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RÉSUMÉ

Au cours des dernières décennies, la multiplication des objets embarqués dans de nom-
breux domaines a considérablement augmenté la quantité de données à traiter et la complexité
des tâches à résoudre, motivant l’émergence d’algorithmes probabilistes d’apprentissage tels
que l’intelligence artificielle (IA) et les réseaux de neurones artificiels (ANN). Cependant, les
systèmes matériels pour le calcul embarqué basés sur l’architecture von Neuman ne sont pas ef-
ficace pour traiter cette quantité de données. C’est pourquoi des paradigmes neuromorphiques
dotés d’une mémoire distribuée sont étudiés, s’inspirant de la structure et de la représentation
de l’information des réseaux de neurones biologiques. Dernièrement, la plupart de la recherche
autour des paradigmes neuromorphiques ont exploré les réseaux de neurones à impulsion ou
spiking neural networks (SNNs), qui s’inspirent des impulsions utilisées pour transmettre l’in-
formation dans les réseaux biologiques. Les SNNs encodent l’information temporellement à
l’aide d’impulsions pour assurer un calcul de données continues naturel et à faible énergie. Ré-
cemment, les réseaux de neurones oscillatoires (ONN) sont apparu comme un paradigme neu-
romorphique alternatif pour du calcul temporel, rapide et efficace, à basse consommation. Les
ONNs sont des réseaux d’oscillateurs couplés qui émulent les propriétés de calcul collectif des
zones du cerveau par le biais d’oscillations. Les récentes implémentations d’ONN combinées à
l’émergence de composants compacts à faible consommation d’énergie encouragent le dévelop-
pemment des ONNs pour le calcul embarqué. L’état de l’art de l’ONN le configure comme un
réseau de Hopfield oscillatoire (OHN) avec une architecture d’oscillateurs entièrement couplés
pour effectuer de la reconnaissance de formes avec une précision limitée. Cependant, le grand
nombre de synapses de l’architecture limite l’implémentation de larges ONNs et le champs
des applications de l’ONN. Cette thèse se concentre pour étudier si et comment l’ONN peut
résoudre des applications significatives d’IA embarquée à l’aide d’une preuve de concept de
l’ONN implémenté en digital sur FPGA. Tout d’abord, ce travail explore de nouveaux algo-
rithmes d’apprentissages pour OHN, non supervisé et supervisé, pour améliorer la précision
et pour intégrer de l’apprentissage continu sur puce. Ensuite, cette thèse étudie de nouvelles
architectures pour l’ONN en s’inspirant des architectures en couches des ANNs pour créer
dans un premier temps des couches d’OHN en cascade puis des réseaux ONN multi-couche.
Les nouveaux algorithmes d’apprentissage et les nouvelles architectures sont démontrées avec
l’ONN digital pour des applications d’IA embarquée, telles que pour la robotique avec de l’évi-
tement d’obstacles et pour le traitement d’images avec de la reconnaissance de formes, de la
détection de contour, de l’extraction d’amers, ou de la classification.





ABSTRACT

In the last decades, the multiplication of edge devices in many industry domains drasti-
cally increased the amount of data to treat and the complexity of tasks to solve, motivating
the emergence of probabilistic machine learning algorithms with artificial intelligence (AI) and
artificial neural networks (ANNs). However, classical edge hardware systems based on von
Neuman architecture cannot efficiently handle this large amount of data. Thus, novel neuro-
morphic computing paradigms with distributed memory are explored, mimicking the struc-
ture and data representation of biological neural networks. Lately, most of the neuromorphic
paradigm research has focused on spiking neural networks (SNNs), taking inspiration from
signal transmission through spikes in biological networks. In SNNs, information is transmit-
ted through spikes using the time domain to provide a natural and low-energy continuous
data computation. Recently, oscillatory neural networks (ONNs) appeared as an alternative
neuromorphic paradigm for low-power, fast, and efficient time-domain computation. ONNs
are networks of coupled oscillators emulating the collective computational properties of brain
areas through oscillations. The recent ONN implementations combined with the emergence of
low-power compact devices for ONN encourage novel attention over ONN for edge compu-
ting. State-of-the-art ONN is configured as an oscillatory Hopfield network (OHN) with fully
coupled recurrent connections to perform pattern recognition with limited accuracy. Howe-
ver, the large number of OHN synapses limits the scalability of ONN implementation and the
ONN application scope. The focus of this thesis is to study if and how ONN can solve mea-
ningful AI edge applications using a proof-of-concept of the ONN paradigm with a digital
implementation on FPGA. First, it explores novel learning algorithms for OHN, unsupervised
and supervised, to improve accuracy performances and to provide continual on-chip learning.
Then, it studies novel ONN architectures, taking inspiration from state-of-the-art layered ANN
models, to create cascaded OHNs and multi-layer ONNs. Novel learning algorithms and ar-
chitectures are demonstrated with the digital design performing edge AI applications, from
image processing with pattern recognition, image edge detection, feature extraction, or image
classification, to robotics applications with obstacle avoidance.
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In the last decades, data growth has led to the emergence of increasingly powerful arti-
ficial intelligence (AI) algorithms. However, the state-of-the-art edge computing systems ba-
sed on von Neuman architecture can not efficiently handle this large amount of data and cal-
culations. Thus, novel brain-inspired neuromorphic computing paradigms emerged to pro-
pose low-power fast computing systems for edge AI. In particular, the oscillatory neural net-
work (ONN) neuromorphic paradigm takes inspiration from brain waves to compute using
the natural synchronization of coupled oscillators. ONNs have mainly been used to perform
pattern-recognition tasks which is limiting for edge AI. In this thesis, we study how to per-
form meaningful AI edge applications with the ONN computing paradigm. In particular, we
use a proof-of-concept of the ONN computing paradigm with a digital design implemented on
field-programmable gate array (FPGA) to explore various learning algorithms, architectures,
and edge applications compatible with ONN. This chapter first provides a description of state-
of-the-art AI algorithms and hardware computing platforms before presenting neuromorphic
computing paradigms, especially ONN to state the main motivation of this Ph.D. thesis. Finally,
this chapter details the main contributions and outline of this Ph.D. thesis.

1.1 Artificial Intelligence and Artificial Neural Networks

The development of large-scale micro-electronic processors, following Moore’s law predic-
tion [1], has led to the development of novel computing algorithms to bring human capabilities
to machines. We define AI as the ensemble of algorithms and models solved by machines that
try to either overcome human capabilities to solve a specific task or to replace humans on
more general-purpose tasks. With the increasing complexity of AI tasks to solve, deterministic
computing algorithms were discontinued for the emergence of probabilistic machine learning
(ML) models. ML models are a subset of AI algorithms that are capable of learning tasks from
data using an objective function, and a learning algorithm capable of optimizing the objective
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function [2]. ML models include broad types of algorithms, however, they are more and more
associated with the subset of artificial neural network (ANN) models.

ANNs are computing models taking inspiration from neuroscience and brain neural net-
work structure to learn and compute [3]. The human brain is known to compute hard tasks
while consuming a low amount of power [4], making it attractive for efficient computing. It
is composed of a biological neural network that treats and transmits information efficiently.
Concisely, a biological neural network is made of neurons interconnected with synapses by
axons and dendrites. The human neural network is made of around 86 billion neurons inter-
connected by even more synapses, around 10000 billion in 1 cm3. The efficiency of the human
brain mainly comes from its scalability and its plasticity, making it highly reconfigurable to
adapt its knowledge through time.

ANNs take inspiration from biological neural networks by considering two main elements,
artificial neurons interconnected by artificial synapses. The first mathematical model of a bio-
logical neuron was proposed by McCulloch and Pitts in 1943 [5] before being used for compu-
tation, as a perceptron, by Rosenblatt in 1960 [6]. It is defined by two functions:

1. an integration function that integrates the synaptic information. The first integration
function proposed by Rosenblatt [6] computes a weighted sum of the pre-synaptic neuron
states and synaptic weight factors and is still widely used nowadays, see Figure 1.1a,

2. an activation function that computes the integrated information to activate or not the
neuron output. The first proposition of an activation function was a sign function, see
Figure 1.1a.

𝑥1𝑥2𝑥3 𝑗=1𝑁 𝑤𝑗𝑥𝑗
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(a) (b) (c)

FIGURE 1.1 – (a) Perceptron neuron. (b) Feed-forward DNN architecture. (c) Recurrent DNN architec-
ture.

A single perceptron neuron with a sign activation function does not allow non-linear trans-
formation between input and output data, limiting its application to linear tasks [7]. Thus, since
the introduction of the perceptron, novel ANN models have been proposed, modifying neu-
ron functions and proposing novel architectures. First, novel non-linear activation functions
offering a wider possibility of output states were developed to improve ANN performances.
Particularly, the sigmoid function and the rectified linear unit (ReLU) function are nowadays
typical activations [8]. Then, novel ANN topologies or architectures were introduced creating
layers of neurons in which there is no synaptic connection within layers, but there are synaptic
connections between layers. Synapses can be unidirectional, transmitting information from in-
put to output layers, and producing feed-forward models, see Figure 1.1b. Otherwise, synapses
can be multi-directional creating recurrences between layers or between neurons from the same
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layer, producing recurrent models, see Figure 1.1c. If a network architecture is made of more
than one layer (feed-forward or recurrent), it is called a deep neural network (DNN). A feed-
forward DNN of perceptron neurons is called a multi-layer perceptron (MLP) and produces a
non-linear relation between input and output, enlarging the complexity of tasks to solve with
ANNs.

Image classification is a typical non-linear AI task used in a wide variety of domains, such as
for smart city security, healthcare, or autonomous driving. However, even if MLPs offer distinc-
tive performances on small-scale image classification [9], they can not easily handle large-scale
images. In image classification, the input data is represented by the intensity of each pixel in
the image. For example, for a 28x28 gray-scale image, the network requires an input layer of
784 neurons, which is multiplied by three for RGB images. The large input layer increases com-
putation and memory requirements making it challenging to perform large-scale image classi-
fication with MLPs. Convolutional Neural Networks (CNNs) [10] were introduced to solve the
scaling issue of MLP models on image classification, taking inspiration from the visual nervous
system of the vertebrate by creating a hierarchical model [11, 12]. The first solution to repro-
duce the visual nervous system was the Neocognitron proposed by Fukushima in 1980 [13]
before the emergence of CNNs developed by LeCun in the 1990s [9, 10]. A CNN is made of
two main components, convolutional layers which are sparse layers extracting features from
the original image, and a final fully connected MLP layer performing classification from the
extracted features, thus limiting input layer size. Additional operations, like Maxpooling and
Normalization, can also be used to analyze and select important features in order to reduce
the input dimension of the MLP classifier. The architecture of the CNN, the number of convo-
lutional layers, Maxpooling, and Normalization can vary depending on the task to solve, and
finding the best architecture is still an open question [14]. In 2009, the ImageNet dataset was
proposed to benchmark ANN models on image classification [15] and various CNN-based mo-
dels achieved high precision [16, 17, 18]. However, CNN models are efficient for static input
data like images, but not optimized for dynamical data.

Recurrent Neural Networks (RNNs) [19] are networks that include some recurrences in
their topology by connecting neurons among the same layer or allowing connections from neu-
rons of upper layers to neurons of previous layers, such that the information is propagating in
different directions, see Figure 1.1c. Recurrences allow remembering previous information of
sequential data, creating dependencies. Thus, RNNs are often used for dynamical data proces-
sing, but also for clustering tasks. For example, the first RNN model was the Hopfield neural
network (HNN) [20] proposed by Hopfield in 1982 with a single-layer architecture to perform
auto-associative memory (AAM). However, classical RNNs are slow to train and suffer from
vanishing gradient problems, forgetting old dependencies for long input sequences [21]. Re-
cently RNNs gained interest in natural language processing [22] with the introduction of Long
Short Term Memories (LSTMs) [23] and the emergence of the attention mechanism [24], re-
ducing the vanishing gradient problem. For example, the attention mechanism is behind the
powerful Generative Pre-trained Transformer (GPT) models capable of generating human-like
text or images [25, 26].

Novel ANN architectures are still being investigated in order to improve performances and
adapt to various data types. In parallel, ANN learning algorithms are also explored to correctly
configure the ANN models by adapting the synaptic parameters, mainly the weight factors, to
the assigned tasks. To do so, ANN learning algorithms use a dataset, an objective function, and
an optimization algorithm capable of optimizing the objective function. Learning algorithms
are divided into two main categories:

1. Supervised learning considers datasets containing data samples with correct associated
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outputs to perform classification or regression tasks, associating a prediction or a label to
input data.

2. Unsupervised learning considers datasets containing input samples without the asso-
ciated prediction and needs to find correlations and structure to organize data without
additional feedback indicating if the organization is correct or not. It is often used for
clustering.

The state-of-the-art supervised learning is the gradient back-propagation algorithm introdu-
ced in the 1980s for feed-forward ANNs [27, 9]. It calculates the error between the ANN predic-
tion and the label to propagate the gradient to the previous layers and update the synaptic pa-
rameters. The introduction of back-propagation with the parallel developments of ANN archi-
tectures revolutionized the use of DNNs and CNNs, introducing deep learning. However, deep
learning usually compels a large learning dataset, resulting in an important number of compu-
tations. For example, image classification of handwritten digits with MNIST achieves more
than 99% of precision but requires training over 60000 samples [9]. Back-propagation has also
been adapted to RNN with the back-propagation through time (BPTT), computing gradient
back-propagation for multiple time steps, but it is even more computation-demanding than the
usual back-propagation algorithm. The first unsupervised learning algorithm is the Hebbian
learning introduced by Hebb in 1949 [28]. It uses learning data to reinforce synaptic parameters
locally between two neurons if they have equal activation values, following ”neurons that fire to-
gether, wire together”. Unsupervised learning algorithms usually require fewer learning samples
and fewer computations while it also achieves lower precision than supervised algorithms. Re-
cently, unsupervised learning algorithms gained interest with the emergence of self-supervised
learning [29, 30] used for limited or corrupted datasets to label additional or missing data using
unsupervised learning before configuring the ANN model with supervised learning.

Supervised and unsupervised learning algorithms are commonly computed only once with
the entire learning dataset before using the configured model for an infinite inference loop.
However, in the case of evolving environments or data, it is necessary to learn redundantly or
continuously through time to keep the ANN configuration optimized. Continual learning is
another area of research which integrates supervised and unsupervised algorithms [31, 32, 33]
to learn novel data while avoiding catastrophic forgetting of previously learned data [34, 35].

Using ANNs, specifically CNNs and DNNs, has successfully been used to teach smart sys-
tems to recognize or detect objects [36], [16], [37], [38], [39], read texts [9], and analyze speeches
[40, 41]. However, with the growing complexity of applications to solve and the ever-increasing
amount of data to treat, ANNs are often implemented on expensive hardware, and the impact
of AI on global warming is becoming non-negligible [42, 43]. Thus, while the need for more po-
werful AI algorithms is not decreasing, it is necessary to propose novel hardware computing
solutions to reduce the impact of AI.

1.2 Hardware architectures for edge computing

The development and generalization of computing hardware started with the introduction
of the von-Neuman architecture, together with Moore’s law prediction. A classical central pro-
cessing unit (CPU), based on von-Neuman architecture, disconnects the memory unit from the
computing unit, inducing memory reading and writing processes during computation, see Fi-
gure 1.2. CPUs are nowadays spread everywhere thanks to their efficiency in treating general-
purpose sequential tasks. However, for large-scale memory-intensive computations, the com-
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munication bus between memory and computing units is saturated, generating computing la-
tency, and high energy consumption, this is called the von Neuman bottleneck [44]. Graphics
processing units (GPU) were developed to enable parallel processing, combining multiple CPU
cores, to speed up data-intensive processing, such as graphical processing. In ANNs, the core
inference operation is the multiply and accumulate (MAC) operation that is computed thou-
sands or millions of times, distributed sequentially or in parallel depending on the architecture.
Moreover, ANN learning is in general more computation-intensive than inference, as it uses
large datasets to correctly represent all possible input data and maximize the accuracy during
inference.

Memory cell

Neural network architecture

NeuronSynapse

Von Neumann (CPU)

Computing unit

Bus

Memory unit

Computing cell

Deep learning processors

Bus

GPU

Neuromorphic paradigmIn-memory computing (crossbar array)

Bus

FIGURE 1.2 – Hardware computing architectures, from von Neuman to in-memory computing, up to
neuromorphic computing.

State-of-the-art ANN computes inference and learning in the cloud using large-scale CPUs
and GPUs. With the increasing complexity of ANN models and learning datasets, the impor-
tant data transfer between processing and memory units slows down ANN computation and
consumes more energy [45]. For example, training a CNN model sometimes needs to use mul-
tiple GPUs for hours or days to obtain satisfactory precision [46]. Various strategies are ex-
plored to improve the performances of cloud data center hardware resources [47]. In parti-
cular, researchers study ANN-based hardware accelerators to optimize data and computation
distribution to reduce resource utilization, data transfer, latency, and energy consumption of
ANN inference and learning in the cloud [48, 49, 50]. Most ANN-based accelerators investigate
algorithm-aware hardware processing unit architectures that are made of operation-specific
cells with distributed memory for ANN models [51]. For example, deep learning processor
(DLP) such as neural processing unit (NPU) and tensor processing unit (TPU) are made of mul-
tiple small-scale cells containing both memory units and processing units capable of simple
or vectored MAC operations to improve parallelization and accelerate the ANN inferences.
Recently, analog computing also gained interest in taking advantage of the physical compu-
ting properties of analog circuits for low-cost computation. Analog computing also provides
natural continuous values encoding while digital processing still relies on discrete binary va-
lues, even though multi-valued logic is also explored [52]. Similarly to analog computing, in-
memory computing uses physical attributes of memory devices to compute MAC operations.
It allows fast computation with low energy consumption compared to classical von-Neuman
architectures [53]. One interesting solution creates crossbar arrays of memory devices to per-
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form vectored MAC operations [54, 55], see Figure 1.2. Nowadays, there are digital, analog, or
hybrid DLP accelerators. However, even if DLP drastically reduces the energy and latency of
DNN inference and learning, it can be challenging to implement it in highly constrained edge
devices [51].

Especially, in recent years, we have witnessed a proliferation of smart edge devices adopted
by all industry sectors. From healthcare to security, robotics, and even home automation, there
are edge computations in every domain [56, 57]. Currently, many edge devices still use cloud
computing, sending data over the cloud for computation. However, data transfer requires large
bandwidth meanwhile generating important computation latency, energy consumption, and
privacy concerns. Thus, there is a need to develop fast and low-power hardware architectures
to compute ANN inference and learning at the edge.

Learning at the edge is really challenging due to the large datasets and intensive learning
algorithms necessary to achieve high inference accuracy. Yet, one solution comes with conti-
nual learning, performing learning iterations through time depending on the environment.
Continual learning can hardly be implemented in the cloud due to the recurrent transmis-
sion of information between cloud and edge devices. However, implementing learning at the
edge is also challenging as it requires additional resources for learning and re-programmable
synaptic elements. Thus, at the same time, some study novel low-cost continual learning algo-
rithms [58] and others explore compact and low-power devices and circuits for reconfigurable
synapses [59].

For edge inference, a straightforward solution is to consider existing tiny micro-controllers
with tiny ANN models [60], applying additional constraints to their architectures. For example,
limiting the synaptic parameter precision, scaling down the network size, increasing the spar-
sity of synaptic connections, or reducing the possible states of the activation functions can
optimize ANN models to reduce resource utilization and energy consumption while saving
correct precision [61]. Recently, binary neural network (BNN) were investigated as low-cost
solutions for image classification tasks at the edge [62, 63, 64, 65]. Alternatively, in the same
spirit as DLP for cloud computing, brain-inspired neural network architectures were introdu-
ced, distributing memory to reduce latency and energy consumption induced by on-chip data
transfer. Neural network architectures use analog or digital circuits to mimic ANN neuron
and synapse functionalities, see Figure 1.2. Neurons and synapses are often implemented with
multiple analog or digital circuits depending on the type of ANN and the task to solve. For
example, in-memory computing with crossbar arrays can also be configured in neural network
architectures if combined with additional neural activation circuits [66, 67]. Implementing tiny
ANN models in neural network architectures can importantly reduce ANN inference latency
and energy consumption. However, using tiny ANN models, with either micro-controllers or
neural network architectures, can also impact the accuracy performances of the model.

In the human brain, data is encoded in the time domain through spikes. Using the time
domain can encode continuous data in a more natural manner than in the amplitude domain.
Also, edge devices often process dynamic data from sensors, and using the time to encode data
creates natural dependencies between the following data, helping for dynamic data processing.
Temporal encoding, together with the biological plausibility motivated the recent development
of brain-inspired neuromorphic computing paradigms [68, 69, 70], mimicking not only the bio-
logical neural network architecture but also the representation of information.
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1.3 Neuromorphic computing paradigms

The definition of a neuromorphic computing paradigm is still debated today [69] but in
this thesis, we define a neuromorphic computing paradigm as an electronic system mimicking
the brain with its neural network architecture and representation of information. Taking inspi-
ration from biological representations of information, various neuromorphic paradigms were
proposed to achieve low-power computation. On one side, researchers explore novel materials,
devices, and circuits to build low-power neuromorphic systems capable of learning and infe-
rence [71, 72, 69]. In parallel, novel algorithms and applications are explored to demonstrate
the effectiveness and added value of neuromorphic paradigms for edge computing [53, 73].

𝑤1𝑤2𝑤3𝑤𝑛
LIF neuron
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FIGURE 1.3 – Leaky integrate and fire (LIF) spiking neuron model.

The state-of-the-art neuromorphic paradigm is called spiking neural network (SNN) [74].
SNNs were introduced in the 1990s taking inspiration from the human brain where informa-
tion is transmitted between neurons through spikes [75, 74, 76]. The interest of SNN is its data
representation with spikes in the time domain, providing natural and low-energy continuous
data encoding [77]. Many different spiking neuron models were developed over time, being
more biologically plausible or providing better accuracy [75, 76, 78]. Nowadays, the leaky in-
tegrate and fire (LIF) neuron model [79] is widely used for its simplicity and efficiency while
being less biologically plausible than others. The LIF neuron integrates the post-synaptic spikes
by increasing the membrane potential of the neuron until it reaches a threshold that triggers
an output spike, see Figure 1.3. Using numerical data, SNN necessitates data encoding through
time, using mainly rate or temporal encoding, to be used straightforwardly on event-based data
and sensors [80]. For example, SNN has been efficiently used to classify images from dynamic
vision sensors (DVS) or event-based cameras [81, 82, 83]. To do so, various supervised and un-
supervised learning strategies have been proposed [73, 84]. The supervised back-propagation
algorithm can not directly be employed to train SNN because of the non-differentiable acti-
vation function [85]. A simple solution is to employ back-propagation on an ANN with an
approximated differentiable activation function before transferring the weights to a real SNN.
However, back-propagation is not biologically plausible, and the precision obtained is not al-
ways competitive with equivalent ANNs [86]. Thus, alternative spike-based supervised lear-
ning algorithms are also investigated to obtain better precision and to be more biologically
plausible [87, 88, 89, 90, 91]. In parallel, always with the aim of being closer to the brain, spiking
synaptic plasticity was introduced with the spike timing dependent plasticity (STDP) [92, 93],
close to the Hebbian rule [28]. STDP has efficiently been used with many SNN architectures,
feed-forward or recurrent, to perform image classification, clustering, or dynamic data treat-
ment [94, 95]. Furthermore, beyond-ML applications have been explored, solving for example
combinatorial optimization problem (COP) [96] or random walks [97]. Even if SNN showcased
good accuracy for edge applications, it still falls behind ANN performances. Current research
interests concentrate first on novel beyond-ML algorithms and applications for which SNN
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overcomes ANN accuracy. Meanwhile the exploration of SNN learning algorithms and ap-
plications, other efforts are given to create efficient SNN testing methods [98, 99] and to build
reliable SNN-based chips [100]. Multiple neuromorphic chips were developed providing large-
scale SNNs for efficient edge inference, for example SpiNNaker [101], Truenorth [102], Loihi
[103], Brainscale [104], among others. However, those neuromorphic chips do not provide lear-
ning at the edge, and continual online or on-chip learning solutions for SNNs are still being
explored. Complementary to these large-scale CMOS-based neuromorphic chips, important
efforts are being made to create novel materials, devices, and circuits for low-power compact
SNN hardware [105, 69].

SNN has been widely explored in the last decades. However, novel promising neuromor-
phic computing paradigms emerged recently to substitute SNN for edge computing, i.e. hy-
perdimensional computing takes inspiration from the hyperdimensionality, the holographic
representation, and the randomness of the biological neural network to compute [106, 107].
Alternatively, another neuromorphic paradigm emerged recently, taking inspiration from the
collective computational properties of the brain oscillations with oscillatory neural network
(ONN) [108].

1.4 Oscillatory Neural Networks (ONNs)

ONN is a promising alternative neuromorphic computing paradigm taking inspiration
from the collective computational properties of brain areas through oscillations [109]. ONN
computes using the physical synchronization of coupled oscillators [110, 111, 112]. To make the
parallel with ANNs and SNNs, each neuron is an oscillator and each synapse is the coupling
element, or the connectivity, between oscillators. In particular, ONN can be considered a speci-
fic case of SNN where neurons have constant frequency [113]. Synchronization of coupled oscil-
lators was first observed by Huygens with Pendulum [114], before being employed for solving
boolean functions in the 1950s [115, 116]. However, the development of transistor-based logic
became more competitive than coupled oscillators. In the 1980s, Hopfield [20, 117] combined
the neural network principle with physics and the Ising principle [118] to create energy-based
spin-glass models. Later, Hoppenstead [119] and Aoyagi [120] highlighted the intrinsic Ising-
energy minimization of ONN, which brought ONN back into the spotlight combined with its
remarkable dynamic from Kuramoto [121]. It motivated on one side, the research for compact,
fast, and low-power ONN implementations, and on the other side novel ONN architectures,
learning algorithms, and edge applications.
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E = − 12ij Wijcos(ϕi − ϕj)d𝜙𝑖𝑑𝑡 = 𝜕𝐸𝜕𝜙𝑖

FIGURE 1.4 – Phase-based ONN computing principle.

The non-linear dynamics of coupled oscillators can be harnessed in many different ways
to perform intelligent tasks. However, most ONN developments fall into two classes depen-

8



Introduction 1.4. Oscillatory Neural Networks (ONNs)

ding on the type of input/output encoding, frequency-based ONN where inputs are oscillator
frequencies and outputs are the synchronization levels between oscillators, and phase-based
ONN where oscillators have equal frequency and input/output is encoded in phase relation-
ship among oscillators. Additionally, in phase-computing ONN, the phase evolution during
computation can be associated with the minimization of an energy function, like in HNNs or
attractor networks [122], see Figure 1.4. In comparison with classical ANNs, ONNs like SNNs
do not use a deterministic activation function but compute depending on physical parameters
with phase and/or frequency dynamic models, such as the Kuramoto model [121]. Also, SNNs
represent information in binary spikes while ONNs represent information in continuous phase
or frequency. Figure 1.5 presents the main differences of ANN, SNN, and ONN computing.

E = −12ij Wijcos(ϕi − ϕj)
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𝑣𝑖
𝑣𝑡ℎ

FIGURE 1.5 – ANN vs. SNN vs. ONN computing.

From the theory of computing with coupled oscillators, researchers investigated how to
build ONN demonstrators for meaningful applications, see Figure 1.6. Starting with Wang and
Terman in 1994, who introduced the locally excitatory globally inhibitory oscillator network
(LEGION) ONN array for image segmentation [123], just before Hoppensteadt and Izhikevich
linked the theory of coupled oscillators to energy-based HNNs [20] for associative memory
applications [124, 119]. LEGION was introduced in 1994 as a solution to perform image seg-
mentation using an array topology of locally excitatory oscillators computing in phase [123,
125, 126, 127] with an additional global inhibitory neuron, all trained with unsupervised Heb-
bian learning. The first analog implementation was proposed in 1999 [128] and further impro-
ved with a neuromorphic analog image segmentation system in 2006 [129]. Meanwhile, other
works focused on adapted LEGION architectures with digital implementations [130, 131, 132].
Lately, LEGION motivated the development of phase-based and frequency-based ONNs for
clustering and vision tasks [133, 134, 135, 136] using oscillators’ array topology. In parallel,
Hopfield’s work [20, 117] propelled novel energy-based models of neural networks using ana-
log phase dynamics such as phasor neural networks [137] and oscillatory Hopfield network
(OHN) [108, 124]. The fully connected architecture allows recurrent signal propagation with
oscillating neurons capable of performing auto-associative memory (AAM) tasks or pattern
recognition using unsupervised Hebbian learning. Although Hoppensteadt presented the first
hardware solution to implement OHN using phase-locked loop (PLL) in 2000 [119], many chal-
lenges were still limiting the large-scale implementation of such networks. In 2011, it was repor-
ted the first implemented OHN with 8 analog van der Pol oscillators performing phase-based
pattern recognition [138]. Later, building OHNs with spin-torque oscillator (STO) was sugges-
ted to solve pattern recognition with frequency-based computing [139]. However, OHN raised
more interest when Jackson[140, 141] and Shi [142] proposed larger-scale OHN, going up to
100 oscillators. Similarly, the development of novel compact and low-power devices for neuro-
morphic computing offered novel solutions for efficient phase-computing ONN [143, 144, 145].
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In the last decades, researchers also proposed alternative architectures to LEGION and
OHN. For example, the star coupling topology was introduced to perform phase-based static
or dynamic pattern recognition [146, 147]. The star coupling was then derived in frequency-
based computing to also perform image processing, like pattern recognition [148], image seg-
mentation [149] and convolution operations [150]. Alternatively, convolution operations can
also be solved using layered networks of frequency-computing oscillatory neurons [151]. The
layered topology, often used in neural networks, was also applied for classification tasks using
oscillatory neurons, however being different from ONN computing [152, 153, 154, 72]. Addi-
tionally, for classification, the random and sparse topology of reservoir computing combined
with the high non-linearity of coupled oscillators highlighted low-power and low-density pro-
perties [155, 156, 157]. Finally, another promising area recently proposed to build oscillatory
Ising machine (OIM) to solve COPs creating graph-type architectures [158, 159, 160].

In terms of learning, Hebbian plasticity is the state-of-the-art for many applications and
architectures, for example performing image segmentation [123, 125, 149], or pattern recog-
nition [138, 141, 147]. Alternatively, we found in the literature a few works using simulated
annealing to define circuit parameters [151], as well as gradient back-propagation on ANNs
with weight transfer [152]. Finally, others perform custom learning, reproducing convolution
filters [150, 143], or adapting a computational graph representation with coupled oscillators
for COP. Up to our knowledge, all existing ONN demonstrators perform learning offline and
synaptic weights are configured before inference.

1.5 Challenges and motivations

The theory around coupled oscillators encourages research on ONN-based systems for low-
power edge AI accelerators. In particular, in this thesis, we focus on phase-computing ONN
accelerators, motivated by:
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1. the physical dynamic that can facilitate the ONN design with a wide variety of oscilla-
tors, including low-power compact analog or digital devices,

2. the parallel synchronization of coupled oscillators providing fast inference,

3. the data representation in the time domain with oscillators’ phases limiting voltage am-
plitude and power consumption.

In the literature, different architectures, implementations, learning algorithms, and appli-
cations were introduced for ONN, however, there appear to be a few isolated works. More
generally, the state-of-the-art for ONN is to build a network of fully-coupled oscillators, confi-
gured with unsupervised Hebbian learning to solve AAM tasks, creating an OHN.

The fully-coupled architecture limits the scalability of ONN implementation. Considering
a network of N neurons, there are N(N − 1) synapses, making it difficult to implement at a
large scale. For example, the largest OHN implemented in hardware integrates 100 neurons
and is designed mainly with digital technologies [141]. Meanwhile, for analog design, a recent
work built the largest 30-neuron fully connected ONN [161]. In comparison, [162] proposed an
ONN-based digital hardware integrating 1968 oscillators interconnected in an array topology
to perform COP. Even if a large part of the ONN community explores novel low-power com-
pact materials, devices, and circuits [163, 164, 72, 159], we believe there is a need to investigate
alternative ONN architectures to go beyond OHN.

Furthermore, OHN, such as HNN, trained with unsupervised Hebbian learning is not com-
petitive with alternative models executing AAM tasks [165]. Thus, it is also necessary to study
innovative learning solutions, first to try increasing OHN performances on AAM tasks, then
to provide on-chip or online learning ability to OHN designs, and finally to enlarge the ONN
scope of architectures and applications. The ONN can not be shortened to OHN to answer
edge AI requirements, and we believe there are alternative applications where ONN can be
competitive against other ANN and neuromorphic models.

Finally, to study and demonstrate diverse ONN architectures, learning algorithms, and ap-
plications, we need an easily reconfigurable ONN implementation. Current state-of-the-art
ONN implementations are hardly reconfigurable, for example, synaptic weights can be mo-
dified but the core structure of the network can not be changed. Here, we focus on a digital
ONN implemented into a field-programmable gate array (FPGA) to be able to reconfigure the
ONN synaptic weights and structure and to allow deploying demonstrators easily inside edge
systems. Thus, in this Ph.D. thesis, I explore novel architectures, learning algorithms, and edge
applications to go beyond OHN based on the digital ONN on FPGA.

1.6 Outline

My Ph.D. thesis is organized into four chapters. Chapter 2 details the phase-based ONN
computing paradigm, presents the digital ONN implementation, and characterizes the design
compared with previous ONN implementations, considering the state-of-the-art fully connec-
ted recurrent OHN configured for pattern recognition.

Chapter 3 studies various learning algorithms to improve OHN performances for pattern
recognition. In particular, it first studies the adaptation of unsupervised learning algorithms
introduced for HNN to the digital OHN with binary patterns, considering offline and on-chip
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learning. Then, it introduces a supervised learning algorithm and showcases the performance
improvement to solve a digit recognition application.

Chapter 4 introduces a novel ONN architecture with cascaded OHNs implemented in di-
gital which allows applying ONN to a robotic obstacle avoidance application. Furthermore,
it proposes a solution to implement the cascaded OHN architecture in analog to perform an
image edge detection application.

Chapter 5 presents another innovative ONN architecture with multi-layer ONNs for hetero-
association or classification. It studies inference and learning with multi-layer ONNs imple-
mented digitally considering bidirectional or feed-forward connections. Also, it showcases the
application of two-layer ONNs to image edge detection and feature extraction.

Finally,Chapter 6 provides a discussion along with a general conclusion to resume the main
contributions of this Ph.D. thesis and open novel perspectives for the ONN computing para-
digm. Table 1.1 and Figure 1.7 summarize the main contributions of each chapter.

Pattern recognition

Fully-connected (OHN)

Unsupervised Hebbian

Analog: 30 neurons

Hybrid: 100 neurons

Implementation

Architecture

Learning

Application

Chapter 2:

Fully-digital ONN design

State of the art
This Ph.D. thesis

Phase-computing ONN

Chapter 3:

• Novel learning algorithms to improve OHN precision

and enlarge application scope

• On-chip learning for OHN

Chapter 4: 

Cascaded OHN architecture for Robotics application

Chapter 5: 

Multi-layer ONN for image processing and classification

FIGURE 1.7 – Main contributions of the Ph.D. thesis. OHN means oscillatory Hopfield network.
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TABLE 1.1 – Main contributions of the Ph.D. thesis. OHN means Oscillatory Hopfield Network and EP
means equilibrium propagation.

Ch. Problem Topic Contributions

1 Can we build a Digital OHN (1) I detail the ONN computation and the digital
large-scale for pattern OHN on FPGA. (2) I validate the OHN with

reconfigurable recognition. unsupervised learning solving digit recognition.
ONN? (3) I demonstrate its real-time performances

at the edge using a camera stream.

2 Can we improve OHN (1) I study and compare unsupervised learning
OHN precision learning. algorithms for OHN. (2) I build an on-chip

results? learning platform for OHN. (3) I apply supervised
EP learning to OHN solving MNIST.

3 Can we go Cascaded (1) I introduce a cascaded OHN architecture and
beyond-OHN OHN implement it in FPGA. (2) I apply it

with novel architecture. on robotic obstacle avoidance using off-
architectures? and on-chip learning. (3) I apply an analog

cascaded OHNs to image edge detection.

4 Can we go Layered (1) I introduce layered ONN architectures and
beyond-OHN ONN implement it in digital. (2) I apply a 2-layer ONN

with novel architecture. to image edge detection. (3) I apply a 3-layer
architectures? ONN to classification.
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CHAPTER 2

DIGITAL OSCILLATORY HOPFIELD

NETWORK (OHN)
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2.1 Introduction

An oscillatory neural network (ONN) is a physical and hardware-based, neuromorphic
computing approach [166, 167] which aims to provide low-power AI edge systems. Phase-
computing ONNs, that are considered in this work, use coupled oscillators mimicking at the
circuit level the basic structure of the brain architecture, and at the system level the collective
computational synchronization of brain areas. In phase-based ONN, information is represen-
ted in the phase relationship between oscillators, and coupling between them induces phase
synchronization or de-synchronization in time. For example, considering mechanical oscilla-
tors with metronomes, the random start of five homogeneous metronomes in a propagating
environment will make them oscillate in parallel [168]. After several cycles, they get synchroni-
zed in frequency while their phase relations can give us meaningful information. Using phase-
based computing, ONN achieves fast parallel computation with a limited oscillating voltage
amplitude to perform low-power computation.

In state-of-the-art, ONN is used as an oscillatory Hopfield network (OHN) structured with
a fully connected architecture, configured with unsupervised Hebbian learning for pattern re-
cognition [119], such as in HNN. However, current implementations of OHN are limited in
size due to the exponential increase of synaptic elements when increasing the number of oscil-
lating neurons. To our best knowledge, the largest OHN fully analog design reaches 30 oscilla-
tors [161], and the largest hybrid OHN reaches 100 neurons [141]. Compared to other ANNs,
built with thousands of neurons, HNN and OHN are also limited in terms of precision. The
recent development of modern Hopfield networks with multi-layer architectures and conti-
nuous output states trained with gradient-based learning achieved competitive results com-
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pared with other machine learning methods [169]. It motivates the exploration of novel ONN
architectures and learning algorithms to go beyond OHN and showcase ONN effectiveness for
edge applications compared with other ANNs.

To explore and demonstrate beyond-OHN computation with coupled oscillators, we consi-
der a proof-of-concept of the ONN computing paradigm with a digital design implemented on
field-programmable gate array (FPGA) [170]. The ONN on FPGA allows fast and easy reconfi-
gurability of the ONN in terms of size, architecture, and applications. Also, the ONN on FPGA
can easily be integrated into larger systems to demonstrate ONN for edge applications.

In this Chapter, we present the ONN computing paradigm before introducing the OHN
computing principle and training process taking inspiration from HNN. Then, we describe the
digital OHN design and validate it through an auto-associative memory (AAM) application.
Finally, we characterize the digital OHN and compare it with previous OHN implementations
to discuss its advantages and limitations.

2.2 ONN computing paradigm

ONN computing paradigm operates using the physical synchronization between coupled
oscillators. The dynamic of coupled oscillators can be represented by the Kuramoto model
which expresses the time derivative of oscillators’ phase or frequency like:

dϕi

dt
= ωi +

∑

j

Kij sin (ϕj − ϕi) (2.1)

Where ωi is the oscillator free-running frequency. The sinusoidal interaction terms are respon-
sible for the frequency adjustment and they model the adaptation of oscillating neuron i to
other oscillating neurons j. Despite its simple expression, the Kuramoto model produces very
complex dynamics depending on the connectivity (Kij) and frequency distributions [171].

The non-linear dynamics of coupled oscillators such as (1) can be harnessed in many dif-
ferent ways to perform intelligent tasks. However, most ONN developments fall into two
classes depending on the type of input/output encoding: Frequency-based ONN and Phase-
based ONN.

In a Frequency-based ONN, frequency-dependent input signals are injected into the ONN
that reacts to the input perturbations. During computation, groups of oscillators lock in fre-
quency, representing synchronization. Interestingly, computing in the frequency domain can
also remove some physical connections between oscillators [172]. Despite the advantageous
physical scaling of the proposed ONN, generating the modulation signal which includes all
pairwise oscillator interactions is not straightforward [138, 173]. This computation scheme has
been used for image processing [136, 149, 150], associative memory tasks [148], or spoken vo-
wel classification [153, 174].

In this thesis, we focus on Phase-based ONN, in which oscillators have equal frequencies,
the coupling elements are symmetric (Kij = Kji), and the inputs and outputs are encoded in
the phase relationship between oscillators. With that, Hoppensteadt and Izhikevich [119] have
shown that the ONN inference computation minimizes an energy function through time, such
as in HNNs, Ising models [118], and attractor networks [122]. The ONN energy follows:

E = −
1

2

∑

i

∑

j

Kij cos (ϕi − ϕj) (2.2)
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Oscillator dynamics depend on the phase initialization and the ONN energy, enabling a broad
range of applications. For example, considering a fully connected recurrent architecture, ONN
becomes an Oscillatory Hopfield Network (OHN) acting as an HNN to perform pattern recog-
nition.

2.3 Oscillatory Hopfield network (OHN)

OHN was introduced in 1997 by Hoppensteadt [124], and corresponds to an ONN confi-
gured as an HNN, with a fully-connected architecture, to perform pattern recognition. Pattern
recognition is defined as the ability to learn and store patterns in a system, and to retrieve one
of the patterns from corrupted input information. For example, considering images as patterns,
a system configured for pattern recognition can memorize images and retrieve them from cor-
rupted images with noisy or missing pixels. Classical HNN are state-of-the-art neural networks
for solving pattern recognition [20].

HNN is a particular case of RNNs considering a single layer of neurons, where each neu-
ron is connected with the others apart from itself. Each neuron is a perceptron neuron with a
weighted sum as an integration function and a sign activation function, constraining the ori-
ginal HNN to binary bipolar states ¶−1, +1♢, see Figure 2.1. In the case of the AAM task with
images, each neuron represents a pixel, and the neuron activation value {−1} or {1} represents
the pixel color. Thus, classical HNN can treat and learn binary patterns, like images with black
and white pixels. Recently, alternative HNNs were proposed to treat and learn multi-state or
continuous patterns, such as the complex HNN using complex activation functions and com-
plex weights [175, 176], or the modern HNN considering multi-layer architectures with conti-
nuous activation functions [177, 169].
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𝑗=1𝑁 𝑤𝑗𝑥𝑗 sign

FIGURE 2.1 – HNN building blocks.

For ONNs, each neuron activation can take various phase values depending on the ONN
design permitting multi-state or continuous information, like gray-scale images. For pattern re-
cognition, the couplings among neurons are configured during learning and represent the me-
mory of the network. In particular, during the learning process, the training algorithm defines
the coupling weight values such that learning patterns become minima on the ONN energy
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landscape, and ONN acts as a clustering problem by creating clusters of images attracted by
training patterns, see Figure 2.2b. Learning does not ensure that all local minima are training
patterns, and in some cases, local minima become stable phase states while it does not corres-
pond to any learning pattern, which is labeled as a spurious pattern, see Figure 2.2b. During
the ONN inference process, one input pattern is applied to the network by initializing the os-
cillators’ phases with the corresponding input information. Then, phases evolve thanks to the
inherent phase interaction between coupled oscillators until they stabilize and the final phase
state represents the OHN output pattern, see Figure 2.2a. In practice, the measurement of the
OHN output state is done either regularly to detect stability, or at a predefined time after which
it is considered stable.

(a) ONN configured as OHN and trained for pattern recogni-
tion.

(b) Simplified representation of an energy land-
scape in the case of pattern recognition task.

FIGURE 2.2 – OHN for pattern recognition, with energy landscape.

Existing learning algorithms to train an OHN for pattern recognition are mainly unsupervi-
sed learning rules which were first introduced for HNNs [178]. The Hebbian learning rule [28]
is one of the most popular learning algorithms to calculate synaptic weights for bipolar-valued
stored patterns on HNNs. So, to validate the digital OHN implementation, we first apply the
Hebbian learning rule, considering bipolar learning pattern values. We transform each stored
pattern with index k into a vector ξk of length N , with N , the number of neurons inside the
network. Each vector element is bipolar ¶−1; +1♢. The synaptic weight wij between neuron i
and neuron j is calculated as:

wij =
1

N

∑

k

ξk
i ξkT

j (2.3)

with wij = 0 ∀ i = j. Note, for ONN inference, we translate the bipolar values used for training
to opposite phase values, such that a ¶−1♢ is encoded to a ¶0o♢ phase while a ¶+1♢ is encoded
to a ¶180o♢ phase.

2.4 Digital OHN implementation

We develop a digital ONN to be implemented on FPGA as a proof-of-concept of the phase
computing paradigm to explore ONN architectures, learning algorithms, and AI edge applica-
tions. The digital ONN design is first proposed and validated considering the state-of-the-art
OHN architecture [170] trained with the state-of-the-art Hebbian learning rule.
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We present an OHN digital design inspired by hybrid analog-digital work from [141] but
without analog components. In [141], synapses are implemented by a resistor network, and a
critical analog comparator is required at the input of each digital neuron. In contrast, in the
digital ONN implementation, an arithmetic circuit is used for each synapse and there is no
analog comparator in neurons. Figure 2.3 and 2.4 illustrate the digital OHN architecture for
two and four neurons. Note, compared to analog OHN architectures, in the digital OHN we
implement both synaptic weights from neuron i to neuron j, and from neuron j to neuron
i separately, so we can differentiate both weights. Additionally, we can also implement self-
coupling, with weights connected from neuron i to neuron i.

FIGURE 2.3 – Digital 2-neuron OHN with separate weights between neuron i and neuron j and addi-
tional self-coupling.

FIGURE 2.4 – Digital 4-neuron OHN with separate weights between neuron i and neuron j and addi-
tional self-coupling.

We implement an OHN, where each neuron inside the FPGA oscillates in parallel. In ad-
dition, the synapse block is combinatorial, which means all synaptic operations are computed
in parallel. Finally, the architecture needs extra blocks to control synapses and neuron signals.
Figure 2.5 presents the digital OHN design composed of neurons, synapses, and control blocks.
In the following sections, we detail the implementation of each block.

2.4.1 Digital oscillators

In this design, neurons are phase-changed oscillators made of a state register, a phase cal-
culator, and a phase-controlled oscillator, see Figure 2.6. Each neuron i computes the phase
difference between the present input and output oscillations to align the output in phase with
the input. A neuron has one 1-bit input, nin, and one 1-bit output, nout, that are oscillating
square signals, in addition to synchronization, initialization, and control signals. The synapse
block generates the nin signal, which determines the evolution of the neuron phase. The ϕout

and state_changed signals give information on the neuron phase and its evolution. We use
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FIGURE 2.5 – Simplified representation of the digital OHN building blocks.

full_tick, ser_state_in, and ser_state_out signals to initialize the neuron phase, and reset, clk,
and slowclock signals to ensure synchronization.

FIGURE 2.6 – Operating principle of a single phase-changed oscillatory neuron.

The process starts with the initialization of the output signal phase ϕout. It triggers the ini-
tial output oscillation nout aligned to ϕout. Automatically, the synapse block computes the new
input oscillation nin with the phase ϕin. We initialize all neurons serially when full_tick is acti-
vated by connecting ser_state_out signal to ser_state_in signal of the neighbor neuron. Note,
when initialization is over, a scan path between ser_state_out and ser_state_in is configured
to load and read OHN’s state in series.

Then, each neuron calculates the phase difference ∆ϕ between ϕin and ϕout and uses it to
update the new ϕout with a phase calculator block. The phase calculator block contains two
edge detectors and a finite state machine (FSM). Edge detectors detect rising edges on nin and
nout oscillating signals. FSM measures the time difference between nin’s rising edge and nout’s
rising edge to define ∆ϕ. The ∆ϕ value allows us to update the neuron output phase ϕout

aligning nout signal with nin signal, as:

ϕout = ϕout + / − ∆ϕ (2.4)

Note, the sign (+/−) depends on the first rising edge detected. (-) if nout’s rising edge is
detected first and (+) if nin’s rising edge is detected first. Also note, that the nin signal phase is
set by the weighted sum of the neuron’s input signals, see 2.5.

Finally, the new ϕout is applied to the oscillating output signal nout with a phase-controlled
oscillator. The phase-controlled oscillator contains a circular shift register with a multiplexer.
The shift register has 16 stages to represent square signals with different phases. We chose
16 phase stages to enable multi-state ONN computation meanwhile keeping a reasonable fre-
quency. The 16-bit pattern [1111111100000000] cycles continuously through time. So, through
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the multiplexer selection bits, we select a shift-register state corresponding to a square signal
with a distinct phase. This square signal becomes the new neuron output nout. Figure 2.7 shows
the logic diagram of the phase-controlled oscillator and Figure 2.8 the waveforms correspon-
ding to stage 0 (in-phase, ϕout= 0°) and stage 2 (out-of-phase, ϕout= 45°). The register controlling
the multiplexer stores the neuron state, or equivalently the phase of the neuron output. Note,
that we use different clocks (driven by the system clock) to control the state register and the
shift register. The latter is driven by a slow clock generated from the system clock so that the
multiplexer’s output cycles as long as its control register remains unchanged with a period
Tosc = 16 ∗ Tslowclk.

FIGURE 2.7 – Logic diagram of the implemented phase-controlled oscillator.

FIGURE 2.8 – Output waveform of internal neuron shift-register for stages 0 and 2.

2.4.2 Hard-coded 5-bit register synapses

The digital ONN synapses block contains weights and computes each neuron input oscilla-
tion nin using an arithmetic logic circuit to generate the input signal to the i-th neuron as:

nin[i] = sign(
∑

j

wij −
∑

k

wik) (2.5)

where j extends to those neurons with nout[j] = 1 and k to those with nout[k] = 0.

Hard-coded synaptic weights are encoded using fixed-precision registers. At first glance,
the precision of each synapse is set to 5-bit as HNN highlighted similar performances with full
precision weights and with 5-bit precision weights. Note, that the synaptic block is the block
that requires the most logical resources due to the massive parallel computation. Thus later,
a new OHN design was proposed with a partially combinatorial synaptic block with some
sequential computation which did not impact the ONN latency. In the next sections, results are
presented with the partially combinatorial synaptic block.
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2.4.3 Additional control block

In addition to neurons and synapses, the digital design requires a control block to control
and monitor the OHN computation. It is mainly in charge of three tasks.

1. The initialization step that is required to carry out an OHN computation. The input state
is serially applied with a scan path on the neuron’s state registers while activating the
full_tick signal.

2. The control block generates a slow clock to ensure OHN operation. The relation between
the slow clock and the system clock is Tslowclk = 4 ∗ Tclk with a frequency divider of 2-bit
length to speed up the system performance.

3. The generation of the steady (steady_check) and the inconsistent (inconsistent_check)
signals. They indicate whether ONN gives a stable or unstable state. The steady signal is
activated once the ONN reaches a stable state, meaning all neuron phases ϕout are stable
for two oscillation periods (Tosc). The inconsistent signal is activated in case the ONN
does not achieve any stable state after an arbitrary time of 10 oscillating periods.

To do so, the control block monitors neurons’ oscillation activity. The combination of neuron
blocks, synapse blocks, and control blocks creates the complete fully digital OHN design.

2.5 Validation and characterization of the digital OHN

The digital OHN is evaluated on simple AAM tasks and compared with an HNN Matlab
emulator, using first simulation and then implementation to ensure the OHN operation on a
real embedded platform. More than that, the digital OHN is demonstrated for real-time image
recognition on a camera stream application. After validation, the network specifications and
real performances of the system are extracted and compared with previous OHN implementa-
tions.

2.5.1 Simulation evaluation of the digital OHN

We first validate and characterize the digital OHN with simulation software tools before
being implemented on FPGA. We carry out simulations with a 5x3 OHN and a 10x6 OHN
configured for pattern recognition trained with the Hebbian learning rule. The 5x3 OHN is
configured with three stored patterns with standard 5x3 bitmap representations of digits 0, 1,
and 2, see Figure 2.9a. Each pixel of the image corresponds to a neuron and each pixel color is
associated with the neuron phase, with white as in-phase (0o), and black as out-of-phase (180o).
Grey-level pixels are encoded with intermediate phases. Similarly, the 10x6 OHN is configured
with five stored patterns representing digits 0, 1, 2, 3, and 4, see Figure 2.9c. For each OHN,
the test set contains both stored patterns and four corrupted patterns created with each stored
pattern by changing several pixel values with opposite or intermediate values (black, white,
or grey), see Figure 2.9. We use Hamming distance (HD) as a metric to measure the corrupted
patterns’ deviation from the stored ones. The HD between two patterns ξν and ξµ of i elements
is defined as:
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HD =
1

2

∑

i

(ξν
i − ξµ

i ) (2.6)

In the test set, each stored pattern has four associated corrupted ones that are closer in their
HD than any other stored patterns. Ideally, corrupted patterns are supposed to stabilize on the
stored pattern with closer HD.

(a) Training patterns of the
5x3 ONN.

(b) Test set associated with digit 1 for the
5x3 ONN.

(c) Training patterns of the 10x6 ONN. (d) Digit 3 test set for the 10x6 ONN.

FIGURE 2.9 – Training and test patterns for digit recognition task.

Simulation tests of the 5x3 OHN result in only 1 test pattern not being correctly retrieved.
In contrast, after the simulation of the 10x6 OHN, 5 test images out of 25 do not converge to
their respective stored pattern achieving a 20% error rate. It corresponds to the performance of
a classical HNN performing the same task and confirms the digital OHN’s equal capability to
perform pattern recognition as HNN.

We also perform post-place and route simulations to characterize the OHN design follo-
wing Vivado´s default strategies for synthesis and implementation. We set the target device
to the Xilinx 7-series FPGA, the XC7Z020-1CLG400C since it is used for implementation af-
terward. We extract the maximum OHN input and operating frequency, as well as resource
utilization of the two OHN sizes, 5x3 and 10x6. The input frequency corresponds to the clock
input of the digital OHN, and the operating frequency corresponds to the frequency of the os-
cillators. Table. 2.1 indicates that both frequency and logical resources are highly dependent on
the number of neurons. The smaller the network is, the higher the system clock frequency can
be.

TABLE 2.1 – Frequency limits and resource utilization estimated in simulation for Xilinx 7-series FPGA.

Design Max. input Max. operating LUTs Flip-Flops
size frequency frequency (%) (%)

5x3 83,33 MHz 5,21 MHz 958 (1.8) 721 (0.68)
10x6 64,10 MHz 4,00 MHz 6426 (12.08) 2756 (2.59)

2.5.2 Implementation evaluation of the digital OHN

Then, we implement the digital OHN design inside a Zybo-Z7 Digilent development board
[179] and test the pattern recognition application. The board has many communication ports,
memory spaces, user interaction tools, and a Xilinx Zynq-7000 system on chip (SoC). The SoC

23



Digital Oscillatory Hopfield Network (OHN) 2.5. Validation and characterization of the digital OHN

integrates a dual-core ARM Cortex-A9 processor and the XC7Z020-1CLG400C, a Xilinx 7-series
FPGA. Only FPGA resources are necessary for the digital OHN implementation.

Figure 2.10 shows the system-level architecture, including the digital OHN design, for per-
forming pattern recognition on FPGA. The architecture includes the digital OHN described
previously and a scheduler block to control it. The scheduler has four control blocks to monitor
and check the OHN operations. First, the system clock is divided inside the slow clock block
to ensure operations. Test patterns are stored inside the ONN controller and we use switches
to select the input pattern. Next, the controller sends the input pattern to the OHN and waits
until the end of OHN computation (steady signal activated). In the end, the ONN controller
measures the OHN output state, applies a mask to identify the stored image, and the LED
controller block turns on/off the corresponding LEDs, indicating correct and incorrect retrie-
val. The development board provides switches and LEDs needed by the architecture.

FIGURE 2.10 – ONN FPGA implementation architecture for pattern recognition on Zybo-Z7 develop-
ment board.

First, we implement the OHN on FPGA performing equal pattern recognition tests as in
simulation and comparing results. Table. 2.2 shows the multiple stored pattern combinations
used for the 5x3 OHN and the 10x6 OHN implementation tests. As with simulation, the test set
includes stored patterns with four corrupted versions of each, see Figure 2.9.

Table 2.3 presents the OHN implementation results for multiple sizes and training configu-
rations. First, implementation and simulation tests give equal results for equal configurations.
Also, the error rate increases with the number of stored patterns, such as with classical HNNs,
validating the digital OHN implementation.

TABLE 2.2 – Pattern combinations used for implementation characterization.

ONN size Number of stored patterns Patterns
5x3 2 0, 1
5x3 2 0, 2
5x3 2 1, 2
5x3 3 0, 1, 2

10x6 3 0, 1, 2
10x6 4 0, 1, 2, 3
10x6 5 0, 1, 2, 3, 4
10x6 6 0, 1, 2, 3, 4, 5
10x6 7 0, 1, 2, 3, 4, 5, 6
10x6 8 0, 1, 2, 3, 4, 5, 6, 7
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TABLE 2.3 – Experimental error rate of the 5x3 and the 10x6 ONN implemented on FPGA for various
training configurations.

ONN Stored Test Errors Error rate
patterns images (%)

5x3 0,1 10 0 0
5x3 0,2 10 0 0
5x3 1,2 10 0 0
5x3 0,1,2 15 1 6.67

10x6 0,1,2,3 20 0 0
10x6 0,1,2,3,4 25 5 20
10x6 0,1,2,3,4,5 30 9 30
10x6 0,1,2,3,4,5,6 35 21 60
10x6 0,1,2,3,4,5,6,7 40 35 87.5

Digital OHN frequency

We also evaluate the maximum operating frequency, corresponding to the maximum oscil-
lation frequency of the digital OHN oscillators. Previously, we extracted the maximum clock
frequency from the post-place and route simulation in Vivado, and here we try to confirm it
from the OHN implementation by applying different frequencies and checking the error rate
on the pattern recognition task.

OHN operating frequency is defined and generated by the system clock clksys = 125MHz
divided by multiple factors. A first configurable factor creates the OHN input clock clk, then
the clk frequency is divided by 2 in the digital OHN design to ensure operation, and the clk
divided by two is then used as a base signal to generate the oscillating signals, dividing by the
period factor, in this case 16. Thus, OHN input frequency choice is limited by the configurable
factor that allows the division of the frequency by multiples of 2. We perform FPGA imple-
mentation experiments on the same range of input frequencies to check if implementation and
simulation results match. First, we set the OHN input frequency to 7.8125 MHz which is much
lower than the frequency estimated by simulation static timing analysis. Then, we modify the
configurable factor to try higher frequencies, up to the maximum input frequency of 125 MHz,
corresponding to a configurable factor of 1.

We use the error rate (ER) metric to check the ONN operation on the previous pattern
recognition test set. It is computed as:

ER =
ϵ

Itests
(2.7)

with ϵ the number of errors, and Itests the number of test images. We consider an output as
an error when the retrieved pattern does not correspond to any stored ones or when the ONN
does not stabilize.

Experiments on 5x3 OHN perform similarly at 7.8125 MHz, 62.5 MHz, and 125 MHz as
shown in Figure 2.11a. Thus, digital OHN can run a given test set at a higher input frequency
than the evaluated limit (83, 33MHz) for all tested training configurations. The difference in
frequency can be explained by the way they are measured – in simulation, frequency was eva-
luated with global static timing analysis, whereas in experiments, frequency is evaluated on
a specific test set. Figure 2.11b shows the 10x6 OHN error rate at different input frequencies
for two training configurations. There is a trade-off between error rate, input frequency, and
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training configuration. Also note, that for each training configuration, only an input frequency
of 125 MHz impacts the 10x6 OHN error rate.

(a) (b)

FIGURE 2.11 – Experimental results of the error rate (%) for various frequencies (MHz) and training
configurations (training patterns) for (a) the 5x3 ONN, and (b) the 10x6 ONN.

Considering simulation and implementation results, we assess the 5x3 OHN maximum
operating frequency as 976.6 KHz, and the 10x6 OHN maximum operating frequency as 488
KHz. In the next experiments, related to time measurements, we define a common operation
frequency for 5x3 and 10x6 OHNs to 488 KHz as it is the highest common operating frequency.

Digital OHN Computation Time

Then, we assess the computation time of the digital OHN with latency measurements. We
experimentally measure the OHN initialization time needed to apply the input image, and the
computation time needed to stabilize to a correct output state after initialization. The computa-
tion time is measured from the end of the initialization process to the steady signal’s activation
time. We measure OHN timings for training configurations that showed a 0% error rate to
avoid inconsistent cases when the OHN does not converge. For inconsistent cases, the maxi-
mum computation time is clamped to 10 oscillating cycles. We experimentally measure the
initialization time (tinit), and computation time (tcomp) of the OHN with an oscilloscope to cal-
culate the number of frames per second (FPS) that OHN implemented on FPGA can treat. It is
calculated as:

FPS =
1

tinit + tcomp
(2.8)

Table 2.4 shows computation time, initialization time, and FPS results. It highlights that
the serial initialization process increases the initialization time linearly with the increase of the
OHN size. In comparison, the OHN computation time only slightly increases with size. It is
an attractive feature of the ONN computing paradigm in which convergence is achieved in a
few oscillation cycles independently of the number of synapses and neurons. It is also worth
mentioning that the degradation of FPS performance is due to the initialization time. It could
be mitigated by using a different initialization approach.
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TABLE 2.4 – Digital OHN timing performances for various sizes (number of neurons).

OHN Stored Initialization Computation time FPS
patterns time avg (us) (us)

5x3 [0,1] 2 5.04 142045
10x6 [0,1,2,3] 7.8 5.2 76923

Digital OHN resource utilization

We use Vivado post place and route tools to extract OHN resource utilization for various
sizes. Table 2.5 shows that the 5x3 OHN design requires nearly ten times fewer resources than
the 10x6 OHN design. It highlights one of the main digital OHN limits. An increase in the
size drastically extends OHN’s logical resources and depending on the FPGA, the number of
neurons will be limited. For the given FPGA, the maximum OHN that can be implemented
contains around 140 to 150 neurons.

TABLE 2.5 – Resource utilization reported for multiple OHN sizes for Xilinx 7-series FPGA.

#Neurons #Synapses LUTs (%) Flip-Flops (%)
15 225 900 (1.7) 721 (0.68)
60 3600 6300 (12) 2756 (2.59)
100 10000 30033 (56) 4985 (5)
120 14400 38372 (72) 5970 (6)
140 19600 46900 (88) 6955 (7)
150 22500 65251 (123) 7447 (7)

Digital OHN power consumption

Finally, we extract the OHN power consumption from Vivado post place and route tools
for various OHN sizes. For a fair comparison, we compute the energy per oscillation by consi-
dering the OHN oscillating frequency at 488 KHz. Table 2.6 showcases the power, the energy
per oscillation, and the energy per computation considering a mean of 4 oscillation cycles per
computation. It highlights that the energy per oscillation is similar for the three OHN sizes,
and the energy per computation increases with the network size as it uses more oscillators in
parallel.

TABLE 2.6 – Power and energy consumption of the digital OHN for various sizes.

#Neurons 15 60 140
Power 2 mW 11 mW 18 mW

Energy/osc. 67.7 pJ 93.1 pJ 65.3 pJ
Energy/comp. 4 nJ 22.3 nJ 36.6 nJ

2.6 Digits recognition from a camera stream

To prove the OHN’s capability to perform real-world applications, a 10x6 OHN is imple-
mented on FPGA inside a complete digit recognition system. We use a camera to stream OHN
input images representing digits. Input images are displayed by a phone to the camera with
a dedicated application. The camera is connected to the development board and sends input
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images to the OHN. When the computation time is over, the output pattern is displayed on an
external screen, see Figure 2.12.

FIGURE 2.12 – System-level architecture for digits recognition application.

We use a Pcam 5c [180] camera which is connected via a MIPI camera serial interface 2 (MIPI
CSI-2) with the Zybo-Z7 development board. We connect the external screen to the Zybo-Z7
via high definition multimedia interface (HDMI) communication. The image streaming from
the camera to the screen comes from a Digilent Github project named Zybo-Z7-Pcam-5c [181],
compatible with Xilinx’s Vivado software 2018.2. We embed the digital OHN inside the image
treatment flow. To do so, we binarize the camera’s image in black-and-white and scale it down
to 10x6 pixels. We rescale OHN output into a 1280x720 pixels image to display it on the screen.
Both re-scaling steps use the Vivado HLS tool from Xilinx. We also use the ARM processor
resources of the Zybo-Z7 development board to configure the camera. Based on the previous
results, we configure the OHN with five stored digits, from 0 to 4, using the Hebbian learning
rule. The test set comprises five trained images and 20 corrupted images, similar to the digital
OHN characterization, so we expect equal results.

We use the output HDMI screen to identify recognized images and errors in the digital
OHN image recognition application. We find five images not correctly recognized, see Fi-
gure 2.13. Output patterns displayed on the screen reveal that for each not-correctly recognized
image, OHN is close to a correct reference pattern with only a few pixels wrong. However, the
reference pattern is not necessarily the expected one, as for the image 3x, we expected a digit 3,
but the result is closer to a digit 2. Some errors can be explained by test images that correspond
to corrupted digits too far in their HD from reference patterns.

FIGURE 2.13 – Representation of error images for 10x6 OHN digit recognition application showing
incorrect pixels.
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With this application, we demonstrate the feasibility of using an ONN inside a complete de-
sign. We reach a 20% error rate with this application using Hebbian weights, but other learning
algorithms might provide better accuracy. Besides, the 10x6 OHN takes 7.8µs to be initialized,
5µs to stabilize on average, and 160µs if it does not stabilize. As the camera provides an image
every 15ms, the 10x6 OHN does not create any latency for the image recognition application, so
it respects real-time requirements. It validates the digital ONN design as a solution for real-time
image recognition applications and encourages to look into other embedded applications.

2.7 Discussion and conclusion

In this chapter, we presented a proof of concept of the ONN neuromorphic computing para-
digm configured with a fully connected architecture for pattern recognition, as an OHN, with
a fully digital design. We validated the computing capability of 5x3 and 10x6 digital OHNs
trained with the Hebbian learning rule performing pattern recognition both in simulation and
FPGA implementation. Then, we embedded the 10x6 OHN into a complete image recognition
application performing real-time digit recognition from a camera stream.

Here, we first highlight the advantages and limitations of the digital OHN and compare the
digital design with alternative ONN implementations. The limited OHN size, as well as the
specific architecture and learning algorithm used in the OHN, makes it challenging to compare
with other neural networks, such as SNNs. Thus, we compare the digital design with other
implementations of fully connected ONNs, in terms of size, oscillating frequency, computation
time, and power consumption. Computation time corresponds to the number of oscillating
cycles as it is dependent on the frequency of the system. Table 2.7 presents the performances
of various analog or mixed-signal OHN implementations. Note, some are applied to AAM
tasks [138, 182, 141] as the OHN digital design [170], while others are applied for COPs [161,
183, 184] such as Max-Cut. In the case of COPs, we take performances for graphs with dense
connectivity, between 75% and 90%.

First, an interesting feature of the digital OHN in comparison with [141] is that by resorting
to the 1-bit oscillation at the neuron’s output, multipliers are avoided in the synapses block,
while still retaining a multi-level neuron. This is possible because we encode the state in the
neuron’s oscillation phase. Then, the main limit of the digital OHN concerns the digital re-
sources utilization (LUTs and Flip-Flops) which limits the size of the OHN. The current digital
OHN design implemented on the XC7Z020 − 1CLG400C FPGA is limited to around 140 neu-
rons. In OHN, the block using the most resources is the synaptic block due to the important
number of synaptic elements even after the modification of the digital OHN with a partially
sequential synaptic computation instead of the fully combinatorial synaptic computation that
was processed at first. Other alternative solutions to increase the OHN size could be to reduce
the weight precision, from 5-bit signed weights to smaller precision, or to limit the number
of weights, resulting in changes in the ONN architecture. However, even if the size is limi-
ted, Table 2.7 highlights that the digital OHN design achieves the largest implementation of
an ONN with fully connected architecture reported in the literature. Additionally, this archi-
tecture provides the largest number of synaptic elements as it implements N2 weights with
self-coupling and double weights per synaptic element considering both directions while some
of the compared architectures only consider N(N − 1)/2 weights [138]. Implementing more
weights with a larger precision allows more flexibility and can sometimes help to increase ac-
curacy while it also requires more computational resources, limiting the network size no mat-
ter the implementation. In the next chapters, we explore novel ONN architectures to avoid the
large number of synaptic elements and allow novel ONN applications.

29



Digital Oscillatory Hopfield Network (OHN) 2.7. Discussion and conclusion

TABLE 2.7 – Comparison of the digital OHN with other fully-connected ONN implementations.

[138] [182] [141] [161] This work [183] [184]
2011 2016 2018 2020 2021 2023 2023

Neurons 8 20 100 30 140 16 48
Synapses 56 400 10000 900 19600 256 2304

Frequency NA 1 GHz 1 GHz 45 KHz 488 KHz 1 MHz 25 kHz
Comp. cycles 1000 10 4 NA 3-5 100-150 250

Power NA 226.5 µW 303 mW 1.76 mW 18 mW 10 µW 105 mW
Energy/osc NA 0.011 pJ 0.3 pJ 1.3 nJ 65.3 pJ 0.6 pJ 87.5 nJ
Application AAM AAM AAM COP AAM COP COP

In contrast, a fundamental advantage of the ONN paradigm is the fast computation. We
previously highlighted the short-time computation required by the digital OHN. We can com-
pute each pattern with an average of 5µs at 31.25 MHz input frequency for both 5x3 and 10x6
OHNs. So, the computation time is independent of the network size, which is an important fea-
ture to further explore design methods to upscale its size. However, the current OHN design
uses a serial initialization of the neurons, which depends on the number of neurons, achieving
more than 70000 FPS with the 10x6 OHN. Note, that the time required to run a task on the ONN
is highly dependent on the frequency of the oscillators and the task it tries to solve. ONNs with
faster frequency will compute faster. However, depending on the task to solve, ONNs do not
require the same number of oscillation cycles to settle. ONNs configured for COPs require more
oscillation cycles to compute than ONNs configured as OHNs. The digital OHN computes in
the same number of computation cycles as other OHN implementations, but faster than the
ONNs tested on COPs. However, the oscillation frequency of the digital OHN is quite low
compared to other OHN implementations, even if higher than the ONN configured for COPs.

The latency of computation also impacts the energy consumption per operation. The digital
OHN is not optimized to be highly low-power compared to ONNs developed on application-
specific integrated circuits (ASICs). However, we believe it is still important to compare the
various ONN implementations in terms of power and energy consumption. To do so, we derive
the energy per oscillation cycle per oscillator to compare with the same baseline as we saw the
computation latency defers depending on the application and the network size. If we compare
the energy per oscillation, we see that the digital OHN design is in the same range as the
other ONN implementations. All ONN implementations are in the range of the nJ or pJ per
oscillation per oscillator.

Another advantage of the OHN is the easiness of training. Results reported in this chapter
have been obtained using the Hebbian learning rule. Given the patterns to be stored and reco-
gnized, weights are calculated offline by using matrix operations, while training other neural
models can be a very time-consuming operation. However, such low computation unsupervi-
sed learning rules have limited retrieval capacity and make ONN complex to compare with
standard benchmarks. This is the focus of the next chapters, starting by exploring novel lear-
ning solutions for the OHN, before exploring novel architectures for novel edge AI applica-
tions. In particular, alternative learning rules have already been explored for HNN to improve
the accuracy of AAM tasks, and in the next chapter, we explore novel unsupervised and super-
vised learning algorithms to improve the OHN precision on AAM tasks. Additionally, another
challenge is to be able to perform learning continuously through life in evolving environments.
In the next chapter, we also propose a solution to perform on-chip learning with unsupervised
learning rules to allow continual learning capability.

The work presented in this chapter resulted in one publication in a scientific journal [170].
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3.1 Introduction

Learning is essential to configure correctly a neural network to solve a specific task. Existing
learning algorithms to train an OHN for pattern recognition are mainly unsupervised learning
rules, which were first introduced for HNNs. In particular, the Hebbian learning rule, which
was introduced first, is still the simplest to compute and has been widely applied to OHN. Ho-
wever, it has a really low capacity. The capacity of a network configured for pattern recognition
or AAM is defined as its ability to learn and retrieve its training patterns from corrupted input
information. It can be associated with the accuracy, precision, or error rate of a system. Thus,
there is a need to explore alternative unsupervised learning rules for OHN. In this Chapter, in
Section 3.2, we study the HNN state-of-the-art learning rules and how to apply them to OHN
for AAM.

Furthermore, AI models need to learn continuously through time to adapt to evolving envi-
ronments [31, 32, 33]. Efforts are currently concentrated first on supervised continual learning
[185, 186] to improve the performance of classification models over time, and then on conti-
nual reinforcement learning to learn from the environment, for example in robotics [187, 188].
Continual learning algorithms expect to learn novel data while avoiding catastrophic forgetting
[34, 35] of previously learned data. Additionally, continual learning demands to be implemen-
ted on-chip for fast and efficient performances. However, to allow continual on-chip learning,
each synapse needs to be re-programmable in a real-time latency requiring additional space,
and resources, and consuming more energy than systems without on-chip learning. In this
Chapter, in Section 3.3, we also propose a system capable of performing OHN continual on-
chip learning using the digital OHN design. We implement unsupervised learning algorithms
compatible with on-chip learning and measure the performances of the system.
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In parallel, we explore beyond unsupervised learning algorithms for OHN to improve
AAM capacity and solve novel image classification tasks. Image classification is a primary
computer vision task deployed in many industrial systems, such as healthcare or manufac-
turing systems. It is usually solved with conventional AI algorithms [10] trained with gradient
back-propagation learning algorithms. However, back-propagation is computation-intensive,
making it incompatible with hardware edge implementation. Recently, Scellier [58] adapted
the contrastive Hebbian rule (CHR) [189] to perform supervised learning with energy-based
RNN models, using the so-called hardware-compatible equilibrium propagation (EP) learning
algorithm. Thus, in this Chapter, in Section 3.4, we adapt EP to the single-layer HNN and OHN
configured for AAM, creating the AAM-EP supervised learning algorithm, and we apply it to
a simplified MNIST image classification task using an HNN on Matlab and the digital OHN
design.

3.2 Unsupervised learning for binary OHN

Unsupervised learning algorithms only use learning patterns to compute coupling weights,
without additional feedback, unlike supervised learning algorithms, and are mainly used to
solve clustering problems. In pattern recognition or AAM, each pattern becomes the point of
attraction of various clusters created in the energy landscape, see Figure 3.1a.

(a) (b)

FIGURE 3.1 – Simplified representation of an energy landscape for (a) a global interpretation, and (b) an
interpretation in the case of pattern recognition.

There exist mainly two features to categorize unsupervised learning rules for pattern re-
cognition: locality which means that the update of the coupling weight between neuron i and
neuron j only depends on activation values of neurons i and j on both sides of the synapse,
and incrementality, which means that the update of the weights can be done pattern by pattern
without forgetting previously learned patterns. The locality feature is often important to limit
computation, for example for continual learning. The incrementality feature is important to be
able to learn patterns one at a time while remembering previous patterns in the weight matrix.
Then, learning rules can be characterized by the number of iterations they require to learn a
single pattern. For example, some learning rules require only one iteration per learning pat-
tern, so-called immediate learning rules, while others necessitate multiple iterations per lear-
ning pattern to be solved, so-called iterative learning rules. Finally, additional constraints on

32



OHN learning for auto-association 3.2. Unsupervised learning for binary OHN

the weight matrix might be imposed by the network hardware implementation, such as weight
symmetry and self-coupling, corresponding to non-zero diagonal. In this Section, we discuss
the main HNN learning rules, and how to adapt them for OHN. Also, we perform tests with
adapted learning rules with the digital OHN.

3.2.1 State-of-the-art HNN unsupervised learning rules

The first unsupervised learning algorithm introduced for HNN to perform pattern recog-
nition is the Hebbian learning rule [28]. It is inspired by the biological rule: "Neurons that fire
together, wire together". The Hebbian learning rule is local, incremental, and immediate and is
defined by a simple matrix multiplication such as the weight between neuron i and neuron j
follows:

wij =
1

N

∑

k

ξk
i ξk

j (3.1)

with k the number of learning patterns, ξk the kth training pattern, and N the number of
neurons in the network. The Hebbian learning rule is attractive for its speed and simplicity
of computation while it has a limited absolute capacity C = N

2ln(N) , often approximated to

C = 0.14N . The limited capacity of the Hebbian learning rule has motivated the investigation
of alternative learning algorithms. First, the pseudo-inverse learning rule, also called the pro-
jection rule, was introduced in 1986 to guarantee the stability of the learning states by using a
projection matrix. It reaches higher capacity than Hebbian, with C = N [190] and is defined as:

wij =
1

N

k
∑

ν=1

k
∑

µ=1

ξν
i (Q−1)νµξµ

j (3.2)

with Q = 1
N

∑N
i=1 ξν

i ξµ
i . However, even if it is immediate, the pseudo-inverse learning rule

is neither local nor incremental, making it unattractive for continual learning for example. In
parallel, Diederich and Opper proposed two learning rules in 1987 [191], the Diederich-Opper
rule I (DOI), and the Diederich-Opper rule II (DOII). DOI and DOII are local learning rules
using a stability condition to verify if a pattern is correctly saved in the network. Thus, when
learning a novel pattern, the stability condition is applied to the novel pattern and the pre-
viously learned patterns until the condition is met for all patterns. DOI and DOII are iterative
learning rules but are not incremental. The stability condition checks if when the pattern is
applied as input of the network, the update of the network retrieves correctly the pattern. For
DOI, the condition applied is ξihi >= T with hi =

∑N
j=1 wijξj the local field of neuron i, and

T a positive threshold often set to 1. Then, if the condition is not met, the update rule for the
weight between neuron i and neuron j is defined as:

wij = wij + (N − 1)−1ξk
i ξk

j for j ̸= i (3.3)

And for DOII, the condition and update rules are slightly modified with condition ξihi = 1
and if the condition is not met, the update rule for the weight between neuron i and neuron j
is defined as:
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wij = wij + (N)−1(1 − hiξi)ξ
k
i ξk

j (3.4)

Note, DOII also includes self-coupling, meaning wii ̸= 0. The absolute capacity of DOI and
DOII is not precisely defined, however, DOI and DOII highlighted better capacity than Heb-
bian in practice [178]. Alternative local iterative learning rules [192, 193] were also developed
in the same decade with better capacity than Hebbian. However, as mentioned before, itera-
tive learning algorithms require more computation than most of the immediate learning rules
and are often not incremental. Thus, later, the Storkey learning rule emerged as an attractive
learning rule to improve the HNN capacity [194]. It was proposed in 1997 to improve the Heb-
bian learning rule capacity while keeping locality, incrementality, and immediacy. The Storkey
learning rule is defined by:

wij =
∑

k

1

N
(

N
∑

i=1

N
∑

j=1

ξk
i ξk

j − ξk
i hji − hijξk

j ) (3.5)

with hij =
∑N

l=1,l ̸=i,j wilξl, a local field. Next, we study how to adapt the previously descri-
bed learning rules to fit with OHN constraints.

3.2.2 HNN unsupervised learning rules adapted for OHN

Adapting HNN unsupervised learning rules to OHN requires several constraints due to
hardware implementation constraints.

Originally, in HNN trained with Hebbian, the weight matrix is symmetric, meaning weights
between two neurons in both directions have the same values, and the weight matrix diagonal
has zero values avoiding self-coupling, to ensure stability. Later, to improve precision and ca-
pacity, novel unsupervised learning algorithms were introduced allowing asymmetric weight
matrix [191, 192, 193] and self-coupling [191]. However, most OHN implementations, in par-
ticular analog ones, do not support self-coupling and non-symmetric weights as the coupling
is often implemented with discrete analog components like resistors or capacitors [195]. We
provide a classification of the unsupervised learning rules in Table 3.1.

TABLE 3.1 – HNN learning rules features.

Learning Weight Zero- Local Incremental
rules symmetry diagonal

Hebbian [28] x x x x
Storkey [194] x x x x

Pseudo-Inverse [190] x x
Diederich Opper I [191] x x
Diederich Opper II [191] x

Gardner [192] x x

Most unsupervised learning algorithms introduced for HNN can be modified to be used
with OHNs by adding constraints on the weight matrix, even if it can impact negatively the net-
work capacity [178]. Consequently, even if the digital OHN supports non-symmetric weights
and self-coupling, and there are ongoing efforts to develop alternative analog ONN designs
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to allow self-coupling and non-symmetric weights [183], in the next section, we apply the pre-
viously mentioned learning rules imposing weight symmetry and no self-coupling to the di-
gital OHN to compare the accuracy of the different learning rules. Note, using unsupervised
learning algorithms introduced for classical HNN limits patterns to binary information while
OHN with its continuous phase values could, in principle, stabilize to non-binary patterns cor-
responding to phases between 0o and 360o.

3.2.3 Comparison of unsupervised learning rules for digits recognition application

We apply unsupervised learning rules introduced for HNN to the digital OHN and com-
pare them with an HNN simulated on Matlab. We consider the 10x6 digits recognition appli-
cation with 10 training patterns representing digits from 0 to 9, and 5 test patterns for each
training pattern, see Figure 3.2. We compare learning configuration with 1 pattern (digit 0), 2
patterns (digit 0 and 1), up to 10 patterns (digits 0 to 9), and test with corresponding test pat-
terns. We report on the accuracy, considering test images for which the network retrieves the
correct output pattern, on true negative patterns, for test images that stabilize to a training pat-
tern but the wrong one, on spurious patterns, meaning test images that stabilize to an unknown
pattern, and on inconsistent patterns, when a test image never stabilizes. Note, that inconsis-
tency never happens with HNN, and true negative never happens with OHN in this test case
but it could happen for other test cases.

(a) Training patterns of the
5x3 ONN.

(b) Test set associated with digit 1 for the
5x3 ONN.

(c) Training patterns of the 10x6 ONN. (d) Digit 3 test set for the 10x6 ONN.

FIGURE 3.2 – Training and test patterns for the digit recognition task.

Figure 3.3 highlights that almost all learning rules perform well on all learning configu-
rations for the HNN, in particular pseudo-inverse, DOI, and DOII. Hebbian is able to learn 4
patterns, like Gardner, however, the accuracy drops rapidly afterward. Accuracy in the digital
OHN has similar behavior to HNN but achieves lower accuracy, see Figure 3.4. This is mainly
due to the reduction of the weight precision to 5-bit signed. The learning rule achieving the
best accuracy results for OHN is the pseudo-inverse. Note, that accuracy also depends on the
training patterns, thus our results are only true for this data set. It explains also why for some
learning rules, like Gardner, accuracy is better for learning configuration with 9 patterns than
with 5 patterns. Some configuration are harder to learn due to the correlation between patterns
and accuracy does not only depends on the number of training patterns but on the training
patterns themselves. Additionally, Figure 3.4 highlights that when HNN output is incorrect, it
corresponds to a spurious output, while with the digital OHN, it is divided between spurious
patterns and inconsistency.
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FIGURE 3.3 – HNN results from Matlab simulation of the 10x6 digits recognition application.
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FIGURE 3.4 – Digital OHN results on the 10x6 digits recognition application.

In this section, we highlighted that OHN supports various unsupervised learning rules
introduced for HNN. However, all learning rules are applied offline using software to ge-
nerate the weights, before implementing them in the digital OHN hardware. As mentioned
previously, in some applications, continual learning can be necessary to adapt to evolving en-
vironments, such as in robotics. Thus, in the next section, we study how to perform continual
on-chip learning with the digital OHN design for pattern recognition.

3.3 Implementing on-chip learning for binary OHN

We define OHN on-chip learning for pattern recognition as the ability of an ONN-computing
system to learn new patterns by updating OHN coupling weights meanwhile avoiding catas-
trophic forgetting of previously memorized patterns. This Section provides a study of the state-
of-the-art HNN unsupervised learning rules for OHN on-chip learning. Then, it introduces the
on-chip learning system architecture compatible with the digital OHN design. Afterward, we
implement different unsupervised learning rules in the system architecture and provide perfor-
mances of the system in terms of capacity, resource utilization, latency, and energy consump-
tion. We first implement a small-scale 5x3 OHN performing continual on-chip learning of three
patterns representing digits. Later, we study the scalability of the system for larger OHN sizes
and more general pattern recognition tasks.
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3.3.1 Adaptation of OHN unsupervised learning rules with on-chip learning

As previously mentioned, there are two main features to categorize unsupervised learning
rules for pattern recognition: locality and incrementality. Concerning continual on-chip lear-
ning, the locality is important to implement the update of the weights in each synapse and
limit resource utilization. However, the locality is not mandatory as the update of the weights
is not always integrated and implemented at the synapse level. Incrementality is important
for continual learning to ensure remembering previously learned patterns, memorized in the
weight matrix when learning a novel pattern. To avoid catastrophic forgetting, some algorithms
require iterative learning but it uses more computing and memory resources, and it is often
non-incremental, making it unsuitable for continual on-chip learning. Thus, when we consider
OHN continual on-chip learning, we focus on local and incremental unsupervised learning al-
gorithms introduced for HNNs to be compatible with OHN. Table 3.1 highlights that based on
the learning rules studied in [178], there are only two unsupervised learning rules that satisfy
the OHN continual on-chip learning constraints, Hebbian and Storkey. We implement both
Hebbian and Storkey learning rules in a digital OHN on-chip learning architecture. Note, that
adding learning capacity to every synapse can be costly in terms of resources, so it is impor-
tant to also consider sparsity and small weight precision in the weight matrix. In particular, we
study the impact of weight precision on OHN performances.

3.3.2 On-chip learning implementation

We propose a system capable of performing on-chip-learning using the digital OHN design
in the Zybo-Z7 development board [179]. The Zybo-Z7 is based on a ZYNQ processor equip-
ped with a processing system (PS), a dual-core Cortex-A9 processor, and programmable logic
(PL) resources equivalent to an Artix-7 FPGA. First, for the OHN on-chip learning architecture,
OHN digital design is implemented using PL resources as described in Chapter 2 and in [170].
However, instead of controlling the OHN from PL, we control the OHN from PS, see right part
of Figure 3.5. Then, we modify the SoC architecture to include learning in PS and limit the PL
resource utilization, see Figure 3.5.

PL

Digital ONN

Zybo z7

Scheduler

Clock 

divider
ONN 

controller

𝑐𝑙𝑘 𝑜𝑛𝑛𝑖𝑛𝑜𝑛𝑛𝑜𝑢𝑡
𝑜𝑢𝑡𝑝𝑢𝑡
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𝑜𝑛𝑛𝑜𝑢𝑡
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Input 

controller

𝑐𝑙𝑘𝑠𝑦𝑠𝑟𝑠𝑡𝑖𝑛𝑝𝑢𝑡
Output 

controller

Training
𝑡𝑟𝑎𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠• Generate training patterns

• Generate test set for each
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• Send input patterns and

commands to drive the

digital ONN

Matlab

UART

FIGURE 3.5 – Architecture for OHN on-chip learning system for implementation tests.

Communication between PS and PL uses the AXI4-lite parallel communication protocol. We
use PS as master and PL as slave such that when PS receives an external command and pattern,
it controls the digital OHN in PL. The learning process starts when PS receives an external
learning command in parallel with an input pattern. It engages the update of the weights on
PS following the implemented learning rule before sending the updated weights to the digital
OHN in PL through the AXI4-lite bus. Note, that during weight update, OHN is in reset mode.
Once the weight update is over, OHN comes back into inference mode and informs PS that the
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weight update is done. The inference process starts when PS receives an input pattern with an
inference command, such that PS transmits the input pattern through the AXI4-lite bus to the
digital OHN in PL, the digital OHN infers, and it sends back its output pattern to PS through
the AXI4-lite bus. Note, that an additional command performs a reset of the weights to zeros
if necessary. AXI4-lite communication accesses four 32-bit AXI4 registers to send and receive
information. The transmission latency during inference and training depends on the OHN size.

We implement the Hebbian and Storkey HNN learning rules in our digital OHN on-chip
learning architecture and evaluate the performances through four metrics, resource utilization,
capacity, latency, and energy consumption. We analyze the resource utilization of our OHN
on-chip learning architecture as it determines the cost of implementation of our solution in
hardware. Memory capacity is defined by the number of patterns a network (HNN or OHN)
can correctly learn and retrieve. It can be evaluated by learning patterns in the network and
verifying if the network retrieves the correct training pattern when one of the training patterns
is presented. However, we believe it is also necessary to verify if the network can retrieve the
correct training pattern from corrupted input information, corresponding to none of the trai-
ning patterns, to evaluate the robustness to noise. Thus, we train the OHN with some patterns
and test if it can retrieve them and corrupted versions of them. Then, we measure the latency
for both the training process and the inference process. Finally, we extract energy consumption
from post-place and route simulation in Vivado to compare with other OHN designs.

We start by evaluating the OHN on-chip learning architecture with a small-scale 15-neuron
OHN trained on a simple digit recognition [196] task before studying the scalability of the on-
chip learning architecture for larger ONN sizes [197].

3.3.3 Validation of on-chip learning with a 5x3 OHN

At first, we validate the OHN on-chip learning system architecture on a small-scale 5x3
OHN trained and tested on a simple dataset, see Figure 3.2. We use switches to represent input
images and LEDs for the output pattern, both connected to PS. We initialize all weights to
zeros and use a button as the learning command to start a learning process. When we push the
training button, the PS starts processing the new weights using the current input image. After
processing, all 225 weights are sent through AXI4-Lite to the OHN in PL. During experiments,
we train our model with the three training patterns one by one and we test all 15 test images
to assess the accuracy. We use both Hebbian and Storkey learning rules on the digital OHN
configured with 5-bit signed weights.

Table 3.2 displays resources, accuracy, and timing characteristics of the on-chip learning so-
lution compared with the off-chip learning OHN [170]. Note, we report and compare accuracy
after learning the 3 memorized patterns. Table 3.2 validates the on-chip learning architecture
as accuracy with on-chip or off-chip learning is equal. Furthermore, computation time changes
from one learning rule to another depending on the calculation complexity. However, the trans-
mission time is stable because the number of weights sent to PL depends on ONN size, stable
in this case. We report a transmission time of 86 µs to send the 225 weight values, and com-
putation time of 33µs for the Hebbian learning rule, and 77µs for the Storkey learning rule.
Finally, our solution highly increases PL resource utilization in comparison with the off-chip
learning solution due to the re-programmable synapses. However, the learning algorithm does
not influence resource utilization. These experiments validate the OHN on-chip learning ar-
chitecture for a small-scale 15-neuron OHN and provide a first intuition on the OHN on-chip
learning architecture performances. However, as latency and resource utilization depend on
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the OHN size, an additional study on the scalability of the system is necessary to assess more
general performances of the OHN on-chip learning architecture.

TABLE 3.2 – Performances of the on-chip learning design for 5x3 digits recognition compared to off-chip
design.

Hebbian Storkey

Resources on-chip
- LUTs 8203 (15.42%) 8203 (15.42%)
- Flip-Flops 3305 (3.11%) 3305 (3.11%)

Resources off-chip
- LUTs 958 (1.8%) 800 (1.5%)
- Flip-Flops 721 (0.68%) 721 (0.68%)

Accuracy on-chip 93.33% 93.33%

Accuracy off-chip 93.33% 93.33%

Learning time 119 µs 163 µs
- Computation 33 µs 77 µs
- Transmission 86 µs 86 µs

3.3.4 Scalability of the OHN on-chip learning architecture

We study the scalability of the on-chip learning architecture for larger OHN sizes [197].
Furthermore, resource utilization is limited by the re-programmable synaptic weights, so we
study the impact of weight precision. We first evaluate HNN capacity on Matlab with Hebbian
and Storkey learning rules for various HNN sizes and weight precisions. Then, we implement
Storkey and Hebbian in the on-chip learning architecture to extract the resource utilization
for various OHN sizes, and the capacity, latency, and energy metrics for a 25-neuron OHN. A
test flow is set up and automatized for testing the digital OHN on-chip learning architecture
using Matlab to send commands and patterns to the system through a universal asynchronous
receiver transmitter (UART) communication protocol, see Figure 3.5.

HNN capacity for various size and weight precision

We evaluate the capacity of N-neuron HNN networks trained with up to N random training
patterns, by testing with corrupted input patterns generated from training patterns with up to
N/2 flipped pixels, represented by the hamming distance. An inference cycle is performed
for each input pattern. Note, that the size of the network, as well as the correlation between
the training patterns, impact the capacity of the network, so we perform 100 trials for each
configuration. We study the impact of weight precision on HNN accuracy for various HNN
sizes. In particular, we analyze the capacity of HNN trained with Hebbian and Storkey for
three HNN sizes, 25, 50, and 100 neurons, as well as for five weight-precision, 2-bit, 3-bit, 4-bit,
5-bit, and full precision.

Figure 3.6 shows the HNN capacity for a 100-neuron HNN trained with Storkey with 1
up to 100 training patterns and tested for 100 trials with corrupted input patterns with 1 up
to 50 Hamming distance (HD). A black pixel represents that over the 100 trials, for a given
configuration, all tests were successful, while a white pixel points out that none of the tests were
successful. The capacity lines highlight, for each number of training patterns, the maximum
HD of corrupted input patterns supported by the network, such that the network successfully
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associates the corrupted input pattern with a training pattern for at least θ trials over 100, with
θ = ¶85; 90; 85; 100♢. Then, to simplify the readability of our results, we choose to represent
only the capacity lines for one value of θ. We choose θ = 90 to have results representative of a
majority of cases and to allow some error tolerance.
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FIGURE 3.6 – Capacity of a 100-neuron HNN trained with Storkey with 100 training patterns tested
with corrupted input patterns with different hamming distances (1 up to 50 flipped pixels) with the trai-
ning patterns. The capacity lines represent for each number of training patterns the maximum hamming
distance of corrupted input patterns supported by the network, such that the network successfully as-
sociates the corrupted input pattern with a training pattern for at least θ trials over 100.
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FIGURE 3.7 – Capacity of HNN networks of N={25,50,100} neurons trained with Storkey, or Hebbian
with various weight precision. The capacity is represented, for each network size, for each learning rule,
and each number of training patterns, by the maximum hamming distance of corrupted input patterns
supported by the network, such that the network successfully associates the corrupted input pattern
with a training pattern for at least θ=90 trials over 100 (90%).

Figure 3.7 shows the HNN capacity lines for θ = 90 for the Hebbian and Storkey lear-
ning rules for the different weight precisions and network sizes. Figure 3.7 also plots the error
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bounds for each weight precision configuration. Figure 3.7 first highlights that HNN trained
with Storkey can retrieve a larger number of training patterns when initialized with more cor-
rupted input patterns, with larger HD, thus HNN trained with Storkey shows better capacity
than HNN trained with Hebbian for all weight precision configurations, as it was already pro-
ven from literature [194]. Then, Figure 3.7 displays that for Storkey learning, using 5-bit weight
precision, HNN obtains a similar capacity than considering full weights precision. Note, the
impact of reducing weight precision to 4-, 3-, or 2-bit precision depends on the network size.
The larger the network is, the more important the impact of the reduction of the weight preci-
sion on the network capacity.

OHN on-chip learning resource utilization

After, we implement Hebbian and Storkey learning rules in the digital OHN on-chip lear-
ning architecture and first study the impact on resource utilization. In the proposed architec-
ture, a large number of LUTs are used as reconfigurable memory of the weight matrix, due to
the fully connected OHN architecture. To limit the impact of re-programmable synapses, we
analyze the impact of reducing the weight precision on resource utilization, and we expect the
reduction of the weight precision to also reduce LUT utilization.

In Figure 3.8, we report on the number of LUTs, as well as the number of Flip-Flops ne-
cessary for various digital OHN sizes, for 3-, 4-, and 5-bit precision. Figure 3.8 indicates that
for some OHN sizes, reducing the weight precision does not reduce the number of LUTs. For
example, for the 35-neuron OHN, the number of LUTs is larger for the 4-bit precision than for
the 5-bit precision. We believe it depends on the configuration of the FPGA, which provides
fixed-size LUTs. Additionally, the reduction of the weight precision from 5 bits to 3 bits does
not significantly reduce the resource utilization as expected, limiting the OHN size to up to 35
neurons for on-chip learning implementation. Next, we consider a 25-neuron OHN to report
on its capacity and latency.
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FIGURE 3.8 – Resource utilization of the OHN on-chip learning architecture for various OHN sizes
for different weight precision. We compare with the previous digital ONN with random hard-coded
weights in a 5-bit precision (5 bits*).

25-neuron OHN capacity for various weight precision

Figure 3.9 presents capacity lines obtained for a 25-neuron digital OHN trained on-chip
with both Hebbian or Storkey for 3 different weight precision (3, 4, and 5 bits) compared with
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HNN trained with the same configuration. Figure 3.7 shows that for Storkey, HNN and OHN
have similar capacities. However, considering Hebbian, Figure 3.9 demonstrates OHN has a
better capacity than HNN. Figure 3.9 also shows fewer OHN capacity variations depending on
the weight precision than HNN. This was unexpected as it was not observed in previous confi-
gurations, but this is, to the best of our knowledge, the first large-scale capacity tests performed
with the digital OHN. We believe the difference might come from the difference in the system
dynamics between HNN and OHN. Classical HNN can only take two state values, ¶−1; 1♢,
because of the sign activation function. However, the OHN activation function allows it to take
multi-state or continuous values during dynamical evolution. Thus, even if an OHN trained
with binary patterns will stabilize to binary phase states ¶0o; 180o♢, the activation function,
which is difficult to derive, allows non-binary phase states during phase dynamics. We believe
that the phase dynamics of the OHN evolve slowly from a corrupted input pattern to the cor-
rect training pattern, while the sharp HNN activation function may evolve too fast, reaching
the wrong training pattern. HNN may require more precise weights, as with Storkey, to take
the correct decision, while the OHN can still evolve to a correct training pattern even with less
precise weights. However, we believe it requires additional investigation to draw more precise
conclusions.
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FIGURE 3.9 – Capacity of 25-neuron HNN and OHN trained with Hebbian or Storkey.

25-neuron OHN latency for various weight precision

We measure the latency of the 25-neuron OHN for on-chip learning and compare it with
previous implementations of 15-neuron on-chip OHN, and off-chip OHN. The latency is divi-
ded into three parts, the OHN computation latency, the weight computation latency, and the
transmission latency. The OHN computation latency is by default stable no matter the weights
and size of the network, so we expect it to stay stable. The weight computation latency mainly
depends on the learning rule and computation complexity of the learning rule. The transmis-
sion latency depends on the weight precision and the network size. Concerning inference,

42



OHN learning for auto-association 3.3. Implementing on-chip learning for binary OHN

Table 3.3 shows that OHN computation takes around 2 to 3 oscillation cycles to compute, si-
milar to the 15-neuron on-chip OHN [196] and the off-chip OHN [170]. Then, the transmission
of OHN input and output takes 27µs which is 1.5 times higher than the OHN computation.
Note, increasing the OHN size will also increase the transmission latency, while the OHN com-
putation should stay stable. Thus, the architecture increases the inference latency compared to
smaller-scale on-chip OHN and off-chip OHNs because of information transmission from PS
to PL, and reversely.

TABLE 3.3 – Measurements of latency for OHN training and inference with OHN oscillation frequency
Fonn = 97.7KHz and PS clock frequency FP S = 667MHz.

25 neurons 15 neurons [196]

Training

Weights 3 bits 4 bits 5 bits 5 bits

Hebbian learning 55 µs 33 µs
Storkey learning 210 µs 77 µs
Weight precision 140 µs NA

Weight transmission 18 µs 71 µs 175 µs 86 µs
Total Hebbian 213 µs 266 µs 370 µs 119 µs
Total Storkey 368 µs 421 µs 525 µs 163 µs

Inference

Input transmission 9 µs NA
ONN computation 17 µs NA

Output transmission 18 µs NA
Total 44 µs NA

Concerning training, we differentiate the latency into 3 steps, one to perform the training
algorithm in PS, another to rescale weights to the corresponding weight precision, and finally
to transfer weights from PS to the OHN in PL. Table 3.3 highlights that Storkey requires more
computation time than Hebbian due to the more complex Storkey algorithm, see 3.1, and 3.5,
and the sequential processing of PS. Then, weight transmission increases drastically with the in-
crease of the weight precision and the number of neurons. Reducing the OHN size and weight
precision has an important impact on reducing transmission latency because we use AXI4-Lite
with 32-bit parallel transmission.

The on-chip learning architecture, for a network of 25 neurons, allows computing Hebbian
in 55µs, and Storkey in 210µs. Additionally, to allow reducing weight precision to 3, 4, or 5 bits,
additional treatment is necessary, taking 140µs. Then, transmission time depends on the weight
precision taking between 18 µs and 175 µs. In total, training a fully connected ONN, configured
for 5-bit signed synapses, with a novel training pattern takes 370µs with Hebbian and 525µs
with Storkey. Thus, because Hebbian and Storkey have similar precision in the digital ONN
design, it can be more interesting for a system with real-time constraints to implement Hebbian
rather than Storkey.

25-neuron OHN energy consumption for various weight precision

We extract the estimated post-place and route power consumption of the digital on-chip
OHN design on Vivado considering the xc7z020-1clg400c target, and we compare it with the
digital off-chip OHN implementation [170] and with other fully-connected OHN implementa-
tions [141, 161, 183]. We compute the energy per neuron per oscillation to have a common ba-
seline for comparison. Table 3.4 highlights that the digital on-chip OHN requires more energy
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per oscillation than the digital off-chip OHN [170], certainly because of the additional LUTs
resources necessary for the re-programmable synapses. Also, the digital on-chip OHN is in the
same energy range as the analog OHN from [161] as they operate at a lower frequency than
the other implementations [141, 183]. Using a higher OHN frequency reduces the oscillating
time, ultimately reducing the energy per oscillation. The digital OHN frequency is currently
limited by the FPGA. Note, [170] computes with a lower frequency but takes advantage of the
large-scale network.

TABLE 3.4 – Comparison of the digital ONN with re-programmable synapses with other fully-connected
ONN implementations.

[141] [161] [183] [170], This work
2018 2021 2023b 2021

Neurons 100 30 16 140 25
Power 303 mW 1.76 mW 160 µW 18 mW 10 mW

Frequency 1 GHz 45 kHz 1 MHz 488 kHz 187.5 kHz
Energy/osc 0.3 pJ 1.3 nJ 10 pJ 65.3 pJ 2.13 nJ

3.3.5 Discussion of the OHN on-chip learning

In this section, we studied learning algorithms and provided an implementation to perform
continual on-chip learning with the digital OHN for pattern recognition. It highlights that HNN
unsupervised learning algorithms are compatible with OHN on-chip learning only if they are
local and incremental, and if they produce a symmetric weight matrix without self-coupling.
We identified two HNN learning rules compatible with OHN on-chip learning, Hebbian and
Storkey. Both exhibit similar capacity results when performing on-chip learning on a 25-neuron
OHN, making them both suitable for continual OHN on-chip learning.

The proposed architecture takes advantage of a Zynq processor equipped with both PS
and PL resources to implement the fully connected digital OHN [170] with re-programmable
synapses in PL and execute the learning algorithms in PS. First, it is important to highlight
that the on-chip learning architecture does not require many changes from the digital OHN
design, making it easy to adapt and install. The main limitation is the scalability of the archi-
tecture due to the re-programmable synapses demanding a large number of LUTs, even with
reduced weight precision, limiting the OHN size up to 35 neurons. In comparison, the digital
OHN without re-programmable synapses could reach around 140 neurons. Another limitation
of the architecture scalability is the latency induced by the separation between OHN learning
and computation in PS and PL. On one side, PS allows to implement and compute a large pa-
nel of unsupervised learning algorithms, executing them sequentially with a fast frequency of
Fps = 666MHz. On the other side, it generates latency to transmit the weights from PS to PL,
increasing with the OHN size. An alternative solution is to implement the training algorithms
using the parallel properties of PL resources to provide fast training and remove the transmis-
sion latency. However, we believe it would utilize additional PL resources, including LUTs,
which are already limited. Another solution is to use other communication bus than AXI-Lite
between PS and PL, such as AXI-stream which provides faster parallel transmission. Overall,
the on-chip learning architecture can train a 25-neuron OHN in hundreds of microseconds,
between 350µs and 550µs which is the first solution to perform OHN on-chip learning.

Next, in order to showcase the OHN on-chip learning architecture, we need to test it on rea-
listic edge applications. The digital ONN design has already been used for sensor data treat-
ment in various applications [170, 198], so we are confident in the integration of the on-chip
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learning architecture with different sensor treatment applications. Possible applications could
be in the robotics domain where real-time continual learning is often necessary, and where the
digital OHN design already showcased good performances [198]. Using OHN on-chip learning
would allow training the OHN continuously through time depending on the environmental
configuration given by the sensory information. We believe that using the OHN on-chip lear-
ning architecture can be beneficial in the case of applications with large-scale inputs where
all possible configurations can not be anticipated. We propose a solution to perform real-time
OHN on-chip learning for an obstacle avoidance application in Chapter 4 [199].

3.4 Supervised learning for binary-OHN MNIST classification

We previously demonstrated the digital OHN performances to solve pattern recognition
using unsupervised learning rules. Additionally, we introduced a system architecture to per-
form OHN on-chip learning using unsupervised learning rules. However, the capacity obtai-
ned with unsupervised learning rules to train OHN off-chip or on-chip for pattern recognition
is limited. In comparison, usual ANN models taking care of image processing tasks are mainly
multi-layer networks, like CNNs, trained with supervised back-propagation algorithms to per-
form image classification. Image classification is a primary computer vision task deployed in
many industrial systems, such as healthcare or manufacturing systems.

Multiple benchmarks and datasets exist to evaluate models on image classification. The
main ones include MNIST [9] [26], ImageNet [15], and CIFAR-10. MNIST contains grayscale
28x28 labeled images of handwritten digits, while ImageNet and CIFAR-10 classify objects
using larger and more complex colored images. They are all used to a large extent for asses-
sing AI-model performances. Even though image processing and pattern recognition are two
different tasks, authors in [200] adapted HNN to solve a simplified MNIST classification task
using the Storkey learning rule. They obtain 61.5% precision, while typically CNNs achieve
around 99% on the standard MNIST classification task [1]. More recently, authors in [58] adap-
ted the CHR [30] to perform supervised learning with energy-based RNN models, using the
equilibrium propagation (EP) learning algorithm.

In this work, we study how to perform a simplified MNIST image classification using an
OHN trained with EP. We start by testing the classification method developed by [200] on HNN
to OHNs, meanwhile evaluating the HNN and OHN capacity performances with unsupervised
learning rules. Then, we adapt EP to single-layer HNN and OHN networks, which are AAM
networks, thus performing AAM-EP to train them for MNIST classification and study if it can
improve capacity. We evaluate the precision on simplified MNIST test sets with HNN simulated
with Matlab, and digital OHN design simulated on FPGA [170].

3.4.1 MNIST classification with OHN

Pattern recognition and image classification are two distinctive tasks. Thus, one needs to
adapt pattern recognition, solved by AAM networks, to perform classification. In [200], authors
propose a solution to apply HNN on MNIST classification using the Storkey learning rule. In
this work, we replicate their method to evaluate and compare the precision of HNN and OHN
on a simplified MNIST set for different unsupervised learning configurations. We first present
the MNIST set and the simplified version we use in this work before describing methods to
classify the simplified MNIST set using AAM models.
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The MNIST set was created to assess neural networks’ performances on image classifica-
tion tasks. It contains 28x28 gray-scale labeled images of handwritten digits, from 0 to 9. It is
organized in two sets, a training set with 60000 images, and a test set with 10000 images. State-
of-the-art solves the MNIST classification problem with CNN models trained with supervised
back-propagation [10] and can achieve more than 99% of accuracy. In this work, we employ
a simplified MNIST set containing the same number of training and test images, where each
image is pre-processed to be transformed into a 10x10 black and white image, see Figure 3.10.
We focus on a 10x10 format because the digital OHN design is limited in size and resources. The
transformation of each image follows three steps. First, each 28x28 image is cropped to 20x20
removing the black background to reduce similarities among images before being resized to a
10x10 image by taking average values of 2x2 neighbor pixels. Finally, we binarize each 10x10
image into black and white using a threshold. Later, we study different binarization thresholds
and their influence on the simplified MNIST classification task.
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FIGURE 3.10 – Simplified MNIST classification image pre-processing method.

There are some clear distinctions between pattern recognition and classification tasks. On
one hand classification problems associate input information with output classes, hence, input
and output can have different dimensions. On the other hand, pattern recognition tasks asso-
ciate a corrupted input with a clean memorized output, where both have the same dimensions.
To solve the MNIST classification problem using AAM, authors in [200] propose to train an
HNN network with one pattern per label, so one image per digit. Thus, inference will stabilize
to one of the training patterns corresponding to a digit label class, equivalent to the MNIST
classification task, see Figure 3.11.

AAM network

AAM task

Image Image

Classifier ′𝐶′
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FIGURE 3.11 – Difference between AAM and image classification tasks, and the adaptation of AAM
network for image classification task.

MNIST classification with AAM starts with the training step to configure the weights and
the choice of the training patterns, which is key for high precision. Each training pattern must
be the best representation of its digit, such that each image of that digit from the MNIST set
will stabilize to that training pattern. Authors in [200] propose to perform a mean on each gray
scale image with the same label from the MNIST training set of 60000 images, and we re-use
the same method. We define 10 training patterns corresponding to the 10 digits which will be
learned as stable points for both HNN and OHN networks. The 10 training patterns are created
from the 60000 training images by grouping them by digits and computing a mean image for
each digit such that we obtain 10 28x28 gray scale images representing digits between 0 and 9.
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After, we apply the pre-processing on each training pattern to obtain ten 10x10 black and white
images, with one image per digit being the training pattern associated with the correspon-
ding digit, see Figure 3.12. The binarization threshold determines the number of black or white
pixels in each image. In AAM tasks, having uncorrelated training patterns is also key for high
precision [194, 178]. The more patterns are correlated, the harder it is to dissociate them. The
correlation of patterns is evaluated by the Hamming distance (HD) metric d, which calculates
the number of different pixel values between two patterns. The gray scale in MNIST images is
encoded between 0 and 1. Thus, as in [28], we study the ideal threshold to have the largest HD
between training patterns. Figure 3.13a shows the average HD davg, and the minimum HD dmin

in between the 10 training patterns depending on the binarization threshold θ. It highlights that
HD is maximal for θ=0.3, meaning training patterns are less correlated. Figure 3.13b depicts the
HD between the 10 patterns generated after pre-processing with θ=0.3, and Figure 3.13c prints
the resulting 10 training patterns.
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FIGURE 3.12 – Definition of training patterns from MNIST training set. Pre-processing binarizes each
training pattern to be converted into black and white.
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FIGURE 3.13 – Definition of MNIST training patterns.

Once we have training patterns, we need to define synaptic weights with the learning algo-
rithms. We first use unsupervised learning rules described in Section 3.2.1 to evaluate the per-
formances of HNN and OHN for MNIST classification, before adapting the supervised EP al-
gorithm, creating the AAM-EP. With supervised AAM-EP, we study first if it can train an AAM
model from scratch, initializing with random weights, and then we study if it can improve the
capacity of a pre-trained network, initializing with weights generated by unsupervised lear-
ning algorithms, see Figure 3.14. For each training solution, we start by studying the best HNN
training configuration using Matlab simulation. Then, weights of the best HNN precision are
normalized into a 5-bit signed representation to be compatible with digital OHN design. We
simulate the digital OHN design using the Vivado design tool with xc7z020-1clg400c FPGA
target.
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FIGURE 3.14 – Study of training options to perform MNIST classification with HNN and OHN.

We evaluate precision from inference results on the MNIST test set of 10000 images. Infe-
rence starts by initializing neurons with one of the test images. Then, the network evolves until
stabilization. The stable state is then compared to the 10 training patterns to define the output
class. An exact match between OHN output and the corresponding training pattern is conside-
red a correct classification. MNIST results are evaluated through four metrics. First, we evaluate
the precision representing the percentage of tested images that stabilize to the correct training
pattern. Then, we compute the true negative metric, which counts the number of images which
stabilize to one of the training patterns but not the expected one. We also add the percentage
of spurious outputs incorporating images that stabilize to none of the training patterns but
to another non-memorized image. Finally, for the ONN, an additional metric is necessary to
highlight the percentage of images that never stabilize to an output. We call them inconsistent
images. We report results obtained on the 10000 images from the simplified MNIST test set.

3.4.2 Unsupervised learning for MNIST Classification

We study three unsupervised training algorithms applied off-chip: Hebbian, Storkey, and
Pseudo-inverse on HNN. Note, we study the impact of iterative learning on Storkey, Pseudo-
inverse, and Hebbian. Then, we extract the weights giving the best HNN precision and inte-
grate them inside the digital OHN to compare precision.

Figure 3.15a highlights the precision obtained using HNN for unsupervised training confi-
gurations. Configurations include the learning rules, Hebbian, Storkey, or pseudo-inverse for
up to 10 iterations. Pseudo-inverse and Hebbian are not sensitive to iterative learning as pre-
cision does not change depending on the iterations, but Storkey is sensitive. Figure 3.15a also
shows that the best precision, 65.2% is obtained using the iterative Storkey learning rule after
5 iterations. However, training HNN with Pseudo-inverse can reach a precision close to the
best with 64.4% after a single iteration. We configure the digital OHN design using the synap-
tic weight values obtained with the best configuration, 5 Storkey iterations, to compare OHN
precision with HNN precision on the simplified MNIST classification task.

Figure 3.15b shows HNN and OHN have similar trends. First, HNN precision and true
negative percentages are higher than OHN. The difference is certainly due to the normali-
zation of weights into 5-bit signed integers in the digital OHN design. Also, the number of
spurious patterns detected with OHN is slightly higher than with HNN, and inconsistent pat-
terns often happen with OHN while never with HNN. Thus, we believe that HNN decides
more easily of a stable output, even if it is a true negative, while OHN can hesitate between
different outputs and keep bouncing between patterns. Figure 3.15b also reports, to the best
of our knowledge, the best precision obtained with AAM networks trained with unsupervi-
sed learning algorithms to solve a simplified MNIST classification task. We report on 65.2%
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precision with HNN and 59.1% precision with OHN. However, the reported precision is lo-
wer than the state-of-the-art precision of neural network models solving MNIST classification
problems with supervised learning, reaching around 99% accuracy. Hence, next, we propose a
solution using AAM-EP to train HNN and OHN on our simplified MNIST set to investigate if
supervised learning can increase capacity precision.
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(a) HNN precision for multiple unsupervised training
configurations.

(b) Results of OHN and HNN trained with 5 iterations
of the unsupervised Storkey learning rule.

FIGURE 3.15 – Results of HNN and OHN on simplified MNIST classification task trained with unsu-
pervised learning rules.

3.4.3 Supervised AAM-EP learning for MNIST Classification

The common algorithm to solve supervised problems with multi-layer RNN models is
back-propagation through time (BPTT) [201, 202]. Even though it is efficient and gives really
high precision, equilibrium propagation (EP) [58] was proposed as a supervised learning al-
gorithm requiring less computation for energy-based RNN models, taking inspiration from
the contrastive Hebbian rule (CHR) [189]. EP demonstrated efficiency in solving the MNIST
classification task using multi-layer energy-based continuous RNNs. HNNs and OHNs are
also energy-based RNNs, yet made with a single-layer architecture of non-continuous neu-
rons. Thus, in this paper, we propose, the AAM-EP, an adaptation of EP for single-layer AAM
networks.

EP computes the gradient of an objective function, similar to the HNN energy function, that
propagates in the layers. This gradient back-propagation is transparent in the weight update
algorithm, and the final weight update equation is intuitive and simple to apply. Note, authors
in [203] showed that EP and BPTT have similar gradient updates in an RNN, so achieving
similar precision. The EP algorithm defines two learning phases to update the weights. The
first phase, called the free phase, clamps the input information to the input layer and waits
until neurons of the following layers stabilize. Then, EP performs a second phase, called the
weakly clamped phase, where input neurons and output neurons are clamped with the input
information associated with the expected output information. In [58], they show that the signal
back-propagated during the weakly clamped phase corresponds to the derivative error of their
objective function, and they define the following weight update algorithm:

1. Clamp input and let the network evolve until all neurons from hidden and output layers
stabilize.
2. Save the stable state ξ0

i of each neuron i.
3. Weakly clamp with β the expected output and let the network evolve until all neurons
from hidden layers stabilize.

4. Save the new stable state ξβ
i of each neuron i.
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5. Update weight wij between neuron i and neuron j as:

wij = wij +
1

β
(ξβ

i ξβ
j − ξ0

i ξ0
j ) (3.6)

Using β=1, in [58], authors show that RNNs with 1, 2, or 3 hidden layers can solve the
MNIST classification problem and reach more than 95% of precision. Eventually, EP is a low-
computation, energy-based learning algorithm expected to fit with analog computing para-
digms. Thus, it makes it attractive for ONN applications. However, EP can not be applied
directly to HNN or OHN as they are single-layer energy-based models. Thus, we adapt EP into
AAM-EP for HNN and OHN, considering the previous training patterns defined for unsuper-
vised learning as the corresponding digit labels for each image from the training and test set,
see Figure 3.13c. AAM-EP uses these new input/output pairs from the MNIST training set to
clamp input and output during the two training phases.

EP learning is a two-phase algorithm, with a first free phase with input neurons clamped,
and a second weakly clamped phase with additional weakly clamped output with factor. The
clamping principle works well for a multi-layer network with at least one hidden layer [58].
However, in HNN or OHN cases, input and output neurons are the same, and there are no
hidden layers. Thus, we propose the AAM-EP algorithm as follows:

1. Clamp the input image in the network; Consider ξ0
i as activation of neuron i from the input

image.

2. Clamp the expected output image with β=1 in the network; Consider ξβ
i as activation of

neuron i from the expected output image.
3. Use the two activation states to update the weight between neuron i and j as:

wij = Wij + α(ξβ
i ξβ

j − ξ0
i ξ0

j ) (3.7)

Note, that we remove the factor 1/β because we use β=1, and we add a learning rate factor
α in order to regulate the weight update for each training iteration (each image). Also note, that
recently, authors in [204] also proposed to use EP for pattern recognition with ONN. In [204],
authors apply supplementary neurons to clamp training patterns during the clamping phase,
while in this work we do not require additional neurons. Also, in [204], authors perform phase
dynamics simulations of memristor-based OHN to validate their method, while here we per-
form simulations of a digital OHN design.

During tests, we consider various ranges of learning rates between 0.0001 and 1. Initializa-
tion of the weights is also important to achieve high precision. In this work, we first initialize
weights randomly, with small values between [−1; 1] to study if AAM-EP can train an AAM
network from scratch. After, we initialize networks using weights computed previously with
unsupervised learning to study if AAM-EP can improve the precision of an already trained net-
work. At first, we apply AAM-EP for numerous epochs and observe the HNN precision at each
epoch for various learning rates. Each epoch applies a random minibatch of 1000 pre-processed
images from the MNIST training set to update the weights. Precision can slightly change from
one trial to another as minibatch images are randomly chosen from the full simplified 10x10
MNIST training set. The precision for each epoch is first computed on the full simplified 10x10
MNIST test set considering HNN on Matlab. In the second step, we select the best configura-
tion and collect corresponding weights to evaluate the AAM-EP learning algorithm with the
digital OHN.
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(a) Precision of simplified MNIST classification ob-
tained with HNN, for various learning rates, during
numerous epochs, starting with weights initialized
randomly.

(b) Results of ONN and HNN trained with AAM-EP algo-
rithm with random weight initialization after 10 epochs.

FIGURE 3.16

To begin with, Figure 3.16a displays HNN precision evolution for multiple learning rates
during 50 epochs, with weights initialized with small random positive values. It shows that
for all the tested learning rates, during several epochs, the precision stays 0%. Moreover, Fi-
gure 3.16b compares results between HNN and OHN, obtained using weights achieved with
learning rate α = 0.0005 after 10 epochs. Note, that we tried various learning rates and epochs
and obtained the same results. It highlights that for HNN, each image stabilizes to a spurious
pattern, while for OHN, neuron states continuously evolve without reaching stabilization. To
sum up, using AAM-EP learning from scratch with HNN or OHN, does not result in high
precision on the simplified MNIST classification task. Subsequently, we reproduce the preci-
sion tests with weights initialized using unsupervised learning. More precisely, we initialize
weights with the best learning configuration obtained for each unsupervised learning algo-
rithm: weights generated with Hebbian after one iteration, with Storkey after 5 iterations, and
with Pseudo-inverse after one iteration. Figure 3.17 shows the precision of the HNN trained
with AAM-EP during 50 epochs for various learning rates when weights are initialized with
Hebbian, pseudo-inverse, and 5 iterations of Storkey. It highlights that for weights initialized
with Hebbian, the AAM-EP does not modify the network to allow the classification of the sim-
plified MNIST task. It also illustrates, for Storkey and pseudo-inverse, a particular behavior in
which precision increases during the first couple of epochs and decreases afterward. The larger
the learning rate is, the faster the increase and decrease phenomenon is observed. Considering
pseudo-inverse initialization, the maximum precision is obtained with learning rate α = 0.0005,
after 9 epochs, for which HNN reaches 66.3% precision. Considering Storkey initialization, the
maximum precision is obtained with learning rate α = 0.0005, after 5 epochs, and HNN reaches
67.04% precision. For both pseudo-inverse and Storkey initialization, AAM-EP increases the
HNN precision by around 2%. We assume this phenomenon is due to the weight’s initial va-
lues. If the unsupervised learning already set weights to an acceptable network configuration,
then the AAM-EP algorithm can slightly help to increase precision up to a certain point after
which it modifies the previous configuration and reduces drastically the HNN precision. Ho-
wever, if the weights initialization does not bring the network to an acceptable configuration,
such as with Hebbian or random weights initialization, the AAM-EP can not modify enough
the network to reach a good configuration.

We configure the digital OHN with the best HNN configuration, that is weights obtained
after 5 epochs of AAM-EP with learning rate α = 0.0005 with Storkey initialization. Figure 3.18
plots the precision obtained with both HNN and OHN. Note that obtained precision from
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Figure 3.17b and Figure 3.18 are different. As we use a mini-batch of 1000 randomly chosen
images at each epoch, from one run to another, computed weights and obtained precision can
be slightly different. Figure 3.18 shows that for both HNN and OHN, precision increases with
the use of the AAM-EP supervised algorithm. Additionally, the number of true negatives stays
approximately stable for HNN and decreases for OHN, and the number of spurious patterns
decreases. Thus, we deduce the AAM-EP algorithm helps to differentiate and reinforce training
patterns such that input patterns are better associated with training patterns. For example, spu-
rious patterns often appear to be close to training patterns with some wrong pixels. We believe
AAM-EP helps to modify local weights associated with wrong pixels such that HNN and OHN
stabilize to correct training patterns. HNN and OHN precision increase of about 2%, and 3.5%,
respectively. Table 3.5 assembles the best HNN and OHN precision of the three learning confi-
gurations, unsupervised learning only, supervised learning only, and both unsupervised and
supervised learning.
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FIGURE 3.17 – Simplified MNIST classification precisions obtained with HNN, for various learning
rates, during numerous epochs, starting with weights initialized with unsupervised learning rules.

FIGURE 3.18 – Results of OHN and HNN trained with AAM-EP algorithm with α=0.0005 after 5 epochs
with weights initialized after 5 iterations of Storkey.

TABLE 3.5 – Best precision results obtained with both HNN Matlab emulator and OHN digital design
for the three training configurations.

Storkey EP EP and Storkey
5 iterations All α/epochs α = 0.0005, epochs = 5

HNN 65.2% 0% 67.04%
OHN 59.1% 0% 62.61%

3.4.4 Benchmarking and discussion

In this section, we proposed a supervised learning solution for AAM networks with the
AAM-EP. More than that, we highlighted that the supervised AAM-EP learning algorithm can
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help to increase the precision of HNN and OHN networks pre-trained with unsupervised lear-
ning algorithms for the MNIST classification task. However, using supervised learning can be
more demanding in terms of computational efforts.

In this work, training was performed in Matlab. However, EP was presented as a hardware-
aware learning algorithm, and an extension of this work could explore the integration of AAM-
EP in digital or in analog designs. We derive from results obtained in Matlab the computational
efforts for the different learning algorithms, as well as an estimation of the learning latency if
learning was implemented on the digital design. We evaluate the computational efforts using
the metric of the number of multiply and accumulate operations (NMACOP ) required for each
learning method. Table 3.6 shows a comparison of the computational efforts for the various
learning methods for a general case, as well as for the MNIST classification application. It
shows that the AAM-EP increases drastically the NMACOP per training compared to the un-
supervised learning algorithms. Also, considering a system frequency of Fsys=31.25 MHz, and
parallelism in the NMACOP , Hebbian learning can compute in 1 clock cycle in 32ns, Storkey
in 480ns, and Pseudo-inverse in 96ns, while AAM-EP requires approximately 50 ms to train
HNN or OHN for MNIST classification task. Thus, supervised AAM-EP takes longer to com-
pute than other unsupervised learning algorithms. However, depending on the application,
using AAM-EP to increase precision while also increasing computational efforts and latency
can be interesting.

TABLE 3.6 – Computational efforts required for training depending on the learning algorithm for a
network of N neurons, for k training patterns, after it iterations or ϵ epochs. #cycles represents the
number of cycles necessary for the OHN inference, we consider 3 cycles on average and a frequency
Fsys=31.25MHz.

Learning rules NMACOP NMACOP MNIST Latency MNIST

Hebbian (kN2)it 100K 32 ns
Storkey (kN2 + 2kN)it 510K 480 ns

Pseudo-inverse ((kN2) + 2(N2k))it 300K 96 ns
AAM-EP #imgϵ(#cyclesN2 + 2N2) 5000K 50 ms

We report an HNN maximum precision of 67% and an OHN maximum precision of 62.5%.
In comparison, [200] reported 61.5% HNN precision, while performing classification of a sim-
plified MNIST set with 14x14 black and white images, with additional pattern optimization.
So, on one hand, the AAM-EP has, to the best of our knowledge, the highest reported precision
of single-layer AAM networks performing classification of handwritten digits from MNIST
set. And on the other hand, state-of-the-art multi-layer RNNs trained with EP can solve the
complete MNIST classification problem with more than 90% precision, see Table 3.7. Howe-
ver, multi-layer models are often heavy, requiring a lot of resources and latency to be trained.
We also compare HNN and OHN with state-of-the-art ANN models in terms of resources and
latency by comparing the number of parameters to tune the network, as well as the number
of epochs necessary to obtain the best precision. Table 3.7 highlights that HNN and OHN are
single-layer models requiring a low number of parameters compared with multi-layer models.
In terms of training latency, OHN and HNN, reach their maximum precision after less than 10
epochs, while most of the multi-layer networks necessitate more epochs to converge to their
maximum precision. Thus, ONN can be of interest for applications with a restricted amount of
resources, but allowing approximate precision.

In this section, we saw that our proposed AAM-EP learning algorithm improves the already
known precision of AAM on the handwritten digits classification task but does not overtake
multi-layer RNN model precision on the same task. The main difference between AAM net-
works and usual CNN models is the architecture. AAMs are single-layer fully-connected net-
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works, while CNNs are multi-layer models. Thus, a possible improvement is to explore multi-
layer associative memory architectures [205], like heterogeneous associative memory (HAM),
in order to have a more coherent architecture with classification tasks [206]. HAM networks
using perceptron neurons, such as the Linear Associative Memory [207], or the Bidirectional
Associative Memory [208, 209] could replace the single-layer HNN or OHN. In particular, the
recent work from Rudner explored multi-layer ONN for simplified MNIST pattern recogni-
tion trained with back-propagation through time and achieved more than 70% precision [202],
encouraging further investigation for multi-layer ONNs. In particular for low-cost learning so-
lutions, avoiding BPTT. For example, the EP algorithm was first introduced as a supervised
learning algorithm for energy-based multi-layer RNNs, thus we also expect it to be compatible
with multi-layer HNN and ONN. Also, there are other hardware-aware learning algorithms
that are compatible with multi-layer networks, which could help increase HNN and ONN pre-
cision [210].

Another important difference between HNN, OHN, and conventional ANN multi-layer
models is the state precision. Current HNN and OHN limit pattern recognition to binary pat-
terns. However, models achieving high classification precision are mainly continuous models.
Thus, we believe exploring multi-state pattern recognition with OHN could help achieve hi-
gher capacity precision.

TABLE 3.7 – Comparison of various network models trained with EP on the MNIST classification task.

HNN RNN (784-H-10) BNN Conv. A. RNN SNN
OHN H = 500 Output (O) (784-H-10) (784-H-10)

[58] [65] [211] [91]

Arch. 100-FC 1H 2H 3H O=10 O=700 H=100 H=500
Param. 10k 397k 647k 897k 33.76k >2M 79.4k 397k
Epochs <10 15-20 40 140 30 10-20 10 5-10

Precision 67% 97% 98% 97% 11% 98% 96.5% 97%

3.5 Discussion and conclusion

In this chapter, we explored OHN learning algorithms for pattern recognition. Learning is
a key aspect of obtaining high accuracy with a particular network model applied to a specific
task. Here, we focus on the fully connected OHN model to solve pattern recognition or AAM
tasks. More than that, we test the OHN model based on the digital design from Chapter 2.

A state-of-the-art network to solve AAM tasks is HNN which is trained with unsupervi-
sed learning rules. Thus, as a first step, we explored how to adapt unsupervised learning rules
introduced for HNN to OHN in order to analyze OHN accuracy and capacity on the pattern
recognition task compared to HNN. We adapted the learning rules from [178] to fit the OHN
constraints by imposing the symmetry and the 0-diagonal in the weight matrix. We tested va-
rious learning rules on a 10x6 OHN trained for digit recognition and compared the results of
the different learning rules on the digital OHN design using synapses with a limited weight
precision and on an HNN on Matlab with full-precision synapses. HNN and OHN obtain simi-
lar accuracy on the same task with a small difference certainly coming from the synaptic weight
precision. The difference mainly reduces the OHN accuracy and creates additional OHN incon-
sistencies. In the first experiments, we validated the OHN for pattern recognition compared
with HNN, using various unsupervised learning rules, no matter their characteristics, local or
increment, but respecting the symmetry and 0-diagonal in the weight matrix.
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However, non-local and non-incremental learning rules are not compatible with continual
on-chip learning. Continual learning is necessary for some applications where the system needs
to adapt to a changing environment, such as reinforcement learning in robotics. Thus, in this
chapter, we also proposed a system to perform continual on-chip learning with the digital OHN
on FPGA using the processing system of a Zynq processor. We applied the local and incremen-
tal Hebbian and Storkey learning rules to it respecting the symmetric and 0-diagonal weight
matrix. We validated the on-chip learning system on pattern recognition and highlighted the
fast OHN training and computation time. However, we also pointed out the scalability limi-
tation to 35 fully-connected neurons due to the important digital resource utilization of the
re-programmable synapses.

In both cases, using unsupervised learning rules to train an OHN off-chip or on-chip resul-
ted in limited accuracy on the pattern recognition task. Even if HNN is state-of-the-art for this
kind of application, it is not the best solution. Thus, as OHN and HNN are close in architec-
ture, if they use equal learning rules they obtain similar accuracy. In comparison, AI models are
usually trained with supervised back-propagation, and obtain higher accuracy on more com-
plex tasks. Thus, in order to improve OHN accuracy in solving pattern recognition tasks, we ex-
plored a novel learning solution with the supervised equilibrium propagation (EP) algorithm.
We adapted EP to single-layer HNN and OHN, building AAM-EP, to solve a simplified 10x10
MNIST classification task. We computed AAM-EP in Matlab based on the HNN model before
applying weights to the digital OHN. We pointed out the computational efforts required to per-
form AAM-EP for the simplified MNIST set. It is 10 times higher than for other unsupervised
learning algorithms, while lower, requiring fewer parameters and epochs than for multi-layer
models. We also highlighted the AAM-EP algorithm can increase OHN accuracy from usual
unsupervised learning algorithms by 3%, up to 62.5% which is, to the best of our knowledge
the best-reported accuracy for OHN on a simplified MNIST set. However, multi-layer models
trained with EP achieve more than 90% accuracy on the complete MNIST set, and the recent
multi-layer ONN trained with BPTT achieved more than 70% accuracy [202]. Thus, AAM-EP
is more advantageous in terms of computational efforts than more complex ANN models but
is still limited to solving complex tasks efficiently.

In this chapter, we studied how to efficiently learn with OHN, from unsupervised to su-
pervised learning algorithms, to assess OHN performances on pattern recognition. In both un-
supervised and supervised learning cases, OHN does not achieve high accuracy compared to
more conventional ANN models. We believe the main limitations are 1) the binary neuron acti-
vation that can limit the final accuracy of the system, and 2) the single-layer OHN architecture.
Thus, in the next chapters, we explore novel ONN architectures to improve the scalability and
efficiency of the ONN computing paradigm. More than that, we investigate how to apply ONN
with novel architectures to realistic edge applications.

The work presented in this chapter resulted in two journal publications [197, 212] and one
conference paper [196].
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4.1 Introduction

In the previous chapters, we introduced the digital ONN implementation on FPGA, confi-
guring the ONN with fully-connected architecture, as an OHN for pattern recognition. We
validated the design, tested it, and demonstrated its performance on a digit recognition appli-
cation using a camera stream. We also emphasized the limitations of the current digital OHN,
with first the scalability limitation due to the OHN architecture including significant synaptic
elements, and inducing large resource utilization [170]. Then, we pointed out the capacity limi-
tation with the Hebbian learning rule and studied alternative unsupervised learning rules to
improve OHN accuracy for pattern recognition, implemented off-chip and on-chip [196, 197],
and supervised learning for image classification [212]. However, the current OHN architecture
combined with the different learning algorithms does not overcome the accuracy of conven-
tional ANN models on simple benchmark data sets such as MNIST. Furthermore, the OHN
architecture limits ONN for pattern recognition applications. However, ONN physical com-
putation aims to solve more complex AI tasks on edge devices. Even if we were able to ap-
ply OHN for image classification by transforming the problem into a pattern recognition task,
OHN might not be compatible with other AI tasks. We believe the main limitations of the OHN
come from its fully-connected architecture, limiting the OHN size, learning performances, and
applications. Thus, there is a need to explore novel architectures for ONN, beyond OHN.

Conventional ANN models are usually built with multi-layer architectures to achieve high
accuracy [14]. Thus, we take inspiration from multi-layer ANN models to create layered ONN
architectures. There are various ways to create ONN layers. Some can consider connected
layers without internal-layer connections, such as classical layered ANN models. However,
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such architecture requires an important adaptation of the digital design, as well as a study for
possible learning solutions. As a first step, in this chapter, we propose an alternative layered
architecture considering cascaded OHNs. In this case, we consider each layer as an OHN, and
we send information from one layer to the other feed-forwardly. We show the cascaded OHN
architecture is able to solve robotics and image processing applications.

In this chapter, we first detail the cascaded OHN architecture, how to perform inference
and learning with it, and how to implement it digitally. Then, we demonstrate the digital
cascaded OHN architecture for robotic applications, with an obstacle avoidance (OAV) task.
Robots are often equipped with multiple sensors with real-time treatment constraints, where
edge computing is attractive. Here, we propose a solution to perform real-time OAV on various
mobile robots equipped with proximity sensors. More than that, we demonstrate the real-time
OAV application with cascaded OHNs trained on-chip from its environment. The feed-forward
connection is quite simple to implement in the digital design, while it can be challenging with
analog designs. Thus, at last, we propose a solution, considering analog OHNs with analog
feed-forward majority gates, creating cascaded OHNs in analog for an image edge detection
application.

4.2 Cascaded digital OHN inference and learning

As a reminder, the OHN inference starts with the initialization of all oscillators with input
phases. Then, oscillators interact with each other in parallel thanks to the coupling and the
physical synchronization effect of coupled oscillators, and phases evolve through time until
stabilization. After stabilization, the oscillators’ phases represent the OHN output. In the case
of cascaded OHNs, we consider two OHNs performing inference one after the other, such that
the second OHN can use output information from the first OHN. Thus, inference starts with the
inference of the first OHN until stabilization. Then, the oscillators’ output phase information of
the first OHN is used as input phases of the second OHN which can start its inference process,
see Figure 4.1. Note, it is possible to have cascaded OHNs with equal size, transferring each
neuron output of one OHN to the corresponding input neuron of the next OHN, or to have
cascaded OHNs with different sizes, thus transferring only part of the neuron outputs as input
for neurons of the next OHN, as shown in Figure 4.1. Also note, that it is possible to cascade
more than 2 OHNs with the same principle.
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FIGURE 4.1 – OHN computing with 2 cascaded OHNs.

To implement the cascaded OHN architecture inside the FPGA, we reuse the digital OHN
design previously described in Chapter 2. Instead of implementing one OHN, we implement

58



Cascaded OHNs for multi-level auto-association 4.3. Cascaded OHNs for obstacle avoidance (OAV)

multiple OHNs in digital and control them one after the other. For example, considering two
cascaded OHNs, we implement both networks digitally and control them starting by the infe-
rence of the first OHN and waiting until its stabilization to use the first OHN output, partially
or completely, as input of the second OHN. Then, we start the inference of the second OHN
and use its output as the output of the full cascaded-OHN design, see Figure 4.2. The ONN
controller takes care of the synchronization of the two OHNs as well as the feed-forward pro-
pagation of the phase information between the first OHN and the second OHN inferences in
the digital design by controlling the inputs and monitoring the outputs of each OHN.
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FIGURE 4.2 – Digital implementation and control of 2 cascaded OHNs inside the FPGA.

We consider learning of a cascaded OHN design as the configuration of multiple OHNs for
pattern recognition. We use learning algorithms for auto-associative memory previously des-
cribed in Chapter 3 to train each OHN individually. Before training, it is necessary to anticipate
the role of each OHN in order to define the corresponding training patterns. Training patterns
and the number of cascaded OHNs depend on the final application. In the next section, we
demonstrate the cascaded digital OHN architecture for sensor treatment in robotics, with the
obstacle avoidance (OAV) application. Then, we modify the OAV system to create an all-in-one
system on chip (SoC) capable of reading, conditioning, and treating sensory data. After, we
use the OAV on SoC to study real-time on-chip learning in a real edge application meanwhile
learning from the environment. Finally, we propose an analog solution to cascade two analog
OHNs using an analog feed-forward majority gate and apply it to the image edge detection
application.

4.3 Cascaded OHNs for obstacle avoidance (OAV)

We apply the cascaded OHNs architecture to a robotic application, performing OAV on a
mobile robot. Robotics is one of the domains where edge computing is widely deployed, and
fast and low-power consumption are important constraints, because robots are equipped with
many sensors, are often battery-dependent, and need to react instantaneously. Navigation is
one of the main challenges for robots to move safely in their environment, and to navigate
safely, robots also need to avoid obstacles in real-time [213]. Here we focus only on the OAV
task. We consider the OAV task as the capacity to detect obstacles from sensory data and to
react by avoiding the detected obstacles in real time. We choose OAV for its simple adaptation
to pattern recognition tasks, and we show that computing with cascaded OHNs is a compatible
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and attractive approach for robotic edge applications. We first consider an open-loop system
with sensory data as input and direction decisions as output and implement it in the industrial
robot E4 developed by A.I.Mergence [198].

4.3.1 E4 robot

E4 robot is a surveillance robot developed to ensure office security. It detects human intru-
sions and environmental risks, such as water, fire, and smoke.

E4 robot is a 3-side triangle robot that is 35 cm high, with a 36 cm front side and two 34 cm
sides, see Figure 4.3. The robot can navigate smoothly in the environment, avoiding obstacles
in order to detect anomalies, like water floods or intrusions. Additionally, the robot can interact
non-verbally with humans, using sound and luminosity interactions. Available functionalities
are:

- 360o wide human detection
- Sound detection and classification
- 3D environment mapping
- Environment navigation
- Obstacle avoidance
- Flood water detection
- Remote control
- Non-verbal human interaction
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FIGURE 4.3 – E4 robot functionalities and components.

All these functionalities are enabled by multiple sensors and cameras placed all around
the robot, see Figure 4.3. The robot analyses the surroundings, sounds, and images through
sensors, microphones, and smart cameras to detect intrusions. Smart cameras are used to map
the environment and ensure good navigation. Fifteen additional time of flight (ToF) proximity
sensors placed all around the robot ensure correct navigation by detecting obstacles and hol-
lows while avoiding them. Finally, the robot can communicate with the outside world and alert
users of an anomaly via a speaker and an LED ring.

The robot’s global architecture is shown in Figure 4.4. The interface board drives all per-
ipherals, like sensors and cameras, through a CAN communication bus protocol. In addition,
specific boards are used for each peripheral. For example, to control LEDs, an additional LED
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control board is used between the interface board through the CAN bus and the LEDs them-
selves. In this work, we integrate cascaded OHNs implemented on an FPGA board inside the
E4 robot to perform the OAV application. Thus, we modify the global architecture by connec-
ting an FPGA board to the OAV board to compute the OAV application with cascaded OHNs,
see Figure 4.4.
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FIGURE 4.4 – E4 robot system architecture.

4.3.2 Default OAV process on E4

OAV application on E4 uses 15 ToF proximity sensors connected to the OAV board. The 15
ToF sensors are referenced as VL53L0X and can give distances from 0m, up to 2m. They are
positioned all around the robot, as shown in Figure 4.5. Nine sensors are directed horizontally
to detect front objects, and the six others are directed to the ground to detect small ground
obstacles and hollows.

15 infra-red proximity 

sensors:

Front directed

Ground directed
MICROCONTROLLER

▪ Read sensors with 

I2C protocol

▪ Process to find a 

free angle direction

▪ Command wheels 

to follow angle

FIGURE 4.5 – E4 robot components for OAV application.

OAV board is a Nucleo board equipped with an STM32 microcontroller. The communica-
tion between the OAV board and the proximity sensors is defined by the sensor’s manufacturer
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as the inter-integrated circuit (I2C) protocol. The I2C protocol is a serial communication proto-
col often used in embedded electronics between the microcontroller and sensors. Only two
wires are necessary for communication, a clock wire to synchronize both sides of the commu-
nication and a data wire to transmit data. The OAV algorithm inside the OAV board first reads
the distance measured by each fifteen sensor values using the I2C protocol. Then, it uses a Brai-
tenberg algorithm [214] to detect if there is an obstacle or a hollow in front of each sensor. From
this information, the OAV algorithm deduces directions that are free of obstacles. Finally, one
of the available directions is chosen and sent to the wheel control system to avoid obstacles.
In this original OAV algorithm version, no information from the previous robot direction is
used to define the final direction, however, it can be included to anticipate future directions
and improve the robot moving flow.

4.3.3 Cascaded OHN for OAV on E4

OAV application performs two main functions: 1) detect the obstacles, and 2) avoid them by
finding a free direction. We propose to utilize an OHN for each of these functions, thus in total,
two cascaded OHNs to perform the OAV application. The first OHN detects obstacles based
on the information gathered from ToF proximity sensors, while the second OHN determines
available angle directions from the detected obstacles.

The ToF proximity sensors measure distances between 0m and 2m and use the I2C com-
munication protocol to transmit measured distances to the OAV microcontroller board. We use
a thermometer encoding technique to encode each sensor value into a 5x1 column image. The
thermometer encoding is adjusted depending on the orientation of the sensor, see Figure 4.6. If
the sensor is horizontally directed, we directly encode the measured value in a 6-state column
(from 0 to 5). However, if the sensor is ground-directed, we define a default ground value
and encode the difference between the measured and the ground value. Based on these enco-
ded data, we create a 5x9 image by considering one front-directed sensor for each column of
the image. Also, we add the ground-directed sensor values from sensors close to each front-
directed sensor, see Figure 4.6. We fix the maximum value of the sum of sensors to 5 as each
column only has 5 pixels. If the sum is greater than 5, we round it to 5. This method allows
us to create areas for each front-directed sensor that takes into account values from both front-
and ground-directed sensors. Finally, we obtain an image representing a 360o map of the envi-
ronment around the robot. Each column represents an area around the robot, and the number
of black pixels in each column corresponds to distance with possible obstacles for each area,
see Figure 4.6. This sensory data encoding is done on the OAV micro-controller board, and the
final map image is then sent to the FPGA. It allows us to represent the all-around environment
of the robot in terms of obstacles and hollows.

As aforementioned, the first OHN detects obstacles and hollows, while the second OHN
defines the free directions (angles) that the robot can take. The first OHN gives as output the
black pixels on each column depending on the proximity of the obstacle or hollow. To do so, we
train the first OHN with 512 images corresponding to all possible combinations of full-column
images representing a wide range of obstacles and hollows. For example, if an obstacle is close
enough to be avoided, the OHN will output a black column in the corresponding area of the
obstacle. However, if there is no obstacle or if the obstacle is far enough to be avoided later,
the OHN will output a white column in the corresponding area. So, OHN identifies if there are
obstacles or hollows in the different defined areas, see Figure 4.7a.
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FIGURE 4.7 – Cascaded OHNs for OAV application.

Training of the 512 patterns is performed with the simple Hebbian learning rule [28]. Note,
that it is too large compared to the usual Hebbian capacity limit but it works because patterns
are uncorrelated. We noticed that by learning all 512 patterns, weights are equivalent to trai-
ning 9 independent OHNs, one for each column, with 2 patterns. The output of the first OHN
contains an image of black and white columns and each row is identical. Thus, the second OHN
uses one row from the first OHN as input, and outputs patterns corresponding to free direc-
tions. We define six possible directions corresponding to the three triangle phases and the three
triangle angles. We combine columns corresponding to those six areas and train the second
OHN with all possible combinations of those six areas, see Figure 4.7b. There are 64 possible
outputs for the second OHN, which is also trained with the Hebbian learning rule [28]. Note,
64 patterns are again too large to be learned with Hebbian on an 8-neuron OHN. Thus, we
consider additional self-coupling, as it showed good performances to train a large number of
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correlated patterns in HNNs [215]. The second OHN outputs are then sent back to the OAV
board, which decides the direction to follow. We define the best direction as the middle of the
larger available area. Note, black and white pixels are associated to ¶−1♢ and ¶+1♢ during the
training process with Hebbian, and to ¶0o♢ and ¶180o♢ oscillator phases during the inference
process with OHN, respectively.

4.3.4 Cascaded digital OHN implementation on E4

We test our solution with the two cascaded OHNs implemented on an FPGA board and in-
tegrate it into the E4 robot. OHNs are implemented on the CMOD A7 development board from
Digilent, which contains an Artix-7 FPGA, following the digital OHN design [170]. Sensory
data measurements and their encoding to OHN are performed via the microcontroller on the
OAV board. We connect the OAV board with the FPGA board using a universal asynchronous
receiver transmitter (UART) communication protocol, see Figure 4.8. UART communication is
a well-known serial communication protocol used in embedded electronics that is asynchro-
nous. It uses only two wires, which is an attractive solution for embedded devices. One wire
communicates from device A to B, while the other wire communicates between device B to A.
Its main drawback is the communication latency due to serial information transmission. We
choose UART first for its simple implementation, and then because we show later that in this
OAV application, the latency of sensor measurements is higher than UART latency.

MICROCONTROLLER FPGA

• Read sensors

• Send information to the FPGA

• Convert information into image

U
A

R
T

15 I2C sensors

• Post processing (Angle) 

• Command wheels with Angle
3 wheels

• Send image to OHN

• Send ONN output to STM32

Digital OHN

Digital OHN

FIGURE 4.8 – System architecture of the cascaded OHN for OAV on FPGA inside the E4 robot.

The entire process starts with the OAV board, which reads the distance information from the
15 ToF proximity sensors using the I2C communication bus. The OAV board microcontroller
encodes the information into a 5x9 image and sends the image to the FPGA board through the
UART communication interface. The computation of both OHNs, one by one, is done inside
the FPGA board. We initialize the first OHN and let it compute until stabilization. The first
OHN output initializes the second OHN and after stabilization, the output of the second OHN,
corresponding to obstacle-free areas around the robot, is sent back to the OAV board through
the UART communication interface. The OAV board finally chooses one of the best directions
from all obstacle-free directions and sends the final direction to the wheel control system to
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move the robot in the corresponding direction. We repeat this process every time new sensory
data are available.

4.3.5 OAV on E4 system performances

We report on the OHN OAV solution’s accuracy, timing, and computational resources im-
plemented on the FPGA. In addition, we compare with classical software solutions. To do so,
we develop and implement equivalent algorithms in the microcontroller of the OAV board.
We create a first algorithm to detect obstacles from sensory data measurements and a second
algorithm to reproduce the behavior of the second OHN and define available directions. We
evaluate the computation time of each algorithm and compare it with the computation time of
each OHN. We measure the computation time of both OHN and software solutions using an
oscilloscope sampling at 100MHz and we round values to microsecond precision. Performance
results are shown in Table 4.1, and computation time comparisons between OHN and software
algorithms are shown in Table. 4.2.

TABLE 4.1 – Performances of the OAV function on the E4 robot.

Demonstrator characteristics 2-OHN solution
OHNs Performances OHN 5x9 OHN 1x9
FPGA - Artix 7: xc7a35

#Training patterns 512 64

LUTs - 100%: 20 800 (%) 32.11

Flip-Flops - 100%: 41 600 (%) 7.74

OHN frequency Fosc(KHz) 187.5

OHN Initialization 15 us 4 us

Computation time 10 us (2 Tosc) 10 us (2 Tosc)

Accuracy (%) 100 100

Full system performances
(FPGA frequency: 12 MHz)

15-sensor measurement 27 ms

UART sensor value transmission 8 ms

UART direction reception 500 us

FPS 30

OHNs Init and Comp. time 44 us (OHN 5x9 + OHN 1x9)

Robot lifetime estimation 2h/3h

TABLE 4.2 – Computation time comparison between software solutions and OHN solution.

Software solution OHNs solution
(STM32 @80MHz) (@187.5 KHz)

Detect obstacles 15 us 10 us (2 osc cycles)

Define direction 5 us 10 us (2 osc cycles)

Full system 20 us 20 us

First, we observe that our cascaded OHN for OAV solution uses a small number of re-
sources, up to 32% of LUTs, and up to 8% of Flip-Flops of the Artix-7 FPGA. We note that
Artix-7 FPGA is a small size and low-power FPGA, meaning that our cascaded OHNs can ea-
sily be integrated into industrial systems without a significant power overhead. Both OHNs
achieve 100% accuracy. So, for each possible sensory input, both OHNs stabilize on the correct
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output information to allow the robot to move in a direction without obstacles or hollows. Ad-
ditionally, the total initialization and computation time of both OHNs is about 40 µs, which
is much shorter than the time needed to read the 15 distance values from the ToF proximity
sensors. Note, that the measurement time for the 15 sensors has also been optimized by using
the continuous I2C reading method.

As mentioned in Chapter 2, the digital OHN initialization process is serial (one bit at a time),
thus, the initialization time increases linearly with the number of neurons while the computa-
tion time stays constant due to parallel computation. This application shows that only two
oscillation cycles are necessary for OHN to stabilize, reaching around 10 µs computation time
for each OHN. Thus, our OHN solution satisfies the real-time constraints given by the latency
of sensor measurements. A video of the E4 robot with cascaded OHNs configured for OAV is
available on Youtube. OHN computation time is irrelevant in this application as the sensor’s
measurement limits timing performances. OHN can be advantageous for other robotic appli-
cations treating sensory data with real-time constraints.

Comparing the OHN computation time with classical software solutions shows that OHNs
are as fast as using software algorithms implemented on a micro-controller, see Table 4.2. We
compare only computation times without initialization time to have a meaningful comparison.
It is also important to state that the OAV microcontroller runs at 80 MHz while OHN only oscil-
lates at 187.5 kHz. This indicates that using OHN with higher frequency capacity can surpass
the microcontroller timing performances for OAV applications. Note, that the software solution
reproduces the OHN behavior using software functions implemented on the STM32 microcon-
troller. Thus, the accuracy obtained with the software solution is also 100%. In addition, timing
performances of software solutions implemented on micro-controllers grow linearly with the
number of data to treat, while the computing time of OHN remains constant (i.e., only a few
cycles to stabilize) when increasing its size. So, if there are many data to treat, OHN computa-
tion will be faster than a software solution. Another solution to improve timing performances
in case of a large number of sensory data is to use multiple OHNs to compute in parallel. For
example, computing the two OHNs implemented for OAV in parallel could increase the final
cascaded OHN computation time.

Finally, we show in Table 4.2 that the global timing performance of our OHN solution is slo-
wed down by the UART serial communication between the OAV board and the FPGA. Another
solution for applications with higher real-time requirements will be to consider a complete SoC
implementation, including sensor reading, with either programmable logic and an integrated
processor, or only with programmable logic. Such integration inside a complete industrial ro-
bot requires anticipation during the system design and development. In the next section, we
propose a SoC implementation integrating sensor reading in the processing system (PS) of the
Zynq of a Zybo development board. However, we do not implement it on the E4 industrial
robot, but on a development robot based on an Arduino control board.

4.4 All-in-one SoC architecture for OAV on Arduino robot

We previously highlighted the cascaded OHN architecture can perform OAV on an indus-
trial mobile robot equipped with proximity sensors. However, the current system architecture,
considering separated chips for sensor reading, conditioning, and treatment, limits the latency
performances of the system. Thus, in this section, we modify the system to perform sensor rea-
ding, conditioning, and treatment in a single chip. In this case, it requires more adaptations
to integrate the system into an already built robot, such as the E4 robot, thus we use a deve-
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lopment robot from Arduino. The robot is a unicycle mobile robot furnished with a two-wheel
drive connected to direct current motors driven by an Arduino UNO board. The Arduino board
is based on a microcontroller to control the robot’s direction, we call it the control board. For the
OAV application, we equip the robot with 8 ToF proximity sensors equivalent to the one used
in E4, referenced as VL53L0X, evenly distributed in the front part of the robot, see Figure 4.9.
Thus, similar to the OAV on E4, the system reads the proximity sensor values to detect obs-
tacles around the robot and treats the detected obstacle information to define a new direction
and avoid obstacles. The system is still open-loop. The difference is that we perform OAV using
a SoC capable of reading, conditioning, and treating sensory data based on the cascaded OHN
architecture.

FIGURE 4.9 – Arduino development robot equipped with 8 proximity sensors evenly distributed in the
front.
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FIGURE 4.10 – Architecture of the OHN-based SoC for OAV on the Arduino development robot.

4.4.1 SoC architecture for OAV

We consider a similar ONN on SoC architecture, as in Chapter 3, Section 3.3.2 taking ad-
vantage of the Zynq processor of a Zybo-Z7 development board equipped with both PL and a
PS. So, digital OHNs are implemented with PL resources, and outputs are directly connected
to PL while inputs are connected to PS. The SoC architecture first reads sensory values and
converts them to an OHN-compatible format inside PS. Then, the OHN input is transmitted
using the AXI4-Lite communication protocol to PL for processing. After processing, the output
is directly sent from PL to the control board. For example, in the case of the OAV application,
we connect the 8 proximity sensors to the PS of the SoC and read them through the I2C serial
communication protocol. Then, we condition the sensor values into an OHN-compatible input
format, and we transmit the OHN input to PL to perform the OHN computation. As with OAV
on E4, once cascaded OHN computation is completed, we associate the output with a novel ro-
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bot direction. Finally, we transmit the output direction via UART from PL to the control board.
The control board still drives the robot motors to move the robot in a specific direction, see
Figure 4.10.

4.4.2 OAV on mobile robot

The cascaded OHN configuration is similar to the E4 robot, but with only 8 proximity sen-
sors, and all of them are horizontally directed. Thus, the robot can detect obstacles but not
hollows. The first OHN is a 40-neuron OHN that takes as input an image generated in PS from
the sensor values. We re-use a 5-pixel thermometer encoding, associating one sensor per co-
lumn, creating a 5x8 image for OHN input. We set pixel resolution to 55 mm based on our
observations from real condition tests. Consequently, we input distances from 0 mm to 275
mm, see Figure 4.11.
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FIGURE 4.11 – Cascaded OHNs configuration for the OAV application.

We configure the OHN with 256 learning patterns representing all possible black-and-white
column combinations using the Hebbian learning rule [28]. Thus, the first OHN generates
images representing an environment map of the robot front area with black columns repre-
senting obstacles, and white columns representing no obstacles, see Figure 4.11. Again, the role
of the second OHN is to define the available directions from the environment map given by
the first OHN. One row of the first OHN output serves as an input to the second OHN, so the
second OHN is an 8-neuron OHN with 1 row and 8 columns. We configure the second OHN
to output possible directions for the robot. To train the second OHN, we use 16 patterns repre-
senting possible OHN directions, see Figure 4.11. We associate each learning pattern with one
possible direction. Once the two cascaded OHN computations are complete, the system sends
the following direction to the robot control board using UART, which moves the robot in the
corresponding direction. Training is also performed with the Hebbian rule [28].
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4.4.3 OAV on SoC performances

Table 4.3 shows OHN performances as well as results of the entire SoC system. First, we
point out the first OHN reaches 100% accuracy. It means that for all possible inputs (1 679 616
possibilities), the first OHN computes and stabilizes to the correct learning pattern. However,
the second OHN only obtains 74% accuracy. So, for each possible input (256 possibilities), the
second OHN computes and stabilizes to the correct learning pattern for 74% of the cases. For
the other 26%, the OHN either stabilizes to another non-learned pattern, called a spurious
pattern, or does not stabilize. In this case, we have a backup post-processing algorithm that uses
output information from the first OHN (detected obstacles) to compute the robot’s direction.
The algorithm replaces the second OHN and chooses the direction with fewer obstacles. Note
that we performed experimental tests on the robot with real conditions, and for 1000 inferences,
spurious cases occur for less than 5% of the input patterns.

TABLE 4.3 – Performances of the OAV application with OHNs embedded on a SoC compared with the
previous version implemented on E4.

OHNs

OHN-SoC for OAV OAV on E4
Zybo-Z7 board CMOD A7 board

Characteristics First OHN Second OHN First OHN Second OHN

Size (#neurons) 40 8 45 9
Synapses resolution 5 bits 5 bits 5 bits 5 bits
LUTs (% utilization) 2401 (4.5%) 6679
Flip-Flops (% utilization) 2242 (2.1%) 3220
Training images 256 16 512 64
ONN computation time 24 us 17 us 25 us 14 us
Accuracy 100 % 74 % 100% 100%

Full System

LUTs (% utilization) 2950 (5.5%) 6679
Flip-Flops (% utilization) 2979 (2.8%) 3220
8-sensor measurement time 18 ms 27 ms
AXI transmission 4 us -
FPS 40 30
Battery spec 6V - 2850mAh -
Current consumption 700 mA -
Robot lifetime 4h 2h/3h

Next, we highlight that the digital implementation of the two cascaded OHNs uses only a
small amount of resources, with less than 6% of the LUTs, and around 3% of the Flip-Flops.
Also, the entire OHN-based SoC, integrating the AXI bus protocol and OHNs, does not drasti-
cally increase resource utilization. It indicates that our SoC architecture can easily be integrated
into a larger system without significant PL resource impact.

Also, we report a sensor reading time of 18ms, a conditioning and transmission time from
the software unit to FPGA of 15us, a computation time of the two OHNs of 40us, and a trans-
mission time from the FPGA to the control board of 1ms, reaching around 40 FPS. It shows
that OHN computations are much faster than the time required to read the 8 sensor values.
While the AXI parallel protocol allows a fast transmission time, it does not reduce the full-
system latency. Note, that we still use a UART communication to transmit the cascaded OHN
output direction to the control board. However, instead of transmitting serially both casca-
ded OHN inputs and outputs through UART, we only transmit output direction and use AXI
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parallel protocol otherwise. However, as before, for a more time-constrained application, we
could improve the latency by implementing every step, from sensor reading to converting and
processing, in the PL resources of the SoC processor but it would increase the PL resources
utilization.

This work presents a novel real-time edge solution to perform sensing-to-action computing
with cascaded OHNs. The OAV SoC architecture is similar to the SoC architecture introdu-
ced for on-chip learning in Chapter 3, taking advantage of the Zynq processor with PS and PL.
Continual on-chip learning is useful for systems in evolving environments, such as robots navi-
gating in an unknown environment, and trying to avoid obstacles. In Chapter 3, we introduced
the on-chip learning architecture and validated it on pattern recognition tasks. However, we
did not apply it on a realistic edge application. Thus, in the next section, we propose to apply
on-chip learning to the OAV application, considering learning from the environment.

4.5 On-chip learning for OAV

We previously used the mobile robot OAV application considering an all-in-one SoC with
cascaded OHN computing capable of reading, conditioning, and treating sensory data. Addi-
tionally, we proposed a system architecture to allow on-chip learning with OHN implemented
digitally, as described in Chapter 3, Section 3.3.2. However, we did not apply the on-chip lear-
ning to a concrete edge application. Thus, here we propose to combine the OAV application
with additional on-chip learning capability.

4.5.1 On-chip SoC architecture

We consider the cascaded OHN-SoC architecture from Section 4.4.1 implemented in the
Arduino robot equipped with 8 ToF proximity sensors, see Figure 4.10. However, in the pre-
vious cascaded OHN-SoC, the final direction output was sent from PL to the robot control
board while here the control board is only connected to PS. Thus, first, the proximity sensor
values are read and encoded into the 5x8 image in PS. Then, PS sends the image to the casca-
ded OHNs for inference. After computation, the cascaded OHN output is sent back to PS to be
associated with a direction that is finally sent from PS to the Arduino control board. Previous
OAV applications were open-loop systems using proximity sensor measurements as input and
outputting a novel direction for the robot. However, in robotics, closed-loop systems are im-
portant to ensure correct decisions. In this work, we propose a closed-loop OAV with feedback
from cascaded OHN output to a training block to permit training or re-training the OHNs if
necessary. In particular, we propose two training solutions, one considering prior knowledge,
and the other one without prior knowledge.

We propose an architecture that incorporates the on-chip learning in the ONN-based SoC
architecture configured for robot OAV, see Figure 4.12. In particular, we propose to keep a pre-
trained first-level OHN to detect obstacles, while we consider the second OHN, which defines
the direction, as non-trained. The open-loop OAV system becomes a closed-loop system. The
closed-loop system integrates feedback from the detected obstacles to modify the second OHN
output decisions if necessary. Thus, we include a transfer of the first OHN output to PS to train
the second OHN.
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FIGURE 4.12 – Zynq architecture for OAV with two cascaded OHNs and second OHN on-chip learning
based on post-processing from environment obstacles.

4.5.2 Training OHN on-chip for OAV

The OAV process starts by reading the 8 sensor measurement values from PS through the
I2C protocol. Sensory data are converted to an image to be compatible with the first OHN,
OHN1. The obtained image is sent from PS to PL as input of OHN1, pre-trained to detect obs-
tacles [216]. The OHN1 output, OHN1out is then sent to the second OHN OHN2 as well as
back to PS to be used as input of a post-processing (PP) algorithm. Both PP and OHN2 com-
pute in parallel. The OHN2 output, OHN2out is sent back from PL to PS to be converted to a
direction information dirOHN2 from a table which associates OHN2 patterns, TPOHN2, to di-
rections. Note, if the table is empty or if OHN2out does not correspond to any known training
patterns TPOHN2, direction dirOHN2 is set as unknown. In parallel, the PP also computes a di-
rection dirpp from OHN1out. Both directions dirOHN2 and dirpp are compared and a difference
between both directions triggers the training of a novel pattern for OHN2. The PP is an impor-
tant factor as it determines when training is triggered. It computes the best direction depending
on the position of the obstacles around the robot given by the first OHN output OHN1out. The
PP is described in Algorithm 1.

The training process triggered by the post-processing is different depending if the solu-
tion uses prior knowledge or not. In the solution with prior knowledge, the table associating
TPOHN2 to dirOHN2 is known and integrated into the system with patterns from [216]. Thus,
every time a novel training process is triggered, one of the patterns from the table, TPOHN2, is
memorized in the OHN using Hebbian. Once all patterns are learned, the OHN is fully configu-
red and the post-processing is not used anymore, see Algorithm 2. However, in a more realistic
application, there might not be prior knowledge or only a part of it. Thus, we also propose a
solution with no prior knowledge.
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Algorithm 1 Post-processing algorithm

Nmax: max. neighbour sensors without obstacles, θs: sensor angle, θ = avg(θs(Nmax))
if Nmax < 4 then

if θ < 0 then
dirpp = left

else
dirpp = right

end if
else

if ((θ < 30) and (θ > −30)) then
dirpp = front

else
if (θ <= −30) then

dirpp = left
else

dirpp = right
end if

end if
end if

Algorithm 2 Training algorithm with prior knowledge

Init W1, W2

Init TPOHN2: training patterns from [216]
Init dir(TPOHN2): direction associated to TP
for Each sample St do

OHN1out = OHN1(St, W1)
OHN2out = OHN2(OHN1out, W2)
if OHN2out == TPOHN2 then

dirOHN2 = dir(TPOHN2)
else

dirOHN2 = Unknown
end if
dirpp = post − processing(OHN1out)
if dirOHN2 == dirpp then

Nothing
else

W2 = W2 + H(TPOHN2(i)) with dir(TPOHN2(i)) = dirpp

i = i + 1 until all TPOHN2(i) learnt
end if

end for

In the solution without prior knowledge, in the beginning, the table associating TPOHN2 to
directions is empty. So, when a novel training command is triggered, the second OHN memo-
rizes its input, OHN1out, as a novel training pattern, TPOHN2, using Hebbian, see Algorithm 3.
The associated direction included in the table is computed by PP. Note, the opposite pattern,
−OHN1out, also becomes an entry of the table with its associated direction computed by the
post-processing, because with Hebbian, when a pattern is learned, its opposite version is also
automatically learned. After numerous cycles without any difference between the direction
from the second OHN output, and the direction from the post-processing, we consider the
second OHN trained, and the post-processing algorithm stops computing.
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Algorithm 3 Training algorithm without prior knowledge

Init W1, W2

Init TPOHN2 = dir(TPOHN2) = empty
for Each sample St do

OHN1out = OHN1(St, W1)
OHN2out = OHN2(OHN1out, W2)
if OHN2out == TPOHN2 then

dirOHN2 = dir(TPOHN2)
else

dirOHN2 = Unknown
end if
dirpp = pp(OHN1out)
if dirOHN2 == dirpp then

Nothing
else

TPOHN2(i) = OHN1out

W2 = W2 + Hebbian(TPOHN2(i))
dir(TPOHN2(i)) = dirpp

TPOHN2(i + 1) = −OHN1out

dir(TPOHN2(i + 1)) = pp(−OHN1out)
i = i + 2

end if
end for

We test both solutions by first performing simulations of an HNN-based emulator on Mat-
lab, and then by implementing the system in the robot and using real sensory data. In Matlab,
we generate random input samples corresponding to possible sensory data and we apply it as
input of the first HNN-based emulator. In the real robot system, inputs are real inputs from
proximity sensors. For each input, either Algorithm 2 or Algorithm 3 is applied. We evaluate
accuracy after each input sample. Accuracy is evaluated only on the second OHN as we know
the first OHN has 100% accuracy. Accuracy is evaluated from all possible inputs of the second
OHN, 256 possible inputs, with two different methods. First, accuracy TP is computed by com-
paring OHN2out with all TPOHN2. If the OHN2out corresponds to one TPOHN2, accuracy TP
increases. It means that OHN2 is able to take a decision from the corresponding input, no mat-
ter if the decision is correct. Second, accuracy direction is calculated by comparing dirOHN2 and
dirpp. If both directions are equal, accuracy direction increases. It allows controlling if OHN2 sta-
bilizes to one of the training patterns TPOHN2 and if the associated direction dirOHN2 is correct,
compared with the direction generated by the post-processing.

Figure 4.13 shows accuracy evolution depending on the input samples through time, as
well as the evolution of the number of training patterns depending on their associated direction
using the HNN emulator on Matlab for the first solution with prior knowledge. It highlights
that all training patterns are learned after less than 40 input samples, which is fast. Also, it
shows that after training all patterns TPOHN2 from the association table, accuracy is equal to
accuracy using hardcoded weights from [216], meaning incremental Hebbian gives the same
results as Hebbian in this application. However, it displays that accuracy can be higher before
reaching final accuracy when all patterns are learned. Thus, there might be a better PP solution
that would stop learning novel patterns in case the accuracy is reduced. Figure 4.13 also shows
final accuracy is equal for 5-bit signed weights and full precision weights. Thus, we should
obtain equal results with the digital OHN implemented on FPGA.
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FIGURE 4.13 – Simulation results of the HNN emulator on Matlab for the first solution with prior know-
ledge. Accuracy is presented for two weights precision, nb = 5 for 5-bit signed precision, and nb = full
for full signed precision. Original accuracy corresponds to accuracy for hardcoded weights [216].

Figure 4.14 shows accuracy evolution depending on the input samples through time, as
well as the evolution of the number of training patterns using the HNN emulator on Matlab
for the second solution without prior knowledge.

FIGURE 4.14 – Simulation results of the HNN emulator on Matlab for the solution without prior know-
ledge. nb represents the bits’ precision. Original corresponds to accuracy for hardcoded weights from
[216]. Accuracy is computed for 50 different trials, the colored area corresponds to min-max bounded
accuracy, and colored lines correspond to average accuracy results.

In this case, obtaining a stable high accuracy takes more time than with the solution with
prior knowledge, around 600 samples to stabilize and stop learning novel patterns. It starts
with a high learning rate during the 200 first samples, and then the learning rate reduces. The
solution without prior knowledge allows to reach a higher accuracy than the solution with
prior knowledge, almost 100% accuracy for both accuracy TP and accuracy direction. In particu-
lar, after 900 random samples, the OHN has learned all possible patterns. However, it is not
interesting because if all patterns are learned, the association table contains all possible OHN
inputs associated with a direction, so no matter which OHN output it can decide on a direction.
However, we strongly believe this behavior comes from the random input patterns, thus all
possible inputs of OHN2 are crossed while in a real environment, real obstacles will not match
all possible OHN2 inputs, limiting the number of training patterns. Figure 4.14 also highlights
that weight quantization to 5-bit signed precision does not impact much accuracy and weight
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update evolution. Thus, we expect similar experimental results with the OHN implemented on
FPGA.

Figure 4.15 shows accuracy evolution depending on the input samples through time, as
well as corresponding evolution of the number of training patterns using the OHN-based on-
chip learning OAV system implemented on the Zynq board with real proximity sensors. Fi-
gure 4.15a considers the first solution with prior knowledge. It shows that it takes between 80
and 110 cycles to learn all possible training patterns. However, this depends on the environ-
ment and the obstacles the robot will encounter. It is possible for the robot to never encounter
some of the obstacle configurations which would trigger learning of some training patterns.
As expected, the final obtained accuracy, after learning all patterns, is equal to the previous
accuracy obtained in simulation.

(a) Experimental results of the full system implemented
on Zynq for the first solution with prior knowledge.

‘front’

‘right’
‘left’

(b) Experimental results of the full system implemented
on Zynq for the second solution without prior knowledge.

FIGURE 4.15 – Digital OHNs results for solutions with and without prior knowledge.

Figure 4.15b considers the second solution without prior knowledge. It shows that the num-
ber of training patterns almost stabilizes after 500 samples, however, accuracy is still low com-
pared to simulation results. This behavior confirms that in a real environment, not all input
obstacle configurations happen, and so there are fewer training patterns, reaching lower preci-
sion. However, if after 500 samples, the number of training patterns does not increase a lot, it
means that both dirOHN2 and dirpp are equal almost all the time, thus for the encountered input
samples, the system takes a correct decision. Figure 4.15b also shows the incremental learning
capacity. For example, in the beginning, the robot encountered a front obstacle and learned to
retrieve it. Later, the robot faced an obstacle from the right and learned how to take a decision
from it, until it learned the main patterns corresponding to the three directions.

Table 4.4 shows performances of the OHN-based on-chip learning close-loop system confi-
gured for OAV. It highlights that sensor measurements are still slower than the latency requi-
red for OHN inference, including the latency of data transmission. So, the system performs
OAV in real-time given timing requirements from sensor reading time, as in the previous OAV
demonstrators. Also, training latency is fast, the post-processing only takes a couple of micro-
seconds to compute and the Hebbian computation requires tens of microseconds. Note, the
post-processing could replace the second OHN directly as it is much faster. However, conside-
ring the PS frequency of 325 MHz, compared to the OHN oscillation frequency of 187.5 KHz,
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using OHN with a faster frequency could be of interest for time-constrained systems. The slo-
west part is the transmission of weight values through AXI from PS to PL which can be opti-
mized with parallel weight transmission and reducing weight precision to allow sending more
weights at a time. However, this may reduce OHN precision. Additionally, Table 4.4 shows that
the system uses a small amount of PL resources. Note, that both solutions, with or without prior
knowledge, use the same amount of PL resources, as the difference between the two methods
is performed in PS. However, we know from [197] that the number of resources increases dras-
tically with the number of reconfigurable synapses, in the case of OHN with on-chip learning.
In this work, only the second OHN, which has only 8 neurons, uses reconfigurable synapses,
allowing for low-resource implementation.

TABLE 4.4 – On-chip OAV learning system performances on Zybo-Z7 board.

OHN-level (OHN frequency: 187.5 KHz)
OHN1 OHN2

Size (#neurons) 40 8
Synapses resolution 5 signed bits 5 signed bits
LUTs (%) 4529 (25.7%)
Flip-Flops (%) 3155 (9.0%)
Training Pre-trained Incremental

256 TP training
Accuracy 100% NA

System-level (PS frequency: 325 MHz)
LUTs (%) 5183 (29.5%)
Flip-Flops (%) 4127 (11.7%)
Inference latency
- Sensor measurement 18 ms
- Transmission & OHN comp. 122 µs
- OHN comp. 51 µs
Training latency
- Hebbian comp. 13 µs
- Transmission 495 µs
- Post-processing comp. 1.85 µs - 3.1 µs

We noticed that the first solution using prior knowledge converges quite fast to final weight
values once all training patterns are trained. However, the second solution without prior know-
ledge does not have a limited number of training patterns, thus it requires a larger number of
samples to reach stabilization in the number of training patterns. However, such statements
are really dependent on the environment, and how fast the robot will explore it. Thus, it re-
quires more investigations on realistic environmental data to understand better the number of
samples necessary to have a stable system. Finally, we highlighted that both solutions allow for
real-time efficient OHN on-chip learning and inference given the latency requirements from
sensor measurements. The system is able to learn a novel pattern in real-time, avoiding most
of the obstacles from the environment after numerous samples, validating the proposed solu-
tions. This is, up to our knowledge, the first time OHN incremental and dynamical training is
applied to a real-world edge application.

In this chapter, we proposed a novel ONN architecture with cascaded OHNs implemen-
ted in digital, that allows performing novel edge applications, like the OAV on mobile robots.
More than that, we use the OAV system to apply on-chip learning to a real-world application,
considering cascaded OHNs trained from an evolving environment. For all demonstrators, cas-
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caded OHNs are implemented digitally, making it easy to perform feed-forward transmission
between the two cascaded OHNs. However, feed-forward connections with analog oscillators
can be challenging. In the next section, we propose an analog solution to cascade two OHNs
using majority gate layers. We apply the system to a novel edge application, performing image
edge detection.

4.6 Analog cascaded OHNs for image edge detection

Previously, we discussed the need for novel ONN architectures to go beyond OHN, due
to scalability and performance limitations. That is why we proposed a novel architecture, cas-
cading OHNs, that we implemented with digital OHNs on FPGA, and that we applied to an
OAV application, embedded in mobile robots. Cascaded OHNs operate as independent OHNs
connected feed-forwardly such that they compute one after the other, considering the output
of one OHN as input of the next one. In analog, ONN has already been applied efficiently as
OHN with various oscillators’ implementations [124, 131, 141, 217]. However, to our know-
ledge, most of the proposed OHN implementations do not permit uni-directional connections,
making it impossible to implement feed-forward cascaded OHNs. In the meantime, one of the
advantages of the ONN computing paradigm is its analog natural computation. Thus, in this
work, we propose a novel architecture to cascade two OHNs with a feed-forward (FF) layer ba-
sed on an analog majority gate (MG) function. More than that, we apply the solution with two
cascaded OHNs using a FF-MG layer to an image processing application, as the image edge de-
tection. We start by describing the analog cascaded OHN system, from the analog OHN itself
to the FF-MG layer. Then, we explain how we apply it to image edge detection.

4.6.1 Analog FF-MG layers for cascaded FC-OHNs

In this work, we propose a solution to cascade two analog OHNs with an analog-based
FF-MG layer.

Analog OHN: In this work, we consider CMOS relaxation oscillators coupled with resis-
tances, see Figure 4.16. The resistive couplings are mapped from the weights generated with
unsupervised Hebbian learning rules following the method from [195]. Once the coupling is
configured and the circuit is mapped correctly, we initialize each oscillator. The initialization
consists of applying a V DDosc to each oscillator. The phase shift is encoded in the delay of
activation of the V DDosc. For example, if we want to initialize two oscillators with 180o phase
shift, we will activate V DDosc1 at t = 0, and activate V DDosc2 at t = T/2, with T the period of
oscillation. After initialization, each V DDosc stays active so oscillator phases evolve until sta-
bilization. Stabilization is detected after numerous period cycles with stable phases. The final
phase state corresponds to the output information of the OHN.

Analog FF-MG: In this work, we propose a solution to cascade two OHNs. Thus, after the
first OHN layer stabilization, we use the oscillating outputs as input of the FF-MG layer, as
shown in Figure 4.16. In Figure 4.16, two FF-MG layers are represented, each layer taking as
input three oscillating signals from the first OHN layer, performing MG function, and using
the two FF-MG output as input of a second-layer OHN. The FF-MG layer contains various
levels. A first level of analog buffers is necessary to send the first-layer OHN outputs to the FF-
MG layer without impacting the OHN behavior. Then, the second level uses oscillations from
analog buffers and performs an MG function with a summing amplifier. In Figure 4.16, each
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MG takes three oscillating signals as input and outputs a signal with a phase corresponding to
the majority phase of the three input oscillations. The third level is a non-linear amplifier which
saturates the signal to replicate an analog-to-digital conversion. From this digital signal, the
fourth level synchronizes the various MG layers together. To do so, a latch is placed in between
the linear amplifier output and the next-layer oscillator input. When the latch is enabled, the
V DDosc of the oscillator from the next layer is activated following the phase shift given by
the linear amplifier. The enable signal Ven is set in the same moment for each FF-MG layer to
synchronize them for the next OHN layer, see example in Figure 4.17.
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FIGURE 4.17 – Experimental results of internal signals for 2 FF-MG layers, and second layer oscillator
outputs. Vmgo1: output of output amplifier, Ven: enable signal common to both FF-MG layers, V DDosc:
input voltages of each second layer oscillator.

4.6.2 Application to image edge detection

We apply the architecture to perform image edge detection. Image edge detection is an
important image processing task used as the first step of many broader problems, like image
segmentation, or object detection [218, 219]. Image edge detection algorithms mainly use 3x3
convolution filters to scan an image and assign a gradient to each pixel of the image which
indicates if an edge is detected. We try to solve image edge detection by replacing convolution
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filters with the analog cascaded OHN architecture. Recently, [143] proposed a solution using an
OHN trained to perform pattern recognition with 4 patterns representing 4 edges (horizontal,
vertical, and diagonals), and using a post-processing algorithm to define if an edge is detected
or not.

Hebbian Learning𝑅0 𝑅1𝑅2
(a) Weight of first-layer OHN. Neutral R0 =

45kΩ, positive R1 = 40kΩ, and negative R2 =

47kΩ.
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(c) Simulation results for image edge detection on black and white image.

FIGURE 4.18 – Cascaded FC-ONN configuration and results for image edge detection.

By analyzing their solution, we noticed that the post-processing can be adapted as a combi-
nation of FF-MG layers. Thus, we use the analog FF-MG solution instead of the post-processing
using the same first-layer OHN [143] to build an analog-based all-in-one architecture. The first
OHN is trained with 4 patterns representing the 4 main edges (horizontal, vertical, and diago-
nals), using the Hebbian rule [28] which configures the coupling resistances, see Figure 4.18a.
Then, when the first OHN is stable, we use its output as input of 4 FF-MG layers to detect each
edge, see Figure 4.18b. Note, we consider the second-layer OHN with neutral 0-couplings.
We test and validate our solution with a hardware breadboard for two edges, horizontal and
vertical, and we generalize for four edges in simulation. Note, that the current hardware imple-
mentation serves as a proof-of-concept for the FF-MG functionality, thus, it is not optimized for
low-power computation. However, one can envision the FF-MG capability to be implemented
on OHNs via low-power oscillator devices, like V O2 [220, 221]. Also note, that peripherals to
encode and decode phase information consume a significant amount of power [221].

4.6.3 Performances

This section presents the performances of our analog-based FF-MG architecture to cascade
two OHNs adapted to image edge detection. Figure 4.18c and Figure 4.19 show the results of
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our image edge detection solution on the cameraman large-scale image. Visually, it shows that
we can detect edges efficiently. Table 4.5 shows the Jaccard Similarity Coefficient (JSC) metric
that uses the state-of-the-art Canny algorithm [222] as ground truth (GT), and is compared with
the state-of-the-art Sobel algorithm [223]. Table 4.5 shows that the two cascaded analog OHN
using a FF-MG layer miss some important edges, and do not place correctly all detected edges.
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FIGURE 4.19 – Simulation results of analog FF-MG layer for two images.

TABLE 4.5 – Precision of cascaded analog OHNs on image edge detection compared with Sobel based
on Canny ground truth (GT)

GT: Canny Sobel This work

JSC 0.5204 0.1866

Overlapping 7277 2021

Union 13983 10832

Another, important parameter for the image edge detection algorithm is latency. However,
to our knowledge, there is no alternative analog image edge detection in the literature. Later,
in Chapter 5 we propose digital solutions to perform image edge detection and compare them
with the current analog solution, as well as with other digital image edge detection implemen-
tations. Without comparison, Table 4.6 reports the latency of our solution.

TABLE 4.6 – Latency performances of our solution.

Latency analog (Fosc=3MHz)

3x3 OHN: 1.67 µs
FF-MG: 0.67 µs

28x28 1.83 ms

512x512 613 ms

The cascaded OHN solution requires the stabilization of an OHN and an MG layer. The
analog OHN stabilizes in 4-5 oscillation cycles and the analog FF-MG layers stabilizes in only 1
to 2 cycles. Note, we consider a parallel execution of the four MG layers to speed up the process.
In total, to process a large image of 512x512 pixels, our solution requires 613 ms, which is quite
long if we consider the typical video flow of one image every 33 ms. To allow real-time image
processing with our analog cascaded OHN with FF-MG layer, we require parallelization of
multiple cascaded OHN systems.

This work introduces an analog-based architecture to cascade two analog OHNs using an
FF-MG activation function. The FF-MG layer is almost fully analog, apart from the digital latch
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level. Analog computing can be particularly of interest for edge AI where a lot of matrix-vector
multiplication operations can be performed in an energy-efficient manner. In our design, the
only digital part is the latch gate, which takes care of the synchronization of the different FF-MG
layers. It limits power consumption by activating the second OHN layer only after the compu-
tation of the first OHN layer. However, if all FF-MG inputs are synchronized, for example, if
they are part of the same OHN, then input signals to the second OHN should also be synchroni-
zed. Thus, our FF-MG layer can adapt to a fully-analog system. We show this novel architecture
is capable of performing an image edge detection task. However, it misses edges from usual
image edge detection algorithms and requires important latency to compute. Nevertheless, this
work introduces a novel OHN layered architecture that can qualify ONN to explore novel ap-
plications. The proposed architecture is modular; thus, it can be adapted to include more than
two OHN layers, with modularity in input and output data. Furthermore, we only consider an
analog MG activation function. However, we can replace the FF-MG with other activations. For
example, in [224, 116], authors have shown MG functions to construct different operations such
as AND, OR, and XOR. For the moment, we applied our architecture to image edge detection,
as commonly explored in the state-of-the-art [143], but applying FF-MG layers is in principle
compatible with numerous applications requiring at least two OHN layers. It requires further
investigations to train such a system for a specific task. Finally, as already mentioned, scaling
is a critical aspect of OHNs, due to the important number of synaptic couplings. In the analog
FF-MG layer, scalability will be limited if the number of MG inputs increases. However, if the
FF-MG architecture can reduce the OHN size by dividing it into sub-problems, it should be
more scalable than single-layer analog OHNs.

4.7 Discussion and conclusion

OHN can perform pattern recognition but is hardly scalable due to the important number
of synapses, and has limited precision even after investigating various learning methods. This
chapter proposed a novel ONN architecture to go beyond OHN. Usual ANN models are built
with multi-layer architectures, to achieve high precision using efficient learning algorithms.
Creating layers of oscillators can be challenging, therefore, as a first step, we introduced a novel
ONN architecture with feed-forward cascaded OHNs implemented with digital and analog
circuits.

First, we proposed to layer two digital OHNs feed-forwardly by cascading them. We used
two cascaded OHNs to perform a robotic edge application with obstacle avoidance. We imple-
mented it in different robots considering first a fully digital system implemented on FPGA, and
then a SoC system using both a processing system and programmable logic resources imple-
mented on a Zynq. With both systems, we were able to run the obstacle avoidance application
in real-time. Also, we combined the obstacle avoidance system with the previous on-chip lear-
ning architecture from chapter 3 to showcase the OHN on-chip learning performances on a real
application.

Cascading two digital OHNs feed-forwardly is quite simple, while it can be challenging
in analog. As ONN is by default an analog computing paradigm, we also propose a solu-
tion to cascade two analog OHNs using an additional analog feed-forward majority gate layer.
Using two cascaded analog OHNs, we were able to replace convolution filters to detect edges
in images, even though precision and latency performances are substandard.

The two solutions, analog and digital, to cascade OHNs are efficient in the proposed appli-
cations, and we expect them to also be efficient for other AI tasks. However, it needs to adapt
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complex tasks to multi-level pattern recognition tasks, anticipating each OHN-level training
pattern to use unsupervised learning rules. Thus, it is not straightforward to apply to different
AI problems. A possible solution is to explore novel learning algorithms adapted to cascaded
OHN architecture. For example, the equilibrium propagation, introduced for OHN in Chap-
ter 3, could be adapted to cascaded OHNs, but it requires further investigation. Also, we could
consider parallel multi-OHN architecture, instead of cascaded, in order to divide a large pat-
tern recognition problem into sub-problems, reducing the OHN size, but keeping the pattern
recognition applications. We did not investigate deeply this solution, but it could help increase
the OHN scalability for pattern recognition.

Finally, in order to go beyond OHN, we believe it is important to study multi-layer ONN
architectures closer to conventional multi-layer ANN models and adapted learning algorithms.
We discuss multi-layer ONN architectures in Chapter 5.

The work described in this Chapter resulted in three conference papers [216, 198, 225] and
a conference talk [199].
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5.1 Introduction

In the previous chapters, we introduced a digital ONN implementation on FPGA. We first
validated the ONN on FPGA with the state-of-the-art fully connected architecture configured
for pattern recognition, thus considering an OHN. The validation and test of the digital OHN
showcased its limitation for large-scale edge applications. Chapter 3 shows that using state-of-
the-art unsupervised learning to configure the digital OHN limits capacity and does not per-
mit it to excel against other ANN models. We explored alternative learning solutions, starting
with unsupervised learning rules implemented off-chip and on-chip for pattern recognition,
before proposing a solution with the supervised equilibrium propagation (EP) algorithm to ex-
periment OHN for image classification. However, in both cases, the OHN is not competitive
compared with typical multi-layer ANN models. Additionally, the fully connected architecture
limits the scale of OHN due to the drastic increase of synaptic connections when the number
of neurons increases. Thus, there is a need to explore novel ONN architectures to go beyond
OHN.

Usual ANN models are often assembled in a multi-layer architecture to achieve high accu-
racy as multi-layering creates non-linearity between the input and the output. Creating layers
of coupled oscillators can be challenging because coupling is recurrent by default. In Chap-
ter 4, we proposed to build feed-forward layers of OHNs by cascading small-scale OHNs. We
used the cascaded OHN architecture on robotics applications, as well as image processing. For
both robotics and image processing, the task is divided into sub-pattern recognition tasks to
configure each OHN with unsupervised learning. Thus, it is not straightforward to learn and
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perform a wide variety of tasks with the cascaded OHN architecture. A solution could study
novel learning algorithms compatible with the cascaded OHN architecture [226]. However, we
believe it might not enlarge the ONN scope of applications as it mainly considers dividing
a typical auto-associative memory (AAM) task into small-scale AAM sub-tasks. Furthermore,
analog implementations often require additional circuits to build the feed-forward path bet-
ween two cascaded OHNs, waiting for the first OHN to stabilize before initializing the second
one.

To go beyond OHN and cascaded OHN, we explore alternative multi-layer architectures,
considering layers of non-coupled oscillators with coupling between layers, see Figure 5.1.
As mentioned, by default, coupling two oscillators creates a bidirectional connection between
them, being feed-forward and recurrent at the same time. Thus, as a first step, we explore crea-
ting layers of uncoupled oscillators with bidirectional connections between layers. However,
with the digital ONN design, we can differentiate both feed-forward and recurrent paths bet-
ween coupled oscillators. So, later, we modified the digital design to build a multi-layer feed-
forward ONN. More than that, we develop methods to apply the multi-layer ONNs to image
processing, from image edge detection, to feature extraction, as well as classification tasks.

Multi-layer ONN Multi-layer bidirectional ONN Multi-layer feed-forward ONN

FIGURE 5.1 – Multi-layer ONN architectures.

This Chapter starts by presenting the two multi-layer architectures, how they perform infe-
rence and learning, and their digital implementation on FPGA. Then, it describes how a 2-layer
ONN can be adapted to image edge detection. We also integrate image edge detection with
ONN in a more complex system to improve feature extraction latency performances. Finally,
we simulate a 3-layer feed-forward ONN applied for classification considering ANN supervi-
sed learning solutions.

5.2 Multi-layer architectures

In this thesis, we consider a multi-layer architecture as a network architecture organizing
neurons in different layers.

In state-of-the-art, we identified only a few contributions to the study of multi-layer ONN.
Authors in [152, 153] proposed to organize neurons in two bidirectionally connected layers.
An input layer inside which neurons are not coupled, and a core layer with a fully connected
architecture between neurons. Using this architecture in a frequency-computing system, they
are able to perform pattern recognition and classification tasks. Alternatively, authors in [227]
introduced a neural network containing pairs of frequency-computing oscillators as neurons.
Combining these oscillator-based neurons in a multi-layer feed-forward architecture achieved
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high accuracy in image classification using back-propagation training. Note, in this case, trai-
ning configures weights between neurons, not the coupling between a pair of oscillators. More
recently, Velichko [151] suggested a frequency-computing 2-layer ONN with an input layer
organized with an array topology, connected feed-forwardly to a single output neuron. They
highlight that using high-order synchronization enables multi-sate outputs to perform pattern
recognition. Finally, considering phase-based computing, Avedillo [228] highlighted that ONN
in a feed-forward topology can replace a majority gate using Phase encoded Logic, Shamsi [229]
proposed an STDP-based learning rule compatible with feed-forward phase-computing ONNs,
and Rudner [202] simulated multi-layer ONNs trained with back-propagation through time
(BPTT). To our best knowledge, there are no other works focusing on multi-layer ONN archi-
tectures.

Here, we focus on multi-layer ONN architectures, considering feed-forward of bidirectio-
nal connections between layers. Note, that we focus on the case where there is no additional
coupling between oscillators in the same layer. This Section details the two multi-layer archi-
tectures and their implementation with the digital ONN from Chapter 2.

5.2.1 Multi-layer bidirectional ONN

We define a multi-layer bidirectional architecture as a network organizing neurons in mul-
tiple layers, at least two, inside which neurons are unconnected but between which neurons
are connected bidirectionally. Let’s suppose a network with an input layer I of with states
SI , a hidden layer H with states SH , and an output layer O with states SO. Layers I and H
are connected through bidirectional synapses WIH = WHI and layers H and O are connected
through bidirectional synapses WHO = WOH such that for an initial input state SIN the update
of each layer follows:















SI(t + 1) = f(WHISH(t) + SIN )

SH(t + 1) = f(WIHSI(t) + WOHSO(t))

SO(t + 1) = f(WHOSH(t))

(5.1)

synchronously until stabilization, with f, the activation function of the neurons.

Before considering oscillators as neurons, multi-layer bidirectional networks were propo-
sed with the so-called bidirectional associative memory (BAM) [208]. BAM networks were in-
troduced to perform heterogeneous associative memory (HAM) [207], associating in-out pairs
of data with equal or different dimensions. In BAM, the update of neuron states is sequential,
starting with neurons of the input layer, then the hidden layers one by one, before the output
layer, and reversely until stabilization. Training a two-layer BAM can simply adapt the Heb-
bian learning to learn pairs of patterns instead of a single pattern. For larger layers, Kosko [230]
also introduced a back-propagation algorithm compatible with BAM, enabling efficient image
recall. However, the sequential layer update in BAM is different from the synchronous parallel
update of ONN. Alternatively, [58] proposed the energy-based EP learning algorithm and ap-
plied it to a multi-layer bidirectional architecture of continuous Hopfield neurons. We expect
EP to be compatible with multi-layer bidirectional ONNs and it also motivates our study on
this novel architecture.

The synchronous parallel update of the multi-layer bidirectional ONN is both advanta-
geous and restrictive. While parallel oscillation synchronization normally helps for fast infe-
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rence, especially for dynamical systems, it also generates an impact of the hidden and output
layers over the input layer. If hidden and output layers are not carefully initialized, it can im-
portantly impact the network synchronization latency and precision. Also, apart from EP, to
our knowledge, there is no straightforward and efficient learning algorithm adapted for multi-
layer bidirectional ONN. Thus, we also study the alternative multi-layer feed-forward ONN.

5.2.2 Multi-layer feed-forward ONN

We define a multi-layer feed-forward architecture as a network organizing neurons in mul-
tiple layers, at least two, inside which neurons are unconnected but between which neurons are
connected feed-forwardly. Let’s suppose a network with an input layer I with states SI , a hid-
den layer H with states SH , and an output layer O with states SO. Layers I and H are connected
through feed-forward synapses WIH = WHI and layers H and O are connected through feed-
forward synapses WHO = WOH such that for an initial input state SIN the update of each layer
follows:















SI(t + 1) = SIN

SH(t + 1) = f(WIHSI(t))

SO(t + 1) = f(WHOSH(t))

(5.2)

synchronously until stabilization of the output layer, with f, the activation function of the neu-
rons. Note, that the input is constant and the signal propagates only in one direction. Thus, the
latency of computation mainly depends on the number of layers and how fast the signal pro-
pagates from one layer to the next. Also note, that with HNN and ONN activation functions,
a sign function is applied on the weighted sum, such that if the weighted sum is equal to zero,
the neuron state is not updated and keeps its previous state. Thus, the initialization of hidden
and output layers also plays a role in the feed-forward architecture.

Feed-forward network architectures have been widely studied and are still standard no-
wadays with gradient-base supervised learning to solve complex classification tasks [9, 231].
However, typical oscillator designs cannot differentiate input and output signals, making a
coupling bidirectional by default. To overcome this issue, it is possible to include additional
circuits between two oscillating layers, as we did in Chapter 4 to connect two analog oscil-
lators feed-forwardly, for example with a majority gate additional circuit [225]. Also, recent
analog, digital, and mixed-signal ONNs were designed with the capability to separate inputs
and outputs [140, 183]. In particular, the digital design from Chapter 2 has differentiable in-out
ports to implement feed-forward architectures. We found only a few contributions in the lite-
rature using differentiable in-out oscillators to create feed-forward ONN architectures. First,
Velichko [151] proposed a 2-layer ONN with feed-forward coupling between layers and addi-
tional neighbor bidirectional coupling in between the input layer. Using frequency-computing
and simulated annealing for training, they were able to perform pattern recognition. Then,
Avedillo [228] suggested to create phase encoded logic with phase-computing oscillators to
perform logic functions, such as a majority gate. Also, Shamsi [229] recently introduced a novel
STDP-inspired supervised or unsupervised learning for phase-computing feed-forward ONN.
Finally, Delacour [183] and Graber [232] designed analog ONNs with differentiable in-out ports
to solve combinatorial optimization problem (COP).

Yet, we considered mainly binary output oscillator phases stabilizing in two 180o-opposite
phases. Thus, Hebbian learning can also be used to train a 2-layer feed-forward ONN for HAM
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or classification tasks. Otherwise, for more than two layers, usual supervised gradient-based
learning could be considered, approximating the neuron activation function to be differen-
tiable, like with SNNs.

5.2.3 Implementation

To fit with the novel architectures, we need to adapt the digital design from Chapter 2. We
start by implementing two ONN layers for each bidirectional and feed-forward architecture.

In the digital design, each oscillating neuron is made of a phase calculator to integrate post-
synaptic input signals and define a novel phase, and a phase-controlled oscillator to apply the
novel phase to the neuron output oscillating signal.

In a bidirectional architecture, neurons in input, hidden, and output layers require both the
phase calculator and the phase-controlled oscillator to integrate the neuron input phase and
update the neuron output phase. Thus, for a two-layer bidirectional architecture, we reuse the
fully-connected ONN design and we constrain synaptic weights between neurons of the same
layer to be zero, representing no coupling, see Figure 5.2a. To increase the number of layers, we
can also consider a fully connected ONN arranging weights to not couple neurons in the same
layer but it can be challenging and it will utilize more digital resources than necessary, or we
need to modify the digital design to divide the weight matrix and organize oscillators in layers.
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FIGURE 5.2 – 2-layer digital ONNs with 2 input neurons and 1 output neuron.

In comparison, in a feed-forward architecture, the input layer receives an input phase and
generates an oscillation aligned in this phase, so a neuron from the input layer only contains
a phase-controlled oscillator. Also, we arrange neurons in layers and we modify the weight
matrix to create different matrices for the different synaptic layers, see Figure 5.2b.

For both bidirectional and feed-forward ONNs, we keep the 5-bit synapse representation
for each weight, as well as the 16-phase stages of the phase-controlled oscillators. Note, that
we modified the design to improve latency performances, performing parallel initialization of
oscillators’ phases instead of sequential initialization. We simulate the multi-layer ONN archi-
tectures using the XC7Z020-1CLG400C FPGA as the target device and implement them in the
Zybo-Z7 development board equipped with the XC7Z020-1CLG400C FPGA.

Finally, in order to easily validate ONN architectures and their configuration for image
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edge detection, we first test our methods using an HNN emulator developed on Matlab for
each architecture. The HNN Matlab emulators model the two ONN architectures using bipolar
spins with sign activation functions as neurons.

5.3 2-layer ONN for image edge detection

Image edge detection detects and extracts contrast in images. Typically, it uses small-size
convolution filters to scan images and detect brightness and color changes. State-of-the-art So-
bel [223], and Canny [222] algorithms use small convolution kernels (commonly 3x3, 5x5, and
7x7) to scan the image and detect edges in the different areas of the image. For example, So-
bel commonly uses two 3x3 convolution kernels associated with vertical and horizontal edges.
Scanning the image applies the convolution kernels’ parameters on windows of the image se-
quentially and the convolution result is used to calculate a global gradient for the central pixel
of the window. The gradient, which can be binarized with a threshold, indicates the detection
of an edge, see Figure 5.3. Both Sobel and Canny use at least two kernels to detect horizontal
and vertical edges. In addition, Canny includes a previous step with a Gaussian filter to remove
noise in the image.

𝐺𝑥
𝐺𝑦 𝐺 = 𝐺𝑥2 + 𝐺𝑦2

Apply 

threshold

FIGURE 5.3 – Sobel image edge detection algorithm.

A convolution operation resembles the activation of the output layer in a 2-layer ONN,
motivating the exploration of how to replace convolution kernels with the 2-layer ONN archi-
tectures. We studied both bidirectional and feed-forward architectures and were able to replace
Sobel convolution filters with ONN to perform efficient image edge detection.

5.3.1 Evaluation of the image edge detection application

We develop two efficient solutions to perform image edge detection first with a 2-layer
bidirectional ONN before adapting it to a 2-layer feed-forward ONN. In both cases, we focus
on replacing the usual convolution kernels with a 2-layer ONN. To do so, we consider first a
3x3 ONN input layer that scans the image, using 3x3 windows of the image as input of the
ONN, before generalizing it to larger input data with 5x5 or 7x7 pixels. We first validate the
methods on gray-scale images and evaluate precision performances compared to state-of-the-
art algorithms.

Evaluation of image edge detection algorithms is not an easy task as, to the best of our
knowledge, there is no state-of-the-art evaluation metric, as well as no ground truth (GT) avai-
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lable. To first visually evaluate the edge detection solutions with the Matlab emulator, we use
a method from the literature [233] which uses hexagonal forms with various gray levels on a
white background, see Figure 5.4. It first assesses if the solution is able to retrieve simple edges
from a basic image.

FIGURE 5.4 – Test image for image edge detection validation using hexagonal forms with various gray
levels on a white background.

However, a more precise assessment of the performance is necessary to evaluate the ONN
image edge detection solutions and to compare them with state-of-the-art algorithms. In litera-
ture, similarity coefficients are often used to assess the precision of object detection algorithms.
Here, we propose to use the Jaccard similarity coefficient (JSC) [234] to evaluate our solutions.
JSC metric takes a GT and calculates the similarity between the GT and the obtained output
information making a ratio between overlapping and union areas. To apply it to edge detec-
tion algorithms, we consider the overlapping area as the number of overlapping edges, and
the union area as the number of union edges between the two output images. Note, the JSC is
computed considering similarity only between detected edges, and does not consider the full
image with background:

JSC =
Overlap

Union
(5.3)

As already mentioned, to the best of our knowledge, there is no benchmarking data set with
GT for edge detection algorithms. Canny is known as the most precise solution for image edge
detection, while Sobel is a cheaper and faster solution with less precision and more sensitivity
to noise. Thus, we take Canny as GT and evaluate its similarity with Sobel and ONN solutions
using the JSC metric. We generate Sobel and Canny outputs using built-in Matlab functions.

5.3.2 2-layer bidirectional ONN

As a first development step, we adopt a 2-layer bidirectional ONN to perform image edge
detection by using it as a 3x3 filter. We define the ONN input layer with a 3x3 image window
and the ONN output layer with the detected edge.

However, as mentioned in Section 5.2.1, in ONNs, all coupled oscillators interact simulta-
neously. Thus, if only neurons of the input layer are initialized, neurons of the output layer will
also impact the input layer due to coupling. A solution to counter this effect is to initialize out-
put oscillators with neutral values, such that they do not influence the dynamic. Presently, we
only use bipolar values, ¶−1, +1♢ with Hopfield neurons or ¶0o, 180o♢ with oscillators. Conse-
quently, to avoid the influence of one of the two values, we consider two neurons for each
output information initialized with different values, one with ¶−1♢ or ¶0o♢ and the other with
¶+1♢ or ¶180o♢. Hence, one output has the same influence for each possible value. Note, that
we interconnect output neurons to let them interact, as they represent the same information.

The first solution developed with the bidirectional ONN configures the ONN synaptic
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weights using the Sobel kernels. Especially, it associates the Sobel coefficients with output
neuron combinations to create training patterns, so we can use the usual Hebbian learning
algorithm, see Figure 5.5. One pattern associates the horizontal Sobel kernel with white pixels
output corresponding to {-1, -1} for HNN, or {0o,0o} for ONN, and the second pattern asso-
ciates the vertical Sobel kernel with black pixels output corresponding to {+1, +1} for HNN, or
{180o,180o} for ONN. A no-edge case is detected when the ONN stabilizes to none of the trained
output patterns. Note, that weights connected from one input neuron to the two output neu-
rons are equal because the two output neurons need to represent the same edge information.
Also note, that the learning algorithm uses patterns with doubled output information.

Hebbian
flatten

Sobel filters
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FIGURE 5.5 – First 2-layer bidirectional ONN configuration for image edge detection.
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FIGURE 5.6 – Evolution of the 2-layer bidirectional ONN configuration for image edge detection, from
(a) to (b).

Using this simple method, we obtain encouraging results meanwhile the ONN was mis-
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sing some edges, as shown in Figure 5.6.a). Thus, we customize the synaptic weights to solve
the missing edges. When looking at the weights of the corresponding network, we detected
that weights applied on opposite edge sides of the filter have opposite values. For example,
weights from the top right input neuron to output neurons are ¶−2♢, while weights from the
bottom left input neuron to output neurons are ¶+2♢, corresponding to the right-oriented dia-
gonal. Vertical and horizontal edges have the same values, respectively. Those three edges are
correctly retrieved. However, for input neurons corresponding to the missing left-oriented dia-
gonal edge, weights connected to the output neurons have zero values. Thus, in order to solve
the missing edges, we apply the same rule to weights connected to those input neurons. We
customize the weights to have opposite weight values between weights connected to the top-
left input neuron, and weights connected to the bottom-right input neuron, see Figure 5.6.b).

5.3.3 2-layer feed-forward ONN

We expect the bidirectional layered ONN to be slower to compute than a feed-forward
layered ONN due to the parallel computation between input and output layers. Thus, we adapt
the previous ONN image edge detection method to a feed-forward ONN architecture.

Sobel filters
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FIGURE 5.7 – Configuration of the feed-forward ONN with 3x3 input size, using Sobel kernel coefficients
as weights, and results of the Matlab emulator on the gray-scale octagon map.

In the mathematical concept, the weighted sum computed before the neuron activation
function is equivalent to a convolution operation, as used in classical image edge detection
algorithms. Thus, our first approach to use the feed-forward ONN for edge detection consisted
of applying the Sobel kernel coefficients as weights between the 3x3 input neurons and two
output neurons, one for each Sobel kernel, as shown in Figure 5.7. In this case, output neurons
are initialized with ¶−1♢ for HNN or ¶0o♢ phase for ONN that we associate with no-edge
information. Then, we expect the feed-forward ONN to change the output information to ¶+1♢
for HNN, or ¶180o♢ phase for ONN if an edge is detected. However, Figure 5.7 highlights that
not all edges are correctly retrieved. It can be explained by the difference between the Sobel
gradient calculation and the Hopfield or ONN activation functions. In Sobel, a large negative
intensity and a large positive intensity of gradient will correspond to an edge. However, with

91



Multi-layer ONN for hetero-association and classification 5.3. 2-layer ONN for image edge detection

Hopfield or ONN, if the weighted sum is negative, the states will evolve to ¶−1♢ for HNN,
and ¶0o♢ phase for ONN, corresponding to no-edge information. A solution to counter this
effect could be to use two output neurons per kernel, initializing both with opposite values
and checking if at least one changes during the computation. However, this solution uses a
double amount of output neurons, inducing twice the number of synapses, and so increasing
ONN resource utilization.

Thus, we studied alternative solutions to use our feed-forward ONN for edge detection.
First, we tried to reproduce a configuration similar to the bidirectional architecture. In this case,
we do not differ the two output neurons and consider equal weights from input neurons to the
two output neurons, and we initialize output neurons to {−1,−1} HNN states or {0o,0o} ONN
phase states. We set weights from input neurons corresponding to the opposite side of each
edge with opposite weight values, as displayed in Figure 5.8(a). It highlights that with this me-
thod, only half of the edges from the gray-scale octagon map are detected. Next, we exchange
each weight value from the previous configuration, so positive weights become negative, and
negative weights become positive, see Figure 5.8(b). In this case, we only detect edges that
were missing in the previous configuration. Thus, by using one of the described configura-
tions to connect one output neuron, and the other configuration to connect the second output
neuron, the feed-forward ONN is able to retrieve all edges of the gray-scale octagon map, see
Figure 5.8(c).

Input image

Edges

No edge

Neuron 2

Neuron 1

Neurons 1 & 2

+ + +

+ 0 -

- - -

+ + +

+ 0 -

- - -

N1

N2

- - -

- 0 +

+ + +

- - -

- 0 +

+ + +

N1

N2

+ + +

+ 0 -

- - -

- - -

- 0 +

+ + +

N1

N2

HNN 

output

(a) (b) (c)

FIGURE 5.8 – Feed-forward ONN configuration with 3x3 input size, with (a) first option tried from the
bidirectional ONN configuration, (b) second option by reversing the weights of the first option, and
(c) final option which combines (a) and (b). Also, the results of the Matlab emulator on the gray-scale
octagon map are presented for each configuration.

5.3.4 Extension to 5x5 and 7x7 input kernels

Convolution filters configured for image edge detection are often 3x3 kernels but can also be
larger, with 5x5 kernels, or even 7x7 kernels. Increasing the filter size can detect edges in larger
windows, allowing a larger stride for scanning depending on the application, and reducing
the scanning latency. Thus, we also study if the image edge detection methods with 2-layer
bidirectional and feed-forward ONNs can scale for larger input sizes. In particular, we extend
the methods to perform image edge detection with ONN filters using 5x5 and 7x7 input kernels,
see Figure 5.9. We reproduce the main principle to have weights connected to central input
neurons set to zero, and weights connected in neurons from the border respecting the rule: if
two weights correspond to the same edge, they have opposite values. For the feed-forward
ONN, an additional rule is necessary: weights from the same input neuron to the two output
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neurons, need to have opposite values, see Figure 5.9. When we apply the 5x5 or 7x7 filters, we
use the same method as with 3x3, we select a small part of the image (5x5 or 7x7), we apply the
ONN for edge detection (bidirectional or feed-forward architecture), and we apply the output
information to the central pixel. Then, we move the filter with a 1-pixel stride to select the next
part of the image, and so on, see Figure 5.9. Note, that using larger filters detects multiple times
each edge as the scanning window is larger.
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FIGURE 5.9 – ONN configuration with 3x3, 5x5, and 7x7 input size, for (a) the bidirectional ONN ar-
chitecture, and (b) the feed-forward ONN architecture. Also, the results of the Matlab emulator on the
gray-scale octagon map are presented for each configuration.

5.3.5 Results and benchmarking

After exploring and validating methods to perform image edge detection using the 2-layer
ONNs with the Matlab emulator, we validate and assess the performances of the methods with
the digital ONN design. We test both architectures on black-and-white 28x28 MNIST images,
and gray-scale 28x28 MNIST images, as well as on large-scale black-and-white images. For each
architecture, we perform image edge detection using 3x3, 5x5, and 7x7 input filters, we evaluate
the precision and compare them with state-of-the-art algorithms. Finally, we extract resource
utilization and latency to assess the real-time performances of the multi-layer ONN architec-
tures compared to the previous analog cascaded OHNs configured for image edge detection
and to other image edge detection implementations.

Black and White 28x28 MNIST Images

The MNIST database [9] contains 28x28 gray-scale images that we binarize to obtain black
and white images. We simulate the two architectures with their respective digital designs per-
forming a sequential scanning on black-and-white MNIST images, see Figure 5.10. It highlights
that both 3x3 bidirectional and 3x3 feed-forward architectures have equal results. Compared to
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state-of-the-art Sobel and Canny algorithms, our solution correctly detects all necessary edges.
However, each edge is detected multiple times, creating larger lines. When increasing the in-
put layer size, for both bidirectional and feed-forward architectures, edges are detected even
more times as we scan the image with a 1-pixel stride. This creates large edge shapes, making it
hard to visualize edges on a small 28x28 image. Figure 5.11 corroborates this visual assessment
by comparing numerically the feed-forward and bidirectional ONN filters with the Sobel fil-
ter considering Canny as GT. For black and white MNIST images, the number of overlapping
edges between our solutions and Canny is close to the number of overlapping edges between
Sobel and Canny. However, the number of union edges is larger for the ONN solutions, increa-
sing with the filter size. It confirms that ONNs detect more edges than Sobel, which slightly
impacts negatively the JSC.
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FIGURE 5.10 – Edge detection results of the digital ONN designs for the bidirectional architecture with
input size 3x3, 5x5, and 7x7, and for the feed-forward architecture with input size 3x3, 5x5, and 7x7, and
state of the art Sobel and Canny on a black and white 28x28 MNIST image.
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FIGURE 5.11 – Number of overlapping edges, union edges, and similarity coefficient between the digital
ONN solutions and Canny reference, and between Sobel state-of-the-art and Canny reference on MNIST
black and white (bw) and grayscale (gs) digit images.
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Gray Scale 28x28 MNIST Images

After investigating ONN for image edge detection on black and white MNIST images, we
also analyze its efficiency on gray-scale images. Figure 5.12 shows ONN output on a 28x28
gray-scale MNIST image for the various architecture configurations. It highlights that the bidi-
rectional architecture is not able to perform image edge detection on realistic gray-scale images.
The Matlab emulator was able to detect edges on a gray-scale octagon map, however, with the
digital ONN design, most of the inference cycles output unstable states, never reaching sta-
bilization. The feed-forward ONN architecture correctly detects edges on gray-scale images.
In comparison to state-of-the-art Sobel and Canny, visually the feed-forward ONN seems to
perform better than Sobel, but worse than Canny. However, when computing the JSC, Sobel
gets better results than the 3x3 ONN filter. Figure 5.12 showcases that the feed-forward ONN
detects more edges than Sobel, however, edges do not overlap with Canny edges. Note that we
observe the same behavior as before when increasing the input filter size. Each edge is detected
more times, and edge lines become thicker. This behavior increases the JSC parameter as the
number of overlapping edges increases with the number of detected edges, however, visually,
large-scale ONN filters do not seem relevant for small-size images.
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3x3 5x5 7x7

Bidirectional architecture

Feedforward architecture

Sobel

Canny

Edges

No edge

Unstable

Neuron 2

Neuron 1

Neurons 1 & 2

Edges

No edge

Unstable

Pattern 1

Pattern 2

JSC=0,13 JSC=0,24 JSC=0,19 JSC=0,19

Union edges from filter

Union edges from GT

Overlap Background

Overlap Edges

FIGURE 5.12 – Edge detection results of the digital ONN designs for the feed-forward architecture with
input size 3x3, 5x5, and 7x7, and for the feed-forward architecture with input sizes 3x3, 5x5, and 7x7,
compared with state-of-the-art Sobel and Canny on a gray scale 28x28 MNIST image.

512x512 Standard Black and White Images

Finally, we test the two ONN architectures configured for image edge detection on 512x512
large-scale standard black-and-white images. The digital ONN simulation process takes time,
and simulating 512x512 images is equivalent to the simulation of more than 260k times a single
ONN for each part of the image. So, for the 3x3 filters, we simulate all 3x3 black and white
options (512 possible inputs) using the digital design, and we associate each part of the image
with the corresponding ONN output. However, with 5x5 ONN input, the number of possibi-
lities increases to more than 33 million, and for 7x7 it is even larger, becoming a challenge to
simulate. For both the 5x5 and 7x7 options, we select a small part of the image and apply it as
input for the multi-layer ONNs.

Figure 5.13 visually confirms the efficiency of the two ONN solutions with bidirectional
and feed-forward architecture to perform image edge detection on black and white images.
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Figure 5.14 supports the previous results showing an increase in the number of detected edges
when increasing the input layer size. It also corroborates that the ONN edge detection filter
is close to the Sobel state-of-the-art algorithm as it detects a similar number of overlapping
edges, even if the higher number of union edges, increasing with the filter size, decreases the
JSC when comparing similarity with the Canny algorithm. In comparison with the previous
analog cascaded OHN solution for image edge detection presented in Chapter4, the digital 2-
layer bidirectional and feed-forward ONNs achieve better similarity with Canny, going from a
JSC of 0.18 with the analog solution to 0.37 with the digital solution on large-scale black-and-
white images.

Original
Bidirectional architecture Feedforward architecture

3x3 3x3

5x5 7x7 5x5 7x7

Sobel Canny

Edges
No edge

FIGURE 5.13 – Edge detection results of the digital ONN designs for the bidirectional architecture with
input size 3x3, 5x5, and 7x7, and for the feed-forward architecture with input size 3x3, 5x5, and 7x7, and
state of the art Sobel and Canny on the black and white 512x512 standard ”pepper” image.
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FIGURE 5.14 – Number of overlapping edges, union edges, and similarity coefficient between the ONN
solutions simulated on Matlab, Sobel state-of-the-art and Canny GT reference on large scale black and
white images Peppers, House, and Lake. Similarity outputs of the bidirectional ONN solutions simulation
on Matlab and Sobel solution compared to Canny on black and white Peppers image.
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ONN performances

After validation of the ONN efficiency to perform image edge detection using simulation,
we also extract ONN characteristics from simulations. Table 5.1 presents the latency perfor-
mances of the different ONN solutions (feed-forward and bidirectional with various input
sizes). Each ONN operates with a system frequency set to Fsys = 166MHz, equivalent to
an oscillation frequency of Fosc = 2.7MHz. It highlights that a 3x3 bidirectional ONN needs
1.42µs on average to stabilize. Note, that the computation time stays stable with the increase
of the bidirectional ONN size, as ONN computes in parallel. The new parallel initialization
implemented in both the bidirectional and feed-forward ONN designs drastically accelerates
the initialization process compared to the original fully-connected ONN design described in
Chapter 2. Here, it only needs one clock cycle to initialize all oscillators no matter the input
size. Also, we highlight that, as expected, the computation is faster with the feed-forward ar-
chitecture than with the bidirectional architecture. The difference is minimal when considering
only one ONN computation, but as shown in Table 5.2 for a full image edge detection process,
the difference becomes non-negligible for an entire image scanning. For example, considering a
5x5 input size, the feed-forward ONN can treat images up to 170x170 pixels in real-time (consi-
dering 30 images per second), while the bidirectional ONN can handle up to 150x150 pixels.
In comparison with the previous analog cascaded OHN solution from Chapter 4, the digital
2-layer ONNs compute faster for a similar oscillating frequency, see Table 5.2. Thus, the digital
ONN-based image edge detection is more advantageous compared to the analog solution both
in terms of accuracy and latency.

TABLE 5.1 – ONN latency performances and resource utilization, depending on the architecture and the
size. The system is configured with 166MHz frequency, allowing 2.7MHz oscillation frequency.

ONN architecture Bidirectional Feed-forward
ONN input size 3x3 5x5 7x7 3x3 5x5 7x7

Initialisation 24ns 24ns 24ns 24ns 24ns 24ns
Computation 1.42µs 1.42µs 1.42µs 1.15µs 1.15µs 1.15µs
LUTs (53200) 484 1214 2369 211 302 457
Flip-Flops (106400) 458 1026 1626 277 437 597

TABLE 5.2 – Estimation of full image edge detection using ONN architectures. The estimation multiplies
the number of pixels to treat in each image by the time to initialize and compute each ONN design.

ONN architecture Bidirectional Feed-forward Analog cascaded OHN
ONN input size 3x3 / 5x5 / 7x7 3x3 / 5x5 / 7x7 3x3 (Fosc = 3MHz)

3x3 image 1.42µs 1.15µs 2.34µs
28x28 image 1.11ms 0.78ms 1.83ms
100x100 image 14.2ms 11.5ms -
128x128 image 23.3ms 18.8ms -
512x512 image 372ms 301ms 613ms

Table 5.1 also points out that the bidirectional architecture requires more resources than the
feed-forward architecture, regardless of the size. Yet, in general, the ONN design for image
edge detection does not require a large amount of resources, with up to 2369 LUTs, and 1626
Flip-Flops for the 7x7 bidirectional ONN. Thus, both ONN architectures can easily be integra-
ted into larger systems with minimal resource availability.
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Benchmarking

Benchmarking image edge detection algorithms is challenging and a common GT is needed
for comparison. Here, we evaluate the ONN image edge detection algorithms by comparing the
outputs with other state-of-the-art edge detection algorithms. In particular, we consider Canny
as GT for the JSC evaluation and compare ONN with Sobel. We show that both the bidirectional
and feed-forward ONNs can detect most edges detected by Sobel and Canny algorithms on
black-and-white images, even if edges are detected multiple times. We also point out that the
efficiency of the bidirectional ONN is limited to black-and-white images, like Sobel, while the
feed-forward ONN can also address gray-scale images, like Canny.

The latency is a critical point in image edge detection as it is often integrated into more
complex systems. The main drawback comes from the sequential scanning necessary to de-
tect edges in the entire image. In the literature, there are various references to FPGA imple-
mentation of Sobel and Canny algorithms, with mainly two options considered to accelerate
the image scanning process. One is more adapted to Sobel, and the other is more adapted to
Canny. In [235, 236, 237], authors propose to simplify the Sobel convolution computation in
order to reduce the number of operations to be able to increase the frequency and speed up
the process. For example, the Sobel FPGA architecture proposed in [235] can process each pixel
gradient in a single clock cycle. Using a clock at 50MHz, they are able to process a 512x512
image in around 5ms. Using faster frequency, authors in [236] and in [237] process the 512x512
image in more or less 1ms, see Table 5.3. For Canny, additional parallelization is necessary to
achieve short processing. Authors in [238] propose to parallelize the process by blocks. They di-
vide the image into numerous 64x64 non-overlapping blocks and process edge detection inside
each block sequentially, meanwhile, the different blocks compute in parallel. In this way, with
a system running at 100MHz, they can process a 512x512 image in less than 1ms. However, as
shown in Table 5.3, it requires much more resources than the previous Sobel implementations.

TABLE 5.3 – Performances of FPGA implementation of edge detection algorithms from the literature.

Filter Resources Hardware Frequency Latency
size LUTs Flip-Flops 512x512

Sobel [235] 3x3 346 289 Xilinx Spartan 3 50 MHz 5.25ms

XC3S200
Sobel [236] 3x3 47 107 Xilinx Spartan 3 204 MHz 1.28ms

XC3S50-5PQ20
Canny [238] 3x3 82496 40640 Xilinx Virtex 5 100 MHz 0.721ms

XC5VSX240T
Sobel [237] 3x3 0 114 Xilinx Spartan 6 504 MHz 0.52ms

XC6SLX43TQG144
ONN-Bid 3x3 484 458 Xilinx Zynq-7000 2.7 MHz 372ms

XC7Z020-1CLG400C
ONN-Bid 3x3 48525 45577 Xilinx Zynq-7000 2.7 MHz 3.7ms

Parallel XC7Z020-1CLG400C
ONN-FF 3x3 211 277 Xilinx Zynq-7000 2.7 MHz 301ms

XC7Z020-1CLG400C
ONN-FF 3x3 53125 82727 Xilinx Zynq-7000 2.7 MHz 0.52ms

Parallel XC7Z020-1CLG400C

Table 5.3 shows that the sequential ONN is much slower than the FPGA implementations
of Sobel and Canny. As explained, Sobel implementations only need one clock cycle to process
the gradient for one pixel, and with the low amount of necessary resources, they can work at
high frequency. However, ONN needs to wait for phase synchronization and the oscillation
frequency is much slower than the system frequency of Sobel FPGA implementations. Thus, as
Canny, we need to include some parallelization to be competitive in terms of Latency. Additio-
nally, as mentioned in [238], scanning the image with a stride larger than one, which changes
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the overlap between two neighboured windows, can accelerate the image edge detection pro-
cess even if it also impacts the edge detection precision. Table 5.4 shows that using a single
ONN to sequentially scan an image takes more than 300ms, which is faster than the analog
cascaded OHN solution from Chapter 4 requiring more than 600ms but hardly competitive
against Sobel and Canny FPGA implementations. However, it is interesting to note that using
parallel ONNs, with overlapping, the bidirectional ONN can process the entire 512x512 image
in less than 10ms, in particular, using 100 3x3 bidirectional ONNs in parallel, we can process
the image in 3.7ms, which is in the same range as Sobel and Canny FPGA implementations.
Furthermore, the feed-forward ONN is even faster and requires fewer resources so we can im-
plement more feed-forward ONNs. Thus, using 290 3x3 feed-forward ONNs in parallel, we
can scan the 512x512 image in around 1ms which is faster than some Sobel FPGA implemen-
tations, but slightly slower than the Canny FPGA implementation, see Table 5.3. Combining
both non-overlapping options with parallel ONNs provides faster latency than reported So-
bel and Canny FPGA implementations, however, as explained the non-overlapping parameter
impacts the edge detection precision and comparison with state-of-the-art does not provide
precise information on the impact of this overlapping parameter over precision. Additional
study is necessary to better assess the precision of the overlapping parameter.

TABLE 5.4 – Estimation of resource utilization, latency, and precision for various parallel and overlap-
ping parameters for the two ONN architectures, bidirectional (Bid) or feed-forward (FF), and various
sizes. We consider only two overlapping options, either a full overlapping (Y) considering a scanning
stride of one pixel, or no overlapping at all (N) considering a scanning stride of the size of the filter.
We also consider the number of parallel ONNs as the maximum number of parallel ONNs that can be
implemented in the XC7Z020-1CLG400C FPGA. The precision is represented by the mean JSC between
the ONN simulated with the Matlab emulator and the Canny algorithm on three large-scale images
(peppers, house, lake).

Filter Overlap Parallel Resources Latency JSC
size ONNs LUTs Flip-Flops 512x512 Canny GT

Bid 3x3 Y 1 484 458 372ms 0.41
Bid 5x5 Y 1 1214 1026 372ms 0.25
Bid 7x7 Y 1 2369 1626 372ms 0.17
Bid 3x3 N 1 484 458 41.5ms 0.23
Bid 5x5 N 1 1214 1026 14.8ms 0.16
Bid 7x7 N 1 2369 1626 7.6ms 0.13
Bid 3x3 Y 100 48525 45577 3.7ms 0.41
Bid 5x5 Y 40 49625 38520 9.3ms 0.25
Bid 7x7 Y 20 47980 27778 18.6ms 0.17
Bid 3x3 N 100 48525 45577 0.42ms 0.23
Bid 5x5 N 40 49625 38520 0.37ms 0.16
Bid 7x7 N 20 47980 27778 0.38ms 0.13
FF 3x3 Y 1 211 277 301ms 0.41
FF 5x5 Y 1 302 437 301ms 0.24
FF 7x7 Y 1 457 597 301ms 0.17
FF 3x3 N 1 211 277 33.6ms 0.23
FF 5x5 N 1 302 437 11.9ms 0.16
FF 7x7 N 1 457 597 6.1ms 0.13
FF 3x3 Y 290 53125 82727 1.04ms 0.41
FF 5x5 Y 170 51665 74297 1.77ms 0.24
FF 7x7 Y 110 51724 61616 2.74ms 0.17
FF 3x3 N 290 53125 82727 0.12ms 0.23
FF 5x5 N 170 51665 74297 0.07ms 0.16
FF 7x7 N 110 51724 61616 0.06ms 0.13
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The other solution to evaluate the performances of the various image edge detection algo-
rithms is to integrate them into a larger system to evaluate the larger system’s performances.
For example, image edge detection is often used as part of image classification applications,
image segmentation applications [219], or in feature extraction applications [218]. Thus, we can
modify those algorithms to replace the original image edge detection solution with one of the
2-layer ONNs configured for image edge detection in order to compare the final performances.
In particular, in the next section, we set up a demonstrator integrating the ONN for image edge
detection inside the scale-invariant feature transform (SIFT) feature detection algorithm.

5.4 ONN image edge detection for feature extraction

Feature detection algorithms are applied on large-scale images to detect important shapes
or patterns to be used for example for object tracking in robotics navigation. Navigation is a
complex and pervasive problem that allows autonomous robots to navigate safely in an envi-
ronment without human interaction. Robot navigation is typically divided into various tasks,
such as localization, obstacle avoidance, or mapping, among others [239, 240].

Simultaneous Localization And Mapping (SLAM) is the most widely applied algorithm for
navigation [241, 242]. SLAM uses sensor data from the robot to estimate the robot’s current
location and to create an environment map around the robot. SLAM can use various types of
sensors, for example, some SLAM algorithms use cameras as sensors and use captured images
to estimate robot position and environment. Another widely applied solution is to combine
feature-based object tracking from images with SLAM algorithm [243, 244, 245]. Feature-based
object tracking consists of detecting and describing features from two following image frames
before matching the corresponding features to compute transformation between two frames.
In state-of-the-art, SLAM algorithm is combined with oriented FAST and rotated BRIEF (ORB)
or speeded up robust features (SURF) algorithms [246, 244, 245, 247] because they perform fast
feature detection and description. In particular, ORB is really attractive for real-time feature
detection while it has limited precision. Other feature detection and description algorithms
can reach better precision but are too slow to compute for real-time navigation applications.
For example, the SIFT [218, 248] is one of the best-reported feature detection and description
algorithms in terms of precision but it has a large computation latency.

We choose to investigate SIFT as it is often used as a baseline in various feature detection
algorithms, and the first stage in the SIFT algorithm computes a difference of Gaussian (DoG),
in which the output resembles an image edge detection algorithm. Thus, we propose to replace
the DoG with the ONN-based image edge detection described in Section 5.3, first to evaluate
the ONN-based image edge detection on a larger application and then to possibly accelerate
the SIFT algorithm meanwhile maintaining a reasonable precision. In particular, we use the
fast and efficient 2-layer digital feed-forward ONN configured for image edge detection to
replace the SIFT-DoG. Note, we do not consider the 2-layer bidirectional ONN as it utilizes
more resources and computes slower than the feed-forward ONN.

5.4.1 Feature detection and description with SIFT

Over the last twenty years, various feature detection and description algorithms have been
proposed. Feature detection consists of detecting important attributes in images and is often
based on edge or corner detection algorithms. After feature detection, it is necessary to describe
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each frame feature in order to match the corresponding features between two following frames
to correctly compute transformation, see Figure 5.15.
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FIGURE 5.15 – Robot movement computation based on SIFT feature detection, description, and mat-
ching.

The differences between two feature detection and description algorithms are mainly in the
mathematical approaches to detect features, and in the methods to define feature descriptors.
Important parameters are scale and rotation invariance, which ensure the correct detection
and description of features even if they are rotated with different sizes and scales. SIFT is one
of the first feature detection and description algorithms introduced with scale and rotation
invariance [218], obtaining high precision even if it necessitates large computing resources and
long computation time. Since SIFT, other solutions have been proposed to reduce computation
latency depending on the target applications [249, 250, 251, 246]. For example, in robotics, SIFT
has been successively replaced by SURF [251] and ORB [246], which are faster and, therefore,
more suitable for real-time constrained applications, see Figure 5.16.

FIGURE 5.16 – Precision over latency of state-of-the-art feature detection and description algorithms.
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SIFT can be divided into four main stages, as shown in Figure 5.15. The first stage detects
extrema in various scale spaces, using DoG to detect edges in images smoothed by Gaussian
blur filters with different smoothing scales. For each pixel at position (x, y) in the image, it
computes:

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (5.4)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (5.5)

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(5.6)

where D is the DoG output, L is the output image after the Gaussian blur is applied, G is the
Gaussian blur, and σ is the smoothing scale, see Figure 5.17. Then, extrema are extracted from
the DoG outputs. For each octave, each pixel of a scale space is compared with its 8 neighboring
pixels from the same scale space, and with its 9 neighboring pixels from lower and upper scale
spaces. Extrema are pixels with the highest or smallest values compared to all 26 neighbors, see
Figure 5.17.
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FIGURE 5.17 – Detection of scale space extrema based on Difference of Gaussian.

The second stage of SIFT selects key points from the extracted extrema by filtering low
extrema to obtain only the strong key points that are reproducible in different images. Some
extrema on edges are also filtered because edges are sensitive to noise and DoG is highly sensi-
tive to edges. After localizing the key points, SIFT computes for each key point the magnitude
and orientation on a 16x16 window. Then, it groups pixels in 4x4 windows to create orienta-
tion histograms by combining orientation and magnitude in each 4x4 window, and the main
orientation from each 4x4 histogram is extracted, see Figure 5.18. The final stage creates the
descriptors, which are vectors containing main orientations with magnitude around each key
point, making descriptors scale and rotation invariant. Once SIFT is applied to two images,
descriptors from both images are matched to determine the transformation between the two
images. For example, in the case of two following images from a moving robot, the transfor-
mation can be associated with the movement of the robot. Note, that it is possible to filter the
number of matches used to compute the transformation to impact the obtained transformation
value.
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FIGURE 5.18 – Feature orientation.

5.4.2 SIFT-ONN adaptation

In the SIFT algorithm, the DoG computation can be approximated to an image edge de-
tection computation. Thus, in this work, we aim to replace the SIFT DoG stage with 2-layer
feed-forward ONNs configured for image edge detection with 3x3, 5x5, or 7x7 inputs, creating
a hybrid SIFT-ONN algorithm, see Figure 5.19.
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FIGURE 5.19 – SIFT-ONN algorithm process.

In the first stage of SIFT, a first pyramid is generated from the input image by resizing it
to create various octaves. The first octave is composed of the input image up-sampled by two,
and the following octaves are generated by sub-sampling by two the previous octave until the
size is too small to make an Euclidean division by two. Then, a second pyramid is created by
applying various Gaussian blurs on the image from each octave to create different scales of
the same image, see Figure 5.17. Next, the DoG outputs are computed for each octave between
neighboured Gaussian blurs to obtain images with highlighted edges. In this work, the SIFT-
ONN keeps the generation of the first pyramid, creating octaves by sub-sampling the input
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image, and the Gaussian blurs are replaced with image binarization using various black-and-
white thresholds. The 2-layer feed-forward ONNs for image edge detection are applied to each
generated black-and-white image to obtain images with highlighted edges. Finally, the images
generated by the original SIFT DoG are replaced with the ones generated by the ONN for the
rest of the SIFT algorithm, see Figure 5.19.

Figure 5.20 confirms that using a stride of the size of the filter really improves latency, as
pointed out in Section 5.3.5. Also, in Section 5.3 the ONN output was assigned to the full se-
lected window to avoid discontinuities. However, in SIFT-ONN, tests showed the precision is
higher if only the central pixel is assigned, even though it induces discontinuities. Thus, in this
Section, the ONN output is assigned to the central pixel of the scanning window. For example,
for a 3x3 ONN filter, the stride is equal to 3, and the ONN output is assigned to the central pixel
of the 3x3 window.

ONN
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#Parallel

ONNs

3x3 290

5x5 170

7x7 110

FIGURE 5.20 – Feed-forward ONN edge detection latency estimation for SIFT-ONN 512x512 image
process. Note, that the number of parallel ONNs is defined from the maximum resource utilization of
the Zybo Z7 board, which is equipped with a Xilinx Series-7 FPGA.

5.4.3 Validation and evaluation methods

The feed-forward ONN was validated and evaluated for image edge detection in Sec-
tion 5.3.5 using the digital ONN implemented on FPGA. Here, the feed-forward ONN configu-
red for image edge detection is first emulated in Python with a Hopfield-based feed-forward
network equivalent to the Matlab emulator used in Section 5.3 in order to integrate the ONN
edge detection with SIFT built-in functions from Python libraries [252].

We evaluate the SIFT-ONN on a custom dataset containing 36 standard gray scale images
with sizes 256x256 and 512x512 from [253]. Each image is resized and normalized to 512x512
pixels to become a base image. Then, from each 512x512 base image, 5 sub-images are generated
by applying rotation, perspective, and size transformations. Thus, the full dataset contains 36
base images, and 180 transformed images.

SIFT-ONN is validated in Python using a Hopfield-based emulator of the digital feed-
forward ONN configured for image edge detection combined with built-in SIFT Python func-
tions [252]. Precision is obtained using images from the dataset applied to the image relocation
application. In feature detection and description algorithms, precision is evaluated by checking
repeatability, meaning that features can be correctly detected in images before and after trans-
formation. In this work, to assess SIFT-ONN repeatability, the goal is to retrieve the position
of a sub-image from the dataset in the original base image. To do so, feature detectors and
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descriptors are first generated from all base and sub-images using SIFT-ONN, and brute force
matching is performed between the sub-image descriptors and the base image descriptors.
Depending on the matching, a transformation is computed to position the sub-image in the
base image before comparing the obtained position with the real position of the sub-image. We
compare the two images using the JSC applied to feature detection and description [234]. In this
case, the JSC computes the ratio of intersection over union pixels between the real sub-image
position, and the computed sub-image position, such as:

JSC =
Intersection

Union
(5.7)

The final JSC score computes the average of the JSC scores of all sub-images. Moreover, we
use the same method with other state-of-the-art feature detection and description algorithms
to have a consistent benchmark of the SIFT-ONN solution.

After assessing the precision and repeatability of the SIFT-ONN using only Python soft-
ware, we estimate the latency of the SIFT-ONN combining the digital ONN latency for the
image edge detection stage with the Python SIFT libraries for the next stages. In particular, we
implement the digital ONN with various sizes to measure the latency of one computation and
use it to estimate the latency of one full-image scanning. Then, we extract post-place and route
implementation resource utilization to deduce the maximum number of parallel ONNs that
can be implemented in the Zybo Z7 board. In parallel, we measure the computation time of the
other steps of SIFT-ONN from SIFT Python libraries based on the GeForce GTX 1050 Mobile
GPU hardware, and we combine both results to estimate the entire SIFT-ONN latency. The la-
tency estimated can be associated with a system based on GPU combined with an ONN-based
FPGA accelerator, without taking into consideration additional data transmission latency bet-
ween GPU and FPGA. We compare with state-of-the-art algorithms computed in Python based
on the GeForce GTX 1050 Mobile GPU.

5.4.4 Results and benchmarking

Figure 5.21 highlights the JSC mean score obtained for each tested algorithm depending
on the percentage of matches used for transformation. Note, that SIFT-ONN is tested with the
three ONN filter sizes: 3x3, 5x5, and 7x7, and in each case, the stride of image scanning is equal
to the filter size, for example, a stride of 3 for the 3x3 filter. Also note that when scanning with
a stride of the size of the filter, the ONN output is applied only to the central pixel of the 3x3
window scanned. Table 5.5 highlights that scanning with a stride of the size of the filter does not
diminish the precision score, it even increases it. However, it really decreases the real latency
to test on Python, as well as the real estimated latency. Thus, we do not consider small strides
due to the long computation time.

TABLE 5.5 – ONN-SIFT real computation time obtained with the sequential process of the 3x3 Hopfield
emulator in Python, estimated computation time obtained with the digital 3x3 ONN implemented on
FPGA, and precision JSC score for a 3x3 ONN filter size for scanning strides 1 and 3.

Stride 1 3

Real comp. time (s) 3712 563

Est. comp. time (s) 0.0878 0.0632

JSC score 0.16 0.28
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FIGURE 5.21 – Precision scores of feature extraction algorithms compared with SIFT-ONN solution.

On one side, Figure 5.21 shows that SIFT-ONN reduces the SIFT precision score by a factor
larger than two. SIFT-ONN precision score is also lower than BRISK, SURF, and KAZE results,
but similar to ORB for most of the cases. SIFT-ONN with a 3x3 filter gives the best precision
score compared with larger ONN filter sizes. Note, that during tests, some divergences in the
precision results were observed between two Python simulations with equal parameters. Thus,
we believe the generated dataset may not be large enough to clearly assess the precision of the
SIFT-ONN algorithm and further tests are necessary. However, due to the large computation
time, it was not possible to enlarge the dataset. Also, precision is tested on the image relocation
application. However, it is also important to test feature detection and description algorithms
on other applications, like image occlusion. Additional tests on a larger dataset and on additio-
nal applications are also necessary to have a better assessment of the SIFT-ONN precision.

FIGURE 5.22 – Latency estimations of ONN-SIFT for various ONN filter sizes, considering the digital
ONN design, compared with the latency of state-of-the-art algorithms computed in Python based on
the GeForce GTX 1050 Mobile GPU hardware.

On the other side, Figure 5.22 shows the ONN filter size does not affect much the global
SIFT-ONN latency. SIFT-ONN improves latency from the original SIFT algorithm by reducing
it approximately by a factor of two. Figure 5.23 combines both precision score and latency
results to highlight SIFT-ONN moves the SIFT algorithm in the same precision and latency
ranges as ORB with a lower precision but a faster computation time than the original SIFT.
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FIGURE 5.23 – Combination of precision score and latency of SIFT-ONN compared with state-of-the-art
feature detection and description algorithms.

The aim of SIFT-ONN was to reduce SIFT computation time while keeping high precision
to allow feature detection and description on edge devices. Yet, the results show the SIFT-ONN
solution induces a drastic reduction of precision in comparison with SIFT, by a factor of 2. We
believe this decrease is mainly due to the ONN edge detection binary output. The DoG from
SIFT algorithm outputs gray-scale images with various edge strengths such as strong or weak
edges, while the ONN edge detection outputs black-and-white images with binary edge infor-
mation. The binary ONN output can have a negative consequence in the extrema definition
such that each edge can become a maximum and each background can become a minimum de-
pending on its position. However, in principle, ONN can stabilize to non-binary phases among
the 0o − 360o range. Thus, a solution to improve ONN-SIFT precision is to investigate how
to perform ONN image edge detection with non-binary ONN outputs. But, as mentioned in
Chapter 3, allowing multi-state ONN outputs is not straightforward and requires further in-
vestigation. Also, this work does not compare SIFT-ONN with SIFT adapted with other image
edge detection algorithms, such as state-of-the-art Sobel [223] or Canny [222]. Both algorithms
can generate gray-scale images with various edge significance, thus it can help to first assess
if a gray-scale ONN edge detection could solve feature detection and description with higher
precision.

Still, SIFT-ONN is close to ORB performances both in terms of precision and estimated
latency. ORB is currently a standard to perform feature detection and description on embedded
devices due to its fast computation time, even though precision is lower than other state-of-the-
art algorithms. Thus, the SIFT-ONN can become an alternative to ORB for feature detection and
description, for example, in robotic applications.

It is also important to highlight that SIFT-ONN adaptation does not require important
changes. Only the SIFT scale generation and DoG stages are replaced with the ONN image
edge detection. However, the following SIFT stages do not require any change. Note, that we
do not include an energy assessment of our solution as we do not have a full implementation
of the system yet, and the digital ONN implementation is a proof of concept of the ONN pa-
radigm which is not designed for low-power computation. However, analog ONN implemen-
tations show promising low-power computation properties [221], which can be advantageous
for edge computing in robotic applications.

Finally, we validated and evaluated the SIFT-ONN solution, but up to now, there is no hard-
ware demonstrator implemented. In literature, it is reported various FPGA implementations of
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SIFT [254, 255], so in the future, we could consider developing a real-time fully digital FPGA
implementation of the SIFT-ONN algorithm.

5.5 3-layer feed-forward ONN for classification

With the image edge detection application, we showcased multi-layer ONN with two layers
trained with the unsupervised Hebbian learning rule.

Multi-layer ANN models are often used for classification tasks, considering more than two
layers. More particularly feed-forward multi-layer models are usually trained with supervised
learning algorithms for image classification such as MNIST or CIFAR-10. However, in Chap-
ter 3 we pointed out the large model scale necessary to solve those image classification tasks,
unsuitable with the limited digital ONN scale. Even if we showcased preliminary results with
OHN to solve a simplified 10x10 MNIST classification, we believe alternative classification da-
tasets are more adapted to the ONN’s limited size.

The Yin-Yang dataset [256] was proposed recently in 2021 as a narrow dataset for fast trai-
ning of small-scale network models. Additionally, it performs non-linear transformations bet-
ween input and output data, showing better performances with deep networks compared to
shallow networks. Thus, it is an interesting dataset to demonstrate the non-linear behavior of
small-scale networks.

In this section, we propose to study if we can build a multi-layer feed-forward ONN with
the digital design, applying it to the Yin-Yang classification task. Note, that we focus on feed-
forward architecture to resemble the conventional ANN models used for classification tasks.
Also note, that to combine more than two layers, alternative learning algorithms should be
considered. In this section, we do not focus on novel learning solutions for multi-layer ONNs,
but we aim to showcase a first 3-layer ONN computing model.

5.5.1 Yin-Yang classification dataset

The Yin-Yang dataset classifies data points into three classes based on their coordinates
in a graph representing a Yin-Yang drawing, see Figure 5.24. In [256], authors used a 3-layer
ANN model built with a 4-neuron input layer containing 4 coordinates ¶x, y, 1 − x, 1 − y♢, a 30-
neuron hidden layer, and a 3-neuron output layer representing the three classes. Each neuron
has a ReLU activation function with additional bias parameters. The small size of the network
motivated us to test it with ONN, especially with a 3-layer feed-forward architecture simulated
with the digital ONN design.

5.5.2 Training ONN for Yin-Yang classification

This work aims to validate the ONN computation with a 3-layer feed-forward architecture,
studying its performances for the Yin-Yang classification task. Because it is a preliminary work
on multi-layer ONN, we do not study multiple learning algorithms and prefer to validate the
ONN computation first. To do so, we train an ANN with equal architecture and similar acti-
vation function using a typical back-propagation algorithm, before re-scaling and transferring
the obtained weight parameters inside the digital ONN design.
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FIGURE 5.24 – Yin-Yang test dataset used for the 3-layer feed-forward ONN classification.

With the fully connected architecture, ONN showcased similar behavior as HNN for pat-
tern recognition. Thus, we define the ANN activation function for training with a differentiable
approximation of the original sign activation function, a hardtanh. Also, we do not train ad-
ditional bias parameters to only consider weights. We start by training the ANN with back-
propagation and we test the obtained weights in various networks, close to the digital ONN
design, to ensure the correct configuration and compare with the digital ONN afterward. The
steps are:

1. We test the 3-layer ANN using a hardtanh activation and full-precision weights.

2. We test the 3-layer ANN using a hardtanh activation and 5-bit weights.

3. We test the 3-layer ANN using a sign activation and full-precision weights.

4. We test the 3-layer ANN using a sign activation and 5-bit weights.

Finally, we integrate the weights reduced to 5-bits signed precision in the digital ONN de-
sign to simulate and test it. It is also necessary to adapt the dataset to fit with the phase-based
ONN computing. In particular, we need to define how to encode input data into phases, and
how to decode phases into classes. In the original dataset, the four input neurons correspond
to the four coordinates ¶x, y, 1 − x, 1 − y♢ that are floating point numbers comprised between
0 and 1. The three output neurons are associated with the three classes, one for each class, and
they represent the probability of the three classes comprised between 0 and 1. The highest pro-
bability is associated with the corresponding class. Considering the digital ONN, information
is encoded in each oscillator phase that is limited to 16 possible stages, between [0, 15], with
¶0♢ corresponding to ¶0o♢ and ¶8♢ corresponding to ¶180o♢. We propose two options to encode
input data and decode output data for classification:

1. We encode input data between [0o, 180o] and classify phases around ¶0o♢ to be a logic
¶′0′♢, and phases around ¶180o♢ to be a logic ¶′1′♢ using the trigonometric circle, see
Figure 5.25.

2. We encode input data between [0o, 360o] and classify phases between ¶0o♢ and ¶180o♢
to be a logic ¶′0′♢, and phases between ¶180o♢ and ¶360o♢ to be a logic ¶′1′♢ using the
trigonometric circle, see Figure 5.25.
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With these two methods, it is possible to classify one data input into two different classes. Thus,
to differentiate, we consider the closest phase value to the original ¶′1′♢ defined by the input
data encoding. Finally, we know from Section 5.2.2 that the initialization of hidden and output
layers also impacts the full ONN computation. Thus, we test various initialization parameters
depending on the input data encoding.
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FIGURE 5.25 – a) Input data encoding associated with b) output data encoding.

5.5.3 Results and benchmarking

Table 5.6 presents the results of the 3-layer ONN configured for Yin-Yang classification. It
highlights that training a 3-layer feed-forward ANN with hardtanh activation instead of the
original ReLU function still achieves high accuracy on the Yin-Yang dataset. However, when
reducing weight precision to the signed 5-bit precision, accuracy reduces drastically and when
transferring the weights to the network with a sign activation, accuracy drops even more,
no matter the weight precision. Due to the binary output states of sign, in a lot of cases, the
network activates more than one output neuron, making it impossible to determine the out-
put class. Nevertheless, we point out that for each sample, the 3-layer digital ONN output
converges to a final phase state, making it possible to compute with a 3-layer feed-forward
ONN. More than that, it stabilizes to multi-phase values, not only in- or out-of-phase, allowing
to better differentiate classes compared to Hopfield neurons with a sign activation function.
The behavior with activation of multiple classes for a single sample also appears sometimes
with the digital ONN when two output neurons have equal phase distance with the phase
equivalent to the ¶′1′♢ output, but less frequently than with the binary Hopfield activation.

With the current solution, the digital ONN achieves better precision than an ANN with bi-
nary output states but a slightly lower precision than the continuous network with hardtanh
activation with 5-bit weight precision and a lower precision than a shallow network tested
in [256]. However, these results are preliminary results, and there are many possible improve-
ments to investigate with the 3-layer feed-forward ONN. First, we believe that increasing the
weight precision inside the digital ONN design could improve the ONN classification accuracy.
Additionally, the current oscillation period offers 16 possible phase values, and it might be ne-
cessary to increase the number of possible phase values to better differentiate output classes.
Then, from the original network presented in [256] with ReLU function to the hardtanh ver-
sion, accuracy reduced from 97.6% to 81.7%. So, we believe we could find a better approxima-
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tion of the ONN activation function before training the ANN to obtain a better configuration
of the weight parameters. Also, alternative learning algorithms, more adapted to ONN com-
puting paradigms need to be explored, such as the Oscillatory Hebbian Rule (OHR) [229] or
the equilibrium propagation (EP) [58]. Finally, in [256], they showcase an increase in accu-
racy when increasing the number of hidden neurons from 20 to 30. The current 3-layer digital
ONN utilizes a low amount of resources, see Table 5.7, so we could use a larger hidden layer.
Table 5.7 also presents the latency of computation of the 3-layer ONN using digital resources
with 23.72µs per inference, which is fast and can be used for many real-time applications.

TABLE 5.6 – Accuracy of the 3-layer feed-forward ANNs (4x30x3) for Yin-Yang classification.

Network Input data encoding Hidden/Output input phase Accuracy

1. hardtanh FP [−1, 1] 0 81.7%

2. hardtanh 5-bit [−1, 1] 0 56%

3. sign FP [−1, 1] 0 27.3%

4. sign 5-bit [−1, 1] 0 19.9%

ONN [0o, 360o] 0o 48.2%
180o 46.4%

ONN [0o, 180o] 0o 22.3%
90o 34.9%

Shallow[256] [0, 1] random 63.8%

ReLU[256] [0, 1] random 97.6%

TABLE 5.7 – 3-layer feed-forward ONN characteristics.

Fsys Fosc Inference latency LUTs Flip-Flops

16.67MHz 260 KHz 23.72µs 643 762

5.6 Discussion and conclusion

This chapter proposed novel architectures to go beyond OHN and cascaded OHN architec-
tures and applications. OHN limits the system scalability due to the fully-connected architec-
ture and also constrains the ONN applications to pattern recognition with limited precision.
ANN models are usually organized in layered architectures to perform a wide variety of tasks
with high precision. In Chapter 4 we proposed to create layers of OHNs by cascading them
and highlighted that the novel cascaded OHN architecture helps to partially solve the scalabi-
lity issue by limiting the number of synaptic elements meanwhile it still limits ONN to pattern
recognition tasks. So, in this chapter, we studied multi-layer ONN architectures considering
layers of unconnected oscillators to further resemble conventional ANN multi-layer architec-
tures.

In particular, we proposed two different architectures considering either bidirectional or
feed-forward synaptic connections between layers. By default, coupling two oscillators creates
a bidirectional connection between them, being feed-forward and recurrent at the same time,
and most ONN analog or mixed-signal implementations can not separate the two paths. Ho-
wever, novel ONN designs [140, 183, 232], including the digital ONN design from Chapter 2,
can differentiate both feed-forward and recurrent paths between coupled oscillators and create
feed-forward synaptic connections. So, we first proposed the multi-layer bidirectional ONN
architecture to fit with all ONN implementations, before testing the multi-layer feed-forward
architecture with the digital ONN design.
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We first demonstrated the multi-layer ONN capabilities considering two layers to efficiently
perform image edge detection by replacing two convolution filters with either one 2-layer bidi-
rectional ONN or one 2-layer feed-forward ONN. We validated both architectures for the image
edge detection application simulating and implementing the digital ONN design to compare
with state-of-the-art Sobel [223] and Canny [222] edge detection algorithms. Then, for a better
assessment of the ONN-based image edge detection performances, we integrated it into the
SIFT feature detection algorithm, replacing the equivalent DoG to create the SIFT-ONN. The
SIFT-ONN reduced the SIFT precision but accelerated the SIFT computation, bringing SIFT-
ONN to similar performances as ORB’s state-of-the-art feature detection solution for fast em-
bedded systems [246].

With the 2-layer ONN, the main limitation is the binary output states which limit the pre-
cision for both the simple image edge detection and the larger feature detection and extraction
applications. However, with the current binary limitation, we can already propose alternative
applications to image edge detection. In particular, in the literature, others proposed to replace
convolution filters with ONN [150, 143] but not only for image edge detection. We believe the
2-layer ONNs can also replace other convolution filters than the Sobel kernels. For example,
2-layer ONNs could be used as convolution filter accelerators for CNN models, as proposed
in [143].

Furthermore, we showcased that ONN can stabilize to multi-state output phases with a
feed-forward 3-layer architecture. To go beyond two layers and enlarge the ONN scope of
application, we introduced a 3-layer feed-forward ONN and applied it to the small-scale Yin-
Yang classification task considering the digital ONN design. We performed back-propagation
learning on an ANN with equal architecture and an approximated activation function before
re-scaling and transferring weights in the digital ONN design. It highlighted the 3-layer feed-
forward ONN can stabilize to multi-state output phases, achieving better accuracy than the
equivalent ANN with a sign activation, even though accuracy is much lower than the equiva-
lent ANN with continuous hardtanh activation. This preliminary study of multi-layer ONN
for classification encourages further investigations for a better network configuration and no-
vel ONN-based learning algorithms, to improve ONN accuracy. Especially, the recent emer-
gence of hardware-aware learning algorithms, such as the ONN-specific oscillatory Hebbian
rule [229], and the more general equilibrium propagation [58], could provide efficient learning
for multi-layer feed-forward or bidirectional ONNs.

The work described in this Chapter resulted in one journal paper [206] and two conference
papers [257, 258].
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CHAPTER 6

DISCUSSION AND CONCLUSION

Neuromorphic computing is a promising area to bring powerful computing algorithms to
the edge. Neuromorphic computing paradigms take inspiration first from the biological neural
network structure to distribute memory and processing units, and then from the brain repre-
sentation of information to compute in time. In particular, the inherent phase synchronization
of coupled oscillators using temporal encoding has been used to produce low-power analog os-
cillatory neural networks (ONNs). State-of-the-art ONN, called oscillatory Hopfield network
(OHN), creates a fully connected recurrent architecture configured with unsupervised learning
to perform pattern recognition. The OHN architecture first necessitates a large number of sy-
napses that limit the scalability of ONN implementation and restrict ONN to binary pattern
recognition tasks for which OHN has limited precision. The recent investigation of low-power
compact devices for large-scale analog ONN implementation motivated this thesis with the ex-
ploration of novel beyond-OHN ONN networks to assess ONN performances for alternative
edge applications and better benchmark ONN with more conventional models.

To facilitate the exploration of ONN beyond OHN, we considered a reconfigurable digital
ONN implementation on FPGA. The digital ONN design does not behave identically to analog
ONN designs but provides a proof of concept of the ONN computing paradigm to demonstrate
novel learning algorithms, architectures, and applications.

6.1 Contributions

In this manuscript, we investigated how to go beyond OHN with the phase-computing
ONN paradigm using a digital proof of concept of the ONN on FPGA. We first studied lear-
ning algorithms to improve current OHN pattern recognition accuracy, before investigating
novel architectures to go beyond OHN. We proposed to benchmark ONNs with conventional
artificial neural network (ANN) models, applying them to image processing or classification
edge applications.

1. How to improve OHN accuracy with alternative learning?

In chapter 3, we studied how to efficiently learn with OHN, from unsupervised to supervi-
sed learning algorithms, to assess OHN performances on pattern recognition. We also provided
the first solution to perform OHN on-chip unsupervised learning using the digital design. Even
if the supervised learning experiments increased OHN accuracy, OHN trained with unsuper-
vised or supervised learning, with or without on-chip learning, did not overcome other ANN
models. We believe the main accuracy limitations are
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• the binary OHN output state and

• the single-layer OHN architecture which also limits the OHN scalability, restricting the
digital off-chip learning OHN to 120 neurons and the digital on-chip learning OHN to 35
neurons.

2. How to create novel ONN architectures to go beyond OHN?

To avoid the accuracy and scalability limitations of OHN, we studied novel ONN architec-
tures. First, in chapter 4, we presented an architecture with feed-forward layers of small-scale
OHNs, cascading them. We divided a pattern recognition task into sub-tasks to reduce the
number of synaptic elements. Even if we were able to perform edge applications, it was not
straightforward to train and it still restricted ONN to pattern recognition tasks.

So, in chapter 5, we proposed multi-layer bidirectional and feed-forward ONN architec-
tures to resemble and benchmark with conventional ANNs, going beyond pattern recognition
tasks. We first validated a 2-layer ONN trained with adapted unsupervised Hebbian learning
for hetero-association and highlighted its limitation to binary output phases, like in OHN. Ho-
wever, we demonstrated a 3-layer feed-forward ONN configured for classification with super-
vised learning could stabilize to multi-phase outputs. We used supervised back-propagation
learning on a conventional ANN model approximating ONN and transferred weights to the
digital design. However, the weight transfer from the conventional ANN model to the digital
ONN drastically reduces the classification accuracy, making multi-layer ONN noncompetitive
with other models. We believe the main accuracy limitations come from

• the digital ONN design with its limited 5-bit weight precision, and with its 16-phase
oscillating periods which reduces the possible outputs when using multi-phase values
for classification, making classes hardly differentiable, and

• the back-propagation learning algorithm applied on a conventional model which may
not approximate correctly the ONN model.

3. What are the possible edge applications for ONN?

During this thesis, we demonstrated the various ONN architectures and learning algo-
rithms, mainly with the digital ONN design, performing various edge applications. We first
validated the digital OHN design in chapter 2 performing real-time digit recognition from a
camera stream. Then, in chapter 4, we showcased the digital cascaded OHN architecture for a
real-time obstacle avoidance application using proximity sensor input data on mobile robots,
such as the industrial E4 robot from A.I.Mergence. We also proposed an analog design of the
cascaded OHN architecture and used it to perform image edge detection, replacing typical
convolution filters. Even if this first image edge detection achieved interesting precision, the
computation latency was too long. So, in chapter 5 we implemented digitally a 2-layer ONN
configured for image edge detection. We pointed out the real-time performances when taking
advantage of the FPGA parallelism, notably being able to accelerate the SIFT feature detection
and extraction algorithm. Finally, we studied how to solve classification tasks with ONN. First,
in chapter 3, we used OHN to solve a simplified MNIST set, transforming an image classifica-
tion into a pattern recognition task. Then, in chapter 5, we configured a 3-layer feed-forward
ONN to solve the Yin-Yang classification task. Currently, the ONN classification accuracy does
not outperform conventional ANN models certainly because of the limited precision of the
digital design and the non-adapted learning solutions.
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6.2 Future work

The proposed ONN architectures trained with the different learning algorithms implemen-
ted digitally did not achieve competitive precision compared with conventional ANN models
or with neuromorphic spiking neural networks (SNNs). There are several areas of research to
benchmark ONNs with competitive ANNs or SNNs.

1. Multi-state ONN stabilization

Currently, both single-layer and multi-layer ONNs achieve lower accuracy than conven-
tional ANNs for image processing tasks, from pattern recognition to image classification. The
phase-computing ONN provides a natural continuous activation function, however, it is of-
ten limited to binary output phases by the network configuration with binary learning pat-
terns or algorithms. To consider multi-phase learning solutions, some proposed to take inspi-
ration from complex Hopfield networks, considering complex weights with the intrinsic com-
plex ONN activation function using existing complex unsupervised and supervised learning
algorithms. Alternatively, our experiments on the 3-layer feed-forward ONN showcased stabi-
lization to multi-phase outputs after configuration with back-propagation on an approximated
continuous ANN. Even if ONN was able to stabilize to multi-phase outputs, the accuracy ob-
tained was much lower than with the approximated 3-layer ANN. As a first study, future work
could investigate alternative ANN continuous activation functions for a better ONN approxi-
mation before training. Then, it might also be necessary to increase the ONN implementa-
tion precision, either modifying the present digital design or considering an alternative analog
implementation. Finally, future research should also focus on alternative learning algorithms
compatible with multi-layer multi-phase ONNs.

2. Multi-layer ONN learning

The best-in-class supervised learning algorithm for conventional ANN models is the back-
propagation algorithm. It computes the gradient of a loss function which retro-propagates
through layers using the derivative of the neuronal activation function. However, it is com-
putationally intensive, and not applicable to ONN as the precise activation function of the
phase-computing ONN paradigm is still unknown. The solution to use an approximation of
the activation function considered in chapter 5 did not achieve yet high precision with ONN.
Recently, novel hardware-based supervised learning algorithms were introduced for physical
neuromorphic computing. For example, the supervised equilibrium propagation learning al-
gorithm was introduced for hardware-based multi-layer recurrent networks. Even if it did not
significantly increase the accuracy of a single-layer ONN, we believe it requires further exami-
nation for multi-layer feed-forward or bidirectional ONN learning. The equilibrium propaga-
tion is one example and we assume there are other options to consider. In our opinion, one of
the main research topics to improve ONN accuracy performances is to concentrate on novel
efficient hardware-aware learning algorithms.

3. ONN implementation

In this thesis, we consider a digital ONN design as a proof of concept of the ONN compu-
ting paradigm to easily test and validate novel architectures and learning algorithms for edge
computing. One of the main interests of the ONN computing paradigm comes from its pos-
sible analog implementations. Analog computing takes advantage of the physical computing
properties of analog circuits for low-power fast computation, providing natural continuous ac-
tivation functions. However, building large-scale analog ONNs with re-configurable synaptic
architecture and weights is challenging. For example, to give synaptic architecture flexibility,
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the system needs to provide possible all-to-all non-symmetric oscillator couplings with high
precision, requiring a large space. Thus, the investigation of novel compact, fast, and low-
power devices for analog ONN designs is another important research area. Alternatively, to
keep the re-configurable advantage of the digital ONN design, we could try to bring analog
properties to the digital ONN design such as stochasticity or noise.

4. ONN alternative architectures and applications beyond OHN and ANN

There are still many topics to investigate in order for ONNs to compete and benchmark
with ANNs and SNNs. However, usual ANN benchmark tasks might not take advantage of
the ONN physical properties, and might never achieve competitive accuracy results compa-
red with conventional and alternative ANNs. First, accuracy might not be the most attractive
criterion of the ONN computing paradigm when benchmarking with ANNs or SNNs, and in
the future, it could be interesting to also benchmark ONN in terms of energy consumption,
and latency of computation, among others. Then, it is also important to propose alternative
beyond-conventional ANN architectures and applications, such as

• Multimodal data processing, considering modular ONN architectures, could use a com-
bination of small-scale application-specific ONN accelerators in larger-scale multimodal
sensory platforms, for example in robotics.

• Dynamic data processing could take advantage of the high non-linearity and dyna-
mic computing of coupled oscillators. For example, frequency-computing ONNs have
already been studied to build reservoir networks for reservoir computing. The first expe-
riments are promising and motivate further analysis for temporal data processing with
phase-computing ONN.

• Solving combinatorial optimization problems (COP) with ONN. COP can be represen-
ted with a coupling graph governed by an Ising Hamiltonian function, that can be asso-
ciated with the intrinsic ONN energy function when creating graphs of coupled oscilla-
tors to physically solve COP. Recent studies showcased significant performances when
using ONN for COP compared to state-of-the-art approaches, encouraging further expe-
rimentation.

This thesis manuscript explored beyond-OHN architectures, applications, and learning al-
gorithms, taking inspiration from ANN for benchmarking. Current performances do not out-
perform classical ANN models yet but still encourage research of ONN for edge computation.
In the future, some could explore alternative learning solutions to improve ONN as ANN per-
formances meanwhile others could focus on alternative ONN computing architectures and
applications taking more advantage of the physical ONN computing paradigm.
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RÉSUMÉ DE LA THÈSE

Au cours des dernières décennies, l’augmentation du nombre de données a fait émerger des
algorithmes d’intelligence artificielle (IA) de plus en plus puissants. Toutefois, les systèmes ma-
tériels basés sur l’architecture de von Neuman ne peuvent pas traiter efficacement cette grande
quantité de données et de calculs. Ainsi, de nouveaux paradigmes neuromorphiques inspirés
des réseaux de neurones biologiques sont apparus pour proposer des systèmes rapides et à
faible consommation d’énergie pour l’IA embarquée. En particulier, les réseaux de neurones
oscillatoires ou oscillatory neural networks (ONNs) s’inspirent des ondes cérébrales pour calcu-
ler en utilisant le phénomène naturel de synchronisation des oscillateurs couplés. Les ONN
sont principalement utilisés pour effectuer des tâches de reconnaissance de formes, ce qui est
limitant pour l’IA embarquée. Dans cette thèse, nous utilisons une preuve de concept de l’ONN
avec une conception numérique mise en œuvre sur puce FPGA pour explorer des algorithmes
d’apprentissage et des architectures compatibles avec l’ONN pour de nouvelles applications
d’IA embarquées.

.1 Intelligence artificielle et réseaux de neurones artificiels

Le développement de processeurs microélectroniques à grande échelle suivi par la prédic-
tion de la loi de Moore, a conduit au développement de nouveaux algorithmes pour apporter
des capacités de calcul du cerveau humain aux machines. On définit l’IA comme l’ensemble des
algorithmes et des modèles, résolus par des machines, qui tentent soit de dépasser les capacités
du cerveau humain pour résoudre une tâche spécifique, soit de remplacer le cerveau humain
pour des tâches plus générales. Avec la complexité croissante des tâches d’IA, les algorithmes
déterministes ont été abandonnés au profit de modèles probabilistes d’apprentissage. Les mo-
dèles d’apprentissage sont un sous-ensemble des algorithmes d’IA capables d’apprendre des
tâches à partir de données en utilisant une fonction de coût et un algorithme d’apprentissage
capable d’optimiser la fonction de coût [2]. Les modèles d’apprentissage sont souvent associés
au sous-ensemble des réseaux de neurones artificiels ou artificial neural networks (ANNs).

Les ANN sont des modèles informatiques qui s’inspirent de la structure des réseaux neuro-
naux biologiques pour apprendre et calculer [3]. Le cerveau humain est composé d’un réseau
de neurone connu pour exécuter des tâches difficiles tout en consommant peu d’énergie [4].
Succinctement, un réseau neuronal biologique est constitué de neurones interconnectés par des
synapses. L’efficacité du cerveau humain provient principalement de sa grande échelle et de sa
plasticité, lui permettant de se reconfigurer pour adapter ses connaissances au fil du temps. Les
ANN sont formés de deux éléments principaux, des neurones artificiels interconnectés par des
synapses artificielles. Le premier modèle mathématique d’un neurone biologique a été proposé
par McCulloch et Pitts en 1943 [5] avant d’être utilisé pour calculer, sous forme de perceptron,
par Rosenblatt en 1960 [6]. Il est défini par deux fonctions:
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1. une fonction d’intégration qui intègre les informations synaptiques. La principale fonc-
tion d’intégration calcule une somme pondérée des états des neurones pré-synaptiques
et des poids synaptiques.

2. Et une fonction d’activation qui calcule l’information intégrée pour activer ou non la
sortie du neurone. A l’origine, la première fonction d’activation était une fonction sign,
qui limite la sortie des neurones à des signaux binaires. C’est pourquoi d’autres fonctions
continues sont désormais plus utilisées, telles que les fonctions sigmoide et ReLU (voir
Figure 1).

E = −12ij Wijcos(ϕi − ϕj)

𝑗=1𝑁 𝑤𝑗𝑥𝑗0,3
0,7 𝑦𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑖𝑗 𝑊𝑖𝑗𝑥𝑗

Continuous activation in 

amplitude domain

𝜏 𝑑𝑣𝑖𝑑𝑡 + 𝑣𝑖 =𝑊𝑖𝑗𝑥𝑗𝑦 𝑡 = 𝑓(𝑣𝑖 𝑡 − 𝑣𝑡ℎ)
Binary spikes output in 

time domain

𝜙
𝐸

𝑦 = 0,2 𝑦 𝑦
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dynamic in time domain: d𝜙𝑖𝑑𝑡 = − 𝜕𝐸𝜕𝜙𝑖

Classical ANN SNN Phase-computing ONN

𝑣𝑖
𝑣𝑡ℎ

FIGURE 1 – Différents types de réseaux de neurones, ANN, SNN, et ONN.

Un réseau composé d’un seul neurone limite son application à des tâches linéaires entre
entrées et sorties [7]. Ainsi, depuis l’introduction du perceptron, de nouvelles architectures
d’ANN ont été proposées. Particulièrement, les architectures multi-couche ont été introduites,
dans lesquelles il n’y a pas de connexion synaptique au sein des couches, mais il y a des
connexions synaptiques entre les couches. Les synapses peuvent être unidirectionnelles, trans-
mettant des informations des couches d’entrée aux couches de sortie. Par ailleurs, les synapses
peuvent être multidirectionnelles et créer des redondances entre les couches ou entre les neu-
rones d’une même couche, produisant ainsi des modèles récurrents. Si l’architecture d’un ré-
seau est composée de plus d’une couche, on l’appelle un réseau de neurone profond ou deep
neural network (DNN). Un réseau DNN de neurones perceptron produit une relation non li-
néaire entre l’entrée et la sortie, ce qui accroît la complexité des tâches que les ANNs peuvent
résoudre. Les différentes architectures de réseaux permettent de traiter différents types de don-
nées. Par exemple, la redondance des réseaux récurrents permet de traiter des données tempo-
relles, tandis que les réseaux unidirectionnels sont généralement utilisés pour traiter des don-
nées statiques telles que des images.

L’apprentissage des réseaux consiste à configurer les poids synaptiques pour que le réseau
résolve correctement la tâche demandée. L’apprentissage dépend majoritairement de la donnée
à traiter et se catégorise en deux types:

1. l’apprentissage supervisé considère des données contenant des échantillons d’entrées
avec les sorties associées pour effectuer des tâches de classification ou de régression, en
associant une prédiction aux données d’entrée.

2. Et l’apprentissage non supervisé considère des données contenant des échantillons d’en-
trée sans la prédiction associée. L’algorithme doit alors organiser les données suivant leur
corrélation et leur structure. Il est souvent utilisé pour des applications de groupement de
données. Les algorithmes supervisés obtiennent généralement de meilleures précisions
mais demandent plus de resources de mémoire et de calcul.
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La récente multiplication des objets embarqués dans de nombreux domaines a considé-
rablement augmenté la quantité de données à traiter et la complexité des tâches à résoudre
sur les systèmes embarqués. Cependant, les systèmes matériels pour le calcul embarqué ba-
sés sur l’architecture von Neuman ne sont pas efficace pour traiter cette quantité de données.
C’est pourquoi des paradigmes neuromorphiques dotés d’une mémoire distribuée sont étu-
diés, s’inspirant de la structure et de la représentation de l’information des réseaux de neurones
biologiques.

.2 Calcul neuromorphique et réseaux de neurones oscillatoires

Dernièrement, la plupart de la recherche autour des paradigmes neuromorphiques ont ex-
ploré les réseaux de neurones à impulsion ou spiking neural networks (SNNs) [74], qui s’ins-
pirent des impulsions utilisées pour transmettre l’information dans les réseaux biologiques.
Les SNNs encodent l’information temporellement à l’aide d’impulsions pour assurer un calcul
de données continues naturel et à faible énergie (voir la Figure 1).

Récemment, les ONNs sont apparu comme un paradigme neuromorphique alternatif pour
du calcul temporel, rapide et efficace, à basse consommation. Les ONNs sont des réseaux d’os-
cillateurs couplés qui émulent les propriétés de calcul collectif des zones du cerveau par le
biais d’oscillations. Le paradigme de l’ONN utilise la synchronisation physique entre des oscil-
lateurs couplés. La dynamique des oscillateurs couplés peut être représentée par le modèle de
Kuramoto qui exprime la dérivée temporelle de la phase ou de la fréquence des oscillateurs :

dϕi

dt
= ωi +

∑

j

Kij sin (ϕj − ϕi) (1)

où ωi est la fréquence de fonctionnement de l’oscillateur. Les termes d’interaction sinusoïdale
sont responsables de l’ajustement de la fréquence et modélisent l’adaptation du neurone oscil-
lant i à d’autres neurones oscillants j. Malgré son expression simple, le modèle de Kuramoto
produit une dynamique très complexe qui dépend de la connectivité (Kij) et de la distribution
des fréquences [171].

La dynamique non linéaire des oscillateurs couplés peut être exploitée de nombreuses ma-
nières pour effectuer des tâches intelligentes. Cependant, la plupart des développements de
l’ONN se répartissent en deux catégories en fonction du type de codage entrée/sortie : 1) les
ONN basés sur la fréquence et 2) les ONNs basés sur la phase (voir Figure 1).

Dans un ONN basé sur la fréquence, des signaux d’entrée dépendants de la fréquence
sont injectés dans l’ONN qui réagit aux perturbations d’entrée. Pendant le calcul, les groupes
d’oscillateurs se verrouillent en fréquence, ce qui représente une synchronisation. Le calcul
dans le domaine fréquentiel peut supprimer certaines connexions physiques entre les oscilla-
teurs [172], mais malgré la mise à l’échelle physique avantageuse, la génération du signal de
modulation qui inclut toutes les interactions des oscillateurs par paire est complexe [138, 173].
L’ONN basé dur la fréquence a déjà été utilisé pour le traitement d’images [136, 149, 150], les
tâches de mémoire associative [148], ou la classification de voyelles [153, 174].

Dans cette thèse, nous nous concentrons sur l’ONN basé sur la phase, dans lequel les os-
cillateurs ont des fréquences égales, les éléments de couplage sont symétriques (Kij = Kji),
et les entrées et sorties sont codées dans la relation de phase entre les oscillateurs. Hoppens-
teadt et Izhikevich [119] ont montré que le calcul d’inférence de l’ONN minimise une fonction
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d’énergie dans le temps, tel que :

E = −
1

2

∑

i

∑

j

Kij cos (ϕi − ϕj) (2)

La dynamique de l’oscillateur dépend alors de l’initialisation de la phase et de l’énergie de
l’ONN, ce qui permet une large gamme d’applications.

.3 Motivations de la thèse

La théorie des oscillateurs couplés encourage la recherche autour des ONNs pour des ac-
célérateurs d’IA à faible consommation. En particulier, dans cette thèse nous nous concentrons
sur les ONNs calculant en phase, motivés par :

1. la dynamique physique qui peut faciliter la conception d’ONNs avec une grande variété
d’oscillateurs, analogiques ou numériques, compacts à faible consommation,

2. la synchronisation parallèle des oscillateurs couplés permettant une inférence rapide,

3. la représentation des données dans le domaine temporel, les phases des oscillateurs li-
mitant l’amplitude de la tension et la consommation d’énergie.

Dans la littérature, l’état de l’art configure un ONN calculant en phase comme un réseau
de Hopfield oscillatoire (OHN) avec une architecture d’oscillateurs entièrement couplés pour
effectuer de la reconnaissance de formes, comme les réseaux de Hopfield ou Hopfield neural
networks (HNNs) [20].

L’architecture entièrement couplée génère un grand nombre de synapse et limite l’imple-
mentation d’OHN à grande échelle. Par exemple, la plus grande implémentation d’OHN sur
puce intègre 100 neurones et est conçu principalement avec des technologies numériques [141],
tandis qu’un travail récent a construit un OHN analogique de 30 neurones [161]. En comparai-
son, [162] a proposé un ONN numérique intégrant 1968 oscillateurs interconnectés dans une
topologie en grille pour résoudre des problèmes d’optimisation. Même si une grande partie
de la communauté explore de nouveaux matériaux, dispositifs et circuits compacts à faible
consommation pour les ONNs [163, 164, 72, 159], nous pensons qu’il est nécessaire d’étudier
d’autres architectures pour l’ONN pour aller au-delà de l’OHN. De plus, l’OHN est générale-
ment configuré avec l’algorithme d’apprentissage non supervisé Hebbian, obtenant des résul-
tats de précision non compétitifs par rapport à d’autres modèles exécutant de la reconnaissance
de formes [165]. Il est donc également nécessaire d’étudier des solutions d’apprentissage inno-
vantes, d’abord pour essayer d’améliorer les performances de l’ONN sur des tâches de recon-
naissance de formes, ensuite pour fournir une capacité d’apprentissage sur puce ou en ligne à
l’ONN, et enfin pour élargir le champ des architectures et des applications de l’ONN.

Cette thèse se concentre pour étudier si et comment l’ONN peut résoudre des applications
significatives d’IA embarquée à l’aide d’une preuve de concept de l’ONN implémenté en digi-
tal sur FPGA.
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.4 Implémentation digitale d’un réseau de neurones oscillatoire

Pour étudier et démontrer différentes architectures de l’ONN, algorithmes d’apprentissage
et applications, il est nécessaire d’utiliser une implémentation de l’ONN facilement reconfigu-
rable. Généralement, avec les implémentations numériques ou analogiques actuelles d’ONN,
les poids synaptiques peuvent être modifiés mais la structure du réseau ne peut pas être chan-
gée. Donc, nous utilisons un ONN entièrement numérique implémenté dans une puce FPGA
pour pouvoir reconfigurer les poids synaptiques et la structure de l’ONN et pour permettre
de déployer facilement des démonstrations sur des systèmes embarqués. L’ONN numérique
intègre:

1. des oscillateurs à changement de phase composés d’un registre à état, d’un calculateur
de phase et d’un oscillateur contrôlé phase,

2. et un bloc numérique contenant les poids synaptiques implémentés sur 5 bits signés et des
circuits logiques arithmétiques pour calculer la somme pondérée des signaux sortants des
oscillateurs et définir la nouvelle oscillation d’entrée de chaque oscillateur (voir Figure 2).
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FIGURE 2 – ONN numérique.

Dans le Chapitre 2 de ce mémoire, l’ONN numérique est décrit, testé et validé sur des ap-
plications de reconnaissances de formes avec des OHNs de petite taille, contenant 5x3 et 10x6
neurones, entraînés avec l’algorithme de Hebbian. Les premiers tests confirment les limites de
l’OHN en termes de d’échelle et de précision. En effet, l’architecture de neurones entièrement
connectés limite l’implémentation à grande échelle de l’OHN numérique à 120 neurones. De
plus, les performances de précisions obtenues pour la reconnaissance de formes avec l’algo-
rithme d’apprentissage de Hebbian sont limitées. Ainsi, nous explorons ensuite de nouvelles
architectures et de nouveaux algorithmes d’apprentissage pour aller au-delà de l’OHN en uti-
lisant l’implémentation numérique sur FPGA et nous démontrons ces avancées sur des appli-
cations d’IA embarquée.

.5 Amélioration de l’apprentissage d’un OHN

Nous commençons par explorer de nouvelles solutions d’apprentissage pour améliorer les
performances de l’OHN pour la reconnaissance de forme. Dans le chapitre 3 nous étudions
différents algorithmes d’apprentissages. Dans un premier temps, nous testons des algorithmes
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d’apprentissage non supervisés introduits pour la reconnaissance de formes avec les réseaux
de Hopfield. Puis, nous proposons un algorithme d’apprentissage supervisé introduit pour
des réseaux récurrents multi-couche (voir Figure 3). Nous fournissons également une première
solution pour réaliser de l’apprentissage non supervisé d’OHN sur puce. Même si l’apprentis-
sage supervisé augmente la précision de l’OHN, l’OHN configuré avec un apprentissage non
supervisé ou supervisé, avec ou sans apprentissage sur puce, ne surpasse pas les autres mo-
dèles d’ANN. Nous pensons que les principales limitations en matière de précision sont 1) les
sorties binaires de l’OHN, et 2) l’architecture simple-couche. C’est pourquoi nous explorons
ensuite de nouvelles architectures.
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FIGURE 3 – Différentes méthodes d’apprentissage de l’OHN.

.6 Amélioration de l’architecture de réseaux de neurones oscillatoire

Pour éviter les limites de précision et d’implémentation à grande échelle de l’OHN, nous
étudions de nouvelles architectures pour l’ONN (voir Figure 4). Tout d’abord, dans le Cha-
pitre 4, nous présentons une architecture avec des couches de petits OHN connectés en cascade.
Nous divisons une tâche de reconnaissance de formes en sous-tâches afin de réduire le nombre
d’éléments synaptiques. Même si nous effectuons des applications d’IA embarquée, il n’est
pas facile de les configurer avec les algorithmes d’apprentissages utilisés et cela limitait encore
l’ONN à des tâches de reconnaissance de formes. Dans le chapitre 5, nous proposons donc
des architectures ONN multi-couche avec des connections bidirectionnelles et unidirection-
nelles pour ressembler aux ANN conventionnels et aller au-delà des tâches de reconnaissance
des formes. Nous validons d’abord un ONN à 2 couches configuré avec l’algorithme d’ap-
prentissage Hebbian pour faire de la reconnaissance de formes hétérogène, et nous mettons en
évidence sa stabilisation uniquement sur des phases de sortie binaires, comme dans l’OHN.
Cependant, nous démontrons ensuite qu’un ONN unidirectionnel à 3 couches configuré pour
la classification avec un apprentissage supervisé peut se stabiliser sur des sorties multi-phases.
Nous utilisons pour cela l’apprentissage supervisé de la rétropropagation de gradient sur un
ANN conventionnel se rapprochant de l’ONN et transférons les poids obtenus à l’ONN numé-
rique.Le transfert de poids de l’ANN conventionnel à l’ONN numérique réduit considérable-
ment la précision de la classification, ne permettant pas à l’ONN multi-couche d’être compétitif
par rapport à d’autres ANNs. Nous pensons que les principales limitations de la précision sont
dues à :

1. l’ONN numérique, avec la précision de ses poids limitée à 5 bits, et ses périodes d’os-
cillation de 16 phases, qui réduisent les sorties possibles lors de l’utilisation de valeurs
multi-phases pour la classification, et qui rendent les classes difficilement différentiables,

2. et l’algorithme d’apprentissage par rétropropagation de gradient appliqué à un ANN
conventionnel qui peut ne pas correspondre parfaitement à l’ONN.
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FIGURE 4 – Différentes architectures de l’ONN étudiées.

.7 Applications de l’ONN pour l’IA embarquée

Nous démontrons l’efficacité de l’ONN avec différentes architectures et différents algo-
rithmes d’apprentissage, en réalisant diverses applications pour l’IA embarquée (voir Figure 5).
Nous validons dans un premier temps la conception numérique de l’OHN dans le chapitre 2 en
effectuant une reconnaissance de chiffres en temps réel à partir d’un flux de données provenant
d’une caméra. Ensuite, dans le chapitre 4, nous présentons l’architecture de l’OHN en cascade
pour une application d’évitement d’obstacles en temps réel en traitant des données de capteurs
de proximité positionnés sur des robots mobiles, tels que le robot industriel E4 d’A.I.Mergence.
Nous proposons également une conception analogique de l’architecture OHN en cascade et
l’utilisons pour effectuer une détection de contour dans une image, en remplaçant les filtres
de convolution habituels. Même si cette première solution de détection de contour d’image at-
teint une précision intéressante, le temps de calcul est trop long. C’est pourquoi, au chapitre 5,
nous implémentons numériquement un ONN à deux couches configuré pour la détection de
contours d’une image capable de traiter une image en temps réel grâce au parallélisme du
FPGA. Nous utilisons cette implémentation pour accélérer l’algorithme d’extraction d’amers
SIFT. Enfin, nous étudions comment résoudre des tâches de classification avec l’ONN. Tout
d’abord, dans le chapitre 3, nous utilisons l’ONN pour résoudre la classification d’images sim-
plifiées de MNIST, en transformant une application de classification d’images en une tâche
de reconnaissance de formes. Ensuite, dans le chapitre 5, nous configurons un ONN à trois
couches unidirectionnelles pour résoudre la classification des données de Yin-Yang. Actuelle-
ment, la précision de classification de l’ONN n’est pas supérieure à celle des ANNs convention-
nels, certainement en raison de la précision limitée de la conception numérique et des solutions
d’apprentissage non adaptées.
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FIGURE 5 – Différentes applications démontrées avec l’ONN.
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.8 Conclusion et perspectives

Avec les architectures multicouches proposées, formées à l’aide d’algorithmes d’apprentis-
sage non supervisés et supervisés, et mises en oeuvre dans l’ONN numérique, le paradigme
de l’ONN n’est pas encore compétitif avec les modèles ANN multicouches conventionnels en
termes de précision. Ainsi, des recherches futures sont nécessaires pour améliorer la précision
des ONN multicouches, mais aussi pour explorer d’autres architectures et applications pour
l’ONN. Les pistes majeures d’améliorations sont

1. l’étude de solution pour permettre à l’ONN de se stabiliser sur plusieurs phases au lieu
de phases binaires comme c’est le cas pour le moment,

2. l’exploration de nouveaux algorithmes d’apprentissages compatibles avec les ONNs multi-
couche et multi-phase,

3. le dévelopemment de nouveaux composants compacts, rapides et à faible consommation
pour la conception d’ONNs analogiques afin de bénéficier des avantages du domaine
analogique en terme d’efficacité energétique et temporel, et

4. la recherche d’architectures et d’applications alternatives, telles que l’architecture en ré-
servoir pour le traitement de données temporelles, et les architectures en graphes pour la
résolution de problèmes d’optimisation.
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