key from s⃗′ to S⃗ ′

Pf ∈ R : a redundant LUT for x 7→ f(x)
∆out ∈ Zq : the output scaling factor
(κ, ϑ) ∈ Z× N : define along with N the window size

Output: ctout ∈ LWEs⃗′(f(m′) ·∆out) if we respect the requirements of Theorem 28
1 begin

/* Compute two PBSs in parallel: */
2 ctf ∈ LWEs⃗′((−1)β · f(m′) ·∆out)← GenPBS (ctin, BSK, CTf ,κ − 1, ϑ) ;
3 ctSign ∈ LWEs⃗′((−1)β ·∆out)← GenPBS (ctin, BSK, CT1,κ − 1, ϑ) ;

/* Compute the multiplication */
4 ctout ← LWEMult(ctf , ctSign, RLK, KSK);
5 end

161

Chapter 6 – Without Padding Programmable Bootstrap

Let KSK=
{

CTi∈GLev(B,ℓ)
S⃗′ (s′

i)
}

0≤i≤n−1
be a key switching key from s⃗′ to S⃗ ′, with noise sampled

respectively from χσ(1) and χσ(2). Let RLK=
{

CTi,j∈GLev(B,ℓ)
S⃗′ (S′

i·S
′
j)
}0≤j≤i

0≤i≤k−1
be a relinearization

key for S⃗ ′, defined as in Theorem 26. Let BSK=
{

CTi∈GGSWB,ℓ

S⃗′ (si)
}n−1

i=0
be a bootstrapping key

from s⃗ to S⃗ ′.
Then Algorithm 27 takes as input an LWE ciphertext ctin ∈ LWEs⃗(m · ∆in) ∈ Zn+1

q

where ctin = (a0, · · · , an−1, an = b), with noise sampled from χσin, and returns an LWE
ciphertext ctout ∈ ZkN+1

q under the secret key s⃗′ encrypting the messages f (m′) · ∆out if
and only if the input noise variance satisfies the constraint of Theorem 22.

The output ciphertext noise variance verifies Var(WoP-PBS1) = Var(LWEMult) with
input variances for the LWE multiplication (Algorithm 22) defined as σ2

i = Var(GenPBS),
for i ∈ {1, 2}.

The cost of Algorithm 27 is

Cost (WoP-PBS1)(n,ℓPBS,k1,N1,ℓKS,ℓRL,k2,N2) = 2 · Cost (GenPBS)(n,ℓPBS,k1,N1)

+ Cost (LWEMult)(ℓKS,ℓRL,N1,k2,N2) .
(6.1)

Proof 28 (Theorem 28) We only provide a proof of correctness of the algorithm, con-
sidering that the noise and the cost are directly deduced from the GenPBS and LWEMult
algorithms (see Theorem 22 and Theorem 27).

Both of the GenPBS are applied with the same parameters except for the evaluated
function (Pf or P1). Thus, in both ciphertexts ctf and ctSign the value of β is the same.
Then, ctout ∈ LWEs⃗((−1)2β · f(m′) ·∆out) = LWEs⃗(f(m′) ·∆out). □

Remark 32 (Several Secret Keys) Observe that, in Algorithm 27 we set KSK as a
key switching key from s⃗′ to S⃗ ′ where s⃗′ is the LWE secret key composed of the coefficients
in S⃗ ′. In practice, the key switching can be done to a key S⃗ ′′, that has nothing to do with
s⃗′. In this case, the RLK should be adapted as well to the key S⃗ ′′.

Below, we describe several variants of Algorithm 27. These improvements could in-
crease the noise but lower the cost of the algorithm.

The two GenPBS have the same input ciphertext. To make the evaluation more efficient
(evaluating a single bootstrap instead of two), it is possible to use either the multi-value
bootstrap (Algorithm 14) described in [CIM19], which will be faster but at the cost of
a higher output noise. Another option would be to take advantage of the PBSmanyLUT,

162

6.1. WoP-PBS: First Attempt

which we describe in detail in Section 5.2 (Algorithm 18) if the input message is small
enough (cf. Remark 33).

There could only be one key switch done in LWEMult instead of two if one of the two
inputs is provided as a GLWE ciphertext and if we remove the final sample extract in one
of the two GenPBS.

The LWEMult on line 4 can be replaced by a LWESquare which corresponds to a
PackedSquares with α = 2 (Algorithm 25) which is faster.

6.1.2 WoP-PBS from LUT Splitting

Another big constraint with the PBS of TFHE is that the polynomial size N is directly
linked to the size of the message we want to bootstrap (as mentioned in Limitation 2).
Since N is a power of two, the smallest growth of the polynomial size slows down the
computation by more than a factor 2 as the cost of TFHE’s PBS is proportional to the
cost of FFT conversions, N log2(N). Keeping that in mind, we offer a different way to
perform a bootstrap without padding in Algorithm 28 which can be more efficient in a
multi-threaded machine. The main idea behind this algorithm is to write a message m as
β||m′ where β is the most significant bit and m′ the rest of the message. The function f

to be computed is broken into two functions: f0 and f1. We want f0 if β is equal to 0 and
f1 if β = 1. We use β as an encrypted decision bit, so we can choose between f0(m′) or
f1(m′) thanks to the LWEMult (Algorithm 22).

Precision n
PBS/KS BR BR KS KS Relin Relin
log2(N) log2(B) ℓ log2(B) ℓ log2(B) ℓ

1 550 11 17 2 21 2 30 1
2 550 11 13 3 17 2 30 1
3 550 11 10 4 17 2 20 2
4 550 11 9 5 13 3 20 2
5 550 11 5 9 10 4 24 2
6 550 12 10 5 12 4 24 2
7 550 12 4 13 10 5 24 2

Table 6.1: Parameter sets of a WoP-PBS2 followed by a GLWE multiplication for different
precisions and for 128 bits of security. In the table, KS means Key Switching, BR means
Blind Rotation and Relin means Relinearization. This table was generated in May 2021
with α = 0.05287332817861731 and β = 4.551576767993042 (as defined in Section 3.1).

We give the complete set of cryptographic parameters for different precisions in Ta-

163

Chapter 6 – Without Padding Programmable Bootstrap

ble 6.1. In a nutshell, for precisions from 1 to 5 bits, we use log2(N) = 11 and for 6 and
7 bits of precisions, we use log2(N) = 12.

Algorithm 28: ctout ←WoP-PBS2(ctin, BSK, RLK, KSK, Pf , ∆out,κ, ϑ)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq
s⃗′ = (s′

0, · · · , s
′
kN−1) ∈ ZkNq

S⃗′ =
(
S′(0), . . . , S′(k−1)

)
∈ Rkq

∀0 ≤ i ≤ k − 1, S′(i) =
∑N−1

j=0 s′
i·N+jX

j ∈ Rq

f0(x) = f(x) = f1(x− p) for a certain p

(β,m′) = PTModSwitchq(m,∆,κ, ϑ) ∈ {0, 1} × N
P1 ∈ Rq : as defined in Algorithm 27
CTfi

∈ GLWE
S⃗′

(
Pfi
·∆out

)
∈ Rk+1

q (might be a trivial encryption)
CT1 ∈ Rk+1

q : a trivial encryption of P1 · ∆out
2

Pf0 , Pf1 ∈ Rq : redundant LUTs of the two halves of Pf

Input:

ctin ∈ LWEs⃗(m ·∆in) = (a0, · · · , an−1, an = b) ∈ Zn+1

q

BSK,KSK,RLK : as defined in Algorithm 27
Pf ∈ Rq : a redundant LUT for x 7→ f(x)
∆out ∈ Zq : the output scaling factor
(κ, ϑ) ∈ Z× N : define the window size along with N

Output: ctout ∈ LWE
s⃗′ (f(m) ·∆out) if we respect the requirements of Theorem 29

1 begin
/* Compute in parallel 3 PBS: */

2 ctf0 ∈ LWE
s⃗′ ((−1)β ·∆out · f0(m′))← GenPBS(ctin,BSK,CTf0 ,κ, ϑ) ;

3 ctf1 ∈ LWE
s⃗′ ((−1)β ·∆out · f1(m′)) ← GenPBS(ctin,BSK,CTf1 ,κ, ϑ) ;

4 ctSign ∈ LWE
s⃗′ ((−1)β · ∆out

2)← GenPBS(ctin,BSK,CT1,κ, ϑ) ;

/* Compute two sums in parallel: */
5 ctβ0 ∈ LWE

s⃗′ ((1− β) ·∆out)← ctSign + (⃗0, ∆out
2) ;

6 ctβ1 ∈ LWE
s⃗′ (−β ·∆out)← ctSign − (⃗0, ∆out

2) ;

/* Compute two multiplications in parallel: */
7 ctβ·f0 ← LWEMult(ctf0 , ctβ0 ,RLK,KSK) ;
8 ctβ·f1 ← LWEMult(ctf1 , ctβ1 ,RLK,KSK) ;

/* Add the previous results: */
9 ctout ← ctβ·f0 + ctβ·f1 ;

10 end

Theorem 29 (PBS Without Padding (V2)) Let f0 and f1 be the two functions rep-
resenting f such that f0(x) = f(x) = f1(x−p) for a certain p ∈ N. Then, under the same
hypotheses than the ones of Theorem 28, Algorithm 28 takes as input an LWE ciphertext
ctin ∈ LWEs⃗(m ·∆in) = (a0, · · · , an−1, an = b), with noise drawn from χσin, and returns an
LWE ciphertext ctout under the secret key s⃗′ encrypting the messages f (m′) ·∆out if and
only if the input noise variance verifies the constraint of Theorem 22.

The noise variance of the output ciphertext is

Var(WoP-PBS2) = 2 · Var(LWEMult), (6.2)

164

6.1. WoP-PBS: First Attempt

with input variances of the LWEMult defined as

σ2
i = Var(GenPBS),∀i ∈ {1, 2} . (6.3)

The cost of Algorithm 28 is

Cost (WoP-PBS2)(n,ℓPBS,k1,N1,ℓKS,ℓRL,k2,N2) = 3 · Cost (GenPBS)(n,ℓPBS,k1,N1)

+ 2Cost (LWEMult)(ℓKS,ℓRL,N1,k2,N2)

+ (N2 + 3)Cost (add) .

(6.4)

Proof 29 (Theorem 29) We have ctβ0 ∈ LWEs⃗′

(
∆out

2 ((−1)β + 1)
)

. If β = 0, then

ctβ0 ∈ LWEs⃗′(∆out) else ctβ0 ∈ LWEs⃗′(0). So, ctβ0 ∈ LWEs⃗′((1 − β)∆out). Similarly, we
obtain ctβ1 ∈ LWEs⃗′((−β)∆out).

Consequently,

ctout ∈ LWEs⃗′

(
(−1)β · (1− β) ·∆out · f0(m′) + (−1)β · (−β) ·∆out · f1(m′)

)
.

Thus, if β = 0, ctout ∈ LWEs⃗′ (f0(m′) ·∆out) else ctout ∈ LWEs⃗′ (f1(m′) ·∆out), as
expected.

□

Below, we describe several variants of Algorithm 28. These improvements could in-
crease the noise but they also decrease the cost of the algorithm.

• The three GenPBS have the same input ciphertext. As we observed for Algorithm 27,
to make the evaluation more efficient by evaluating a single bootstrapping instead
of three, it is possible to use either the multi-value bootstrap (Algorithm 14) de-
scribed in [CIM19] or to take advantage of the PBSmanyLUT (Algorithm 18 and cf.
Remark 33).

• We could remove two key switches (among four) as explained for the WoP-PBS1.

• To improve both performance and noise, in practice, we can do a lazy relinearization
as described in [Lee+20b], i.e., the relinearization step of the two LWEMult is done
after the final addition.

165

Chapter 6 – Without Padding Programmable Bootstrap

• The two LWEMult followed by the final addition can be replaced by a
PackedSumProducts (Algorithm 24).

Remark 33 (Combining PBSmanyLUT and WoP-PBS) Observe that the
PBSmanyLUT (Algorithm 18) and the WoP-PBS (Algorithm 27 and Algorithm 28)
can be combined in two different ways:

1. Using PBSmanyLUT to improve WoP-PBS: In WoP-PBS1, ctSign and ctf resulting
from distinct GenPBSs can be evaluated at once by using a single PBSmanyLUT.
Similarly, in WoP-PBS2, ctSign, ctf0 and ctf1 can be evaluated all at once. In both
cases, this variant can be applied only if the polynomial size chosen for the WoP-PBS
is large enough to allow multiple LUT evaluations (i.e, if precision is not yet a bottle-
neck condition): this variant of the WoP-PBS will improve the cost of the algorithm,
without impacting the noise growth.

2. Using WoP-PBS to improve PBSmanyLUT: The PBSmanyLUT algorithm implicitly
performs a GenPBS with a special modulus switching. This GenPBS can actually be
replaced by a WoP-PBS (with the same special modulus switching) as a WoP-PBS
performs the same operation as GenPBS, without the constraint of the bit of padding.
This technique is what we call WoPBSmanyLUT.

6.1.3 Large Precision Without Padding (Programmable) Boot-
strapping

Using one of the WoP-PBS techniques introduced in Algorithms 27 and 28, we build two
new algorithms that can work on messages encoded with a radix or a CRT encoding as
described in Section 2.4.

We first describe a way to efficiently reduce the noise of an LWE ciphertext with larger
precision (bootstrap) and then show how to also evaluate a function on such ciphertexts
(programmable). These algorithms do not require the input LWE ciphertext to have a bit
of padding.

Larger Precision Without Padding Bootstrapping

We introduce a new procedure in Algorithm 29 to homomorphically decompose a message
encrypted inside a ciphertext in α ciphertexts each encrypting a small chunk of the original

166

6.1. WoP-PBS: First Attempt

message. It means that this algorithm will be able to convert a message encoded with the
traditional method (Definition 13) to a message encoded with the radix encoding described
in Section 2.4 and Definition 15.

This algorithm is especially efficient because we begin by extracting the least significant
bits instead of the most significant bits. To do so, we use the previously introduced
parameter κ to remove some of the most significant bits of the input message m and
apply the bootstrapping algorithm on the remaining bits as described in Section 5.1. The
bootstrapping algorithm must be a WoP-PBS (Algorithm 27 or Algorithm 28) as the value
of the most significant bit is not guaranteed to be set to zero. This procedure allows us
to obtain an encryption of the least significant bits of the message. Next, by subtracting
this result from the input ciphertext, we remove the least significant bits of the input
message. This gives a new ciphertext encrypting only the most significant bits of the
input message. From now on, this procedure is repeated on the resulting ciphertext until

we obtain α ciphertexts, each encrypting mi∆i such that min∆in =
α−1∑
i=0

mi∆i. This process

is somehow similar to the approach called Digit Extraction applied on the BGV/BFV
schemes, presented in [HS15; CH18].

This entails a significantly better cost than the naive method which consists in boot-
strapping the whole message several times to extract each chunk. In this new method,
each bootstrap only needs a ring dimension big enough to bootstrap correctly the number
of bits of each chunk instead of having to be big enough to bootstrap correctly the total
number of bits of the input ciphertext.

Efficiency might be improved within the multiplication inside each WoP-PBS by adding
a keyswitching during the relinearization step to reduce the size of the LWE dimension.
As the cost of the WoP-PBS depends on this LWE dimension, this will result in a faster
version of Algorithm 29.

Lemma 1 Let ctin ∈ LWEs⃗ (min ·∆in) ∈ Zn+1
q be an LWE ciphertext, encrypting min ·

∆in ∈ Zq. under the LWE secret key s⃗ = (s0, . . . , sn−1) ∈ Znq , with noise sampled from
χσ. Let BSK, KSK and RLK as defined in Theorem 28. Let L = {di}i∈[0,α−1] with di ∈
N∗ s.t. ∆in2

∑α−1
i=0 di ≤ q be the list defining the bit size of each output chunk. Algorithm 29

computes α ∈ N∗ new LWE ciphertexts {ctout,i}i∈[0,α−1], where each one of them encrypts
mi ·∆i, where ∆i = ∆in · 2

∑i−1
j=1 dj , under the secret key s⃗′. The variances of the noise is

Var(ctout,i) = Var(WoP-PBS) (6.5)

167

Chapter 6 – Without Padding Programmable Bootstrap

Algorithm 29: ctout ← Decomp(ctin, BSK, RLK, KSK,L)

Context:

s⃗ = (s0, · · · , sn−1) ∈ Znq
s⃗′ = (s′

0, · · · , s
′
kN−1) ∈ ZkNq

S⃗′ =
(
S′(0), . . . , S′(k−1)

)
∈ Rkq

∀0 ≤ i ≤ k − 1, S′(i) =
∑N−1

j=0 s′
i·N+jX

j ∈ Rq

{Pfi
}i∈[0,α−1] : LUTs for the functions fi

∀i ∈ [1, α− 1],∆i = ∆in · 2
∑i−1

j=1
dj ≤ q

∆0 = ∆in,min∆in =
∑α−1

i=0 mi∆i

Input:

ctin ∈ LWEs⃗(min ·∆in) ∈ Zn+1
q

BSK,KSK,RLK : as defined in Algorithm 27
L = {di}i∈[0,α−1] with di ∈ N∗

Output: {ctout,i ∈ LWEs⃗′ (mi ·∆i)}i∈[0,α−1]
1 begin
2 ct← ctin
3 for i ∈ [0, α− 1] do
4 κi ←

∑α−1
j=i+1 dj

5 ctout,i ←WoP-PBS(ct,BSK,RLK,KSK, Pfi
,∆i,κi, 0)

6 ct← ct− ctout,i
7 end
8 end

The cost is

Cost (Decomp)(n,ℓPBS,k1,N1,ℓKS,ℓRL,α) = αCost (WoP-PBS1)(n,ℓPBS,k1,N1,ℓKS,ℓRL,1,n)

+ α(n + 1)Cost (add) +
(

α(α + 1)
2

)
Cost (add)

(6.6)

An immediate application of Algorithm 29 is a high precision bootstrap algorithm.
By using the decomposition and then adding each ctout,i, one can get, with the right
parameters, a noise smaller than the one of the input ciphertext.

Larger Precision WoP-PBS

With the Tree-PBS and the ChainPBS algorithms introduced in [GBA21] and recalled in
Section 2.3 and Algorithm 15, we can compute large precision programmable bootstraps
assuming that the input ciphertexts are already decomposed in chunks. In a nutshell, the
idea behind the Tree-PBS is to encode a high-precision function in several LUTs. The
first input ciphertext is used to select a subset among all the LUTs. This subset is then
rearranged thanks to a key switching to build new encrypted LUTs. The previous steps
can be repeated on the second input ciphertext, and so on. The Tree-PBS relies on the
multi-output bootstrap from [CIM19] recalled in Section 2.3 and Algorithm 14.

168

6.2. WoP-PBS: Second Attempt

Thanks to Algorithm 29, we are able to efficiently decompose a ciphertext. This allows
to quickly switch from one representation (one ciphertext for one message) to another
(e.g., several ciphertexts for one message) before calling the Tree-PBS or the ChainPBS
algorithms. As Algorithm 27 and Algorithm 28 can perform the same operation as the
PBS, one can replace the PBS in [GBA21] algorithms by a WoP-PBS. This relaxes the
need to call Tree-PBS or ChainPBS with ciphertexts having a bit of padding. We call
these two algorithms respectively the Tree-WoP-PBS and the Chained-WoP-PBS. Note
that these algorithms can also be used to implement the AddMSB

2p and MulMSB
2p operators

(Algorithm 31).

6.2 WoP-PBS: Second Attempt

In Section 6.1, we described two new WoP-PBS (Algorithm 27 and Algorithm 28) based
on the GLWE multiplication (Algorithm 20) which can be quite costly to evaluate. In
fact, we need to use a large ciphertext modulus to compute it (e.g., q = 2128) which is not
a native type supported by machines, making the implementation slower than expected.
This constraint comes from the very large noise introduced by the multiplication.

Here, we present a new WoP-PBS that does not rely on the GLWE multiplication.
We implemented and compared this new technique to prior art using the optimization
framework introduced in Chapter 4 and Section 4.3. Later in Section 7.2.4, we provide
benchmarks using this new algorithm.

The PBS [Chi+20a; CJP21] takes as input a single LWE ciphertext and outputs the
LUT evaluation on the encrypted message. However, when the message is encoded in
multiple LWE ciphertexts, a single PBS is not enough. The Tree-PBS method proposed
in 2021 by Guimarães, Borin and Aranha [GBA21] and recalled in Algorithm 15 enables
to evaluate a large look-up table over many input ciphertexts. For completeness, we will
provide details about how to use this technique for our large homomorphic integers in
Section 7.2.3. The Tree-PBS is a valid solution for the evaluation of generic LUTs over
large integers, but its cost increases exponentially with the number of blocks (i.e., the
number of LWE ciphertexts composing a large integer ciphertext). Additionally, the Tree-
PBS technique uses the classical PBS [Chi+20a; CJP21], which puts constraints on the
bit of padding (Limitation 1) and on the small precision of the messages (Limitation 2).

In this section, we propose an alternative technique to evaluate generic LUTs on large
integers, that scales better than the Tree-PBS and does not suffer from the constraint on

169

Chapter 6 – Without Padding Programmable Bootstrap

the bit of padding.

6.2.1 LUT Evaluation over Large Integers

m = m3

Bit Extract
+ CBS

m2

Bit Extract
+ CBS

m1

Bit Extract
+ CBS

m0

Bit Extract
+ CBS

m3,3 m3,2 m3,1 m3,0 m2,3 m2,2 m2,1 m2,0 m1,3 m1,2 m1,1 m1,0 m0,3 m0,2 m0,1 m0,0

L =

L0,0

L0,1

L1,0

L1,1

CMux

CMuxCMux

CMux

L0,m3,3

L1,m3,3

Lm3,2,m3,3 L[m]Select
in LUT

Figure 6.1: Cleartext evaluation of the new WoP-PBS (toy example). The values mi,j (for
i, j ∈ {0, 1, 2, 3}) are bits. We split the LUT L into 4 smaller LUTs (L0,0, L0,1, L1,0, L1,1)
to be evaluated in the CMux tree. The output LUT of this tree is given as input to the
operation selecting the right output of a LUT (corresponding to the blind rotation). The
output L[m] is the element of the LUT L corresponding to the input message m. The
Bit Extract blocks correspond to the lines 2 to 11 in Algorithm 30 and the CMux tree
followed by a blind rotation corresponds to the vertical packing on line 12 (Algorithm 13).

A WoP-PBS, i.e., a PBS which does not require a bit of padding takes as input an LWE
ciphertext with or without bits of padding in the MSB, a public key called bootstrapping
key, and a LUT L as the classical PBS. It outputs the homomorphic evaluation of the
LUT on the input message, i.e., an LWE encryption of L[m].

Here, we propose a new WoP-PBS that is able to take as input not only one LWE
ciphertext but several. It is able to round (or truncate or more) all input messages to a
given precision. It can be used to compute several LUT on the same set of inputs at the
cost of (about) a single LUT.

Our method is based on two building blocks: the circuit bootstrapping (Algorithm 11)
and the mixed (or vertical or horizontal) packing (Algorithm 13). The cleartext represen-

170

6.2. WoP-PBS: Second Attempt

tation of the new WoP-PBS is presented in Figure 6.1. In practice, the algorithm executes
the following steps:

• It starts by using the generalized PBS (Algorithm 17) to evaluate a (negacyclic)
scaled sign function (see Remark 8). We then perform a homomorphic subtraction
to extract all the bits of the encrypted large message as we did in Algorithm 19.
Each bit is outputted as an LWE ciphertext.

• It converts each of the LWE ciphertexts extracted with the previous step into GGSW
ciphertexts, by using circuit bootstraps [Chi+20a].

• It uses the GGSW ciphertexts from the previous step to evaluate the LUT with the
mixed (or vertical or horizontal) packing introduced in [Chi+20a] and recalled in
Algorithm 13: it consists in practice in a cmux tree (Algorithm 12), followed by a
blind rotation (Algorithm 9) and one (or several) sample extract (Algorithm 5).

In general, the circuit bootstrap is the most expensive part of the algorithm (each
circuit bootstrap requires several PBSs, each followed by several private key switches,
Algorithm 3). Since the number of circuit bootstraps corresponds to the number of bits
composing the input message, the technique generally scales linearly in the size of the input
message. However, as the input size increases, the mixed packing stops being negligible
and becomes as costly as (or even more costly than) the circuit bootstrap part: roughly
speaking, this happens when the number of cmuxes in the vertical packing part becomes
as big as the number of cmuxes in the PBSs computed inside the circuit bootstraps (e.g.,
for the parameter sets that we use in our experiments, this happens when the input size
is about 28 bits).

We provide the details of the technique (using vertical packing in this case) in Algo-
rithm 30. To evaluate several LUTs, we simply need to repeat the vertical packing for
each LUT evaluation.

Theorem 30 (WoP-PBS) In Algorithm 30, we assume that all the keys are drawn from
an uniformly binary distribution. The noise of the output of Algorithm 30 corresponds to
the noise of a circuit bootstrap – a PBS, followed by a private functional KS (Theorem 7
and Algorithm 3) – followed by ∑κ−1

i=0 δi cmuxes (Theorem 12 and Algorithm 8).
The formula can be obtained from the noise formulae of the GenPBS (Theorem 22)

and holds as

171

Chapter 6 – Without Padding Programmable Bootstrap

Algorithm 30: ctout ← WoP-PBS((ct0, . . . , ctκ−1), PUB, L)

Context:

xi : as defined in Proof 30 i.e. βi = 2xi · β′i and β′i mod 2 ̸= 0
∆i : scaling factor for the ciphertext cti

δi : bits occupied by the message in ciphertext cti starting from ∆i

Ω = 2
∑κ−1

i=0
δi

(BCB, ℓCB) : the base and level of the output GGSW
ciphertexts to the circuit bootstrapping
(κ, ϑ) ∈ N× N defining the modulus switching in the

generalized PBS (Algorithm 17)

Input:

(ct0, . . . , ctκ−1) encrypting msg = (m0, . . . , mκ−1)
with for all 0 ≤ i < κ, Decode (Decrypt (cti)) = mi

PUB : public keys required for the whole algorithm
L = [l0, l1, · · · , lΩ−1] : a LUT, s.t. lh ∈ Zω

Output: ctout encrypting lmsg

1 for i ∈ J0; κ− 1K do
2 for j ∈ J0; δi − 2K do

/* Extract from the LSB of the message with generalized PBS
(Algorithm 17) */

3 if j == 0 then
/* see Proof 30 */

4 ϵi ←
⌊

q·2xi−2

βi

⌋
5 αi,j = ∆i·2j

2
6 Li,j = [−αi,j , · · · ,−αi,j]
7 ci ← KS-PBS

((
cti · 2δi−1−j

)
+ (0, · · · , 0, ϵi) , PUB, Li,j , (κ=log2(∆i)+j,ϑ=0)

)
8 c′i ← ci + (0, · · · , 0, αi,j)

/* Subtract the extracted bit from the original ciphertext */
9 cti ← Sub(cti, c′i)

/* Circuit bootstrap (Algorithm 11) the extracted bit into a GGSW */

10 Ci,j ← CircuitBootstrap(c′i, PUB, (BCB, ℓCB), (κ = log2 (∆i) + j, ϑ = 0))
/* Circuit bootstrap (Algorithm 11) the last bit into a GGSW */

11 Ci,δi−1 ← CircuitBootstrap(cti, PUB, (BCB, ℓCB), (κ = log2 (∆i) + δi − 1, ϑ = 0))

/* Vertical Packing LUT evaluation (Algorithm 13) */

12 ctout ← VPLut
({

Ci,j

}j∈⌈0;δi−1⌉

i∈J0;κ−1K
, L

)
13 return ctout

172

6.2. WoP-PBS: Second Attempt

Var(EWoP-PBS) = Var(ECB) +
(
κ−1∑
i=0

δi

)
ℓCB(k + 1)N B2

CB + 2
12 Var(ECB) +

(
κ−1∑
i=0

δi

)
kN

32 +︸ ︷︷ ︸
mixed packing

+
(
κ−1∑
i=0

δi

)
q2 −B2ℓCB

CB

24B2ℓCB
CB

(
1 + kN

2

)
+

(∑κ−1
i=0 δi

)
16

(
1− kN

2

)2

︸ ︷︷ ︸
mixed packing

with

Var(ECB) = nℓBR(k + 1)N B2
BR + 2
12 Var(BSK) + n

q2 −B2ℓBR
BR

24B2ℓBR
BR

(
1 + kN

2

)
+︸ ︷︷ ︸

PBS

+nkN

32 + n

16

(
1− kN

2

)2

︸ ︷︷ ︸
PBS

+ ℓBR(n + 1)B
2
BR + 2
12 Var(KSK)+︸ ︷︷ ︸

private functional KS

+q2 −B2ℓBR
BR

24B2ℓBR
BR

(
1 + n

2

)
+ n

32 + 1
16

(
1− n

2

)2

︸ ︷︷ ︸
private functional KS

.

The cost of Algorithm 30 corresponds to the cost of ∑κ−1
i=0 (δi− 1) KSs and PBSs (with

parameters n, k, N , ℓBR, BBR, ℓKS, BKS, σBSK, σKSK), plus the cost of ∑κ−1
i=0 δi circuit

bootstrappings (with parameters n, k, N , ℓBR, BBR, ℓCB, BCB, σBSK, σFPKS), plus the cost
of log2(N) + 2

∑κ−1
i=0 (δi)−log2(N) − 1 cmuxes (with parameters k, N , ℓCB, BCB).

Proof 30 (Theorem 30) In what follows, we prove that the output of Algorithm 30 is:
ctout = (LWEs(l0(m)), · · · , LWEs(lκ−1(m))), with li ∈ Zω a LUT.

The first step is called the Bit Extract (corresponding to the lines 2 to 8 in Algo-
rithm 30): all the bits of information from all the κth bits are going to be extracted to be
stored in a new block. The first extracted bit is the least significant bit of the message. To
do so, it is first shifted to the MSB of the ciphertext. More formally, the first step is to
shift the αi-th MSB to the 1-st MSB by multiplying cti by 2αi−1 with αi = ⌈log2(βi)⌉. At
this point, the next step would be to compute a PBS with a LUT defined by the polynomial

173

Chapter 6 – Without Padding Programmable Bootstrap

P (X) = − q
2αi+1 ·

∑N−1
i=0 X i s.t.:

q

2α+1 if Decrypt(cti · 2αi−1) ∈ [q2 , q[
−q

2α+1 otherwise

Then, by homomorphically adding q
2α+1 , this gives either an encryption of q

2α or 0. How-
ever, observe that for a cleartext equal to 0, any negative noise will lead to a wrong result
in the extracted bit (i.e., after decryption, we get q

2α+1 instead of − q
2α+1). To avoid this

type of errors we need to add a small correction integer denoted ϵi (for i ∈ [0, κ − 1]) to
the shifted ciphertext cti · 2α−1. In what follows, we compute the value of the corrective
term.

We need to be cautious about encoded values that are closed to the two bounds 0 or q
2 : if

the noise is negative, then the PBS will return an incorrect result. In order to choose the
right correcting term, we need to determine the smaller distance (denoted d(·, ·)) between
q
2 and its preceding encoded value v1, and q and its preceding encoded value v2 i.e.,

min
(

d
(

v1 ∈
[
0; q

2

[
,
q

2

)
, d
(

v2 ∈
[
q

2; q
[

, q
))

.

We now compute the two distances. At this point, we need to distinct between two
cases:

1. βi is a power of two, i.e., βi = 2xi. The values are encoded by
⌊
q

2xi · i
⌉

mod q with
i ∈ J0, 2xiJ. For the shift we compute

⌊
q

2xi · i
⌉
· 2xi−1 mod q, so the only remaining

encoded values are 0 and q
2 , so the distance between these two values is d = q

2 =⌊
q·2xi−1

βi

⌋
= 2ϵi.

2. βi is not a power of two, i.e., βi = β′i · 2xi, with some odd β′i ̸= 1. As βi ≪ q,
after the first shift, for all j ∈ N we obtain the following bound over the encoded
values:⌊

q

βi
· (j mod βi)

⌉
· 2αi−1 mod q ≤

(
q

βi
· (j mod βi) + 1

2

)
· 2αi−1 mod q

≤ q

βi
· (j mod βi) · 2αi−1 + 2αi−2 mod q

174

6.2. WoP-PBS: Second Attempt

We now want to work with β′i instead of βi. Then, for all j ∈ N,∃j′, j′′ ∈ N, such
that:

q

βi
· (j mod βi) · 2αi−1 mod q = q

β′i
· (j′ mod β′i) · 2α

′
i−1 mod q.

= q

β′i
· (j′′ mod β′i) mod q.

The next is step is to compute the minimum of the distances:

min
(

d
(

v1 ∈
[
0; q

2

[
,
q

2

)
, d
(

v2 ∈
[
q

2; q
[

, q
))
−2αi−2, vi ∈

{
q

β′i
· j′ mod q

}
j′∈{0,β′

i−1}
.

v1 is bounded by

v1 ≤
⌈

q

β′i
·
⌊

β′i
2

⌋⌉
= q

2 −
⌊

q

2β′i

⌋

So we have d1 = d
(
v1 ∈ [0; q2 [, q2

)
≥
⌊
q

2β′
i

⌋
. Next, v2 is bounded by

v2 ≤
⌈

q

β′i
· (β′i − 1)

⌉
= q −

⌊
q

β′i

⌋

So we have d2 = d
(
v2 ∈ [q2 ; q[, q

)
>
⌊
q
β′
i

⌋
≥
⌊
q

2β′
i

⌋
. The distance is then bounded

by
⌊
q

2β′
i

⌋
− 2αi−2. The correcting term is finally defined as half of this bound, i.e.,

ϵi =
⌊
q

4β′
i

⌋
− 2αi−3 =

⌊
q·2xi−2

βi

⌋
− 2αi−3.

Since the term 2αi−3 in Proof 30 is very small regarding q, it can be neglected to have
the same ϵ in the both cases. About the noise bound, this term is also negligible, since it
is smaller than 1 before the shift.

By taking ϵi =
⌊
q·2xi−2

βi

⌋
and adding ϵi to cti · 2α−1 we ensure that for any message, an

error e of size |e| < ϵi will lead to a correct PBS evaluation. This means that before the
shift, the noise in cti should be smaller than

⌊
q·2xi−2

βi

⌋
· 2−⌊log2(βi)⌋.

At this point, the less significant bit (the α-th bit) has been extracted and stored into
a new LWEi,α. To extract the next bit, we first subtract LWEi,α to cti. With this operation
we ensure that the α-th bit is now equal to 0. As we want to extract the (α− 1)-th bit, we
now shift by 2α−2. Finding the corrective term ϵi is much easier in this case, as the second
bit is equal to 0 after the shift. Hence, we can take ϵ = q

4 and extract the bit with a PBS.

175

Chapter 6 – Without Padding Programmable Bootstrap

To extract the remaining bits, we just need to repeat the previous steps (subtraction, shift,
add ϵ = q

4 and PBS).
Concerning the correctness of circuit bootstrap and vertical packing, we refer

to [Chi+20a].
□

Several optimizations are possible in Algorithm 30. We did not include them directly
in Algorithm 30 to simplify the explanation:

• Observe that the base and level used in the PBS for bit extraction and in the PBS
for circuit bootstrapping might be chosen differently.

• The PBSs in the first step of the algorithm can either be computed independently,
or sequentially, from LSB to MSB, by removing an extracted bit from the input
ciphertext before extracting the next one.

• The second step of the circuit bootstrapping, which is a series of several packing
private key switchings, can be improved by following a similar footstep as a technique
proposed in [CCR19]. We perform an initial LWE-to-GLWE KS (not functional) to
each of the outputs of the PBS, and then, as already done in [CCR19], we perform an
external product with the GGSW encryption of the GLWE secret key to obtain the
remaining GLWE ciphertexts. This allows us to reduce the size of public evaluation
keys at the cost of a slightly larger noise in the output.

• The KS-PBS performed in Line 7 is a Generalized PBS (Algorithm 17), so the modu-
lus switch directly reads the next bit to be extracted. The sign function is evaluated
in order to re-scale the bit at the right scaling factor. The circuit bootstraps used in
Lines 10 and 11 are also instantiated with a Generalized PBS. If we chose a value of
ϑ > 0 we could improve the circuit bootstraps with a PBSmanyLUT (Algorithm 18),
i.e., perform all the PBSs in a circuit bootstrap at the cost of a single PBS. Using
this technique imposes an additional constraint on the noise in the input of the
circuit bootstrap.

• We can observe that one of the PBSs of the circuit bootstraps used in Line 10 could
be avoided thanks to the KS-PBS in Line 7, that might already provide the bit
extracted at the right re-scaling factor.

176

6.2. WoP-PBS: Second Attempt

Remark 34 (Carry Buffer and Bit Extract) In general, the number of circuit boot-
straps performed in Algorithm 30 corresponds to the number of bits of the input message.
However, this number might be slightly larger in some special cases, such as the case where
the carry buffers have not been emptied beforehand, or the case of native CRT (Defini-
tion 16). In these cases, we might need to extract more bits of information, and so perform
more PBSs during bit extraction and more circuit bootstraps. Furthermore, different pos-
sible inputs might encode the same value, hence the LUT L needs to contain some kind
of redundancy. If the goal is to compute the discrete function f , one needs to compute the
LUT L as L[(m0, · · · , mκ−1)] = Encode (f (Decode (m0, · · · , mκ−1))).

Remark 35 (Faster Algorithm 30 for Special LUTs) Observe that the new WoP-
PBS approach can be also adapted, and be very convenient, for particular LUTs such as
the ReLU and the sign functions in the radix mode. Indeed, for these functions we are only
interested in the MSB part of the message. We can leave out some of the least significant
bits and only do the Vertical Packing with a subset of the extracted bits which would be
faster.

6.2.2 Comparison Between A(WoP-PBS), A(CJP21) and A(GBA21)

In Algorithm 30, we introduced a new WoP-PBS. We can now resume our comparison,
started in Section 4.3.1, to find out which algorithm is the best (depending on some
parameters) to compute over ciphertexts with large precision. To do so, we consider a
new atomic pattern type (see Definition 28) A(WoP-PBS).

Definition 34 (A(WoP-PBS) Atomic Pattern Type) We define a new atomic pattern
type A(WoP-PBS) as a subgraph composed of a dot product (Theorem 5) and the WoP-PBS
defined in Algorithm 30.

As before, we assume that the inputs of the dot product are outputs of a bootstrap.
An atomic pattern of type A(WoP-PBS) can be fully described by the pair (ν, t) with ν, the
2-norm and t the noise bound (Definition 21).

As this algorithm can work on a single ciphertext or on several ciphertexts containing
chunks of the message, we present three variants: 1, 2 and 4 blocks. We display a com-
parison between A(CJP21), A(GBA21) and A(WoP-PBS) on Figure 6.2. We used the exact same
context as in Figure 4.3 for this experiment, so the failure probability is for the three of
them pfail ≈ 2−35.

177

Chapter 6 – Without Padding Programmable Bootstrap

Figure 6.2: In this figure, we evaluate a LUT over a few encrypted inputs. We compare
the AP type A(WoP-PBS), corresponding to the WoP-PBS introduced in Algorithm 30 (1,
2 and 4 blocks), with the AP type A(GBA21), corresponding to the Tree-PBS [GBA21] (2
and 3 blocks). As a baseline, the AP of type A(CJP21) is also plotted.

Remark 36 (Noise Bound) For A(CJP21) and A(GBA21), please refer to Remark 27. For
A(WoP-PBS), we have a certain number of sequential bit extractions per input LWE cipher-
text and per block. In theory, we want to take into account all those potential PBSs (one
per bit extraction), but we noticed that the first one dominates all the others regarding
the noise. In fact, their impact on the total failure probability is negligible compared with
the first bit extraction. Our experiments showed that for 2-norms ν ≥ 4, and for failure
probability below 2−25 this assumption holds. We leave to future works the exploration of
this topic. With this assumption, we start by computing the failure probability needed for
one PBS defined as p′i = 1 − (1− pfail)

1
κ with κ the number of input LWE ciphertexts.

From it, we can finally compute the noise bound for each PBS t (p, 0) = q

21·p·z∗(p′
i) .

The brown/♦ curve represents the cost of the best parameter set for an atomic pattern
A(WoP-PBS) working over one block. We can immediately notice that, between 1 and 9 bits
of precision, A(CJP21) is more interesting than the new bootstrap (Algorithm 30). However,
with precisions from 10 bits and above, A(WoP-PBS) has solutions that are more efficient
than the ones existing for A(CJP21), and finds solutions when there is none for A(CJP21).

178

6.2. WoP-PBS: Second Attempt

For a small ν, it offers solutions that are slightly better than the ones from A(GBA21).
The pink/ curve (respectively the pink/■ curve) represents the atomic pattern

A(WoP-PBS) for two blocks (respectively four blocks) of message. On those curves, we see
that it scales much better with the precision than the other atomic pattern types. With
Algorithm 30, we manage to find solutions up to 24 bits of precision. Those solutions are
costly but far less than the ones for A(GBA21), and for comparison, it is only 210 times more
costly to compute a LUT over a message with 24-bits of precision with A(WoP-PBS) than
to compute a LUT with 1 bit of precision with A(CJP21). For comparison, in Section 4.3
and Figure 4.3, we saw that computing A(GBA21) over a message of 21 bits costs more
than 220 times the cost of a PBS over Boolean messages. Finally, for 18 bits of precision,
the new WoP-PBS with two blocks is approximately 27 times faster than the tree-PBS in
A(GBA21) with three blocks.

To sum up, for small precisions (up to 5 bits), TFHE’s PBS is the best option among
the three considered. Above 10/11 bits of precision, the algorithm we introduced in this
thesis (Algorithm 30) becomes the best alternative and improves the state of the art by
a non-negligible factor.

Remark 37 (LUT Evaluation for Even More Precision) It is important to ob-
serve that evaluating a LUT on integers larger than e.g., 30 bits, even in cleartext, becomes
too expensive in terms of memory. For instance, a LUT for 30-bit input and output in-
tegers contains 230 · 64 bits = 8 GB of information. So both techniques – Tree-PBS and
our new WoP-PBS – are in any case not practical anymore.

Remark 38 (Small Public Key Material for Algorithm 30) In Algorithm 30, the
size of the needed public material scales way better than a tree-PBS as in [GBA21]. As an
example, for a total of 18 bits of precision we have a key of 1.65 GB for A(GBA21) and a
size of 0.926 GB for A(WoP-PBS).

6.2.3 Comparison Between A(WoP-PBS) and A(LMP21)

Since the publication of the first WoP-PBS (presented in Section 6.1, in Algorithm 27
and in Algorithm 28), a few WoP-PBS constructions have been proposed in the litera-
ture. Some works [KS21; LMP21] already compare them somehow, but our optimization
framework enables to truly do so by comparing them at the best of their efficiency. This
can be done by putting each of them in a different atomic pattern type and finding optimal
parameters for different 2-norms and precisions. To do so, we create one additional atomic

179

Chapter 6 – Without Padding Programmable Bootstrap

pattern type called A(LMP21) composed of a DP, a KS and the WoP-PBS from [LMP21].
We use the exact same context as in Figure 4.3 for this experiment, so the failure proba-
bility is for the both of them pfail ≈ 2−35. We display in Figure 6.3 the comparison between
our new WoP-PBS (Algorithm 30, blue/• curve) in A(WoP-PBS) and the WoP-PBS from
[LMP21] in A(LMP21) (red/+ curve).

Remark 39 (Noise Bound of A(LMP21)) For A(WoP-PBS), please refer to Remark 36.
For A(LMP21), we consider the two sequential PBSs involved in the algorithms. They almost
have the same amount of input noise and thus we assume that they both contribute equally
to the overall failure probability. We experimented with the two possible scenarios, (i)
taking the input noise of the first PBS for the computation or (ii) taking the second one.
We did not observe any difference between the two approaches for the considered failure
probabilities and 2-norms.

We start by computing the failure probability needed for one PBS defined as p′i =
1− (1− pfail)

1
2 and from it we can finally compute the noise bound for each PBS t (p, 0) =

q

21+1·p·z∗(p′
i) .

The first thing that we learn about the WoP-PBS of [LMP21] is that it does not scale
well with big precisions, which is not surprising as the algorithm uses as subroutine two
PBSs from [Chi+20a] to compute the WoP-PBS over the entire input message. Thus,
as for A(CJP21), for precisions above 10, we do not find feasible solutions. We can also
identify as before two parts on the curve, the first one for small precisions (1-5 bits) and
a second one for higher precisions: the reason behind this sudden growth in cost is due to
the increase of the polynomial size to manage bigger messages.

Thanks to the new WoP-PBS (Algorithm 30), we are able to compute a WoP-PBS over
large messages. To conclude, this new algorithm scales better than existing algorithms to
compute LUTs over large messages and we do not need a padding bit which is a known
constraint of TFHE’s bootstrapping (Limitation 1).

6.2.4 Failure Probability Analysis

In this section we analyze the impact of decreasing the failure probability on the cost,
for the atomic patterns A(CJP21) and A(WoP-PBS). We consider four different failure
probabilities: pfail ∈ {2−14, 2−20, 2−35, 2−50} and to simplify the analysis, we fix the 2-norm
ν = 24 since the behaviour is pretty similar for other 2-norms.

180

6.2. WoP-PBS: Second Attempt

Figure 6.3: In this figure, we compare the cost of the AP types A(WoP-PBS) and A(LMP21).
The first one corresponds to DP followed by our new WoP-PBS (Algorithm 30), and the
second one to DP-KS followed by the WoP-PBS from [LMP21].

Figure 6.4 is dedicated to the AP of type A(CJP21). We plot the cost for precisions
between 1 and 12 bits. As expected, we can observe that if we decrease the failure proba-
bility, the cost increases. Roughly speaking, starting from 4-5 bits of precision, for every
additional bit, N has to be twice as big, which more than doubles the cost of the atomic
pattern. Observe that the cost is very close for certain curves: for instance, the brown/ ■
curve, corresponding to pfail = 2−50, and the green/▼ curve, corresponding to pfail = 2−35,
have almost the same cost. The red/+ curve, corresponding to pfail = 2−20, has a cost
that is close to the one of the blue/• curve, corresponding to pfail = 2−14, up to 7 bits of
precision, and starting from 8 bits of precision it gets closer to the green/▼ curve. This
change is due to the fact that there are no parameter sets fulfilling the requirements with
a bigger N only twice as big, it has to be 4 times bigger.

Figure 6.5 is dedicated to the AP of type A(WoP-PBS). The brown/ ■ curve, corresponds
to pfail = 2−50, the green/▼ curve, corresponds to pfail = 2−35, the red/+ curve corresponds
to pfail = 2−20, and finally the blue/• curve corresponds to pfail = 2−14. All the curves follow
the same behaviour and are simply shifted up when the failure probability is decreased.

To sum up, with the AP of type A(CJP21), for each additional bit of precision, the

181

Chapter 6 – Without Padding Programmable Bootstrap

Figure 6.4: Cost comparison for the same AP of typeA(CJP21), with respect to the following
failure probabilities: pfail ∈ {2−14, 2−20, 2−35, 2−50}.

overall cost of the AP is doubled. However, this is not the case with the AP of type
A(WoP-PBS). The behaviour of the curve in this region (precision below 24 bits) looks more
like a linear one. For probabilities pfail = 2−35 and pfail = 2−50, the curves are almost
overlapping. If we look for instance at 7 bits of precision, the polynomial size N are the
same, but the noise added by the key switch is slightly lower thanks to a bigger n (output
of the key switch) and to other small changes in the key switch decomposition parameters.
Indeed, at this precision, N is already quite big so it can handle the message precision.
Thus the noise of the modulus switch is not the most constraining one, the one from the
key switch actually is. This explains the small overhead in this context.

182

Figure 6.5: Cost comparison for the same AP of type A(WoP-PBS), with respect to the
failure probabilities pfail ∈ {2−14, 2−20, 2−35, 2−50}.

Chapter 7

HOMOMORPHIC INTEGERS

In this chapter, we combine the new algorithms introduced in Chapters 5 and 6 with
those from the literature to explain how to build efficient integer arithmetics with TFHE.

First, we explain how to leverage the LWE multiplication (Algorithm 22), the
generalized PBS (Algorithm 17) and the first two WoP-PBSs (Algorithms 27 and 28)
to build a fast Boolean arithmetic. TFHE’s Boolean approach consists in computing a
PBS for every Boolean gate in a Boolean circuit to correct the encoding and to reduce
the noise. Thanks to our new algorithms, we are able to execute Boolean gates without
having to perform a PBS every time. We perform a PBS only when it is necessary
to reduce the noise. We then extend this new Boolean arithmetic to build a modular
arithmetic working with power-of-two message moduli. Finally, we describe how to tweak
it to build an efficient integer arithmetic that supports the opposite, the addition, the
multiplication and arbitrary lookup tables. This approach is particularly efficient for
small messages (less than 8 bits of precision).

Finally, we explain how to implement an integer arithmetic for high precision integers.
To do so, we leverage the WoP-PBS described in Algorithm 30. In Limitation 11, we
explained that there was no existing solution to support arbitrary message moduli with
the radix encoding. We introduce a generalization of this encoding that overcomes this
limitation. In Limitation 12, we explained that there is a limited number of co-prime
bases that are smaller than 28, the maximal message modulus to have efficient lookup
table evaluations with the PBS. We introduce a new hybrid type of encoding that mixes
the radix and the CRT encodings to overcome this limitation. We also show how to
apply arbitrary functions to a message encoded with our new encodings, thus overcoming
Limitation 13. We explain how to do it with the tree-PBS introduced in [GBA21] (recalled
in Algorithm 15) and with our WoP-PBS (Algorithm 30). We conclude by giving extensive
benchmarks of the main operations (addition, multiplication, LUT evaluation) on high-

185

Chapter 7 – Homomorphic Integers

precision messages with radix, CRT and hybrid encodings using parameters given by our
optimizer framework from Chapter 4.

7.1 Small Integers

As studied in Section 4.2 and Definition 30, we can easily work over small integers using
a dot product, a key switch and a PBS. With this method, we can compute additions,
multiplications by plaintext integers and LUT evaluations. A big restriction comes with
the PBS (Limitation 1): we need the padding bit to be known. This restriction is partic-
ularly annoying if we only care about modular arithmetic. In fact, as every operation is
done modulo q, we may want to leverage this modular reduction to only keep the least
significant bit(s) after each computation. If we were to do that using a regular PBS (Al-
gorithm 17), we would have issues because to use this modular reduction we need to fill
the padding bit. A solution is to use the WoP-PBS introduced in this work (Algorithm 27,
Algorithm 28 or Algorithm 30).

We start by describing an improvement of FHE Boolean circuit evaluation. Then, we
extend it to arithmetic circuits working with integers encoded in more than a single bit.
Finally, we describe how to use the later to build exact computations on larger encrypted
integers.

7.1.1 Boolean Arithmetic

In TFHE [Chi+16a], authors improve techniques proposed in FHEW [DM15] to perform
fast homomorphic evaluations of Boolean circuits and called this feature gate bootstrap-
ping. It is very easy to use and implement, because it performs one bootstrap for each
bivariate Boolean gate evaluated: there is no need to be careful with the noise management
anymore because each gate resets the noise systematically. Furthermore, the same param-
eter set can be used for all the bootstraps in the circuit. These also make the conversion
between the cleartext Boolean circuits and the encrypted circuits quite straightforward
in practice.

However, performing a bootstrap at each bivariate Boolean gate is very expensive when
we want to evaluate large circuits and seems unnecessary. One idea to make the evaluation
more efficient is to mix the bootstrap with some leveled operations, at the cost of now
caring about noise growth. But this idea cannot be immediately applied when it comes

186

7.1. Small Integers

to gate bootstraps: in fact, the bootstrap also takes care of ensuring a fixed encoding in
the ciphertexts, that may not be ensured if we introduce leveled operations (additions,
subtractions or multiplications by an integer). Furthermore, TFHE can only evaluate
linear combinations between LWE ciphertexts; non linear operations would require the
use of a PBS or of a circuit bootstrap (Algorithm 11) followed by an external product.
This is especially problematic when we want to evaluate an AND gate, for instance.

To be more clear, when gate bootstrapping, messages are encoded with what we call
one bit of carry: meaning that we know that the MSB of the plaintext (without noise)
is set to zero. This bit is used to perform a linear combination while preserving the
(plaintext) MSB of this combination so we can bootstrap it (the function is negacyclic,
so does not need a bit of padding) and get a correct result. Roughly speaking, the initial
linear combination evaluates the linear part of the gate and potentially fills the bit of
carry, while the bootstrap takes care of the evaluation of the non-linear part of the gate,
reduces the noise and empties the bit of carry to be able to perform a future operation.

We propose a novel approach based on the GenPBS (Algorithm 17) and LWEMult
(Algorithm 22), which removes both the constraint of padding bits and the difficulties
with the non-linear leveled evaluations. Thus, this offers the possibility of computing
series of Boolean gates without the need for computing a bootstrap at every gate. A
GenPBS should only be computed to reduce the noise when needed. In Lemma 2, we
only describe some of the most common Boolean gates (i.e., XOR, NOT and AND), whose
combination offers functional completeness. The other gates can be obtained by combining
these operations.

Lemma 2 (New Boolean Gates) Let bi ∈ {0, 1} such that cti = LWEs⃗
(

bi ·
q

2

)
∈

Zn+1
q , for i ∈ {1, 2}. Let

(⃗
0, q2

)
∈ Zn+1

q be a trivial LWE encryption of 1. Then, the
following equalities between Boolean gates and homomorphic operators hold:

ct1 XOR ct2 := ct1 + ct2

ct1 AND ct2 := LWEMult(ct1, ct2, RLK, KSK)

NOT ct1 := ct1 +
(

0⃗,
q

2

)

Proof (Lemma 2) A bit is naturally encoded as a 0 (resp. q
2) if its value is 0 (resp.

1). Then the Boolean gates XOR and NOT stem from that encoding. The AND is a direct

187

Chapter 7 – Homomorphic Integers

application of the LWEMult operator.
□

The noise increases after each computed gate since no bootstrap is performed. There-
fore, after chaining a number of them, a noise reduction may be required. We propose two
simple processes exploiting the GenPBS with the (negacyclic) sign function.

Lemma 3 (Boolean Bootstrap) Let ctin be an LWE ciphertext resulting from a
Boolean circuit with gates defined as in Lemma 2. We can bootstrap ctin during the Boolean
circuit evaluation with one of the following operators:

ctout ← GenPBS
(

ctin, BSK, P1 ·XN/2, ∆out = q

4 ,κ = 0, ϑ = 0
)

+
(

0⃗,
q

4

)
(7.1)

ctout ← GenPBS

ctin, BSK, Pf =
3N
4 −1∑
i=N

4

X i, ∆out = q

2 ,κ = −1, ϑ = 0

 (7.2)

Proof (Lemma 3) The first method 7.1 uses GenPBS with the parameters ∆out =
q

4 ,κ = 0, ϑ = 0 and Pf = P1 ·XN/2. The output of the GenPBS gives cttmp = LWEs⃗(±
q

4).

Therefore, depending on the sign, the term cttmp + (⃗0,
q

4) is equal to LWEs⃗(0) or cttmp =

LWEs⃗(
q

2).
The second approach 7.2 uses other parameters for the modulus switch which can be

seen as shifted by one bit, i.e., κ = −1, ϑ = 0 and ∆out = q
2 . In this case, the sign does

not impact the value of the encoded bit, since ±0 = 0 and ± q
2 = q

2 . Then, evaluating

GenPBS with the function Pf =
3N
4 −1∑
i=N

4

X i and ∆out = q

2 , we obtain ctout = LWEs⃗(±0) or

LWEs⃗
(
±q

2

)
.

□

7.1.2 Arithmetic Modulo a Power of 2

Here, we generalize the Boolean circuit approach described in Lemma 2 to arithmetic
circuits modulo any power of two. This enables a more efficient exact arithmetic modulo
2p for some integer p. For i ∈ {1, 2}, let cti = LWEs⃗(mi · q

2p) be an LWE ciphertext
encrypting the message mi ∈ J0, 2pJ (i.e., mi has a precision of p bits). As we did for the
Boolean arithmetic, we define three natural homomorphic operators to mimic modulo 2p

arithmetic: the addition (Add2p) which is evaluated as an homomorphic LWE addition,

188

7.1. Small Integers

the multiplication (Mul2p) which is evaluated as an LWEMult, and the unary opposite
(Opp2p) which is obtained by simply negating the LWE input.

When we deal with integers encoded with more than one bit, the functions we have to
apply during a PBS are no longer negacyclic. It means that without a WoP-PBS we would
have to have at least 2 bits of padding (one for a linear combination and another one for
the PBS with a non-negacyclic function). To ensure correctness during a PBS when we
work with larger powers of two, we need a larger polynomial size N which will result in
a slower execution. With a WoP-PBS, we do not need to have bits of padding. We can
simply compute leveled additions and multiplications, and only use a WoP-PBS when we
have to reset the noise to a lower level or to do a LUT evaluation. In the following, to
perform a WoP-PBS, we use Algorithm 27 or Algorithm 28 but it can easily be adapted
to use Algorithm 30.

7.1.3 From Modular Arithmetic to Exact Integer Arithmetic

Here, we use the radix encoding i.e., several LWE ciphertexts to represent a single large
integer as described in Section 2.4 and Definition 15. We now present some operators
that extend homomorphic computations modulo a power of two to a larger integer arith-
metic. The basic operations introduced in Section 7.1.2 offer the possibility to compute
an exact integer multiplication between two LWE ciphertexts and to keep the LSB of the
computation. However, we also need to be able to recover the MSB of additions and mul-
tiplications for carry propagation when we deal with large integers encrypted as several
ciphertexts. The operators keeping the MSB of the computation between two messages
m1, m2 ∈ J0, 2pJ are defined as

 AddMSB
2p : (m1, m2) 7→

⌊
m1+m2

2p
⌋

mod 2p

MulMSB
2p : (m1, m2) 7→

⌊
m1·m2

2p
⌋

mod 2p

Their implementation is described in Algorithm 31.
In Algorithm 31, to improve efficiency, we remove both key switches and include them

in the relinearization steps of the previous WoP-PBS. If the parameters allow it, one
might also replace Lines 6 and 7 of Algorithm 31 by a single WoP-PBS to extract the
MSB directly.

Lemma 4 (MSB Operations) For i ∈ {1, 2}, let cti ∈ LWEs⃗ (mi ·∆) be two LWE
ciphertexts, encrypting mi · ∆ with 0 ≤ mi < 2p and ∆ = q

2p , both encrypted under the

189

Chapter 7 – Homomorphic Integers

Algorithm 31: ctout← AddMSB
2p MulMSB

2p (ct1,ct2,BSK,KSK1,KSK2,RLK)

Context:

s⃗ = (s1, · · · , sn) ∈ Znq
s⃗′ = (s′1, · · · , s′kN) ∈ ZkNq
S⃗ ′ =

(
S ′(1), . . . , S ′(k)

)
∈ Rk

q

∀1 ≤ i ≤ k, S ′(i) = ∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

∆ = q
2p ∈ Zq

0 ≤ m1, m2 < 2p

PId : a redundant LUT for x 7→ x (identity function)
Input:

ct1 = LWEs⃗(m1 ·∆) ∈ Zn+1
q

ct2 = LWEs⃗(m2 ·∆) ∈ Zn+1
q

BSK =
{
BSKi = GGSW(β,ℓ)

S⃗′ (si)
}

1≤i≤n
: a bootstrapping key from s⃗ to S⃗ ′

KSK1 =
{
CTi = GLev(β,ℓ)

S⃗′ (s′i)
}

1≤i≤kN
: a key switching key from s⃗′ to S⃗ ′

KSK2 =
{
cti = Lev(β,ℓ)

s⃗ (s′i)
}

1≤i≤kN
: a key switching key from s⃗′ to s⃗

RLK =
{
CTi,j = GLev(β,ℓ)

S⃗′

(
S ′i · S ′j

)}1≤j≤i

1≤i≤k
: a relinearization key for S⃗ ′

Output: ctout = LWEs⃗
([⌊

m1+m2
2p

⌋]
2p
·∆
)

ctout = LWEs⃗
([⌊

m1·m2
2p

⌋]
2p
·∆
)

1 begin
/* add p bits of padding */

2 ct′1 ← WoP-PBS(ct1, BSK, RLK, KSK1, PId, ∆/2p, 0, 0);
3 ct′2 ← WoP-PBS(ct2, BSK, RLK, KSK1, PId, ∆/2p, 0, 0);

/* compute the operation */
4 ct′ ← ct′1 + ct′2 ct′ ← LWEMult(ct′1, ct′2, RLK, KSK1) ;

/* key switch */
5 ct′′ ← PublicKS(ct′, KSK2, Id) ;

/* extract the LSB */
6 ct′LSB ← WoP-PBS(ct′′, BSK, RLK, KSK1, PId, ∆/2p, p, 0);

/* subtract the LSB to only keep the MSB */
7 ct← ct′ − ct′LSB ;

/* key switch */
8 ctout ← PublicKS(ct, KSK2, Id) ;
9 end

190

7.1. Small Integers

same secret key s⃗ = (s0, . . . , sn−1) ∈ Znq , with noise sampled from χσi. Let BSK, KSK, RLK
be defined as in Theorem 28.

Then, Algorithm 31 is able to compute a new LWE ciphertext ctout, encrypting the
MSB of the sum, i.e., the carry,

[⌊
m1 + m2

2p
⌋]

2p
· ∆ (resp. a new LWE ciphertext ctout,

encrypting the MSB of the product
[⌊

m1 ·m2

2p
⌋]

2p
·∆), under the secret key s⃗′.

The variance of the noise of ctout can be estimated by composing the noise formulae of
the different operations composing the algorithm (Theorems 1, 6 and 27 to 29).

The cost of Algorithm 31 is:

Cost
(
AddMSB

2p

)(n,ℓPBS,k1,N1,ℓKS,ℓRL,k2,N2)
= 3 Cost (WoP-PBS)(n,ℓPBS,k1,N1,ℓKS,ℓRL,k2,N2)

+ 2 Cost (PublicKS)(1,ℓKS,k2N2,1,n)

+ 2 (N2 + 1)Cost (add)

Cost
(
MulMSB

2p

)(n,ℓPBS,k1,N1,ℓKS,ℓRL,k2,N2)
= 3 Cost (WoP-PBS)(n,ℓPBS,k1,N1,ℓKS,ℓRL,k2,N2)

+ 2Cost (PublicKS)(1,ℓKS,k2N2,1,n)

+ (N2 + 1)Cost (add)
+ Cost (LWEMult)(ℓKS,ℓRL,k2N2,1,k2N2)

(7.3)

Proof (Lemma 4) The first two WoP-PBS of the algorithm send the two messages
m1 and m2 to a lower scaling factor q

22p . This way, when the leveled addition (resp. the
LWEMult) operation is performed, the new precision 2p will be able to store the entire
(both MSB and LSB) exact result. The third WoP-PBS is used to extract only the LSB of
the result, which will be subtracted from the result of the previous computation to obtain
an encryption of the MSB with scaling factor q

2p , i.e, ready to be used in the following
computation. Observe that the key switches are used in order to switch the secret key in
order to be compatible with the following operation.

□

To conclude, we offer different ways to generalize TFHE’s gate bootstrapping using
the WoP-PBS introduced in Algorithm 27, Algorithm 28 or Algorithm 30, a key switch
described in Algorithm 1 and the LWEMult introduced in Algorithm 22. Instead of doing
a PBS after each Boolean gate, we only need to bootstrap when strictly needed, namely
when we need to reduce the noise, change the encoding or apply a function.

191

Chapter 7 – Homomorphic Integers

Gate Bootstrap Binary arithmetic (p = 1) Integer arithmetic (p > 1)

TFHE as in Sec. 7.1.1 generalization in Sec. 7.1.3

Opp2p Negation Addition with a constant Negation

Add2p Bootstrapped XOR Homomorphic Add Homomorphic Add

AddMSB
2p Bootstrapped AND MultLWE 3 WoPBS + 2 Homomorphic Add

+ 2 public key switches

Mul2p Bootstrapped AND MultLWE MultLWE

MulMSB
2p x 7→ 0 x 7→ 0 3 WoPBS + MultLWE

+ Homomorphic Add

+ 2 public key switches

Noise reduction PBS at PBS WoPBS
frequency each gate when necessary when necessary

Table 7.1: Generalization of TFHE gate bootstrapping.

7.2 Big Integers

In order to overcome the limitations in the radix and CRT approaches for large integers
in TFHE presented in Section 2.4, we propose two improvements. We start with a gen-
eralization of the radix approach to any large modulus Ω. Then, we propose a hybrid
approach that takes the best of both the radix and the CRT approaches and allows us
to work efficiently with any choice of moduli. In practice without the first improvement,
the number of possible CRT residues is bounded by the numbers of small prime integers,
thus harshly restricting the available general modulo Ω offered by the hybrid approach.
Then, we explain how to use the Tree-PBS introduced by [GBA21] with our new large in-
tegers. Finally, we present extensive benchmarks to illustrate the interest of the WoP-PBS
(Algorithm 30) coupled with our new integer representations.

7.2.1 Generalization of the Radix Approach

By using the radix representation, homomorphic modular integers are defined modulus
Ω, which is a product of bases βi ∈ N, i ∈ [0, κ − 1], i.e., Ω = ∏κ−1

i=0 βi. Here, we pro-
pose to remove this restriction by generalizing the previous arithmetic to any modulus
Ω s.t. ∏κ−2

j=0 βj < Ω <
∏κ−1
j=0 βj. The only difference with the previous approaches lies in

the computation of the modular reduction. In what follows, we propose two complemen-
tary methods to perform this modular reduction, whose efficiency depends on Ω and the
product of the selected bases.

192

7.2. Big Integers

A First Method for Modular Reduction. The first method consists in performing
multiple LUT evaluations in the most significant block to reduce it modulo Ω. Indeed, the
modular reduction is applied on the κth block (i.e., ctκ−1) which represents mκ−1 ·

∏κ−2
i=0 βi

with mκ−1 < pκ−1 and which might be larger than Ω. Here pκ−1 is the carry-message
modulus as described in Section 2.4. The complete process is detailed in Algorithm 32.
The modular reduction is performed as a series of κ PBS (with KS, Line 2) and the result
is a radix-based integer with a base (β0, . . . , βκ−1) decomposition. The final step is to add
the first κ− 1 blocks of the result of the modular reduction to the first κ− 1 blocks of the
input (Line 4) and to replace the last block in the result by the (κ− 1)-th block obtained
in the modular reduction (Line 5).

Algorithm 32: (ct′0, . . . , ct′κ−1)← ModReduction1((ct0, . . . , ctκ−1), PUB)

Context:

Pj : r-redundant LUT for

Zpκ−1 → Zβj

x 7→ x′j = Decompj

(
x ·

κ−2∏
h=0

βh mod Ω
)

x′j is the j-th element in the decomposition in base (β0, . . . , βκ−1)
s.t. x ·

∏κ−2
h=0 βh mod Ω = x′0 +

∑κ−1
i=1 x′i ·

(∏i−1
j=0 βj

)
Input:

(ct0, . . . , ctκ−1), encrypting msg = m0 +

∑κ−1
i=1 mi ·

(∏i−1
j=0 βi

)
s.t. cti encrypts message mi with parameters (βi, pi)
PUB: public material for KS-PBS

Output: (ct′0, . . . , ct′κ−1), encrypting msg = m0 +
∑κ−1

i=1 mi ·
(∏i−1

j=0 βi

)
mod Ω

/* Decompose message in block κ− 1 with respect to base (β0, . . . , βκ−1) */
1 for j ∈ J0; κ− 1K do
2 cj ← KS-PBS(ctκ−1, PUB, Pj)

/* Add (as in Section 2.4.1) decomposition to all the blocks up to κ− 2 */
3 for j ∈ J0; κ− 2K do
4 ct′j ← Add(ctj , cj)

/* Replace block κ− 1 with element κ− 1 in the decomposition */
5 ct′κ−1 ← cκ−1
6 return (ct′0, . . . , ct′κ−1)

Observe that the κ KS-PBS in Line 2 of Algorithm 32 could be replaced by optimized
procedures evaluating several different LUTs on the same input ciphertext. To do so,
we could use the multi-value bootstrapping introduced in [CIM19] or the PBSmanyLUT
presented in Algorithm 18.

Proof (Algorithm 32) By construction, we have that ∏κ−2
j=0 βj < Ω <

∏κ−1
j=0 βj. Then,

reducing the (κ− 1)-th block encrypting the message mκ−1 < pκ−1, rescaled by the product

193

Chapter 7 – Homomorphic Integers

∏κ−2
i=0 βi modulus Ω is enough to correctly clear its carry space without loosing information.

This is homomorphically done by evaluating the κ functions x ∈ Zpκ−1 7→
Decompj

(
x ·∏κ−2

h=0 βh mod Ω
)

with j ∈ J0, κ− 1K.
Then, for all i ∈ J0; κ− 1K, Decrypt(ci) = ri, giving r = r0 +∑κ−1

i=1 ri ·
(∏i−1

j=0 βj
)

with
ri < βi and 0 ≤ r < Ω.

The last step is to compute the addition between each (cti, ci) for i ∈ [[0, κ− 2]] and to
replace the (κ−1)-th ciphertext with cκ−1. The final output is given by ct′ = (ct′0, . . . ct′κ−1).

Then, for all i ∈ J0; κ− 2K, Decrypt(ct′i) = mi + ri, such that Decrypt(ct′) = m0 + r0 +∑κ−2
i=1 (mi + ri) ·

(∏i−1
j=0 βj

)
+ rκ−1

∏κ−1
j=0 βj.

□

Second Method for Modular Reduction. The idea of the second method is based
on the shape of −∏κ−2

h=0 βh (i.e., the negation of the scaling factor of the message in the
κ− 1 block) reduced modulo Ω. The radix decomposition is:

κ−2∏
h=0

βh mod Ω = ν0 + ν1 · β0 + ν2 · β0β1 + . . . + νκ−1 ·
κ−2∏
j=0

βj.

If νκ−1 = 0 and the other elements of the decomposition, i.e., ν0, ν1, . . . , νκ−2, are
small integers (ideally many of them being 0), then this method is more efficient. Indeed,
when these conditions are respected, the idea is to replace the MSB block by multiplying
it by the non-zero constants νj and subtracting the results from the j-th input block, for
j ∈ J0, κ− 2K. Some multiplications with positive constants are needed and might require
some carry propagations beforehand depending on the degrees of fullness.

Each block can have a different base and we need to add ciphertexts of different blocks,
at some point in the algorithm. Before this addition, we need to perform an homomorphic
decomposition of a message into the right base with a series of PBSs as described in
Algorithm 33. This step can be skipped if the bases are all equal. In Algorithm 33, a
few functions are defined. Given a message m and its encoding (m0, · · · , mκ−1) such that
m = m0 +∑κ−1

i=1 mi ·
(∏i−1

j=0 βj
)
. We have

ri,β⃗(m) = mi.

γβ⃗(m) is defined such that for i ∈ [[γβ⃗(m) + 1, κ− 1]], we have mi = 0. When γβ⃗(m) =

194

7.2. Big Integers

κ− 1, it means that all the mi are non-zeros.

Algorithm 33: (ctj)j∈J0,γK ← Decomp
(
ctin, β⃗, p⃗, PUB

)

Context:

(q, p, deg) : parameters of ctin

µ := deg ·(p− 1)

qi,β⃗(x) =
{

x if i = −1⌊
q

i−1,β⃗
(x)

βi

⌋
, if i ≥ 0

ri,β⃗(x) = qi−1,β⃗(x)− qi,β⃗(x) · βi, ∀i ≥ 0
Ω′(x) =

{
i < |β⃗|, qi,β⃗(x) = 0

}
γβ⃗(x) =

{
|β⃗| if Ω′(x) = ∅
min(i ∈ Ω′(x)), otherwise

γ := γβ⃗(µ)
s⃗ ∈ Zn : the secret key
Pi,β⃗ : a LUT for x→ ri,β⃗(x) · q

2·pi
, i ∈ J0, κ− 1K

Input:

ctin : LWE encryption of a message m

(p⃗, β⃗) ∈ Nκ2

PUB: public material for KS-PBS
Output: (ctj)j∈J0,γK encrypting the message m

1 for j ∈ J0, γK do
2 ctj ← KS-PBS(ctin, PUB, Pi)
3 with ctj LWE encryption with parameters

(
q, βj , pj , deg = min(βj−1

pj−1 ,
q

j−1,β⃗
(µ)

pj−1)
)

4 end
5 return (ctj)j∈J0,γK

Our second method for modular reduction is detailed in Algorithm 34. Observe that
in Algorithm 34 the subtraction algorithm follows the regular schoolbook subtraction
modulo an integer Ω.

Remark 40 (Example of Algorithm 34) Let us develop Algorithm 34 for a 3-block
integer:

m = m0 + m1β0 + m2β0β1 and β0β1 = ν0 + ν1β0 + ν2β0β1 mod Ω

therefore,

m = m0 + m1β0 + m2ν0 + m2ν1β0 + m2ν2β0β1

= (m0 + m2ν0) + (m1 + m2ν1)β0 + (m2ν2)β0β1 mod Ω.

195

Chapter 7 – Homomorphic Integers

What happens is that if ν2 = 0, then we will have emptied the last block. Let us try
this method on an example: Ω = 1055, κ = 3, β⃗ = (β, β, β) with β = 25 and p⃗ = (p, p, p)
with p = 27. Observe that (25)2 mod 1055 = −31 = −1 · 25 + 1 (so ν0 = 1, ν1 = −1 and
ν2 = 0). Then, the new reduced ciphertext would be composed of:

• in the block 0: the addition between the previous block 0 and the previous block 2
multiplied times 1;

• in the block 1: the addition between the previous block 1 and the previous block 2
multiplied times −1;

• in the block 2: an encryption of 0.

Algorithm 34:
(
ct′0, . . . , ct′κ−1

)
← ModReduction2((ct0, . . . , ctκ−1), PUB)

Context:
{

ν⃗ = (ν0, ν1, . . . , νκ−1) be a convenient decomposition s.t.∏κ−2
h=0 βh mod Ω = ν0 + ν1β0 + ν2β0β1 + . . . + νκ−2

∏κ−3
j=0 βj

Input:
{

(ct0, . . . , ctκ−1) , encrypting msg = m0 +
∑κ−1

i=1 mi

(∏i−1
j=0 βi

)
s.t. cti encrypts message mi with parameters (βi, pi)

Output:
(
ct′0, . . . , ct′κ−1

)
encrypting msg = m0 +

∑κ−1
i=1 mi

(∏i−1
j=0 βi

)
mod Ω

/* Copy input and set the κ− 1 block to zero (trivial encryption) */
1
(
ct′0, . . . , ct′κ−1

)
← (ct0, . . . , ctκ−2, 0)

2 for j ∈ J0; κ− 2K do
/* Multiply block κ− 1 times νj, Multiplication with a Positive Constant as

in Section 2.4.1 */
3 if νj < 0 then
4 cj ← ScalarMul(ctκ−1,−νj)
5 else
6 cj ← ScalarMul(ctκ−1, νj)

/* Decompose (as in Algorithm 33) cj block starting from the βj */

7 (cj,0, . . . , cj,κ−j−1)← Decomp
(

cj , (βi)i∈Jj,κ−1K , (pi)i∈Jj,κ−1K , PUB
)

/* Update the output */
8 if νj < 0 then
9

(
ct′0, . . . , ct′κ−1

)
← Add

((
ct′0, . . . , ct′κ−1

)
, (cj,0, . . . , cj,κ−j−1, 0, . . . , 0)

)
10 else
11

(
ct′0, . . . , ct′κ−1

)
← Sub

((
ct′0, . . . , ct′κ−1

)
, (cj,0, . . . , cj,κ−j−1, 0, . . . , 0)

)
12 return

(
ct′0, . . . , ct′κ−1

)

196

7.2. Big Integers

Proof (Correctness of Algorithm 34) Let us assume that the degree of fullness
(Definition 14) of the input (κ− 1)-th block is small enough. For this algorithm to work,
we need to be able to perform a constant multiplication between this ciphertext and the
largest of the constants ν0, . . . , νκ−2, followed by a homomorphic addition.

The algorithm consists in multiplying the non-zero constants νj times the block ctκ−1

and then to subtract the result to the input ctj block, for j ∈ J0, κ− 2K.
The result of this operation, by definition of the constants ν0, . . . , νκ−1, is a new radix-

based encryption of msg reduced modulo Ω.
We can only add ciphertexts with messages encoded using the same base, so in case

the bases in the blocks are not the same, a homomorphic decomposition step (as described
in Algorithm 33) needs to be performed beforehand.

As for Algorithm 32, this new ciphertext is not a fresh ciphertext, in the sense that the
carries in the blocks are not all empty (because of the previous homomorphic addition).
A carry propagation step can be applied if necessary and it can be used to continue the
computations.

□

7.2.2 Supporting Larger Integers using a Hybrid Representa-
tion

As we explained in Section 2.4, the CRT-only approach has some limitations. To overcome
them, we create a new homomorphic hybrid representation that mixes the CRT-based
approach with the radix-based approach, in order to take advantage of the best of both
worlds. The idea is to use the CRT approach as the top layer in the structure, and to
represent the CRT residues by using radix-based modular integers when needed, with this
approach we do not face restrictions on Ω any more.

Encode. Let (Ω0, · · · , Ωκ−1) be pairwise coprime integers i.e., (Ωi, Ωj) coprime for all
i ̸= j, and let Ω = ∏κ−1

i=0 Ωi. To encode a message msg ∈ ZΩ, as in the CRT-only approach,
the message is split into a list of {msgi}

κ−1
i=0 such that msgi = msg mod Ωi for all 0 ≤ i < κ.

At this point, for each message msgi for i ∈ J0, κ − 1K, the encoding used for radix-
based modular integers is used (Encode from Definition 13). Then, every CRT residues
Ωi has its own list of radix bases (βi,κi−1, · · · , βi,0) and more generally its parameters
{(βi,j, pi,j)}0≤j<κi ∈ N2κi . The formal encoding is described in the Figure 7.1.

197

Chapter 7 – Homomorphic Integers

msg mod Ω 7→

msg0 = msg mod Ω0 7→

{m0,j}κ0−1

j=0 s.t.
msg0 = m0,0 +

∑κ0−1
j=1 m0,j ·

(∏j−1
k=0 β0,k

)
and m̃0,j = Encode (m0,j , p0,j , q)
∀0 ≤ j < κ0

...

msgκ−1 = msg mod Ωκ−1 7→

{mκ−1,j}

κκ−1−1
j=0 s.t.

msgκ−1 = mκ−1,0 +
∑κκ−1−1

j=1 m0,j ·
(∏j−1

k=0 βκ−1,k
)

and m̃κ−1,j = Encode (mκ−1,j , pκ−1,j , q)
∀0 ≤ j < κκ−1

Figure 7.1: Hybrid approach visualisation combining CRT representation on the top level
and radix representation below.

Decode. The decoding is done in two steps: first, each independent radix-based modular
integer is decoded to obtain the independent residues modulo Ω0, . . . , Ωκ−1, and then the
CRT recombination to retrieve the message modulo Ω.

Arithmetic Operations. To perform a homomorphic operation, it is enough to per-
form the computation on each radix component independently, as shown for the CRT-only
approach. Then, depending on the Ωi values, the modular reduction can be performed
using Algorithm 32 or Algorithm 34.

The hybrid approach can be seen as a generalization of both the CRT-only approach
(if κi = 1 for all 0 ≤ i < κ) and the pure radix-based modular integer approach (if κ = 1).
It also covers the mixed cases where some of the κi are equal to 1 and the others are
greater.

For generic LUT evaluations, the only known solution in the literature is the Tree-
PBS [GBA21]. We explain how to use it in Section 7.2.3. We can also use the WoP-PBS
introduced in Algorithm 30 and we provide several benchmarks to support the interest of
this new algorithm in Section 7.2.4.

7.2.3 Tree PBS Approach on Radix-Based Modular Integers

In this section, we give more details on how to apply the TreePBS technique by [GBA21]
to our new radix-based modular integers.

In [GBA21] the plaintext integers are all decomposed under the same basis β: we offer
here the possibility to evaluate a large look-up table with integers set in different bases
(β0, . . . , βκ−1).

198

7.2. Big Integers

Let Ω = ∏κ−1
i=0 βi, and let L = [l0, l1, · · · , lΩ−1] be a LUT with Ω elements. We want

to evaluate this LUT on a radix-based modular integer encrypting a message msg =
m0 +∑κ−1

i=1 mi
∏i−1
j=0 βj.

The generalized multi-radix tree-PBS takes as input a radix-based modular integer
ciphertext, a large look-up table L and the public material required for the PBS and key
switching and returns a LWE ciphertext. The signature is:

ctout ← Tree-PBS((ct0, . . . , ctκ−1), PUB, L).

To evaluate the multi-radix tree-PBS, we perform the following steps:

1. We define β⃗ = {βi|i ∈ J0, κ− 1K} and ϑ(βi) the component mi of msg associated to
βi.

2. We define βmax = max(β ∈ β⃗).

3. We split the LUT L into ν =
∏
βi∈β⃗

βi

βmax
smaller LUTs (L0, . . . , Lν−1) that each contain

βmax different elements of L.

4. We compute a PBS on each of the ν LUTs using the ciphertext encrypting ϑ(βmax)
as a selector.

5. We build a new large look-up table L by packing, with a key switching, the results
of the ν iterations of the PBS in previous step.

6. We remove βmax from β⃗: β⃗ ← β⃗ \ {βmax}.

7. We repeat the steps from 2 to 6 until β⃗ is empty.

For the CRT-only and hybrid approaches, the multi-radix tree-PBS works in the same
way.

7.2.4 Benchmarks with the WoP-PBS

In this section, we provide a few practical benchmarks for integers of sizes 16 and 32
bits. All the cryptographic parameters are provided below. The specifications of the ma-
chine are: Intel(R) Xeon(R) Platinum 8375C@2.90GHz with 504GB of RAM. Note that
such an amount of RAM is not needed: all benchmarks can be run on a basic laptop.
All implementations are done using TFHE-rs [Zam22b] (the follow-up of the Concrete
library [Zam22a]).

199

Chapter 7 – Homomorphic Integers

Cryptographic Parameters

In Tables 7.2 and 7.3, we report the cryptographic parameters that we use to compute our
benchmarks. All of them have been obtained with the optimization framework described
in Chapter 4. In those tables, the notation B (resp. ℓ) refers to the basis (resp. the number
of levels) parameter used for a given FHE algorithm such as a key switch or a [Chi+20a]’s
PBS. By default, the cryptographic parameters ensure 128 bits of security, a failure prob-
ability pfail

(
A(CJP21)

)
, pfail

(
A(WoP-PBS)

)
≤ 2−13.9 i.e., a standard score (Definition 22) of

4.

Remark 41 (Largest 2-Norm) For a given message modulo β and carry-message mod-
ulo p one can find the worst 2-norm that they could encounter in the modular arithmetic
defined in Section 2.4.1. Indeed, a fresh encoding is at worst β−1, and the largest message
one can consider before needing to empty the carry buffer is p − 1, so the largest integer
one can multiply a ciphertext with is

⌊
p−1
β−1

⌋
which is the largest 2-norm.

AP parameters LWE GLWE LWE-to-LWE PBSparam key switch WoP-PBS
ID

p ν n log2(σ) k log2(N) log2(σ) log2(B) ℓ log2(B) ℓ
compatible

1 22 3 615 −13.38 4 9 −51.49 2 5 12 3 #8
2 24 5 702 −15.69 2 10 −51.49 2 7 9 4 #9
3 26 5 872 −20.21 1 12 −62.00 4 4 22 1 #10
4 22 3 667 −14.76 6 8 −37.88 4 3 18 1 ∅
5 24 5 784 −17.87 2 10 −51.49 4 3 23 1 ∅
6 28 17 983 −23.17 1 14 −62.00 4 5 15 2 ∅
7 26 9 838 −19.30 1 12 −62.00 3 5 15 2 ∅

Table 7.2: Optimized parameters for the AP of type A(CJP21).

In Table 7.2, we provide seven parameter sets for A(CJP21), each one with a bit of
padding, a specific message modulus p and a specific 2-norm ν (Theorem 5). In Table 7.3,
we provide five parameters sets for A(WoP-PBS), each one with a specific (carry-)message
modulo p, a specific number of bits to extract per LWE ciphertext during the WoP-PBS,
a specific number κ of input LWE ciphertexts to the WoP-PBS and a specific 2-norm ν.
They do not have a bit of padding. In parameter IDs #11 and #12, the message modulus
specifies the CRT base used and the corresponding number of bits to extract for each
base.

Compatibility Between A(WoP-PBS) and A(CJP21). We generated couples of parameter
sets that are compatible, one for A(CJP21) and the other for A(WoP-PBS). By compatible,

200

7.2. Big Integers

AP parameters LWE GLWE micro parametersparam
ID

p
bit(s) to

κ ν n log2(σ) k log2(N) log2(σ) operator log2(B) ℓextract

8 22 1 16 3 549 −11.62 2 10 −51.49

LWE-to-LWE 2 5key switch
PBS 12 3

packing 17 2key switch
compatible circuit 13 1with CJP#1 bootstrapping

9 24 2 8 5 534 −11.22 2 10 −51.49

LWE-to-LWE 2 5key switch
PBS 12 3

packing 17 2key switch
compatible circuit 9 2with CJP#2 bootstrapping

10 26 4 5 5 538 −11.33 4 10 −62.00

LWE-to-LWE 1 10key switch
PBS 4 11

packing 20 2key switch
compatible circuit 7 4with CJP#3 bootstrapping

11

 7
8
9

11
13

 3
3
4
4
4

 5 5 696 −15.53 2 10 −51.49

LWE-to-LWE 2 7key switch
PBS 9 4

packing 17 2key switch
circuit 7 3bootstrapping

12

3

11
13
19
23
29
31
32

2
4
4
5
5
5
5
5

 8 25 781 −17.79 1 11 −51.49

LWE-to-LWE 1 16key switch

PBS 5 8

packing 13 3key switch
circuit 6 4bootstrapping

Table 7.3: Optimized parameters for the AP of type A(WoP-PBS).

201

Chapter 7 – Homomorphic Integers

we mean that one can go from one to the other freely and smoothly. From A(CJP21) to
A(WoP-PBS), one needs to remove the bit of padding in the usual LUT of the PBS of
A(CJP21). From A(WoP-PBS) to A(CJP21), one needs to add a bit of padding in the LUT of
the usual WoP-PBS of A(WoP-PBS). But we also need other guarantees to be able to freely
compose atomic patterns A(CJP21) and A(WoP-PBS). In particular, we need to guarantee that
(i) each atomic pattern can absorb/deal with input noise either coming from A(CJP21) or
A(WoP-PBS) and (ii) the input LWE dimensions of each atomic pattern are compatible i.e.,
the product of the GLWE dimension k by the polynomial size N must be equal in both
APs. We could remove constraint (ii) by adding two key switching keys, one to go from
A(CJP21) to A(WoP-PBS) and one to go from A(WoP-PBS) to A(CJP21): we leave it to future
research.

To satisfy those two conditions, we decided to first solve the optimization problem on
A(WoP-PBS) and later on A(CJP21) with more constraints. The first optimization gives us
the product k ·N and the output variance of A(WoP-PBS). Then we solve the optimization
problem for A(CJP21) with an additional constraint for the polynomial size N and the
GLWE dimension k to satisfy (i) and using the maximum between the output noise of
A(CJP21) and A(WoP-PBS) as the input noise of A(CJP21) which satisfies (ii). This approach
works well for parameter couples (#1,#8) and (#2,#9). But for the last parameter set
couple (#3,#10), there is no solution forA(CJP21) with the aforementioned constraints. For
this special case, we reverse the order of the optimization and first solve the optimization
problem for A(CJP21) and then for A(WoP-PBS) with the additional constraints mentioned
above.

Experimental Results

The tables presented in this section contain timings related to 16 and 32-bit integer oper-
ations using the radix approach (Table 7.4), the CRT approach (Table 7.5) and the native
CRT approach (Table 7.6). The benchmarks measure timings to compute homomorphic
additions, multiplications, carry cleanings (apart from the native CRT approach) and
LUT evaluations (only for 16-bits integers). As explained in Remark 37, it is not doable
to evaluate LUTs on 32-bit integers.

Radix Approach. In Table 7.4, dedicated to the radix approach, we display two in-
stances of 16-bit integers and three instances of 32-bit integers. The number of additions
is bounded by the room available in the carry buffer, and once it is full, a carry cleaning

202

7.2. Big Integers

is needed.
For 16-bit integers, it is possible to use both the A(CJP21)-based and the A(WoP-PBS)-

based operators. This means that for 16-bits integer, classical arithmetic uses the usual
PBS (A(CJP21)), and LUT evaluation is done with the WoP-PBS (A(WoP-PBS)). We assume
that the WoP-PBS is done over integers with free carry buffers (i.e., after a carry cleaning).
The parameters have been generated as described in Paragraph 7.2.4. Note that the
addition does not require any PBS to be computed (this is denoted with a star +∗), but
is done accordingly to the parameters generated for the PBS.

For 32-bit integers, only arithmetic operations are possible. So, cryptographic param-
eters are optimized following A(CJP21) only. Hence, some operations are computed faster
for the 32-bit integers than for the 16-bit ones.

integer parameters PBS based operations WoP-PBS based operations

Ω p
carry

κ
param +∗ × carry param ID LUT evaluationmodulus ID cleaning

216 21 21 16 #1 12.8 µs 29.0 s 932 ms #8 823 ms
216 22 22 8 #2 6.67 µs 5.73 s 657 ms #9 1.80 s
232 21 21 32 #4 19.1 µs 43.8 s 685 ms

∅232 22 22 16 #5 12.3 µs 9.60 s 514 ms
232 24 24 8 #6 137 µs 25.0 s 6320 ms

Table 7.4: Benchmarks for 16-bit and 32-bit homomorphic integers based on the radix
approach. The star (∗) means that a PBS is not required to compute the operation.

Remark 42 (Multiplication Failure Probability) When 32-bit integers are repre-
sented with 32 blocks (i.e., κ = 32), the number of AP of type A(CJP21) required to compute
a multiplication is quadratic in the number of blocks. Because the error probability pfail of
this AP is bounded by 2−13.9 in our experiments, the error probability at the level of the
multiplication will be increased greatly. To balance this, one can use the technique de-
scribed in Section 4.2.5. Timings are clearly not in favor of this representation, and the
probability of having an error is small enough for the other representations (with a smaller
number of blocks). One solution is to keep the same value of pfail and consider a small
enough κ, resulting in a better trade-off between running time and failure probability at the
multiplication level (e.g., the one associated with the parameter ID#5). Another way of
solving this problem would be to have another parameter set dedicated to the multiplication
algorithm, with a smaller failure probability pfail but we leave that as an avenue for future
work.

203

Chapter 7 – Homomorphic Integers

CRT Approach. Table 7.5 is dedicated to the CRT approach. In this representation,
each block has a dedicated basis, and we can perform some operations independently
on each block. We display one instance for 16-bit integers and another one for 32-bit
integers. For both of them we show the total time needed to compute the operations, as
well as the amortized time when the implementation is multi-threaded. As for Table 7.4,
the number of additions is bounded by the room available in the carry buffer, and once
it is full, a carry cleaning in needed. Note that in the case of homomorphic evaluation
of polynomial functions, using the CRT representation offers better timings, since it is
sufficient to compute a PBS on each CRT residue. The timings are then the same as the
ones of the carry cleaning when there is one block per residue, otherwise it means that we
are considering the hybrid approach, and in that case, it is the cost of a LUT evaluation
separately on each block.

For the 16-bit integers, the basis is given by Ω = 23 · 32 · 7 · 11 · 13 ≈ 216. As for 16-bit
integers in radix representation, it is possible to use both the A(CJP21) and the A(WoP-PBS)

operators. However, the major difference here is about the parameter optimization: in this
case, the atomic patternA(CJP21) has been optimized first. Thus, the timings for evaluating
a LUT using a WoP-PBS are way slower. By removing the constraint of compatibility,
the performance should be closer to the one of Table 7.6. The WoP-PBS is parallelized
by extracting bits for each block independently. Then, each LUT evaluation outputting
one block (and taking all bits as input) is computed in parallel: note that this approach
could also be applied in the case of the radix decomposition.

We consider the basis defined by Ω = 25 · 35 · 54 · 74 ≈ 232 to represent 32-bit integers
using the hybrid representation. For instance, to represent integers modulo 74, we use
radix-based integers with 4 blocks and a message modulus equal to 7. Thanks to the
CRT representation, by using this base, multiplications can be computed with the fast
bi-variate PBS approach described in Section 2.4.1.

type of PBS based operations WoP-PBS based operations
Ω execution param +∗ × carry param ID LUT evaluationID cleaning

≈ 216 sequential #3 8.36 µs 401 ms 251 ms #10 23.1 s
5 threads 1.67 µs 80.3 ms 50.2 ms 4.61 s

≈ 232 sequential #7 27.6 µs 5.17 s 2400 ms ∅4 threads 8.78 µs 1.82 s 729 ms

Table 7.5: Benchmarks for 16-bit homomorphic integers based on the CRT approach and
32-bit integers are computed with a hybrid approach. We use the following CRT bases:
Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and Ω = 25 · 35 · 54 · 74 ≈ 232.

204

7.2. Big Integers

Native CRT Approach. Following up on what we present in Section 2.4.2, it is possible
to have a fast version of CRT-encoded integers spread out across several ciphertexts. For
example, to encode a residue m0 = 3 mod 7, its associated plaintext is

⌊
3 q7
⌉
. Additions

and scalar multiplications are extremely fast in this context: they do not require any PBS
and they can be computed independently and in parallel on each of the CRT residues
with fast FHE operators. Indeed, to compute additions we use the LWE addition on each
residue, and to compute a scalar multiplication by α, we decompose α with our CRT
bases into smaller integers, and compute scalar multiplications with them.

To the best of our knowledge, until we completed this work, there were no efficient
algorithm to compute a LUT in this context. However, one can use the new WoP-PBS
to do so. They simply need to extract the first ⌈log2 (βi)⌉ most significant bits for each
residue, thanks to negacyclic sign functions. A bit extraction on a non-power-of-two en-
coded ciphertext has to be computed in the exact same manner.

The sign evaluation for an integer message m encoded as m̃ = m · q
p

(where both q and
p are powers of two) is computed by adding to the input ciphertext q

2p , computing a PBS
on it with a trivial encryption of P (X) = ∑N−1

i=0 − q
2p′ X

i and finally adding to the output
q

2p′ . The output is the encoding b · q
p′ where b is the most significant bit of m. With p not

being a power of two, one needs to replace q
2p with

⌊
q
2p

⌋
.

In Table 7.6, dedicated to the native CRT approach, we display one instance of 16-
bit integers and another of 32-bit integers. We consider Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and
respectively Ω = 3 · 11 · 13 · 19 · 23 · 29 · 31 · 32 ≈ 232. Since there is no carry buffer
in this representation, there is no need for a carry cleaning. However, to avoid incorrect
computations, the number of additions is bounded for these parameter sets by the value
ν. Once this bound is reached, a WoP-PBS is required to reduce the noise.

We observe a slower timing for the multiplication with 32-bit integers, 36.8 seconds,
which leads us to think that for a precision close to 32 bits, a hybrid approach is more
efficient. Indeed, the native CRT approach requires to have in a single LWE ciphertext a
small enough noise (after the bootstrapping) to preserve the message (with a size equal to
the coprime modulus) and the room for the 2-norm ν needed to compute multiplications
with known integers or additions between ciphertexts. So when one tries to build a large
Ω, since small primes are very limited in number, they end up with large coprime residues
and as a consequence, implies a higher 2-norm which means very slow parameter sets.

205

Chapter 7 – Homomorphic Integers

Ω type of WoP-PBS based operations

execution param ID +∗ × LUT evaluation
ν time

≈ 216 sequential #11 5 4.32 µs 7.42 s 3.81 s
5 threads 0.862 µs 1.65 s 0.761 s

≈ 232 sequential #12 25 6.98 µs 36.8 s ∅8 threads 0.873 µs 5.31 s

Table 7.6: Benchmarks for 16-bit and 32-bit homomorphic integers based on the native
CRT approach. We use the CRT bases: Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and Ω = 3 · 11 · 13 · 19 ·
23 · 29 · 31 · 32 ≈ 232.

Conclusion In this chapter, we explained how to build two arithmetics. The first one is
particularly efficient with small integers and leverage the LWE multiplication introduced
in Chapter 5 and one of the WoP-PBS algorithms introduced in Chapter 6. The second
one is dedicated to large integers and uses an encoding that generalizes both the CRT
and radix approaches. The WoP-PBS introduced in Algorithm 30 and Theorem 30 is the
core enabler of this arithmetic. We presented several benchmarks comparing the different
encoding approaches for 16-bits and 32-bits integers.

206

Chapter 8

TFHE ON NEW PROBLEMS

From Chapter 3 to Chapter 7, we improved TFHE by either finding optimal parameters
or by introducing new and more efficient algorithms. Here, we adopt a different approach:
we modify the security hypothesis on which TFHE relies to improve the efficiency of the
state-of-the-art algorithms as well as the new algorithms introduced in this thesis. We
now introduce two new kinds of secret keys in this chapter, alongside new algorithms
especially efficient with the new hypothesis.

In Section 2.3, we introduced Limitation 9 which states that there is no fine-
grained control over the size of a GLWE secret key. We also introduced Limitation 10
which states that there is a noise plateau for LWE dimensions greater than nplateau.
The partial secret keys introduced in this chapter are meant to overcome these limitations.

In the previous chapters, we saw that the key switch is important to reduce the LWE
dimension before performing a PBS. This chapter introduces another, new type of secret
key which is particularly efficient during key switches.

Remark 43 (Concurrent Work) Lee et al. [Lee+23] introduced a new type of secret
keys called block binary keys. Those are different from our contribution but concurrently
exploit the advantage of having nested secret keys as introduced in this chapter under the
name of shared randomness secret keys.

In [LY23], Lee and Yoon describe a way to publicly transform a bootstrapping key
encrypted under a traditional secret key to an extended version encrypted under a secret
key containing zeros between secret coefficients. This extended bootstrapping key allows
the authors to bootstrap messages with higher precisions, but it does not improve the noise
growth. This contribution only involves traditional GLWE secret keys for encryption.

207

Chapter 8 – TFHE on New Problems

8.1 Partial GLWE Secret Keys

We introduced in Section 3.1 the concept of noise oracles (Definition 17) and we gave their
formula in Equation (3.3) and Table 3.1. The formula shows that most of the time, when
increasing the LWE dimension, we can decrease the encryption variance while keeping
the same security. But, we cannot decrease the encryption variance at will. We need
to enforce a minimal variance to be sure that ciphertexts contain non-zero noises as
explained in Limitation 10. In Remark 16, we found that for LWE dimensions greater
than nplateau = 2443, the noise standard deviation is constant and equal to 22.

Let us now focus on the choice of GLWE macro-parameters i.e., the polynomial size
N and the GLWE dimension k. As long as the product k ·N remains smaller that nplateau,
increasing N will increase the cost but at the same time, as we select a smaller encryption
noise, we can potentially choose smaller values for other parameters (for instance the
maximum level of the decomposition in a PBS). Unfortunately, when the product k · N
is greater than nplateau, we cannot decrease the encryption variance. Therefore, we will
have a greater cost but without any benefit with respect to the noise. Interestingly, the
new type of secret keys introduced in this section are beneficial to the noise even when
the product k ·N is greater than nplateau.

A GLWE secret key usually contains kN random elements. Our first observation is
that we can allow this secret key to contain only a number ϕ of random elements and
allow the rest of them to be set to zero. We first formally define this notion of partial
secret keys and list the different advantages and improvements that they offer.

A partial GLWE secret key is composed of two parts, the first one contains secret
random elements (sampled from a distribution D) and the second part is filled with zeros
at known positions. As a simple example, we could define the following partial GLWE
secret key:

S⃗ = (S0, S1) ∈ R2
q,N with S0 = ∑N−1

j=0 s0,jX
j and S1 = ∑N/2−1

j=0 s1,jX
j ,

where s0,0, · · · , s0,N−1 and s1,0, · · · , s1,N2 −1 are sampled from D, and the other coefficients
are publicly known to be set to zero.

Definition 35 (GLWE Partial Secret Key) A Partial GLWE secret key is a vector
S⃗[ϕ] ∈ Rk

q,N associated to a filling parameter ϕ such that 0 ≤ ϕ ≤ kN . This key will
have ϕ random coefficients sampled from a distribution D and kN − ϕ known zeros. Both

208

8.1. Partial GLWE Secret Keys

the locations of the random elements and the zeros are public. By convention, we fill the
coefficients starting at coefficient s0,0, then s0,1 and so on, and when the first polynomial is
entirely filled, we fill the second polynomial starting at s1,0 and so on, until ϕ coefficients
are determined, up to sk−1,N−1.

When we write Var
(
S⃗[ϕ]

)
(resp. E

(
S⃗[ϕ]

)
), we refer to the variance (resp. the expecta-

tion) of D (either a uniform binary distribution, uniform ternary distribution, Gaussian
distribution or small uniform distribution). When D is a uniform binary distribution,
Var

(
S⃗[ϕ]

)
= 1/4 and E

(
S⃗[ϕ]

)
= 1/2.

In Definition 11, we introduced the flattened representation of a GLWE secret key.
Now, we define the flattened representation of a partial GLWE secret key.

Definition 36 (Flattened Representation of a Partial GLWE Secret Key) A
partial GLWE secret key S⃗[ϕ] =

(
S0 = ∑N−1

j=0 s0,jX
j, · · · , Sk−1 = ∑N−1

j=0 sk−1,jX
j
)
∈ Rk

q,N

(Definition 35) can be viewed as a flattened LWE secret key ⃗̄s = (s̄0, · · · , s̄ϕ−1) ∈ Zϕ in
the following manner: s̄iN+j := si,j, for 0 ≤ j < N and 0 ≤ i < k with iN + j < ϕ. This
flattened representation contains only ϕ unknown coefficients.

This type of keys seems to be a secure solution, taking into account the plateau
limitation (Limitation 10). The hardness of partial keys is studied in [Ber+23b].

Impact of Partial Keys on the Noise Distribution. Regarding the security of the
partial secret key and the different attacks presented in Section 2.1.2, we can use the
security oracle (Definition 17 in Section 3.1) to find out the smallest noise variance σ2

for an LWE ∈ Zϕ+1
q guarantying the desired level of security λ. By using this same σ2 for

GLWE ∈ Rk+1
q,N with partial secret key S[ϕ] we obtain the same level of security λ.

8.1.1 Advantages of Partial GLWE Secret Keys

Partial GLWE secret keys enable, in many contexts, to have a smaller computational
cost for certain algorithms and/or to have a smaller noise growth. This will lead to faster
parameter sets (for a given failure probability and security level) after optimization. More
details are provided in Section 8.3.

209

Chapter 8 – TFHE on New Problems

Advantages for Sample Extraction

In Section 2.3, we introduced the sample extract (Algorithm 5 and Theorem 9). In Al-
gorithms 35 and 36, we explain how to compute a sample extract (i.e., transforming a
GLWE ciphertext into an LWE ciphertext) in the context of a partial GLWE secret key.
They are generalizations of the same algorithm used for traditional secret keys. Indeed,
a traditional secret key is captured when ϕ = k · N . We prove the correctness of those
algorithms in Appendix A.4.

Algorithm 35: ctout ← ConstantSampleExtract(CTin)

Context:

S⃗[ϕ] ∈ Rk
q,N : a partial secret key (Definition 35)

(k − 1)N + 1 ≤ ϕ ≤ kN : filling parameter for the partial secret key
¯⃗s ∈ Zϕ : the flattened version of S⃗[ϕ] (Definition 36)
P :=

∑N−1
i=0 piX

i ∈ Rq,N

CTin =
(∑N−1

i=0 a0,iX
i, · · · ,

∑N−1
i=0 ak−1,iX

i,
∑N−1

i=0 biX
i
)
∈ Rk+1

q,N

Input: CTin ∈ GLWES⃗[ϕ] (P) : a GLWE encryption of the plaintext P

Output: ctout ∈ LWE¯⃗s (p0) : an LWE encryption of the plaintext p0

1 for i ∈ J0; ϕ− 1K do
2 set α :=

⌊
i

N

⌋
, β := (N − i) mod N and γ := 1− (β == 0)

3 set aout,i := (−1)γ · aα,β

4 return ctout := (aout,0, · · · , aout,ϕ−1, b0) ∈ Zϕ+1
q

Algorithm 36: ctout ← SampleExtract (CTin, α)

Context:

S⃗[ϕ] ∈ Rk

q,N : a partial secret key (Definition 35)
(k − 1)N + 1 ≤ ϕ ≤ kN : filling parameter for the partial secret key
¯⃗s ∈ Zϕ : the flattened version of S⃗[ϕ] (Definition 36)
P :=

∑N−1
i=0 piX

i ∈ Rq,N

Input:
{

CTin ∈ GLWES⃗[ϕ] (P) : a GLWE encryption of the plaintext P

0 ≤ α ≤ N − 1 : the coefficient to extract

Output: ctout ∈ LWE¯⃗s (pα) : an LWE encryption of the plaintext pα

/* Rotation of the GLWE ciphertext */

1 set CT := X−α · CTin

/* Call to Algorithm 35 */

2 return ctout := ConstantSampleExtract (CT)

210

8.1. Partial GLWE Secret Keys

Remark 44 (Noise and Cost of Sample Extract) A sample extract, whether it in-
cludes a partial secret key or not, does not add any noise to the plaintext as explained in
Theorem 9. With partial keys, the cost of the sample extraction stays roughly the same
and it is negligible.

Advantages for the GLWE Key Switch

Algorithm 37: CTout ← GlweKeySwitch(CTin, KSK)

Context:

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

S⃗
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 35)
S⃗

[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S⃗
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 35)
ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition

Input:

CTin = (A0, · · · , Akin−1, B) ∈ GLWE

S⃗
[ϕin]
in

(P) ⊆ Rkin+1
q,N , with P ∈ Rq,N

KSK = {KSKi = {KSKi,j}0≤j≤ℓ−1}0≤i≤kin−1 , with
KSKi,j ∈ GLWE

S⃗
[ϕout]
out

(
q
Bj · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

Output: CTout ∈ GLWE
S⃗

[ϕout]
out

(P)

/* Keep the B part */
1 Set CTout := (0, · · · , 0, B) ∈ Rkout+1

q,N

2 for i ∈ J0; kin − 1K do
/* Decompose the mask */

3 Update CTout = CTout −
〈

K⃗i, dec(B,ℓ) (Ai)
〉

4 return CTout

A GLWE-to-GLWE key switching with N ̸= 1, as described in Algorithm 37, takes as
input a GLWE ciphertext CTin ∈ Rkin+1

q,N encrypting the plaintext P ∈ Rq,N under the
secret key S⃗[ϕin] ∈ Rkin

q,N , and outputs CTout ∈ Rkout+1
q,N encrypting the plaintext P + EKS ∈

Rq,N under the secret key S⃗[ϕout] ∈ Rkout
q,N . The noise EKS added during this procedure, is

composed of a rounding error plus a linear combination of the noise from the key switching
key ciphertexts. The larger ϕin, the more significant the rounding error.

Theorem 31 (Noise of GLWE Key Switch) After performing a key switching (Al-
gorithm 37) taking as input a GLWE ciphertext CTin ∈ Rkin+1

q,N under the secret key
S⃗

[ϕin]
in ∈ Rkin

q,N and a key switching key with noise variance σ2
KSK, and outputting a GLWE

211

Chapter 8 – TFHE on New Problems

ciphertext CTout ∈ Rkout+1
q,N under the secret key S⃗

[ϕout]
out ∈ Rkout

q,N , the variance of the noise of
each coefficient of the output can be estimated by

Var (CTout) = σ2
in + ϕin

(
q2 −B2ℓ

12B2ℓ

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ ϕin

4 Var
(
S⃗

[ϕin]
in

)
+ ℓkinNσ2

ksk
B2 + 2

12

(8.1)

where B and ℓ are the decomposition base and level respectively.

Proof 31 (Theorem 31) The proof of Theorem 31 is provided in Appendix A.5.
Note that when ϕin = kin · N we end up with the same formula than the one for the

classical GLWE to GLWE keyswitch (Algorithm 2). In the proof, we decrypt the output
ciphertext, extract the error and analyze its variance.

□

Remark 45 (Cost of a GLWE Key Switch) We recall that the cost of a GLWE-to-
GLWE key switch, which remains the same whether it involves partial secret keys or not
is

Cost (FftLweKeySwitch) = kinℓ · Cost (FFTN) + (kout + 1) · Cost (iFFTN)
+ Nkinℓ · (kout + 1) · Cost (×C)
+ N · (kinℓ− 1) · (kout + 1) · Cost (+C)

(8.2)

where +C and ×C represent a double-complex addition and multiplication (in the FFT
domain) respectively, and FFTN (resp. iFFTN) the Fast Fourier Transform (resp. inverse
FFT).

Advantages for the Secret Product GLWE Key Switch

A GLWE-to-GLWE key switch computing a product with a secret polynomial, as de-
scribed in Algorithm 38, follows the exact same definition as above, except that the
output ciphertext encrypts Q · P + EKS where Q ∈ Rq,N is the secret polynomial hidden
in the keyswitching key. The added noise EKS also depends on the input secret key S⃗[ϕin]

and its filling parameter ϕin. Indeed, this term is the product between the rounding term
(dependent on ϕin) and the polynomial Q.

212

8.1. Partial GLWE Secret Keys

Algorithm 38: CTout ← SecretProductGlweKeySwitch(CTin, KSK)
Context:

S⃗
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 35)
S⃗

[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S⃗
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 35)
(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

Q ∈ Rq,N

CTin = (A0, · · · , Akin−1, B) ∈ Rkin+1
q,N

CTi,j ∈ GLWE
S⃗

[ϕout]
out

(
q
Bj
·Q · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

CTkin,j ∈ GLWE
S⃗

[ϕout]
out

(
q
Bj
·Q
)

, for 0 ≤ j ≤ ℓ− 1
ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition

Input:

CTin ∈ GLWE

S⃗
[ϕin]
in

(P) , with P ∈ Rq,N

KSK =
{
K⃗i = (CTi,0, · · · , CTi,ℓ−1)

}
0≤i≤kin

Output: CTout ∈ GLWE
S⃗

[ϕout]
out

(Q · P)

/* Decompose the B part */
1 Set CTout =

〈
K⃗kin , Decomp(B,ℓ) (B)

〉
2 for i ∈ J0; k − 1K do

/* Decompose the mask */
3 Update CTout = CTout −

〈
K⃗i, Decomp(B,ℓ) (Ai)

〉
4 return CTout

213

Chapter 8 – TFHE on New Problems

Theorem 32 (Noise of Secret-Product GLWE Key Switch) After performing a
Secret-Product key switching (Algorithm 38) taking as input a GLWE ciphertext CTin ∈
Rkin+1
q,N under the secret key S⃗

[ϕin]
in ∈ Rkin

q,N and a key switching key with noise variance σ2
KSK

encrypting a secret message Q, and outputting a GLWE ciphertext CTout ∈ Rkout+1
q,N under

the secret key S⃗
[ϕout]
out ∈ Rkout

q,N , the noise variance of each coefficient of the output can be
estimated by

Var (CTout) = ℓ(kin + 1)Nσ2
KSK

B2 + 2
12

+ ||Q||22 ·
(

σ2
in +

(
q2 −B2ℓ

12B2ℓ

)(
1 + ϕin

(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

)))
+ ϕin

4 Var
(

S⃗
[ϕin]
in

))
.

Proof 32 (Theorem 32) The proof of this theorem is very similar to the proof of The-
orem 31, it is given in Appendix A.6.

□

Advantages for an External Product

A GLWE external product is a special case of a secret-product GLWE-to-GLWE key
switch, where the input secret key and the output secret key are the same. The external
product was reminded in Section 2.3 (Algorithm 7 and Theorem 11). It is pretty easy to
establish what noise this procedure will add. The cost of computing a GLWE external
product whether it includes a partial secret key or not, is the same.

Theorem 33 (Noise of GLWE External Product) The external product algorithm
is the same as the algorithm of a secret-product GLWE key switch (Algorithm 38). The only
difference is that the external product uses the same key S⃗[ϕ] ∈ Rk

q,N as input and as output,
and the key switching key is now seen as a GGSW ciphertext of message M2 encrypted
with noise variance σ2

2. For each coefficient of the output CTout, the noise variance can be
estimated by

Var (CTout) = ℓ(k + 1)Nσ2
2
B2 + 2

12

+ ||M2||22 ·
(

σ2
in +

(
q2 −B2ℓ

12B2ℓ

)(
1 + ϕ

(
Var

(
S⃗[ϕ]

)
+ E2

(
S⃗[ϕ]

)))
+ ϕ

4 Var
(

S⃗[ϕ]
))

.

Proof 33 (Theorem 33) This proof is the same as the proof of Theorem 32, noting that
in this case, we have k = kin = kout and S⃗[ϕ] = S⃗

[ϕin]
in = S⃗

[ϕout]
out .

□

214

8.1. Partial GLWE Secret Keys

Advantages for TFHE’s PBS. Using a partial GLWE secret key to encrypt a boot-
strapping key for TFHE’s programmable bootstrapping enables two convenient features.
On the one hand, the output LWE ciphertext is smaller, with less than k · N + 1 coeffi-
cients, and on the other hand it offers a smaller noise growth in each external product (see
Appendix A.7). As explained in Section 2.3, the external product is the main operation
used in the cmuxes (Theorem 12 and Algorithm 8) of the blind rotation (Theorem 13
and Algorithm 9). The direct consequence of having smaller output ciphertexts is the fact
that we can perform smaller LWE-to-LWE key switches before the next PBS. Further-
more, when k ·N is large enough to reach the noise plateau (as explained in Limitation 10),
partial secret keys enable to avoid adding unnecessary noise to the bootstrapping.

8.1.2 LWE-to-LWE Key Switch

Partial GLWE secret keys can be used to design a new LWE-to-LWE key switching that
is FFT-based. The idea is an adaptation of the work done by Chen et al. [Che+20] that
was recall in Algorithm 4, but now exploits the use of partial GLWE secret keys. First,
one casts the input LWE ciphertext into a GLWE ciphertext using Algorithm 40 so we
can apply to it a GLWE-to-GLWE key switching with Algorithm 37 to go to a partial
GLWE secret key, and finally compute a sample extract (Algorithm 35). Indeed, the
GLWE-to-GLWE key switch can exploit the speed-up coming from the FFT to compute
polynomial multiplications. Details about this new LWE-to-LWE key switch are provided
in Algorithm 39.

Remark 46 (Inverse Constant Sample Extraction) Algorithm 40 trivially casts an
LWE ciphertext of size n+1 into a GLWE ciphertext of size k +1 and with polynomials of
size N . We obviously need n ≤ kN . If n = kN , the output is a GLWE ciphertext under a
traditional secret key, otherwise it is a GLWE ciphertext under a partial GLWE secret key.
Note that the constant term of the output GLWE plaintext is exactly the plaintext of the
input LWE ciphertext, however the rest of the coefficients of the output GLWE ciphertext
are filled with uniformly random values.

We have the property that for all p ∈ Zq, for all s⃗ ∈ Znq , for all ct ∈ LWEs⃗ (p) ⊆ Zn+1
q

and for all (k, N) ∈ N2 such that n ≤ kN :

ct = ConstantSampleExtract
(
ConstantSampleExtract−1 (ct, k, N)

)
.

215

Chapter 8 – TFHE on New Problems

Algorithm 39: ctout ← FftLweKeySwitch(ctin, KSK)

Context:

nin ≤ kin ·N, nout ≤ kout ·N
s⃗in = (s0, · · · , snin−1) ∈ Znin

q : the input LWE secret key
s⃗out =

(
s′

0, · · · , s
′
nout−1

)
∈ Znout

q : the output LWE secret key
ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition
S⃗

[nin]
in =

(
Sin,0, · · · , Sin,kin−1

)
∈ Rkin

q,N : a partial secret
key (Definition 35) such that its flattened version is s⃗in

S⃗
[nout]
out =

(
Sout,0, · · · , Sout,kout−1

)
∈ Rkout

q,N : a partial secret
key (Definition 35) such that its flattened version is s⃗out

Input:
{

ctin ∈ LWEs⃗in (p) ⊆ Znin+1
q , with p ∈ Zq

KSK = {KSKi}0≤i<kin
, with KSKi ∈ GLev

S⃗
[ϕout]
out

(Sin,i) : a key switching key

Output: ctout ∈ LWEs⃗out (p) ⊆ Znout+1
q

/* Inverse of a constant sample extraction (Algorithm 40) */
1 Set CT← ConstantSampleExtraction−1 (ctin, kin, N) ∈ Rkin+1

q,N

/* GLWE-to-GLWE key switch based on the FFT (Algorithm 37) */
2 Set CT′ ← GlweKeySwitch (CT,KSK) ∈ Rkout+1

q,N

/* Constant sample extraction (Algorithm 35) */
3 Set ctout ← ConstantSampleExtract (CT′) ∈ Znout+1

q

4 return ctout

Algorithm 40: CTout ← ConstantSampleExtract−1(ctin, k, N)

Context:

s⃗ ∈ Znq : the input LWE secret key
S⃗[n] ∈ Rkq,N : a partial secret key (Definition 35)

such that its flattened version is s⃗ (Definition 36)
R :=

∑N−1
i=1 ri ·Xi ∈ Rq,N , where ri are uniformly random

ctin = (a0, · · · , an−1, b) ∈ Zn+1
q

p ∈ Zq

Input:

ctin ∈ LWEs⃗ (p) : an LWE encryption of the plaintext p
k ∈ N : the output GLWE dimension
N ∈ N : the output polynomial size

Output: CTout ∈ GLWE
S⃗[n] (p0 +R) : a GLWE encryption

/* put the b part in a polynomial */
1 set B′ := b ∈ Rq,N

/* put the rest in polynomials */
2 for i ∈ J0; k ·NK do

3 set α :=
⌊
i
N

⌋
, β := (N − i) mod N and γ := 1− (β == 0)

4 if i ≤ ϕ− 1 then
5 set a′

α,β := (−1)γ · ai
6 else
7 set a′

α,β := 0

8 return CTout :=
(
A′

0 :=
∑N−1

j=0 a′
0,jX

j , · · · , A′
k−1 :=

∑N−1
j=0 a′

k−1,jX
j , B′

)
∈ Rk+1

q,N

216

8.2. Shared Randomness

Theorem 34 (Noise & Cost of FFT-Based LWE Key Switch) We consider the
new LWE-to-LWE key switch as described in Algorithm 39. Its cost is the same
as the cost of a GLWE-to-GLWE key switch as introduced in Remark 45 i.e,
Cost (FftLweKeySwitch) = Cost (GlweKeySwitch).

The output noise can be expressed from the noise formula of the GLWE-to-GLWE key
switch (Theorem 31). To sum up, the output noise is:

Var (FftLweKeySwitch) = FftError (kmax, N, β, ℓ) + Var (GlweKeySwitch)

with ϕin = nin, ϕout = nout, kmax = max (kin, kout) and FftErrorkmax,N,β,ℓ being the error
added by the FFT conversions (see Section 3.3).

Proof 34 (Theorem 34) Expressing the cost is quite straightforward, since we can ne-
glect the complexity of the sample extraction and its inverse. The estimation of the variance
of the error is immediate as well. We use the corrective formula introduced in Section 3.3
to estimate an upper bound on the FFT error. Indeed, it is easy to see that the FFT-
based LWE key switch with kin and kout is a special case of an external product with
k = max (kin, kout) where some of the ciphertexts composing the GGSW are trivial encryp-
tions of 0 or 1 (no noise, all mask elements set to zero and the plaintext put in the b/B

part).
□

Practical Improvement. The use of partial secret keys brings a significant improve-
ment to homomorphic computations. Figure 8.2 presents a comparison of our techniques
and the state of the art [CJP21]. More details on the experiments are reported in Sec-
tion 8.3.

8.2 Shared Randomness

In the previous chapters, we introduced several types of atomic patterns (Definition 28)
and we showed in Section 4.3 by comparing an atomic pattern of type A(CJP21) (Defini-
tion 30) to an atomic pattern of type A(KS-free) that the key switch was very important
to obtain an efficient bootstrap. In this context, a key switch changes the secret key of
a ciphertext to a smaller secret key. Intuitively, a key switch performs an homomorphic

217

Chapter 8 – TFHE on New Problems

decryption of the ciphertext by removing the dot product between the mask and the se-
cret key. In practice, it means that the cost and the noise of a key switch (Theorem 6)
depends on the input LWE dimension and the output LWE dimension (or polynomial size
and GLWE dimension).

With the new keys introduced in this section, the cost and the noise of a key switch
will no longer be dependent on the input LWE dimension and the output LWE dimension
but on the output LWE dimension and the difference between the input LWE dimension
and the output LWE dimension. In the special case where the output LWE dimension is
larger than the input LWE dimension, the key switch will come for free: it will add no
noise and will have no cost.

Instead of sampling every secret key independently, we may also consider generating a
list of α nested GLWE keys with the same level of security λ. It is then public knowledge
that all the secret coefficients of a smaller key will be included into a larger secret key.

To give a simple example, consider three integers 1 < n0 < n1 < n2 and a secret
key s⃗(2) ∈ Zn2

q generated in the traditional manner (either sampled from an uniform
binary/ternary, or a small Gaussian). Let us write it as a concatenation of 3 vectors:
s⃗(2) = r⃗(0)||r⃗(1)||r⃗(2). We can now build two smaller secret keys out of s⃗(2) such that for all
pairs of nested keys, the small one is included in the large one, as its first coefficients:

s⃗(0) = r⃗(0) ∈ Zn0
q and s⃗(1) = r⃗(0)||r⃗(1) ∈ Zn1

q .

This form of secret keys is extremely useful for the key switching and bootstrapping
procedures. Note that each of those secret keys uses a different variance for the noise
added during encryption; the smaller the secret key, the bigger the variance, so they can
all guarantee the same level of security λ.

Definition 37 (GLWE Secret Keys with Shared Randomness) Two GLWE se-
cret keys S⃗ ∈ Rk

q,N and S⃗ ′ ∈ Rk′
q,N ′, with kN ≤ k′N ′, are said to be with shared randomness

if we have that for all 0 ≤ i < kN, s̄i = s̄′i, where s̄i and s̄′i respectively come from the
flattened view (Definition 11) of S⃗ and S⃗ ′. We note by S⃗ ≺ S⃗ ′ this relationship between
secret keys.

The security of the shared randomness secret keys is detailed in [Ber+23b] and fells
outside of the scope of this thesis.

218

8.2. Shared Randomness

s⃗(0) : r0 · · · rn0−1

s⃗(1) : r0 · · · rn0−1 rn0 · · · rn1−1

s⃗(2) : r0 · · · rn0−1 rn0 · · · rn1−1 rn1 · · · rn2−1

free

free

n1 − n0 elements

n2 − n1 elements

shrinking key switch
enlarging key switch

Figure 8.1: Illustration of simplified key switch procedures between three LWE secret keys
with shared randomness.

Using shared randomness secret keys enables to speed up homomorphic computations
and reduce the amount of noise added by these operations. This is particularly useful for
LWE-to-LWE key switch procedures.

8.2.1 Advantages for LWE-to-LWE Key Switch

Secret keys with shared randomness enable to key switch more efficiently and add less
noise during the procedure. Figure 8.1 illustrates key switching processes between three
LWE secret keys with shared randomness. A key switch from a key to a bigger key is
represented with dotted arrows and is called enlarging key switch. A key switch from a
key to a smaller key is represented with solid arrows and is called shrinking key switch.

Enlarging Key Switch. When we consider a ciphertext ctin = (a0, · · · , an1−1, b) ∈
LWEs⃗(1) (m) ⊆ Zn1+1

q under the secret key s⃗(1) ∈ Zn1
q and want to key switch it to the

secret key s⃗(2) ∈ Zn2
q , where s⃗(1) ≺ s⃗(2), the algorithm translates into simply adding zeros

at the end of the ciphertext:

ctout := (a0, · · · , an1−1, 0, · · · , 0, b) ∈ LWEs⃗(2) (m) ⊆ Zn2+1
q

Algorithm 41 describes this procedure in detail. In this thesis, we only use this algo-
rithm with LWE ciphertexts, but it can trivially be extended to GLWE ciphertexts as
well.

To sum up, with secret keys with shared randomness, the enlarging key switchess
are basically zero-cost operations and they do not require the use of a public key. They
also add no noise, instead of adding a linear combination of freshly encrypted ciphertexts

219

Chapter 8 – TFHE on New Problems

Algorithm 41: ctout ← EnlargingKeySwitch(ctin)

Context:

s⃗in ∈ Znin
q : the input secret key

s⃗out ∈ Znout
q : the output secret key

s⃗in ≺ s⃗out : secret keys with shared randomness (Definition 37)
p ∈ Zq

ctin = (a0, · · · , anin−1, b) ∈ Znin+1
q

Input: ctin ∈ LWEs⃗in (p)
Output: ctout ∈ LWEs⃗out (p)
/* Pad with zeros between the mask and the b part */

1 Set ctout := (a0, · · · , an−1, 0, · · · , 0, b) ∈ Znout+1
q

2 return ctout

under s⃗(2).

Theorem 35 (Cost & Noise of Enlarging Key Switching) When working with se-
cret keys with shared randomness, the cost of an enlarging key switching (Algorithm 41)
is reduced to zero, and the noise in the output is the same as the one in the input.

Proof 35 (Theorem 35) The proof of this theorem is trivial.
□

Shrinking Key Switch. When we consider a ciphertext ctin = (a0, · · · , an1−1, b) ∈
Zn1+1
q under the secret key s⃗(1) ∈ Zn1

q and we want to key switch it to the secret key
s⃗(0) ∈ Zn0

q , where s⃗(0) ≺ s⃗(1) and s⃗(1) = s⃗(0)||r⃗(1), the algorithm is simplified precisely
because of the shared randomness property:

1. the parts (a0, · · · , an0−1) and b do not need to be processed but simply reorganized
into a temporary ciphertext: ct = (a0, · · · , an0−1, b) ∈ Zn0+1

q ,

2. the part (an0 , · · · , an1−1) has to be key switched, which can be somehow viewed
as a traditional key switching algorithm: i.e., key switching the ciphertext
(an0 , · · · , an1−1, 0) ∈ Zn1−n0+1

q with a key switching key going from the secret key
r⃗(1) to s⃗(0), and at the end, adding it to ct and returning the result.

Algorithm 42 describes this procedure in detail. In this thesis, we only use this algo-
rithm with LWE ciphertexts, but it can also be trivially extended to GLWE ciphertexts.

To sum up, with secret keys with shared randomness, the shrinking key switch requires
smaller key switching keys: their size becomes proportional to n2 − n1 instead of n2. As

220

8.2. Shared Randomness

Algorithm 42: ctout ← ShrinkingKeySwitch(ctin, KSK)

Context:

s⃗in = (s0, · · · , snin−1) ∈ Znin
q : the input secret key

s⃗out ∈ Znout
q : the output secret key

nout < nin

s⃗out ≺ s⃗in : secret keys with shared randomness (Definition 37)
p ∈ Zq

ctin = (a0, · · · , anin−1, b) ∈ Znin+1
q

CTi ∈ GLevB,ℓ
s⃗ (si) , for nout ≤ i ≤ nin − 1

ℓ ∈ N : the number of levels of the decomposition
B ∈ N : the base of the decomposition

Input:
{

ctin ∈ LWEs⃗in (p)
KSK =

{
CTi

}
nout≤i≤nin−1

Output: ctout ∈ LWEs⃗out (p)
/* Keep the beginning of the mask and the b part */

1 Set ctout := (a0, · · · , anout−1, b) ∈ Znout+1
q

2 for i ∈ Jnout; nin − 1K do
/* Decompose the rest of the mask */

3 Update ctout = ctout −
〈

CTi, dec(B,ℓ) (ai)
〉

4 return ctout

a consequence, the computation is faster, equivalent to key switch a ciphertext of size
n2 − n1 + 1 instead of n2 + 1. Finally, the noise in the output is also smaller because the
algorithm involves a smaller linear combination of freshly encrypted ciphertexts under
s⃗(1).

Theorem 36 (Cost & Noise of Shrinking Key Switching) Consider two secret
keys with shared randomness s⃗(0) ≺ s⃗(1) with s⃗(0) ∈ Zn0

q , s⃗(1) ∈ Zn1
q and 1 < n0 < n1. Let

B ∈ N∗ and ℓ ∈ N∗ be the decomposition base and level used in key switching. The cost of
our shrinking key switching (Algorithm 42) is ℓ (n1 − n0) (n0 + 1) integer multiplications
and (ℓ (n1 − n0)− 1) (n0 + 1) integer additions.

The noise added by the procedure satisfies

Var(ShrinkingKeySwitch) = (n1 − n0)
(

q2 −B2ℓ

12B2ℓ

)(
Var (s⃗in) + E2 (s⃗in)

)
+ (n1 − n0)

4 Var (s⃗in) + ℓ · (n1 − n0) ·
B2 + 2

12 σ2
KSK .

The size of the shrinking key switching key can be obtained using the formula for the

221

Chapter 8 – TFHE on New Problems

size of the classical keyswitching key with n = nin − nout.

Proof 36 (Theorem 36) The details of this proof can be found in Appendix A.8.
□

8.2.2 Stair Key Switch

In Section 8.2.1, we saw that when one uses different secret keys within an FHE circuit,
it is convenient to make use of the secret keys with shared randomness. However, this
concept can also be used locally inside a key switch procedure to explore a cost/noise
trade-off.

For simplicity, let us consider an FHE use case where there are only two LWE secret
keys, and only a key switch from the big one to the small one. We start by setting the
two secret keys as ones with shared randomness. The idea here is to add one or several
secret keys with shared randomness, only during the key switch procedure.

For example, let us assume a fixed decomposition base B, a fixed number of levels
ℓ and let s⃗(2) be our big secret key and s⃗(0) be our small (as defined in Section 8.2.1).
To key switch from s⃗(2) to s⃗(0), this time we will add one intermediate secret key with
shared randomness s⃗(1) and compute first a key switch from s⃗(2) to s⃗(1) and then a key
switch from s⃗(1) to s⃗(0). This algorithm will be more costly than a key switch with secret
key with shared randomness as presented in Algorithm 42 because its first part will be
a linear combination of (n2 − n1) ciphertexts of size n1 + 1, and its second part a linear
combination of (n1−n0) ciphertexts of smaller size n0 +1, instead of having a single linear
combination of n2 − n0 ciphertexts of size n0 + 1. The total number of ciphertexts in the
linear combination and in the key switching key has not changed (n2−n1+n1−n0 = n2−n0

as in the key switch from s⃗(2) to s⃗(0)), but the linear combinations are slightly more costly
and the ciphertexts composing the key switching keys slightly larger. On the other hand,
this algorithm produces less noise: indeed its first part has ciphertexts with lower noise
because they are encrypted under a bigger secret key.

Here is the trade-off we want to study. The extreme is to go from s⃗(nb) to s⃗(0) by
key switching one element of the key in each key switch, meaning that we will have a
total number of nb = nnb − n0 shrinking key switches (Algorithm 42) to perform. So nb
corresponds to the steps in the staircase. This means considering a total number of shared
keys equal to nb + 1, including the secret keys s⃗(nb) and s⃗(0) which are the end points of
the staircase. We call the added keys between s⃗(nb) and s⃗(0) intermediate secret keys, so

222

8.2. Shared Randomness

we have a total of nb − 1 intermediate secret keys. In practice, we start with coefficient
annb−1 and key switch it to the secret key with nnb − 1 elements, add it to the rest, and
do the same with the next last element, and so on until we reach the desired secret key,
one coefficient at a time. The other extreme case is when we key switch directly from s⃗(1)

and s⃗(0) without intermediary key switches, so nb = 1 as presented in Algorithm 42.
Algorithm 43 gives details about this procedure. It is important to point out that there

are now nb pairs of decomposition parameters (Bα, ℓα) for 0 ≤ α ≤ nb− 1, one for each
step of the staircase. Note that we could also allow to have more than one such couple
per step as well.

Algorithm 43: ctout ← StairKeySwitch
(
ctin, {KSKα}0≤α≤nb−1

)

Context:

nb ∈ N : the number of steps of the algorithm
n0 < n1 < · · · < nnb

s⃗(nb) ∈ Znnb
q : the input secret key

s⃗(0) ∈ Zn0
q : the output secret key

s⃗(α) ∈ Znα
q ,∀1 ≤ α ≤ nb− 1 : intermediate secret keys

s⃗(0) ≺ s⃗(1) ≺ · · · ≺ s⃗(nb) : shared randomness secret keys (Definition 37)

Input:

ctin ∈ LWEs⃗(nb) (p) ⊆ Znnb+1

q , with p ∈ Zq

{KSKα}0≤α≤nb−1 : intermediate key switching key as in Algorithm 42
where KSKα switches from s⃗(α+1) to s⃗(α)

Output: ctout ∈ LWEs⃗(0) (p) ⊆ Zn0+1
q

/* Set the counter to go from nb− 1 to 0 */
1 Set α := nb− 1

/* Set the initial ciphertext */
2 Set ct := ctin

3 while α >= 0 do
/* Call to Algorithm 42 */

4 Update ct← ShrinkingKeySwitch(ct, KSKα) ∈ LWEs⃗(α) (p) ⊆ Znα+1
q

5 α := α− 1

6 return ctout := ct

Theorem 37 (Cost & Noise of Stair Shrinking Key Switching)
Consider the stair key switch as detailed in Algorithm 43. Its cost
amounts to ∑nb−1

α=0 ℓα (nα+1 − nα) (nα + 1) integer multiplications and∑nb−1
α=0 (ℓα (nα+1 − nα)− 1) (nα + 1) integer additions.

223

Chapter 8 – TFHE on New Problems

The noise added by the procedure satisfies

Var(StairShrinkKS) =
nb−1∑
α=0

(nα+1 − nα)
(

q2 −B2ℓα
α

12B2ℓα
α

)(
Var

(
s⃗(α+1)

)
+ E2

(
s⃗(α+1)

))
+ (nα+1 − nα)

4 Var
(
s⃗(α+1)

)
+ ℓα · (nα+1 − nα) · B

2
α + 2
12 σ2

KSKα .

The size (in bits) of the Stair keyswitching key Size (Stair-KS) with 2 steps is

Size (Stair-KS) := ((nKS + 1) · ℓKS1 · (ϕ− nKS) + (n + 1) · ℓKS2 · (nKS − n)) · ⌈log2(q)⌉ .

Proof 37 (Theorem 37) The cost and noise of the stair shrinking key switch is triv-
ially deduced from Theorem 36. At step α of the loop in Algorithm 43, the cost
of the shrinking key switching is ℓα (nα+1 − nα) (nα + 1) integer multiplications and
(ℓα (nα+1 − nα)− 1) (nα + 1) integer additions.

The variance of the noise added at step α is

Var(ShrinkKSα) = (nα+1 − nα)
(

q2 −B2ℓα
α

12B2ℓα
α

)(
Var

(
s⃗(α+1)

)
+ E2

(
s⃗(α+1)

))
+ (nα+1 − nα)

4 Var
(
s⃗(α+1)

)
+ ℓα · (nα+1 − nα) · B

2
α + 2
12 σ2

KSKα .

To obtain the total cost of the algorithm and the total variance of the noise added, we
simply iterate from α = 0 to nb− 1.

□

Remark 47 (Staircase in the Blind Rotation.) A similar process can be introduced
in the blind rotation algorithm. The idea would be, during the blind rotation, to progres-
sively use GLWE partial secret keys (Definition 35) with a smaller filling parameter ϕ

which will reduce the output noise of the blind rotate. As with the stair shrinking key
switch, we could use different bases and levels in the external products, thus potentially
offering an overall speed-up. We leave this problem as a topic for future work.

Practical Improvement. The use of shared secret keys brings a significant improve-
ment to homomorphic computations. Figure 8.3 presents a comparison of our techniques
to the state of the art [CJP21]. More detailed experiments are reported in Section 8.3.5.

224

8.3. Combining Partial Keys & Shared Randomness

8.3 Combining Partial Keys & Shared Randomness

In this section, we start by providing details on FHE algorithms that benefit from having
secret keys that are both partial (Section 8.1) and shared randomness (Section 8.2). Later
on, we describe some useful applications of this new type of secret keys.

8.3.1 Combining Both Techniques

Partial GLWE secret keys with shared randomness are simply a list of partial GLWE
secret keys (Section 8.1) with shared coefficients in the exact same way as in Section 8.2.
This type of keys is a combination of secret keys with shared randomness and partial
secret keys, offering advantages of both types.

It is possible to design a faster shrinking key switch (Algorithm 39) which uses partial
secret keys (Definition 35). This means that for this faster algorithm, we use both partial
secret keys and secret keys with shared randomness. Details about this new procedure are
given in Algorithm 44.

Algorithm 44: ctout ← FftShrinkingKeySwitch(ctin, KSK)

Context:

nout < nin, nin − nout ≤ kKSK,in ·NKSK and nout ≤ kKSK,out ·NKSK

s⃗out ≺ s⃗in : secret keys with shared randomness (Definition 37)
s⃗out ∈ Znout

q : the output LWE secret key
s⃗ = (snout , · · · , snin−1) ∈ Znin−nout

q

s⃗in = s⃗out||s⃗ ∈ Znin
q : the input LWE secret key

Input:
{

ctin = (a0, · · · , anin−1, b) ∈ LWEs⃗in (p) ⊆ Znin+1
q , where p ∈ Zq

KSK : the key switching key suited for Algorithm 39
Output: ctout ∈ LWEs⃗out (p)
/* Split the input LWE ciphertext into two parts: one related to s⃗out, and the

rest */
1 Set ct0 := (a0, · · · , anout−1, b) ∈ Znout+1

q

2 Set ct1 := (anout , · · · , anin−1, 0) ∈ Znin−nout+1
q

/* Call Algorithm 39 */
3 Set ct′1 ← FftLweKeySwitch (ct1, KSK) ∈ Znout+1

q

4 return ctout = ct0 + ct′1

Theorem 38 (Noise & Cost of the FFT-Based Shrinking Key Switch) We con-
sider the FFT-based LWE shrinking key switch as detailed in Algorithm 44. Its cost can be
expressed from the cost of a GLWE-to-GLWE key switch (Remark 45) since we neglect the

225

Chapter 8 – TFHE on New Problems

costs of sample extraction and its inverse. The cost is then Cost (FftShrinkingKeySwitch) =
Cost (GlweKeySwitch). Note that kin is smaller thanks to the shared randomness property
of the secret keys, which leads to a faster procedure.

The added noise can be expressed from the noise formula of the GLWE-to-GLWE key
switch (Theorem 31) which gives Var (FftShrinkingKeySwitch) = FftError (kmax, N,B, ℓ) +
Var (GlweKeySwitch) with ϕin = nout − nin and kmax = max (kin, kout).

The size (in bits) of the FFT-Shrinking keyswitching key Size (FFT-KS) is

Size (FFT-KS) := (kout + 1) · ℓKS · kin ·N · ⌈log2(q)⌉ .

Proof 38 (Theorem 38) The estimation of the variance of the error is immediate. For
the FFT error, we refer to Section 3.3 and Proof 34.

□

We can also adapt the GLWE keyswitch introduced in Algorithm 2 with partial and
shared randomness key as detailed in Algorithm 45.

Theorem 39 (Noise of GLWE Key Switching With Partial Keys With Shared Randomness)
Perform a key switch (Algorithm 45) from CTin ∈ Rkin+1

q,N under the secret key S⃗
[ϕin]
in ∈ Rkin

q,N ,
to CTout ∈ Rkout+1

q,N under the secret key S⃗
[ϕout]
out ∈ Rkout

q,N , where S⃗
[ϕout]
out ≺ S⃗

[ϕin]
in . Each coefficient

of the output has added noise estimated as

Var(GlweKeySwitch′) = (ϕin − ϕout)
(

q2 −B2ℓ

12B2ℓ

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ϕin − ϕout

4 Var
(
S⃗

[ϕin]
in

)
+ ℓ(kin − kout)Nσ2

ksk
B2 + 2

12 .

Proof 39 (Theorem 39) The proof of this theorem can be found in Appendix A.9.
□

8.3.2 Some Higher Level Applications

Through Sections 8.1.1, 8.2 and 8.3.1, we discussed the many advantages of using par-
tial and/or secret keys with shared randomness in FHE operations. We now discuss the
advantages at a somewhat high level.

226

8.3. Combining Partial Keys & Shared Randomness

Algorithm 45: CTout ← GlweKeySwitch′(CTin, KSK)

Context:

S⃗
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 35)
S⃗

[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S⃗
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 35)
S⃗

[ϕout]
out = (Sout,0, · · · , Sout,kout−1)

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

S⃗
[ϕout]
out ≺ S⃗

[ϕin]
in : secret keys with shared randomness (Definition 37)

S⃗
[ϕin]
in ̸= S⃗

[ϕout]
out and kout ≤ kin

k ∈ {kout − 1, kout} such that ∀0 ≤ i < k, Sin,i = Sout,i

P ∈ Rq,N

CTin = (A0, · · · , Akin−1, B) ∈ Rkin+1
q,N

CTi,j ∈ GLWE
S⃗

[ϕout]
out

(
q

βj · Sin,i

)
, for kout ≤ i < kin and 0 ≤ j ≤ ℓ− 1

if k = kout − 1 :
CTk,j ∈ GLWE

S⃗
[ϕout]
out

(
q

βj · (Sin,k − Sout,k)
)

, for 0 ≤ j ≤ ℓ− 1
ℓ ∈ N : the number of levels of the decomposition
β ∈ N : the base of the decomposition

Input:
{

CTin ∈ GLWE
S⃗

[ϕin]
in

(P)
KSK =

{
CTi = (CTi,0, · · · , CTi,ℓ−1)

}
k≤i<kin

Output: CTout ∈ GLWE
S⃗

[ϕout]
out

(P)

/* Keep the B part and the first part of the mask */
1 Set CTout := (A0, · · · , Akout−1, B) ∈ Rkout+1

q,N

/* Different public material for this potential partial-shared secret key
polynomial */

2 if k = kout − 1 then
3 Update CTout = CTout −

〈
CTk, dec(β,ℓ) (Ak)

〉
/* Same process as in Algorithm 2 */

4 for i ∈ Jkout; kin − 1K do
/* Decompose the mask */

5 Update CTout = CTout −
〈

CTi, dec(β,ℓ) (Ai)
〉

6 return CTout

227

Chapter 8 – TFHE on New Problems

Key Switching Key Compression. When one deploys an FHE instance using se-
cret keys with the shared randomness property, the total amount of public material
for keyswitching keys is reduced. Indeed, they only need to generate all the shrinking
keyswitching keys (Algorithm 42), from the largest key to the smallest. All of these shrink-
ing key switching keys are way smaller than the sum of all the traditional key switching
keys that are usually needed. Note that it is possible to provide more levels in some of the
keyswitching keys, and only use the ones that are needed at a moment for a given noise
constraint.

Compressed Bootstrapping Keys. In the same manner, secret keys with shared ran-
domness allow to reduce the total amount of bootstrapping keys. When the polynomial
size N is shared, since a bootstrapping key is a list of GGSW ciphertexts, each one en-
crypting a secret key coefficient of the input LWE secret key, one can only provide the
GGSW ciphertexts for the largest LWE secret key of the instance. Whenever bootstrap-
ping an LWE ciphertext with a smaller dimension is required, one will only use the first
part of the bootstrapping key. In the same spirit, additional levels can be added, and only
used when strictly needed.

Easier Parameter Set Conversion. Section 7.2.4 considers use-cases where there are
a couple of coexisting parameter sets, and it is necessary to move from one parameter set
to the other. Using shared (and partial) secret keys helps converting in a more efficient
way ciphertexts between the two (or more) parameter sets and adds less noise during the
process. Without the shared randomness property, this requires lots of keyswitching keys
and additional, unnecessary computation.

Multikey Compatibility. Both the partial and shared randomness properties are pre-
served in the MK-FHE (such as [Kim+22; KMS22]) and threshold-FHE approaches. In-
deed, summing two partial secret keys results in another partial secret key, and summing
together two pairs of secret keys with shared randomness results in a new pair of secret
keys with shared randomness. Those new secret keys could improve the performance of
MK-FHE and threshold-FHE, which is in general less attractive that the one of (single
key) FHE, as well as reduce the size of the total public key material.

Other FHE Schemes. Partial keys and secret keys with shared randomness could
be used in other FHE schemes such as FHEW [DM15] or NTRU-based schemes (such

228

8.3. Combining Partial Keys & Shared Randomness

as [Bon+22]). These types of keys could also be used in either BFV [Bra12; FV12] or
CKKS [Che+17] when larger polynomials are required for the same modulus q, for in-
stance.

Combination With Fixed Hamming Weight. Both partial keys and secret keys
with shared randomness could be instantiated with a fixed Hamming weight if needed.
We do not explore this topic any further here.

LWE Encryption Public Key With GLWE Material. If one wants to take ad-
vantage of the FFT to encrypt fresh LWE ciphertexts with a secret key s⃗ ∈ Znq , and/or
shrinks the size of ciphertexts with partial GLWE secret key, it is possible to provide a
GLWE encryption public key for a partial GLWE secret key S⃗[ϕ=n] ∈ Rk

q,N such that its
flattened version is actually s⃗. In this case, one uses GLWE encryption and applies sample
extraction right after that to obtain the desired LWE ciphertext.

8.3.3 Parameters & Benchmarks

In this section, we describe how to generate FHE parameters for all our experiments.
We use the procedure introduced in Chapter 4 (see Section 4.3) to compare the different
approaches. To demonstrate the impact of partial keys and/or secret keys with shared
randomness, we use the Atomic Pattern (AP) called CJP (Definition 30).

We explain below, how to optimize parameters for the different experiments and show
the different improvements (both in computational time and size of public material)
brought forward by each of the new procedures introduced in this paper.

Real life applications use additions and multiplications by public integers (i.e. a dot
product) between two consecutive bootstrappings. Formally, given a list of ciphertexts
{cti}i∈[[1,α]] ∈ (LWEs⃗in)

α (with independent noise values) and a list of integers {ωi}i∈[[1,α]] ∈
Zα, one computes ∑α

i=1 ωi · cti. In that case, we have ν2 = ∑α
i=1 ω2

i and ν is used to fully
describe the noise growth during a dot product following the formalization of Chapter 4.
In our experiments, we set ν = 2p with p the precision of the message.

For every experiment below, the probability of failure is set to pfail ≤ 2−13.9 (see
Theorem 16).

229

Chapter 8 – TFHE on New Problems

Figure 8.2: Comparison in terms of estimated computation time using the optimization
framework introduced in Chapter 4 (see Section 4.3), of the traditional CJP atomic pat-
tern (Definition 30), our baseline, with three variants of CJP based on partial secret
keys. Details can be found in Section 8.3.4 and exact plotted values can be found in Ta-
bles A.4, A.5 and A.6 in Appendix A.10.

8.3.4 Partial GLWE Secret Key

We conduct three experiments with partial GLWE secret keys (Definition 35), and we
plot the results predicted with the optimizer in Figure 8.2. The X axis represents the
precision p and the Y axis reflects the base 2 log of the cost estimated by the optimizer.
Our baseline is CJP, the blue dashed curve with the • symbol.

The first experiment focuses on the CJP atomic pattern where we allow the GLWE
secret key to be partial, with a filling parameter ϕ. On the figure, it is the red solid curve
with the + symbol. During optimization, we set ϕ to the minimum between k ·N and the
value nplateau discussed in Limitation 10. As expected, we observe an improvement mostly
with larger precisions, starting at p = 6 where the plateau is actually reached.

The second experiment considers the CJP atomic pattern where the traditional LWE-
to-LWE key switch is replaced with the FFT-base LWE key switch that we introduced in
Algorithm 39. On the figure, it is the green dotted curve with the ▼ symbol. During the
optimization, we had to introduce new FHE parameters for this particular key switch: an
input GLWE dimension kin, an output GLWE dimension kout and a polynomial size NKS.
We observe a significant improvement for all precisions when using this key switch, but

230

8.3. Combining Partial Keys & Shared Randomness

it is more visible with smaller precisions, in the range [1; 6].
The third and last experiment is the combination of the two first ones: we allow the

GLWE secret key to be partial (when the plateau is reached) and use the FFT-based
LWE key switch (Algorithm 39). On the figure, it is the brown dashed curve with the ■
symbol. As expected, the curve stands below the two others because it is indeed exploiting
the best of both improvements. We can see a significant improvement for all precisions.

Note that there is no way to build an LWE-to-LWE key switch based on the FFT
without partial secret keys, so no comparison with our results can be done.

8.3.5 Secret Keys with Shared Randomness

Figure 8.3: Comparison in terms of estimated computation time using the optimization
framwork introduced in Chapter 4 (see Section 4.3), of traditional CJP, our baseline, with
two variants of CJP based on secret keys with shared randomness. Details can be found
in Section 8.3.5 and exact plotted values can be found in Tables A.4, A.5 and A.6 in
Appendix A.10.

We conduct two experiments with secret keys with shared randomness (Definition 37),
and plot the results predicted by our optimizer in Figure 8.3. This figure follows the same
logic as the previous one. Our baseline is still CJP, the blue dashed curve with the •
symbol.

The first experiment is the CJP atomic pattern where we allow the secret keys to share

231

Chapter 8 – TFHE on New Problems

their randomness using the shrinking LWE key switch described in Algorithm 42. On the
figure, it is the red solid curve with the + symbol. We observe a significant improvement
with small precisions up to p = 6.

The second and last experiment is the CJP atomic pattern where we allow the secret
keys to share their randomness, using the 2-steps stair LWE key switch from Algorithm 43.
On the figure, it is the green dotted curve with the ▼ symbol. We see a significant im-
provement at all precisions.

Note that if one tries to trivially have a 2-steps stair key switch without any shared
randomness, the computational cost is basically the same as in CJP.

8.3.6 Combining Both

Figure 8.4: Comparison in terms of estimated computation, between traditional CJP, our
baseline, and two variants of CJP based on both partial secret keys and secret keys with
shared randomness. Details can be found in Section 8.3.6 and exact plotted values can be
found in Tables A.4, A.5 and A.6 in Appendix A.10.

We conduct two experiments with both partial keys (Definition 35) and secret keys
with shared randomness (Definition 37). We plot first the predicted computational cost
in Figure 8.4 obtained by our optimizer. This figure follows the same logic as the previous
ones. Our baseline is again CJP, the blue dashed curve with the • symbol.

The first experiment is the CJP atomic pattern where we allow the secret keys to be

232

8.3. Combining Partial Keys & Shared Randomness

partial and to share their randomness. We use the 2-steps stair LWE key switch from
Algorithm 43 and we allow the GLWE secret key to be partial (when the plateau is
reached). On the figure, it is the red solid curve with the + symbol. We see a significant
improvement at all precisions.

The second and last experiment also focuses on the CJP atomic pattern where we
allow secret keys to be partial and to share their randomness. We allow the GLWE secret
key to be partial (when the plateau is reached), and use the FFT-based LWE key switch
(Algorithm 44) since our secret keys also share randomness. On the figure, it is the green
dotted curve with the ▼ symbol. We see a similar improvement at all precisions.

Figure 8.5: Comparison in terms of size of total public key material, between traditional
CJP, our baseline, and two variants of CJP based on both partial secret keys and secret
keys with shared randomness. Details can be found in Section 8.3.6 and exact plotted
values can be found in Tables A.4, A.5 and A.6 in Appendix A.10.

For those experiments, we also plot the size of the total public key material needed in
Figure 8.5 to demonstrate their benefit in this matter. The legend corresponding to the
experiments is the same as the one of Figure 8.4. Both the stair key switch curve and the
FFT shrinking key switch curve stand below our baseline. They actually follow pretty
much the curves of the predictions plotted in Figure 8.4.

We finally plot the timings obtained with benchmarks in Figure 8.6 and Figure 8.7

233

Chapter 8 – TFHE on New Problems

Figure 8.6: Comparison in terms of computing time, between traditional CJP, our baseline,
and two variants of CJP based on both partial secret keys and secret keys with shared
randomness. Details can be found in Section 8.3.6 and exact plotted values can be found
in Tables A.4, A.5 and A.6 in Appendix A.10.

Figure 8.7: Comparison in terms of computing time, between traditional CJP, our baseline,
and two variants of CJP based on both partial secret keys and secret keys with shared
randomness. Details can be found in Section 8.3.6 and exact plotted values can be found
in Tables A.4, A.5 and A.6 in Appendix A.10.

234

8.3. Combining Partial Keys & Shared Randomness

to validate our predictions. The legend corresponding to the experiments is the same as
described above for Figure 8.4, except for the Y axis, which is not logarithmic anymore,
so one can easily read the timings. Both the stair key switch curve and the FFT shrinking
key switch curve are below our baseline as predicted, and we have even better results with
the FFT shrinking key switch than expected. Note that at precision p = 3 we have a 2.4
speed-up factor compared to the baseline (Figure 8.6).

All of our experiments have been carried out on AWS with a m6i.metal instance Intel
Xeon 8375C (Ice Lake) at 3.5 GHz, with 128 vCPUs and 512.0 GiB of memory using the
TFHE-rs library [Zam22b].

In Tables A.4, A.5 and A.6 in Appendix A.10, we provide all the parameter sets used
to estimate the cost curves of Figure 8.4, their benchmarks and their total public key size.

Conclusion. In this chapter, we introduced new types of secret keys and new algo-
rithms. We proved through comparisons with our FHE optimizer and with extensive
benchmarks that these new techniques systematically improve the state of the art in all
contexts. When combining both types of secret keys, we observed significant improvements
for both small and higher precisions. In particular, we show computational speed-up fac-
tors ranging between 1.3 and 2.4 while keeping the same level of security and failure
probability. Furthermore, the size of the public material (i.e., key switching and boot-
strapping keys) is also reduced by factors ranging from 1.5 to 2.7.

235

Chapter 9

CONCLUSION

In the introduction, we asked ourselves the following question:

How can we make FHE more practical ?

This question has been the common thread of this thesis and we gave answers
all along this manuscript. We also identified limitations of TFHE and explained how
our work alleviates them partially or totally. Let us summarize our different contributions.

In Chapter 3, we introduced the first components of our optimization framework:
the security oracle and the concept of noise model. A security oracle estimates a
minimal noise variance to be used at encryption time that satisfies some security level
given an LWE dimension, a ciphertext modulus, a noise distribution and a secret key
distribution. A noise model is a collection of noise formulae, functions that predicts the
noise distribution after an FHE operator. This model is used to track the noise all along
a computation and is crucial to ensure the correctness. We also explained how to correct
the noise formula of the PBS by taking into account the impact of the FFT on the noise.

In Chapter 4, we introduced an optimization framework that removes Limitations 14
and 15. Those limitations state that there is no tool to automatically select the best
parameters for an FHE computation and that it is hard to compare different FHE algo-
rithms associated with the same plaintext operations as they satisfy different noise and
cost trade-offs. This solves one of the main blocking factors in the widespread adoption
of FHE.

In the end, we succeeded in translating the FHE optimization problem into a more
classical optimization problem (simplified along the way), where already known and pow-
erful optimization techniques, such as the branch-and-bound algorithm, finally take over.

Roughly speaking, our optimization framework takes as input a graph of mathematical
operators, such as additions, multiplications or LUT evaluations, and a list of translation

237

rules, i.e., various ways to transform these cleartext operations into FHE operations.
A ciphertext in this graph is associated with some metadata regarding the precision of
the message and whether or not it should be encrypted. The output provided by the
optimization framework is an optimal graph of FHE operators along with the optimal
parameter set for this graph.

By finding the fastest set of parameters for different contexts, one can truly compare
FHE operators computing the same plaintext function, thus removing Limitation 15.
An accurate comparison of two FHE operators needs to take into account the failure
probability of both algorithms and their respective impacts on noise growth. Some of
the comparisons we made in this thesis shed some light on the relationship between the
precision of encrypted integers, and the time needed to compute over them. In particular,
it is clear that if we want to work with large precisions in TFHE, it is more efficient to use
several ciphertexts with a radix or a CRT encoding to encrypt a single message, instead
of considering huge parameters to make it fit into a single ciphertext.

We also demonstrated that adding more bootstrappings can speed up some homo-
morphic computations and we proved that the position of a key switch operator has a
non-negligible impact on the efficiency of a circuit. Finally, we described ways to use our
framework to take into account other constraints such as having a consensus-friendly
FHE evaluation, or allowing an optimization for more than a single pair of bootstrapping
and keyswitching keys.

In Chapter 5, we introduced several new FHE algorithms. For every algorithm, we
carried out a noise analysis to get an analytical formula that models its noise growth and
we provided a cost function that can be used to select efficient parameters.

First, we generalized the PBS of TFHE so it can evaluate several functions at once
without additional computation or noise. This approach is possible when the message to
bootstrap is small enough. It overcomes Limitation 6 and enables to compute a single
generalized PBS when computing a circuit bootstrapping instead of ℓ PBSs, overcoming
Limitation 8. Circuit bootstrapping is particularly interesting in the leveled evaluation of
a lookup table, as shown in [Chi+17].

Then, we introduced a way to compute a lookup table on a rounded input using a
rounded-PBS which contributes to remove the limitation of small precisions in the PBS
(Limitation 2).

Next, we thoroughly studied the noise growth of a tensor product followed by a

238

relinearization (i.e., the BFV-like multiplication) and found parameters compatible with
TFHE. Our noise analysis is also valid for BFV-like schemes and can help estimate
the noise growth in those schemes. Using the GLWE multiplication, we were able to
build a native LWE multiplication. This multiplication is efficient and does not require
a PBS, which overcomes Limitation 4. We also proposed a packed variant of this algo-
rithm to compute several LWE products at once or a sum of several LWE products at once.

In Chapter 6, we presented three new algorithms that remove the constraint of the bit
of padding in TFHE’s PBS (Limitation 1). From the new LWE multiplication, we defined
two new PBSs that do not require the MSB to be set to zero, overcoming Limitation 1.
These new procedures are composed of a few generalized PBSs that can be computed in
parallel, which makes them more compatible with multi-threading (Limitation 3).

From these two new Without-Padding PBS (WoP-PBS), we were able to homomorphi-
cally decompose a plaintext from a single ciphertext into several ciphertexts encrypting
blocks of the input plaintext, thus overcoming Limitation 5.

From this new decomposition algorithm and the Tree-PBS [GBA21], we were able
to create a fast PBS for larger input messages, overcoming Limitation 2. We can also
in an even faster manner, refresh the noise in a ciphertext from this new decomposition
algorithm.

Next, we introduced another WoP-PBS. It computes a bootstrap on one or several
ciphertexts, which do not need to have a known bit of padding (Limitation 1). Using this
new algorithm, it is possible to evaluate in an efficient manner a generic lookup table on
a radix, CRT, or hybrid integer representation, which was not possible before (Limita-
tion 13). This new PBS scales particularly well with high precisions (Limitation 2), can
be multithreaded (Limitation 3) and can be adapted to compute several lookup tables
(with a slight cost overhead but without additional noise), which also contributes to
remove Limitation 6.

In Chapter 7, we studied how to build integer arithmetics with FHE. First, we defined
a new way to build a Boolean circuit with TFHE that does not need a PBS at each
Boolean gate. To do so, we leveraged the LWE multiplication introduced in Chapter 5.
We extended this method to work with small integers and explained how to compute the
basics operations (addition, multiplication and LUT evaluation).

Then, we explained how to implement an integer arithmetic for high-precision integers

239

with the help of the last WoP-PBS introduced in Chapter 6. We detailed how to use in
practice the radix and the CRT encodings and we introduced a hybrid approach that
takes the best of the CRT and radix approaches. We also provided extensive benchmarks
to show the practicality of our approach.

In Chapter 8, we introduced two new types of secret keys. The partial keys are espe-
cially useful when the product of the GLWE dimension by the polynomial size is large.
When it is large enough, the minimal encryption noise reaches its minimal value and we
end up in a scenario where we have huge parameters, which impacts both the cost and
the noise. Thanks to our new secret keys, having a large product between the polynomial
size and the GLWE dimension still impacts the cost but impacts the noise less than when
using classical secret keys.

Thanks to the second type of secret keys, the cost of key switches is greatly decreased.
By sharing parts of the coefficients between secret keys, we can decrease the noise added
during the key switches and also improve the cost. Since in real use-cases, lots of key
switches are involved, this new type of secret keys clearly improves the resulting execution
time.

Every new algorithm and its variants are backed up by extensive benchmarks and
analysis using our optimization framework.

Learnings & Open Questions In the course of this work, we learned that efficient
cryptographic algorithms are not enough. Many algorithms have degrees of freedom and
these have a huge impact on the cost and on the noise. We need tools that select the best
parameters to minimize the cost of a computation while guaranteeing its correctness.

To pick fast parameters, we need to use realistic cost models. In this thesis, we use
algorithmic complexities as a surrogate for the execution time. In the future, we shall
test other cost models to determine which one gives the best parameters in practice.
Building accurate cost models is a very difficult task but it must be undertaken as it
yields significant improvements.

To guarantee the correctness of an FHE computation, we need to have tight noise
formulae as they are used to track the noise all along the computation. The correctness
of a computation is tightly related to the noise distributions involved in it but we do not

240

have access to the actual distribution; we use noise formulae that model that the noise
distribution. These approximations must be as realistic as possible to guarantee that
we are not underestimating the failure probability of the computation nor that we are
overestimating it too much. The former leads to incorrect results and the latter to sub-
optimal computations. During the noise analysis presented in this thesis, we made some
hypothesis and some of them can be removed, resulting in tighter formulae. More gen-
erally, we need the tightest formula for each and every FHE algorithm, not only for TFHE.

An optimizer must be used to guide the research in FHE. There are too many
trade-offs to consider, we cannot compare algorithms just by looking at the sequences
of operations nor by benchmarking a finite set of parameters. As different algorithms
satisfy different trade-offs, we cannot analytically compare them. To truly select the best
one, we need to put them all in the same context i.e., in graphs that perform the same
plaintext operations up to the same failure probability, optimize every possible graphs
and find out which algorithm is the best. Most of the time, no algorithm is better than
every other in every use cases. As they satisfy different cost-noise trade-offs, they will
be efficient in different scenarios. A thorough analysis of every algorithm has begun in
this thesis but it is still missing comparisons with some late improvements of TFHE’s
PBS. This work would be of overriding interest for the community and to guide future
research. In the future, every contribution must come with its associated noise formula
to be easily compared with other methods.

The new types of secret keys introduced in Chapter 8 bring significant improvements
to TFHE. As with many new assumptions, a more complete security analysis is needed.
It will be also interesting to look more closely at the stair key switch (Algorithm 43)
which improves the state of the art by a significant factor. We studied a special case, the
2-step key switch. The interest of this algorithm for a larger number of steps and the
method to chose those steps is still an open problem.

Some FHE schemes offer approximate arithmetics instead of exact computations up
to a given failure probability. An approximate arithmetic with the power of TFHE’s PBS
could be very interesting for machine learning use-cases.

In this thesis, we showed that FHE algorithms by themselves were not sufficient to

241

make FHE practical. We need to leverage optimization techniques to find the best pa-
rameter set for a given use case. Without these techniques, we can not truly compare
different algorithms performing the same plaintext operation. We need to introduce new
security hypothesis that we can leverage to improve the efficiency of existing algorithms.
We also need to find new algorithms to efficiently support very large messages e.g., more
than 32-bits. If the FHE community is up to the task, the future will see protocols involv-
ing FHE in combination with other privacy-preserving technologies such as Multi-Party
Computation (MPC) and Zero Knowledge Proofs.

242

BIBLIOGRAPHY

Lattice Security

[Alb17a] Martin Albrecht, “On Dual Lattice Attacks Against Small-Secret LWE and
Parameter Choices in HElib and SEAL”, in: Apr. 2017, pp. 103–129, isbn:
978-3-319-56613-9, doi: 10.1007/978-3-319-56614-6_4.

[Alb+17a] Martin Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer,
“Revisiting the Expected Cost of Solving uSVP and Applications to LWE”,
in: Nov. 2017, pp. 297–322, isbn: 978-3-319-70693-1, doi: 10.1007/978-3-
319-70694-8_11.

[Alb+14] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret,
Algebraic Algorithms for LWE, Cryptology ePrint Archive, Paper 2014/1018,
https://eprint.iacr.org/2014/1018, 2014, url: https://eprint.iacr.
org/2014/1018.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott, “On the concrete hard-
ness of learning with errors”, in: Journal of Mathematical Cryptology 9.3
(2015), https://bitbucket.org/malb/lwe- estimator/src/master/,
pp. 169–203, doi: 10.1515/jmc-2015-0016.

[Alk+16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe, “Post-
quantum Key Exchange—A New Hope”, in: 25th USENIX Security Sympo-
sium (USENIX Security 16), Austin, TX: USENIX Association, Aug. 2016,
pp. 327–343, isbn: 978-1-931971-32-4, url: https://www.usenix.org/
conference / usenixsecurity16 / technical - sessions / presentation /
alkim.

[AG11] Sanjeev Arora and Rong Ge, “New Algorithms for Learning in Presence
of Errors”, in: Automata, Languages and Programming, ed. by Luca Aceto,
Monika Henzinger, and Jiří Sgall, Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 403–415, isbn: 978-3-642-22006-7.

243

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2014/1018
https://bitbucket.org/malb/lwe-estimator/src/master/
https://doi.org/10.1515/jmc-2015-0016
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim

[BG14] Shi Bai and Steven Galbraith, “Lattice Decoding Attacks on Binary LWE”,
in: July 2014, isbn: 978-3-319-08343-8, doi: 10.1007/978-3-319-08344-
5_21.

[Che+19a] Jung Cheon, Minki Hhan, Seungwan Hong, and Yongha Son, “A Hybrid of
Dual and Meet-in-the-Middle Attack on Sparse and Ternary Secret LWE”, in:
IEEE Access PP (June 2019), pp. 1–1, doi: 10.1109/ACCESS.2019.2925425.

[Che+19b] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son, A Hybrid
of Dual and Meet-in-the-Middle Attack on Sparse and Ternary Secret LWE,
Cryptology ePrint Archive, Paper 2019/1114, https://eprint.iacr.org/
2019/1114, 2019, url: https://eprint.iacr.org/2019/1114.

[Dac+20a] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi, “LWE
with Side Information: Attacks and Concrete Security Estimation”, in: Aug.
2020, pp. 329–358, isbn: 978-3-030-56879-5, doi: 10.1007/978- 3- 030-
56880-1_12.

[Duc13] Léo Ducas-Binda, “Signatures fondées sur les réseaux euclidiens: at-
taques, analyses et optimisations”, PhD thesis, PhD thesis, École Normale
Supérieure Paris, 2013. http://cseweb. ucsd. edu . . ., 2013.

[EJK20] Thomas Espitau, Antoine Joux, and Natalia Kharchenko, “On a Dual/Hy-
brid Approach to Small Secret LWE - A Dual/Enumeration Technique
for Learning with Errors and Application to Security Estimates of FHE
Schemes”, in: International Conference on Cryptology in India, 2020, url:
https://api.semanticscholar.org/CorpusID:219332962.

[GJS15b] Qian Guo, Thomas Johansson, and Paul Stankovski, “Coded-BKW: Solv-
ing LWE Using Lattice Codes.”, English, in: Advances in Cryptology –
CRYPTO 2015/Lecture notes in computer science, ed. by Rosario Gennaro
and Matthew Robshaw, vol. 9215, 35th Annual Cryptology Conference ;
Conference date: 16-08-2015 Through 20-08-2015, Germany: Springer, 2015,
pp. 23–42, isbn: 978-3-662-47988-9, doi: 10.1007/978-3-662-47989-6_2.

[How01] Nick Howgrave-Graham, “Approximate Integer Common Divisors”, in: Cryp-
tography and Lattices, ed. by Joseph H. Silverman, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 51–66, isbn: 978-3-540-44670-5.

244

https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1109/ACCESS.2019.2925425
https://eprint.iacr.org/2019/1114
https://eprint.iacr.org/2019/1114
https://eprint.iacr.org/2019/1114
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://api.semanticscholar.org/CorpusID:219332962
https://doi.org/10.1007/978-3-662-47989-6_2

[KF15a] Paul Kirchner and Pierre-Alain Fouque, “An Improved BKW Algorithm for
LWE with Applications to Cryptography and Lattices”, in: IACR Cryptol.
ePrint Arch. 2015 (2015), p. 552, url: https://api.semanticscholar.
org/CorpusID:1957267.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, “On Ideal Lattices
and Learning with Errors over Rings”, in: Advances in Cryptology - EURO-
CRYPT 2010, ed. by Henri Gilbert, vol. 6110, Lecture Notes in Computer
Science, Springer, 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, “On ideal lattices and
learning with errors over rings”, in: Journal of the ACM 60.6 (2013), Earlier
version in EUROCRYPT 2010, 43:1–43:35, doi: 10.1145/2535925.

[MR09a] Daniele Micciancio and Oded Regev, “Lattice-based Cryptography”, in:
Post-Quantum Cryptography, ed. by Daniel J. Bernstein, Johannes Buch-
mann, and Erik Dahmen, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 147–191, isbn: 978-3-540-88702-7, doi: 10.1007/978- 3- 540-
88702-7_5, url: https://doi.org/10.1007/978-3-540-88702-7_5.

[Pla18] Rachel Player, “Parameter selection in lattice-based cryptography”, in: 2018,
url: https://api.semanticscholar.org/CorpusID:216024218.

[PV20] Eamonn W. Postlethwaite and Fernando Virdia, “On the Success Probability
of Solving Unique SVP via BKZ”, in: IACR Cryptology ePrint Archive, 2020,
url: https://api.semanticscholar.org/CorpusID:226207574.

[Reg05] Oded Regev, “On lattices, learning with errors, random linear codes, and
cryptography”, in: Proceedings of the 37th Annual ACM Symposium on The-
ory of Computing, 2005, ed. by Harold N. Gabow and Ronald Fagin, ACM,
2005.

[Reg09] Oded Regev, “On lattices, learning with errors, random linear codes, and
cryptography”, in: Journal of the ACM 56.6 (2009), Earlier version in
STOC 2005, 34:1–34:40, doi: 10.1145/1568318.1568324.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, in: Commun. ACM 21.2 (Feb.
1978), pp. 120–126, issn: 0001-0782, doi: 10.1145/359340.359342, url:
https://doi.org/10.1145/359340.359342.

245

https://api.semanticscholar.org/CorpusID:1957267
https://api.semanticscholar.org/CorpusID:1957267
https://doi.org/10.1145/2535925
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://api.semanticscholar.org/CorpusID:216024218
https://api.semanticscholar.org/CorpusID:226207574
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342

[Sch03] Claus Schnorr, “Lattice Reduction by Random Sampling and Birthday Meth-
ods”, in: vol. 2607, Apr. 2003, isbn: 978-3-540-00623-7, doi: 10.1007/3-
540-36494-3_14.

[Ste+09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa, “Efficient
public key encryption based on ideal lattices”, in: Advances in Cryptology –
ASIACRYPT 2009, vol. 5912, Lecture Notes in Computer Science, Springer,
2009, pp. 617–635, doi: 10.1007/978-3-642-10366-7_36.

246

https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/978-3-642-10366-7_36

Other FHE Schemes

[AN16] Seiko Arita and Shota Nakasato, “Fully homomorphic encryption for point
numbers”, in: International Conference on Information Security and Cryp-
tology, Springer, 2016.

[Baj+16] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca, “A
full RNS variant of FV like somewhat homomorphic encryption schemes”, in:
International Conference on Selected Areas in Cryptography, Springer, 2016.

[Bon+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and
Nigel P. Smart, “FINAL: Faster FHE Instantiated with NTRU and LWE”,
in: Advances in Cryptology – ASIACRYPT 2022, ed. by Shweta Agrawal and
Dongdai Lin, Cham: Springer Nature Switzerland, 2022, pp. 188–215, isbn:
978-3-031-22966-4.

[BST20] Florian Bourse, Olivier Sanders, and Jacques Traoré, “Improved secure inte-
ger comparison via homomorphic encryption”, in: CT-RSA, Springer, 2020.

[Bra12] Zvika Brakerski, “Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP”, in: IACR Cryptology ePrint Archive 2012
(2012), url: http://eprint.iacr.org/2012/078.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping”, in: Innovations in Theo-
retical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,
2012.

[Che+20] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song, “Efficient Homomorphic
Conversion Between (Ring) LWE Ciphertexts”, in: IACR Cryptol. ePrint
Arch. (2020), url: https://eprint.iacr.org/2020/015.

[CH18] Hao Chen and Kyoohyung Han, “Homomorphic lower digits removal and
improved FHE bootstrapping”, in: Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, 2018.

[Che+18a] Hao Chen, Kim Laine, Rachel Player, and Yuhou Xia, “High-precision arith-
metic in homomorphic encryption”, in: Cryptographers’ Track at the RSA
Conference, Springer, 2018.

247

http://eprint.iacr.org/2012/078
https://eprint.iacr.org/2020/015

[Che+18b] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song, “A full RNS variant of approximate homomorphic encryption”, in:
International Conference on Selected Areas in Cryptography, Springer, 2018.

[Che+17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song, “Homomor-
phic Encryption for Arithmetic of Approximate Numbers”, in: Advances in
Cryptology - ASIACRYPT 2017, 2017.

[Dij+10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan,
“Fully Homomorphic Encryption over the Integers”, in: Advances in Cryptol-
ogy – EUROCRYPT 2010, ed. by Henri Gilbert, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 24–43, isbn: 978-3-642-13190-5.

[FV12] Junfeng Fan and Frederik Vercauteren, “Somewhat Practical Fully Homo-
morphic Encryption”, in: IACR Cryptology ePrint Archive 2012 (2012), url:
http://eprint.iacr.org/2012/144.

[Gen09] Craig Gentry, “Fully homomorphic encryption using ideal lattices”, in:
41st Annual ACM Symposium on Theory of Computing, ACM Press, 2009,
pp. 169–178, doi: 10.1145/1536414.1536440.

[Gen10] Craig Gentry, “Computing arbitrary functions of encrypted data”, in: Com-
munications of the ACM 53.3 (2010), Earlier version in STOC 2009, pp. 97–
105, doi: 10.1145/1666420.1666444.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters, “Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based”, in: Advances in Cryptology – CRYPTO 2013, Part I,
vol. 8042, Lecture Notes in Computer Science, Springer, 2013, pp. 75–92,
doi: 10.1007/978-3-642-40041-4_5.

[HPS19] Shai Halevi, Yuriy Polyakov, and Victor Shoup, “An improved RNS variant
of the BFV homomorphic encryption scheme”, in: Cryptographers’ Track at
the RSA Conference, Springer, 2019.

[HS15] Shai Halevi and Victor Shoup, “Bootstrapping for helib”, in: Annual Interna-
tional conference on the theory and applications of cryptographic techniques,
Springer, 2015.

248

http://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-40041-4_5

[Lee+20b] Yongwoo Lee, Joonwoo Lee, Young-Sik Kim, HyungChul Kang, and Jong-
Seon No, High-Precision and Low-Complexity Approximate Homomorphic
Encryption by Error Variance Minimization, Cryptology ePrint Archive, Re-
port 2020/1549, https://eprint.iacr.org/2020/1549, 2020.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan, “On-the-fly
multiparty computation on the cloud via multikey fully homomorphic en-
cryption”, in: Proceedings of the Annual ACM Symposium on Theory of
Computing (May 2012), doi: 10.1145/2213977.2214086.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Detouzos, “On data banks
and privacy homomorphisms”, in: Foundations of Secure Computation, Avail-
able at https://people.csail.mit.edu/rivest/pubs.html, Academic
Press, 1978, pp. 165–179.

[SV14] Nigel P. Smart and Frederik Vercauteren, “Fully homomorphic SIMD oper-
ations”, in: Des. Codes Cryptography 71.1 (2014).

249

https://eprint.iacr.org/2020/1549
https://doi.org/10.1145/2213977.2214086
https://people.csail.mit.edu/rivest/pubs.html

TFHE

[ACS20] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey, “Faster Homomorphic En-
cryption is not Enough: Improved Heuristic for Multiplicative Depth Min-
imization of Boolean Circuits”, in: Topics in Cryptology - CT-RSA 2020 -
The Cryptographers’ Track at the RSA Conference 2020, San Francisco, CA,
USA, February 24-28, 2020, Proceedings, ed. by Stanislaw Jarecki, vol. 12006,
Lecture Notes in Computer Science, Springer, 2020, pp. 345–363, doi: 10.
1007/978-3-030-40186-3_15, url: https://doi.org/10.1007/978-3-
030-40186-3%5C_15.

[Bou+20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev,
“CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption
Schemes”, in: J. Math. Cryptol. 14.1 (2020).

[CAS17] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey, “A Multi-start Heuristic
for Multiplicative Depth Minimization of Boolean Circuits”, in: Combina-
torial Algorithms - 28th International Workshop, IWOCA 2017, Newcastle,
NSW, Australia, July 17-21, 2017, Revised Selected Papers, ed. by Ljiljana
Brankovic, Joe Ryan, and William F. Smyth, vol. 10765, Lecture Notes in
Computer Science, Springer, 2017, pp. 275–286, doi: 10.1007/978-3-319-
78825- 8_23, url: https://doi.org/10.1007/978- 3- 319- 78825-
8%5C_23.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard, “New techniques
for multi-value input homomorphic evaluation and applications”, in: Cryp-
tographers’ Track at the RSA Conference, Springer, 2019.

[CCR19] Hao Chen, Ilaria Chillotti, and Ling Ren, “Onion Ring ORAM: Efficient
Constant Bandwidth Oblivious RAM from (Leveled) TFHE”, in: CCS 2019,
ACM, 2019, url: https://doi.org/10.1145/3319535.3354226.

[Che+21] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song, “Efficient Homomor-
phic Conversion Between (Ring) LWE Ciphertexts”, in: Applied Cryptogra-
phy and Network Security, ed. by Kazue Sako and Nils Ole Tippenhauer,
Cham: Springer International Publishing, 2021, pp. 460–479.

250

https://doi.org/10.1007/978-3-030-40186-3_15
https://doi.org/10.1007/978-3-030-40186-3_15
https://doi.org/10.1007/978-3-030-40186-3%5C_15
https://doi.org/10.1007/978-3-030-40186-3%5C_15
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1145/3319535.3354226

[Chi+16a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène,
“Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds”, in: Advances in Cryptology - ASIACRYPT 2016, 2016.

[Chi+17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène,
“Faster Packed Homomorphic Operations and Efficient Circuit Bootstrap-
ping for TFHE”, in: Advances in Cryptology - ASIACRYPT 2017, 2017.

[Chi+20a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène,
“TFHE: Fast fully homomorphic encryption over the torus”, in: Journal of
Cryptology 33.1 (2020), Earlier versions in ASIACRYPT 2016 and 2017,
pp. 34–91, doi: 10.1007/s00145-019-09319-x.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier, “Programmable Bootstrap-
ping Enables Efficient Homomorphic Inference of Deep Neural Networks”,
in: Cyber Security Cryptography and Machine Learning - 5th International
Symposium, CSCML 2021, vol. 12716, Lecture Notes in Computer Science,
Springer, 2021.

[Cle+22] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey,
and Cédric Gouy-Pailler, Putting up the swiss army knife of homomorphic
calculations by means of TFHE functional bootstrapping, Cryptology ePrint
Archive, Report 2022/149, https://ia.cr/2022/149, 2022.

[DM15] Léo Ducas and Daniele Micciancio, “FHEW: Bootstrapping homomorphic
encryption in less than a second”, in: Advances in Cryptology – EU-
ROCRYPT 2015, Part I, vol. 9056, Lecture Notes in Computer Science,
Springer, 2015, pp. 617–640, doi: 10.1007/978-3-662-46800-5_24.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha, “Revisiting the
functional bootstrap in TFHE”, in: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021.2 (2021).

[Joy21] Marc Joye, “Balanced Non-adjacent Forms”, in: Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 6-10,
2021, Proceedings, Part III, ed. by Mehdi Tibouchi and Huaxiong Wang,
vol. 13092, Lecture Notes in Computer Science, Springer, 2021, pp. 553–576,
doi: 10.1007/978-3-030-92078-4_19, url: https://doi.org/10.1007/
978-3-030-92078-4%5C_19.

251

https://doi.org/10.1007/s00145-019-09319-x
https://ia.cr/2022/149
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-030-92078-4_19
https://doi.org/10.1007/978-3-030-92078-4%5C_19
https://doi.org/10.1007/978-3-030-92078-4%5C_19

[JP22] Marc Joye and Pascal Paillier, “Blind Rotation in Fully Homomorphic En-
cryption with Extended Keys”, in: Cyber Security, Cryptology, and Machine
Learning, ed. by Shlomi Dolev, Jonathan Katz, and Amnon Meisels, Cham:
Springer International Publishing, 2022, pp. 1–18, isbn: 978-3-031-07689-3.

[Kim+22] Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo Song,
“Asymptotically Faster Multi-Key Homomorphic Encryption from Homo-
morphic Gadget Decomposition”, in: IACR Cryptol. ePrint Arch. (2022),
p. 347, url: https://eprint.iacr.org/2022/347.

[KO22] Jakub Klemsa and Melek Onen, Parallel Operations over TFHE-Encrypted
Multi-Digit Integers, Cryptology ePrint Archive, Report 2022/067, 2022,
url: https://ia.cr/2022/067.

[KS21] Kamil Kluczniak and Leonard Schild, “FDFB: Full Domain Functional Boot-
strapping Towards Practical Fully Homomorphic Encryption”, in: CoRR
(2021), url: https://arxiv.org/abs/2109.02731.

[KMS22] Hyesun Kwak, Seonhong Min, and Yongsoo Song, “Towards Practical Multi-
key TFHE: Parallelizable, Key-Compatible, Quasi-linear Complexity”, in:
IACR Cryptol. ePrint Arch. (2022), p. 1460, url: https://eprint.iacr.
org/2022/1460.

[Lee+23] Changmin Lee, Seonhong Min, Jinyeong Seo, and Yongsoo Song, “Faster
TFHE Bootstrapping with Block Binary Keys”, in: ACM ASIACCS 2023,
2023.

[LY23] Kang Hoon Lee and Ji Won Yoon, “Discretization Error Reduction for
High Precision Torus Fully Homomorphic Encryption”, in: Public-Key
Cryptography–PKC 2023: 26th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7–10, 2023,
Proceedings, Part II, Springer, 2023, pp. 33–62.

[LMP21] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov, Large-Precision Homo-
morphic Sign Evaluation using FHEW/TFHE Bootstrapping, Cryptology
ePrint Archive, Report 2021/1337, https://ia.cr/2021/1337, 2021.

[Mat+21] Kotaro Matsuoka, Yusuke Hoshizuki, Takashi Sato, and Song Bian, “To-
wards Better Standard Cell Library: Optimizing Compound Logic Gates for
TFHE”, in: WAHC ’21: Proceedings of the 9th on Workshop on Encrypted

252

https://eprint.iacr.org/2022/347
https://ia.cr/2022/067
https://arxiv.org/abs/2109.02731
https://eprint.iacr.org/2022/1460
https://eprint.iacr.org/2022/1460
https://ia.cr/2021/1337

Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15
November 2021, WAHC@ACM, 2021, url: https://doi.org/10.1145/
3474366.3486927.

[Zho+18] Tanping Zhou, Xiaoyuan Yang, Longfei Liu, Wei Zhang, and Ningbo Li,
“Faster Bootstrapping With Multiple Addends”, in: IEEE Access 6 (2018),
pp. 49868–49876, doi: 10.1109/ACCESS.2018.2867655.

253

https://doi.org/10.1145/3474366.3486927
https://doi.org/10.1145/3474366.3486927
https://doi.org/10.1109/ACCESS.2018.2867655

Implementations

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey, “Armadillo: a compila-
tion chain for privacy preserving applications”, in: Proceedings of the 3rd
International Workshop on Security in Cloud Computing, 2015.

[Chi+16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène,
“TFHE: Fast fully homomorphic encryption library”, https : / / tfhe .
github.io/tfhe/, Aug. 2016.

[DM17] Léo Ducas and Daniele Micciancio, FHEW: A Fully Homomorphic Encryp-
tion library, 2017.

[FJ05] Matteo Frigo and Steven G. Johnson, “The design and implementation of
FFTW3”, in: Proceedings of the IEEE 93.2 (2005), Special issue on “Program
Generation, Optimization, and Platform Adaptation” http://www.fftw.
org/, pp. 216–231.

[Har+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant, “Array programming with NumPy”, in: Nature
585.7825 (Sept. 2020), pp. 357–362, doi: 10.1038/s41586-020-2649-2,
url: https://doi.org/10.1038/s41586-020-2649-2.

[20] “ISO/IEC/IEEE International Standard - Floating-point arithmetic”, in:
ISO/IEC 60559:2020(E) IEEE Std 754-2019 (2020), pp. 1–86, doi: 10 .
1109/IEEESTD.2020.9091348.

[Pad11] David Padua, “FFTW”, in: Encyclopedia of Parallel Computing, ed. by
David Padua, Boston, MA: Springer US, 2011, pp. 671–671, isbn: 978-0-
387-09766-4, doi: 10.1007/978-0-387-09766-4_397, url: https://doi.
org/10.1007/978-0-387-09766-4_397.

[VG13] Joachim Von Zur Gathen and Jürgen Gerhard, Modern computer algebra,
Cambridge university press, 2013.

254

https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
http://www.fftw.org/
http://www.fftw.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/IEEESTD.2020.9091348
https://doi.org/10.1109/IEEESTD.2020.9091348
https://doi.org/10.1007/978-0-387-09766-4_397
https://doi.org/10.1007/978-0-387-09766-4_397
https://doi.org/10.1007/978-0-387-09766-4_397

[Zam22a] Zama, Concrete: TFHE Compiler that converts python programs into FHE
equivalent, https://github.com/zama-ai/concrete, 2022.

[Zam22b] Zama, TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, https://github.
com/zama-ai/tfhe-rs, 2022.

255

https://github.com/zama-ai/concrete
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

Optimization for FHE

[Chi+18] Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektarios Georgios Tsoutsos,
and Michail Maniatakos, E3: A Framework for Compiling C++ Programs
with Encrypted Operands, Cryptology ePrint Archive, Paper 2018/1013,
2018.

[Dat+20] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine,
and Madan Musuvathi, “EVA: an encrypted vector arithmetic language and
compiler for efficient homomorphic computation”, in: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, ACM, June 2020, doi: 10.1145/3385412.3386023, url: https:
//doi.org/10.1145%2F3385412.3386023.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart, “Homomorphic Evaluation of
the AES Circuit”, in: Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings, ed. by Reihaneh Safavi-Naini and Ran Canetti, vol. 7417, Lecture
Notes in Computer Science, Springer, 2012, pp. 850–867, doi: 10.1007/978-
3-642-32009-5_49, url: https://doi.org/10.1007/978-3-642-32009-
5%5C_49.

[Gor+21] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam, Royce
J. Wilson, Asra Ali, Eric P. Astor, Itai Zukerman, Sam Ruth, Christoph
Dibak, Phillipp Schoppmann, Sasha Kulankhina, Alain Forget, David Marn,
Cameron Tew, Rafael Misoczki, Bernat Guillén, Xi Ye, Dennis Kraft, Damien
Desfontaines, Aishe Krishnamurthy, Miguel Guevara, Irippuge Milinda Per-
era, Iurii Sushko, and Bryant Gipson, “A General Purpose Transpiler for
Fully Homomorphic Encryption”, in: IACR Cryptol. ePrint Arch. 2021
(2021), p. 811, url: https : / / api . semanticscholar . org / CorpusID :
235436123.

[GKT22] Charles Gouert, Rishi Khan, and Nektarios Georgios Tsoutsos, Optimizing
Homomorphic Encryption Parameters for Arbitrary Applications, Cryptol-
ogy ePrint Archive, Paper 2022/575, https://eprint.iacr.org/2022/575,
2022, url: https://eprint.iacr.org/2022/575.

256

https://doi.org/10.1145/3385412.3386023
https://doi.org/10.1145%2F3385412.3386023
https://doi.org/10.1145%2F3385412.3386023
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5%5C_49
https://doi.org/10.1007/978-3-642-32009-5%5C_49
https://api.semanticscholar.org/CorpusID:235436123
https://api.semanticscholar.org/CorpusID:235436123
https://eprint.iacr.org/2022/575
https://eprint.iacr.org/2022/575

[KM78] Ravindran Kannan and Clyde L. Monma, “On the Computational Com-
plexity of Integer Programming Problems”, in: Optimization and Operations
Research, ed. by Rudolf Henn, Bernhard Korte, and Werner Oettli, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1978, pp. 161–172.

[Kle22] Jakub Klemsa, “Hitchhiker’s Guide to a Practical Automated TFHE Param-
eter Setup for Custom Applications”, in: IACR Cryptol. ePrint Arch. (2022),
p. 1315, url: https://eprint.iacr.org/2022/1315.

[Lee+20a] DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi, “Optimizing
homomorphic evaluation circuits by program synthesis and term rewriting”,
in: Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020, ed. by Alastair F. Donaldson and Emina Torlak,
ACM, 2020, pp. 503–518, doi: 10.1145/3385412.3385996, url: https:
//doi.org/10.1145/3385412.3385996.

[Mon+22] Johannes Mono, Chiara Marcolla, Georg Land, Tim Güneysu, and Najwa
Aaraj, “Finding and Evaluating Parameters for BGV”, in: IACR Cryptol.
ePrint Arch. (2022), p. 706, url: https://eprint.iacr.org/2022/706.

[Via+22] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi, “HECO:
Fully Homomorphic Encryption Compiler”, in: USENIX Security Sympo-
sium, 2022, url: https : / / api . semanticscholar . org / CorpusID :
257365804.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi, “SoK: Fully Homo-
morphic Encryption Compilers”, in: CoRR (2021), url: https://arxiv.
org/abs/2101.07078.

257

https://eprint.iacr.org/2022/1315
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://eprint.iacr.org/2022/706
https://api.semanticscholar.org/CorpusID:257365804
https://api.semanticscholar.org/CorpusID:257365804
https://arxiv.org/abs/2101.07078
https://arxiv.org/abs/2101.07078

My Contributions

[Ber+23a] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien
Ligier, Jean-Baptiste Orfila, and Samuel Tap, “Parameter Optimization and
Larger Precision for (T)FHE”, in: Journal of Cryptology 36.3 (2023), p. 28,
doi: 10.1007/s00145-023-09463-5, url: https://doi.org/10.1007/
s00145-023-09463-5.

[Ber+23b] Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Adeline
Roux-Langlois, and Samuel Tap, Faster Secret Keys for (T)FHE, Cryptology
ePrint Archive, Paper 2023/979, 2023, url: https://eprint.iacr.org/
2023/979.

[Chi+20b] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel
Tap, “CONCRETE: Concrete operates on ciphertexts rapidly by extending
TfhE”, in: WAHC 2020, 2020.

[Chi+21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap, “Im-
proved programmable bootstrapping with larger precision and efficient arith-
metic circuits for tfhe”, in: ASIACRYPT 2021, Springer, 2021.

[Dah+23] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap, and Michael
Walter, “Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding”, in:
Proceedings of the 11th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography, WAHC ’23, Copenhagen, Denmark: Association for
Computing Machinery, 2023, pp. 35–46, isbn: 9798400702556, doi: 10.1145/
3605759.3625259, url: https://doi.org/10.1145/3605759.3625259.

258

https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://eprint.iacr.org/2023/979
https://eprint.iacr.org/2023/979
https://doi.org/10.1145/3605759.3625259
https://doi.org/10.1145/3605759.3625259
https://doi.org/10.1145/3605759.3625259

Appendix A

APPENDIX

A.1 Noise Analysis of the GLWE Multiplication

In this section, we provide details for the noise analysis of the multiplication described
in Algorithm 20. We start by providing some basic notations and analysis for the distri-
butions composing the different elements that are called in the multiplication. We then
provide a noise analysis for the two parts of the multiplication, i.e. the tensor product
in Section A.1.4 and the relinearization in Section A.1.6.

A.1.1 Notation.

Let q be a ciphertext modulus such that q is a power-of-two. We use the notation [·]q
to indicate a centered modular reduction, i.e., modulo q with representatives chosen in
J−q/2, q/2J⊂ Z. When we modulus switch an integer value x ∈ Z from q to Q with
q < Q ∈ N, the following conversions are used:[x]q

q→Q−−−→ [x]Q
[x]Q

Q→q−−−→ [x]q + q · U where U ∈ Z

Then, we have the following properties for polynomials P (X) ∈ R:[P (X)]q
q→Q−−−→ [P (X)]Q

[P (X)]Q
Q→q−−−→ [P (X)]q + q · U(X) where U(X) ∈ R

When doing operations between polynomials:
n∑

i=1

[
P (i)(X)

]
q

=
[

n∑
i=1

P (i)(X)
]

q

+ q · U+(X)

n∏
i=1

[
P (i)(X)

]
q

=
[

n∏
i=1

P (i)(X)
]

q

+ q · U∗(X)

259

Note that U+ and U∗ are integer polynomials. Their distribution depends on the distri-
bution of polynomials P (1), · · · , P (n).

A.1.2 Uniform distributions in a fixed interval.

Let ∆ be a scaling factor such that ∆/2 is an integer. Consider the variance and expec-
tation of random variables from uniform intervals:

• Let ai be a uniform variable in J−∆/2, ∆/2J⊂ Z. Then:

ai ∈ U(J−∆/2, ∆/2J)

E(ai) = −1/2

Var(ai) = (∆2 − 1)/12

• Let ai be a uniform variable in J−q/2, q/2J⊂ Z. Then:

ai ∈ U(J−q/2, q/2J)

E(ai) = −1/2

Var(ai) = (q2 − 1)/12

A.1.3 Secret keys probability distributions.

We analyze the probability distributions of the secret keys and their combinations that
appear in the multiplication. We start by observing some basic probability distributions
for uniform binary, uniform ternary and Gaussian keys in Table A.1.

Binary Ternary Gaussian
Var(si) 1/4 2/3 σ2

E(si) 1/2 0 0
Var(s2

i) 1/4 2/9 2σ4

E(s2
i) 1/2 2/3 σ2

Var(sisj) 3/16 4/9 σ4

E(sisj) 1/4 0 0

Table A.1: Variance and expectation of si, s2
i and sisj with si and sj independently drawn

from the distribution D and D is either uniform binary, uniform ternary or Gaussian.

Distribution of Si(X)Sj(X): i = j case. We consider a polynomial S(X) = ∑N−1
i=0 si ·

X i ∈ Rq and S ′(X) = S2(X) = ∑N−1
α=0 s′α·Xα = ∑(N−2)/2

k=0 s′2k·X2k+∑(N−2)/2
k=0 s′2k+1·X2k+1 ∈

Rq. We have each si independently sampled from the same distribution D of variance σ2
D

and expectation µD.

260

E(s′α) = E (si · sj) · (2α−N + 2)

Var(s′2k) = 2 · Var
(
s2

k

)
+ 2 · (N − 2) · Var (si · sj)

Var(s′2k+1) = 2 ·N · Var (si · sj)

Proof 40 Let’s start by focusing on the even terms:

s′α := s′2k =
∑

i+j=2k

si · sj

= s2
k − s2

N
2 +k

+
i ̸=j∑

i+j=2k

si · sj = s2
k − s2

N
2 +k

+
i̸=j∑

i+j=2k<N

si · sj −
i ̸=j∑

i+j=2k≥N

si · sj

= s2
k − s2

N
2 +k

+
i ̸=j,i<j∑

i+j=2k<N

2 · si · sj −
i ̸=j,i<j∑

i+j=2k≥N

2 · si · sj

Observe that all the terms are independent since the pairs (i, j) are exclusive in each
sum. The variance is:

Var(s′α) := Var(s′2k) = Var

s2
k − s2

N
2 +k

+
i ̸=j,i<j∑

i+j=2k<N

2 · si · sj −
i̸=j,i<j∑

i+j=2k≥N

2 · si · sj

= Var

(
s2

k

)
+ Var

(
s2

N
2 +k

)
+ Var

 i̸=j,i<j∑
i+j=2k<N

2 · si · sj

+ Var

 i ̸=j,i<j∑
i+j=2k≥N

2 · si · sj

= 2 · Var

(
s2

k

)
+

i ̸=j,i<j∑
i+j=2k<N

4 · Var (si · sj)︸ ︷︷ ︸
k terms

+
i ̸=j,i<j∑

i+j=2k≥N

4 · Var (si · sj)︸ ︷︷ ︸
N−2

2 −k terms

= 2 · Var
(
s2

k

)
+

i ̸=j,i<j∑
i+j=2k

4 · Var (si · sj)︸ ︷︷ ︸
N−2

2 terms

= 2 · Var
(
s2

k

)
+ N − 2

2 · 4 · Var (si · sj)

= 2 · Var
(
s2

k

)
+ 2 · (N − 2) · Var (si · sj) .

The expectation is:

261

E(s′α) := E(s′2k) = E

s2
k − s2

N
2 +k

+
i ̸=j,i<j∑

i+j=2k<N

2 · si · sj −
i ̸=j,i<j∑

i+j=2k≥N

2 · si · sj

= ���E

(
s2

k

)
−
��

���E
(

s2
N
2 +k

)
+ E

 i ̸=j,i<j∑
i+j=2k<N

2 · si · sj

− E

 i ̸=j,i<j∑
i+j=2k≥N

2 · si · sj

=

i̸=j,i<j∑
i+j=2k<N

2 · E (si · sj)︸ ︷︷ ︸
k terms

−
i ̸=j,i<j∑

i+j=2k≥N

2 · E (si · sj)︸ ︷︷ ︸
N−2

2 −k terms

= 2 · k · E (si · sj)− 2 ·
(

N − 2
2 − k

)
· E (si · sj)

= 2 · E (si · sj) · (k − N − 2
2 + k) = E (si · sj) · (4k −N − 2)

= E (si · sj) · (2α−N + 2) .

Now, let’s focus on the odd coefficients.

s′α := s′2k+1 =
∑

i+j=2k+1<N

si · sj −
∑

i+j=2k+1≥N

si · sj

=
i<j∑

i+j=2k+1<N

2si · sj −
i<j∑

i+j=2k+1≥N

2si · sj .

Observe again that all the terms are independent since the couples (i, j) are exclusive
in each sum. The variance is

Var(s′α) := Var(s′2k+1) = Var

 i<j∑
i+j=2k+1<N

2si · sj −
i<j∑

i+j=2k+1≥N

2si · sj

= Var

 i<j∑
i+j=2k+1<N

2si · sj

+ Var

 i<j∑
i+j=2k+1≥N

2si · sj

= 4 ·

i<j∑
i+j=2k+1<N

Var (si · sj)︸ ︷︷ ︸
k+1 terms

+4 ·
i<j∑

i+j=2k+1≥N

Var (si · sj)︸ ︷︷ ︸
N
2 −(k+1) terms

= 4 · (k + 1) · Var (si · sj) + 4 · (N

2 − k − 1) · Var (si · sj)

= 4 · Var (si · sj) · (k + 1 + N

2 − k − 1) = 4 · Var (si · sj) · N

2
= 2 ·N · Var (si · sj) .

The expectation is

262

E(s′α) := E(s′2k+1) = E

 i<j∑
i+j=2k+1<N

2si · sj −
i<j∑

i+j=2k+1≥N

2si · sj

= E

 i<j∑
i+j=2k+1<N

2si · sj

− E

 i<j∑
i+j=2k+1≥N

2si · sj

= 2 ·

i<j∑
i+j=2k+1<N

E (si · sj)︸ ︷︷ ︸
k+1 terms

−2 ·
i<j∑

i+j=2k+1≥N

E (si · sj)︸ ︷︷ ︸
N
2 −(k+1) terms

= 2 · (k + 1) · E (si · sj)− 2 · (N

2 − k − 1) · E (si · sj)

= 2 · E (si · sj)
(

k + 1− N

2 + k + 1
)

= E (si · sj) (4k + 4−N) = E (si · sj) (2α + 2−N) .

□

In particular, in the case of a uniform binary, uniform ternary or Gaussian distribution,
the squared secret keys have coefficients distributed as shown in Table A.2.

Binary Ternary Gaussian
E(s′α) 1

4 · (2α−N + 2) 0 0
E2(s′mean) = mean({E2(s′α)}N−1

α=0) (N2+2)
48 0 0

Var(s′2k) 3
8 ·N −

1
4 (2N − 3) · 4

9 2N · σ4

Var(s′2k+1) 3
8 ·N N · 8

9 2N · σ4

Table A.2: General formula applied to polynomials with binary, ternary and Gaussian
distributions. These formulae are true for N a power of 2, N ̸= 1.

For the Binary case, the following proof shows that:

N−1∑
α=0

E2(s′α) =

N/2−1∑
i=0

E2(s′2i+1) +
N/2−1∑

i=0
E2(s′2i)

 = N · (N2 + 2)
48

This means that in average, the expectation of a coefficient of the squared binary key
is
√

(N2 + 2)/48.

263

Proof 41N/2−1∑
i=0

E2(s′2i+1) +
N/2−1∑

i=0
E2(s′2i)

 =
N−1∑
k=0

E2(s′k)

=
N−1∑
k=0

(
k + 1

2 − N

4

)2

=
N−1∑
k=0

(
(k + 1)2

4 − 2 · k + 1
2 · N

4 + N2

16

)

=
N−1∑
k=0

(
k2

4 + 1
4 + 2k

4 −
kN

4 − N

4 + N2

16

)

= N ·
(

1
4 −

N

4 + N2

16

)
+

N−1∑
k=0

(
k2

4 + k

2 −
kN

4

)

= N

4 −
N2

4 + N3

16 + 1
4 ·

N−1∑
k=0

k2 +
(

1
2 −

N

4

)
·

N−1∑
k=0

k

= N

4 −
N2

4 + N3

16 +

+ 1
4 ·

(N − 1)N(2(N − 1) + 1)
6 +

(
1
2 −

N

4

)
· (N − 1)N

2

= N(N2 + 2)
48

□

Distribution of Si(X)Sj(X): i ̸= j case. We consider two polynomials Si(X) =∑N−1
k=0 Si,k ·Xk ∈ Rq and Sj(X) = ∑N−1

k=0 Sj,k ·Xk ∈ Rq. We note as S ′′(X) = Si(X)·Sj(X).
We have:

S′′(X) = Si(X) · Sj(X) =
N−1∑
α=0

S′′α ·Xα

=
N−1∑
α=0

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k

 ·Xα ∈ Rq .

We have each coefficient of the two secret keys independently sampled from the same
distribution D of variance σ2

D and expectation µD.E(S′′α) = E (Si,h · Sj,k) · (2α + 2−N)

Var(S′′α) = N · Var (Si,h · Sj,k)

Proof 42 Let Si, Sj ∈ R be two independent keys following the same distribution (binary,
ternary or Gaussian). Then

264

Si · Sj =
N∑

α=1
S′′α ·Xα =

N∑
α=1

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k

 ·Xα

Observe that all the terms in the sum are independent. The variance is

Var(S′′α) = Var

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k

= Var

(∑
h+k=α<N

Si,h · Sj,k

)
+ Var

 ∑
h+k=α≥N

Si,h · Sj,k

=

∑
h+k=α<N

Var (Si,h · Sj,k) +
∑

h+k=α≥N

Var (Si,h · Sj,k)

=
∑

h+k=α[N]

Var (Si,h · Sj,k)

= N · Var (Si,h · Sj,k) .

The expectation is

E(S′′α) = E

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k

= E

(∑
h+k=α<N

Si,h · Sj,k

)
− E

 ∑
h+k=α≥N

Si,h · Sj,k

=

∑
h+k=α<N

E (Si,h · Sj,k)︸ ︷︷ ︸
α+1 terms

−
∑

h+k=α≥N

E (Si,h · Sj,k)︸ ︷︷ ︸
N−(α+1) terms

= (α + 1) · E (Si,h · Sj,k)− (N − (α + 1)) · E (Si,h · Sj,k)

= E (Si,h · Sj,k) · (α + 1−N + α + 1)

= E (Si,h · Sj,k) · (2α + 2−N) .

□

In particular, in the case of a uniform binary, uniform ternary or Gaussian distribution,
the product secret keys have coefficients distributed as shown in Table A.3.

For the Binary case, we can observe that:

N−1∑
α=0

E2(S′′α) = N · (N2 + 2)
48

This means that in average, the expectation of a coefficient of the squared binary key
is
√

(N2 + 2)/48.

265

Binary Ternary Gaussian
E(S ′′α) 1

4(2α + 2−N) 0 0
E2(S ′′mean) = mean({E2(S ′′α)}N−1

α=0) N2+2
48 0 0

Var(S ′′α) 3
16 ·N

4
9 ·N σ4 ·N

Table A.3: General formula applied to polynomials with binary, ternary and Gaussian
distributions.

Proof 43
N−1∑
α=0

E2(S′′α) =
N−1∑
α=0

(
1
4(2α + 2−N)

)2

= 1
16 ·

N−1∑
α=0

(2α + 2−N)2

= 1
16 ·

N−1∑
α=0

(
4α2 + 4 + 8α + N2 − 4Nα− 4N

)
= 1

16 ·
(

4N + N3 − 4N2 + 4
N−1∑
α=0

α2 + (8− 4N)
N−1∑
α=0

α

)

= 1
16 ·

(
4N + N3 − 4N2 + 4(N − 1)N(2(N − 1) + 1)

6 + (8− 4N) (N − 1)N
2

)
= N(N2 + 2)

48

□

A.1.4 Tensor product
We perform a GLWE multiplication with dense messages having different scaling factors.
The inputs are two GLWE ciphertexts modulo q:

CT(1) = (A(1)
1 , · · · , A

(1)
k , B(1) =

k∑
i=1

A
(1)
i · Si + E1 + P1) ∈ Rk+1

q

CT(2) = (A(2)
1 , · · · , A

(2)
k , B(2) =

k∑
i=1

A
(2)
i · Si + E2 + P2) ∈ Rk+1

q

such that

• (S1, · · · , Sk) ∈ Rk is the secret key made of polynomials with coefficients either
sampled from a uniform binary, uniform ternary or gaussian distribution,

• {A(1)
i }ki=1 and {A(2)

i }ki=1 are polynomials in Rq with coefficients sampled from
U(J−q/2, q/2J),

266

• E1, E2 are error polynomials in Rq such that their coefficients are sampled from
Gaussian distributions χσ1 , χσ2 respectively,

• P1 = ⌊∆1 ·M1⌉q and P2 = ⌊∆2 ·M2⌉q, with M1, M2 ∈ TN [X] and ∆1 and ∆2 the
scaling factors.

The first step (modulus switching, tensor product, rescale, round and modulo) is to
compute:

T ′i =

[
A

(1)
i ·A

(2)
i

]
Q

∆

q

depending on S2
i k terms

R′i,j =

[
A

(1)
i ·A

(2)
j + A

(1)
j ·A

(2)
i

]
Q

∆

q

depending on Si · Sj
k(k − 1)

2 terms

A′i =

[
A

(1)
i ·B(2) + B(1) ·A(2)

i

]
Q

∆

q

depending on Si k terms

B′ =
[⌊ [B1 ·B2]Q

∆

⌉]
q

constant term 1 term

where ∆ = min(∆1, ∆2). The intermediate result of this step are the polynomials:

[Ti]Q = A
(1)
i ·A

(2)
i =

[
A

(1)
i ·A

(2)
i

]
q

+ q · UTi
∈ RQ

[Ri,j]Q = A
(1)
i ·A

(2)
j + A

(1)
j ·A

(2)
i =

[
A

(1)
i ·A

(2)
j + A

(1)
j ·A

(2)
i

]
q

+ q · URi,j
∈ RQ

[Ai]Q = A
(1)
i ·B

(2) + B(1) ·A(2)
i =

[
A

(1)
i ·B

(2) + B(1) ·A(2)
i

]
q

+ q · UAi
∈ RQ

[B]Q = B(1) ·B(2) =
[
B(1) ·B(2)

]
q

+ q · UB ∈ RQ

These operations are performed in large precision Q = q2. The terms UTi , URi,j , UAi , UB

are in R. Then the polynomials are rescaled by ∆ and rounded modulo q:

[T ′i]q =
[⌊ [Ti]Q

∆

⌉]
q

=
[[Ti]Q

∆ + Ti

]
q[

R′i,j
]

q
=
[⌊

[Ri,j]Q
∆

⌉]
q

=
[

[Ri,j]Q
∆ + Ri,j

]
q

[A′i]q =
[⌊ [Ai]Q

∆

⌉]
q

=
[[Ai]Q

∆ + Ai

]
q

[B′]q =
[⌊ [B]Q

∆

⌉]
q

=
[[B]Q

∆ + B

]
q

267

such that Ti, Ri,j, Ai, B are the rounding errors in U(J−∆/2,∆/2J)
∆ . Let’s compute the

noise growth generated by these operations. In order to estimate it, we have to decrypt.
Let S⃗R = (S1 · S2, S1 · S3, · · · , Sk−1 · Sk) ∈ R

(k−1)k
2

q and S⃗T = (S2
1 , S2

2 , · · · , S2
k) such that

(S⃗R||S⃗T) = S⃗ ⊗ S⃗.

TensorDec(T⃗ ′, R⃗′, A⃗′, B′) =

= B′ − A⃗′ · S⃗ + R⃗′ · S⃗R + T⃗ ′ · S⃗T ∈ Rq

=
[B]Q

∆ + B −

[
A⃗
]

Q

∆ + A⃗

 · S⃗ +

[
R⃗
]

Q

∆ + R⃗

 · S⃗R +

[
T⃗
]

Q

∆ + T⃗

 · S⃗T ∈ Rq

=

(
[B]Q −

[
A⃗
]

Q
· S⃗ +

[
R⃗
]

Q
· S⃗R +

[
T⃗
]

Q
· S⃗T

)
∆ +

(
B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
∈ Rq

So now, let’s analyze the term:

[B]Q −
[
A⃗
]

Q
· S⃗ +

[
R⃗
]

Q
· S⃗R +

[
T⃗
]

Q
· S⃗T =

= B(1)B(2) − (A⃗(1)B(2) + A⃗(2)B(1)) · S⃗+

+
k∑

i=1

i−1∑
j=1

(A(1)
i ·A

(2)
j + A

(1)
j ·A

(2)
i) · SiSj +

k∑
i=1

(A(1)
i ·A

(2)
i) · S2

i ∈ Rq

= B(1)B(2) − (A⃗(1)B(2) + A⃗(2)B(1)) · S⃗ +
k∑

i=1

k∑
j=1

(A(1)
i ·A

(2)
j) · SiSj ∈ Rq

= B(1)B(2) − (A⃗(1)B(2) + A⃗(2)B(1)) · S⃗ + (A⃗(1) ⊗ A⃗(2)) · (S⃗ ⊗ S⃗) ∈ Rq

(A.1)

Now, let’s observe the following relations:

(B(1) − A⃗(1) · S⃗)(B(2) − A⃗(2) · S⃗) =

= B(1)B(2) − (A⃗(1)B(2) + A⃗(2)B(1))S⃗ + (A⃗(1) · S⃗)(A⃗(2) · S⃗)

= B(1)B(2) − (A⃗(1)B(2) + A⃗(2)B(1))S⃗ + (A⃗(1) ⊗ A⃗(2)) · (S⃗ ⊗ S⃗) ∈ RQ

(A.2)

and

(B(1) − A⃗(1) · S⃗)(B(2) − A⃗(2) · S⃗) = (P1 + E1 + qU1)(P2 + E2 + qU2) ∈ RQ

= P1P2 + P1E2 + P2E1 + E1E2+

+ q(P1U2 + P2U1 + E1U2 + E2U1) + q2U1U2 ∈ RQ

(A.3)

Observe that the coefficients of S2
i and SiSj are all ≤ N , if the key is binary or ternary.

Since N < q, we assume that they do not overlap modulo q. If the key is Gaussian, the

268

coefficients will be a small factor of N in the worst case, and we still assume they do not
overlap modulo q.

By putting together Equations A.1, A.2 and A.3, we obtain the following equality:

[B]Q −
[
A⃗
]

Q
· S⃗ +

[
R⃗
]

Q
· S⃗R +

[
T⃗
]

Q
· S⃗T = P1P2 + P1E2 + P2E1 + E1E2+

+ q(P1U2 + P2U1 + E1U2 + E2U1)+

+ q2U1U2 ∈ RQ

(A.4)

We then observe:

TensorDec(T⃗ ′, R⃗′, A⃗′, B′) =

=

(
[B]Q −

[
A⃗
]

Q
· S⃗ +

[
R⃗
]

Q
· S⃗R +

[
T⃗
]

Q
· S⃗T

)
∆ +

(
B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
= (P1P2 + P1E2 + P2E1 + E1E2)

∆ + q (P1U2 + P2U1 + E1U2 + E2U1)
∆ +

+ q2U1U2

∆ +
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
= (∆1∆2M1M2 + ∆1M1E2 + ∆2M2E1 + E1E2)

∆ + q(∆1M1U2 + ∆2M2U1 + E1U2 + E2U1)
∆ +

+ q2U1U2

∆ +
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
= ∆′M1M2 + ∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2 + q

(
∆1

∆ M1U2 + ∆2

∆ M2U1

)
+

+ q

∆(E1U2 + E2U1) + q
q

∆U1U2 +
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
∈ Rq

The value q
∆ is an integer smaller than q according to our parameter choices. So q

∆
will not overlap modulo q.

TensorDec(T⃗ ′, R⃗′, A⃗′, B′) =

= ∆′M1M2 + ∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2 + q

(
∆1

∆ M1U2 + ∆2

∆ M2U1

)
+

+ q

∆(E1U2 + E2U1) + q
q

∆U1U2 +
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
= ∆′M1M2 + ∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2 + q

∆(E1U2 + E2U1)+

+
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
∈ Rq

We extract the error:

269

Error(T⃗ ′, R⃗′, A⃗′, B′) = ∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2︸ ︷︷ ︸
(I)

+

+ q

∆(E1U2 + E2U1)︸ ︷︷ ︸
(II)

+
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
︸ ︷︷ ︸

(III)

∈ Rq

Let’s analyze each term separately.

(I) We assume that M1 = ∑N−1
i=0 ||M1||∞ ·X i and M2 = ∑N−1

i=0 ||M2||∞ ·X i.The variance
of the first term is:

Var(I) = Var
(

∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2

)
= Var

(
∆1

∆ M1E2

)
+ Var

(
∆2

∆ M2E1

)
+ Var(∆−1E1E2)

= ∆2
1

∆2 N ||M1||2∞σ2
2 + ∆2

2
∆2 N ||M2||2∞σ2

1 + N

∆2 σ2
1 · σ2

2

= N

∆2

(
∆2

1||M1||2∞σ2
2 + ∆2

2||M2||2∞σ2
1 + σ2

1σ2
2
)

(II) Let’s estimate the expectation and variance of U1 and U2. They come from the mod-
ulus switching adding two terms of error U1 and U2. They represent the part overlapping
the modulo q.

Remember that, according to the RLWE assumptions, the A⃗, B are insistinguishable
from uniform in U(J−q/2, q/2J) with CT = (A⃗(X), B(X)) an RLWE ciphertext.

Observe that:[
B −

k∑
i=1

AiSi

]
Q

=
[
B −

k∑
i=1

AiSi

]
q

+ qU = [∆M + E + qU]Q

We are looking for U . Then:[
B −∑k

i=1 AiSi
]
Q

q
=

[
B −∑k

i=1 AiSi
]
q

q
+ U

We assume that qU ≈ ∆M + E + qU since ∆M + E appears in the LSB. In practice it’s
like we did not cut the Gaussian’s tails so we overestimate from here.[

B −∑k
i=1 AiSi

]
Q

q
≈ U

270

In reality we study U as if we we were doing B−
∑k

i=1 AiSi
q

in Z, it supposes in general
that U is not bigger than Q/q so we can keep the modulo Q.

So we study the variance as follows:

Var (U) = Var

[
B −

∑k
i=1 AiSi −∆M − E

]
Q

q

≈ Var

[
B −

∑k
i=1 AiSi

]
Q

q

= 1

q2

(
Var(B) +

k∑
i=1

Var(AiSi)
)

= 1
q2 (Var(B) + kN · Var(Ai,j · Si,h))

= 1
q2

(
Var(Bj) + kN ·

(
Var(Ai,j) · Var(Si,h) + E2(Si,h) · Var(Ai,j) + Var(Si,h) · E2(Ai,j)

))
= 1

q2

(
q2 − 1

12 + kN ·
(

q2 − 1
12 · Var(Si,h) + E2(Si,h) · q2 − 1

12 + Var(Si,h) · 1
4

))
= 1

q2

(
q2 − 1

12 ·
(
1 + kN · Var(Si,h) + kN · E2(Si,h)

)
+ kN

4 · Var(Si,h)
)

And the expectation:

E (U) = E

[
B −

∑k
i=1 AiSi −∆M − E

]
Q

q

≈ E

[
B −

∑k
i=1 AiSi

]
Q

q

= 1

q
· E

(
B −

k∑
i=1

AiSi

)

= 1
q
·

(
E(B) +

k∑
i=1

E(AiSi)
)

= 1
q
· (E(B) + kN · E(Ai,j) · E(Si,h))

= − 1
2q
− kN

2q
· E(Si,h)

= − 1
2q

(1 + kN · E(Si,h))

By now, we note the coefficients Si,h of Si, simply by S. Then:

271

Var(II) = Var
(q

∆(E1U2 + E2U1)
)

= q2

∆2 · Var (E1U2 + E2U1)

= q2

∆2 · (Var(E1U2) + Var(E2U1))

= q2

∆2 · (N · Var(e1u2) + N · Var(e2u1))

= N · q2

∆2 ·
(
Var(e1)Var(u2) + E2(u2)Var(e1) + Var(e2)Var(u1) + E2(u1)Var(e2)

)
= N · q2

∆2 ·
(
Var(e1)Var(u) + E2(u)Var(e1) + Var(e2)Var(u) + E2(u)Var(e2)

)
= N · q2

∆2 ·
(
(Var(e1) + Var(e2)) · Var(u) + E2(u) · (Var(e1) + Var(e2))

)
= N · q2

∆2 ·
(
Var(u) + E2(u)

)
· (Var(e1) + Var(e2))

= N

∆2

(
q2 − 1

12
(
1 + kNVar(S) + kNE2(S)

)
+ kN

4 Var(S) + 1
4 (1 + kNE(S))2

)
(σ2

1 + σ2
2)

Observe that ei and uj indicate the coefficients of Ei and Uj respectively. The factor
N comes from the fact that they are polynomials.

(III) In this third part, we compute the variance of the error caused by the rounding.
We consider that B, A⃗, R⃗, T⃗ are all sampled from U(J−∆/2,∆/2J)

∆ . We also consider that:

• S⃗ is composed by k elements of the form Si = S, whose distribution are given in
Table A.1.

• S⃗T is composed by k elements of the form S2
i = S ′, whose distribution is stud-

ied in Section A.1.3. In particular, S ′ = ∑N−1
α=0 S ′αXα = S ′even + S ′odd with S ′even =∑N/2−1

i=0 S ′2iX
2i and S ′odd = ∑N/2−1

i=0 S ′2i+1X
2i+1.

• S⃗R is composed by k(k−1)
2 elements of the form Si · Sj = S ′′, whose distribution is

studied in Section A.1.3.

Then:

272

Var(III) = Var
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
= Var

(
B
)

+ Var
(

A⃗ · S⃗
)

+ Var
(

R⃗ · S⃗R

)
+ Var

(
T⃗ · S⃗T

)
= ∆2 − 1

12∆2 + k ·N ·
(
Var(a) ·

(
Var(S) + E2(S)

)
+ E2(a) · Var(S)

)
+

+ k(k − 1)
2 ·N ·

(
Var(r) ·

(
Var(S′′) + E2(S′′)

)
+ E2(r) · Var(S′′)

)
+

+ k ·
(

N

2 · Var(t) ·
(
Var(S′odd) + Var(S′even) + 2 · E2(S′mean)

)
+ N

2 · E
2(t) · (Var(S′odd) + Var(S′even))

)
= ∆2 − 1

12∆2 + kN ·
(

∆2 − 1
12∆2 ·

(
Var(S) + E2(S)

)
+ 1

4∆2 · Var(S)
)

+

+ k(k − 1)N
2 ·

(
∆2 − 1
12∆2 ·

(
Var(S′′) + E2(S′′)

)
+ 1

4∆2 · Var(S′′)
)

+

+ kN

2 ·
(

∆2 − 1
12∆2 ·

(
Var(S′odd) + Var(S′even) + 2 · E2(S′mean)

)
+ 1

4∆2 · (Var(S′odd) + Var(S′even))
)

= ∆2 − 1
12∆2 + kN

12∆2 ·
(
(∆2 − 1) ·

(
Var(S) + E2(S)

)
+ 3 · Var(S)

)
+

+ k(k − 1)N
24∆2 ·

(
(∆2 − 1) ·

(
Var(S′′) + E2(S′′)

)
+ 3 · Var(S′′)

)
+

+ kN

24∆2 ·
(
(∆2 − 1) ·

(
Var(S′odd) + Var(S′even) + 2 · E2(S′mean)

)
+ 3 · (Var(S′odd) + Var(S′even))

)

The formula is correct if N ̸= 1. In fact, observe that the study for key S ′′ adapts for
N = 1 but the key S ′ does not. In fact, S ′ is not a polynomial: there is just 1 term (not
odd or even anymore). In case of S ′ with N = 1, we fix the formula as follows:

If N = 1

Var(S′odd) = 0

Var(S′even) = 2 · Var(s2
i)

E(S′mean) = E(s2
i)

The factor 2 in Var(S ′even) is given by the N/2 that took care of odd and even coefficients.

273

Finally:

Var(E) = Var(Error(T⃗ ′, R⃗′, A⃗′, B′))

= Var
(

∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2

)
︸ ︷︷ ︸

(I)

+

+ Var
(q

∆(E1U2 + E2U1)
)

︸ ︷︷ ︸
(II)

+ Var
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
︸ ︷︷ ︸

(III)

= N
∆2 (∆2

1||M1||2∞σ2
2+∆2

2||M2||2∞σ2
1+σ2

1σ2
2)︸ ︷︷ ︸

(I)

+

+ N
∆2

(
q2−1

12 (1+kNVar(S)+kNE2(S))+ kN
4 Var(S)+ 1

4 (1+kNE(S))2
)

(σ2
1+σ2

2)︸ ︷︷ ︸
(II)

+

+ ∆2−1
12·∆2 + kN

12∆2 ·((∆2−1)·(Var(S)+E2(S))+3·Var(S))+ k(k−1)N

24∆2 ·((∆2−1)·(Var(S′′)+E2(S′′))+3·Var(S′′))+︸ ︷︷ ︸
(III)

+ kN
24∆2 ·((∆2−1)·(Var(S′

odd)+Var(S′
even)+2·E2(S′

mean))+3·(Var(S′
odd)+Var(S′

even)))︸ ︷︷ ︸
(III)

A.1.5 Bi-Distributed Error Polynomials

In this section, we analyse the case where the message is not a dense polynomial and
the error polynomial has coefficients following two different distributions. In particular,
we suppose that the message polynomial M contains 0 ≤ α ≤ N filled coefficients, and
their corresponding error terms following a Gaussian distribution N (0, σ2

fill), and there are
N − α empty coefficients containing error from the distribution N (0, σ2

emp).
We consider two message polynomials M1 and M2. The first one contains the α1

message coefficients m1,1, · · · , m1,α1 and the second polynomial contains the α2 message
coefficients m2,1, · · · , m2,α2 .

We will make the noise analysis only for the coefficients in the resulting plaintext
polynomial filled with single product of the form m1,i ·m2,j for 1 ≤ i ≤ α1 and 1 ≤ j ≤ α2.

For instance, in a product like

(a0 + a1X + a3X3) · (b0 + b1X) =

= a0b0 + (a0b1 + a1b0)X + a1b1X2 + a3b0X3 + a3b1X4

= c0 + c1X + c2X2 + c3X3 + c4X4

we are not going to analyse the noise in the c1 coefficient for instance.
An example is the result of a LWE to GLWE key switching, where the constant term

274

is the only one containing a message, and its error is larger than the error in the other
coefficients.

In the error of the tensor product:

Error(T⃗ ′, R⃗′, A⃗′, B′) = ∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2︸ ︷︷ ︸
(I)

+

+ q

∆(E1U2 + E2U1)︸ ︷︷ ︸
(II)

+
(

B − A⃗ · S⃗ + R⃗ · S⃗R + T⃗ · S⃗T

)
︸ ︷︷ ︸

(III)

∈ Rq

the only difference happens in terms (I) and (II). Let us analyze them separately.

(Ifill) The variance is:

Var(Ifill)

= Var
(

∆1

∆ M1E2 + ∆2

∆ M2E1 + ∆−1E1E2

)
= Var

(
∆1

∆ M1E2

)
+ Var

(
∆2

∆ M2E1

)
+ Var(∆−1E1E2)

= ∆2
1

∆2 ||M1||2∞
(
(α1 − 1) · σ2

2,emp + σ2
2,fill
)

+ ∆2
2

∆2 ||M2||2∞
(
(α2 − 1) · σ2

1,emp + σ2
1,fill
)

+

+ 1
∆2

(
σ2

1,fillσ
2
2,fill + (α1 − 1)σ2

1,fillσ
2
2,emp + (α2 − 1)σ2

1,empσ2
2,fill + (N − α1 − α2 + 1)(σ2

1,empσ2
2,emp)

)

(IIfill) By now, we note the coefficients Si,h of Si, simply by S. Then:

Var(IIfill) =

= Var
(
q

∆
(E1U2 + E2U1)

)
= q2

∆2 · Var (E1U2 + E2U1)

= q2

∆2 · (Var(E1U2) + Var(E2U1))

= q2

∆2 ·
(
α1Var(e1,fillu2) + (N − α1)Var(e1,empu2)

)
+ q2

∆2 ·
(
α2Var(e2,fillu1) + (N − α2)Var(e2,empu1)

)
= q2

∆2 ·
(
α1Var(e1,fillu) + (N − α1)Var(e1,empu)

)
+ q2

∆2 ·
(
α2Var(e2,fillu) + (N − α2)Var(e2,empu)

)
= q2

∆2 ·
(

Var(u) + E2(u)
)
·
(
α1Var(e1,fill) + (N − α1)Var(e1,emp) + α2Var(e2,fill) + (N − α2)Var(e2,emp)

)
= N

∆2 ·
(
q2 − 1

12
(

1 + kNVar(S) + kNE2(S)
)

+ kN

4
Var(S) + 1

4
(1 + kNE(S))2

)
·

·
(
α1σ1,fill + (N − α1)σ1,emp + α2σ2,fill + (N − α2)σ2,emp

)
Observe that ei and uj indicate the coefficients of Ei and Uj respectively. The factor

N comes from the fact that they are polynomials.

275

A.1.6 Relinearization

The last step (relinearization) is to compute:

Relin(T⃗ ′, R⃗′, A⃗′, B′) = (A′1, · · · , A′k, B′) +
k∑

i=1

〈
CTi,i, dec(β,ℓ) (T ′i)

〉
+

1≤j<i∑
1≤i≤k

〈
CTi,j · dec(β,ℓ) (R′i,j)〉

where:
RLK =

{
CTi,j = GLev(β,ℓ)

S⃗
(Si · Sj) =

{
RLK(i,j)

h

}
1≤h≤ℓ

}1≤j≤i

1≤i≤k

is the realinearization key, so that each component RLK(i,j)
h , with i ∈ [1, k], j ∈

[1, i], h ∈ [1, ℓ] is defined as:

RLK(i,j)
h = RLWES⃗

(
Si · Sj ·

q

βh

)
=
(

⃗ARLK(i,j)
h

, BRLK(i,j)
h

)
with

BRLK(i,j)
h

=
∑k

α=1 A
α,RLK(i,j)

h

· Sα + ERLK(i,j)
h

− Si · Sj · q
βj mod q

A
α,RLK(i,j)

h

coefficients in U(J− q
2 , q

2J)

ERLK(i,j)
h

coefficients in N (0, σ2
RLK)

To ease the notations in this section, we will note T⃗ ′, R⃗′, A⃗′, B′ as T⃗ , R⃗, A⃗, B respec-
tively.

Decomposition We start by decomposing T⃗ and R⃗ w.r.t the basis β and the number
of level ℓ starting from the MSB. By using the previous notation, we have:

• T⃗ = {Ti}i∈[k] = {T ′i + Ti}i∈[k], with T ′i = ∑N−1
p=0 T ′i,pX

p, and each T ′i,p is the closest
multiple of q

βℓ
in Zq. Then, we write each T ′i,p as ∑ℓ

h=1 T ′i,p,h
q
βh

, where each T ′i,p,h ∈
J−β

2 , β2 J.
The Ti = ∑N−1

p=0 Ti,p ·Xp term represents the rounding error, so that each coefficient
of Ti,p ∼ U(J− q

2βℓ ,
q

2βℓ J).

• R⃗ = {Ri,j}i∈[k],j∈[i−1] = {R′i,j + Ri,j}i∈[k],j∈[i−1], with R′i,j = ∑N−1
p=0 R′i,j,pX

p, and each
R′i,j,p is the closest multiple of q

βℓ
in Zq. Then, we write each R′i,j,p as ∑ℓ

h=1 R′i,j,p,h
q
βh

,
where each R′i,j,p,h ∈ J−β

2 , β2 J.
The Ri,j = ∑N−1

p=0 Ri,j,p ·Xp term represents the rounding error, so that each coeffi-
cient of Ri,j,p ∼ U(J− q

2βℓ ,
q

2βℓ J).

276

We denote by T ′i,h the polynomial ∑N−1
p=0 T ′i,p,hX

p and by R′i,j,h the polynomial∑N−1
p=0 R′i,j,p,hX

p.

Relinearization

CT = Relin(T⃗ , R⃗, A⃗, B)

=
(
A⃗, B

)
+

k∑
i=1

〈
CTi,i, dec(β,ℓ) (Ti)

〉
+

1≤j<i∑
1≤i≤k

〈
CTi,j · dec(β,ℓ) (Ri,j)

〉
= (A⃗, B) +

k∑
i=1

ℓ∑
h=1

RLK(i,i)
h
· T ′
i,h +

k∑
i=1

i−1∑
j=1

ℓ∑
h=1

RLK(i,j)
h
·R′

i,j,h

= (A⃗, B) +
k∑
i=1

ℓ∑
h=1

(
⃗A

RLK(i,i)
h

, B
RLK(i,i)

h

)
· T ′
i,h +

k∑
i=1

i−1∑
j=1

ℓ∑
h=1

(
⃗A

RLK(i,j)
h

, B
RLK(i,j)

h

)
·R′

i,j,h

=
(
A⃗+
∑k

i=1

∑ℓ

h=1

(
⃗A

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
⃗A

RLK(i,j)
h

·R′
i,j,h

)
,B+
∑k

i=1

∑ℓ

h=1

(
B

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
B

RLK(i,j)
h

·R′
i,j,h

))
= (A⃗res, Bres) ∈ R2

q

The computation of the phase gives:

CT · (−S⃗, 1) = Bres − A⃗res · S⃗

= B+
∑k

i=1

∑ℓ

h=1

(
B

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
B

RLK(i,j)
h

·R′
i,j,h

)
−A⃗·S⃗−

∑k

i=1

∑ℓ

h=1

(
⃗A

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
⃗A

RLK(i,j)
h

·R′
i,j,h

)
·S⃗

= B−A⃗·S⃗+
∑k

i=1

∑ℓ

h=1

(
⃗A

RLK(i,i)
h

·S⃗+E
RLK(i,i)

h

+S2
i · q

βh

)
·T ′

i,h
+

+
∑k

i=1

∑ℓ

h=1

∑i−1
j=1

(
⃗A

RLK(i,j)
h

·S⃗+E
RLK(i,j)

h

+Si·Sj · q

βh

)
·R′

i,j,h
−
∑k

i=1

∑ℓ

h=1

(
⃗A

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
⃗A

RLK(i,j)
h

·R′
i,j,h

)
·S⃗

= B−A⃗·S⃗+
∑k

i=1

∑ℓ

h=1

(
E

RLK(i,i)
h

+S2
i · q

βh

)
·T ′

i,h
+
∑k

i=1

∑ℓ

h=1

∑i−1
j=1

(
E

RLK(i,j)
h

+Si·Sj · q

βh

)
·R′

i,j,h

= B−A⃗·S⃗+
∑k

i=1

∑ℓ

h=1
E

RLK(i,i)
h

·T ′
i,h

+
∑k

i=1

∑ℓ

h=1
S2

i · q

βh
·T ′

i,h
+

+
∑k

i=1

∑ℓ

h=1

∑i−1
j=1

E
RLK(i,j)

h

·R′
i,j,h

+
∑k

i=1

∑ℓ

h=1

∑i−1
j=1

Si·Sj · q

βh
·R′

i,j,h

= B−A⃗·S⃗+
∑k

i=1

∑ℓ

h=1
E

RLK(i,i)
h

·T ′
i,h

+
∑k

i=1
S2

i ·T ′
i +
∑k

i=1

∑ℓ

h=1

∑i−1
j=1

E
RLK(i,j)

h

·R′
i,j,h

+
∑k

i=1

∑i−1
j=1

Si·Sj ·R′
i,j

= B−A⃗·S⃗+
∑k

i=1

∑ℓ

h=1

(
E

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
E

RLK(i,j)
h

·R′
i,j,h

)
+
∑k

i=1

(
S2

i ·(Ti−Ti)+
∑i−1

j=1
Si·Sj ·(Ri,j −Ri,j)

)
= B−A⃗·S⃗+R⃗·S⃗R+T⃗ ·S⃗T +

∑k

i=1

∑ℓ

h=1

(
E

RLK(i,i)
h

·T ′
i,h

+
∑i−1

j=1
E

RLK(i,j)
h

·R′
i,j,h

)
−R⃗·S⃗R−T⃗ ·S⃗T

= Pres + E +
k∑
i=1

ℓ∑
h=1

(
E

RLK(i,i)
h

· T ′
i,h +

i−1∑
j=1

E
RLK(i,j)

h

·R′
i,j,h

)
− R⃗ · S⃗R − T⃗ · S⃗T︸ ︷︷ ︸

Error

The error term is then:

277

Error = E︸︷︷︸
(I)

+
k∑

i=1

ℓ∑
h=1

ERLK(i,i)
h

· T ′i,h +
i−1∑
j=1

ERLK(i,j)
h

·R′i,j,h

︸ ︷︷ ︸

(II)

− R⃗ · S⃗R − T⃗ · S⃗T︸ ︷︷ ︸
(III)

For each term, we compute their variance.

The variance of (I) is the error obtained from the tensor product computation.
The variance of the second term (II) is

Var(II) = Var

 k∑
i=1

ℓ∑
h=1

ERLK(i,i)
h

· T ′i,h +
i−1∑
j=1

ERLK(i,j)
h

·R′i,j,h

= Var

(∑k

i=1

∑ℓ

h=1 ERLK(i,i)
h

·T ′
i,h

)
+Var

(∑k

i=1

∑ℓ

h=1

∑i−1
j=1 ERLK(i,j)

h

·R′
i,j,h

)
= kℓVar

(
E

RLK(i,i)
h

·T ′
i,h

)
+ k(k−1)ℓ

2 Var
(
E

RLK(i,j)
h

·R′
i,j,h

)
= kℓNVar

(
e

RLK(i,i)
h

·t′i,h

)
+ k(k−1)ℓN

2 Var
(
e

RLK(i,j)
h

·r′
i,j,h

)
= kℓN

(
Var(e

RLK(i,i)
h

)·Var(t′i,h)+Var(e
RLK(i,i)

h

)·E2(t′i,h)+E2(e
RLK(i,i)

h

)·Var(t′i,h)
)

+

+ k(k−1)ℓN
2

(
Var(e

RLK(i,j)
h

)·Var(r′
i,j,h)+Var(e

RLK(i,j)
h

)·E2(r′
i,j,h)+E2(e

RLK(i,j)
h

)·Var(r′
i,j,h)

)
= kℓN

(
σ2

RLK·Var(t′i,h)+σ2
RLK·E

2(t′i,h)
)

+ k(k−1)ℓN
2

(
σ2

RLK·Var(r′
i,j,h)+σ2

RLK·E
2(r′

i,j,h)
)

= kℓNσ2
RLK·
(
β2−1

12 + 1
4

)
+ k(k−1)ℓN

2 σ2
RLK·
(
β2−1

12 + 1
4

)
= kℓNσ2

RLK ·
(k + 1)

2 · β2 + 2
12 .

The variance of the third term (III) is

Var(R⃗ · S⃗R − T⃗ · S⃗T)

= Var(R⃗·S⃗R)+Var(T⃗ ·S⃗T)

= ∑k

i=1

∑i−1
j=1 Var(Ri,j ·SiSj)+

∑k

i=1 Var(Ti·S2
i)

= k(k−1)
2 ·Var(Ri,j ·SiSj)+k·Var(Ti·S2

i)

= k(k−1)N
2 ·(Var(ri,j)·Var(S′′)+E2(ri,j)·Var(S′′)+Var(ri,j)·E2(S′′

mean))+

+ kN
2 ·(Var(S′

odd)+Var(S′
even))·(Var(ti)+E2(ti))+kN ·E2(S′

mean)·Var(ti)

= k(k−1)N
2 ·

((
q2

12β2ℓ−
1

12

)
·Var(S′′)+ 1

4 ·Var(S′′)+
(

q2

12β2ℓ−
1

12

)
·E2(S′′

mean)
)

+

278

+ kN
2 ·(Var(S′

odd)+Var(S′
even))·

((
q2

12β2ℓ−
1

12

)
+ 1

4

)
+kN ·E2(S′

mean)·
(

q2

12β2ℓ−
1

12

)
= kN

2 ·(k−1)
(

q2

12β2ℓ−
1

12

)
·(Var(S′′)+E2(S′′

mean))+ kN
8 ·(k−1)·Var(S′′)+

+ kN
2 ·(Var(S′

odd)+Var(S′
even)+2E2(S′

mean))·
(

q2

12β2ℓ−
1

12

)
+ kN

8 ·(Var(S′
odd)+Var(S′

even))

= kN
2

(
q2

12β2ℓ−
1

12

)
((k−1)·(Var(S′′)+E2(S′′

mean))+Var(S′
odd)+Var(S′

even)+2E2(S′
mean))+

+ kN
8 ·((k−1)·Var(S′′)+Var(S′

odd)+Var(S′
even)) .

Finally,

Var(Mult) = Var (E) + kℓNσ2
RLK ·

(k + 1)
2 · β2 + 2

12 +

+ kN

2

(
q2

12β2ℓ
− 1

12

)(
(k − 1) · (Var(S′′) + E2(S′′mean)) + Var(S′odd) + Var(S′even) + 2E2(S′mean)

)
+

+ kN

8 · ((k − 1) · Var(S′′) + Var(S′odd) + Var(S′even)) .

A.2 Noise Analysis of the Generalized PBS

In this section, we provide a detailed proof of Theorem 22.

Proof 44 We consider the input LWE ciphertext (ai, · · · , an, b) encrypted under the secret
key s⃗ = (s1, · · · , sn) so we have b = ∑n

i=1 ai · si + m + e with a message m and an error
e ∈ χσ. We want to modulus switch this ciphertext and compute a′i ←

[⌊
ai·2N ·2κ−ϑ

q

⌉
· 2ϑ

]
2N

,
for 1 ≤ i ≤ n + 1.

Let w = 2N · 2−ϑ and q′ = q · 2−κ. We note a′′i =
⌊
w
q′ ai

⌉
= w

q′ ai + ai, then we have
a′′i ∈ U(J−w2 , w2 J) and ai ∈ w

q′U(J−q′

2w , q′

2wJ).
It means that Var(a′′i) = w2−1

12 and E(a′′i) = −1
2 , and that Var(ai) = 1

12 −
w2

12q′2 and
E(ai) = −w

2q′ .

We decrypt:

Decrypt
(
(a′′1 , · · · , a′′n, b′′ = a′′n+1), SK

)
=

= b′′ −
n∑

i=1
a′′i · si = w

q′
b + b−

n∑
i=1

(w

q′
ai + ai) · si

= w

q′

(
b−

n∑
i=1

ai · si

)
+ b−

n∑
i=1

ai · si

= w

q′
m + w

q′
e + b−

n∑
i=1

ai · si

279

We can now study the error:

Var(Eres) =

= Var
(

w

q′
e + b−

n∑
i=1

ai · si

)

= w2σ2
in

q′2
+ Var(b) + n · Var(ai) · (Var(si) + E2(si)) + n · E2(ai) · Var(si)

= w2σ2
in

q′2
+ 1

12 −
w2

12q′2
+ n ·

(
1
12 −

w2

12q′2

)
· 1

2 + n · w′2

4q′2
· 1

4

= w2σ2
in

q′2
+ 1

12 −
w2

12q′2
+ n

24 + nw2

48q′2

E(Eres) = E

(
w

q′
e + b−

n∑
i=1

ai · si

)
=

�
�

�
�

E
(

w

q′
e

)
+ E(b)−

n∑
i=1

E(ai · si)

= −w

2q′
−

n∑
i=1

−w

2q′
· E(si) = w

2q′
·
(n

2 − 1
)

In order to have correctness of the modulus switching with probability P = erf
(

Γ√
2

)
,

the following condition must be satisfied:

Γ ·
√

Var(Eres) = Γ ·

√√√√w2σ2
in

q′2
+ 1

12 −
w2

12q′2
+ n

24 + nw2

48q′2
<

w∆in

2q′

which implies that:

σ2
in <

∆2
in

4Γ2 −
q′2

12w2 + 1
12 −

nq′2

24w2 −
n

48 .

The steps of blind rotation and sample extraction are the same as in TFHE [Chi+20a]
(see Theorem 14 and Algorithm 10). We report the proof that estimates the noise
after the blind rotation (our analysis is slightly different from the analysis done in
TFHE [Chi+20a]): the sample extraction step does not add any noise. In order to do
the noise analysis for the blind rotation, we need to analyze the noise produced by the
external product.

Let the GLWE secret key be S⃗ = (S1, . . . , Sk) ∈ Rk (in the algorithm it is notes S⃗ ′ but
we use the S⃗ notation to make the proof more readable), such that each polynomial key Si

has coefficients sampled from a uniform binary, uniform ternary or Gaussian distribution
with σ = 3.2. The external product � : GLWE× GGSW→ GLWE takes in input:

280

• A GLWE ciphertext

c⃗ = GLWES⃗(µ) = (A1, . . . , Ak, B = Ak+1) ∈ R(k+1)
q

such that the coefficients of the polynomials Aα are sampled from U(J− q
2 , q2J) and

B = ∑k
α=1 Aα ·Sα + M1 + E1, where E1 ∈ Rq is such that each coefficient is sampled

from N (0, σ2
1).

• A GGSW ciphertext

C⃗ = GGSWS⃗(m) = Z⃗ + M2 · G⃗ ∈ R(k+1)ℓ×(k+1)
q

where G⃗ = Id ⊗ g⃗ is the gadget matrix, with g⃗⊤ = (q
B

, . . . , q
Bℓ

). Each line of the
GGSW ciphertext is of the form

C⃗(i,j) = (A(i,j)
1 , . . . , A

(i,j)
k , B(i,j)) = (A⃗(i,j), B(i,j)) ∈ R(k+1)

q

with i ∈ {1, . . . , k + 1} and j ∈ {1, . . . , ℓ}, such that the coefficients of the polyno-
mials A(i,j)

α are sampled from U(J− q
2 , q2J) and B(i,j) = ∑k

α=1 A(i,j)
α ·Sα+M

(i,j)
2 +E

(i,j)
2 ,

where E
(i,j)
2 ∈ Zq[X]/(XN +1) is such that each coefficient is sampled from N (0, σ2

2)
and M

(i,j)
2 = M2

q
Bj

(−Si) (with Sk+1 = −1).

The output of the external product is:

• A GLWE ciphertext

c⃗out = GLWES⃗(M1 ·M2) = (Aout
1 , . . . , Aout

k , Bout) ∈ R(k+1)
q

with error E ∈ Rq such that each coefficient is sampled from N (0, σ2). We want
to estimate σ.

Observe that the output is computed as:

c⃗out = G⃗−1(c⃗)︸ ︷︷ ︸
R(k+1)ℓ

·C⃗ = u⃗ · C⃗

where the operation G⃗−1 is the decomposition with respect to the gadget matrix.
The product consists in the following steps:

1. Start by rounding each Aα (α = 1, . . . , k + 1) at the ℓ log2(B) bit by A′α, such that
the coefficients of Aα = Aα − A′α come from U(J− q

2Bℓ ,
q

2Bℓ J).

281

2. Decompose each A′α = ∑ℓ
j=1 A′α,j · q

B−l with A′α,j ∈ R with coefficients from
U(J−B

2 , B
2 J).

3. Return u⃗ = (A′1,1, . . . , A′1,ℓ, . . . , A′k,1, . . . , A′k,ℓ, B′1 = A′k+1,1, . . . , B′ℓ = A′k+1,ℓ).

Observe that:
c⃗out = G⃗−1(c⃗) · C⃗ = u⃗ · C⃗

=
k∑

i=1

ℓ∑
j=1

A′i,j · C⃗(i,j) +
ℓ∑

j=1
B′j · C⃗(k+1,j)

Let us write down the phase:

 k∑
i=1

ℓ∑
j=1

A′i,j · C⃗(i,j) +
ℓ∑

j=1
B′j · C⃗(k+1,j)

 · (−S⃗, 1
)

=

 k∑
i=1

ℓ∑
j=1

A′i,j · (A⃗(i,j), B(i,j)) +
ℓ∑

j=1
B′j · (A⃗(k+1,j), B(k+1,j))

 · (−S⃗, 1
)

=
k∑

i=1

ℓ∑
j=1

A′i,j · (B(i,j) − A⃗(i,j) · S⃗) +
ℓ∑

j=1
B′j · (B(k+1,j) − A⃗(k+1,j) · S⃗)

=
k∑

i=1

ℓ∑
j=1

A′i,j · (−M2
q

Bj
Si + E

(i,j)
2) +

ℓ∑
j=1

B′j · (M2
q

Bj
+ E

(k+1,j)
2)

=
k∑

i=1

ℓ∑
j=1

A′i,j · E
(i,j)
2 +

ℓ∑
j=1

B′j · E
(k+1,j)
2 −

k∑
i=1

ℓ∑
j=1

A′i,j ·M2
q

Bj
Si +

ℓ∑
j=1

B′j ·M2
q

Bj

=
ℓ∑

j=1

(
k∑

i=1
(A′i,j · E

(i,j)
2) + B′j · E

(k+1,j)
2

)
+ M2

− k∑
i=1

ℓ∑
j=1

(A′i,j ·
q

Bj
)Si +

ℓ∑
j=1

(B′j ·
q

Bj
)

=

ℓ∑
j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2) + M2

(
−

k∑
i=1

A′i · Si + B′

)

=
ℓ∑

j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2) + M2

(
−

k∑
i=1

(Ai −Ai) · Si + (B −B)
)

=
ℓ∑

j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2) + M2

(
B −

k∑
i=1

Ai · Si −B +
k∑

i=1
Ai · Si

)

=
ℓ∑

j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2) + M2

(
M1 + E1 −B +

k∑
i=1

Ai · Si

)

=
ℓ∑

j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2) + M2 ·

(
E1 −B +

k∑
i=1

Ai · Si

)
︸ ︷︷ ︸

E

+M1 ·M2

282

So:
E =

ℓ∑
j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2) + M2 ·

(
E1 −B +

k∑
i=1

Ai · Si

)

Let us establish the variance of E:

Var(E) = Var

 ℓ∑
j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2)

︸ ︷︷ ︸

(1)

+ Var
(

M2 ·

(
E1 −B +

k∑
i=1

Ai · Si

))
︸ ︷︷ ︸

(2)

We give more details on steps (1) and (2).

Step (1). Observe that A′i,j ∈ R with coefficients from U(J−B
2 , B

2 J), so:

• E(A′i,j) = −1
2 ,

• Var(A′i,j) = B2−1
12 .

E
(i,j)
2 ∈ Rq is such that each coefficient is sampled from N (0, σ2

2). Then,

Var

 ℓ∑
j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2)

= ℓ · (k + 1) · Var

(
A′i,j · E

(i,j)
2

)
= ℓ · (k + 1) ·N · Var

(
a′i,j · e

(i,j)
2

)
= ℓ · (k + 1) ·N ·

(
Var

(
a′i,j
)
· Var

(
e

(i,j)
2

)
+ E2 (a′i,j) · Var

(
e

(i,j)
2

)
+ Var

(
a′i,j
)
· E2

(
e

(i,j)
2

))
= ℓ · (k + 1) ·N ·

(
B2 − 1

12 · σ2
2 + 1

4 · σ
2
2

)
= ℓ · (k + 1) ·N · B

2 + 2
12 · σ2

2 .

Step (2). Observe that M2 ∈ R and we have no information about the distribution.
Observe that E1 ∈ Rq is such that each coefficient is sampled from N (0, σ2

1). Observe that
B, Ai come from U(J− q

2Bℓ ,
q

2Bℓ J). So:

• E(Ai) = E(B) = −1
2 ,

• Var(Ai) = Var(B) = q2

12B2ℓ − 1
12 = q2−B2ℓ

12B2ℓ .

Then,

Var
(

M2 ·

(
E1 −B +

k∑
i=1

Ai · Si

))
= ||M2||22 · Var

(
E1 −B +

k∑
i=1

Ai · Si

)
where

283

Var
(

E1 −B +
k∑

i=1
Ai · Si

)

= Var (E1) + Var
(
B
)

+ Var
(

k∑
i=1

Ai · Si

)
= Var (E1) + Var

(
B
)

+ kN · Var (ai · si)

= σ2
1 + q2 −B2ℓ

12B2ℓ
+ kN ·

(
Var (ai) · Var (si) + E2 (ai) · Var (si) + Var (ai) · E2 (si)

)
= σ2

1 + q2 −B2ℓ

12B2ℓ
+ kN ·

(
q2 −B2ℓ

12B2ℓ
·
(
Var (si) + E2 (si)

)
+ 1

4 · Var (si)
)

= σ2
1 + q2 −B2ℓ

12B2ℓ
·
(
1 + kN ·

(
Var(si) + E2(si)

))
+ kN

4 · Var(si) .

If M2 ∈ {0, 1} is a bit of the binary key as in the TFHE bootstrapping (E(M2) = 1
2

and Var(M2) = 1
4 and M2 is a constant polynomial which we note m2), then we have:

Var
(

m2 ·

(
E1 −B +

k∑
i=1

Ai · Si

))

=
(
Var (m2) + E2 (m2)

)
· Var

(
E1 −B +

k∑
i=1

Ai · Si

)
+ Var (m2) · E2

(
E1 −B +

k∑
i=1

Ai · Si

)

= 1
2 · Var

(
E1 −B +

k∑
i=1

Ai · Si

)
+ 1

4 · E
2

(
E1 −B +

k∑
i=1

Ai · Si

)

Observe that

E

(
E1 −B +

k∑
i=1

Ai · Si

)
= E (E1)− E

(
B
)

+ E

(
k∑

i=1
Ai · Si

)

= 0 + 1
2 + kN · E (ai) · E (si) = 1

2 −
kN

2 · E (si)

= 1
2 · (1− kN · E(si))

and
E2

(
E1 −B +

k∑
i=1

Ai · Si

)
= 1

4 · (1− kN · E(si))2
.

284

Hence

Var
(

m2 ·

(
E1 −B +

k∑
i=1

Ai · Si

))

= 1
2 · Var

(
E1 −B +

k∑
i=1

Ai · Si

)
+ 1

4 · E
2

(
E1 −B +

k∑
i=1

Ai · Si

)

= σ2
1

2 + q2 −B2ℓ

24B2ℓ
+ kN

2 · q2 −B2ℓ

12B2ℓ
·
(
Var (si) + E2 (si)

)
+ kN

8 · Var(si) + 1
16 · (1− kN · E(si))2

= σ2
1

2 + q2 −B2ℓ

24B2ℓ
·
(
1 + kN ·

(
Var (si) + E2 (si)

))
+ kN

8 · Var(si) + 1
16 · (1− kN · E(si))2

.

Finally, if M2 ∈ {0, 1} is a bit of the binary key as in the TFHE’s PBS (E = 1
2 and

Var = 1
4), then we have:

Var(E) = Var

 ℓ∑
j=1

k+1∑
i=1

(A′i,j · E
(i,j)
2)

︸ ︷︷ ︸

(1)

+ Var
(

M2 ·

(
E1 −B +

k∑
i=1

Ai · Si

))
︸ ︷︷ ︸

(2)

= ℓ · (k + 1) ·N · B
2 + 2
12 · σ2

2︸ ︷︷ ︸
(1)

+

+ σ2
1

2 + q2 −B2ℓ

24B2ℓ
·
(
1 + kN ·

(
Var (si) + E2 (si)

))
+ kN

8 · Var(si) + 1
16 · (1− kN · E(si))2︸ ︷︷ ︸

(2)

The external product is used to compute the CMux, which is used in the programmable
bootstrapping (PBS). In the PBS, we have

• The message m2 in the GGSW is one of the bits of the LWE secret key, so it comes
from a uniform distribution U({0, 1});

• The CMux computes the following

(ACC ·X−ai − ACC) � BSKi + ACC

and the noise added by a CMux is the same as the noise produced by one external
product;

• The CMux in the PBS is repeated n times;

• The initial σRLWE in the PBS is equal to 0.

285

Then, the noise in the PBS can be estimated by

Var(PBS) = n · ℓ · (k + 1) ·N · B
2 + 2
12 · Var(BSK)+

+ n · q2 −B2ℓ

24B2ℓ
·
(
1 + kN ·

(
Var (si) + E2 (si)

))
+ nkN

8 · Var(si) + n

16 · (1− kN · E(si))2
.

If the RLWE secret key is binary

Var(PBS) = nℓ(k + 1)N · B
2 + 2
12 · Var(BSK)+

+ n · q2 −B2ℓ

24B2ℓ
·
(

1 + kN

2

)
+ nkN

32 + n

16 ·
(

1− kN

2

)2
.

□

A.3 Noise Analysis of the Packing Key Switch

We consider the LWE secret key s⃗ = (s1, · · · , sn) ∈ Znq and an input LWE ciphertext
ct = (a1, · · · , an, b) ∈ Zn+1

q such that b = ∑n
i=1 aisi + m + e with e from χσ.

We consider the GLWE secret key S⃗=(S1,··· ,Sk)∈Rkq and a key switching key composed
of the following GLWE ciphertexts {C(i,j)=(A(i,j)

1 ,··· ,A(i,j)
k

,B(i,j))∈Rk+1
q } with 1 ≤ i ≤ n and

1 ≤ j ≤ ℓ such that B(i,j) = ∑k
ψ=1 A

(i,j)
ψ · Sψ + si

q
Bj

+ E(i,j) with coefficients of E(i,j) from
χσKSK .

During the algorithm we will round the {ai} to the closest multiple of q
Bℓ

and then
decompose them such that for 1 ≤ i ≤ n we have a′i = ai + āi and for 1 ≤ j ≤ ℓ we have
a′i = ∑ℓ

j=1 a′i,j
q
Bj

with āi uniform in J −q2Bℓ ,
q

2Bℓ J and a′i,j uniform in J−B2 , B
2 J.

We have Var(āi) = q2

12B2ℓ − 1
12 , Var(a′i,j) = B2−1

12 and E(āi) = E(a′i,j) = −1
2 .

The output is:

Cres = (0, · · · , 0, b)−
n∑
i=1

ℓ∑
j=1

a′
i,j · C

(i,j)

=

(
−

n∑
i=1

ℓ∑
j=1

a′
i,j ·A

(i,j)
1 , · · · ,−

n∑
i=1

ℓ∑
j=1

a′
i,j ·A

(i,j)
k

, b−
n∑
i=1

ℓ∑
j=1

a′
i,j ·B

(i,j)

)

Let’s decrypt the output:

286

Decrypt(Cres, S⃗) =

= b−
n∑
i=1

ℓ∑
j=1

a′
i,j ·B

(i,j) −

(
k∑

ψ=1

(
−

n∑
i=1

ℓ∑
j=1

a′
i,j ·A

(i,j)
1

)
Sψ

)

= b−
n∑
i=1

ℓ∑
j=1

a′
i,j ·B

(i,j) +
k∑

ψ=1

n∑
i=1

ℓ∑
j=1

a′
i,j ·A

(i,j)
1 · Sψ

= b−
n∑
i=1

ℓ∑
j=1

a′
i,j ·

(
���

���k∑
ψ=1

A
(i,j)
ψ
· Sψ + si

q

Bj
+ E(i,j)

)
+
�����������k∑
ψ=1

n∑
i=1

ℓ∑
j=1

a′
i,j ·A

(i,j)
1 · Sψ

= b−
n∑
i=1

ℓ∑
j=1

a′
i,j · si

q

Bj
−

n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j) = b−
n∑
i=1

a′
i · si −

n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j)

= b−
n∑
i=1

(ai + āi) · si −
n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j) = b−
n∑
i=1

ai · si −
n∑
i=1

āi · si −
n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j)

= m+ e−
n∑
i=1

āi · si −
n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j)

Let’s now study the error term in the filled coefficient:

Varfill = Var

(
e−

n∑
i=1

āi · si −
n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j)

)

= Var(e) + Var

(
n∑
i=1

āi · si

)
+ Var

(
n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j)

)
= σ2 + n · (Var(āi)Var(si) + E2(āi)Var(si) + E2(si)Var(āi)) + n · ℓ · σ2

KSK · (Var(a′
i,j) + E2(a′

i,j))

= σ2 + n ·
(

q2

12B2ℓ −
1
12

)
·
(

Var(si) + E2(si)
)

+ n

4
· Var(si) + n · ℓ · σ2

KSK ·
B2 + 2

12

Let’s finally study the error term in the other coefficients:

Varemp = Var

(
n∑
i=1

ℓ∑
j=1

a′
i,j · E

(i,j)

)
= n · ℓ · σ2

KSK ·
B2 + 2

12
.

A.4 Noise Analysis of the Sample Extract

Proof 45 (Correctness for Constant Sample Extraction) As in algorithm 35, we con-
sider a GLWE ciphertext CTin := (A0, · · · , Ak−1, B) ∈ GLWES⃗[ϕ] (P) ⊆ Rk+1

q,N where P =
∑N−1

i=0 piX
i ∈

Rq,N and for all 0 ≤ i ≤ k − 1 we have Ai =
∑N−1

j=0 ai,jXj and B =
∑N−1

j=0 bjXj. The GLWE secret key
is noted S⃗[ϕ] = (S0, · · · , Sk−1) ∈ Rk

q,N and follows Definition 35. By definition of GLWE ciphertexts, it
means that it exists an error polynomial E =

∑N−1
i=0 eiX

i ∈ Rq,N such that B −
∑k−1

i=0 Ai · Si = P + E.
Following Algorithm 35, the constant sample extraction outputs the following LWE ciphertext: ctout =

(aout,0, · · · , aout,ϕ−1, bout) ∈ LWE¯⃗s (p0) ⊆ Zϕ+1
q encrypted under the LWE secret key ¯⃗s = (s̄0, · · · , s̄ϕ−1) ∈

Zϕ
q obtained as defined in Definition 36.

287

First we define two index functions, the first one is ι : i 7→
(⌊

i
N

⌋
, i mod N

)
and the second one is

ι̃ : i 7→
(⌊

i
N

⌋
, (N − i) mod N

)
. We also need to define a last function γ : i 7→ 1− ((i mod N) == 0)

bout −
ϕ−1∑
i=0

aout,i · s̄i = b0 −
ϕ−1∑
i=0

aout,i · s̄i −
kN−1∑

i=ϕ

(−1)γ(i) · aι̃(i) · sι(i)︸ ︷︷ ︸
null since all sι(i)=0 because it is a partial key)

= b0 −
ϕ−1∑
i=0

(−1)γ(i) · aι̃(i) · sι(i)︸ ︷︷ ︸
lines 2 and 3 in Algorithm 35

−
kN−1∑

i=ϕ

(−1)γ(i) · aι̃(i) · sι(i)

= b0 −
kN−1∑

i=0
(−1)γ(i) · aι̃(i) · sι(i) = b0 −

k−1∑
i=0

N−1∑
j=0

ai,N−j · si,j

= b0 −
k−1∑
i=0

N−1∑
j=0

ai,(N−j) mod N X(N−j) mod N · si,jXj

(A.5)

This quantity is what we have on the constant term of the polynomial resulting from the decryption
of CTin:

B −
k−1∑
i=0

Ai · Si = B −
k−1∑
i=0

N−1∑
j=0

N−1∑
j′=0

ai,jXj · si,j′Xj′

= X0 ·

b0 −
k−1∑
i=0

N−1∑
j=0

ai,(N−j) mod N X(N−j) mod N · si,jXj

︸ ︷︷ ︸

constant coefficient with the same quantity

+X1 · (b1 − . . .) + · · · + XN−1 · (bN−1 − . . .)︸ ︷︷ ︸
non-constant coefficients

(A.6)

□

Proof 46 (Correctness for Sample Extraction) We follow the context and inputs of
Algorithm 36. It is trivial to show that the α-th coefficient of the decryption of CTin is
equal to what is in the constant coefficient of X−α · CTin.

□

A.5 Noise Analysis of the GLWE-to-GLWE Key
Switch

Proof 47 (Theorem 31) The inputs of a GLWE-to-GLWE key switching (Algorithm 37)
are:

288

• The input GLWE ciphertext: CTin =
(
A⃗in, Bin

)
∈ GLWE

S⃗
[ϕin]
in

(∆ ·M) ⊆ Rkin+1
q,N , where

Bin = ∑kin−1
i=0 Ain,i·Sin,i+∆·M+Ein, Ain,i = ∑N−1

j=0 ai,j ·Xj ←↩ U (Rq,N) for all i ∈ J0, kJ
and Ein = ∑N−1

j=0 ej ·Xj, and ej ←↩ Nσ2
in

for all j ∈ J0, N − 1J.

• The key switch key: KSK = (KSK0, . . . , KSKkin−1), where KSKi ∈ GLev
S⃗

[ϕout]
out

(Sin,i) =(
GLWE

S⃗
[ϕout]
out

(
q
β
Sin,i

)
, · · · , GLWE

S⃗
[ϕout]
out

(
q
βℓ

Sin,i
))

for all 0 ≤ i < kin. We note by
KSKi,j = (A⃗i,j, Bi,j) ∈ GLWE

S⃗
[ϕout]
out

(
q

βj+1 Sin,i
)
, for all 0 ≤ i < kin and for all 0 ≤ j <

ℓ, where Bi,j = ∑kout−1
τ=0 Ai,j,τ ·S[ϕout]

out,τ + q
βj+1 Sin,i+Eksk,i,j, and Eksk,i,j = ∑N−1

τ=0 eksk,i,j,τ ·Xτ

and eksk,i,j,τ ←↩ Nσ2
ksk

.

The output of this algorithm is CTout =
(
A⃗out, Bout

)
∈ GLWE

S⃗
[ϕout]
out

(∆ ·M) ⊆
Rkout+1
q,N . By definition, in the decomposition algorithm, we have that dec(B,ℓ) (Ain,i) =(

Ãin,i,0, · · · , Ãin,i,ℓ−1
)

such that Ãin,i = ∑ℓ−1
j=0

q
βj+1 Ãin,i,j, for all 0 ≤ i < kin.

Let define Āin,i = Ain,i − Ãin,i, |āi,τ | = |ai,τ − ãi,τ | < q
2βℓ , āi,τ ∈

r
−q
2βℓ ,

q
2βℓ

r
for all 0 ≤

τ < N . So we have that their expectations and variances are respectively E (āi,τ) = −1
2 ,

Var (āi,τ) = q2

12B2ℓ − 1
12 , E (ãi,τ) = −1

2 and Var (ãi,τ) = β2−1
12 .

Now, we can decrypt:

Bout −
〈

A⃗out, S⃗
[ϕout]
out

〉
=
〈(

A⃗out, Bout

)
,
(
−S⃗

[ϕout]
out , 1

)〉
=
〈(⃗

0, Bin
)
−

kin−1∑
i=0

dec(β,ℓ) (Ain,i) · KSKi,
(
−S⃗

[ϕout]
out , 1

)〉

=Bin −
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j

〈
KSKi,j ,

(
−S⃗

[ϕout]
out , 1

)〉

=Bin −
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j

(
q

βj+1 Sin,i + Eksk,i,j

)

= Bin −
kin−1∑
i=0

Ãin,iSin,i︸ ︷︷ ︸
(I)

−
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Eksk,i,j︸ ︷︷ ︸
(II)

Now let us focus on the wth coefficient of part (I):

bin,w −
kin−1∑
i=0

(
w∑

τ=0
ãin,i,w−τ · sin,i,τ −

N−1∑
τ=w+1

ãin,i,N+w−τ · sin,i,τ

)

= bin,w −
kin−1∑
i=0

(
w∑

τ=0
(ain,i,w−τ − āin,i,w−τ) · sin,i,τ −

N−1∑
τ=w+1

(ain,i,N+w−τ − āin,i,N+w−τ) · sin,i,τ

)

289

= ∆mw + ew +
kin−1∑
i=0

(
w∑

τ=0
āin,i,w−τ · sin,i,τ −

N−1∑
τ=w+1

āin,i,N+w−τ · sin,i,τ

)

Now let us focus on the wth coefficient of part (II):

kin−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0
ãin,i,j,w−τ · eksk,i,j,τ −

N−1∑
τ=w+1

ãin,i,j,N+w−τ · eksk,i,j,τ

)

We can now isolate the output error for the wth coefficient and remove the message coef-
ficient. We obtain the output error

e′w = ew +
kin−1∑
i=0

(
w∑

τ=0
āin,i,w−τ · sin,i,τ −

N−1∑
τ=w+1

āin,i,N+w−τ · sin,i,τ

)
︸ ︷︷ ︸

(∗)

+
kin−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0
ãin,i,j,w−τ · eksk,i,j,τ −

N−1∑
τ=w+1

ãin,i,j,N+w−τ · eksk,i,j,τ

)
.

Observe that in the term (∗) there are kinN − ϕin terms of type āin,i,· · sin,i,· that are
equal to 0. So we have:

Var(e′w) = Var(ew) + ϕin · Var (āin,i,· · sin,i,·) + kin · ℓ ·N · Var (ãin,i,j,· · eksk,i,j,·)

= σ2
in + ϕin

(
Var (āin,i,·) Var (sin,i,·) + Var (āin,i,·)E2 (sin,i,·) + E2(āin,i,·)Var (sin,i,·)

)
+ ℓkinN

(
Var (ãin,i,j,·) Var (eksk,i,j,·) + E2 (ãin,i,j,·) Var (eksk,i,j,·)

+ Var (ãin,i,j,·)E2 (eksk,i,j,·)
)

= σ2
in + ϕin

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ ϕin

4 Var
(

S⃗
[ϕin]
in

)
+ ℓkinN

β2 + 2
12 σ2

ksk.

□

A.6 Noise Analysis of the Secret Product GLWE-to-
GLWE Key Switch

Proof 48 (Theorem 32) This proof is similar to the proof proposed for the key switch
with partial key (Proof 47).
The inputs of the secret-product GLWE key switch (Algorithm 38) are:

290

• The input GLWE ciphertext: CTin =
(
A⃗in, Bin

)
∈ GLWE

S⃗
[ϕin]
in

(∆ ·M1) ⊆ Rkin+1
q,N ,

where Bin = ∑kin−1
i=0 Ain,i · S[ϕin]

in,i + ∆ ·M1 + Ein, Ain,i = ∑k−1
j=0 ai,j ·Xj ←↩ U (Rq,N) for

all i ∈ J0, kJ and Ein = ∑k−1
j=0 ej ·Xj, and ej ←↩ Nσ2

in
for all j ∈ J0, N − 1J.

• The secret product key switch key : KSK = (KSK0, . . . , KSKkin), where KSKi ∈
GLev

S⃗
[ϕout]
out

(
−M2S

[ϕin]
in,i

)
=

(
GLWE

S⃗
[ϕout]
out

(
− qM2

B
S

[ϕin]
in,i

)
, · · · , GLWE

S⃗
[ϕout]
out

(
− qM2

Bℓ
S

[ϕin]
in,i

))
for all 0 ≤ i ≤ kin (for this proof, we define Skin = −1). We note by KSKi,j =
(A⃗i,j, Bi,j) ∈ GLWE

S⃗
[ϕout]
out

(
− qM2

Bj+1 S
[ϕin]
in,i

)
, for all 0 ≤ i < kin and for all 0 ≤ j < ℓ,

where Bi,j = ∑kout−1
τ=0 Ai,j,τ ·S[ϕout]

out,τ + qM2
Bj+1 S

[ϕin]
in,i +Eksk,i,j, and Eksk,i,j = ∑N−1

τ=0 eksk,i,j,τ ·Xτ

and eksk,i,j,m ←↩ Nσ2
ksk

.

As output we obtain CTout =
(
A⃗out, Bout

)
∈ GLWE

S⃗
[ϕout]
out

(∆ ·M1 ·M2) ⊆ Rkout+1
q,N .

By definition, for any random polynomial Ai, we have Ai = ∑N−1
j=0 ai,j · Xj where ai,j ∼

U (Zq),(ai,j ∈
q−q

2 , q2
q
).

By definition, for the decomposition (described in Section 2.3.2), we have dec(B,ℓ) (Ai) =(
Ãi,0, · · · , Ãi,ℓ−1

)
such that Ãi = ∑ℓ−1

j=0
q

Bj+1 Ãi,j.
Let define Āi = |Ai − Ãi|, āi,j = |ai,j − ãi,j| < q

2Bℓ ; āi,j ∈
q −q

2Bℓ ,
q

2Bℓ
q
. Finally we obtain

E(āi) = −1
2 ; Var(āi) = q2

12B2ℓ − 1
12 ; E(ãi,j) = −1

2 ; Var(ãi) = B2−1
12 .

As Bi is seen as an uniform polynomial, we obtain the same results for the variance and
the expectation for B̃i (resp. B̄i) than Ãi (Resp. Āi). In the next calculations, B̃in,j · Ej

will be writen as −Ãin,kin,j · Ekin,j

Now, we can compute the decryption:

Bout −
〈
A⃗out, S⃗

[ϕout]
out

〉
=
〈(

A⃗out, Bout
)

;
(
−S⃗

[ϕout]
out , 1

)〉
=
〈
dec(B,ℓ) (Bin) · KSKkin +

kin−1∑
i=0

dec(B,ℓ) (Ain,i) · KSKi;
(
−S⃗[ϕout], 1

)〉

=M2

B̃in,i −
kin−1∑
i=0

Ãin,i · Sin,i

− kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

=M2

∆M1 + Ein + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

− kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

=∆M2 ·M1 + M2

Ein + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

− kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

291

By following the same idea as the proof of the key switch (proof 47), we can isolate the
noise and compute his variance. We obtain:

Var

M2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

= ||M2||22 · Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
+ Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

where

Var
(

E + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

)

= σ2
in +

(
q2

12B2ℓ
− 1

12

)
+ ϕin

(
q2

12B2ℓ
− 1

12

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ ϕin

4 Var
(

S⃗
[ϕin]
in

)
= σ2

in +
(

q2 −B2ℓ

12B2ℓ

)(
1 + ϕin

(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

)))
+ ϕin

4 Var
(

S⃗
[ϕin]
in

)
and

Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

 = ℓ(kin + 1)Nσ2
KSK

B2 + 2
12

□

A.7 Noise Analysis of the Partial Key External Prod-
uct

Proof 49 (Noise Eternal Product in Bootstrapping) Theorem 33 gave us the fol-
lowing noise for an external product:

Var

M2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

= ||M2||22 · Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
+ Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

292

where

Var
(

E + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

)

= σ2
in +

(
q2

12β2ℓ
− 1

12

)
+ ϕin

(
q2

12β2ℓ
− 1

12

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ ϕin

4 Var
(

S⃗
[ϕin]
in

)
= σ2

in +
(

q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

)))
+ ϕin

4 Var
(

S⃗
[ϕin]
in

)
and

Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

 = ℓ(kin + 1)Nσ2
in

β2 + 2
12 .

In TFHE, we use binary key to perform the bootstrap. So we have M ∈ {0, 1} which
represent a bit of the binary key. Var(M2) = 1

4 and E(M2) = 1
2 . Let focus on the part with

the message:

Var
M2

E + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

=
(
Var(M2) + E2(M2)

)
Var

E + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

+ Var (M2)E2

E + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

= 1

2Var
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

+ 1
4E

2

E + B̄in,i −
kin−1∑
i=0

Āin,i · Sin,i

 .

We have

E2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
=
(
E(E) + E(B̄in,i)− E

(
kin−1∑
i=0

Āin,i · Sin,i

))2

=
(

0− 1
2 − ϕinE (āin,i)E (sin,i)

)2

= 1
4

(
−1 + ϕinE

(
S⃗

[ϕin]
in

))2
.

Finally, for each coefficient after one external product in the bootstrapping, we obtain the

293

following formula for the noise variance

σ2
in
2 +

(
q2 − β2ℓ

24β2ℓ

)(
1 + ϕin

(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

)))
+ ϕin

8 Var
(

S⃗
[ϕin]
in

)
+ 1

16

(
−1 + ϕinE

(
S⃗

[ϕin]
in

)2
)

+ ℓ(kin + 1)Nσ2
in

β2 + 2
12 .

□

A.8 Noise Analysis of the Shrinking Key Switch

Proof 50 (Theorem 36) The proof of this theorem follows the same footprint as the
other key switching proofs presented in this thesis (e.g., Theorem 31). We generalize the
proof of this theorem to the GLWE case: the LWE result presented in the theorem follows
by taking k0 = n0, k1 = n1 and N = 1.

We consider two GLWE secret keys with shared randomness S⃗(0) ≺ S⃗(1) with S⃗(0) =(
S

(0)
0 , . . . , S

(0)
k0−1

)
∈ Rk0

q,N , S⃗(1) =
(
S

(1)
0 , . . . , S

(1)
k1−1

)
∈ Rk1

q,N , 1 < k0 < k1 and S
(1)
i = S

(0)
i

for all 0 ≤ i < k0. The inputs are

• A GLWE ciphertext CTin =
(
A⃗in, Bin

)
∈ GLWES⃗(1) (∆M) ⊆ Rk1+1

q,N , where Bin =∑k1−1
i=0 Ain,i · S(1)

i + ∆M + Ein, Ain,i = ∑N−1
j=0 ai,j · Xj ←↩ U (Rq,N) for all i ∈ J0, kJ

and Ein = ∑N−1
j=0 ej ·Xj, and ej ←↩ Nσ2

1
for all j ∈ J0, N − 1J,

• The key switching key KSK = (KSK0, . . . , KSKk1−k0−1), where KSKi ∈
GLevS⃗(0)

(
S

(1)
k0+i

)
=
(
GLWES⃗(0)

(
q
β
S

(1)
k0+i

)
, · · · , GLWES⃗(0)

(
q
βℓ

S
(1)
k0+i

))
for all 0 ≤ i < k1.

We note by KSKi,j = (A⃗i,j, Bi,j) ∈ GLWES⃗(0)

(
q

βj+1 S
(1)
k0+i

)
, for all 0 ≤ i < k1

and for all 0 ≤ j < ℓ, where Bi,j = ∑k0−1
τ=0 Ai,j,τ · S⃗(0)

τ + q
βj+1 S

(1)
k0+i + Eksk,i,j, and

Eksk,i,j = ∑N−1
τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,τ ←↩ Nσ2

ksk
.

The output of this algorithm is

(Ain,0, . . . , Ain,k0−1, Bin)−
k1−k0−1∑
i=0

dec(β,ℓ) (Ain,k0+i) · KSKi ∈ GLWES⃗(0) (∆M) ⊆ Rk0+1
q,N

By definition, in the decomposition algorithm, we have that dec(β,ℓ) (Ain,i) =(
Ãin,i,0, · · · , Ãin,i,ℓ−1

)
such that Ãin,i = ∑ℓ−1

j=0
q

βj+1 Ãin,i,j, for all k0 ≤ i < k1.

Let define Āin,i = Ain,i − Ãin,i, |āi,τ | = |ai,τ − ãi,τ | < q
2βℓ , āi,τ ∈

r
−q
2βℓ ,

q
2βℓ

r
for all 0 ≤

τ < N . So we have that their expectation and variance are respectively E (āi,τ) = −1
2 ,

294

Var (āi,τ) = q2

12β2ℓ − 1
12 , E (ãi,τ) = −1

2 and Var (ãi,τ) = β2−1
12 .

Now, by decrypting:〈
(Ain,0, . . . , Ain,k0−1, Bin)−

k1−k0−1∑
i=0

dec(β,ℓ) (Ain,k0+i) · KSKi,
(
−S⃗(0), 1

)〉

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j ·
〈

KSKi,j ,
(
−S⃗(0), 1

)〉

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j ·
(

q

βj+1 S
(1)
k0+i + Eksk,i,j

)

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

Ãin,k0+i · S(1)
k0+i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

(
Ain,k0+i − Āin,k0+i

)
· S(1)

k0+i −
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j .

Since S
(0)
i = S

(1)
i for all 0 ≤ i < k0, the equation becomes:

= Bin −
k0−1∑
i=0

Ain,i · S(1)
i −

k1−k0−1∑
i=0

(
Ain,k0+i − Āin,k0+i

)
· S(1)

k0+i −
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

= ∆M + Ein +
k1−k0−1∑

i=0
Āin,k0+i · S(1)

k0+i︸ ︷︷ ︸
(I)

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j︸ ︷︷ ︸
(II)

The wth coefficient of part (I) is equal to

k1−1∑
i=k0

(
w∑

τ=0
āin,i,w−τ · s(1)

i,τ −
N−1∑

τ=w+1
āin,i,N+w−τ · s(1)

i,τ

)
.

The wth coefficient of part (II) is equal to

k1−k0−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0
ãin,k0+i,j,w−τ · eksk,i,j,τ −

N−1∑
τ=w+1

ãin,k0+i,j,N+w−τ · eksk,i,j,τ

)
.

We can now isolate the output error for the wth coefficient and remove the message coef-

295

ficient. We obtain that the output error is

e′w = ein,w +
k1−1∑
i=k0

(
w∑

τ=0
āin,i,w−τ · s(1)

i,τ −
N−1∑

τ=w+1
āin,i,N+w−τ · s(1)

i,τ

)

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

(
w∑

τ=0
ãin,k0+i,j,w−τ · eksk,i,j,τ −

N−1∑
τ=w+1

ãin,k0+i,j,N+w−τ · eksk,i,j,τ

)
.

So the variance is

Var(e′w) = Var(ein,w) + (k1 − k0)NVar
(

āin,i,·s
(1)
i,·

)
+ (k1 − k0)ℓNVar (ãin,i,j,· · eksk,i,j,·)

= σ2
in + (k1 − k0)N

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S⃗(1)

)
+ E2

(
S⃗(1)

))
+ (k1 − k0)N

4 Var
(

S⃗(1)
)

+ (k1 − k0)ℓN β2 + 2
12 σ2

KSK .

□

A.9 Noise Analysis of the GLWE Key Switch with
Partial Keys with Shared Randomness

Proof 51 (Theorem 39) Consider two partial secret keys with shared randomness
such that S⃗

[ϕout]
out ≺ S⃗

[ϕin]
in . We have S⃗

[ϕout]
out = (Sout,0, · · · , Sout,kout−1), where Sout,kout−1 =∑ϕout−(kout−1)N−1

i=0 sout,kout−1,iX
i we call Sout,kout−1 : S.

We have S⃗
[ϕin]
in = (Sin,0, · · · , Sin,kin−1) such that for all j ∈ J0, kout − 1J, Sout,j = Sin,j

and Sin,kout−1 = S + S̄ where S̄ = ∑N−1
j=ϕout−(kout−1)N sin,kout−1,jX

j.
The inputs of a GLWE key switching with partial & shared randomness keys (Algo-

rithm 45) are

• The input GLWE ciphertext CTin =
(
A⃗in, Bin

)
∈ GLWE

S⃗
[ϕin]
in

(∆ ·M) ⊆ Rkin+1
q,N , where

Bin = ∑kin−1
i=0 Ain,i · Sin,i + ∆ · M + Ein, Ain,i = ∑k−1

j=0 ai,j · Xj ←↩ U (Rq,N) for all
i ∈ J0, kJ and Ein = ∑k−1

j=0 ej ·Xj, and ej ←↩ Nσ2
in

for all j ∈ J0, N − 1J,

• The key switch key KSK = (KSKkout−1 , KSKkout · · · , KSKkin−1), where KSKi ∈
GLev

S⃗
[ϕout]
out

(Sin,i) =
(
GLWE

S⃗
[ϕout]
out

(
q
β
Sin,i

)
, · · · , GLWE

S⃗
[ϕout]
out

(
q
βℓ

Sin,i
))

for all kout ≤ i <

kin, and KSKkout−1 ∈ GLev
S⃗

[ϕout]
out

(
S̄
)

=
(
GLWE

S⃗
[ϕout]
out

(
q
β
S̄
)

, · · · , GLWE
S⃗

[ϕout]
out

(
q
βℓ

S̄
))

296

We note by KSKi,j = (A⃗i,j, Bi,j) ∈ GLWE
S⃗

[ϕout]
out

(
q

βj+1 Sin,i
)
, for all kout ≤ i < kin for

all 0 ≤ j < ℓ, where Bi,j = ∑kout−1
τ=0 Ai,j,τ · Sout,τ + q

βj+1 Sin,i + Eksk,i,j, and Eksk,i,j =∑N−1
τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,m ←↩ Nσ2

ksk
.

We note KSKkout−1,j = (A⃗kout−1,j, Bkout−1,j) ∈ GLWE
S⃗

[ϕout]
out

(
q

βj+1 S̄
)

for all 0 ≤ j < ℓ,
where Bkout−1,j = ∑kout−1

τ=0 Akout−1,j,τ · Sout,τ + q
βj+1 S̄ + Eksk,kout−1,j, and Eksk,kout−1,j =∑N−1

τ=0 eksk,kout−1,j,τ ·Xτ and eksk,kout−1,j,m ←↩ Nσ2
ksk

.

The output of this algorithm is CTout =
(
A⃗out, Bout

)
∈ GLWE

S⃗
[ϕout]
out

(∆ ·M) ⊆ Rkout+1
q,N .

By definition, for any polynomial Ain,i, we have the decomposition (described in Sec-
tion 2.3.2), dec(B,ℓ) (Ain,i) =

(
Ãin,i,1, · · · , Ãin,i,ℓ

)
such that Ãin,i = ∑ℓ−1

j=0
q

Bj+1 Ãin,i,j. Now,
we can decrypt:

Bout −
〈

A⃗out, S⃗
[ϕout]
out

〉
=
〈(

A⃗out, Bout

)
,
(
−S⃗

[ϕout]
out , 1

)〉
=
〈

(Ain,0, · · · , Ain,kout−1, 0 · · · , 0, Bin)− dec(B,ℓ) (Ain,kout−1) KSKkout−1

−
kin−1∑
i=kout

dec(B,ℓ) (Ain,i) KSKi,
(
−S⃗

[ϕout]
out , 1

)〉

= Bin −
kout−1∑

i=0
Ain,iSout,i −

ℓ−1∑
j=0

Ãin,kout−1,j

〈
KSKkout−1,j ,

(
−S⃗

[ϕout]
out , 1

)〉

−
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j

〈
KSKi,j ,

(
−S⃗

[ϕout]
out , 1

)〉

= Bin −
kout−2∑

i=0
Ain,iSin,i −Ain,kout−1S −

ℓ−1∑
j=0

Ãin,kout−1,j

(q

Bj+1 S̄ + Eksk,kout−1,j

)

−
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j

(q

Bj+1 Sin,i + Eksk,i,j

)

= Bin −
kout−1∑

i=0
Ain,iSin,i −Ain,kout−1S︸ ︷︷ ︸

(I)

−Ãin,kout−1S̄ −
ℓ−1∑
j=0

Ãin,kout−1,j · Eksk,kout−1,j︸ ︷︷ ︸
(II)

−
kin−1∑
i=kout

Ãin,iSin,i −
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j · Eksk,i,j︸ ︷︷ ︸
(III)

After decrypting, we can split the previous result in three distinct part and analyze the
noise provide by each of them. The first part of the result (term (I)) is only composed of
the noise present in the Bin.
The second part of the result (term (II)) can be seen as a key switching with partial key

297

(Algorithm 37) from S̄ to Sout. The proof of noise add by this part follows the proof of
Theorem 31.
As for the second part of the result, the third part of the result (term (III)) can be seen
as a key switching with partial key (Algorithm 37) from (Sin,kout , · · · , Sin,kin−1) to Sout. The
proof of noise add by this part follows as well the proof of Theorem 31.
By adding this different noises, we will obtain Var(eout) = Var(I) + Var(II) + Var(III)
where

Var(I) = σ2
in

Var(II) = (Nkout − ϕout)
(

q2 −B2ℓ

12B2ℓ

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ Nkout − ϕout

4 Var
(

S⃗
[ϕin]
in

)
+ ℓNσ2

ksk
B2 + 2

12

Var(III) = (ϕin −Nkout)
(

q2 −B2ℓ

12B2ℓ

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ ϕin −Nkout

4 Var
(

S⃗
[ϕin]
in

)
+ ℓ(kin − kout − 1)Nσ2

ksk
B2 + 2

12 .

To conclude we have

Var(eout) = σ2
in + (ϕin − ϕout)

(
q2 −B2ℓ

12B2ℓ

)(
Var

(
S⃗

[ϕin]
in

)
+ E2

(
S⃗

[ϕin]
in

))
+ ϕin − ϕout

4 Var
(
S⃗

[ϕin]
in

)
+ ℓ(kin − kout)Nσ2

ksk
B2 + 2

12 .

□

A.10 Parameters for the Partial Keys with Shared
Randomness

In this section, we display the parameters used for the different figures in Chapter 8.

298

p
Partial LWE-KS GLWE Parameters PBS Parameters LWE-KS MetricsShared Algorithm Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

1 ✗
traditional

n 588 time 6.6480

LWE-to-LWE

log2 (σn) −12.66 log2 (BPBS) 15 log2 (BKS) 3
k 5

log2 (N) 8 ℓPBS 1 ℓKS 3 size 58.6
log2 (σk·N) −31.07

n 532 nKS 782
log2 (σn) −11.17 log2 (BPBS) 15 log2

(
σnKS

)
−17.82 time 4.9808

1 ✓
2 steps k 5 log2

(
BKS1

)
9

(Alg. 43) log2 (N) 8
ℓPBS 1 ℓKS1 1

ϕ 1280 log2

(
BKS2

)
2 size 44.45

log2

(
σϕ

)
−31.07 ℓKS2 4

FFT-based

n 534
kin 3

(Alg. 44)

log2 (σn) −11.22 log2 (BPBS) 15 kout 3 time 3.8792

1 ✓
k 5 log2 (NKS) 8log2 (N) 8

ℓPBS 1 log2 (BKS) 1
ϕ 1280

ℓKS 9 size 37.76
log2

(
σϕ

)
−31.07

2 ✗
traditional

n 668 time 10.185

LWE-to-LWE

log2 (σn) −14.79 log2 (BPBS) 18 log2 (BKS) 4
k 6

log2 (N) 8 ℓPBS 1 ℓKS 3 size 87.45
log2 (σk·N) −37.88

n 576 nKS 896
log2 (σn) −12.34 log2 (BPBS) 18 log2

(
σnKS

)
−20.85 time 7.7625

2 ✓
2 steps k 6 log2

(
BKS1

)
10

(Alg. 43) log2 (N) 8
ℓPBS 1 ℓKS1 1

ϕ 1536 log2

(
BKS2

)
2 size 66.55

log2

(
σϕ

)
−37.88 ℓKS2 5

FFT-based

n 590
kin 1

(Alg. 44)

log2 (σn) −12.71 log2 (BPBS) 18 kout 1 time 5.9151

2 ✓
k 6 log2 (NKS) 10log2 (N) 8

ℓPBS 1 log2 (BKS) 1
ϕ 1536

ℓKS 11 size 56.64
log2

(
σϕ

)
−37.88

3 ✗
traditional

n 720 time 14.704

LWE-to-LWE

log2 (σn) −16.17 log2 (BPBS) 21 log2 (BKS) 4
k 4

log2 (N) 9 ℓPBS 1 ℓKS 3 size 104.1
log2 (σk·N) −51.49

n 648 nKS 944
log2 (σn) −14.25 log2 (BPBS) 18 log2

(
σnKS

)
−22.13 time 8.4892

3 ✓
2 steps k 3 log2

(
BKS1

)
7

(Alg. 43) log2 (N) 9
ℓPBS 1 ℓKS1 2

ϕ 1536 log2

(
BKS2

)
2 size 57.83

log2

(
σϕ

)
−37.88 ℓKS2 6

FFT-based

n 686
kin 1

(Alg. 44)

log2 (σn) −15.27 log2 (BPBS) 18 kout 1 time 6.0204

3 ✓
k 3 log2 (NKS) 10log2 (N) 9

ℓPBS 1 log2 (BKS) 1
ϕ 1536

ℓKS 13 size 43.08
log2

(
σϕ

)
−37.88

4 ✗
traditional

n 788 time 16.265

LWE-to-LWE

log2 (σn) −17.98 log2 (BPBS) 23 log2 (BKS) 4
k 2

log2 (N) 10 ℓPBS 1 ℓKS 3 size 92.39
log2 (σk·N) −51.49

n 664 nKS 1126
log2 (σn) −14.68 log2 (BPBS) 22 log2

(
σnKS

)
−26.97 time 12.658

4 ✓
2 steps k 2 log2

(
BKS1

)
13

(Alg. 43) log2 (N) 10
ℓPBS 1 ℓKS1 1

ϕ 2048 log2

(
BKS2

)
2 size 68.68

log2

(
σϕ

)
−51.49 ℓKS2 6

FFT-based

n 682
kin 3

(Alg. 44)

log2 (σn) −15.16 log2 (BPBS) 23 kout 3 time 8.7397

4 ✓
k 2 log2 (NKS) 9log2 (N) 10

ℓPBS 1 log2 (BKS) 1
ϕ 2048

ℓKS 14 size 48.61
log2

(
σϕ

)
−51.49

Table A.4: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys. Note
that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.

299

p
Partial LWE-KS GLWE Parameters PBS Parameters LWE-KS MetricsShared Algorithm Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

5 ✗
traditional

n 840 time 24.964

LWE-to-LWE

log2 (σn) −19.36 log2 (BPBS) 23 log2 (BKS) 3
k 1

log2 (N) 11 ℓPBS 1 ℓKS 6 size 131.3
log2 (σk·N) −51.49

n 732 nKS 1171
log2 (σn) −16.49 log2 (BPBS) 23 log2

(
σnKS

)
−28.17 time 18.638

5 ✓
2 steps k 1 log2

(
BKS1

)
9

(Alg. 43) log2 (N) 11
ℓPBS 1 ℓKS1 2

ϕ 2048 log2

(
BKS2

)
2 size 78.62

log2

(
σϕ

)
−51.49 ℓKS2 7

FFT-based

n 766
kin 3

(Alg. 44)

log2 (σn) −17.39 log2 (BPBS) 23 kout 3 time 13.089

5 ✓
k 1 log2 (NKS) 9log2 (N) 11

ℓPBS 1 log2 (BKS) 1
ϕ 2048

ℓKS 15 size 48.58
log2

(
σϕ

)
−51.49

6 ✗
traditional

n 840 time 67.688

LWE-to-LWE

log2 (σn) −19.36 log2 (BPBS) 14 log2 (BKS) 3
k 1

log2 (N) 12 ℓPBS 2 ℓKS 5 size 341.4
log2 (σk·N) −62.00

n 748 nKS 1313
log2 (σn) −16.91 log2 (BPBS) 14 log2

(
σnKS

)
−31.94 time 53.320

6 ✓
2 steps k 1 log2

(
BKS1

)
16

(Alg. 43) log2 (N) 12
ℓPBS 2 ℓKS1 1

ϕ 2443 log2

(
BKS2

)
2 size 224.2

log2

(
σϕ

)
−62.00 ℓKS2 8

FFT-based

n 774
kin 1

(Alg. 44)

log2 (σn) −17.61 log2 (BPBS) 14 kout 1 time 45.647

6 ✓
k 1 log2 (NKS) 11log2 (N) 12

ℓPBS 2 log2 (BKS) 1
ϕ 2443

ℓKS 15 size 194.0
log2

(
σϕ

)
−62.00

7 ✗
traditional

n 896 time 147.05

LWE-to-LWE

log2 (σn) −20.85 log2 (BPBS) 15 log2 (BKS) 3
k 1

log2 (N) 13 ℓPBS 2 ℓKS 6 size 784.4
log2 (σk·N) −62.00

n 776 nKS 1332
log2 (σn) −17.66 log2 (BPBS) 15 log2

(
σnKS

)
−32.45 time 111.14

7 ✓
2 steps k 1 log2

(
BKS1

)
10

(Alg. 43) log2 (N) 13
ℓPBS 2 ℓKS1 2

ϕ 2443 log2

(
BKS2

)
1 size 463.3

log2

(
σϕ

)
−62.00 ℓKS2 16

FFT-based

n 818
kin 1

(Alg. 44)

log2 (σn) −18.78 log2 (BPBS) 14 kout 1 time 98.870

7 ✓
k 1 log2 (NKS) 11log2 (N) 13

ℓPBS 2 log2 (BKS) 1
ϕ 2443

ℓKS 16 size 409.5
log2

(
σϕ

)
−62.00

8 ✗
traditional

n 968 time 467.25

LWE-to-LWE

log2 (σn) −22.77 log2 (BPBS) 11 log2 (BKS) 3
k 1

log2 (N) 14 ℓPBS 3 ℓKS 6 size 2179
log2 (σk·N) −62.00

n 816 nKS 1359
log2 (σn) −18.72 log2 (BPBS) 11 log2

(
σnKS

)
−33.17 time 351.64

8 ✓
2 steps k 1 log2

(
BKS1

)
9

(Alg. 43) log2 (N) 14
ℓPBS 3 ℓKS1 2

ϕ 2443 log2

(
BKS2

)
1 size 1304

log2

(
σϕ

)
−62.00 ℓKS2 17

FFT-based

n 854
kin 1

(Alg. 44)

log2 (σn) −19.73 log2 (BPBS) 11 kout 1 time 326.44

8 ✓
k 1 log2 (NKS) 11log2 (N) 14

ℓPBS 3 log2 (BKS) 1
ϕ 2443

ℓKS 18 size 1282
log2

(
σϕ

)
−62.00

Table A.5: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys. Note
that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.

300

p
Partial LWE-KS GLWE Parameters PBS Parameters LWE-KS MetricsShared Algorithm Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

9 ✗
traditional

n 1024 time 1383.8

LWE-to-LWE

log2 (σn) −24.26 log2 (BPBS) 9 log2 (BKS) 3
k 1

log2 (N) 15 ℓPBS 4 ℓKS 7 size 5890
log2 (σk·N) −62.00

n 860 nKS 1388
log2 (σn) −19.89 log2 (BPBS) 8 log2

(
σnKS

)
−33.94 time 1148.1

9 ✓
2 steps k 1 log2

(
BKS1

)
10

(Alg. 43) log2 (N) 15
ℓPBS 4 ℓKS1 2

ϕ 2443 log2

(
BKS2

)
1 size 3525

log2

(
σϕ

)
−62.00 ℓKS2 18

FFT-based

n 902
kin 1

(Alg. 44)

log2 (σn) −21.01 log2 (BPBS) 8 kout 1 time 1058.1

9 ✓
k 1 log2 (NKS) 11log2 (N) 15

ℓPBS 4 log2 (BKS) 1
ϕ 2443

ℓKS 18 size 3609
log2

(
σϕ

)
−62.00

10 ✗
traditional

n 1096 time 4794.4

LWE-to-LWE

log2 (σn) −26.17 log2 (BPBS) 6 log2 (BKS) 2
k 1

log2 (N) 16 ℓPBS 6 ℓKS 12 size 19730
log2 (σk·N) −62.00

n 904 nKS 1417
log2 (σn) −21.06 log2 (BPBS) 6 log2

(
σnKS

)
−34.71 time 3721.0

10 ✓
2 steps k 1 log2

(
BKS1

)
11

(Alg. 43) log2 (N) 16
ℓPBS 6 ℓKS1 2

ϕ 2443 log2

(
BKS2

)
1 size 10940

log2

(
σϕ

)
−62.00 ℓKS2 19

FFT-based

n 938
kin 3

(Alg. 44)

log2 (σn) −21.97 log2 (BPBS) 6 kout 3 time 3628.1

10 ✓
k 1 log2 (NKS) 9log2 (N) 16

ℓPBS 6 log2 (BKS) 1
ϕ 2443

ℓKS 20 size 11260
log2

(
σϕ

)
−62.00

11 ✗
traditional

n 1132 time 37795

LWE-to-LWE

log2 (σn) −27.13 log2 (BPBS) 2 log2 (BKS) 2
k 1

log2 (N) 17 ℓPBS 20 ℓKS 13 size 105300
log2 (σk·N) −62.00

n 984 nKS 1471
log2 (σn) −23.19 log2 (BPBS) 3 log2

(
σnKS

)
−36.15 time 18237

11 ✓
2 steps k 1 log2

(
BKS1

)
11

(Alg. 43) log2 (N) 17
ℓPBS 12 ℓKS1 2

ϕ 2443 log2

(
BKS2

)
1 size 47330

log2

(
σϕ

)
−62.00 ℓKS2 21

FFT-based

n 1018
kin 3

(Alg. 44)

log2 (σn) −24.10 log2 (BPBS) 3 kout 3 time 19224

11 ✓
k 1 log2 (NKS) 9log2 (N) 17

ℓPBS 13 log2 (BKS) 1
ϕ 2443

ℓKS 22 size 52940
log2

(
σϕ

)
−62.00

Table A.6: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys. Note
that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.

301

Titre : Construction de nouveaux outils pour un chiffrement homomorphe efficace

Mot clés : chiffrement homomorphe, cloud computing, learning with errors, cryptologie, opti-

misation, TFHE

Résumé : Dans notre vie de tous les jours,
nous produisons une multitude de données à
chaque fois que nous accédons à un service
en ligne. Certaines sont partagées volontaire-
ment et d’autres à contrecœur. Ces données
sont collectées et analysées en clair, ce qui
menace la vie privée de l’utilisateur et em-
pêche la collaboration entre entités travaillant
sur des données sensibles. Le chiffrement
complètement homomorphe (Fully Homomor-
phic Encryption) apporte une lueur d’espoir
en permettant d’effectuer des calculs sur des
données chiffrées ce qui permet de les analy-
ser et de les exploiter sans jamais y accéder

en clair. Cette thèse se focalise sur TFHE, un
récent schéma complètement homomorphe
capable de réaliser un bootstrapping en un
temps record. Dans celle-ci, nous introduisons
une méthode d’optimisation pour sélectionner
les degrés de liberté inhérents aux calculs ho-
momorphiques permettant aux profanes d’uti-
liser TFHE. Nous détaillons une multitude
de nouveaux algorithmes homomorphes qui
améliorent l’efficacité de TFHE et réduisent
voire éliminent les restrictions d’algorithmes
connus. Une implémentation efficace de ceux-
ci est d’ores et déjà en accès libre.

Title: Constructing new tools for efficient homomorphic encryption

Keywords: homomorphic encryption, cloud computing, learning with errors, cryptology, opti-

mization, TFHE

Abstract: In our everyday life, we leave a trail
of data whenever we access online services.
Some are given voluntarily and others reluc-
tantly. Those data are collected and analyzed
in the clear which leads to major threats on
the user’s privacy and prevents collaborations
between entities working on sensitive data. In
this context, Fully Homomorphic Encryption
brings a new hope by enabling computation
over encrypted data, which removes the need
to access data in the clear to analyze and ex-
ploit it.

This thesis focuses on TFHE, a recent fully ho-
momorphic encryption scheme able to com-
pute a bootstrapping in record time. We in-
troduce an optimization framework to set the
degrees of freedom inherent to homomor-
phic computations which gives non-experts
the ability to use it (more) easily. We describe
a plethora of new FHE algorithms which im-
prove significantly the state of the art and limit,
(if not remove) existing restrictions. Efficient
open source implementations are already ac-
cessible.

	Acronyms
	Résumé en Français
	Introduction
	Preliminaries
	The Security of FHE
	(G)LWE Problems
	Attacks on (G)LWE
	Lattice Estimator

	The Morphology of FHE Ciphertexts
	LWE, RLWE & GLWE Ciphertexts
	Lev, RLev & GLev Ciphertexts
	GSW, RGSW & GGSW Ciphertexts

	TFHE and Its Variants
	Additions
	Key Switches
	PBS & Its Building Blocks
	Other LUT Evaluation Algorithms
	TFHE's Limitations

	Encodings
	Modular Arithmetic with a Single LWE ciphertext
	Modular Arithmetic with Several LWE ciphertexts

	Optimization for FHE
	TFHE
	Other Schemes
	Limitations

	Noise Methodology
	Security Oracle
	Motivation
	Method

	Noise Model
	FHE Operator & Noise Model
	Noise Bound

	FFT-related Noise
	Issues with the FFT
	Experimental Noise Formula

	Optimization for FHE
	Optimization Problem
	Cost Model
	Guarantees
	Foundations of the Optimization Framework

	Solving the FHE-to-TFHE Translation Problem
	Graph Transformations
	Pre-Optimization
	CJP Atomic Pattern: Further Simplifications
	Full-fledge problem
	Failure Probability: From the AP to the Entire Graph

	Comparison of FHE Operators
	LUT Evaluation for Different Precisions
	Keyswitch Position in an Atomic Pattern

	Other applications
	Optimal PBS Insertion within a Dot Product
	Consensus-friendly TFHE
	Several Evaluation Keys

	New FHE Operators
	Generalized PBS
	Many-LUT PBS
	Rounded PBS
	LWE Multiplication
	Single LWE Multiplication
	Variants of the LWE Multiplication

	Without Padding Programmable Bootstrap
	WoP-PBS: First Attempt
	WoP-PBS from sign correction
	WoP-PBS from LUT Splitting
	Large Precision Without Padding (Programmable) Bootstrapping

	WoP-PBS: Second Attempt
	LUT Evaluation over Large Integers
	Comparison Between apBBB, apCJP and apGBA
	Comparison Between apBBB and apLMP
	Failure Probability Analysis

	Homomorphic Integers
	Small Integers
	Boolean Arithmetic
	Arithmetic Modulo a Power of 2
	From Modular Arithmetic to Exact Integer Arithmetic

	Big Integers
	Generalization of the Radix Approach
	Supporting Larger Integers using a Hybrid Representation
	Tree PBS Approach on Radix-Based Modular Integers
	Benchmarks with the WoP-PBS

	TFHE on New Problems
	Partial GLWE Secret Keys
	Advantages of Partial GLWE Secret Keys
	LWE-to-LWE Key Switch

	Shared Randomness
	Advantages for LWE-to-LWE Key Switch
	Stair Key Switch

	Combining Partial Keys & Shared Randomness
	Combining Both Techniques
	Some Higher Level Applications
	Parameters & Benchmarks
	Partial GLWE Secret Key
	Secret Keys with Shared Randomness
	Combining Both

	Conclusion
	Appendix
	Noise Analysis of the GLWE Multiplication
	Notation.
	Uniform distributions in a fixed interval.
	Secret keys probability distributions.
	Tensor product
	Bi-Distributed Error Polynomials
	Relinearization

	Noise Analysis of the Generalized PBS
	Noise Analysis of the Packing Key Switch
	Noise Analysis of the Sample Extract
	Noise Analysis of the GLWE-to-GLWE Key Switch
	Noise Analysis of the Secret Product GLWE-to-GLWE Key Switch
	Noise Analysis of the Partial Key External Product
	Noise Analysis of the Shrinking Key Switch
	Noise Analysis of the GLWE Key Switch with Partial Keys with Shared Randomness
	Parameters for the Partial Keys with Shared Randomness

