
HAL Id: tel-04587371
https://theses.hal.science/tel-04587371v1

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the Scope of Machine Learning using
Homomorphic Encryption in IoT/Cloud

Yulliwas Ameur

To cite this version:
Yulliwas Ameur. Exploring the Scope of Machine Learning using Homomorphic Encryption in
IoT/Cloud. Cryptography and Security [cs.CR]. HESAM Université, 2023. English. �NNT :
2023HESAC036�. �tel-04587371�

https://theses.hal.science/tel-04587371v1
https://hal.archives-ouvertes.fr

École Doctorale Sciences des Métiers de l’Ingénieur

Centre d’Études et de Recherche en Informatique et Communications

THÈSE DE DOCTORAT
présentée par : Yulliwas AMEUR

soutenue le : 18 Décembre 2023

pour obtenir le grade de : Docteur d’HESAM Université

préparée au : Conservatoire national des arts et métiers

Discipline : Section CNU 27

Spécialité : Informatique

Exploring the Scope of Machine Learning using

Homomorphic Encryption in IoT/Cloud

THÈSE dirigée par :
Mme Samia BOUZEFRANE Professeure, Cnam, France

et co-encadrée par :
M.Vincent Audigier Mâıtre de Conférences, Cnam, France

Jury

M. Pierre Paradinas Professeur, Cnam,Paris École Président
M. Joaquin Garcia-Alfaro Professeur, SAMOVAR, Telecom

SudParis, Institut Polytechnique
de Paris

Rapporteur

M. Tim Hall Docteur, NIST, Maryland,
États-Unis

Rapporteur

M. Pascal Paillier Expert Cryptographie, Zama Examinateur

Je dédie cette thèse à mes parents, mes frères, ma femme, et mes enfants pour leur amour, leur

soutien et leur encouragement constants tout au long de mon parcours académique.

I yimawlan-iw, i watmaten-iw, tamet.t.ut-iw akked d warraw-iw.

Remerciements

Je tiens à exprimer ma profonde gratitude à ma directrice de thèse, Mme Samia Bouzefrane, pour

sa confiance et son soutien inestimables. Sa guidance a été plus qu’un pilier académique, elle a été une

source d’inspiration constante, éclairant mon chemin dans les moments de doute. Son engagement sans

faille envers mon développement personnel et professionnel a transformé ce rêve d’enfance en réalité.

Ses conseils avisés, sa patience inébranlable et son encouragement constant m’ont permis de naviguer

avec assurance et détermination dans les méandres complexes de la recherche. Sa capacité à percevoir

et à valoriser mes efforts, même les plus modestes, m’a donné la force de persévérer dans les périodes

les plus exigeantes de ce parcours. Mme Bouzefrane n’est pas seulement une mentor académique ; elle

est une véritable mentor de vie, dont l’influence perdurera bien au-delà de cette thèse.

Je suis également reconnaissant à mon co-encadrant, M. Vincent Audigier, dont les remarques

pertinentes et l’accompagnement rigoureux ont grandement contribué à l’élaboration de ce travail. Sa

perspicacité et son expertise ont été cruciales pour affiner ma pensée et ma compréhension des enjeux

de notre domaine.

Je tiens à adresser un grand remerciement à M. Soumya Banerjee, Chercheur Adjoint. Sa col-

laboration, ses connaissances approfondies et son soutien ont été d’une valeur inestimable pour ma

recherche. Son engagement et sa passion pour la science ont grandement influencé mon travail et ma

vision académique.

Un merci particulier à M. Stefano Secci, le chef de l’équipe ”Réseaux et Objets Connectés (ROC)”

du Centre d’études et de recherche en informatique et communications (CEDRIC). Travailler au sein

de son équipe a été une expérience enrichissante et formatrice. Sa vision et son leadership ont été des

sources d’inspiration et de motivation tout au long de mon parcours de recherche.

Je souhaite également exprimer ma gratitude envers mes collègues de bureau au CNAM. Leur

4

REMERCIEMENTS

compagnie, leur soutien et leurs discussions stimulantes ont grandement enrichi mon quotidien et

contribué à mon épanouissement professionnel et personnel. Leur esprit de camaraderie a été un atout

précieux tout au long de mon parcours de thèse.

Mes remerciements les plus chaleureux et respectueux s’adressent à mes rapporteurs, M. Joaquin

Garcia-Alfaro et M. Tim Hall. Leurs analyses approfondies et leurs perspectives critiques sont un

véritable trésor pour ce travail. Leurs commentaires perspicaces et leur regard expert sur ma recherche

enrichissent mon travail et me guident vers une réflexion plus profonde et une compréhension plus

nuancée de mon sujet. Leur capacité à cerner les aspects les plus subtils de ma thèse est une source

d’inspiration et un défi stimulant qui élève incontestablement la qualité de mon travail.

Je tiens à exprimer ma gratitude particulière à M. Pierre Paradinas, qui a accepté de présider mon

jury. Son expertise et son approche équilibrée sont des atouts précieux pour ma soutenance à venir.

Sa présence et son leadership apporteront une dimension de rigueur et de sérieux, tout en créant un

environnement propice à une discussion approfondie et constructive.

Un remerciement particulier également à M. Pascal Paillier, qui participera en tant qu’exami-

nateur. Sa renommée en cryptographie et son expertise technique sont des éléments essentiels qui

enrichissent ma recherche. Son rôle en tant qu’examinateur est non seulement un honneur mais aussi

une opportunité exceptionnelle d’obtenir des retours d’un expert de son calibre.

Cette thèse est le fruit d’un travail collectif et je suis infiniment reconnaissant envers tous ceux qui

ont contribué, de près ou de loin, à sa réalisation. Chaque rencontre, chaque discussion, et chaque mot

d’encouragement ont été des pierres ajoutées à l’édifice de ce projet.

Je tiens également à exprimer ma gratitude envers tous les stagiaires que j’ai eu le privilège d’en-

cadrer au cours de cette recherche, en particulier Rezak Aziz. Leur dévouement, leurs idées novatrices

et leur contribution ont grandement enrichi l’environnement de travail et ont été des éléments clés

dans le succès de ce projet.

Je suis profondément reconnaissant envers mes anciens professeurs du département de Mathéma-

tiques de l’Université Paris 8, en particulier pour le cours d’histoire de la cryptologie enseigné par

Philippe Guillot, qui a été une source d’inspiration et un pilier dans mon parcours académique.

Enfin, je souhaite dédier ce travail à ma famille et à mes amis, dont le soutien inconditionnel a été

le socle sur lequel j’ai pu construire et réaliser mes aspirations.

5

Chapitre 1

Résumé en français

1.1 Contexte de la thèse

Selon statista [1], 30,9 milliards de dispositifs IdO seront utilisés par les entreprises et l’industrie

automobile d’ici à la fin de 2025. Cependant, ces appareils IoT ne disposent pas de ressources suffisantes

pour traiter les données collectées par leurs capteurs, ce qui les rend vulnérables et susceptibles d’être

attaqués. Pour éviter de traiter les données au sein des objets connectés, la tendance est à l’externalisa-

tion des données collectées vers le cloud, qui dispose à la fois d’une puissante capacité de stockage et de

traitement des données. Cependant, les données externalisées peuvent être sensibles et les utilisateurs

peuvent perdre leur confidentialité concernant le contenu des données, tandis que les fournisseurs de

services en nuage peuvent accéder à ces données et potentiellement les utiliser pour leurs propres acti-

vités. Pour éviter cette situation et préserver la confidentialité des données dans le centre de données

en nuage, une solution possible consiste à utiliser le chiffrement entièrement homomorphe (FHE), qui

garantit à la fois la confidentialité et l’efficacité du traitement. Dans de nombreux environnements

intelligents tels que les villes intelligentes, la santé intelligente, l’agriculture intelligente, l’industrie

4.0, etc. où d’énormes quantités de données sont générées, il est nécessaire d’appliquer des techniques

d’apprentissage automatique (ML) et de contribuer ainsi à la prise de décision dans l’environnement

intelligent. En effet, le défi dans ce contexte est d’adapter les approches d’apprentissage automatique

pour qu’elles puissent être appliquées à des données chiffrées, afin que les décisions prises sur la base

des données chiffrées puissent être traduites en données claires.

Nous examinons ces deux cas d’utilisation ci-dessous pour mieux illustrer le problème abordé dans

cette thèse :

6

1.1. CONTEXTE DE LA THÈSE

Cas d’usage 1 : Alice est diabétique et doit surveiller régulièrement son taux de glycémie à l’aide

d’un lecteur de glycémie connecté à son smartphone. Elle a opté pour une application mobile de

surveillance de la glycémie qui stocke ses données personnelles et de santé sur un serveur cloud tiers

à des fins d’analyse.

Chaque fois qu’Alice mesure sa glycémie à l’aide de son lecteur, les données sont envoyées à

l’application mobile, qui les stocke sur un serveur en nuage tiers à des fins d’analyse. Les données de

santé d’Alice sont alors exposées à des risques potentiels tels que la violation de données, la surveillance

non autorisée, l’usurpation d’identité, la fraude à l’assurance et même la discrimination en matière

d’emploi ou d’accès aux soins de santé. La principale raison de l’externalisation des données vers

le cloud est la mémoire et les ressources informatiques limitées du smartphone d’Alice, qui rendent

difficile le traitement et le stockage de grandes quantités de données au niveau local. Cependant, cela

pose des problèmes de sécurité et de confidentialité pour les données de santé sensibles d’Alice. Une

solution possible à ce problème est l’utilisation du chiffrement entièrement homomorphe (FHE) pour

protéger la confidentialité des données d’Alice tout en permettant une analyse et une prise de décision

efficaces.

Cas d’usage 2 : Deux sociétés pharmaceutiques ont récemment fait des découvertes prometteuses

dans la recherche d’un nouveau vaccin contre une maladie mortelle. Or, les deux entreprises disposent

de données exclusives et complémentaires qui pourraient contribuer à accélérer le processus de re-

cherche et de développement du vaccin.

Cependant, les entreprises sont réticentes à partager leurs données car elles ne se font pas confiance

et craignent que leurs secrets commerciaux ne soient dévoilés. C’est là que le chiffrement homomor-

phique entre en jeu. Les entreprises peuvent désormais crypter leurs données respectives et les envoyer

à un tiers de confiance qui effectue l’agrégation et le regroupement sans jamais avoir à décrypter les

données ou à révéler leurs secrets commerciaux.

Grâce au chiffrement homomorphique, les entreprises peuvent collaborer en toute sécurité et sans

risque en partageant leurs données pour la recherche et le développement de vaccins. Les deux entre-

prises peuvent bénéficier de l’expertise et des connaissances de l’autre tout en préservant la confiden-

tialité de leurs données commerciales. Dans la section suivante, nous présentons un exemple introductif

qui a motivé le travail de cette thèse.

7

1.2. OBJECTIFS ET CONTRIBUTIONS DE LA THÈSE

1.2 Objectifs et contributions de la thèse

Les travaux réalisés dans le cadre de cette thèse ont donné lieu à plusieurs publications et ont étudié

l’application du chiffrement homomorphe dans différents contextes d’apprentissage automatique. Le

premier travail [2] se concentre sur l’utilisation du chiffrement homomorphique dans un environnement

multi-cloud pour améliorer la sécurité et la confidentialité des données. Pour préserver la vie privée et

la confidentialité lorsque les données sont externalisées, une plateforme multi-cloud est proposée, qui

intègre des clouds publics, privés et gérés avec une interface utilisateur unique. Les données hébergées

dans le nuage sont distribuées à différents centres de données dans un environnement multicloud, en

tenant compte de la fiabilité du nuage et de la sensibilité des données. Le chiffrement homomorphique

est utilisé à cet effet, une méthode de chiffrement qui permet de traiter et de manipuler les données

tout en restant chiffré, de sorte que les utilisateurs ou les tiers peuvent traiter les données chiffrées

sans révéler leur contenu.

La deuxième partie de cette thèse étudie l’application du chiffrement homomorphique à l’algorithme

k-nearest neighbors (k-NN). L’étude [3] présente une mise en œuvre pratique de l’algorithme k-NN

utilisant le chiffrement homomorphique et démontre la faisabilité de cette approche sur un grand

nombre d’ensembles de données. Ce travail aborde le problème de la vulnérabilité liée à l’externalisation

des données dans le nuage. La solution proposée utilise un schéma de chiffrement homomorphe (appelé

TFHE) pour l’algorithme k-NN, qui permet un traitement des données chiffrées de bout en bout tout

en préservant la vie privée. Contrairement aux techniques existantes, cette solution ne nécessite aucune

interaction intermédiaire entre le serveur et le client pendant la tâche de classification. L’algorithme

a été évalué sur des ensembles de données réels importants et pertinents et a prouvé son efficacité en

s’adaptant bien à différents paramètres sur des données simulées.

Dans la troisième partie de cette thèse, l’application du chiffrement homomorphique à l’algorithme

de regroupement k-means est étudiée. Comme pour l’étude k-NN, le travail proposé présente une

implémentation pratique de l’algorithme k-means en utilisant le cryptage homomorphique et évalue

sa performance sur différents ensembles de données.

Enfin, nous présentons une autre contribution [4] qui utilise la combinaison du chiffrement ho-

momorphique avec des techniques de confidentialité différentielle (DP) pour renforcer davantage la

confidentialité des modèles d’apprentissage automatique. Les travaux proposés suggèrent une nouvelle

8

1.3. CONTRIBUTION À LA GESTION DES PROBLÈMES DE SÉCURITÉ VIA LE
CHIFFREMENT HOMOMORPHIQUE DANS UN ENVIRONNEMENT
MULTI-CLOUD

approche qui combine le chiffrement homomorphique et la protection différentielle afin d’obtenir de

meilleures garanties de confidentialité pour les modèles d’apprentissage automatique.

En résumé, la recherche présentée dans cette thèse complète la littérature croissante sur la conver-

gence du chiffrement homomorphique et de l’apprentissage automatique, et fournit des implémenta-

tions pratiques et des évaluations du chiffrement homomorphique dans divers scénarios d’apprentissage

automatique.

1.3 Contribution à la Gestion des Problèmes de Sécurité via le Chiffrement
Homomorphique dans un Environnement Multi-Cloud

Cette contribution examine l’externalisation des données vers des plateformes cloud, soulignant

les défis de sécurité et de confidentialité. Elle propose l’utilisation d’une plateforme multi-cloud pour

renforcer la confidentialité et la disponibilité des données. La contribution présente une plateforme

multi-cloud intégrant des clouds publics, privés et gérés avec une interface utilisateur unique. Cette

approche optimise la distribution des données en fonction de la fiabilité du cloud et de la sensibilité

des données. Elle souligne également les limites des algorithmes de chiffrement actuels, notamment

leur coût élevé en ressources. La contribution met en lumière le chiffrement homomorphique comme

moyen de traiter des données cryptées sans révéler leur contenu. Cette méthode est particulièrement

adaptée aux environnements où la confiance envers les fournisseurs de cloud est limitée.

1.3.1 Application et Défis Identifiés

L’étude se focalise sur l’application du chiffrement homomorphique dans la sécurisation des envi-

ronnements multi-cloud. Elle identifie des défis existants et des opportunités d’amélioration, en mettant

un accent particulier sur les applications dans le domaine des dossiers médicaux électroniques.

1.3.2 Contribution Principale

La principale contribution est une nouvelle architecture pour les dossiers médicaux électroniques

dans un environnement multi-cloud, utilisant la bibliothèque open-source ”OpenFHE” pour le chif-

frement homomorphique. Cette architecture vise à sécuriser le partage de données dans un contexte

multi-cloud, avec une démonstration de faisabilité pour des opérations homomorphiques simples, et des

9

1.4. CLASSIFICATEUR k-NN SÉCURISÉ ET NON-INTERACTIF UTILISANT LE
CHIFFREMENT HOMOMORPHIQUE SYMÉTRIQUE

perspectives pour des opérations plus complexes comme l’application d’algorithmes d’apprentissage

automatique.

1.3.3 Conclusion

Cette contribution souligne l’importance de relever les défis de la sécurité dans les applications

cloud, particulièrement dans le secteur de la santé. Elle présente une architecture innovante qui as-

sure la confidentialité dans un environnement multi-cloud, en utilisant un algorithme de chiffrement

homomorphique multi-clés.

1.4 Classificateur k-NN Sécurisé et Non-Interactif Utilisant le Chiffrement

Homomorphique Symétrique

Cette contribution aborde la problématique de la vulnérabilité liée à l’externalisation des données

sur le cloud dans le contexte du ”Machine learning as a service” (MLaaS). Elle propose une solution

pour l’algorithme des k plus proches voisins (k-NN) utilisant un schéma de chiffrement homomor-

phique (TFHE), permettant le traitement des données entièrement chiffrées tout en préservant la

confidentialité.

1.4.1 Contexte et Défis

Les techniques cryptographiques courantes pour préserver la confidentialité dans l’apprentissage

automatique incluent le partage secret, le calcul multipartie et le chiffrement homomorphique (HE).

Cette contribution se concentre sur l’utilisation du chiffrement homomorphique pour résoudre les défis

liés à l’application de l’algorithme k-NN dans un environnement chiffré.

1.4.2 Contribution Principale

La principale innovation est la méthodologie permettant d’appliquer le k-NN sur des données chif-

frées en utilisant le chiffrement homomorphique complet, évitant toute interaction entre les entités.

Cette solution garantit qu’aucune fuite d’information ne se produit pendant le processus, et elle sup-

porte la classification multi-labels. Les étapes clés incluent le calcul de distance, le tri des distances, la

sélection des k voisins les plus proches, et le vote majoritaire, tous réalisés sur des données chiffrées. Le

10

1.4. CLASSIFICATEUR k-NN SÉCURISÉ ET NON-INTERACTIF UTILISANT LE
CHIFFREMENT HOMOMORPHIQUE SYMÉTRIQUE

système utilise une architecture client-serveur, où le client (le demandeur) envoie une requête chiffrée

au serveur (propriétaire des données) pour exécution. Le propriétaire des données exécute l’algorithme

k-NN chiffré et renvoie le résultat au client pour déchiffrement.

1.4.3 Le modèle du système

-0.5cm

Figure 1.1 – Le modèle du système : le client est le demandeur et le serveur est le propriétaire des
données : le propriétaire des données reçoit la requête de manière cryptée, exécute un algorithme

k-NN crypté puis envoie le résultat au demandeur pour décryptage.
-0.5cm

Notre système utilise l’architecture client-serveur (voir figure 1). Le client est le demandeur et le

serveur est le propriétaire des données.

propriétaire des données : il possède les données et peut effectuer des calculs lourds. Par exemple,

il reçoit la requête de manière cryptée, exécute un algorithme k-NN crypté, puis envoie le ré-

sultat au demandeur pour qu’il le décrypte. demandeur : génère les clés, crypte la requête qui

contient ses données et l’envoie au propriétaire des données pour qu’il effectue des calculs avant

de décrypter le résultat. Le demandeur peut être un ordinateur ordinaire ou tout appareil IoT

qui collecte des données.

1.4.4 Défis chiffrés k-NN

Afin de proposer une version chiffrée du k-NN, nous devons remplacer les opérations de défi utilisées

dans le k-NN standard par des opérations équivalentes dans des domaines chiffrés. Comme nous l’avons

vu précédemment, le k-NN est composé de trois parties : le calcul de la distance, le tri de la distance,

la sélection des k plus proches voisins et le vote majoritaire. Cette sous-section présente les opérations

équivalentes telles qu’elles sont intégrées dans notre solution.

11

1.4. CLASSIFICATEUR k-NN SÉCURISÉ ET NON-INTERACTIF UTILISANT LE
CHIFFREMENT HOMOMORPHIQUE SYMÉTRIQUE

1.4.4.1 Calcul de la distance

Le calcul de la distance euclidienne entre les entrées de l’ensemble de données xi et la requête q

est nécessaire pour trouver les k plus proches voisins de la requête. Nous pouvons utiliser la formule

standard de la distance (1).

d2(xi, q) =
p∑︂

j=0
x2

ij +
p∑︂

j=0
q2

j − 2 ∗
p∑︂

j=0
xijqj (1.1)

Ce qui est important dans notre cas, c’est la différence entre deux distances pour les comparer. Nous

obtenons donc la formule (2) suivante :

d2(xi, q)− d2(xi′ , q) =
p∑︂

j=0
(x2

ij − x2
i′j)− 2 ∗

p∑︂
j=0

(xi′j − xij)qj (1.2)

Étant donné que l’ensemble de données est un texte clair, nous pouvons facilement calculer la formule

(2) à l’aide du schéma TFHE. Toutefois, nous devons l’adapter. Avec TFHE, la différence entre les

distances doit être comprise entre [−1
2 , 1

2]. Une autre contrainte est que la multiplication est effectuée

entre un entier en clair et un texte chiffré. Deux valeurs de remise à l’échelle sont nécessaires pour

résoudre ces contraintes. La première est v. Elle est utilisée pour obtenir les valeurs des différences

entre [−1
2 , 1

2]. Soit p le second. Il indique la précision des différences. Chaque attribut de l’ensemble de

données et de la requête est rééchelonné à l’aide de v. p est utilisé pour calculer le produit (xi′j−xij)qj .

1.4.4.2 Tri

Le tri des distances calculées est une étape cruciale du k-NN. L’algorithme standard de tri, tel

que le tri par bulles, peut être utilisé en considérant des données cryptées. Cependant, ces algorithmes

prennent beaucoup de temps dans un monde crypté car le pire cas est calculé à chaque fois. Les auteurs

[5] proposent deux méthodes pour trier un tableau de valeurs. La méthode du tri direct est utilisée

dans [6]. Elle est basée sur une matrice de comparaison appelée matrice delta :á
m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n

ë
avec

mi,j = sign¯ (Xi −Xj) =
ß

1 if Xi < Xj

0 else.

12

1.4. CLASSIFICATEUR k-NN SÉCURISÉ ET NON-INTERACTIF UTILISANT LE
CHIFFREMENT HOMOMORPHIQUE SYMÉTRIQUE

En additionnant les colonnes de cette matrice, nous aurons un indice de tri des distances.

1.4.4.3 Vote majoritaire

Le vote majoritaire peut poser un problème car l’opération nécessite une comparaison pour détec-

ter la classe. Pour déterminer la classe prédite, nous devons connâıtre les classes de k voisins les plus

proches. Cette étape est difficile à deux égards : tout d’abord, nous devons éviter les fuites d’informa-

tions, contrairement aux solutions proposées dans la littérature. Deuxièmement, le vote majoritaire

nécessite une comparaison afin de prédire la classe.

À notre connaissance, aucune solution dans la littérature n’a étudié ce point de manière cryptée sans

fuite d’information. Par conséquent, dans la sous-section suivante, nous démontrons une solution pour

traiter k-NN avec le vote majoritaire de manière cryptée tout en prenant en charge une classification

multi-label.

1.4.4.4 Notre algorithme k-NN proposé

L’algorithme que nous proposons, appelé ”HE-kNN-V”, se compose de trois étapes : la construction

de la matrice delta, la sélection des k plus proches voisins et le vote majoritaire. Les deux premières

étapes sont similaires à la solution de [6] même si nous adaptons les formules existantes afin d’éliminer

les calculs inutiles. [6] utilise des polynômes pour définir les formules, alors que ce qui nous intéresse

est un seul terme de ces polynômes pour éliminer les calculs non nécessaires. Le vote majoritaire est

notre valeur ajoutée et est spécifique à notre solution. Nous examinerons dans cette sous-section la

conception de notre solution, y compris chaque élément constitutif.

-sectionConstruction de la matrice delta Pour construire la matrice delta, nous devons connâıtre le

signe des différences entre les distances de tri. Puisque nous avons défini une méthode pour calculer les

différences dans la dernière sous-section, le signe peut facilement être obtenu en utilisant la fonction

de signe bootstrapping standard dans TFHE. Cependant, la fonction bootstrapping standard renvoie

+1 si la phase est supérieure à 0 et -1 si la phase est inférieure à 0. Par conséquent, puisque nous

devons avoir 0 ou 1 dans la matrice, nous devons adapter l’opération bootstrapping pour renvoyer 1
2

et −1
2 puis, en ajoutant 1

2 au résultat, nous obtiendrons 0 ou 1.

Même si la construction de cette matrice prend du temps, elle est hautement parallélisable.

13

1.4. CLASSIFICATEUR k-NN SÉCURISÉ ET NON-INTERACTIF UTILISANT LE
CHIFFREMENT HOMOMORPHIQUE SYMÉTRIQUE

1.4.4.5 Sélection des k plus proches voisins

Pour sélectionner les k–voisins les plus proches, nous utilisons l’opération de notation proposée par

Zuber [6]. En utilisant la matrice delta, le principe est le suivant :

m valeurs dans chaque colonne avec m le nombre d’opérations possibles sans bootstrapping. §’il

reste des valeurs à additionner : effectuer une opération de bootstrapping à l’aide de la fonction

de bootstrapping de signe modifiée (voir l’algorithme 1 dans [6]) et passer à l’étape 1.Sinon,

exécuter la fonction d’amorçage de signe modifiée et renvoyer le dernier signe renvoyé par cette

opération.

Enfin, nous obtenons un vecteur crypté où la position i est égale au chiffre 1 si l’individu ayant

l’indice i fait partie des k plus proches voisins, au chiffre 0 sinon. Nous appelons ce vecteur le ”masque”

(voir la figure 2 pour plus de clarté).

-sectionVote majoritaire Le vote majoritaire est la valeur ajoutée la plus importante de notre

travail. Nous proposons d’effectuer le vote majoritaire sans aucune fuite d’information, contrairement

aux travaux existants comme celui de [6] dans lequel la valeur de la majorité est effectuée en texte clair

ou en utilisant d’autres solutions alternatives proposées dans la littérature. èrement, nous illustrons le

problème avec la méthode de [6]. Nous considérons le scénario dans lequel le demandeur effectue les

calculs. Le vote majoritaire est effectué en texte clair, mais nous devons décrypter le vecteur d’index

du plus proche voisin. Le propriétaire des données effectue le décryptage. Une fuite d’informations

importante se produit si le propriétaire des données connâıt le vecteur d’index. Il connâıtra alors

la classification de la requête et, en effectuant une triangulation, il pourra approximer la requête.

En outre, la solution sera interactive. Si nous considérons le scénario dans lequel le propriétaire des

données effectue le calcul, le décryptage du vecteur est effectué par le demandeur. Cependant, pour

effectuer la classification, le demandeur doit connâıtre les étiquettes de l’ensemble de données, ce qui

constitue également une fuite d’informations critique. En outre, le demandeur connâıtra la taille de

l’ensemble de données et le paramètre k des plus proches voisins considérés. Ces informations sont

considérées comme des informations internes du modèle utilisé et doivent être protégées.

Dans notre solution, le vote majoritaire est effectué par le propriétaire des données de manière

cryptée. Tout d’abord, le propriétaire des données code les étiquettes à l’aide d’un codage à chaud. Le

masque et la matrice des étiquettes étant sous une forme chaude, il est facile d’effectuer une opération

14

1.5. RÉSUMÉ DE CONTRIBUTION : CLUSTERING k-MEANS SÉCURISÉ
UTILISANT LE CHIFFREMENT HOMOMORPHIQUE COMPLET SUR LE TORUS
(TFHE)

ET entre le masque et chaque colonne des étiquettes, comme le montre la figure 2. Nous obtenons une

matrice A (pour affectation) avec Aij égal à 1 si l’individu i fait partie des k plus proches voisins et

que sa classe est j. En utilisant cette matrice, il est possible de faire la somme des colonnes et d’obtenir

la probabilité de chaque classe. On peut alors ne renvoyer que la classe et garantir l’absence de fuite

d’information et d’interactivité.

Figure 1.2 – Illustration du vote majoritaire à l’aide du masque

1.4.5 Évaluation de la Performance

La méthode a été évaluée en termes de temps d’exécution, de précision et de consommation de

bande passante sur de grands ensembles de données réels. Les résultats montrent que la solution est

efficace et évolutive, offrant une précision comparable à celle obtenue avec des données en clair.

1.4.6 Conclusion et Perspectives

HE-kNN-V propose une méthode pour exécuter k-NN sur des données chiffrées, incluant un vote

majoritaire pour l’attribution de classe. Cette solution aborde toutes les étapes de l’algorithme k-NN

avec des données entièrement chiffrées, éliminant le besoin d’interactions intermédiaires entre le serveur

et le client lors de l’exécution des tâches de classification. En perspective, l’accélération matérielle du

schéma TFHE pourrait améliorer le temps de calcul de la solution proposée HE-kNN

1.5 Résumé de Contribution : Clustering k-means Sécurisé Utilisant le Chif-
frement Homomorphique Complet sur le Torus (TFHE)

Cette contribution traite de l’application sécurisée du clustering k-means dans le cloud en utilisant

le chiffrement homomorphique complet (FHE). Malgré les avantages du cloud pour le machine learning,

15

1.5. RÉSUMÉ DE CONTRIBUTION : CLUSTERING k-MEANS SÉCURISÉ
UTILISANT LE CHIFFREMENT HOMOMORPHIQUE COMPLET SUR LE TORUS
(TFHE)

la confidentialité des données reste une préoccupation majeure, notamment dans les secteurs sensibles.

Pour y remédier, cette recherche utilise la méthode TFHE (Fast Fully Homomorphic Encryption

over the Torus) pour effectuer des opérations cryptographiques sur les données, tout en préservant

la confidentialité. La contribution examine les techniques existantes d’HE appliquées au clustering k-

means, y compris les défis liés à la réalisation de calculs complexes tels que la division et la comparaison

dans un contexte cryptographique.

1.5.1 Contribution Principale

L’innovation principale réside dans la réduction de l’interaction entre le serveur cloud et l’utili-

sateur/client en utilisant TFHE. Cette approche permet d’exécuter toutes les étapes de l’algorithme

k-means, y compris l’attribution des données aux clusters, de manière entièrement cryptée et non

interactive. La méthode suggérée se distingue par sa capacité à effectuer des comparaisons chiffrées

pour l’attribution des clusters sans déchiffrement intermédiaire.

1.5.2 Mise en Œuvre et Évaluation

La solution est mise en œuvre en C/C++ avec la bibliothèque TFHE et testée sur divers ensembles

de données. Les performances sont évaluées en termes d’efficacité (comparaison avec k-means stan-

dard), de temps d’exécution et de sécurité. Les résultats montrent que l’algorithme proposé produit

des clusters comparables à ceux du k-means standard, avec un niveau de sécurité élevé et des temps

d’exécution pratiques pour des ensembles de données de taille modeste.

1.5.3 Conclusion et Perspectives

Cette contribution présente une méthode pratique et sécurisée pour l’exécution du clustering k-

means dans le cloud, offrant une solution viable pour les applications nécessitant la confidentialité

des données. Les perspectives incluent l’optimisation de la solution pour une exécution plus rapide,

notamment en utilisant le parallélisme GPU, et l’exploration d’autres techniques de chiffrement ho-

momorphique pour la sécurisation du k-means.

16

1.6. CONTRIBUTION : DÉVELOPPEMENT DU CHIFFREMENT
HOMOMORPHIQUE ADAPTATIF EN EXPLORANT LA TECHNIQUE DE
CONFIDENTIALITÉ DIFFÉRENTIELLE

1.6 Contribution : Développement du Chiffrement Homomorphique Adap-
tatif en Explorant la Technique de Confidentialité Différentielle

Cette étude se penche sur les technologies de préservation de la confidentialité (PPTs) en réponse

aux vulnérabilités inhérentes aux systèmes cloud. L’objectif est d’améliorer l’utilité tout en maintenant

des normes strictes de confidentialité. Le chiffrement homomorphique et la confidentialité différentielle

(DP) sont combinés pour renforcer les applications d’apprentissage automatique contre des adversaires

non conventionnels.

1.6.1 Mise en Œuvre

Le travail expérimente avec l’ensemble de données Breast Cancer Wisconsin, traité pour préserver

la confidentialité. Le chiffrement homomorphique, spécifiquement le schéma de Paillier, est utilisé pour

assurer un transfert et des calculs sécurisés.

Code Côté Client

Des fonctions telles que storeKeys(), getKeys(), serializeData(), et load_prediction() sont

utilisées pour gérer la génération, le chiffrement et le déchiffrement des données.

Code Côté Serveur

Le serveur exécute des calculs homomorphiques sur les données chiffrées et renvoie la prédiction chiffrée

au client.

1.6.2 Analyse de Performance et de sensibilité

L’ajout de bruit gaussien impacte légèrement la précision, mais le modèle démontre une bonne

performance, soulignant l’efficacité des techniques de préservation de la vie privée.

L’analyse de la sensibilité est cruciale pour réguler la quantité de bruit ajouté et assurer l’efficacité

de la DP. Le modèle proposé vise à modéliser la sortie de la base de données avec une distribution de

bruit appropriée.

1.6.3 Conclusion et Perspectives

Cette recherche propose une stratégie fondamentale pour combiner chiffrement homomorphique

et DP. L’architecture client-serveur démontrée justifie la compatibilité des bibliothèques pour le chif-

17

1.7. CONCLUSION GÉNÉRALE

frement homomorphique. Les recherches futures pourraient explorer le développement de mécanismes

robustes minimisant le bruit tout en améliorant la confidentialité.

1.7 Conclusion générale

La présente thèse a entrepris une exploration complète des implications de l’utilisation du chiffre-

ment homomorphique dans le domaine de l’apprentissage automatique en tant que service (MLaaS)

et de la protection des données sensibles. L’expansion rapide du MLaaS a soulevé des préoccupa-

tions importantes concernant la confidentialité des données sensibles, ce qui nous a incités à étudier le

chiffrement homomorphique en tant que solution viable. Des recherches approfondies ont été menées

sur son application à divers aspects de l’apprentissage automatique, y compris son déploiement dans

un environnement multi-cloud, son intégration dans l’algorithme k-nearest neighbors (k-NN) et son

adaptation à l’algorithme de clustering k-means.

Les résultats de cette thèse ont démontré de manière concluante que l’utilisation du chiffrement

homomorphique peut assurer efficacement la sécurité des données sensibles tout en permettant des

opérations de traitement de données complexes. Notre étude a révélé que malgré les complexités

associées à la mise en œuvre du chiffrement homomorphe, ses performances restent comparables à

celles des méthodologies non chiffrées, présentant ainsi des opportunités convaincantes pour renforcer

la protection des données sensibles dans le domaine de l’informatique en nuage.

Ces découvertes prometteuses ouvrent des voies stimulantes pour de futures recherches scientifiques.

L’amélioration des composants matériels des schémas de cryptage homomorphique est une perspective

qui mérite d’être envisagée pour renforcer les capacités de traitement. En outre, un examen approfondi

de l’intégration du chiffrement homomorphe avec des méthodologies complémentaires de protection de

la vie privée, telles que la protection différentielle de la vie privée, pourrait renforcer la sécurité des

modèles d’apprentissage automatique dans les paradigmes sensibles.

En résumé, cette thèse représente une contribution substantielle à l’avancement des connaissances

sur la sécurisation des données sensibles dans les environnements MLaaS. Les résultats servent à

stimuler l’exploration en cours et la mise en œuvre plus large du chiffrement homomorphique, ouvrant

ainsi de nouvelles possibilités pour sécuriser les données sensibles dans les applications d’apprentissage

automatique et d’informatique en nuage.

18

1.7. CONCLUSION GÉNÉRALE

De nombreux défis doivent être relevés pour appliquer l’apprentissage automatique préservant la

vie privée dans des applications réelles. Bien que les normes, les plateformes et les mises en œuvre du

chiffrement homomorphe décrites dans ce chapitre contribuent à l’avancement du chiffrement homo-

morphe dans l’apprentissage automatique (HEML), il reste des défis spécifiques à relever, notamment

en ce qui concerne les frais généraux, les performances, l’interopérabilité, les goulets d’étranglement

au démarrage, la détermination des signes et les cadres communs :

1.— Overhead : Par rapport à son homologue non chiffré, HEML s’accompagne d’un surcoût im-

portant, ce qui le rend inadapté à de nombreuses applications. Toutefois, pour les modèles non

HE, la phase d’apprentissage du ML implique un effort de calcul intensif. Même avec des tech-

niques modernes, cela devient de plus en plus difficile avec HE. Une tendance récente consiste

à contourner l’étape d’apprentissage en utilisant des modèles pré-entrâınés afin de trouver un

équilibre entre la complexité et la précision.

— Parallélisation : L’incorporation d’algorithmes bien établis et nouveaux est une approche per-

mettant de faire face à la surcharge de calcul. Les ordinateurs à haute performance, les systèmes

distribués et les ressources spécialisées peuvent tous être utilisés dans les modèles HEML. Les

unités de traitement multicœur (GPU, FPGA, etc.) et les puces personnalisées (ASIC) four-

nissent des environnements HEML plus efficaces et plus conviviaux. Une autre approche pour

améliorer l’efficacité globale consiste à regrouper et à paralléliser de nombreuses opérations

d’amorçage.

— Comparaison et fonction min/max : De nouvelles méthodes sont nécessaires pour comparer les

nombres cryptés par chiffrement homomorphique (HE). Actuellement, les fonctions de compa-

raison et min/max sont évaluées à l’aide de fonctions booléennes dans lesquelles les nombres

d’entrée sont cryptés bit par bit. Cependant, les méthodes de cryptage bit à bit nécessitent des

calculs relativement coûteux pour les opérations arithmétiques de base telles que l’addition et

la multiplication.

— PPML (Privacy Preserving Machine Learning) tools : La conception d’une solution PPML

performante et sécurisée sans une compréhension approfondie de l’apprentissage automatique

constitue un défi pratique pour le déploiement de ces technologies. Les développeurs de PPML

ont besoin d’une expertise à la fois en apprentissage automatique et en sécurité. Le PPML, qui

utilise l’apprentissage automatique, n’a pas été largement accepté par la communauté de l’ap-

19

1.7. CONCLUSION GÉNÉRALE

prentissage automatique en raison de la barrière d’entrée élevée de l’apprentissage automatique

et du manque d’outils conviviaux.

— Protocoles hybrides : L’adoption de protocoles hybrides, qui combinent deux protocoles ou plus

afin de tirer parti de leurs avantages et d’éviter leurs inconvénients, est une voie prometteuse

pour l’amélioration des performances.

20

1.7. CONCLUSION GÉNÉRALE

21

Abstract

Machine Learning as a Service (MLaaS) has accelerated the adoption of machine learning tech-

niques in various fields. However, this trend has also raised serious concerns about the security and

privacy of the sensitive data used in machine learning models. To address this challenge, we use ho-

momorphic encryption. The aim of this thesis is to investigate the implementation of homomorphic

encryption in different machine learning applications. The first part of the thesis focuses on the use of

homomorphic encryption in a multi-cloud environment, where the encryption is applied to simple ope-

rations such as addition and multiplication. This thesis investigates the application of homomorphic

encryption to the k-nearest neighbors (k-NN) algorithm. The study presents a practical implemen-

tation of the k-NN algorithm using homomorphic encryption and demonstrates the feasibility of this

approach on a variety of datasets. The results show that the performance of the k-NN algorithm with

homomorphic encryption is comparable to that of the unencrypted algorithm. Third, the paper in-

vestigates the application of homomorphic encryption to k-means clustering algorithm. Similar to the

k-NN study, this paper presents a practical implementation of the k-means algorithm using homomor-

phic encryption and evaluates its performance using different datasets. Finally, the thesis explores the

combination of homomorphic encryption with Differential Privacy (DP) techniques to further improve

the confidentiality of machine learning models. The study proposes a novel approach that combines

homomorphic encryption with DP to achieve better privacy guarantees for machine learning models.

The research results presented in this paper contribute to the growing body of research at the inter-

section of homomorphic encryption and machine learning and provide practical implementations and

evaluations of homomorphic encryption in various machine learning contexts.

22

Table des matières

Remerciements 4

1 Résumé en français 6

Introduction générale6

1.1 Contexte de la thèse . 6

1.2 Objectifs et contributions de la thèse . 8

1.3 Contribution à la Gestion des Problèmes de Sécurité via le Chiffrement Homomorphique

dans un Environnement Multi-Cloud . 9

1.3.1 Application et Défis Identifiés . 9

1.3.2 Contribution Principale . 9

1.3.3 Conclusion . 10

1.4 Classificateur k-NN Sécurisé et Non-Interactif Utilisant le Chiffrement Homomorphique

Symétrique . 10

1.4.1 Contexte et Défis . 10

1.4.2 Contribution Principale . 10

1.4.3 Le modèle du système . 11

1.4.4 Défis chiffrés k-NN . 11

1.4.4.1 Calcul de la distance . 12

1.4.4.2 Tri . 12

1.4.4.3 Vote majoritaire . 13

23

TABLE DES MATIÈRES

1.4.4.4 Notre algorithme k-NN proposé . 13

1.4.4.5 Sélection des k plus proches voisins 14

1.4.5 Évaluation de la Performance . 15

1.4.6 Conclusion et Perspectives . 15

1.5 Résumé de Contribution : Clustering k-means Sécurisé Utilisant le Chiffrement Homo-

morphique Complet sur le Torus (TFHE) . 15

1.5.1 Contribution Principale . 16

1.5.2 Mise en Œuvre et Évaluation . 16

1.5.3 Conclusion et Perspectives . 16

1.6 Contribution : Développement du Chiffrement Homomorphique Adaptatif en Explorant

la Technique de Confidentialité Différentielle . 17

1.6.1 Mise en Œuvre . 17

1.6.2 Analyse de Performance et de sensibilité . 17

1.6.3 Conclusion et Perspectives . 17

1.7 Conclusion générale . 18

Abstract 22

Liste des tableaux 31

Liste des figures 33

I General Introduction 34

2 General Introduction 36

General Introduction 36

2.1 Context of the thesis . 36

2.2 Objectives and Contributions of the thesis . 37

24

TABLE DES MATIÈRES

II Background and State of the Art 39

3 Background 41

3.1 Machine Learning Techniques . 41

3.1.1 Supervised Machine Learning . 43

3.1.1.1 k-nearest neighbors algorithm . 43

3.1.1.2 Linear regression . 44

3.1.2 Unsupervised Machine Learning . 45

3.1.2.1 k-means clustering . 45

3.2 Introduction to Homomorphic Encryption . 46

3.2.1 HE Schemes . 48

3.2.1.1 Fully homomorphic encryption over the torus : TFHE scheme 49

3.2.1.2 Additive Paillier cryptosystem . 51

3.2.2 HE Librairies . 52

3.2.3 FHE Restrictions . 52

3.3 State of the Art of Privacy-Preserving in Machine Learning (PPML) : HE-based solutions 54

3.3.1 Logistic Regression . 55

3.3.2 Naive Bayes and Decision Trees . 57

3.3.3 K-nearest neighbors . 57

3.3.4 Neural Networks and Deep Learning . 61

3.3.4.1 Privacy preserving deep learning : Private training 62

3.3.4.2 privacy preserving deep learning : Private inference 63

3.3.5 Clustering . 64

3.3.6 Collaborative clustering . 65

3.3.7 Individual clustering . 66

3.4 Conclusion . 67

25

TABLE DES MATIÈRES

III Contributions 69

4 Handling security issues by using homomorphic encryption in multi-cloud environment 71

4.1 Introduction . 71

4.1.1 Related works . 73

4.1.2 Multi-cloud computing privacy challenges using homomorphic encryption . . . 74

4.1.3 Multi-key Homomorphic encryption . 74

4.1.4 Our contribution . 75

4.1.5 Experimental evaluation . 76

4.1.5.1 OpenFHE : Open-Source Fully Homomorphic Encryption Library . . 76

4.1.5.2 DepSky : Multi cloud computing platform 76

4.1.5.3 The Health-Care Use-Case . 77

4.1.5.4 Architecture Model . 78

4.1.6 Detailed experimental results . 78

5 Secure and non-interactive k-NN classifier using symmetric fully homomorphic encryption 81

5.1 INTRODUCTION . 81

5.2 BACKGROUND . 83

5.2.1 Functional Bootstrap in TFHE . 83

5.3 OUR CONTRIBUTION . 84

5.3.1 The System Model . 84

5.3.2 Encrypted k-NN Challenges . 84

5.3.2.1 Distance Calculation . 85

5.3.2.2 Sorting . 85

5.3.2.3 Majority Vote . 86

5.3.3 Our proposed k-NN algorithm . 86

5.3.3.1 Building the delta matrix . 86

26

TABLE DES MATIÈRES

5.3.3.2 Selecting the k-nearest neighbors . 87

5.3.3.3 Majority vote . 87

5.4 PERFORMANCE EVALUATION . 88

5.4.1 Test Environment . 88

5.4.1.1 Setup . 88

5.4.1.2 Datasets . 88

5.4.1.3 Simulation procedure . 89

5.4.2 Performance results . 90

5.4.2.1 Empirical study . 90

5.4.2.1.1 Classification rate . 90

5.4.2.1.2 Execution time . 91

5.4.2.1.3 Bandwidth . 91

5.4.2.1.4 Discussion . 92

5.5 CONCLUSION . 93

6 Secure k-means clustering using TFHE 94

6.1 INTRODUCTION . 94

6.2 Related works . 95

6.3 BACKGROUND . 97

6.3.1 k-means algorithm . 97

6.3.2 Clustering evaluation . 97

6.3.2.1 Internal evaluation . 97

6.3.2.2 External evaluation . 98

6.4 OUR CONTRIBUTION . 98

6.4.1 The System Model . 98

6.4.2 In clear setting . 99

27

TABLE DES MATIÈRES

6.4.2.1 Initialization . 99

6.4.2.2 Assignment step . 99

6.4.2.2.1 Distance Calculation . 99

6.4.2.2.2 Delta matrix construction . 100

6.4.2.2.3 Assignment Vector . 100

6.4.2.3 Updating centroids . 103

6.4.3 Encrypted k-means with FHE . 103

6.4.3.1 Encoding and Encrypting . 103

6.4.3.2 The difference of the squared distances 104

6.4.3.3 Delta matrix . 104

6.4.3.4 Affectation vector . 105

6.5 PERFORMANCE EVALUATION . 105

6.5.1 Test Environment . 106

6.5.1.1 Datasets . 106

6.5.2 TFHE Tests . 106

6.5.2.1 Parameters choice procedure . 107

6.5.3 Performance results . 107

6.5.3.1 Efficiency . 107

6.5.3.2 Execution time . 109

6.5.3.3 Security . 110

6.5.3.3.1 Discussion . 110

6.6 CONCLUSION . 111

7 Developing Adaptive Homomorphic Encryption by Exploring Differential Privacy Technique 112

7.1 Introduction . 112

7.2 Research Motivation . 113

28

TABLE DES MATIÈRES

7.3 Relevant Mathematical Perspectives . 114

7.3.1 Gaussian Noise : Maintaining Privacy and Preserving Statistical Properties . . 114

7.4 Paillier Cryptosystem : Scheme and Properties . 115

7.4.1 Client-Side Algorithms and Server-Side Algorithms 115

7.5 Experimental Validation and Discussion on Results . 117

7.5.1 Proposed HEDP : Architecture, Process and Code Walkthrough 117

7.6 Scopes of Implementations . 118

7.6.1 Client-Side Code Walkthrough . 118

7.6.2 Server-Side Code Walkthrough . 119

7.6.3 Performance Analysis : Proposed HEDP versus Standard Algorithms 120

7.6.3.1 The Client-side plot . 121

7.6.3.2 Server-side Plot . 122

7.6.4 Standard Algorithm (Linear Regression without HEDP) CPU Plot 123

7.7 Sensitivity Analysis . 123

7.7.1 Exceptions in the proposed HEDP model . 124

Conclusion 129

Bibliographie 131

29

Liste des tableaux

3.1 Comparison of HE schemes . 49

3.2 Overview of existing FHE librairies : CPU-targeting (top) and GPU-targeting (bottom) 53

3.3 Summary of main works on Private Prediction for Logistic Regression 58

3.4 Summary of main works on Private Prediction for Naive Bayes and Decision Tree . . . 59

3.5 Summary of main works on Private K-nearest neighbors 61

4.1 Recommended parameter settings for our MKTFHE scheme : n, α and N, β denote the

dimension and the standard deviations for LWE and RLWE ciphertexts to achieve at

least 110-bit security level . 79

4.2 Results obtained of the calculation time of an addition and a multiplication by varying

the number of clouds, with the size of the blind rotation key and the key-switching key 79

5.1 TFHE Parameters : λ for the overall security, N for the size of the polynomials,σ for

the Gaussian noise parameter. 89

5.2 HE-kNN Parameters : the number of operations m without needing a bootstrapping,

the bootstrapping base b, and the rescaling factors v and p 89

5.3 Datasets : number of individuals(n), the size of the model (d) and number of classes . 89

5.4 Comparison between solutions for Iris Dataset : complexity (C), Information Leakage

(L), accuracy (A), interactivity (I) and execution time (T). 90

5.5 Bandwidth . 92

6.1 Datasets . 106

30

LISTE DES TABLEAUX

6.2 Security parameters and the security provided . 107

6.3 HE-k-means version precision (τ = 10000) . 108

6.4 Intern evaluation . 109

6.5 HE-k-means Execution time . 110

31

Table des figures

1.1 Le modèle du système : le client est le demandeur et le serveur est le propriétaire des

données : le propriétaire des données reçoit la requête de manière cryptée, exécute un

algorithme k-NN crypté puis envoie le résultat au demandeur pour décryptage. 11

1.2 Illustration du vote majoritaire à l’aide du masque . 15

3.1 ”diagram showing how to manipulate encrypted data on a cloud. On the left, the user

encrypts the data before sending it to the cloud, on the right, the cloud service has to

decrypt the data in order to process it.” . 47

3.2 Homomorphic Encryption timeline . 49

3.3 HEML scenario . 56

4.1 ”Healthcare monitoring with a single cloud.” . 77

4.2 ”diagram showing how to manipulate encrypted data on a multi-cloud platform DepSky.

On the left, the client encrypts the data before sending it to the cloud, on the right, the

cloud service can process on it.” . 78

4.3 ”Performance Analysis of Homomorphic Operations in a Multi-Cloud Environment.” . 80

5.1 The system model : the client is the querier, and the server is the data owner : the data

owner receives the query in an encrypted way, performs an encrypted k-NN algorithm

then sends the result to the querier for decryption. 84

5.2 Majority Vote illustration by using the mask . 88

5.3 Encrypted Accuracy vs number of individuals . 91

32

TABLE DES FIGURES

5.4 Clear-text Accuracy vs number of attributes . 91

5.5 Encrypted Accuracy vs k-parameter . 91

5.6 Clear-text Accuracy vs k-parameter . 91

5.7 Execution time vs number of individuals . 92

5.8 Execution time vs number of attributes . 92

5.9 Execution time vs k-parameter . 92

6.1 Single assignment example . 101

6.2 Precision according to τ et v . 108

7.1 Client-Server HEDP interaction Schema . 116

7.2 Accuracy Versus Iteration Plot . 120

7.3 CPU Utilization with Time occupancy (Client Side) 121

7.4 CPU Utilization with Time occupancy (Server Side) 122

7.5 Standard CPU Utilization without HEDP scenario . 123

7.6 Sensitivity Analysis of Proposed HEDP Algorithm - Log Variance with Iterations . . . 126

7.7 Sensitivity Analysis of Proposed HEDP Algorithm - Log Sensitivity with Iterations . . 126

33

Première partie

General Introduction

34

Chapitre 2

General Introduction

2.1 Context of the thesis

According to statista [1], 30.9 billion IoT devices will be in use for companies and the automotive

industry by the end of 2025. However, these IoT devices do not have sufficient resources to process

the data collected by their sensors, which makes them vulnerable and susceptible to attacks. To avoid

processing the data within the connected objects, the trend is to outsource the collected data to the

cloud, which has both powerful data storage and processing capacity. However, the outsourced data

can be sensitive and users may lose their privacy regarding the content of the data, while the cloud

providers can access this data and potentially use it for their own activities. To avoid this situation

and maintain data privacy in the cloud data center, one possible solution is to use fully homomorphic

encryption (FHE), which guarantees both confidentiality and efficiency of processing. In many smart

environments such as smart cities, smart health, smart agriculture, Industry 4.0, etc., where huge

amounts of data are generated, it is necessary to apply machine learning (ML) techniques and thus

contribute to decision-making in the smart environment. Indeed, the challenge in this context is to

adapt machine learning approaches so that they can be applied to encrypted data, so that decisions

made on the basis of the encrypted data can be translated into clear data.

We consider these two use cases below to better illustrate the problem addressed in this thesis :

Use case 1 : Alice is a diabetic and has to monitor her blood glucose level regularly with a blood

glucose meter connected to her smartphone. She has opted for a mobile glucose monitoring application

that stores her personal and health data on a third-party cloud server for analysis.

36

2.2. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

Whenever Alice measures her blood glucose level with her meter, the data is sent to the mobile

application, which stores it on a third-party cloud server for analysis. Alice’s health data is then

exposed to potential risks such as data breaches, unauthorized surveillance, identity theft, insurance

fraud and even discrimination in employment or access to healthcare.

The main reason for outsourcing the data to the cloud is the limited memory and computing

resources on Alice’s smartphone, which makes it difficult to process and store large amounts of data

locally. However, this poses security and privacy risks for Alice’s sensitive health data. One possible

solution to this problem is the use of fully homomorphic encryption (FHE) to protect the confidentiality

of Alice’s data while still enabling efficient analysis and decision making.

Use case 2 :Two pharmaceutical companies have recently made promising discoveries in the search

for a new vaccine against a deadly disease. However, both companies have exclusive and complementary

data that could help speed up the research and development process for the vaccine.

However, the companies are reluctant to share their data because they do not trust each other and

fear that their trade secrets will be exposed. This is where homomorphic encryption comes into play.

Companies can now encrypt their respective data and send it to a trusted third party who performs

the aggregation and clustering without ever having to decrypt the data or reveal their trade secrets.

Thank you to homomorphic encryption, companies can collaborate securely and without risk in

sharing their data for vaccine research and development. Both companies can benefit from each other’s

expertise and knowledge while maintaining the confidentiality of their business data.

In the following section, we present an introductory example[7] that motivated the work of this

thesis.

2.2 Objectives and Contributions of the thesis

The work carried out as part of this thesis has led to several publications and investigated the ap-

plication of homomorphic encryption in different machine learning contexts. The first work [2] focuses

on the use of homomorphic encryption in a multi-cloud environment to improve the security and pri-

vacy of data. To maintain privacy and confidentiality when data is outsourced, a multi-cloud platform

is proposed that integrates public, private and managed clouds with a single user interface. The data

hosted in the cloud is distributed to different data centers in a multi-cloud environment, taking into

37

2.2. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

account the reliability of the cloud and the sensitivity of the data. Homomorphic encryption is used

for this, an encryption method that allows data to be processed and manipulated while remaining

encrypted, so that users or third parties can process encrypted data without revealing its content.

The second part of this thesis investigates the application of homomorphic encryption to the k-

nearest neighbors (k-NN) algorithm. The study [3] presents a practical implementation of the k-NN

algorithm using homomorphic encryption and demonstrates the feasibility of this approach on a large

number of datasets. This work addresses the vulnerability problem related to outsourcing data to

the cloud. The proposed solution uses a homomorphic encryption scheme (called TFHE) [8] for the

k-NN algorithm, which enables end-to-end encrypted data processing while preserving privacy. Unlike

existing techniques, this solution does not require any intermediate interactions between the server and

the client during the classification task. The algorithm has been evaluated on large and relevant real-

world datasets and has proven its efficiency while scaling well over different parameters on simulated

data.

In the third part of this thesis, the application of homomorphic encryption to the k-means clustering

algorithm is investigated. Similar to the k-NN study, the proposed work presents a practical imple-

mentation of the k-means algorithm using homomorphic encryption and evaluates its performance on

different datasets.

Finally, we present another contribution [4]that utilizes the combination of homomorphic encryp-

tion with differential privacy (DP) techniques to further strengthen the privacy of machine learning

models. The proposed work suggests a novel approach that combines homomorphic encryption with

DP to achieve better privacy guarantees for machine learning models.

In summary, the research presented in this thesis complements the growing literature on the conver-

gence of homomorphic encryption and machine learning, and provides practical implementations and

evaluations of homomorphic encryption in various machine learning scenarios.

38

Deuxième partie

Background and State of the Art

39

Chapitre 3

Background

3.1 Machine Learning Techniques

Machine learning is a branch of artificial intelligence (AI) that deals with the development of

algorithms and statistical models that enable a computer system to perform certain tasks by learning

from data rather than being explicitly programmed. Formally, machine learning can be defined as a

collection of data analysis techniques that use algorithms to learn from training data and generalize the

acquired knowledge to make predictions or decisions about new data. The goal of machine learning is to

improve the performance of the system based on the data obtained over time and minimize the need

for human intervention to adjust the algorithm’s behavior. The theoretical foundations of machine

learning come from various fields, including statistics, optimization theory, information theory and

computer science, and there are numerous practical applications in computer vision, natural language

processing, finance, healthcare and cybersecurity.

let X be the data set used for learning. We consider the following general machine learning tasks :

Classification : Let Y be the set of possible categories. A classification function c : X → Y maps

each item x ∈ X to a category y ∈ Y . Mathematically, classification can be formalized as finding a

function c that minimizes the expected loss, L(c(X), Y), where L is a loss function that measures the

discrepancy between the predicted categories and the true categories.

Regression : Let Y be the set of possible real values. A regression function r : X → Y maps each

item x ∈ X to a real value y ∈ Y . Mathematically, regression can be formalized as finding a function r

that minimizes the expected loss, L(r(X), Y), where L is a loss function that measures the discrepancy

41

3.1. MACHINE LEARNING TECHNIQUES

between the predicted values and the true values.

Ranking : Let Y be the set of possible rankings. A ranking function f : X → Y maps each item

x ∈ X to a ranking y ∈ Y . Mathematically, ranking can be formalized as finding a function f that

minimizes the expected loss, L(f(X), Y), where L is a loss function that measures the discrepancy

between the predicted rankings and the true rankings.

Clustering : A clustering algorithm partitions the set X into K subsets (clusters) C1, C2, ..., CK ,

such that each subset contains items that are similar to each other and dissimilar to items in other

subsets. Mathematically, clustering can be formalized as finding a partition C1, C2, ..., CK that mi-

nimizes a certain objective function, such as the sum of squared distances between items and their

cluster centers.

Reduction of Dimensionality : Let X be a high-dimensional vector space and Y be a lower-

dimensional vector space. A dimensionality reduction algorithm maps each item x ∈ X to a lower-

dimensional representation y ∈ Y , while preserving some properties of the initial representation, such

as distances between items. Mathematically, dimensionality reduction can be formalized as finding a

mapping f : X → Y that minimizes a certain distortion measure, such as the sum of squared distances

between items in X and their corresponding images in Y .

There are two main types of machine learning algorithms : supervised algorithms and unsupervised

algorithms. Supervised algorithms are used when we have labeled data, which means training data

with examples of expected outcomes. The algorithm learns from these examples to make predictions

on new data. For example, in the medical field, a supervised algorithm can learn from a dataset of

labeled patient data with breast cancer diagnoses to predict whether a new biopsy is suspicious for

breast cancer or not.

On the other hand, unsupervised algorithms are used when we have unlabeled data, which means

data without examples of expected outcomes. These algorithms search for patterns or structures in

the data without using labeled examples. For example, in the medical field, an unsupervised algorithm

can analyze health data of patients to group patients with similar symptoms and discover subgroups of

patients sharing common characteristics, which can help doctors better understand and treat certain

diseases.

In summary, supervised algorithms are used for prediction of labeled values, while unsupervised

42

3.1. MACHINE LEARNING TECHNIQUES

algorithms are used for discovery of hidden patterns or structures in unlabeled data.

3.1.1 Supervised Machine Learning

Supervised learning is a type of machine learning where a learner is trained on a set of labeled

dataset, denoted by D = (xi, yi)n
i=1, where xi ∈ X is a feature vector and yi ∈ Y is the corresponding

label. The goal of supervised learning is to learn a function f : X → Y that maps input features to

output labels. This learned function is then used to make predictions on unseen examples.

Supervised learning is commonly used in classification, regression, and ranking problems. In clas-

sification, the learner is trained to predict the correct class label y for each example x. In regression,

the learner is trained to predict a continuous value y for each example x. In ranking, the learner is

trained to order a set of items according to a criterion.

An example of supervised learning is the spam detection problem, where the learner is trained on a

set of emails labeled as either spam or not spam. The learned function is then used to predict whether

new emails are spam or not.

In the following, we will provide an overview of the supervised learning algorithms covered in this

thesis, namely the k-nearest neighbors algorithm and linear regression.

3.1.1.1 k-nearest neighbors algorithm

The k-nearest neighbors (k-NN) is a simple and widely used supervised learning algorithm in the

field of machine learning. It can be used for classification and regression. In this algorithm, the main

idea is to find the k closest neighbors to an input data point and to take their average class label (in

the case of classification) or their average value (in the case of regression) as the predicted output.

Mathematically, given a training set T = {(x1, y1), (x2, y2), ..., (xn, yn)} where xi ∈ Rd and yi is

the class label or target value associated with xi, and a test point xtest, the k-NN algorithm works as

follows :

1. Compute the distance d(xi, xtest) between the test point xtest and each training point xi, where

d(·, ·) is a distance metric such as Euclidean distance, Manhattan distance, or cosine similarity.

43

3.1. MACHINE LEARNING TECHNIQUES

d(xi, xtest) =

Ã
d∑︂

j=1
(xi,j − xtest,j)2 (Euclidean distance)

2. Select the k training points with the smallest distances to xtest.

Nk(xtest, T) = {xi ∈ T | d(xi, xtest) ≤ d(xj , xtest) for all xj ∈ T \ {xi}}.

3. For classification, assign the class label that occurs most frequently among the k nearest neigh-

bors to the test point xtest ; for regression, take the average of the target values associated with the k

nearest neighbors as the predicted output for xtest.

ŷ =
®

arg maxy
∑︁

xi∈Nk(xtest,T)[yi = y] for classification
1
k

∑︁
xi∈Nk(xtest,T) yi for regression

Note that the choice of k is a hyper-parameter that needs to be tuned to achieve optimal perfor-

mance on a given task and dataset. A larger k can lead to a smoother decision boundary or regression

function, but can also result in increased computational complexity and overfitting. Conversely, a

smaller k can lead to more complex and possibly overfit models, but with increased risk of noise and

outliers affecting the predictions.

3.1.1.2 Linear regression

Linear regression is a method for modeling the relationship between a scalar response variable

and one or more explanatory variables (also known as dependent and independent variables). When

there is only one explanatory variable, it is called simple linear regression. When there are multiple

explanatory variables, the method is called multiple linear regression. It is important to note that this

term is different from multivariate linear regression, where multiple correlated dependent variables are

predicted instead of a single scalar variable.

Given a training set T = {(x1, y1), (x2, y2), ..., (xn, yn)} where xi ∈ Rd and yi ∈ R, the goal of

linear regression is to find a linear function f(x) = wT x + b that best approximates the relationship

between the input variables x and the output variable y. Specifically, the linear regression algorithm

seeks to find the weight vector w ∈ Rd and bias term b ∈ R that minimize the mean squared error

44

3.1. MACHINE LEARNING TECHNIQUES

(MSE) between the predicted values ŷi = f(xi) = wT xi + b and the actual values yi in the training

set :

argmin
w,b

1
n

n∑︂
i=1

(ŷi − yi)2

This optimization problem can be solved analytically by computing the closed-form solution for

the weight vector and bias term :

w = (XT X)−1XT Y

b = ȳ − wT x̄

where X ∈ Rn×d is the design matrix with each row corresponding to an input variable vector xi,

Y ∈ Rn is the target vector with each entry corresponding to the output variable yi, x̄ and ȳ are the

sample means of the input variables and output variable, respectively, and (·)−1 denotes the matrix

inverse.

Once the weight vector and bias term have been computed, the linear regression model can be

used to make predictions on new input variables xtest by computing f(xtest) = wT xtest + b.

Note that linear regression assumes a linear relationship between the input variables and the output

variable, and may not be suitable for datasets with nonlinear relationships. Additionally, regularization

techniques such as L1 or L2 regularization can be used to prevent overfitting and improve generalization

performance.

3.1.2 Unsupervised Machine Learning

3.1.2.1 k-means clustering

Given a dataset X = {x1, x2, ..., xn} where each xi is a d-dimensional vector, the K-means algo-

rithm seeks to partition the dataset into K clusters, where each cluster is represented by its centroid,

or mean vector. The algorithm proceeds as follows :

1. Initialize K centroids randomly, e.g., by selecting K data points from the dataset as the initial

centroids.

45

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

2. Assign each data point to the nearest centroid based on the Euclidean distance metric.

3. Recompute the centroids as the mean vector of the data points assigned to each cluster.

4. Repeat steps 2-3 until convergence, i.e., until the centroids no longer change or a maximum

number of iterations is reached.

More formally, let C = {c1, c2, ..., cK} be the set of centroids, and let yi ∈ {1, 2, ..., K} denote the

cluster assignment for data point xi. The goal of K-means is to minimize the within-cluster sum of

squares (WCSS), which is defined as :

WCSS(C) =
K∑︂

k=1

∑︂
i:yi=k

∥xi − ck∥2

where ∥ ·∥ denotes the Euclidean distance. The K-means algorithm seeks to find the centroids that

minimize the WCSS, i.e.,

argmin
C

WCSS(C)

Note that K-means is sensitive to the initial centroids, and different initializations may lead to

different results. To mitigate this issue, multiple runs with different initializations are often performed,

and the best clustering result is selected based on the WCSS.

K-means can be extended to handle various variations and extensions, such as weighted K-means,

K-medoids, and kernel K-means, among others.

3.2 Introduction to Homomorphic Encryption

Homomorphic Encryption allows any entity (for example, the cloud provider) to operate on pri-

vate data in encrypted form without ever decrypting it. The goal of HE is to perform operations on

plain text while manipulating only ciphertexts. Usually, we must decrypt them and then apply the

desired processing to manipulate encrypted data. For example, one widespread use case is outsourcing

healthcare data to cloud computing services for medical studies (Figure 3.1).

For some cryptosystems with algebraic structures, some operations are possible. For example, two

RSA ciphertexts can be multiplied to obtain the multiplication of the two corresponding plain texts.

46

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

Figure 3.1 – ”diagram showing how to manipulate encrypted data on a cloud. On the left, the user
encrypts the data before sending it to the cloud, on the right, the cloud service has to decrypt the

data in order to process it.”

We call this property the multiplicative homomorphic property of the ”textbook RSA” cryptosystem.

Another operation can also be performed on ciphertexts. For example, in the Paillier cryptosystem [9]

, we can add two ciphertexts to obtain the addition of the two corresponding plain texts. We call this

property the additive property of the ”Paillier” cryptosystem. For example, this can be useful when

we are interested in e-voting applications to add encrypted votes without knowing the initial vote.

Rivest, Adelman and Dertouzos first introduced the notion of homomorphic encryption in [10].

Building a cryptosystem with both multiplicative and additive properties was a significant problem in

cryptography, until the work of Gentry [11]. Gentry proposed a first Fully homomorphic encryption

based on ideal lattices. The HE is categorized depending on the number of mathematical operations

performed on the encrypted message as following : Partially Homomorphic Encryption (PHE), So-

mewhat Homomorphic Encryption (SHE), and Fully Homomorphic Encryption (FHE). Over encryp-

ted data, FHE allows arbitrary addition and multiplication. Because any functions may be expressed

as Boolean circuits, an encryption scheme capable of performing addition and multiplication can theo-

retically evaluate any polynomial function[12]. When operations are performed on ciphertexts, the

noise increases and too much noise disables accurate decryption. The bootstrapping approach is used

47

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

by FHE systems to get around this as stated in [11]. Bootstrapping decreases the collected noise,

allowing further computation. This procedure can be done as many times as necessary to analyze any

particular circuit. However, bootstrapping is computationally costly, so many solutions do not employ

it in reality. Therefore, we recommend the reader to refer to [13] for more detailed information on

the different homomorphic encryption schemes. We have chosen not to describe the entire functioning

of cryptosystems due to the lack of space. Also, selecting secure and efficient instantiations of the

underlying cryptographic problem is hard for most of encryption and homomorphic schemes. There-

fore, we have chosen to list the most studied schemes by the community of researchers and developers

interested in advancing homomorphic encryption.

As usual, new cryptographic proposals need a few years before widespread adoption in the in-

dustry, as was the case of Elliptic Curve Cryptography, post-quantum encryption and many other

standardization projects.

We are waiting for the standardization results and recommendations of the workshops, which

include representatives from industry, government organizations and academia.

This brief review aims to guide readers fast enough, even if they are not cryptography specialists,

to the appropriate HE scheme by directing them to the library(ies) where HE is implementable.

3.2.1 HE Schemes

Research in the field of FHE may be classified into four major groups. The first family represents

the difficulty based on the lattice reduction problem, which mainly comes from Gentry’s seminal

work[11]. The second category consists of integer-based methods [14], the hardness of which is based

on the Approximate of Greatest Common Divisor (A-GCD) problem [15]. Schemes based on Learning

with Error (LWE) [16] and Ring Learning with Error (RLWE) [17], both reducible to lattice problems,

constitute the third family. Finally, the Nth-Degree Truncated Polynomial Ring Unit (NTRU) family

[18].

All HE schemes have common steps : key generation, encryption, decryption and homomorphic

operations on the ciphertexts.

Table 1 summarizes the most implemented and studied schemes by the cryptographic community,

and the figure 3.2 give an overvieww of the Homomorphic Encryption timeline.

48

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

Figure 3.2 – Homomorphic Encryption timeline

Table 3.1 – Comparison of HE schemes

Operation
SCHEMES

BFV BGV CKKS FHEW TFHE

Native Add/Sub ✓ ✓ ✓ ✗ ✗

Native Mult ✓ ✓ ✓ ✗ ✗

Boolean Logic ✗ ✗ ✗ ✓ ✓

SIMD ✓ ✓ ✓ ✓ ✓

The choice of encryption scheme has a multitude of implications :

— It specifies which operations are possible and, as a result, which types of activation and archi-

tectures may be employed.

— It can determine the plaintext space. Messages should be encoded before they may be sent in

plaintext. The majority of schemes, including BGV, BFV, only support integers. CKKS can

handle real numbers, but TFHE can only handle individual bits.

In the following, we will describe the two schemes used in this thesis, namely TFHE[19] and

Paillier’s homomorphic encryption[9].

3.2.1.1 Fully homomorphic encryption over the torus : TFHE scheme

TFHE is a fully homomorphic cryptosystem with security based on the (Ring) Learning With

Errors problem [20]. It is based on the FHEW cryptosystem [21], but it features much faster bootstraps

49

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

thanks to the use of binary secrets [22]. In this section, we review the concepts of TFHE necessary for

the understanding of this paper.

Let A be a set, we denote by An,q the set of vectors with n elements in A modulo q and by AN [X],n

the set of vectors of n polynomials modulo (XN + 1). If omitted, n = 1 and q = ∞. The Real Torus

T = R/Z is the set of real numbers modulo 1 and B = Z2 is the set of binary numbers 0, 1. TFHE

defines three types of ciphertexts, which we summarize below as samples of zero.

— TLWE Sample : A pair (a, b) ∈ T n+1, where b = ⟨a, s⟩+ e. The vector a is uniformly sampled

from T n, the secret key s is uniformly sampled from Bn, the error e ∈ T is sampled from a

Gaussian distribution with mean 0 and standard deviation σ, and ⟨, ⟩ denotes the inner product.

— TRLWE Sample : A pair (a, b) ∈ AN [X],k+1, where b = a · S + e. The vector a is uniformly

sampled from AN [X],k, the secret key S is uniformly sampled from BN [X],k, and the error

e ∈ AN [X] is a polynomial with random coefficients sampled from a Gaussian distribution with

mean 0 and standard deviation σ.

— TRGSW Sample : A vector of k TRLWE samples.

Encryption : To encrypt a message m ∈ T (TLWE) or m ∈ AN [X] (TRLWE), we simply add (0, m)

to a fresh sample of zero. We denote by c ∈ T (R)LWEs(m) the T(R)LWE sample c that encrypts m

with keys s. To ease the notation, we consider each key has its attached set of parameters. A message

m ∈ AN [X] can also be encrypted in TRGSW samples by adding m ·H to a TRGSW sample of zero,

where H is a gadget decomposition matrix. We do not use TRGSW samples in our algorithms and,

therefore,We will give into the details only as and when required.

Decryption : To decrypt a sample, we first calculate its phase (message + error) : φ(c) = b−⟨a, s⟩.

Considering approximate computing, the phase might be a good enough approximation for the message

(depending on the error variance). For exact computing, we need to remove the error, and we do so

by rounding the phase to the nearest valid value for messages. This requires us to define a set of valid

messages over the Torus. The rounding procedure fails if the error

Arithmetic

We add two ciphertext (TLWE or TRLWE) samples c1 = (a1, b1) and c2 = (a2, b2) by simply

adding their terms : c1 + c2 = (a1 + a2, b1 + b2). The multiplication between a ciphertext c1 = (a1, b1)

and a scalar cleartext z ∈ Z (or z ∈ Z[N [X]] for TRLWE) is a direct result from the addition :

50

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

c1 · z = (a1 · z, b1 · z). TFHE does not support multiplications between T (R)LWE samples. To be fully

homomorphic, it relies on external products between TRGSW and TRLWE samples. In this case,

we first decompose the TRLWE sample in TRLWE samples using a Gadget decomposition algorithm

[GMP19]. Then, we perform an inner product between the decomposed TRLWE and the TRGSW

sample (which already is a vector of TRLWE samples).

3.2.1.2 Additive Paillier cryptosystem

This section is inspired from [23]. Proposed in 1999 by Paillier [9], the Paillier cryptosystem is based

on the problem that computing nth residue classes is computationally intensive. The nature of the

algorithm allows for homomorphic addition operations to produce the current answer once decrypted.

The key generation for Paillier Cryptosystem is given in Algorithm 1.

Algorithm 1 Paillier cryptosystem key generation algorithm

1: Select two large prime numbers p and q where gcd(pq, (p− 1)(q − 1)) = 1
2: Calculate n = pq
3: Calculate λ = lcm(p− 1, q − 1)
4: Select g as a random integer where g ∈ Z∗

n2

5: Define L(x) = x−1
n

6: Ensure n divides the order of g by checking the existence of the following modular multiplicative
inverse :

7: u = (L(gλ mod n2))−1 mod n
8: Public Key = (n, g)
9: Private Key = (λ, u)

To encrypt a message, the message is used as the exponent for g, then a random value is raised to

the other public key value n, as shown in Algorithm 2. This produces a cipher value in modulo n2.

Algorithm 2 Paillier cryptosystem encryption algorithm

1: Encrypt a message M where M ∈ Zn
2: Select r as a random integer where r ∈ Zn2∗

3: Calculate c = gM · rn mod n2

Decryption is again a simple equation, and is given in Algorithm 3. Note that the definition for

L(x) was given with key generation.

The proof of the encryption and decryption will be now given to show how the public and private

key values cancel each other out. This is important because it will help to show why the Paillier

51

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

Algorithm 3 Paillier cryptosystem decryption algorithm

1: Decrypt a message c where c ∈ Z∗
n2

2: Calculate m = L(cλ mod n2) · u mod n

Cryptosystem can support homomorphic addition operations.

1. m = L(cλ mod n2)× u mod n

2. m = L(cλ mod n2)× (L(gλ mod n2))−1 mod n

3. m =
∏︁k

i=1 L((cλ mod n2)ai mod 2) mod n, where k is the number of bits in n

4. m = (1 + n)L(cλ mod n2) · (1 + n)−L(gλ mod n2) mod n (By Lemma 10 in Paillier (1999))

5. m = (1 + n)L(cλ mod n2) · (1 + n)−L(gλ mod n2) mod n

6. m = [c]g mod n

7. m = m mod n (Because c = (gm·rn) mod n2

(gn mod n2)r mod n2 (Paillier, 1999))

If an addition operation is desired to be computed on the encrypted data, it is actually a multi-

plication operation that needs to be used. This is because the message is encrypted as an exponent.

Therefore to add exponents, a multiplication operation needs to be computed on two values of the

same base, which in this case is g. Note that because the r0 and r1 values are random, they can be

combined to form another random value r.

3.2.2 HE Librairies

There exist several open-source libraries for the implementation of the HE scheme. They provide

key generation, encryption, decryption, and homomorphic operations for each scheme ; library APIs

frequently include additional features for maintaining and manipulating ciphertexts. Even though

there is a lack of technical interoperability, but also a lack of conceptual interoperability ; for example,

even libraries that use the same scheme can provide surprisingly different results. The ongoing stan-

dardization efforts attempt to develop a unified view of the most popular schemes.

3.2.3 FHE Restrictions

Current HE methods have a significant restriction. They cannot support division operations and

comparisons easily, such as the equality/inequality test. Number comparison and sign determination

are critical processes for MLaaS.

52

3.2. INTRODUCTION TO HOMOMORPHIC ENCRYPTION

Table 3.2 – Overview of existing FHE librairies : CPU-targeting (top)
and GPU-targeting (bottom)

Name
Input

language

Supported schemes

BFV BGV CKKS FHEW TFHE

HE-CPU-TARGETING

Concrete Rust ✗ ✗ ✗ ✗ ✓

FHEW C++ ✗ ✗ ✗ ✓ ✗

FV-NFlib C++ ✓ ✗ ✗ ✗ ✗

HEAAN C++ ✗ ✗ ✓ ✗ ✗

HElib C++ ✓ ✓ ✓ ✗ ✗

lattigo Go ✓ ✗ ✓ ✗ ✗

PALISADE C++ ✓ ✓ ✓ ✓ ✓

SEAL C++, .NET ✓ ✓ ✓ ✗ ✗

TFHE C++ ✗ ✗ ✗ ✗ ✓

HE-GPU-TARGETING

cuFHE C++, Python ✗ ✗ ✗ ✗ ✓

nuFHE C++, Python ✗ ✗ ✗ ✗ ✓

53

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

3.3 State of the Art of Privacy-Preserving in Machine Learning (PPML) :
HE-based solutions

This section presents an in-depth exploration of the current state of research surrounding the

contributions of this thesis. Drawing from a previously published book chapter as a reference [24].

In recent years, the use of third-party infrastructures has gained popularity in the field of machine

learning, as it offers advantages such as reduced resource constraints and simplified complexity. Ho-

wever, this approach also brings along concerns related to the privacy of sensitive information. In the

context of my thesis, which focuses on building a privacy-preserving framework for machine learning

techniques, it is crucial to identify the key privacy requirements. These requirements may include but

are not limited to, ensuring data confidentiality, protecting against unauthorized access, minimizing

data exposure, and complying with relevant data protection regulations. Addressing these privacy

concerns is essential to develop a robust framework that maintains the privacy of sensitive information

while utilizing third-party infrastructures to overcome resource and complexity challenges.

— Input privacy : Only the real data owner should have access to the input.

— Output privacy : The output/result of the ML methods’ assessment is not permitted to be

known by the cloud server.

— Model privacy : A private machine learning model that is also an asset should not be shared

with anyone except its owner.

Another approach is to look if the privacy-preserving framework targets the learning phase or the

inference phase of the machine learning algorithm.

Depending on the framework we want to design, we have to use privacy-preserving technologies.

The leading privacy Preserving Machine Learning techniques are the following :

— Multi-party Computation : These methods involve one or more trusted parties that can be used

to outsource specific computations by the algorithm owner.

— Differential Privacy : These methods rely on data randomization and perturbation. Because

it affects the information, this method has the drawback of negatively influencing the model’s

performance.

— Federated Learning : Federated learning is a machine learning setting where many clients

collaboratively train a model under the administration of a central server while keeping the

54

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

training data local.

— Garbled Circuit (GC) : Garbled Circuit, also known as Yao’s garbled circuit, is an underlying

technology of secure two-party computation initially proposed by Andrew Yao [? ? reference].

GC provides an interactive protocol for two parties (a garbler and an evaluator) obliviously

evaluate an arbitrary function represented as a Boolean circuit.

— Homomorphic Encryption : An encryption that allows performing operations over encrypted

data. See section 3.2 for more details.

— Hybrid PPML Techniques : In addition to the above-mentioned single-protocol PPML, some

commonly used frameworks typically use hybrid protocols, which combine two or more protocols

by making use of the advantages and avoiding the problems of each. For example, the basic idea

behind the mixed protocol that combines HE and GC is to compute operations that have an

efficient representation as Arithmetic circuits (e.g., additions and multiplications) using HE and

operations that have an efficient representation as Boolean circuits (e.g., comparisons) using

GC. However, converting between share systems is not simple, and the charges are very high.

Furthermore, various frameworks integrate MPC with Differential Privacy.

We are interested here in Machine Learning Research Using Homomorphic Encryption ”HEML”. Ac-

cording to this Bibliometrics [25], the number of papers on HEML has constantly been rising since

2009. Each year from 2005 to 2015, fewer than 100 HEML papers were published. However, the num-

ber of publications per year increased significantly after 2015, reaching between 200 and 500 in recent

years. This section summarizes recent works and gives many practical applications of homomorphic

encryption for privacy-preserving purposes for each machine learning algorithm. We end the section

with a summary of the work to ease the reading of this synthesis.

3.3.1 Logistic Regression

Logistic regression is a powerful machine-learning approach that uses a logistic function to model

two or more variables. Logistic models are commonly used in the medical community to predict binary

outcomes, such as whether a patient requires treatment or whether a disease appears [26]. It has been

utilized in applications such as evaluating diabetes patients’ medications [27], and social sciences[28].

iDASH is an annual competition that attempts to deploy novel cryptographic methods in a biolo-

gical environment. Since 2014, genomics and biomedical privacy have been incorporated into iDASH.

55

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

Figure 3.3 – HEML scenario

Both the third track of the 2017 iDASH competition [29] and the second track of the 2018 iDASH

competition driven the development of homomorphic encryption-based solutions for building a Lo-

gistic regression model over encrypted data. The performance of LR training based on homomorphic

encryption (HE) has improved significantly as a result of these two competitions.

Homomorphic encryption has been used in much research on training logistic regression models.

Authors, in [30], trained a privacy-preserving logistic regression model using HE ; however, the

time complexity of linear HE increases exponentially with the number of parameters.

In [31], the authors used an additive HE scheme and delegated particular challenging HE com-

putations to a trusted client, the authors in this work introduced an approximation to convert the

likelihood function into a low-degree polynomial.

The issue of doing LR training in an encrypted environment was discussed by [32]. They used

complete batch gradient descent in the training phase, using the least-squares approach to approxi-

mate the logistic regression. They also employed the CKKS scheme, which allows for a homomorphic

approximation of the sigmoid function.

There is no closed-form solution to logistic regressions, so we must use non-linear optimization

methods to find the maximum likelihood estimators of the regression parameters. During training,

gradient descent and Newton-Raphson are the most commonly used methods. The Newton-Raphson

method requires matrix inversion, and most HE schemes do not natively support division and matrix

56

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

inversion. On the other hand, Gradient descent does not require the division operation and so is a

better candidate for homomorphic logistic regression.

Although the gradient descent approach appears to be better suited for homomorphic evaluation

than other training methods, some technical issues remain for implementation. The sigmoid function

is the most challenging to evaluate since existing homomorphic encryption techniques only allow the

evaluation of polynomial functions, so Taylor polynomials have been widely employed for sigmoid

function approximation [33, 34].

For implementation and performance of Private Logistic Regression (He-based solutions), see Table

3.3.

3.3.2 Naive Bayes and Decision Trees

Naive Bayesian classification is a simple probabilistic Bayesian classification based on Bayes’ theo-

rem. It uses a naive Bayesian classifier, or naive Bayes classifier, belonging to the family of linear

classifiers. In [35], the authors propose a privacy-preserving Naive Bayes classification algorithm. A

client learns the classification of her data point X in their model without knowing the classification

model or disclosing any information about her input. The model’s estimated parameters are encrypted

and transferred to a cloud server. The authors use two partially homomorphic encryption schemes,

Quadratic Reciprocity [36] and Paillier [9], in the same work [35] implements a privacy-preserving

strategy for three algorithms, and one of those is decision trees. This work has shown that polyno-

mials may be utilized to express decision trees. The decision tree node values must be compared to the

evaluation data, and the outputs must be used to construct the polynomial, yielding the evaluation

results.

For the implementation and performance of Private Naive Bayes and Decision tree (He-based

solutions), see Table 3.4.

3.3.3 K-nearest neighbors

The k-Nearest Neighbors (k-NN) is a simple method that can handle continuous, categorical,

and mixed data. Furthermore, as a non-parametric method, k-NN can be relevant for many data

structures as long as the number of observations is sufficiently large. In addition, for a predefined

number of neighbors k, the model does not require any training step since the prediction for a new

57

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

Table 3.3 – Summary of main works on Private Prediction for Logistic Regression

REF
HE

scheme
/ Type

Plateform
Evaluation

Time
Accuracy Datasets

Logistic Regression

[16]
[1]

/LHE
- - 82.89%

Dataset SPECT
-267 instances
-23 features

[17]
[1]

/LHE

2.60 GHz
x 2 CPU,

128 GB RAM.
- 73.7%

SPECTF heart
dataset

-267 instances
-44 features)

[17]
[1]

/LHE

2.60 GHz
x 2 CPU,

128 GB RAM.
- 80.7%

Pima diabetes
dataset

-768 instances
-8 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

131min 86.03%
Edinburgh

-1253 instances
-10 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

101min 69.30%
Lbw

-189 instances
-10 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

265min 79.23%
Nhanes3

-15649 instances
-16 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

119min 68.85%
Pcs

- 379 instances
- 10 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

109min 74.43%
Uis

-575 instances,
-9 features

[19]
YASHE
/ LHE

Intel Core i7-
3520M at

2893.484 MHz
- -

Heart Disease
Framingham

-4,000 instances
- 15 features

[20]
linearly

homomorphic
encryption

Amazon EC2
c4.8xlarge
machines

running Linux,
with

60GB of RAM each.

149.7sec 98.62%

MNIST
dataset

-60 000 instances
-784 features

58

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

Table 3.4 – Summary of main works on Private Prediction for Naive Bayes and Decision Tree

REF
HE

scheme
/ Type

Plateform
Evaluation

Time
Accuracy Datasets

Naive Bayes

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

479 ms -
Breast Cancer

-2 classes
-9 features

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

1415 ms -
Nursery
-9 classes
-5 features

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

3810 ms -
Audiology
-14 classes
-70 features

Decision tree

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

239 ms - Nursery

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

899 ms - ECG

observation is obtained by :

— Identifying the k nearest neighbors (according to a given distance)

— Computing the majority class among them (for a classification problem) or by averaging values

(for a regression problem).

Homomorphic encryption has already been investigated by various authors for k-NN [37, 38, 39,

59

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

6].

HE has been recently investigated by various authors for k-NN [37, 38, 39, 6].

In [37], the authors suggested a homomorphic additive encryption scheme [40]. They investigated

privacy preservation in an outsourced k-NN system with various data owners. The untrusted entity

securely computes the computations of distances by using HE. However, the comparison and classifi-

cation phases require interactions. Given that the computational and communication difficulties scale

linearly, they admit that the method may not be practical for massive data volumes. The cost of

communications between the entities is also a limitation in the deployment of this work [38].

Other authors, in [39], used an ”asymmetric scalar-product-preserving encryption” (ASPE). Howe-

ver, the client has the ciphertext, and the server can decrypt it. The proposed solution is vulnerable

to Chosen Plaintext Attacks, as stated by [41].

Recently, authors in [6] proposed a secure k-NN algorithm in quadratic complexity concerning

the size of the database completely non-interactively by using a fully homomorphic encryption [19].

However, they assume that the majority vote is done on a clear-text domain, which is a significant se-

curity flaw that we will address here. Doing a majority vote on a clear-text domain imposes interaction

between entities, which causes information leakage.

The authors of [37] suggested a Homomorphic additive encryption scheme [9]. They investigated

the privacy preservation in an outsourced k-NN system with various data owners. The untrusted entity

securely computes the distances by using HE. However, the comparison and classification phases require

interactions. Given that the computational and communication difficulties scale linearly, they admit

that the method may not be practical for massive data volumes. The cost of communications between

the entities is also a limitation in the deployment of this work [38].

Recently, [6] proposed a secure k-NN algorithm in quadratic complexity concerning the size of the

database completely non-interactively by using a fully homomorphic encryption [22]. However, they

assume that the majority vote is done on a clear-text domain, which is a significant security flaw

that we will address here. Doing a majority vote on a clear-text domain imposes interaction between

entities, which causes information leakage. For implementation and performance of Private k nearest

neighbors (HE-based solutions), see the table 3.5

60

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

Table 3.5 – Summary of main works on Private K-nearest neighbors

REF
HE

scheme
/ Type

Plateform
Evaluation

Time
Accuracy Datasets

K-nearest neighbors

[23]
[1]

/LHE
- - 97.85%

Cancer 1
(9 features)

[23]
[1]

/LHE
- - 96.49%

Cancer 2
-569 instances,
-30 features)

[23]
[1]

/LHE
- - 81.82% Diabetes

[23]
[1]

/LHE
- - 97%

MNIST
dataset

-60 000 instances
-784 features

[26]
[27]

/FHE

Intel Core
i7-6600U
CPU

11.6 min 94.8

MNIST
dataset

-60 000 instances
-784 features

3.3.4 Neural Networks and Deep Learning

Deep learning is one of the most sophisticated techniques in machine learning, and it has received

a lot of attention in recent years. It is presently employed in a variety of areas and applications, in-

cluding pattern recognition, medical prediction, and speech recognition. Deep learning experiences are

enhanced significantly by utilizing strong infrastructures such as cloud data centers and implemen-

ting collaborative learning for model training. However, this compromises privacy, particularly when

sensitive data is processed during the training and prediction stages, as well as when the training

model is disseminated. In this section, we discuss known privacy-preserving deep learning algorithms

based on homomorphic encryption, we present recent challenges concerning the intersection of HE

cryptosystems and Neural Networks models, as well as methods to overcome limitations.

HE cannot be used naively in neural networks algorithms. There are a lot of challenges and restric-

tions that must be overcome. The constraints differ according to the scheme, however, several common

issues emerge in most systems. The learning and inference phases of the deep learning algorithm can

be distinguished.

61

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

3.3.4.1 Privacy preserving deep learning : Private training

Several techniques have been proposed ; they consider collaborative training, in which the training

is performed collaboratively between different participants, or individual training, in which the training

is performed by a single participant, such as a client who wants to use a cloud to train its model.

Authors of [42] proposed a solution in collaborative learning mode, where participants send the

calculated encrypted local gradients to the cloud after each iteration of local training, starting with the

initial weights obtained from the cloud. To ensure homomorphic ciphertext integrity, each participant

uses a unique TLS/SSL secure channel. The cloud then updates the encrypted global weights vector,

which the participants download. The approach theoretically achieves the same accuracy as standard

asynchronous SGD, whereas evaluations show that MLP and CNN reach 97 percent and 99 percent

accuracy, respectively. In terms of efficiency, an overhead in communication and calculation was seen ;

however, the authors considered it negligible. In addition, the accuracy/privacy trade-off might be

adjusted to efficiency/Privacy, allowing the precision to be preserved while maintaining Privacy.

The privacy-preserving back-propagation technique described in [43] is based on BGV fully ho-

momorphic encryption and Maclaulin polynomial approximation of the sigmoid activation function.

The client encrypts input data and configured parameters before uploading them to the cloud, which

executes one loop. The client downloads and decrypts the findings before updating its local model.

It then encrypts and sends the updated parameters back to the cloud, which repeats the process.

This method is repeated until the maximum error threshold or the number of iterations is achieved.

Although BGV encryption provides for the protection of private data throughout the learning process,

it does need the approximation of the activation function. This might lead to a drop in accuracy. In

terms of efficiency, while the solution achieved a two times greater efficiency, i.e., 45 percent of the

training time of the standard model, it experienced compute and communication costs due to the

encryption-related overhead.

[44] employs the Taylor theorem to estimate the sigmoid activation function polynomially. The

evaluation findings revealed a reduction in accuracy for both classification and prediction tasks. Howe-

ver, the authors proposed adding additional Taylor series terms to decrease classification loss, raising

the BGV encryption level, resulting in poor performance. The method could achieve 2.5 times greater

classification efficiency and two times higher overall efficiency in learning time.

62

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

[45] described a more recent solution based on encryption. A client who wants to participate to

the model’s training transmits its data encrypted using the Paillier scheme [9] to the server, which

performs all possible neural network calculations except non-linear activation functions. To continue

execution, the encrypted weighted sums before each activation function are provided to the client, who

will be in charge of performing the calculation. The result is then encrypted again and sent back to

the server.

3.3.4.2 privacy preserving deep learning : Private inference

Fully homomorphic encryption is deployed in a line of research that performs private classification

of encrypted data using a neural network that has been trained using plain data.

[46] is the first solution for Privacy-preserving deep learning for inference, developed by Microsoft

Research. The approach is based on the YASHE a (Leveled Homomorphic Encryption) LHE scheme.

The user encrypts their data and sends it to the cloud, which runs the model and returns an encrypted

prediction. It has been demonstrated that the YASHE scheme is vulnerable to subfield lattice attack

[47]. To make the network compatible with homomorphic encryption, max-pooling is replaced by a

scaled-mean pool function, and activation functions are approximated by the square function, which is

the lowest-degree non-linear polynomial function. According to the authors, these adjustments should

preferably be considered during training on unencrypted data. For example, the solution could achieve

99% accuracy and 59000 predictions per hour on a single PC for the MNIST dataset.

To overcome the heavy computation cost of HE, a dual cloud model was proposed [48], in which

two clouds, A and B, collaborate to generate classification results in a secure environment. Cloud A

operates the neural network on private data encrypted by the client with Paillier cryptosystem [9],

but delegates activation function computations to the cloud B since they share a key. The technique

is repeated until the final layer is reached. Client A then protects the final output with a random salt

from cloud B, which uses the softmax function and sends the final encrypted result to the client. A

theoretical scenarios-based security and accuracy study demonstrated how the approach successfully

defends against potential threats.

[49] suggested a method for classification problems over the CNN model based on BGV an FHE

scheme. The combination of polynomial approximation and batch normalization is the major techno-

logical breakthrough. During the training phase, a batch normalization layer is introduced before each

63

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

ReLU layer to avoid excessive accuracy deterioration, and max-pooling is replaced by average-pooling,

which is more FHE-friendly and has a small overhead.

Prior to each ReLU, a batch normalization layer is introduced with a low-degree (2) polynomial

approximation. When the model is complete, the user encrypts its private data and sends it to the

model, carrying out the specified analysis. The evaluation findings revealed that the solution has a

short running time, with comparable performance, as if there was no privacy.

[50] attempt to use HE for deep learning problems. They provide methods by using low degree poly-

nomials to approximate the most generally used neural network activation functions (ReLU, Sigmoid,

and Tanh). This is a critical step in the development of effective homomorphic encryption methods.

They then train convolutional neural networks using those approximation polynomial functions before

implementing the models over encrypted data and evaluating its performance.

[51] suggest a recent homomorphic encryption-based approach. The user encrypts their perso-

nal information and transmits it to the server for prediction. The Paillier scheme accelerates linear,

convolutional, and pooling transformations. The authors chose ReLU as the activation function and

suggested, rather than utilizing polynomial approximation, an interactive protocol between the client

and the server for its computation. The user gets the ReLU input data, decrypts it, and communicates

the positivity or negativity of this input to the server, enabling the server to calculate the output. The

evaluation findings revealed that the solution could reach near model accuracy in plain text and was

similar to Cryptonet [46]. In terms of efficiency, the approach saves a significant amount of time.

Recently, authors in [52] have resulted in considerable improvements by using the scheme TFHE

[22]. FHE methods permit unrestricted encrypted operations and give accurate polynomial approxi-

mations to non-polynomial activation functions using a programmable bootstrapping technique, an

extension of the bootstrapping technique that allows resetting the noise in ciphertext to a fixed level

while—at the same time—evaluating a function for free.

3.3.5 Clustering

Clustering is an unsupervised machine learning problem that automatically identifies natural grou-

ping (clusters) in data.

A clustering algorithm can be collaborative or individual. In both cases, a model can be based on

64

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

a server, and the calculations are exclusively performed on the server or assisted by a server. In this

case, some calculations are delegated to the server.

Three models can be found in the literature :

1. data comes from several parties, and these parties collaborate to train a clustering model.

2. single party that holds the data but not the computational resources needed to perform the

calculations. The data is outsourced to perform clustering.

3. data comes from multiple parties and is paired to build a shared database. Then the data is

outsourced to perform clustering.

Cases 2 and 3 are similar ; this case is called ”outsourced clustering”. The first case is called

”distributed clustering”. Plenty of clustering algorithms have been seen in the privacy-preserving fra-

mework : k-means, k-medoids, GMM, Meanshift, DBSCAN, baseline agglomerative HC BIRCH and

Affinity Propagation. Among them, k-means has been intensively studied. In what follows, we focus

only on the works that use homomorphic encryption.

3.3.6 Collaborative clustering

In the case of collaborative clustering, several parties own data and want to collaborate to get

good quality clustering without disclosing the information contained in the data. This case has been

extensively studied in two parts. [53] considered the case where two parties with limited computational

resources would like to run k-means by outsourcing the computations to the cloud. Both parties will

have a result based on both datasets. In this case, one party’s data should be kept confidential from

the cloud and the other party. The authors used two schemes to propose a solution : the Liu encryption

and the Pallier encryption. Each party encrypts the data and sends it to the cloud. The cloud performs

calculations and comparisons based on additional information about both parties. To recalculate the

centers, the cloud sends the sum of all the vectors to both parties, and the parties use a protocol

to compute the new centers. The authors [54] propose a protocol to perform secure k-means in the

semi-honest model. In this work, the Pallier scheme has been used. The computation of the Euclidean

distance requires interaction with the data owner to perform the multiplications. The comparison is

performed using bit-by-bit encryption.

The authors [55] studied clustering using the k-medoids algorithm applied to intrusion detection.

Multiple organizations collaborate to perform clustering and have better results without sharing the

65

3.3. STATE OF THE ART OF PRIVACY-PRESERVING IN MACHINE LEARNING
(PPML) : HE-BASED SOLUTIONS

content of this information in the clear. In addition, the system relies on a semi-honest party to perform

clustering using Pallier encryption. The k-medoid algorithm requires more complex operations than

addition. This requires interactions between collaborators to decrypt this data at runtime and thus

perform the operations.

3.3.7 Individual clustering

A clustering is individual if only one person has data and she wants to have the results of the

clustering of this data. Most of the works interested in this kind of clustering require an intermediate

decryption step.

The authors [56] demonstrate a solution to perform k-means using a collaboration between the

client and a server. They used the BV scheme [57]. In this work, they proposed three variant solutions.

Each solution takes as input a dataset of dimension nxd, an integer k which denotes the number of

clusters and a threshold of iterations. The algorithm returns a matrix of dimension kxd that indicates

the cluster centers. In the first variant, the computation of the centers and the assignment are done

at the client level, which implies that the client performs a lot of computations (only the distances

are computed at the server level). In the second variant, the client performs the comparisons and the

division. At the same time, the server calculates the distances and the assignment of the points, then

the sum to calculate the new centers. This variant induces an information leakage on how the points

are distributed on the clusters. Finally, a third variant tries to solve the information leakage problem

by returning an encrypted assignment vector of a point instead of the clear assignment. The authors

[58] propose a method for k-means that limits interaction with the data owner using the concept of

”Updatable Distance Matrix (UDM)”. The latter is a 3D matrix whose first two dimensions equal the

number of data in the dataset, and the third dimension equals the number of attributes. Each cell in

the matrix is initialized to the difference between the attributes of the data vectors. The idea is to save

the encrypted data and the UDM matrix to a third party. This matrix is updated at each iteration

of k-means using an offset matrix obtained by calculating the difference between the new and current

centers. This method is expensive in terms of time and memory to store the UDM matrix.

The authors [59] have tried an exact implementation of k-means that requires no intermediate

decryption. Instead, the method relies on building a logic circuit to perform k-means using TFHE.

From a theoretical point of view, the method gives equivalent results to the plaintext version. However,

66

3.4. CONCLUSION

this method is not feasible ; with two dimensions and 400 points, the execution time has been estimated

at 25 days.

The authors [60] also propose a solution that focuses on k-means. In this solution, the BGV scheme

[61] is used. The authors notice that deciphering the intermediate steps at the client level is a costly

operation. The proposed solution relies on using a third party as a trusted entity to decrypt the

intermediate results. A private key equivalent (but different) to the owner’s and a switch matrix are

generated to be used by the trusted server. The proposed solution is considered secure in a semi-honest

model but not in the malicious case.

3.4 Conclusion

In concluding this chapter, we undertook an extensive exploration of the critical topic of Privacy-

Preserving Machine Learning (PPML). Our discussion began with a detailed overview of homomorphic

encryption and an introduction to the fundamental principles of machine learning, setting a solid

foundation for the in-depth study of PPML. This was followed by a focused examination of the

current best practices and models most commonly used in PPML. This analysis not only highlighted

the latest advancements in this rapidly evolving field but also emphasized the ongoing challenges in

optimizing privacy within machine learning models, offering a clear and comprehensive understanding

of the state of PPML today.

In Chapter 3, we introduce a multi-cloud platform that integrates public, private, and managed

clouds into a single user interface, with the goal of enhancing data privacy and availability.

Chapter 4 presents a comprehensive exploration of the application of homomorphic encryption to

the k-nearest neighbors (k-NN) algorithm. This includes a practical implementation of the algorithm

using homomorphic encryption and a meticulous evaluation of its feasibility on diverse datasets.

Chapter 5 focuses on our original contribution to the field, which is the application of homomor-

phic encryption to the k-means clustering algorithm. The performance of this approach is rigorously

evaluated on various datasets to assess its effectiveness.

In Chapter 6, we pursue a novel research direction by investigating the combination of homomorphic

encryption with differential privacy (DP) techniques to further enhance the privacy guarantees of

machine learning models.

67

3.4. CONCLUSION

Finally, Chapter 7 provides a conclusive summary of the research findings and proposes potential

avenues for future research in this field.

68

Troisième partie

Contributions

69

Chapitre 4

Handling security issues by using
homomorphic encryption in multi-cloud
environment

4.1 Introduction

Taking advantage of the high performance and powerful data processing capabilities of cloud

computing technology, externalizing data to the cloud platform is considered an inevitable trend in the

digital field today. However, ensuring the security and privacy of data remains a major challenge. To

overcome this drawback, a multi-cloud platform is proposed to improve privacy and high availability

of data. A multi-cloud platform that integrates public, private, and managed clouds with a single user

interface. Cloud-hosted data is distributed among different data centers in a multi-cloud environment

based on cloud reliability and data sensitivity. In terms of security, current encryption algorithms are

considered to be very efficient, but it requires a lot of resources to handle this, which is expensive and

time consuming. In addition, they also make the data impossible to process without first decoding. To

be specific, traditional public key encryption requires data to be decrypted before it can be analyzed

or manipulated. In contrast, homomorphic encryption is an encryption method that allows data to

be encrypted while it is being processed and manipulated. It allows user or a third party, which can

be cloud provider, to apply functions on encrypted data without revealing the data’s values. In this

introductory example, we explore existing multi-cloud-based security solutions using homomorphic

encryption to identify open issues and opportunities for further enhancement.

Cloud computing and related technologies are currently attracting a lot of attention from either

71

4.1. INTRODUCTION

research or industry. Michael Armbrust et al [62] define the cloud as ”the long-held dream of computing

as a utility”. The National Institute of Standards and Technology (NIST) gives another definition [63]

”cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service provider

interaction.” The cloud computing paradigm can be described in simple terms as ”everything as a

service”, where data is accessible over the Internet. The most popular ones are Platform as a Service

(PaaS), Infrastructure as a Service (IaaS) and Software as a Service (SaaS). The advantages of cloud

computing are undeniable, such as lower computing costs, instant software updates, reduced software

costs, and unlimited storage. The multi-cloud service is the next generation in cloud computing’s

development. The necessity to integrate clouds for enhanced processing and storage capability has

become an increasingly relevant subject for IT experts as resource requirements seem to be increasing

inexorably. Concerns regarding vendor dependency and cloud failure have also been highlighted, both

of which might be mitigated by switching to a multi-cloud environment [64]. A multi-cloud approach

is a cloud storage architecture that creates a virtual cloud storage system by combining several cloud

storage providers. The data to be saved is divided into separate blocks and redundantly distributed to

numerous cloud storage providers. However, collaboration with multiple clouds raises security concerns

such as increased attacks, loss of control over data and data privacy issues. To avoid this situation and

protect data privacy in multi-cloud environments, one possible solution is to use fully homomorphic

encryption (FHE) to ensure privacy. The goal behind FHE is to allow anyone to use encrypted data

to perform useful operations without accessing the encryption key. In particular, this concept has

applications to improve cloud computing security. In case a user wants to store sensitive, encrypted

data in the cloud, but does not trust her cloud provider or is at risk of an Intruder breaking into her

cloud account or application, FHE provides a way to pull, search, and manipulate data without having

to allow the cloud service provider access to the data.

Homomorphic encryption is an encryption scheme that allows computations on encrypted data,

yielding an encrypted result. When decrypted, this result produces the same outcome as computa-

tions performed on the original, unencrypted data. The aim of this work is to offer an architectural

framework to aid in securing data sharing processes in a multi-cloud context. Specifically, this initial

work highlights methods for achieving secure data sharing through the application of homomorphic

72

4.1. INTRODUCTION

encryption.

In the next section, we will survey the state of the art in homomorphic encryption and explore the

main challenges in applying it to real-world multi-cloud architectures. Section 3 provides a detailed

examination of the privacy challenges in multi-cloud computing and how homomorphic encryption can

address them. Our main contribution, which introduces a new architecture designed for multi-cloud

electronic medical records, is presented in Section 4. Finally, the conclusions are summarized in Section

5.

4.1.1 Related works

To enhance security and privacy in cloud environments, numerous studies have explored various

encryption methods to develop optimal solutions. Cloud computing security encompasses two do-

mains : security issues encountered by cloud providers (organizations that offer software, platforms,

or infrastructure services) and those faced by their customers. Innovations and new technologies are

extensively applied in both domains. Therefore, in this section, we conduct a review of the state of the

art in different forms of cloud security, aiming to identify the advantages and deficiencies of current

approaches.

In [65], the authors bring a solution for the K-nearest neighbors (k-NN) algorithm with a ho-

momorphic encryption scheme (called TFHE). The proposed solution addresses all stages of k-NN

algorithm with fully encrypted data, including the majority vote for the class-label assignment. Unlike

existing techniques, the solution does not require intermediate interactions between the server and the

client.

In the context of Multi-Cloud Computing (MCC), the authors in [66] discuss the security impli-

cations for mobile users in a multi-cloud computing environment and the advantages it offers them.

They highlight the security issues inherent in Mobile Cloud Computing and present the main reasons

for transitioning to a multi-cloud approach. Similarly, the concept of a ’light token’ was introduced in

[67] to enhance security for mobile users within the MCC environment. In this approach, the authors

propose a novel attestation schema that builds on existing attestation mechanisms as well as traditio-

nal encryption methods. Although the stability of the algorithm has been verified, this approach relies

on trusted parties, which poses challenges in controlling data and privacy.

73

4.1. INTRODUCTION

With other approaches, Fabian et al. [68] suggested an architecture for exchanging health care

information using Attribute Based Encryption and cryptographic secret sharing. This technique does

not ensure the data integrity or efficiency of the full process, which includes uploading, file slicing, and

group sharing, among other things. In [69], the authors present a security platform that allows user

authentication and data encryption. The platform uses the properties of homomorphic encryption to

generate a robust electronic signature. Then to improve the authentication mechanism, the verification

tasks are distributed over different virtual machines so that an attacker can never recover or intercept

passwords or other personal information of the data subject. In the work of Zibouh et al.[25], a

multi-cloud architecture has been proposed with fully homomorphic encryption by using the gentry

scheme [70] to enhance the performance and the time of data processing. However if the size of the

file increases, computation overhead arises.

4.1.2 Multi-cloud computing privacy challenges using homomorphic encryption

Multi-cloud has many advantages for the security of user data in cloud computing. Multi-cloud

security is one of the concerns that requires a lot of attention. Many researchers and industry profes-

sionals debate on security challenges such as isolation management, data exposure and confidentiality,

VM security, trust, and special security risks linked to the cooperation between cloud entities. Trust,

policy, and privacy, in particular, are key considerations in multi-cloud systems. We will focus on the

customer data protection and identity in this thesis. Cloud data privacy is critical because sensitive

customer information should not be shared with anyone who is not authorized to access it. When data

is stored in many clouds, there should be a method in place to protect data privacy and identification.

When the volume of data is extremely sensitive, clients must disguise their identification traits from

Cloud computing services in order to maintain anonymity. To protect unwanted access during data

transportation and storage in cloud systems, appropriate data encoding techniques should be utilized.

4.1.3 Multi-key Homomorphic encryption

López-Alt et al. [71] proposed the first multi-key homomorphic encryption, a system to provide a

homomorphic evaluation on cipher texts encrypted with various keys. Unlike general HE schemes, this

kind of HE scheme eliminates the necessity for a key setup step prior to any computation to build a

joint key from individual keys. Instead, a cloud evaluator may dynamically convert cipher texts from

74

4.1. INTRODUCTION

encryption using individual keys for encryption using the concatenation of individual users’ keys.

We have proposed a solution using the following scheme [72], named MK-TFHE scheme, a first

implementation in the literature to implement an MKHE scheme which is defined by seven probabilistic

polynomial-time (PPT) algorithms :

— pp ← MK-TFHE.Setup(1k) : This algorithm outputs public parameters pp given security pa-

rameter k

— sk ← MK-TFHE.KeyGen(pp) : This algorithm randomly generates secret key sk given the

public parameters pp.

— ct ← MK-TFHE.Encrypt(m, sk) : This randomised algorithm encrypts message m with secret

key sk and outputs ciphertext ct=(b, a).

— (ct∗, T ∗) ← MK-TFHE.Pre-process (ct=(b,a1,...,aki),T=id1,...,idk) : This algorithm basically

extends the input cipher text with additional 0’s in order to be able to perform the homomorphic

operation over all the underlying k keys.

— ct∗ ← MK-TFHE.Eval(C,ct∗) : This algorithm evaluates circuit C over the l ciphertexts ecryp-

ted with multiple keys.

— ui ← MK-TFHE.PartialDecrypt(a∗
i , skidi

) : This algorithm takes as input a∗
i from ciphertext

ct∗ corresponding to the party holding secret key skidi
and outputs a partially decrypted infor-

mation ui

— m
′ ← MK-TFHE.Merge(b, u1, ..., uk) : This algorithm takes as input all the partial decryptions

derived from a ciphertext ct∗ and outputs the final plaintext m
′
.

4.1.4 Our contribution

To further enhance data privacy and reduce the amount of calculations, we proposed more secure

system models by adding more clouds.

Many challenges need to be tackled to apply homomorphic encryption in multi-cloud real-world

applications. We have identified the multi-key homomorphic encryption [73] or the multiparty extens-

tions ”Threshold setup” of the library OpenFHE [74] for BGV, BFV, and CKKS schemes, to use them

in a multi cloud setup.

We introduce and describe a new architecture proposed for multi-cloud electronic medical records

as in Fig. 2. This model uses homomorphic encryption algorithms to ensure individual privacy in

75

4.1. INTRODUCTION

network and multi-cloud environments. The advantage of our proposal is that it is based solely on

OpenFHE, a reference open-source library in the field of homomorphic encryption, and can be easily

configured by neophytes. We performed simple homomorphic operations to prove the feasibility as it

is depicted in the next sub-sections.

4.1.5 Experimental evaluation

We make some experiments in order to evaluate the performance and the usability aspects on a va-

riety of applications of multi-key and multiparty extenstions ”Threshold” of homomorphic encryption.

In the multi-cloud environment, we use OpenFHE [74] for Homomorphic Encryption and DepSky as

a multi-cloud platform.

4.1.5.1 OpenFHE : Open-Source Fully Homomorphic Encryption Library

We use OpenFHE[74] to implement the homomorphic encryption scheme, a new open-source FHE

software library that integrates a variety of innovative design concepts from previous FHE libraries

such as PALISADE, HElib, and HEAAN. OpenFHE supports various FHE schemes and hardware

acceleration backends using a standard Hardware Abstraction Layer (HAL). OpenFHE supports both

user-friendly and compiler-friendly modes, with the library automatically performing all maintenance

operations such as modulus switching, key switching, and bootstrapping. We choose to use a multi-key

homomorphic encryption scheme [72], a cryptosystem that allows us to evaluate an arithmetic circuit

on ciphertexts, possibly encrypted under different keys.

4.1.5.2 DepSky : Multi cloud computing platform

We experiment with our proposal by using DepSky[75] with local storage, a multi-cloud platform

that enhances the integrity, confidentiality, and accessibility of data stored in the cloud. This is ac-

complished by creating a cloud-of-clouds by encrypting, enclosing, and replicating all the data across a

number of separate clouds. This architecture addresses the single cloud’s limitations by replicating all

of the data in a set, the availability issue of clouds and as a result the data can be retrieved correctly

even if some of the clouds corrupt or lost data. It addresses the loss and corruption of data issue

by using Byzantine fault-tolerance replication to store data in multi-clouds. It addresses the loss of

confidentiality issue by employing a secret sharing schema and erasure codes to ensure that all data

76

4.1. INTRODUCTION

that will be stored in a multi-cloud environment are encrypted.

4.1.5.3 The Health-Care Use-Case

Nowadays, the application of multi-cloud environment is more and more widespread. Multi-cloud

environment is applied in many different aspects such as information communication, vehicle systems

and medical health systems. While people are paying more and more attention to their medical health,

their medical data considered as sensitive must be handled in a secure way like shown in Fig.1.

Figure 4.1 – ”Healthcare monitoring with a single cloud.”

Several health-care activities using EHRs (Electronic Health Records) are an attractive use-case for

multi-provider cloud in the healthcare industry : data access by the patients, prescription management

application for doctors or other institutions, and assisted surgery.

The protection of personal health data is a major issue. Indeed, these data can lead to the cove-

tousness of malicious parties with the aim of generating profits [76]. The three fundamental and main

goals of security are : confidentiality, integrity and availability.

— Confidentiality : Only an authorized person should have access to the information.

— Integrity : Information should be correct, and an unauthorized person should not alter it.

— Availability : Information should be accessible, available, and usable at any time but only by

an authorized entity.

77

4.1. INTRODUCTION

4.1.5.4 Architecture Model

Because many applications may use sensitive data that are distributed over multiple clouds, in

our proposal, we propose a new architecture model that is based on homomorphic encryption in a

multi-cloud environment. By combining these two paradigms, we design an architecture model which

can ensure the security and the privacy of the users. The proposed architecture for our proposal is

summarized in Fig. 2.

Figure 4.2 – ”diagram showing how to manipulate encrypted data on a multi-cloud platform
DepSky. On the left, the client encrypts the data before sending it to the cloud, on the right, the

cloud service can process on it.”

4.1.6 Detailed experimental results

Our solution has been implemented using OpenFHE and DepSky, and tested on Linux Ubuntu

64-bit machine with i7-7700 CPU 3.60GHz with four clouds.

The advantage of our architecture is that it is possible to choose among several homomorphic

encryption schemes depending on the needs of homomorphic operations. We did our simulation using

78

4.1. INTRODUCTION

four local clouds, nevertheless, it is easy to deploy by choosing a commercial cloud like Amazon S3,

Google Storage, RackSpace Files or Windows Azure Storage.

For security parameters, we have used the recommended parameters [72].

Table 1 describes the parameter used for our experimentation.

LWE RLWE
n α B d N β
560 3.05*10ˆ{-5} 2ˆ2 8 1024 3.72*10ˆ{-9}

Table 4.1 – Recommended parameter settings for our MKTFHE scheme : n, α and N, β denote the
dimension and the standard deviations for LWE and RLWE ciphertexts to achieve at least 110-bit

security level

To show the feasibility of a homomorphic computation on a multi-cloud service we have applied

simple operations such as an addition or a multiplication between two integers, the results obtained

are presented in Table 2.

The results obtained are promising compared to those obtained with a mono-cloud service, because

indeed the multi-cloud architecture allows to make parallel calculations over multiple data encrypted

with multiple keys, with an additional negligible cost when we perform the decryption operation using

the concatenation of individual user’s keys.

It would now be interesting to test more complex operations such as applying machine learning

algorithms on health data by using homomorphic encryption [77].

Despite the benefits of cloud applications for healthcare, cloud security challenges must be addres-

sed. In this thesis, we introduce and describe a proposed new architecture for Electronic Health Records

with Multi-Clouds. This model will ensure the privacy of people in a network and multi-cloud envi-

ronment using a multi-key homomorphic encryption algorithm. The advantage of our proposal is that

Number of clouds time of one addition Time of a multiplication Blind rotation key Key-switching key

1 63 µs 1200 µs 0.62 MB 70.3 MB

2 48 µs 580 µs 0.82 MB 79.1 MB

4 25 µs 320 µs 1.03 MB 95.1 MB

8 15 µs 203 µs 1.33 MB 100.3 MB

16 9 µs 124 µs 1.62 MB 120.2 MB

Table 4.2 – Results obtained of the calculation time of an addition and a multiplication by varying
the number of clouds, with the size of the blind rotation key and the key-switching key

79

4.1. INTRODUCTION

it is based only on an opensource library ”OpenFHE” that is a reference in the field of homomorphic

encryption, and the configuration is easy for a non-expert.

Figure 4.3 – ”Performance Analysis of Homomorphic Operations in a Multi-Cloud Environment.”

The figure 4.3 illustrates the performance of homomorphic operations in a multi-cloud environment,

as presented in Table 2 of your text. The results clearly show how the time needed to perform an

addition or multiplication, as well as the size of the encryption keys (blind rotation key and permutation

key) evolve as a function of the number of clouds involved.

The time required to perform an addition or multiplication decreases significantly as the number

of clouds increases. This downward trend suggests that multi-cloud architecture enables more efficient

parallel computations, thus improving overall performance.

The size of encryption keys also increases with the number of clouds, but this increase is relati-

vely modest compared to the performance gains achieved, underlining the effectiveness of multi-cloud

architecture for homomorphic operations.

This graph supports the argument that multi-cloud architecture is promising, particularly for

more complex operations such as applying machine learning algorithms to homomorphically encrypted

healthcare data.

80

Chapitre 5

Secure and non-interactive k-NN classifier
using symmetric fully homomorphic
encryption

5.1 INTRODUCTION

Machine learning as a service” (MLaaS) in the cloud accelerates the adoption of machine learning

techniques. Nevertheless, the externalization of data on the cloud raises a serious vulnerability issue

because it requires disclosing private data to the cloud provider. This work deals with this problem and

brings a solution for the K-nearest neighbors (k-NN) algorithm with a homomorphic encryption scheme

(called TFHE) by operating on end-to-end encrypted data while preserving privacy. The proposed

solution addresses all stages of k-NN algorithm with fully encrypted data, including the majority vote

for the class-label assignment. Unlike existing techniques, our solution does not require intermediate

interactions between the server and the client when executing the classification task. Our algorithm

has been assessed with quantitative variables and has demonstrated its efficiency on large and relevant

real-world datasets while scaling well across different parameters on simulated data.

Cloud services have become central to data storage and data exploitation. Among these services,

a machine-learning service is offered to train different models to predict for decision-making purposes.

However, this raises the issue of data security because the data processed by the cloud may be sensitive

and confidential while belonging to entities that do not trust the cloud provider.

The most commonly used cryptographic techniques to achieve privacy-preserving for machine lear-

ning are secret sharing, multi-party computation, and homomorphic encryption (HE). Several tech-

81

5.1. INTRODUCTION

niques ensure strong privacy protection, often at the expense of reduced speed and communication.

One way to solve the computational cost problem inherent to HE is to investigate less complex

supervised methods. The k-nearest neighbors (k-NN) approach presents several advantages. Indeed,

for a predefined number of neighbors k, the model does not require any training step, the value

of the response variable for a given individual is obtained directly from the values observed on the

neighbors without needing to estimate new parameters. In addition, the method can handle continuous,

categorical, and mixed data. Furthermore, as a non-parametric method, k-NN can be relevant for many

data structures as long as the number of observations is sufficiently large.

The prediction for a new observation is obtained by :

— Identifying the k nearest neighbors (according to a given distance)

— Computing the majority class among them (for a classification problem) or by averaging values

(for a regression problem).

Unlike other existing works, in this work, we propose a new methodology to apply k-NN on

encrypted data by using fully homomorphic encryption avoiding interaction between entities.

We consider a client/service provider architecture that supports scenarios described here. The service

provider is a company that owns a labeled training dataset D composed of sensitive data allowing

predict for novel observation by k-NN. This model is offered as a service.

We assume a context that is concerned by some privacy issues as in the following :

— Because the training data are sensitive, they cannot be shared with a third party such as a

client.

— The model is an intellectual property of the service provider. Hence, the service provider does

not want to share the used model with his clients.

— A client who needs to perform classification on the service-provider platform does not trust the

service provider.

This work aims to do a classification using k-NN algorithm on sensitive data using HE. Our so-

lution assumes that the service provider, which is the dataset owner, has all the necessary resources

to perform the data classification and storage. This assumption ensures that encrypting the training

dataset is not necessary since these data are kept with the data owner. Only the client will need to

encrypt his query that includes his data by using a private key and by sending it to the data owner

82

5.2. BACKGROUND

for classification. The goal is to protect the training dataset, the query, and the model parameter k.

Our solution meets the following privacy requirement as in the following :

— The contents of D are known only by the data owner since they are not sent to other parties.

— The client’s query is not revealed to the data owner.

— The client knows only the predicted class.

— The index of the k nearest neighbors is unknown from the data owner or the client.

Our solution has a greater added value than the existing literature solutions. First, it guarantees

that no information leakage occurs during the process : the only things known by the data owner are

the dataset and the model used. The only things that the client knows are the query and the class. All

intermediate results are encrypted. In addition, our solution is fully non-interactive since prediction is

performed by the data owner and do not need any decryption during the process. Finally, it supports

multi-label classification.

The rest is organized as follows : Section 4.2.1 presents the background of Functional Bootstrap in

TFHE before highlighting the principle of Fast Fully homomorphic encryption over the Torus (TFHE).

Our proposed solution is then described in Section 4.3. A simulation study is presented in Section 4.4

to assess our methodology based on real datasets. Finally, Section 4.5 concludes the chapter.

5.2 BACKGROUND

5.2.1 Functional Bootstrap in TFHE

This thesis uses “TFHE : Fast Fully homomorphic encryption over the Torus” as an RLWE-based

scheme in his fully homomorphic setting, especially in gate bootstrapping mode. The bootstrapping

procedure is the homomorphic evaluation of a decryption circuit on the encryption of a secret key.

TFHE defines three types of ciphertexts, TLWE Sample, TRLWE Sample and TRGSW Sample.

There are two bootstraps algorithms in TFHE. Gate Bootstrap was introduced to implement logic

gates, and the Circuit Bootstrap, which converts TLWE samples to TRGSW samples. In our work, we

use Functional Bootstrap. By ”Functional” we mean that the bootstrap can evaluate functions using

a BlindRotate algorithm to perform a lookup table (Lut) evaluation. LUTs are a simple, efficient way

of evaluating discretized functions. For instance the sign function was used in [78] and [79].

83

5.3. OUR CONTRIBUTION

5.3 OUR CONTRIBUTION

5.3.1 The System Model

Figure 5.1 – The system model : the client is the querier, and the server is the data owner : the
data owner receives the query in an encrypted way, performs an encrypted k-NN algorithm then

sends the result to the querier for decryption.

Our system uses the client-server architecture (see Figure 1). The client is the querier, and the

server is the data owner.

1. The data owner : owns the data and can do heavy calculations. For example, it receives the

query in an encrypted way, performs an encrypted k-NN algorithm then sends the result to the

querier for decryption.

2. The querier : generates the keys, encrypts the query that contains its data and sends it to the data

owner for computations before decrypting the result. The querier can be an ordinary computer

or any IoT device that collects data.

5.3.2 Encrypted k-NN Challenges

In order to propose an encrypted version of k-NN, we should substitute the challenging operations

used in the standard k-NN with equivalent operations in encrypted domains. As seen before, k-NN is

composed of three parts : the distance calculation, the distance sorting, the selection of the k nearest

neighbors, and the majority vote.

This subsection will introduce the equivalent operations as integrated with our solution.

84

5.3. OUR CONTRIBUTION

5.3.2.1 Distance Calculation

The euclidean distance calculation between the dataset entries xi as well as the query q are ne-

cessary in order to find the k nearest neighbors to the query. We can use the standard formula of the

distance as in (1).

d2(xi, q) =
p∑︂

j=0
x2

ij +
p∑︂

j=0
q2

j − 2 ∗
p∑︂

j=0
xijqj (5.1)

What is relevant in our case is the difference between two distances to compare them. So, we get the

formula (2) as follows :

d2(xi, q)− d2(xi′ , q) =
p∑︂

j=0
(x2

ij − x2
i′j)− 2 ∗

p∑︂
j=0

(xi′j − xij)qj (5.2)

Since the dataset is a clear text, we can easily calculate formula (2) using the TFHE scheme. However,

we need to adapt it. Using TFHE, the difference between the distances should be in the range of [−1
2 , 1

2].

Another constraint is that the multiplication is done between a clear-text integer and a ciphertext.

Two rescaling values are required to resolve these constraints. Let v be the first one. It is used to have

values of the differences between [−1
2 , 1

2]. Let p be the second one. It indicates the precision of the

differences. Each attribute of the dataset as well as the query are rescaled using v. p is used when

calculating the product (xi′j − xij)qj .

5.3.2.2 Sorting

Sorting computed distances is a crucial step in k-NN. The standard algorithm for sorting, like

the bubble sort, can be used while considering encrypted data. However, these algorithms are time-

consuming in an encrypted world because the worst case is computed every time. The authors [5]

propose two methods to sort an array of values. The method of the direct sort is used in [6]. It is based

on a matrix of comparison called delta matrix :á
m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n

ë
with

mi,j = sign¯ (Xi −Xj) =
ß

1 if Xi < Xj

0 else.

85

5.3. OUR CONTRIBUTION

When summing columns of this matrix, we will have a sorting index of the distances.

5.3.2.3 Majority Vote

The majority vote can cause a problem because the operation requires comparison to detect the

class. To determine the predicted class, we need to know k nearest neighbors’ classes. This step is

challenging in two ways : first, we need to avoid information leakage, unlike the solutions in the

literature. Second, the majority vote requires comparison in order to predict the class.

To the best of our knowledge, no solution in the literature studied this point in an encrypted way

without information leakage. Therefore, in the following subsection, we will demonstrate a solution to

process k-NN with the majority vote in an encrypted way while supporting a multi-label classification.

5.3.3 Our proposed k-NN algorithm

Our proposed algorithm, called ”HE-kNN-V”, is composed of three steps : the construction of

the delta matrix, the selection of k-nearest neighbors, and the majority vote. The two first steps are

similar to the solution of [6] even if we adapt the existing formulas in order to eliminate unnecessary

calculations. [6] use polynomials to define the formulas, while what interests us is just one term of

those polynomials to eliminate non necessary calculations. The majority vote is our added value and

is specific to our solution. We will discuss in this subsection the design of our solution, including each

building block.

5.3.3.1 Building the delta matrix

To build the delta matrix, we need to know the sign of the differences between the distances

to sort. Since we defined a method to calculate the differences in the last subsection, the sign can

easily be achieved using the standard bootstrapping sign function in TFHE. However, the standard

bootstrapping function returns +1 if the phase is greater than 0 and -1 if the phase is lower than 0.

Therefore, since we need to have 0 or 1 in the matrix, we need to adapt the bootstrapping operation

to return 1
2 and −1

2 then by adding 1
2 to the result we will have 0 or 1.

Even if building this matrix is time-consuming, it is highly parallelizable.

86

5.3. OUR CONTRIBUTION

5.3.3.2 Selecting the k-nearest neighbors

To select the k–nearest neighbors, we use the scoring operation proposed by Zuber [6]. By using

the delta matrix, the principle is as follows :

1. Sum m values in each column with m the number of possible operations without bootstrapping.

2. If there are still values to sum : do a bootstrapping operation using the modified sign bootstrap-

ping function (See Algorithm 1 in [6]) and go to Step 1.

3. Otherwise, execute the modified sign bootstrapping and return the last sign returned by this

operation.

Finally, we obtain an encrypted vector where the position i equals the cipher of 1 if the individual

with index i is among the k-nearest neighbors, the cipher of 0 otherwise. We call this vector the“mask”

(See Figure 2 for more clarity).

5.3.3.3 Majority vote

The majority vote is the most important added value in our work. We propose to do the majority

vote without any leakage of information, unlike existing works like that of [6] in which the majority

value is done in clear text or by using other alternative solutions proposed in the literature.

First, we illustrate the issue with the method of [6]. We consider the scenario where the querier

does the calculations. The majority vote is done in clear text, but we need to decrypt the vector of

indexes of the nearest neighbor. The data owner does the decryption. Significant information leakage

occurs if the data owner knows the vector of indexes. Then, he will know the classification of the

query, and by doing some triangulation, he can approximate the query. In addition, the solution will

be interactive. If we consider the scenario where the data owner does the calculation, the decryption of

the vector is done by the querier. However, to do the classification, the querier should know the labels

of the dataset, which is also a critical leakage of information. In addition, the querier will know the size

of the dataset and the k parameter of nearest neighbors considered. This information is considered as

internal information of the model used, and it should be protected.

In our solution, the majority vote is done by the data owner in an encrypted way. First, the data

owner encodes the labels using one hot encoding. Having the mask and the matrix of labels in one

hot form, it is easy to do an AND operation between the mask and each column of the labels, as in

87

5.4. PERFORMANCE EVALUATION

Figure 2. We get a matrix A (for affectation) with Aij equal to 1 if the individual i is among the

k-nearest neighbors and its class is j. Using this matrix, it is possible to sum the columns and obtain

the probability of each class. We can now return only the class and guarantee no information leakage

and no interactivity.

Figure 5.2 – Majority Vote illustration by using the mask

5.4 PERFORMANCE EVALUATION

In this section, we discuss the experiments of our solution. First, we describe the technical and

the setup of the environment. Then, we will evaluate the performances of our solution according to

different criteria : execution time, accuracy, bandwidth consumption.

5.4.1 Test Environment

5.4.1.1 Setup

Our solution is implemented using the TFHE scheme in C/C++ and Python for training k-NN in

clear text and for tests. To test the effect of parallelism, we used OpenMP to do some parallelization.

The source code is available in the following github ”https ://github.com/Yulliwas/HE-kNN-V”. Our

solution is tested on Linux Ubuntu 64-bit machine with i7-8700 CPU 3.20GHz.

Table 1 shows the parameters used to setup TFHE scheme.

5.4.1.2 Datasets

To test our solution, we choose to use 6 datasets : Iris, Breast Cancer, Wine, Heart, Glass and

MNIST as in Table 3. The goal is to test the performances of our algorithm in different distributions

88

5.4. PERFORMANCE EVALUATION

λ N σ

110 1024 10−9

Table 5.1 – TFHE Parameters :
λ for the overall security, N for the size of the

polynomials,σ for the Gaussian noise parameter.

m v p b

64 4 1000 4*m-4

Table 5.2 – HE-kNN
Parameters :

the number of operations m
without needing a bootstrapping,
the bootstrapping base b, and the

rescaling factors v and p

of data, so that to confirm that our solution works with any dataset and that has performances that

are equivalent to those of clear-text domains.

Dataset n d classes

Iris 150 4 3
Wine 178 13 3
Heart 303 75 5

Breast Cancer 699 10 2
Glass 214 10 2
MNIST 1797 10 3

Table 5.3 – Datasets :
number of individuals(n), the size of the model (d) and number of classes

5.4.1.3 Simulation procedure

First, we preprocess the data by rescaling each attributes to a value between 0 and 1. Our dataset

and the query should be rescaled by a factor of v as seen above. We must also multiply the dataset

vectors by the precision factor τ and then rounded. In the other hand, the query vector is divided by

this same factor. To obtain the classification rate, first we need to divide our dataset to a training set

and a test set. We choose to use 20% of our dataset as a test set and the rest as a training set. Among

the training set, we select a certain number of points that represent as well as possible our dataset.

The process for choosing the best points that represent our training set is as follows :

1. choose n individuals randomly ;

2. calculate the classification rate ;

3. Repeat the previous Step 1 and Step 2 a certain amount of time and keep the best accuracy and

the best individuals.

To select the k parameter, we use the same procedure as in the clear domain. In our case, we tested

89

5.4. PERFORMANCE EVALUATION

different values of k and we keep the best k value that gives the best results.

5.4.2 Performance results

To position our approach according to existing works, and especially regarding the voting step that

is performed without information leakage, we compare in Table 4 our solution with Zuber’s solution

and with a clear-text version based on the Iris dataset and a fixed k=3. The comparison is done in

terms of complexity (C), Information Leakage (L), accuracy (A), interactivity (I) and execution time

(T). The accuracy and the prediction time are indicated only when it is possible.

Work C L I A T

HE-kNN-V O(n2) N N 0.97 1.72s
HE-kNN-VP O(n2) N N 0.97 0.46s

Zuber O(n2) Y Y 0.98 1.74s
Clear k-NN O(n) Y N 0.95 1.8ms

Table 5.4 – Comparison between solutions for Iris Dataset :
complexity (C), Information Leakage (L), accuracy (A), interactivity (I) and execution time (T).

5.4.2.1 Empirical study

5.4.2.1.1 Classification rate To evaluate the classification rate, we have chosen the accuracy instead

of other metrics like : recall or F1-score. We studied the accuracy according to two parameters : the

number of data sampled from the dataset and the number k of neighbors. The goal is to choose the

best points that represent the datasets and the best k parameters for each dataset.

We chose real-world datasets in order to see the evolution of the accuracy and compared it to

clear-text accuracy.

In one hand, we know that the accuracy depends on the k parameter and we can confirm it easily

in the graphs. On the other hand, the assumption that the accuracy depends on the number of data

used is not complete. For the dataset where the data is well separated (like Iris), having a lot of data

is not necessary, the best accuracy can be achieved using only few data. But, in the case where data

is not well separated (like in Heart dataset), the accuracy seems to depend on the number of data.

According to our different simulations illustrated in Figure 3 and Figure 4, we do not lose accuracy

when we apply our HE-kNN-V method on the encrypted data compared to the application of the kNN

on the plain data. This is possible by varying the number of individuals and by fixing k to 3.

90

5.4. PERFORMANCE EVALUATION

Figure 5.3 – Encrypted Accuracy vs
number of individuals

Figure 5.4 – Clear-text Accuracy vs
number of attributes

Figure 5.5 – Encrypted Accuracy vs
k-parameter

Figure 5.6 – Clear-text Accuracy vs
k-parameter

We also notice that by setting the number of individuals to 40 and varying k, (see Figure 5 and

Figure 6) the accuracy behaves in the same way between the application of the kNN on the plain data

and the application of our method HE-kNN-V on the encrypted data.

5.4.2.1.2 Execution time In our solution, the execution time is independent of the content of the

dataset, it does not depend on the values, but does depend on the content, since it depends on the

number of tuples . We can use either simulated dataset or real world dataset. To visualize the evolution

of the execution time according to k, n and d, we choose to use the Breast Cancer dataset instead of

simulating a new dataset. We change n, k, d and we see the evolution of the execution time.

Our simulations, as depicted in Figure 7, illustrate that HE-kNN-V is parallelizable, and also that

the number of individuals strongly impacts the execution time unlike the two simulations of Figure 8

and Figure 9 where the variation of respectively d the number of attributes and k does not impact the

execution time.

5.4.2.1.3 Bandwidth In our solution, the only thing that is communicated is the query in the ci-

phertext and the response in the ciphertext. The size of the query is proportional to the number of

91

5.4. PERFORMANCE EVALUATION

Figure 5.7 – Execution time vs
number of individuals

Figure 5.8 – Execution time vs
number of attributes

Figure 5.9 – Execution time vs k-parameter

attributes d. Each attribute is a TLWE Sample with the size of 4 KB and the size of the response

(number of classes)*4 KB. The bandwidth according to each dataset is illustrated in Table 5.

Table 5.5 – Bandwidth

Dataset Bandwidth (KB)

Iris 28
Wine 64
Heart 64

Breast Cancer 128
Glass 60
MNIST 296

5.4.2.1.4 Discussion According to our experiments, we can say that the accuracy in our case de-

pends on three factors : the number of individuals, the representativity of these individuals and the k

parameter. To have a better model that fits our dataset, we must select the individuals that are more

representative of our dataset and the best k parameter. We also should take care of the number of

individuals because most of the execution time depends on that number.

92

5.5. CONCLUSION

5.5 CONCLUSION

We proposed HE-kNN-V a method for performing k-NN on encrypted data that includes a majority

vote for class-label assignment. The proposed solution addresses all stages of k-NN algorithm with fully

encrypted data. It guarantees that no information leakage occurs during the process. Unlike other

techniques, our solution eliminates the need for intermediate interactions between the server and

the client when performing classification tasks. Our algorithm has been evaluated using quantitative

variables and demonstrated its efficiency on large and relevant real-world data sets. As a perspective,

it would be interesting to see how a hardware acceleration of the TFHE scheme could improve the

computation time of our proposed solution HE-kNN-V.

93

Chapitre 6

Secure k-means clustering using TFHE

6.1 INTRODUCTION

Cloud computing offers a solution to the lack of computational and storage resources in various

domains, allowing users to outsource high-cost calculations. Machine Learning (ML), being resource-

intensive, benefits from cloud ML platforms provided by IT companies. This ”Machine Learning as a

Service” (MLaaS) allows users to utilize cloud resources for ML tasks.

Despite its advantages, sectors like healthcare, finance, and government hesitate to use cloud re-

sources due to privacy and security concerns, as data in the cloud is often processed in clear text. To

address this, solutions like anonymization, cryptography, and perturbation are used. Anonymization

changes data to prevent recognition by attackers, while perturbation adds noise to randomize data.

However, these methods have limitations in fully securing data.

One effective cryptographic solution is Homomorphic Encryption (HE), allowing arithmetic ope-

rations on encrypted data without decryption. Introduced in 1978, HE comes in three forms : Par-

tial Homomorphic Encryption (PHE) for single-operation tasks, Somewhat Homomorphic Encryption

(SHE) for limited operations, and Fully Homomorphic Encryption (FHE) for unlimited operations

using addition and multiplication. In this work, we aim to achieve a privacy-preservation clustering

using FHE. Specifically, we are interested in doing a k-means clustering by proposing a new secure

and efficient outsourced clustering. While k-means is widely used, simple and easy to understand,

implementing its secure version using HE is not trivial because k-means requires more complex opera-

tions such as division and comparison in addition to addition and multiplication. We can decide to do

these operations locally in clear text by using intermediate decryption, but the purpose of using cloud

94

6.2. RELATED WORKS

computing is foremost to limit calculations in the user side. Indeed, according to the state of the art of

HE, it is not possible to do all the operations in the cloud server easily, such as the equality/inequality

test. Number comparison and sign determination are critical processes in a homomorphic setup.

Therefore, the solution proposed in this work aims to limit interaction between the cloud server

and the user/client using a specific type of FHE called TFHE (Fast Fully Homomorphic Encryption

over the Torus). Using this specific scheme, we can benefit from a functionality offered by TFHE to

do comparisons in an encrypted way. Therefore, we limit the interaction to the sole calculation of the

new centroids of the clusters.

The remainder of this chapter is organized as follows : Section 5.2 presents a review of the related

work. Section 5.3 provides background about k-means algorithm. Section 5.4 details the proposed

solution for k-means using TFHE before highlighting the experiments that are undertaken to validate

the proposed algorithm in Section 5.5, and before concluding in Section 5.6.

6.2 Related works

Many research works have used HE to secure k-means according to one of the two settings :

distributed clustering or individual clustering. All these works have attempted to find alternatives to

perform distances calculation, comparisons, and divisions securely.

In the distributed-clustering context, many actors have different datasets and collaborate jointly

to have a common clustering.

Liu et al., in [80], proposed a solution for a two-entities based k-means clustering. In this solution,

the authors use two schemes : Liu scheme [liu] and Pallier scheme [9]. Each entity encrypts its data

and sends them to the cloud. In the cloud, they use trapdoor information given by the data owners

to do the comparisons, then the data owners collaborate to compute the new centroids.

Jiang et al., in [81], used the Pallier additive scheme and proposed a k-means clustering where

an intermediate decryption is necessary to compute the euclidean distances and opted for a bit-a-bit

comparison which is time consuming.

In the individual clustering, one entity owns the dataset and then outsources it to the cloud for

k-means clustering purposes.

95

6.2. RELATED WORKS

Theodouli et al., in [82], used the BV (Brakerski-Vaikunathan) scheme to design a solution that

allows collaboration between a server and a client. In this work, the authors studied three scenarios.

In the first scenario, only the calculation of the distance is performed within the cloud. The rest of the

calculations is done in the client side. In the second scenario, only the comparison and the division are

done in the client side. However, this solution leads to information leakage regarding the assignment of

the individuals. To solve this problem, the third scenario used an affectation vector instead of passing

the class directly.

Almutairi et al., in [83], propose k-means method that limits the interaction with the data owner

using the concept of an ”updatable distance matrix (UDM)”. The latter is a 3D matrix where the

first two dimensions correspond to the number of data in the dataset and the third to the number of

attributes. Each cell of the matrix is initialized with different attributes of the data vector. The idea is

to store encrypted data and his UDM matrix in a third party. This matrix is updated every k-means

iteration using the offset matrix obtained by computing the difference between the new center and the

current center. This method consumes time and memory to store the UDM matrix.

Jäschke and Armkne, in [84], used the TFHE scheme to implement a secure k-means at binary

level. This is possible by designing a binary circuit. Theoretically, this method gives the same results

as the clear version, but it remains impractical due to the execution time which is astronomical even

when executed in a cloud server.

Sakellariou and Gounaris, in [85], introduced a third trusted entity to decrypt the intermediate

results using an equivalent key (but different) to the key used to encrypt data. They used the BGV

(Brakerski, Gentry and Vaikuntanathan) scheme, and considered the honnest-but-auditable threat

model. This means that we assure that the trusted entity does only the decryption of the intermediate

results. If the third entity doesn’t follow the protocol for which it was designed, an anomaly is sent to

the data owner.

96

6.3. BACKGROUND

6.3 BACKGROUND

6.3.1 k-means algorithm

In this section, we provide an overview of the k-means clustering algorithm. In our contribution,

this algorithm will be adapted to be executed in a secure way using homomorphic encryption.

Given a dataset, k-means algorithm partitions individuals in k subsets called clusters. Each cluster

is represented by its center (called also centroid), and each individual belongs to the cluster that has

the shortest euclidean distance (or squared distance) between its centroid and this individual. The

optimization problem is defined as follows :

min
c1,...,cK ,C1,...,CK

K∑︂
k=1

∑︂
i∈Ck

(xi − ck)2

The algorithm works as follows : First, we select k initial cluster centers. Using Forgy initialization

allows to select the centroids randomly. We execute then iteratively the clustering according to two

steps : the assignment step and the center-updating step. In the assignment step, we affect all the

observations to the closest cluster using the euclidean distances between the observations and the

centroids. In the updating step, we compute the new centroids by averaging each attribute over all the

objects allocated into the same clusters. These centers are now the new centroids to use in the next

iteration. The algorithm terminates when the centroids do not change any more.

6.3.2 Clustering evaluation

After executing a clustering algorithm, we need to evaluate the results of our algorithm. This

evaluation depends on our goals and we need to take care of different aspects : we need to detect

the exact number of clusters, but also to evaluate the quality of the clustering without adding any

external information. There are two types of evaluation : internal evaluation and external evaluation

as described in the next sub-section.

6.3.2.1 Internal evaluation

In the internal evaluation, we evaluate the results without using external information. It is based

on the compactness and separation between clusters. A good clustering algorithm maximizes the

97

6.4. OUR CONTRIBUTION

compactness inside a cluster and the separation between clusters. We describe in the following two

metrics : the inertia and the silhouette coefficient since we will use them in our proposal.

— Inertia : also called within-cluster sum-of-squares, it measures how well a dataset was clustered

by k-means algorithm. It is calculated by measuring the distance between each data point and

its centroid, squaring this distance, and summing these squares across one cluster. Generally, a

good clustering maximize separation between clusters and maximize compactness inside clusters

i.e we need to have low inertia.

— Silhouette coefficient : is a metric used to calculate the goodness of a clustering technique. Its

value ranges from -1 to 1. Positive values mean that the clusters are distinguished from each

other, whereas negative values mean that clusters are assigned in a wrong way.

6.3.2.2 External evaluation

The external evaluation proceeds by using external information in order to compare the results

of clustering with these information. It is useful to compare clustering results to real labels, but also

to compare the results of two clusterings. In our proposal, we use the adjusted rand score and the

normalized mutual information as external metrics.

— Adjusted Rand Score (ARI) : is introduced to determine whether two cluster results are similar

to each other by considering all pairs of individuals and counting pairs that are assigned in the

same or in different clusters in the predicted and the true clusterings.

— Normalized mutual information (NMI) : is a normalization of the Mutual Information (MI)

score to scale the results between 0 (no mutual information) and 1 (perfect correlation), (NMI)

which measures the dependency between the variables. It is equal to zero if and only if two

random variables are independent, and higher values mean higher dependency.

6.4 OUR CONTRIBUTION

6.4.1 The System Model

As stated in the related work, the existing solutions use the communication and the collaboration

between the client and the server to cluster the data. In our work, our goal is to limit the interaction

between the client and the server. Hence, as shown in Figure ??, the maximum of calculation is done

98

6.4. OUR CONTRIBUTION

within the server side. As the assignment step is a time-consuming operation, we delegate this step

completely to the server side by using the euclidean distance unlike other existing works. By this way,

the client will just encrypt the dataset, send it to the cloud server to perform the assignment step and

return the results to the client that computes the new centroids and tests the termination condition.

Since the division and the comparison operations are not possible using HE, we opt to a functional

bootstrapping to do comparisons in an encrypted way.

In the next section, we will explain the building blocks in a clear setting then we will adapt them

to an FHE setting.

6.4.2 In clear setting

Before executing k-means algorithm, we do a Z-score normalization and a MinMax Standardization.

The Z-score normalization is useful to have the same weight for all the attributes. As we use TFHE

and our data should be in the torus, we use Min Max Normalization to have our data in the [0,1[

interval.

6.4.2.1 Initialization

In order to fix the initial centers to start the algorithm, there are many methods to initialize the

algorithm in the literature : Picking the centers manually, Forgy initialization, k-means++,etc. In our

solution, we choose to use the Forgy initialization, by picking the initial centroid randomly.

Since two different initialization may lead to different clustering and in the purpose of comparing

the results of the k-means version implemented in scikit-learn with our solution, we need to have the

same initial centers. Therefore, we set the centers manually for the scikit-learn version according to

the random initial centers picked in our version.

It is interesting to use k-means++ to initialize the centers but we think that proposing an HE

version of k-means++ need to be studied separately.

6.4.2.2 Assignment step

6.4.2.2.1 Distance Calculation To ensure the convergence of k-means, we use the euclidean distance.

We compute the distance between an observation a and the centroid Ci. We use the standard formula

99

6.4. OUR CONTRIBUTION

of the euclidean distance as in formula 6.1.

d2
ai =

d∑︂
j=0

C2
ij +

d∑︂
j=0

a2
j − 2 ∗

d∑︂
j=0

Cijaj (6.1)

Using this formula, we need to pass the norm of each observation as a trapdoor information to the

server. However, what is relevant is the difference between distances. Hence, we compute only the

difference between the squared distances, and we get the formula 6.2. By this way, we do not need to

pass any trapdoor information.

d2
ai − d2

ai′ =
d∑︂

j=0
(C2

ij − C2
i′j) +−2 ∗

d∑︂
j=0

(C2
i′j − C2

ij)aj (6.2)

Since, in our case, we have to do only multiplications by a scalar using the TLWE Sample, we

decide to let the centroids in clear setting. We are aware that this can lead to an information leakage.

However, to overcome this issue, we can use other techniques like differential privacy. In our solution,

we assume that this leakage is not a problem since our goal is to protect data and the result of

clustering.

6.4.2.2.2 Delta matrix construction The delta matrix is K × k matrix that contains the sign of the

distance differences as computed in the previous step. This method is used in [6] to find the k-nearest

neighbors of an observation. In our case, we use it to find the nearest centroid.á
m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n

ë
with

mi,j = sign¯ (Xi −Xj) =
ß

1 if Xi < Xj

0 else.

When summing columns of this matrix, we obtain a sorting index of the distances between observations

and the K centröıds.

6.4.2.2.3 Assignment Vector We can sort distances between a ? ? ? and the centroids by summing

the columns of ∆ as in Formula 6.3.

(∆0, ∆1,, ∆k−1) with ∆j =
k−1∑︂
i=0

δi,j (6.3)

100

6.4. OUR CONTRIBUTION

The closest centroid to a is where ∆i = 0. If we want to find an assignment vector from the previous

index (containing 1 in the position corresponding to the closest centröıd and 0 otherwise), we can

apply the function sign as in Formula 6.4.

sign(∆i) =
ß

1 if ∆i ≤ 0
0 otherwise.

(6.4)

Figure 6.1 illustrates the process of assignment.

Figure 6.1 – Single assignment example

If the number of the centröıds is less than m possible operations without doing bootstrapping, the

101

6.4. OUR CONTRIBUTION

solution will work without any problem. In an FHE context, the parameter m can be less than k and

the solution is limited. After m additions, we need to reduce the noise accumulated. This is possible

by a sum property as in Formula 6.5.

∆j =
k−1∑︂
i=0

δi,j =
m−1∑︂
i=0

δi,j +
k−1∑︂
i=m

δi,j (6.5)

Thanks to this formula, we can perform a programmable bootstrapping after each m operations.

However, it remains difficult to apply this property due to the limitations related to TFHE. Indeed,

since TFHE is designed to work with logical circuits, the intermediate result must be in the torus

domain. Here, the most relevant part is not the sum but the assignment vector. For this, we use the

operation Sg defined by [6] as given in Formula 6.6.

Sg(x1, x2, ..., xn) = max(0,
n∑︂

l=1
xl − g + 1) with

n∑︂
l=1

xl ≤ g (6.6)

This function returns 1 if the centroid i is the closest center to the vector and 0 otherwise. g is the

number of operations achievable without bootstrapping.

Example : for g = 7,

S7(0, 1, 1, 1, 0, 0, 1) = max(0, 4− 7 + 1) = 0

S7(0, 1, 1, 1, 1, 1, 1) = max(0, 6− 7 + 1) = 0

S7(1, 1, 1, 1, 1, 1, 1) = max(0, 7− 7 + 1) = 1

In our case, we should calculate

Sk(δ0,i, ..., δi−1,i, δi+1,i, ..., δk−1,i) (6.7)

In an FHE context and if k > g, it is impossible to compute the function sc directly. However, [6] has

demonstrated the proposition 1.

Proposition 1 :

Let x1, ..., x2g−k ∈ {0, 1}. We denote

A = S1,g(x1, ..., xg−1, S1,g(xg, ..., x2g−1))

and

B = S1,2g−1(x1, ..., x2g−1)

102

6.4. OUR CONTRIBUTION

In an FHE context, we cannot compute B, because it needs to sum over than g binary values. However,

we can compute A and A = B.

Based on this proposition, we can compute (6.7). However, we need to take care of the latest bloc

S. If the latest bloc doesn’t have g − 1 elements, it is necessary to add a padding of 1 until the g − 1

element.

6.4.2.3 Updating centroids

To update centroids, we use the division operation. In FHE settings, doing this operation is possible

at a binary level, but it is time consuming. Since we only need one division in each iteration, we decide

to do this operation in a clear way. We are in front of two possibilities : doing the sum in the server

side and only the division in the client side, or computing the centroid of the cluster in the client side.

We studied the security and the practicality of the two settings.

The first option limits the computations done in the client side, but by doing this the server

must know the assignment results. We discarded this option because it represents a flagrant breach

of security. We have chosen then the second option even if it generates more calculations in the client

side, especially because this option is more appropriate regarding security considerations. In fact,

performing additions in a clear text are not resource consuming.

6.4.3 Encrypted k-means with FHE

In the previous subsection, we presented our algorithm in clear setting. In this subsection, we will

see how this version can be easily translated to the FHE setting.

6.4.3.1 Encoding and Encrypting

We need to encode our data in a torus. In other words, the values must be between 0 and 1. This

can be done in the pre-processing step. We need then to define two bases : one for the delta matrix,

we denote it bδ and the second for the assignment matrix, we denote it bf . This means that we will

not have a matrix of 0 and 1, but a matrix of 0 and 1
b . Thanks to these bases, we ensure that the

inputs and the outputs will be inside the torus.

103

6.4. OUR CONTRIBUTION

6.4.3.2 The difference of the squared distances

When computing the distances, the distances must be in the interval [−1
2 , 1

2] to stay in the torus,

and we need to differentiate the negative and the positive values. This is why we need to use a scaling

factor v (with v ≥ ||xi||).

Since TFHE is limited to scalar multiplications, we propose to keep the centroids in clear text. In

one side, we are interested in protecting the dataset as well as the assignment results. In the other

side, we need to have more precision of the scalars that represent the centroids. Hence, we introduce a

precision factor denoted τ and for each attribute in the centers, we will have the next value as follows :

Round(τ×cij

v).

We divide all the data vector by τ . The attributes of each vector will have the next value :
xij

τv .

The euclidean distance is then defined by a scalar product that is formulated as in Formula 6.8.

d∑︂
j=0

Round(τ × cij

v
)× xij

τv
(6.8)

If [Xi] is the ciphertext of the vector to be affected, Ci the centroid in clear text and ||Ck||2 is its

squared euclidean norm, then the difference is computed using Formula 6.9.

2[Xi](Cj − Ck) + ||Ck||2−||Cj ||2 (6.9)

For big values of τ , this formula is equivalent to 1
v2 (d2

k − d2
j). As we are only interested in the sign

of the difference, it is clear that it is the same as the sign of (d2
k − d2

j).

6.4.3.3 Delta matrix

To build the delta matrix, we must know the sign of the differences between the distances to sort.

Since we defined a method to compute the differences in the last subsection, the sign can easily be

achieved using the standard bootstrapping function in TFHE.

The bootstrapping algorithm defined in [19] returns 1
bδ

if m > 0 and − 1
bδ

otherwise. We noticed

that this behavior is similar to a sign function. However, in our case we must return 1
bδ

if m > 0 and

0 otherwise. So we modified the algorithm as in the following :

First, we brought a modification in the line 5 by multiplying the bootstrapping base bδ by 2. This

104

6.5. PERFORMANCE EVALUATION

Algorithm 4 Sign Operation

Require: a TLWE Sample (a, b) = [m], bk a bootstrapping key, bδ a bootstrapping base
Ensure: LWE(1

(bδ)) if m + 1
bδ
∈ [0, 1

2]; 0 else

1: Let b̄ = ⌊2Nb⌉
2: for i = 1 to n do
3: aī =⌊2Nai⌉
4: end for
5: Let testv = (1 + X + · · ·+ XN−1 ×X− 2N

4 . 1
2×bδ

)
6: ACC ← [X b̄, (0, testv)]
7: for i = 1 to n do
8: ACC ← [h + (Xaī − 1).bki)] .ACC
9: end for

10: return SampleExtract(ACC) + [1
2×bδ

]

modification allows to have as output 1
(2×bδ) and − 1

(2×bδ) . This is still not the result needed, but we

need to add 1
(2×bδ) to the result in cipher way to have 0 or 1

bδ
.

Let’s note that building the matrix delta can be totally parallelized. In this case, it is not necessary

to compute all the elements of the matrix since δi,j = 1− δj,i.

6.4.3.4 Affectation vector

The process of computing the affectation vector is not different from the process described with

the clear setting. To select the closest centroid, we proceed as follows :

1. Sum m values in each column with m the number of possible operations without bootstrapping.

2. If there are still values to sum : do a bootstrapping operation using the modified sign bootstrap-

ping function (See Algorithm 1) and go to Step 1.

3. Otherwise, execute the sign bootstrapping and return the last sign returned by this operation.

Finally, we obtain an encrypted vector where the position i is equal to the cipher of 1 if the centroid

i is the closest one to our vector.

6.5 PERFORMANCE EVALUATION

In this section, we will experiment our algorithm using different datasets. First, we describe the

setup of the environment. Then, we will discuss the choice of security parameters and other parameters

used in our solution. We evaluate the performances of our algorithm according to different criteria :

105

6.5. PERFORMANCE EVALUATION

adjusted rand index, silhouette coefficient and execution time. We will also discuss our proposal from

a security point of view.

6.5.1 Test Environment

Our solution is implemented using the TFHE scheme in C/C++ using the TFHE library [19].

We use Python language for pre-processing and performance-evaluation purposes to benefit from the

function implemented in the scikit learn. Our solution is tested on Linux Ubuntu 64-bit machine with

i5-1135G7 @ 2.40GHz × 8.

6.5.1.1 Datasets

To test our solution, we have chosen the datasets described in Table 6.1. The variety of datasets

will contribute to have a better vision of the performance evolution of our solution.

Datasets n d k

Iris 150 4 3

Wine 178 13 3

Glass 214 9 6

Ovarian 216 100 2

Breast Cancer 699 9 2

MiceProtein 1077 77 8

PenDigits 10992 16 10

Table 6.1 – Datasets

6.5.2 TFHE Tests

Our goal in this subsection is to explain our choices concerning the dimension of the LWE problem.

We know that it is recommended to have a security parameter greater than 128 bits. To select our

parameters, the first step was to look at the literature and to test these parameters using lwe estimator

to test the security provided by these parameters (see Table 6.2).

The parameters provided by [19] ensure the minimal security provided, but the noise in these

parameters is more adapted for gate bootstrapping and not for our case. It will not let us do a lot

of additions. And since the other parameters provide a security that is less than the recommended

parameters, we decide to select our specific parameters as defined in Table 6.2. We are aware that

106

6.5. PERFORMANCE EVALUATION

Solutions N σ λ

[19] 1024 2−25 129

[86] 1024 2−30 108

[6] 1024 10−9 108

Our k-means with
FHE

2048 10−15 134

Table 6.2 – Security parameters and the security provided

these parameters will generate greater execution times.

6.5.2.1 Parameters choice procedure

As we have seen in the previous section, the values of the centers are integers where the parameter

τ is a precision parameter and v is a scaling parameter.

Theoretically, τ must be enough big to provide the precision needed, but in practice we should also

take care about the machine’s limitations in order to avoid losing precision by dividing the values by

τ . In the other hand, the parameter v allows to have intermediate results in the torus domain. Hence,

we can choose to have a v ≥ ||xi|| parameter.

These assumptions have been confirmed empirically (see Figure 2) for Iris Dataset. As we can

notice, with τ < 1000 we do not have encouraging results. We see also that for v = 4 and τ = 1000,

we have an adjusted rand score of 1 which means that we have exactly the same results as the clear

version of k-means. However, these graphs are specific to Iris dataset.

Our goal is not to have an ARI of 1 but an ARI that is closest to 1 as much as possible.

6.5.3 Performance results

The performance has been evaluated according to three metrics : efficiency, execution time and

security. The proposed solution should have results as close as possible to the results provided by

k-means in clear settings. In addition, it is important to have runtimes that are practical in real life.

6.5.3.1 Efficiency

To evaluate efficiency, we use two types of evaluation. First, we start with an external evalua-

tion using the adjusted rand index and normalized mutual information to compare the result of our

107

6.5. PERFORMANCE EVALUATION

Figure 6.2 – Precision according to τ et v

algorithm to the standard k-means implemented in scikit-learn. Then, we proceed with an internal

evaluation using a silhouette coefficient and the inertia.

Table 6.5 compares the results of the sklearn version of k-means and the HE version according to

the adjusted rand score and the normalized mutual information.

Datasets Nb Iter (sklearn) ARI NMI

Iris 5 (5) 1.0 1.0

Wine 9 (10) 0.98 0.97

Glass 10 (10) 0.97 0.96

Ovarian 4 (4) 1.0 1.0

Breast Cancer 9(9) 1.0 1.0

MiceProtein 17 (15) 0.92 0.93

PenDigits 30 0.93 0.92

Table 6.3 – HE-k-means version precision (τ = 10000)

As depicted here, the results in HE are close to the standard k-means. In some datasets, we

reproduce the exact clusters. As we have seen in the previous section, the results depend on the choice

of parameters τ and v. In our experiments, we illustrated here only the better parameters by following

the best practices described in the design section. We notice also that the number of iterations required

to get the results is the same as the standard k-means.

However, the results that are not totally equal to the standard k-means ones are generally caused

108

6.5. PERFORMANCE EVALUATION

by the precision loss due to the parameters. Thus, the error due to TFHE causes some precision loss,

but this error affects only the observations in the borders of the clusters.

Since sometimes the results are not totally equal to the results provided by scikit-learn, we proceed

to an internal evaluation in order to see if the HE results are better than the ones provided by sklearn.

As shown in Table 6.4, by using the inertia and the silhouette score, we can confirm that the results

are close to the standard k-means ones, and sometimes the results are even better like with the Wine

dataset.

Datasets
HE-kmeans sklearn Labels
Inertia Sil Inertia Sil Inertia Sil

Iris 6.98 0.5 6.98 0.5 7.80 0.45

Wine 48.96 0.30 48.97 0.299 49.99 0.29

Glass 19.22 0.365 19.20 0.365 36.13 -0.05

Ovarian 367.04 0.439 367.04 0.439 459.23 0.333

Breast 215.83 0.385 215.83 0.385 228.23 0.339

MiceProtein 971.42 0.135 971.13 0.136 - -

PenDigits 3594.47 0.28 3584.97 0.28 5107.66 0.18

Table 6.4 – Intern evaluation

6.5.3.2 Execution time

In Table 6.5, we provided the execution time for each dataset as it is measured during our experi-

ments. As we can see, the execution time is affected by the number of clusters. This can be explained

by the construction of the delta matrix which takes a lot of time when achieving a bootstrapping, but

also by the manipulation of a matrix instead of a vector to do comparisons. Indeed, the complexity of

one iteration in the standard k-means is O(n× d× k) but in our case the complexity is O(n× d× k2).

We can see that, for a fixed number of clusters and for the same number of observations, the number

of attributes doesn’t impact significantly the execution time. We can confirm that by comparing the

execution time between Iris and Wine datasets, or between Ovarian and Breast Cancer datasets. The

same thing happens for the number of observations. Hence, the complexity of our solution is O(n)

according to the number of observations.

The execution time for a dataset with a few number of clusters is practical in the real life. But, for

a big dataset with a big number of clusters (like PenDegits dataset), the execution time is not practical

when the execution is sequential. In this case, the parallelization is required. In fact, by parallelizing

109

6.5. PERFORMANCE EVALUATION

the design of the delta matrix, the execution time is improved (see Table 5) .

Datasets Seq Exec 8 threads

Iris 80s 19s

Wine 175s 59s

Glass 2853s 250s

Ovarian 69s 19s

Breast Cancer 183s 55s

MiceProtein 15187s 6289s

PenDigits 531222s 82958s

Table 6.5 – HE-k-means Execution time

6.5.3.3 Security

We can evaluate the security of this algorithm formally. The scheme used in this solution is actually

sure and by choosing the parameters carefully, we ensure a security that is greater than the actual

recommendation (λ > 128).

We have only one information leakage about the centroids. But, our goal here is to assign the

observations to clusters. So, the leakage can be non-significant, but it can be avoided using other

techniques than HE. We can use differential privacy as an example, but this technique is out of the

scope of our study.

We can say that this solution is sure in a semi honest model. We need to be certain that the

executed algorithm is the k-means algorithm. This can be verified using other cryptography techniques

like “verifiable computing”.

6.5.3.3.1 Discussion We can address our solution according to many aspects. First, the practicability

of our solution, as shown by our experimentation, the proposed solution can be used in a cloud setting,

and it is practical for datasets with few clusters. We showed that by using CPU parallelism, we can

accelerate our solution to be more practical. Since building the delta matrix takes a lot of time due

to bootstrapping operations and as stated before, this design can be completely parallelized to reduce

execution time using GPUs.

Then, the results provided by our solution are similar to the standard k-means, so it can replace

the k-means method in situations where privacy is required.

110

6.6. CONCLUSION

Generally, it is relevant to compare our solution with existing ones. However, in the limit of our

efforts, there is no implementation shared by its authors. So, we limit our solution to compare the

solutions formally. From the interactivity point of view, our solution is the first k-means implementa-

tion that performs the whole assignment step in an encrypted way and without interaction. The only

interaction that is required in our solution is to carry out the division. We have as many divisions as

the number of iterations.

6.6 CONCLUSION

In this work, we proposed a homomorphically encrypted k−means solution. Our main contribution

is related to the assignment step that we can do completely in a secure way without any interaction

between the client or other third party. In fact, it is the first practical solution that performs all the

assignments in HE and without intermediate decryption. As a perspective to this work, we aim to

parallelize our solution using GPUs as well as using other HE techniques to secure the k-means.

111

Chapitre 7

Developing Adaptive Homomorphic
Encryption by Exploring Differential
Privacy Technique

7.1 Introduction

In response to the vulnerabilities inherent in cloud systems, this study delves into a series of pionee-

ring cryptographic techniques known as Privacy-Preserving Technologies (PPTs). These technologies

are designed to enhance utility by harnessing advanced technologies such as cloud computing and

machine learning while maintaining stringent privacy standards. The methodology employed involves

post-processing the output of the decryption function using a mechanism that aligns with an appro-

priate differential privacy (DP) concept, introducing a noise that is proportional to the worst-case

error expansion of the homomorphic computation.

In the context of implementing privacy-preserving mechanisms, the evaluation of the distribution

of introduced and corresponding noises is paramount, particularly following the conventional analysis

of homomorphic encryption noise, due to the potential insignificance of the noise relative to the original

message. Ensuring the stability of privacy, in conjunction with the HE-DP amalgamation and relevant

protocol, is critical for ”Approximate Fully Homomorphic Encryption” where the retention of noise as

the least significant bits of the final output during decryption is intentional.

The primary goal of integrating HE-DP schemes is to fortify machine learning applications by

adding an extra layer of security against unorthodox adversaries. This research establishes a connection

between the noise in Homomorphic Encryption and Differential Privacy, investigating this relationship

112

7.2. RESEARCH MOTIVATION

when the noise in Homomorphic Encryption is perceived as a database-dependent output perturbation.

The paper introduces groundbreaking insights into the guarantees of Differential Privacy through this

database addition.

7.2 Research Motivation

Several recent research endeavors have played a crucial role in aligning the potentials and impacts

of homomorphic encryption and differential privacy, serving as the motivation for this study. Xiangyun

Tang et al. [87] were pioneers in establishing a well-defined interchangeable property for ML classifiers

and ML models in alignment with HE and DP. They introduced Heda, an innovative amalgamation

of HE and DP, designed as a flexible switch to manage the privacy budget and precision parameter

tuning to balance the inherent trade-offs. Homomorphic encryption is a crucial cryptographic technique

that enables computations to be performed directly on encrypted data, thus removing the need for

decryption. It serves as a robust solution for preserving the privacy and confidentiality of sensitive

information while allowing computations on such encrypted data [88]. This method ensures data

security even during processing, reducing dependence on trusted third parties and minimizing the

risk of exposing sensitive information to potential threats. As described in [89], a homomorphic map

preserves structure, meaning an operation on plaintexts corresponds to an operation on ciphertexts.

This implies that altering the sequence of operations preserves the outcome post-decryption, i.e.,

‘encrypt-then-compute’ and ‘compute-then-encrypt’ yield equivalent results.

Aligned with the trend of parametric models, Bossuat et al. (2022) [78] optimized their model of

approximate homomorphic encryption, reducing the occurrences of failures and enhancing precision

through distributed and random encapsulation, initiated with bootstrapping. Preliminary investiga-

tions have uncovered additional hybrid cryptographic techniques, which integrates intriguing multi-

party primitives with the HE protocol in lattice-based cryptography.

Motivated by these advancements, this work pursues the design and validation of a refined HE-

DP model, incorporating sensitivity analysis to ensure balanced noise insertion to mitigate various

trade-offs. The motivation is driven by the desire to explore and amplify the synergistic capabilities of

homomorphic encryption and differential privacy contributing to the progressing field of cryptographic

research.

113

7.3. RELEVANT MATHEMATICAL PERSPECTIVES

7.3 Relevant Mathematical Perspectives

The proposed model envisages the combination of a given approximate FHE scheme with the tool

of differential privacy. The construction can be given as follows :

Given an approximate FHE scheme, we modify the decryption function by post-processing its

output (similar to decrypted messages) with an appropriate chosen Differential privacy model. Here,

we can consider two levels :

Approximate FHE with a static noise : This instance describes that the bound can be truly

computed as a function of homomorphic encryption. Finally, this could be used on the input ciphertext.

Approximate FHE with a dynamic noise : In this case, the bound can be computed by the de-

cryption function. In turn, the decryption function allows the input, the ciphertext, and the secret

key.

We deploy the proposed model HEDP where we analyze a DP model while adding Gaussian

dynamic noise to the input. Hence, let F = (KeyGen, Enc, Dec, Eval) be an FHE scheme with a

plaintext space : S ⊂ Z, where S ⊆ Z is the normal space with the normal ∥.∥ operator.

We also consider a policy to add Gaussian noise with this text space and normal ∥.∥ operator.

We also assume a standard deviation norm to add Gaussian noise at a later stage to test the level

of privacy. Therefore, for any deviation δ > 0, n ∈ N , the Kullback-Leibler Differential Privacy [90]

could be a dynamic method to add the noise. However, for the presented model, we follow the standard

Gaussian noise insertion mechanism.

7.3.1 Gaussian Noise : Maintaining Privacy and Preserving Statistical Properties

Gaussian noise can be used as a mechanism to add differential privacy to a dataset. Gaussian noise

is a type of random noise that follows a normal distribution, and it can be added to numerical data

in order to mask the original values while still preserving the statistical properties of the data. In

the context of differential privacy, Gaussian noise can be added to the data in order to make it more

difficult to identify individual records or extract sensitive information from the dataset. The amount

of noise added can be controlled by adjusting the standard deviation of the Gaussian distribution with

higher standard deviations resulting in more noise and greater privacy protection. However, adding

114

7.4. PAILLIER CRYPTOSYSTEM : SCHEME AND PROPERTIES

too much noise can make the data less useful for analysis or modelling. So, it is important to strike a

balance between privacy and utility when using this technique. For the use case, a standard deviation

of 0.1 is used for generating noises. This value can be increased further but will result in a significant

decrease in terms of accuracy.

7.4 Paillier Cryptosystem : Scheme and Properties

The Paillier cryptosystem is a public key cryptosystem used for the encryption and decryption of

data. It is an asymmetric system, meaning that it employs two keys : a public key and a private key.

The public key is utilized for encryption, while the private key is used for decryption. The Paillier

cryptosystem possesses several distinctive properties, including its capability to perform homomor-

phic addition and scalar multiplication. This implies that it can execute addition and multiplication

operations on ciphertexts without the necessity to decrypt them initially.

The system is semantically secure, which means that an attacker cannot learn any information

about the plaintext from the ciphertext. For the study, the Paillier Cryptosystem is leveraged by

the HEDP algorithm to ensure secured data transfer and computations with privacy. In the following

section, two separate high-level descriptions of HEDP (e.g., client & server architecture) are presented.

7.4.1 Client-Side Algorithms and Server-Side Algorithms

115

7.4. PAILLIER CRYPTOSYSTEM : SCHEME AND PROPERTIES

Figure 7.1 – Client-Server HEDP interaction Schema

Algorithm 5 Process :

1: generate Paillier public-private key pair using Paillier Cryptographic Scheme
2: save the public-private key
3: create a PaillierPublicKey object pub key with the value of n from the public key
4: create a PaillierPrivateKey object priv key with pub key, p, and q from the private key.
5: for each data in dataset do
6: add Gaussian noise at randomized intervals
7: encrypt the data with pub key
8: end for
9: convert the encrypted data

10: append pub key
11: send the data → SERVER side
12: while no data prediction from server do
13: wait
14: end while
15: if pub key of response == generated pub key then
16: for data in prediction do
17: decrypt the data with priv key
18: end for
19: end if

116

7.5. EXPERIMENTAL VALIDATION AND DISCUSSION ON RESULTS

Algorithm 6 Process :

1: while no data request from client do
2: wait
3: end while
4: Load trained weights from base model
5: for data in data request do
6: if data == pub key then
7: Create a PaillierPublicKey object pub key with the value of n from pub key
8: else
9: Convert data → Paillier EncryptedNumber objects

10: prediction ← dot product of loaded weights and EncryptedNumber objects
11: result ← prediction , append pub key (data)
12: end if
13: end for
14: send the result data → CLIENT side

7.5 Experimental Validation and Discussion on Results

Combining homomorphic encryption and differential privacy provides an even more powerful tool

for secure machine learning. By combining these two techniques, it is possible to perform computations

on encrypted data while also ensuring that the privacy of the individuals in the data set is protected.

In this work, a novel measurement is proposed and an evaluation of the performance of Homomorphic

Encryption with Differential Privacy (HEDP) has been done on a Breast Cancer Wisconsin dataset.

7.5.1 Proposed HEDP : Architecture, Process and Code Walkthrough

Based on the dataset, the objective is to predict whether the type of cancer is Malignant or

Benign based on the attributes provided in the dataset. It is to be kept in mind that the flow of

machine learning model training and prediction should proceed in such a manner that it preserves

both privacy and security. To ensure the maximum security and privacy, HEDP algorithm is proposed.

The methodology starts by training a base model on a publicly available dataset. This dataset can be

used by any organization or individual who wishes to train an ML model. However, if the dataset is

sourced from a sensitive organization, then privacy-preserving measures need to be taken. This is where

differential privacy comes in. Gaussian noise is added to the sensitive data to preserve privacy. The

amount of noise added depends on a privacy parameter, which is set by the organization or individual

providing the sensitive data. Once the privacy-preserving modifications are made to the dataset, the

117

7.6. SCOPES OF IMPLEMENTATIONS

base model is trained on this modified dataset. This base model is used by any client who wants to

make predictions on their own sensitive data. However, the client does not wish to reveal their sensitive

data to the party (company offering ML services). To further enhance the privacy, Homomorphic

Encryption is added into the mix, particularly the Paillier encryption scheme. The client generates

a Paillier public-private key pair and uses the public key to encrypt their data. The public key is

then attached along with the data and sent to the ML company over a secure network. Once the ML

component receives the encrypted data, it uses the public key to extract Paillier encrypted objects.

Then it performs machine learning computations on the Paillier objects using the already trained base

model to predict the output. The output is an encrypted prediction. This is because the encrypted

data is encrypted with the Paillier cryptosystem, which is a homomorphic encryption scheme. Any

sort of addition and scalar multiplication done on this encrypted data is the same as doing the same

operations on the decrypted data. The encrypted prediction is sent back to the client. The client then

decrypts it with their Paillier private key and gets their result.

7.6 Scopes of Implementations

In this experiment, the dataset used is Breast Cancer Wisconsin. The dataset is publicly available,

for the demonstration purposes, it is assumed that the data received is pre-processed by injecting

Gaussian noise. To increase the strength of the Gaussian noise added to the dataset, it is required to

increase the value of the standard deviation (σ) parameter of the Gaussian distribution used to generate

the noise. This parameter controls the spread of the distribution, so higher values of σ will generate

noise with greater magnitude. Different values of σ can be experimented to find the optimal level of

noise for the specific use case. However, it is crucial that adding too much noise may adversely affect

the accuracy of the given machine learning model. The following sub-section describes the deployment

process for both client and server architecture, which is essential for experimental validation.

7.6.1 Client-Side Code Walkthrough

The following lists of functions describe the client-side deployment :

— storeKeys() : This function generates public and private keys based on the Paillier Homomor-

phic Encryption Scheme, and saves the keys in a data file named client public private keys.data.

118

7.6. SCOPES OF IMPLEMENTATIONS

— getKeys() : This function reads the client public private keys.data file and creates public and

private key objects using the Paillier module.

— serializeData() : This function takes the public key object and data as inputs, encrypts the data

using the public key, and returns a serialized data object. The encrypted data is stored as a list

of tuples with the ciphertext and exponent. The encrypted data sent to the server appears as

follows :

— load prediction() : This function reads a data file named prediction.data and returns its contents

as a dictionary.

The contents of the client public private keys.data and prediction.data files are illustrated below.

The load prediction() function then loads a pre-generated encrypted prediction from the server and

decrypts it with the private key of the Paillier scheme. The resulting answer is a Regressed Result.

This regressed result is then passed through a Sigmoid function that strictly compresses the regressed

result between 0 and 1.

7.6.2 Server-Side Code Walkthrough

Firstly, a base model is trained on the privacy-preserved data (in our case). There will not be much

difference in training the base model. The process is the same. Once the model is trained, the trained

weights are saved and used for homomorphic computations.

The trained weights contain the weights fitted by the model on the breast cancer dataset. The

following lists of responsible functions are mandatory :

— getData() : retrieves the encrypted data from the client and loads it into the system.

— computeData() : This function uses the trained weights to perform a dot product with encrypted

Paillier objects. This is a homomorphic scalar multiplication, a valid operation on the Paillier

encryption scheme. However, the result is not in binary format and requires conversion to

binary using the sigmoid function. It is important to note that the Paillier Encryption Scheme

is a Partially Homomorphic Scheme because it cannot handle division homomorphism. Even

mimicking the division with multiplicative inverse results in inaccurate encrypted notation.

Therefore, to obtain accurate results, the sigmoid function is employed on the client side.

— computeAndSerializeData() : formats the encrypted results along with the respective public

119

7.6. SCOPES OF IMPLEMENTATIONS

key.

— save prediction() : saves the prediction in the prediction.data file. This is the predicted result

sent to the client for decryption.

7.6.3 Performance Analysis : Proposed HEDP versus Standard Algorithms

The analysis comprises of the plot for Accuracy vs Iterations.

Figure 7.2 – Accuracy Versus Iteration Plot

Figure 7.2 demonstrates the accuracy versus iteration plot. It is demonstrated that the observed loss

is not significant since the training and prediction methods did not use any lossy encryption schemes.

The accuracy decline in HEDP can be attributed to the noisy dataset used for training. However, it is

noteworthy that the model performed remarkably well, considering the fact that it was trained entirely

using privacy-preserving techniques. During the execution phase, the CPU consumptions from both

the sides (client and server) were observed.

120

7.6. SCOPES OF IMPLEMENTATIONS

7.6.3.1 The Client-side plot

Figure 7.3 – CPU Utilization with Time occupancy (Client Side)

Figure 7.3 shows the CPU utilization with time occupancy on the client side.

Observations : The initial spike was due to Paillier encryption, where the client generated Paillier

public, private keys and then used it to encrypt the data it intended to send to the server. The sudden

spike at the end is attributed to decryption (using private key to decrypt the result) as well as the

sigmoid operation on the received result. Here, the maximum CPU utilization observed is 25%.

121

7.6. SCOPES OF IMPLEMENTATIONS

7.6.3.2 Server-side Plot

Figure 7.4 – CPU Utilization with Time occupancy (Server Side)

Figure 7.4 shows the CPU utilization with time occupancy on the server side.

Observations :

The server is idle initially. As soon as it received the data, the computational process kicked in (graph

peaks consistently after the 35s mark). The computational process is heavy as it is evident in the plot.

It rapidly consumed around 100% of CPU utilization for homomorphic operations on encrypted data.

Thus, the maximum CPU Utilization reaches 100%.

122

7.7. SENSITIVITY ANALYSIS

7.6.4 Standard Algorithm (Linear Regression without HEDP) CPU Plot

The following plot, Figure 7.5, demonstrates the CPU utilization of the standard algorithm [15],

which was trained on the same server.

Observations :

The training process lasted only a few seconds (7s). The peak CPU utilization is around 40%. This is

much lesser than the HEDP counterpart. The CPU utilization drops quickly after the training process

is complete, as there is no data transmission over the network involved.

Figure 7.5 – Standard CPU Utilization without HEDP scenario

7.7 Sensitivity Analysis

Sensitivity analysis [91] is expressed as the relation to the Laplace mechanism privacy budget and

the justified sensitivity to regulate the amount of noise addition. Therefore, every HEDP algorithm

should deduce suitable mathematical expression to fix privacy budget formula and accommodate most

likelihood sensitivity procedure for DP mechanism. Without the loss of generality, we assume that

to guarantee the efficacy of Differential Privacy if considered homomorphically, then it is expected to

123

7.7. SENSITIVITY ANALYSIS

consider only the privacy measure of terminal output.

In few cases, the entropy of terminal output follows :

α + N(0, σ2)(1)

where α is the “true” output of the algorithm. Thus, an initial approach may attempt to ensure ρ is

large enough to mask the difference (α− α′) over adjacent databases.

In this work, we consider failure probability δ of DP under the real variance of HE model, where

sensitivity δf could vary with the value of variance in proportion with a monotonically increasing

function. However, the variance of an algorithm’s output could be more prominent numerically when it

is evaluated homomorphically (this behavior is dependent on the input data). Therefore, the proposed

algorithm presented here is to model the output from the database with proper noise distribution.

Thus, this sensitivity analysis comprises of database and noise analysis.

The following core theorem can be described as :

Let ε (privacy budget for the proposed HE-DP algorithm including client and server side deploy-

ment) ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian Mechanism is (ε, δ)-differentially

private whenever σ ≥ cδf/ε, where δf is the sensitivity.

We consider two databases PD (Pilot database) and RD (Reference database) and let A be the

algorithm output when we use PD as input database, and A′ when we use Reference database RD′.

Our strategy will be to show the ratio of probability density functions as :

fP D(A(α))
fRD′(A′(α)) > eε,(2)

except with probability at most δ as α follows the distribution of the proposed HEDP algorithm A.

7.7.1 Exceptions in the proposed HEDP model

In the proposed model with HE, the multiplication will automatically be part of plain texts and

thus it will impress on the variance of (α− α′). Therefore, we assume polynomial model as Pσ2
1σ2

2
and

thus added entity with plaintexts t1 and t2 can be expressed as :

Pσ2
1σ2

2
+ σ2

1∥t1∥2 + σ2
2∥t2∥2,(3)

124

7.7. SENSITIVITY ANALYSIS

Therefore, for the given homomorphic encryption, input database should be influential with respect

to the given entropy followed :

[α + N(0, σ2)].............(4)

As we consider (α − α′) over adjacent databases, therefore to tune with the consulting databases

focused for training, the objective is to fix the Gaussian mechanism for the proposed HEDP algorithm

in such a way that the variance σ will depend on the combined value of (ε, δ) and it will be evaluated

as the following :

2 ln
(︂»

prob1/prob2

)︂
> 1.............(5)

the value of ε also varies with noise scale. If we consider κ as coefficient which will support to express the

agreement of the binary outcome of the two training databases, where the noise ε is added to achieve

differential privacy for different mathematical operations relevant to homomorphic encryption.

However, to find out the ratio of the probability of given noise function, we follow the following

formula :

fP D

fRD′
= exp

Å∥γ − α′∥22
2σ2 − ∥γ − α∥22

2σ2

ã
.............(6)

= exp
Å 1

2σ2 + (∥γ − α + κ∥22 − ∥γ − α∥22)
ã

.............(7)

= exp
Å 1

2σ2 + 2(γ − α) · κ + ∥κ∥22)
ã

.............(8)

It signifies that the database for training with deliberate noise needs a Pilot database (PD), where

the proposed algorithm A and its variance A′ will be functional to another parallel reference database

with a relational expression as : A ∼ N(α, Σ), here Σ can find its contemporary diagonal element Σ′.

Thus,

fP D

fRD′
=

P D∏︂
i=1

σRD

σP D
exp
Ç

1
2

Å
γi − α′

i

σRD

ã2
−
Å

γi − αi

σP D

ã2å
..............(9)

Hence, with log sensitivity and iterations for the variance, we will be interested to evaluate maximum

likelihood probability and we can rewrite the expression as :

fP D

fRD′
=

P D∏︂
i=1

1/ζi exp
(︄

1/2
P D∑︂
i=1

ζ2
i ((γi − αi)/σi − κi)2 − ((γi − αi)/σi)2..........(10)

This is in tune with polynomial model of Pσ2
1σ2

2
for HE multiplication. It also highlights that in

the present simplistic model rescale and squaring have not been addressed. After inclusion of these

125

7.7. SENSITIVITY ANALYSIS

components of noise growth, the maximum likelihood probability of log variance could be changed

accordingly.

Here, ζi is the relation between diagonal entries for the pilot and referential database, subjected

for the training and sensitivity κ should be in the appropriate range of variance of (α− α′).

Figure 7.6 – Sensitivity Analysis of Proposed HEDP Algorithm - Log Variance with Iterations

Figure 7.7 – Sensitivity Analysis of Proposed HEDP Algorithm - Log Sensitivity with Iterations

Following the formulated eq. (8), (9) (10) above, the validation of sensitivity analysis for proposed

126

7.7. SENSITIVITY ANALYSIS

HEDP algorithm can be done. We observe that there are two phases to measure the trend of the

system : a). log variance with iterations. b). log sensitivity with iterations.

Significantly, in the first plot Figure 7.6, it is observed that log variance inclines towards positive

training value after certain number of iterations. Thus, training accuracy with noise becomes more

consistent with positive value as it grows up with number of iterations. However, proposed HEDP

in Figure 7.7) demonstrates to attain a peak value with log sensitivity scale -7 in 40th iterations.

The curve flattens more as it grows up with a greater number of iterations. It signifies that trade-off

between accuracy and computational speed up in the proposed model becomes stable with the present

use-case. However, to find out more robust sensitivity, the value of Gaussian noise, the noise variance

and dependency analysis have also to be performed on the HEDP algorithm.

Conclusion and Scope of Further Research

In this work, a rudimentary algorithm for combining homomorphic encryption and differential

privacy is proposed to demonstrate an effective strategy towards precision, computational efficiency and

privacy budget trade-off. It is emphasized with the deployment of such a proof-of-concept demonstrated

with an elementary client-server architecture, which could position suitable justification of library

compatibility for HE environment. We observe that, in DP, the main challenge is to reduce the tradeoff

between privacy and accuracy. To address this challenge, future research can explore the development

of more robust mechanisms that add less noise while providing more privacy guarantees. This is

indicative for complete sensitivity analysis of such HEDP protocol to perform noise analysis and to

check message dependency.

Additionally, it is possible to propose different relaxations for DP in the context of distributed

paradigm or to boost

127

General Conclusion

The present thesis has undertaken a comprehensive exploration of the implications of employing

homomorphic encryption in the domain of Machine Learning as a Service (MLaaS) and the protection

of sensitive data. The rapid expansion of MLaaS has raised significant concerns about the confiden-

tiality of sensitive data, thus prompting our investigation into homomorphic encryption as a viable

solution. Extensive research has been conducted on its application across various aspects of machine

learning, including its deployment in a multi-cloud environment, its integration into the k-nearest

neighbors (k-NN) algorithm, and its adaptation to the k-means clustering algorithm.

The findings of this thesis have conclusively demonstrated that the use of homomorphic encryption

can effectively ensure the security of sensitive data while enabling complex data processing operations.

Our study has revealed that despite the complexities associated with implementing homomorphic

encryption, its performance remains comparable to that of unencrypted methodologies, thereby pre-

senting compelling opportunities for strengthening the protection of sensitive data in the realm of

cloud computing.

These promising discoveries open up stimulating avenues for future scholarly investigation. Enhan-

cing the hardware components of homomorphic encryption schemes is a prospect worth considering to

bolster processing capabilities. Additionally, a thorough examination of the integration of homomor-

phic encryption with complementary privacy methodologies, such as differential privacy, could further

enhance the security of machine learning models in sensitive paradigms.

In summary, this thesis represents a substantial contribution to advancing knowledge about secu-

ring sensitive data within MLaaS environments. The findings serve to stimulate ongoing exploration

and broader implementation of homomorphic encryption, thereby unlocking new possibilities for se-

curing sensitive data within machine learning and cloud computing applications.

128

CONCLUSION

Many challenges need to be addressed to apply privacy-preserving machine learning in real-world

applications. Although the standards, platforms, and implementations of homomorphic encryption

described in this chapter contribute to the advancement of Homomorphic Encryption in Machine

Learning (HEML), there are still specific challenges to be tackled, including overhead, performance,

interoperability, bootstrapping bottlenecks, sign determination, and common frameworks :

— Overhead : Compared to its unencrypted counterpart, HEML comes with significant overhead,

making it unsuitable for many applications. However, for non-HE models, the training phase

of ML involves a computationally intensive effort. Even with modern techniques, it becomes

increasingly challenging with HE. A recent trend is to bypass the training step by using pre-

trained models to strike a balance between complexity and accuracy.

— Parallelization : Incorporating well-established and novel algorithms is one approach to deal

with the computational overhead. High-performance computers, distributed systems, and spe-

cialized resources can all be utilized in HEML models. Multi-core processing units (GPUs,

FPGAs, etc.) and customized chips (ASICs) provide more efficient and user-friendly HEML

environments. Another approach to improve overall efficiency is batching and parallelizing nu-

merous bootstrapping operations.

— Comparison and min/max function : New methods are needed to compare numbers encrypted

by Homomorphic Encryption (HE). Currently, comparison and min/max functions are evalua-

ted using Boolean functions where input numbers are encrypted bit by bit. However, bit-wise

encryption methods require relatively expensive computations for basic arithmetic operations

such as addition and multiplication.

— PPML (Privacy Preserving Machine Learning) tools : Designing a high-performing and secure

PPML solution without a thorough understanding of HE is practically challenging for the

deployment of these technologies. PPML developers need expertise in both machine learning

and security. PPML, which utilizes HE, has not been widely accepted by the ML community

due to the high entry barrier of HE and the lack of user-friendly tools.

— Hybrid protocols : Adopting hybrid protocols, which combine two or more protocols to leve-

rage their advantages and avoid their disadvantages, is a promising direction for performance

improvements.

129

Publications

1. [Published] Y. Ameur, S. Bouzefrane, and V. Audigier. ”Application of Homomorphic Encryp-

tion in Machine Learning”. In : Daimi, K., Alsadoon, A., Peoples, C., El Madhoun, N. (eds)

Emerging Trends in Cybersecurity Applications. Springer, Cham. https://doi.org/10.1007/

978-3-031-09640-2_18.

2. [Published] Y. Ameur, R. Aziz, V. Audigier, and S. Bouzefrane. ”Secure and Non-interactive

k-NN Classifier Using Symmetric Fully Homomorphic Encryption”. In : Domingo-Ferrer, J.,

Laurent, M. (eds) Privacy in Statistical Databases. PSD 2022. Lecture Notes in Computer

Science, vol 13463. Springer, Cham. https://doi.org/10.1007/978-3-031-13945-1_11.

3. [Published] Y. Ameur, S. Bouzefrane, and L. V. Thinh. ”Handling security issues by using

homomorphic encryption in multi-cloud environment”. Procedia Computer Science, Volume 220,

Pages 390-397, 2023. https://doi.org/10.1016/j.procs.2023.03.050.

4. [Published] Y. Ameur. ”Developing Adaptive Homomorphic Encryption by Exploring Differential

Privacy Technique”. Journal of Cyber Security and Mobility, 2023.

5. [InProgress] Y. Ameur. ”Secure k-means clustering using TFHE”.

130

https://doi.org/10.1007/978-3-031-09640-2_18
https://doi.org/10.1007/978-3-031-09640-2_18
https://doi.org/10.1007/978-3-031-13945-1_11
https://doi.org/10.1016/j.procs.2023.03.050

Bibliographie

[1] Statista. Number of Internet of Things (IoT) connected devices worldwide from 2015 to 2025.
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-

worldwide/. Accessed : April 8, 2023. 2021.

[2] Yulliwas Ameur, Samia Bouzefrane et Thinh Le Vinh. “Handling security issues by using
homomorphic encryption in multi-cloud environment”. In : The 14th International Conference
on Ambient Systems, Networks and Technologies (ANT). Leuven, Belgium, mars 2023. url :
https://hal.science/hal-03933238.

[3] Yulliwas Ameur et al. “Secure and Non-interactive k-NN Classifier Using Symmetric Fully Ho-
momorphic Encryption”. In : Privacy in Statistical Databases. Sous la dir. de Josep Domingo-
Ferrer et Maryline Laurent. Cham : Springer International Publishing, 2022, p. 142-154.
isbn : 978-3-031-13945-1.

[4] Yulliwas Ameur, Samia Bouzefrane et Soumya Banerjee. “Developing Adaptive Homomor-
phic Encryption through Exploration of Differential Privacy”. In : Journal of Cyber Security and
Mobility -.- (2023). En cours d’édition, p. -. issn : 2245-4578. doi : -. url : -.

[5] Gizem S Çetin et al. “Depth optimized efficient homomorphic sorting”. In : International Confe-
rence on Cryptology and Information Security in Latin America. Springer. 2015, p. 61-80.

[6] Martin Zuber et R. Sirdey. “Efficient homomorphic evaluation of k-NN classifiers”. In : Pro-
ceedings on Privacy Enhancing Technologies 2021 (2021), p. 111 -129.

[7] Yulliwas Ameur, Samia Bouzefrane et Le Vinh Thinh. “Handling security issues by using ho-
momorphic encryption in multi-cloud environment”. In : Procedia Computer Science 220 (2023).
The 14th International Conference on Ambient Systems, Networks and Technologies Networks
(ANT 2022) and The 6th International Conference on Emerging Data and Industry 4.0 (EDI40),
p. 390-397. issn : 1877-0509. doi : https://doi.org/10.1016/j.procs.2023.03.050. url :
https://www.sciencedirect.com/science/article/pii/S1877050923005859.

[8] Ilaria Chillotti et al. “TFHE : Fast Fully Homomorphic Encryption Over the Torus”. In : J.
Cryptol. 33.1 (2020), 34–91. issn : 0933-2790. doi : 10.1007/s00145-019-09319-x. url :
https://doi.org/10.1007/s00145-019-09319-x.

[9] Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity classes”. In :
International conference on the theory and applications of cryptographic techniques. Springer.
1999, p. 223-238.

[10] R L Rivest, L Adleman et M L Dertouzos. “On Data Banks and Privacy Homomorphisms”.
In : Foundations of Secure Computation, Academia Press (1978), p. 169-179.

131

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://hal.science/hal-03933238
https://doi.org/-
-
https://doi.org/https://doi.org/10.1016/j.procs.2023.03.050
https://www.sciencedirect.com/science/article/pii/S1877050923005859
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x

BIBLIOGRAPHIE

[11] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In : Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009. Sous la dir. de Michael Mitzenmacher. ACM, 2009, p. 169-178. doi :
10.1145/1536414.1536440. url : https://doi.org/10.1145/1536414.1536440.

[12] PALISADE Lattice Cryptography Library (release 1.11.5). https://palisade-crypto.org/.
2021.

[13] Abbas Acar et al. “A Survey on Homomorphic Encryption Schemes : Theory and Implemen-
tation”. In : ACM Comput. Surv. 51.4 (2018). issn : 0360-0300. doi : 10.1145/3214303. url :
https://doi.org/10.1145/3214303.

[14] Marten van Dijk et al. “Fully Homomorphic Encryption over the Integers”. In : Advances in
Cryptology – EUROCRYPT 2010. Sous la dir. d’Henri Gilbert. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2010, p. 24-43. isbn : 978-3-642-13190-5.

[15] Craig Gentry. “Computing Arbitrary Functions of Encrypted Data”. In : Commun. ACM 53.3
(2010), 97–105. issn : 0001-0782. doi : 10.1145/1666420.1666444. url : https://doi.org/
10.1145/1666420.1666444.

[16] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryptogra-
phy”. In : Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing.
STOC ’05. Baltimore, MD, USA : Association for Computing Machinery, 2005, 84–93. isbn :
1581139608. doi : 10.1145/1060590.1060603. url : https://doi.org/10.1145/1060590.
1060603.

[17] Vadim Lyubashevsky, Chris Peikert et Oded Regev. “On Ideal Lattices and Learning with
Errors over Rings”. In : J. ACM 60.6 (2013). issn : 0004-5411. doi : 10.1145/2535925. url :
https://doi.org/10.1145/2535925.

[18] Kurt R. Rohloff et David Cousins. “A Scalable Implementation of Fully Homomorphic En-
cryption Built on NTRU”. In : Financial Cryptography Workshops. 2014.

[19] IlariaChillotti et al. TFHE : Fast Fully Homomorphic Encryption Library. https ://tfhe.github.io/tfhe/.
August 2016.

[20] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography”.
In : t. 56. Jan. 2005, p. 84-93. doi : 10.1145/1568318.1568324.

[21] Léo Ducas et Daniele Micciancio. “FHEW : bootstrapping homomorphic encryption in less
than a second”. In : Advances in Cryptology–EUROCRYPT 2015 : 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I 34. Springer. 2015, p. 617-640.

[22] Ilaria Chillotti et al. “TFHE : fast fully homomorphic encryption over the torus”. In : Journal
of Cryptology 33.1 (2020), p. 34-91.

[23] Mark A. Will et Ryan K.L. Ko. “Chapter 5 - A guide to homomorphic encryption”. In : The
Cloud Security Ecosystem. Sous la dir. de Ryan Ko et Kim-Kwang Raymond Choo. Boston :
Syngress, 2015, p. 101-127. isbn : 978-0-12-801595-7. doi : https://doi.org/10.1016/B978-
0-12-801595-7.00005-7. url : https://www.sciencedirect.com/science/article/pii/
B9780128015957000057.

132

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://palisade-crypto.org/
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/2535925
https://doi.org/10.1145/2535925
https://doi.org/10.1145/1568318.1568324
https://doi.org/https://doi.org/10.1016/B978-0-12-801595-7.00005-7
https://doi.org/https://doi.org/10.1016/B978-0-12-801595-7.00005-7
https://www.sciencedirect.com/science/article/pii/B9780128015957000057
https://www.sciencedirect.com/science/article/pii/B9780128015957000057

BIBLIOGRAPHIE

[24] Yulliwas Ameur, Samia Bouzefrane et Vincent Audigier. “Application of Homomorphic
Encryption in Machine Learning”. In : Emerging Trends in Cybersecurity Applications. Sous la
dir. de KevinDaimi et al. Cham : Springer International Publishing, 2023, p. 391-410. isbn : 978-
3-031-09640-2. doi : 10.1007/978-3-031-09640-2_18. url : https://doi.org/10.1007/978-
3-031-09640-2_18.

[25] Zhigang Chen et al. “Bibliometrics of Machine Learning Research Using Homomorphic Encryp-
tion”. In : Mathematics 9 (nov. 2021), p. 2792. doi : 10.3390/math9212792.

[26] Trevor Hastie, Robert Tibshirani et Jerome Friedman. “Unsupervised learning”. In : The
elements of statistical learning. Springer, 2009, p. 485-585.

[27] Ralf Bender et Ulrich Grouven. “Ordinal logistic regression in medical research”. In : Journal
of the Royal College of physicians of London 31.5 (1997), p. 546.

[28] Vernon Gayle, P Lambert et RB Davies. “Logistic regression models in sociological research”.
In : University of Stirling, Technical Paper 1 (2009).

[29] XiaoFeng Wang et al. iDASH secure genome analysis competition 2017. 2018.

[30] Shuang Wu et al. “Privacy-preservation for stochastic gradient descent application to secure
logistic regression”. In : The 27th Annual Conference of the Japanese Society for Artificial In-
telligence. T. 27. 2013, p. 1-4.

[31] Yoshinori Aono et al. “Scalable and secure logistic regression via homomorphic encryption”. In :
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. 2016,
p. 142-144.

[32] Miran Kim et al. “Secure logistic regression based on homomorphic encryption : Design and
evaluation”. In : JMIR medical informatics 6.2 (2018), e8805.

[33] Joppe W Bos, Kristin Lauter et Michael Naehrig. “Private predictive analysis on encrypted
medical data”. In : Journal of biomedical informatics 50 (2014), p. 234-243.

[34] Payman Mohassel et Yupeng Zhang. “Secureml : A system for scalable privacy-preserving
machine learning”. In : 2017 IEEE symposium on security and privacy (SP). IEEE. 2017, p. 19-
38.

[35] Raphael Bost et al. “Machine Learning Classification over Encrypted Data”. In : IACR Cryptol.
ePrint Arch. 2014 (2015), p. 331.

[36] Shafi Goldwasser et Silvio Micali. “Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information”. In : Proceedings of the Fourteenth Annual ACM Sym-
posium on Theory of Computing. STOC ’82. San Francisco, California, USA : Association for
Computing Machinery, 1982, 365–377. isbn : 0897910702. doi : 10.1145/800070.802212. url :
https://doi.org/10.1145/800070.802212.

[37] Frank Li, Richard Shin et Vern Paxson. “Exploring Privacy Preservation in Outsourced K-
Nearest Neighbors with Multiple Data Owners”. In : Proceedings of the 2015 ACM Workshop
on Cloud Computing Security Workshop. CCSW ’15. Denver, Colorado, USA : Association for
Computing Machinery, 2015, 53–64. isbn : 9781450338257. doi : 10.1145/2808425.2808430.
url : https://doi.org/10.1145/2808425.2808430.

[38] Bharath K. Samanthula, Yousef Elmehdwi et Wei Jiang. “k-Nearest Neighbor Classification
over Semantically Secure Encrypted Relational Data”. In : IEEE Transactions on Knowledge
and Data Engineering 27.5 (2015), p. 1261-1273. doi : 10.1109/TKDE.2014.2364027.

133

https://doi.org/10.1007/978-3-031-09640-2_18
https://doi.org/10.1007/978-3-031-09640-2_18
https://doi.org/10.1007/978-3-031-09640-2_18
https://doi.org/10.3390/math9212792
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/2808425.2808430
https://doi.org/10.1145/2808425.2808430
https://doi.org/10.1109/TKDE.2014.2364027

BIBLIOGRAPHIE

[39] Wai Kit Wong et al. “Secure KNN Computation on Encrypted Databases”. In : Proceedings
of the 2009 ACM SIGMOD International Conference on Management of Data. SIGMOD ’09.
Providence, Rhode Island, USA : Association for Computing Machinery, 2009, 139–152. isbn :
9781605585512. doi : 10.1145/1559845.1559862. url : https://doi.org/10.1145/1559845.
1559862.

[40] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”.
In : t. 5. Mai 1999, p. 223-238. isbn : 978-3-540-65889-4. doi : 10.1007/3-540-48910-X_16.

[41] Xiaokui Xiao, Feifei Li et Bin Yao. “Secure Nearest Neighbor Revisited”. In : Proceedings of the
2013 IEEE International Conference on Data Engineering (ICDE 2013). ICDE ’13. USA : IEEE
Computer Society, 2013, 733–744. isbn : 9781467349093. doi : 10.1109/ICDE.2013.6544870.
url : https://doi.org/10.1109/ICDE.2013.6544870.

[42] Yoshinori Aono et al. “Privacy-preserving deep learning via additively homomorphic encryp-
tion”. In : IEEE Transactions on Information Forensics and Security 13.5 (2017), p. 1333-1345.

[43] Fanyu Bu et al. “Privacy preserving back-propagation based on BGV on cloud”. In : 2015
IEEE 17th International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems. IEEE. 2015, p. 1791-1795.

[44] Qingchen Zhang, Laurence T. Yang et Zhikui Chen. “Privacy Preserving Deep Computation
Model on Cloud for Big Data Feature Learning”. In : IEEE Transactions on Computers 65.5
(2016), p. 1351-1362. doi : 10.1109/TC.2015.2470255.

[45] Qiao Zhang et al. “GELU-Net : A Globally Encrypted, Locally Unencrypted Deep Neural
Network for Privacy-Preserved Learning.” In : IJCAI. 2018, p. 3933-3939.

[46] Ran Gilad-Bachrach et al. “Cryptonets : Applying neural networks to encrypted data with
high throughput and accuracy”. In : International conference on machine learning. PMLR. 2016,
p. 201-210.

[47] Martin Albrecht, Shi Bai et Léo Ducas. “A Subfield Lattice Attack on Overstretched NTRU
Assumptions”. In : Proceedings, Part I, of the 36th Annual International Cryptology Conference
on Advances in Cryptology — CRYPTO 2016 - Volume 9814. Berlin, Heidelberg : Springer-
Verlag, 2016, 153–178. isbn : 9783662530177. doi : 10.1007/978-3-662-53018-4_6. url :
https://doi.org/10.1007/978-3-662-53018-4_6.

[48] Mehmood Baryalai, Julian Jang-Jaccard et Dongxi Liu. “Towards privacy-preserving clas-
sification in neural networks”. In : 2016 14th Annual Conference on Privacy, Security and Trust
(PST). 2016, p. 392-399. doi : 10.1109/PST.2016.7906962.

[49] Hervé Chabanne et al. “Privacy-preserving classification on deep neural network”. In : Crypto-
logy ePrint Archive (2017).

[50] Ehsan Hesamifard, Hassan Takabi et Mehdi Ghasemi. “Deep neural networks classification
over encrypted data”. In : Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy. 2019, p. 97-108.

[51] Qiang Zhu et Xixiang Lv. “2P-DNN : Privacy-preserving deep neural networks based on Homo-
morphic cryptosystem”. In : arXiv preprint arXiv :1807.08459 (2018).

134

https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/ICDE.2013.6544870
https://doi.org/10.1109/ICDE.2013.6544870
https://doi.org/10.1109/TC.2015.2470255
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1109/PST.2016.7906962

BIBLIOGRAPHIE

[52] Ilaria Chillotti, Marc Joye et Pascal Paillier. “Programmable Bootstrapping Enables Effi-
cient Homomorphic Inference of Deep Neural Networks”. In : Cyber Security Cryptography and
Machine Learning. Sous la dir. de ShlomiDolev et al. Cham : Springer International Publishing,
2021, p. 1-19. isbn : 978-3-030-78086-9.

[53] Xiaoyan Liu et al. “Outsourcing Two-Party Privacy Preserving K-Means Clustering Protocol
in Wireless Sensor Networks”. In : 2015 11th International Conference on Mobile Ad-hoc and
Sensor Networks (MSN). 2015, p. 124-133. doi : 10.1109/MSN.2015.42.

[54] Zoe L. Jiang et al. “Efficient two-party privacy-preserving collaborative k-means clustering
protocol supporting both storage and computation outsourcing”. In : Information Sciences 518
(2020), p. 168-180. issn : 0020-0255. doi : https://doi.org/10.1016/j.ins.2019.12.051.
url : https://www.sciencedirect.com/science/article/pii/S0020025519311624.

[55] Georgios Spathoulas, Georgios Theodoridis et Georgios-Paraskevas Damiris. “Using homo-
morphic encryption for privacy-preserving clustering of intrusion detection alerts”. In : Interna-
tional Journal of Information Security 20 (juin 2021). doi : 10.1007/s10207-020-00506-7.

[56] Anastasia Theodouli, Konstantinos A. Draziotis et Anastasios Gounaris. “Implementing
private k-means clustering using a LWE-based cryptosystem”. In : 2017 IEEE Symposium on
Computers and Communications (ISCC) (2017), p. 88-93.

[57] Zvika Brakerski, Vinod Vaikuntanathan et Craig Gentry. “Fully homomorphic encryption
without bootstrapping”. In : In Innovations in Theoretical Computer Science. 2012.

[58] Nawal Almutairi, Frans Coenen et Keith Dures. “K-Means Clustering Using Homomorphic
Encryption and an Updatable Distance Matrix : Secure Third Party Data Clustering with Li-
mited Data Owner Interaction”. In : DaWaK. 2017.

[59] Angela Jäschke et Frederik Armknecht. “Unsupervised Machine Learning on Encrypted Da-
ta”. In : IACR Cryptol. ePrint Arch. 2018 (2018), p. 411.

[60] Georgios Sakellariou et Anastasios Gounaris. “Homomorphically Encrypted K-Means on
Cloud-Hosted Servers with Low Client-Side Load”. In : Computing 101.12 (2019), 1813–1836.
issn : 0010-485X. doi : 10.1007/s00607-019-00711-w. url : https://doi.org/10.1007/
s00607-019-00711-w.

[61] Zvika Brakerski, Craig Gentry et Vinod Vaikuntanathan. “(Leveled) Fully Homomorphic
Encryption without Bootstrapping”. In : Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference. ITCS ’12. Cambridge, Massachusetts : Association for Computing
Machinery, 2012, 309–325. isbn : 9781450311151. doi : 10.1145/2090236.2090262. url :
https://doi.org/10.1145/2090236.2090262.

[62] Michael Armbrust et al. Above the clouds : A berkeley view of cloud computing. Rapp. tech.
Technical Report UCB/EECS-2009-28, EECS Department, University of California . . ., 2009.

[63] Peter M. Mell et Timothy Grance. SP 800-145. The NIST Definition of Cloud Computing.
Rapp. tech. Gaithersburg, MD, USA, 2011.

[64] Hussam Abu-Libdeh, Lonnie Princehouse et Hakim Weatherspoon. “RACS : a case for
cloud storage diversity”. In : Proceedings of the 1st ACM symposium on Cloud computing. 2010,
p. 229-240.

135

https://doi.org/10.1109/MSN.2015.42
https://doi.org/https://doi.org/10.1016/j.ins.2019.12.051
https://www.sciencedirect.com/science/article/pii/S0020025519311624
https://doi.org/10.1007/s10207-020-00506-7
https://doi.org/10.1007/s00607-019-00711-w
https://doi.org/10.1007/s00607-019-00711-w
https://doi.org/10.1007/s00607-019-00711-w
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262

BIBLIOGRAPHIE

[65] Yulliwas Ameur et al. “Secure and Non-interactive-NN Classifier Using Symmetric Fully Homo-
morphic Encryption”. In : International Conference on Privacy in Statistical Databases. Springer.
2022, p. 142-154.

[66] Maya Louk et Hyotaek Lim. “Homomorphic encryption in mobile multi cloud computing”. In :
2015 International Conference on Information Networking (ICOIN). 2015, p. 493-497. doi :
10.1109/ICOIN.2015.7057954.

[67] Luis Pulido-Gaytan et al.“Privacy-preserving neural networks with Homomorphic encryption :
Challenges and opportunities”. In : Peer-to-Peer Networking and Applications 14 (mai 2021).
doi : 10.1007/s12083-021-01076-8.

[68] Benjamin Fabian, Tatiana Ermakova et Philipp Junghanns. “Collaborative and secure sha-
ring of healthcare data in multi-clouds”. In : Information Systems 48 (2015), p. 132-150. issn :
0306-4379. doi : https://doi.org/10.1016/j.is.2014.05.004. url : https://www.
sciencedirect.com/science/article/pii/S030643791400088X.

[69] Karim Zkik, Ghizlane Orhanou et Said El Hajji. “Secure scheme on mobile multi cloud com-
puting based on homomorphic encryption”. In : 2016 International Conference on Engineering
MIS (ICEMIS). 2016, p. 1-6. doi : 10.1109/ICEMIS.2016.7745297.

[70] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In : Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09. Bethesda, MD, USA :
Association for Computing Machinery, 2009, 169–178. isbn : 9781605585062. doi : 10.1145/
1536414.1536440. url : https://doi.org/10.1145/1536414.1536440.

[71] Adriana López-Alt, Eran Tromer et Vinod Vaikuntanathan. “On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption”. In : Proceedings of the forty-
fourth annual ACM symposium on Theory of computing. 2012, p. 1219-1234.

[72] Hao Chen, Ilaria Chillotti et Yongsoo Song. “Multi-Key Homomorphic Encryption from
TFHE”. In : Advances in Cryptology – ASIACRYPT 2019. Sous la dir. de Steven D. Galbraith
et Shiho Moriai. Cham : Springer International Publishing, 2019, p. 446-472. isbn : 978-3-030-
34621-8.

[73] Asma Aloufi et al. “Computing Blindfolded on Data Homomorphically Encrypted under Mul-
tiple Keys : A Survey”. In : ACM Comput. Surv. 54.9 (2021). issn : 0360-0300. doi : 10.1145/
3477139. url : https://doi.org/10.1145/3477139.

[74] Ahmad Al Badawi et al. OpenFHE : Open-Source Fully Homomorphic Encryption Library.
Cryptology ePrint Archive, Paper 2022/915. https://eprint.iacr.org/2022/915. 2022. url :
https://eprint.iacr.org/2022/915.

[75] bessani Alysson Bessani Ricardo Mendes. ”Dependable and Secure Storage in a Cloud-of-
Clouds”. 2016. url : http://cloud-of-clouds.github.io/depsky/.

[76] H. Pussewalage et V.Oleshchuk.“A Patient-Centric Attribute Based Access Control Scheme
for Secure Sharing of Personal Health Records Using Cloud Computing”. In : 2016 IEEE 2nd
International Conference on Collaboration and Internet Computing (CIC). Los Alamitos, CA,
USA : IEEE Computer Society, 2016, p. 46-53. doi : 10.1109/CIC.2016.020. url : https:
//doi.ieeecomputersociety.org/10.1109/CIC.2016.020.

136

https://doi.org/10.1109/ICOIN.2015.7057954
https://doi.org/10.1007/s12083-021-01076-8
https://doi.org/https://doi.org/10.1016/j.is.2014.05.004
https://www.sciencedirect.com/science/article/pii/S030643791400088X
https://www.sciencedirect.com/science/article/pii/S030643791400088X
https://doi.org/10.1109/ICEMIS.2016.7745297
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/3477139
https://doi.org/10.1145/3477139
https://doi.org/10.1145/3477139
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
http://cloud-of-clouds.github.io/depsky/
https://doi.org/10.1109/CIC.2016.020
https://doi.ieeecomputersociety.org/10.1109/CIC.2016.020
https://doi.ieeecomputersociety.org/10.1109/CIC.2016.020

BIBLIOGRAPHIE

[77] Yulliwas Ameur, Samia Bouzefrane et Vincent Audigier. “Application of Homomorphic
Encryption in Machine Learning”. In : Emerging Trends in Cybersecurity Applications. Springer,
2023, p. 391-410.

[78] Florian Bourse et al. “Fast Homomorphic Evaluation of Deep Discretized Neural Networks :
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23,
2018, Proceedings, Part III”. In : jan. 2018, p. 483-512. isbn : 978-3-319-96877-3. doi : 10.1007/
978-3-319-96878-0_17.

[79] Malika Izabachène, Renaud Sirdey et Martin Zuber. “Practical Fully Homomorphic Encryp-
tion for Fully Masked Neural Networks”. In : oct. 2019, p. 24-36. isbn : 978-3-030-31577-1. doi :
10.1007/978-3-030-31578-8_2.

[80] Xiaoyan Liu et al. “Outsourcing two-party privacy preserving k-means clustering protocol in
wireless sensor networks”. In : 2015 11th International Conference on Mobile Ad-hoc and Sensor
Networks (MSN). IEEE. 2015, p. 124-133.

[81] Zoe L Jiang et al. “Efficient two-party privacy-preserving collaborative k-means clustering pro-
tocol supporting both storage and computation outsourcing”. In : Information Sciences 518
(2020), p. 168-180.

[82] Anastasia Theodouli, Konstantinos A Draziotis et Anastasios Gounaris. “Implementing
private k-means clustering using a LWE-based cryptosystem”. In : 2017 IEEE Symposium on
Computers and Communications (ISCC). IEEE. 2017, p. 88-93.

[83] Nawal Almutairi, Frans Coenen et Keith Dures. “K-means clustering using homomorphic
encryption and an updatable distance matrix : secure third party data clustering with limited
data owner interaction”. In : International Conference on Big Data Analytics and Knowledge
Discovery. Springer. 2017, p. 274-285.

[84] Armknecht Frederik Jäschke et al. Angela. “Unsupervised machine learning on encrypted data”.
In : International Conference on Selected Areas in Cryptography. Springer. 2018, p. 453-478.

[85] Gounaris Anastasios Sakellariou et al. Georgios. “Homomorphically encrypted k-means on
cloud-hosted servers with low client-side load”. In : Computing 101.12 (2019), p. 1813-1836.

[86] Michele Minelli. “Fully homomorphic encryption for machine learning”. Thèse de doct. Univer-
sité Paris sciences et lettres, 2018.

[87] Xiangyun Tang et al. “When Homomorphic Cryptosystem Meets Differential Privacy : Training
Machine Learning Classifier with Privacy Protection”. In : CoRR abs/1812.02292 (2018). arXiv :
1812.02292. url : http://arxiv.org/abs/1812.02292.

[88] RaphaelKiesel et al.“Potential of Homomorphic Encryption for Cloud Computing Use Cases in
Manufacturing”. In : Journal of Cybersecurity and Privacy 3.1 (2023), p. 44-60. issn : 2624-800X.
doi : 10.3390/jcp3010004. url : https://www.mdpi.com/2624-800X/3/1/4.

[89] Kristin Lauter. “Private AI : Machine Learning on Encrypted Data”. In : Recent Advances in
Industrial and Applied Mathematics. Sous la dir. de Tomás Chacón Rebollo, Rosa Donat
et Inmaculada Higueras. Cham : Springer International Publishing, 2022, p. 97-113. isbn :
978-3-030-86236-7.

[90] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

137

https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-030-31578-8_2
https://arxiv.org/abs/1812.02292
http://arxiv.org/abs/1812.02292
https://doi.org/10.3390/jcp3010004
https://www.mdpi.com/2624-800X/3/1/4

BIBLIOGRAPHIE

[91] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data Analysis”. In : Theory
of Cryptography. Sous la dir. de Shai Halevi et Tal Rabin. Berlin, Heidelberg : Springer Berlin
Heidelberg, 2006, p. 265-284. isbn : 978-3-540-32732-5.

138

	Remerciements
	Résumé en français
	Introduction générale
	Contexte de la thèse
	Objectifs et contributions de la thèse
	Contribution à la Gestion des Problèmes de Sécurité via le Chiffrement Homomorphique dans un Environnement Multi-Cloud
	Application et Défis Identifiés
	Contribution Principale
	Conclusion

	Classificateur k-NN Sécurisé et Non-Interactif Utilisant le Chiffrement Homomorphique Symétrique
	Contexte et Défis
	Contribution Principale
	Le modèle du système
	Défis chiffrés k-NN
	Calcul de la distance
	Tri
	Vote majoritaire
	Notre algorithme k-NN proposé
	Sélection des k plus proches voisins

	Évaluation de la Performance
	Conclusion et Perspectives

	Résumé de Contribution: Clustering k-means Sécurisé Utilisant le Chiffrement Homomorphique Complet sur le Torus (TFHE)
	Contribution Principale
	Mise en Œuvre et Évaluation
	Conclusion et Perspectives

	Contribution: Développement du Chiffrement Homomorphique Adaptatif en Explorant la Technique de Confidentialité Différentielle
	Mise en Œuvre
	Analyse de Performance et de sensibilité
	Conclusion et Perspectives

	Conclusion générale

	Abstract
	Liste des tableaux
	Liste des figures
	I General Introduction
	General Introduction
	General Introduction
	Context of the thesis
	Objectives and Contributions of the thesis

	II Background and State of the Art
	Background
	Machine Learning Techniques
	Supervised Machine Learning
	k-nearest neighbors algorithm
	Linear regression

	Unsupervised Machine Learning
	k-means clustering

	Introduction to Homomorphic Encryption
	HE Schemes
	Fully homomorphic encryption over the torus: TFHE scheme
	Additive Paillier cryptosystem

	HE Librairies
	FHE Restrictions

	State of the Art of Privacy-Preserving in Machine Learning (PPML): HE-based solutions
	Logistic Regression
	Naive Bayes and Decision Trees
	K-nearest neighbors
	Neural Networks and Deep Learning
	Privacy preserving deep learning: Private training
	privacy preserving deep learning: Private inference

	Clustering
	Collaborative clustering
	Individual clustering

	Conclusion

	III Contributions
	Handling security issues by using homomorphic encryption in multi-cloud environment
	Introduction
	Related works
	Multi-cloud computing privacy challenges using homomorphic encryption
	Multi-key Homomorphic encryption
	Our contribution
	Experimental evaluation
	OpenFHE: Open-Source Fully Homomorphic Encryption Library
	DepSky: Multi cloud computing platform
	The Health-Care Use-Case
	Architecture Model

	Detailed experimental results

	Secure and non-interactive k-NN classifier using symmetric fully homomorphic encryption
	Introduction
	Background
	Functional Bootstrap in TFHE

	Our contribution
	 The System Model
	Encrypted k-NN Challenges
	Distance Calculation
	Sorting
	Majority Vote

	Our proposed k-NN algorithm
	Building the delta matrix
	Selecting the k-nearest neighbors
	Majority vote

	Performance evaluation
	Test Environment
	Setup
	Datasets
	Simulation procedure

	Performance results
	Empirical study
	Classification rate
	Execution time
	Bandwidth
	Discussion

	conclusion

	Secure k-means clustering using TFHE
	Introduction
	Related works
	Background
	k-means algorithm
	Clustering evaluation
	Internal evaluation
	External evaluation

	Our contribution
	 The System Model
	In clear setting
	Initialization
	Assignment step
	Distance Calculation
	Delta matrix construction
	Assignment Vector

	Updating centroids

	Encrypted k-means with FHE
	Encoding and Encrypting
	The difference of the squared distances
	Delta matrix
	Affectation vector

	Performance evaluation
	Test Environment
	Datasets

	TFHE Tests
	Parameters choice procedure

	Performance results
	Efficiency
	Execution time
	Security
	Discussion

	conclusion

	Developing Adaptive Homomorphic Encryption by Exploring Differential Privacy Technique
	Introduction
	Research Motivation
	Relevant Mathematical Perspectives
	Gaussian Noise: Maintaining Privacy and Preserving Statistical Properties

	Paillier Cryptosystem: Scheme and Properties
	Client-Side Algorithms and Server-Side Algorithms

	Experimental Validation and Discussion on Results
	Proposed HEDP: Architecture, Process and Code Walkthrough

	Scopes of Implementations
	Client-Side Code Walkthrough
	Server-Side Code Walkthrough
	Performance Analysis: Proposed HEDP versus Standard Algorithms
	The Client-side plot
	 Server-side Plot

	 Standard Algorithm (Linear Regression without HEDP) CPU Plot

	Sensitivity Analysis
	Exceptions in the proposed HEDP model

	Conclusion
	Bibliographie

