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1

INTRODUCTION

1.1/ BACKGROUND AND MOTIVATION

The field of autonomous driving has experienced remarkable advancements in recent

years, with the aim of creating safer and more efficient transportation systems. A cru-

cial component of autonomous vehicles is their ability to perceive and understand the

surrounding environment. Object detection play pivotal roles in this process, enabling

the vehicle to identify and monitor objects such as pedestrians, vehicles, or obstacles.

However, autonomous vehicles will serve as daily transportation in human life, and the

environments in which they will be deployed are often complex and dynamic. In addition,

they are exposed to various weather conditions, changing lighting conditions, perception

occlusion, and diverse interactions with other road participants. These factors pose struc-

tural challenges to the accuracy, robustness, and adaptability of object detection systems

for autonomous vehicles.

On the one hand, from the hardware level, camera-based object detection has shown

convincing results in both academia and industry. However, solutions based on pure vi-

sual perception are currently unable to meet the needs of autonomous driving, especially

when the issue involves driving safety. Therefore, other modalities of sensors are inte-

grated into autonomous vehicles, especially radar and LiDAR. Among them, 3D LiDAR

has become the de facto standard configuration because it can provide more accurate

object distance information than cameras (Qian et al., 2022). In addition, as this sensor

can also provide a rough geometry of an object, coupled with its insensitivity to light-

ing conditions, researchers are interested in implementing object detection based on the

data it provides, namely point cloud. However, due to the lack of easy-to-learn color and

texture information, there is still a significant gap between the current object detection

performance based on 3D LiDAR and that based on cameras.

On the other hand, from a software level, deep learning methods, particularly Convolu-

tional Neural Network (CNN), achieved state-of-the-art (SOTA) performance in various

3
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object detection tasks. Single-shot detectors such as You Only Look Once (YOLO) (Red-

mon and Farhadi, 2018) or two-shot detectors such as Faster R-CNN (Ren et al., 2015)

have proven effective for real-time camera-based object detection. PointNet (Qi et al.,

2017a) and its subsequent methods (Qi et al., 2017b, 2018) show the promising per-

formance of CNN in point cloud data processing. However, these models are typically

trained offline on large and fixed datasets, and their performance may degrade when

encountering new and previously unseen data during deployment. To address these

challenges and improve the overall robustness and reliability of autonomous driving sys-

tems, there is a growing interest in applying Online Learning methods to object detec-

tion (Kuznetsova et al., 2015; Perez-Rua et al., 2020; Wang et al., 2021).

Online Learning (OL) (Hoi et al., 2021), originally developed in the machine learning

community, driven by the high cost of batch training and the lack of adaptability of the

model, aims to learn from ordered (such as time series) data and update the model in

real time without saving any learned data. The updated model is then used to make

predictions on future (learning) data. It should be emphasized that OL is a model training

method rather than a model. OL is particularly well-suited for deployment in the field of

autonomous driving, and even more broadly, robotics, because:

1. The operating environment for agents is typically dynamic (Krajnı́k et al., 2017; Yan

et al., 2020c; Sun et al., 2018), and usually changing unpredictably. This necessi-

tates the online adaptability for the model carried by the agent, enabling it to adjust

to unforeseen variations.

2. Agents often contend with constrained onboard computational resources. This lim-

its the feasibility of large-scale data storage and batch training processes, necessi-

tating approaches that are computationally efficient and tailored to resource limita-

tions.

The above two aspects perfectly fit the design goals of OL.

However, there are differences between OL in robotics and machine learning (Yan et al.,

2023). In the field of robotics, “online” emphasizes that robots learn spontaneously and

autonomously during operation without human intervention, mainly taking offline learning

as a contrast. More specifically, the OL model is used as a robot learns, while the offline

learning model will not be updated during use once it is deployed to the robot. OL in

robotics can be (small) batch, i.e. learning one or more data at a time. In addition, OL in

robotics faces a unique challenge compared to machine learning: the data that enters a

learning system is often unannotated.

This dissertation studies OL for 3D object detection in autonomous driving. In addition

to the above mentioned two general reasons why OL is suitable for deployment in au-

tonomous driving, its research motivations include:
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Figure 1.1: Annotated example of a point cloud generated from a 3D LiDAR scan.

3. 3D LiDAR, as the main sensor of autonomous vehicles, its data is difficult to interpret

and annotate manually (see Figure 1.1).

4. Long-term deployment of autonomous vehicles poses challenges for knowledge

preservation and maintenance in OL systems.

Besides these two additional aspects, the last important motivation driving our research

is the long-tail problem, which poses a huge challenge for road participant detection (see

Figure 1.2). Although this dissertation does not address the problem head-on, we argue

that the approach it studies, i.e. Online Learning, is a powerful way to deal with the

long-tail problem. Actually, it is unrealistic to rely only on offline trained models based on

manually labeled data in autonomous driving, because these data are inherently difficult

to exhaust all objects and corner cases.

Figure 1.2: Long tail examples of road participant detection.

In summary, our research vision actually consists of two aspects. In terms of scientific

methods, we hope to explore the usability of OL methods in the field of autonomous

driving, starting with 3D object detection (the scope of this dissertation), and eventually

expanding to the planning and control of the vehicle in the future. In terms of industrial

applications, we hope that our method can reduce the learning and maintenance costs

of vehicle loading models, including data collection and annotation, model training and

updating, human supervision and fine-tuning, etc., and finally realize the out-of-the-box

use of autonomous vehicles.
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1.2/ CHALLENGES

1.2.1/ HOW TO MAKE THE AGENT AUTONOMOUSLY EXTRACT LEARNING SAM-
PLES FROM SENSORY DATA?

Autonomous vehicles rely on various sensors to perceive changes in the ontology and

its external world (Yan et al., 2020c). Measurements from sensors are represented in

various data forms, such as images produced by cameras and point clouds produced by

3D LiDARs. These data correspond to the observations of the agent, and are analyzed

by the latter to extract useful information. For OL of road participant detection, the agent

needs to determine the location and category of the object it wants to learn in each

observation, and then extract the data representing the object as a learning sample. This

autonomous process is very challenging, especially in the field of autonomous driving,

because the urban road environment is usually very complex and highly dynamic, and

there is a performance bottleneck only relying on the data analysis of a single observation.

How to break through this bottleneck belongs to the scope of this dissertation. Finally,

when it comes to 3D LiDAR, since the current mainstream 3D LiDAR can only provide

sparse points representing the distance of objects and lacks easy-to-learn features such

as color and texture, it is even more challenging to learn online from the data generated

by this device compared to other devices such as cameras.

1.2.2/ HOW TO MAKE THE AGENT EFFICIENTLY PRESERVE KNOWLEDGE WITH-
OUT SAVING LEARNING SAMPLES?

Not saving learning data but only saving learned knowledge is a basic setting of OL

methods. The learned knowledge is usually presented in the form of models. In the field

of autonomous driving, under limited computing resources, the update (training) of the

multi-class road participant detection model should be done as fast as possible, and the

updated model can be deployed immediately. This involves research on the structure of

the model, the distribution of learning samples at a time, the storage and loading of the

model, and other aspects.

1.2.3/ HOW TO MAKE THE AGENT AVOID CATASTROPHIC FORGETTING IN THE

LONG-TERM LEARNING PROCESS?

In OL, or even in any learning method that requires model updating, fresh learning may

lead to the problem of degrading the performance of previously learned models, which is

known as the catastrophic forgetting problem. The probability of this kind of problem will

increase with the variety of learning tasks. In the field of autonomous driving, the long-
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term deployment of vehicles will inevitably increase the variety of learning tasks. A typical

situation is that the vehicle drives from one scene to another. The problem of catas-

trophic forgetting has a long history of research in the field of machine learning, and it is

also one of the research focuses of the deep learning community in this era (Goodfellow

et al., 2013; Kirkpatrick et al., 2017; Li and Hoiem, 2017). However, despite significant

advances in specific domains, many approaches to overcoming catastrophic forgetting do

not generalize straightforwardly to robotics, or are not feasible at all, due to agents’ limited

onboard memory and computing resources. Therefore, methods suitable for autonomous

vehicles need to be developed, which is the focus of this dissertation. A practical example

is shown in Figure 1.3.

Figure 1.3: Road participants of the same category but with very different appearances in
East (left) and West (right). After the agent learns in the eastern scene and then updates
the previously learned model in the western scene, the object detection performance of
the model may decrease after returning to the eastern scene, and vice versa.

1.3/ OBJECTIVES

The research objective of this dissertation is to coherently respond to the three challenges

identified in the previous section. Scientifically, a proven OL method (Yan et al., 2018) in

robotics is being used for autonomous driving for the first time. The core idea of this

method is to use one sensor or model to train the other online. Specifically, assume

that one detector already has the ability to classify objects, while the other does not

and hopes to acquire this ability through OL. To this end, a multi-target tracker is used

to loosely correlate detections from different object detectors with confidences that they

belong to a certain object class. These confidences are then fused to estimate which

object category all detected samples belonging to each object belong to, and the samples

are thus annotated with the final labels for OL. The entire process of generating labeled

learning samples can be compared to the pretext mechanism in self-supervised learning.

The contribution of this dissertation corresponds to the following advancements com-

pared to the previous method (Yan et al., 2018) as well as SOTA:
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1. A new spatio-temporal fusion method for multi-modal detection is proposed to effi-

ciently provide high-quality samples for OL. Specifically, spatially, using the calibra-

tion of a 3D LiDAR with respect to a camera mounted on a vehicle and the times-

tamp synchronization of the data produced by the two sensors, the object bounding

boxes detected in the point cloud generated by the 3D LiDAR are first projected

onto the 2D image produced by the camera, and the Intersection over Union (IoU)

is then calculated with the object bounding box detected in the latter to determine

whether they are detections of different modalities of the same object. Temporally,

detections are correlated in point cloud data using a multi-target tracker tailored

for autonomous driving, based on Probabilistic Data Association (PDA), Unscented

Kalman Filter (UKF), and Interactive Multiple Models (IMM). This spatio-temporal

fusion method enables the agent to quickly generate a substantial number of high-

confidence learning samples with limited sample confidence information, thereby

improving the efficiency of OL. The source code for the method implementation is

publicly available at https://github.com/epan-utbm/efficient online learning.

2. After comprehensive investigation, the Online Random Forest (ORF) model was

selected, improved, and innovatively integrated into our OL framework, making it

possible for the agent to quickly train the model and deploy it immediately un-

der limited computing resources. Specifically, i) the requirement that the total

amount of data and data distribution be known in the original implementation is

removed, and in contrast, support for streaming data processing is added, includ-

ing online estimation of the optimal training parameters of the Random Forest (RF)

model; ii) based on i), support for few-shot learning and real-time access to the

model is added; iii) the entire improved implementation is integrated into a system

based on the Robot Operating System (ROS) for autonomous driving. Moreover,

our exploration of the ORF tree structure shows that using octrees instead of the

originally designed binary trees can improve model storage efficiency and access

speed. The source code for the method implementation is publicly available at

https://github.com/epan-utbm/octo orf.

3. For the first time, the catastrophic forgetting problem within the OL framework is ex-

plicitly studied, and the corresponding overcoming mechanism is elegantly created

without modifying the overall framework. Specifically, an Online Continual Learning

(OCL) paradigm named Long-Short-Term Online Learning (LSTOL) is proposed,

which combines multiple short-term learning models and a long-term memory con-

troller to enable the agent to learn new knowledge from new data without erasing

the previously learned knowledge. The short-term module is based on the concept

of ensemble learning and aims to achieve rapid learning iterations, while the long-

term module contains a simple yet efficient probabilistic decision-making mecha-

nism combined with four control primitives to achieve effective knowledge mainte-

https://github.com/epan-utbm/efficient_online_learning
https://github.com/epan-utbm/octo_orf
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nance. A novel feature of the proposed LSTOL is that it avoids forgetting while

learning autonomously. In addition, LSTOL makes no assumptions about the model

type of short-term learners and the continuity of the data. The source code for the

method implementation is publicly available at https://github.com/epan-utbm/lstol.

The above contributions have been demonstrated through comprehensive experiments.

In particular, two open datasets, KITTI (Geiger et al., 2012) and Waymo (Sun et al.,

2020), which are widely recognized in the research community and industry, are used.

Three questions are answered from an experimental perspective: 1) What happens to

OL in KITTI? 2) What happens to OL from KITTI to Waymo? 3) What happens to OL

from Waymo back to KITTI? The strengths and limitations of the proposed methods are

analyzed through Online Continual Learning (OCL) and detection of road participants

including cars, cyclists, and pedestrians in the two datasets.

1.4/ THESIS ORGANIZATION

The rest of the thesis is organized as follows:

• Chapter 2: The exploration of existing work related to the dissertation is discussed

in terms of upstream and downstream tasks. We provide a comprehensive analysis

of the challenges currently faced by online learning and continuous learning as up-

stream tasks, along with review of existing solutions and state-of-the-art methods.

Additionally, we delve into the multi-sensor fusion in object detection and tracking

within the context of environment perception in autonomous driving, which serves

as a downstream task. Furthermore, we disscuss the concept of online continu-

ous learning and its advancements and applications in improving the accuracy and

adaptability of object detection.

• Chapter 3: In order to facilitate the readers’ comprehension of the subsequent

content in the dissertation, in the chapter of Preliminary Knowledge, we first elu-

cidate the general framework of the proposed online continuous learning method,

which consisting of four closely interconnected components: detection, tracking,

learning, and control. Subsequently, we provide an overview of the data used in our

experiments, which include KITTI and Waymo datasets. We outline the data pre-

processing steps undertaken for training, testing, and validation. Followed by the

metrics employed in our evaluation process, including Classification Metrics (e.g.

accuracy, precision, recall, and F1-score), Detection Metrics (e.g. Intersection over

Union (IoU) and Average Precision (AP)). By presenting this preliminary knowledge,

we aim to provide readers with a comprehensive understanding of the foundational

https://github.com/epan-utbm/lstol
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aspects of our research, from the methodological framework to the practicalities of

data utilization and the evaluation criteria applied.

• Chapter 4: In response to the challenge posed by the interpretability of sparse

point clouds generated by 3D LiDAR and the difficulty associated with manual anno-

tation, we presented an efficient online transfer learning method for the 3D detection

of road participants in autonomous driving. The framework aims to automatically

and efficiently transfer object detection capabilities from 2D monocular camera to

3D LiDAR through a multi-target tracker-based pipeline, enabling knowledge trans-

fer between sensors of different modalities. Through comprehensive experiments,

it is proved that our proposed framework can not only enable 3D LiDAR to quickly

learn the detection ability of road participants (i.e. cars, pedestrians and cyclists)

in the urban environment without ground truth and human intervention, but also

leverage multimodal detectors to improve the overall detection of road participants

in autonomous vehicles.

• Chapter 5: Efficient online model training and access is another key challenge.

In this chapter, we establish three general criteria for online learning models: rapid

training, immediate deployment, on-the-fly updates and a specific criterion for au-

tonomous driving : explainability. The Online Random Forest (ORF) is innovatively

integrated into our online transfer learning system as a specific implementation of

the online learning model, which is inherently fast and well-suited for multi-class

learning tasks. In addition, we describe in detail the improvement of ORF in two as-

pects: small batch learning and octree-based model access. Experiments across

datasets demonstrate the adaptability of our learning framework to different envi-

ronments, making it particularly suitable for in-situ deployment. However, the exper-

iment also raised a new challenge: the forgetting problem, which refers to instances

where the model’s performance from an older dataset (e.g., KITTI) deteriorates after

training on a newer dataset (e.g., Waymo).

• Chapter 6: To adress the accompanied problem of catastrophic forgetting pre-

viously learned knowledge in long-term online learning, we propose an ensemble

learning framework, named Long-Short-Term Online Learning (LSTOL), which con-

sists of a set of short-term learners and a long-term control mechanism. The former

can be any model but needs to be subject to the requirements of online learning,

such as fast iteration without saving learning samples. The latter contains a dynamic

gate controller that controls whether each existing short-term learner should be up-

dated, kept or removed, or a new short-term learner should be created. The effec-

tiveness of the proposed framework in avoiding forgetting is demonstrated through

cross datasets (KITTI and Waymo), on downstream task of 3D classification of road

participants, and compared with the above EOTL and baseline of Expert Gate.



2

RELATED WORK

2.1/ INTRODUCTION

The field of autonomous driving technology has made rapid advancements in the past

decade, with one of the key driving forces being the incorporation with machine learning

techniques. The latter is driven by data and construct models for various downstream

tasks in autonomous driving, including perception, decision-making and control. Typical

upstream methods include deep learning, which has garnered popularity due to its out-

standing performance in this era. However, a substantial amount of existing efforts has

been spent on the construction of deep models and the fine-tuning of hyper-parameters.

While these endeavors have undoubtedly contributed to the progress of autonomous

driving, few studies have dealt with the autonomous updating of models after they are

deployed to vehicles. Furthermore, there has been a glaring lack of emphasis on the

research of on Online Learning (OL) within the realm of autonomous driving.

In this chapter, for our proposed online continuous learning, and task-specific in 3D detec-

tion of road participants, we give a comprehensive review of the existing related technolo-

gies, especially the methods of spanning upstream and downstream tasks, interspersed

with our insights and analyses. Our overarching goal is to provide a well-rounded per-

spective on the current state of research, thereby to further clarify the research positioning

of the dissertation.

2.2/ UPSTREAM TASKS

Related work on two upstream tasks related to the dissertation is reviewed in this section

including OL and Continual Learning (CL).

11
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2.2.1/ ONLINE LEARNING

Offline learning entails training a model using complete data, often requiring a substantial

amount of manually annotated data to achieve a globally optimal model. Human interven-

tion, such as fine-tuning training parameters and retraining the model, is typically allowed

during the offline learning process. Once the model is deployed on the agent, it remains

unchanged. In contrast, online machine learning represents a paradigm where the agent

can spontaneously and automatically update its knowledge model over time without as-

suming complete data, relying on annotated data, or involving human intervention (Yan

et al., 2023).

As mentioned in Chapter 1, OL emerged in the machine learning community, but its appli-

cation in robotics thus autonomous driving is very promising because its design concept

is very suitable for the needs of the latter. This section first identifies the challenges in the

application of OL in the field of robotics, and then gives a review and analysis of existing

solutions.

2.2.1.1/ CHALLENGES

Data acquisition The challenges involved in data acquisition are twofold: 1) Which

sensor data to use? 2) How to interpret the data and extract learning samples? Regarding

the first question, a typical autonomous vehicle is equipped with various sensors to sense

the vehicle itself and its external environment. The former can use wheel encoders, IMUs,

thermometers, etc., while the latter can use devices such as LiDAR, cameras, sonar, etc.

According to different downstream tasks, the perceptual data that needs to be learned

may be different. For example, the data generated by 3D LiDAR can be learned for object

detection, the data generated by camera may be helpful for understanding the semantics

of the environment, and it would be better to learn some IMU data for vehicle control. Note

that these examples are not exclusive to the use of sensors, i.e. it is certainly possible to

learn from multiple (multimodal) sensor data, and in some specific contexts the latter may

even be a better solution.

For offline learning, the usual practice follows “data collection - data annotation - model

building - model training - model tuning - model deployment”. The worst case scenario

is to repeat this workflow from scratch if the model needs to be updated. Two obvious

limitations of this approach are the cost of building and maintaining the model and the

adaptability of the model. Using an online method like the one studied in this dissertation

is an alternative. However, a new question that arises is “when” to use which sensor

data? For example, cameras are sensitive to lighting conditions and may not be able to

provide usable images in strong light or under poor lighting conditions. Another example

is that LiDAR does not perform well in foggy conditions and may not provide valid sen-
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sor readings. Essentially, sensors that measure different physical properties must have

their own strengths and weaknesses. Therefore, it would be a good practice to design

upstream methods according to the characteristics of downstream tasks.

Regarding the second question, the interpretation of data is a problem that runs from the

low level to the high level. The representation of data is an example of the former. For

example 3D LiDAR data can be represented both as (grayscale) images and as point

clouds. Both representations have advantages and disadvantages. For example, im-

ages are easier to process than point clouds but lose data accuracy (due to the lack of

information in one dimension). The semantics of data can be an instance of high-level

interpretation. For example, if the LiDAR data is represented by a point cloud, the se-

mantics can be extracted based on coordinates or morphology. While the semantics in

images usually rely more on color and texture information.

After the sensor data has been properly interpreted, extracting information of interest from

it actually consists of two sub-problems: information localization and annotation.

Self-supervised learning OL in robotics emphasizes spontaneity and autonomy, in-

situ and on-the-fly. Many practical challenges surround these ambitious goals. One of

the first questions that the robot needs to answer is when to learn and when not to learn.

This involves the convergence and stability analysis of OL. The second question is how

the robot can learn the models without interrupting its work and use them while learning.

Fast deployment Deploying machine learning models to the edge is an open problem,

and for some models such as the recently popular Large Language Model (LLM), it is

not even possible under the existing technical background. If it is offline learning, such

as using Deep Neural Networks (DNN), it may be necessary to optimize the network

structure according to the computing resources at the deployment end. While using OL,

the computing resources at the deployment end should always be considered throughout

the construction of the learning framework, including model selection, to implementation.

2.2.1.2/ APPROACHES

The concept of online learning for mobile robots dates back more than two decades, with

early work by Thrun Thrun (1994) advocating for lifelong learning capabilities in mobile

robots. In recent years, advancements in hardware and algorithms have led to extensive

research in online learning for mobile robots Teichman and Thrun (2011); Yan et al. (2017,

2018, 2020a); Majer et al. (2019); Broughton et al. (2020).

Teichman and Thrun Teichman and Thrun (2011) introduced a semi-supervised learning
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method based on the Expectation-Maximization (EM) algorithm for the object trajectory

classification problem in 3D LiDAR data. They demonstrated that the learning of detection

capabilities for dynamic objects can be improved by incorporating information from multi-

target tracking systems. Their approach starts with a small set of hand-labeled seed

trajectories and a large set of background trajectories pre-collected in areas devoid of

pedestrians, cyclists, or cars.

In contrast, our research takes a further step by focusing on in-situ learning, which in-

volves training the model directly on the target device or system, utilizing local resources

and data. This approach emphasizes capturing the specific characteristics and context

of the target environment. In-situ learning is primarily concerned with learning in the

absence or with incomplete background knowledge, where background samples are dis-

criminated online as the model learns. On the other hand, online learning is a broader

concept that encompasses the dynamic update of the model as new data arrives, regard-

less of whether the training occurs on the target device or in a centralized system.

From a methodological point of view, compared with offline or batch learning, online learn-

ing emphasizes only one or a few samples at a time and the ability to run, train and

feedback in real time. From an engineering perspective, online learning must be an incre-

mental process, because its implementation is to continuously update the model through

data flow. Therefore, it must have some characteristics of continuous learning, and it will

face the challenge of training on new data (maybe new categories are generated, or the

categories may not change, but the distribution of old categories has changed).

The connection between online learning and continual learning can be conceptualized

as a shared paradigm where both approaches emphasize the dynamic adaptation and

improvement of a model over time. The primary principle of this paradigm is to enable

models to adapt, learn, and improve continually over their operational lifetime. It acknowl-

edges that the world is dynamic, and models must evolve to remain effective and relevant.

• Data-Driven Learning: Both online learning and continual learning rely on data to

update and enhance the model’s knowledge. Online learning continuously incorpo-

rates new data as it arrives, while continual learning operates in a more structured

manner but with the overarching goal of adapting to new environment.

• Resource Efficiency: Online learning and continual learning aim to make the

most of available resources, be it computational power, memory, or data, without

requiring retraining from scratch.

• Adaptation: Online learning handles real-time adaptation to evolving data, while

continual learning accommodates the acquisition of new knowledge and tasks while

preserving previous learning.
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• Addressing Catastrophic Forgetting: In online learning, it’s the challenge of

adapting to new data without losing knowledge of old data. In continual learning,

it’s the ability to learn new tasks without significantly degrading performance on

previous tasks.

• Incremental Improvement: Instead of requiring complete retraining, models learn

and improve in smaller, manageable steps in online learning and continual learning.

This aligns with the idea of models learning progressively.

Numerous online and incremental algorithms have been published, spanning a diverse

array of algorithm categories like linear models, tree ensembles, and neural networks.

We’ll give a brief overview of these techniques.

Incremental Support Vector Machine (ISVM) is an exact incremental Support Vector Ma-

chine (SVM) proposed in (Cauwenberghs and Poggio, 2000). It maintains a set of support

vectors alongside a limited set of ”candidate vectors”. These candidate vectors represent

examples that may become support vectors based on future data. The fewer candidate

vectors there are, the greater the risk of overlooking potential support vectors. ISVM is a

lossless algorithm, meaning it yields the same model as a corresponding batch algorithm

when the set of candidate vectors includes all previously encountered data.

In contrast, the Learning Algorithm for Support Vector Machines (LASVM), introduced in

reference (Bordes et al., 2005), is an online approximate SVM solver. LASVM operates

differently by checking whether the presently processed example qualifies as a support

vector and subsequently removing obsolete support vectors. It makes extensive use

of sequential direction searches, similar to the Sequential Minimal Optimization (SMO)

algorithm (Platt, 1998). Unlike ISVM, LASVM does not maintain a set of candidate vectors

but only considers the current example as a possible support vector. This approach offers

an approximate solution while significantly reducing training time.

Moving on to an incremental version of the Random Forest algorithm, the Online Random

Forest (ORF) (Saffari et al., 2009) is a noteworthy adaptation. In ORF, a predefined

number of trees continuously grows by adding splits whenever a sufficient number of

samples are collected within a leaf. Unlike traditional Random Forests, which compute

locally optimal splits, ORF tests a predefined number of random values based on the

Extreme Random Trees scheme (Geurts et al., 2006). The split value that optimizes the

Gini index the most is selected. Tree ensembles, such as ORF, are highly regarded for

their accuracy, simplicity, parallelization capabilities, and insensitivity to feature scaling.

They find significant application, especially in real-time object detection for autonomous

driving.

Learn++ (LPPCART) (Polikar et al., 2001) handles incoming samples in predefined

chunks. For each chunk, an ensemble of base classifiers is trained and then combined us-
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ing weighted majority voting to create an ”ensemble of ensembles.” This approach is sim-

ilar to the AdaBoost algorithm (Freund et al., 1999). LPPCART is a model-independent

algorithm, allowing various base classifiers like SVM, Classification and Regression Trees

(CART) (Loh, 2011), and Multilayer Perceptron (Rumelhart et al., 1985) to be applied.

Incremental Extreme Learning Machine (IELM) takes the batch ELM least-squares solu-

tion and reformulates it into a sequential scheme (Liang et al., 2006). It reduces train-

ing complexity by randomizing the input weights, similar to the batch version. IELM is

compatible with processing data one-by-one or in chunks, which significantly speeds up

processing time. However, initializing the output weights requires a sufficient number of

examples, at least matching the number of hidden neurons.

Stochastic Gradient Descent (SGD) is an efficient optimization technique used for learn-

ing discriminative models by minimizing loss functions like the Hinge or Logistic loss.

This approach, especially when combined with linear models, excels in sparse, high-

dimensional data scenarios, common in text classification or natural language process-

ing. However, linear models are inadequate when nonlinear class boundaries are needed,

frequently the case for low-dimensional data.

Two SVM variations perform similarly, with LASVM capable of processing slightly larger

datasets due to its approximate nature. Both face limitations when dealing with large or

noisy datasets (Ertekin et al., 2010). Researchers have proposed various extensions for

LPPCART and IELM, mostly aimed at addressing non-stationary environments through

the introduction of forgetting mechanisms. It is important to note that forgetting can be

detrimental and harm overall performance.

In the case of LPPCART, the flexibility of using arbitrary base classifiers and limited knowl-

edge integration across chunks pose challenges. Methods for expediting SGD conver-

gence were presented in (Bottou, 2010), but the results obtained by the SGD algorithm

are inevitably influenced by the general benefits and limitations of linear models, such as

low model complexity and linear class boundaries.
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Table 2.1: Overview of All Relevant Hyperparameters

Hyperparameter (independent) Hyperparameter (adjustment)

SVMs
Kernel Function Radial Basis Function (σ)

Regularization

ORF
Split Threshold (θ)

Trees (Numbers and Depth)

LPPCART
Chunk Classifier Classifier’s Parameter

Chunk Size

IELM Activation Function Hidden node

SGD Loss Function Learning Rate

The complexity of model selection varies based on the number and type of hyperparame-

ters. Table 2.1 provides an overview of all relevant hyperparameters, with those adjusting

the scale, like learning rates or σ in the Radial Basis Function kernel, being particularly

crucial. Independent means that the parameter is not affected by the dataset or task,

whereas adjustment means that the parameter needs to be adjusted for the different

data distribution. These parameters not only impact accuracy but also strongly influence

overall model complexity. Generally, tree-based models like ORF are easy to tune and

typically perform well out of the box. In contrast, scale-sensitive models such as ISVM

and LASVM require precise, dataset-dependent configuration of multiple parameters to

achieve satisfactory results. SGD, on the other hand, focuses on minimizing the Hinge

loss function and primarily requires adjusting the learning rate. LPPCART necessitates

specifying the number of base classifiers per chunk and the parameters of the base clas-

sifier itself.

2.2.2/ CONTINUAL LEARNING AND LIFELONG LEARNING

Continual Learning (CL) (also known as incremental learning) refers to continuously

learning a large number of tasks without forgetting the knowledge gained from previous

tasks, where data from old tasks is not available for training new ones. Lifelong Learning

(LL) refers to learning a large number of tasks during the agent’s lifetime and transferring

knowledge between the learning of different tasks, which is usually task-independent.
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Both basically work on the same problem and have been around for a long time, with

early attempts dating back to the 90s (Ring, 1994; Thrun, 1994). However, due to the

different historical backgrounds, the research emphases of the two are also different. CL

emerged in the field of machine learning, focusing on answering how to not forget the

previously learned tasks when learning the current one, that is, to avoid catastrophic for-

getting. LL begins in the field of robotics, mainly to answer how to use the experience of

previous tasks to learn the current task faster and better, such as a closed-loop system.

Since our research is positioned at the intersection of machine learning and robotics, and

is interested in both of the above two emphases, thus, continual learning, incremental

learning, and lifelong learning are investigated as the same topics in this section.

(Ruvolo and Eaton, 2013) gives a architecture of knowledge system in the LL which also

could applies to the CL discussed in this dissertation, as shown in Figure 2.1:

Figure 2.1: Knowledge system in Lifelong Learning in (Ruvolo and Eaton, 2013).

Following this line of thought, in the context of continuous object detection scenarios, we

believe that CL should address the following objectives:

• Limited Resources: CL models should learn sequentially and utilize bounded

memory and computational resources.

• Backward Transfer: CL models should be capable of enhancing the performance

of previously learned tasks by learning new tasks.

• Forward Transfer: CL models should be able to leverage previously acquired

knowledge to facilitate the learning of new tasks. This means that the model should

not start from scratch every time it encounters a new task but should build on its
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existing knowledge to expedite the learning process for new tasks.

• Rapid Adaptation and Recovery: CL models should have the capability to quickly

adapt to new tasks and guard against catastrophic forgetting.

In short, Continual Learning aims to create models that can retain and transfer knowledge

effectively while efficiently expanding their capabilities to handle multiple tasks. This ad-

dresses the challenges of learning in a continuous and ever-expanding data environment,

enabling long-term adaptability and knowledge retention.

2.2.2.1/ CHALLENGES

Catastrophic Forgetting Catastrophic forgetting (Robins, 1995) occurs when a model

learns different tasks separately in multiple time slices, and as it generalizes to new tasks

in later time slices, the performance on old tasks in earlier time slices sharply declines.

This phenomenon poses a critical challenge in continuous multi-task learning, as it un-

dermines the ability to retain previously acquired knowledge while learning new tasks.

How to prevent catastrophic forgetting is one of the concerns of this dissertation.

Figure 2.2: Tug-of-War phenomenon illustration (Hadsell et al., 2020): the two figures on
the left show the trajectory when optimizing the loss function on a single task, and the
right shows the trajectory when optimizing both losses at the same time.

To cope with catastrophic forgetting in the process of CL, it is crucial to analyze the gra-

dient in the multitask optimization problem. In stochastic gradient descent, the dynamic

gradient exhibits a Tug-of-War phenomenon (Hadsell et al., 2020), where gradients from

different tasks compete for updates, ensuring better results on both tasks simultaneously.

However, in a CL condition, tasks appear separately at different time periods, and the

training set information from previous time periods is not available at the current time pe-

riod. This leads to a situation where the model optimizes for the current task, leading to a

loss of performance on previously learned tasks, as depicted in the trajectory illustration

in Fig.2.2.
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Stability-Plasticity Balance The stability-plasticity balance in a learning model refers

to the interplay between its ability to retain previously learned knowledge (Stability) while

adapting and optimizing its performance for new tasks (Plasticity). This concept is often

referred to as the stability-plasticity puzzle.

The biological aspects of human’s Continual Learning, as well as the neural network ar-

chitectures inspired by biological processes of neurons, have motivated the development

of long-term learning models. In human brain, neurosynaptic plasticity plays a crucial role

in regulating the stability-plasticity balance across various regions. The Fig.2.3 illustrates

two forms of neurosynaptic adaptation that play a role in the stability-plasticity balance:

Figure 2.3: The illustration of Hebbian Learning with Homeostatic Plasticity and Comple-
mentary Learning Systems

• a) Hebbian Learning with Homeostatic Plasticity: This combination allows for

the formation of new synaptic connections (Hebbian plasticity) while simultaneously

maintaining the stability of existing connections through homeostatic mechanisms.

• b) Complementary Learning Systems (CLS): This theory proposes that the brain

employs multiple learning systems that complement each other in the learning pro-

cess. Each system specializes in different aspects of learning, contributing to a

balanced and efficient stability-plasticity trade-off.

2.2.2.2/ APPROACHES

In the previous analysis of the two main challenges in CL, it becomes evident that CL

demands an optimization scheme that considers the influence of previous tasks while

performing well on the current task. However, during training, negative interference can

lead to catastrophic forgetting, where certain features learned from one task may nega-

tively impact the performance on other tasks. A model must effectively adapt through a

single pass over the continuous data stream, during which it may encounter new classes
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(referred to as Online Class Incremental (OCI)), or face data nonstationarity, encompass-

ing elements such as new background, blur, noise, changes in illumination, occlusion, and

more (known as Online Domain Incremental (ODI)). Based on these findings, We position

this dissertation in the Online Domain Incremental (ODI) filed. Then we will discussing

solutions related to the challenges focus on three main techniques: regularization-based,

architecture-based and replay-based approaches.

• Regularization-based Approaches: In scenarios where storing information from

previous tasks is not feasible, regularization-based approaches come into play.

Cleverly designed regularization losses can be employed to limit the forgetting of

old knowledge when learning new task.

• Architecture-based Approaches: To avoid forgetting previous tasks, an intuitive

approach is to build large enough models and create a subset of the model for each

task. This can be achieved by fixing a shared backbone and adding new branches

for each new task. This way, the model retains knowledge from previous tasks while

learning new ones without interfering with the existing knowledge.

• Replay-based Approaches: Replay-based approaches are grounded on the idea

of preserving or compressing key data from previous tasks. When learning a new

task, these methods mitigate forgetting by replaying the stored samples during train-

ing. These samples or pseudo-samples are utilized either for joint training or to

constrain the optimization of the loss for the new task, preventing interference with

the knowledge from previous tasks.

Regularization-based Methods In neural neuroscience theoretical models, the protec-

tion and consolidation of learned knowledge from forgetting can be achieved by employing

synapse stimulation with different levels of plasticity in a cascading manner. From the per-

spective of computational systems, this can be accomplished by applying regularization

constraints to the model. By using regularization methods to impose constraints during

weight updates, it becomes possible to learn new tasks while retaining existing knowl-

edge, thus mitigating the problem of catastrophic forgetting. These regularization meth-

ods can be further divided into parameter regularization, distribution regularization, and

Bayesian related. Table 2.2 summarizes the representative regularization-based methods

in recent years.



22 CHAPTER 2. RELATED WORK

Table 2.2: Regularization-based Methods

References

Regularization-based

Parameter Regularization
EWC (Kirkpatrick et al., 2017)

SI (Zenke et al., 2017)
Online-EWC (Schwarz et al., 2018)

Distribution Regularization
LwF (Li and Hoiem, 2017)
LwM (Dhar et al., 2019)

Bayesian Related Online-LA (Ritter et al., 2018)

Parameter Regularization Related Methods

(Kirkpatrick et al., 2017) proposed an approach called Elastic Weight Consolidation

(EWC), which combines supervised and reinforcement learning. EWC ensures that the

model retains knowledge from previous tasks while learning new ones by applying a

penalty to the model parameters based on their importance for previous tasks. The

schematic diagram of EWC is illustrated in Fig.2.4, where it relates the importance of

the parameters to the loss function, then finds a balance parameter that allows effective

learning on task B without causing significant loss on task A.

Figure 2.4: The illustration of Elastic Weight Consolidation (EWC)

Specifically, EWC models the parameter θ of the task training data set D through a poste-

rior probability distribution p(θ|D). However, due to the difficulty in estimating such p(θ|D),

it is approximated as a Gaussian distribution with a mathematical expectation of θ∗A, and

the precision parameter of θ∗A is given by the diagonal element of the Fisher Information

Matrix (FIM). Therefore, the loss function of EWC is defined as:

L(θ) = LB(θ) +
∑

i

λ

2
Fi(θi − θ∗A,i)

2 (2.1)

where LB(θ) is the loss function for task B, λ represents the balance parameter between

new and old tasks, i is the index for candidate parameters, Fi represents FIM.

To alleviate the complexity of computing the FIM in EWC, Zenke et al. (2017) proposed

a method for online calculation of weight importance known as the Synaptic Intelligence
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(SI), which dynamically adjusts the weight of each parameter based on its contribution to

the loss during training, where a larger contribution of the parameter λi indicates greater

importance. The calculation of weight importance as follow:

Fk =

∑
k ∆Lk

T 2
k + ζ

, (2.2)

∆Lk = ∆θk ·
∂L
∂θk

(2.3)

where ∆θk is the amount of weight update, ∂L∂θk is the gradient,
∑

k ∆Lk indicates the overall

loss change, Tk represents the trajectory of weight θk, and ζ is a small constant to avoid

division by zero. Since all the necessary data for computing Fk is available during the

Stochastic Gradient Descent (SGD), there is no additional computational overhead, which

effectively reducing the cost.

In addition, (Schwarz et al., 2018) proposed an Online Elastic Weight Consolidation

(Online-EWC) model based on the Progress and Compress Framework (P&C). This

model is a structurally scalable continual learning method consisting of knowledge repos-

itory and active column. The model achieves forward knowledge transfer by iteratively

optimizing these two components. They can be seen as layers in a neural network, used

for predicting probabilities of the class in supervised learning or generating policies or

values in reinforcement learning.

Figure 2.5: The illustration of Online Elastic Weight Consolidation (Online-EWC)

Fig.2.5 illustrates the process of alternating learning between knowledge repository and

active column in reinforcement learning. During the ”Progress (P)” phase, when learning

a new task, the knowledge repository (gray background) is fixed, and the parameters of

the active column (grid background) are optimized without applying any constraints or

regularization. Notably, a simple knowledge adapter can be used to reuse past learned

knowledge in knowledge repository during this process.

In the ”Compress (C)” phase, the model performs knowledge distillation, i.e., it transfers

newly acquired knowledge forward to the knowledge repository. This phase resembles
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the classical EWC, but the Online-EWC model overcomes the linear increase in com-

putational cost with the number of tasks by using an online approximation algorithm to

approximate the diagonal FIM.

Distribution Regularization Related Methods

(Li and Hoiem, 2017) proposed a Learning without Forgetting (LwF) method, which is

based on Convolutional Neural Network (CNN). This approach combines Knowledge Dis-

tillation (KD) and fine-tuning technique to prevent forgetting of previously learned knowl-

edge.

Given a CNN with shared parameters θshare and task-specific parameters θold, the goal

is to add task-specific parameters θn for a new task and only use new data and labels

(without using labels from existing tasks) to learn these θn. The objective is to achieve

good predictive performance for both the new and previous tasks. The schematic diagram

of the LwF method is illustrated in Fig.2.6.

Figure 2.6: The illustration of Learning without Forgetting (LwF)

In addition, (Dhar et al., 2019) proposed a Learning without Memorizing (LwM) method

based on attention mechanism mapping. This approach helps the model learn new task

incrementally by constraining the difference between teacher and student models. Ad-

ditionally, the LwM does not require any previous information when learning new task.

Different from previous works, the LwM takes into account the gradient flow information

between the teacher and student. It utilizes those information to generate attention mech-

anism mapping, effectively improving the model’s classification accuracy.
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Figure 2.7: The illustration of Learning without Memorizing (LwM)

During the learning process of task t, the attention-based knowledge preservation term

LAD effectively prevents the student model from deviating too much from the teacher

model. To make use of the ”hinden knowledge” in the teacher model during student

learning, the LwM applies a distillation loss LD penalty. The schematic diagram of the

LwM is illustrated in Fig.2.7.

Bayesian Related Methods

(Ritter et al., 2018) proposed an approach called Online Laplace Approximation (Online-

LA) using Kronecker factor from a Bayesian perspective to alleviate catastrophic forget-

ting. This method is based on the Bayesian online learning framework, where they use

Gaussian function recursion to approximate the posterior function for each task, resulting

in quadratic penalty related to weight changes. Laplace approximation requires comput-

ing the Hessian matrix around each mode, which can be computationally expensive. To

ensure scalability, Online-LA introduced block-diagonal Kronecker factor approximations

of curvature, transforming the complex computation problem. The Maximum a Posteriori

(MAP) estimation of the neural network model is given by

θ∗ = argθmax
θ

logp(θ|D) = argθmax
θ

log p(D|θ) + log p(θ) (2.4)

where log p(D|θ) is the likelihood function of the data, and log p(θ) represents the prior

information. In Online-LA, the iteration steps are similar to Bayesian online learning. The

Gaussian function is used to recursively approximate the posterior function of each task,

and then the corresponding mean and accuracy matrix can be obtained.
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Conclusion The LwF method only requires using data from new tasks to optimize the

model for improved accuracy on these new tasks, while maintaining the neural network’s

predictive performance on previous tasks. This method is similar to joint training but does

not utilize data and label information from old tasks. Its drawback is that performance

highly depends on the relevance of the tasks, and the training time for individual tasks

increases linearly with the number of tasks. The EWC method constrains network pa-

rameters using the FIM to reduce forgetting of previously learned knowledge, and it does

not add any computational burden during training. However, this comes at the cost of

computing and storing the LwF values, as well as keeping copies of the previous learning

model parameters. Online-LA reduces forgetting and exhibits some scalability.

In conclusion, regularization methods provide a means to mitigate catastrophic forgetting

under specific conditions. However, these methods introduce additional loss terms for

preserving consolidated knowledge, which can lead to a trade-off issue in performance

on old and new tasks when resources are limited. Although distillation methods offer a

potential solution for multi-task learning, they still require persistent storage of data for

each learning task.

Architecture-based Methods Architecture-based long-term learning is a method that

involves dynamically adjusting the network or model structure to adapt to a continuously

changing environment. This training approach allows for selective training of the model

and, when necessary, expands the model to accommodate the learning of new tasks.

Copy Weights with re-init (CWR) and CWR+

(Lomonaco and Maltoni, 2017) proposed a continual learning method called Copy

Weights with Reinit (CWR). To avoid interference with the learning of different task

weights, CWR sets two sets of weights for the output classification layer: stable weights

(θcw) for long-term memory and temporary weights (θtw) for rapid learning of the current

task. θcw is initialized to 0 before training the first task, while θtw is randomly reinitial-

ized, such as through Gaussian distribution sampling, before each task’s training. In a

multi-task continual learning situation, due to the differences between tasks, the weights

corresponding to the current task in θtw are copied to θcw after each task’s training. This

ensures that θcw serves as a mechanism for long-term memory learning, while θtw acts as

a short-term working memory mechanism, facilitating the learning of new task knowledge

without forgetting the knowledge learned from previous tasks.

Furthermore, to avoid frequent changes in the weight matrices and bias vectors of shallow

connections in the neural network, all shallow layer weights are frozen after completing

the training of the first task.

(Maltoni and Lomonaco, 2019) improved the CWR method and proposed CWR+ which
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introduce Mean Shift and Zero Initialization techniques. Mean Shift, which automatically

compensates each batch weight (wi) by normalizing it with the subtraction of the glob-

ally averaged weight learned from all tasks. This eliminates the need for re-normalizing

network weights, and experimental results show that this approach achieves better per-

formance compared to other normalization methods.

Additionally, the Zero Initialization, where the weights are initialized to zero instead of the

typical Gaussian distribution sampling or Xavier initialization. The experimental results

demonstrate that introducing these fine-grained normalization and initialization methods,

even as simple as Zero Initialization, can enhance experimental performance to some

extent in continual learning scenarios.

Dynamically Expandable Network

(Yoon et al., 2017) proposed a deep network model called Dynamically Expandable Net-

work (DEN) for continual learning tasks. The DEN model dynamically determines its

network capacity while training a series of tasks, allowing it to learn compressed and

overlapping knowledge shared among tasks. In continual learning, the most significant

feature is that all training examples from previous tasks (t − 1 tasks) are unavailable dur-

ing the training of the current task t. Consequently, solving the model parameters wt

becomes an optimization problem. During the optimization process, the DEN model effi-

ciently retrains training examples in an online manner through selective retraining. When

a new task arrives, and the existing features cannot accurately represent it, the network

dynamically expands by introducing additional necessary neurons to represent the new

task features, as shown in Figure. 2.8. Compared to previous network expansion models,

DEN can dynamically expand its network capacity, ensuring it has an appropriate number

of neurons to learn different tasks effectively.

Figure 2.8: The illustration of incremental learning in a Dynamically Expandable Network
(DEN): Left: Selective retraining. DEN first identifies neurons that are relevant to the
new tasks, and selectively retrains the network parameters associated with them. Cen-
ter: Dynamic network expansion. If the selective retraining fails to obtain desired loss
below set threshold, DEN expand the network capacity in a top-down manner, while elim-
inating any unnecessary neurons using group-sparsity regularization. Right: Network
split/duplication. DEN calculates the drift for each unit to identify units that have drifted
too much from their original values during training and duplicate them.
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Expert Gate

(Aljundi et al., 2017) proposed Expert Gate, aiming to determine which expert network

should be used for a new task using an auto-encoder gate. The idea is to select the most

relevant old tasks, based on the similarity with the new task, and then perform further

training, as shown in Fig.2.9.

Figure 2.9: The illustration of Expert Gate

Expert Gate is based on the notion that data from a task-related domain should have a

lower reconstruction error on an auto-encoder compared to unrelated data. To achieve

this, they used different auto-encoders for the new and old tasks and calculated the re-

construction error on each other’s data to determine the relatedness between tasks. If

the relatedness exceeded a certain threshold, the Learning without Forgetting (LwF) will

be applied, otherwise, the fine-tuning strategy will be used .

Figure 2.10: The illustration of (a) Shared Bottom, (b) Mixture of Experts (MOE) and (c)
Multi-Gate Mixture of Experts (MMOE)
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Similar approaches include Mixture of Experts (MOE) (Shazeer et al., 2017) and Multi-

Gate Mixture of Experts (MMOE) (Ma et al., 2018). MOE comprises multiple expert net-

works, each independently contributing to the final output, and a gating network deter-

mines the influence of each expert on the target for different tasks. MMOE builds upon

the MOE, introducing multiple expert networks for each task, and a gating network specif-

ically learns different combination patterns of expert networks’ outputs for each task. The

structures of MOE and MMOE are shown as (b) and (c) respectively in Figure.2.10.

Conclusion The CWR method achieved the recognition of continuously learning ob-

jects, paving the way for subsequent research as a benchmark method. However, a

drawback of both the CWR and CWR+ methods is that, after training for each task, some

weights are frozen to prevent forgetting of the acquired knowledge. As a result, knowl-

edge cannot be propagated backward, thereby limiting the model’s ability to learn new

knowledge. While DEN conducts partial retraining of the network for old tasks by explic-

itly mining inter-task relationships and, when necessary, increases the number of neurons

to enhance its capability to interpret new tasks, effectively preventing semantic drift.

These methods effectively mitigate the forgetting problem in continual learning. How-

ever, architecture-based-based methods, as the number of tasks increases, result in an

expanding model structure. Therefore, they cannot be applied to large-scale datasets,

which represents an important limitation for practical applications of such models.

Replay-based Methods The Complementary Learning Systems (CLS) (ref to 2.2.2.1)

is a theory that composed of the hippocampus, which emphasizes short-term adaptation,

and the neocortex, which maintains long-term memory (Masana et al., 2022). The inter-

action between the two allows for the rapid acquisition of new knowledge, which is then

gradually integrated into long-term memory over time. The CLS theory provides a es-

sential research foundation for modeling memory consolidation and retrieval processes.

Inspired by this theory, a series of continual learning models, including episodic memory

and generative models, have been proposed.

Gradient Episodic Memory

(Lopez-Paz and Ranzato, 2017) proposed Gradient Episodic Memory (GEM), which en-

ables forward knowledge transfer from previous tasks and positive transfer of previously

learned knowledge to the current task. The key feature of the GEM model is that it stores

a episodic memory model Mk for each task k to avoid catastrophic forgetting. This model

not only minimizes the loss for the current task t but also uses the loss of the episodic

memory model for tasks with k < t as inequality constraints to prevent an increase in the

loss function l( fθ,Dt) while allowing a decrease in the loss function l( f θ,Dt).
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To alleviate the computational burden of the original GEM, (Chaudhry et al., 2018) intro-

duced the Averaged Gradient Episodic Memory (A-GEM). The main feature of the GEM

model is to ensure that the loss for each previous task does not increase during each

training step. In the A-GEM model, to reduce computational complexity, the aim is to en-

sure that the average memory loss relative to previous tasks does not increase at each

training step.

Episodic Memory Replay

Episodic Memory Replay (EMR) is an model (Wang et al., 2019) that improves upon the

Stochastic Gradient Descent (SGD) by incorporating memory replay. During training on

new tasks, EMR randomly samples data from memory and replays it, thereby retaining

knowledge from previous tasks in the model. After training each task k, EMR selects

a few training samples to store in the memory M, denoted as M ∩ T k
train. To address

scalability, EMR performs random replay from memory. Specifically, when training task k

with a mini-batch Dk
train ⊂ T k

train, EMR extracts samples from memory M to form a second

mini-batch Dk
replay ⊂ M, and then performs gradient updates on both Dk

train and Dk
replay. It is

worth noting that EMR can be applied to any stochastic gradient optimization algorithm,

such as SGD, AdaDelta, Adagrad, etc.

Lifelong Generative Modeling

(Ramapuram et al., 2020) proposed the Lifelong Generative Modeling (LGM) which use a

Student-Teacher Variational Autoencoder (STVA) based on (Kingma and Welling, 2013)

to continuously integrate newly learned distributions into the existing model without the

need to retain past data or model structures. This enables the model to learn from the

distributions of consecutive tasks. Inspired by Bayesian update rules, they introduced

a new Cross-Model Regularizer in the LGM, allowing the student model to effectively

utilize information from the teacher model. The LGM employs a dual architecture based

on the Student-Teacher model. The teacher’s role is to retain distributional memory of

previously learned knowledge and transfer it to the student, while the student effectively

uses the knowledge acquired from the teacher to learn the distribution of new input data.

By jointly optimizing the teacher and student models, this dual system enables learning

of new knowledge without forgetting previously acquired knowledge.

Conclusion The GEM, compared to the LwF and EWC, yields better performance.

However, during training, GEM requires more memory overhead because it involves

episodic memory for each task. As the number of learning tasks increases, the train-

ing cost sharply rises, and improving performance also imposes a heavier computational

burden. The A-GEM, in contrast to the GEM model, ensures that the average episodic

memory loss relative to previous tasks does not increase at each training step. This

makes it highly memory-efficient, and it does not require storing the additional G matrix.



2.3. DOWNSTREAM TASKS 31

The EMR differs from the GEM in that it does not require gradient mapping during un-

constrained optimization, such as solving the g-problem. The time complexity of the EMR

is proportional to the number of examples stored for each previous task, whereas the

GEM requires computing gradients for all data stored in memory. Therefore, as the num-

ber of tasks increases, this computational process grows linearly, making GEM no longer

suitable.

The LGM model effectively facilitates knowledge transfer in a teacher-student learning

framework. The use of regularization effectively mitigates the problem of interference.

However, one issue in the learning process of this model is the inability to access any old

data, and all necessary information must be extracted into a single final model to learn.

2.3/ DOWNSTREAM TASKS

2.3.1/ 3D DETECTION OF ROAD PARTICIPANTS

In recent years, significant progress has been made in 3D object detection using visual

sensors thanks to advancements in hardware computing capabilities and the continuous

evolution of software and algorithms, particularly the remarkable progress of deep neural

networks (Chen et al., 2016; Xu and Chen, 2018; Mousavian et al., 2017). However,

despite these impressive achievements, visual sensors have certain inherent limitations

that pose challenges to further accurate object detection. One major limitation is their

restricted ability to precisely determine object poses, which can be crucial for various

applications, such as robotics and autonomous vehicles. Additionally, visual sensors

are highly sensitive to changes in lighting conditions, which can negatively impact their

performance.

To overcome these limitations and further improve object detection capabilities in some

special conditions, researchers have been actively exploring alternative methods that uti-

lize non-visual sensors. An illustrative instance is the work by (Dequaire et al., 2018), who

presented a approach utilizing a Recurrent Neural Network (RNN) to grasp the dynamic

state of the environment observed through two 3D LiDARs. In an unsupervised manner,

they trained a representation model and effectively integrated it into self-driving vehicles

to facilitate the detection and tracking of nearby road participants. By exploiting the wealth

of spatial information present in 3D LiDAR point clouds, this method significantly bolsters

the perceptual abilities of autonomous vehicles.

Similarly, (Chen et al., 2022) presented a method focused on segmenting moving ob-

jects in point clouds from 3D LiDAR and automatically generating labels to them. Their

approach integrates a multi-target tracker to create trajectories for the moving objects,

consequently enhancing the precision of offline coarse detection outcomes. This method
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facilitates a better understanding of object movements and interactions, crucial for achiev-

ing more reliable and precise object detection results.

Moreover, acknowledging the challenges posed by foggy weather conditions that can

impact the effectiveness of camera and LiDAR-based object detection systems, (Majer

et al., 2019) proposed an ingenious solution by integrating millimeter-wave radar. They

developed a pedestrian detection system using the Support Vector Machine (SVM) and

harnessed the radar’s capability to penetrate fog, ensuring reliable detections even in ad-

verse weather conditions. This approach significantly enhances the safety and reliability

for object detection, particularly in challenging scenarios.

Table 2.3: Advantages and Limitations of Multi-Sensor based Object Detection

Advantages

Increased Reliability
By fusing data from multiple sensors, the system will
more robust and reliable, as it can cross-verify de-
tections and overcome sensor-specific limitations.

Enhanced Perception

Different sensors provide complementary informa-
tion, allowing the system to perceive the environ-
ment from multiple perspectives, resulting in a more
complete and accurate understanding.

Adaptability

The system can adapt to various environmental con-
ditions, such as changes in lighting, weather, or ob-
ject appearance, by relying on different sensors that
are less affected by specific conditions.

Redundancy
If one sensor fails or provides erroneous data, the
other sensors can compensate for the loss, ensuring
the system’s functionality and safety.

Limitations

Increased Complexity

Integrating multiple sensors and handling their data
fusion requires sophisticated algorithms and calibra-
tion, leading to higher implementation and mainte-
nance complexity.

Higher Cost
Deploying multiple sensors adds to the overall cost
of the system, making it potentially more expensive
compared to using only one or a few sensors.

Sensor Synchronization
Ensuring precise data synchronization across sen-
sors can be challenging, requiring careful engineer-
ing and calibration efforts.

These research efforts demonstrate the importance of exploring detection methods based
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on diverse sensor modalities to address the limitations and challenges associated with

visual sensors. By leveraging the strengths of non-visual sensors, such as 3D LiDAR and

millimeter-wave radar, which provide unique advantages that complement the strengths of

visual sensors, researchers are paving the way for more robust, accurate, and adaptable

object detection techniques, thereby advancing the field of autonomous driving and its

practical applications.

Certainly, multi-sensors are not a cure-all solution, and they come with their own set of

issues and challenges. The application of multi-sensors should be chosen selectively

based on the specific requirements and conditions. Tab.2.3 provides a summary of the

advantages and limitations associated with using multiple sensors.

By harnessing the unique advantages of multiple sensors and integrating their outputs,

autonomous systems can achieve a more comprehensive and accurate perception of their

surroundings. Generally, a multi-sensor-based autonomous system designed for object

detection and tracking typically involves following several steps, as illustrated in Fig.2.11.

Figure 2.11: Schematic diagram of a typical multi-sensor based autonomous system for
detection and tracking

• Sensor Calibration: The calibration involves aligning the coordinate systems and

intrinsic/extrinsic parameters of each sensor to ensure that the collected data can

be effectively combined.

• Object Detection: Each sensor modality contributes its specialized information

for object detection. Cameras are well-suited for recognizing object appearances,

while LiDAR excels at providing precise 3D location information.

• Data Association/Fusion: The collection and synchronization of data from differ-

ent sensors involve matching detections based on time, location, speed, and other

attributes, associating the detections of the same object across different sensors. In

practice, this data fusion can be performed at various levels, including sensor data

fusion, feature-level fusion, or decision-level fusion.

• Object Tracking: Once data association is established, the system tracks the
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detected objects over time to maintain their identity and trajectory using multiple-

target tracking algorithms, such as Kalman filters or particle filters.

The exploration of multimodal sensor perception and data fusion is essential to leverage

the unique strengths of different sensors and improve the overall perception capabilities

of autonomous driving systems. (Yan et al., 2020c). In this dissertation, our primary fo-

cus is on two types of sensor data: images from cameras and point clouds from 3D

LiDAR. 3D LiDAR is used because it provides highly accurate spatial information, direct

depth perception, robustness in challenging conditions, and enhanced object discrimina-

tion, making it a valuable sensor for precise and reliable object detection and tracking in

various applications, particularly in autonomous driving and robotics. Through a detailed

comparison presented in Table 2.4, our aim is to elucidate the advantages and limitations

of these sensor modalities in their applications within the field of autonomous driving.

Table 2.4: Comparison in Advantages and Limitations of Cameras and 3D LiDAR:

CAMERA 3D-LIDAR

Advantages

Rich visual information Precise location information

Low-cost and widely available Unaffected by lighting conditions

Established vision-based methods Direct depth information

Disadvantages

Sensitive to lighting conditions Higher cost

Limited depth perception Sparse appearance information

Over the past few years, there has been a significant increase in detection based on

cameras and 3D LiDAR, and these methods have demonstrated improved accuracy.

As an example, (González et al., 2016) conducted a study where they explored the com-

bination of RGB images from a monocular camera and point clouds from 3D LiDAR for

object detection. To achieve this, they trained separate Random Forest (RF) for each

view and later merged all the RFs into an ensemble. By integrating the information from

both images and point clouds, their approach significantly improved the accuracy and

dependability of detecting cars, pedestrians and cyclists. This was possible due to the

complementary nature of the data sources used in their fusion-based detection frame-

work.

Similarly, (Qi et al., 2018) proposed a method called Frustum PointNets that also employs

the combination of an RGB camera and a 3D LiDAR sensor. However, their approach

differs in its strategy. They begin by generating 2D object region proposals from RGB
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images and subsequently extend each 2D region into a 3D frustum to extract the cor-

responding point cloud data from the 3D LiDAR. Then, they utilize PointNets (Qi et al.,

2017a) to estimate 3D bounding boxes based on the points within the frustum. The

schematic diagram of the Frustum PointNets is illustrated in Fig.2.12.

Figure 2.12: The Illustration of Frustum PointNets. 2D object region proposals firstly
generated in the RGB image using a CNN. Each 2D region is then extruded to a 3D
viewing frustum. Finally, the PointNet predicts a (oriented and amodal) 3D bounding box
for the object from the points in the frustum.

This methodology shares some similarities with our knowledge transfer approach, par-

ticularly in transferring knowledge from the RGB camera to the 3D LiDAR. However, the

primary distinction lies in the scope of information considered. While Frustum PointNets

concentrates on instant spatial information (specifically, object detection), our approach

incorporates both spatial and temporal information (i.e., trajectories).

2.4/ DISCUSSION

Online Transfer Learning for Road Participant Detection

Multi-Sensor based object detection and tracking is a comprehensive approach that lever-

ages data from multiple types of sensors to enhance the accuracy, robustness, and re-

liability of perceiving the surrounding environment in autonomous driving and robotics

applications. By fusing information from different sensors, such as cameras, 3D LiDAR,

radar, and ultrasonic sensors, etc., the system can overcome individual sensor limitations

and gain a comprehensive understanding of the environment.

Our investigation of existing work has revealed a significant gap in the field of efficient

and autonomous learning for road participant detection, especially concerning dynamic

objects, a critical aspect in the context of 3D LiDAR-based autonomous vehicles. To

address this need, we propose leveraging transfer learning Pan and Yang (2009), a tech-

nique that can enhance the learning process of a target predictive function by leveraging

knowledge from a source domain and learning task during the training phase. The pri-

mary objective of transfer learning is to adapt the model to the target domain and task,
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facilitating better generalization and improved performance in the target setting.

In our context, we focus on Online Transfer Learning, a particularly valuable approach

when labeled data is scarce in the target domain or when the target domain experiences

changes over time. The choice between traditional transfer learning and online transfer

learning depends on factors such as the availability of labeled data, the dynamic nature

of the target domain, and the specific requirements of the learning task.

An intuitive idea that we explore in our research is to use visual sensors to train non-visual

sensors. The non-visual sensors learn in a self-supervised manner using unlabeled data,

supplemented with annotations from the visual sensors. This knowledge transfer enables

the non-visual sensors to improve their object detection capabilities efficiently.

Formally, our proposed learning framework can be described as an Online Transfer Learn-

ing paradigm. By continuously updating the model based on new data and knowledge

from the visual sensors, the framework adapts to changing environmental conditions and

improves detection performance over time.

Integrating Online Random Forest into our learning framework holds particular signifi-

cance due to its inherent advantages. Random Forest is renowned for its fast train-

ing speed, suitability for multi-class learning, and ease of interpretability, aligning with

the expectations of both the academic and industrial communities for components in

autonomous vehicles. The inclusion of ORF complements our online transfer learning

approach, ensuring robust and efficient object detection in the context of autonomous

driving.

Gating-based Long-Short-Term Online Learning

The ensemble learning concept of Expert Gate provides us an open-ended approach

for handling continual learning tasks has inspired our work. Our proposed framework,

called as Long-Short-Term Online Learning (LSTOL), is built upon this inspiration, which

involves constructing multiple short-term learning modules as ”experts” and a long-term

control module to manage and utilize these experts effectively. However, there is a key

difference between our approach and the ensemble learning methods mentioned earlier.

In our framework, the expert networks are developed based on the objectives of multi-task

learning, aiming to leverage knowledge across related tasks.

The distinctive aspect of our approach lies in the context of long-term learning, where both

data and the environment may be unknown and subject to continual changes. Unlike tra-

ditional multi-task learning, which assumes access to all tasks during training, our frame-

work accounts for the challenges of Continual Learning, where tasks are encountered

sequentially, and access to past data may be limited. By combining short-term learning

modules as experts and a long-term control module to manage knowledge retention and

adaptation, our approach seeks to address the complexities of continual learning in dy-
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namic and evolving environments. The potential applications of this framework include

scenarios where models need to learn and adapt over extended periods while dealing

with diverse and unpredictable tasks and data distributions.
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3.1/ THE METHODOLOGY

A common assumption in machine learning methods includes that the distribution of train-

ing and test data remains consistent. However, real-world situations frequently challenge

this assumption due to environmental shifts, the introduction of novel objects, or alter-

ations in data distribution. Online Learning (OL) is considered an effective way to avoid

this assumption, since it allows continuous refinement and adjustment of one or more

models as new data becomes available. The general form of the objective function for OL

can be defined as:

Regret =
T∑

t=1

ft(wt) −
T∑

t=1

ft(w∗) (3.1)

means that every time t samples are learned, w is updated to obtain wt, where w is the

set of model parameters. OL should pursue the smallest cumulative regret (i.e. regret

minimization), which is similar to the greedy algorithm. This is clearly different from batch

learning, where the objective function is:

Loss =
T∑

t=1

ft(wT ) −
T∑

t=1

ft(w∗) (3.2)

Compared to batch learning, OL has two key assumptions that do not hold: 1) All data is

available; 2) Ground truth is available.

A fundamental challenge in using OL in robotics is how to obtain learning data (Yan

et al., 2023). This challenge is particularly prominent in the field of autonomous driving:

in addition to complex road situations, the difficulty of interpreting lidar data is also an

important reason. Second, how to efficiently train, save, and maintain models after the

data is acquired constitutes a second challenge. Finally, since OL can be a long-term

iterative process, how to learn from new data without forgetting useful knowledge already

learned poses a third challenge. In essence, when a new task is learned, the model tends

to overwrite the previously learned w (see Figure 3.1), leading to a decline in performance

for the tasks learned in the past.

Motivated by the above three research challenges, with 3D detection of road participants

in autonomous driving as a downstream task, this dissertation proposes an Online Con-

tinual Learning (OCL) framework with three key features:

• High-quality learning sample generation without human intervention: Similar

to self-supervised learning, the samples that the agent needs to learn are com-

pletely autonomously generated, including extracting the Region of Interest (ROI)

from the raw sensor data, and then labeling the region with high confidence. Details

on this feature are given in Chapter 4.



3.1. THE METHODOLOGY 43

Figure 3.1: Schematic diagram of catastrophic forgetting, which occurs when the system
significantly loses performance on previously learned tasks as it learns new informa-
tion (Kolouri et al., 2019).

• Fast iterative training of multi-class models and efficient model access:
Based on the guiding idea of “learning quickly and applying the learned model im-

mediately” (Yan et al., 2023), an online random forest method is integrated, which

is inherently fast and suitable for multi-class learning. Furthermore, how is efficient

model access achieved? Details on this feature are given in Chapter 5.

• Efficient prevention of catastrophic forgetting: Each fresh object category or

tracking scenario is regarded as a distinct learning task (based on the idea of multi-

task learning), models can be trained on different segments of the data stream to

form a classifier ensemble, and individual short-term models are maintained by a

set of control strategies. Details on this feature are given in Chapter 6.

The framework is comprised of four closely interconnected components: detection, track-

ing, learning, and control, as shown in Figure 3.2.

• Detection: The detection component is responsible for identifying and localizing

objects in the input sequential data streams. It utilizes object detection algorithms

to detect objects of interest and provides this detection information to the tracking

component.

• Tracking: The tracking component takes the detection information from the detec-

tion module and generates trajectories for the objects across consecutive frames.

Various tracking algorithms, like Kalman filters or particle filters, can be employed

for this purpose.
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• Learning: The learning component analyzes the trajectories generated by the

tracking module. It leverages this trajectory information and incorporates its own

learning state information to identify patterns, features, or representations relevant

to the tracked objects’ behaviors and appearances. Chapters 4 and 6 cover work

involving one and multiple learners, respectively.

• Control: The control component plays a crucial role in guiding the learning process

and preventing catastrophic forgetting. It receives the trajectory information and

learning state from the learning module. Based on this information, the control

component guides the learning process to generate high-quality samples that can

be used for detection training.

The updated detection information from the learning process enhances the tracking mod-

ule’s performance by providing more accurate object detections. This improved track-

ing, in turn, generates better trajectories for learning. Thus, a closed-loop structure of

detection-tracking-learning-control is formed, with each component benefiting from the

others’ outputs. The four components work together to facilitate continuous improvement

and online adaptation of a vehicle’s road participant detection performance.

Figure 3.2: Componentized overall structure of the proposed OCL framework.

As a conclusion, OCL is a cutting-edge approach, not only for the field of autonomous

driving, but also in a broader sense (Mai et al., 2022)This method elegantly integrates

OL and Continual Learning (CL), so that the model can be updated in time with the data,

knowledge rather than data can be saved anytime and anywhere, and catastrophic for-

getting can be avoided in the long-term learning process.
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3.2/ DATA USED FOR EXPERIMENTS

3.2.1/ OPEN DATASETS

Open datasets have been widely recognized as the key to advancing research in related

fields and achieving fruitful results. They typically have standardized formats and eval-

uation metrics, creating a common ground for researchers to test their methods against

existing state-of-the-art ones. Two popular open datasets including KITTI (Geiger et al.,

2012) and Waymo (Sun et al., 2020) are used in our research to extensively evaluate the

efficacy of the proposed framework. These two datasets encompass real-world complex-

ities and challenges, making them crucial for understanding the strengths and limitations

of our methods.

The KITTI dataset (see Figure 3.3 (Geiger et al., 2013)) stands as a pioneering work in

the realm of autonomous driving datasets, providing essential exteroceptive data in both

image and point cloud formats, which are tightly synchronized. The dataset also offers a

comprehensive benchmarking suite, streamlining the comparison of various methods in

the field. However, it is important to acknowledge that KITTI does have some inherent lim-

itations. While it serves as an excellent resource for computer vision-oriented approaches

to autonomous driving, it might not fully capture the intricate nuances of the autonomous

driving task itself. For instance, the dataset handles sensor data with varying acquisition

frequencies by employing one-to-one frame synchronization, and the labeling process

involves projecting information from images onto the point cloud, which may not entirely

reflect the point cloud’s true geometric characteristics (Yang et al., 2022). Moreover,

KITTI’s scenes tend to be conventional and low in dynamic complexity, featuring favor-

able weather and lighting conditions. These scenes do not fully represent the challenges

faced in real-world driving. Additionally, the object detection and tracking benchmarks in

the dataset are discontinuous in time, and lack essential global position information about

the vehicle itself. Despite these limitations, KITTI remains an indispensable resource for

the community. KITTI data were collected in Karlsruhe, Germany.

The Waymo dataset (see Figure 3.4 ), introduced in 2019, represents a significant ad-

vancement in autonomous driving data resources. Notably, it offers a scene-based or-

ganization, which means it provides continuous annotated data for each scene, enabling

a more comprehensive understanding of the driving context. A distinguishing feature of

this dataset is the inclusion of real-time global positioning information of the vehicle, en-

hancing the spatial awareness of algorithms during evaluation. Additionally, the Waymo

dataset employs a many-to-one synchronization approach, effectively handling data from

various sensors and ensuring a coherent and unified dataset. One of the standout quali-

ties of the Waymo dataset is its diverse and extensive collection of driving environments.

By incorporating various weather conditions and capturing data at different times of the
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Figure 3.3: Example images from the left color camera in the KITTI dataset.

day, it presents an excellent opportunity for researchers to evaluate algorithms across

a wide range of scenarios. This diversity allows for a more robust assessment of the

proposed framework’s performance, especially in handling challenging real-world driving

conditions. Waymo data were collected in California, USA.

As a summary, the main motivations for using the KITTI dataset in our research include: 1)

its wide usage and academic recognition, and 2) the mature benchmark suite it provides

to facilitate quantification of results and comparison with peers. The main motivations

for using the Waymo dataset include: 1) its data is more in line with the needs of the

field of autonomous driving, 2) its diverse driving scenarios, 3) its different scenario from

KITTI makes it possible to evaluate the cross-environmental learning and adaptability of

the proposed OCL framework, and 4) learning across datasets can help us evaluate the

proposed framework’s ability to prevent catastrophic forgetting.

3.2.2/ DATA SELECTION

Data used for experiments should be relevant to a specific task. To this end, for the KITTI

and Waymo datasets, unannotated continuous raw sensor data are used as input to the

OCL framework, while each dataset’s respective evaluation set is used to evaluate the

learning performance of OCL. Specifically, in KITTI, scenes containing cars, cyclists, and

pedestrians in urban road environments are prioritized, while highways and monotonous

scenes dominated by stationary vehicles are excluded, which are usually used for visual
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Figure 3.4: Example images from the color camera in the Waymo dataset.

odometry tasks.

In Waymo, we adopt a distinct strategy. Here, we systematically sample 15 clips from the

expansive training set, organizing them based on scene type. This meticulous sampling

approach serves as the foundation for the online updating of classifiers that were initially

learned using the KITTI dataset. Considering the format disparity between the Waymo

and KITTI datasets, an essential preprocessing step involves the transformation of the

original Waymo dataset into a format compatible with the KITTI dataset. This adaptation

streamlines the data loading, model training, and evaluation processes, paving the way

for effective knowledge transfer across disparate datasets.

The depth-rich 3D point clouds, forming an integral part of the KITTI detection benchmark,

play a pivotal role in the assessment of LiDAR-based detectors.

3.3/ EVALUATION METRICS

Evaluation metrics play a crucial role in the development and advancement of research,

which provide a systematic and quantitative way to measure the performance of algo-

rithms, models, and systems. Their establishment enables us to objectively compare dif-

ferent approaches and determine which ones are more effective in solving specific tasks.

The following subsections detail the evaluation metrics used in this dissertation.

3.3.1/ CLASSIFICATION PERFORMANCE EVALUATION

The confusion matrix is invaluable in understanding the classification performance of the

classifier at a micro level, as it provides a more intuitive representation of the differences

between the actual labels and the predicted labels for different classes. In the confusion
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matrix, each row represents the true labels of the data instances in a specific class, while

each column corresponds to the predicted labels made by the classifier for that class.

Figure 3.5: Examples of a standard binary classification confusion matrix

Figure 3.5) presents a typical confusion matrix example for a binary classification prob-

lem, as well as the calculation of the other classification performance matrix including

Accuracy, Precision, Sensitivity (Recall), Specificity and Negative Predictive Value. The

four important basic concepts used in the calculation process are:

• True Positive (TP): A positive example is correctly predicted as positive.

• False Positive (FP): A negative example is incorrectly predicted as positive.

• False Negative (FN): A positive example is incorrectly predicted as negative.

• True Negative (TN): A negative example is correctly predicted as negative.

For the multi-classification problem involved in this dissertation, we transform it into multi-

ple two-classification problems for discussion, and introduced new evaluation indicators.

That is, for a certain class in a multi-classification problem, focus on the following three

indicators:

• True Positive (TP): Samples belonging to this class are correctly predicted for this

class.

• False Positive (FP): Samples that do not belong to this class are incorrectly pre-

dicted to this class.

• False Negative (FN): Samples belonging to this class are incorrectly predicted to

other class.

F1-score is an evaluation metric used in statistics to measure the accuracy of a binary

classification classifier. It is used to measure the accuracy of imbalanced data that takes

into account both the precision and recall of the classification model, which can be seen
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as a weighted average of model precision and recall. (Its maximum value is 1 and the

minimum value is 0.)

In multi-classification problem, there are two calculation methods for calculating the

F1-score of a classifier, namely Micro-F1-score (macro-average) and Macro-F1-score

(macro-average).

Micro-F1-score is calculated as follows:

MicroF1 = 2 ·
Pmicro · Rmicro

Pmicro + Rmicro
(3.3)

while Macro-F1-score is calculated as follows:

MacroF1 = 2 ·
Pmacro · Rmacro

Pmacro + Rmacro
(3.4)

where precision and recall are calculated separately for each class from macro and micro

perspectives:

Pmicro =

∑n
i=1 T Pi∑n

i=1 T Pi +
∑n

i=1 FPi

Rmicro =

∑n
i=1 T Pi∑n

i=1 T Pi +
∑n

i=1 FNi

(3.5)

and

Pmacro =
1
n

n∑
i=1

Pi

Rmacro =
1
n

n∑
i=1

Ri

(3.6)

where P is precision, R is recall, n is number of classes, TP is true positive, FP is false

positive, and FN is false negative. As can be seen, Micro-F1-score (macro-average)

first calculates the total Precision and Recall of all class, and then calculates the F1-

score, while Macro-F1-score (macro-average) first calculates the average of Precision

and Recall from each class, and then calculates F1-score.

If the Average Accuracy (ACC) of the model is defined as the proportion of correctly

classified samples among all samples, then ACC is mathematically consistent with micro-

F1-score. For the convenience of readers’ understanding, we will use ACC to replace

micro-F1-score in the figures. Similarly, macro-F1-score is actually mathematically the

average representation of macro-F1 for each class, so it can be represented by Macro

Average (MaA).

ACC is an overall measure consideration of correctly classified samples, but will be af-

fected by data imbalance (for example, there are far more samples of vehicles than cy-

clists). And Macro Average (MaA) indicate the consistency in classification performance

of different classes, which calculates the precision and recall rate of each class sepa-

rately, so the classes will be treated equally and is less affected by data imbalance, but
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it is easily affected by classes with high recognition (high recall or high precision). Using

both ACC and MaA for evaluation allows us to gain a comprehensive understanding of

our model’s classification performance. By combining these metrics, we can ensure that

our classification approach is robust and reliable across various class distributions and

scenarios.

3.3.2/ DETECTION PERFORMANCE EVALUATION

Object detection is an outcome that arises from the collaborative interplay of classification

and localization tasks.

In real-life scenarios, road participants encompass several object categories, such as

vehicles, pedestrians, and cyclists. Hence, it becomes essential to assign a confidence

score to each detected object as an evaluation of classification performance. Typically,

different confidence ranges (i.e. classification thresholds) are assigned for each category.

Lowering the classification threshold results in decreased precision but increased recall,

as objects with lower confidence scores might be redetermined as valid detections, vice

versa.

Furthermore, for a more robust assessment of the detector’s localization capabilities, it’s

crucial to determine if the true labels and detection results match. In practice, a metric

called Intersection over Union (IoU) is employed to determine the match between two

bounding boxes. This metric measures the overlap between each bounding box returned

by the detector and all the true bounding boxes, calculating both the intersection and

union areas of the two rectangles, as shown in Figure. 3.6.

Figure 3.6: Intersection over Union (IoU) described in (Padilla et al., 2020).

If the IoU value for a given label detection exceeds the specified IoU threshold, it’s clas-

sified as a TP. Conversely, when the IoU is below the threshold, the detection is consid-

ered a FP. If a true label is entirely undetected, it’s categorized as a FN. Changing the

IoU threshold also influences precision and recall since a lower threshold leads to many

detections matching the labels, resulting in a higher number of TPs. In most benchmarks,

like KITTI and Waymo, the minimum IoU required for vehicles is set to 70%.

Average Precision (AP) is used to measure the model’s detection performance for a
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single category. A higher AP indicates better detection accuracy for that category. It is

described as follows:

a. Precision-Recall Curve

As mentioned earlier, precision and recall vary depending on the classification thresholds.

By plotting precision on the vertical axis and recall on the horizontal axis, various points on

the PR curve can be obtained by selecting different confidence ranges. AP is calculated

by finding the area under the Precision-Recall curve. The definition is as follows:

AP =
∫ 1

0
precision(recall)drecall (3.7)

b. Interpolation

When calculating the area under a PR curve, interpolation is often performed to smooth

the curve. A common interpolation method is to select the maximum recall rate at a fixed

precision value, which means that for different precision values, select the precision value

corresponding to the maximum recall rate on the curve. The definition is as follows:

APR =
1
|R|

∑
r∈R

ρinterp(r) (3.8)

where in the KITTI setting, 11 equally spaced recall levels are applied, i.e., R11 =

{0, 0.1, 0.2, . . . , 1}.

c. Mean Average Precision (mAP)

mAP refers to the average of AP values for different categories. For the KITTI dataset,

AP values are typically calculated for different difficulty levels (Easy, Moderate, and Hard)

and then averaged as mAP. Similarly, mAP can be calculated by averaging the AP val-

ues for different classes like vehicles, pedestrians, and cyclists. The idea is to calculate

independent AP values for each category and then calculate the overall mean.

For the purpose of meticulous evaluation, KITTI employs a categorization of detection

difficulties that factors in diverse attributes such as the bounding box height, occlusion

level, and truncation level. These attributes collectively shape the complexity of the de-

tection task. KITTI defines three distinct levels of detection difficulty: ”easy,” ”moderate,”

and ”hard.” The categorization is structured in a way that, for instance, in the ”easy” level,

the objects possess larger bounding boxes with minimal occlusion and truncation. This

nuanced stratification enables a comprehensive evaluation that accounts for varying de-

grees of challenge encountered in real-world detection scenarios.
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3.4/ CONCLUSION

In conclusion, the methodology discussed in this section introduces the concept of On-

line Continual Learning as a cutting-edge approach to address the challenges posed by

changing data distributions in machine learning, especially in the context of object de-

tection in autonomous driving. This dissertation proposes a framework that integrates

Online Learning and Continual Learning to allow models to be updated in real-time with

new data, store knowledge rather than data, and avoid catastrophic forgetting. This ap-

proach is essential in scenarios where the distribution of training and test data is not

consistent due to environmental shifts, introduction of novel objects, or alterations in data

distribution.

The research identifies and addresses three main challenges in using Online Continual

Learning in robotics, particularly in autonomous driving: the generation of high-quality

learning data without human intervention, efficient training and maintenance of models

after data acquisition, and preventing catastrophic forgetting during long-term iterative

learning. The framework introduced in this section comprises four interconnected compo-

nents: detection, tracking, learning, and control, working together in a closed-loop struc-

ture. The detection component identifies and localizes objects, the tracking component

generates object trajectories, the learning component analyzes trajectories and incorpo-

rates knowledge, and the control component guides the learning process and prevents

catastrophic forgetting. This collaborative approach enables continuous improvement and

online adaptation of a vehicle’s road participant detection performance.

In addition to the methodology, the section discusses the datasets used for experiments,

emphasizing the importance of open datasets like KITTI and Waymo. These datasets

provide real-world complexities and challenges, making them essential for evaluating the

proposed framework’s efficacy. Finally, the section details the evaluation metrics em-

ployed to assess the performance of the framework, including classification and detection

performance metrics.
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4.1/ INTRODUCTION

Object detection plays a critical role in environment perception for autonomous driving

systems, especially the detection of road participants such as cars, pedestrians and cy-

clists. It also serves as a foundational component for other essential tasks, including

obstacle avoidance, trajectory prediction, and social behavior analysis. Over the recent

years, remarkable progress has been made in visual-based object detection methods,

which are capable of providing accurate 2D bounding boxes in images, thus determining

the location and category of various objects in the driving scene (Ren et al., 2015; Red-

mon and Farhadi, 2018). However, despite the advancements in 2D object detection, this

2D information alone falls short of meeting the requirements for real-world autonomous

drivingTo achieve more accurate environment perception and enable more sophisticated

vehicle path planning and control strategies, it becomes essential to incorporate 3D infor-

mation. The latter includes critical details such as the length, width, height, and deflection

angle of objects, enabling autonomous vehicles to better handle complex scenarios, such

as estimating potential collision risks by more accurately analyzing the spatial relationship

between objects. An intuitive example is shown in Figure 4.1.

Figure 4.1: Schematic diagram of 2D detection in images and corresponding 3D detection
in point clouds.

In the past decade, 3D lidar, as a provider of 3D information, has become increasingly

popular in the field of autonomous driving (Qian et al., 2022). This sensor is capable of

providing high-accuracy, long-distance and wide-angle distance measurements, and is

superior to visual sensors in terms of robustness to different lighting conditions. However,

unlike visual sensors, which can capture color and texture features, lidar-generated data

represents the environment as a sparse set of points, making object detection based on

the latter challenging. This challenge becomes even more significant in dynamic environ-

ments (Yan et al., 2020c; Krajnı́k et al., 2017) (such as daily driving on urban roads) or

when traversing different environments (Yan et al., 2020b; Sun et al., 2018) (such as driv-

ing from one country to another). Object detection models trained offline usually suffer

from the aforementioned challenges, and tedious and costly model maintenance, includ-

ing but not limited to tuning or retraining, is unavoidable. On the other hand, manually

annotating 3D lidar data is also a tedious, costly, and error-prone task, especially when
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multiple variations in object pose, shape, and size need to be accurately segmented and

labeled.

Our idea is to use the OL method to solve two problems at once: 1) lidar data is difficult

to interpret and annotate; and 2) the model trained offline lacks the ability to adapt to

the environment. Specifically, the vehicle continuously updates its model by learning

new samples on-site and on-the-fly, without human intervention, to achieve efficient 3D

detection of various road participants including pedestrians, cyclists, and cars. Figure 4.2

shows a conceptual diagram of our proposed approach. The core idea is that, based on

the fact that cameras are a standard feature of autonomous vehicles and the availability

of various off-the-shelf image-based object detectors, under the framework of OL, let the

camera act as a trainer to help the learning and maintenance of the 3D lidar-based object

detector. Scientifically, this learning paradigm is defined as Online Transfer Learning

(OTL), since it involves a pipeline of knowledge transfer, that is, a multi-target tracker, to

enable the propagation of object detection capabilities from cameras to 3D lidars.

Figure 4.2: Concept diagram of transfer learning from images to point clouds. Initially,
different detections of the same object, including the output of an off-the-shelf 2D image-
based detector (shown in green) and the output of an online-learned 3D point cloud-based
detector (shown in blue show), are matched according to their spatial relationships. Sub-
sequently, detections in different point cloud frames are temporally correlated using a
multi-target tracker. Probabilistic estimation is then performed on the trajectories gener-
ated by the tracker (shown in orange) to generate the labeled samples required for OL.
Finally, the classifier is trained using ORF. The latter is deployed immediately to form a
closed loop system.
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In engineering, the point cloud generated by 3D lidar is first segmented into disjoint 3D

clusters, where each cluster ideally corresponds to an object in the environment. The on-

line learned detector is then used to estimate the probability of the object class to which

these clusters belong. Simultaneously, an image-based object detector is applied to the

2D images captured by the camera, providing the 2D bounding boxes of the detected

objects and their corresponding class confidences. A key step in the overall learning

system is to correlate different detections. Novelly, a spatio-temporal information corre-

lation method is developed, in which spatial correlation (i.e. 2D and 3D) of detections

from different sensors at the same moment is first implemented using a calibration ma-

trix between sensors. At this point, the class confidences of the 2D detections has been

transferred to the 3D detections. A multi-target tracker is then used to temporally corre-

late 3D clusters with different timestamps representing the same object. Finally, the class

confidences of all samples associated with the same target are probabilistically fused to

determine their labels as learning samples. The Online Random Forest (ORF) (Saffari

et al., 2009) is integrated into our system as a learning model. The entire OL process is

iterative, the learning model is learned and used at the same time, and its performance

can converge and remain stable in a short period of time.

4.2/ PROBLEM FORMULATION

In response to the challenges raised in Section 4.1, or more globally, the challenge de-

scribed in Section 1.2.1, our research mainly addresses two problems: 1) From a macro

perspective, how to achieve knowledge transfer in OL? 2) From a micro perspective, how

to realize a pipeline for knowledge transfer? Below we formalize these two problems.

4.2.1/ ONLINE TRANSFER LEARNING

The first problem can be formalized as an OTL problem. Specifically, according to (Pan

and Yang, 2009), transfer learning can be formalized as follows.

Given a source domain DS and its associated learning task TS, and a target

domain DT along with its learning task TT , the objective of transfer learning

is to enhance the learning process of the target predictive function fT (·) within

the target domain DT by leveraging the knowledge gained from the source

domain DS and its learning task TS, where DS , DT or TS , TT .

We want this enhancement to be done online, denoted as OL( fT (·)). More concretely,

let a trained detector di be able to detect an object xi and assign it a label li, denoted as

W = (xi, li, di) where li ∈ L, which corresponds to the knowledge gained from DS and TS.
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Suppose xi is also detected by another detector d j but the input data of d j is different from

that of di (i.e., DS , DT ), and d j cannot provide a label for xi (e.g., due to the output is

subject to a confidence threshold). This case is denoted as U = (xi, l j, d j) where l j = ∅,

corresponding to the learning task TT in the target domainDT . The idea of OTL is to use

xi as a link to let di help d j learn, so that the latter can provide a label li ∈ L for xi as well,

denoted as:
N∑

n=1

f : U
W
−→ L (4.1)

4.2.2/ INFORMATION FUSION

The second problem can be formalized as an Information Fusion (IF) problem. Specif-

ically, since our formalization in the previous section assumes that there is a common

object xi in both the source domain and the target domain, the realization of the knowl-

edge transfer pipeline can be further formalized as an IF problem generated by different

detectors acting on xi. Let Y denote the detections generated by a finite set of detectors

D = {d1, d2, . . . , dn} that continuously process various sensory data over time. Let X be all

objects that can be detected by the detector in the environment, then each detection y is

defined as follows:

yd
t = (xi, l, b, d, t) ∈ Y (4.2)

where xi ∈ Xd indicates the object detected at a specific time t by a particular detector d,

l represents the classification posterior assigned by the detector d to the detected object

xi, and b denotes the coordinates of the detected object xi with respect to the sensor’s

reference frame. The fusion of information extracted from different sensory data can thus

be formalized as:
n⋂

p=1,p,q

{xi} = Xdp ∩ Xdq (4.3)

which represents a intersection of multiple detection of the same object xi by different

detectors.

4.3/ GENERAL FRAMEWORK

The general framework of OL via knowledge transfer is shown in Figure 4.3. It mainly

follows (Yan et al., 2018) and comprises four distinct modules, each serving a specific

purpose, which are explained below.
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Figure 4.3: Block diagram of the OTL framework. The dashed line indicates that the
learn-by-use detector is able to provide increasingly higher detection confidence as it
learns online.

Off-the-shelf Detector (Do f f ) represents a pre-trained detector. In theory, the better the

performance of the detector (for example, it can often provide high-confidence detection

samples), the faster the performance of the detector that needs to be learned online will

be improved. In the research of this dissertation, Do f f is mainly embodied as a visual

sensor-based object detector that has been pre-trained on annotated data.

Learn-by-use Detector (Dlearn) represents a detector that needs to be learned online with-

out human intervention and is used while learning. Since the samples learned by Dlearn

contain the confidence information provided by Do f f , it can also be regarded as the learn-

ing of Dlearn being supervised by Do f f . By design, Dlearn should improve its performance

through continuous learning. Dlearn is embodied as a non-visual sensor-based detector in

the research of this dissertation.

Multi-target Tracker (Tmulti) plays a key role in the framework, which correlates detec-

tions from various detectors in space and time, thus establishing a pipeline for knowledge

transfer from Do f f to Dlearn . The working principle of Tmulti can be formalized as:

Trackxi =



yd1
t−m · · · yd1

t · · · yd1
t+n

...
. . .

...
. . .

...

ydi
t−m · · · ydi

t · · · ydi
t+n

...
. . .

...
. . .

...

ydk
t−m · · · ydk

t · · · ydk
t+n


xi

(4.4)

which means that Tmulti can generate a trajectory Track about object xi, and Trackxi is

composed of spatio-temporal association of detections from different detectors {dk | k ∈

N+} at different times ti. Intuitively, the rows of the matrix in Equation 4.4 represent the

temporal association of the detections, while the columns represent their spatial associ-

ation. Furthermore, the detection association in any dimension can be loose, meaning
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that if a detector dk works at a specific time ti but does not detect an object xi, then “no

detection” is also considered a legal output from dk.

Sample Annotator (Asample) estimates in real time the class of each object track Trackxi

– actually all the object samples on this track – and then labels them and feeds them to

Dlearn for OL. The working principle of Asample is visually depicted in Figure 4.4. Specifically,

given an object track containing time-series detection samples from different detectors,

the object can be detected by one or more detectors at any time t and the confidence of

the category to which the object belongs is given at the same time. The labels of all the

samples on the track are determined by fusing the confidences of all the samples. The

samples provided by Dlearn are sent back to itself for OL. The samples provided by Do f f

will be given final labels.

Figure 4.4: Schematic diagram of working principle of the Sample Annotator. The squares
represent one detector and the circles represent the other.

It can be seen that Asample is actually a response to Equation 4.1, while Do f f , Dlearn and

Tmulti can be regarded as parameters on which its implementation depends. Among them,

Do f f constructs the labeled set Ww, Dlearn builds the unlabeled set Uu, and Tmulti imple-

ments the association between the two.

Finally, looking at the proposed framework as a whole, the OL process continues in an

iterative manner. Starting from θ0, in each iteration k, the unlabeled set Uu is labeled

with the help of the model θk−1 trained in the previous iteration, and then the model θk is

updated. This process is formalized as:

lku = f (u|θk−1), u ∈ Uu (4.5)

The process iterates until convergence criteria (discussed in Section 5.5.2) or other stop-

ping criteria (such as the maximum number of iterations) are met.
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4.4/ IMPLEMENTATION

In this section, we present a concrete implementation of the proposed general frame-

work, in order to respond to the two issues mentioned previously: 1) 3D lidar data in

autonomous driving is difficult to interpret and annotate, and 2) models trained and main-

tained offline lack adaptability to changing environments. The implementation is fully

based on the Robot Operating System (ROS) with a very high degree of modularity using

C++ and Python mixed coding, which is made publicly available1 to the community for

further exploration and utilization. The detailed system block diagram of the proposed

implementation is depicted in Figure 4.5, where each block is described in detail below.

Figure 4.5: Detailed system block diagram of efficient OTL for object detection based on
multimodal perception. The RGB image is fed to an off-the-shelf visual detector to get the
bounding box of the object in the 2D image and its probability of belonging to an object.
At the same time, the point cloud generated by 3D lidar is ground-filtered, segmented into
different clusters and then sent to the multitarget tracker. In the latter spatial association,
the 3D bounding boxes of the clusters are projected into synchronized 2D image frames to
match the visual detection. The clusters are then input to a temporal association module
to generate object trajectories. Next, the sample annotator estimates the probability that
the trajectory belongs to a certain class, so as to determine the labels of all the samples
on the trajectory, which is used for online learning of the learn-by-use detector. The green
line represents detection, and the blue line represents learning, which together constitute
the closed-loop structure of online learning.

4.4.1/ OFF-THE-SHELF DETECTOR

The off-the-shelf image detector is based on a state-of-the-art deep learning model to

ensure its high-performance object detection. This detector focuses on detecting cars,

cyclists, and pedestrians within 2D images and provides corresponding 2D bounding

boxes along with detection confidences, including class labels and prediction scores. To
1https://github.com/epan-utbm/efficient online learning

https://github.com/epan-utbm/efficient_online_learning


4.4. IMPLEMENTATION 61

strike a balance between the accuracy and the real-time performance of the detector,

we conducted extensive testing using well-established methods: YOLOv3 (Redmon and

Farhadi, 2018), Faster R-CNN (Ren et al., 2015), and EfficientDet (Tan et al., 2020). Each

method was evaluated on the widely recognized KITTI dataset (Geiger et al., 2012), which

contains benchmarks for object detection performance in autonomous driving scenarios.

Table 4.1 shows the evaluation results including mean average precision (mAP) of three

difficulty levels for each class and average processing time per frame for object detection

across three classes including cars, pedestrians and cyclists. To ensure transparency

and reproducibility of the evaluation, 2D images from the KITTI detection benchmark are

used to train off-the-shelf camera-based detectors and evaluate the latter via a five-fold

cross-validation. The provided 7481 non-sequential frames with ground-truth annotations

are split in a 6:2:2 ratio and used for training, validation and testing respectively.

Table 4.1: Performance Evaluation of Deep Learning based 2D detectors

Model Car Pedestrian Cyclist Runtime
YOLOv3 (Redmon and Farhadi, 2018) 59.73% 38.51% 31.92% 21ms

Faster R-CNN (Ren et al., 2015) 81.57% 60.53% 57.83% 2635ms
EfficientDet (D1) (Tan et al., 2020) 75.83% 51.69% 46.92% 34ms

From the table, we can see that YOLOv3 shows the fastest processing speed among the

three methods. However, this comes at the expense of object detection precision. In con-

trast, Faster R-CNN achieves the highest level of detection precision but requires longer

single frame processing time. In contrast, the performance of EfficientDet represents a

trade-off. This result led to EfficientDet being chosen as the off-the-shelf detector in the

OTL implementation to better demonstrate online sample generation efficiency.

4.4.2/ LEARN-BY-USE DETECTOR

The detector that needs to be learned online adopts a pipeline structure rather than an

end-to-end one, since the former still has better interpretability than the latter. This fea-

ture is ideal in industrial applications for autonomous driving, where understanding the

operation of the software is critical to the safety and reliability of the vehicle. Specifically,

the implemented pipeline contains four modules:

• The Ground Filtering module first filters out points belonging to the ground in the

point cloud generated by 3D lidar, making subsequent object segmentation more

effective because the ground connecting them has been removed.

• The Clustering module performs segmentation on the filtered point cloud to gen-

erate clusters corresponding to different objects. The selection of the clustering
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algorithm also considers the balance between segmentation accuracy and single

frame processing time.

• The Feature Extraction module extracts feature vectors from clusters marked as

learning samples.

• The Online Classifier module learns feature vectors and iterates itself over time.

The four modules in the pipeline work together to enable efficient and interpretable online

model learning and road participant detection. Below we introduce their implementation

in detail. For better explanation, let us first formalize the input point cloud as:

P = {pi | pi = (xi, yi, zi) ∈ R3, i = 1, . . . , I} (4.6)

4.4.2.1/ GROUND FILTERING

Ground filtering is one of the basic steps in point cloud data processing in autonomous

driving. Its two main purposes include reducing the computational burden (due to less

points) of subsequent modules and improving the accuracy of point cloud segmentation.

Commonly used ground filtering methods include threshold-based (Yan et al., 2017) and

fitting-based (Zermas et al., 2017). The former is a simple method that removes points

whose height (for example, along the z-axis) is lower than a preset threshold as the

ground, which can be expressed as:

P∗ = {pi ∈ P | zi < threshold} (4.7)

This method is suitable for flat ground or horizontally installed lidar.

The calculation of the fitting method is relatively complex, but it is more robust to vari-

ous terrains and sensor installation angles. Our system uses Ground Plane Fitting (GPF)

proposed in (Zermas et al., 2017). Its working principle is as follows. The point cloud

is first divided into segments evenly along the x-axis (vehicle driving direction). Then for

each segment, a set of seed points with low height values are deterministically extracted

to estimate the initial plane model of the segment’s ground surface. This model is used

to evaluate each point in the segment and generate the distance from that point to the

orthographic projection on the candidate plane. Next, this distance is compared with a

predefined threshold to determine whether the point belongs to the ground or not. Points

belonging to the ground are used as seeds for a refined estimate of a new planar model,

and the process is repeated a limited number of times. Finally, the entire ground is gen-

erated by concatenating the ground points extracted from each point cloud segment. The
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entire process can be described formally as:

P∗ = {pi ∈ P | arg min
a,b,c

n∑
i=1

|pi − p̂i|} (4.8)

Figure 4.6 shows an example of using the GPF method to remove ground points. It can

be seen that the proximal points can be effectively removed using this method, while the

far points are still retained due to the smaller number of points that can be fit. Despite

this, the GPF method is still considered a SOTA method at present.

Figure 4.6: Schematic diagram of ground filtering. On the left is the original point cloud,
and on the right is the result after using GPF. It can be seen that most of the points
belonging to the ground are removed, and a small number of distant points representing
slopes still exist.

4.4.2.2/ CLUSTERING

The clustering method proposed by Autoware (Kato et al., 2018) is used to segment

the non-ground point cloud obtained after ground filtering. Autoware is a ROS-based

open source software stack for autonomous vehicles. It includes the enabling functions

required for autonomous driving, from localization and object detection to route planning

and control, and was created to enable as many individuals and organizations as possible

to contribute to open innovations in autonomous driving technology. Consistent with Au-

toware’s philosophy, and also to reflect the industrial friendliness of our implementation,

the two key components in our system use modules provided by Autoware, one is clus-

tering and the other is multi-target tracking. The former will be detailed in the immediately

following paragraphs, while the latter will be introduced in Section 4.4.3.2.

To further reduce the computational burden, Autoware first projects the 3D point cloud

onto a 2D plane:

P′ = λ · P∗, λ = (1, 1, 0) (4.9)

However, it should be noted that this comes at the expense of clustering accuracy (Yang

et al., 2022), since information in one dimension is masked after this step. Clustering is
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therefore performed on the 2D plane, which is faster than in 3D space, and is defined as:

C j ⊂ P′, j = 1, . . . , J (4.10)

where J is the total number of clusters. A condition to avoid overlapping clusters is that

they should not contain the same points (Rusu, 2009), which is formalized as:

C j ∩Ck = ∅, for j , k, if min∥p j − pk∥2 ≥ d (4.11)

where the sets of points p j, pk ∈ P′ belong to the point clusters C j and Ck respectively,

and d is a Euclidean distance threshold. Finally, a volume filter is used to filter out those

clusters that are too large or too small:

C∗ = {C j | Wmin ≤ w j ≤ Wmax,Dmin ≤ d j ≤ Dmax,Hmin ≤ h j ≤ Hmax} (4.12)

where w j, d j and h j represent, respectively, the width, depth and height (in meters) of the

volume containing C j. Obviously, using a volume filter comes with a strong assumption:

the size of the objects of interest is within the limits of the volumetric model. Unfortunately,

this assumption doesn’t always hold. However, with the current computing power of edge

hardware, we must always make a compromise between accuracy and real-time perfor-

mance. By filtering out a large number of background objects, the computational burden

of subsequent modules can be alleviated. Furthermore, in all experiments reported in

this dissertation, the thresholds for the volumetric model were set to: W = [0.1, 5.5],

D = [0.1, 5.5] and H = [0.3, 5.5]. These are empirical values determined through multiple

tests with the KITTI and Waymo datasets.

4.4.2.3/ FEATURE EXTRACTION

Six features were extracted from the clusters, with a total of 61 dimensions, as sum-

marized in Table 4.2, for subsequent classifier training. The set of feature values of

each sample C j forms a vector f j = ( f1, . . . , f6). Features from f 1 to f 4 were introduced

by (Navarro-Serment et al., 2009), while features f 5 and f 6 were proposed by (Kidono

et al., 2011). The features are handcrafted, and their selection considers the trade-off be-

tween performance and dimensionality (Yan et al., 2020a). It should be noted that some

other features are also proposed in (Navarro-Serment et al., 2009; Kidono et al., 2011;

Yan et al., 2020a), and their performance is compared.
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Table 4.2: Features for Classifier Training

Feature Description Dimension

f1 Number of points included in the cluster 1

f2 Minimum cluster distance from the sensor 1

f3 3D covariance matrix of the cluster 6

f4 Normalized moment of inertia tensor 6

f5 Slice feature for the cluster 20

f6 Reflection intensity distribution 27

4.4.2.4/ ONLINE CLASSIFIER

Recall that the proposed OTL is a learning method rather than a model. Therefore, in

theory, any model can be used for OL, as long as it can meet the needs mentioned in

Section 1.1. ORF is used because it is based on RF and therefore has the inherent ad-

vantages of fast training and support for multi-class classification. In addition, ORF, as an

online extension of RF, proposes an online decision tree growing process, in which when

to split a node depends on: 1) whether there are enough samples in the node for robust

statistics, and 2) whether the split is good enough for classification. However, the original

implementation of this method cannot be straightforwardly integrated into our OTL frame-

work, and its binary tree-based data access performance still has room for improvement.

We therefore conducted in-depth research on ORF and implemented corresponding im-

provements. More details and insights will be given in Chapter 5.

4.4.3/ MULTI-TARGET TRACKER

In our general framework, the multi-target tracker is designed as a connector to connect

different detectors, playing a key role in knowledge transfer and multi-source information

fusion. The connection is loose, meaning that failure of one detector does not cause the

failure of the entire system. In terms of implementation, our multi-target tracker contains

two types of associations, one is spatial association involving low-level data fusion, and

the other is temporal association involving high-level information fusion. It is worth point-

ing out that the fusion of separate low-level data or high-level information is common,

while integrating the two into the same multi-target tracker in a spatio-temporal manner is

not, the latter is thus novel. Below we describe the two association methods in detail.
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4.4.3.1/ SPATIAL ASSOCIATION

In the field of autonomous driving, calibration between various sensors and hard synchro-

nization of the data they generate are two of the current de facto standard operations.

Based on this fact, the 3D detection bounding box in the point cloud is first projected to

the 2D image and then compared with the native 2D detection bounding box by measur-

ing the Intersection over Union (IoU) to determine whether they are different detections

of the same object. In all experiments reported in this dissertation, the thresholds for IoU

were 0.7 for cars and 0.5 for pedestrians and cyclists, as per the settings of the KITTI

benchmark suite. Once the IoU value exceeds the preset threshold, the two detections

are associated. This step can be regarded as data fusion in different spaces at time t,

which is summarized as Algorithm 1 for a more intuitive understanding.

Algorithm 1 Spatial association of detections for multi-target tracking

Require: O: 2D bounding boxes of the object detected in the image

C∗: 3D bounding boxes of clusters in the point cloud

θ: IoU threshold

Ensure: Ĉ∗: clusters associated with image-based detections

1: for each c ∈ C∗ do
2: Project c into the 2D image as c′

3: for each o ∈ O do
4: if IoU(o, c′) ≥ θ then
5: θ ← IoU(o, c′)

6: c.associate(o)

7: end if
8: O.remove(o)

9: end for
10: Ĉ∗.add(c)

11: end for

4.4.3.2/ TEMPORAL ASSOCIATION

On the other hand, detections in the same space at different times are associated. This

step can be performed in a sequential or parallel manner with the aforementioned spatial

association. In our implementation it is performed in a sequential manner following spatial

association. In addition, it can be performed in any space such as 2D images or 3D

point clouds, depending on which space the model is learned in. Our implementation

uses Autoware’s multi-target tracker, which tracks multiple objects over time based on

Probabilistic Data Association (PDA), Unscented Kalman Filter (UKF), and Interactive

Multiple Models (IMM).
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The PDA algorithm updates the target state based on the weighted sum of the probabil-

ities of each possible target state update. This algorithm is more robust to multi-target

tracking under occlusion and clutter conditions than non-probabilistic methods such as

the Nearest Neighbor (NN)) method, but at the expense of consuming more computing

resources. The UKF method is a combination of the Unscented Transform (UT) and the

standard Kalman filter. The former enables the nonlinear system equations to be fitted

to the latter under linear assumptions. This can effectively improve the accuracy and

robustness of the tracking system.

The inclusion of IMM is one of the reasons we chose to integrate Autoware’s tracker. It

allows the construction of multiple motion models to perform combined estimation of the

motion states of objects, including four steps of interaction, filtering, model probability

update and combination of estimation. This design makes the tracker more robust to

different categories of road participants. The state interaction among them reflects the

essence of IMM. The process is describes as follows:

• Interaction: The input of the filter in model i is the combined estimation of each

filter at the previous moment, and let the matching models at k − 1 and k be j and i,

respectively, then the equation of the combined probability is:

µ
j|i
k−1|k−1 =

1
µ̂i

k|k−1

π jiµ
j
k−1 (4.13)

where µ j
k−1 is the probability of model j at k − 1; π ji denotes the probability that the

object motion model transfer from model j to model i. The µ̂i
k|k−1 is defined as:

µ̂i
k|k−1 =

n∑
j=1

π jiµ
j
k−1 (4.14)

Then the re-initialized states and covariances were estimated as:

x̃i
k−1|k−1 =

n∑
j=1

x̂ j
k−1|k−1µ

j|i
k−1|k−1 (4.15)

P̃i
k−1|k−1 =

n∑
j=1

µ
j|i
k−1|k−1[P̂i

k−1|k−1 + (x̂i
k−1|k−1)−

x̃i
k−1|k−1) · (x̂i

k−1|k−1) − x̃i
k−1|k−1)T]

(4.16)

• Filtering: The filtering using UKF filter includes prediction (PUKF) and update

(UUKF), which are defined as:

[x̃i
k|k−1, P̃

i
k|k−1] = PUKF(x̃i

k−1|k−1, P̃
i
k−1|k−1, f i

k−1,Q
i
k−1) (4.17)
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[x̂i
k|k−1, P̂

i
k|k−1] = UUKF(x̄i

k|k−1, P̄
i
k|k−1, zk, hi

k,R
i
k) (4.18)

where f (·) is the nonlinear state transfer function, and h(·) is the nonlinear mea-

surement function. Given the system process noise qk N(0,Qk−1) and the system

measurement noise rk N(0,Rk).

• Model probability update: Calculating the measurement likelihood function for

each model:

Λi
k =

exp [−0.5(υi
k)T(S i

k)(υi
k)]√

|2πS i
k|

(4.19)

where υi
k and S i

k are the measurement residuals and covariance of model i, respec-

tively. The probability of model i at time k is defined as:

µi
k|k =

µi
k|k−1Λ

i
k∑n

j=1 µ
j
k|k−1Λ

i
k

(4.20)

• Combination of estimation: This step will calculate the combination of estimation

and corresponding error covariance matrix at time k:

x̂k|k =

n∑
i=1

µi
k|k x̂i

k|k (4.21)

P̂k|k =

n∑
i=1

µi
k|k[P̂i

k|k + (x̂i
k|k − x̂k|k)(x̂i

k|k − x̂k|k)T] (4.22)

4.4.4/ SAMPLE ANNOTATOR

The sample annotator performs probabilistic fusion of samples associated with the multi-

target tracker to determine in real time which class of objects the samples on each track

belong to. Specifically, the Track Probability Yan et al. (2018) is applied, which is defined

as follows. Let P(li|xi, d j) denote the probability that example xi is an object with its cate-

gory label li predicted by detector d j ∈ D at the precise time t, then the track probability

P(LT |XT ,D) is computed by integrating the predictions of the different detectors according

to the following formula:

P(LT |XT ,D) =
oddsXT

1 + oddsXT

(4.23)

where

oddsXT =

t∏
i=1

K∏
j=1

odds j
xi (4.24)

and
odds j

xi =
P(li|xi, d j)

1 − P(li|xi, d j)
(4.25)
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By thresholding P(LT |XT ,D), high-confidence samples are finally labeled (i.e. car, cyclist,

or pedestrian) and fed to the learn-by-use detector for learning. The threshold was set to

0.7 in our experiments.

4.5/ EXPERIMENTAL RESULTS

In this section, we evaluate the system implemented based on the general framework. In

theory, evaluating the performance of sample generation should be to check how many

learning samples generated online are consistent with the ground truth. However, since

KITTI does not provide single-frame annotations of the raw data, we adopted an end-

to-end system assessment strategy to conduct the evaluation from one side. The input

end of the system is the raw sensor data, and the output end is the detection results of

the road participants. All the experiments reported in this dissertation were performed

with Ubuntu 18.04 LTS (64-bit) and ROS Melodic, with an Intel i9-9900K CPU and 64-GB

RAM, and a NVIDIA GeForce RTX 2080 GPU with 8-GB RAM.

4.5.1/ DETECTION OF ROAD PARTICIPANTS

Object detection is the joint result of object localization and classification. In order to

evaluate the performance of the learn-by-use detector, we use the test set (with ground

truth) of KITTI and use the Average Precision (AP) (cf. Section 3.3.2) as the performance

metric. The results are shown in the first row of Table 4.3. Furthermore, in order to

verify the hypothesis that multi-modal detection may outperform single-modal detection,

we evaluate the fusion performance of the point cloud-based learn-by-use detector and

the image-based off-the-shelf detector, and the results are shown in the second row of

Table 4.3. Specifically, they are the output of the “Sample Annotator” that has not un-

dergone “Temporal Association”, since the test set consists of non-consecutive frames.

It can be seen that with the participation of the image-based detector, the system’s 3D

detection performance of various road participants has been significantly improved. This

is due to the former’s more accurate classification based on color and texture information.

In addition, this result also reflects the effectiveness of the spatial association algorithm

we proposed (cf. Algorithm 1).
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Table 4.3: Evaluation Results on The KITTI 3D Object Detection Validation Set

Method
Cars(%) Pedestrians(%)

Easy Moderate Hard Easy Moderate Hard

Learn-by-use detector 65.12 58.89 46.52 38.67 34.37 23.34

+ Off-the-shelf detector 80.45 67.73 58.81 47.67 40.32 35.44

Improvement 15.33 8.84 12.29 9 5.95 12.1

Method
Cyclists(%)

Easy Moderate Hard

Learn-by-use detector 50.73 34.14 26.67

+ Off-the-shelf detector 75.61 56.55 47.61

Improvement 24.88 22.41 20.94

Let’s gain further insights through the performance improvement shown in the third row

of Table 4.3. Among them, the detection of cyclists has the largest improvement (up

to 24,88%), which can be explained by the fact that detecting this class in point clouds

is more challenging than the other two, especially due to their irregular 3D geometric

features and the intensity coming from various materials such as textiles, metals, rubber,

etc. The smallest performance improvement occurs for pedestrians (up to 12,1%), due

to their obvious 3D geometric features (i.e. mostly upright rectangular shapes) and the

intensity mainly coming from textiles. It is also worth noting that, unlike the other two

classes, the largest performance improvement in the pedestrian is for the “hard” difficulty.

This can be explained by the fact that when pedestrians are occluded or truncated, the

color and texture information are more helpful for detection compared to point clouds.

Table 4.4: Evaluation Results on The KITTI 2D Object Detection Validation Set

Method
Cars(%) Pedestrians(%)

Easy Moderate Hard Easy Moderate Hard

Off-the-shelf detector 82.16 78.18 67.09 60.25 49.97 44.84

+ Learn-by-use detector 93.87 90.45 78.47 82.59 70.13 61.25

Improvement 11.71 12.27 11.38 22.34 20.16 16.41

Method
Cyclists(%)

Easy Moderate Hard

Off-the-shelf detector 55.18 46.23 39.35

+ Learn-by-use detector 80.25 75.31 62.87

Improvement 25.07 29.08 23.52

On the other hand, we also obtained experimental evidence, as shown in Table 4.4, for the

hypothesis that once the learn-by-use detector has competitive detection capabilities in
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point clouds, it can even in turn help the off-the-shelf detector improve detection results on

2D images. Experimental results show that with the help of the point cloud-based learn-

by-use detector, the overall performance of the system has been significantly improved.

This is mainly due to lidar’s ability to detect distant objects, which is especially helpful for

pedestrians cyclists and who are smaller than cars.

4.5.2/ COMPARISON WITH OTHER METHODS

The test set (without ground truth) provided by KITTI for public ranking is used to compare

our results with others in the community. Five representative methods are selected from

KITTI’s ranking table for comparison. The principles of selection are: 1) methods using

both image and point cloud data, 2) highly cited methods (MV3D (Chen et al., 2017), F-

Pointnet (Qi et al., 2018), AVOD and AVOD-FRN (Ku et al., 2018)), and 3) recent methods

(PFF3D (Wen and Jo, 2021)). The experimental results are shown in Table 4.5 and

Table 4.6, respectively, where ours is the multimodal detector mentioned above.

Table 4.5: Evaluation Results Using Average Precision on The KITTI 3D Object Detection
Test Set (for Ranking)

Method
Cars(%) Pedestrians(%)

Easy Moderate Hard Easy Moderate Hard

MV3D (Chen et al., 2017) 74.97 63.63 54.00 - - -

AVOD (Ku et al., 2018) 76.39 66.47 60.23 36.10 27.86 25.76

F-Pointnet (Qi et al., 2018) 82.19 69.79 60.59 50.53 42.15 38.08

AVOD-FRN (Ku et al., 2018) 82.11 71.70 67.08 50.46 42.27 39.04
PFF3D (Wen and Jo, 2021) 81.11 72.93 67.24 43.93 36.07 32.86

Ours 80.08 67.67 58.68 48.22 39.96 34.67

+ Size estimation 79.97 69.13 58.57 48.65 40.11 35.99

Method
Cyclists(%)

Easy Moderate Hard

MV3D (Chen et al., 2017) - - -

AVOD (Ku et al., 2018) 57.19 42.08 38.29

F-Pointnet (Qi et al., 2018) 72.27 56.12 49.01

AVOD-FRN (Ku et al., 2018) 63.76 50.55 44.93

PFF3D (Wen and Jo, 2021) 63.27 46.78 41.37

Ours 73.72 56.64 47.94

+ Size estimation 75.20 58.96 50.41
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Table 4.6: Evaluation Results Using Average Precision on The KITTI 2D Object Detection
Test Set (for Ranking)

Method
Cars(%) Pedestrians(%)

Easy Moderate Hard Easy Moderate Hard

MV3D (Chen et al., 2017) 93.08 84.39 79.27 - - -

AVOD (Ku et al., 2018) 95.17 89.88 82.83 50.90 39.43 35.75

F-Pointnet (Qi et al., 2018) 95.85 95.17 85.43 89.83 80.13 75.05
AVOD-FRN (Ku et al., 2018) 94.70 88.92 84.13 67.95 57.87 55.23

PFF3D (Wen and Jo, 2021) 95.37 92.15 87.54 62.12 52.53 50.27

Ours 93.11 91.20 78.22 83.08 69.97 60.98

+ Size estimation 96.31 91.17 81.20 84.74 71.45 64.58

Method
Cyclists(%)

Easy Moderate Hard

MV3D (Chen et al., 2017) - - -

AVOD (Ku et al., 2018) 66.45 52.60 46.39

F-Pointnet (Qi et al., 2018) 86.86 73.16 65.21

AVOD-FRN (Ku et al., 2018) 70.38 60.79 55.37

PFF3D (Wen and Jo, 2021) 79.44 66.25 60.11

Ours 81.99 74.90 63.06

+ Size estimation 85.62 76.88 66.04

As can be seen from Table 4.5, our online learning framework exhibits competitive perfor-

mance compared with other offline methods, especially in the class “cyclists” we achieved

the best results in easy and moderate difficulty. On the other hand, although our method

fails to achieve the best results on the two classes of “car” and “pedestrian”, the gap is

not significant. Taking moderate difficulty as an example, ours is 5.26% and 2.31% away

from the best performers, respectively. The reason, on the one hand, is that the clustering

method we use suffers from the accurate segmentation of road participants, which leads

to some missed detections and false alarms. On the other hand, if some clusters are too

small in the 3D point cloud, they will be ignored due to their low IoU value after being

projected into the 2D image.

Correspondingly, Table 4.6 shows the object detection performance of our multimodal de-

tector on 2D images in comparison with other methods. It can be seen that, for moderate

difficulty, ours still wins on the cyclist detection, and is only 3.97% away from the best

performance on car detection. As for pedestrian, although we are 10.16% behind the first

place, we are still in the top 7% of the entire KITTI ranking.
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4.5.3/ SIZE ESTIMATION

KITTI’s object annotations in point clouds are based on projections from those in 2D

images, thus including an estimate of the size of the object in its 3D bounding box. In

contrast, point cloud clustering methods commonly used in autonomous driving, such as

the Autoware method we use, output the true size of the clusters. Based on this fact and

in order to present a fairer comparison with other methods, we additionally provide the

results of our multimodal detector after adding size estimation in Table 4.5 and Table 4.6.

Specifically, we randomly sample the training set to estimate volumetric models for each

object class, and if a cluster is classified, then the convex box representing its size is

inflated to the bounding box defined by its volume model. An intuitive result is shown in

Figure 4.7.

Figure 4.7: Schematic illustration of 3D object size estimation in point clouds. Through
size estimation, the original convex box is inflated to the bounding box. The left two
images show a car, while the right two show a pedestrian.

As can be seen from Table 4.5 and Table 4.6, after adding size estimation, the detection

performance of each class of objects shows an overall improvement, which is especially

obvious in the detection of cyclists. This is mainly due to the special structure of cyclists,

they usually contain a vertical person and a horizontal bicycle, so their bounding boxes

defined in the point cloud by polygons are usually smaller than the manual annotations

provided by KITTI. Furthermore, it is worth pointing out that if the test set consists of

consecutive frames, then the “Temporal Association” module in our multi-target tracker

can be used to estimate the true size of objects, thus sidestepping the need for empirical

volumetric models.

4.5.4/ ABLATION STUDY

The ablation experiment aims to study the contribution of each module in a system to the

overall performance of the system. In our case, the classification performance of detec-

tors based on different system architectures is evaluated after each iteration in the online

learning process using the Macro Average (MaA) metric. The experimental results are

shown in Figure 4.8. It can be seen that simply introducing 2D image detection to match
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point cloud clusters in 3D space can make the online learning performance present an

overall upward trend (shown by the green line), but the improvement is not obvious after

the environment becomes complex (starting from about 1000 frames, more pedestrians

and cyclist appear). This situation is improved by introducing temporal association to the

samples (shown by the blue line).

Figure 4.8: Ablation experiment results.

In addition, the classification performance of the detector is also improved overall. This is

mainly because the temporal association makes those clusters that are not matched by

the spatial association likely to become learning samples later, thus improving the learn-

ing efficiency. In addition, by introducing the learning loop-closure, i.e., the probability

estimation of the learn-by-use detector to the class of the point cloud cluster is also input

into the multi-target tracker and then becomes a part of the learning, so that the online

learning performance is improved again, as shown in orange line.

4.6/ QUALITATIVE ANALYSIS

It can be seen from Figer. 4.9 that almost all road participants are correctly detected in the

matched image and point cloud and tracked in the latter. The section highlighted by the

blue box in the point cloud demonstrates that even though the vehicle is no longer within

the camera’s field of view, it is still a learn-able sample being tracked. And the range box

area indicates that despite being detected as a cyclist in the image, the object is correctly

learned as a pedestrian by the classifier through spatio-temporal association. While one

exception is the part annotated by the red box, where the cyclist and the utility pole are

too close together, leading to their aggregation as a single entity (i.e., under-segmented),

resulting in the failure of correct detection. This is a challenge both visually and in 3D lidar.

One possible solution to improve this issue is to incorporate color and texture information

into the point cloud using pixel-to-point matching for further segmentation.
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Figure 4.9: A synchronized pair of images and point clouds from the KITTI dataset. The
labels in the images contain the class information, while the labels in the point clouds
contain both the class and Track-ID. The colored points enclosed by labels and bounding
boxes represent the samples used for online learning.

For the segmentation of the point cloud data, in general, the segmentor shows good per-

formance in both simple (upper part of Figer.4.10) and complex (lower part of Figer.4.10)

scenes, but when facing objects that are too close (forming a group), there is still room

for improvement. For example, in the area shown in the red box in the lower part of

Figer.4.10, people and benches are clustered as a whole. Followed with the fusion detec-

tion part, the first is the performance of the 2D detector that plays the role of the trainer.

As can be seen from lower part of Figer.4.10, the image detection still shows acceptable

performance, and the matching with point cloud cluster is also robust. Most of the ob-

jects detected in the image can be fully fitted. The second is the role of the multi-target

tracker. It can be seen from the upper part of Figer.4.10 that although the cyclist has left

the camera’s visual range, the classifier can still learn the sample of the object in the point

cloud through the association of the tracker (indicated by the blue box). Similar situations

are shown in the lower part of Figer.4.10. This undoubtedly greatly improves the learning

efficiency of the entire system.

Figer.4.11 displays an detection result example of our system, demonstrating a relatively

complex scene with several occluders and a large number of background objects. Objects

visible in the visual range are given by 2D bounding boxes on the image, and objects in

the point cloud are indicated by 3D bounding boxes. A similar situation occurs when

pedestrians are gathered, for example, in the near and far crowds shown in the figure.
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Figure 4.10: Two pairs of synchronized frames include the color image and its corre-
sponding 3D lidar scan on KITTI. The coordinate axis in the point cloud represents the
position of the 3D LIDAR sensor. The colored point cloud enclosed by the bounding box
represents the samples input to the classifier. Note that only those labelled samples will
be learned by the classifier, such as the cyclist in the upper image. The upper and lower
parts respectively show the performance of our system in simple and complex scenarios.

In the point cloud that on the right side of the illustration, we can see the presence of a

large number of columnar objects in the scene, which are usually difficult to distinguish

them from pedestrians and can be effectively solved by 2d detection. In the image we can

see that the pedestrians in the middle of the slightly distant crowd actually obscured by the

lamp post, while the vehicles in their vicinity are also too far away to be clearly identified,

making them visually difficult to be detected, but they can be accurately segmented and

detected in the point cloud, which can help improve the performance of 2d detection on

the other hand. Meanwhile, it is noticed that other objects outside the visual range can

also be detected accurately by our fusion detection.

Figure 4.11: A example of the detection results on the KITTI data. The left side repre-
sents the final result of 2D detection, and the right side represents the final result of 3D
detection.
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4.7/ CONCLUSION

In this chapter, the question of how to efficiently generate samples for online learning in

point clouds is answered. We first formulated the problem as an Online Transfer Learning

problem associated with an Information Fusion problem, based on the fact that 1) cam-

eras are already one of the standard sensors in autonomous vehicles, and that 2) they

can provids reliable object detection in clear weather conditions, thanks to their ability to

capture color and texture information from the environment. We then introduce a gen-

eral solution framework for the posed problems. The framework was originally developed

in the field of mobile robotics and then perfectly transplanted to the field of autonomous

driving in the context of this dissertation. It contains four main modules, namely Off-

the-shelf Detector (Do f f ), Learn-by-use Detector (Dlearn), Multi-target Tracker (Tmulti), and

Sample Annotator (Asample). Among them, Do f f mainly plays the role of a trainer to guide

the learning of Dlearn and help it grow. Tmulti is the communication channel between the

trainer and the learner, realizing the transfer of knowledge from Do f f to Dlearn over time.

Finally, Asample, who plays the role of discriminator, supervises the interaction between

Do f f and Dlearn and resolves conflicts.

We then proposed a system-level implementation of the introduced framework that is

tailored for autonomous driving and includes a novel spatio-temporal information fusion

mechanism for Tmulti. Specifically Do f f is implemented as an image detector based on

deep learning, and Dlearn is implemented as a point cloud detector based on Online Ran-

dom Forest. Tmulti first finds different detections of the same object at the same time in two

different spaces, the image and the point cloud, and then further correlates the detections

of the same object at different times in the point cloud space. Asample finally uses odds

to perform probability fusion on the detection information associated with each object to

provide the learning samples required by Dlearn.

To illustrate the effectiveness of our proposed method, extensive experiments are con-

ducted on the KITTI dataset. Through the performance evaluation of the online learning

model for the detection of road participants including cars, pedestrians and cyclists in the

urban environment, on the one hand, the quality of the samples generated online is eval-

uated from the side, and on the other hand, it is shown that our method enables 3D lidar

to quickly learn the detection ability of road participants without ground truth and human

intervention. What is even more interesting is that the experimental results show that both

Do f f and Dlearn improve the (multi-modal) detection performance of the overall system in

their respective spaces by helping each other. Finally, the ranking achieved by submitting

the experimental results to the KITTI benchmark shows that our method is competitive in

both 2D and 3D object detection performance, especially in the categories of pedestrians

and cyclists, surpassing most existing methods.
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5.1/ INTRODUCTION

According to the definition given in Chapter 1, Online Learning (OL) is a model training

method rather than a model. Any model can be integrated into the OL method, as long

as it meets the following requirements: 1) it can be quickly trained, 2) it can be deployed

immediately, and 3) it can be updated at any time. For autonomous driving, an additional

requirement (denoted as “Requirement 4”) is that the model should be explainable, for

example through mathematical modeling. This is particularly important for the deployment

of models in industrial products because it involves system certification issues. Faced

with the above four requirements, the community currently lacks convincing solutions.

Commonly used machine learning models can be roughly divided into two categories.

One is traditional methods such as Support Vector Machine (SVM), Adaptive Boosting

(AdaBoost), Random Forest (RF), etc., while the other is deep learning methods. Pre-

vious work (Broughton et al., 2020) showed that the real-time performance achieved by

integrating deep learning methods comes at the expense of model performance. Further-

more, deep learning methods currently do not meet Requirement 4. Therefore, traditional

methods are the main focus of this dissertation. Previous work integrated SVM into the

OL method (Yan et al., 2017), but it solved a binary classification problem, which is diffi-

cult to meet the detection needs of multi-class road participants in autonomous driving.

Besides, existing literature does not show the integrability of AdaBoost due to its inability

to meet Requirement 1.

As mentioned in Chapter 4, the Online Random Forest (ORF) is integrated into our OL

framework as a training model. This method is essentially a RF method, therefore meets

Requirements 1 and 4. On the other hand, as it can update the model with incoming

data (that is, online, which is different from batch training methods), it partially meets

Requirement 3. Note that the “partial satisfaction” mentioned here is because the ORF

has an important assumption that the amount of data and their distribution are known

before model training, so that the ORF can calculate the optimal training parameters.

This obviously does not meet the needs of autonomous driving. Besides that, the ORF

does not satisfy Requirement 2. To solve these problems, in our research, the ORF is first

ROSified, and then three features are added including support for streaming data, few-

shot training without knowing the total amount and the distribution of data, and real-time

model access, making it to be smoothly integrated into our OL framework.

Based on the integration of the ORF, we are also interested in how to push the access

performance of the model to a new boundary, including model size, access time, and

accuracy of knowledge preservation. Specifically, inspired by OctoMap (Hornung et al.,

2013), an efficient point cloud data representation widely used in the robotics community,

we replace the binary trees used in the ORF with octrees, and conduct a comparative
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analysis of the access performance of the models before and after the replacement. It

should be pointed out that our research is not intended to substitute the widely used deep

learning-based model in the current industrial context of autonomous driving, but to run

in parallel with it in a dual-model manner. Scientifically, we are full of expectations for the

future integration of deep learning methods that meet Requirements 1-4 in OL methods.

5.2/ PROBLEM FORMULATION

5.2.1/ EFFICIENT MODEL TRAINING

In the context of OL, efficient model training can be formalized as a local optimization

problem. Given one or several learning data, the goal is to find the optimal parameters

for model training:

arg min
θ

Loss(θ) =
{∑

L(yi, fθ(xi))
}

(5.1)

where θ represents the parameter to be optimized, xi represents the features of the i-th

sample, yi represents the true labels of the i-th sample, and fθ(xi) denotes the prediction

of the online model. Specifically, in ORF, θ contains: 1) the minimum number of samples

a node has to see before splitting α, 2) the minimum gain a split has to achieve β.

5.2.2/ EFFICIENT MODEL ACCESS

Efficient model access can be formalized as a global optimization problem, that is, given

a certain amount of data, how to minimize the space for storing them:

arg min
ϕ,λ

Space(ϕ, λ) =
{1
ϕ

ϕ∑
i=1

Data + λ · Regularization
}

(5.2)

where ϕ represents the parameters used to optimize data storage (if ϕ is 1, the compres-

sion is lossless), λ is the regularization parameter, Data represents the storage space of

the data, and Regularization is the regularization optimization terms, which can be de-

fined according to specific problems and used to balance the trade-off between storage

space and other optimization goals (e.g. time and accuracy).

5.3/ METHODOLOGY

Methodologically, we are based on the ORF, mainly use a few-shot training strategy to

respond to the problem defined in Section 5.2.1, and use octrees to respond to that

defined in Section 5.2.2. Three subsections are used to introduce them in detail below.
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Since the other two improvements mentioned in the Section 5.1, i.e. support for data

streaming and real-time model access, are mainly engineering, please refer to the code

we released for details.

5.3.1/ ONLINE RANDOM FOREST

It is essential to recall the concept of the ORF first. The classic RF algorithm uses batch

training to generate decision trees based on global data, which does not meet the needs

of OL. In contrast, the ORF proposes an online decision tree growing procedure where

when to split a node depends on: 1) whether there are enough samples in the node to

have robust statistics, and 2) whether the split is good enough for classification purposes.

This idea is further concreted as:

|R j| > α ∧ ∃s ∈ S : △L(R j, s) > β (5.3)

where α is the minimum number of samples a node needs observe before splitting, β is is

the minimum gain that needs to be achieved for node splitting, R j is a decision node, and

△L(R j, s) is the gain of node j with respect to the test s, which is measured as:

△L(R j, s) = L(R j) −
|R jls|

|R j|
L(R jls) −

|R jrs|

|R j|
L(R jrs) (5.4)

where R jls and R jrs are respectively the left and right partitions based on s. The idea is to

find the test with the highest gain as a node splitting decision:

s j = argmaxs∈S△L(R j, s) (5.5)

5.3.2/ FEW-SHOT TRAINING

As mentioned before, the original ORF needs to know the total number of data and their

distribution to perform global feature selection, and then updates the model based on sin-

gle sample. But if we invalidate the assumption that the ORF has a prior on the data, then

the performance of model updates based on such global information is not guaranteed for

data with unknown distributions. Moreover, by leverage the power of the spatio-temporal

associtation method presented in Section 4.4.3, that is capable of correlating different

detections belonging to the same object, to empower the ORF to calculate the optimal

training parameters via statistical analysis by only considering learning samples gener-

ated in an observation time window of a sensor (such as the 3D LiDAR). Therefore, we

propose to use a few-shot training strategy. More specifically, the ORF still maintains

model updating based on single samples, but based on a local optimal strategy.
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Exponential Moving Average (EMA) is employed to dynamically update the average value

of each feature in the learning sample, enabling localized optimization in the case of

continuous data input into the classifier, while old data is not retained. It assigns a higher

weight to new data while gradually decreasing the weight of old data, thus allowing it to

adapt to changes in data distribution. The update process of EMA is as follows: For each

new data point, the calculation of EMA for each feature is as follows:

Et = (1 − α) ∗ Et−1 + α ∗ NewDatat (5.6)

Where E is the current value of the feature, α is the smoothing factor, typically taking

a value between 0 and 1, controlling the weight of the new data point. A higher α value

gives more weight to the new data, making E more responsive to changes but less stable.

EMA gradually adjusts the value of the corresponding feature according to the new sam-

ple, giving a higher weight to new data, but also retains a certain weight of past data, so

it can adapt to the changes.

5.3.3/ OCTREE

With Continual Learning (CL) as the background, driven by reducing the size of a model

as well as the time-consuming of reading the model, we propose to use the octree to

replace the binary tree originally used in the ORF, as the former can provide a more

effective representation to complex data than the latter, although this representation for

knowledge preservation may be performed in a lossy way (insights will be given in Sec-

tion 5.4.3). Specifically, as shown in the upper part of Figure 5.1, a node of a binary

tree usually has only two child nodes including a left and a right child nodes. This tree

structure is simple, but has higher access cost than other tree structures. In contrast,

the octree, as shown in the middle of Figure 5.1, contains eight child nodes, which can

effectively reduce the storage of redundant information (intermediate nodes), but at the

expense of the possibility of losing useful information.
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Figure 5.1: Binary tree (top), octree (middle), and FIFO query mechanism (bottom)

Therefore, a level-order traversal based on First In First Out (FIFO) query (as shown in

the lower middle part of Figure 5.1) for each decision tree is performed, then the node

information of the binary tree is transferred to the octree, and finally the latter is used as

the model access structure of the ORF. The details about the transfer of node information

are summarized in Algorithm 2.

5.4/ EXPERIMENTAL RESULTS

The experiments mainly include three aspects: 1) To confirm that the ORF is suitable for

OL of road participant detection in point clouds, the original ORF is compared with the

classic RF; 2) To evaluate our improvements, the improved ORF is compared with the

original one; 3) To evaluate the octree, the performance of model access using octrees

is compared to that using binary trees. In addition, corresponding to the main research

motivation of this chapter, i.e. Online Continual Learning (OCL), experiments across

datasets are conducted, namely from KITTI to Waymo. Details are given in the remainder

of this section.
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Algorithm 2 Information transfer from binary tree to octree based on level-order traversal

Require: BINARYTREE *root, OCTREE *node

Ensure: OCTREE

1: for each children i ∈ I do
2: if node.Children[i] is empty then
3: nodeempty ← 1

4: node← node.Children[i]

5: break

6: end if
7: end for
8: if nodeempty is not 1 then
9: CreatOctree(OCTREE ∗newnode)

10: node← newnode.Children[i]

11: end if
12: queue← empty queue, state← 0

13: enqueue(queue, root)

14: while queue is not empty do
15: root ← dequeue(queue)

16: if root.le f t is not null then
17: enqueue(queue, root.le f t), state← 1

18: end if
19: if root.right is not null then
20: enqueue(queue, root.right)

21: if state is 0 then
22: state← 2

23: else
24: state← 3

25: end if
26: end if
27: InsertToOctree(root, state), state← 0

28: end while

5.4.1/ ONLINE RANDOM FOREST VS. RANDOM FOREST

To assess the performance of the native ORF, a subset of 1500 samples (i.e. 60% of the

7481 point cloud frames) was randomly selected from the training set of KITTI to form a

data stream as the input of the ORF. Whenever the ORF learns 100 samples, we save

a model and evaluate it on the test set with ground truth (i.e. 20% of the 7481 point

cloud frames). We report results for the first 15 iterations. In parallel, a conventional RF,
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trained offline with Scikit-Learn (Pedregosa et al., 2011) using the same batch of 1500

samples, was employed as a baseline for comparative analysis. Both the online and

offline approaches adhered to a uniform parameter configuration for the forest structure,

specifically, trees = 100, depth = 50, epochs = 20, split threshold = 50, which ensured a

consistent basis for evaluating the performance of the two methods. For the settings of

other parameters, please refer to the code we released. The outcomes of the experiments

are depicted in Figure 5.2.

Figure 5.2: Performance comparison of the ORF-based (online-trained) and the RF-
based (offline-trained) 3D LiDAR-based object classifiers.

It can be seen that as the quantity of training samples increases, the performance of the

ORF swiftly converges with that of the offline-trained counterpart. This convergence is

particularly notable after the 8 − 9th iteration and tends to be stable, as indicated by both

Average Accuracy (ACC) and Macro Average (MaA) metrics.

5.4.2/ INTEGRATED-ORF VS. STANDALONE-ORF

Since our improvements to the ORF are mainly to make it comply with our definition of OL

requirements in the autonomous driving domain, it is a matter of course that the experi-

mental evaluation uses the entire OL framework introduced in Chapter 4 (cf. Figure 4.5).

Specifically, the original ORF is named “Standalone-ORF” in the experiment because it

was independently trained with ground-truth annotations. In contrast, the improved one

is called “Integrated-ORF” as it was learned autonomously without ground-truth anno-

tations (i.e. with KITTI’s raw data) within the OL framework. For Standalone-ORF, the

same 1500 samples as introduced in Section 5.4.1 was used. For both, the training is

iteratively performed every 100 samples obtained, and their performance is evaluated af-

ter 15 iterations with the same test set as per Section 5.4.1. Both ORFs are consistent

in the parameter setting of the forest structure also as per Section 5.4.1. The evaluation
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compares their classification performance on cars, pedestrians and cyclists. The results

are represented using confusion matrices, as shown in Figure 5.3.

Figure 5.3: Confusion matrix for performance comparison of Integrated-ORF and
Standalone-ORF. The ordinate represents the true label, and the abscissa represents
the predicted result. The darker the color, the higher the proportion of correct classifica-
tions.

It can be seen that the performance of Integrated-ORF does not catch up with

Standalone-ORF in an all-round way, and the gap is concentrated in the classification

of cyclists and pedestrians, which are the challenges in the perception of autonomous

driving. In contrast, Integrated-ORF outperformed Standalone-ORF even slightly on car

prediction. There are two factors for this result. One is that the camera-based detector

that plays the role of “trainer” has different detection capabilities for different object cat-

egories (cf. Table 4.1) Note that we use a multi-class detector instead of some of the

top-ranked single-class detectors on KITTI. The second is that the point cloud clustering

method based on unsupervised learning is currently not up to the accuracy of manual

segmentation, especially when it also includes projecting the point cloud in 3D space

to a 2D plane (i.e. trading precision for speed), making it difficult for relatively small

size objects to be accurately segmented (Yan et al., 2020a). These two reasons cause

Integrated-ORF to learn some false positive samples. However, it is still worth pointing

out that Integrated-ORF is learned without ground truth and human intervention.

5.4.3/ OCTREE VS. BINARY TREE

In order to evaluate the performance of the octree, the original binary tree structure ac-

cess model in the Integrated-ORF was replaced with the octree structure, and the ex-

periment was run again under the exact same experimental settings. The difference is

that only the results of the first 10 iterations are reported (due to the results are close to

convergence after 8 iterations). The experimental results are shown in Figure 5.4.
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Figure 5.4: Comparison of model access performance based on binary trees and octrees.

It can be seen that octree-based model access has obvious advantages over binary trees

in terms of model size (c.f. the left in Figure 5.4) and model loading time (c.f. the middle

in Figure 5.4). However, as shown on the right in Figure 5.4, this comes at the expense

of model accuracy. In other words, the current method we propose cannot guarantee

that the octree will surpass the performance of the binary tree in terms of knowledge

preservation with the iteration of learning. This is also the reason why we did not continue

to use octrees in subsequent research (i.e. Chapter 6). A potential solution could be to

develop node splitting and tree update strategies tailored to ORF based on the structural

characteristics of the octree.

5.4.4/ LEARN ON KITTI TEST ON WAYMO

In fact, the study of model training and access is to establish the basis for extending OL to

Online Continual Learning (OCL), which experimentally corresponds to our idea of cross-

dataset evaluation. To this end, the Integrated-ORF learned in KITTI is deploied to the

Waymo dataset and is online updated. The selection of learning data is as described in

Section 3. The experimental results evaluated using the MaA are shown in Figure 5.5.

Figure 5.5: Changes in classification performance after deploying the Integrated-ORF
learned on the KITTI dataset to the Waymo dataset and continuing to learn. The blue line
represents the results evaluated on the Waymo test set. The red line indicates the results
evaluated on the KITTI test set.

It can be seen that due to the significantly different driving scenarios exhibited by the
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KITTI and Waymo datasets, the classification performance of the Integrated-ORF shows

a cliff-like decline at the beginning. However, thanks to the OL framework, with the input of

Waymo data, the classification performance of the Integrated-ORF improves steadily with

the learning iterations and finally stabilizes after the 8 − 9th iteration. On the other hand,

evaluating the updated model with the Waymo dataset back to the test set of KITTI found

that its performance overall decreased with learning iterations. This is a manifestation of

catastrophic forgetting, which will be the focus of the next chapter.

The final classification performance of the detector after 15th iterations is shown in Fig-

ure 5.6. It can be seen that the overall performance has declined compared to the one

reported in Section 5.4.2, where the drops are 0.05, 0.09, and 0.15 for cars, cyclists, and

pedestrians, respectively. This is primarily due to the fact that if the scenes selected from

Waymo are simple, the Integrated-ORF learned on the KITTI dataset performs admirably,

but it fails to effectively demonstrate the strengths of the OL framework. Therefore, the

selected clips containing complex scenes pose a huge challenge to the segmentation of

the point cloud and the object tracking algorithm in it, which directly affects the quality

of the learning samples. However, it is gratifying that the experimental results reveal the

cross-environment model access and online adaptability of the Integrated-ORF, which

encourages us to further study how to effectively preserve knowledge.

Figure 5.6: Confusion matrix representing the Integrated-ORF performance after learn-
ing on the Waymo dataset. The ordinate represents the true label, and the abscissa
represents the predicted result. The darker the color, the higher the proportion of correct
classifications.

5.5/ DISCUSSION

5.5.1/ ONLINE ADAPTABILITY

Online adaptability is twofold. On the one hand, OL is inherently real-time update, ca-

pable to learn new samples to update existing models in the presence of environmental
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changes. On the other hand, learning for an new environment inevitably leads to catas-

trophic forgetting, i.e., the newly learned model is not applicable to the old situation. The

performance of a well-trained model will decrease dramatically in another dataset Wang

et al. (2020), which is most likely due to the fact that the parameters of the model are

too close to the original domain to match the new samples and new features of the new

dataset for presenting good generalization, which is particularly evident for some deep

learning-based network models.

Our proposed online classifier presented excellent properties in coping with the transfer

from KITTI to WAYMO dataset, with a decrease of less than 0.13 in the overall classifica-

tion performance. Nevertheless, sadly there is still a priori for such adaptation. We had to

adapt our segmentation and tracking methods to match the new dataset, while needing

to rely on size estimation to better detect 3D objects. The consolation is that the classifier

not require extensive tuning, and is able to update the existing model well by learning

new samples while maintaining the original parameters. Our proposed 61-dimensional

features also show good performance for object detection.

5.5.2/ CONVERGENCE AND STABILITY ANALYSIS

One of the challenges of online systems is how to quickly converge without manual in-

tervention and maintain stable performance over time. Let ui be the number of labels

correctly predicted by the classifier at the i-th iteration, then the learning stability is given

by:

stability(I) =
I∑

i=1

∥ui − ui+1∥ (5.7)

where in theory, according to Lyapunov stability, the iterative system will stabilize if:

lim
I→∞

stability(I)
I

= 0 (5.8)

In practice, we must face the fact that detection and tracking are imperfect, and they can

go wrong at any time. Examples include the inaccurate data segmentation and sample

classification in the former, and the coarse data association and target estimation in the

latter. These errors may cause the learning performance of the entire framework to de-

cline, and also cause the concept drift problem due to the fact that the model is updated

as new samples are learned. Moreover, considering an ideal but edge situation in the

context of long-term robot autonomy, that is the lack of ground truth in the absence of

human intervention, which will also make it tricky to determine the convergence of the OL

process. The solution we adopt here is to eliminate the effects of these uncertainties, in-

cluding down-sampling to cope with data imbalance, dynamic parameter fine-tuning, and

object size estimation.
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5.6/ CONCLUSION

In this chapter, an efficient model training and access method for Online Learning is

introduced. This method, named Online Random Forest, was originally developed in the

computer vision community and was integrated under a ROS system-level framework

for the first time in our research. Based on our careful investigation (see Chapter 2),

it is considered to be the best among existing models that meets the Online Learning

requirements for the detection of multi-class road participants in autonomous driving.

In order to integrate ORF and enable it to run efficiently, we first ROSified it, and then

added support for streaming data, few-shot learning, and real-time access. In addition, in

order to make model access more efficient, we studied the feasibility of replacing binary

trees with octrees in ORF. Although experimental results show that compared to binary

trees, octrees will increasingly save storage space as learning samples increase, but this

is at the expense of model performance. In our current research, model performance is

more important because it involves the evaluation of the entire Online Learning framework

performance. Therefore, our research on octrees only stops at feasibility, and we report

the results in this dissertation to provide a reference for the community. Future research

could focus on finding a trade-off between model access and model performance.
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6.1/ INTRODUCTION

As the field of mobile robotics continues to advance rapidly, unmanned autonomous ve-

hicles have emerged as a promising solution within the transportation industry. The in-

telligence functioning of these vehicles heavily depend on their ability to effectively sense

and learn objects, allowing them to swiftly identify and understand various entities in real-

time, including cars, pedestrians, cyclists and other participants in the complex road situ-

ation. Over the past decade, machine learning has made remarkable progress in object

detection, especially with the advent of neural network models based on deep learn-

ing which have demonstrated the capacity to surpass human capabilities (He et al., 2016;

Ren et al., 2015). However, deploying machine learning methods to autonomous vehicles

faces some unique challenges including expensive training, deployment and maintenance

costs, domain shift, long tail problem, and so forth (Yan et al., 2023).

Compared with offline training and updating models, Online Learning (OL) is considered

an effective solution (Yang et al., 2021a, 2023). An open problem in the latter is how

autonomous vehicles can prevent catastrophic forgetting while continuously absorbing

new knowledge. Over the past decade, many upstream methods have been proposed to

address this problem in deep neural networks (Goodfellow et al., 2013; Kirkpatrick et al.,

2017; Li and Hoiem, 2017). Yet these methods are inherently rooted in offline or batch

training and thus, are incompatible with OL by design.

Our previous work has shown that vehicles can autonomously and rapidly learn road

participant detection capabilities in a deployed environment, on-the-fly and without hu-

man intervention (Yang et al., 2021a), and with good online adaptability across environ-

ments (Yang et al., 2023). This work builds on these foundations to further investigate

how to avoid the catastrophic forgetting problem in the process of in-situ learning, and

still uses the detection of road participants including cars, pedestrians, and cyclists as a

downstream task.

Catastrophic forgetting occurs when a model learns different tasks over multiple time

slices. This problem can be crystallized into the fact that when the model generalizes

to new tasks in later time slices, the performance on old tasks in early time slices drops

sharply. This phenomenon creates challenges for agents that require long-term deploy-

ment, such as autonomous vehicles (Yan et al., 2020c). Research on catastrophic forget-

ting can be traced back to the 1990s (McCloskey and Cohen, 1989; Ratcliff, 1990). One

approach is to preserve past knowledge in a way that limits changes in model weights.

For instance, a memory buffer (Rolnick et al., 2019) can be employed to store data or gra-

dient records from past training, thereby constraining the updates in the current learning

process.

In continual learning, the challenge of forgetting can be defined into two main types:
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class-incremental and domain-shift. The former involves adapting to new classes over

time while retaining knowledge of previously learned ones. On the other hand, domain-

shift focuses on adapting to shifts in the underlying data distribution. Our research pri-

marily addresses domain shift problem, which entails adapting to new data distributions

without forgetting knowledge from previous domains. Our previously proposed online

learning (Yang et al., 2023) focuses on achieving high performance in short-term tasks,

while long-term learning requires continual adaptation to ever-changing short-term tasks.

In situations where retaining information from previous tasks is impractical due to privacy

or resource constraints, regularization-based methods (Kirkpatrick et al., 2017; Zenke

et al., 2017; Schwarz et al., 2018) offer a solution by employing cleverly designed regu-

larization losses to constrain forgetting old knowledge while learning new data. Another

intuitive solution is to build a sufficiently large model and create a subset of the model for

each task. This can be achieved by fixing the shared trunk and adding new branches for

each new task, allowing old and new knowledge to be separated. However, this will lead

to another problem of scale explosion (Li and Hoiem, 2017). Moreover, replay-based ap-

proaches are grounded on the concept of retaining or compressing the underlying data of

past tasks (Lopez-Paz and Ranzato, 2017; Wang et al., 2019; Ramapuram et al., 2020).

These methods combat forgetting by reintroducing stored samples during training when

learning a new task, while the samples play a crucial role in joint training or loss optimiza-

tion, protecting knowledge from previous tasks.

Autonomous vehicles have an essential need for agents to be able to learn on their own

and continuously (Yan et al., 2023; Lesort et al., 2020), as they will be deployed into

our daily lives for a long time (Vintr et al., 2022, 2019; Sun et al., 2018). In response

to this need, our previous work (Yang et al., 2021a, 2023) proposed an OL framework

that allows vehicles to learn the detection of road participants in-situ and on-the-fly in the

environment in which they operate. However, Continual Learning (CL) across different

driving scenarios brings about catastrophic forgetting problems. This motivates us to

explore related prevention mechanisms within the OL framework. A work with a similar

concept to the learning framework proposed in this work – to avoid forgetting in learning

online – is the Lifelong Learning for Navigation (LLfN) method introduced in (Liu et al.,

2021a). This method allows the robot to not forget the navigation experience of the old

environment when exploring a new one. It is worth pointing out that there are essential

differences between LLfN and our Long-Short-Term Online Learning (LSTOL): the former

aims to learn an auxiliary planner to only help the classical planner navigate in difficult

situations, while the latter treats the model to be learned and the model to be used as

identical, and makes no assumptions about the usage situations. Another work similar to

ours is the Expert Gate (Aljundi et al., 2017) proposed in the context of lifelong learning,

which utilizes different expert networks to handle the data distribution differences across

various tasks. It employs the concept of gating to effectively select experts, enabling
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efficient processing of multitask situation. However, unlike LSTOL, which supports parallel

online learning for multiple tasks, Expert Gate is an offline training method and requires

a sequential order of learning tasks.

On the other hand, there are many works on avoiding catastrophic forgetting in computer

vision (Goodfellow et al., 2013; Kirkpatrick et al., 2017; Li and Hoiem, 2017; Shmelkov

et al., 2017) which is accompanied by the boom of deep learning methods. However,

many of these methods cannot be straightforwardly applied to online robot learning due

to their requirements for annotated data, computing resources, and training time. Our

goal is thus to build an OL framework that incorporates an autonomous forgetting preven-

tion mechanism to enable vehicles to maintain stable performance on downstream tasks

during long-term operations across environments.

Figure 6.1: Illustration of the Long-Short-Term Online Learning (LSTOL) framework which
consists of two modules: short-term learning and long-term control. Input samples are
first processed by a set of short-term learners for pre-prediction. The long-term control
module first collects these pre-prediction information to calculate quantitative indicators
for online prediction, and then inputs it to the Gate Controller to determine the next dif-
ferent actions for each learner. In the learning phase (indicated by the blue line), the
long-term control module will calculate the online loss of the current input sample of each
learner to update the weights of the learner, which will be used in the prediction phase
(indicated by the green line) to determine the object category.

Specifically, we propose an ensemble learning framework, named Long-Short-Term On-

line Learning (LSTOL), which consists of a set of short-term learners and a long-term

control mechanism, as shown in Fig. 6.1. The former can be any model but needs to be

subject to the requirements of OL, such as fast iteration without saving learning samples.

The latter contains a dynamic gate controller that controls whether each existing short-

term learner should be updated, kept or removed, or a new short-term learner should be
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created. The design of the controller is based on primitives rather than complex reason-

ing, fully considering the real-time requirements of physical interaction of vehicles in the

real world. It is worth mentioning that, unlike the well-known Long Short-Term Memory

(LSTM) (Sherstinsky, 2020), LSTOL emphasizes the learning strategy rather than the net-

work structure, makes no assumptions about the continuity of learning data, and allows

any short-term model in design.

6.2/ PROBLEM FORMULATION

Environmental changes may involve temporal changes (e.g., seasons, weather) and spa-

tial changes (e.g., locations, scenes). In the realm of online learning for object detection

across diverse environments, we tackle the challenge by reframing it as a data distribution

adaptation problem. The goal is to adapt an object detection model to the evolving data

distribution, treating the cross-environment problem as a adaptation task.

Let Dt represent the data distribution at time step t, and Dt+1 denote the next distribution,

which signifies the ideal distribution for object detection. To formalize the adaptation

process, we introduce a adaptation loss, denoted as LA:

LA = Loss(Dt,Dt+1)

The objective is to minimize the distribution shift between Dt and Dt+1, ensuring robust

object detection across varying environments.

In the proposed Long-Short-Term Online Learning (LSTOL) framework. The short-term

learners, denoted as S t
i (the state of the i-th short-term learner at time step t), can be

any model but must adhere to the requirements of Online Learning (OL), such as fast

iteration without saving learning samples. The dynamic gate controller’s state at time

step t is represented by Gt in the long-term control mechanism, determining whether

each existing short-term learner should be updated, maintain, or removed, or if a new

short-term learner should be created.

To integrate these components, the adaptation mechanism adjusts the parameters of

the object detection model. Let θt be the model parameters at time step t. The model

adaptation is performed by minimizing the sum of the object detection loss LD and the

adaptation loss:

θt+1 = θt − βt · ∇θ (LD + λ · LA)

Here, βt is the learning rate, ∇θ represents the gradient with respect to the model param-

eters, and λ is a hyperparameter controlling the importance of adaptation in the overall

learning objective.
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Let Lt represent the current state of the long-term controller at time step t. The dynamic

gate controller is defined as:

Gt = {Lt, S t
1, S

t
2, ..., S

t
n}

Here, the dynamic gate controller is updating based on the long-term controller’s state Lt

and the states of all short-term learners S t
n.

6.3/ LONG-SHORT-TERM ONLINE LEARNING

As shown in Fig. 6.1, the LSTOL framework aims to cope with catastrophic forgetting

by combining a short-term learning module and a long-term control module, that is, pre-

venting the model from forgetting previously learned knowledge when learning new data.

The short-term learning module consist of multiple short-term learners. Each learner can

be embodied as a model such as Support Vector Machine (SVM), Random Forest (RF),

Neural Network, etc., which learns from streaming data of various modalities such as

images or point clouds.

The long-term control module supervises the learning of short-term learners and consists

of three sub-fuction.

• Information Collection collects information from short-term learners, including their

output confidence, accuracy and activity level on downstream tasks at the current

moment. This information forms the basis for decisions about retaining existing

knowledge and learning new knowledge.

• Gate Controller determines what actions the framework should perform including

retaining, updating, or deleting existing learners, or creating new ones, based on an

evaluation of the information collected and the probability calculated.

• Weight Estimation dynamically adjusts the corresponding weights based on the past

performance of each short-term learner. If a learner’s accuracy for a task is higher,

its “voice” (i.e. weight) in that task increases. Learners with high prediction con-

fidence will act as “experts” and determine the final prediction. The task with the

highest confidence will be the output of the long-term control module and also the

output of the entire framework.

It is worth emphasizing that the proposed LSTOL framework is learn-as-you-go, i.e., the

output of the long-term control module can also be used for downstream tasks such as

road participant detection.
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6.4/ IMPLEMENTATION

An intuitive understanding of a specific implementation of the proposed LSTOL frame-

work with point cloud-based road participant detection as a downstream task is shown in

Fig. 6.2. The details are as follows.

Figure 6.2: Implementation overview of the LSTOL framework. Viewed from left to
right: Object samples in different point cloud frames are correlated by a multi-target
tracker (Yang et al., 2023) and fed into each online classifier of the short-term learn-
ing module. The classifications are collected by the Information Gatherer in the long-term
control module, which evaluates the learners based on matrices of confidence, accuracy,
and activity. The evaluation information is input to the Dynamic Gate Controller, which
then determines operations for each online classifier including update, retain, create, and
remove. The state information of the online classifier consists of the loss for classifying
the sample and is input to the Weight Allocator so that it updates the weights of the learner
in different classes. These weights are also used to determine the final classification of
the object.

6.4.1/ LEARNING SAMPLE

The learning samples of LSTOL are extracted from point clouds generated by 3D lidar

mounted on autonomous vehicles, which are defined as follows:

S = track({x, c, t}, c̄) (6.1)

where {x, c, t} represents a set of tracked instances (in the form of clusters) of object x at

different times t. c and c̄ respectively represent the confidence that each instance and the

entire trajectory belong to an object class.
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Figure 6.3: Illustrating the generation process of learning samples base on our previous
work in online transfer learning (Yang et al., 2023). Rectangles denote one type of detec-
tor using point cloud which need be trained, while circles denote a well-trained detector
using image.

A visualization of the generation process of learning samples is shown in Fig 6.3 which

is base on our previous work in online transfer learning (Yang et al., 2023). Specifically,

given an object trajectory consisting of temporal detection samples from different detec-

tors, at any given time t, the object can be detected by one or more detectors (e.g., point

cloud and image), with corresponding confidence levels indicating the likelihood of the

object belonging to a particular category (illustrated in Fig with categories and probabil-

ities). In principle, all learning samples along the trajectory should belong to the same

category, and this label is determined by fusing the confidences of all samples along the

trajectory. For example, despite occasional misclassifications by the point cloud-based

detector, such as incorrectly categorizing a car as a cyclist (due to the performance that

needs to be improved in the early stages of online learning), if the results from the pre-

trained image detector and the majority of correct results from the point cloud detector

indicate the object as a car, the entire trajectory will be treated as car learning samples

for continual learning by the point cloud detector. Unlike the usual assumption of a fixed

dataset for offline training, LSTOL processes streaming data and implements online con-

tinual learning.
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6.4.2/ SHORT-TERM LEARNING

In the short-term learning module (denoted by stl), each learner adopts Online Random

Forest (ORF) (Saffari et al., 2009), that allows rapid multi-class model training and real-

time deployment of the trained model, which is formalized as:

stl(x) = h
I∑

i=1

wiORFi(x) (6.2)

where wi represents the weight of learner i, and h represents the fusion strategy made by

the long-term control module. ORF splits a node depends on:

|R j| > α ∧ ∃s ∈ S : △L(R j, s) > β (6.3)

where α is the minimum number of samples a node needs observe before splitting, β is

the minimum gain the split needs achieve, R j is a decision node, and △L(R j, s) is the gain

of node j with respect to test s, which is measured as:

△L(R j, s) = L(R j) −
|R jls|

|R j|
L(R jls) −

|R jrs|

|R j|
L(R jrs) (6.4)

where R jls and R jrs are the left and right partitions based on s. It can be seen that up-

dating the ORF model only requires saving the tree structure and node information (i.e.

knowledge) without the need for previous learning samples.

6.4.3/ LONG-TERM CONTROL

6.4.3.1/ INFORMATION GATHERER

In OL, it is difficult to achieve real-time performance evaluation of models based on tradi-

tional metrics such as precision and recall due to the lack of a complete test set or ground

truth for validation. Therefore, three other quantitative metrics including confidence, ac-

curacy, and activity are used to evaluate the performance of each short-term learner, and

their specific implementation is as follows.

Con f idencei = max(p j
i ) j = 1, . . . , J (6.5)

where p j
i represents the predicted probability that the object detected by learner i belongs

to class j. The confidence of learner i takes the highest probability among all classes.

Accuracyi =
pcorrect

i

ptotal
i

(6.6)
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where pcorrect
i represents the number of correct predictions produced by learner i, and

ptotal
i represents the total number of predictions performed by learner i.

Activityi =

T∑
t=1

update(i) (6.7)

indicates the number of times learner i is updated in time window T .

6.4.3.2/ DYNAMIC GATE CONTROLLER

Figure 6.4: Schematic diagram of Dynamic Gate Controller

A probabilistic decision-making process is designed in this module, summarized as Algo-

rithm 3, which implements an appropriate operation based on the three metrics provided

by the Information Gatherer module (as shown in Fig. 6.4). Specifically, line-3 indicates

that the learner needs to have higher accuracy before updating to prevent learning wrong

data. The “retain” operation represented in line-8 corresponds to two typical situations.

The first is when the learner’s accuracy is low, indicating that the learner’s predictions for

new samples are beyond its knowledge. The second is when the learner has both high

accuracy and high confidence, which indicates that the learner is already very familiar

with the input data and does not need to learn it anymore. The idea behind line-16 is to

remove those learners which have low confidence, low accuracy and low activity. Remov-

ing learners is a risky operation and therefore only occurs when the maximum number of

learners is reached and new learners need to be created. Removal will inevitably lead to

the forgetting of some old knowledge, but we must find a compromise between the former

and the unlimited number of learners. Line-26 means that if none of the existing learners

have been updated, a new one will be created.



6.4. IMPLEMENTATION 103

Algorithm 3 Dynamic Gate Control

Require: N: maximum number of learners to be created Con f idencei, Accuracyi, Activityi

Ensure: learner i, learner j, a new learner

1: updated ← 0

2: for each learner i ∈ I do
3: p← odds(1 −Con f idencei, Accuracyi, 1 − Activityi)

4: if p > 0.5 then
5: update (learner i)

6: updated ← 1

7: else
8: retain (learner i) // do nothing

9: end if
10: end for
11: if updated = 0 then
12: if I = N then
13: pmax ← 0

14: j← ∅

15: for each learner i ∈ I do
16: p← odds(1 −Con f idencei, 1 − Accuracyi, 1 − Activityi)

17: if p > 0.5 and p > pmax then
18: j← i

19: pmax ← p

20: end if
21: end for
22: if j , ∅ then
23: remove (learner j)

24: end if
25: else
26: create (learner)

27: I ← I + 1

28: end if
29: end if

6.4.3.3/ WEIGHT ALLOCATOR

For each learner, a Dynamic Expert Weights (DEW) table is constructed, setting a weight

for each category to represent the learner’s classification ability for different classes.

Classes that show better performance receive higher weights, thus amplifying their im-

pact on the overall prediction process of the system. Specifically, assume that a new set
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of samples S is input at time step t + 1, where the confidence that s ∈ S belongs to a cer-

tain class k ∈ K is very high, Kronecker delta is used to measure the sample’s predicted

class and actual class k, denoted as ys. Learner i’s predicted probability that sample s

belongs to class k is denoted as ps,k. Then the loss of sample s is calculated by log-loss:

Ls,k = yslog(ps,k) + (1 − ys)log(1 − ps,k) (6.8)

Next, the current weights w(t) are updated using an Exponentially Weighted Moving Av-

erage (EWMA), designed to reward accurate predictions and penalize incorrect ones:

wk(t + 1) = λwk(t) + (1 − λ)Ltotal (6.9)

where

Ltotal = −
1
S

(
S∑

s=1

Ls,k) (6.10)

where Ls,k represents the loss of sample s of class k. λ is determined according to the

update speed of weights which is used to balance the learner’s past and present accuracy

judgments.

The final prediction stage uses an intuitive voting strategy known as the Hand-raised as

Expert (HraE):

pk =

I∑
i,(ps,k>θc)

(ps,k · wi,k) (6.11)

where wi,k is the weight of learner i for class k, θc represents the minimum weight required

by the learner to predict, which is set to 0.5 in our experiments. Essentially, this strategy

prioritizes learners’ predictions based on their degree of influence in the final prediction.

This allows the long-term control module to pay more attention to the predictions of mod-

ules with higher weights.

6.5/ EXPERIMENTAL RESULTS

6.5.1/ EXPERIMENTAL SETUPS

Our experiments aim to evaluate whether the proposed LSTOL can effectively prevent

catastrophic forgetting when learning across environments. To this end, two very differ-

ent datasets in autonomous driving including KITTI (Geiger et al., 2013) and Waymo (Sun

et al., 2020) are used. Theoretically, the more different the data learned before and after,

the greater the challenge in preventing catastrophic forgetting. In practice, an instance is

designed to simulate an autonomous vehicle transitioning between two different environ-

ments. Specifically, the system first performs online learning on the KITTI dataset, and
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then switches to the Waymo dataset for continual learning.

This operation actually causes the domain shift problem. Our previous research (Yang

et al., 2023) showed that the performance of models learned on KITTI will decrease

when deployed on Waymo, but by online continual learning on the latter to adapt to the

new environment, the model performance will rebound.

6.5.1.1/ DATASETS

Learning is initiated using randomly sampled segments from the raw data (without any an-

notations) of the “City”, “Residential”, and “Campus” scenes in the KITTI dataset. These

three scene categories were selected because they contain a relatively large number

of road participants, while the other two scenes, “Road” and “Person”, are relatively

monotonous thus unsuitable for online learning of our downstream task. The system it-

erates the model every time it learns 100 samples and evaluates the model performance

on the test set. The latter is built from randomly selected samples from the annotated

training set of KITTI’s 3D object detection task, containing 5347 cars, 668 pedestrians

and 271 cyclists.

In the second step, we deploy the system trained on KITTI to the Waymo dataset. We

randomly selected 15 segments from the latter, for a total of 2970 images and 2970 lidar

scans. These segments are dominated by daytime and clear weather conditions, and the

driving scenes include cars, pedestrians and cyclists, corresponding to the three classes

learned by the system on the KITTI dataset. We deliberately avoid adverse weather

conditions (e.g. foggy days (Yang et al., 2020, 2021b)) and scenes with poor lighting con-

ditions (e.g. evenings (Sun et al., 2021; Liu et al., 2021b)) to ensure a fair comparison of

model performance on the two datasets. The system continues learning online on these

segments. It iterates the model every 100 learned samples and evaluates its performance

on the KITTI test set.

Finally, the system returns to KITTI to evaluate whether its learning on Waymo resulted

in catastrophic forgetting of knowledge previously learned on KITTI.

6.5.1.2/ COMPARISON MODELS

We compare our proposed system with the following methods: 1) PointNet-STD: Each

dataset is independently trained based on the baseline PointNet (Qi et al., 2017a). After

training on the KITTI dataset, the model parameters are further trained on the Waymo

dataset to update new parameters; 2) PointNet-MIX: The baseline PointNet (Qi et al.,

2017a) is jointly trained on the mixed data from the KITTI and Waymo datasets. The

resulting model is directly evaluated on the KITTI validation set. 3) Expert gate (Aljundi
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et al., 2017): To better suit our downstream tasks while staying true to the original algo-

rithm, we’ve switched the neural network-based Expert Gate to an Online Expert Gate

(OEG) using ORF. Still, the core idea remains unchanged: selecting the most relevant

expert to handle new data based on task relevance through comparison. 4) Dynamic

Expandable Network (DEN: The new implementation called 3D-DEN) (Jain and Kasaei,

2021) can perform point cloud object classification tasks end-to-end and has the capabil-

ity to dynamically expand the network.

6.5.1.3/ IMPLEMENTATION DETAILS

We simplified the Autoencoder Gate within the Expert Gate. Instead of comparing task

relevance based on validation sets of incoming data, as done in the original algorithm, we

directly test the predictions of new data against the ground truth to determine task rele-

vance. Once we find the expert with the highest task relevance, if the relevance exceeds

a threshold (set at 0.85), we conduct online training on the existing expert (correspond-

ing to LwF). Otherwise, we build a new expert to train the new data (corresponding to

fine-tuning).

6.5.2/ EVALUATION ACROSS DATASETS

Table 6.1: Evaluation of Accuracy on KITTI Dataset before and after trained on Waymo
Dataset

Method
Only KITTI

Car(%) Ped(%) Cyc(%)

PointNet-STD (Qi et al., 2017a) 99.17 83.51 77.25
PointNet-MIX (Qi et al., 2017a) 95.63 78.28 67.38

Expert Gate (Aljundi et al., 2017) 96.60 78.14 74.54

3D-DEN (Jain and Kasaei, 2021) 95.43 75.24 69.45

Ours 97.31 78.74 75.28

Method
+ Waymo

Car(%) Ped(%) Cyc(%)

PointNet-STD (Qi et al., 2017a) 93.45 -5.72 73.79 -9.72 61.80 -15.45

PointNet-MIX (Qi et al., 2017a) 95.63 - 78.28 - 67.38 -

Expert Gate (Aljundi et al., 2017) 93.40 -2.97 71.26 -6.88 63.10 -11.44

3D-DEN (Jain and Kasaei, 2021)] 91.90 -3.53 69.47 -5.77 59.33 -10.12

Ours 93.90 -3.41 73.50 -5.24 68.27 -7.01
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The principle of across dataset evaluation is as follows: firstly, the model will be trained on

the KITTI training set and then tested on the KITTI validation set. Secondly, the model is

further trained on the Waymo dataset, and the updated model will be tested on the same

KITTI validation set used in the first step.

Table 6.1 presents the comparison results between four comparison models and our ap-

proach. It’s worth noting that PointNet is an offline model (learningrate = 0.01, epochs =

20). And despite the potential for Expert Gate and 3D-DEN to be used for continual

and lifelong learning, they are essentially still based on offline training methods. More-

over, due to the sequential nature of their learning tasks (i.e., learning the classification

tasks of cars, pedestrians, and cyclists one by one) – different from LSTOL, which sup-

ports multi-task parallel learning – it forces us to manually sort the input samples to fit

its demands. In practice, however, parallelly learning multiple tasks is more beneficial for

autonomous vehicles.

PointNet-based methods demonstrate superior performance under the same distribution.

However, the drawbacks of this advantage are also apparent, as there is a significant

decrease in the classification performance of all three categories in the evaluation of the

second step. Although PointNet on mixed datasets maintains consistent performance, it’s

understood that this advantage may not persist as tasks and data increase, and train-

ing costs will also increase substantially. Additionally, Expert Gate and 3D-DEN show

competitive results in avoiding forgetting, but our proposed LSTOL maintains an over-

all advantage in performance after training on the Waymo dataset, achieving the best

performance. It also demonstrates the most balanced degree of performance decrease,

especially in pedestrians and cyclists.
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6.5.3/ LSTOL VS. EOTL

Figure 6.5: Confusion matrices for performance comparison of EOTL and LSTOL. For
each matrix, the ordinate represents the true label, while the abscissa represents the
predicted result. The darker the color, the higher the proportion of correct classifications.

The upper part (indicated in blue) of Fig. 6.5 shows the performance evaluation of two

diffrent models (The left matrix represents our previous method that without a forgetting

prevention function, the right one represents the LSTOL proposed in this paper.) after

ten learning iterations in KITTI. The lower part (indicated in orange) of Fig. 6.5 shows the

performance after another ten iterations on Waymo.

From the results shown in Fig. 6.5, we can gain insight that compared with our previ-

ous online learning framework (called EOTL) that did not include a catastrophic forgetting

prevention mechanism, the effect of LSTOL is obvious. Specifically, the classification per-

formance of cars, pedestrians, and cyclists moderated from a decrease of 0.05, 0.09, and

0.15 to a decrease of 0.03, 0.05, and 0.07, respectively. Moreover, LSTOL significantly

improves the ability to distinguish cars and cyclists from pedestrians.
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Figure 6.6: Recall curves for cars, pedestrians, and cyclists during the system transfer
from KITTI to Waymo.

Furthermore, the performance of the online learned models after each iteration is visual-

ized in Fig. 6.6, where the evaluation metric used is “recall”. In multi-class classification

tasks, recall is a metric that evaluates a model’s ability to correctly identify all examples

of each class. It is calculated as the ratio of the number of true positive predictions to

the total number of actual positive examples in the class. Fig. 6.6 shows the results

of the entire 20 iterations of moving the learning system from KITTI to Waymo. It can

be seen that the anti-forgetting mechanism of LSTOL has a clear role in mitigating the

performance degradation of the model caused by environmental changes, especially for

pedestrians and cyclists, two types of road participants that are more difficult to detect

than cars. The reason is attributed to the fact that LSTOL uses ensemble learning (a set

of learners), which allows examples of each class to be better preserved independently.

This is different from the single powerful learner we designed previously in EOTL, whose

performance is often dominated by object classes (such as cars) that are easy to de-

tect and have a larger number of learning examples than other classes. It can also be

seen that during the learning process on the KITTI dataset, LSTOL shows better stability

than EOTL. This reveals that the former can be used not only for cross-environment de-

ployment of autonomous vehicles, but may also be suitable for long-term deployment in

changing environments (Yan et al., 2020c).
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Figure 6.7: Heatmap of “expert” opinions of each learner. Each column represents the
distribution of high-confidence predictions for one learner across the test samples, while
each row represents high-confidence results produced by different learners for the same
class.

6.5.4/ SHORT-TERM LEARNER ASSESSMENT

At the micro level, we care about the performance of each short-term learner. The LSTOL

model in the experiments reported in the previous section contains 10 short-term learn-

ers. 10 is an empirical number that allows both the real-time performance of the model

iteration and the performance of the iterated model to be ensured. Each learner pairs

an ORF, and their parameters are consistent, i.e., trees = 100, depth = 50, epochs =

20, split threshold = 50. After 20 learning iterations, we evaluate each learner on KITTI’s

test set, and the results are shown in Fig. 6.7.

Specifically, each test sample was predicted by the 10 learners. After filtering by the

HRE mechanism, some learners’ predictions are considered as expert opinions in the

final determination of object classes. The darker the color of the square in the heatmap,

the higher the frequency of participating in the final prediction of that class, and vice

versa. For example, Learner 1 was more involved in the classification of cars, but also

contributed to the classification of pedestrians and cyclists.

It can be seen from Fig. 6.7 that each learner has a different focus on the knowledge they

learn. The predictions of the first few learners show a dispersed distribution. As more new

samples, such as previously unseen pedestrians and cyclists, appear in the scene, the

learning goals of the learners begin to differentiate, e.g., the 2nd and 4th learners begin

to focus more on pedestrians and cyclists. Starting with the 7th learner, we can see that

this is the point where the dataset changes, as the learner starts learning more from new

examples of cars and subsequently new pedestrians and cyclists. It can also be seen

that the learner trained in Waymo provides lower confidence predictions for samples in

the KITTI test set than the learner trained in KITTI.
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6.6/ CONCLUSION

In this chapter, we introduced an Online Learning framework that incorporates mech-

anisms to prevent catastrophic forgetting, namely Long-Short-Term Online Learning

(LSTOL). This framework aims to enable autonomous vehicles to maintain a stable perfor-

mance during long-term operation in our daily lives, especially across environments. The

effectiveness of the proposed framework in avoiding forgetting is demonstrated through

cross datasets, including KITTI and Waymo, on downstream task of 3D detection of road

participants including cars, pedestrians and cyclists.

The contributions of this work are twofold.

• A novel framework to prevent catastrophic forgetting in Online Learning is proposed.

It is designed not to make assumptions about the type of short-term model and

pursues a simple yet efficient strategy for long-term learning control.

• Taking road participant detection in autonomous driving as a downstream task, two

very different datasets including KITTI and Waymo are used to conduct Online Con-

tinual Learning experiments, and results show that the proposed framework enables

the vehicle to learn new knowledge while avoiding catastrophic forgetting.
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GENERAL CONCLUSION

7.1/ CONCLUSIONS

Over the past few decades, autonomous driving has made rapid advancements, with

machine perception being a pivotal foundational challenge, including crucial endeavor in

detection and tracking of road participants, such as vehicles, pedestrians, and cyclists.

Even though vision-based object detection has achieved significant progress in 2D and

3D detection, particularly with the emergence of deep learning based end-to-end models

in recent years, there are still some crucial considerations. 1) Non-visual sensors such

as 3D LiDAR have proven to have unparalleled advantages in positioning accuracy for 3D

object detection, especially their insensitivity to lighting conditions. 2) The lack of inter-

pretability in deep learning models, and their performance heavily relies on the training

data. Especially when the scene or environment changes, higher training costs are re-

quired to obtain an acceptable generalization performance. Certainly, there is no perfect

sensor, and the challenges posed by point cloud data that are difficult to interpret, along

with the high cost of manual annotation, are primary issues in the utilize of 3D LiDAR.

Moreover, in the context of autonomous driving in an open-world setting, it is imperative

to address adaptability challenges brought about by variations in both time and space.

This dissertation endeavors to explore and address these challenges from three main

perspectives, aligning with the three questions posed in the introduction regarding: 1)

Generation of Samples, 2) Preservation of Knowledge, and 3) Avoidance of Catastrophic

Forgetting. To this end, we introduce the concept of Online Continual Learning (OCL)

and propose an general framework that encompasses detection, tracking, learning, and

control. This framework enables models to update in real-time with new data, preserve

knowledge rather than raw data, and effectively mitigate the performance degradation

caused by catastrophic forgetting. In fact, Online Learning (OL) and Continual Learning

(CL) are not independent concepts. On the contrary, we believe that the transition from

online learning to continual learning is a consistent logical process. The framework we

propose in this dissertation seeks to bridge these concepts, forming a online continual
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approach to handle the dynamic and evolving nature of autonomous driving.

Generation of Samples

In the face of sparse point clouds generated by 3D LiDAR and labor-intensive manual

annotation, we leverage the advantages of multi-sensor and employ an efficient online

transfer learning framework. This framework effectively transfers mature image-based de-

tection capabilities to 3D LiDAR-based detectors. We construct a pipeline between such

off-the-shelf detector and learn-by-use detector using a multi-target tracker to achieve

knowledge transfer.

An innovative aspect is the online ”learn-by-use” process, achieved through closed-loop

detection, which means the output of the learned detector could be its own input af-

ter continuously iterating, and will optimizing the overall detection performance. That is,

when knowledge flows over time from off-the-shelf detector to learn-by-use detector via

supervised learning, learn-by-use detectors also engage in continuous self-supervised

learning process. We believe that this transfer learning framework can serve as a basis

for mutual learning and enhance system redundancy. Additionally, a novel information

fusion strategy is proposed which combines spatio-temporal correlations, including con-

current detections of the same object in both image and point cloud spaces and temporal

detections of the same object in the point cloud space. Experiments on the KITTI bench-

mark demonstrate the effectiveness of the proposed information fusion method for both

forward (image to point cloud) and reverse (point cloud to image) transfers.

Preservation of Knowledge

We introduce Online Learning to address the challenge of knowledge preservation with-

out retaining training data, which enables autonomous systems to adapt to evolving en-

vironments. We establish three general criteria for Online Learning models: 1) rapid

training, 2) immediate deployment, and 3) real-time updates, as well as a specific crite-

rion for autonomous driving: 4) interpretability. The problem of efficient Online Learning

model training and access are formulated. Innovatively, we incorporate an improved On-

line Random Forest (ORF) model into our online transfer learning framework, enabling

the agent to quickly train models with limited computational resources and immediate de-

ployment. Meanwhile, considering that our input data usually consists of trajectories of

objects, the original Online Random Forest has been modified to handle few-shot learn-

ing. The model’s initial parameters are dynamically shared throughout the training pro-

cess, allowing the model to effectively address the unknown data distribution. Additionally,

our exploration of the Online Random Forest tree structure demonstrates that individual

extreme trees ensure the independence of each tree’s training process, enhancing their

ability to capture complex patterns and subtle variations in the data. Furthermore, by im-

plementing octrees instead of binary trees to improving the storage structure, we enhance

storage efficiency and accelerate model access.
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Avoidance of Catastrophic Forgetting

To address the inevitable forgetting problem in online learning frameworks during the long-

term deploy. we propose a framework called Long-Short-Term Online Learning (LSTOL),

which includes a mechanism for preventing catastrophic forgetting. LSTOL consists of

a set of short-term learners and a long-term controller. The short-term learners, based

on ensemble learning, aim to achieve rapid learning iterations. While the long-term con-

troller includes a simple yet effective probabilistic decision mechanism that combines four

control primitives to ensure effective knowledge maintenance. A novel feature of the pro-

posed LSTOL framework is its ability to prevent forgetting during autonomous learning

through a straightforward and effective long-term learning control strategy. Additionally,

LSTOL makes no assumptions about the model types and data continuity for the short-

term learners. The framework aims to maintain stable performance for autonomous vehi-

cles, particularly in long-term, cross-environment operations in open-end world. Through

cross-dataset evaluations form KITTI to Waymo, for the downstream task of 3D detec-

tion of road participants, we demonstrate the effectiveness of the proposed framework in

avoiding forgetting.

7.2/ FUTURE RESEARCH DIRECTIONS

Efficient Model Training, Deployment, and Maintenance

Future work will encompass further improving the quality of online learning samples to en-

hance classifier performance, resulting in improved detection and tracking. Furthermore,

the choice of datasets is crucial. Exploring the use of datasets be designed to mimic real-

world scenarios that accurately capture the dynamic changes in the environment over

time and space, which more suitable for assessing in long-term learning performance.

Additionally, it is exciting to optimizing the deployment and maintenance of autonomous

vehicles equipped with our own low-power computing units.

Multi-sensor fusion perception

Further research could be improve sensor fusion technology, especially the integration of

different sensor combinations, not only 3D LiDAR and cameras, but also the integration

of radar, thermal, depth and other sensors. Different sensor fusion can enhance object

detection and tracking in challenging scenes, providing a more comprehensive under-

standing of the environment. Furthermore, multi-sensor-based redundancy mechanisms

and strategies can be explored to ensure that autonomous vehicles can continue to op-

erate safely even in the event of malfunctions or unexpected events.

Long-term Continual Learning in Dynamic Environments
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Future research should explore more deeply the strategies of how autonomous vehicles

adapts to dynamic changes in the environment. This adaptation includes not only ad-

justing to variations in the physical environment, such as weather and lighting conditions

but also accommodating changes in traffic rules, traffic signal, and other real-world fac-

tors that can impact autonomous driving systems. Meanwhile, future work will investigate

mechanisms to dynamically control the number of short-term learners to eliminate the a

prior need for this number, allowing autonomous systems to evolve and adapt in real-time.

Furthermore, it’s important to test the generalizability of upstream methods to various

downstream tasks in dynamic environments, such as human-aware navigation Vintr et al.

(2022); Okunevich et al. (2023).
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machine perception. However, the environment in
which autonomous vehicles are deployed is naturally
complex, and even Operational Design Domain
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Résumé :

La technologie de conduite autonome a connu
un développement rapide au cours de la dernière
décennie, et maintenant tant le milieu universitaire
que l’industrie s’accordent généralement à dire que
les problèmes de conduite autonome ont convergé
vers la perception par machine. Cependant,
l’environnement dans lequel les véhicules
autonomes sont déployés est naturellement
complexe, et même le domaine de conception
opérationnelle (ODD) ne peut pas couvrir tous les
scénarios. En conséquence, les modèles formés
hors ligne ne sont intrinsèquement pas en mesure
de prendre en charge le fonctionnement à long terme
et sans surveillance des véhicules autonomes.

Par conséquent, cette thèse étudie des méthodes
pour les modèles d’apprentissage en ligne, d’abord
pour répondre à la question de comment générer
efficacement des échantillons d’apprentissage
en ligne, puis pour explorer comment former
efficacement des modèles et y accéder, et enfin pour
obtenir des informations sur l’évitement de l’oubli lors
de l’apprentissage à long terme. Cette recherche
utilise la détection des participants à la circulation
routière dans des nuages de points générés par un
LiDAR 3D comme tâche secondaire pour démontrer
l’efficacité de la méthode proposée d’apprentissage
en ligne continu.
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